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RESUMO 

SOUSA, L. V. Estresse salino e bioestimulante vegetal no crescimento, produção e 

fisiologia do manjericão. Areia, Paraíba. Centro de Ciências Agrárias, Universidade Federal 

da Paraíba, fevereiro de 2019. 57 p. Dissertação (Mestrado em Agronomia). Programa de Pós-

Graduação em Agronomia. Orientador: Prof. Dr. Thiago Jardelino Dias. 

O cultivo de manjericão (Ocimum basilicum L.) pode ser uma alternativa econômica para o 

nordeste brasileiro, no entanto, algumas áreas dessa região apresentam excesso de sais na água. 

A aplicação de reguladores de crescimento pode mitigar os efeitos deletérios do estresse salino. 

O objetivo do trabalho foi avaliar a ação de bioestimulante sobre a cultura do manjericão 

submetido ao estresse salino. O experimento foi conduzido na Universidade Federal da Paraíba, 

Campus II, Areia, Paraíba, Brasil. O delineamento experimental foi em blocos casualizados, 

em fatorial 5 x 5, combinadas segundo a matriz experimental Composto Central de Box, 

referente a cinco condutividades elétricas da água de irrigação e cinco doses de regulador de 

crescimento vegetal, com valores mínimos (- α) e máximos (α), respectivamente de 0,5 e 6,0 

dS m-1 e 0,0 e 10,0 mL L-1, totalizando nove tratamentos, com quatro repetições e duas plantas 

por parcela. Foram avaliadas as plantas quanto ao desenvolvimento, trocas gasosas, 

fluorescência da clorofila e teores de clorofila além de análises químicas do solo. Não houve 

interação entre as condutividades elétricas da água de irrigação e as doses de regulador de 

crescimento vegetal para nenhuma variável estudada. Foi constatada diferença estatística entre 

as condutividades elétricas para todas as variáveis de crescimento. Já para as variáveis 

fisiológicas houve diferença entre as condutividades elétricas para os índices clorofila, 

fluorescência inicial, rendimento quântico potencial e efetivo do fotossistema II, concentração 

interna de CO2, eficiência do uso da água, eficiência intrínseca do uso da água e eficiência 

instantânea de carboxilação. Já em relação aos atributos químicos do solo, ocorreu resposta 

crescente mediante aumento das condutividades elétricas para todas as variáveis estudadas. A 

salinidade da água provoca redução dos parâmetros de desenvolvimento do manjericão. 

Aplicações de bioestimulante não surte efeitos no crescimento e na fisiologia do manjericão 

quando as plantas são irrigadas com águas salinas. O estresse salino provoca mudanças nos 

teores de potássio e sódio, além de aumento na condutividade elétrica do extrato de saturação, 

capacidade de troca catiônica, soma de bases e saturação por bases.  

Palavras-chave: Ocimum basilicum L, Lamiaceae, salinidade hídrica, hormônios vegetais, 

trocas gasosas. 



 
 

 

 

ABSTRACT 

SOUSA, L. V. Saline stress and vegetable biostimulant on the growth, production and 

physiology of basil. Areia, Paraíba. Centro de Ciências Agrárias, Universidade Federal da 

Paraíba, February 2019. 57 p. Dissertation (Masters in Agronomy). Postgraduate Program in 

Agronomy. Supervisor: Dr. Thiago Jardelino Dias. 

The cultivation of basil (Ocimum basilicum L.) may be an economical alternative for the 

Brazilian northeast, however, some areas of this region have excess salts in the water. The 

application of growth regulators may mitigate the deleterious effects of saline stress. The 

objective of this work was to evaluate the action of biostimulant on the basil culture submitted 

to saline stress. The experiment was conducted at the Federal University of Paraíba, Campus 

II, Areia, Paraíba, Brazil. The experimental design was a randomized block, in a factorial of 5 

x 5, combined according to the Central Composite matrix of Box, referring to five electrical 

conductivities of the irrigation water and five doses of plant growth regulator, with minimum 

values (- α) and (α), respectively 0.5 and 6.0 dS m-1 and 0.0 and 10.0 mL L-1, totaling nine 

treatments, with four replications and two plants per plot. Plants were evaluated for 

development, gas exchange, chlorophyll fluorescence and chlorophyll content as well as soil 

chemical analysis. There was no interaction between the electrical conductivities of the 

irrigation water and the doses of plant growth regulator for any studied variable. A statistical 

difference was found between the electrical conductivities for all growth variables. As for the 

physiological variables, there was a difference between the electrical conductivities for the 

chlorophyll indices, initial fluorescence, potential and effective quantum yield of photosystem 

II, internal CO2 concentration, water use efficiency, water use efficiency and instantaneous 

carboxylation efficiency. Regarding the soil chemical attributes, an increasing response 

occurred due to the increase of the electrical conductivities for all variables studied. The salinity 

of the water causes reduction of the development parameters of basil. Applications of 

biostimulant have no effect on the growth and physiology of basil when the plants are irrigated 

with salt water. Saline stress causes changes in potassium and sodium contents, as well as 

increase in the electrical conductivity of the saturation extract, cation exchange capacity, base 

sum and base saturation. 

Key words: Ocimum basilicum L, Lamiaceae, water salinity, plant hormones, gas exchange. 
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ARTIGO I 

ESTRESSE SALINO E REGULADOR DE CRESCIMENTO VEGETAL NO 

DESENVOLVIMENTO E NA FITOMASSA DO MANJERICÃO 

Resumo 

O cultivo de manjericão (Ocimum basilicum L.) pode ser uma alternativa econômica para o 

nordeste brasileiro. No entanto, grande parte dessa região apresenta excesso de sais na água. O 

objetivo do trabalho foi avaliar os efeitos de regulador de crescimento vegetal sobre o 

desenvolvimento do manjericão submetido ao estresse salino. O experimento foi conduzido na 

Universidade Federal da Paraíba, em Areia, Paraíba, Brasil. O delineamento experimental foi 

em blocos casualizados, em fatorial 5 x 5, combinadas segundo a matriz experimental 

Composto Central de Box, referente a cinco condutividades elétricas da água de irrigação e 

cinco doses de regulador de crescimento vegetal, com valores mínimos (-α) e máximos (α), 

respectivamente de 0,5 e 6,0 dS m-1 e 0,0 e 10,0 mL L-1, totalizando nove tratamentos, com 

quatro repetições e 4 plantas por parcela. Aos 57 dias após o transplantio foram avaliadas altura 

de plantas, diâmetro do caule, área foliar, massas frescas (caule, folha e inflorescência) e massas 

secas (caule, folha, inflorescência, raiz e total). Constatou-se diferença significativa nas 

condutividades elétricas para todas as variáveis estudadas. A salinidade da água de irrigação 

provoca redução dos parâmetros de crescimento do manjericão com exceção das biomassas da 

inflorescência. A cultivar de manjericão Maria Bonita é tolerante à condutividade elétrica da 

água de irrigação de até 3,25 dS m-1. Aplicações exógenas de regulador de crescimento vegetal 

surte efeitos positivos para diâmetro do caule e massa seca da folha do manjericão quando as 

plantas são submetidas ao estresse salino. 

Palavras-chave: Ocimum basilicum L, Lamiaceae, salinidade, fitohormônios. 

 

Abstract 

The cultivation of basil (Ocimum basilicum L.) may be an economical alternative for the 

Brazilian northeast. However, much of this region has excess salts in the water. The objective 

of this work was to evaluate the effects of plant growth regulator on the development of saline 

stressed basil. The experiment was conducted at the Federal University of Paraíba, Areia, 

Paraíba, Brazil. The experimental design was a randomized complete block design, in a 5 x 5 

factorial, combined with the Central Compound of Box experiment, with five electrical 

conductivities of irrigation water and five doses of plant growth regulator, with minimum values 
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(-α) and (α), respectively 0.5 and 6.0 dS m-1 and 0.0 and 10.0 mL L-1, totaling nine treatments, 

with four replications and four plants per plot. Plant height, stem diameter, leaf area, fresh 

masses (stem, leaf and inflorescence) and dry masses (stem, leaf, inflorescence, root and total) 

were evaluated at 57 days after transplanting. A significant difference was found in the 

electrical conductivities for all variables studied. The salinity of the irrigation water causes a 

reduction in the growth parameters of basil, except for the biomass of the inflorescence. The 

basil cultivar Maria Bonita is tolerant to the electrical conductivity of irrigation water up to 3.25 

dS m-1. Exogenous applications of plant growth regulator have positive effects on stem diameter 

and dry mass of basil leaf when plants are subjected to saline stress. 

Key words: Ocimum basilicum L, Lamiaceae, salinity, phytohormones. 

INTRODUÇÃO 

O manjericão (Ocimum basilicum L.), pertencente à família Lamiaceae, sendo 

considerado um subarbusto que pode ser cultivado de forma perene ou anual (MAGGIONI et 

al., 2014). As folhas dessa espécie possuem glândulas secretoras de óleo essencial, cujo 

principal componente é o linalol, substância de alto valor econômico para a indústria de 

cosméticos, fármacos e perfumaria, sendo também utilizado na aromatização de alimentos, 

bebidas e ambientes (BLANK et al., 2004; MAY et al., 2008).  

Em grande parte da região Nordeste do Brasil a irrigação é uma das tecnologias que 

mais influenciam no crescimento das plantas cultivadas, pois minimizam os efeitos 

desfavoráveis das irregularidades das chuvas, condições edafoclimáticas típicas de regiões 

semiáridas (OLIVEIRA et al., 2012). No entanto, além do volume de água disponibilizado para 

as plantas, outro fator fundamental é a qualidade da água para a irrigação, principalmente em 

termos de concentração de sais (OLIVEIRA et al., 2014). 

O excesso de sais na solução do solo, aumenta o potencial osmótico, impedindo ou 

dificultando a captação de água pela planta, além do desequilíbrio nutricional e de toxicidade 

sobre a fisiologia vegetal, afetando negativamente o seu desenvolvimento (ALMEIDA, 2010).   

Pesquisas tem sido realizada com o intuito de avaliar os efeitos da salinidade no 

desenvolvimento do manjericão (MAIA et al., 2017; SILVA et al., 2018), os resultados 

mostraram efeitos deletérios da salinidade sobre a altura de plantas, diâmetro do caule, número 

de folhas, área foliar, acúmulo de massas de matéria fresca e seca da parte aérea. 

Estudos têm sido desenvolvidos com o objetivo de desenvolver estratégias de manejo 

que possibilitem o uso da água salina na irrigação, sem que afete negativamente o crescimento 
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das plantas. Dentre os manejos estudados destaca-se a utilização de reguladores de crescimento 

vegetal (OLIVEIRA et al., 2016; SOUZA NETA et al., 2018). O uso dessas substâncias pode 

ser uma alternativa eficaz pelo fato de aumentarem o crescimento e desenvolvimento vegetal, 

estimulando a divisão celular e elevando a absorção de água e nutrientes pelas plantas (VIEIRA 

& CASTRO, 2001). 

Os reguladores de crescimento podem apresentar em sua composição três substâncias 

que atuam como promotoras de crescimento, o ácido indolbutírico (auxina), a cinetina 

(citocinina) e o ácido giberélico (giberelina) (CASTRO et al., 1998), sendo está a razão pela 

qual sua utilização pode mitigar os efeitos deletérios do estresse salino. 

 Pesquisadores tem observado que os efeitos benéficos dos reguladores de crescimento 

podem ser inibidos pela salinidade da água de irrigação (OLIVEIRA et al., 2017), no entanto, 

seus benefícios podem ser influenciados por fatores como forma de aplicação, número de 

aplicações, concentração do produto, época de aplicação e espécie vegetal. Na literatura existem 

poucas informações sobre o uso de reguladores de crescimento na cultura do manjericão, 

principalmente sob condições de estresse salino.  

Tendo em vista a necessidade do uso de águas salinas na irrigação, levantou-se a 

hipótese de que a aplicação de regulador de crescimento pode amenizar os efeitos do estresse 

salino no manjericão. O objetivo do trabalho foi avaliar os efeitos da aplicação de regulador 

vegetal sobre o desenvolvimento do manjericão (Ocimum basilicum L.) sob estresse salino. 

MATERIAL E MÉTODOS 

 O experimento foi conduzido no período de janeiro a abril de 2018, em ambiente 

protegido (casa de vegetação), no Departamento de Fitotecnia e Ciências Ambientais do Centro 

de Ciências Agrárias da Universidade Federal da Paraíba (UFPB), Campus II, Areia, Paraíba, 

Brasil. Os dados atmosféricos da casa de vegetação durante o período experimental são 

mostrados na Figura 1. 

 

Figura 1. Temperaturas máximas, médias e mínimas (A) e valores máximos, médios e mínimos 



16 
 

 

 

de umidade relativa (B) na casa de vegetação durante o período experimental. Areia-PB, 2019. 

 Utilizou-se a cultivar de manjericão Maria Bonita, cuja semeadura foi realizada em 

bandeja plástica de 200 células, colocando-se entre 5 e 10 sementes por célula. Após a 

emergência realizou-se o desbaste deixando-se apenas uma plântula por célula. Aos 20 dias 

após semeadura quando as mudas apresentavam 6 folhas definitivas, foi feito o transplantio. 

Após isso, foram iniciados os tratamentos referentes ao manejo de irrigação com água salina. 

 As unidades experimentais foram representadas por vasos plásticos com capacidade 

para 5,0 dm3, contendo uma planta por vaso, no espaçamento de 0,6 x 0,4 m. Os vasos foram 

preenchidos com substrato contendo solo classificado como Latossolo Vermelho-Amarelo 

(EMBRAPA, 2013) e esterco bovino curtido na proporção de 3:1. O substrato foi peneirado em 

malha de 2,0 mm e posteriormente analisado quimicamente, cujos resultados da análise são 

apresentados na Tabela 1. 

Tabela 1. Características químicas do substrato utilizado no experimento. Areia-PB, 2019. 

pH MO P K+ V CEs 

(H2O 1:2,5) (%) ---mg dm-3--- (%) dS m-1 

5,85 3,24 82,07 67,08 90,73 0,84 

Na+ Ca2+ Mg2+ Al3+ H++ Al3+ SB CTC 

------------------------cmolc dm-3------------------------ 

1,50 4,30 2,10 0,00 0,83 8,07 8,90 

MO: Matéria orgânica; SB: Soma de bases; CTC: Capacidade de troca de cátions; V: Saturação 

por bases; CEs: Condutividade elétrica do extrato saturado. 

O delineamento experimental foi em blocos casualizados, em fatorial 5 x 5, combinadas 

segundo a matriz experimental Composto Central de Box, referente a cinco condutividades 

elétricas da água de irrigação (CEa) e cinco doses de regulador de crescimento vegetal, com 

valores mínimos (- α) e máximos (α), respectivamente de 0,5 e 6,0 dS m-1 e 0,0 e 10,0 mL L-1, 

totalizando nove tratamentos, com quatro repetições e 4 plantas por parcela (Tabela 2). 

Tabela 2. Composto Central de Box utilizado no experimento. Areia-PB, 2019. 

Tratamentos Condutividade elétrica (dS m-1) Regulador de crescimento (mL L-1) 

1 0,50 5,0 

2 1,30 1,5 

3 1,30 8,5 
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4 3,25 0,0 

5 3,25 5,0 

6 3,25 10,0 

7 5,20 1,5 

8 5,20 8,5 

9 6,00 5,0 

 

O manejo da irrigação foi aferido através de lisímetria de drenagem (ALVES et al., 2017). 

A água com menor condutividade elétrica (0,5 dS m-1) foi proveniente do sistema de 

abastecimento da UFPB. Na preparação das águas com maiores concentrações foi adicionado 

NaCl a água de 0,5 dS m-1 (OLIVEIRA et al., 2017). Para a aferição das salinidades foi utilizado 

condutivímetro portátil microprocessado Instrutherm® (modelo CD-860). As características das 

águas são apresentadas na Tabela 2. 

Tabela 3. Características químicas das águas utilizadas no experimento. Areia-PB, 2019. 

CEa 
pH 

SO4
-2 K+ Na+ Ca2+ Mg2+ CO3

-2 HCO3
- Cl- 

RAS 
dS m-1 mg L-1 -------------------------mmolc dm-3------------------------- 

0,5 6,5 2,77 0,09 0,43 0,25 1,40 0,00 1,75 3,00 0,48 

1,3 7,2 3,25 0,09 2,70 0,30 1,23 0,00 2,25 12,75 3,09 

3,25 7,1 4,51 0,09 13,83 0,35 1,15 0,00 2,25 33,75 15,97 

5,2 7,3 4,22 0,09 23,55 0,38 1,38 0,00 1,75 51,75 25,18 

6,0 7,1 5,54 0,10 27,76 0,40 1,15 0,00 1,50 58,50 31,53 

CEa: Condutividade elétrica da água de irrigação; RAS: Relação de adsorção de sódio. 

O regulador de crescimento vegetal utilizado foi composto por 0,005% de ácido 

indolbutírico (auxina), 0,005% de ácido giberélico (giberelina), 0,009% cinetina (citocinina) e 

99,981% de ingredientes inertes (STOLLER DO BRASIL, 1998). 

As aplicações do regulador de crescimento foram realizadas via foliar entre às 16h00min 

e 17h00min, aos 7; 21; 35 e 49 dias após o transplantio (DAT), aplicando-se volumes de caldas 

equivalentes a 100, 300, 800 e 1.500 L ha-1, respectivamente. As pulverizações foram feitas 

com auxílio de atomizador, adicionando ainda a solução, o adjuvante Tween 80®, na 

concentração de 0,0002% da calda. As plantas que não receberam o regulador foram 

pulverizadas somente com água e adjuvante. 
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Aos 57 dias após o transplantio, período de pleno florescimento, foram analisadas as 

variáveis de desenvolvimento, altura de plantas: medindo-se a partir do colo da planta até a 

última inserção foliar, com auxílio de régua graduada em cm; diâmetro do caule: determinado 

a 2 cm do solo, utilizando-se paquímetro digital graduado em mm; área foliar: mensurada de 

50 folhas aleatórias com régua graduada, tomando-se as dimensões comprimento (C) e largura 

(L), e aplicando-se na fórmula AF = C*L*f conforme Martins (2016), sendo AF = área foliar; 

C = comprimento da folha; L = largura da folha; e f = fator de correção para o manjericão 

(0,6775); massas frescas do caule, folha e inflorescência: obtidos após a separação das partes 

da planta e pesados em balança de precisão (0,01 g); massas secas do caule, folha, 

inflorescência, raiz e total: os materiais foram acondicionados em sacos de papel e, em seguida, 

colocados para secar em estufa com circulação forçada de ar a temperatura de 65 °C por 72 

horas. Após isto, foram pesados em balança de precisão (0,01 g). 

Os dados obtidos foram submetidos a análises de variância e regressão, utilizando o 

software SAS University (CODY, 2015). 

RESULTADOS E DISCUSSÃO 

Não houve interação entre as condutividades elétricas da água de irrigação (CEa) e as 

doses de regulador de crescimento vegetal, assim como, não ocorreu efeito entre as doses de 

regulador de crescimento para a maioria das variáveis de crescimento, com exceção para 

diâmetro do caule e massa seca da folha. No entanto, foi constatada diferença entre as 

condutividades elétricas para todas as variáveis de crescimento (altura de plantas, diâmetro do 

caule, área foliar, massas frescas do caule, folha e inflorescência; massas secas do caule, folha, 

inflorescência, raiz e total). 

Analisando-se as variáveis notam-se que ocorreram decréscimos nos valores à medida 

que se elevou as condutividades elétricas, exceto para as biomassas da inflorescência, onde 

verificou-se incremento nos valores. Segundo Taiz et al. (2017) os efeitos da salinidade nas 

plantas ocorrem por uma resposta rápida à elevação da pressão osmótica na interface raiz-solo 

seguida de uma resposta lenta causada pelo acúmulo de Na+ e Cl- nas folhas. Na fase osmótica, 

há diminuição no crescimento da parte aérea, com diminuição da expansão foliar e inibição da 

formação de gemas laterais. A segunda fase inicia com o acúmulo tóxico de Na+ nas folhas, 

provocando a inibição da fotossíntese e dos processos biossintéticos. 

A altura de plantas sofre redução em resposta ao aumento da salinidade da água de 

irrigação, com maior valor (46,9 cm) obtido nas plantas irrigadas com concentração de 0,5 dS 
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m-1, havendo decréscimo de 20,68%, em comparação com as plantas irrigadas com CEa de 6,0 

dS m-1, onde obteve-se as menores médias com 37,2 cm (Figura 2A). Bione et al. (2014) 

trabalhando em sistema hidropônico observaram comportamento semelhante utilizando 

concentração de até 8,48 dS m-1, evidenciando redução no crescimento em altura de plantas de 

manjericão. 

O diâmetro do caule também foi afetado negativamente com o incremento da 

concentração de salinidade, observa-se que o maior valor (9,68 mm) foi obtido na concentração 

de 0,5 dS m-1 e o menor (7,70 mm) na CEa de 5,99 dS m-1, o que representa decréscimo de 

20,45% (Figura 2B). Efeito similar foi relatado por Maia et al. (2017) que estudando o 

comportamento de manjericão das cultivares Verde e Roxo submetidos a irrigação com 

condutividade elétrica de até 5,0 dS m-1 relataram decréscimo do diâmetro caulinar. 

Na Figura 2C, observa-se que a área foliar foi severamente afetada pelo incremento das 

condutividades elétricas, sendo que os valores máximos e mínimos foram de 4.560,71 e 

2.423,12 cm2, sendo obtidos nas CEa de 0,5 e 5,4 dS m-1, nesta ordem, decréscimo de 46,87% 

comparativamente. Esses resultados diferem dos encontrados por Silva et al. (2018), que 

observaram redução linear da área foliar na cultivar Canela irrigadas com as mesmas 

concentrações salinas. 

 

 

Figura 2. Altura de plantas (A), diâmetro do caule (B) e área foliar (C) em manjericão (Ocimum 

basilicum L.) submetido a condutividades elétricas da água de irrigação. Areia-PB, 2019. 
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O decréscimo da área foliar, está relacionado com os mecanismos de adaptação da planta 

ao estresse salino, reduzindo a superfície de transpiração, sendo importante para a manutenção 

do potencial hídrico elevado, através da diminuição da transpiração (TESTER & 

DAVENPORT, 2003). 

 Na Figura 3A, verifica-se que houve decréscimo para a massa fresca do caule com a 

elevação das condutividades elétricas, sendo observado redução de 57,19% nas plantas 

irrigadas com a condutividade mais elevada (6,0 dS m-1) em comparação com as irrigadas com 

a menor CEa (0,5 dS m-1).  

 O aumento das CEa também afetou a massa fresca da folha (Figura 3B), ocorrendo 

perdas de 49,52%, passando de 62,84 g de massa fresca foliar na concentração de 0,5 dS m-1, 

para 31,69 g obtido na concentração de 6,0 dS m-1. Pesquisas já relataram que a massa fresca 

da parte aérea de manjericão submetido ao estresse salino sofre redução significativa, 

principalmente pela redução do potencial osmótico e a toxicidade causado pelo Na+ (BIONE et 

al., 2014; KALTEH et al., 2014; SILVA et al., 2017), assemelhando-se aos resultados desse 

trabalho.  

 Para a massa fresca da inflorescência (Figura 3C), observa-se que as CEa 

proporcionaram respostas quadráticas, no qual o menor valor (5,61 g) foi obtido na 

condutividade de 0,5 dS m-1 e o maior (17,01 g) foi obtido na CEa de 5,12 dS m-1, representando 

aumento de 67,02%. Silva et al. (2018) trabalhando com a cultivar Canela, relataram efeitos 

contrários aos observados neste trabalho. 

 De acordo com Taiz et al. (2017) em resposta ao estresse salino, as plantas podem alterar 

seu fenótipo, resultando em alterações anatômicas adaptativas que as capacitam a evitar alguns 

dos efeitos deletérios da salinidade. A redução do ciclo apresenta-se como uma dessas 

alterações, fato que pode explicar o aumento da biomassa da inflorescência com os incrementos 

de CEa. 

 Apesar dos efeitos negativos causados pelo excesso de sais, o manjericão consegue se 

desenvolver sob condições de salinidade. Isso demostra que a espécie é tolerante ao estresse 

salino, conforme relatos de alguns autores (CIRAK & BERTOLI, 2013; CALISKAN et al., 

2017). 
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Figura 3. Massa fresca do caule (A), folha (B) e inflorescência (C) em manjericão (Ocimum 

basilicum L.) submetido a condutividades elétricas da água de irrigação. Areia-PB, 2019. 

 Na Figura 4, são apresentados os resultados da biomassa seca, onde verifica-se efeito 

significativo influenciado pelo aumento da condutividade elétrica aplicada na irrigação. 

Observa-se que as respostas para massa seca do caule, folha e inflorescência comportaram-se 

de maneira semelhante aos encontrados para as variáveis de massa fresca do caule, folha e 

inflorescência, respectivamente. 

 Para massa seca do caule (Figura 4A) e folha (Figura 4B) os maiores valores foram 

encontrados na condutividade de 0,5 dS m-1 e os menores nas plantas irrigadas com 6,0 dS m-

1. Para massa seca do caule e folha as reduções foram de 47,68 e 55,17%, nesta ordem. Silva et 

al. (2017) relata que a biomassa de duas cultivares (Basilicão e Folha Fina) submetidas a 

salinidade da água de até 10,0 dS m-1 obtiveram efeitos semelhantes aos encontrados na Figura 

3. 

 Para a massa seca da inflorescência (Figura 4C) a maior amplitude foi obtida entre as 

condutividades de 0,5 e 4,94 dS m-1, obtendo-se incremento superior a 78%. Silva et al. (2018) 

estudando a biomassa da inflorescência da cultivar Canela submetida a salinidades semelhantes 

observaram comportamento decrescente, resultado contrário ao obtido neste trabalho. De 

acordo com Munns et al. (2002), dependendo do genótipo o acúmulo de íons tóxicos pode 

acarretar na morte das folhas mais velhas das plantas submetidas ao estresse salino, de modo 
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que a área foliar fotossinteticamente ativa fica comprometida, com isso, a planta antecipa seus 

processos fisiológicos enquanto ainda existem folhas metabolicamente ativas, de modo a 

garantir a floração e produção de sementes. 

 A CEa afeta de forma negativa a massa seca da raiz (Figura 4D), apresentando resultado 

linear decrescente, com o maior valor de 5,78 g de raiz sendo obtido na CEa de 0,5 dS m-1, 

enquanto que o menor valor de 3,83 g foi encontrado na CEa de 6,0 dS m-1, verificando-se 

decréscimo de 33,74%. Resultados semelhantes foram encontrados por Caliskan et al. (2017) 

com salinidades variando de 0,4 a 8,0 dS m-1 ocorrendo redução de 36,37%, relativamente. 

 

 

 

Figura 4. Massa seca do caule (A), folha (B), inflorescência (C), raiz (D) e total (E) em 

manjericão (Ocimum basilicum L.) submetido a condutividades elétricas da água de irrigação. 

Areia-PB, 2019. 
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 Assim como para a massa seca da raiz para a massa seca total (Figura 4E) ocorreu 

resposta decrescente dos valores com o aumento das CEa, com maior valor (28,07 g) ocorrendo 

na condutividade de 0,5 dS m-1, enquanto que o menor (17,65 g) foi obtido na condutividade 

de 6,0 dS m-1, representando redução superior a 37,12%. 

O efeito prejudicial da salinidade sobre crescimento das plantas pode ser explicado pelo 

comprometimento das funcionalidades bioquímicas e fisiológicas, estando ligado aos efeitos 

tóxicos, osmóticos e nutricionais, devido ao acúmulo de sais na zona radicular da planta (TAIZ 

et al., 2017). 

 Na tabela 3, é possível verificar que o manjericão foi classificado como tolerante à CEa 

de até 3,25 dS m-1, enquanto que para as condutividades mais elevadas (5,2 e 6,0 dS m-1) foi 

classificado como moderadamente tolerante de acordo com a classificação proposta por Fageria 

et al. (2010).  

 Em trabalho realizado por Bione et al. (2014) o manjericão foi classificado como 

tolerante à concentração de sais de até 1,45 dS m-1, enquanto que Maia et al. (2017) verificaram 

que as cultivares Verde e Roxo são tolerantes até a condutividade de 1,5 dS m-1. 

 Os resultados encontrados na Figura 4 mostram baixa redução relativa da produção de 

matéria seca total das plantas submetidas ao estresse salino em relação as plantas irrigadas com 

menor CEa (0,5 dS m-1), indicando relativa tolerância da cultivar aos efeitos da salinidade, 

especificamente para o Na+ e o Cl+ mesmo quando submetida as maiores concentrações de sais. 

De acordo com Munns et al. (2002) os mecanismos de tolerância aos efeitos do estresse salino 

podem variar dentro da mesma espécie vegetal, com genótipos apresentando-se mais tolerantes 

que outros.      

Tabela 4. Redução relativa da produção de matéria seca total em manjericão (Ocimum 

basilicum L.) submetido a condutividades elétricas da água de irrigação. Areia-PB, 2019. 

CEa (dS m-1) Redução da produção (%) Classificação** 

1,30 10,53 Tolerante 

3,25 19,05 Tolerante 

5,20 32,29 Moderadamente tolerante 

6,00 37,12 Moderadamente tolerante 

** Conforme classificação proposta por Fageria et al. (2010). 

 Houve efeito significativo das doses do regulador de crescimento vegetal para diâmetro 

do caule (Figura 5A). Verificou-se resposta quadrática, com valor máximo (8,66 mm) obtido 
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na dose de 5,12 mL L-1, ocorrendo decréscimo a partir dessa concentração, com valor mínimo 

(8,07 mm) sendo observado na concentração mais elevada (10 mL L-1). 

 Semelhantemente ao diâmetro do caule, para massa seca da folha houve resposta 

quadrática ao efeito das doses do regulador de crescimento, obtendo-se até 10,17 g na dose de 

4,79 mL L-1 (Figura 5B). A partir dessa concentração ocorreu redução da biomassa, alcançando 

o menor valor na dose de 10 mL L-1, com 9,03 g. Para Oliveira et al. (2016) os efeitos benéficos 

do regulador vegetal no crescimento das plantas são inibidos de acordo com a intensidade do 

estresse salino, fato este, que pode explicar o efeito quadrático nos valores de diâmetro do caule 

e massa seca da folha.  

 

Figura 5. Diâmetro do caule (A) e massa seca da folha (B) em manjericão (Ocimum basilicum 

L.) submetido a doses de regulador de crescimento vegetal. Areia-PB, 2019. 

CONCLUSÕES 

1. O estresse salino provoca redução dos parâmetros de desenvolvimento do manjericão 

(Ocimum basilicum L.), com exceção das biomassas da inflorescência, onde ocorre elevação 

até a condutividade elétrica de 5,2 dS m-1; 

2. A cultivar de manjericão Maria bonita pode ser considerada tolerante à condutividade elétrica 

da água de irrigação de até 3,25 dS m-1; 

3. Aplicações exógenas de regulador de crescimento vegetal surte efeitos positivos para 

diâmetro do caule e massa seca da folha do manjericão quando as plantas são submetidas ao 

estresse salino. 
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ARTIGO II 

RESPOSTAS FISIOLÓGICAS NO ESTRESSE SALINO E REGULADOR DE 

CRESCIMENTO VEGETAL EM MANJERICÃO (Ocimum basilicum L.) 

Resumo 

Em regiões semiáridas a irrigação é uma prática comumente aplicada para se obter produção 

agrícola. No entanto, a salinidade hídrica pode acarretar modificações na fisiologia vegetal. Na 

literatura existem poucas informações referentes a fisiologia do manjericão, principalmente sob 

condições de salinidade e utilização de reguladores de crescimento. O objetivo do trabalho foi 

avaliar as respostas fisiológicas do manjericão submetido ao estresse salino e regulador de 

crescimento vegetal. O experimento foi conduzido na Universidade Federal da Paraíba, Campus 

II, Areia, Paraíba, Brasil. O delineamento experimental foi em blocos casualizados, em fatorial 

5 x 5, combinadas segundo a matriz experimental Composto Central de Box, referente a cinco 

condutividades elétricas da água de irrigação e cinco doses de regulador de crescimento vegetal, 

com valores mínimos (- α) e máximos (α), respectivamente de 0,5 e 6,0 dS m-1 e 0,0 e 10,0 mL 

L-1, totalizando nove tratamentos, com quatro repetições e 4 plantas por parcela. Aos 57 dias 

após o transplantio foram analisadas as variáveis de índice de clorofila, fluorescência da 

clorofila e trocas gasosas. Não houve interação entre as condutividades elétricas da água de 

irrigação e as doses de regulador de crescimento vegetal, assim como, não ocorreu efeito entre 

as doses de regulador de crescimento para nenhuma variável estudada. O estresse salino causa 

modificações na fisiologia do manjericão (Ocimum basilicum L.) provocando incrementos na 

maioria das variáveis estudadas. Aplicações do regulador de crescimento vegetal até a dose de 

10 mL L-1 influencia a fisiologia do manjericão sob estresse salino. 

Palavras-chave: Trocas gasosas, salinidade hídrica, hormônios vegetais.  

 

Abstract 

In semi-arid regions irrigation is a commonly applied practice for agricultural production. 

However, water salinity can lead to changes in plant physiology. In the literature there is little 

information regarding the physiology of basil, mainly under conditions of salinity and use of 

growth regulators. The objective of this work was to evaluate the physiological responses of 

saline stress and plant growth regulator. The experiment was conducted at the Federal 

University of Paraíba, Campus II, Areia, Paraíba, Brazil. The experimental design was a 

randomized block, in a factorial of 5 x 5, combined according to the Central Compound 

Experimental of Box, referring to five electrical conductivities of the irrigation water and five 
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doses of plant growth regulator, with minimum values (- α) and max (α), respectively of 0.5 

and 6.0 dS m-1 and 0.0 and 10.0 mL L-1, totaling nine treatments, with four replications and two 

plants per plot. At 57 days after transplanting, the variables chlorophyll index, chlorophyll 

fluorescence and gas exchange were analyzed. There was no interaction between the electrical 

conductivities of the irrigation water and the doses of plant growth regulator, as well as, there 

was no effect between the doses of growth regulator for any variable studied. Saline stress 

causes changes in the physiology of basil (Ocimum basilicum L.) causing increases in most of 

the studied variables. Applications of the plant growth regulator up to the dose of 10 mL L-1 

influence the physiology of basil under saline stress. 

Key words: Gaseous exchanges, water salinity, plant hormones. 

INTRODUÇÃO 

O manjericão (Ocimum basilicum L.) é uma espécie vegetal pertencente à família 

Lamiaceae, originalmente nativa da Índia e de outras regiões da Ásia, sendo encontrada 

atualmente em várias regiões do mundo (LU et al., 2014). Suas folhas contêm óleos essenciais 

de aroma forte, sendo utilizadas principalmente na indústria farmacêutica e na culinária 

(SANTOS et al., 2012). 

As regiões áridas e semiáridas do planeta caracterizam-se por baixas precipitações 

pluviométricas, elevadas temperaturas e alta evaporação, sendo necessário a prática da irrigação 

para o desenvolvimento e produção agrícola (OLIVEIRA et al. 2012). 

No entanto, além da disponibilidade hídrica outro fator fundamental para o cultivo 

agrícola é a qualidade da água de irrigação, visto que nessas regiões as águas podem possuir 

elevados teores de sais em suas composições, podendo provocar a salinização dos solos e 

consequentemente a redução do crescimento e desenvolvimento vegetal (MEDEIROS et al., 

2008). 

Quantidades elevadas de sais na água de irrigação podem acarretar modificações nas 

funções fisiológicas das plantas, através da regulação da abertura estomática, nas alterações de 

absorção e utilização dos nutrientes, além do acúmulo de íons tóxicos, principalmente Na+ e Cl- 

no metabolismo vegetal (TAIZ et al., 2017). 

Alguns autores já demonstraram que o manjericão é uma espécie tolerante ao estresse 

salino (MAIA et al., 2017). No entanto, em trabalho realizado recentemente por Silva et al. 

(2018), demonstraram que o estresse salino reduz o crescimento e desenvolvimento vegetal da 

espécie, além de promover modificações na fisiologia das plantas ocasionando alterações na 
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fotossíntese líquida, transpiração, condutância estomática, concentração interna de CO2, déficit 

de pressão de vapor, eficiência do uso de água e eficiência instantânea de carboxilação. 

O desenvolvimento de pesquisas e tecnologias que permitam o uso de águas salinas na 

agricultura sem acarretar efeitos deletérios nas plantas constituem uma das atividades essenciais 

para a produção agrícola, visto que a utilização de águas salinas em regiões áridas e semiáridas 

é imprescindível. Diante disso, estudos tem sido realizado com o objetivo de utilizar águas 

salinas sem que isso acarrete efeitos deletérios nas plantas, destacando-se a utilização de 

reguladores de crescimento vegetal (OLIVEIRA et al., 2016). 

Os reguladores de crescimento são amplamente utilizados na agricultura, 

principalmente por possuírem em sua composição hormônios vegetais como auxina, giberelina 

e citocinina. Esses produtos promovem o crescimento e desenvolvimento vegetal através da 

divisão e alongamento celular além do aumento de absorção de água e nutrientes (VIEIRA & 

CASTRO, 2001). 

Pesquisadores já relataram que o uso de regulador de crescimento vegetal promove 

aumento no crescimento, desenvolvimento e produção de biomassa das plantas. Entretanto, 

seus efeitos benéficos podem ser influenciados pelo estresse salino (SOUZA NETA et al., 

2018). 

Apesar da grande importância do manjericão, existem poucos relatos disponíveis na 

literatura sobre as respostas fisiológicas da espécie, principalmente sob condições de estresse 

salino e utilização de reguladores de crescimento. Dessa forma, o objetivo do trabalho foi 

avaliar as respostas fisiológicas do manjericão (Ocimum basilicum L.) submetido ao estresse 

salino e regulador de crescimento vegetal. 

MATERIAL E MÉTODOS 

 O experimento foi realizado em casa de vegetação, no Departamento de Fitotecnia e 

Ciências Ambientais do Centro de Ciências Agrárias da Universidade Federal da Paraíba 

(UFPB), Campus II, Areia, Paraíba, Brasil, entre os meses de janeiro e abril de 2018. Os dados 

atmosféricos da casa de vegetação durante o experimento são apresentados na Figura 1. 
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Figura 1. Temperaturas máximas, médias e mínimas (A) e valores máximos, médios e mínimos 

de umidade relativa (B) da casa de vegetação durante o experimento. Areia-PB, 2019. 

 As unidades experimentais foram representadas por vasos plásticos com capacidade 

para 5,0 dm3, contendo uma planta. Os vasos foram preenchidos com substrato composto por 

um solo classificado como Latossolo Vermelho-Amarelo (EMBRAPA, 2013) e esterco bovino 

na proporção de 3:1. Os resultados da análise química do substrato são mostrados na Tabela 1. 

Tabela 1. Características químicas do substrato utilizado no experimento. Areia-PB, 2019. 

pH MO P K+ V CEs 

(H2O 1:2,5) (%) ---mg dm-3--- (%) dS m-1 

5,85 3,24 82,07 67,08 90,73 0,84 

Na+ Ca2+ Mg2+ Al3+ H++ Al3+ SB CTC 

------------------------cmolc dm-3------------------------ 

1,50 4,30 2,10 0,00 0,83 8,07 8,90 

MO: Matéria orgânica; SB: Soma de bases; CTC: Capacidade de troca de cátions; V: Saturação 

por bases; CEs: Condutividade elétrica do extrato saturado. 

Utilizou-se a cultivar de manjericão Maria Bonita, cuja semeadura foi realizada em 

bandeja plástica de 200 células, colocando-se de 5 a 10 sementes por célula. Logo após a 

emergência foi feito o desbaste deixando-se em cada célula apenas a plântula mais vigorosa. 

Aos 20 dias após semeadura realizou-se o transplantio para os vasos, onde foram iniciados os 

tratamentos referentes ao manejo de irrigação com estresse salino. 

O delineamento experimental foi em blocos casualizados, em fatorial 5 x 5, combinadas 

segundo a matriz experimental Composto Central de Box, referente a cinco condutividades 

elétricas da água de irrigação (CEa) e cinco doses de regulador de crescimento vegetal, com 
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valores mínimos (- α) e máximos (α), respectivamente de 0,5 e 6,0 dS m-1 e 0,0 e 10,0 mL L-1, 

totalizando nove tratamentos, com quatro repetições e 4 plantas por parcela. 

Tabela 2. Composto Central de Box utilizado no experimento. Areia-PB, 2019. 

Tratamentos Condutividade elétrica (dS m-1) Regulador de crescimento (mL L-1) 

1 0,50 5,0 

2 1,30 1,5 

3 1,30 8,5 

4 3,25 0,0 

5 3,25 5,0 

6 3,25 10,0 

7 5,20 1,5 

8 5,20 8,5 

9 6,00 5,0 

 

O controle da irrigação aferido através de lisímetria de drenagem (ALVES et al., 2017). 

A água com menor condutividade elétrica (0,5 dS m-1) foi proveniente do sistema de 

abastecimento da UFPB. Na preparação das águas com maiores condutividades elétricas foi 

adicionado NaCl a água com 0,5 dS m-1 (SOUZA NETA et al., 2018), utilizando para aferição 

das águas salinas condutivímetro portátil microprocessado Instrutherm® (modelo CD-860). As 

características químicas quanto as qualidades das águas para fins de irrigação são apresentadas 

na Tabela 3. 

O regulador de crescimento vegetal utilizado possui em sua composição 0,005% de 

ácido giberélico, 0,005% de ácido indolbutírico, 0,009% de cinetina e 99,981% de outros 

ingredientes (STOLLER DO BRASIL, 1998). As aplicações foram feitas via foliar aos 7; 21; 

35 e 49 dias após o transplantio, com auxílio de um atomizador com capacidade para 500 mL. 

Juntamente com as doses do regulador de crescimento foi adicionado o adjuvante Tween 80®, 

na concentração de 0,0002%. Aplicou-se água e adjuvante nas plantas que não receberam as 

doses do regulador de crescimento. 

Tabela 3. Características químicas das águas utilizadas no experimento. Areia-PB, 2019. 

CEa 
pH 

SO4
-2 K+ Na+ Ca2+ Mg2+ CO3

-2 HCO3
- Cl- 

RAS 
dS m-1 mg L-1 -------------------------mmolc dm-3------------------------- 

0,50 6,5 2,77 0,09 0,43 0,25 1,40 0,00 1,75 3,00 0,48 
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1,30 7,2 3,25 0,09 2,70 0,30 1,23 0,00 2,25 12,75 3,09 

3,25 7,1 4,51 0,09 13,83 0,35 1,15 0,00 2,25 33,75 15,97 

5,20 7,3 4,22 0,09 23,55 0,38 1,38 0,00 1,75 51,75 25,18 

6,00 7,1 5,54 0,10 27,76 0,40 1,15 0,00 1,50 58,50 31,53 

CEa: Condutividade elétrica da água de irrigação; RAS: Relação de adsorção de sódio. 

Aos 57 dias após o transplantio foram analisadas as variáveis de índice de clorofila 

(clorofilas a, b, total e razão clorofila a/b), fluorescência da clorofila (fluorescência inicial – 

F0, fluorescência máxima – Fm, fluorescência variável – Fv, rendimento quântico potencial do 

fotossistema II – Fv/Fm e rendimento quântico efetivo do fotossistema II – Fv/F0) e trocas 

gasosas (fotossíntese líquida – A, transpiração – E, condutância estomática – gs, concentração 

interna de CO2 – Ci, eficiência do uso da água – EUA (A/E), eficiência intrínseca do uso da 

água – EiUA (A/gs) e eficiência instantânea de carboxilação – EiC (A/Ci)). 

Os índices de clorofila foram obtidos com auxílio de um clorofilômetro eletrônico 

portátil (modelo CFL 1030, ClorofiLOG®), realizando-se duas leituras por planta em folhas 

recém-expandidas. 

As análises de fluorescência da clorofila foram feitas com auxílio de um fluorômetro 

modulado Plant Efficiency Analyser – PEA II® (Hansatech Instruments Co., UK). Foram 

colocadas pinças foliares 30 minutos antes das leituras para adaptação ao escuro (KONRAD et 

al., 2005). 

As determinações das trocas gasosas foram realizadas com auxílio de um analisador de 

gases infravermelho (IRGA, modelo portátil LI-6400XT, LICOR®, Nebraska, USA), com as 

leituras sendo realizadas entre 09:00min e 10:00min. Os teores de CO2 foram fixados em 400 

umol m-2 s-1 e a intensidade luminosa em 1200 umol de fótons m-2 s-1. 

Os dados obtidos foram submetidos as análises de variância e regressão, usando o 

software SAS University (CODY, 2015). 

RESULTADOS E DISCUSSÃO 

Não houve interação entre as condutividades elétricas da água de irrigação (CEa) e as 

doses de regulador de crescimento vegetal, assim como, não ocorreu efeito entre as doses de 

regulador de crescimento para nenhuma variável estudada. Entretanto, foi constatada diferença 

entre as CEa para os índices clorofilas a, b, clorofila total e razão clorofila a/b, fluorescência 

inicial, rendimento quântico potencial e efetivo do fotossistema II, concentração interna de CO2, 
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eficiência do uso da água, eficiência intrínseca do uso da água e eficiência instantânea de 

carboxilação. 

 A clorofila a foi elevada linearmente em resposta ao aumento das condutividades 

elétricas (Figura 2A), sendo observado aumento de 31,94% nas plantas irrigadas com água com 

maior CEa (6,0 dS m-1) em comparação com aquelas irrigadas com água de menor CEa (0,5 dS 

m-1). Resultados divergentes foram observados por Kalteh et al. (2014), que verificaram efeito 

decrescente do índice de clorofila a em decorrência do aumento das CEa. 

 Na Figura 2B é demonstrado o efeito das CEa na clorofila b, no qual pode-se observar 

aumento linear dos teores de clorofila b com o aumento das salinidades, com maior valor 

ocorrendo nas plantas irrigadas com a condutividade de 6,0 dS m-1, correspondendo ao aumento 

de 48,79% em relação as plantas irrigadas com água contendo 0,5 dS m-1. Efeito inverso ao 

obtido por Heidare (2012) que trabalhando com dois genótipos de manjericão, observou 

redução da clorofila b com o aumento das salinidades.  

 De acordo com Jamil et al. (2007) o conteúdo de clorofila aumenta em plantas tolerantes 

e diminui em plantas sensíveis ao estresse salino, fato que pode apontar que os incrementos 

obtidos nos índices de clorofila a e b, ocorreram devido a cultivar de manjericão utilizada nesse 

trabalho apresentar relativa tolerância ao estresse salino, no entanto, os efeitos da salinidade 

sobre os teores de clorofila dependem também de fatores como a concentração e o tipo de 

cátion. 

 Semelhantemente aos índices de clorofila a e b, para clorofila total ocorreu efeito linear 

crescente com a elevação das condutividades elétricas, de forma que os maiores teores de 

clorofila (35,40) foram obtidos na CEa com 6,0 dS m-1, enquanto que os menores valores 

(22,77) foram apresentados na menor CEa (0,5 dS m-1), (Figura 2C). De acordo com Coelho et 

al. (2016) o aumento do teor de clorofila pode significar um processo de adaptação da planta a 

salinidade, assim como pode ser um indicativo de tolerância ao estresse salino. 

 Quanto a razão de clorofila a/b (Figura 2D), verificou-se que ocorreu redução também 

linear em resposta ao aumento das CEa, com maiores razões de clorofila sendo apresentados na 

menor condutividade (0,5 dS m-1), com redução de 23,45%, em comparação com as plantas 

submetidas ao tratamento com maior salinidade (6,0 dS m-1), efeito causado devido aos índices 

de clorofila a terem apresentados incrementos inferiores aos de clorofila b, como verificado nas 

Figuras 2A e 2B.  
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Figura 2. Índices de clorofila a (A), clorofila b (B) clorofila total (C) e razão clorofila a/b (D) 

em manjericão (Ocimum basilicum L.) submetido a condutividades elétricas da água de 

irrigação. Areia-PB, 2019. 

 Para fluorescência inicial (F0), houve efeito significativo com as respostas variando de 

acordo com as diferentes condutividades elétricas. Verificou-se que os maiores valores de 64,00 

foram encontrados na CEa de 1,26 dS m-1, enquanto que os menores de 55,38 foram 

apresentados na CEa de 5,2 dS m-1 (Figura 3A). Baker & Rosenqvist (2004) relatam que plantas 

submetidas ao estresse salino sofrem reduções no potencial da água na folha, reduzindo a 

condutância estomática, e ocasionalmente, inibindo o metabolismo fotossintético, resultando 

em modificações na fluorescência da clorofila.  

 O incremento das condutividades elétricas promoveu efeito significativo nos valores de 

rendimento quântico potencial do fotossistema II (Fv/Fm) (Figura 3B), e conforme equações 

de regressão, verificou-se que o menor valor foi de 0,73 obtido na CEa de 2,08 dS m-1, enquanto 

que o maior foi de 0,76 registrado na CEa contendo 5,12 dS m-1. Resultados contrários foram 

observados por alguns autores que obtiveram redução no Fv/Fm em resposta ao estresse salino 

(MONTEIRO et al., 2018; SÁ et al., 2018). 
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 No entanto, Tatagiba et al. (2014) relatam que em algumas situações, nem sempre o 

estresse salino pode interferir diretamente na fotossíntese, podendo ocorrer indiretamente 

através do desbalanceamento nutricional e na queda do potencial de turgescência das folhas. 

 Para rendimento quântico efetivo do fotossistema II (Fv/F0), observou-se resposta 

positiva com o aumento das condutividades elétricas (Figura 3C), com valor mínimo (2,50) 

ocorrendo no tratamento com 1,4 dS m-1, sendo registrado acréscimo a partir dessa 

condutividade, atingindo-se valor máximo (3,25) na maior CEa (5,50 dS m-1). A ocorrência 

desse efeito evidencia que o manjericão pode sofrer incrementos no rendimento quântico do 

fotossistema II quando irrigado com águas contendo altas concentração de sais, principalmente 

Na+ e Cl+. 

 

 

Figura 3. Fluorescência inicial – F0 (A), rendimento quântico potencial do fotossistema II – 

Fv/Fm (B) e rendimento quântico efetivo do fotossistema II – Fv/F0 (C) em manjericão 

(Ocimum basilicum L.) submetido a condutividades elétricas da água de irrigação. Areia-PB, 

2019. 

 Na Figura 4A, são mostrados os resultados obtidos para concentração interna de CO2 

(Ci) em função das condutividades elétricas da água de irrigação. Observou-se que o valor 

máximo foi apresentado na CEa de 0,5 dS m-1, havendo redução dos valores de Ci até a CEa de 

4,89 dS m-1, com posterior aumento nos valores nas condutividades elétricas mais elevadas. Em 

pesquisa desenvolvida por Silva et al. (2018), trabalhando com as mesmas condutividades 
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elétricas foi observado resposta divergente das encontradas nesse trabalho, com os menores 

valores sendo encontrados na menor CEa (0,5 dS m-1), enquanto que os maiores foram obtidos 

na condutividade elétrica de 3,25 dS m-1. Bezerra et al. (2018) relatam que quando as plantas 

são submetidas ao estresse salino pode ocorrer comprometimento na abertura estomática em 

decorrência do baixo potencial hídrico do solo, resultando em menor condutância estomática e 

consequentemente a redução Ci. 

 

 

Figura 4. Concentração interna de CO2 – Ci (A), eficiência do uso da água – EUA (B), 

eficiência instantânea do uso da água – EiUA (C) e eficiência instantânea de carboxilação – EiC 

(D) em manjericão (Ocimum basilicum L.) submetido a condutividades elétricas da água de 

irrigação. Areia-PB, 2019. 

 Para eficiência do uso da água (EUA) (Figura 4B) e eficiência instantânea do uso da 

água (EiUA) (Figura 4C), verificou-se que a elevação das condutividades elétricas 

proporcionou aumento nos valores das duas variáveis. Incrementos de EUA e EiUA em resposta 

ao aumento da salinidade da água de irrigação já foram relatados por outros autores 

(OLIVEIRA et al., 2017). Brito et al. (2016) também observaram que plantas tolerantes ao 

estresse salino mantem ou aumentam os valores de EUA. 

 A eficiência instantânea de carboxilação (EiC) sofreu alterações discretas com as 

aplicações das CEa (Figura 4D), obtendo-se maior eficiência na condutividade elétrica de 5,2 

dS m-1, com 0,020 μmol CO2 m
-2 s-1/μmol CO2 m

-2 s-1, enquanto que a maior eficiência foi 
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encontrada na CEa (6,0 dS m-1) com 0,013 μmol CO2 m-2 s-1/μmol CO2 m-2 s-1. Efeito 

semelhante foi observado por Silva et al. (2018), que relataram poucas alterações na EiC em 

decorrência do estresse salino. 

 Para fluorescência máxima e fluorescência variável, não ocorreu efeito significativo 

para as CEa, no entanto, de acordo com as médias obtidas dentro dos intervalos de confiança, 

os menores valores foram obtidos na condutividade elétrica de 1,3 dS m-1, ocorrendo 

incremento nos valores até a maior CEa, onde obteve-se as maiores médias. Resultados 

semelhantes foram observados por Sá et al. (2018) que trabalhando com condutividades 

elétricas da água de irrigação variando de 0,6 a 3,8 dS m-1 não observaram efeito significativo 

tanto para Fv como Fm, ficando evidente que as plantas submetidas ao estresse salino podem 

não sofrer alterações significativas na sua eficiência fotossintética. 

 Verificou-se que para fotossíntese líquida, transpiração e condutância estomática não 

houve significância para a irrigação com as condutividades elétricas, apesar disso, ocorreu 

respostas semelhantes para as variáveis supracitadas, com as maiores médias sendo obtidas na 

CEa de 0,5 dS m-1, enquanto que a maior CEa (6,0 dS m-1) proporcionou os menores valores.  

De acordo com Taiz et al. (2017), nas plantas submetidas ao estresse salino, a eficiência 

fotossintética pode aumentar devido ao fechamento parcial dos estômatos. Entretanto, à medida 

que o estresse se torna mais severo a relação entre CO2 absorvido na fotossíntese e o vapor de 

água perdido na transpiração diminui, e consequentemente a inibição do metabolismo da folha 

se acentua. Na literatura, alguns pesquisadores já relataram efeitos negativos do estresse salino 

sobre as trocas gasosas do manjericão (TARCHOUNE et al., 2012; SILVA et al., 2018). 

A aplicação de regulador de crescimento vegetal não causou efeitos significativos para 

nenhum fator estudado, todavia, os valores médios das variáveis fisiológicas são apresentados 

nas Tabelas 4 e 5. 

Tabela 4. Valores médios para índice de clorofila a (Ca), clorofila b (Cb) clorofila total (Ct) e 

razão clorofila a/b (Ca/Cb), fluorescência inicial (F0), fluorescência máxima (Fm), 

fluorescência variável (Fv), rendimento quântico potencial do fotossistema II (Fv/Fm) e 

rendimento quântico efetivo do fotossistema II (Fv/F0) em manjericão (Ocimum basilicum L.) 

submetido a doses de regulador de crescimento vegetal. Areia-PB, 2019. 

Bioestimulante 

(mL L-1) 
Ca Cb Ct Ca/Cb F0 Fm Fv Fv/Fm Fv/F0 

0,0 26,82 6,25 33,07 4,56 57,75 230,75 173,00 0,74 3,07 
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1,5 25,51 6,04 31,55 4,31 59,50 226,87 167,37 0,73 2,85 

5,0 23,08 5,79 28,87 4,16 58,67 233,25 174,58 0,74 2,99 

8,5 23,30 5,99 29,29 3,96 59,87 231,37 171,50 0,74 2,89 

10,0 24,85 6,37 31,22 3,91 60,00 238,75 178,75 0,75 2,99 

 

 Observou-se que a ausência do regulador de crescimento apresentou as maiores médias 

para clorofila a (26,82), clorofila total (33,07), razão clorofila a/b (4,56) e rendimento quântico 

efetivo do fotossistema II (3,07). Quanto ao índice de clorofila b a maior média foi obtida na 

maior dose do regulador de crescimento (10 mL L-1), com 6,37, sendo o mesmo comportamento 

observado para fluorescência inicial (60,00), fluorescência máxima (238,75), fluorescência 

variável (178,75) e rendimento quântico potencial do fotossistema II, com 0,75 (Tabela 4). 

 De acordo com Taiz et al. (2017) as respostas das plantas dependem dentre outros 

fatores das concentrações dos hormônios vegetais. Além disso, aplicações exógenas de 

hormônios não significa necessariamente que o hormônio endógeno está envolvido na 

regulação natural do sistema (POSPÍŠILOVÁ, 2003). Dessa forma, a utilização do regulador 

de crescimento de forma exógena pode não causar efeitos na fisiologia vegetal. 

Tabela 5. Valores médios para fotossíntese líquida (A), transpiração (E), condutância 

estomática (gs), concentração interna de CO2 (Ci), eficiência do uso da água (EUA), eficiência 

instantânea do uso da água (EiUA) e eficiência instantânea de carboxilação (EiC) em 

manjericão (Ocimum basilicum L.) submetido a doses de regulador de crescimento vegetal. 

Areia-PB, 2019. 

Bioestimulante  

(mL L-1) 
A E Gs Ci 

EUA 

(A/E) 

EiUA 

(A/gs) 

EiC 

(A/Ci) 

0,0 5,306 3,053 0,071 237,502 1,741 77,416 0,022 

1,5 4,084 2,466 0,059 242,453 1,693 76,452 0,017 

5,0 3,928 2,452 0,055 240,798 1,674 77,349 0,016 

8,5 4,169 2,391 0,052 234,789 1,763 80,875 0,018 

10,0 3,632 2,072 0,045 233,135 1,759 82,679 0,016 

A: μmol CO2 m
-2 s-1; E: mmol H2O m-2 s-1; gs: mol H2O m-2 s-1; Ci: μmol CO2 m

-2 s-1; EUA: 

μmol CO2 m
-2 s-1/mmol H2O m-2 s-1; EiUA: μmol CO2 m

-2 s-1/mol H2O m-2 s-1; EiC: μmol CO2 

m-2 s-1/μmol CO2 m
-2 s-1. 
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 Na tabela 5, são apresentadas as médias das variáveis de trocas gasosas submetidas as 

doses de regulador de crescimento vegetal. Com a ausência do regulador de crescimento foram 

obtidos os maiores valores para fotossíntese líquida (5,306 μmol CO2 m
-2 s-1), transpiração 

(3,053 mmol H2O m-2 s-1), condutância estomática (0,071 mol H2O m-2 s-1) e eficiência 

instantânea de carboxilação (0,022 μmol CO2 m
-2 s-1/μmol CO2 m

-2 s-1). Já para concentração 

interna de CO2 a maior resposta foi observada na dose de 1,5 mL L-1 (242,453 μmol CO2 m
-2 s-

1). Já o tratamento com 8,5 mL L-1 de regulador de crescimento proporcionou maior média para 

eficiência do uso da água, com 1,763 μmol CO2 m
-2 s-1/mmol H2O m-2 s-1. Enquanto que para 

eficiência instantânea do uso da água a maior dose (10 mL L-1) promoveu maior valor (82,679 

μmol CO2 m
-2 s-1/mol H2O m-2 s-1). 

 De acordo com Taiz et al. (2017) os hormônios vegetais desempenham um papel 

importante na transformação e em mudanças de expressão gênica necessárias para adaptação 

das plantas a condições ambientais desfavoráveis. Entretanto, aplicações exógenas de regulador 

de crescimento vegetal parecem não surtir resultados significativos nas trocas gasosas do 

manjericão nas condições em que o presente trabalho foi desenvolvido.   

CONCLUSÕES 

1. As trocas gasosas da cultivar de manjericão Maria bonita é afetada negativamente pela 

irrigação com águas salinas; 

2. O estresse salino causa modificações na fisiologia do manjericão (Ocimum basilicum L.) 

provocando incrementos nos índices de clorofila, rendimento quântico potencial, rendimento 

quântico efetivo do fotossistema II, eficiência do uso da água e eficiência instantânea do uso da 

água e reduções nos valores de fluorescência inicial, concentração interna de CO2 e eficiência 

instantânea de carboxilação; 

3. Aplicações do regulador de crescimento vegetal até a dose de 10 mL L-1 não influencia a 

fisiologia do manjericão sob estresse salino. 
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ARTIGO III 

ESTRESSE SALINO E BIOESTIMULANTE VEGETAL EM MANJERICÃO: 

EFEITOS NA PLANTA E NO SOLO  

Resumo 

Na região semiárida do Brasil o manjericão é considerado uma cultura secundária, sendo 

cultivada em pequena escala, devido principalmente a qualidade da água disponível para 

irrigação, já que essa região possui problemas com sais na água. O objetivo do trabalho foi 

avaliar os efeitos na planta e no solo da aplicação de bioestimulante em manjericão cultivado 

sob estresse salino. O experimento foi realizado na Universidade Federal da Paraíba, em Areia, 

Paraíba, Brasil. O delineamento experimental foi em blocos casualizados, em fatorial 5 x 5, 

combinadas segundo a matriz experimental Composto Central de Box, referente a cinco 

condutividades elétricas da água de irrigação e cinco doses de regulador de crescimento vegetal, 

com valores mínimos (- α) e máximos (α), respectivamente de 0,5 e 6,0 dS m-1 e 0,0 e 10,0 mL 

L-1, totalizando nove tratamentos, com quatro repetições e 4 plantas por parcela. Aos 57 dias 

após o transplantio avaliou-se: número de folhas, massa seca de plantas, produção de massa 

fresca e produtividade de massa fresca. Posteriormente foram analisados: teor de potássio, 

sódio, condutividade elétrica do extrato de saturação, capacidade de troca catiônica, soma de 

bases e saturação por bases. Para as condutividades elétricas foram constatados efeitos 

significativos para todas as variáveis estudadas. O estresse salino provoca redução no 

crescimento, fitomassa verde e seca e componentes de produção do manjericão. Irrigações com 

altas condutividades elétricas da água provocam aumentos nos teores de potássio e sódio no 

solo.  

Palavras-chave: Ocimum basilicum L, fertilidade do solo, hormônios vegetais.  

Abstract 

In the semi-arid region of Brazil, basil is considered a secondary crop, being cultivated on a 

small scale, mainly due to the water quality available for irrigation, since this region has 

problems with salts in the water. The objective of this work was to evaluate the effects on plant 

and soil of the application of biostimulant in basil under saline stress. The experiment was 

carried out at the Federal University of Paraíba, in Areia, Paraíba, Brazil. The experimental 

design was a randomized block, in a factorial of 5 x 5, combined according to the Central 

Composite matrix of Box, referring to five electrical conductivities of the irrigation water and 

five doses of plant growth regulator, with minimum values (- α) and (α), respectively 0.5 and 
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6.0 dS m-1 and 0.0 and 10.0 mL L-1, totaling nine treatments, with four replications and four 

plants per plot. At 57 days after transplanting, leaf number, dry mass of plants, fresh mass 

production and fresh mass yield were evaluated. Subsequently, the content of potassium, 

sodium, electrical conductivity of the saturation extract, cation exchange capacity, base sum 

and base saturation were analyzed. For the electrical conductivities, significant effects were 

observed for all variables studied. Saline stress causes reduced growth, green and dry biomass 

and components of basil production. Irrigations with high electrical conductivities of the water 

cause increases in potassium and sodium contents in the soil. 

Key words: Ocimum basilicum L, soil fertility, plant hormones. 

INTRODUÇÃO 

O manjericão (Ocimum basilicum L.) é uma planta anual que é cultivada em várias 

regiões do mundo, sendo utilizada amplamente na culinária (KADHIM et al., 2016). O óleo 

essencial dessa espécie também é usado com destaque na indústria de fármacos e perfumaria 

(CHIANG, 2005; MAY et al., 2008). 

Na região Nordeste do Brasil o manjericão é considerado uma cultura secundária, com 

pequena escala de cultivos comerciais, sendo comum encontrar plantas de manjericão em meio 

a espécies ornamentais em jardins residenciais. Essa região possui condições climáticas bem 

específicas, com precipitações pluviométricas irregulares e alta taxa de evaporação, 

apresentando clima predominantemente semiárido (LUCENA et al., 2018).  

Uma das tecnologias fundamentais para fomentar a produção de espécies vegetais pouco 

cultivadas é a prática da irrigação (CONCEIÇÃO et al., 2018). No entanto, as águas usadas 

para este fim no semiárido nordestino, constantemente possuem altos teores de sais dissolvidos 

em suas composições, podendo acarretar a salinização dos solos e a redução do 

desenvolvimento vegetal (MEDEIROS et al., 2008). 

De acordo com Dias & Blanco (2010) nas plantas o estresse salino pode causar 

dificuldades na absorção de água, toxicidade de íons específicos e interferência nos processos 

fisiológicos. Já no solo os principais efeitos da salinidade são desestruturação, aumento da 

densidade aparente e da retenção de água e redução da infiltração de água pelo excesso de íons 

sódicos (RHOADES et al., 1999). 

Tendo em vista que o uso de águas salinas na região semiárida do Nordeste para 

irrigação é imprescindível, pois diversos estudos têm sido realizados com o objetivo de 

desenvolver alternativas que atenuem os efeitos deletérios dos sais no solo e na planta. Entre 
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esses estudos destaca-se a utilização de bioestimulantes vegetais (OLIVEIRA et al., 2016; 

SOUSA et al., 2018). O uso dessas substâncias pode ser uma alternativa para amenizar os 

efeitos deletérios dos sais, por possuírem em suas composições hormônios vegetais que atuam 

aumentando a absorção de água e nutrientes pelas plantas (VIEIRA & CASTRO, 2001). 

Pesquisas têm sido desenvolvidas para investigar respostas da utilização de 

bioestimulantes como a de Oliveira et al. (2017), que relataram os benefícios dos 

bioestimulantes podem ser influenciados negativamente por altas condutividades elétricas da 

água de irrigação. No entanto, as vantagens dos bioestimulantes podem ser influenciados por 

fatores como o modo de aplicação, concentração do produto, espécie vegetal e estádio de 

desenvolvimento da planta. 

Dessa forma, informações sobre a utilização de bioestimulantes em manjericão são 

escassas, principalmente seu uso sob condições de estresse salino. O objetivo do trabalho foi 

avaliar os efeitos na planta e no solo da aplicação de bioestimulante vegetal em manjericão 

(Ocimum basilicum L.) cultivado sob estresse salino. 

MATERIAL E MÉTODOS 

 O experimento foi realizado em ambiente protegido (casa de vegetação), no 

Departamento de Fitotecnia e Ciências Ambientais do Centro de Ciências Agrárias da 

Universidade Federal da Paraíba (UFPB), Campus II, Areia, Paraíba, Brasil, entre os meses de 

janeiro e abril de 2018. Os dados atmosféricos na casa de vegetação durante o período 

experimental são mostrados na Figura 1. 

 Utilizou-se a cultivar de manjericão Maria Bonita, cuja semeadura foi realizada em 

bandeja plástica de 200 células, colocando-se entre 5 e 10 sementes por célula. Logo após a 

emergência foi feito o desbaste deixando-se a plântula mais vigorosa de cada célula. Aos 20 

dias após semeadura realizou-se o transplantio para vasos plásticos, onde foram iniciados os 

tratamentos referentes ao manejo de irrigação com estresse salino. 

 

Figura 1. Temperaturas máximas, médias e mínimas (A) e umidades relativas máximas, médias 
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e mínimas (B) na casa de vegetação durante o experimento. Areia-PB, 2019. 

  As unidades experimentais foram representadas por vasos plásticos com capacidade 

para 5,0 dm3, contendo uma planta. O espaçamento adotado entre vasos foi de 0,60 x 0,40 m, 

resultando em uma densidade populacional de 41.667 plantas por hectare. Os vasos foram 

preenchidos com substrato composto por solo classificado como Latossolo Vermelho-Amarelo 

(EMBRAPA, 2013) e esterco bovino curtido na proporção de 3:1. Os resultados da análise 

química do substrato são mostrados na Tabela 1. 

Tabela 1. Características químicas do substrato utilizado no experimento. Areia-PB, 2019. 

pH MO P K+ V CEs 

(H2O 1:2,5) (%) ---mg dm-3--- (%) dS m-1 

5,85 3,24 82,07 67,08 90,73 0,84 

Na+ Ca2+ Mg2+ Al3+ H++ Al3+ SB CTC 

------------------------cmolc dm-3------------------------ 

1,50 4,30 2,10 0,00 0,83 8,07 8,90 

MO: Matéria orgânica; SB: Soma de bases; CTC: Capacidade de troca de cátions; V: Saturação 

por bases; CEs: Condutividade elétrica do extrato saturado. 

O delineamento experimental foi em blocos casualizados, na matriz experimental 

Composto Central de Box (MATEUS et al., 2001), em esquema fatorial de 5 x 5, referente a 

cinco condutividades elétricas da água de irrigação (0,5; 1,3; 3,25; 5,2 e 6,0 dS m-1) e cinco 

doses de bioestimulante vegetal (0; 1,5; 5; 8,5 e 10 mL L-1 de água), com quatro repetições e 4 

plantas por repetição, conforme representado na Tabela 2. 

Tabela 2. Composto Central de Box utilizado no experimento. Areia-PB, 2019. 

Tratamentos Condutividade elétrica (dS m-1) Bioestimulante vegetal (mL L-1) 

1 0,50 5,0 

2 1,30 1,5 

3 1,30 8,5 

4 3,25 0,0 

5 3,25 5,0 

6 3,25 10 

7 5,20 1,5 
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8 5,20 8,5 

9 6,00 5,0 

 

O controle da irrigação foi aferido através de lisímetria de drenagem (ALVES et al., 

2017). A água com menor condutividade elétrica (0,5 dS m-1) foi proveniente do sistema de 

abastecimento da UFPB. Na preparação das águas com maiores condutividades elétricas foi 

adicionado NaCl a água com 0,5 dS m-1. Para aferição das condutividades elétricas foi utilizado 

o condutivímetro portátil microprocessado Instrutherm® (modelo CD-860). As características 

químicas das águas utilizadas no experimento são apresentadas na Tabela 3. 

As aplicações das doses de bioestimulante foram feitas via foliar com auxílio de um 

atomizador com capacidade para 500 mL, sendo aplicadas aos 7; 21; 35 e 49 dias após o 

transplantio. O bioestimulante utilizado possui em sua composição 0,005% de ácido giberélico, 

0,005% de ácido indolbutírico, 0,009% de cinetina e 99,981% de outros ingredientes 

(STOLLER DO BRASIL, 1998). Juntamente com as doses do bioestimulante foi adicionado o 

adjuvante Tween 80®, na concentração de 0,0002%. As plantas que não receberam tratamento 

com bioestimulante aplicou-se apenas água e adjuvante. 

Tabela 3. Características químicas das águas utilizadas no experimento. Areia-PB, 2019. 

CEa 
pH 

SO4
-2 K+ Na+ Ca2+ Mg2+ CO3

-2 HCO3
- Cl- 

RAS 
dS m-1 mg L-1 -------------------------mmolc dm-3------------------------- 

0,5 6,5 2,77 0,09 0,43 0,25 1,40 0,00 1,75 3,00 0,48 

1,3 7,2 3,25 0,09 2,70 0,30 1,23 0,00 2,25 12,75 3,09 

3,25 7,1 4,51 0,09 13,83 0,35 1,15 0,00 2,25 33,75 15,97 

5,2 7,3 4,22 0,09 23,55 0,38 1,38 0,00 1,75 51,75 25,18 

6,0 7,1 5,54 0,10 27,76 0,40 1,15 0,00 1,50 58,50 31,53 

CEa: Condutividade elétrica da água de irrigação; CE: Condutividade elétrica; RAS: Relação 

de adsorção de sódio. 

Aos 57 dias após o transplantio foi realizada a coleta das plantas, onde avaliou-se as 

variáveis, número de folhas: contando-se as folhas desenvolvidas de cada planta; massa seca de 

plantas: resultado do somatório de massa seca da raiz e massa seca da parte aérea; produção de 

massa fresca: obtida através de balança de precisão (0,01 g); e produtividade de massa fresca: 

resultado da produção de massa fresca por área ocupada. 
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Após a coleta das plantas, foram coletadas amostras de solo de cada tratamento e 

posteriormente analisadas as características químicas, teor de potássio: através de fotometria de 

chama; teor de sódio: por fotometria de chama; condutividade elétrica do extrato de saturação 

(CEes): obtida por condutivímetro de bancada BEL® (modelo w12d); capacidade de troca 

catiônica (CTC): resultado da soma de Ca2+ + Mg2+ + K+ + H+ + Al3+; soma de bases (SB): 

resultado da soma de Ca²+ + Mg²+ + K+ e saturação por bases (V%): pela fórmula V% = 100 x 

SB/CTC.  

Os dados obtidos foram submetidos as análises de variância e regressão, usando o 

software SAS University (CODY, 2015). 

RESULTADOS E DISCUSSÃO 

 Não houve interação entre as doses de bioestimulante vegetal e as condutividades 

elétricas da água de irrigação (CEa), assim como, não ocorreu efeito entre as doses de 

bioestimulante para nenhuma variável. Entretanto, para as CEa foram constatadas diferenças 

significativas para todas as variáveis estudadas. 

 Analisando-se os dados referentes as variáveis de desenvolvimento vegetal (número de 

folhas, massa seca de plantas, produção de massa fresca e produtividade de massa fresca) 

observou-se resposta linear negativa mediante o aumento das CEa. Já em relação aos atributos 

químicos do solo irrigado, houve efeito contrário, ocorrendo resposta linear positiva mediante 

aumento da CEa para potássio (K+), sódio (Na+), condutividade elétrica (CEes), capacidade de 

troca de cátions (CTC), soma de bases (SB) e saturação por bases (V%).   

 O número de folhas teve decréscimo devido ao estresse salino, com perda de 23 folhas 

por planta em resposta ao aumento unitário da condutividade elétrica da água de irrigação, de 

forma que na CEa de 6,0 dS m-1 houve redução total de 33,89% em comparação a CEa de 0,5 

dS m-1, cuja valores foram de 436 e 288 folhas planta-1, respectivamente (Figura 2A). O 

comportamento está compatível com o apresentado por Silva et al. (2018) que trabalhando com 

semelhantes condutividades elétricas da água de irrigação contataram diminuição do número 

de folhas em plantas de manjericão. 
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Figura 2. Número de folhas (A) e massa seca de plantas (B) em manjericão (Ocimum basilicum 

L.) submetido a condutividades elétricas da água de irrigação. Areia-PB, 2019. 

 Na Figura 2B, observa-se que para massa seca de plantas ocorreu efeito linear 

decrescente em resposta ao estresse salino, sendo observado redução de 37,12% nas plantas 

irrigadas com maiores CEa (6,0 dS m-1) em comparação com as irrigadas com as menores CEa 

(0,5 dS m-1), no qual os valores foram 28,07 e 17,65 g planta-1. Tendência semelhante foi 

apresentada por Maia et al. (2017) que constataram redução linear da massa seca nas cultivares 

Verde e Roxa irrigadas com águas salinas. 

 O aumento das CEa reduziu a produção de massa fresca de 95,5 g planta-1 nas plantas 

irrigadas com CEa de 0,5 dS m-1 para 59,5 g planta-1 nas submetidas a CEa de 6,0 dS m-1, de 

modo que ocorreu perda de 60,5% (Figura 4A). Silva et al. (2018) estudando a biomassa fresca 

da cultivar canela submetida as mesmas condutividades elétricas da água de irrigação obtiveram 

efeitos semelhantes aos encontrados neste trabalho. 

  A produtividade de massa fresca do manjericão (Figura 4B), foi reduzida com o 

aumento das CEa de 0,5 dS m-1 para 6,0 dS m-1 provocando queda na produtividade de 3,98 

para 2,48 t ha-1, totalizando perda de 1,5 t ha-1, que equivale a redução de 60,5%. 

 De acordo com Taiz et al. (2017) entre os efeitos do estresse salino nas plantas pode-se 

destacar a diminuição no crescimento da parte aérea e a inibição da formação de gemas laterais, 

o que interfere diretamente no desenvolvimento vegetal e consequentemente no potencial 

produtivo das plantas. 
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Figura 3. Produção de massa fresca (A) e produtividade de massa fresca (B) em manjericão 

(Ocimum basilicum L.) submetido a condutividades elétricas da água de irrigação. Areia-PB, 

2019. 

 Houve aumento dos teores de potássio no solo com elevação da salinidade de água de 

irrigação, obtendo incremento unitário de 5,38 mg dm-3 de K+ no solo, a cada aumento na 

concentração de salinidade do solo (Figura 4A). Valores superiores foram constatados na maior 

CEa (6,0 dS m-1), observando-se médias de 92,7 mg dm-3, o que corresponde a 59% da CEa 

que apresentou menores valores (1,3 dS m-1).  

Grande parte do potássio pode ter sido oriundo da irrigação, uma vez que o sal utilizado 

contém potássio em sua composição. O potássio é importante no desenvolvimento vegetal, 

sobretudo em condições de estresse abiótico como o estresse salino, atuando na turgidez 

tecidual, abertura e fechamento de estômatos, transporte de carboidratos, transpiração, 

resistência à seca e estresse salino (MARSCHNER, 2012, TAIZ et al., 2017). Nesse sentido, 

Hashi et al. (2015) afirma, no entanto, que esse estresse salino pode ser amenizado pelo aumento 

da oferta de K+. 

Os teores de sódio aumentaram linearmente em resposta ao aumento das CEa, exibindo 

teor mais elevado (10,6 cmolc dm-3), na CEa de 6,0 dS m-1 (Figura 4B). Maiores teores de sódio 

eram esperados nas CEa mais elevadas, uma vez que se estava adicionando sódio ao solo via 

água de irrigação. Considerando as condições dos solos da região semiárida, é preciso 

monitorar, periodicamente, as concentrações deste elemento, pois o manejo inadequado pode 

levar ao desbalanço nutricional e comprometer o desenvolvimento vegetal além da degradação 

de terras agricultáveis (PAES et al., 2013; DALIAKOPOULOS et al., 2016).  
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Figura 4. Teores de potássio (A) e sódio (B) em solo cultivado com manjericão (Ocimum 

basilicum L.) submetido a condutividades elétricas da água de irrigação. Areia-PB, 2019. 

Concomitantemente a irrigação com CEa mais elevadas, houve incrementos lineares 

para os valores de condutividade elétrica (CEes), soma de bases (SB), capacidade de troca 

catiônica (CTC) e saturação por bases (V%) (Figura 5).  

O aumento da condutividade elétrica (CEes) reflete a presença de sais trocáveis na 

solução do solo, provenientes da água de irrigação (Figura 5A). A maioria das águas das regiões 

semiáridas apresentam teores elevados de sais, os quais, quando não manejados, podem trazer 

prejuízos à produção agrícola e a qualidade do solo (MEDEIROS & GHEYI, 1994). O excesso 

de íons de sais no solo principalmente o NaCl, pode ocasionar distúrbios nutricionais, através 

da competição química, absorção competitiva, toxidade, transporte ou distribuição de 

elementos essenciais dentro da planta (MUNNS & TESTER, 2008). 

No que concerne à capacidade de troca de cátions (CTC), constatou-se acréscimos 

lineares mediante aumento na CEa, obtendo maiores valores nas salinidades mais elevadas 

(Figura 5B). Esse aumento da CTC, está associado ao aumento de sódio decorrente da irrigação 

com sai ricos em NaCl. A origem das cargas negativas em solos altamente intemperizados, 

como os Latossolos, depende do pH e sua mudança interfere, de maneira significativa na a 

adsorção dos cátions (NOVAIS et al., 2007). Elevando o pH, ocorre a desprotonação dos 

grupamentos ácidos da matéria orgânica e dos grupamentos OH- das bordas dos argilominerais, 

na formação de hidróxidos, gerando mais cargas negativas (BRADY & WEIL, 2013).  

Observou-se aumento para a soma de bases (Figura 5C) e saturação por bases (Figura 

5D) no solo associadamente ao aumento da condutividade elétrica da água de irrigação com 

valores maiores de 18,21 cmolc dm-3 e 93%. Valores acentuados de SB e V% são decorrentes 

principalmente da predominância do sódio presente na solução salina, atuando 

significativamente no complexo de troca, sobretudo, nas salinidades mais elevadas. 
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Adicionalmente, em condições de estresse salino, a absorção de água pelas plantas é 

reduzida e, consequentemente, resultará em mais cátions presentes na solução do solo. Os sais 

solúveis na solução do solo aumentam as forças de retenção de água devido ao efeito osmótico, 

ocorrendo redução na absorção de água pela planta, podendo ocorrer em alguns casos, perda de 

água da planta para o solo (DIAS et al., 2016).  Resultados semelhantes ao presente estudo 

foram constatados por Garcia et al. (2008), estudando irrigação salina em três tipos de solo no 

cultivo do feijoeiro (Phaseolus vulgaris L.). 

 

 

Figura 5. Condutividade elétrica do extrato de saturação (A), capacidade de troca catiônica (B), 

soma de bases (C) e saturação por bases (D) em solo cultivado com manjericão (Ocimum 

basilicum L.) submetido a condutividades elétricas da água de irrigação. Areia-PB, 2019. 

CONCLUSÕES 

1. O estresse salino provoca redução no crescimento, fitomassa verde e seca e componentes de 

produção do manjericão; 

2. Irrigações com altas condutividades elétricas da água provocam no solo aumentos nos teores 

de potássio, sódio, na condutividade elétrica do extrato de saturação, capacidade de troca 

catiônica, soma de bases e saturação por bases; 
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3. Aplicações do bioestimulante vegetal até a dose de 10 mL L-1 não surte efeitos sobre as 

plantas de manjericão e a fertilidade do solo. 
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