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“O que vejo na natureza é uma estrutura magnífica que só compreendemos de modo 
muito imperfeito, e que não tem como não encher uma pessoa racional de um sentimento 

de humildade” 
 

Albert Einstein 
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Mecanismos de Evolução Cariotípica em Epidendrum L. (Orchidaceae: 

Epidendroideae) 

 

RESUMO O gênero Epidendrum L. é composto por aproximadamente 1.500 espécies 
de distribuição exclusivamente neotropical, sendo frequente a ocorrência de hibridação, 
poliploidia e reprodução assexuada. Além disso, algumas espécies apresentam 
taxonomia complexa, como em E. secundum, que apresenta ampla variação 
cromossômica numérica. O presente trabalho objetivou testar as hipóteses sobre as 
causas da variabilidade cromossômica numérica em E. secundum, investigar a origem 
híbrida em indivíduos com morfologia floral intermediária entre E. flammeum x E. 

secundum, e entre E. xanthinum x E. secundum, bem como analisar a diversidade de 
heterocromatina e conteúdo de DNA em espécies pertencentes aos subgêneros 
Amphiglottium e Epidendrum. Para tanto, realizou-se a quantificação de DNA nuclear 
através de citometria de fluxo, análise da distribuição da heterocromatina através do 
bandeamento com fluorocromos CMA/DAPI, e para os representantes encontrados nas 
zonas de hibridação, realizou-se também a análise da morfometria floral. As análises 
mitóticas apresentaram diferentes contagens cromossômicas que variaram de 2n = 24 em 
E. fulgens até 2n = 224 em E. cinnabarinum, com cromossomos metacêntricos, 
submetacêntricos e acrocêntricos em todas as espécies. Foram identificadas regiões 
cromossômicas terminais e pericentroméricas CMA+/DAPI¬, algumas regiões terminais 
CMA¬/DAPI+ e CMA0, de tamanho, número e posição variáveis. As regiões 
pericentroméricas geralmente apresentaram-se CMA0/DAPI¬ na maioria das espécies. 
Os tecidos foliares de todos os espécimes analisados apresentaram um ou dois ciclos de 
endoreduplicação. Para as 18 populações de E. secundum analisadas, 16 apresentaram 
indivíduos diploides, com em média 2C = 4,08 pg DNA, e em duas populações foram 
identificados indivíduos tetraploides, com em média 2C = 8,24 pg DNA. Em algumas 
populações foram identificados citótipos com cromossomos B em número variável, 
algumas vezes inteiramente CMA+/DAPI¬. Em relação às análises dos possíveis 
híbridos, três zonas de hibridação foram investigadas. Em São João do Tigre (PB), E. 

flammeum apresentou 2n = 50 e conteúdo de DNA 2C = 5,04 pg DNA, E. secundum 

apresentou 2n = 62 cromossomos e 2C = 4,82 pg DNA. Indivíduos híbridos 
apresentaram 2n = 56, com 2C = 4,63 pg DNA. Em Nova Friburgo (RJ), E. xanthinum 
apresentou 2n = 28 com 2C = 4,48 pg DNA. Os espécimes de E. secundum nesta 
população apresentaram 2n = 56 e 2C = 3,68 pg DNA. O provável híbrido apresentou 2n 
= 42 com 2C = 4,37 pg DNA. A Análise de Componentes Principais e de Agrupamento 
confirmaram a natureza intermediária dos caracteres morfológicos florais entre os 
possíveis híbridos e os prováveis parentais. Apesar da ocorrência de números 
cromossômicos discrepantes em E. secundum, as populações não apresentaram 
conteúdos de DNA com variações significativas pelo teste de Tukey, sugerindo que o 
aumento no número de cromossomos acrocêntricos é principalmente originada por 
fissões cêntricas. Altos níveis de compatibilidade reprodutiva sugerem que a hibridação 
e a introgressão são importantes para os estágios iniciais de especiação em Epidendrum. 
A diversificação cariológica observada parece relacionada a eventos de disploidia e 
poliploidia, cuja alteração no número fundamental pode ser o resultado de 
reorganizações intra e intergenômicas complexas. 
 
Palavras-chave: Cromossomos B, Disploidia, Endoreduplicação, Evolução Cariotípica, 

Fissão cêntrica, Heterocromatina, Morfometria, Poliploidia, Tamanho do genoma.  
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Mechanisms of karyotype evolution in Epidendrum L. (Orchidaceae: 

Epidendroideae) 

 
ABSTRACT The genus Epidendrum L. comprises approximately 1,500 species of 
exclusively neotropical distribution, with frequent occurrence of hybridization, 
polyploidy and asexual reproduction. In addition, some species show complex 
taxonomy, such as E. secundum, which shows extensive chromosome number variation. 
This study aimed to test the hypotheses about the causes of chromosome number 
variability in E. secundum; to investigate the hybrid origin in representatives with 
intermediate floral morphology between E. flammeum x E. secundum, and between E. 

xanthinum x E. secundum; and to analyze the heterochromatin diversity and DNA 
content in species belonging to the subgenus Amphiglottium and Epidendrum. To this 
end, we performed the quantification of nuclear DNA content by flow cytometry, 
analysed the heterochromatin distribution using CMA/DAPI fluorochrome banding, and 
performed the analysis of floral morphology on representatives found in hybridization 
zones. Mitotic analyzes showed different chromosome counts ranging from 2n = 24 in E. 

fulgens to 2n = 224 in E. cinnabarinum, with metacentric, submetacentric and 
acrocentric chromosomes in all species. CMA+/DAPI¬ pericentromeric and terminal 
chromosome regions, and some CMA¬/DAPI+ and CMA0 terminal regions were 
identified, with variation in size, number and position. Pericentromeric regions generally 
was CMA0/DAPI¬ in most species. The leaf tissues of all specimens examined presented 
one or two endoreduplication cycles. To 18 populations of E. secundum analyzed, 16 
presented diploid individuals, with an average of 2C = 4.08 pg DNA, and in two 
populations were identified tetraploid individuals, with an average of 2C = 8.24 pg 
DNA. In some populations were identified cytotypes with B chromosomes in variable 
number, sometimes entirely CMA+/DAPI¬. In relation to putative hybrid analysis, three 
hybrid zones were investigated. In São João do Tigre (PB), E. flammeum presented 2n = 
50 and 2C = 5.04 pg DNA, E. secundum presented 2n = 62 chromosomes and 2C = 4.82 
pg DNA. Hybrid individuals had 2n = 56, with 2C = 4.63 pg DNA. In Nova Friburgo 
(RJ), E. xanthinum presented 2n = 28 with 2C = 4.48 pg DNA. The specimens of E. 

secundum in this population presented 2n = 56 and 2C = 3.68 pg DNA. The putative 
hybrids presented 2n = 42 with 2C = 4.37 pg DNA. The Principal Component and 
Cluster Analysis confirmed the intermediate nature of floral morphology among putative 
hybrids and possible parents. Despite the occurrence of different chromosome numbers 
in E. secundum, populations showed no significant DNA content variation by Tukey 
test, suggesting that the increase in the number of acrocentric chromosomes is mainly 
caused by centric fissions. High levels of reproductive compatibility suggest that 
hybridization and introgression are important in early stages of speciation in 
Epidendrum. Karyological diversification observed seems related to disploid and 
polyploid events, whose changes in fundamental number may be the result of complex 
intra and intergenomic reorganizations. 
 

Keywords: B chromosomes, Centric fission, Disploidy, Endoreduplication, Genome 

size, Heterochromatin, Karyotype evolution, Morphometry, Polyploidy. 
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1. INTRODUÇÃO 

 

O gênero Epidendrum L., com aproximadamente 1.500 espécies de distribuição 

exclusivamente neotropical (Hágsater & Soto Arenas, 2005), apresenta ampla 

variabilidade morfológica inter e intraespecífica (Pinheiro & Barros, 2005, 2007a) e um 

grande número de características plesiomórficas em relação a outros gêneros da 

subfamília Epidendroideae, que dificultam a compreensão de suas relações filogenéticas 

(Pinheiro et al., 2009). A classificação infragenérica do gênero baseia-se unicamente em 

caracteres morfológicos, que tem sido considerado um depositório de espécies 

taxonomicamente "mal resolvidas" (Dressler, 1993). Nenhuma das espécies 

anteriormente incluídas em Epidendrum por Linnaeus (1753) permanece no gênero, e 

atualmente constituem gêneros distintos. Em termos taxonômicos o gênero é bastante 

complexo, e o estabelecimento de um tratamento taxonômico formal é dificultado por 

um conjunto de fatores, como por exemplo, a sua grande riqueza em espécies, a escassez 

de análises moleculares e de revisões taxonômicas. A ocorrência de números 

cromossômicos discrepantes, inclusive entre diferentes populações de uma mesma 

espécie, dificulta o entendimento das relações genéticas entre as espécies e populações 

pertencentes ao gênero Epidendrum. 

Análises cariológicas podem revelar diferentes estratégias de evolução 

cromossômica que, diferente de outros caracteres, apresentam fenótipo em metáfase 

independente da expressão gênica, condições ambientais, idade ou estádio de 

desenvolvimento (Guerra, 2012). A análise da variação cariotípica, em diversos níveis, 

tem contribuído de forma significativa para o estabelecimento de delimitações 

taxonômicas filogeneticamente mais coerentes (ver, por exemplo, Souza et al., 2012). 

Técnicas de coloração diferencial com fluorocromos, combinadas com análises da 

variação na quantidade do DNA nuclear, podem facilitar o entendimento da variação 

cromossômica em grupos filogeneticamente relacionados, por permitir a ponderação da 

diversidade genética a partir de três aspectos relacionados: níveis de ploidia, conteúdo de 

DNA e distribuição da heterocromatina. Estas análises podem ser úteis para o 

entendimento das relações genéticas em complexos taxonômicos que reúnem 

características relacionadas à hibridação, poliploidia e reprodução assexuada (Souza et 

al., 2012), como se verifica no gênero Epidendrum, especialmente nas espécies 

pertencentes ao subgênero Amphiglottium. 
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Especiação híbrida significa, em termos evolutivos, que a hibridação apresenta 

uma função crucial na origem de uma nova espécie (Mallet, 2007), bem como na 

diversificação dos caracteres fenotípicos. Outro fenômeno bastante comum em 

populações simpátricas é o retrocruzamento entre o indivíduo híbrido e um dos seus 

progenitores, sendo referido como introgressão (Pinheiro et al., 2010). Ambos os 

fenômenos são considerados promotores importantes da especiação em diversos grupos 

vegetais, e foram identificados em Epidendrum, com base na análise Bayesiana de 

microssatélites nucleares e plastidiais (Pinheiro et al., 2010; López-Pujol et al., 2011). 

As angiospermas destacam-se pela sua habilidade de tolerar os impactos genômicos 

resultantes da hibridação e da poliploidia, que surgem da acomodação de genomas 

divergentes e duplicados em um mesmo núcleo (Leitch & Leitch, 2008). Tal plasticidade 

genotípica agrega diversos tipos de ajustes, como por exemplo, a recombinação entre os 

diferentes genomas, a conversão gênica, o silenciamento gênico, inversões, 

translocações e deleções, que conduzem a contribuições genômicas desiguais (Mallet, 

2007; Leitch & Leitch, 2008). Diversos híbridos interespecíficos em Epidendrum têm 

sido relatados por alguns autores (Dunsterville, 1979; Hágsater, 1984; Dressler, 1989; 

Pansarin & Amaral, 2007; Pinheiro et al., 2010), porém pouco se sabe sobre os efeitos 

da hibridação na evolução cariotípica do gênero. 

Em termos cariológicos, apenas 2,8% das espécies de Epidendrum foram 

estudadas citologicamente, e esta caracterização é representada apenas por contagens 

cromossômicas (Guerra, 2000; Conceição et al., 2006; Pinheiro et al., 2009; Felix & 

Guerra, 2010; Assis et al., 2013). Apesar de escassas, as informações cromossômicas 

disponíveis em Epidendrum indicam que a ocorrência da poliploidia é bastante elevada e 

recorrente, como se observa em E. nocturnum Jacq. (do grupo Subumbellatae) com 2n = 

40, 80, E. orchidiflorum Salzm. ex Lindl. e E. cinnabarinum Salzm. ex Lindl. (do 

subgênero Amphiglottium) com 2n = 120 e 2n = 240, respectivamente. Contudo, torna-se 

difícil estabelecer com segurança os níveis de ploidia no gênero e especialmente em E. 

secundum, que apresenta elevada variação cromossômica numérica (Assis et al., 2013), 

em virtude da escassez de dados cariológicos. Informações importantes, como o seu 

número cromossômico básico (x), permanecem obscurecidas principalmente pela baixa 

representatividade de espécies do gênero Epidendrum com conteúdo de DNA nuclear 

quantificado, sendo conhecido apenas, até o presente momento, para E. obliquum Schltr. 

(como E. steinbachii), que apresenta 2C = 2.98 (±0,11) pg DNA (Jones et al., 1998). 
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O presente trabalho objetivou identificar os principais mecanismos relacionados 

à evolução cariotípica em Epidendrum, a partir da análise cariológica da variação 

cromossômica numérica, bem como do aumento no número de espécies com conteúdo 

de DNA nuclear conhecido, e dos padrões de distribuição de regiões heterocromáticas 

através da dupla coloração com os fluorocromos CMA/DAPI em espécies e híbridos 

interespecíficos. 

 

2. FUNDAMENTAÇÃO TEÓRICA 

 

2.1. Orchidaceae 

 

 A família Orchidaceae, considerada uma das mais diversificadas e 

taxonomicamente complexas dentre as angiospermas (Pridgeon et al., 1999; Phillips et 

al., 2012), apresenta cerca de 800 gêneros e 25.971 espécies (Joppa et al., 2011). As 

orquídeas possuem distribuição cosmopolita, embora a maioria das espécies ocorra nas 

regiões tropicais. O Brasil apresenta cerca de 200 gêneros e 2.500 espécies (Souza & 

Lorenzi, 2008; Barros et al., 2013). Além do grande número de espécies, a família 

também apresenta adaptações a diversos tipos de habitats, principalmente epífitas e 

rupícolas, bem como aproximadamente 30% de espécies terrestres (Gravendeel et al., 

2004). Suas espécies e híbridos apresentam elevado potencial ornamental, e perfazem 

8% das vendas na floricultura mundial (Chugh et al., 2009). Além disso, alguns gêneros 

são tradicionalmente utilizados na indústria alimentícia, a exemplo de Vanilla Plum. ex 

Mill. (baunílhia). 

 

2.1.1. Taxonomia e Aspectos gerais da família  

 

As orquídeas são plantas herbáceas e perenes, que podem ser facilmente 

reconhecidas pela simetria zigomorfa de suas flores, nas quais os estames são adnatos 

basalmente ao estilete, formando uma estrutura denominada ginostêmio (Dressler, 

1981). Caracterizam-se ainda por apresentar grãos de pólen agrupados em políneas, fruto 

do tipo cápsula seca, sementes desprovidas de cotilédones, e por suas relações 

micorrízicas (sensu APG III, 2009). 

A dispersão de sementes através do vento é quase universal na família 

Orchidaceae, que relaciona estratégias nutricionais especializadas à associação com 
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fungos micorrízicos. Uma destas estratégias é a microspermia micotrófica, comum em 

espécies que são dependentes de fungos holoparasitas, que auxilia na assimilação do 

carbono. Estas interações especializadas possivelmente apresentam um padrão evolutivo 

que relaciona características do habitat, micotrofia e especiação floral (Benzing, 1987; 

Phillips et al., 2012). A produção de grande quantidade de sementes também é uma 

estratégia evolutiva bastante eficiente, através da qual as espécies procuram aumentar as 

chances de estabelecimento das plântulas em função da especificidade de seus habitats, 

permitindo a fixação de poucos indivíduos em locais distantes de sua origem, de maneira 

dispersa, gerando populações disjuntas (Pinheiro & Barros, 2005). 

Alguns estudos têm demonstrado que a diversificação floral em Orchidaceae é 

bastante ampla, podendo ocorrer diferentes mecanismos evolutivos em um mesmo 

gênero (Melo & Borba, 2011). Em Acianthera Scheidw., por exemplo, a convergência 

morfológica floral é evidente em algumas espécies alopátricas [A. hamosa (Barb.Rodr.) 

Pridgeon & M.W.Chase, A. limae (Porto & Brade) Pridgeon & M.W.Chase e A. 

modestíssima (Rchb.f. & Warm.) Pridgeon & M.W.Chase], onde a polinização está 

associada ao mesmo grupo de insetos. Contudo, observa-se em A. prolifera (Herb. ex 

Lindl.) Pridgeon & M.W.Chase, cuja polinização é realizada por outro grupo de insetos, 

que os mesmos caracteres morfológicos podem divergir por irradiação adaptativa (Melo 

& Borba, 2011), em virtude da pressão de seleção do polinizador. De fato, muitas 

espécies formam pequenas populações disjuntas, com menor probabilidade de fluxo 

gênico entre elas, suportando a hipótese de deriva genética a partir da origem de novas 

combinações genotípicas e, consequentemente, favorecendo a especiação (Tremblay et 

al., 2005). Por outro lado, estudos realizados em algumas populações disjuntas em 

Orchidaceae revelaram baixa diferenciação genética entre elas, e a diversificação nesses 

grupos possivelmente é conduzida pela pressão de seleção de fatores bióticos e 

ambientais (Phillips et al., 2012), adicionando novos desafios para o entendimento das 

relações taxonômicas e filogenéticas em Orchidaceae. 

Nos últimos anos, a família Orchidaceae tem chamado a atenção dos 

pesquisadores, em virtude principalmente da taxonomia controversa, tradicionalmente 

baseada em caracteres morfológicos florais. A partir da década de 90, um grande número 

de estudos filogenéticos baseados em dados moleculares foi publicado, e Orchidaceae 

está se tornando, dentre as angiospermas, uma das famílias mais estudadas em termos de 

suas relações infra-familiais (Chase et al., 2003; Li et al., 2011; Chemisquy & Morrone, 

2012; Zhang et al., 2013). 
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Atualmente, reconhece-se formalmente que a família Orchidaceae é monofilética, 

e está subdividida em cinco subfamílias: Apostacioideae, Cypripedioideae, Vanilloideae, 

Orchidoideae, Epidendroideae. As duas primeiras são bastante consensuais: 

Apostasioideae e Cypripedioideae. A terceira subfamília, Vanilloideae, é questionada 

por alguns autores (Cameron et al., 1999) e pouco conhecida entre os botânicos, porém é 

fortemente suportada por diversas linhas de evidências, inclusive moleculares. Outras 

evidências suportaram a inclusão de Spiranthoideae sensu Dressler (1993) em 

Orchidoideae, e a inclusão de Tropidieae na subfamília Epidendroideae (para uma leitura 

mais detalhada, ver Chase et al., 2003). 

  

 2.1.2. Citogenética de Orchidaceae, com ênfase na subfamília Epidendroideae e 

na subtribo Laeliinae 

 

A família é relativamente pouco conhecida em termos de números 

cromossômicos, com aproximadamente 11% de espécies citologicamente conhecidas 

(Felix & Guerra, 2010). Contudo, a variação no tamanho e no número de cromossomos é 

bastante elevada, principalmente na subfamília Epidendroideae. Os representantes das 

subfamílias Apostasioideae e Orchidoideae geralmente apresentam cromossomos 

pequenos, enquanto os representantes das subfamílias Cypripedioideae e Vanillioideae 

apresentam cromossomos maiores (APG III, 2009). Os números cromossômicos em 

Orchidaceae variam de 2n = 12 em Erycina pusilla (L.) N.H.Williams & M.W.Chase 

(Felix & Guerra, 1999) até 2n = 240 em Epidendrum cinnabarinum Salzm. ex Lindl. 

(Felix & Guerra, 2010), ambas as espécies pertencentes à subfamília Epidendroideae. 

Tão variável quanto os números cromossômicos são os registros de quantificação 

do genoma em Orchidaceae, que varia em 168 vezes, a partir de 1C = 0,33 pg em 

Trichocentrum morenoi (Dodson & Luer) M.W.Chase & N.H.Williams à 55,4 pg em 

Pogonia ophioglossoides (L.) Ker Gawl. A maioria das espécies analisadas apresenta 

genomas em torno de 8,5 pg, e genomas maiores (> 20 pg) são restritos a espécies das 

subfamílias Cypripedioideae e Vanilloideae (Leitch et al., 2009). Com relação à ecologia 

das espécies cujos níveis de ploidia são elevados, é possível que a família Orchidaceae 

tenha uma correlação positiva entre quantidade de DNA e habitat terrestre (Leitch et al., 

2009), o mesmo ocorrendo com a poliploidia no gênero Oncidium Sw., que parece 

relacionada ao habitat terrestre ou rupícola (Felix & Guerra, 2000). 
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 De forma geral, as análises cariológicas em Epidendroideae são escassas, e estão 

principalmente relacionadas a contagens cromossômicas, enquanto informações 

relacionadas ao padrão de distribuição da heterocromatina, conteúdo de DNA, número e 

posição de sítios de DNAr, dentre outras características citogenéticas importantes estão 

restritas a poucas subtribos (Cymbidiinae, Dendrobiinae e Maxillariinae), que 

apresentam variação no número e no padrão de distribuição de sítios de DNAr em 

algumas espécies. Em muitos casos, esta variação está relacionada à poliploidia, e o 

número de sítios aumenta em relação ao parente diploide. Entretanto, esta não é uma 

regra geral em Orchidaceae. No gênero Paphiopedilum Pfitzer, não há nenhuma 

evidência de poliploidia, e as diferenças nos números cromossômicos e no padrão de 

distribuição dos sítios de DNAr neste gênero estão relacionadas à aneuploidias, em uma 

série formada por fissões e fusões cêntricas (Lan & Albert, 2011). Geralmente, o padrão 

de distribuição de sítios de DNAr 45S é mais polimórfico em plantas do que o 5S, porém 

Lan & Albert (2011) verificaram que os sítios de DNAr 5S são muito mais variáveis em 

número e localização física em Paphiopedilum, possivelmente ocorrendo pela atividade 

de elementos transponíveis, translocações ou inversões. 

 A subtribo Laeliinae destaca-se dentre as demais subtribos em Epidendroideae 

por apresentar gêneros de elevado valor horticultural, a exemplo de Cattleya Lindl. e 

Laelia Lindl., e também alguns gêneros que perfazem uma grande fração da flora de 

orquídeas dos neotrópicos, tais como Epidendrum L., Encyclia Hook. e Prosthechea 

Knowles & Westc. (van den Berg et al., 2000). Laeliinae apresenta aproximadamente 

2,5% de suas espécies com registros de números cromossômicos, porém alguns gêneros 

são mais estudados citologicamente em detrimento de outros. O gênero Cattleya 

apresenta cerca de 50% de suas espécies analisadas cariologicamente, enquanto em 

Encyclia, apenas sete espécies apresentam registros cromossômicos (Felix & Guerra, 

2010). Apesar de apresentar uma variação cariológica significativa, 2n = 40 é o número 

cromossômico mais frequente na subtribo (Tanaka & Kamemoto, 1984), com número 

básico x = 20, sugerindo que a poliploidia constitui-se em um importante mecanismo 

relacionado à evolução cariotípica em Laeliinae (Felix & Guerra, 2010). 

A variação em números cromossômicos na subfamília Epidendroideae foi 

extensamente revisada por Felix & Guerra (2010), onde as principais diferenças 

cariológicas entre as tribos Epidendreae, Cymbidieae, Podochileae e Vandeae, que 

juntas congregam a maioria das espécies da subfamília Epidendroideae, é a 

predominância de n = 20 em Epidendreae, n = 21 in Cymbidiae e n = 19 nas duas 
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últimas tribos. Múltiplos de n = 7, especialmente n = 21 ou próximo deste valor 

predomina na maioria dos gêneros da subfamília Orchidoideae. 

Dentre as orquídeas no geral, n = 21 é um número cromossômico recorrente que 

parece estar relacionado ao provável número básico x = 7 proposto para a família (Felix 

& Guerra, 1999, 2000, 2005, 2010). Partindo da análise da variação cromossômica 

numérica registrada para a família, uma hipótese razoável relaciona eventos recorrentes 

de poliploidia a disploidias, resultando na grande diversidade de números 

cromossômicos observada em diversas linhagens da família Orchidaceae, não obstante a 

ocorrência de hibridação entre espécies com diferentes números cromossômicos, que 

adiciona maior variabilidade cromossômica a diversos gêneros, notavelmente em 

Epidendrum (Pinheiro et al., 2010). 

 

2.2. O gênero Epidendrum L. 

 

 2.2.1. Caracterização geral 

 

O gênero Epidendrum foi inicialmente descrito por Linnaeus (1737), cujo 

lectótipo é baseado em E. nocturnum Jacq. O gênero apresenta cerca de 1.500 espécies 

distribuídas desde o sudeste dos Estados Unidos (Carolina do Norte) até o Norte da 

Argentina (Chase et al., 2003; Hágsater & Soto Arenas, 2005; Pinheiro & Barros, 

2007a). A plasticidade fenotípica em Epidendrum favorece a ocupação de habitats 

bastante variados, e como consequência, ocorrem espécies terrestres, rupícolas e epífitas 

(Pinheiro et al., 2009). 

O gênero caracteriza-se morfologicamente por apresentar caules longos, 

cilíndricos ou pseudobulbosos, algumas vezes cespitosos, folhas dísticas, inflorescências 

variáveis, flores ressupinadas ou não, as margens ventrais do ginostêmio coalescentes 

com o unguículo do labelo, e o rostelo fendido e mais ou menos paralelo ao eixo do 

ginostêmio, estigma com lobos laterais bem desenvolvidos, e antera com duas, quatro, 

seis ou oito (geralmente quatro) políneas sésseis (para uma descrição morfológica mais 

detalhada ver Dressler, 1984). De acordo com Hágsater & Soto Arenas (2005), 

Epidendrum encontra-se morfologicamente bem definido. 
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 2.2.2. Considerações taxonômicas 

 

 Análises filogenéticas, baseadas em dados de sequências não-codificantes de 

DNA ribossomal (ITS), têm demonstrado que os tratamentos taxonômicos tradicionais 

em Epidendrum, que se baseavam apenas em caracteres morfológicos, tornava-o 

polifilético (van den Berg et al., 2000; Chase et al., 2003). O gênero é considerado um 

depositório de espécies taxonomicamente incertas (Dressler, 1993), e alguns aspectos da 

taxonomia e evolução do grupo permanecem inconclusivos. Contudo, alguns estudos 

baseados em dados moleculares têm sido úteis em esclarecer algumas questões 

controversas relacionadas à classificação infragenérica no gênero, como por exemplo, o 

desmembramento de todas as espécies pseudobulbosas de Epidendrum para a criação do 

gênero Auliza (sensu Brieger, 1976, 1977), claramente artificial. Posteriormente, 

Pridgeon et al. (2009) incluíram estas espécies novamente em Epidendrum, com base na 

comparação de sequências de regiões ITS de DNA nuclear ribossomais em 250 espécies 

de Epidendrum, confirmando a delimitação proposta inicialmente por van den Berg et al. 

(2000), que também utilizou sequências de DNA nuclear ribossomais (ITS) e plastidiais. 

Alguns autores já criticavam a utilização de caracteres morfológicos individuais 

utilizados para a segregação do gênero (Dressler, 1967), que frequentemente tem 

conduzido a criação de complexos taxonômicos de difícil interpretação. 

 Inicialmente, Epidendrum foi dividido em quatro subgêneros: Epidendrum, 

Spathium, Strobilifera e Amphiglottium (Lindley, 1852, 1859, e posteriormente 

Cogniaux, 1898, 1902; Pabst & Dungs, 1975; Brieger, 1976, 1977), com base apenas em 

caracteres morfológicos florais. O subgênero Amphiglottium é o único subgênero em 

Epidendrum formalmente reconhecido e considerado monofilético sob uma perspectiva 

filogenética (Pinheiro et al., 2009), e encontra-se organizado em quatro seções: 

Imbricata, Bifaria, Ancipta, e Amphiglottium. Esta última foi subdividida em três 

subseções (Integra, Carinata e Tuberculata). No entanto, apenas as subseções Integra e 

Tuberculata são consideradas monofiléticas, enquanto a subseção Carinata apresentou-

se claramente polifilética, e as espécies agruparam-se em outros dois clados nas análises 

realizadas por Pinheiro et al. (2009), um clado Andino e um clado Atlântico, 

demonstrado também a forte relação entre a diversificação de Epidendrum e os 

ambientes nos quais ocorrem. 

 Epidendrum secundum é uma das espécies mais variáveis e taxonomicamente 

menos compreendida do gênero (Brieger, 1976, 1977), com um grande número de 
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sinônimos, tais como E. ansiferum Rchb., E. crassifolium Lindl., E. ellipticum Graham. 

e E. elongatum Jacq. (Pinheiro & Barros, 2007a). Contudo, trata-se apenas de uma 

espécie altamente polimórfica, apresentando elevada variação morfológica contínua 

entre suas populações (Pinheiro & Barros, 2007a). Com base na morfologia dos calos do 

labelo, E. secundum encontra-se taxonomicamente delimitado no subgênero 

Amphiglottium, subseção Tuberculata (Pinheiro & Barros, 2007b; Pinheiro et al., 2009). 

Encontra-se distribuído pela America do Sul, ocorrendo em uma variedade de habitats 

tais como os Andes, planalto central do Brasil, campos rupestres, ao longo da costa do 

Atlântico e em inselbergues na Caatinga (Pinheiro & Barros, 2007a; Assis et al., 2013), 

e demonstram grande habilidade em colonizar novos habitats. 

 

 2.2.3. Citogenética e evolução de Epidendrum 

 

Apenas 2,8% das espécies de Epidendrum são conhecidas citologicamente 

(Tabela 1), e estas demonstram variações cromossômicas entre espécies proximamente 

relacionadas e entre populações de uma mesma espécie. Em termos de variação 

cromossômica numérica, os registros variam de 2n = 24 em E. strobiliferum Rchb.f. e E. 

fulgens Brongn. (Tanaka & Kamemoto, 1984) até 2n = 240 em Epidendrum 

cinnabarinum (Felix & Guerra, 2010). O número cromossômico diploide mais frequente 

é consistentemente 2n = 40, ocorrendo em 70% das espécies para as quais já se têm 

registros (Assis et al., 2013). 

Algumas espécies apresentam notável variação, especialmente Epidendrum 

secundum Jacq., E. ciliare L., E. nocturnum, E. radicans Pav. ex Lindl. e E. xanthinum 

Lindl., formando séries poliploides divergentes, com diversos casos de disploidias e 

aneuploidias que, aliados ao pequeno número de espécies com registro cromossômico, 

dificulta o estabelecimento de um número básico para o gênero. Apesar da escassez de 

dados, alguns números cromossômicos no gênero são interpretados por alguns autores 

como séries de outros números básicos, por exemplo, x = 19, originando 2x = 38, 3x = 

57, como se observa em alguns representantes do gênero (E. denticulatum e E. 

secundum, respectivamente) (Assis et al., 2013). Possivelmente, x = 19 é decorrente de 

uma duplicação de x = 10, com disploidia descendente de um cromossomo para produzir 

o número neobásico x = 19 (Hágsater & Soto Arenas, 2005). Outras linhagens de 

Epidendrum apresentam números cromossômicos divergentes, como em E. fulgens e E. 

mosenii, sendo n = 12 possivelmente resultante de disploidia ascendente. Epidendrum 
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secundum é um exemplo marcante de polimorfismo cromossômico numérico no gênero, 

apresentando diversos números cromossômicos atualmente conhecidos, com 2n = 28, 

30, 40, 42, 48, 50, 52, 54, 56, 58, 68, 80 e 84 (Pinheiro & Barros, 2009; Felix & Guerra, 

2010; Assis et al., 2013). 

Apesar de o gênero Epidendrum apresentar um elevado número de espécies, 

pouco se sabe sobre a biologia reprodutiva e mecanismos de polinização de suas 

espécies. De forma geral, o mecanismo de polinização por decepção é bastante comum 

em Orchidaceae, assim como a existência de mecanismos que evitam a autopolinização. 

Contudo, E. secundum é auto-compatível, mas é necessário um polinizador para a 

transferência do pólen (Pansarim & Amaral, 2008). O polinizador geralmente é um 

lepidóptera diurna, e as políneas se aderem à superfície ventral da probóscide. Assim 

como E. secundum, as espécies E. ibaguense Kunth in F.W.H.von Humboldt e E. 

radicans apresentam também uma baixa especificidade de polinizador, com mais de 23 

espécies de Lepidóptera atuando como polinizadores em populações naturais (Pansarim 

& Amaral, 2008), sendo possivelmente polinizadas através de mecanismos do tipo 

decepção. 

Como consequência da baixa especificidade de polinizadores, a hibridação em 

populações simpátricas entre diversas espécies tem sido relatada na literatura, além de 

outras evidências, como por exemplo, sementes férteis geradas de retro-cruzamentos 

entre os parentais e o possível híbrido (Pansarim & Amaral, 2008). Contudo, esta não é 

uma regra geral para o gênero, uma vez que E. paniculatum Ruiz & Pav. é auto-

incompatível ao nível do estigma, e se observa a produção de 95% de frutos gerados de 

fecundações cruzadas, enquanto nenhum fruto é gerado por autopolinização manual, 

bem como não são formadas sementes por apomixia (Pansarim, 2003). E. denticulatum 

Barb.Rodr. produz néctar extrafloral para a atração de duas espécies de formigas 

(Ectatomma tuberculatum Oliver e Camponotus sericeiventris Guérin-Méneville) que 

protegem as inflorescências da herbivoria, e desta forma aumentam a probabilidade de 

sucesso da polinização (Almeida & Figueiredo, 2003). 

A hipótese de que espécies com elevadas diferenças em nível de ploidia são 

isoladas reprodutivamente, por causa de barreiras instantâneas pós-zigóticas, foi testada 

por Pinheiro et al. (2010) em populações simpátricas de Epidendrum fulgens (2n = 2x = 

24) e E. puniceoluteum F.Pinheiro & F.Barros (2n = 4x = 52), os quais verificaram zonas 

de hibridação e introgressão em todas as populações analisadas. Em Epidendrum 

(subgênero Amphiglottium), a hibridação e consequentemente o fluxo gênico entre 



 13
 

espécies com números cromossômicos divergentes parece ser um fenômeno bastante 

comum (Pinheiro et al., 2010). A ocorrência tanto da hibridação como da introgressão 

nestas populações, entre espécies com diferentes níveis de ploidia, são um forte 

indicativo de que ambos são processos evolucionários importantes na diversificação do 

gênero em diferentes níveis, partindo da variação cromossômica numérica à 

diversificação morfológica. Contudo, estudos adicionais são necessários para esclarecer 

como estas espécies mantêm sua identidade taxonômica. 

 

2.3. Mecanismos de evolução cariotípica 

 

Diferentes organismos apresentam conjuntos de cromossomos distintos, e as 

mudanças cariotípicas em diversos grupos de plantas têm sido reconhecidas como forças 

importantes na evolução das espécies vegetais (Grant, 1981; Rieseberg, 1997; Levin, 

2002; Guerra, 2012). Em geral, o cariótipo de espécies proximamente relacionadas 

apresenta mais semelhanças do que entre espécies distantemente relacionadas (Sumner, 

2003). As mutações que se acumulam ao longo do tempo podem imprimir diferenças no 

cariótipo das espécies, alterando principalmente o número, o tamanho e a morfologia dos 

cromossomos, bem como os padrões de distribuição e composição da heterocromatina e 

sítios de DNAr, e são consideradas, portanto, evidências da evolução. Dessa forma, os 

dados cariológicos podem ser utilizados pela taxonomia como uma ferramenta útil na 

inferência das relações filogenéticas entre as espécies (Greilhuber & Ehrendorfer, 1988; 

Guerra, 2012). Questões relacionadas à filogenia podem ser esclarecidas pela reunião de 

evidências evolucionárias, como por exemplo, taxas de mutação, eventos geológicos, 

centros de origens, evidências fósseis e moleculares, bem como pela identificação e 

caracterização dos cariótipos em plantas (Kellogg, 2003; Moscone et al., 2007; Lan & 

Albert, 2011). A comparação de cariótipos conduz a um melhor entendimento de como 

as espécies divergem (Guerra, 2008). 

Muitos fenômenos relacionados às alterações estruturais e/ou numéricas 

responsáveis pela divergência cariotípica em diversos grupos vegetais são atualmente 

bastante conhecidos. Considerável diversidade cariotípica pode ser vista em relação ao 

número básico, localização física de sequências de DNAr, e pela organização de regiões 

homólogas em diferentes famílias de plantas e populações (Levin, 2002; Guerra, 2008), 

sugerindo que as variações encontradas entre cariótipos são parte de processos 
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evolucionários contínuos, recorrentes e não raramente eventos macroevolucionários 

(Ramsey & Schemske, 1998). 

As causas destas diferenças cromossômicas podem ser atribuídas ao grande 

conjunto de processos evolucionários completamente estocásticos (Levin, 2002). 

Divergência adaptativa, pressão de seleção e deriva genética relacionada à colonização 

de novos habitats, hibridação interespecífica, duplicação de genes, proliferação de 

elementos genéticos móveis, alo- e autopoliploidia, são alguns mecanismos bastante 

frequentes, que podem imprimir mudanças significativas nos cariótipos, e têm sido 

intensamente estudados nas últimas décadas (Stebbins, 1971; Grant, 1981; San Miguel et 

al., 1996; Ramsey & Schemske, 1998; Lynch & Conery, 2000; Tremblay et al., 2005; 

Doyle et al., 2008; Mayrose et al., 2011; Pinheiro et al., 2011; McIntyre, 2012). Dentre 

os diversos processos relacionados à evolução cariotípica em plantas, a poliploidia e a 

disploidia serão abordadas nas próximas seções, em virtude das inúmeras evidências de 

sua ocorrência no gênero Epidendrum. 

 

2.3.1. Poliploidia 

 

A poliploidia é um fenômeno evolucionário bastante comum dentre as 

angiospermas, e pode ser definida como a formação de números cromossômicos 

elevados (Grant, 1981), que ocorre através da multiplicação ou duplicação de um 

complemento cromossômico inteiro (Guerra, 2008), com ou sem hibridação, 

aumentando assim o nível de ploidia em algumas espécies, estando frequentemente 

associada à especiação e a origem de novas adaptações (Levin, 2002). O termo foi 

cunhado por Winkler (1916), ao estudar enxertos vegetativos em Solanum L., 

proporcionando subsídios para as hipóteses iniciais sobre a importância da poliploidia 

para a especiação vegetal. Goldblatt (1980) considera que espécies com números 

cromossômicos acima de n = 9 e 10 apresentam poliploidia em sua história 

evolucionária. Além disso, a partir destes números, estimou que aproximadamente 80% 

das monocotiledôneas são poliploides. 

Análises de distribuição de Ks (algoritmo Kennard-Stone) de 178 pares de 

parálogos em Eschscholzia californica Cham. (a linhagem irmã de todas as 

eudicotiledôneas) revelaram 89% de pares duplicados, produzindo a primeira evidência 

inconteste da duplicação em uma eudicotiledônea ancestral (Cuj et al., 2006). Com base 

em diversas análises moleculares, tais como mapeamento genômico comparativo, 
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estudos micro-colineares, e análises de marcadores de sequências gênicas, Adams & 

Wendel (2005) sugerem que o genoma de mais de 90% das angiospermas atuais retêm 

evidências de uma ou mais duplicações de todo o genoma. Estas evidências agora 

suportam as hipóteses propostas inicialmente por Stebbins (1950) de que as 

angiospermas têm experienciado repetidos ciclos de poliploidização. 

Diversos mecanismos podem levar a formação de poliploides em plantas. A 

hibridação interespecífica frequentemente precede a poliploidia (Kellogg, 2003), 

fenômeno que origina indivíduos alopoliploides (Abbott & Lowe, 2004; Guerra, 2008). 

Porém, a poliploidia pode ocorrer a partir de um único indivíduo ou híbrido intervarietal, 

o qual se denomina autopoliploide (Guerra, 2008). Os conceitos de autopoliploidia e 

alopoliploidia estão usualmente baseados em critérios taxonômicos (de origem 

intraespecífica versus interespecífica, respectivamente) ou em critérios citológicos 

(formação de multivalentes versus bivalentes, respectivamente), embora nenhum destes 

critérios possa ser sempre aplicado (Guerra, 2008), principalmente este último, devido, 

por exemplo, à ocorrência de genes que impedem a formação de multivalentes na meiose 

(Leitch & Leitch, 2008). 

A duplicação somática, em nível de zigoto, embrião ou estágio meristemático de 

um ciclo de vida de uma planta, irão consequentemente levar a produção de tecidos 

poliploides e possivelmente a geração de descendentes poliploides (Soltis et al., 2003; 

Bennett, 2004). A duplicação somática (endoreduplicação) pode ser considerada como 

um ciclo celular modificado, onde ocorre a inibição das quinases dependentes da ciclina 

(CDK) metafásicas e um aumento da atividade das CDKs da fase S, ou inibindo a mitose 

pela ativação do Complexo Promotor da Anáfase (APC), que degrada as ciclinas 

mitóticas (Wang et al., 2007). Por exemplo, Primula kewensis, uma das primeiras 

alopoliploides descritas, surgiu a partir de ramos tetraploides férteis do diploide estéril 

do híbrido entre P. floribunda Wall. x P. verticellata Forssk. (Ramsey & Schemske, 

1998). 

A frequência de endopoliploidia e a probabilidade de formação de diferentes 

tecidos endopoliploides não são bem conhecidas. Contudo, estudos genéticos indicam 

que a autopoliploidia é muito mais comum do que se concebia tradicionalmente, e 

concomitantemente revela as razões para o sucesso destes organismos (Soltis et al., 

2003). Um exemplo de autopoliploide bem conhecido ocorre em Vicia faba L., cujos 

indivíduos normais diploides contêm células tetrapoides e octaploides no córtex e no 

cerne de seus caules, onde ocasionalmente iniciam um novo crescimento, especialmente 
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em virtude de ferimentos ou calos, tornando-se importantes fontes de novos indivíduos 

poliploides (Ramsey & Schemske, 1998). 

A segunda principal rota para a formação de poliploides é a “não-redução 

gamética” ou a “restituição nuclear meiótica” durante a micro- e megasporogênese 

(Ramsey & Schemske, 1998; Levin, 2002; Leitch & Leitch, 2008). Este processo gera 

gametas não-reduzidos, também referidos como gametas 2n, que contém o número 

cromossômico somático completo. Conforme Sumner (2003) e Petronczki et al. (2003), 

os principais fatores que influenciam a segregação dos cromossomos na meiose são a 

ausência de quiasmas, a coesão insuficiente entre as cromátides, e a má orientação dos 

microtúbulos, que podem gerar tensão insuficiente nos cinetócoros, resultando em 

instabilidade e reorientação do bivalente. A poliespermia, ou seja, a fertilização de uma 

célula ovo por mais de um núcleo espermático, é considerada uma rota incomum na 

formação de poliploides, ocorrendo em alguns grupos de plantas, como por exemplo, 

Fritillaria orientalis Adam., Lilium martagon L., e em algumas espécies de orquídeas 

(Kordyum, 2008). 

As condições para o estabelecimento de poliploides e a prevalência em grupos 

como pteridófitas e angiospermas não são bem compreendidas, permanecendo como o 

foco principal dos biologistas de populações (Sang et al., 2004). Fatores ecológicos e 

genéticos, tais como a autogamia, a ocupação de novos nichos, o tamanho das 

populações, a diferenciação no tempo de floração, diferenças no desempenho fisiológico 

e a produção de gametas não reduzidos podem contribuir para o estabelecimento. Alguns 

autores sugerem que triploides podem influenciar no estabelecimento de autotetraploides 

através de um mecanismo denominado ponte triploide (Lo et al., 2010), pela união de 

gametas x e 2x. Triploides podem produzir gerações tetraploides através de 

retrocruzamentos com diploides ou cruzamentos com outros triploides. Indivíduos 

triploides de Crataegus suksdorfii (Sarg.) Kruschke. apresentam origem alo- e 

autopoliploide em populações naturais, enquanto indivíduos tetraploides são formados 

via ponte triploide, envolvendo o retrocruzamento da geração alotriploide com o parental 

diploide C. suksdorfii, seguido de introgressão gênica com C. douglasii Lindl. em 

simpatria (Lo et al., 2010). 

A poliploidia é muito mais complexa do que uma mera interação que surge entre 

dois genomas, é um fenômeno que reflete a elevada plasticidade do genoma em 

angiospermas (Leitch & Leitch, 2008) e envolve amplo espectro de ajustamentos 

moleculares e fisiológicos (Adams & Wendel, 2005), complexas reorganizações 



 17
 

genéticas, incluindo trocas entre genomas, mobilidade de (retro)-transposons, alterações 

na expressão gênica e nos padrões de metilação de DNA, silenciamento genético 

induzido epigeneticamente, perda de sequências curtas, remodelação da cromatina, 

inversões e translocações (Shoemaker et al., 2006), além de novos fenótipos que 

emergem através da poliploidia (Bowers et al., 2003; Sumner, 2003; Levy & Feldman, 

2004; Melayah et al., 2004; Leitch & Leitch, 2008). Em alguns poliploides, tais reajustes 

podem levar a restauração da segregação dissômica, ou seja, a diploidização, ocultando 

os sinais da alopoliploidia. Dados de genética comparativa indicam que as espécies 

diploides de Brassica L. (n = 9) são diploidizadas, talvez representando hexaploides 

ancestrais, mas também indicando que o genoma em Brassica evoluiu através de fusões 

cromossômicas e frequentes reorganizações (Soltis & Soltis, 1999; Lysak et al., 2007). 

Alguns genes, como o gene 5B em Triticum L., Dendranthema indica L. e 

Crossostephium chinense (L.) Makino, podem estar envolvidos na diploidização em 

poliploides antigos, regulando a formação de bivalentes na meiose (Riley & Chapman, 

1958; Wang et al., 2007). 

Acredita-se que a poliploidia é o mecanismo pelo qual algumas espécies 

evoluíram números cromossômicos muito altos, como Sedum suaveolens Kimm., com 

2n = 640 ca. 80x, a maior contagem cromossômica entre as angiospermas (Uhl, 1978) e 

Ophioglossum pycnostichum (Fern.) A. & D. Löve (uma pteridófita) com 2n = 1260 ca. 

84x, a maior contagem entre as plantas (Löve et al., 1977). Na família Orchidaceae, 

Epidendrum cinnabarinum apresenta 2n = 240, sendo a maior contagem cromossômica 

dentre todas as orquídeas para as quais já se apresentam analisadas (Felix & Guerra, 

2005). 

 

2.3.2. Disploidia 

 

Outro mecanismo importante na evolução e diferenciação dos cariótipos, 

diretamente relacionado aos aspectos da variação cromossômica numérica em grupos 

relacionados filogeneticamente, bem como alterações nos níveis de simetria do 

complemento cromossômico, é certamente a disploidia (Guerra, 2008). Este fenômeno 

genético direciona os cariótipos ao aumento ou diminuição no número cromossômico 

haploide, podendo incluir um único cromossomo, um par de cromossomos ou mais de 

um par cromossômico (Grant, 1981; Guerra, 2008), frequentemente formando uma série 

disploide. Difere da poliploidia e aneuploidia por não produzir alterações quantitativas 
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ou qualitativas nos genes (Guerra, 1988). Contudo, nem sempre é fácil determinar a 

natureza e a direção destes eventos. Em virtude dos cariótipos serem estruturas 

dinâmicas, é imprescindível a reconstrução de cariótipos ancestrais, com base na 

caracterização detalhada de cariótipos atuais, a fim de que a direção evolucionária da 

variação cariotípica seja bem compreendida (Hu et al., 2011). 

A variação disploide pode ser originada por translocações Robertsonianas, fusões 

ou fissões cêntricas e translocações recíprocas (Guerra, 2008). Este fenômeno tem sido 

relatado em muitos grupos vegetais, como em Asteraceae, cuja seção Odontognathius 

apresenta uma interessante série disploide, onde Carthamus nitidus Boiss. apresenta x = 

12, e C. divaricatus (Beg. et Vacc.) Pamp. apresenta x = 11. O restante da seção 

apresenta x = 10. Em Brassicaceae, a displodia descendente apresenta um papel 

fundamental na evolução do grupo. Através de sequenciamento e mapeamento genético 

foi possível determinar, além de outros reajustes, a ocorrência de três fusões 

cromossômicas que levaram ao cariótipo n = 5 de Arabidopsis thaliana (L.) Heynh., a 

partir de n = 8, como encontrado em A. lyrata (L.) O'Kane & Al-Shehbaz e outras 

Brassicaceae (Hu et al., 2011). 

Um tipo interessante de disploidia foi relatado em Triticeae, cujo número básico 

evoluiu de x = 12 para x = 7 através da perda de cinco centrômeros funcionais. Quatro 

deles correspondem aos cromossomos de Oryza sativa L.: Os4, Os5, Os6, e Os9, o 

quinto pode corresponder tanto ao Os3 quanto Os11. Em quatro dos cinco cromossomos, 

ambos os braços foram translocados ao mesmo cromossomo e mantiveram a orientação 

original, sugerindo que cada redução disploide originou-se de uma única translocação 

(Luo et al., 2009). Em todos os cromossomos derivados de Triticeae, um cromossomo 

foi inserido em um único momento na região centromérica de outro cromossomo. 

Em muitos outros gêneros, o mecanismo que leva a disploidia permanece 

desconhecido, por causa de mudanças estruturais e subsequentes fusões ou fissões que 

alteram a posição relativa dos centrômeros, ocultando as evidências das translocações, 

ou qualquer outra reorganização estrutural envolvida na modificação do cariótipo 

(Guerra, 2008). No gênero Epidendrum, por exemplo, a ocorrência de uma série 

disploide complexa (2n = 28, 30, 40, 42, 48, 50, 52, 54, 56, 58, 68, 80 e 84), cujo 

número básico não está claramente estabelecido, dificulta a determinação de uma relação 

segura entre o número fundamental e a direção da variação disploide. 
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2.4. Hibridação e especiação 

 

‘Especiação híbrida’ significa que a hibridação apresenta uma função principal 

na origem de uma espécie nova (Mallet, 2007). Em plantas, este fenômeno geralmente 

está relacionado à poliploidia ou outras alterações cromossômicas em larga escala 

(Ainouche & Jenczewski, 2010), que contribuem de forma significativa para a 

diversificação das espécies em diversos níveis, observada entre espécies diferentes e 

entre populações de uma mesma espécie, originando variantes morfológicas, números 

cromossômicos discrepantes (Ainouche et al., 2004; Pinheiro et al., 2010), bem como 

diferentes padrões de distribuição e composição da heterocromatina (Souza et al., 2012). 

Além disso, a organização de dois ou mais genomas diferentes em um único núcleo 

requer o silenciamento gênico e a deleção de algumas sequências, em virtude da 

redundância funcional entre genes homeólogos, isto é, genes que codificam proteínas 

que realizam funções semelhantes entre espécies. Como consequência, a hibridação 

frequentemente adiciona consideráveis problemas taxonômicos por favorecer a 

introgressão de alguns caracteres (Wei-Ping, 2006). 

Acreditava-se que espécies com números cromossômicos diferentes ou 

poliploides são isoladas reprodutivamente, em virtude de barreiras pós-zigóticas 

instantâneas (Mallet et al., 2007), visto que poliploides, quando se acasalam com 

diploides, podem gerar uma progênie com ploidias ímpares (triploides). Estes 

descendentes podem ser viáveis, mas geralmente produzem gametas estéreis com 

complementos cromossômicos desbalanceados (aneuploidia). Contudo, zonas de 

hibridação e introgressão simpátricas entre espécies com diferentes números 

cromossômicos foram identificadas em orquídeas (Pinheiro et al., 2010), com ocorrência 

de geração F2. 

A hibridação interespecífica pode ser facilitada pela ausência de polinizadores 

específicos entre algumas espécies, como por exemplo, no gênero Epidendrum (Pansarin 

& Amaral, 2008; Pinheiro et al., 2010). Porém, os mecanismos relacionados ao 

estabelecimento de uma espécie híbrida ainda gera fortes discussões. Acredita-se que 

híbridos poliploides podem apresentar uma variedade de vantagens em relação as suas 

espécies parentais, como por exemplo, elevada heterozigose e características fenotípicas 

extremas, que podem favorecer a ocupação de novos habitats, alcançando novos picos 

adaptativos inacessíveis às espécies parentais (Mallet, 2007). 
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2.5. Heterocromatina 

 

Em 1928, Heitz distinguiu heterocromatina de eucromatina com base na 

compactação diferencial na interfase (Grewal & Jia, 2007). A eucromatina apresenta-se 

menos condensada, consequentemente mais acessível à maquinaria da transcrição, sendo 

composta principalmente por regiões gênicas (Djupedal & Ekwall, 2008). Em 

contrapartida, a heterocromatina é altamente condensada, compactada através da 

organização dos nucleossomos, transcricionalmente silenciada (Grewal & Moazed, 

2003; Djupedal & Ekwall, 2008), apresentando heteropicnose: coloração diferente do 

padrão esperado para o restante da cromatina (clara na prófase e escura na metáfase).  

Em eucariontes, a organização da cromatina em estruturas altamente ordenadas 

governa os diversos processos cromossômicos (Hall et al., 2002). A formação e 

manutenção da heterocromatina integram diversos tipos de informação, incluindo a 

localização cromossômica, localização nuclear e a ocorrência de elementos de DNA 

repetitivo (Grewal & Jia, 2007). Geralmente estas regiões são encontradas nos 

centrômeros, telômeros, e algumas vezes formando blocos intersticiais (Hall et al., 

2002). A heterocromatina constitutiva caracteriza-se por permanecer condensada através 

do ciclo celular, rica em sequências repetidas em tandem e transposons, e seu estado 

heterocromático é uma característica cromossômica herdável (Pedrosa et al., 2001; 

Partridge et al., 2002). 

A heterocromatina é também encontrada em loci regulados durante o 

desenvolvimento, onde o estado da cromatina pode mudar em resposta a sinais celulares 

ou atividade gênica, dessa forma denominada de heterocromatina facultativa (Grewal & 

Moazed, 2003). A heterocromatina facultativa é formada por regiões de eucromatina, 

epigenéticamente reprimidas. Neste caso, os cromossomos homólogos diferem, um se 

torna heterocromático e o outro permanece eucromático, proporcionando uma 

oportunidade interessante para o estudo dos mesmos genes em dois diferentes estados 

(Brown, 1966). Um exemplo bastante conhecido é a compensação da dosagem gênica 

em fêmeas de mamíferos, que envolve a inativação heterocromática de um dos dois 

cromossomos X nas células somáticas (Grewal & Moazed, 2003). Alguns experimentos 

em Schizosaccharomyces pombe Lindner revelaram um mecanismo dependente do 

bloqueio de RNAm durante a meiose, ou através da perda de fatores de eliminação de 

RNA, incluindo as proteínas Mmi1 e Red1, que suprime as regiões gênicas (Zofall et al., 

2012). A maquinaria de eliminação de RNA aumenta durante a meiose e interage com a 
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metiltransferase Clr4 (necessária para a formação da heterocromatina), processo que 

pode ser revertido em resposta a sinais nutricionais e pela ação do fator 

antisilenciamento Epi1 (Zofall et al., 2012). Contudo, pouco se sabe em relação às 

modificações que ocorrem na heterocromatina facultativa em plantas, durante a 

diferenciação celular, que coordena a regulação da expressão gênica no curso do 

desenvolvimento. 

A heterocromatina constitutiva é formada principalmente por cromatina de 

replicação tardia, que se apresenta positivamente corada para banda C, formada por 

DNA repetitivo, com a ocorrência de pouco ou nenhum gene (Fransz et al., 2006; 

Feitosa & Guerra, 2011). Uma característica importante da heterocromatina é a 

habilidade de propagação, assim influenciando a expressão gênica de sequências 

próximas, em um processo referido como silenciamento (Grewal & Jia, 2007). 

As análises dos padrões de distribuição de bandas nos complementos 

cromossômicos das angiospermas em geral são dificultadas pela alta variabilidade da 

heterocromatina constitutiva. De acordo com Guerra (2000), nas análises dos padrões de 

bandas heterocromáticas em diferentes espécies, devem-se considerar a heterogeneidade 

da heterocromatina, sua variação qualitativa e quantitativa entre espécies, a frequência 

de polimorfismos no número e tamanho das bandas em uma mesma espécie, e ainda que 

tanto a heterocromatina quanto a eucromatina podem sofrer mudanças relativas em um 

curto período de tempo. 

Diferentes técnicas de coloração podem revelar diferentes frações da 

heterocromatina constitutiva, e espécies muito diferentes podem apresentar diferenças 

simultâneas no número, tamanho e morfologia cromossômica, tanto quanto a quantidade 

e composição das bandas heterocromáticas (Greilhuber, 1982; Sumner, 1990). Em 

plantas, o padrão de heterocromatina é menos uniforme do que em mamíferos e 

Drosophila, e algumas vezes, por exemplo, os centrômeros são desprovidos de conjuntos 

de heterocromatina detectável (Pedrosa et al., 2001). 

A heterocromatina constitutiva é também encontrada muito comumente nas 

regiões terminais (teloméricas) dos cromossomos (Sumner, 2003), embora nem sempre 

seja detectada pelo bandeamento C, provavelmente por causa do pequeno tamanho e 

número de repites (Guerra, 2008). As regiões terminais dos cromossomos da maioria das 

espécies são compostas por um minisatélite repetido em tandem Tn(An)Gn, um motivo 

formado por 7 pares de bases em Arabidopsis thaliana (L.) Heynh. – TTTAGGG 

(Heslop-Harrison & Schwarzacher, 2011). Os telômeros apresentam inúmeras funções 
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ou efeitos relacionados com os diversos aspectos da organização dos cromossomos em 

todo o ciclo celular, com importantes implicações para o funcionamento da célula. A 

sequência de DNA nos telômeros forma motivos que recrutam proteínas específicas, as 

quais evitam a aderência entre cromossomos, organizam os cromossomos na interfase, 

participam do pareamento dos cromossomos na meiose, e protegem os cromossomos ao 

evitar a degradação de suas extremidades (Heslop-Harrison & Schwarzacher, 2011; 

Sumner, 2003). 

 

2.5.1. Organização molecular 

 

Enzimas que modificam histonas, complexos de remodelação da cromatina e a 

metilação do DNA são componentes de mecanismos epigenéticos complexos, que 

compactam e organizam o genoma em discretos domínios na cromatina (Grewal & Jia, 

2007). O DNA da heterocromatina constitutiva é tipicamente metilado (Grewal & Jia, 

2007; Feitosa & Guerra, 2011). A metilação da lisina 9 da histona H3 sinaliza a proteína 

HP1 (ou homólogas desta, em organismos diferentes), resultando no bloqueio da 

transcrição, enquanto a metilação da lisina 4 na histona H3 e a acetilação de histonas 

impedem o espalhamento da heterocromatina, permitindo desta forma a transcrição 

(Grewal & Jia, 2007). Em geral, metilação e acetilação de histonas têm efeito 

antagônico, enquanto a metilação de DNA e de histonas têm efeito sinergístico. Em 

Arabidopsis, ocorrem quatro classes de metiltransferases de DNA: DRM1 e DRM2 

(metiltransferases de reorganização dos domínios) responsáveis pela metilação de novo 

do DNA (Fransz et al., 2006); MET1 (metiltransferase) é uma DNA metiltransferase de 

manutenção, responsável pela metilação de CpG em sítios hemimetilados; CMT3 

(cromometil-transferase) que contém um cromodomínio, é única em plantas, estando 

envolvida na metilação de novo em CpG e não-CpG e na manutenção da metilação em 

CpNpG. Plantas também apresentam um gene DNMT2, que codifica uma 

metiltransferase de função desconhecida (Fransz et al., 2006). A heterocromatina 

contribui para a regulação epigenética ao inibir a expressão de um gene, servir de base 

para o recrutamento de diversos efetores em domínios cromossômicos específicos, 

estabiliza as sequências de DNA repetitivo no genoma ao impedir a recombinação entre 

repites homólogos (Grewal & Moazed, 2003; Grewal & Jia, 2007). 

A maquinaria do RNAi está diretamente associada com a formação da 

heterocromatina constitutiva, a partir de transcritos pericentroméricos (siRNA) que 
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sinalizam as RITS (complexo de silenciamento transcricional induzido por RNAi), e 

posteriormente recrutam metiltransferases e histonas do tipo HP1, necessárias ao 

silenciamento das regiões centroméricas (Partridge et al., 2002; Kato et al., 2005). 

Contudo, a heterocromatina sempre foi considerada inacessível à RNA polimerase II. 

Estudos recentes mostram que a heterocromatina pericentromérica, para permanecer 

silenciada, necessita tanto da transcrição pela RNA polimerase II, quanto da inibição 

pela maquinaria do RNAi, situação conhecida como “o paradoxo da heterocromatina 

silenciada” (Djupedal & Ekwall, 2008). 

Uma possível solução foi proposta por alguns pesquisadores. Kloc et al. (2008) e 

Chen et al. (2008) observaram em Schizosaccharomyces pombe que a proteína Swi6 

(ortóloga da HP1) é perdida em virtude da fosforilação da serina 10 na H3 durante a 

mitose, permitindo que os transcritos heterocromáticos se acumulassem na fase S. O 

processamento rápido destes transcritos em siRNA promove a restauração da 

dimetilação da lisina 9 na H3 e HP1 após a replicação, no momento em que a coesina é 

recrutada (Chen et al., 2008; Djupedal & Ekwall, 2008; Kloc et al., 2008), desta forma 

proporcionando a herança destes mecanismos epigenéticos reguladores da expressão 

gênica da célula mãe para as células filhas. 

 

2.6. Bandeamento com Fluorocromos  

 

Devido à utilidade do bandeamento cromossômico na caracterização de 

cariótipos, muitas técnicas nas últimas décadas têm sido aprimoradas para a visualização 

da heterocromatina. Os estudos citogenéticos passaram a incorporar o uso de 

fluorocromos, corantes que apresentam propriedades fluorescentes base-específicas que 

permitem caracterizar sequências repetitivas pela proporção de pares de bases GC 

(guanina/citosina) e AT (adenina/timina) (Schweizer & Ambros, 1994). O uso de 

fluorocromos tem permitido distinguir alguns tipos de heterocromatina em plantas 

(Schweizer, 1976). 

Dentre os fluorocromos que apresentam afinidade pelas bases AT se destacam o 

DAPI (4’, 6-diamidino-2-fenilindol), o  Hoechst 33258 e a Quinacrina, enquanto que a 

Cromomicina A3 (CMA) e a Mitramicina apresentam afinidade por regiões ricas em GC 

(Schweizer & Ambros, 1994; Sumner, 2003). Dos fluorocromos acima citados, os mais 

comumente utilizados na citogenética vegetal são o CMA e o DAPI, principalmente na 

forma de dupla coloração, técnica onde a mesma lâmina é corada com um fluorocromo e 
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contracorada com outro, respectivamente nesse caso, o CMA seguido do DAPI. As 

reações dos fluorocromos com os cromossomos dependem principalmente da 

composição das bases nitrogenadas da molécula de DNA, de tal forma que cada região 

do cromossomo pode apresentar reações posivas (+), negativas  (-) ou neutras (0) com 

um dado fluorocromo (Schweizer, 1981).   

O uso em conjunto dos dois fluorocromos CMA/DAPI tem permitido comparar 

cariótipos e esclarecer relações evolutivas em vários gêneros vegetais (Moraes et al., 

2007). Hizume et al. (1989), por  exemplo, conseguiram caracterizar e identificar todos 

os cromossomos de Pinus densiflora Sieb. Almeida et al. (2007) utilizando CMA/DAPI, 

além de outras técnicas como FISH e GISH, analisaram varias espécies relacionadas do 

gênero Spondias L. e demonstraram que o umbu-caja não é resultado da hibridação de S. 

tuberosa Arruda Câmara com S. monbin L. como supunham. Moraes & Guerra (2010) 

confirmaram que Emilia sonchifolia (L.) DC. é um dos parentais de E. forsbergii 

Nicolson utilizando os padrões de distribuição das bandas CMA/DAPI, sítios de DNA 

ribossomal 5S e 45S, além da técnica GISH, a qual forneceu dados mais precisos para a 

afirmar que E. forsbergii tem uma origem híbrida. 

Poucos são os estudos dos padrões de distribuição da heterocromatina na família 

Orchidaceae. Kao et al. (2001) estudaram os padrões de acúmulo de heterocromatina de 

nove espécies do gênero Phalaenopsis Blume; D’Emerico et al. (2005) estudaram a 

heterocromatina constitutiva de algumas espécies do gênero Ophrys L.; Cabral et al. 

(2006) analisando os padrões de distribuição da heterocromatina constitutiva em quatro 

espécies do gênero Maxillaria Ruiz & Pav., observaram que os sítios de DNAr 5S e 45S 

co-localizam com algumas das bandas CMA+. Koehler et al. (2008) analisaram 

filogeneticamente 48 espécies utilizando íntron plastidial trnL e espaçador intergênico 

trnL-F, além do estudo dos padrões de distribuição de heterocromatina constitutiva em 

18 espécies de Maxillariinae, onde foi possível esclarecer os fenômenos envolvidos na 

evolução cariotípica do grupo. As espécies analisadas apresentaram um número maior de 

cromossomos contendo bandas DAPI+/CMA¬ do que cromossomos com bandas 

CMA+/DAPI¬. A partir destas análises os autores sugerem que a fusão e/ou fissão 

cêntrica é o principal mecanismo envolvido na diferenciação disploide do número 

cromossômico para algumas espécies do gênero Christensonella Szlach., especialmente 

em C. ferdinandiana (Barb.Rodr.) Szlach. Para o trabalho de Koehler et al. (2008) o 

padrão de distribuição da heterocromatina provou ser uma fonte valiosa de informação 

relacionada aos padrões evolutivos dentro do grupo. Apesar de o número cromossômico 
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2n = 40 na subtribo Laeliinae representar 70% das espécies para as quais existem 

contagens cromossômicas, o uso da técnica de bandeamento com fluorocromos e o uso 

de marcadores cito-moleculares revelam uma grande variabilidade cariotípica nestas 

espécies, o que não seria possível verificar apenas pelo uso de técnicas com coloração 

convencional. 

 

2.7. Quantificação do tamanho do genoma 

 

O conteúdo de DNA nuclear e o tamanho do genoma (valor C) são importantes 

caracteres biológicos que podem fornecer um forte conjunto de dados unificadores para 

a biologia com utilizações práticas e preditivas (Bennett & Leitch, 2011). Bennett (1998) 

ressalta a crescente atenção dos pesquisadores sobre as interações entre o tamanho do 

genoma e alguns caracteres de interesse para melhoristas e ecologistas de plantas, a 

exemplo da regulação do desenvolvimento, do controle da divisão celular e tolerância a 

baixas temperaturas (MacGillivray & Grime, 1995), da produção de biomassa (Jasienski 

& Bazzaz, 1995) e da adaptação a alterações climáticas (Grime, 1986, 1996). No atual 

contexto ecológico mundial, a perda de genes e também de informações sobre a 

utilização dos espécimes vegetais é iminente, o que torna evidente a importancia das 

pesquisas sobre genomas de plantas (Bennett, 1998). 

A disponibilidade de técnicas rápidas, a exemplo da citometria de fluxo para a 

quantificação de DNA, tem permitido a análise de um considerável número de espécies e 

populações (Garcia et al., 2006), e estes dados estão sendo amplamente utilizados para a 

resolução de questões taxonômicas e evolutivas em plantas (Bennett & Leitch, 2011). O 

princípio da técnica consiste na extração de núcleos livres a partir de tecidos vegetais 

fragmentados em um tampão, que mantém a estabilidade nuclear em suspensões 

líquidas, propiciando um ambiente apropriado para a coloração específica e 

estequiométrica do DNA nuclear (Loureiro et al., 2007). A suspensão de núcleos é 

corada com fluorocromo específico, principalmente o iodeto de propídeo ou brometo de 

etídeo, que apresentam a propriedade de se ligar ao DNA de forma quantitativa e 

intercalar (Loureiro & Santos, 2004). Ao passar pelo citômetro de fluxo, as partículas da 

suspensão são estimuladas por um laser de comprimento de onde de 525 nm, e emitem 

uma fluorescência que é direcionada para um detector, que estima o tamanho do genoma 

em picogramas de DNA, que posteiormente pode ser convertido em mega pares de bases 

usando o fator de conversão 1g DNA = 978 Mpb (Dolezel et al., 2003). 
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Contudo, apesar da facilidade da técnica, poucas espécies vegetais apresentam  

conteúdo de DNA conhecido. Considerando que as angiospermas apresentam cerca de 

352.000 espécies descritas (Paton et al., 2008), dados de quantificação de DNA são 

conhecidos para apenas 6.287 espécies, o que representa 1,8% do total de angiospermas 

conhecidas (Bennett & Leitch, 2011). Estes dados apresentam valores que variam de 1C 

= 0,0648 pg em Genlisea margaretae Hutch. até 1C = 152,23 pg em Paris japonica 

(Franch. & Sav.) Franch., representando uma escala de variação de 2.400 vezes (Bennett 

& Leitch, 2011) 

O conteúdo de DNA de um genoma nuclear não replicado em uma célula 

haploide é denominado valor C (Swift, 1950), em alusão à constância teórica deste valor 

(Swift, 1950; Bennett & Leitch, 1997). Em virtude do DNA apresentar genes, a 

concepção inicial considerava que, quanto mais complexo o organismo, maior a 

quantidade de genes e, portanto, de DNA. Paradoxalmente, observou-se que diversos 

organismos unicelulares simples podem apresentar centenas de vezes mais DNA do que 

organismos multicelulares complexos, dando origem ao termo “Paradoxo do valor C” 

(Thomas, 1971; Petrov, 2001). Atualmente se sabe que esta variação não reflete 

diferenças em número de genes, mas diferenças na quantidade de sequências de DNA 

não-codificantes, frequentemente altamente repetitivas (Leitch et al., 2009). Contudo, 

novas questões surgem a partir destas descobertas, principalmente relacionadas aos 

mecanismos evolutivos que dirigem estas variações, sobre os tipos de elementos 

repetitivos que imprimem estas diferenças e quais as suas consequências, constituindo o 

“enigma do valor C” (Gregory, 2001). Um grande debate existe entre os pesquisadores 

sobre a constância intraespecífica do valor C. Contudo, fatores tais como mudanças na 

atividade de retrotransposons, alterações cromossômicas como duplicações, 

aneuploidias, ocorrência de cromossomos B, e até mesmo a existência de cromossomos 

sexuais dimórficos, dentre outras possibilidades, podem ser a causa da variação no 

conteúdo de DNA em uma espécie (Garcia et al., 2006). 
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Tabela 1 Números cromossômicos conhecidos em Epidendrum L. (organizada sensu Dressler, 1993) 
Táxons n 2n Fontes* 

Epidendrum angustatum (T.Hashim.) Dodson (como Neolehmannia angustata)  36 GJ94 

E. appendiculatum Hashimoto  38 GJ94 

E. avicula Lindl. (como Lanium avicula (Lindl.) Benth)  40 TK84, GJ94, DA09 

E. blepharistes Barker ex Lindl. (como E. funckii Rchb. F.)  40 GJ94 

E. burtonii Benn. Christ.  80 TK84 

E. calanthum Rchb.f. e Warsc.  30 PI09 

E. ciliare L. 20 40, 80,160 TK84, G85 

E. cinnabarinum Salzm. 108, 124 224, 240 FG10, AS13, PT 

E. cochlidium Lindl.  28 PI09 

E. cooperianum Bateman (como E. longispathum Barb. Rodr.)  40 TK84 

E. cristatum Ruiz and Pavon (como E. raniferum Lindl.) 20 40 TK84 

E. cristatum  (como E. tigrinum Sessé and Moc.)  40 B57 

E. denticulatum Barb. Rodr.  40, 38 TK84, PI09, AS13 

E. difforme Jacq. (como Neolehmannia difforme)  40 TK84 

E. diffusum Sw. 20 40 TK84 

E. ellipticum Grah.  56, 68 TK84, FG10 

E. flammeum E.M.Pessoa e M.Alves  50 PT 

E. flexuosum G. Mey  28 PI09 

E. fulgens Brongn.  24 B57, PI09, AS13, 
PT 

E. ibaguense Kunth.  70 PI09 
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Tabela 1 (cont.) 
Táxon n 2n Fontes 

E. lanipes Lindl.  40 G85 

E. latilabre Lindl.  40 FG10, AS13 

E. loefgrenii Cogn.  40 TK84 

E. magnoliae Muhl. (como E. conopseum R. Br.) 20 40 TK84 

E. myrmecophorum Barb. Rodr.  120 PI09 

E. nocturnum Jacq. 20 40, 60, 80 TK84, FG10, 
AS13, PT 

E. orchidiflorum Salzm. Ex Lindl.  ca. 120 AS13 

E. paniculatum Ruiz e Pav. (como E. floribundum Kunth.)  40 TK84, AS13 

E. patens Sw.  40 TK84 

E. proligerum Barb. Rodr.  40 AS13 

E. propinquum A. Rich. E Galeotti  40 TK84 

E. pseudodifforme Hoehne e Schltr.  40 AS13, PT 

E. puniceoluteum F. Pinheiro e F. Barros  52 PI09 

E. x purpureum Barb. Rodr.  56; 120 TK84, PI09 

E. radicans Pav. ex Lindl.  24, 40, 57, 70, 60, 62, 64 TK84, PI09, PT 

E. ramosum Jacq.  40 AS13 

E. rigidum Jacq.   40 TK84 

E. secundum Jacq.   28, 30, 40, 42, 48, 50, 52, 
54, 56, 58, 62, 68, 80, 84, 

90 

FG10, PI09, AS13, 
PT 

E. secundum (como E. brachyphyllum Lindl.) 30  TK84 
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Tabela 1 (cont.) 
Táxon n 2n Fontes 

E. secundum (como E. elongatum Jacq.)  56 TK84 

E. secundum (como E. lindenii Lindl.)  56 TK84 

E. strobiliferum Rchb.f. (como E. mosenii Barb. Rodr.)  24 TK84 

E. viviparum Lindl.  40 AS13, PT 

E. xanthinum Lindl.  28, 30, 40, 60, ca. 80 TK84, G88, PI09, 
PT 

*AS13 = Assis et al., 2013; B57 = Blumenschein, 1957; FG10 = Felix & Guerra, 2010; G81 = Goldblatt, 1981; G85 = Goldblatt, 1985; G88 = Goldblatt, 1988; 
GJ94 = Goldblatt & Johnson, 1994; PI09 = Pinheiro et al., 2009; TK84 = Tanaka & Kamemoto, 1984; PT = Presente Trabalho. 
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Múltiplos mecanismos de evolução cariotípica estão envolvidos na 

variabilidade cromossômica numérica em Epidendrum secundum Jacq. 

(Orchidaceae: subgênero Amphiglottium) 

 

Felipe Nollet Medeiros de Assis, Luiz Gustavo Rodrigues Souza, Enoque Medeiros 

Neto, Fábio Pinheiro, Ana Emília Barros e Silva, Leonardo P. Felix 

 

RESUMO O gênero Epidendrum L. é composto por aproximadamente 1.500 espécies 
de distribuição exclusivamente neotropical. Algumas espécies apresentam taxonomia 
complexa, como E. secundum, que exibe características geralmente relacionadas à 
hibridação, poliploidia e reprodução assexuada, e apresentam contagens cromossômicas 
prévias de 2n = 28, 30, 40, 42, 48, 50, 52, 54, 56, 58, 68, 80, 84. Para testar as hipóteses 
sobre a origem da variabilidade cromossômica numérica em E. secundum, foi realizada 
a quantificação de DNA nuclear em 18 populações sul-americanas desta espécie. Além 
disso, foi realizada a análise cariomorfológica, bem como da distribuição da 
heterocromatina, através do bandeamento com fluorocromos CMA/DAPI. Em 16 
populações foram identificados indivíduos diploides, que apresentaram em média 2C = 
4,08 pg DNA, e em duas populações indivíduos tetraploides, com em média 2C = 8,24 
pg DNA. Nos tecidos foliares de E. secundum foram encontrados núcleos com 2C, 4C e 
8C. As análises mitóticas apresentaram diferentes números cromossômicos que 
variaram de 2n = 50 até 2n = 90, com cromossomos metacêntricos, submetacêntricos e 
acrocêntricos. Os cromossomos variaram de 0,73 μm até 4,45 μm, em sua maioria com 
menos de 2 μm. Foram identificadas regiões cromossômicas terminais e 
pericentroméricas CMA+/DAPI¬, algumas regiões terminais CMA¬/DAPI+ e 
CMA0/DAPI¬. As regiões pericentroméricas geralmente apresentaram-se CMA0/DAPI¬. 
Na população de Atibaia (São Paulo) foram identificados citótipos com cromossomos B 
em número variável, estes inteiramente CMA+/DAPI¬. Apesar da ocorrência de 
números cromossômicos discrepantes em E. secundum, as populações não apresentaram 
conteúdos de DNA com variações significativas pelo teste de Tukey, sugerindo que o 
aumento no número de cromossomos acrocêntricos é principalmente originada por 
fissões cêntricas. A ocorrência de distintos padrões de bandas CMA/DAPI entre as 
populações, bem como o conjunto variável das características citológicas observado, 
sugerem que estas populações estão evoluindo independentemente, iniciando a 
formação de barreiras de isolamento reprodutivo provavelmente em função do 
isolamento geográfico. Além disso, a suposta origem híbrida para E. secundum é 
corroborada pela ocorrência ativa de processos de hibridação envolvendo esta e outras 
espécies do subgênero Amphiglottium. 
 
Palavras-chave: Cromossomos B, Disploidia, Endoreduplicação, Fissão cêntrica, 

Heterocromatina, Poliploidia, Tamanho do genoma. 
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Multiple karyotype evolution mechanisms are involved in numerical 

chromosome variability in Epidendrum secundum Jacq. (Orchidaceae: 

subgenus Amphiglottium) 

 

ABSTRACT The genus Epidendrum L. consists of approximately 1,500 species with 
exclusively Neotropical distribution. Some species have complex taxonomy, such as E. 

secundum that displays features generally related to hybridization, asexual reproduction 
and polyploidy, and have previous chromosome counts of 2n = 28, 30, 40, 42, 48, 50, 
52, 54, 56, 58, 68, 80, 84. To test the hypotheses about the origin of chromosome 
number variation in E. secundum, was performed the quantification of nuclear DNA 
content in 18 South American populations of this species. In addition, 
karyomorphological analysis, as well as heterochromatin distribution analysis by 
banding with CMA/DAPI fluorochromes was carried out. Diploid individuals were 
identified in 16 populations, which in average had 2C = 4.08 pg DNA, and tetraploid 
individuals in two populations, with 2C = 8.24 pg DNA. Leaf tissues in E. secundum 

presented nuclei with 2C, 4C and 8C. The analyzes showed different mitotic 
chromosome counts ranging from 2n = 50 to 2n = ca.90 with metacentric, 
submetacentric and acrocentric chromosomes. The chromosomes ranged from 0,73 μm 
to 4,45 μm, mostly less than 2 μm. CMA+/DAPI¬ terminal and pericentromeric 
chromosome regions were identified, and some CMA¬/DAPI+ and CMA0/DAPI− 

terminal chromosome regions. Pericentromeric regions usually were CMA0/DAPI¬. In 
Atibaia population (São Paulo) were identified cytotypes with B chromosomes in 
variable number, completely CMA+/DAPI¬. Although the occurrence of discrepant 
chromosome numbers in E. secundum, populations showed no significant DNA content 
variation by Tukey test, suggesting that the increase of acrocentric chromosome number 
is mainly caused by centric fissions. The occurrence of different CMA/DAPI band 
patterns between populations, as well as the variable clusters of cytological 
characteristics observed suggests that these populations are evolving independently, 
starting the formation of reproductive isolation barriers, probably due to the 
geographical isolation. Furthermore, the putative hybrid origin for E. secundum is 
supported by the occurrence of active hybridization involving this and other species of 
the subgenus Amphiglottium.  
 

Keywords: B chromosomes, Centric fission, Disploidy, Endoreduplication, Genome 

size, Heterochromatin, Polyploidy. 
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INTRODUÇÂO 

 

O gênero Epidendrum L. é composto por aproximadamente 1.500 espécies de 

distribuição exclusivamente neotropical (Chase et al., 2003; Hágsater & Soto Arenas, 

2005), com ampla variabilidade morfológica inter e intraespecífica (Pabst & Dungs, 

1975; Hágsater, 1984; Pinheiro & Barros, 2005, 2007a), e um grande número de 

características plesiomórficas em relação a outros gêneros da subfamília Epidendroideae 

(Pinheiro et al., 2009). Algumas espécies apresentam taxonomia bastante complexa, 

como por exemplo, E. secundum, que exibe características geralmente relacionadas à 

hibridação, poliploidia e reprodução assexuada (Pinheiro et al., 2009; Assis et al., 

2013), bem como a habilidade de colonizar diversos tipos de ambientes, sendo 

facilmente encontrados na Cordilheira dos Andes, no planalto central do Brasil, na Mata 

Atlântica, em inselbergues da Caatinga, nos Tepuis venezuelanos, e em habitats ruderais 

(Dunsterville, 1979; Dressler, 1989; Hágsater & Soto Arenas, 2005; Pinheiro & Barros, 

2007a). 

Taxonomicamente, E. secundum pertence ao subgênero Amphiglottium, seção 

Amphiglottium, subseção Tuberculata, caracterizada por apresentar hábito cespitoso, 

ausência de pseudobulbos, haste floral alongada, folhas dísticas, coriáceas, e 

inflorescências em corimbo simples com um número variável de pequenas flores, 

geralmente lilases, com labelo trilobado de margens denteadas, com calo complexo no 

centro do labelo (Pinheiro & Barros, 2007b). A monofilia da subseção Tuberculata é 

fortemente suportada por dados moleculares e indicam que E. secundum é o grupo mais 

derivado dentro do subgênero Amphiglottium (Pinheiro et al., 2009). Contudo, a 

monofilia de E. secundum não é suportada pelo conjunto de dados analisados por 

Pinheiro et al. (2009), com algumas populações mais relacionadas a E. cochlidium e E. 

xanthinum, do que com as demais populações de E. secundum. 

Diversas zonas de hibridação foram encontradas em populações simpátricas do 

gênero Epidendrum, nas quais o fluxo gênico entre espécies com diferentes níveis de 

ploidia indica que as barreiras de isolamento reprodutivo pré e pós-zigóticas são fracas 

ou ausentes (Dunsterville, 1979; Hágsater, 1984; Dressler, 1989; Pansarin & Amaral, 

2007; Pinheiro et al., 2010), adicionando novos desafios para a interpretação de suas 

relações filogenéticas. De fato, a hibridação natural entre E. secundum e outras espécies 

de Epidendrum revelaram uma elevada compatibilidade reprodutiva, inclusive entre 

espécies que apresentam conteúdo de DNA bastante discrepantes (Assis, em 
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preparação). Estas novas combinações genômicas podem ser mantidas nas populações, 

inicialmente através da reprodução vegetativa, uma vez que E. secundum, bem como 

outras espécies do subgênero Amphiglottium, reproduzem-se facilmente por brotamento 

dos nós presentes em suas hastes florais (Assis et al., 2013). Contudo, a importância da 

hibridação interespecífica para a diversidade biológica em Orchidaceae ainda não está 

completamente esclarecida (Pinheiro et al., 2010), bem como o estabelecimento de 

barreiras reprodutivas em Epidendrum é de difícil compreensão. Novas evidências 

sugerem que a diminuição do fluxo gênico, em função do isolamento geográfico, exerce 

uma importante função no estabelecimento de barreiras de isolamento reprodutivo nos 

estágios iniciais da diversificação das linhagens em E. denticulatum (Pinheiro et al., 

2013). Posteriormente, o acúmulo de diferenças genéticas pode moldar os limites entre 

estas populações, permitindo que algumas características adaptativas sejam selecionadas 

em direção ao seu “fitness optima” (Rieseberg & Willis, 2007). 

Cariologicamente, Epidendrum secundum apresenta elevada variação 

cromossômica numérica, com registros prévios de 2n = 28, 30, 40, 42, 48, 50, 52, 54, 

56, 58, 68, 80, 84 (Pinheiro et al., 2009; Assis et al., 2013), o que torna o grupo um 

interessante modelo para estudos de evolução cromossômica numérica em Orchidaceae. 

Contudo, as causas desta variação ainda são desconhecidas, dificultando também a 

identificação segura de um número básico para o grupo, bem como de outros aspectos 

de sua evolução cariotípica. Apesar desta desconcertante variabilidade, algumas 

hipóteses foram levantadas sobre as possíveis causas dessa variação. Pinheiro et al. 

(2009) encontraram seis citótipos em diferentes populações, sugerindo a poliploidia e a 

hibridação como as principais causas para a extrema variação cromossômica numérica 

encontrada em E. secundum. Assis et al. (2013) verificaram a ocorrência de 10 

diferentes citótipos com números cromossômicos muito variáveis, sugerindo que a 

disploidia e/ou aneuploidias também são importantes mecanismos para a diversificação 

cariológica em E. secundum. 

A análise cariotípica mais detalhada, incluindo níveis de ploidia, conteúdo de 

DNA nuclear e padrões de distribuição de bandas heterocromáticas, têm sido de grande 

importância na investigação das relações evolutivas e taxonômicas em muitos grupos de 

plantas, inclusive em Orchidaceae (Kao et al., 2001; D'Emerico et al., 2005; Cabral et 

al., 2006; Moraes et al., 2012; Jersáková et al., 2013). Para testar as hipóteses sobre as 

causas da variabilidade cromossômica numérica em E. secundum, foi realizada a 

quantificação de DNA nuclear em 18 populações sul-americanas desta espécie. Além 
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disso, foi análisada a variação cromossômica numérica, os dados cariomorfológicos, 

bem como a distribuição da heterocromatina, por meio do bandeamento com 

fluorocromos em sete dessas 18 populações. 

 

MATERIAL E MÉTODOS 

 

Material botânico 

 

O DNA nuclear de espécimes pertencentes a 18 populações de E. secundum sul-

americanas foi quantificado por citometria de fluxo (Tabela 1). Adicionalmente, foram 

analisados os cariótipos de espécimes pertencentes a sete populações através da 

coloração diferencial com fluorocromos (Tabela 2). Foram analisados três indivíduos 

por população, totalizando 54 espécimes estudados no presente trabalho. As espécies 

foram obtidas através de coletas no campo, ou cedidas gentilmente pelo Instituto de 

Botânica de São Paulo (IBT). Todos os indivíduos foram mantidos em cultivo no jardim 

experimental do Laboratório de Citogenética Vegetal, do Centro de Ciências Agrárias, 

da Universidade Federal da Paraíba – Campus II, Areia, Paraíba. 

 

Quantificação do DNA nuclear 

 

Para a quantificação do DNA, uma suspensão de núcleos oriunda de folhas 

jovens foi preparada como descrito por Loureiro et al. (2007) com 1.500 µL de tampão 

WPB (Woody Plant Buffer), 1 g de tecido foliar da amostra e do padrão macerados 

juntos, cuja suspensão foi filtrada em uma malha de 30 µm e posteriormente corada com 

25 µL de iodeto de propídeo. O tamanho do genoma foi estimado através de um 

citômetro de fluxo CyFlow® SL (Partec, Görlitz, Germany). O conteúdo de DNA final 

para cada acesso foi calculado com base em pelo menos três indivíduos diferentes por 

população, em três diferentes medições realizadas em três dias distintos. Foram 

realizados testes preliminares para a escolha do controle interno, utilizando folhas 

jovens de Oxalis umbraticola A. St.-Hil. com 2C = 16,5 pg DNA (Vaio et al., 2013) e 

Tulbaghia simmleri Beauverd com 2C = 38,91 pg DNA. Para o processamento dos 

dados utilizou-se o software FloMax®. 
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Preparação cromossômica 

 

Para as análises mitóticas, coletaram-se pontas de raízes jovens pretratadas com 

8-hidroxiquinoleína (8-HQ) por 24 horas a 4ºC, e posteriormente fixadas em Carnoy 3:1 

(etanol: ácido acético glacial) por 3 horas à temperatura ambiente. As raízes foram 

lavadas duas vezes em água destilada por cinco minutos e digeridas a 37º C por 30 

minutos em solução contendo 2% de celulase (Onozuka) e 20% de pectinase (Sigma, 

Saint Louis, MO) (w/v). O meristema de cada raiz individual foi fragmentado sobre 

uma lâmina em uma gota de ácido acético 45%, coberto com uma lamínula e esmagado, 

sendo a lamínula posteriormente removida após congelamento em nitrogênio líquido. 

Em seguida as lâminas foram secas ao ar e envelhecidas por três dias a temperatura 

ambiente. Após o envelhecimento, as lâminas foram coradas com CMA e DAPI como 

descrito previamente (Barros e Silva & Guerra, 2010). As lâminas foram coradas com 

CMA3 (0.1 mg/ml) durante uma hora, lavadas em água destilada, secas ao ar, coradas 

com DAPI (1 µg/ml) por 30 minutos, lavadas novamente, secas, e montadas em glicerol 

e tampão McIlvaine  (1:1, v/v, pH 7,0). As melhores metáfases foram capturadas com 

uma vídeo-câmera Cohu usando o software Leica QFISH®. 

 

Análises e medidas cromossômicas 

 

Para cada citótipo, três metáfases com morfologia cromossômica clara foram 

medidas utilizando-se o software Imagetool® versão 3.0. A relação entre os braços 

cromossômicos (comprimento do braço longo/comprimento do braço curto) foi utilizada 

para classificar os cromossomos como metacêntricos (1 – 1,4), submetacêntricos (1,5 – 

2,9), ou acrocêntricos (≥ 3,0), de acordo com Guerra (1986). 

 

RESULTADOS 

 

 A Tabela 1 sumariza os dados relativos ao tamanho do genoma em picogramas 

(pg), referentes aos valores de 2C, 4C e 8C DNA e respectivos desvios padrões. A 

figura 1 apresenta os histogramas relativos a esses dados e a Tabela 2 contém os dados 

referentes às demais análises citogenéticas. 
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Tabela 1 Populações de Epidendrum secundum com seus respectivos locais de coleta, 
número cromossômico diploide (2n), relação entre número cromossômico diploide e 
conteúdo de DNA 2C (2n/2C), tamanho do genoma 2C, 4C e 8C em picogramas (pg) e 
seus respectivos desvios padrões (DP). 

Coletor Local de Coleta 2n 2n/2C 
Tamanho do genoma (pg) 

2C DP 4C DP 8C DP 
IBT 17660* Atibaia, SP 56 15,13 3,70 b ±0,20 7,65 ±0,17 14,20 ±0,87 

IBT 17923 
Serra do Rio do 
Rastro, SC 

  3,74 b ±0,09 7,72 ±0,14 15,48 ±0,32 

IBT 18041 Venezuela   3,90 b ±0,02 7,99 ±0,46 - - 

IBT 17983* 
Serra do Rio do 
Rastro, SC 

56 14,24 3,93 b ±0,15 7,96 ±0,18 15,77 ±0,21 

EMA 588 Serraria, PB   3,97 b ±0,11 8,02 ±0,23 15,67 ±0,34 
IBT 18047* Bolívia 28 7,03 3,98 b ±0,09 8,06 ±0,14 - - 

IBT  18055 
Pico das almas, 
BA 

  3,98 b ±0,17 8,04 ±0,22 15,81 ±0,30 

IBT 17813 Itatiaia, RJ   4,05 b ±0,18 8,05 ±0,60 - - 

JPC 114* 
Morro do 
Chapéu, BA 

50 12,31 4,06 b ±0,16 8,12 ±0,03 - - 

IBT 17667 Jundiaí, SP   4,17 b ±0,70 7,70 ±0,29 - - 
IBT 10313 Cananéia, SP   4,17 b ±0,14 8,32 ±0,40 16,43 ±0,02 
IBT 11114 Apiaí, SP   4,23 b ±0,18 8,31 ±0,23 16,05 ±0,48 

LPF  13256 
Brejo da Madre 
de Deus, PE 

  4,25 b ±0,07 9,48 ±0,37 20,36 ±0,16 

IBT 18052 Ibitipoca, MG   4,27 b ±0,41 8,62 ±0,58 17,60 ±0,76 

Epífita 
Não 
documentado 

  4,46 b ±0,89 8,01 ±0,05 - - 

LPF 12908* Esperança, PB 68 15,07 4,51 b ±0,25 9,11 ±0,52 20,32 ±0,10 

LPF 12088* 
Camocim de São 
Félix, PE 

84 10,39 8,08 a ±0,10 14,84 ±0,21 - - 

IBT 17893 
Serra de 
Maranguape, CE 

  8,44 a ±0,72 15,33 ±0,23 - - 

* populações analisadas cariologicamente. 
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Figura 1 Histogramas citométricos de intensidade de fluorescência relativa, obtidos a partir de núcleos foliares corados 
com iodeto de propídeo em diferentes populações de Epidendrum secundum: A. Atibaia (SP) com 2C = 3,70 pg, 4C = 
7,65 pg e 8C = 14,20 pg; B. Serra do Rio do Rastro (SC) com 2C = 3,74 pg, 4C = 7,72 pg e 8C = 15,48 pg; C. 
Venezuela com 2C = 3,90 pg e 4C = 7,99 pg; D. Serra do Rio do Rastro (SC) com 2C = 3,93 pg, 4C = 7,96 pg e 8C = 
15,77 pg; E. EMA 588 com 2C = 3,97 pg, 4C = 8,02 pg e 8C = 15,67 pg; F. Bolívia com 2C = 3,98 pg e 4C = 8,06 pg; 
G. Pico das almas (BA) com 2C = 3,98 pg, 4C = 8,04 pg e 8C = 15,81 pg; H. Itatiaia (RJ) com 2C = 4,05 pg e 4C = 
8,05 pg; I. Morro do Chapéu (BA) com 2C = 4,06 pg e 4C = 8,12 pg; J. Jundiaí (SP) com 2C = 4,17 pg e 4C = 7,70 pg; 
K. Cananéia (SP) com 2C = 4,17 pg, 4C = 8,32 pg e 8C = 16,43 pg; L. Apiaí (SP) com 2C = 4,23 pg, 4C = 8,31 pg e 
8C = 16,05 pg; M. LPF  13256 com 2C = 4,25 pg, 4C = 9,48 pg e 8C = 20,36 pg; N. Ibitipoca (MG) com 2C = 4,27 pg, 
4C = 8,62 pg e 8C = 17,60 pg; O. Epífita com 2C = 4,46 pg e 4C = 8,01 pg; P. Esperança (PB) com 2C = 4,51 pg, 4C = 
9,11 pg e 8C = 20,32 pg; Q. Camocim de São Félix (PE) com 2C = 8,08 pg e 4C = 14,84 pg; R. Serra de Maranguape 



 51
 

(CE) com 2C = 8,44 pg e 4C = 15,33 pg. Setas indicam picos referentes a 2C, 4C, 8C e padrão, respectivamente. Os 
diferentes padrões foram diferenciados pelas cores dos histogramas: em preto, Oxalis umbraticola com 2C = 16,5 pg 
DNA e em azul, Tulbaghia simmleri com 2C = 38,91 pg DNA. 

 

Tabela 2 Populações de Epidendrum secundum com seus respectivos locais de coleta, número cromossômico diploide (2n), fórmula cariotípica 
(FC), número fundamental (NF), variação no tamanho cromossômico em micrômetros (μm), número de regiões heterocromáticas terminais 
(CMA+/DAPI¬; CMA¬/DAPI+; CMA0/DAPI¬) e pericentroméricas (CMA+/DAPI¬), e figura ilustrativa. 

Coletor Local de Coleta 2n FC NF 
Tamanho 

cromossômico 
(μm) 

Regiões heterocromáticas terminais Pericentroméricas Figura 

CMA+/DAPI¬ DAPI+/CMA¬ CMA0/DAPI¬ CMA+/DAPI¬  

JPC 114* Morro do 
Chapéu, BA 

50 
 27 MT + 13 SM 

+ 10 AC 
90 1,03 – 3,70 02 - 08 02 2 a-c 

 
 

 56 
27 MT + 07 SM + 

22 AC 
90 0,73 – 3,41 02 - 12 - 2 d-f 

IBT 17660* 
 

Atibaia, SP 56 
34 MT + 04 SM + 

18 AC 
94 1,36 – 4,00 11 02 08 - 3 a-c 

 
 

 
56 + 
1B 

35 MT + 04 SM + 
18 AC 

96 1,36 – 4,00 11 02 08 - 3 d-f 

IBT 17983* Serra do Rio do 
Rastro, SC 

56 
34 MT + 04 SM + 

18 AC 
94 1,26 – 3,75 14 - - - - 

IBT 
17841s* 
 

Nova Friburgo, 
RJ 

58 
30 MT + 10 SM + 

18 AC 
98 1,27 – 7,10 02 - 10 01 4 a-c 

LPF 
12908* 
 

Esperança, PB 68 
30 MT + 06 SM + 

32 AC 
104 1,10 – 4,29 07 - 04 01 4 d-f 

LPF 
12088* 

Camocim de São 
Félix, PE 

84 - - - 06 - - - 5 a-c 

EMA 757 
 

Fagundes, PB ca.90 
34 MT + 14 SM + 

42 AC 
138 1,01 – 4,45 07 - 25  5 d-f 

           
*populações que apresentam quantificação de DNA nuclear. 
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Quantificação do DNA nuclear 

 

A citometria de fluxo indicou que houve variação no conteúdo de DNA entre as 

populações analisadas (Tabela 1), desde 2C = 3,70 pg (Figura 1A) na população de 

Atibaia (São Paulo) até 2C = 8,44 pg (Figura 1R) na população da Serra de Maranguape 

(Ceará). Contudo, apenas as populações de Camocim de São Félix (Pernambuco) com 

2C = 8,08 pg (Figura 1Q) e Serra de Maranguape com 2C = 8,44 pg (Figura 1R) foram 

significativamente diferentes das demais (Tabela 1). Em 16 populações foram 

identificados indivíduos diploides, que apresentaram em média 2C = 4,08 (± 0,39) pg 

(Figura 1A-P), e em duas populações indivíduos tetraploides, com em média 2C = 8,24 

(± 0,48) pg. O valor C monoploide (Cx) usando o fator de conversão 1g DNA = 978 

Mpb é 1.995 Mpb para os indivíduos diploides, e 4.029 Mpb para os indivíduos 

tetraploides. Os tecidos foliares de E. secundum apresentaram um ciclo de 

endoreduplicação em 10 populações analisadas (Figura 1; Tabela 1). Em todos os 

espécimes analisados, esta endoreduplicação foi compatível, e cada pico subsequente 

apresentou o dobro da quantidade de DNA em relação ao valor 4C. 

 

Análises cromossômicas 

 

As análises mitóticas apresentaram diferentes contagens cromossômicas para as 

populações analisadas (Tabela 2), variando de 2n = 50 (Figura 1a-c) até 2n = ca.90 

(Figura 5d-f) e cromossomos metacêntricos, submetacêntricos e acrocêntricos. Contudo, 

mesmo após dupla coloração com os fluorocromos CMA/DAPI, a morfologia em 

metáfase de alguns cromossomos menores foi bastante difícil de definir, por não 

apresentarem marcação clara da constrição centromérica. Os cromossomos variaram de 

0,73 μm até 4,45 μm. Apenas na população de Nova Friburgo, Rio de Janeiro, os 

citótipos apresentaram alguns cromossomos maiores em prometáfase, com até 7,10 μm 

(Figura 4c, setas brancas). Foram identificadas regiões cromossômicas terminais e 

pericentroméricas CMA+/DAPI¬, algumas regiões terminais CMA¬/DAPI+ (Figura 3c, 

insertos). As regiões pericentroméricas geralmente apresentaram-se CMA0/DAPI¬. 

Na população do Morro do Chapéu, Bahia (Figura 2a-f), foram identificados 

dois citótipos, ambos com número fundamental (NF) = 90 (Tabela 2). O primeiro 

citótipo apresentou 2n = 50 (Figura 2a-c), com 27 metacêntricos, 13 submetacêntricos e 

10 acrocêntricos (Tabela 2). Duas regiões proximais coraram mais fortemente com 
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CMA, enquanto duas regiões terminais, uma das quais distendida formando um satélite, 

apresentaram-se CMA+/DAPI¬ (Figura 2c, setas amarelas), enquanto regiões terminais 

CMA0/DAPI¬ foram identificadas em oito cromossomos (Figura 2c). O segundo 

citótipo apresentou 2n = 56 (Figura 2d-f), com 27 metacêntricos, sete submetacêntricos 

e 22 acrocêntricos (Tabela 2). Foram visualizadas duas regiões terminais CMA+/DAPI¬, 

uma das quais distendida e formando um satélite (Figura 2f, setas amarelas), além de 

regiões terminais CMA0/DAPI¬ visualizadas em 12 cromossomos (Figura 2f). 

Na população de Atibaia (São Paulo) também foram identificados dois 

indivíduos, o primeiro com 2n = 56 (Figura 3a-c), e o segundo com 2n = 56 + 1B, este, 

inteiramente CMA+/DAPI¬ (Figura 3d-f, inserto em f). O primeiro apresentou 34 

metacêntricos, quatro submetacêntricos e 18 acrocêntricos, com NF = 94, enquanto o 

segundo diferiu por apresentar 35 metacêntricos e NF = 96 (Tabela 2). Foram 

observadas em ambos os cariótipos 11 regiões terminais CMA+/DAPI¬ (Figura 3c, setas 

amarelas), ocorrendo principalmente em cromossomos acrocêntricos, dois dos quais 

formando pequenos satélites distendidos. Além disso, foram visualizados dois blocos 

terminais CMA¬/DAPI+ em um par de cromossomos metacêntricos, e oito regiões 

terminais CMA0/DAPI¬, mais facilmente visualizadas no primeiro cariótipo (Figura 3a-

f).
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Figura 2 Células mitóticas de E. secundum em uma população do Morro do Chapéu (BA) com 2n = 50 (a-c) e 2n = 56 (d-f), coradas com CMA 
(a, d), DAPI (b, e) e sobreposição das imagens (c, f). Setas amarelas indicam regiões CMA+/DAPI¬. Insertos em c indicam, da esquerda para a 
direita, regiões terminais distendidas CMA+/DAPI¬, regiões terminais simples CMA+/DAPI¬ e regiões pericentroméricas CMA+/DAPI¬, 
respectivamente. A barra em f corresponde a 10μm. 
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Figura 3 Células mitóticas de E. secundum em uma população Atibaia (SP) com 2n = 56 (a-c) e 2n = 56 + 1B (d-f), coradas com CMA (a, d), 
DAPI (b, e) e sobreposição das imagens (c, f). Setas amarelas indicam regiões CMA+/DAPI¬. Insertos em c indicam: banda terminal 
CMA¬/DAPI+ (canto superior esquerdo), região pericentromérica CMA0/DAPI¬ (canto superior direito) e região terminal CMA0/DAPI¬ em 
cromossomos acrocêntricos (canto inferior direito). Inserto em f destaca cromossomo B. A barra em f corresponde a 10μm. 
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Figura 4 Células mitóticas de E. secundum em uma população Nova Friburgo (RJ) com 2n = 58 (a-c) e 
Esperança (PB) com 2n = 68 (d-f), coradas com CMA (a, d), DAPI (b, e) e sobreposição das imagens (c, f). 
Setas amarelas indicam regiões terminais CMA+/DAPI¬. Cabeça de seta em f indica banda pericentromérica 
CMA+/DAPI¬. Setas brancas indicam cromossomos maiores. A barra em f corresponde a 10μm. 
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Figura 5 Células mitóticas de E. secundum na população de Camocim de São Félix (PE) com 2n = 84 (a-c) e Fagundes (PB) com 2n = ca.90 (d-
f), coradas com CMA (a, d), DAPI (b, e) e sobreposição das imagens (c, f). Setas amarelas indicam regiões CMA+/DAPI¬. A barra em f 
corresponde a 10μm. 
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Outro citótipo com 2n = 56 foi encontrado na Serra do Rio do Rastro (Santa Catarina), 

com cariótipo muito semelhante ao encontrado na população de Atibaia, porém não 

foram visualizados cromossomos B (Tabela 2). 

Na população de Nova Friburgo (Rio de Janeiro) todos os indivíduos 

apresentaram 2n = 58 (Figura 4a-c), com cariótipo formado por 30 cromossomos 

metacêntricos, 10 submetacêntricos e 18 acrocêntricos, e NF = 98 (Tabela 2), com dois 

cromossomos claramente maiores que os demais (Figura 4c, setas brancas). Os 

cariótipos apresentaram três regiões CMA+/DAPI¬, sendo uma pericentromérica e duas 

terminais, uma das quais formando satélite com constrição bastante distendida (Figura 

4c, setas amarelas), além de 10 regiões terminais CMA0/DAPI¬, que se estenderam dos 

terminais até a região pericentromérica. 

Em Esperança (Paraíba), todos os indivíduos apresentaram cariótipo com 2n = 

68 (Figura 4d-f), com 30 metacêntricos, seis submetacêntricos e 32 acrocêntricos, e NF 

= 104 (Tabela 2). Regiões CMA+/DAPI¬ foram visualizadas nos terminais de sete 

cromossomos acrocêntricos (Figura 4f, setas amarelas), e em uma região 

pericentromérica de um cromossomo submetacêntrico grande (Figura 4f, cabeça de seta 

amarela). Além disso, regiões terminais CMA0/DAPI¬ foram visualizadas em quatro 

cromossomos acrocêntricos (Figura 4f). 

Um citótipo tetraploide foi encontrado na população de Camocim de São Félix, 

Pernambuco, com 2n = 84 (Figura 5a-c). A análise cariológica destes indivíduos foi 

realizada em cariótipos em pró-metáfase, e por isso não foi possível estabelecer sua 

fórmula cariotípica. Regiões discretas, mais fortemente coradas com CMA foram 

visualizadas nos terminais de seis cromossomos. O outro citótipo tetraploide ocorreu na 

população de Fagundes, Paraíba, com 2n = ca. 90 cromossomos (Figura 5d-f), com 

ocorrência de aproximadamente 34 metacêntricos, 14 submetacêntricos e 42 

acrocêntricos, e NF = 138 (Tabela 2). Foram visualizadas sete regiões terminais 

CMA+/DAPI¬ em cromossomos acrocêntricos (Figura 5f, setas amarelas), uma das 

quais distendida, formando um satélite. Além disso, foram visualizadas pequenas 

regiões terminais CMA0/DAPI¬ em 25 cromossomos acrocêntricos (Figura 5f).  
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DISCUSSÃO 

 

 A primeira quantificação de conteúdo de DNA para o gênero Epidendrum foi 

realizada por Jones et al. (1998), que verificaram em E. obliquum (como E. steinbachii) 

o tamanho do genoma de 2C = 2.98 (±0,11) pg DNA, sendo esta a única espécie do 

gênero que apresenta registro de quantificação do genoma em “Plant DNA C-values 

Database” (http://data.kew.org/cvalues/). O conteúdo de DNA nuclear em E. secundum 

determinada para 18 populações sul-americanas, revelaram que 16 delas correspondem 

à ocorrência de espécimes diploides (2n = 50 até 2n = 68) e valores 2C DNA, desde 2C 

= 3,70 a 4,08 pg (Tabela 1, 2). Por outro lado, as duas outras populações com 2n = 84 e 

90, correspondem a 2C = 8,08 a 8,24 pg DNA, respectivamente. A poliploidia é 

considerada como o principal mecanismo relacionado à evolução cromossômica em 

angiospermas (Stebbins, 1971; Leitch & Leicth, 2008; Parisod et al., 2010; Hersch-

Green, 2012; Weiss-Schneeweiss et al., 2013), especialmente em Orchidaceae, 

atualmente considerada a família mais variável em termos de conteúdo de DNA, por 

apresentar valores de 1C = 0,33 pg em Trichocentrum maduroi até 55,4 pg em Pogonia 

ophioglossoides, o que corresponde a uma variação interespecífica de 168 vezes (Leitch 

et al., 2009). Em Epidendrum secundum, a poliploidia parece ser um evento recorrente, 

ocorrendo independentemente em diferentes populações. 

 Apesar da ocorrência de números cromossômicos discrepantes em E. secundum 

com 2n = 50, 56, 58, 68 na presente amostra (Tabela 2), as populações não 

apresentaram conteúdos de DNA com variações significativas pelo teste de Tukey. O 

tipo de variação numérica encontrada indica que a disploidia provavelmente seja o 

principal mecanismo envolvido na formação desses cariótipos. Além disso, a 

estabilidade na quantidade de DNA sugere a ocorrência de fissões/fusões cêntricas. 

Corrobora esta hipótese o fato de que alguns citótipos apresentaram o mesmo número 

fundamental, e o provável número básico x = 20 para o gênero como um todo e outras 

espécies do subgênero Amphyglottium (Felix & Guerra, 2010; Assis et al., 2013). Esse 

mecanismo de variação numérica tem sido documentado em vários grupos de plantas 

(revisado por Jones, 1998), mas é especialmente frequente em plantas com cinetócoro 

difuso como na família Cyperaceae (ver, por exemplo, Escudero et al., 2008). Em 

orquídeas a ocorrência de disploidia por fissão cêntrica tem sido observada em 

Paphiopedilum, que apresenta registros cromossômicos de 2n = 26 até 52, porém com a 

manutenção do NF = 52 (Cox et al., 1997; Leitch et al., 2009). Por outro lado, o 
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aumento não significativo no conteúdo de DNA que acompanha o aumento no número 

de cromossomos observado na presente amostra poderá ser decorrente da síntese de 

novas sequências de DNA telomérico, para a estabilização das regiões terminais nos 

cromossomos oriundos de fissão cêntrica (Putnam et al., 2004; Leitch et al., 2009). 

Outra evidência da ocorrência de fissão cêntrica surge a partir da dupla coloração com 

os fluorocromos CMA/DAPI, que revelou a ocorrência de um maior número de bandas 

CMA0 ou CMA+ terminais nos citótipos com maior número de cromossomos 

acrocêntricos. 

A segunda fonte de variação no conteúdo de DNA observada na presente 

amostragem pode estar relacionada à ocorrência de cromossomos Bs. Esses 

cromossomos supranumerários surgem em adição ao conjunto cromossômico padrão, 

denominados cromossomos A (Masonbrink et al., 2013), sendo observados em diversos 

grupos vegetais (Muñoz-Pajares et al., 2011; Klemme et al., 2013), inclusive em 

Orchidaceae (Greilhuber & Ehrendorfer, 1975; Jones, 1995; Daviña et al., 2009). Na 

população de Atibaia (São Paulo) verificou-se, em alguns citótipos, a ocorrência de 2n = 

56 e 2n = 57, sendo este último devido à existência de um cromossomo corado apenas 

com CMA e completamente negativo para o DAPI. A análise em outras populações 

revelou a ocorrência de cromossomos supranumerários em E. secundum, e em outras 

espécies de Epidendrum, em número variável, e igualmente CMA+ (Assis, em 

preparação). Na presente análise, esse cromossomo supranumerário foi metacêntrico e 

formado inteiramente por heterocromatina rica em GC, sugerindo tratar-se de um 

isocromossomo. Esse tipo de cromossomo supranumerário é caracterizado por 

apresentar braços geneticamente idênticos, sendo um a imagem especular do outro 

(Jones & Houben, 2003). 

Todos os espécimes analisados apresentaram ciclos de endoreduplicação 

completos correspondentes a valores 8C, exatamente o dobro do valor 4C observado em 

algumas populações. O mesmo fenômeno foi observado em Vanilla planifolia e 

híbridos, às vezes constituindo-se de uma endoreduplicação parcial e formação de até 

cinco picos diferentes (Lepers-Andrzejewski et al., 2011). A endoreduplicação é 

essencialmente a replicação de um genoma sem a subseqüente divisão celular, sendo 

tipicamente encontrada em células que finalizaram o processo de diferenciação em 

tecidos especializados (Masonbrink et al., 2013). Alguns autores relacionam este 

fenômeno ao aumento da expressão de certos genes e ao controle do crescimento foliar 

em plantas (Larkins et al., 2001; Bourdon et al., 2011; Massonnet et al., 2011), porém 
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muitas questões relacionadas a exata função da endoreduplicação no desenvolvimento 

vegetativo permanecem desconhecidas. 

Em Epidendrum, principalmente nas espécies pertencentes ao subgênero 

Amphiglottium, a formação de clones a partir das hastes florais é um fenômeno bastante 

comum, sugerindo que, eventualmente, clones autopoliploides e/ou alopoliploides 

poderiam ser originados a partir destes tecidos endoreduplicados. Este fenômeno tem 

sido observado em alguns grupos vegetais, como no híbrido diploide infértil Primula 

floribunda x P. verticellata, que originou um ramo tetraploide fértil, atualmente 

reconhecido como Primula kewensis, um dos primeiros alotetraploides descritos 

(Ramsey & Schemske, 1998). Além disso, orquídeas são plantas reconhecidas pela 

elevada capacidade de produzir sementes viáveis, mesmo em espécimes provenientes de 

parentais com diferentes números cromossômicos (Arditti, 1992), o que garantiria uma 

boa percentagem de reprodução sexuada para as populações de Epidendrum cujos 

parentais apresentam números cromossômicos discrepantes, como se verifica em E. 

secundum. Pinheiro et al. (2009) propuseram uma origem alopoliploide para E. 

secundum, com base em diversos estados de caráter. A variação no conteúdo de DNA e 

no número de cromossomos apresentada aqui podem ser o resultado de reorganizações 

intra e intergenômicas, incluindo a eliminação de sequências de DNA, a exemplo de 

sequências de DNAr, e amplificação ou redução de elementos repetitivos, comuns ao 

processo de diploidização observado em outros grupos de plantas (Parisod et al., 2012). 

A ocorrência de bandas DAPI+/CMA¬ claramente visualizáveis nos citótipos 

encontrados apenas na população de Atibaia, bem como o conjunto variável das 

características citológicas observado, sugerem que diferentes populações estão 

evoluindo independentemente, provavelmente iniciando a formação de barreiras de 

isolamento reprodutivo em função do isolamento geográfico. Além disso, a suposta 

origem híbrida para E. secundum é compatível com a ocorrência ativa de processos de 

hibridação envolvendo esta e outras espécies do subgênero Amphiglottium, como entre 

E. secundum e E. fulgens (Pansarin & Amaral, 2008) e entre E. secundum x E. 

flammeum, E. secundum x E. xanthinum e E. secundum x E. cinnabarinum (Assis, em 

preparação). 

Regiões heterocromáticas são difíceis de definir em E. secundum, mesmo após o 

ajuste de brilho, contraste e ampliação das imagens. No entanto, foi possível distinguir 

alguns padrões de organização da heterocromatina (sumarizados nas Figuras 2 e 3, 

insertos), com distintos padrões de distribuição da heterocromatina entre as diferentes 
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populações. Regiões terminais e proximais CMA+/DAPI¬ ou CMA0/DAPI¬ são bastante 

comuns entre as populações analisadas, estas últimas predominantemente encontradas 

em cromossomos acrocêntricos de todos os citótipos analisados. 
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Diversidade cariotípica em espécies e híbridos pertencentes ao gênero 

Epidendrum L. (Orchidaceae) subgênero Amphiglottium, em 

inselbergues do Nordeste e Sudeste do Brasil 

 

Felipe Nollet Medeiros de Assis, Enoque Medeiros Neto, Erton Mendonça de Almeida, 

Fábio Pinheiro, Luciana Ledra, Ana Emília Barros e Silva e Leonardo P. Felix 

 

RESUMO Epidendrum é provavelmente o maior gênero neotropical de orquídeas, com 
cerca de 1.500 espécies, sendo frequente a ocorrência de hibridação, o que adiciona 
novos desafios para a delimitação infragenérica do grupo. Indivíduos com morfologia 
floral intermediária entre E. flammeum x E. secundum encontrados no município de São 
João do Tigre (Paraíba), e entre E. xanthinum x E. secundum encontrados em Nova 
Friburgo (Rio de Janeiro) foram analisados através da morfometria floral, da técnica de 
coloração diferencial com os fluorocromos CMA e DAPI e pela quantificação do 
conteúdo de DNA nuclear. Os cariótipos de todas as espécies apresentaram 
cromossomos metacêntricos, submetacêntricos e acrocêntricos, estes últimos com 
regiões terminais CMA+/DAPI¬ ou CMA0/DAPI¬. A quantificação do DNA revelou 
ciclos completos de endoreduplicação em todas as espécies. Na primeira zona de 
hibridação, E. flammeum apresentou 2n = 50 e conteúdo de DNA 2C = 5,04 pg DNA, E. 

secundum apresentou 2n = 62 cromossomos e 2C = 4,82 pg DNA. Indivíduos híbridos 
apresentaram 2n = 56, com 2C = 4,63 pg DNA. Na segunda zona de hibridação, E. 

xanthinum apresentou 2n = 28 com 2C = 4,48 pg DNA. Os espécimes de E. secundum 
nesta população apresentaram 2n = 56 e 2C = 3,68 pg DNA. O provável híbrido 
apresentou 2n = 42 com 2C = 4,37 pg DNA. O gênero apresenta altos níveis de 
compatibilidade reprodutiva, incluindo espécies com diferentes números 
cromossômicos ocorrentes em populações simpátricas, sugerindo que a hibridação e a 
introgressão são importantes para os estágios iniciais de especiação em Epidendrum. A 
partir destas novas combinações, a introgressão pode ser responsável pela origem de 
novas variantes genéticas nas populações parentais, possivelmente permitindo a 
dinâmica cromossômica observada em algumas espécies parentais, notavelmente em E. 

secundum. 
 

Palavras-chave: Cromossomos B, Endoreduplicação, Heterocromatina, Morfometria, 

Tamanho do genoma. 
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Karyotypic diversity in species and hybrids of the genus Epidendrum 

L. (Orchidaceae) subgenus Amphiglottium, in Northeast and Southeast 

Brazil Inselbergs 

 

ABSTRACT Epidendrum is probably the largest Neotropical orchid genera, with about 
1,500 species, where the occurrence of hybridization is common and adds new 
challenges for infrageneric delimitation of this group. Individuals with intermediate 
floral morphology between E. flammeum x E. secundum found in the municipality of 
São João do Tigre (Paraíba), and between E. xanthinum x E. secundum found in Nova 
Friburgo (Rio de Janeiro) were analyzed by floral morphometry, by differential staining 
technique with CMA and DAPI fluorochromes, and by the quantification of nuclear 
DNA content. The karyotypes of all species showed metacentric, submetacentric and 
acrocentric chromosomes, the former with CMA+/DAPI¬ or CMA0/DAPI¬ terminal 
regions. The DNA quantification revealed complete cycles of endoreduplication in all 
species. In the first hybridization zone, E. flammeum presented 2n = 50 and 2C = 5.04 
pg DNA content, E. secundum presented 2n = 62 chromosomes and 2C = 4.82 pg DNA. 
Hybrid individuals had 2n = 56, with 2C = 4.63 pg DNA. In the second hybridization 
zone, E. xanthinum presented 2n = 28 with 2C = 4.48 pg DNA. E. secundum specimens 
in this population had 2n = 56 and 2C = 3.68 pg DNA. The putative hybrids had 2n = 42 
with 2C = 4.37 pg DNA. The genus has high levels of reproductive compatibility, 
including species with different chromosome numbers occurring in sympatric 
populations, suggesting that hybridization and introgression are important for the early 
stages of speciation in Epidendrum. From these new combinations, the introgression 
may be responsible for the origin of new genetic variants in the parental populations, 
possibly allowing the chromosome dynamic observed in some parental species, notably 
E. secundum. 

 

Keywords: B chromosomes, Endoreduplication, Genome size, Heterochromatin, 

Morphometry. 
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INTRODUÇÃO 

 

Inselbergues são considerados remanescentes pré-cambrianos do processo de 

erosão em uma paisagem plana, e representam modelos únicos de ambientes que 

abrigam difrentes grupos de plantas, frequentemente isoladas de outras populações que 

ocorrem em ambientes mais estáveis (Porembski, 2002; Sarthou et al., 2010). As 

oportunidades de colonização e adaptação a esses novos habitats é resultado de 

processos completamente estocásticos, tais como a deriva genética, efeito fundador, e 

pressão de seleção (Porembski & Barthlott, 2000; Parmentier et al., 2005). Dessa forma, 

as populações que ocorrem em inselbergues podem fornecer importantes informações 

relacionadas aos mecanismos microevolutivos envolvidos nos estágios iniciais de 

especiação. Diversos representantes do gênero Epidendrum, em especial os pertencentes 

ao subgênero Amphiglottium, ocorrem nesse tipo de ambiente e suas populações 

conservam citótipos isolados geográfica e cromossomicamente de outras populações. 

Epidendrum é provavelmente o maior gênero neotropical de orquídeas, com 

cerca de 1.500 espécies (Chase et al., 2003; Pinheiro & Barros, 2007a), com apenas 

2,8% das espécies estudadas, e esta caracterização é representada exclusivamente por 

contagens cromossômicas (Assis et al., 2013). A análise da variação cromossômica 

numérica em alguns representantes do gênero demonstrou a ocorrência de diferentes 

números cromossômicos entre espécies estreitamente relacionadas e entre populações 

de uma mesma espécie. No subgênero Amphiglottium, seus representantes apresentam 

números cromossômicos que variam de 2n = 24 em E. fulgens a 2n = 240 em E. 

cinnabarinum (Guerra, 2000; Conceição et al., 2006; Pinheiro et al., 2009; Felix & 

Guerra, 2010; Assis et al., 2013). O alto grau de polimorfismos é especialmente elevado 

em alguns grupos sul-americanos, como por exemplo, E. secundum, que também 

apresenta elevada variação cromossômica numérica (Pinheiro et al., 2009; Assis et al., 

2013), associada a uma extensa distribuição geográfica, ocorrendo desde o sudeste dos 

Estados Unidos, até o norte da Argentina (Hágsater & Soto Arenas, 2005; Pinheiro & 

Barros, 2007b). Contudo, os mecanismos envolvidos na diversificação cariológica 

observada em Epidendrum ainda não estão completamente compreendidos, e pouco se 

sabe sobre os eventos microevolutivos iniciais que conduzem ao isolamento reprodutivo 

e, posteriormente, a especiação. 

Eventos de hibridação em Epidendrum são comuns (Dunsterville, 1979; 

Hágsater, 1984; Dressler, 1989; Pansarin & Amaral, 2007; Pinheiro et al., 2010, 2013) e 
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adicionam novos desafios para a delimitação das espécies deste grupo. Altos níveis de 

compatibilidade reprodutiva observados na subtribo Laeliinae, a qual pertence o gênero 

Epidendrum (Lenz & Wimber, 1959; Pansarin & Amaral, 2008; Pinheiro et al., 2010, 

2013), e a ausência de polinizadores específicos (van der Pijl & Dodson, 1966; Pansarin 

& Amaral, 2008) indicam que as barreiras de pré-polinização são fracas ou ausentes, 

tornando a hibridação em populações simpátricas um evento iminente em Epidendrum. 

De fato, alguns autores detectaram zonas de hibridação entre diferentes espécies do 

subgênero Amphiglottium em populações simpátricas, através da análise de 

microssatélites nucleares e plastidiais, em indivíduos com morfologia floral 

intermediária. A partir destas análises, a hipótese de fluxo gênico entre espécies com 

diferentes números cromossômicos foi confirmada, e essas diferenças não se constituem 

em uma barreira de isolamento reprodutivo pós-zigótica, indicando que a hibridação e a 

introgressão são importantes processos evolucionários envolvidos na diversificação 

cariológica de Epidendrum (Pinheiro et al., 2009, 2010, 2013), principalmente nos 

estágios iniciais de especiação. 

Registros de bandeamento com fluorocromos em espécies do gênero 

Epidendrum são escassos, e pouco se conhece a respeito dos padrões de distribuição da 

heterocromatina no gênero, dificultando o entendimento da elevada diversidade 

morfológica e cariológica observada em suas espécies, bem como dos fenômenos 

relacionados à evolução cariotípica do grupo, dentre muitos outros aspectos de suas 

relações filogenéticas (incluindo seu número básico primário) que permanecem 

obscurecidos. Técnicas de coloração diferencial com fluorocromos, combinadas com 

análises da variação da quantidade do DNA nuclear, possibilitam o estudo comparativo 

de genótipos filogeneticamente relacionados, dos níveis de ploidia observados entre 

diferentes citótipos, de cromossomos específicos ou fragmentos cromossômicos em 

híbridos naturais ou artificiais (Guerra, 2005; Almeida et al., 2007; Moraes et al., 2007), 

principalmente em complexos taxonômicos que reúnem características relacionadas a 

hibridação, poliploidia e reprodução assexuada (Souza et al., 2012). No presente 

trabalho, foram estudadas duas zonas de hibridação entre espécies pertencentes ao 

subgênero Amphiglottium, tanto da região Nordeste quanto da Região Sudeste. 

Indivíduos com morfologia floral intermediária entre espécies simpátricas ocorrentes 

nos estados da Paraíba e Rio de Janeiro foram analisadas citologicamente, com o 

objetivo de confirmar a origem híbrida desses dois táxons, bem como identificar 

possíveis mecanismos relacionados à variabilidade cariotípica observada nessas 
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populações, através da técnica de coloração com os fluorocromos CMA e DAPI e pela 

quantificação do conteúdo de DNA nuclear. Além disso, para as amostras de São João 

do Tigre, foi realizada uma análise morfométrica a partir de flores coletadas do possível 

híbrido e seus possíveis parentais. Estas análises pretendem responder as seguintes 

perguntas: (1) As espécies com diferentes números cromossômicos, que ocorrem nas 

zonas de hibridação analisadas, também apresentam diferentes conteúdos de DNA? (2) 

Estas diferenças no número de cromossomos entre as espécies consideradas parentais 

correspondem exatamente a diferentes níveis de ploidia? (3) Quais as possíveis 

alterações cromossômicas relacionadas à variabilidade cromossômica numérica, 

observada entre os táxons ocorrentes em simpatria nas zonas de hibridação analisadas? 

(4) Quais os prováveis efeitos da hibridação no padrão de distribuição de 

heterocromatina entre os táxons envolvidos? 

 

MATERIAL E MÉTODOS 

 

Material Botânico 

 

Foram analisadas três espécies do gênero Epidendrum: E. flammeum, E. 

secundum e E. xanthinum. Adicionalmente, foram analisados dois prováveis híbridos 

interespecíficos que ocorrem em simpatria com os possíveis parentais analisados no 

presente estudo: o primeiro entre E. flammeum x E. secundum encontrado no município 

de São João do Tigre, no estado da Paraíba, e o segundo entre E. xanthinum x E. 

secundum encontrado em Nova Friburgo, no estado do Rio de Janeiro. As espécies 

foram obtidas através de coletas no campo, ou cedidas gentilmente pelo Instituto de 

Botânica de São Paulo (IBT). Todos os espécimes foram mantidos em cultivo no jardim 

experimental do Laboratório de Citogenética Vegetal, do Centro de Ciências Agrárias, 

da Universidade Federal da Paraíba, Campus II. As exsicatas dos espécimes coletados 

foram depositadas no Herbário Jayme Coelho de Moraes (EAN) do Centro de Ciências 

Agrárias da Universidade Federal da Paraíba. 

 

Análises morfométricas 

 

Foram analisados 15 caracteres morfológicos florais contínuos (Tabela 1), com 

base em Pinheiro & Barros (2007a), com algumas modificações. Foram analisados seis 
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indivíduos de cada espécie, totalizando 18 espécimes por população. Todas as medidas 

foram dadas em milímetros e tomadas a partir do ponto de maior dimensão para cada 

caractere. Os dados foram analisados com o software STATISTICA® versão 10.0 

StatSoft, Inc. (2013), e procedeu-se uma análise multivariada e de agrupamento, 

utilizando-se o método de agrupamento do vizinho mais próximo, para identificar a 

ocorrência de grupos morfologicamente bem definidos. A Análise de Componentes 

Principais (ACP) foi utilizada para sumarizar a variação entre as populações e 

identificar a natureza intermediária das características morfológicas florais dos híbridos 

entre E. flammeum x E. secundum. Na ACP, o número de eixos informativos foi 

determinado pelos autovalores. A análise morfométrica das características morfológicas 

florais no possível híbrido entre E. xanthinum x E. secundum, bem como de seus 

possíveis parentais, ocorrentes na população de Nova Friburgo, foi realizada por 

Pinheiro et al. (dados não publicados). 

 

Preparação cromossômica 

 

Para as análises mitóticas, coletaram-se pontas de raízes jovens imediatamente 

submetidas à pré-tratamento com 8-HQ (8-hidroxiquinoleína) por 24 horas a 18ºC, e 

posteriormente fixadas em Carnoy 3:1 (etanol: ácido acético glacial) por 3 horas a 

temperatura ambiente e estocadas em freezer a −20ºC. As raízes foram lavadas duas 

vezes em água destilada por cinco minutos e digeridas a 37ºC por 30 minutos em 

solução contendo 2% de celulase (Onozuka) e 20% de pectinase (Sigma, Saint Louis, 

MO) (w/v). O meristema de cada raiz individual foi fragmentado sobre uma lâmina em 

uma gota de ácido acético 45%, coberto com uma lamínula e esmagado, sendo a 

lamínula posteriormente removida após congelamento em nitrogênio líquido. Em 

seguida as lâminas foram secas ao ar e envelhecidas por três dias a temperatura 

ambiente. 

 

Coloração com Fluorocromos Cromomicina A3 e 4’, -6-diamidinino-2-fenilindol 

(CMA/DAPI) 

 

Após o envelhecimento, as lâminas foram coradas com CMA3 (0.5 mg/ml) 

durante uma hora, lavadas em água destilada, secas ao ar, coradas com DAPI (1 µg/ml) 

por 30 minutos, lavadas novamente, posteriormente secas, e montadas em glicerol e 
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tampão McIlvaine (pH 7,0) (1:1, v/v). As melhores metáfases foram capturadas com 

uma vídeo-câmera Cohu usando o software Leica QFISH®. 

 

Quantificação do DNA nuclear 

 

Para a quantificação do DNA, uma suspensão de núcleos oriunda de folhas 

jovens foi preparada como descrito por Loureiro et al. (2007) com 1.500 µL de tampão 

WPB (Woody Plant Buffer), 1g de tecido foliar da amostra e do padrão macerados 

juntos, cuja suspensão foi filtrada em uma malha de 30 µm e posteriormente corada com 

25 µL de iodeto de propídeo. O tamanho do genoma foi estimado através de um 

citômetro de fluxo CyFlow® SL (Partec, Görlitz, Germany). O conteúdo de DNA final 

para cada acesso foi calculado com base em pelo menos três diferentes medições 

realizadas em três dias distintos para cada planta individualmente, com três repetições. 

Foram realizados testes preliminares para a escolha do controle interno, utilizando 

folhas jovens de Oxalis ubraticola com 2C = 16,5pg DNA (Scvortzoff, 2012) e 

Tulbaghia smilerii com 2C = 38,91pg DNA. Para o processamento dos dados utilizou-

se o software FloMax®. 

 

Análises e medidas cromossômicas 

 

Para cada espécie, três metáfases com morfologia cromossômica clara foram 

medidas utilizando-se o software Imagetool® versão 3.0. A relação entre os braços 

cromossômicos (comprimento do braço longo/comprimento do braço curto) foi utilizada 

para classificar os cromossomos como metacêntricos (1 – 1,4), submetacêntrico (1,5 – 

2,9), ou acrocêntricos (≥ 3,0), de acordo com Guerra (1986). Cariogramas foram 

construídos com base nos padrões de distribuição das regiões heterocromáticas 

CMA+/DAPI¬, CMA¬/DAPI+, CMA0/DAPI¬ em ordem decrescente de tamanho 

cromossômico. 

 

RESULTADOS 

 

Análises morfométricas 
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As análises morfométricas confirmaram a natureza intermediária das 

características morfológicas florais para os possíveis híbridos, em relação aos prováveis 

parentais, ocorrentes na população de São João do Tigre, Paraíba. A análise de 

agrupamento, com base na distância euclidiana, identificou a formação de três grupos 

morfologicamente distintos, posicionando o grupo de indivíduos híbridos como 

intermediário a E. flammeum e E. secundum (Figura 1). A ACP também apresentou a 

formação de três grupos morfologicamente descontínuos (Figura 2), correspondentes a 

três entidades taxonomicamente distintas, com uma maior variação em E. flammeum e 

E. secundum, e o possível híbrido formando um grupo morfologicamente homogêneo e 

intermediário entre os dois primeiros. A ACP indica que os caracteres morfológicos 

florais selecionados apresentaram-se fortemente correlacionados com os eixos 1 e 2 

(Figura 2), e os principais caracteres que definiram estes eixos foram PT-W, PT-L, LL-

W, DS-L, DS-W, LS-L, LL-L, LA-W e CO-L (Tabela 1). Epidendrum flammeum e E. 

secundum apresentaram a maior variação explicada pelos componentes principais, mais 

fortemente correlacionados com o fator 1, enquanto o possível híbrido apresentou-se 

mais correlacionado ao fator 2. A natureza intermediária das características 

morfológicas do possível híbrido entre E. xanthinum e E. secundum encontrados na 

população de Nova Friburgo (RJ) foi investigada por Pinheiro et al. (dados não 

publicados), e apresentou resultados similares aos do presente trabalho. 

 

Análises cromossômicas 

 

A Tabela 2 sumariza a lista das espécies analisadas, seus respectivos locais de 

coleta, números cromossômicos, fórmulas cariotípicas e quantidade de DNA nuclear, 

enquanto a Tabela 3 contém os dados relativos ao bandeamento CMA/DAPI. Os 

números cromossômicos variaram de 2n = 28 em E. xanthinum até 2n = 62 em E. 

secundum (São João do Tigre, Paraíba), enquanto o tamanho dos cromossomos variou 

desde 0,92 μm nos menores cromossomos de E. secundum da população de São João do 

Tigre, Paraíba, a 6,22 μm no maiores cromossomos de E. secundum de Nova Friburgo, 

Rio de Janeiro. Os cariótipos de todas as espécies apresentaram-se ligeiramente 

bimodais, formados por cromossomos metacêntricos, submetacêntricos e acrocêntricos, 

estes últimos com regiões terminais CMA+/DAPI¬ e CMA0/DAPI¬. Em geral, as regiões 

pericentroméricas foram ligeiramente mais coradas com o CMA do que com o DAPI e 

foram consideradas CMA0/DAPI¬. As Figuras 4 e 6 apresentam cariogramas para todas 
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as espécies analisadas, organizadas de acordo com os tipos de regiões heterocromáticas, 

em ordem decrescente de tamanho cromossômico. 

 

Figura 1 Dendograma da matriz de distâncias, pelo método 
de agrupamento por ligação simples, referente à análise 
morfométrica em E. flammeum, E. secundum e o possível 
híbrido, ocorrentes em simpatria na população de São João 
do Tigre, Paraíba. 

 

 

Figura 2 Análise de Componentes Principais em 18 
espécimes, com base em 15 caracteres morfológicos florais 
contínuos (Tabela 1). Os espécimes foram encontrados em 
simpatria no município de São João do Tigre, Paraíba. S = 
Epidendrum secundum; F = Epidendrum flammeum; H = 
possível híbrido. Os componentes principais 1 e 2 explicam 
76,67% e 9,94% da variação total, respectivamente. 
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Tabela 1 Variáveis utilizadas para as análises morfométricas. 

Variáveis Sigla 

Comprimento do pedúnculo P-L 

Comprimento da sépala dorsal DS-L 

Largura da sépala dorsal DS-W 

Comprimento da sépala lateral LS-L 

Comprimento da sépala lateral LS-W 

Comprimento da pétala PT-L 

Largura da pétala PT-W 

Comprimento do labelo LA-L 

Largura do labelo LA-W 

Comprimento da coluna CO-L 

Comprimento do lóbulo lateral LL-L 

Largura do lóbulo lateral LL-W 

Comprimento do lóbulo central CL-L 

Largura do lóbulo central CL-W 

Comprimento do calo do labelo CA-L 

Largura do calo do labelo CA-W 

 

População de São João do Tigre 

 

Na primeira zona de hibridação analisada no presente trabalho, localizada em 

São João do Tigre (Paraíba), foram analisados cinco espécimes de E. flammeum que 

apresentaram cariótipos com 2n = 50 (Figura 3a-c), e ocorrência, em algumas células, 

de um pequeno cromossomo supranumerário inteiramente CMA+/DAPI¬ (Figura 3c, 

inserto; Figura 4A). O tamanho cromossômico variou de 1,76 μm a 4,75 μm (Tabela 2), 

com ligeira bimodalidade devido à presença de um par cromossômico maior que os 

demais (Figura 3c, setas brancas). Foram visualizadas 20 bandas terminais 

CMA¬/DAPI+, ocupando todo ou parcialmente os braços curtos ou longos (Figura 3c; 

Figura 4A). Bandas puntiformes CMA+/DAPI¬ foram visualizadas em sete 

cromossomos (Figura 3c, setas amarelas) nos terminais de seis acrocêntricos (Figura 

4A), e uma banda CMA+/DAPI¬ por todo o braço longo de um cromossomo 

metacêntrico (Figura 3c; Figura 4A), além de cromossomos inteiros ligeiramente mais 

corados com CMA do que com DAPI (Figura 3a-c; Figura 4). 
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Tabela 2 Espécies do gênero Epidendrum L, (subgênero 
Amphiglottium), com seus respectivos locais de coleta, número 
cromossômico diploide (2n), fórmula cariotípica (FC), número 
fundamental (NF), variação no tamanho cromossômico (μm), tamanho 
do genoma (pg). 

Espécie Coletor 
Local de 
Coleta* 

2n FC NF 
Tamanho 

cromossômico 
(μm) 

Tamanho do genoma 
(pg) 

2C 4C 8C 
          

E. 

flammeum 
SN 93 

São João 
do Tigre, 
PB 

50+1B 

31 MT 
+ 02 
SM + 
17 AC 

83 1,76 – 4,75 5,04 9,90 20,41 

E. 

secundum 
SN 167 

São João 
do Tigre, 
PB 

62 + 
3B 

24 MT 
+ 06 
SM + 
32 AC 

92 0,92 – 3,75 4,82 9,26 19,38 

E. 

secundum 

x E. 

flammeum 

SN 92 
São João 
do Tigre, 
PB 

56 

20 MT 
+ 17 
SM + 
19 AC 

93 1,51 – 6,15 4,63 8,61 18,26 

E. 

xanhtinum 

IBT 
17671 

Nova 
Friburgo, 
RJ 

28 

16 MT 
+ 08 
SM + 
04 AC 

52 2,36 – 6,02 4,48 9,10 - 

E. 

secundum 

IBT 
17840 

Nova 
Friburgo, 
RJ 

56 

33 MT 
+ 11 
SM + 
12 AC 

100 1,38 – 6,22 3,68 7,61 15,68 

E. 

secundum  
x E. 

xanthinum 

IBT 19L 
Nova 
Friburgo, 
RJ 

42 

23 MT 
+ 06 
SM + 
13 AC 

71 1,56 – 6,02 4,37 8,70 - 

          

*Acrônimos para os estados brasileiros: PB = Paraíba; RJ = Rio de Janeiro. 
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Tabela 3 Espécies do gênero Epidendrum L. (subgênero Amphiglottium) com seus respectivos locais de coleta, número de bandas 
terminais heteocromáticas (CMA+/DAPI¬; CMA¬/DAPI+; CMA0/DAPI¬), número de bandas intersticiais (DAPI+/CMA¬) e números 
de bandas pericentroméricas (CMA+/DAPI¬). 
 

*Acrônimos para os estados brasileiros: PB = Paraíba; RJ = Rio de Janeiro. 

Espécie Local de coleta 
Bandas Terminais Bandas 

Intersticiais 
DAPI+/CMA¬ 

Bandas 
pericentroméricas 

CMA+/DAPI¬ 
CMA+/DAPI¬ CMA¬/DAPI+ CMA0/DAPI¬ 

       
E. flammeum São João do Tigre, PB 07 20 06 - - 
E. secundum  São João do Tigre, PB 05 16 10 - - 
E. secundum x E. flammeum São João do Tigre, PB 04 09 16 - - 
E. xanthinum Nova Friburgo, RJ 02 04 05 01 02 
E. secundum Nova Friburgo, RJ 04 - 12 - 04 
E. secundum  x E. xanthinum Nova Friburgo, RJ 03 02 12 - 01 
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Figura 3 Células mitóticas de espécies simpátricas em uma população de São João do Tigre, PB: 
Epidendrum flammeum com 2n = 50 + 1B (a-c), E. secundum com 2n = 62 + 1B + 1 
microcromossomo (d-f), e possível híbrido com 2n = 56 (g-i); coradas com CMA (a, d, g), DAPI 
(b, e, h) e imagens dos dois fluorocromos (c, f, i). Setas brancas indicam cromossomos maiores, 
setas amarelas indicam bandas terminais CMA+/DAPI¬, e cabeças de setas indicam o 
microcromossomo corado com CMA (d) e com DAPI (e). Inserto em c destaca cromossomo B, em f 
destaca cromossomo B (completamente heterocromático) e microcromossomo (em cinza). A barra 
em i corresponde a 10μm. 
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Figura 4 Cariogramas das espécies do gênero Epidendrum e do possível híbrido ocorrentes em 
simpatria no município de São João do Tigre, Paraíba. A. Epidendrum flammeum; B. E. secundum; 
C. possível híbrido. Todos os cariogramas foram organizados por ordem decrescente de tamanho. A 
barra em C corresponde a 10 μm. A linha pontilhada indica a posição do centrômero. 
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Figura 5 Células mitóticas de espécies simpátricas em uma população de Nova Friburgo, RJ: 
Epidendrum xanthinum com 2n = 28 (a-c), E. secundum com 2n = 56 (d-f), e possível híbrido com 2n = 
42 (g-i); coradas com CMA (a, d, g), DAPI (b, e, h) e imagens dos dois fluorocromos (c, f, i). Setas 
brancas indicam cromossomos maiores, setas amarelas indicam bandas CMA+/DAPI¬. Insertos menores 
em c destacam cromossomos com bandas CMA+/DAPI¬ pericentroméricas adjacentes a bandas 
terminais CMA¬/DAPI+, enquanto o inserto maior destaca banda DAPI+/CMA¬ intersticial. Inserto em i 
destaca cromossomos possivelmente herdados de E. xanthinum. A barra em i corresponde a 10μm. 
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Figura 6 Cariogramas das espécies do gênero Epidendrum e do possível híbrido ocorrentes em 
simpatria em Nova Friburgo, Rio de Janeiro. A. E. xanthinum; B. E. secundum; C. possível híbrido. 
Todos os cariogramas foram organizados por ordem decrescente de tamanho. A barra em C corresponde 
a 10 μm. A linha pontilhada indica a posição do centrômero. 
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Figura 7 Histogramas citométricos de intensidade de fluorescência relativa, 
obtidos a partir de núcleos foliares corados com iodeto de propídio em 
representantes do gênero Epidendrum, oriundos de diferentes populações 
simpátricas: A-C: E. flammeum, E. secundum e possível híbrido, respectivamente 

(São João do Tigre, Paraíba); D-F: E. xanthinum, E. secundum e possível híbrido, 
respectivamente (Nova Friburgo, Rio de Janeiro). Foram utilizados como padrões 
internos espécimes de Oxalis umbraticola com 2C = 16,5 pg (A, D, F) e Tulbaghia 

simmleri com 2C = 38,91 pg (B, C, E): A. E. flammeum com 2C = 5,04 pg, 4C = 
9,90 pg e 8C = 20,41 pg; B. E. secundum com 2C = 4,82 pg, 4C = 9,26 pg e 8C = 
19,38 pg; C. possível híbrido entre E. flammeum x E. secundum com 2C = 4,63 pg, 
4C = 8,61 pg e 8C = 18,26 pg; D. E. xanthinum com 2C = 4,48 pg e 4C = 9,10 pg; 
E. E. secundum com 2C = 3,68 pg, 4C = 7,61 pg e 8C = 15,68 pg; F. possível 
híbrido entre E. xanthinum x E. secundum com 2C = 4,37 pg e 4C = 8,70 pg. 

 

A quantificação do DNA nuclear em E. flammeum revelou que esta espécie 

apresenta 2C = 5,04 pg DNA, e dois ciclos de endoreduplicação completos referentes a 

4C = 9,90 pg DNA e 4C = 20,41 pg DNA (Tabela 2; Figura 7A). Nessa mesma região 

foram analisados seis espécimes de E. secundum com 2n = 62 (Figura 3d-f; Figura 4B). 

Alguns citótipos apresentaram dois cromossomos Bs, um deles CMA+/DAPI¬ (Figura 

3f, inserto superior) e o outro CMA0/DAPI0 (Figura 3d,e, cabeças de seta; f, inserto 

inferior). O tamanho cromossômico variou de 0,92 μm a 3,75 μm, com cariótipo 

ligeiramente bimodal, devido à presença de um par cromossômico maior (Figura 3f, 

setas brancas; Figura 4B). Foram visualizadas cinco bandas CMA+/DAPI¬ terminais, 

quatro delas pequenas e uma banda heteromórfica maior (Figura 3f, setas amarelas; 

Tabela 3), além de 16 bandas terminais CMA¬/DAPI+ (Figura 3f; Tabela 3; Figura 4B), 
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preferencialmente localizadas no braço curto de cromossomos metacêntricos e 

submetacêntricos. A quantificação de DNA revelou três diferentes picos referentes à 2C 

= 4,82 pg, 4C = 9,26 pg e 8C = 19,38 pg (Tabela 2; Figura 7B) relacionados à 

endoreduplicações. Indivíduos com morfologia floral intermediária da população de São 

do Tigre apresentaram 2n = 56 (Figura 3g-i; Figura 4C), tamanho cromossômico 

variando de 1,51 μm a 6,15 μm (Tabela 2), cariótipo ligeiramente bimodal pela 

ocorrência de dois cromossomos maiores que os demais (Figura 3i, setas brancas; 

Figura 4C). Foram visualizadas nove bandas terminais CMA¬/DAPI+ (Figura 3i; Tabela 

3), quatro delas localizadas em cromossomos maiores e as demais em cromossomos 

medianos. Também foram visualizadas quatro pequenas bandas CMA+/DAPI¬ (Figura 

3i, setas amarelas), duas delas formando pequenos satélites distendidos. A quantificação 

de DNA revelou a ocorrência de endoreduplicações somáticas, apresentando três picos 

com 2C = 4,63 pg, 4C = 8,61 pg e 8C = 18,26 pg (Tabela 2; Figura 7C). 

 

População de Nova Friburgo 

 

A segunda zona de hibridação ocorre entre populações simpátricas de E. 

xanthinum e E. secundum, localizadas em Nova Friburgo (Rio de Janeiro). Foram 

analisados quatro espécimes de Epidendrum xanthinum, que apresentaram 2n = 28 

(Figura 5a-c; Figura 6A), cariótipo ligeiramente bimodal devido à presença de quatro 

cromossomos maiores (Figura 5c, setas brancas) e tamanho cromossômico variando de 

2,36 μm a 6,02 μm (Tabela 2). Foram observadas duas grandes bandas terminais 

CMA+/DAPI¬, duas outras proximais pequenas (Figura 5c, setas amarelas), além de 

algumas regiões CMA0/DAPI¬, e quatro bandas terminais CMA¬/DAPI+ (Figura 5c; 

Tabela 3), duas das quais adjacentes a pequenas bandas CMA+/DAPI¬ (Figura 5c, 

insertos menores; Figura 6A) e uma região intersticial DAPI+/CMA¬ no braço longo de 

um cromossomo grande (Figura 5c, inserto maior; Figura 6A). A quantificação de DNA 

revelou dois picos nos histogramas, referentes a 2C = 4,48 pg e endoreduplicação com 

4C = 9,10 pg (Tabela 2; Figura 17D). Ainda nesta população foram analisados três 

espécimes de E. secundum, que apresentaram 2n = 56 (Figura 5d-f; Figura 6B), com 

tamanho cromossômico variando de 1,38 μm a 6,22 μm (Tabela 2), oito bandas 

CMA+/DAPI¬, duas delas maiores correspondentes as RONs, formando satélites 

distendidos (Figura 5f, setas amarelas; Figura 6B). A quantificação de DNA revelou a 

ocorrência de três picos, referentes a 2C = 3,68 pg, e endoreduplicações de 4C = 7,61 pg 
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e 8C = 15,68 pg (Tabela 3; Figura 7E). Foram analisados quatro espécimes do provável 

híbrido proveniente da população de Nova Friburgo, que apresentaram 2n = 42 (Figura 

5g-i; Figura 6C), e tamanho cromossômico variando de 1,56 μm a 6,02 μm (Tabela 2) e 

cariótipo ligeiramente bimodal, devido à ocorrência de seis cromossomos maiores 

(Figura 5i, setas brancas; Figura 6C). Foram visualizadas quatro bandas CMA+/DAPI¬, 

duas das quais maiores e distendidas, além de uma região terminal menor 

CMA+/DAPI¬, e uma pequena banda CMA+/DAPI¬ proximal (Figura 5i, setas amarelas; 

Figura 6C). Foram visualizadas também duas bandas CMA¬/DAPI+, uma delas 

adjacente à pequena banda CMA+ (Figura 5i, insertos; Figura 6C). Regiões mais 

coradas com CMA do que com DAPI foram visualizadas em 12 cromossomos, 

principalmente em acrocêntricos (Figura 5i; Figura 6C). A quantificação de DNA 

revelou a ocorrência de dois picos referentes a 2C = 4,37 pg e endoreduplicação de 4C = 

8,70 pg (Tabela 2; Figura 7F). 

 

DISCUSSÃO 

 

Dados inéditos de coloração diferencial com fluorocromos base-específicos são 

apresentados no presente trabalho, incluindo contagem cromossômica inédita para E. 

flammeum com 2n = 50, e uma nova contagem para E. secundum com 2n = 62 (São 

João do Tigre, Paraíba). Além disso, dois híbridos foram cariologicamente analisados: 

O primeiro referente a uma zona de hibridação entre E. flammeum e E. secundum com 

2n = 56, e o segundo entre E. xanthinum e E. secundum com 2n = 42. Foram 

confirmadas as contagens prévias de 2n = 56 para E. secundum (Assis et al., 2013) e 2n 

= 28 para E. xanthinum (Blumenschein, 1960; Pinheiro et al., 2009). Os seis táxons 

analisados referentes a duas zonas de hibridação apresentaram, além de diferentes 

números cromossômicos, diferentes conteúdos de DNA e distintos padrões de bandas 

CMA/DAPI. 

A primeira zona de hibridação analisada ocorre em um inselbergue localizado no 

município de São João do Tigre (Paraíba), que apresenta altitude de 1.190 m, onde 

foram identificadas populações simpátricas de E. flammeum com 2n = 50 (2C = 5,04 

pg) e E. secundum com 2n = 62 (2C = 4,82 pg), bem como indivíduos de morfologia 

floral intermediária entre ambas as espécies, com número cromossômico 2n = 56 (2C = 

4,63 pg). Dados obtidos da análise morfométrica entre o suposto híbrido e seus 

possíveis parentais são compatíveis com a hipótese de sua possível origem híbrida. A 
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hibridação e introgressão em “complexos de espécies”, cujos caracteres morfológicos 

frequentemente se sobrepõem, obscurecem os limites morfológicos entre as espécies 

(Astholm & Nyman, 1994). A análise multivariada permite a identificação mais 

eficiente da natureza descontínua dos caracteres, proporcionando informações mais 

detalhadas da variação morfológica para o estabelecimento de decisões taxonômicas. 

Análises morfométricas realizadas em mais de 200 gêneros de plantas foram capazes de 

definir conjuntos discretos de indivíduos morfologicamente semelhantes em linhagens 

sexuais de plantas, apesar da ocorrência de hibridação e introgressão, corroborando a 

existência de “espécie” vegetal morfologicamente descontínua, anteriormente 

questionada por alguns botânicos (Rieseberg & Willis, 2007). A análise de componentes 

principais, bem como a orientação oposta dos agrupamentos formados (Figura 2), 

mostra claramente que E. flammeum, E. secundum e o possível híbrido apresentam 

caracteres descontínuos, confirmando se tratarem de entidades taxonômicas diferentes. 

Os mesmos critérios foram utilizados por outros autores, incluindo a comparação de 

sequências ISSR (Inter-Simple Sequence Repeat), através da análise de componentes 

principais, para verificar a descontinuidade entre as espécies, obtendo resultados 

semelhantes aos do presente trabalho, confirmando que Scrophularia grayana e S. 

grayana var. grayanoides são espécies distintas (Kamada et al., 2007). O possível 

híbrido também apresentou definição clara da descontinuidade morfológica entre as 

espécies parentais, que apresentam orientação oposta em relação aos eixos do gráfico. 

Além disso, é possível verificar que o agrupamento dos indivíduos híbridos ocorre de 

forma intermediária, associado fortemente ao eixo y, próximo do ponto de origem do 

qual divergem as espécies parentais em relação ao eixo x, sem evidências de 

sobreposição entre as três entidades morfológicas, possivelmente por se tratarem de 

indivíduos híbridos da geração F1. Dados semelhantes foram obtidos por Pinheiro et al. 

(2007a) ao analisar a variabilidade morfológica em E. secundum. De fato, a ocorrência 

de uma morfologia intermediária constitui o exemplo clássico de hibridação 

interespecífica facilmente observável em híbridos da geração F1 (Mallet, 2007). 

O padrão de distribuição de heterocromatina observada nos três táxons é 

bastante semelhante, e a única diferença apresentada refere-se ao número e tamanho das 

bandas heterocromáticas. Neste caso, apesar dos diferentes números cromossômicos 

observados entre os possíveis parentais, os valores de conteúdo de DNA, bem como o 

elevado número de cromossomos acrocêntricos observados em E. secundum, sugerem 

que as espécies parentais apresentam o mesmo nível de ploidia. Esta hipótese é 
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suportada tanto pela ocorrência de apenas dois cromossomos claramente maiores em 

ambas as espécies parentais, quanto pelo número fundamental observado em E. 

flammeum  (NF = 83) e em E. secundum (NF = 92), muito próximos entre estas 

espécies, sugerindo que o elevado número cromossômico em E. secundum é 

consequência de disploidia do tipo fissão cêntrica, e não de um evento de poliploidia. 

Além disso, em E. secundum, verificou-se a ocorrência de cromossomos 

supranumerários em número variável, possivelmente oriundos de reorganizações 

intraespecíficas. Cromossomos Bs apresentam mecanismos de herança não-mendeliana 

e evolução distinta dos cromossomos A, e frequentemente são gerados a partir de 

mutações, elementos transponíveis ou outros reajustes que ocorrem no genoma A 

(Klemme et al., 2013). O gênero Epidendrum apresenta altos níveis de compatibilidade 

reprodutiva, incluindo espécies com diferentes níveis de ploidia cromossômica 

ocorrentes em populações simpátricas, onde indivíduos de gerações F1 e F2 e fortes 

evidências de introgressão, confirmam o elevado potencial de fluxo gênico 

interespecífico do gênero (Pinheiro et al., 2010, 2013). 

No município de Nova Friburgo (Rio de Janeiro), é possível observar diversos 

indivíduos de E. xanthinum, E. secundum e os possíveis híbridos crescendo juntos, em 

um inselbergue denominado Macaé de Cima na Serra dos Órgãos, e algumas vezes nas 

encostas da serra, mas principalmente sobre rochas expostas, em locais mais 

iluminados, em uma altitude que varia de 800 m a 1200 m, provavelmente 

compartilhando os mesmos polinizadores, em virtude do grande número de plantas com 

morfologia intermediária que ocorrem nesta população (Pinheiro, comunicação 

pessoal). Esta zona de hibridação é particularmente intrigante por representar um caso 

extremo de diferenças cariológicas entre as espécies parentais que, em primeira 

instância, parecem apresentar níveis de ploidia diferentes. E. xanthinum com 2n = 28 

(2C = 4,48 pg) e E. secundum com 2n = 56 (2C = 3,68 pg) apresentam conteúdos de 

DNA muito próximos. Os cromossomos de E. xanthinum apresentam-se maiores que os 

de E. secundum (com exceção de apenas oito cromossomos maiores), indicando 

fortemente que a disploidia exerce um importante papel na diversificação dos números 

cromossômicos em toda a linhagem que originou E. secundum (Assis et al., em 

preparação). Além disso, análises filogenéticas baseadas na comparação de sequências 

plastidiais, revelaram que estas espécies, oriundas destas mesmas populações, são 

filogeneticamente muito próximas, indicando que E. xanthinum divergiu primeiro, 

posicionando-se como grupo irmão do clado que reúne todos os representantes de E. 
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secundum analisados nesta e em outras populações (Pinheiro et al., 2009). 

Cariologicamente, os representantes analisados do possível híbrido apresentam diversos 

caracteres que corroboram sua origem híbrida a partir de E. xanthinum e E. secundum, 

inicialmente com número cromossômico 2n = 42 e conteúdo de DNA intermediários 

entre os supostos parentais, além da presença de quatro bandas terminais CMA¬/DAPI+ 

em homozigose no cariótipo de E. xanthinum e duas bandas terminais CMA¬/DAPI+ no 

possível híbrido, uma vez que E. secundum nesta população não apresentou nenhuma 

banda DAPI+. 

O gênero Epidendrum, especialmente os representantes que compõem o 

subgênero Amphiglottium, apresenta uma impressionante plasticidade fenotípica e 

genotípica, que favorece a ampla distribuição geográfica de suas espécies, bem como a 

ocorrência em diferentes biomas e diferentes altitudes, tornando o grupo um interessante 

modelo para estudos evolucionários (Pinheiro et al., 2013). Além disso, a elevada 

compatibilidade reprodutiva permite o fluxo gênico interespecífico no gênero, sugerindo 

que a hibridação e a introgressão são importantes para os estágios iniciais de especiação, 

onde a composição genética dos híbridos é realçada por interações entre genes co-

adaptados, oriundos das espécies parentais, que podem favorecer a adaptação dos 

híbridos através de algumas combinações gênicas (Rieseberg, 2001; Rieseberg & 

Willis, 2007). 

O número cromossômico haploide ou diploide é algumas vezes indicado junto 

ao nível de ploidia, sendo útil quando se trata de espécies com diferentes números 

básicos, como por exemplo, na tribo Eupatorieae (x1 = 10 e x2 = 25), cujas espécies com 

o mesmo número diploide podem apresentar diferentes níveis de ploidia cromossômica, 

como 2n = 5x = 50 em Chromolaena laevigata e 2n = 2x = 50 em diversas espécies do 

gênero Neomirandea (revisado por Guerra, 2008). Contudo, com o advento das técnicas 

de quantificação de DNA nuclear, foram identificadas diversas contradições entre o 

número de cromossomos e o conteúdo de DNA em grupos de espécies 

filogeneticamente relacionadas, conduzindo a má interpretação dos níveis de ploidia de 

diversos táxons. Dessa forma, Suda et al. (2006) prepuseram a distinção entre os termos 

“ploidia” em referência a números cromossômicos, e “ploidia de DNA” em referência 

ao conteúdo de DNA nuclear, para evitar inferências errôneas sobre a ploidia das 

espécies para as quais um dos dados (números cromossômicos ou conteúdo de DNA) 

não esteja disponível. As inferências apresentadas aqui se baseiam tanto na análise dos 

números cromossômicos, quanto do conteúdo de DNA nuclear. Todas as espécies 
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analisadas pertencem ao subgênero Amphiglottium. E. xanthinum e E. secundum 

pertencem a subseção Tuberculata, enquanto E. flammeum pertence ao clado Atlântico, 

ambos os clados são grupos irmãos (Pinheiro et al., 2009). Estes dados corroboram que 

as diferenças nos números cromossômicos em E. secundum são principalmente 

originadas por fissões cêntricas, uma vez que todas as espécies apresentam o mesmo 

nível de ploidia de DNA, e portanto similaridade genética suficiente para possibilitar a 

hibridação interespecífica neste grupo. Barreiras incompletas de isolamento reprodutivo 

foram identificadas principalmente em espécies que divergiram recentemente ou que 

apresentam tempo mais longo de divergência, permitindo o fluxo gênico com outros 

grupos que são, por outro lado, espécies bem definidas (Rieseberg & Willis, 2007). 

A partir do ponto de vista cariológico, foi possível observar diversas novas 

combinações cromossômicas nos indivíduos híbridos, especialmente relacionadas à 

distribuição e composição da heterocromatina constitutiva, e pela formação imediata de 

novos números cromossômicos. A partir destas novas combinações, a introgressão pode 

ser responsável pela origem de novas variantes genéticas nas populações parentais, 

possivelmente permitindo a dinâmica cromossômica observada em algumas espécies 

parentais, notavelmente em E. secundum. 
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Distribuição da Heterocromatina e conteúdo de DNA nuclear em 

representantes do gênero Epidendrum L. (Orchidaceae: subgêneros 

Amphiglottium e Epidendrum) 

 

Felipe Nollet Medeiros de Assis, Enoque Medeiros Neto, Luciana Ledra, Ana Emília 

Barros e Silva e Leonardo Pessoa Felix 

 

RESUMO Epidendrum é um dos maiores gêneros neotropicais de Orchidaceae, e 
apresenta aproximadamente 1.500 espécies. Apenas 2,8% de suas espécies foram 
estudadas citologicamente, apresentando números cromossômicos que variam de n = 12 
em E. fulgens até n = 120 em E. cinnabarinum. A partir dos padrões de distribuição da 
heterocromatina constitutiva, bem como da variação no conteúdo de DNA nuclear em 
espécies pertencentes ao subgênero Amphiglottium e ao subgênero Epidendrum, 
objetivou-se inferir os níveis de ploidia e os possíveis mecanismos de evolução 
cariotípica que atuam na diversificação cariológica destes dois grupos. Foram 
identificadas em todas as espécies, regiões cromossômicas CMA+/DAPI¬ e 
CMA0/DAPI¬, e entre as bandas mais conspícuas, destacaram-se grandes blocos 
CMA¬/DAPI+ ocupando os terminais dos braços longos de alguns cromossomos. O 
conteúdo de DNA variou de 2C = 3,23 pg em E. fulgens até 2C = 20,21 pg em E. 

cinnabarinum. Os tecidos foliares dos representantes analisados apresentaram um ciclo 
de endoreduplicação na maioria das espécies, e apenas E. fulgens apresentou dois ciclos 
de endoreduplicação. A diversificação cariológica em Epidendrum parece relacionada a 
eventos de disploidia e poliploidia. A alteração no número fundamental entre as 
espécies pode ser o resultado de reorganizações intra e intergenômicas complexas, 
incluindo translocações, eliminação de sequências de DNA e amplificação ou redução 
de elementos repetitivos, corroborada pela ocorrência de cromossomos Bs em alguns 
representantes. O gênero Epidendrum constitui-se em um interessante modelo para 
estudos de evolução cariotípica em Orchidaceae, cuja complexidade cariológica 
adiciona novos desafios para o entendimento de suas relações filogenéticas. 
 

Palavras-chave: Cromossomos B, Disploidia, Endoreduplicação, Fissão cêntrica, 

Heterocromatina, Poliploidia, Tamanho do genoma. 
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Heterochromatin distribution and nuclear DNA content in the genus 

Epidendrum L. (Orchidaceae: subgenera Amphiglottium and 

Epidendrum) 

 

ABSTRACT Epidendrum is one of the largest Neotropical genera of Orchidaceae and 
comprises approximately 1,500 species. Only 2.8% of these species have been studied 
cytologically, demonstrating chromosome numbers ranging from n = 12 in E. fulgens to 
n = 120 in E. cinnabarinum. From the analyses of the distribution pattern of constitutive 
heterochromatin, as well as the variation in nuclear DNA content in species of the 
subgenus Amphiglottium and the subgenus Epidendrum, we aimed to infer ploidy levels 
and the possible mechanisms of karyotype evolution involved in the karyotype 
diversification in these two groups. CMA+/DAPI¬ and CMA0/DAPI¬ chromosome 
regions were identified in all species, and among the most conspicuous bands stood out 
large CMA¬/DAPI+ blocks on terminal regions of the long arms of some chromosomes. 
The DNA content ranged from 2C = 3.23 pg in E. fulgens to 2C = 20.21 pg in E. 

cinnabarinum. The leaf tissues of the analyzed representatives presented one 
endoreduplication cycle in most species, only E. fulgens presented two 
endoreduplication cycles. Karyological diversification in Epidendrum seems to be 
related to disploidy and polyploidy events. Changes in the fundamental number between 
species may be the result of complex rearrangements intra and intergenomic, including 
translocations, deletions of DNA sequences and amplification or reduction of repetitive 
elements, as confirmed by the occurrence of B chromosomes in some representatives. 
The genus Epidendrum is an interesting model for karyotype evolution studies in 
Orchidaceae, whose cytologic complexity adds new challenges to understanding their 
phylogenetic relationships. 

 

Keywords: B chromosomes, Centric fission, Disploidy, Endoreduplication, Genome 

size, Heterochromatin, Polyploidy. 
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INTRODUÇÃO 

 

Epidendrum L. é provavelmente o maior gênero neotropical de orquídeas, com 

cerca de 1.500 espécies (Chase et al., 2003; Pinheiro & Barros, 2007). A classificação 

infragenérica do gênero baseia-se unicamente em caracteres morfológicos florais, e 

dessa forma, Epidendrum foi subdividido em quatro subgêneros: Epidendrum, 

Spathium, Amphiglottium, e Strobilifera (Lindley, 1852, 1859; Cogniaux, 1898, 1902; 

Pabst & Dungs, 1975; Brieger, 1976-1977; Dressler, 1984), dos quais apenas o 

subgênero Amphiglottium foi analisado a partir de uma abordagem filogenética 

(Pinheiro et al., 2009). Para alguns subgêneros, até mesmo os limites interespecíficos 

são difíceis de determinar. O gênero apresenta ampla variabilidade morfológica inter e 

intraespecífica (Pabst & Dungs, 1975; Hágsater, 1984; Pinheiro & Barros, 2005, 2007) 

e um grande número de características plesiomórficas em relação a outros gêneros da 

subfamília Epidendroideae, que dificultam o estabelecimento de uma delimitação 

infragenérica que reflita sua filogenia (Pinheiro et al., 2009), bem como o 

estabelecimento seguro de seu número cromossômico básico e dos níveis de ploidia dos 

representantes atuais. 

As técnicas de bandeamento cromossômico têm sido bastante utilizadas em 

análises citogenéticas e citotaxonômicas de eucariontes, incluindo as fanerógamas 

(D’emerico et al., 2000; Kao et al., 2001; Cabral et al., 2006; Morais et al., 2007; 

Koehler et al., 2008; Souza et al., 2012). Dentre os corantes utilizados nas técnicas de 

bandeamento, os fluorocromos CMA (cromomicina A3) e DAPI (4',6-diamidino-2-

fenilindol.2HCl), são os mais amplamente empregados em citogenética de plantas. O 

princípio da técnica baseia-se na ligação diferencial dos fluorocromos ao DNA. O DAPI 

apresenta ligação preferencial a regiões ricas em AT, com pelo menos quatro pares de 

bases repetidas em tandem no sulco estreito do DNA, através da formação de pontes de 

hidrogênio e outras interações eletrostáticas, que especificamente aumenta a 

florescência do DAPI nestas condições (Manzini et al., 1985). Por outro lado, o CMA 

apresenta um sítio específico de ligação a sequências de DNA ricas em GC nas regiões 

com quatro pares de bases, onde a ligação não intercalar ocorre também no sulco 

estreito (Baguley, 1982). A coloração simultânea com ambos os fluorocromos tem 

permitido caracterizar regiões heterocromáticas em plantas (Guerra, 1993; Guerra et al., 

2000; Almeida et al., 2007; Barros e Silva & Guerra, 2009; Feitosa et al., 2010; Souza 

et al., 2012), revelando um número variável de regiões cromossômicas mais brilhantes 
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ou positivas (+), ausentes ou negativas (¬), ou neutras (0) (Schweizer, 1981). O 

bandeamento resultante fornece um conjunto de informações que permite uma 

caracterização mais eficiente do cariótipo quando comparada à coloração convencional 

com Giemsa, ou ao bandeamento C, este último geralmente utilizado para detectar 

regiões heterocromáticas, porém sem especificar sua composição (Guerra, 2000). 

A quantificação do genoma nuclear apresenta aplicação em diversos campos de 

interesse, tais como para a biologia celular, ecologia, filogeografia e sistemática (Jones 

et al., 1998; Suda et al., 2006). Esses dados, quando associados às análises 

citogenéticas, fornecem informações mais consistentes sobre a variação cromossômica 

numérica, níveis de ploidia e mecanismos de evolução cariotípica que atuam em um 

determinado grupo vegetal (Suda et al., 2006). A técnica consiste na homogeneização 

dos tecidos vegetais em um tampão, que facilita o isolamento de núcleos intactos, livres 

de aderência aos resíduos citoplasmáticos, mantendo a estabilidade nuclear em 

suspensões líquidas, prevenindo a sua agregação, bem como a degradação do DNA 

nuclear, propiciando um ambiente apropriado para a coloração específica e 

estequiométrica do DNA nuclear (Galbraith et al., 1983; Loureiro et al., 2007). A 

suspensão de núcleos é corada com um fluorocromo, geralmente o iodeto de propídeo, 

que se liga ao DNA sem preferência base-específica, possibilitando, a partir da 

fluorescência emitida, a quantificação do conteúdo de DNA. 

Apenas 2,8% das espécies em Epidendrum foram estudadas citologicamente, e 

esta caracterização é representada exclusivamente por contagens cromossômicas (Assis 

et al., 2013), que demonstraram a ocorrência de diferentes números cromossômicos 

entre espécies estreitamente relacionadas e entre populações de uma mesma espécie. A 

maior variação cromossômica numérica em Epidendrum foi observada entre os 

representantes do subgênero Amphiglottium, cujos números cromossômicos variam de 

2n = 24 em E. fulgens até 2n = 240 em E. cinnabarinum (Guerra, 2000; Conceição et 

al., 2006; Pinheiro et al., 2009; Felix & Guerra, 2010; Assis et al., 2013). O alto grau de 

polimorfismos é especialmente elevado em alguns grupos sul-americanos pertencentes 

ao subgênero Amphiglottium, como por exemplo, Epidendrum secundum, que também 

apresenta elevada variação cromossômica numérica (Pinheiro & Barros, 2007; Pinheiro 

et al., 2009; Assis et al., 2013). Contudo, até o presente momento, apenas E. obliquum 

Schltr. (como E. steinbachii, 1C = 1.49 pg DNA) apresenta registro de quantificação do 

genoma (Plant DNA C-values Database ─ http://data.kew.org/cvalues/) (Jones et al., 

1998), o que dificulta a compreensão de importantes aspectos da evolução cariológica 
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no gênero como um todo. Registros de bandeamento com fluorocromos em Epidendrum 

também são escassos, e pouco se conhece a respeito dos padrões de distribuição da 

heterocromatina no gênero, dentre muitos outros aspectos de suas relações filogenéticas 

que permanecem obscurecidos. Para o gênero Epidendrum, dados de quantificação do 

genoma e bandeamento com os fluorocromos CMA/DAPI possibilitaram identificar que 

a variação cromossômica numérica em diferentes populações de E. secundum está 

principalmente relacionada a eventos recorrentes de disploidia e poliploidia, bem como 

foram úteis na identificação de homologias entre os genomas de híbridos 

interespecíficos e seus respectivos parentais (Assis et al., em preparação).  

No presente trabalho foram estudadas citologicamente, através da técnica de 

coloração com os fluorocromos CMA e DAPI, oito espécies pertencentes aos 

subgêneros Amphiglottium e Epidendrum (sensu Brieger, 1976, 1977). Além disso, foi 

estimado o conteúdo de DNA nuclear para sete espécies também pertencentes a estes 

dois subgêneros. A partir destes dados, bem como dos registros disponíveis na 

literatura, objetivou-se inferir os níveis de ploidia e os possíveis mecanismos de 

evolução cariotípica que atuam na diversificação cariológica destes dois grupos, a partir 

da análise filogenética proposta por Pinheiro et al. (2009). 

 

MATERIAL E MÉTODOS 

 

Material Botânico 

 

Foram analisadas 11 espécies do gênero Epidendrum, pertencentes ao subgênero 

Epidendrum e ao subgênero Amphiglottium. As espécies foram obtidas através de 

coletas no campo e posteriormente mantidas em cultivo no jardim experimental do 

Laboratório de Citogenética Vegetal, do Centro de Ciências Agrárias, da Universidade 

Federal da Paraíba – Campus II. As exsicatas foram depositadas no Herbário Jayme 

Coelho de Moraes (EAN) do Centro de Ciências Agrárias da Universidade Federal da 

Paraíba. 

 

Preparação cromossômica 

 

Para as análises mitóticas, coletaram-se pontas de raízes jovens imediatamente 

submetidas à pré-tratamento com 8-HQ (8-hidroxiquinoleína) por 24 horas a 4ºC, e 
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posteriormente fixadas em Carnoy 3:1 (etanol: ácido acético glacial) por 3 horas a 

temperatura ambiente e estocadas em freezer a ¬20ºC. As raízes foram lavadas duas 

vezes em água destilada por cinco minutos e digeridas a 37ºC por 30 minutos em 

solução contendo 2% de celulase (Onozuka) – e 20% de pectinase (Sigma, Saint Louis, 

MO) (w/v). O meristema de cada raiz individual foi fragmentado sobre uma lâmina em 

uma gota de ácido acético 45%, coberto com uma lamínula e esmagado, sendo a 

lamínula posteriormente removida após congelamento em nitrogênio líquido. Em 

seguida as lâminas foram secas ao ar e envelhecidas por três dias a temperatura 

ambiente. 

 

Coloração com Fluorocromos Cromomicina A3 e 4’, -6-diamidinino-2-fenilindol 

(CMA/DAPI) 

 

Após o envelhecimento, as lâminas foram coradas com CMA3 (0.5 mg/ml) 

durante uma hora, lavadas em água destilada, secas ao ar, coradas com DAPI (1 µg/ml) 

por 30 minutos, lavadas novamente, posteriormente secas, e montadas em glicerol e 

tampão McIlvaine (pH 7,0) (1:1, v/v). As melhores metáfases foram capturadas com 

uma vídeo-câmera Cohu usando o software Leica QFISH®. 

 

Quantificação do DNA nuclear 

 

Para a quantificação do DNA, uma suspensão de núcleos oriunda de folhas 

jovens foi preparada como descrito por Loureiro et al. (2007) com 1.500 µL de tampão 

WPB (Woody Plant Buffer), 1g de tecido foliar da amostra e do padrão macerados 

juntos, cuja suspensão foi filtrada em uma malha de 30 µm e posteriormente corada com 

25 µL de iodeto de propídeo. O tamanho do genoma foi estimado através de um 

citômetro de fluxo CyFlow® SL (Partec, Görlitz, Germany). O conteúdo de DNA final 

para cada acesso foi calculado com base em pelo menos três diferentes medições 

realizadas em três dias distintos para cada planta individualmente, com três repetições. 

Foram realizados testes preliminares para a escolha do controle interno, utilizando 

folhas jovens de Oxalis ubraticola com 2C = 16,5 pg DNA e Tulbaghia smilerii com 2C 

= 38,91 pg DNA. Para o processamento dos dados utilizou-se o software FloMax®. 
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Análises e medidas cromossômicas 

 

Para cada espécie, três metáfases com morfologia cromossômica clara foram 

medidas utilizando-se o software Imagetool® versão 3.0. A relação entre os braços 

cromossômicos (comprimento do braço longo/comprimento do braço curto) foi utilizada 

para classificar os cromossomos como metacêntricos (1 – 1,4), submetacêntrico (1,5 – 

2,9), ou acrocêntricos (≥ 3,0), de acordo com Guerra (1986). 

 

RESULTADOS 

 

A lista das espécies analisadas, seus respectivos locais de coleta, números 

cromossômicos, fórmulas cariotípicas, números fundamentais e conteúdo de DNA 

nuclear encontram-se sumarizados na Tabela 1. Os números cromossômicos variaram 

de 2n = 24 em E. fulgens e E. radicans até 2n = 224 em E. cinnabarinum, enquanto o 

tamanho dos cromossomos variou desde 1,28 μm até 7,09 μm em E. cinnabarinum. Os 

cariótipos de todas as espécies apresentaram cromossomos metacêntricos, 

submetacêntricos e acrocêntricos. Foram identificadas em todas as espécies regiões 

cromossômicas CMA+/DAPI¬ e CMA0/DAPI¬, estas últimas sem formar bandas 

claramente visualizáveis. Entre as bandas mais conspícuas, destacaram-se grandes 

blocos CMA¬/DAPI+ ocupando os terminais dos braços longos de alguns cromossomos. 

A citometria de fluxo indicou que a primeira população de núcleos referente ao pico 1 

(Figura 6) é representativa para o tamanho do genoma holoploide equivalente a 2C 

DNA. O conteúdo de DNA variou de 2C = 3,23 pg em E. fulgens até 2C = 20,21 pg em 

E. cinnabarinum. Os tecidos foliares dos representantes analisados apresentaram um 

ciclo de endoreduplicação na maioria das espécies, e apenas E. fulgens apresentou dois 

ciclos de endoreduplicação (Figura 6; Tabela 1). Em todos os espécimes analisados, esta 

endoreduplicação foi compatível, e cada pico subsequente apresentou o dobro da 

quantidade de DNA em relação ao valor 2C. 

 

Análises cromossômicas e conteúdo de DNA nuclear 
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O primeiro grupo analisado no presente trabalho consta de quatro espécies 

pertences ao subgênero Amphiglottium. Epidendrum cinnabarinum apresentou 

cariótipos com 2n = 224 cromossomos (Figura 1a-c), e ocorrência de 19 cromossomos 

maiores que os demais (Figura 1c, setas brancas). O tamanho dos cromossomos variou 

de 1,28 μm até 7,09 μm (Tabela 1). A dupla coloração com os fluorocromos 

CMA/DAPI revelou a ocorrência de bandas heterocromáticas terminais CMA¬/DAPI+ 

em 14 cromossomos, algumas delas localizadas nos cromossomos maiores. Bandas 

CMA+/DAPI¬ foram visualizadas nas regiões terminais de quatro cromossomos (Figura 

1c), das quais duas são bastante conspícuas e heteromórficas, e se estendem até a região 

proximal, enquanto as outras duas são menores e restritas apenas as regiões terminais 

(Figura 1c, setas amarelas). Além disso, verificou-se um cromossomo B de condensação 

tardia inteiramente CMA+/DAPI¬ próximo a um cromossomo metacêntrico (Figura 1c, 

cabeça de seta amarela). Regiões terminais de alguns cromossomos, bem como as 

regiões pericentroméricas apresentaram-se CMA0/DAPI¬. A quantificação do DNA 

nuclear para E. cinnabarinum revelou que esta espécie apresenta 2C = 20,21 pg DNA, e 

um ciclo de endoreduplicação somática referente a 4C = 49,70 pg DNA (Tabela 1; 

Figura 6A). 

Epidendrum denticulatum apresentou cariótipos com 2n = 38 cromossomos 

(Figura 2a-c), com cariótipo ligeiramente bimodal em virtude da ocorrência de dois 

cromossomos maiores que os demais (Figura 2c, setas brancas). Os cromossomos 

variaram de 1,30 μm até 4,08 μm (Tabela 1). Foram visualizadas duas bandas terminais 

CMA+/DAPI¬ (Figura 2c, setas amarelas) provavelmente correspondentes as RONs. 

Bandas terminais CMA¬/DAPI+ foram observadas em oito cromossomos (Figura 2c). 

Regiões pericentroméricas apresentaram-se predominantemente CMA0/DAPI¬, e apenas 

um cromossomo submetacêntrico apresentou o braço curto inteiramente CMA0 (Figura 

2c). A quantificação do DNA nuclear para E. denticulatum apresentou valores de 2C = 

4,06 pg DNA, além de um ciclo de endoreduplicação completa referente a 4C = 8,10 pg 

DNA (Tabela 1; Figura 6B). 

Epidendrum fulgens apresentou 2n = 24 cromossomos (Figura 2d-f), com 

cromossomos metacêntricos, submetacêntricos e acrocêntricos que variaram de 1,54 μm 

até 4,92 μm (Tabela 1). Os cariótipos apresentaram-se ligeiramente bimodais devido à 

presença de um par cromossômico maior (Figura 2f, setas brancas). Foram visualizadas 

duas bandas CMA+/DAPI¬ terminais distendidas (Figura 2f, setas amarelas), 

provavelmente correspondentes as RONs, além de cinco bandas terminais 
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CMA¬/DAPI+ em cromossomos metacêntricos, sendo três maiores, e duas menores 

(Figura 2f, insertos). As regiões terminais dos quatro cromossomos acrocêntricos, bem 

como as regiões pericentroméricas dos demais cromossomos apresentaram-se 

CMA0/DAPI¬ (Figura 2f). Esta espécie apresentou 2C = 3.23 pg DNA, bem como dois 

ciclos de endoreduplicação somática referentes a 4C = 6,59 pg DNA e 8C = 12,47 pg 

DNA (Tabela 1; Figura 6C). 

Epidendrum radicans apresentou 2n = 24 cromossomos (Figura 2g-i), com 

cariótipo bimodal em virtude da ocorrência de um par cromossômico maior (Figura 2i, 

setas brancas). O tamanho dos cromossomos variou de 2,45 μm até 6,96 μm (Tabela 1). 

Este citótipo também apresentou duas bandas pequenas CMA+/DAPI¬ nos terminais de 

dois cromossomos acrocêntricos (Figura 2i, setas amarelas), provavelmente 

correspondentes as RONs. Pequenas bandas terminais CMA¬/DAPI+ inconspícuas 

foram visualizadas em quatro cromossomos metacêntricos (Figura 2i, insertos), 

enquanto as regiões pericentroméricas foram CMA0/DAPI¬. 

O segundo grupo analisado é composto por quatro espécies pertencentes ao 

subgênero Epidendrum. E. ciliare apresentou 2n = 40 cromossomos (Figura 3a-c), que 

variaram de 1,46 μm até 2,44 μm (Tabela 1). Este citótipo apresentou oito bandas 

CMA+/DAPI¬ (Figura 3c, setas amarelas), quatro destas em regiões pericentroméricas 

de cromossomos metacêntricos, enquanto as outras quatro ocorrem em regiões terminais 

de cromossomos acrocêntricos. Regiões terminais e pericentroméricas CMA0/DAPI¬ 

foram observadas em diversos cromossomos, uma das quais se estende por todo o braço 

longo de um cromossomo submetacêntrico (Figura 3c).  Não foram visualizadas bandas 

DAPI+ em nenhum citótipo desta espécie. Foram analisadas duas populações de 

Epidendrum nocturnum (Figura 4). Os representantes ocorrentes na primeira população 

apresentaram cariótipos com 2n = 40 cromossomos (Figura 4a-c), que variaram de 1,64 

μm até 4,36 μm (Tabela 1). Este citótipo apresentou um padrão de bandas CMA/DAPI 

com três regiões pericentroméricas CMA¬/DAPI+ (Figura 4c, setas azuis), regiões 

terminais CMA¬/DAPI+ em sete cromossomos acrocêntricos (Figura 4c, cabeças de 

setas azuis), além de regiões terminais CMA+/DAPI¬ (Figura 4c, cabeças de setas 

amarelas), uma das quais maior que as demais (Figura 4c, seta amarela). Discretas 

regiões terminais e pericentroméricas CMA0/DAPI¬ foram observadas em alguns 

cromossomos. A quantificação de DNA nuclear para estes espécimes apresentou valores 

referentes a 2C = 3,37 pg, bem como um ciclo de endoreduplicação completo 

equivalente a 4C = 6,80 pg (Tabela 1; Figura 6E). 
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Tabela 1 Dados citogenéticos e de conteúdo de DNA nuclear em espécies do gênero Epidendrum, com seus respectivos locais de coleta, número 
cromossômico diploide (2n), fórmula cariotípica (FC), número fundamental (NF), variação no tamanho cromossômico, tamanho do genoma em 
picogramas, contagens prévias. Os dados destacados em negrito referem-se ao presente trabalho (PT), enquanto os demais se referem aos dados 
disponíveis na literatura. 

Subgênero/Espécie Coletor 
Local de 
Coleta* 

2n FC NF 
Tamanho 

cromossômico 
(μm) 

Tamanho do genoma (pg) e 
desvio padrão Referências** 

2C 4C 8C 
Subgênero 
 Amphiglottium 

       
 

  

E. cinnabarinum 

Salzm. 
E.M.Almeida, 
758 

Fagundes, PB 224 
126 MT + 96 SM + 

02 AC 
446 1,28 – 7,09 

20,21 
(±0,15) 

49,70 
(±2,10) 

- PT 

E. denticulatum Barb. 
Rodr. 

Não 
documentado 

Cultivado 38 
28 MT + 06 SM + 

04 AC 
72 1,30 – 4,08 

4,06 
(±0,12)  

8,10 
(±1,33) 

- 
Assis et al., 
(2013); PT 

E. flammeum 
S.Nascimento, 
93 

São João do 
Tigre, PB 

50 
36 MT + 09 SM + 05 

AC 
95 1,76 – 4,75 5,04 9,90 20,41 

Assis, em 
preparação 

E. fulgens Brongn. 
L.P.Felix, 
12515 

Panelas, PE 24 
16 MT + 04 SM + 

04 AC 
44 1,54 – 4,92 

3,23 
(±0,78) 

6,59 
(±1,25) 

12,47 
(±0,28) 

PT 

E. radicans Pav. ex 
Lindl. 

Não 
documentado 

Cultivado 24 
14 MT + 06 SM + 

04 AC 
44 2,45 – 6,96 - - - PT 

E. secundum Jacq. Diversos Diversos 
28, 50, 
56, 58, 
62, 68 

Variável 

- 0,73 – 7,10 
4,08 

(±0,39) 
8,19 

(±0,48) 
16,76 

(±1,95) 
Assis, em 

preparação 

E. secundum 

L.P.Felix, 
12088 
E.M.Almeida, 
757 

Camocim de 
São Félix, PE 
Fagundes, PB 
 

84 
 

90 
- 1,01 – 4,45 

8,24 
(±0,48) 

15,08 
(±0,22) 

- 
Assis, em 

preparação 

E. xanthinum Lindl. IBT 17671 
Nova 
Friburgo, RJ 

28 
16 MT + 08 SM + 04 

AC 
52 2,36 – 6,02 

4,48 
(±0,08) 

9,10 
(±0,32) 

- 
Assis, em 

preparação 
Subgênero  
Epidendrum 

       
 

  

E. ciliare L. 
Não 
documentado 

Maranguape, 
CE 

40 
22 MT + 14 SM + 

04 AC 
76 1,46 – 2,44 - 

- 
- PT 

E. latilabre Lindl. 
L.P.Felix, 
12095 

Taquaritinga 
do 
Norte, PE 

40 
24 MT + 10 SM + 06 

AC 
74 1,53 – 2,57 

4,33 
(±0,05) 

8,76 
(±0,03) - 

Assis et al., 
(2013); PT 

E. nocturnum Jacq. L.P.Felix, Belém do 40 19 MT + 19 SM + 78 1,64 – 4,36 3,37 6,80 - PT 
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9177 Pará, 
PA 

02 AC (±0,04) (±0,09) 

 

 
  60 

34 MT + 08 SM + 
18 AC 

102 1,53 – 3,69 - - - PT 

E. paniculatum Ruiz & 
Pav. 

L.P.Felix, 
12096 

Alto Paraíso, 
GO 

40 
28 MT + 06 SM + 06 

AC 
74 1,43 – 2,45 

3,41 
(±0,07) 

6,93 
(±0,12) 

- 
Assis et al., 
(2013); PT 

E. pseudodifforme Jacq. 
L.P.Felix, 
12094 

Areia, PB 40 
32 MT + 02 SM + 

06 AC 
74 1,58 – 2,90 

3,94 
(±0,39) 

8,26 
(±0,64) 

- PT 

E. obliquum Schltr. 
(como E. steinbachii) 

      
2.98 

(±0,11) 
 

 
Jones et al., 

1998 

E. viviparum Lindl. 
Não 
documentado 

Cultivado 40 
28 MT + 08 SM + 

04 AC 
76 2,16 – 4,00 - 

- 
- PT 
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Figura 1 Célula mitótica de Epidendrum cinnabarinum com 2n = 
224 (a-c). Setas brancas indicam cromossomos maiores, setas 
amarelas indicam bandas terminais CMA+/DAPI¬, e cabeça de seta 
indica cromossomo B de condensação tardia. A barra em c 
corresponde a 10μm. 
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Figura 2 Células mitóticas de E. denticulatum com 2n = 38 (a-c), Epidendrum fulgens 
com 2n = 24 (d-f) e E. radicans com 2n = 24 (g-i), coradas com CMA (a, d, g), DAPI 
(b, e, h) e imagens dos dois fluorocromos (c, f, i). Setas brancas indicam cromossomos 
maiores, setas amarelas indicam bandas terminais CMA+/DAPI¬. Insertos destacam 
cromossomos com bandas terminais DAPI+/CMA¬ discretas. A barra em i corresponde 
a 10μm. 
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Figura 3 Célula mitótica de E. ciliare com 2n = 40 (a-c), coradas com CMA (a), DAPI (b) e imagens dos dois fluorocromos (c). Setas amarelas 
indicam bandas CMA+/DAPI¬. A barra em c corresponde a 10 μm. 
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Figura 4 Células mitóticas de Epidendrum nocturnum com 2n = 40 (a-c) e 2n = 60 (d-f), coradas com CMA (a, d), DAPI (b, e) e imagens dos 
dois fluorocromos (c, f). Setas amarelas indicam regiões pericentroméricas CMA+/DAPI¬. Cabeças de setas amarelas indicam regiões terminais 
CMA+/DAPI¬. Setas azuis em c indicam regiões pericentroméricas CMA¬/DAPI+, enquanto cabeças de setas azuis indicam regiões terminais 
CMA¬/DAPI+. Inserto em f destaca cromossomo com braço curto completamente DAPI+/CMA¬ e braço longo CMA0/DAPI¬. A barra em f 
corresponde a 10μm. 
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Figura 5 Células mitóticas de Epidendrum pseudodifforme com 2n = 40 (a-c) e E. viviparum com 2n = 40 (d-f), coradas com CMA (a, d), DAPI 
(b, e) e imagens dos dois fluorocromos (c, f). Setas amarelas indicam regiões pericentroméricas CMA+/DAPI¬. Cabeças de setas amarelas 
indicam regiões terminais CMA+/DAPI¬. A barra em f corresponde a 10μm. 
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Figura 6 Histogramas citométricos de intensidade de fluorescência relativa, 
obtidos a partir de núcleos foliares corados com iodeto de propídio, em 
representantes do gênero Epidendrum oriundos de diferentes populações. A-C: 
subgênero Amphiglottium. D-G: subgênero (Eu-) Epidendrum. A. E. cinnabarinum 
com 2C = 20,21 pg e 4C = 49,70 pg; B. E. denticulatum com 2C = 4,06 pg e 4C = 
8,10 pg; C. E. fulgens com 2C = 3,23 pg, 4C = 6,59 pg e 8C = 12,47 pg; D. E. 

latilabre com 2C = 4,33 pg e 4C = 8,76 pg; E. E. nocturnum com 2C = 3,37 pg e 
4C = 6,80 pg; F. E. paniculatum com 2C = 3,41 pg e 4C = 6,93 pg; G. E. 

pseudodifforme com 2C = 3,94 pg e 4C = 8,26 pg. Foi utilizado como padrão 
interno espécimes de Oxalis umbraticola com 2C = 16,5 pg, com exceção da 
quantificação para E. cinnabarinum, onde foi utilizado como padrão interno 
espécimes de Tulbaghia simmleri com 2C = 38,91 pg. 

 

A segunda população de E. nocturnum analisada aqui apresentou citótipos com 

2n = 60 cromossomos (Figura 4d-f), que variaram de 1,53 μm até 3,69 μm (Tabela 1). 

Este citótipo apresentou padrão de bandas CMA/DAPI bastante distinto do anterior, por 

apresentar 21 bandas pericentroméricas CMA+/DAPI¬ bastante conspícuas (Figura 4f, 

setas amarelas), enquanto as demais regiões pericentroméricas apresentaram-se 

CMA0/DAPI¬. Regiões terminais CMA+/DAPI¬ foram observadas em sete 

cromossomos acrocêntricos (Figura 4f, cabeças de setas amarelas). Apenas um 
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cromossomo metacêntrico apresentou o braço curto inteiramente DAPI+/CMA0 e o 

braço longo CMA0/DAPI¬ (Figura 4f, inserto). 

A quantificação do DNA nuclear para E. paniculatum apresentou valores 

referentes a 2C = 3,41 pg DNA, bem como um ciclo de endoreduplicação completa 

referente a 4C = 6,93 pg DNA (Tabela 1; Figura 6F). 

Epidendrum pseudodifforme apresentou 2n = 40 cromossomos (Figura 5a-c), 

que variaram de 1,58 μm até 2,90 μm (Tabela 1). Foram observadas regiões 

pericentroméricas CMA+/DAPI¬ em 10 cromossomos metacêntricos (Figura 5c, setas 

amarelas). Além disso, foram observadas regiões terminais CMA+/DAPI¬ em quatro 

cromossomos acrocêntricos (Figura 5c, cabeças de setas amarelas). Bandas 

DAPI+/CMA¬ foram observadas nos terminais de três cromossomos (Figura 5c). A 

quantificação de DNA nuclear apresentou valores referentes a 2C = 3,94 pg, além de 

um ciclo de endoreduplicação completo equivalente a 4C = 8,26 pg DNA (Tabela 1; 

Figura 6G). Outras 10 regiões terminais CMA0/DAPI¬ menores e menos conspícuas 

foram visualizadas. 

Epidendrum viviparum apresentou cariótipo com 2n = 40 cromossomos (Figura 

5d-f), que variaram de 2,16 μm até 4,00 μm (Tabela 1). Foram visualizadas duas 

pequenas regiões terminais CMA+/DAPI¬ em cromossomos acrocêntricos, 

possivelmente correspondentes as RONs (Figura 5f, cabeças de setas amarelas).  

 

DISCUSSÃO 

 

 Novas contagens cromossômicas são apresentadas no presente trabalho para 

Epidendrum cinnabarinum (2n = 224), E. radicans (2n = 24) e E. nocturnum (2n = 60). 

Além disso, dados inéditos de quantificação do genoma para as espécies E. 

cinnabarinum, E. denticulatum, E. fulgens (pertencentes ao subgênero Amphiglottium), 

E. latilabre, E. nocturnum e E. pseudodifforme (pertencentes ao subgênero  

Epidendrum) são apresentados aqui. Os números cromossômicos reportados para E. 

ciliare com 2n = 40 (Tanaka & Kamemoto, 1984; Goldblatt, 1985), E. denticulatum 

com 2n = 38 (Tanaka & Kamemoto, 1984; Pinheiro et al., 2009; Assis et al., 2013) E. 

fulgens com 2n = 24 (Tanaka & Kamemoto, 1984), E. nocturnum com 2n = 40 (Tanaka 

& Kamemoto, 1984; Felix & Guerra, 2010), E. pseudodifforme com 2n = 40 (Tanaka & 

Kamemoto, 1984; Assis et al., 2013) e E. viviparum com 2n = 40 (Assis et al., 2013) 

confirmam as contagens prévias. A morfologia cromossômica observada nos 
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representantes analisados é bastante variável, e em todas as espécies ocorrem 

cromossomos metacêntricos, submetacêntricos e acrocêntricos, em consonância com os 

registros disponíveis na literatura (Assis et al., 2013). 

Dados inéditos de coloração diferencial com fluorocromos CMA/DAPI também 

são apresentados no presente trabalho, revelando os padrões de distribuição de bandas 

heterocromáticas em E. cinnabarinum, E. denticulatum, E. fulgens, E. radicans, E. 

ciliare, E. nocturnum, E. pseudodifforme e E. viviparum. Pelo menos três tipos 

principais de heterocromatina foram observadas nos representantes do subgênero 

Amphiglottium analisadas no presente trabalho, bem como em outros representantes 

analisados por Assis et al. (em preparação), que corroboram o tratamento filogenético 

proposto por Pinheiro et al. (2009). O tipo principal, formado por regiões CMA0/DAPI¬, 

ocorre em todas as espécies, em número e tamanho variável, sendo possivelmente o 

componente heterocromático das regiões pericentroméricas na maioria dos 

cromossomos, observado em todas as espécies do subgênero Amphiglottium analisadas. 

Geralmente, o mesmo padrão ocorre em cromossomos acrocêntricos, em todas as 

espécies, formando bandas inconspícuas que coram negativamente (ou mais fracamente) 

com DAPI, mas que coram de forma neutra com CMA, nas regiões onde ocorrem os 

centrômeros. Em alguns cromossomos meta ou submetacêntricos, estas bandas se 

estendem das regiões pericentroméricas, corando totalmente o braço curto. Regiões 

heterocromáticas que se estendem do centrômero por todo o braço curto foram 

identificadas em outros gêneros em Orchidaceae, como em Serapias L. e Phalaenopsis 

Blume (D’emerico et al., 2000; Kao et al., 2001). 

O segundo tipo de heterocromatina forma blocos terminais CMA¬/DAPI+, que 

foram observados nos braços cromossômicos curtos ou longos, ocorrendo em todas as 

espécies do subgênero Amphiglottium, mas não foram visualizadas em alguns 

representantes do subgênero Epidendrum. O maior número de bandas CMA¬/DAPI+ foi 

encontrado em E. cinnabarinum, possivelmente em decorrência do seu nível de ploidia 

mais elevado. Nas espécies pertencentes ao subgênero Amphiglottium, este tipo de 

heterocromatina parece estar relacionado à evolução das regiões subteloméricas. Em 

Tetrahymena, durante a cicatrização cromossômica programada, a telomerase adiciona 

repites teloméricos a partir de sequências não teloméricas, formando de novo telômeros 

ricos em AT (Wang & Blackburn, 1997). Em E. nocturnum, no citótipo com 2n = 40 

(Figura 4c), foi observado um conjunto de três cromossomos com regiões 

pericentroméricas CMA¬/DAPI+. Este padrão difere do observado em todas as espécies 
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de Epidendrum analisadas até o presente momento, e pode ser resultante de alterações 

na composição da heterocromatina em uma linhagem distantemente relacionada ao 

subgênero Amphiglottium (Pansarin & Amaral, 2007; Pinheiro et al., 2010, 2013; Assis, 

em preparação). 

O terceiro padrão de bandas heterocromáticas com blocos CMA+/DAPI¬ 

terminais ou pericentroméricos, geralmente estão associados aos pares de RONs 

distendidas. Algumas vezes estas regiões são menos conspícuas, e formam pequenas 

bandas discretas em diversas espécies de Epidendrum (Assis, em preparação). Estes 

padrões também foram encontrados em outros gêneros na família Orchidaceae, como no 

gênero Vanilla Plum. ex Mill. (Lepers-Andrzejewski et al., 2011) e no gênero 

Maxillaria Ruiz & Pav. (Cabral et al., 2006; Moraes et al., 2012), e possivelmente é o 

padrão heterocromático associado as RONs em Orchidaceae e na maioria dos 

organismos. Em Epidendrum secundum, bandas CMA+/DAPI¬ foram observadas nas 

regiões pericentroméricas de cromossomos metacêntricos (Assis, em preparação), o que 

se constitui em uma evidência da ocorrência de fissão cêntrica como importante fator 

evolutivo para a diversificação cariotípica nesta espécie. 

A família Orchidaceae apresenta uma variação de 168 vezes em termos de 

conteúdo de DNA, com valores bastante discrepantes, desde 1C = 0,33 pg até 55,4 pg. 

Especialmente, a subfamília Epidendroideae apresenta valores de conteúdo de DNA que 

variam de 0,3 pg até 19,8 pg, com uma média de 1C = 3,6 pg DNA para a maioria das 

espécies (Leitch et al., 2009). Para as espécies do gênero Epidendrum analisadas até o 

presente momento, os valores variam de 1C = 1,49 pg em E. obliquum (Jones et al., 

1998) até 1C = 10,1 pg em E. cinnabarinum. Contudo, a maior parte desta variação se 

observa entre os representantes do subgênero Amphiglottium, onde pelo menos três 

diferentes níveis de ploidia de DNA foram identificados. A maioria das espécies 

analisadas apresenta valores de conteúdo de DNA muito próximos, geralmente entre 1C 

= 1,6 pg até 1C = 2,2 pg. Desta forma, para o subgênero Amphiglottium, destacam-se 

algumas populações de E. secundum (2n = 84, 90) que apresentam um ciclo evidente de 

poliploidia, com 2C = 4x = 8,24 pg, e notavelmente E. cinnabarinum (2n = 224, 240) 

que apresenta um conteúdo de DNA equivalente a 2C = 10x = 20,21. Por outro lado, a 

pequena variação observada no conteúdo de DNA entre a maioria dos representantes 

analisados, pode estar relacionada a alterações disploides, possivelmente relacionadas à 

variação cromossômica numérica neste grupo. 
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Em Epidendrum, observa-se claramente uma alteração no número fundamental 

entre as espécies, principalmente nos representantes do subgênero Amphiglottium. 

Alterações cromossômicas numéricas relacionadas à disploidias, neste caso, podem ser 

obscurecidas em virtude de mudanças estruturais subsequentes a fusões e/ou fissões 

cêntricas, que costumam alterar a posição relativa dos centrômeros (Guerra, 2008). A 

diversificação cariológica em Epidendrum, principalmente para os representantes dos 

subgêneros Amphiglottium e Epidendrum, parece relacionada, em primeira instância, a 

eventos de disploidia, assim como se observa em Paphiopedilum, que apresenta 

registros cromossômicos de 2n = 26 até 52, porém com a manutenção do NF = 52 (Cox 

et al., 1997; Leitch et al., 2009). A alteração no número fundamental em Epidendrum 

pode ser o resultado de reorganizações intra e intergenômicas complexas, incluindo 

translocações, eliminação de sequências de DNA e amplificação ou redução de 

elementos repetitivos (Parisod et al., 2012), e a ocorrência de cromossomos Bs em 

alguns representantes de Epidendrum corrobora esta hipótese (Assis, em preparação). A 

segunda fonte de variação está claramente relacionada a poliploidia, como se observa 

em outros representantes da subfamília Epidendroideae (Leitch et al., 2009), não 

obstante a ocorrência de hibridação inter e intraespecífca, bem como de novo disploidia, 

que tendem a obscurecer o número monoploide de um grupo filogeneticamente 

relacionado (Guerra, 2008). A complexidade cariológica de Epidendrum, aliada a 

escassez de dados citogenéticos e moleculares, adicionam novos desafios para o 

estabelecimento de um número básico mais parcimonioso para o gênero, que se 

constitui em um interessante modelo para estudos de evolução cariotípica em 

Orchidaceae. 
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