

UNIVERSIDADE FEDERAL DA PARAÍBA CENTRO DE CIÊNCIAS AGRÁRIAS DEPARTAMENTO DE FITOTECNIA E CIÊNCIAS AMBIENTAIS COORDENAÇÃO DE AGRONOMIA

COMPONENTES DE RENDIMENTO DE CULTIVARES DE FEIJÃO MACASSAR NO BREJO PARAIBANO

JOSENILDO DA ROCHA GOMES

Areia - PB

Novembro de 2018

UNIVERSIDADE FEDERAL DA PARAÍBA CENTRO DE CIÊNCIAS AGRÁRIAS DEPARTAMENTO DE FITOTECNIA E CIÊNCIAS AMBIENTAIS COORDENAÇÃO DE AGRONOMIA

COMPONENTES DE RENDIMENTO DE CULTIVARES DE FEIJÃO MACASSAR NO BREJO PARAIBANO

Autor: Josenildo da Rocha Gomes

Orientador: Prof. Dr. Fábio Mielezrski

Areia - PB

Novembro de 2018

COMPONENTE DE RENDIMENTO DE CULTIVARES DE FEIJÃO MACASSAR NO BREJO PARAIBANO

Trabalho de Graduação apresentado à Coordenação do Curso de Agronomia do Centro de Ciências Agrárias da Universidade Federal da Paraíba, em cumprimento às exigências para a obtenção do título de Engenheiro Agrônomo.

ORIENTADOR: Prof. Dr. Fábio Mielezrski

Areia - PB

Novembro de 2018

Catalogação na publicação Seção de Catalogação e Classificação

G633c Gomes, Josenildo da Rocha. Componentes de Rendimento de Cultivares de Feijão Macassar no Brejo Paraibano / Josenildo da Rocha Gomes. - Areia, 2018.

28 f. : il.

Orientação: Fábio Mielezrski. TCC (Especialização) - UFPB/Areia.

- Adaptação; competição; hábito crescimento; semiárido.
 Mielezrski, Fábio. II. Título.

UFPB/CCA-AREIA

JOSENILDO DA ROCHA GOMES

COMPONENTE DE RENDIMENTO DE CULTIVARES DE FEIJÃO MACASSAR NO BREJO PARAIBANO

BANCA EXAMINADORA

Prof. Dr. Fabio <u>Mielezrski</u> - Orientador

DFCA/CCA/UFPB

Anderson Samuel Silva Mestrando em Zootecnia (CCA/UFPB) Eng. Agrônomo (UAST/UFRPE)

João Everthon da Silva Ribeiro

Jose Eduther la Silva Militira

Mestrado em Agrônomia (CCA/UFPB)

Licenciado em Ciências Agrárias Campus III (UFPB)

DEDICATÓRIA

A Deus,

A meus pais

E a todos aqueles que de alguma forma ajudaram para a

minha formação .

AGRADECIMENTOS

Quero agradecer ao meu Deus todo poderoso que me proporcionou toda sabedoria e bondade pelo dom da vida, que me ofereceu tantas alegrias e vitórias e mesmo sem entender a cada obstáculo que surgi se aprende uma experiência nova assim me tornado cada vez mais sábio.

Aos meus Pais, Manoel de Araujo Gomes e Josirene da Rocha Gomes, sem eles com certeza não estaria aqui hoje, por muitas vezes tirando de onde não tinha para incentivar meus estudos, sempre torcendo pelo meu sucesso e aconselhando para o bem, espero algum dia retribuir e orgulhar eles.

A meus dois irmãos, Joelsom Rocha e Joelma Rocha mesmo com todas as nossas diferenças nunca deixaram de torcer pelo meu sucesso.

Agradecer a Vanessa Rocha e a Renam Nickolas todos os momentos que proporcionaram incentivando na alegria e na tristeza para nunca desistir do sonho de ser engenheiro agrônomo.

A todos meus Amigos que conheci aqui na cidade de Areia durante esses últimos cinco anos, dividindo e proporcionando tantas alegrias e histórias que vão ficar ao longo da vida: Erasmo (fechoso), José carlos (coelhinho), Jhonatan Feitosa, Raniere, Rafhael (nego rafa), Kilmer, Givanildo Freire, Arthur Felipe, Aelson Pontes, Rodrigo (tubarão), Normand (ceguinho), Fernando Filho, Rhafael (gordinho cds), Tássio Boja, Luiz Póstimo, Anderson Silva, Leandro Batista tantos outros.

Agradecer ao Orientador deste trabalho, Prof. Dr. Fábio Mielezski sempre humilde e de coração bom, sempre disponível para tirar dúvidas e prestar esclarecimentos.

Agradecer a Universidade Federal da Paraíba, Centro de Ciências Agrarias, a mim proporcionar a formação de agrônomo. E por fim a está cidade que tive o prazer de viver esses últimos cinco anos da minha vida me proporcionando historias e alegrias que vou levar para sempre.

Obrigado a todos!

a	•	•
Sum	ภา	rın
Duili	u	110

LISTA DE FIGURAS	9
LISTA DE TABELAS	10
1.INTRODUÇÃO	13
2.OBJETIVOS	14
2.1 Objetivo Geral	14
2.2. Objetivos Específicos	14
3. REVISÃO DE LITERATURA	14
3.1. Importância Econômica	14
3.2. Morfologia	16
3.3. Exigências climáticas	16
3.4. Precipitação	16
3.5. Temperatura	17
3.6. Fotoperíodo	17
3.7. Radiação Solar	17
3.8. Adaptação de cultivares de feijão-caupi	
4. MATERIAL E MÉTODOS	19
4.1. Localização do Experimento	
4.2. Análise de Solo	20
4.3. Delineamento experimental	20
4.4. Descrição dos cultivares	21
4.5. Avaliações	21
5. RESULTADOS E DISCUSSÃO	22
6. CONCLUSÃO	24
7. REFERÊNCIAS BIBLIOGRÁFICAS	25

LISTA DE FIGURAS

		Pág.
Figura 1.	Área, produtividade e produção de feijão-caupi no Brasil	11
Figura 2.	Principais características das cultivares de feijão-caupi lançadas	
	e recomendadas para as regiões Norte, Nordeste e Centro-Oeste	
	do Brasil	16
Figura 3.	Características químicas e fertilidade do solo, antes da instalação	
	do experimento	17
Figura 4.	Croqui do delineamento da área experimental	17
Figura 5.	Variáveis da precipitação, temperatura máxima e temperatura	
	mínima	19

LISTA DE TABELAS

		Pág.
Tabela 1.	Variáveis morfológicas de peso, número, tamanho e largura de	
	vagem, e número de grãos por vagem em competição entre si de	
	cinco genótipos de feijão Macassar no brejo paraibano, Areia-PB,	
	2018	. 20
Tabela 2.	Análise de variância para as variáveis observadas	. 21

COMPONENTES DE RENDIMENTO DE CULTIVARES DE FEIJÃO MACASSAR NO BREJO PARAIBANO

Resumo: A produção de feijão-caupi no Brasil está acontecendo especialmente em primeira e segunda safra nas regiões Norte, Nordeste e Centro-Oeste. A cultura está tendo uma expansão, no período de safrinha, devido principalmente a precocidade e a tolerância ao déficit hídrico em relação a outros cultivos. Diante disso, objetivou-se com esse trabalho avaliar a adaptação de cinco cultivares de feijão macassar no Brejo Paraíbano em condições de sequeiro e competição entre si. O trabalho foi conduzido na Universidade Federal da Paraíba – UFPB, Areia-PB (CCA, Campus II), na qual está localizada na microrregião do Brejo Paraibano. A área experimental foi composta de 4 repetições, utilizando o delineamento de blocos casualizados (DBC), com 5 tratamentos, constituídas de cinco cultivares: BRS Pajeú (PJ), Sempre Verde (MR), Riso-do-Ano (RA), Verde-ligeiro (VL) e Corujinha (CR). A parcela experimental foi constituída de 4 linhas de 5m comprimento e de 2 m de largura com área total da parcela de 10 m², o espaçamento adotado foi de 0,20 m entre plantas e 0,60 m entre linhas, constituindo a densidade de plantas de 83.333 plantas/ha. A área útil foi de 3 m2 composta pelas duas linhas centrais. Em cada parcela foram selecionadas e marcadas 10 plantas dentro da área útil para realização das avaliações biométricas. Dentre as características agronômicas da cultura analisadas estão: tamanho de vagens, número de vagem, largura de vagens, peso de vagens. Os dados foram submetidos as análises de variância, com programa estatístico SISVAR submetidos ao teste de Tukey a 5 % de probabilidade. Para o genótipo MR a variável número de grãos por vagem houve diferença significativa (P< 0,05) apresentando incremento significativo. O número de grãos por vagem obtido com as cultivares MR não contribui para obtenção de maiores rendimentos de peso de grãos. Para o genótipo VL, o comportamento foi parecido com o MR para número de grãos por vagem, apresentando maiores incrementos entre os demais genótipos onde as mesmas apresentam o mesmo hábito de crescimento. A escolha de cultivares de feijão com maior potencial competitivo entre si é uma prática simples que pode aprimorar o manejo nas áreas de cultivo, sem ocasionar nenhum custo adicional e que os genótipos Maratoan e Verde-ligeiro apresentam melhores resultados para variáveis testadas.

Palavras-chaves: Adaptação; competição; hábito de crescimento; semiárido.

YIELD BEAN CULTIVAR YIELD COMPONENTS IN THE PARIBAN BREAST

Abstract: The production of cowpea beans (Vigna unguiculata) in Brazil is happening especially in the first and Second harvest in the north, Northeast and Midwest regions. The crop is expanding mainly in the Cerrado regions, in the period of Safrinha, mainly due to precocity and tolerance to water deficit in relation to other crops. Therefore, this study aimed to evaluate the adaptation of five macassar cultivars in Brejo Paraibano region under dry conditions and competition. The study was conducted at the Federal University of Paraíba – UFPB, Areia-PB (CCA, Campus II), in which it is located in the microregion of Brejo Paraibano, with latitude 6 ° 58 ' 13 ' 'S, longitude 35 ° 43 ' 95 ' 'W and an altitude of 620 m. The experimental area consisted of 4 replications, using a randomized block design (GRBD), with 5 treatments, consisting of five cultivars: BRS Pajeú (PJ), Sempre Verde (MR), Riso-do-Ano (RA), Verde-ligeiro (VL) e Corujinha (CR). The experimental plot consisted of 4 lines of 5m length and 2 m wide with a total area of the plot of 10 m², the spacing adopted was 0.20 m between plants and 0.60 m between lines, constituting the plant density of 83,333 plants/ha. The useful area will be, 3 m² consisting of the two central lines. In each plot were selected and marked 10 plants within the useful area for the realization of biometric assessments, Among the agronomic characteristics of the culture analyzed are: Pods size, number of pods, Width of pods, weight of pods. Data were subjected to analysis of variance, with a statistical program Sisvar submitted to Tukey's test set at 5% probability. For the MR genotype, the variable number of grains per pod showed a significant difference (P < 0.05) showing significant increment. The number of grains per pod obtained with the MR cultivars does not contribute to obtaining higher yields of grain weight. For the VL genotype, the behavior was similar to the MR for the variable number of grains per pod, showing greater increments among the other genotypes where they present the same growth habit. The choice of bean cultivars with greater competitive potential among themselves is a simple practice that can improve the management in cultivation areas, without causing any additional cost and that the genotypes Maratoan and Verde-ligeiro showed better results for the tested variables.

Keywords: adaptation, Competition, Growth habit, semiarid.

1.INTRODUÇÃO

Conhecido em todo o Nordeste do Brasil O feijão-caupi (*Vigna unguiculata*) é também conhecido por outros como por exemplo feijão-de-corda, feijão-verde, fradinho ou feijão macassar. Entre essa variedade de nomes que lhe é atribuído na região Norte é também conhecido como feijão-de-praia. É pertencente à família das plantas Fabaceae, muito importante na alimentação humana por ser fonte natural de proteínas, calorias, vitaminas e minerais conforme Sousa, 2013.

Essa leguminosa entra no cardápio dos nordestinos compondo pratos típicos referente a culinária da região, como o abará que é o conhecido acarajé, e o tão popular baião de dois em concordância com Sousa Filho et al, 2011.

O feijão macassar é consumido, com cerca de 60% a 70% de umidade é encontrado nas formas de grão secos, vagens ou grãos verdes como hortaliças, tem se tornado uma extraordinária alternativa de comercialização para os agricultores segundo Oliveira et al, 2001.

É muito comum realizar o plantio do feijão caupi nas condições de sequeiro, tendo em vista as constantes oscilações pluviométricas, e elevadas temperaturas, que favorecem essa deficiência hídrica, o que pode interferi consideravelmente na produtividade constante (NASCIMENTO et al, 2004).

A produção de feijão-caupi no Brasil está acontecendo especialmente em primeira e segunda safra nas regiões Norte, Nordeste e Centro-Oeste segundo SILVA et al (2016). A semeadura de primeira safra inicia-se na época que vai de outubro a dezembro e a de segunda safra inicia-se de fevereiro a março, a terceira safra ou safrinha é realizada a partir do mês de março, com o fim do período chuvoso (CONAB, 2017).

Perante o cenário brasileiro a região Nordeste vem se destacando como a maior produtora e consumidora de feijão-caupi do país. Observa-se que o estado do Mato Grosso não apresenta a maior área colhida, atinge a maior produção. Este fato é devido a maior produtividade, resultado direto do emprego de tecnologias adequadas no sistema de produção da cultura. Portanto os estados do Ceará e Piauí são considerados os maiores consumidores de feijão-caupi no Brasil, alcançam baixos níveis de produtividade, em função do baixo emprego de tecnologia, irregularidades pluviométricas conforme Silva et al 2016.

Mesmo sendo uma cultura que apresenta vasta adaptação aos mais diferentes ambientes, este apresenta baixos índices produtivos de 300 kg/há⁻¹). Sendo um fator ponderante os baixos custos com inovação tecnológica de acordo com LEITE 2009.

Para garantir uma melhor produtividade, é necessário ficar atento a escolha da cultivar.

Para determinar ambiente, também deve ser observado na cultivar quanto ao seu potencial quanto ao ciclo, arquitetura da planta, reações as doenças e qualidades da sementes segundo Teixera et al, 2010.

É fundamental na etapa de lançamento das cultivares de feijão-caupi, obter informações sobre adaptabilidade e estabilidade de genótipos, afim amenizar os efeitos da interação genótipo x ambiente conforme Rocha et al, 2007.

2.OBJETIVOS

2.10bjetivo Geral

Avaliar os componentes de produtividade de cinco cultivares de feijão Macassar no Brejo Paraíbano .

2.2. Objetivos Específicos

Analisar os componentes de rendimento de cultivares de feijão macassar no brejo paraibano.

3. REVISÃO DE LITERATURA

3.1. Importância Econômica

O feijão-caupi (Vigna unguiculataL), também conhecido como feijão-de-corda e feijão-macássar, é uma das principais culturas de subsistência das regiões Norte e Nordeste brasileira. A cultura apresenta grande importância na alimentação das pessoas que vivem nessas regiões, principalmente as mais carentes, pois fornece um alimento de alto valor nutritivo e, portanto, um dos principais componentes da dieta alimentar, gerando também emprego e renda, tanto na zona rural, quanto na zona urbana .Além disso, também é utilizado como forragem verde, feno, silagem, farinha para alimentação animal e, ainda, como adubação verde e proteção do solo (ANDRADE JÚNIOR, 2000).

Para a produção de grãos de feijão-caupi, que pode ser realizada visando os mercados de grãos secos, vagens e grãos verdes (feijão-verde). O tipo de cultivar a ser usada pelo produtor para o mercado de feijão-verde depende do sistema de cultivo que será adotado. A agricultura familiar como exemplo, as cultivares devem apresentar, preferencialmente, crescimento indeterminado, porte semi-prostado amplo ciclo produtivo e vagens grandes. Nesse sistema, o pequeno produtor tem preferência por cultivares com longo período de floração e frutificação,

que possibilite mais de uma colheita (SOUSA, 2013).

A produtividade do feijão-caupi se comportou na última safra 2017/18 de tal forma onde no estado da Paraíba foram plantados 63,2 mil hectares que, por insuficiência de chuvas, apresentou produtividade de apenas 261 kg/ha. Na presente safra poderá ocorrer um importante incremento de área com o plantio de até 82,2 mil hectares de feijão-caupi, como mostrado na Figura 1. Observe que a região Nordeste é responsável por praticamente 80% da área cultivada, contudo, na produção total, contribui com menos de 60%, evidentemente, em consequência de menores produtividades obtidas na região. (CONAB,2018).

Figura 1 – Área, produtividade e produção de feijão-caupi no Brasil.

							PRODUÇÃO (Em mil t)		
	A	REA (Em mil ha)		PROL	DUTIVIDADE (Em k	g/ha)	PRODUÇÃO (EM MII t)		
REGIÃO/UF	Safra 16/17	Safra 17/18	VAR. %	Safra 16/17	Safra 17/18	VAR. %	Safra 16/17	Safra 17/18	VAR. %
	(a)	(b)	(b/a)	(c)	(d)	(d/c)	(e)	(f)	(f/e)
NORTE	73,7	74,3	0,8	1.279	1.027	(19,7)	94,3	76,4	(19,0)
RR	2,4	2,4	-	650	650	-	1,6	1,6	-
AC	2,0	2,0		630	643	2,1	1,3	1,3	
PA	28,2	28,2		866	748	(13,6)	24,4	21,1	(13,5)
TO	41,1	41,7	1,5	1.630	1.256	(23,0)	67,0	52,4	(21,8)
NORDESTE	1.112,4	1.186,7	6,7	346	363	4,9	385,1	431,2	12,0
MA	87,8	90,9	3,5	646	632	(2,1)	56,6	57,5	1,6
PI	233,2	241,6	3,6	302	344	13,9	70,3	83,0	18,1
CE	404,2	392,5	(2,9)	290	272	(6,2)	117,2	106,8	(8,9)
RN	35,8	47,4	32,4	347	341	(1,7)	12,4	16,2	30,6
PB	63,2	82,2	30,1	261	234	(10,3)	16,5	19,2	16,4
PE	96,4	147,9	53,4	143	281	95,9	13,8	41,5	200,7
AL	10,3	10,3		605	522	(13,7)	6,2	5,4	(12,9)
BA	181,5	173,9	(4,2)	507	584	15,1	92,1	101,6	10,3
CENTRO-OESTE	209,0	252,3	20,7	1.083	1.116	3,0	226,5	281,6	24,3
MT	208,7	236,4	13,3	1.083	1.104	1,9	226,0	260,9	15,4
DF	0,3	0,8	166,7	1.500	1.261	(15,9)	0,5	1,1	120,0
SUDESTE	14,2	13,8	(2,8)	522	542	3,6	7,4	7,5	1,4
MG	14,2	13,8	(2,8)	522	542	3,6	7,4	7,5	1,4
NORTE/NORDESTE	1.186,1	1.261,0	6,3	404	402	(0,5)	479,4	507,6	5,9
CENTRO-SUL	223,2	266,1	19,2	1.048	1.086	3,7	233,9	289,1	23,6
BRASIL	1.409,3	1.527,1	8,4	506	522	3,0	713,3	796,7	11,7

Fonte: CONAB, 2018

O feijão-caupi predomina nas região Nordeste. Porém, por ser uma espécie adaptada às condições tropicais e subtropicais, produz bem em todas as regiões do País.

Para o feijão-caupi podem-se identificar, já bem estabelecidos, três segmentos de mercado; grãos secos, feijão verde (vagem verde ou grão verde debulhado) e sementes. No Brasil, o feijão-caupi vem passando por grandes mudanças, tanto no setor produtivo, com a expansão do cultivo para outras regiões, quanto no setor comercial, com uma melhor padronização do produto, com o início do processamento industrial e com a entrada do produto em novos mercados do País e do exterior. É importante mencionar que a preferência por um determinado tipo de grão de feijão-caupi varia de cada país, de região para região (FREIRE FILHO, 2011).

3.2. Morfologia

A espécie L. Walp., tecnicamente conhecida como feijão-caupi e vulgarmente como feijão-de-corda, feijão macassar, feijão-fradinho, feijão-de-praia, é uma dicotiledônea pertencente ao filo, *Magnoliophyta*, a classe *Magnoliopsida*, da ordem *Fabales*, e família *Fabacea*. A biologia floral do feijão-caupi mostra que a espécie é bastante evoluída, pois, embora sendo amplamente autopolinizada, mantém a capacidade da polinização cruzada (MOURA ROCHA, 2007).

A duração do ciclo de vida das plantas de feijão-caupi pode ser classificada como de ciclo super precoce quando a maturidade é atingida até 60 dias após a semeadura; ciclo precoce - quando a maturidade é atingida entre 61 e 70 dias após a semeadura; ciclo médio - quando a maturidade é atingida entre 71 e 90 dias após a semeadura; e ciclo tardio - a maturidade é atingida após 91 dias da semeadura (FREIRE FILHO, 2000).

A melhor época de plantio para as variedades de feijão-caupi de ciclo médio (71 a 90 dias) é a metade do período chuvoso de cada região. O feijão-caupi é cultivado em todo o território brasileiro, principalmente no Nordeste, onde se encontram os mais variados métodos de plantio, desde o mais rudimentar até a moto mecanização com plantadeiras adubadeiras, fatores estes que iram variar dependendo das condições e situações de cada produtor. (CARDOSO et al., 1992).

A arquitetura da planta e o sistema de produção influenciam na determinação do arranjo de plantas mais adequado, para que os fatores de produção sejam eficientemente aproveitados e o potencial produtivo da cultivar maximizado em busca de melhores produções (BEZERRA, 2005). Para qualquer cultura, o conhecimento da combinação ótima do espaçamento entre fileiras e da densidade de plantas é essencial para a maximização econômica da produção (HENDERSON et al., 2000).

3.3. Exigências climáticas

O feijão-caupi que em grande maioria é cultivado em regiões áridas e semiáridas, entre os elementos de clima conhecidos, destacam-se a precipitação, a temperatura do ar, o fotoperíodo, o vento e a radiação solar, todos estes influenciam no desenvolvimento de qualquer que seja a cultura. Em geral, as plantas exibem diferentes respostas às variações do ambiente em que se encontram. Algumas dessas respostas são rápidas, enquanto outras necessitam de estímulos cumulativos, que variam em tempo. (RIZHSKY et al., 2002).

3.4. Precipitação

O feijão-caupi é uma cultura que exige um mínimo de 300 mm (milímetros) de chuva

para que produza, sem a necessidade de utilização da prática da irrigação. As regiões, cujos valores anuais de chuva variam entre 250 e 500 mm, são consideradas aptas para a implantação da cultura. Entretanto, a limitação de água encontra-se mais diretamente condicionada à distribuição do que à quantidade total de chuvas ocorridas no período. Caso ocorra a falta de disponibilidade de água próximo ou anterior ao florescimento vai reduzir o crescimento vegetativo, consequentemente reduzindo a produtividade (ALVES BASTOS, 2009).

3.5. Temperatura

Para o desenvolvimento satisfatório da cultura do feijão-caupi é preciso ocorrer entre as temperaturas de 18° a 34° C. Para cada estádio de desenvolvimento encontrasse uma faixa ideal de temperatura, para a germinação, a temperatura basal pode variar entre 8 e 11°C, (CRAUFURD et al., 1996). Temperaturas superiores a 35°C acarretam prejuízos à cultura, como aborto espontâneo das flores, retenção das vagens na planta (CAMPOS et al., 2010).

3.6. Fotoperíodo

Existem cultivares de feijão-caupi sensíveis e outras insensíveis ao fotoperíodo, cujo crescimento vegetativo, arquitetura da planta e desenvolvimento reprodutivo são principalmente determinados pela interação de genótipos com a duração do dia e temperaturas do ar. As cultivares de feijão-caupi sensíveis ao fotoperíodo são consideradas plantas de dias curtos, que têm o seu florescimento atrasado quando o fotoperíodo é maior que o fotoperíodo crítico, que é as horas de luz solar maior do que as plantas necessitam para seu desenvolvimento (AGEITEC, 2016).

3.7. Radiação Solar

A radiação solar é considerada um fator de grande importância para o crescimento e desenvolvimento vegetal, pois influencia diretamente na fotossíntese das plantas. Sob condições favoráveis de solo e clima e quando pragas e doenças deixam de ser fatores limitantes, a máxima produtividade de uma cultura passa a depender principalmente da taxa de interceptação de luz e da assimilação de dióxido de carbono pelas plantas (AGEITEC,2016).

3.8. Adaptação de cultivares de feijão-caupi

O feijão-caupi evolutivamente ocorreu em ambientes semiáridos, com mudanças durante a sua domesticação: mudança de perene para anual, de alógama para autógama e adaptação às condições semiáridas (RAWAL, 1975). Adicionalmente, segundo Lush e Evans (1981), outras alterações ocorreram e estão ocorrendo a todo momento, tais como: redução no número de vagens no pedúnculo, redução na taxa de crescimento relativo na fase inicial da planta, aumento de requerimento de fotossintetizados pelas vagens, aumento do tamanho das vagens e sementes, marcante redução na deiscência e perda da dormência. Para a adaptação e o lançamento de uma cultivar de feijão-caupi, é essencial conhecer a adaptabilidade e estabilidade dos genótipos, para assim se amenizar os efeitos da interação genótipo x ambiente e facilitar a recomendação de novas cultivares. Esses Estudos têm subsidiado o melhoramento e o lançamento de cultivares de feijão-caupi em estados do Nordeste, no entanto, se concentram em genótipos de porte prostrado (MIRANDA et al., 1997; SANTOS et al., 2000; FREIREFILHO et al., 2002) e, em menor escala, em genótipos de porte ereto (FREIRE FILHO et al., 2001).

As cultivares de feijão-caupi apresentam características genéticas, fisiológicas e morfológicas intrínsecas e, portanto, respondem de forma diferenciada as condições edafoclimáticas de cada local. Na região do Cariri e Brejo Paraibano as variedades de feijão-caupi mais cultivadas são Sempre Verde, Canapu, Rabo de Peba, Galanjão, nomes estes que variam entre regiões e que são resultados de seleções praticadas pelos agricultores, o que favorece para a redução da produtividade na região (DOS SANTOS, 2009). Dentre as principais características das cultivares de feijão-caupi registradas no Registro Nacional de Cultivares do Ministério da Agricultura, Pecuária e Abastecimento (CULTIVARWEB, 2018), com suas regiões de adaptação, encontram-se na Figura 2.

Figura 2. Principais características das cultivares de feijão-caupi lançadas e recomendadas para as regiões Norte, Nordeste e Centro-Oeste do Brasil.

Cultivar (1)	Ano de lançamento	Região de adaptação	Porte da planta ⁽²⁾	Ciclo de maturação	Subclasse comercial	Peso de 100 grãos	Produtivi de grãos (kg.ha ^{·1})	
						(g)	Sequeiro	Irrigado
Sempre-Verde	1981	AL, BA, CE, MA, PI, RN, SE	SPR	70-80	Sempre-Verde	15,9	900	1.200
BR 2 - Bragança	1985	PA	SER	65-75	Manteiga	16,0	811	2.008
BR 3 - Tracuateua	1985	PA	PR	70-80	Branco Rugoso	30,0	914	1.698
Setentão	1988	AL, BA, CE, MA, PB, PI, RN, SE	SPR	65-70	Sempre-Verde	19,8	1.200	-
IPA-205	1988	MA, PB, PE, RN	SPR	70-80	Mulato Liso	20,0	1.319	-
IPA-206	1989	BA, PB, PE, RN	SER	65-75	Mulato Liso	22,0	1.240	-
Riso do Ano	1990	RN	SPR	70-90	Branco Liso	15,5	1.000	1.300
BR 14-Mulato	1990	PI, BA	SPR	65-75	Mulato Liso	16,0	883	1.967
BR 17-Gurguéia	1994	PI	SPR	70-80	Sempre-Verde	12,0	976	1.964
Amapá	1997	AP, RN	SER	70-75	Branco Liso	16.0	1.200	-
Monteiro	1998	PI	PR	70-75	Branco Rugoso	28,4	-	2.070
Patativa	1999	CE	SPR	65-70	Mulato Liso	19.0	1.267	
BRS Mazagão	2000	AP, PI	SER	60-65	Branco Liso	15,0	1.271	1.895
BRS Rouxinol	2001	BA, PI	SER	65-75	Sempre-Verde	17.0	892	1.509
	_	_	-	,	,	_		_
BRS Paraguaçu BRS Guariba	2002	BA, PI MA, PI	SPR	65-75	Branco Liso	17,0	890	1.087
BRS Marataoā	2004	BA, PB, PI	SPR	70-75	Mulato	15.0	978	
BRS Potiguar	2005	RN	SER	65-70	Mulato Liso	23,0	1.100	1.600
BRS Milênio	2005	PA	PR	70-80	Branco Rugoso	23,0	1.399	-
BRS Urubuquara	2005	PA	PR	70-80	Branco Rugoso Branco	22,0	1.276	-
BRS Novaera	2007	MA	SER	65-70	Rugoso	20,0	1.125	1.611
BRS Pujante	2007	BA, PE	SPR	70-75	Mulato Liso	25,0	704	-
BRS Xiquexique	2008	AL, AM, AP, BA, MA, MT, MS, PE, PI, RN, RO, RR, SE	SPR	70-75	Branco Liso	16,0	1.018	1.593
BRS Cauamé	2009	AL, AM, AP, MS, PA, PE, RO, RR, SE	SER	65-70	Branco Liso	17,0	977	1.769
BRS Tumucumaque	2009	AL, AM, MA, MT, MS, PA, PE, PI, RN, RO, RR, SE	SER	65-70	Branco Liso	18,0	1.100	1.703
BRS Pajeú	2009	AL, MA, MT, MS, PA, PE, PI, RR, SE	SPR	70-80	Mulato Liso	21,0	981	1.863
BRS Potengi	2009	AM, MA, MT, MS, PE, RN, RO, RR	SER	65-70	Branco Liso	20,0	972	1.766
BRS Itaim	2009	PA, PI, RR, TO	ER	60-65	Fradinho	23,0	1.712	1.373
BRS Juruá	2009	BA, MT, PA, PI, RR, SE, TO	SPR	70-80	Verde		1.094	1.151
BRS Arace	2009	BA, MT, PA, PI, RR, SE, TO	SPR	70-80	Verde	18,0	1.355	1.192
BRS Acauã	2010	BA, PE, PI	SPR	70-80	Canapu	18,0	1.338	1.407
BRS Carijó	2010	BA, PE, PI	ER	60-65	Fradinho	19,0	1.227	1.651
BRS Tapaihum	2010	BA, PE, PI	ER	60-65	Preto	19,0	1.183	1.619
Miranda IPA 207 BRS	2011	PE MA, MT, PI,	SPR	65-70	Mulato	21,0	2.181	-
Imponente	2016	PA PA	SER	65-70	Rugoso	34,0	1.311	1.276

 $Fonte: Adaptado \ de \ Freire Filho \ et \ al. \ (2011) \ e \ (CULTIVARWEB, 2018). \ (2) \ SPR = Semiprostrado; \ PR = Prostrado; \ SER = Semiereto; \ ER = Ereto.$

4. MATERIAL E MÉTODOS

4.1. Localização do Experimento

O trabalho foi conduzido em uma área experimental do CCA, Campus II, da Universidade Federal da Paraíba – UFPB, localizado em chã do Jardim Areia-PB a qual está localizada na microrregião do Brejo Paraibano, com latitude 6°58'13" S, longitude 35°43'95" W e uma altitude de 620 m. Pela classificação de Koppen, o clima é o tipo As', o qual se caracteriza como quente e úmido, com chuvas de outono-inverno. A temperatura média oscila entre 21 e 26°C, com mudanças mensais mínimas, e apresenta precipitação média anual de 1.400 mm.

4.2. Análise de Solo

Foi coletado o solo da área experimental e em seguida classificado como Lato solo Vermelho e Amarelo (EMBRAPA, 2006), em sequencia foi conduzido para uma análise química desenvolvida no Laboratório de Química e Fertilidade do Solo pertencente ao Departamento de Solos e Engenharia Rural do Centro de Ciências Agrárias da Universidade Federal da Paraíba (Figura 2).

Figura 3. Características químicas e fertilidade do solo, antes da instalação do experimento.

IDENT.	pН	P	K ⁺	Na ⁺	H++Al+3	A1 ⁺³	Ca ⁺²	Mg^{+2}	SB	CTC	V	m	M.O.
		mg	/dm³-		cmolc/dm³					9/	ó	g/kg	
34.748	4,8	2,20	28,40	0,05	5,49	0,10	0,81	0,30	1,23	6,72	18,30	0,30	36,72

4.3. Deliniamento Experimental

A área experimental foi composta de 4 repetições, utilizando o delineamento de blocos casualizados (DBC), com 5 tratamentos, o quais foram sorteados ao acaso, em que cada tratamento corresponde a uma cultivar de feijão-caupi. A parcela experimental foi constituída de 4 linhas de 5m comprimento e de 2 m de largura com área total da parcela de 10 m² (Figura 1). O espaçamento foi de 0,20 m entre plantas e 0,60 m entre linhas, constituindo a densidade de plantas de 83.333 plantas/ha. O número de sementes/metro linear foi 5. A área útil será de, 3 m² composta pelas duas linhas centrais, de modo que a bordadura será representada pelas linhas laterais e 0,60 m das extremidades das linhas centrais.

Figura 4. Croqui do delineamento da área experimental

					5 m	
	1	2	3	4	5	
BLOCO1	SEMPRE VERDE	VERDE LIGEIRO	CORUJINHA	RISO DO ANO	PAJEÚ	2 m
BLOCO2	CORUJINHA	PAJEÚ	VERDE LIGEIRO	SEMPRE VERDE	RISO DO ANO	ľ
BLOCO3	VERDE LIGEIRO	CORUJINHA	RISO DO ANO	PAJEÚ	SEMPRE VERDE	
BLOCO4	VERDE LIGEIRO	SEMPRE VERDE	PAJEÚ	RISO DO ANO	CORUJINHA	

4.4. Descrição dos cultivares

Foram utilizados 5 cultivares (BRS Pajeú, Sempre Verde, Riso-do-Ano, Verde-ligeiro e Corujinha) descritos a seguir:

O cultivar BRS Pajeú tem porte semi-prostado e inserção da vagem levemente acima da folhagem de fácil colheita manual. Cor das pétalas rochas, grãos mulato-claros, hábito de crescimento indeterminado, cor do anel do hilo marrom claro, ciclo de 70 a 75 dias.

O cultivar Sempre-verde tem hábito de crescimento indeterminado, porte semiprostrado, inserção das vagens acima da folhagem, cor das pétalas rochas, ciclo de maturação de 70 a 75, grãos de cor marrom-claro-esverdeada e anel do hilo verde.

O cultivar Riso-do-ano tem habito de crescimento determinado, porte ereto, inserção das vagens acima das folhagens, pétalas brancas, ciclo de maturação de 70 a 75 dias, grãos de coloração branca e anel do hilo creme.

O cultivar Verde-ligeiro tem habito de crescimento indeterminado, porte semi-prostado, inserção das vagens acima das folhagens, pétalas branca, ciclo de maturação de 70 a 75 dias, grãos de coloração branca e anel do hilo preto.

O cultivar Corujinha tem habito de crescimento indeterminado, porte semi-prostado, inserção das vagens a cima das folhagens, pétalas brancas, ciclo de maturação de 70 a 75 dias, seus grãos apresentam duas colorações branco com marrom- claro, e anel do hilo branco.

4.5. Avaliações

Em cada parcela foram selecionadas e marcadas 10 plantas dentro da área útil para realização das avaliações biométricas a respeito das avaliações da produtividade das cultivares totalizando 5 avaliações, dentre as características agronômicas da cultura analisadas foram:

- Comprimento de vagens: para realizar a medição o comprimento das vagens foram necessárias réguas graduada em (cm).
- **Número de sementes**: foram utilizas 10 plantas de cada tratamento e feita a contagem manual, em seguida tirada a média para saber a quantidades de sementes por planta.
- -Número de vagens: foram feita contagem manual nas plantas selecionadas.
- Largura de vagens: utilização de r5égua graduada em (cm).
- **Peso de vagens por planta e por hectare**: para medir o peso das vagens foi necessário utilização de balança de precisão, de 10 plantas de cada tratamento. em seguida tirada a média para saber o peso unitário por planta.

5. RESULTADOS E DISCUSSÃO

Na tabela 1 encontram-se a análise de variância das variáveis estudadas. Para número de vagens, grãos por vagem houve efeito significativo. Para as demais variáveis não foram observados significância.

Para o genótipo MR a variável número de grãos por vagem houve diferença significativa (P< 0,05). O número de grãos por vagem obtido com o cultivares MR não contribui para obtenção de maiores rendimentos de peso de grãos (Tabela 3). Isso provavelmente está ligado ao hábito de crescimento indeterminado (semi prostado) desse genótipo, o que pode ser observado no hábito crescimento determinado a exemplo o genótipo RA, com menores incrementos entre todas as variáveis testadas, exceto número de vagem. Esse comportamento é embasado no fato dos cultivares prostados e semi prostado produzirem maior número de ramificações e, consequentemente maiores número de grãos por planta, proporcionando dessa forma maiores patamares de produtividade.

No que diz respeito à capacidade de competição entre genótipos de feijão, pode-se dizer que a morfologia da planta é fator preponderante, em que os genótipos com porte ereto e poucos ramificados, são menos competitivos (SANTOS & GAVILANES, 2006). A influência direta dessas características no rendimento foi constatada em outros resultados de pesquisa por Valério et al., 1999; Souza et al., 2003 e Teixeira et al., 2004.

Tabela 1. Análise de variância para as variáveis observadas.

		Variáveis				
FV	GL	NV	TV	GV	LV	PV
Bloco	3	0,0011**	0,0770ns	0,0001**	0,1094ns	0,1042ns
Trat.	4	0,0014**	0,7073ns	0,0002**	0,5961ns	0,3820ns
Erro	192	_	_	_	_	_
Total	199	_	_	_	_	_
Média Geral	_	4,14	13,88	42,67	0,79	9,89
DMS	_	1,41	2,75	4,85	0,15	4,10

^{**} nível de significância a 1% de probabilidade; DMS= diferência mínima significativa; ns= significância; NV= número de vagem; TV= tamanho de vagem; GV= grãos por vagem; I largura de vagem e PV= peso de vagem; FV= fator de variância; GL= grau de liberdade.

Para o genótipo VL o comportamento foi similar com o MR para número de grãos por

vagem, apresentando maiores incrementos entre os demais genótipos onde as mesmas apresentam o mesmo hábito de crescimento (Tabela1). Trabalhos investigativos sobre comportamento de genótipos de feijão de diferentes tipos de crescimento nas diferentes épocas de cultivo e condições de solo e clima ainda são incipientes.

Para o genótipo RA o número de vagens por plantas não teve relacão com o rendimento de grãos. Esses resultados corroboram as afirmações de Farias & Kranz 1982, e Andrade et al. 1999, de que os cultivares de crescimento ereto, a exemplo o genótipo Riso do ano (RA), apresentam menor potencial de produção devido ao porte, com uma tendência a menores proporções de número de ramificações, tendo, assim, dificuldade de promover maiores quantidades de grãos por vagem, largura e tamanho de vagem.

Tabela 2: Variáveis morfológicas de peso, número, tamanho e largura de vagem, e número de grãos por vagem em competição entre si de cinco genótipos de feijão Macassar no brejo paraibano, Areia-PB, 2018.

Variáveis	Genótipos					
	CR	MR	PJ	RA	VL	CV (%)
Número de vagem	4,2ab	3,6b	3,3b	5,3a	4,2ab	29,87
Tamanho de vagem (cm)	14,2a	13,6a	13,6a	13,3a	14,6a	16,53
Grãos por vagem	37,2b	49,0a	35,8b	42,7ab	48,5a	30,48
Largura vagem (cm)	0,80a	0,82a	0,76a	0,75a	0,82a	17,21
Peso de vagem (g)	9,75a	11.7a	9,00a	9,62a	9,32a	34,07

Médias seguidas na mesma linha com letras iguais não diferencia significativamente entre si pelo teste de Tukey à 5% de probabilidade.

Dentre os genótipos avaliados a BRS Pajeú foi o único que não apresentou incremento significativo entre as variáveis observadas. Provavelmente isso ocorreu devido a adaptação dessa cultivar as condições ambientais adversas. Segundo Ferreira et al., 1991 este componente de produção resiste normalmente às modificações induzidas por estresse ambiental do feijão caupi cv. BRS Pajeú. Devido à diversidade de condições ambientais em que o cultivo é realizado é necessário que os ensaios sejam conduzidos em diversos ambientes, a fim de possibilitar uma boa estimativa da interação genótipo ambiente, o que faz possível a estimação de estabilidade dos genótipos elite, proporcionando à indicação segura de cultivares para respectivos locais (MELO et al., 2007).

Durante todo o período experimental as condições climáticas foram ideais para o

desenvolvimento do feijão Macassar. Foram observados valores médios de temperaturas máximas de 26°C e mínimas de 18°C continuas durante todo o período experimental (Gráfico 1). De acordo com Craufurd (1996b) para um bom desenvolvimento da cultura temperatura deve variar na faixa de temperatura de 18 °C a 34 °C.

A partir do terceiro mês, coincidindo com o período chuvosa na região, Foi observado um aumento no índice de pluviosidade (Gráfico 1). De acordo com Sobrinhos (2003) um deficit hídricos no início do desenvolvimento da cultura pode concorrer para estimular um maior desenvolvimento radicular das plantas. Porém, o estresse hídrico durante o período reprodutivo (florescimento e enchimento de vagens) pode ocasionar severa redução da produtividade de grãos. Podemos observar que durante o período de florescimento e enchimento dos grãos, as plantas estiveram sob ideais condições de temperatura e pluviosidade.

120 100 Pluvial 60 Precipitação Temperatura maxima 40 Temperartura minima 20 13/05/2017 23/05/2017 12/06/2017 22/06/2017 02/07/2017 12/07/2017 22/07/2017 02/06/2017 Meses

Figura 5. Variáveis da precipitação, temperatura máxima e temperatura mínima.

6. CONCLUSÃO

Os genótipos Maratoan e Verde-ligeiro apresentam melhores resultados para variáveis testadas no Brejo da Paraíba.

São necessárias maiores pesquisas sobre adaptação de cultivares de feijão macassar no Brejo da Paraíba a fim de obter maior número de informações nas condições locais.

7. REFERÊNCIAS BIBLIOGRÁFICAS

ANDRADE JÚNIOR, A. S. Viabilidade da irrigação, sob risco climático e econômico, nas microrregiões de Teresina e Litoral Piauiense. 2000. 566f. Tese (Doutorado) — Escola Superior de Agricultura Luiz de Queiroz, Piracicaba, 2000.

ANDRADE, C. A. B. et al. **Efeito da competição com plantas daninhas em diferentes espaçamentos sobre o rendimento de três cultivares de feijão** (*Phaseolus vulgaris L.*) Ci. Agrotecnol., v. 23, n. 3, p. 529-539, 1999.

BEZERRA, A.A. de C. Efeitos de arranjos populacionais na morfologia e produtividade de feijão caupi de crescimento determinado e porte ereto. 123p. Tese (Doutorado) Universidade Federal do Ceará, Fortaleza.2005.

BEZERRA, Anna Karine Paiva et al. **Rotação cultural feijão caupi/milho utilizando-se águas de salinidades diferentes**. Ciência Rural, v. 40, n. 5, 2010.

CAMPOS, J.H.B.C.; MADSON, T.S.; SILVA, V.P.R. **Impacto do aquecimento global no cultivo do feijão-caupi, no Estado da Paraíba**. Revista Brasileira de Engenharia Agrícola e Ambiental, v.14, n.4, p.396-404, 2010.

Companhia Nacional de Abastecimento. **Perspectivas de diversificação e de investimentos na produção de arroz – trigo – feijão**. Compêndio de estudos Conab, v. 1 (2016). Brasília: Conab, 53 p.2016.

CONAB – Companhia Nacional de Abastecimento. **Acompanhamento da safra brasileira de grãos.** v. 4 – Safra 2016/17, n. 12 – Décimo Primeiro Levantamento, set 2017.

CRAUFURD, P.Q.; ELLIS, R.H.; SUMMERFIELD, R.J.; MENIN, L. **Development in cowpea** (*Vigna unguiculata*) **I. The influence of temperature on seed germination and seedling emergence**. Experimental Agriculture, v.32, p.1-12, 1996.

CRAUFURD, P.Q.; SUMMERFIELD, R.J.; ELLIS, R.H.; ROBERTS, E.H. Development in cowpea (*Vigna unguiculata*). III. **Effect of temperature and photoperiod on time flowering in photoperio-sensitive genotypes and screening for photothermal responses**. Experimental Agriculture, v.32, n.1, p.29-40, 1996.

DOORENBOS, J.; KASSAM, A.H. **Efeito da água no rendimento das culturas.** 2.ed. Campina Grande: UFPB, 221p. (Estudos FAO: Irrigação e Drenagem, 33).2000.

DOS SANTOS, João Felinto et al. Produçao e componentes produtivos de variedades de feijão-caupi na microregião Cariri paraibano. Engenharia Ambiental: Pesquisa e Tecnologia, v. 6, n. 1, 2009.

FARIAS, R. T.; KRANZ, W. N. **Determinação de espaçamento e densidades adequados para as cultivares de diferentes portes.** In: reunião nacional de pesquisa de feijão, 1., 1982, Goiânia. Anais... Goiânia: Embrapa-CNPAF, 1982. p. 18-19.

FERREIRA, L. G. R.; COSTA, J. O.; ALBUQUERQUE, I. M. de. Estresse hídrico nas fases vegetativas e reprodutivas de duas cultivares de caupi. Pesquisa Agropecuária Brasileira, v.26, p.1049-1055, 1991.

FREIRE FILHO, F. R. **Origem, evolução e domesticação do caupi.** In: ARAÚJO, J. P. P. de; WATT, E. E. (Org.). O caupi no Brasil. Brasília, DF: IITA: EMBRAPA, p. 26-46.1988.

FREIRE FILHO, F.R. **Feijão-caupi no Brasil: Produção, melhoramento genético, avanços e desafios**. Teresina: EMBRAPA Meio Norte, 84p.2001.

FREIRE FILHO, F.R.; RIBEIRO, V.Q.; BARRETO, P.D.; SANTOS, A.A. dos. **Melhoramento genético. In: Feijão-caupi: avanços tecnológicos.** Brasília: Embrapa Informação Tecnológica, p.29-92.2005.

HENDERSON, T.L.; JOHNSON, B.L.; SCHNEITER, A.A. Row spacing, plant population, and cultivar effects on grain amaranth in the northern Great Plains. Agronomy Journal, v.92, p.329 336, 2000.

IBGE - Instituto Brasileiro de Geografia e Estatística. Levantamento sistemático da produção agrícola. Rio de Janeiro: IBGE, v.16-20, 2011.

LEITE, L. F. C. et al. **Nodulação e produtividade de grãos do feijão-caupi em resposta ao molibdênio**. Revista Ciência Agronômica, v. 40, n. 04, p. 492-497, 2009.

MELO, L. C. et al. Interação com ambientes e estabilidade de genótipos de feijoeiro-comum na região centro-sul do brasil. 2007.

NASCIMENTO, J.T.; PEDROSA, M.B.; TAVARES SOBRINHO, J. Efeito da variaÁ,,o de nÌveis de •gua disponÌvel no solo sobre o crescimento e produção de feijão caupi, vagens e grãos verdes. Horticultura Brasileira, BrasÌlia, v.22, n.2, p.174-177, abril-junho 2004.

OLIVEIRA, A.P.; ARA/JO, J.S.; ALVES, E.U.; NORONHA, M.A.S.; CASSIMIRO, C.M.; MENDON«A, F.G. Rendimento de feijão caupi cultivado com esterco bovino e adubo mineral. Horticultura Brasileira. Brasilia, v.19, n.1, p.81-84, 2001.

RIZHSKY, L.; LIANG, H.; MITTLER, R.; The combined effect of drought stress and heat. Shock on gene expression in tobacco. Plant Physiology, v.130, p.1143-1151, 2002.

ROCHA et al. **Adaptabilidade e estabilidade produtiva de genótipos de feijão caupi de porte semi - ereto na região nordeste do Brasil**. Pesquisa. Agropec. Bras. V. 42, n 9. P. 1283-1289, Brasília 2007.

SANTOS, J. B.; GAVILANES, M. L. Botânica. In: VIEIRA, C.; PAULA JÚNIOR, T. J.; BORÉM, A. (Eds). **Feijão. 2.ed. Viçosa,** MG: Universidade Federal de Viçosa, 2006. p. 41-65.

SOBRINHOS, C. A. et al. Cultivo de feijão caupi. Teresina: Embrapa Meio-Norte, 2003.

SOUSA, A. R. R. C. **Transformação genética de feijão-caupi** (*Vigna unguiculata L. Walp*) **visando à introdução de genes de resistência a viroses.** Brasília: Faculdade de Agronomia e Medicina Veterinária, Universidade de Brasília, 2013, 122 p. Tese de Doutorado.

SOUZA, A. B.; ANDRADE, M. J. B.; MUNIZ, J. A. Altura de planta e componentes do rendimento do feijoeiro em função de população de plantas, adubação e calagem. Ci. Agrotecnol., v. 27, n. 6, p. 1205-1213, 2003.

TEIXEIRA et al. **Desempenho agronômico e qualidade de sementes de cultivares de feijão caupi na região do cerrado**. Revista ciência agronômica v 41, n 2,p.300-307. Fortaleza, 2010.

TEIXEIRA, I. R. et al. Manganese and zinc leaf application on commom bean grown on a "cerrado" soil. Sci. Agric., v. 61, n. 1, p. 77-81, 2004.

VALÉRIO, C. R.; ANDRADE, M. J. B.; FERREIRA, D. F. Comportamento das cultivares de feijão Aporé, Carioca e Pérola em diferentes populações de plantas e espaçamentos entre linhas. Ci. Agrotecnol., v. 23, n. 3, p. 515-528, 1999.