

UNIVERSIDADE FEDERAL DA PARAÍBA CENTRO DE CIÊNCIAS AGRÁRIAS CURSO DE GRADUAÇÃO EM ZOOTECNIA TRABALHO DE CONCLUSÃO DE CURSO

DESEMPENHO DE CABRAS EM LACTAÇÃO ALIMENTADAS COM DIFERENTES FONTES DE VOLUMOSOS

MICHEL ALVES DA SILVA

AREIA- PB FEVEREIRO DE 2017

MICHEL ALVES DA SILVA

DESEMPENHO DE CABRAS EM LACTAÇÃO ALIMENTADAS COM DIFERENTES FONTES DE VOLUMOSOS.

Trabalho de Conclusão de Curso apresentado ao Colegiado do Curso de Zootecnia no Centro de Ciências Agrárias da Universidade Federal da Paraíba, como parte dos requisitos para obtenção do título de graduado em Zootecnia.

Orientadora: Prof. Dr. Juliana Silva de Oliveira.

AREIA-PB

FEVEREIRO DE 2017

MICHEL ALVES DA SILVA

DESEMPENHO DE CABRAS EM LACTAÇÃO ALIMENTADAS COM DIFERENTES FONTES DE VOLUMOSOS.

Aprovado em: 08 de fevereiro de 2017

BANCA EXAMINADORA:

Prof. Dra Juliana Silva de Oliveira (DZ/CCA/UFPB)

ORIENTADORA

Prof. Dr Alexandre Fernandes Perazzo (DZ/CCA/UFPB)

EXAMINADOR

Dr. João Paulo de Farias Ramos (EMEPA-PB) EXAMINADOR.

À minha mãe, Marinele Alves, ao meu pai, José Albino, por sempre me educar, em demonstrar todo comprometimento, e dedicação, sempre buscando guiar meus passos, mim amparando em todos os momentos.

Ao meu irmão, Breno Alves, por estar sempre caminhando comigo, em todos os momentos, e sempre do meu lado em todas as circunstancias.

À minha esposa, Dayana Souza, por estar sempre me apoiando, procurando sempre a melhor alternativa de ajudar, e ter a honra e satisfação de compartilhar cada momento de minha vida ao seu lado.

E por fim, ao meu filho Kaique Alves, ao qual compartilho todo meu carinho, amor e imensa alegria, em poder ser pai, dessa benção, ao qual, agradeço todos os dias a Nosso Senhor Jesus Cristo, pela dadiva recebida.

Dedico

AGRADECIMENTOS

Primeiramente agradeço a Deus, por sempre estar me abençoando, por sempre me levar ao caminho certo, por nunca me desamparar, principalmente nos momentos de angustia e aflição, e também nos momentos de desânimo que passei nessa jornada, pelos ensinamentos depois das decepções e tombos que enfrentei. Obrigado por nunca deixar eu desistir, sempre me dando forças, agradeço também pela família que o Senhor me concedeu, família esta que, só tenho a agradecer por ser uma família linda, com saúde, alegre e sempre disposta a ajudar todos que a conhecem e sabem que nela podem confiar, e agradecer sempre ao senhor por me abençoar, colocando em meu caminho sempre pessoas boas, principalmente na minha trajetória acadêmica, enfim, muito obrigado.

Agradeço a minha mãe Marinele Alves da Silva, ao meu pai José Albino da Silva, ao meu irmão José Breno Alves da Silva, a minha esposa Maria Dayana Souza de Oliveira Alves, e a meu filho Kaique de Souza Oliveira Alves por serem a razão do meu viver, a base de tudo, e pela família abençoada que somos.

Agradeço a minha orientadora Professora Dr. Juliana Silva de Oliveira, pela oportunidade que me foi dada, confiança, todos os ensinamentos, contribuindo na minha formação acadêmica e profissional, e agradecer pela honra de ter a senhora como minha orientadora. Agradeço também a oportunidade pela qual o Professor Dr. Edson Mauro Santos, estar mim orientando, nessa etapa acadêmica, desde já meus sinceros agradecimentos.

Agradeço aos meus Co-orientadores, principalmente a João Paulo de Farias Ramos, pela imensa contribuição em minha vida, todos ensinamentos, toda ajuda necessária que me foi dada, e por sua amizade. Agradeço também a Wendel Pires Carneiro, um amigo que a universidade me concedeu, mas que a partir de agora, tenho certeza que vai ser um amigo pra toda vida, agradeço também pela ajuda que tive com você, em todos os momentos.

Agradeço aos meus colegas de curso, Vanderleia Alves, Wendel Pires, Natalia Souza, Aelson Fernandes, David Kleberson, Erick Paiva, Luciano Flavio, Thiago Moraes, Niedson Alves, Robson Oliveira. Agradeço aos colegas de alojamento Mateus Guimarães, Tiago Brás, Rodrigo Ferreira, Wagner Miranda. E também a todos os colegas de curso, que de uma forma ou outra contribuíram.

Agradeço por fim, a Empresa de Pesquisa Agropecuária da Paraíba (EMEPA), por abrir as portas para que o experimento fosse realizado, e aos funcionários por sempre estarem atuantes, ajudando no que fosse possível, agradeço a todos os funcionários envolvidos no experimento.

SUMÁRIO

LISTA DE TABELAS	VIII
RESUMO	IX
ABSTRACT	X
1. INTRODUÇÃO	1
2. REVISÃO DE LITERATURA	2
2.1 Caracterização da Região Semiarida	2
2.2. O Capim Buffel (características, desempenho animal e forma de u	tilização)3
2.3. Palma Forrageira (características, desempenho animal)	5
2.4. O Sorgo Forrageiro	7
3. MATERIAL E MÉTODOS	8
4. RESULTADOS E DISCUSSÃO	14
5. CONCLUSÃO	21
6. REFERÊNCIAS	22

LISTA DE TABELAS

Tabela 1. Composição química dos ingredientes das rações experimentais com base na
matéria seca
Tabela 2. Composição percentual e química das rações experimentais 10
Tabela 3. Valores médios para consumo nutrientes por cabras leiteiras alimentadas em dietas com diferentes fontes de volumosos
Tabela 4. Produção de leite e eficiência alimentar por cabras alimentadas em dietas com diferentes fontes de volumosos
Tabela 5. Valores médios da composição físico-química e produção dos constituintes do leite de cabras alimentadas em dietas com diferentes fontes de volumosos
Tabela 6. Indicadores econômicos considerando da produção leite de cabras alimentadas em dietas com diferentes fontes de volumosos

ALVES, M.A. Desempenho de cabras em lactação alimentadas com diferentes

fontes de volumosos. Areia, PB. Centro de Ciências Agrárias, UFPB. Novembro de

2016. Monografia. Curso de Graduação em Zootecnia.

RESUMO: Objetiva-se, utilizar diferentes fontes de volumosos destinados a

alimentação de cabras leiteiras, avaliar a viabilidade econômica de cabras leiteiras com

diferentes planos alimentares em um sistema de produção para a caprinocultura leiteira

do semiárido. O projeto será executado na Estação Experimental Pendência, pertencente

à Empresa Estadual de Pesquisa Agropecuária da Paraíba (EMEPA-PB), localizada no

município de Soledade-PB. As análises bromatológicas serão realizadas no Laboratório

de Nutrição Animal do Departamento de Zootecnia, da Universidade Federal da Paraíba

(UFPB), localizados no município de Areia-PB. No ensaio foram utilizadas 8 cabras

(Anglo Nubiano), em um quadrado latino duplo 4 X 4 onde os tratamentos

experimentais serão constituídos de diferentes fontes de volumoso. O experimento teve

duração de 60 dias, sendo composto de 4 períodos de 15 dias, dos quais os primeiros 10

dias de cada período foram utilizados para adaptação dos animais às dietas

experimentais e os 5 dias seguintes destinados a colheita de dados. As dietas seram

compostas a base de palma forrageira, silagem de sorgo e feno de capim buffel. Os

parâmetros avaliados seram: consumo; composição do leite das cabras. Não houve

diferença significativa (P>0,05) entre as dietas para os consumos de Matéria Seca (MS)

expressos nas diferentes unidades e para os consumos de Matéria Orgânica (MO). Não

foi verificada diferença (P>0,05) na composição físico-química do leite de cabras em

função das fontes de volumosos estudadas. As dietas avaliadas quando fornecidas em

consorciação obtiveram melhores resultados.

Palavra chaves: Cabras leiteiras, Forragicultura, Semiárido.

ABSTRACT

ALVES, M.A. Performance of lactating goats fed different sources of bulks. Areia, PB. Center of Agrarian Sciences, UFPB. November 2016. Monograph. Graduation Course in Animal Science.

The objective of this study was to evaluate the economic viability of dairy goats with different dietary plans in a production system for semi-arid dairy goat. The project will be executed at the Experimental Station Pendência, belonging to the State Agricultural Research Company of Paraíba (EMEPA-PB), located in the municipality of Soledade-PB. The bromatological analyzes will be carried out at the Animal Nutrition Laboratory of the Department of Animal Science, Federal University of Paraíba (UFPB), located in the city of Areia-PB. In the test, 8 goats (Anglo Nubian) were used, in a double Latin square 4 X 4 where the experimental treatments will be constituted of different sources of volumoso. The experiment lasted 60 days and was composed of 4 periods of 15 days, of which the first 10 days of each period were used to adapt the animals to the experimental diets and the following 5 days to collect data. The diets were composed of forage palm, sorghum silage and buffel grass hay. The parameters evaluated were: consumption; Composition of goats' milk. There was no significant difference (P> 0.05) between diets for dry matter intake (DM) expressed in the different units and for organic matter (OM) consumption. There was no difference (P> 0.05) in the physicochemical composition of goats' milk as a function of the studied sources. The diets evaluated when provided in consortium obtained better results.

Keyword (s): Dairy goats, Forage farming, Semiarid.

1. INTRODUÇÃO

O Semiárido brasileiro é uma região que possui grande potencial pecuário, tendo em vista a diversidade de recursos naturais presentes em sua área. A região Nordeste brasileira concentra mais de 90% dos caprinos, distribuídos notadamente no semiárido. Apesar da importância da caprinocultura para a região, os índices zootécnicos e de rentabilidade são baixos, em que uma das principais razões para essa situação, é o inadequado manejo dos rebanhos (GUIMARÃES FILHO & NOGUEIRA, 2006).

Dentre os estados brasileiros, a Paraíba possui um rebanho caprino leiteiro na ordem de 653.730 animais desponta como o maior produtor de leite de cabra do país, com uma produção média de meio milhão de litros/mês, em sua maior parte produzidos por criadores agregados em 22 associações de produtores, na região dos Cariris Paraibano (IBGE, 2007). A caprinocultura tem sido uma atividade eficiente para o desenvolvimento sócioeconômico do semiárido, como atestam os dados do Programa do Leite da Paraíba (Governo do Estado da Paraíba, 2007). No entanto, com a rápida resposta dos criadores ao incentivo gerado pelo emergente mercado, é necessário melhorar a eficiência da produção, que continua dependendo de soluções tecnológicas.

A base alimentar dos caprinos na região Nordeste é a vegetação nativa da caatinga, que é insuficiente para a obtenção de elevados ganhos de peso dos animais. Assim, o planejamento da produção de alimentos e a sua correta utilização terão grande impacto nos sistemas de produção de caprinos, sendo decisivo para o sucesso da atividade.

O consumo de alimentos é fundamental para a nutrição, pois, ele determina o nível de nutrientes ingeridos e, então, o desempenho animal (VAN SOEST, 1994). A produção e a qualidade do leite caprino está diretamente relacionada ao tipo e à qualidade da dieta dos animais, à raça, ao período de lactação, ao clima, e à ação combinada desses fatores nas condições ambientais de cada país ou região (ZAMBOM et al., 2005b).

Um dos grandes problemas enfrentado pelos pecuaristas no período de entressafra é a escassez de forragens com a consequente falta de volumosos adequados em quantidade e qualidade, afetando o sistema de produção animal (AMARAL NETO et al., 2000).

Objetivou-se, neste trabalho, avaliar o desempenho de cabras leiteiras submetidas a diferentes planos alimentares e, avaliar a viabilidade econômica num sistema de produção para a caprinocultura leiteira do semiárido.

2.0 REVISÃO DE LITERATURA

2.1 Caracterização da Região Semiárida.

O semiárido representa 74% da superfície do Nordeste brasileiro, na qual o recurso forrageiro de maior expressão tem sido o pasto nativo (Caatinga) que cobre 54,53% da referida área.

O clima da região semiárida é seco, com temperaturas que variam de 23 a 37°C apresentando forte insolação (2.800h luz ano) apresentando evaporação média de 2.800 mm anuais e umidade relativa do ar em torno de 50%, resultando num balanço hídrico negativo (MIN, 2005). As precipitações médias anuais variam de 300 e 800 mm, podendo atingir 1.000 mm, além disso, as chuvas são concentradas em um período de 2 a 4 meses do ano, o que provoca estresse hídrico de 6 a 9 meses do ano (Menezes e Sampaio, 2000).

De modo que, nesta fase os criadores buscam alternativas para suprir a carência alimentar dos rebanhos. Em contrapartida, durante o período das águas, grande quantidade de forragem nativa é desperdiçada, por consumo insuficiente dos animais, bem como pelo pouco conhecimento quanto aos métodos de conservação de forragem pelos produtores (Silva et al., 2004)

Por apresentar irregularidade de distribuição de chuvas e altas taxas de evapotranspiração, a região semiárida sofre influência marcante dessas características quanto a disponibilidade e a qualidade da forragem presentes nesta região (Moreira et al., 2006). Por isso, segundo Silva et al., (2004), no período das águas, a caatinga rebrota, renovando o extrato herbáceo, que apresenta grande diversidade de plantas nativas e exóticas naturalizadas, a maioria com características forrageiras.

As pastagens são o principal alimento dos rebanhos do Semiárido, predominando áreas de pastagem nativa em relação às de pastagens cultivadas em todos os estados, exceto no norte de Minas Gerais (Giulietti et al., 2004).

Há pastagens cultivadas de gramíneas vindas da África, principalmente os capins mais adaptados à semiaridez: como o capim-buffel (*Cenchrus ciliaris*). Dentre as culturas forrageiras não convencionais, algumas plantas se mostram perfeitamente adaptadas também às condições do semiárido, como a palma forrageira (*Opuntia fícus indica* Mill), a mandioca, a maniçoba, o sorgo forrageiro (*Sorghum sp*), e a cana-deaçúcar (CÂNDIDO *et al.*, 2009).

Diante destas dificuldades e incertezas climáticas e de produção de forragem no semiárido, dietas com maior participação de palma forrageira, cultura plenamente adaptada a estas condições desfavoráveis, deveriam ser utilizadas no intuito de conferir aos sistemas de produção maior sustentabilidade (BISPO *et al.*, 2007).

Do ponto de vista nutricional, as práticas de ensilagem e de fenação são utilizadas em 18 % das unidades no período da seca. No manejo alimentar tem-se como práticas a utilização de palhadas, palma forrageira picada no cocho e capim Buffel na forma de pasto diferido (GOMES et al., 2007).

A produção animal é uma das atividades socioeconômicas mais importantes do Semiárido brasileiro, com destaques para os pequenos ruminantes, caprinos e ovinos. No Semiárido a pecuária sempre foi a principal atividade que contribui com a produção de alimentos para as famílias e para a geração de empregos e manutenção de pessoas na zona rural, além de impulsionar cadeias produtivas que tem grande participação na economia de toda a região (Holanda Júnior et al., 2004).

Como agravante dessa situação que se avizinha, ao se considerar que é frágil a estrutura de suporte alimentar dos rebanhos nordestinos e, portanto, esta situação se reflete na baixa capacidade de suporte dos pastos nativos da caatinga devido às secas periódicas e a errática distribuição das chuvas, a reduzida utilização de pastos cultivados, o alto custo dos concentrados comerciais e a ausência de tradição no armazenamento de forragens nas formas de feno e silagem (Lima, 2010).

2.2 O Capim Buffel (Características, Desempenho e Forma de utilização).

O capim buffel é uma forrageira que tem se mostrado adaptada às condições semiáridas, associando uma rápida germinação e estabelecimento, precocidade na produção de sementes e capacidade de entrar em dormência na época seca (Araújo Filho et al., 1998). É uma gramínea exótica, originária da África, que apresenta alto valor nutritivo, com alta digestibilidade da matéria seca e da proteína bruta, e sob manejo adequado, pode apresentar boa palatabilidade (Oliveira, 1981). Dentre as forrageiras avaliadas nos últimos anos no Nordeste, tem se destacado pela sua notável adaptação às condições de semiaridez, e está entre as principais culturas implantas (Dantas Neto et al., 2000; Carvalho, 2010).

O capim Cenchrus ciliares L. possui mecanismos de adaptação às condições adversas das regiões semiáridas. Podendo, se desenvolver em regiões ao nível do mar ou com alturas de até 2000 m, em regiões seca, com precipitações entre 250-750

milímetros anuais, em solos rasos e de baixa fertilidade. Tais características não prejudicam a produção e o seu valor para pastagens das regiões secas (Khan et al., 2007).

É uma das principais gramíneas forrageiras para o semiárido brasileiro, sendo base para a exploração pecuária em diversas localidades dessa região. Essa planta forrageira é a que apresenta maior tolerância à deficiência hídrica entre as gramíneas cultivadas, em função de sua elevada eficiência de uso da água (Medeiros & Dubeux Jr., 2008).

A estacionalidade do período chuvoso impõe severas restrições ao suprimento de forragens e, consequentemente, à produção, sendo necessário à suplementação alimentar no período seco.

Dentro desse contexto, o capim buffel é uma boa alternativa, visto que apresenta alto valor nutritivo, com alta digestibilidade da matéria seca e da proteína bruta, além de boa palatabilidade (Oliveira, 1981). A aceitação do capim Buffel pelos pecuaristas, como a planta forrageira mais adaptada às condições semiáridas do Nordeste, motivou diversas avaliações cujos resultados abrangeram vários aspectos do seu cultivo, manejo e utilização (Oliveira, 1993). Esta forrageira apresenta uma rápida germinação e estabelecimento, precocidade na produção de sementes e capacidade de entrar em dormência na época seca (Araújo Filho et al., 1998).

As gramíneas forrageiras, geralmente são melhores utilizadas para fenação, por apresentarem características morfofisiológicas que permitem secagem mais uniforme, produzindo, assim, um feno que mantém uma elevada produtividade e valor nutritivo da forragem. À medida que a planta se desenvolve, a produção de matéria seca aumenta, contudo o valor nutritivo decresce. Assim, o momento da fenação (época de corte) deve associar elevada produtividade com bom valor nutritivo. A conservação de forragem disponível durante o período chuvoso é necessária para a suplementação dos rebanhos no período seco do ano, com destaque para os fenos de gramíneas.

A produção de feno é uma prática que vem sendo utilizada para o armazenamento de excedente produzido de capim buffel. Entretanto, a qualidade nutricional pode sofrer variações no valor nutritivo em função da idade do corte do mesmo. Consequente a isso, a digestibilidade da forragem pode sofrer influência, caindo drasticamente em períodos curtos de tempo, devido ao fato da diminuição da relação folha/caule. Isso dificulta a produção e, principalmente, a qualidade nutricional do feno de capim buffel (Camurça et al., 2002.

2.3 A Palma Forrageira (Características e Desempenho)

Nessa busca por alimentos que possibilitem a produção animal nos períodos críticos do ano, há várias décadas, a palma forrageira (Opuntia ficus indica Mill) destaca-se por apresentar características morfofisiológicas que a tornam tolerante a longas estiagens (Santos et al., 1997). Este alimento é rico em carboidratos, principalmente não fibrosos (Wanderley et al., 2002), importante fonte de energia para os ruminantes (Van Soest, 1994), além de baixa porcentagem de constituintes da parede celular e alto coeficiente de digestibilidade de MS. Atualmente, estima-se que, pela ocorrência de severas estiagens nos últimos anos, área superior a 400.000 ha esteja sendo utilizada com o cultivo das palmas forrageiras, constituindo-se em uma das principais fontes de alimento para o gado leiteiro na época seca do ano (Mattos et al., 2000). No Nordeste brasileiro a palma é utilizada principalmente nas bacias leiteiras dos Estados de Pernambuco e Alagoas, mas também é encontrada nos Estados da Paraíba e Bahia. Segundo Lima et al. (1985), a palma forrageira constitui um alimento volumoso suculento de grande importância para os rebanhos, pois, além de fornecer forragem verde, contribui ao atendimento de grande parte das necessidades de água para os animais. Essa forrageira, que contém em média 90% de água, representa, para o semiárido, uma valiosa contribuição no suprimento desse líquido para os animais.

A palma (*Opuntia fícus-indica*) é a forrageira mais cultivada nas propriedades rurais (96,4%) do Cariri paraibano, estando plenamente incorporada ao processo produtivo local. De acordo Costa et al. (2008), a planta forrageira de maior destaque no Cariri paraibano é a palma.

Esses autores afirmaram que 91% das unidades produtivas cultivavam palma forrageira e a utilizavam como componente da alimentação dos caprinos leiteiros. Não obstante, os produtores que declararam não ter palma cultivada compravam de outros agropecuaristas.

A palma não pode ser fornecida aos animais exclusivamente, pois apresenta limitações quanto ao valor protéico e de fibra, não conseguindo assim atender as necessidades nutricionais do rebanho. Então, torna-se necessário o uso de alimentos volumosos e fontes protéicas. Segundo Albuquerque et al. (2002), animais alimentados com quantidades elevadas de palma, comumente, apresentam distúrbios digestivos (diarréia), o que, provavelmente, está associado à baixa quantidade de fibra dessa forrageira. Daí a importância de complementá-la com volumosos ricos em fibra, a exemplo de silagens, fenos e capins secos.

Neste contexto, a palma forrageira (*Opuntia* e *Nopalea*) destaca-se como alimento estratégico para os ruminantes no Semiárido brasileiro, por apresentar elevado potencial de produção de fitomassa. Sales et al. (2013) constataram produção de 35 ton ha-1 de matéria seca de palma, colhida aos 710 dias após o plantio, em sequeiro, nas condições edafoclimáticas do Cariri paraibano.

Na alimentação dos animais, a palma forrageira pode satisfazer a exigência de água dos animais e, assim, servir para atenuar os problemas de água na estação seca. Além disso, pode melhorar o valor nutritivo da forragem de baixa qualidade (Gebremariam, et al., 2006), pois é uma excelente fonte de energia, rica em carboidratos não fibrosos, 61,79% e nutrientes digestíveis totais, 62% (Wanderley et al., 2002).

A palma forrageira pode atenuar os efeitos da escassez de água, pois além da sua elevada capacidade de utilização de água do solo para formação de biomassa, reduz a necessidade do fornecimento de água aos animais.

De acordo com Lopes et al. (2010) no período das chuvas, a oferta de forragem é quantitativa e qualitativamente satisfatória, porém, na época seca, que representa a maior parte do ano, além da escassez de pastagens, o seu valor nutricional é baixo, prejudicando a produção de carne e leite; Já que existe uma crescente demanda de consumo por produtos de origem animal.

Sendo assim evidentemente, esta planta significa uma opção dos criadores para amenizarem a fome dos seus animais (FARIAS et al., 2000; SANTOS et al., 2001; FROTA et al., 2004), representando frequentemente a maior parte do alimento fornecido aos animais durante o período de estiagem nas regiões dos semi-árido Nordestino. Este grande problema da pecuária do Nordeste brasileiro, que é a oferta irregular de forragem, causa um grande prejuízo a este segmento da economia e sendo a palma forrageira uma alternativa, é importante um aprofundamento no estudo desta planta como resposta a este desafio. Tendo em vista que a cultura da palma forrageira pode oferecer uma grande contribuição ao desenvolvimento da pecuária do Nordeste brasileiro (OLIVEIRA et al., 2010).

Para Cavalcante (2007) e Romo et al. (2006) a constância no aparecimento de anos secos faz da palma forrageira um alimento classificado como estratégico para esses períodos, quando o crescimento de outras forrageiras é limitado pelo baixo índice pluviométrico.

Assim a utilização da (*Opuntia e Nopalea*) como forragem para os animais foi ganhando espaço, sobretudo nos estados brasileiros de Alagoas, Pernambuco, Paraíba e

em algumas regiões do Ceará e Rio Grande do Norte, onde a planta se aclimatou bem e apresentou boa produção de massa verde.

2.4 O Sorgo Forrageiro

Como em muitas áreas do semiárido nordestino o milho é uma cultura de risco, o sorgo se apresenta como um ótimo substituto para a produção de silagem ou ração verde, pois Valente (1991), considera o valor nutritivo da silagem de sorgo equivalente a 85 a 90% da de milho, havendo, no entanto, referências mais amplas (72 a 92%).

Entre as espécies forrageiras que podem ser ensiladas, o sorgo (*Sorghum bicolor*, L. Moench) destaca-se por ser um alimento de alto valor nutritivo, que apresenta alta concentração de carboidratos solúveis essenciais para adequada fermentação láctica, bem como altos rendimentos de matéria seca por unidade de área (Silva & Restle, 1993) e boa adaptação às variadas condições de solo e clima.

As opções de cultivares de sorgo com índices de produtividade e adaptação são diversificadas. Segundo Zago (1991), a caracterização agronômica dos materiais genéticos disponíveis no mercado é de fundamental importância, para se obter uma silagem de sorgo de alta produção e com elevado valor nutritivo. Conforme Almeida Filho et al. (1999), a identificação de plantas mais adaptadas às condições em que serão cultivadas contribuirá para obtenção de maiores rendimentos da cultura do sorgo, pois ressalta-se que, além da genética e do ambiente, a produção é influenciada, entre outros fatores, por qualidade da semente, época de semeadura, população de plantas, preparo, correção e adubação do solo, irrigação, controle de plantas daninhas, pragas e doenças. Contudo, existem poucas informações sobre os efeitos destes fatores sobre a qualidade da forragem produzida.

O sorgo apresenta-se como uma das plantas mais adaptadas ao processo de ensilagem, por sua facilidade de cultivo e alto rendimento, além de não haver necessidade de aplicação de aditivos para estimular a fermentação (ZAGO, 1991). A cultura do sorgo contribui com 10 a 12% da área total cultivada para silagem no Brasil e se destaca, de modo geral, por apresentar produtividade de matéria seca (t MS/ha/ano) mais elevada que a do milho, principalmente em condições marginais de cultivo, como nas regiões de solos de baixa fertilidade natural e locais onde é frequente a ocorrência de estiagens longas (ROCHA JÚNIOR et al., 2000).

Esta alternativa tem sido cada vez mais utilizada, principalmente devido às características do sorgo quanto à tolerância à escassez de chuvas, o que deve favorecer melhor uso do solo, garantindo melhores resultados econômicos à atividade.

A cultura de sorgo é uma das que mais cresce no País, adquirindo importância estratégica no abastecimento de grãos e forragem, podendo contribuir para o equilíbrio dos estoques reguladores de grãos, reduzir os custos e permitir maior competitividade ao setor (Zago, 1999), visto que o Brasil é um dos países com maior potencialidade de adaptação e crescimento da cultura de sorgo no mundo (Zago, 1991).

Entretanto, Demarchi et al. (1995) mencionaram baixo desempenho produtivo dos animais alimentados com silagem de sorgo em comparação com os alimentados com silagem de milho, justificado pela presença de tanino no grão, que reduziria tanto o consumo quanto a digestibilidade do alimento. Vários autores apontaram ser as proantocianidinas (ou tanino condensado) como a forma predominante de tanino no grão de sorgo (Hagerman & Butler, 1981; Marinho, 1984; Rodrigues et al., 1998).

Segundo Martins (2000), a qualidade de qualquer alimento seria dada pelo valor nutritivo, representado pela composição química do alimento, pela digestibilidade dos seus constituintes, pelo consumo voluntário e pelo desempenho animal.

Diversos trabalhos mostraram larga amplitude na produtividade do sorgo, variando em função da época de semeadura, das condições ambientais durante o período de cultivo e do grande número de variedades existentes (Pereira, 1991; Demarchi et al., 1995; Valente, 1997). Em sistemas de sucessão de culturas, o sorgo pode ser plantado após as colheitas das culturas de verão, o que normalmente ocorre em fevereiro e início de março.

Ao avaliarem a estrutura morfológica de híbridos de sorgo, Gourley & Lusk (1977) encontraram plantas com proporções de colmo variando de 17,1 a 72,8% na MS; folhas variando de 17,4 a 26,3%; e panículas de 5,2 a 64,6%. Segundo Silva et al. (1999), a variação nas proporções da planta deve-se à grande variabilidade genética dos materiais utilizados, o que pode interferir diretamente na qualidade da planta e conseqüentemente da silagem produzida.

3.0 MATERIAL E METODOS

O experimento foi realizado no período 20 de Novembro de 2014 à 20 de Janeiro de 2015 na Estação Experimental Pendência, da Empresa Estadual de Pesquisa Agropecuária da Paraíba (EMEPA), localizada na Mesorregião do Agreste paraibano,

Microrregião do Curimataú Ocidental, município de Soledade (7° 8' 18" S e 36° 27' 2" W), com altitude de 534 m. O tipo climático da região é Bsh, semiárido quente, com chuvas de janeiro a abril, apresentando temperaturas médias anuais em torno de 24 °C, umidade relativa do ar em torno de 68%, ocorrendo precipitação pluvial média de 400 mm anuais, com déficit hídrico durante quase todo o ano (SUDENE, 2003).

Foram utilizadas oito cabras do genótipo Anglo Nubiana, multíparas, pesando em torno de 40,13 ± 2,76 kg de peso vivo em média com 30 dias de lactação, distribuídas em dois quadrados latinos (4 x 4), de acordo com a produção de leite.

O experimento teve duração de 60 dias, sendo composto de 4 períodos de 15 dias, dos quais os primeiros 10 dias de cada período foram utilizados para adaptação dos animais às dietas experimentais e os 5 dias seguintes destinados a colheita de dados.

Nos cincos últimos dias de cada período experimental foram coletadas amostras dos alimentos (por período) e das sobras (por animal e período). As análises laboratoriais foram efetuadas no Laboratório de Nutrição Animal do Departamento de Zootecnia da UFPB, seguindo metodologia descrita por Silva & Queiroz (2002). Para determinação da fração de fibra em detergente neutro (FDN), utilizou-se metodologia recomendada pelo fabricante do aparelho ANKON[®], da Ankon technology Corporation. O consumo voluntário de matéria seca e dos diferentes nutrientes foi calculado mediante a diferença entre as quantidades oferecidas e sobras.

Os animais foram tratados contra endoparasitas e vacinados contra clostridiose, em seguida permaneceram alojados em baias individuais de 3 m², com piso de cimento, providas de comedouro, bebedouro, para fornecimento da dieta e água *ad libitum*.

Os tratamentos experimentais consistiram de uma ração completa, formulada segundo o NRC (2007) para atendimento das as exigências de cabras em lactação com produção de 2 kg/cabra/dia, peso vivo 40 kg e 4% de gordura no leite, compostas por feno de capim buffel, palma forrageira cultivar PALMEPAPB01 (*Nopalea cochenillifera* Salm Dyck), silagem de sorgo e suplementos.

Os tratamentos foram representados pelas dietas com as diferentes de fonte de volumoso: SS: (silagem de sorgo + suplemento), SSPF: (silagem de sorgo + palma forrageira + suplemento), FB: (feno de capim buffel + suplemento), FBPF: (feno de capim buffel + palma forrageira + suplemento). O suplemento era composto por farelo de milho, farelo de soja, ureia, núcleo mineral.

A alimentação dos animais ocorria logo após as ordenhas às 07h30min e 16h30min, sendo a alimentação fornecida individualmente, permitindo 10% de sobras,

na forma de mistura completa para que o nível de oferta de alimento fosse corretamente ajustado. As sobras eram pesadas diariamente de manhã e de tarde. A composição química dos ingredientes está apresentada na (Tabela 1) e a participação dos ingredientes e a composição química das rações experimentais encontram-se na (Tabela 2).

Tabela 1. Composição química dos ingredientes das rações experimentais com base na matéria seca.

Ingredientes ¹							
-	Palma	Feno de	Silagem de	Farelo de	Farelo de		
Itens	forrageira	capim buffel	sorgo	Milho	soja		
MS (g/kg) ²	1,612	874,3	340,3	85,77	857,2		
MO (g/kg)	888,3	916,8	905	981,7	939,3		
MM (g/kg)	111,7	83,2	95	18,3	60,7		
PB (g/kg)	58,1	31,0	59,1	85,5	510,0		
EE (g/kg)	16,5	28,4	13,6	51,8	22,6		
FDN (g/kg)	237,7	783,3	673,4	109,2	185,5		
CT (g/kg)	813,7	857,4	832,3	844,4	406,7		
CNF (g/kg)	576,0	74,1	158,9	735,2	221,2		

¹Fonte de volumoso : SSPF= silagem de sorgo e palma forrageira; FBPF=feno de buffel e palma forrageira; SS=silagem de sorgo; FB=feno de capim buffel

Tabela 2. Composição percentual e química das rações experimentais

	Tratamentos (dietas) ¹							
-	SSPF	FBPF	SS	FB				
Itens	Pro	porções dos ing	gredientes (% g	/kg)				
Feno de buffel	0	292,8	0	530,0				
Palma forrageira	351,4	344,1	0	0				
Silagem de sorgo	351,4	0	681,6	0				
Farelo de milho	176,2	220,6	180,8	308,6				
Farelo de soja	110,2	132,4	127,9	154,2				
Ureia	3,3	2,6	2,2	2,6				
Núcleo mineral ³	7,5	7,5	7,5	6,8				

²% com base na matéria natural;

	100	100	100	100					
		Composição química (g/kg)							
MS (%) ²	312,0	395,9	426,3	825,4					
MO (%)	906,7	915,0	914,5	933,7					
PB (%)	121,7	122,8	127,2	128,8					
EE (%)	22,2	28,4	21,5	34,5					
MM	82,5	74,9	75,8	59,1					
FDN (%)	359,8	359,8	502,5	477,5					
CT (%)	772,0	771,1	772,0	777,7					
CNF (%)	413,7	414,1	273,1	300,1					
NDT (%)	620,4	635,5	553,5	593,5					
Vol:Conc(%)	65:35	58:42	67:33	51:49					

¹Fonte de volumoso : SSPF= silagem de sorgo e palma forrageira; FBPF=feno de buffel e palma forrageira; SS=silagem de sorgo; FB=feno de capim buffel

Os dados para consumo de MS foram obtidos através dos registros do alimento oferecido e das sobras e da colheita de amostras da dieta e sobras. As sobras dos alimentos foram congeladas a –15 °C. Ao final de cada período foram descongeladas, homogeneizadas e foi retirada uma amostra composta para cada animal de aproximadamente 250 gramas. As alíquotas foram pré-secas em estufa com ventilação forçada (55 a 60 °C) por 72 horas e moídas em um moinho tipo Wiley com peneiras de malha de um milímetro.

Para determinação da fibra em detergente neutro (FDN), 0,5 g de amostra foi acondicionada em sacos de TNT (tecido-não-tecido) previamente secos e pesados e submetidos à fervura com solução de detergente neutro ou detergente ácido por 1 hora (Van Soest & Robertson, 1985), lavados com água quente e acetona, secos e pesados, de modo que o resíduo foi considerado FDN.

Para a estimativa dos carboidratos totais (CHOT) e dos carboidratos não fibrosos (CNF) foram utilizadas as seguintes equações propostas por Sniffen et al. (1992) e Hall et al., (1999), respectivamente: CHOT= 100 - (%PB + %EE + %Cinzas); CNF = 100% - (%PB + %FDN + %EE + %MM).

²% com base na matéria natural;

³Suplemento mineral (nutriente/kg de suplemento): vitamina A 135.000,00 U.I.; Vitamina D3 68.000,00 U.I.; vitamina E 450,00 U.I.; cálcio 240 g; fósforo 71 g; potássio 28,2 g; enxofre 20 g; magnésio 20 g; cobre 400 mg; cobalto 30 mg; cromo 10 mg; ferro 2500 mg; iodo 40 mg; manganês 1350 mg; selênio 15 mg; zinco 1700 mg; flúor máximo 710 mg; Solubilidade do Fósforo(P)em Ácido Cítrico a 2% (min.).

O consumo de nutrientes digestíveis totais (CNDT), em kg, e os teores de nutrientes digestíveis totais (NDT), foram estimados segundo Weiss (1999), pelas seguintes equações:

CNDT (kg) = (PB ingerida – PB fecal) + 2,25 (EE ingerido – EE fecal) + (CNF ingerido – CNF fecal) + (FDN ingerido – FDN fecal); NDT (%) = (Consumo de NDT/Consumo de MS) * 100.

Para a determinação da dieta efetivamente consumida pelos animais, utilizou-se o seguinte cálculo: Matéria seca efetivamente consumida = (CMS (kg)/CMN (kg))*100; consumo efetivo de cada entidade nutricional = consumo da entidade nutricional (kg)/CMS (kg). Em que o CMN corresponde ao consumo de matéria natural.

O controle leiteiro foi realizado diariamente através da pesagem individual do leite, durante os cinco dias experimentais, após ordenha manual duas vezes ao dia (07h:00 min e 15h:00 min). No 11°, 13° e 15° dia do período experimental foi realizada a colheita do leite para análises físico-químicas. Após a pesagem do leite pela manhã o mesmo era acondicionado em ambiente refrigerado sendo em seguida misturados com o leite da ordenha da tarde, que também foi previamente pesado, formando uma amostra composta/cabra/dia, respeitando a proporção de leite produzido por turno manhã: tarde, 60 % e 40%, sendo colhido um total de 200 ml (120 ml e 80 ml, manhã e tarde, respectivamente). Ao final de cada dia era retirada uma amostra do leite e colocadas em um Becker misturando-as com o uso de um bastão de vidro, onde foram realizadas em duplicata para evitar que ocorresse erros, obtendo maior confiabilidade dos resultados. Posteriormente, foi analisada a composição química utilizando um aparelho analisador eletrônico de leite MASTER MINIR® onde foram medidos os paramentos de percentual de gordura, sólidos não-gordurosos, proteína, lactose, teor de água, temperatura, ponto de congelamento, sólidos.

Para conversão da produção de leite para 4% de gordura utilizou-se a fórmula de Gaines (1928), sugerida pelo NRC (2001): LCG 4% = (0,4255 x kg de leite) + [16,425 x (% gordura/ 100) x kg de leite]. A correção do leite para sólidos totais foi realizada conforme Tyrrel e Reid (1965) utilizando-se a equação: LCST = (12,3 x g de gordura) + (6,56 x g de sólidos não gordurosos) – (0,0752 x kg de leite). Os procedimentos de ordenha e manipulação do leite seguiram recomendações do Regulamento Técnico de Produção, Identidade e Qualidade do Leite de Cabra (BRASIL, 2000).

A eficiência alimentar foi obtida dividindo-se a produção de leite corrigida para 4% de gordura (kg/dia) pelo consumo de matéria seca verificada durante o período de

colheita, enquanto, a eficiência alimentar foi obtida dividindo o consumo de matéria seca pela produção de leite.

A análise econômica dos tratamentos fundamentou-se no cálculo da margem bruta (MB), em que a receita bruta (RB) foi gerada a partir da venda do leite produzido (corrigido para 4% de gordura), enquanto que, o custo operacional efetivo (COE) compreenderam aquelas referentes à alimentação, mão-de-obra e vermífugo. Os preços foram obtidos mediante consulta aos compradores e fornecedores da região praticados no mês de Março de 2015.

Considerou-se o preço de venda do leite de R\$/litro 1,70. Os custos de alimentação foram obtidos multiplicando-se o valor unitário de cada insumo pela quantidade consumida em cada nível de concentrado, sendo apresentados os valores médios por animal, referentes a 20 dias (cinco dias de colheita x quatros períodos). A ocupação de mão-de-obra foi estimada com base no valor do salário mínimo vigente (R\$ 788,00) acrescido de 40% de encargos sociais, sendo o valor de R\$ 4,48/hora considerando-se uma jornada de trabalho média de 1,5 hora/homem/dia para ordenha, arraçoamento e limpeza das instalações.

Para avaliação da análise econômica foi determinada a margem bruta (MB), a taxa de retorno (TR), ponto de equilíbrio (PE) e margem de segurança (MS), adaptado de Hoffmann et al., (1984) e Campos (2003), considerando COE e RB como custo total e receita total, em que:

MB = receita bruta (RB) – custo operacional efetivo (COE); TR = MB/ COE; PE = COE/ preço do leite; MS = (RB – COE) / RB *100

O delineamento experimental utilizado consistiu de dois quadrados latinos simultâneos (4x4) quatro períodos e quatro dietas. Os dados foram submetidos à análise de variância, utilizando o programa PROC GLM do Statistical Analysis System (SAS, 1996), as médias dos tratamentos foram comparadas pelo teste de Tukey ao nível de 5% de significância. Utilizando-se o seguinte modelo matemático:

$$Yijk = \mu + Ti + Vj + Pk + \epsilon ijk$$

Com a utilização de diferentes fontes de volumosos houve alteração na composição das dietas, principalmente no FDN e CNF (Tabela 2), que influenciou o

consumo de MS. No entanto, com a alteração do consumo de MS, altera-se, também, o consumo dos nutrientes nelas contido.

4.0 RESULTADOS E DISCUSSÕES

Houve diferença significativa (P>0,05) entre as dietas para os consumos de MS expressos em pesos corporais e metabólicos nas diferentes unidades e para os consumos de MO em MS.

Tabela 3. Valores médios para consumo nutrientes por cabras leiteiras alimentadas em dietas com diferentes fontes de volumosos

Tratamentos (dietas) ¹							
Variáveis	SS	FB	SSPF	FBPF	Média	EPM^3	CV (%) ²
CMS (Kg/dia)	1,412 ^{ab}	1,651 ^{ab}	1,253 ^b	1,855 ^a	1,543	0,339	21,97
CMS (%PC)	3,178	3,615	2,869	4,002	3,416	0,769	22,51
CMS $(g/kg^{0,75})$	81,93	93,94	73,61	104,37	88,47	19,86	22,37
CMO (g/dia)	1280,8 ^{ab}	1543,8 ^{ab}	1129,7 ^b	1695,9 ^a	1413,5	0,312	22,09
CPB (g/dia)	242,21 ^{ab}	274,70 ^{ab}	$205,12^{b}$	289,63 ^a	252,70	46,91	18,22
CEE (g/dia)	$31,33^{b}$	$62,40^{a}$	$30,48^{b}$	57,64 ^a	45,46	8,85	19,06
CFDN (g/dia)	652,69 ^a	$718,30^{a}$	369,21 ^b	588,68 ^a	582,20	181,1	31,08
CCNF (g/dia)	$412,80^{b}$	542,04 ^b	573,73 ^b	830,71 ^a	589,97	110,2	18,75
CNDT (Kg/dia)	$0,801^{b}$	1037 ^a	$0,787^{b}$	1243 ^a	0,967	0,146	15,10

Médias com letras diferentes na mesma linha diferem entre si estatisticamente (P<0,05) pelo teste de Tukey

Matéria seca (CMS), matéria orgânica (CMO), proteína bruta (CPB), extrato etéreo (CEE),matéria mineral (CMM) fibras em detergente neutro (CFDN), carboidratos não-fibrosos (CCNF), nutriente digestíveis totais (CNDT)

O consumo dos nutrientes diferiu entre as dietas (P<0,05), (Tabela 3). Com isso, observa-se que, houve superior consumo de MS e semelhantes entre si para os animais alimentados com as dietas Silagem de Sorgo(SS), Feno de Buffel(FB) e Feno de Buffel e Palma Forrageira(FBPF), com isso elevou também o consumo dos nutrientes (PB e MO) respectivamente. Observa-se que a dieta SSPF apresentou menor consumo de MS (24%) em relação a media das demais.

¹Fonte de volumoso : SSPF= silagem de sorgo e palma forrageira; FBPF=feno de buffel e palma forrageira; SS=silagem de sorgo; FB=feno de capim buffel

²CV= coeficiente de variação; ³EPM= erro padrão da média

Em relação ao consumo FDN, verifica-se que houve efeito significativo (P<0,005) (Tabela 3). O consumo da FDN da dieta SSPF foi inferior aos demais tratamentos (43%).

Houve diferença significativa (P<0,05) no consumo de carboidratos não fibrosos (CNF), (Tabela 3). O consumo superior entre as dietas de CNF pelos os animais alimentados com a dieta FBPF (38,66%) em relação as demais dietas.

O consumo de energia na forma de NDT foram superiores e semelhantes entre si nas dietas FB e FBPF, diferindo das demais dietas.

O balanceamento entre as dietas teve a finalidade de evitar variações entre os principais nutrientes das dietas de forma a atender à exigência das cabras em lactação, mas para isso foi necessário variar a relação volumoso:concentrado entre as dietas.

O consumo de matéria seca foi influenciado pela dieta sendo superior para as dietas FBPF, FB e SS em (1,855; 1,655 e 1,512 kg/dia) respectivamente e não diferiu entre si, sendo menor valor observado para a dieta SSPF 1,253 kg/dia (Tabela 3). Essa redução no consumo de MS da dieta Silagem de Sorgo e Palma Forrageira(SSPF) pode ter sido ocasionado por esta conter menor quantidade de matéria seca disponível ao animal o que provavelmente provocou a diminuição do consumo ou a seletividade pelos os animais do concentrado e palma forrageira possam ter atendendo suas exigências nutricionais com menos consumo de MS em kg/dia (Tabela 2).

De acordo com as exigências preconizadas pelo o NRC (2007), o consumo médio para uma cabra com peso vivo de 40 kg, produzindo 2 kg de leite/dia com teor de gordura de 4% é de 1,800 kg MS/dia. Na presente pesquisas apenas a dieta FBPF com valores médios expresso em quilograma atendeu as exigência preconizadas para consumo de MS para cabras em lactação.

Resultados de Ribeiro et al. (2008) avaliando dietas compostas por três fontes de volumosos, silagem de milho, feno de alfafa, feno de aveia. Observaram que o consumo voluntário de cabras em lactação, encontrou valores médios para o consumo de MS de 1,85; 2,60, e 2,05 Kg/dia, respectivamente. Estes resultados corroboram com a presente pesquisa, onde os valores para consumo de MS foi superior (24%) para as dietas com feno como fonte de volumoso para cabras em relação as dietas com participação de silagem em sua composição.

O presente trabalho também corrobora com os dados de Osmari et al. (2011) avaliando fontes de volumoso sobre o CMS por cabras. Onde foram testados dietas com

feno de amoreira e silagem de milho. Os autores concluíram que houve maior consumo de MS pelos os animais na dieta que tinha feno em detrimento a silagem.

As dietas que continham feno de capim buffel, em relação às silagens de sorgo, aumentam o consumo de MS pelas cabras. Possivelmente este comportamento de maior consumo de cabras em dietas com fenos em detrimentos as silagens pode se justificar por permitir maior seletividade pelos animais, que rejeitaram frações mais lignificadas do caule, pela sua alta densidade física em relação às folhas maceradas.

Esse comportamento é reforçado pela a hipótese relatada por Van Soest (1994) em que os caprinos são classificados como selecionadores intermediários, apresentando uma grande flexibilidade alimentar, ou seja, tidos como animais seletivos, o que permite a ingestão de diversos tipos de alimento, além de serem capazes de selecionar as partes mais nutritivas destes.

De acordo com Van Soest (1994), o consumo de silagens muitas vezes tende a ser menor do que o esperado em relação a de um feno com conteúdo de FDN e digestibilidade similares. Tal fato, segundo o autor, pode ser ocasionado pelo desbalanço de nutrientes decorrente das alterações qualitativas ocorridas durante o processo fermentativo.

O maior consumo de CNF pelos os animais alimentos com a dieta FBPF pode estar relacionado aos altos teores desses componentes na palma forrageira, relação volumoso:concentrado no farelo de milho, farelo de soja (Tabela 1), além do elevado consumo de MS dos animais neste tratamento (Tabela 3). A palma forrageira é uma excelente fonte de CNF (importante fonte de energia para os ruminantes), (Ferreira et al., 2009). Os resultado da presente pesquisa corroboram com Bispo et al., (2010) que relataram aumento no consumo MS por ovinos quando se associa a palma a fontes de fibra, especialmente fenos.

Neiva et al., (2006) relataram um aumento na proporção de propionato no rúmen em função do aumento de palma forrageira na dieta de ovinos. Aumentando a produção de propionato consequentemente aumenta a produção de leite, pois o ácido propiônico na célula animal é precursor da glicose, dessa forma, toda vez que há um aumento desse ácido, ele será mais absorvido e vai chegar à célula animal para síntese de glicose.

O consumo de PB e da MO variaram entre as dietas fornecidas, mesmo tendo sido preparadas para conterem valores de PB semelhantes. Isso permite observar alguns comportamentos no que se refere à nutrição.

A dieta SS, FB e FBPF equiparou-se entre si quanto ao consumo de PB e MO uma vez que esta última dieta apresentou um consumo elevado de MS (Tabela 3). O comportamentos desses resultados podem estarem correlacionados com as variações que ocorreram no CMS.

A FDN está em função da baixa taxa de digestão, sendo considerada o primeiro constituinte dietético associado à diminuição no CMS pelo fator enchimento (NRC, 2001). Segundo Mertens (1992) e NRC (2001), o consumo de FDN superior a 1,2% do peso vivo do animal pode ocasionar no animal o efeito físico de enchimento que poderia comprometer sua ingestão de MS. No presente trabalho, parece ter havido limitação ao consumo de MS. O consumo de FDN foi, em média, 1,63% do PV para as dietas SS, FB e FBPF que não diferiu entre si (Tabela 3). O consumo inferior de FDN da dieta SSPF pode estar relacionada ao baixo consumo dos animais neste tratamento, e as discrepâncias nos valores de FDN nas dietas, bem como o teor de FDN presente na palma forrageira, ser baixa (23,77%).

As dietas avaliadas alteraram (P<0,05) a produção de leite em kg/dia e corrigida para 4% de gordura (Tabela 4). Independe da produção de leite ter sido ou não corrigida, observa-se que as dietas FB, SSPF e FBPF não diferiram entre si para a produção de leite e permitiu melhores resultados, sendo superior 13,88; 11,40 e 18,95%, aos animais consumindo à dieta SS respectivamente (Tabela 3). Assim como, os animais consumindo as dietas SS, FB e SSPF não diferiram entre si para a produção de leite corrida para 4% de gordura. A eficiência alimentar (EA), representada pela PL/CMS (kg/kg), e produção de leite corrigida para sólidos totais não foi afetada pelas dietas (P>0,05), (Tabela 4).

Tabela 4. Produção de leite e eficiência alimentar por cabras alimentadas em dietas com diferentes fontes de volumosos

Tratamentos (dietas) ¹							
Variáveis	SS	FB	SSPF	FBPF	Média	EPM ³	$CV(\%)^2$
PL (Kg/dia)	1,363 ^b	1,578 ^{ab}	1,526 ^{ab}	1,718 ^a	1,546	0,206	13,32
⁴ PLCG 4%(Kg/dia)	1,569 ^b	1,822 ^{ab}	1,771 ^{ab}	1,936 ^a	1,785	0,230	12,88
⁵ PLCST (Kg/dia)	1,178	1,153	1,170	1,138	1,160	0,039	3,40
⁶ EA-PL/CMS (kg/kg)	1,201	1,238	1,473	1,064	1,244	0,271	21,77

Médias com letras diferentes na mesma linha diferem entre si estatisticamente (P<0,05) pelo teste de Tukey

¹Fonte de volumoso : SSPF= silagem de sorgo e palma forrageira; FBPF=feno de buffel e palma forrageira; SS=silagem de sorgo; FB=feno de capim buffel

⁴PLCG 4 %= produção de leite corrigida para 4 % de gordura; ⁵PLCST = produção de leite corrigida para sólidos totais; ⁶EA = Eficiência alimentar; ²CV= coeficiente de variação; ³EPM= erro padrão da média

Não foi verificada diferença (P>0,05) na composição físico-química do leite de cabras em função das fontes de volumosos estudadas (Tabela 5).

A produção diária (g/dia) dos constituintes do leite variou em função das dietas avaliadas (P<0,05). Os animais que receberam dietas FB, SSPF e FBPF produziram quantidades mais elevadas (P<0,05) e semelhante entre si de gordura, proteína, lactose, sólidos não gordurosos e sólidos totais (Tabela 5). Observa-se que a dieta SS foi a menos produtiva em gordura, proteína, lactose, sólidos não gordurosos e sólidos totais (21,87; 26,30; 25,29 e 20,85%) em relação a media das demais, devido a menor produção de leite dos animais submetidos a essa dieta.

Tabela 5. Valores médios da composição físico-química e produção dos constituintes do leite de cabras alimentadas em dietas com diferentes fontes de volumosos

Tratamentos (dietas) ¹							
Variáveis	SS	FB	SSPF	FBPF	Média	EPM ³	CV(%) ²
Gordura (%)	5,08	5,02	5,13	5,00	5,063	0,255	5,05
⁴ SNG (%)	9,98	9,96	9,97	9,94	9,964	0,087	0,87
⁵ ST (%)	15,07	14,98	15,10	14,48	15,02	0,335	2,23
Proteína (%)	3,76	3,76	3,78	3,74	3,76	0,047	1,25
Lactose (%)	5,40	5,37	5,41	5,50	5,40	0,089	1,65
Minerais (%)	0,78	0,78	0,78	0,78	0,78	0,005	0,71
		Produção do	os constituin	tes do leite			
Gordura (g/dia)	68,25 ^b	79,39 ^{ab}	76,69 ^{ab}	86,74 ^a	77,77	10,11	13,01
Proteína (g/dia)	$51,07^{b}$	59,50 ^{ab}	57,25 ^{ab}	64,54 ^a	58,09	7,52	12,95
Lactose (g/dia)	73,57 ^b	84,79 ^{ab}	82,36 ^{ab}	92,92 ^a	83,81	11,46	13,74
SNG (g/dia)	135,75 ^b	157,34 ^{ab}	151,80 ^{ab}	170,09 ^a	153,97	20,48	13,30
ST (g/dia)	$204,00^{b}$	236,74 ^{ab}	228,50 ^{ab}	257,74 ^a	231,74	30,20	13,03

Médias com letras diferentes na mesma linha diferem entre si estatisticamente (P<0,05) pelo teste de Tukey

¹Fonte de volumoso : SSPF= silagem de sorgo e palma forrageira; FBPF=feno de buffel e palma forrageira; SS=silagem de sorgo; FB=feno de capim buffel

⁴SNG= sólidos não gordurosos; ⁵ST= sólidos totais

²CV= coeficiente de variação; ³EPM= erro padrão da média

Na tabela 6, estão representados os indicadores econômicos das cabras leiteiras, submetidas as dietas experimentais, onde será detalhado as receitas e os custos apresentados.

Tabela 6. Indicadores econômicos considerando da produção leite de cabras alimentadas em dietas com diferentes fontes de volumosos

	Tratamentos (dietas) ¹				
Item	SS	FB	SSPF	FBPF	
		Rece	eita		
Produção de leite (kg)	54,54	63,12	61,05	68,77	
Renda Bruta (R\$)	92,72	107,30	103,80	116,91	
		Cust	tos		
	In	dicadores ec	conômicos		
Custo Operacional Efetivo					
(R\$)	59,80	91,33	59,10	86,27	
Renda Bruta (R\$)	92,72	107,30	103,80	116,91	
Margem Bruta (R\$)	32,93	15,98	44,70	30,64	
Taxa de Retorno (R\$)	0,55	0,17	0,76	0,36	
Ponto de equilíbrio (%)	35,17	53,72	34,77	50,75	
Margem de segurança (%)	35,51	14,89	43,06	26,21	
Custo benefício (R\$/dia)	1,55	1,17	1,76	1,36	

¹Fonte de volumoso : SSPF= silagem de sorgo e palma forrageira; FBPF=feno de buffel e palma forrageira; SS=silagem de sorgo; FB=feno de capim buffel

O valor do custo operacional efetivo (COE) que mostra quanto recurso está sendo desviado para cobertura de despesas, apresentou maior valor para a dieta FB, comprovando a importância da participação do custo de alimentação (74,49%) no total geral de custos, sendo a dieta que apresentou o maior custo de produção de Kg de leite dia (R\$ 1,25), (Tabela 6).

De acordo com os valores referentes à renda bruta (RB) apresentados na Tabela 6, a dieta FBPF gerou maior valor em moeda monetária, o que representa diferença superior de 20,69; 8,21 e 11,21% em relação as dietas SS, FB e SSPF, respectivamente.

Ainda na Tabela 6, a margem bruta (MB), variável que permite saber se o estabelecimento sobrevive no curto prazo, ou seja, se cobre as despesas diretas,

apresentou COE positivo para todas as dietas testadas. Entretanto, a dieta SSPF apresentou valor superior de 26,33; 64,25 e 31,54%, em relação as dietas SS, FB e FBPF respectivamente.

Estes resultados da MB refletiram também na taxa de retorno (TR), em que na dieta com SSPF, para cada um real (R\$ 1,00) aplicado obteve-se 0,76 centavos de real de retorno, enquanto a dieta SS apresentou menor retorno (R\$0,17).

O ponto de equilíbrio (PE), que demonstra a produtividade mínima por animal para que não se tenha prejuízo, observa-se na tabela 6, quando da utilização da dieta com FB os animais têm que apresentar uma maior produtividade para tornar-se rentável.

Quanto à margem de segurança (MS) a dieta com SSPF apresentou o maior percentual com 43,06% e a dieta FB o menor percentual 14,89%.

Todas as dietas tiveram Relação custo: benefício positiva, sendo o melhor resultado encontrado na dieta SSPF (R\$1,76/dia), e a dieta FB obtiveram resultados inferiores acentuados ente as demais dietas (R\$1,17/dia), (Tabela 6).

Diante dos resultados obtidos, observa-se que a dieta SSPF apresentou menor consumo de MS (24%) em relação as demais. Porém foi a dieta que proporcionou a maior relação custo beneficio SSPF (1,76 R\$/dia), e a dieta FB obtiveram resultados inferiores acentuados ente as demais dietas (1,17 R\$/dia), mesmo com um consumo maior que a dieta anterior citada. Mesmo assim, a dieta SSPF, com sua utilização menor que as outras foi a melhor alternativa, em relação a margem de segurança, como visto na tabela 6.

Mas quando se fala em produção de leite, observa-se que a dieta FBPF foi mais produtiva em gordura, proteína, lactose, sólidos não gordurosos e sólidos totais (21,87; 26,30; 25,29 e 20,85%) em relação a dieta SS respectivamente. Por isso e importante essa associação entre diferentes tipos de alimentos, proporcionando melhor produção dos animais.

Silva et al. (2007), avaliando o consumo, produção de leite e digestibilidade aparente de vacas holandesas em lactação, concluiram que a palma forrageira pode ser associada a alimentos volumosos, tais como: bagaço de cana-de-açúcar, feno de capim-tifton, feno de capim elefante ou silagem de sorgo, sem alterar o consumo de nutrientes, produção de leite e a digestibilidade da matéria seca e dos nutrientes.

Em outro estudo com vacas holandesas em lactação, Sosa et al. (2005), concluíram que o fornecimento de palma e a silagem de sorgo misturados promovem maior tempo de ruminação e mastigação. Quando a palma e o concentrado foram

fornecidos em mistura, promoveram um menor consumo de fibra, com consequente diminuição do tempo de ruminação e mastigação, e consequentemente maior eficiência de ruminação. A palma forrageira constitui uma alternativa alimentar para vacas leiteiras, sempre que a mesma não seja fornecida como única fonte de volumoso, mas sim associada a outros ingredientes fibrosos, propiciando adequada relação de fibra na ração.

5.0 CONCLUSÃO

As dietas que tem como fonte de volumoso, o feno de buffel e/ou palma forrageira proporcionaram melhor desempenho produtivo de cabras leiteiras comparadas, com dietas contendo somente silagem de sorgo.

A combinação de silagem de sorgo e palma forrageira como fonte de volumoso, permite maior viabilidade econômica do que dietas com feno de buffel, combinadas ou não, com palma forrageira.

6.0 REFERENCIAS BIBLIOGRAFICAS

ALBUQUERQUE, S. S. C. de; LIRA, M. de A.; SANTOS, M. V. F. dos. et al. Utilização de três fontes de nitrogênio associadas à palma forrageira (Opuntia ficusindica, Mill.) Cv. Gigante na suplementação de vacas leiteiras mantidas em pasto diferido. **Revista Brasileira de Zootecnia**., Viçosa, v. 31, n. 3, p. 1315-1324, 2002. Suplemento.

ALMEIDA FILHO, S.L.; FONSECA, D.M.; GARCIA, R. et al. Características agronômicas de cultivares de milho (*Zea mays* L.) e qualidade dos componentes e da silagem. **Revista Brasileira de Zootecnia**, v.28, n.1, p.7-13, 1999.

ARAÚJO FILHO, J.A.; LEITE, E.R.; SILVA, N.L. Contribution of wood species to the diet composition of goat and sheep in caatinga vegetation. **Pasture Tropicalis**. v. 20, p.41-45, 1998.

BERCHIELLI, T.T.; RODRIGUEZ, N.M.; OSÓRIO NETO, E. et al. **Nutrição de ruminantes.** Jaboticabal: Funep, 2006. 583p.

BISPO, S. V. Comportamento ingestivo de vacas em lactação e de ovinos alimentados com dietas contendo palma forrageira. **Revista Brasileira de Zootecnia**., v.39, n.9, p.2024-2031, 2010.

BISPO, S. V. et al. Palma forrageira em substituição ao feno de capim elefante. Efeito sobre o consumo, digestibilidade e características de fermentação ruminal em ovinos. **Revista Brasileira de Zootecnia**, Viçosa, MG, v.36, n.6, p. 1902-1909, 2007.

BRASIL. Ministério da Agricultura e do Abastecimento. Secretaria Nacional de Defesa Agropecuária. **Regulamento Técnico de Produção, Identidade e Qualidade do Leite de Cabra**. Instrução Normativa nº 37. Brasília, 2000.

CAMPOS, R.T. Tipologia dos produtores de ovinos e caprinos no Estado do Ceara. **Revista Econômica do Nordeste**, Fortaleza, v.43, n.1, p.85-112, 2003.

CAMURÇA, D.A.; NEIVA, J.N.M.; PIMENTEL, J.C.M. et al. Desempenho Produtivo de Ovinos Alimentados com Dietas a Base de Feno de Gramineas Tropicais. **Revista Brasileira de Zootecnia**, v.31, n.5, p.2113-2122, 2002.

CÂNDIDO, M.J.D.; DE ARAÚJO, G.G.L, CAVALCANTE, M.A.B. Pastagens no Ecossistema Semiárido brasileiro: atualização e perspectivas Futuras. **Publicado no Núcleo de Ensino e Estudos em Forragicultura (NEEF),** Universidade Federal do Ceará/UFC, 2009.

CARVALHO,S. et al. Comportamento ingestivo de cabras alpina em lactação submetidas a dietas com diferentes níveis de fibra em detergente neutro. In: **REUNIÃO DA SOCIEDADE BRASILEIRA DE ZOOTECNIA,** 38, Piracicaba, 2001. Anais... Piracicaba:SBZ, 2001.

CAVALCANTE, N.B.; RESENDE, G.M. Consumo de xiquexique (Pilocereus gounellei (A. Weber ex K. Schum.) Bly. ex Rowl) por caprinos no semiárido da Bahia. **Revista Caatinga,** v.20, n.1, p.22-27, 2007.

COSTA, R. G. et al. Caracterização do sistema de produção caprino e ovino na região Semiárida do estado da Paraíba, Brasil. **Archivos de Zootecnia**, Córdoba, v. 57, n. 218, p. 195-205, 2008.

DANTAS NETO, J.; SILVA, J. F. de A. S.; FURTADO, D. A. et al. Influência da precipitação e idade da planta na produção e composição química do capim-buffel. **Pesquisa Agropecuária Brasileira,** Brasília, v. 35, n. 9, p. 413-420, set. 2000.

DEMARCHI, J.J.A.A.; BOIN, C.; BRAUN, G. A cultura do sorgo (Sorghum bicolor L. Moench) para a produção de silagens de alta qualidade. **Zootecnia**, v.33, n.3, p.111-136, 1995.

FARIAS, I., LIRA, M.A., SANTOS, D.C., SANTOS, M.V.F., FERNANDES, A.P.M. & SANTOS, V.S. Manejo de colheita e espaçamento da palma forrageira, em consórcio com sorgo granífero, no Agreste de Pernambuco. **Pesquisa Agropecuária Brasileira** 35:341-347. 2000.

FROTA, H.M.; CARNEIRO, M.S. de S.; ZÁRATE, R.M.L.; CAMPOS, F. de A.P.; PEIXOTO, M.J.A. Efeitos do BAP e do AIA na indução e no crescimento in vitro de brotos de dez clones de palma forrageira. **Revista Ciência Agronômica**, v. 35, n. especial, p. 279-283, 2004.

GAINES, W. L. The energy basis of measuring milk yield in dairy cows. Illinois: **Illinois Agricultural Experiment Station**, 1928. (Bulletin 308). 40 p

GEBREMARIAM, T.; MELAKU, S.; YAMI, A. Effect of wilting of cactus pear (Opuntia ficus-indica) on feed utilization in sheep. **Tropical Science**, v.46, n.1, p.37-40, 2006.

GIULIETTI, A.M., BOCAGE NETA, A.L., CASTRO, A.A.J.F. Diagnóstico da vegetação nativa do bioma da caatinga In: **Biodiversidade da Caatinga: áreas e ações prioritárias para a conservação**. Brasilia: MMA-UFPE; Brasília, DF: 2004. p.47-90.

GOMES, J. A. F. et al. Alimentos e alimentação de ovinos e caprinos no Semiárido brasileiro. **Sobral: Embrapa Caprinos**, 2007. 40 p. (Embrapa Caprinos. Documentos, 67).

GOURLEY, L.M.; LUSK, J.W. Sorghum silage quality as affected by soluble carbohydrate, tannins and other factors. In: **ANNUAL CORN AND SORGHUM RESEARCH CONFERENCE**, **32**, **1977**, Mississipi. Proceedings. Mississipi: Mississipi State University, 1977. p.157-170.

GUIMARÃES FILHO, C.; NOGUEIRA, D.M. **O cabrito do Vale do São Francisco:** valorizando o bioma da caatinga. Bahia Agrícola, v.7, n.3, p.31-38, 2006.

HALL, M. B. Neutral detergent-soluble carbohydrates: nutritional relevance and analysis. A laboratory manual. University of Florida Cooperative Extension Bulletin 339, 2000.

HOFFMANN, R.; SERRANO, O.; NEVES, E. M. et al. **Administração da empresa agrícola.** 4. ed. Sao Paulo: Pioneira, 1984.

HOLANDA JUNIOR, E. V. Produção e Comercialização de Produtos Caprinos e Ovinos por Agricultores Familiares dos Sertões Baiano do São Francisco. Belo Horizonte. UFMG. 2004. 117f. Tese (Doutorado em Ciência Animal).

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA (IBGE). Disponível em: http://www.censoagropecuário. Acesso em 08 de setembro, 2016.

KHAN, Z.I.; ASHRAF,M.; HUSSAIN, A.; MCDOWELL, L.R.; ASHARAF, M.Y. Concentrations of minerals in milk of sheep and goats grazing similar pastures in a semiarid region of Pakistan. **Small Ruminant Research**, n.65, p. 274-278, 2006.

LIMA, M. de A.; FERNANDES, A. P. M.; SILVA, M. de A. et al. Avaliação de forragens nativas e cultivares em áreas da caatinga no Sertão de Pernambuco. **Revista da Sociedade Brasileira de Zootecnia**, Viçosa, v. 11, n. 6, p. 513-531, 1987.

LIMA, G. F. C. Reservas Forrageiras Estratégicas para a Pecuária Familiar no Semiárido: palma, fenos e silagem. Natal: EMPARN, 2010. v.8, 53 p.(Circuito de tecnologias adaptadas para a agricultura familiar, 7).

LIRA, M. de A.; FERNANDES, A. de P. M.; FARIAS, V. M. da. Utilização do pasto nativo e cultivado em recria e engorda de bovinos no semi-árido de Pernambuco. **Revista da Sociedade Brasileira de Zootecnia,** Viçosa, v. 16, n. 3, p. 267-274, 1987.

LOPES, E. B. et al. Seleção de genótipos de palma forrageira (*Opuntia* spp.) e (*Nopalea* spp.) resistentes à cochonilha-do-carmim (*Dactylopius opuntiae* Coc-kerell, 1929) na Paraíba, Brasil. **Engenharia Ambiental - Pesquisa e Tecnologia, Espírito Santo do Pinhal,** v.7, n. 1, p. 204-215, 2010.

MARTINS, R.G.R. Consumo e digestibilidade aparente das silagens de quatro genótipos de sorgo [Sorghum bicolor (L.) Moench] em ovinos. Belo Horizonte:

Universidade Federal de Minas Gerais, 2000. 45p. **Dissertação** (**Mestrado em Zootecnia**) - **Universidade Federal de Minas Gerais, 2000.**

MATTOS, L.M.E.; FERREIRA, M.A.; SANTOS, D.C. et al. Associação da palma forrageira (*Opuntia ficus indica* Mill) com diferentes fontes de fibra na alimentação de vacas 5/8 Holandês- Zebu em lactação. **Revista Brasileira de Zootecnia**, v.29, n.6, p.2128-2134, 2000.

MEDEIROS H. R.; DUBEUX Jr. Efeitos da fertilização com nitrogênio sobre a produção e eficiência do uso da água em capim buffel. **Revista Caatinga**, Mossoró, v. 21, n. 3, p. 13-15, 2008.

MENDES, C.G.; SILVA, J.B.A.; ABRANTES, M.R. Caracterização organoléptica, físico-química e microbiológica do leite de cabra: uma revisão. Acta Veterinaria Brasilica, Mossoro v.3; n.1, p.5-12, 2009.

MENEZES, R. S. C.; SAMPAIO, E. V. S. B. Agricultura sustentável no semi-árido nordestino In; OLIVEIRA, T. S.; ROMERO, R. E.; ASSIS JÚNIOR., R. N.; SILVA, J. R. C. S. (Ed.). **Agricultura, sustentabilidade e o semiárido.** Fortaleza: SBCS: UFC-DCS, 2000. p. 20-46

MERTENS, D.R. Analise da fibra e sua utilizacao na avaliacao e formulacao de racoes. In: **SIMPOSIO INTERNACIONAL DE RUMINANTES**, 29, 1992, Lavras. Anais...Lavras: Reuniao Anual da Sociedade Brasileira de Zootecnia/SBZ, 1992. p.188-219.

MOREIRA, J. N. et al. Potencial de produção de forragem de capim buffel na época seca no Sertão Pernambucano. **Caatinga**, v. 20, p. 22-29, 2007.

MOREIRA, J. N.; LIRA, M.A.; SANTOS, M. V. F.; FERREIRA, M.A.F.; ARÁUJO, G.G.L.; FERREIRA, R.L. C.; SILVA, G. C. Caracterização da vegetação de caatinga e da dieta de novilhos no Sertão de Pernambuco. **Pesquisa Agropecuária Brasileira.**, Brasília, v. 41, n. 11, p. 1643-1651, nov. 2006

NATIONAL RESEARCH COUNCIL - NRC. **Nutrient requirement of small ruminants.** 1. ed. Washington: NAP, 2001. 362p.

NATIONAL RESEARCH COUNCIL - NRC. **Nutrient requirement of small ruminants.** 1. ed. Washington: NAP, 2007. 362p.

NEIVA, G. S. et al. Mucous membrane of the rumen of ovine, fed eith spineless forage cactos (Opuntia ficus-indica Mill): **hystochemical study by means of light microscopy.** Int. J. Morphol., v.24, p.723-728, 2006

OLIVEIRA, M. C. Capim bufel: **Produção e Manejo nas regiões secas do Nordeste. Petrolina:** EMBRAPA/CPATSA, 1993. 18p. (Circular Técnica).

OLIVEIRA, M. C. O capim-buffel nas regiões secas do nordeste. **Petrolina: EMBRAPA CPATSA,** 1981. 19 p. (Circular Técnica, 5).

OLIVEIRA, S.E.J et al. Comportamento ingestivo e ingestão de água em caprinos e ovinos alimentados com feno e silagem de Maniçoba. **Revista Brasileira de Saúde e Produção Animal.**, v.11, n.4, p.1056-1067 out/dez, 2010.

OSMARI, E. K. et al. Nutritional quality indices of milk fat from goats on diets supplemented with different roughages. **Small Ruminant Research**. (2011) 128–132.

PEREIRA, O.G. Produtividade do milho (Zea mays L.), do sorgo (*Sorghum bicolor* (L.) Moench), da aveia (Avena sativa), do milheto (*Pennisetum americanum* L.) e do híbrido (S. bicolor x S. sudanense), e respectivos valores nutritivos sob a forma de silagem e verde picado. Viçosa, MG: **Universidade Federal de Viçosa, 1991. 86p**. Dissertação (Mestrado em Zootecnia) - Universidade Federal de Viçosa, 1991.

RIBEIRO, L.R. et al. Produção, composição do leite e constituintes sangüíneos de cabras alimentadas com diferentes volumosos. **Arquivo Brasileiro de Medicina Veterinária e Zootecnia.,** v.60, n.6, p.1523-1530, 2008.

Rocha Júnior VR (2002), Tabelas brasileiras de composição de alimentos, determinação e estimação do valor energético dos alimentos para ruminantes. **Tese de doutorado. Universidade Federal de Viçosa**, Viçosa. 252p.

RODRIGUES, M. T. Uso de fibras em rações de ruminantes. In: **CONGRESSO NACIONAL DOS ESTUDANTES DE ZOOTECNIA,** 3., 1998. Viçosa, MG. Anais... Viçosa, MG: Universidade Federal de Viçosa, 1998. p. 139-171.

ROMO, M.M.; ESTRADA, G.T.; HARO, I.M.; SOLIS, I.C.; CRUZ-VÁZQUEZ, C. Digestibilidad in situ de dietas com harina de nopal deshidratado conteniendo um preparado de enzimas fibrolíticas exógenas. **Pesquisa Agropecuária Brasileira**, v. 41, n. 7, p. 1173-1177, 2006.

SALES, A. T. et al. Crescimento vegetativo de palma forrageira em diferentes densidades de plantio no Curimataú Paraibano. **Tecnologia & Ciência Agropecuária**, João Pessoa, v.7, n.1, p.19-24, 2013.

SANTOS, C.L.; PEREZ, R.O.; MUNIZ, J.A. et al. Desenvolvimento relativo dos tecidos osseo, muscular e adiposo dos cortes da carcaca de cordeiros Santa Ines. **Revista Brasileira de Zootecnia**, v.30, n.2, p.497-492. 2001

SANTOS, D. C.; FARIAS, I.; LIRA, M.A. et al. 1997. A palma forrageira (Opuntia ficus-indica, Mill. E Nopalea cochenillifera, Salm Dyck) em Pernambuco: cultivo e utilização. **Recife: IPA, 1997**. 23 p. (IPA. Documentos, 25).

STATISTICAL ANALYSIS SYSTEM - SAS. User's guide: statistics. Versão 6.12. Cary: North Carolina State University, 1996. 956p.

SILVA, B.O.; LEITE, L.A., FERREIRA, M.I.C.; FONSECA, L.M. REIS, R.B. Silagens de girassol e de milho em dietas de vacas leiteiras: produção e composição do leite. **Arquivo Brasileiro de Medicina Veterinária e Zootecnia**, v.56, n.6, p.750-756, 2004.

SILVA, C.M.M.S.; OLIVEIRA, M.C.; ALBUQUERQUE, S.G. Avaliação da produtividade de treze cultivares de capim buffel, na região semiárida de Pernambuco. **Pesquisa Agropecuária Brasileira**, v. 22, n. 5, p. 513-520, 1987.

SILVA, D.J.; QUEIROZ, A.C. **Análise de alimentos: métodos químicos e biológicos**. 3.ed. Viçosa: UFV, Imprensa Universitária, 2002, 235p.

SILVA, J.F.C.; LEÃO, M.I. **Fundamentos de Nutrição dos Ruminantes**. Piracicaba: LIVROCERES, 1979, 380p.

SILVA, R.R. et al. Palma forrageira (Opuntia ficus indica Mill) associada a diferentes volumosos em dietas para vacas da raça Holandesa em lactação. **Acta Scientiarum. Animal Sciences**. Maringá, v. 29, n. 3, p. 317-324, 2007.

SNIFFEN, C. J. et al. A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. **Journal of Animal Science**, v.70, n.2, p.3562-3577, 1992.

Superintendência de Desenvolvimento do Nordeste - SUDENE - **O Nordeste Semi-Árido e o Polígono das Secas.** Recife, 2003. Disponível em http://www.sudene.gov.br/nordeste/index.html. Acesso 07/12/2015.

TYRREL, H.F.; REID, J.T. Prediction of energy value of cow's milk. **Journal of Dairy Science**, v.48, n.9, p.1215-1223, 1965.

VALADARES FILHO, S.C.; ROCHA JÚNIOR, V.R.; CAPPELLE, E.R. **Tabelas brasileiras de composição de alimentos para bovinos.** Viçosa: UFV /DZO/DPI, 2001.

VALENTE, J.O. Manejo cultural do sorgo para forragem. 2.ed. Sete Lagoas: **EMBRAPA-CNPMS**, **1997**. p.5-7. (Circular Técnico, 17)

VAN SOEST, P.J.; ROBERTSON, J.B. **Analysis of forages and fibrous foods.** Ithaca: Cornell University Press, 1985, 202p.

VAN SOEST, P.J. **Nutritional ecology of the ruminant**. 2.ed. Ithaca: Cornell University Press, 1994. 476p.

WANDERLEY, W. L. et al. Palma forrageira (Opuntia ficus indica Mill) em substituição à silagem de sorgo (Sorghum bicolor (L.) Moench) na alimentação de vacas leiteiras. **Revista Brasileira de Zootecnia**, v.31, n.1, p.273-281, 2002.

WEISS, W.P. Energy prediction equations for ruminant feeds. Cornell: **Nutrition conference for feed manufactures**, p. 176-184, 1999.

ZAGO, C.P. Cultura de sorgo para produção de silagem de alto valor nutritivo. In: **SIMPÓSIO SOBRE NUTRIÇÃO DE BOVINOS**, 4, 1991, Piracicaba. Anais... Piracicaba: FEALQ, p.169-217, 1991.

ZAGO, C.P. Silagem de sorgo. In: **SIMPÓSIO SOBRE NUTRIÇÃO DE BOVINOS: ALIMENTAÇÃO SUPLEMENTAR,** 7., 1999. **Anais...** Piracicaba: Fundação de Estudos Agrários Luiz de Queiroz, 1999. p.47-68.

ZAMBOM, M. A. et al. Ingestão, digestibilidade das rações e produção de leite em cabras Saanen submetidas a diferentes relações volumoso: concentrado na ração. **Revista Brasileira de Zootecnia**, Viçosa, MG, v. 34, n. 6, p. 2505-2514, 2005a.