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RESUMO 
 

A mamoneira é uma oleaginosa tropical cuja produtividade é impactada por 
fatores edafoclimáticos. O estudo da fisiologia foliar, órgão que desempenha 
importantes papéis metabólicos na cultura, além da fotossíntese, pode fornecer 
subsídios para melhores práticas de manejo. O objetivo deste trabalho foi 
examinar o tempo de vida da folha de mamoneira, sua relação com a taxa 
fotossintética e o impacto no acúmulo de carboidratos. O experimento foi 
conduzido em Casa de Vegetação, na Embrapa Algodão, com semeadura de 
12 vasos da cultivar BRS Energia em delineamento inteiramente casualizado. À 
medida que cada folha foi emitida e alcançou 5cm de expansão na nervura 
principal, a mesma foi identificada e nela realizada leituras diárias de área foliar 
(até área constante), altura de inserção no caule (no primeiro dia da expansão) 
e, diariamente, índice SPAD, trocas gasosas e idade da folha, até a 
senescência. O surgimento do primeiro racemo foi identificado. Para coleta 
destrutiva, foi montado um segundo experimento com as mesmas descrições 
para o primeiro, coletando-se toda a planta e separando-a em raiz, caule e 
folhas a cada cinco dias, de 10 a 120 dias após a emergência. Cada vaso foi 
utilizado para dois ciclos de cultivo, semeando-se o segundo logo após a coleta 
do primeiro. O material foi seco em estufa a 80 ºC por 72 horas, pesado e 
moído, a fim de obterem-se os dados de açúcares solúveis, teor de amido e 
carboidratos totais, pelo método do ácido perclórico. A folha de mamoneira 
apresentou 53 dias de vida, em média, com longevidade bastante variável, de 
5-88, dias em todo o ciclo da cultura. Para a taxa fotossintética, foram 
identificadas as seguintes variáveis,, por ordem de importância: a temperatura, 
cujo melhor desempenho foi aos 28ºC, sendo possível incrementá-la até os 
30ºC; idade da folha, dos 6-14 dias; hora do dia, até às 15h; índice SPAD, 
acima de 44. Foram identificados picos de açúcares solúveis, amido e 
carboidratos totais no caule, particularmente entre o período de floração e 
completa emissão do primeiro cacho, e final do ciclo de 120 dias. 
 
 

Palavras-chave: tempo de vida da folha; taxa de fotossíntese; acúmulo de 

fotoassilimados 
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ABSTRACT 

 

The castor bean is a tropical oleaginosa whose productivity is impacted by 
edaphoclimatic factors. The study of foliar physiology, an organ that make 
important metabolic roles in the crop, besides photosynthesis, can provide 
subsidies for better management practices. The objective of this research was 
to examine the time of life of the castor leaf, its relation with the photosynthetic 
rate and the impact of this on the accumulation of carbohydrates in the seed. 
The experiment was conducted in a Vegetation House at Embrapa Algodão, 
with cultivated of 12 vase of cultivate BRS Energia in a completely randomized 
design. As each leaf was emitted and reached 5 cm of expansion in the main 
vein, it was identified and it was collected out daily readings of leaf area (up to 
constant area), insertion height in the stem (on the first day of the expansion) 
and daily, SPAD index, gas exchange and leaf age until senescence. The 
emission of the first racemus was identified. For destructive collection, a second 
experiment was set up with the same descriptions for the first, collecting the 
entire plant and separating it in root, stem and leaves every five days, from 10 
to 120 days after emergence. Each vase was used for two crop cycles, the 
second being cultivated after the first one. The material was oven dried at 80°C 
for 72 hours, weighed and ground, to obtain the data of soluble sugars, starch 
content and total carbohydrates by the perchloric acid method. The castor leaf 
presented 53 days of life, on average, with very variable longevity, from 5-88 
days, in the entire crop cycle. For the photosynthetic rate, the following 
variables were identified, in order of importance: the temperature, whose best 
performance was at 28ºC, being possible to increase it to 30ºC; Leaf age, from 
6-14 days, corresponding to the period of leaf expansion; time of day until 3:00 
p.m.; SPAD index, above 44. Peaks of soluble sugars, starch and total 
carbohydrates were identified in the stem, particularly between the flowering 
period and complete emission of the first bunch, and the end of the 120 days 
cycle. 
 

 

Keywords: Leaf live time; Photosynthesis rate; Accumulation of 

photosassimilates 
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1.0. INTRODUÇÃO 

 

 

Cada vez mais as pesquisas no âmbito das grandes culturas visam o 

aumento da precocidade do ciclo, buscando uma combinação adequada entre 

redução dos custos e maximização da produtividade (ANJANI, 2010; 

SEVERINO & AULD, 2013). 

No âmbito do melhoramento genético muito já foi alcançado. No último 

século, conseguiu-se dobrar a produtividade de culturas importantes como 

trigo, arroz e milho, sem que para isto tenha havido aumento na taxa 

fotossintética por unidade de área foliar (EVANS 1993). 

O desempenho agronômico das culturas, além de influência genética, 

sofre interferência das variações ambientais, podendo até mesmo refletir em 

diferenças de rendimento entre safras e locais de cultivo de uma mesma 

cultivar. Dessa maneira, a interação genótipo, ambiente e manejo da cultura 

precisam ser considerados (FLOSS, 2004; AIRES, et al., 2011) quando se 

pensa em aumento da precocidade. 

Assim, muitas das características ganhas com os programas de 

melhoramento genético tem sido potencializadas com adequadas práticas de 

manejo, tais como: melhor uso da água com irrigação adequada e específica 

para a cultura; uso de fertilizantes inorgânicos, suprindo adequadamente a 

demanda por nutrientes, com conseqüente aumento na área foliar, maior 

interceptação da radiação solar e ganhos na taxa fotossintética por área de 

solo (Richards, 2000). 

O tempo de vida da folha também é outro aspecto que tem ganho 

destaque nas pesquisas recentes de aumento da precocidade. Mais 

especificamente, o tempo de vida útil da folha parece ter impacto na fisiologia 

da planta como um todo e, consequentemente, no enchimento da semente 

(SEVERINO & AULD, 2013). Em condições restritivas de recursos, os vegetais 

já utilizam a estratégia de aumentar a vida útil da folha a fim de compensar a 

baixa taxa fotossintética inicial (MILLARD & PROE, 1991; REICH et al., 1992; 

KITAJIMA et al., 1997). Agora, pesquisas tem sido direcionadas no sentido de 

averiguar de que forma o melhor manejo pode proporcionar essa resposta 

fisiológica, impactando a produtividade de sementes (LIM et al., 2007; 
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SEVERINO & AULD, 2013), uma vez que a longevidade da folha e a 

capacidade fotossintética determinam o total de assimilação de carbono e seu 

fluxo por toda a copa da planta (CHABOT & HICKS, 1982; KITAJIMA et al., 

1997; DUNGAN et al., 2003). 

Referente ao período de vida de uma folha de mamoneira, quanto ela é 

capaz de fotossintetizar, quanto ela exporta de fotoassimilados para a semente; 

se há pico na taxa de fotossíntese durante a vida foliar, e em qual fase do 

desenvolvimento, tanto da folha quanto da planta, ele ocorre; onde estão 

localizadas as folhas com maior taxa fotossintética, são parâmetros com 

escassos dados quantitativos em Ricinus communis, e mesmo dentro de 

muitas espécies. 

Também é necessário expandir informações sobre quais os impactos 

fisiológicos do aumento o tempo de vida útil da folha, qual o custo benefício 

fisiológico do aumento da longevidade foliar e de que forma isso reflete em 

aumento no acúmulo de carboidratos na semente, objetivo de culturas 

comerciais. 

Dessa maneira, o objetivo deste trabalho foi examinar o tempo de vida 

da folha de mamoneira (Ricinus communis L.), sua relação com a taxa 

fotossintética e o impacto no acúmulo de carboidratos. 
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2.0. REFERENCIAL TEÓRICO 

 

2.1. Caracterização da Cultura: Mamona 

 

A mamoneira (Ricinus communis L.) é uma planta arbustiva da família 

Euphorbiaceae, cujo centro de origem é a Etiópia, leste da África, sendo que 

existem centros secundários de diversidade. Espécie de clima tropical, rústica, 

heliófila e de elevada plasticidade fenotípica. Cultivada desde as primeiras 

civilizações, disseminou-se pelas mais diversas regiões do globo terrestre. 

(WEISS, 2000; BELTRÃO et al., 2006; PACHECO, 2008). É perene em clima 

tropical, subtropical e temperado (TAGHI GHARIBZAHEDI et al., 2011) e, 

apesar dessa fácil adaptação à diferentes condições de clima e solo, as 

condições ambientais influenciam o desempenho agronômico da cultura 

(DRUMOND et al., 2006; AIRES, 2011). Condições edafoclimáticas como 

disponibilidade hídrica, temperatura, fotoperíodo e umidade relativa do ar 

interferem diretamente na produtividade desta cultura (MOSHKIN, 1986; 

KUMAR, 1997). 

Mesmo sendo uma cultura tolerante à seca, a mamoneira necessita de 

chuvas regulares no início do crescimento, e de período seco para a maturação 

dos frutos (BELTRÃO e SILVA, 1999; WEISS, 2000; DRUMOND et al, 2006; 

PACHECO, 2008). A época de plantio adequada é aquela onde o período 

chuvoso é maximamente aproveitado (entre junho e julho na Índia e no Brasil) 

(DAMODARAM & HEGDE, 2007). 

O estresse por umidade é o maior fator limitante da produtividade, 

(ANJANI, 2010), a qual geralmente ocorre entre 60 e 65 dias após a 

emergência (DAE), mesmo período em que começa a floração e estágio de 

formação das cápsulas. 

A faixa ideal de temperatura para o desenvolvimento da cultura situa-se 

no intervalo de 20 a 30ºC, com temperatura ótima 28ºC. Temperaturas maiores 

que 35ºC reduzem o teor de óleo e proteína nas sementes. Temperaturas 

abaixo de 15ºC reduzem o teor de óleo e alteram suas características; abaixo 

de 16ºC reduzem significativamente seu metabolismo, podendo paralisar seu 

crescimento. Entre 10º e 22 ºC, inviabilizam o pólen, inibindo a produção de 
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sementes. Acima de 40ºC, pode haver senescência das flores (MOSHKIN, 

1986; WEISS, 2000; BELTRÃO et al., 2007; PACHECO, 2008). 

O principal produto da cultura é o óleo de rícino, ímpar na natureza 

devido à presença do ácido graxo ricinoléico, que possui uma hidroxila ligada 

diretamente à cadeia de carbono (C17H32OH.COOH), o que lhe permite 

solubilidade em álcool (WEISS, 2000; AZEVEDO e LIMA, 2001; DA SILVA et 

al, 2006; SEVERINO et al, 2012) e propriedades tecnológicas únicas (ALAM et 

al., 2010), permitindo seu uso como plataforma química para a fabricação de 

couro sintético, fios para confecção de tecido, fio de nylon 11, produção de 

vidro à prova de bala, próteses ósseas, lentes de contato, plásticos de elevada 

resistência, lubrificante na aeronáutica, fabricação de tintas e isolantes, base 

na indústria de cosméticos, drogas e farmacêuticos, produção de poliuretano, 

além do biodiesel (COSTA NETO et al., 2000; AZEVEDO e LIMA, 2001; 

SANTOS e KOURI, 2006; BELTRÃO et al., 2007; MELO et al., 2008; MUTLU & 

MEIER 2010; OPREA, 2010).  

Os principais produtores mundiais são Índia (1,6 mil ton.ano-1), China (60 

mil ton.ano-1), Brasil (ANJANI, 2010) e Moçambique (SEVERINO & AULD, 

2013), sendo tradicionalmente uma cultura de pequenas e médias 

propriedades (DRUMOND et al, 2006; SEVERINO & AULD, 2013). 

No Brasil, os principais Estados produtores são Bahia (95 mil toneladas), 

Ceará (1,1 mil toneladas) e Minas Gerais (0,5 mil toneladas), apresentando 125 

mil hectares de área plantada e uma produção de 97,2 mil toneladas com 

produtividade média 777 kg.ha-1, na safra 2015/2016. Esses dados 

representam uma forte recuperação na produtividade da cultura em relação aos 

anos 2013 e 2014, que foram de seca e baixa demanda pelo óleo de rícino, 

levando o país a produzir apenas 20 mil ton.ano-1. Mesmo assim, o Brasil se 

manteve como terceiro produtor mundial naqueles anos (CONAB, 2016).  

 

 

2.1.1. BRS Energia 

 

A mamoneira é uma cultura arbustiva anual, essencialmente perene e 

com hábito de frutificação indeterminado. Com sistema radicular superficial, 

requer solo leve e aerado. Exigente em nutrientes, tem potencial para alcançar 



14 
 

6000 kg.ha-1, porém a média da produtividade no nordeste brasileiro, região 

que se destaca no cultivo da mamona no país, gira em torno de 600-900 kg.ha-

1. Essa relativa baixa produtividade é atribuída a problemas de manejo: 

irrigação, consócio, época de plantio, variedade, espaçamento, etc. 

(FERREIRA, 2014).  

Baseada na duração do dia do plantio à maturação do primeiro racemo, 

as cultivares são classificadas em precoce (120-140 dias), média (140-160 

dias) e tardias (>160 dias) (ATSMAN, 1989; WEISS, 2000). As principais 

cultivares brasileiras, lançadas pela Embrapa, são a BRS-Paraguaçu e BRS-

Nordestina, de ciclo médio de 250 dias, consideradas semi perenes; BRS 

Gabriela, de ciclo médio de 150 dias; e a BRS-Energia, a mais precoce, com 

120 dias de ciclo. 

A BRS-Energia, lançada em 2007 pela Embrapa, apresenta porte baixo 

(1,40m de altura), ciclo médio de 120 dias, o qual pode variar de 90 a 150 dias, 

dependendo da temperatura. É diferenciada por possuir um alto teor de óleo e 

permitir a colheita mecânica ou manual de uma única vez, porém o 

descascamento só é possível mecanicamente (MILANI, 2010; BELTRÃO, 

2010). O lançamento do primeiro cacho ocorre 30 dias após a germinação, mas 

esse período pode ser alterado com a temperatura (MILANI, 2010). 

 
 

2.2. Fisiologia da folha 

 

No órgão vegetal denominado folha, ocorrem muitos outros processos 

fisiológicos além da fotossíntese, tais como o metabolismo do nitrogênio, 

síntese de hormônios, transpiração, além de ser um órgão sensível à 

condições ambientais (SEVERINO & AULD, 2013).  

Os cotilédones, apesar de não serem consideradas folhas verdadeiras, 

desempenham um papel importante no estabelecimento da planta durante os 

estágios iniciais de desenvolvimento da mesma, principalmente devido ao seu 

papel fotossintético (KITAJIMA, 2003; HANLEY & MAY, 2006; ZHANG et al., 

2008). São eles que provêem a maior parte dos assimilados necessários para o 

crescimento inicial da planta até que a primeira folha assuma esse papel; e 

essa fonte de carbono é a fotossíntese, não as reservas da semente (ZHANG 
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et al., 2008; SEVERINO & AULD, 2013). Em mamoneira verificou-se rápida 

expansão cotiledonar nos quatro primeiros dias após a emergência da plântula, 

tornando o cotilédone o órgão com mais alta proporção de superfície 

fotossintética durante esse período. Assim, na espécie, ele é quem provê a 

maior parte dos assimilados necessários para o estabelecimento inicial da 

planta até que a primeira folha verdadeira torne-se uma exportadora 

significativa de fotossintatos (ZHENG et al, 2011). 

Um outro aspecto importante dos diversos papéis desempenhados pela 

folha vegetal, pouco estudado, é o impacto de sua vida útil na fisiologia da 

planta como um todo, especialmente no enchimento da semente, finalidade de 

muitas culturas comerciais. A vida útil da folha é considerada como o período 

entre a total expansão da folha até a senescência. Em mamoneira, a vida útil 

das folhas varia largamente em uma mesma planta e sofre influencia ambiental 

frequentemente (SEVERINO & AULD, 2013). 

Na verdade, o aumento da vida útil da folha é uma estratégia 

evolucionária para espécies crescidas sob condições restritivas de recursos. 

Comparadas com as crescidas em ambiente mais favorável, a taxa 

fotossintética inicial daquelas é compensada pelo o aumento da vida útil 

(MILLARD & PROE, 1991; REICH et al., 1992; KITAJIMA et al., 1997). Assim, 

uma vez que a planta regula sua vida útil baseada na resposta evolucionária, 

há uma linha de pesquisadores que afirmam que esse processo poderia sofrer 

melhor manejo no sistema de cultivo, a fim de aumentar a produtividade de 

sementes (LIM et al., 2007; SEVERINO & AULD, 2013). 

O tempo de vida útil da folha também está relacionado com o nitrogênio, 

seja disponível no solo ou na composição do vegetal. Folhas com menor tempo 

de vida útil foram relacionadas ao baixo conteúdo de nitrogênio no solo 

(PORNON et al, 2011), enquanto que solos ricos em nitrogênio promoveram 

um excessivo crescimento foliar, com conseqüente aumento da senescência 

devido ao baixo custo de absorção do nutriente e sombreamento foliar 

(SUAREZ, 2010). Baixo teor de nitrogênio no solo também provoca redução na 

área foliar (ROGGATZ et al., 1999). Um pool de emissão de novas folhas 

fornece uma rápida capacidade de crescimento, porém o aumento da vida útil 

da folha provê armazenamento de reservas para o enchimento das sementes 

(SEVERINO & AULD, 2013). Em mamoneira, resposta a doses de 20 kg.ha-1 a 
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80 kg.ha-1 de N, P2O5 e K2O são mais comuns na literatura (Azevedo et al., 

2001). A adubação nitrogenada deve ser fornecida no plantio, como adubação 

de cobertura, e no florescimento (FERREIRA, 2014). 

Além disso, o nitrogênio é um componente importante da clorofila, 

molécula imprescindível para o processo fotossintético, responsável pela 

captação de luz. Portanto, nos estudos com taxa fotossintética, a determinação 

dos teores de clorofila da folha é importante (SALLA, et al, 2007), tanto em 

folhas jovens, por influenciar na taxa fotossintética, quanto em folhas maduras, 

devido à mobilidade do nitrogênio durante a senescência. 

Sob o aspecto da senescência, em muitas espécies anuais, a desfolha é 

incrementada durante a floração e desenvolvimento da semente, o que permite 

a translocação dos recém-assimilados (carbono e nutrientes) para o 

enchimento do fruto (GAN & AMASINO, 1997; PORNON et al.,  2011). A 

senescência é caracterizada pela quebra de clorofila e marcomoléculas, como 

proteínas, lipídios de membrana e RNA, as quais serão recicladas, no processo 

translocação, no enchimento das sementes (GAN & AMASINO, 1997; LIM et 

al., 2007). Entretanto, sabe-se que a mamoneira prioriza o uso das reservas de 

folhas velhas para a formação de folhas novas em detrimento do enchimento 

de sementes, como em caso de drástica desfolha, por exemplo (KITTOCK & 

WILLIAMS, 1967; GRIMMER & KOMOR, 1999; LAKSHMAMMA et al., 2009; 

SEVERINO et al., 2010). 

Assim, há um debate quanto às vantagens reais do melhoramento 

genético, em mamoneira, em aumentar a produtividade de sementes por meio 

da extensão da vida útil da folha, uma vez que a espécie reduz a senescência 

quanto mais longa a vida útil foliar, impactando, assim, a assimilação de 

carbono e nutrientes, especialmente aqueles que não podem ser translocados, 

e visto que a folha diminui sua capacidade fotossintética com a idade 

(MEDIAVILLA & ESCUDERO, 2003; STÖCKLE & KEMANIAN, 2009; PORNON 

et al., 2011; SEVERINO & AULD, 2013). 

 

 

 

 

 



17 
 

2.3. Fotossíntese 

 

Diversos estudos mostraram que o crescimento da planta responde 

diretamente à fotossíntese foliar (HOGAN, 1988; MAKINO et al., 1997; ZHENG 

et al, 2011). 

Sendo a mamoneira uma planta tropical de metabolismo C3, é 

considerada ineficiente do ponto de vista energético (BELTRÃO et al., 2007), 

porém com boa assimilação de carbono (BELTRÃO et al, 2003a). A taxa 

assimilatória líquida é baixa (de 6,5 a 6,9 g m-2 dia-1), a taxa de respiração é 

elevada e a taxa fotossintética varia de 18 a 27 mg CO2 dm-2 h-1 em atmosfera 

de 300 µmol.m-2 s-1 de CO2 (AZEVEDO & LIMA, 2001). Porém, em condições 

de alta umidade do ar associada ao alto teor de clorofila, de proteínas solúveis 

e RUBISCO na folha, a capacidade fotossintética se eleva, comparando-se à 

do milho (DAI et al, 1992). A capacidade fotossintética é incrementada mais 

ainda se, a estas condições, forem acrescentadas a alta temperatura, alta 

energia radiante e alta concentração de CO2 (DAI et al, 1992; SILVA, 2011). 

Em atmosfera com elevado CO2, foi verificado aumento na taxa de assimilação, 

mas não na taxa de acúmulo de carbono nas folhas (GRIMMER & KOMOR, 

1999). 

A capacidade fotossintética na cultura também sofre mudanças à 

medida que a folha avança em idade (STÖCKLE & KEMANIAN, 2009; 

SEVERINO & AULD, 2013; AIRES et al., 2011; PORNON et al., 2011). Nos 

primeiros dias após a emissão da folha, a fotossíntese começa lenta, 

aumentando linearmente durante todo o período de expansão foliar (ZHENG et 

al, 2011). Após este pico, a fotossíntese apresenta um comportamento linear 

até aproximar-se da senescência, onde ocorre o declínio (LARCHER, 2006; 

KOIKE, 1988; ZOTZ & WINTER, 1994; ACKERLY & BAZZAZ, 1995; KITAJIMA 

et al., 1997). 

A longevidade da folha e a capacidade fotossintética determinam o total 

de assimilação de carbono e seu fluxo por toda a copa da planta (CHABOT & 

HICKS, 1982; KITAJIMA et al., 1997; DUNGAN et al., 2003). Assim, conhecer a 

longevidade da folha, os efeitos da idade da folha na capacidade fotossintética, 

permite estimar o máximo de CO2 assimilado durante o período de vida da 

folha, bem como o ganho de carbono, a longo prazo, em toda a planta (NILSEN 
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et al., 1987; KITAJIMA et al., 1997, 2002). Conhecer a distribuição das 

diferentes idades foliares na planta também permite conhecer a performance 

fotossintética entre espécies ou em toda uma planta (KITAJIMA et al., 1997; 

Dungan et al., 2003). 

Dessa forma, o efeito da idade da folha na capacidade fotossintética é 

também crítica na teoria do custo benefício para longevidade ótima da folha 

(KIKUZAWA, 1991). 

 

 

2.4. Carboidratos e a Relação Fonte e Dreno 
 
 

Uma outra importante função da folha é o armazenamento de reservas, 

como carbono assimilado e nutrientes, a fim de remobilizá-los na fase de 

enchimento da semente. Dessa maneira, entende-se que os frutos vegetais 

não são enchidos apenas com carbono recém-assimilado ou nutrientes recém-

absorvidos, mas também pelas reservas armazenadas nas folhas, além 

daquelas presentes nos caules e raízes. Em mamoneira, apesar desse aspecto  

oferecer impactos diretos na produtividade, há escassa informação referente à 

função de armazenamento da folha (SEVERINO & AULD, 2013). 

Sabe-se que há um padrão de translocação de carbono no sentido fonte-

dreno, definido pela proximidade, pela fase do desenvolvimento, pelas 

conexões vasculares e até mesmo por injúrias na planta, quando podas ou 

ferimentos podem provocar mudança na rota de translocação, criando 

interconexões (anastomoses) que formarão uma via alternativa para o 

transporte do carbono fixado (TAIZ & ZEIGER, 2009). Na mamoneira, há uma 

capacidade de ajuste do dreno: a espécie apresenta crescimento 

indeterminado e, sob condições normais de crescimento, pode aumentar a 

força do dreno; isso pode ocorrer também em condições de elevado nível de 

CO2, onde a taxa de exportação dos fotoassimilados é menor do que a taxa de 

assimilação de carbono. Folhas jovens são drenos, e passam a ser fonte no 

período de vida útil, que corresponde ao fim do período de expansão foliar até 

o início da senescência (SEVERINO & AULD, 2013). 

A taxa fotossintética também atua como um dos reguladores da 

alocação assim, a concentração de açúcares transportados influencia na 
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partição. Folhas jovens trazem para si os açúcares mais rapidamente, e podem 

competir pelos fotossintatos com as raízes, onde a posição do dreno em 

relação à fonte é um fator importante (TAIZ & ZEIGER, 2009). Há também uma 

relação positiva entre a demanda de açúcar no dreno e a taxa fotossintética: 

quando a primeira é alta, a segunda aumenta muitas vezes por vários dias e 

vice-versa. Assim, um baixo status de carboidratos melhora a fotossíntese, a 

mobilização de reservas e a exportação, enquanto que açúcar em abundância 

promove o crescimento e a estocagem (TAIZ & ZEIGER, 2009). 

O aumento da demanda por carboidratos no dreno aumenta a taxa 

fotossintética, relação que foi observada em trigo (APEL et al., 1973, AUSTIN & 

EDRICH, 1975), soja (HEITHOLT & EGLI, 1985), milho (BARNETT & PEARCE, 

1983, CRAFTS-BRANDNER & PONELEIT, 1987 a, b; CONNELL et al., 1987), 

algodão (NAGARAJAH, 1975), Capsicum (HALL & MILTHORPE, 1978). Em 

Amaranthus a relação apenas foi atribuída aos níveis de sacarose e não de 

amido (BLECHSHMIDT-SHEIDER et al., 1989), apesar de sabermos que os 

mecanismos envolvidos na regulação fotossintética são diversos e incluem 

mudanças na condutância estomática, intensidade da luz, concentração de 

CO2, temperatura e mesmo as diferenças entre cultivares (EVANS, 1993). 

Responsável por 90-95% da matéria seca em plantas, o conteúdo de 

carboidratos pode ser indefinidamente transformado e reusado pelos vegetais 

(LUO & HUANG, 2011). Folhas jovens retém grande parte do carbono recém 

assimilado para seu crescimento e armazenamento na forma de grãos de 

amido, reserva que é exportada para outros órgãos quando as folhas se tornam 

maduras. Nesta fase, o metabolismo da folha altera de síntese para exportação 

de sacarose, a partir da degradação do amido estocado (Su, 2000).  

Su (2000) identificou que em arroz (Oriza sativa L.) há um aumento no 

acúmulo de amido no caule pouco antes da polinização, o qual tem caráter 

temporário e é direcionado para as futuras sementes na forma de sacarose. Na 

fase de enchimento do grão, as sementes em formação são os drenos mais 

fortes (BORISJUK et al., 2003), pois há prioridade para a formação das 

estruturas reprodutivas em detrimento à demanda por crescimento. Nesta fase, 

quando a produção de sacarose pelas folhas excede a capacidade 

assimilatória das sementes, também ocorre o aumento do teor de amido no 

caule, devido ao redirecionamento de carboidrato. O acúmulo e degradação de 
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amido no caule em arroz parece exercer um importante papel regulador no 

enchimento dos grãos da cultura. Finalmente, o carboidrato, produto final da 

fotossíntese, é armazenado no grão na forma de amido sintetizado na semente 

a partir da sacarose translocada das células foliares, sendo a produtividade da 

cultura a soma de todo o amido armazenado no grão. 

 No último século, o melhoramento genético conseguiu dobrar a 

produtividade em culturas importantes como trigo, arroz e milho, sem que para 

isto tenha havido aumento na taxa fotossintética por unidade de área foliar 

(EVANS, 1993). Na verdade, os aumentos de produtividade foram alcançados 

com melhores práticas de manejo das cultivares melhoradas geneticamente, 

tais como: melhoria na irrigação, promovendo melhor uso da água; uso de 

fertilizantes inorgânicos, que suprem adequadamente a demanda por 

nutrientes e permitem aumentar a área foliar e a fotossíntese por área de solo. 

O aumento da área foliar também permite maior interceptação da radiação 

solar (RICHARDS, 2000). Todos esses resultados permitem aumento na 

duração da fotossíntese, mesmo após a antese e, mais especificamente, 

durante o enchimento dos grãos, com consequente retardo da senescência 

(MOLL et al, 1994; RAJCAN & TOLLENAAR, 1999 a, b). Assim, os ganhos 

genéticos obtidos em culturas comerciais podem, e precisam, ser 

potencializados com melhores práticas de manejo. 

Assim, quanto mais se compreender o processo de partição, melhores 

ferramentas se terá para o melhoramento e gestão de culturas, uma vez que o 

investimento em estruturas reprodutivas pode entravar outros importantes 

processos, enquanto o excessivo investimento na fase vegetativa tem impacto 

negativo no rendimento das sementes (SEVERINO & AULD, 2013) 

 

 
2.5. Fisiologia Vegetal  

 

Além da contribuição genética, o desempenho agronômico é também 

influenciado pelas variações ambientais e mesmo diferenças de rendimento 

entre safras e locais de cultivo podem ser atribuídos à interação genótipo, 

ambiente e manejo da cultura (FLOSS, 2004; AIRES, et al., 2011).  
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Em mamoneira, a produtividade está diretamente relacionada com a 

disponibilidade hídrica, temperatura, fotoperíodo e umidade relativa do ar 

(MOSHKIN, 1986; KUMAR et al., 1997). É uma cultura exigente em nutrientes: 

a aplicação de adubação 70-80-50 kg.ha-1 de N-P2O5-K2O, e 2 t.ha-1 de calcário 

dolomítico em um solo ácido de São Paulo, promoveu um aumento da 

produtividade de 70 kg.h-1 para 1.256 kg.ha-1 de sementes de mamona 

(FERREIRA, 2014). O solo precisa apresentar fertilidade de média a alta, 

preferindo solos com pH entre 5 e 6,5, mas também produzindo em solos de 

pH até 8,0 (BRITO NETO et al., 2014). Essas variações nas condições 

ambientais, aliadas à época de semeadura e às características de cada 

cultivar, impacta significativamente a produtividade (AIRES, et al., 2011).  

A umidade é um fator importante que interfere na fisiologia, e 

produtividade, da mamoneira. Trata-se de uma oleaginosa muito exigente em 

calor e sensível ao excesso de umidade no solo (SILVA, 1981; MAZZANI, 

1883; WEISS, 2000), exigindo água, ou chuvas regulares, no início da fase 

vegetativa (TÁVORA, 1982; BAHIA, 1995), cerca de 500mm (BRITO NETO et 

al, 2014) e períodos secos (UR<80%) na fase de maturação dos frutos 

(SEARA, 1989; BRITO NETO et al, 2014). O estresse por umidade em torno 

dos 60-65 dias após o plantio coincide com a floração e estágio da formação 

das cápsulas (ANJANI, 2010). O excesso de água no ambiente edáfico reduz 

significativamente o teor de açúcar solúvel e amido nas raízes (BELTRÃO et 

al., 2003b) 

Estudos a nível de mecanismos endógenos tem sido muito bem 

sucedidos na elucidação da fisiologia do desenvolvimento. Entretanto, o 

conhecimento sobre o desenvolvimento vegetal no ambiente ainda é complexo 

devido à escassez de informações da relação entre os estímulos e às múltiplas 

variações de reação das plantas, o que dificulta uma análise rigorosa das 

causas, limitando os estudos à análises quantitativas. Porém, é inegável que 

mesmo nesse nível, muito foi esclarecido sobre os efeitos dos fatores externos 

no crescimento e desenvolvimento vegetal, particularmente nas espécies de 

interesse agrícola, refletindo em importantes resultados práticos a nível de 

melhoramento genético (LARCHER, 2006).  

Em mamoneira, por exemplo, os programas de melhoramento focaram 

inicialmente em desenvolver cultivares de alto rendimento, de duração média 
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(140-160 dias). Hoje já foram desenvolvidas cultivares precoces, como a BRS 

Energia. Porém, associar a extra-precocidade (< 100 dias) à alta produtividade 

é um desafio, uma vez que um curto período de tempo para a floração 

geralmente está associado ao baixo rendimento, como consequencia de pouco 

acúmulo de carboidratos na semente (ANJANI, 2010). 

Assim, aprofundar as pesquisas referente à interação desses três 

aspectos – genótipo, ambiente e manejo – permitirá elucidar os processos de 

crescimento, desenvolvimento e produtividade vegetal, avançando em 

informações além de produção final (LEOPOLD, 1975; AIRES, et al., 2011). 
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3.0. MATERIAL E MÉTODOS 

 

3.1. Caracterização do experimento 

 

O experimento foi conduzido em casa de vegetação, na Embrapa 

Algodão, em Campina Grande – PB, entre 4 de junho de 2014 e 3 de janeiro de 

2015.  

Sementes de mamona, da cultivar BRS Energia, foram semeadas em 10 

vasos de 60 L contendo areia e turfa na proporção 1:1, em delineamento 

inteiramente casualizado. Baseado na composição da turfa, informada na 

embalagem do produto, foi realizada a fertilização do substrato, em cada vaso, 

com 0,3 g de sulfato de amônio, 1,7g de MAP e 1,3g de cloreto de potássio. 

Foram semeadas três sementes por vaso. Dez dias após a emergência (DAE) 

foi realizado o desbaste, mantendo-se apenas uma planta por vaso. Os vasos 

foram irrigados diariamente até a drenagem. 

Registrou-se diariamente a data em que cada folha ou cacho surgiu, 

sendo cada estrutura identificada com uma plaqueta de papel amarrada 

frouxamente por um fio ao pedúnculo. As folhas foram registradas quando 

atingiram 5 cm de comprimento na nervura principal, tamanho a partir do qual 

foi possível a leitura das variáveis estudadas. Foram avaliadas 191 folhas, 

distribuídas em dez plantas, dando uma média de 19 folhas por planta. 

  Os dados primários para a área foliar, como comprimento da nervura 

principal e comprimento médio das nervuras laterais, foram inseridos na 

equação sugerida por Severino et al. (2005) a fim de obter a área foliar. Essas 

médias foram tomadas diariamente desde o primeiro dia de expansão da folha 

até o início do período de vida útil, quando a folha parou de expandir e as 

medidas de área foliar se tornaram constantes. 

  O índice SPAD foi obtido, também diariamente, desde o primeiro dia da 

expansão até a folha senescer, utilizando-se um medidor eletrônico de teor de 

clorofila, clorofilog Falker®, em três regiões da folha: basal, mediana e apical, 

obtendo-se uma média dos dados recolhidos. 
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3.2. Trocas Gasosas e demais co-variáveis 

 

Medições da fotossíntese, abertura estomática, concentração interna de 

carbono, temperatura, transpiração, umidade e luminosidade foram feitas em 

luz saturada, utilizando Analisador Infravermelho de Gás (IRGA - Infra Red Gas 

Analyzer) (LI-6400; LICOR®, Inc., Lincoln, NE, USA). A luz com fluxo de 

densidade de prótons (PFD) foi de 1500 mol.m-2.s-1 a concentração de 

referência de CO2 foi ajustada para 350 µmol.m-2 s-1, concentração média do ar 

ambiente local. Os dados foram coletados entre 8h da manhã e 17h da tarde. 

A coleta dos dados foi diária, abrangendo o maior número de folhas 

operacionalmente possível, que consistiu em, aproximadamente, 20 folhas/dia, 

seguindo-se à leitura da próxima folha sequencialmente numerada no dia 

seguinte. Tomou-se o cuidado para que as folhas de uma mesma planta 

fossem avaliadas no mesmo dia. Apenas uma leitura foi feita por vez em cada 

folha, tomando um ponto aleatório na área da mesma. As medições foram 

feitas aleatoriamente ao longo do dia, registrando-se a hora do dia, 

luminosidade e temperatura do ar como co-variáveis com efeito sobre a 

fotossíntese.  

As medições foram feitas desde quando a folha atingiu 5 cm até sua 

senescência, sendo a idade mais uma co-variável.  

Cada dado de taxa fotossintética foi multiplicado pela área da mesma 

folha para estimar a fotossíntese da folha e a soma da fotossíntese de todas as 

folhas resultou na taxa de fotossíntese total da planta naquele dia. 

 

AF(n) = An*Sn  onde, 

 

AFn = fotossíntese total estimada 

An = fotossíntese da folha dia 1 

Sn = área da folha dia 1 

 

 AP(n) = (A1*S1) + (A2*S2) + ... (An*Sn) onde, 

 

AP(n) = fotossíntese da planta 

An = fotossíntese da folha 

Sn = área da folha 
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3.3. Experimento com coleta destrutiva: análise de carboidratos 

 

 Paralelamente, um outro experimento foi montado com os mesmos 

protocolos descritos anteriormente utilizando, porém, 12 vasos para coleta 

destrutiva das plantas a cada cinco dias, entre 10 e 120 DAE.  

Neste experimento, os vasos foram utilizados para dois ciclos de cultivo, 

semeando-se o segundo logo após a coleta do primeiro, repetindo a adubação 

no novo ciclo.  

As plantas colhidas foram separadas em raiz, caule e folhas (com 

pedúnculos), seca em estufa a 65 ºC por 72 horas, pesada e moída (YEMN, 

1954; BEZERRA NETO, 2004).  

Mediu-se nessas amostras o teor de açúcares solúveis e amido em 

todas as amostras secas pelo método do ácido perclórico, descrito por Morris 

(1948), McReady (1950), Yemn (1954) e Bezerra Neto (2004), com 

adaptações. Na etapa de maceração com álcool, para extração dos açúcares 

solúveis, foram adicionadas inicialmente somente algumas gotas de etanol 

80%, completando em seguida com os 10 mL descritos na metodologia.  

Na etapa de extração do amido, realizamos a suspensão do precipitado 

com etanol a 80% apenas uma vez e não três vezes como sugerido pela 

metodologia, pois como o objetivo principal era a obtenção do total de 

carboidratos, não haveria problema se pequenos resíduos de açúcar solúvel 

fossem detectados como amido.  

O teor de amido e açúcares solúveis em cada amostra foi multiplicado 

pela massa seca total daquele órgão para obter a quantidade de carboidratos 

não-estruturais, que corresponde à soma de açúcares solúveis e amido. 

 

3.4. Análise estatística 

 

Os dados relativos à caracterização da vida da folha e teor de 

carboidratos foram submetidos à análise descritiva, utilizando o software 

Assistat®. 

As variáveis de trocas gasosas e demais co-variáveis foram submetidas 

à análise de árvore de regressão (Regression Tree – CART), utilizando SPSS 

Modeler. 
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4.0. RESULTADOS E DISCUSSÃO 

 

4.1. Caracterização do tempo de vida da folha de mamoneira 

 

4.1.1. Média de vida da folha de mamoneira, cv. BRS Energia 

 

Em nosso experimento, a folha de mamoneira apresentou uma média de 

53 dias de vida (Figura 1). Para espécies tropicais, considera-se folhas de vida 

curta, as menores de 50 dias, longas entre 174 e 315 dias (EVANS, 1993). As 

de ciclo médio estão no intervalo de 50-173 dias. 

 

Figura 1. Longevidade da folha de mamoneira (Ricinus communisI L.), cv. BRS 
Energia. Campina Grande –PB, 2014. 
 

 
 

Porém, verificamos que a longevidade das folhas na planta de Ricinus é 

bastante variável, indo de 5 a 88 dias. Isto ocorre porque na mamoneira há um 

complexo equilíbrio fonte-dreno, as folhas em expansão e maduras ocorrem ao 

mesmo tempo (Figura 2), e mesmo o limbo foliar apresenta um gradiente 

distinto de taxa de assimilação durante a transição da folha de fonte para 

dreno, ocorrendo mais intensamente na borda, durante os primeiros dias de 

expansão, prosseguindo, em seguida, para a base, à medida que a folha 

aumenta de tamanho (SHURR et al., 2000; SEVERINO & AULD, 2013). 

y =  42,34 +0,897x 

R² = 0,1 
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Fatores ambientais, alta população de plantas e redução dos drenos também 

são fatores que contribuem pra essa heterogeneidade no tempo de vida da 

folha de mamoneira (LIM et al., 2007). 

 

Figura 2. Distribuição das folhas de mamoneira (Ricinus communis L.) cv. BRS 

Energia, ao longo do caule em relação à idade da folha. Campina Grande – PB, 
2014. 
 

 

 

Percebe-se na figura 3 que folhas de longevidade curta (até 50 dias) 

surgem ao longo de todo o desenvolvimento da planta, sendo mais presentes 

no início do desenvolvimento até o surgimento do primeiro cacho, que ocorreu 

entre 60 e 90 dias após a emergência (DAE). 

As mais longevas surgiram, aproximadamente, duas semanas antes do 

surgimento do primeiro cacho, durando até quando este alcançou maturidade 

fisiológica. Isto pode ter ocorrido porque a mamoneira é uma planta que, em 

resposta a fatores ambientais, investe no aumento da área foliar mais do que 

no aumento do número de folhas (Figura 4).  

Em experimento com mudas de mamona em recipientes de diferentes 

volumes, Lima et al. (2006a), verificaram variação na área foliar de 2,8 vezes, 

enquanto que a variação no número de folhas foi 1,4 vezes. Em outro 

experimento com diferentes substratos, a mesma equipe de autores, 

encontraram variação 5,9 vezes no tamanho das folhas e 1,7 no número de 



28 
 

folhas (LIMA et al., 2006b). Vincent (2006) identificou aumento na longevidade 

foliar da Euforbiaceae seringueira (Hevea brasiliensis), como resposta à 

redução da intensidade de luz ofertada à espécie. O autor atribui este resultado 

ao metabolismo fotossintético mais lento. 

 

Figura 3. Distribuição das diferentes idades das folhas ao longo do 

desenvolvimento da planta de mamoneira (Ricinus communisI L.), cv. BRS 
Energia. Campina Grande – PB, 2014. 
 

 

Figura 4. Relação da idade da folha (dias) com a área foliar (cm2) da folha de 

mamoneira (Ricinus communisI L.), cv. BRS Energia. Campina Grande – PB, 
2014. 
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4.1.2. Período de expansão da folha de mamoneira, cv. BRS 

Energia 

 

O período de tempo que a folha de mamoneira ficou em expansão, 

depois de seu surgimento na planta, foi de aproximadamente 15 dias, variando 

entre 14 e 20 dias na maioria das leituras (Figura 5).  

Estudando a emergência e estabelecimento da cultura da mamona sob 

salinidade, Zhou et al. (2010) observaram que a primeira folha verdadeira 

expandiu entre 5 e 18 dias e os cotilédones, até 5 dias, com conteúdo de 

clorofila e capacidade fotossintética aumentados até os 13 dias. 

Folhas em expansão são drenos de nutrientes e carboidratos, porém 

quando sua capacidade fotossintética torna-se maior do que seu crescimento e 

manutenção da respiração, elas passam a ser fontes (SEVERINO & AULD, 

2013). 

 

Figura 5. Período de tempo que as folhas de mamoneira (Ricinus communisI 
L.), cv. BRS Energia, permanecem em expansão. Campina Grande – PB, 2014. 
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4.1.3. Período entre a expansão e a senescência da folha de 

mamoneira, cv. BRS Energia 

 

 O período médio em que as folhas permaneceram na planta entre a 

parada da expansão até a abscisão foi de, aproximadamente, 37 dias (Figura 

6). Porém, observa-se que houveram folhas que chegaram a quase 80 dias, 

até finalmente senescer. A causa deste fenômeno pode ser explicado por Lim 

et al. (2007), que afirmam que a redução dos drenos e a baixa temperatura 

aumentam a variabilidade do tempo de vida útil da folha nos vegetais.  

Este período é considerado como a vida útil da folha propriamente dito, 

quando ela se torna uma fonte. É também o período em que a folha atinge a 

plena capacidade fotossintetizante em cenários ideais (SEVERINO & AULD, 

2013). Dessa maneira, considerando que o primeiro cacho emergiu a partir dos 

60 DAE (dados discutidos mais adiante), a redução dos drenos pode ser 

explicada pela idade das folhas, as quais, aos 37 dias, já deixaram de ser 

drenos e são fontes.  

Com relação à temperatura, a árvore de regressão mostrada mais 

adiante (Figura 7), mostra que metade das observações obtidas foram em 

folhas com temperatura abaixo de 28°C, a qual correspondeu ao mês de 

agosto, período mais frio na região em que foi realizado o experimento. 

 

Figura 6. Período da expansão à senescência (vida útil) de folhas de 

mamoneira (Ricinus communisI L.), cv. BRS Energia. Campina Grande – PB, 
2014. 
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4.2. Fatores que interferiram na fotossíntese 

  

A Figura 7 mostra uma árvore de regressão com destaque para as 

variáveis que interferiram na taxa fotossintética: temperatura da folha, idade da 

folha, hora do dia, índice SPAD. 

No nó zero, temos o número de total de leituras (1063) e a média de 

fotossíntese para o experimento: 15,81 µmol CO2 m
-2 s-1. 

 

4.2.1. Temperatura 

 

Seguindo pelo primeiro ramo da árvore de regressão, verifica-se que a 

temperatura foi a variável que mais interferiu na taxa fotossintética. A 

frequência de temperatura para quase metade das leituras amostradas foi 

menor ou igual a 28ºC (nó 1). A fotossíntese prevista pra essa temperatura caiu 

para 13,76 µmol CO2 m
-2 s-1. Neste nó foram agrupadas 530 folhas, sendo 80 

delas cotilédones, cerca de 15%.  

No nó dois, com a temperatura entre 28 e 30ºC, 427 folhas (40% do 

total), apresentaram fotossíntese na média geral de 15 µmol CO2 m-2 s-1. 

Destas, 47 eram cotilédones (11%). 

No nó três, com a temperatura acima de 30ºC, a fotossíntese aumentou 

para 26,31 µmol CO2 m
-2 s-1, porém em apenas 9,97% das folhas analisadas, 

106 leituras, 21 delas cotilédones (19%).  

Sabendo-se que os cotilédones são importantes para o estabelecimento 

da cultura da mamoneira por favorecerem a fotossíntese e que as reservas da 

semente supre, na verdade, o crescimento da raiz, enlogação do hipocólito e 

expansão cotiledonar (SEVERINO & AULD, 2013) , não é de surpreender sua 

influência na taxa fotossintética total nos primeiros estádios do ciclo da cultura 

em estudo. Os cotilédones expandem rapidamente nos primeiros quatro DAE, 

alcançando o máximo aos sete dias, e diminuindo o ritmo após isso; enquanto 

que a primeira folha inicia a expansão lentamente, incrementando-a 

linearmente entre o 4º e 18º dia de vida; assim, a fotossíntese do cotilédone 

provê carboidrato e energia suficiente para que a primeira folha apareça e 

mantem o crescimento da plântula até a expansão da primeira folha (Zheng et 

al,, 2011). 
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Figura 7. Árvore de Regressão para taxa de fotossíntese em folhas de mamoneira (Ricinus communis L.), BRS Energia. Campina 

Grande – PB, 2014. 
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4.2.2. Idade da Folha 

 

No segundo ramo da árvore de regressão (Figura 7), observa-se que, na 

temperatura menor ou igual a 28ºC, a idade foi o segundo fator de influência 

para a taxa fotossintética. 

Nos nós de número quatro a oito, quando a folha ainda é jovem, até seis 

dias de vida, a fotossíntese se mostrou baixa, em torno de 12 µmol CO2 m
-2 s-1. 

Entre 6 e 14 dias, a taxa de fotossíntese aumentou para 15 µmol CO2 m
-2 s-1, a 

média geral para o experimento, decaindo entre 14-24 dias para 12 µmol CO2 

m-2 s-1 e entre 24 e 44 dias para 11 µmol CO2 m
-2 s-1. Aumentando para 17 µmol 

CO2 m
-2 s-1 acima de 44 dias de vida. Como já citado na caracterização do 

tempo de vida da folha, a folha de mamoneira levou, em média, 15 dias em 

período de expansão, sendo importante, portanto, o agrupamento na idade de 

6 a 14 dias. 

Após grande período de expansão foliar a fotossíntese sofre um 

decréscimo, depois uma linearidade, chamada na literatura de “monotonia” 

(KOIKE, 1988; ZOTZ & WINTER, 1994; ACKERLY & BAZZAZ, 1995; KITAJIMA 

et al., 1997). Isso se deve não à deterioração fisiológica, mas sim à 

redistribuição de recursos, especialmente nitrogênio, a fim de otimizar o 

rendimento da fotossíntese (FIELD & MOONEY, 1983; HIKOSAKA, et al., 1994; 

ACKERLY, 1996). Em nosso estudo, quando as folhas atingiram a idade de 44 

dias, ocorreu um aumento da fotossíntese, mesmo acima da média. Como as 

plantas começaram a apresentar o primeiro cacho a partir de 60 DAE, esse 

aumento fotossintético a partir dos 44 dias pode ser devido ao aumento da 

demanda por assimilados a fim de produzir o cacho que seria desenvolvido em 

breve.  

De acordo a Figura 8, observa-se que essas folhas estão distribuídas 

por toda a altura da planta, indo de encontro com a ideia de que apenas as do 

terço médio são representativas, ou apenas as mais próximas à emissão do 

primeiro cacho aumentam a atividade fotossintética. Isto pode significar que, na 

mamoneira, em temperatura amena (<28ºC), todas as folhas contribuem para o 

enchimento da semente quando chega o momento, que a planta trabalha sua 

fisiologia como um todo a fim de suprir esse processo.  
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Figura 8. Inserção das folhas no caule de mamoneira (Ricinus communis L.), 

cv. BRS Energia, por idade, que fotossintetizaram abaixo de 28ºC. Campina 
Grande – PB, 2014. 
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No nó 2, na temperatura entre 28 e 30ºC, em relação à idade, as folhas 

apresentaram relativa baixa taxa de fotossíntese (12 µmol CO2 m
-2 s-1) também 

até os seis dias de vida. Alcançando o pico de 20 µmol CO2 m
-2 s-1 entre 6 e 14 

dias, correspondente ao período de expansão foliar. O decréscimo após a 

expansão foliar também foi verificado, baixando para 16 µmol CO2 m
-2 s-1, dos 

14 aos 19 dias, e para 11 µmol CO2 m
-2 s-1

 dos 19 aos 32 dias. Acima de 32 

dias de vida, a fotossíntese subiu para 16 µmol CO2 m-2 s-1, sendo ainda 

próximo à média de declínio após a expansão. 

A figura 9 mostra a atividade fotossintética dessas folhas em relação à 

sua posição na planta. Observa-se que a maioria estava localizada no terço 

inferior do caule, ou seja, a maior atividade da média fotossintética ocorreu 

nesta região da planta, com pico acima da média dos 6 aos 14 dias de vida, 

isto é, durante o período de expansão foliar, chegando próximo à media geral 

após o período de expansão (14-19 dias). 
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Figura 9. Atividade fotossintética de folhas de mamoneira (Ricinus communis 

L.), cv BRS Energia, entre 28 e 30ºC e sua posição no caule da planta. 
Campina Grande – PB, 2014. 
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Uma observação importante é que, neste grupo de folhas que realizou 

fotossíntese entre 28-30ºC, 22% tinha idade acima de 32 dias, ou seja, são 

consideradas folhas maduras, demonstrando esta alta atividade fotossintética 

após o período de expansão, que durou, de maneira geral, para a espécie, 37 

dias. 

Isto quer dizer que folhas em expansão, localizadas no terço inferior da 

mamoneira, em temperatura de 28 a 30 ºC, foram responsáveis pela maior taxa 

fotossintética observada ao longo do ciclo da espécie, não interferindo nesse 

processo fatores como sombreamento, por exemplo. 

 Em relação à idade da planta (Figura 10), esse grupo de folhas 

apresentou duas “pausas” na atividade fotossintética: uma entre 50-60 DAE e 

outra entre 90-100 DAE. No período de 60-90 DAE ocorreu o surgimento dos 

primeiros cachos nas 10 plantas, correspondendo, assim, às fases de floração 

e enchimento das sementes. Esse intervalo também é percebido na figura 3.  

Seguindo para o nó 3, a partir de 30ºC, a taxa fotossintética permaneceu 

acima da média de 15 µmol CO2 m
-2 s-1

. Até seis dias de vida foliar, foi de 37 

µmol CO2 m
-2 s-1

, alcançando um pico de 54 µmol CO2 m
-2 s-1

 de 6 a 10 dias, 

declinando para 23 µmol CO2 m
-2 s-1

 de dez à 19 dias, e caindo para 13 µmol 

CO2 m
-2 s-1(abaixo da média geral) a partir dos 19 dias.  
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Figura 10. Atividade fotossintética de folhas de mamoneira (Ricinus communis 

L.), cv. BRS Energia, com temperaturas entre 28 e 30ºC em relação à idade da 
planta. Campina Grande – PB, 2014. 
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O aumento da temperatura aumenta a taxa fotossintética, porém até 

certo ponto (Figura 11), o que também foi verificado por Silva (2011) ao estudar 

a fotossíntese de mamoneira sob elevada temperatura, em fitotron. Segundo a 

autora, na condição de 30ºC, a cultivar BRS Energia apresentou melhor taxa 

fotossintética do que aos 37ºC. Ela observou também que, aos 40 dias após o 

plantio, houve uma queda de 51,63% na taxa fotossintética com o aumento da 

temperatura de 30º para 37ºC. 

 

4.2.3. Hora 

 

Seguindo pelo terceiro ramo da árvore de regressão, nos nós de 18 à 

21, observa-se que a hora de avaliação só teve influência em temperatura 

abaixo de 28ºC, e em folhas até 14 dias de idade. Com folhas de até seis dias 

de idade, a fotossíntese foi de 13 µmol CO2 m
-2 s-1 até às 15h, decaindo para 7 

µmol CO2 m
-2 s-1 após esse horário. As folhas de 6 à 14 dias, apresentaram 

taxa fotossintética próxima à média até às 15h, decaindo para 12 µmol CO2 m
-2 

s-1 após esse horário. Ou seja, em ambos os intervalos de idade, a fotossíntese 

é ativa até às 15h, não distinguindo picos ao longo do dia, decaindo após esse 

horário. 
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Zheng et al (2011), estudando características fotossintéticas dos 

cotilédones e da primeira folha verdadeira de mamona, verificaram que a taxa 

de fotossíntese líquida aumenta gradualmente pela manhã, alcançando um 

pico às 13h e decaindo rapidamente até o pôr do sol. 

 

Figura 11. Distribuição da atividade fotossintética de folhas com temperatura 

acima de 30ºC ao longo do ciclo de mamoneira (Ricinus communis L.), cv. BRS 
Energia. Campina Grande – PB, 2014. 
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4.2.4. Clorofila 

 

Seguindo no quarto e último ramo da árvore de regressão (Figura 6), nos 

nós 22 a 23, a concentração de clorofila, obtido pelo índice SPAD, também 

interferiu na fotossíntese de folhas abaixo de 28ºC, entre 6 e 14 dias de idade e 

até às 15h do dia. Mantendo a fotossíntese na média, quando o índice SPAD 

foi abaixo de 44, e aumentando a taxa de fotossíntese, quando acima de 44. 

Brum et al. (2008), avaliando plântulas de híbridos de mamoneira, 

identificaram aos sete DAE um índice SPAD de 44,91 e aos 14 DAE 48,90. 

Silva (2010), analisando os efeitos da torta de mamona na produção de 

biodiesel, identificou o índice SPAD de 44 como o basal encontrado entre os 

tratamentos, relacionando-o positivamente com o teor de nitrogênio. Então, a 

árvore de regressão ter separado o índice SPAD a partir do valor 44 indica que, 



38 
 

em níveis normais de teor de nitrogênio, sem tratamento adicional à cultura da 

mamoneira, o índice SPAD gira em torno de 44 e mantém a taxa fotossintética 

na média (15 µmol CO2 m-2 s-1). Sendo aplicado um manejo na cultura em 

relação ao nitrogênio, a fotossíntese pode aumentar proporcionalmente, após 

considerar, claro, fatores como temperatura, idade da folha e hora do dia.  

Sabe-se que a mamoneira é uma cultura exigente em nutrientes, 

tolerando bem o estresse hídrico, mas não o nutricional. Assim é necessária a 

devida atenção a correção do solo com calcário e gesso, e adubação com NPK 

a fim de garantir uma boa produtividade (FERREIRA, 2014). Resposta a doses 

de 20 kg/ha a 80 kg/ha de N, P2O5 e K2O são mais comuns na literatura 

(Azevedo et al., 1997). 

Zheng et al (2011) afirmam ainda que o acúmulo do conteúdo de 

clorofila e carotenóides está associado com a taxa de expansão dos 

cotilédones e da primeira folha verdadeira. 

 

 

4.3. Dinâmica de assimilação e translocação de fotoassimilados 

em mamoneira (Ricinus communis L.), cv. BRS Energia 

 

A fim de melhor compreender a dinâmica dos fotoassimilados ao longo 

do ciclo da mamoneira, construímos uma figura a partir de dados de área foliar 

e fotossíntese da amostra analisada, relacionando-a com a idade da planta 

(Figura 12). 

A taxa fotossintética, na planta como um todo, começou em torno de 

4260,6 µmol CO2 m
-2 s-1 limitada aos cotilédones, incrementando-se à medida 

que houve formação e aumento da área foliar. Após os 35 DAE, final da fase 

vegetativa, observa-se uma queda de aproximadamente 55% na taxa 

fotossintética, após o quê a mesma tornou a incrementar até a floração, pouco 

antes dos 60 DAE. A adubação aos 40 DAE ajuda a preparar a planta para a 

fase de floração e enchimento das sementes, ao fornecer suplemento de 

nitrogênio e demais nutrientes essenciais que promovem o aumento da taxa 

fotossintética e conseqüente acúmulo de fotoassimilados. 
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Figura 12. Relação da taxa fotossintética total e idade da planta de mamoneira 

(Ricinus communis L.), cv. BRS Energia. Campina Grande – PB, 2014. 
 

 

Os mesmos intervalos de atividade fotossintética observados nas figuras 

3 e 10 estão presentes na figura 12, períodos que consistiram no surgimento 

do primeiro cacho (60 DAE) e enchimento das sementes (95 DAE). 

Entre os períodos 60 e 90 DAE, intervalo de tempo em que os primeiros 

cachos surgiram ao longo das 10 plantas, verifica-se que a taxa fotossintética 

aumentou, em torno de 68%, em relação ao pico apresentado na fase 

vegetativa, o que pode representar correspondência ao aumento da demanda 

pelo enchimento de grãos ou à formação de novas folhas próximas ao dreno 

(primeiro cacho). Em milho, a duração fotossintética tem sido associada à uma 

longa duração do enchimento de grãos e maiores rendimentos (RUSSELL, 

1991). 

Destaca-se que a taxa fotossintética somente decaiu completamente 

após 110 DAE, aproximadamente, período em que iniciou-se a senescência 

foliar e amadurecimento do primeiro cacho.  

Richards (2000) propõe que uma alternativa para aumento da 

produtividade seria aumentar a duração da fotossíntese, mesmo durante o 

enchimento das sementes e amadurecimento do fruto. Os alcances genéticos 

para resistência à doenças foliares pode proporcionar isto, além de permitir 

aumento do período de interceptação da radiação solar. No caso da 
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mamoneira, BRS Energia, que é uma cultivar melhorada para precocidade e 

alta produtividade, o prolongamento da taxa fotossintética relativamente 

elevada até o completo amadurecimento do primeiro cacho e completa 

senescência foliar pode ser uma evidência da proposta de Richards (2000). 

Também pode evidenciar a relação fonte-dreno, onde o aumento da demanda 

do dreno aumenta a taxa fotossintética (APEL et al., 1973; AUSTIN & EDRICH, 

1975; NAGARAJAH, 1975; HALL & MILTHORPE, 1978; BARNETT & PEARCE, 

1983; HEITHOLT & EGLI, 1985; CRAFTS-BRANDNER & PONELEIT, 1987 a, 

b; CONNELL et al., 1987; RICHARDS, 2000; TAIZ & ZEIGER, 2009).  

Richards (2000) afirma, ainda, que até a entrada na fase reprodutiva, 

não há limitação para a produçao de assimilados; no período reprodutivo, a 

síntese de assimilados é limitada pela força do dreno, pois há redução na área 

foliar. Assim, como já proposto anteriormente, se a folha for capaz de manter 

uma alta atividade fotossintética (Figura 13) à medida que a idade avançar, 

seria vantajoso investir num longo período de vida entre a total expansão foliar 

e a senescência (SEVERINO & AULD, 2013). 

 

Figura 13. Dinâmica da fotossíntese com o avanço da idade foliar de 

mamoneira (Ricinus communis L.), cv BRS Energia. Campina Grande – PB, 
2014. 
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4.3.1. Teor de açúcares solúveis 

 

Em relação ao conteúdo de açúcares solúveis, observando a Figura 14 

verifica-se que o mesmo foi basal nas folhas, caule e raízes até os vinte 

primeiros dias após a emergência (DAE). A partir desse período, houve um 

aumento desse conteúdo nas folhas, resultado da intensa atividade 

fotossintética no período vegetativo (Figura 10), demonstrando um padrão 

similar ao encontrando por outros pesquisadores (AIRES et al., 2011; 

SEVERINO & AULD, 2013).  

Em torno dos 50 dias, observa-se uma maior concentração de açúcares 

solúveis no caule do que nas folhas, que varia de 0,7 a 1,4 g, explicado pela 

alta partição de fotoassimilados acumulada durante o intenso período 

vegetativo, que corresponde à alocação para o metabolismo e ainda não para 

armazenamento (SMITH & STITT, 2007). Essa concentração no caule aumenta 

durante todo o período de surgimento e formação do primeiro cacho, que foi de 

60 a 90 DAE, nas dez plantas estudadas. 

 

Figura 14. Conteúdo de açúcares solúveis (g) em folha, caule e raiz de Ricinus 

communis L., cv. BRS Energia. Campina Grande – PB, 2014. A seta assinala o 
surgimento do primeiro cacho entre 60 e 90 dias, nas dez plantas. 
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Aos 70 DAE percebe-se uma queda de 75% (de 1,2g para 0,3g) no 

conteúdo de açúcares solúveis no caule, e de 43% (de 0,37g para 0,21g, 

aproximadamente) na raiz, enquanto que durante todo o período de formação 

do primeiro cacho, há um aumento dessa concentração nas folhas de 65% (de 

0,56g para 1,63g). Isto pode ser explicado porque, nesse período reprodutivo, 

há aumento de translocação dos açúcares solúveis do caule e raiz para a 

formação do primeiro cacho, aumentando a taxa de produção de açúcares na 

folha devido ao aumento da demanda pelo cacho em formação (TAIZ & 

ZEIGER, 2009). Observa-se que no período em questão houve um pico 

fotossintético (Figura 12), o que explica a estabilidade no conteúdo de açúcares 

solúveis (carbono recém assimilado) nas folhas. 

Na fase de enchimento de sementes, entre 70 e 100 DAE, observa-se o 

pico no teor de açúcares solúveis nas folhas, resultado de alta atividade 

fotossintética (Figura 12), cujo carbono recém-assimilado, bem como o 

armazenado, são usados para promover o crescimento de flores e sementes 

(SMITH & STITT, 2007; SEVERINO & AULD, 2013), como também pode ser 

explicada pelo aumento da demanda por carboidratos (EVANS, 1993). Folhas 

mais próximas dos frutos apresentaram maior atividade fotossintética do que 

aquelas mais distantes (TAIZ & ZEIGER, 2009). Outros estudos que foram 

feitos com trigo, algodão, gergelim e soja confirmam tal afirmação (APEL et al, 

1973; AUSTIN & EDRICH, 1975; NAGARAJAH, 1975; HALL & MILTHORPE, 

1978; HEITHOLT & EGLI, 1985).  

A concentração de açúcares solúveis nas folhas após os 100 DAE foi 

reduzida em 91,8%, aproximadamente, fase de enchimento das sementes, 

amadurecimento do fruto e senescência foliar. No mesmo período houve um 

aumento médio de 93,4% dos mesmos nas raízes no final do ciclo de 120 dias, 

dado que pode ser explicado pela estratégia de sobrevivência da mamoneira, a 

qual acumula reservas para o período de descanso fisiológico a fim de dispor 

de energia para crescer na fase úmida seguinte. 

O destaque nos dados obtidos na figura 14 é para a alta concentração 

de açúcares solúveis no caule mesmo depois dos 100 DAE. A fotossíntese 

prolongada após os 120 DAE explicaria a origem desse carboidrato na raiz e 

no caule (Figura 12). 
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4.3.2. Teor de amido 

 

 Em relação ao conteúdo de amido, em torno dos 15 DAE já foi possível 

detectá-lo nas raízes em concentrações mínimas – cerca de 0,02g (Figura 15). 

Seu conteúdo neste órgão vegetal aumentou à medida que ele progrediu em 

seu desenvolvimento, chegando ao pico em torno dos 90 DAE (fase 

reprodutiva).  

Nas folhas, local de síntese do amido, aparentemente este carboidrato 

não ficou nesta parte do vegetal por muito tempo, sendo rapidamente 

particionado, o que elevou a concentração do mesmo no caule, onde os picos 

ocorreram a partir dos 55 DAE, próximo ao final do período vegetativo, 

significando que o vegetal estava se preparando para o enchimento das 

sementes; e aos 85, período de enchimento das sementes, que durou até 

aproximadamente os 100 DAE.  

 

Figura 15. Conteúdo de amido (mg) em folha, caule e raiz de Ricinus 
communis L., cv. BRS Energia. Campina Grande – PB, 2014. A seta assinala o 
surgimento do primeiro cacho, que foi aproximadamente aos 60 DAE. 
 

 

 

Estudos com arroz (Oriza sativa L.) afirmam que o acúmulo de grãos de 

amido na folha e no caule é transitório, servindo o caule de “ponte” entre o 
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amido da folha-fonte e sua respectiva semente-dreno. No caso da mamoneira 

seria o cacho-dreno respectivo. Ele afirma ainda que o teor de amido no caule 

aumenta um pouco antes da polinização, sendo dirigido, a seguir, às sementes 

em desenvolvimento. O armazenamento de amido no caule também ocorre 

quando, durante o enchimento dos grãos, a capacidade de fornecimento de 

fotossintatos na folha é maior que a capacidade de assimilação no dreno. 

Assim, o caule assume um papel regulador do enchimento das sementes ao 

acumular e degradar amido (SU, 2000). 

Verifica-se, também, que o pico de concentração de amido na raiz é 

precedido pelo pico de concentração de amido no caule, órgão de 

armazenamento transitório e de transporte de carboidratos (Figura 15). Parte 

do conteúdo de amido do caule seguiu, como vemos na figura 15, para as 

raízes e, podemos afirmar que, outra proporção provavelmente foi direcionada 

para o enchimento dos grãos. 

O destaque, como em açúcares solúveis, é para o aumento de 532%, 

aproximadamente, no conteúdo de amido no caule entre 100 e 120 DAE. 

Verifica-se que, aos 115 DAE (Figura 13) ocorreu o pico de concentração de 

açúcares solúveis no caule. No mesmo período, o conteúdo de amido foi 

relativamente menor (Figura 14), seguido de aumento aos 120 DAE, podendo 

significar que os açúcares solúveis ainda estavam, aos 115 DAE, sendo 

convertidos em amido no caule, para armazenamento. 

 

 

4.3.3. Carboidratos totais 

 

Comparando o comportamento fotossintético (Figura 12) com o 

conteúdo total de carboidratos (Figura 16), parece haver um comportamento de 

feed-back, pois a fotossíntese acompanha o conteúdo de carboidratos durante 

todo o ciclo da mamoneira, mesmo após os 120 DAE, como já explicado nas 

Figuras 14 e 15.  

Percebe-se um pico de fotossíntese, como descrito por Evans (1993), 

que acompanha a taxa de crescimento do fruto, especialmente quando drenos 

alternativos estão inativos, pois corresponde ao enchimento das sementes do 

primeiro cacho, que o torna um dreno forte. O mesmo autor afirma que esse 
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feed-back para a taxa fotossintética em relação à demanda por carboidratos 

varia de acordo com as condições e cultivares, e envolve um loop de 

transbordamento, não apenas um loop simples de feed-back. 

 
 
Figura 16. Conteúdo de carboidratos totais (mg) em folha, caule e raiz de 
Ricinus communis L., cv. BRS Energia. Campina Grande – PB, 2014. A seta 
assinala o surgimento do primeiro cacho, que foi aproximadamente aos 60 
DAE. 
 

 

 
Em milho (BARNETT & PEARCE, 1983, CRAFTS-BRANDNER & 

PONELEIT, 1987 a, b; CONNELL et al., 1987), verificou-se que não apenas a 

demanda por carboidratos interfere na taxa fotossintética, mas também a 

remoção de espigas e a taxa de mobilização de nitrogênio nas folhas tem papel 

nesse sentido. Por isso o retardo da senescência aumenta a demanda por 

carboidratos e/ou nitrogênio, aumentando a taxa fotossintética quando há 

demanda pelo primeiro, e reduzindo, quando do segundo (SINCLAIR & DE 

WIT, 1975). Richards (2000) afirma que o retardo da senescência é uma outra 

estratégia benéfica para aumentar a duração da fotossíntese, principalmente 

após a antese. 
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5.0. CONCLUSÕES 

 

 O tempo médio de vida da folha em mamoneira é curto, o que permite o 

manejo para aumento da precocidade a nível de irrigação, adubação e 

época de plantio; 

 Não houve relação da idade da folha com sua posição no caule, 

particularmente em relação à proximidade com o racemo, sendo 

encontradas folhas jovens e maduras por toda a altura da planta e 

próximas ao fruto em desenvolvimento; 

 As folhas localizadas no terço inferior do caule foram as responsáveis 

pela maior taxa fotossintética do ciclo, não interferindo nesse processo o 

sombreamento das folhas superiores, nem a área foliar, nem a 

proximidade com o racemo; 

 A temperatura foi o principal fator de interferência na taxa fotossintética, 

seguida pela idade da folha, hora do dia e índice SPAD; 

 Apesar do aumento da demanda por carbono, não houve aumento da 

taxa fotossintética no início do período de floração e final do enchimento 

das sementes, apenas durante esse intervalo; 

 Folhas no período de vida útil foram as responsáveis por suprir a 

demanda por carbono durante a fase de enchimento do primeiro 

racemo; 

 A maior proporção do carbono recém-assimilado na forma de açúcares 

solúveis é direcionada para o consumo imediato, e em menor proporção 

para a síntese e acúmulo de amido. 
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6.0. CONSIDERAÇÕES FINAIS 

 

 À luz de tudo o que foi demonstrado e discutido, considerando que uma 

das exigências para o melhoramento da precocidade é que a folha mantenha a 

dinâmica fotossintética após a total expansão e, observando que as folhas de 

mamoneira, cultivar BRS Energia, não demonstraram drásticas mudanças na 

fotossíntese à medida que envelheceram, podemos recomendar sim o 

investimento na precocidade de mamoneira, tanto em termos genéticos quanto 

a nível de manejo da cultura, especialmente da temperatura, afirmando que 

não haverá danos significativos na partição de assimilados e, 

consequentemente, na produtividade, visto que é no período vegetativo, 

especialmente no estabelecimento da cultura, onde encontramos maior 

atividade das variáveis que contribuirão significativamente para a 

produtividade. 

Apesar de plástica, a fim de aumentar a produtividade, recomenda-se o 

cultivo da mamoneira em regiões, ou época do ano, que não alcancem picos 

de temperatura que ultrapassem os 30ºC,pelos menos nos primeiros 30 dias do 

plantio. 

Também propõe-se que o incremento da disponibilidade de nitrogênio 

seja feito durante o estabelecimento da cultura, pois assim alcançará a maior 

parte das folhas em idade de expansão (de 6 a 14 dias), e localizadas no terço 

inferior do caule. Isto possibilitaria a redução do período de expansão foliar em 

até 4 dias e promoveria o aumento do período de vida útil da folha, fase de 

maior taxa fotossintética, a qual, na cultura, está positivamente relacionada ao 

incremento de fotossintatos, os quais poderiam seguir para o enchimento de 

grãos. 

Sugere-se que esses mesmos objetivos também poderiam ser 

alcançados a nível de melhoramento genético, onde futuros trabalhos focariam 

na redução do período da expansão foliar e aumento da vida útil das folhas. 
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