

# UNIVERSIDADE FEDERAL DA PARAÍBA CENTRO DE TECNOLOGIA E DESENVOLVIMENTO REGIONAL DEPARTAMENTO DE TECNOLOGIA DE ALIMENTOS CURSO DE TECNOLOGIA DE ALIMENTOS

**ELIAKIN CASSIANO GOMES QUIRINO** 

OBTENÇÃO DA FARINHA DO PEDÚNCULO DE CAJU E SEU EMPREGO NA FORMULAÇÃO DE BOLO RICO EM FIBRAS

#### ELIAKIN CASSIANO GOMES QUIRINO

# OBTENÇÃO DA FARINHA DO PEDÚNCULO DE CAJU E SEU EMPREGO NA FORMULAÇÃO DE BOLO RICO EM FIBRAS

Trabalho de Conclusão de Curso Superior de Tecnologia de Alimentos, do Centro de Tecnologia e Desenvolvimento Regional, da Universidade Federal da Paraíba, apresentado pela discente Eliakin Cassiano Gomes Quirino, como pré-requisito para obtenção do título de Tecnólogo de Alimentos.

Orientadora: Profa. Dra. Kettelin Aparecida Arbos

#### Catalogação na publicação Seção de Catalogação e Classificação

Q80 Quirino, Eliakin Cassiano Gomes.

Obtenção da farinha do pedúnculo de caju e seu emprego na formulação de bolo rico em fibras / Eliakin Cassiano Gomes Quirino. - João Pessoa, 2019.

50 f.: il.

Monografia (Graduação) - UFPB/CTDR.

1. Farinha do resíduo de caju. 2. Fibra alimentar. 3. Alimento funcional. I. Título

UFPB/BC

#### ELIAKIN CASSIANO GOMES QUIRINO

# OBTENÇÃO DA FARINHA DO PEDÚNCULO DE CAJU E SEU EMPREGO NA FORMULAÇÃO DE BOLO RICO EM FIBRAS

Trabalho de Conclusão de Curso Superior de Tecnologia de Alimentos, do Centro de Tecnologia e Desenvolvimento Regional, da Universidade Federal da Paraíba, apresentado pela discente Eliakin Cassiano Gomes Quirino como prérequisito para obtenção do título de Tecnólogo de Alimentos.

João Pessoa, OS de More de 2019.

BANCA EXAMINADORA

Profa. Dra. Kettelin Aparecida Arbos Universidade Federal da Paraíba (UFPB) (Orientadora e Presidente da Banca Avaliadora)

Profa. Dra. Adriana Maria Fernandes de Oliveira Golzio
Universidade Federal da Paraíba (UFPB)
(Membro da banca Avaliadora)

Profa. Dra Haíssa Roberta Cardarelli Universidade Federal da Paraíba (UFPB) (Membro da banca Avaliadora)

MBar darelli

#### **AGRADECIMENTOS**

Primeiramente agradeço a Deus pela sua infinita misericórdia, por Ele ter me ajudado a chegar até aqui, pois, mesmo quando não tinha forças, Ele me sustentava a todo instante, e assim, posso dizer com convicção que até aqui me ajudou o Senhor.

Agradeço a minha família por ter me dado o seu apoio durante esses anos a minha esposa Maria Eduarda de Lima Cassiano aos meus pais Evi Clovis Gomes Quirino e Gleuma Cassiano da Silva Quirino, e a meus irmãos Eliabe Cassiano Gomes Quirino e Eliseu Cassiano Gomes Quirino que me ajudaram durante toda essa minha caminhada.

Agradeço a todos os meus professores do CTDR e em especial a minho orientadora do TCC a professora Kettelin Aparecida Arbos, que com sua paciên dedicação me ajudou a vencer essa guerra.

# LISTA DE ILUSTRAÇÕES

| Figura 1 - Fluxograma demostrando as etapas de obtenção da farinha do r | esíduo |
|-------------------------------------------------------------------------|--------|
| do pedúnculo do caju                                                    | 26     |
| Figura 2 – Fruto com grau de maturidade comercial                       | 27     |
| Figura 3 – Pesagem do bagaço do pedúnculo de caju                       | 28     |
| Figura 4 – Distribuição do resíduo de caju na bandeja de secagem        | 28     |
| Figura 5 – Armazenamento do resíduo desidratado em vasilhas plásticas   | 29     |
| Figura 6 – Farinha do resíduo do caju                                   | 29     |
| Figura 7 – Mistura da massa com todos os ingredientes                   | 30     |
| Figura 8 – Estrutura interna do bolo                                    | 34     |

# LISTA DE TABELAS

| Tabela 1 - Aproveitamento do bagaço do pedúnculo de caju na alimentação                                     |
|-------------------------------------------------------------------------------------------------------------|
| humana2                                                                                                     |
| Tabela 2 – Ingredientes empregados na elaboração do bolo enriquecido com fibra         do pedúnculo de caju |
| Tabela 3 – Comparação da farinha de caju com as farinhas do resíduo da acerola da manga         3           |
| Tabela 4 – Valor Nutricional da formulação do bolo                                                          |
| Tabela 5 – Informação Nutricional do bolo enriquecido com farinha de caju 35                                |

# LISTA DE GRÁFICOS

| Gráfico 1 – Pessoas que consomem bolo                                                     | 36 |
|-------------------------------------------------------------------------------------------|----|
| Gráfico 2 – Pessoas que não conhecem o bolo enriquecido com a farinha o pedúnculo de caju |    |
| Gráfico 3 – Pessoas que comprariam o bolo se o mesmo fosse comercializado 3               | 37 |
| Gráfico 4 – Motivos pelo qual levariam as pessoas a comprarem o bolo enriquecio           |    |
| com a farinha do resíduo do pedúnculo de caju                                             | ソフ |

#### RESUMO

O caju, Anacardium occidentale L, é uma das grandes culturas promissoras no Nordeste do Brasil, onde ocupa 550,5 mil hectares de área plantada. São produzidos anualmente cerca de 2,5 milhões de toneladas de pedúnculo de caju e mais de 75% desses é desperdiçada na forma de resíduos, que embora nutritivo, pode causar impactos ambientais pelo seu descarte na natureza. Uma alternativa para evitar esse desperdício é o aproveitamento do resíduo para a produção de farinha, tendo em vista que este tem um grande potencial de aplicação industrial, pois é altamente rico em fibras, acúcares e sais minerais, conferindo assim, à farinha propriedades funcionais. Diante do exposto este trabalho teve como objetivo geral a obtenção de farinha a partir do resíduo do pedúnculo do caju e utilizá-la no enriquecimento de um produto de panificação (bolo). Determinou-se o teor de fibras da farinha, uma formulação de bolo foi elaborada empregando a farinha como substituto parcial da farinha de trigo incluindo sua ficha técnica elaborada apor a determinação da composição centesimal do bolo experimental, finalmente realizou-se pesquisa de mercado online. Foram utilizados 32,6kg de caju que, após despolpar resultaram em 3,1kg de resíduos, sendo desidratados em estufas de circulação por 8h e 30min, e então triturados para obtenção de 0,66kg de farinha, que foi armazenado em sacos plásticos a vácuo ate ser utilizado como farinha na elaboração do bolo e ser analisado quanto ao seu teor de fibras. A quantidade de fibra encontrada na farinha obtida foi 68g/100g (68%) sendo 9g de fibra solúvel (13,2%) e 59g de fibra insolúvel (86,8%). Já bolo apresentou características de um bolo integral, com aparência firme e consistente. A farinha do resíduo do pedúnculo de caju apresenta um grande potencial tecnológico, podendo melhorar a qualidade nutricional dos produtos de panificação, elevando a sua quantidade de fibras.

**Palavra – chave:** Farinha do resíduo de caju. Fibra alimentar. Alimento funcional.

#### SUMMARY

The cashew, Anacardium occidentale L., is one of the great promising crops in the Northeast of Brazil, where they occupy 550.5 thousand hectares of planted area. Some 2.5 million tonnes of cashew peduncle are produced annually and more than 75% of these are wasted in the form of waste, which although nutritious, can cause environmental impacts by discarding it in nature. An alternative to avoid this waste is the utilization of the residue for the production of flour, since it has a great potential of industrial application, because it is highly rich in fibers, sugars and mineral salts, thus conferring to the flour functional properties. n view of the above, this work had as general objective to obtain flour from the residue of the peduncle of the cashew and to use it in the enrichment of a product of baking (cake). The fiber content of the flour was determined, a cake formulation was elaborated employing the flour as a partial substitute of the wheat flour including its elaborated datasheet to determine the centesimal composition of the experimental cake, finally, an online market research was carried out. 32.6kg of cashew was used, which after depolishing resulted in 3.1kg of residues, being dehydrated in circulation greenhouses for 8h and 30min, and then crushed to obtain 0.66kg of flour, which was stored in vacuum plastic bags to be used as flour in the preparation of the cake and to be analyzed for its fiber content. The amount of fiber found in the obtained flour was 68g / 100g (68%), being 9g of soluble fiber (13.2%) and 59g of insoluble fiber (86.8%). Already cake presented characteristics of an integral cake, with a firm and consistent appearance. The flour of the cashew peduncle residue presents a great technological potential, being able to improve the nutritional quality of the bakery products, increasing its quantity of fibers.

**Key - words**: Cashew residue meal, Food fiber

# SUMÁRIO

| 1. INTRODUÇÃO                                                        | 13 |
|----------------------------------------------------------------------|----|
| 1.1 OBJETIVOS                                                        | 15 |
| 1.1.1 Objetivo geral                                                 | 15 |
| 1.1.2 Objetivos específicos                                          | 15 |
| 2. FUNDAMENTAÇÃO TEÓRICA                                             | 16 |
| 2.1. CAJUEIRO                                                        | 16 |
| 2.1.1 Caju                                                           | 17 |
| 2.1.1.1 Castanha de caju                                             | 17 |
| 2.1.1.2 Pedúnculo do caju                                            | 17 |
| 2.2 RESÍDUOS INDUSTRIAIS DE FRUTAS                                   | 18 |
| 2.2.1 Aproveitamento de resíduos                                     | 19 |
| 2.2.2 Aproveitamento do resíduo do pedúnculo de caju                 | 20 |
| 2.2.2.1 Conservação de alimento por secagem                          | 21 |
| 2.2.2.2 Farinha do resíduo do pedúnculo de caju                      | 22 |
| 2.3 FIBRA ALIMENTAR                                                  | 22 |
| 2.3.1 Alimentos funcionais                                           | 23 |
| 3 MATERIAL E MÉTODOS                                                 | 25 |
| 3.1 MATERIAIS                                                        | 25 |
| 3.2 MÉTODOS                                                          | 25 |
| 3.2.1 Obtenção da farinha do resíduo do caju                         | 26 |
| 3.2.1.1 Recepção do caju                                             | 27 |
| 3.2.1.2 Obtenção do resíduo do pedúnculo de caju                     | 27 |
| 3.2.1.3 Secagem do resíduo de caju                                   | 28 |
| 3.2.1.4 Trituração do resíduo seco                                   | 29 |
| 3.2.1.5 Preparo do bolo enriquecido com farinha de pedúnculo de caju | 29 |
| 3.2.1.6 Determinação do teor de fibras                               | 31 |
| 3.2.1.7 Informação nutricional do bolo                               | 31 |
| 3.3 PESQUISA DE MERCADO: INTENÇÃO DE COMPRA                          | 31 |
| 4. RESULTADOS E DISCUSSÕES                                           | 32 |
| 4.1 RENDIMENTO DA FARINHA DE CAJU                                    | 32 |
| 4.2 TEOR DE FIBRAS                                                   | 32 |

| 4.3   | VALOR   | NUTRICIONAL  | DO   | BOLO  | ENRIQUECIDO  | COM | FARINHA | DE   |
|-------|---------|--------------|------|-------|--------------|-----|---------|------|
| PED   | ÚNCULC  | DE CAJU      |      |       |              |     |         | 33   |
| 4.4 I | PESQUIS | A DE MERCADO | DE I | NTENÇ | ÃO DE COMPRA |     |         | 36   |
| 5. C  | ONCLUS  | ÃO           |      |       |              |     |         | 39   |
| REF   | ERÊNCIA | <b>AS</b>    |      |       |              |     |         | . 40 |
| APÊ   | NDICES  |              |      |       |              |     |         |      |
| APE   | NDICE 1 |              |      |       |              |     |         |      |

# 1. INTRODUÇÃO

As frutas são alimentos consumidos em todo mundo, pois possuem nutrientes essenciais para a dieta humana, por conter, em sua composição, vitaminas, sais minerais, fibra alimentar, carboidratos, dente outros. Na produção mundial de frutas, o Brasil ocupa o terceiro lugar, perdendo apenas para China e a Índia. As variedades de frutas produzidas no Brasil, soma em torno de, 500 espécies, das quais 220 são plantas nativas da Amazônia (TREICHEL *et al.*, 2016).

O mercado de polpa de frutas no Brasil é promissor, pois com a grande correria do dia a dia, é cada vez maior a procura por produtos de fácil preparo, sendo necessário cada vez mais estudos que visem o aproveitamento de resíduos agroindustriais, afim de minimizar os impactos ambientais e fornecer um melhor consumo nutricional (LOUSADA-JÚNIOR, 2006; ABUD e NARAIN, 2009)

O caju, *Anacardium occidentale L*, é uma das culturas de grande importância econômica e social para a região Nordeste do Brasil, a qual é mundialmente reconhecida como um das grandes produtoras de caju (HOLANDA, 2010; SERRANO, 2016).

Anualmente, no Nordeste, são produzidos cerca 2,5 milhões de toneladas do pedúnculo do caju, sendo desperdiçado mais de 1,5 milhão de toneladas do pedúnculo, representando cerca de 75% da produção, gerando assim grandes quantidades de resíduo (SIQUEIRA; BRITO, 2013). A grande preocupação está voltada para os prejuízos ambientais, causados na água, no ar e no solo. São potentes poluentes por apresentar, em sua maioria, uma carga orgânica, tornandose ameaça ao meio ambiente (RAMOS *et al.*, 2006; ABUD e NARAIN, 2009).

No entanto, o resíduo do caju tem um grande potencial de aproveitamento na indústria alimentícia, podendo possibilitar, assim, a oferta novos de alimentos (RAMOS et al., 2006). É altamente nutritivo, por possuir em sua composição açúcares, vitaminas, sais minerais, sendo fonte de polifenóis e carotenóides, além do teor pronunciado em fibras (ABREU, 2001). Podendo conferir aos alimentos propriedades funcionais, pois existe uma procura constante por alimentos de boa qualidade que forneçam, além de energia necessária para as funções do organismo, benefícios à saúde (FRIAS, 2006).

A farinha elaborada a partir de resíduos de frutas é uma alternativa de reaproveitamento viável, já que a mesma pode ser utilizada como ingrediente no

preparo de diversos produtos incluindo a panificação, doces, entre outras variedades de produtos além do enriquecimento em nutrientes nos produtos em que é adicionada (ZANATTA et al., 2010). O mercado de panificação vem ampliando o rol de produtos ofertados aos consumidores, inclusive inovando através da utilização de farinhas integrais, farinhas sem glúten e outras obtidas de fontes não tão usuais como amendoim, amêndoa, coco, dentre outras (THOMAZ et al., 2014). Adicionalmente, dentre todos os produtos de panificação, o consumo e comercialização de bolo no Brasil, devido ao seu desenvolvimento técnico e mudanças industriais, passando de pequenas à grandes escalas (MOSCATTO et al., 2004).

Desta forma, a obtenção de uma farinha a partir do aproveitamento do pedúnculo de caju, resíduo obtido após a extração do suco da fruta, e seu emprego na elaboração de um produto de panificação se mostra uma alternativa viável, não apenas pelo fato do aproveitamento do resíduo como também pela vantagem nutricional da farinha obtida.

#### 1.1 OBJETIVOS

#### 1.1.1 Objetivo geral

Obter a farinha, a partir do resíduo do pedúnculo do caju, para utilizá-la no enriquecimento de um produto de panificação.

### 1.1.2 Objetivos específicos

- Determinar o teor de fibras da farinha do pedúnculo do caju;
- Elaborar uma formulação de bolo, empregando a farinha do pedúnculo do caju, como substituto parcial da farinha de trigo;
- Desenvolver a ficha técnica de preparação do produto experimental;
- Determinar a composição centesimal do bolo, obtido com a farinha do pedúnculo de caju;
- Realizar, de forma online uma pesquisa de mercado, sobre a intenção de compra de produtos de panificação, enriquecidos com farinhas do pedúnculo de caju.

### 2. FUNDAMENTAÇÃO TEÓRICA

#### 2.1 CAJUEIRO

O cajueiro *Anacardium occidentale L* pertencente à família *Anacardiaceae*, é uma planta nativa da América do sul e das regiões tropicais do planeta. É uma árvore de aparência exótica, de troncos tortos, folhas glabras, flores masculina e hermafrodita e fruto reniforme (OLIVEIRA, 2015). O cajueiro é classificado em dois tipos, o comum que também é conhecido como gigante e o anão-precoce (CRISÓSTOMO *et al.*, 2003).

O cajueiro comum ou gigante é o que apresenta maior porte, podendo atingir a altura de 20 m, sendo mais comuns, os cajueiros ente 8 e 15 m de altura, com envergadura proporcional ou superior a sua altura (BARROS, 1995). Nas regiões onde o clima é seco e com solo arenoso e de baixa fertilidade, as plantas tendem a apresentar um porte inferior, com troncos tortos e esgalhados, com ramos sinuosos, e uma copa ampla e irregular (LIMA, 1988).

O cajueiro-anão-precoce é caracterizado pelo seu baixo porte, não ultrapassando os 5 m de altura e 8m de diâmetro de copa. Sua copa é mais compacta e homogênea do que o cajueiro gigante. Após o segundo ano de envergadura, a copa supera a altura da planta (ALMEIDA, *et al.*, 1995).

No Nordeste brasileiro, o cajueiro-anão-precoce apresenta uma maior produtividade, em relação ao cajueiro comum. Umas das grandes vantagens do cajueiro-anão-precoce é o pequeno porte da árvore, o qual viabiliza um melhor aproveitamento do pedúnculo, pois pode ser colhido manualmente, tendo uma menor perda, o que não acontece em pomares de cajueiro comum, já que o mesmo pode atingir alturas superiores a 15 m de altura e com isso os frutos caem no solo e ocorre uma maior perda (FREIRE, 2014).

No Brasil, a área de plantio do cajueiro ocupa em torno de 550,5 mil hectares e desse total 99,5% localiza-se no Nordeste. Os principais os estados produtores são Ceará, com 61,6%, seguido do Rio Grande do Norte, com 15,4% e do Piauí, com 15,2%, representando 92,2% de todo território nacional. Os demais estados nordestinos representam 7,3% da produção de todo território nacional (IBGE, 2018).

#### 2.1.1 Caju

Popularmente conhecido como fruto, o caju é um conjunto entre a castanha que é o verdadeiro fruto e o pedúnculo que é um pseudofruto, que é a parte carnosa do fruto (LIMA, 1988). A castanha do caju mede de 2,5 - 3 cm de comprimento e 2,5 cm de largura e tem uma coloração marrom-acinzentada, representando 10% do peso total do fruto O pseudofruto é formado logo após o desenvolvimento da amêndoa, medindo de 5 -10 cm de comprimento e 4 – 8 cm de largura, com uma casca fina de cor vermelha ou amarela, com a polpa macia, fibrosa, suculenta e ácida. O pedúnculo representa 90% do peso total do fruto (DIAS e OLIVEIRA, 2001; CHITARRA, 2005).

#### 2.1.1.1 Castanha de caju

A castanha é o verdadeiro fruto do cajueiro, é composta pelo pericarpo e pela amêndoa. O pericarpo é composto pelo epicarpo, mesocarpo e endocarpo. O epicarpo é a camada externa, o mesocarpo é a camada intermediaria, abaixo do epicarpo, ela apresenta um aspecto esponjoso, cujo onde os alvéolos são preenchidos por um líquido cáustico inflamável, conhecido como líquido da casca da castanha (LCC). O endocarpo é a camada interna da castanha, com seu aspecto duro tem a função de proteger a amêndoa (ARAÚJO, 2013).

A castanha de caju tem grande importância socioeconômica na cadeia produtiva da amêndoa no Brasil, destacando-se no Nordeste nos estados do Ceará, Piauí e Rio Grande do Norte (ARAÚJO, 2013). As amêndoas da castanha apresentam excelentes valores nutricionais, sendo ricas em vitaminas, minerais, ácidos graxos monoinsaturados e aproximadamente 25% de proteínas (MELO et.al.,1998).

#### 2.1.1.2 Pedúnculo do caju

O pedúnculo é o pseudofruto do cajueiro, é parte macia e suculenta de onde é extraída a polpa do caju. O pseudofruto do caju apresenta um alto valor nutritivo sendo riquíssimo em vitamina C, açúcares, minerais (cálcio, ferro e fósforo), compostos fenólicos (taninos, carotenoides e antocianinas) e pigmentos naturais que

dão ao caju a sua coloração amarelada ou vermelha alaranjada presentes em sua película (PINHO, 2009).

Ao consumir o caju *in natura*, sente-se uma sensação de "travar", que é provocada por uma propriedade presente em alguns frutos, chamada de adstringência. Essa propriedade é o resultado de substâncias complexas presentes no fruto conhecidas como taninos (ARAÚJO, 2013), que também são responsáveis pelo aroma adstringente do pedúnculo. Os taninos contribuem para atividade antioxidante, sendo capazes de auxilias na prevenção de doenças cardiovasculares e câncer (PINHO, 2009).

O pedúnculo do caju possui alto valor nutricional, tendo teor elevado de vitamina C, apresentando 165 mg/100g de vitamina C/100g, teor cerca de 5 vezes maior do que o da laranja. Apresenta grande potencial de uso industrial, pois o aproveitamento dessa matéria prima pode gerar diversos produtos em sua forma líquida (suco integral, clarificado, concentrado, néctares, refrigerante), como também em sua forma sólida (doces, compotas, produtos desidratados, entre outros). A maior parte desses produtos tem um processo bem definido industrialmente, porém ainda existem produtos obtidos de forma artesanal (FILHO *et al.*, 2003).

A elaboração de produtos derivados do pedúnculo do caju ainda é uma área não muito explorada, como nova forma de consumo (BARROS; MOURA, 2007), visto que o fruto é altamente perecível, sendo que sua conservação após a colheita não ultrapassa 48 horas, o que acarreta altos índices de perdas pós colheita, por esta razão, diversas pesquisas na área de conservação desse fruto devem ser incentivadas, tais como desidratação, secagem, congelamento, dentre outras (ALVES, MACHADO; QUEIROGA, 2011).

#### 2.2 RESÍDUOS INDUSTRIAIS DE FRUTAS

Anualmente no Brasil, são colhidas aproximadamente 44 milhões de toneladas de frutas, sendo que a indústria de processamento de frutas consome cerca de 24 milhões de toneladas (IBRAF, 2015).

Assim, a industrialização de frutas gera uma enorme quantidade de resíduos decorrente do processamento para produção de sucos, néctares, geleias, doces, entre outros produtos (LIMA et al., 2014; TARAZONA-DÍAZ e

AGUAYO,2013). Esses resíduos são cascas, bagaço, sementes, e polpas de diferentes processos industriais e que não tem mais uso, sendo desperdiçados ou descartados (AJILA *et al.*, 2007).

Os resíduos do processamento de frutas poderiam ser utilizados no desenvolvimento de novos produtos alimentícios, aumentando seu valor agregado, além de contribuírem com a diminuição do impacto ambiental do descarte de grandes volumes produzidos pelas indústrias e eliminados em locais inadequados (UCHOA *et al.*, 2008).

O bagaço da fruta é um resíduo que compõe cerca 20-25% do peso total da fruta fresca. É tratado como um lixo industrial, que pouco tem valor econômico e geralmente é utilizado como adubo. O bagaço contém grandes quantidade de água e açúcares fermentáveis e o seu descarte diretamente no solo gera preocupações ambientais devido à fermentação não controlada e a alta quantidade oxigênio gerado durante a sua degradação, causando assim prejuízo no solo, na água e no ar, tornando-se uma ameaça ao meio ambiente (BRANDÃO, 2016).

#### 2.2.1 Aproveitamento de resíduos

A necessidade de se aproveitar resíduos se torna cada vez maior nas indústrias modernas, já que as quantidades de resíduos geradas podem atingir várias toneladas. Porém, pode-se agregar valor a esses resíduos, gerando assim interesses econômicos e ambientais, no entanto necessita-se buscar meios científicos e tecnológicos que possibilitem sua utilização eficiente, econômica e segura (LÓPEZ-MARCOS *et al.*, 2015)

O aproveitamento dos resíduos provenientes dos processamentos de frutas é uma alternativa para redução das perdas nas agroindústrias, pois possuem em sua composição basicamente matéria orgânica rica em açúcares e fibra, alto valor nutritivo e baixo custo econômico. Geralmente são utilizadas apenas as tecnologias de desidratação de resíduos para a secagem do produto e a trituração para a transformação em farinha (CAVACANTI *et al.*, 2010; ALVES, *et al.*, 2011).

As farinhas, apresentam vantagens em relação as farinha de cereais tais como maior preservação de dos valores nutricionais, menor tempo de secagem, diferentes propriedades físicas e químicas. Estas permitem ampla série de

aplicações e diferentes possibilidades do uso do fruto inteiro como matéria prima para diversos produtos. É importante destacar que trata-se de um produto natural, pois os únicos ingredientes das farinhas são os resíduos. As farinhas de frutas podem ser aplicadas em produtos de panificação, tais como bolos, pães, biscoitos, entre outros (MELONI, 2006; MORENO, 2016).

#### 2.2.2 Aproveitamento do resíduo do pedúnculo de caju

O bagaço do pedúnculo de caju é obtido após a extração do suco do pedúnculo, sendo constituído pela película e pela polpa remanescente (ARAÚJO, 2013). O resíduo do caju possui um elevado potencial industrial para a obtenção de vários produtos, já que é rico em açúcares, vitaminas e sais minerais, fibras e outros componentes com propriedades funcionais, além de ser fonte de polifenóis e carotenoides (ABREU, 2001). Pode, assim, ser utilizado para enriquecer alimentos e incrementar na alimentação humana (PINHO, 2009).

O pedúnculo de caju também oferece uma alternativa de fonte natural para o mercado de corantes alimentícios, pois o resíduo é rico em carotenoide como a luteína e o betacaroteno (BANCO DO BRASIL, 2010).

A tabela 1 mostra alguns estudos que já foram realizados com o aproveitamento do resíduo do pedúnculo de caju para a utilização na alimentação humana.

**Tabela 1** – Aproveitamento do resíduo do pedúnculo de caju na alimentação humana

| Forma de aproveitamento   | Resultados                                                                                                                                                                           | Referência      |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| Farinha do bagaço de caju | ASHERI et                                                                                                                                                                            |                 |
| para elaboração de pães   | na prevenção da constipação intestinal.                                                                                                                                              | al. 2004        |
| Pão tipo hambúrguer com   |                                                                                                                                                                                      | MARQUES         |
| adição de 10% de farinha  | Produto bem aceito pelos consumidores                                                                                                                                                | et al.          |
| do bagaço de caju         |                                                                                                                                                                                      | (2008)          |
|                           | Produto rico em açúcares e fibra, com alto                                                                                                                                           | SANTANA;        |
| Biscoito                  | valor nutritivo e de baixo custo econômico,                                                                                                                                          | SILVA           |
|                           | valor natitivo e de baixo edito economico,                                                                                                                                           | (2008)          |
| Hambúrguer                | Elaboração de novas formulações, com utilização de outros temperos e associação do caju com proteína de soja; pode melhorar as características nutricionais e sensoriais do produto. | LIMA,<br>(2008) |

| Ingrediente de hambúrguer<br>bovino                  | A união de carne bovina e bagaço de caju gerou um produto com boa qualidade nutricional, de elevado teor de fibra alimentar, "light" em lipídeos, com boa taxa de rendimento e menor percentual de encolhimento quando comparado a hambúrgueres bovinos convencionais           | PINHO,<br>(2009) |
|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Enriquecimento de<br>macarrão com<br>farinha de caju | Aspecto vantajoso de vitaminas e minerais como vitamina A, vitamina B1, vitamina B2, vitamina B3, zinco, potássio e cálcio, possibilita destaque entre produtos do mesmo gênero que não os contém, no caso das vitaminas, e evidência do aumento no teor, no caso dos minerais. | et al.           |

Fonte: (SIQUEIRA BRITO, 2013 apud ARAUJO et al. 2018).

Assim, conforme descrevido na tabela, uma forma do aproveitamento do resíduo do pedúnculo de caju é a sua desidratação e obtenção de uma farinha, podendo esta ser a matéria prima para uma grande diversidade de produtos de panificação. Portanto, é importante a pesquisa sobre a desidratação do bagaço do caju com a finalidade de obtenção de farinha, bem como a realização da a sua caracterização físico-química e de testes de avaliação tecnológica, para a sua utilização na produção de produtos de panificação para potencializar sua utilização como matéria prima pela indústria de alimentos (ALVES, *et al.*, 2011).

#### 2.2.2.1 Conservação de alimento por secagem

A secagem é um processo de conservação, que envolve a retirada de água de um sistema sólido ou semissólido, reduzindo assim a umidade do alimento. Essa operação permite prolongamento da vida útil do produto (SILVA, 2010; SILVA, et al., 2015). Permitindo armazená-lo em temperatura ambiente, esse método permite que não aconteça perdas significativas em suas características organolépticas e nutricionais (COSTA, 2008).

A secagem é uma técnica que pode ser feita tanto por secagem natural, onde o alimento é exposto ao sol, como por secagem artificial onde se utiliza secadores mecânicos com circulação de ar forçado (COSTA, 2008).

#### 2.2.2.2 Farinha do resíduo do pedúnculo de caju

A farinha do resíduo do pedúnculo de caju é obtida através da extração do suco, desidratação do bagaço, trituração e peneiramento, para a obtenção da farinha. Pode ser usada para enriquecer com outros tipos de farinhas como as de cereais, já que é bastante rica em açúcares, fibras e um alto valor nutricional (SANTANA E SILVA, 2008).

Lima et al. (2002) analisaram a fibra do resíduo do pedúnculo de caju e tiveram um teor de fibras alimentar de 61%. Os mesmo pesquisaram e deram a sugestão de que novos produtos feitos a partir do resíduo do pedúnculo do caju podem ser formulados para prevenir doenças relacionadas ao trato gastrointestinal e ao de coração, além de poder ser utilizado em vários produtos, inclusive os de panificação.

#### 2.3 FIBRA ALIMENTAR

A RDC n°360 23 de dezembro de 2003, define a fibra alimentar como "qualquer material comestível, que não seja hidrolisado pelas enzimas endógenas do trato digestivo humano" (BRASIL, 2003).

Fibras alimentares são consideradas como sendo carboidratos de origem vegetal. São grandes fragmentos de parede celular e são constituídos, de polissacarídeos, oligossacarídeos, lignina, entre outras substancias, que são provenientes de vegetais comestíveis, tais como, os cereais, os frutos, as hortaliças, os tubérculos e as leguminosas, que são as principais fontes da fibra alimentar (LAJOLO; MENEZES, 2008; OLIVEIRA MARCHINI, 2008).

As fibras alimentares podem ser classificadas como fibras solúveis e insolúveis. A fração solúvel é constituída de β-glucanas, gomas, mucilagens e algumas hemiceluloses. As insolúveis são constituídas de lignina, pectina insolúvel, celulose e hemiceluloses. Essas classificações das fibras estão relacionadas a ações fisiológicas sobre o organismo humano (GUTKOSKI; TROMBETTA, 1999).

As fibras solúveis são polissacarídeos que se dissolvem na água formando um gel, que é uma propriedade importante utilizada na produção de gelatinas e geleias (CRAVEIRO *et al.*, 2003). A fibra solúvel é responsável pelo aumento no tempo do trânsito intestinal e está ligada diretamente com o gástrico, ao

retardo da absorção de glicose, diminuição da glicemia pós-prandial e redução do colesterol sanguíneo, pois as suas propriedades físicas conferem viscosidade ao conteúdo luminal (CATALANI *et al.*, 2003).

As fibras insolúveis têm a capacidade de absorver líquidos e formar géis, que leva ao aumento do bolo fecal e à aceleração do trânsito intestinal, e também reduz o tempo de contato das fezes com a mucosa intestinal (BODINSKI, 1999; SOARES et al., 2000) Geralmente não sofrem fermentação, mas se acontecer esta ocorre de forma lenta. Em uma dieta composta por alimentos de origem vegetal, a fração insolúvel da fibra é mais abundante, constituindo cerca de 2/3 a 3/4 de fibra alimentar (CATALANI, et al., 2003).

O consumo regular de fibras alimentares pode reduzir o risco de várias doenças, tais como doenças cardiovasculares, câncer do cólon, obesidade, previne e melhora problemas de constipação, diminui o risco de hemorroidas e diverticulite e resulta no aumento da sensação de saciedade e consequentemente a redução do consumo de alimentos durante as refeições, portanto é recomendada a ingestão de 25 a 35 g por dia ou 10 a 13 g/ 1000 Kcal de fibra alimentar (BODINSKI, 1999; SOARES, 2000; GUERRA, *et al.*, 2004).

#### 2.3.1 Alimentos funcionais

A portaria nº 18 de 30/04/99, da ANVISA considera alegação de funcionalidade quando um alimento ou ingrediente que, além das funções nutricionais básicas, quando consumido como parte da dieta usual, produza efeitos metabólicos e/ou fisiológicos à saúde, devendo ser seguro para consumo sem supervisão médica (BRASIL, 1999). Alimentos funcionais são aqueles que além de fornecerem nutrição básica, promovem a saúde. São alimentos que possuem um grande potencial para prevenir doenças através de mecanismo não previsto na nutrição convencional, devendo salientar que o efeito restringe-se à promoção da saúde e não a cura de doenças (SANDERS, 1998).

Os alimentos funcionais vêm ganhando cada vez mais espaço na alimentação dos brasileiros. O que significa que tais alimentos contêm ingredientes que poderão auxiliar na manutenção dos níveis de triglicerídeos, na proteção de células contra os radicais livres, no funcionamento do intestino, na redução da

absorção do colesterol, no equilíbrio da flora intestinal, entre outros (ARANHA *et al.*, 1998).

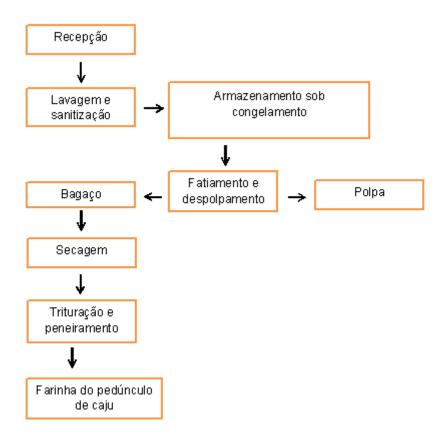
As indústrias de alimento têm grandes expectativas de que seus produtos atendam à demanda dos consumidores por um estilo de vida mais saudável. Com isso, o alimento funcional desempenha um papel específico. Os alimentos funcionais não visam somente satisfazer a fome ou fornecer os nutrientes necessários, mas também auxiliam na prevenção de doenças e aumentar o bem-estar físico e mental destes consumidores (MENRAD, 2003).

Produtos de panificação, pães, bolos e biscoitos são excelentes para receberem ingredientes com propriedades funcionais, pois os mesmos são bem aceitos pela população, independente da idade, e existindo uma ampla distribuição e comercialização (ZAVAREZE *et al.*, 2008).

#### **3 MATERIAL E MÉTODOS**

#### 3.1 MATERIAIS

O caju utilizado no presente trabalho foi obtido na Central Estatal de Abastecimento (CEASA-PB). Os demais ingredientes utilizados no desenvolvimento do trabalho foram adquiridos em comércio local.


A obtenção da farinha do resíduo do pedúnculo de caju, envolveu o uso da despolpadeira e foi realizada no laboratório de processamentos de alimentos; a secagem em pregou as estufas de circulação de ar do laboratório de análises de físico-química de alimentos e no laboratório de tecnologia sucroalcooleira; a trituração se deu pelo uso do moinho de facas no laboratório de operações unitárias. Todos os laboratórios pertencentes ao Centro de Tecnologia e Desenvolvimento Regional (CTDR/UFPB).

#### 3.2 MÉTODOS

#### 3.2.1 Obtenção da farinha do resíduo do caju

O fluxograma do processo de obtenção da farinha do resíduo do pedúnculo de caju está apresentado na Figura 1 e as etapas descritas subsequentemente.

**Figura 1 –** Fluxograma do processo de obtenção da farinha do resíduo do pedúnculo do caju



#### 3.2.1.1 Recepção do caju

Foram adquiridos 32,5 kg de caju, com a coloração vermelha amarelada e grau de maturidade comercial, adequado para o processamento (Figura 2).



Figura 2 - Fruto com grau de maturidade comercial

Após esta aquisição, os frutos foram sanitizados em solução de hipoclorito de sódio na concentração 50 ppm por 15 minutos, logo após foram enxaguados em água corrente e armazenados sob congelamento (±18°C) até o momento do despolpamento.

#### 3.2.1.2 Obtenção do resíduo do pedúnculo de caju

Os frutos forami submetidos ao descongelamento sob refrigeração (±4°C) por 24 horas no laboratório de processamento de alimentos do CTDR/UFPB. Os frutos descomgelados foram fatiados e colocados na despolpadeira de fruta semindustrial (Braesi DES-60), sendo obtido, assim, a polpa de caju e o bagaço (resíduo), o qual foi pesado em balança( balmak ELC) (figura 3), acondicionado em sacos plásticos, previamente identificados e submetidos ao armazenamento, sob refrigeração, por três dias.

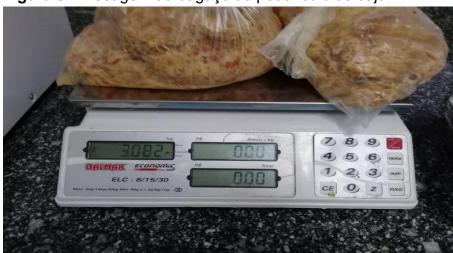



Figura 3 - Pesagem do bagaço do pedúnculo de caju

#### 3.2.1.3 Secagem do resíduo de caju

O resíduo foi retirado da refrigeração e submetido ao processo de secagem em estufa de circulação de ar (Tecnal TE-394/2), utilizando bandejas que foram cobertas com papel alumínio, e foram espalhados 300g do resíduo por bandeja (figura 4). Os resíduos passaram por secagem em estufa, em temperatura de 60°C pelo tempo de 8 horas e 30 minutos.



Figura 4 – Distribuição do resíduo de caju na bandeja de secagem

Fonte: Próprio autor

Após o processo de secagem, o resíduo desidratado foi pesado e armazenado em potes plásticos e mantido em temperatura ambiente até trituração e obtenção da farinha (Figura 5).

**Figura 5** – Armazenamento do resíduo desidratado em recipientes plásticos



#### 3.2.1.4 Trituração do resíduo seco

Para a obtenção da farinha de caju (Figura 6), o resíduo seco foi triturado empregando um moinho de facas (Tipo Willey SL-31), peneirado utilizando a peneira do próprio equipamento e armazenados em sacos plásticos a vácuo até serem utilizado como farinha na elaboração do bolo e ser analisado físico-químicamente quanto ao teor de fibras.

Figura 6 – Farinha do resíduo do caju



Fonte: Próprio autor

#### 3.2.1.5 Preparo do bolo enriquecido com farinha de pedúnculo de caju

O bolo enriquecido com a farinha foi preparado utilizando como base uma formulação padrão fornecida pela orientadora deste trabalho, na qual parte da

farinha de trigo foi substituída pela farinha de pedúnculo de caju. A Tabela 2 apresenta a formulação do bolo elaborado.

Tabela 2 - Ingredientes empregados na elaboração do bolo enriquecido com a farinha do pedúnculo de caju

| INGREDIENTES     | MEDIDA CASEIRA    | QUANTIDADE (gramas) |
|------------------|-------------------|---------------------|
| Farinha de trigo | 2 xicaras         | 300g                |
| Farinha de caju  | 1 xicara          | 150g                |
| Açúcar refinado  | 1 xicara          | 150g                |
| Ovos             | 3 unidades        | 150g                |
| Óleo             | 3/4 xicara        | 112 g               |
| Água             | 1 xicara          | 150 g               |
| Fermento químico | 2 colheres de chá | 10g                 |

Fonte: Próprio Autor

Para processamento do bolo, todos os ingredientes foram mensurados, em medida caseira e convertidos em gramas, por meio de balança digital, com capacidade máxima de 15 kg. Após a pesagem de todos os ingredientes procedeuse o processamento do mesmo, através da mistura dos ingredientes secos e incorporação dos úmidos. A massa foi misturada até que a mesma ficasse homogênea e lisa, como apresentado na Figura 7. Esta massa foi acondicionada em uma forma de alumínio de diâmetro 22 cm, previamente untada e levada, ao forno pré aquecido a 180°C, por 30 minutos.

Figura 7 – Mistura da massa com todos os ingredientes



Fonte: Próprio autor

#### 3.2.1.6 Determinação do teor de fibras da ferinha do pedúnculo do caju

O teor de fibra alimentar (solúvel e insolúvel) foi obtido empregando o método enzimático gravimétrico AOAC 895.29 (AOAC 2005) sendo gentilmente cedido pelo laboratório de bioquímica da Faculdade Nova Esperança (Facene).

#### 3.2.1.7 Informação nutricional do bolo

O cálculo do valor nutricional do bolo foi baseado nos ingredientes utilizados no seu preparo, empregando os dados presentes na Tabela de composição de alimentos (TACO, 2011) e no trabalho desenvolvido por PINHO (2009). A tabela de informação nutricional foi apresentada, considerando uma porção de 60g, seguindo as recomendações da ANVISA, através das Resoluções RDC nº 360/2003 e RDC nº 359/2003.

#### 3.3 PESQUISA DE MERCADO: INTENÇÃO DE COMPRA

Foi realizado uma pesquisa de mercado com intuito de avaliar se produtos de panificação, enriquecidos com farinha de pedúnculo de caju poderiam ser adquiridos por potenciais consumidores. Para tal, elaborou-se um questionário contendo 15 perguntas (Apêndice 1), que foram encaminhadas, por meio eletrônico, num período de 3 semanas, posteriormente, tabuladas.

### 4. RESULTADOS E DISCUSSÕES

#### 4.1 RENDIMENTO DA FARINHA DE CAJU

A partir de 32,6 kg de caju obteve-se 3,1 kg de bagaço e 0,66 kg de farinha, portanto, o bagaço apresentou um rendimento de cerca de 9,5%, em relação ao peso total do caju e a farinha apresentou um rendimento 21,3%, em relação ao peso total do bagaço; e 2%, em relação ao peso total do caju. Apesar do rendimento não ser tão expressivo, ainda sim é um processo viável, pois trata-se de um aproveitamento de resíduos alimentícios.

Analisando esses dados em relação a uma empresa de polpa de fruta que chega a processar cerca 20.000 toneladas de caju por ano (INTRAFRUT, 2019), e o aproveitamento do resíduo poderia resultar num rendimento de 1.890 toneladas de resíduos e 404 toneladas da farinha do resíduo de caju. Assim pode haver um melhor aproveitamento desse resíduo que seja significativo para a industria.

#### 4.2 TEOR DE FIBRAS

Nos alimentos vegetais, o conteúdo de fibras é representado pela soma de lignina e polissacarídeos (celulose, hemicelulose, pectina, mucilagem e goma), sendo estes classificados, segundo sua solubilidade em água, como solúveis e insolúveis. Na farinha, obtida da desidratação do resíduo de caju, o teor de fibras totais foi de 68g/100g (68%), sendo 9g fibras solúveis (13,2%) e 59g fibras insolúveis (86,8%), podendo ser uma alternativa para enriquecimento do teor de fibras de uma ampla gama de produtos alimentícios.

O teor de fibras determinado por Pinho (2009) foi de 53% de fibra total, sendo 48% de fibra insolúvel e 5% da fibra solúvel.

Ao compararmos a farinha do resíduo de caju com outros tipos de farinha de resíduos de frutas, pode-se observar que a mesma se mostra superior no que se referi a quantidade de fibra presente na farinha (Tabela 3).

**Tabela 3** – Comparação da farinha de caju com as farinhas do resíduo da acerola e da manga

| Análises   | Farinha do | Farinha do | Farinha do |
|------------|------------|------------|------------|
|            | resíduo do | resíduo da | resíduo de |
|            | caju       | acerola    | manga      |
| Fibras (%) | 53, 71     | 26,54      | 38,96      |

Fonte: Adaptado de PINHO, 2009; AGUIAR et al., 2010; SANTOS, 2013

As fibras desempenham várias funções importantes no organismo humano como intervir no metabolismo dos lipídios e carboidratos e na fisiologia do trato gastrointestinal, além de assegurar uma absorção mais lenta dos nutrientes e promover a sensação de saciedade (GUERRA, *et al.*, 2004).).

A ingestão de fibra alimentar recomendada é de 25 a 35g por dia para uma dieta equilibrada, com uma proporção entre fibras insolúveis e solúveis de 3:1. A presença de fibras em quantidades insuficientes na alimentação, por um período longo de tempo, pode contribuir para o surgimento de doenças crônicas, doenças cardiovasculares e câncer de intestino (FANI, 2016). Desta forma, o enriquecimento de produtos com a fibra do pedúnculo do caju poderá contribuir para o atendimento desta recomendação.

# 4.3 VALOR NUTRICIONAL DO BOLO ENRIQUECIDO COM FARINHA DE PEDÚNCULO DE CAJU

Para a formulação bolo houve uma substituição de 33% da farinha de caju em relação à farinha de trigo. Apresentou características de um bolo integral, com aparência firme e consistente, como mostrado na Figura 8.

Figura 8 – Estrutura interna do bolo



A Tabela 4 apesenta a informação nutricional do bolo, mostrando o valor nutricional global, ou seja, considerando todo o bolo.

**Tabela 4** – Valor Nutricional da formulação do bolo

| Ingredientes     | Quantidade<br>em<br>Peso | Calorias<br>Cal | Carboi<br>dratos<br>g | Proteí<br>nas<br>g | Gordu<br>ra<br>total<br>g | Gordur<br>a<br>satatur<br>ada<br>g | Gordura<br>trans<br>g | Fibra<br>g | Na<br>mg |
|------------------|--------------------------|-----------------|-----------------------|--------------------|---------------------------|------------------------------------|-----------------------|------------|----------|
| Farinha de trigo | 300g                     | 1.032           | 180                   | 31,8               | 4,2                       | 0                                  | 0                     | 8,4        | 0        |
| Farinha de caju  | 150g                     | 214,3           | 49,2                  | 7,2                | 1,6                       | 0                                  | 0                     | 80,55      | 0        |
| Açúcar           | 150g                     | 600             | 150                   | 0                  | 0                         | 0                                  | 0                     | 0          | 0        |
| Ovos             | 150g                     | 265,5           | 1,2                   | 20,55              | 16,6                      | 4,5                                | 0                     | 0          | 186      |
| Óleo             | 112,5ml                  | 934,6           | 0                     | 0                  | 104                       | 181,7                              | 0                     | 0          | 0        |
| Água             | 150ml                    | 0               | 0                     | 0                  | 0                         | 0                                  | 0                     | 0          | 6        |
| Fermento químico | 10g                      | 12              | 0,94                  | 0,013              | 0                         | 0                                  | 0                     | 0          | 0,8      |
|                  | Total                    | 2844,1          | 381,34                | 59,56              | 126,4                     | 186,65                             | 0                     | 88.95      | 192.8    |

Fonte: Próprio autor

A tabela 5 está apresenta a informação nutricional de uma porção de bolo, a qual foi determinada seguindo as exigências da Resolução RDC nº 359/03, que estabelece que "uma porção dos alimentos é a quantidade média do alimento que deveria ser consumida por pessoas sadias, maiores de 36 meses de idade em cada ocasião de consumo, com a finalidade de promover uma alimentação saudável e que se tomou como base uma alimentação diária de 2000 kcal" (ANVISA, 2003).

A ANVISA determina que para um alimento sólido vincular em seu rótulo a alegação "Alto Teor" ou "Rico" deve fornecer no mínimo 30% das recomendações diárias de ingestão (IDR) de um determinado nutriente, em 100g do produto (ANVISA, 2019). Considerando que a IDR de fibras é de 25g e que um produto para ser considerado com alto teor de fibras deve fornecer no mínimo 7,5g de fibras/100g, o bolo enriquecido com a farinha de caju pode vincular a alegação de alto teor de fibras já que possui 8,9g de fibras/100g do produto.

Semelhantemente, Souza *et al.* (2016) desenvolveram um bolo de cenoura enriquecido com fibras de aveia, de amaranto e de farinha de maracujá tendo teor de 5g na porção (20% do VD). Cabe destacar que os autores desenvolveram um bolo com os mesmos ingredientes, mas sem adicionar as fibras o que resultou em um bolo com apenas 0,6g de fibras/porção.

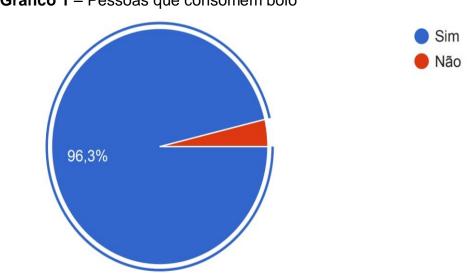
Um bolo enriquecido com farinha de quiabo (10 e 15% de substituição da farinha de trigo) foi desenvolvido por Brito et al. (2017). A formulação mais aceita, segundo testes de escala hedônica e pareado de preferência, foi a formulação com 10% de farinha de quiabo, a qual apresentou valor calórico de 200 Kcal/porção, cerca de 20% superior ao desenvolvido neste trabalho.

Tabela 5 – Informação Nutricional do bolo enriquecido com farinha de caju

| INFORMAÇÃO NUTRICIONAL |          |      |  |  |  |
|------------------------|----------|------|--|--|--|
| Porção 60              | % V.D.*  |      |  |  |  |
| Valor energético       | 170 kcal | 8,5  |  |  |  |
| Carboidratos           | 23g      | 7,7  |  |  |  |
| Proteínas              | 3,4g     | 4,5  |  |  |  |
| Gorduras Totais        | 7,4g     | 13,4 |  |  |  |
| Gorduras saturadas     | 1,2g     | 5,4  |  |  |  |
| Gorduras Trans         | 0g       | **   |  |  |  |
| Fibra Alimentar        | 5,3g     | 21,6 |  |  |  |
| Sódio                  | 11,6 mg  | 0,5  |  |  |  |

\*%Valores Diários de referência com base em uma dieta de 2000 Kcal ou 8400Kj. Seus valores podem ser maiores ou menores de acordo com suas necessidades energéticas.

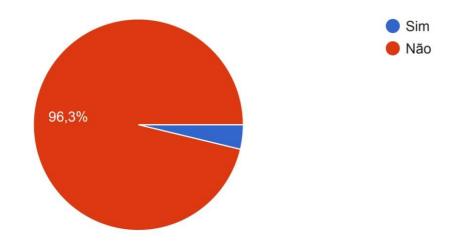
\*\*Valores Diários não estabelecidos.


Fonte: Próprio autor

Os dados do inquérito Nacional de Alimentos apresentam que os produtos de panificação estão entre os mais consumidos como fonte calórica da dieta diária, e que os bolos estão entre os vinte alimentos com maior prevalência de consumo no país, atingindo parcela considerável da população, representando, portanto um

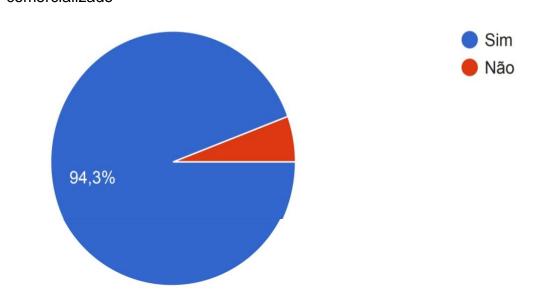
excelente veículo para o enriquecimento de produtos alimentícios (SOUZA *et al.*, 2013). Deste modo, a indústria alimentícia tem uma demanda constante de produtos de panificação, além da necessidade de desenvolver novos produtos com apelo nutricional e funcional e , portanto, a utilização de farinhas de resíduos como a empregada neste trabalho pode proporcionar alternativas bastante promissoras.

# 4.4 PESQUISA DE MERCADO DE INTENÇÃO DE COMPRA


O teste de intenção de compra fio respondido por 108 pessoas, sendo que 96,3% das pessoas disseram que consomem bolo (Gráfico 1); 96,3% disseram que não conhecem o bolo enriquecido com farinha de caju Gráfico 2), mas 94,3 % disseram que comprariam o bolo se o mesmo fosse vendido (Gráfico 3). Cerca de 60% dos participantes disseram que comprariam o produto por apresentar um alto valor nutritivo, 37% comprariam por curiosidade 0,9% compraria pelos benefícios que o bolo apresenta e 0,9% não comprariam o produto (Gráfico 4).

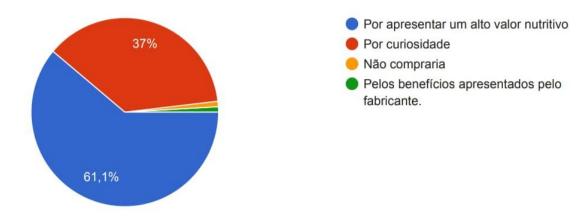


**Gráfico 1** – Pessoas que consomem bolo


Fonte: Próprio autor

**Gráfico 2** – pessoas que não conhecem o bolo enriquecido com a farinha do pedúnculo de caju




Fonte: Próprio autor

**Gráfico 3** – Pessoas que comprariam o bolo se o mesmo fosse comercializado



Fonte: Próprio autor

**Gráfico 4** – Motivos pelo qual levariam as pessoas a comprarem o bolo enriquecido com a farinha do resíduo do pedúnculo de caju



Fonte: Próprio autor

### 5. CONCLUSÃO

A farinha do resíduo do pedúnculo de caju apresenta um grande potencial tecnológico, pois a mesma apesar de ser um produto de reaproveitamento, pode contribuir para uma melhor qualidade nutricional dos produtos de panificação, em especial o bolo, agregando valor ao mesmo, além de reduzir as perdas do pedúnculo do caju nas agroindústrias.

A quantidade de fibra encontrada no bolo, por fatia comprova que o produto final do processo corresponde a um alimento, com o alto teor de fibra sendo assim, um alimento funcional.

O presente trabalho comprova que há alternativas viáveis para o aproveitamento de alimentos que, costumam ser desprezados, mas que ao se investir tempo e estudo, se pode chegar a variados produtos nutritivos.

Desta forma, vale refletir sobre o incentivo sobre a utilização da farinha do resíduo do pedúnculo de caju pelas indústrias e assim, buscar oportunidades no mercado que possam beneficiar investidores e consumidores de forma eficaz.

### **REFERÊNCIAS**

- ABREU, F. A. P. de. Extrato de bagaço de caju rico em pigmentos. Int. A23L 1/222, BR. n. PI 0103885-0. 19 jun. 2001.
- ABUD, A.K.S. e NARAIN, N. Incorporação da farinha de resíduo do processamento de polpa de fruta em biscoitos: uma alternativa de combate ao desperdício. Brazilian Journal of Food Technology, v.12. p. 247-265, 2009.
- ALMEIDA et al. Enriquecimento de macarrão com farinha de caju (Anacardium occidentale). In: VII CONNEPI Congresso Norte Nordeste de Pesquisa e Inovação IFTO Instituto Federal de Educação, Ciência e Tecnologia. Outubro, 2012.
- ASCHERI, J. L. R.; OLIVEIRA, A.; AZEVEDO, T. L.; CARVALHO, C. W. P. Elaboração de farinha pré-gelatinizada de bagaço de caju e quirera de arroz através do processo de extrusão termoplástica. In: CONGRESSO DE PESQUISA CIENTÍFICA, 2.; JORNADA DE INICIAÇÃO CIENTÍFICA, 14., 2004, Seopédica. Anais... Seropédica: Universidade Federal Rural do Rio de Janeiro, 2004. 1 CD-ROM.
- AGUAR, L. P.; ALVES, R. E.; LIMA, D. P.; BASTOS, M. do S. R.; BARROS, F. F. C. Carotenoides totais em pedúnculos de clones de caju anão precoce(*Anacardium occidentale L var. Nanum*). In: XVIII comgresso brasileiro de ciência e tonologia de alimentos, 2000. Resumo, Fortaleza: SBCTA, 2000. V. 2, 55 p.
- AGUIAR, T. M.; RODRIGUES, F. S.; SANTOS, E. R.; SABAA-SRUR, A. U. O. **Caracterização química e avaliação do valor nutritivo de sementes de acerola:** rev. Soc. Bras. Alim. Nutr. = J. Brazilian Soc. Food Nutr., São Paulo, SP, v. 35, n. 2, p. 91-102, ago. 2010.
- AJILA, C. M.; BHAT, S. G.; PRASADA RAO, U. J. S. Componentes valiosos de matérias-primas e cascas maduras de duas variedades indianas de manga. Food Chemistry, v. 102, n. 4, p. 1006 11, 2007.
- ALMEIDA, F. A. G.; ALMEIDA, F. C. G.; NUNES, R. P.; CARVALHO, P. R.; MENESES JÚNIOR, J. **Estudos fenológicos de plantas enxertadas de cajueiro anão sob condições de irrigação**. Revista Brasileira de Fruticultura, Jaboticabal, v. 17, n. 2, p. 71-84, 1995c.
- ALVES, F. M. S.; MACHADO, A. V.; QUEIROGA, K. H. **Alimentos produzidos a partir de farinha de caju, obtida por secagem**. Revista Verde (Mossoró RN Brasil) v.6, n.3, p.131 138 julho/setembro de 2011.
- ANVISA. **Alimentos enriquecidos.** Disponível em: <a href="http://portal.anvisa.gov.br/resultado-de-busca?p\_p\_id=101&p\_p\_lifecycle=0&p\_p\_state=maximized&p\_p\_mode=view&p\_p\_col\_id=column1&p\_p\_col\_count=1&\_101\_struts\_action=%2Fasset\_publisher%2Fview\_content&\_101\_assetEntryId=286865&\_101\_type=content&\_101\_groupId=219201&\_101\_urlTitle=alimentos-enriquecidos&inheritRedirect=true >. Acesso em 17 de abril de 2019.

- ANVISA. **Resolução RDC n. 359 de 23 de dezembro de 2003.** Disponível em: <a href="http://portal.anvisa.gov.br/documents/33880/2568070/res0359\_23\_12\_2003.pdf/76676765-a107-40d9-bb34-5f05ae897bf3">http://portal.anvisa.gov.br/documents/33880/2568070/res0359\_23\_12\_2003.pdf/76676765-a107-40d9-bb34-5f05ae897bf3</a> >. Acesso em 17 de abril de 2019.
- ARANHA, D. C.; VIZU, M.A.; RIBEIRO, T. C.; MELO F. R. G; FIOCO, E. M. Avaliação sensorial de biscoito tipo "cookie" funcional e enriquecido em proteínas. Ling. Acadêmica, Batatais, v. 7, n. 5, p. 23-34, jul./dez. 2017.
- ARAÚJO, J. P. P. **Agronegócio caju: práticas e inovações**. Brasília, DF: Embrapa Informação Tecnológica, 2013, 532 p.
- ARAUJO, W. F.; ROCHA, L. de M.; ARAUJO, I. M. de S.; PAULA, G. A. LAENNE, S. de S.; FOLHA, M F.; FILHO, L. B. da R.; ARAÚJO, R. V. Sustentabilidade em agroindústrias: alternativas para evitar o desperdício de resíduos agroindustriais do pedúnculo de caju uma revisão de literatura. Braz. J. of Develop., Curitiba, v. 4, n. 7, Edição Especial, p. 4546-4569, nov. 2018. ISSN 2525-8761.
- AYALA-ZAVALA, J. F.; VEGA-VEJA, V.; ROSAS-DOMÍNGUEZ, C.; PALAFOX-CARLOS, H; VILLA-RODRIGUEZ, J. A. SIDDIQUI, M. W.; DÁVILA-AVIÑA, J. E.; GONZÁLEZ-AGUILAR, G. A.; Potencial Agroindustrial de subprodutos de frutas exóticas como fonte de aditivos alimentares. Food Research International, 44:1866–1874. (2011)
- BRANDÃO, V. A. A. Resfriamento e congelamento de sólidos com forma complexa via técnica da fluidodinâmica computacional. estudo de caso: pedúnculo do caju. CENTRO DE CIÊNCIAS E TECNOLOGIA PROGRAMA DE POS-GRADUAÇÃO EM ENGENHARIA MECÂNICA. UFCG Campina Grande PB. Dezembro, 2016.
- BARROS, L. M. **Botânica, origem e distribuição geográfica**. In.: ARAÚJO, J. P. P.; SILVA, V. V. (Org.). Cajucultura: modernas técnicas de produção. Fortaleza: EMBRAPA-CNPCa, 1995. p. 55-71.
- BARROS, T.; MOURA, R. **Tecnologia do caju vai contribuir com educação alimentar**. Disponível em: <a href="https://www.embrapa.br/busca-de-noticias/noticia/18011524/tecnologia-do-caju-vai-contribuir-com-educacao-alimentar">https://www.embrapa.br/busca-de-noticias/noticia/18011524/tecnologia-do-caju-vai-contribuir-com-educacao-alimentar</a>. Acesso em 13 mar. 2019.
- BRASIL, Ministério da Saúde. **Agencia Nacional de Vigilância Sanitária (ANVISA)**. Portaria de 13 de janeiro de 1998. Dispõe sobre informação nutricional complementar.
- BRASIL, Ministério da Saúde Agência Nacional de Vigilância Sanitária. **PORTARIA** Nº 398, DE 30 DE ABRIL DE 1999 diretrizes básicas para análise e comprovação de propriedades funcionais e ou de saúde alegadas em rotulagem de alimentos Disponível em: > https://www.saude.rj.gov.br/comum/code/MostrarArquivo.php?C=Mjl0OQ%2C%2C>. Acesso em 17 de abril de 2019.

- BRASIL, MINISTÉRIO DA SAÚDE AGÊNCIA NACIONAL DE VIGILÂNCIA SANITÁRIA. Resolução RDC nº 360, de 23 de dezembro de 2003, publicada no Diário Oficial da União nº 251, de 26 de dezembro de 2003, Seção 1, página 33.
- BRITO, M.M.; RIBEIRO, L.N.; ARAUJO, M.A.M.; ARAUJO, R.S.R.M. **Desenvolvimento de bolo enriquecido com farinha de quiabo (Hibiscus esculentus L.).** Higiene Alimentar, v.31, n.274, p.125-129, 2017.
- BODINSKI, L. H. **Dietiterapia: princípios e praticas**. São Paulo: Editora Ateneu, 1999, p.397.
- CATALANI, L. A.; KONG, É. M. S.; DIAS, M. C. G.; MACULEVICIUS, J. **Fibras alimentares**. Revista Brasileira de Nutrição Clínica, v. 18, n. 4, p. 178-182, 2003.
- CAVACANTI, M. A.; SELVAM, M. M.; VIEIRA, R. R. M.; COLOMBO, C. R.; QUEIROZ, V. T. M. **Pesquisa e desenvolvimento de produtos usando resíduos de frutas regionais: inovação e integração no mercado competitivo**. xxx encontro nacional de engenharia de produção; enegep São Carlos, SP, Brasil, 12 a 15 de outubro de 2010.
- CELESTINO, S. M.C, **Princípios de Secagem de Alimentos** Planaltina DF: Embrapa Cerrados, 2010, p.51.
- CHITARRA, M. I. F.; CHITARRA, A. B. **Pós-colheita de frutos e hortaliças: fisiologia e manuseuio.** 2ª. Edição, lavras: UFLA, 2005, p.785.
- CRAVEIRO, A. A.; CRAVEIRO, A. C.; QUEIROZ, D. C. **Alimentos funcionais: a nova revolução.** Fortaleza: PADETEC/UFC, 2003.
- CRAWFORD, A. M. **Misturas com farinhas, pães e bolos.** In\_\_Alimentos: seleção e preparo. 2. ed. Rio de Janeiro: Record, 1985. P. 310-360. Cop. 13.
- CRISÓSTOMO, L. A.; SANTOS, F. J. S.; OLIVEIRA, V. H.; VAN RAIJ, B.; BERNARDI, A. C. C.; SILVA, C. A.; SOARES, I. Cultivo do cajueiro anão precoce: aspectos fitotécnicos com ênfase na adubação e na irrigação. Fortaleza: Embrapa Agroindústria Tropical, 2003. 8 p. (Embrapa Agroindústria Tropical. Circular Técnica, 08).
- DIAS, P. P. B.; OLIVEIRA, G. S. F. de. **Pesquisa desenvolve creme inédito de amêndoa de castanha do caju**. Pesquisas FUNCAP Revista de Ciência e Tecnologia vol. 2, p., 6 e 7, agosto de 2001.
- EMEPA. **Caju** < <a href="http://www.emepa.org.br/sigatoka\_.php">http://www.emepa.org.br/sigatoka\_.php</a> >Data da Edição 25 de marco 2007. Acesso em 12/03/2019.
- FANI, M. As fibras alimentares e sua contribuição a saúde. Rev. Aditivos & Ingredientes, v. 132, p.38-48, 2016.
- FILHO, M. M. S.; ARAGÃO, A. O.; ALVES, R. E.; FILGUEIRAS, H. A. C. **Aspectos** da colheita, pós colheita e transformação industrial do pedúnculo do caju (*Anacardium occidentale L*) .Disponível em :<a href="https://www.agencia.cnptia.embrapa.br/Repositorio/AspectoColheita Caju 000g7d94xb102wx5ok0wtedt3xxfvd00.pdf">https://www.agencia.cnptia.embrapa.br/Repositorio/AspectoColheita Caju 000g7d94xb102wx5ok0wtedt3xxfvd00.pdf</a>. Acesso em: 13 mar. 2019

- FREIRE, V. Pequeno notável, cajueiro anão-precoce é produtivo após três anos de seca. EMBRAPA, Disponível em: <a href="https://www.embrapa.br/busca-de-noticias/-/noticia/2361282/pequeno-notavel-cajueiro-anao-precoce-e-produtivo-apos-tres-anos-de-seca">https://www.embrapa.br/busca-de-noticias/-/noticia/2361282/pequeno-notavel-cajueiro-anao-precoce-e-produtivo-apos-tres-anos-de-seca</a>. Acesso em 18 de Abril de 2019.
- FRIAS, A. D. **Fitoestrogêniode soja.** São Paulo: SANAVITA Ciências em alimentos s. d. 2006
- GAVA. A. J. **Secagem de Tecnologia de Alimentos.** São Paulo: Nobel, 2000, p. 200.
- GAVA, A. J. Princípios de tecnologia de alimentos. São Paulo: Nobel, 1984.
- GUERRA, N. B.; DAVIA, P. R. S.; MELO, D. D.; VASCONSELOS, A. B. B. GUERRA, M. R. M. Modificações do método gravimétrico não enzimático para determinar fibras alimentares solúveis e insolúveis em frutos. Revista de nutrição, campinas, v17, n.1 p45-52. 2004.
- GUTKOSKI, L. C.; TROMBEtTA, C. Avaliação dos teores de fibra alimentar e de beta-glicanas em cultivares de aveia (avena sativa L) ciência e tecnologia de alimentos, capinas, v. 19 n.3, p.387-390, set/dez. 1999.
- HOLANDA, J. S.; TORRES, J. F; OLIVEIRA, M. T; FERREIRA FILHO, L.; HOLANDA, A. C. **Da carne de caju à carne de cordeiro**. Natal: Emparn, 2010. 42 p. (Emparn. Boletim de pesquisa, 35).
- IBRAF. Anuário Brasileiro da Fruticultura 2015. Editora Gazeta. 2015.
- INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA IBGE. **Levantamento sistemático da Produção Agrícola. Fortaleza**: IBGE/GCEA-CE. Dezembro. Série 2012, 2013, 2014, 2015, 2016, 2017. Documento impresso.
- **INTRAFRUT INDÚSTRIA TRANSFORMADORA DE FRUTAS S.A -** é uma empresa cuja principal atividade é a industrialização de frutas e produção de sucos concentrados e integrais congelados. **Disponível em: <**http://www.intrafrut.com. br/empresa.asp.
- KUNRADI VIEIRA, F. G., DA SILVA CAMPELO BORGES, G., COPETTI, C., D. A. VALDEMIRO GONZAGA, L., COSTA NUNES, E., & FETT, R. Atividade e conteúdo de antioxidantes polifenólicos no fruto inteiro, carne e casca de três maçã cultivares. Archivos Latinoamericanos de Nutrición, v.59, p.101–106, 2009.
- LAJOLO, F. M.; MENEZES, E. W. Tabela Brasileira de Composição de 23 Alimentos. Projeto Integrado de Composição de Alimentos. 2000.
- LIMA, L. M. O.; MAGALHÃES, M. M. A.; MEDEIROS, M. F. D.; ALSINA, O. L. S. **Utilização de fibras obtidas do bagaço de frutas tropicais no enriquecimento de biscoitos regionais**. In: CONGRESSO BRASILEIRO DE CIÊNCIA E TECNOLOGIA DE ALIMENTOS, 18., 2002,
- LIMA, V. P. M. S. Botânica do cajueiro. In: LIMA, V. P. M. S. (Org.). **A cultura do cajueiro no Nordeste do Brasil.** Fortaleza: BNB/ETENE, 1988a. p. 15-61.

- LIMA, B.N.B.; LIMA, F.F.; TAVARES, M.I.B.; COSTA, A.M.M.; PIERUCCI, A.P.T.R. **Determinação da composição centesimal e caracterização de farinhas de sementes de frutas.** Food Chemistry, v. 151, p. 293–299, 2014.
- LIMA, J. R. Caracterização físico-química e sensorial de hambúrguer vegetal elaborado à base de caju. Ciência e Agrotecnologia, Lavras, v. 32, n. 1, p. 191-195, 2008.
- LÓPEZ-MARCOS, M. C.; BAILINA, C.; VIUDA-MARTOS, M.; PÉREZ-ALVAREZ, J. A.; FERNÁNDEZ-LÓPEZ, J. **Propriedades das Fibras Alimentares Agroindustriais Coprodutos como fonte de alimentos enriquecidos com fibras.** Food Bioprocess Technology, v.8, n.12, p. 2400–2408, 2015.
- LOUSADA-JÚNIOR, J.E.; COSTA, J.M.C; NEIVA, J.N.M; RODRIGUEZ, N.M. Caracterização físico-química de subprodutos obtidos do processamento de frutas tropicais visando seu aproveitamento na alimentação animal. Revista Ciência Agronômica, v.37, p.70-76, 2006.
- MAIA, S. M. P. C. Aplicação da Farinha de Maracujá no Processamento do Bolo de Milho e Aveia Para Fins Especiais. Mestrado em Tecnologia de Alimentos. Universidade Federal do Ceara- Fortaleza 2007.
- MARQUES, L. F.; COSTA, T. L.; MOURA, R. L.; COSTA, A. M. N. M.; CHAVES, C. G.; FREITAS, R. M.; ROCHA, E. M. F. F.; MOURA, L. B. **Produção e aceitação sensorial de pão tipo hambúrguer fabricado com adição de 10% de farinha do bagaço de caju.** In: JORNADA NACIONAL DA AGROINDÚSTRIA, 3., 2008. Resumos... Bananeiras : [s.n.], 2008.
- MELONI, P.L.S., Manual de produção de Frutas Desidratadas, Instituto de Desenvolvimento da Fruticultura e Agroindústria Frutal/ Sindicato dos Produtores de frutas do Estado do Ceara Sindifruta, 2006.
- MELO, M.L.P.; MAIA, G.A.; SILVA, A.P.V.; OLIVEIRA, G.S.F.; FIGUEIREDO, R.W. CARACTERIZAÇÃO FÍSICO-QUÍMICA DA AMÊNDOA DA CASTANHA DE CAJU (Anacardium occidentale L.) CRUA E TOSTADA. Ciênc. Tecnol. Aliment. [online]. 1998, vol.18, n.2, pp.184-187. ISSN 0101-2061.
- MENRAD, K. Mercado e comercialização de alimentos funcionais na Europa. Revista de Engenharia de Alimentos, v. 56, p. 181-188, 2003.
- MINISTÉRIO DA SAÚDE. RDC nº 360, de 23 de dezembro de 2003. **Regulamento Técnico sobre Rotulagem Nutricional de Alimentos Embalados, tornando obrigatória a rotulagem nutricional.** Diário Oficial da União da República Federativa do Brasil, Brasília, DF, 23 dez. 2003.
- MORENO, J. S. Obtenção, caracterização e aplicação de farinha de resíduos de frutas em cookies. Itapetinga, Bahia-Brasil, 2016.

- MOSCATTO, J. A; PRUDÊNCIO\_FERREIRA, S. H; HAULY, M. C. O. **Yacon e inulina com ingredientes na formulação de bolo de chocolate**. Tecnologia de alimentos, Campinas, v.24, n.4, out./dez, 2004.
- MOTHÉ, C. G.; AMARAL,P. S. T. Revestimento fenólicos de blendas LCC/poliéster para cerâmicos: parâmetros cinéticos. Revista analytica, n. 11, p. 40-45, 2004.
- D. C. Tecnologia e processamento de frutos e hortaliças / (organizadores).Natal: IFRN, 2015.
- OLIVEIRA, L. G. L. Integração da cadeia produtiva do agronegócio do caju ao desenvolvimento sustentável. 2009.'
- OLIVEIRA, F. I. P. Influência do pré-tratamento ultrassom e desidratação osmótica na secagem, cor, textura e enzimas do mamão formosa. Fortaleza, 2014.
- OLIVEIRA, J. E. D.; MARCHINI, J. S. Ciências nutricionais. 2 ed. São Paulo: Sarvier; 2008. p.107-21.
- PINHO, L. X. Aproveitamento do resíduo do pedúnculo de caju (*Anacardium occidentale L*) para alimentação humana. Pós-graduação em Ciência e Tecnologia de Alimentos Fortaleza, 2009.
- RAMOS, L. S. N; LOPES, J. B.; FIGUEIREDO, A. V.; FREITAS, A. C.; FARIAS, L. A.; SANTOS, L. S.; SILVA, H. O. **Polpa de caju em rações para frangos de corte na fase final: desempenho e característica da carcaça**. Revista Brasileira de Zootecnia, v. 35, n. 3, p. 804-810, 2006..
- SALINAS, R. D. **Alimentos e nutrição à bromatologia**. Porto Alegre: Artmed, 2002 ou 2008. p. 278.
- SANDERS, M. E. Visão geral dos alimentos funcionais: ênfase em bactérias de **probiotcos**. International Dairy journal, amsterdam, v.8,n. 5, mai, p. 341-347, 1998.
- SANTANA, M. F. S.; SILVA, I. C. Elaboração de biscoitos com resíduo da extração de suco de caju. Belém: Embrapa Amazônia Oriental, 2008. 4 p. (Embrapa Amazônia Oriental. Comunicado técnico, 214).
- SANTOS, A. C. Avaliação do uso da farinha de casca da manga tommy atkins na reologia da farinha de trigo e na aceitabilidade do pão de forma. Campo Mourão 2013
- SERRANO, L. A. L.; PESSOA, P. F. A. P.; Aspectos econômicos da cultura do cajueiro; 2ª edição Embrapa Agroindústria Tropical; Sistema de Produção, 1 ISSN 1678-8702 Julho/2016.
- SILVA, E. S.; OLIVEIRA, J.; MACHADO, A. V.; COSTA, R. O. **Secagem de Grãos e Frutas** Revisão Bibliográfica , **secagem e armazenamento.** Viçosa: Aprenda Fácil, 1999. p. 145. Maio de 2004.

- SILVA, J. M; **Secagem de pedaços cúbicos de goiaba em Leito de Jorro**. (Tese de Doutorado), Campina Grande-PB: Universidade Federal de Campina Grande, 2010. p.110.
- SILVA, L.C. **Secagem de grãos**. UFES. Campus de Alegre: ES Boletim Técnico: AG: 04/05. 2005.
- SIQUEIRA, A. M. A.; BRITO, E. S. Aproveitamento do bagaço do caju para alimentação humana e utilização em outras indústrias de alimentos. 2013. Disponível em:<a href="http://www.ceinfo.cnpat.embrapa.br/arquivos/">http://www.ceinfo.cnpat.embrapa.br/arquivos/</a> Acesso em: 25 fer. 2019.
- SOARES, R. M.; VIEIRA, E. L.; FRANCISCO, A. S.; ROBERTA M. **Fibras alimentares: históricos classificações e efeitos fisiológicos.** Ln: simpósio Sul-Bralsileiro de alimentação e nutrição, Florianópolis: UFSC, 2000.
- SOUZA, A. M. S.; PEREIRA, R.A.; YOKOO, E.M.; LEVY, R.B.; SICHIERI, R.. **Alimentos mais consumidos no Brasil**: Inquérito Nacional de Alimentação 2008-2009. Rev Saúde Pública, v.47, n.1 Supl, p.190S-1909S. 2013.
- SOUZA, R.R.; OLIVERIA, T.W.; SANTOS, I.H.V.S.; AMARO, E.L.; SILVA, D.Q. **Desenvolvimento de bolo de cenoura enriquecido com fibras.** Rev. Saber Científico, v.5, n.2, p.48-56, 2016.
- TARAZONA-DÍAZ, M. P. & AGUAYO, E Avaliação de subprodutos de produtos minimamente processados produtos para reutilização como compostos bioativos. Food Science and Technology International, v. 19, n.5, p. 439-446, 2013.
- THOMAZ, A.M.A.U.; SOUZA, E.C.; LIMA, A.; LIMA, R.M.T.; FREITAS, P.A.P.; SOUZA, M.A.M.; THOMAZ, J.C.A.; CARIOCA, J.O.B. Elaboração e aceitabilidade de produtos de panificação enriquecidos com semente de goiaba. Holos, v.5, n.30, p. 199-210, 2014.
- TREICHEL, M.; KIST, B. B.; SANTOS, C. E. DOS; CARVALHO, C. DE; BELING, R. R. **Anuário brasileiro da fruticultura 2016**. Santa Cruz do Sul. Editora Gazeta Santa Cruz, 88 p. 2016.
- UCHOA, A. M., COSTA, J. C., MAIA, G. A., SILVA, E. M. C. S., CARVALHO, A. F. F. U., & MEIRA, T. R. **Parâmetros físico-químicos, teor de fibra bruta e alimentar de pós alimentícios obtidos de resíduos de frutas tropicais**. Segurança Alimentar e Nutricional, 15(2), 58-65. 2008.
- VARGAS, J. H. L.; LÓPEZ, J. F; ÁLVAREZ, J. A. P.; VIUDAMARTOS, M. Propriedades químicas, físico-químicas, tecnológicas, antibacterianas e antioxidantes do pó de fibra alimentar obtido a partir de coprodutos de maracujá-amarelo (Passiflora edulis var. Flavicarpa) Food Research International, v. 51, p. 756–763, 2013.
- VIDAL, M. F. **Cajucultura Nordestina continua em declínio**. Caderno setorial; Escritório Técnico de Estudos Econômicos do Nordeste ETENE; Banco do Nordeste, ano 2, nº22. Dezembro/2017.

ZANATTA, C.L.; SCHLABITZ, C.; ETHUR, E.M. Avaliação físico-química e microbiológica de farinhas obtidas a partir de vegetais não conformes à comercialização. Alimentos e Nutrição, v.21, p. 459-468, 2010.

ZAVAREZE, E. R.; MORAES, K. S.; SALAS-MELLADO, M. L. M. **Qualidade tecnológica e sensorial de bolos elaborados com soro de leite.** Recebido para publicação em 11/2/2008

# Pesquisa de mercado para um novo produto

Esse teste é para avaliar o gral de aceitação de um novo produto a ser lançado no mercado (o bolo enriquecido com a farinha do resíduo do pedúnculo de caju). Assim solicito sua colaboração em responder o questionário abaixo ate o final. Desde já agradeço a sua preciosa colaboração.

Aluno: Eliakin Cassiano Gomes Quirino

### \*Obrigatório

#### 1. Idade?

Marcar apenas uma oval. Menos de 16 anos 16 a 30 anos 31 a 45 anos Acima de 45 anos

#### 2. Sexo? \*

Marcar apenas uma oval. Feminino Masculino

### 3. Escolaridade?

Marcar apenas uma oval.

Ensino fundamental incompleto
Ensino fundamental completo
Ensino médio incompleto
Ensino médio completo
Ensino superior incompleto
Ensino superior completo
Outro:

### 4. Profissão?

Marcar apenas uma oval.
Estudante
Autônomo
Empresário
Profissional da saúde
Profissional da educação
Funcionário público
Outro:

#### 5. Renda familiar mensal?

Marcar apenas uma oval.

Menos de 1 salário mínimo
Entre 1 a 2 salários mínimo
Entre 2 a 5 salários mínimo
Entre 5 a 10 salários mínimo
Acima de 10 salários mínimo

### 6. Possui algum tipo de enfermidade?

Marcar apenas uma oval.

Sim

Não

Se sim, qual?

Outro:

### 7. Costuma fazer dieta?

Marcar apenas uma oval.

Sim

Não

### 8.Consome bolo? \*

Marcar apenas uma oval.

Sim

Não

### 9. Qual a sua preferência de bolo?

Marcar apenas uma oval.

Comum

Chocolate

Cenoura

Leite

Outro:

### 10.Com que frequência você consome bolo

Marcar apenas uma oval.

1 a 2 vezes por dia

1 a 2 vezes por semana

1 a 2 vezes por mês

Outro:

### 11. Conhece o bolo enriquecido com a farinha do resíduo do caju?

Marcar apenas uma oval.

Sim

Não

12. O pedúnculo do caju é a parte carnosa do fruto, ao qual a mesma apresenta um alto valor nutritivo sendo riquíssimo em vitamina C, açucares, minerais. A farinha do bagaço do pedúnculo de caju e altamente rica em fibra alimentar. O consumo regular de fibras pode reduzir o risco de varias doença, tais como doenças cardiovasculares, câncer do cólon, obesidade, previne e melhora problemas de constipação, diminui o risco de hemorroidas e diverticulite e aumento da sensação de saciedade. Você consumiria um bolo enriquecido com a farinha do bagaço do pedúnculo do caju?

Marcar apenas uma oval.

Sim

Não

# 13. Em que peso/tamanho(embalagem) você prefere que seja comercializado?

Marcar apenas uma oval.

60 g

100 g

500 g

1000 g

# 14. Que preço você acharia justo para este produto?

Marcar apenas uma oval.

1,50 - 60 g

2,00 - 100 g

7,50 - 500,g

15,00 - 1000g

Outro:

# 15 Qual motivo levaria você a comprar este produto?

Marcar apenas uma oval.

Por apresentar um alto valor nutritivo

Por curiosidade

Não compraria

Outro: