

UNIVERSIDADE FEDERAL DA PARAÍBA

Centro de Tecnologia

Departamento de Engenharia Mecânica

Curso de Graduação em Engenharia Mecânica

YAGO JOSÉ GOMES DE MEDEIROS

ESTUDO DA INFLUÊNCIA DA UMIDADE RELATIVA NO COEFICIENTE CONVECTIVO: ANÁLISE DE ESCOAMENTO CRUZADO EM CILINDRO

João Pessoa

Junho / 2018

YAGO JOSÉ GOMES DE MEDEIROS

ESTUDO DA INFLUÊNCIA DA UMIDADE RELATIVA NO COEFICIENTE CONVECTIVO: ANÁLISE DE ESCOAMENTO CRUZADO EM CILINDRO

Trabalho de conclusão de curso submetido ao corpo docente do Curso de Graduação em Engenharia Mecânica da Universidade Federal da Paraíba, como parte dos requisitos para a obtenção do título de Bacharel em Engenharia Mecânica.

Orientador: Prof^o. Dr. Bruno Leonardo Campelo de Queiroga.

João Pessoa

Junho / 2018

YAGO JOSÉ GOMES DE MEDEIROS

ESTUDO DA INFLUÊNCIA DA UMIDADE RELATIVA NO COEFICIENTE CONVECTIVO: ANÁLISE DE ESCOAMENTO CRUZADO EM CILINDRO

Trabalho de Conclusão de Curso apresentado pelo acadêmico YAGO DE MEDEIROS, do Curso de Bacharelado em Engenharia Mecânica, o Federal da Paraíba - UFPB, tendo obtido o conceito	da Universidade
Aprovado em de de 2018	
BANCA EXAMINADORA	
Prof. Dr. Bruno Leonardo Campelo de Queiroga Orientador (Universidade Federal da Paraíba - UFPB)	
Prof. Dr. Adriano Sitônio Rumão Membro (Universidade Federal da Paraíba)	
Eng. André Filipe Mendes Alves	

Membro (Doutorando PPGEM – UFPB)

Agradecimentos

Agradeço primeiramente a Deus, pois sem Ele não teria chegado até aqui.

Ao meu orientador, professor Bruno, por todo o tempo e paciência dedicados, e aos técnicos do laboratório, Airton e Jandemarques, por todo o auxílio dado.

Ao meu pai Marcos, minha irmã Yara e minha namorada Thaís, por me aguentarem e ajudarem nos momentos difíceis, e às minhas mães, que de alguma forma estiveram presentes.

Por fim agradeço a meus amigos Andreza e Moacir por ajudarem a tornar o curso mais fácil.

RESUMO

O presente trabalho traz uma análise da influência da umidade relativa no coeficiente de transferência de calor por convecção. O estudo teórico/experimental foi conduzido em uma resistência metálica cilíndrica aquecida internamente por efeito Joule, e submetida a um escoamento cruzado de mistura de ar e vapor d'água em túnel psicrométrico, de modo a haver transferência de calor por convecção da superfície da resistência cilíndrica para o fluido. Através de variações da temperatura do cilindro, da velocidade do ar e umidade relativa, foi possível calcular o coeficiente convectivo tanto de maneira experimental, através da Lei do Resfriamento de Newton, como teoricamente, através das correlações existentes na literatura especializada. Utilizando as mesmas correlações, foi também calculado o coeficiente convectivo considerando o ar seco, para as mesmas temperaturas a fim de analisar a influência da umidade relativa do ar na transferência de calor. Uma vez terminadas as comparações, concluiu-se que a umidade relativa de fato influenciou nas trocas térmicas entre a resistência cilíndrica e o fluido.

Palavras-chave: Transferência de calor. Coeficiente convectivo. Escoamento cruzado. Umidade relativa.

ABSTRACT

The present paper brings an analysis of the influence of relative humidity on convective coefficient. Theoretical/experimental studies were conducted on a cylindrical metallic resistance internally heated by Joule effect, subjected to a cross-flow of an air-steam mixture in a psychrometric tunnel, to allow heat transfer by convection from the cylindrical resistance's surface to the fluid. By varying cylinder temperature, air velocity and relative humidity, it was possible to calculate the convective coefficient both experimentally, by using Newton's Cooling Law, as such as theoretically, by using the correlations found at specialized literature. By using the same correlations, it was also possible to calculate the convective coefficient for dry air, at the same temperatures, aiming to analyze the influence of the relative humidity of the air at the heat transfer. Once the comparisons among the convective coefficients were finished, the conclusion was that the relative humidity did interfere in thermal exchanges between the cylindrical resistance and the fluid.

Key-words: Heat transfer. Convective coefficient. Cross-flow. Relative humidity

LISTA DE FIGURAS

Figura 1 – Cilindro em escoamento cruzado	4
Figura 2 – Aparato experimental para determinação do coeficiente convectivo	6
Figura 3 – Carta Psicrométrica.	7
Figura 4 – Esquema do aparato experimental utilizado para medição de coeficiente	9
Figura 5 – Resistência cilíndrica	10
Figura 6 – Termopares no cilindro	10
Figura 7 – Varivolt	11
Figura 8 – Alicate Amperímetro	11
Figura 9 – Túnel Psicrométrico	12
Figura 10 – Interior da região onde foi instalado o cilindro	12
Figura 11 – Tampa da Região do Cilindro	13
Figura 12 – Tremo Higrômetro	13
Figura 13 – Anemômetro	14
Figura 14 – Coeficiente Convectivo Teórico <i>versus</i> Umidade Relativa do Ar, para 10 V de saída do Varivolt	17
para 20 V de saída do Varivolt	18
Figura 16 – Coeficiente Convectivo Experimental <i>versus</i> Umidade Relativa do Ar, para 10 V de saída do Varivolt	19
para 20 V de saída do Varivolt	20

LISTA DE TABELAS

$Tabela\ 1-Comparação\ entre\ os\ coeficientes\ convectivos\ com\ a\ caldeira\ desligada21$
$Tabela\ 2-Comparação\ entre\ os\ coeficientes\ convectivos\ com\ a\ caldeira\ a\ 1,5\ kW21$
$Tabela\ 3-Comparação\ entre\ os\ coeficientes\ convectivos\ com\ a\ caldeira\ a\ 3,0\ kW22$
$Tabela\ 4-Dados\ experimentais\ obtidos\ com\ a\ caldeira\ desligada26$
Tabela 5 – Dados experimentais obtidos com a caldeira a 1,5 kW26
Tabela 6 – Dados experimentais obtidos com a caldeira a 3,0 kW27
Tabela 7 – Propriedades termodinâmicas e coeficientes convectivos teóricos obtidos
com a caldeira desligada
Tabela 8 - Propriedades termodinâmicas e coeficientes convectivos teóricos obtidos
com a caldeira ligada a 1,5 kW
Tabela 9 - Propriedades termodinâmicas e coeficientes convectivos teóricos obtidos
com a caldeira ligada a 3,0 kW
Tabela 10 – Propriedades termodinâmicas e coeficientes convectivos teóricos
considerando o ar seco, com a caldeira desligada
Tabela 11 – Propriedades termodinâmicas e coeficientes convectivos teóricos
considerando o ar seco, com a caldeira ligada a 1,5 kW
Tabela 12 – Propriedades termodinâmicas e coeficientes convectivos teóricos
considerando o ar seco, com a caldeira ligada a 3,0 kW33

Sumário

1. IN	TRODUÇÃO	Error!
Bookm	ark not defined.	
2. OF	BJETIVOS	2
2.1. 0	Objetivo geral	2
2.2. 0	Objetivos específicos	2
3. FU	NDAMENTAÇÃO TEÓRICA	3
3.1.	Transferência de Calor	3
3.2.	Transferência de Calor por Convecção	3
3.3.	Método Empírico de determinação do Coeficiente Convectivo	6
3.4.	Psicrometria	7
4. M	ATERIAIS E MÉTODOS	9
4.1.	Montagem do aparato experimental	9
4.2.	Preparação do Equipamento para o Experimento	14
4.3.	Procedimento Experimental	15
4.4.	Obtenção do h teórico	15
4.5.	Obtenção do h experimental	16
5. RE	ESULTADOS E DISCUSSÃO	17
6. CC	ONCLUSÃO	23
7. LII	MITAÇÕES	24
8. BI	BLIOGRAFIA	25
Apêndi	ce A – Valores obtidos experimentalmente	26
	ce B – Propriedades termodinâmicas e coeficientes convectivos teó	
Apêndi	ce C – Propriedades termodinâmicas e coeficientes convectivos teó	ricos
-	erando o ar seco	

1. INTRODUÇÃO

Os primeiros estudos sobre o calor de que se tem conhecimento datam do final do século XVIII, com a *teoria do calórico* proposta pelo químico francês Antoine Lavoisier (1743 - 1794), que defendia que o calor era um tipo de substância fluida sem massa, odor, cor ou sabor e capaz de fluir de um corpo. Tal substância era chamada *calórico* e, quando adicionada a um corpo, aumentava sua temperatura, ocorrendo o inverso quando retirada.

Tal teoria perdurou até meados do século XIX, quando foi derrubada pelos experimentos realizados pelo inglês James P. Joule, que provou que calor não é, afinal, uma substância. Hoje, graças ao desenvolvimento da teoria cinética, que entende as moléculas como pequenas esferas com energia cinética, pode-se definir o calor como "[...] a energia associada ao movimento aleatório de átomos e moléculas" (ÇENGEL *et al*, 2012, p. 4).

Entende-se por convecção a "[...] transferência de calor que ocorrerá entre uma superfície e um fluido em movimento quando estes estiverem a diferentes temperaturas" (INCROPERA *et al*, 2015, p. 2). Tal modo de transferência de calor é de fundamental importância para a Engenharia Mecânica devido às suas várias aplicações em aquecedores, radiadores, refrigeradores, ventiladores e outros trocadores de calor. Quando o movimento do fluido é gerado a partir de uma fonte externa, a exemplo de um ventilador ou uma bomba, trata-se de convecção forçada.

Em processos de transferência de calor por convecção um fator de significativa relevância é o coeficiente convectivo. Este depende basicamente do tipo de escoamento (natural ou forçado, interno ou externo), da geometria da superfície, dos número de Prandtl (relação entre a difusividade da quantidade de movimento e a difusividade térmica) e de Reynolds (relação entre as forças de inércia e as forças viscosas), e da condutividade térmica do fluido.

Na literatura especializada são encontradas diversas correlações para o coeficiente convectivo, sendo aplicadas para os mais diversos fluidos. No entanto, para escoamentos de ar ambiente, não se verifica a menção da influência da umidade relativa nas propriedades do fluido, sendo este tratado apenas como ar seco.

STILL *et al* (1998) observou essa influência para altas velocidades em um escoamento cruzado em um fio aquecido, propondo inclusive um fator de correção para correntes de ar úmido.

2. OBJETIVOS

2.1. Objetivo geral

O presente trabalho tem por objetivo a verificação da influência da umidade relativa do ar no coeficiente convectivo de um escoamento cruzado em uma resistência cilíndrica

2.2. Objetivos específicos

Os objetivos específicos desse trabalho consistem no desenvolvimento de um aparato de convecção forçada em uma resistência cilíndrica, realizando em seguida testes experimentais para a avaliação do coeficiente convectivo. A partir da imposição de diferentes fluxos térmicos ao cilindro e de diferentes umidades relativas ao ar, buscará se determinar o coeficiente convectivo por meio da Lei do Resfriamento de Newton. Os coeficientes convectivos experimentais serão confrontados com os fornecidos por correlações teóricas encontradas na literatura especializada.

3. FUNDAMENTAÇÃO TEÓRICA

3.1. Transferência de Calor

"Transferência de calor (ou calor) é energia térmica em trânsito devido a uma diferença de temperaturas no espaço" (INCROPERA *et al*, 2015, p. 2). Isso quer dizer que, havendo diferença de temperaturas entre meios, haverá obrigatoriamente transferência de calor. Quanto maior a diferença de temperaturas, maior será a taxa de transferência de calor.

Enquanto a termodinâmica se preocupa com a quantidade transferida de calor na passagem de um sistema de um estado de equilíbrio para outro, de forma a satisfazer o princípio da conservação de energia, a transferência de calor procura determinar a quantidade de calor transferido por unidade de tempo (taxa de transferência de calor), e trabalha com sistemas que não se encontram em equilíbrio térmico.

Os modos de transferências de calor conhecidos são: condução, convecção e radiação, cada um deles com características próprias de ocorrência e quantificação.

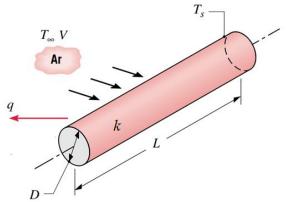
A condução ocorre quando há um gradiente de temperaturas em um meio sólido (ou fluido estacionário). Seu mecanismo físico consiste na difusão molecular de energia. A radiação é a energia que sai da matéria que apresenta temperatura acima do zero absoluto. Esse modo de transferência de calor se dá devido a propagação de ondas eletromagnéticas.

Neste trabalho será dada ênfase à transferência de calor por convecção, uma vez que se busca um estudo sobre o comportamento do coeficiente convectivo de escoamento cruzado sobre cilindro aquecido quando o fluido apresenta umidades relativas diferenciadas.

3.2. Transferência de Calor por Convecção

A convecção é o processo de transferência de calor que envolve uma superfície sólida e um fluido em movimento. Seu mecanismo engloba a difusão de calor e o movimento global do fluido, chamado de advecção.

Classifica-se a transferência de calor por convecção de acordo com a natureza do escoamento do fluido. Quando o escoamento é causado por meios externos, como um ventilador ou uma bomba, tem-se a convecção forçada. Já a convecção natural ocorre


quando o escoamento do fluido é induzido por diferenças de densidades causadas por variações de temperaturas no fluido. Os processos de ebulição e condensação são também tipos de convecção, porém estes envolvem mudança de fase do fluido.

A convecção pode ocorrer em escoamentos internos ou externos. Na convecção externa um fluido escoa sobre uma superfície, seja ela plana, cilíndrica ou esférica. Na convecção interna o fluido escoa internamente através de dutos, sejam eles circulares ou não.

Um dos tipos mais comuns de convecção é o escoamento cruzado sobre um cilindro. Situações práticas que se assemelham a esse processo de transferência referemse a exposição de tubulações a fluidos acelerados, como condensadores, evaporadores, tubulações aéreas de vapor, etc. A Fig. 1 mostra um esquema de convecção em escoamento cruzado sobre cilindro.

T

Figura 1 – Cilindro em escoamento cruzado.

Fonte: Incropera et al, 2015. Modificado.

A equação apropriada para o cálculo da taxa de transferência de calor por convecção *q* é conhecida como *Lei de Resfriamento de Newton* e assume a seguinte forma (INCROPERA *et al*, 2015):

$$q = \bar{h}A(T_S - T_\infty)$$
 Eq. 1

onde \bar{h} é o coeficiente convectivo médio, T_S é a temperatura superficial, T_∞ é a temperatura do fluido e A é a área lateral do cilindro.

Para a determinação do coeficiente convectivo médio é necessário se conhecer a condutividade térmica do fluido (k) sobre o cilindro e o Número de Nusselt Médio, que é a razão entre a transferência de calor por convecção e a transferência de calor por condução do fluido. Para o escoamento cruzado sobre cilindro o Número de Nusselt Médio é dado por (INCROPERA *et al*, 2015):

$$\overline{Nu_D} = \frac{\overline{h}D}{k}$$
 Eq. 2

De um modo geral, o Número de Nusselt é função do Número de Reynolds e do Número de Prandtl, havendo na literatura diversas correlações utilizadas para sua determinação.

Ainda em Incropera *et* al (2015), pode-se encontrar uma correlação proposta por Churchill e Bernstein para obtenção do Número de Nusselt que cobre uma ampla faixa dos números de Reynolds e de Prandtl, mostrada abaixo:

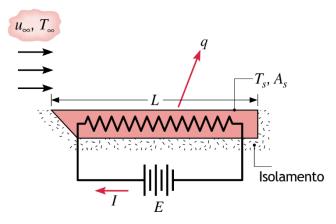
$$\overline{Nu_D} = 0.3 + \frac{0.62Re_D^{1/2}Pr^{1/3}}{[1 + (0.4/Pr)^{2/3}]^{1/4}} \left[1 + \left(\frac{Re_D}{282.000}\right)^{5/8} \right]^{4/5}$$
 Eq. 3

sendo recomendada quando Re_D x $Pr \ge 0,2$. O Número de Reynolds para o escoamento em questão é dado por:

$$Re_D = \frac{VD}{V}$$
 Eq. 4

onde V é a velocidade do fluido (m/s), D é o diâmetro do cilindro (m) e ν é a viscosidade cinemática (m²/s).

O Número de Prandtl é a razão entre a viscosidade cinemática do fluido e sua difusividade térmica (α) em m²/s, e é obtido pela equação abaixo:


$$Pr = \frac{v}{\alpha}$$
 Eq. 5

Para a Eq. 3 todas as propriedades devem ser avaliadas a temperatura de filme, que é a média aritmética entre a temperatura do fluido e a temperatura superficial. Tabelas e softwares específicos podem ser utilizados para a obtenção destas propriedades.

3.3. Método Empírico de determinação do Coeficiente Convectivo

Segundo Incropera *et* al (2015), pode-se determinar o coeficiente convectivo experimentalmente a partir de um aparato semelhante ao mostrado na Fig. 2, onde uma placa é aquecida por uma resistência elétrica. A parte superior é exposta a uma corrente de fluido, enquanto a superfície inferior é isolada.

Figura 2 - Aparato experimental para determinação do coeficiente convectivo.

Fonte: Incropera et al, 2015. Modificado.

Para uma dada velocidade do fluido, a partir da medição da tensão E e da corrente I, juntamente com os valores das temperaturas do fluido e da superfície, o coeficiente convectivo é determinado experimentalmente utilizando a Eq. 6.

$$IE = q = \overline{h_L} A_S (T_S - T_{\infty})$$
 Eq. 6

Os testes devem ser repetidos para que o coeficiente obtido seja o mais real possível, buscando-se manter as mesmas condições experimentais.

3.4. Psicrometria

Segundo VAN WYLEN *et* al (2003), o ramo da ciência dedicado a estudos das propriedades termodinâmicas de misturas entre gases e vapor é conhecido como psicrometria. A definição de tais propriedades é feita em um equipamento chamado psicrômetro, no qual a umidade da mistura é estabelecida através das temperaturas de bulbo úmido e bulbo seco.

No psicrômetro, o fluido escoa ao redor de dois termômetros: o de bulbo úmido, que é coberto com uma mecha de algodão saturada com águas; e o de bulbo seco, que é usado simplesmente para medir a temperatura do ar.

Atualmente, tem-se utilizado instrumentos que operam a partir de outros fenômenos, como mudança de comprimento, forma ou capacitância elétrica ao absorver umidade, e por fim produzem um sinal elétrico referente a algum parâmetro de saída pré-programado, como umidade relativa, absoluta ou temperatura de bulbo úmido.

O diagrama que fornece as propriedades de misturas ar-vapor é a carta psicrométrica. Nela, a abscissa representa a temperatura de bulbo seco e a ordenada a umidade absoluta. A temperatura de bulbo úmido, umidade relativa e entalpia por quilograma de ar seco são variáveis dependentes. Um exemplo de carta psicrométrica é mostrado na Fig. 3.

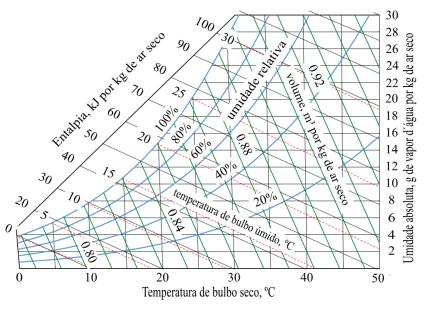
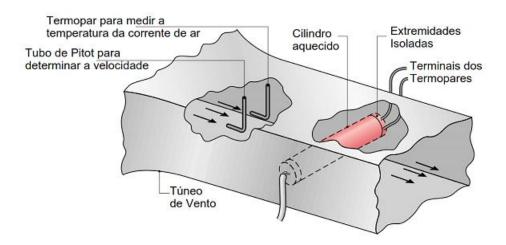


Figura 3 - Carta Psicrométrica.

Fonte: Shapiro et al, 2013. Modificado.


Psicrômetros digitais podem ser utilizados para determinar a temperatura de bulbo seco e a umidade relativa do ar de forma direta. As demais propriedades são determinadas a partir de tabelas termodinâmicas, cartas psicrométricas ou softwares específicos.

4. MATERIAIS E MÉTODOS

4.1. Montagem do aparato experimental

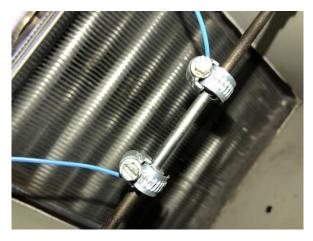
Para a verificação da influência da umidade relativa do ar no coeficiente convectivo de um escoamento cruzado, buscou-se construir um aparato semelhante ao apresentado na Fig. 4, proposto por Incropera *et al*, para avaliação da transferência de calor em um cilindro.

Figura 4 — Esquema do aparato experimental utilizado para medição de coeficiente convectivo.

Fonte: Incropera et al, 2015. Modificado.

A diferença principal do aparato sugerido e do utilizado encontra-se na tomada de velocidade, onde no lugar do Tubo de Pitot, utilizou-se um anemômetro, sendo esse aparato já utilizado por LEITE (2017) para determinação do coeficiente convectivo do cilindro de alumínio aquecido internamente por uma resistência elétrica, submetido a um escoamento cruzado de baixa velocidade.

O cilindro utilizado é uma resistência cilíndrica de 33,3 Ohm, conforme mostrado na Fig. 5, com 5 mm de diâmetro por 15,8 mm de comprimento, e ambas as extremidades rosqueadas. Tal resistência possui uma potência de 75 W e sua tensão máxima é de 55 V.


Figura 5 - Resistência cilíndrica.

Fonte: O autor.

Foram utilizados 2 termopares presos no cilindro, conforme mostrado na Fig. 6, ambos equidistantes do centro deste. Para prendê-los, foram utilizadas braçadeiras de metal, de modo a garantir um melhor contato térmico e reduzir sua exposição ao fluido.

Figura 6 - Termopares no cilindro.

Fonte: O autor.

O aquecimento do cilindro foi feito por efeito Joule, através de uma tensão elétrica controlada por um Varivolt apresentado na Fig. 7, ou Variador de Voltagem Rotativo, modelo R0396, fabricado pela Sociedade Técnica Paulista (STP). O Varivolt recebia 220 V, e de lá saía uma tensão pré-determinada. Dele, saíam dois fios conectados às extremidades da resistência.

Figura 7 - Varivolt.

Fonte: O autor.

Utilizou-se um Volt-Amperímetro Alicate Digital Instrumentherm, modelo VA-750, apresentado na Fig. 8, para medir a tensão e a corrente que saíam do Varivolt.

Figura 8 – Alicate Amperímetro.

Fonte: O autor.

Havendo a necessidade de se variar a umidade do ar sobre o cilindro, a resistência foi inserida em um túnel psicrométrico didático, da marca P. A. Hilton,

conforme mostrado na Fig. 9. O equipamento é composto por um ventilador de 600 W, de velocidade variável, um aquecedor de ar de 3 kW e uma caldeira de 4,5 kW para adição de umidade.

O cilindro foi inserido na seção mostrada na Fig. 10, após as resistências elétricas de aquecimento do ar e da entrada de vapor.

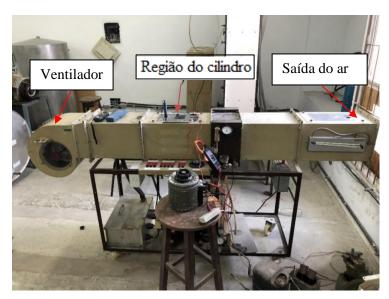
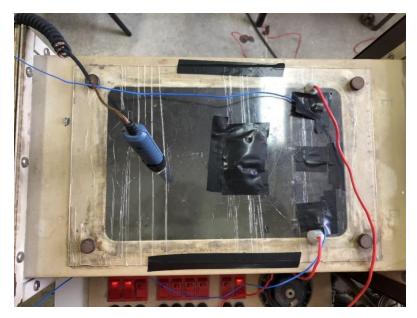



Figura 9 - Túnel Psicrométrico.

Fonte: O autor.



Fonte: O autor.

Uma tampa de acrílico, mostrada na Fig. 11, foi produzida para a passagem dos fios elétricos da resistência e as colocações do sensor de temperatura e umidade.

Figura 11 – Tampa da Região do Cilindro.

Fonte: O autor.

Para a leitura dos termopares e da humidade relativa utilizou-se um Termo Higrômetro Digital Minipa, modelo MTH 1380, mostrado na Fig. 12

Figura 12 - Tremo Higrômetro.

Fonte: O autor.

Para medir a velocidade do ar, foi utilizado um Anemômetro Termohigro Luxímetro Digital Lutron LM-8000, conforme a Fig. 13, inserido em um rasgo na tampa da região onde se encontrava o cilindro, pouco antes desse, de modo a garantir que a velocidade medida fosse o mais próxima possível da velocidade do ar ao chegar no cilindro.

Figura 13 – Anemômetro.

Fonte: O autor.

4.2. Preparação do Equipamento para o Experimento

Inicialmente, observou-se a necessidade de fazer adaptações no túnel para que o cilindro pudesse ser devidamente posicionado. Assim, o primeiro procedimento foi a confecção de uma tampa de acrílico para a região que abriga o cilindro. Nessa tampa foram feitos furos afim de passar o sensor do termo higrômetro, os fios que conectam o cilindro ao Varivolt e os fios do termopar. Para esses últimos foram feitos três furos, pois a ideia inicial era a utilização de três termopares; porém o experimento foi realizado utilizando-se apenas dois deles. Na tampa também foi feito um rasgo para a passagem do anemômetro. Todos esses furos e rasgo eram tapados com fita isolante quando não estavam sendo utilizados.

Em seguida, acoplou-se os termopares ao cilindro utilizando braçadeiras de metal, ambas equidistantes do centro do cilindro. Este foi colocado dentro do túnel, pendurado em suas extremidades pelos fios ligados à saída do Varivolt. Para garantir que os fios ficassem firmes e evitasse que o cilindro se movesse dentro do túnel,

utilizou-se Durepoxi no ponto em que os fios atravessam a tampa. Ainda na saída do Varivolt foram conectados os terminais de medição do Volt-Amperímetro, de forma de medir a tensão de saída. O alicate do Volt-Amperímetro foi preso em volta de um dos fios de saída do Varivolt, de modo a medir sua corrente. Por fim, os terminais dos termopares foram ligados ao termo higrômetro, e o Varivolt foi ligado à tomada.

4.3. Procedimento Experimental

Como se trata de um experimento de convecção a diferentes umidades relativas do ar, decidiu-se trabalhar com três potências diferentes da caldeira: a 0 kW, ou seja, com a caldeira desligada, de modo a não injetar vapor no sistema; uma com 1,5 kW e a terceira a 3,0 kW. Assim, o primeiro passo do experimento era a definição da potência da caldeira. Para cada potência da caldeira, todos os passos seguintes eram os mesmos.

O passo seguinte foi a regulagem da tensão de saída do Varivolt. Após medições no cilindro, decidiu-se trabalhar com duas tensões de saída: 10 V e 20 V. Então o Varivolt foi regulado para uma tensão inicial de 10 V. Feita essa regulagem, utilizou-se o alicate do Volt-Amperímetro para a medição da corrente e da tensão de saída do Varivolt, de modo a determinar a potência elétrica fornecida para o cilindro pois, pelo Efeito Joule, é equivalente à sua potência térmica.

Em seguida, liga-se o ventilador. Escolheu-se trabalhar com três variações de sua potência nominal: 110%, 95% e 80%. Então regulou-se sua carga para 110% e foi esperado 10 minutos para que o sistema em convecção estabilizasse. Após isso, inseriu-se o anemômetro no rasgo da tampa e mediu-se a velocidade do ar. Então foram tiradas as medidas das temperaturas do cilindro por ambos os termopares, e a temperatura e umidade relativa do ar em fluxo no túnel. Em seguida regulou-se a carga do ventilador para 95% e repetiu-se os procedimentos. O mesmo foi feito para a carga de 80%.

Terminadas essas medições, a tensão de saída do Varivolt foi aumentada para 20 V, e todo o procedimento foi repetido.

4.4. Obtenção do h teórico

O coeficiente convectivo teórico foi determinado utilizando as Eqs. 2, 3, 4 e 5. As propriedades termofísicas necessárias foram encontradas com o auxílio do software MathCad 15, mais especificamente uma biblioteca produzida pela M. Conde.

Engineering. As propriedades foram obtidas inserindo-se no software dados de temperatura de filme e umidade relativa.

4.5. Obtenção do h experimental

Calculou-se o valor experimental do coeficiente convectivo para cada velocidade e umidade relativa do ar, e potência de entrada do cilindro experimentados, utilizando-se a Eq. 6. A princípio o cálculo foi feito levando em consideração as perdas de energia por radiação. No entanto, como o material possui emissividade muito baixa (cerca de 0,04), tais perdas se mostraram desprezíveis. Assim, os valores dos coeficientes convectivos experimentais foram feitos desconsiderando-se a perda energética por radiação.

5. RESULTADOS E DISCUSSÃO

Os dados experimentais obtidos de acordo com os procedimentos descritos na seção 4.3 são apresentados em tabelas no Apêndice A, sendo cada tabela referente a uma potência da caldeira utilizada. Como as temperaturas superficiais foram tiradas em dois pontos, utilizou-se a média aritmética entre elas.

No Apêndice B se encontram os valores das propriedades do ar úmido obtidos com a utilização do MathCad.

A Fig. 14 mostra os coeficientes convectivos obtidos para uma tensão de saída do Varivolt de 10 V, utilizando o método apresentado na seção 4.4 aplicado aos dados das tabelas levantadas.

65.00 60.00 55.00 Coeficiente convectivo (W/m²K) 50.00 45.00 40.00 Log. (1,7 m/s (~50 °C)) Log. (1,1 m/s (~ 54°C)) Log. (0,4 m/s (~65 °C)) 35.00 30.00 25.00 60% 66% 85% Umidade Relativa Média

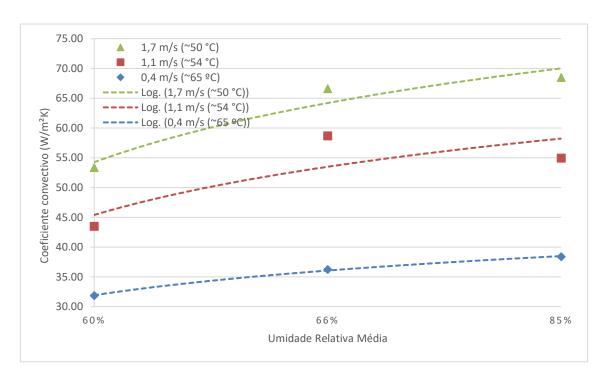
Figura 14 - Coeficiente Convectivo Teórico *versus* Umidade Relativa do Ar, para 10 V de saída do Varivolt.

Fonte: o autor.

Na Fig. 14, cada curva representa uma velocidade do ar, com a respectiva temperatura superficial média encontrada. Como se pode observar, a variação da umidade relativa causou uma influência desprezível no comportamento do coeficiente convectivo, com o aumento da velocidade do fluido.

A Fig. 15 mostra os coeficientes convectivos obtidos para uma tensão de saída do Varivolt de 20 V, utilizando o método apresentado na seção 4.4 aplicado aos dados das tabelas levantadas.

65.00 60.00 55.00 Coeficiente convectivo (W/m²K) 50.00 45.00 1,7 m/s (~110 °C) 1,1 m/s (~126 °C) 0,4 m/s (~162 °C) 40.00 Log. (1,7 m/s (~110 °C)) Log. (1,1 m/s (~126 °C)) 35.00 Log. (0,4 m/s (~162 °C)) 30.00 25.00 60% 66% 85% Umidade Relativa Média


Figura 15 - Coeficiente Convectivo Teórico *versus* Umidade Relativa do Ar, para 20 V de saída do Varivolt.

Fonte: o autor.

De maneira semelhante ao observado na Fig. 14, a Fig. 15 mostra que é desprezível a influência da umidade relativa no coeficiente convectivo.

Para o obtenção do coeficiente convectivo experimental, utilizou-se o método descrito na seção 4.5. A Fig. 16 mostra os coeficientes convectivos obtidos para uma tensão de saída do Varivolt de 10 V.

Figura 16 - Coeficiente Convectivo Experimental *versus* Umidade Relativa do Ar, para 10 V de saída do Varivolt.

Fonte: o autor.

Diferentemente do observado nos valores teóricos, o valores experimentais mostram que há influência da umidade relativa no coeficiente convectivo pois, para uma mesma velocidade, quando maior a umidade relativa do ar, maior seu coeficiente convectivo. Isso é perceptível para as três velocidades utilizadas no experimento, sendo também o coeficiente convectivo maior quanto maior for a velocidade do ar.

A Fig. 17 mostra os coeficientes convectivos obtidos para uma tensão de saída do Varivolt de 20 V, utilizando o método apresentado na seção 4.5.

75.00

1,7 m/s (~110 °C)

1,1 m/s (~126 °C)

0,4 m/s (~110 °C)

1,0 m/s (~110 °C)

1,1 m/s (~110 °C)

1,1 m/s (~110 °C)

1,1 m/s (~110 °C)

1,2 m/s (~110 °C)

1,3 m/s (~110 °C)

1,4 m/s (~162 °C)

1,5 m/s (~110 °C)

1,1 m/s (~126 °C)

1,2 m/s (~110 °C)

1,1 m/s (~110 °C)

1,1 m/s (~110 °C)

1,1 m/s (~126 °C)

1,2 m/s (~110 °C)

1,1 m/s (~110 °C)

1,1 m/s (~126 °C)

1,2 m/s (~110 °C)

1,1 m/s (~110 °C)

1,1 m/s (~126 °C)

1,2 m/s (~110 °C)

1,1 m/s (~110 °C)

Figura 17 - Coeficiente Convectivo Experimental *versus* Umidade Relativa do Ar, para 20 V de saída do Varivolt.

Fonte: o autor.

66%

Umidade Relativa Média

35.00

30.00

60%

De forma semelhante ao observado na Fig. 16, a Fig. 17 mostra que há variação do coeficiente convectivo com o aumento da umidade relativa do ar, mantendo constante sua velocidade.

A discrepância entre os gráficos teórico e experimental pode se dar pelo fato de que a umidade não influencia nas propriedades adimensionais do ar, utilizados no cálculo do Número de Nusselt, consequentemente não afetando o valor do coeficiente convectivo teórico. Além disso, a literatura mostra que há divergências entre os valores dos coeficientes convectivos calculados experimentalmente e teoricamente.

Para comparação, foi calculado o coeficiente convectivo para os valores encontrados, porém considerando o ar seco, utilizando o método descrito na seção 4.4. As propriedades do ar seco foram retiradas de tabelas fornecidas por Incropera *et al* (2015). As propriedades obtidas para o cálculo do Número de Nusselt se encontram no Apêndice C.

Foram lançadas três tabelas para comparação entre os valores obtidos pelo método da seção 4.5 e os obtidos pelo método da seção 4.4, sendo esses tanto para o ar úmido como para o ar seco. Foram calculados valores de erros entre os valores experimentais e os teóricos. Os resultados obtidos se encontram nas Tabelas 1, 2 e 3.

85%

 $\label{eq:tabela} \begin{tabular}{ll} Tabela 1-Comparação entre os coeficientes convectivos com a caldeira \\ desligada. \end{tabular}$

		0				
Var (m/s)	Tensão (V)	h experimental (W/m²K)	h teórico com ar úmido (W/m²K)	Erro % (experimental – teórico)	h teórico com ar seco (W/m²K)	Erro % (experimental – ar seco)
0,4	10	31,85	30,09	5,51%	30,26	-14,73%
0, 1	20	33,60	29,01	13,66%	30,29	-21,64%
1,1	10	43,48	49,66	-14,22%	49,38	-13,56%
	20	43,11	47,29	-9,68%	49,21	-14,15%
1,7	10	53,37	61,95	-16,07%	61,23	5,00%
-,,	20	50,13	58,51	-16,71%	60,98	9,84%

Fonte: O autor.

 $\label{eq:convectivos} \mbox{Tabela 2-Comparação entre os coeficientes convectivos com a caldeira a 1,5} $$kW.$

		1,5				
Var (m/s)	Tensão (V)	h experimental (W/m²K)	h teórico com ar úmido (W/m²K)	Erro % (experimental – teórico)	h teórico com ar seco (W/m²K)	Erro % (experimental – ar seco)
0,4	10	36,25	30,18	16,73%	30,26	16,51%
	20	40,06	29,35	26,73%	30,28	24,42%
1,1	10	58,68	49,96	14,87%	49,40	15,82%
	20	54,21	47,34	12,68%	49,26	9,14%
1,7	10	66,61	62,19	6,63%	61,26	8,03%
1,,	20	67,49	61,20	9,32%	61,00	9,62%

Fonte: O autor.

 $\label{eq:convectivos} \mbox{Tabela 3-Comparação entre os coeficientes convectivos com a caldeira a 3,0} \\ \mbox{kW}.$

		3,0				
Var (m/s)	Tensão (V)	h experimental (W/m²K)	h teórico com ar úmido (W/m²K)	Erro % (experimental – teórico)	h teórico com ar seco (W/m²K)	Erro % (experimental – ar seco)
0,4	10	38,38	33,64	12,35%	33,66	12,29%
<u> </u>	20	37,47	31,05	17,14%	33,67	10,15%
1,1	10	54,95	49,72	9,52%	49,37	10,16%
	20	55,55	48,10	13,40%	49,26	11,32%
1,7	10	68,49	61,95	9,55%	61,21	10,63%
1,7	20	69,18	59,50	13,99%	60,99	11,83%

Fonte: O autor.

Analisando as tabelas, nota-se que entre os valores teóricos, tanto para o ar úmido como para o ar seco, os valores do coeficientes obtidos foram bem próximos. No entanto, há uma diferença bem visível entre esses valores e os valores experimentais. Essa diferença foi observada na análise dos gráficos.

6. CONCLUSÃO

Com base nos experimentos, foi possível observar o comportamento do coeficiente convectivo com a variação da umidade relativa do ar em fluxo.

Nos valores obtidos teoricamente, não se observa variação do coeficiente convectivo com o aumento da umidade relativa, e os valores obtidos foram muito próximos dos encontrados considerando o ar seco.

No entanto, os valores experimentais obtidos mostram que há aumento do coeficiente convectivo com o aumento da umidade relativa, bem como com o aumento da velocidade do ar. Isso deve se dar pelo fato de que a umidade relativa não influenciou nas propriedades adimensionais do fluido. Isso ficou visível durante o cálculo dos coeficiente convectivo considerando o ar seco.

Para maiores análises, seriam necessários experimentos com maiores velocidades e com inserção de quantidades maiores de vapor, a fim de analisar outras diferentes situações em que a umidade relativa pode causar maior ou menor influência.

Os valores encontrados tanto para a velocidade do ar quanto para a temperatura superficial do cilindro não são totalmente precisos, o que pode ter ocasionado erros nos resultados finais. Sugere-se que sejam feitas réplicas a fim de comprovar a veracidade dos dados obtidos.

7. LIMITAÇÕES

A maior limitação encontrada foi determinar uma forma correta de medir a temperatura superficial do cilindro. Inicialmente utilizou-se fios de cobre para prender os termopares à superfície, porém sua medida não era precisa, pois as pontas dos termopares não tocavam o cilindro. Em seguida utilizou-se abraçadeiras de plástico, o que a princípio mostrou-se uma solução válida. Porém seu material não suportou as altas temperaturas do cilindro, derretendo logo após o primeiro experimento. No fim, as abraçadeiras de metal se mostraram a melhor solução, porém capaz de ocasionar erros de medição.

Outra limitação foi a baixa velocidade do ar. A máxima velocidade encontrada para o ar foi de 1,7 m/s. Tal valor encontrado é passível de erros, pois a forma como a medição foi feita não foi muito precisa. No entanto, foi a forma mais prática encontrada para medir sua velocidade.

A terceira limitação mostrou-se da parte da biblioteca do MathCad utilizada para o ar úmido. A intenção inicial era utilizar a correlação proposta por Zukauskas para determinar o coeficiente convectivo. Porém a biblioteca mostrou-se inviável, pois apresentava erro sempre que eram inseridas altas temperaturas de bulbo seco a baixas umidades relativas, não retornando valor algum. Assim, foi utilizada a correlação de Churchill e Bernstein, pois esta utiliza os parâmetros a temperatura de filme, o que se mostrou válido na utilização da biblioteca.

Por fim, a última limitação encontrada foi a escassez de material científico sobre o uso de ar úmido em convecção, resultando em um menor embasamento teórico.

8. REFERÊNCIAS

ÇENGEL, Y. A.; GHAJAR, A. J. Transferência de Calor e Massa – UMA ABORDAGEM PRÁTICA. 4. ed. Mc Graw Hill, 2012.

INCROPERA, Frank P.; BERGMAN, Theodore L.; LAVINE, Adrienne S.; DEWITT, David P. **Fundamentos de Transferência de Calor e de Massa**. 7. ed. LTC, 2015.

LEITE, I. A. S. Determinação do Coeficiente de Transferência de Calor em um Cilindro Aquecido Internamente e Submetido a um Escoamento Cruzado de Ar em um Túnel de Vento de Baixas Velocidades. João Pessoa, 2017. Originalmente apresentado como Trabalho de Conclusão de Curso, Universidade Federal da Paraíba, 2017.

MORAN, Michael J.; SHAPIRO, Howard N.; BOETTNER, Daisie D.; BAILEY, Margaret B. **Princípios de Termodinâmica para Engenheiros.** 7. ed. LTC, 2013.

STILL, M. VENZKE, H. DURST, F. MELLING, A. Influence of humidity on the convective heat transfer from small cylinders. In: _____. Experiments in fluids 24. Springer-Verlag, 1998. p. 141-150.

VAN WYLEN, Gordon J.; SONNTAG, Richard E.; BORGNAKKE, Claus. **Fundamentos da Termodinâmica**. 6. ed. Edgard Blücher, 2003.

$\label{eq:Apendice} \textbf{Apendice} \ \textbf{A} - \textbf{Valores} \ \textbf{obtidos} \ \textbf{experimentalmente}$

Tabela 4 – Dados experimentais obtidos com a caldeira desligada.

	Potência da	0			
Velocidade do ar (m/s)	Tensão (V)	Corrente (A)	Temperatura média do cilindro (°C)	Temperatura do ar (°C)	Umidade relativa (%)
0,4	10	0,3	66,7	28,7	57,6
0, 1	20	0,6	172,6	28,7	60,6
1,1	10	0,3	56,2	28,4	57,7
1,1	20	0,6	141,2	29,0	64,5
1,7	10	0,3	51,2	28,5	58,6
1,7	20	0,6	125,4	28,9	64,1

Tabela 5 – Dados experimentais obtidos com a caldeira a 1,5 kW.

	Potência da	1,5			
Velocidade do ar (m/s)	Tensão (V)	Corrente (A)	Temperatura média do cilindro (°C)	Temperatura do ar (°C)	Umidade relativa (%)
0,4	10	0,3	64,1	30,7	69,0
0 , .	20	0,6	151,4	30,7	68,9
1,1	10	0,3	50,7	30,1	66,0
1,1	20	0,6	119,4	30,2	64,9
1,7	10	0,3	47,7	29,5	62,8
-,,	20	0,6	101,4	29,7	62,7

Tabela 6 – Dados experimentais obtidos com a caldeira a 3,0 kW.

	Potência da	3,0			
Velocidade do ar (m/s)	Tensão (V)	Corrente (A)	Temperatura média do cilindro (°C)	Temperatura do ar (°C)	Umidade relativa (%)
0,4	10	0,3	65,3	33,8	91,9
0,1	20	0,6	163,0	33,9	92,1
1,1	10	0,3	54,8	32,8	81,8
1,1	20	0,6	120,1	33,0	83,7
1,7	10	0,3	50,0	32,3	77,1
1,7	20	0,6	102,5	32,6	79,6

Apêndice B – Propriedades termodinâmicas e coeficientes convectivos teóricos

Tabela 7 – Propriedades termodinâmicas e coeficientes convectivos teóricos obtidos com a caldeira desligada.

Potência da Caldeira (kW)		0						
Velocidade do ar (m/s)	Tensão (V)	Temperatura de filme (°C)	Umidade relativa (%)	Pr	Red	k (W/m.K)	Nu	h (W/m².K)
0,4	10	47,675	57,6	0,728	114,18	0,027	5,57374	30,09821204
0,4	20	100,65	60,6	0,852	93,33	0,027	5,37261	29,01211086
1,1	10	42,3	57,7	0,724	322,89	0,027	9,19769	49,66751527
1,1	20	85,075	64,5	0,82	264,87	0,027	8,75768	47,29147913
1,7	10	39,825	58,6	0,723	505,90	0,027	11,47243	61,95111297
1,1	20	77,125	64,1	0,786	422,21	0,027	10,83579	58,51326981

Tabela 8 – Propriedades termodinâmicas e coeficientes convectivos teóricos obtidos com a caldeira ligada a 1,5 kW.

Potência da Caldeira (kW)		1,5						
Velocidade do ar (m/s)	Tensão (V)	Temperatura de filme (°C)	Umidade relativa (%)	Pr	Red	k (W/m.K)	Nu	h (W/m².K)
0,4	10	47,375	69,0	0,731	114,48	0,027	5,58953	30,18344545
0,4	20	91,050	68,9	0,866	94,44	0,027	5,43586	29,35364436
1,1	10	40,400	66,0	0,725	326,40	0,027	9,25151	49,95814457
1,1	20	74,800	64,9	0,78	276,05	0,027	8,76646	47,33890921
1,7	10	38,575	62,8	0,723	509,82	0,027	11,51644	62,18875822
1,7	20	65,525	62,7	0,753	444,27	0,028	10,92888	61,2017255

Tabela 9 – Propriedades termodinâmicas e coeficientes convectivos teóricos obtidos com a caldeira ligada a 3,0 kW.

Potência da Caldeira (kW)		3,0						
Velocidade do ar (m/s)	Tensão (V)	Temperatura de filme (°C)	Umidade relativa (%)	Pr	Red	k (W/m.K)	Nu	h (W/m².K)
0,4	10	49,55	91,9	0,742	113,53	0,027	6,22954	33,63950055
0,1	20	98,425	92,1	1,029	94,99	0,024	6,46820	31,04735219
1,1	10	43,80	81,8	0,731	321,11	0,027	9,20695	49,71752596
	20	76,525	83,7	0,813	276,10	0,027	8,90796	48,1029839
1,7	10	41,125	77,1	0,728	503,13	0,027	11,47199	61,94874408
	20	67,55	79,6	0,773	442,45	0,027	11,01823	59,49843508

Apêndice C – Propriedades termodinâmicas e coeficientes convectivos teóricos considerando o ar seco

Tabela 10 – Propriedades termodinâmicas e coeficientes convectivos teóricos considerando o ar seco, com a caldeira desligada.

Potência da Caldeira (kW)		0					
Velocidade do ar (m/s)	Tensão (V)	Temperatura de filme (°C)	Pr	Red	k (W/m.K)	Nu	h (W/m².K)
0,4	10	47,675	0,7040845	111,20	0,02784105	5,43487	30,26248133
	20	100,65	0,69524	84,99	0,0318088	4,76213	30,29553927
1,1	10	42,3	0,704837	315,29	0,0274433	8,99686	49,38072391
	20	85,075	0,698355	252,03	0,0306251	8,03536	49,21673698
1,7	10	39,825	0,7051835	494,32	0,02726015	11,23161	61,23504859
	20	77,125	0,699945	405,72	0,0300209	10,15700	60,98444442

Tabela 11 – Propriedades termodinâmicas e coeficientes convectivos teóricos considerando o ar seco, com a caldeira ligada a 1,5 kW.

Potência da Caldeira (kW)		1,5	1,5				
Velocidade do ar (m/s)	Tensão (V)	Temperatura de filme (°C)	Pr	Red	k (W/m.K)	Nu	h (W/m².K)
0,4	10	47,675	0,7041265	111,39	0,02781885	5,43934	30,2632132
0,1	20	100,65	0,69716	88,97	0,0310792	4,87127	30,27905851
1,1	10	42,3	0,705103	318,78	0,0273027	9,04691	49,40101506
	20	85,075	0,700287	265,52	0,0298483	8,25119	49,2567921
1,7	10	39,825	0,7053585	497,96	0,02716765	11,27364	61,25565961
	20	77,125	0,7015855	429,71	0,02916195	10,45862	60,99876383

Tabela 12 – Propriedades termodinâmicas e coeficientes convectivos teóricos considerando o ar seco, com a caldeira ligada a 3,0 kW.

Potência da Caldeira (kW)		3,0					
Velocidade do ar (m/s)	Tensão (V)	Temperatura de filme (°C)	Pr	Red	k (W/m.K)	Nu	h (W/m².K)
0,4	10	47,675	0,703822	137,56	0,0279798	6,01504	33,65990511
0,1	20	100,65	0,695685	107,35	0,0316397	5,32015	33,66559822
1,1	10	42,3	0,704627	312,59	0,0275543	8,95793	49,36590202
1,1	20	85,075	0,7000455	263,32	0,02997595	8,21658	49,25993755
1,7	10	39,825	0,7050015	490,59	0,02735635	11,18838	61,2146363
	20	77,125	0,701302	425,33	0,0293118	10,40419	60,99312908