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RESUMO 

Este trabalho teve como objetivo propor uma metodologia simples, rápida e de baixo custo, 

baseada em imagens digitais e em técnicas de reconhecimento de padrões, para classificação de 

vinhos produzidos no Vale do São Francisco, região vitivinícola localizada no nordeste 

brasileiro, contribuindo para o processo de certificação de indicação geográfica destes vinhos. 

Foram usadas amostras de vinhos tintos, finos e tranquilos, comprados em supermercados de 

Natal/RN e de João Pessoa/PB ou doadas por vitivinicultores e instituições de pesquisa 

localizadas na Região do Vale do São Francisco (VSF). Três abordagens de classificação foram 

consideradas, tomando como referência a origem geográfica (com duas classes: VSF e Mundo), 

os vitivinicultores (com três viticultores do VSF) e as variedades de uvas (Cabernet Sauvignon, 

Syrah e Touriga Nacional). Cem amostras foram usadas na abordagem de classificação em 

função da origem geográfica dos vinhos e os modelos apresentaram Taxa de Classificação 

Correta (TCC) do conjunto de teste de 80,7% e 93,6%,  respectivamente, com os dados RGB e 

HSI e modelagem com SPA-LDA e de 61,3% e 83,9%, respectivamente,  com os dados RGB 

e HSI e modelagem com PLS-DA. Na abordagem de classificação em função dos 

vitivinicultores, 70 amostras foram usadas e os valores de TCC dos conjuntos de teste foram, 

igualmente para os dados RGB e HSI, de 100% e 95,5%, respectivamente, para os modelos 

construídos com SPA-LDA e PLS-DA. Na abordagem de classificação considerando-se as 

variedades de uvas presentes na composição dos vinhos varietais, 48 amostras foram usadas e 

os modelos construídos com SPA-LDA e PLS-DA obtiveram TCC de 100% nos conjuntos teste 

para os pares Cabernet Sauvignon versus Touriga Nacional e Syrah versus Touriga Nacional, 

tanto com os dados RGB quanto com os dados HSI. Na comparação entre as Cabernet 

Sauvignon versus Syrah, os modelos SPA-LDA alcançaram iguais resultados com os dados 

RGB e HSI, com TCC de 72,7%, para os conjuntos teste, enquanto os modelos obtidos com 

PLS-DA alcançaram TCC iguais 72,7% e 81,8% nos conjuntos de teste, respectivamente, com 

os dados RGB e HSI. Os resultados demonstram a viabilidade do uso imagens digitais 

associadas a ferramentas quimiométricas para classificação de vinhos em função de sua origem 

geográfica, vitivinicultor e composição varietal, de forma simples, rápida, com baixo consumo 

de amostras, sem usar qualquer pré-tratamento, reagentes químicos ou diluição das amostras e 

com baixa geração de resíduos.    

Palavras-chave: Vinho. Origem geográfica. Imagens digitais. Quimiometria. Algoritmo das 

Projeções Sucessivas. 



 

 

ABSTRACT 

 

This work proposes a simple, fast and low-cost methodology based on digital images and 

pattern recognition techniques for the classification of wines produced in the São Francisco 

Valley (VSF), a wine region located in the Brazilian Northeast, contributing to the certification 

process of the wines geographical indication. Red wines samples, purchased from Natal/RN 

and João Pessoa/PB supermarkets or donated by winegrowers and research institutions located 

in the Region of the São Francisco Valley were used. Three classification approaches were 

considered, taking as reference the geographical origin (with two classes: VSF and Word), 

winegrowers (with three VSF winegrowers) and grape varieties (Cabernet Sauvignon, Syrah 

and Touriga Nacional). In the classification approach according to the geographical origin of 

the wines, a hundred samples were used, and the models presented Correct Classification Rate 

(CCR) of the test set of 80.7% and 93.6%, respectively, with the RGB and HSI data and 

modeling with SPA-LDA and 61.3% and 83.9%, respectively, with the RGB and HSI data and 

PLS-DA modeling. In the classification approach as a function of winegrowers, seventy 

samples were used and the CCR values of the test sets were equal, with RGB and HSI data, 

100% and 95.5%, respectively, for the models constructed with SPA-LDA and PLS-DA. In the 

classification approach using the varieties of grapes present in the composition of varietal 

wines, forty-eight samples were used, and the models constructed with SPA-LDA and PLS-DA 

obtained CCR values equal to 100% in the test sets for the Cabernet Sauvignon versus Touriga 

Nacional and Syrah versus Touriga Nacional, both with the RGB and HSI data. In the 

comparison between Cabernet Sauvignon versus Syrah, the SPA-LDA models achieved equal 

results with the RGB and HSI data, with CCR equal to 72.7%, for the test sets, while the models 

obtained with PLS-DA achieved equal CCR of 72.7% and 81.8% in the test sets, respectively, 

with the RGB and HSI data. The results demonstrate a feasibility of using digital images 

associated to chemometrics for wine classification, in a simple, fast, low sample consumption, 

without chemical reagents or dilution of the samples and with low generation of residues, 

according to their origin geographical, winegrower or varietal composition. 

 

Keywords: Wine. Geographical origin. Digital images. Chemometrics. Successive 

Projections Algorithm. 
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1 INTRODUÇÃO 

 

 A produção de vinhos no mundo ocorre tradicionalmente em regiões de clima 

temperado, entre os paralelos 30° e 50º no Hemisfério Norte e entre 30° e 45º no Hemisfério 

Sul. Durante muito tempo a produção vitivinícola fora destas faixas foi vista como improvável 

(AMARANTE, 2015; PEREIRA, 2013; PUCKETTE; HAMMACK, 2015).  

O Brasil é pioneiro na produção de vinhos finos em regiões de clima tropical, tendo 

iniciado a produção há cerca de 30 anos, na região do Vale do São Francisco (VSF), localizada 

entre 8º e 10º de Latitude Sul, às margens do rio São Francisco, entre os municípios de 

Remanso/BA e Sobradinho/BA, nos estados da Bahia e Pernambuco (ABS-PR, 2012; 

AMARANTE, 2015; COMITÊ DA BACIA HIDROGRÁFICA DO RIO SÃO FRANCISCO, 

2015).  

Sendo tão recente a implantação desta região produtora, e mesmo que já se tenha um 

esforço coletivo, inclusive havendo nas proximidades instituições de ensino e de pesquisa, 

como a Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), a Universidade do Estado 

da Bahia - UNEB, a Universidade Federal do Pernambuco (UFPE), a Universidade Federal do 

Vale do São Francisco (UNIVASF) e o Instituto Federal do Sertão Pernambucano  (IF 

SERTÃO-PE), a região ainda é pouco estudada, carecendo de mais estudos qualitativos e 

quantitativos, tanto sobre o plantio de videiras, adequando as melhores castas às características 

do solo e do clima, quanto aos processos de produção e, ainda, relativos à qualidade dos vinhos 

já produzidos ali (PEREIRA, 2013). Nesse terroir, é cultivado um grande número de variedades 

vitivinícolas, como Syrah, Cabernet Sauvignon, Alicante Bouschet, Tannat, Ruby Cabernet, 

Touriga Nacional, Chenin Blanc, Moscato Canelli e Sauvignon Blanc, que estão se adaptando 

muito bem às condições do sertão nordestino brasileiro (AMARANTE, 2015; PEREIRA, 2013; 

TONIETO; PEREIRA, 2011).  

As Indicações Geográficas referem-se a produtos ou serviços que tenham uma origem 

geográfica específica, está relacionada à reputação, às qualidades e às características vinculadas 

a certo local, comunicam ao mundo que uma certa região se especializou e tem capacidade de 

produzir um artigo diferenciado e de excelência. Nos termos da Lei n°. 9.279 (BRASIL, 1996), 

a Indicação de Procedência é o nome geográfico de país, cidade, região ou localidade de seu 

território, que se tenha tornado conhecido como centro de extração, produção ou fabricação de 

determinado produto ou de prestação de determinado serviço, quando as qualidades ou 

características de tais produtos se devam exclusiva ou essencialmente ao meio geográfico, 

incluídos fatores naturais e humanos, a indicação geográfica será de Denominação de Origem.  
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Os produtores da região do VSF, com forte apoio da EMBRAPA, estão desenvolvendo 

esforços para a obtenção do Registro de Indicação Geográfica, o que deixa mais patente a 

necessidade de realização de pesquisa de qualidade dos vinhos ali produzidos. De certo, com 

um estudo que comprove a singularidade dos seus vinhos, a região poderá ganhar Registro de 

Indicação Geográfica, diretamente, como Denominação de Origem (DO).  
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2 OBJETIVOS 

 

2.1 Objetivo geral 

Propor uma metodologia simples, rápida e de baixo custo, baseada em imagens digitais (DIB) 

e em técnicas de reconhecimento de padrões, para classificação de vinhos produzidos no Vale 

do São Francisco, região vitivinícola localizada no nordeste brasileiro, contribuindo para o 

processo de certificação de indicação geográfica destes vinhos. 

 

2.2 Objetivos específicos 

 

I. Estudar vinhos do Vale do São Francisco e de outras regiões do mundo, utilizando 

imagens digitais e comparando seus dados de intensidades nos sistemas de cores RGB 

e HSI; 

II. Construir um instrumento analítico baseado em imagens digitais, de baixo custo e 

operacionalmente simples, visando transferência de tecnologia para a indústria; 

III. Realizar um estudo exploratório empregando a análise de componentes principais 

(PCA) para reconhecimento de padrões não supervisionados em dados de imagens 

digitais que diferenciem de vinhos do Vale do São Francisco de outros produzidos 

noutras regiões do mundo; 

IV. Desenvolver modelos de classificação de vinhos em função de sua origem geográfica 

que possam ser usados para confirmar ou negar suas procedências em relação ao Vale 

do São Francisco, utilizando os fundamentos de análise discriminante linear com 

seleção de variáveis pelo algoritmo das projeções sucessivas (SPA-LDA) e análise 

discriminante pelos mínimos quadrados parciais (PLS-DA). 
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3 FUNDAMENTAÇÃO TEÓRICA 

 

3.1 Vinhos 

 

3.1.1 Definição e História 

 

Vinho é uma bebida alcoólica preparada a partir da fermentação de uvas. Embora seja 

possível a fermentação de inúmeras outras frutas para a obtenção de bebidas alcóolicas, apenas 

as uvas podem produzir a bebida reconhecida como vinho (PUCKETTE; HAMMACK, 2016). 

No Brasil, a produção de vinho é regulamentada pela Lei n°. 7.678, de 8 de novembro de 1988, 

que define vinho como “a bebida obtida pela fermentação alcoólica do mosto simples de uva 

sã, fresca e madura” (BRASIL, 1988). A mesma Lei define o mosto simples de uva como o 

“produto obtido pelo esmagamento ou prensagem da uva sã, fresca e madura, com a presença 

ou não de suas partes sólidas” (BRASIL, 1988). Na prática, mosto é o próprio suco da uva – 

que para a produção de vinhos coloridos (tintos e rosados) deve incluir as cascas e as sementes, 

e o vinho é o produto da fermentação desse mosto. 

A uva é o fruto da videira, uma planta trepadeira da família botânica Viteceae ou 

Ampelidaceae que possui mais de 3.000 espécies conhecidas. O único gênero que tem interesse 

na vitivinicultura é o Vitis, que abrange 36 espécies, dentre elas, a Vitis vinifera que dá origem 

a vinhos de qualidade. A Vitis vinifera tem mais de 300 variedades ou cultivares que são 

conhecidas como videiras europeias, mas nem todas são usadas na vinificação. Alguns países, 

incluindo o Brasil, cultivam e vinificam uvas de outras espécies viníferas, como Vitis 

Lambrusca, Vitis burquina, Vitis aestivalis, Vitis riparia, Vitis rupestres, conhecidas como 

videiras americanas, e híbridos destas com V. vinifera que são mais resistentes a pragas e 

intempéries, mas que produzem vinhos de qualidade inferior. Noutros países, como Chile, 

Argentina, França e grande parte da Europa, as espécies americanas só podem ser usadas como 

porta-enxertos para as videiras europeias (V. vinifera), não podendo ser plantadas para colheita 

direta de uvas (AMARANTE, 2015; JOHSON; ROBINSON, 2014). 

Há registros da existência da vinha e do vinho que datam de mais de 7.000 anos, sendo 

mais provável que tenham surgido nas encostas de montanhas do Cáucaso, região localizada 

entre o Mar Cáspio e o Mar Negro, onde hoje se localizam os territórios da Geórgia, Armênia 

e Azerbaijão, e depois na Mesopotâmia, onde hoje fica o Iraque (AMARANTE, 2015; 

GAUTIER, 2013; JOHNSON, 2009; JOHNSON; ROBINSON, 2014). Tais registros consistem 

de ajuntamentos de sementes hermafroditas de uvas encontradas por arqueólogos em 
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escavações realizadas na Turquia, na Síria no Líbano e na Jordânia. O fato de as sementes serem 

hermafroditas comprovaria que o homem já possuía certo domínio da viticultura, com 

capacidade de selecionar cultivares, enquanto que o a fato de estarem acumuladas indica que 

foram processadas, como numa vinificação (JOHNSON, 2009). 

A vitivinicultura chegou ao Egito a partir do III Milênio a.C. Lá foram produzidos 

vinhos para uso em cerimonias religiosas, geralmente ligado a Osíris - o deus egípcio dos ciclos 

da vegetação e dos mistérios da vida após a morte (GAUTIER, 2013; TATTERSALL; DESALLE, 

2015). Depois, a cultura do vinho chegou à Grécia e, por volta do ano 600 a.C, ao Império 

Romano que a levaram a toda a costa do Mediterrâneo. Na Grécia, onde o termo civilização se 

confunde com a reverência ao vinho, Dionísio era a divindade reverenciada, tida como pai e 

fundador da cultura da vinha e do vinho, enquanto em Roma, Baco é o deus da vinha do vinho 

e das festividades ou a própria imagem de Dionísio (AMARANTE, 2015; GAUTIER, 2013).  

Segundo Amarante (2015), a viticultura chegou no Brasil em 1532 trazida pelos 

colonizadores portugueses e foi primeiramente instalada na Capitania de São Vicente, onde 

hoje é o Estado de São Paulo, mas não se obteve grande sucesso de adaptação das videiras. 

Mais tarde, com a chegada dos imigrantes italianos à Serra Gaúcha, na década de 1870, o cultivo 

de Vitis vinifera chegou ao Rio Grande do Sul, onde encontrou melhores condições de 

adaptação. Mas foi somente no século XIX que o cultivo de cepas europeias para produção de 

vinhos finos ganhou perfil comercial (AMARANTE, 2015; PROTAS; CAMARGO; MELLO, 

2006). Segundo Amarante (2015), até o final da década de 1960 houve crescimento lento e 

gradual da vitivinicultura brasileira, sendo que na década seguinte houveram maiores avanços 

com a criação das cooperativas vinícolas e a chegada de empresas internacionais à Serra 

Gaúcha. Entre 1960 e 1970, houve também uma expansão para o extremo sul e para o nordeste 

do país. Na região Nordeste, as atividades vitivinícolas foram iniciadas às margens do Rio São 

Francisco, sendo que o primeiro vinho fino foi produzido em 1984, no município de Santa 

Maria da Boa Vista/PE (AMARANTE, 2015). 

De acordo com Amarante (2015), desde a antiguidade o vinho era usado como 

medicamento, indicado como anestésico pré-operatório, antitérmico, laxante, diurético, 

antisséptico local, a ponto de Louis Pasteur ter a ele se referido como a bebida mais saudável e 

mais higiênica. Segundo ele, o consumo de vinho sempre esteve associado à boa saúde a 

longevidade, o que sempre fez atrair mais degustadores.  

Inúmeros estudos recentes comprovam os vários efeitos benéficos do vinho à saúde 

humana, como os efeitos na redução de doenças cardiovasculares quando se consome de 3 a 5 

doses (de 150 mL) diariamente (CVEJIĆ; GOJKOVIC-BUKARICA, 2016). Outros estudos 
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demonstraram que o consumo regular pode reduzir até 60% as chances de doenças cardíacas e 

infartos do miocárdio, prevenção de demências, inibição de câncer de mama e de próstata, de 

doenças reumáticas, entre outras (AMARANTE, 2015; CVEJIĆ; GOJKOVIC-BUKARICA, 

2016). As propriedades farmacológicas, antioxidantes e benéficas do vinho estão relacionadas 

à presença de diversos compostos fenólicos, particularmente o resveratrol, em sua composição 

(CVEJIĆ; GOJKOVIC-BUKARICA, 2016). 

 

3.1.2 Classificação de vinhos 

 

Existem diversas maneiras de classificar vinhos e, de acordo com Amarante (2015), a 

forma mais universal classifica os vinhos em vinhos de mesa ou vinhos tranquilos (ou, 

simplesmente, vinhos), vinhos espumantes (ou, simplesmente, espumantes) e vinhos licorosos. 

Contudo, existem várias outras classificações baseadas nas espécies das uvas, na cor, na 

presença de misturas de variedades de uvas, na região de origem, entre outras.  

No Brasil, a Lei Nº 7.678/1990 e o Decreto Nº. 8.198/2014 regulam a produção, 

circulação e comercialização do vinho e derivados da uva e do vinho. Nos termos dessas 

normas, os vinhos são classificados como finos se forem elaborados a partir de uvas do grupo 

das europeias da espécie Vitis vinifera, enquanto os vinhos de mesa (ou comuns) são aqueles 

de uvas do grupo das americanas, das espécies americanas (Vitis lambrusca e Vitis bourquina) 

e de suas híbridas. Importante destacar que a mesma legislação admite o uso, ainda que 

opcional, da expressão “de mesa” junto ao termo “fino”, reforçando a ideia que a expressão “de 

mesa” e o termo “tranquilo” são sinônimos. 

De modo geral, quanto a sua cor, os vinhos são classificados em brancos, tintos e rosés. 

Os tintos são necessariamente produzidos com uvas tintas (vermelhas ou negras) e sua 

fermentação ocorre na presença das cascas, a fim de haver a extração da matéria corante das 

uvas. Os vinhos brancos podem ser obtidos de uvas brancas ou tintas, mas a fermentação ocorre 

na ausência das cascas e, portanto, não extraem delas os pigmentos vermelhos. Por fim, os 

vinhos rosés (rosados) são obtidos a partir de uvas tintas e com o contato de suas cascas com o 

mosto por tempo reduzido ou de modo pouco ou nada ortodoxo pode-se misturar branco e tinto, 

uma prática que não é incomum, especialmente em vinhos de baixo preço (ALEJANDRE, 

2007; GUERRA, 2010; MANFRÓI, 2010; PICONERO, 2015). 

Quanto às variedades de uvas viníferas usadas na vinificação, se um vinho apresentar, 

no mínimo, 75% do seu volume proveniente de uma única casta, com o restante volume 

provenientes de uvas da mesma espécie, poderá indicar o nome dessa variedade em seu rótulo 
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e será classificado como varietal. Os vinhos que apresentem cortes, isto é, misturas de duas ou 

mais castas na sua composição e que todas elas apresentem fração em volume inferior a 75% 

serão chamados genéricos ou assemblages. Geralmente, na vinificação dos vinhos assemblages, 

cada casta é vinificada em separado e, depois, são realizados os cortes adequados (BRASIL, 

1990; PICONERO, 2015). 

Recentemente, uma classificação baseada no clima da região tem se tornado bastante 

evidente. Assim, quando os vinhos são produzidos nas regiões tradicionais, entre as latitudes 

30° e 50°, dos dois hemisférios, onde as estações do ano são bem definidas, permitindo às 

videiras um longo período vegetativo, são classificados como vinhos temperados ou 

tradicionais; ao contrário, quando são produzidos nas novas fronteiras vitivinícolas, em regiões 

que se afastam da região tradicional em direção à linha do Equador (paralelo 0°), onde o clima 

é predominantemente tropical, com pouca pluviosidade e muita insolação, os vinhos são 

denominados vinhos tropicais (AMARANTE, 2015; TONIETTO, 2004; TONIETTO; 

PEREIRA, 2012; TONIETTO, TEIXEIRA, 2004; PEREIRA, VANDERLINDE, LIMA, 2011). 

 

3.1.3 Vinificação 

 

 Vinificação é um processo no qual microrganismos (leveduras), mediante fermentação, 

transformam os açúcares do mosto de uvas selecionadas em vinho, com intervenção humana a 

fim de garantir que o produto obtido guarde qualidade superior, portanto, trata-se de um 

processo biotecnológico (GUERRA, 2010). As leveduras encontradas naturalmente nas 

próprias uvas já são capazes de realizar a fermentação do mosto, no entanto, tem sido frequente 

o uso de leveduras selecionadas, com o a finalidade de melhorar o desempenho da fermentação. 

Na Figura 3.1 é mostrado o fluxograma geral das vinificações de brancos e de tintos. 

Em termos gerais, a vinificação de qualquer tipo de vinho contempla as etapas de colheita 

(vindima), recepção das uvas na cantina, desengace, extração do mosto, fermentação, adição de 

anidrido sulfuroso (sulfitagem), engarrafamento e expedição. Contudo, há grandes 

particularidades para cada tipo de vinho, como exemplo, na vinificação de brancos as cascas 

são retiradas antes da fermentação, enquanto nos tintos a extração da matéria corante é fator 

determinante na qualidade do vinho e a fermentação ocorre na presença das cascas das uvas 

(MANFRÓI, 2010; GUERRA, 2010). 

A colheita pode ser manual ou mecânica, se for manual, já permite uma seleção dos 

cachos, evitando-se uvas apodrecidas, folhas e desformidades (ALEXANDRE, 2010; 

GUERRA, 2010). Na recepção na cantina, há uma seleção complementar tanto dos cachos 
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como dos grãos, melhorando a uniformidade das uvas. O desengace também pode ser mecânico 

ou manual, usando-se este na elaboração de vinhos de alto padrão, e consiste na retirada das 

partes lenhosas que dão sustentação aos cachos, inclusive os pinceis (parte dos engaces que 

ficam no interior dos grãos), soltando as uvas (ALEJANDRE, 2010; GUERRA, 2010). 

 

Figura 3.1 – Fluxograma geral das vinificações de brancos e de tintos. 

 
Fonte: baseado em Manfrói (2010) e Guerra (2010). 
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A extração do mosto começa com o esmagamento dos grãos, que pode ser feito ao 

mesmo tempo do desengace, seguida de prensagem para separar as partes sólidas (nos brancos) 

ou de maceração (nos tintos) (ALEJANDRE, 2010; GUERRA, 2010). Segundo Guerra (2010, 

a sulfitagem visa a conservação da bebida, evitando sua oxidação e deve acompanhar todo o 

processo, iniciando logo após a encubagem (tintos) ou a prensagem (brancos) até o envase, 

podendo também ser usada para atuar na seleção de microrganismos para a fermentação. A 

fermentação alcóolica é a etapa em que os açúcares do mosto das uvas, essencialmente glicose 

e frutose, são transformados em etanol e gás carbônico, por ação de leveduras (principalmente 

a base de Saccaronyces cerevisiae) e enzimas (pectinases), conforme representado pela 

Equação 1. Em alguns vinhos, mais frequentemente nos tintos, se faz uma segunda fermentação 

chamada malolática, em que o ácido málico é transformado em ácido lático por ação da bactéria 

láctica (Leuconostoc oenos), representada pela Equação 2 (ALEJANDRE, 2010; GUERRA, 

2010). 

 

Fermentação alcoólica: 

C6H12O6 (aq) → 2 C2H5OH (aq) + 2 CO2 (g) + calor      (1) 

 

Fermentação malolática: 

C4H6O5 (aq) → C3H6O3 (aq) + CO2 (g)         (2) 

 

 Segundo Guerra (2010, pag. 222), a etapa de maceração “consiste na extração seletiva 

de certos compostos presentes nas partes sólidas da uva, que concorrem para a alta qualidade 

do vinho”, sendo típica dos vinhos tintos, e geralmente ocorre em paralelo à fermentação 

alcóolica, podendo iniciar antes ou terminar depois desta. As remontagens são operações que 

ocorrem durante a maceração e consistem em homogeneizar as fases líquida e sólida, a fim de 

aumentar a eficiência das extrações, uma vez que o gás carbônico produzido na fermentação 

tende a suspender a fase sólida. Terminadas a fermentação e a maceração, as fases sólida e 

líquida são separadas, numa etapa chamada de descuba. A fase sólida é prensada para 

recuperação de parte do líquido que ainda se encontra misturado nessa fase. As tranfegas 

consistem nas transferências do vinho entre reservatórios, deixando a matéria sólida decantada 

(borras), para obter um vinho mais límpido e de melhor qualidade olfativa. Em seguida, 

seguem-se as etapas de estabilização, em barris de madeira ou tanques de inox, que leva à 

precipitação de ácidos orgânicos sob a forma de sais insolúveis como o tartarato de potássio ou 

cálcio, de polifenóis, de compostos nitrogenados, como proteínas, peptídeos e aminoácidos, ou 

microbiológica. Tanto na produção de tintos como de brancos, o vinificador pode optar por 
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engarrafar os vinhos da forma como foram vinificados como foram produzidos (varietais) ou 

realizar mesclas (cortes) de vinhos de uvas diferentes (assemblages) para, em seguida, 

engarrafá-los. Mesmo os varietais podem receber pequenos cortes, mas devem manter 75% do 

volume da variedade que dá nome ao vinho (BRASIL, 1990; GUERRA, 2010).  

 As características cromáticas de um vinho dependem tanto das uvas quanto da 

vinificação (MONAGAS; BARTOLOMÉ, 2009). A influência das uvas na coloração dos 

vinhos pode ser facilmente verificada no fato de ser impossível se obter um vinho tinto de uvas 

brancas. Enquanto a influência das técnicas empregadas na vinificação na coloração dos vinhos 

pode ser demonstrada, por exemplo, na obtenção de vinho branco a partir de uvas tintas. Assim, 

na produção de vinhos tintos, a etapa de maceração, que consiste no conjunto de operações 

visando a extração dos compostos fenólicos responsáveis pela cor, aroma e sabor do vinho, 

torna-se fundamental na produção desses vinhos, e torna-se responsável pelas características 

sensoriais do vinho (GUERRA, 2010). 

 

3.1.4 Composição de vinhos 

 

O vinho é uma mistura complexa, de compostos orgânicos, complementada por 

elementos inorgânicos, tendo água (entre 70 a 90% em volume),  álcoois, ácidos orgânicos, 

polifenóis, polissacarídeos, açúcares, compostos aromáticos, minerais e vitaminas como 

principais componentes (GUERRA, 2010).  

Segundo Ribéreau-Gayon et al. (2006), os compostos fenólicos estão em posição de 

destaque na composição de vinhos, respondem diretamente pela cor e o sabor dos vinhos tintos 

e têm propriedades saudáveis, que os credenciam como responsáveis pelo "paradoxo francês", 

com ação antibacteriana, antioxidante e vitamínica que aparentemente protegem os 

consumidores das doenças cardiovasculares.  

  

Figura 3.2 – Estrutura do cátion flavilium. 

 
Fonte: Monagas; Bartolomé (2009). 

 

As antocianinas e seus derivados, um grupo de compostos fenólicos, são responsáveis 

pela coloração dos vinhos tintos e rosados ou rosés e, por isso, têm papel especial na 
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composição dos vinhos (RIBÉREAU-GAYON et al., 2006). As antocianinas, cuja estrutura 

geral consiste do cátion flavilium, podem ser classificadas como flavonoides, por apresentarem 

uma estrutura comum de C6-C3-C6 consistindo em dois anéis fenólicos unidos entre si por um 

anel de pirano heterocíclico, mostrada na Figura 3.2 (MONAGAS; BARTOLOMÉ, 2009). 

As antocianinas dos vinhos são provenientes das cascas das uvas, embora possam ser 

advir da polpa de algumas variedades (teinturier), como é exemplo da variedade Alicante 

Bouschet (RIBÉREAU-GAYON et al., 2006). Nas uvas das espécies de Vitis vinifera e nos 

seus vinhos, são encontradas cinco antocianinas, que diferem uma da outra pelo número e pela 

posição dos grupos hidroxilo e metoxilo (OH e OCH3) localizados no anel lateral do cátion 

flavilium e cujas fórmulas estruturais de suas antocianidinas (antocianina aglicona ou não-

glicosada) são mostradas na Figura 3.3 (MONAGAS; BARTOLOMÉ, 2009; RIBÉREAU-

GAYON et al., 2006).  

 

Figura 3.3 – Fórmula estrutural das antocianidinas presentes em uvas e vinhos. 

       
 
Fonte: modificado de Monagas; Bartolomé (2009). 

 

As antocianinas identificadas nas cascas de uvas Vitis vinifera e nos seus vinhos, 

consistem de moléculas de 3-O-monoglicosídeos e os monoglicosídeos 3-O-acilados destas 

cinco antocianidinas. A acilação ocorre na posição C-6 da molécula de glicose por esterificação 

com ácidos acético, p-cumárico e caféico (Figura 3.4) (MONAGAS; BARTOLOMÉ, 2009; 

RIBÉREAU-GAYON et al., 2006). 

A estrutura molecular e o meio ambiente das antocianinas, além das mudanças do meio 

(pH, SO2) provocam alterações na sua coloração: enquanto a substituição do ciclo lateral leva 

a uma mudança de batocrômico do comprimento de onda de absorção máximo (para violeta), a 

fixação da glicose e a acilação mudam a cor na direção oposta, ou seja, na direção da laranja 

(RIBÉREAU-GAYON et al., 2006). 

O perfil de antocianinas e suas concentrações nas uvas dependem de vários fatores, 

incluindo a cultivar, maturidade das uvas, condições climáticas, área plantada e produtividade 

do vinhedo (MONAGAS; BARTOLOMÉ, 2009). No caso do vinho, o perfil e concentrações 

Antocianidina R1 R2 

Cianidina OH H 

Delfinidina OH OH 

Peonidina OCH3 H 

Putinidina OCH3 OH 

Malvidina OCH3 OCH3 
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dependerão fortemente das técnicas de vinificação adotadas, por exemplo, o tempo e a 

temperatura da etapa de maceração, durante a fermentação turbulenta, ou a presença ou 

ausência da etapa de filtração irão implicar numa maior ou menor extração dos pigmentos 

(antocianinas) das cascas das uvas. (MONAGAS; BARTOLOMÉ, 2009).  

 

Figura 3.4 – Fórmula estrutural geral das antocianinas 3-glicosídeas (a) e 3-glicosídeas 

aciladas com ácido p-cumárico (b). 

 

Fonte: modificado de Ribéreau-Gayon et al. (2006). 

 

Segundo Ribéreau-Gayon et al. (2006), a malvidina é a antocianina dominante em todas 

as variedades de uva, variando de 90% a pouco menos de 50%, respectivamente nas uvas das 

variaedades Grenache e Sangiovese. Ainda segundo este autor, dependendo da variedades de 

uvas, a faixa de variação vai de 100 mg L-1 a 1.500 mg L-1 nas uvas, mas diminuem severamente 

após a fermentação, durante os primeiros anos de envelhecimento (tanto em barris como em 

garrafa), até atingir um valor mínimo, entre 0-50 mg L-1, combinando-se e se condensando-se 

com taninos para formar outras moléculas coloridas mais estáveis. 

ANDRADE, et al. (2013) realizaram um estudo comparativo do perfil de antocianinas 

de vinhos produzidos em duas regiões brasileiras (Vale do São Francisco e Rio Grande do Sul) 

e no Chile, com uso de ferramentas quimiométricas e concluiram haver agrupamentos em 

função da origem geográfica. O mesmo estudo concluiu que o conteúdo das formas glicosadas 

(3-glicosídeos) de  peonidina, petunidina e malvidina se mostraram mais fortemente 

responsáveis pela formação dos agrupamentos.  
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3.1.5 Produção de vinhos no Brasil e no mundo 

 

Atualmente, há vinhas cultivadas nos cinco continentes do globo, de norte a sul, leste a 

oeste (GAUTIER, 2013; JOHNSON; ROBINSON, 2014). Tradicionalmente, o cultivo de uvas 

viníferas, especialmente para a produção de vinhos, ocorre em regiões de clima temperado, nas 

faixas entre as latitudes 30° e 50º no hemisfério Norte e 30° e 45º no hemisfério Sul, 

representados na Figura 3.5 pelas faixas transversais coloridas e os países destacados com cores 

mais intensas são os que têm maior produção de vinhos (AMARANTE, 2015; JOHNSON; 

ROBINSON, 2014; OIV, 2017; PUCKETTE; HAMMACK, 2016). 

Nos últimos anos, os avanços tecnológicos têm levado o cultivo de V. vinifera a regiões 

cada vez mais próximas da linha do Equador, em regiões áridas, dando origem aos vinhos 

tropicais. O Brasil figura como pioneiro nessa vitivinicultura e tem sua segunda maior região 

produtora situada na região do Vale do São Francisco, entre 8º e 10º de latitude sul, portanto, 

bem afastadas das faixas tradicionais de cultivo (AMARANTE, 2015; PEREIRA, 2013).  

 

Figura 3.5 – Mapa da vitivinícola mundial. As faixas horizontais em coloração azul indicam 

as regiões de vitivinicultura tradicionais. 

 

Fonte: modificado de OIV (2017). 

 

Segundo dados da Organização Mundial da Vinha e Vinho (OIV), a área total de vinhas 

cultivadas em 2015 somou 7,5 milhões de hectares e rendeu uma produção de 75,8 milhões de 

toneladas de uvas, sendo que 35,8 milhões de toneladas foram destinadas à produção de vinhos 
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e o restante foi destinado ao consumo in natura ou para a produção de sucos ou de uvas passas 

(OIV, 2017). 

No Brasil, há cultivo de uvas no Rio Grande do Sul, que responde por cerca de 62% da 

produção nacional, em São Paulo, Pernambuco, Paraná, Santa Catarina, Bahia e Minas Gerais. 

No entanto, a vinificação de uvas Vitis vinifera está restrita aos estados do Rio Grande do Sul, 

Pernambuco, Bahia e Santa Catarina (AMARANTE, 2015). 

Conforme dados estatísticos apresentados na Tabela 3.1, no ano de 2016, o mundo 

produziu 267mhl (milhões de hectolitros) de vinhos. A Itália lidera o ranking mundial de 

produtores, com 50,9mhl, seguida por França (43,5mhl), Espanha (39,3mhl), Estados Unidos 

(23,9mhl), Austrália (13,0mhl) e China (11,4mhl). Juntos, estes seis países foram responsáveis 

por mais de 68% de todo o vinho produzido em 2016. Neste ano, o Brasil apresentou uma queda 

de 55% na sua produção e somente alcançou a 20ª posição no ranking mundial, com uma 

produção de 1,6mhl de vinhos (OIV, 2017). 

 

Tabela 3.1 – Produção de vinhos, por países, em milhões de hectolitros e em 

porcentagens, no ano 2016. 
Ranking País/produtor Volume (mhl) Volume (em %) 

1º  Itália 50,9 19,1 

2º  França 43,5 16,3 

3º  Espanha 39,3 14,7 

4º  EUA 23,9 9,0 

5º  Austrália 13,0 4,9 

6º  China 11,4 4,3 

7º  África do Sul 10,5 3,9 

8º  Chile 10,1 3,8 

9º  Argentina 9,4 3,5 

10º  Alemanha 9,0 3,4 

11º  Portugal 6,0 2,2 

12º  Rússia 5,6 2,1 

13º  Romênia 3,3 1,2 

14º  Nova Zelândia 3,1 1,2 

15º  Grécia 2,6 1,0 

16º  Sérvia 2,3 0,9 

17º  Áustria 2,0 0,7 

18º  Hungria 1,9 0,7 

19º  Moldávia 1,7 0,6 

20º  Brasil 1,6 0,6 

Fonte: modificado de OIV (2017). 

 

O consumo mundial registrado em 2016 chegou a 241 mhl (milhões de hectolitros) 

equivalentes ao total de 32,1 bilhões de garrafas. Conforme se vê na Figura 3.6, os Estados 

Unidos da América (EUA) lideram esse consumo, seguido por França, Itália, Alemanha e 
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China, e, juntos, estes cinco países são responsáveis por consumir quase metade de toda a 

produção mundial, somando 118,1 mhl ou 49% de vinho. No mesmo ano, o Brasil ocupou a 15ª 

colocação no ranking mundial de consumo, com uma fatia de 1,2% deste consumo ou 2,9 mhl 

consumidos (OIV, 2017).7 

Figura 3.6 – Consumo de vinhos por países, em milhões de hectolitros e em percentagens, no 

ano de 2016. 

 

Fonte: Adaptado de OIV (2017). 

 

3.1.6 A viticultura no Vale do São Francisco/Brasil 

 

A região banhada pelo rio São Francisco localizada entre os municípios de Remanso/BA 

e Paulo Afonso/BA, em ambas margens, é denominada Bacia do Submédio São Francisco, 

ocupa uma área de 109.827 Km2 e engloba 91 municípios dos estados da Bahia e do 

Pernambuco (COMITÊ DA BACIA HIDROGRÁFICA DO RIO SÃO FRANCISCO, 2015). 

Na bacia do Submédio São Francisco, uma pequena área, compreendendo os municípios de 

Casa Nova, localizado no Estado da Bahia, e Lagoa Grande e Santa Maria da Boa Vista, 

localizados no Estado de Pernambuco, conforme mostrado na Figura 3.7, vem se destacando 

mundialmente na produção de uvas viníferas (Vitis vinifera L.) e de vinhos finos, denominada 

Zona de Produção Vitivinícola (ZPV) Vale do São Francisco (BRASIL, 2006).  

Esta Zona de Produção Vitivinícola foi demarcada pelo Ministério da Agricultura, 

Pecuária e do Abastecimento, por meio da Instrução Normativa No. 01/2006, no ano de 2006 

(BRASIL, 2006). Nela, os fatores naturais são muito diferenciados quando comparados com a 

grande maioria das tradicionais regiões produtoras de uvas (TONIETTO; TEIXEIRA, 2004) e 
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a ajudam a figurar como a principal região vitivinícola de clima tropical do mundo (GUERRA; 

ZANUS, 2004).  

 

Figura 3.7 – Mapa vitivinícola do Vale do São Francisco. 

 
Fonte: Modificado de Região Administrativa Integrada de Desenvolvimento do Polo Petrolina e 

Juazeiro (2014). 

 

A região vitivinícola Vale do São Francisco está situada em zona de clima tropical 

semiárido, entre 8º e 10º de latitude Sul, em meio a paisagem de caatinga do sertão nordestino, 

a cerca 330 m de altitude, com temperatura média anual de 26,4 °C, e médias mensais de 28,3 

°C e 24,3 °C, respectivamente, para os meses mais quente e mais frio e tem precipitação média 
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de 559 milímetros por ano, concentrados durante o período de dezembro a abril, tem topografia 

basicamente plana e solo argilo-silicoso, de baixa fertilidade, possibilitando que a produção de 

uvas seja escalonada ao longo do ano todo, permitindo, dependendo da cultivar, a colheita duas 

a três safras anualmente (ABS-PR, 2012; AMARANTE, 2015; PEREIRA, 2013; TONIETO; 

PEREIRA, 2011; TONIETTO; CARBONNEAU, 2004).  

Os parreirais do Vale do São Francisco produzem diversas colheitas alternadamente, 

sendo que cada planta gera frutos pelo menos duas vezes ao ano, com a possibilidade de 

possibilidade de se colher uvas em todos os meses e de se encontrar uvas totalmente maduras a 

alguns metros de uvas totalmente verdes, como se ver na Figura 3.8, uma característica única 

da região, proporcionada pelo ambiente semiárido. No entanto, como em qualquer outra área 

vitivinícola, as variações do clima têm influência direta no desempenho das videiras (ABS-PR, 

2012; IBRAVIN, 2014, PEREIRA, 2013; TONIETO; PEREIRA, 2011).  

Segundo Camargo (2004), a possibilidade de programação da colheita e de vinificação 

ao longo do ano permite a elaboração de grandes volumes de vinho com pequena estrutura 

industrial. Isso estimulou, na década de 1980, os primeiros plantios comerciais de uvas para 

vinho no Vale do São Francisco, dando origem aos primeiros vinhos de regiões tropicais 

produzidos no Brasil.  

 

Figura 3.8 – Fotografia de um parreiral no Vale do São Francisco com quatro fases da 

videira. 

 
Fonte: Cortesia de Giuliano Elias Pereira. 
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Atualmente, as cultivares mais produzidas no VSF para a elaboração de vinhos são 

Syrah, Cabernet Sauvignon, Alicante Bouschet, Tannat, Ruby Cabernet, Touriga Nacional, 

Chenin Blanc, Moscato Canelli e Sauvignon Blanc (AMARANTE, 2015; PEREIRA, 2013; 

TONIETO; PEREIRA, 2011). No ano de 2015, a área plantada no Vale do São Francisco somou 

400 hectares, distribuídos entre cinco produtores, o que levou a uma produção, naquele ano, de 

4 milhões de litros, dos quais 2,8 milhões de litros de espumantes, 1,15 milhões de vinhos tintos 

e 40 mil litros de vinhos brancos (DARDEAU, 2015; ZANUS, 2016).  

 

3.2 Indicações Geográficas 

 

As indicações geográficas não são invenções modernas, provavelmente, evoluíram da 

percepção humana acerca de qualidades dos produtos com consequente classificação e, a partir 

daí, o estabelecimento de preferências por produtos e serviços de determinadas regiões. 

Segundo Dupim (2015), há referências a indicações geográficas em obras antigas tanto de 

Homero (do império grego) e Horácio (do império romano), quanto na bíblia antiga. Os 

egípcios, por volta do ano 2.250 a.C., inventaram algo que equivalia a um sistema de 

classificação dos seus vinhos, análogo aos rankings e denominações modernas, em que as 

ânforas que guardavam vinho eram rotuladas com o ano do reinado do faraó, o nome da vinha 

onde foi elaborado e sua localização e até o nome do enólogo e os vinhos podiam ser 

classificados como genuínos, bons ou muito bons ou nem obterem classificação (GAUTIER, 

2013; TATTERSALL; DESALLE, 2015).  

A União Europeia, ao regular o uso de indicações geográficas para produtos agrícolas, 

por meio da EC 510/2006, as reconheceu como uma tentativa de reduzir as adulterações e 

incrementar valor agregado aos produtos, oferecendo aos consumidores um elo entre produtos 

e sua região de origem que devem refletir padrões de qualidade ou produtos exclusivos. 

No caso de vinhos, diversos países tradicionais na sua produção têm normas de controle 

de indicações geográficas há muito tempo. Como Portugal, por exemplo, que controla sua 

produção de Vinhos do Porto desde 1756, quando da criação, pelo Marquês de Pombal, da 

Companhia Geral da Agricultura das Vinhas do Alto Douro; Espanha e França que têm normas 

de controle de vinhos da década de 1930; Estados Unidos, que possuem normas de controle da 

qualidade de seus vinhos desde o ano de 1936 e a Comunidade Europeia, que exerce controle 

sobre a produção e comercialização de vinhos nos países membros, incluindo a normalização 

acerca de indicações geográficas, desde o ano de 1970 (REGULATION CE, 1970; ROSA, 

2010). 



35 

 

O Brasil estabeleceu, no ano de 1996, por meio da Lei No. 9.279, de 14 de maio de 

1999, o uso de indicações geográficas em produtos e serviços, sob duas formas: a Indicação de 

Procedência e a Denominação de Origem. Enquanto a Indicação de Procedência (IP) faz 

referência ao nome geográfico de uma região que se tenha tornado conhecida como centro de 

extração, produção ou fabricação de determinado produto ou de prestação de determinado 

serviço, a Denominação de Origem (DO) só pode ser concedida quando as qualidades ou 

características de tais produtos sejam exclusiva ou essencialmente atribuídas ao meio 

geográfico, combinando-se os fatores naturais e humanos (BRASIL, 1996). Há de se registrar, 

também, que a competência do Instituto Nacional da Propriedade Industrial (INPI) para 

conceder registros de Indicações Geográficas não é restrita a produtos e serviços nacionais, 

sendo também concedida a produtos estrangeiros que tenham circulação no Brasil. 

Embora a Denominação de Origem seja mais restritiva, exigindo mais qualificações dos 

produtos ou serviços, não há necessidade de prévia certificação com Indicação de Procedência, 

bastando se provar que determinada região se tornou conhecida na produção de produtos ou 

serviços que se diferenciam de outros equivalentes por ação direta dos fatores naturais e 

humanos daquela região. Tonietto (1993, p. 11) assevera que a Denominação de Origem 

“garante, além da origem geográfica precisa do produto, qualidades e características obtidas 

dos fatores naturais dessa origem e dos fatores humanos, que são regulamentados”. 

Atualmente, constam nos registros públicos do Instituto Nacional de Propriedade 

Industrial, autarquia federal responsável por conceder registros de indicações geográficas, 41 

Indicações de Procedência (todas nacionais) e 18 Denominações de Origem – 10 nacionais e 8 

estrangeiras (Portugal, França, Itália e Estados Unidos) – concedidas. Seis entre as IP e seis 

entre as DO concedidas se referem a vinhos ou derivados, no entanto, apenas duas das DO são 

nacionais.  

As Zonas de Produção Vitivinícola (ZPV), demarcadas pelo Ministério da Agricultura, 

Pecuária e Abastecimento, mesmo não possuindo caráter formal de indicação geográfica, nos 

termos da Lei de No. 9.279/1996, têm importante papel na identificação da origem dos vinhos 

brasileiros, uma vez que são, costumeiramente, usadas nos rótulos dos produtos que não são 

produzidos em regiões com indicações geográficas certificadas. Provavelmente, o uso do nome 

das ZPV nos rótulos de vinhos brasileiros decorre do grande lapso que o país levou para legislar 

sobre as indicações geográficas. O normativo mais recente na demarcação de Zonas de 

Produção Vitivinícolas, o Decreto No. 8.198, de 20 de fevereiro de 2014, dá conta da existência 

de 25 ZPV demarcadas no Brasil. 
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Na Figura 3.9 é mostrada uma representação da estrutura qualitativa dos vinhos 

brasileiros, adequada à regulamentação atual. Do círculo mais externo para o mais interno, 

aumentam-se as exigências e, portanto, a qualidade esperada dos vinhos. O círculo mais externo 

representa os vinhos de mesa, que embora sejam produzidos exclusivamente pela fermentação 

de mosto de uvas sãs e frescas, admitem o uso de variedades de uvas americanas (Vitis 

lambrusca, Vitis burquina) e híbridas destas com variedades europeias (Vitis vinifera). O 

segundo círculo indica os vinhos finos, produzidos exclusivamente a partir de frutos da videira 

Vitis vinifera. O terceiro círculo representa as Indicações de Procedência – IP, que somente são 

certificadas pelo INPI após análise de processo que demonstre que aquela ZPV se tornou 

conhecida na produção vitivinícola. O quarto círculo, o mais interno, representa as 

Denominações de Origem – DO, mais elevada qualificação atribuída aos vinhos brasileiros e 

que somente é certificada, pelo INPI, após demonstração que os vinhos daquela ZPV 

apresentam características diferenciadas e que tais características são decorrentes das condições 

ambientais e dos processos de vinificação adotados na ZPV (BRASIL, 1990; BRASIL, 1996; 

BRASIL, 2014; TONIETTO, 2003).  

 

Figura 3.9 – Esboço representativo da estrutura qualitativa dos vinhos produzidos no Brasil. 

 
Fonte: modificado de Tonietto (2003). 
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Os produtores do Vale do São Francisco, representados pelo Instituto do Vinho do Vale 

do São Francisco (VINHOVASF) e assistidos pela Empresa Brasileira de Pesquisa 

Agropecuária (EMBRAPA), estão desenvolvendo esforços para a obtenção da certificação de 

indicação geográfica dos seus vinhos (PEREIRA, 2013).  

 

3.3 Imagens Digitais  

 

3.3.1 Conceitos e fundamentos 

 

Segundo Solomon e Breckon (2013), uma imagem digital consiste numa representação 

discreta de dados que processam informações espaciais e de intensidade (cor). Para uma 

imagem bidimensional (2D), uma função f (x, y), em que x e y são coordenadas espaciais e o 

valor de f, para cada par (x, y), é chamada de intensidade de cor naquele par (GONZALES; 

WOODS, 2010). Uma imagem digital também pode ser descrita como uma matriz finita A (m, 

n), em que m é seu número de linhas e n é o número de colunas. Nesta matriz, cada par (m, n) 

define uma célula chamada elemento de imagem ou pixel (termo derivado do inglês picture 

element) e cada pixel terá um valor de intensidade ou nível de cor, sendo a origem da imagem, 

(0, 0), por definição, o seu extremo superior esquerdo (GONZALES; WOODS, 2010, 

SOLOMON; BRECKON, 2013). 

O processo de construção de uma imagem digital, como na aquisição de uma fotografia 

ou no escaneamento de uma imagem impressa, implica em atribuir as coordenadas espaciais 

(m, n) para cada pixel, num processo chamado de amostragem, e suas respectivas intensidades 

(quantização), como ocorre, por exemplo, quando se digitaliza uma imagem impressa num 

papel fazendo uso de um scanner (GONZALES; WOODS, 2010 SOLOMON; BRECKON, 

2013).  

Segundo Solomon e Breckon (2013), a quantização é dependente dos sensores usados 

na detecção da cor, assim, a sensibilidade do sensor aos comprimentos de onda que incidem 

sobre ele é que define os vários níveis de intensidade possíveis. Por exemplo, um sensor 

monocromático (escala de cinza) com resolução de 8 bits para cada pixel irá quantizar 28 ou 256 

níveis de intensidades, dos quais o primeiro e o último níveis, respectivamente, se referem ao 

preto e ao branco, enquanto os 254 níveis intermediários são níveis de cinza e, portanto, a escala 

de cinza desse sensor é quantizada em valores discretos que variam de 0 a 255 (SOLOMON; 

BRECKON, 2013).  
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Apesar do uso do termo cor para se referir à amplitude da função f (x, y), o uso de 

imagens digitais não é restrito às interações com a faixa visível do espetro eletromagnético, 

cobrindo praticamente todo o espectro, além de fontes acústicas, ultrassônicas e eletrônicas, 

embora seja comum converter sinais diversos para níveis de cinza a fim de expressá-las numa 

forma perceptível ao olho humano (GONZALES; WOODS, 2010).  

Imagens digitais têm aplicações nas diversas áreas de atividade humana, sendo 

fortemente usada em medicina, onde se usam imagens de raio-X, tomografias de raios gama e 

de emissão de pósitrons, imagens de ultrassonografia e de ressonância magnética, mas também 

tem uso nas áreas da astronomia, de climatologia, aviação (com uso de radares, por exemplo), 

mais recentemente nas análises químicas, entre outras (GONZALES; WOODS, 2010). 

 

3.3.2 Sistemas de aquisição de imagens digitais 

 

 Uma imagem geralmente é obtida pela interação entre a energia irradiada sobre um 

objeto ou cena, com absorção de parte desta energia e outra parte refletida ou transmitida 

chegando a um sensor ou conjunto deles (GONZALES; WOODS, 2013).  

 

Figura 3.10 – Modalidades de sensores para aquisição de imagens bidimensionais: sensor 

único do tipo fotodiodo (a), arranjo de sensores em linha (b) e arranjo matricial de sensores (c). 

 
Fonte: Adaptado de Gonzales e Woods (2013). 

 

 Na Figura 3.10 são mostradas diferentes modalidades de sensores para se 

produzir uma imagem bidimensionais, em que se vê um sensor único ou de varredura 

bidimensional, que deve se movimentar ao longo dos eixos perpendiculares, x e y,  para 

construir a imagem pixel por pixel (a), um conjunto de sensores em linha ou de varredura de 
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linha, usado na maioria dos escâneres, deve ter movimento perpendicular a esta linha, para 

construir imagens linha por linha (b) e um conjunto matricial de sensores, com m linhas e n 

colunas de sensores, muito comum em câmeras fotográficas, que não demandam movimento 

em relação à cena e constroem toda a imagem de uma só vez (c). 

Os sensores de imagens mais comuns são os fotodiodos, baseados no efeito fotoelétrico, 

construídos com materiais semicondutores e que produzem uma tensão elétrica proporcional à 

intensidade de luz recebida (GONZALES; WOODS, 2013). São destaques os dispositivos de 

carga acoplada (CCD, do inglês charge-coupled device) e o semicondutor de metal-óxido 

complementar (CMOS, do inglês complementary metal-oxide semiconductor), sensores 

matriciais que equipam praticamente todas as câmeras fotográficas atuais (FRASER; BANKS, 

2013). 

Os sensores CCD e CMOS medem a intensidade de energia que incide sobre eles, mas 

não são capazes de identificar os comprimentos de onda da radiação incidente e, por 

conseguinte, a cor (FRASER; BANKS, 2013; GONZALES; WOODS, 2013; SOLOMON; 

BRECKON, 2013). Então, as imagens coloridas são obtidas com auxílio de filtros de cores 

(CFA, do inglês color filter array), como os filtros de Bayer, que são películas que deixam 

passar determinados comprimentos de onda de certa cor primária e refletem os demais e cobrem 

as células fotossensíveis. Assim cada pixel recebe informação direta de uma única cor e as 

intensidades das demais cores são obtidas por interpolação (FRASER; BANKS, 2013). Na 

Figura 3.11 é mostrado um esquema de arranjo de filtros de cores, em padrão Bayer (RGB), 

para detectores CCD e CMOS, em que se observa a quantidade dos filtros verdes em dobro em 

relação aos filtros vermelhos e aos azuis porque o sistema visual humano é mais sensível ao 

verde do que ao vermelho e ao azul (FRASER; MURPHY; BUNTING, 2005). 

 

Figura 3.11 – Esquema, em padrão Bayer (RGB), de filtros de cores para detectores CCD e 

CMOS. 

 
Fonte: Fraser; Murphy; Bunting (2005, p. 376). 
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3.3.3 O sistema visual humano 

 

 O olho humano, uma das mais belas estruturas na natureza, é um órgão praticamente 

esférico, com diâmetro aproximado de 2,0 cm, revestido por três membranas dentre elas, a mais 

interna, a retina que cobre toda a parte posterior do olho e onde se formam as imagens quando 

a luz emitida/refletida por um objeto é adequadamente focalizada, pela córnea – a lente curva 

que fica na parte anterior dos olhos – sobre ela (FRASER; MURPHY; BUNTING, 2005, 

GONZALES; WOODS, 2013).  

Os olhos humanos respondem apenas a uma pequena porção do espectro 

eletromagnético e eles têm diferentes respostas para diferentes partes desta porção, ou seja, os 

diferentes comprimentos de onda provocam diferentes sensações de cor. A faixa de 

comprimentos de onda do espectro eletromagnético que está compreendida entre 700 nm e 380 

nm, sensível ao olho humano, é chamada de visível e as cores percebidas nesta faixa variam 

desde os vermelhos, com comprimentos de onda mais próximos de 700 nm, passando pelos 

laranjas, amarelos, verdes e azuis, até os violetas, com comprimentos de onda próximos de 380 

nm (FRASER; MURPHY; BUNTING, 2005). Na Figura 3.12 é mostrado o espectro 

eletromagnético completo. 

  

Figura 3.12 – Espectro eletromagnético. 

 

Fonte: adaptado de Fraser; Murphy; Bunting (2005). 
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Na retina, estão localizados milhões de receptores de luz, pertencentes a duas classes: 

os cones e os bastonetes (FRASER; BANKS, 2013; GONZALES; WOODS, 2013). Na Figura 

3.13 é mostrado um esquema simplificado de um corte lateral do olho humano. 

Os cones são de três tipos, sensíveis a comprimentos de ondas específicos, 

correspondentes às cores vermelhas, verdes e azuis, sendo que praticamente todos – cerca de 6 

a 7 milhões em cada olho – estão localizados numa pequena área, na parte central da retina, 

chamada de fóvea: uma depressão circular, com cerca de 1,5 mm de diâmetro, com uma 

densidade de cones de aproximadamente 150.000 elementos (cones) por milímetro quadrado, 

equivalente a uma matriz sensora quadrada medindo 1,5 mm x 1,5 mm, e são responsáveis pela 

visão clara ou visão fotópica (FRASER; MURPHY; BUNTING, 2005; GONZALES; WOODS, 

2013). 

Todos os bastonetes são essencialmente iguais entre si, estão presentes em quantidade 

muito maior que os cones, entre 75 a 150 milhões de unidades, distribuídos por toda a retina, e 

não são capazes de identificar as cores, mas possuem boa sensibilidade mesmo diante de baixas 

luminosidades e são responsáveis pela visão escura ou visão escotópica (FRASER; BANKS, 

2013, GONZALES; WOODS, 2013). 

 

Figura 3.13 – Diagrama simplificado de um corte lateral do olho humano. 

 
Fonte: adaptado de Fraser; Banks (2013, p. 24). 

 

As faixas de absorção pelos fotorreceptores do olho humano (cones e bastonetes) são 

mostradas na Figura 3.14, na qual tem-se que as curvas de absorção dos cones azuis, com um 

pico de absorção a 420 nm (a), dos bastonetes, com um pico de absorção a 499 nm (b), dos 
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cones verdes, com um pico de absorção a 530 nm (c) e dos cones vermelhos, com um pico de 

absorção a 565 nm (d) (FRASER; MURPHY; BUNTING, 2005).  

 

Figura 3.14 – Absorção da luz pelos cones azuis (a), bastonetes (b), cones verdes (b) e 

cones vermelhos (d). 

 
Fonte: modificado de Fraser; Murphy; Bunting (2005, p. 18). 

Embora os receptores do olho humano, especificamente os cones, só consigam detectar 

diretamente as cores vermelho, verde e azul, que, por isso, recebem a denominação de cores 

primárias, as demais cores são percebidas pela combinação das sensações das cores detectadas, 

conforme foi proposto pelo inglês Thomas Young (1773-1829) e aperfeiçoado pelo alemão 

Herman von Helmholtz (1821-1894), no século XIX, e que hoje é conhecida como mistura 

aditiva de cores e constitui o cerne do sistema de cores RBG que será descrito adiante 

(FRASER; BANKS, 2013, GONZALES; WOODS, 2013). 

 

3.3.4 Sistemas de cores  

 

 Sistemas de cores são especificações de um sistema de coordenadas e um subespaço 

dentro desse sistema, no qual cor é representado por um único ponto e sua construção visa 

facilitar a especificação de cores de forma padronizada e permitir a comunicação entre usuários, 

na manipulação de cores e nos sistemas de processamento de imagens (GONZALES; WOODS, 

2013). É frequente o uso das expressões modelos de cores e espaços de cores como sinônimas 

de sistemas de cores. 
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 Segundo Gonzales e Woods (2013), é grande o número de sistemas de cores usados 

atualmente, sendo mais largamente usados os sistemas RGB (do inglês red, green, blue), CMY 

(do inglês cyan, magenta, yellow), CMYK (do inglês cyan, magenta, yellow, black) e HSI (do 

inglês hue, saturation, intensity). 

 

3.3.4.1 Sistema de cores RGB 

 

O sistema RGB tem seu uso mais voltado a hardwares, destacando-se especialmente em 

câmeras fotográficas e telas coloridas, sendo concebido a partir das três cores primárias: 

vermelho, verde e azul. Baseia-se no sistema aditivo de cores, organizadas sob um sistema de 

coordenadas cartesianas que tem como subespaço um cubo (GONZALES; WOODS, 2013).  

Na Figura 3.15 é mostrada uma representação do cubo do sistema RGB, no qual os oito 

vértices representam o preto (0,0,0), branco (1, 1, 1) e as máximas intensidades das cores 

primárias: vermelho (1, 0, 0), verde (0, 1, 0) e azul (0, 0, 1), alternadas com as máximas 

intensidades das cores secundárias: amarelo (1, 1, 0), magenta (1, 1, 0) e ciano (0, 1, 1). As três 

arestas que nascem na origem representam as intensidades das cores primárias puras e a 

diagonal principal, segmento de reta que vai do preto ao branco, é a escala de cinza. 

 

Figura 3.15 – Representação gráfica do sistema RGB com indicações para o preto, o branco, 

as cores primárias e secundárias e a escala de cinza. 

 
Fonte: modificado de Gonzales e Woods (2013). 
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Fica também evidente que as cores secundárias são obtidas pela mistura de duas cores 

primárias, o magenta (vermelho + azul), ciano (azul + verde) e amarelo (vermelho + verde). Os 

valores de cinza, então, podem ser calculados a partir das intensidades de vermelho, verde e 

azul. 

Nessa representação, os valores de intensidade estão normalizados e variam de 0 a 1 em 

cada eixo, mas essa variação dependerá da quantização da imagem em questão e para os 

sistemas atuais é comum se ter imagens coloridas de 24 bits, sendo 8 bits para cada uma das 

cores primárias, que faz cada cor primária variar suas intensidades de 0 a 255. 

 

3.3.4.2 Sistema de cores HSI 

  

Diferente do sistema RGB, o sistema HSI não é voltado para uso em hardware, sendo mais 

apropriado a designação de características visuais humanas, por isso é conhecido como sistema 

de percepção humana. Não faz sentido, no cotidiano, um indivíduo tentar definir a cor de um 

objeto em suas componentes RGB, uma vez que as características facilmente percebidas para 

uma cor são matiz, saturação e brilho.  

Segundo Gonzales e Woods (2013), o matiz está relacionado ao comprimento de onda 

dominante que é emitido por um objeto numa cena, enquanto a saturação está relacionada à 

diluição de uma cor pela cor branca, de modo que, na ausência da cor branca, uma cor é 

totalmente saturada e, por fim, o brilho, que é um descritor subjetivo praticamente impossível 

de ser mensurado está relacionado à percepção acromática de intensidade (nível de cinza) que 

é facilmente mensurável e se refere às imagens acromáticas. 

É possível representar o sistema HSI usando-se diversos subespaços, como o hexaedro, 

o octaedro, o cilindro, dentre outros. Usaremos o cone reto como subespaço, com o preto no 

vértice e o branco no centro da base circular, e, portanto, a intensidade (escala de cinza) 

variando ao longo da altura do cone, como mostrado na Figura 3.16. Por conveniência, o 

vértice será mantido apontado para baixo, e as cores primárias podem ser facilmente percebidas 

separadas por ângulos de 120°, alternadas pelas cores secundárias, isto é, o ângulo entre cada 

cor secundária será, também, de 120º e o ângulo entre uma cor primária e um cor secundária 

consecutiva será de 60°. Os atributos matiz, saturação e intensidade são atribuídos da seguinte 

maneira: 

• O matiz (H) é dado pelo ângulo formado pelo segmento de reta que parte do eixo 

principal e que contém o ponto representativo da cor arbitrária e o segmento de reta que 

contém uma cor de referência, normalmente o vermelho, medido no sentido anti-
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horário. Assim, o matiz de uma cor tem forte ligação com o comprimento de onda que 

define esta cor; 

• A saturação (S) é dada pelo comprimento do vetor cuja origem é a intersecção do eixo 

principal com o plano perpendicular a este eixo e que contém o ponto de cor em questão 

e cuja extremidade é o ponto da cor em questão; 

• A intensidade (I) é dada pela distância entre o vértice e o plano perpendicular ao eixo 

principal e que contém o ponto de cor em questão. 

 

Figura 3.16 – Representação do espaço de cores do sistema de cores HSI baseado no cone 

reto. O ponto marcado em preto representa uma cor arbitrária. 

 

Fonte: modificado de Hobbies, Hobbits and Hobos (2011). 

 

3.3.4.3 Conversão entre os sistemas RGB e HSI 

 

 Como os sensores de captura de imagens comumente se baseiam em filtros de cores 

RGB, sendo este o sistema de cores mais comuns em máquinas fotográficas e escâneres, para 

se trabalhar com o sistema de cores HSI é necessário realizar operações de conversão entre os 

dois sistemas e tal conversão precisa ser realizada pixel a pixel.  

De acordo com Gonzales e Woods (2013), para a conversão do sistema RGB para o 

sistema HSI, as Equações de 3 a 6 devem ser usadas. 

● Vermelho 

Azul 

Verde 

Amarelo 

Magenta 

Ciano 

Preto 

H 
S 

Branco 

I 
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𝐻 =  {
𝜃                  𝑠𝑒 𝐵 ≤ 𝐺
360 −  𝜃    𝑠𝑒 𝐵 > 𝐺

                                                                                                       (3) 

Em que:  

 𝜃 = 𝑐𝑜𝑠−1 {
1

2
(𝑅−𝐺)+ (𝑅−𝐵)

[(𝑅−𝐺)2+ (𝑅−𝐵)(𝐺−𝐵)1/2]
}                                                                                      (4) 

𝑆 = 1 −  
3

(𝑅+𝐺+𝐵)
[𝑚í𝑛(𝑅, 𝐺, 𝐵)]                                                                                            (5) 

𝐼 =  
1

3
(𝑅 + 𝐺 + 𝐵)                                                                                                                 (6) 

 De acordo com a Equação 3, os valores de H variam de 0 a 360. No entanto, é possível 

escalonar para valores entre 0 e 255. Outras equações devem ser utilizadas para a reconversão 

do sistema HSI para o sistema RGB. No entanto, não as abordaremos aqui, visto não serem 

objetos deste estudo. 

 

3.3.5 Distribuição de pixels: histogramas 

 

Histograma é um gráfico de barras retangulares que se usa para representar distribuições 

de frequência com dados agrupados (GIOVANNI; BONJORNO; GIOVANNI JR, 2000). 

Segundo Solomon e Breckon (2013), o histograma de uma imagem é um gráfico de distribuição 

de frequências dos valores das intensidades de todos os pixels que a compõem. 

 

Figura 3.17 – Imagem de dez moedas em fundo escuro (a) e seu histograma (b). 

 

Fonte: SOLOMON; BRECKON (2013, p. 59). 

 

Na Figura 3.17 é mostrada uma imagem em escala de cinza (a) e seu respectivo 

histograma (b). Percebem-se dois picos no histograma, o primeiro e mais elevado fica numa 

região de baixa intensidade (mais próximo ao preto) e que se refere ao fundo escuro da imagem 

(a) 

(b) 
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e o segundo pico, de menor altura e na região de maior intensidade (mais próxima ao branco), 

referente às faces das moedas (SOLOMON; BRACKON, 2013). 

 

3.4 Técnicas para o controle de autenticidade de origem geográfica de vinhos 

 

As técnicas usadas no controle de autenticidade de vinhos, quanto a sua origem 

geográfica, há muito tempo têm grande relevância na comunidade acadêmica e as mais variadas 

técnicas analíticas, incluindo as espectrométricas e as cromatográficas, têm sido utilizadas 

(VERSARI et al., 2014). Espectrometria de absorção atômica (AAS, do inglês Atomic 

Absortion Spectrometry), espectrometria de emissão atômica com plasma indutivamente 

acoplado (ICP-AES, do inglês Inductively Coupled Plasma-Atomic Emission Spectrometry), 

espectrometria de massa com plasma indutivamente acoplado (ICP-MS Inductively Coupled 

Plasma-Mass Spectrometry) e cromatografia líquida de alta e ultra alta eficiência (HPLC e 

UPLC, das expressões em inglês High Performance Liquid Chromatography e Ultra 

Performance Liquid Chromatography), geralmente associadas a ferramentas quimiométricas, 

têm sido utilizadas na determinação de origem geográfica de vinhos, com obtenção de respostas 

satisfatórias (ANDRADE, R. H. S. et al. 2013; CARUSO et al., 2012; GALGANO et al., 2008; 

RAŽIĆ; ONJIA, 2010; FABANI al., 2010; BENTLIN et al., 2011; RODRIGUES et al., 2011; 

COETZEE et al., 2014; FRAIGE et al., 2014; MUCCILLO et al., 2014; CUADROS-

INOSTROZA, 2010). Essas técnicas analíticas, no entanto, apresentam custo elevado, o que 

limita o seu uso aos laboratórios mais sofisticados e a grandes produtores, não sendo utilizadas 

para o controle de vinhos comerciais, de menor preço de mercado. 

Por outro lado, nas últimas décadas, estudos baseados em imagens digitais (DIB, do 

inglês Digital Image Based) foram realizados com diversas matrizes e demonstraram 

capacidade de rastreamento de origem geográfica de sementes de quinoa (MEDINA; 

SKURTYS; AGUILERA, 2010), de chás (DINIZ et al., 2012) de mel (DOMINGUEZ et al.; 

2014) e de própolis (PIERINI et. al., 2016), de controle de fermentação de chás (BORAH; 

BHUYAN, 2005) e de biomassa de leveduras em fermentações (ACEVEDO et al., 2009), de 

rastreamento de adulterações em leite de vaca (SANTOS; WENTZELL; PEREIRA-FILHO, 

2012), café (SOUTO et al., 2014), azeite de oliva (MILANEZ; PONTES, 2015), classificação 

de amido em função dos seus grãos de origem (TORRENCE; WRIGHT; CONWAY, 2004), 

biodiesel (COSTA et al., 2015; COSTA et al., 2016), de taninos (GRASEL; MARCELO; 

FERRÃO, 2016), classificação de espécies de bactérias (ALMEIDA et al., 2014) e de validade 

e fontes de óleos vegetais comestíveis (MILANEZ; PONTES, 2014). 
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Não foi encontrado na literatura nenhum método analítico baseado em imagens digitais 

para classificação de vinhos em razão da sua origem geográfica. 

 

3.5 Ferramentas quimiométricas 

 

Quimiometria é a área química que usa métodos matemáticos, estatísticos e outros que 

empregam lógica formal para planejar ou selecionar procedimentos e experimentos de medição 

ótimos e fornecer informações químicas relevantes máximas através da análise de dados 

químicos (MASSART et al., 2003). A quimiometria encontrou aplicação generalizada na 

química analítica, mas não se restringe a ela, e vem sendo fortemente usada no controle da 

qualidade de produtos das indústrias químicas, farmacêuticas e de alimentos, na área forense e 

química medicinal (MASSART et al., 2003; FERREIRA, 2015). 

Os dados experimentais, multivariados, normalmente adquiridos em instrumentos como 

espectrômetros, cromatógrafos, dentre outros, são dispostos em uma matriz, X(I × J), onde as 

I linhas representam as amostras e as J colunas representam as variáveis  (por exemplo, as 

intensidades de cores no histograma de uma imagem) e cujos elementos representam os valores 

das medições nessas amostras, conforme representado na Figura 3.18 (BRERETON, 2009).  

 

Figura 3.18 – Representação genérica de dados químicos analíticos em forma de matriz. 

 
Fonte: Adaptado de Brereton (2009). 
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3.5.1 Técnicas de reconhecimento de padrões 

 

Os seres humanos são muito bons em realizar classificação, tarefa que é repetida 

inúmeras vezes a cada dia, baseada na existência de similaridades entre os objetos para os 

colocar num mesmo grupo, e diferenças que os coloquem em grupos distintos (BEEBE, 1998; 

FERREIRA, 2015). Segundo Brereton (2003), a classificação ocupa lugar especial na Química, 

sendo usada para agrupar os elementos ou as substâncias em função das suas propriedades, 

como é exemplo da Classificação Periódica dos Elementos. 

De acordo com Ferreira (2015), os métodos de reconhecimento de padrões podem ser 

supervisionados ou não supervisionados. No primeiro grupo, amostras (objetos) 

conhecidamente pertencentes a cada uma das classes são usadas para construção de modelos de 

classificação, enquanto no segundo grupo (métodos não supervisionados) não há conhecimento 

prévio a respeito da classificação das amostras, que são agrupadas de acordo com as 

informações contidas nos seus dados experimentais. Os métodos não supervisionados 

costumam ser chamados de métodos de análise exploratória de dados (FERREIRA, 2015). 

Dentre as diversas técnicas de reconhecimento de padrões descritas na literatura, 

algumas das mais populares e difundidas no tratamento de dados químicos são a Análise por 

Componentes Principais (PCA, do inglês Principal Component Analysis), a Análise 

Discriminante Linear (LDA, do inglês Linear Discriminant Analysis) com seleção de variáveis 

pelo Algoritmo das Projeções Sucessivas (SPA, do inglês Successive Projections Algorithm), 

SPA-LDA, e Análise Discriminante por Mínimos Quadrados Parciais (PLS-DA, do inglês 

Parcial Least Squares Discriminant Analysis). 

A PCA é uma técnica não supervisionada de reconhecimento de padrões que visa reduzir 

a dimensionalidade de dados multivariados, transferindo as informações contidas em muitas 

variáveis para um número pequeno de novas variáveis, as Componentes Principais (PC, do 

inglês, Principal Component), facilitando a visualização de agrupamentos de amostras e de 

amostras anômalas (FERREIRA, 2015).  

Cada PC consiste numa combinação linear de variáveis correlacionadas e, havendo num 

conjunto de dados mais de uma PC, as informações contidas numa delas não estarão presentes 

nas demais, isto é, as PCs de um mesmo conjunto de dados são ortogonais, a primeira 

componente principal, PC1, descreverá maior variância dos dados que a PC2, que descreverá 

maior variância que a PC3 e assim subsequentemente até que toda a variância dos dados tenha 

sido explicada (BEEBE, 1998; PONTES, 2009; FERREIRA, 2015; LAVINE; DAVIDSON, 

2006).  
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Na Figura 3.19 é mostrada uma representação gráfica da transformação no espaço de 

três variáveis (X, Y, Z) para o espaço de duas componentes principais (PC1 e PC2) de um 

conjunto de 28 amostras. Uma terceira componente principal, PC3, poderia ser calculada, mas 

conteria apenas ruído e pode ser considerada como um resíduo de modelagem (LAVINE; 

DAVIDSON, 2006).                                                                                                      

 

Figura 3.19 – Eixos das componentes principais que definem um novo conjunto de vetores 

de base para o espaço de medição definido pelas variáveis X, Y e Z. 

 
Fonte: Lavine e Davidson (2006). 

Matematicamente, a matriz de dados X é decomposta em duas matrizes, uma matriz de 

escores T, que exprime as relações entre as amostras, e uma matriz de loadings L, que exprime 

as relações entre as variáveis, conforme representado pela Equação 7 (BRERETON, 2009). 

𝑿(𝐼 × 𝐽) =  𝑻(𝐼 × 𝐴) ∗ 𝑳(𝐴 ×𝐽)
𝑻  +  𝑬(𝐼 × 𝐽)                                                                          (7)   

Da Equação 7, temos que a matriz 𝑳(𝐽 × 𝐴) corresponde a matriz de projeções 

(subespaço ortogonal) também denominada de loadings e 𝑻(𝐼 × 𝐴) são os vetores projeções, ou 

seja, as coordenadas das amostras neste novo subespaço (escores). O termo A, corresponde a 

nova dimensionalidade dos dados, em outras palavras, A, é o número de PC usadas para explicar 

a informação contida em 𝑿.  A matriz 𝑬, representa a informação não modelada pela PCA e 

tem as mesmas dimensões da matriz X (BRERETON, 2009). 

Na Figura 3.20 é apresentada uma ilustração da decomposição por componentes 

principais, onde é possível observar que a decomposição em PCs corresponde a projetar as 

amostras em um subespaço ortogonalizado de baixa dimensionalidade na direção de máxima 

variância.   
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Figura 3.20 – Representação gráfica do método PCA. 

 
Fonte: adaptado de Brereton (2009). 

 

Tão importante quanto usar ferramentas para detectar presença de argumentos entre as 

amostras, é usar uma estrutura de classes previamente conhecidas para fazer a predição de novas 

amostras. Neste contexto, a LDA é uma técnica de reconhecimento de padrões supervisionados, 

ou seja, que usa um conjunto de amostras com suas medidas e classes conhecidas para se 

construir ou treinar um modelo de decisão ou regra, enquanto outro conjunto de amostras, 

também com medidas e classes conhecidas, será usado para testar o desempenho do modelo 

construído em predizer ou estimar a classificação de amostras desconhecidas (MASSART et 

al., 1988; FERREIRA, 2015). O primeiro conjunto é chamado conjunto de treinamento e o 

segundo recebe o nome de conjunto de teste. Semelhante a PCA, a técnica de LDA também usa 

combinações lineares para reduzir o número de variáveis do conjunto de dados. No entanto, as 

funções discriminantes visam o máximo de separação entre as classes (MASSART et al., 1988). 

Na Figura 3.21 é mostrado um esquema de discriminação entre duas classes A (círculos 

pretos) e B (quadrados cinza) em duas variáveis (var1 e var2). Percebe-se que os objetos 

representados por círculos são claramente distintos dos representados por quadrados, mas 

nenhuma das duas variáveis por si só pode discriminar completamente esses dois grupos. 

Entretanto, é possível separar os dois grupos ao traçar uma linha (linha 1) que seja uma 

combinação linear das duas variáveis, de modo que os objetos acima desta linha pertencem à 

classe A e os objetos que ficam abaixo pertencem à classe B. Projetando os objetos numa 

segunda linha (linha 2), perpendicular à linha discriminante (linha 1), temos que os objetos com 

valores de projeção mais baixos pertencem à classe A, enquanto aqueles com valores superiores 

pertencem à classe B. É possível determinar a associação de classe simplesmente de acordo 
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com o valor acima ou abaixo de um divisor. Alternativamente, é possível determinar o centroide 

(média das medidas) de cada classe ao longo da projeção e, se a distância ao centro da classe A 

for menor que a distância ao centro da classe B, o objeto é colocado na classe A, e vice-versa, 

mas isso depende de as classes serem quase igualmente difusas, ou seja, possuírem 

aproximadamente a mesma dispersão (BRERETON, 2003; SILVA, 2013). 

 

Figura 3.21 – Esquema de discriminação entre duas classes (A e B), baseando-se nas 

variáveis originais (var1 e var2) e em linha discriminante. 

 
Fonte: adaptado de Brereton (2003). 

 

O poder de discriminação das variáveis será elevado quando os centróides das classes 

de amostras estiverem suficientemente distantes uns dos outros e quando as amostras das 

classes possuírem agrupamentos densos. Em termos matemáticos, isso significa que a variância 

entre as classes é grande em comparação com as variações dentro de cada classe. Deste modo, 

verifica-se que os três parâmetros matemáticos que determinam o efeito discriminatório de duas 

variáveis químicas são a variância entre classes, a variância dentro da classe e a correlação entre 

as variáveis químicas (MASSART et al., 1988). 

No reconhecimento de padrões supervisionados, o objetivo é definir a distância de cada 

objeto ao centro de uma classe (as variâncias interclasses e intraclasses) e várias métricas de 

distância podem ser usadas para calcular os agrupamentos de objetos, ou clusters, e, por 

conseguinte, poderiam ser usadas para o cálculo de LDA. As mais comuns incluem as distâncias 

euclidiana, de Manhattan e de Mahalanobis. A distância de Mahalanobis é, destacadamente, a 

mais usada em dados químicos, porque considera as diferentes dispersões das classes e, 

também, pondera as influências das variáveis (BRERETON, 2003; MASSART et al., 1988).  
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A distância de Mahalanobis de uma da amostra (i) ao centróide de uma classe é 

calculada de acordo com a Equação 8. 

𝑑𝑖𝐴 = √(𝒙𝒊 − 𝒙̅𝑨). 𝑺𝑨
−𝟏. (𝒙𝒊 − 𝒙̅𝑨)𝑻                                                                              (8) 

Onde xi é um vetor linha para a amostra i, 𝒙̅A é a medida média (ou centróide) para uma 

classe A e 𝑺𝑨 é a matriz de variância-covariância para esta classe (cujos elementos diagonais 

correspondem à variância de cada variável e os elementos fora da diagonal a covariância). 

As limitações da LDA incluem as necessidades do número de amostras ser maior que o 

número de medidas, isto é, para J variáveis deve haver, ao menos,  J + 2 amostras para que haja 

alguma discriminação, e que as variáveis sejam ao máximo independentes (não colineares) 

(BRERETON, 2003; FERREIRA, 2015; MASSART et al., 1988). Ocorre que, em análise 

multivariada, especialmente com uso de técnicas espectroanalíticas, o número de variáveis 

costuma ser muito grande e tal fato demandaria um número igualmente grande de amostras, 

aspecto que inviabiliza o estudo. Também, é muito frequente que existam num espectro um 

grande número de comprimentos de onda que tenham respostas instrumentais colineares. 

Quando a técnica analítica se baseia em imagens digitais, surge outra limitação da LDA, que é 

o grande número de variáveis com resposta instrumental nula. 

Para se contornar essas limitações, recorre-se a algoritmos adequados a realizar seleção 

de variáveis. Os métodos de seleção de variáveis devem selecionar um subconjunto de variáveis 

que retenham a informação discriminante das classes e exibam a menor colinearidade possível, 

favorecendo o alto poder preditivo por obtenção de uma matriz inversa da matriz de variância-

covariância das variáveis (𝑆) sem problemas de instabilidade numérica. Diferentes algoritmos 

para seleção de variáveis são conhecidos na literatura, como Algoritmo da Projeções Sucessivas 

(SPA), Algoritmo Genético (GA, do inglês Genetic Algorithm) e o Stepwise (SW) (ARAÚJO 

et al., 2001; FERNANDES, 2013, SILVA, 2013). 

O SPA surgiu em 2001 como estratégia para selecionar variáveis para uso em calibração 

multivariada e é tido como um método de seleção que parte de uma variável arbitrária e, em 

seguida, realiza iterações até um número Nmax previamente definido pelo usuário (ARAÚJO 

et al., 2001). O SPA na selção de variáveis em LDA é composto de duas etapas: projeção 

(geração das cadeia de variáveis) e avaliação do poder preditivo. Na etapa de projeções, dada 

uma matrix de respostas instrumentais X(I x J), o SPA partindo de uma variável xj, projeta todas 

as demais variáveis no complemento ortogonal (Pj de dimensões I x I) do subespaço definido 

por xj. Baseado no comprimento dos vetores projeções Pjx, são selecionadas variáveis que 
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apresentem a menor multicolineariade mútua (ARAÚJO et al., 2001). A quantidade de variáveis 

que serão selecionadas será definida pelo melhor resultado em relação ao critério que avalia a 

habilidade de previsão do modelo de calibração multivariada, a Raiz Quadrada do Erro Médio 

Quadrático de Validação (RMSEV, do inglês Root Mean Square Error of Validation) 

(ARAÚJO et al., 2001; FERNANDES, 2013). 

Na Figura 3.22 é mostrado um exemplo de como seria a primeira iteração e mostra a 

projeção de quatro variáveis (x1, x2, x4 e x5) no subespaço de x3 (variável de partida), onde a 

projeção da variável 1 (Px1) é a maior e será incorporada a x3 (ARAÚJO et al., 2001). 

 

Figura 3.22 – Exemplo da seleção de variáveis com SPA. 

 
Fonte: adaptado de Araújo et al. (2001). 

 

Pontes et al. (2005) apresentaram uma versão do SPA com uma modificação que 

consistiu na incorporação de uma função de custo associada ao risco médio (G) de classificação 

incorreta por LDA, portanto para fins de classificação, o SPA-LDA. O custo médio (G) é 

calculado de acordo com a Equação 9.      

            𝐺 =
1

Ival
∑ 𝑔𝒊

Ival

𝑖 = 1

 

 

(9) 

em que 𝑔𝑖, o risco de classificação errada da i-ésima amostra de validação (𝒙𝑖), é calculado de 

acordo com a Equação 10. 

𝑔𝑖 =
 𝑑𝑖𝐴̅

2

𝑑𝑖𝑁̅
2  (10) 
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Na Equação 9, o termo Ival corresponde ao número de amostras do conjunto de 

validação do modelo. Na Equação 10, o termo do numerador, 𝑑𝑖𝐴̅
2 , é o quadrado da distância de 

Mahalanobis da amostra 𝒙𝑖 ao centróide da sua classe correta e o termo do denominador, 𝑑𝑖𝑁̅
2 , 

é o quadrado da distância de Mahalanobis da amostra 𝒙𝑖 ao centróide da classe errada mais 

próxima. 

A Análise Discriminante pelos Mínimos Quadrados Parciais (PLS-DA) é uma técnica 

de reconhecimento de padrão supervisionado baseado no algoritmo PLS, que leva à formação 

de um modelo de regressão que envolve duas matrizes: uma matriz independente X(I x J), 

contendo respostas instrumentais de I amostras em J variáveis, e uma matriz simulada 𝐘,  

dependente de  𝐗  e contendo os índice de classes das amostras (BALLABIO; CONSONNI, 

2013; BEVILACQUA et al., 2013, BRERETON; LLOYD, 2014, BRERETON, 2003) .  

A matriz dependente 𝐘 terá tantas colunas quanto o número de classes existentes e tantas 

linhas quanto o número de amostras presentes no conjunto de treinamento amostras 

(BEVILACQUA et al., 2013, BRERETON; LLOYD, 2014). Com isso, as informações sobre a 

classe a que pertença uma amostra do conjunto de treinamento, 𝒙𝒊, são codificadas usando uma 

representação binária em que todas as entradas do vetor-linha desta amostra 𝒚𝒊 (na matriz 

dependente 𝐘 ) são iguais a zero, com exceção da coluna correspondente à categoria a qual a 

amostra pertence, cujo valor será igual a 1, conforme representado na Figura 3.23 

(BEVILACQUA et al., 2013; SILVA, 2013). 

 

Figura 3.23 – Modelo de análise discriminante de mínimos quadrados parciais (PLS-DA) 

para mais de duas classes. 

 
Fonte: adaptado de Silva (2013). 
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O PLS-DA busca encontrar onde uma função que relaciona a matriz 𝐗, contendo as 

variáveis medidas (ou calculadas) nas amostras, para a matriz simbólica 𝐘,  

𝐘 = 𝑓(𝐗)             (11) 

Assumindo-se que há uma relação funcional linear, pode-se reescrever a equação como: 

𝐘 = 𝐗 ∗ 𝐁              (12) 

Na Equação 12, 𝐁 é uma matriz de coeficientes de regressão, calculado pelo algoritmo 

PLS de regressão e será o modelo de classificação (BEVILACQUA et al., 2013). 

A regressão PLS assume que tanto a matriz independente 𝐗 quanto a matriz dependente 

𝐘 podem ser projetadas em um espaço de fatores de baixa dimensão e que existe uma relação 

linear entre os escores das duas matrizes. Matematicamente, as matrizes dependentes e 

independentes são decompostas em escores e loadings de acordo com 

𝐗 =  𝐓 ∗ 𝐏𝐓 + 𝐄𝐗            (13) 

onde 𝐓, 𝐏 e 𝐄𝐗 são, respectivamente, as matrizes de escores, loadings e resíduos da matriz de 

dados originais 𝐗, 

𝐘 =  𝐔 ∗ 𝐐𝐓 + 𝐄𝐘              (14) 

onde 𝐔, 𝐐 e 𝐄𝐘 são, respectivamente, as matrizes de escores, loadings e resíduos de 𝐘, e 

𝐔 = 𝐓 ∗ 𝐂                 (15) 

onde 𝐂 é uma matriz diagonal de coeficientes (BEVILACQUA et al., 2013, BRERETON; 

LLOYD, 2014, BRERETON, 2003).  

Com base nas relações descritas nas Equações 14 e 15, é possível calcular a matriz dos 

coeficientes de regressão B, que permite prever os valores da matriz dependente do conjunto 

de teste 𝐘̂𝒕𝒆𝒔𝒕, nas quais as variáveis independentes 𝐗𝒕𝒆𝒔𝒕 foram medidas: 

𝐘̂𝒕𝒆𝒔𝒕 = 𝐗𝒕𝒆𝒔𝒕 ∗ 𝐁           (16) 

Enquanto a matriz dependente 𝐘 para as amostras de treinamento é codificada em 

binário, os vetores preditos para as amostras desconhecidas 𝒚̂𝒅𝒆𝒔𝒄 conterão números reais e a 

regra de classificação para uma amostra 𝑥𝑚 é realizada atribuindo-a à categoria correspondente 

a posição do componente do vetor de 𝐘 previsto para esta amostra, 𝒚̂𝒎, cujo valor seja o mais 

alto. Por exemplo, se quatro classes estão envolvidas no problema de classificação, como no 

exemplo descrito na Figura 3.23, quando aplicado a uma amostra genérica desconhecida, o 

modelo na Equação 16 resultaria em um vetor-linha de quatro valores reais predispostos 

dimensionalmente que poderia levar valores de, por exemplo, [0,01 -0,04 0,87 0,06] e neste 

caso, a amostra 𝑥𝑚 seria classificada como pertencente a classe 3 (BEVILACQUA et al., 2013). 
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4 EXPERIMENTAL 

 

4.1 Amostras 

 

Neste trabalho, foram usadas amostras de vinhos tintos, finos e tranquilos, comprados 

em supermercados de Natal/RN e de João Pessoa/PB ou doadas por vitivinicultores e 

instituições de pesquisa localizadas no Vale do São Francisco, Centro de Pesquisa Agropecuária 

do Trópico Semiárido, da Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA 

Semiárido) e Instituto Federal de Educação, Ciência e Tecnologia do Sertão Pernambucano (IF 

SERTÃO-PE). As amostras doadas pelas instituições de pesquisa não têm caráter comercial, 

sendo rotuladas como experimentais e sobre sua composição, podem ser tidos como 

monovarietais, isto é, não possuem qualquer corte. Contudo, não há informações acerca das 

técnicas enológicas empregadas na sua vinificação. As amostras foram adquiridas no período 

entre maio de 2015 e março de 2017, rotuladas e mantidas em temperatura ambiente, em 

armário fechado e na posição horizontal. 

Três abordagens de classificação foram consideradas, em função da origem geográfica, 

dos vitivinicultores e das variedades de uvas. 

Em relação à origem geográfica, foram utilizadas 100 amostras divididas, conforme 

informações contidas em seus rótulos, em duas classes: a classe Vale do São Francisco (VSF), 

e a classe de outras regiões, brasileiras e de outros países (Mundo). As Informações contidas 

nos rótulos das amostras usadas nesta abordagem estão mostradas no ANEXO A, em que se 

percebe que as 64 amostras da classe VSF, embora sejam todas de uma mesma região de 

origem, apresentam uma grande variedade de informações, sendo produzidas por 8 diferentes 

viticultores, com 13 diferentes composições de uvas, 5 diferentes graduações alcoólicas e em 6 

diferentes anos. Enquanto as amostras da classe Mundo apresentam 8 diferentes composições, 

5 diferentes graduações alcoólicas e são produzidas por 21 diferentes viticultores, em 15 

diferentes regiões e em 5 ou 6 diferentes anos. 

A classificação relativa aos vitivinicultores incluiu apenas amostras produzidas no Vale 

do São Francisco e, devido à necessidade de número adequado de amostras, três classes foram 

formadas: 1, formada pelos vinhos experimentais, 2, formada por vinhos produzidos pelo 

vitivinicultor A, e 3, formada por vinhos produzidos pelo vitivinicultor B. Embora tenha havido 

doação de seis vitivinicultores, as quantidades de amostras de quatro deles foram insuficientes 

para uma modelagem segura. No ANEXO B estão indicadas as informações contidas nos 

rótulos das amostras usadas na abordagem de classificação em função dos vitivinicultores 
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Para a classificação com foco nas variedades de uvas indicadas nos rótulos dos vinhos, 

três classes foram formadas: classe CS, formada por vinhos varietais de Cabernet Sauvignon, 

classe Sy, formada por vinhos varietais de Syrah ou Shiraz e classe TN, formada por vinhos 

varietais de Touriga Nacional (TN). Nesta abordagem, apenas amostras produzidas no Vale do 

São Francisco foram utilizadas. O detalhamento das amostras utilizadas nesta abordagem de 

classificação está disponível no ANEXO C.  

As quantidades de amostras, em função das classes levantadas em cada uma das 

abordagens de classificação são apresentadas na Tabela 4.1. 

 

Tabela 4.1 – Quantidades de amostras, em função das classes levantadas, em cada uma 

das abordagens de classificação utilizadas neste trabalho. 

Abordagem de classificação Classes Quantidades 

Origem geográfica 
Vale do São Francisco (VSF) 64 

Outras regiões (Mundo) 36 

   

Vitivinicultor 

Experimentais (1) 20 

Vitivinicultor A (2) 24 

Vitivinicultor B (3) 26 

   

Variedades de uvas 

Cabernet Sauvignon (CS) 18 

Syrah/Shiraz (Sy) 14 

Touriga Nacional (TN) 16 

Fonte: elaborada pelo autor, a partir das amostras utilizadas neste trabalho. 

 

4.2 Aparelho para aquisição das imagens digitais 

 

Para aquisição das imagens digitais, um aparelho simples e de baixo custo foi projetado 

e construído. O dispositivo para medições colorimétricas baseado em imagens digitais 

(DMCdib) está depositado no Instituto Nacional de Propriedade Industrial (INPI) com 

requerimento de Patente de Invenção sob o número BR1020170114490 (UNIVERSIDADE 

FEDERAL DA PARAÍBA, 2017). 

O protótipo do DMCdib usado neste trabalho consistiu de uma caixa, com dimensões 

aproximadas de 16 cm x 7 cm x 7 𝑐𝑚, construída em madeira cortada a laser e com as instalações 

adequadas (iluminação, acoplamento a um aparelho smartphone, apresentação das amostras, 
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etc.). Um esboço do DMCdib é apresentado na Figura 4.1, em que se observa suas partes 

principais: a tampa fixadora do smartphone (a), aparelho smartphone (b), caixa principal (c) e 

gaveta com suporte para cubeta (d). 

 

Figura 4.1 – Esboço do DMCdib e suas partes principais: a tampa fixadora do smartphone 

(a), aparelho smartphone (b), caixa principal (c) e gaveta com suporte para cubeta (d). 

 

Fonte: adaptado de UNIVERSIDADE FEDERAL DA PARAÍBA (2017). 

 

O aparelho smartphone acoplado ao DMCdib se manteve fixo frontalmente às amostras 

analisadas e a uma distância constante de 3,5 cm destas. O DMCdib foi dotado de um sistema 

de iluminação com 6 lâmpadas LED brancas, posicionadas acima das amostras, nos extremos 

laterais da cavidade interna da caixa principal, logo abaixo do aparelho smartphone, 

alimentadas eletricamente por uma bateria de 9V, mantendo sua iluminação interna constante 

e proveniente, exclusivamente, desse sistema de iluminação. As paredes internas da caixa 

principal do DMCdib foram cobertas com tinta acrílica de coloração branca. A transferência 

das imagens do DMCdib para o computador foi realizada com uso de cabo de dados. 

 

(b) 

(a) 

(c) 

(d) 
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4.3 Aquisição dos dados baseados em imagens digitais 

 

Um aparelho smartphone Nokia Lumia 710, com sistema operacional Windows Phone 

7.5, foi acoplado ao DMCdib e usado para captura das imagens digitais das amostras de vinho. 

O smartphone teve o seu flash desligado e a seguinte configuração da câmera ajustada e usada 

em todas as leituras: 

a. Dimensões das imagens: 1.944 pixels x 2.592 pixels (largura x altura); 

b. Intensidade de bits: 24; 

c. Representação de cores: 16,7 milhões de cores; 

d. Formato da imagem: jpeg; 

e. Distância focal: 35 mm. 

Uma cubeta de vidro óptico, com duas janelas polidas, medindo externamente 12,5 mm 

x 7,5 mm x 45 mm, com caminho óptico de 5 mm e com volume interno de 1,5 mL foi utilizada. 

Alíquotas das amostras foram colhidas sem a retirada dos vedantes (rolhas) das garrafas, 

utilizando-se uma agulha de 50 mm de extensão, com seringa de 5 mL para perfurar as rolhas 

e colher as alíquotas. Nenhum processamento foi realizado nas amostras. 

Imagens digitais coloridas, de 24 bits, foram registradas para cada amostra, medidas em 

três replicatas, usando volume fixo de 1,3 mL. As imagens digitais foram registradas entre os 

dias 1º de fevereiro e 03 de abril de 2017, totalizando trezentas imagens digitais.  

Na Figura 4.2 estão mostradas três imagens de diferentes amostras de vinho, todas do 

Vale do São Francisco, registradas pelo DMCdib. Nesta figura, observa-se o interior do 

DMCdib com suas paredes brancas e a cubeta contendo as amostras, fixada por pinças e inserida 

num rebaixo. 

 

Figura 4.2 – Imagens de três amostras de vinho registradas pelo DMCdib. 

 

Fonte: produzida pelo autor. 
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Após o registro pela câmera do smartphone acoplado ao DMCdib, as imagens foram 

transferidas para um Notebook Dell Inspiron 5557, com sistema operacional Windows 10 Home 

de 64 bits, e dados de intensidades de cores, nos sistemas de cores RGB e HSI, foram obtidos 

com uso do software para aquisição de dados de imagens – QUIMAGENS (UNIVERSIDADE 

FEDERAL DA PARAÍBA, 2013). Uma região da imagem foi selecionada e as mesmas 

dimensões e localização espacial foram utilizadas para o tratamento de todas as imagens 

digitais.  

Na Figura 4.3 está representada uma imagem da janela de trabalho do QUIMAGENS, 

nas condições em que foi utilizado, em que se observa o retângulo verde, que indica a região 

da imagem onde os pixels foram utilizados para a obtenção dos dados de intensidade de cores 

da imagem digital. As informações das dimensões e da localização espacial da região 

selecionada estão informadas na parte inferior esquerda da imagem. A imagem que está sendo 

processada é da segunda replicata da amostra número 20. 

 

Figura 4.3 – Imagem da janela de trabalho do software QUIMAGENS, como utilizado neste 

trabalho. 

 
Fonte: produzida pelo autor. 

 

Inicialmente, uma matriz de dados com 300 linhas e 1.536 colunas, 𝐗(300 𝑥 1536), foi 

obtida. As linhas referem-se às 100 amostras, cada uma delas com três replicatas e as colunas 

referem-se às variáveis (intensidades de cores RGB e HSI), sendo 256 variáveis para cada 

componente de cor. 
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4.4 Procedimentos quimiométricos e softwares 

 

Uma redução no número de linhas da matriz de dados de intensidades de cores obtida 

inicialmente foi realizada com o cálculo das médias das replicatas de cada amostra e uma matriz 

de dados com 100 linhas x 1.536 colunas foi obtida. O software Unscrambler® X.1 (CAMO 

SA) foi utilizado no cálculo das médias das replicatas. 

A partir da matriz com as médias das medidas das amostras, outras duas matrizes foram 

construídas contendo os dados das outras duas abordagens de classificação utilizadas neste 

trabalho (vitivinicultores e variedades de uvas). Em seguida, gráficos de distribuição de 

frequência versus intensidades de cores (histogramas) para cada uma delas foram plotados e, 

após inspeção visual dos histogramas, como estratégia de pré-processamento, seleções a priori 

de variáveis foram realizadas nos dados das três matrizes, sendo eliminadas as variáveis cujo 

sinal era nulo. Por fim, para cada estratégia de classificação adotada, as matrizes para cada 

sistema de cores, 𝐗RGB e 𝐗HSI, foram construídas. 

Antecedendo a análise discriminante, uma análise exploratória com uso de Análise de 

Componentes Principais (PCA) foi realizada, separadamente, nas matrizes 𝐗RGB e 𝐗HSI de cada 

uma das abordagens de classificação. 

Para os cálculos de análises discriminantes, com SPA-LDA e PLS-DA, os conjuntos de 

treinamento e de teste foram construídos por particionamento nas matrizes de dados 𝐗RGB e 

𝐗HSI, separadamente, para cada uma das abordagens de classificação, utilizando-se o algoritmo 

Kennard-Stone (KS) (KENNARD; STONE, 1969) e não foram construídos conjuntos de 

validação, tendo se usado validação cruzada ou validação interna (SOARES et al., 2014). Na 

Tabela 4.2 estão mostradas as quantidades de amostras em cada um dos conjuntos de 

treinamento e de teste para as abordagens de classificação origem geográfica, vitivinicultores e 

variedades de uvas. Todas as modelagens foram realizadas com os dados centrados na média. 

Para os cálculos das médias das replicatas das amostras da PCA, Unscrambler® X.1 

(CAMO SA) foi utilizado. Os algoritmos KS, SPA-LDA (PONTES et al., 2005; SOARES et 

al., 2014), PLS-DA (BALLABIO; CONSONNI, 2013) foram executados com o software 

Matlab® 9.3 (Mathworks, EUA). 

Para avaliação final dos modelos, a taxa de classificação correta (TCC) das amostras e 

a sensibilidade e a seletividade de cada classe, dos conjuntos de treinamento e de teste, foram 

utilizadas, de acordo com as Equações 17, 18 e 19.  

𝑇𝐶𝐶 (%) = (
𝑁𝑎𝑐𝑒𝑟𝑡𝑜𝑠

𝑁𝑇𝑜𝑡𝑎𝑙
) ∗ 100%         (17) 
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Sensibilidade (%) =
VP

VP+FN
∗ 100%        (18) 

Seletividade (%) =
VN

VN+FP
∗ 100%          (19) 

Em que VN, FP, VP e FN são os verdadeiros negativos, falsos positivos, verdadeiros positivos 

e falsos negativos, respectivamente. 

 

Tabela 4.2 – Quantidades de amostras dos conjuntos de treinamento e de teste. 

Origem geográfica 

Classes 
Quantidades de amostras em cada conjunto 

Treinamento Teste 

Vale do São Francisco (VSF) 44 20 

Outras regiões (Mundo) 25 11 

Total 69 31 

Vitivinicultores 

Classes 
Quantidades de amostras em cada conjunto 

Treinamento Teste 

Experimentais (1) 14 6 

Vitivinicultor A (2) 16 8 

Vitivinicultor B (3) 18 8 

Total 48 22 

Variedades de uvas 

Classes 
Quantidades de amostras em cada conjunto 

Treinamento Teste 

Cabernet Sauvignon (CS) 12 6 

Syrah/Shiraz (Sy) 9 5 

Touriga Nacional (TN) 11 5 

Total 32 16 

Fonte: Elaborada pelo autor, a partir das amostras utilizadas neste trabalho. 
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5 RESULTADOS E DISCUSSÃO 

 

5.1 Classificação dos vinhos com base na origem geográfica 

 

Na Figura 5.1 são mostrados os histogramas das imagens no sistema RGB das 100 

amostras usadas na modelagem de classificação de vinhos tintos em função da sua origem 

geográfica, após uma seleção a priori de variáveis em que se retirou as variáveis visivelmente 

nulas e 135 variáveis RGB foram mantidas. A retirada das variáveis nulas, além de permitir 

uma visível ampliação da figura, será útil nos cálculos de LDA, pois sua permanência não 

possibilitaria a transposição de vetores do cálculo das distâncias de Mahalanobis, como 

indicado na Equação 8.  

Para permitir a sobreposição dos histogramas das 100 amostras no mesmo gráfico, com 

compreensão visual das amostras, os histogramas foram construídos com linhas contínuas,. As 

amostras das classes VSF e Mundo estão mostradas, respectivamente, em linhas roxas e 

laranjas. 

 

Figura 5.1 – Histogramas das imagens no sistema RGB das 100 amostras usadas na 

modelagem de classificação de vinhos tintos em função da sua origem geográfica, após 

retirada das variáveis nulas. (–) VSF e (–) Mundo. 

 
Fonte: elaborado pelo autor. 

Notas: 1. Embora as intensidades de cores tenham valores discretos, para melhor visualização, aqui 

são utilizadas linhas contínuas.                                                                                                                  
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A análise dos histogramas RGB indica uma grande dispersão dos dados no componente 

de cor R e picos mais estreitos nos componentes G (verde) e B (azul), indicando que as amostras 

em análise apresentam grande variação de tons de vermelho. A variação observada no 

componente R é uma característica da própria matriz, como função das variedades de uvas 

usadas na vinificação, bem como dos processos enológicos empregados pelos diferentes 

vitivinicultores. Conforme pode ser visto no ANEXO A, as amostras utilizadas nesta 

abordagem são produzidas com diferentes variedades de uvas, por diferentes vitivinicultores, o 

que sugere ter havido o emprego de diferentes técnicas enológicas. Os componentes G e B, 

apresentam-se como picos bem definidos, mostrando que não há grande dispersão dos dados 

nestas duas componentes de cores. Visualiza-se que há, nas três componentes (R, G e B), um 

ligeiro afastamento das amostras da classe VSF daquelas da classe Mundo. Estes afastamentos 

devem ser função de mudanças no perfil de antocianinas das amostras, causadas pelas diferentes 

características climáticas e de solo existentes entre as suas regiões de origem.  

Na Figura 5.2 são mostrados os histogramas das imagens no sistema HSI das 100 

amostras usados na modelagem de classificação de vinhos tintos em função da sua origem 

geográfica, após seleção a priori de variáveis. Nas variáveis do H (matiz) é possível visualizar 

um afastamento entre as classes, de modo que as amostras da classe VSF apresentam respostas 

nas variáveis mais do centro, enquanto as da classe Mundo estão nas variáveis do extremo do 

matiz. A análise das intensidades de S (saturação) revela uma grande dispersão dos dados, com 

respostas num grande número de variáveis, sendo que as amostras da classe Mundo só têm 

informações entre as variáveis 150 e 250, enquanto as amostras da classe VSF se distribuem 

por todas as variáveis deste componente. Por fim, a análise da componente I (intensidade) 

mostra um grau médio de dispersão das amostras, dos valores mais baixos de intensidade de 

cinza, mais próximos do preto, até valores médios. Nas variáveis da componente I, as amostras 

da classe VSF apresentam resposta analítica nas variáveis com menores valores intensidades 

do que as amostras da classe Mundo, o que pode ser consequência de diferentes processos 

enológicos, como estabilizações fenólicas e filtragens (GUERRA, 2013) e cujas informações 

não estão disponíveis. 

Em qualquer dos componentes HSI, as amostras de ambas as classes (VSF e Mundo) 

apresentam grande dispersão nos dados, o que pode ser considerado como natural devido à 

grande variedade da matriz e do conjunto de amostras utilizadas nesta pesquisa. 
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Figura 5.2 – Histogramas das imagens no sistema HSI das 100 amostras usadas na modelagem 

de classificação de vinhos tintos em função da sua origem geográfica, após retirada das 

variáveis nulas. (–) VSF e (–) Mundo. 

 
Fonte: elaborado pelo autor. 

Nota: embora os dados de um histograma tenham valores discretos, para melhor visualização, aqui 

são utilizadas linhas contínuas. 

 

 

5.1.1 Análise exploratória com PCA 

 

Os escores de PCA revelam, tanto nos dados de intensidades de cores RGB quanto HSI, 

mostrados na Figura 5.3, uma grande dispersão das amostras, sendo que as amostras da classe 

VSF estão ainda mais dispersas que a classe formada pelas outras regiões do mundo, diferente 

do que se poderia inadvertidamente esperar. Essa grande dispersão nos escores de PCA para 

amostras da classe VSF pode ser atribuída a composição varietal dos vinhos, uma vez que as 

amostras desta classe são de 10 varietais e mais 3 cortes (assemblages) distintos, enquanto as 

amostras da classe Mundo são, em sua maioria, de uma varietal (Cabernet Sauvignon) ou corte 

em esta participe majoritariamente, como pode ser visto no ANEXO A.  
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Figura 5.3 – Gráfico de escores PC1 x PC2 de classificação de vinhos em função da sua 

origem geográfica, baseado nos sistemas de cores RGB (a) e HSI (b). VSF (●) e Mundo (●). 

 
Fonte: elaborados pelo autor. 

 

Na Figura 5.3 (a), vê-se que amostras da classe Mundo estão no lado negativo da PC1, 

onde têm menor variância. Muitas amostras da classe VSF se separam completamente da classe 

Mundo, assumindo escores positivos na PC1, no entanto, parte das amostras da classe VSF se 

misturam às da classe Mundo. O mesmo comportamento é avistado na Figura 5.3 (b), com 

várias amostras da classe VSF bem separadas das da classe Mundo e com escores positivos na 

PC1, enquanto outra parte das amostras da classe VSF aparecem com escores negativos e 

sobrepostas às da classe Mundo. Um pequeno grupo com 13 amostras da classe VSF está mais 

afastado das demais, com escores superiores a 60.000. Praticamente todas as amostras deste 

grupo são de vinhos experimentais elaborados com a variedade Touriga Nacional e sugerem 

uma boa capacidade da técnica analítica baseada em imagens digitais em agrupar, também, 

vinhos em função das suas composições varietais. 

 

5.1.2 Análise discriminante com SPA-LDA e PLS-DA 

 

Na Figura 5.4 são mostrados os gráficos dos custos de validação (G) em função dos 

números de variáveis (a) e das variáveis selecionadas no modelo SPA-LDA (b), com os dados 

de cores RGB. Esses gráficos indicam a necessidade de um baixo número de variáveis para as 

modelagens. Para o modelo RGB, o menor custo de validação é obtido com 3 variáveis, que 

estão mostradas no gráfico da Figura 5.4(b), destacadas sobre a média dos valores de 

intensidades de cores RGB das amostras de treinamento, sendo que foi selecionada uma 

variável em cada componente de cor (R, G e B), confirmando o que foi observado na análise 

dos histogramas acerca do pequeno afastamento existente entre os picos das duas classes.  
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Figura 5.4 – Gráficos dos custos de validação (G) em função do número de variáveis incluídas 

no modelo (a) e das variáveis selecionadas (b) pelo algoritmo SPA-LDA, com dados RGB. 

 

Fonte: elaborados pelo autor. 

Nota: embora as intensidades de cores tenham valores discretos, para melhor visualização, aqui são 

utilizadas linhas contínuas. 
 

Na Figura 5.5 são mostrados os gráficos dos custos de validação (G) em função dos 

números de variáveis (a) e das variáveis selecionadas no modelo SPA-LDA (b), com os dados 

de cores HSI.  O menor custo de validação é obtido quando 7 variáveis são incluídas no modelo. 

As variáveis selecionas são mostradas sobre o histograma médio das amostras de classificação, 

em que se verifica que uma variável pertence à componente H, três pertencem à componente S 

e as outras três pertencem à componente I. Essa distribuição das variáveis sugere que a 

saturação (S) e a intensidade (I) têm maior poder de discriminação que o matiz de cor (H). 

 

Figura 5.5 – Gráficos dos custos de validação (G) em função do número de variáveis incluídas 

no modelo (a) e das variáveis selecionadas (b) pelo algoritmo SPA-LDA com dados HSI.  

 
Fonte: elaborados pelo autor. 

Nota: embora as intensidades de cores tenham valores discretos, para melhor visualização, aqui são 

utilizadas linhas contínuas. 
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Na Figura 5.6 são mostrados os gráficos dos escores das Funções Discriminantes (DF, 

do inglês Discriminant Function) calculados com o SPA-LDA, usando os dados de cores RGB 

(a) e HSI (b) para classificação de vinhos tintos em função da origem geográfica, com os 

quadrados roxos indicando as amostras verdadeiramente da classe VSF e os quadrados laranjas 

representando as amostras verdadeiramente da classe Mundo. Na Figura 5.6 (a), a linha 

discriminante traçada é a fronteira entre as duas classes, com as amostras classificadas como 

pertencentes à classe VSF localizadas acima dela e as amostras classificadas como pertencentes 

à classe Mundo situadas abaixo, enquanto na Figura 5.6 (b) essas posições estão invertidas. 

A leitura da Figura 5.6 (a) sugere que a modelagem realizada com SPA-LDA sobre os 

dados RGB apresenta alta taxa de acerto na classificação, com oito falsos positivos da classe 

VSF e seis falsos positivos da classe Mundo, além de outras três amostras que se localizam 

muito próximas à fronteira das classes. O que se ver na Figura 5.6 (b), com os escores da 

Função Discriminante calculada com os dados HSI, é indicativo de uma maior taxa de 

classificação correta, com apenas nove falsos negativos (três na classe VSF e seis na classe 

Mundo), além de três outras amostras que estão muito próximas à fronteira das classes. Os 

números de erros e de acertos em cada um dos conjuntos de treinamento e de testes, bem como 

os valores da taxa de classificação correta (TCC), das sensibilidades e especificidades estão 

resumidos na matriz de confusão mostrada na Tabela 5.1, assim como os resultados obtidos 

com o algoritmo PLS-DA. 

  

Figura 5.6 – Gráficos dos escores das Funções Discriminantes (DF) calculadas com o SPA-

LDA, usando os dados de cores RGB (a) e HSI (b), para classificação de vinhos tintos em 

função da origem geográfica: VSF () e Mundo (). 

 
Fonte: elaborados pelo autor. 
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Tabela 5.1 – Matriz de confusão dos modelos de classificação construídos com os algoritmos 

SPA-LDA e PLS-DA, baseado em dados de imagens digitais nos sistemas de cores RGB e 

HSI. 

SPA-LDA 

  RGB HSI 

 
Validação 

cruzada 
Teste 

Validação 

cruzada 
Teste 

Classe assinalada VSF Mundo VSF Mundo VSF Mundo VSF Mundo 

Classe 

verdadeira 

VSF 39 5 16 4 41 3 20 0 

Mundo 5 20 2 9 3 22 2 9 

Sensibilidade (%) 89 80 80 82 93 88 100 82 

Seletividade (%) 80 89 82 80 88 93 82 100 

TCC (%) 85,5 80,7 91,3 93,4 

PLS-DA 

  RGB HSI 

 
Validação 

cruzada 
Teste 

Validação 

cruzada 
Teste 

Classe assinalada VSF Mundo VSF Mundo VSF Mundo VSF Mundo 

Classe 

verdadeira 

VSF 30 14 9 11 37 7 16 4 

Mundo 1 24 1 10 2 23 1 10 

Sensibilidade (%) 68 96 90 48 84 92 80 91 

Seletividade (%) 96 68 48 90 92 84 91 80 

TCC (%) 78,3 61,3 87,0 83,9 

Fonte: elaborada pelo autor. 

 

Os modelos obtidos com o algoritmo SPA-LDA mostram bons resultados, com baixos 

números de variáveis selecionadas (3 e 7, respectivamente, para os dados RGB e HSI), elevadas 

sensibilidades, especificidades e TCC, que em qualquer dos conjuntos (treinamento/validação 

cruzada ou teste) e em ambos os sistemas de cores usados, superam 80%. Contudo, o modelo 

baseado nos dados HSI apresentou melhores resultados, com TCC de 91,3% na validação do 

modelo e de 93,4% na estimação das classes das amostras do conjunto de teste, valores tão bons 

quanto os alcançados por outros estudos que usaram espectrometria de absorção atômica e 

cromatografia gasosa, técnicas muito mais robustas e caras que a que se aplica neste trabalho 

(MORET; SCARPONI; CESCON, 1994; GARCIA-PARRILLA et al., 1997). Há que se 

destacar a alta sensibilidade da classe VSF, tanto do modelo quanto da estimação, obtidos com 

os dados HSI, indicando alto desempenho do modelo em reconhecer as amostras desta classe 

(VSF) frente a amostras de outras classes, com sensibilidade de 100% no conjunto de teste. A 

modelagem realizada com SPA-LDA somou 16 erros de classificação com os dados RGB, 

sendo 10 erros de classificação no conjunto de treinamento e 6 no conjunto de teste. Usando os 
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dados HSI, apenas 8 erros de classificação foram cometidos, 6 nas amostras de treinamento e, 

somente, 2 no conjunto de teste.  

Uma análise discriminante com regressão pelo método dos mínimos quadrados parciais 

(PLS-DA) foi realizada, independentemente, sobre os dados RGB e HSI. Os cálculos indicaram 

que uma variável latente seria suficiente para a modelagem dos dados RGB, enquanto 5 

variáveis latentes foram requeridas para o modelo de classificação dos vinhos com os dados 

HSI. 

A modelagem PLS-DA também apresentou bons resultados com os dados HSI, onde 

todas as métricas de avaliação do modelo (especificidade, sensibilidade e TCC) apresentaram 

valores superiores a 80%. Contudo, o modelo obtido com os dados RGB não apresentou 

resultados tão bons, com 15 erros na validação e outros 12 na estimação do conjunto de teste, 

com TCC, respectivamente, igual a 78,3% e 61,3%, sendo seu desempenho também inferior ao 

modelo obtido com os dados de cores RGB pelo algoritmo SPA-LDA. 

 

5.2 Classificação com base nos vitivinicultores 

 

Os histogramas das 70 amostras usadas na abordagem de classificação por 

vitivinicultores são mostrados na Figura 5.7, com os dados de cores RGB e seleção à priori de 

variáveis. As amostras das classes 1, 2 e 3 estão representadas, respectivamente, pelas linhas 

vermelhas, verdes e azuis. Regiões de separação das classes são visíveis nas variáveis da 

componente de cor R, na faixa entre as variáveis 1 e 20 destacam-se mais fortemente as 

amostras da classe 1, na faixa entre 20 e 50 destacam-se mais claramente as amostras da classe 

2 e as amostras da classe 3 mostram-se mais destacadas na faixa entre as variáveis 50 e 80. Nas 

variáveis referentes às componentes de cores G e B também há afastamentos entre as classes, 

contudo em menor proporção.  Na mesma figura, é possível observar ainda que uma amostra 

da classe 2 parece sobreposta às amostras da classe 1, enquanto duas amostras da classe 1 

aparecem sobrepostas às da classe 2 e algumas amostras da classe 3 aparecem distantes das 

demais amostras de sua classe. 
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Figura 5.7 – Histogramas de cores das 70 amostras de vinhos do Vale do São Francisco usadas 

na modelagem de classificação em função dos seus produtores, após seleção a priori de 

variáveis, com dados RGB. Classes 1 (–), 2 (–) e 3 (–). 

 
Fonte: elaborado pelo autor. 

Nota: embora os dados de um histograma sejam discretos, para melhor visualização, aqui estão 

representados por linhas contínuas. 

 

Os histogramas de cores das 70 amostras de vinhos do Vale do São Francisco usadas na 

modelagem de classificação em função dos seus produtores, com dados HSI após seleção a 

priori de variáveis são mostrados na Figura 5.8, onde é possível se observar uma sobreposição 

das classes, nas variáveis das componentes H e S. Nas variáveis da componente I, percebe-se 

uma separação das classes, semelhante ao que foi observado na componente R do sistema de 

cores RGB. 

Estas observações guardam concordância com o conhecimento de que a composição da 

matéria corante é função das técnicas enológicas empregadas pelos vitivinicultores, bem como 

da influência das condições de cultivo das videiras (MONAGAS; BARTOLOMÉ, 2009). Não 

se pode, entretanto, fazer referência a qual antocianina poderia causar as alterações de cores, 

uma vez que a técnica analítica utilizada não mede diretamente o comprimento de onda emitido, 

já que usa filtros de cores (FRASER; BANKS, 2013; GONZALES; WOODS, 2013; 

SOLOMON; BRECKON, 2013). 
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Figura 5.8 – Histogramas de cores das 70 amostras de vinhos do Vale do São Francisco usadas 

na modelagem de classificação em função dos seus produtores, após seleção a priori de 

variáveis, com dados HSI. Classes 1 (–), 2 (–) e 3 (–). 

 
Fonte: elaborado pelo autor. 

Nota: embora os dados de um histograma sejam discretos, para melhor visualização, aqui estão 

representados por linhas contínuas. 

 

 

5.2.1 Análise exploratória com PCA 

 

A análise exploratória com PCA foi realizada e os gráficos dos escores da primeira 

componente principal (PC1) versus os escores da segunda componente principal (PC2) são 

mostrados na Figura 5.9, calculados a partir dos histogramas de intensidades de cores RGB (a) 

e HSI (b), onde é possível notar tendências de agrupamentos entre as amostras, conforme as 

classes a que efetivamente pertencem.  

Conforme se observa na Figura 5.9 (a) a variância explicada da PC1 é de 51,4% e da 

PC2 17,3%. Esta figura mostra forte tendência de agrupamentos, com amostras da classe 3 

dominando a extensão negativa da PC1, mais intensamente na faixa entre -60.000 e -40.000, e 

as classes 1 e 2 se sobrepondo na faixa positiva, enquanto a PC2 parece melhor separar as 

amostras da classe 1, mais presente na região positiva, das amostras da classe 2 que dispõem 

melhor na região negativa.  
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Figura 5.9 – Gráfico de escores PC1 x PC2 de classificação de vinhos do Vale do São 

Francisco em função dos seus produtores, baseado no sistema de cores RGB (a) e HSI (b). 

Classes 1 (●), 2 (●) e 3 (●). 

 
Fonte: elaborados pelo autor. 

 

Tendências de agrupamentos são bem visíveis na Figura 5.9 (b), com as amostras da 

classe 1 mais agrupadas sobre a PC1, com escores acima de 20.000, e afastadas das outras duas 

classes que se mostram sobrepostas nesta componente principal. A PC2 parece mais útil como 

indicadora de separação entre as classes 2 e 3, enquanto as amostras da classe 2 têm escores 

maiores que -10.000, a maioria das amostras da classe 3 estão bem agrupadas com escores entre 

-25.000 e -10.000. Uma amostra da classe 2 se encontra afastada das demais amostras desta 

classe, estando muito próxima das amostras da classe 1, enquanto duas amostras da classe 1 

estão bem sobrepostas na classe 2, reforçando o que foi observado na análise dos histogramas. 

Outras cinco amostras da classe 3 se encontram mais afastadas do seu cluster, se posicionando 

no lado positivo da PC2 e entre as classes 1 e 2 na PC1 (com escores abaixo de 20.000). As 

variâncias explicadas da PC1 e da PC2 são iguais a 64,9% e 14,2%, respectivamente. 

 

5.2.2 Análise discriminante com SPA-LDA e com PLS-DA 

 

A Figura 5.10 e mostra os gráficos do custo de validação (G) em função do número de 

variáveis incluídas no modelo de classificação (a) e as variáveis selecionadas para inclusão no 

modelo SPA-LDA (b), usando os histogramas de intensidades de cores RGB. A análise da 

Figura 5.10 (a) mostra que o menor custo de validação é obtido com 12 variáveis e se percebe 

na Figura 5.10 (b) que 7 dessas variáveis pertencem à componente R, corroborando com o que 

foi observado quando da discussão acerca dos histogramas de cores RGB. Quanto às demais 

variáveis, 4 são intensidades de cores da componente G e apenas 1 é da componente B.  
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Figura 5.10 – Gráficos dos custos de validação (G) em função do número de variáveis (a) e 

das variáveis selecionadas pelo algoritmo SPA-LDA sobre os histogramas médios das 

amostras (b), usando dados RGB. 

 
Fonte: elaborados pelo autor. 

 

Na Figura 5.11 são mostrados os gráficos do custo de validação (G) em função do 

número de variáveis incluídas no modelo de classificação (a) e as variáveis selecionadas para 

inclusão no modelo SPA-LDA (b), usando os histogramas de intensidades de cores do sistema 

HSI.  

 

Figura 5.11 – Gráficos dos custos de validação (G) em função do número de variáveis (a) e 

das variáveis selecionadas pelo algoritmo SPA-LDA sobre os histogramas médios das 

amostras (b), usando dados HSI. 

 
Fonte: elaborados pelo autor. 

 

Mais parcimoniosa que a modelagem dos dados RGB, o menor custo de validação 

obtido com os dados HSI é obtido com 9 variáveis incluídas no modelo SPA-LDA, como se 

ver na Figura 5.11 (a), com 7 delas pertencentes à componente H, 1 pertencente à componente 

S e 1 pertencente à componente I, mostradas na Figura 5.11 (b). É possível inferir que o tom 

ou matiz de vermelho dos vinhos do VSF influencia fortemente na discriminação entre os 
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viticultores estudados nesta pesquisa, havendo também significativa diferença na saturação e 

no nos níveis de cinza deste matiz, indicando que dependendo do vitivinicultor que produza, o 

vinho poderá ser mais claro ou mais escuro, isto é, com diferentes intensidades de cinza, o que 

poderia ser provocado pelo nível da etapa de filtração adotada ou pela ausência dela. 

A Figura 5.12 mostra os gráficos dos escores das amostras nas funções discriminantes 

calculados com o SPA-LDA, usando os dados de cores RGB (a) e HSI (b), as cores dos 

quadrados indicam a classe verdadeira a que pertence cada amostra, sendo vermelho para as 

amostras da classe 1, verde para as amostras da classe 2 e azul para as amostras da classe 3. 

Percebe-se que duas DF foram calculadas para cada uma das modelagens (com os dados RGB 

e HSI), portanto, três linhas discriminantes são traçadas de modo a formar a fronteira entre as 

três classes. 

 

Figura 5.12 – DF SPA-LDA, com sistema de cores RGB, para classificação de vinhos do Vale 

do São Francisco em função dos seus produtores, baseado no sistema de cores RGB (a) e HSI 

(b). Classes 1 (), 2 () e 3 (). 

 
Fonte: elaborados pelo autor. 

 

Na Figura 5.12 (a), é possível observar que três amostras da classe 1 (vermelho) estão 

classificadas erradamente, duas falsamente pertencentes à classe 2 e uma falsamente 

pertencente à classe 3. Na mesma figura, percebe-se que duas amostras da classe 2 são 

falsamente classificadas como pertencentes à classe 3 e uma amostra pertencente à classe 3 é 

falsamente classificada como pertencente à classe 1. Também se percebe que duas amostras da 

classe 3 são falsamente classificadas como pertencentes à classe 2 e todas as demais estão 

corretamente classificadas. Com base nesta figura, é possível afirmar que, ao menos, 8 erros de 

classificação são cometidos pelo modelo SPA-LDA construído com os dados de cores RGB. A 

análise da Figura 5.12 (b) mostra que um número menor de erros de classificação é cometido 

pelo modelo SPA-LDA construído com os dados de cores HSI, com apenas 5 erros. Dois erros 
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de classificação são observados com amostras pertencentes à classe 1, sendo que uma delas foi 

falsamente classificada como sendo da classe 2 e outra falsamente classificada como 

pertencente à classe 3. 2 amostras da classe 2 e 1 amostra da classe 3 foram falsamente 

classificadas como pertencentes à classe 1. Estes resultados estão alinhados ao que se observou 

quando da análise dos histogramas, onde foi percebido que algumas amostras se afastavam das 

demais da sua classe. 

Na Tabela 5.2, é mostrada a matriz de confusão com os resultados dos modelos de 

classificação construídos com os algoritmos SPA-LDA, para a classificação de vinhos do Vale 

do São Francisco em função dos vitivinicultores e baseado em imagens digitais em sistemas de 

cores RGB e HSI. Esta tabela mostra também os resultados dos modelos de classificação 

obtidos com PLS-DA. 

 

Tabela 5.2 – Matriz de confusão dos modelos de classificação construídos com os algoritmos 

SPA-LDA e PLS-DA para a classificação de vinhos do Vale do São Francisco, em função dos 

vitivinicultores e baseados em imagens digitais, em sistemas de cores RGB e HSI. 

SPA-LDA 

  RGB HSI 

 
Validação 

cruzada 
Teste 

Validação 

cruzada 
Teste 

Classe assinalada 1 2 3 1 2 3 1 2 3 1 2 3 

Classe 

verdadeira 

1 12 2 - 6 - - 12 1 1 5 - - 

2 1 13 2 - 8 - 2 14 - - 8 - 

3 - 2 16 - - 8 1 - 17 - - 8 

Sensibilidade (%) 86 81 89 100 100 100 86 88 94 100 100 100 

Seletividade (%) 97 88 93 100 100 100 91 97 97 100 100 100 

TCC (%) 85,4 100 89,6 100 

PLS-DA 

  RGB HSI 

 
Validação 

cruzada 
Teste 

Validação 

cruzada 
Teste 

Classe assinalada 1 2 3 1 2 3 1 2 3 1 2 3 

Classe 

verdadeira 

1 11 2 1 6 - - 12 2 - 5 1 - 

2 2 14 - - 8 - 1 13 2 - 8 - 

3 3 3 12 1 - 7 1 3 14 - - 8 

Sensibilidade (%) 79 88 67 100 100 88 86 81 78 100 89 100 

Seletividade (%) 85 84 97 94 100 100 94 84 93 100 93 100 

TCC (%) 77,1 95,5 81,3 95,5 

Fonte: elaborada pelo autor. 

 

Na modelagem realizada com SPA-LDA, os dois sistemas de cores usados neste estudo, 

RGB e HSI, mostraram desenvolturas semelhantes, sendo que o modelo HSI cometeu 2 erros a 
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menos e foi mais parcimonioso com relação ao número de variáveis incluídas no modelo (9). 

Ao todo, sete erros de classificação foram observados quando da modelagem com os dados de 

cores RGB, contra 5 erros quando a modelagem ocorreu com dados HSI. Quando se compara 

os erros dos conjuntos de treinamento e de teste, as modelagens mostraram melhores respostas 

no conjunto de testes, em que os dois modelos obtiveram TCC de 100%, enquanto no conjunto 

de treinamento, a taxa de classificação correta foi de 85,4% e 89,6%, respectivamente para os 

dados RGB e HSI. 

Os modelos de classificação obtidos com PLS-DA indicaram a necessidade de 3 e 4 

variáveis latentes, respectivamente, para os dados RGB e HSI. As variâncias explicadas 

acumuladas foram de 79% para os dados RGB e 91% para os dados HSI. 

Os resultados mostrados na Tabela 5.2 indicam que os modelos PLS-DA foram menos 

robustos que os obtidos com SPA-LDA, mais notadamente aqueles obtidos para os conjuntos 

de treinamento, com total de 11 e 10 erros, respectivamente, com as modelagens nos dados 

RGB e HSI. Analisando-se apenas os conjuntos de teste, os resultados foram iguais entre si, 

para as modelagens com dados de cores RGB e HSI, com TCC igual a 95,5% e muito próximo 

ao desempenho obtido com SPA-LDA. A maior diferença entre os dois algoritmos se mostrou 

mais intensamente nos conjuntos de treinamento, onde as taxas de classificação corretas obtidas 

foram de 77,1% e 81,3%, respectivamente para as modelagens dos dados RGB e HSI, ainda 

que inferiores aqueles obtidos com SPA-LDA, podem servir como triagem preliminar, já que 

foram capazes de predizer corretamente a classificação das amostras dos conjuntos de teste. 

 

5.3 Classificação baseada nas variedades de uvas da composição dos vinhos varietais 

 

5.3.1 Cabernet Sauvignon x Touriga Nacional 

 

A Figura 5.13 mostra os histogramas de intensidades de cores, nos sistemas de cores 

RGB (a) e HSI (b), de 34 amostras de vinhos varietais de diferentes produtores do Vale do São 

Francisco, sendo 18 produzidos com uvas da variedade Cabernet Sauvignon (CS) e 16 

produzidos com uvas da variedade Touriga Nacional (TN). Os histogramas das amostras de 

vinhos CS estão indicados pelas linhas amarelas, enquanto os histogramas de TN estão 

indicados pelas linhas magentas, após seleção a priori de variáveis.  
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Figura 5.13 – Histogramas de intensidades de cores RGB das 34 amostras de vinhos do Vale 

do São Francisco usadas na modelagem de classificação em função das variedades das uvas, 

Cabernet Sauvignon (–) vs Touriga Nacional (–), com dados RGB (a) e HSI (b), após seleção 

a priori de variáveis. 

 
Fonte: elaborado pelo autor. 

Nota: embora os dados de um histograma sejam discretos, para melhor visualização, aqui estão 

representados por linhas contínuas. 

 

As primeiras variáveis da Figura 5.13 (a), referentes à componente R do sistema de 

cores RGB, sugerem boa separação das amostras em suas classes CS e TN, com as amostras de 

TN se mostrando com menores intensidades de vermelho (R) que as CS. Também se observa, 

na própria componente R, que respostas analíticas (distribuição de frequência) referentes às 

amostras da classe CS se mostram espalhadas, como se formassem clusters ou subclasses, que 

pode ser consequência da produção por diferentes vitivinicultores, como analisado no item 5.2 

deste trabalho. Os componentes G e B, ainda que possuam menor número de variáveis 

significativas, isto é, se apresentam com picos mais estreitos, também parecem úteis para 

discriminar as amostras em suas classes CS e TN. 

Os histogramas de intensidades de cores HSI, mostrados na Figura 5.13 (b), sugerem 

também boa separação entre as classes CS e TN. Nas variáveis referentes à componente 

intensidade (I), mais uma vez as amostras da classe TN se mostram posicionadas com menores 

intensidades, mais próximas do preto, do que as amostras da classe CS, que também se 

apresentam com maiores valores de saturação. De fato, os vinhos produzidos com uvas da 

variedade Touriga Nacional tendem a apresentar com coloração escura, como descreve 

Amarante (2015). 
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5.3.1.1 Análise exploratória com PCA 

 

Os gráficos dos escores da PCA são mostrados na Figura 5.14, PC1 versus PC3, para 

os dados RGB (a) e PC1 versus PC2, para os dados HSI (b). Como mostrado na Figura 5.14 

(a), na PCA realizada sobre os dados RGB, apesar de se mostrarem dispersas, as amostras estão 

visivelmente separadas em classes, com as amostras da classe CS formando por pelo menos 

dois clusters, como foi observado na análise dos histogramas, um deles dominando a parte 

negativa da PC1 (com escores abaixo de -20.000) e o outro na parte positiva da PC1 e próximos 

da Classe TN, mas com escores negativos na PC3 (abaixo de -10.000). As amostras da 

variedade TN também se encontram espalhadas, com escores acima de -15.000 na PC1 e de -

10.000 na PC3. A variância explicada acumulada nas três primeiras PC soma 82,6%, indicando 

boa modelagem.  

 

Figura 5.14 – Gráficos dos escores de PCA baseado nos dados de cores RGB (a) e HSI (b) 

para a classificação de vinhos do Vale do São Francisco em função das variedades das uvas 

Cabernet Sauvignon (●) vs Touriga Nacional (●). 

 
Fonte: elaborado pelo autor. 

 

Para os dados HSI, mostrados na Figura 5.14 (b), as amostras da Classe CS se mostram 

melhor agrupadas que as amostras da Classe TN, que tendem a formar duas subclasses que 

podem ser consequências da origem relativa aos vitivinicultores. Contudo, é perceptível a 

tendência de separação das classes, com as amostras da Classe CS mais posicionadas a esquerda 

da PC1, com escores abaixo de –10.000, e entre –20.000 e 8.000 na PC2, enquanto as amostras 

da Classe TN têm escores acima de –10.000 na PC1. De fato, os escores da PC1, com variância 

explicada igual a 67,2 %, já seriam suficientes para separar as duas classes. 
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5.3.1.2 Análise discriminante com SPA-LDA e PLS-DA 

 

Os gráficos das variáveis selecionadas pelo algoritmo SPA-LDA sobre os histogramas 

médios das amostras, são mostrados na Figura 5.15, os dados RGB (a) e HSI (b). Na Figura 

5.15 (a), percebe-se que apenas uma variável foi requerida para modelar os dados de cores 

RGB, ou seja, uma única intensidade da componente R foi usada pelo SPA-LDA na construção 

do modelo para discriminar as duas classes (CS e TN), como sugere a análise dos histogramas. 

Isto sugere que os tons de vermelho são suficientes para discriminar amostras de vinho entre as 

castas Cabernet Sauvignon e Touriga Nacional. A análise da Figura 5.15 (b) indica que, se 

usado o sistema de cores HSI, também uma única variável, da componente I, é requerida na 

construção do modelo. 

 

Figura 5.15 – Gráficos das variáveis selecionadas pelo algoritmo SPA-LDA sobre os 

histogramas médios das amostras: RGB (a) e HSI (b). 

 
Fonte: elaborados pelo autor. 

 

Os gráficos dos escores das funções discriminantes são mostrados na Figura 5.16 para 

as modelagens realizadas com SPA-LDA sobre os dados RGB (a) e HSI (b). As amostras da 

classe CS são representadas por quadrados amarelos e são classificadas corretamente acima da 

linha discriminante. As amostras da classe TN são representadas pelos quadrados magentas e 

sua classificação é indicada abaixo da linha discriminante. A análise da figura mostra que todas 

amostras foram corretamente classificadas, ou seja, a classificação obteve taxa de classificação 

correta de 100%, sugerindo que, tanto o sistema de cores RGB quanto o HSI são capazes de 

discriminar vinhos varietais produzidos com uvas Cabernet Sauvignon de vinhos produzidos 

com a casta Touriga Nacional. 
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Figura 5.16 – Gráficos das Funções Discriminantes (DF) da classificação de vinhos do Vale 

do São Francisco em função das variedades das uvas baseado nos sistemas de cores RGB (a) 

e HSI (b), para as variedades Cabernet Sauvignon () e Touriga Nacional (). 

 
Fonte: elaborados pelo autor. 

 

A análise discriminante com PLS-DA requereu uma variável latente quando usados os 

dados RGB e duas variáveis para modelar os dados de cores HSI.  

A Tabela 5.3 é a matriz de confusão dos modelos construídos com o algoritmo PLS-

DA para a classificação de 34 amostras de vinhos varietais de diferentes produtores do Vale do 

São Francisco, produzidos com as variedades Cabernet Sauvignon (CS) e Touriga Nacional 

(TN). Esta tabela mostra que, foi possível classificar corretamente todas as amostras de vinhos 

varietais das variedades Cabernet Sauvignon e Touriga Nacional, isto é, com taxa de 

classificação correta igual a 100%, baseando-se em histogramas de cores dos sistemas RGB ou 

HSI e PLS-DA. 

 

Tabela 5.3 – Matriz de confusão do modelo de classificação de vinhos do Vale do São 

Francisco em função das variedades de uvas Cabernet Sauvignon e Touriga Nacional, baseado 

em imagens digitais em sistemas de cores RGB e HSI e construído com o algoritmo PLS-DA. 

  RGB HSI 

 
Validação 

cruzada 
Teste 

Validação 

cruzada 
Teste 

Classe assinalada CS TN CS TN CS TN CS TN 

Classe 

verdadeira 

CS 12 - 6 - 12 - 6 - 

TN - 11 - 5 - 11 - 5 

Sensibilidade (%) 100 100 100 100 100 100 100 100 

Seletividade (%) 100 100 100 100 100 100 100 100 

TCC (%) 100 100 100 100 

Fonte: elaborada pelo autor. 

 

Os resultados obtidos com os algoritmos SPA-LDA e PLS-DA para a classificação de 

vinhos do VSF em função das uvas CS e TN foram idênticos. 
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1.3.2 Syrah x Touriga Nacional 

 

Na Figura 5.17, são mostrados os histogramas de intensidades de cores das 30 amostras 

de vinhos varietais de diferentes produtores do Vale do São Francisco, sendo 14 produzidos 

com uvas da variedade Syrah (Sy) e 16 produzidos com uvas da variedade Touriga Nacional 

(TN), com dados de cores RGB (a) e HSI (b) após seleção a priori de variáveis com respostas 

nulas. Os histogramas das amostras da classe Sy estão indicadas pelas linhas ciano e as da classe 

TN pelas linhas magentas. Nesta figura, observa-se boa separação entre as duas classes de 

amostras, em qualquer das componentes de cores dos sistemas RGB e HSI. Provavelmente, 

uma ou duas variáveis, em cada um dos sistemas de cores, serão suficientes para discriminar as 

duas classes de amostras.  

 

Figura 5.17 – Histogramas de cores das 30 amostras de vinhos do Vale do São Francisco 

usadas na modelagem de classificação em função das variedades das uvas Syrah (–) vs Touriga 

Nacional (–), baseado nos sistemas de cores RGB (a) e HSI (b), após seleção a priori de 

variáveis. 

 
Fonte: elaborados pelo autor. 

Nota: embora os dados de um histograma sejam discretos, para melhor visualização, aqui estão 

representados por linhas contínuas. 

 

1.3.2.1 Análise exploratória com PCA 

 

A Figura 5.18 mostra os gráficos de escores das PCA realizadas, independente e 

respectivamente, com os dados RGB (a) e HSI (b), nas quais é possível visualizar perfeita 

separação entra as amostras da casta Syrah daquelas produzidas com a casta Cabernet 

Sauvignon. Na Figura 5.18 (a), vê-se que as amostras da Classe Sy estão posicionadas com 

escores inferiores a -7.000, na PC1, enquanto as amostras da Classe TN apresentam escores 
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superiores a -5.000. Logo, é possível inferir que uma única PC é suficiente para sugerir uma 

boa discricionariedade das duas classes. Já na Figura 5.18 (b), observa-se que as amostras da 

Classe Sy estão bem agrupadas e posicionadas na PC1, com escores entre -60.000 e -40.000, 

enquanto as amostras da Classe TN apresentam escores acima de -20.000. Isto é, com os dados 

HSI também é possível inferir que uma única PC é suficiente para sugerir uma boa 

discricionariedade das duas classes. As variâncias explicadas das duas primeiras PC são, 

respectivamente, 70,1% e 18,5%. 

 

Figura 5.18 – Gráfico de escores PC1 x PC2 da classificação de vinhos do Vale do São 

Francisco em função das variedades das uvas Syrah (●) e Touriga Nacional (●), baseado no 

sistema de cores RGB (a) e HSI (b). 

 
Fonte: elaborados pelo autor. 

 

1.3.2.2 Análises discriminantes com SPA-LDA e PLS-DA 

 

Conforme pode ser visto na Figura 5.19 a modelagem com SPA-LDA indicou que, para 

discriminar as amostrar entre as classes Syrah e Touriga Nacional, é necessária única variável 

igualmente para os modelos construídos com os dados RGB (a) e HSI (b). O número de 

variáveis incluídas para esta modelagem coincidiu com o que foi utilizado na discriminação das 

amostras de Cabernet Sauvignon e Touriga Nacional, isto é, o SPA-LDA necessitou de uma 

única variável para os dados RGB, da componente G, e outra para os dados HSI, da componente 

I.  
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Figura 5.19 – Gráficos das variáveis selecionadas pelo algoritmo SPA-LDA sobre os 

histogramas médios das amostras, dos dados RGB (a) e HSI (b). 

 
Fonte: elaborados pelo autor. 

 

Os gráficos dos escores das funções discriminantes são mostrados na Figura 5.20, para 

as modelagens realizadas com SPA-LDA sobre os dados RGB (a) e HSI (b). As amostras das 

classes Sy e TN são representadas, respectivamente, por quadrados cianos e magentas, as 

amostras da classe Sy são corretamente classificadas acima da linha discriminante e as da classe 

TN são corretamente classificadas abaixo. 

A análise da figura indica que todas amostras foram corretamente classificadas, isto é,  

a TCC obtida com pelo SPA-LDA com os dados RGB e HSI foram iguais a 100%, indicando 

que, tanto o sistema de cores RGB quanto o HSI oferecem dados suficientes para classificar 

vinhos varietais entre Syrah e Touriga Nacional. 

 

Figura 5.20 – Gráfico das Funções Discriminantes (DF) da classificação de vinhos do Vale 

do São Francisco em função das variedades das uvas, para as variedades Syrah () e Touriga 

Nacional (), baseado nos sistemas de cores RGB (a) e HSI (b). 

 
Fonte: elaborados pelo autor. 
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A matriz de confusão dos modelos de classificação construídos com o algoritmo PLS-

DA para a classificação de 30 amostras de vinhos varietais de diferentes produtores do Vale do 

São Francisco, produzidos com as castas Syrah (Sy) e Touriga Nacional (TN) é mostrada na 

Tabela 5.4. Como se pode observar nesta tabela, tanto com os dados RGB quando os dados 

HSI, os modelos construídos com PLS-DA foram capazes de classificar sem cometer nenhum 

erro de classificação, isto é, com TCC igual a 100%, as 30 amostras de vinhos varietais das 

castas Syrah e Touriga Nacional.  

 

Tabela 5.4 – Matriz de confusão do modelo de classificação de vinhos do Vale do São 

Francisco em função das variedades de uvas Syrah e Touriga Nacional, baseado em 

imagens digitais em sistemas de cores RGB e HSI e construído com o algoritmo PLS-DA. 

  RGB HSI 

 
Validação 

cruzada 
Teste 

Validação 

cruzada 
Teste 

Classe Assinalada Sy TN Sy TN Sy TN Sy TN 

Classe 

verdadeira 

Sy 9 - 5 - 9 - 5 - 

TN - 11 - 5 - 11 - 5 

Sensibilidade (%) 100 100 100 100 100 100 100 100 

Seletividade (%) 100 100 100 100 100 100 100 100 

TCC (%) 100 100 100 100 

Fonte: elaborada pelo autor. 

 

A diferença entre as duas técnicas quimiométricas foi o número de variáveis utilizadas: 

enquanto os modelos construídos com SPA-LDA utilizaram uma única variável, os modelos 

construídos com PLS-DA fizeram uso de duas variáveis latentes. 

 

5.3.4 Cabernet Sauvignon versus Syrah 

 

Na Figura 5.21, são mostrados os histogramas de 32 amostras de vinhos varietais do 

Vale do São Francisco, 18 da variedade Cabernet Sauvignon e 14 da variedade Syrah, nos 

sistemas de cores RGB (a) e HSI (b), após realização de seleção a priori de variáveis e 

centragem na média, em que as amostras da classe CS são mostradas pelas linhas amarelas e as 

da classe Sy pelas linhas cianas. Nos gráficos dos dois sistemas de cores, parece haver grande 

sobreposição das classes, com umas poucas amostras da Classe CS separando-se das demais, 

especialmente nas componentes de cores R, B e S. 
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Figura 5.21 – Histogramas de cores das 32 amostras de vinhos do Vale do São Francisco 

usadas na modelagem de classificação em função das variedades das uvas Cabernet Sauvignon 

(–) vs Syrah (–), baseado no sistema de cores RGB (a) e HSI (b), após seleção a priori de 

variáveis. 

 
Fonte: elaborados pelo autor. 

Nota: embora os dados de um histograma sejam discretos, para melhor visualização, aqui estão 

representados por linhas contínuas. 

 

Diferentemente do que se observou nas comparações anteriormente realizadas, em que 

se comparou vinhos varietais aos pares, entre as variedades Cabernet Sauvignon versus Touriga 

Nacional e Syrah versus Touriga Nacional, e com histogramas das classes apresentando boa 

separação, quando se compara as amostras de Syrah (Sy) com as Cabernet Sauvignon (CS), 

parece não haver separação dos histogramas. Nos dados RGB, mostrados na Figura 5.21 (a), 

parece haver um pequeno afastamento das classes nas variáveis das componentes G e B, mas 

apenas algumas amostras da classe CS se afastam para a esquerda, mantendo-se outras 

sobrepostas à classe Sy. 

 

5.3.4.1 Análise exploratória com PCA 

 

Alinhado ao que se observa nos histogramas, os escores de PCA mostrados na Figura 

5.22 para os dados de cores RGB (a) e HSI (b), não indicam tendências de separação das duas 

classes, exceto por umas poucas amostras da Classe CS que se posicionam no lado mais 

negativo da PC1, nos dois modelos de cores (seis nos dados RGB e oito com os dados HSI). 

Uma ou outra amostra parecem mais isoladas, contudo, no geral, há sobreposição das amostras 

das Classes Sy e CS. 
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Figura 5.22 – Gráfico de escores de PCA (PC1 x PC2) da classificação de vinhos do Vale do 

São Francisco em função das variedades das uvas Cabernet Sauvignon (●) vs Syrah (●), 

baseado no sistema de cores RGB (a) e HSI (b). 

 
Fonte: elaborados pelo autor. 

 

5.3.4.2 Análise discriminante com SPA-LDA e PLS-DA 

 

Na modelagem realizada com SPA-LDA, o menor custo de validação foi obtido quando 

5 variáveis foram inseridas no modelo com os dados RGB de cores. Quando os dados HSI 

foram usados na modelagem, o menor custo de validação foi obtido com 7 variáveis. Na Figura 

5.23, são mostradas quais variáveis foram incluídas nos modelos SPA-LDA, sobre os 

histogramas dos sistemas RGB (a) e HSI (b). 

 

Figura 5.23 – Variáveis selecionadas pelo algoritmo SPA-LDA sobre os histogramas médios 

das amostras dos sistemas RGB (a) e HSI (b). 

 
Fonte: elaborados pelo autor. 

 

Na Figura 5.23 (a), observa-se que foram selecionadas 2 variáveis da componente de 

cores R, 1 da componente G e 2 da componente B, enquanto a Figura 5.23 (b) mostra que 5 
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variáveis da componente H e 2 variáveis da componente S foram selecionadas, sugerindo que 

a diferenças entre os vinhos das duas variedades devem ser nos seus matizes de cor e na sua 

saturação, sendo que os vinhos das duas classes não apresentam diferenças de brilho ou estas 

diferenças não são úteis para discriminar as duas classes. 

Os gráficos dos escores das funções discriminantes são mostrados na Figura 5.24, para 

as modelagens realizadas com SPA-LDA sobre os dados RGB (a) e HSI (b), amostras das 

classes CS e Sy são representadas por quadrados, respectivamente, amarelos e cianos. Na 

Figura 5.24 (a), a linha discriminante é a fronteira entre as duas Classes, com CS 

verdadeiramente classificada abaixo e Sy verdadeiramente classificada acima dela. 

Surpreendentemente, apenas 6 amostras foram falsamente classificadas (2 da Classe Sy e 4 da 

Classe CS), com um total de acertos correspondente a 81,3%. A análise da Figura 5.24 (b), na 

qual as amostras da Classe CS estão verdadeiramente posicionadas acima da linha 

discriminante, com as Sy abaixo, indica que o modelo traçado com os histogramas de cores HSI 

oferece a mesma taxa de acertos, com 6 amostras falsamente classificadas, aqui 3 erros de 

classificação ocorreram em cada uma das classes. 

 

Figura 5.24 – Gráfico das Funções Discriminantes (DF) da classificação de vinhos do Vale do 

São Francisco em função das variedades das uvas, para as variedades Cabernet Sauvignon () 

e Syrah (), baseado nos sistemas de cores RGB (a) e HSI (b). 

 
Fonte: elaborados pelo autor. 

 

A matriz de confusão dos modelos de classificação construídos com os algoritmos SPA-

LDA e PLS-DA para a classificação de 32 amostras de vinhos varietais de diferentes produtores 

do Vale do São Francisco, produzidos com as variedades Cabernet Sauvignon e Syrah é 

mostrada na Tabela 5.5. Como se pode observar nesta tabela, tanto com os dados RGB quanto 

os HSI, os modelos construídos com SPA-LDA foram capazes de classificar com poucos erros 

de classificação, com TCC iguais 85,7% e 72,7%, respectivamente, para os conjuntos de 
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treinamento e de testes, tanto para os dados RGB quanto os HSI, com sensibilidades e 

especificidades que alcançaram até 89%, dependendo da classe escolhida. 

O uso do algoritmo PLS-DA indicou melhor modelagem com 1 e 6 variáveis latentes, 

respectivamente, para os dados de cores RGB e HSI. Embora os resultados obtidos nos 

conjuntos de testes tenham sido iguais ou superiores aos obtidos com SPA-LDA, bons 

resultados não foram obtidos no conjunto de treinamento, cujas taxas de classificação correta 

ficaram abaixo de 60%. 

 

Tabela 5.5 – Matriz de confusão dos modelos de classificação de vinhos do Vale do São Francisco em 

função das variedades de uvas Cabernet Sauvignon e Syrah, baseados em imagens digitais em sistemas 

de cores RGB e HSI. 

SPA-LDA 

  RGB HSI 

 
Validação 

cruzada 
Teste 

Validação 

cruzada 
Teste 

Classe assinalada CS Sy CS Sy CS Sy CS Sy 

Classe 

verdadeira 

CS 10 2 4 2 10 2 5 1 

Sy 1 8 1 4 1 8 2 3 

Sensibilidade (%) 83 89 67 80 83 89 83 60 

Seletividade (%) 89 83 80 67 89 83 60 83 

TCC (%) 85,7 72,7 85,7 72,7 

PLS-DA 

  RGB HSI 

 
Validação 

cruzada 
Teste 

Validação 

cruzada 
Teste 

Classe assinalada CS Sy CS Sy CS Sy CS Sy 

Classe 

verdadeira 

CS 5 7 4 2 6 6 5 1 

Sy 2 7 1 4 5 4 1 4 

Sensibilidade (%) 42 78 67 80 50 44 83 80 

Seletividade (%) 78 42 80 67 44 50 80 83 

TCC (%) 57,1 72,7 47,6 81,8 

Fonte: elaborada pelo autor. 

 

Os resultados de classificação inferiores obtidos para a discriminação destas duas 

classes, comparados aos resultados anteriores, podem se dar em decorrência da grande 

quantidade de matéria corante que é comum às uvas das variedades Cabernet Sauvignon e Syrah 

(AMARANTE, 2015) ou ser consequência dos cortes existentes nos vinhos. Sobre a segunda 

possibilidade, embora se trate de vinhos com indicações varietais nos rótulos, não há 

informações sobre a composição total das amostras. Sabendo que a legislação brasileira admite 

que um vinho fino receba no rótulo a designação de uma variedade de uvas Vitis vinifera se 

contiver, ao menos, 75% em volume daquela espécie e que não precisa indicar o restante da 
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composição (BRASIL, 1990) e, ainda, que as duas variedades de uvas tintas Vitis vinifera mais 

plantadas no VSF são Syrah e Cabernet Sauvignon (AMARANTE, 2015; PEREIRA; 

VANDERLINDE; LIMA, 2011), poderia se supor que uma variedade estaria complementando, 

em até 25% em volume, a composição da outra e vice-versa. Caso se confirme a segunda 

possibilidade, com a presença de cortes de Syrah nos varietais Cabernet Sauvignon e desta no 

varietais de Syrah, seria provável uma grande proximidade de cores entre as duas classes e uma 

modelagem com número muito maior de amostras seria demandada. De qualquer modo, uma 

modelagem mais completa, com um maior número de amostras para cada uma das classes, 

poderia indicar melhores resultados. 
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6 CONCLUSÕES 

 

Um instrumento analítico, de baixo custo de montagem e de manutenção, baseado em 

imagens digitais e com potencial para ser levado à indústria, foi construído e seu pedido de 

patente foi depositado junto ao Instituto Nacional de Propriedade Industrial (INPI), sob o nome 

de Dispositivo para Medições Colorimétricas baseado em imagens digitais (DMCdib) (ANEXO 

D). O instrumento demonstrou capacidade satisfatória para resolver problemas de classificação 

de vinhos quando usado em bancada no laboratório. 

Vinhos do Vale do São Francisco e de outras regiões do mundo foram analisados, com 

uso do DMCdib. Estudos de classificação foram realizados com ferramentas quimiométricas, 

através dos quais um estudo exploratório empregando a análise de componentes principais 

(PCA) sugeriu a existência de padrões que possibilitam diferenciar os vinhos do Vale do São 

Francisco (VSF) daqueles provenientes de outras regiões e outros padrões que diferenciam os 

vinhos do VSF em relação aos vitivinicultores e das variedades de uvas usadas na produção de 

vinhos varietais. 

Modelos de classificação de vinhos em função de sua origem geográfica, dos 

vitivinicultores e das variedades de uvas usadas na produção de vinhos varietais foram 

construídos usando Análise Discriminante Linear com seleção de variáveis usando o Algoritmo 

das Projeções Parciais (SPA-LDA) e Análise Discriminante pelos Mínimos Quadrados Parciais 

(PLS-DA), usando dados dos modelos de cores RGB e HSI. 

Na abordagem de classificação em função da origem geográfica dos vinhos, o modelo 

SPA-LDA apresentou taxas de classificação corretas (TCC) nos conjuntos de treinamento e de 

teste, respectivamente, de 85,5% e 80,7%, com os dados RGB e de 91,3% e 93,6%, com os 

dados HSI. O modelo construído com PLS-DA apresentou TCC nos conjuntos de treinamento 

e de teste, respectivamente, de 87,0% e 61,3%, com os dados RGB e de 85,6% e 83,9%, com 

os dados RGB.  Os melhores resultados foram obtidos com os modelos construídos usando o 

algoritmo SPA-LDA e dados do sistema de cores HSI. 

Na abordagem de classificação em função dos vitivinicultores, os melhores resultados 

foram obtidos com os modelos construídos usando o algoritmo SPA-LDA e dados do sistema 

de cores HSI. O modelo SPA-LDA apresentou taxas de classificação corretas (TCC) nos 

conjuntos de treinamento e de teste, respectivamente, de 85,4% e 100%, com os dados RGB e 

de 89,9% e 100%, com os dados HSI. O modelo construído com PLS-DA apresentou TCC nos 

conjuntos de treinamento e de teste, respectivamente, de 77,0% e 95,5%, com os dados RGB e 

de 85,3% e 95,5%, com os dados HSI. 



93 

 

Na abordagem de classificação considerando-se as variedades de uvas presentes na 

composição dos vinhos varietais, comparadas aos pares, os modelos construídos com SPA-

LDA e PLS-DA obtiveram resultados idênticos na discriminação entre os pares Cabernet 

Sauvignon versus Touriga Nacional e Syrah versus Touriga Nacional, com TCC de 100% nos 

conjuntos de treinamento e de teste. Na comparação Cabernet Sauvignon versus Syrah, 

divergências foram observadas nos resultados produzidos pelos dois algoritmos usados, sendo 

que os modelos construídos com SPA-LDA alcançaram iguais resultados com os dados RGB e 

HSI, com TCC de 85,7% e 72,7%, respectivamente, para os conjuntos de treinamento e de teste, 

enquanto os modelos obtidos com PLS-DA alcançaram TCC de modestos 57,1% no 

treinamento e 72,7% no teste, com os dados RGB e 47,6% no treinamento e 81,8% no teste, 

com os dados HSI. 

Os resultados demonstram a viabilidade do uso imagens digitais associadas a 

ferramentas quimiométricas para classificação de vinhos em função de sua origem geográfica, 

vitivinicultor e composição varietal, de forma simples, rápida, com baixo consumo de amostras, 

sem usar qualquer pré-tratamento, reagentes químicos ou diluição das amostras e com baixa 

geração de resíduos.    
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ANEXO A – Informações indicadas nos rótulos das amostras de vinhos usadas na 

abordagem de classificação em função da origem geográfica. 

 

Número 

Informações indicadas nos rótulos das amostras 

Classe Nome Variedades Ano 

Teor 

alcóolico 

(v/v, %) 

Produtor Origem 

1 VSF 
Bianchetti 

Ogânico 
Ba 2012 12 

Adega 

Bianchetti 

Tedesco 

VSF 

2 VSF 
Bianchetti 

Ogânico 
Ba 2012 12 

Adega 

Bianchetti 

Tedesco 

VSF 

3 VSF 
Bianchetti 

Orgânico 
Ba 2015 12 

Adega 

Bianchetti 

Tedesco 

VSF 

4 VSF Bianchetti CS 2011 11 

Adega 

Bianchetti 

Tedesco 

VSF 

5 VSF Bianchetti Te 2014 12 

Adega 

Bianchetti 

Tedesco 

VSF 

6 VSF 
Bianchetti 

Ogânico 
Te 2012 12 

Adega 

Bianchetti 

Tedesco 

VSF 

7 VSF 
Château 

Duccos 
PV 2011 13 

Château 

Duccos 
VSF 

8 VSF 
Château 

Duccos 
PV 2012 13 

Château 

Duccos 
VSF 

9 VSF 
Vinho 

Experimental 
AB 2014 N. I. 

EMBRAPA 

CPATSA 
VSF 

10 VSF 
Vinho 

Experimental 
AB 2015 N. I. 

EMBRAPA 

CPATSA 
VSF 

11 VSF 
Vinho 

Experimental 
RC 2014 N. I. 

EMBRAPA 

CPATSA 
VSF 

12 VSF 
Vinho 

Experimental  
Sy 2015 N. I. 

EMBRAPA 

CPATSA 
VSF 

13 VSF 
Vinho 

Experimental  
Sy 2014 N. I. 

EMBRAPA 

CPATSA 
VSF 

14 VSF 
Vinho 

Experimental  
Sy 2014 N. I. 

EMBRAPA 

CPATSA 
VSF 

15 VSF 
Vinho 

Experimental  
TN 2014 N. I. 

EMBRAPA 

CPATSA 
VSF 

16 VSF 
Vinho 

Experimental 
TN 2015 N. I. 

EMBRAPA 

CPATSA 
VSF 

17 VSF 
Vinho 

Experimental 
TN 2015 N. I. 

EMBRAPA 

CPATSA 
VSF 

18 VSF 
Vinho 

Experimental 
TN 2014 N. I. 

EMBRAPA 

CPATSA 
VSF 

19 VSF 
Vinho 

Experimental 
TN 2014 N. I. 

IF 

SERTÃO-

PE 

VSF 
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20 VSF 
Vinho 

Experimental 
TN 2014 N. I. 

IF 

SERTÃO-

PE 

VSF 

21 VSF 
Vinho 

Experimental 
TN 2014 N. I. 

IF 

SERTÃO-

PE 

VSF 

22 VSF 
Vinho 

Experimental  
TN 2014 N. I. 

IF 

SERTÃO-

PE 

VSF 

23 VSF 
Vinho 

Experimental 
TN 2014 N. I. 

IF 

SERTÃO-

PE 

VSF 

24 VSF 
Vinho 

Experimental 
TN 2014 N. I. 

IF 

SERTÃO-

PE 

VSF 

25 VSF 
Vinho 

Experimental 
TN 2014 N. I. 

IF 

SERTÃO-

PE 

VSF 

26 VSF 
Vinho 

Experimental  
TN 2014 N. I. 

IF 

SERTÃO-

PE 

VSF 

27 VSF 
Vinho 

Experimental 
TN 2014 N. I. 

IF 

SERTÃO-

PE 

VSF 

28 VSF 
Vinho 

Experimental  
TN 2014 N. I. 

IF 

SERTÃO-

PE 

VSF 

29 VSF Almadén Sy 2011 13 Miolo VSF 

30 VSF Almadén Sy 2013 13 Miolo VSF 

31 VSF Rio Sol CS 2014 13 
Vinícola 

Santa Maria 
VSF 

32 VSF Rio Sol CS 2012 13 
Vinícola 

Santa Maria 
VSF 

33 VSF Rio Sol Sy 2014 13 
Vinícola 

Santa Maria 
VSF 

34 VSF 
Paralelo 8 

Premium 

CS/ Sy/ AB/ 

TN/Ar 
2011 13,5 

Vinícola 

Santa Maria 
VSF 

35 VSF Rio Sol Sy 2014 13 
Vinícola 

Santa Maria 
VSF 

36 VSF 
Botticelli 

Varietais 
CS 2015 12 

Vinícola do 

Vale do São 

Francisco 

VSF 

37 VSF 
Botticelli 

Varietais 
CS 2013 12 

Vinícola do 

Vale do São 

Francisco 

VSF 

38 VSF 
Botticelli 

Coleção 
OS 2014 12 

Vinícola do 

Vale do São 

Francisco 

VSF 

39 VSF 
Botticelli 

Coleção 
RC 2011 12 

Vinícola do 

Vale do São 

Francisco 

VSF 
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40 VSF 
Botticelli 

Coleção 
RC 2012 12 

Vinícola do 

Vale do São 

Francisco 

VSF 

41 VSF 
Botticelli 

Coleção 
RC 2012 12 

Vinícola do 

Vale do São 

Francisco 

VSF 

42 VSF 
Botticelli 

Coleção 
Ta 2012 12 

Vinícola do 

Vale do São 

Francisco 

VSF 

43 VSF Garziera CS 2014 12 

Vinícola 

Lagoa 

Grande 

VSF 

44 VSF Garziera PS 2014 12 

Vinícola 

Lagoa 

Grande 

VSF 

45 VSF Rio Sol CS 2014 13 
Vinícola 

Santa Maria 
VSF 

46 VSF Rio Sol CS 2014 13 
Vinícola 

Santa Maria 
VSF 

47 VSF Rio Sol CS 2014 13 
Vinícola 

Santa Maria 
VSF 

48 VSF Rio Sol CS 2014 13 
Vinícola 

Santa Maria 
VSF 

49 VSF Rio Sol CS 2014 13 
Vinícola 

Santa Maria 
VSF 

50 VSF Rio Sol CS 2014 13 
Vinícola 

Santa Maria 
VSF 

51 VSF 
Rio Sol 

Reserva 
CS/ Sy/ AB 2011 13,5 

Vinícola 

Santa Maria 
VSF 

52 VSF 
Rio Sol 

Reserva 
CS/ Sy / AB 2013 13,5 

Vinícola 

Santa Maria 
VSF 

53 VSF Rio Sol CS/ Sy 2014 13 
Vinícola 

Santa Maria 
VSF 

54 VSF Rio Sol CS/ Sy 2014 13 
Vinícola 

Santa Maria 
VSF 

55 VSF Rio Sol CS/ Sy 2014 13 
Vinícola 

Santa Maria 
VSF 

56 VSF Rio Sol CS/ Sy 2014 13 
Vinícola 

Santa Maria 
VSF 

57 VSF Rio Sol CS/ Sy 2014 13 
Vinícola 

Santa Maria 
VSF 

58 VSF Rio Sol CS/ Sy 2014 13 
Vinícola 

Santa Maria 
VSF 

59 VSF Rio Sol CS/ Sy 2014 13 
Vinícola 

Santa Maria 
VSF 

60 VSF Rio Sol Sy 2014 13 
Vinícola 

Santa Maria 
VSF 

61 VSF Rio Sol Sy 2014 13 
Vinícola 

Santa Maria 
VSF 

62 VSF Rio Sol Sy 2014 13 
Vinícola 

Santa Maria 
VSF 

63 VSF Rio Sol Sy 2014 13 
Vinícola 

Santa Maria 
VSF 
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64 VSF Rio Sol Sy 2014 13 
Vinícola 

Santa Maria 
VSF 

65 VSF 

Rio Sol 

Winemakers 

Selection 

TN 2009 13 
Vinícola 

Santa Maria 
VSF 

66 Mundo Aurora Varietal CS 2015 12 

Companhia 

Vinícola 

Aurora  

Serra 

Gaúcha/RS 

67 Mundo 
Dom Matias 

Reserva 
CS 2014 14 

Viña 

Cousiño 

Macul 

Valle del 

Maipo/Chile 

68 Mundo 
Viñas Del Mar 

Stilus 
CS 2014 13 

Viña La 

Rosa 

Valle do 

Cachapoal/ Cl 

69 Mundo 
Santa Helena 

Reservado 
CS 2013 13,5 

Viña San 

Pedro 

Tarapacá 

Valle Central – 

Cl 

70 Mundo Root 1 CS 2013 13,5 
Viña 

Ventisquero 

Valle de 

Colchagua – Cl 

71 Mundo Solar del Paso CS 2015 12 

Vinícola 

Aurora S. 

A. 

Canelones/ 

Uruguai 

72 Mundo 

Classic Salton 

Reserva 

Especial 

CS 2015 13 
Vinícola 

Salton 

Bento 

Gonçalves/RS 

73 Mundo Lunar CS N. I. 12 

Vinícola 

Serra 

Gaúcha/RS 

São Marcos/RS 

74 Mundo Altue Amucar CS 2015 12,5 

Vitivinícola 

Cremaschi 

Barriga 

Chile 

75 Mundo 
Concha e Toro 

Reservado 
CS 2015 12,5 

Viña 

Concha e 

Toro 

Valle Central – 

Cl 

76 Mundo 
Dehesas Viejas 

– Roble 
CS 2013 13,5 

Pagos del 

Rey 

Ribeira del 

Duero – Es 

77 Mundo 
Club des 

Someliers 
CS 2014 12 Miolo 

Vale dos 

Vinhedos/RS 

78 Mundo 
Don Matias 

Reserva 
Sy 2014 14 

Causiño-

Macul  

Vale do Maipo 

– Cl 

79 Mundo Miolo Seleção CS/ Me 2014 12,5 
Miolo Wine 

Group 
Campanha/RS 

80 Mundo Almadén Me 2016 12 
Miolo Wine 

Group 
Campanha/RS 

81 Mundo Almadén Ta 2015 12 
Miolo Wine 

Group 
Campanha/RS 

82 Mundo Almadén CS 2015 12 Miolo Campanha/RS 

83 Mundo 
Château 

Rougier 
CS/ Me/ CF 2015 13 

Les 

Vignobles 

Lobre 

Bordeaux/Fr 

84 Mundo Toro Loco Te 2015 12,5 
BVC 

Bodegas 

Utiel-

Requena/Espan

ha 

85 Mundo 
Don Matias 

Reserva 
CS 2014 14 

Causiño-

Macul  

Vale do Maipo 

– Cl 
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86 Mundo Toro Loco Te 2015 12,5 
BVC 

Bodegas 

Utiel-

Requena/Espan

ha 

87 Mundo 
Canepa 

Novísimo 
CS 2015 12,5 

Viña 

Canepa 

Valle Central – 

Cl 

88 Mundo Toro Loco Te 2015 12,5 
BVC 

Bodegas 

Utiel-

Requena/Espan

ha 

89 Mundo Toro Loco Te 2015 12,5 
BVC 

Bodegas 

Utiel-

Requena/Espan

ha 

90 Mundo Toro Loco Te 2015 12,5 
BVC 

Bodegas 

Utiel-Requena/ 

Espanha 

91 Mundo 
Canepa 

Novísimo 
CS 2015 12,5 

Viña 

Canepa 

Valle Central – 

Cl 

92 Mundo Terralis CS/ Me 2016 12 Premier 
Mendoza/ 

Argentina 

93 Mundo Terralis CS/ Me 2016 12 Premier 
Mendoza/ 

Argentina 

94 Mundo Terralis CS/ Me 2016 12 Premier 
Mendoza/ 

Argentina 

95 Mundo Terralis CS/ Me 2016 12 Premier 
Mendoza/ 

Argentina 

96 Mundo 
Vinhateiros do 

Vale 
Me 2014 12,5 

Vinícola 

Aurora 

Vale dos 

Vinhedos/RS 

97 Mundo Porca de Murça TN/ TR/ TB 2013 13 

Real 

Companhia 

Velha 

Douro/ 

Portugal 

98 Mundo 
Trapiche 

Vineyards 
Ma 2015 13 

Bodegas 

Trapiche 

Mendoza/ 

Argentina 

99 Mundo 
Fleur du Cup – 

Unfiltred 
CS 2012 14 

Die 

Bergkelder 

Stellenbosch/ 

África do Sul 

100 Mundo Manto Blanco Ca 2015 13 

Viña Luis 

Felipe 

Edwards 

Valle Central – 

Cl 

Fonte: produzida pelo autor. 

Legendas: AB = Alicante Bouchet, Ar = Aragonez, Ba = Barbera, Ca = Carmenére, CF = 

Cabernet Franc, CS = Cabernet Sauvignon, Ma = Malbec, Me = Merlot, PS = Petit Syrah, PV 

= Petit Verdot, RB = Rubi Cabernet, Sy = Syrah, Ta = Tanat, TB = Tinta Barroca, Te = 

Tempanillo, TN = Touriga Nacional, TR = Tinta Roriz, N.I. = teor alcóolico não informado. 
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ANEXO B – Informações indicadas nos rótulos das amostras de vinhos usadas na 

abordagem de classificação em função dos vitivinicultores. 

 

Número 

Informações indicadas nos rótulos das amostras 

Classe Nome Variedades Ano 

Teor 

alcóolico 

(v/v, %) 

Produtor Origem 

1  1 
Vinho 

Experimental  
AB 2014 N.I. 

EMBRAPA 

CPATSA 
VSF 

2  1 
Vinho 

Experimental  
AB 2015 N.I. 

EMBRAPA 

CPATSA 
VSF 

3  1 
Vinho 

Experimental  
RC 2014 N.I. 

EMBRAPA 

CPATSA 
VSF 

4  1 
Vinho 

Experimental  
Sy 2015 N.I. 

EMBRAPA 

CPATSA 
VSF 

5  1 
Vinho 

Experimental  
Sy 2014 N.I. 

EMBRAPA 

CPATSA 
VSF 

6  1 
Vinho 

Experimental  
Sy 2014 N.I. 

EMBRAPA 

CPATSA 
VSF 

7  1 
Vinho 

Experimental  
Sy 2014 N.I. 

EMBRAPA 

CPATSA 
VSF 

8  1 
Vinho 

Experimental  
Sy 2015 N.I. 

EMBRAPA 

CPATSA 
VSF 

9  1 
Vinho 

Experimental  
TN 2015 N.I. 

EMBRAPA 

CPATSA 
VSF 

10  1 
Vinho 

Experimental  
TN 2014 N.I. 

EMBRAPA 

CPATSA 
VSF 

11  1 
Vinho 

Experimental  
TN 2014 N.I. 

IF 

SERTÃO-

PE 

VSF 

12  1 
Vinho 

Experimental  
TN 2014 N.I. 

IF 

SERTÃO-

PE 

VSF 

13  1 
Vinho 

Experimental  
TN 2014 N.I. 

IF 

SERTÃO-

PE 

VSF 

14  1 
Vinho 

Experimental  
TN 2014 N.I. 

IF 

SERTÃO-

PE 

VSF 

15  1 
Vinho 

Experimental 
TN 2014 N.I. 

IF 

SERTÃO-

PE 

VSF 

16  1 
Vinho 

Experimental 
TN 2014 N.I. 

IF 

SERTÃO-

PE 

VSF 

17  1 
Vinho 

Experimental  
TN 2014 N.I. 

IF 

SERTÃO-

PE 

VSF 

18  1 
Vinho 

Experimental 
TN 2014 N.I. 

IF 

SERTÃO-

PE 

VSF 
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19  1 
Vinho 

Experimental 
TN 2014 N.I. 

IF 

SERTÃO-

PE 

VSF 

20  1 
Vinho 

Experimental  
TN 2014 N.I. 

IF 

SERTÃO-

PE 

VSF 

21  2 
Botticelli 

Varietais 
CS 2015 12 

Vinícola do 

Vale do São 

Francisco 

VSF 

22  2 
Botticelli 

Varietais 
CS 2013 12 

Vinícola do 

Vale do São 

Francisco 

VSF 

23  2 
Botticelli 

Coleção 
PS 2014 12 

Vinícola do 

Vale do São 

Francisco 

VSF 

24  2 
Botticelli 

Coleção 
RC 2011 12 

Vinícola do 

Vale do São 

Francisco 

VSF 

25  2 
Botticelli 

Coleção 
RC 2012 12 

Vinícola do 

Vale do São 

Francisco 

VSF 

26  2 
Botticelli 

Coleção 
RC 2012 12 

Vinícola do 

Vale do São 

Francisco 

VSF 

27  2 
Botticelli 

Coleção 
PS 2014 12 

Vinícola do 

Vale do São 

Francisco 

VSF 

28  2 
Botticelli 

Coleção 
PS 2014 12 

Vinícola do 

Vale do São 

Francisco 

VSF 

29  2 
Botticelli 

Coleção 
PS 2014 12 

Vinícola do 

Vale do São 

Francisco 

VSF 

30  2 
Botticelli 

Coleção 
PS 2014 12 

Vinícola do 

Vale do São 

Francisco 

VSF 

31  2 
Botticelli 

Coleção 
PS 2014 12 

Vinícola do 

Vale do São 

Francisco 

VSF 

32  2 
Botticelli 

Coleção 
RC 2012 12 

Vinícola do 

Vale do São 

Francisco 

VSF 

33  2 
Botticelli 

Coleção 
RC 2012 12 

Vinícola do 

Vale do São 

Francisco 

VSF 

34  2 
Botticelli 

Coleção 
RC 2012 12 

Vinícola do 

Vale do São 

Francisco 

VSF 

35  2 
Botticelli 

Coleção 
RC 2012 12 

Vinícola do 

Vale do São 

Francisco 

VSF 

36  2 
Botticelli 

Coleção 
RC 2012 12 

Vinícola do 

Vale do São 

Francisco 

VSF 
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37  2 
Botticelli 

Varietais 
CS 2015 12 

Vinícola do 

Vale do São 

Francisco 

VSF 

38  2 
Botticelli 

Varietais 
CS 2015 12 

Vinícola do 

Vale do São 

Francisco 

VSF 

39  2 
Botticelli 

Varietais 
CS 2015 12 

Vinícola do 

Vale do São 

Francisco 

VSF 

40  2 
Botticelli 

Varietais 
CS 2015 12 

Vinícola do 

Vale do São 

Francisco 

VSF 

41  2 
Botticelli 

Varietais 
CS 2015 12 

Vinícola do 

Vale do São 

Francisco 

VSF 

42  2 
Botticelli 

Varietais 
RC 2015 12 

Vinícola do 

Vale do São 

Francisco 

VSF 

43  2 
Botticelli 

Varietais 
RC 2015 12 

Vinícola do 

Vale do São 

Francisco 

VSF 

44  2 
Botticelli 

Varietais 
CS 2015 12 

Vinícola do 

Vale do São 

Francisco 

VSF 

45  3 Rio Sol CS 2014 13 
Vinícola 

Santa Maria 
VSF 

46  3 Rio Sol CS 2012 13 
Vinícola 

Santa Maria 
VSF 

47  3 Rio Sol Sy 2014 13 
Vinícola 

Santa Maria 
VSF 

48  3 Rio Sol Sy 2014 13 
Vinícola 

Santa Maria 
VSF 

49  3 

Rio Sol 

Winemakers 

Selection 

AB 2013 13 
Vinícola 

Santa Maria 
VSF 

50  3 Rio Sol CS 2014 13 
Vinícola 

Santa Maria 
VSF 

51  3 Rio Sol CS 2014 13 
Vinícola 

Santa Maria 
VSF 

52  3 Rio Sol CS 2014 13 
Vinícola 

Santa Maria 
VSF 

53  3 Rio Sol CS 2014 13 
Vinícola 

Santa Maria 
VSF 

54  3 Rio Sol CS 2014 13 
Vinícola 

Santa Maria 
VSF 

55  3 Rio Sol CS 2014 13 
Vinícola 

Santa Maria 
VSF 

56  3 
Rio Sol 

Reserva 
CS/ Sy/ AB 2011 13,5 

Vinícola 

Santa Maria 
VSF 

57  3 
Rio Sol 

Reserva 
CS/ Sy/ AB 2013 13,5 

Vinícola 

Santa Maria 
VSF 

58  3 
Rio Sol 

Reserva 
CS/ Sy/ AB 2013 13,5 

Vinícola 

Santa Maria 
VSF 
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59  3 Rio Sol CS/ Sy 2014 13 
Vinícola 

Santa Maria 
VSF 

60  3 Rio Sol CS/ Sy 2014 13 
Vinícola 

Santa Maria 
VSF 

61  3 Rio Sol CS/ Sy 2014 13 
Vinícola 

Santa Maria 
VSF 

62  3 Rio Sol CS/ Sy 2014 13 
Vinícola 

Santa Maria 
VSF 

63  3 Rio Sol CS/ Sy 2014 13 
Vinícola 

Santa Maria 
VSF 

64  3 Rio Sol CS/ Sy 2014 13 
Vinícola 

Santa Maria 
VSF 

65  3 Rio Sol CS/ Sy 2014 13 
Vinícola 

Santa Maria 
VSF 

66  3 Rio Sol Sy 2014 13 
Vinícola 

Santa Maria 
VSF 

67  3 Rio Sol Sy 2014 13 
Vinícola 

Santa Maria 
VSF 

68  3 Rio Sol Sy 2014 13 
Vinícola 

Santa Maria 
VSF 

69  3 Rio Sol Sy 2014 13 
Vinícola 

Santa Maria 
VSF 

70  3 Rio Sol Sy 2014 13 
Vinícola 

Santa Maria 
VSF 

Legendas: AB = Alicante Bouchet, Ar = Aragonez, Ba = Barbera, Ca = Carmenére, CS = 

Cabernet Sauvignon, PS = Petit Syrah, PV = Petit Verdot, RB = Rubi Cabernet, Sy = Syrah, 

Te = Tempanillo, TN = Touriga Nacional, N.I. = teor alcóolico não informado. 
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ANEXO C– Informações indicadas nos rótulos das amostras de vinhos usadas na 

abordagem de classificação em função das variedades de uvas. 

 

Número 

Informações indicadas nos rótulos das amostras 

Classe Nome Variedades Ano 

Teor 

alcóolico 

(v/v, %) 

Produtor Origem 

1 CS Bianchetti CS 2011 11 

Adega 

Bianchetti 

Tedesco 

VSF 

2 CS 
Château 

Duccos 
CS 2011 12,3 

Château 

Duccos 
VSF 

3 CS Rio Sol CS 2014 13 
Vinícola 

Santa Maria 
VSF 

4 CS Rio Sol CS 2012 13 
Vinícola 

Santa Maria 
VSF 

5 CS 
Botticelli 

Varietais 
CS 2015 12 

Vinícola do 

Vale do São 

Francisco 

VSF 

6 CS 
Botticelli 

Varietais 
CS 2013 12 

Vinícola do 

Vale do São 

Francisco 

VSF 

7 CS Garziera CS 2014 12 

Vinícola 

Lagoa 

Grande* 

VSF 

8 CS Rio Sol CS 2014 13 
Vinícola 

Santa Maria 
VSF 

9 CS Rio Sol CS 2014 13 
Vinícola 

Santa Maria 
VSF 

10 CS Rio Sol CS 2014 13 
Vinícola 

Santa Maria 
VSF 

11 CS Rio Sol CS 2014 13 
Vinícola 

Santa Maria 
VSF 

12 CS Rio Sol CS 2014 13 
Vinícola 

Santa Maria 
VSF 

13 CS Rio Sol CS 2014 13 
Vinícola 

Santa Maria 
VSF 

14 CS 
Botticelli 

Varietais 
CS 2015 12 

Vinícola do 

Vale do São 

Francisco 

VSF 

15 CS 
Botticelli 

Varietais 
CS 2015 12 

Vinícola do 

Vale do São 

Francisco 

VSF 

16 CS 
Botticelli 

Varietais 
CS 2015 12 

Vinícola do 

Vale do São 

Francisco 

VSF 

17 CS 
Botticelli 

Varietais 
CS 2015 12 

Vinícola do 

Vale do São 

Francisco 

VSF 

18 CS 
Botticelli 

Varietais 
CS 2015 12 

Vinícola do 

Vale do São 

Francisco 

VSF 
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19 Sy 
Vinho 

Experimental  
Sy 2015 N.I. 

EMBRAPA 

CPATSA 
VSF 

20 Sy 
Vinho 

Experimental  
Sy 2014 N.I. 

EMBRAPA 

CPATSA 
VSF 

21 Sy 

Vinho 

Experimental 

EMBRAPA 

Sy 2014 N.I. 
EMBRAPA 

CPATSA 
VSF 

22 Sy Almadén Sy 2013 13 Miolo VSF 

23 Sy Almadén Sy 2011 13 Miolo VSF 

24 Sy Almadén Sy 2015 13 Miolo VSF 

25 Sy Almadén Sy 2013 13 Miolo VSF 

26 Sy Rio Sol Sy 2014 13 
Vinícola 

Santa Maria 
VSF 

27 Sy Rio Sol Sy 2014 13 
Vinícola 

Santa Maria 
VSF 

28 Sy Rio Sol Sy 2014 13 
Vinícola 

Santa Maria 
VSF 

29 Sy Rio Sol Sy 2014 13 
Vinícola 

Santa Maria 
VSF 

30 Sy Rio Sol Sy 2014 13 
Vinícola 

Santa Maria 
VSF 

31 Sy Rio Sol Sy 2014 13 
Vinícola 

Santa Maria 
VSF 

32 Sy Rio Sol Sy 2014 N.I. 
Vinícola 

Santa Maria 
VSF 

33 TN 
Vinho 

Experimental  
TN 2014 N.I. 

EMBRAPA 

CPATSA 
VSF 

34 TN 
Vinho 

Experimental 
TN 2015  N.I. 

EMBRAPA 

CPATSA 
VSF 

35 TN 
Vinho 

Experimental 
TN 2015  N.I. 

EMBRAPA 

CPATSA 
VSF 

36 TN 
Vinho 

Experimental 
TN 2014  N.I. 

EMBRAPA 

CPATSA 
VSF 

37 TN 
Vinho 

Experimental 
TN 2014  N.I. 

IF 

SERTÃO-

PE 

VSF 

38 TN 
Vinho 

Experimental 
TN 2014  N.I. 

IF 

SERTÃO-

PE 

VSF 

39 TN 
Vinho 

Experimental 
TN 2014  N.I. 

IF 

SERTÃO-

PE 

VSF 

40 TN 
Vinho 

Experimental 
TN 2014  N.I. 

IF 

SERTÃO-

PE 

VSF 

41 TN 
Vinho 

Experimental 
TN 2014  N.I. 

IF 

SERTÃO-

PE 

VSF 

42 TN 
Vinho 

Experimental 
TN 2014  N.I. 

IF 

SERTÃO-

PE 

VSF 
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43 TN 
Vinho 

Experimental  
TN 2014  N.I. 

IF 

SERTÃO-

PE 

VSF 

44 TN 
Vinho 

Experimental 
TN 2014  N.I. 

IF 

SERTÃO-

PE 

VSF 

45 TN 
Vinho 

Experimental 
TN 2014  N.I. 

IF 

SERTÃO-

PE 

VSF 

46 TN 
Vinho 

Experimental 
TN 2014  N.I. 

IF 

SERTÃO-

PE 

VSF 

47 TN 

Rio Sol 

Winemakers 

Selection 

TN 2009 13 
Vinícola 

Santa Maria 
VSF 

48 TN 

Rio Sol 

Winemakers 

Selection 

TN 2010 13 
Vinícola 

Santa Maria 
VSF 

Legendas: CS = Cabernet Sauvignon, Sy = Syrah e TN = Touriga Nacional. N.I. = teor 

alcóolico não informado. 
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ANEXO D – Pedido nacional de patente de invenção do Dispositivo de Medições 

Colorimétricas baseado em imagens digitais 
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