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RESUMO 

 

A necessidade de novas metodologias mais seguras e sustentáveis ambientalmente, 
isto é, que possuam um caráter mais ‘verde’, tem direcionado a pesquisa em química 
para o desenvolvimento de métodos alternativos, tanto no âmbito acadêmico quanto 
no setor industrial. Neste contexto, os Líquidos Iônicos (LIs) e os Solventes Eutéticos 
Profundos (Deep Eutectic Solvents – DES) têm atraído crescente interesse da síntese 
orgânica “verde”, por serem compostos que possuem várias características 
importantes como, por exemplo, baixa pressão de vapor, diminuindo e/ou evitando 
emissões de gases para atmosfera. Outro ponto de grande relevância dos LIs e dos 
DES é a possibilidade de serem utilizados como solventes e/ou catalisadores tanto 
em reações orgânicas como em outros processos como forma alternativa. 
Considerando a importância do desenvolvimento de novas metodologias alternativas 
e sustentáveis, neste trabalho avaliamos e desenvolvemos uma série de novos DES 
baseados na combinação do cloreto de benzalcônio e aminoácidos. Dentre os 
produtos obtidos, foi selecionado o DES [BA][Leu] para ser avaliado quanto ao seu 
potencial como agente plastificante em filmes biodegradáveis de amido de M. 
esculenta Crantz (mais conhecida como mandioca). Os produtos foram sintetizados 
por meio de uma reação bastante simples, em apenas uma única etapa, uma reação 
de metátese para formação dos produtos, que possui 100% de eficiência atômica, um 
dos princípios da Química Verde. A partir deste procedimento foram obtidas as 
melhores condições para a obtenção de uma série de solventes eutéticos profundos. 
A caracterização foi realizada por meio de Espectroscopia no Infravermelho e 
Ressonância Magnética Nuclear de Hidrogênio (RMN-1H). Para formulação dos 
biofilmes, foi utilizado o método casting, que consiste no aquecimento da mistura até 
a temperatura de geleificação do amido e, subsequentemente, a adição dos agentes 
plastificantes. O estudo da ação plastificante dos compostos obtidos apresentou-se 
bastante satisfatória por resultar na formação do biofilme, mostrando que ocorre a 
interação com as cadeias poliméricas do amido. Além disso, os biofilmes obtidos 
apresentaram características relevantes quanto a espessura, transparência e 
opacidade dos materiais, demonstrando a importância na continuidade desta 
pesquisa.  
 

 

Palavras-chave: Solventes Verdes; Biofilmes; Amido. 

 
  



 

 

ABSTRACT 
 

The need for safer and more environmentally sustainable methods, that is to say, they 
have a more 'green' character, has directed the research in chemistry to the 
development of alternative methods, both in the academic as in the industrial sector. 
In this context, Ionic Liquids (LIs) and Deep Eutectic Solvents (DES) have attracted 
growing interest in "green" organic synthesis, because they are compounds that have 
several important characteristics, such as low vapor pressure, decreasing and / or 
avoiding emissions of gases to atmosphere. Another point of great relevance of LIs 
and DES is the possibility of being used as solvents and / or catalysts both in organic 
reactions and in other processes as an alternative form. Considering the importance 
of the development of new alternative and sustainable methodologies, in this work we 
evaluate and develop a series of new DES based on the combination of benzalkonium 
chloride and amino acids. Among the products obtained, DES [BA] [Leu] was selected 
to be evaluated for its potential as a plasticizer in biodegradable starch films of M. 
esculenta Crantz (better known as cassava). The products were synthesized by means 
of a very simple reaction, in a single step, a metathesis reaction for product formation, 
which has 100% atomic efficiency, one of the principles of Green Chemistry. From this 
procedure the best conditions were obtained to obtain a series of deep eutectic 
solvents. The characterization was performed by means of Infrared Spectroscopy and 
Hydrogen Nuclear Magnetic Resonance (1H-NMR). For the formulation of the biofilms, 
the casting method was used, which consists in heating the mixture to the gelation 
temperature of the starch and, subsequently, adding the plasticizing agents. The study 
of the plasticizing action of the obtained compounds was quite satisfactory as it 
resulted in the formation of the biofilm, showing that the interaction with the polymer 
chains of the starch occurs. In addition, the biofilms obtained presented relevant 
characteristics regarding the thickness, transparency and opacity of the materials, 
demonstrating the importance in the continuity of this research. 

 
 

Keywords: Green Solvents; Biofilms; Starch. 
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1 INTRODUÇÃO 

 

Um dos principais desafios das pesquisas na área da química, especialmente 

durante a última década, foi o desenvolvimento de novas metodologias mais seguras 

e sustentáveis, ou seja, que possuam caráter mais verde e, portanto, maior 

compatibilidade com o meio ambiente (PRADO, 2003). Neste contexto, os Solventes 

Eutéticos Profundos (DES), que foram introduzidos como uma alternativa de meio 

reacional mais “verde” devido as suas propriedades físicas e químicas singulares de 

baixa viscosidade, baixa ou desprezível pressão de vapor, a sua alta capacidade de 

solubilização tanto de materiais orgânicos como inorgânicos, não-volatilidade, não-

inflamáveis e estabilidade térmica (TANG, et al., 2013).  

Os Solventes Eutéticos Profundos (DES, do inglês Deep Eutectic Solvents) são 

formados a partir de uma simples mistura entre um sal e um ou mais compostos 

orgânicos doadores de hidrogênio com compostos receptores de ligação de 

hidrogênio. A mistura final é obtida com ponto de fusão menor ao de qualquer um dos 

componentes puros (LI, et al., 2015). Essas substâncias podem substituir 

componentes de processos químicos tradicionais por novas tecnologias 

ambientalmente sustentáveis, fazendo com que sejam eliminados resíduos, 

melhorando assim a eficiência e promovendo benefícios ambientais e econômicos 

(DURAND, et al., 2013). 

Neste contexto, um dos problemas a ser enfrentado está relacionado a produção 

de plásticos de origem sintética, isto é, de fontes não renováveis. Em consequência 

do aumento populacional e do crescimento econômico, também resultou em uma 

maior produção de lixo, onde grande parte se deve a utilização de plásticos como 

embalagens. Assim, o desenvolvimento de materiais que possuam propriedades 

similares ou melhores em relação aos polímeros já produzidos, sendo aplicáveis as 

mesmas funções, porém com a possibilidade de serem ambientalmente aceitáveis, é 

de grande interesse no âmbito da pesquisa acadêmica (SOARES, et al., 2015). 

Uma alternativa que vem sendo estudada é a utilização de biopolímeros, que são 

obtidos a partir de fontes naturais e renováveis, e possuem custo relativamente baixo. 

Além disso, podem ser facilmente degradados, servindo como fonte de nutrientes para 

micro-organismos e, assim, diminuindo a quantidade de resíduos descartados no meio 

ambiente (BRITO, et al., 2011). 
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Dentre os biopolímeros que têm sido bastante estudados na última década, 

destaca-se o amido, um polissacarídeo com uma ampla faixa de propriedades, o que 

o torna um potencial candidato para a produção e o desenvolvimento de materiais 

ambientalmente benéficos (SOARES, et al., 2015). O polímero obtido através da 

utilização do amido puro apresenta características importantes, contudo, sua 

aplicabilidade é mais fragilizada em relação aos polímeros mais usuais devido a 

algumas características como a baixa resistência mecânica e outros fatores. Então, 

para obter um melhoramento deste biopolímero, passa a existir a necessidade de 

incorporar aditivos na formulação, agentes que aprimorem suas propriedades, 

fazendo com que esses materiais tenham uma maior visibilidade tanto no ponto de 

vista tecnológico, econômico e ambiental (MADALENO, et al., 2009). 

No contexto da Química Verde, os solventes eutéticos profundos vem recebendo 

destaque por apresentarem-se como uma alternativa aos aditivos e/ou plastificantes 

convencionais (poli-álcoois, polisorbatos, etc ) na obtenção de biofilmes a base de 

amido. A utilização dos DES como aditivos tem sido sugerida devido a semelhança de 

suas propriedades físico-químicas com aquelas apresentadas pelos líquidos iônicos, 

os quais já demonstraram potencial como agentes plastificantes (COLOMINES, et al., 

2016). Outra propriedade que pode ser agregada aos biofilmes está relacionada a 

atividade antimicrobiana, já que algumas pesquisas tem demonstrado que estruturas 

de compostos antimicrobianos formam solventes eutéticos profundos. Assim, as 

séries de produtos derivados de biomoléculas que podem ser produzidas resultam em 

compostos de baixa toxicidade e são ambientalmente compatíveis (DAI, et al., 2013). 
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2 OBJETIVOS 

 

2.1 OBJETIVO GERAL 

 

O presente trabalho tem como objetivo principal o desenvolvimento de 

metodologias, baseadas em técnicas sustentáveis, para a utilização do Cloreto de 

Benzalcônio e substâncias biodegradáveis (Aminoácidos) na síntese de novos 

solventes eutéticos profundos, como apresentado na Figura 01. 

 

2.2 OBJETIVOS ESPECÍFICOS 

 

 Como objetivos específicos do presente trabalho, tem-se: 

 Caracterização dos solventes eutéticos obtidos por meio da utilização das 

técnicas de Espectroscopia no Infravermelho e Ressonância Magnética 

Nuclear (RMN); 

 Estudo do potencial como plastificante de biofilmes derivados do amido de 

M.esculenta (popularmente conhecida como mandioca). 

 Análise estrutural dos biofilmes obtidos por meio de análise de espessura 

e Propriedades Ópticas. 

 

 

Figura 01 - Compostos escolhidos como precursores dos DES deste projeto. 

 

Fonte: Elaborada pelo autor. 
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3 REVISÃO DA LITERATURA 

 
3.1 QUÍMICA VERDE 

Durante o século XX, uma das maiores preocupações, e mais discutida, foi a 

questão de preservação do meio ambiente que acabou sendo uma das principais 

pautas das reuniões de líderes mundiais. Em Estocolmo, capital da Suécia, foi 

realizada uma conferência para discussão sobre o meio ambiente, que foi benéfica 

em termos mundiais. Nesta discussão, também foi alertado quanto aos malefícios que 

os danos ao ecossistema poderia causar a humanidade como um todo (SILVA, et al., 

2005). 

Devido a uma maior conscientização dos problemas ligados a questão ambiental 

podem causar e os danos à saúde dos seres vivos, a preocupação de uma parte da 

comunidade científica colocou o controle e prevenção da poluição como tópico de 

grande preocupação. A indústria, um dos principais responsáveis pela emissão de 

diversos poluentes, mostrou-se a necessidade de uma abordagem alternativa ao 

consumo e produção de produtos químicos. Contudo, por volta dos anos 90 surgiu-se 

um novo conceito, que é bastante utilizado até os dias de hoje, introduzido por Anastas 

e Warner que colocou em foco uma nova realidade de produtos e processos químicos 

menos tóxicos, que se passou a ser chamado de Química Verde (ANASTAS e 

EGHBALI, 2009). 

Diante disso, a Química Verde se apresentou com princípios da necessidade de 

um desenvolvimento sustentável, onde prioriza que a química deve manter e melhorar 

a qualidade de vida (PRADO, 2003). Neste processo, se tem a atenção do 

desenvolvimento quanto de tecnologias como de processos inabilitado de causar 

poluição, fazendo com que além dos benefícios ambientais também podendo causar 

impacto econômico com a diminuição de gastos com o armazenamento de resíduos 

e o tratamentos dos mesmos, a descontaminação e até com pagamentos de 

indenizações (PRADO, 2003). 

O pensamento da Química Verde é baseado em doze princípios, Figura 02, 

motivados pela preocupação com a qualidade de vida, o desenvolvimento sustentável 

e a preservação do meio ambiente. Contudo, tanto a comunidade acadêmica quanto 

a indústria química têm buscado se dedicar a aplicar esses princípios em suas 

metodologias, fazendo com que seja desenvolvido novas técnicas e metodologias que 

sejam seguras ao meio ambiente (FARIAS e FÁVARO, 2011). 
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Figura 02 - Doze princípios da Química Verde. 

 

Fonte: Elaborada pelo autor. 

 

3.2 LÍQUIDOS IÔNICOS 

 Um dos principais desafios da química orgânica sintética, especialmente 

durante a última década, foi o desenvolvimento de novos solventes e metodologias 

mais seguras e sustentáveis, ou seja, que possuam caráter mais verde e, portanto, 

maior compatibilidade com o meio ambiente. Onde entra o termo “química verde”, 

onde veio com a necessidade de o progresso industrial atender as expectativas do 

presente sem afetar a capacidade das futuras gerações de satisfazerem as suas 

próprias necessidades. 

 Os líquidos iônicos (LI’s) foram introduzidos como uma alternativa de meio 

reacional mais “verde”, devido as suas propriedades físicas e químicas singulares de 

baixa viscosidade, baixa ou desprezível pressão de vapor, a sua alta capacidade de 

solubilização tanto de materiais orgânicos como inorgânicos não-volatilidade, não-
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inflamável e estabilidade térmica.  A definição mais usual para os LI’s, cuja são sais 

com ponto de fusão abaixo de 100 ºC e consistem de cátions e ânions geralmente 

volumosos e com cargas deslocalizadas (WASSERSCHEID e KEIM, 2000). 

 Derivações de LI’s derivados de sais de amônio quaternários são bastante 

pesquisados, pois já são conhecidos como blocos precursores e tem algumas 

vantagens como a sua característica iônica, sua elevada densidade e baixa pressão 

de vapor facilitam o processo de isolamento dos compostos orgânicos. Além disso, 

um grande número de cátions de amônio quaternário como já é conhecido de 

formarem LI’s e ainda preservarem as suas propriedades antimicrobianas o que 

apresenta ser um ponto interessante para as aplicações possíveis dos compostos 

derivados desse material de partida. 

 Mais recentemente, devido a quantidade enorme de pesquisa na área, a 

toxidade, uma propriedade biológica, passa a ser um quesito de aprovação de um LI’s. 

Outra característica dos LI’s que deve ser considerada é a sua capacidade de ser 

recuperado e reutilizado (SHAMSHINA, et al., 2015). Atualmente, ultrapassam 

fronteiras de aplicações não limitando apenas no papel importante em reações 

químicas tais como solvente e catalisadores, mas também como aditivos em 

processos industriais.  

 

3.3 SOLVENTES EUTÉTICOS 

Inicialmente, solventes eutéticos foram nomeados pelo mundo científico sendo 

“novos líquidos iônicos” devido a sua semelhança nas propriedades físicas e químicas, 

como por exemplo a baixa flamabilidade, baixa viscosidade e baixa, ou nula, pressão 

de vapor (LOBO, et al., 2012). Em seguida, receberam a nomenclatura de solventes 

eutéticos e recebendo a sigla DES(do inglês, Deep Eutectic Solvents) e sendo 

definidos por ser um solvente composto de uma mistura capaz de formar um eutético 

com um ponto de fusão inferior em relação a qualquer um dos componentes 

individuais, além disso, os DES’s podem ser facilmente formado através de uma 

mistura de dois ou mais componentes sob simples condições de reação (TANG e 

ROW, 2013). Um ponto de grande relevância para os DES’s é o fato de serem 

compostos de fácil preparo em elevada pureza e baixo custo, pelo fato de poder utilizar 

componentes biodegradáveis e que possuem baixa toxidade, e esse tem ganhado 

destaque na comunidade científica (DAI, et al., 2013). 

Os DES’s para serem obtidos é necessário um composto doador de ligação de 
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hidrogênio (HBD, do inglês “hydrogen-bond donor”), podendo ser utilizadas ácidos 

caborxílicos, amidas, aminas e álcoois, e um “aceitador” de ligação de hidrogênio 

(HBA, do inglês “hydrogen-bond aceptor”), onde normalmente são utilizadas 

compostos quaternários de amônio, onde ocorre uma complexação entre o HBA e 

HBD, com o que ocorre esse deslocamento de carga existe a diminuição do ponto de 

fusão da mistura em relação ao da matéria-prima (PAIVA, et al.,2014). Em geral, 

DES’s são caracterizados por um decréscimo no ponto de congelamento e são 

líquidos a temperatura ambiente em temperaturas a baixo de 150 ºC, outro ponto de 

relevância é que em comparação com os solventes orgânicos tradicionais, os DES’s 

não são considerados como solventes orgânicos voláteis e geralmente não são 

inflamáveis, fazendo com que seja um solvente conveniente de se armazenar 

(ZHANG, et al.,2012). 

 Além disso, os DES’s exibem propriedades incomuns de solvatação onde são 

influenciadas claramente pela ligação de hidrogênio, fazendo com que resulte em alta 

afinidade com todos os compostos capazes de doar elétrons ou prótons. Com isso, os 

solventes próticos tenderá a ser miscível com o DES, enquanto os apróticos tendem 

a ser imiscíveis (DURAND, et al., 2013). 

 
3.4 LÍQUIDOS IÔNICOS X SOLVENTES EUTÉTICOS 

 Como já citado anteriormente, os Solventes Eutéticos (DES) e os Líquidos 

Iônicos (LI) compartilham de muitas características e propriedades muito semelhante, 

onde podemos citar como por exemplo densidade, viscosidade, condutividade, não 

inflamáveis e baixa pressão de vapores, fazendo com que esses materiais sejam de 

grande interesse para vários processos industriais (SINGH, et al., 2012). 

 Na formação dos DES’s, podemos citar que não ocorre “nenhuma reação”, pois 

não existe a formação de novas ligações entre as moléculas onde as duas substâncias 

estão presente, diferente no caso dos LI’s onde as interações intermoleculares original 

a formação do produto em uma determinada composição fazendo com quem vários 

parâmetros, como capacidade de dissolução, propriedades físicas e o comportamento 

de fase, sejam alterados fazendo variar as proporções dos seus compostos. 

 Um ponto de grande bastante interessante, até com relação a aplicações e 

adequações aos termos da “Química Verde”, os solventes eutéticos são compostos 

que não tem toxidade e materiais biodegradáveis (LOBO, et al., 2012). Por esses e 

outros motivos os DES são considerados uma melhor alternativa aos solventes 
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voláteis convencionais. 

 

3.5 BIOPOLÍMEROS 

 Nos últimos anos, pesquisadores tem se dedicado a pesquisas para 

desenvolver materiais para embalagens biodegradáveis com a composição de 

polímeros naturais e blendas poliméricas com biopolímeros, aplicados para 

embalagens alimentícias e também na agricultura (AIDER, 2010). Devido ao descarte 

realizado dos plásticos comercialmente utilizados, onde a maior parte destes resíduos 

é encaminhada para aterros a céu aberto, onde são materiais de difícil degradação, 

sendo que alguns exigem mais de 100 anos para degradarem-se totalmente, fato que 

causa um grande impacto ambientalmente (SOARES, et al., 2015). 

 Desde 1940, os plásticos mais utilizados comercialmente são: polietileno, 

polipropileno, poliestireno, poli (tereftalato de etileno) e poli (cloreto de vinila). O 

emprego de plásticos sintéticos possui como principais características a questão do 

baixo custo de produção, fácil processamento, alta aplicabilidade e durabilidade, 

sendo esse último como já citado uma característica de maior desvantagem para a 

sua utilização em questão de não ser ambientalmente beneficente (SOARES, et al., 

2015). Devido ao fato de ser um material hidrofóbico, o plástico não permite a ação 

microbiana, com isso, a alternativa proposta é a substituição dos derivados de petróleo 

por novas matérias-primas como amido para obter assim os biopolímeros, podendo 

ser denominados de biofilmes.  

 Biopolímeros, ou também conhecidos como Biofilmes, são formulados a partir 

de materiais biológicos, podendo ter a ação de barreira a elementos externos e 

protegendo os produtos embalados de danos físicos e/ou biológicos, fazendo assim 

que a vida útil do material seja maior. Com isso, os biofilmes possuem uma atividade 

de inibir ou reduzir a permeabilidade de umidade, oxigênio, dióxido de carbono, 

lipídios, aromas, dentre outros, pois promovem uma barreira semipermeáveis (REIS, 

et al., 2011). Outras propriedades de interesse na obtenção de biofilmes é as 

propriedades a qualidade de comestibilidade torna-se interessante principalmente na 

preservação de alimentos in natura cujo tempo de vida útil é bastante reduzido, como 

frutas e hortalicias (FAKHOURI, et al,. 2007). 

 Em relação a degradação desses materiais, os biopolímeros, podem ser 

divididos em duas classes principais que são: fotodegradáveis e biodegradáveis 

(BRITO, et al., 2011). Onde basicamente a primeira classe baseia-se em degradação 
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foto-oxidativa após exposição a luz solar. Na classe dos biodegradáveis, o processo 

de degradação é realizado pela ação de micro-organismos de caso natural, tais como 

bactérias, fungos e algas, fazendo com que o processo resulte em fragmentos de 

baixo peso molecular. A degradação pode ser aeróbia ou anaeróbia, obtendo-se assim 

como resultado o dióxido de carbono, água, compostos inorgânicos, metano e 

biomassa (GIESSE, 2003). 

 Atualmente alguns biopolímeros já são aplicados no mercado, sendo utilizados 

por grandes empresas na área alimentício como por exemplo a McDonald’s, a Pepsi 

ou a Danone, e são aplicadas predominantemente para embalar produtos perecíveis, 

tais como frutas e vegetais, ou utilizando com produtos que tem uma longa vida de 

prateleira, como massas e batatas, que não estabelecem grandes propriedades de 

barreira a água e oxigênio. 

 Os polímeros naturais são provenientes de quatros fontes, onde podem ser: de 

origem animal, obtendo colágeno/gelatina, de origem marinha, obtendo 

quitina/quitosana, de origem agrícola, obtendo proteínas e polissacarídeos, e por 

último de origem microbiano, obtendo ácido poliláctico (PLA) e polihidroxialcanoatos 

(PHA) (COLTRO, et al,. 2008).  

 

3.5.1 Amido de M.esculenta 

 Uma das principais fontes de carboidratos em diversos países no mundo, 

Manihot esculenta Crantz, conhecida popularmente como mandioca, tem a área 

plantada como uma das mais representativas dentre as culturas para obtenção de 

amido. No Nordeste brasileiro, a mandioca apresenta como um material de grande 

importância socioeconômica pois além de ser utilizado com um alimento rico em 

carboidratos, também dispõe de fonte de amido de excelência para produções de 

alimentos, in natura e processados; fabricação de papel e papelão; entre finitas outras 

utilidades nas indústrias de cosméticos, medicamentos e químicos (FIORDA, et al., 

2013). 

 Diante disso, o amido é considerado um dos mais promissores para futuros 

materiais, principalmente pela união de dois fatores que proporciona uma incitação 

nas pesquisas que são o preço e desempenho. O amido de M.esculenta é conhecido 

na elaboração de materiais biodegradáveis. 

 O amido é um polissacarídeo produzido de forma enzimática pelas plantas 

como fonte de energia, sendo armazenada nas células de sementes, raízes e 
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tubérculos na forma de grânulos (CEREDA, et al,. 2001). A estrutura desse 

polissacarídeo é constituída pela mistura de dois polissacarídeos, que são a amilose 

e amilopectina, portando suas proporções variadas em função da origem botânica do 

material (MOLAVI, et al,. 2015). 

 A estrutura da amilose, essencialmente linear, é formada por unidades de           

α-D-glicopiranosil ligadas em α-(1,4), com poucas ligações α-(1,6), com <0,5%, nos 

pontos de ramificação. Já a estrutura da amilopectina é formada por cadeias de α-D-

glicopiranose unidas em α-(1,4), sendo altamente ramificada, com entre 5 ou 6 % das 

ligações em α-(1,6) (CEREDA, et al,. 2001). Variações nas proporções entre estes 

componentes e em suas estruturas e propriedades físico-químicas e funcionais muito 

diferentes, que podem afetar as suas aplicações industriais. 

 

Figura 03 – Estruturas químicas da amilose e da amilopectina. 

 

Amilose 

 

Amilopectina 

 

 

Fonte: Adaptada de Nelson e Cox (2005).  
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3.6 FORMULAÇÃO DOS BIOFILMES 

 A formulação de filmes envolve a utilização de vários componentes, cada um 

com uma finalidade especifica. Onde os principais componentes para obter o filme 

são: um biopolímero formador de filme, de alto peso molecular, e um plastificante 

(CUQ, et al., 1997). Além dos principais componentes podem ser incorporados outros 

como o agente de ajuste de ph, solventes diversificados. Para aprimorar os filmes 

desenvolvidos também podem ser incorporados a formulação componentes como: 

agentes anti-microbiológicos, vitaminas, antioxidantes e corantes. 

 Quando todos os componentes necessários para a formulação dos filmes estão 

em forma de solução, está é denominada de solução formadora de filme ou solução 

filmogênica.  A formação dos filmes ocorre devido à consignação de interações inter e 

intramoleculares ou entrecruzamento entre as cadeias poliméricas envolvidas, dando 

origem a uma rede tridimensional semirrígida provocando a movimentação do 

solvente. O grau de coesão depende da estrutura polimérica, do solvente, da 

temperatura usada na evaporação do solvente e da presença de outras moléculas, 

como por exemplo, o plastificante envolvido no processo (THARANATHAN, 2003). 

 Para aplicações na formulação dos biofilmes, podem ser utilizadas três tipos 

de métodos: dipping, spraying e casting. 

 Onde o método dipping e spraying se baseiam na formação do filme no próprio 

produto que será recoberto, onde no primeiro método após a formação da solução 

filmogênica ocorre um mergulho do produto primeiramente e no segundo método 

ocorre a pulverização desta solução sobre o produto. 

 O método casting, é bastante útil para formar filmes não fixos, é inicialmente 

desenvolvido para filmes não comestíveis e além de ser utilizada para analisar as 

propriedades filmogênicas dos biomateriais. A técnica consiste na utilização de moldes 

onde é depositada a solução filmogênica, permitindo que exista o controle da 

espessura dos filmes através da quantidade a ser depositada e da variação das 

espessuras aparente da solução quando acondicionadas nos moldes (CUQ, et al., 

1996).  

 Os filmes obtidos a partir do amido de materiais renováveis tendem a 

apresentar algumas desvantagens em relação as suas aplicações, sendo assim 

necessário a adição de agentes que façam que cumpram o objetivo designado. Onde 

existe a possibilidade da adição de compostos que possuem a função de oferecer 

flexibilidade ao material formado, melhorar sua trabalhabilidade, que são os 
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plastificantes. Entre os mais utilizados no processo de produção de biofilmes está o 

glicerol como agente plastificante. 

 Preferencialmente, o plastificante tem que ter o caráter compatível com o 

polímero utilizado na formulação do filme a ser obtido, pois as alterações provocadas 

no material dependeram desta compatibilidade como também da concentração a ser 

adicionada a formulação. Os agentes plastificantes reduzem as forças 

intermoleculares e aumentam a mobilidade das cadeias dos polímeros (AIMOTO 

SHIMAZU, et al., 2007), com diminuição de possíveis descontinuidades e zonas 

quebradiças na formação do filme, resultando assim em materiais com menores 

temperaturas de transição vítrea (Tg) (MALI, et al., 2010). Outras características dos 

biopolímeros também são motivadas pela presença de um agente plastificante em sua 

formulação, onde pode ocorrer um aumento na hidrofilicidade e permeabilidade a 

vapores de água (MALI, et al., 2010). 

 Habitualmente líquidos, com baixas pressões de vapor e baixos pesos 

moleculares, são utilizados como agentes plastificantes onde agem aumentando a 

distância entre as cadeias poliméricas, pois ocupam espaços entre elas, e como 

resultado reduzem as interações intermoleculares fazendo com que haja um aumento 

na flexibilidade do polímero (MADALENO, et al., 2009). Considerando a questão do 

material necessitar de compostos capazes de melhorar as propriedades físico-química 

e que adeque a formulação, e também ao processo sustentável, os pesquisadores 

tem direcionado sua atenção para a utilização de Solvente Eutéticos e Líquidos 

Iônicos que tem características que adequam ao processo e são capazes de tanto 

melhorar as propriedades como tornar fontes de aditivos para o filmes, como aditivos 

alimentares ou acrescentar atividade antimicrobiana.  

 

 

 

 

 

 

 
 
 
 
 



27 
 

4 MATERIAIS E MÉTODOS 

 
 Serão apresentados neste capítulo os métodos utilizados para a obtenção dos 

resultados dos objetivos, como a metodologia tendo como tópicos principais a Síntese 

dos solventes eutéticos, a Caracterização dos solventes eutéticos e a Preparação dos 

biofilmes. Para a realização desse devido trabalho, os equipamentos inerentes ao 

processo de síntese, aplicação e caracterização por espectroscopia de infravermelho 

foram realizados no Laboratório de Síntese Orgânica Medicinal da Paraíba – LASOM-

PB. 

 

4.1 REAGENTES E SOLVENTES UTILIZADOS 

 Para a realização das sínteses desse devido trabalho de conclusão de curso, 

foi utilizado reagentes e solventes de qualidade técnica ou P.A. e/ou purificados de 

acordo com procedimentos habituais de laboratório.  

 Para a preparação dos biofilmes foi utilizado amido a partir da M. esculenta 

Crantz (popularmente conhecida por mandioca), onde foi obtido comercialmente na 

cidade de Areia-PB na forma in natura. 

 

4.2 SÍNTESE DOS SOLVENTES EUTÉTICOS 

 A rota sintética seguida para obtenção da série de solventes eutéticos foi 

adaptada tendo como referência a realizada por Paula Ossowicz et al. (2017). Onde 

a rota seguida baseou-se em apenas uma etapa para a  formação dos solventes 

eutéticos propriamente ditos, foi realizado uma reação com quantidades equimolares 

de Cloreto de Benzalcônio e aminoácidos (na qual foram utilizados: glicina, ácido 

glutâmico, ácido aspártico, fenilalanina, L-cisteína, L-leucina), sob agitação magnética 

constante de vinte e quatro horas, sendo a temperatura ambiente, utilizando a 

acetonitrila como solvente na reação. Após o período de agitação, foi realizado uma 

filtração para remoção do sal precipitado e em seguida realizado a evaporação do 

solvente utilizando o evaporador rotativo sob vácuo. 

 

4.3 CARACTERIZAÇÃO DOS SOLVENTES EUTÉTICOS 

4.3.1 Espectroscopia no Infravermelho 

 A análise de Espectroscopia no infravermelho foi realizada em equipamento 

espectrofotômetro FTIR modelo IRPrestige-21, do fabricante Shimadzu, usando 
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pastilhas de brometo de potássio (KBr). As leituras foram realizadas na faixa de 4000-

400 cm-1, resolução de 4 cm-1 e 32 varreduras. 

 

4.3.2 Ressonância Magnética Nuclear (RMN) 

 Para a análise de Ressonância Magnética Nuclear (RMN) as amostras foram 

enviadas para o Laboratório Multiusuário de Caracterização e Análises – LMCA/UFPB 

para obtenção dos espectros, os espectros foram obtidos por dois tipos de aparelho: 

Varian Mercury Spectra AC 20 (200 MHz para 1H) e aparelho Bruker Ascend (400 MHz 

para 1H). As amostras foram colocadas em um tubo de 5mm e utilizando DMSO-d6 

como solvente. 

 

4.4 PREPARAÇÃO DOS BIOFILMES 

 Os biofilmes foram preparados, como já citado anteriormente, a partir do amido 

de M. esculenta Crantz. A fécula após obtida comercialmente, foi lavada, drenada (3 

a 4 vezes), peneirada e secada ao ar durante aproximadamente 48 horas. Em seguida, 

parte da fécula foi colocada para secar em uma estufa com temperatura controlada 

(105°C, 24 horas ou até que a massa estivesse constante). Os dados de massa 

obtidos foram utilizados para determinar a umidade presente (LUTZ, 2008). 

 Para a obtenção do biofilme, foi aplicado o método casting, o qual se baseia 

em um aquecimento da mistura sob agitação constante até a temperatura de 

geleificação (que no amido de M. esculenta Crantz é cerca de 70°C), para em seguida 

adicionar o composto plastificante na qual foi utilizado para cada filme como 

apresentado na Figura 04. Após finalizada a formação da solução filmogênica 

seguindo as quantidades apresentadas na Tabela 01, foram depositadas 

aproximadamente 45 mL em placas de petri medindo 10 cm de diâmetro, e deixadas 

por aproximadamente 48 horas. Os filmes permaneceram em umidade controlada 

durante 48 horas onde em seguida foram realizadas as análises necessárias. 

 

Tabela 01 – Quantidades utilizadas para a solução filmogênica. 

Ingrediente Quantidade 

Água destilada 100 mL 

Amido de M. esculenta Crantz 3 % (m/v) 

Plastificante 0,5 - 1,5 % (m/m) 
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Figura 04 - Fluxograma para síntese dos biofilmes. 
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Fonte: Elaborada pelo autor. 

4.4.1 Espessura 

 O parâmetro espessura foi medido com a utilização de um paquímetro para a 

caracterização dos biofilmes obtido. 

 

4.4.2 Propriedades ópticas 

 O procedimento para realização das análises das propriedades ópticas foi 

realizado em triplicata, onde os biofilmes obtidos foram cortados em retângulos e 

colocados em cubetas de quartzo em um espectrofotômetro (Drawell, modelo DU-

8200 UV/VIS) para a medição da transmitância (%T) e absorbância (Abs). Os dados 

obtidos após a medição no equipamento e os dados da espessura (δ mm) foram 

utilizados na equação 1 (ASTM, 2003) e equação 2 para encontrar o percentual de 

transparência (T) e opacidade dos biofilmes obtidos. 

� =
���%�

�
 equação 1   ��������� =

���

�
 equação 2 

 100 mL de Água 
Destilada 
 

 3% (m/v) Amido 

Agitação Magnética 
por 20 minutos 

Aquecimento até 70 - 
75 °C para 

geleificação do amido 

Agitação Magnética 
por 20 minutos 

 1,5% (m/m) 
Plastificante 

 

Adicionado cerca de 
45mL em placas de 

Petri 
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5 RESULTADOS E DISCUSSÕES 

 

Serão apresentados neste capítulo os resultados e discussões sobre os 

objetivos alcançados durante o desenvolvimento desse devido trabalho, relacionados 

com síntese dos solventes eutéticos e suas devidas condições reacionais, o estudo 

da ação plastificante em biofilmes derivados do amido de M. esculenta e as devidas 

caracterizações. 

 

5.1 NUMERAÇÃO E NOMENCLATURA DOS COMPOSTOS  

  Foram estabelecidos no devido trabalho, a seguinte numeração: os materiais 

de partida, no caso aminoácidos, como 1a-f, Cloreto de Benzalcônio como 2 e por 

último os solventes eutéticos obtidos, como 3a-f. A numeração dos compostos como 

outros dados são apresentadas nas Tabelas 02 e 03 a seguir: 

 

Tabela 02 – Nomenclatura e numeração dos aminoácidos 1a-f 

 

Numeração Aminoácido R Abreviação 

1a Glicina 
 

Gly 

1b Ác. Glutâmico 

 

Glu 

1c Ác. Aspártico 

 

Asp 

1d Fenilalanina 

 

Fen 

1e L-Cisteína  Cis 

1f L-Leucina 

 

Leu 
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Tabela 03 – Nomenclatura e numeração dos Solventes Eutéticos 3a-f obtidos. 

 

Numeração LI Nomenclatura 

3a [BA][Gly] Glicinato de Benzalcônio  

3b [BA][Glu] Glutamato de Benzalcônio  

3c [BA][Asp] Aspártato de Benzalcônio 

3d [BA][Fen] Fenilalaninato de Benzalcônio 

3e [BA][Cis] Cisteínato de Benzalcônio  

3f [BA][Leu] Leucinato de Benzalcônio 

 

5.2 SÍNTESE DOS SOLVENTES EUTÉTICOS 

 Para obtenção dos Solventes Eutéticos Profundos (DES), a única etapa 

existente, uma simples reação de metátese, foi possível obter os solventes eutéticos 

como líquidos a temperatura ambiente, com as devidas características semelhantes a 

referência seguida, onde podemos citar a característica de obter líquidos de alta 

viscosidade, sem coloração de grande maioria transparentes com poucos obtidos com 

coloração amarelo claro. Na obtenção dos DES, os rendimentos foram satisfatórios e 

variaram de 36 a 67%, como apresentado na Tabela 04. 

 

Tabela 04 – Rendimento dos DES 3a-f sintetizados 

 

Numeração Rendimento (%) 

3a 37,0 

3b 36,0 

3c 53,5 

3d 53,0 

3e 67,0 

3f 62,0 
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5.3 CARACTERIZAÇÃO DOS SOLVENTES EUTÉTICOS PROFUNDOS 

 A proposta inicial deste trabalho estava direcionada para a utilização do cloreto 

de benzalcônio na síntese de líquidos iônicos (LI), os quais seriam cinco compostos 

inéditos e apenas um conhecido na literatura e através de um protocolo adaptado de 

um artigo publicado por Ossowicz, et al., (2017), . No entanto, a partir dos dados de 

caracterização, obtidos por espectroscopia no infravermelho e ressonância magnética 

nuclear de próton, foi possível perceber que não houve a síntese dos LI porém ocorreu 

a formação de solventes eutéticos profundos (DES). Com isso, a realização deste 

trabalho resultou em uma série com seis novos solventes eutéticos profundos, sendo 

estes derivados do cloreto de benzalcônio e aminoácidos. 

 

Figura 05 - Novos solventes obtidos neste trabalho. 

 

Fonte: Elaborada pelo autor. 
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5.3.1 Espectroscopia no Infravermelho 

 Os espectros de infravermelho foram registrados para ilustrar as mudanças 

ocorridas após a aplicação da metodologia de síntese, e foram essenciais para a 

verificação das possíveis ligações ou não presentes entre o cloreto de benzalcônio e 

os aminoácidos envolvidos. Os espectros de infravermelho dos compostos obtidos 

encontram-se no ANEXO A deste trabalho. Para melhor visualização e discussão, foi 

colocado o espectro do cloreto de benzalcônio (Figura 06) que foi utilizado como 

referência para a discussão. O espectro do solvente eutético profundo [BA][LEU] está 

apresentado na Figura 07. 

 

Figura 06 - Espectro de infravermelho do Cloreto de Benzalcônio. 

 

Fonte: Elaborada pelo autor. 
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Figura 07 - Espectro de infravermelho do solvente eutético [BA][Leu]. 

 

Fonte: Elaborada pelo autor. 

 

 Observando-se os espectros apresentados, é evidente que a presença das 

bandas típicas do cloreto de benzalcônio foram preservadas, nas quais algumas delas 

são o estiramento dos hidrogênios ligados ao anel aromático (H-Ar) na região de 729 

– 704 cm-1, estiramento da cadeia alquílica (CH3/CH2) na região de 1485 – 1454 cm-

1, estiramento característico de ligação de alcanos onde tem ligações C-H na região 

de 3000 - 2850 cm-1, estiramento do aromático (C=C) na região de 1622 cm-1 e outro 

estiramento característico para verificação do cloreto de benzalcônio é o de ligação 

de aminas (C-N) na região de 1379 cm-1. Os dados apresentados aqui estão de acordo 

com a literatura (BARBOSA, 2013). 

 Também foi observado a partir dos espectros, que as bandas típicas dos 

aminoácidos também estão presentes em todos os espectros dos solvente eutéticos 

profundos sintetizados, nas quais algumas delas são o estiramento largo de hidroxila 

(O-H) por volta de 3600 – 3200 cm-1, estiramento característica de aminas (N-H) por 

volta de 1640 – 1550 cm-1, estiramento de ligação C=O de ácidos carboxílicos por 

volta de 1725 – 1700 cm-1 (BARTH, 2000). 

 Foi observado nos espectros algumas bandas que apresentavam-se ausentes 

ou concentrações menores apareceram em concentrações maiores, como por 
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exemplo, o estiramento por volta de 1725 – 1550 cm-1, que houve uma sobreposição 

de sinais, já que nessa região apresentam-se sinais característicos das duas 

substâncias, como o estiramento de amina dos aminoácidos (N-H) e o estiramento do 

aromático presente no cloreto de benzalcônio (C=C) que está na região de 1640 – 

1550 cm-1, fazendo com que o sinal apresente-se com uma maior intensidade. Outro 

sinal de importância que foi observado nessa faixa foi o estiramento característico de 

ligação C=O presente nos aminoácidos que se apresenta ausente no espectro do 

cloreto de benzalcônio e presente no espectro do [BA][Leu]. Um sinal de fácil 

observação apresentado no espectro do solvente eutético [BA][Leu] é a banda larga 

característica de hidroxila (O-H) presente nos aminoácidos e apresentando-se por 

meio de uma sobreposição no espectro. 

 Portanto, concluiu-se que não houve modificação na estrutura entre o Cloreto 

de Benzalcônio e os aminoácidos utilizados, pois não ocorreu o aparecimento de uma 

nova banda, o que existiu foi a sobreposição de dois espectros de substâncias 

diferentes. Este tipo de fenômeno é típico dos DES, pois são preservados todos os 

grupos presentes nos compostos participantes da mistura eutética (LI, et al., 2015).  

 

5.3.2 Ressonância Magnética Nuclear (RMN – 1H) 

 Diferentemente dos espectros de infravermelho, os quais foram analisados 

para confirmar a presença dos grupos funcionais envolvidos nos produtos formados, 

a análise de Ressonância Magnética Nuclear de Hidrogênio (RMN – 1H) nos fornece 

informações sobre a estrutura presente na amostra (FERREIRA e TAVARES, 2006). 

Neste trabalho, foram analisados os espectros RMN – 1H de dois solventes 

eutéticos sintetizados, que foram os [BA][Gly] e o [BA][Cys], que se encontram no 

ANEXO B e para melhor visualização e discussão, foram simulados os espectros dos 

RMN – 1H ,por meio da utilização do software ChemDraw da PerkinElmer’s, dos 

compostos utilizados para esta síntese, Cloreto de Benzalcônio na Figura 08 e o 

aminoácido, no caso a glicina Figura 09. Para a discussão foi utilizado o espectro do 

solvente eutético [BA][Gly], Figura 10, por ser o de estrutura mais simples dos 

aminoácidos e os outros solventes eutéticos obtidos apresentarem sinais semelhantes. 
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Figura 08 - Espectro de RMN de 1H do Cloreto de Benzalcônio, obtido através da 

simulação no software ChemDraw . 

 

Fonte: Elaborada pelo autor. 

 

Figura 09 - Espectro de RMN de 1H da Glicina, obtido através da simulação no 

software ChemDraw. 

 

Fonte: Elaborada pelo autor. 

 

 Como mostrado nas Figuras 08 e 09 , os espectros do cloreto de benzalcônio 

e da glicina tem sinais bem característicos e, embora a glicina apresente menos sinais, 

devido ao menor número de hidrogênios em sua estrutura, os dois compostos 

utilizados como materiais de partida (MP) tem sinais no espectro de RMN – 1H em 

regiões próximas, com exceção do sinal fraco da hidroxila do grupo ácido carboxílico 
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em 11 ppm, fazendo com que espere-se sinais sobrepostos no espectro do composto 

[BA][Gly]. 

 Como pode ser observado na Figura 10, o espectro do solvente eutético 

[BA][Gly] apresentou um sinal muito semelhante com os MPs, onde todos os 

hidrogênios envolvidos na duas moléculas se encontram presentes no espectro, com 

exceção do sinal fraco da hidroxila do ácido carboxílico do aminoácido que pode ser 

justificado a ausência devido ao fato da amostra ter absorvido muita umidade na 

bancada de espera da central analítica. Na Figura 10, apresentou-se os sinais 

característicos das duas substâncias como mencionado anteriormente e podemos 

citar a presença da glicina (aproximadamente δ = 1,53 ppm do -NH2 e  

aproximadamente δ = 4,24 ppm do -CH2) e do cloreto de benzalcônio 

(aproximadamente δ = 7,33 ppm do aromático (-CH-), a presença da cadeia alquílica 

(-CH2-) em aproximadamente δ =1,29 ppm, a metila (-CH3) mais protegida em 

aproximadamente δ = 0,88 ppm e as duas metilas (-CH3) ligadas ao grupo amônio 

quaternário em aproximadamente δ = 2,73 ppm). Para a formação de solventes 

eutéticos é necessária a utilização de um cátion e um ânion, no caso o cloreto como 

ânion e benzalcônio como cátion, e um doador de ligação de hidrogênio (HBD – 

Hydrogen-bond Donors), neste caso a glicina, para a formação de um ânion complexo 

(ânion+HBD) e formar uma ligação iônica com o cátion (D’AGOSTINO, et al., 2011). 

Devido a essa formação do ânion complexo, a cadeia alquílica (-CH2-) ligada ao anel 

aromático e ao nitrogênio quaternizado, ocorre um deslocamento, em relação ao 

espectro do MP, já que no espectro do solvente eutético [BA][Gly] este sinal está na 

região de  δ = 3,50 ppm. A visualização deste sinal foi parcialmente comprometida 

devido a sobreposição do sinal da água presente na amostra.  

 

Figura 10 - Espectro de RMN 1H do solvente eutético [BA][Gly]. 
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Fonte: Elaborada pelo autor. 

 

5.4 ESTUDO DO POTENCIAL PLASTIFICANTE 

 Um critério de grande relevância para este estudo do potencial plastificante em 

filmes biodegradáveis é a concentração necessária para que o agente plastificante 

seja responsável pela desestruturação do amido nativo, a partir da capacidade de 

formar ligações de hidrogênio que aditivos dessa categoria normalmente possuem. O 

composto plastificante mais usual em soluções filmogênicas na literatura é o glicerol, 

porém para a aplicação deste composto é necessário a adição de outros agentes para 

obtenção de biofilmes com melhores propriedades mecânicas e físico-químicas 

(FARAHNAKY, et al., 2013). Dentre os produtos obtidos neste trabalho, foi selecionado 

o solvente eutético [BA][Leu] por ser um derivado de aminoácido interessante para 

indústria de alimentos e farmacêutica, como por exemplo já ser aplicados, 

respectivamente, como suplementos alimentares, como lubrificante de comprimidos 

(AJINOMOTO, 2014), e também pelo bom rendimento obtido na síntese deste 

composto. 

 As diferentes concentrações dos plastificantes glicerol e/ou solvente eutético 

foram utilizadas a fim de avaliar qual destas resultaria na formação do filme (Tabela 

05). A solução filmogênica foi preparada através da mistura de amido a 3% (aq.) e o 

agente plastificante foi utilizado em concentrações que variaram de 0,5 a 1,5% (m/m). 

Na literatura, a concentração do glicerol ideal para a formação do filme é de 1% (m/m) 

(FARAHNAKY, et al., 2013). 
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Tabela 05 - Concentrações de plastificante nas formulações de biofilme. 

Testes Glicerol %(m/m) [BA][Leu] %(m/m) 

1  0,50 

2  0,75 

3 0,50 1,00 

4  1,00 

  

Assim, os testes 1 e 2) não apresentaram a ação plastificante nessas 

concentrações, ou seja, não houve a formação do filme após o período de secagem e 

armazenamento. Na segunda batelada de testes como plastificantes (testes 3 e 4), o 

solvente eutético mostrou-se satisfatório nas duas concentrações, resultando na 

formação do biofilme. No entanto,  foram observadas fissuras em sua estrutura, como 

mostradas nas Figuras 11, 12 e 13. O processo de secagem dos biofilmes utilizado 

neste trabalho foi uma adaptação de metodologia  de Shimazu, et al., (2007), na qual 

é necessário a utilização de uma estufa com circulação e renovação de ar a 40ºC, que 

foi utilizado uma secagem a temperatura ambiente em um local com o mínimo de 

variações possíveis de umidade. 

 Portanto, temos que o solvente eutético obtido neste trabalho apresenta a ação 

plastificante para a produção de biofilmes, sendo necessário concentrações menores 

do composto plastificante do que o utilizado usualmente. No entanto, ainda é 

necessária uma otimização no processo de secagem para a obtenção de filmes 

menos quebradiços, que possam ser mais facilmente retirados das placas de Petri e, 

assim, realizar a caracterização de todos os filmes e atribuir as devidas características 

a ação plastificante do solvente eutético profundo. 

 

Figura 11 - Biofilme obtido a partir de uma solução filmogênica de amido de 

mandioca com o DES [BA][Leu] 1,0%(m/m), através do método casting. 
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Fonte: Elaborada pelo autor. 

Figura 12 - Biofilme obtido a partir de uma solução filmogênica de amido de 

mandioca com [BA][Leu] 1,0%(m/m) e Glicerol 0,5% (m/m), através do método 

casting. 

 

Fonte: Elaborada pelo autor. 
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Figura 13 - Biofilme obtido a partir de uma solução filmogênica de amido de 

mandioca com a esquerda o [BA][Leu] 1,0%(m/m) e a direita [BA][Leu] 1,0%(m/m) e 

Glicerol 0,5% (m/m), através do método casting. 

 

Fonte: Elaborada pelo autor. 

 

5.4.1 Dados de Espessura 

 Um parâmetro que apresenta influência sobre outras as demais propriedades 

físicas dos biofilmes é a espessura (Cuq et al.,1996). Desta forma, o controle da 

espessura é de grande importância para a avaliação da uniformidade desses materiais, 

a recorrência da medida de suas propriedades e a validação com comparações entre 

os filmes, porém tratando-se do método casting, esse controle apresenta-se mais 

difícil (SOBRAL, 2000). 

 Os filmes elaborados neste trabalho apresentaram espessuras semelhantes 

entre si, onde foram obtidos resultado entre 0,050 mm e 0,053 mm (Tabela 06). Diante 

disso, os filmes se apresentaram pertencentes à faixa de espessura adequada para 

biofilmes, que se apresentam na faixa de 0,025 – 0,102 mm, e de acordo com análise 

de outras propriedades pode ser designado uma aplicação mais adequada (SOBRAL, 

2000). 

 Contudo, os biofilmes de amido com a adição de glicerol como plastificante 

tende a apresentar uma espessura reduzida, devido ao composto ter maior facilidade 

a se ligar a matriz de amido (SOARES, et al., 2014). Porém, com a adição do glicerol 

na formulação referente ao teste 3, houve um pequeno aumento na espessura, 

mostrando que o solvente eutético se apresenta como um plastificante interessante, 
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já que possui facilidade para formar interações intermoleculares com o amido de 

mandioca. 

Tabela 06 – Dados de espessura de biofilme deste trabalho. 

Testes Glicerol %(m/m) [BA][Leu] %(m/m) δ (mm) 

1  0,50 - 

2  0,75 - 

3 0,50 1,00 0,052  

4  1,00 0,050  

δ: Espessura; 

 

5.4.1 Dados das Propriedades Ópticas 

 Os dados relacionados a transparência e opacidade dos biofilmes obtidos neste 

trabalho estão apresentados na Tabela 07. Os filmes que foram obtidos a partir de 

soluções filmogênicas na presença apenas dos solventes eutéticos como agentes 

plastificantes (Teste 4), apresentaram maiores valores na transparência e com a 

adição de uma pequena quantidade de glicerol (Teste 3) na formulação, houve a 

diminuição nos valores de transparência. Consequentemente, os valores de 

opacidade confirmam isso, pois o Teste 3 apresenta-se como um material mais opaco 

e os biofilmes oriundos unicamente dos solventes eutéticos tem níveis menores de 

opacidade. 

 

Tabela 07 – Dados das propriedades ópticas dos biofilmes deste trabalho. 

Testes δ 

(mm) 

%T Abs Transparência 

(mm-1) 

Opacidade 

(mm-1) 

1 - - - - - 

2 - - - - - 

3 0,052  65,8 0,381 34,96 7,33 

4 0,050  73,6 0,304 37,34 6,08 

δ: Espessura; %T: Transmitância; Abs: Absorbância 
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6 CONCLUSÃO 

 

 A realização deste trabalho resultou no desenvolvimento de novos compostos 

de caráter “verde” e de fácil acesso, os quais são de grande importância como 

alternativas sustentáveis, que beneficiem tanto o meio ambiente como a nós mesmos. 

Neste trabalho, foram sintetizados seis novos solventes eutéticos profundos inéditos 

que são derivados da utilização do cloreto de benzalcônio e aminoácidos (compostos 

biodegradáveis), fazendo com que este protocolo esteja inserido nos Princípios da 

Química Verde. 

A rota sintética escolhida se mostrou eficaz para a obtenção de novos solventes 

eutéticos, por ser bastante simples e econômica, com rendimentos satisfatórios. Foi 

possível confirmar a formação dos produtos através da utilização de técnicas 

espectroscópicas como espectroscopia no infravermelho, que foi essencial para a 

identificação do produto resultante, e RMN de 1H, para a confirmação do produto 

resultante. 

 Os estudos preliminares de aplicação dos solventes eutéticos como agentes 

plastificantes para a formulação de biofilmes derivados do amido de M.esculenta 

Crantz (conhecida como mandioca) se mostrou bastante satisfatório, por conta da 

confirmação do ter ação plastificante, mesmo sendo utilizado em baixas 

concentrações. Além disso, as características de espessura e transparência estão de 

acordo com os parâmetros esperados para biofilmes, mas é necessária uma 

adaptação para melhoramento do processo de secagem para analisar características 

do biofilme obtidos e assim estudar suas possíveis aplicações. 

 Portanto, neste trabalho foi possível desenvolver uma metodologia de síntese 

de novos solventes eutéticos profundos baseados na estrutura do cloreto de 

benzalcônio e diferentes aminoácidos de forma simples e econômica, os quais 

demonstraram potencial para serem utilizados como aditivos plastificantes. 

alternativos.
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ANEXO A 

Espectros obtidos no infravermelho dos DES obtidos neste trabalho: 

 

Figura 14 - Espectro no infravermelho do DES [BA][Gly].

 

Fonte: Elaborada pelo Autor. 

 

Figura 15 - Espectro no infravermelho do DES [BA][Glu].

 

Fonte: Elaborada pelo Autor. 
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Figura 16 - Espectro no infravermelho do DES [BA][Asp].

 

Fonte: Elaborada pelo Autor. 

 

Figura 17 - Espectro no infravermelho do DES [BA][Fen]. 

 

Fonte: Elaborada pelo Autor. 
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Figura 18 - Espectro no infravermelho do DES [BA][Cis].

 

Fonte: Elaborada pelo Autor. 

 

Figura 19 - Espectro no infravermelho do DES [BA][Leu].

Fonte: Elaborada pelo Autor. 
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ANEXO B 

Espectros obtidos de RMN dos DES’s obtidos neste trabalho: 

 
Figura 20 - Espectro de RMN de 1H do DES [BA][Gly]. 

  

Fonte: Elaborada pelo autor. 

 

Figura 21 - Espectro de RMN de 1H do DES [BA][Cis]. 

  

Fonte: Elaborada pelo autor. 
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