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OLIVEIRA, F. K. D. Potencial de espécies vegetais à fitorremediação de solo 

contaminado com cobre. Areia, Paraíba, Brasil. 2018. 106 f. Tese (Doutorado em 

Agronomia). Centro de Ciências Agrárias da Universidade Federal da Paraíba, Brasil.  

 

RESUMO GERAL 

A mineração é uma atividade mundial de grande importância devido à utilização dos 
metais que são extraídos, a exemplo do cobre, no Brasil, com destaque para o estado 
do Pará. Objetivou-se com esta pesquisa avaliar o potencial, ou seja, habilidade, 
capacidade das espécies Schizolobium amazonicum, Leucaena leucocephala e 
Azadirachta indica submetidas à contaminação do solo com rejeito de cobre da 
mineração, fitorremediar metal pesado. Para alcançar o objetivo foram realizados 
pesquisa bibliográfica e experimentos, organizados em três capítulos. A primeira parte 
é uma revisão bibliográfica sobre mineração, rejeito de mineração de cobre, 
fitorremediação e os vegetais a serem estudados. O primeiro capítulo avalia o potencial 
das espécies S. amazonicum, L. leucocephala e A. indica, submetidas ao solo 
contaminado com rejeito de cobre através da produção de fitomassa seca, teores e 
distribuição de cobre nos compartimentos radiculares, caulinares e foliares das 
espécies. As variáveis analisadas foram a morfométrica de crescimento, os índices e 
fatores de translocação e os coeficientes de extração. Os coeficientes de fitoextração 
foram superiores nas raízes das espécies estudadas. O segundo capítulo, teve como 
objetivos o de avaliar os efeitos causados em pigmentos fotossintetizantes e as 
atividades das enzimas superóxido dismutase e guaiacol peroxidade nas espécies S. 
amazonicum, L. leucocephala e A. indica, cultivadas em substrato com concentração 
de cobre e, avaliar possíveis alterações no teor de clorofilas “a” e “b” e carotenoides. As 

variáveis analisadas foram atividade das enzimas superóxido dismutase e guaiacol peroxidade, 

e a determinação dos pigmentos fotossintetizantes. Os teores de clorofila “a”, “b” e 
carotenoides nos compartimentos apicais, intermediários e senescentes para as três 
espécies não tiveram diferença entre si, mas na concentração de 400 mg dm-3, houve 
alteração para A. indica. O terceiro capítulo, objetivou-se à caracterização 
cromossômica através de bandas heterocromáticas nas espécies S. amazonicum, L. 
leucocephala e A. indica visando caracterizar citogeneticamente, e detectar o 
surgimento de possíveis alterações cromossômicas provenientes da contaminação 
pelo cobre no substrato utilizado no cultivo das espécies. Através do material vegetal 

foram feitas as preparações cromossômicas, coloração com fluorocromos, determinação da 

fórmula cariotípica e análises dos padrões de bandas heterocromáticas. Para a espécie 
Schizolobium amazonicum o número cromossômico encontrado de 2n = 26 surge 
como nova informação para literatura.   
 
 
Palavras-chave: Fitorremediação, metal pesado, atividade enzimática, citogenética.  
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OLIVEIRA, F. K. D. Potential of plant species the phytoremediation of soil 

contaminated with copper. Areia, Paraíba, Brazil. 2018. 106 f. (Thesis in Agronomy). 

Center of Agrarian Sciences of the Universidade Federal da Paraíba, Brazil. 

 

 

GENERAL ABSTRACT 

Mining is a worldwide activity of great importance due to the use of the metals that are 

extracted, like copper, in Brazil, with emphasis on the state of Pará. The objective of 

this research was to evaluate the potential, ie, ability, capacity of the species 

Schizolobium amazonicum, Leucaena leucocephala and Azadirachta indica submitted 

to soil contamination with copper mining tailings, to phytoremediate heavy metal. In 

order to reach the objective, bibliographical research and experiments were carried out, 

organized in three chapters. The first part is a literature review on mining, copper mining 

rejects , phytoremediation and the plants  to be studied. The first chapter evaluates the 

potential of the species S. amazonicum, L. leucocephala and A. indica, submitted to the 

soil contaminated with copper waste through the production of dry phytomass, contents 

and distribution of copper in the root, cauline and foliar compartments of the species. 

The analyzed variables were the growth morphometric, the indices and translocation 

factors and the extraction coefficients. The phytoextraction coefficients were higher in 

the roots of the species studied. The second chapter had the objective of evaluating the 

effects caused by photosynthetic pigments and the activities of the superoxide 

dismutase and guaiacol peroxidase enzymes in the species S. amazonicum, L. 

leucocephala and A. indica, cultivated in substrate with copper concentration, and to 

evaluate possible changes in the chlorophyll content "a" and "b" and carotenoids. The 

analyzed variables were enzyme activity superoxide dismutase and guaiacol 

peroxidase, and the determination of photosynthetic pigments. The levels of chlorophyll 

a, b and carotenoids in the apical, intermediate and senescent compartments for the 

three species did not differ, but at the concentration of 400 mg dm-3, there was a 

change to A. indica. The third chapter was aimed at the chromosomal characterization 

through heterochromatic bands in the species S. amazonicum, L. leucocephala and A. 

indica, aiming to characterize cytogenetically, and to detect the appearance of possible 

chromosomal alterations coming from the contamination by copper in the substrate 

used in the cultivation of species. Through the plant material were made the 

chromosomal preparations, staining with fluorochromes, determination of the karyotype 

formula and analysis of the patterns of heterochromatic bands. For the species 

Schizolobium amazonicum the chromosomal number of 2n = 26 appears as new 

information for literature. 

 

 

Keywords: Phytoremediation, heavy metal, enzymatic activity, cytogenetics. 
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1 INTRODUÇÃO GERAL 

 

O setor mineral brasileiro produziu aproximadamente dois bilhões de toneladas 

em 2017, correspondente a um faturamento de US$ 32 bilhões; a indústria da 

mineração contribuiu com 30% em 2016 do saldo da balança comercial do País. A 

estimativa para este ano é de US$ 34 bilhões de faturamento (Instituto Brasileiro de 

Mineração - IBRAM, 2018). 

Os principais produtos exportados foram: minério de ferro, ouro, ferronióbio, 

cobre, bauxita, manganês, caulim, pedras naturais e de revestimentos (IBRAM, 2017).  

O cobre é o terceiro metal mais usado no mundo ficando atrás apenas do ferro 

e alumínio, sendo consumido em diversas fabricações, da indústria elétrico-eletrônica 

a máquinas industriais (London Metal Exchange - LME, 2018). No entanto, a produção 

de rejeitos e resíduos sólidos provenientes da mineração e sua deposição em 

barragens requerem cuidados com o meio ambiente.  

A contaminação crescente em grandes extensões de áreas por contaminantes 

metálicos, compostos orgânicos, sais, e elementos radioativos em concentrações 

elevadas representa um perigo ambiental, com impactos na vegetação, organismos do 

solo, águas superficiais e subterrâneas segundo Accioly e Siqueira (2000).  

O cobre (Cu), ferro (Fe), manganês (Mn) e zinco (Zn) são nutrientes essenciais 

às plantas, mas podem se tornar tóxicos em concentrações mais elevadas. Isso passa 

a ser outro problema relacionado ao excesso de íons minerais, pois é este acúmulo 

dos metais pesados no solo, que poderá causar forte toxicidade em plantas, assim 

como em seres humanos (TAIZ; ZEIGER, 2013).  

A fitorremediação é a técnica do uso de vegetação para a descontaminação in 

situ de solos e sedimentos, eliminando metais pesados e poluentes orgânicos, sendo 

os metais pesados por estarem depositados em camadas superiores do solo, 

facilmente acessíveis, as raízes das plantas cultivadas (BAIRD, 2002). Esta técnica 

envolve cinco processos fisiológicos: fitoestabilização, fitoestimulação, fitovolatização, 

fitodegradação e fitoextração (ANDRADE et al., 2007).  

Para Peuke e Rennenberg (2005) os processos ocorrem quando plantas aptas 

a fitoextração possuem a habilidade de translocar o contaminante para a fitomassa 

aérea; plantas fitoestabilizadoras devem possuir sistema radicular vigoroso e 

habilidade de complexar o metal ao húmus do solo ou a ácidos orgânicos rizosféricos 
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no solo; plantas fitodegradadoras produzem substâncias orgânicas que estimulam o 

crescimento da biota do solo, a qual degrada compostos orgânicos perigosos; plantas 

volatilizadoras absorvem metais com esta característica e os volatilizam nas folhas; 

plantas rizofiltradoras acumulam grande quantidade de metais no sistema radicular, 

precipitando-os (DINARDI et al., 2003; ANDRADE et al., 2007; PILON-SMITS, 2005; 

SARMA, 2011).  

Nas áreas do conhecimento como a bioquímica, fisiologia vegetal e citogenética 

associadas à fitorremediação são necessárias pesquisas que em conjunto encontrem 

soluções à degradação ambiental promovida pela mineração. 

Para Sharmaa et al. (2007); Sha Valli Khan et al. (2002) estresses abióticos 

como a seca, salinidade, temperatura ou metais pesados, causam a perda da 

homeostase celular, resultando no estresse oxidativo. Quando o agente estressor 

excede o limite homeostático do organismo, são ativados mecanismos de resposta 

aos níveis molecular, bioquímico, fisiológico e morfológico (SHA VALLI KHAN et al., 

2002; ZHAO et al., 2016).  

A capacidade da planta em detectar e reagir ao estresse é um fator importante 

para sua sobrevivência, pois dispara cascatas de sinalização que irão ativar canais 

iônicos, quinases, acumulação de hormônios vegetais e produção de espécies reativas 

de oxigênio (EROs) (SHA VALLI KHAN et al., 2002; FOYER et al., 2017; NOCTOR et 

al., 2017).  

A manutenção homeostática de EROs possui um papel importante no 

desenvolvimento radicular sendo que, em quantidades bem definidas, agem como 

sinalizadoras em diversas situações, como elongação e diferenciação das células de 

raízes (ZHAO et al., 2016). O acúmulo de EROs  resulta na peroxidação de lipídios, 

oxidação de proteínas, danos aos ácidos nucléicos, inibição enzimática, alterações na 

fotossíntese, inibição do crescimento e diminuição na concentração de clorofilas e, em 

até morte celular (MAHESHWARI, 2009), ou afetando a expressão de um conjunto 

específico de genes que irão formar uma resposta de defesa do organismo àquele 

desafio (APEL; HIRT, 2004).  

A produção de EROs é uma das principais respostas bioquímicas das células a 

estresses bióticos e abióticos (MØLLER et al., 2007; NGUYEN et al., 2009). As EROs 

presentes em compartimentos celulares tem participação em processos vitais, como a 

fotossíntese e a fixação biológica do nitrogênio (CHANG et al., 2009; NGUYEN et al., 
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2009; BECANA et al., 2010). Assim, as EROs podem atuar tanto como indicadores 

celulares de situações de estresse como também mensageiros secundários envolvidos 

na resposta ao estresse (ANTÓN et al., 2006; MØLLER et al., 2007). Para isso, a 

célula conta com sistemas de defesa composto de antioxidantes enzimáticos e não 

enzimáticos que está presente em várias organelas e atua de forma coordenada na 

proteção oxidativa (ASADA, 2006; FOYER et al., 2009; MILLER et al., 2010). Tais 

mecanismos podem ser essenciais no processo de tolerância ao estresse. 

Portanto, a citogenética tem um papel importante na detecção de substâncias 

potencialmente citotóxicas e genotóxicas e o impacto que estas podem trazer em 

relação aos metais pesados. A citotoxicidade pode ser avaliada, através de alterações 

no processo de divisão celular sobre o organismo-teste e pela incidência de mutações 

cromossômicas, como quebras cromatídicas, pontes anafásicas, perda de 

cromossomos inteiros ou formação de micronúcleos (SOUZA et al., 2015).  

Para Oliveira et al. (2012) em estudo realizado em cultivo de cebola (Allium 

cepa) e aguapé (Eichornia crassipes) cultivadas com água com concentração de 

cromo hexavalente, poderia induzir a genotoxicidade avaliada pela frequência de 

micronúcleos em células meristemáticas das raízes das espécies supracitadas. 

Diante do exposto objetivou-se avaliar o potencial das espécies Schizolobium 

amazonicum Huber. ex Ducke., Leucaena leucocephala Lam. de Wit. e Azadirachta 

indica A. Juss. submetidas à contaminação do solo com rejeito de cobre da mineração, 

obter a espécie mais extrativa de cobre do solo sem comprometimento do crescimento 

morfométrico, avaliar estratégias fisiológicas e identificar quais das espécies tem 

comprometimento citológico.  
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2. REVISÃO DE LITERATURA 

 

2.1 Botânica e Importância das Espécies Schizolobium amazonicum, Leucaena 

leucocephala e Azadirachta indica 

  

O paricá (Schizolobium amazonicum) é uma espécie da família 

Caesalpinaceae, de porte elevado (20 a 30 m), que ocorre na Amazônia em mata 

primária e secundária de terra firme, possuindo crescimento rápido. Sua madeira é 

sedosa e lisa, mais ou menos lustrosa, de coloração branco-amarelo-claro, podendo 

conter uma tonalidade róseo-pálida, sendo muito utilizada na fabricação de forros, 

palitos e papel (TRINDADE et al., 1999). Segundo Carvalho e Viégas (2004), a 

espécie pode fornecer boa matéria-prima para a obtenção de celulose para papel, com 

fácil branqueamento e excelente resistência obtida com o papel branqueado, tendo 

sido incluída na seleção de espécies para os consórcios agroflorestais na Amazônia, 

pois reúne ótimas qualidades silviculturais. 

Para Marques et al. (2006) a produtividade média do S. amazonicum varia entre 

25 a 30 m3 ha-1 ano-1 e pode ser aumentada com técnicas de melhoramento genético 

aliadas a outras práticas silviculturais, o que confere a espécie grande potencial para 

plantios comerciais, sistemas agroflorestais e reflorestamento de áreas degradadas 

(TREMACOLDI et al., 2009). 

O gênero Leucaena Benth, compreende 22 espécies, nativo das Américas, a 

espécie leucena (Leucaena leucocephala) é uma fabácea originária da América 

Central, México, sendo encontrada em muitas regiões tropicais do mundo (SILVA et 

al., 2007). Trata-se de uma espécie arbórea, perene, que apresenta raízes profundas, 

característica que lhe confere excelente tolerância à seca, sendo considerada uma 

planta bastante rústica (PRATES et al., 2000). Além da rusticidade, as possibilidades 

de uso desta espécie contribuíram para sua ampla dispersão. A L. leucocephala é 

utilizada na recuperação de áreas degradadas, adubação verde, produção de madeira, 

sombreamento e quebra vento (OLIVEIRA, 2008).  

Para Drumond (1992) o destaque da espécie recai sobre sua multiplicidade de 

usos como madeireira, forrageira e como planta melhoradora dos solos, especialmente 

quando consorciada com outras culturas, destacando-se a vantagem de servir como 
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alternativa para preservação das espécies nativas e de recuperação de áreas 

degradadas. 

A L. leucocephala é uma espécie de rápido crescimento, chegando a crescer 

até três metros de altura no primeiro ano, e com grande capacidade de regeneração. 

No entanto, para Xavier (1989) devido ao seu crescimento inicial lento, recomenda-se 

plantio por mudas. 

Segundo Freitas et al. (1991) a L. leucocephala tem importância econômica que  

se deve ao seu valor como árvore de sombreamento e adubo verde, existindo 

crescente interesse na utilização da espécie nos trópicos para restauração da 

fertilidade dos solos e forragem. 

O nim indiano (Azadirachta indica) pertence à família Meliaceae, que apresenta 

diversas espécies de árvores conhecidas pela madeira de grande utilidade, como o 

mogno (Swietenia macrophylla), o cedro (Cedrela fissilis), o cinamomo (Melia 

azedarach), a canjerana (Cabralea canjerana), a triquília (Trichilia pallida) etc. É 

originário do Sudeste da Ásia é cultivado em diversos países da Ásia, em todos os 

países da África, na Austrália, América do Sul e Central. É usado há séculos na Ásia, 

principalmente na Índia, como planta medicinal. Seu porte varia de 15 a 20 m de altura 

e 30 a 80 cm de diâmetro, com copas de 8 a 12 m de diâmetro e fuste apresentando 

coloração marrom-avermelhada (MOURÃO et al., 2004; MARTINEZ, 2008). 

A espécie A. indica é considerada uma planta versátil em razão dos inúmeros 

usos que se faz da mesma, sua madeira tem grande potencial na utilização para fins 

energéticos e produção de carvão (ARAÚJO et al., 2000).  

Neves (2004) afirma que o A. indica é utilizado em programas de 

reflorestamento no Sudeste asiático e na África, com o objetivo de recuperar áreas 

degradadas, acrescenta ainda, que quando jovem pode ser usado como componente 

arbóreo em sistemas agroflorestais. 

 

2.2  Origem do Cobre 

 

O termo cobre é de origem latina, cuprum, que, por sua vez, deriva da palavra 

cyprium, usada para designar a ilha de Chipre, que foi a principal fonte do metal no 

mundo antigo (MAAR, 2008). Segundo Rodrigues et al. (2012) na natureza, o cobre é 

encontrado principalmente nos minerais calcocita, calcopirita e malaquita. Também 
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está presente na constituição da turquesa, um mineral não tão abundante, mas 

bastante conhecido e apreciado por sua rara beleza. 

O cobre, segundo Rodrigues et al. (2012) é um elemento químico de símbolo 

Cu com número atômico Z = 29, massa molar M = 63,546 g mol-1, ponto de fusão Tf = 

1.358 K e isótopos naturais 63Cu (69,15%) e 65Cu (30,85%). 

O cobre é um metal dúctil, maleável, de coloração avermelhada, cuja 

configuração eletrônica é [Ar]3d104s1. Quando combinado com outros elementos, 

apresenta número de oxidação +1 (CuCl), +2 (CuCl2) e +3 (K3 CuF6). Os estados de 

oxidação +1 e +2 podem ser encontrados em solução aquosa, embora haja uma 

tendência do íon cobre +1 passar para +2 (reação de desproporcionamento). O estado 

de oxidação +2 é o mais comum, e o +3 é bastante raro, ocorrendo em apenas alguns 

poucos compostos que geralmente são fortes agentes oxidantes. Em geral, sais de 

cobre +1 são insolúveis, diamagnéticos e de cor branca, enquanto que os de cobre +2 

tendem a serem solúveis, paramagnéticos e coloridos (RODRIGUES et al., 2012). 

 

2.3 Efeitos do Cobre nas Espécies Vegetais 

 

O cobre (Cu) é um metal de transição ativo redox que está envolvido em muitos 

processos fisiológicos nas plantas porque pode existir em múltiplos estados de 

oxidação in vivo. Nas espécies vegetais o cobre desempenha um papel importante 

como um elemento estrutural de proteínas reguladoras, cofactor de muitas enzimas 

(como, Cu/Zn superóxido dismutase, amino oxidase, lacase, plastocianina, e polifenol 

oxidase), participa no transporte de elétrons na fotossíntese, respiração mitocondrial, 

nas respostas ao stress oxidativo, o metabolismo da parede celular, a transcrição da 

proteína e a translocação e sinalização hormonal (YRUELA, 2005). 

Embora o cobre (Cu) seja um micronutriente essencial importante para muitas 

atividades metabólicas, torna-se extremamente tóxico em concentrações mais altas. 

Este metal está presente nos mercados industrial, doméstico, efluentes, e as fontes 

mais comuns de sua introdução no meio aquático são: corrosão de tubos de cobre e 

ligas por águas ácidas, algicidas, fungicidas utilizados na preservação de madeira e na 

indústria de mineração, fundição, cultivos de plantas e refino (BLAYLOCK; HUANG, 

2000). 
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O cobre, assim como os demais metais pesados, não é biodegradável e 

apresenta uma dinâmica no solo bastante complexa, alterada diretamente por fatores 

do meio, principalmente pela quantidade de matéria orgânica, pH e CTC (SODRÉ; 

LENZI, 2001).  

Para Larcher (2000) o cobre é um elemento com baixa mobilidade dentro da 

planta e, em condições de baixa oferta os sintomas são visíveis principalmente em 

meristemas aéreos, folhas jovens e órgãos reprodutivos. Os sintomas de deficiência 

incluem a produção de folhas com cor verde escuro, manchas necróticas que 

aparecem primeiro nas pontas das folhas jovens e se estendem em direção à base da 

folha ao longo das margens, as folhas também podem ficar retorcidas ou mal 

formadas. Sob deficiência, severa abscisão prematura pode ocorrer. Plantas 

apresentam crescimento atrofiado e seu desenvolvimento radicular é inibido (TAIZ; 

ZEIGER, 2013). 

 

2.4 Cobre como Contaminante e Seus Efeitos na Morfologia, Bioquímica, 

Fisiologia e Citogenética nos Vegetais 

 

O cobre no vegetal é um micronutriente exigido em pequenas quantidades 

pelas culturas, sendo um dos últimos a desenvolver sintomas visuais de deficiência, 

quando seu suprimento não atende à demanda das plantas. Geralmente, ocorre em 

teores muito baixos no solo e, na matéria seca das plantas varia de 2 a 20 mg kg-1 

(FERREIRA; CRUZ, 1991). Apesar do importante papel na nutrição mineral das 

plantas participando de diversos processos metabólicos (MARSCHNER, 2012). 

O cobre (Cu) é um micronutriente que atua como componente de várias 

enzimas e coenzimas participa da fotossíntese, respiração e do metabolismo de 

nitrogênio e carboidratos (YRUELA, 2009). Entretanto, a presença em altas 

concentrações no solo afeta negativamente o crescimento e a produtividade das 

plantas (SONMEZ et al., 2006), devido aos danos às membranas celulares por meio 

da peroxidação de lipídios (BUENO; PIQUERAS, 2002), ao comprometimento da 

atividade fotossintética (LANARAS et al., 1993) e aos processos de absorção e 

assimilação de nutrientes (LLORENS et al., 2000; DEVRIESE et al., 2001). 



23 

 

O cobre em pequena concentração é um micronutriente essencial para toda 

forma de vida vegetal, sendo considerada uma maquinaria de tráfico de proteínas, 

fosforilação oxidativa e elemento estrutural na proteína reguladora (YRUELA, 2005).  

Como resultado da formação de complexos de cobre-orgânico, o excesso de 

cobre pode ser considerado como um elemento tóxico que leva a reduzir o 

crescimento de brotos e raízes ao inibir o alongamento celular e o ciclo celular 

(OUZOUNIDOU, 1993), diminuição do teor de clorofila, expansão foliar, perturbação 

da cromatina com dano na conformação do DNA e o plasma causando efluxo iônico 

(SINGH et al., 2007). Hänsch e Mendel (2009) indicaram que o excesso de 

concentrações de Cu pode induzir efeito tóxico significativo alterando a função da 

proteína e a atividade das enzimas. 

Em investigações diversas sobre os efeitos causados por contaminação por 

cobre em várias espécies vegetais, Lequeux et al. (2010) estudando videiras jovens 

afirmam que o cobre pode interferir no crescimento das raízes, incluindo diminuição do 

comprimento e número de ramificações, dano da cutícula da raiz (SHELDON; 

MENZIES, 2005), e rachaduras na raiz (MICHAUD et al., 2008), por causa dos altos 

níveis de Cu disponível. Além disso, a exposição das plantas a concentrações 

elevadas de Cu podem reduzir o nível de clorofila nas folhas e inibir a fotossíntese 

(YRUELA, 2009). 

A genotoxicidade do cobre é devida à produção de radicais hidroxilas e 

espécies reativas de oxigênio através da reação de Fenton (IMLAY; LINN, 1988) que 

pode provocar morte celular. Raios-X também estão na origem de um aumento muito 

significativo na frequência de micronúcleos em fava (Vicia faba) (RIZZONI et al., 

1987). No entanto, foi mostrado que o cobre não é um mutagênico em V. faba como 

resultado à exposição de diferentes concentrações deste metal por 2 h, mas uma 

concentração de 250 mM inibe a divisão celular, que está causando a diminuição da 

frequência de micronúcleos (STEINKELLNER et al., 1998). Do ponto de vista 

ambiental, a disponibilidade de cobre torna-se um problema crescente em relação a 

todos os organismos vivos, incluindo plantas. A necessidade de elucidar a toxicidade 

do cobre vem do seu uso sistêmico como fungicida, algicida ou bactericida na 

agricultura (SOUGUIR et al., 2008). 
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2.5 Tolerância das Espécies Schizolobium amazonicum, Leucaena leucocephala 

e Azadirachta indica ao Cobre 

 

Para Cordeiro et al. (2009) o S. amazonicum  vem sendo cultivado em 

reflorestamento e sistemas agroflorestais em diferentes condições edafoclimáticas. No 

Estado do Pará, a espécie está sendo plantada em larga escala por apresentar rápido 

crescimento, pela qualidade de sua madeira e boa cotação no mercado. Porém, o 

processo de recuperação de áreas degradadas, mediante sistemas de produção 

apropriados, tendo em vista os aspectos da geração de renda, ocupação de mão-de-

obra e redução dos impactos ambientais, necessitam de estudos experimentais para a 

geração de indicadores técnicos (SANTANA, 2005).  

No entanto, são raras as informações encontradas na literatura atual sobre a 

nutrição com nitrogênio, fósforo e potássio no crescimento de S. amazonicum. De 

forma geral, as diferentes espécies florestais nativas apresentam exigências 

nutricionais distintas e, como inexiste uma recomendação específica para cada 

espécie, à maioria das recomendações é baseada na do Eucalipto com algumas 

adaptações (CAIONE et al., 2012).  

Para Campello (1998) as fabáceas arbóreas possuem vasto sistema radicular e 

elevada produção de fitomassa, que contribui para a retenção de água e sais minerais. 

A L. leucocephala, é uma destas arbóreas mais cultivadas do mundo, pois se adapta a 

diversos tipos de solos, sendo tolerantes à seca e à temperatura variável (16 °C a 32 

°C).  

Interações ecológicas vêm sendo estudadas utilizando fabáceas arbóreas e 

fungos micorrízicos arbusculares (FMAs) no estabelecimento de plantas em ambientes 

áridos (DUPONNOIS et al., 2005) e em áreas degradadas por mineração (LINS et al., 

2006). Para Lins et al. (2007) estudando o efeito de FMAs no crescimento de mudas 

de L. leucocephala em solos de caatinga sob impacto de mineração de cobre, 

concluíram que raízes de L. leucocephala não são colonizadas por FMAs quando 

cultivadas em substrato de rejeito de área com mineração de cobre (≥483 mg dm-3). 

De acordo com Silva et al. (2014) em investigação o efeito do cobre sobre o 

crescimento e qualidade de mudas de barbatimão (Stryphnodendron polyphyllum 

Mart.) e acácia (Cassia multijuga Rich.) concluíram que as doses testadas de cobre 

não alteram a qualidade das mudas da C. multijuga, enquanto o S. polyphyllum  
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mantém a qualidade de mudas até 300 mg dm-3 de cobre adicionado ao solo. O S. 

polyphyllum apresenta maior crescimento e qualidade de mudas que a C. multijuga em 

solo contaminado com cobre. 

Para Martins et al. (2010) o interesse por pesquisas sobre o A. indica, tem 

aumentado por suas características peculiares onde seu extrato bruto ou do seu óleo 

vegetal, podem ser extraídos das folhas, caules e sementes. Características, que vão 

desde o combate às pragas agrícolas até o uso medicinal e na indústria cosmética, o 

que têm atraído à atenção de pesquisadores, confirmado pelo número de trabalhos 

publicados sobre essa espécie (ARAÚJO et al., 2000; OKEMO et al., 2001; ROOP et 

al., 2005).  

No entanto, Diniz et al. (2013) afirmam que ao contrário da vasta bibliografia e a 

respeito da biologia e das características inseticidas do A. indica, são raros os 

registros de estudos sobre o efeito da salinidade no crescimento desta espécie 

exótica. Para os supracitados autores o estresse salino inibiu o consumo hídrico, o 

crescimento biométrico e a produção de biomassa seca do A. indica, nos diferentes 

órgãos das plantas, mas com maior intensidade na parte aérea que nas raízes. 

 

2.6 Fitorremediação e Seus Mecanismos 

 

 Segundo Andrade et al. (2007) a fitorremediação apresenta grande 

versatilidade, podendo ser utilizada para remediação de meio aquoso, ar ou solo, com 

variantes que dependem dos objetivos a serem atingidos. As plantas podem remediar 

os solos contaminados através dos seguintes mecanismos: fitoextração, 

fitoestabilização, fitovolatilização, fitodegradação, fitoestimulação. 

A fitoextração é a absorção do metal contaminante pelas raízes das plantas 

translocado para o caule e as folhas (ALI et al., 2013).  

A fitoestabilização usa plantas para limitar a mobilidade e biodisponibilidade de 

metais nos solos (SINGH, 2012). 

A fitovolatilização é a absorção de poluentes do solo por plantas, a sua 

conversão em forma volátil e posterior liberação para a atmosfera, sendo a mais 

controversa das tecnologias de fitorremediação (PADMAVATHIAMMA; LI, 2007; ALI et 

al. 2013). 
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A fitodegradação é a degradação de poluentes orgânicos por plantas com a 

ajuda de enzimas como a dehalogenase e oxigenasse, assim como não é dependente 

de microrganismos rizosféricos (VISHNOI; SRIVASTAVA, 2008).  

A fitoestimulação ocorre a liberação de aminoácidos e polissacarídeos pela raiz, 

que caracteriza um estímulo para a atividade microbiana. Esses compostos 

produzidos ainda têm a capacidade de degradar outros componentes do solo, 

conferindo à planta, muitas vezes, uma aptidão rizosférica para a biorremediação, por 

apresentar grande concentração de microrganismos, considerada uma excelente área 

para a degradação de compostos orgânicos, tais como substâncias químicas 

aromáticas hidrofóbicas (VASCONCELOS et al., 2012).  

A rizodegradação refere-se à quebra de poluentes orgânicos no solo por 

microrganismos habitantes da rizosfera (MUKHOPADHYAY; MAITI, 2010; ALI et al., 

2013). A rizosfera estende-se aproximadamente 1,0 mm em torno da raiz e está sob a 

influência da planta (PILON-SMITS, 2005; ALI et al., 2013).  
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CRESCIMENTO E POTENCIAL FITORREMEDIADOR DE Schizolobium 

amazonicum, Leucaena leucocephala e Azadirachta indica EM SOLO 

CONTAMINADO COM COBRE 

 

RESUMO 

A atividade minerária promove aumentos consideráveis na balança comercial de 

diversos países. No Brasil a extração de cobre é de muita importância, especialmente 

no estado do Pará, pois atinge cifras consideráveis para a economia. Objetivou-se 

avaliar o crescimento inicial e a capacidade, habilidade, enfim, potencial das espécies 

Schizolobium amazonicum, Leucaena leucocephala e Azadirachta indica, submetidas 

à contaminação do solo com rejeito de barragem de mineração de cobre através da 

produção de fitomassa seca, teores e distribuição de cobre nos compartimentos 

radiculares, caulinares e foliares das espécies. O experimento foi conduzido na 

Universidade do Estado do Rio Grande do Norte, Mossoró-RN. O período da fase 

experimental foi de agosto de 2016 a fevereiro de 2017. O substrato utilizado nos 

vasos foi composto de solo e rejeito de cobre, proveniente do Pará. Foram 

caracterizados os atributos químicos e físicos dos componentes do substrato. Os 

tratamentos foram dispostos em blocos ao acaso, em esquema fatorial 3 × 4 (espécie 

x concentração). Os fatores foram às espécies S. amazonicum, L. leucocephala, A. 

indica e as concentrações de rejeito de cobre de barragem de mineração (0, 200, 400 

e 600 mg de Cu dm-3 de solo), respectivamente. As avaliações morfométricas 

ocorreram aos 30, 60, 90 e 120 dias. As plantas foram avaliadas quanto à altura, 

diâmetro de caule, número de folhas e área foliar. Ao final do experimento as plantas 

foram divididas em compartimentos de folhas apicais, intermediárias, senescentes, 

caules e raízes. A fitomassa seca vegetal foi pesada em balança de precisão e serviu 

para determinação do índice e fator de translocação e o coeficiente de extração. Os 

dados foram submetidos à análise de variância (Anova) com comparações entre 

médias entre as espécies pelo teste de Tukey a 5%. Fez-se análise de regressão das 

variáveis morfométricas em função das doses de cobre. A L. leucocephala e o A. 

indica tiveram comportamento semelhante, com o aumento da concentração de cobre, 

com decréscimo na altura das plantas. O diâmetro médio do caule no S. amazonicum 

foi decrescente e linear. A concentração mais elevada de cobre nas raízes está 

relacionado ao baixo transporte do metal para o compartimento aéreo. Conclui-se que 

as espécies S. amazonicum, L. leucocephala e A. indica obtiveram fitomassa seca 

radicular e aérea praticamente iguais nas concentrações crescentes de cobre. Os 

coeficientes de extração foram superiores nas raízes as espécies estudadas, 

indicando que estas têm potencial para fitoestabilizar áreas degradadas por cobre. 

 

Palavras-chave: Fitoextração, contaminantes do solo, rejeito de mineração, área 

degradada por mineração.  
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GROWTH AND POTENTIAL PHITORREMEDIATOR OF Schizolobium 

amazonicum, Leucaena leucocephala and Azadirachta indica  

INCONTAMINATED SOIL WITH COPPER 

 

ABSTRACT 

The mining activity promotes considerable increases in the trade balance of several 

countries. In Brazil the extraction of copper is of great importance, especially in the 

state of Pará, as it reaches considerable figures for the economy. The objective of this 

study was to evaluate the initial growth and the capacity,  ability, and finally, the 

potential of the species Schizolobium amazonicum, Leucaena leucocephala and 

Azadirachta indica, submitted to soil contamination with copper mining dam rejections 

through the production of dry biomass, contents and distribution of copper in the root, 

cauline and leaf compartments of the species. The experiment was conducted at the 

State University of Rio Grande do Norte, Mossoró-RN. The period of the experimental 

phase was from august 2016 to february 2017. The substrate used in the vessels was 

composed of soil and copper waste from Pará. The chemical and physical attributes of 

the substrate components were characterized. The treatments were arranged in 

randomized blocks, in a factorial scheme 3 × 4 (species x concentration). The factors 

were the species S. amazonicum, L. leucocephala, A. indica and concentrations of 

copper mining rejections, (0, 200, 400 and 600 mg Cu dm-3 of soil), respectively. 

Morphometric evaluations occurred at 30, 60, 90 and 120 days. The plants were 

evaluated for height, stem diameter, number of leaves and leaf area. At the end of the 

experiment the plants were divided into apical, intermediate, senescent, stems and 

roots compartments. The dry vegetable phytomass was weighed on a precision scale 

and used to determine the index and translocation factor and the extraction coefficient. 

Data were submitted to analysis of variance (Anova) with comparisons to the average 

and between species  by the Tukey test at 5%. Regression analysis of morphometric 

variables was performed due to the function of copper doses. L. leucocephala and A. 

indica had similar behavior, with the increase in copper concentration, with a decrease 

in plant height. The average stem diameter in S. amazonicum was decreasing and 

linear. The highest concentration of copper in the roots is related to the low transport of 

the metal to the air compartment. It is concluded that the species S. amazonicum, L. 

leucocephala and A. indica obtained almost identical root and aerial dry biomass in 

increasing concentrations of copper. The extraction coefficients were higher in the 

studied roots, indicating that they have the potential to phytostabilize areas degraded 

by copper. 

 

 

Keywords: Phytoextraction, soil contaminants, mining rejections, degraded area by 

mining. 
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1 INTRODUÇÃO 

 

O Brasil detém uma estrutura geológica favorável a ocorrências de diversos 

tipos de minérios, que na forma de jazidas se tornam muito competitivas 

internacionalmente. No entanto, a deposição de rejeitos de mineração em barragens 

tem provocado danos ambientais. 

Para Moreira e Siqueira (2006) a contaminação do solo por metais pesados é 

um problema oriundo do uso de insumos químicos na agricultura e de áreas de 

mineração. Nesse sentido, a contaminação de áreas por cobre tem ocorrido devido às 

atividades de mineração desse elemento e, em regiões de cultivos agrícolas, 

decorrentes da aplicação de fungicidas à base de cobre (CHAIGNON; HINSINGER, 

2003; NACHTIGALL et al., 2007). 

O uso da revegetação de locais contaminados, com o fim de diminuir os efeitos 

advindos da contaminação é uma tecnologia denominada de fitorremediação de solo 

(LOMBI et al., 2001). De acordo com Freire de Melo et al. (2009) esta é uma 

tecnologia emergente e de baixo custo que pode mitigar a contaminação por metais 

pesados. 

Para Ribeiro-Filho et al. (1999) a intensa demanda por produtos manufaturados 

tem contribuído para contaminação por metais potencialmente tóxicos como cobre 

(Cu), zinco (Zn) e chumbo (Pb). Embora o cobre seja um micronutriente essencial às 

plantas (SOLIOZ; STOYANOV, 2003), áreas contaminadas têm se tornado comum em 

consequência de atividades de mineração, culminando assim, na deposição de 

grandes volumes de rejeito em barragens de mineração. 

Caires et al. (2011) as espécies arbóreas nativas tropicais, principalmente as de 

rápido crescimento, apresentam características desejáveis para a fitorremediação de 

solos contaminados com metais pesados (ciclo de vida mais longo, grande produção 

de fitomassa) quando comparadas as de ciclo curto. Tais características permitem 

estas espécies acumular maior quantidade de carbono e de metais pesados, o que é 

importante para projetos de recuperação ambiental. 

Espécies arbóreas para serem utilizadas em fitorremediação devem apresentar 

tolerância ao contaminante, sendo já bem conhecidos os possíveis mecanismos de 

tolerância aos metais pesados (LARCHER, 2004).   



38 

 

 Espécies como o S. amazonicum, L. leucocephala e A. indica podem servir para 

experimentação no sentido de investigar quais as potencialidades destas espécies e o 

uso de rejeito de barragem de cobre no mecanismo de fitoextração do elemento cobre. 

O S. amazonicum é uma espécie da família Caesalpinaceae, de porte elevado 

(20 a 30 m), que ocorre na Amazônia, de crescimento rápido. Sua madeira é bastante 

utilizada na fabricação de forros, palitos e papel (TRINDADE et al., 1999), além de ser 

na atualidade bastante cultivada no Estado do Pará. 

 A L. leucocephala da família Fabaceae é uma espécie de crescimento rápido, 

fixadora de nitrogênio, tem despontado como alternativa promissora para recuperação 

de áreas degradadas. Quando constatado que não está se comportando como 

invasora de ecossistemas naturais, a L. leucocephala pode enquadrar-se melhor como 

ruderal (DA COSTA; DURIGAN, 2010), ou seja, uma espécie vegetal que prolifera 

apenas em áreas degradadas ou perturbadas dificultando o estabelecimento de outras 

espécies, incluindo nativas (WOITKE; DIETZ, 2002).  

O A. indica é árvore da família Meliaceae, conhecida por sua ação medicinal, 

nas últimas décadas seu estudo vem sendo difundido em virtude da presença de 

substâncias inseticidas (DEBASHRI; TAMAL, 2012; OMKAR, 2012). Apesar da 

bibliografia ampla da biologia e das características inseticidas da espécie, há ainda 

uma lacuna de investigações sobre o potencial fitorremediador desta exótica em solo 

contaminado por metais pesados. 

Objetivou-se com esta pesquisa avaliar o potencial das espécies S. 

amazonicum, L. leucocephala e A. indica submetidas à contaminação do solo com 

rejeito de barragem de mineração de cobre, seu crescimento morfométrico, produção 

de fitomassa seca, teores e distribuição de cobre nos compartimentos radiculares, 

caulinares e foliares das respectivas espécies. 
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2. MATERIAL E MÉTODOS 

 

2.1 Localização, Clima e Substrato  

 

O experimento foi conduzido em telado de náilon, na Universidade do Estado do 

Rio Grande do Norte (UERN), Mossoró-RN, na região Oeste do Estado do Rio Grande 

do Norte, situado nas coordenadas geográficas de 05° 12' 18,25'' S, 37° 18' 53,1'' W e 

altitude de 21 m. O clima da região, segundo Köppen, é do tipo BSwh', tropical quente 

semiárido, com pluviosidade média anual de 695,8 mm e temperatura média de 

27,4°C, marcado por dois períodos bem definidos: seco (prolongado) e chuvoso (curto 

e irregular).  

As variáveis climatológicas durante o período compreendido entre 15 de agosto 

de 2016 a 3 de fevereiro de 2017 na fase experimental apresentadas na tabela 1. 

 

Tabela 1. Valores mensais de temperatura, umidade relativa do ar e precipitação 

obtidos no período de agosto/2016 a fevereiro/2017. 

 

Meses Temperatura °C 

Mín / Máx  

Umidade(%) 

Mín / Máx  

Precipitação 

(mm) 

Agosto 22,32 / 41,85  30,6 / 77,9 0,0 

Setembro 22,90 / 42,30 24,2 / 77,2 0,0 

Outubro 23,50 / 41,60 25,7 / 78,5 0,0 

Novembro 24,00 / 41,30 28,0 / 77,6 0,0 

Dezembro 24,20 / 39,50 34,0 / 82,4 2,0 

Janeiro 24,10 / 41,18 26,7 / 82,3 6,4 

Fevereiro 31,30 / 32,70 32,0 / 81,5 0,0 

 

As variáveis climatológicas foram aferidas por termohigrômetro da marca 

Incoterm e pluviômetro, colocados no interior do telado de náilon (Figura 1). Os 

registros de temperatura e umidade foram realizados diariamente. A precipitação 

registrada foi a que ocorreu durante a fase experimental.  
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Figura 1. Termohigrômetro e pluviômetro para aferição de variáveis climatológicas instalados 
no local do experimento, no período de agosto/2016 a fevereiro/2017. 

 

O substrato utilizado nos vasos para instalação do experimento foi composto de 

solo do local do experimento e rejeito de barragem de cobre, sendo o rejeito 

proveniente da empresa Vale S.A., Canaã dos Carajás, Pará. O rejeito foi transportado 

em tambores de 200 kg provenientes da barragem de rejeito de cobre em Canaã dos 

Carajás-PA. Foram coletadas previamente amostras dos componentes do substrato 

para caracterização dos atributos químicos e físicos do solo (camada de 0-20 cm) e 

rejeito (Tabela 2), conforme recomendações metodológicas da Embrapa (2009). 

Tabela 2. Atributos químicos e físicos do solo e do rejeito de cobre, usados por 

ocasião da instalação do experimento. 

Substrato Solo Rejeito de cobre 

 Atributos químicos  
pH (H2O) 6,4 - 
P (mg dm-3) 3,0 3,8 
K+ (cmolc dm-3) 0,16 0,15 
Na+ (cmolc dm-3) 0,13 - 
H++Al+3 (cmolc dm-3) 1,5 - 
Al+3 (cmolc dm-3) 0,0 - 
Ca+2 (cmolc dm-3) 1,9 16,2 
Mg+2 (cmolc dm-3) 0,7 8,7 
SB (cmolc dm-3) 2,9 - 
CTC (cmolc dm-3) 2,9 - 
V (%) 65,9 - 
MO (g kg-1) 0,9 - 
B (mg dm-3) 0,27 - 
Cu (mg dm-3) 0,4 0,9 
Fe (mg dm-3) 120,0 45,5 
Mn (mg dm-3) 41,0 18,5 
Zn (mg dm-3) 0,7 1,7 
 Atributos físicos  
Areia (g kg-1)  856  
Silte (g kg-1) 84  
Argila (g kg-1) 60  
Densidade g cm-3 1,54 1,62 
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Classificação textural Areia Franca  

    SB = Soma de bases (Ca2+ + Mg2+ + K+ + Na+); CTC = Capacidade de troca catiônica  
    [SB + (H+ + Al3+); V = Saturação por bases trocáveis (SB/CTC) × 100; 
    MO = Matéria orgânica do solo. 
 

2.2 Delineamento Experimental 

  

Os tratamentos foram dispostos em blocos ao acaso, usando o esquema fatorial 

3 × 4 (espécie x concentração), com quatro repetições e três plantas por parcela. Os 

fatores foram às espécies S. amazonicum, L. leucocephala, A. indica e quatro 

concentrações de rejeito de cobre de barragem de mineração (0; 200; 400 e 600 mg 

de Cu dm-3 de solo), respectivamente. 

A tabela 3 se refere às quantidades de solo e rejeito de cobre utilizado para 

compor o substrato. 

 

Tabela 3. Massa do solo, do rejeito de cobre e massa total, usados por ocasião da 

instalação do experimento. 

 

Cobre (mg dm-3) Solo (kg) Rejeito (kg) Massa Total (kg) 

0 8,00 0,00 8,00 

200 6,24 1,76 8,00 

400 4,46 3,54 8,00 

600 2,68 5,32 8,00 

 

2.3 Material Vegetal e Condições de Cultivo 

 

As sementes das espécies L. leucocephala e A. indica foram provenientes de 

coleta em matrizes no campus da UERN - Mossoró, RN. Estas matrizes foram 

catalogadas e as exsicatas depositadas no Herbário Jaime Coelho de Moraes, 

Laboratório de Citogenética Vegetal, no CCA, UFPB. As sementes de S. amazonicum 

foram adquiridas da empresa Centerplac, Rondon do Pará e a exsicata depositada no 

referido herbário. 

O substrato foi pesado, colocado em vasos plásticos com capacidade para 8,0 

litros e, permaneceram por 15 dias incubados, sem serem irrigados. Após este período 

foram semeadas cinco sementes por vaso. Dez dias após a emergência, foi realizado 

o desbaste mantendo-se a planta mais vigorosa. 
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O experimento foi irrigado por gotejamento, controlado por um temporizador 

marca Lukma electric, com três turnos de rega (9h; 12h; 15h) por dois minutos cada 

turno, mantendo em aproximadamente 80% da capacidade do vaso (Figura 2). 

 

 

  
 
Figura 2. Incubação do substrato (A), germinação (B), crescimento (C) e irrigação dos vasos 

(D). 

 

2.4 Variáveis Analisadas 

 

2.4.1 Avaliação Morfométrica de Crescimento 

 

Após a incubação do substrato e a emergência das sementes das três espécies 

(10 dias), foram iniciadas as avaliações morfométricas que ocorreram aos 30, 60, 90 e 

120 dias. As plantas foram avaliadas quanto à altura, diâmetro de caule, número de 

folhas e área foliar, porém apenas a altura foi avaliada aos 30 dias, as demais não 

foram aferidas. Estas medidas morfométricas foram realizadas com o uso de trena 

graduada para aferir altura. O diâmetro de caule foi aferido com paquímetro digital da 

marca Disma 0-150 mm / 0-6” PD 150. A contagem de folhas por planta foi realizada 

de forma direta. A área foliar apenas aos 120 dias foi realizada através de scanner 

marca CID Bio-Science, CI 202 Lazer Area Meter.  

A avaliação final aos 120 dias foi realizada dividindo os compartimentos das 

espécies em folhas apicais (FA), folhas intermediárias (FI), folhas senescentes (FS), 

A 

D C 

B 
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caules (C) e raízes (R). Toda a fitomassa vegetal foi devidamente acondicionada e 

identificada em sacos de papel com posterior pesagem de fitomassa verde. As raízes 

foram lavadas com água de torneira até a retirada completa do solo. 

A medição de massa fresca foi realizada com balança digital de precisão da 

marca Quimis modelo Q-500L 210C. Após este procedimento o material vegetal foi 

colocado em estufa de marca De Leo modelo Coel LW 2000 a 65 ºC por 72 h até 

atingir peso constante e novamente pesado, compondo a fitomassa seca. Após a 

fitomassa seca, esta foi devidamente moída em moinho tipo Willey TE-650. A 

fitomassa seca foi encaminhada ao laboratório para análises de macro e 

micronutrientes, conforme procedimentos laboratoriais. 

   Para determinar os teores de cobre nas diferentes partes das plantas, amostras 

de 1,0 g de fitomassa seca e triturada foram submetidas à digestão nítrico-perclórica 

(3:1) (TEDESCO et al., 1995). As amostras foram levadas para bloco digestor 

controlando-se a temperatura: inicialmente de 50 ºC, por aproximadamente 30 

minutos; 100 ºC, por mais 30 minutos e permaneceu entre 160 ºC a 180 ºC até 

completar a digestão.  

 

2.4.2 Índice e Fator de Translocação, Coeficiente de Extração 

    

Em função do acúmulo de cobre, nos diferentes compartimentos das espécies 

investigadas, estas foram classificadas quanto ao caráter de tolerância, como 

fitoestabilizadoras (tolerantes e acumuladoras de cobre, ferro e zinco nas raízes) e 

fitoextratoras (capazes de tolerar e acumular cobre, ferro e zinco na parte aérea). Para 

Accioly e Siqueira (2000) espécies são consideradas acumuladoras, quando as 

concentrações nas raízes e na parte aérea forem superiores à concentração do solo.  

Em razão da quantidade de cobre acumulado, calculou-se o índice de 

translocação (IT) do cobre, de acordo com Abichequer e Bohnen (1998), pela equação 

(1): 

100
planta na  acumulado  metal de  Quant

) caules + (folhas  aérea  parte  acumulado  metal de  Quant
IT   Eq.1 

  

O cálculo do fator de translocação (FT) calculado de acordo com a equação (2) 

e, que tem a finalidade de avaliar a habilidade da planta em translocar o metal pesado 
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das raízes para as partes aéreas, comportamento desejável nos estudos de 

fitorremediação (MARCHIOL et al., 2004): 

raízes nas metal de Teor

aérea parte na metal de Teor
FT      Eq. 2 

A capacidade de extração de metais pelas plantas, denominado de coeficiente 

de extração (CE), é avaliada através da equação (3) que corresponde ao percentual 

de metal retirado do solo (KUMAR et al., 1995): 

100x 
  solo  do  seca   matéria  g  por   metal  do  g   Massa

radicular) e  aérea  (parte   seca   matéria  g  por   metal  do  g   Massa
CE   Eq. 3 

2.5 Avaliação Estatística 

 

Os dados foram submetidos à análise de variância (Anova) com comparações 

entre médias entre as espécies pelo teste de Tukey a 5% de probabilidade, utilizando 

o software Sisvar 5.6 Build (86) (Ferreira, 2011). Fez-se análise de regressão das 

variáveis morfométricas (altura de plantas, diâmetro de caule, número de folhas e área 

foliar) em função das doses de cobre. Os compartimentos foliares (folha apical, folha 

intermediária, caule e raiz) serviram para determinar os fatores, índices e coeficientes 

de extração das espécies. 
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3 RESULTADOS E DISCUSSÃO 

 

3.1 Altura de Plantas, Diâmetro de Caule, Número de Folhas, Área Foliar e 

Produção de Fitomassa Seca  

 

 A interação entre as espécies e a contaminação do substrato com cobre não 

apresentou resultados significativos em relação as variáveis morfométricas de 

crescimento aos trinta dias, porém nas demais avaliações ocorreram diferenças 

estatísticas significativas, especialmente aos 120 dias, observa-se na tabela 4. 

Tabela 4. Resumos das análises de variância, pelo quadrado médio, referentes à 
altura, diâmetro, número de folhas e área foliar aos 30, 60, 90 e 120 dias, 
em substrato cultivado com doses de cobre e as espécies S. amazonicum, 
L. leucocephala e A. indica. 

FV GL Altura Diâmetro Nº de folhas 

30 dias 

Bloco 3 2,4780ns 0,9891ns 0,9943ns 
Espécies (E) 2 402,3821** 31,1786** 1,3781ns 
Teor de cobre (C)  3 2,3281ns 1,0640ns 1,1287ns 
E x C 6 5,7469ns 0,9090ns 0,6751ns 
Erro 33 2,8782  1,0246 0,8791 

Total 47    

CV (%)  19,59 35,85 23,26 

  60 dias   

FV GL Altura Diâmetro Nº de folhas 

Bloco 3 0,0531** 0,1666ns 2,1859ns 
Espécies (E) 2 695,2055** 26,9120** 10,3206** 
Teor de cobre (C)  3 13,2141** 0,3228** 4,5907** 
E x C 6 4,5181** 0,0935ns 1,7694ns 
Erro 33 1,5844 0,08336 0,7825 

Total 47    

CV (%)  10,77 10,03 17,29 

  90 dias   

FV GL Altura Diâmetro Nº de folhas 

Bloco 3 1,7340ns 0,1521ns 2,3589ns 
Espécies (E) 2 475,1936** 33,3386** 260,4769** 
Teor de cobre (C)  3 114,0351** 1,3258** 17,4804ns 
E x C 6 17,5359** 0,5636** 13,9684ns 
Erro 33 5,3317 0,1169 9,0467 

Total 47    

CV (%)  15,61 10,42 46,75 

  120 dias   

FV GL Altura Diâmetro Nº de folhas Área foliar 
Bloco 3 3,3755ns 0,1605ns 3,1814ns 0,0051ns 
Espécies (E) 2 239,9078** 27,0172** 294,2025** 0,2116** 
Teor cobre (C)  3 258,0628** 4,9656** 36,0445** 1,3140** 
E x C 6 61,9643** 1,3390** 36,2772** 1,5902** 
Erro 33 9,9018 0,2095 4,4131 0,0479 

Total 47     

CV (%)  18,26 12,94 31,04 34,97 

GL = Grau de liberdade; ns = não significativo; * significativo ao nível de 1%;  
CV = Coeficiente de variação 
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Aos trinta dias iniciais as plantas se comportaram sem maiores alterações em 

relação às características morfométricas do diâmetro de caule e número de folhas, de 

maneira que não houve nenhum dado coletado, porém a altura de plantas das três 

espécies obtiveram crescimentos distintos, onde se pode observar (Figura 3 A) as 

diferenças em relação às doses crescentes de contaminação do cobre afetando-as. 

Isso demostrando nessa fase inicial que as espécies se comportaram de maneira 

distinta entre elas, especialmente em razão dos tratamentos não terem recebido 

nenhum tipo de adubação.  

Verifica-se na figura 3 (A, B) que as espécies L. leucocephala e A. indica se 

comportaram de maneira semelhante, com menores alturas das plantas a medida que 

elevou-se a concentração de cobre. No entanto, a altura das plantas foi decrescendo 

de forma linear, mas o S. amazonicum não teve sua altura comprometida tanto aos 60 

dias como aos 90 dias, coforme pode-se observar na figura 3 (B, C). 

As espécies em cada concentração de cobre aos 120 dias foram afetadas 

quanto a média de altura de maneira significativa nas três espécies (Figura 3 D), no 

entanto o S. amazonicum se comportou de maneira responsiva as doses de cobre, 

pois conforme a concentração do contaminante foi aumentando a altura da planta foi 

reduzindo. Para o A. indica as médias de altura se mantiveram em relação às 

concentrações de cobre, porém foi inferior ao S. amazonicum, mas também foram 

sendo reduzidas, em comparação ao controle que não foi usado o rejeito de cobre e, 

que ao final não teve diferença. No entanto, a L. leucocephala aumentou em altura em 

relação ao controle na concentração de 200 mg dm-3, mas ao final do experimento se 

comportou de forma semelhante estatisticamente as demais espécies. 

De acordo com o que se observa na figura 3 (D) referente às médias de altura 

aos 120 dias, as espécies L. leucocephala e A. indica obtiveram a mesma média, já o 

S. amazonicum se comportou conforme as doses de cobre foram sendo 

acrescentadas a espécie foi reduzindo em altura, como constatado na equação de 

regressão, ou seja, altura média das três espécies foram iguais aos 120 dias na maior 

concentração de cobre. 
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Figura 3. Altura média de plantas de S. amazonicum (◊), L. leucocephala (□) e A. indica (Δ) 

(A) para 30, (B) 60, (C) 90 e (D) 120 dias usando no substrato concentrações de 

cobre. 

 

Marques et al. (2004) investigando a espécie S. amazonicum puderam 

constatar que aos 30 dias a altura das plantas com omissão de macro e 

micronutrientes atingiram alturas que variaram de 19 a 23 cm em todos os tratamentos 

e, que isso comprova o quanto é importante para a boa formação de mudas de 

espécies silviculturais. Para espécies de crescimento inicial rápido, como o S. 

amazonicum, há uma exigência maior da quantidade de N em curto intervalo de 

tempo, que, se não suprido, por fertilizantes minerais, fixação biológica ou 

mineralização de matéria orgânica, resultará em prejuízo no crescimento inicial destas 

espécies (LIMA, 1994), confirmando, assim, o pequeno crescimento inicial das 

espécies vegetais nesta pesquisa, no entanto, o S. amazonicum manteve uma altura 

média superior a 13 cm na dosagem de 600 mg dm-3, e que mesmo sem ter ocorrido 

adubação esta espécie teve um bom desempenho nestas condições, o que não 

ocorreu com L. leucocephala e A. indica. 

A B 

C D 



48 

 

Para Silva et al. (2010) investigando a tolerância de mudas de canafístula 

(Peltophorum dubim Spreng. Taub.) inoculada com fungo em solo com excesso de 

cobre observaram que a altura das mudas de canafístula apresentaram certa 

tolerância ao efeito do cobre até a dose 150 mg dm-3, confirmando dessa maneira com 

esta pesquisa que apenas o S. amazonicum tolerou o aumento na dose de cobre até 

os 90 dias sem comprometer a média de altura, que esteve superior a 20 cm na dose 

de 600 mg dm-3.  

 Silva et al. (2014) investigando as espécies barbatimão (Stryphnodendron 

polyphyllum Mart.) e cácia (Cassia multijuga)  afirmaram  que as doses testadas de 

cobre não alteraram a qualidade das mudas da C. multijuga, enquanto o S. 

polyphyllum  mantém a qualidade de mudas até 300 mg dm-3 de cobre adicionado ao 

solo. 

Maryam  et al. (2015) estudando plantas tropicais em solo contaminado por 

cobre através de lodo de esgoto constataram que o incremento de altura ocorreu de 

maneira diferente entre as espécies pinhão-manso (Jatropha curcas), acácia (Acacia 

mangium) e mama-cadela (Hopea odorata), mas que em concentração de 120 mg dm-

3 as referidas espécies obtiveram crescimento normal aos 90 dias o que indicou que 

mesmo com esta concentração de cobre, provavelmente parâmetros físico-químicos 

do lodo tenham propriedades capazes de melhorar a absorção de nutrientes 

essenciais existentes no próprio esgoto. No caso desta pesquisa as espécies L. 

leucocephala e A. indica tiveram suas alturas médias comprometidas a medida que as 

doses de cobre aumentavam, porém o S. amazonicum aos 90 dias na maior 

concentração (600 mg dm-3) obteve altura média próxima a recomendada para a 

espécie, que é de 25 a 35 cm para o plantio definitivo no campo.  

Para Majid et al. (2011) em substrato contaminado por cobre a A. mangium teve 

crescimento em altura normal mesmo com a concentração crescente de cobre, porém 

com a menor concentração de 50 mg dm-3 o desempenho foi melhor.  

Silva et al. (2010) pesquisando a tolerância de canafístula (Peltophorum 

dubium) em solo com excesso de cobre, concluíram que com concentração de 450 mg 

dm-3 as plantas atingiram uma altura de 16,75 cm, corroborando com esta pesquisa 

que para as três espécies a altura ficou em torno de 15 cm na mesma concentração.  

Silva et al. (2012) trabalhando com concentrações crescentes de cobre com as 

espécies timbó (Ateleia glazioviana) e dedaleiro (Lafoensia pacari) estas atingiram 
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alturas de 9,08 cm e 19,68 cm, respectivamente, para uma concentração de 192 mg 

dm-3 de cobre, diferindo com a presente pesquisa onde o S. amazonicum alcançou 

uma altura de 21,89 cm, a L. leucocephala 27,21 cm e o A. indica com 16,18 cm em 

concentração de 200 mg dm-3, isso comparado ao A. glazioviana, mas corroborando 

com o resultado encontrado no L. pacari, estando as médias do S. amazonicum e do 

A. indica aproximadas ao alcançado no L. pacari. Porém, em comparação com a L. 

leucocephala, a altura desta foi bem superior ao L. pacari. 

Com relação ao diâmetro de caule, observa-se que as três espécies se 

comportaram de modo semelhante quando submetidas às concentrações de cobre, 

contudo à medida que se elevou a concentração de cobre de 200 a 600 mg dm-3 

apenas a L. leucocephala  teve redução no diâmetro de caule (Figura 4 A, B, C).  

As espécies S. amazonicum e A. indica tiveram o mesmo comportamento 

mesmo que com pouca variação entre 60 e 90 dias (Figura A, B). De forma geral, 

observou-se que os valores de diâmetro de caule nas plantas de S. amazonicum e A. 

indica foram menos alterados em relação às plantas de L. leucocephala. 

O diâmetro médio de caule no S. amazonicum se manteve mesmo com o 

acréscimo do cobre ao substrato, no entanto, foi estatisticamente diferente da L. 

leucocephala e o do A. indica em todas as concentrações obtendo valores bem 

superiores, ilustrado na figura 4 (A, B, C). 

O comportamento entre as espécies em relação ao diâmetro médio de caule foi 

o seguinte: S. amazonicum > A. indica > L. leucocephala. 
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Figura 4. Diâmetro médio do caule para (A) 60, (B) 90 e (C) 120 dias de S. amazonicum (◊), L. 

leucocephala (□) e A. indica (Δ) em concentrações de cobre. 

 

Caione et al. (2012) investigando o crescimento de S. amazonicum em 

substrato com N, P e K obtiveram resultados satisfatórios em relação ao diâmetro de 

caule com valor de 4,84 mm, este parâmetro é relevante, pois segundo Souza et al. 

(2006) relatando alguns pesquisadores este é um parâmetro importante para estimar a 

sobrevivência de mudas de espécies florestais. Segundo Ribeiro et al. (2001) para 

eucalipto o valor ideal é de 2,0 mm aos 90 dias, o que corrobora com esta pesquisa 

para a espécie A. indica que obteve um valor um pouco superior mesmo com o 

aumento do contaminante, porém, para L. leucocephala o comportamento foi diferente 

pois o diâmetro desta espécie foi inferior ao valor recomendado para o eucalipto. 

Segundo Silva et al. (2012) o aumento de concentração de cobre para A. 

glazioviana e L. pacari não aumentou o diâmetro das espécies estudadas atingindo 

3,74 cm e 2,85 cm, respectivamente, na concentração de 192 mg dm-3, de maneira 

que na concentração bem superior (600 mg dm-3) deste trabalho o S. amazonicum, a 

A B 

C 
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L. leucocephala e o A. indica obtiveram os seguintes diâmetros: 5,0 cm, 1,75 cm e 

2,25 com diferença estatística, mas que ficou entre as médias encontradas dos 

autores supracitados com uma concentração bem inferior ao utilizado neste trabalho. 

Na figura 5 (A) visualiza-se que prevaleceu as médias do número de folhas aos 

60 dias para S. amazonicum e A. indica, sem que as concentrações tivessem 

interferência na redução das folhas. No entanto, a L. leucocephala se comportou de 

maneira diferente, pois, conforme elevou-se a concentração do cobre, houve 

diminução de folhas, ajustando-se ao modelo linear de regressão. 

 Já na figura 5 (B), pode-se visualizar que aos 90 dias a espécie S. amazonicum, 

apesar de manter uma média de número de folhas constante nas concentrações, 

ocorreu decréscimo em comparação aos 60 dias.  

A espécie A. indica obteve resultado bem distinto, pois aumentou praticamente 

o dobro do resultado anterior do número de folhas e se manteve com uma média 

constante sem ter sofrido a interferência das concentrações. Já L. leucocephala para o 

mesmo período de 90 dias ocorreu a mesma tendência do período anterior (60 dias), 

com perda de folhas com o aumento da concentração de cobre, inclusive, reduzindo a 

média do número folhas mais do que aos 60 dias, possivelmente aos baixos teores de 

nutrientes no substrato.  

Aos 120 dias as espécies se comportaram ao final do experimento de maneira 

semelhante ao atingir um número de folhas próximas na maior concentração de cobre, 

no entanto, tendo pequenas diferenças de acordo com as concentrações, conforme 

ilutra a figura 5 (C) e as equações de regressão.     
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Figura 5. Número médio de folhas aos 60 (A), 90 dias (B) e 120 dias (C) de S. amazonicum 

(◊), L. leucocephala (□) e A. indica (Δ) em concentrações de cobre. 

 

 

Matos et al. (2009) estudando o S. amazonicum com substratos orgânicos 

relataram número de folhas aos 60 (3 folhas) e 90 dias (8 folhas), porém foram 

inferiores aos encontrados na pesquisa aos 60 dias (média de 4,31 folhas), pois a 

mesma espécie superou em número de folhas. No entanto aos 90 dias os autores 

relatam uma redução atribuída, possivelmente ao contaminante. Assim, com a 

diminuição do número de folhas do S. amazonicum esta pode ser afetada tanto na 

altura como no diâmetro de caule, como foi constatado na presente pesquisa. 

Lins et al. (2007) investigando L. leucocephala e fungos micorrízicos 

arbusculares (FMAs) em substrato com rejeito de mineração de cobre comprovaram 

que o número de folhas alcançando (38,4) não diferiu do tratamento controle sem 

inoculação dos fungos FMAs (32,6), mas, em comparação com esta pesquisa o 

B A 

C 

B 
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número de folhas foi superior, porém, teve uma redução em relação a concentração de 

cobre. 

O aumento na concentração de cobre ao atingir valores aproximados de 400 mg 

dm-3 a área foliar média das plantas de S. amazonicum e L. leucocephala teve drástica 

redução, mas a partir daí estas passaram a reagir e obtiveram crescimento de área 

foliar. Já o A. indica teve acréscimo até 400 mg dm-3, mas após o aumento da 

concentração, esta espécie reduziu a área foliar, mas não de forma drástica, como 

confirmam as equações quadráticas para as espécies (Figura 6).   

 

 
 

Figura 6. Área foliar média em S. amazonicum (◊), L. leucocephala (□) e A. indica (Δ) em 

concentrações de cobre, aos 120 dias. 

 

 Soares et al. (2000) estudando Eucalyptus maculata e Eucalyptus urophylla em 

solução nutritiva com concentração crescente de cobre, chegaram a conclusão que a 

área foliar de ambas espécies tiveram decréscimo acentuado na área foliar, quando 

comparado com esta pesquisa. 

 Menegaes (2015) estudando espécies floríferas em solo contaminado com 

cobre constatou que a área foliar foi afetada na concentração de 700 mg dm-3 

atingindo um total de 624,5 cm2, o que está bem diferente para estas espécies 

estudadas, pois os valores de área foliar estão bem abaixo das floríferas.  

A produção de fitomassa seca (Tabela 5) de S. amazonicum, L. leucocephala e 

A. indica foi afetada pelas concentrações de cobre, causando redução tanto nos 

compartimentos radiculares quanto nos da parte aérea, provocando assim diminuição 

no crescimento. Foram observadas reduções de 52,28%, 91,9% e  66,37% para 
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matéria seca total para S. amazonicum, L. leucocephala e A. indica, respectivamente, 

quando submetidas as concentrações progressivas do cobre, desde o controle (sem 

adição de rejeito)  a  600 mg dm-3.  

Em comparação entre as espécies a partir da L. leucocephala a qual obteve a 

maior fitomassa total, S. amazonicum e A. indica nas concentrações de cobre 

sofreram reduções na ordem os seguintes percentuais de fitomassa seca total para o 

controle de 21,2% e 68,58% para S. amazonicum e A. indica, respectivamente. Para 

200 mg dm-3 as reduções foram de 23,91% para o S. amazonicum e 47,52% para o A. 

indica. Já para a concentração de 400 mg dm-3 as plantas de S. amazonicum e A. 

indica atingiram as reduções de fitomassa de 39,14% e 54,09%. No entanto, na maior 

concentração de 600 mg dm-3 o S. amazonicum atingiu a maior fitomassa e assim 

passou a servir de parâmetro de comparação na redução de fitomassa da L. 

leucocephala e do A. indica com as seguintes reduções 78,47% e 71,89%, 

respectivamente. 

 Importante registrar que mesmo na maior concentração de cobre o S. 

amazonicum teve a maior produção de fitomassa seca nos compartimentos 

radiculares, aéreos e total em relação aos outras duas espécies, porém isso não 

signifca que a fitotoxicidez do cobre não tenha afetado o S. amazonicum,  já que esta 

teve uma redução de fitomassa em relação ao controle. No entanto outros parâmetros 

podem ter influenciado a produção de fitomassa nas espécies estudadas, como a 

fertilidade do solo, pH, matéria orgânica, entre outros.  

 

Tabela 5. Fitomassa seca média radicular, aérea e total (g) aos 120 dias das espécies 

S. amazonicum, L. leucocephala e A. indica em concentrações de cobre. 

 

Cu (mg dm-3) S. amazonicum L. leucocephala A. indica 

 PR PA T PR PA T PR PA T 

0 1,44 3,10 4,54 3,16 2,63 5,79 0,67 1,13 1,80 

200 0,71 1,03 1,74 1,30 0,99 2,29 0,45 0,78 1,23 

400 0,79 0,84 1,63 1,28 1,41 2,69 0,58 0,65 1,23 

600 0,97 1,19 2,16 0,31 0,15 0,46 0,21 0,37 0,58 

 * PR: fitomassa parte radicular; PA: fitomassa parte aérea; T: fitomassa total.  
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 A pequena quantidade de fitomassa nas espécies ora estudadas pode ser em 

razão de diversos fatores, entre estes, a baixa fertilidade do substrato, bem como não 

ter sido realizado nenhuma adubação durante o período experimental e o pH que ao 

final do experimento se encontrou numa faixa que variou de 7,82 (controle) a 8,82 

(maior concentração de 600 mg dm-3), Malavolta et al. (1989) afirmam que elementos 

como Fe, Cu, Mn e Zn à medida que aumenta o pH a absorção destes elementos 

diminuem, acarretando dessa maneira uma menor produção de fitomassa. 

Taiz e Zeiger (2013) atribuem uma baixa fitomassa à possível tolerância das 

espécies ao contaminante, adquirida através de adaptações bioquímicas que 

permitem à planta tolerar concentrações elevadas desses elementos. Essa tolerância 

pode ser conseguida através da redução do transporte através da membrana, 

exclusão, formação de peptídeos ricos em grupos tiólicos (fitoquelatinas e 

metalotioneínas), quelação por ácidos orgânicos e aminoácidos. 

 Majid et al. (2011) pesquisando a absorção de metais pesados e translocação 

por acácia (Acacia mangium) em solo contaminado com cobre, encontraram valores 

de fitomassa seca total da referida espécie que variaram de 121,0 g (controle) a 

128,48 g (400 mg dm-3), valores bem superiores obtidos por esta pesquisa. Estes 

resultados sugerem que as concentrações altas de cobre no solo, efetivamente 

afetaram a produção de fitomassa nas três espécies. A ordem de produção de 

fitomassa seca nas espécies estudadas e na maior concentração de cobre foi:  S. 

amazonicum > A. indica > L. leucocephala.  

 

3.2 Teores de Cobre nos Compartimentos das Plantas 

 

O aumento das concentrações de cobre influenciou os teores do elemento nos 

diferentes compartimentos das três espécies estudadas (Tabela 6). Em geral, a 

concentração de cobre nas diferentes partes das plantas para as três espécies, 

ocorreu no sentido acrópeto. Os maiores teores de cobre foram encontrados nas 

raízes das plantas S. amazonicum, L. leucocephala e A. indica com valores que 

variaram de 39 a 527 mg dm-3 para o S. amazonicum, de 32 a 269 mg dm-3 para a L. 

leucocephala e de 74 a 147 mg dm-3 para o A. indica. 

Os teores totais seguiram a tendência em todas as concentrações comparadas 

entre as espécies, o aumento das concentrações de cobre promoveram acréscimo dos 

teores na seguinte ordem: S. amazonicum > L. leucocephala > A. indica. 
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Tabela 6. Teores de cobre (mg dm-3) em folhas apicais (FA), folhas intermediárias (FI), 

caules (C) e raízes (R) em S. amazonicum, L. leucocephala e A. indica em 

concentrações de cobre e, respectivos percentuais. 

 
Cu (mg dm-3)            S. amazonicum                                 L. leucocephala                                           A. indica 

 FA FI C R T  FA FI C R T  FA FI C R T 

0 
 

(%) 

15 7 4 13 39  12 7 5 8 32  54 8 5 7 74 

38,46 17,95 10,26 33,33 100  37,5 21,88 15,62 25,00 100  72,98 10,82 6,75 9,45 100 

200  
 

(%) 

13 14 10 180 217  7 17 8 150 182  10 9 5 88 112 

5,99 6,46 4,61 82,94 100  3,85 9,35 4,39 82,41 100  8,93 8,03 4,46 78,58 100 

400  
 

(%) 

18 17 9 195 239  58 15 10 155 238  12 7 6 122 147 

7,53 7,11 3,77 81,59 100  24,38 6,30 4,20 65,12 100  8,16 4,76 4,09 82,99 100 

600  
 
(%) 

18 18 11 480 527  61 28 15 165 269  38 8 57 28 131 

3,42 3,42 2,08 91,08 100  22,67 10,42 5,58 61,33 100  29,01 6,11 43,51 21,37 100 

                  

 

A produção de fitomassa é importante para fitorremediação porque se as 

plantas produzem mais fitomassa, maiores quantidades de metais pesados serão 

absorvidos do solo dependendo do potencial que estas possam ter em fitorremediar. 

Andreazza et al. (2015) avaliando as espécies picão-preto (Bidens pilosa) e 

língua-de-ovelha (Plantago lanceolata) para fitoestabilização e fitorremediação de 

solos contaminados com cobre que cresceram vigorosamente em Neossolos e 

Cambissolos de vinhedos contaminados com cobre, apresentaram baixo crescimento 

no resíduo de mineração de cobre contendo 479 mg dm-3, tanto em altura quanto em 

produção de fitomassa seca nas raízes e parte aérea. 

Segundo Sharmaa et al. (2007) a absorção e acumulação de metais pesados 

nos tecidos vegetais dependem de muitos fatores. Um acúmulo significativo de Cu, Zn 

e Cr no sistema radicular em comparação com as partes da parte aérea pode indicar 

uma eficiência na contenção da translocação e/ou baixa capacidade de controle na 

sua absorção, impedindo-os de alcançar metabolicamente compartimentos mais ativos 

da parte aérea (COBBETT; GOLDSBROUGH, 2002; ZHANG et al., 2010). Estes 

resultados estão de acordo com os encontrados por Sinha e Gupta (2005) que 

demonstraram que o acúmulo de metais pesados varia de uma parte para outro dentro 

dos tecidos vegetais, o que se pode confirmar com esta pesquisa. 

Dias et al. (2010) afirmaram que o acúmulo e distribuição de Cu e outros metais 

pesados na parte radicular pode ter relação direta com mecanismos de 
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compartimentalização que impedem os metais de serem transportados para a parte 

aérea. Branzini et al. (2012) pesquisando a absorção e translocação de Cu, Zn e Cr 

em sesbânia (Sesbania virgata) chegaram a conclusão que a presença de outros 

metais em níveis altos promoveu a redução de fitomassa, neste caso a presença do 

Zn. Corroborando com esta pesquisa, pois o cobre ficou compartimentalizado tanto na 

parte aérea como na radicular, porém em teores bem superiores no compartimento 

radicular, na concentração de 600 mg dm-3 para as espécies S. amazonicum e L. 

leucocephala, porém  para o A. indica ocorreu o inverso. 

 

3.3 Índice e Fator de Translocação, Coeficiente de Fitoextração 

 

O índice de translocação (IT) e o fator de translocação (FT) são parâmetros 

usados para identificar a capacidade dos vegetais com potencial de translocar nos 

compartimentos aéreos e radiculares os metais pesados. Observa-se na tabela 7 que 

a S. amazonicum apresentou o IT variando de 24,80% no controle a 8,92% em 

concentração de 600 mg dm-3. No substrato contendo uma menor concentração a 

planta conseguiu retirar um maior percentual do cobre existente, no entanto, conforme 

se elevou o cobre no substrato o IT e o FT  foram reduzidos.  

 

Tabela 7. Índice de translocação (IT) e fator de translocação (FT) em S. amazonicum, 

L. leucocephala e A. indica em concentrações de cobre. 

 

Cu (mg dm-3) S. amazonicum L. leucocephala A. indica 

 IT (%) FT IT (%) FT IT (%) FT 

0 24,80 (100%) 0,33  75,00 (100%) 3,00 90,54 (100%) 9,57 

200 17,05 (68,95) 0,20 17,58 (23,44) 0,21 21,42 (23,66) 0,27 

400 18,41 (74,23) 0,22 34,87 (46,49) 0,53 17,00 (18,77) 0,20 

600 8,92 (35,96) 0,10 38,66 (51,54) 0,63 78,62 (86,83) 3,68 

 

A L. leucocephala apresentou comportamento diferente, pois reduziu na 

concentração de 200 mg dm-3, mas, cresceu nas concentrações de 400 e 600 mg dm-3 

em 34,87 e 38,66%, respectivamente. O que ocorreu da mesma maneira para o FT de 

053 e 0,63. Para a espécie A. indica os resultados para o IT descendentes para as 

concentrações de 200 e 400 mg dm-3 de 21,42 e 17,00%, mas na maior concentração 
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(600 mg dm-3) a espécie teve um acréscimo considerável, o que ocorreu mesma 

tendência com o FT.   

Em relação à testemunha para as três espécies o IT e FT foram 24,80% (0,33), 

75,00% (3,00) e 90,54% (9,57) para S. amazonicum, L. leucocephala  e A. indica, 

respectivamente, com isso mostrando que numa pequena concentração de cobre 

tanto o IT como o FT são indicativos de que o cobre está sendo translocado 

normalmente.  

Como o IT e o FT podem ser usados para estimar o potencial de espécies 

vegetais para fitorremediação estas são as primeiras avaliações, para posteriormente, 

se proceder com avalições da capacidade das plantas de efetivamente retirar metal 

pesado do solo, através do coeficiente de extração (CE).  

Em estudos feitos por Andreazza e Camargo (2011) em áreas contaminadas 

com cobre e cultivado com mamona (Ricinus communis L.) foram encontrados valores 

TF baixos quando as plantas foram cultivadas no rejeito de mineração, de TF de 0,01, 

0,01 e 0,03, respectivamente. O que diferencia desta pesquisa onde os valores de TF 

são bem superiores, ou seja, que em relação à R. communis as espécies S. 

amazonicum, L. leucocephala  e A. indica se apresentam com maior capacidade de 

translocar o cobre em seus compartimentos aéreos e radiculares. 

Chaves et al. (2010) pesquisando pinhão-manso (Jatropha curcas) identificaram 

que o IT do cobre em tratamentos contendo concentrações de 0 a 100 mg dm-3 não foi 

influenciado de maneira significativa pelos tratamentos, porém, nas plantas 

submetidas às maiores concentrações (50, 75 e 100 mg dm-3), a translocação do 

mesmo, das raízes para a parte aérea, foi menor do que nas demais.  

Segundo Kabata-Pendias (2010), o Cu não é prontamente móvel na planta 

devido permanecer ligado fortemente às paredes celulares das raízes, sendo os 

órgãos jovens os primeiros a desenvolverem sintomas de deficiência de Cu. Mas, a 

sua mobilidade nos tecidos vegetais pode aumentar com maior suprimento do 

elemento, porém nesta pesquisa o IT foi progressivamente decrescendo conforme foi 

aumentando a contaminação. Vale ressaltar que, a partir do tratamento 

correspondente a 200 mg dm-3, na medida em que aumentaram as doses de Cu 

aplicadas ao substrato, diminuiu o IT para o S. amazonicum; para a L. leucocephala 

ocorreu uma diminuição, no entanto na concentração de 600 mg dm-3 o valor foi 

superior e para o A. indica ocorreu a mesma tendência na concentração maior de 
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cobre um maior IT, o que se justifica na variação no índice de translocação do 

elemento.  

O coeficiente de extração (CE) é um parâmetro relevante para identificar 

espécies capazes de retirar metal pesado do solo e translocar para parte aérea. Caso 

isto não ocorra, e o metal após absorvido, fique retido na área radicular este 

mecanismo é denominado de fitoestabilização.  

Na tabela 8 visualiza-se resultados encontrados para o S. amazonicum, L. 

leucocephala e A. indica,  se pode observar que o S. amazonicum no controle obteve 

um CE de 23,63% para a parte aérea e para a radicular 11,80%, do cobre contido no 

substrato que não havia sido contaminado pelo rejeito, mas que retirou do solo 0,02 

mg dm-3 para parte aérea e a radicular 0,01 mg dm-3 deste.  

Nas concentrações subsequentes de 200, 400 e 600 mg dm-3, os valores de CE 

foram numa ordem decrescente de 0,73, 0,59 e 0,35% (aérea) e 3,58, 2,52 e 3,59%, 

respectivamente, denotando assim, que quanto maior contaminação do cobre, 

inversamente ocorre a redução do CE para o compartimento aéreo, mas, para o 

radicular, apesar da redução na concentração mais elevada (600 mg dm-3) ocorreu 

acréscimo, com uma absorção de 0,3, podendo se inferir que o cobre ficou retido em 

uma maior percentagem e quantidade nas raízes do S. amazonicum. 

A L. leucocephala teve comportamento inicial parecido com o S. amazonicum 

em relação ao CE, do controle (26,66%-aérea e 8,88%-radicular) e mesmas 

quantidades absorvidas. Para a concentração de 600 mg dm-3 tanto na parte aérea 

(1,26%) como a radicular ocorreu tendência ao equilíbrio, no CE, porém nas 

quantidades absorvidas os valores forem reduzidos em aproximadamente 50% 

comparados ao S. amazonicum. Para o A. indica o CE no controle foi seguindo a 

mesma tendência das outras duas espécies estudas (55,83%-aérea e 5,83%-

radicular), mas absorvendo pequena quantidade do elemento cobre. Mas quando da 

maior contaminação o A. indica obteve 0,79% e 0,21% na parte aérea e radicular, com 

absorção de 0,10 e 0,03 mg dm-3, respectivamente. 
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Tabela 8. Coeficiente de extração (CE) e quantidade extraída de cobre (mg dm-3) em 

S. amazonicum, L. leucocephala e A. indica em concentrações de cobre. 

 

Concentrações S. amazonicum L. leucocephala         A. indica 

Cu  
(mg dm-3) 

PA PR PA PR PA PR 

(%)  (mg 
dm-3) 

(%) (mg 
dm-3) 

(%) (mg 
dm-3)  

(%) (mg 
dm-3) 

(%) (mg 
dm-3)  

(%) (mg 
dm-3) 

0 23,63  (0,02) 11,81  (0,01) 26,66  (0,02) 8,88   (0,01) 55,83  (0,07) 5,83    (0,01) 

200 0,73    (0,04) 3,58    (0,18) 0,77    (0,03) 3,61   (0,15) 0,36    (0,02) 1,33    (0,09) 

400 0,59    (0,05) 2,52    (0,19) 1,17    (0,08) 2,18   (0,15) 0,30    (0,02) 1,47    (0,12) 

600 0,35    (0,05) 3,59    (0,30) 1,26    (0,14) 1,48   (0,16) 0,79    (0,10) 0,21    (0,03) 

* PA: fitomassa parte aérea; PR: fitomassa parte radicular. 

 

Zancheta et al. (2011) pesquisando fitoextração de cobre por milheto 

(Pennisetum glaucum cv. BRS 1501), sorgo (Sorghum bicolor cv. Vassoura), crotalária 

(Crotalaria juncea cv. Juncea) e feijão-de-porco (Canavalia ensiformis) cultivadas em 

solução nutritiva, afirmam que o Cu foi acumulado preferencialmente no sistema radi-

cular e, portanto, translocado em baixa proporção para a parte aérea, o que embora 

seja considerada uma estratégia das plantas para aumentar a tolerância ao metal, 

será limitante para o emprego da fitoextração. O maior potencial de transporte do 

metal para a parte aérea foi observado em C. ensiformis, o que em conjunto com a 

alta concentração de cobre na parte aérea e acúmulo do metal, faz com que essa 

espécie tenha potencial para ser utilizada em programas de fitoextração deste 

elemento.  

A concentração mais elevada de cobre nas raízes encontrados nas três 

espécies (S. amazonicum, L. leucocephala e A. indica) estudadas nesta pesquisa está 

corroborando com resultados encontrados em outros estudos (JIANG et al., 2004; XIA; 

SHEN, 2007), o que tem sido atribuído ao baixo transporte do metal para o 

compartimento aéreo.  

De acordo com Lasat (2002) a retenção de cobre nas raízes é um mecanismo 

de tolerância ao excesso do metal, ocorrendo, por exemplo, a imobilização do metal 

na parede celular por carboidratos extracelulares, e consequentemente, a reduzida 

presença de íons livres para transporte à parte aérea. 

Andrade et al. (2010) estudando C. ensiformes em solo que recebeu 

quantidades crescentes de cobre, também verificaram potencial fitoextrator, pois a 
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espécie foi capaz de translocar o metal do solo para o compartimento aéreo. Conforme 

os autores supracitados, a habilidade do C. ensiformes em acumular o cobre está 

relacionada à produção de fitoquelatinas no tecido foliar, que reduzem a concentração 

de metal livre no citosol, limitando sua solubilidade e reatividade (LASAT, 2002; OLIVA 

et al., 2010).  

Característica desejável para vegetais fitoextratores é a capacidade de 

transporte do elemento absorvido pelas raízes para o compartimento aéreo, segundo 

Jabeen et al. (2009), uma vez que esta será a parte preferencial e mais facilmente 

removida da área que está sendo remediada que no caso de essências florestais o 

metal ficará, principalmente nos caules e, que sendo usados na confecção de móveis, 

estacas, enfim na indústria de móveis, este metal não entrará na cadeia trófica, no 

caso deste estudo esta observação serve para o S. amazonicum e o A. indica. Em 

estudo realizado por Soares et al. (2000) com as espécies de eucaliptos (Eucalyptus 

maculata e Eucalyptus urophylla) em solução nutritiva encontraram baixa CE no 

transporte do cobre do solo para parte aérea, mantendo quantidade considerável nas 

raízes o que que se pode inferir que, deste modo, embora a maior retenção de cobre 

retido nas raízes e, por sua vez, menor transporte para a parte aérea seja um 

importante mecanismo de tolerância das plantas a concentrações excessivas do 

metal, esse processo será, ao mesmo tempo, um fator limitante para o emprego da 

técnica da fitoextração para a remediação de áreas contaminadas com cobre. 

Segundo Marques et al. (2018) trabalhando com plantas de jatobá (Hymenaea 

courbaril), canafístula (Peltophorum dubium) e  óleo bálsamo (Myroxylon peruiferum) 

com concentração de Cu no solo (400 mg dm-3), o crescimento das plantas não foi 

afetada negativamente. Ainda segundo os autores, é possível que este resultado 

esteja relacionado com os mecanismos que estas plantas possam ter utilizado para 

prevenir a translocação do Cu, acumulando os metais no sistema radicular, o que 

indica uma maior tolerância destas espécies para Cu.  

Portanto, em termos comparativos, Kumar et al. (1995) afirmam que em solo 

contaminado com cobre, a mostarda-da-Índia (Brassica juncea) obteve um coeficiente 

de extração de 7, muito superior aos valores encontrados neste experimento.  
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3 CONCLUSÕES 

 

As espécies Schizolobium amazonicum, Leucaena leucocephala e Azadirachta 

indica em relação ao crescimento morfométrico alcançaram aos 120 dias e 

independente das doses de cobre uma altura, número de folhas e área foliar valores 

semelhantes, apenas ocorreu diferença no diâmetro do caule. 

As espécies produziram fitomassa seca radicular e aérea na maior 

concentração de cobre (600 mg dm-3), na seguinte ordem: Schizolobium amazonicum 

> Azadirachta indica > Leucaena leucocephala. 

Os teores de cobre na parte radicular em relação a parte aérea para 

Schizolobium amazonicum e Leucaena leucocephala foram superiores em relação as 

concentrações de 200, 400 e 600 mg dm-3. 

A espécie Azadirachta indica em termos dos teores de cobre nas folhas, 

apicais, intermediárias, caule e raiz se comportou diferente na maior concentração 

(600 mg dm-3). 

Os coeficientes de fitoextração exceto no solo sem cobre, foram superiores nas 

raízes para as três espécies, podendo-se assim inferir que estas tem potencial para 

fitoestabilizar áreas degradadas por cobre. 
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ESTRESSE CAUSADO PELO COBRE NAS ATIVIDADES DE ENZIMAS E 

PIGMENTOS FOTOSSINTETIZANTES EM Schizolobium amazonicum, Leucaena 

leucocephala E Azadirachta indica  
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ESTRESSE CAUSADO PELO COBRE NAS ATIVIDADES DE ENZIMAS E 

PIGMENTOS FOTOSSINTETIZANTES EM Schizolobium amazonicum, Leucaena 

leucocephala E Azadirachta indica  

RESUMO 

A mineração no mundo e no Brasil carrega em sua trajetória histórica um vasto campo 
de componentes que permitem denúncias envolvendo a degradação ambiental. Esta 
pesquisa teve o objetivo de avaliar os efeitos causados em pigmentos 
fotossintetizantes e duas enzimas nas espécies Schizolobium amazonicum, Leucaena 
leucocephala e Azadirachta indica, cultivadas em substrato com concentração de 
cobre e, avaliar possíveis alterações no teor de clorofilas e carotenoides. O 
experimento foi conduzido na Universidade do Estado do Rio Grande do Norte, 
Mossoró-RN. O substrato do experimento foi composto de solo e rejeito de cobre, 
previamente analisados os atributos físico-químicos. Os tratamentos foram dispostos 
em blocos ao acaso, usando o esquema fatorial 3 × 4, com quatro repetições. Os 
fatores foram às espécies vegetais (S. amazonicum, L. leucocephala e A. indica) e 
quatro concentrações de rejeito de cobre de barragem de mineração (0, 200, 400 e 
600 mg de Cu dm-3 de solo). As variáveis estudadas foram as enzimas superóxido 
dismutase (SOD), guaiacol peroxidase (GPOD), pigmentos fotossintetizantes 
(clorofilas “a”, “b” e carotenoides). A coleta dos compartimentos foliares das espécies 
foi realizada aos 120 dias, para determinação das atividades enzimáticas e dos 
pigmentos fotossintetizantes. As amostras foliares foram encaminhas ao Laboratório 
de Ecologia e Sistemática Vegetal (LESV) da UERN, campus de Mossoró, RN para 
realização das análises das enzimas SOD e GPOD e dos pigmentos fotossintetizantes 
(clorofilas “a”, “b” e carotenoides). Os dados foram submetidos à análise de variância 
(Anova) com comparações entre médias entre as espécies pelo teste de Tukey a 5%. 
Fez-se análise de regressão das variáveis em função das doses de cobre. As enzimas 
antioxidantes SOD e GPOD tiveram suas atividades distintas entre as espécies e nos 
compartimentos foliares, sendo que, GPOD não obteve nenhuma significância para as 
espécies e nas concentrações estudadas. Para os pigmentos fotossintetizantes houve 
significância para a clorofila “a” para a A. indica e os carotenoides. Para o S. 
amazonicum e a L. leucocephala tanto a clorofila “a”, “b” e os carotenoides nas 
concentrações de 200, 400 e 600 mg dm-3, estatisticamente não houve diferença. 
Concluiu-se que a enzima SOD teve sua atividade diferente significativamente entre as 
espécies, principalmente nas folhas intermediárias e na concentração de 200 mg dm-3, 
onde destacou-se a S. amazonicum em relação a L. leucocephala  e A. indica. Para a 
enzima GPOD as doses de cobre não promoveram nenhum efeito em sua atividade 
para as três espécies. Os teores de clorofila “a”, “b” e carotenoides nos 
compartimentos apicais, intermediários e senescentes para as três espécies não 
tiveram diferença entre si, mas na concentração de 400 mg dm-3, houve alteração pois 
a Azadirachta indica teve seus teores diferentes de clorofila “a” e carotenoides. 

 

Palavras-chave: Superóxido dismutase, guaiacol peroxidase, clorofila, 

fitorremediação. 
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STRESSE CAUSED BY COPPER ON ENZYMES ACTIVITIES AND 

PHOTOSINTETIZING PIGMENTS IN Schizolobium amazonicum, Leucaena 

leucocephala E Azadirachta indica 

ABSTRACT 

Mining in the world and in Brazil carries in its historical trajectory a vast field of 

components that allow denunciations involving environmental degradation. The 

objective of this research was to evaluate the effects of photosynthetic pigments and 

two enzymes on the species Schizolobium amazonicum, Leucaena leucocephala and 

Azadirachta indica, cultivated on a substrate with copper concentration and to evaluate 

possible changes in the content of chlorophyll and carotenoids. The experiment was 

conducted at the State University of Rio Grande do Norte, Mossoró-RN. The substrate 

of the experiment was composed of soil and copper reject, previously analyzed the 

physical-chemical attributes. The treatments were arranged in randomized blocks using 

the 3 × 4 factorial scheme, with four replications. The factors were plant species (S. 

amazonicum, L. leucocephala and A. indica) and four concentrations of copper mining 

tailings (0, 200, 400 and 600 mg Cu dm-3 soil). The studied variables were the 

enzymes superoxide dismutase (SOD), guaiacol peroxidase (GPOD), photosynthetic 

pigments (chlorophylls "a", "b" and carotenoids). The foliar compartments of the 

species were collected at 120 days to determine enzymatic activities and 

photosynthetic pigments. Leaf samples were sent to the Laboratory of Ecology and 

Plant Systematics (LESV) of UERN, Campus of Mossoró, RN for the analysis of the 

enzymes SOD and GPOD and the photosynthetic pigments (chlorophyll a, b and 

carotenoids). Data were submitted to analysis of variance (Anova) with comparisons 

between means between species by the Tukey test at 5%. Regression analysis of the 

variables was performed as a function of copper doses. The antioxidant enzymes SOD 

and GPOD had their distinct activities among the species and in the leaf 

compartments, being that, GPOD did not obtain any significance for the species and in 

the studied concentrations. For photosynthetic pigments, there was significance for 

chlorophyll "a" for A. indica and carotenoids. For S. amazonicum and L. leucocephala 

both chlorophyll "a", "b" and carotenoids at concentrations of 200, 400 and 600 mg dm-

3, there was no statistically significant difference. It was concluded that the SOD 

enzyme activity was significantly different among the species, mainly in the 

intermediate leaves and the concentration of 200 mg dm-3, where S. amazonicum was 

distinguished in relation to L. leucocephala and A. indica. For the GPOD enzyme the 

copper doses did not promote any effect on their activity for the three species. The 

levels of chlorophyll a, b and carotenoids in the apical, intermediate and senescent 

compartments for the three species were not different, but at the concentration of 400 

mg dm-3, there was an alteration since Azadirachta indica had different levels of 

chlorophyll a and carotenoids. 

 

Keywords: Superoxide dismutase, guaiacol peroxidase, chlorophyll, phytoremediation. 
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1 INTRODUÇÃO 

 

A atividade minerária no mundo e no Brasil carrega em sua trajetória histórica 

componentes que estão relacionados a degradação ambiental, por isso, são 

necessárias pesquisas para minimizar tais problemas. 

Trabalhos de pesquisa com o intuito de mitigar problemáticas ambientais de 

degradação de solo e com avaliações específicas, envolvendo aspectos de 

bioquímica, fisiologia e anatomia vegetais, entre outros, são importantes. 

O S. amazonicum é originária da Amazônia e tem se destacado nas 

plantações agroflorestais (OHASHI et al., 2010). A madeira do S. amazonicum é 

bastante usada nas indústrias de fabricação de laminados, de celulose e papel 

(ROSA, 2006). Vem ocorrendo uma expansão na implantação de florestas de S. 

amazonicum no Brasil, alcançando 87.519 ha em 2012, especialmente na 

Amazônia, segundo a Associação Brasileira de Florestas (ABRAF, 2013). 

Para Campello (1998) as fabáceas arbóreas têm abundante sistema radicular 

e ótima produção de fitomassa, que se traduz em absorção de água e de macro e 

micronutrientes. A L. leucocephala é uma espécie muito cultivada, devido sua 

adaptação a diversos tipos de solos.  

De acordo com Houllou et al. (2015) o A. indica  é uma árvore com muitas 

utilidades podendo ser extraídos produtos inseticidas, fertilizantes, medicamentos e 

madeira. Em países europeus a espécie foi reconhecida como relevante para 

produção agrícola biológica. 

Conhecer as estratégias de tolerância e seus mecanismos fisiológicos das 

espécies florestais capazes de suportar estresses causados por ambientes 

contaminados por metais pesados se faz necessário. 

A capacidade de uma espécie vegetal de acumular metais depende não 

apenas da própria espécie, mas também do estado de desenvolvimento, o meio de 

cultura, a concentração de metal aplicada e as condições ambientais 

(HASANUZZAMAN et al., 2013).  

Plantas com capacidade acumuladora desenvolvem mecanismos que 

permitem armazenar metais sem que estes interfiram no seu metabolismo e sem 

comprometer a integridade celular e, consequentemente, a sobrevivência da planta. 
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Algumas espécies têm a capacidade de acumular elevadas concentrações de 

metais pesados (RASCIO; NAVAI-IZZO, 2011; HASSAN; AARTS, 2011).  

O efeito fitotóxico dos metais pesados depende do estado de 

desenvolvimento das plantas, e pode ser caracterizado pela diminuição da 

fitomassa total das plantas, de comprimentos de parte aérea e raiz, atraso no 

desenvolvimento e diminuição da concentração de clorofila (PINTO, 2017).  

Diferentes estudos têm sido desenvolvidos com o intuito de identificar plantas 

com capacidade acumuladora com objetivo de utilizá-las em fitorremediação 

(PILON-SMITS, 2005; NEILSON; RAJAKARUNA, 2015). Apesar do 

desenvolvimento de trabalhos de fitorremediação, a variedade de delineamentos 

experimentais torna, muitas vezes, difícil à comparação entre espécies de modo a 

avaliar qual será a mais eficaz (MARCHIOL et al., 2004). 

A exposição de plantas a contaminantes no solo por metais pesados pode 

provocar perturbações no seu metabolismo celular devido ao desequilíbrio entre a 

geração de espécies reativas de oxigênio (EROs) e de compostos antioxidantes. 

EROs como oxigênio singleto (1O2), radical superóxido (O2
•-), peróxido de hidrogênio 

(H2O2) e radical hidroxila (HO•), são capazes de promover estresse oxidativo, 

provocando danos as células (CAVERZAN et al., 2016). As plantas para evitarem 

desequilíbrios fisiológicos são capazes de ativar o sistema de defesa enzimático 

através de enzimas como superóxido dismutase (SOD, EC 1.15.1.1), catalase (CAT, 

EC 1.11.1.6), ascorbato peroxidase (APX, EC 1.11.1.11), glutationa redutase (GR, 

EC 1.8.1.7), as peroxidases (GPOD, EC 1.11.1.7) e não enzimático pela regulação 

de compostos como glutationa (GSH), ácido ascórbico (AsA), α-tocoferol (vitamina 

E) e carotenoides (SOFO et al., 2015; CAVERZAN et al., 2016). 

Objetivou-se avaliar os efeitos de doses de cobre no solo nos pigmentos 

fotossintetizantes e duas enzimas nas espécies Schizolobium amazonicum, 

Leucaena leucocephala e Azadirachta indica. 
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2 MATERIAL E MÉTODOS 

 

2.1 Localização, Clima e Substrato  

 

O experimento foi conduzido em telado de náilon, na Universidade do Estado do 

Rio Grande do Norte (UERN), Mossoró-RN, na região Oeste do Estado do Rio Grande 

do Norte, situado nas coordenadas geográficas de 05° 12' 18,25'' S, 37° 18' 53,1'' W e 

altitude de 21 m. O clima da região, segundo Köppen, é do tipo BSwh', tropical quente 

semiárido, com pluviosidade média anual de 695,8 mm e temperatura média de 27,4 

°C, marcado por dois períodos bem definidos: seco (prolongado) e chuvoso (curto e 

irregular).  

As variáveis climatológicas durante o período compreendido entre 15 de agosto 

de 2016 a 3 de fevereiro de 2017 na fase experimental estão apresentadas na tabela 

1. 

Tabela 1. Valores mensais de temperatura, umidade relativa do ar e precipitação 

obtidos no local do experimento, no período de agosto/2016 a 

fevereiro/2017. 

 

Meses Temperatura °C 

Mín / Máx  

Umidade (%) 

Mín / Máx  

Precipitação 

(mm) 

Agosto 22,32 / 41,85  30,6 / 77,9 0,0 

Setembro 22,90 / 42,30 24,2 / 77,2 0,0 

Outubro 23,50 / 41,60 25,7 / 78,5 0,0 

Novembro 24,00 / 41,30 28,0 / 77,6 0,0 

Dezembro 24,20 / 39,50 34,0 / 82,4 2,0 

Janeiro 24,10 / 41,18 26,7 / 82,3 6,4 

Fevereiro 31,30 / 32,70 32,0 / 81,5 0,0 

 

As variáveis climatológicas foram aferidas por termohigrômetro da marca 

Incoterm e pluviômetro, colocados no interior do telado de náilon, conforme figura 1. 

Os registros de temperatura e umidade foram realizados diariamente. A precipitação 

registrada foi a que ocorreu durante a fase experimental.  
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Figura 1. Termohigrômetro e pluviômetro para aferição de variáveis climatológicas instalados 

no local do experimento, no período de agosto/2016 a fevereiro/2017. 

 

O substrato utilizado nos vasos para instalação do experimento foi composto de 

solo do local do experimento e rejeito de barragem de cobre, sendo o rejeito 

proveniente da empresa Vale S.A. mineradora no Estado do Pará. O rejeito foi 

transportado em tambores de 200 kg provenientes da barragem de rejeito de cobre em 

Canaã dos Carajás-PA. Foram coletadas previamente amostras dos componentes do 

substrato para caracterização dos atributos químicos e físicos do solo e rejeito (Tabela 

2), conforme recomendações metodológicas da Embrapa (2009). 

Tabela 2. Atributos químicos e físicos do solo e do rejeito de cobre, usados por 

ocasião da instalação do experimento. 

 

Substrato Solo Rejeito de cobre 

 Atributos químicos  
pH (H2O) 6,4 - 
P (mg dm-3) 3,0 3,8 
K+ (cmolc dm-3) 0,16 0,15 
Na+ (cmolc dm-3) 0,13 - 
H++Al+3 (cmolc dm-3) 1,5 - 
Al+3 (cmolc dm-3) 0,0 - 
Ca+2 (cmolc dm-3) 1,9 16,2 
Mg+2 (cmolc dm-3) 0,7 8,7 
SB (cmolc dm-3) 2,9 - 
CTC (cmolc dm-3) 2,9 - 
V (%) 65,9 - 
MO (g kg-1) 0,9 - 
B (mg dm-3) 0,27 - 
Cu (mg dm-3) 0,4 0,9 
Fe (mg dm-3) 120,0 45,5 
Mn (mg dm-3) 41,0 18,5 
Zn (mg dm-3) 0,7 1,7 
 Atributos físicos  
Areia (g kg-1)  856  
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Silte (g kg-1) 84  
Argila (g kg-1) 60  
Densidade g cm-3 1,54 1,62 
Classificação textural Areia Franca  
    SB = Soma de bases (Ca2+ + Mg2+ + K+ + Na+); CTC = Capacidade de troca catiônica  
    [SB + (H+ + Al3+); V = Saturação por bases trocáveis (SB/CTC) × 100; 
    MO = Matéria orgânica do solo. 
 

2.2 Delineamento Experimental  

 

Os tratamentos foram dispostos em blocos ao acaso, usando o esquema fatorial 

3 × 4 (espécie x concentração), com quatro repetições e três plantas por parcela. Os 

fatores foram às espécies S. amazonicum, L. leucocephala, A. indica e quatro 

concentrações de rejeito de cobre de barragem de mineração (0, 200, 400 e 600 mg 

de Cu dm-3) de solo, respectivamente. 

A tabela 3 se refere às quantidades de solo e rejeito de cobre utilizadas para 

compor o substrato. 

 

Tabela 3. Massa do solo, do rejeito de cobre e massa total, usados por ocasião da 

instalação do experimento. 

 

Cobre (mg dm-3) Solo (kg) Rejeito (kg) Massa Total (kg) 

0 8,00 0,00 8,00 

200 6,24 1,76 8,00 

400 4,46 3,54 8,00 

600 2,68 5,32 8,00 

  

2.3   Material Vegetal e Condições de Cultivo 

 

As sementes das espécies L. leucocephala e A. indica foram provenientes de 

coleta em matrizes no campus da UERN - Mossoró, RN. Estas matrizes foram 

catalogadas e as exsicatas depositadas no Herbário Jaime Coelho de Moraes, 

Laboratório de Citogenética Vegetal, no CCA, UFPB. As sementes de S. amazonicum 

foram adquiridas da empresa Centerplac, Rondon do Pará e a exsicata depositada no 

referido herbário. 

O substrato foi pesado, colocado em vasos plásticos com capacidade para 8,0 

litros e, permaneceram por 15 dias incubados, sem serem irrigados. Após este período 
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foram semeadas cinco sementes por vaso. Dez dias após a emergência, foi realizado 

o desbaste mantendo-se a planta mais vigorosa. 

O experimento foi irrigado por gotejamento, controlado por um temporizador 

marca Lukma electric, com três turnos de rega (9 h; 12 h; 15 h) por dois minutos cada 

turno, mantendo em aproximadamente 80% da capacidade do vaso (Figura 2). 

 

 

 
 

Figura 2. Incubação inicial do substrato (A), germinação (B), crescimento (C) e 
irrigação (D) nos vasos contendo as mudas de S. amazonicum, L. 
leucocephala e A. indica. 

 

 A coleta dos compartimentos (folhas apicais, intermediárias e senescentes) das 

espécies foi realizada aos 120 dias. Para coleta dos compartimentos foliares se 

observou o estádio fenológico das folhas que foram determinados pela observação da 

cor, tamanho e posição no ramo. Foram denominadas folhas apicais as menores e 

posicionadas na parte apical do ramo, de cor verde clara. Folhas intermediárias 

aquelas posicionadas entre as apicais e as senescentes que apresentavam tamanho 

normal, de cor verde-escuro. Folhas senescentes aquelas que se localizam nos ramos 

basais de colocação verde intenso, mas com pontuações tendendo a marrons-

amareladas. Estas foram acondicionadas em caixa térmica contendo gelo. 

 As amostras foliares foram encaminhas ao Laboratório de Ecologia e 

Sistemática Vegetal (LESV) da UERN, campus de Mossoró, RN para realização das 

A 

D C 

B 
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análises das enzimas (Superóxido dismutase-SOD e Guaiacol peroxidades-GPOD) e 

dos pigmentos fotossinetizantes (clorofilas “a”, “b” e carotenoides). 

 

2.4   Variáveis Analisadas 

 

2.4.1 Atividades de Enzimas Antioxidantes 

 

Para a obtenção dos extratos proteicos e enzimáticos, no LESV, 100 mg de 

tecido foliar de Schizolobium amazonicum, Leucaena leucocephala, Azadirachta indica 

foram macerados em almorafiz contendo 4 mL de tampão de fosfato de potássio (50 

mM, pH 7,8), EDTA a 1 mM e 1% (p /p) de polivinilpolipirrolidona (PVPP), a 4 °C 

durante 3 minutos. Os extratos foram centrifugados a 10.000xg durante 15 minutos, a 

4 °C. As proteínas solúveis totais foram determinadas colorimetricamente pelo método 

descrito por Bradford (1976), utilizando-se 100 µL do extrato proteico acrescidos de 

3,0 mL do reagente “azul de coomassie G-250”. Os tubos de ensaio contendo a 

mistura reacional foram suavemente agitados em vórtex, procedendo-se em seguida, 

às leituras em espectrofotômetro, no comprimento de onda de 595 nm. As 

absorbâncias das amostras correspondentes aos extratos enzimáticos foram 

convertidas em concentração de proteínas solúveis totais, utilizando-se padrões de 

albumina de soro bovino (BSA) nas concentrações de 0, 5, 10, 15, 20, 25, 30, 35, 40, 

45, 50 e 55 µg mL-1, que é procedimento laboratorial para obtenção das proteínas 

totais solúveis. 

 

2.4.2 Atividade da Superóxido Dismutase 

 

Para a avaliação da atividade da SOD, no LESV, utilizou-se o método de Das et 

al. (2000) para cada amostra utilizou-se 1.110 µL de tampão fosfato (50 mM, pH 7,8), 

75 µL de L metionina 20 mM, 40 µL de triton X-100 a 1% (v/v), 75 µL de hidrocloreto 

de hidroxilamina 10 mM e 100 µL de EDTA 50 µM. A esta mistura adicionou-se 100 µL 

dos extratos proteicos e 80 µL de riboflavina 50 µM, sendo expostas, em seguida a luz 

fluorescente branca fria durante dez minutos para ocorrer a reação e após este 

período adicionou-se em cada tubo, 1 mL de reagente de Greiss (mistura de volumes 

iguais de sulfanilamida a 1% em ácido fosfórico a 5% e N-1-naftil-etilenodiamina a 
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0,1%) e realizada a leitura das absorbâncias em 543 nm. Uma unidade de atividade 

enzimática foi medida como a quantidade de SOD capaz de inibir 50% de formação de 

nitrito nas condições de ensaio. A atividade de SOD foi expressa como unidade 

enzimática (UE) por grama de matéria fresca (UE g-1 MF).  

2.4.3 Atividade da Guaiacol Peroxidase  

 

A atividade da GPOD foi determinada a 30 ºC, através de método 

espectrofotométrico direto pela medida da conversão do guaiacol em tetraguaiacol a 

470 nm, onde foi misturado diretamente na cubeta de leitura 800 μL de guaiacol a 1%, 

800 μL de peróxido de hidrogênio 10 mM, 2000 μL de tampão fosfato de potássio (50 

mM, pH 6,5) e 200 μL dos extratos proteicos (TEISSEIRE; GUY 2000; JIANG; ZHANG 

2002). A atividade da GPOD foi determinada através do monitoramento, a 470 nm, do 

aumento da absorbância em função da oxidação do guaiacol, a cada 30 segundos, 

durante um minuto. A atividade enzimática foi quantificada pela quantidade de 

tetraguaiacol formado usando o coeficiente extinção de 26,6 mM-1 cm-1, sendo os 

resultados expressos em micromoles de guaiacol oxidado por minuto por miligrama de 

massa fresca (µmoles GO min-1 mg-1 MF) (ZERAIK et al., 2008). Todos os 

procedimentos realizados no LESV. 

 

2.4.4 Determinação dos Pigmentos Fotossintetizantes 

 

Para a quantificação dos pigmentos fotossintéticos, as amostras de tecido 

fresco das espécies Schizolobium amazonicum, Leucaena leucocephala, Azadirachta 

indica foram coletadas, armazenadas em potes de polietileno, acondicionadas em 

caixa de isopor com gelo e transportadas até o LESV. Em seguida, foram pesados 200 

mg de tecido foliar, sendo os mesmos macerados em almofariz com pistilo, utilizando-

se 10 mL de acetona gelada a 80% (v/v), acrescida de 0,1% (m/v) de carbonato de 

magnésio (ARNON, 1949). Os extratos foram transferidos para tubos de ensaio e 

centrifugados a 2.500 rpm, durante 10 minutos.  

As leituras de absorbância (A) das amostras foram realizadas em 

espectrofotômetro UV-visível, nos comprimentos de onda de 645, 663 nm para as 

clorofilas e 470 nm para os carotenoides. A partir dos dados de absorbâncias e fatores 
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de diluição (FD) realizou-se a quantificação dos teores de clorofila “a” (Ca), “b” (Cb) e 

carotenoides totais (Cx+c), sendo os resultados expressos em micrograma por grama 

de massa fresca de tecido foliar (µg g-1 MF), mediante utilização das equações 

propostas por Lichtenthaler (1987):  

 

             Eq.1 

    Eq.2  

 Eq.3 

 

2.5   Avaliação Estatística 

 

Os dados obtidos foram submetidos à análise de variância (Anova) com 

comparações entre médias dos tratamentos experimentais pelo teste de Tukey a 5% 

de probabilidade, utilizando o software Sisvar 5.6 Build (86) (FERREIRA, 2011). Fez-

se análise de regressão em função das concentrações de cobre no solo. 
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3 RESULTADOS E DISCUSSÃO 

 

3.1 Sistema Antioxidante 

 

A interação entre as espécies e a concentração de cobre interferindo nas 

atividades da enzima SOD interferiu significativamente nas folhas apicais, 

intermediárias e senescentes das espécies investigadas (Tabela 4). 

Tabela 4. Resumos das análises de variância, pelo quadrado médio, referentes à 
superóxido dismutase em folhas apical, intermediária e senescente aos 
120 dias, em substrato cultivado com doses de cobre e as espécies S. 
amazonicum, L. leucocephala e A. indica.  

 
FV GL SOD apical SOD intermediária SOD senescente 

Bloco 3 36.590,6406ns 18.999,5514ns 69.036,5366ns 
Espécies (E) 2 1.552.914,3596** 190.025,3901** 778.013,5145** 
Teor de cobre (C)  3 364.636,7683ns 62.756,7381ns 229.885,2684ns 
E x C 6 569.979,8963** 287.358,9558** 663.763,4211** 
Erro 33 160.838,3433 55.907,8675 134.187,2869 

Total 47    

CV (%)  45,51 32,71 42,56 

GL = Grau de liberdade; ns = não significativo; * significativo ao nível de 1%;  
CV = Coeficiente de variação 

 

 Para a atividade da enzima SOD nas folhas apicais, as concentrações não 

provocaram efeito em relação às espécies, apesar do S. amazonicum manter uma 

atividade enzimática superior a L. leucocephala e o A. indica que entre si não 

diferiram, ilustrado na figura 3 (A), mesmo que o A. indica tenha tido uma menor 

atividade da superóxido dismutase, comportando-se na seguinte ordem: S. 

amazonicum > L. leucocephala > A. indica, de acordo com a atividade enzimática.  

 Na folha intermediária (Figura 3 B) visualiza-se que a atividade da SOD, nas 

doses crescentes de cobre o S. amazonicum se manteve com uma média inalterada 

em todas as doses. A L. leucocephala teve uma equação quadrática com aumento 

inicial da SOD, atingindo um valor máximo (984,33 EU g-1 MF) com a concentração de 

274,18 mg dm-3 do cobre e, comprovando dessa maneira que a atividade da enzima 

foi sendo reduzida de acordo com o aumento do cobre em suas folhas intermediárias. 

O A. indica atingiu um valor médio da atividade da SOD na concentração de 400 mg 

dm-3, pois teve a SOD reduzida a medida que a concentração aumentava, porém a 
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partir da concentração 400 mg dm-3 a atividade da enzima nas folhas intermediárias 

teve um acréscimo. 

 Nas folhas senescentes as espécies não tiveram comportamentos iguais 

estatisticamente, entre si em relação à atividade da enzima SOD (Figura 3 C). Na 

figura 3 (C) se percebe que o S. amazonicum à medida que foi aumentando à 

concentração de cobre a atividade enzimática foi seguindo a mesma tendência, no 

entanto, ao atingir uma média 1.578,19 UE g-1 MF que corresponde a concentração de 

272,45 mg dm-3 de cobre a atividade enzimática foi reduzida progressivamente. 

 A L. leucocephala manteve uma média de atividade enzimática (SOD) 

constante de acordo com o cobre crescente. Já o A. indica quando a concentração do 

cobre atingiu 358,88 mg dm-3 a atividade da SOD foi reduzida ao máximo com 460,97 

UE g-1 MF, sendo posteriormente crescente com o aumento do cobre, o que provocou 

uma maior atividade da enzima. 

 As espécies estudadas nas folhas senescentes atingiram basicamente a 

mesma média de atividade enzimática quando a concentração de cobre foi de 600 mg 

dm-3. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figura 3. Superóxido dismutase (UE g-1 MF) média para (A) folha apical (B) intermediária e 

(C) senescente em S. amazonicum (◊), L. leucocephala (□) e A. indica (Δ) em 
concentrações de cobre, aos 120 dias 

 

A B 

C 
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O cobre além de ser um micronutriente essencial para as plantas, é um metal 

pesado que em concentrações de 200 mg dm-3 no solo, é considerado valor de 

intervenção para áreas agrícolas (CETESB, 2005). O aumento da atividade da SOD 

nas espécies estudadas, na concentração de 200 mg dm-3, pode ser atribuído à 

acumulação de radicais superóxido (O2
-) induzida por cobre. Para catalisar a 

dismutação do ânion superóxido, a qual é formada a primeira EROs, SOD participa na 

primeira linha de defesa contra estresse oxidativo (GILL; TUTEJA, 2010). Além disso, 

a remoção do radical superóxido por SOD é importante para prevenir a formação de 

radicais hidroxila antes da sua interação com moléculas alvo (XU et al., 2013).  

Possivelmente foi o que ocorreu com a L. leucocephala nas folhas 

intermdeiárias e no S. amazonicum nas folhas senescentes, onde a atividade da SOD 

foi mais intensa, denotando assim a defesa das plantas para combater as espécies 

reativas de oxigênio (EROs). Para o A. indica a SOD foi diminuindo já a partir de 200 

mg dm-3, possivelmente em razão da reação diferente desta espécie em comparação 

as demais, mas que mesmo assim, ao final na maior concentração a atividade da 

enzima tenha se igualado as outras duas. 

Para Andrees et al. (2012) a atividade de enzimas antioxidantes pode ser 

aumentada até um certo nível e então diminuída devido ao aumento do estresse 

oxidativo, este comportamento foi observado tanto na L. leucocephala (folhas 

Intermediárias) como para o S. amazonicum (folhas senescentes), fato que se inverteu 

para o A. indica nos compartimentos foliares (folhas intermediárias e senesncentes). 

Marques et al. (2018) registraram para a espécie canafístula (Peltophorum dubium) 

que com a maior concentração de cobre no solo, as atividades das enzimas SOD, 

CAT e APX, foram mais intensas.  

As atividades da enzima GPOD (Tabela 5) entre as espécies e a concentração 

de cobre não teve significância estatística tanto para os compartimentos foliares 

quanto entre as espécies. 
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Tabela 5. Resumos das análises de variância, pelo quadrado médio, referentes à 
guaiacol peroxidase em folhas apical, intermediária e senescente aos 120 
dias, em substrato cultivado com doses de cobre e as espécies S. 
amazonicum, L. leucocephala e A. indica. 

 
FV GL GPOD apical GPOD intermediária GPOD senescente 

Bloco 3 404,2415ns 366,2707ns 464,3324ns 
Espécies (E) 2 42,6855ns 65,3299ns 61,3381ns 
Teor de cobre (C)  3 474,3351ns 405,5054ns 308,4661ns 
E x C 6 763,2955ns 312,7075ns 851,1518ns 
Erro 33 428,8871 440,4555 687,4568 

Total 47    

CV (%)  75,06 107,90 85,91 

GL = Grau de liberdade; ns = não significativo; * significativo ao nível de 1%;  
CV = Coeficiente de variação 

 

 A atividade da enzima guaiacol peroxidase (GPOD) (µmoles GO min-1 mg-1 MF) 

nas espécies e nas folhas apicais, intermediárias e senescentes submetidas as 

concentrações de cobre não teve nenhuma significância estátística (Tabela 6).    

Tabela 6. Guaiacol peroxidase na folha apical, intermediária e senescente (µmoles GO 

min-1 mg-1 MF) em S. amazonicum, L. leucocephala  e A. indica em 

concentrações de cobre.  

 

Cu (mg dm-3) S. amazonicum L. leucocephala A. indica 

Folha apical 

0 38,25 a 31,70 a 31,06 a 
200 26,03 a 38,25 a 31,70 a 
400 31,06 a 24,94 a 9,01 a 
600 10,76 a 10,87 a 45,47 a 

Folha intermediária 

0 16,78 a 13,78 a  24,74 a 
200 16,90 a 16,78 a 13,78 a 
400 24,74 a 16,90 a 5,11 a 
600 17,49 a 39,18 a 27,17 a 

Folha senescente 

0 35,70 a  26,50 a 32,72 a  
200 42,58 a 35,70 a 26,50 a 
400 32,72 a 42,58 a 21,54 a 
600 13,39 a 8,55 a  47,71 a 

*Médias seguidas de mesmas letras não diferem estatisticamente entre si pelo teste de Tukey (P < 

0,05).  

 

A GPOD é uma peroxidase que elimina o H2O2 na presença de substratos 

fenólicos como o guaiacol: H2O2+Guaiacol reduzido→2H2O+Guaiacol oxidado 

(GAJEWSKA et al., 2006; AHMAD et al., 2008). Este sistema antioxidativo enzimático 

de defesa dos vegetais é composto principalmente pelas enzimas suepróxido 

dismutase (SOD), catalases (CAT), peroxidase de fenóis (POX), peroxidases de 
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ascorbato (APX), redutases de glutationa (GR), redutases de monodehidroascorbato 

(MDHAR) e redutases de dehidroascorbato (DHAR), já o sistema não enzimático é 

constituído por componentes hidrofílicos, tais como o ácido ascórbico (ASA) e a 

glutationa (GSH) (ASADA, 2006; MUNNS; TESTER, 2008; FOYER et al., 2009). Estes 

componentes do sistema antioxidativo encontram-se presentes em várias organelas e 

atuam de forma coordenada para conferir proteção oxidativa (MØLLER et al., 2007; 

FOYER et al., 2009), diminuindo dessa maneira a ação de EROs. 

 Experimentos conduzidos in vitro, a GPOD catalisa a oxidação dos doadores de 

hidrogênio devido à ausência de substrato específico, porém, nestas condições a 

enzima pode usar o ascorbato como substrato para suas reações, assim a 

desintoxicação pode se tornar a função principal de algumas isoformas da GPOD 

(FIELDES; GERHARDT,1998).  

Exemplos foram relatados por Panagopoulos et al. (1990) quando constataram 

o aumento da atividade da GPOD na presença da radiação UV-B em plantas de 

hibiscos (Hibiscus rosa-sinensis) e beterraba (Beta vulgaris), no entanto, para 

Tekchandani (1998) o aumento na atividade desta enzima pode ser devido à síntese 

da mesma, assim como devido à supressão da atividade de um inibidor natural da 

guaiacol peroxidase. 

Para alguns estudiosos as principais funções das peroxidases não foram bem 

esclarecidas. Supõe-se que o estudo das alterações provocadas pela indução de 

estresses fisiológicos poderia contribuir para a melhor compreensão da ação 

específica das isoformas da guaiacol peroxidase (CAMPA, 1991). 

  É possível que a atividade da GPOD nas espécies estudadas neste trabalho, 

por não ter tido respostas nos compartimentos foliares, possa ser em razão da 

carência de informações ainda das isoformas da guaiacol peroxidase. 

3.2 Caracterização de Teores de Clorofilas e Carotenoides 

 

Na tabela 7 estão ilustrados as análises de variância que se observa que, a 

clorofila “a” no na folha intermediária teve resultado significativo na interação entre as 

espécies e a concentração de cobre intervindo em seus teores.  
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Tabela 7. Resumos das análises de variância, pelo quadrado médio, referentes às 
clorofila “a” em folhas apical, intermediária e senescente aos 120 dias, em 
substrato cultivado com doses de cobre e as espécies S. amazonicum, L. 
leucocephala e A. indica. 

 
FV GL Clorofila “a” 

apical 
Clorofila “a” 
intermediária 

Clorofila ”a” 
senescente 

Bloco 3 197.878,3194ns 574.807,3377** 186.960,6832ns 
Espécies (E) 2 34.984,9054ns 886.580,3693** 19.579,5171ns 
Teor de cobre (C)  3 315.458,5558ns 842.154,9114** 1.041.437,1359** 
E x C 6 101.040,9002ns 848.274,1591** 235.725,1997ns 
Erro 33 139.541,2932 184.442,2856 152.283,1160 

Total 47    

CV (%)  42,48 29,82 50,72 

GL = Grau de liberdade; ns = não significativo; * significativo ao nível de 1%;  
CV = Coeficiente de variação 

 

 Na tabela 8 fica demonstrado que na folha apical das espécies vegetais 

estudadas os teores de clorofila “a” não variaram com a concentração de cobre no 

substrato, entre as espécies.  

Tabela 8. Clorofila “a” (µg g-1MF) na folha apical em S. amazonicum, L. leucocephala  
e A. indica  em concentrações de cobre. 

 
Cu (mg dm-3) S. amazonicum L. leucocephala A. indica 

0 803,29 a 996,30 a 1.056,62 a 
200 1.148,85 a  900,11 a 1.132,12 a 
400 781,16 a 926,75 a 746,75 a 
600 870,27 a 479,70 a 710,43 a 

CV (%) = 42,48 DMS = 648,38   

*Médias seguidas de mesmas letras não diferem estatisticamente entre si pelo teste de Tukey (P < 

0,05).  

 

 Kabata-Pendias (2010) argumentam que plantas mais sensíveis com teores que 

variam de 15 a 20 mg dm-3 de cobre, devido a diversas reações metabólicas podem 

ter o crescimento reduzido, corroborando com esta pesquisa que os teores de cobre 

estiveram presentes em quantidades expressivas nas raízes e, dessa maneira uma 

redução no crescimento que consequentemente teve diminuição no número de folhas 

e área foliar, correspondendo assim a um menor teor de clorofila “a” para as três 

espécies. 

 A clorofila “a” nas folhas intermediárias do S. amazonicum e da L. leucocephala 

manteve teores numa média constante até atingir a concentração mais elevada, 

comparando-se com o controle, mesmo com o aumento na concentração do 

contaminante. Para o A. indica o cobre influenciou a clorofila “a” atingindo um valor 
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mais elevado 1.858,95 µg g-1 MF, na concentração de 284,42 mg dm-3 e, 

posteriormente (clorofila “a”) sendo reduzida para a concentração de 600 mg dm-3 

atingindo inclusive menor valor que o controle (Figura 4 A), de forma que em relação a 

clorofila “a” a ordem das espécies foi: S. amazonicum > L. leucocephala > A. indica, na 

maior concentração do cobre. 

 Com relação as folhas senescentes pode-se observar que neste compartimento 

a clorofila “a” atingiu o teor inferior em comparação com os compartimentos apical e 

intermediário, denotando que em folhas senescentes os teores decaem, 

possivelmente em função da senescência foliar propriamente dita, nas três espécies 

estudas, mas com a L. leucocephala se comportando diferente, pois quanto maior a 

concentração do cobre menor teor de clorofila “a” de acordo com registro na equação 

de regressão, mas que na maior concentração as três espécies obtiveram teores 

aproximados da supracitada clorofila. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figura 4. Clorofila “a” (µg g-1 MF) média em folha intermediária (FI) (A) e folha senescente 
(FS) (B) em S. amazonicum (◊), L. leucocephala (□) e A. indica (Δ) em 
concentrações de cobre, aos 120 dias. 

 
 

Observou-se que apesar de algumas diferenças entre as espécies do teor de 

clorofila “a” nas folhas intermediárias em comparação aos outros compartimentos 

(apicais e senescentes), os teores desta clorofila foram superiores, o que denota que 

às folhas intermediárias possam responder melhor as avaliações da clorofila “a”. 

Apesar de não ter havido diferenças significativas entre as espécies estudadas 

para as diferentes doses de cobre aplicadas, verifica-se que os teores de clorofila “a” 

foram superiores no tratamento controle.  

A B 
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Esse comportamento também foi verificado para o feijão-de-porco (Canavalia 

ensiformis (L.) DC.), milho (Zea mays L.), aveia preta (Avena strigosa Schreb.) e 

videira (Vitis vinifera) cultivados em solos com altos teores de cobre (ROSA et al., 

2014; SANTANA et al., 2015; TIECHER et al., 2016a; 2016b). A diminuição destes 

pigmentos pode ser atribuída, segundo Cambrollé et al. (2012) e Tiecher et al. 

(2016a), ao efeito adverso do excesso desses metais no transporte de elétrons na 

fotossíntese, causando diminuição da síntese ou o incremento da degradação de 

clorofila, possivelmente por fotoxidação. 

Nas análises de variância (Tabela 9) se observa que, tanto nos compartimentos 

foliares intermediários e senescentes a clorofila “b” obteve teores significativos quando 

submetida  a concentração de cobre, assim como interação entre as espécies. 

 

Tabela 9. Resumo das análises de variância, pelo quadrado médio, referentes às 
clorofila “b” em folhas apical, intermediária e senescente aos 120 dias, em 
substrato cultivado com doses de cobre e as espécies S. amazonicum, L. 
leucocephala e A. indica. 

 
FV GL Clorofila “b” 

apical 
Clorofila “b” 
intermediária 

Clorofila ”b” 
senescente 

Bloco 3 62.583,3564ns 127.891,6902ns 6.317,9927ns 
Espécies (E) 2 49.624,2576ns 182.591,2187ns 14.559,1629ns 
Teor de cobre (C)  3 64.926,7681ns 111.672,2939ns 62.506,1393ns 
E x C 6 98.793,5212ns 195.137,2800** 78.624,2938** 
Erro 33 51.275,7056 76.487,9038 26.225,4917 

Total 47    

CV (%)  57,33 47,35 47,09 

GL = Grau de liberdade; ns = não significativo; * significativo ao nível de 1%;  
CV = Coeficiente de variação 

 

Nas espécies S. amazonicum, L. leucocephala e A. indica na folha apical a 

clorofila “b”  teve teores reduzidos nas concentrações de cobre, assim como entre as 

espécies, denotando talvez que o cobre inibiu o teor da clorofila “b” (Tabela 10). 

Tabela 10. Clorofila “b” (µg g-1 MF) na folha apical em S. amazonicum, L. leucocephala 

e A. indica em concentrações de cobre.  

Cu (mg dm-3) S. amazonicum L. leucocephala A. indica 

0 359,88 a 347,17 a  366,78 a  
200 234,04 a  571,79 ab  700,84 b  
400 304,33 a 515,31 a  323,43 a  
600 435,85 a 202,94 a 377,38 a 

CV (%) = 57,33 DMS = 393,03   

*Médias seguidas de mesmas letras não diferem estatisticamente entre si pelo teste de Tukey (P < 

0,05).  
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 Para a clorofila “b” nas folhas intermediárias diferença estatística ocorreu no 

controle (sem adição do rejeito de cobre), porém nas concentrações de 400 e 600 mg 

dm-3 as espécies tiveram o mesmo comportamento, sem significância (Figura 5 A). 

Pode-se observar que ocorreu o mesmo em relação à clorofila “b” das folhas 

intermediárias com as folhas senescentes, dando a entender que o cobre teve 

interferência na atividade da clorofila “b”. Mas que a o S. amazonicum em comparação 

a clorofila “b” nas folhas intermediárias teve uma redução drástica em seu teor à 

medida que a contaminação aumentava. 

O crescimento das espécies S. amazonicum, L. leucocephala e A. indica teve 

redução na produção de fitomassa, número de folhas e área foliar provocando dessa 

maneira redução na produção de clorofilas nos vários compartimentos das plantas, 

especialmente a clorofila “b”. 

 

Figura 5. Clorofila “b” (µg g-1 MF) média em folha intermediária (FI) (A) e senescente (FS) (B) 
em S. amazonicum (◊), L. leucocephala (□) e A. indica (Δ) em concentrações de 
cobre, aos 120 dias . 

 

Em concentrações elevadas o elemento cobre geralmente é potencialmente 

tóxico para as espécies vegetais. Entretanto, nesta pesquisa pode-se perceber que 

ocorreu inibição do crescimento das três espécies, nas altas concentrações de Cu. 

Estes resultados são diferentes aos encontrados por Cambrollé et al. (2013b), quando 

estes autores trabalharam com videira (Vitis vinifera var. sylvestris) e os teores de 

clorofila “a” e “b” decresceram conforme o cobre aumentava. Vários pesquisadores 

(GOMES et al., 2011; YRUELA, 2013; NAIR et al., 2014; ADRESS et al., 2015) 

relataram o efeito do excesso de cobre sobre a clorofila resultando em degradação 

desse pigmento.  

A B 
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No entanto, vale salientar que em plantas tolerantes o conteúdo de clorofila 

pode aumentar ou não, sofrer alterações significativas em resposta ao tratamento com 

metais segundo Borghi et al. (2008). O excesso de cobre pode causar estresse 

oxidativo nos vegetais, devido ao aumento da produção de EROs, altamente tóxicos, 

que para combatê-las, os vegetais apresentam mecanismos antioxidantes que incluem 

as enzimas antioxidantes, como (SOD), peroxidase do ascorbato (APX), catalase 

(CAT) e 46 peroxidase do guaiacol (GPX) que impede desse modo, danos oxidativos 

(ADRESS et al., 2015).   

Os carotenoides foram influenciados pelas concentrações de cobre (Tabela 11) 

tendo interação significativa entre as espécies investigas. 

 

Tabela 11. Resumos das análises de variância, pelo quadrado médio, referentes à 
carotenoides em folhas apical, intermediária e senescente aos 120 dias, 
em substrato cultivado com doses de cobre e as espécies S. amazonicum, 
L. leucocephala e A. indica. 

 
FV GL Carotenoides 

apical 
Carotenoides 
intermediária 

Carotenoides 
senescente 

Bloco 3 11.397,7042ns 25.164,1294ns 781,9627ns 
Espécies (E) 2 11.990,3485ns 48.114,2609ns 9.556,3662ns 
Teor de cobre (C)  3 62.687,5195** 33.860,4569** 3.703,9432ns 
E x C 6 37.754,0127** 71.384,6565** 41.651,7887** 
Erro 33 13.394,8764 18.205,7905 15.549,9321 

Total 47    

CV (%)  36,61 28,82 35,51 

GL = Grau de liberdade; ns = não significativo; * significativo ao nível de 1%;  
CV = Coeficiente de variação 

 

 Os carotenoides considerados pigmentos acessórios exercem função 

importante na proteção dos processos fotoquímicos quando a extinção fotoquímica de 

energia luminosa não é eficiente, de maneira que nas folhas apicais das espécies 

investigadas apenas a L. leucocephala se comportou diferente, pois teve um pico de 

atividade e, posteriormente decaiu com o aumento de concentração de cobre, ao 

passo que as outras plantas obtiveram uma média constante nas diferentes 

concentrações do cobre (Figura 6 A). 

 Para as folhas intermediárias na figura 6 B, os carotenoides permaneceram sem 

expressar diferenças entre as espécies, no entanto, o A. indica se comportou à medida 

que acrescia o cobre no substrato os carotenoides acresciam, porém quando a 



90 

 

concentração foi de 600 mg dm-3 as atividades dos carotenoides se tornaram sem 

significância estatística, atingindo valores médios entre as três espécies. 

 Em relação às folhas senescentes e os carotenoides o S. amazonicum teve sua 

atividade em declínio à medida que ocorria uma maior concentração de cobre, mas 

quando a concentração atingiu 322,86 mg dm-3, passou a ocorrer um aumento dos 

carotenoides de 238,37 µg g-1 MF. Inverso ao A. indica que foi aumentando a atividade 

dos carotenoides e posteriormente reduziu para concentração de 353,66 mg dm-3 

correspondendo a 451,93 µg g-1 MF de carotenoides (Figura 6 C).    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figura 6. Carotenoides (µg g-1 MF) média em folha apical (FA) (A), intermediária (FI) (B) e 

senescente (FS) (C) em S. amazonicum (◊), L. leucocephala (□) e A. indica (Δ) em 

concentrações de cobre, aos 120 dias. 

 

Segundo Taiz e Zeiger (2013) além de pigmentos acessórios, os carotenoides 

desempenham papel essencial na fotoproteção, protegendo o aparelho fotossintético 

contra o oxigênio singleto (1O2), extremamente reativo, que danifica muitos 

componentes celulares e, situam-se nas lamelas dos cloroplastos, em íntima 

associação com as clorofilas, o que permite a transferência de energia para as 

A B 
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clorofilas. Portanto, esses pigmentos são importantes na prevenção da indução de 

danos oxidativos causados pelo estresse (WAHID, 2007). Evidenciando neste estudo 

que os carotenoides se mantiveram em quantidades entre 200 e 500 µg g-1 MF em 

todas as concentrações de cobre divergindo em relação aos compartimentos foliares 

das três espécies. 

Silva et al. (2013) afirmam que omissões de nitrogênio, enxofre e ferro são os 

que mais prejudicaram o teor do pigmento. Enquanto que os maiores teores foram 

observados nas plantas cultivadas sob omissão de K, Mg, Mo, B, Mn e Cu indicando a 

manutenção desse pigmento nessas condições. Dessa maneira, mesmo sob 

deficiência K, Mg, Mo, B, Mn e Cu as plantas conseguem produzir carotenoides que 

podem atuar como antioxidantes nas plantas, inibindo os malefícios de radicais livres 

gerados em condições ambientais estressantes (SANCHEZ et al., 1999). 

Enfim, os carotenoides fazem também parte integrante dos mecanismos de 

defesa, funcionando como inibidores de EROs, dado que atuam como poderosos 

antioxidantes neste processo através do sistema conjugado de duplas ligações que 

possuem (MOURATO et al., 2009). 
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4 CONCLUSÕES 

 

 

 A atividade da enzima superóxido dismutase teve sua atividade com diferença 

significativa entre as espécies investigadas, principalmente nas folhas intermediárias e 

na concentração de 200 mg dm-3, onde destacou-se a Schizolobium amazonicum em 

relação a Leucaena leucocephala e Azadirachta indica. 

 O cobre não promoveu nenhum efeito na atividade da enzima guaiacol 

peroxidase, nas condições estudadas para as três espécies. 

 Os teores de clorofila “a” e “b”, e carotenoides nos compartimentos apicais, 

intermediários e senescentes para as três espécies não tiveram diferença entre si, 

mas na concentração de 400 mg dm-3, houve alteração onde a espécie Azadirachta 

indica registram teores diferentes de clorofila “a” e carotenoides.  

 As folhas intermediárias das espécies Schizolobium amazonicum, Leucaena 

leucocephala e Azadirachta indica, apresentaram os maiores teores de clorifila “a” e 

“b” e carotenoides, indicando como prováveis folhas de serem utilizadas para estas 

avaliações.  
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CARACTERIZAÇÃO CITOGENÉTICA DAS ESPÉCIES Schizolobium amazonicum, 

Leucaena leucocephala e Azadirachta indica EM SOLO CONTAMINADO POR 

COBRE 

RESUMO 

A mineração realiza deposição de rejeito em barragem que pode provocar degradação 
ambiental, podendo provocar alterações genéticas em espécies vegetais. Os metais 
pesados depositados em barragens necessitam serem investigados no âmbito da 
fitorremediação. O objetivo da pesquisa foi à caracterização cromossômica através do 
bandeamento CMA+ (Cromomicina A3) e DAPI¯ (4’-6-diamidino-2-fenilindol) nas 
espécies Schizolobium amazonicum, Leucaena leucocephala e Azadirachta indica, e 
detectar o surgimento de possíveis alterações cromossômicas provenientes da 
contaminação pelo cobre no substrato utilizado no cultivo. O experimento foi 
desenvolvido no jardim experimental do Laboratório de Citogenética Vegetal do CCA, 
UFPB. As sementes foram colocadas em substratos com concentrações de cobre (0, 
200, 400 e 600 mg Cu dm-3 solo). A preparação cromossômica foi realizada utilizando 
pontas de raízes jovens pré-tratadas com 8-hidroxiquinoleína (8-HQ) 0,002 M, por 24 
horas a 4 ºC, e fixadas em Carnoy 3:1 (etanol: ácido acético glacial) por 2-24 horas. As 
raízes foram lavadas duas vezes em água destilada por cinco minutos e digeridas a 37 
ºC por 1 hora em solução contendo 2% de celulase. Após o envelhecimento, as 
lâminas foram coradas com 10 μL de CMA+ (0,1 mg ml-1) por uma hora, depois 
coradas com 10 μL de DAPI¯ (1 μg ml-1) por meia hora, lavadas com água destilada, 
secas ao ar e montadas com meio contendo glicerol/tampão Mcllvaine pH 7,0 (1:1). A 
determinação da fórmula cariotípica e análises dos padrões de bandas 
heterocromáticas foram realizadas, as quais foram medidas de três metáfases com 
morfologia cromossômica clara utilizando o software Image tool® versão 3.0. Das 
espécies analisadas, Schizolobium amazonicum apresentou 2n=26, Azadirachta indica 
2n=28 e Leucaena leucocephala 2n=112, estas apresentaram predomínio de 
cromossomos metacêntricos e submetacêntricos. Os dados da presente análise foram 
insuficientes para detectar distúrbio genotóxico nas espécies S. amazonicum, L. 
leucocephala e A. indica cultivadas em rejeito de cobre. Os dados cariológicos podem 
ser utilizados em estudos citotaxômicos e evolutivos para os representantes da 
Superordem Rosanae, bem como, servir de contribuição científica no apoio a 
conservação dessas espécies. Para a espécie Schizolobium amazonicum o número 
cromossômico encontrado foi de 2n=26. 

 

 

Palavras-chave: Schizolobium amazonicum, cromossomos, rejeito de mineração, 

fitorremediação. 
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CITOGENETIC CHARACTERIZATION OF SPECIES Schizolobium amazonicum, 

Leucaena leucocephala AND Azadirachta indica IN SOIL CONTAMINATED BY 

COPPER 

 

ABSTRACT 

The mining makes deposit of waste in a dam that can cause environmental 

degradation, and may cause genetic alterations in plant species. Heavy metals 

deposited in dams need to be investigated under phytoremediation. The objective of 

the research was to characterize the chromosomal characterization through CMA+ 

banding + (Cromomycin A3) and DAPI¯ (4'-6-diamidino-2-phenylindole) in the species 

Schizolobium amazonicum, Leucaena leucocephala and Azadirachta indica, and to 

detect the occurrence of possible chromosomal alterations from copper contamination 

on the substrate used in the crop. The experiment was carried out in the experimental 

garden of the CCA Plant Cytogenetics Laboratory, UFPB. The seeds were placed on 

substrates with copper concentrations (0, 200, 400 and 600 mg Cu dm-3 soil). The 

chromosome preparation was performed using young root tips pretreated with 0.002 M 

8-hydroxyquinoline (8-HQ) for 24 hours at 4 °C and fixed in Carnoy 3:1 (ethanol: glacial 

acetic acid) by 2-24 hours. The roots were washed twice in distilled water for five 

minutes and digested at 37 °C for 1 hour in a solution containing 2% cellulase. After 

aging, the slides were stained with 10 μl CMA+ (0.1 mg ml-1) for one hour, then stained 

with 10 μl DAPI¯ (1 μg ml-1) for half an hour, washed with distilled water, air dried and 

mounted in a place containing glycerol / Mcllvaine buffer pH 7.0 (1:1). The 

determination of the karyotype formula and analyzes of the heterochromatic bands 

patterns were performed, which were measured from three metaphases with clear 

chromosome morphology using Image tool® software version 3.0. Concerning the 

species analyzed, Schizolobium amazonicum presented 2n=26, Azadirachta indica 2n 

=28 and Leucaena leucocephala 2n=112, which presented predominance of 

metacentric and submetacentric chromosomes. The data of the present analysis were 

insufficient to detect genotoxic disorder in S. amazonicum, L. leucocephala and A. 

indica species grown in copper waste. The karyological data can be used in 

cytotaxonomic and evolutionary studies for the representatives of the Rosanae 

Superordination, as well as to serve as a scientific contribution to the conservation of 

these species. For Schizolobium amazonicum, the chromosome number was 2n=26. 

 

 

Keywords: Schizolobium amazonicum, chromosomes, mining tailings, 

phytoremediation. 
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1 INTRODUÇÃO 

 

Os despejos de efluentes domésticos e industriais têm acelerado a degradação 

ambiental e aumentado o risco de contaminação para espécies da flora brasileira. Os 

principais contaminantes existentes são os metais, que mesmo sendo provenientes de 

fontes naturais são lançados na água e solo em decorrência de atividades antrópicas 

(ZAGATTO; BERTOLETTI, 2006).  

Quando biodisponíveis, os metais podem ser incorporados pelos organismos e, 

serem inseridos nos diferentes níveis das cadeias tróficas (BAIRD; CANN, 2004). Esse 

desbalanço de metais e outros contaminantes, podem causar sérios danos ao DNA de 

espécies vegetais (GICHNER et al., 2006; LIU et al., 2009), levando a formação de 

aberrações cromossômicas que podem ser detectados pela citogenética clássica 

(EGITO et al., 2007; MAZZEO; MARTIN-MORALES, 2015).  

Para Kumar e Bhardwaj (2017) investigando a genotoxicidade de metais 

pesados em meristemas de cominho (Cuminum cyminum) concluíram que estes 

induzem vários efeitos genotóxicos. Já Franzaring et al. (2017) investigando 

fitotoxicidade de rejeitos de estanho de mineração e acumulação de metais pesados 

em trigo mourisco (Fagopyrum esculentum Moench), milho (Zea mays L.), feijão 

(Phaseolus vulgaris L.) e quinoa (Chenopodium quinoa Willd.) concluíram que as 

relações de dose-resposta indicaram diferentes sensibilidades nas espécies. 

Estudos citogenéticos têm sido utilizados na sistemática vegetal e na 

fundamentação de hipóteses de filogenia em diversos grupos de plantas (MORAES et 

al., 2012; SHE et al., 2014; MORAES; LEITCH; LEITCH, 2015; SOUSA; SUSANNA, 

2015; ACOSTA; MOSCONE; COCUCCI, 2016; BALTISBERGER; HORANDL, 2016).  

Dados cromossômicos podem auxiliar também na preservação ambiental, na 

recuperação de áreas degradadas e fitorremediação e na detecção de alterações 

cromossômicas em ambientes contaminados. Diversos autores têm abordado a 

ocorrência de genotoxicidade em plantas ocasionada por metais pesados, com intuito 

de avaliar o impacto que esses contaminantes podem causar ao DNA vegetal, 

comprovando assim seu potencial genotóxico (GICHNER et al., 2006; EGITO et al., 

2007; LIU et al., 2009; MAZZEO; MARTIN-MORALES, 2015).  

Para Mediouni et al. (2006) o excesso de cobre nos compartimentos vegetais 

promove a formação de espécies reativas de oxigênio e o seu efeito tóxico para os 
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vegetais foi superior do que os outros metais não essenciais. A influência de 

modificações epigenéticas na estrutura da cromatina para a expressão de genes é 

controlada por mecanismos básicos como, a metilação do DNA, modificações nas 

histonas, e RNA (RODENHISER; MANN, 2006). A interação dos supracitados 

mecanismos conduz a diferenças herdáveis na expressão do gene, de maneira que 

um erro ocorrendo nos mecanismos conduz a desordens epigenéticas, segundo 

Dawson; Kouzarides (2012).  

A empresa que beneficia o cobre na microrregião de Carajás-PA dispõe de 

capacidade instalada de produção de 540 mil t ano-1 de concentrado, com 30% de 

cobre e 8 g t-1 de ouro, com capacidade para processar 41 mil t de minério por dia 

(BERGERMAN; DELBONI; NANKRAN, 2009). Especificamente a mina Sossego, 

possui uma lagoa de rejeitos com resíduos metálicos de cobre, que é uma 

preocupação com possíveis impactos ambientais. 

Para Souza (2016) estudando tiririca (Cyperus rotundus) avaliando seu 

potencial na absorção de metais, concluiu que o acúmulo de metais em seus 

diferentes compartimentos sofreu variação no seu perfil químico referente ao 

metabolismo secundário. 

Das espécies que ocorrem em ambientes degradados pelo rejeito de cobre no 

estado do Pará, encontram-se no entorno da barragem algumas espécies de várias 

famílias como Poaceae, Cyperaceae, Fabaceae, Euphorbiacea, Thyphaceae, 

Cucurbitaceae, entre outras.  

O objetivo deste trabalho foi realizar a caracterização cromossômica através do 

bandeamento CMA+/DAPI¯ em três espécies arbóreas Schizolobium amazonicum 

Huber ex Ducke, Leucaena leucocephala Lam. de Wit. e Azadirachta indica A. Juss., 

assim como detectar o surgimento de possíveis alterações cromossômicas 

provenientes da contaminação pelo cobre no substrato utilizado no cultivo das 

mesmas.  
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2 MATERIAL E MÉTODOS 

 

2.1 Material Vegetal 

 

O experimento foi conduzido em jardim experimental em vasos plásticos a céu 

aberto anexo ao Laboratório de Citogenética Vegetal, do Centro de Ciências Agrárias, 

da Universidade Federal da Paraíba, no período de março a outubro de 2017. Foram 

analisadas três espécies S. amazonicum, L. leucocephala e A. indica com possível 

potencial de fitorremediar cobre proveniente de rejeito de barragem de mineração 

ocorrente em Canaã dos Carajás, Estado do Pará (Figura 1).  

 

 

Figura 1. Mina Sossego e barragem de rejeito de cobre, em Canaã dos Carajás, PA. 

 

Todas as espécies foram semeadas em substratos com diferentes 

concentrações de cobre: 0; 200; 400 e 600 mg Cu dm-3 solo. As avaliações ocorreram 

após 120 dias. Exsicatas de todas as espécies analisadas encontram-se depositadas 

no Herbário Jaime Coelho de Moraes do CCA, com as seguintes identificações para S. 

amazonicum (n. 23.691); L. leucocephala (n. 23.635) e A. indica (n. de coleta 1.342). 
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2.2 Preparação Cromossômica 

 

Foram utilizadas pontas de raízes jovens pré-tratadas com 8-hidroxiquinoleína 

(8-HQ) 0,002 M, por 24 horas a 4 ºC, e posteriormente fixadas em Carnoy 3:1 (etanol: 

ácido acético glacial) por 2-24 horas a temperatura ambiente. As raízes foram lavadas 

duas vezes em água destilada por cinco minutos e digeridas a 37 ºC por 1 hora em 

solução contendo 2% de celulase (Onozuka®) e 20% de pectinase (Sigma®, Saint 

Louis, MO) (w/v).  

O meristema de cada raiz foi esmagado sobre uma lâmina em uma gota de 

ácido acético 45%, coberta com uma lamínula, a qual foi posteriormente removida 

após congelamento em nitrogênio líquido. Em seguida as lâminas foram secas ao ar e 

envelhecidas por três dias a temperatura ambiente. 

 

2.3 Coloração com Fluorocromos CMA+ (Cromomicina A3) e DAPI¯ (4’ -6-

diamidino-2-fenilindol) 

 

Após o envelhecimento, as lâminas foram coradas com 10 μL de CMA+ (0,1 mg 

ml-1) por uma hora, em seguida coradas com 10 μL de DAPI¯ (1 μg ml-1) por meia 

hora, lavadas com água destilada, secas ao ar e montadas com meio contendo 

glicerol/tampão Mcllvaine pH 7,0 (1:1). Em seguida, as lâminas foram estocadas por 

três dias em uma câmara escura para estabilização dos fluorocromos. As melhores 

metáfases foram analisadas em fotomicroscópio Zeiss® com câmera de vídeo Axio 

Cam MRC5 usando o software Axiovision® 4.8. 

 

2.4 Determinação da Fórmula Cariotípica e Análises dos Padrões de Bandas 

Heterocromáticas 

 

Para cada espécie, foram medidas três metáfases com morfologia 

cromossômica clara utilizando o software Image tool® versão 3.0. A razão entre os 

braços (r = comprimento do braço longo/comprimento do braço curto) foi utilizada para 

classificar os cromossomos em metacêntricos (r = 1-1,49), submetacêntricos (r = 1,5-

2,9), ou acrocêntricos (r ≥ 3,0), de acordo com Guerra (1986). As bandas 

heterocromáticas foram identificadas de acordo com Schweizer (1981), como segue: 

CMA+/DAPI¯ (proximais ou terminais/teloméricas). 
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3 RESULTADOS E DISCUSSÃO 

 

Os detalhes do cariótipo das espécies analisadas, seus respectivos números 

cromossômicos (2n), fórmulas cariotípicas (FC), variações nos tamanhos dos 

cromossomos (µm) e bandas heterocromáticas estão apresentados na tabela 1. Das 

espécies analisadas, Schizolobium amazonicum apresentou 2n=26, Leucaena 

leucocephala, 2n=112 e Azadirachta indica 2n=28. Nas três espécies houve o 

predomínio de cromossomos metacêntricos e submetacêntricos. Contudo, nas três 

espécies foram identificados alguns cromossomos acrocêntricos, especialmente entre 

os menores cromossomos do complemento.  

 

Tabela 1. Lista com as espécies arbóreas analisadas, com seus respectivos vouchers, 

número cromossômico (2n), fórmula cariotípica (FC), variação no tamanho 

cromossômico (µm) e bandas heterocromáticas CMA+/DAPI-. 

 

 

Espécie 

 

Voucher 

 

2n 

 

FC 

Tamanho 

Cromossômico 

(µm) 

Bandas 

Heterocromáticas 

CMA+/DAPI¯ 

Schizolobium 

amazonicum 

Tyski, L 1 26 10M + 14S + 

2A 

1,41 – 2,72 4t + 22p 

Leucaena 

leucocephala 

Oliveira, AKD, 

Oliveira, FKD 1 

112 46M + 60S + 

6A 

1,00 – 4,91 6t 

Azadirachta 

indica 

Cordeiro, JMP 1  28 18M + 10S 1,89 – 4,44 2p + 2t 

*p= banda proximal; t= banda terminal/telomérica. 

**M= Metacêntrico; S= Submetacêntrico; A= Acrocêntrico. 

 

Azadirachta indica apresentou 2n=28 (Figura 2. A-C), corroborando com 

contagens prévias (SINGHAL; GILL, 1984). Nessa espécie observou-se fórmula 

cariotípica contendo 18M + 10S e cromossomos variando de 1,89 µm a 4,44 µm 

(Tabela 1). A família Meliaceae apresenta alta variação no número cromossômico que 

vai de 2n=16 (Sandoricum koetjape (Burm.f.) Merr.) a 2n=ca.360 (Trichilia dregeana 

Sond.), subsequentemente apresentando uma alta heterogeneidade em seu número 

básico, x=6, 7, 8, 12, 13, 14, 23, 25 com diferentes níveis de ploidia (STYLES; VOSSA, 

1971; GROSSI et al., 2011).  

Quanto à tribo Melieae, onde o gênero Azadirachta está inserido, o número 

2n=28 é recorrente, indicando número básico x=14 como o mais provável e estável 
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para a tribo. Na presente análise foram visualizadas 2 bandas pericentroméricas e 2 

bandas terminais/teloméricas CMA+/DAPI¯ heterocromáticas, essas indicando as 

regiões organizadoras do nucléolo (RON’s) (Figura 2. Insertos em C). Não existe 

qualquer registro de dados de distribuição da heterocromatina para os representantes 

da família Meliaceae, dificultando assim discussões acerca desse parâmetro para A. 

indica. 

Leucaena leucocephala apresentou 2n=112 (Figura 2. D-F), fórmula cariotípica 

contendo 46M + 60S + 6A, e cromossomos variando de 1 µm até 4,91 µm (Tabela 1). 

A variação no número cromossômico do gênero Leucaena vai de 2n=52, como em L. 

cuspidata Standley até 2n=112 em L. involucrata Zárate (Cardoso et al., 2000). A 

origem das espécies poliploides de Leucaena ainda não está bem resolvida, mas 

supõe-se que tenham surgido por alopoliploidização depois de hibridização entre duas 

espécies diploides (HUGHES, 1998; CARDOSO et al., 2000).  

Dentre os representantes da família Fabaceae existe alta variação 

cromossômica numérica, onde é sugerido para o grupo números cromossômicos 

básicos que vão de x=4 a x=64 (BAIRIGANJAN; PATNAIK, 1989), onde pode-se 

hipotetizar que os números básicos que melhor explicam a evolução dos cariótipos 

poliploides de Leucaena seriam x=26, 27 e 28. O bandeamento com CMA+/DAPI¯ em 

Leucaena leucocephala mostrou blocos heterocromáticos ricos principalmente em GC 

(CMA+) e nenhuma banda rica em AT (DAPI+), no total de 6 bandas CMA+/DAPI¯ 

(Figura 2. F). Dentre essas, 3 bandas CMA+/DAPI¯ conspícuas distendidas (Figura 2. 

Indicadas pelas setas em F), possivelmente indicando as RON’s ativas, e 3 bandas 

CMA+/DAPI¯ menos conspícuas não distendidas (Figura 2. Indicadas por insertos em 

F). Estudos dos padrões da heterocromatina em representantes da família Fabaceae 

(SOUZA; BENKO-ISEPPON, 2004; SOUSA et al., 2012; CORDEIRO; FELIX, 2018) 

têm demonstrado que apenas blocos heterocromáticos ricos em GC são visualizados 

sejam terminais/teloméricos ou proximais, como no gênero Senna (CORDEIRO; 

FELIX, 2017) ou em Dioclea virgata (L.C. Rich.) Amshoff (SOUZA; BENKO-ISEPPON, 

2004), corroborando os dados da presente análise. 

Schizolobium amazonicum apresentou 2n=26 (Figura 2. G-I), contagem inédita, 

com fórmula cariotípica de 10M + 14S + 2A e cromossomos variando de 1,41 µm até 

2,72 µm. O S. amazonicum é uma Caesalpinioideae (Fabaceae), e como discutido 

anteriormente, o número básico para essa família varia de x=4 a x=64 (BAIRIGANJAN; 
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PATNAIK, 1989). Outra espécie do gênero é o S. parahyba (Vell.) Blake que apresenta 

2n=24 (BIONDO et al., 2005). Essas duas espécies são as únicas aceitas em termos 

taxonômicos, o que leva a crer que o número cromossômico básico para esse gênero 

pode ser x=12 ou x=13, onde por eventos de disploidia ambas as hipóteses podem ter 

sido possíveis à evolução cariotípica do grupo. Quanto aos padrões da 

heterocromatina, S. amazonicum apresentou 4 bandas terminais/teloméricas 

CMA+/DAPI¯ (Figura 2. Insertos em I), possivelmente indicando as RON’s. Além disso, 

todos os cromossomos de S. amazonicum apresentaram bandas CMA+/DAPI¯ 

proximais, exceto por dois pares de cromossomos menores (Figura 2. Indicados por 

setas em I), e ainda algumas regiões mais coradas com DAPI¯ para alguns 

cromossomos.  

Segundo a literatura e a presente análise, o número de bandas CMA+/DAPI¯ 

terminais/teloméricas para as Fabaceae apresenta uma variação de 2 a 6 bandas 

heterocromáticas. Bandas CMA+ proximais são mais variáveis e sua existência ou 

ausência possivelmente se deve a alguma família de DNA satélite que tenha evoluído 

junto às regiões proximais dos cromossomos de espécies mais derivadas dentro da 

família Fabaceae (BRUNEAU et al., 2001; MILLER et al., 2003). 

 
 

Figura 2. Células metafásicas mitóticas mostrando a distribuição de bandas heterocromáticas 
de Azadirachta indica (A-C), Leucaena leucocephala (D-F) e Schizolobium 
amazonicum (G-I). Insertos em C, F e I referem-se às bandas CMA+/DAPI¯. Setas 
em F indicando bandas CMA+/DAPI¯ distendidas, em I setas indicando dois pares 
de cromossomos sem bandas proximais. Barra em I = 10 µm. 
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3 CONCLUSÕES 

 

Não foi detectado qualquer distúrbio genotóxico nas espécies Schizolobium 

amazonicum, Leucaena leucocephala e Azadirachta indica cultivadas em rejeito de 

barragem de cobre.  

Os dados cariológicos obtidos devem ser testados em estudos citotaxômicos e 

evolutivos para os representantes da Superordem Rosanae, bem como, servir de 

contribuição à conservação dessas espécies. 

Para espécie Schizolobium amazonicum o número cromossômico encontrado 

de 2n = 26, não estava disponível anteriormente na literatura. 
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