

UNIVERSIDADE FEDERAL DA PARAÍBA CENTRO DE CIÊNCIAS AGRÁRIAS CURSO DE GRADUAÇÃO EM ZOOTECNIA

TRABALHO DE CONCLUSÃO DE CURSO

QUANTIFICAÇÃO DE PROTOZOÁRIOS CILIADOS NO RÚMEN DE BOVINOS ALIMENTADOS COM SORGO DE ALTO TANINO

ROGÉRIO ALESON DIAS BEZERRA

AREIA
AGOSTO 2014

ROGÉRIO ALESO DIAS BEZERRA

QUANTIFICAÇÃO DE PROTOZOÁRIOS CILIADOS NO RÚMEN DE BOVINOS ALIMENTADOS COM SORGO DE ALTO TANINO

Trabalho de Conclusão de Curso apresentado ao Colegiado do Curso de Zootecnia no Centro de Ciências Agrárias da Universidade Federal da Paraíba, como parte dos requisitos para obtenção do título de graduado em Zootecnia

AREIA
AGOSTO 2014

Rogério Aleson Dias Bezerra

QUANTIFICAÇÃO DE PROTOZOÁRIOS CILIADOS NO RÚMEN DE BOVINOS ALIMENTADOS COM SORGO DE ALTO TANINO

Orientador:
Nome: Prof. Dr. Severino Gonzaga Neto
Universidade Federal da Paraíba
Examinador (a):
Nome: Msc. Carla Giselly Souza
Programa de Pós-Graduação em Zootecnia
Universidade Federal da Paraíba
Examinador (a)
Msc. Gabriela Brito Cambuí
Programa de Pós-Graduação em Zootecnia
Universidade Federal da Paraíba

AREIA, ___/___/___

DEDICATÓRIA

Aos meus pais Antônio e Regiane, guerreiros que com amor e carinho sempre me deram força e incentivo para que pudesse buscar meus sonhos e alcançar meus objetivos.

A minha irmã Amanda Kelly, pelo amor fraterno e amizade durante toda minha vida e por saber que posso sempre contar com ela.

A Juliana, por todo amor, carinho, companheirismo e compreensão em todos os momentos.

Aos meus avós maternos, Carmelita Dias e Aurélio Dias, por toda dedicação ao longo de toda minha vida.

Aos meus avós paternos Severino e Severina (*in memorian*), mesmo não podendo chegar a compartilhar este dia, se dedicaram com amor e carinho na minha criação.

AGRADECIMENTOS

A Deus em primeiro lugar, pois somente com sua mão sobre cada ato e decisão tomada por mim em minha vida pessoal e profissional é que foi possível chegar até aqui, e somente por sua vontade poderei crescer e chegar ainda mais longe.

A Universidade Federal da Paraíba, em especial ao Departamento de Zootecnia, pelos ensinamentos fundamentais e pela oportunidade da formação acadêmica.

Ao meu orientador Prof. Severino Gonzaga Neto, por cada conhecimento que acrescentou em minha formação, me servindo também como um exemplo a ser seguido, pela confiança, amizade e ensinamentos ao longo de todos esses anos, obrigado pelas oportunidades tão preciosas que me confiou e que me fizeram ser cada vez mais comprometido e orgulhoso para com a minha profissão.

Ao Prof. Alexandre José Alves, pela valorosa contribuição no ensinamento da metodologia para quantificação e classificação dos protozoários.

Aos Professores Lara Toledo e Walter Esfrain pelos ensinamentos, auxilio na execução deste trabalho e ajuda preciosa nas análises estatísticas.

Aos funcionários do Setor de Bovinocultura Calos Augusto, Evaldo Cardoso, Leandro e Cristiano (Pio) pelas experiências, apoio, ensinamentos e amizade.

Aos amigos Elton Pereira, Jéssyca Pinheiro, Antonio Rapozo, Antonio Nascimento, Victoria Réghia, Maria Elivânia, George Vieira e Gabriel Almeida, pelas histórias que compartilhamos os conselhos, preocupação, carinho e amizade. Por todas as vezes que se fizeram presentes em momentos de felicidades e também de tristeza.

As doutorandas Gabriela Cambuí, Carla Giselly, Danielle Farias e Jaqueline Trajano, pela maravilhosa convivência e excelentes momentos compartilhados, conselhos e ajuda valiosa, no auxílio do trabalho.

Obrigado a todos por terem acreditado, por sempre me mostrarem que poderia ir mais longe e nunca me deixarem abalar diante das dificuldades. As palavras ditas até hoje por cada um de vocês levou a construção do meu caráter e de todas as ideias e pensamentos que hoje possuo como profissional.

SUMÁRIO

LISTA	DE FIGURAS	i
LISTA	DE TABELAS	ii
LISTA	DE ABREVIATURAS E SIGLAS	iii
RESUM	MOOM	iv
ABSTR	RACT	v
1. IN	TRODUÇÃO	6
2. RE	EVISÃO DA LITERATURA	8
2.1.	Sorgo (Sorghum bicolor (L.) Moench.)	8
2.2.	Taninos na Nutrição Animal	9
2.3.	Protozoários Ciliados	10
3. MA	ATERIAL E MÉTODOS	12
3.1.	Local do experimento	12
3.2.	Tratamentos e manejo alimentar	12
3.3.	Coleta do líquido ruminal	13
3.4.	Horários da coleta	13
3.5.	Contagem de protozoários ciliados	13
3.6.	Delineamento experimental	14
4. RE	ESULTADOS E DISCUSSÃO	16
5. CO	ONCLUSÃO	21
6 DE	CEEDÊNICIA C	22

LISTA DE FIGURAS

Figura 1: Protozoários Ciliados encontrados no fluido ruminal	14
Figura 2:Estimativa do número de protozoários totais no rúmen em fu	nção da substituição de
sorgo na dieta	17
Figura 3: Médias de pH do liquido ruminal de novilhos recebendo so	rgo em substituição do
farelo de milho no concentrado	18
Figura 4:Médias de temperatura do ambiente ruminal de novilhos	s recebendo sorgo em
substituição ao farelo de milho no concentrado	19

LISTA DE TABELAS

Tabela	1:	Composição	das	dietas	experime	entais	em	g/kg/MS	com	substituição	de	sorgo	ac
		farelo de mil	lho e	quanti	dades de	Tanin	O						13

LISTA DE ABREVIATURAS E SIGLAS

% Percentagem

μL Microlitros

G Gramas

kg Kilograma

mL Mililitro

MS Matéria seca

NRC National research council

PB Proteína bruta

pH Potencial hidrogeniônico

Rpm Rotações por minuto

TC Tanino condensado

RESUMO: O grão de sorgo é uma ótima alternativa em substituição ao milho, pelas suas características nutricionais e capacidade de produção em ambientes com baixa precipitação pluviométrica, apresentando bom rendimento de nutrientes por unidade de área. No entanto, algumas variedades, devido a presença de compostos fenólicos, especialmente nos grãos, podem proporcionar alterações no ambiente ruminal, o que motivou a realização do presente trabalho, com a finalidade de avaliar o número total de protozoários ciliados, a temperatura e o pH no rúmen de bovinos alimentados com sorgo de alto tanino. Foram utilizados quatro bovinos castrados e canulados no rúmen, num delineamento experimental em quadrado latino 4×4 (quatro tratamentos: 0, 33, 67 e 100 e quatro tempos: 0, 2, 4, 6 horas a partir da alimentação). As coletas do líquido ruminal foram realizadas nos tempos pré-determinados e no instante da coleta foi avaliado a temperatura e o pH do líquido ruminal e posteriormente contagem dos protozoários ciliados, segundo metodologia proposta por Ogimoto e Imai (1981). Os dados foram submetidos a análise de variância e regressão com nível de 5% de significância pelo programa estatístico SAS (2010). Para o número de protozoários totais ruminais (x10⁴), observou-se um comportamento linear decrescente (p<0,05) em função dos níveis de inclusão de sorgo com alto tanino, contudo as variáveis pH e temperatura não apresentaram diferenças (P>0,05) nos valores médios em relação aos níveis de substituições do milho pelo grão de sorgo, com valores dentro dos níveis ideais para o desenvolvimento dos protozoários.

Palavras Chave: compostos fenólicos, microbiologia, microrganismo, ruminantes

ABSTRACT: Sorghum grain is an optimal alternative to replace maize, by its nutritional features and production capacity, showing a better yield of nutrients by area unit. Then the presence of phenolic compounds can modify the ruminal environment. So the aim of this study was to evaluate the total number of ciliated protozoon on rumen of feed bovine with sorghum of high tannin .It has been used four castrated bovines with ruminal fistula. The used experimental sketching was square latin (4x4), with four treatments (T1, T2, T3, T4) and four periods (0, 2, 4, 6h) cropping. The crops of ruminal liquid were carried out in pre-determined and during the crop was evaluated the temperature and pH of ruminal liquid and afterwards the scoring of ciliated protozoon, according to the proposed methodology by Ogimoto and Imai (1981). Data were subjected to variance analysis and regression with level at 5% of significance by SAS statistical program (2010). To the number of total ruminal protozoon $(x10^4)$, it has been observed a linear behavior decrease (P<0,05) in function to the levels of sorghum with high tannin, it can be explained by the tannin feature forming complex with the substrate interfering on fixing of microorganisms to the cell walls of the plants, causing substrate blocking, interfering on its development, therefore pH variables and temperature did not show differences (P>0,05) in the average values according to sorghum values, these values stand in the optimal levels to protozoon development.

Keywords: phenolic compounds, microbiology, microorganism, ruminants.

1. INTRODUÇÃO

O Nordeste apresenta grande potencial para produção animal, gerando emprego e renda, no entanto, o baixo desempenho produtivo acarretado pela variação climática estacionaliza a oferta de forragem (CAMURÇA, 2002). Culturas mais adaptadas a estas condições de semiaridez, resistentes à baixa incidência de chuvas, contribuem para minimizar o problema da oferta de alimentos. Entre elas, o sorgo (Sorghum bicolor (L.) Moench.), originário da África e parte da Ásia, tem se destacado, por ser uma planta tipicamente de clima quente, com baixa exigência em fertilidade do solo e alta tolerância/resistência aos fatores abióticos, tais como: estresse hídrico e salinidade.

Tabosa (1999), afirma que o sorgo tem grande eficiência no uso de água, superior a grande maioria das gramíneas tropicais, necessitando, em média 250 a 400g de água para produzir 1g de matéria seca, em vista disso, a cultura do sorgo torna-se uma excelente alternativa para o pecuarista minimizar o problema decorrente da estacionalidade da produção de forragem no período seco (NOVAES et al., 2004).

Na alimentação animal, o grão de sorgo torna-se uma ótima alternativa em substituição ao milho, devido as suas características nutricionais e grande capacidade de produção, principalmente nas regiões semiáridas e tropicais, onde sua cultura apresenta melhor rendimento de nutrientes por unidade de área (NOZELLA, 2006).

A presença dos ácidos fenólicos, flavonoides e os tanios, clasificados como compostos fenólicos, (CABRAL FILHO, 2004), o qual torna-se uma das principais características da planta de sorgo, resultantes do metabolismo secundário vegetal (ARGENTA, 2014), estes compostos podem limitar o desempenho do animal, entretanto, Teixeira (2001), justifica que estas macromoleculas não trazem problemas aos ruminantes, pois eles possuem câmaras fermentativas (pré-estômagos) em seu trato digestivo e simbiose com microrganismos que diminuem os efeitos negativos destes compostos, com exceção dos bezerros, que não apresentam ainda um rúmen funcional. Valadares Filho e Pina (2006), destacam a importancia dos microrganismos, que sintetizam nutrientes como proteínas, ácidos graxos voláteis (AGVs, principal fonte energética de ruminantes) e algumas vitaminas a partir da fermentação de alimentos fibrosos.

O pré-estômago ou câmara fermentativa é dividido em quatro partes: rúmen, retículo, omaso e abomaso; os três primeiros, com função fermentativa e revestida por um epitélio não glandular com mucosa absortiva (BERCHIELLI et al., 2006). Sendo o rúmen o maior

compartimento e hábitat ideal para o desenvolvimento dos microrganismos, com temperatura média de 39°C, ausência de oxigênio e pH médio de 6,9 (MONÇÃO et al., 2013). Arcuri et al. (2012), definem o rúmem como uma câmara de fermentação estável, fornecendo substrato aos microrganismos e removendo produtos da fermentação, e ainda, colonizado por uma diversidade de microrganismos (FURLAN et al., 2012).

Dentre estes, os protozoários ciliados constituindo a maior população no rúmen, apresentando simbiose com arqueias metanogênicas e utilizando o hidrogênio produzido na formação de metano (MARTINELE et al., 2008). Os protozoários podem ser responsáveis por até 37% da metanogênese, assim, a redução no número de ciliados torna-se interessante, em razão da menor perda de energia no rúmen e das consequências ambientais do metano no efeito estufa.

Pesquisas têm sido realizadas para identificar o papel específico dos protozoários no metabolismo ruminal e a inter-relação dessas espécies no rúmen. Entretanto, o cultivo *in vitro* dos ciliados é difícil e a sobrevivência de alguns depende da presença de bactérias e arquéias no meio (MARTINELE et al., 2008). Jesus et al. (2012) atribuem a redução ou eliminação da população de microrganismos ruminais de bovinos a queda do pH ruminal e a rápida taxa de passagem, quando os níveis de concentrado na ração são aumentados.

Contudo, à medida que os protozoários têm seu crescimento estimulado ou inibido por fatores dietéticos, torna-se importante a quantificação e avaliação de sua atividade em resposta a dietas fornecidas aos ruminantes. Desta forma, possibilita-se a realização de diagnósticos precoces de eventuais distúrbios de ordem metabólica e ajustes criteriosos nas formulações de rações.

Objetivou-se com a realização do presente estudo avaliar a influência do tanino sobre a população de protozoários ciliados encontrados no rúmen de bovinos e a relação entre ph e temperatura em seu desenvolvimento.

2. REVISÃO DA LITERATURA

2.1. Sorgo (Sorghum bicolor (L.) Moench.)

O sorgo grão destaca-se como o quinto cereal de maior produção no mundo e o quarto no *ranking* de produção brasileira (IBGE, 2010), por sua versatilidade e facilidade de produção, este tem sido utilizado como base na alimentação de milhões de pessoas, principalmente na África e na Ásia, chegando a suprir cerca de 70% da ingestão calórica diária, exercendo importante papel na segurança alimentar dessas populações.

Nos demais países, este cereal tem sido utilizado basicamente na alimentação animal, mostrando-se como uma ótima alternativa em substituição ao milho (QUEIROZ, 2011), sendo este ligeiramente inferior em valores energéticos quando comparado ao milho (NRC, 1994), entretanto, Montiel et. al. (2011) afirmam que o grão de sorgo apresenta um teor de proteína geralmente um pouco superior ao milho, contudo, a proteína e amido presentes no endosperma do grão de sorgo estão ligadas às prolaminas (kafirinas), o que representa menor digestibilidade relativa dos nutrientes. Em níveis de aminoácidos, metionina e lisina apresentam-se abaixo dos encontrados no milho e superior de triptofano (MAY, 2011).

Uma das caracteristicas da planta do sorgo é a presença dos compostos fenólicos, estas macromoléculas são resultantes do metabolismo secundário da planta (ARGENTA et al., 2014), os ácidos fenólicos, os flavonóides e os taninos, são os principais compostos presentes na planta do sorgo (CABRAL FILHO, 2004) constituindo um meio de defesa contra bactérias, fungos, vírus, estresse ambiental e ingestão por herbívoros (GUIMARÃES-BEELEN et al., 2006).

Os taninos são definidos como um complexo heterogêneo de polifenóis de origem vegetal com alto peso molecular (500 a 3000 Daltons), os quais diferem de outros polifenóis pela sua capacidade de precipitar proteínas, íons metálicos, aminoácidos e polissacarídeos (OLIVEIRA et al., 2007b).

Dividem-se em dois principais grupos: hidrolisáveis e condensados Oliveira et al. (2007) e Cabral Filho (2004), comentam que taninos condensados podem conter ácido gálico em sua cadeia, o que resulta em maior atividade biológica do composto. Contudo, Lima Junior et al. (2010) diferenciam a estrutura química e capacidade da mesma em ser ou não hidrolisada.

Estudos tem demostrado uma capacidade antioxidante dos compostos fenólicos provenientes do sorgo, assim, seu consumo pode associar-se a redução do risco de doenças,

como as cardiovasculares diabetes, obesidade e câncer (QUEIROZ, 2011). Embora esta capacidade antioxidante ainda não tenha sido elucidada, contudo, a absorção de proteínas e minerais foram largamente evidenciados como principal prejuízo na utilização dos compostos fenólicos.

2.2. Taninos na Nutrição Animal

O complexo proteina-tanino é formado a partir da mastigação de plantas que contém taninos. Este é estável em pH entre 3,5-7,0. Isso faz com que a proteina fique protegida da hidrólise microbiana e da desaminação no rúmen, uma vez que o pH deste orgão encontra-se geralmente nesta faixa aumentando o fluxo de proteina do alimento disponivel para a digestão e absorção pós-rúmen.

Pinedo (2009) confirma que os efeitos antinutricionais dos taninos estão relacionados à sua ação sobre ingestão de matéria seca, e associa em maior parte aos taninos condensados os efeitos aintinutricionais, pela sua capacidade de se combinar com a proteína da dieta (SILVA et al., 1999), formando polímeros com a celulose, hemicelulose, pectina e minerais, diminuindo com isso sua digestibilidade (MONTIEL et al., 2011). A formação do complexo tanino-proteína é específica e depende do grau de afinidade química entre estes compostos (OLIVEIRA et al., 2011), inibindo o ataque microbiano, dessa forma, considerado o mais importante efeito nutricional e toxicológico destes compostos. No entanto, parece haver maior afinidade dos taninos pelas proteínas do que por outras moléculas (como a celulose), o que foi atribuído às fortes pontes de hidrogênio que se formariam entre o oxigênio do grupo carbonila das proteínas e os grupos hidroxifenólicos dos taninos (LIMA JUNIOR et al., 2010), os taninos também podem afetar o processo de digestão por meio da complexação com enzimas secretadas e proteínas endógenas (PINEDO, 2009).

Em sua revisão, Sousa (2001) justifica o efeito deletério do tanino sobre a digestibilidade da MS, originado de: 1) inibição das enzimas digestivas microbianas, 2) inibição do crescimento microbiano; 3) indisponibilização do substrato para a microbiota ruminal, através da formação de complexos substratotanino insolúveis.

Oliveira et al. (2007b) verificaram que o tanino pode apresentar determinados efeitos benéficos ao metabolismo animal de acordo com a concentração, tais como, aumento na absorção de aminoácidos no intestino, redução da população de parasitas no intestino aumento na síntese de proteína microbiana e redução na produção de metano (CH₄) ruminal. Em

trabalho citado por Nascimento (2007), os autores conseguiram diminuição de 57% na emissão de metano, utilizando forragens com baixos a moderados valores de taninos condensados (2% a 17%). Quantidades moderadas de taninos condensados (10 - 40g/kg ⁻¹/MS) podem previnir o timpanismo, aumentar o fornecimento de proteina "by-pass" ou PNDR (proteina não degradada no rúmen) para digestão no intestino delgado (OLIVEIRA, 2007b)

Entretanto em revisão Cabral Filho (2004), demostra efeitos negativos quando a ingestão de tanino é muito elevada, dentre eles são a diminuição na digestibilidade da proteina e da fibra, o menor aproveitamento do nitrogênio, a diminuição do consumo voluntário e dos indicadores de produção (produção de leite e lã, no crescimento e no ganho de peso).

2.3. Protozoários Ciliados

O número médio de protozoários ciliados é de 10⁵ a 10⁶ células/grama de conteúdo ruminal e em sua grande maioria pertencem ao gênero Isotricha e Entodinium, embora espécies de flagelados também estejam presentes em diferentes condições de dietas (HERDT, 2008). Uma comparação dos números e volumes relativos de bactérias e protozoários indica que, enquanto os protozoários são menos numerosos do que as bactérias, eles são maiores e pode ocupar um volume equivalente aquele ocupado pelas bactérias (ALLISON, 1988).

A maioria dos protozoários no rúmen possuem cílios e dividem-se em dois grupos dependendo de características morfológicas: os entodiniomorfos, que ingerem, preferencialmente, partículas insolúveis suspensas no fluído ruminal e estão presentes em maior número, sendo a dieta à base de forragem, e, os holotriquias, que tem maior capacidade de ingerir materiais solúveis e grânulos de amido e estão presentes em maior número, quando a dieta é rica em grãos e farelos de cereais (FRANZOLIN e FRANZOLIN, 2000), possuem papel fundamental na modulação da taxa de fermentação ruminal, favorecendo o equilíbrio no ecossistema ruminal e evitando disfunções metabólicas (LIMA et al. 2011).

Allison (1988), afirma que a diversidade de espécies ciliadas é mais baixa em ruminantes que se alimentam de ração no cocho, em relação aos que utilizam pastagens, os quais, se alimentam menos seletivamente com alimentos mais fibrosos, devido algumas espécies de protozoários possuírem a capacidade de digerir carboidratos da parede celular das plantas, caso especialmente dos grandes entodiniomorfos (FRANZOLIN e FRANZOLIN, 2000).

Contudo, Nogueira filho et al. (2000), afirmam ser possível à sobrevivência do hospedeiro sem os protozoários e a defaunação, porém os protozoários são muito úteis na fermentação do amido, equilíbrio do pH e aumento da relação acetato: propionato, relação essa elevada pela capacidade dos protozoários em ingerir partículas de amido e proteínas, estocando-as dentro de seu próprio organismo, onde ficam protegidas da ação das baterias, tornando mais lenta a digestão destes substratos. Assim, podem ser classificados como utilizadores de carboidratos, que degradam amido e os que hidrolisam lignina e celulose (MONÇÃO et al., 2013).

As proteínas digeridas são excretadas novamente para o fluído ruminal na forma de amônia, aminoácidos e peptídeos. Os protozoários são, ainda, ativos na biohidrogenação de ácidos graxos insaturados. A maior parte dos protozoários é reciclada no interior do rúmen, não chegando ao abomaso (OLIVEIRA et al., 2007).

MONÇÃO et al. (2013) comprovam que dentre os fatores que influenciam a quantidade de espécies de protozoários no ambiente ruminal, destacam-se: o tipo de alimentação, a distribuição geográfica, o antagonismo entre certas espécies, raças, o estado fisiológico e a frequência de alimentação. Segundo Nacimento (2007), a remoção de protozoários do ambiente ruminal reduz a metanogênese, seja em dietas ricas de amido ou fibras, esta ocorre pela mudança do perfil de fermentação ruminal, favorecendo a produção de propionato e diminuindo a formação de metano. Deve-se ao fato, que os principais produtos da fermentação dos protozoários serem o acetato e o butirato.

3. MATERIAL E MÉTODOS

3.1. Local do experimento

O estudo foi conduzido no Setor de Bovinocultura de leite do Departamento de Zootecnia do Centro de Ciências Agrárias da Universidade Federal da Paraíba, no período de Maio a Julho. Foram utilizados novilhos, com proximadamente 5 anos de idade e peso médio de 500 kg, portando cânulas ruminais permanentes. Durante o experimento os animais foram identificados individualmente através de marcação e mantidos alojados em baias individuais providas de comedouros e bebedouros.

3.2. Tratamentos e manejo alimentar

Os animais eram mantidos em sistema de confinamento, recebendo água *ad libitum* e ração em cochos individuais, sendo essa fornecida às 7:00 e 16:00 h. As dietas foram elaboradas na forma de dieta total (silagem + concentrado), balanceadas de acordo com as recomendações do NRC (2001), calculada buscando o fornecimento de MS equivalente a 2% do PV. Essa dieta foi estratificada em silagem de capim elefante (*Pennisetum purpureum* Schum.) a base de 60% da MS, acrescidos de alimento concentrado a base 40 % da MS. O experimento teve duração de 60 dias, divididos em quatro períodos de 15 dias, com 10 dias para adaptação da microbiota ruminal à dieta e 5 dias para a coleta de dados, antecedendo ao período experimental foi realizado uma adaptação prévia à dieta, compreendendo 8 dias. Os tratamentos eram formados em função dos níveis de sorgo no concentrado, na tabela 1, segue a participação dos ingredientes (%) na dieta.

 T_1 = Silagem de Capim elefante + concentrado com 0% de sorgo

T₂ = Silagem de Capim elefante + concentrado com 33% de sorgo

T₃ = Silagem de Capim elefante + concentrado com 67% de sorgo

T₄ = Silagem de Capim elefante + concentrado com 100% de sorgo

Tabela	1.	Composição	das	dietas	experimentais	em	g/kg/MS	com	inclusão	de	sorgo	em
		substituição	ao m	ilho e d	quantidades de	tanir	no das die	tas.				

Ingradients	Nível de substituição do milho pelo sorgo								
Ingrediente	0	33	67	100					
Milho Moído	311,7	208,71	105,5	0					
Farelo de Trigo	46,0	46,0	46,0	46,0					
Farelo de Soja	23,1	23,1	23,1	23,1					
Sorgo	0	102,99	206,2	311,7					
Ureia	6,4	6,4	6,4	6,4					
Mineral	12,8	12,8	12,8	12,8					
Tanino*	0	3,75	7,52	11,37					

^{*} estimada segundo Montiel (2011).

3.3. Coleta do líquido ruminal

As coletas do líquido ruminal foram antecedentes a alimentação dos animais realizadas em três períodos, sendo cada um de quinze dias (10 de adaptação e 5 de coleta de dados). Foi retirada uma quantidade considerável de amostras, recolhido em partes diferentes do ambiente ruminal e filtrado em camada tripla de pano/fralda, até extrair liquido suficiente para análise (20 ml). No instante da coleta foi determinado a temperatura e o pH do líquido ruminal (termômetro analógico e medidor de pH digital, modelo ph906), que imediatamente foi conservado em frascos estéreis com solução de formol a 20%, na proporção de 1:1, para posterior contagem dos protozoários ciliados.

3.4. Horários da coleta

As coletas de líquido ruminal ocorreram antes do fornecimento da dieta e 2, 4 e 6 horas após o fornecimento da mesma.

3.5. Contagem de protozoários ciliados

A separação de ciliados (Figura 2) para contagem foi realizada no Laboratório de Microbiologia e Sanidade Animal do Departamento de Zootecnia da Universidade Federal da Paraíba. Utilizou-se a metodologia proposta por Ogimoto e Imai (1981), com adaptações,

conforme a seqüência: centrifugação do conteúdo ruminal de cada tratamento, durante 3 minutos a 1000 rpm e em seguida desprezou-se o sobrenadante. Em 1 mL do precipitado adicionou-se 4 mL de solução de sacarose a 30% para lavagem do mesmo e realização de nova centrifugação por 3 minutos. a 1000 rpm. Depois se procedeu três lavagens consecutivas com 5 mL de solução salina (0,8%), centrifugando-se após cada lavagem por 3 minutos a uma rotação de 1000 rpm. Do precipitado final obteve-se a fração de ciliados presentes nas amostras.

Em câmara de contagem celular (Figura 1) foram depositados 9 microlitros (µL) para contagem dos protozoários ciliados. Sendo esta constituída de duas câmaras ao centro, uma embaixo da outra, sobre as quais é colocada a lamínula para a leitura no microscópio.

No centro destas câmaras há várias linhas perpendiculares com marcações em quadrantes. Observando-se ao microscópio, percebe-se que existem três tipos de quadrantes denominados A, B e C, de medidas conhecidas, que juntos formam um quadrado maior. A área total compreendida pelos 9 quadrantes é de 9 mm² sendo que cada quadrante (A, B e C) são quadrados de 1 x 1 mm. Ao ser colocada a lamínula (especial para ser usada na câmara de Neubauer, estas são mais grossas que as comuns) a distância da lamínula até a lâmina (profundidade) mede 0,1 mm, o que permite se obter um volume de 0,1 mm³ em cada quadrante.

O resultado final foi obtido quando distribuído na seguinte fórmula: $N = n \times 10^{-4}/0.9 \times 2$, onde N = número de ciliados total em 1 mL; n = número de ciliados. As leituras foram realizadas sob a luz da microscopia óptica, utilizando a objetiva de 40×10^{-4} .

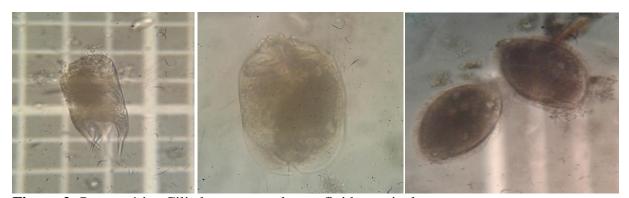


Figura 2: Protozoários Ciliados encontrados no fluido ruminal.

3.6. Delineamento experimental

O delineamento experimental utilizado foi de quadrado latino balanceado (4×4). As médias das concentrações de protozoários do número total, em função dos tratamentos, pH e

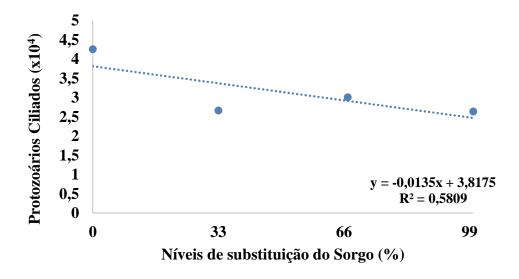
Temperatura, foram submetidos a analise de variância (ANOVA) e regressão com nível de 5% de significância. Os dados foram interpretados utilizando o programa estatístico SAS. 9.22 (2010).

4. RESULTADOS E DISCUSSÃO

O ambiente ruminal deve oferecer características adequadas, de temperatura, pH, anaerobiose e nitrogênio amoniacal para o bom desenvolvimento dos microrganismos que o povoa. O desequilíbrio do ambiente ruminal leva a morte dos microrganismos, diminuindo a eficiência da fermentação ruminal, acarretando menor aproveitamento dos alimentos fibrosos.

Para o número de protozoários totais no rúmen (Figura 2), observa-se um comportamento linear decrescente (p<0,05) em função dos níveis de inclusão de sorgo com alto tanino. Este decréscimo com o decorrer do período experimental pode ser explicado pelo aumento do efeito deletério do tanino em formar complexos substrato-tanino, interferindo na fixação dos microrganismos à parede celular das plantas, ocasionando privação de substrato, inibição de enzimas e a ação direta sobre microrganismos ruminais (HENRIQUES, 2014).

De acordo com a Figura 2, a concentração média total de protozoários ciliados foi de $4.2x10^4$, $2.6x10^4$, $3.0x10^4$ e $2.6x10^4$ protozoários/mL de fluido ruminal para os animais que receberam a dieta com 0, 33, 67, 100%, estando dentro de valores citados de 10^4 a 10^6 protozoários/mL de conteúdo ruminal, de animais alimentados com diferentes tipos de dieta (ARCURI, 2012).


Em outros estudos, a degradação in vitro da matéria seca (MS) de alguns alimentos, entre eles o sorgo como forrageira, foi correlacionada negativamente com a concentração de tanino (CUMMINS, 1971; ZAGO, 1991). Cardoso (2012), avaliando a degradabilidade *in situ* e a cinética de degradação da MS e proteína bruta (PB) de silagens de três genótipos de sorgo, concluíram que a presença do tanino pode reduzir a degradabilidade ruminal da MS e PB.

Ao diminuir a degradabilidade ruminal, aumentam a concentração de proteínas que ficam disponíveis para ser absorvida no duodeno. Por outro lado, os taninos que estão livres, normalmente causam um efeito contraproducente sobre a digestão, ao inibir a fermentação, entretanto, a inclusão de tanino na dieta de ruminantes apresenta efeito benéfico sobre a digestão de proteínas. Alguns taninos podem reduzir a quantidade de proteína que é digerida no rúmen e aumentar a quantidade de proteína disponível para a digestão no intestino delgado, esta mudança no local de digestão de proteínas tem sido referida como 'proteína de escape ruminal ou "proteína by pass" (MUELLER-HARVEY, 2006).

Caprinos alimentados com *L. cuneata* oferecida fresca (180g TC kg⁻¹) resultou em menores emissões de metano, expresso em quantidade por dia (7,4 vs 10.6g dia⁻¹) ou em relação ao consumo de matéria seca (6,9 vs 16.2g kg⁻¹ consumo de MS), em comparação com

uma dieta contendo *Digitaria Ischaemum* (Schreb.) Schreb. ex Muhl e *Festuca arundinacea Schreb* (PUCHALA *et al.*, 2005).

Beauchemin et al. (2007), constatou que em bovinos de corte alimentados com uma dieta de forragem baseado na suplementação *Schinopsis quebracho*, (tanino 10 ou 20 g/kg MS), há uma redução na proporção molar de acetato, relação acetato: propionato, e amônia ruminal em relação ao gado controle não suplementados com tanino. Waghorn (2008), relata que taninos condensados têm reduzido a produção de metano (g/kg consumo de MS) em cerca de 15% em ovinos alimentados com *Lotus corniculatus* L. subsp. decumbens (erva coelheira). E ainda, redução semelhante foi demonstrada por adição de TC de Mimosa Preta (*Acácia mearnsii*) a dieta e oferecido aos carneiros, dessa forma, estas reduções podem beneficiar a produção, porque menos energia do alimento é perdida durante a digestão, além de reduzir as emissões de gases de efeito estufa (WAGHORN, 2008).

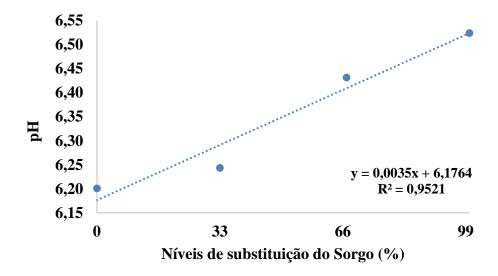
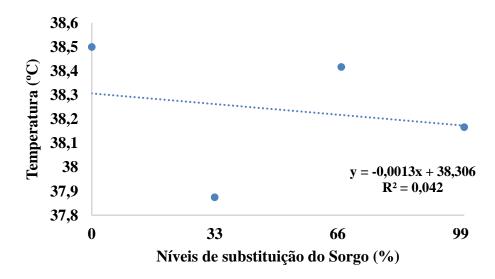


Figura 2. Estimativa do número de protozoários totais no rúmen em função da substituição de sorgo na dieta.

As predações por grandes populações de protozoários reduzem a biomassa bacteriana livre no líquido ruminal; aumenta a reciclagem intra-ruminal e a perda de nitrogênio (N) pelo hospedeiro e reduzindo o fluxo de proteína microbiana para o intestino delgado, tanto pela menor população bacteriana quanto pela retenção dos protozoários no rúmen (LENG e NOLAN, 1984). A defaunação que nutricionalmente é definida como a eliminação dos protozoários do rúmen pode trazer alguns benefícios. Em alguns programas de alimentação, como em dietas com alta energia e ricas em nitrogênio não proteico a ausência dos

protozoários resulta numa melhoria da performance do animal, no entanto a presença de protozoários no rúmen parece ser um fator fundamental para o processo fermentativo, pois através da ingestão de partículas alimentares e pelo armazenamento de amido, eles podem controlar o nível de substrato disponível, uniformizando a fermentação entre os intervalos de alimentação.

Os protozoários podem servir também como uma fonte contínua de nitrogênio para as bactérias após sua morte e degradação, pois grande parte da proteína do protozoário foi formada a partir da proteína das bactérias (TEIXEIRA, 1991).


Figura 3. Médias de pH do liquido ruminal de novilhos recebendo sorgo em substituição do farelo de milho no concentrado.

O pH do rúmen é um dos fatores fisiológicos mais variáveis e que influenciam diretamente a população microbiana, podendo afetar os protozoários quando há a redução deste fator. Nesse estudo, não houve diferenças (P>0,05) nos valores médios de pH em relação aos níveis de sorgo ofertados aos animais (Figura 3). Não ocorrendo alteração no valor do pH quando se comparou os diferentes tempos de coleta (0h antes da alimentação e 2, 4 e 6h após alimentação) e níveis de inclusão de sorgo (0, 33, 67 e 100%) na dieta. Os valores permaneceram dentro dos níveis ideais para o desenvolvimento dos protozoários, que devem estar entre 6,0 a 7,0 e 37 a 39 °C, valores respectivos de pH e temperatura do rúmen estão dentro da faixa de variação apresentada por Dehority (1987) considerada como normal.

Corroborando com trabalho realizado por Franzolin e Franzolin, (2000), que não encontraram diferenças entre concentração total de protozoários/mL e tempo de amostragem.

Entretanto, neste estudo não houve efeito (P<0,05) dos tratamentos e temperatura (p<0,05) em função dos tempos (0, 2, 4, 6 hs) de alimentação (Figura 4), apresentando correlação negativa com o tempo de amostragem, não estando correlacionado com o número de protozoários, provavelmente porque as variações observadas compreenderam valores considerados ideais para o estabelecimento e manutenção das populações de protozoários no rúmen, sendo 6,0 a 7,0; 37 a 39°C, faixa de variação apresentada por Dehority (1987) considerada como normal.

Os protozoários desempenham um papel de suma importância no controle do pH do fluido ruminal, pois estes são capazes de engolfar facilmente grânulos de amido em suspensão no conteúdo ruminal, sendo responsáveis por até 45% da atividade amilolítica no rúmen, e sua população aumenta significativamente em animais suplementados com dietas que possuem um aumento progressivo da fração concentrada (BORGES, 2002). Entretanto, sabe-se que em dietas ricas em forragens, as bactérias podem formar sítios de aderência dificultando o engolfamento pelos protozoários, provocando assim uma redução no seu desenvolvimento.

Figura 4. Médias de temperatura do ambiente ruminal de novilhos recebendo sorgo em substituição ao farelo de milho no concentrado.

Assim, há uma relação inversamente proporcional com relação a utilização digestiva e metabólica das proteínas, ou seja, ao diminuir a degradabilidade ruminal, aumentam a concentração de proteínas que fica disponível para ser absorvida no duodeno, por outro lado, os taninos que estão livres, normalmente causam um efeito contrário sobre a digestão, ao inibir a fermentação.

Ainda não é suficientemente claro o papel dos ciliados no rúmen, dificultando o estabelecimento de um conceito para a relação entre ciliados e ruminantes, dessa maneira, parece mais conveniente considerar o rúmen como um ecossistema fechado, onde protozoários e bactérias mantêm uma relação próxima, que em conjunto afeta positiva ou negativamente a digestão e, conseqüentemente, o desempenho produtivo dos ruminantes.

5. CONCLUSÃO

Pelos resultados obtidos podemos inferir que a presença do tanino no grão de sorgo promoveu um decréscimo na população de protozoários ciliados, pela formação do complexo tanino-substrato, inibindo o processo de adesão/ataque microbiano às partículas alimentares. Contudo não houve alteração significativa do pH e temperatura ruminal, fatores estes que, influenciam diretamente no desenvolvimento destes microrganismos.

6. REFERÊNCIAS

- ALLISON, M. J. Microbiologia do Rúmen e dos Intestinos Delgado e Grosso. IN: DUKES, M. J. S. Fisiologia dos Animais domésticos. Rio de Janeiro: Guanabara, 300p. 1988.
- ARCURI, B. P.; LOPES, F. C. F; CARNEIRO, J. C. **Microbiologia do Rúmen.** IN: BERCHIELLI, T. T.; PIRES, A. V.; OLIVEIRA, S. G. Nutrição de Ruminantes. Jaboticabal: Funep, 115-147p. 2012.
- ARGENTA F.M.; BORNDANI, I.L.; ALVES FILHO, D.C.; RESTLE, J.; SEGABINAZZI, L.R.; CASTTELAM, J.C.; SANTOS, V.S.; PAULA, P.C.; AZEVEDO JUNIOR, R.L.; KLEIN, J.L.; ADAMS, S.M.A.; TEIXEIRA, O.S.; Desempenho de Novilhos Alimentados com Rações Contendo Silagem de Capim Papuã (Urochloa plantaginea) x Silagem de Sorgo (Sorghum bicolor (L.) Moench) **Semina:** Ciências Agrárias, Londrina, v.35, n.2, p.951-962, 2014.
- BEAUCHEMIN, K.A.; MCGINN, S.M.; MARTINEZ, T. F.; & MCALLISTER, T. A. Use of condensed tannin extract from quebracho trees to reduce methane emissions from cattle. J. Anim. Sci. 2007. 85:1990–1996.
- BERCHIELLI, T. T.; PIRES, A. V.; OLIVEIRA, S. G. **Nutrição de Ruminantes**. Jaboticabal: Funep, 2006.
- BORGES, N. C.; SILVA, L. A. F.; FIORAVANTI, M. C. S.; DA CUNHA, P. H. J.; MORAES R. R.; GUIMARÃES, P. L.; MARTINS, M. E. P. Avaliação do Suco Ruminal de Bovinos "A Fresco" e Após 12 Horas de Conservação, **Ciência Animal Brasileira** v. 3, n. 2, p. 57-63, jul./dez. 2002
- CABRAL FILHO, S.L.S. Efeito do teor de tanino do sorgo sobre a fermentação ruminal e parâmetros nutricionais de ovinos. 2004. Universidade de São Paulo (USP). Centro de Energia Nuclear na Agricultura (CENA).
- CAMURÇA, D. A.; NEIVA, J.N.M.; PIMENTEL, J.C.M.; et al. Desempenho produtivo de ovinos alimentados com dietas à base de feno de gramíneas tropicais. **Revista Brasileira de Zootecnia**, v.31, n.5, p.2113-2122, 2002.
- CARDOSO, R.; PIRES, D. A. D. A.; ROCHA JÚNIOR, V. R., MOREIRA, P. R., KANEMOTO, É. R.; LIMA, L. O. B.; PIMENTEL, L. R. (2012). Avaliação de híbridos

- de sorgo para silagem por meio da degradabilidade in situ. Revista Brasileira de Milho e Sorgo, 11(1), 106-114.
- CUMMINS, D.G. Relationships between tannin content and forage digestibility in sorghum. Agronomy Journal. v.63, n.3, p.500-502, 1971
- DEHORITY B.A. 1987. Classification and Morphology of Rumen Protozoa. Department of Animal Science. Columbus: University of Ohio, 82p.
- FRANZOLIN, R.; FRANZOLIN, M. H. T.; População Protozoários Ciliados e Degradabilidade Ruminal em Búfalos e Bovinos Zebuínos sob Dieta à Base de Cana-de-Açúcar. **Revista brasileira de zootecnia**, v. 29, n. 6, 1853-1861p. 2000.
- FURLAN, R. L.; MACARI, M.; FARIA FILHO, D. E. Anatomia e Fisiologia do Trato Gastrintestinal. IN: BERCHIELLI, T. T.; PIRES, A. V.; OLIVEIRA, S. G. Nutrição de Ruminantes. Jaboticabal: Funep, 15p. 2012.
- GUIMARÃES-BEELEN, P.M.; BERCHIELLI, T.T.; BUDDINGTON, R.; BEELEN, R. Efeito dos taninos condensados de forrageiras nativas do semi-árido nordestino sobre o crescimento e atividade celulolítica de Ruminococcus flavefaciens FD. **Arq. Bras. Med. Vet. Zootec.** v.58, n.5, p.910-917, 2006
- HENRIQUES, J. M. G. C. L. **Taxa de sucesso de tratamento em intoxicação por taninos em ruminantes.** Lisboa: Universidade Lusófona de Humanidades e tecnologias-Faculdade de Medicina Veterinária, 2014. 66p. Dissertação (Mestrado em Medicina Veterinária).
- HERDT, T. H. **Digestão: Processos Fermentativos.** IN: CUNNINGHAM, J.G.; KLEIN B. G. Tratado de Fisiologia Veterinária. Rio de Janeiro: Elsevier, 368-369p. 2008.
- IBGE. **Levantamento Sistemático da Produção Agrícola**. Rio de Janeiro, 2010. Disponivel em:http://www.ibge.gov.br/home/estatistica/indicadores/agropecuaria/lspa_201001_5.sh tm>. Acesso em: 19/07/2014.
- JESUS, L. P.; CABRAL, L. S.; ESPINOSA, M. M.; ABREU, J. G.; ZERVOUDAKIS, J. T.; MORENZ, M. J. F. Simulação dos efeitos de fatores dietéticos sobre a população de protozoários Ruminais. Rev. Bras. Saúde Prod. Anim., Salvador, v.13, n.1, 83-96p., 2012

- LIMA JUNIOR, M. D.; MONTEIRO, P. B. S.; RANGEL, A. H. N.; MACIEL, M. V.; OLIVEIRA, S. E. O.; FREIRE, D. A. Fatores Anti-nutricionais para Ruminantes. **Acta**Veterinaria Brasilica, v.3, n.4, p.132-143. 2010
- LIMA, M. E.; VENDRAMIN, L.; HOFFMANN, D. A. C.; LISBOA, F. P.; GALLINA, T.; RABASSA, V. R.; SCHWEGLER E.; CORRÊA, M. N. Alterações na população de protozoários ruminais, quantificados a partir da adaptação da técnica de Dehority, de ovinos submetidos a uma dieta de confinamento. *Acta Scientiae Veterinariae*, v.40 n.1, 1019p. 2011.
- MARTINELE, I.; SIQUEIRA-CASTRO, I.C.V.; D'AGOSTO, M. Protozoários ciliados no rúmen de bovinos alimentados com dietas de capim-elefante e com dois níveis de concentrado. **Revista Brasileira de Saúde e Produção Animal**, v.9, n.1, 2008.
- MONÇÃO, F. P. P.; DE OLIVEIRA, E. R. R.; MOURA, L. V.; de TONISSI, R. H.; DE GÓES, B. Desenvolvimento da microbiota ruminal de bezerros: revisão de literatura. **Revista Unimontes Científica**, Montes Claros, v. 15, n. 1 jan. 2013.
- MONTIEL, M. D.; ELIZALDE, J. C.; SANTINI, F.; GIORDA, L. Características Físicas y Químicas del Grano de Sorgo Relación con la Degradación Ruminal en Bovinos. **Sitio Argentino de Producción Animal**, v.6, n.231, 533-54p. 2011.
- MUELLER-HARVEY, I. & McALLAN, A.B. **Tannins: their biochemistry and nutritional properties**. 1992, 151-186. In: Advances In Plant Cell Biochemistry and Biotecnology, vol.1.1992.
- NASCIMENTO, C. F. M. Emissão de metano por bovinos Nelore ingerindo *Brachiaria* brizantha em diferetes estágios de maturação. Dissertação. Universidade de São Paulo Pirassununga. 2007.
- NOGUEIRA FILHO, J.C.M.; OLIVEIRA, M.E.M.; ABLAS, D.S.; TITTO, E.A.L.; TOLEDO, L.R.A.; OLIVEIRA, T.S.B.M. Fauna ciliada do rumen de zebuínos e bubalinos em Pirassununga, São Paulo, **Acta Scientiarum**, v.22, n.3, 663-668p., 2000.
- NOZELLA, E.F. Valor nutricional de espécies arbóreo-arbustivas nativas da caatinga e utilização de tratamentos físico-químicos para redução do teor de taninos. Dissertação, Universidade de São Paulo, 2006.
- NRC National Research Council. **Nutrient Requirements of Domestic Animals. Nutrient Requirement of Poltry.** 9 ed. National Acemic Press, Washington, 1994.

- OGIMOTO, K; IMAI, S. **Atlas of Rumen Microbiology.** Tokyo, Japan: Japan Scientific Society Press; 1981. 311p.
- OLIVEIRA, J. S. et al. Fisiologia, manejo e alimentação de bezerros de corte. **Arquivo de Ciências Veterinárias e Zoologia**. Unipar, Umuarama, v. 10, n. 1, 39-48p. 2007a.
- OLIVEIRA, L. M. B.; BEVILAQUA, C. M. L.; MORAIS, S. M.; CAMUÇA VASCONCELOS, A. L. F.; MACEDO, I. T. F. Plantas Taniníferas e o Controle de Nematóides Gastrintestinais de Pequenos Ruminantes. **Ciência Rural,** v.41, n.11, p.1967-1974, nov, 2011.
- OLIVEIRA, S.G.; BERCHIELLI, T.T. Potencialidades da Utilização de Taninos na Conservação de Forragens e Nutrição de Ruminantes. **Veterinary Science** v.12, n.1, p.1-9, 2007b.
- PINEDO, L. A. Teores de taninos e produção de gases in vitro da silagem de sorgo com adição de níveis crescentes de guandu. Tese de Doutorado. Universidade de São Paulo Piracicaba, 2009.
- PUCHALA, R.; MIN, B.R.; GOETSCH, A.L. AND SAHLU, T. The effect of a condensed tannin-containing forage on methane emission by goats. *J Anim Sci* 83:182–186 (2005).
- QUEIROZ, V. A. V.; MORAES, E. A. M.; SCHAFFERT, R. E.; MOREIRA, A.V.; RIBEIRO, S. M. R.; MARTINO, H. S. D. M. Potencial Funcional e Tecnologia de Processamento do Sorgo [*Sorghum bicolor* (L.) MOENCH], para Alimentação Humana. **Revista Brasileira de Milho e Sorgo**, v.10, n.3, p. 180-195, 2011.
- SILVA, M. R.; DA SILVA, M. A. A. P. Aspectos Nutricionais de Fitatos e Taninos. **Revista Nutr. Campinas**, v.12, n.1, p.5-19, Jan./abr., 1999
- SOUSA, B.M. Degradabilidade in situ dos componentes nutricionais das silagens de três genótipos de sorgo (CMSXS 180, CMSXS 227 e BR 700). Belo Horizonte: Universidade Federal de Minas Gerais, 2001. 73p. Dissertação (Mestrado em Zootecnia).
- TABOSA, J. N.; LIMA, G.; LIRA, M.; TAVARES FILHO, J. J.; BRITO, A.; RITA, M. (1999). Programa de melhoramento de sorgo e milheto em Pernambuco. EMPRESA BRASILEIRA DE PESQUISA AGROPECUÁRIA. Recursos genéticos e melhoramento de plantas para o Nordeste brasileiro. Brasíla, v1, p29.

- TEIXEIRA, A.S. **Alimentos e Alimentação dos animais**. 5. ed. Lavras: UFLA, FAEPE, p. 2001. 241, 2001
- VALADARES FILHO, S. C.; PINA, D. S. **Fermentação Ruminal.** IN: BERCHIELLI, T. T.; PIRES, A. V.; OLIVEIRA, S. G. Nutrição de Ruminantes. Jaboticabal: Funep, 151-183p. 2006.
- WAGHORN, G. C. Beneficial and detrimental effects of dietary condensed tannins for sustainable sheep and goat production—Progress and challenges. Animal Feed Science and Technology. 147 (2008) 116–139.
- ZAGO, C.P. Cultura de sorgo para produção de silagem de alto valor nutritivo. In: **SIMPÓSIO SOBRE NUTRIÇÃO DE BOVINOS**, 4. 1991, Piracicaba. Anais...Piracicaba: Fundação de Estudos Agrários "Luiz de Queiroz", 1991. p.169-218.