UNIVERSIDADE FEDERAL DA PARAÍBA CENTRO DE TECNOLOGIA CURSO DE GRADUAÇÃO EM ENGENHARIA MECÂNICA

JANYLSON VICTOR LACERDA DE OLIVEIRA

ANÁLISE NUMÉRICA E EXPERIMENTAL DE UM ANEL SUPERELÁSTICO DE LIGA COM MEMÓRIA DE FORMA DE NI-TI

JOÃO PESSOA

JANYLSON VICTOR LACERDA DE OLIVEIRA

ANÁLISE NUMÉRICA E EXPERIMENTAL DE UM ANEL SUPERELÁSTICO DE LIGA COM MEMÓRIA DE FORMA DE NI-TI

Trabalho de Conclusão de Curso apresentado à Coordenação do Curso de Graduação em Engenharia Mecânica como requisito parcial para obtenção do título de bacharel em Engenharia Mecânica.

Orientador: Prof. Dr. Cícero da Rocha Souto

JOÃO PESSOA

JANYLSON VICTOR LACERDA DE OLIVEIRA

ANÁLISE NUMÉRICA E EXPERIMENTAL DE UM ANEL SUPERELÁSTICO DE LIGA COM MEMÓRIA DE FORMA DE NI-TI

Trabalho de Conclusão de Curso apresentado à Coordenação do Curso de Graduação em Engenharia Mecânica como requisito parcial para obtenção do título de bacharel em Engenharia Mecânica.

Aprovado em:	/	′ /	′
1			

BANCA EXAMINADORA

Prof. Dr. Cícero da Rocha Souto

Orientador – DEE/CEAR/UFPB

Prof. Dr. Marcelo Cavalcanti Rodrigues Examinador Interno – DEM/CT/UFPB

Prof. Dr. Alexsandro José Virgínio dos Santos Examinador Externo – DEE/CEAR/UFPB

AGRADECIMENTOS

Primeiramente, agradeço a Deus, pois sem ele nada disto seria possível.

A minha família, por terem me apoiado, acreditado no meu potencial e me ajudado durante o curso.

Ao meu orientador professor Cícero, pelo seu apoio e suas orientações nesse e em outros trabalhos.

Ao meu amigo José Marques por todo apoio que me deu durante os meus trabalhos no laboratório.

Aos meus amigos André, Calebe, Jonathan e Matheus por toda a ajuda que me deram durante o curso.

Ao Laboratório de Sistema e Estruturas Ativas – LaSEA e ao Laboratório de Instrumentação e Controle – LINC, pela disponibilidade em fornecer o suporte para elaboração desta pesquisa.

Ao CNPQ e a CAPES pelo financiamento dos projetos a qual participei, sendo estes essenciais para cumprimento do plano presente neste trabalho de conclusão de curso.

RESUMO

Neste trabalho são realizadas as análises numérica e experimental de um anel superelástico fabricado a partir de uma chapa de liga com memória de forma (LMF) de Ni-Ti. Este anel foi dimensionado de acordo com a norma DIN 471, a qual é utilizada para anéis externos a serem aplicados em eixos. Por praticidade de aplicação, o anel foi dimensionado para um eixo de diâmetro nominal de 10 mm. As demais dimensões do anel são: diâmetro interno de 9,3 mm quando está livre de deformações, espessura de 1 mm e diâmetro interno de 9,6 mm quando instalado no eixo. Esta pesquisa tem o objetivo de realizar a caracterização experimental do anel superelástico de LMF e também propor a representação deste comportamento por meio de simulações numéricas utilizando o Método dos Elementos Finitos (MEF) no software ANSYSTM Mechanical (Workbench) 15.0. Nessas simulações foi empregado o elemento SOLID186 para a modelagem do anel pelo fato de suportar o modelo constitutivo utilizado. Através da realização dos ensaios experimentais foi possível obter as curvas de forçadeslocamento que expressam o comportamento termomecânico do atuador. Estes resultados foram necessários para promover a calibração e validação das simulações numéricas. As transformações de fases (austenita-martensita) que ocorreram durante as simulações foram demonstradas em um gráfico por meio do cálculo das frações de martensita e austenita em função do tempo de análise. Por fim, para verificar a funcionalidade do atuador projetado de LMF, uma comparação entre a capacidade de deformação para a mesma força deste anel e um anel convencional de aço foi realizada. O anel superelástico demonstrou sua grande capacidade de deformação na abertura sem apresentar deformações residuais no fim do carregamento devido ao seu efeito pseudoelástico.

Palavras-Chave: Anel Superelástico, Ligas com Memória de Forma (LMF), Método dos Elementos Finitos (MEF), Simulação Numérica, ANSYSTM.

ABSTRACT

In this work are carried out numerical and experimental analyzes of a superelastic ring manufactured from a plate of shape memory alloy (SMA) of Ni-Ti. This ring was dimensioned according to DIN 471, which is used for external rings to be applied on shafts. For practical application, the ring was dimensioned for a shaft of nominal diameter of 10 mm. The other dimensions of the ring are: internal diameter 9.3 mm when free from deformation, thickness 1 mm and internal diameter of 9.6 mm when installed on shaft. The aim of this research is to perform the experimental characterization of the SMA superelastic ring and also propose the representation of this behavior by numerical simulations using the Finite Element Method (FEM) in ANSYS TM Mechanical (Workbench) 15.0 software. In these simulations the SOLID186 element was used to model the ring because it supports the constitutive model used. By conducting the experimental tests it was possible to obtain the force-displacement curves that express the thermo-mechanical behavior of the actuator. These results were necessary to promote the calibration and validation of the numerical simulations. The phase transformations (austenite-martensite) that occurred during the simulations were demonstrated in a graph by calculating the martensite and austenite fractions as a function of the analysis time. Finally, to verify the functionality of the designed SMA actuator, a comparison between the deformation capacity for the same force of this ring and a conventional steel ring was performed. The superelastic ring demonstrated its great deformation capacity in the aperture without presenting residual deformations at the end of loading due to its pseudoelastic effect.

Keywords: Superelastic Ring, Shape Memory Alloys (SMAs), Finite Element Method (MEF), Numerical Simulation, ANSYSTM.

LISTA DE ILUSTRAÇÕES

Figura 1 - Transformação direta (Austenita para martensita)	13
Figura 2 - Transformação reversa (Martensita para Austenita)	14
Figura 3 - Relação entre as temperaturas de transformação e a tensão aplicada	14
Figura 4 - Efeito Superelástico na LMF	15
Figura 5 - Efeito Memória de Forma - EMF na LMF	16
Figura 6 - Efeito Memória de Forma - EMF	16
Figura 7 - Fio de aparelho ortodôntico de LMF	17
Figura 8 - Stents de LMF	18
Figura 9 - Pás de turbina controladas por vigas de LMF	18
Figura 10 - Tipos de elementos finitos	20
Figura 11 - Ilustração do carregamento dividido em passos ao longo de intervalos d	le tempo 21
Figura 12 - Gráfico tensão-deformação do comportamento superelástico ideal	24
Figura 13 - Representação do anel elástico	26
Figura 14 - Bancada utilizada para os ensaios experimentais	28
Figura 15 - Painel de controle utilizado no LabView	28
Figura 16 - Geometria do elemento SOLID186 (Hexaédrico)	29
Figura 17 - Geometria do elemento SOLID186 (Prisma)	30
Figura 18 - Convergência de malha	30
Figura 19 - Anel elástico após a discretização	31
Figura 20 - Qualidade dos elementos	32
Figura 21 - Obliquidade da malha	33
Figura 22 - Condições de contorno na simulação.	34
Figura 23 - Evolução do carregamento no tempo.	34
Figura 24 - Resultados do ensaio experimental - Curvas de força-deformação	36
Figura 25 - Curva de força-deslocamento para o nível de deformação igual a 4,5 m	nm (28,694
N)	37
Figura 26 - Curva de força-deslocamento para o nível de deformação igual	a 3,5 mm
(23,741N)	38
Figura 27 - Curva de força-deslocamento para o nível de deformação igual a 2,5 n	nm (18,154
N)	38
Figura 28 - Evolução da fração de martensita e austenita no tempo (deformação igu	ıal 4,5 mm)
	39

Figura 29 - Tensão normal em MPa ao longo do corpo do anel elástico	40
Figura 30 - Comparação entre o anel convencional e o anel de LMF através de uma curv	⁄a de
orça- deslocamento com um nível de força igual 28,694 N	41
Figura 31 - Simulação do comportamento superelástico do anel elástico de LMF ao ap	licar
ıma força de 34 N	42

SUMÁRIO

1.	IN'	ΓRODUÇÃO	.10
2.	OB	JETIVOS	.12
	2.1.	GERAL	.12
	2.2.	ESPECÍFICOS	.12
3.	RE	VISÃO BIBLIOGRÁFICA	.13
	3.1.	LIGAS COM MEMÓRIA DE FORMA	.13
	3.2.	MÉTODO DOS ELEMENTOS FINITOS	. 19
4.	M	ODELO CONSTITUTIVO DA SUPERELASTICIDADE DA LMF	.22
5.	MA	ATERIAIS E MÉTODOS	.26
	5.1.	CARACTERÍSTICAS E DIMENSÕES DO ANEL ELÁSTICO	.26
	5.2.	CARACTERIZAÇÃO EXPERIMENTAL DO ANEL SUPERELÁSTICO	.27
	5.3.	CALIBRAÇÃO DO MODELO E SIMULAÇÃO DO ANEL SUPERELÁSTICO	.29
6.	RE	SULTADOS E DISCUSSÕES	.36
	6.1.	RESULTADOS EXPERIMENTAIS	.36
	6.2.	RESULTADOS DAS SIMULAÇÕES NUMÉRICAS	.36
		NSIDERAÇÕES FINAIS	
8.	SU	GESTÕES PARA TRABALHOS FUTUROS	.44
R	EFER	RÊNCIAS BIBLIOGRÁFICAS	.45

1. INTRODUÇÃO

Uma liga que possui a capacidade de recuperar sua forma original após a aplicação de um apropriado ciclo térmico, recebe o nome de Liga com Memória de Forma (LMF). As LMF do sistema Ni-Ti podem recuperar deformações da ordem de 8 %, enquanto em outros materiais metálicos a região de deformação elástica está em torno de 0,2 %. As propriedades funcionais das LMF estão associadas as transformações reversíveis de fase do tipo martensítica que ocorrem no estado sólido e sem difusão (VAN HUMBEECK, 2001).

Arne Ölander em 1932 realizou o primeiro estudo com as ligas com memória de forma, neste estudo ele observou uma alteração induzida termicamente na estrutura cristalina de uma liga de Ouro-Cádmio (Au-Cd). Em 1949, foram observadas por Kurdjumov e Khandros as transformações reversíveis martensíticas através de experimentos realizados em ligas de Cu-Zn e Cu-Al.

Em 1961, quando William J. Buehler do Naval Ordnance Laboratory (NOL) observou o efeito memória de forma em ligas equiatômicas de Ni-Ti, foi percebido a possibilidade da aplicação industrial das LMF. A importância da descoberta foi tão grande que o material passou a ser chamado também de NiTiNOL em homenagem ao laboratório.

Existe uma grande variedade de materiais que apresentam o efeito memória de forma, mas o interesse comercial está concentrado nas ligas do sistema Níquel-Titântio (Ni-Ti) e em algumas ligas de cobre, como por exemplo, a liga Cu-Al-Ni. Wayman (1993) apresentou diversos materiais que pertencem a classe das ligas de memória de forma, como por exemplo as ligas de Cu-Zn, Cu-Zn-Al, Cu-Zn-Sn, Au-Cd, Ag-Cd, Ni-Ti.

Segundo Van Humbeeck (1999) as pesquisas realizadas com as ligas de Ni-Ti e as ligas que continham cobre mostraram a superioridade das ligas de Ni-Ti, pois estas permitem trabalhar com tensões e deformações mais elevadas e possuem maior estabilidade em aplicações cíclicas. Além disso, as ligas de Ni-Ti apresentam baixo custo quando comparadas com as ligas de Au-Cd, e possuem uma resistência mecânica próxima a de outros metais comuns.

Os atuadores de LMF estão presentes na medicina, odontologia e diversas áreas da engenharia. A capacidade das LMF de gerarem grandes forças de restituição com um consumo de energia relativamente baixo, promovem um grande interesse para que eles substituam atuadores convencionais (CASTILHO; DA SILVA, 2011).

O desenvolvimento de aplicações inovadoras com as LMF levou o interesse em utilizar ferramentas de análise numérica como o método dos elementos finitos (MEF), e

consequentemente motivou o estudo e criação de novos modelos constitutivos 3D mais precisos.

O comportamento termomecânico de uma LMF pode ser modelado do ponto de vista microscópico ou macroscópico. Os modelos microscópicos tratam os fenômenos no nível molecular, enquanto os modelos macroscópicos estão interessados nas características fenomenológicas das LMF. Há modelos constitutivos que utilizam funções matemáticas simples para descrever a cinética de transformação de fase, tais modelos são os mais populares na literatura, e há outros tipos de modelos que utilizam os conceitos da teoria da plasticidade para descrever os efeitos da superelasticidade e o efeito memória de forma (PAIVA; SAVI, 2006).

2. OBJETIVOS

2.1. GERAL

Este trabalho tem por objetivo analisar através do método dos elementos finitos o comportamento superelástico de um anel elástico de liga com memória de forma de Ni-Ti.

2.2. ESPECÍFICOS

- Estudar os materiais com memória de forma para conhecimento do comportamento termomecânico;
- Projetar o anel superelástico em ambiente CAD e em seguida promover sua fabricação;
- Realizar ensaios experimentais com o anel superelástico para obter curvas de forçadeslocamento;
- Realizar uma comparação entre as curvas de força-deslocamento obtidas experimentalmente com os resultados obtidos através de simulação numérica;
- Verificar a capacidade do modelo constitutivo utilizado para realizar simulações com este tipo de carregamento e geometria utilizada;
- Através de simulações numéricas comparar o comportamento termomecânico de um anel elástico convencional de aço-mola com o anel superelástico proposto.

3. REVISÃO BIBLIOGRÁFICA

3.1. LIGAS COM MEMÓRIA DE FORMA

Ligas com memória de forma são materiais ativos (multifuncionais) que podem ser utilizados como sensores e/ou atuadores. Ao serem utilizados como sensores, transformam uma entrada (estímulo) mecânico em uma saída (resposta) não mecânica, já quando são utilizadas como atuadores, transformam uma entrada não mecânica em uma resposta mecânica.

As duas fases sólidas que estão envolvidas nas transformações de fases em LMF são a fase austenita (A) e a fase martensita (M). A fase austenita está presente em altas temperaturas, já a fase martensita em baixas temperaturas. Cada fase possui uma estrutura cristalina diferente, logo diferentes propriedades (LAGOUDAS, 2008).

A fase martensita quando é induzida através da aplicação de uma carga térmica é conhecida como martensita maclada (twinned), tal fase possui 24 variantes que possuem diferentes orientações cristalográficas. Quando a martensita é induzida através de um carregamento mecânico, as 24 variantes da martensita maclada são orientadas dando lugar a apenas uma variante, essa martensita é chamada de demaclada (detwinned) (LAGOUDAS, 2008).

Na Figura 1 pode ser observada a transformação de fase da austenita para a martensita (transformação direta) através do resfriamento. O início da transformação acontece quando a temperatura é igual a M_s , ao alcançar a temperatura M_f o material irá se encontrar na fase completamente martensítica.

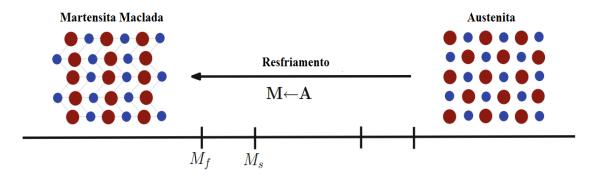


Figura 1 - Transformação direta (austenita para martensita)

Fonte: Adaptado de Rao, Srinivasa e Reddy (2015)

Na Figura 2 podemos visualizar a transformação de fase reversa, esta transformação de fase acontece quando a LMF estando no estado martensita é aquecida, se transformando

em austenita. Esta transformação se inicia quando material se encontra na temperatura A_s , e termina quando o material alcança a temperatura A_f .

Martensita Maclada Aquecimento $M \rightarrow A$ $A_S \qquad A_f$

Figura 2 - Transformação reversa (Martensita para Austenita)

Fonte: Adaptado de Rao, Srinivasa e Reddy (2015)

Na Figura 3 é ilustrado um gráfico Tensão-Temperatura que demonstra a dependência existente entre as temperaturas de transformação de fase e a tensão. Quanto maior a carga mecânica aplicada, maiores serão as temperaturas de transformação. Quando o material está submetido a uma tensão σ maior que zero, as temperaturas de transformação serão: $M_f{}^\sigma, M_s{}^\sigma, A_s{}^\sigma e A_f{}^\sigma$. As tensões $\sigma_s e \sigma_f$ marcam respectivamente o ínicio e o fim da transformação da Martensita maclada em demaclada.

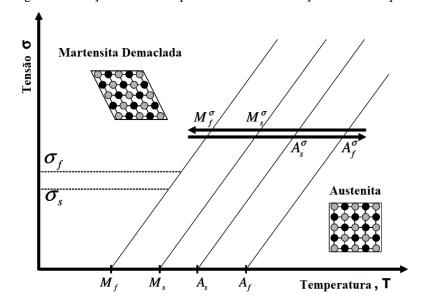


Figura 3 - Relação entre as temperaturas de transformação e a tensão aplicada

Fonte: Adaptado de Lagoudas (2008)

O efeito superelástico ou pseudoelástico ocorre quando a LMF estando em uma temperatura acima de A_f é deformada a partir da aplicação de uma carga mecânica, e ao ser

retirado a carga ocorre a recuperação desta deformação (LAGOUDAS, 2008). Tal efeito é apresentado através de um gráfico tensão x deformação na Figura 4, nesta figura pode ser observado que o material inicialmente está na fase completamente austenítica e ao ser deformado ocorre uma transformação de fase induzida pela tensão, a fase resultante no fim do carregamento é a martensita demaclada. Ao ser retirado a carga, o material irá recuperar-se da deformação pseudoplástica causada no carregamento, retornando a fase austenita.

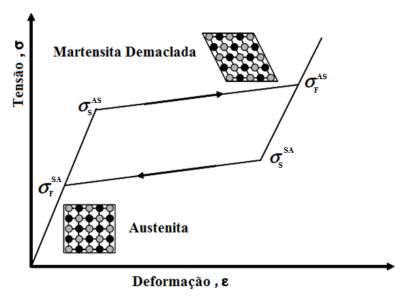


Figura 4 - Efeito Superelástico na LMF

Fonte: Adaptado de Lagoudas (2008)

Onde:

 σ_S^{AS} – Nível de tensão que dá início a transformação da austenita em martensita;

 $\sigma_{F}{}^{AS}$ - Nível de tensão que determina o fim da transformação da austenita em martensita;

 σ_S^{SA} – Nível de tensão que dá início a transformação da martensita em austenita;

 σ_F^{SA} – Nível de tensão que determina o fim da transformação da martensita em austenita.

O efeito memória de forma (EMF) está ilustrado na Figura 5, quando uma LMF na fase martensita maclada é submetida a uma deformação com a temperatura mantida abaixo de A_s (caminho B-C), se o nível de deformação for suficientemente alto irá ocorrer a formação da martensita demaclada. Ao retirar a carga, uma deformação residual irá permanecer (caminho C-D), essa deformação é chamada de pseudoplástica. Ao ser aplicado um carregamento térmico suficientemente alto capaz de elevar a temperatura a um nível superior a A_f , a fase martensita demaclada irá se transformar em austenita e consequentemente o material irá retornar ao estado de deformações nulo (caminho D-F). Resfriando a LMF abaixo

da temperatura M_f o material não irá se deformar, mas irá ocorrer uma transformação da fase austenita em fase martensita maclada (caminho A-B).

Martensita Maclada

Martensita Maclada

Martensita Maclada

Martensita Maclada

Austenita

Aguecimento

Aquecimento

Aquecimento

Figura 5 - Efeito Memória de Forma - EMF na LMF

Fonte: Adaptado de Lagoudas (2008)

As propriedades das ligas de memória de forma atraem o interesse de diversos campos da ciência e engenharia. Jani *et al.* (2014) apresentaram uma revisão bibliográfica mostrando as pesquisas com LMF que estão em desenvolvimento. Apresentaram também através de um gráfico, o crescimento de artigos e patentes que envolvem LMF de 1960 até 2013, assim como também uma previsão de crescimento até 2009, tal gráfico pode ser visto na Figura 6.

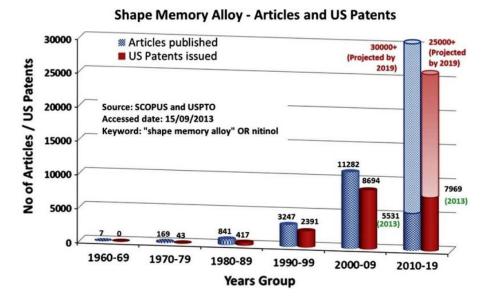


Figura 6 - Efeito Memória de Forma - EMF

Fonte: Jani et al. (2014)

Segundo Petrini e Migliavacca (2001) a primeira aplicação de ligas com memória de forma na biomedicina surgiu em 1975, foi desenvolvido neste ano um fio de aparelho ortodôntico que explora o efeito da superelasticidade da LMF. Durante a instalação, o fio é deformado fazendo com que haja uma transformação de fase da austenita para martensita. Após posicionado, o fio está em contato com a boca que possui uma temperatura suficientemente alta, isto faz com que o fio retorne a fase austenítica, recuperando a sua forma original. O retorno do fio a forma original é restringida pela arcada dental, e consequentemente uma força constante e suave é aplicada, desta forma os dentes do paciente são alinhados. Na Figura 7 pode ser observado um exemplo deste fio na sua forma original.

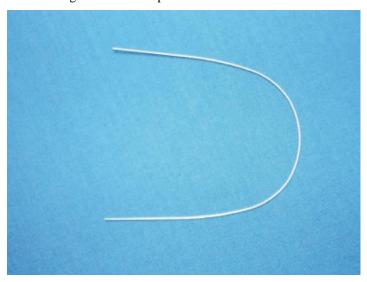


Figura 7 - Fio de aparelho ortodôntico de LMF

Fonte: Petrini e Migliavacca (2001)

Em aplicações na medicina há também como exemplo os *stents* auto expansíveis. Os *stents* servem para manter os vasos sanguíneos com um diâmetro interno ideal. Inicialmente ele é deformado na inserção e, ao entrar em contato com o organismo ele é aquecido devido a temperatura do corpo, isto faz com que ele retorne a sua forma original, expandindo-se (MACHADO; SAVI, 2003). Este tipo de dispositivo pode ser utilizado em procedimentos de angioplastia, como também em tratamentos de aneurismas. Na Figura 8 pode ser visualizado alguns *stents* de LMF.

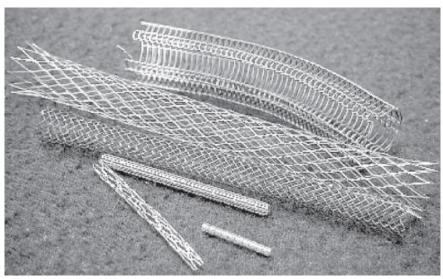


Figura 8 - Stents de LMF

Fonte: Machado e Savi (2003)

Um exemplo de utilização de dispositivos com memória de forma na indústria aeroespacial são as vigas de LMF utilizadas para ajustar a área do bocal das turbinas, estas vigas podem ser observadas na Figura 9. Ao reduzir a área do bocal da turbina, ocorre uma diminuição do barulho produzido pela aeronave na decolagem e no pouso, como também causa o aumento do seu desempenho em altas altitudes. Quando a aeronave está em uma alta velocidade e altitude, estas vigas de LMF irão estar na fase martensítica devido a um resfriamento, isto faz com que as vigas mudem de forma e consequentemente os bocais da turbina, aumentando o desempenho da mesma.

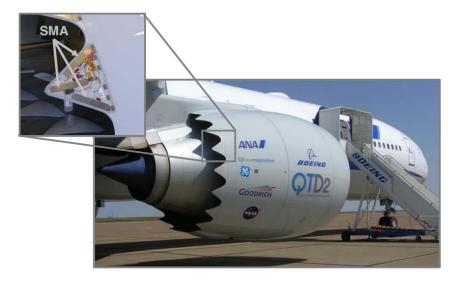


Figura 9 - Pás de turbina controladas por vigas de LMF

Fonte: Mabe, Calkins e Butler (2006)

3.2. MÉTODO DOS ELEMENTOS FINITOS

O método dos elementos finitos é um dos vários métodos numéricos existentes que são utilizados para resolver equações diferenciais, tendo aplicações em diversos campos da engenharia.

A análise de elementos finitos de um problema pode ser dividida em quatro passos: análise preliminar, pré-processamento, solução das equações e pós-processamento (KIM; SANKAR, 2009).

Na análise preliminar idealiza-se o problema e se possível são utilizados métodos analíticos para obter uma solução aproximada. Em muitos casos não é possível obter uma solução analítica para um problema prático, entretanto uma simplificação do problema pode ser feita para que seja possível prever alguns resultados, como por exemplo: níveis de deformação e tensão.

No pré-processamento o modelo é preparado para a análise de elementos finitos, esta etapa inclui:

- Discretização da estrutura através de elementos que são conectados através de nós;
- Especificação das condições de contorno.

O modelo de elementos finitos deve portanto representar matematicamente o comportamento do modelo físico.

Após o pré-processamento, pode ser feito então a solução das equações, são produzidos dois tipos de solução:

- Soluções dos graus de liberdade nodais que são as incógnitas principais;
- Soluções derivadas que são calculadas utilizando os valores dos graus de liberdade nodais através das relações existentes nas teorias de cada elemento.

No pós-processamento pode ser verificado os resultados da análise realizada e também avaliar o desempenho da estrutura estudada. A tarefa mais importante desta etapa é portanto saber interpretar os resultados, para isso pode-se portanto comparar os resultados obtidos na etapa da análise preliminar e os resultados obtidos na análise de elementos finitos.

A modelagem de um problema através dos elementos finitos pode ser feita de diversas formas, sendo assim, diferentes tipos de elementos podem ser utilizados para resolver o mesmo problema. Entretanto para representar o problema de forma adequada, deve-se conhecer as capacidades de cada elemento, pois cada elemento possui diferentes características.

Pode ser observado na Figura 10 uma ilustração dos tipos de elementos que podem ser utilizados no método dos elementos finitos.

Elemento

Nome

Elemento linear 1D

Elemento triangular 2D

Elemento retangular 2D

Elemento tetraédrico 3D

Elemento hexaédrico 3D

Figura 10 - Tipos de elementos finitos

Fonte: Kim e Sankar (2009)

Na classe dos elementos unidimensionais existem os elementos do tipo viga e barra, os elementos bidimensionais são os do tipo casca/placa e sólidos planos e nos elementos tridimensionais existem os tetraédricos e hexaédricos. Tais elementos podem ser lineares, quadráticos ou cúbicos, a diferença entre cada tipo está basicamente na quantidade de nós.

Em análises lineares a resposta é linearmente proporcional ao carregamento, portanto a não linearidade se dá devido a variação da rigidez da estrutura à medida que o carregamento atua. A rigidez da estrutura depende das características do material, das propriedades físicas e de características geométricas (ALVES FILHO, 2012).

Na não linearidade do material a relação entre a tensão e a deformação é não linear, ou seja, não pode ser utilizada a lei de Hooke. Neste caso é necessário outras formas de descrever a relação entre a tensão e a deformação.

A não linearidade geométrica ocorre devido a largas deformações na estrutura. A rigidez da estrutura é modificada porque a configuração geométrica deformada dela faz com que haja uma alteração nas equações de equilíbrio.

No caso da não linearidade física, a mudança na rigidez da estrutura se dá devido a grande variações dimensionais na estrutura. Tomando como exemplo o caso de uma barra que é tracionada, irá ocorrer nesta barra uma deformação longitudinal, mas ao mesmo tempo esta barra irá apresentar uma contração lateral, isto faz com que haja uma modificação na área da seção transversal da barra, modificando portanto a sua rigidez.

Como foi dito anteriormente, em uma análise não linear a rigidez da estrutura varia ao longo da aplicação do carregamento, a solução numérica do problema busca o equilíbrio da estrutura durante a aplicação do carregamento, isto é obtido através de um processo quasiestático, onde a carga é aplicada gradualmente.

Em programas comerciais de elementos finitos, o incremento no carregamento é normalmente chamado de passo de carregamento ou simplesmente passo. Para obter uma solução de uma análise não linear é necessário a convergência de um processo de iteração, o passo de carregamento é então dividido em subpassos, onde o subpasso é basicamente um incremento de carga dentro do passo de carregamento. Essas iterações que ocorrem em cada subpasso são chamadas de iterações de equilíbrio. Tal processo pode ser visualizado através da Figura 11.

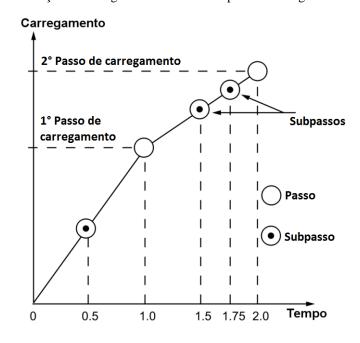


Figura 11 - Ilustração do carregamento dividido em passos ao longo de intervalos de tempo

Fonte: Adaptado de Silva (2016)

4. MODELO CONSTITUTIVO DA SUPERELASTICIDADE DA LMF

Para representar o efeito superelástico da liga de memória de forma, o software ANSYS utiliza um modelo constitutivo baseado no modelo proposto por Auricchio (2001).

O gradiente de deformação, \mathbf{F} , é considerado como uma variável de controle, e a fração de martensita, ξ_S , é a única variável interna escalar. O gradiente de deformação é então decomposto em uma parte elástica, \mathbf{F}^e , e uma parte de transição de fase, \mathbf{F}^{tr} .

Neste modelo, o material é considerado isotrópico e possui dois modos de transformação de fase: austenita para martensita e martensita para austenita.

Duas variáveis internas podem ser utilizadas para observar a transformação de fase, essas variáveis são: A fração de martensita (ξ_S) e a fração de austenita (ξ_A). Elas satisfazem a seguinte equação:

$$\xi_S + \xi_A = 1 \tag{1}$$

A fração de martensita é escolhida como variável dependente, enquanto a fração de austenita e as taxas das frações são as variáveis independentes.

Através da função de Drucker-Prager é modelado a dependência da pressão nas transformações de fase no carregamento. A função de carregamento é então dada pela equação abaixo:

$$F(\sigma) = \|q\| + 3\alpha p \tag{2}$$

Onde:

 σ : tensão;

 α : parâmetro que mede a diferença entre a resposta do material na tração e compressão;

||·||: norma Euclidiana;

q: componente desviatória da tensão;

p: componente volumétrica da tensão.

As componentes q e p são definidas como:

$$q = \sigma - \left(\sigma: \frac{1}{3}\right) \mathbf{1} \tag{3}$$

$$p = \sigma : \frac{1}{3} \tag{4}$$

Desta forma, tem-se que:

$$\sigma = s + p\mathbf{1} \tag{5}$$

Onde:

1: é o tensor identidade.

A evolução da fração de martensita é definida como:

$$\dot{\xi}_{S} = \begin{cases} -H^{AS}(1 - \xi_{S}) \frac{\dot{F}}{F - R_{f}^{AS}} & Austenita \longrightarrow Martensita \\ H^{SA}\xi_{S} \frac{\dot{F}}{F - R_{f}^{SA}} & Martensita \longrightarrow Austenita \end{cases}$$
(6)

Onde:

$$H^{AS} = \begin{cases} 1 & se \begin{cases} R_S^{AS} < F < R_f^{AS} \\ \dot{F} > 0 \\ 0 & caso \ contrário \end{cases}$$
 (7)

$$H^{SA} = \begin{cases} 1 & se & \begin{cases} R_f^{SA} < F < R_s^{SA} \\ \dot{F} < 0 \end{cases} \\ 0 & caso \ contrário \end{cases}$$
 (8)

$$R_f^{AS} = \sigma_f^{AS}(1+\alpha) \tag{9}$$

$$R_f^{SA} = \sigma_f^{SA}(1+\alpha) \tag{10}$$

$$R_s^{AS} = \sigma_s^{AS}(1+\alpha) \tag{11}$$

$$R_s^{SA} = \sigma_s^{SA} (1 + \alpha) \tag{12}$$

As variáveis $\sigma_f^{\ AS}$, $\sigma_f^{\ SA}$, $\sigma_s^{\ AS}$ e $\sigma_s^{\ SA}$ são parâmetros do material que representam respectivamente a tensão final de transformação da austenita em martensita, tensão final de transformação da martensita em austenita, tensão de início da transformação da austenita em martensita e tensão de início da transformação da martensita em austenita.

O valor de α pode ser obtido através da seguinte relação:

$$\alpha = \frac{\sigma_c^{AS} - \sigma_t^{AS}}{\sigma_c^{AS} + \sigma_t^{AS}} \tag{13}$$

Onde σ_c^{AS} e σ_t^{AS} são respectivamente: o valor inicial da tensão de compressão e o valor inicial de tensão de tração na transformação de fase de austenita para martensita. Se $\alpha = 0$, então o comportamento do material na tração e compressão são iguais.

A relação entre tensão e deformação é dada pelas equações (14) e (15):

$$\sigma = \mathbf{D}: (\varepsilon - \varepsilon_{tr}) \tag{14}$$

$$\boldsymbol{\varepsilon}_{tr} = \dot{\xi}_{S} \overline{\varepsilon}_{L} \frac{\delta F}{\delta \sigma} \tag{15}$$

Onde:

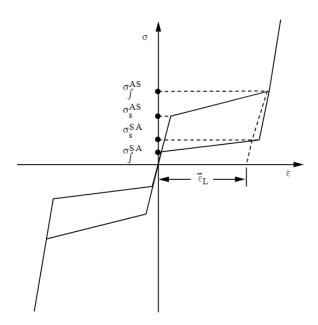
D:tensor da rigidez elástica;

 $\boldsymbol{\varepsilon_{tr}}$:tensor da deformação de transformação;

 $\dot{\xi}_{S}$: fração volumétrica de martensita;

 $\overline{\varepsilon_L}$: deformação residual máxima.

A fração volumétrica de martensita pode ser calculada através da seguinte equação:


$$\dot{\xi}_S = \frac{\varepsilon_{tr}}{\varepsilon_L} \tag{17}$$

Onde:

 ε_{tr} : é a deformação inelástica induzida pela transformação martensítica.

A Figura 12 exibe o comportamento superelástico do material em um gráfico tensão deformação, nela pode ser visualizado alguns dos parâmetros necessários para simular numericamente o efeito superelástico.

Figura 12 - Gráfico tensão-deformação do comportamento superelástico ideal

Fonte: ANSYS Help Documentation

Pode ser verificado na Tabela 1 os parâmetros constitutivos necessários para caracterizar o comportamento superelástico de uma LMF, de acordo com o modelo constitutivo apresentado neste trabalho.

Tabela 1 - Parâmetros constitutivos do comportamento superelástico

Parâmetros constitutivos	Descrição	
Е	Módulo de Young da Austenita e da Martensita	
ν	Coeficiente de Poisson	
$\sigma_{_{S}}{}^{AS}$	Tensão de início da transformação de fase	
σ_f^{AS}	Tensão de final da transformação de fase	
$\sigma_{_{S}}{}^{SA}$	Tensão de início da transformação de fase inversa	
$\sigma_{\!f}^{SA}$	Tensão final da transformação de fase inversa	
$arepsilon_L$	Máxima deformação residual	
α	Parâmetro que mede a diferença entre a resposta do material na tração e compressão	

Fonte: Auricchio (2001)

5. MATERIAIS E MÉTODOS

Este trabalho foi desenvolvido utilizando a infraestrutura de equipamentos e materiais do Laboratório de Sistemas e Estruturas Ativas – LaSEA, com o apoio do Laboratório de Instrumentação e Controle – LINC, sendo todos pertencentes à UFPB. A metodologia aplicada neste trabalho se baseia em estudos atualizados de trabalhos técnicos e científicos na linha de simulações de estruturas com memória de forma.

5.1. CARACTERÍSTICAS E DIMENSÕES DO ANEL ELÁSTICO

O anel elástico proposto neste trabalho foi projetado seguindo a norma DIN 471, onde esta é utilizada para o dimensionamento de anéis elásticos externos, como é o caso em análise.

Estes anéis são dimensionados em função do diâmetro externo do eixo, onde por questões de praticidade e por ser bastante utilizado em pequenos sistemas, foi adotado um diâmetro de 10 mm. As demais dimensões referentes aos parâmetros do anel estão ilustradas na Figura 13 e seus valores podem ser verificados na Tabela 2.

O anel quando não instalado no eixo, possui um diâmetro interno de 9,3 mm, e quando instalado, o seu diâmetro interno passa a ser 9,6 mm.

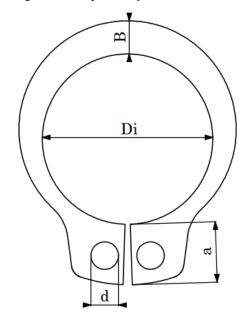


Figura 13 - Representação do anel elástico

Fonte: Autoria própria

Tabela 2 - Dimensões do anel elástico

Símbolo	Descrição	Dimensão (mm)
Di	Diâmetro interno (Instalado no eixo)	9,6
	Diâmetro interno (Fora do eixo)	9,3
d	Diâmetro do olhal	1,5
В	Comprimento radial oposto a abertura	1,8
t	Espessura do anel	1,0
a	-	3,3

Fonte: Autoria própria

O anel foi fabricado a partir de uma chapa de liga com memória de forma de Ni-Ti, onde em condições de temperatura ambiente (~ 27°) está completamente austenítica. Devido ao comportamento termomecânico, as ligas com memória de forma requerem uma usinagem que não provoque a perda das características do material, desta forma, o anel foi recortado por um processo de eletroerosão.

5.2. CARACTERIZAÇÃO EXPERIMENTAL DO ANEL SUPERELÁSTICO

Para realizar a calibração e validação do modelo utilizado devem ser realizados ensaios experimentais para obtenção dos parâmetros de entrada do modelo.

Neste caso, através dos ensaios experimentais buscou-se replicar a deformação característica de um anel elástico durante o seu processo de instalação em um eixo.

Foram realizados ensaios quase-estáticos de tração de carga e descarga. Durante este processo o anel foi deformado através da aplicação de forças em seus olhais. Foram empregados três níveis de deformações, primeiramente deformou-se o anel em 2,5 mm e depois houve a descarga fazendo com que o anel retornasse ao estado livre de deformações. Posteriormente repetiu o processo para os níveis de deformações de 3,5 mm e 4,5 mm. Todos os ensaios foram realizados sob condições isotérmicas a temperatura do ambiente (~ 30°C).

A montagem para os ensaios experimentais pode ser visualizada na Figura 14. Pelo processamento de imagem realizado no software LabVIEWTM pôde-se obter a deformação resultante no anel elástico, enquanto a respectiva força aplicada foi medida através de uma célula de carga com capacidade de medição de até 50 kgf.

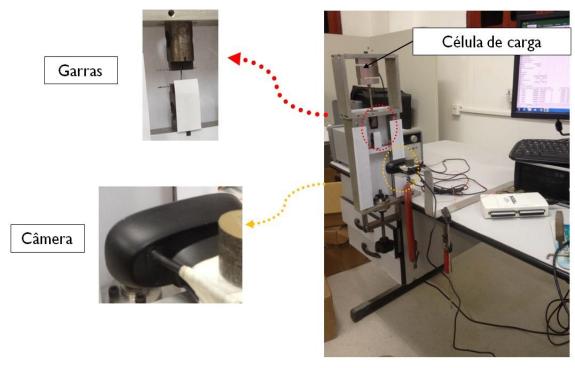


Figura 14 - Bancada utilizada para os ensaios experimentais

Fonte: Autoria própria

O supervisório montado no LabVIEWTM utilizado durante os experimentos é apresentado na Figura 15. Neste painel foram monitoradas em tempo real as variáveis de força, deformação e temperatura durante os experimentos.

Nessa mesma imagem, pode ser verificado o quadrado preto selecionado a ser monitorado pela câmera para a captura dos pixels e assim ser realizada em tempo real a conversão para a unidade de deslocamento em mm.

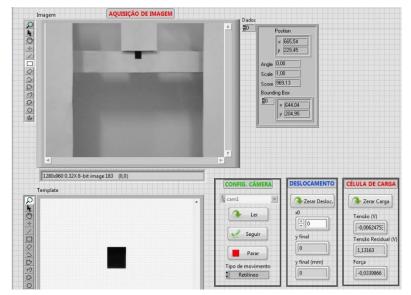


Figura 15 - Painel de controle utilizado no LabView

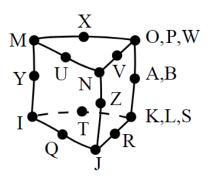
Fonte: Autoria própria

5.3. CALIBRAÇÃO DO MODELO E SIMULAÇÃO DO ANEL SUPERELÁSTICO

A simulação numérica foi realizada no software comercial ANSYS™ Workbench 15 e a análise que melhor representa os ensaios é do tipo estática estrutural.

O modelo CAD (Computer Aided Design) do anel elástico foi desenvolvido utilizando o software SolidWorksTM 2015 e posteriormente importado para o ANSYSTM Workbench 15.

A discretização do modelo foi realizada utilizando o elemento SOLID186 nas formas hexaédrica e prisma. Tal elemento suporta o modelo constitutivo da superelasticidade que foi utilizado. O SOLID186 é um elemento do tipo sólido 3D de ordem alta que exibe comportamento de deslocamento quadrático. Este elemento possui 20 nós quando está na forma hexaédrica e 15 nós quando está na forma tetraédrica, onde cada nó possui três graus de liberdade translacionais.


A geometria do elemento SOLID186 na forma hexaédrica e na forma de prisma estão ilustradas nas Figura 16 e 17 respectivamente, podendo ser verificada a identificação dos nós a partir de letras do alfabeto. Como foi dito anteriormente, o elemento utilizado é do tipo quadrático, desta forma, cada aresta do elemento possui três nós, sendo que os nós situados entre as extremidades das arestas recebem o nome em inglês de *midside nodes*.

Y Q J A K

Figura 16 - Geometria do elemento SOLID186 (Hexaédrico)

Fonte: ANSYS Help Documentation

Figura 17 - Geometria do elemento SOLID186 (Prisma)

Fonte: ANSYS Help Documentation

Uma análise de convergência de malha foi realizada para a determinação de uma quantidade ótima de elementos a serem utilizados no modelo durante as simulações. Devido na simulação haver uma não-linearidade geométrica do atuador utilizado e também uma não-linearidade da LMF, é normal um elevado tempo de processamento do sistema, neste caso foi utilizado um modelo de material linear elástico com as características do regime linear de uma LMF para o processo de convergência ($E=50~{\rm GPa}$ e $\nu=0,3$).

O anel superelástico foi submetido a uma força de 35 N em cada olhal e a variável escolhida para a verificação da convergência de malha foi a tensão normal. Esta convergência em questão pode ser observada na Figura 18.

945
945
930
935
0 2000 4000 6000 8000 10000 12000
Número de elementos

Figura 18 - Convergência de malha

Fonte: Autoria própria

Através do estudo de convergência de malha demonstrado na Figura 18, é possível verificar que a tensão normal se estabiliza ao utilizar uma quantidade superior a 4200 elementos. Para esta simulação será suficiente uma malha com uma quantidade de elementos de 4690, correspondendo a um elemento com tamanho médio de 0,25 mm.

Na Figura 19 é apresentado o anel discretizado com os elementos SOLID186. Esta discretização é referente a convergência de malha citada anteriormente (Figura 18).

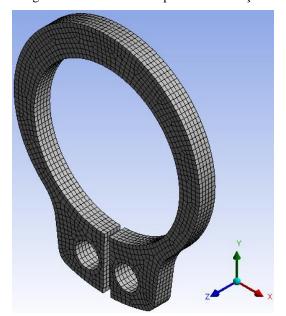


Figura 19 - Anel elástico após a discretização

Fonte: Autoria própria

A qualidade da malha utilizada foi verificada através de dois métodos disponíveis no ANSYS: Qualidade do elemento e Obliquidade (em inglês "skewness").

A qualidade do elemento é baseada na seguinte razão:

$$Qualidade = C[volume/\sqrt{[\sum(comprimento\ da\ aresta)^2]^3}]$$
 (16)

Onde C é um valor constante que depende do tipo de elemento utilizado, para o caso de um elemento hexagonal, C é aproximadamente igual a 41,569.

O valor da qualidade igual a 1 indica uma qualidade de um cubo perfeito, enquanto o valor 0 indica um elemento que não possui volume. Pode ser observado na Figura 20 um gráfico que exibe a qualidade dos elementos da malha. Somando os elementos hexaédrico e prisma, é visto que mais de 3525 elementos possuem uma qualidade em torno de 0,96. A menor qualidade observada para estes elementos está entre 0,76 e 0,8.

Wed15 Hex20 3525,00 3000,00 Número de elementos 2500,00 2000,00 1500,00 1000,00 500,00 0,00 0,80 0,84 0,88 0,92 0,74 0,76 0,96 0,99 Qualidade dos elementos

Figura 20 - Qualidade dos elementos

Fonte: Autoria própria

A obliquidade é uma das principais medidas utilizadas para verificar a qualidade de uma malha. Ela determina o potencial de idealização de uma face (i.e, equilateral ou equiangular). Faces com uma obliquidade muito alta devem ser evitadas, pois as equações utilizadas no ANSYSTM para resolver o problema parte do pressuposto que as faces são relativamente equilaterais e equiangulares. Na Tabela 3 são indicados os valores presentes no ANSYSTM para a classificação quanto obliquidade.

Tabela 3 - Qualidade da malha segundo a obliquidade

Valor da obliquidade	Qualidade
1	Degenerado
0,9 - <1	Ruim
0,75 - 0,9	Pobre
0,5 - 0,75	Justo
0,25 - 0,5	Boa
>0 - 0,25	Excelente
0	Equilateral

Fonte: ANSYS Help Documentation

Na Figura 21 é apresentado o resultado da obliquidade para a malha utilizada, pode ser visualizado nesta figura que o maior valor de obliquidade da malha é aproximadamente 0,54. De acordo com a Tabela 3, a malha está com uma qualidade no mínimo justa. Em alguns locais da malha, a qualidade está excelente, pois como pode ser observado na Figura 21, mais de 3305 elementos possuem uma obliquidade inferior a 0,1.

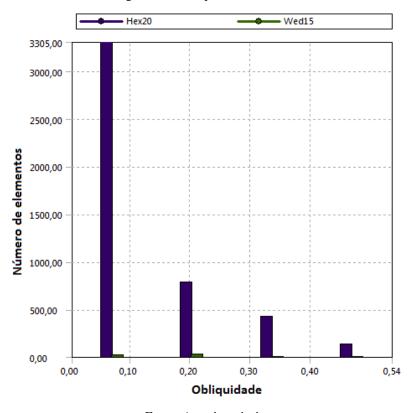


Figura 21 - Obliquidade da malha

Fonte: Autoria própria

As condições de contorno aplicadas no anel elástico estão ilustradas na Figura 22. Foi aplicado em ambas faces do anel superelástico uma restrição de deslocamento na direção Z. Nos olhais são aplicadas duas forças na direção X, uma no sentido positivo e outra no sentido negativo. A temperatura utilizada na simulação foi de 30°C.

A curva força-deslocamento experimental utilizada para a calibração do modelo foi a de deformação igual a 4,5 mm. Esta calibração foi realizada a partir da aplicação de uma força de módulo igual a 23,1 N em cada olhal. O emprego desta força, necessária para representar a deformação de 4,5 mm do ensaio experimental, deve-se ao fato de proporcionar o mesmo movimento de abertura do anel visto durante os ensaios, o que não pode ser obtido caso seja aplicada uma condição de contorno de deslocamento.

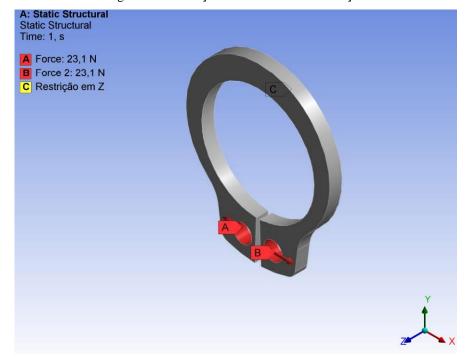


Figura 22 - Condições de contorno na simulação

Fonte: Autoria própria

Na simulação foram utilizados 2 passos de carregamento da força, ambos do tipo rampa, e cada passo foi dividido em 50 subpassos. No final do primeiro passo ocorre o valor máximo da força aplicada, enquanto no segundo passo ocorre a descarga finalizando com força igual a zero. O histórico do carregamento está ilustrado na Figura 23.

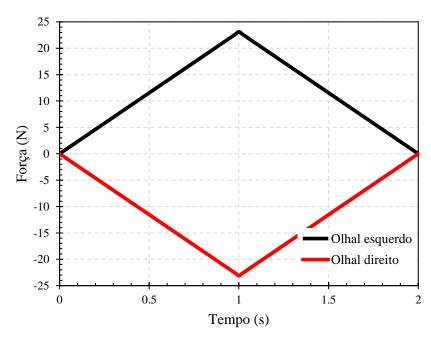


Figura 23 - Evolução do carregamento no tempo

Fonte: Autoria própria

Pela existência de não linearidades geométrica e de material, foi utilizado o método de solução direto por ser mais robusto que o método de solução iterativo.

Para que a simulação correspondesse ao que estava ocorrendo no experimento, foi necessário que a deformação obtida na simulação numérica fosse multiplicada por 2, isto foi feito porque o software ANSYS exibe o resultado da deformação como sendo positivo quando a deformação ocorre no sentido positivo do eixo analisado e negativo quando a deformação ocorre no sentido negativo do eixo.

Através dos dados experimentais obtidos foi realizada a calibração do modelo pseudoelástico do material, proposto por Auricchio (2001). Com esta calibração foi possível obter as tensões de transformação de fase e o módulo de elasticidade, sendo estes, parâmetros de entrada necessários para a realização das simulações com o material LMF. Na Tabela 4 são apresentados os valores destes parâmetros obtidos.

Tabela 4 - Propriedades do modelo do comportamento superelástico obtidos após a calibração com o modelo proposto por (Auricchio, 2001)

Propriedades mecânicas		
E (MPa)	61800	
υ	0,3	
σ_s^{AS} (MPa)	650	
σ_f^{AS} (MPa)	760	
σ_s^{SA} (MPa)	465	
σ_f^{SA} (MPa)	265	
$\varepsilon_L \; (\text{mm/mm})$	0,07	
α	0	

Fonte: Autoria própria

6. RESULTADOS E DISCUSSÕES

6.1. RESULTADOS EXPERIMENTAIS

Os resultados obtidos nos ensaios experimentais quase-estáticos de carga e descarga, descritos na seção 5.2, estão apresentados na Figura 24. Verifica-se que mesmo no caso onde a deformação é de 4,5 mm a histerese na curva de força-deformação é pequena. Isto pode ser explicado pelo fato de um anel convencional já apresentar uma elasticidade considerável devido a sua geometria, sendo esta aumentada quando o mesmo passa a ser fabricado de uma chapa superelástica de LMF, podendo suportar maiores deformações sem apresentar plasticidade.

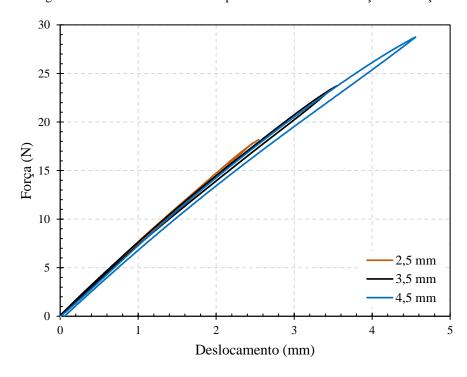
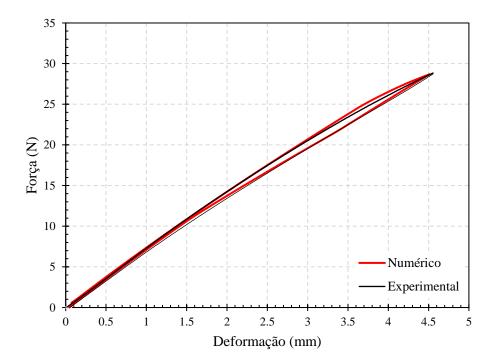


Figura 24 - Resultados do ensaio experimental - Curvas de força-deformação


Fonte: Autoria própria

6.2. RESULTADOS DAS SIMULAÇÕES NUMÉRICAS

As propriedades da Tabela 4 obtidas através da calibração foram utilizadas como parâmetros de entrada para o efeito superelástico e os resultados numéricos das simulações foram comparados com os resultados obtidos pelos ensaios experimentais.

Nas Figuras 25, 26 e 27 são demonstradas as comparações entre as curvas de forçadeformação obtidas nos experimentos e nas simulações numéricas. Foram aplicados três níveis de forças diferentes para a representação das deformações máximas obtidas nos ensaios. Para a força de 28,694 N, maior obtida experimentalmente, a deformação do anel resultou em aproximadamente 4,5 mm, para a força de 23,741 N a deformação foi de 3,5 mm, e para a força de 18,154 N a deformação foi de 2,5 mm.

Figura 25 - Curva de força-deslocamento para o nível de deformação igual a 4,5 mm (28,694 N)

Fonte: Autoria própria

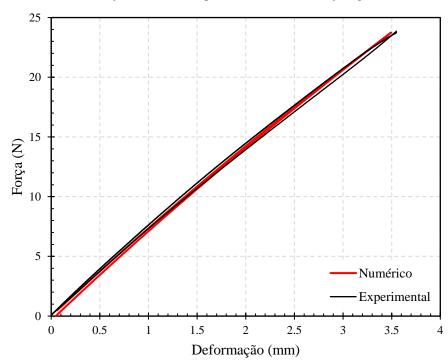
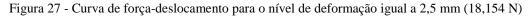
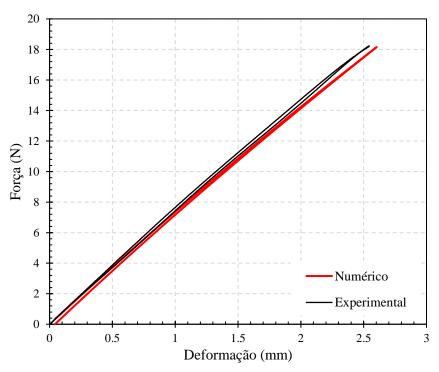




Figura 26 - Curva de força-deslocamento para o nível de deformação igual a 3,5 mm (23,741N)

Fonte: Autoria própria

Fonte: Autoria própria

Através das Figuras 25, 26 e 27, é possível perceber a semelhança entre os resultados numéricos e experimentais, justificando o uso das simulações para análise de previsões de

comportamentos termomecânicos desses materiais. Pode ser verificado também que apenas no caso onde a deformação do anel foi igual a 4,5 mm, houve deformação fora do regime elástico do material e após a retirada da carga o anel retornou ao seu estado original sem deformação residual devido ao comportamento superelástico.

Como pode ser observado na eq.(1), a soma das frações de martensita e austenita é igual a 1. Assim, para facilitar a análise, estas frações são representadas em um mesmo gráfico.

Como o caso onde há maior deformação fora do regime elástico (indução de martensita) é para a deformação de 4,5 mm, as frações de martensita e austenita são assim calculadas.

São apresentadas na Figura 28 a evolução da fração volumétrica de martensita e austenita ao longo do tempo para a simulação numérica. A transformação da austenita em martensita se inicia durante o primeiro passo de carregamento em 0,84 s. O maior nível de fração de martensita, que equivale a aproximadamente 4,6% do volume total, ocorre no ponto máximo do carregamento, ou seja, no final do primeiro passo quando t = 1 s.

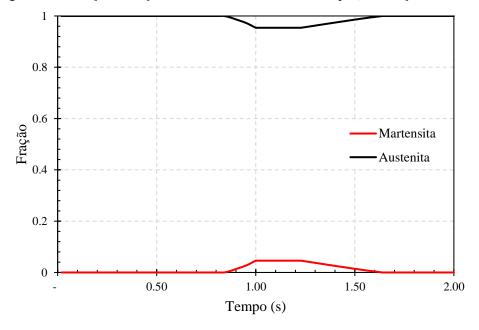


Figura 28 - Evolução da fração de martensita e austenita no tempo (deformação de 4,5 mm)

Fonte: Autoria própria

O retorno para fase completamente austenítica ocorre durante a descarga, ou seja, durante o segundo passo. Tal transformação se inicia em 1,22 s e termina em 1,64 s. A partir de 1,64 s a deformação inelástica é inexistente, restando apenas a deformação elástica. O material mesmo sendo deformado inelasticamente, retorna a fase completamente austenítica

livre de deformações devido ao efeito da superelasticidade. Estes resultados estão de acordo com o modelo constitutivo da superelasticidade que foi utilizado.

Na Figura 29 é mostrada a distribuição da tensão normal no anel elástico após o mesmo ser deformado em 4,5 mm. A tensão máxima e mínima no anel elástico são, respectivamente 663,88 MPa e -596,04 MPa, onde a tensão máxima é de tração e a tensão mínima é de compressão.

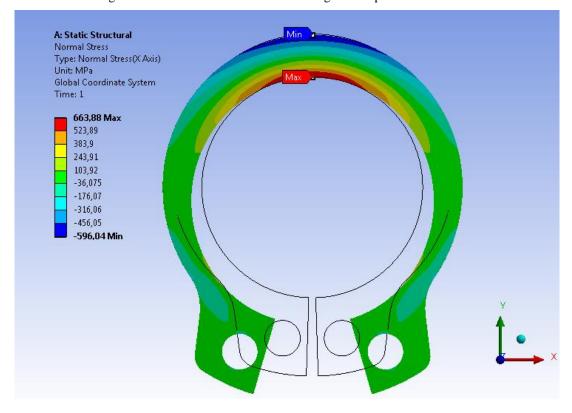


Figura 29 - Tensão normal em MPa ao longo do corpo do anel elástico

Fonte: Autoria própria

Como foi visto na Tabela 3, a tensão de transformação final da austenita em martensita é de 760 MPa. A máxima tensão no anel elástico foi de 663,88 MPa, o que demonstra novamente a capacidade do anel elástico em suportar maiores deformações do que as que foram aplicadas.

Para comparar o anel superelástico de LMF com um anel de aço convencional de modulo de elasticidade igual a 206 GPa, foi realizada uma simulação numérica, onde a força aplicada é suficiente para promover uma deformação de 4,5 mm no anel de LMF.

Pode ser verificada na Figura 30 que para a mesma força aplicada, o anel superelástico de LMF sofre maior deformação que o de aço convencional, resultando assim em uma maior facilidade na instalação quanto à carga.

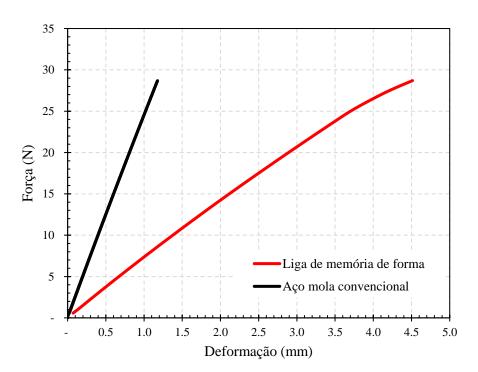


Figura 30 - Comparação entre o anel convencional e o anel de LMF através de uma curva de forçadeslocamento com um nível de força igual 28,694 N

O fato do anel de LMF sofrer maior deformação que o de aço convencional para o mesmo nível de força, ocorre devido a grande diferença entre os módulos de elasticidade. Para o anel de LMF analisado neste trabalho um módulo de elasticidade igual a 61,8 GPa foi aplicado, em comparação a 206 GPa para o aço.

Como pode ser observado na Figura 31, no resultado de uma simulação numérica realizada com a aplicação de uma força igual a 34 N, o anel de LMF ao alcançar uma tensão igual a σ_s^{AS} , é capaz de ser deformado sem um aumento significativo na força aplicada, e também devido ao efeito superelástico, o mesmo é capaz de recuperar-se de níveis de deformações sem apresentar deformações residuais, enquanto que o anel de aço convencional sofreria plasticidade.

Força (N) 20 Deslocamento (mm)

Figura 31 - Simulação do comportamento superelástico do anel elástico de LMF ao aplicar uma força de $34\ N$

Fonte: Autoria própria

7. CONSIDERAÇÕES FINAIS

Conclui-se que utilizando o método dos elementos finitos e o modelo do material pseudoelástico proposto por Auricchio (2001) é possível obter resultados numéricos semelhantes aos obtidos experimentalmente, reforçando, portanto, a capacidade desse modelo em simular geometrias 3D complexas como o anel de retenção proposto.

Pode ser observada a capacidade do anel de retenção de LMF recuperar grandes deformações, retornando a fase completamente austenita, resultado que está de acordo com o que é proposto pelo modelo utilizado. Foi possível também perceber a superioridade do anel de LMF em relação ao anel de aço convencional, mostrando que o anel de LMF é capaz de sofrer maiores deformações inelásticas (reversíveis) com uma menor carga para ser deformado, ou seja, instalado ou retirado.

8. SUGESTÕES PARA TRABALHOS FUTUROS

Os seguintes estudos adicionais relacionados ao anel superelástico de LMF podem ser sugeridos:

- Estudo da capacidade de carga axial que o anel pode suportar após ser instalado no eixo;
- Realização de simulações do comportamento superelástico do anel em diferentes níveis de temperatura;
- Desenvolver um modelo para simulações capaz de captar as transformações de fase devido à variação da temperatura, e poder analisar a geração de força pelo emprego de temperatura;
- Projetar um anel elástico capaz de ser instalando sem a utilização de ferramentas, a
 partir da propriedade que as LMF tem de variar seu módulo de elasticidade em função
 da temperatura.

REFERÊNCIAS BIBLIOGRÁFICAS

- ALVES FILHO, A. Elementos finitos: a base da tecnologia CAE Análise não Linear. 1. ed. Editora Érica, 2012.
- AURICCHIO, F., TAYLOR, R. L., LUBLINER, J. Shape-memory alloys: macromodelling and numerical simulations of the superelastic behavior. **Computer methods in applied mechanics and engineering**, 146(3-4), 281-312, 1997.
- AURICCHIO, F. A robust integration-algorithm for a finite-strain shape-memory-alloy superelastic mode. **International Journal of plasticity**, 17(7), 971-990, 2001.
- BUEHLER, W. J., WANG, F. E. A summary of recent research on the Nitinol alloys and their potential application in ocean engineering. **Ocean Engineering**, 1(1), 1968.
- CASTILHO, W.S., DA SILVA, E.P. Algumas aplicações das ligas com memória de forma shape memory alloys sma. **Sinergisa**, São Paulo, v. 12, n. 1, p. 99-108, 2011.
- JANI, J. M., LEARY, M., SUBIC, A., &GIBSON, M. A.A review of shape memory alloy research, applications and opportunities. **Materials & Design**, v. 56, p. 1078-1113, 2014.
- KIM, N., SANKAR, B. V. Introduction to finite element analysis and design. 1. ed.Wiley, 2009.
- KURDJUMOV, G. V.; KHANDROS, L. G. First reports of the thermoelastic behaviour of the martensitic phase of Au-Cd alloys. *Doklady AkademiiNauk SSSR*, v. 66, p. 211-213, 1949.
- LAGOUDAS, DIMITRIS C. (Ed.). Shape memory alloys: modeling and engineering applications. Springer Science & Business Media, 2008.
- MABE, J. H.; CALKINS, F. T.; BUTLER, G.W. Boeing's variable geometry chevron, morphing aerostructure for jet noise reduction. **AIAA Paper** No.AIAA-2006-2142, 2006.
- MACHADO, L. G.; SAVI, M. A. Medical applications of shape memory alloys. **Brazilian journal of medical and biological research**, v. 36, n. 6, p. 683-691, 2003.
- ÖLANDER, A. An electrochemical investigation of solid cadmium-gold alloys. **Journal of the American Chemical Society**, v. 54, n. 10, p. 3819-3833, 1932.
- PAIVA, A.; SAVI, M. A. An overview of constitutive models for shape memory alloys. **Mathematical problems in engineering**, v. 2006, 2006.
- PETRINI, L.; MIGLIAVACCA, F. Biomedical applications of shape memory alloys. **Journal of Metallurgy**, v. 2011, 2011.
- RAO, A., SRINIVASA, A. R., REDDY, J. N. **Design of shape memory alloy (SMA) actuators**. Springer International Publishing, 2015.
- SILVA, R. S. ANÁLISE DE ESTRUTURAS INTELIGENTES COM MEMÓRIA DE FORMA UTILIZANDO O MÉTODO DOS ELEMENTOS FINITOS. 2016. Trabalho de Conclusão de Curso (Bacharelado em Engenharia Mecânica). Universidade Federal do Rio de Janeiro.

VAN HUMBEECK, J. Non-medical applications of shape memory alloys. **Materials Science and Engineering: A**, v. 273, p. 134-148, 1999.

VAN HUMBEECK, J. Shape memory alloys: a material and a technology. **Advanced Engineering Materials**, v. 3, n. 11, p. 837-850, 2001.

WAYMAN, C. M. Shape memory alloys. MRS bulletin, v. 18, n. 4, p. 49-56, 1993.

WAYMAN, C. M., ŌTSUKA, K. (Ed.). **Shape memory materials**. Cambridge University Press, 1998.