
i 
 

 

 

UNIVERSIDADE FEDERAL DA PARAÍBA 

CENTRO DE CIÊNCIAS AGRÁRIAS 

DEPARTAMENTO DE FITOTECNIA E CIÊNCIAS AMBIENTAIS 

PROGRAMA DE PÓS-GRADUAÇÃO EM AGRONOMIA 

 

 

 
 
 
 
 
 
 

 

CRESCIMENTO E PRODUÇÃO DE FITOMASSA DA MAMONEIRA BRS 

ENERGIA ADUBADA COM NITROGÊNIO E SILÍCIO 

 

 

 

 

 

 

 

DJALMA JOSÉ CORREIA DE FIGUERÊDO 

 

 

 

 

 

 

 

AREIA-PB 

Dezembro-2013 



ii 
 

DJALMA JOSÉ CORREIA DE FIGUERÊDO 

 

 

 

 

 

CRESCIMENTO E PRODUÇÃO DE FITOMASSA DA MAMONEIRA BRS 

ENERGIA ADUBADA COM NITROGÊNIO E SILÍCIO 

 

 

 

 

 

Tese apresentada ao Programa de Pós-

Graduação em Agronomia do 

CCA/UFPB, como parte das exigências 

para a obtenção do título Doutor em 

Agronomia (Agricultura Tropical). 

 

 

 

 

Orientador: Dr. Napoleão Esberard de Macêdo Beltrão (In memoriam) 

Coorientador: Dr. José Félix de Brito Neto 

 

 

 

 

 

 

 

AREIA-PB 

Dezembro-2013



 

 



iii 
 

 

DJALMA JOSÉ CORREIA DE FIGUERÊDO 

 

 

CRESCIMENTO E PRODUÇÃO DE FITOMASSA DA MAMONEIRA BRS 

ENERGIA ADUBADA COM NITROGÊNIO E SILÍCIO 

 

Aprovada em: 17 de Dezembro de 2013 

 

Banca Examinadora 

 

__________________(in memoriam)__________________ 

Profº. Dr. Napoleão Esberard de M. Beltrão 

Orientador/Embrapa Algodão/UFPB 

 

_______________________________________________ 

Dr. José Félix de Brito Neto 

Coorientador/Embrapa Algodão 

 

_______________________________________________ 

Prof°. Dr. Walter Esfrain Pereira 

Examinador/CCA-UFPB 

 

______________________________________________ 

Profº. Dr. Lourival Ferreira Cavalcante 

Examinador/CCA-UFPB 

 

_______________________________________________ 

Profº. Dr. Humberto Silva 

Examinador/UEPB 

 

 

AREIA-PB 

Dezembro-2013 



iv 
 

 

Ao Deus Javé, 

Meu Redentor que me formou desde o ventre de minha mãe, 

que me Concebeu a Graça da Vida;  

o Caminho certo pra seguir na Fé Cristã com Sua Luz, 

junto com os meus familiares, 

DEDICO  

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Aos meus pais, Ernane e Laís, pela sabedoria da vida, 

À minha tia Ná (in memoriam) pelo início deste caminho, 

À minha tia, Babi, pela acolhida, 

Aos meus irmãos, João, Giovani e Eduardo, pelo companheirismo, 

Às minhas filhas, Djana, Dyana e Djayana, por serem a minha vida, 

À minha esposa, Ana, por ser o amor de minha vida, 

À família, pela fraternidade, 

OFEREÇO 

  



v 
 

 

 AGRADECIMENTOS 

 

À Universidade Federal da Paraíba e à Coordenação do Curso de Pós-Graduação 

em Agronomia, do Centro de Ciências Agrárias, pela oportunidade de vivenciar essas 

experiências; 

À Embrapa Algodão pela disponibilidade de seus recursos às experimentações 

científicas;  

Aos professores Ademar Pereira de Oliveira, Ricardo Eslebão Alves, Silvanda de 

Melo Silva, Djail Santos, Ítalo de Aquino e Walter Esfrain Pereira, pelos conhecimentos, 

especialmente aos que contribuíram com sugestões e aconselhamento para este trabalho, e 

amizade; 

Em especial, ao meu professor e orientador Dr. Napoleão Esberard de Macêdo 

Beltrão (in memoriam), que deixou um legado profissional incomparável, pela extrema 

competência e dedicação à pesquisa científica, pelo acolhimento, orientação e amizade aos 

seus alunos, indistintamente, e pela oportunidade da sua convivência; 

Ao meu coorientador Dr. José Félix de Brito Neto, pela imensa contribuição em 

todas as fases do estudo experimental e pelo apreço da convivência; 

Ao Prof. Dr. Walter Esfrain Pereira, pela cumplicidade fraternal nos 

esclarecimentos das análises estatísticas dos dados avaliados desta tese, junto com os 

pesquisadores da Embrapa Algodão, M. Sc. José Wellington dos Santos e Dr. Tarcísio 

Marcos de Souza Gondim; 

Aos pesquisadores da Embrapa, Dr. Valdinei Sofiatti, pela contribuição 

incondicional a esta pesquisa; Dr. Francisco (Chicão) e Farias, pela inestimável ajuda e 

ensinamento de sua sabedoria de vida; 

A Adelardo Lira, técnico da Embrapa Algodão, minha gratidão pela valiosa 

participação e ajuda nos trabalhos de campo; 

A Renato (carioca), pela amizade e ajuda da informática;  

 A Márcia, pela atitude profissional e cristã na ajuda da condução da pesquisa; 

Aos técnicos dos laboratórios da Embrapa Algodão, Bruna, Daíse, Edjane, Dona 

Josa, Joabson, José Menezes, José Carlos, Joênio, Amaro, Carlos, Gilvanzinho, Chico 

Moura, Jailton Rodrigues, pela ajuda das análises, bem como, as gentilezas das 

informações necessárias para este trabalho; da Biblioteca, do Núcleo de Informática; 



vi 
 

 

Aos funcionários que, mesmo não contribuindo para a esta pesquisa, 

compartilharam fraternalmente comigo, como, Socorro, Conceição, Dalva, Marluce e 

Ângela da cantina, Eunice, Danilo, Mailton (caíca), Márcia, Chico preto, Mário Brito, 

Mário Cézar, Bereu e Napoleão Silveira; 

Aos professores membros do comitê de avaliação, Lourival Ferreira, Walter Esfrain 

e Humberto Silva por aceitarem fazer parte da banca; 

Aos amigos e colegas da Pós-Graduação, pela convivência fraternal e 

compartilhamento da vida; Márcia Guimarães, Carmem Valdênia da S. Santana, Márcia 

Maria Gondim, Irenice Gomes de Oliveira, Pollyana F. Montenegro Agra, Rilvânia da 

Silva Falcão, Lucas Borchartt, Petrônio Donato dos Santos, Francisco da Assis P. 

Leonardo, Edna de Oliveira Silva, Évio Alves Galindo, Clarisse Pereira Benedito, 

Damiana Ferreira da Silva, Renato Lima Dantas, Luiz Leonardo Ferreira, Luiz Leonardo 

Ferreira, Natália Vital da Silva, Jéssica de Souza Lima, Alex da Silva Barbosa, André 

Japiassú e Hélder Albuquerque; 

Aos que fazem o Colégio Santa Rita, pela acolhida de Paz e Cristandade no início 

do curso; 

Aos amigos Maria Cristina, Edmilson Sacre, Sandro e meu sobrinho Davi 

Figuerêdo pela imensa ajuda no experimento em Cumaru-PE; 

Aos funcionários do Laboratório de Solos e Nutrição de Plantas e do Laboratório de 

Química, pelo auxílio na execução das análises, e da Biblioteca da Embrapa Algodão, pela 

gentileza e competente atendimento profissional; 

Aos professores do laboratório de Nutrição de Plantas - UFRPE, Hélio Cabral 

Lima, Egídio Bezerra Neto e Levy Paes Barreto, Lourinalda e Bejamim pela orientação 

precisa das análises, e aos amigos, Giovanildo, Júlio e Narciso, que contribuíram com os 

trabalhos das análises, além do convívio fraternal e aos colegas José Mário e Joselane, pela 

ajuda e companheirismo; 

 À Secretária do Curso de Pós-Graduação em Agronomia CCA/UFPB, Cícera 

Eliane, pela presteza do atendimento, sempre de forma gentil e fraterna; 

A todos que me ajudaram nessa etapa acadêmica, o meu sincero reconhecimento e 

gratidão. 

 

 

 



vii 
 

 

AGRADECIMENTO ESPECIAL 

 

 

 Professor, Dr. Napoleão, 

como todos o chamavam! 

 O que posso dizer do tão 

grandioso ser humano e profissional 

que fora em vida? Apenas lembrar, 

tão especialmente, que desde os já 

idos de 2001, o senhor já acolhia 

como orientador, muitos desses alunos ansiosos aos seus cuidados de incentivo à militância 

do estudo e da pesquisa, pois sempre acreditou nas inovações tecnológicas como único 

instrumento de desenvolvimento e de transformação real da sociedade. E entre eles estava 

eu, e continuei sendo seu aluno, como inúmeros, até tão pouco atrás, quando resolveu, por 

desígnios da vida traçados ou não, nos deixar seu legado incomparável de ser humano, de 

professor e pesquisador, sempre em busca da perfeição, nos presenteando com o que há de 

melhor na qualificação do indivíduo – sua percepção profissional e sua expressão ética. 

Assim, Doutor Napoleão, cremos que seu companheirismo foi mais do que o ser professor 

e pesquisador, mas, uma verdadeira parceria fraternal e cristã que poderíamos chamar 

indubitavelmente de amizade. Que o senhor que sempre nos acolheu, seja acolhido agora e 

sempre. Amém! 

 

 

 

 

 



viii 
 

 

SUMÁRIO 
 

LISTA DE TABELA .................................................................................................................. ix 

LISTA DE FIGURA .................................................................................................................... x 

RESUMO .................................................................................................................................. xii 

ABSTRACT..............................................................................................................................xiii 

1. INTRODUÇÃO......................................................................................................................1 

2. REFERENCIAL TEÓRICO ................................................................................................3 

2.1. A mamoneira ....................................................................................................................3 

2.2. Nutrição da mamoneira .....................................................................................................6 

2.3. Importância do nitrogênio para a mamoneira ...................................................................8 

2.4. Dinâmica do nitrogênio no solo ......................................................................................12 

2.5. Silício ..............................................................................................................................13 

2.6. Interação Silício  Nitrogênio ...........................................................................................17 

3. MATERIAL E MÉTODOS  ................................................................................................20 

3.1. Localização e caracterização do experimento.................................................................20 

3.2. Delineamento experimental ............................................................................................21 

3.3. Variáveis analisadas ........................................................................................................22 

3.4. Análise estatística............................................................................................................25 

4. RESULTADOS E DISCUSSÃO.........................................................................................26 

4.1. Alterações nos atributos químicos do solo .....................................................................26 

4.2. Análise de crescimento ...................................................................................................28 

4.2.1. Altura de plantas, diâmetro de caule, número de folhas e área foliar  ..........................28 

4.3. Taxas de Crescimento absoluta e relativa  ......................................................................32 

4.4. Medidas de crescimento..................................................................................................36 

4.5. Análise nutricional ..........................................................................................................39 

4.5.1. Macronutrientes em folhas de mamoneira  ..................................................................39 

4.5.2. Micronutrientes em folhas de mamoneira ...................................................................42 

4.6. Teor de clorofila em folhas de mamoneira  ....................................................................44 

4.7. Componentes de produção de matéria seca  ...................................................................47 

5. CONCLUSÕES  ....................................................................................................................51 

6. REFERÊNCIAS ...................................................................................................................52 

 
 

../../Users/djalm_000/TESE%20IMPRIMIR/PRIMEIRA%20PARTE%20TES.doc#_Toc301273444
../../Users/djalm_000/TESE%20IMPRIMIR/PRIMEIRA%20PARTE%20TES.doc#_Toc301273444
../../Users/djalm_000/TESE%20IMPRIMIR/PRIMEIRA%20PARTE%20TES.doc#_Toc301273444
../../Users/djalm_000/TESE%20IMPRIMIR/PRIMEIRA%20PARTE%20TES.doc#_Toc301273444
../../Users/djalm_000/TESE%20IMPRIMIR/PRIMEIRA%20PARTE%20TES.doc#_Toc301273446
../../Users/djalm_000/TESE%20IMPRIMIR/PRIMEIRA%20PARTE%20TES.doc#_Toc301273458
../../Users/djalm_000/TESE%20IMPRIMIR/PRIMEIRA%20PARTE%20TES.doc#_Toc301273449
../../Users/djalm_000/TESE%20IMPRIMIR/PRIMEIRA%20PARTE%20TES.doc#_Toc301273449
../../Users/djalm_000/TESE%20IMPRIMIR/PRIMEIRA%20PARTE%20TES.doc#_Toc301273450
../../Users/djalm_000/TESE%20IMPRIMIR/PRIMEIRA%20PARTE%20TES.doc#_Toc301273451
../../Users/djalm_000/TESE%20%20%20CORREÇÃO/PRIMEIRA%20PARTE%20TES.doc#_Toc301273451
../../Users/djalm_000/TESE%20IMPRIMIR/PRIMEIRA%20PARTE%20TES.doc#_Toc301273451
../../Users/djalm_000/TESE%20IMPRIMIR/PRIMEIRA%20PARTE%20TES.doc#_Toc301273452
../../Users/djalm_000/TESE%20IMPRIMIR/PRIMEIRA%20PARTE%20TES.doc#_Toc301273453
../../Users/djalm_000/TESE%20IMPRIMIR/PRIMEIRA%20PARTE%20TES.doc#_Toc301273453
../../Users/djalm_000/TESE%20IMPRIMIR/PRIMEIRA%20PARTE%20TES.doc#_Toc301273453
../../Users/djalm_000/TESE%20IMPRIMIR/PRIMEIRA%20PARTE%20TES.doc#_Toc301273453
../../Users/djalm_000/TESE%20IMPRIMIR/PRIMEIRA%20PARTE%20TES.doc#_Toc301273458
../../Users/djalm_000/TESE%20IMPRIMIR/PRIMEIRA%20PARTE%20TES.doc#_Toc301273449
../../Users/djalm_000/TESE%20IMPRIMIR/PRIMEIRA%20PARTE%20TES.doc#_Toc301273453
../../Users/djalm_000/TESE%20IMPRIMIR/PRIMEIRA%20PARTE%20TES.doc#_Toc301273448
../../Users/djalm_000/TESE%20IMPRIMIR/PRIMEIRA%20PARTE%20TES.doc#_Toc301273449
../../Users/djalm_000/TESE%20IMPRIMIR/PRIMEIRA%20PARTE%20TES.doc#_Toc301273450
../../Users/djalm_000/TESE%20IMPRIMIR/PRIMEIRA%20PARTE%20TES.doc#_Toc301273451
../../Users/djalm_000/TESE%20IMPRIMIR/PRIMEIRA%20PARTE%20TES.doc#_Toc301273451
../../Users/djalm_000/TESE%20IMPRIMIR/PRIMEIRA%20PARTE%20TES.doc#_Toc301273451
../../Users/djalm_000/TESE%20IMPRIMIR/PRIMEIRA%20PARTE%20TES.doc#_Toc301273451
../../Users/djalm_000/TESE%20IMPRIMIR/PRIMEIRA%20PARTE%20TES.doc#_Toc301273451
../../Users/djalm_000/TESE%20IMPRIMIR/PRIMEIRA%20PARTE%20TES.doc#_Toc301273463
../../Users/djalm_000/TESE%20IMPRIMIR/PRIMEIRA%20PARTE%20TES.doc#_Toc301273464


ix 
 

 

LISTA DE TABELAS 
 

TABELA 1. Características químicas do solo utilizado no experimento, realizado na        

Embrapa Algodão, Campina Grande-PB, 2012.........................................................................21 

TABELA 2. Distribuição dos tratamentos utilizados na experimentação  ................................21 

TABELA 3. Resumo das análises de variância e respectivos quadrados médios, para 

macronutrientes do solo, fósforo (P), potássio (K), cálcio (Ca), manganês (Mn) e enxofre (S), 

do experimento em plantas de mamoneira cv. BRS Energia. Campina Grande-PB, 2012. ..... 26 

TABELA 4. Resumo das análises de variância e respectivos quadrados médios, para os 

componentes de crescimento, altura de planta (ALT), número de folhas (NF), diâmetro 

caulinar (DIA) e área foliar (AFO) de plantas de mamoneira cv. BRS Energia. Campina 

Grande-PB, 2012 ...................................................................................................................... 28 

TABELA 5. Resumo das análises de variância e respectivos quadrados médios, para taxa de 

crescimento absoluta (mm.dia-1) e relativa (mm.mm.dia-1) para o diâmetro caulinar, e absoluta 

(cm2.dia) e relativa (cm2.cm2 dia-1) para área foliar, eferente a média de 60-120 DAE, em 

plantas de mamoneira cv. BRS Energia. Campina Grande-PB, 2012 ...................................... 33 

TABELA 6. Resumo das análises de variância e respectivos quadrados médios, para área 

foliar específica (AFE) em cm2.g-1, razão de área foliar (RAF) em cm2.g-1 e razão do peso 

foliar (RPF), em plantas de mamoneira cv. BRS Energia. Campina Grande-PB-2012 ........... 36 

TABELA 7. Resumo das análises de variância e respectivos quadrados médios, para os teores 

de nitrogênio (N), fósforo (P), potássio (K), cálcio (Ca), magnésio (Mg) e enxofre (S) em 

folhas de plantas de mamoneira cv. BRS Energia. Campina Grande-PB, 2012 ...................... 39 

TABELA 8. Resumo das análises de variância e respectivos quadrados médios, para os teores 

de micronutrientes, manganês (Mn), zinco (Zn), ferro (Fe) e silício (Si) em folhas plantas de 

mamoneira cv. BRS Energia. Campina Grande-PB-2012 ........................................................ 42 

TABELA 9. Resumo das análises de variância e respectivos quadrados médios, para o índice 

de clorofila (ICLO), clorofila a (Cla) e clorofila b (Clb), em folhas de mamoneira cv. BRS 

Energia. Campina Grande-PB, 2012 ........................................................................................ 45 

TABELA 10. Resumo das análises de variância e respectivos quadrados médios, para os 

componentes de produção primária massa seca da raiz (MSR), massa seca do caule (MSC), 

massa seca da folha (MSF), massa seca do cacho (MSCX), massa seca total (MST), de plantas 

de mamoneira cv. BRS Energia. Campina Grande-PB, 2012 .................................................. 48 

 

../../Users/djalm_000/TESE%20IMPRIMIR/PRIMEIRA%20PARTE%20TES.doc#_Toc301273444
../../Users/djalm_000/TESE%20IMPRIMIR/PRIMEIRA%20PARTE%20TES.doc#_Toc301273446
../../Users/djalm_000/TESE%20IMPRIMIR/PRIMEIRA%20PARTE%20TES.doc#_Toc301273446
../../Users/djalm_000/TESE%20IMPRIMIR/PRIMEIRA%20PARTE%20TES.doc#_Toc301273446
../../Users/djalm_000/TESE%20%20%20CORREÇÃO/PRIMEIRA%20PARTE%20TES.doc#_Toc301273446
../../Users/djalm_000/TESE%20%20%20CORREÇÃO/PRIMEIRA%20PARTE%20TES.doc#_Toc301273446
../../Users/djalm_000/TESE%20%20%20CORREÇÃO/PRIMEIRA%20PARTE%20TES.doc#_Toc301273446
../../Users/djalm_000/TESE%20%20%20CORREÇÃO/PRIMEIRA%20PARTE%20TES.doc#_Toc301273446
../../Users/djalm_000/TESE%20%20%20CORREÇÃO/PRIMEIRA%20PARTE%20TES.doc#_Toc301273446
../../Users/djalm_000/TESE%20%20%20CORREÇÃO/PRIMEIRA%20PARTE%20TES.doc#_Toc301273446
../../Users/djalm_000/TESE%20%20%20CORREÇÃO/PRIMEIRA%20PARTE%20TES.doc#_Toc301273446
../../Users/djalm_000/TESE%20%20%20CORREÇÃO/PRIMEIRA%20PARTE%20TES.doc#_Toc301273446
../../Users/djalm_000/TESE%20%20%20CORREÇÃO/PRIMEIRA%20PARTE%20TES.doc#_Toc301273446
../../Users/djalm_000/TESE%20%20%20CORREÇÃO/PRIMEIRA%20PARTE%20TES.doc#_Toc301273446


x 
 

 

LISTA DE FIGURAS 

 

FIGURA 1. Vista parcial do experimento em casa de vegetação. Embrapa Algodão, Campina 

Grande–PB, 2012...................................................................................................................... 20 

FIGURA 2. Temperatura Máxima (Temp. Max.), Média (Temp. Méd.), Mínima (Temp. 

mín.) °C e Umidade relativa (UR %), durante o período de condução do experimento. Fonte: 

Estação climatológica da Embrapa Algodão, Campina Grande-PB, 2012............................... 20 

FIGURA 3. Teor de potássio (K) no solo, de plantas de mamoneira cv. BRS Energia, em 

resposta a diferentes doses de N (Kg ha-1). Embrapa Algodão, Campina Grande-PB, 2012 ... 27 

FIGURA 4. Diâmetro caulinar (A) de plantas de mamoneira cv. BRS Energia, em resposta a 

diferentes doses de N (kg ha-1), e a doses de Si (B). Embrapa Algodão, Campina Grande-PB, 

2012 .......................................................................................................................................... 30 

FIGURA 5. Número de folhas (A) e área foliar (B) de plantas de mamoneira cv. BRS 

Energia, em resposta a diferentes doses de N (Kg ha-1). Embrapa Algodão, Campina Grande- 

PB, 2012 ................................................................................................................................... 32 

FIGURA 6. Taxa de crescimento absoluta (TCADC) e relativa (TCRDC) do diâmetro 

caulinar (da média de 60-120 DAE), de plantas de mamoneira cv. BRS Energia, em resposta a 

diferentes doses de N (kg ha-1). Embrapa Algodão, Campina Grande-PB, 2012..................... 34 

FIGURA 7. Taxa de crescimento absoluta (TCAAF) e relativa (TCRAF) da área foliar (da 

média de 60-120 DAE), de plantas de mamoneira cv. BRS Energia, em resposta a diferentes 

doses de N (kg ha-1). Embrapa Algodão, Campina Grande-PB, 2012 ..................................... 35 

FIGURA 8. Área foliar específica (A), razão de área foliar (B) e razão do peso foliar (C) de 

plantas de mamoneira cv. BRS Energia, em resposta a diferentes doses de N (kg ha-1). 

Embrapa Algodão, Campina Grande-PB, 2012........................................................................ 38 

FIGURA 9. Teores foliares de N (A), Ca (B), Mg (C) e S (D) de plantas de mamoneira cv. 

BRS Energia, em resposta a diferentes doses de N (kg ha-1). Embrapa Algodão, Campina 

Grande-PB, 2012 ...................................................................................................................... 41 

FIGURA 10. Teores foliares de Ferro (A) e Silício (B), de plantas de mamoneira cv. BRS 

Energia, em resposta a diferentes doses de N (kg ha-1). Embrapa Algodão, Campina Grande- 

PB, 2012 ................................................................................................................................... 44 

FIGURA 11. Teores foliares de Ferro (A) e Silício (B), de plantas de mamoneira cv. BRS 

Energia, em resposta a diferentes doses de N (kg ha-1). Embrapa Algodão, Campina Grande- 

PB, 2012 ................................................................................................................................... 47 

../../Users/djalm_000/TESE%20%20%20CORREÇÃO/PRIMEIRA%20PARTE%20TES.doc#_Toc301273446
../../Users/djalm_000/TESE%20%20%20CORREÇÃO/PRIMEIRA%20PARTE%20TES.doc#_Toc301273446
../../Users/djalm_000/TESE%20%20%20CORREÇÃO/PRIMEIRA%20PARTE%20TES.doc#_Toc301273446
../../Users/djalm_000/TESE%20%20%20CORREÇÃO/PRIMEIRA%20PARTE%20TES.doc#_Toc301273446
../../Users/djalm_000/TESE%20%20%20CORREÇÃO/PRIMEIRA%20PARTE%20TES.doc#_Toc301273446
../../Users/djalm_000/TESE%20%20%20CORREÇÃO/PRIMEIRA%20PARTE%20TES.doc#_Toc301273446
../../Users/djalm_000/TESE%20%20%20CORREÇÃO/PRIMEIRA%20PARTE%20TES.doc#_Toc301273446
../../Users/djalm_000/TESE%20%20%20CORREÇÃO/PRIMEIRA%20PARTE%20TES.doc#_Toc301273446
../../Users/djalm_000/TESE%20%20%20CORREÇÃO/PRIMEIRA%20PARTE%20TES.doc#_Toc301273446
../../Users/djalm_000/TESE%20%20%20CORREÇÃO/PRIMEIRA%20PARTE%20TES.doc#_Toc301273446
../../Users/djalm_000/TESE%20%20%20CORREÇÃO/PRIMEIRA%20PARTE%20TES.doc#_Toc301273446


xi 
 

 

FIGURA 12. Massa seca da folha (A), do caule (B), do fruto (C) e da raiz (D) de plantas de 

mamoneira cv. BRS Energia, em resposta a diferentes doses de N (kg ha-1). Embrapa 

Algodão, Campina Grande-PB, 2012 ....................................................................................... 50 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

../../Users/djalm_000/TESE%20%20%20CORREÇÃO/PRIMEIRA%20PARTE%20TES.doc#_Toc301273446


xii 
 

 

FIGUERÊDO, D. J. C. de. CRESCIMENTO E PRODUÇÃO DE FITOMASSA DA 

MAMONEIRA BRS ENERGIA ADUBADA COM NITROGÊNIO E SILÍCIO. Areia, 

Centro de Ciências Agrárias, UFPB, Dezembro de 2013. 177p. Tese. Programa de Pós-

Graduação em Agronomia. Orientador: Prof. Ph.D. Napoleão Esberard de Macêdo Beltrão 

(in memoriam), e Coorientador: Dr. José Félix de Brito Neto. e-mail: 

djalmafigueredo@yahoo.com.br. 

 

RESUMO 

O silício pode estimular a absorção do N pelas plantas, resultando em uma melhor 

arquitetura foliar e maior aproveitamento da luz, e conseqüentemente plantas mais 

produtivas. Nesse sentido, objetivou-se com este experimento, avaliar os efeitos da 

interação entre o Si e o N sobre o crescimento, produção de matéria seca, e composição 

mineral de plantas de mamoneira BRS Energia. O experimento foi realizado na Embrapa 

Algodão em Campina Grande-PB, sendo os tratamentos distribuídos em um delineamento 

de blocos ao acaso com arranjo fatorial de (4x4), sendo quatros doses de silício (00; 80; 

160; 240 mg L-1),  e quatro doses de nitrogênio (00; 60; 120;180 kg ha-1), aplicados por 

planta, com quatro repetições, totalizando 64 unidades experimentais. A pesar do aumento 

das doses de N  diminuir os teor de K no solo, estimulou o crescimento das outras 

variáveis, diâmetro caulinar, número de folhas e área foliar. A adubação silicatada foliar 

proporcionou aumento significativo do diâmetro caulinar, sendo o maior valor observado 

(18,54 mm) em função da maior dose de Si aplicada. A taxa de crescimento absoluto em 

diâmetro caulinar atingiu o valor máximo de 0,068 mm.dia-1 correspondente a 100 kg ha-1 

de N. A taxa de crescimento absoluto para área foliar no período avaliado, ajustou-se ao 

modelo quadrático, com incrementos crescentes em função das doses de N, com maior 

valor de 20,60 cm2.dia-1 na dose de 102,63 kg ha-1. O aumento crescente até o limite 

máximo de 99,43 kg ha-1 de N, proporcionou uma relação de área foliar de 19,85 cm2 por 

cada grama de matéria seca produzida pela planta. O teor de N nas folhas aumentou em 

função das doses de N aplicadas, com incremento no teor foliar de 49,82 g kg-1, com a dose 

observada de 124,89 kg ha-1 de N. A produção de massa seca total chegou a 137,01 g 

planta-1 , em função da dose de 109,71 kg ha-1  de nitrogênio.  

 

Termos para indexação: Silício, Ricinus communis L., nutrição de planta. 
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ABSTRACT  

 Silica can stimulate the uptake of N by plants, resulting in improved leaf 

architecture and greater use of light, and therefore more productive plants. In this sense, 

the objective of this experiment was to evaluate the effects of the interaction between Si 

and N on growth, dry matter yield and mineral composition of castor bean plants BRS 

Energy. The experiment was conducted at Embrapa Cotton in Campina Grande-PB, with 

treatments arranged in a randomized complete block design with factorial arrangement 

(4x4), four doses of silicon (00, 80, 160, 240 mg L-1) and four nitrogen rates (00, 60, 120, 

180 kg ha-1) applied per plant, with four repetitions, totaling 64 experimental units. Despite 

the increase of N levels decrease K content in the soil , stimulated the growth of other 

variables , stem diameter , number of leaves and leaf area . Silicon fertilization foliar 

provided a significant increase in stem diameter , with the highest value ( 18,54 mm ) due 

to the higher dose of Si applied . The absolute growth rate in stem diameter reached a 

maximum value of 0,068 mm.day-1 corresponding to 100 kg ha-1 N. The absolute growth 

rate for leaf area during the study period , set the quadratic model , with increasing 

increments as a function of N rates , with higher value of 20,60 cm2.dia-1 at a dose of 

102,63 kg ha-1. The increasing up to a maximum of 99,43 kg ha-1 N , gave a ratio of leaf 

area of 19,85 cm2 per gram of dry matter produced by the plant . The N content in the 

leaves increased as a function of N rates , an increase in leaf content of 4,76 % observed at 

the dose of 118,75 kg ha-1 N. The total dry mass reached 134,99 g plant-1 , depending on 

the dose of 109,79 kg ha-1 of nitrogen. 

  

Index terms : Silicon , Ricinus communis L. , plant nutrition .
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1. INTRODUÇÃO 

 

Nos últimos anos têm se observado em nível mundial, aumento da demanda por 

óleos vegetais pela indústria química, devido as suas inúmeras aplicações na fabricação de 

produtos bioquímicos. Dentre as fontes de óleos vegetais, destaca-se a mamoneira 

(Ricinnus communis L.), uma oleaginosa pertencente à família das Euphorbiaceaes, 

considerada uma planta rústica que apresenta em seus inúmeros subprodutos, compostos de 

natureza química peculiares muito utilizadas pela indústria ricinoquímica para fabricação 

de shampoos, tintas vernizes, perfumes e outros produtos (BELTRÃO; AZEVEDO, 2007). 

A cultura da mamona conquistou seu espaço econômico, político e ambiental no 

Brasil, devido ao interesse pela indústria ricinoquímica e pela busca de novas fontes de 

energias, visto que a obtenção do óleo diesel a partir do petróleo tem custo elevado, além 

da queima deste combustível ser altamente poluente. Os resultados apontam o biodiesel 

como uma das alternativas viáveis à substituir combustíveis obtidos do petróleo. No Brasil, 

o cultivo da mamoneira é realizado nas regiões Sudeste, Sul e Nordeste, sendo a área 

cultivada no país na safra 2011/2012 de 128, 2 mil hectares, com produção de 24,9 mil 

toneladas, com destaque para a região nordeste com 123,9 mil hectares cultivados com 

produção de 21,4 toneladas (CONAB, 2013). 

Apesar de sua rusticidade, a mamoneira pode ter seu crescimento e produtividade 

reduzida por diversos fatores, como por exemplo, a carência de nutrientes do solo (COSTA 

et al., 2011). De forma geral, os solos brasileiros, em especial os do Nordeste, são ácidos e 

de baixa fertilidade natural, principalmente em nitrogênio e fósforo o que tem limitado o 

crescimento e produção vegetal (AZEVEDO et al., 1997). No Brasil, o cultivo da mamona 

em grandes áreas é recente, e assim há uma carência de informações sobre a adubação 

nitrogenada, pois pouco se conhece sobre o efeito do nitrogênio no equilíbrio nutricional e 

no crescimento da mamoneira. 

O nitrogênio é o nutriente mais exportado pela mamona (37 kg de N t-1 de bagas) 

e o segundo mais extraído (156 kg ha-1), perdendo apenas para o potássio (172 kg ha-1) 

(NAKAGAWA, 1971). Lavres Júnior et al. (2005) verificaram que o N é o primeiro 

elemento a apresentar sintomas visuais de deficiência, e foi o nutriente que mais limitou o 

crescimento da mamona cultivada em solução nutritiva, resultando em redução da 

produção de matéria seca da parte aérea na ordem de 68%. 
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O estudo desse nutriente na cultura da mamoneira é de suma importância. 

Segundo Santos et al. (2004) a mamoneira tem elevada demanda por nitrogênio para seu 

crescimento e produção de área foliar. Quando cultivada sob deficiência, observa-se 

redução no crescimento e consequentemente plantas de baixo porte. A frutificação, quando 

ocorre, é fraca com poucos racemos e frutos com peso abaixo do esperado. Considerando 

as perdas de N, a baixa eficiência das fontes nitrogenadas e alta demanda da cultura em N, 

para que a mamoneira expresse seu potencial produtivo, as doses usualmente 

recomendadas não atendem a exigência da cultura. 

Efeitos benéficos da adubação com Si têm sido observados em várias espécies 

vegetais, especialmente quando estas estão submetidas a estresse biótico ou abiótico 

(SCHIMIDT et al., 1999; FARIA, 2000; TRENHOLM et al., 1999). A absorção de Si traz 

benefícios às culturas tais como: diminuição da transpiração (DATNOF et al., 2001), 

redução do ataque de pragas e doenças por se concentrar na epiderme das folhas, aumento 

da resistência ao acamamento e a eficiência fotossintética (DEREN, 2001). 

Mesmo não havendo uma definição clara sobre a interação entre o nitrogênio e o 

Si, há pesquisas em que se observam esta interação. Há relatos de que quando o N é 

fornecido em altas doses, pode diminuir os teores de Si nas plantas de arroz, como 

observado por Mauad et al. (2003). Segundo Barbosa Filho et al. (2000), aplicações de 

doses elevadas de N diminuem a acumulação de sílica nas folhas mais novas, predispondo 

a planta à maior incidência de bruzone na cultura do arroz.  

O Si melhora a arquitetura da planta favorecendo maior e melhor aproveitamento 

da luz, resultando da menor abertura do ângulo foliar, que torna as folhas mais eretas, 

diminuindo o auto sombreamento, sobretudo em condições de altas densidades 

populacionais e altas doses de N, Deren et al. (1994). Uma das conseqüências desse efeito 

seria um aumento da taxa fotossintética em tais plantas, aumentando a produção de poder 

redutor e, consequentemente, uma maior capacidade de assimilação de nitrogênio pelas 

plantas. 

Objetivou-se com esse trabalho avaliar os efeitos da interação entre o Si e o N 

sobre o crescimento, produção de matéria seca, e composição mineral de plantas de 

mamoneira BRS Energia. 
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2. REFERENCIAL TEÓRICO 

 

2.1. A Mamoneira 

 

A mamoneira Ricinus communis L., espécie oleaginosa originária da África, é 

considerada a única espécie vegetal a produzir óleo solúvel em álcool, pertencente à 

família Euforbiácea, popularmente conhecida como carrapateira, enxerida, rícino e palma-

de-cristo. (BELTRÃO et al., 2007; BELTRÃO et al., 2011). É uma planta oleaginosa, 

xerófila e heliófila, distribui por regiões de clima tropical, subtropical e temperado, com 

cultivos comerciais entre as latitudes 40º S a 52º N, estando o ótimo ecológico em altitudes 

de 300 m a 1.500 m (WEISS, 1983) produzindo ou vegetando do Rio Grande do Sul até a 

Amazônia, em virtude da sua capacidade de adaptação (AZEVEDO; BELTRÃO, 2007). 

Com variação de temperatura entre 20ºC a 30ºC, para que haja produções com valor 

comercial (BELTRÃO et al., 2007).  

Necessita de chuvas regulares durante sua fase vegetativa e de períodos secos na 

fase de maturação dos frutos, requerendo um mínimo de 600 mm de chuvas, para produzir 

bons rendimentos. Temperaturas muito elevadas, superiores a 40ºC provocam aborto das 

flores, reversão sexual das flores femininas em masculinas e redução substancial do teor de 

óleo nas sementes (BELTRÃO; SILVA, 1999).  

É uma planta C3, com menor eficiência no metabolismo fotossintético que as C4, 

pois liberar mais CO2 para a atmosfera, devido ter elevada taxa de respiração (oxidativa e 

fotorrespiração) foliar, com taxa fotossintética em torno de 18 a 27 mg CO2 dm2.hora, 

abaixo de plantas eficientes C4, que praticamente, não liberação de CO2, como,  milho e 

sorgo, que podem produzir até 60 mg CO2 dm2.hora (D’YAKOV, 1986; PIMENTEL, 

1998). Embora a comparação entre as plantas oleaginosas não pode ser feita de maneira 

direta com as plantas produtoras de açúcar. As plantas oleaginosas consomem 18 ATP para 

a formação de hexoses na ausência de fotorrespiração, enquanto as plantas produtoras de 

açúcar consomem 30 ATP, portanto 40% a mais.  

O ciclo da mamoneira, de forma geral, varia de 180 a 240 dias distribuídos em 12 

estádios fenológicos, englobando as fases de crescimento e desenvolvimento que ocorrem 

em todo o seu ciclo biológico, e, do seu conhecimento, se obtém uma maior eficiência no 

manejo da planta, que vai da germinação até a maturação dos frutos, e estão condicionadas 

às adaptações edafoclimáticas das diferentes cultivares (BELTRÃO et al.,2011). 
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Apresenta sistema radicular pivotante com raízes fistulosas ramificadas (WEISS, 

1983). O caule é uma haste vertical não ramificado terminando por uma inflorescência 

(cacho primário ou racemo), que tem em sua base, uma gema na axila da última folha, e, 

todos os demais ramos crescem da mesma maneira, terminando sempre por uma 

inflorescência formando uma estrutura simpodial. Apresenta folhas largas (até 60 cm), 

simples, digitolobadas, denticuladas, pecíolo longo (até 50 cm), com coloração verde ou 

avermelhada, tendo dois pares de glândulas nectaríferas (BELTRÃO et al., 2007). No 

caule, os internódios (espaços entre as gemas foliares: nós) longos indicam um bom 

crescimento da planta a uma boa disponibilidade de nutriente, água e condição climática; 

os curtos indicam condições adversas (estiagem, deficiência de nutrientes) ao crescimento 

(BELTRÃO et al., 2011).  

Ela é uma planta monóica, com inflorescência no final de um ramo, complexa, 

devido à variabilidade de flores: femininas, femininas instáveis, masculinas, masculinas 

com genes feminino e apesar de ser uma planta autógama, tem uma taxa de alogamia em 

torno de 40%, o fruto é uma cápsula lisa ou espinhosa, deiscente ou indeiscente, com 

coloração verde ou vermelha e com um comprimento de até 80 cm (BELTRÃO et al., 

2007).  

O óleo de mamona provém de sementes com grande variabilidade em cor, massa, 

tamanho do tegumento e da carúncula. A amêndoa da semente pode ter 70% da massa da 

baga contendo 43 a 49% de óleo e 18 a 26% de proteína bruta, além de ser constituída de 

84 a 91 % de um único ácido graxo, o ricinoléico, que é o único a ter uma hidroxila ligada 

á cadeia de carbono (ácido graxo hidroxilado) que o torna solúvel em álcool lhe permitindo 

grande versatilidade na síntese de produtos pela industria química, ao contrário dos outros 

óleos vegetais constituído por diferentes ácidos graxos. É empregado na indústria de 

cosméticos, lubrificantes, para motores de alta rotação, fluido hidráulico em avião, 

(FREIRE et al.,2007). É utilizado, ainda, na fabricação de corantes, desinfetantes, 

germicidas, vernizes, matéria plástica, na elaboração de próteses e implantes em cirurgia 

ósseas, de mama e de próstata (SANTOS et al., 2007).  

Como coproduto, tem-se a torta de mamona (nutriente orgânico), rica em 

nitrogênio (4,6-7,54%), fósforo (3,0-3,11%) e potássio (0,52-0,96%) e, é usada para 

recuperar solos desgastados, e também, no complemento de ração animal, pelo seu alto 

valor protéico, mediante a destoxicação por tratamento térmico, como a autoclavagem, 
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para neutralizar a ação de dois compostos tóxicos (ricina e ricinina) e um alergogênico 

(SEVERINO, 2005; SEVERINO et al., 2005).  

O biodiesel é um derivado éster monoalquílico resultante da transesterificação de 

óleos vegetais ou, de gordura animal. O óleo de mamona mesmo com alta viscosidade 

(21,6 a 37,8 cSt), devido à alta concentração de ácido ricinoléico, poderia resultar numa 

queima incompleta com excesso de carbono nos bicos e anéis dos pistões, no entanto, 

poderá ser misturado ao óleo diesel em até 40% para formar biodiesel, mantendo-se nas 

especificações da Agência Nacional do Petróleo (até 5,5 cSt), com baixo ponto de 

inflamabilidade, elevada estabilidade térmica e elevado número de cetano, e 

consequentemente, menor emissão de poluentes. Na composição do biodiesel, apenas a 

soja é cultivada em escala suficiente para a demanda de produção desse óleo, com cerca de 

90%, o restante é complementado com outros óleos vegetais, como, mamona, algodão, 

girassol, canola, dendê, babaçu. A glicerina é o outro subproduto da transesterificação com 

cerca de cerca de 10% do total (BELTRÃO, 2008). 

O petróleo além de ser um recurso finito, não renovável, é altamente poluente, 

provocando aumento do CO2 atmosférico e elevação da temperatura, aumento do nível do 

mar em até 1,0 metro, além da inibição da fotossíntese devido ao excesso de amido nos 

cloroplastos e desorganização das membranas das organelas promovendo a destruição da 

vida no planeta Terra. O biodiesel é menos tóxicos, biodegradáveis e muito menos 

poluentes, podendo reduzir entre 78% a 100% os gases que produzem o efeito estufa, bem 

como, a redução total do enxofre, e além do mais, envolve muita gente e ocupações na 

produção da matéria-prima principal, que são os óleos vegetais, que para produzi-los, as 

plantas retiram o dióxido de carbono do ar, fazendo uma espécie de sequestro de carbono 

Na atualidade o Brasil consome por ano cerca de 42 bilhões de litros de diesel, dos quais 

6,7 bilhões são usados na agricultura e importa-se quase 25%, ou seja, cerca de 11 bilhões 

de litros, com a evasão de mais de 2,5 bilhões de dólares por ano, o que equivalente à 

geração de mais de 600.000 empregos ou ocupações por ano, com  espécies adaptadas ao 

semi-árido, sendo a mamona uma das poucas disponíveis, assim como o algodão herbáceo 

e arbóreo, dependendo da área zoneada para esta fibrosa e oleaginosa  (BELTRÃO et al., 

2007). 

Com a lei nº 11.097, publicada em 13 de janeiro de 2005, foi introduzido o 

biodiesel na matriz energética brasileira e ampliada à competência administrativa da ANP, 

que passou desde então a denominar-se Agência Nacional do Petróleo, Gás Natural e 
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biocombustíveis e assumiu as atribuições de especificar e fiscalizar a qualidade dos 

biocombustíveis e garantir o abastecimento do mercado, em defesa do interesse dos 

consumidores. Apesar de somente em 1º de janeiro de 2010, o óleo diesel comercializado 

em todo o Brasil passou a conter 5% de biodiesel.  

A contínua elevação do percentual de adição de biodiesel ao diesel demonstra o 

sucesso do Programa Nacional de Produção e Uso do Biodiesel e da experiência 

acumulada pelo Brasil na produção e no uso em larga escala de biocombustíveis. O Brasil 

está entre os maiores produtores e consumidores de biodiesel do mundo, com uma 

produção anual, em 2010, de 2,4 bilhões de litros e uma capacidade instalada, no mesmo 

ano, para cerca de 5,8 bilhões de litros (ANP, 2013). 

  

2.2.  Nutrição da mamoneira 

 

A falta de nitrogênio na mamoneira causa sintomas de deficiência que são 

semelhantes aos da maioria das plantas: clorose (amarelecimento) das folhas mais velhas e 

abscisão (queda) de folhas (principalmente as mais velhas) e redução do crescimento em 

altura, no entanto, quando o solo é muito pobre em matéria orgânica e em nitrogênio, 

poderá haver apenas a paralisação do crescimento e abscisão das folhas velhas inferiores 

(SEVERINO et al., 2009); nesse aspecto, poderá haver menor produção de carbono e          

deficiência na quantidade de clorofila e da enzima Rubisco (EPSTEIN; BLOOM, 2006). 

 A mamoneira é uma planta que necessita ser cultivada em solos muito férteis para 

que atinja boa produtividade (SEVERINO et al., 2005), podendo-se adaptar a diversos 

tipos de solos e climas, embora ser uma planta exigente em solos férteis (BELTRÃO et al., 

2005). 

Nesse sentido, as plantas adultas iniciam a deficiência, avaliadas por diagnose 

visual, por um amarelecimento nas folhas inferiores que podem ou não se iniciar pelas 

nervuras, mas invariavelmente alcança rapidamente toda a folha, que tomba sobre o caule, 

fecha-se sobre a face superficial e cai; há perda de cor das folhas inferiores para o ápice, 

seguido de queda prematura da folhagem. A mamona tem forte demanda por nitrogênio 

para seu crescimento e produção de área foliar, ocorrendo forte redução no crescimento 

com baixa estatura.  A frutificação, quando ocorre, é fraca com poucos cachos e frutos com 

peso abaixo do esperado (FERREIRA, et al., 2008). 
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Resultados de pesquisas realizadas no sudeste do País indicam que a mamoneira é 

sensível à acidez do solo e bastante responsiva à adubação, e tem uma demanda nutricional 

elevada, exportando, em média, 38 kg de N; 9 kg de P2O5; 10 kg de K2O; 7 kg de Ca e 9 kg 

de Mg por tonelada de sementes produzida (SAVY FILHO, 1995). Nesse aspecto a poderá  

exportar 80 kg de N, em lavouras com produtividade de 2.000 kg ha-1 (CANECCHIO 

FILHO e FREIRE, 1958).  

A recomendação de adubação com o nitrogênio é feita de acordo com os teores de 

matéria orgânica (MO): solo com baixo teor (menos de 10 g de MO para 1 kg de solo), 

usar até 60 kg de nitrogênio por hectare, e, em solos com alto teor (mais de 30 g de MO 

para 1 kg de solo), usar 15 kg de nitrogênio por hectare. Para o Fósforo, a recomendação é 

de 50, 40 e 30 kg ha-1, respectivamente, quando os teores no solo forem menores que 11, 

de 11 a 20, e maior que 20 mg dm-3; e para o potássio,  a recomendação é de 40, 30 e 20 kg 

ha-1, respectivamente, quando os teores de potássio no solo, for  menor que 0,12, de 0,12 a 

0,23, e maior que 20 mg dm-3 (SEVERINO et al., 2007). 

Sabe-se que os teores foliares de N na mamona, chegam a 41,3 g kg-1 aos 64 dias 

da germinação e é comum se encontrar na torta da semente cerca de 45,0 g kg-1 desse 

nutriente (NAKAGAWA; NEPTUNE, 1971). Severino et al. (2006), ao avaliar a adubação 

com macro e micronutrientes na cultura da mamona, concluíram que a adubação promoveu 

aumento de produtividade da cultivar BRS Nordestina, com destaque para a adubação 

nitrogenada, e o teor de óleo foi influenciado positivamente pelo aumento das doses de 

fósforo. 

Foi avaliada a aplicação de nitrogênio em cobertura na cultura da mamoneira 

usando-se doses de 0, 30, 60 e 120 kg ha-1 de N e a produtividade máxima foi obtido com a 

aplicação de 80 kg ha-1 de N em cobertura sem alterar o teor de óleo das sementes (Silva et 

al., 2007).  

Pela avaliação da adubação da mamoneira cultivar BRS Nordestina em condições 

de sequeiro, concluiu-se que ela proporciona maior crescimento vegetativo das plantas e as 

doses de 100 kg ha-1 de N incrementa a produtividade de sementes em 165%, sendo 

indispensável para a obtenção de elevadas produtividades (SOFIATTI et al., 2010). A 

clorofila é o principal pigmento fotossintético, e sua correlação com a nutrição nitrogenada 

pode ser medida por meio do índice SPAD (JESUS; MARENCO, 2008). 
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2.3. Importância do Nitrogênio para a mamoneira 

 

O nitrogênio é um dos nutrientes absorvidos em maior quantidade pela maioria 

das culturas. Sua importância é conhecida pelas funções exercidas no metabolismo das 

plantas, participando como constituinte de proteínas, enzimas, ácidos nucléicos, 

citocromos, moléculas de clorofila, membranas e diversos hormônios vegetais promover o 

crescimento vegetativo e a formação de gemas floríferas e frutíferas etc., além de ser 

considerado um dos fatores mais relevantes para o aumento da produção (MARSCHNER, 

1995; SOUZA e FERNANDES, 2006).  

Esse nutriente influencia a taxa de emergência, de expansão e duração da área 

foliar, consequentemente, atua na interceptação da radiação fotossinteticamente ativa, bem 

como no uso eficiente desta e nos seus efeitos sobre a taxa fotossintética (ARAÚJO et al., 

2004). Além disso, o nitrogênio é responsável por características do porte da planta, tais 

como tamanho de folhas e do colmo, que são fatores intrínsecos à produção de massa seca 

e valor nutritivo da planta. Em muitos sistemas de produção, a disponibilidade de 

nitrogênio é quase sempre um fator limitante, influenciando o crescimento da planta mais 

do que qualquer outro nutriente. A eficiência da adubação nitrogenada é dependente de 

condições climáticas, tipo de solo, acidez, conteúdo de argila, cultivares, cultura anterior, 

distribuição de chuvas, níveis de fertilização nitrogenada e sua interação com outros 

nutrientes (OLIVEIRA et al., 2002). 

A maior quantidade de nitrogênio nos solos está ligada a cadeias carbônicas 

constituindo a matéria orgânica, em formas não diretamente disponíveis para as plantas 

podendo ocorrer a partir de deposições atmosféricas, fixação biológica (simbiótica ou não) 

e adubações minerais ou orgânicas (CANTARELLA, 2007). O teor total desse elemento na 

camada superficial (0-20 cm) varia em geral de 0,05 a 5%, o que equivale de 1000 a 10000 

kg ha-1. Geralmente, menos de 5% do N total está em formas inorgânicas como o íon 

amônio (NH4
+) e o íon nitrato (NO3

-), sendo as formas mais absorvidas pelas plantas (SÁ, 

1997), mas pode ocorrer nas formas de aminoácidos, peptídeos e formas complexas 

insolúveis (ODUM, 1988).  

A deposição superficial de resíduos vegetais e a não incorporação desses ao solo 

contribuem para a diminuição das perdas de matéria orgânica por erosão e mineralização 

microbiológica e nos resíduos vegetais mantidos na superfície do solo e elevam, 

constituindo-se nos principais reservatórios de N para as culturas em sistema de semeadura 
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direta, especialmente para aqueles que não fixam N2 da atmosfera (OLIVEIRA et al., 

2002). 

A mamoneira é exigente em fertilidade do solo e necessita de constante 

conhecimento científico sobre o uso de fertilizantes, seu aperfeiçoamento e adaptação para 

as diferentes regiões onde a cultura é plantada. Essas informações demonstraram que os 

macronutrientes estimulam o crescimento vegetativo e o reprodutivo, enquanto os 

micronutrientes se expressam principalmente sobre o crescimento reprodutivo. A mamona 

tem elevada demanda por nitrogênio para seu crescimento e produção de área foliar, e 

quando cultivada sob deficiência, observa-se redução no crescimento e conseqüentemente 

plantas de baixa estatura, e a sua frutificação, quando ocorre, é fraca com poucos racemos 

e frutos com peso abaixo do esperado (SANTOS et al. ,2004). 

O fornecimento de nitrogênio as plantas via adubação mineral funciona como 

complementação a capacidade de seu suprimento pelo solo, a partir da mineralização, pois, 

quando ocorre a falta de nitrogênio no solo as plantas crescem e produzem menos e suas 

folhas ficam cloróticas, no entanto, quando ha excesso de N no solo, a planta vegeta 

excessivamente, produz menos frutos, apresenta menos raiz, transpira demasiadamente, 

ficando sujeita à seca e ao ataque de pragas e moléstias (MALAVOLTA et al., 2002).  

Em estudos para avaliar os efeitos da adubação nitrogenada (doses de 0, 90, 180 e 

270 kg ha-1), sobre os teores foliares de N, P, K, Ca, Mg e S no algodoeiro, nas condições 

do semiárido conclui-se que para as variáveis de crescimento, como  altura de plantas, 

diâmetro caulinar e área foliar, houve aumento linear com o aumento das doses 

nitrogenadas, elevação dos teores foliares de N e K e redução dos de S (SOFIATTI et al., 

2010). 

De modo geral, o comportamento das plantas em relação ao diâmetro caulinar foi 

semelhante ao crescimento das plantas em altura, mostrando correlação positiva entre as 

duas variáveis de crescimento estudadas, indicando elevada eficiência da espécie para 

transformar nutrientes absorvidos em fitomassa (SOFIATTI et al., 2010; DINIZ NETO, et 

al., 2012) e que o aumento dessas doses proporcionaram maior número de folhas, 

possibilitando sintetizar e assimilar maior quantidade de carboidratos produzidos pelo 

processo fotossintético (TAIZ; ZEIGER, 2010). Já em estudos feitos por Scivittaro  et  al. 

(2008), observou-se que para altas doses de N (até 100 kg ha-1), houve um ajuste dos 

valores de altura da mamoneira a uma regressão polinomial quadrática, com valor máximo 

de 1,50m, decrescendo-se  a partir dessa dose.  
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Brito Neto et al. (2012), estudando o efeito de quatro doses de nitrogênio (0, 40, 

80, 120 kg ha-1) na forma de uréia e quatro doses de Zn (0,0, 1,0, 2,0 e 3,0g L-1) na forma 

de sulfato de zinco (20%), sendo estas aplicadas via foliar, sobre o crescimento e os 

componentes de produção da mamoneira, observaram que não houve efeito significativo 

das doses de nitrogênio para a altura da planta e diâmetro do caule, no entanto, a dose  de 

40 Kg ha-1 de nitrogênio promoveu incremento sobre o número de cápsulas, sendo a 

responsável pelo maior número, porém a aplicação de doses superiores (80, 120 kg ha-1), 

promoveu o decréscimo dessa variável. 

Avaliações de crescimento observadas por Severino et al.(2005), revelaram que a 

altura e  o diâmetro do caule das plantas é muito influenciada por adubações nitrogenadas, 

e que devido o excessivo crescimento vegetativo, o diâmetro do caule das plantas é muito 

alto, com média de 4 cm. Nas plantas que não receberam adubação nitrogenada, a altura foi 

31% menor, reduzindo-se de 2,62 m para 1,8 m. Nesse sentido, foi constatado por Severino 

et al. (2007) que dose de 2,0 t ha-1 de torta de mamona (7,4 % de N) propicia aumento 

significativo em todas as características de crescimento, de forma proporcional à dose 

fornecida, tendo a vantagens em relação à aplicação de fertilizantes químicos é a liberação 

gradual dos nutrientes à medida em que são demandados para o crescimento da planta 

(SEVERINO et al.,2004). 

Estudos de Souza et al. (1974) afirmam que, geralmente o nitrogênio, quando 

aplicado em doses entre 40 e 100 kg ha-1, tem propiciado aumento significativo na 

produtividade, embora possam atribuir que a falta de resposta à adubação nitrogenada, 

pode ser devido ao alto teor de matéria orgânica existente no solo. E a ausência do 

nitrogênio, segundo Marschner (1995), que é o elemento formador de aminoácidos e 

proteínas, impede e retarda o crescimento inicial da planta, por impossibilitar a 

incorporação de carbono e, desta forma, à medida que a planta cresce, haverá deficiência 

na quantidade de clorofila e da enzima Rubisco (Ribulose-1,5-bisfosfato Carboxilase). 

Pelos estudos de produtividade e crescimento da mamoneira em resposta à 

adubação orgânica e mineral feitos por (SEVERINO et al., 2006) em que usaram dose de 

doses de matéria orgânica (2,5, 5,0 e 10,0 t ha-1) e mais,  N, P, K, e micronutrientes,  

observou-se que quando a adubação mineral incluiu N, o aumento de produtividade foi 

significativo, embora a limitação de chuvas tenha reduzido atividade dos microrganismos e 

limitado a  mineralização dos nutrientes, observado pela grande parte do esterco não ter 

sido decomposto até o período da colheita. 
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O material orgânico também pode favorecer o crescimento da mamoneira pela 

melhoria das características físicas do solo, como aeração e retenção de água. No entanto, 

para surtir esses efeitos, o material o material precisa ser espalhado em toda a área e, se 

possível, incorporado ao solo. O nitrogênio também promove mudanças na expressão 

sexual da mamoneira, favorecendo o aumento de produtividade (SEVERINO et al.,2005). 

Moro (2008), avaliando adubação nitrogenada em mamona, concluiu que a produtividade 

de grãos foi incrementada em 25% a mais, pela aplicação de nitrogênio independente da 

forma de parcelamento e da fonte utilizada e que maior volatilização de NH3 ocorreu na 

maior dose de nitrogênio (120 kg ha-1). 

A adubação nitrogenada aumentou a produtividade da mamoneira, quando se 

utilizaram as doses de máxima eficiência técnica e econômica, respectivamente, 84,3 e 

76,6 kg ha-1 de N., promovendo seu crescimento com doses de até 100 kg ha-1 

(SCIVITTARO et al., 2008). A aplicação na mamoneira de doses maiores de adubação 

nitrogenada (120 e 180 kg ha-1) favoreceu o aumento apenas da massa seca foliar, e, não 

diferiram significativamente, da testemunha, em função das condições de sombreamento 

em que as plantas foram submetidas durante o experimento, sendo assim, o crescimento 

vegetativo da testemunha provavelmente não foi devido a resposta ao tratamento, mas 

pode ter sido um estiolamento que resultou em uma não diferenciação dos tratamentos que 

receberam maiores doses de nitrogênio. (LIMA SILVA et al.,2008). 

Baliza et al. (2007),  observaram que quando as plantas foram cultivas na menor 

concentração de N (20 mg L-1) seu crescimento foi drasticamente reduzido, apresentando 

sintomas visuais de deficiência de nitrogênio aos 20 dias da emergência, em relação a 

doses mais elevadas de 100 mg L-1, indicando que o aumento deste nutriente, proporciona 

maior produção de tecido vegetal e de matéria seca. O N participa de diversos processos na 

planta, dentre eles a divisão celular e a constituição de tecidos (Taiz e Zeiger, 2011). 

O nitrogênio também proporciona repostas quanto á ocorrência de doenças. No 

estudo dos efeitos de doses de Silício, Nitrogênio e Potássio, na incidência de doenças em 

tomate, verificou-se decréscimo na severidade de alternaria com o aumento das doses de 

nitrogênio. Concentrações altas de nitrogênio promove suculência de tecido foliar criando 

condições à ocorrência deste patógeno Santos (2008). Leite et al. (2003), constataram que 

doses mais altas de N, proporcionaram ao tomateiro, maiores áreas de folha, maior 

incremento de flores por cacho e maior ataque de traça favorecido por estas doses. 
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2.4.  Dinâmica do nitrogênio no solo 

 

A disponibilidade de N para as culturas em dependerá da dinâmica de 

decomposição da matéria orgânica e dos resíduos vegetais na superfície do solo, e às 

transformações microbiológicas por que passa no solo, o nitrogênio está sujeito a perdas 

por lixiviação, volatilização e desnitrificação, constituindo-se, na forma de NO3
-, quando 

em excesso, um eventual poluente de mananciais d’água (LOPES et al., 2005). Assim, as 

diferentes formas de N orgânico e inorgânico do solo estão em equilíbrio dinâmico, de 

modo que seu comportamento é muito complexo (SÁ, 1997; OLIVEIRA et al., 2002). 

Para que o nitrogênio seja disponibilizado e assimilado pelos vegetais, suas 

formas orgânicas precisam ser mineralizadas, e este processo de mineralização é feito por 

bactérias amonificantes transformam o N orgânico em N amoniacal e posteriormente as 

bactérias nitrificantes transformam o N amoniacal em N nítrico (MARSCHNER, 1995), 

esta nitrificação ocorre em duas etapas, a nitritação (transformação de amônio em nitrito, 

por bactérias do gênero Nitrossomonas) e nitratação (transformação de nitrito a nitrato, por 

bactérias por do gênero Nitrobacter) e é influenciado por diversos fatores, entre os quais se 

destacam a aeração, temperatura, umidade, pH, matéria orgânica e relação C/N, além de 

fatores tóxicos (Moreira e Siqueira, 2006), ou, reações bioquímicas de desaminação, em 

que libera N na forma de amônio (NH4
+), a qual pode ser oxidada a NO3

- pela ação de 

bactérias nitrificadoras (AITA; GIACOMINI, 2007), e assim, o N é encontrado, 

principalmente, nas formas de nitrato e amônio na solução do solo, sendo a forma de 

nitrato a mais disponível para as   plantas (MARSCHNER, 1995). 

No solo pode ocorrer perdas de nitrogênio por lixiviação de nitrato podendo 

infiltrar e contaminar o lençol freático (MARSCHNER, 1995), por imobilização 

microbiana do N contido no fertilizante, por volatilização que consiste na redução de 

formas oxidadas (N-NO2- e N-NO3
-) a formas gasosas (N2 e N2O), intermediada por 

bactérias anaeróbias facultativas (MOREIRA; SIQUEIRA, 2006). Por outro lado, a 

maioria das plantas assimila preferencialmente o N-NO3
- (MARSCHNER, 1995). Sendo a 

disponibilidade de N-NO3
- dependente da nitrificação biológica, a capacidade nitrificadora 

é um bom indicador de fertilidade de solo (MOREIRA; SIQUEIRA, 2006; SÁ et al., 

2007).  

As perdas gasosas na forma de amônia (NH3
+) e óxidos nitrosos (NO2, N2O, NO) 

para a atmosfera pode chegar a 80% do adubo aplicado, ou seja, em casos extremos a 
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planta consegue absorver apenas 20% do adubo (OLIVEIRA, 2008), provoca a 

volatilização da amônia devido às mudanças no metabolismo do N da planta e também por 

meio da quebra de proteínas e aminoácidos (BOLOGNA, 2006), para minimizar os efeitos 

desse processo, recomenda-se o parcelamento da adubação nitrogenada (SILVA, 2007).  

 

2.5.  Silício 

 

O Si é um micronutriente regulamentado pelo decreto nº 4954 de 2004 e 

atualizado pela instrução normativa nº 5 de 23 de fevereiro de 2007 (BRASIL, 2004). 

Ele é considerado elemento benéfico (MALAVOLTA, 1980; EPSTEIN, 1999; 

KORNDÖRFER, 2006). Dessa forma, o efeito benéfico do silício nas plantas é mais 

evidente em cultivos sob condições de estresse (MA; TAKAHASHI, 2002). Isto acontece 

porque o Si é capaz de proteger as plantas contra vários estresses bióticos e abióticos 

(FAWE et al., 2001; LUX et al., 2002; MA; YAMAJI, 2006). 

No solo o Si ocorre principalmente como mineral inerte das areias, quartzo (SiO2 

puro), caulinita, micas, feldspato e em outros argilo-minerais silicatados, sendo o óxido de 

silício (SiO2) o mineral primário mais abundante nos solos, constituindo a base da 

estrutura da maioria dos argilo-minerais (BARBOSA FILHO et al., 2001).  

As principais formas de Si no solo de acordo com Korndörfer et al. (2003) são: 

 Si solúvel (H4SiO4 Ácido monossilícico) facilmente aproveitável pelas plantas; 

 Si estrutural em minerais silicatados; 

 Si adsorvido ou precipitado com óxidos de Fe, Al e Mn; 

 Sílica biogênica oriunda da decomposição da matéria orgânica do solo e constituída 

por formas amorfas (ou poliméricas de Si). 

O Si no solo na forma solúvel H4SiO4 (ácido monossilícico) é facilmente 

absorvido pelas plantas (KORNDÖRFER et al., 2003). Ao ser absorvido, é facilmente 

translocado no xilema na forma H4SiO4, tem tendência natural a se polimerizar sendo 

assim pouco móvel, pois depois de solidificado, torna-se imóvel na planta. A absorção de 

Si traz inúmeros benefícios, principalmente ao arroz, que absorve e acumula elevadas 

quantidades (2,7–8,4%) (KORNDÖRFER et al., 1999). 

As principais formas de Si presentes no solo são o ácido monossilícico (H4SiO4), 

ácido polissilícico, compostos organosilícicos, óxidos de ferro e alumínio e nos minerais 

silicatados, e na planta, o ácido monossilícico, sílica amorfa hidratada-SiO2nH2O- (Bezerra 
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Neto e Barreto, 2011) disponível na solução do solo, e através de transportadores se 

acumula principalmente na parte aérea, junto à cutícula (tricomas, espinhos, pelos, etc) 

(KORNDÖRFER, 2007), depositado como sílica amorfa hidratada principalmente no 

retículo endoplasmático, em espaços intercelulares e paredes celulares, protegendo-a das 

enzimas de degradação (TAIZ e ZEIGER, 2011).  

Em 1840, Justius Von Liebig, pai da Nutrição Mineral de Plantas, o primeiro 

cientista a sugerir o uso de silicato de sódio, como fertilizante silicatado, e a conduzir um 

trabalho de pesquisa com o elemento em casa-de-vegetação. De acordo com Rodrigues et 

al. (2007), anteriormente, o Si era fornecido para as plantas somente via uso de escórias de 

siderurgia na forma de silicatos de cálcio e magnésio, com baixíssima solubilidade em 

água e podendo apresentar traços de metais pesados. O silicato de potássio é originário da 

fusão em alta temperatura e pressão da sílica (quartzo finamente moído) com hidróxido de 

potássio e, ou, carbonato de potássio. No mercado existem diferentes silicatos de potássio 

com diferentes garantias de potássio (K) e Si, no entanto, de maneira geral, são produtos 

totalmente solúveis em água de alto pH, densos (d= 1,4 g cm-3) com teores médios de K2O 

de 10 a 15% e Si de 10 a 12,2%.  

A essencialidade do silício é ponderada por Bezerra Neto e Barreto (2011), no 

sentido em que ainda não foi demonstrada, mesmo com a utilização de técnicas, como o 

cultivo hidropônico de plantas, entretanto, alguns autores mostram que principalmente para 

gramíneas o Si é benéfico, pois, melhora a arquitetura de planta, impede a toxidez 

provocada apelo excesso de Mn, diminui a taxa de transpiração, aumenta a atividade 

fotossintética e a resistência das plantas às pragas e doenças.  

Lima Filho (2013) observa que essa essencialidade foi comprovada apenas para 

algumas espécies, falhando-se em descrever o mecanismo de ação deste elemento, o que 

faz com que a maioria dos autores o considere apenas como elemento benéfico, o que o 

incluiu na lista dos micronutrientes. Os conceitos de essencialidade de minerais para as 

plantas, estabelecidos há 65 anos, levam em conta o fato de que a deficiência do elemento 

torna impossível para a planta completar a fase vegetativa ou reprodutiva do seu ciclo de 

vida, de que a deficiência do elemento é específica, sendo impedida ou corrigida com o 

fornecimento deste elemento e que o elemento está diretamente relacionado com a nutrição 

da planta, não levando em conta os possíveis efeitos na correção de quaisquer condições 

químicas ou microbiológicas do solo ou outro meio de cultura.  
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Pode-se entender a essencialidade do silício a partir de uma situação em que a 

concentração do ácido silícico estiver abaixo de um limite crítico na solução do solo e, 

consequentemente na planta, estiver provocando mudanças bioquímicas, como, a 

diminuição de sua resistência a fatores estressantes, bióticos ou abióticos, ou seja, causados 

por desequilíbrio nutricionais, doenças fúngicas, pragas e condições climáticas adversas. O 

Silício é considerado essencial para as plantas por alguns autores (Epstein e Bloom, 2006), 

benéfico por proporcionar resultados positivos no que diz respeito ao manejo alternativo de 

pragas e doenças (Korndorfer, 2006), absorvido do solo na forma de ácido silícico, é 

depositado na parede celular podendo trazer efeitos benéficos para as plantas (Epstein 

2001). 

De acordo com Lima Filho (2013), o silício exerce um papel importante nas 

relações planta-ambiente, pois pode produzir melhor adaptações ás condições climáticas, 

edáficas e biológicas. Pode reduzir a susceptibilidade à doenças causadas por fungos, por 

meio da formação de barreiras mecânicas, por sua acumulação na epiderme das folhas, 

produzindo células epidérmicas mais grossas e um grau maior de silicificação, semelhante 

ao da lignina, que é um componente estrutural resistente à compressão; pode ativar genes 

da produção de compostos do metabolismo de defesa das plantas, como polifenóis e 

enzimas; da síntese de toxinas que podem agir como substâncias inibidoras ou repelentes 

ao ataque de parasitas. 

Alguns exemplos de doenças que encontram resistência do hospedeiro com a 

suplementação de silício incluem bruzone e mancha parda em arroz, cancro-da-haste em 

soja, oídio em trigo, soja, cevada, pepineiro e tomateiro, rizoctoniose em arroz e sorgo, 

cercosporiose em cafeeiro, dentre outras. Além desses aspectos, seu uso proporciona 

aumentar a produtividade através de uma nutrição mais equilibrada e sustentável, com a 

diminuição de fertilizantes químicos. 

Analisando-se alguns estudos, observa-se que a acumulação de SiO2 nas células 

da epiderme foliar aumentam a resistência mecânica dos tecidos à brusone e a insetos   

praga, aumenta o teor de clorofila das folhas e a tolerância das plantas aos estresses 

ambientais como frio, calor, seca, o desbalanço nutricional, toxicidade a metais, além de 

reforçar a parede celular e aumentar a resistência contra patógenos e insetos 

(MARSCHNER, 1995; EPSTEIN, 2001), podendo aumentar a produtividade de algumas 

espécies, e potencializar processos fisiológicos nas plantas (KORNDÖRFER et al.,1999), 
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aumentar a fitomassa, a qualidade e a produtividade de grãos de arroz irrigado e contribui 

para o manejo sustentável de brusone e de insetos-praga (SANTOS et al.,2007). 

Gomes et al. (2005) sugeriram que o silício atua como elicitor do mecanismo de 

resistência induzida em plantas de trigo, que são as mudanças fisiológicas e morfológicas 

que as plantas podem apresentar em respostas induzidas à herbivoria ou outro tipo de 

estresse, que reduzem a sobrevivência do herbívoro, sua reprodução ou preferência pela 

planta hospedeira, ocorre a resistência induzida (KARBAN; MYERS 1989). Nesse 

aspecto, Camargo et al. (2008), verificaram resistência induzida quanto à aplicação do 

ácido silícico em Pinus taeda induzindo resistência ao pulgão-gigante-do-pinus C. 

atlantica, com efeitos expressivos na fase adulta do inseto.  

Do mesmo modo, Goussain et al. (2002), observaram que a aplicação de silicato 

de sódio aumentou significativamente o teor de silício nas folhas de plantas de milho, que 

atingiu 1,4% de SiO2, enquanto na testemunha (sem silício) foi de 1,0%, o que dificultou a 

alimentação das lagartas, causando aumento de mortalidade e canibalismo e, portanto, 

tornando as plantas de milho mais resistentes à lagarta-do-cartucho.  

Avaliando o mecanismo de indução à resistência bioquímica em batatas, Gomes et 

al. (2008), observou que a lignina foi mais afetada que os taninos, visto que o teor destes só 

aumentaram nas plantas adubadas com silício via solo e foliar, provavelmente pela maior 

quantidade de silício fornecida para essas plantas. Já o teor de lignina aumentou nas 

plantas adubadas com silício independentemente da forma de aplicação, podendo ter 

contribuído para as reduções da taxa de crescimento populacional e da fecundidade dos 

pulgões. 

Estes pesquisadores citando outros trabalhos observam que a lignina é um 

polímero complexo depositado na parede celular e responsável pelo enrijecimento da 

parede e pelo aumento da resistência ao ataque de agentes externos (STRACK, 1997), a 

lignificação das células estabelece uma barreira mecânica à penetração, tornando a parede 

celular mais resistente ao taque de enzimas hidrolíticas e aumentando sua resistência à 

difusão de toxinas (RIDE, 1978), que dentre os mecanismos de resistência de plantas a 

insetos, a antixenose e a antibiose, podem ser independentes ou não, atuando de forma 

diferenciada na planta e no inseto (THOMPSON 1988, TIFFIN, 2000).  

Rodrigues et al. (2007), avaliando o efeito da aplicação de Si foliar sobre a 

ferrugem asiática na soja, observou que a aplicação de Si dificulta o início do processo de 

infecção, devido sua deposição sobre a superfície das folhas formando uma barreira 
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protetora contra a penetração do fungo no tecido vegetal. Após essa ocorrência, somente 

com a aplicação de fungicidas se tem um controle mais eficaz. Sendo assim, que o efeito 

do Si é indireto sobre a requeima. Do mesmo modo, Rodrigues et al. (2007), avaliando o 

efeito da aplicação de doses de Si foliar e de fungicidas sobre a severidade de requeima, 

canela preta e sarna da batatinha e suas correlações com os teores de Si foliar, concluíram 

que a aplicação de Si (0,5% de Si) pode auxiliar no controle de requeima e sarna da batata, 

no entanto, há interação desse nutriente com os fungicidas e que deve ser melhor avaliado 

em futuros trabalhos  

 Através de Pesquisas realizadas por Epestein e Bloom (2006), o Si auxilia controle 

alternativa de doenças através de dois mecanismos, físico e bioquímico. O mecanismo 

físico já é bem esclarecido pela literatura onde a deposição de sílica em superfície dificulta 

o processo de infecção do fitopatógeno. O mecanismo bioquímico ainda não é bem 

elucidado os processos, no entanto plantas adubadas com Si apresentam maiores 

concentrações de compostos naturais de defesa como os compostos fenólicos. 

 Farias (2012), avaliando o crescimento do algodoeiro herbáceo (Gossypium 

hirsutum L. raça latifolium Hutch.), cultivar BRS 8H, sob efeito de quatro doses crescentes 

de silício (0; 40; 80 e 120 g L-1), concluiu que a aplicação foliar de silício promoveu o 

crescimento apenas em altura, nas concentrações de até 80 g L-1,  Entretanto, verificou-se 

um aumento expressivo nos teores de clorofila total da planta, não interferindo na atividade 

da enzima peroxidase. Pilon (2011) observou que o fornecimento de Si, via solo e foliar 

aumentou o teor de Si e a produtividade de tubérculos da cultura da batata sob deficiência 

hídrica. 

 

2.6.  Interação do silício e nitrogênio 

 

O uso de cultivares com alto potencial reprodutivo tem induzido a aplicação mais 

intensa de fertilizantes, entre os quais o nitrogênio. No entanto, a utilização de doses cada 

vez mais elevadas deste elemento, para aumentar a produtividade, promove elevado 

desenvolvimento vegetativo, o que causa acamamento de plantas e interfere negativamente 

na produtividade e na qualidade dos grãos (BUZETTI et al., 2006). O problema de 

acamamento pode ser minimizado pelo fornecimento de silício para as plantas 

(KORNDÖRFER et al., 2003). 
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A aplicação de altas doses de N pode favorecer a incidência elevada de doenças 

fúngicas. O silício, ao ser absorvido, deposita-se nas folhas, nos tecidos da epiderme, logo 

abaixo da cutícula, precisamente nas paredes mais externas (AGARIE et al., 1998). Assim, 

a aplicação de silício confere resistência mecânica à penetração das hifas (BARBOSA 

FILHO et al., 2001) e, desta forma, diminui o ataque de doenças. Por outro lado, trabalhos 

como os de Mauad et al. (2003), Baliza et al. (2007) e Fallah (2008), mostram que a 

aplicação de doses de N interfere no teor de Si na planta e que, quando a adubação 

nitrogenada é baixa, os teores de Si na planta promovem aumentos mais pronunciados, 

quando comparados com as doses mais elevadas de N. 

O silício estimula o aproveitamento do N, a arquitetura da planta favorecendo 

maior e melhor aproveitamento da luz, resultando da menor abertura do ângulo foliar, que 

torna as folhas mais eretas, diminuindo o auto-sombreamento, sobretudo em condições de 

altas densidades populacionais e altas doses de N (DEREN et al.,1994), melhora a 

interceptação da luz solar, portanto, da fotossíntese, devido à melhor arquitetura das 

plantas supridas com uma grande quantidade de Si (RAVEN, 1983). Em função de uma 

camada dupla de sílica formada abaixo da cutícula, em decorrência da adubação silicatada, 

as plantas mantêm as folhas mais eretas, promovendo maior aproveitamento da luz 

(YOSHIDA et al., 1969). 

Uma das conseqüências desse efeito seria um aumento da taxa fotossintética em 

tais plantas, proporcionando um aumento da produção de poder redutor e, 

conseqüentemente, uma maior capacidade de assimilação de nitrogênio pelas plantas. 

BALIZA et al. (2007), avaliando o efeito da interação Si-N, concluíram que o 

fornecimento de Si não interferiu na produção de matéria seca e nem nos acúmulos de N 

nos tecidos das plantas de arroz, mas aumentou o número de panículas e a percentagem de 

perfilhos férteis do arroz. A adubação com nitrogênio na presença de adubação silicatada 

promove aumento de produtividade no cultivo de arroz (SAVANT et al., 1997). 

Santos et al. (2003), avaliando a severidade da brusone em arroz, observaram que 

a aplicação do  N em doses parceladas de 70 kg ha-1, aos 40 e 70 dias após a emergência, 

reduziu esta incidência e aumentou a produtividade, enquanto que , com doses altas (100 

kg ha-1) numa só aplicação, aumenta a severidade desta doença. A alta concentração de 

nitrogênio reduz a produção de compostos fenólicos e de lignina nas folhas, diminuindo a 

resistência aos patógenos; o nitrogênio aumenta a concentração de aminoácidos e amidas, 
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no apoplasto e superfície foliar, que têm maior influência do que os açúcares no 

crescimento dos conídeos, favorecendo as doenças fúngicas (MARSCHNER, 1986).  

Adubações nitrogenadas em excesso podem reduzir o teor de Si nas plantas e o 

número de células epidérmicas silicatadas devido ao efeito de diluição desse elemento 

propiciado pelo maior crescimento das plantas (SANTOS et al.,2007; MAUAD et al., 

2003), diminuir a acumulação de sílica nas folhas mais novas, predispondo a planta à 

maior incidência de bruzone na panícula (BARBOSA FILHO et al., 2000).  
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3. MATERIAL E MÉTODOS 

 

3.1. Localização e caracterização do experimento 
  

O experimento foi conduzido durante os meses de abril e agosto de 2012 em casa 

de vegetação no Centro Nacional de Pesquisa de Algodão - Embrapa Algodão, em 

Campina Grande-PB (Figura 1).  

 
Figura 1. Vista parcial do experimento em casa de vegetação. Embrapa Algodão, Campina 
Grande-PB, 2012. 
 
 Localizada na microrregião da Serra da Borborema Paraibana, situando-se a uma 

altitude de 551 m de altitude, com clima Awi (tropical chuvoso) segundo a classificação de 

Köppen, com temperatura média anual de 28,6ºC e mínima de 19,5ºC. Os dados 

climatológicos referentes à temperatura, umidade e precipitação pluvial para o período de 

execução do experimento são representados na Figura 2.  
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Figura 2. Temperatura Máxima (Temp. Max.), Média (Temp. Méd.), Mínima (Temp. 
mín.) °C e Umidade relativa (UR %), durante o período de condução do experimento. 
Fonte: Estação climatológica da Embrapa Algodão, Campina Grande-PB, 2012.  
 

Para realização do trabalho foi utilizado um material de solo classificado como 

Neossolo Regolítico, de textura franco-arenosa, de acordo com a classificação da Embrapa 

Solos (2009), proveniente da Estação Experimental da Empresa de Pesquisa Agropecuária 
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(EMEPA), localizada no município de Lagoa Seca-PB, coletado a uma profundidade de 0-

30 cm correspondente à camada arável. Esse solo foi proveniente de áreas utilizada pela 

Embrapa Algodão para desenvolver suas pesquisas com a cultura da mamoneira. Uma 

amostra de solo composta foi coletada e enviada para o Laboratório de Química e 

Fertilidade do solo da Embrapa Algodão, onde foi destorroada, seca ao ar e passada em 

peneira de malha de 2 mm para caracterização química e física (Tabela 1), conforme 

(EMBRAPA, 2009). 

 
Tabela 1. Características químicas do solo utilizado no experimento, realizado na 

Embrapa-Algodão, Campina Grande-PB, 2012. 

 

Com base no resultado da análise de solo, foi realizada a calagem do solo com 

aplicação de calcário dolomítico para correção do pH. O solo foi incubado por um período 

de 30 dias com umidade ao nível de 80% da capacidade de campo para que houvesse a 

reação do calcário. Após o período de incubação, foi realizada uma adubação de fundação 

com P e K, utilizando-se o superfosfato triplo (111,11 kg ha-1) e cloreto de potássio (83,33 

kg ha-1) respectivamente, sendo as quantidades aplicadas de acordo com a recomendação 

baseada no resultado da análise do solo.  

Os tratos culturais relacionados ao controle de pragas e doenças foram realizados 

de acordo com as recomendações feitas para o cultivo convencional da mamoneira 

(EMBRAPA, 2007). 

  

3.2. Delineamento experimental 

 

 Os tratamentos (Tabela 2), foram distribuídos num delineamento de blocos 

casualizados, para se adaptar melhor às condições desuniformes de temperatura e 

luminosidade da casa de vegetação, com arranjo fatorial 4x4, sendo quatro doses de silício 

(00, 80, 160 e 240 mg L-1) em  pulverização foliar,  e quatro doses de nitrogênio (00, 60, 

Determinações 

pH P K Na+ H+Al+3 Al+3 Ca+2 Mg+2 M.O 

H2O mg dm-3 --------------------------cmolc/dm3----------------------        g/kg 

4,98 0,69  0,02  0,08    0,60   0,08    0,80    0,84         3,8 
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120 e 180 kg ha-1) aplicadas no solo, com quatro repetições, totalizando 64 unidades 

experimentais.  

  Utilizou-se o produto comercial Sifol® Diatom como fonte de silício liquido, 

contendo 12% de Si (168 g L-1) (SIFOL-DIATON, 2013). Como fonte de nitrogênio, 

utilizou-se a uréia  com 45% de N. Os tratamentos foram aplicados em duas vezes, sendo a 

primeira após o desbaste, e a segunda, 15 dias após a primeira. 

Cada unidade experimental foi composta um vaso de 60 L e uma planta, pintado 

na cor prata fosco, a fim de refletir os raios solares. Na base do vaso, foi colocada uma 

camada de 3 cm de brita, previamente lavada com água corrente, em seguida, os vasos 

foram preenchidos com o solo. 

 Foram semeadas cinco sementes de mamoneira BRS Energia tratadas com 

fungicida, a uma profundidade de 3 cm. Após 15 dias da emergência foi realizado o 

desbaste, deixando-se apenas uma planta por vaso. 

 

Tabela 2. Distribuição dos tratamentos utilizados na experimentação.  

 
Tratamentos 

Doses 
Nitrogênio (kg ha-1) Silício (mg L-1) 

T1 0,0 0,0 
T2 0,0 80 
T3 0,0 160 
T4 0,0 240 
T5 60 0,0 
T6 60 80 
T7 60 160 
T8 60 240 
T9 120 0,0 

T10 120 80 
T11 120 160 
T12 120 240 
T13 240 0,0 
T14 240 80 
T15 240 160 
T16 240 240 

 

 

3.3. Variáveis analisadas 

 

No final do experimento (aos 120 DAE- dias após a emergência) foram tomados 

dados de altura da planta (ALT), diâmetro do caule (DC) e área foliar (AF), bem como 
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dados de peso de matéria seca da parte aérea e da raiz. Para determinação da área foliar foi 

utilizada uma régua milimetrada, medindo-se o comprimento e a largura da folha, 

aplicando-se os valores à fórmula: S = 0,2439 x (P + T)2,0898 de acordo com Severino et al. 

(2004), onde: 

S = área foliar; 

P = comprimento da nervura principal; 

T = comprimento médio das nervuras laterais. 

O diâmetro do caule foi medido na altura de 1 cm do solo com o auxílio de um 

paquímetro digital; a altura foi medida com uma régua milimetrada. No final do 

experimento, aos 120 dias a pós a emergência (DAE) da planta, foi efetuado o corte da 

parte aérea das plantas de cada vaso a 1 cm do solo, separando a planta em parte aérea 

(caule e folha) e raiz. Em seguida, o material vegetal foi lavado em água corrente, e, 

posteriormente, com água destilada, submetido a uma pré-secagem ainda na casa de 

vegetação e acondicionado em saco de papel perfurado. Para completar a secagem, o 

material foi levado a uma estufa de circulação forçada de ar, a 65°C, até peso constante, e 

depois pesado em balança analítica de precisão 0,01g para obtenção da massa da matéria 

seca. Depois de pesada, a matéria seca da parte aérea foi triturada em moinho tipo Wiley e 

mineralizada por digestão sulfúrica (TEDESCO et al., 1995) sendo o P dosado nos extratos 

por colorimetria (BRAGA; DEFELIPO, 1974). 

Foi determinada a área foliar específica (AFE), que relaciona a superfície da folha 

com o peso da própria folha, significando a disponibilidade de área foliar em cada grama 

de folha, indicando a espessura foliar. 

 

AFE =   AF  (dm2 g-1) onde: AF= área da folha; MF= massa seca da folha. 
              MF 

 
Determinou-se a razão de área foliar (RAF), que é a relação entre área foliar 

específica e a massa da planta, isto é, representa área foliar disponível para ocorrer à 

fotossíntese na planta. 

 

RAF = AF  (dm2 g-1) onde: AFE = área da folha; MP =  massa seca da planta. 
            MP 
 

Também se determinou a razão de massa foliar (RMF), que é a fração de matéria 

seca produzida pela fotossíntese, não utilizada na respiração, nem exportada para outras 
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partes da planta, retida nas folhas; representa o quanto à planta investiu da sua produção 

via fotossíntese para as folhas. É um cálculo adimensional. 

 

RMF = MF  onde: 
             MP 
 

MF= massa seca da folha; MP= massa seca total da planta. 

 

Taxas de crescimentos são medidas utilizadas para avaliar o crescimento de uma 

planta. Com os dados das avaliações de AP, DC e AF realizadas aos 120 DAS, foi possível 

o cálculo das taxas de crescimento absoluto e relativo para estas variáveis. Taxa de 

crescimento absoluto (TCA) representa o incremento em crescimento durante certo 

intervalo de tempo pré-determinado, sem levar em consideração ao material inicial 

existente que deu origem a esse ganho. É expressa em crescimento (área, volume, peso) 

por dia: (cm2 dia-1; cm3 dia-1 e g dia-1). 

 

TCA =  V2 – V1    onde: (V2 – V1)= variável avaliada nos períodos 2 e 1;  
                          T2 –T1      
 
           (T2 –T1) = o período de tempo constante entre uma e outra avaliação;  

A taxa de crescimento relativo (TCR) é a medida mais adequada para avaliar o 

crescimento de uma planta. Representa a quantidade (área, volume, peso) de material 

vegetal produzido por determinada quantidade de material existente, durante um intervalo 

de tempo prefixado. É expressa em crescimento (área; volume; peso) por dia: (cm2 cm2 dia-

1; cm3 cm3 dia-1; e, g g dia-1). 

 
TCR = Log V2 - Log V1  onde :   

                                T2 -T1   
 

(Log V2 -Log V1) = logarítmo da variável  avaliada nos períodos 2 e 1; 

(T2 -T1) = o período de tempo constante entre uma e outra avaliação.  

  

 Foi coletada uma folha do segundo terço médio da altura da planta de todos os 

tratamentos, aos 60 DAE, e enviadas para o laboratório de fisiologia da Embrapa Algodão, 

para determinar os teores de clorofila A, B e Total, seguindo-se a recomendação da 

Embrapa Algodão (2011).  
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 A partir das amostras secas foliares de cada tratamento, coletadas aos 120 DAE, 

foram feitas determinações dos teores de P, K, Ca, Mg e S, através da digestão Nitro-

Perclórica das folhas, e do teor foliar de nitrogênio, determinado pela digestão sulfúrica da 

amostras, todas realizadas no laboratório de Fisiologia da Embrapa Algodão. 

 As análises foliares para Fe, Zn e Mn, foram realizadas no Laboratório de Nutrição 

de Plantas da UFRPE-PE, cujas determinações foram feitas pela Espectrofotometria de 

Absorção Atômica. Para a determinação do Silício utilizou-se a Espectrofotometria do  

Azul de molibdênio, sugeridas pela metodologia da digestão Nitro-Perclórica, 

recomendada por Bezerra Neto e  Barreto (2011). 

  

3.4. Análise estatística 

 

 Os resultados foram submetidos à análise de variância, processados através do 

Sistema de Análise Estatística (SAS/STAT, 2008), sendo a significância determinada pelo 

teste “F”. Os fatores quantitativos foram submetidos às análises de regressão polinominal 

com o modelo de maior referência, e os seus valores foram ajustados à função linear e 

quadrática, conforme coeficiente de determinação, com apresentação em gráficos, 

utilizando-se o programa SIGMAPLOT (2008). 
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4. RESULTADOS E DISCUSSÃO 

 

4.1. Alterações nos atributos químicos do solo  

 

O resumo da análise de variância com os quadrados médios e suas respectivas 

significâncias pelo teste F a 5% de probabilidade, para os parâmetros da fertilidade do solo 

(fósforo, potássio, cálcio, magnésio e enxofre) estão apresentados na tabela 3. O teste F 

indicou significância a 1% de probabilidade apenas do fator nitrogênio sobre a variável, 

potássio (K). Entretanto, não se verificou efeito dos fatores isolados, e também, de sua 

interação sobre as demais variáveis estudadas. 

Segundo Marschner (1995), após o nitrogênio, o potássio é um nutriente mineral 

retirado em grandes quantidades pelas plantas, participando de várias funções importantes 

no processo de crescimento e desenvolvimento vegetal, sendo de acordo com Mengel; 

Kyrkby (2001) o cátion mais importante nos processos fisiológicos das plantas, não só por 

sua concentração nos tecidos vegetais, mas também pelas funções bioquímicas. 

 

Tabela 3. Resumo das análises de variância e respectivos quadrados médios, para 
macronutrientes do solo, fósforo (P), potássio (K), cálcio (Ca), manganês (Mn) e enxofre 
(S) em plantas de mamoneira cv. BRS Energia. Campina Grande, PB, 2012.    

Fonte de Variação  Quadrados Médios 
GL     P      K   Ca  Mg    S 

Bloco 3  318,15 0,140 38,84 3,41 69,05 
N 3  89,11ns 1,620** 3,67ns 2,84ns 24,16ns 
Si 3  73,30ns 0,490ns 3,75ns 4,06ns 40,23ns 
N x Si 9  52,45ns 0,160ns 2,64ns 1,54ns 15,98ns 
Contrastes       
N Linear 1   64,35ns 3,850** 6,52ns 1,35ns 25,20ns 
N Quadrático 1 109,98ns 0,921ns 3,37ns 2,56ns 20,02ns 
Si Linear 1     2,90ns 1,310ns  7E-3ns 1,03ns  0,52ns 
Si Quadrático 1 122,93ns 0,110ns 9,68ns 7,84ns 96,53ns 
N Linear x Si Linear 1     0,84ns 0,990ns 0,58ns 3,08ns   0,42ns 
Resíduo 45 106,91 0,217  4,55 2,96 20,25 
CV (%)   36,59 39,44 21,32 29,68  20,88 
Média Geral (unidade)   28,25   1,18 10,01   5,8  21,54 

GL- Grau de liberdade; ns - não significativo; ** e *, significativo a 1 e a 5% de 
probabilidade, respectivamente, pelo teste F. 

 

De acordo com a figura 3, é possível observar que houve ajuste polinomial com 

efeito linear com elevado coeficiente de determinação das doses de nitrogênio sobre o teor 
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de potássio no solo. Verifica-se que o aumento das doses de N influenciaram 

negativamente sobre os teores de K no solo, observando-se menor teor de K no solo, 

quando se aplicou a maior dose de N (180 kg ha-1). Para Rosolem (2005), a interação entre 

íons pode ocorrer em diferentes momentos e locais quando se considera o sistema solo-

planta. Dessa forma, pode ocorrer no solo, considerando-se as diversas formas de 

equilíbrio e de transporte do íon, seja na rizosfera, nas membranas ou dentro da planta.  

Nesse sentido, é fundamental que se conheça a dinâmica do nutriente no solo e na 

planta, a fim de se entender melhor as interações e aperfeiçoar o uso dos fertilizantes. 

Conhecer sobre a interação existente entre o potássio e o nitrogênio no solo é de 

fundamental importância para a produção agrícola, pois o fornecimento de forma 

equilibrada desses elementos pode proporcionar máxima eficiência na utilização do 

nitrogênio pelas plantas. 

Cherney et al. (2004), estudando a interação entre o nitrogênio e o potássio 

durante cinco anos com o capim Phalaris arundinaceasem, verificaram que a fertilização 

com esses nutrientes não causou efeitos significativos na distribuição dos nutrientes no 

perfil do solo, exceto o potássio, cuja disponibilidade foi acentuadamente reduzida após 

vários anos de cultivo com apenas a presença do nitrogênio no programa de adubação. 

Segundo Büll (1993), a interação entre o nitrogênio e o potássio obedece a lei do Mínimo, 

pois quando o nitrogênio é aplicado em quantidade suficiente para haver elevação da 

produção, essa passa a ser limitada pelos baixos teores de potássio disponíveis ao solo. 
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Figura 3. Teor de Potássio no solo cultivado com mamoneira cv. BRS Energia, em 
resposta a doses de N. Embrapa Algodão, Campina Grande-PB, 2012. 
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4.2. Análise de Crescimento  

 

4.2.1. Altura de plantas, diâmetro de caule, número de folhas e área foliar. 

 

O resumo da análise de variância com os respectivos quadrados médios das 

variáveis, altura de plantas, diâmetro caulinar, número de folhas e área foliar são 

apresentados na tabela 4. De acordo com o resumo da ANOVA, não houve efeito 

significativo para a interação entre os fatores nitrogênio e silício sobre nenhuma das 

variáveis estudadas. Mauad et al. (2003) estudaram os efeitos da adubação nitrogenada e 

silicatada sobre a cultivar de arroz IAC 201, e verificaram que houve redução do número 

de espiguetas chochas e aumento da massa de 100 grãos, quando se utilizou o silício na 

maior dose de nitrogênio.  

 

Tabela 4. Resumo das análises de variância e respectivos quadrados médios, para os 
componentes de crescimento, altura de planta (ALT), número de folhas (NF), diâmetro 
caulinar (DIA) e área foliar (AFO) em plantas de mamoneira cv. BRS Energia. Campina 
Grande, PB, 2012. 
Fonte de Variação  Quadrados Médios 

GL     ALT      DIA     NF     AFO 
Bloco 3 2038,23**   17,64**  16,84 ns  16,12 ns 
N 3    75,63ns   12,02**  41,28** 121,33** 
Sil 3  158,02ns   10,43*   5,10ns     7,41ns 
N x Sil 9  143,86ns    4,46ns   8,23ns   3,774ns 
Contrastes      
N Linear 1 226,65ns             9,48ns              0,69ns            50,73ns 
N Quad.  1   96,17**          19,80 ns              0,33ns               27,69** 
Sil Lin. 1   68,13ns                       7,18**             0,03ns   4,372ns 
Sil Quad. 1     2,38ns              1,33**              5,94ns            9,533ns 
NL x SiL 1   11,16ns              1,19ns              4,63ns            1,242ns 
Resíduo 45  170,70    3,07   8,18 943616,7 
CV (%)    19,27                 10,21              45,00                 51,64 
M. Geral (unidade)    67,81                17,17                 6,35              1881,21 
GL - Grau de liberdade; ns - não significativo; ** e, * significativo a 1 e a 5% de 
probabilidade, respectivamente, pelo teste F.  
 

Do mesmo modo, a análise dos fatores (N e Si) isolados não apresentou efeito 

significativo para a variável altura da planta. Severino et al. (2004) e Mateus et al. (2009) 

trabalhando com doses de nitrogênio na cultura da mamoneira observaram efeito 

significativo sobre o crescimento da planta em diâmetro caulinar. No entanto, esses 
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resultados diferem dos encontrados por Silva et al. (2007) que trabalhando com diferentes 

doses de nitrogênio em mamoneira, verificaram efeito significativo sobre a variável altura 

de plantas, com ajuste quadrático.  

Entretanto, observou-se diferenças para efeitos isolados das doses de N referentes 

às variáveis, diâmetro caulinar, número de folhas e área foliar, ajustando-se ao modelo 

quadrático com elevados coeficientes de determinação. Quanto ao silício, comportamento 

semelhante foi observado para o diâmetro caulinar em função das doses de silício, com 

ajuste ao modelo linear com elevado coeficiente de determinação (Figuras 4A e 4B).  

Houve efeito significativo das doses de N sobre a variável, diâmetro caulinar, com 

ajuste ao modelo polinomial quadrático, verificando-se aumento para essa variável com o 

incremento das doses de N, com diâmetro máximo de 17,25 mm, obtida com a dose 

observada de 109,50 kg ha-1, indicando assim, uma resposta positiva desta variável quanto 

à nutrição com nitrogênio (Figura 4A).  

Dinis Neto et al. (2012) e Sofiatti et al. (2010) trabalhando com adubação 

nitrogenada na cultura da mamoneira, verificaram aumento no diâmetro caulinar de 79,86 

mm e 85,34 mm, respectivamente às doses de 40 e 60 kg ha-1 de N. Pesquisa realizada por 

Silva et al. (2011) com a cultivar BRS Nordestina utilizando o N em cobertura, verificaram 

diâmetro caulinar de 159 mm quando se utilizou a dose de 30 kg ha-1 de N. Resultados 

semelhantes foram observados por Severino et al. (2006) em trabalho com essa mesma 

cultivar, obtendo diâmetro caulinar 23% maior nas plantas que receberam 50 kg ha-1 de N, 

em relação a testemunha. 

Avaliações de crescimento observadas por Severino et al. (2005), revelaram que a 

altura e  o diâmetro do caule das plantas é muito influenciada por adubações nitrogenadas, 

e que devido o excessivo crescimento vegetativo, o diâmetro do caule atingiu uma altura 

média de 40 mm. O N participa de diversos processos na planta, dentre eles a divisão 

celular e a constituição de tecidos (TAIZ e ZEIGER, 2004).  

Possivelmente os efeitos do N sobre o incremento do diâmetro do caulinar de 

plantas de mamoneira ocorreram devido ao fato de que esse nutriente desempenha função 

estrutural, participando como constituinte de proteínas, enzimas, ácidos nucléicos, 

citocromos, moléculas de clorofila, membranas promovendo assim o crescimento 

vegetativo (MARSCHNER, 2012; SOUZA; FERNANDES, 2006). A falta de N impede o 

crescimento inicial por impossibilidade de incorporar carbono, pois à medida que a planta 

cresce, aumenta a demanda de N para formar maior quantidade de clorofila, maior 
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quantidade de Rubisco, ou até mesmo limita a regeneração da Rubisco existente (SANTOS 

et al., 2004). 

 A adubação silicatada foliar proporcionou aumento significativo do diâmetro 

caulinar, com os dados ajustados a função quadrática, ocorrendo incremento no diâmetro 

caulinar, sendo o maior valor observado (17,45 mm) em função da maior dose de Si 

aplicada. Esse aumento linear do diâmetro caulinar indica que a maior dose utilizada (240 

mg L-1) não foi suficiente para atingir o ponto máximo do crescimento caulinar 

(19,831mm) com a dose de 690,0 mg L-1 de Si (Figura 4B). Nas plantas, a função do 

elemento está relacionada, sobretudo, ao aspecto estrutural. O Si se deposita na parede 

celular dos órgãos de transpiração, formando uma dupla camada protetora de sílica-

cutícula e sílica-celulose. Maiores concentrações de Si podem ser encontradas em tecidos 

suportes do caule e das folhas, e também nos grãos, em baixa concentração (MAYAMAJI, 

2006). 

Trabalhando com mudas de maracujazeiro, Prado e Natale (2004) constataram que 

a aplicação de silicato de cálcio aumentou a altura, o diâmetro caulinar e a produção de 

massa seca das plantas. De acordo com Guimarães et al. (2009), o diâmetro caulinar é uma 

característica importante, uma vez que, quanto maior o diâmetro, maior será o vigor e a 

resistência da planta. Para Carneiro (1978), o diâmetro está diretamente relacionado ao 

crescimento do sistema radicular, assim, espera-se que plantas que apresentam maior 

diâmetro caulinar, possam apresentar maior porte, e com nutrição adequada, devido ao 

maior volume de solo explorado pelas raízes.   
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Figura 4. Diâmetro caulinar em plantas de mamoneira cv. BRS Energia, em resposta a 
doses de N (A) e de Si (B). Embrapa Algodão, Campina Grande-PB, 2012.  
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Os valores para o número de folhas de plantas de mamoneira cv. BRS Energia, em 

resposta a diferentes concentrações de N (Figura 5A), ajustaram-se ao modelo quadrático 

de regressão, com aumento de seu número quando do incremento das concentrações de 

nitrogênio até o máximo de 126,7 kg ha-1. As folhas são fisiologicamente consideradas 

como fontes de energia para as plantas, uma vez que as mesmas são responsáveis pela 

atividade fotossintética, no entanto, o número de folhas presentes em uma planta nem 

sempre é tão importante, mas sim a área foliar que essa planta apresenta, e, sobretudo, a 

área fotossinteticamente ativa. Segundo Benincasa (2003), a área foliar total de uma planta 

é resultado da ação conjunta de dois componentes, representados pelo tamanho e pelo 

número de folhas.  

A área foliar é considerada um dos mais importantes componentes de crescimento 

das plantas, pois, retrata o tamanho de seu aparelho assimilatório, estando o mesmo 

diretamente relacionado com os processos fisiológicos que ocorrem nas plantas, sendo essa 

medida a que melhor expressa à adequação, ou não, das condições ambientais ao 

desenvolvimento da planta (RIBEIRO et al., 2009). Nesse sentido, verificou-se 

comportamento semelhante para a área foliar em função das doses de N. Pela Figura (5B), 

é possível observar que os valores da área foliar ajustaram-se ao modelo quadrático de 

regressão polinomial, com aumento crescente até a dose máxima de 104,81 kg ha-1 de N, 

que proporcionou uma área foliar de 2.552,80 cm2.  Plantas de mamoneira bem nutridas, 

aos 90 dias após plantio, apresentaram área foliar em torno de 14.647,00 cm2 

(RODRIGUES et al., 2006). 

A mamona tem elevada demanda por nitrogênio para seu crescimento e produção 

de área foliar, e quando cultivada sob deficiência, observa-se redução no crescimento e 

conseqüentemente, plantas de baixa estatura, e a sua frutificação, quando ocorre, é fraca 

com poucos racemos e frutos com peso abaixo do esperado (SANTOS et al., 2004). 

Indicando elevada eficiência da espécie para transformar nutrientes absorvidos em 

fitomassa (SOFIATTI et al., 2010). Entretanto, Ribeiro et al. (2009) trabalhando com a 

mamoneira, encontrou menor crescimento em área foliar (2.451,49 cm2) com a mesma 

dose de N (104,81 Kg ha-1) em condições semelhantes.   
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Figura 5. Número de folhas (A) e área foliar (B) em plantas de mamoneira cv. BRS 
Energia, em resposta a doses de N. Embrapa Algodão, Campina Grande- PB, 2012. 
 

4.3. Taxas de crescimento absoluto e relativo 

 

Observa-se na Tabela 5 que as doses de N influenciaram as taxas de crescimento 

absoluta (TCA)  e de crescimento relativo (TCR) do diâmetro do caule e área foliar da 

mamoneira. É importante salientar que foram estimados os valores de crescimento médio 

do período entre 60 e 120 dias após a emergência das plantas, significativo entre o sétimo 

estádio vegetativo e o décimo reprodutivo (BELTRÃO et al., 2011). 

Houve respostas significativas para as taxas de crescimento absoluto e relativo em 

diâmetro aos 60 DAE, quando foram submetidas à adubação nitrogenada, o que não 

ocorreu aos 120 DAE, isto em função deste período coincidir com o estádio reprodutivo da 

planta, onde houve armazenamento de assimilados nos drenos de produção (FONTES et 

al., 2005). Já em relação às taxas de crescimento absoluta em área foliar, as doses de N, 

proporcionaram respostas positivas aos 60 e 120 DAE. Enquanto que, em relação à taxa de 

crescimento relativo, apenas aos 60 DAE houve efeito da adubação nitrogenada. Todas as 

variáveis responsivas representaram um modelo quadrático polinomial de crescimento, 

sugerindo um crescimento que está de acordo com os estádios de crescimento e 

desenvolvimento da mamoneira (BELTRÃO et al. 2011). 

A análise quantitativa de crescimento vegetal é considerada como método padrão 

para estimativa da produtividade biológica e primária das comunidades vegetais, e baseia-

se no fato de que a matéria orgânica acumulada ao longo do crescimento da planta resulta 

da atividade fotossintética (ALVES, 2009; OLIVEIRA, 2002). A medida mais apropriada 
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para a avaliação do crescimento vegetal, que é dependente da quantidade de material que 

está sendo acumulada, é a taxa de crescimento relativo (MAGALHÃES, 1985). 

As Taxas de crescimentos, absoluta (TCA) e relativa (TCR), são medidas 

utilizadas para avaliar o crescimento de uma planta. A análise de crescimento permite 

avaliar o crescimento final da planta como um todo e a contribuição dos diferentes órgãos 

para o crescimento total, a partir da quantificação da fitomassa (matéria seca) da planta 

(BENINCASA, 2003).  

 

TABELA 5. Resumo das análises de variância e respectivos quadrados médios, para taxa 
de crescimento absoluta (TCA), taxa de crescimento relativo (TCR), da média de 60-120 
DAE, do experimento em plantas de mamoneira cv. BRS Energia. Campina Grande, PB, 
2012.  

F.V 
 

 Quadrados Médios 
GL   TCA DIA     TCR DIA     TCA AF       TCR AF 
    60   120     60   120   60   120    60     120 

Bloco 3  0,045 0,004 2,9E-5  1,7E-6 2,2E4 1,8E3 3,4E-4 1,7E-4 
N 3  0,020*     0,005ns      2,6E-5*      2,2E-6**    1,5E4*     4,8E3ns       3,6E-4**      3,3E-4ns 
Sil 3 0,040ns                     0,004ns      4,1E-6ns      1,5E-6ns     2,4E3ns 2,2E2ns 2,1E-5ns 1,7E-4ns 
N x Sil 9 0,012ns       0,005ns      1,9E-5ns      2,1E-6ns      2,9E3ns     1,E-3 ns      1,0E-4ns       2,7E-4ns 
Contrast          
N Linea. 1 0,028ns        3,E-5ns 3,4E-5ns     4,5E-8ns     1,5E4ns      6,59  ns      3,1E-4ns        5,5E-5ns 
N Quad.  1 0,031*     0,009ns      3,3E-5*    4,2E-6ns     3,E4 **    8,5E3** 7,3E-4**    8,5E-4ns 
Sil Lin. 1 2,E-4ns      0,001ns       2,1E-8ns     4,3E-7ns       1,7E3ns      1,6E2ns     1,1E-5ns       3,9E-4ns 
Sil Qua. 1 5,E-4ns     0,005ns        8,4E-6ns     2,1E-6ns      1,2E2ns     4,8E2ns     3,9E-6ns        8,8E-5ns 
NLx SiL 1 1,E-3ns        0,006ns      2,2E-6ns     5,6E-7ns      8,8E2ns      5,8E2ns     4,2E-6ns        6,5E-5 ns 
Resíduo 45 0,007 2,7E-3 9,7E-3  1,1E-6 2,5E-3 1,4E-3   7,1E-5    3E-4 
CV (%)  32,15         37,2       31,31        116,97      44,24     184,4   33,11        215,66 
M.G.(uni)  0,26                        0,03 9,3E-3   9E-4 114,73   20,40        0,025         8,1E-3 
GL - Grau de liberdade; ns - não significativo; ** e, * significativo a 1 e a 5% de 
probabilidade, respectivamente, pelo teste F.; M. G.(uni) - média geral (unidade). Valores 
seguidos de E–N, são números com “N” casas decimais e valores seguidos de EN, são 

números com “N” algarismos inteiros.     
 

 Os resultados obtidos para as variáveis analisadas, relacionados ao período avaliado 

e as doses de N em plantas de mamoneira, seguem através de representações gráficas, onde 

os resultados foram submetidos à metodologia específica a cada variável (BENINCASA, 

2003). Analisando-se as equações de regressões para a taxa de crescimento absoluto do 

diâmetro caulinar da planta em função das doses de N (Figura 6A), observa-se um 

comportamento quadrático para o período estudado. Vale salientar que, as variáveis 

mensuram o que as plantas cresceram no intervalo de avaliação (TCA) e o que as plantas 

cresceram por dia, por unidade já existente (TCR). 
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Pelo resultado da taxa de crescimento absoluto (TCADC) em diâmetro caulinar, é 

possível verificar que o valor máximo encontrado foi de (0,068 mm.dia-1) em função da 

dose correspondente a 100 kg ha-1 de N. A aplicação de doses mais elevadas de N, 

promoveram decréscimo na TCADC, sendo o menor valor encontrado com a aplicação da 

maior dose de N que foi 180 kg ha-1 (Figura 6A). É temeroso atribuir essa queda da TCADC 

tão somente as doses de N, pois geralmente uma queda na taxa de crescimento tem relação 

com fatores complexos, pois oscilações na curva de crescimento são superpostas por 

flutuações ambientais, que além do suprimento de água, encontram-se ligadas ainda à 

disponibilidade de luz, temperatura, entre outros (FELIPPE, 1979).  

Para Larcher (2006), paralisações no crescimento vegetativo em função da 

aceleração do crescimento produtivo ocorrem pela canalização da energia e de materiais 

destinados a floração e frutificação, que por sua vez originam-se no processo 

fotossintético, na incorporação de substâncias minerais e na mobilização de reservas para 

formação e enchimento dos frutos. A diminuição da taxa de crescimento da altura da planta 

após os 50 dias foi observada por Araújo (2010) trabalhando também com a mamona Cv. 

BRS Energia.  
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Figura 6. Taxa de crescimento absoluto e relativo do diâmetro caulinar (da média de 60-
120 DAE), de plantas de mamoneira cv. BRS Energia, em resposta a diferentes doses de N. 
Embrapa Algodão, Campina Grande- PB, 2012. 
 

 Comportamento semelhante foi observado para o crescimento da planta em 

diâmetro caulinar diário (TRCDC) para o mesmo intervalo estudado (Figura 6B), 

verificando-se aumento da taxa relativa de crescimento até a dose (117,82 kg ha-1), sendo 

essa dose a responsável pela maior taxa (0,0024 mm.dia-1), no entanto, observou-se que a 
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utilização de doses de N mais elevadas, resultaram em menores valores para a TRCDC, 

estando o maior valor observado relacionado a maior dose de N (180 kg ha-1). 

A análise de crescimento tem sido usada por pesquisadores, na tentativa de explicar 

diferenças no crescimento de ordem genética ou resultante de modificações do ambiente 

(Brandelero et al., 2002) podendo também ser usada para a avaliação da produtividade de 

culturas através da investigação da adaptação ecológica a novos ambientes, da competição 

entre espécies, dos efeitos de manejo e tratamentos culturais, visando identificar a 

capacidade produtiva de diferentes genótipos. 

A taxa de crescimento absoluto para área foliar (TCAAF) no período avaliado 

ajustou-se ao modelo quadrático, com incrementos crescentes em função das doses de N. O 

valor máximo encontrado para essa variável foi de (24,35 cm2.dia) com a dose de (102,63 

kg ha-1). A aplicação de doses maiores de N resultou no decréscimo na TCAAF, de modo 

que, a menor taxa dentre as doses de N trabalhadas, foi observada com a aplicação da 

maior dose (180 kg ha-1) (Figura 7A). A TCR para esta variável, apresentou ajuste 

semelhante de crescimento (Figura 7B). 

Segundo Benincasa (2003), a análise de crescimento das plantas baseia-se no 

princípio de que a concentração de um nutriente dentro da planta é uma integração de 

todos os fatores atuantes sobre ela, determinando seu crescimento e produtividade, e 

constitui-se em uma ferramenta que, além de servir para avaliar as plantas, proporciona 

informação para manejar a cultura de forma adequada. 
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Figura 7. Taxa de crescimento absoluto e relativo da área foliar (da média de 60-120 
DAE), de plantas de mamoneira cv. BRS Energia, em resposta a diferentes doses de N. 
Embrapa Algodão, Campina Grande- PB, 2012. 
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4.4. Medidas de crescimento  

 

O resumo da análise de variância com os quadrados médios e suas respectivas 

significâncias pelo teste F a 5% de probabilidade, para os índices fisiológicos (área foliar 

específica, razão de área foliar e razão do peso específico são apresentados na Tabela 6. O 

teste F indicou significância a 1% de probabilidade apenas do fator nitrogênio sobre a 

variável para efeitos isolados de doses de N quanto às variáveis (AFE), (RAF) e (RPF) 

com ajuste ao modelo de regressão polinomial quadrático. Entretanto, não se observou 

efeito significativo das doses de Si, nem tampouco da interação entre os fatores estudados 

(Silício e nitrogênio) sobre as variáveis estudadas. 

A análise de crescimento expressa às condições morfofisiológicas da planta e 

quantifica a produção líquida, derivada do processo fotossintético, sendo o resultado do 

desempenho do sistema assimilatório durante certo período de tempo. Esse desempenho é 

influenciado pelos fatores bióticos e abióticos à planta (LARCHER, 2006). Aqui no caso, 

deveu-se mais aos efeitos das doses de nitrogênio. 

De acordo com Magalhães (1986), conhecendo-se a superfície do limbo foliar e a 

variação da massa seca das folhas durante certo período de tempo, é possível calcular a 

área foliar específica (AFE), com a qual pode-se avaliar a eficiência das folhas no processo 

TABELA 6. Resumo das análises de variância e respectivos quadrados médios, para área 

foliar específica (AFE), razão de área foliar (RAF) e razão do peso foliar (RPF), em 

plantas de mamoneira cv. BRS Energia. Campina Grande, PB, 2012. 

Fonte de Variação GL Quadrados Médios 
        AFE    RAF   RPF 

Bloco 3       394,76   39,53   0,0042 
N 3     2939,69** 257,16**     0,047** 
Sil 3         87,01ns   14,45ns    0,0014ns 
N x Sil 9       479,43ns   16,97ns    0,0043ns 
Contrastes     
N Linear 1      645,48ns   86,72ns        0,13** 
N Quad.  1    8041,95**  633,59**   0,00011ns 
Sil Lin. 1        93,23ns    25,58ns   0,00053ns 
Sil Quad. 1        25,18ns      5,24ns   0,0013  ns 
NL x SiL 1        21,35ns                           0,18ns                    0,000053ns 
Resíduo     45      145,5    62,4    43,6 
CV (%)         43,87    35,9    23,90 
M. Geral         53,13    14,37      0,29 

GL- Grau de liberdade; ns- não significativo; ** e *, significativo a 1 e a 5% de 
probabilidade, respectivamente, pelo teste F. 
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De acordo com Magalhães (1985), conhecendo-se a superfície do limbo foliar e a 

variação da massa  seca das folhas durante certo período de tempo, é possível calcular a 

área foliar específica (AFE), com a qual pode-se avaliar a eficiência das folhas no processo 

de fotossíntese, deduzindo-se sua contribuição para o crescimento da planta, pois fornece 

informações a respeito do desenvolvimento foliar e direcionamento de fotoassimilados. A 

área foliar específica (AFE) ajustou-se ao modelo quadrático de regressão, com aumento 

crescente até o limite máximo de 104,81 kg ha-1 de N, que produziu uma área foliar 

específica de 73,35 cm2 por cada grama de massa de folha produzida (Figura 8A), 

sugerindo resposta positiva. Doses superiores de N diminuíram a área foliar específica. Isto 

pode ser explicado, ao longo de seu crescimento, provavelmente pela diminuição de sua 

capacidade fotossintética em função da redução da área foliar, e conseqüentemente, do 

número de cloroplastos, pela tendência da senescência da planta (TAIZ e ZEIGER, 2004).  

A razão de área foliar (RAF) se refere à área foliar responsável pela produção de 

1g de matéria seca vegetal, sendo um componente morfofisiológico, pois é o quociente 

entre a área foliar, responsável pela interceptação da energia luminosa e absorção de CO 2, 

e a matéria seca total da planta, resultante da fotossíntese (BENINCASA, 2003). 

O modelo quadrático de regressão foi o que melhor se ajustou aos valores de 

razão de área foliar (Figura 8B), com um aumento crescente até o limite máximo de 99,43 

Kg ha-1 de N, que proporcionou uma RAF de 19,85 cm2 por cada grama de massa da planta 

produzida. Doses maiores de N diminuíram  a área foliar específica. Resultado semelhante 

foi observado por Lima (2008) na evolução da RAF ao longo do ciclo da mamoneira, 

avaliados nas condições do Recôncavo Baiano, evidenciando uma tendência contínua de 

decréscimos a valores próximos de zero na fase final do ciclo da mamoneira. 

A RAF aumenta durante o período vegetativo, decrescendo posteriormente, com o 

avanço da cultura, indicando que, inicialmente, a maior parte do material fotossintetizado é 

convertida em folhas, visando maior captação da radiação solar (Alvarez et al., 2005). No 

entanto, em pesquisa realizada por Benincasa (2003) com mamoneira os decréscimos 

encontrados foram atribuídos à interferência das folhas superiores sobre as inferiores com 

o avanço do crescimento, resultando na tendência de diminuição da área foliar útil a partir 

de certa fase dentro do período vegetativo.  
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Figura 8. Área foliar específica (A), razão de área foliar (B) e razão de massa foliar (C) de 
plantas de mamoneira cv. BRS Energia, em resposta a diferentes doses de N. Embrapa 
Algodão, Campina Grande- PB, 2012. 
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A razão da massa foliar representa o investimento da planta nas estruturas 

produtivas e está diretamente relacionada com a partição de fotoassimilados. Os valores da 

razão do peso foliar (Figura 8C) ajustaram-se ao modelo linear de regressão, com um 

aumento crescente da porção de massa seca alocada nas diferentes partes da planta, 

sugerindo um alto índice de fitomassa, em função do aumento das doses de N (kg ha-1). A 

cada aumento da dose de N, houve um aumento de 0,280 (g g-1) para a RPF. O crescimento 

e desenvolvimento de uma cultivar, está diretamente relacionada a partição de 

fotoassimilados. Segundo Larcher (2006), o incremento de fitomassa proporciona um 

aumento da atividade fotossintética pela maior assimilação de carbono e nitrogênio, e 

consequentemente, maior crescimento e qualitativo. 
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4.5. Análise nutricional 
 

4.5.1. Macronutrientes em folhas de mamoneira 

  

O nitrogênio é considerado o elemento mineral mais requerido pelas plantas, sendo 

componente essencial de biomoléculas e de inúmeras enzimas.  Pelo resumo da análise de 

variância (Tabela 7), é possível observar que a interação entre os fatores (N e Si) 

estudados, não foi significativa para o teres sólidos de macronutrientes. No entanto, a 

avaliação isolada do N, demonstrou influência significativa sobre a composição mineral da 

mamoneira, com ajuste ao modelo quadrático para os teores foliares de N e Mg, e ajuste 

linear para Ca e S.  Entretanto, não se verificou efeito das doses de N, sobre os teores 

foliares de P e K.  

 
TABELA 7. Resumo das análises de variância e respectivos quadrados médios, para os 
teores de nitrogênio (N), fósforo (P), potássio (K), cálcio (Ca), magnésio (Mg) e enxofre 
(S) em folhas de plantas de mamoneira cv. BRS Energia. Campina Grande, PB, 2012. 

Fonte de Variação  Quadrados Médios 
GL      N    P    K                Ca     Mg    S 

Bloco 3    112,3 0,27 18,34     7,09     1,03  2,63 
N 3  2507,60**       0,83ns 28,8ns   16,83 ns     3,46*  2,14* 
Sil 3      35,94ns 0,78ns 4,89ns    15,85ns     0,54ns  1,54ns 
N x Sil 9    139,00ns 0,44ns 42,2ns    13,29ns     1,96ns  0,76ns 
Contrastes        
N Linear 1 5520,30ns 2,16ns 21,5ns    17,57ns  3,1E-4 ns  3,89* 
N Quad.  1 1313,10**            0,31ns           19,1ns           4,73ns            5,82*  1,85ns 
Sil Lin. 1     46,13ns      1,63ns        0,07ns          23,79ns             1,11ns      1,61ns 
Sil Quad. 1   0,0039ns          0,70ns        8,26ns           2,80ns    0,082ns    0,37ns 
NL x SiL 1    287,30ns                1,42ns        19,5ns           8,49ns        2,18ns    0,002ns 
Resíduo   45     84,07    0,68 47,21      7,61      0,89  0,53 
CV (%)      24,93          41,93           32,12           23,40              33,28        23,54   
M. Geral      36,77                            1,97 21,39            11,74                  2,84            3,11 

GL- Grau de liberdade; ns- não significativo; ** e *, significativo a 1 e a 5% de 
probabilidade, respectivamente, pelo teste F. 

 

Esses resultados divergem do encontrados por Lima (2013), que trabalhando com 

níveis de salinidade e doses de N em plantas de mamoneira, verificou efeito significativo 

das doses de N sobre os teores foliares de P, com decréscimo de 5,33% por intervalo de 

30% das doses de N. O mesmo comportamento foi observado por Lima (2013) para os 

teores de K, com decréscimo linear de 4,79% na concentração de K por aumento de 30% 

da dose de N. De acordo com Rosolem (2005), o K é um forte competidor com outros 
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cátions decorrentes da alta eficiência do sistema de absorção das plantas. Quanto ao Si, não 

houve efeito significativo das doses trabalhadas sobre os parâmetros nutricionais 

utilizados.  

O teor de N nas folhas da mamoneira apresentou resposta quadrática em função das 

doses de N aplicadas (Figura 9A), com teor máximo de 45,94 g por kg de folha, com a 

dose estimada de 168,26 kg ha-1 de N. Pelos resultados obtidos, pode-se verificar que a 

mamoneira apresentou teores adequados de N em sua composição mineral. De acordo com 

Cantarutti et al (2007) e Malavolta et al. (1997), o nível crítico ou teor ideal de N nas 

folhas da mamoneira está entre 40 e 50 kg ha-1.  

As principais tabelas de recomendação de adubação para a cultura da mamoneira 

em uso no país recomendam doses de N que variam de 35 a 75 kg ha-1. Essa diferença 

existente entre a dose mínima e a máxima de N recomendadas, indica a necessidade de 

realização de experimentos de adubação nas diferentes regiões produtoras. Moro et al., 

(2012) trabalhando com doses de N em híbridos de mamoneira, verificaram efeito 

significativo com incremento linear sobre os teores de N em folhas dos híbridos estudados, 

sendo que a maior dose (200 kg ha-1) de N não foi suficiente para atingir o ponto máximo 

de acúmulo de N nas folhas.  

Quanto ao Mg, observa-se que os teores foliares cresceram de forma quadrática 

em função das doses de N, com variação de 2,16 a 3,356 (g kg-1), sendo o maior teor 

observado quando se aplicou a dose estimada de 88,41 kg ha-1 de N (Figura 9B). No 

entanto, doses superiores, promoveram decréscimo nos teores foliares de Mg. Segundo 

Malavolta (1997), o valor encontrado está na faixa de suficiência (2,5 a 3,5 g kg-1 de Mg). 

A demanda de magnésio pela mamoneira, é cerca de 9 kg de Mg por tonelada de sementes 

produzida (SAVY FILHO, 1995).  

Nas plantas, o N e o S apresentam funções semelhantes, principalmente as 

funções relacionadas à síntese protéica e os processos fotossintéticos. Assim, de acordo 

com Büll (1993) o fornecimento inadequado de um desses nutrientes, pode resultar no 

desbalanceamento entre ambos. De forma geral, o desbalanço se dá em relação ao 

suprimento de S, pois, em culturas exigentes em N, são comuns aplicações elevadas deste 

nutriente sem acompanhamento da fertilização proporcional de S. 

Verificou-se neste estudo, que o aumento das doses de N influenciou o aumento 

dos teores de S foliar com ajuste de crescimento linear, com variação destes teores de S, de 

3,0 a 3,30 g kg-1 (Figura 9D), quer seja devido ao efeito diluição/concentração, ou pela 
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maior produção de matéria seca. Os teores de S na faixa de suficiência é de 3,0 a 4,0 g kg-1 

(MALAVOLTA et al., 2002), estando assim, os resultados encontrado dentro da faixa de 

suficiência para a mamoneira. 
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Figura 9. Teores foliares de N, Mg e S de plantas de mamoneira cv. BRS Energia, em 
resposta a diferentes doses de N. Embrapa Algodão, Campina Grande- PB, 2012. 
 

Diminuição nos teores de N em folhas de feijão em função da adubação 

decobertura com S, foi observada por Crusciol et al. (2006), sugerindo que isso ocorra 

devido ao efeito diluição, já que o S promoveu aumento na produção de massa seca. 

Segundo (Friedrich e Schrader, 1978), o fato de adubações com N afetar no teor foliar de S 

e vice-versa, está diretamente relacionado às assimilações de NO3
- e SO42- estarem 

metabolicamente ligadas, uma vez que estes nutrientes apresentam funções semelhantes 

nas plantas. 

 

4.5.2. Micronutrientes em folhas de mamoneira 
 

A maior parte dos trabalhos existentes sobre absorção e exportação de nutrientes, 

restringem-se apenas aos macronutrientes, no entanto, mesmo os micronutrientes sendo 



42 
 

 

absorvidos em pequenas quantidades, esses são essenciais para o crescimento e 

desenvolvimento das culturas (KIRKBY; RÖMHELD, 2007).  Pelo resumo da análise de 

variância (Tabela 8), verifica-se que a interação entre os fatores (N e Si) estudados, não foi 

significativa para os teores de micronutrientes nas folhas de mamoneira. Entretanto, a 

avaliação isolada do N, demonstrou influência significativa sobre a composição mineral da 

mamoneira, com ajuste ao modelo quadrático para os teores foliares de Fe e Si. Já as doses 

de Si analisadas isoladamente, não influenciaram os teores de micronutrientes nas folhas.  

De acordo com Lange et al. (2005), deficiência de micronutrientes como ferro (Fe), 

manganês (Mn) e cobre (Cu), reduzem o crescimento e a matéria seca da parte aérea e do 

 
TABELA 8. Resumo das análises de variância e respectivos quadrados médios, para os 
teores de micronutrientes, manganês (Mn), zinco (Zn), ferro (Fe) e silício (Si) em folhas de 
plantas de mamoneira cv. BRS Energia. Campina Grande, PB, 2012.     
Fonte de Variação  Quadrados Médios 

GL  Mn      Zn       Fe      Si  
Bloco 3  0,005    0,012            0,0003           0,009 
 N 3  0,012ns    0,010ns            0,0020**          0,017* 
Sil 3  0,010ns                0,011ns            0,0003ns          0,002ns 
N x Sil 9  0,010ns                         0,008ns            0,0020ns 0,010ns 
Contrastes      
N Linear 1  0,008ns                0,006ns            0,0040**          0,240* 
N Quad.  1  0,002ns                     0,011ns                    0,0010*               0,003ns 
Sil Lin. 1  0,005ns                0,005ns             0,0002ns         0,001ns 
Sil Quad. 1  0,015ns                          0,010ns 0,00004ns         0,001ns 
NL x SiL 1 0,0006ns                       0,003ns           0,00004ns 0,049ns 
Resíduo 45 0,0072    0,0094  0,00019 0,0058 
CV (%)   76,25     110,6    25,53 43,19 
M. Geral    0,11      0,08      0,05   0,17 
GL- Grau de liberdade; ns- não significativo; ** e *, significativo a 1 e a 5% de 
probabilidade, respectivamente, pelo teste F. 

 

sistema radicular das plantas. Entretanto, essa oleaginosa é mais tolerante a deficiência de 

zinco (Zn), seja por sua baixa necessidade ou pela alta capacidade de extração desse 

nutriente no solo (LANGE et al., 2005). Os resultados nesse trabalho para o Zn, discorda 

dos verificados por Chaves et al. (2009), que estudando o efeito do Zn e Cu no estado 

nutricional da mamoneira, verificaram que os teores de Zn no caule estiveram em geral, 

acima dos teores foliares, sugerindo que o caule acumula maiores quantidades desse 

elemento que às folhas.  
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Os resultados encontrados para Mn divergem também dos encontrados por 

Crusciol et al., (2012), que verificaram que o teor de Mn acumulado na parte vegetativa 

(folhas e caule), foram superiores á aquelas obtidas nas estruturas reprodutivas. O Mn atua 

como ativador enzimático no processo de respiração e participa da fotólise da água na 

fotossíntese (MALAVOLTA, 2006). Assim, maior teor de Mn nas folhas e caules deve-se 

a sua lenta redistribuição na planta. 

Para os teores foliares de Fe, os dados se ajustaram ao modelo linear com 

incremento dos teores de Fe em função das doses de N com elevado coeficiente de 

determinação (Figura 10A). Observa-se que à medida que se aumentou as doses de N, os 

teores de Fe aumentaram, sendo o maior teor de Fe (0,41g kg-1), estimado com a aplicação 

da maior dose de N (180 kg ha-1). Camargo e Zabini (2005), trabalhando com nutrição da 

mamoneira, observaram 201 mg kg-1 de Fe, na matéria seca foliar de mamoneira, valor 

muito superior aos encontrados neste experimento.  

Segundo Marschner (1995) e Abdalla et al. (2008), o Fe além de constituinte 

essencial de várias enzimas e participar de processos metabólicos no ciclo das plantas, 

também atuam na transferência de elétrons para a redução de nitrato e na fixação biológica 

de nitrogênio, exercendo assim, papel estrutural e catalítico. O Fe atua ainda na síntese de 

clorofila, participando da fotossíntese e respiração. Além disso, após absorvido, seu 

transporte se dá via xilema e sua mobilização para dentro do floema é diminuída pela 

formação de compostos insolúveis nas folhas (MALAVOLTA, 2006; DECHEN; 

NACHTHIGALL, 2006). Daí o porquê do Fe ser acumulado preferencialmente nas folhas, 

que é o sítio primário da função desse nutriente (KIRKBY; RÖMHELD, 2007). 

O Si é um elemento considerado essencial devido à possibilidade de elevar a produtividade 

das culturas agrícolas através da redução da ocorrência de pragas, doenças, estresse hídrico 

e tolerância a metais pesados (KARDONI et al., 2013).  

Quanto ao Si, foi possível verificar que as doses de N influenciaram 

negativamente sobre seu teor na massa seca foliar, com ajuste linear decrescente, de forma 

que, conforme se aumentou a dose N aplicada, menor teor de Si foliar foi observado, 

estando o menor teor Si (0,44 g kg-1) (Figura 10B) relacionado a maior dose de N aplicada 

(120 kg ha-1).   

A relação negativa entre os teores de Si e as doses de N aplicadas, pode ter ocorrido 

em função do efeito de diluição. Resultados sobre a interação entre o N e o Si na nutrição 

de plantas ainda são restritos. Ávila et al. (2010) trabalhando com doses de N e Si em 
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solução nutritiva com a cultura do arroz, verificaram que o teor de Si na parte aérea e nas 

raízes diminuíram de forma quadrática em função das doses de N utilizadas.  
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Figura 10. Teores foliares de Ferro (A) e Silício (B), de plantas de mamoneira cv. BRS 
Energia, em resposta a diferentes doses de N. Embrapa Algodão, Campina Grande- PB, 
2012.  

 

4.6.  Teor de clorofila em folhas de mamoneira 

 

 A taxa fotossintética pode ser reduzida com a diminuição da concentração do 

nitrogênio nos vegetais, e a relação entre esse nutriente e as plantas, está ligada à clorofila 

pela conversão da radiação luminosa em energia de ATP e NADPH, que são dependentes 

de compostos proteicos associados aos cloroplastos (LARCHER, 2006).  A redução na 

quantidade de clorofila pode estar relacionada ao efeito negativo da deficiência de 

nitrogênio sobre a taxa fotossintética (CRUZ et al., 2007), e a deficiência de N que 

constitui os aminoácidos e proteínas, retarda o crescimento da planta por diminuir o 

conteúdo de carbono e dessa forma, haverá deficiência de clorofila e da enzima Rubisco 

(EPSTEIN; BLOOM, 2006). 

Na Tabela 8, é apresentado o resumo da análise de variância com os respectivos 

quadrados médios para os teores de clorofila “a”, “b” e total da mamoneira. Não ocorreu 

interação significativa entre os fatores N e Si, verificando-se um aumento destas variáveis 

com ajuste linear. Quanto ao Si, não se observou efeito significativo desse elemento sobre 

os teores de clorofila nas folhas de mamoneira. (µg.m-2). 
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TABELA 9. Resumo das análises de variância e respectivos quadrados médios, para os 
teores de clorofila a (Cla), clorofila b (Clb) e total (Clt) em folhas de mamoneira cv. BRS 
Energia. Campina Grande, PB, 2012.  

Fonte de Variação GL Quadrados Médios 
           Cla         Clb             Clt  
Bloco 3    8356,49                    75,95     9618,36  
N 3     833,91**            1399,41**   41290,43** 
Sil 3   6668,06ns                    98,34ns     6975,26ns 
N x Sil 9     755,26ns                135,86ns   12831,24ns 
Contrastes     
N Linear 1 121789,41**             2863,82**   87304,53**      
N Quad.  1  26096,38ns                             10,01ns   25082,11ns                       
Sil Lin. 1  15005,25ns                     59,63ns   16956,80ns 
Sil Quad. 1    5246,59ns                     34,10ns     4435,60ns 
NL x SiL 1  12880,83ns                   28,18ns      16976,00ns 
Resíduo 45      561,4        72,3       630,6 
CV (%)         33,04                        28,40         30,41          
M. Geral       262,57                        58,36       320,93 

GL- Grau de liberdade; ns- não significativo; ** e *, significativo a 1 e a 5% de 
probabilidade, respectivamente, pelo teste F. 
 

Observando-se a Figura 11A, é possível verificar que houve aumento do teor de 

clorofila “a”, em função das doses crescentes de N. Os dados para clorofila “a” ajustaram-

se ao modelo linear, de forma que quanto maior a dose de N aplicada (180 kg ha-1), maior 

o teor de clorofila “a” (295,31 µg.m-2) presente na folha, sugerindo que as doses de N 

avaliadas aumentaram a atividade fotossintética da planta.  

Os pigmentos fotossintéticos são importantes, pois participam de processos na 

absorção de energia luminosa para posterior conversão dessa energia em ATP e NADPH. 

Dentre eles, os pigmentos encontrados em plantas são a clorofila “a”, a clorofila “b” e os 

carotenóides. A clorofila “a” é a principal responsável pela coloração verde das plantas e 

pela realização da fotossíntese (TAIZ e ZEIGER, 2010) e os fatores determinantes do 

conteúdo fotossintético são a luminosidade e a nutrição mineral, pois além de integrarem a 

estrutura molecular das plantas, atuam diretamente na própria síntese dos pigmentos 

fotossintéticos (TAIZ e ZEIGER, 2004). 

Capuani et al. (2011) trabalhando com doses de N e Si na cultura da mamoneira, 

verificaram que os teores de clorofila “a” aumentaram linearmente em função das doses de 

N, com teores variando de 178,89 até 250,89 µg.m-2, não sendo constatada influência da 

utilização do silício sobre as variáveis estudadas. Rossalto et al. (2012), estudando os 



46 
 

 

teores de nitrogênio, produção de biomassa e produtividade do algodoeiro concluíram que 

os teores crescentes de clorofila, sugerem maior capacidade de detectar a variação da 

produtividade de plantas de algodão promovidos pelas doses crescentes do nitrogênio. 

A clorofila “b” é um pigmento que ajuda a ampliar a faixa de absorção de luz que 

pode ser usada na fotossíntese. Essa clorofila é auxiliar da clorofila “a”, transferindo a 

energia captada para as moléculas que realizarão a fotossíntese (RAVEN, 1983). Para os 

teores de clorofila “b” (Figura 11B), houve um ajuste de crescimento linear em função das 

doses de N. Nota-se que estas doses, proporcionaram uma variação destes teores de 

clorofila “b”, com ajuste ao modelo linear crescente, variando de 231,44 a 298,36 µg.m-2.  

Estes resultados se assemelham a estudos comparativos sobre nutrição e adubação 

orgânica e mineral no crescimento e metabolismo do algodoeiro herbáceo, onde observou-

se que independente da fonte de nitrogênio utilizada (torta e casca de mamona), à medida 

que se aumentou as doses de N para 180 kg ha-1, houve aumento dos teores de clorofila 

entre 45,62 a 61,03 µg.m-2 (TAVARES, 2013). De acordo com Sofiatti et al. (2009), níveis 

de clorofila inferiores a 40 µg.m-2, deve-se possivelmente, ao início do processo de 

senescência, bem como  a deficiência de N. Pesquisa realizada por Motomiya et al. (2007) 

com doses de N em algodão, demonstrou que teores de clorofila variaram de 44,15 a 49,53 

µg.m-2, em função da aplicação das  doses de N. 

  Houve efeito significativo das doses de N sobre os teores de clorofila total (Clt) 

nas folhas de mamoneira, verificando ajuste ao modelo linear, com incremento deste teor 

em função das doses de N utilizadas, com teores variando de 230,29 a 387,12 µg.m-2 

(Figura 11C). Esse resultado corrobora com os encontrados por Capuani et al. (2011) 

avaliando o efeito de doses de N sobre os teores de Clt, também em folhas de mamoneira, 

observaram aumento linear, que variaram de 224,83 até 307,33 µg.m-2. 
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Figura 11. Teores foliares de clorofila a (A), clorofila b (B) e clorofila total (C) em folhas 
de mamoneira cv. BRS Energia, em resposta a diferentes doses de N. Embrapa Algodão, 
Campina Grande- PB, 2012.  

 

4.7. Componentes de produção de matéria seca 

 

Os valores referentes aos quadrados médios, para os componentes de produção 

primária para massa seca da raiz (MSR), massa seca do caule (MSC), massa seca da folha 

(MSF), massa seca do cacho (MSCX) e massa seca do fruto (MSF), de plantas de 

mamoneira cv. BRS Energia são apresentados na Tabela 10. É possível observar, que não 

houve interação entre as doses de N (0, 60, 120 e 180 kg ha-1) e de Si (0, 80, 160 e 240 mg 

L-1) sobre a produção de massa seca das variáveis avaliadas. Entretanto, observaram-se 

diferenças estatísticas significativas a 1% de probabilidade, apenas para efeito isolado de 

doses de N referente a todas as variáveis, com ajuste de crescimento polinomial quadrático.  

A adubação nitrogenada possibilita crescimento mais rápido e maior produção de 

massa de matéria seca devido o N promover maior crescimento radicular, maior eficiência 

fotossintética e aumento da área foliar (CORSI, 1993). 
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Tabela 10. Resumo das análises de variância e respectivos quadrados médios, para os 
componentes de produção primária massa seca da raiz (MSR), massa seca do caule (MSC), 
massa seca da folha (MSF), massa seca do cacho (MSCX), massa seca total (MST), de 
plantas de mamoneira cv. BRS Energia. Campina Grande, PB, 2012. 
Fonte de 
Variação 

  Quadrados Médios 
GL    MSR    MSC     MSF   MSCX      MST  

Bloco 3    13,71 458,19  345,37   177,67   7942,51 
N 3  198,52** 679,53**  089,38** 1297,52** 15180,60** 
Si 3   10,85ns   71,74ns    13,40ns    58,12ns     494,82ns 
N x Si 9   34,82ns   92,90ns  201,13ns    88,81ns    659,13ns 
Contrastes       
N Linear 1   85,54ns 051,02ns 4244,31ns       0,38ns  7354,83** 
N Quad.  1 397,74** 633,56** 1577,22** 3280,34**  31548,0** 
Si Lin. 1   10,04ns     1,35ns       1,50ns     64,60ns     0,017ns 
Si Quad. 1     2,21ns   67,47ns     10,87ns     26,32ns   140,26ns 
NL x SiL 1     9,22ns   58,22ns       9,55ns     14,52ns   277,30ns 
Resíduo 45    24,63   82,54   119,66     75,14   653,59 
CV (%)     33,33   33,12     30,97     28,13     21,17 
M. Geral     14,89               27,43                   5,32                 30,81            120,75 
GL- Grau de liberdade; ns- não significativo; ** e *, significativo a 1 e a 5% de 
probabilidade, respectivamente, pelo teste F. 

 

Os valores de massa seca da raiz (Figura 12A) tiveram ajuste ao modelo 

quadrático de regressão, com aumento crescente até a dose máxima de 104,0 kg ha-1 de N, 

que proporcionou uma produção de massa seca de raiz em 21,88 g. No entanto, doses 

superiores promoveram decréscimos na produção de massa seca da raiz. Este crescimento 

indica elevada eficiência da espécie para transformar nutrientes absorvidos em fitomassa 

(SOFIATTI et al., 2010; DINIZ NETO, et al., 2012).  

Foi observado para a massa seca caulinar, valores com um ajuste quadrático de 

crescimento, com aumento crescente até a dose de 74,07 kg ha-1 de N, com produção de 

massa seca caulinar de 108,81 g planta-1, entretanto, a utilização de doses superiores de N 

promoveram decréscimos no incremento de massa seca caulinar (Figura 12B). Esse valor 

para MSC (108,81 g planta-1) foram superiores aos (45,12 g planta-1) encontrados por 

Mesquita et al. (2011) em trabalho realizado com doses de N em plantas de mamoneira 

com a dose de 200 kg ha-1.  

 Com a aplicação de doses de N foi possível ajustar regressões polinomiais 

quadráticas para a produção de massa seca foliar (MSF) (Figura 12C). O aumento das 

doses de N promoveu incrementos na produção de MSF até a dose máxima observada de 

162,62 kg ha-1 de N, responsável pela produção de 49,17 g de MSF, entretanto, doses 
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superiores resultaram na queda da produção de MSF. Esse resultado está diretamente 

relacionado ao fato de que a adubação nitrogenada aumenta a disponibilidade de N no solo, 

aumentando assim a absorção desse nutriente pelas raízes, refletindo no aumento da 

produção de massa seca, uma vez que esse elemento tem influência direta sobre a 

fotossíntese e o crescimento da planta (SILVEIRA E DAMASCENO, 1993). 

 Mesquita et al. (2012) em pesquisa realizada verificaram variação nos teores de 

MSF de 112,74 a 72,27 g planta-1 com as doses de 300 e 200 kg ha-1 respectivamente.  

Para a produção de massa seca do cacho (MSCX), os dados se ajustaram ao 

modelo polinomial quadrático em função das doses de N utilizadas. Houve incremento da 

produção de MSCX, com produção máxima observada (26,04 g planta-1) até a dose de (126 

kg ha-1), no entanto, a aplicação de doses mais elevadas promoveu efeito decrescente sobre 

essa variável (Figura 12C). Esse resultado diverge do encontrado por Mesquita et al. 

(2012), que verificaram produção de (58,28 g planta-1) com a dose de 200 Kg ha-1. 

 A massa seca total (MST) também foi influenciada significativamente pelas doses 

de N, com ajuste polinomial quadrático, de forma que, a produção de MST aumentou 

conforme se aumentou a dose de N até a dose de 109,71 kg ha-1, sendo essa dose 

responsável pela produção máxima de (137,01 g planta-1), porém, doses superiores 

influenciaram de forma negativa essa variável com decréscimos significativos (Figura 

12D).  

 Esse resultado diverge do resultado encontrado por Ribeiro (2008), que obteve 

285,44 g planta-1 de MST em trabalho realizado com 200 kg ha-1 de N. Entretanto, se 

aproximam dos 185,68 g planta-1 de MST encontrado por Chaves e Araújo (2011) para 

dose de 40 kg ha-1. De acordo com Diniz Neto et al. (2009), a mamoneira responde com 

intensidade a aplicação dos adubos no solo através dos componentes de produção e na 

produtividade. 
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Figura 12. Massa seca da raiz (A), do caule (B), da folha (C), do cacho (D) e da planta (E), 
de plantas de mamoneira cv. BRS Energia, em resposta a diferentes doses de N. Embrapa 
Algodão, Campina Grande- PB, 2012. 
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5. CONCLUSÕES 

 
 A adubação nitrogenada diminuiu os teores de K no solo, comprometendo sua 

disponibilidade às plantas; 

 A interação entre o Si e o N não produziu efeitos significativos na fertilidade do 

solo, crescimento de planta, teor de clorofila, nutrição mineral e produção de 

biomassa seca, exceto sobre o diâmetro do caule da mamoneira BRS Energia; 

  As variáveis de diâmetro caulinar, número de folhas e área foliar aumentaram o 

crescimento quando submetidas às adubações nitrogenadas; 

 As taxas de crescimento aumentaram por influência do incremento das doses de 

nitrogênio; 

 Os teores de nitrogênio, magnésio, cálcio e enxofre aumentaram, enquanto que o 

teor de silício diminuiu, pelo efeito da pulverização nitrogenada nas folhas da 

mamoneira BRS Energia;  

 As doses de N aumentaram os teores de Fe e diminuíram os teores de Si na massa 

seca foliar; 

 A massa seca foliar, caulinar, radicular e total aumentou com o incremento das 

doses de N, ajustando-se às regressões polinomiais quadráticas. 
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