UNIVERSIDADE FEDERAL DA PARAÍBA CENTRO DE TECNOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA QUÍMICA

LUZIDELSON BARACHO RIBEIRO

FERMENTAÇÃO ALCOÓLICA A PARTIR DE CALDOS OZONIZADOS DE DIFERENTES ETAPAS DO PROCESSO DA INDÚSTRIA SUCROALCOOLEIRA

JOÃO PESSOA-PB 2017

LUZIDELSON BARACHO RIBEIRO

FERMENTAÇÃO ALCOÓLICA A PARTIR DE CALDOS OZONIZADOS DE DIFERENTES ETAPAS DO PROCESSO DA INDÚSTRIA SUCROALCOOLEIRA

JOÃO PESSOA-PB 2017

LUZIDELSON BARACHO RIBEIRO

FERMENTAÇÃO ALCOÓLICA A PARTIR DE CALDOS OZONIZADOS DE DIFERENTES ETAPAS DO PROCESSO DA INDÚSTRIA SUCROALCOOLEIRA

Dissertação apresentada ao Programa de Pós Graduação em Engenharia Química, do Centro de Tecnologia da Universidade Federal da Paraíba, em cumprimento aos requisitos para obtenção do título de Mestre em Engenharia Química.

Orientadora: Profa. Dra. Sharline Florentino de

Melo Santos

Coorientadora: Profa. Dra. Andréa Farias de

Almeida

Catalogação na publicação Seção de Catalogação e Classificação

R484f Ribeiro, Luzidelson Baracho.

Fermentação alcoólica a partir de caldos ozonizados de diferentes etapas do processo da indústria sucroalcooleira / Luzidelson Baracho Ribeiro. - João Pessoa, 2017.

77 f. : il.

Orientação: Sharline Florentino de Melo Santos. Coorientação: Andréa Farias de Almeida. Dissertação (Mestrado) - UFPB/CT.

1. Engenharia química. 2. Fermentação alcoólica. 3. Biocombustível. 4. Etanol. I. Santos, Sharline Florentino de Melo. II. Almeida, Andréa Farias de. III. Título.

UFPB/BC

LUZIDELSON BARACHO RIBEIRO

FERMENTAÇÃO ALCOÓLICA A PARTIR DE CALDOS OZONIZADOS DE DIFERENTES ETAPAS DO PROCESSO DA INDÚSTRIA SUCROALCOOLEIRA

Dissertação apresentada ao Programa de Pós Graduação em Engenharia Química, do Centro de Tecnologia da Universidade Federal da Paraíba, em cumprimento aos requisitos para obtenção do título de Mestre em Engenharia Química.

Aprovada em 31 de agesto de 2017.

BANCA EXAMINADORA

Profa. Dra. Sharline Florentino de Melo Santos DEQ - CT - UFPB

Orientadora

Profa. Dra. Andréa Farias de Almeida

DB - CBiotec - UFPB

Coorientadora

Prof. Dr. Flávio Luiz Honorato da Silva

DEQ - CT - UFPB

Examinador Interno

Prof. Dr. Carlos Alberto Bispo de Sousa

DEQ - CT - UFPB

Examinador Externo

AGRADECIMENTOS

Ao Deus criador, por iluminar meus caminhos, me guiar e fazer acreditar que tudo é possível para aquele que Nele crer.

À UFPB e ao Programa de Pós-Graduação em Engenharia Química, em especial a coordenadora, Profa. Dra. Josilene Cavalcante e aos docentes, Prof. Dr. Nagel Alves, Prof. Dr. Flávio Honorato e Profa. Dra. Sharline Santos, pelo desafio da criação do programa e por continuarem firme no propósito, contribuindo para a formação de novos mestres.

Às minhas orientadoras, Profa. Dra. Sharline Santos e Profa. Dra. Andréa Almeida, pela orientação desse trabalho, pois sem elas o caminho teria sido ainda mais árduo.

Ao Prof. Dr. Carlos Bispo e Prof. Dr. Flávio Honorato pelas ricas contribuições ao trabalho e disponibilidade em fazer parte da banca examinadora.

Ao IFPB - Campus Santa Rita, onde orgulhosamente exerço a profissão de professor, por acreditar no poder da educação como agente transformador, incentivar e valorizar a qualificação profissional. Em especial ao Prof. Dr. Sabiniano Rodrigues e ao Prof. Dr. Francisco Fechine, pelo incentivo e apoio dispensados.

À Usina Monte Alegre, em especial a Sra. Marlene (gerente industrial) e ao Sr. Jaílson Alexandre (químico do processo), pela parceria formada.

Aos companheiros de mestrado; Lucas, Dimitri, Levi, Paulo, Rafael, Fernanda e Danilo, pelos conhecimentos compartilhados.

À toda equipe do Laboratório de Bioengenharia da UFPB, em especial a Eng. Química Débora Jamila. Aos responsáveis pelos laboratórios utilizados nos experimentos; Reatores Químicos (Profa. Dra. Karla Silvana), Carvão Ativado (Prof. Dr. Rennio Sena), Fenômenos de Transporte (Prof. Dr. Genaro Clericuzi) Laboratório de Engenharia Bioquímica da UFRN (Profa. Dra. Gorete Ribeiro e ao doutorando, Carlos Eduardo).

Às alunas da graduação, Jéssica, Raquel e Clara e aos meus alunos do IFPB, Edvânia e Marcos, que contribuíram bastante para as análises experimentais.

Às empresas do setor sucroalcooleiro onde tive a oportunidade de trabalhar por quase 10 anos; Destilaria Giasa (PB), Usina Maracaju (MS), Usina Estivas (RN) e Usina São Luiz (SP), onde cito alguns profissionais que contribuíram para o meu crescimento profissional, representando as equipes: Eng. Ivo Moraes, Eng. Luiz Carlos, Eng. Severino Silva, Eng. Sérgio Santana (*in memorian*), Eng. Fausto Victorelli, Eng. Roberto Potenza e Eng. Eduardo Willian.

A todos que torceram e contribuíram direta ou indiretamente para a realização deste trabalho.

RESUMO

O Brasil é o maior produtor mundial de cana-de-açúcar, maior produtor e exportador de acúcar e segundo maior produtor de etanol. O método mais utilizado para clarificação do caldo da cana é o convencional, onde utiliza-se o dióxido de enxofre, que é um gás tóxico e poluente. Diante das exigências do mercado mundial com relação a segurança do alimento, temse buscado tecnologias alternativas para o tratamento do caldo. A ozonização é utilizada atualmente por doze usinas no Brasil, entre elas, a Usina Monte Alegre, que é a pioneira nessa tecnologia. Foi objetivo deste trabalho verificar a influência da clarificação do caldo de cana por ozonização na fermentação alcoólica, a partir de mostos compostos por caldos de diferentes etapas do processo industrial: caldo misto, caldo clarificado, caldo evaporado e mel final. O trabalho foi realizado em parceria com a usina Monte Alegre. As fermentações foram conduzidas sob temperatura e agitação orbital de 32 °C e 150 rpm, e tempo de 12 horas. Os caldos foram coletados do processo, assim como a levedura, que foi a mesma propagada na usina. Foi realizado uma caracterização físico-química dos caldos coletados, verificado a influência das concentrações iniciais de substrato no processo de propagação de leveduras, analisado a influência das concentrações iniciais de substrato e de células na fermentação alcoólica e estudado a cinética de fermentação para os diferentes tipos de mostos. No estudo da propagação, foi utilizado uma concentração inicial de células de 2,0 g.L⁻¹, e o mosto com concentração de substrato 10 ºBrix foi o que apresentou melhores resultados, para um tempo de 7 horas, com uma concentração de células de 11,6 g.L⁻¹. Para a verificação da influência da concentração inicial de substratos e células na fermentação alcoólica, a partir de planejamento fatorial e superfície de resposta, obteve-se uma produção maximizada de etanol para faixas de concentração de substrato entre 13 e 20 °Brix e concentração de células entre 24 e 34 g.L⁻¹. Foi adotada a condição de 13 °Brix e 30 g.L⁻¹ para o estudo da cinética de produção de etanol nos diferentes mostos. Foram realizadas análises de acúcares redutores e etanol, e os resultados obtidos para as velocidades de consumo de substrato, em g.L⁻¹.h⁻¹, foram: 7.28 ± 2.3 para o caldo misto, 6.78 ± 1.2 para o caldo clarificado, 6.34 ± 1.4 para o caldo evaporado e 7.32 ± 1.6 para o mel final. As produtividades em etanol, em g.L⁻¹.h⁻¹, foram: 2,93 ± 0,81 para o caldo misto, 2.70 ± 0.57 para o caldo clarificado, 2.50 ± 0.51 para o caldo evaporado e 2.70 ± 0.49 para o mel final. Através da análise estatística dos resultados, pode-se concluir que os tipos de tratamentos dos caldos utilizados na composição dos mostos, bem como o sistema de clarificação por ozonização, não influenciaram significativamente na fermentação alcoólica. As maiores variações foram observadas para os diferentes dias de produção, o que está relacionado às variações da matéria-prima processada e às oscilações do processo industrial.

Palavras-chave: ozônio; levedura; Saccharomyces cerevisiae; etanol.

ABSTRACT

Brazil is the world's largest producer of sugarcane, the largest producer and exporter of sugar and the second largest producer of ethanol. The most commonly used method for the clarification of sugarcane juice is the conventional one, where sulfur dioxide, which is a toxic and polluting gas, is used. In view of the requirements of the world market with regard to food safety, alternative technologies for broth treatment have been sought. Ozone is currently used by twelve plants in Brazil, among them the Monte Alegre Plant, which is the pioneer in this technology. The objective of this work was to verify the influence of the clarification of the cane juice by ozonation in alcoholic fermentation, from musts composed of broths of different stages of the industrial process: mixed broth, clarified broth, evaporated broth and final honey. The work was carried out in partnership with the Monte Alegre plant. The fermentations were conducted under temperature and orbital agitation at 32 °C and 150 rpm, and time of 12 hours. The broths were collected from the process, as well as the yeast, which was the same propagated in the plant. A physical-chemical characterization of the broths was carried out, the influence of the initial concentrations of the substrate in the yeast propagation process was verified, the influence of the initial concentrations of substrate and of the cells in the alcoholic fermentation, and the fermentation kinetics for the different types of musts. In the propagation study, an initial cell concentration of 2.0 g.L⁻¹ was used, and the must with 10 °Brix substrate concentration presented the best results, for a time of 7 hours, with a cell concentration of 11.6 g.L⁻¹. In order to verify the influence of the initial concentration of substrates and cells in the alcoholic fermentation, from factorial planning and response surface, a maximized ethanol production was obtained for substrate concentration ranges between 13 and 20 °Brix and cell concentration between 24 and 34 g.L⁻¹. The condition of 13 °Brix and 30 g.L⁻¹ was adopted for the study of the kinetics of ethanol production in the different musts. Analyzes of reducing sugars and ethanol were carried out and the results obtained for the rates of substrate consumption, in g.L⁻ 1 .h⁻¹, were: 7.28 ± 2.3 for the mixed broth, 6.78 ± 1.2 for the clarified broth, 6.34 ± 1.4 for the evaporated broth and 7.32 ± 1.6 for the final honey. The yields in ethanol, in g.L⁻¹.h⁻¹, were: 2.93 ± 0.81 for the mixed broth, 2.70 ± 0.57 for the clarified broth, 2.50 ± 0.51 for the broth evaporated and 2.70 ± 0.49 for the final honey. Through the statistical analysis of the results, it can be concluded that the types of treatments used in the musts composition, as well as the clarification system by ozonation, did not significantly influence the alcoholic fermentation. The greatest variations were observed for the different days of production, which is related to the variations of the raw material processed and the oscillations of the industrial process.

Key words: ozone; yeast; Saccharomyces cerevisiae; ethanol.

LISTA DE TABELAS

Tabela 2.1 - Unidades de produção e moagem média de cana-de-açúcar das últimas 10 safras
no estado da Paraíba
Tabela 2.2- Moagem de cana-de-açúcar e produção de açúcar e etanol das últimas 7 safras no
estado da Paraíba
Tabela 3.1– Amostras de caldos industriais coletadas na Usina Monte Alegre35
Tabela 3.2– Níveis reais e codificados para as variáveis de entrada: concentração de células (X)
e concentração de substrato (S)41
Tabela 4.1- Resultados das análises das concentrações de substrato e pH, realizadas para as
amostras de caldos industriais
Tabela 4.2- Concentrações de substrato, leveduras e pH no início da propagação de leveduras
e após os tempos de 10 e 24 horas49
Tabela 4.3- Resultados da fermentação alcoólica, obtidos para os mostos de 20 ºBrix (amostra
MA-1) e 15 °Brix (amostra MA-2)51
Tabela 4.4 – Matriz do planejamento fatorial 2 ² + configuração estrela (DCCR), com as
variáveis de entrada (X e S) e resposta (produção teórica de etanol)54
Tabela 4.5 – Tabela de análise de variância (ANOVA)
Tabela 4.6 – Velocidades de consumo de substrato, em g/Lh, para os diferentes tipos de mostos
das amostras MA-1, MA-2, MA-3, MA-4 e MA-5
Tabela 4.7 – Produções de etanol, em g/L, para os diferentes tipos de mostos das amostras MA-
3, MA-4 e MA-5, em um tempo de 12 horas de fermentação
Tabela 4.8 – Produtividades em etanol, em g/Lh, para os diferentes tipos de mostos das amostras
MA-3, MA-4 e MA-5, em 12 horas de fermentação

LISTA DE FIGURAS

Figura 2.1 - Fluxograma da recepção e preparo da cana	20
Figura 2.2 - Fluxograma da moagem e extração caldo (produção do caldo misto)	21
Figura 2.3 - Fluxograma do tratamento de caldo (produção do caldo clarificado)	22
Figura 2.4 - Fluxograma da evaporação (produção do caldo evaporado)	23
Figura 2.5 - Fluxograma da fabricação de açúcar (produção do mel final)	24
Figura 2.6 - Fluxograma do processo de fermentação alcoólica	24
Figura 2.7 - Sistema de geração e dosagem de ozônio da Usina Monte Alegre	26
Figura 2.8 – Curvas de ajuste dos resultados de uma experiência idealizada de fermentaçã	o.32
Figura 3.1 – Amostras dos caldos misto, clarificado, evaporado e mel final e da levedura	SC-
20 cedidas pela Usina Monte Alegre	36
Figura 4.1 - Mostos ao término do processo de propagação de leveduras	46
Figura 4.2 – Aspecto do vinho fermentado; vinho delevedurado (a) e vinho levedurado (b))46
Figura 4.3- Vinho centrifugado com separação da massa de levedura produzida na propag	gação
de células	46
Figura 4.4- Concentração de substrato em função do tempo na propagação de leveduras	47
Figura 4.5 - Concentração celular em função do tempo na propagação de leveduras	
Figura 4.6 – Linearização da concentração de células em função do tempo para a	fase
exponencial	
Figura 4.7 - Teste de floculação realizado para o mosto fermentado	
Figura 4.8– Mostos de CM, CC, CE e MF em processo de fermentação alcoólica	
Figura 4.9- Consumo de substrato para CM, CC, CE e MF (amostra MA-1), com concentra	-
iniciais de 20 °Brix	
Figura 4.10 - Consumo de substrato para CM, CC, CE e MF (amostra MA-2),	
concentrações iniciais de 15 °Brix	
Figura 4.11 – Diagrama de pareto para as variáveis de entrada do planejamento DCCR	
Figura 4.12- Superfície de resposta - efeitos das concentrações de célula e substrat	
produção de etanol, para temperatura fixa de 32 °C	
Figura 4.13– Concentração de substrato em função do tempo, para a amostra MA-1	
Figura 4.14 – Concentração de substrato em função do tempo, para a amostra MA-2	
Figura 4.15 – Concentração de substrato em função do tempo, para a amostra MA-3	
Figura 4.16 – Concentração de substrato em função do tempo, para a amostra MA-4	
Figura 4.17 – Concentração de substrato em função do tempo, para a amostra MA-5	
Figura 4.18– Produção de etanol em função do tempo, para a amostra MA-3	
Figura 4.19 – Produção de etanol em função do tempo, para a amostra MA-4	
Figura 4.20 – Produção de etanol em função do tempo, para a amostra MA-5	62

SUMÁRIO

1	INI	FRODUÇAO	
	1.1	OBJETIVO GERAL	.15
	1.2	OBJETIVOS ESPECÍFICOS	.15
2	RE	VISÃO DE LITERATURA	
	2.1	A MATRIZ ENERGÉTICA BRASILEIRA	.17
	2.2	OS BIOCOMBUSTÍVEIS	
	2.3	UNIDADES PRODUTORAS NO ESTADO DA PARAÍBA	
	2.4	PROCESSO DE PRODUÇÃO DE ETANOL – USINA MONTE ALEGRE	
	2.5	CLARIFICAÇÃO DO CALDO: MÉTODO CONVENCIONAL E OZONIZAÇ.	ÃO
	2.0	25	
	2.6	PREPARO DO MOSTO	.27
	2.7	O MICROORGANISMO (LEVEDURA)	
	2.8	A FERMENTAÇÃO ALCOÓLICA	
	2.9	O MOSTO FERMENTADO (VINHO)	
	2.10	FATORES INTERFERENTES NA FERMENTAÇÃO ALCOÓLICA	.31
	2.11	ESTUDO CINÉTICO DA FERMENTAÇÃO ALCOÓLICA	
3		ATERIAL E MÉTODOS	
	3.1	CALDOS E MOSTOS	
	3.2	LEVEDURA	
	3.3	ANÁLISES REALIZADAS	
	3.3.	1 CONCENTRAÇÃO DE LEVEDURAS	
	3.3.	2 CONCENTRAÇÃO DE ETANOL	
		3 PERCENTUAL DE FLOCULAÇÃO	
	3.3.	,	
	3.4	CARACTERIZAÇÃO FÍSICO-QUÍMICA DOS CALDOS	
	3.5	PROPAGAÇÃO DE LEVEDURAS: INFLUÊNCIA DA CONCENTRAÇ.	ÃO
		AL DE SUBSTRATO	.40
	3.6	FERMENTAÇÃO ALCOÓLICA: ESTUDOS PRELIMINARES	.41
	3.7	FERMENTAÇÃO ALCOÓLICA: INFLUÊNCIA DA CONCENTRAÇÃO INICI	AL
	DE SU	UBSTRATO E CÉLULAS	.41
	3.8	FERMENTAÇÃO ALCOÓLICA: CINÉTICA DA PRODUÇÃO DE ETANOL N	OS
	DIFE	RENTES MOSTOS	.42
	3.9	CÁLCULO DOS PARÂMETROS CINÉTICOS DAS FERMENTAÇÕ	ES
	ALCC	OÓLICAS	.42
4	RE	SULTADOS E DISCUSSÃO	.44
	4.1	CARACTERIZAÇÃO FÍSICO-QUÍMICA DOS CALDOS	.44
	4.2	INFLUÊNCIA DA CONCENTRAÇÃO INICIAL DE SUBSTRATO	NA
	PROP	PAGAÇÃO DE LEVEDURASAVALIAÇÃO DA CONCENTRAÇÃO INICIAL DE SUBSTRATO	.45
	4.3	AVALIAÇÃO DA CONCENTRAÇÃO INICIAL DE SUBSTRATO	NA
	FERM	MENTAÇÃO ALCOÓLICA	.50
		INFLUÊNCIA DAS CONCENTRAÇÕES INICIAIS DE SUBSTRATO	
	CÉLU	JLAS NA FERMENTAÇÃO ALCOÓLICA	.53
	4.5	CINÉTICA DA PRODUÇÃO DE ETANOL NOS DIFERENTES MOSTOS	.57
5	CO	NCLUSÕES	.64
	_	LÊNCIAS BIBLIOGRÁFICAS	
		DICE A - Curva de calibração para as análises de açúcares redutores totais (ART	
		DNS	
		DICE B – Planilha em Excel utilizada para a análise de variância (ANOVA)	
		DICE C – Certificado de apresentação do trabalho: Influência da concentração inic	
de	e subst	trato na propagação de levedura do tipo Saccharomyces cerevisiae de uso industr	rial.

apresentado durante o 2º CONAPESC - Congresso Nacional de Pesquisa e Ensino em Ciência,
realizado no período de 07 a 09 de junho de 2017, em Campina Grande-PB71
APÊNDICE D – Certificado de apresentação do trabalho: Produção estimada de etanol a partir
de mostos de diferentes concentrações de substrato e células, apresentado durante o 2º
CONAPESC - Congresso Nacional de Pesquisa e Ensino em Ciência, realizado no período de
07 a 09 de junho de 2017, em Campina Grande-PB72
APÊNDICE E – Certificado de apresentação do trabalho: Utilização da metodologia DNS para
determinação de açúcares redutores residuais do processo de fermentação alcoólica,
apresentado durante o 2º SIMPIF - Simpósio de Pesquisa, Pós-Graduação e Inovação do IFPB,
realizado no período de 20 a 23 de novembro de 2017, em João Pessoa -PB73
ANEXO A - Teste de Tukey aplicado para as análises de concentração de substrato (Tabela
4.1) 74
ANEXO B – Teste de Tukey aplicado para as análises de pH (Tabela 4.1)75
ANEXO C - Teste de Tukey aplicado para as velocidades de consumo de substrato (Tabela
4.6) 76
ANEXO D – Teste de Tukey aplicado para as produtividades em etanol (Tabela 4.8)77

1 INTRODUÇÃO

O Brasil é o maior produtor mundial de cana-de-açúcar. A Região Centro-Sul, que agrega os Estados das Regiões Sul, Sudeste e Centro-Oeste, responde por 90% deste volume, enquanto os 10% restantes cabem aos estados da Região Norte/Nordeste. O Brasil é também o maior produtor e exportador de açúcar do mundo e o segundo maior produtor global de etanol, ranking liderado pelos Estados Unidos. Atualmente, são 371 unidades produtoras em atividade, mais de 900 mil empregos formais diretos gerados apenas pelo setor produtivo e 70 mil produtores rurais de cana-de-açúcar independentes. (UNICA, 2017).

O setor sucroalcooleiro no estado da Paraíba possui atualmente 8 unidades produtoras ativas, todas localizadas na zona da mata paraibana, nos municípios de Rio Tinto, Mamanguape, Santa Rita, Caaporã e Pedras de Fogo. A Associação dos Plantadores de Cana da Paraíba (ASPLAN), ressalta a importância da cultura da cana em seu aspecto social e econômico, tendo em vista o perfil produtivo dos domicílios agrícolas canavieiros do estado, onde 75,48% são micro produtores que produzem até 1.000 toneladas por safra e 17,75% são pequenos produtores, na faixa entre 1.000 e 5.000 toneladas safra. (ASPLAN, 2017).

O processo de clarificação do caldo de cana-de-açúcar pelo método tradicional da sulfitação, destinado à fabricação do açúcar branco, é empregado na maioria das indústrias do setor. Esse método polui o meio ambiente devido à grande toxidade do enxofre e seus derivados (ARAÚJO, 2007). Traços de enxofre podem ocasionar alterações sensoriais do produto, principalmente de sabor e odor, além de reações alérgicas e dores de cabeça, no caso de concentrações maiores. (INMETRO, 2016).

Com as novas exigências do mercado, visando a segurança dos alimentos, tem-se estabelecido padrões de qualidade e o cumprimento de normas alimentícias, como limites de sulfito residual, o que tem levado a necessidade da busca de outras formas de tratamento do caldo para redução de cor e turbidez do produto, sem afetar a segurança alimentar. (JORNAL DA CANA, 2013).

De acordo com o anexo nº 11, quadro nº 01 da norma regulamentadora nº 15, portaria MTB nº 3.214, de 28 de junho de 1978 (BRASIL, 1978), é classificada como grau de insalubridade máxima, as atividades ou operações nas quais os trabalhadores ficam expostos ao agente químico dióxido de enxofre, quando forem ultrapassados os limites de tolerância de 4 ppm ou 10 mg/m³, para jornadas de até 48 horas semanais.

No processo convencional, para tratamento do caldo da cana-de-açúcar, o enxofre é utilizado por seu custo competitivo. Com o desenvolvimento da aplicação do ozônio, que é

produzido na própria usina através de equipamentos que transformam o oxigênio presente no ar atmosférico em ozônio, esta competitividade em termos de baixo custo desaparece.

Diante dessa busca por novas tecnologias para a clarificação do caldo de cana, percebese a necessidade de melhor entendimento da influência dos novos aditivos, que farão parte da composição do mosto, no processo de fermentação alcoólica. Faz-se necessário o estudo do comportamento de leveduras alcoólicas diante de mostos que recebem um tratamento diferenciado e que não possuem resíduos de enxofre em sua composição.

O trabalho foi realizado em parceria com a usina Monte Alegre S/A, que está localizada na cidade de Mamanguape-PB, a 50 km da capital paraibana. Seus principais produtos são: açúcar cristal e triturado, açúcar demerara, açúcar VHP e etanol dos tipos hidratado e anidro.

A escolha da Usina Monte Alegre se deu pelo fato da mesma ser pioneira no Brasil na fabricação do açúcar com a utilização do ozônio na clarificação do caldo. Uma particularidade encontrada na Usina Monte Alegre, é que a mesma utiliza o caldo de saída do primeiro estágio da evaporação para composição do mosto. Dessa forma, pode-se avaliar o desempenho fermentativo de mostos com diferentes características, de acordo com a etapa de produção do mesmo, ou seja, mostos obtidos a partir de caldo clarificado (ozonizado), de caldo evaporado, que além de passar pelo processo de clarificação, recebe um tratamento térmico, de mel final, que pelo fato de ser isento de enxofre desperta o interesse para verificação do seu comportamento, além do mosto obtido a partir do caldo misto, que não passou por processos de tratamento e serve como parâmetro comparativo. Como o trabalho se propõe a estudar o processo de fermentação alcoólica a partir de diferentes tipos de mostos, o processo da Usina Monte Alegre torna-se um excelente objeto de estudo.

1.1 OBJETIVO GERAL

Verificar a influência do sistema de clarificação de caldo por ozonização na fermentação alcóolica, usando mostos obtidos de diferentes etapas do processo industrial; caldo misto (CM), caldo clarificado (CC), caldo evaporado (CE) e mel final (MF).

1.2 OBJETIVOS ESPECÍFICOS

- Realizar a caracterização físico-química de caldos industriais coletados das diferentes etapas do processo (CM, CC, CE e MF), a serem utilizados para a composição do mosto;

- Verificar a influência das concentrações iniciais de substrato na propagação de leveduras;
- Analisar as concentrações iniciais de substrato e de células na fermentação alcoólica, através da ferramenta planejamento experimental fatorial;
- Avaliar a cinética de fermentação para os diferentes tipos de mostos.

2 REVISÃO DE LITERATURA

2.1 A MATRIZ ENERGÉTICA BRASILEIRA

O Brasil é reconhecido e elogiado mundialmente pelo forte componente renovável de sua matriz energética. Hoje, mais de 40% de toda a energia utilizada no país vem de fontes renováveis. O setor sucroenergético tem papel-chave nesse quadro: a cana-de-açúcar, matéria-prima para a produção de etanol e bioeletricidade, é a segunda maior fonte de energia renovável do país, representando quase 15,7% na matriz energética nacional. Este percentual já posiciona o país acima da média mundial (13,2%) no uso de energias limpas e renováveis. (UNICA, 2017).

O Brasil é referência na produção de agroenergia. Programas como os do etanol e do biodiesel atraem a atenção do mundo por ofertar alternativas econômica e ecologicamente viáveis à substituição dos combustíveis fósseis. Menos poluente e mais barata, a geração de energia com o uso de produtos agrícolas representa a segunda principal fonte de energia primária do país. O consumo do álcool supera o da gasolina e o biodiesel já conta com participação relevante na matriz de combustíveis no país em mistura obrigatória com a gasolina. (MAPA, 2017).

2.2 OS BIOCOMBUSTÍVEIS

Biocombustíveis são substâncias derivadas de biomassa renovável. No Brasil, os dois mais usados são o etanol e o biodiesel. Um biocombustível pode substituir parcial ou integralmente, compostos de origem fóssil em motores ou em outros tipos de geração de energia. Por serem biodegradáveis, e praticamente livres de enxofre e compostos aromáticos, não causam impactos elevados ao meio ambiente. A disponibilidade territorial e condições climáticas favoráveis propiciam o cultivo das matérias-primas necessárias à produção dos biocombustíveis, o que tem incentivado investimentos em políticas públicas no âmbito social para o aproveitamento das potencialidades regionais, com geração de renda e empregos e um desenvolvimento sustentável. (ANP, 2017).

O etanol (CH₃CH₂OH), ou álcool etílico, pode ser obtido industrialmente através de via biológica fermentativa (álcool de fermentação), da sintética (álcool de síntese) e, excepcionalmente da destilação de líquidos alcoólicos (álcool de recuperação). A via biológica fermentativa é realizada a partir do processamento e fermentação de cana-de-açúcar, milho, beterraba e batata, entre outros. Na indústria sucroalcooleira brasileira, a cana é a matéria-prima

mais utilizada e pode ter dois destinos: produção de açúcar ou etanol. O etanol é produzido a partir da atividade enzimática das leveduras sobre os açúcares. Este álcool é o que se encontra em bebidas alcoólicas, assim como no álcool combustível e na gasolina, como um aditivo. O etanol também é bastante empregado na indústria, seja na farmacêutica (na produção de perfumes, loções, antissépticos, etc.) ou como solvente químico. Atualmente, o Brasil produz etanol de 1ª geração e 2ª geração. Os automóveis que circulam no país utilizam duas categorias de etanol: hidratado e anidro. O hidratado é usado diretamente em motores desenvolvidos para este fim ou em motores com tecnologia flex. O anidro é misturado à gasolina, sem prejuízo para os motores, em proporções variáveis, de acordo com a vigência legal. (ANP, 2017).

De acordo com a portaria do ministério de agricultura, pecuária e abastecimento (MAPA) nº 75, de 05/03/2015, com data de vigência em 16/03/2015, a mistura carburante etanol anidro-gasolina no Brasil é de 27% para a gasolina comum e 25% para a gasolina premium. (MAPA, 2015).

Não há nenhum outro país que tenha uma frota de 24 milhões de veículos habilitados a funcionar com qualquer combinação de gasolina e etanol. O consumo de etanol hidratado pelos automóveis flex, combinado à mistura atual obrigatória de 27% de etanol anidro na gasolina, reduziu a emissão de gases de efeito estufa (GEE) em mais de 300 milhões de toneladas de CO₂eq (equivalência em dióxido de carbono) desde março de 2003, data do lançamento dos veículos flex no Brasil, até maio de 2015. (UNICA, 2017).

2.3 UNIDADES PRODUTORAS NO ESTADO DA PARAÍBA

Das oito unidades produtoras em atividade no estado da Paraíba, duas são do tipo mista, ou seja, produzem açúcar e etanol, uma produz somente açúcar e as outras cinco produzem somente etanol. A Tabela 2.1 apresenta as unidades de produção ativas no estado da Paraíba, suas localizações, produtos (açúcar e/ou etanol) e as suas moagens, obtidas das médias das últimas 10 safras, e a Tabela 2.2 apresenta as quantidades de cana-de-açúcar processadas e as produções de açúcar e etanol para o estado da Paraíba para as safras 2010/2011 até a safra 2016/2017.

A Usina Monte Alegre é pioneira na utilização do ozônio para clarificação do caldo. Em todo Brasil, apenas 12 usinas fazem uso dessa tecnologia.

Tabela 2.1 - Unidades de produção e moagem média de cana-de-açúcar das últimas 10 safras no estado da Paraíba

Unidade de Produção	Município	Produto	Moagem (t)*
D'Pádua	Rio Tinto	Etanol	497.988
Monte Alegre	Mamanguape	Mista	697.891
Miriri	Santa Rita	Etanol	763.718
Japungu	Santa Rita	Etanol	942.230
Agroval	Santa Rita	Açúcar	695.355
São João	Santa Rita	Mista	481.048
Giasa	Pedras de Fogo	Etanol	1.037.288
Tabu	Caaporã	Etanol	589.187

*Médias das últimas 10 safras; safra 2007/2008 à safra 2016/2017

Fonte: adaptado ASPLAN-PB (2017)

Tabela 2.2– Moagem de cana-de-açúcar e produção de açúcar e etanol das últimas 7 safras no estado da Paraíba

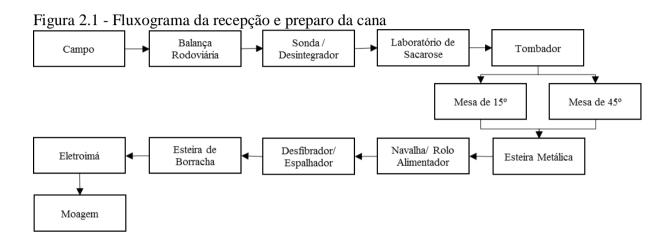
Safra	Cana (t)	Açúcar (t)	Álcool (m ³)
2010/2011	5.246.317	182.778	297.858
2011/2012	6.723.102	269.950	357.490
2012/2013	5.292.651	208.746	305.741
2013/2014	5.150.483	77.110	338.818
2014/2015	6.723.322	147.849	420.619
2015/2016	5.737.280	129.047	355.913
2016/2017	4.891.050	189.618	283.740

Fonte: MAPA (2017)

2.4 PROCESSO DE PRODUÇÃO DE ETANOL – USINA MONTE ALEGRE

O processo de produção de etanol da Usina Monte Alegre está apresentado através das Figuras 2.1 a 2.6, que mostram os fluxogramas resumidos por etapa de produção, indicando a origem dos caldos utilizados na composição do mosto.

Chegada da matéria-prima


A cana-de-açúcar é quantificada e qualificada ao chegar na usina, onde todo carregamento de cana passa por uma pesagem, no setor de balança, depois segue para o setor de laboratório, onde são realizadas análises visando a quantificação do teor dos açúcares totais recuperáveis, e em seguida são encaminhados para o setor de recepção de cana.

Recepção e preparo da cana

Nas mesas alimentadoras do tipo inclinada dá-se início ao preparo da cana, com o processo de lavagem. O preparo da cana tem como objetivo garantir a abertura das células que contém sacarose, facilitando a sua extração. Após a lavagem nas mesas, a cana é lançada na esteira metálica, passa pelas navalhas, onde a cana é transformada em uma massa compacta de

maior densidade, e pelo desfibrador, que complementa a preparação e desintegração da cana, facilitando a extração de caldo. Em seguida é conduzida na esteira de borracha, onde passa pelo eletroímã, responsável pela captação de peças metálicas. Posteriormente, o material é conduzido ao processo de moagem.

A Figura 2.1 mostra o fluxograma da matéria prima (cana-de-açúcar) desde a sua colheita até ser direcionada ao setor de moagem e extração.

Moagem e extração do caldo

O setor de moagem e extração é formado por um conjunto de moendas. Cada moenda é composta por três rolos ou tambores de extração (rolo de entrada, rolo superior e rolo de saída).

Utiliza-se o sistema de embebição com água para extrair a maior quantidade possível do açúcar contido no bagaço, através do caldo. A vazão da embebição é calculada com relação a quantidade de fibra da cana-de-açúcar e o método utilizado é a do tipo composta múltipla, que consiste na aplicação da água antes da última moenda, reconduzindo o caldo obtido nesta para antes da penúltima moenda, e assim por diante até a embebição do 2º terno. O 1º terno não sofre adição prévia de nenhum líquido, por isso se diz que nele é aplicada uma pressão seca, já as demais moendas sofrem pressão úmida. O caldo obtido da primeira moenda de pressão úmida (2º terno) se junta com o caldo obtido da moenda de pressão seca (1º terno) e forma o caldo misto (CM). O caldo misto passa por peneiras rotativa e estática para retirar o excesso de bagaço e segue para o setor de tratamento de caldo, onde será destinado para a produção de açúcar ou etanol.

A Figura 2.2 mostra o fluxograma do processo de extração do caldo da cana e obtenção do caldo misto (CM).



Figura 2.2 - Fluxograma da moagem e extração caldo (produção do caldo misto)

Clarificação do caldo

A usina Monte Alegre utiliza a tecnologia do tratamento de caldo por ozonização, em substituição ao enxofre, onde o ozônio é gerado a partir da passagem do gás oxigênio através de um arco elétrico, causando a dissociação da ligação O-O e combinando-se com outra molécula de O_2 , de acordo com a reação estequiométrica $(3O_2 \leftrightharpoons 2O_3)$.

O caldo misto recebe dosagem do ozônio nos hidrojetores, e o ozônio passa a atuar por oxidação sobre os agentes formadores de cor. Em seguida o caldo passa pelo processo de caleação, que tem por objetivo a neutralização da acidez, correção de pH, reação com ácidos orgânicos, precipitação de coloides, formação de Ca₃(PO₄)₂, floculação e arraste de partículas em suspensão. Após a caleação, o caldo é aquecido a uma temperatura aproximada de 105 °C, para acelerar as reações, reduzir densidade e viscosidade, saturar os sais formados nas reações, promover a floculação, promover coagulação das proteínas, possibilitar a remoção de ar e dos gases dissolvidos e, como consequência, controle microbiológico, eliminando e impedindo o desenvolvimento de bactérias. Após essa etapa, passa por um flasheamento, para eliminar as bolhas de ar e o ar dissolvido no caldo e em seguida por uma decantação, com o objetivo de promover a separação física entre sólido e líquido por diferença de densidade. A parte sólida, conhecida como lodo, segue para a filtração, realizada em filtros rotativos, com o objetivo de recuperar o açúcar do lodo, os quais retornam ao processo na forma de caldo filtrado e a fração líquida, caldo decantado, segue para a etapa de peneiramento, onde obtém-se o caldo clarificado (CC). A Figura 2.3 mostra o processo de clarificação do caldo.

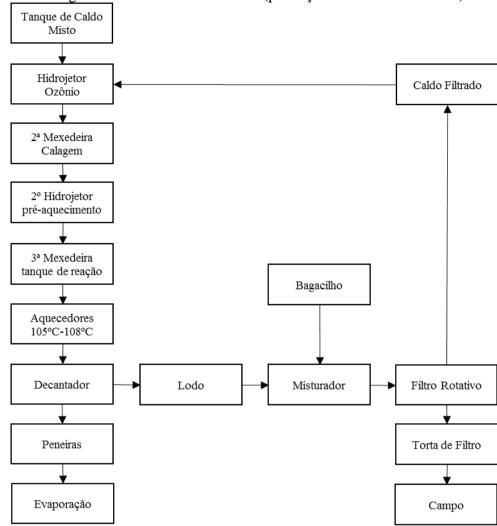


Figura 2.3 - Fluxograma do tratamento de caldo (produção do caldo clarificado)

Evaporação do caldo

Para garantir uma temperatura em torno de 115 °C na entrada da evaporação, o caldo clarificado passa por mais uma etapa de aquecimento.

A evaporação tem como finalidade, retirar água presente no caldo para promover a concentração do mesmo e possibilitar o processo de formação do cristal aproveitando os vapores gerados. Nesse processo a concentração do caldo é elevada de aproximadamente 15 °Brix a 65 °Brix, onde se obtém o xarope, que segue para o setor de cozimento de massas para a fabricação de açúcar.

Uma particularidade do processo da Usina Monte Alegre, é a utilização do caldo de saída do primeiro evaporador, caldo evaporado (CE) na fermentação alcoólica, onde o CE passa por um trocador de calor (regenerador) e em seguida por uma diluição para então fazer parte da composição do mosto.

Durante a evaporação pode ocorrer algumas transformações físico-químicas no caldo, como formação de cor e diminuição de pH (durante a evaporação é comum um decréscimo no pH, que é proporcional ao tempo de retenção na evaporação).

A Figura 2.4 mostra o fluxograma do setor de evaporação, de uma forma resumida, onde parte do caldo da saída do primeiro evaporador (CE) é destinado ao diluidor para composição do mosto.

Tratamento de Caldo

Pré Aquecedores

Evaporador 1A

Regenerador

Diluidor de Mosto

Fermentação

Figura 2.4 - Fluxograma da evaporação (produção do caldo evaporado)

Fabricação de açúcar (produção do mel final)

O mel final (MF) ou melaço é obtido a partir do processo de centrifugação da massa mais esgotada, massa B ou C. A Figura 2.5 mostra o fluxograma do processo de produção do mel final, que após saída das centrífugas da fabricação de açúcar, segue para um tanque de estocagem para posterior aproveitamento na fermentação, onde fará parte da composição do mosto.

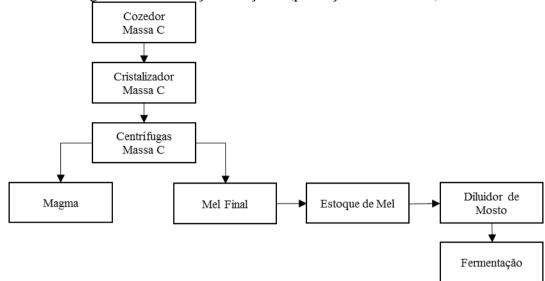
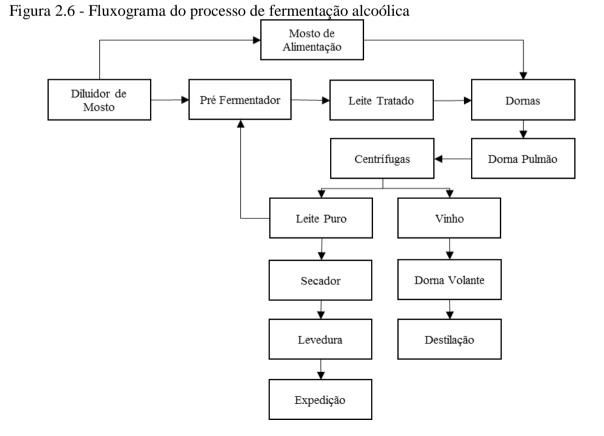



Figura 2.5 - Fluxograma da fabricação de açúcar (produção do mel final)

Fermentação alcoólica

O sistema de fermentação utilizado na Usina Monte Alegre é do tipo batelada alimentada. A Figura 2.6 mostra o fluxograma do processo de fermentação alcoólica e centrifugação do vinho, com reciclo de levedura e produção do vinho delevedurado, que é direcionado às colunas de destilação para purificação e produção de etanol hidratado e anidro.

2.5 CLARIFICAÇÃO DO CALDO: MÉTODO CONVENCIONAL E OZONIZAÇÃO

No Brasil, produtor de açúcar de cana-de-açúcar, utiliza-se na clarificação do caldo, o método convencional de sulfitação, tendo o dióxido de enxofre como agente sulfitante. A sulfitação consiste em promover o contato do caldo com o gás sulfuroso, dióxido de enxofre (SO₂), para a sua absorção e visa a eliminação de materiais corantes e redução de viscosidade de massas.

O uso de dióxido de enxofre, embora regulamentado, como aditivo alimentar, é observado com cautela pelos países importadores de açúcar, em consequência de possível efeito alergênico associado, diminuindo as exportações de açúcar refinado brasileiro, por meio de adoção de barreira técnica, respaldados pela legitimidade da segurança alimentar, embora se considere a possibilidade de barreira comercial disfarçada. A União Europeia e América do Norte utilizam o açúcar de beterraba, o qual é isento de dióxido de enxofre na clarificação

O uso do enxofre tem limitações pela Organização Mundial da Saúde (OMS). As indústrias americanas e europeias não permitem a sua utilização. No Brasil só existe limitação para exportação, que é de 7 ppm (parte por milhão).

O ozônio (O₃) atua por oxidação sobre praticamente os mesmos agentes formadores de cor que o enxofre (que atua como redutor), porém possui o dobro do potencial de oxirredução, e com vários benefícios adicionais por não reduzir o pH do meio, o que implica em menor consumo de cal. Inicialmente o caldo de cana puro, sem nenhum agente químico, passa pelo processo de ozonização recebendo uma carga de ozônio suficiente para reduzir até 40% da cor original.

O ozônio possui a propriedade de oxidar, isto é, de trocar elétrons com algumas moléculas polares (não necessariamente ionizáveis). No processo de produção de açúcar, os mesmos são utilizados para oxidar principalmente os produtos intermediários da reação enzimática responsável pela formação da melanina, que é um dos maiores agregadores de cor, preparando-os para que os mesmos sejam removidos posteriormente através das etapas de carbonatação ou fosfatação. (SHORE et al., 1984).

O ozônio é um gás reativo, incolor nas condições atmosféricas, relativamente instável em solução aquosa, com meia vida de 165 minutos, a 20°C. Por outro lado, é muito estável no ar, com meia vida de aproximadamente 12 horas em condições normais de temperatura e pressão. (DI BERNARDO, 1993).

A palavra ozônio vem do grego "el cheiro" a qual é muito apropriada por possuir um cheiro característico e refrescante que lembra o odor do ar após uma tempestade elétrica. É a forma tri atômica do oxigênio (O₃), de peso molecular 48 g.mol⁻¹. Forma-se quando as

moléculas de oxigênio (O₂) se rompem devido à radiação ultravioleta que vem do sol, e os átomos separados combinam-se individualmente com outras moléculas de oxigênio, podendo ser reproduzido instantaneamente por um equipamento elétrico compacto quando uma corrente alternada de alta voltagem é descarregada na presença de oxigênio. Tem a propriedade de oxidar de forma rápida e eficiente as substâncias orgânicas e inorgânicas presentes na água. A geração de ozônio ocorre pelo princípio de descarga elétrica, que acelera elétrons o suficiente para partir, através do impacto, as ligações da molécula de oxigênio. Os átomos livres reagem com outras moléculas de oxigênio para a formação do ozônio.

O ozônio é um gás altamente instável, logo se recompondo como oxigênio, por isso não é possível armazená-lo, devendo ser sempre produzido no momento do uso. A velocidade de dissociação de O₃ para O₂ depende da temperatura e da concentração de ozônio: ou seja, quanto maior a concentração e maior a temperatura, maior a dissociação, e vice-versa. Devido ao alto poder oxidante do ozônio e ao fato de não produzir subprodutos tóxicos, suas aplicações são bastante amplas.

No Brasil, o ozônio tem sido comercialmente explorado há mais de 15 anos, aplicado a princípio no tratamento de água mineral ou em hospitais. O gás ozônio é o mais poderoso bactericida que se conhece atualmente porque age 3.120 vezes mais rápido que o cloro, além de ser 20 vezes mais efetivo e 100 vezes mais solúvel em água. O ozônio rompe rapidamente, por oxidação, as paredes celulares de bactérias, vírus e microrganismos existentes. Isso sem causar efeitos colaterais, prejudiciais aos seres vivos. (OZONEBRAS, 2014).

A Figura 2.7 mostra o sistema de geração e dosagem de ozônio da Usina Monte Alegre.

Figura 2.7 - Sistema de geração e dosagem de ozônio da Usina Monte Alegre

Fonte: USINA MONTE ALEGRE (2017)

2.6 PREPARO DO MOSTO

A concentração de açúcares do mosto deve ser compatível com a natureza e composição da matéria-prima, com o tipo de levedura empregada e com o processo de condução da fermentação. Dada a existência de uma correlação entre a concentração de sólidos e de açúcares, a concentração do mosto, na prática é estabelecida em termos de graus Brix. O caldo tem uma concentração que varia entre 14 e 20 °Brix, e em função de sua pureza, apresenta uma concentração de açúcares totais variando entre 12,5 e 18,0%. Com a diluição, através da embebição sofrida nas moendas, são obtidos mostos com concentrações entre 11 e 14 °Brix.

Valores baixos de ART/Brix indicam que uma maior quantidade de melaço foi utilizada no preparo do mosto. Considerando que o melaço possui uma maior quantidade de substâncias inibidoras das células de levedura em sua composição, é de se esperar um desempenho fermentativo menor, quanto menor for o valor deste parâmetro. (BICUDO et al., 2016).

A acidez do mosto e a atividade do agente fermentativo são estreitamente ligados. A reação ótima se dar no meio ácido, com um pH em torno de 4,5, e em termos de acidez total, entre 2,0 e 2,5 g de ácido sulfúrico por litro de mosto. A acidez além de favorecer o desenvolvimento de levedura, provoca inibição das bactérias.

A fermentação contribui para elevação da temperatura de modo exagerado, podendo as condições se tornarem adversas às leveduras, que tem a sua atividade limitada e ao mesmo tempo, favorecendo o desenvolvimento de bactérias que então, encontram sua temperatura ótima. Por este motivo, a refrigeração do mosto torna-se necessária.

Bicudo et al. (2016), relatam sobre a dificuldade que se tem de caracterizar quimicamente o mosto e a sua variação significativa das concentrações dos componentes ao longo da safra. Também comenta sobre a variação do rendimento fermentativo, demonstrando a variação da qualidade da matéria prima, o que interfere significativamente no desempenho da levedura.

2.7 O MICROORGANISMO (LEVEDURA)

O processo fermentativo é realizado pela atividade de certos microrganismos presentes no mosto comumente chamado de fermento ou levedo. O fermento pode ser definido como uma concentração de células de leveduras, suficientemente concentrada, de maneira a garantir a fermentação de um determinado volume de mosto em condições econômicas. A multiplicação das leveduras é controlada até que seja atingido um volume de suspensão de células coerente

com o volume do pré fermentador ou com o da dorna principal. O processo está baseado no fato de que, uma vez atingida a concentração celular máxima (número de Brown), a levedura não mais se reproduz, desempenhando tão somente as funções fermentativas, consumindo açúcar apenas para a produção de etanol.

A separação das leveduras do mosto é realizada em turbinas, pela ação da força centrípeta, através da diferença de densidades; o vinho sai pela parte superior e o leite de levedura pela parte inferior. O vinho delevedurado é encaminhado para uma dorna pulmão e daí, para o aparelho de destilação, enquanto o leite de levedura é encaminhado para o tratamento, onde será hidratado e acidificado, obtendo um pH próximo a 2,8. Nessas condições, as bactérias remanescentes não conseguem sobreviver, o mesmo ocorrendo com as células velhas de leveduras, enquanto que as células vigorosas resistem bem.

Os principais fatores que controlam as atividades das leveduras na fermentação alcoólica, são: concentrações de açúcares, que está intimamente ligada à natureza da parede celular, que funciona como agente no transporte dos açúcares, por difusão, para o interior da célula; a agitação da dorna, que provoca a permanência das células em suspensão, aumentando a superfície de contato com o mosto; a reação do meio, pois as leveduras são microrganismos acidófilos e, de modo geral é bem conduzida em pH entre 4,5 e 5,5; a temperatura, que para o bom desenvolvimento da levedura alcoólica deve situar-se entre 28 e 30 °C, mas em consequência das reações exotérmicas que a caracteriza, deve-se proceder o ajuste da temperatura com auxílio da refrigeração; a qualidade da levedura, logo deve ser escolhida uma levedura que apresente ótima eficiência de inoculo; e os elementos minerais, nutrientes nitrogenados e vitaminas.

A faixa de pH mais adequada para a fermentação alcoólica está entre 4 e 5, sendo que os mostos industriais geralmente possuem pH entre 4,5 e 5,5, sendo características das leveduras industriais adaptação até faixas de pH entre 5,2 e 6,8. Meios mais ácidos são menos sujeitos a contaminação bacteriana, resultando em maior rendimento alcoólico. (LIMA et al., 2001).

As leveduras são microrganismos mesófilos, sendo que a temperatura ótima está entre 26 e 35°C. O controle de temperatura é essencial, pois caso a temperatura aumente, a velocidade da fermentação consequentemente aumenta, elevando o risco de contaminação e tornando a levedura mais sensível à toxidade do etanol gerado. (BORZANI et al., 2001).

As leveduras são mesófilas, sendo temperaturas entre 26 e 35 °C favoráveis para produção de etanol. A velocidade de conversão de açúcares em etanol aumenta conforme

aumenta a temperatura do mosto, porém, deve-se ter cuidado, pois pode também propiciar o desenvolvimento de contaminação bacteriana. (LIMA et al., 2001).

A concentração de fermento influencia a viabilidade celular e, independente da concentração dos contaminantes no meio, quanto maior a quantidade inicial de fermento, maior é a resistência aos inibidores e, consequentemente, maior a viabilidade celular. (OLIVEIRA et al., 2014).

2.8 A FERMENTAÇÃO ALCOÓLICA

Com a adição de levedo ao mosto, dá-se início a fermentação. A partir da fermentação alcoólica, via bioquímica, obtém-se o álcool etílico. Utiliza-se o processo de "Melle-Boinot" ou de "recuperação das leveduras pela centrifugação".

Segundo a intensidade de produção de CO₂, de álcool e desprendimento de calor, a fermentação alcoólica pode ser dividida em três fases: fermentação preliminar, fermentação principal ou tumultuosa, e fermentação complementar ou pós-fermentação.

Adicionando-se a levedura ao mosto, estas tendem a multiplicar-se até atingir um número limite, chamado de "número de Brown", desde que as condições sejam favoráveis. Esta fase da multiplicação celular ou crescimento é dita fermentação preliminar ou pré-fermentação. O interessante é que esta fase se prolongue o menos possível, pois praticamente não há produção de etanol. No processo de Melle-Boinot, a pré-fermentação praticamente não existe, pois ao mosto inicial já se adiciona uma quantidade de lêvedo, tornando-se desnecessária a multiplicação.

O início da fermentação principal é caracterizado pelo desprendimento de CO₂. A produção desse gás vai aumentando progressivamente e com rapidez. Nesta fase, a temperatura tende a elevar-se rapidamente, e daí a grande necessidade de uma refrigeração. A formação de álcool é máxima e rápida e como isto se deve a transformação de açúcar, evidentemente o °Brix vai caindo até o ponto da fermentação complementar.

A queda da intensidade de desprendimento de CO₂ e o abaixamento gradativo da temperatura, caracterizam o início da pós-fermentação. É nessa fase que as infecções costumam aparecer e também se forma a maior parte dos álcoois homólogos superiores. Isto quer dizer que a maior brevidade desta fase dará um álcool de melhor qualidade. Quando leituras consecutivas do °Brix apresentam resultados iguais ou muito semelhantes, recomenda-se a imediata destilação.

O consumo de açúcares pode variar entre 65% e 98%, dependendo das características do processo. (BONASSA et al., 2013).

Açúcares redutores são carboidratos que possuem seu grupo carbonílico livre, capazes de se oxidar na presença de agentes oxidantes em solução alcalina. Essa oxidação ocorre apenas com o monossacarídeo em sua forma linear, que está em equilíbrio com sua estrutura cíclica. Assim, o carbono carbonílico, denominado anomérico quando na estrutura cíclica, é oxidado a um grupo carboxílico. Por outro lado, os carboidratos cujos carbonos anoméricos estão envolvidos em ligações glicosídicas, sendo incapazes de assumirem a sua forma linear e, portanto, de se oxidarem em solução alcalina, são denominados açúcares não redutores, como exemplo, a sacarose (SILVA et al., 2003; NELSON; COX, 2014). Dentre os açúcares redutores, duas hexoses particularmente importantes para a indústria, especialmente a de alimentos são a glicose e a frutose. Esses carboidratos são dois dos principais monossacarídeos presentes em processos fermentativos.

A obtenção do álcool etílico na fermentação pode ser resumida pela equação de Gay Lussac:

$$C_6H_{12}O_6 \rightarrow 2 CH_3CH_2OH + 2 CO_2 + Calor$$
 (2.1)

Segundo esta equação, 100 partes em peso de glicose são desdobrados fornecendo 51,1 partes em peso de etanol. Na realidade, a quantidade de álcool produzida é menor do que a estabelecida por Gay Lussac em virtude da produção de outras substâncias, tais como o glicerol, álcoois homólogos superiores e outros.

A porcentagem de ART desviado para o crescimento celular e obtenção de subprodutos (glicerol, ácido succínico, entre outros) é bastante polêmica e seu valor varia significativamente entre trabalhos disponíveis para consulta. Este valor deve estar em torno de 10%, fornecendo valores de rendimento fermentativo em torno de 90%. (BICUDO et al., 2016).

2.9 O MOSTO FERMENTADO (VINHO)

O vinho, produto resultante da fermentação do mosto, possui componentes de natureza líquida, sólida e gasosa. As substâncias líquidas são: o álcool etílico, que aparece nos vinhos industriais numa proporção de 7 a 12% em volume, de acordo com a natureza e a composição do mosto que lhe deu origem. A água, variando de 88 a 93% em volume e outras substâncias líquidas que se fazem presentes em menor proporção, como consequência direta da própria fermentação e das condições em que se processou a fermentação alcoólica tais como, os ácidos succínico e acético, a glicerina, o furfural, os álcoois homólogos superiores (amílico, isoamílico, propílico, isopropílico, butílico), aldeído acético, etc.

As substâncias sólidas presentes no vinho se encontram em suspensão e em solução. As primeiras são representadas pelas células de leveduras e bactérias, além de substâncias não solúveis que acompanham o mosto tais como o bagacilho. Os sólidos em solução são representados por açúcares não fermentescíveis, materiais albuminoides, sais minerais, etc.

O representante principal dos componentes de natureza gasosa é o gás carbônico (CO₂) que aparece em pequena proporção no vinho, embora tenha sido formado em grande quantidade no processo fermentativo. Outro componente gasoso encontrado no vinho, provindo do melaço que compõe o mosto, para usinas que fazem uso do enxofre no tratamento de caldo, é o dióxido de enxofre (SO₂). Esta substância altera-se devido as condições do processo, causando um ataque químico nos equipamentos.

2.10 FATORES INTERFERENTES NA FERMENTAÇÃO ALCOÓLICA

Os fatores que devem ser controlados durante a fermentação do mosto devem ser, a agitação (aeração), temperatura x tempo, pH, nutrientes e substrato, contaminantes bacterianos, e etanol. (SOUSA e MONTEIRO, 2012).

Os limites melhores para se trabalhar para cada interferentes são: a aeração e a agitação devem ser realizadas no início da fermentação para uma melhor multiplicação das leveduras, sendo evitadas durante a fermentação, pois a presença de oxigênio pode propiciar a formação de ácido acético. A temperatura deve ser controlada entre 25 °C à 30 °C. O pH deve estar em torno de 4,5 à 5,0 afim de evitar o desenvolvimento de bactérias indesejadas, e afetar o crescimento das leveduras. Os nutrientes são importantes porque influenciam o desenvolvimento das leveduras e em concentrações altas, podem inibir seu crescimento. A contaminação bacteriana provoca perda no rendimento prejudicando a fermentação e a qualidade do produto, provocando o aumento da acidez, que é a inversão da sacarose. A presença do etanol acima de 8 °GL pode inibir o crescimento da levedura pela sua desnaturação.

São três as principais causas atribuídas a perda de rendimento fermentativo em processos industriais: falhas operacionais relacionadas a condução do processo e decisões equivocadas, características fermentativas do microrganismo agente não satisfatórias para uso industrial e qualidade da matéria-prima. Entre elas, a qualidade da matéria prima é a que possui maior variação ao longo do processo, e, portanto, maior dificuldade de controle. (BICUDO et al., 2016).

Segundo Amorim (2005), há vários fatores envolvidos no processo fermentativo, como o microrganismo utilizado e a forma de conduzir o processo, os quais devem proporcionar baixa inibição em relação ao produto desejado, não serem patogênicos, utilizar meio de cultura

de baixo custo e rápida conversão dos açúcares em etanol. Fatores físicos (temperatura, pressão osmótica), químicos (pH, oxigenação, nutrientes, inibidores) e microbiológicos (espécie, linhagem e concentração da levedura, contaminação bacteriana) afetam o rendimento da fermentação e a eficiência da conversão de açúcar em etanol. (LIMA et al. 2001).

Durante a fermentação a levedura pode estar exposta a vários fatores estressantes (físicos, químicos e microbiológicos), sendo os mais frequentes os altos teores alcoólicos, temperatura elevada, acidez elevada do meio, presença de sulfito, contaminação bacteriana e contaminação por leveduras, exceto a *Saccharomyces cerevisiae*, os quais afetam diretamente o rendimento da produção de etanol. (BASSO, 2011).

2.11 ESTUDO CINÉTICO DA FERMENTAÇÃO ALCOÓLICA

O estudo cinético de um cultivo, consiste inicialmente na análise da evolução dos valores de concentração, de um ou mais componentes do sistema de cultivo (X, S e P), em função do tempo de fermentação. Os valores experimentais de concentração, quando representados em função do tempo, permitirão os traçados das curvas de ajuste, conforme ilustrado na Figura 2.8 e indicados por X=X(t), P=P(t) e S=S(t). (SCHMIDELL et al, 2001).

Figura 2.8 – Curvas de ajuste dos resultados de uma experiência idealizada de fermentação

Fonte: SCHIMIDELL et al (2001)

Velocidades de transformação

As inclinações das curvas descritas nos perfis definem as velocidades instantâneas de transformação, ou seja, velocidade de crescimento celular (r_x), velocidade de consumo de

substrato (r_s) e velocidade de formação do produto (r_p), representadas respectivamente pelas Equações (2.2), (2.3) e (2.4):

$$r_{x} = \frac{dX}{dt} \tag{2.2}$$

$$r_s = -\frac{dS}{dt} \tag{2.3}$$

$$r_p = \frac{dP}{dt} \tag{2.4}$$

A produtividade em biomassa, útil para avaliação do desempenho de um processo fermentativo, é calculada a partir da Equação (2.5) e representa a velocidade média de crescimento referente ao tempo total de cultivo t_f .

$$P_X = \frac{(X_m - X_0)}{t_E} \tag{2.5}$$

Onde: P_X = produtividade em biomassa [g/L.h]; X_m = concentração celular máxima [g/L]; X_0 = concentração celular inicial [g/L]; t_f = tempo final da fermentação [h].

A mesma definição pode ser aplicada à concentração do produto, denominada produtividade do produto, de acordo com a Equação (2.6):

$$P_{p} = \frac{P_{m} - P_{0}}{t_{m}} \tag{2.6}$$

Onde: P_P = produtividade em produto [g/L.h]; P_m = concentração máxima de produto [g/L]; P_0 = concentração inicial de produto [g/L], geralmente desprezível com relação a P_m ; t_{tp} = tempo final da fermentação [h], não é necessariamente igual a t_f .

Velocidades específicas de transformação

As velocidades instantâneas com relação à concentração de microrganismos, ou velocidades específicas de transformação (μ), são calculadas de acordo com a Equação (2.7) (velocidade específica de crescimento microbiano), Equação (2.8) (velocidade específica de consumo de substrato) e Equação (2.9) (velocidade específica de formação de produto).

$$\mu_X = \left(\frac{1}{X}\right) \left(\frac{dX}{dt}\right) \tag{2.7}$$

$$\mu_{S} = \left(\frac{1}{X}\right)\left(\frac{-dS}{dt}\right) \tag{2.8}$$

$$\mu_P = \left(\frac{1}{X}\right) \left(\frac{dP}{dt}\right) \tag{2.9}$$

Na fase logarítmica ou exponencial, a velocidade específica de crescimento é constante e máxima ($\mu_x = \mu_{max}$). A velocidade de crescimento é diretamente proporcional à concentração X, conforme Equação (2.10):

$$\frac{dX}{dt} = \mu_m X \tag{2.10}$$

De onde obtém-se a Equação (2.11):

$$lnX = \mu_m (t - t_i) + lnX_i$$
 (2.11)

A representação de lnX versus o tempo de cultivo, na fase exponencial, resulta em uma reta, com coeficiente angular igual a velocidade específica máxima de crescimento (μ_m) .

A fase exponencial também é caracterizada pelo tempo de geração (t_g) , que é o tempo necessário para dobrar o valor da concentração celular (X=2Xi). O tempo de geração é calculado de acordo com a Equação (2.12):

$$t_g = \frac{\ln 2}{\mu_m} = \frac{0,693}{\mu_m} \tag{2.12}$$

Como μ_m é constante, então t_g também é constante nesta fase. O tempo de geração é importante na interpretação do crescimento celular, uma vez que dá uma ideia mais prática de quão rápido ocorre o crescimento de bactérias, fungos e leveduras.

Para as leveduras, o valor mínimo do $t_{\rm g}$ está compreendido entre 1,5 e 2 horas. (SCHMIDELL et al, 2001).

A cinética de fermentação alcoólica é muito complexa. A taxa de fermentação muda continuamente com o desaparecimento do substrato e formação do álcool. (SANTOS, 2001).

3 MATERIAL E MÉTODOS

3.1 CALDOS E MOSTOS

Para as propagações de fermento e estudo das fermentações alcoólicas, foram utilizados caldos de cana comercial, adquiridos no comércio local, e industrial, coletados de diferentes etapas do processo da Usina Monte Alegre. As amostras coletadas do processo industrial foram conservadas, mantidas congeladas em freezer, até a realização das análises.

A Tabela 3.1 apresenta as amostras dos caldos industriais, identificadas de acordo com a data de realização da coleta: MA-1, MA-2, MA-3, MA-4 e MA-5, e de acordo com a etapa do processo: CM, CC, CE e MF, onde CM é o caldo misto, obtido do sistema de extração (moendas), CC é o caldo clarificado, resultante do processo de clarificação com uso do ozônio, CE é o caldo evaporado, extraído da saída do primeiro evaporador, e MF é o melaço ou mel final, obtido do processo de centrifugação das massas, na fabricação de açúcar.

Tabela 3.1– Amostras de caldos industriais coletadas na Usina Monte Alegre

Amostra	Data da amostragem	Identificação	
	21/12/2016	MA-1	
	23/12/2016	MA-2	
CM - CC - CE - MF	26/12/2016	MA-3	
	27/12/2016	MA-4	
	28/12/2016	MA-5	

Para o preparo dos mostos nas concentrações desejadas, foram realizadas diluições com água destilada e esterilizada, ou adição de mel final. O processo de esterilização da água destilada, bem como dos erlenmeyers, utilizados como fermentadores, foi realizado em autoclave à temperatura de 121 °C e pressão de 1 kgf.cm⁻², durante 15 minutos.

3.2 LEVEDURA

Foi utilizada a levedura industrial *Fermol Millenium Destiller – cepa SC 20*, mesma levedura propagada no início da safra 2016/2017 na usina Monte Alegre, um fermento composto de leveduras secas ativas de *Saccharomyces cerevisiae*, selecionadas e com adição de nutrientes, adquirida da empresa AEB Bioquímica Latino Americana S.A.

Foram realizadas propagações da levedura, a partir da levedura liofilizada SC-20, para levantamento de quantidades necessárias para a inoculação dos mostos a serem analisados no estudo da fermentação alcoólica.

A Figura 3.1 apresenta amostras de caldos das diferentes etapas do processo e da levedura, cedidas pela usina Monte Alegre.

Figura 3.1 – Amostras dos caldos misto, clarificado, evaporado e mel final e da levedura SC-20 cedidas pela Usina Monte Alegre

3.3 ANÁLISES REALIZADAS

Para o processo de propagação de leveduras, foram realizadas análises de pH, concentração de sólidos solúveis totais (°Brix), concentração de leveduras e percentual de floculação. Para o processo de fermentação alcoólica, foram realizadas análises de pH, concentração de substrato (°Brix e ART), concentração de leveduras e concentração de etanol.

As determinações do °Brix e pH foram realizadas de acordo com a metodologia do Instituto Adolfo Lutz (2004). A concentração de leveduras foi obtida pelos métodos de massa úmida e massa seca. A análise de floculação foi realizada a partir do método proposto pela Fermentec (2006). A concentração de etanol foi realizada através de cromatografia líquida. Os açúcares redutores totais (ART), foram determinados a partir do método DNS, proposto inicialmente por Miller (1959) e adaptado por Vasconcelos (2013) da Embrapa Agroindústria Tropical.

As análises foram realizadas no Laboratório de Bioengenharia da UFPB e Laboratório de Engenharia Bioquímica da UFRN.

3.3.1 CONCENTRAÇÃO DE LEVEDURAS

Esta análise consistiu em sedimentar as células de levedura através de centrifugação. Foram determinadas as concentrações de células pelos métodos de massa úmida e massa seca. A massa úmida foi utilizada para quantificação da biomassa a ser utilizada como inoculo, nos ensaios de fermentação alcoólica e a massa seca foi utilizada para a determinação das concentrações de células em função do tempo.

Massa úmida:

A análise de massa úmida foi realizada no final do cultivo, onde o vinho (mosto fermentado) foi transferido para tubos de centrífuga de 50 mL, previamente identificados e pesados, e estes submetidos à uma centrifugação a 6.000 rpm durante 10 minutos em centrífuga refrigerada. Do processo de centrifugação, obteve-se uma parte sobrenadante, que é o vinho isento de biomassa (vinho delevurado) e uma parte decantada, que é a biomassa produzida na propagação (massa úmida). A fase sobrenadante foi descartada e a parte decantada, biomassa produzida, foi quantificada através de pesagem, em balança analítica, de acordo com a Equação (2.13), para em seguida ser inoculada nos mostos para os estudos das fermentações alcoólicas, de acordo com as concentrações de células estabelecidas.

$$MU(g) = m - m_t \tag{2.13}$$

Onde: MU é a massa úmida; m é a massa do tubo com a amostra; m_t é a massa do tubo.

Com os valores das massas úmidas, calculou-se as concentrações de células a partir da Equação (2.14):

$$X(g.L^{-1}) = \frac{MU}{V_a}$$
 (2.14)

Onde: X é a concentração de células e V_a é o volume da amostra (0,05 L).

Massa seca:

Para determinação da massa seca, os tubos com as massas úmidas, foram submetidos à uma secagem, por um período mínimo de 24 horas à uma temperatura de 80 °C, em estufa de secagem e esterilização. Após a secagem, a massa seca foi determinada através de pesagem, em balança analítica, de acordo com a Equação (2.15):

$$MS(g) = m - m_t \tag{2.15}$$

Onde: MS é a massa seca; m é a massa do tubo com a amostra; m_t é a massa do tubo.

Com os valores das massas secas, calculou-se as concentrações de células a partir da Equação (2.16):

$$X\left(g.L^{-1}\right) = \frac{MS}{V_a} \tag{2.16}$$

Onde: X é a concentração de células e Va é o volume da amostra.

A determinação da concentração de células pelo método de massa seca, também foi utilizada para as amostras dos mostos em fermentação. Foram utilizados micro tubos de 2,0 mL, previamente identificados e pesados, para coleta das amostras. As amostras, em duplicata, foram transferidas para micro tubos, com auxílio de uma pipeta automática de 1000 μL, em seguida os microtubos foram submetidos à uma centrifugação, em uma micro centrífuga (mini spin eppendorf), a uma rotação de 10.000 rpm por um tempo de 5 minutos. Do processo de centrifugação obteve-se uma parte sobrenadante (líquido e sólidos solúveis), utilizado para realização das análises de concentração de substrato, por refratometria, e uma parte sedimentada (sólidos insolúveis e biomassa). A parte sedimentada foi submetida à secagem, por um período mínimo de 24 horas à uma temperatura de 80 °C, em uma estufa de secagem e esterilização. Após a secagem, as amostras foram pesadas em balança analítica e por diferença de massas, determinou-se o peso seco de células (%p/v), de acordo com a Equação (2.15) e em seguida, calculou-se as concentrações de células, de acordo com a Equação (2.16).

3.3.2 CONCENTRAÇÃO DE ETANOL

A determinação do percentual de álcool etílico, foi realizada através de Cromatografia Líquida de Alta Eficiência (HPLC, do inglês *High Performance Liquid Chromatography*). As análises foram realizadas no Laboratório de Engenharia Bioquímica da UFRN. Foi utilizado um cromatógrafo *Accela (ThermoScientific, USA)*, coluna Shim-pack SCR 101-H (*Shimadzu Co., Japan*) com proporções de 30 cm x 7.9 mm, com 20 microlitros de injeção, à uma temperatura de 65 °C no forno e 10 °C nas bandejas de amostras. A fase móvel utilizada foi 5 mM de H₂SO₄, a um fluxo de 0,6 mL/min, num tempo de análise de 30 minutos. O etanol foi quantificado usando uma curva de calibração. As amostras contidas em microtubos (sobrenadante resultante do processo de centrifugação dos mostos) foram diluídas em 1:5 e filtradas, com auxílio de uma seringa e filtros pvdf de 0,45 e 0,20 μm, e em seguida injetadas no cromatógrafo, em quantidade de 20μL.

As concentrações de etanol também foram determinadas por cálculo (produção teórica), a partir da relação de estequiometria da reação, onde 1 g de ART é igual a 0,511 g de etanol, de acordo com a Equação (2.17):

$$P = (S_0 - S_f) \times 0,511 \tag{2.17}$$

Onde: P é a concentração de etanol, em $g.L^{-1}$; S_0 é a concentração inicial de substrato; S_f é a concentração final de substrato.

3.3.3 PERCENTUAL DE FLOCULAÇÃO

Analisado para amostras de vinho fermentado, de acordo com a metodologia Fermentec (2006). A análise consistiu em uma avaliação visual das características de floculação, a partir da sedimentação da amostra. Foram colocadas 100 mL das amostras em provetas e aguardou-se por um tempo de 15 minutos para que ocorresse a sedimentação. Após os 15 minutos, leu-se o volume do sedimentado e calculou-se o percentual de floculação, através da Equação (2.18).

$$\%Floculação = V_T - V_S \tag{2.18}$$

Onde: V_T é o volume total (100 mL); V_S é o volume sedimentado (ou volume de levedo)

3.3.4 AÇÚCARES REDUTORES TOTAIS (ART)

Os açúcares redutores totais (ART) foram quantificados pelo método DNS, proposto inicialmente por Miller (1959) e adaptado por Vasconcelos (2013) da Embrapa Agroindústria Tropical. Neste método, o açúcar é reduzido gerando um composto de coloração marrom avermelhado que pode ser quantificado por espectrometria.

A amostra (sobrenadante da centrifugação do mosto) foi diluída em 1:20 com água destilada, em seguida acidificada com HCl 2N (1,0 mL da amostra para 1,0 mL do ácido), após a acidificação a mistura foi aquecida em banho maria a 100 °C por 5 minutos, resfriada a temperatura ambiente e neutralizada com 2,0 mL de hidróxido de sódio 2N. Após a neutralização, 0,5 mL da amostra foi misturada em tubo de ensaio com 0,5 mL do reagente DNS, em duplicata. A mistura foi novamente aquecida em banho maria a 100 °C por 5 minutos, e em seguida, resfriada a temperatura ambiente e diluída com 4,0 mL de água destilada para leitura no espectrômetro a 540 nm. O mesmo tratamento foi realizado para construção de uma curva de calibração com solução de glicose nas concentrações de 0,1; 0,2; 0,3; 0,4; 0,5; 0,6; 0,7; 0,8 e 0,9 g/L, onde obteve-se a equação: y = 1,608x com coeficiente de correlação (R²) igual a 0,9972 (Apêndice A). Substituindo os resultados das leituras de absorbância na equação e multiplicando os valores pelas diluições realizadas, obteve-se os resultados em açúcares redutores (mg/mL).

3.4 CARACTERIZAÇÃO FÍSICO-QUÍMICA DOS CALDOS

Foram realizadas análises de concentração de substrato, em ^oBrix, e pH para caracterização das amostras dos caldos industriais coletados (CM, CC, CE e MF) a serem utilizadas como mostos nos estudos de fermentação alcoólica. Os caldos misto, clarificado e evaporado, foram filtrados antes da realização das análises, para remoção de impurezas.

Para a análise estatística, foi aplicado o teste de Tukey através do programa *Assistat* versão 7.0 pt (2017).

3.5 PROPAGAÇÃO DE LEVEDURAS: INFLUÊNCIA DA CONCENTRAÇÃO INICIAL DE SUBSTRATO

Foi realizado estudo, utilizando-se caldo de cana comercial como meio de cultivo nas concentrações de 6, 8 e 10 °Brix, para avaliação da melhor condição a ser utilizada durante as propagações de levedura.

Os meios de cultivo foram preparados em balões volumétricos, em duplicata nas quantidades de 500 mL, e em seguida transferidos para os fermentadores (erlenmeyers de 1 litro), identificados como B6 (soluções de 6 °Brix), B8 (soluções de 8 °Brix) e B10 (soluções de 10 °Brix).

A massa de levedura de *Saccharomyces cerevisiae* SC-20 liofilizada foi pesada e em seguida realizada a inoculação na concentração de 2,0 g.L⁻¹, em câmara de fluxo laminar. Após a inoculação, as amostras foram mantidas em uma incubadora com temperatura e agitação orbital constantes, de 32°C e 150 rpm, durante todo o período da propagação. Foram retiradas amostras em duplicata, no início do processo e a cada uma hora, até completar 10 horas, para determinação da concentração de células pelo método de massa seca e concentração de substrato, em °Brix. A propagação foi continuada até completar 24 horas, quando novas amostras foram coletadas para verificação das concentrações de células e substrato. Também foi realizado o teste de floculação e determinação da massa úmida para as amostras do vinho fermentado. As leituras de pH foram realizadas no início e término do processo.

A água destilada e os erlenmeyeres, utilizados como fermentadores, foram esterilizados em autoclave por 15 minutos, à uma temperatura de 121 °C e pressão de 1kgf.cm². Os utensílios utilizados no procedimento de inoculação, foram esterilizados com auxílio do bico de bunsen, em uma câmara de fluxo laminar.

3.6 FERMENTAÇÃO ALCOÓLICA: ESTUDOS PRELIMINARES

O estudo teve por objetivo analisar a influência da concentração inicial de substrato dos diferentes mostos sobre o processo de fermentação alcoólica.

Foi realizado a propagação de leveduras, utilizando caldo de cana comercial como meio de cultivo, na concentração de 10 °Brix e inoculação de 2,0 g.L⁻¹ da *Saccharomyces cerevisiae* SC-20.

Para o estudo da fermentação alcoólica, foram utilizadas as amostras MA-1 e MA-2, para obtenção de mostos com concentrações de 20 °Brix e 15 °Brix, respectivamente. A inoculação foi realizada a partir da biomassa obtida do processo de propagação, com concentração de células de 10 g.L⁻¹ para as duas amostras. Todo o processo foi realizado em câmara de fluxo laminar.

O processo de fermentação foi conduzido sob temperatura controlada e agitação orbital de 32 °C e 150 rpm. As amostragens foram realizadas em duplicata, e o processo foi monitorado até completar o tempo de 12 horas de fermentação. Foram realizadas análises de concentração de substrato, em °Brix e ART e calculado as produções teóricas de etanol, de acordo com a Equação (2.17).

3.7 FERMENTAÇÃO ALCOÓLICA: INFLUÊNCIA DA CONCENTRAÇÃO INICIAL DE SUBSTRATO E CÉLULAS

Foi elaborado um planejamento fatorial de dois níveis mais configuração estrela (DCCR), com o objetivo de avaliar a influência das variáveis independentes, concentrações de células (X) e substrato (S), sobre a variável dependente, etanol produzido, e assim definir as condições ótimas de trabalho para prosseguimento do estudo da fermentação alcoólica. O planejamento totalizou 11 experimentos, executados aleatoriamente. Na Tabela 3.2 estão expressos os valores reais e os níveis dos fatores estudados. As faixas estudadas foram definidas tendo como base valores comumente usados na maioria das destilarias, em especial na Usina Monte Alegre.

Tabela 3.2– Níveis reais e codificados para as variáveis de entrada: concentração de células (X) e concentração de substrato (S)

variáveis	-α	-1	0	+1	+α
$X(g.L^{-1})$	6	10	20	30	34
S (°Brix)	6	8	13	18	20

A massa de levedura utilizada na inoculação dos mostos foi propagada em caldo de cana comercial, preparado com concentração de 10 °Brix e 2,0 g.L⁻¹ de células. Para o estudo da fermentação alcóolica também foram utilizados mostos obtidos de caldo de cana comercial. As amostragens foram realizadas em duplicata, no início do processo e com 12 horas de fermentação, para análises de concentração de sólidos solúveis (°Brix) e cálculo das produções de etanol.

O delineamento experimental e a análise estatística foram realizados com auxílio do software de estatística (*Statistica 7.0 StatSoft*) e da tabela de análise de variância (Apêndice B).

3.8 FERMENTAÇÃO ALCOÓLICA: CINÉTICA DA PRODUÇÃO DE ETANOL NOS DIFERENTES MOSTOS

Foram realizados experimentos com o objetivo de estudar a cinética de fermentação para os mostos de CM, CC, CE e MF, coletados em diferentes dias de produção, de acordo com as amostras MA-1, MA-2, MA-3, MA-4 e MA-5. Os mostos foram preparados com concentrações de substrato de 13 °Brix e concentração de células de 30 g.L⁻¹, definidos de acordo com os resultados obtidos no planejamento fatorial. A inoculação foi realizada a partir da massa úmida, produzida no processo de propagação nas condições anteriormente citadas.

O processo de fermentação foi realizado em uma incubadora, sob temperatura e agitação orbital de 32°C e 150 rpm. Foram realizadas amostragens, em duplicata, no início do processo e a cada quatro horas, até completar 12 horas de fermentação, para verificação dos consumos de substratos, através da análises de ART e análises cromatográficas para verificação da concentração de etanol.

Para análise estatística das fermentações, foi aplicado o teste de Tukey, onde utilizouse o *Software Assistat versão* 7.0 pt (2017).

3.9 CÁLCULO DOS PARÂMETROS CINÉTICOS DAS FERMENTAÇÕES ALCOÓLICAS

A partir dos dados coletados, foram plotados os gráficos do crescimento celular e de consumo de substrato em função do tempo, no *software Microsoft Excel*.

A velocidade instantânea de crescimento (r_x) foi obtida de acordo com a Equação (2.2) e a partir da inclinação das tangentes. A produtividade em produto (P_P), calculada de acordo com a Equação (2.6). Foi plotado o gráfico de lnX versus (t-ti), e a partir do seu coeficiente

angular, obteve-se a velocidade específica de crescimento celular (μ_x) . O tempo de geração foi calculado a partir da Equação (2.12).

A velocidade instantânea de consumo de substrato (r_s) foi obtida a partir da Equação (2.3) e da inclinação das tangentes.

4 RESULTADOS E DISCUSSÃO

4.1 CARACTERIZAÇÃO FÍSICO-QUÍMICA DOS CALDOS

A Tabela 4.1 mostra os resultados das análises de concentrações de substrato e pH, com as médias e desvios padrão obtidos, para as amostras dos caldos de diferentes etapas do processo industrial.

Tabela 4.1– Resultados das análises das concentrações de substrato e pH, realizadas para as amostras de caldos industriais

Amostras	CM	I	C	C	C	Е	M	F
Amostras	°Brix	pН	°Brix	рН	°Brix	pН	°Brix	pН
MA-1	14,9	5,20	14,3	6,20	18,7	5,20	64,7	5,53
MA-2	15,4	4,95	14,7	6,50	24,2	4,90	83,4	5,45
MA-3	14,0	5,10	13,4	6,30	21,8	5,80	82,5	5,42
MA-4	13,7	5,17	15,7	6,19	22,0	4,84	62,4	5,45
MA-5	14,2	5,35	14,7	6,80	22,3	6,35	73,5	5,55
Média	14,4 b	5,15 b	14,6 b	6,40 a	21,8 b	5,42 b	73,3 a	5,48 b
Desvio Padrão	0,5	0,10	0,6	0,17	1,3	0,43	6,5	0,04

As médias seguidas pelas mesmas letras não diferem estatisticamente entre si.

No preparo das amostras, durante as filtrações dos caldos, foi observado uma quantidade elevada de impurezas nos caldos mistos (CM). Essas impurezas podem diminuir a superfície de contato entre células de leveduras e substratos e comprometer o rendimento do processo de fermentação alcoólica.

De acordo com os resultados obtidos, pode-se perceber variações entre os dias de coleta para a concentração de substrato e pH, sendo as maiores verificadas para o °Brix do mel final, com desvio padrão de 6,5 e para o pH do caldo evaporado, com desvio padrão de 0,43.

Para o pH, foram obtidas médias de 5,15 \pm 0,10 para o CM, 6,40 \pm 0,17 para o CC, 5,42 \pm 0,43 para o CE e 5,48 \pm 0,04 para o MF. Com relação a concentração de substrato, em °Brix, foram obtidas médias de 14,4 \pm 0,5 para o CM, 14,6 \pm 0,6 para o CC, 21,8 \pm 1,3 para o CE e 73,3 \pm 6,5 para o MF.

Foi aplicado o Teste de Tukey ao nível de 5% de probabilidade para os valores de concentração de substrato, em °Brix (Anexo A) e pH (Anexo B) e constatou-se significância estatística entre os diferentes tratamentos de caldos. Verificou-se que as concentrações de substrato (°Brix) não apresentaram variação para os caldos misto, clarificado e evaporado,

apenas o mel final difere dos demais. O teste também mostrou que o pH dos caldos misto, evaporado e mel final não diferem estatisticamente entre si, a exceção foi o pH do caldo clarificado.

Bicudo et al. (2016) relatam sobre a dificuldade que se tem de caracterizar quimicamente o mosto e a variação significativa das concentrações dos seus componentes ao longo da safra.

As variações observadas nas concentrações de substratos e pH, estão relacionadas a matéria-prima processada (cana-de-açúcar) e aos controles do processo realizados na indústria. Com relação a matéria-prima; a variedade, o tipo de irrigação, o tempo de queima ou permanência e as condições de transporte são os principais fatores de influência. Com relação aos controles do processo, o volume e a temperatura da água utilizada no processo de extração do caldo (água de embebição) influenciam diretamente no °Brix do caldo misto e o estado de sanitização das moendas no seu pH. O volume do leite de cal utilizado para correção do pH, durante a etapa de clarificação, e a quantidade de caldo reprocessado na forma de caldo filtrado, podem alterar a concentração e o pH do caldo clarificado. Para o caldo evaporado, as principais causas de variação do ^oBrix são: eficiência dos evaporadores, devido ao estado de limpeza dos mesmos, pressão de vapor utilizado, controle do nível de volume, velocidade de alimentação, bem como a qualidade do caldo de alimentação (caldo clarificado); já o pH pode ser afetado devido ao tempo de residência nos decantadores e tempo de evaporação. A variação da concentração de substrato do mel final está associada à pureza das massas obtidas nos processos de cozimento e à operação das centrífugas, principalmente com relação aos tempos de lavagem das mesmas.

4.2 INFLUÊNCIA DA CONCENTRAÇÃO INICIAL DE SUBSTRATO NA PROPAGAÇÃO DE LEVEDURAS

A Figura 4.1 apresenta os mostos ao término do processo de propagação de leveduras. A Figura 4.2 apresenta o vinho fermentado em duas condições; a) após retirada da massa de leveduras (vinho delevedurado) e b) ao término do processo de propagação de células (vinho levedurado). A Figura 4.3 apresenta o vinho após o processo de centrifugação. Observa-se a parte decantada (massa de levedura produzida na propagação), separada da parte sobrenadante (vinho delevurado).

Figura 4.1 - Mostos ao término do processo de propagação de leveduras

Figura 4.2 – Aspecto do vinho fermentado; vinho delevedurado (a) e vinho levedurado (b)

Figura 4.3– Vinho centrifugado com separação da massa de levedura produzida na propagação de células

Os resultados das concentrações de substrato e células em função do tempo, estão apresentados nas Figuras 4.4 e 4.5.

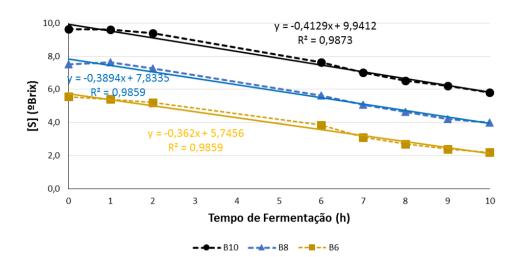
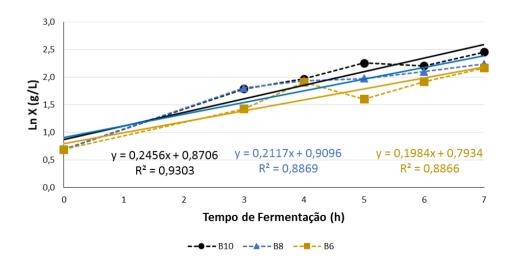


Figura 4.4- Concentração de substrato em função do tempo na propagação de leveduras

A partir da Figura 4.4, observa-se que após 10 horas de propagação, as concentrações de substrato ainda apresentaram valores altos, sendo: 5,8 °Brix, 4,0 °Brix e 2,2 °Brix para os mostos B10, B8 e B6, respectivamente. Após 24 horas esses valores foram reduzidos pela metade: 3,0 °Brix, 2,1 °Brix e 1,1 °Brix. A partir dos dados experimentais foram construídas as curvas e de acordo com os coeficientes angulares encontrados, determinada as velocidades médias para o consumo de substrato dos mostos B10, B8 e B6, que foram de 0,41 °Brix.h⁻¹, 0,38 °Brix.h⁻¹ e 0,36 °Brix.h⁻¹, respectivamente, para coeficientes de correlação acima de 0,98.



Figura 4.5 - Concentração celular em função do tempo na propagação de leveduras


A partir da Figura 4.5, pode-se verificar que a concentração máxima de células se deu no tempo de 7 horas (fase exponencial). Após esse tempo, percebe-se uma tendência a estabilidade (fase estacionária), e a partir de então, o início de um processo de redução (fase de

declínio), onde o valor da concentração celular diminui a uma velocidade que excede a velocidade de produção de células novas, verificada de forma mais acentuada para a amostra B6. As concentrações de células, para as amostras B10, B8 e B6, respectivamente, foram de: 11,6 g.L⁻¹, 9,4 g.L⁻¹, e 8,7 g.L⁻¹ para um tempo de 7 horas, 9,5 g.L⁻¹, 7,8 g.L⁻¹ e 4,6 g.L⁻¹ para um tempo de 10 horas e 5,1 g.L⁻¹, 3,8 g.L⁻¹ e 3,8 g.L⁻¹ para um tempo de 24 horas.

De acordo com Schmidell et al. (2001) a duração da fase de latência, onde não há reprodução celular, ou seja X=X₀=constante, varia principalmente com a concentração do inóculo, com a idade do microrganismo (tempo de pré cultivo) e com o seu estado fisiológico. Para minimizar a duração dessa fase, foi utilizado o caldo de cana comercial para a propagação de células, por apresentar composição e características próximas das amostras em estudo. A quantidade utilizada no inóculo, 2,0 g.L⁻¹, está dentro da faixa recomendada pelo fabricante. A escolha da levedura industrial *Saccharomyces cerevisiae* SC-20 se deu pelo fato da mesma ser a levedura utilizada na usina Monte Alegre, ou seja, buscou-se uma maior aproximação das condições industriais.

A Figura 4.6 apresenta o gráfico de LnX em função do tempo, para a fase exponencial, verificada para o tempo entre 0 e 7 horas de fermentação. A partir do gráfico, foram obtidas as retas tangentes com os seguintes coeficientes angulares, para os mostos B10, B8 e B6, respectivamente: 0,2456, 0,2117 e 0,1984. Estes coeficientes representam as velocidades máximas de crescimento celular (μ_m). (SCHMIDELL et al., 2001).

Figura 4.6 – Linearização da concentração de células em função do tempo para a fase exponencial

A partir das velocidades máximas encontradas, foram calculados os tempos de geração $(t_g=Ln~(2)/\mu_x), \mbox{ obtendo-se os seguintes resultados: } t_g=2,82~h~para~B10, \ t_g=3,27~h~para~B8~e$ $t_g=3,49~h~para~B6.$

Para certas bactérias o tempo de geração é relativamente curto, como no caso da *Escherichia coli*, que pode apresentar um valor da ordem de 20 minutos na temperatura de cultivo em 37°C. Outras bactérias, do tipo termófilas, cultivadas a 55 °C, chegaram a apresentar um tempo de geração de cerca de 15 minutos. Para as leveduras, o valor mínimo está compreendido entre 1,5 e 2,0 horas. (SCHMIDELL et. al, 2001).

A Tabela 4.2 mostra as concentrações de substrato, concentrações de levedura e pH realizadas no início e ao término do processo (10 ou 24 horas), as velocidades médias de consumo de substratos, as velocidades máximas de crescimento celular e os tempos de geração. Os experimentos foram realizados em duplicata e os valores apresentados correspondem às médias obtidas.

Tabela 4.2– Concentrações de substrato, leveduras e pH no início da propagação de leveduras e após os tempos de 10 e 24 horas

Parâmetros		Amostra	
Parametros	B6	B8	B10
S ₀ (°Brix)	5,6	7,5	9,6
S _{f, 10 horas} (°Brix)	2,2	4,0	5,8
S _{f, 24 horas} (°Brix)	1,1	2,1	3,0
$X_0 (g.L^{-1})$	2,0	2,0	2,0
$X_{f, 10 \text{ horas}} (g.L^{-1})$	4,6	7,8	9,5
$X_{f, 24 \text{ horas}} (g.L^{-1})$	3,8	3,8	5,1
pH_0	4,21	4,17	4,15
pH _f , 24 horas	3,59	3,66	3,69
ΔpΗ	0,62	0,51	0,46
r_s (°Brix. h^{-1})	0,36	0,38	0,41
μ_m (h ⁻¹)	0,2456	0,2117	0,1984
$t_{g}(h)$	2,82	3,27	3,49

De acordo com os resultados apresentados na Tabela 4.2, pode-se perceber pequenas variações entre os valores de pH inicial e final, após 24 horas.

Os resultados obtidos para as concentrações de células, pelo método da massa úmida, após 24 horas de propagação, foram: $40,67\pm3,87~\rm g.L^{-1}$ para B6, $39,45\pm2,23~\rm g.L^{-1}$ para B8 e $43,29\pm2,20~\rm g.L^{-1}$ para B10, confirmando os melhores resultados, em termos de concentração de células, para o mosto B10.

A Figura 4.7 apresenta a realização do teste de floculação com amostras do vinho, após período de 24 horas de propagação celular. Foi constatado que não houve a formação de flocos.

A floculação impacta na fermentação, devido a diminuição da superfície de contato entre células de leveduras e meio fermentativo, aumento do tempo de fermentação, diminuição da concentração de levedo nas centrífugas, aumento do poder tamponante do vinho, inibição da fermentação, por causar morte das leveduras e por requerer maior uso de ácido.

Figura 4.7 - Teste de floculação realizado para o mosto fermentado

O mosto B10 obteve maiores velocidades de consumo de substrato, com velocidade média de 0,41 °Brix.h⁻¹. Mesmo percebendo que houve consumo de substrato após às 10 horas de propagação, as concentrações máximas de células foram observadas para um tempo de 7 horas, onde o mosto B10 apresentou melhor desempenho, com concentração celular de 11,6 g.L⁻¹, velocidade de crescimento celular (μ_m) de 0,2456 h⁻¹ e tempo de geração de 2,82 h. Dessa forma, para o processo de propagação de células, em que o principal fator avaliado é a população de leveduras obtida, recomenda-se um tempo de processo próximo de 7 horas.

Para um período de 24 horas de propagação, a maior concentração de células também foi observada para o mosto B10, com $43,29 \pm 2,20$ g.L⁻¹, em massa úmida.

A levedura utilizada no estudo, Fermol Millenium Destiler – cepa SC 20, não apresentou características floculantes.

4.3 AVALIAÇÃO DA CONCENTRAÇÃO INICIAL DE SUBSTRATO NA FERMENTAÇÃO ALCOÓLICA

A Figura 4.8 apresenta os mostos de CM, CC, CE e MF em processo de fermentação alcoólica, durante a retirada dos mesmos da incubadora para coleta de amostras.

Figura 4.8- Mostos de CM, CC, CE e MF em processo de fermentação alcoólica

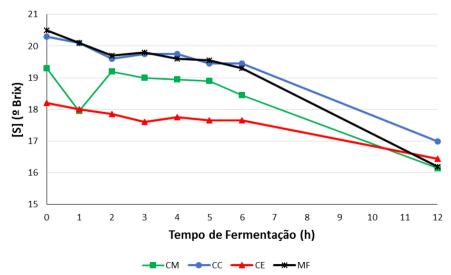

Os resultados obtidos para os experimentos com mostos de concentrações de substrato iniciais de 20 ºBrix e 15 ºBrix estão apresentados na Tabela 4.3.

Tabela 4.3– Resultados da fermentação alcoólica, obtidos para os mostos de 20 °Brix (amostra MA-1) e 15 °Brix (amostra MA-2)

-	20°Brix (MA-1)						15°Brix (MA-2)			
Amostra	S_{f}	S_{f}	Relação	$r_{\rm s}$	P	S_{f}	S_{f}	Relação	$r_{\rm s}$	P
	ART	°Brix	ART/Brix	Brix/h	g/L	ART	°Brix	ART/Brix	Brix/h	g/L
CM	141,8	16,2	0,88	0,26	21,13	75,5	11,0	0,69	0,35	33,65
CC	154,7	17,0	0,91	0,28	17,58	43,1	8,9	0,48	0,49	48,31
CE	153,8	16,5	0,93	0,15	17,72	58,0	9,5	0,61	0,48	43,06
MF	135,3	16,2	0,84	0,36	25,67	39,0	10,1	0,39	0,57	60,36

Os gráficos de consumo de substrato para as duas concentrações iniciais de substrato estão apresentados nas Figuras 4.9 e 4.10.

Figura 4.9– Consumo de substrato para CM, CC, CE e MF (amostra MA-1), com concentrações iniciais de 20 °Brix

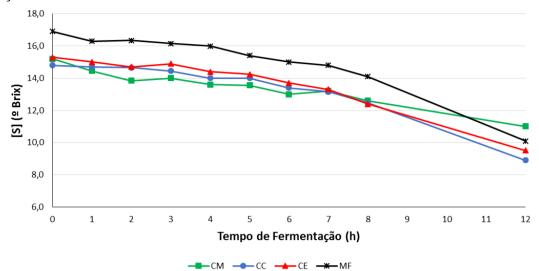


Figura 4.10 – Consumo de substrato para CM, CC, CE e MF (amostra MA-2), com concentrações iniciais de 15 °Brix

De acordo com os resultados obtidos para as amostras MA-1, com concentração inicial de substrato de 20 °Brix, 10 g.L⁻¹ de levedura e tempo de fermentação de 12 horas, foi verificado que as concentrações finais de substrato ficaram em torno de 16 e 17 °Brix para os mostos de CM, CC, CE e MF, o que indica que quase não houve consumo de substrato nesse período. As baixas velocidades de consumo de substrato; 0,26, 0,28, 0,15 e 0,36 °Brix.h⁻¹ e as produções teóricas de etanol; 21,13, 17,58, 17,72 e 25,67 g.L⁻¹, confirmam o baixo desempenho para as amostras MA-1. A relação ART/Brix mostra a quantidade de açúcares presentes no mosto em relação ao total de sólidos solúveis.

Reduzindo a concentração de substrato para 15°Brix (amostras MA-2), e mantendo a concentração da inoculação (10 g.L⁻¹), os resultados obtidos para as concentrações finais de substrato, após 12 horas de fermentação, foram de 11,0 °Brix para o CM, 8,9 °Brix para o CC, 9,5 °Brix para o CE e 10,1 °Brix para o MF. As velocidades de consumo de substrato foram de 0,35, 0,49, 0,48 e 0,57 °Brix.h⁻¹ para os mostos de CM, CC, CE e MF, respectivamente, e suas produções teóricas de etanol de: 33,65, 48,31, 43,06 e 60,36 g.L⁻¹.

Pode-se verificar uma considerável melhoria dos resultados para as amostras MA-2, com destaque para o mosto de MF, mesmo assim os resultados não foram considerados satisfatórios, devido as altas concentrações de substrato ao final do processo.

Dessa forma, pode-se verificar que a concentração inicial de substrato influencia diretamente no processo de fermentação alcoólica. A escolha das condições ideais de concentração de substrato e concentração de células, frente às condições estabelecidas, como meio de cultivo, temperatura e levedura utilizada, faz-se necessário para obtenção de uma fermentação alcoólica mais completa, com melhor aproveitamento de açúcares. Recomenda-se

a realização de um estudo, como um planejamento fatorial, para verificação das melhores condições de trabalho.

Ortiz et al. (2015) estudaram a capacidade fermentativa e o crescimento celular da levedura *Saccharomyces cerevisiae* CCT-3174, através da análise da concentração de biomassa, do consumo do substrato (glicose) e da análise de parâmetros cinéticos. O cultivo foi acompanhado por 30 horas. Obteve-se concentração celular final de 7,37 g.L⁻¹. A concentração de etanol no final da fermentação alcoólica resultou em 4,846 g/L, Y_{P/S} = 0,496 e um rendimento de 97,3%.

Oliveira et al. (2014) estudaram a influência da concentração de fermento, e dos principais contaminantes gerados no pré-tratamento de materiais lignocelulósicos sobre o perfil fermentativo e viabilidade celular da levedura *Saccharomyces cerevisiae*, em meio sintético, a partir dos resultados de viabilidade celular observou-se que as leveduras mostram-se mais resistentes aos inibidores quando a concentração inicial de inóculo é maior.

Bicudo et al. (2016) avaliaram a influência da matéria prima no rendimento fermentativo de uma linhagem padrão de levedura CAT-1 testada em diferentes meios de cultivo, onde pode demonstrar que a variação da qualidade da matéria prima ao longo da safra interfere significativamente no desempenho da levedura, provocando oscilações no rendimento fermentativo.

Bicudo et. al. (2017) avaliaram a dinâmica populacional do processo fermentativo industrial. Os resultados mostraram 5 linhagens de leveduras, onde foi possível observar que as linhagens que apresentaram maior rendimento em células mostraram maior capacidade de dominar o processo.

4.4 INFLUÊNCIA DAS CONCENTRAÇÕES INICIAIS DE SUBSTRATO E CÉLULAS NA FERMENTAÇÃO ALCOÓLICA

A matriz de planejamento com as variáveis de entrada, concentração de células e substrato e resposta, produção de etanol, em g.L⁻¹, obtida para o planejamento fatorial 2² + configuração estrela (DCCR), para um tempo de fermentação de 12 horas, está apresentada na Tabela 4.4.

Tabela 4.4 – Matriz do planejamento fatorial 2 ² + configuração estrela (DCCR), con	1 as
variáveis de entrada (X e S) e resposta (produção teórica de etanol)	

		Variáve	is de Entrada	ì	Resposta
Experimento	X	S	X	S	Etanol
	Λ	ى -	$(g.L^{-1})$	$(g.L^{-1})$	$(g.L^{-1})$
1	-	-	10	80	12,26
2	+	-	30	80	20,18
3	-	+	10	180	19,67
4	+	+	30	180	26,57
5	0	0	20	130	24,02
6	0	0	20	130	24,02
7	0	0	20	130	24,02
8	-α	0	6	130	12,26
9	$+\alpha$	0	34	130	26,06
10	0	-α	20	60	13,80
11	0	$+\alpha$	20	200	23,51

O modelo matemático empírico encontrado, de 2ª ordem, obtido a partir da regressão não linear (modelo quadrático) dos dados experimentais, com os seus respectivos coeficientes estatísticos está apresentado na Equação (4.1).

Etanol =
$$24,02+4,29202 X + 3,44150 S - 2,23938 X^2 - 2,49187 S^2$$
 (4.1)

A partir do diagrama de pareto, apresentado na Figura 4.11, pode-se constatar que os coeficientes lineares e quadráticos das concentrações de célula e substrato são estatísticamente significativos; apenas o coeficiente da interação entre as variáveis X e S não apresentou significância estatística.

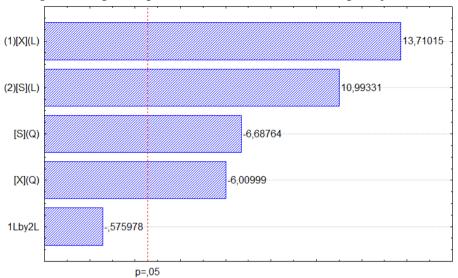


Figura 4.11 – Diagrama de pareto para as variáveis de entrada do planejamento DCCR

Os resultados da análise de variância (ANOVA) para a resposta produção de etanol estão descritos na Tabela 4.5, onde o coeficiente de correlação foi de 0,986. Observa-se, também, que o valor de $F_{calculado} = 104,50$ é maior que o valor de $F_{tabelado} = 4,53$ a um nível de confiança de 95%. Deste modo, aplicando o teste F de significância pode-se afirmar que o referido modelo apresentou significância estatística e que o mesmo pode ser utilizado para fins preditivos.

Tabela 4.5 – Tabela de análise de variância (ANOVA)

1 abela 4.5 – 1 abe	abela 4.5 – Tabela de alialise de varialicia (ANOVA)								
Fontes de Variação	Soma Quadrática	Grau de Liberdade	Quadrado Médio	$F_{calculado}$	$F_{tabelado}$	$F_{calculado/} \\ F_{tabelado}$			
v arração	SQ	GL	QM			Tabelado			
Regressão	291,2173	4	72,804325	104,50	4,53	23,05			
Resíduo(erro)	4,1802	6	0,6967	104,50	4,33	23,03			
Falta de Ajuste	4,1802	4							
Erro Puro	0	2							
Total	295,3975	10							
\mathbb{R}^2	0,986								
R ² ajustado	0,976								

O modelo quadrático validado foi usado para gerar a superfície de resposta, tendo o objetivo de otimizar (maximizar) o processo. A Figura 4.12 apresenta os efeitos das concentrações de células e substrato na produção de etanol.

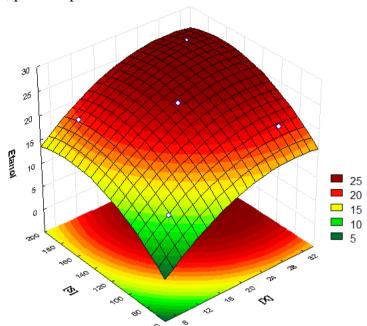


Figura 4.12— Superfície de resposta — efeitos das concentrações de célula e substrato na produção de etanol, para temperatura fixa de 32 °C

A partir da superfície de resposta foi observado que se obtém uma produção maximizada de etanol acima de 25 g.L⁻¹, trabalhando-se com concentração de substrato entre 13 e 20 °Brix e concentração de células entre 24 e 34 g.L⁻¹.

Foi adotada a seguinte condição, para prosseguimento do estudo das fermentações: [X] = 30 g.L⁻¹ e [S] = 13 °Brix, pelo fato desta representar uma maior economia de substrato (aumento da eficiência do processo). Com relação as leveduras, optou-se por trabalhar com uma concentração mais elevada, pois segundo Oliveira et al. (2014), a concentração de fermento influencia a viabilidade celular e, independente da concentração dos contaminantes no meio, quanto maior a quantidade inicial de fermento, maior é a resistência aos inibidores e, consequentemente, maior a viabilidade celular.

De acordo com Bonassa et al. (2013), o consumo de açúcares pode variar entre 65% e 98%, dependendo das características do processo.

Leveduras de culturas puras fornecidas por instituições do ramo se comportam de forma diferente que a levedura comercial, utilizada para fabricação do pão. (BORZANI et al., 2001).

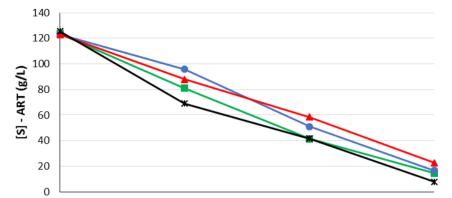
A temperatura da fermentação foi fixada em 32°C, pois buscou-se uma condição operacional, mais próximo do acontece no processo industrial.

As leveduras são microrganismos mesófilos, sendo que a temperatura ótima está entre 26 e 35°C. O controle de temperatura é essencial, pois caso a temperatura aumente, a velocidade

da fermentação consequentemente aumenta, elevando o risco de contaminação e tornando a levedura mais sensível à toxidade do etanol gerado. (BORZANI et al., 2001).

4.5 CINÉTICA DA PRODUÇÃO DE ETANOL NOS DIFERENTES MOSTOS

A Tabela 4.6 mostra os resultados obtidos para as velocidades de consumo de substrato para os mostos de CM, CC, CE e MF, das amostras MA-1, MA-2, MA-3, MA-4 e MA-5.


Tabela 4.6 – Velocidades de consumo de substrato, em g/Lh, para os diferentes tipos de mostos das amostras MA-1, MA-2, MA-3, MA-4 e MA-5

Amostras		veloci	dade de consu	ımo de substı	rato (r _s)	
	CM	CC	CE	MF	Média	Desvio
MA-1	9,1	8,8	8,4	9,8	9,0a	0,43
MA-2	6,5	6,0	5,6	7,9	6,5b	0,71
MA-3	5,8	7,0	4,6	5,9	5,8b	0,62
MA-4	10,2	6,3	7,1	7,1	7,7ab	1,25
MA-5	4,8	5,8	6,0	5,9	5,6b	0,42
Média	7,3a	6,8a	6,3a	7,3a	_	
Desvio	2,3	1,2	1,4	1,6		

As médias seguidas pelas mesmas letras não diferem estatisticamente entre si.

Analisando os dados em relação a velocidade de consumo de substrato, pode-se perceber que o desvio médio é maior entre os diferentes dias de produção (MA-1, MA-2, MA-3, MA-4 e MA-5) para um mesmo tipo de mosto, do que em relação aos diferentes tipos de mosto (CM, CC, CE e MF), para um mesmo dia de produção. Essa mesma conclusão pode ser obtida a partir da aplicação do teste de Tukey (Anexo C). A análise mostrou que existe significância estatística ao nível de 1% de probabilidade para as velocidades de consumo de substrato entre os diferentes dias de produção, mas com variação entre esses dias. Os resultados, em g/Lh, foram: 9,02 para o primeiro dia (MA-1); 6,50 para o segundo (MA-2), 5,82 para o terceiro (MA-3), 7,67 para o quarto (MA-4) e 5,62 para o quinto (MA-5), dessa forma, as amostras MA-2, MA-3 e MA-5 não diferem estatisticamente entre si. Com relação aos tipos de tratamento de mostos, o teste apresentou resultado não significativo. Os resultados obtidos para as velocidades de consumo de substrato, em g/Lh, foram: 7,28 ± 2,3 para o CM, 6,78 ± 1,2 para o CC, 6,34 ± 1,4 para o CE e 7,32 ± 1,6 para o MF.

As Figuras 4.13, 4.14, 4.15, 4.16 e 4.17 apresentam os gráficos das concentrações de substrato (ART) para os diferentes mostos das amostras analisadas: MA-1, MA-2, MA-3, MA-4 e MA-5, ao longo das 12 horas de fermentação alcoólica.

Tempo de Fermentação (h)

-CE -≭

8

12

Figura 4.13– Concentração de substrato em função do tempo, para a amostra MA-1

Figura 4.14 – Concentração de substrato em função do tempo, para a amostra MA-2

4

0

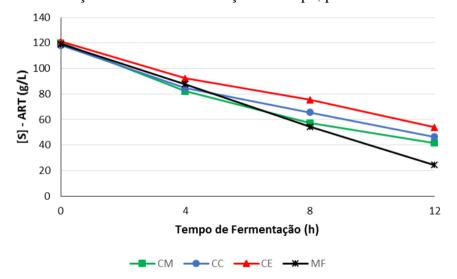


Figura 4.15 – Concentração de substrato em função do tempo, para a amostra MA-3

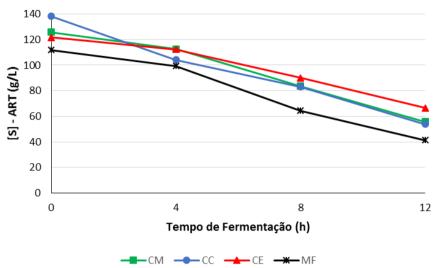
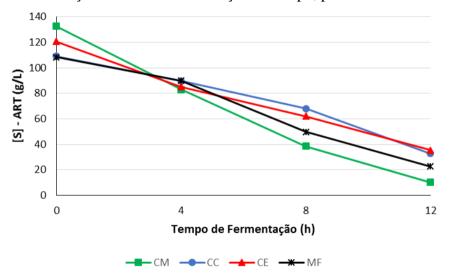



Figura 4.16 – Concentração de substrato em função do tempo, para a amostra MA-4

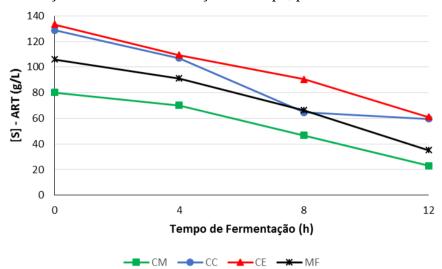


Figura 4.17 – Concentração de substrato em função do tempo, para a amostra MA-5

As Tabelas 4.7 e 4.8 mostram os resultados obtidos para as produções e produtividades em etanol para os mostos de CM, CC, CE e MF, das amostras MA-3, MA-4 e MA-5.

Tabela 4.7 – Produções de etanol, em g/L, para os diferentes tipos de mostos das amostras MA-3, MA-4 e MA-5, em um tempo de 12 horas de fermentação

A a atua a	produção de etanol (g/L)							
Amostras	CM	CC	CE	MF	Média	Desvio		
MA-3	35,083	36,920	29,932	31,957	33,47	2,53		
MA-4	45,100	35,938	35,954	38,123	38,78	3,16		
MA-5	25,571	24,576	23,596	26,250	25,00	0,91		
Média	35,25	32,48	29,83	32,11	•			
Desvio	9,77	6,86	6,18	5,94				

Tabela 4.8 – Produtividades em etanol, em g/Lh, para os diferentes tipos de mostos das amostras MA-3, MA-4 e MA-5, em 12 horas de fermentação

Amostras		produtividade em etanol (g/Lh)					
	CM	CC	CE	MF	Média	Desvio	
MA-3	2,9	3,1	2,5	2,7	2,8a	0,21	
MA-4	3,8	3,0	3,0	3,2	3,2a	0,26	
MA-5	2,1	2,0	2,0	2,2	2,1b	0,08	
Média	2,9a	2,7a	2,5a	2,7a	_		
Desvio	0,81	0,57	0,51	0,49			

As médias seguidas pelas mesmas letras não diferem estatisticamente entre si.

Analisando os dados em relação a produtividade em etanol (Tabela 4.8), pode-se perceber que o desvio médio é maior entre os diferentes dias de produção (MA-3, MA-4 e MA-5) para um mesmo tipo de mosto, do que em relação aos diferentes tipos de mosto (CM, CC, CE e MF), para um mesmo dia de produção. Aplicando o teste de Tukey (Anexo D), a análise mostrou que existe significância estatística ao nível de 1% de probabilidade, para as

produtividades em etanol entre os dias de produção, mas com variação entre estes. Os resultados, em g/Lh, foram: 2,80 para MA-3; 3,25 para MA-4, e 2,07 para MA-5, indicando que as amostras MA-3 e MA-4 não diferem estatisticamente entre si, e que existe diferença para a amostra MA-5. Com relação aos tipos de tratamento de mostos, o teste apresentou resultado não significativo. Os resultados obtidos para as produtividades em etanol, em g/Lh, foram: 2,93 \pm 0,81 para o CM, 2,70 \pm 0,57 para o CC, 2,50 \pm 0,51 para o CE e 2,70 \pm 0,49 para o MF.

De acordo com os resultados das análises de cromatografia, mostrados na Tabela 4.7, as médias obtidas para as produções de etanol, em g/L, para um tempo de 12 horas de fermentação, foram de $35,25 \pm 9,77$ para o CM, $32,48 \pm 6,86$ para o CC, $29,83 \pm 6,18$ para o CE e $32,11 \pm 5,94$ para o MF, onde também se observa maiores variações para as amostras coletadas em diferentes dias de produção do que para os tipos de tratamentos dos mostos.

As Figuras 4.19, 4.20, e 4.21 apresentam os gráficos das produções de etanol para os diferentes mostos das amostras analisadas; MA-3, MA-4 e MA-5, ao longo das 12 horas de fermentação alcoólica.

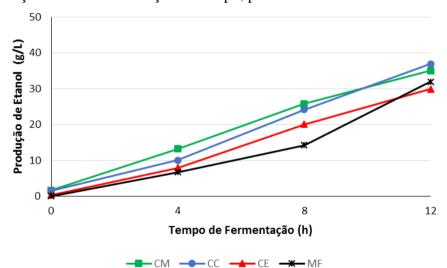


Figura 4.18– Produção de etanol em função do tempo, para a amostra MA-3

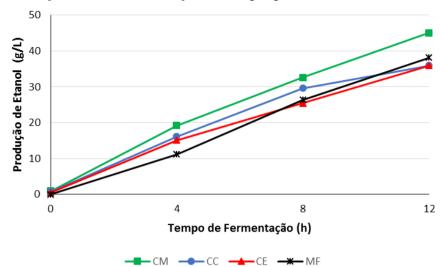
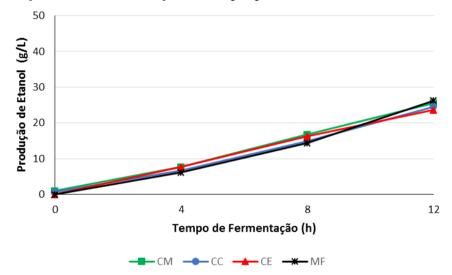



Figura 4.19 – Produção de etanol em função do tempo, para a amostra MA-4

Figura 4.20 – Produção de etanol em função do tempo, para a amostra MA-5

As análises realizadas para as velocidades de consumo de substrato e produtividade em etanol demonstram que não há variação significativa em relação aos tipos de tratamento de caldos, mas sim em relação aos dias de produção, logo o processo de clarificação por ozonização não traz nenhum prejuízo ao processo de fermentação alcoólica, pois o caldo misto, que não recebeu tratamento apresentou comportamento semelhante aos demais tipos de caldos que receberam o ozônio. O maior desvio em relação a média para os dias de amostragem tem relação com a variação da matéria-prima, ou seja, com a origem da cana processada e com as oscilações do processo. Estes fatores apresentam um maior impacto na fermentação alcoólica do que o processo de clarifiacação por ozonização.

Bicudo et al. (2016), comentam sobre a variação do rendimento fermentativo, observada ao longo da safra, devido a variação da qualidade da matéria prima, o que interfere significativamente no desempenho da levedura.

O mosto, considerado como matéria prima do processo fermentativo, geralmente é constituído de melaço e caldo, e sua qualidade depende de variáveis como tipo de cana-de-açúcar processada, período de safra, mix de produção, fatores climáticos, condução operacional da fábrica de açúcar e outros. (BICUDO et al., 2016).

Bicudo et al. (2016) afirmaram que mosto de melaço possui uma maior quantidade de substâncias inibidoras das células de levedura em sua composição, e que é de se esperar um desempenho fermentativo menor.

Como no estudo realizado, o mosto de mel final não obteve rendimentos inferiores, sugere-se a realização de um estudo mais aprofundado sobre fermentação com mostos de mel final originados de caldos clarificados com ozônio.

A discussão dos resultados foi realizada com base em trabalhos publicados na literatura, que relatavam experimentos com outros meios de cultivo e outros microrganismos, pois não foram encontrados trabalhos sobre fermentações alcoólicas utilizando os mesmos meios de cultivo, ou seja, mostos obtidos a partir de caldos ozonizados, e com o emprego da levedura *Saccharomyces cerevisiae* SC-20.

5 CONCLUSÕES

- Os caldos utilizados para a composição do mosto, oriundos de diferentes etapas do processo industrial, possuem significância estatística para as variáveis sólidos solúveis totais (°Brix) e pH. Foram identificadas diferenças para o °Brix do mel final, e para o pH do caldo clarificado. Essas diferenças ocorrem, principalmente devido a variação da matéria-prima e do processo industrial.
- Para o processo de propagação de células, sob temperatura de 32°C e com utilização da levedura *Saccharomyces cerevisiae Fermol Millenium Destiller SC-20* com concentração de inoculação de 2,0 g.L⁻¹, foi observado os melhores resultados para o mosto com concentração inicial de substrao de 10 °Brix e para um tempo de 7 horas, onde obteve-se uma concentração de células de 11,6 g.L⁻¹, velocidade específica de crescimento celular (μ_m) de 0,2456 h⁻¹ e tempo de geração (tg) igual a 2,82 h.
- Para o processo de fermentação alcoólica, conduzido sob temperatura de 32°C e utilizando a levedura *Fermol Millenium Destiller SC-20*, o melhor desempenho em termos de produção teórica de etanol, de acordo com o gráfico de superfície de resposta, foi obtido para mostos com concentração inicial de substrato entre 13 e 20 °Brix e concentração inicial de células entre 24 e 34 g.L⁻¹, com uma produção máxima de etanol em torno de 25 g.L⁻¹.
- De acordo com a análise dos resultados das velocidades de consumo de substrato, produções e produtividade em etanol, utilizando mostos com concentração inicial de substrato de 13ºBrix e concentração inicial de célula de 30 g.L⁻¹, foi observado que os diferentes tipos de caldos utilizados para composição dos mostos, não influenciam significativamente na fermentação alcoólica. As maiores variações foram observadas para mostos de diferentes dias de produção, o que está relacionado às variações da matéria prima processada e às oscilações do processo industrial. Estes fatores apresentam um maior impacto na fermentação alcoólica do que o sistema de clarificação por ozonização e a origem do caldo utilizado para composição do mosto.
- Para maior controle da fermentação alcoólica, deve-se garantir as melhores condições em termos de temperaturas, pH, concentração de substrato e células, tipo e estado da levedura, bem como as condições de processo, como: velocidades de alimentação das dornas, sanitização dos equipamentos, tempo de fermentação, entre outros. Estes fatores, aliados a qualidade da matéria-prima, apresentam um maior impacto na fermentação alcoólica do que o sistema de clarificação de caldo por ozonização e a origem do caldo utilizado para composição do mosto.

Sugestões para futuros trabalhos:

- Utilização de outras cepas de *Saccharomyces cerevisiae* utilizadas no segmento sucroalcooleiro;
- Aplicação de nutrientes ao mosto em estudo;
- Comparação dos rendimentos fermentativos entre mostos obtidos a partir de caldos que passam pelo método de clarificação por ozonização e pelo método convencional (sulfitação);
- Implantação de um sistema de fermentação com batelada alimentada, para se aproximar do que é praticado na maioria das destilarias;
- Utilização de temperaturas mais elevadas, visto que muitas indústrias apresentam dificuldade no controle desta variável, devido às elevadas temperaturas observadas em nosso país, principalmente na Região Nordeste.

REFERÊNCIAS BIBLIOGRÁFICAS

ARAÚJO, F.A.D. **Processo de Clarificação do Caldo da Cana pelo Método da Bicarbonatação**, Revista Ciência & Tecnologia, ano I, n. 1, julho-dezembro, 2007.

AMORIM, H. V. de (Org.); LEÃO, R. M. (Org.). **Fermentação Alcoólica: Ciência e Tecnologia**. Piracicaba: Fermentec Publicações Editora e Comércio de Livros LTDA., 1ª ed. 2005. v. 3000. 448p

Agência Nacional de Petróleo - ANP. Biocombustíveis. Disponível em: http://www.anp.gov.br/wwwanp/producao-de-biocombustiveis. Acesso em: 21 de agosto de 2017.

Associação dos Plantadores de Cana da Paraíba – ASPLAN-PB. Relatório Técnico da Safra 2016/2017, julho, 2017.

BASSO, T. O. Melhoramento da fermentação alcoólica em *Saccharomyces cerevisiae* por engenharia evolutiva. Tese Biotecnologia USP. São Paulo, 2011.

BONASSA, G.; TELEKEN, J.G.; SCHNEIDER, L. T.; OLIVEIRA, C.J. **Análise da influência do pH e da temperatura no processo de fermentação de caldo da cana**. III Encontro Paranaense de Engenharia e Ciência. Toledo. Paraná. 2013.

BICUDO, M. H. P.; ANDRIETTA, S. R; ANDRIETTA, M.G.S; ROMERO, J.T. **Avaliação** da influência da matéria-prima sobre o desempenho do processo de fermentação alcoólica industrial com reciclo de células a base de sacarose. STAB — Açúcar e Álcool e Subprodutos, Piracicaba, v. 35, n. 2, p. 44-49, novembro/dezembro. 2016.

BICUDO, M. H. P.; ANDRIETTA, S.R; ANDRIETTA, M.G.S; ROMERO, J.T. **Avaliação** da Dinâmica Populacional de Leveduras em Processo de Fermentação Industrial com Reciclo de Células. v. 35, p. 33–38, 2017.

BRASIL. Ministério do Trabalho e Emprego. Norma Regulamentadora nº 15 - **Atividades e operações insalubres**. 1978.

CENTRO DE TECNOLOGIA CANAVIEIRA – CTC. Manual de métodos analíticos de controle químico da fermentação. Piracicaba, 2005.

CENTRO DE TECNOLOGIA CANAVIEIRA – CTC. Manual de métodos de microbiologia do fermento. Piracicaba, 2007.

CENTRO DE TECNOLOGIA CANAVIEIRA – CTC. Manual de controle químico da fabricação de açúcar. Piracicaba, 2005.

CONSELHO DOS PRODUTORES DE CANA-DE-AÇÚCAR E ÁLCOOL DO ESTADO DE PERNAMBUCO – CONSECANA-PE. Manual das normas institucionais e operacionais do sistema de pagamento da cana-de açúcar. 2ª Edição, Recife, 2011.

DI BERNARDO, Luiz. **Métodos e técnicas de tratamento de água**. Rio de Janeiro: ABES, v.2, 1993.

FERMENTEC. **Roteiro para Treinamento de Controle Microbiológico por Microscopia**, 47p. Rev. Piracicaba, 2006. FERMENTEC-Editora, Janeiro de 2006.

FERNANDES, A. C. **Cálculos na Agroindústria da Cana-de-Açúcar**. Piracicaba: STAB, 2003. 240 p.

HUGOT, E. **Manual da Engenharia Açucareira**, volume I, Ed. Mestre Jou, São Paulo, 1977.

INSTITUTO ADOLFO LUTZ. Normas analíticas do Instituto Adolfo Lutz. Métodos físico-químicos para análises de alimentos. 4ª ed. (1ª Edição digital), 2008. 1020 p.

INSTITUTO NACIONAL DE METROLOGIA, QUALIDADE E TECNOLOGIA. Disponível em: http://www.inmetro.gov.br/consumidor/produtos/acucar.asp Acesso em: 21 de ago.2016.

JORNAL DA CANA. **Ozônio com alternativa para redução da cor do açúcar**. São Paulo, setembro de 2013. Disponível em: <www.jornaldacana.com.br/ozonio-como-alternativa-para-a-redução-da-cor-do-acucar/> Acesso em: 20/08/2016.

LIMA, U. A. et al. **Biotecnologia Industrial: Processos Fermentativos e Enzimáticos**. São Paulo – SP, Blucher, v. 3, 593p., 2001.

MAPA. Ministério da Agricultura e Pecuária. Disponível em: http://www.agricultura.gov.br/assuntos/sustentabilidade/agroenergia. Acesso em: 21/08/2017.

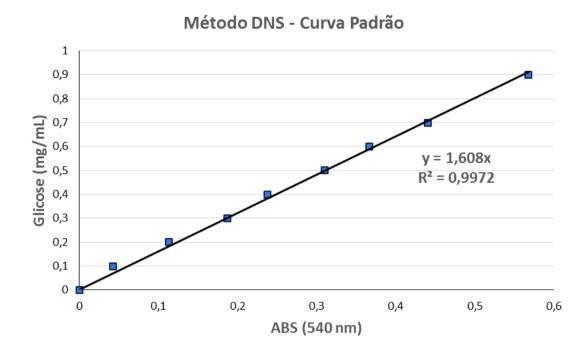
MILLER, G.L. Use of dinitrosalicylic acid and reagent for determination of reducing sugar. **Anal.** Chem. 31, pp. 426-427, 1959.

NELSON, D. L.; COX, M. M. **Princípios de bioquímica de Lehninger**. Porto Alegre: Artmed, 2014. 1328 p

OZONEBRAS, Tecnologia a serviço da natureza. Disponível em: http://www.ozonebras.com.br/ozonio/. Acesso em: 19/08/2017.

OLIVEIRA, J. H. S. et al. Cinética do crescimento de leveduras em meio sintético, na presença de inibidores, usando diferentes concentrações de fermento. p. 1–8, 2014.

ORTIZ, S.; SIMIONATTO, E. L.; BARROS, A. A. C.; Avaliação da capacidade fermentativa e do crescimento celular da levedura *Saccharomyces cerevisiae* CCT-3174, p. 2655-2661. In: **Anais do XX Congresso Brasileiro de Engenharia Química - COBEQ 2014** [= **Blucher Chemical Engineering Proceedings, v.1, n.2**]. São Paulo: Blucher, 2015.


SCHMIDELL, W.; LIMA, U. A.; AQUARONE, E.; BORZANI, W. **Biotecnologia Industrial**. São Paulo, Edgard Blücher Ltda, vol.2, 2001.

SHORE, M.; BROUGTHON, N. W.; DUTTON, J. V., and SISSONS, A., Factors affecting white sugar colour, Sugar Technol. Review, p. 1-99, 1984.

- SILVA, F.A.S.; AZEVEDO, C. A. V., The Assistat Software Version 7.7 and its use in the analysis of experimental data. Afr. J. Agric. Res, v.11, n.39, p.3733-3740, 2016.
- SANTOS, S.F.M., Modelagem e simulação de fermentação alcoólica contínua extrativa. Verificação da influência dos subprodutos inibidores. Campina Grande, 93p.Dissertação (Mestrado, Universidade Federal da Paraíba, Campina Grande, 2001.
- SILVA, J. A.; DAMASCENO, B. P. G. L; SILVA, F. L. H.; MADRUGA, M. S.; SANTANA, D. V. Aplicação da metodologia de planejamento fatorial e análise de superfícies de resposta para otimização da fermentação alcoólica. Química Nova, vol. 31. N. 4, 1073-1077, 2008.
- SILVA, R. N.; MONTEIRO, V. N.; ALCANFOR, J. A. X.; ASSIS, E. M.; ASQUIERI, E. R. Comparação de métodos para a determinação de açúcares redutores e totais em mel. **Ciência e Tecnologia de Alimentos**, Campinas, v. 23, n. 3, p. 337-341, 2003.
- SOUSA, J. L. U.; MONTEIRO, R. A. B. Fatores interferentes na fermentação alcoólica para a produção de etanol. **Fazu em revista** n. 8, 2012.
- TONIATO, J. **Determinação de parâmetros cinéticos de fermentação alcoólica em diferentes substratos**. Dissertação apresentada à Faculdade de Ciências Agronômicas da UNESP. Botucatu, São Paulo, 2013.
- UNIÃO DA INDÚSTRIA DE CANA-DE AÇÚCAR UNICA. Disponível em: http://www.unica.com.br/faq/>. Acesso em: 13/05/2017

VASCONCELOS, N.M.D. Determinação de açúcares redutores pelo ácido 3,5-dinitrosalicílico: Histórico do desenvolvimento do método e estabelecimento de um protocolo para o laboratório de bioprocessos. Fortaleza. **Embrapa Agroindústria Tropical**, 2013.

 $\mathbf{AP\hat{E}NDICE}$ A - Curva de calibração para as análises de açúcares redutores totais (ART) — Método DNS

$\mathbf{AP\hat{E}NDICE}\;\mathbf{B}$ – Planilha em Excel utilizada para a análise de variância (ANOVA)

	Tabela de Análises de Variância (Analysis of Variance) - ANOVA							
Fontes de Variação	Soma Quadrática SQ	Grau de Liberdade GL	Quadrado Médio QM	Teste F F _{Calculado}	F _{Tabelado}	F _{Calculado} / F _{Tabelado}	Interpretação:	
Regressão	291,2173	4	72,804325	104,50	4,53	23,05	===>>> O Modelo é	
Resíduo (erro)	4,1802	6	0,6967	104,50	4,55	23,05	Estatísticamente Significativo	
Falta de Ajuste	4,1802	4					===>>> O Modelo é Preditivo	
Erro Puro	0	2					===>>> O Modelo e Freditivo	
Total	295,3975	10						
R ²	0,986		Resposta:					
R ² ajustado	0,976		[Etanol]= 24,0	2 + 4,29202 [X] + 3,441	50 [S] - 2,23938 [X	() ² - 2,49187 [S] ²	
Pelo ANOVA:		Parâmetros:						
SQ _T ===>>>>	295,3975	p ===>>>	5					
SQ, ===>>>>	4,1802	n ===>>>	11					
SQfa ===>>>>	4,1802	m ===>>>	9					
SQep ===>>>>	0							
		F _{Tab 95%, GLR, GLr} ==>>>	4,533677					
		F _{Tab 95%, GLfa, GLep} ==>>>	19,246794					

APÊNDICE C – Certificado de apresentação do trabalho: Influência da concentração inicial de substrato na propagação de levedura do tipo *Saccharomyces cerevisiae* de uso industrial, apresentado durante o 2º CONAPESC – Congresso Nacional de Pesquisa e Ensino em Ciência, realizado no período de 07 a 09 de junho de 2017, em Campina Grande-PB

APÊNDICE D – Certificado de apresentação do trabalho: Produção estimada de etanol a partir de mostos de diferentes concentrações de substrato e células, apresentado durante o 2º CONAPESC – Congresso Nacional de Pesquisa e Ensino em Ciência, realizado no período de 07 a 09 de junho de 2017, em Campina Grande-PB

APÊNDICE E – Certificado de apresentação do trabalho: Utilização da metodologia DNS para determinação de açúcares redutores residuais do processo de fermentação alcoólica, apresentado durante o 2º SIMPIF – Simpósio de Pesquisa, Pós-Graduação e Inovação do IFPB, realizado no período de 20 a 23 de novembro de 2017, em João Pessoa -PB

CERTIFICADO

Certificamos que o trabalho intitulado *UTILIZAÇÃO DA METODOLOGIA DNS PARA DETERMINAÇÃO DE AÇÚCARES REDUTORES RESIDUAIS DO PROCESSO DE FERMENTAÇÃO ALCOÓLICA*, de autoria de **LUZIDELSON BARACHO RIBEIRO**, **EDVÂNIA DA SILVA SANTANA**, **MARCOS FELÍCIO VIEIRA e GUSTAVO CORREIA DE MOURA**, foi apresentado no 2º Simpósio de Pesquisa, Inovação e Pós-Graduação, realizado pelo Instituto Federal de Educação, Ciência e Tecnologia da Paraíba, na cidade de João Pessoa - Paraíba, no período e 20 a 23 de novembro de 2017.

ANEXO A – Teste de Tukey aplicado para as análises de concentração de substrato (Tabela 4.1)

Arquivo BrixCaldosMA2.txt Data 20/08/2017 Hora 12:50:30

EXPERIMENTO EM BLOCOS CASUALIZADOS

QUADRO DE ANÁLISE

FV	GL	SQ	QM	F	
Blocos Tratamentos Resíduo	4 3 12	122.41300 12117.55200 283.52300	30.60325 4039.18400 23.62692	1.2953 170.9569	
Total	19	12523.48800			
** significat	tivo ao	nível de 1% de p	probabilidade (p <	.01)	

significativo ao nível de 1% de probabilidade (p

^{*} significativo ao nível de 5% de probabilidade (.01 =< p < .05) ns não significativo (p >= .05)

GL	GLR	F-crit	F	p
4	12	3.2592	1.2953	0.3261
3	12	5.9525	170.9569	<.0001

MÉDIAS E MEDIDAS

Médias	de bloco
1	28.15000 a
2	34.50000 a
3	32.92500 a
4	28.45000 a
5	31.17500 a
dms =	10.96100

Médias	de tratamento
1	14.44000 b
2	14.56000 b
3	21.80000 b
4	73.36000 a
dms =	9.12994

MG = 31.04000CV% = 15.66

Ponto médio = 48.55000

As médias seguidas pela mesma letra não diferem estatisticamente entre si. Foi aplicado o Teste de Tukey ao nível de 5% de probabilidade

ANEXO B — Teste de Tukey aplicado para as análises de pH (Tabela 4.1)

Arquivo TukeypHCaldosMA2.txt Data 23/08/2017 Hora 00:06:30

EXPERIMENTO EM BLOCOS CASUALIZADOS

QUADRO DE ANÁLISE

FV	GL	SQ	Øм	F
Blocos Tratamentos Resíduo	4 3 12	0.93845 4.41310 1.08823	0.23461 1.47103 0.09069	2.5871 ns 16.2212 **
Total	19	6.43978		

** significativo ao nível de 1% de probabilidade (p < .01)

* significativo ao nível de 5% de probabilidade (.01 == .05)

GL	GLR	F-crit	F	р
4	12	3.2592	2.5871	0.0906
3	12	5.9525	16.2212	<.0001

MÉDIAS E MEDIDAS

Médias	de bloco
1	5.53250 a
2	5.45000 a
3	5.65500 a
4	5.41250 a
5	6.01250 a
dms =	0.67907
Médias d	e tratamento
1	5.15400 b
2	6.39800 a
3	5.41800 b
4	5.48000 b
dms =	0.56563

MG = 5.61250 CV% = 5.37

Ponto médio = 5.82000

ANEXO C – Teste de Tukey aplicado para as velocidades de consumo de substrato (Tabela 4.6)

Arquivo consumosubstrato2.txt Data 19/08/2017 Hora 15:35:39

EXPERIMENTO EM BLOCOS CASUALIZADOS

QUADRO DE ANÁLISE

FV	GL	SQ	QM	F
Blocos Tratamentos Resíduo	4 3 12	32.21200 3.22600 13.58400	8.05300 1.07533 1.13200	7.1140 ** 0.9499 ns
Total	19	49.02200		
** significat	ivo ao níve	l de 1% de prob	oabilidade (p <	.01)

* significativo ao nível de 5% de probabilidade (.01 = ns não significativo <math>(p >= .05)

GL	GLR	F-crit	F	p
4	12	5.412	7.114	0.0035
3	12	0.07	0.9499	0.4474

MÉDIAS E MEDIDAS

Médias	de	bloco	
1 2 3	6. 5.	.02500 .50000 .82500	b b
4 5		.67500 .62500	
dms =		2.39	922

medias	ae	tratamen	ito
1		7.28000	a
2		6.78000	а
3		6.34000	а
4		7.32000	а
٠		4 000	
dms =		1.998	042

MG = 6.93000 CV% = 15.35

Ponto médio = 7.40000

ANEXO D – Teste de Tukey aplicado para as produtividades em etanol (Tabela 4.8)

Arquivo ProdutividadeEtanolUFRN2.txt

Data 20/08/2017 Hora 09:15:26

EXPERIMENTO EM BLOCOS CASUALIZADOS

QUADRO DE ANÁLISE

FV	GL	SQ	QМ	F
Blocos Tratamentos Resíduo	2 3 6	2.81167 0.28250 0.37500	1.40583 0.09417 0.06250	22.4933 ** 1.5067 ns
Total	11	3.46917		

** significativo ao nível de 1% de probabilidade (p < .01)

* significativo ao nível de 5% de probabilidade (.01 == .05)

GL	GLR	F-crit	F	р
2	6	10.9248	22.4933	0.0015
3	6	4.7571	1.5067	0.3056

MÉDIAS E MEDIDAS

Médias	de bloco		
1	2.80000 a		
2	3.25000 a		
3	2.07500 b		
dms = 0.54250			

Médias	de	tratamer	ito	
1		2.93333	a	
2		2.70000	а	
3		2.50000	а	
4		2.70000	a	
dms =		0.70725		

MG = 2.70833 CV% = 9.23

Ponto médio = 2.90000