

Universidade Federal da Paraíba Centro de Tecnologia Programa de Pós-Graduação em Engenharia Mecânica - Mestrado - Doutorado

PRODUÇÃO DE ENERGIA ELÉTRICA E CARVÃO ATIVADO A PARTIR DE UM GASEIFICADOR DE BIOMASSA

por

Merques do Nascimento Freitas

Dissertação de Mestrado apresentada à Universidade Federal da Paraíba para obtenção do grau de Mestre

MERQUES DO NASCIMENTO FREITAS

PRODUÇÃO DE ENERGIA ELÉTRICA E CARVÃO ATIVADO A PARTIR DE UM GASEIFICADOR DE BIOMASSA

Dissertação apresentada ao curso de Pós-Graduação em Engenharia Mecânica da Universidade Federal da Paraíba em cumprimento as exigências para obtenção do grau de Mestre.

Orientador: Prof. Dr. Emerson Freitas Jaguaribe

Catalogação na publicação Seção de Catalogação e Classificação

F866p Freitas, Merques do Nascimento.

PRODUÇÃO DE ENERGIA ELÉTRICA E CARVÃO ATIVADO A PARTIR DE UM GASEIFICADOR DE BIOMASSA / Merques do Nascimento Freitas. - João Pessoa, 2019.

72 f.

Orientação: EMERSON FREITAS JAGUARIBE. Dissertação (Mestrado) - UFPB/CT.

1. BIOMASSA. 2. CARVÃO ATIVADO. 3. ENERGIA ELÉTRICA. 4. GASEIFICAÇÃO. I. JAGUARIBE, EMERSON FREITAS. II. Título.

UFPB/BC

PRODUÇÃO DE ENERGIA ELÉTRICA E CARVÃO ATIVADO A PARTIR DE UM GASEIFICADOR DE BIOMASSA

por

Merques do Nascimento Freitas

Dissertação aprovada em 20 de fevereiro de 2019

Prof. Dr. Emerson Freitas Jaguaribe
Orientador – UFPB

Prof. Dr. José Maurício Alves de Matos Gurgel Examinador Interno - UFPB

> Prof. Dr. Adriano Sitônio Rumão Examinador Externo - UFPB

DEDICATÓRIA

Dedico este trabalho a minha mãe, Antonia do Nascimento Freitas, bem como a minha tia, Rosa Rodrigues do Nascimento, por toda abnegação dispensada durante as suas vidas, em prol de minha educação.

AGRADECIMENTOS

Agradeço ao Grande Engenheiro do Universo, pela saúde, proteção e discernimento ofertados a mim.

Ao meu orientador, Emerson Freitas Jaguaribe, pela compreensão, ensinamentos, confiança e camaradagem.

Aos professores que contribuíram para a minha formação, destacando-se o professor Adriano Sitônio Rumão.

À Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) pela bolsa de estudos de Mestrado.

Aos colegas do Laboratório de Inovação, Vicente, Jandemarques, Everton, Carlos, Braulio, Samuel, Jorge, Carol, Luiz Paulo, Otávio, bem como os do Laboratório de Carvão Ativado, Wendell, Débora e Alisson, pela contribuição técnica necessária para a conclusão deste trabalho.

A todos os demais que de alguma forma contribuíram para a conclusão deste trabalho.

PRODUÇÃO DE ENERGIA ELÉTRICA E CARVÃO ATIVADO A PARTIR DE UM GASEIFICADOR DE BIOMASSA

RESUMO

A gaseificação é na prática o processo mais eficiente para se extrair a energia química contida na Biomassa. No que concerne à geração de energia elétrica vem demonstrando grandes resultados, seja do ponto de vista econômico, seja do ponto de vista do meio ambiente. Diversas pesquisas vêm sendo desenvolvidas buscando aperfeiçoar o processo de gaseificação e suas tecnologias; dentre elas, esta, que tem por objetivo a produção de energia elétrica e de carvão ativado, concomitantemente, a partir da biomassa residual. Para os experimentos, utilizou-se um gaseificador com capacidade para 8 kW térmicos; um motor de combustão interna VANGUARD V-twin de 18 HP (13,5 kW), do ciclo Otto, adaptado para funcionar a gás; um gerador TOYAMA, com potência nominal de 2 kW elétricos; um simulador de cargas resistivo e diversos instrumentos de medição e de análise. Um sistema perfurador de cinzas foi implementado no cinzeiro do gaseificador, também, com a função de extrair a biomassa já transformada em carvão vegetal. Os resultados mostraram que: o consumo específico de biomassa (kg/kW.h) decresceu com o aumento da potência; a eficiência do sistema Gaseificador/Grupo Gerador aumentou com a elevação da potência; o teor de carbono fixo do carvão oscilou entre 65,22 % e 70,86 %; e a área de BET permaneceu entre 354 e 444 m²/g. A gaseificação demonstra ser uma alternativa viável para a produção tanto de energia elétrica, quanto de carvão vegetal com características de carvão ativado (por apresentar relevante área superficial específica) e com alto teor de carbono fixo.

Palavras chave: Biomassa, Carvão ativado, Energia Elétrica, Gaseificação.

ELECTRICITY ENERGY PRODUCTION AND ACTIVATED CHARCOAL FROM A BIOMASS GASIFIER

ABSTRACT

Gasification is the most efficiency process to extract chemical energy from biomass. It has been proved to be a great promise to generate electricity at low cost without damaging the environment. Much research in this area has been done to improve the technology in order to make it affordable to the communities. In this work it is discussed the possibility of generating electricity, as well as to produce charcoal having high superficial area, using a biomass gasifier coupled with a genset. The gasifier having an 8 kW thermal capacity was connected to an 18 hp Otto cycle engine (VANGUARD V-Twin) adapted to run with poor gas, and to a TOYAMA generator having 2 kW nominal power; a resistivity simulator as well as several instruments. An ash removal device serving also to extract pieces of charcoal was implemented on the gasifier. The results show that the specific consumption of biomass (kg/kW.h) decreases as the electrical power rises; the efficiency of the system gasifier/genset is directly proportional to the electrical power generation; the content of fixed carbon on the charcoal went from 65,22 % to 70,86 %. Gasification process shown to be an economic alternative to generate electricity, as well as to produce charcoal having significant superficial area high fixed carbon.

Keywords: Biomass, Activated Charcoal, Electricity, Gasification

SUMÁRIO

CAPÍTULO I	1
INTRODUÇÃO	1
CAPÍTULO II	5
GASEIFICAÇÃO DE BIOMASSA	5
2.1. INTRODUÇÃO	5
2.2 GASEIFICAÇÃO	5
2.2.1 Tipos de Gaseificadores	6
2.2.2 Gaseificadores de Biomassa: co-corrente, contracorrente e fluxo cruzado	6
2.3 O PROCESSO DE PIRÓLISE	8
2.4 DIFICULDADES OPERACIONAIS	9
2.5 CORRELAÇÕES E CONCEITOS FISICO-MATEMÁTICOS	13
2.5.1 Poder Calorífico do Gás Pobre	13
2.5.2 Poder Calorífico Inferior da Biomassa	14
2.5.3 Consumo de Biomassa	14
2.5.4 Eficiência do Sistema Gaseificador/Grupo Gerador	14
CAPÍTULO III	16
PRODUÇÃO E CONTROLE DE QUALIDADE DO CARVÃO ATIVADO	16
3.1. INTRODUÇÃO	16
3.2. CARVÃO ATIVADO	16
3.2.1 Do preparo	17
3.2.2 Características do Carvão Ativado	17
3.2.3 Produção do Carvão Ativado	19
3.2.4 A adsorção	19
3.2.5 Teorias de Langmuir e de BET	20
3.2.6 Avaliações de quantidades adsorvidas	
3.2.7 Análise Química Imediata	21
3.2.8 Teor de Cinzas	21

3.2.9 Teor de Carbono Fixo	22
3.2.10 Umidade	22
3.2.11 Tipos de Isotermas	22
3.2.12 Distribuição do Tamanho dos Poros	23
3.2.13 Volume do Microporo	24
CAPÍTULO IV	25
O EXPERIMENTO	25
4.1. INTRODUÇÃO	25
4.2 EQUIPAMENTOS E INSTRUMENTAÇÃO	25
4.2.1 Gaseificador de Biomassa	25
4.2.2 Perfurador de cinzas	28
4.2.3 Motor de Combustão Interna	29
4.2.4 Gerador elétrico	30
4.3 APARATO COMPLEMENTAR	31
4.3.1 Serra de bancada elétrica	31
4.3.2 Balança digital	31
4.3.3 Termobalança.	32
4.3.4 Simulador de Cargas	32
4.3.5 Analisador de Energia	33
4.3.6 Analisador de Gases Veiculares	34
4.3.7 Termopares	34
4.3.8 Termohigrômetros e Mostradores Digitais	35
4.3.9 Controlador de fluxo de Mistura Ar/Gás	36
4.4 PROCEDIMENTOS E TESTES	37
CAPÍTULO V	40
RESULTADOS E DISCUSSÕES	40
5.1. INTRODUÇÃO	40
5.2 TEOR DE UMIDADE DA BIOMASSA	40
5.3 TEMPERATURAS DE ADMISSÃO	40
5.4 COMPOSIÇÃO DO GÁS POBRE	41
5.5 COMPOSIÇÃO DO GÁS DE ESCAPE	42
5.6 DETERMINAÇÃO DO PCI DA BIOMASSA	43
5.7 DETERMINAÇÃO DO PCI DO GÁS POBRE	43
5.8 CONSUMO ESPECÍFICO DE BIOMASSA	44

5.9 EFICIÊNCIA GLOBAL DO SISTEMA	. 45
5.10 ANÁLISE DE CARBONO FIXO	. 45
5.11 ANÁLISE DE BET	. 46
CAPÍTULO VI	. 48
CONCLUSÃO	. 48
SUGESTÕES PARA TRABALHOS FUTUROS	. 51
REFERÊNCIAS	

LISTA DE FIGURAS

Figura 1: Esquema original do gaseificador modificado no IISC para produzir carvão ativado
e energia elétrica
Figura 2: Zonas de um gaseificador co-corrente, de topo aberto
Figura 3: Esquema de um gaseificador contracorrente
Figura 4: a) Borboleta de um motor MWM; b) Vareta de comando de válvula empenada. 10
Figura 5: a) Vista de topo do Cabeçote de um motor MWM, contaminado pelo alcatrão. b)
Vista Lateral do cabeçote de um Motor MWM, contaminado pelo alcatrão
Figura 6: a) Filtro de manga novo. b) Filtro de manga pós-uso
Figura 7: Esquema de um incinerador de lixo com grelha móvel
Figura 8: Diagrama de Bloco para a produção do Carvão Ativado no LCA
Figura 9: Representação de uma programação do forno
Figura 10: Tipos de Isotermas de Adsorção de acordo com Brunauer
Figura 11: Gaseificador de leito fixo utilizado nos testes
Figura 12: Esquema com os componentes do Gaseificador
Figura 13: Perfurador de cinzas
Figura 14: Motor VANGUARD V-Twin. 30
Figura 15: Gerador Elétrico Toyama. 30
Figura 16: Serra de bancada
Figura 17: Balança digital
Figura 18: Termo-Balança digital.
Figura 19: Simulador resistivo de cargas. 33
Figura 20: Analisador de Energia. 33
Figura 21: Analisador de Gases Veiculares
Figura 22: Termopar PT 100 instalado na saída de Gás
Figura 23: Termopar tipo K adaptado no LI
Figura 24: a) Termo-Higrômetro. b): Mostrador digital
Figura 25: Controlador de Fluxo de Mistura

Figura 26: Orifício Lateral do Gaseificador.	37
Figura 27: Chama piloto	38
Figura 28: Cinzeiro.	39
Figura 29: Temperaturas do gás e da mistura	41
Figura 30: Composição do gás pobre	42
Figura 31: Composição do gás de escape.	42
Figura 32: Poder Calorífico Inferior do gás pobre.	43
Figura 33: Consumo Específico de biomassa	44
Figura 34: Eficiência Global do sistema Gaseificador/Grupo Gerador	45

LISTA DE TABELAS

Tabela 1: Classificação e função de poros segundo a IUPAC	18
Tabela 2: Teor de umidade da biomassa	40
Tabela 3: PCI da biomassa utilizada	43
Tabela 4: Teor de Carbono fixo das amostras de carvão coletadas em difer	rentes potências e
temperaturas	46
Tabela 5: Dados de análise de BET	46

LISTA DE SÍMBOLOS

ANEEL – Agencia Nacional de Energia Elétrica.

BET – Brunauer, Emmett e Teller.

BJH - Barrett, Joyner, Halenda.

CA – Carvão Ativado.

 C_{Bio} – Consumo de Biomassa.

d – Diâmetro da tubulação.

CGH – Centrais Geradoras Hidráulicas.

CGU – Central Geradora Undi-Elétrica (Usina de ondas).

CO - Monóxido de Carbono.

CO2 – Dióxido de Carbono.

g – Gravidade.

h – Deslocamento do fluido.

IISc – Instituto de Ciências Indiano.

IUPAC – International Union of Pure and Applied Chemistry

LI – Laboratório de Inovação.

O2 – Oxigênio.

P – Pressão.

PCH – Pequenas Centrais Hidrelétricas.

PIB - Produto Interno Bruto.

PCS – Poder Calorífico Superior.

PCI – Poder Calorífico Inferior.

PMa – Peso Molecular Aparente.

 PCI_{Mad} - Poder Calorífico da Biomassa.

 $Q_{v_g\acute{a}s}$ – Vazão de Gás pobre.

t – Espessura da camada adsorvida.

Va – Volume do Gás adsorvido.

 $V_{g\acute{a}s}$ – Velocidade do Gás pobre.

 γ_{liq} – Peso Específico do Líquido no Tubo.

 η_{gaseif} – Eficiência do Gaseificador.

 $\eta_{\textit{GG}}$ – Eficiência do Grupo Gerador.

 η_{S} – Eficiência global do Sistema.

 $ho_{gst s}$ – Massa específica do Gás.

CAPÍTULO I

INTRODUÇÃO

A atual potência instalada para geração de energia elétrica brasileira vai além de 162.690 MW, distribuídas por mais de 7190 empreendimentos em operação. Tais empreendimentos englobam Centrais Geradoras Hidráulicas, CGH, Pequenas Centrais Hidrelétricas, PCH, Central Geradora Undi-Elétrica, CGU, (Usina de ondas), Centrais Térmicas, Eólica, Solar, etc (ANEEL, 2019). Desse total, praticamente 60,3 % advém de hidrelétricas, 26,21 % de termelétricas, a energia eólica é responsável por 7,91 %, a nuclear por 1,26 % e a solar limita-se a 0,71 % (ANEEL, 2018). Por essa razão o País é altamente dependente de boas estações de chuvas. E como se sabe, estes últimos anos têm sido caracterizados por períodos pluviáteis escassos e mal distribuídos. Em decorrência, o Brasil passou a conviver com as bandeiras tarifárias, amarela e vermelha, significando aumento no kWh, e, consequentemente, nos preços das contas de energia. Deve-se lembrar, ainda que, também, praticamente, nesses últimos sete anos o Brasil vivenciou uma quase completa involução econômica, à qual pode ser comprovada pelos números do Produto Interno Bruto, PIB, bem como pelos índices da participação da indústria no PIB (IBGE, 2018). E foi graças a essa desacelaração da economia que não foi necesário a implantação no País de qualquer programa de racionamento de energia, durante esse período, nem se vivenciou a ocorrência de apagões de maiores consequências.

Os indicadores econômicos do momento, todavia, assinalam uma possível retomada do crescimento industrial, tendo o PIB de 2018 ficado em 1,3 %, (EXAME, 2019). Preverse, inclusive, que até 2023 esse percentual possa alcançar 3,4 % (HORTA, 2018). Considerando-se o natural atrelamento do PIB com o aumento da atividade industrial, tornase evidente que a futura demanda de energia, que essas evoluções exigirão do País, deva crescer significativamente.

Percebe-se, por outro lado, que embora se reconheça a existência no Brasil de bacias capazes de aumentar o potencial hidrelétrico brasileiro, como a do Amazonas, do Tocantins e do Rio Paraná, é indiscutível que a instalação de novas hidrelétricas exigirão investimentos cada vez mais elevados. Justifica-se essa elevação de custos pelas necessidades de maiores adaptações dos sítios existentes, bem como em virtude das implicações de ordem ecológica e social envolvidas. São exemplos: a degradação ambiental que causam, a perda de solos agricultáveis, a eliminação de florestas e da fauna. Além do mais, exigem a remoção da população ribeirinha. Dessa forma, urge que se busque no País novas fontes de energia, confiáveis e de custos módicos, capazes de atenderem as futuras necessidades e, sobretudo, capazes de substituir energias mais poluidoras, como a advinda do petróleo.

Uma fonte que vem demonstrando grande resultado, seja do ponto de vista econômico, seja do ponto de vista do meio ambiente, no Brasil, é aquela proveniente da Biomassa. No caso da cana-de-açúcar, a exportação de energia elétrica das usinas sucro-alcooleiras correspondeu a 60 % de toda sua geração em 2016, enquanto a autoprodução não injetada foi de 40 %. No caso do uso de outras biomassas, os percentuais correspondentes chegaram a 15 e 85 %, respectivamente, (EPE, 2017).

Com esse espirito, verifica-se que até mesmo nas usinas sucro-alcooleiras, há uma determinação de se utilizar processos e tecnologias mais eficientes quando se substitui caldeiras antigas por outras de alta pressão com condensador, ou quando se emprega a gaseificação integrada a uma turbina a gás operando em ciclo combinado, (TORQUATO et al., 2016). De fato, a gaseificação é o processo mais eficiente de se extrair a energia química da biomassa. Com esta certeza o Laboratório de Inovação em Conversão Térmica do CT/UFPB, LI, vem desde 2014, aperfeiçoando seus conhecimentos e a tecnologia nesse domínio, o que permitiu várias publicações (RUMÃO, A.S., 2013, BEZERRA, A. F., 2016, FIGUEIREDO, D. L. S., 2018, SILVA, F. S., 2017).

Uma das empresas de sucesso que faz uso da gaseificação da biomassa a partir do coco da baía é a Global Ecocarb Pvt Ltd, situada em Tiptur, Karnataka, Sul da Índia, região conhecida pela grande produção de coco. Os carvões ativados ali produzidos são utilizados para a remoção de gases de efeito estufa (vapor d'água, dióxido de carbono, metano, óxido nitroso, etc.). Um dos destaques daquela empresa é fazer uso de um gaseificador de biomassa (coco da baía) para gerar vapor que auxilia na produção do carvão ativado. Distingue-se a Ecocarb de demais plantas por utilizar-se de matéria prima de rejeito, tanto para gerar energia térmica a partir de um processo eficiente, a gaseificação, ao tempo em que emprega a mesma matéria prima para produzir carvão ativado.

Carvão Ativado, CA, é uma forma de carbono de elevada porosidade, com a capacidade de armazenar gases, líquidos ou impurezas no interior dos seus poros. É obtido a partir da queima controlada da biomassa. Por apresentarem propriedades adsortivas, os carvões ativados são utilizados para purificar, desintoxicar, desodorizar, descolorir ou modificar a concentração de uma infinidade de materiais líquidos e gasosos. Tais aplicações são de grande interesse em vários setores econômicos e em diversas áreas, como: a alimentícia, a farmacêutica, a petrolífera, a de mineração, e principalmente, no tratamento de água e do ar atmosférico (DA ROCHA, 2006).

Também no Instituto de Ciências Indiano, IISc, em Bangalore, Índia, que por várias décadas vem aprimorando o gaseificador moderno, a exemplo de ter introduzido a lavagem do gás pobre, desenvolveu ações com vistas a associar o gaseificador à produção de carvão ativado. Para tanto, foi necessário promover grandes modificações em um gaseificador de biomassa (endocarpo de coco da baía, cocus nucifera) topo aberto, ver Fig. 1, para manufaturar carvão ativado como produto principal e gerar eletricidade, como produto secundário.

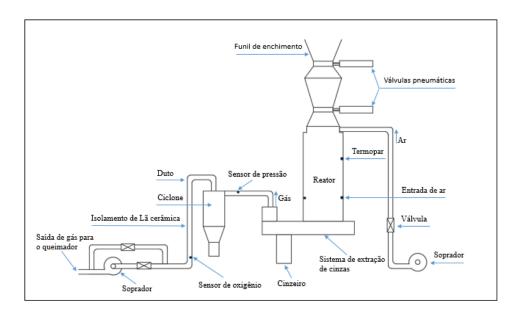


Figura 1: Esquema original do gaseificador modificado no IISC para produzir carvão ativado e energia elétrica.

A busca constante no LI para melhorar a tecnologia da gaseificação da biomassa permitiu o desenvolvimento de um equipamento denominado de Perfurador de Cinzas, que deverá ser apresentado com detalhes no Capítulo 4 dessa dissertação. Um dos propósitos desse aparato é remover, através da perfuração, as cinzas da grelha que suporta a biomassa

in-natura, no início do processo, ou a biomassa já transformada em carvão, durante a gaseificação. Dependendo da extensão de cinzas acumuladas, pode haver a completa descontinuidade da gaseificação. Uma outra aplicação daquele aparato é a remoção do carvão já produzido, nas várias zonas do reator, permitindo dessa forma, de maneira simples a geração de energia e a produção de carvão.

Este trabalho tem como objetivo: 1. O estudo da geração da energia elétrica por um sistema formado por um gaseificador de biomassa, topo aberto, co-corrente e um grupo gerador cujo motor é alimentado pelo gás pobre; 2. A concomitante produção do carvão vegetal, quando se avaliará a sua qualidade, seja do ponto de vista de sua capacidade adsortiva, através da determinação da área superficial de BET, seja do ponto de vista do seu poder calorífico, a partir da análise de carbono fixo.

De maneira a se garantir a distribuição dos assuntos que serão aqui expostos, de forma didática, se prevê a adição de mais cinco capítulos à essa Introdução. No Capítulo 2 (Gaseificadores de Biomassa) serão abordados conhecimentos basilares sobre a Gaseificação; no Capítulo 3 (Produção e Controle de Qualidade do Carvão Ativado), se discorrerá sobre o Conceito de Carvão Ativado, sua produção e a forma de determinação de sua qualidade; No Capítulo 4 (Experimentos) se descreverá todo o aparato experimental, bem como os procedimentos usados na obtenção dos dados; Na sequência, ou seja no Capítulo 5, (Resultados e Discussões), serão feitas as apresentações dos resultados obtidos nos ensaios, bem como os comentários pertinentes; Finalmente, na Conclusão, isto é, no Capítulo 6, se buscará apreciar a validação das proposições a partir das hipóteses feitas e dos resultados alcançados.

CAPÍTULO II

GASEIFICAÇÃO DE BIOMASSA

2.1. INTRODUÇÃO

Neste capítulo serão abordados os principais conceitos relacionados com a gaseificação de biomassa, capazes de permitir o melhor entendimento do assunto, onde se explorará a possibilidade de se gerar energia elétrica, ao tempo em que se extrairá do gaseificador, carvão vegetal com elevado grau de ativação. Correlações para cálculos de alguns parâmetros necessários a avaliação de desempenho do sistema, serão, também, aqui apresentadas.

2.2 GASEIFICAÇÃO

Gaseificação é um processo termoquímico através do qual materiais carbonáceos são transformados em gás, na presença de agentes de gaseificação, (KELM et al., 2019). Os mais comuns agentes de gaseificação são o ar, o vapor d'água e o CO₂. (Este trabalho fará apenas uso do ar como tal agente, quando dos experimentos, e se limitará ao estudo da gaseificação da biomassa).

De fato, há diferentes opções de se converter a energia da biomassa, com, obviamente, diferentes características e resultados, (SAHDWANI et al, 2016). A forma mais eficiente de se disponibilizar a energia química da biomassa é através da produção de gás por um processo bioquímico (fermentação), ou por processo termoquímico (pirólise). Este último requer mais energia externa, mas demonstra mais rápidos e práticos resultados, (BROWN, 2011).

2.2.1 Tipos de Gaseificadores

Dependendo de suas características (método de aquecimento, agente de gaseificação, pressurização, direção do deslocamento da biomassa, etc.) os processadores da gaseificação, isto é, os gaseificadores, podem ser classificados em tipos diversos, (KAN et al., 2015), (SHRINIVASA et al., 1991). Quando a distinção se baseia na forma como o gás e a biomassa fluem no gaseificador, os gaseificadores podem ser considerados como: de leito fixo (fluxo ascendente, ou descendente), leito fluidizado, fluxo com arrasto, etc. O gaseificador de leito fixo, também, paradoxalmente, denominado de leito móvel, é considerado o mais convencional dos gaseificadores, tendo o funil de alimentação no seu topo, (YANG et al., 2004). Tais gaseificadores são mais utilizados do que aqueles do tipo Imbert (com garganta, também, denominados de topo fechado). As razões para tanto são: a facilidade que se dispõe para alimentá-los com biomassa e devido ao conveniente acesso que se tem à instrumentação, quando se faz necessário a realização de modificações, ou reparos dos sensores; os fluxos de ar e da biomassa atravessam as quatro zonas do reator (secagem, pirólise, combustão e redução), ver esquema dessas zonas na Fig. 2; redução na ocorrência de passagens preferenciais, ou de retenção da biomassa em vista da formação de redes de retenção formada pela própria biomassa que passa a não fluir sob a ação da gravidade; a zona de topo pode ser facilmente e convenientemente adaptada à quantidade e a frequência necessária à alimentação do reator, (KAN et al., 2015, SHRINIVASA et al., 1991, MCKENDRY, 2002).

Considera-se, ainda, que gaseificadores de leito fixo são adequados para fornecerem o gás, geralmente denominado de gás produzido, ou de gás pobre, como combustível para motores de combustão interna, em razão do baixo teor de alcatrão gerado, (MCKENDRY, 2002, JOHANSSON et al., 1993, BRIDGWATER, 1995). Verifica-se ainda, que na prática, apresentam-se como sendo os mais adequados à pequena e média escala, de aplicações térmicas, (STEVENS, 2001).

2.2.2 Gaseificadores de Biomassa: co-corrente, contracorrente e fluxo cruzado

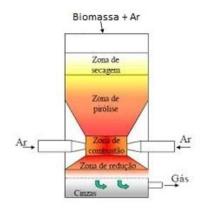


Figura 2: Zonas de um gaseificador co-corrente, de topo aberto.

Dependendo da direção do fluxo do agente de gaseificação, com relação ao de biomassa, o gaseificador pode ser denominado de co-corrente, ou de contracorrente, ou de fluxo cruzado etc. De uma forma geral, os gaseificadores co-correntes são usados para a geração de potências de pequena escala (< 500 kW), com o fluxo de ar vindo de orifícios situados ao redor da zona de combustão, bem como do topo (neste caso, o volume de ar pode chegar a 60 % do total) movendo-se para baixo, na mesma direção do gás pobre, ver Fig. 2. Nesses tipos de gaseificadores o fluxo de ar regula o de consumo de combustível (CHEN, 1987). Deve-se acrescentar, que estes tipos de gaseificadores são de construção simples, e geram baixo volume de alcatrão, (GROENEVELD et al., 1980). Nos gaseificadores contracorrentes, a alimentação, também, se dá pela parte superior, com fluxo descendente, mas o fluxo de ar ocorre no sentido ascendente, que se inicia ao atravessar a grelha do gaseificador, ver Fig. 3. É um dos mais antigos, e de estrutura das mais simples. Nesses gaseificadores, no processo de pirólise do carvão, os gases voláteis são convertidos, sobretudo, nos gases combustíveis (principalmente CO e H₂) na zona de redução. Os gaseificadores com fluxo de ar em ascensão, podem operar, em geral, com biomassa mais úmida (até 60%), e maiores níveis de cinzas (até 25%). Suas eficiências globais são mais elevadas, tendo em vista que o gás pobre deixa o gaseificador com temperaturas mais baixas, (MCKENDRY, 2002). Todavia, esse gás gerado contém um alto teor de alcatrão, uma vez que o gás pobre não atravessa a zona de combustão (KAN et al., 2015).

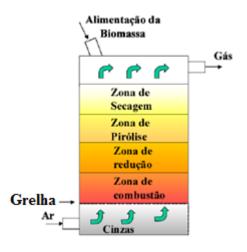


Figura 3: Esquema de um gaseificador contracorrente.

Nos gaseificadores de fluxo cruzado, de forma semelhante aos casos anteriores, a biomassa é introduzida por cima e flui para baixo por gravidade. O ar, por sua vez, é veiculado por uma das laterais e o gás pobre deixa o reator pelo outro lado, praticamente, no mesmo plano horizontal da entrada do ar, (DAMARTZIS et al, 2012). Constituem, de fato, uma adaptação para o uso de carvão vegetal. A gaseificação do carvão resulta em temperaturas muito elevadas (1500 °C, ou acima desse valor) na zona de oxidação o que pode acarretar problemas materiais. A forma como o carvão é disposto naquela zona, serve, de certa maneira, como um isolante térmico, protegendo o gaseificador. São empregados em instalações com potências abaixo de 10 kW, (FAO, 1986). Em gaseificadores de Leitos Fluidizados, materiais granulados são usados de forma a oferecer uma distribuição uniforme de temperatura, melhor contato entre o sólido e o gás, e elevadas taxas de transferência de calor, quando se compara com gaseificadores de leito fixo, (MCKENDRY, 2002). São projetados para serem usados produzindo potências médias a elevadas. Apresentam, todavia, alguns problemas operacionais. Por exemplo, as partículas de sílica amplamente usada como material de transferência no leito, terminam reagindo com os componentes inorgânicos da biomassa dando origem a formação de silicatos de baixo ponto de ebulição. Esse produto do ácido silícico funde-se a elevadas temperaturas, formando uma camada adesiva, aglomerando as partículas de biomassa e interrompendo o estado de fluidização, (DAMARTZIS et al, 2012).

2.3 O PROCESSO DE PIRÓLISE

Durante a pirólise, ocorre a liberação de voláteis. É considerada o primeiro estágio da gaseificação e da combustão da biomassa, (DI BLASI, 2009). No segundo estágio se dá a conversão do carbono residual, com reações mais lentas do que as que ocorrem durante a pirólise, (BRIDGWATER, 1995). Entende-se desta forma, que o segundo estágio se torna o principal responsável pela eficiência da gaseificação, como um todo, (CETIN et al., 2004). Para a compreensão desses processos, é necessário que se entenda que:

Os combustíveis sólidos são meios porosos que contêm umidade;

A combustão da biomassa virgem (in natura) inicia-se quando a frente de chama no interior do reator se eleva à temperatura de reação do material (biomassa);

A umidade e os voláteis se evaporam a partir do material (biomassa). Vapor d'água oriundo das partículas (biomassa) produz a redução de tamanho dessas partículas, bem como dos seus poros, fazendo extinguir o processo de secagem, ao tempo que permite a ocorrência dos seguintes possíveis resultados e consequências:

Elevado aumento da pressão no interior dos poros, na existência de consideráveis razões de aquecimento, podendo colapsar as partículas, (MORELL et al., 1990, MOURITZ et al., 2009);

O processo de secagem, sem que se considere a umidade e o teor de cinzas, passa a depender de algumas propriedades físicas dos combustíveis, tais como: as dimensões, a difusividade térmica, o calor específico, e a condutividade térmica, bem como do coeficiente de película quando da existência da convecção no interior do reator;

Os voláteis e o alcatrão, são, desta forma, consequências do processo de secagem, enquanto que esses mesmos elementos, inclusive o carvão, são tidos como produtos da pirólise;

2.4 DIFICULDADES OPERACIONAIS

Foram considerados, acima, diferentes tipos de gaseificadores. Destacou-se, ainda, que os de leito fixo e de topo aberto são os mais adequados para médias e pequenas potências, sendo, ainda, propícios à alimentação de motores de combustão interna. Uma vez que um dos objetivos deste trabalho é a geração de energia elétrica, limitada a baixas potências, deuse preferência a análise mais detalhada, dos gaseificadores de leito fixo, topo aberto, co-corrente.

É sabido que, é simples se projetar, construir e operar um gaseificador por um período limitado de tempo. Todavia, caso se deseje empregá-lo em qualquer

empreendimento comercial, ou industrial, deve-se garantir sua operacionalidade pelo tempo que se fizer necessário. A prática, no LI, tem demonstrado que manter gaseificadores em funcionamento contínuo por um espaço de tempo de cerca de dez horas é tarefa extremamente difícil. Discute-se abaixo as razões naturais dessa limitação.

Durante a decomposição térmica da biomassa, e a gaseificação, quantidades de um componente orgânico, condensável, denominado de alcatrão são formadas. De cor marrom escura, é altamente viscoso, e facilmente se condensa, aderindo-se às paredes de dutos, válvulas, cilindros e pistões, quando se alimenta um motor de combustão interna com gás pobre, ver Figs. 4 e 5. E no caso de não se dar continuidade aos testes por cerca de uma semana, as válvulas, cilindros e pistões tornam-se totalmente imobilizados, de forma que caso se dê partida no motor, o mínimo que pode ocorrer é o completo empenamento de pelo menos uma das válvulas, ver Fig. 4.b. Para se ter uma ideia da nocividade do alcatrão, tais fatos ocorrem até mesmo em gaseificadores do tipo indiano, considerado de última geração, que tem no circuito do gás um sistema com uma, a três lavagens do gás por contato com água. Além do mais, se dispõe nesse mesmo circuito, filtros de manga, ciclone e purgadores. Desta forma, mesmo se considerando que o gaseificador de leito fixo produz pouco alcatrão, na prática, o que se observa é que a quantidade produzida é extremamente prejudicial ao bom funcionamento dos motores. Para se contornar esses problemas, necessário se faz evitar longas descontinuidades de operação. Além disso, recomenda-se, ao final de cada experimento, fazer funcionar o motor com gás natural, quando disponível, e borrifar óleo lubrificante tanto no corpo de borboletas quanto nas varetas do comando de válvulas.

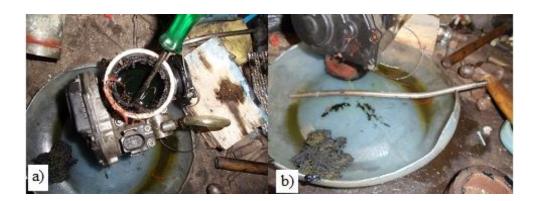


Figura 4: a) Borboleta de um motor MWM; b) Vareta de comando de válvula empenada.

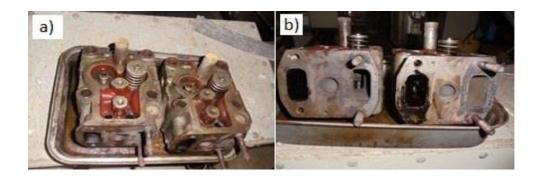


Figura 5: a) Vista de topo do Cabeçote de um motor MWM, contaminado pelo alcatrão. b) Vista Lateral do cabeçote de um Motor MWM, contaminado pelo alcatrão.

Os efeitos do alcatrão, também, podem ser observados no filtro de manga, ver Fig. 6. Com a repetição dos experimentos observa-se não apenas que o tecido fica escuro, mas também, seja por causa do alcatrão, seja por motivo da retenção dos particulados, o filtro torna-se impermeável ao gás pobre, causando descontinuidade no funcionamento do motor. É, portanto, imprescindível, o controle constante da queda de pressão causada pelo filtro de manga, providenciando-se sua troca quando se observa a tendência de seu mal funcionamento.

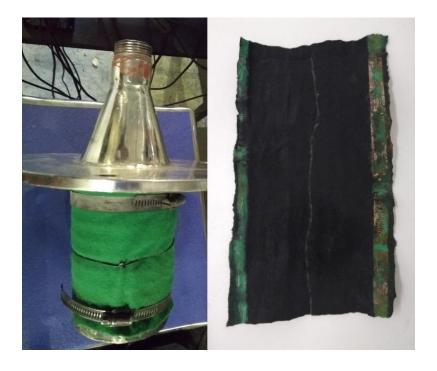


Figura 6: a) Filtro de manga novo. b) Filtro de manga pós-uso.

Outro controle que se faz necessário durante o funcionamento de um gaseificador, diz respeito à formação das cinzas na grelha. A grelha é um aparato indispensável em um gaseificador. De fato, em muitos processos que envolvem uma fornalha é visível a importância da grelha, sobretudo, em situações onde a biomassa é muito úmida, tem elevado teor de cinzas, ou quando a biomassa tem uma variedade de tamanhos, mas com tamanho inferior bem definido. O uso da grelha, por exemplo, é muito comum em processos de incineração, ver Fig. 7, ou em fornalhas de usinas sucroalcooleiras, cujo combustível é o bagaço da cana-de-açúcar.

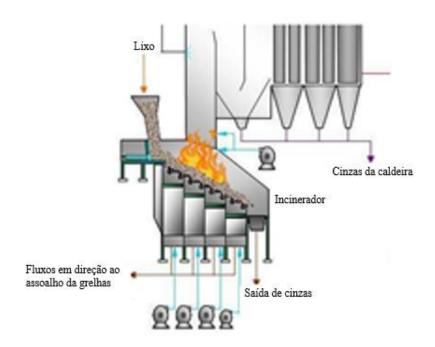


Figura 7: Esquema de um incinerador de lixo com grelha móvel.

Dependendo da situação, as grelhas podem ser fixas, ou móveis. No caso da Fig. 7, a grelha é móvel para facilitar o deslocamento das cinzas formadas no assoalho da grelha, até caírem no coletor de cinzas. Como é possível entender, correntes de ar-primário fluem através do assoalho da grelha. Caso as cinzas fiquem estanques na grelha, todo o processo de combustão é prejudicado.

No caso da maioria dos gaseificadores, a grelha é fixa. Ela tem a finalidade, inicialmente, de suportar a biomassa in natura, na sequência, o carvão, para, finalmente, deixar passar apenas as cinzas. No caso de processos denominados Conversão de Lixo em Energia (Waste to Energy, WtE), tendo em vista que a biomassa é disforme, e em geral muito úmida, a grelha é mecânica, ou seja, é móvel, (ARENA, 2012).

Embora existam poucos relatos na literatura especializada, há uma tendência para as cinzas se acumularem na grelha fixa. O resultado imediato é a falta do fluxo do ar no reator, a descontinuidade na produção de gás pobre e a interrupção da gaseificação.

Com vistas a se evitar tal acúmulo de cinzas na grelha, pesquisadores do Laboratório de Inovação, LI, do Centro de Tecnologia da UFPB, desenvolveram um sistema simples capaz de deslocar as cinzas, sempre que se observa uma redução no processo de produção do gás pobre. A utilização de tal aparato melhorou significativamente o controle do motor de combustão interna alimentado pelo gaseificador, ao tempo em que facilitou as condições de operação do gaseificador, (DA SILVA, 2018).

Tal aparato pode servir, ainda, como um redutor do tempo de residência do carvão no interior do reator, permitindo que, em paralelo à geração de energia elétrica, retire-se carvão, o qual, devido as altas temperaturas do reator, sai com elevado teor de carbono fixo, podendo, portanto, ser aproveitado na produção de carvão ativado.

2.5 CORRELAÇÕES E CONCEITOS FISICO-MATEMÁTICOS

Neste tópico são apresentados conceitos e equações relacionadas à Gaseificação da Biomassa, e que servirão de base para a avaliação do sistema operacionalizado.

2.5.1 Poder Calorífico do Gás Pobre

De acordo com a literatura, o poder calorífico de um combustível é entendido como a energia, na forma de calor, liberada durante sua combustão completa, por unidade de massa, ou de volume. O poder calorífico pode ainda ser definido como superior, PCS, ou inferior, PCI. Quando a quantidade de energia inclui o calor liberado pela condensação da água formada durante a combustão, o poder calorífico é dito superior. De outra forma, quando são deduzidas as perdas com a evaporação da água, restando apenas a energia efetivamente disponível por unidade de massa, ou de volume, o calor específico é entendido como inferior.

O PCI do gás pobre em kCal/kg pode ser determinado a partir da equação deduzida por Rumão (2013). Esta relaciona o PCI do gás produzido com o percentual de monóxido de carbono presente nele.

$$PCI_{G\acute{a}s} = -0.004738.(\%CO)^2 + 0.3149.(\%CO) - 0.1057$$
 (01)

onde a %CO é a quantidade, em níveis percentuais, de monóxido de carbono no gás.

2.5.2 Poder Calorífico Inferior da Biomassa

Para a Biomassa, o Poder Calorífico Inferior pode ser determinado pela equação de (GARCIA, 2002). Tal equação relaciona o PCI da Biomassa (dado em Kcal/Kg) ao percentual de umidade nela presente.

$$PCI_{bio} = 4756 - 53,418.(\%UM)$$
 (02)

onde %UM é o valor, em níveis percentuais, da umidade contida na biomassa.

2.5.3 Consumo de Biomassa

O consumo de Biomassa, C_{Bio} , do gaseificador, é o valor da quantidade de biomassa consumida pelo processo durante um intervalo de tempo. É dado em kg/h.

$$C_{Bio} = \frac{M_{Bio}}{\Delta t} \tag{03}$$

onde M_{Bio} é a quantidade de Biomassa (em kg) adicionada ao gaseificador, e Δt (em h) é o intervalo de tempo em que a biomassa foi adicionada ao gaseificador.

2.5.4 Eficiência do Sistema Gaseificador/Grupo Gerador

A eficiência global do sistema Gaseificador/Grupo Gerador, η_S (%), é definida pela Eq. (04):

$$\eta_S = \frac{Pe}{PCI_{Bio} \cdot C_{Bio}}.100(\%) \tag{04}$$

onde:

 P_e é a potência elétrica útil (W).

 $PCI_{Bio} \not \in \text{o poder calorífico inferior da biomassa utilizada no gaseificador, dado em}$ (J/kg);

 \mathcal{C}_{Bio} é a vazão mássica de biomassa utilizada no gaseificador (kg/s).

CAPÍTULO III

PRODUÇÃO E CONTROLE DE QUALIDADE DO CARVÃO ATIVADO

3.1. INTRODUÇÃO

Convergindo na mesma direção, com relação ao tema da proteção ambiental, estão os temas principais deste trabalho: a Gaseificação e o Carvão Ativado. Através da Gaseificação é possível se garantir a produção de energia elétrica limpa. Já com o Carvão Ativado, pode-se, a partir de suas várias aplicações, em diferentes áreas da atividade humana, perceber o quanto está presente em nosso dia a dia. Pode: atuar no tratamento de água, possibilitando sua limpeza e sua potabilidade; melhorar a qualidade do ar que se respira; servir à desintoxicação de nosso organismo; remover cores e odores em processos industriais, etc.

Busca-se, pois, neste Capítulo, tecer considerações sobre esse poderoso adsorvente, definindo-o, discutindo sua obtenção, os parâmetros de avaliação de qualidade, com vistas à busca do entendimento da possibilidade de se poder gerar energia, ao tempo em que é possível se produzir carvão, ou o precursor de carvão ativado de boa qualidade.

3.2. CARVÃO ATIVADO

Entende-se por Carvão Ativado, CA, toda forma de carbono de elevada porosidade, com a capacidade de armazenar gases, líquidos ou impurezas nos seus poros. São materiais carbonáceos porosos que apresentam uma forma microcristalina, não grafítica, que sofreram um processamento para aumentar a porosidade interna. Uma vez ativado, o carvão apresenta uma porosidade interna comparável à de uma rede de túneis que se bifurca em canais

menores e assim sucessivamente, (CLAUDINO, 2003). Os carvões são adsorventes versáteis, quando se considera seus vários domínios de emprego, inclusive no armazenamento de gases, bem como catalisadores e suportes catalíticos, (MARÍN et al., 2006). O poder adsorvente do carvão é proveniente da elevada área superficial específica (na faixa de 500 - 2000 m²/g), da presença de uma variedade de grupos funcionais em sua superfície e de sua estrutura microporosa, (SALES et al., 2012, PERUZZO, 2003).

O CA pode ser produzido a partir do carvão mineral fóssil, ou da biomassa. No caso particular desse trabalho, por razões óbvias, se discutirá o CA preparado a partir da biomassa. Do ponto de vista econômico, um dos aspectos a se ressaltar sobre a produção do CA é que ele pode e deve ser obtido a partir da biomassa de rejeito. O processo se dá pela queima controlada do precursor, que em princípio pode ser o endocarpo do coco da baia, as cascas de nozes, o caroço de pêssego, o bagaço de cana-de-açúcar, refugos de madeira, para citar alguns. A temperatura a ser usada depende da quantidade de lignina que possua a biomassa. Uma maior quantidade permite temperaturas mais elevadas, tomando-se o cuidado de se evitar que ocorra a queima total do material, fazendo-se evaporar todo o carbono existente.

3.2.1 Do preparo

O diagrama de blocos da Fig. 8 apresenta um esquema com as principais etapas da produção do Carvão Ativado:

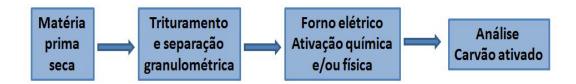


Figura 8: Diagrama de Bloco para a produção do Carvão Ativado no LCA.

Depreende-se da Fig. 8, que todo precursor é, inicialmente, colocado para secar ao ar livre, para se fazer perder a umidade inicial. Em seguida, o material é reduzido a partes menores, podendo, ainda, ser triturado, geralmente, em moinho a martelo, e peneirado de forma a se obter partículas com diâmetros que podem variar de 1,00 a 6,28 mm.

3.2.2 Características do Carvão Ativado

As normas da International Union of Pure and Applied Chemistry (IUPAC), definem uma escala classificatória para os tamanhos dos poros. Nessa escala, os poros cujas medidas se situam entre 2 e 50 nanômetros, são denominados de mesoporos. Aqueles situados abaixo de 2 nanômetros são considerados de microporos, e quando seus diâmetros são maiores do que 50 nanômetros, se tem os macroporos, (RODELLA, 2001). De fato, geralmente em um carvão ativado encontra-se diferentes tamanhos de poros, sendo esses carvões incluído em uma das dadas classificações pelo valor médio do tamanho dos poros, ver Tabela 1.

Tabela 1: Classificação e função de poros segundo a IUPAC

Tipo de poro	Diâmetro médio	Função principal
Microporos	$\theta_m \le 2 \ nm$	Contribuem para a maioria da área superficial que proporciona alta capacidade de adsorção, para moléculas de dimensões pequenas, tais como gases e solventes comuns.
Mesoporos	$2 \ nm < \theta_m \le 50 \ nm$	São importantes para adsorção de moléculas grandes, tais como corantes, e proporcionam a maioria da área superficial para carvões impregnados com produtos químicos.
Macroporos	$\theta_m > 50 \ nm$	Normalmente, são considerados sem importância para a adsorção e sua função é servir como meio de transporte para as moléculas gasosas.

3.2.3 Produção do Carvão Ativado

Carvões ativados são obtidos através de duas etapas básicas: a carbonização do precursor, pela pirólise, e a ativação propriamente dita.

De uma forma geral, a carbonização, ou seja, o tratamento térmico (pirólise) do precursor ocorre em atmosfera inerte, a uma temperatura superior a 500 °C. (Na verdade, é a partir da análise termogravimétrica que se determina todo o mapa da composição térmica do processo). Nesta etapa, se dá a remoção de componentes voláteis e gases leves (CO, H2, CO2 e CH4), produzindo uma massa de carbono fixo e uma estrutura porosa primária (muitos poros, extremamente finos e fechados) que favorece a ativação posterior. Os parâmetros importantes que irão determinar a qualidade e o rendimento do produto carbonizado são: a razão de aquecimento, a temperatura final, o fluxo de gás de arrasto e a natureza da matéria prima, (MEDEIROS, 2008, CLAUDINO, 2003). O esquema da Fig. 9 representa um exemplo de programação de um forno.

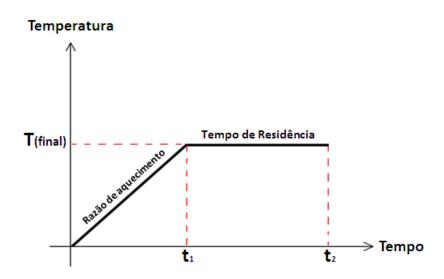


Figura 9: Representação de uma programação do forno.

3.2.4 A adsorção

Quando duas fases imiscíveis são colocadas em contato, adsorbato e adsorvente, a concentração do adsorbato numa fase tende a ser maior na interface do que no seu interior. Quando isso ocorre, com a consequente acumulação de uma substância sobre a superfície do adsorvente, está caracterizado o fenômeno da adsorção. O adsorbato, que é a espécie adsorvida sobre a superfície, é, via de regra, um gás ou um soluto dissolvido num meio,

(SHAW, 1975, LIMA, 1999). Dependendo das forças de ligação entre as moléculas que estão sendo adsorvidas e o adsorvente, podem ocorrer dois tipos de adsorção: a física e a química. Na adsorção física, as moléculas se ligam ao adsorvente utilizando forças relativamente fracas e a sua natureza química permanece sem alteração, essas forças são idênticas as forças de Van der Walls. Na adsorção química, há uma reação química através de ligações das valências livres das moléculas do adsorvente e do adsorbato, (CIOLA, 1981).

Os materiais adsorventes são substâncias naturais ou sintéticas, cujo acesso às superfícies internas dos seus poros passa a depender de uma seleção natural que ocorrerá entre o sólido (adsorvente) e o soluto (adsorbato). Para ser comercialmente importante, um adsorvente deve possuir uma série de características, tais como: área de superfície elevada (em geral igual ou superior a 700 m²/g), seletividade, eficiência, resistência mecânica, menor perda de carga possível, inércia química e baixo custo. Dentre os adsorventes que são usados em grande escala incluem-se o carvão ativado, a sílica-gel e a alumina ativada (SHAW, 1975).

3.2.5 Teorias de Langmuir e de BET

A teoria de Langmuir data da Primeira Guerra Mundial. Provavelmente a mais antiga equação teórica desenvolvida para descrever as isotermas de adsorção. E embora outras tenham surgido com o mesmo propósito, a de Langmuir tem posição de destaque por servir de base para muitas outras. Ela utiliza o conceito dinâmico do equilíbrio de adsorção que estabelece a igualdade nas velocidades de adsorção e dessorção. Na dedução da equação são utilizadas as seguintes aproximações:

- a) a adsorção ocorre em monocamada.
- b) a superfície é energeticamente homogênea, não existe interação entre as partículas adsorvidas.

Outra equação muito conhecida na área da adsorção é a de BET, que, também, tem origem na de Langmuir. Ao contrário da de Langmuir que explica a adsorção na monocamada ela se baseia na adsorção multicamada. O termo BET é originário do sobrenome dos seus autores Brunauer, Emmett e Teller, (BRUNAUER, 1945).

A derivação da equação de BET admite que as forças que atuam na adsorção multimolecular sejam as mesmas que atuam na condensação dos vapores. Apenas a primeira camada de moléculas adsorvidas está ligada por forças de adsorção. As moléculas da

segunda camada em diante têm as mesmas propriedades do estado líquido e o calor de adsorção das mesmas é igual ao calor de condensação da substância adsorvida.

3.2.6 Avaliações de quantidades adsorvidas

Além de se poder determinar as quantidade adsorvidas através de equipamentos tal como o ASAP 2020, da Micromeritics, que já fornece diretamente as áreas superficiais de BET e de Langmuir, é possível se fazer o levantamento das quantidades de adsorbato adsorvido por um sólido (adsorvente), que, em geral, depende da área específica do sólido, da concentração do soluto na solução (ou da pressão no caso da fase ser gasosa), da temperatura e da natureza das moléculas envolvidas. Assim, a partir de medidas feitas à temperatura constante, pode-se construir uma isoterma de adsorção, plotando-se N (número de moles adsorvidos por grama de sólido), em termos de c (concentração do soluto em equilíbrio). A curva assim construída recebe o nome de isotérmica de Freundlich.

Um outro procedimento para se avaliar a adsorção na fase líquida, é através, do tradicional, número de iodo. Esse número é definido, operacionalmente, pela norma JIS (Japonese Industrial Standard, JIS K 1474, 1992), como a quantidade de iodo adsorvido (em mg por g de carvão) quando a concentração de iodo total no equilíbrio é 0,02 mol L⁻¹. O número de iodo é determinado a partir de uma isoterma de Freundlich com 03 ou 04 pontos. A concentração residual de iodo é determinada por titulação com tiossulfato de sódio e amido como indicador. Pesquisas demonstram que este número está relacionado com a distribuição de microporos. Industrialmente e em vários setores de produção, o número de iodo é utilizado como indicador padrão da capacidade de adsorção para diferentes espécies químicas.

3.2.7 Análise Química Imediata

É através da Análise Química Imediata do carvão vegetal que se avalia o teor de umidade, os materiais voláteis, o teor de carbono fixo e as cinzas, (OLIVEIRA et al., 1982).

3.2.8 Teor de Cinzas

As impurezas no CA são detectadas através da análise de teor de cinzas. Essas impurezas além de indesejáveis no CA, podem apresentar propriedades catalíticas durante o

processo de ativação (JUHOLA, 1975). O conteúdo de cinzas do carvão ativado é muito importante, principalmente na adsorção de soluções, pois, dependendo do solvente usado, parte das cinzas pode ser extraída contaminando e mudando o pH da solução. A quantidade e composição das cinzas dependem da matéria prima e do método de ativação, (SMÍŠEK, et al., 1967). As cinzas podem ser removidas por tratamento com ácidos não oxidantes, HCl e HF, (WARHURST et al., 1997, NEVSKAIA et al., 1999).

3.2.9 Teor de Carbono Fixo

Como se sabe, o carvão vegetal é um insumo importante na produção de ferro e de suas ligas metálicas. Na verdade, é utilizado como redutor empregado para reagir com o oxigênio do minério de ferro. Assim, os combustíveis e os redutores em metalurgia, são as matérias primas responsáveis pelo fornecimento de energia e pela redução dos minérios oxidados a metal. O Teor do Carbono Fixo depende da forma como a madeira foi carbonizada e do teor de lignina dela, (BRITO, 1993). Quanto maior a quantidade de carbono fixo, maior será o índice de combustão da partícula na oxidação do carbono. Tal teor tornase uma das características mais importantes no procedimento de qualificação dos carvões, pois, está diretamente relacionado com o poder calorífico do carvão, (FROEHLICH et al., 2014).

De acordo com (MENDES et al., 1982), a temperatura final de carbonização influencia diretamente nos teores do carbono fixo e materiais voláteis do carvão. Segundo (FROEHLICH et al., 2014), maiores temperaturas no processo de pirólise, levam à maiores concentrações de carbono fixo.

3.2.10 Umidade

O carvão vegetal tem uma grande tendência de absorver água, ou seja, é altamente higroscópico. De uma forma geral, a umidade é prejudicial à pirólise, ou a combustão, considerando-se que provoca perda da energia térmica, aumenta o consumo específico de carbono e diminui a resistência do carvão, (MORAIS et al, 2005).

3.2.11 Tipos de Isotermas

Brunauer (1945), classificou as isotermas de adsorção em 05 tipos, ver Fig. 10. O tipo I é a isoterma de Langmuir, característica de adsorventes com poros extremamente pequenos. É baseada na aproximação gradual da adsorção limite que corresponde à monocamada completa. O tipo II é muito comum no caso de adsorção física e corresponde à formação de multicamadas. O tipo III é relativamente raro. Os tipos IV e V refletem o fenômeno de condensação capilar.

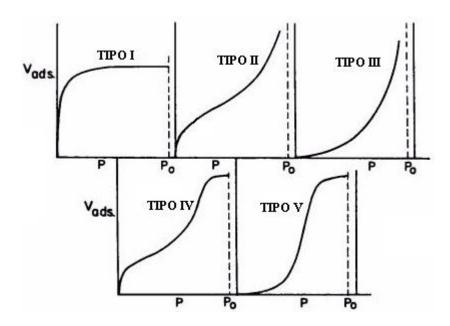


Figura 10: Tipos de Isotermas de Adsorção de acordo com Brunauer.

A equação de BET ajusta-se às isotermas dos tipos I, II e III.

3.2.12 Distribuição do Tamanho dos Poros

Barrett et al. (1951), propuseram um método, denominado de método de BJH, baseado na equação de Kelvin, que relaciona a pressão de vapor do adsorbato liquefeito no equilíbrio, com o raio de curvatura da superfície. O método considera um esvaziamento imaginário do adsorbato condensado nos poros, em etapas, à medida em que a pressão relativa diminui. A espessura da camada adsorvida que permanece sob as paredes dos poros, t, é calculada com uma equação adequada, cuja computação, também, é feita, por exemplo, através do ASAP 2020.

3.2.13 Volume do Microporo

Determina-se o volume de microporos a partir de um gráfico t, onde os dados de adsorção são colocados em termos do volume do gás adsorvido, Va, na pressão P, em função de t. A extrapolação da região linear até o eixo de adsorção fornece a interseção equivalente ao volume do microporos. Os resultados de t fornecidos pelo ASAP 2020 são baseados na equação de (HARKINS E JURA, 1944).

CAPÍTULO IV

O EXPERIMENTO

4.1. INTRODUÇÃO

O presente capítulo apresenta o aparato experimental (equipamentos e instrumentos) utilizado na realização dos ensaios com o sistema formado pelo Gaseificador/Grupo Gerador. São descritos, ainda, os ensaios realizados, acrescentando-se as implementações feitas no sistema original para aumentar seu desempenho.

4.2 EQUIPAMENTOS E INSTRUMENTAÇÃO

O equipamento básico utilizado nos ensaios constitui-se de um sistema composto por um gaseificador de biomassa, ver Fig. 11, um Motor do ciclo Otto, ver Fig. 14, e um Gerador elétrico, ver Fig. 15. Tal sistema converte a energia química contida na biomassa em energia elétrica.

4.2.1 Gaseificador de Biomassa

O gaseificador utilizado nos experimentos é do tipo leito fixo, co-corrente e de "topo aberto", ver Fig. 11. Tal equipamento foi importado da India, do Indian Institute of Science/Combustion Gas Propulsion Laboratory. Originalmente possuía as capacidades de 4 kWt e 1 kWe. No entanto, a partir de algumas modificações realizadas por SILVA (2017), tais capacidades se elevaram para 8 kWt e 2 kWe, respectivamente.

Figura 11: Gaseificador de leito fixo utilizado nos testes.

Nesse tipo de gaseificador a biomassa é inserida pelo topo do reator, e desce por ação da gravidade, passando pelas zonas de secagem, pirólise, combustão até alcançar a zona de redução. É também pelo topo que é admitida a maior quantidade de ar necessário ao processo de gaseificação. A menor parcela de ar é admitida pelos furos laterais.

Para o seu funcionamento, inicialmente é estabelecida uma queda de pressão na saída do reator, por meio do sistema de lavagem de gás, com efeito "Venturi", o que provoca a entrada de ar atmosférico pelo topo e pelos furos laterais. O oxigênio do ar atmosférico reage com o carbono, nas zonas de pirólise, combustão e redução.

Outros componentes complementam o reator. Destacam-se entre eles: o sistema de lavagem e o filtro de manga. O primeiro é responsável pelo resfriamento e pela retirada de impurezas (alcatrão) do gás. O segundo, localizado após o sistema de lavagem, complementa o primeiro, na medida em que retêm as impurezas e particulados, ainda presentes no gás.

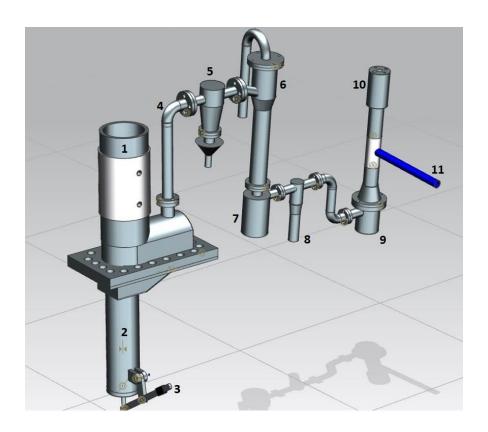


Figura 12: Esquema com os componentes do Gaseificador.

Os componentes principais do gaseificador, ver Fig. 12, são:

- Reator: componente do gaseificador em que ocorre todas as reações químicas do processo de gaseificação.
- Cinzeiro: é o dispositivo responsável por armazenar carvão e cinzas oriundos do processo de gaseificação.
- 3. Alavanca do perfurador de cinzas: permite o acionamento manual do perfurador de cinzas.
- 4. Tubulação de saída do gás produzido: duto por onde o gás pobre deixa o reator.
- 5. Purgador: elemento responsável por reter particulados presentes no gás pobre.
- 6. Tubulação de lavagem do gás produzido: componente que promove a lavagem e o resfriamento do gás pobre, a fim de retirar impurezas (principalmente alcatrão). Devido ao efeito Venturi, provocado por sua geometria, tal componente também ajuda a oxigenação do reator quando a biomassa é inflamada.
- 7. Difusor: item onde o gás é separado da água.
- 8. Placa de condensação de umidade: localizada após o difusor, tem a função de reter a umidade que ainda esteja presente no gás.

- 9. Filtro de Manga: filtro de tecido responsável por reter particulados ainda presentes no gás.
- 10. Queimador: componente auxiliar que permite a análise visual da qualidade da chama e da vazão de gás.
- 11. Tubulação de alimentação: duto que direciona o gás, que já passou por todo o processo de limpeza, para o motor de combustão interna.

4.2.2 Perfurador de cinzas

A interrupção do funcionamento do motor é uma das principais dificuldades encontradas nos processos de geração de energia elétrica formados por Gaseificador/Grupo Gerador. Em muitos dos casos, as cinzas acumuladas na grelha do reator provocam tal interrupção, na medida em que dificultam a oxigenação do reator. Conforme Kaupp e Goss (1981) um ponto importante a ser observado no funcionamento da grelha está relacionado com a camada de cinzas que pode servir de proteção à grelha, ou no caso dessa camada ser muito espessa, produzir aumento na queda de pressão e, consequentemente, redução na produção de gás.

Para minimizar os efeitos de tal inconveniente, e melhorar a tecnologia de gaseificação, pensou-se, projetou-se e fabricou-se, no próprio LI, um dispositivo denominado de perfurador de cinzas, ver Fig. 13. O aparato é formado por garras presas à ponta de um eixo que, quando acionadas, penetram na camada de cinzas formada acima da grelha, removendo-as para o cinzeiro. Dessa forma, a grelha é desobstruída e volta-se a permitir que a oxigenação da zona de redução (carbonização) ocorra normalmente. Por outro lado, simultaneamente à desobstrução, o perfurador retira parte da biomassa já transformada em carvão, o qual pode ser aproveitado para a fabricação de carvão ativado. A cada acionamento do dispositivo, carvão e cinzas são depositados no cinzeiro.

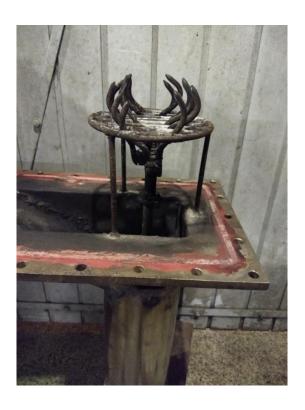


Figura 13: Perfurador de cinzas.

4.2.3 Motor de Combustão Interna

O motor utilizado nos experimentos é de fabricação Briggs & Stratton, do tipo VANGUARD V-Twin, ver Fig. 14. Opera segundo o ciclo Otto, possui dois Cilindros em V e Potência nominal de 18 Hp (operando originalmente com gasolina). É um motor adaptado para funcionar utilizando o gás pobre como combustível. Está acoplado a um gerador elétrico, e interligado ao gaseificador. Utiliza o gás fornecido pelo Gaseificador para manter acionado o Gerador Elétrico, produzindo, assim, energia elétrica.

Figura 14: Motor VANGUARD V-Twin.

4.2.4 Gerador elétrico

A geração de energia pode ser entendida como a conversão de uma forma de energia, em outra(s) forma(s) de energia. Particularmente, para se converter energia mecânica em energia elétrica se utiliza um gerador elétrico. Nesta pesquisa foi acoplado ao motor de combustão interna um gerador elétrico da marca Toyama, modelo TG2500MX, monofásico de 220 V, e 60 Hz, ver Fig. 15.

Figura 15: Gerador Elétrico Toyama.

4.3 APARATO COMPLEMENTAR

4.3.1 Serra de bancada elétrica

A serra de bancada elétrica foi usada para o corte e padronização dos tamanhos da biomassa, ver Fig. 16.

Figura 16: Serra de bancada.

4.3.2 Balança digital

A determinação da massa de biomassa que alimenta o gaseificador é indispensável para a determinação do consumo do equipamento. Para determinar essa quantidade, usou-se uma balança eletrônica com capacidade para 40 kg, ver Fig. 17.

Figura 17: Balança digital.

4.3.3 Termobalança.

O teor de umidade da biomassa utilizada nos experimentos foi determinado a partir de uma Termobalança analítica RADWAG, tipo MAC 210, resolução de 0,001 % de umidade e 1 mg de massa, ver Fig. 18. O aparelho foi fornecido pelo Laboratório de Carvão Ativado (LCA), da UFPB.

Figura 18: Termo-Balança digital.

4.3.4 Simulador de Cargas

Construído no LI, o simulador de cargas é um sistema resistivo composto por um banco de lâmpadas. Tal dispositivo, constitui-se de 06 (seis) lâmpadas de 250 – 280 W e 02 (duas) lâmpadas de 150 a 180 W, ver Fig. 19. Em funcionamento com todas as lâmpadas acesas consegue-se simular a carga máxima de 2,1 kWe, aproximadamente.

Figura 19: Simulador resistivo de cargas.

4.3.5 Analisador de Energia

A análise da qualidade da energia produzida foi feita utilizando um analisador de qualidade de energia, modelo HIOKI 3197, portátil, ver Fig. 20. Tal instrumento fornece, entre outros dados, medidas instantâneas de potência, tensão, corrente e frequência.

Figura 20: Analisador de Energia.

4.3.6 Analisador de Gases Veiculares

O equipamento utilizado para análise dos gases produzidos pelo sistema Gaseificador/ Grupo Gerador é um analisador de gases veiculares Discovery G4 da Alfateste, ver Fig. 21. O analisador é constituído, basicamente, por uma central de análise eletrônica e uma sonda. Em funcionamento, fornece instantaneamente características dos gases analisados, desde que esteja conectado a um computador que possua o software do equipamento instalado.

Figura 21: Analisador de Gases Veiculares.

4.3.7 Termopares

Medições de temperatura em vários pontos do sistema foram realizadas utilizandose termopares. No reator, um termopar tipo K cerâmico de 80 cm de comprimento foi instalado na zona de redução, a 780 mm do topo. Mais quatro termopares, também do tipo K, foram distribuídos estrategicamente a 635 mm, 490 mm, 245 mm e 140 mm, respectivamente, a partir de seu topo. Um sexto termopar, do tipo PT 100 foi instalado na saída do gás produzido pelo reator, ver Fig. 22, e mais dois termopares do tipo K foram instalados antes e depois do controlador de fluxo de mistura, respectivamente.

Figura 22: Termopar PT 100 instalado na saída de Gás.

Destaca-se a adaptação de alguns termopares do Tipo K, ver Fig. 23, promovida com êxito, no próprio LI. A ideia assentou-se em cobrir o fio termopar com um material isolante e instalá-lo dentro de um tubo de inox, o qual teve a ponta introduzida em locais específicos do Gaseificador.

Figura 23: Termopar tipo K adaptado no LI.

4.3.8 Termohigrômetros e Mostradores Digitais.

Para a leitura de temperaturas nos pontos definidos no reator usou-se 03 (três) TERMO-HIGRÔMETROS Minipa, do tipo MTH-1380, ver Fig. 24a. O aparelho pode ser facilmente interligado aos termopares através de conectores. Em outros pontos de medição

(saída do gás e junto ao coletor de admissão) a temperatura foi lida a partir de mostradores digitais fixos, ver Fig. 24b, ligados aos termopares.

Figura 24: a) Termo-Higrômetro. b): Mostrador digital.

4.3.9 Controlador de fluxo de Mistura Ar/Gás

O controlador de fluxo, ver Fig. 25, permite ajustar manualmente a proporção da mistura ar/gás admitida pelo motor. Está instalado na entrada do coletor de admissão do Motor.

Figura 25: Controlador de Fluxo de Mistura.

4.4 PROCEDIMENTOS E TESTES

Os testes foram realizados utilizando-se biomassa de paletes e outras (de refugos) advindas de serrarias. A biomassa foi cortada em cubos com tamanhos uniformes, conforme recomendado em Dasappa et. al (2003). Dimensões apropriadas para os cubos melhoram o empacotamento da biomassa no reator, permitindo que a queima seja mais uniforme. Para os testes, foram padronizados cubos de biomassa, com as dimensões aproximadas de (20 mm x 20 mm).

O experimento consistiu em coletar dados relativos à energia elétrica gerada (potência elétrica, tensão, corrente e frequência); levantar a composição dos gases de admissão e de escape; as temperaturas alcançadas, o consumo de biomassa e a qualidade de carvão produzido. Dados relativos à geração de energia elétrica foram coletados variandose progressivamente o número de lâmpadas acesas. Mais especificamente, foram ligadas, uma a uma, todas as lâmpadas. Quanto à qualidade do carvão, informações foram obtidas através de análises das áreas superficiais de BET e de Carbono fixo.

Preliminarmente, a cada experimento checava-se as condições de funcionamento de todo o aparato envolvido. Em seguida, o reator era alimentado com carvão vegetal até próximo à altura dos orifícios laterais, ver Fig. 26, e, a partir desse nível, foi adicionada a biomassa cortada em cubos, até o total preenchimento do reator. Feito isso, o sistema de lavagem era acionado.

Figura 26: Orifício Lateral do Gaseificador.

Ato contínuo, inflamava-se a biomassa com a chama de um maçarico a gás, através de um dos orifícios que se encontra na zona de combustão. Após o decurso de 15 min, gás pobre já era produzido, com poder calorífico suficiente para ser inflamado no queimador. Na sequência, acendia-se a chama piloto, passando-se a observar sua coloração. A coloração azulada indica que o poder calorífico tem qualidade suficiente para se funcionar o motor, ver Fig. 27. Fecha-se, portanto, a válvula que alimenta a chama piloto e abre-se a de alimentação do motor, dando-se partida ao mesmo.

Figura 27: Chama piloto.

De acordo com o número de lâmpadas que eram acesas, regulava-se no controlador de fluxo a proporção da mistura admitida, de modo a manter a combustão próxima da estequiométrica. Ao mesmo tempo se ajustava a rotação do motor para 1800 rpm. A frequência de 60 Hz lida pelo analisador de energia servia de parâmetro para manter a rotação fixa em 1800 rpm. Aproximadamente 5 min depois de acesas as lâmpadas, os parâmetros se estabilizavam, momento em que se iniciava a coleta dos dados, inclusive do consumo de biomassa.

A desobstrução da grelha foi feita concomitantemente com a coleta do carvão produzido. Imediatamente antes de uma lâmpada ser ligada, o perfurador de cinzas era acionado duas vezes, preventivamente, a fim de se evitar medições equivocadas de consumo, provocadas pela retirada de carvão. Para cada potência elétrica gerada, extraia-se uma determinada quantidade de carvão, a qual era armazenada em camadas no cinzeiro, ver Fig.

28. Ao final dos experimentos recolhia-se as amostras de carvão coletadas, levando-se em conta os níveis de alturas dos depósitos, que estariam correlacionados com as zonas de combustão, pirólise e de secagem. Tais amostras, eram, então, submetidas às análises de áreas superficiais de BET e de carbono fixo.

Figura 28: Cinzeiro.

Particularmente, a avaliação de consumo foi feita verificando-se a quantidade de biomassa convertida durante o intervalo de 4 min. Após a estabilização dos parâmetros o reator era alimentado (completado) até o topo, utilizando-se um coletor de biomassa. Com a quantidade de biomassa consumida e o tempo de consumo determinava-se o fluxo mássico da biomassa.

CAPÍTULO V

RESULTADOS E DISCUSSÕES

5.1. INTRODUÇÃO

No presente capítulo são expostos os resultados obtidos a partir dos testes experimentais realizados, quando da utilização do sistema Gaseificador/Grupo Gerador, e feitos os comentários pertinentes.

5.2 TEOR DE UMIDADE DA BIOMASSA.

A biomassa utilizada no teste apresentou teor médio de umidade próximo aos 11%, ver Tab. 2.

Tabela 2: Teor de umidade da biomassa

Amostra	Teor de umidade	Teor médio
01	11 %	
02	13 %	11 %
03	09 %	

5.3 TEMPERATURAS DE ADMISSÃO

A temperatura do gás na saída do reator variou de 315 °C, na potência mínima, a 380 °C na potência máxima. Verificou-se que em todas as potências observadas, as

temperaturas do gás, medidas na saída do reator, foram superiores àquelas alcançadas por SILVA (2017).

A Figura 29 apresenta variação entre as temperaturas do gás pobre e da mistura ar/gás, com a mudança da potência. Verifica-se que a partir da potência de 1,38 kW, a temperatura do gás tende a se elevar mais rapidamente do que a temperatura da mistura.

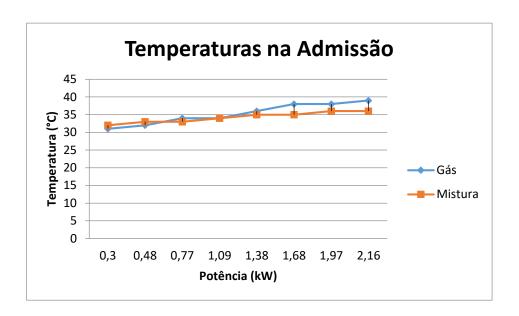


Figura 29: Temperaturas do gás e da mistura .

5.4 COMPOSIÇÃO DO GÁS POBRE

Os níveis de CO, CO2 e O2 do gás combustível em função da potência gerada são apresentados na Fig. 30. Em todas as potências, o CO manteve-se acima de 17 %. O nível máximo de CO foi obtido para a potência de 1,97 kW. Já o valor do CO2 manteve-se próximo aos 14 %, enquanto o O2 se situou abaixo de 0,5 %, para todas as potências observadas.

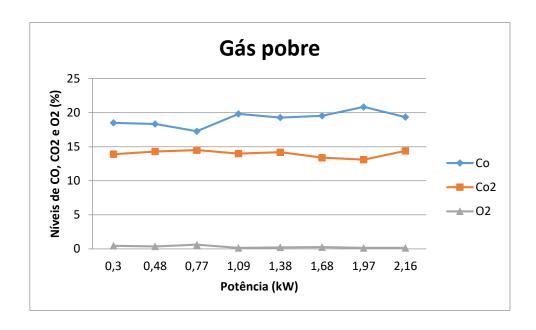


Figura 30: Composição do gás pobre.

5.5 COMPOSIÇÃO DO GÁS DE ESCAPE.

Para o gás de escape, os níveis de CO, CO2 e O2 são exibidos na Fig. 31. Os níveis de CO mantiveram-se entre 0,37 a 1,26 %, enquanto que os níveis de O2 oscilaram entre 1,23 a 2,79 %. Já os níveis de CO2 permaneceram em torno e 19 % para todas as potências verificadas.

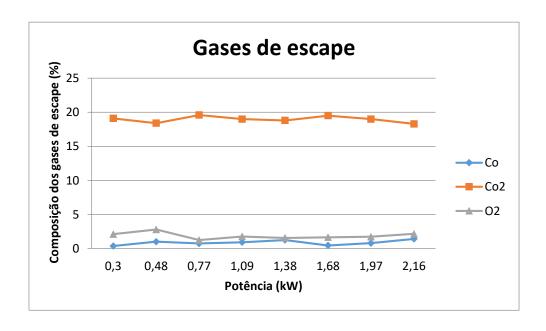


Figura 31: Composição do gás de escape.

5.6 DETERMINAÇÃO DO PCI DA BIOMASSA

A Tabela 03 apresenta os valores para o Poder Calorífico Inferior da Biomassa, obtidos através da Eq. (02), para as amostras coletadas. Tais resultados estão condizentes com os valores recomendados por (QUIRINO et al, 2004).

Tabela 3: PCI da biomassa utilizada

Amostra	PCI (MJ/kg)	PCI Médio (MJ/kg)
01	17,440593968	
02	16,993592144	17,44059397
03	17,887595792	

5.7 DETERMINAÇÃO DO PCI DO GÁS POBRE

A variação do PCI do gás pobre em função da potência elétrica gerada é observada na Fig. 32.

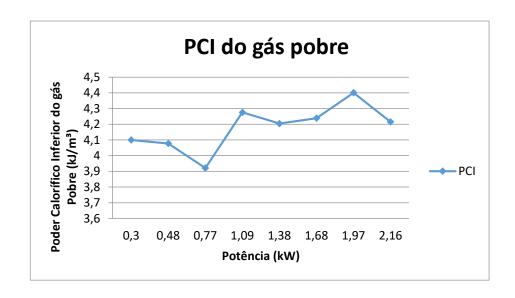


Figura 32: Poder Calorífico Inferior do gás pobre.

Constata-se que na potência de 0,77 kW, ver Figura 32, o PCI do gás pobre decresceu de maneira abrupta, provavelmente em decorrência da descontinuidade do

processo de fluxo gravitacional da biomassa, devido à retenção de camadas de biomassa pelas paredes do reator ("bridging"). A existência de tal ocorrência provoca a diminuição da quantidade de CO produzido pelo processo. Consequentemente os valores do PCI, também, diminuem.

Por outro lado, a provável obstrução no escorregamento de biomassa não terá efeitos sobre o consumo específico. Isso porque a medição do consumo é feita com o gaseificador completamente preenchido, afastando assim, a possibilidade de existência de vazios decorrentes de obstruções.

5.8 CONSUMO ESPECÍFICO DE BIOMASSA

O consumo específico de biomassa em função das potências geradas é apresentado na Fig. 33.

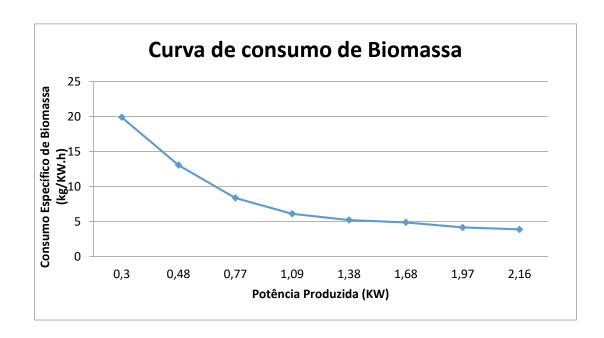


Figura 33: Consumo Específico de biomassa.

Percebe-se que o consumo específico decresce mais rapidamente entre 0,3 e 1,09 kW. A partir dessa última potência, o consumo decresce suavemente até a máxima potência. Comparando com os resultados obtidos por SILVA (2017), para o consumo específico, verifica-se que houve uma suave diminuição do consumo específico a partir da potência de 1,09 kW até a potência de 1,97 kW. Para a potência de 2,16 kW o consumo específico apresentou valores iguais aos de SILVA (2017).

5.9 EFICIÊNCIA GLOBAL DO SISTEMA

A variação da eficiência do sistema Gaseificador/Motor/Gerador para o conjunto de potências geradas pode ser vista na Fig. 34. Observa-se que a eficiência do sistema é influenciada pelo aumento da potência. Em todo intervalo, os parâmetros mantêm uma relação próxima da linear.

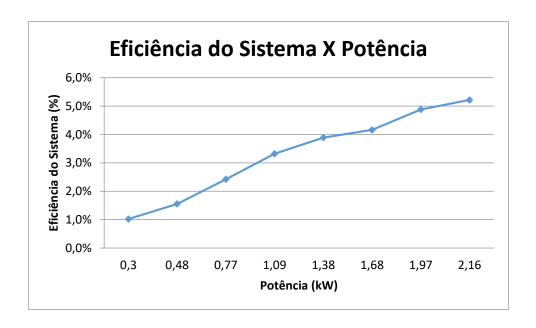


Figura 34: Eficiência Global do sistema Gaseificador/Grupo Gerador

5.10 ANÁLISE DE CARBONO FIXO

A Tab. 4 apresenta o percentual de carbono fixo do carvão produzido e a respectiva temperatura, da região próxima à de pirólise, para cada potência gerada. As temperaturas mantiveram-se entre 900 °C e 1000 °C, para a maioria das potências observadas. O teor de carbono fixo variou entre 65,22 % e 70,86 %, garantindo uma excelente qualidade do carvão, para queima ou como precursor de carvão ativado.

Tabela 4: Teor de Carbono fixo das amostras de carvão coletadas em diferentes potências e temperaturas.

Potência (kW)	Temperatura de Pirólise (°C)	Teor de Carbono Fixo (%)
0,30	965	65,22
0,48	876	66,79
0,77	959	68,21
1,09	911	70,86
1,38	942	67,72
1,68	902	66,95
1,97	958	67,82
2,16	1062	65,88

5.11 ANÁLISE DE BET

Na Tab. 5 estão dispostos os valores da área superficial específica das amostras de carvão, de acordo com a potência gerada, determinadas no ASAP 2020, com base nas isotérmicas de adsorção e dessorção de N₂. A área oscilou entre 354 e 444 m²/g. Observouse que os maiores valores de área superficial estão localizados em potências intermediárias.

Tabela 5: Dados de análise de BET

Potência (kW)	Temperatura de Pirólise (°C)	Área Superficial (m²/g)
0,30	965	396,5812
0,48	876	354,5338
0,77	959	409,1733
1,09	911	427,1211
1,38	942	444,1725
1,68	902	408,8043
1,97	958	401,4785
2,16	1062	354,2883

Verifica-se que as áreas superficiais de BET obtidas foram bastante significativas sem que se tenha realizado qualquer tipo de ativação, química, ou física, usando os processos tradicionais.

CAPÍTULO VI

CONCLUSÃO

O presente trabalho teve como principal objetivo o estudo da produção simultânea de Energia Elétrica e CA a partir da Gaseificação de Biomassa. Para tanto, foi introduzido um sistema de perfuração de cinzas junto ao reator do Gaseificador. Tal sistema favoreceu a oxigenação do reator, impedindo o acúmulo de cinzas em sua grelha, ao tempo em que permitiu a extração do carvão vegetal do reator.

A partir dos resultados obtidos nos ensaios, foi possível se tecer as seguintes considerações:

O teor de umidade das amostras apresentou valor médio de 11 %; 0,9 % maior do que o de SILVA (2017). Mesmo assim o resultado apresenta-se adequado, pois mantém-se abaixo do máximo permitido para esse tipo de gaseificador, que é de 15%. Acima desse valor, ocorre um aumento significativo da quantidade de alcatrão e de umidade presentes no gás pobre. Por isso, o teor de umidade mensurado não tem repercussão significativa.

As temperaturas do gás imediatamente antes da admissão e da mistura Ar/gás mantiveram-se equivalentes, para potências menores do que 1,38 kW. A partir dessa potência as temperaturas começaram a subir a uma taxa maior. Para a potência máxima, a temperatura da mistura alcançou 36 °C, enquanto a do gás 39 °C. A elevação dessas temperaturas pode ser explicada pelo fato de que a velocidade do gás pobre aumenta à medida em que se aumenta a carga imposta ao motor, o que repercute nas trocas térmicas por convecção entre o fluido e o termopar.

Em relação à composição do gás pobre, observou-se que a percentagem de CO, manteve-se próximo aos 18 %, oscilando em um ponto percentual, e atingindo o valor máximo de 20 %. Os níveis de CO₂ mantiveram-se entre 13 % e 14 %, não demonstrando nenhuma dependência com a variação da potência. Da mesma forma o O₂ não sofreu

variação com o aumento de potência, uma vez que seus níveis são diretamente proporcionais aos níveis de CO₂. Isso demonstra que o aumento da potência não teve influência significativa em relação aos níveis de CO, CO₂ e O₂.

Os níveis de composição do gás de escape mantiveram-se inferiores àqueles exigidos pelo Conama 418/2009. Desta forma, o sistema Gaseificador/Grupo Gerador não contribui significativamente para o aumento de emissões de poluentes no meio ambiente.

O PCI do gás pobre como já se sabe é função do nível de CO, que por sua vez cresce com o aumento de temperatura da zona de combustão. No experimento, o PCI do gás manteve-se próximo aos 4 kJ/m³. Tal resultado é condizente com os valores apresentados na literatura, para o PCI do gás pobre, os quais são inferiores a 5 kJ/m³.

O consumo específico de biomassa decresceu com o aumento da potência. Para potências intermediárias, observou-se melhores resultados do que os de SILVA (2017). Tais valores são justificados pelo aumento da eficiência do sistema Gaseificador/Grupo Gerador.

A combustão do gás pobre permaneceu próxima à estequiométrica para toda a faixa de potência. Os valores de lambda mantiveram-se estáveis, entre 1,02 à 1,08. Desta forma, praticamente toda a massa de gás pobre aspirada pelo motor foi convertida em trabalho mecânico, que por sua vez, foi transformado em potência elétrica. Por outro lado, a combustão em proporções estequiométricas, minimizou as emissões gasosas. Portanto, os valores de lambda próximos a unidade possibilitaram: melhor rendimento, baixo nível de emissão de poluentes e diminuição do consumo específico de biomassa.

A eficiência do sistema Gaseificador/Grupo Gerador, operando a máxima potência mostrou taxa de crescimento próxima à linear, com o aumento de potência. Para a máxima potência, alcançou 5,22 % de eficiência.

Com relação ao teor de carbono fixo, seus valores variaram entre 65,22 e 70,86 %, enquanto a temperatura da zona observada manteve-se, em média, em 900 °C. Os valores percentuais de carbono fixo justificam-se pelas altas temperaturas alcançadas naquela região.

A área superficial especifica das amostras de carvões vegetais analisadas mantiveram-se acima dos 350 m²/g, alcançando o máximo de 427 m²/g, valores considerados excepcionais, uma vez que os precursores tradicionalmente utilizados nos processos de ativação, apresentam valores bem inferiores. De conformidade com esses resultados, os teores de carbono fixo, se mostraram elevados, se comparados com os valores de carbono fixo dos precursores tradicionais. Isso torna o carvão produzido por essa técnica, um excelente precursor para a produção de carvão ativado da mais alta qualidade.

Conclui-se, portanto, que a gaseificação da Biomassa se apresenta como uma alternativa promissora para geração de energia elétrica com baixa emissão de poluentes. Somado a isso, os resultados mostraram, também, que tal técnica permite produzir carvão (apresentando características de carvão ativado) com excelente teor de carbono fixo e relevante área superficial.

SUGESTÕES PARA TRABALHOS FUTUROS

Com a finalidade de contribuir para o progresso das pesquisas relacionadas à Tecnologia de Gaseificação, seguem algumas sugestões para estudo:

- Projetar um sistema de filtragem, de gás, mais eficiente, que reduza a quantidade de alcatrão e particulados fornecidos ao motor de combustão interna.
- Implantar um sistema conhecido como "reservatório pulmão", a fim de, entre
 outras funções, reter a água que por ventura é arrastada do processo de
 lavagem de gás.
- Projetar e automatizar um sistema de controle de fluxo de mistura ar-gás, que pode ser implementado a partir de microcontroladores interligados a sensores.
- Estudar o carvão produzido durante o processo de gaseificação, a partir de diferentes tipos de biomassa, com vistas a melhorar sua qualidade tanto do ponto de vista da área de BET, quanto do ponto de vista do teor de carbono fixo.

REFERÊNCIAS

- ANEEL, 2019. "Capacidade de Geração do Brasil (BIG)". Disponível em: http://www2.aneel.gov.br/aplicacoes/capacidadebrasil/capacidadebrasil.cfm.Consultado em 07 de janeiro de 2019.
- ANEEL, 2018. "Capacidade de Geração do Brasil (BIG)". Disponível em: http://www.aneel.gov.br/aplicacoes/capacidadebrasil/capacidadebrasil.cfm. Consultado em 31 de março de 2018.
- ARENA, H., "Process and technological aspects of municipal solid waste gasification". A review. Waste Management 32 (2012) 625–639.
- BARRETT, E.P.; JOYNER, L.G.; HALENDA, P. "The determination of pore volume and area distributions in porous substances I". Computations from nitrogen isotherms. J. Am. Chem. Soc. 73: 373-380, 1951.
- BEZERRA, A. F., 2016, "Aprimoramento da Eficiência de um sistema de Geração de Energia Elétrica por Grupo Gerador Alimentado com Gás Pobre", Universidade Federal da Paraíba, Tese (Doutorado), Programa de Pós-Graduação em Engenharia Mecânica, Paraíba.
- BRIDGWATER, A.V., "The technical and economic feasibility of biomass gasification for power generation". Fuel Vol 14 No.5,p p. 631-653, 1995.
- BRITO, J. O., "Reflexões sobre qualidade do carvão vegetal para uso siderúrgico". IPEF, Instituto de Estudos e Pesquisas Florestais, Circular técnica N° 181, p. 6, out. 1993.
- BROWN, Robert C. "Thermochemical processing of biomass: conversion into fuels, chemicals and power". First Edition. John Wiley and Sons, 2011.
- BRUNAUER, S. "The adsorption of gases and vapors". Vol. I. Princeton Univ. Press, Princeton, 1945.
- CHEN, J.-S., "Modeling and Simulation of Co-current Moving Bed Gasification Reactors -- Part II". A Detailed Gasifier Model. *Biomass* 14 (1987) 75-98.

- CETIN, E., MOGHTADERI, B., GUPTA, R., WALL, T. F., "Influence of pyrolysis conditions on the structure and gasification reactivity of biomass chars". Fuel 83 (2004) 2139–2150.
 - CIOLA, R. Fundamentos da catálise. Editora Moderna, São Paulo, 1981.
- CLAUDINO, A. "Preparação de carvão ativado a partir de turfa e sua utilização na remoção de poluentes". Dissertação (Mestrado em Engenharia Química) Universidade Federal de Santa Catarina UFSC, Florianópolis, 2003.
- D. N. SUBBUKRISHNA, S. DASAPPA, P.J. PAUL, N.K.S. RAJAN, "CHARCOAL AND POWER GENERATION USING BIOMASS GASIFICATION". 17th European Biomass Conference and Exhibition, 29 June 3 July 2009, Hamburg, Germany.
- DA SILVA, J. A. S., 2018, "Uso de Um Sistema de Oxigenação para Um Gaseificador de Biomassa Visando a Melhoria da Produção do Gás Pobre". Trabalho de Qualificação de Doutorado, apresentado ao Programa de Pós-Graduação em Engenharia Mecânica, Paraíba.
- DA ROCHA, W. D., "Carvão Ativado a partir de resíduos agrícolas e suas aplicações na adsorção de íons metálicos". Dissertação de mestrado apresentada na Universidade Federal de Ouro Preto em 2006.
- DAMARTZIS, T.; MICHAILOS, S.; ZABANIOTOU, A. (2012). "Energetic assessment of a combined heat and power integrated biomass gasification-internal combustion engine system by using Aspen Plus (R)". Fuel Processing Technology 95: 37–44.
- DASAPPA, S.; MUKUNDA, H. S.; PAUL, P. J.; RAJAN, N. K. S., 2003, "Biomass to Energy: The Science and Technology of the IISc Bio-energy Systems", ABETS Indian Institute of Science, 1ed. Índia.
- DE LUNA, F. E. T., 2018, "Efeito de Um Reservatório de Gás (Pulmão) na Melhoria da Eficiência Energética de Um Gaseificador de Biomassa". Dissertação (Mestrado), apresentada ao Programa de Pós-Graduação em Engenharia Mecânica, Paraíba.
- DI BLASI, C., "COMBUSTION AND GASIFICATION RATES OF LIGNOCELLULOSIC CHARS". Progress in Energy and Combustion Science Volume 35, Issue 2, April 2009, Pages 121-140.
- EPE, 2017. "Anuário Estatístico de Energia Elétrica 2017, ano base 2016". Empresa de Pesquisa Energética. Rio de Janeiro. Setembro de 2017. 232 p. Disponível em http://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes/PublicacoesArquivo s/publicacao-160/topico-168/Anuario2017vf.pdf

Exame, https://exame.abril.com.br/economia/alta-do-pib-de-2018-segue-em-130-mostra-focus/ consultado em 7/01/2019.

FAO, "Wood Gas as Engine Fuel". FAO FORESTRY PAPER 72, 1986.

FIGUEIREDO, D. L. S., 2018, "Desempenho e Obtenção de Energia Elétrica em um Sistema Gaseificador de 1 kWe e Grupo Gerador", Universidade Federal da Paraíba. Dissertação (Mestrado), apresentada ao Programa de Pós-Graduação em Engenharia Mecânica, Paraíba.

FROEHLICH, Paulo Leandro. MOURA, Angela B. D. "CARVÃO VEGETAL: PROPRIEDADES FÍSICO-QUÍMICAS E PRINCIPAIS APLICAÇÕES". Tecnologia e Tendências. Ano 13, vol. 9, No. 1, 1° Sem. 2014

Garcia, R.., 2002, *Combustíveis e Combustão Industrial*, Rio de Janeiro:Interciência.

GROENEVELD, M. J., VAN SWAAIJ, "The Design of Co-Current Moving-Bed Gasifiers Fueled by Biomass. Jones and Radding; Thermal Conversion of Solid Wastes and Biomass ACS Symposium Series;" American Chemical Society: Washington, DC, 1980.

HARKINS, W.D.; JURA, G. – "Surfaces of solids XIII. A vapor adsorption method for the determination of the area of a solid without the assumption of a molecular area, and the area occupied by nitrogen and other molecules on the surface of a solid". J. Am. Chem. Soc., 66: 1366 -73, 1944.

HORTA, Guilherme Tinoco de Lima; GIAMBIAGI, Fabio. "Perspectivas DEPEC 2018: o crescimento da economia brasileira 2018-2023". 2018.

IBGE. Sistema de Contas Nacionais. Disponível em: https://www.ibge.gov.br/estatisticas-novoportal/economicas/contas-nacionais/9300-contas-nacionaistrimestrais.html%3E?=&t=resultados. Consultado em 20 de dezembro de 2018.

JAPANESE INDUSTRIAL STANDARD. JIS K 1474 – "Test methods for activated carbon". Japanese Standards Association, Tokyo, 1992.

JOHANSSON, T. B, KELLY, H., WILLIAMS, R. H., "Renewable Fuels and Electricity for a Growing World Economy: Defining and Achieving the Potential". Renewable Energy: Sources for Fuels and Electricity. Volume 4, Issue 3, 1993.

JUHOLA, A.J. – "Iodine adsorption and structure of actived carbons". Carbon, 13: 437-42, 1975.

KAN, T., STREZOV, V. (2015), "Gasification of Biomass". Boca Raton: CRC Press, Taylor & Francis Group.

- Kaupp, A.; Goss, J. R., 1981, "State of the Art Report for Small Scale (to 50 kW) Gas Producer Engine Systems", University of California, Monografia, Departament of Agricultural Engineering, Davis.
- KELM, M. A. P., Da Silva Júnior, M. J., Holanda, S. H. de B., De Araújo, C. M. B., FILHO, R. B. DE A., JAGUARIBE, E. F., DOS SANTOS, D. R., DA MOTTA SOBRINHO, M. A., "Removal of azo dye from water via adsorption on biochar produced by the gasification of wood wastes". Environmental Science and Pollution Research. Published online: 03 January 2019.
- LIMA, I.L. "Determinação de parâmetros de equilíbrio do processo de quimisorção de cátions metálicos sobre matrizes de sílica propilamina e propilpiperazina"; João Pessoa PB, 1999. (Dissertação de mestrado, Universidade Federal da Paraíba).
- MACAU, H. T., 2017, "Melhoria do Sistema de Lavagem do Gás Pobre de Um Gaseificador de 4 kW Térmicos". Dissertação (Mestrado), apresentada ao Programa de Pós-Graduação em Engenharia Mecânica, Paraíba.
- MARÍN, M. O., GONZÁLEZ, C. F., GARCÍA, A. M., et al., 2006, "Preparation of activated carbon from cherry stones by chemical activation with ZnCl2", Applied Surface Science, v. 252, n. 17, pp. 5967-5971.
- MENDES, M. G.; GOMES, P. A.; OLIVEIRA, J. B. de. "Propriedades e controle de qualidade do carvão vegetal". In: Produção e utilização de carvão vegetal. Belo Horizonte: CETEC, p. 74-89, 1982. (Série Técnica, 8).
- MELO, V. M., 2018, "Influência da Potência do Motor do Grupo Gerador na Limitação de Produção de Energia Elétrica de Um Sistema Formado por Um Gaseificador/Grupo Gerador". Dissertação (Mestrado), apresentada ao Programa de Pós-Graduação em Engenharia Mecânica, Paraíba.
- MEDEIROS, L. L. "Remoção de cobre (II) de soluções aquosas por carvões ativados de bagaço de cana-de-açúcar e endocarpo de coco da baía isentos de tratamentos químicos superficiais". João Pessoa, programa de pós-graduação em química, UFPB, 2008.
- MCKENDRY, P., "Energy production from biomass (part 2): conversion technologies". Bioresource Technology 83 (2002) 47–54.
- MORELL, J. I., AMUNDSON, N. R., PARK, S.-K., "DYNAMICS OF A SINGLE PARTICLE DURING CHAR GASIFICATION". Chemical Engineering Science, Vol. 45. No. 2, pp. 387-%01, 1990.
- MORAIS, S. A. L., Nascimento, E. A., Melo, D. C. "Análise da Madeira de Pinus Carpa Parte 1 Estudo dos Constituintes Macromoleculares e Extrativos Voláteis". SIF, Sociedade de Investigações Florestais, Revista Árvore, v. 29, n. 3, p. 461-470, 2005.

- MOURITZ, A. P., FEIH, S., KANDARE, E., MATHYS, Z., GIBSON, A. G., DES JARDIN, P. E., CASE, S. W., LATTIMER, B. Y., "Review of fire structural modelling of polymer composites". Composites: Part A 40 (2009) 1800–1814.
- NEVSKAIA, D.M.; SANTIANES, A.; MUÑOZ, V.; GUERRERO-RUIZ, A. "Interaction of aqueous solutions of phenol with commercial activated carbons: an adsorption and kinetic study". Carbon, 37: 1065-74, 1999.
- OLIVEIRA, J. B., Gomes; P. A., Almeida, M. R. "Carvão vegetal Destilação, carvoejamento, propriedades e controle de qualidade", In: Penedo, W.R. CETEC Fundação Centro Tecnológico de Minas Gerais, Publicação técnica, Belo Horizonte, p.173, 1982.
- PERUZZO, L. C., 2003, "Influência de agentes auxiliares na adsorção de corantes de efluentes de indústria têxtil em colunas de leito fixo", Dissertação de M.Sc., Universidade Federal de Santa Catarina, SC, Brasil.
- Quirino, W. F.; Vale A. T.; Andrade, A. P. A.; Abreu, V. L. S.; Azevedo, A. C. S., 2004, "Poder Calorífico da Madeira e de Resíduos Lignocelulósicos". Biomassa & Energia, v. 1, n. 2, p. 173-182.
- RODELLA, Cristiane Barbieri, "Preparação e Caracterização de Catalisadores de V2O5 suportados por TiO2" São Carlos, 2001. 134p.
- RUMÃO, A. S., 2013, "Geração de Potência e Energia Elétrica a Partir da Gaseificação de Rejeitos de Biomassa, Universidade Federal da Paraíba". Tese (Doutorado), Programa de Pós-Graduação em Engenharia Mecânica, Paraíba.
- SAHDWANI, N., ADHIKARI, S., EDEN, M. R., "Biomass Gasification Using Carbon Dioxide: Effect of Temperature, CO₂/C Ratio, and the Study of Reactions Influencing the Process". Ind. Eng. Chem. Res. 2016, 55, 2883–2891.
- SALES, D. C. S., MARTINS, R. G., JAGUARIBE, E. F., ABREU, C. E. M., "Formulation Of Activated Carbons And Evaluation Of Methane Storage By Compression And Adsorption". THE CANADIAN JOURNAL OF CHEMICAL ENGINEERING, VOLUME 90, JUNE 2012.
- SHAW, D.J. "Introdução à química dos colóides e superfície". Edgard Blücher, São Paulo, 1975
- SHRINIVASA, U., DASAPPA, S., MUKUNDA H. S., "Open-Top Wood Gasifiers". U.S. Department of Energy Office of Scientific and Technical Information, 1991.
- SILVA, F. S., 2017, "Efeito dos Tamanhos Padronizados de Retalhos de Madeira na Melhoria do Funcionamento de Um Gaseificador de Biomassa". Dissertação (Mestrado), apresentada ao Programa de Pós-Graduação em Engenharia Mecânica, Paraíba.

- SMÍSEK, M.; CERNÝ, S. "Active carbon manufacture, porpeties and applications". Elsevier, Amsterdan, 1967.
- STEVENS, D. J., "Hot Gas Conditioning: Recent Progress With Larger-Scale Biomass Gasification Systems". Update and Summary of Recent Progress. NREL/SR-510-29952. August 2001.
- TORQUATO, S. A., DE JESUS, K. R. E., RAMOS, R. C., "Potencial da bioeletricidade no Brasil: uso da biomassa da cana-de-açúcar como energia alternativa e complementar". Book of Proceeding of the XI CIER 2016. Iberian Conference on Rural Studies pp 78 83.
- WARHURST, A.M.; MCCONNACHIE, G.L.; POLLARD, S.J.T. "Characterization and applications of activated carbon produced from Moringa Oleifera seed husks by single-step steam pyrolysis". Wat. Res., 31: 759-66, 1997.
- YANG, Y. B., V.N. SHARIFI, J. SWITHENBANK, "Effect of air flow rate and fuel moisture on the burning behaviours of biomass and simulated municipal solid wastes in packed beds". Fuel 83 (2004) 1553–1562.