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Resumo

Ligas de memoria de forma sdo materiais inteligentes e que podem ser utilizados como
atuadores em diversas situacoes. O controle de atuadores de liga de memoéria de forma,
porém, pode ser desafiador devido a nao-linearidade e comportamento histerético deste
tipo de material. Nesse sentido, o uso de Redes Neurais Artificiais torna-se um artificio
interessante em termos de sensoreamento e controle dos atuadores de liga de memoéria de
forma. Foi realizado um estudo com molas feitas de Ligas de Memoria de Forma, visando
maior compreensao dos fenomenos fisicos de transformacao de fases para controle desse
tipo de atuador. O uso da resisténcia elétrica como elemento sensor para realimentacao foi
proposto, e uma Rede Neural Artificial foi projetada para aprendizagem da relagdo entre
a resisténcia elétrica e forca exercida pela mola de Liga de Memoria de Forma. Além disso,
um circuito de acionamento foi desenvolvido e foi projetado um Filtro de Kalman para
estimacao das variaveis a serem utilizadas no controle do atuador. Por fim, um método de
controle baseado em Redes Neurais foi proposto e seus resultados foram mostrados. O uso
de Redes Neurais foi eficiente tanto em termos de sensoreamento quanto em termos de
controle. Além disso, a forca aplicada pelas molas de Liga de Memoéria de Forma convergiu

de forma satisfatéria para os valores de referéncia no sistema em malha fechada.

Palavras-chaves: Ligas de Memoria de Forma, Filtro de Kalman, Realimentagao de

Resisténcia Elétrica, Redes Neurais Artificiais, Controle Preditivo.



Abstract

Shape Memory Alloys are intelligent materials and can be used as actuators in many
situations. The control of Shape Memory Alloys actuators may be challenging due to the
non-linear and hysteretic behavior of this type of material. This way, the use of Artificial
Neural Networks is a interesting tool to work as sensor and to implement the control of
Shape Memory Alloys actuators. Studies with Shape Memory Alloys springs have been
conducted to understand the phase transformation phenomenon in order to implement
a control strategy. Electric resistance feedback has been used as sensor element, and
an Artificial Neural Network has been developed to learn the relationship between the
electric resistance and the force applied by the spring. Besides, an actuation circuit has
been developed and an Extended Kalman Filter has been designed to estimate the state
variables of the system. Finally, a neural network based predictive control strategy has
been proposed and its results have been shown. The use of Artificial Neural Networks were
efficient both as sensor and as model into the predictive controller. In addition, the force
applied by the Shape Memory Alloy springs has satisfactorily converged to the reference

values of force in the closed loop controlled system.

Keywords: Shape Memory Alloys, Kalman filter, Electric Resistance Feedback, Artificial

Neural Networks, Predictive Control.
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1 Introducao

Ligas de memoéria de forma - LMF- sao ligas metalicas que demonstram a capaci-
dade de recuperar sua forma original apds uma deformagao “pseudoplastica”, ou desen-
volver forcas consideraveis de restituicao ao restringir sua recuperacao, apds a imposi¢ao
de um campo de temperatura e/ou tensoes, por meio de transformagoes de fase induzi-
das no material [SILVA, 2015]. Recentemente, o uso de LMF como atuadores tem atraido
bastante interesse, devido a caracteristicas como confiabilidade, alta densidade energética,

simplicidade de projeto e operacgao silenciosa.

Apesar do potencial de uso de LMF como atuadores nos mais diversos campos
de aplicacao, sao encontradas dificuldades no controle desse tipo de atuador, tais como
a baixa eficiéncia energética, nao-linearidade e comportamento histerético desse tipo de
material e resposta lenta em comparagao com atuadores convencionais [PAN et al., 2017].
Estas caracteristicas devem ser consideradas, uma vez que podem levar desde uma per-

formance indesejada até uma dindmica instavel no sistema.

Além disso, o fendmeno de memoéria de forma é um fendmeno termomecéanico, con-
sequéncia de uma mudanca na estrutura cristalina entre uma fase de baixa temperatura,
conhecida como martensita, e uma fase de alta temperatura, conhecida como austenita
[LI; TTAN, 2018]. Porém, o aquecimento por efeito Joule é bastante utilizado para li-
dar com LMFs, de forma que a relacao entre deformacgao do material e corrente elétrica
aplicada torna-se indireta, uma vez que o aquecimento é regido por diversas equagoes
da termodindmica. Ainda, deve ser levado em considera¢ao que a atuagdo por PWM é
pratica e eficiente em termos de controle e automacao e, por isso, bastante utilizada em
diversos trabalhos com LMFs [ZHANG; XU; YANG, 2017; LIAO, 2016; PAI; RIEPOLD;

TRACHTLER, 2016], porém pode causar efeitos indesejados em termos termoelétricos.

Um 1ltimo desafio a ser considerado ao se trabalhar com LMEFs é a instrumentacao
eletronica do sistema, uma vez que a temperatura ao longo de um fio ou mola de LMF pode
nao ser uniforme devido a diversos motivos. Dessa forma, muitas vezes um tnico sensor
de temperatura, por exemplo, pode nao ser suficiente para entender o comportamento do
atuador. Além disso, um maior niimero de sensores para realiza¢ao do controle desse tipo

de sistema pode tornar o projeto oneroso e inviavel.

Neste contexto, este trabalho traz uma maior compreensao sobre o uso de ligas de

memoria de forma bem como o estudo de soluc¢oes para as dificuldades acima expostas.

Uma primeira abordagem a ser considerada é como o uso de atuacdo por PWM
pode influenciar o aquecimento por efeito Joule, e através deste estudo buscar as me-

lhores caracteristicas possiveis para o sinal de controle. Em segundo lugar, é proposto
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a utilizacao da resisténcia elétrica dos atuadores de LMF como elemento sensor para
o sistema. A medicdo de resisténcia elétrica é relativamente mais simples e menos rui-
dosa que a leitura de temperatura. Além disso, o uso da resisténcia elétrica pode evitar
o problema da distribuicdo desuniforme de temperatura ao longo do atuador de LMF,
simplificando a instrumentacao eletronica do sistema. Por fim, para lidar com os proble-
mas de nao-linearidade dos materiais, sao utilizadas Redes Neurais Artificiais - RNAs. As
RNAs sao capazes de aprender comportamentos nao-lineares através de seu algoritmo de
aprendizado e, portanto, podem lidar de forma mais natural com as caracteristicas das
Ligas de Memoria de Forma. Serdao utilizadas Redes Neurais para fins de sensoreamento

e realimentacao do sistema, bem como para fins de controle de atuadores de LMF.

1.1 Objetivos

Esta dissertacao tem como objetivo geral desenvolver uma estratégia de controle
para atuadores de Liga de Memoria de Forma, baseando-se no feedback de resisténcia
elétrica e em Redes Neurais Artificiais. Para alcancar o objetivo principal, alguns objetivos

especificos sao propostos:

1. Revisao bibliografica de Ligas de Memoria de Forma para melhor entendimento do

principio de funcionamento dos atuadores;

2. Estudo da influéncia da modulacao por largura de pulso para aquecimento por efeito

Joule;
3. Desenvolvimento da instrumentacao eletrénica do sistema;

4. Estudo do comportamento resistivo de atuadores de LMF e projeto de uma rede

neural artificial para atuar como sensor para feedback de resisténcia elétrica;

5. Estudo de técnicas de controle de atuadores de LMF utilizando feedback de resis-

téncia elétrica, e projeto de um controlador para uma mola de LMF.

1.2 Organizacao do texto

No Capitulo 2, é feita uma breve revisao bibliografica sobre os principais pontos
a serem abordados no texto. No Capitulo 3 sao mostrados os materiais utilizados e mon-
tagens feitas, assim como as estratégias utilizadas para obtenc¢ao de curvas e treinamento
da rede neural. No Capitulo 4 sdo mostrados os gréaficos levantados dos experimentos e
uma breve discussao sobre os mesmos. No Capitulo 5 é mostrada uma breve sintese do

trabalho e sdo manifestadas ideias para possiveis trabalhos futuros.
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2 Revisao Bibliografica

Nesse capitulo sera apresentada uma revisao bibliografica sobre os materiais e

teorias utilizadas para desenvolvimento do projeto.

2.1 Ligas de Meméria de Forma (LMF)

Ligas de memoria de forma - LMF - sao ligas metalicas que demonstram a capa-
cidade de recuperar sua forma original apds uma deformacao “pseudoplastica’, ou desen-
volver forcas consideraveis de restituicdo ao restringir sua recuperacao, apos a imposicao
de um campo de temperatura e/ou tensoes, por meio de transformacoes de fase induzidas
no material [SILVA, 2015]. Este fenomeno de transformagao é conhecido como efeito de
memoria de forma (Shape Memory Effect - SME) [JANI et al., 2014]. Estas ligas foram
inicialmente descobertas por Arne Olander, em 1932 [OLANDER, 1932], e o termo “me-
moria de forma” foi inicialmente usado por Vernon em 1941 para seu material polimérico
dental.

Uma nova perspectiva sobre materiais com memoria de forma veio com a desco-
berta da liga de niquel e titanio NiTi por Buehler e sua equipe, enquanto investigavam
materiais uiteis para protecao contra aquecimento. Percebeu-se que esta liga, além de ou-
tras propriedades mecanicas, possuia a capacidade de recuperar sua forma. Este material
ficou, entdo, conhecido como nitinol, devido & composi¢do quimica da liga (NiTi) e seu

local de descobrimento, o Laboratério de Artilharia Naval (Naval Ordnance Laboratory -
NOL) [BUEHLER; GILFRICH; WILEY, 1963].

Desde a descoberta inicial do nitinol, em 1963, diversas outras ligas foram desen-
volvidas, cada uma com suas proprias caracteristicas. Por exemplo, a adi¢ao de cobalto
ou ferro a liga de NiTi causou uma dréstica redugao nas temperaturas de transformacao,
inspirando a criagao da primeira LMF comercializavel no mundo, a Cryofit. Em 1978,
Melton e Mercier mostraram que a adicao de cobre a liga de NiTi nao muda as tempe-
raturas de transformacao de fase consideravelmente, mas estreita a curva de histerese.
Outras ligas tais como NiTiNb, FeMnSi, CuAINi e CuZnAl podem ser encontradas no

comércio, embora as ligas de NiTi ainda sejam preferidas para a maioria das aplicagoes.

A demanda para o uso de LMFs tem crescido em diversas areas da engenharia e
ciéncia, tais como em aplicagoes industriais [WU; SHETCKY, 2000; ZIDER; KRUMME,
1988; HAUTCOEUR; EBERTHARDT, 1997], estruturas e compostos [FURUYA, 1996],
industria automotiva [BUTERA; CODA; VERGANI, 2007; SHAPE. .., 1990}, industria
aeroespacial [BIL; MASSEY; ABDULLAH, 2013; HARTL; LAGOUDAS, 2007; HUMBE-
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ECK, 1999; SCHETKY, 1991], sistemas microeletromecéanicos (MicroElectroMechanical
Systems - MEMS) [HUMBEECK, 1999; SUN et al., 2012; KOHL, 2010; KAHN; HUFF;
HEUER, 1998; FUJITA; TOSHIYOSHI, 1998], robética [KHEIRIKHAH; RABIEE; EDA-
LAT, 2011; FURUYA; SHIMADA, 1991; SREEKUMAR et al., 2007], engenharia bio-
médica [HUMBEECK, 1999; SUN et al., 2012; MORGAN, 2004; DUERIG; PELTON;
ST6CKEL, 1999], entre outros.

2.1.1 Transformacao de Fases em LMFs

Dentro de uma faixa de temperatura, um material que apresenta memoria de forma
possui duas fases, com diferentes estruturas cristalinas e propriedades. Estas fases sao de-
nominadas como austenita e martensita. A austenita é presente em altas temperaturas
e apresenta estrutura cristalina cubica. A martensita, por sua vez, é presente em bai-
xas temperaturas e possui estrutura cristalina tetragonal, ortorémbica ou monoclinica.
Cada cristal da martensita formada pode ter uma diferente orientacao, chamada variante.
Normalmente, quando o material esta na fase martensita, possui variantes randdémicas,
estando em um estado chamado martensita geminada. Porém, ao se aplicar uma carga
mecanica a liga, algumas das variantes sao orientadas e hé, assim, uma variante domi-
nante. A este estado denomina-se martensita desgeminada. Na martensita desgeminada,
portanto, ha uma deformacao macroscopica na propria estrutura da liga. A ideia das
transformacoes de fase é mostrada, esquematicamente, na Figura 1. A transformacao de

fases de austenita para martensita e vice-versa é a base para o comportamento tnico das
LMFs.

Figura 1 — Ilustragao esquemética das mudancas de fase em LMFs

L,

X
C‘ooling/ \Hcating

(a) bee (B2)
Loading
—_—
<o
(Unloading)
(b) Martensite (c) Martensite
(Multi-variant) (Single variant)

Resumidamente, no processo de “desgeminacao”, a deformacao que o material so-
fre permanece mesmo apods a retirada da carga mecanica. O aquecimento do material,

entretanto, resulta na transformagao de fase de martensita desgeminada para austenita e
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leva a uma completa recuperacao da forma original. Resfriar o material leva uma completa
transformacao da fase austenita para a fase martensita geminada, sem aparente mudanca
de forma. Este processo é conhecido como Efeito de Memoéria de Forma (Shape Memory
Effect - SME). Neste processo, a temperatura de inicio da austenita (As) é a temperatura
na qual comeca o processo de transformacgao de martensita para austenita, e temperatura
final da austenita (Af) é a temperatura na qual essa transformagao se encerra. Durante
o processo de resfriamento, por sua vez, a transformagao comega a se reverter na tempe-
ratura inicial de martensita (M) e se encerra na temperatura final de martensita (M)
[JANI et al., 2014]. Ainda, denominam-se as tensoes de inicio da desgeminagao e de final
da desgeminacao por o, e oy, respectivamente. Por fim, uma importante varidvel no es-
tudo do comportamento de LMFs é a deformacao, que indica o quanto as dimensoes da
LMF mudam ao longo do processo, e é representada por €. Na Figura 2 é mostrado um

esquema do SME.

Figura 2 — Ilustracao esquematica do Efeito de Memoria de Forma
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Na Figura 2, o processo de A para B corresponde ao resfriamento com transfor-
macao de fase de austenita para martensita. No processo de B para C, hd a desgeminacao
da LMF em martensita, formando assim a martensita desgeminada. No processo de C
para D, ha a retirada da tensdo mecanica inicialmente aplicada para o processo de desge-
minacao. A retirada da carga mecanica, porém, nao implica no retorno a forma original,
fato que pode ser observado pela deformagao residual que se mantém. No processo de D
para E, ha um aquecimento, até que a liga chegue a temperatura A,. No processo de E
para A, quando o aquecimento atinge Ay, hé a transformacao de fase de martensita para
austenita, conjuntamente com a recuperacao da forma original, conforme pode ser visto
no eixo da deformagao. Normalmente, o comportamento de LMFs é descrito pelas curvas

de Deformacao x Temperatura ou Tensao x Temperatura.
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A histerese é um fenémeno importante a ser considerado neste tipo de material.
Histerese é uma medida da diferenga nas temperaturas de transicao entre aquecimento
e resfriamento, e geralmente é definida pela diferenca entre as temperaturas nas quais o
material estd 50% na fase austenita (durante o aquecimento) e 50% na fase martensita
(durante o resfriamento) [BUEHLER; WANG, 1968]. Esta propriedade é importante e

requer consideragao na hora de escolher uma LMF para determinada aplicagao.

Algumas vezes, uma LMF pode exibir transformacoes de forma repetitivas quando
submetida a um ciclo térmico. Este comportamento é conhecido como Two Way Shape
Memory Effect - TWSME. O TWSME pode ser observado em uma LMF que sofreu, de
forma repetitiva, ciclagem térmica ao longo de um caminho especifico. A este processo
denomina-se treinamento. Quando uma LMF esta treinada, seu ciclo histerético estabiliza,
permitindo o uso de ferramentas computacionais para estudo de seu comportamento. Um

exemplo de material que foi submetido ao processo de treinamento é mostrado na Figura 3.

Figura 3 — Exemplo de LMF submetida ao processo de treinamento sob carga mecanica
constante
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2.2 Feedback por Resisténcia Elétrica

A resisténcia elétrica é a capacidade de um corpo qualquer se opor a passagem de
corrente elétrica mesmo quando existe uma diferenca de potencial aplicada. A resisténcia
elétrica de um objeto, por sua vez, depende, primariamente, do material do qual é feito este
objeto e de sua forma. Em LMFs, embora a composicao quimica do material permaneca a
mesma ao longo dos ciclos de ativacao, as mudancas de fases fazem com que a resistividade

do material seja alterada, mudando, assim, sua resisténcia elétrica.

Um desafio que tem sido encontrado ao utilizar-se atuadores de LMF ¢é realizar
o controle de deformagao através do feedback de alguma varidvel do sistema. O feedback

através de posicao é o mais utilizado, mas possui a desvantagem de seu alto custo. O
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feedback de temperatura também tem sido estudado, mas tem se mostrado pouco pratico,
devido a dificuldade de medir, com precisdo, o valor de temperatura ao longo de um
atuador que se encontra em ambiente aberto. Nesse sentido, a relacao entre variacao de
resisténcia elétrica e deformacao em um atuador de LMF durante as transformacgoes de
fase é deterministica e repetitiva em alguns ambitos [MA GANGBING SONG, 2003],
especialmente devido ao fato de que sua resistividade depende diretamente da fracao de
martensita no material. Dessa forma, o feedback de resisténcia elétrica pode substituir,

por exemplo, o sensor de posi¢ao.

Diversos estudos foram realizados para compreender o comportamento da varia-
¢ao de resisténcia elétrica em LMFs. Em [ZHANG; YIN; ZHU, 2013] é feito um estudo e
proposto um modelo de atuacao para musculos artificiais utilizando LMFs baseados em
feedback de resisténcia elétrica. Em [CUIL; SONG; LI, 2010; NOVAK et al., 2008] modelos
matematicos sao propostos para descrever a relacao entre resisténcia elétrica e deformacao
em fios de LMF. Em geral, essas relagoes sao nao-lineares e dependem de diversos fatores,
tornando os modelos pouco praticos em termos de controle e processamento e exigindo
estratégias mais complexas para utilizagdo destes materiais. Por exemplo, em [SCHIE-
DECK; MOJRZISCH, 2011] é desenvolvida uma estratégia de controle que baseia-se no
gradiente da variagao de resisténcia elétrica para controle do aquecimento de atuadores
de LMF.

Neste sentido, o uso de Redes Neurais Artificiais mostra-se como uma abordagem
interessante para a implementacdo de controle por feedback de resisténcia elétrica. As
redes neurais conseguem aprender comportamentos nao-lineares, bem como entender a
histerese tipica dos materiais de LMF. Por exemplo, em [MA GANGBING SONG, 2003]
é realizado o controle de posicao de um atuador de LMF por feedback de resisténcia elétrica
utilizando redes neurais para aprendizado do comportamento de variagao de resisténcia
elétrica. Neste trabalho, serd utilizada uma Rede Neural Artificial para aprendizado do
padrao de variacao de resisténcia elétrica e posterior controle dos atuadores de LMF

através do feedback de resisténcia elétrica.

2.3 Filtro de Kalman

O filtro de Kalman foi inicialmente apresentado por Rudolf E. Kalman em seu
artigo A New Approach to Linear Filtering and Prediction Problems, em 1960 [KALMAN,
1960]. Trata-se de uma ferramenta que pode estimar as varidveis de uma vasta gama
de processos. Basicamente, trata-se de um filtro recursivo que estima os estados de um

sistema dinamico linear a partir de uma série de medigoes ruidosas.
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2.3.1 Filtro de Kalman Discreto

Na engenharia de controle, uma representacao em espago de estados ¢ um modelo
matematico de um sistema fisico composto de um conjunto de variaveis de entrada, de
salda e de estado relacionadas entre si por meio de equacgoes diferenciais de primeira
ordem. Para abstrair-se do nimero de entradas, saidas e estados, as variaveis sao expressas
em vetores e as equagoes diferenciais e algébricas sdo escritas na forma matricial (esta
forma é possivel somente quando o sistema dindmico é linear e invariante no tempo). A
representagao em espago de estados (também conhecida como “abordagem no dominio do

tempo”) fornece uma maneira pratica e compacta para modelar e analisar sistemas com
multiplas entradas e saidas [HENDERSON, 2010].

A representacao mais geral de sistemas invariantes no tempo, com p entradas, ¢

saldas e n variaveis de estado, em espaco de estados, é dada pela da seguinte forma:

(2.1)

Onde:
x(+) é chamado vetor de estados, z(t) € R"
y(+) é chamado vetor de saidas, y(t) € R?
u(+) é chamado vetor de entradas, u(t) € R?
A é a matriz de estados, dim[A] =n xn
B ¢é a matriz de entradas, dim[B] =n x p
C' é a matriz de saidas, dim[C] = ¢ x n
D é a matriz de alimentagdo, dim[D] = ¢q x p
da(t)

=g

A Equacao 2.1 é a representacao em espago de estados em tempo continuo. Para
o dominio discreto, tem-se a seguinte representacao, onde a derivada do vetor de estados

torna-se a predicao dos estados na préxima iteracao:

z(k +1) = Az(k) + Bx(k)

(2.2)
y(k) = Cx(k) + Du(k)

Na maioria das aplicagoes, a matriz de alimentagao D pode ser considerada nula.

Um problema basico nos sistemas de controle, conhecido como problema do projeto
do observador (Observer Design Problem), é determinar os estados de um sistema tendo
acesso apenas as suas saidas. A resolucao deste problema baseia-se no modelo de espago
de estados. Neste novo modelo, representa-se a saida do sistema como z ao invés de y,

indicando que a saida é, na verdade, a leitura de um sensor usado para tal fim, e a matriz
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de saidas C' é representada por H. Além disso, os indices subescritos indicam a iteragao da
varidavel no processo. Assim, tem-se novas equacoes que representam o espaco de estados

deste sistema:

T = AZI}k_l + Bl’k + W1 (23)

2 = Hxyp, + vy, (2.4)

Os termos wy e vg sdo varidveis aleatérias que representam os ruidos de processo
e medicao, respectivamente. Obviamente, no mundo real, estes ruidos estao presentes na
maioria dos sistemas. Por exemplo, cada sensor tem uma determinada faixa de operacao, e
a medida que as leituras se aproximam dos limites do sensor, o sinal comeca a se degradar.
Além disso, uma porg¢ao de ruido é adicionado ao sinal através do sensor e dos circuitos

elétricos.

Um outro problema a ser considerado é que os estados do sistema sao desconheci-
dos, uma vez que se tem acesso apenas as leituras ruidosas dos sensores. Assim, os modelos
apenas podem dar uma estimativa do estado real. Obviamente, essa dificuldade se agrava

quando se considera que nem sempre esses modelos sao previsiveis.

Neste contexto, o Filtro de Kalman entra como uma importante ferramenta para
lidar com o problema do Observador de Estados. Essencialmente, o Filtro de Kalman é um
conjunto de equagoes matematicas que implementam um estimador de estados baseado
em predicao e correcdo, que é 6timo no sentido que minimiza o a covariancia do erro

estimado.

2.3.2 O Filtro de Kalman Discreto - Algoritmo

Tomando como base as equacoes 2.3 e 2.4, nas quais wy, e vy representam os ruidos
de processo e medicao. E assumido que estes ruidos sdo independentes entre si, brancos e

possuem distribuicao normal, ou seja:

p(w) ~ N(0,Q)

2.5
p(v) ~ N(0, R) 2

Onde Q é a covariancia do ruido de processo e R € a covariancia do ruido de me-
di¢do. Define-se P como a covariancia do erro e K como o um ganho, denominado Ganho
de Kalman, que sera utilizado no algoritmo de Kalman. Ainda, define-se variaveis a priori
como variaveis estimadas na iteracao k a partir do processo anterior, e define-se variaveis

a posteriori como variaveis estimadas na iteracdo k a partir da medicdo dos sensores,
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2. Assim, definem-se =, Z, P~ e P como os estados a priori, os estados a posteriori, a

covariancia do erro a priori e a covariancia do erro a posteriori, respectivamente.

Os erros podem ser encontrados da seguinte forma:

(2.6)
Cp =T — Zi‘k
A covariancia dos erros a priori e a posteriori é definida da seguinte forma:
Py = Elege; | (2.7)
P, = Elexe} ] (2.8)

O filtro de Kalman estima um processo em duas frentes: o processo de Predi¢ao
e o processo de Correcdo. As equagdes utilizadas no processo de predigao sao mostradas

nas equagoes 2.9 e 2.10.

ii‘]; = AZ._1 + Buy (29)
Py = AP, AT+ Q (2.10)

Ja as equagoes utilizadas no processo de correcao sao mostradas nas equagoes 2.11,
2.12 e 2.13:

Ky =P, H (HP H" + R)™! (2.11)
P, = (I — KxH)P, (2.13)

Deve-se fornecer ao algoritmo valores iniciais para os estados (#j_1) e para a co-
variancia dos erros (Pg_1). Assim, o processo iterativo do Filtro de Kalman pode ser

resumido na Figura 4
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Figura 4 — Diagrama esquematico do algoritmo do Filtro de Kalman
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As matrizes ) e R, em geral, sdo constantes, e sdo projetadas e partir dos ruidos
estimados no sistema e nos sensores. A diferenca (z, — HZ;, ) na Equagao 2.12 é chamada
de inovacao de medicao, ou residual, e reflete a discrepancia entre a predicao da medicao
Hz, e a medicao atual z;. Além disso, a medida que a covariancia do erro de medicao
R se aproxima de zero, a medicao atual z; adquire maior peso em relagdo a predicao da
medicao HZ, , enquanto que a medida que a covariancia do erro estimado se aproxima de

zero, zj, adquire menor peso em relacao a HZ, .

A natureza recursiva do Filtro de Kalman é uma das vantagens de seu uso, tor-

nando aplicacoes praticas do mesmo mais factiveis que, por exemplo, o filtro de Wiener.

2.3.3 O Filtro Estendido de Kalman

As aplicagoes mais comuns do Filtro de Kalman para sistemas nao-lineares sao na
forma do Filtro de Kalman Estendido (FEztended Kalman Filter - EKF) [JAZWINSKI,
2007]. A estimagao de sistemas nao-lineares é extremamente importante, visto que a
maioria dos sistemas na engenharia sao desse tipo. O EKF simplesmente lineariza todas
as transformagoes nao-lineares e substitui as transformacoes lineares do Filtro de Kalman

por matrizes jacobianas.

Assim, as equacoes 2.3 e 2.4, utilizadas para o Filtro de Kalman, sao agora subs-

tituidas pelas equagoes 2.14 e 2.15, onde f e h sao fungoes nao-lineares que descrevem a
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relacdo entre o estado atual e a saida do sistema com os estados anteriores, entradas e

ruidos de processo e medigao.

Ty = f(mk—la Uk, wk—l)

2 = h(l’k, ’Uk)

(2.14)

(2.15)

A matriz jacobiana, ou simplesmente jacobiano, é a matriz formada pelas derivadas

parciais de primeira ordem de uma funcao vetorial. Suponha uma funcao f : R — R™

que leva um vetor de entrada € R™ a um vetor de saida f(z) € R™. A matriz jacobiana

J da funcao f é definida da seguinte forma:

afr

ox1
A
81’1 &xn of
B

aft
0xn

(2.16)
Ofm

OTn

O jacobiano é importante porque se a funcao f é diferenciavel em um ponto z,
entdao o jacobiano define um mapa linear R — R™, que é a melhor aproximacao linear
da funcao f em torno do ponto x. Dessa forma, através do jacobiano, pode-se linearizar
um sistema nao-linear, iteracdo por iteragao, para aplicacao do Filtro de Kalman, desde
que as fungoes de f e h, descritas nas equacoes 2.14 e 2.15 possuam derivadas parciais

naquele ponto de operacao.

Assim, a partir da Equacao 2.16, pode-se linearizar as equacoes 2.14 e 2.15 para
aplica-las ao Filtro de Kalman. Inicialmente, denominam-se as matrizes ', H, " e A como

o0s seguintes jacobianos:

Of (Bg—1, ug, w))

F N (2.17)
H- W (2.18)
r-% (‘%’“‘(gi’“’w’“)) (2.19)
A= W (2.20)

Onde 7 é o estado estimado sem considerar os ruidos de processo e medi¢ao. A
partir das equagoes 2.17, 2.18, 2.19 €2.20, pode-se reescrever o algoritmo do Filtro de

Kalman.
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As equagdes do processo de medicao para o EKF sdo descritas nas equacgoes 2.21
e 2.22.

&, = f(&k-1, ug, 0) (2.21)

P; = B Py FF 4+ TpQr i Th (2.22)

As equacoes do processo de correcao para o EKF sdo descritas nas equacoes 2.23,
2.24 e 2.25.

Ky = Py HE (Hy Py HY + ViR V) ™! (2.23)
P, = (I - K.H,,)P; (2.25)

Deve-se fornecer ao algoritmo valores iniciais para os estados (Zx_1) e para a co-
varidncia dos erros (Pj_1). Assim, o processo iterativo do EKF pode ser resumido na

Figura 5.

Figura 5 — Diagrama esquematico do algoritmo do EKF
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2.4 Redes Neurais Artificiais (Artificial Neural Networks - RNA)

Redes Neurais Artificiais, ou simplesmente RNA (Artificial Neural Networks), sao
sistemas computacionais inspirados nas redes neurais biolégicas que compoem o cérebro
humano. Estes sistemas “aprendem” tarefas baseados em observacao de comportamentos
e exemplos. O processo de aprendizagem, para uma RNA, significa melhorar sua per-
formance progressivamente. O objetivo inicial do uso de RNAs era resolver problemas
da mesma forma que o cérebro humano faria. Ao longo do tempo, porém, a atencao foi
voltada para alcancar determinadas habilidades mentais especificas. Desde entdao, RNAs
tem sido utilizadas em diversas areas, tais como visao computacional, reconhecimento de

fala, aprendizado de padroes, redes sociais, video games, medicina, entre outras.

2.4.1 Redes Neurais Bioldgicas

Os neuroénios sao células nervosas, que desempenham o papel de conduzir os im-
pulsos nervosos. Estas células especializadas sao, portanto, as unidades basicas do sistema
que processa as informacoes e estimulos no corpo humano. O neurénio pode ser consi-
derado a unidade basica da estrutura do cérebro e do sistema nervoso. Ha cerca de 86

bilhoes de neurdnios no sistema nervoso humano [HAYKIN, 2001].

Na Figura 6 é mostrado um neurdnio e seus componentes. Dentre os diversos com-
ponentes de um neurdnio, destacam-se, a nivel de entendimento do funcionamento das
redes neurais, o dendrito, o corpo celular e o ax6nio. Os dendritos recebem sinais
elétricos de diversas fontes, que sao entao transmitidos ao corpo celular. O corpo celular,
entdo, acumula os diversos sinais que chegam através dos dentritos. Quando o sinal acu-
mulado ultrapassa um certo limiar, o threshold, um pulso elétrico é transmitido a outros
neurdnios através do axoénio. Além disso, o ax6nio pode transferir informacéo a outros
tipos de células com o intuito de controla-las [KRIESEL, 2005].

Um processo importante na transmissao de informacao pelos neurdnios é o entendi-
mento da sinapse. A sinapse é o ponto de interconexao de um neurénio com outros neurd-
nios. A transmissao do sinal via sinapse pode ser feita eletricamente ou quimicamente, e

a quantidade de sinal transmitido depende da forga das conexoes (pesos sinapticos).

2.4.2 Redes Neurais Artificiais - RNA

Da mesma forma que o neurénio é a célula-base das redes neurais bioldgicas, ao
estudar redes neurais artificiais, projeta-se um modelo de neurénio a ser implementado

de forma computacional. O modelo computacional do neurénio é mostrado na Figura 7.
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Figura 6 — Neurdnio biolégico
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Sao tragados, entao, paralelos entre o modelo computacional do neuronio e os

neuronios reais:
e Entradas - Representam os sinais captados pelos dendritos de um neurénio. Um
neuronio pode ter diversas diferentes entradas.

e Pesos - Representam os pesos sindpticos que existem na transmissao de informagao

de um neurdonio para outro.

e Somatorio - Realiza a soma ponderada das entradas, de acordo com o0s pesos.

Representa o acimulo de sinal realizado pelo corpo celular.
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e Funcao de ativagao - Baseado no valor de threshold, determina o sinal de saida

do neurdnio baseado na soma ponderadas das entradas.

e Saida - Representa o sinal a ser transmitido para outros neurdnios através do axénio

O valor de Bias é um valor utilizado para que a saida do neurénio nao seja nula
caso todas as entradas sejam nulas. A funcao de ativagdo, normalmente, é projetada para
que o valor de saida seja normalizado, independente do valor das entradas do neuroénio.
Dentre as diversas func¢oes de ativagao normalmente utilizadas, destacam-se a funcao de
Heaviside, a fungao de Fermi ou a Tangente hiperboélica. Na Figura 8 sdo mostradas estas

funcoes de ativacao.

Figura 8 — Fungoes de Ativacao
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Redes Neurais tipicas sdo composta por diferentes camadas:

e Camada de Entrada (Input Layer) - Contém os neur6nios que recebem a in-

formacao que sera usada para treinamento

e Camada de Saida (Output Layer Layer) - Contém os neur6nios que geram as

saldas da rede

e Camadas Escondidas (Hidden Layer) - Encontram-se entre a camada de en-
trada e a camada de saida. O papel da Hidden Layer é transformar as entradas de

forma que a camada de saida gere as respostas esperadas.

A disposigao das camadas de uma rede neural é mostrada na Figura 9. Diferentes
tipos de arquitetura sdo usadas para o projeto de RNAs. Cada arquitetura possui carac-
teristicas proéprias, que dependem da forma como os neuronios e camadas se conectam. A

Tabela 1 mostra as diferentes classificacoes de RNAs dependendo do pardmetro adotado.



Capitulo 2. Revisao Bibliogrifica

31

Tabela 1 — Classificacdo dos diferentes tipos de RNAs

Parametro

Tipo de Rede

Descricao

Conexoes entre neurd-
nios e camadas

FeedForward ou Re-
corrente

FeedForward - Nao possui rea-
limentacao

Recorrente - Possui realimen-
tacao

Numero de camadas
escondidas

Single Layer ou Multi
Layer

Single Layer - Possui uma ca-
mada escondida

Multi Layer - Possui mais de
uma camada escondida

Natureza dos pesos

Fixa ou Adaptativa

Fixa - Os pesos sao fixados a
priori e nao sao mudados

adaptativa - Os pesos sao mo-
dificados ao longo do treina-
mento

Memoria

Estatica ou Dinamica

Estatica - Nao possuem me-
moria, ou seja, a saida atual
depende apenas das entradas
atuais

Dinamica - Possuem memoria,
ou seja, a saida atual depende
das entradas atuais, bem como
das entradas e estados passa-

dos

2.4.3 Processo de aprendizagem em RNAs

As redes neurais “aprendem” ajustando os valores dos pesos e do bias (threshold)

de forma iterativa, de forma a alcancar o valor desejado de saida. Para que o processo de

aprendizado ocorra, porém, é necessario que a RNA seja treinada primeiro. Um conjunto

de dados ¢é utilizado para realizacao do treinamento da RNA, conhecidos como Training

Set. O processo de aprendizado pode ser resumido na Figura 10.
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Figura 9 — Camadas de uma RNA
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Figura 10 — Diagrama esquematico do processo de treinamento de uma RNA

Neural Network

N including connections
{called weights)

Input between neurons Output

Compare

Adjust
weights

O treinamento das RNAs é feito seguindo um conjunto de regras, conhecidas como
algoritmo de aprendizagem. Existem diferentes algoritmos de aprendizagem, dentre

os quais destacam-se:

o (Gradient Descent

Back propagation

Hebbian Rule

Levenberg Marquadt

Hopfield Law

entre outros

Cada algoritmo de aprendizagem possui caracteristicas proprias e aplicagoes para
os quais sao mais adequados. Outra caracteristica importante quanto ao treinamento de

RNAs trata-se do tipo de treinamento, que pode ser dividido da seguinte forma:
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e Treinamento Supervisionado - No treinamento supervisionado, o conjunto de dados
usado para o treinamento consiste nas entradas de um sistema bem como as saidas
desse sistema, conhecidas como target (alvo). Dessa forma, cada conjunto de treina-
mento pode ser comparado aos dados do target, de forma que a rede pode receber

um vetor de erros preciso, e fazer as devidas corregoes nos pesos [KRIESEL, 2005].

e Treinamento Nao-Supervisionado - No treinamento nao-supervisionado, o conjunto
de dados usado para o treinamento consiste apenas nas entradas do sistema, ou seja,
as saidas desejadas para esse sistema sao desconhecidas. Dessa forma, a rede tenta,
por ela mesma, detectar similaridades e gerar padroes. E o método de aprendizado

que mais se aproxima da aprendizagem bioldgica.

e Treinamento de Reforco - No treinamento de reforco, os valores de saida sdo des-
conhecidos, assim como no treinamento nao-supervisionado, porém, a cada iteragao
do algoritmo, um valor l6gico ou real é recebido, indicando se o resultado esta certo

ou nao, e, possivelmente, o quao certo ou errado esses valores sao.

e Treinamento Offline - O ajuste nos valores do peso e do threshold é feito apenas

quando todos os dados de treinamento sao apresentados a rede.

e Treinamento Online - O ajuste nos valores do peso e do threshold é feito cada vez

que uma amostra de treinamento é apresentada a rede.

O processo de aprendizado pode ser encerrado de acordo com a precisdo dos re-
sultados obtidos ou com o niimero de iteragoes realizadas. Cabe ao projetista determinar

quando parar o treinamento, dependendo da necessidade de uso e precisdo das RNAs.

2.5 Modelo de Controle Preditivo

O Modelo de Controle Preditivo (MCP) é um método de controle de processos
bastante utilizado na industria e na academia. A base do controle preditivo é o cédlculo
de uma sequéncia futura dos sinais de entrada de um processo de forma que uma funcao
de custo definida sobre um horizonte de previsoes seja minimizada [GEORGIEVA; AZE-
VEDO, 2011]. A realizagao do controle preditivo, por sua vez, exige um modelo dindmico
razoavelmente satisfatorio do processo a ser controlado, uma vez que as previsoes do sinal
de entrada serdao baseadas neste modelo. Na Figura 11 é ilustrado o Modelo de Controle

Preditivo de um processo aleatorio.
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Figura 11 — Diagrama de blocos de um MCP
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Em resumo, conforme ilustrado na Figura 11, a leitura do sensor e o modelo sao
usados para prever os valores futuros de saida. Entao, as mudancas apropriadas nas varia-
veis de saida podem ser calculadas através tanto das predi¢coes do modelo quanto da leitura
dos sensores. Em esséncia, as mudancas em cada variavel manipulada sdo coordenadas

considerando a relacao entrada-saida representada pelo modelo do processo [SEBORG;

EDGAR; MELLICHAMP, 2010].

Ao se trabalhar com Ligas de Memoéria de Forma, a nao-linearidade e histerese
do material devem ser levadas em consideracao. Dessa forma, um modelo matematico
satisfatorio pode ser de dificil obtencao ou exigir simplificagoes que limitem o uso pratico
de atuadores de LMF. Nesse sentido, o uso de redes neurais artificiais torna-se interessante
no desenvolvimento de um modelo dindmico satisfatério para estratégia de controle. Dessa
forma, é possivel substituir o modelo do processo no diagrama de blocos da Figura 11 por

uma RNA treinada para este proposito, conforme mostrado na Figura 12.

O controle preditivo baseado redes neurais usa uma RNA para prever a performace
futura da planta. A fim de otimizar esta performance através de um certo horizonte de
tempo, o controlador calcula o sinal de entrada da planta [NIKDEL et al., 2014]. Entradas
e saidas passadas da planta podem ser usadas para esse fim. Dessa forma, pode-se coletar

dados sobre a operagao e fazer o treinamento da RNA de forma offline.
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Figura 12 — Diagrama de blocos de um controlador preditivo utilizando RNA
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Varios trabalhos utilizando controle preditivo baseado em redes neurais tem sido
desenvolvidos. Em [HUANG; LEWIS, 2003], é proposto um controle preditivo baseado
em redes neurais para sistemas dindmicos nao-lineares com atraso temporal. Em [YOO,;
PARK; CHOI, 2005] é proposto um modelo de controle preditivo para sistemas caéticos
utilizando uma RNA recorrente. Esta mesma ideia é utilizada em [YOO; CHOI; PARK,
2006] para o controle de movimento em robds méveis. Em [CHENG et al., 2015], este tipo
de controlador é usado em atuadores piezoelétricos. Em [WANG; GAO; QIU, 2016], um
combinacao de controle preditivo baseado em RNA e em modelo é desenvolvido visando

o controle de processos industriais.

Tendo em vista a nao-linearidade e comportamento histerético de materiais com
memoéria de forma, o controle preditivo baseado em RNAs se mostra como uma estratégia
interessante no uso de atuadores de LMF. Alguns trabalhos tem sido desenvolvidos nesse
sentido. Em [NIKDEL et al., 2014], é utilizado controle preditivo baseado em redes neurais
para controle de um manipulador construido com fios de LMF. Em [NIKDEL et al., 2014]
uma rede neural histerética é utilizada como modelo para implementagao do controle
preditivo. Em [SRIVASTAVA; WARD; PATEL, 2017], o controle preditivo de fios de
LMF utiliza uma RNA adaptativa. Neste trabalho, um controlador preditivo simplificado

sera utilizado para controle de for¢a de uma mola de LMF.
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3 Materiais e Métodos

Este capitulo tem como objetivo mostrar os materiais utilizados e os métodos de

atuacao e analise adotados para o estudo feito.

3.1 Circuito de Acionamento

O ciclo térmico em uma Liga de Memoéria de Forma ¢ essencial para as diversas
aplicacOes praticas deste material. O aquecimento de LMFs, por sua vez, pode ser feito de
diversas formas. Uma das técnicas de aquecimento mais utilizadas e praticas é o aqueci-
mento por efeito Joule. O efeito Joule, também conhecido como aquecimento resistivo, é
o processo no qual a passagem de corrente elétrica através de um condutor produz calor.
Dentre as vantagens do uso do aquecimento resistivo, destaca-se a capacidade de controle

de temperatura através de circuitos elétricos relativamente simples.

A Modulagao por Largura de Pulso (Pulse Width Modulation - PWM) é
uma técnica de modulagao usada para codificar uma mensagem em um sinal pulsado,
e seu principal uso é permitir o controle de poténcia para dispositivos elétricos. Dentre
as diversas técnicas de modulacao existentes, PWM tem a vantagem de ser robusta em

relacdo a ruidos, efetiva em economia de energia e facilmente implementada através de
microcontroladores [MA; SONG, 2003].

Por 1ltimo, a andlise da resisténcia elétrica, conforme visto na secao 2.2, é interes-
sante em termos de automacao para sistemas que utilizam Ligas de Memoéria de Forma. De
fato, a medicao de resisténcia elétrica tende a ser mais simples e confidvel que as medi¢oes
de temperatura, por exemplo, que tendem a ser desuniformes ao longo de fios ou molas
de LMF'. Visando o estudo mais detalhado do comportamento da resisténcia elétrica, é
desejavel que o circuito de acionamento consiga realizar o controle da corrente elétrica
que flui pelo atuador de LMF através do sinal PWM de entrada, independentemente da
resisténcia elétrica do préprio atuador. De fato, a resisténcia elétrica dos atuadores de
LMF variam de acordo com a fase do material, temperatura, tensao aplicada, nimero de
ciclagens, entre outros fatores, sendo desejavel a manutencao do valor da corrente elétrica

independente dos fatores citados.

Portanto, é interessante, visando o aquecimento por efeito Joule de LMFs, projetar
um circuito de acionamento baseado na modulacao PWM. O uso do PWM torna viavel o
uso de diferentes microcontroladores para atingir o controle de um sistema. Além disso,
o circuito projetado deve ser instrumentado de forma a permitir a leitura periédica da

resisténcia elétrica do atuador de LMF. Dessa forma, destacam-se os requisitos e materiais
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de projeto:

1. Circuito de poténcia ativado por PWM
2. Sensores de tensao e corrente para estimacao da resisténcia elétrica
3. Reguladores de tensao para controle da corrente elétrica

4. Sensores de Forca para treinamento da Rede Neural

O circuito de poténcia proposto utiliza um transistor bipolar de jungao BC547 e
um transistor de efeito de campo IRF 9510 para chaveamento da alimentacao do circuito
controlada pela entrada PWM. Além disso, utiliza os reguladores de tensao LM317 para
manutencao da corrente elétrica no LMF. Estes reguladores de tensao sao responsaveis
por manter a corrente elétrica constante, independentemente da carga ligada aos mesmos,
desde que a poténcia requerida pelo circuito nao ultrapasse o limite de fornecimento do
dispositivo. O circuito limitador de corrente usando o LM317 é mostrado na Figura 13 e

o valor desta corrente ¢ mostrado na Equacao 3.1.

1,2

1

Ilimit =

(3.1)

Figura 13 — Limitador de corrente usando LM317
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Para a leitura da tensado sobre o LMF, utiliza-se um divisor de tensao resistivo. O
objetivo do divisor de tensao é limitar o valor maximo da tensao de saida para leitura do
DAQ, uma vez que os valores de pico de tensdao podem ultrapassar os valores limites de
leitura do dispositivo. Para o projeto do divisor de tensao, foram utilizados um resistor
de precisao de 3302 e um resistor de precisao de 470€2. O circuito divisor de tensao é

mostrado na Figura 14.
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Figura 14 — Circuito divisor de tensao
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A tensdo de saida de um circuito divisor de tensao pode ser encontrada através da

Equagao 3.2

Ry

Vour = 55—
"R+ R,

Vin (3.2)

Onde V,,, é a tensdo de entrada do circuito e V,,; é a tensao de saida do circuito.

Aplicando a Equacgado 3.2 para Ry = 47092 e Ry = 330€2, obtém-se a seguinte

equacgao (considerando V;,, = Vyr, onde Viyr € a tensdo sobre o atuador LMF):

‘/;ut = 074125VLMF = VLMF = 2742‘/;)ut (33)

Para a leitura de corrente elétrica é utilizado um sensor de corrente de efeito Hall,
o ACST712, que é mostrado na Figura 15. A calibracao deste sensor foi feita com auxilio
do LabView e MATLAB, e sua curva caracteristica e o modelo matematico proposto
sao mostrados na Figura 16. A escolha do sensor de corrente por efeito Hall visa trazer
o minimo de interferéncia no circuito, uma vez que a maioria dos sensores de corrente
elétrica necessita da utilizacao de um resistor em série com a carga para afericao dessa

grandeza. O modelo matematico para o sensor ¢ descrito pela Equacao 3.4

Figura 15 — Sensor de corrente de efeito Hall ACS712
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Figura 16 — Caracterizacao e Modelagem da curva caracteristica para sensor ACS712
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I = 5,3361V,y (3.4)

Onde I é a corrente elétrica que circula pelo sensor e V,,,; é a tensdo de saida do

ACST712, que é lida pelo sistema de aquisicao.

As equacgoes 3.3 e 3.4 serao usadas, posteriormente, para o projeto do Filtro de
Kalman. Por fim, a partir dos valores de resisténcia elétrica e corrente adquiridos, estima-

se o valor da resisténcia elétrica do LMF através da 1* Lei de Ohm:

R = VL}” (3.5)

Onde R é a resisténcia elétrica, Vi r é a tensao sobre o atuador LMF e [ a

corrente lida pelo sensor de efeito Hall.
O diagrama esquematico do circuito de poténcia é mostrado na Figura 17.

Cabe destacar que todos os dispositivos utilizados para sensoreamento possuem
incertezas intrisecas a seu funcionamento. Por exemplo, o divisor resistivo utilizado para
leitura de tensdo possui variagoes inerentes aos valores de resisténcia elétrica utilizados,
tipicamente de 1% para os resistores escolhidos. O sensor Hall, por sua vez, possui ruido
caracteristico de aproximadamente 21mV, fornecido pelo fabricante. Em todos esses casos,

o uso do Filtro de Kalman visa lidar de forma satisfatéria com essas incertezas.

Para realizar a aquisicao dos dados de tensao e corrente e escrita do sinal PWM,
utiliza-se o placa de aquisicio USB-6212, da National Instruments. O NI USB-6212 é
um dispositivo que possui até 32 canais de entrada analdgica (Al), até 2 canais de saida

analégica (AO), dois contadores, e até oito linhas de entrada digital (DI) e oito linhas de
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saida digital (DO), ou 32 linhas bidirecionais de entrada e saida digital (DIO) [DAQ...,
2009]. O USB-6212 é mostrado na Figura 18.

Figura 17 — Diagrama esquematico do circuito de poténcia projetado
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Figura 18 — Placa de aquisicao de dados NI USB-6212
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A frequéncia de amostragem do sinal utilizado para os experimentos foi de 100kHz,
o que garantiu boa confiabilidade as formas de onda da corrente e tensao lidas. O valor
de 100KHz foi escolhido empiricamente ao analisar-se o custo de processamento que o

aumento de frequéncia de amostragem causou ao sistema.
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3.2 Protétipo do Estudo de Frequéncias com Mola

Na secao 3.1 foi abordada a estratégia de acionamento de atuadores LMF por
PWM, e suas vantagens. Porém, embora o acionamento por PWM seja frequentemente
empregado em trabalhos que envolvem LMFs, um estudo sobre como a frequéncia deste
sinal interfere na atuacao nao é recorrente nas literaturas. Dessa forma, para promover
esse estudo, foi concebido uma plataforma de teste usando uma mola de LMF. Além do
circuito de acionamento ja exposto na secao 3.1, foi utilizada uma célula de carga para
medicdo da forca exercida pela mola ao longo do processo de ciclagem. Dessa forma,
as curvas de Resisténcia elétrica x Forca para diferentes valores de frequéncia foram

levantadas. A montagem da estrutura da mola e célula de carga é mostrada na Figura 19

Figura 19 — Estrutura com mola de LMF e célula de carga
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O moédulo HX711 foi utilizado para processamento do sinal da célula de carga,
fornecendo o valor da forga exercida pela mola em gramas-forga (gf). Este componente
¢ mostrado na Figura 20. Um microprocessador Arduino é utilizado para a comunicacao
entre o HX711 e o compuatador, uma vez que este componente utiliza comunicagao 12C,

inexistente na placa de aquisicdo NI USB-6212, da National Instruments.

Figura 20 — Médulo HX711 para leitura e processamento do sinal da célula de carga
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Para o levantamento das curvas de Resisténcia elétrica x Forga, variou-se o valor
do Duty Cycle de forma crescente até atingir o valor limite de corrente elétrica, estipulado
durante o treinamento da mola. Ao atingir o valor méximo de corrente, o Duty Cycle foi,
entdo, decrescido gradualmente até o nivel inicial de corrente do experimento, concluindo,
assim, uma ciclagem completa. Foram feitas trés ciclagens completas para cada frequéncia

escolhida.

Os valores escolhidos de frequéncia para conducao dos experimentos foram 100H z,
200H z, 400H z, 500H z, 800H z, 1000H z e 2000H z. Estes valores foram escolhidos com
base na frequéncia de amostragem utilizada para o experimento. Dessa forma, sempre
houve um niimero inteiro de ciclos completos, o que facilitou uma estimativa mais precisa

do valor RMS de corrente e tensao e, consequentemente, da resisténcia elétrica da mola.

3.3 Implementacao do Filtro Estendido de Kalman

Na subsecao 2.3.2 foi descrito o Filtro de Kalman, bem como suas equagoes, apli-
cagoes e vantagens. Foi projetado um Filtro de Kalman para o sistema de acionamento
do LMF a fim de tornar as estimativas de resisténcia elétrica menos susceptiveis a ruidos
e perturbacoes, especialmente do sensor de corrente Hall, que tende a apresentar uma

resposta ruidosa.

O diagrama de blocos do Filtro de Kalman Estendido é mostrado na Figura 21.
Dessa forma, para implementagao do EKF computacionalmente, é necessario definir quais
sdo os estados x do sistema, as saidas z, as entradas u, e as fungoes f(x,u,w) e g(z,v). A
partir destes valores, pode-se entao definir F', H, I' e A através das equagoes 2.17, 2.18,

2.19 e 2.20, respectivamente.

Figura 21 — Diagrama de blocos do EKF
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Inicialmente, definem-se os estados do sistema como sendo a corrente que circula
pelo atuador de LMF, a tensao sobre o atuador de LMF, a resisténcia elétrica do
atuador de LMF e a forga exercida pela mola sobre a plataforma experimental. Dessa

forma, o vetor de estados é descrito na Equacao 3.6. A entrada do sistema, por sua vez, é o
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Duty Cycle aplicado ao circuito de poténcia. Para termos de simplificacdo, a entrada sera
normalizada para valores entre 0 e 1. A entrada do sistema, entdo, é representada pela
Equacao 3.7. Por fim, o vetor de saida do sistema é composto pela corrente, a tensao
sobre o atuador de LMF e a forga exercida pela mola sobre a plataforma experimen-
tal. De fato, as saidas sao também estados do sistema. O vetor de saida é mostrado na

Equacao 3.8.
] ( * )

u[n] = DC[n] (3.7)

Ipvr(n]
Fryr(n]
Além disso, as fungoes f(x,u,w) e g(z,v) devem ser definidas. A funcdo g(z,v)
pode ser definida com auxilio das equagoes 3.3 e 3.4, e considerando que a os valores

fornecidos pelo médulo HX711 sdo iguais a forga aplicada pela mola a célula de carga:

g1(z[n],v[n]) 0, 1874z [n]
z[n] = g(z[n],v[n]) = | g2(z[n],v[n]) | = | 0,4125z5[n] (3.9)
g3(z[n], v[n]) z4[n]

Ja a funcdo f(z,u,w) estima os estados na préxima iteracao a partir dos estados e
entradas atuais do sistema. Além disso, como os estados do sistema tratam-se da corrente,
tensao e resisténcia elétrica do atuador LMF, conforme a Equacao 3.6, pode-se encontrar
cada uma destas variaveis em funcao das demais. Para tornar mais clara essa ideia, toma-

se base no seguinte diagrama de blocos apresentado na Figura 22.

Percebe-se que os estados z1[n + 1], za[n + 1] e x3[n + 1] podem ser estimados
a partir da entrada u[n], bem como dos estados passados, z1[n], za[n] e x3[n]. Além
disso, ¢ usual tomar como parametro importante da estimagao de estados usando o EKF
o proximo estado sendo igual ao estado anterior, isto é, z[n + 1] = z[n], especialmente
quando o sistema encontra-se em regime permanente. Por fim, o estado z4[n+1] é estimado

exclusivamente igualando-o ao estado anterior z4[n].

Dessa forma, é possivel admitir 3 diferentes fungoes f(x,u,w) para os estados
x1[n+ 1], za[n+ 1] e z3[n + 1], cada qual dependendo de que pardmetros serdo utilizados

para a estimacao dos préximos estados.
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Figura 22 — Diagrama de blocos das saidas e estados do sistema
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1. Estimacao de estados através do valor anterior do estado

A estimacao dos estados a partir do valor anterior do préprio estado é simples e pode
ser realizada segundo a Equacgao 3.10, especialmente quando o sistema encontra-se

em regime permanente.
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2. Estimacao através da combinag¢ao dos outros estados

A estimacao dos estados pode ser feita através da combinacao dos outros estados,

segundo a Equagao 3.11. A Equacao 3.11, por sua vez, pode ser obtida a partir do
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diagrama mostrado na Figura 22.

(3.11)
A estimagao de estados através da combinagao dos outros estados nao se aplica a
estimativa de forca z4[n + 1].
3. Estimacgao através da entrada u[n|

A estimagao através da entrada u[n] do sistema é dada pela Equacao 3.12, que

também pode ser obtida a partir da Figura 22.

x1[n + 1] fent: (z[n], u[n], w[n]
I[TL + 1] = 372[ + 1] = fent(x[n]vu[n]’w[n]) fentz(x[n]vu[an[n] =
.CC3[TL + 1] fent3 (iL’ n]7 u[”]? U)[TL]

(3.12)

A estimacao de estados através da entrada u[n]| ndo se aplica a estimativa de forga
xy4[n + 1].

Tendo em vista as diferentes formas de calcular a funcao f(z[n], u[n], w[n]), propoe-
se uma estratégia de ponderagao no calculo desta fungao através de uma matriz de pesos.
Esta matriz, basicamente, estabelece qual a porcentagem de cada forma de calculo de
f(z[n],u[n],w[n]) vai compor o valor final de x[n + 1]. A matriz de porcentagem P ¢é

proposta na Equagao 3.13:

pant1 pantz pantg
P: pest1 pestg pest3 (313)

pent1 pent2 pentg

Onde os termos p,,: sao os pesos referentes as func¢oes que utilizam a estimacao

através dos valores anteriores do préprio estado, os termos p.s S0 0s pesos referentes
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as fungoes que utilizam a estimagao através de uma combinagao dos outros estados e os
termos pe,; sao os pesos referentes as fungoes que utilizam a estimagao através do valor
de entrada do sistema. Dessa forma, x[n + 1] pode ser estimado pela soma ponderada das
fungoes fant, fest € fent conforme a Equagao 3.14. Como o estado x4[n + 1] é estimado

apenas pelos seu valor anterior x4[n], a matriz de pesos nao se aplica a este estado.

xl[n + 1] fl(x[n]’u[an[n]
zln +1] = | aan + 1] | = f(z[n], u[n],w[n]) = | fo(z[n], uln],wn]) | =
z3[n + 1] fs(x[n], u[n], w[n]

)
)
)
Dant; * Jant1 + Pest, = festy + Penty * fent, + w[n]_
Panty * Jant2 T Desty * fests + Dents = fent, + w[n]
[n]

pantg fant3 + pestg festg + pentg fent3 + w|n i

Panty - 21[1] + Pests - 2+ ety - Doy (22-) - uln] + wn]
Pants * 02[1] + Pesty - 1 [n] - 251 + pensy - iy (72) - el ol +

Radji
pant3 . Ig[n] +pest3 : ;?%Z} +pent3 Zf:l(thz) U[TL] ' ?:1( ) U n] (L’g[n] + w[n]
(3.14)

ad]l

Para que a estimacao ponderada seja precisa, é necessario que pant, + Dest; + Pent; =
1, Panty + Pests + Pents = 1 € Pants + Pests + Pents = 1. A ideia de utilizar a soma ponderada
é dar mais ou menos importancia a forma de calcular a fungao f(z[n],u[n],w[n]). Por
exemplo, quando o sistema estd em regime permanente, ¢ interessante que o peso da
estimacao através do proprio estado anterior seja maior, devido a maior confiabilidade dos
proprios estados ja filtrados. J& em um momento de transistorio, é interessante atribuir
maior peso a entrada, por exemplo, uma vez que a convergéncia através da entrada tende

a ser mais rapida, apesar da menor precisao.

Uma vez que a Equacao 3.14 estd definida, é possivel definir F', H, I' e A através
das equagoes 2.17, 2.18, 2.19 e 2.20, respectivamente. Dessa forma, para o EKF projetado,

tem-se o seguinte:

Pesty _ Pesty@2[n]
Pant, w3[n] 23] ,
F = pestz - T3 [TL] pantz pestz -1 [TL] + pent2 (Z;‘Ll Rlafji : u[n]) (315)
_pest3‘x2[n] M
22[n] z1[n) Pants
0,1874 0 0
- (3.16)
0 0,4247 0O
1 00
r=10 1 0 (3.17)
0 0 1
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1 00
A= [0 X 0] (3.18)

Tomando como base as equagoes 3.6, 3.7, 3.14, 3.9 3.15, 3.16, 3.17, 3.18, 2.21,
2.22,2.23, 2.24 e 2.25, e conforme visto na subsecao 2.3.3, projetou-se o Filtro de Kalman
Estendido para o levantamento das curvas tanto da mola de LMF quanto dos fios de LMF
usados na confec¢ao da mao. O EKF foi implementado com auxilio do software LabView.
O Filtro de Kalman ¢ inicializado com os valores iniciais das variaveis estimadas durante
os experimentos de coleta de dados, de forma que a convergéncia dos valores estimados

seja mais rapida possivel.

3.4 Redes Neurais

Duas redes neurais sao treinadas para implementacao do projeto de controle do
atuador de LMF': uma rede que atuara como sensor para feedback da resisténcia elétrica, e
outra rede que atuara como modelo para o projeto do controlador preditivo simplificado.
As RNAs foram treinadas com auxilio do software MATLAB, a partir dos dados coletados,
e foram implementadas com auxilio do software LabView. No LabView, sdo criados blocos
para os neurdnios e camadas das RNAs treinadas, nas quais é feito todo o processo de
propagacao das entradas através dos pesos e fungoes de ativacao. Os valores de entradas
das redes sao atualizados a cada iteragao a partir da estimacgao de estados do Filtro de
Kalman, de forma que as primeiras previsdes das redes neurais tendem a falhar, mas

convergem em poucas iteragdes para os valores reais de forga.

3.4.1 Rede Neural como Sensor de Resisténcia Elétrica

Conforme visto na subsecao 2.4.2, redes neurais do tipo feedforward sao RNAs
que nao possuem realimentacao entre suas camadas. Redes neurais recorrentes sao RNAs
que possuem realimentacao entre suas camadas. Neste trabalho, é ultilizada uma RNA do
tipo feedforward e uma RNA do tipo recorrente para aprendizagem do comportamento de
resisténcia elétrica em uma mola de LMF. utilizam-se RNAs destas diferentes topologias a
fim de verificar a importancia de realimentacoes na previsao do comportamento histerético

do atuador de memoria de forma.

Na figura 23 sao mostradas as topologias das redes do tipo feedforward utilizando
uma e duas camadas ocultas. J& na figura 24 sao mostradas as topologias das redes
recorrentes utilizando uma e duas camadas ocultas. Sabe-se, da literatura, que uma RNA
nao precisa que mais de duas camadas ocultas para solucionar a maioria dos problemas. De

fato, um elevado niimero de neuronios ou de camadas pode levar a um erro de overfitting,
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ou seja, a rede “memoriza” o comportamento dos dados apresentados para treinamento,
mas nao ¢ capaz de generalizar este comportamento em situagoes até mesmo ligeiramente
diferentes das condi¢oes de treinamento. Dessa forma, como regra pratica no projeto
de RNAs, visa-se 0 menor nimero possivel de camadas e de neurénios por camada que
atendam a uma certa performance desejada. Para fins de comparagao, serda usado o Erro
Médio Quadratico (Mean Square Error - MSE) como varidvel analisada. Em ambas as

topologias, camadas ocultas com 5 neuronios sao utilizadas.

Figura 23 — RNAs do tipo feedforward utilizando uma e duas camadas ocultas
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(a) RNA do tipo feedforward com uma camada oculta
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(b) RNA do tipo feedforward com duas camadas ocultas

Os dados utilizados como entradas da RNA do tipo feedforward sao os valores
de variagdo de resisténcia elétrica, os valores iniciais de resisténcia elétrica e forca e um
sinal de tag. Este sinal de tag serve para identificar o ciclo de transformacao de fase do

material, ou seja, se o atuador esta sendo transformado da fase martensita para austenita
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(aquecimento) ou da fase austenita para martensita (resfriamento). Os dados utilizados

como target sao os valores de variagao de forga, em grama forga (gf).

Figura 24 — RNAs recorrentes utilizando uma e duas camadas ocultas
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(a) RNA recorrente com uma camada oculta
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(b) RNA recorrente com duas camadas ocultas

Nas RNAs recorrentes, além dos dados de entrada anteriormente citados, a reali-
mentacao da saida e a realimentacao das camadas ocultas também sao utilizadas como
entradas. A entrada de resisténcia elétrica é um vetor de trés elementos, representado gra-
ficamente na Figura 24 por “(0:2)”, indicando um vetor composto pela resisténcia elétrica
atual e os dltimos dois valores de resisténcia elétrica. Os termos “(1:1)” e “(1:2)”, também

representados graficamente na Figura 24, indicam vetores do tultimo e dos dois ultimos
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elementos de cada varidvel, respectivamente (estes vetores ndo contém os valores atuais
destas variaveis). Os termos “(1:1)” e “(1:2)” estao ligados as realimentacoes da saida ou

das camadas ocultas.

A utilizacao dos dados iniciais de resisténcia elétrica e forga, em ambas as redes,
sao importantes devido ao fato de a resisténcia elétrica e a forca exercida pela mola de
LMF serem influenciadas por outros fatores, tais como temperatura, desgaste da mola,
desgaste do suporte, entre outros. Por este motivo, os dados para treinamento utilizados
sao as variacgoes de resisténcia elétrica e, dessa forma, ao adicionar estas entradas a Rede
Neural, busca-se torna-la mais abrangente em diversas situagoes. Para a realizacao do
treinamento, duas molas de LMF, de comprimento 12 mm, sdo utilizadas. Experimentos
adicionais foram conduzidos com as molas para verificacao da eficicia da RNA treinada,
e uma terceira mola, de mesmo comprimento, foi utilizada para os testes da RNA que

atua como sensor e da RNA que atua como modelo para o controle preditivo.

Em todos os treinamentos, foram utilizados o algoritmo de Levenberg-Marquadt
com validacao cruzada. O erro minimo admissivel escolhido foi 0, de forma que o trei-
namento encerra apenas quando o nimero maximo de épocas ou o nimero de checks de
validacao sao atingidos. Estes parametros de treinamento sdo os mesmos para todas as
RNAs, de forma que os resultados dependem principalmente do tipo de rede e do ntimero
de neurtnios e camadas adotados. No total, foram utilizados para treinamento um total
de 7619 amostras coletadas através da instrumentacao eletronica do sistema. Deste total
de amostras, 75% foram utilizados para treinamento, 15% foram utilizados para validacao

e 10% foram utilizados para testes.

3.4.2 Rede Neural como Modelo

De forma similar & RNA implementada como sensor, foram testadas redes neurais,
porém apenas redes feedforward. Os dados utilizados como entradas da RNA do tipo
feedforward sao os valores de corrente elétrica e um sinal de tag. De forma similar, este
sinal de tag serve para identificar o ciclo de transformacao de fase do material, ou seja, se
o atuador estd sendo transformado da fase martensita para austenita (aquecimento) ou
da fase austenita para martensita (resfriamento). Os dados utilizados como target sao os
valores de variagdao de forga, em grama forga (gf). Na Figura 25 é mostrada a topologia

de RNA utilizada para o modelo do controlador preditivo.

Diferentemente da RNA treinada como sensor, esta rede usa como entrada o valor
de corrente elétrica que atua na mola de LMF devido ao fato que esta é a variavel mani-
pulada da planta. De fato, os valores de resisténcia elétrica nao podem ser efetivamente
alterados, mas sao consequéncia direta da mudanca de corrente elétrica no atuador. Dessa

forma, o controlador preditivo fornece a planta um novo valor de corrente elétrica que sera
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aplicado ao sistema. O valor de corrente é alterado a partir da alteracdo do Duty Cycle

do sinal PWM. Apenas a topologia com uma camada oculta foi treinada.

Figura 25 — RNAs do tipo feedforward utilizando uma e duas camadas ocultas
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Igualmente & RNA implementada como sensor, foram utilizados para treinamento
um total de 7619 amostras coletadas através da instrumentacao eletronica do sistema.
Deste total de amostras, 75% foram utilizados para treinamento, 15% foram utilizados

para validacao e 10% foram utilizados para testes.

3.5 Implementacdo do Controle Preditivo

Conforme visto na se¢ao 2.5, para implementacao do controle preditivo baseado
em redes neurais, necessita-se de um modelo do processo a ser controlado e um bloco
de otimizacao, que fornecera o valor de entrada ao sistema através da minimizacao de
uma certa fungao de custo. O modelo utilizado para o controlador sera a RNA treinada

conforme visto na subsecao 3.4.2.

Portanto, uma fun¢do de custo deve ser implementada de forma que o bloco de
otimizacao funcione corretamente. Existem diversas fungoes de custo que podem ser uti-
lizadas para esse fim. Em comum, as func¢oes de custo se baseiam nas entradas e saidas

passadas do sistema para realizar a previsao.

Dependendo do tamanho do horizonte de previsao, a resolucao da func¢ao de custo
pode se tornar dificil ou exigir certo custo computacional, especialmente quando se tra-
balha com sistemas embarcados cujo processador deve atender a diversas exigéncias do
sistema. Dessa forma, é desejavel que a funcao de custo do controlador preditivo seja a

mais simples possivel, sem que haja uma perda consideravel de performance.
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Nesse sentido, é proposto um modelo de controlador preditivo simplificado, baseado
em redes neurais, no qual a fungao de custo é o erro médio quadratico (Mean Square Error -
MSE) e o horizonte de previsao é unitario, ou seja, a func¢ao de custo é calculada a partir do
ultimo valor de entrada e a previsao é apenas para a proxima iteracdo. Obviamente, uma
funcao de custo tao simplificada pode prejudicar a performance do sistema. Dessa forma,
também ¢é proposto uma funcao de correcao, baseada no erro entre saida e referéncia, a
fim de compensar a simplicidade da funcao de custo. A ideia dessa funcao de correcao é
aumentar ou diminuir a corrente aplicada ao processo, caso os valores de corrente previstos
pela fungao de custo nao fagam o valor de forca exercida pelo atuador de LMF convergir
para o valor desejado. O diagrama de blocos do controlador simplificado é mostrado na

Figura 26.

Figura 26 — Diagrama de blocos do controlador preditivo simplificado
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A funcao de Erro Médio Quadratico pode ser calculada de acordo com a Equa-
¢ao 3.19, onde 3’ é o valor de forca previsto pelo modelo da rede neural e R é o valor da
referéncia. A partir do erro médio quadratico calculado, um novo valor de entrada para o
sistema ¢ estimado. O valor de corrente elétrica que deve ser somado a entrada ¢ calculado
a partir do erro entre o valor medido de forga e da referéncia, segundo a Equacao 3.20. O
termo « trata-se de um fator de corregado, que varia de acordo com o valor percentual do
erro em relacao a referéncia, de forma que quanto maior o valor do erro, maior deve ser a
correcao a ser aplicada ao sistema. O valor do fator de correcao o pode ser determinado

a partir Tabela 2. Os valores de « foram determinados experimentalmente.

MSE = (y'(t) — R(t))? (3.19)

Al =a-erro (3.20)
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Tabela 2 — Valores do fator de correcao o de acordo com o erro percentual entre forga
medida e referéncia

Erro Percentual | Fator de Correcao «
erro > 20% 0,02
10% < erro < 20% 0,015
5% < erro < 10% 0,01
1% < erro < 5% 0,005
erro < 1% 0,002
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4 Resultados e Discussoes

Neste capitulo, sao discutidos os resultados obtidos através das simulacoes e testes

experimentais das implementagoes apresentadas no Capitulo 3.

4.1 Interpretacao das curvas de Resisténcia Elétricax Forca

Foram conduzidos experimentos de ciclagem completa nas diferentes frequéncias
especificadas na segao 3.2 e as curvas da relacdo Forgca x Resisténcia Elétrica sao

levantadas e mostradas na Figura 27.

Um fato interessante a se perceber na andlise da Figura 27 é que, embora as
curvas paregam seguir um mesmo padrao, elas encontram-se, graficamente, em diferentes
posicoes. Esse deslocamento entre as curvas em diferentes experimentos é explicado pelo
fato de que o Efeito de Memoria de Forma em si varia de acordo com o uso do material.
De fato, a fadiga em LMFs é um das grandes dificuldades em encontrar repetibilidade em

atuadores feitos desses materiais.

Nesse sentido, é interessante, ao invés de estudar os valores absolutos de forca
e resisténcia elétrica, estudar seus valores normalizados, de forma que fatores externos
tais como a fadiga do material e a temperatura possuam menor influéncia nas curvas
levantadas. Na Figura 28 sao mostradas as curvas normalizadas de Forca x Resisténcia

Elétrica.

Analisando a Figura 28, percebe-se que as curvas, em geral, se sobrepoem. Isso
significa que a forma das curvas se mantém ao longo das ciclagens, embora sua posicao
grafica possa mudar devido a outros fatores. Dessa forma, uma Rede Neural deve ser
capaz de compreender e prever com certa precisao outras grandezas, tal como a forga, a
partir da resisténcia elétrica. Além disso, é importante fornecer & RNA os valores iniciais

de resisténcia elétrica e forca para que a estimagao de valores seja mais fiel a realidade.

Um segundo ponto interessante a ser analisado nas curvas mostradas é a mudanga
na inclinagdo das curvas, que pode ser mostrada através de assintotas. Para exemplificar
a ideia, foi tomada uma das curvas realizadas no experimento (frequéncia de 400 Hz,

experimento 1) e tracadas duas assintotas, conforme mostrado na Figura 29.
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Figura 27 — Relacao Forca x Resisténcia Elétrica para a mola de LMF em diferentes
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Figura 28 — Relacao Forca x Resisténcia FElétrica para a mola de LMF em diferentes

frequéncias (valores normalizados)
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Figura 29 — Curva For¢a x Resisténcia Elétrica com assintotas
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Nesta figura, através das assintotas, pode-se perceber duas diferentes inclinagoes,
indicadas pela assintota 1 e pela assintota 2, respectivamente. A regiao coincidente com a
assintota 1 corresponde a faixa onde o material encontra-se totalmente em seu estado de
martensita, enquanto a regiao coincidente com a assintota 2 corresponde a faixa onde o
material encontra-se totalmente em seu estado de austenita. A regiao intermediaria, onde
ha mudanca seguida de inclinacao, corresponde a uma faixa de transi¢do, onde o material
se transforma da fase martensita para fase austenita gradualmente. Esta interpretacao
baseia-se no fato de que a inclinagao da curva Forca x Resisténcia Elétrica depende da
porcentagem de martensita ou austenita no material, e que quando o material encontra-se

completamente na fase martensita ou austenita, esta inclinacdo tende a ser constante.

Para encontrar os pontos exatos de inicio e final da austenita e martensita (As,
As, M e My, respectivamente), carecem experimentos que integrem as curvas levantadas

com as curvas de temperatura, nas quais as temperaturas de transformacao estao bem

definidas.

Por fim, cabe destacar que as curvas apresentadas possuem histerese, em maior ou
menor grau, justificando, assim, o uso de redes neurais para desenvolvimento da estratégia
de controle dos atuadores de LMF.
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4.2 Escolha da frequéncia do sinal PWM

A anélise da Figura 28 permitiu concluir a forma das curvas tendem a ser iguais,
variando apenas em seus valores inicias de forca e resisténcia elétrica que, por sua vez,
dependem de fatores externos, tais como temperatura, fadiga do material e desgaste da
plataforma de teste. Para tornar a analise mais completa, realiza-se uma comparacao das
curvas normalizadas a diferentes frequéncias, para verificagao de algum padrao nao-usual
neste comportamento. Nas figuras 30, 31 e 32 sdo mostrados graficos de comparacao das

curvas de diferentes frequéncias.

Figura 30 — Comparacao das curvas de diferentes frequéncia - Experimento 1
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Figura 31 — Comparacao das curvas de diferentes frequéncia - Experimento 2
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Figura 32 — Comparacao das curvas de diferentes frequéncia - Experimento 3
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Ao analisar as figuras 30, 31 e 32, nota-se que as curvas de frequéncia 1000 Hz
e 2000 Hz tendem a se afastar das curvas de frequéncia mais baixa. Uma hipdtese para
tal fato é que, pelo fato de os sistemas térmicos serem dezenas de vezes mais lentos que
os sistemas elétricos, frequéncias muito altas tendem a nao conseguir prover o mesmo
nivel de poténcia ao atuador de LMF. Porém, faltam dados suficientes para uma melhor

explanagao do fenémeno, bem como a estimulag¢ao da mola a frequéncias mais altas.

Em termos de controle, contudo, prioriza-se a escolha das frequéncias mais baixas
(f < 500Hz), uma vez que tendem a ser mais préximas de um padrao unico. Além
disso, a escolha de frequéncias mais baixas diminui a taxa de amostragem minima, nao

sobrecarregando, assim, o sistema de aquisi¢ao.

Para implementacao do controle do atuador de LMF, sera utilizada a frequéncia
de 100 Hz.

4.3 Treinamento da Rede Neural

Conforme exposto na secao 3.4, diversas ciclagens foram feitas utilizando duas
molas de LMF na plataforma experimental mostrada na Figura 19, e os dados coletados
nessas ciclagens foram utilizados para o treinamento das redes neurais propostas. Uma
terceira mola, de mesmo tamanho das utilizadas no treinamento, foi utilizada para rea-
lizagao dos testes da utilizagdo das RNAs treinadas como sensor e como modelo para o

controlador preditivo.
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4.3.1 Rede Neural como Sensor

Iniciamente, nas figuras Figura 33 e Figura 34 sao mostrados os testes feitos com
RNAs do tipo feedforward com uma e duas camadas escondidas, respectivamente. Estas

redes sao mostradas na Figura 23.

Um segundo teste foi feito com os mesmos dados e é mostrado nas figuras Figura 35
e Figura 36. Neste teste, sao utilizadas RNAs recorrentes, com realimentagao a partir da
saida e das camadas ocultas, conforme visto na Figura 24. Novamente, sao testadas redes

com uma e duas camadas escondidas.

A fim de comparacao entre os resultados obtidos, foram calculados os erros médios
quadréticos (MSE) entre os valores fornecidos pelas RNAs que atuam como sensores e
o médulo HX711, leitor de forca na célula de carga. Os valores de MSE calculados sao
mostrados na tabela 3. Os valores de MSE apresentados se referem as médias entre os

trés experimentos realizados para cada topologia de rede.

A analise da Tabela 3 permite verificar que um aumento no nimero de camadas
ocultas, tanto para as redes recorrentes quanto para as redes do tipo feedforward nao
fornecem uma melhoria significativa no desempenho da estimacgao de forca. Além disso, o
uso de RNAs recorrentes nao se mostrou mais eficiente que as RNAs feedforward. De fato,
os valores de MSE sao bem proximos para ambas as topologias. Portanto, tomando como
base estes dados, a RNA do tipo feedforward com uma camada oculta é escolhida para
implementacao do sensor para feedback de resisténcia elétrica, visando a simplicidade de
implementacdo e menor custo de processamento computacional. Além disso, por possuir
um menor nimero de neurdnios e pesos, esta topologia tende a ter melhor capacidade de

generalizacao.

4.3.2 Rede Neural como Modelo para o Controlador Preditivo

A partir dos resultados obtidos pela a RNA do tipo feedforward como sensor, é
projetada uma RNA feedforward com uma camada oculta, conforme mostrado na Fi-
gura 25. Na figura Figura 37 sdo mostrados os testes feitos com a rede treinada. Vale
ressaltar, conforme visto na subsecao 3.4.2, que esta RNA utiliza como entrada os valores
de corrente elétrica aplicada a mola de LMF e o sinal de Tag, visto que sao as variaveis

que efetivamente podem ser alteradas.

A média dos valores de MSE dos testes feitos foi de 1,21. Nao foram realizados

testes com RNAs com mais de uma camada oculta.
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Figura 33 — Treinamento de uma
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Figura 34 — Treinamento de uma RNA do tipo feedforward com duas camadas ocultas
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Figura 35 — Treinamento de uma RNA recorrente com uma camada escondida
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Figura 36 — Treinamento de uma RNA recorrente com duas camadas escondidas

260

normal

rede

240

180

160

140

260

1.84 1.86 1.88

Resisténcia (1)

(a) Experimento 1

19

1.92

normal

rede

240

180

160

140

260

Resisténcia (1)

(b) Experimento 2

1.86 1.88

19

normal
rede

240 1

160

1.84 1.86 1.88
Resisténcia (1)

(c) Experimento 3

18

192



Capitulo 4. Resultados e Discussies 65

Figura 37 — Treinamento da RNA do tipo feedforward com uma camada escondida para
modelo do controlador preditivo
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Tabela 3 — Valores do MSE para os diferentes tipos de RNAs

Tipo de Rede MSE

RNA feedforward com uma camada oculta | 6,25
RNA feedforward com duas camadas ocultas | 2,79
RNA recorrente com uma camada oculta 7,98
RNA recorrente com trés camadas ocultas 3,02

4.4 Controlador Preditivo

Um controlador preditivo simplificado foi projetado conforme visto na secao 3.5.
O sistema como um todo, portanto, utiliza duas RNAs: uma como sensor e outra como
modelo para o controlador. O sistema em malha fechada controlado por feedback de resis-
téncia elétrica é mostrado na Figura 38, onde I’ é a corrente prevista pelo controlador a
ser aplicada ao sistema, Al é a quantidade de corrente a ser adicionada a corrente prevista
pelo controlador devido ao fator de correcao, I é a corrente elétrica efetivamente aplicada
a mola de LMF, R é o valor de resisténcia elétrica estimada pelo Filtro de Kalman através
do sensor, F' é a forca prevista pela RNA que atua como sensor e F” é a forga prevista

pela RNA que atua como modelo do controlador.

Figura 38 — Diagrama de blocos do sistema em malha fechada
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Dois diferentes experimentos foram conduzidos para testar o controle e sao mos-
trados na Figura 39 e na Figura 40, respectivamente. Nestes graficos, sdo mostrados as
comparagoes entre os dados de forca medidos pelo médulo HX711, pela rede neural e a

referéncia, além do sinal de entrada de corrente calculdo pelo controlador.
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Figura 39 — Controle de forca usando controle preditivo baseado em RNA
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Figura 40 — Controle de forca usando controle preditivo baseado em RNA
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andlise dos graficos das figuras 39 e 40, percebe-se que o valor de

forca estimado pela RNA sensora acompanha com boa precisao o valor de referéncia, fato

comprovado através dos graficos mostrados na Figura 41. Porém, o valor de forca lida
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pelo médulo HX711 nao segue tao bem a referéncia quando o valor estimado pela RNA,
embora esteja sempre proximo a esse valor. Isto é explicado pelo fato que o controlador
utiliza como feedback de forca a leitura da rede neural, ou seja, ha uma convergéncia de
controle em relagao a estimativa de forca fornecida pela RNA sensora. Se o valor estimado
da RNA sensora difere do valor fornecido pelo sensor de forga, o controle sera satisfatorio
em relagao a leitura da rede, mas insatisfatorio em relagao ao sensor real de forga. Este

fato exemplifica bem a razao de possuir boas aproximacoes nas redes neurais treinadas.

Figura 41 — Comparacao do erro entre a forga exercida e o valor de referéncia da forga
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O controle preditivo baseado em redes neurais, portanto, mostrou-se eficiente no
controle do atuador de LMF, desde que as redes neurais utilizadas estejam préximas dos

valores reais estimados.
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5 Conclusoes

Neste trabalho, foi desenvolvido um estudo sobre o funcionamento e técnicas de
sensoreamento e controle de atuadores de liga de memoéria de forma através de redes
neurais artificiais. Dentre os trabalhos desenvolvidos, destacam-se o projeto do Filtro de
Kalman para a dada aplicacao, o projeto da RNA sensora e o projeto do controlador
preditivo simplificado baseado em uma RNA treinada como modelo do sistema. Também,
experimentos com uma mola de LMF foram conduzidos para levantamento das curvas de
Forca x Resisténcia Elétrica. A partir dos dados levantados, foi descrito o comportamento
da relagao entre forca e resisténcia elétrica com base nas transformagoes de fase do material
e foi escolhida uma frequéncia de acionamento para os fios de SMA a serem utilizados na
mola de LMF.

A partir dos resultados experimentais obtidos e explanados no Capitulo 4, destacam-

se nos seguintes pontos:

e O comportamento da relacdo entre forca e resisténcia elétrica é nao-linear e histe-

rético, sendo necessario, portanto, estratégias de analise e controle mais refinadas;

e A utilizacao do Filtro de Kalman Estendido trouxe mais exatidao e confiabilidade
as leituras realizadas, as quais tendem a ser ruidosas, especiamente devido ao sensor

de corrente por efeito Hall;

e As transformagoes de fase em LMFs modificam a inclinacao da relagao entre forga
e resisténcia elétrica. Isso era esperado devido a mudanca na estrutura cristalina do
material e é esperado que a inclinagao das curvas que envolvem resisténcia elétrica
possuam comportamento semelhante em relagao a outras grandezas fisicas, tais como

temperatura e deformacao do material;

e O formato das curvas de Forca x Resisténcia Elétrica tende a seguir um padrao es-
pecifico conforme visto nas curvas normalizadas obtidas pela mola de LMF, embora
estejam graficamente deslocadas devido ao desgaste natural do material. De fato, o
comportamento analisado tende a ser repetitivo ao se analisar as variagoes de forca
e resisténcia elétrica, o que tornou possivel o treinamento e uso de RNAs no projeto

do sensor para realimentagao e no projeto do controlador;

e O uso de redes neurais feedforward foi eficiente em reproduzir as curvas dos experimentos-
teste realizados, tanto como sensor para feedback de resisténcia elétrica quanto para
atuar como um modelo para o controlador preditivo. Por outro lado, o uso de redes

neurais recorrentes nao trouxe uma melhora significativa nas previsoes, justificando
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assim o uso de uma topologia mais simples e que exige menor esforco computacional.
Além disso, o nimero de camadas utilizadas apresentou pouca influéncia em relagao

a eficiéncia;

e O modelo de controlador proposto foi eficiente em se tratando de seguir a referéncia
a partir dos dados de leitura da RNA sensora. Houve pequenos erros em relacao a
leitura proveniente do médulo HX711 devido aos desvios da leitura da RNA sensora
em relacao a leitura do médulo, naturalmente ruidosa. Embora os erros nao tenham
sido consideraveis, uma melhora no modelo da rede neural sensora, assim como
uma melhor filtragem da leitura do médulo HX711, acarretard maior precisdo no

controle.

Em resumo, o uso de redes neurais artificiais no projeto de controle do atuador
de LMF mostrou-se interessante, tendo em vista que o comportamento nao-linear e his-
terético foi bem descrito e um controle baseado utilizando feedback de resisténcia elétrica
foi bem sucedido. Naturalmente, o fenomeno de meméria de forma envolve uma gama
maior de variaveis, o que teoricamente poderia dificultar o controle da for¢a de um atu-
ador quando tem-se apenas a informacao de resisténcia elétrica do mesmo. Porém, o uso
de RNAs, tanto no sensoreamento quanto no controle da mola conseguiu superar as difi-
culdades naturais da modelagem e atuacao sobre o dispositivo. Obviamente, uma melhor
instrumentacao eletronica do sistema, bem como melhores modelos das redes neurais,

podem tornar o projeto mais eficiente.

Sao propostos, para a continuacao da pesquisa, os seguintes itens:
e Melhoramento do circuito de acionamento e medicao utilizado, visando maior pre-
cisao na obtencao de resultados;

e Levantamento de curvas de resisténcia elétrica para diferentes molas de diferentes

dimensoes, visando maior generalidade no projeto de controle de atuadores de LMF;

e Estudo de topologias diferentes de redes neurais visando maior aproximacao entre

modelos e dados experimentais;

e Estudo de metodologias diferentes de controle que envolvam os modelos de redes

neurais levantados
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