

UNIVERSIDADE FEDERAL DA PARAÍBA CENTRO DE CIÊNCIAS AGRÁRIAS CURSO DE GRADUAÇÃO EM ZOOTECNIA TRABALHO DE CONCLUSÃO DE CURSO

NITROGÊNIO UREICO NO LEITE (NUL) E NO PLASMA (NUP) DE VACAS LEITEIRAS SUPLEMENTADAS COM NÍVEIS CRESCENTES DE PROTEÍNA BRUTA NO CONCENTRADO

THAIANO IRANILDO DE SOUSA SILVA

AREIA – PB FEVEREIRO– 2017

THAIANO IRANILDO DE SOUSA SILVA

NITROGÊNIO UREICO NO LEITE (NUL) E NO PLASMA (NUP) DE VACAS LEITEIRAS SUPLEMENTADAS COM NÍVEIS CRESCENTES DE PROTEÍNA BRUTA NO CONCENTRADO

Trabalho de conclusão de curso apresentado ao Colegiado do curso de Zootecnia do Centro de Ciências Agrárias da Universidade Federal da Paraíba, como parte dos requisitos para obtenção do título de Zootecnista.

Orientador: Prof. Dr. Severino Gonzaga Neto

AREIA – PB FEVEREIRO – 2017

THAIANO IRANILDO DE SOUSA SILVA

NITROGÊNIO UREICO NO LEITE (NUL) E NO PLASMA (NUP) DE VACAS LEITEIRAS SUPLEMENTADAS COM NÍVEIS CRESCENTES DE PROTEÍNA BRUTA NO CONCENTRADO

Orientador: Prof. Dr. Severino Gonzaga Neto
Universidade Federal da Paraíba / Centro de Ciências Agrárias
Departamento de Zootecnia Presidente da banca examinadora (Orientador)
Examinadora: Profa. Dra. Carla Aparecida Soares Saraiva
Universidade Federal da Paraíba / Centro de Ciências Agrárias
Departamento de Zootecnia
Membro da banca examinadora

AREIA – PB FEVEREIRO – 2017

Programa de Pós-graduação em Zootecnia Membro da banca examinadora

DEDICO

Aos meus pais Iranildo Otacílio da Silva e Maria Dalva Donato de Sousa Silva, por terem me dado o dom da vida, por todo o amor e carinho de todos os dias e por me ensinarem que para viver bem nessa vida é preciso fazer o bem e transmitir o bem. E que, amor, honestidade, humildade e muita fé em Deus, me levarão aonde almejo chegar...

E aos meus irmãos Tairone Iranildo de Sousa Silva, Talone Iranildo de Sousa Silva, Tayslan Iranildo de Sousa Silva, Thawan Iranildo de Sousa Silva, Bruno Luã da Silva Galvão e aos dois anjinhos que estão lá no céu, por ser o grande orgulho da minha vida, a minha família. Onde me dão forças para sempre seguir em frente e em busca dos meus sonhos, estando sempre do meu lado para comigo me consolar nos momentos difíceis e celebrar os que me trazem alegria. Amo vocês!

AGRADECIMENTOS

Agradeço primeiramente à Deus pela grande oportunidade de me fazer chegar até aqui, por me abençoar todos os dias da minha vida, me dando forças para que eu não fraqueje nos momentos difíceis e me tornar mais forte a cada obstáculo em meu caminho para que eu possa com amor, saúde, honestidade e humildade correr atrás dos meus sonhos...

Aos meus pais Iranildo Otacílio da Silva e Maria Dalva Donato de Sousa Silva, por serem os maiores professores da minha vida, me ensinando tudo o que preciso para me tornar uma pessoa ainda melhor a cada dia que se passa.

À todos os meus irmãos Tairone, Talone, Tayslan, Thawan, Bruno e aos 2 anjinhos que estão no céu, pela grande força e incentivo para que eu pudesse chegar até aqui.

Aos meus amigos de quarto Alberto e Islaumax pela convivência diária no eterno B16.

Ao meu amigo Ítalo Araújo, de anos de amizade, parceria e conselhos para que eu nunca desistisse de correr atrás dos meus sonhos.

À toda turma de Zootecnia 2012.1 pela convivência dos quase 5 anos em que estivemos na graduação.

Aos "parêa" Alberto, Pedro, Vinicius e Silas pela grande união que tivemos durante essa nossa caminhada em busca do diploma de Zootecnista.

À Universidade Federal da Paraíba do centro de Centro de Ciências Agrárias por me acolher durante toda a graduação.

Ao Departamento de Zootecnia por todo o suporte que eu precisei para a minha formação.

À todos os professores que contribuíram transmitindo seus conhecimentos para a minha formação profissional e social.

Ao meu orientador Dr. Severino Gonzaga Neto pela orientação e oportunidade de ter trabalhado na área em que almejo seguir.

Aos Drs Patrícia Emília Naves Givisiez, Edilson Paes Saraiva, Severino Gonzaga Neto e Carla Aparecida Soares Saraiva por terem me orientado nos grupos de pesquisa durante o curso de graduação.

E a todos os amigos da UFPB que aqui conheci que contribuíram para minha formação profissional.

Você é do tamanho do seu sonho! Seja forte em cada momento difícil em que se encontrar, porque a caminhada não é fácil e nem nunca será, mas, existe um Deus que está sempre contigo Lhe dando forças para superar qualquer dificuldade e ao mesmo tempo Te tornando mais forte para seguir em frente. Ore, espere e confie. Louvado e glorificado seja o nome do Senhor Jesus Cristo! Amém.

(Thaiano Sousa)

SUMÁRIO

	Página
RESUMO	xii
ABSTRACT	xiii
1. INTRODUÇÃO	1
2. REVISÃO DE LITERATURA	2
2.1 Exploração das plantas forrageiras tropicais para produção de ruminantes	2
2.2 Proteína bruta na alimentação de vacas em lactação mantidas em pastagem (tropical3
2.3 Nitrogênio ureico no leite (NUL) e nitrogênio ureico no plasma (NUP)	4
3. MATERIAL E MÉTODOS	5
3.1 Local do experimento e período experimental	6
3.2 Manejo da pastagem	6
3.3 Amostragem e controle leiteiro	7
3.4 Coleta de sangue	7
3.5 Análises laboratoriais	8
3.6 Análises estatísticas	8
4. RESULTADOS E DISCUSSÃO	8
5. CONCLUSÕES	12
C DEFEDÊNCIAC	10

LISTA DE TABELAS

Tabela 1. Composição dos ingredientes e concentrações de PB dos concentrados com base na	
MS	7
Tabela 2. Composição do leite de vacas suplementadas com níveis crescentes de proteína	
bruta no concentrado	9
Tabela 3. Nitrogênio ureico no leite (NUL) e no plasma (NUP) de vacas leiteiras em pastagen	n
de capim tanzânia suplementadas com concentrados contendo diferentes teores de proteína	
bruta1	1

LISTA DE ABREVIATURAS E SIGLAS

%MS – porcentagem de matéria seca

APTA - AM – Agência Paulista de Tecnologia do Agronegócio de Alta Mogiana

CHO – carboidratos

CNF - carboidrato não fibroso

CNFD - carboidrato não fibroso digestível

CV% - coeficiente de variação em porcentagem

EE – extrato etéreo

EED – extrato etéreo digestível

EMBRAPA – Empresa Brasileira de Pesquisa Agropecuária

FDA – fibra em detergente ácido

FDN – fibra em detergente neutro

FDND – fibra digestível não degradável

GOR – gordura

h – hectare

ha - hectare

LACT - lactose

LAPROVA – Laboratório de análises de produtos de origem vegetal e animal

LIGN – lignina

mL – miligramas

MS - matéria seca

N – nitrogênio

N/ha/ciclo - nitrogênio por hectare por cada ciclo de pastejo

NDT – nutrientes digestíveis totais

N-NH3 – nitrogênio amoniacal

NUL – nitrogênio ureico no leite

NUP – nitrogênio ureico no plasma

PB – proteína bruta

PBD – proteína bruta digestível

PDR – proteína degradável no rúmen

PROT – proteína

SAS – Statistical Analisys System

ST – sólidos totais

t – toneladas

t/ha - toneladas por hectarea

UA/ha – unidade animal por hectarea

LISTA DE SÍMBOLOS

- '-minuto
- " segundo
- % percentual
- °C graus celsius
- Kg-quilograma
- m metros
- mg/dL miligramas por decilitro
- mm milímetros

NITROGÊNIO UREICO NO LEITE (NUL) E NO PLASMA (NUP) DE VACAS LEITEIRAS SUPLEMENTADAS COM NÍVEIS CRESCENTES DE PROTEÍNA BRUTA NO CONCENTRADO

RESUMO – O sistema de produção à pasto é uma forma alternativa de baixo custo na produção de bovinos leiteiros, podendo-se fazer uso da suplementação concentrada para melhor atendimento das exigências nutricionais dos animais. Assim, objetivou-se avaliar a eficiência da utilização de níveis de proteína bruta no concentrado (12; 14; 16 e 18% com base na matéria seca) para vacas leiteiras em pastejo. O experimento foi conduzido no Polo Regional de Desenvolvimento Tecnológico dos Agronegócios da Alta Mogiana, em Colina-SP. O experimento foi realizado com 16 vacas leiteiras mestiças Holandês-Zebu, no terço inicial de lactação, mantidas em um quadrado latino 4x4 de pastagem de capim cv. Tanzânia (Panicum maximum), fertilizadas e irrigadas, manejadas sob lotação intermitente. Não houve influência (P>0,05) nos teores de gordura, proteína, lactose, sólidos totais e extrato seco desengordurado do leite com o aumento dos níveis crescentes de proteína bruta (12; 14; 16 e 18%) no concentrado. O nitrogênio ureico do leite (NUL) e nitrogênio ureico no plasma (NUP), tiveram efeito linear crescente (P<0,05) nas dietas de acordo com o aumento dos níveis de proteína bruta (PB), em que o nível com 18% de PB obteve valores acima do recomendado pela literatura, sinalizando excesso de PB na dieta. O nível com 14% de PB na dieta apresentou o melhor uso do nitrogênio dietético pelos animais, reduzindo o custo da dieta e, consequentemente, otimizando a produção do animal.

Palavras-chave: eficiência do nitrogênio, parâmetro sanguíneo, produção à pasto, produção de leite, suplementação proteica

UREIC NITROGEN IN MILK AND PLASMA (NUP) OF DAIRY COWS SUPLEMENTED WITH GROSS LEVELS OF NON-CONCENTRATED CRUDE PROTEIN

ABSTRACT - The pasture production system is an alternative low cost alternative in the production of dairy cattle and it is possible to use concentrated supplementation to better meet the nutritional requirements of the animals. Thus, the objective of this study was to evaluate the protein efficiency use in different crude protein contents at concentrate 12; 14; 16 and 18% based on dry matter (DM) in the dairy cows diet. The experiment was conducted at the Regional Agribusiness Technological Development Hub Alta Mogiana, in Colina-SP. The experiment was carried out with 16 holstein-Zebu crossbred dairy cows, in the initial lactation third, maintained in a 4x4 latin square grass pasture cv. Tanzania (*Panicum maximum*), fertilized and irrigated, managed under intermittent stocking. There was no significant difference (P>0.05) In the levels of fat, protein, lactose, total solids and dry defatted milk extract with increasing levels of crude protein (12; 14, 16 and 18%) in the concentrate supplied to dairy cows under grazing. The values of milk urea nitrogen (NUL) and plasma urea nitrogen (NUP) obtained, had a linear increasing effect (P<0.05) in the diets according to the crude protein increase (CP) levels, where Level with 18% of CP obtained values higher than recommended by the literature, signaling excess CP in the diet. The level with 14% CP in the diet showed the best use of dietary nitrogen by the animals, reducing the cost of the diet and, consequently, optimizing the production of the animal.

Key words: blood parameter, milk production, nitrogen efficiency, pasture production, protein supplementation

1. INTRODUÇÃO

O Brasil tem um grande potencial de produção de leite em todo o seu território utilizando gramíneas tropicais, porém os índices de produção de leite dos rebanhos ainda são baixos. Tal fato está relacionado a fatores como, o baixo nível tecnológico aplicado nos sistemas de produção, a ineficiência dos manejos realizados, principalmente o manejo nutricional dos animais. (SANTOS et al., 2006).

A utilização de sistemas de produção a pasto apresenta-se como alternativa de baixo custo frente à diversos outros sistemas de produção de leite bovino. Contudo, vacas leiteiras com produção diária acima de 10 kg não tem suas exigências nutricionais atendidas somente à pasto, necessitando de suplementação concentrada para que o animal possa expressar todo seu potencial geneticamente produtivo (SANTOS et al., 2003).

Dentre os fatores de importância na prática de suplementação concentrada, o balanceamento de dietas requer bastante atenção, pois tem como objetivo adequar os níveis nutricionais em quantidade e qualidade, principalmente em proteína, às exigências nutricionais dos animais (LIMA et al., 2002).

Contudo, quando se trata de produção de leite de vaca a proteína é o nutriente de maior demanda nas dietas, já que dependendo da sua qualidade e disponibilidade pode melhorar ou comprometer o desempenho produtivo dos animais (BRODERICK, 2003). O metabolismo do animal passa por vários processos metabólicos que mudam constantemente a estrutura química do alimento ingerido para absorver seus nutrientes, tornando complexa a formulação de uma dieta proteica em que o animal tenha um melhor aproveitamento desse nutriente essencial para a produção microbiana e posteriormente a produção de leite.

Desta forma, fluídos corporais como o leite e o sangue apresentam-se como parâmetros importantes e práticos na avaliação de dietas via status nutricional, pois o resultado do metabolismo dos alimentos ingeridos pelo o animal, em que irá conter as propriedades químicas advindas da qualidade e quantidade dos nutrientes podem ser utilizadas, principalmente no monitoramento de valores de nitrogênio ureico do leite (NUL) e nitrogênio ureico do plasma (NUP), que permite avaliar a adequação proteica da dieta consumida pelas vacas (DANÉS, 2010).

Diante disso, o excesso ou déficit de nutrientes da dieta, podem comprometer a produção de leite. No caso da proteína, quando se tem um déficit, as exigências nutricionais do animal não são atendidas como também seu potencial de produção de leite. Por outro lado, o excesso deste nutriente irá promover no animal maior gasto energético para excretar o

excedente da proteína na forma de ureia via urina e leite em que essa energia poderia ter sido utilizada para produção de leite.

Assim, tem-se como objetivo identificar qual nível de proteína bruta no concentrado tem uma melhor eficiência do nitrogênio na suplementação de vacas em lactação sob pastejo de capim Tanzânia com suplementação concentrada.

2. REVISÃO DE LITERATURA

2.1 Utilização do Capim Tanzânia em pastejo para produção de ruminantes

O grande avanço das tecnologias e da intensidade de produção de leite em pastagens tropicais tem sido alcançado por resultados de trabalhos que destacam a capacidade para elevadas produções de leite por área, investimentos moderados em instalações e custos de produção competitivos como fatores determinantes para a opção por esse sistema (SANTOS et al., 2011).

As plantas forrageiras tropicais são muito utilizadas em sistemas de produção a pasto por apresentarem uma boa composição nutricional, contendo cerca de 56 a 65% de fibra em detergente neutro (FDN), 13 a 22% de PB, 2% de extrato etéreo (EE) e 8% de cinzas (CZ), contêm apenas 3 a 21 % de carboidratos não fibrosos (CNF). Estes teores baixos de CNF certamente limitam a eficiência do uso de boa parte da proteína degradada no rúmen (PDR) (NRC, 2001).

O capim-Tanzânia (*Panicum maximum*) teve sua origem na África, e foi lançado no Brasil em 1990 pela EMBRAPA Gado de Corte para uso comercial. Apresenta-se como uma planta com crescimento cespitoso, apresenta de valor nutritivo, adequada produção de matéria seca por área para animais em pastejo e uma altura média para colheita ou desfolha de 1,30 m. Contém lâminas e bainhas sem pilosidade, de forma decumbente, com aproximadamente 2,6 cm de largura e colmos arroxeados. As inflorescências são panículas com espiguetas arroxeadas sem pilosidade com florescimento entre os meses de abril e maio a depender da região onde está sendo cultivado (GONÇALVES & BORGES, 2006). Apresenta uma maior resistência às cigarrinhas das pastagens quando comparado aos capins Colonião (*Panicum maximum*) e Tobiatã (*Panicum maximum*) (JANK, 1994). Tem um elevado potencial de produção anual (33 t/ha de matéria seca total e 26 t/ha de matéria seca de folhas) onde apresenta um bom valor proteico contendo 9 a 12,7% de proteína bruta em folhas e hastes, respectivamente (SAVIDAN et al., 1990).

Em regiões onde se tem uma alta precipitação pluviométrica ou se trabalha com irrigação e com o uso de adubação nitrogenada, estima-se que o potencial de produção de MS seja superior a 85 t ha ano, que faz com se tenha uma maior resposta de produção animal no sistema de produção (ALMEIDA et al., 2011).

Em pastagens de capim tanzânia em sistemas de pastejo com lotação contínua e a taxa de lotação variável, a oferta de forragem que mais se condiz para a associação entre ganho médio diário, ganho por hectare e dinâmica da pastagem encontra-se na faixa de oferta de forragem de 7 a 11% do peso vivo (BARBOSA et al., 2006).

2.2 Proteína bruta na alimentação de vacas em lactação mantidas em pastagem tropical

O excesso de PB na dieta tem um impacto direto no custo de produção da propriedade, reduzindo assim a margem de lucro em virtude do alto custo dos suplementos proteicos e da baixa eficiência de utilização do nitrogênio em dietas com alto teor de PB (BRODERICK, 2003). Além de aumentar a excreção de nitrogênio no meio ambiente e uma elevação no custo de produção, o excesso de PB da dieta diminui a eficiência dos animais em aproveitar melhor os nutrientes, onde parte da energia que seria utilizada para a produção de leite é usada para excreção de nitrogênio via urina. A cada grama de N excretado, o animal gasta 13,3 kcal de energia digestível (BRODERICK, 2003).

Resultados mostram que o nível de proteína no concentrado para vacas leiteiras mantidas em pastagens tropicais, adubadas e manejadas adequadamente, juntamente com uma suplementação com concentrado contendo 8,7% PB, resultaram em dietas com 15,3 a 15,7% de PB na MS, suficiente para atender as necessidades de proteína para vacas produzindo cerca de 20 litros de leite/dia com maior eficiência na utilização de nitrogênio (DANÉS et al., 2013).

Voltolini et al. (2008) avaliaram três níveis de PB (17,3; 21,2 e 25% na MS) no concentrado, trabalhando com vacas leiteiras mantidas em pastagem de capim-elefante e não encontraram efeito dos tratamentos sobre a produção e o rendimento de sólidos totais no leite.

Pereira et al. (2009) avaliaram o efeito da utilização do concentrado com diferentes teores de PB (15,2; 18,2 ou 21,1%) em dietas para vacas mestiças em lactação sob pastejo rotacionado de capim-elefante, e não observaram diferenças entre os tratamentos, mas indicou o nível de 15,2% PB no concentrado para dietas de vacas leiteiras, pois esse nível se mostrou com o melhor aproveitamento do nitrogênio dietético para vacas produzindo em média 20kg de leite por dia.

Vacas leiteiras mantidas em pastagens de capim elefante com 12% de PB na MS, com produções diárias em torno de 18,5 kg de leite, não responderam a níveis de PB na matéria natural do concentrado superiores a 15,8% (VOLTOLINI et al., 2010).

2.3 Nitrogênio ureico no leite (NUL) e nitrogênio ureico no plasma (NUP)

A proteína da dieta sofre degradação no rúmen e quando oferecida em excesso é convertida em amônia, absorvida para a corrente sanguínea, transformada em ureia no fígado e excretada pela urina ou reciclada para o trato digestivo superior. Na urina, a ureia é rapidamente transformada em amônia e volatilizada para o ambiente, podendo causar problemas ambientais.

Uma ferramenta utilizada para avaliar a adequação proteica da dieta ingerida pelos animais é o monitoramento de valores de nitrogênio ureico no leite (NUL). O excesso de nitrogênio é transformado em ureia no fígado e levado pela corrente sanguínea até os rins, onde é excretado via urina ou reciclado pela parede ruminal e saliva. Por ser uma molécula pequena, rapidamente é passada para a glândula mamária através da corrente sanguínea (GUSTAFSSON &PALMQUIST, 1993), indicando excesso de nitrogênio dietético através de maiores teores de NUL ou indicando a baixa eficiência desse nutriente (BRODERICK &HUHTANEN, 2007).

Segundo Roseler et al. (1993) as concentrações de NUL poderiam ser utilizadas como estimativa para as concentrações de nitrogênio ureico no plasma (NUP), devido seu coeficiente de correlação entre NUP e NUL ser de 0,88. Jonker et al. (1998) também concordam com essa afirmativa.

Em um trabalho realizado em várias propriedades com vacas leiteiras mestiças se obteve resultados das análises do NUL onde os valores entre 10 e 16 mg/dL são indicados como normais, em que dietas proteicas dentro desses valores terão um melhor aproveitamento microbiano (JONKER, KOHN & ERDMAN, 1999).

Roseler et al. (1993) afirmaram que o nitrogênio plasmático é proveniente do nitrogênio amoniacal absorvido pela parede ruminal através da degradação proteica no rúmen, sendo assim, o principal contribuinte para a ureia plasmática. Quando ocorre o excesso da concentração de amônia no rúmen devido ao limite da capacidade de captura e utilização pelos os microrganismos ruminais, a mesma é absorvida pela parede do rúmen onde é carregada pela corrente sanguínea até o fígado, onde então, é transformada em ureia.

De acordo com Butler et al. (1996); Broderik & Clayton (1997), consideraram que os valores adequados de NUP para vacas em lactação estão entre 7 e 19 mg/dL. Valores dentro desse intervalo mostram a eficiência na utilização de nitrogênio, que resulta em indicadores do equilíbrio ruminal entre nitrogênio e energia. Valores entre 10 e 16 mg/dL são indicados como aceitáveis por Jonker et al.(1999).

Broderick (2003), trabalhando com vacas holandesas confinadas recebendo uma dieta com 16,7% de PB, apresentou valores de NUL de 11,9 e 12 mg/dL. Valores esses que se mostraram com uma melhor eficiência do uso da proteína dietética, otimizando o uso desse nutriente pelos animais para o seu melhor aproveitamento pelos microrganismos ruminais.

Signoretti et al. (2013) avaliaram níveis de suplementação em pastagem de capim tanzânia em vacas leiteiras mestiças e encontraram valores de NUL que variou de 14,72 a 16,79 mg/dL, e está dentro do intervalo das concentrações ideais de NUL. Voltollini et al. (2010) avaliaram vacas lactantes em pastejo de capim elefante recebendo suplementação concentrada, e encontraram valores de NUL dentro do normal entre 13,7% e 13,8% mg/dL.

Valores de NUL encontrados em por Signoretti et al. (2013) mostram-se mais eficientes em relação aos de Broderick (2003), geralmente o NUL sofre muita interferência de fatores como manejo dos animais, genética, período de lactação, clima e dieta muito diferentes além das possíveis variações dentro do rebanho, que faz com que a variação entre animais e entre experimentos seja muito grande que são atribuídos ao equilíbrio da proteína e dos teores de carboidratos da dieta.

Oliveira et al. (2014) avaliaram dois níveis de PB (14% e 18%) no concentrado em vacas leiteiras mestiças em pasto rotacionado de capim-tanzânia, independentemente do nível de concentrado e de PB, todos os valores de NUP analisados encontraram-se dentro da faixa normal, com variação de 13,02 a 15,96 mg/dL.

Danés et al. (2013) avaliaram níveis crescentes de PB (8,7%, 13,4% e 18,1%) no concentrado em vacas leiteiras mestiças em pastagens tropicas e encontraram valores de NUP entre 14,8 e 17,7mg/dL, que são valores considerados dentro do normal, onde promove um melhor aproveitamento microbiano.

3. MATERIAL E MÉTODOS

3.1 Local do experimento e período experimental

O experimento foi conduzido na Agência Paulista de Tecnologia do Agronegócio da Alta Mogiana (APTA-AM), localizado no município de Colina, no Estado de São Paulo (latitude de 20° 43′ 05″ S; longitude 48° 32′ 38″ W). O clima da região é do tipo AW (segundo classificação de Köppen), onde a pluviosidade do mês mais seco é inferior a 30 mm, a temperatura média do mês mais quente superior a 22°C e do mês mais frio superior a 18°C. As precipitações pluviais médias mensais, coletadas nesta unidade de pesquisa, durante os últimos anos foram 1222 (93,7% do total anual) e 82 mm (6,3%), de outubro a maio e de junho a setembro, respectivamente. O solo do local do experimento é classificado como Latossolo vermelho-escuro, fase arenosa, com topografia suave ondulada (EMBRAPA, 2006).

O período experimental teve duração de 84 dias, divididos em quatro subperíodos de 21 dias, sendo 14 dias de adaptação com sete dias de coletas. Foram utilizadas 12 vacas mestiças Holandês/Gir em lactação, com peso corporal inicial médio de 533,1 kg, agrupadas em blocos homogêneos de acordo com a produção de leite (PL inicial média de 24,5 kg), dias em lactação e paridade de lactação (primíparas/multíparas). Esses animais foram distribuídos em delineamento em quadrado latino 4 x 4.

Foram avaliados quatro níveis de proteína bruta (12; 14; 16 e 18%) com base na matéria seca do concentrado. O concentrado foi formulado à base de milho moído, farelo de soja e sal mineral, o qual foi fornecido na relação de 1 kg de matéria natural para cada 2,5 litros de leite produzido por dia, divididos em dois fornecimentos, às 6h e 16h, após as ordenhas diárias, segundo recomendações da Embrapa (2003).

3.2 Manejo da pastagem

Os animais foram mantidos em pastagem de *Panicum maximum* Jacq. cv. Tanzânia, constituído por 24 piquetes de 0,175 ha, que foram manejados sob o método de lotação intermitente. O período de ocupação dos piquetes foi de um dia, com 23 dias de descanso.

A pastagem foi adubada com 50 kg de N/ha/ciclo de pastejo (21 dias) após a saída do lote experimental do piquete pastejado, e desta forma visando permitir uma lotação de 8 UA/ha durante o período experimental. A adubação com outros nutrientes foi feita em função da análise de solo conforme proposto por Werner et al. (1997).

Tabela1. Composição dos ingredientes e concentrações de PB dos concentrados com base na MS

	Nível de PB no concentrado					
Ingredientes	T1	T2	Т3	T4		
	(12%)	(14%)	(16%)	(18%)		
Milho moído	87,6	82,4	77,4	72,4		
Farelo de soja	8,4	13,6	18,6	23,5		
Sal mineral	4,00	4,00	4,00	4,00		
Composição do concentrado						
Proteína bruta (%MS)	12,08	14,03	16,08	18,03		

Fonte: autor;

3.3 Amostragem e controle leiteiro

As vacas foram ordenhadas mecanicamente duas vezes ao dia, às 6h e às 16h, sendo a produção de leite registrada diariamente durante todo o período experimental, levando- se em consideração a produção do 17º ao 21º dia de cada período. A produção de leite foi corrigida para 3,5% de gordura (PLC) segundo fórmula de Sklan et al. (1992), onde PLC = (0,432 + 0,1625 × teor de gordura do leite) × kg de leite.

As amostras utilizadas para análise da composição do leite foram obtidas do 17° até o 21° dia de cada período experimental, sendo cada amostra proveniente das três ordenhas diárias (tarde do dia 1 com manhã do dia 2).

A coleta foi feita em tubo coletor de aproximadamente 100 mL contendo 2-bromo-2-nitropropano-1-3-diol, homogeneizada após 15 minutos e armazenado em geladeira a 15°C por 24h, quando se procederam as análises.

3.4 Coleta de sangue

As coletas de sangue foram realizadas no penúltimo e último (20° e 21°) dia de cada período onde foram coletadas amostras de sangue antes e 4 horas após o fornecimento matinal do concentrado, através de punção na veia coccígea e armazenadas a -18°C em tubos de ensaio a vácuo, contendo anticoagulante. Após a coleta do sangue, as amostras foram homogeneizadas por inversão, colocadas em isopor e imediatamente centrifugadas a 5.000 rotações por minuto (RPM) por 10 minutos para retirada do sobrenadante. Este será

acondicionado em eppendorf de 1,5 mL e congelado a – 10° C para posteriores de glicose e uréia plasmática.

3.5 Análises laboratoriais

As análises químicas do leite e concentrados foram realizadas no Laboratório de análise de produtos de origem vegetal e animal (LAPROVA), pertencentes à APTA - Alta Mogiana, localizado no município de Colina - SP.

Foram realizadas análises de gordura, proteína, lactose, sólidos totais, extrato seco desengordurado, por absorção infravermelha, utilizando-se equipamento Bentley 2000® (Bentley, 1995a) e o nitrogênio ureico no leite (mg/dL), pelo método enzimático espectrofotométrico no equipamento ChemSpeck 150® (Bentley, 1995b). As análises para a determinação do N-ureico no Plasma (NUP) foram realizadas por meio da utilização de kits comercias (Labtest Diagnóstica S.A.).

3.6 Análises estatísticas

Os dados do experimento foram submetidos à análise de variância e decomposição ortogonal da soma de quadrados de tratamento em efeitos de ordem linear, quadrática, e cúbica, com posterior ajuste de regressões lineares.

Todos os procedimentos estatísticos foram conduzidos por intermédio de programa SAS (Statistical Analisys System, SAS, 2010) adotando-se 0,05 como nível crítico de probabilidade.

4. RESULTADOS E DISCUSSÃO

Não houve diferença significativa (P>0,05) nas análises de gordura, proteína, lactose, sólidos totais e extrato seco desengordurado (Tabela 2) para os níveis de proteína da suplementação, que não influenciaram os teores dos componentes do leite das vacas em pastejo.

Tabela 2. Composição do leite de vacas suplementadas com níveis crescentes de proteína bruta no concentrado

Variável	Níveis de Proteína Bruta (%)				EPM	Valor de <i>P</i>	Equações	
	12	14	16	18	LIVI	valor de 1	Equações	
GOR ¹	3,60	3,74	3,66	3,62	0,096	0,9219	Y= 3,66	
PROT ²	3,13	3,16	3,12	3,13	0,024	0,7752	Y = 3,14	
LACT ³	4,40	4,43	4,46	4,42	0,036	0,6809	Y = 4,42	
ST^4	12,12	12,34	12,23	12,15	0,108	0,9781	Y= 12,21	
ESD ⁵	8,52	8,59	8,57	8,53	0,039	0,9512	Y = 8,56	

Fonte: autor; ¹GOR= Gordura; ²PROT= Proteína; ³LACT= Lactose; ⁴ST= Sólidos Totais; ⁵ESD= Extrato Seco Desengordurado; ns= não significativo a 5% de probabilidade; *= significativo a 5% de probabilidade

O principal constituinte do leite que sofre mais alteração em função da dieta é a gordura, onde nesse referido estudo não foi alterado em função dos níveis crescentes de PB, que pode ser explicado devido ao equilíbrio de volumoso: concentrado da dieta, onde se teve uma melhor fermentação dos microrganismos ruminais e posteriormente um equilíbrio na produção de acetato, butirato e propionato, que quando produzidos em sincronia mentem a gordura do leite com valores ideais do padrão da raça do animal.

Resultados semelhantes aos deste trabalho foram observados por Pereira et al. (2009), que não encontraram diferenças significativas na produção de leite e nos componentes: proteína, lactose e gordura, quando trabalharam com vacas leiteiras mestiças sob pastejo rotacionado de capim-elefante sendo suplementadas com dietas com níveis de PB (15%; 18% ou 21%), onde sugeriram que o nível de 15% PB no concentrado é o mais indicado na alimentação de vacas leiteiras.

Os tratamentos com os níveis de PB (12% e 14%) encontraram-se com os valores de NUL em média de 14,3% mg/dL, sinalizando valores dentro da faixa do recomendando por Jonker et al. (1999) que é entre 10 e 16 mg/dL. Valores que mostram que esses níveis de PB estão proporcionando um equilíbrio de energia: proteína da dieta, que faz com que houvesse uma maximização da quantidade de proteína metabolizável devido a estimulação da síntese de proteína microbiana.

Os valores de nitrogênio ureico do Leite (NUL) obtidos tiveram efeito linear crescente (P<0,05) nas dietas de acordo com o aumento dos níveis de PB (12%,14%,16% e 18%), onde pode ser visto na Tabela 3. Signoretti et al. (2013) avaliaram níveis de suplementação em pastagem de capim tanzânia em vacas leiteiras mestiças e encontraram valores de NUL que

variou de 14,72 a 16,79 mg/dL, resultados bem proximos com os deste experimento. Danés et al. (2010) avaliaram níveis crescentes de PB no concentrado de vacas em pastejo de capim elefante, obtiveram valores de NUL abaixo dos encontrados nesse estudo, onde ficaram entre 10 e 13 mg/dL.

O maior valor de NUL encontrado foi no tratamento com o nível de 18% PB, que foi de 17,4% mg/dL, valor que ultrapassa a faixa do ideal considerado por Jonker et al. (1999). Pode-se explicar que houve um excesso de nitrogênio amoniacal (N-NH₃) no rúmen, devido os microrganismos ruminais terem sintetizado o seu limite máximo de proteína microbiana para atender as suas exigências, que pode estar relacionado com a maior degradabilidade da proteína degradável no rúmen, já o excesso de amônia pode ser observado na excreção de ureia via leite. Formular dietas que atenda a exigência de proteína degradável no rúmen pelos microrganismos, otimiza o crescimento microbiano, reduz e excreção de nitrogênio e maximiza toda a utilização do nitrogênio pela vaca (KALSCHEUR et al., 2006).

Os resultados médios encontrados para concentração de nitrogênio ureico no plasma sanguíneo (NUP) de vacas mestiças podem ser observados na Tabela 3. Os valores obtidos tiveram efeito linear crescente (P<0,05) com o aumento dos níveis de proteína no concentrado que variaram entre 16 a 22mg/dL. Valores entre 7 e 19mg/dL são considerados dentro da faixa do normal para vacas leiteiras em lactação (BUTLER, 1996; HAYES et al., 1996; BRODERIK & CLAYTON, 1997).

Tabela 3. Nitrogênio ureico no leite (NUL) e no plasma (NUP) de vacas leiteiras em pastagem de capim Tanzânia suplementadas com concentrados contendo diferentes teores de proteína bruta

Tempo	Níve	is de PB no c	CV(%)	P-value		
	12	14	16	18	_	
	Nitrogênio ı	ureico no leit	e e no plasm	a (mg/dL)		
NUL	14,00	14,64	16,20	17,24	0,445	0,0000*
NUP	16, 34	19, 62	19, 17	22, 91	17, 29	0,0002

CV(%) - Coeficiente de variação; PB - Proteína Bruta; Equações: $^1Y = 7,0733+0,5633x$ ($R^2 = 97,8$), $^2Y = 0.9633x + 5.0600$ ($R^2 = 85,31$).

Oliveira et al. (2014) avaliaram dois níveis de PB (14% e 18%) no concentrado em vacas leiteiras mestiças em pasto rotacionado de capim-tanzânia e todos os valores de NUP analisados encontraram-se dentro da faixa normal, com variação de 13,02 a 15,96 mg/dL. Danés et al. (2013) avaliaram níveis crescentes de PB (8,7%, 13,4% e 18,1%) no concentrado em vacas leiteiras mestiças em pastagens tropicas e encontraram valores de NUP entre 14,8 e 17,7mg/dL, que são valores considerados dentro do normal, onde promove um melhor aproveitamento microbiano.

As concentrações de NUP apresentaram-se de forma crescente a medida que os níveis de PB aumentaram, onde os níveis com 12%, 14% e 16% estiveram dentro da faixa do normal recomendado por (BUTLER, 1996, HAYES et al., 1996; BRODERIK & CLAYTON, 1997), promovendo maior eficiência na utilização do nitrogênio da dieta.

A dieta com o nível de 18% de PB teve uma concentração de NUP 22mg/dL, que mostra um excesso PB na dieta, demostrando que o animal não conseguiu usar de forma eficiente esse nutriente e, posteriormente não foi utilizado para a síntese microbiana. Este foi absorvido pelo epitélio ruminal, na forma de amônia, e lançado na corrente sanguínea fazendo com que houvesse um aumento nos teores de nitrogênio ureico no plasma (NUP). Por isso, existe uma elevada correlação entre valores de N amoniacal no rúmen e NUP (HUHTANEN; HRISTOV, 2009). Os valores de NUL estão positivamente relacionados com os valores de NUP, devido ser via corrente sanguínea que a ureia sai do fígado para chegar até aos rins. Que, o nitrogênio proveniente da degradação no rúmen ao passar pela corrente sanguínea para chegar até a leite ou urina, seus valores são expressos na corrente sanguínea.

5. CONCLUSÕES

Recomenda-se um nível de 14% de PB na dieta de vacas leiteiras mestiças mantidas em pastagem de Capim Tanzânia, por ter apresentado um melhor uso do nitrogênio dietético pelo o animal, o que sinaliza que não está tendo déficit ou excesso de PB advindo da deita, com isso, o animal tem suas exigências corporais e produtivas atendidas, proporciona um menor custo da dieta e de produção para o produtor.

6. REFERÊNCIAS

ALMEIDA, A.C.S.; MINGOTI, R.; COELHO, R.D.; LOURENÇO, L.F. Simulação do crescimento do capim Tanzânia irrigado com base na unidade fototérmica, na adubação nitrogenada e na disponibilidade hídrica do período. **Acta Scientiarum. Agronomy**, v. 33, n. 2, p. 215-222, 2011.

ASSOCIATION OF OFFICIAL ANALYTICAL CHEMISTS - AOAC. **Official Methods of Analysis**, 15 ed. Arlington, V.A.: 1990.

BARBOSA, M.A.A.F.; NASCIMENTO JUNIOR, D.; CECATO, U. Dinâmica da pastagem e desempenho de novilhos em pastagem de capim-tanzânia sob diferentes ofertas de forragem. **Revista Brasileira de Zootecnia**, Viçosa, v. 35, n. 4, p. 1594-1600, fev. 2006.

BENTLEY. Bentley 2000: **Operator's manual**. Chasca. 1995a.

BENTLEY. Somacount 500: Operator's manual. Chasca. 1995b.

BRODERICK, G.; HUHTANEN, P. Application of milk urea nitrogen values. **In:** Cornell Nutrition Conference for Feed Manufacturers, 2007. Syracuse Proceedings... Syracuse, 2007. p. 185-193.

BRODERICK, G.A. Effects of varying dietary protein and energy levels on the production of lactating dairy cows. **Journal of Dairy Science**, Lancaster, v. 86, p. 1370-1381. 2003.

BRODERIK, A.G.; CLAYTON, M.K.A statistical evaluation of animal and nutrition factors influencing concentrations of milk urea nitrogen. **Journal of Dairy Science**, Champaign, v. 80, n. 11, p. 2964-2971, 1997.

BUTLER, W.R.; CALAMAN, J.J.; BEAM, S.W. Plasma and milk urea nitrogen in relation to pregnancy rate in lactating dairy cattle. **Journal of Animal Science**, Champaign, v. 74, n. 4, p. 858-865, 1996.

DANÉS, M.A.C. et al. Effect of protein supplementation on milk production and metabolism of dairy cows grazing tropical grass. **Journal of Dairy Science**, v. 96, n. 1, p. 407-419, 2013.

DANÉS, M.A.C. **Teor de proteína no concentrado de vacas em lactação mantidas em pastagens de capim elefante**. 117 f. Dissertação (mestrado). Escola Superior de Agricultura "Luiz de Queiroz", Piracicaba, 2010.

EMBRAPA. Alimentação no terço inicial da lactação. Sistema de produção de leite, Embrapa Gado de Leite. Versão eletrônica, Jan. 2003 Disponível em: . Acesso em: Maio 2016.">Maio 2016.

GONÇALVES, L.C.; BORGES, I. **Tópicos de forragicultura tropical**. Belo Horizonte: FEPMVZ, 2006. 117 p.

GUSTAFSSON, A.H.; PALMQUIST, D.L. Diurnal variation of rumen ammonia, serum urea, and milk urea in dairy cows at high and low yields. **Journal of Dairy Science**, Champaign, v.76, n. 2, p. 475-84, 1993.

JANK, L. Potencial do GêneroPanicum. **In:** SIMPÓSIO BRASILEIRO DE FORRAGEIRAS E PASTAGENS, Campinas, 1994. Anais... Campinas: Colégio Brasileiro de Nutrição Animal, 1994. p. 25-31.

JONKER J.S. et al. Using milk urea nitrogen to predict nitrogen excretion and utilization efficiency in lactating dairy cows. **Journal of Dairy Science**, Champaign, v. 81, p. 2681-2692, 1998.

JONKER, J.S.; KOHN, R.A.; ERDMAN, R.A. Milk urea nitrogen target concentrations for lactating dairy cows fed according to national research council recommendations. **Journal of Dairy Science**, Madison, v. 82, n. 6, p. 1261-1273, 1999.

LIMA, L.G., NUSSIO, L.G., GONÇALVES, J.R.S., SIMAS, J. M. C., PIRES, A.V., SANTOS, F.A.P. Fontes de amido e proteína para vacas leiteiras em dietas à base de capim elefante. **Scientia Agricola**. v. 59, n. 1, p. 19-27. 2002

NATIONAL RESEARCH COUNCIL. **Nutrient Requirements of Dairy Cattle**. 7th rev. ed. NationalAcademy Press, Washington, DC. 2001.

OLIVEIRA, A.G.; OLIVEIRA, V.S.; SANTOS, G.R.A.; SANTOS, A.D.F. Desempenho de vacas leiteiras sob pastejo suplementadas com níveis de concentrado e proteína bruta. **Semina: Ciências Agrárias**, Londrina, v. 35, n. 6, p. 3287-3304, nov./dez. 2014.

PEREIRA, F.R. et al. Protein contents for lactating dairy cows grazing elephant grass. **Braz. J. Vet. Anim. Sci.**, v. 61, p. 1139-1147, 2009.

ROBERTSON, J.B.; VAN SOEST, P.J. The detergent system of analysis and its applications to human foods. In: James WP, Theander O (eds), **The Analysis of Dietary Fiber in Food**, Chapter 9, 123 p., 158. Marcel Dekker, New York, 1981.

ROSELER, D.K.; FERGUSON, J.D.; SNIFFEN, C.J. et al. Dietary protein degradability effects on plasma and milk urea nitrogen and milk nonprotein nitrogen in Holstein cows. **JournalofDairy Science**, v. 76, p. 525-534, 1993.

SANTOS, F.A.P.; MARTINEZ, J.C.; VOLTOLINI, T.V.; NUSSIO, C.M.B Utilização da suplementação com concentrado para vacas em lactação mantidas em pastagens tropicais. In: SIMPÓSIO GOIANO SOBRE MANEJO E NUTRIÇÃO DE BOVINOS DE CORTE E LEITE, 5., 2003, Goiânia. **Anais...** Goiãnia: CBNA, 2003. P. 289-346.

SANTOS, F.A.P. Metabolismo de proteínas. **In:** Berchielli, T.T.; Pires, A.V.; Oliveira, S.G. Nutrição de Ruminantes. Jaboticabal: Fundação de Apoio a Pesquisa, Ensino e Extensão, 2006, p. 255-286.

SANTOS, F.A.P.; PEDROSO, A.M. Metabolismo de proteínas. **In:** BERCHIELLI, T.T.; PIRES, A.V.; OLIVEIRA, S.G. Nutrição de Ruminantes. Jaboticabal: FUNEP, p. 265-297, 2011.

SAS, SAS[®] User's guide: Statistics, Version 9.1 Edition. **SAS Institute Inc.**, Cary NC, USA, 2010.

SAVIDAN, Y. H.; JANK, L.; COSTA, J.C.G. Registro de 25 acessos selecionados de *Panicummaximum*. Campo Grande: Embrapa, CNPGC, 1990. 68p. (Embrapa.CNPGC. Documentos,44).

SIGNORETTI, Ricardo Dias; RESENDE, Flávio Dutra de; PESSIM, B.; SOUZA, Fernando Henrique Meneguello de; SOUZA, L. A. PRODUÇÃO E COMPOSIÇÃO DE LEITE DE VACAS MESTIÇAS SUPLEMENTADAS COM DIFERENTES NÍVEIS DE CONCENTRADO MANTIDAS EM PASTAGEM DE CAPIM TANZÂNIA IRRIGADA. **Boletim de Indústria Animal (Online)**, v. 70, p. 10-19, 2013.

SKLAN, D. et al. Fatty acids, calcium soaps of fatty acids, and cottonseeds fed to high yielding cows. **Journal of Dairy Science**, v. 75, n. 9, p. 2463-2472, 1992.

SNIFFEN, C.J. et al. A net carbohydrate and protein system for evaluating cattle diets. 2. Carbohydrate and protein availability. **Journal Animal Science**, v. 70, p. 3562-3577, 1992.

TEIXEIRA, R. M. A.; LANA, R. P.; FERNANDES, L. O.; OLIVEIRA, A. S.; QUEIROZ, A. C.; PIMENTEL, J. J. O. Desempenho produtivo de vacas da raça Gir leiteira em confinamento alimentadas com níveis de concentrado e proteína bruta nas dietas. *Revista Brasileira de Zootecnia*, Viçosa, MG, v. 39, n. 11, p. 2527-2534, 2010.

VAN SOEST, P.J., ROBERTSON, J.B., LEWIS, B.A. Methods for dietary fiber, neutral detergent fiber, and non starch polysaccharides in relation to animal nutrition. **Journal Dairy Science**, v. 74, n. 10, p. 3583-3597, 1991.

VOLTOLINI, T. V. et al. Metabolizable protein supply according to the NRC (2001) for dairy cows grazing elephant grass. **Sci. Agric.**, v 65, p.130-138, 2008.

VOLTOLINI, T.; SANTOS, F.A.P.; MARTINEZ, J.C.; IMAIZUMI, H.; CLARINDO, R.L.; PENATI, M.A. Milk production and composition of dairy cows grazing elephant grass under two grazing intervals. **Revista Brasileira de Zootecnia**, Viçosa, v. 39, p. 121-127, 2010.

WEISS, W. P. Energy prediction equations for ruminant feeds. **In:** CORNELL NUTRITION CONFERENCE FOR FEED MANUFACTURERS, 61., 1999, Ithaca. Proceedings... Ithaca: Cornell University, 1999. p. 176-185.

WERNER, J.C.; PAULINO, V.T.; CANTARELLA, H.; ANDRADE, N.O.; QUAGGIO, J.A. Forrageiras. **In:** RAIJ, B.van.; CANTARELLA, H.; QUAGGIO, J.A.; FURLANI, A.M.C. Recomendações de adubação e calagem para o Estado de São Paulo. 2: ed. Campinas: InstitutoAgronômico, 1997. p. 263-273. (BoletimTécnico, 100).