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“Saruman acredita que apenas um grande poder pode manter o mal sob controle. Mas
não foi isso que descobri. Eu descobri que são as coisas pequenas, os feitos diários das

pessoas comuns, os simples atos de bondade e amor, que mantém o mal afastado.”
(Gandalf, o Cinzento)



Resumo
Ligas de memória de forma são materiais inteligentes e que podem ser utilizados como
atuadores em diversas situações. O controle de atuadores de liga de memória de forma,
porém, pode ser desafiador devido à não-linearidade e comportamento histerético deste
tipo de material. Nesse sentido, o uso de Redes Neurais Artificiais torna-se um artifício
interessante em termos de sensoreamento e controle dos atuadores de liga de memória de
forma. Foi realizado um estudo com molas feitas de Ligas de Memória de Forma, visando
maior compreensão dos fenômenos físicos de transformação de fases para controle desse
tipo de atuador. O uso da resistência elétrica como elemento sensor para realimentação foi
proposto, e uma Rede Neural Artificial foi projetada para aprendizagem da relação entre
a resistência elétrica e força exercida pela mola de Liga de Memória de Forma. Além disso,
um circuito de acionamento foi desenvolvido e foi projetado um Filtro de Kalman para
estimação das variáveis a serem utilizadas no controle do atuador. Por fim, um método de
controle baseado em Redes Neurais foi proposto e seus resultados foram mostrados. O uso
de Redes Neurais foi eficiente tanto em termos de sensoreamento quanto em termos de
controle. Além disso, a força aplicada pelas molas de Liga de Memória de Forma convergiu
de forma satisfatória para os valores de referência no sistema em malha fechada.

Palavras-chaves: Ligas de Memória de Forma, Filtro de Kalman, Realimentação de
Resistência Elétrica, Redes Neurais Artificiais, Controle Preditivo.



Abstract
Shape Memory Alloys are intelligent materials and can be used as actuators in many
situations. The control of Shape Memory Alloys actuators may be challenging due to the
non-linear and hysteretic behavior of this type of material. This way, the use of Artificial
Neural Networks is a interesting tool to work as sensor and to implement the control of
Shape Memory Alloys actuators. Studies with Shape Memory Alloys springs have been
conducted to understand the phase transformation phenomenon in order to implement
a control strategy. Electric resistance feedback has been used as sensor element, and
an Artificial Neural Network has been developed to learn the relationship between the
electric resistance and the force applied by the spring. Besides, an actuation circuit has
been developed and an Extended Kalman Filter has been designed to estimate the state
variables of the system. Finally, a neural network based predictive control strategy has
been proposed and its results have been shown. The use of Artificial Neural Networks were
efficient both as sensor and as model into the predictive controller. In addition, the force
applied by the Shape Memory Alloy springs has satisfactorily converged to the reference
values of force in the closed loop controlled system.

Keywords: Shape Memory Alloys, Kalman filter, Electric Resistance Feedback, Artificial
Neural Networks, Predictive Control.
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1 Introdução

Ligas de memória de forma - LMF- são ligas metálicas que demonstram a capaci-
dade de recuperar sua forma original após uma deformação “pseudoplástica”, ou desen-
volver forças consideráveis de restituição ao restringir sua recuperação, após a imposição
de um campo de temperatura e/ou tensões, por meio de transformações de fase induzi-
das no material [SILVA, 2015]. Recentemente, o uso de LMF como atuadores tem atraído
bastante interesse, devido a características como confiabilidade, alta densidade energética,
simplicidade de projeto e operação silenciosa.

Apesar do potencial de uso de LMF como atuadores nos mais diversos campos
de aplicação, são encontradas dificuldades no controle desse tipo de atuador, tais como
a baixa eficiência energética, não-linearidade e comportamento histerético desse tipo de
material e resposta lenta em comparação com atuadores convencionais [PAN et al., 2017].
Estas características devem ser consideradas, uma vez que podem levar desde uma per-
formance indesejada até uma dinâmica instável no sistema.

Além disso, o fenômeno de memória de forma é um fenômeno termomecânico, con-
sequência de uma mudança na estrutura cristalina entre uma fase de baixa temperatura,
conhecida como martensita, e uma fase de alta temperatura, conhecida como austenita
[LI; TIAN, 2018]. Porém, o aquecimento por efeito Joule é bastante utilizado para li-
dar com LMFs, de forma que a relação entre deformação do material e corrente elétrica
aplicada torna-se indireta, uma vez que o aquecimento é regido por diversas equações
da termodinâmica. Ainda, deve ser levado em consideração que a atuação por PWM é
prática e eficiente em termos de controle e automação e, por isso, bastante utilizada em
diversos trabalhos com LMFs [ZHANG; XU; YANG, 2017; LIAO, 2016; PAI; RIEPOLD;
TRACHTLER, 2016], porém pode causar efeitos indesejados em termos termoelétricos.

Um último desafio a ser considerado ao se trabalhar com LMFs é a instrumentação
eletrônica do sistema, uma vez que a temperatura ao longo de um fio ou mola de LMF pode
não ser uniforme devido a diversos motivos. Dessa forma, muitas vezes um único sensor
de temperatura, por exemplo, pode não ser suficiente para entender o comportamento do
atuador. Além disso, um maior número de sensores para realização do controle desse tipo
de sistema pode tornar o projeto oneroso e inviável.

Neste contexto, este trabalho traz uma maior compreensão sobre o uso de ligas de
memória de forma bem como o estudo de soluções para as dificuldades acima expostas.

Uma primeira abordagem a ser considerada é como o uso de atuação por PWM
pode influenciar o aquecimento por efeito Joule, e através deste estudo buscar as me-
lhores características possíveis para o sinal de controle. Em segundo lugar, é proposto
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a utilização da resistência elétrica dos atuadores de LMF como elemento sensor para
o sistema. A medição de resistência elétrica é relativamente mais simples e menos rui-
dosa que a leitura de temperatura. Além disso, o uso da resistência elétrica pode evitar
o problema da distribuição desuniforme de temperatura ao longo do atuador de LMF,
simplificando a instrumentação eletrônica do sistema. Por fim, para lidar com os proble-
mas de não-linearidade dos materiais, são utilizadas Redes Neurais Artificiais - RNAs. As
RNAs são capazes de aprender comportamentos não-lineares através de seu algoritmo de
aprendizado e, portanto, podem lidar de forma mais natural com as características das
Ligas de Memória de Forma. Serão utilizadas Redes Neurais para fins de sensoreamento
e realimentação do sistema, bem como para fins de controle de atuadores de LMF.

1.1 Objetivos

Esta dissertação tem como objetivo geral desenvolver uma estratégia de controle
para atuadores de Liga de Memória de Forma, baseando-se no feedback de resistência
elétrica e em Redes Neurais Artificiais. Para alcançar o objetivo principal, alguns objetivos
específicos são propostos:

1. Revisão bibliográfica de Ligas de Memória de Forma para melhor entendimento do
princípio de funcionamento dos atuadores;

2. Estudo da influência da modulação por largura de pulso para aquecimento por efeito
Joule;

3. Desenvolvimento da instrumentação eletrônica do sistema;

4. Estudo do comportamento resistivo de atuadores de LMF e projeto de uma rede
neural artificial para atuar como sensor para feedback de resistência elétrica;

5. Estudo de técnicas de controle de atuadores de LMF utilizando feedback de resis-
tência elétrica, e projeto de um controlador para uma mola de LMF.

1.2 Organização do texto

No Capítulo 2, é feita uma breve revisão bibliográfica sobre os principais pontos
a serem abordados no texto. No Capítulo 3 são mostrados os materiais utilizados e mon-
tagens feitas, assim como as estratégias utilizadas para obtenção de curvas e treinamento
da rede neural. No Capítulo 4 são mostrados os gráficos levantados dos experimentos e
uma breve discussão sobre os mesmos. No Capítulo 5 é mostrada uma breve síntese do
trabalho e são manifestadas ideias para possíveis trabalhos futuros.
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2 Revisão Bibliográfica

Nesse capítulo será apresentada uma revisão bibliográfica sobre os materiais e
teorias utilizadas para desenvolvimento do projeto.

2.1 Ligas de Memória de Forma (LMF)

Ligas de memória de forma - LMF - são ligas metálicas que demonstram a capa-
cidade de recuperar sua forma original após uma deformação “pseudoplástica", ou desen-
volver forças consideráveis de restituição ao restringir sua recuperação, após a imposição
de um campo de temperatura e/ou tensões, por meio de transformações de fase induzidas
no material [SILVA, 2015]. Este fenômeno de transformação é conhecido como efeito de
memória de forma (Shape Memory Effect - SME) [JANI et al., 2014]. Estas ligas foram
inicialmente descobertas por Arne Ölander, em 1932 [ÖLANDER, 1932], e o termo “me-
mória de forma” foi inicialmente usado por Vernon em 1941 para seu material polimérico
dental.

Uma nova perspectiva sobre materiais com memória de forma veio com a desco-
berta da liga de níquel e titânio NiTi por Buehler e sua equipe, enquanto investigavam
materiais úteis para proteção contra aquecimento. Percebeu-se que esta liga, além de ou-
tras propriedades mecânicas, possuía a capacidade de recuperar sua forma. Este material
ficou, então, conhecido como nitinol, devido à composição química da liga (NiTi) e seu
local de descobrimento, o Laboratório de Artilharia Naval (Naval Ordnance Laboratory -
NOL) [BUEHLER; GILFRICH; WILEY, 1963].

Desde a descoberta inicial do nitinol, em 1963, diversas outras ligas foram desen-
volvidas, cada uma com suas próprias características. Por exemplo, a adição de cobalto
ou ferro à liga de NiTi causou uma drástica redução nas temperaturas de transformação,
inspirando a criação da primeira LMF comercializável no mundo, a Cryofit. Em 1978,
Melton e Mercier mostraram que a adição de cobre à liga de NiTi não muda as tempe-
raturas de transformação de fase consideravelmente, mas estreita a curva de histerese.
Outras ligas tais como NiTiNb, FeMnSi, CuAlNi e CuZnAl podem ser encontradas no
comércio, embora as ligas de NiTi ainda sejam preferidas para a maioria das aplicações.

A demanda para o uso de LMFs tem crescido em diversas áreas da engenharia e
ciência, tais como em aplicações industriais [WU; SHETCKY, 2000; ZIDER; KRUMME,
1988; HAUTCOEUR; EBERTHARDT, 1997], estruturas e compostos [FURUYA, 1996],
indústria automotiva [BUTERA; CODA; VERGANI, 2007; SHAPE. . . , 1990], indústria
aeroespacial [BIL; MASSEY; ABDULLAH, 2013; HARTL; LAGOUDAS, 2007; HUMBE-
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ECK, 1999; SCHETKY, 1991], sistemas microeletromecânicos (MicroElectroMechanical
Systems - MEMS) [HUMBEECK, 1999; SUN et al., 2012; KOHL, 2010; KAHN; HUFF;
HEUER, 1998; FUJITA; TOSHIYOSHI, 1998], robótica [KHEIRIKHAH; RABIEE; EDA-
LAT, 2011; FURUYA; SHIMADA, 1991; SREEKUMAR et al., 2007], engenharia bio-
médica [HUMBEECK, 1999; SUN et al., 2012; MORGAN, 2004; DUERIG; PELTON;
STöCKEL, 1999], entre outros.

2.1.1 Transformação de Fases em LMFs

Dentro de uma faixa de temperatura, um material que apresenta memória de forma
possui duas fases, com diferentes estruturas cristalinas e propriedades. Estas fases são de-
nominadas como austenita e martensita. A austenita é presente em altas temperaturas
e apresenta estrutura cristalina cúbica. A martensita, por sua vez, é presente em bai-
xas temperaturas e possui estrutura cristalina tetragonal, ortorômbica ou monoclínica.
Cada cristal da martensita formada pode ter uma diferente orientação, chamada variante.
Normalmente, quando o material está na fase martensita, possui variantes randômicas,
estando em um estado chamado martensita geminada. Porém, ao se aplicar uma carga
mecânica à liga, algumas das variantes são orientadas e há, assim, uma variante domi-
nante. A este estado denomina-se martensita desgeminada. Na martensita desgeminada,
portanto, há uma deformação macroscópica na própria estrutura da liga. A ideia das
transformações de fase é mostrada, esquematicamente, na Figura 1. A transformação de
fases de austenita para martensita e vice-versa é a base para o comportamento único das
LMFs.

Figura 1 – Ilustração esquemática das mudanças de fase em LMFs

Resumidamente, no processo de “desgeminação”, a deformação que o material so-
fre permanece mesmo após a retirada da carga mecânica. O aquecimento do material,
entretanto, resulta na transformação de fase de martensita desgeminada para austenita e
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leva a uma completa recuperação da forma original. Resfriar o material leva uma completa
transformação da fase austenita para a fase martensita geminada, sem aparente mudança
de forma. Este processo é conhecido como Efeito de Memória de Forma (Shape Memory
Effect - SME). Neste processo, a temperatura de início da austenita (𝐴𝑠) é a temperatura
na qual começa o processo de transformação de martensita para austenita, e temperatura
final da austenita (𝐴𝑓 ) é a temperatura na qual essa transformação se encerra. Durante
o processo de resfriamento, por sua vez, a transformação começa a se reverter na tempe-
ratura inicial de martensita (𝑀𝑠) e se encerra na temperatura final de martensita (𝑀𝑓 )
[JANI et al., 2014]. Ainda, denominam-se as tensões de início da desgeminação e de final
da desgeminação por 𝜎𝑠 e 𝜎𝑓 , respectivamente. Por fim, uma importante variável no es-
tudo do comportamento de LMFs é a deformação, que indica o quanto as dimensões da
LMF mudam ao longo do processo, e é representada por 𝜀. Na Figura 2 é mostrado um
esquema do SME.

Figura 2 – Ilustração esquemática do Efeito de Memória de Forma

Na Figura 2, o processo de A para B corresponde ao resfriamento com transfor-
mação de fase de austenita para martensita. No processo de B para C, há a desgeminação
da LMF em martensita, formando assim a martensita desgeminada. No processo de C
para D, há a retirada da tensão mecânica inicialmente aplicada para o processo de desge-
minação. A retirada da carga mecânica, porém, não implica no retorno à forma original,
fato que pode ser observado pela deformação residual que se mantém. No processo de D
para E, há um aquecimento, até que a liga chegue à temperatura 𝐴𝑠. No processo de E
para A, quando o aquecimento atinge 𝐴𝑓 , há a transformação de fase de martensita para
austenita, conjuntamente com a recuperação da forma original, conforme pode ser visto
no eixo da deformação. Normalmente, o comportamento de LMFs é descrito pelas curvas
de Deformação ˆ Temperatura ou Tensão ˆ Temperatura.
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A histerese é um fenômeno importante a ser considerado neste tipo de material.
Histerese é uma medida da diferença nas temperaturas de transição entre aquecimento
e resfriamento, e geralmente é definida pela diferença entre as temperaturas nas quais o
material está 50% na fase austenita (durante o aquecimento) e 50% na fase martensita
(durante o resfriamento) [BUEHLER; WANG, 1968]. Esta propriedade é importante e
requer consideração na hora de escolher uma LMF para determinada aplicação.

Algumas vezes, uma LMF pode exibir transformações de forma repetitivas quando
submetida a um ciclo térmico. Este comportamento é conhecido como Two Way Shape
Memory Effect - TWSME. O TWSME pode ser observado em uma LMF que sofreu, de
forma repetitiva, ciclagem térmica ao longo de um caminho específico. A este processo
denomina-se treinamento. Quando uma LMF está treinada, seu ciclo histerético estabiliza,
permitindo o uso de ferramentas computacionais para estudo de seu comportamento. Um
exemplo de material que foi submetido ao processo de treinamento é mostrado na Figura 3.

Figura 3 – Exemplo de LMF submetida ao processo de treinamento sob carga mecânica
constante

2.2 Feedback por Resistência Elétrica

A resistência elétrica é a capacidade de um corpo qualquer se opor à passagem de
corrente elétrica mesmo quando existe uma diferença de potencial aplicada. A resistência
elétrica de um objeto, por sua vez, depende, primariamente, do material do qual é feito este
objeto e de sua forma. Em LMFs, embora a composição química do material permaneça a
mesma ao longo dos ciclos de ativação, as mudanças de fases fazem com que a resistividade
do material seja alterada, mudando, assim, sua resistência elétrica.

Um desafio que tem sido encontrado ao utilizar-se atuadores de LMF é realizar
o controle de deformação através do feedback de alguma variável do sistema. O feedback
através de posição é o mais utilizado, mas possui a desvantagem de seu alto custo. O
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feedback de temperatura também tem sido estudado, mas tem se mostrado pouco prático,
devido à dificuldade de medir, com precisão, o valor de temperatura ao longo de um
atuador que se encontra em ambiente aberto. Nesse sentido, a relação entre variação de
resistência elétrica e deformação em um atuador de LMF durante as transformações de
fase é determinística e repetitiva em alguns âmbitos [MA GANGBING SONG, 2003],
especialmente devido ao fato de que sua resistividade depende diretamente da fração de
martensita no material. Dessa forma, o feedback de resistência elétrica pode substituir,
por exemplo, o sensor de posição.

Diversos estudos foram realizados para compreender o comportamento da varia-
ção de resistência elétrica em LMFs. Em [ZHANG; YIN; ZHU, 2013] é feito um estudo e
proposto um modelo de atuação para músculos artificiais utilizando LMFs baseados em
feedback de resistência elétrica. Em [CUI; SONG; LI, 2010; NOVáK et al., 2008] modelos
matemáticos são propostos para descrever a relação entre resistência elétrica e deformação
em fios de LMF. Em geral, essas relações são não-lineares e dependem de diversos fatores,
tornando os modelos pouco práticos em termos de controle e processamento e exigindo
estratégias mais complexas para utilização destes materiais. Por exemplo, em [SCHIE-
DECK; MOJRZISCH, 2011] é desenvolvida uma estratégia de controle que baseia-se no
gradiente da variação de resistência elétrica para controle do aquecimento de atuadores
de LMF.

Neste sentido, o uso de Redes Neurais Artificiais mostra-se como uma abordagem
interessante para a implementação de controle por feedback de resistência elétrica. As
redes neurais conseguem aprender comportamentos não-lineares, bem como entender a
histerese típica dos materiais de LMF. Por exemplo, em [MA GANGBING SONG, 2003]
é realizado o controle de posição de um atuador de LMF por feedback de resistência elétrica
utilizando redes neurais para aprendizado do comportamento de variação de resistência
elétrica. Neste trabalho, será utilizada uma Rede Neural Artificial para aprendizado do
padrão de variação de resistência elétrica e posterior controle dos atuadores de LMF
através do feedback de resistência elétrica.

2.3 Filtro de Kalman

O filtro de Kalman foi inicialmente apresentado por Rudolf E. Kalman em seu
artigo A New Approach to Linear Filtering and Prediction Problems, em 1960 [KALMAN,
1960]. Trata-se de uma ferramenta que pode estimar as variáveis de uma vasta gama
de processos. Basicamente, trata-se de um filtro recursivo que estima os estados de um
sistema dinâmico linear a partir de uma série de medições ruidosas.
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2.3.1 Filtro de Kalman Discreto

Na engenharia de controle, uma representação em espaço de estados é um modelo
matemático de um sistema físico composto de um conjunto de variáveis de entrada, de
saída e de estado relacionadas entre si por meio de equações diferenciais de primeira
ordem. Para abstrair-se do número de entradas, saídas e estados, as variáveis são expressas
em vetores e as equações diferenciais e algébricas são escritas na forma matricial (esta
forma é possível somente quando o sistema dinâmico é linear e invariante no tempo). A
representação em espaço de estados (também conhecida como “abordagem no domínio do
tempo”) fornece uma maneira prática e compacta para modelar e analisar sistemas com
múltiplas entradas e saídas [HENDERSON, 2010].

A representação mais geral de sistemas invariantes no tempo, com 𝑝 entradas, 𝑞

saídas e 𝑛 variáveis de estado, em espaço de estados, é dada pela da seguinte forma:

9𝑥 “ 𝐴𝑥p𝑡q `𝐵𝑥p𝑡q

𝑦p𝑡q “ 𝐶𝑥p𝑡q `𝐷𝑢p𝑡q
(2.1)

Onde:
𝑥p¨q é chamado vetor de estados, 𝑥p𝑡q P R𝑛

𝑦p¨q é chamado vetor de saídas, 𝑦p𝑡q P R𝑞

𝑢p¨q é chamado vetor de entradas, 𝑢p𝑡q P R𝑝

𝐴 é a matriz de estados, 𝑑𝑖𝑚r𝐴s “ 𝑛ˆ 𝑛

𝐵 é a matriz de entradas, 𝑑𝑖𝑚r𝐵s “ 𝑛ˆ 𝑝

𝐶 é a matriz de saídas, 𝑑𝑖𝑚r𝐶s “ 𝑞 ˆ 𝑛

𝐷 é a matriz de alimentação, 𝑑𝑖𝑚r𝐷s “ 𝑞 ˆ 𝑝

9𝑥 “ d𝑥p𝑡q
d𝑡

A Equação 2.1 é a representação em espaço de estados em tempo contínuo. Para
o domínio discreto, tem-se a seguinte representação, onde a derivada do vetor de estados
torna-se a predição dos estados na próxima iteração:

𝑥p𝑘 ` 1q “ 𝐴𝑥p𝑘q `𝐵𝑥p𝑘q

𝑦p𝑘q “ 𝐶𝑥p𝑘q `𝐷𝑢p𝑘q
(2.2)

Na maioria das aplicações, a matriz de alimentação 𝐷 pode ser considerada nula.

Um problema básico nos sistemas de controle, conhecido como problema do projeto
do observador (Observer Design Problem), é determinar os estados de um sistema tendo
acesso apenas às suas saídas. A resolução deste problema baseia-se no modelo de espaço
de estados. Neste novo modelo, representa-se a saída do sistema como 𝑧 ao invés de 𝑦,
indicando que a saída é, na verdade, a leitura de um sensor usado para tal fim, e a matriz
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de saídas 𝐶 é representada por 𝐻. Além disso, os índices subescritos indicam a iteração da
variável no processo. Assim, tem-se novas equações que representam o espaço de estados
deste sistema:

𝑥𝑘 “ 𝐴𝑥𝑘´1 `𝐵𝑥𝑘 ` 𝑤𝑘´1 (2.3)

𝑧𝑘 “ 𝐻𝑥𝑘 ` 𝑣𝑘 (2.4)

Os termos 𝑤𝑘 e 𝑣𝑘 são variáveis aleatórias que representam os ruídos de processo
e medição, respectivamente. Obviamente, no mundo real, estes ruídos estão presentes na
maioria dos sistemas. Por exemplo, cada sensor tem uma determinada faixa de operação, e
à medida que as leituras se aproximam dos limites do sensor, o sinal começa a se degradar.
Além disso, uma porção de ruído é adicionado ao sinal através do sensor e dos circuitos
elétricos.

Um outro problema a ser considerado é que os estados do sistema são desconheci-
dos, uma vez que se tem acesso apenas às leituras ruidosas dos sensores. Assim, os modelos
apenas podem dar uma estimativa do estado real. Obviamente, essa dificuldade se agrava
quando se considera que nem sempre esses modelos são previsíveis.

Neste contexto, o Filtro de Kalman entra como uma importante ferramenta para
lidar com o problema do Observador de Estados. Essencialmente, o Filtro de Kalman é um
conjunto de equações matemáticas que implementam um estimador de estados baseado
em predição e correção, que é ótimo no sentido que minimiza o a covariância do erro
estimado.

2.3.2 O Filtro de Kalman Discreto - Algoritmo

Tomando como base as equações 2.3 e 2.4, nas quais 𝑤𝑘 e 𝑣𝑘 representam os ruídos
de processo e medição. É assumido que estes ruídos são independentes entre si, brancos e
possuem distribuição normal, ou seja:

𝑝p𝑤q „ 𝑁p0, 𝑄q

𝑝p𝑣q „ 𝑁p0, 𝑅q
(2.5)

Onde Q é a covariância do ruído de processo e R é a covariância do ruído de me-
dição. Define-se 𝑃 como a covariância do erro e 𝐾 como o um ganho, denominado Ganho
de Kalman, que será utilizado no algoritmo de Kalman. Ainda, define-se variáveis a priori
como variáveis estimadas na iteração 𝑘 a partir do processo anterior, e define-se variáveis
a posteriori como variáveis estimadas na iteração 𝑘 a partir da medição dos sensores,
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𝑧𝑘. Assim, definem-se 𝑥´, 𝑥̂, 𝑃´ e 𝑃 como os estados a priori, os estados a posteriori, a
covariância do erro a priori e a covariância do erro a posteriori, respectivamente.

Os erros podem ser encontrados da seguinte forma:

𝑒´𝑘 ” 𝑥𝑘 ´ 𝑥̂´𝑘

𝑒𝑘 ” 𝑥𝑘 ´ 𝑥̂𝑘

(2.6)

A covariância dos erros a priori e a posteriori é definida da seguinte forma:

𝑃´
𝑘 “ 𝐸r𝑒´𝑘 𝑒´

𝑇

𝑘 s (2.7)

𝑃𝑘 “ 𝐸r𝑒𝑘𝑒𝑇
𝑘 s (2.8)

O filtro de Kalman estima um processo em duas frentes: o processo de Predição
e o processo de Correção. As equações utilizadas no processo de predição são mostradas
nas equações 2.9 e 2.10.

𝑥̂´𝑘 “ 𝐴𝑥̂𝑘´1 `𝐵𝑢𝑘 (2.9)

𝑃´
𝑘 “ 𝐴𝑃𝑘´1𝐴

𝑇
`𝑄 (2.10)

Já as equações utilizadas no processo de correção são mostradas nas equações 2.11,
2.12 e 2.13:

𝐾𝑘 “ 𝑃´
𝑘 𝐻𝑇

p𝐻𝑃´
𝑘 𝐻𝑇

`𝑅q´1 (2.11)

𝑥̂𝑘 “ 𝑥̂´𝑘 `𝐾p𝑧𝑘 ´𝐻𝑥̂´𝑘 q (2.12)

𝑃𝑘 “ p𝐼 ´𝐾𝑘𝐻q𝑃´
𝑘 (2.13)

Deve-se fornecer ao algoritmo valores iniciais para os estados (𝑥̂𝑘´1) e para a co-
variância dos erros (𝑃𝑘´1). Assim, o processo iterativo do Filtro de Kalman pode ser
resumido na Figura 4
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Figura 4 – Diagrama esquemático do algoritmo do Filtro de Kalman

As matrizes 𝑄 e 𝑅, em geral, são constantes, e são projetadas e partir dos ruídos
estimados no sistema e nos sensores. A diferença (𝑧𝑘 ´𝐻𝑥̂´𝑘 ) na Equação 2.12 é chamada
de inovação de medição, ou residual, e reflete a discrepância entre a predição da medição
𝐻𝑥̂´𝑘 e a medição atual 𝑧𝑘. Além disso, à medida que a covariância do erro de medição
𝑅 se aproxima de zero, a medição atual 𝑧𝑘 adquire maior peso em relação a predição da
medição 𝐻𝑥̂´𝑘 , enquanto que à medida que a covariância do erro estimado se aproxima de
zero, 𝑧𝑘 adquire menor peso em relação à 𝐻𝑥̂´𝑘 .

A natureza recursiva do Filtro de Kalman é uma das vantagens de seu uso, tor-
nando aplicações práticas do mesmo mais factíveis que, por exemplo, o filtro de Wiener.

2.3.3 O Filtro Estendido de Kalman

As aplicações mais comuns do Filtro de Kalman para sistemas não-lineares são na
forma do Filtro de Kalman Estendido (Extended Kalman Filter - EKF) [JAZWINSKI,
2007]. A estimação de sistemas não-lineares é extremamente importante, visto que a
maioria dos sistemas na engenharia são desse tipo. O EKF simplesmente lineariza todas
as transformações não-lineares e substitui as transformações lineares do Filtro de Kalman
por matrizes jacobianas.

Assim, as equações 2.3 e 2.4, utilizadas para o Filtro de Kalman, são agora subs-
tituídas pelas equações 2.14 e 2.15, onde 𝑓 e ℎ são funções não-lineares que descrevem a
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relação entre o estado atual e a saída do sistema com os estados anteriores, entradas e
ruídos de processo e medição.

𝑥𝑘 “ 𝑓p𝑥𝑘´1, 𝑢𝑘, 𝑤𝑘´1q (2.14)

𝑧𝑘 “ ℎp𝑥𝑘, 𝑣𝑘q (2.15)

A matriz jacobiana, ou simplesmente jacobiano, é a matriz formada pelas derivadas
parciais de primeira ordem de uma função vetorial. Suponha uma função 𝑓 : R𝑛 Ñ R𝑚

que leva um vetor de entrada 𝑥 P R𝑛 a um vetor de saída 𝑓p𝑥q P R𝑚. A matriz jacobiana
𝐽 da função 𝑓 é definida da seguinte forma:

𝐽 “

„

B𝑓

B𝑥1
¨ ¨ ¨

B𝑓

B𝑥𝑛



“

»

—

—

–

B𝑓1
B𝑥1

¨ ¨ ¨
B𝑓1
B𝑥𝑛... . . . ¨ ¨ ¨

B𝑓𝑚

B𝑥1
¨ ¨ ¨

B𝑓𝑚

B𝑥𝑛

fi

ffi

ffi

fl

(2.16)

O jacobiano é importante porque se a função 𝑓 é diferenciável em um ponto 𝑥,
então o jacobiano define um mapa linear R𝑛 Ñ R𝑚, que é a melhor aproximação linear
da função 𝑓 em torno do ponto 𝑥. Dessa forma, através do jacobiano, pode-se linearizar
um sistema não-linear, iteração por iteração, para aplicação do Filtro de Kalman, desde
que as funções de 𝑓 e ℎ, descritas nas equações 2.14 e 2.15 possuam derivadas parciais
naquele ponto de operação.

Assim, a partir da Equação 2.16, pode-se linearizar as equações 2.14 e 2.15 para
aplicá-las ao Filtro de Kalman. Inicialmente, denominam-se as matrizes 𝐹 , 𝐻, Γ e Λ como
os seguintes jacobianos:

𝐹 “
B𝑓p𝑥̂𝑘´1, 𝑢𝑘, 𝑤𝑘qq

B𝑥
(2.17)

𝐻 “
Bℎp𝑥̃𝑘, 𝑣𝑘qq

B𝑥
(2.18)

Γ “ B𝑓p𝑥̂𝑘´1, 𝑢𝑘, 𝑤𝑘qq

B𝑤
(2.19)

Λ “ Bℎp𝑥̃𝑘, 𝑣𝑘qq

B𝑣
(2.20)

Onde 𝑥̃ é o estado estimado sem considerar os ruídos de processo e medição. A
partir das equações 2.17, 2.18, 2.19 e2.20, pode-se reescrever o algoritmo do Filtro de
Kalman.
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As equações do processo de medição para o EKF são descritas nas equações 2.21
e 2.22.

𝑥̂´𝑘 “ 𝑓p𝑥̂𝑘´1, 𝑢𝑘, 0q (2.21)

𝑃´
𝑘 “ 𝐹𝑘𝑃𝑘´1𝐹

𝑇
𝑘 ` Γ𝑘𝑄𝑘´1Γ𝑇

𝑘 (2.22)

As equações do processo de correção para o EKF são descritas nas equações 2.23,
2.24 e 2.25.

𝐾𝑘 “ 𝑃´
𝑘 𝐻𝑇

𝑘 p𝐻𝑘𝑃´
𝑘 𝐻𝑇

𝑘 ` 𝑉𝑘𝑅𝑘𝑉 𝑇
𝑘 q

´1 (2.23)

𝑥̂𝑘 “ 𝑥̂´𝑘 `𝐾𝑘p𝑧𝑘 ´ ℎp𝑥̂´𝑘 , 0qq (2.24)

𝑃𝑘 “ p𝐼 ´𝐾𝑘𝐻𝑘q𝑃
´
𝑘 (2.25)

Deve-se fornecer ao algoritmo valores iniciais para os estados (𝑥̂𝑘´1) e para a co-
variância dos erros (𝑃𝑘´1). Assim, o processo iterativo do EKF pode ser resumido na
Figura 5.

Figura 5 – Diagrama esquemático do algoritmo do EKF
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2.4 Redes Neurais Artificiais (Artificial Neural Networks - RNA)

Redes Neurais Artificiais, ou simplesmente RNA (Artificial Neural Networks), são
sistemas computacionais inspirados nas redes neurais biológicas que compõem o cérebro
humano. Estes sistemas “aprendem” tarefas baseados em observação de comportamentos
e exemplos. O processo de aprendizagem, para uma RNA, significa melhorar sua per-
formance progressivamente. O objetivo inicial do uso de RNAs era resolver problemas
da mesma forma que o cérebro humano faria. Ao longo do tempo, porém, a atenção foi
voltada para alcançar determinadas habilidades mentais específicas. Desde então, RNAs
tem sido utilizadas em diversas áreas, tais como visão computacional, reconhecimento de
fala, aprendizado de padrões, redes sociais, video games, medicina, entre outras.

2.4.1 Redes Neurais Biológicas

Os neurônios são células nervosas, que desempenham o papel de conduzir os im-
pulsos nervosos. Estas células especializadas são, portanto, as unidades básicas do sistema
que processa as informações e estímulos no corpo humano. O neurônio pode ser consi-
derado a unidade básica da estrutura do cérebro e do sistema nervoso. Há cerca de 86
bilhões de neurônios no sistema nervoso humano [HAYKIN, 2001].

Na Figura 6 é mostrado um neurônio e seus componentes. Dentre os diversos com-
ponentes de um neurônio, destacam-se, a nível de entendimento do funcionamento das
redes neurais, o dendrito, o corpo celular e o axônio. Os dendritos recebem sinais
elétricos de diversas fontes, que são então transmitidos ao corpo celular. O corpo celular,
então, acumula os diversos sinais que chegam através dos dentritos. Quando o sinal acu-
mulado ultrapassa um certo limiar, o threshold, um pulso elétrico é transmitido a outros
neurônios através do axônio. Além disso, o axônio pode transferir informação a outros
tipos de células com o intuito de controlá-las [KRIESEL, 2005].

Um processo importante na transmissão de informação pelos neurônios é o entendi-
mento da sinapse. A sinapse é o ponto de interconexão de um neurônio com outros neurô-
nios. A transmissão do sinal via sinapse pode ser feita eletricamente ou quimicamente, e
a quantidade de sinal transmitido depende da força das conexões (pesos sinápticos).

2.4.2 Redes Neurais Artificiais - RNA

Da mesma forma que o neurônio é a célula-base das redes neurais biológicas, ao
estudar redes neurais artificiais, projeta-se um modelo de neurônio a ser implementado
de forma computacional. O modelo computacional do neurônio é mostrado na Figura 7.
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Figura 6 – Neurônio biológico

Figura 7 – Neurônio artificial - paralelos com o neurônio biológico

São traçados, então, paralelos entre o modelo computacional do neurônio e os
neurônios reais:

∙ Entradas - Representam os sinais captados pelos dendritos de um neurônio. Um
neurônio pode ter diversas diferentes entradas.

∙ Pesos - Representam os pesos sinápticos que existem na transmissão de informação
de um neurônio para outro.

∙ Somatório - Realiza a soma ponderada das entradas, de acordo com os pesos.
Representa o acúmulo de sinal realizado pelo corpo celular.
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∙ Função de ativação - Baseado no valor de threshold, determina o sinal de saída
do neurônio baseado na soma ponderadas das entradas.

∙ Saída - Representa o sinal a ser transmitido para outros neurônios através do axônio

O valor de Bias é um valor utilizado para que a saída do neurônio não seja nula
caso todas as entradas sejam nulas. A função de ativação, normalmente, é projetada para
que o valor de saída seja normalizado, independente do valor das entradas do neurônio.
Dentre as diversas funções de ativação normalmente utilizadas, destacam-se a função de
Heaviside, a função de Fermi ou a Tangente hiperbólica. Na Figura 8 são mostradas estas
funções de ativação.

Figura 8 – Funções de Ativação

Redes Neurais típicas são composta por diferentes camadas:

∙ Camada de Entrada (Input Layer) - Contém os neurônios que recebem a in-
formação que será usada para treinamento

∙ Camada de Saída (Output Layer Layer) - Contém os neurônios que geram as
saídas da rede

∙ Camadas Escondidas (Hidden Layer) - Encontram-se entre a camada de en-
trada e a camada de saída. O papel da Hidden Layer é transformar as entradas de
forma que a camada de saída gere as respostas esperadas.

A disposição das camadas de uma rede neural é mostrada na Figura 9. Diferentes
tipos de arquitetura são usadas para o projeto de RNAs. Cada arquitetura possui carac-
terísticas próprias, que dependem da forma como os neurônios e camadas se conectam. A
Tabela 1 mostra as diferentes classificações de RNAs dependendo do parâmetro adotado.
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Tabela 1 – Classificação dos diferentes tipos de RNAs

Parâmetro Tipo de Rede Descrição
Conexões entre neurô-
nios e camadas

FeedForward ou Re-
corrente ∙ FeedForward - Não possui rea-

limentação

∙ Recorrente - Possui realimen-
tação

Número de camadas
escondidas

Single Layer ou Multi
Layer ∙ Single Layer - Possui uma ca-

mada escondida

∙ Multi Layer - Possui mais de
uma camada escondida

Natureza dos pesos Fixa ou Adaptativa
∙ Fixa - Os pesos são fixados a

priori e não são mudados

∙ adaptativa - Os pesos são mo-
dificados ao longo do treina-
mento

Memória Estática ou Dinâmica
∙ Estática - Não possuem me-

mória, ou seja, a saída atual
depende apenas das entradas
atuais

∙ Dinâmica - Possuem memória,
ou seja, a saída atual depende
das entradas atuais, bem como
das entradas e estados passa-
dos

2.4.3 Processo de aprendizagem em RNAs

As redes neurais “aprendem” ajustando os valores dos pesos e do bias (threshold)
de forma iterativa, de forma a alcançar o valor desejado de saída. Para que o processo de
aprendizado ocorra, porém, é necessário que a RNA seja treinada primeiro. Um conjunto
de dados é utilizado para realização do treinamento da RNA, conhecidos como Training
Set. O processo de aprendizado pode ser resumido na Figura 10.
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Figura 9 – Camadas de uma RNA

Figura 10 – Diagrama esquemático do processo de treinamento de uma RNA

O treinamento das RNAs é feito seguindo um conjunto de regras, conhecidas como
algoritmo de aprendizagem. Existem diferentes algoritmos de aprendizagem, dentre
os quais destacam-se:

∙ Gradient Descent

∙ Back propagation

∙ Hebbian Rule

∙ Levenberg Marquadt

∙ Hopfield Law

∙ entre outros

Cada algoritmo de aprendizagem possui características próprias e aplicações para
os quais são mais adequados. Outra característica importante quanto ao treinamento de
RNAs trata-se do tipo de treinamento, que pode ser dividido da seguinte forma:
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∙ Treinamento Supervisionado - No treinamento supervisionado, o conjunto de dados
usado para o treinamento consiste nas entradas de um sistema bem como as saídas
desse sistema, conhecidas como target (alvo). Dessa forma, cada conjunto de treina-
mento pode ser comparado aos dados do target, de forma que a rede pode receber
um vetor de erros preciso, e fazer as devidas correções nos pesos [KRIESEL, 2005].

∙ Treinamento Não-Supervisionado - No treinamento não-supervisionado, o conjunto
de dados usado para o treinamento consiste apenas nas entradas do sistema, ou seja,
as saidas desejadas para esse sistema são desconhecidas. Dessa forma, a rede tenta,
por ela mesma, detectar similaridades e gerar padrões. É o método de aprendizado
que mais se aproxima da aprendizagem biológica.

∙ Treinamento de Reforço - No treinamento de reforço, os valores de saída são des-
conhecidos, assim como no treinamento não-supervisionado, porém, a cada iteração
do algoritmo, um valor lógico ou real é recebido, indicando se o resultado está certo
ou não, e, possivelmente, o quão certo ou errado esses valores são.

∙ Treinamento Offline - O ajuste nos valores do peso e do threshold é feito apenas
quando todos os dados de treinamento são apresentados à rede.

∙ Treinamento Online - O ajuste nos valores do peso e do threshold é feito cada vez
que uma amostra de treinamento é apresentada à rede.

O processo de aprendizado pode ser encerrado de acordo com a precisão dos re-
sultados obtidos ou com o número de iterações realizadas. Cabe ao projetista determinar
quando parar o treinamento, dependendo da necessidade de uso e precisão das RNAs.

2.5 Modelo de Controle Preditivo

O Modelo de Controle Preditivo (MCP) é um método de controle de processos
bastante utilizado na indústria e na academia. A base do controle preditivo é o cálculo
de uma sequência futura dos sinais de entrada de um processo de forma que uma função
de custo definida sobre um horizonte de previsões seja minimizada [GEORGIEVA; AZE-
VEDO, 2011]. A realização do controle preditivo, por sua vez, exige um modelo dinâmico
razoavelmente satisfatório do processo a ser controlado, uma vez que as previsões do sinal
de entrada serão baseadas neste modelo. Na Figura 11 é ilustrado o Modelo de Controle
Preditivo de um processo aleatório.
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Figura 11 – Diagrama de blocos de um MCP

Em resumo, conforme ilustrado na Figura 11, a leitura do sensor e o modelo são
usados para prever os valores futuros de saída. Então, as mudanças apropriadas nas variá-
veis de saída podem ser calculadas através tanto das predições do modelo quanto da leitura
dos sensores. Em essência, as mudanças em cada variável manipulada são coordenadas
considerando a relação entrada-saída representada pelo modelo do processo [SEBORG;
EDGAR; MELLICHAMP, 2010].

Ao se trabalhar com Ligas de Memória de Forma, a não-linearidade e histerese
do material devem ser levadas em consideração. Dessa forma, um modelo matemático
satisfatório pode ser de difícil obtenção ou exigir simplificações que limitem o uso prático
de atuadores de LMF. Nesse sentido, o uso de redes neurais artificiais torna-se interessante
no desenvolvimento de um modelo dinâmico satisfatório para estratégia de controle. Dessa
forma, é possível substituir o modelo do processo no diagrama de blocos da Figura 11 por
uma RNA treinada para este propósito, conforme mostrado na Figura 12.

O controle preditivo baseado redes neurais usa uma RNA para prever a performace
futura da planta. A fim de otimizar esta performance através de um certo horizonte de
tempo, o controlador calcula o sinal de entrada da planta [NIKDEL et al., 2014]. Entradas
e saídas passadas da planta podem ser usadas para esse fim. Dessa forma, pode-se coletar
dados sobre a operação e fazer o treinamento da RNA de forma offline.
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Figura 12 – Diagrama de blocos de um controlador preditivo utilizando RNA

Vários trabalhos utilizando controle preditivo baseado em redes neurais tem sido
desenvolvidos. Em [HUANG; LEWIS, 2003], é proposto um controle preditivo baseado
em redes neurais para sistemas dinâmicos não-lineares com atraso temporal. Em [YOO;
PARK; CHOI, 2005] é proposto um modelo de controle preditivo para sistemas caóticos
utilizando uma RNA recorrente. Esta mesma ideia é utilizada em [YOO; CHOI; PARK,
2006] para o controle de movimento em robôs móveis. Em [CHENG et al., 2015], este tipo
de controlador é usado em atuadores piezoelétricos. Em [WANG; GAO; QIU, 2016], um
combinação de controle preditivo baseado em RNA e em modelo é desenvolvido visando
o controle de processos industriais.

Tendo em vista a não-linearidade e comportamento histerético de materiais com
memória de forma, o controle preditivo baseado em RNAs se mostra como uma estratégia
interessante no uso de atuadores de LMF. Alguns trabalhos tem sido desenvolvidos nesse
sentido. Em [NIKDEL et al., 2014], é utilizado controle preditivo baseado em redes neurais
para controle de um manipulador construído com fios de LMF. Em [NIKDEL et al., 2014]
uma rede neural histerética é utilizada como modelo para implementação do controle
preditivo. Em [SRIVASTAVA; WARD; PATEL, 2017], o controle preditivo de fios de
LMF utiliza uma RNA adaptativa. Neste trabalho, um controlador preditivo simplificado
será utilizado para controle de força de uma mola de LMF.
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3 Materiais e Métodos

Este capítulo tem como objetivo mostrar os materiais utilizados e os métodos de
atuação e análise adotados para o estudo feito.

3.1 Circuito de Acionamento

O ciclo térmico em uma Liga de Memória de Forma é essencial para as diversas
aplicações práticas deste material. O aquecimento de LMFs, por sua vez, pode ser feito de
diversas formas. Uma das técnicas de aquecimento mais utilizadas e práticas é o aqueci-
mento por efeito Joule. O efeito Joule, também conhecido como aquecimento resistivo, é
o processo no qual a passagem de corrente elétrica através de um condutor produz calor.
Dentre as vantagens do uso do aquecimento resistivo, destaca-se a capacidade de controle
de temperatura através de circuitos elétricos relativamente simples.

A Modulação por Largura de Pulso (Pulse Width Modulation - PWM) é
uma técnica de modulação usada para codificar uma mensagem em um sinal pulsado,
e seu principal uso é permitir o controle de potência para dispositivos elétricos. Dentre
as diversas técnicas de modulação existentes, PWM tem a vantagem de ser robusta em
relação a ruídos, efetiva em economia de energia e facilmente implementada através de
microcontroladores [MA; SONG, 2003].

Por último, a análise da resistência elétrica, conforme visto na seção 2.2, é interes-
sante em termos de automação para sistemas que utilizam Ligas de Memória de Forma. De
fato, a medição de resistência elétrica tende a ser mais simples e confiável que as medições
de temperatura, por exemplo, que tendem a ser desuniformes ao longo de fios ou molas
de LMF. Visando o estudo mais detalhado do comportamento da resistência elétrica, é
desejável que o circuito de acionamento consiga realizar o controle da corrente elétrica
que flui pelo atuador de LMF através do sinal PWM de entrada, independentemente da
resistência elétrica do próprio atuador. De fato, a resistência elétrica dos atuadores de
LMF variam de acordo com a fase do material, temperatura, tensão aplicada, número de
ciclagens, entre outros fatores, sendo desejável a manutenção do valor da corrente elétrica
independente dos fatores citados.

Portanto, é interessante, visando o aquecimento por efeito Joule de LMFs, projetar
um circuito de acionamento baseado na modulação PWM. O uso do PWM torna viável o
uso de diferentes microcontroladores para atingir o controle de um sistema. Além disso,
o circuito projetado deve ser instrumentado de forma a permitir a leitura periódica da
resistência elétrica do atuador de LMF. Dessa forma, destacam-se os requisitos e materiais
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de projeto:

1. Circuito de potência ativado por PWM

2. Sensores de tensão e corrente para estimação da resistência elétrica

3. Reguladores de tensão para controle da corrente elétrica

4. Sensores de Força para treinamento da Rede Neural

O circuito de potência proposto utiliza um transistor bipolar de junção BC547 e
um transistor de efeito de campo IRF 9510 para chaveamento da alimentação do circuito
controlada pela entrada PWM. Além disso, utiliza os reguladores de tensão LM317 para
manutenção da corrente elétrica no LMF. Estes reguladores de tensão são responsáveis
por manter a corrente elétrica constante, independentemente da carga ligada aos mesmos,
desde que a potência requerida pelo circuito não ultrapasse o limite de fornecimento do
dispositivo. O circuito limitador de corrente usando o LM317 é mostrado na Figura 13 e
o valor desta corrente é mostrado na Equação 3.1.

𝐼𝑙𝑖𝑚𝑖𝑡 “
1, 2
𝑅1

(3.1)

Figura 13 – Limitador de corrente usando LM317

Para a leitura da tensão sobre o LMF, utiliza-se um divisor de tensão resistivo. O
objetivo do divisor de tensão é limitar o valor máximo da tensão de saída para leitura do
DAQ, uma vez que os valores de pico de tensão podem ultrapassar os valores limites de
leitura do dispositivo. Para o projeto do divisor de tensão, foram utilizados um resistor
de precisão de 330Ω e um resistor de precisão de 470Ω. O circuito divisor de tensão é
mostrado na Figura 14.
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Figura 14 – Circuito divisor de tensão

A tensão de saída de um circuito divisor de tensão pode ser encontrada através da
Equação 3.2

𝑉𝑜𝑢𝑡 “
𝑅2

𝑅1 `𝑅2
𝑉𝑖𝑛 (3.2)

Onde 𝑉𝑖𝑛 é a tensão de entrada do circuito e 𝑉𝑜𝑢𝑡 é a tensão de saída do circuito.

Aplicando a Equação 3.2 para 𝑅1 “ 470Ω e 𝑅2 “ 330Ω, obtém-se a seguinte
equação (considerando 𝑉𝑖𝑛 “ 𝑉𝐿𝑀𝐹 , onde 𝑉𝐿𝑀𝐹 é a tensão sobre o atuador LMF):

𝑉𝑜𝑢𝑡 “ 0, 4125𝑉𝐿𝑀𝐹 ñ 𝑉𝐿𝑀𝐹 “ 2, 42𝑉𝑜𝑢𝑡 (3.3)

Para a leitura de corrente elétrica é utilizado um sensor de corrente de efeito Hall,
o ACS712, que é mostrado na Figura 15. A calibração deste sensor foi feita com auxílio
do LabView e MATLAB, e sua curva característica e o modelo matemático proposto
são mostrados na Figura 16. A escolha do sensor de corrente por efeito Hall visa trazer
o mínimo de interferência no circuito, uma vez que a maioria dos sensores de corrente
elétrica necessita da utilização de um resistor em série com a carga para aferição dessa
grandeza. O modelo matemático para o sensor é descrito pela Equação 3.4

Figura 15 – Sensor de corrente de efeito Hall ACS712
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Figura 16 – Caracterização e Modelagem da curva característica para sensor ACS712

(a) Caracterização ACS712 (b) Comparação entre curva característica e
modelo

𝐼 “ 5, 3361𝑉𝑜𝑢𝑡 (3.4)

Onde 𝐼 é a corrente elétrica que circula pelo sensor e 𝑉𝑜𝑢𝑡 é a tensão de saída do
ACS712, que é lida pelo sistema de aquisição.

As equações 3.3 e 3.4 serão usadas, posteriormente, para o projeto do Filtro de
Kalman. Por fim, a partir dos valores de resistência elétrica e corrente adquiridos, estima-
se o valor da resistência elétrica do LMF através da 1a Lei de Ohm:

𝑅 “
𝑉𝐿𝑀𝐹

𝐼
(3.5)

Onde 𝑅 é a resistência elétrica, 𝑉𝐿𝑀𝐹 é a tensão sobre o atuador LMF e 𝐼 a
corrente lida pelo sensor de efeito Hall.

O diagrama esquemático do circuito de potência é mostrado na Figura 17.

Cabe destacar que todos os dispositivos utilizados para sensoreamento possuem
incertezas intrísecas a seu funcionamento. Por exemplo, o divisor resistivo utilizado para
leitura de tensão possui variações inerentes aos valores de resistência elétrica utilizados,
tipicamente de 1% para os resistores escolhidos. O sensor Hall, por sua vez, possui ruído
característico de aproximadamente 21𝑚𝑉 , fornecido pelo fabricante. Em todos esses casos,
o uso do Filtro de Kalman visa lidar de forma satisfatória com essas incertezas.

Para realizar a aquisição dos dados de tensão e corrente e escrita do sinal PWM,
utiliza-se o placa de aquisição USB-6212, da National Instruments. O NI USB-6212 é
um dispositivo que possui até 32 canais de entrada analógica (AI), até 2 canais de saída
analógica (AO), dois contadores, e até oito linhas de entrada digital (DI) e oito linhas de
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saída digital (DO), ou 32 linhas bidirecionais de entrada e saída digital (DIO) [DAQ. . . ,
2009]. O USB-6212 é mostrado na Figura 18.

Figura 17 – Diagrama esquemático do circuito de potência projetado

Figura 18 – Placa de aquisição de dados NI USB-6212

A frequência de amostragem do sinal utilizado para os experimentos foi de 100kHz,
o que garantiu boa confiabilidade às formas de onda da corrente e tensão lidas. O valor
de 100KHz foi escolhido empiricamente ao analisar-se o custo de processamento que o
aumento de frequência de amostragem causou ao sistema.
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3.2 Protótipo do Estudo de Frequências com Mola

Na seção 3.1 foi abordada a estratégia de acionamento de atuadores LMF por
PWM, e suas vantagens. Porém, embora o acionamento por PWM seja frequentemente
empregado em trabalhos que envolvem LMFs, um estudo sobre como a frequência deste
sinal interfere na atuação não é recorrente nas literaturas. Dessa forma, para promover
esse estudo, foi concebido uma plataforma de teste usando uma mola de LMF. Além do
circuito de acionamento já exposto na seção 3.1, foi utilizada uma célula de carga para
medição da força exercida pela mola ao longo do processo de ciclagem. Dessa forma,
as curvas de Resistência elétrica ˆ Força para diferentes valores de frequência foram
levantadas. A montagem da estrutura da mola e célula de carga é mostrada na Figura 19

Figura 19 – Estrutura com mola de LMF e célula de carga

(a) Montagem utilizada para experimen-
tos

(b) Esquema da montagem utilizada

O módulo HX711 foi utilizado para processamento do sinal da célula de carga,
fornecendo o valor da força exercida pela mola em gramas-força (gf). Este componente
é mostrado na Figura 20. Um microprocessador Arduino é utilizado para a comunicação
entre o HX711 e o compuatador, uma vez que este componente utiliza comunicação I2C,
inexistente na placa de aquisição NI USB-6212, da National Instruments.

Figura 20 – Módulo HX711 para leitura e processamento do sinal da célula de carga
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Para o levantamento das curvas de Resistência elétrica ˆ Força, variou-se o valor
do Duty Cycle de forma crescente até atingir o valor limite de corrente elétrica, estipulado
durante o treinamento da mola. Ao atingir o valor máximo de corrente, o Duty Cycle foi,
então, decrescido gradualmente até o nível inicial de corrente do experimento, concluindo,
assim, uma ciclagem completa. Foram feitas três ciclagens completas para cada frequência
escolhida.

Os valores escolhidos de frequência para condução dos experimentos foram 100𝐻𝑧,
200𝐻𝑧, 400𝐻𝑧, 500𝐻𝑧, 800𝐻𝑧, 1000𝐻𝑧 e 2000𝐻𝑧. Estes valores foram escolhidos com
base na frequência de amostragem utilizada para o experimento. Dessa forma, sempre
houve um número inteiro de ciclos completos, o que facilitou uma estimativa mais precisa
do valor RMS de corrente e tensão e, consequentemente, da resistência elétrica da mola.

3.3 Implementação do Filtro Estendido de Kalman

Na subseção 2.3.2 foi descrito o Filtro de Kalman, bem como suas equações, apli-
cações e vantagens. Foi projetado um Filtro de Kalman para o sistema de acionamento
do LMF a fim de tornar as estimativas de resistência elétrica menos susceptíveis a ruídos
e perturbações, especialmente do sensor de corrente Hall, que tende a apresentar uma
resposta ruidosa.

O diagrama de blocos do Filtro de Kalman Estendido é mostrado na Figura 21.
Dessa forma, para implementação do EKF computacionalmente, é necessário definir quais
são os estados 𝑥 do sistema, as saídas 𝑧, as entradas 𝑢, e as funções 𝑓p𝑥, 𝑢, 𝑤q e 𝑔p𝑥, 𝑣q. A
partir destes valores, pode-se então definir 𝐹 , 𝐻, Γ e Λ através das equações 2.17, 2.18,
2.19 e 2.20, respectivamente.

Figura 21 – Diagrama de blocos do EKF

f(x, u, w) z−1 g(x, v)

w[n] v[n]

u[n] z[n]
x[n+ 1] x[n]

1Inicialmente, definem-se os estados do sistema como sendo a corrente que circula
pelo atuador de LMF, a tensão sobre o atuador de LMF, a resistência elétrica do
atuador de LMF e a força exercida pela mola sobre a plataforma experimental. Dessa
forma, o vetor de estados é descrito na Equação 3.6. A entrada do sistema, por sua vez, é o
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Duty Cycle aplicado ao circuito de potência. Para termos de simplificação, a entrada será
normalizada para valores entre 0 e 1. A entrada do sistema, então, é representada pela
Equação 3.7. Por fim, o vetor de saída do sistema é composto pela corrente, a tensão
sobre o atuador de LMF e a força exercida pela mola sobre a plataforma experimen-
tal. De fato, as saídas são também estados do sistema. O vetor de saída é mostrado na
Equação 3.8.

𝑥r𝑛s “

»

—

—

—

—

–

𝐼𝐿𝑀𝐹 r𝑛s

𝑉𝐿𝑀𝐹 r𝑛s

𝑅𝐿𝑀𝐹 r𝑛s

𝐹𝐿𝑀𝐹 r𝑛s

fi

ffi

ffi

ffi

ffi

fl

(3.6)

𝑢r𝑛s “ 𝐷𝐶r𝑛s (3.7)

𝑧r𝑛s “

»

—

–

𝐼𝐿𝑀𝐹 r𝑛s

𝑉𝐿𝑀𝐹 r𝑛s

𝐹𝐿𝑀𝐹 r𝑛s

fi

ffi

fl

(3.8)

Além disso, as funções 𝑓p𝑥, 𝑢, 𝑤q e 𝑔p𝑥, 𝑣q devem ser definidas. A função 𝑔p𝑥, 𝑣q

pode ser definida com auxílio das equações 3.3 e 3.4, e considerando que a os valores
fornecidos pelo módulo HX711 são iguais a força aplicada pela mola à célula de carga:

𝑧r𝑛s “ 𝑔p𝑥r𝑛s, 𝑣r𝑛sq “

»

—

–

𝑔1p𝑥r𝑛s, 𝑣r𝑛sq

𝑔2p𝑥r𝑛s, 𝑣r𝑛sq

𝑔3p𝑥r𝑛s, 𝑣r𝑛sq

fi

ffi

fl

“

»

—

–

0, 1874𝑥1r𝑛s

0, 4125𝑥2r𝑛s

𝑥4r𝑛s

fi

ffi

fl

(3.9)

Já a função 𝑓p𝑥, 𝑢, 𝑤q estima os estados na próxima iteração a partir dos estados e
entradas atuais do sistema. Além disso, como os estados do sistema tratam-se da corrente,
tensão e resistência elétrica do atuador LMF, conforme a Equação 3.6, pode-se encontrar
cada uma destas variáveis em função das demais. Para tornar mais clara essa ideia, toma-
se base no seguinte diagrama de blocos apresentado na Figura 22.

Percebe-se que os estados 𝑥1r𝑛 ` 1s, 𝑥2r𝑛 ` 1s e 𝑥3r𝑛 ` 1s podem ser estimados
a partir da entrada 𝑢r𝑛s, bem como dos estados passados, 𝑥1r𝑛s, 𝑥2r𝑛s e 𝑥3r𝑛s. Além
disso, é usual tomar como parâmetro importante da estimação de estados usando o EKF
o próximo estado sendo igual ao estado anterior, isto é, 𝑥r𝑛 ` 1s “ 𝑥r𝑛s, especialmente
quando o sistema encontra-se em regime permanente. Por fim, o estado 𝑥4r𝑛`1s é estimado
exclusivamente igualando-o ao estado anterior 𝑥4r𝑛s.

Dessa forma, é possível admitir 3 diferentes funções 𝑓p𝑥, 𝑢, 𝑤q para os estados
𝑥1r𝑛` 1s, 𝑥2r𝑛` 1s e 𝑥3r𝑛` 1s, cada qual dependendo de que parâmetros serão utilizados
para a estimação dos próximos estados.
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Figura 22 – Diagrama de blocos das saídas e estados do sistema

1,2
R1

1,2
R2

1,2
R3

u[n] + R[n] g2[n]

g1[n] z1[n]

z2[n]

x3est[n]÷

x1est[n]

x2est[n]

×

11. Estimação de estados através do valor anterior do estado

A estimação dos estados a partir do valor anterior do próprio estado é simples e pode
ser realizada segundo a Equação 3.10, especialmente quando o sistema encontra-se
em regime permanente.

𝑥r𝑛` 1s “

»

—

—

—

—

–

𝑥1r𝑛` 1s
𝑥2r𝑛` 1s
𝑥3r𝑛` 1s
𝑥4r𝑛` 1s

fi

ffi

ffi

ffi

ffi

fl

“ 𝑓𝑎𝑛𝑡p𝑥r𝑛s, 𝑢r𝑛s, 𝑤r𝑛sq “

»

—

—

—

—

–

𝑓𝑎𝑛𝑡1p𝑥r𝑛s, 𝑢r𝑛s, 𝑤r𝑛sq

𝑓𝑎𝑛𝑡2p𝑥r𝑛s, 𝑢r𝑛s, 𝑤r𝑛sq

𝑓𝑎𝑛𝑡3p𝑥r𝑛s, 𝑢r𝑛s, 𝑤r𝑛sq

𝑓𝑎𝑛𝑡4p𝑥r𝑛s, 𝑢r𝑛s, 𝑤r𝑛sq

fi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

–

𝑥1r𝑛s ` 𝑤r𝑛s

𝑥2r𝑛s ` 𝑤r𝑛s

𝑥3r𝑛s ` 𝑤r𝑛s

𝑥4r𝑛s ` 𝑤r𝑛s

fi

ffi

ffi

ffi

ffi

fl

(3.10)

2. Estimação através da combinação dos outros estados

A estimação dos estados pode ser feita através da combinação dos outros estados,
segundo a Equação 3.11. A Equação 3.11, por sua vez, pode ser obtida a partir do
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diagrama mostrado na Figura 22.

𝑥r𝑛` 1s “

»

—

–

𝑥1r𝑛` 1s
𝑥2r𝑛` 1s
𝑥3r𝑛` 1s

fi

ffi

fl

“ 𝑓𝑒𝑠𝑡p𝑥r𝑛s, 𝑢r𝑛s, 𝑤r𝑛sq “

»

—

–

𝑓𝑒𝑠𝑡1p𝑥r𝑛s, 𝑢r𝑛s, 𝑤r𝑛sq

𝑓𝑒𝑠𝑡2p𝑥r𝑛s, 𝑢r𝑛s, 𝑤r𝑛sq

𝑓𝑒𝑠𝑡3p𝑥r𝑛s, 𝑢r𝑛s, 𝑤r𝑛sq

fi

ffi

fl

“

»

—

—

–

𝑥2r𝑛s
𝑥3r𝑛s

` 𝑤r𝑛s

𝑥1r𝑛s ¨ 𝑥3r𝑛s ` 𝑤r𝑛s
𝑥2r𝑛s
𝑥1r𝑛s

` 𝑤r𝑛s

fi

ffi

ffi

fl

(3.11)

A estimação de estados através da combinação dos outros estados não se aplica à
estimativa de força 𝑥4r𝑛` 1s.

3. Estimação através da entrada 𝑢r𝑛s

A estimação através da entrada 𝑢r𝑛s do sistema é dada pela Equação 3.12, que
também pode ser obtida a partir da Figura 22.

𝑥r𝑛` 1s “

»

—

–

𝑥1r𝑛` 1s
𝑥2r𝑛` 1s
𝑥3r𝑛` 1s

fi

ffi

fl

“ 𝑓𝑒𝑛𝑡p𝑥r𝑛s, 𝑢r𝑛s, 𝑤r𝑛sq “

»

—

–

𝑓𝑒𝑛𝑡1p𝑥r𝑛s, 𝑢r𝑛s, 𝑤r𝑛sq

𝑓𝑒𝑛𝑡2p𝑥r𝑛s, 𝑢r𝑛s, 𝑤r𝑛sq

𝑓𝑒𝑛𝑡3p𝑥r𝑛s, 𝑢r𝑛s, 𝑤r𝑛sq

fi

ffi

fl

“

»

—

—

–

ř3
𝑖“1p

1,2
𝑅𝑎𝑑𝑗𝑖

q ¨ 𝑢r𝑛s ` 𝑤r𝑛s
ř3

𝑖“1p
1,2

𝑅𝑎𝑑𝑗𝑖
q ¨ 𝑢r𝑛s ¨ 𝑥3r𝑛s ` 𝑤r𝑛s

ř3
𝑖“1p

1,2
𝑅𝑎𝑑𝑗𝑖

q ¨ 𝑢r𝑛s ¨
ř3

𝑖“1p
1,2

𝑅𝑎𝑑𝑗𝑖
q ¨ 𝑢r𝑛s ¨ 𝑥3r𝑛s ` 𝑤r𝑛s

fi

ffi

ffi

fl

(3.12)

A estimação de estados através da entrada 𝑢r𝑛s não se aplica à estimativa de força
𝑥4r𝑛` 1s.

Tendo em vista as diferentes formas de calcular a função 𝑓p𝑥r𝑛s, 𝑢r𝑛s, 𝑤r𝑛sq, propõe-
se uma estratégia de ponderação no cálculo desta função através de uma matriz de pesos.
Esta matriz, basicamente, estabelece qual a porcentagem de cada forma de cálculo de
𝑓p𝑥r𝑛s, 𝑢r𝑛s, 𝑤r𝑛sq vai compor o valor final de 𝑥r𝑛 ` 1s. A matriz de porcentagem 𝑃 é
proposta na Equação 3.13:

𝑃 “

»

—

–

𝑝𝑎𝑛𝑡1 𝑝𝑎𝑛𝑡2 𝑝𝑎𝑛𝑡3

𝑝𝑒𝑠𝑡1 𝑝𝑒𝑠𝑡2 𝑝𝑒𝑠𝑡3

𝑝𝑒𝑛𝑡1 𝑝𝑒𝑛𝑡2 𝑝𝑒𝑛𝑡3

fi

ffi

fl

(3.13)

Onde os termos 𝑝𝑎𝑛𝑡 são os pesos referentes às funções que utilizam a estimação
através dos valores anteriores do próprio estado, os termos 𝑝𝑒𝑠𝑡 são os pesos referentes
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às funções que utilizam a estimação através de uma combinação dos outros estados e os
termos 𝑝𝑒𝑛𝑡 são os pesos referentes às funções que utilizam a estimação através do valor
de entrada do sistema. Dessa forma, 𝑥r𝑛`1s pode ser estimado pela soma ponderada das
funções 𝑓𝑎𝑛𝑡, 𝑓𝑒𝑠𝑡 e 𝑓𝑒𝑛𝑡 conforme a Equação 3.14. Como o estado 𝑥4r𝑛 ` 1s é estimado
apenas pelos seu valor anterior 𝑥4r𝑛s, a matriz de pesos não se aplica a este estado.

𝑥r𝑛` 1s “

»

—

–

𝑥1r𝑛` 1s
𝑥2r𝑛` 1s
𝑥3r𝑛` 1s

fi

ffi

fl

“ 𝑓p𝑥r𝑛s, 𝑢r𝑛s, 𝑤r𝑛sq “

»

—

–

𝑓1p𝑥r𝑛s, 𝑢r𝑛s, 𝑤r𝑛sq

𝑓2p𝑥r𝑛s, 𝑢r𝑛s, 𝑤r𝑛sq

𝑓3p𝑥r𝑛s, 𝑢r𝑛s, 𝑤r𝑛sq

fi

ffi

fl

“

»

—

–

𝑝𝑎𝑛𝑡1 ¨ 𝑓𝑎𝑛𝑡1 ` 𝑝𝑒𝑠𝑡1 ¨ 𝑓𝑒𝑠𝑡1 ` 𝑝𝑒𝑛𝑡1 ¨ 𝑓𝑒𝑛𝑡1 ` 𝑤r𝑛s

𝑝𝑎𝑛𝑡2 ¨ 𝑓𝑎𝑛𝑡2 ` 𝑝𝑒𝑠𝑡2 ¨ 𝑓𝑒𝑠𝑡2 ` 𝑝𝑒𝑛𝑡2 ¨ 𝑓𝑒𝑛𝑡2 ` 𝑤r𝑛s

𝑝𝑎𝑛𝑡3 ¨ 𝑓𝑎𝑛𝑡3 ` 𝑝𝑒𝑠𝑡3 ¨ 𝑓𝑒𝑠𝑡3 ` 𝑝𝑒𝑛𝑡3 ¨ 𝑓𝑒𝑛𝑡3 ` 𝑤r𝑛s

fi

ffi

fl

“

»

—

—

–

𝑝𝑎𝑛𝑡1 ¨ 𝑥1r𝑛s ` 𝑝𝑒𝑠𝑡1 ¨
𝑥2r𝑛s
𝑥3r𝑛s

` 𝑝𝑒𝑛𝑡1 ¨
ř3

𝑖“1p
1,2

𝑅𝑎𝑑𝑗𝑖
q ¨ 𝑢r𝑛s ` 𝑤r𝑛s

𝑝𝑎𝑛𝑡2 ¨ 𝑥2r𝑛s ` 𝑝𝑒𝑠𝑡2 ¨ 𝑥1r𝑛s ¨ 𝑥3r𝑛s ` 𝑝𝑒𝑛𝑡2 ¨
ř3

𝑖“1p
1,2

𝑅𝑎𝑑𝑗𝑖
q ¨ 𝑢r𝑛s ¨ 𝑥3r𝑛s ` 𝑤r𝑛s

𝑝𝑎𝑛𝑡3 ¨ 𝑥3r𝑛s ` 𝑝𝑒𝑠𝑡3 ¨
𝑥2r𝑛s
𝑥1r𝑛s

` 𝑝𝑒𝑛𝑡3 ¨
ř3

𝑖“1p
1,2

𝑅𝑎𝑑𝑗𝑖
q ¨ 𝑢r𝑛s ¨

ř3
𝑖“1p

1,2
𝑅𝑎𝑑𝑗𝑖

q ¨ 𝑢r𝑛s ¨ 𝑥3r𝑛s ` 𝑤r𝑛s

fi

ffi

ffi

fl

(3.14)

Para que a estimação ponderada seja precisa, é necessário que 𝑝𝑎𝑛𝑡1`𝑝𝑒𝑠𝑡1`𝑝𝑒𝑛𝑡1 “

1, 𝑝𝑎𝑛𝑡2 ` 𝑝𝑒𝑠𝑡2 ` 𝑝𝑒𝑛𝑡2 “ 1 e 𝑝𝑎𝑛𝑡3 ` 𝑝𝑒𝑠𝑡3 ` 𝑝𝑒𝑛𝑡3 “ 1. A ideia de utilizar a soma ponderada
é dar mais ou menos importância à forma de calcular a função 𝑓p𝑥r𝑛s, 𝑢r𝑛s, 𝑤r𝑛sq. Por
exemplo, quando o sistema está em regime permanente, é interessante que o peso da
estimação através do próprio estado anterior seja maior, devido à maior confiabilidade dos
próprios estados já filtrados. Já em um momento de transistório, é interessante atribuir
maior peso à entrada, por exemplo, uma vez que a convergência através da entrada tende
a ser mais rápida, apesar da menor precisão.

Uma vez que a Equação 3.14 está definida, é possível definir 𝐹 , 𝐻, Γ e Λ através
das equações 2.17, 2.18, 2.19 e 2.20, respectivamente. Dessa forma, para o EKF projetado,
tem-se o seguinte:

𝐹 “

»

—

—

–

𝑝𝑎𝑛𝑡1
𝑝𝑒𝑠𝑡1
𝑥3r𝑛s

´
𝑝𝑒𝑠𝑡2 ¨𝑥2r𝑛s

𝑥2
3r𝑛s

𝑝𝑒𝑠𝑡2 ¨ 𝑥3r𝑛s 𝑝𝑎𝑛𝑡2 𝑝𝑒𝑠𝑡2 ¨ 𝑥1r𝑛s ` 𝑝𝑒𝑛𝑡2p
ř3

𝑖“1
1,2

𝑅𝑎𝑑𝑗𝑖
¨ 𝑢r𝑛sq

´
𝑝𝑒𝑠𝑡3 ¨𝑥2r𝑛s

𝑥2
1r𝑛s

𝑝𝑒𝑠𝑡3
𝑥1r𝑛s

𝑝𝑎𝑛𝑡3

fi

ffi

ffi

fl

(3.15)

𝐻 “

«

0, 1874 0 0
0 0, 4247 0

ff

(3.16)

Γ “

»

—

–

1 0 0
0 1 0
0 0 1

fi

ffi

fl

(3.17)
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Λ “
«

1 0 0
0 1 0

ff

(3.18)

Tomando como base as equações 3.6, 3.7, 3.14, 3.9 3.15, 3.16, 3.17, 3.18, 2.21,
2.22, 2.23, 2.24 e 2.25, e conforme visto na subseção 2.3.3, projetou-se o Filtro de Kalman
Estendido para o levantamento das curvas tanto da mola de LMF quanto dos fios de LMF
usados na confecção da mão. O EKF foi implementado com auxílio do software LabView.
O Filtro de Kalman é inicializado com os valores iniciais das variáveis estimadas durante
os experimentos de coleta de dados, de forma que a convergência dos valores estimados
seja mais rápida possível.

3.4 Redes Neurais

Duas redes neurais são treinadas para implementação do projeto de controle do
atuador de LMF: uma rede que atuará como sensor para feedback da resistência elétrica, e
outra rede que atuará como modelo para o projeto do controlador preditivo simplificado.
As RNAs foram treinadas com auxílio do software MATLAB, a partir dos dados coletados,
e foram implementadas com auxílio do software LabView. No LabView, são criados blocos
para os neurônios e camadas das RNAs treinadas, nas quais é feito todo o processo de
propagação das entradas através dos pesos e funções de ativação. Os valores de entradas
das redes são atualizados a cada iteração a partir da estimação de estados do Filtro de
Kalman, de forma que as primeiras previsões das redes neurais tendem a falhar, mas
convergem em poucas iterações para os valores reais de força.

3.4.1 Rede Neural como Sensor de Resistência Elétrica

Conforme visto na subseção 2.4.2, redes neurais do tipo feedforward são RNAs
que não possuem realimentação entre suas camadas. Redes neurais recorrentes são RNAs
que possuem realimentação entre suas camadas. Neste trabalho, é ultilizada uma RNA do
tipo feedforward e uma RNA do tipo recorrente para aprendizagem do comportamento de
resistência elétrica em uma mola de LMF. utilizam-se RNAs destas diferentes topologias a
fim de verificar a importância de realimentações na previsão do comportamento histerético
do atuador de memória de forma.

Na figura 23 são mostradas as topologias das redes do tipo feedforward utilizando
uma e duas camadas ocultas. Já na figura 24 são mostradas as topologias das redes
recorrentes utilizando uma e duas camadas ocultas. Sabe-se, da literatura, que uma RNA
não precisa que mais de duas camadas ocultas para solucionar a maioria dos problemas. De
fato, um elevado número de neurônios ou de camadas pode levar a um erro de overfitting,
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ou seja, a rede “memoriza” o comportamento dos dados apresentados para treinamento,
mas não é capaz de generalizar este comportamento em situações até mesmo ligeiramente
diferentes das condições de treinamento. Dessa forma, como regra prática no projeto
de RNAs, visa-se o menor número possível de camadas e de neurônios por camada que
atendam a uma certa performance desejada. Para fins de comparação, será usado o Erro
Médio Quadrático (Mean Square Error - MSE) como variável analisada. Em ambas as
topologias, camadas ocultas com 5 neurônios são utilizadas.

Figura 23 – RNAs do tipo feedforward utilizando uma e duas camadas ocultas
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(a) RNA do tipo feedforward com uma camada oculta
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de Sáıda

1

(b) RNA do tipo feedforward com duas camadas ocultas

Os dados utilizados como entradas da RNA do tipo feedforward são os valores
de variação de resistência elétrica, os valores iniciais de resistência elétrica e força e um
sinal de tag. Este sinal de tag serve para identificar o ciclo de transformação de fase do
material, ou seja, se o atuador está sendo transformado da fase martensita para austenita
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(aquecimento) ou da fase austenita para martensita (resfriamento). Os dados utilizados
como target são os valores de variação de força, em grama força (gf).

Figura 24 – RNAs recorrentes utilizando uma e duas camadas ocultas
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(a) RNA recorrente com uma camada oculta
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(b) RNA recorrente com duas camadas ocultas

Nas RNAs recorrentes, além dos dados de entrada anteriormente citados, a reali-
mentação da saída e a realimentação das camadas ocultas também são utilizadas como
entradas. A entrada de resistência elétrica é um vetor de três elementos, representado gra-
ficamente na Figura 24 por “(0:2)”, indicando um vetor composto pela resistência elétrica
atual e os últimos dois valores de resistência elétrica. Os termos “(1:1)” e “(1:2)”, também
representados graficamente na Figura 24, indicam vetores do último e dos dois últimos
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elementos de cada variável, respectivamente (estes vetores não contém os valores atuais
destas variáveis). Os termos “(1:1)” e “(1:2)” estão ligados às realimentações da saída ou
das camadas ocultas.

A utilização dos dados iniciais de resistência elétrica e força, em ambas as redes,
são importantes devido ao fato de a resistência elétrica e a força exercida pela mola de
LMF serem influenciadas por outros fatores, tais como temperatura, desgaste da mola,
desgaste do suporte, entre outros. Por este motivo, os dados para treinamento utilizados
são as variações de resistência elétrica e, dessa forma, ao adicionar estas entradas à Rede
Neural, busca-se torná-la mais abrangente em diversas situações. Para a realização do
treinamento, duas molas de LMF, de comprimento 12 mm, são utilizadas. Experimentos
adicionais foram conduzidos com as molas para verificação da eficácia da RNA treinada,
e uma terceira mola, de mesmo comprimento, foi utilizada para os testes da RNA que
atua como sensor e da RNA que atua como modelo para o controle preditivo.

Em todos os treinamentos, foram utilizados o algoritmo de Levenberg-Marquadt
com validação cruzada. O erro mínimo admissível escolhido foi 0, de forma que o trei-
namento encerra apenas quando o número máximo de épocas ou o número de checks de
validação são atingidos. Estes parâmetros de treinamento são os mesmos para todas as
RNAs, de forma que os resultados dependem principalmente do tipo de rede e do número
de neurônios e camadas adotados. No total, foram utilizados para treinamento um total
de 7619 amostras coletadas através da instrumentação eletrônica do sistema. Deste total
de amostras, 75% foram utilizados para treinamento, 15% foram utilizados para validação
e 10% foram utilizados para testes.

3.4.2 Rede Neural como Modelo

De forma similar à RNA implementada como sensor, foram testadas redes neurais,
porém apenas redes feedforward. Os dados utilizados como entradas da RNA do tipo
feedforward são os valores de corrente elétrica e um sinal de tag. De forma similar, este
sinal de tag serve para identificar o ciclo de transformação de fase do material, ou seja, se
o atuador está sendo transformado da fase martensita para austenita (aquecimento) ou
da fase austenita para martensita (resfriamento). Os dados utilizados como target são os
valores de variação de força, em grama força (gf). Na Figura 25 é mostrada a topologia
de RNA utilizada para o modelo do controlador preditivo.

Diferentemente da RNA treinada como sensor, esta rede usa como entrada o valor
de corrente elétrica que atua na mola de LMF devido ao fato que esta é a variável mani-
pulada da planta. De fato, os valores de resistência elétrica não podem ser efetivamente
alterados, mas são consequência direta da mudança de corrente elétrica no atuador. Dessa
forma, o controlador preditivo fornece à planta um novo valor de corrente elétrica que será
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aplicado ao sistema. O valor de corrente é alterado a partir da alteração do Duty Cycle
do sinal PWM. Apenas a topologia com uma camada oculta foi treinada.

Figura 25 – RNAs do tipo feedforward utilizando uma e duas camadas ocultas
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1Igualmente à RNA implementada como sensor, foram utilizados para treinamento
um total de 7619 amostras coletadas através da instrumentação eletrônica do sistema.
Deste total de amostras, 75% foram utilizados para treinamento, 15% foram utilizados
para validação e 10% foram utilizados para testes.

3.5 Implementação do Controle Preditivo

Conforme visto na seção 2.5, para implementação do controle preditivo baseado
em redes neurais, necessita-se de um modelo do processo a ser controlado e um bloco
de otimização, que fornecerá o valor de entrada ao sistema através da minimização de
uma certa função de custo. O modelo utilizado para o controlador será a RNA treinada
conforme visto na subseção 3.4.2.

Portanto, uma função de custo deve ser implementada de forma que o bloco de
otimização funcione corretamente. Existem diversas funções de custo que podem ser uti-
lizadas para esse fim. Em comum, as funções de custo se baseiam nas entradas e saídas
passadas do sistema para realizar a previsão.

Dependendo do tamanho do horizonte de previsão, a resolução da função de custo
pode se tornar difícil ou exigir certo custo computacional, especialmente quando se tra-
balha com sistemas embarcados cujo processador deve atender a diversas exigências do
sistema. Dessa forma, é desejável que a função de custo do controlador preditivo seja a
mais simples possível, sem que haja uma perda considerável de performance.
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Nesse sentido, é proposto um modelo de controlador preditivo simplificado, baseado
em redes neurais, no qual a função de custo é o erro médio quadrático (Mean Square Error -
MSE) e o horizonte de previsão é unitário, ou seja, a função de custo é calculada a partir do
último valor de entrada e a previsão é apenas para a próxima iteração. Obviamente, uma
função de custo tão simplificada pode prejudicar a performance do sistema. Dessa forma,
também é proposto uma função de correção, baseada no erro entre saída e referência, a
fim de compensar a simplicidade da função de custo. A ideia dessa função de correção é
aumentar ou diminuir a corrente aplicada ao processo, caso os valores de corrente previstos
pela função de custo não façam o valor de força exercida pelo atuador de LMF convergir
para o valor desejado. O diagrama de blocos do controlador simplificado é mostrado na
Figura 26.

Figura 26 – Diagrama de blocos do controlador preditivo simplificado

Referência

Rede
Neural

MSE

Correção

Planta Sáıda+
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A função de Erro Médio Quadrático pode ser calculada de acordo com a Equa-
ção 3.19, onde 𝑦1 é o valor de força previsto pelo modelo da rede neural e 𝑅 é o valor da
referência. A partir do erro médio quadrático calculado, um novo valor de entrada para o
sistema é estimado. O valor de corrente elétrica que deve ser somado à entrada é calculado
a partir do erro entre o valor medido de força e da referência, segundo a Equação 3.20. O
termo 𝛼 trata-se de um fator de correção, que varia de acordo com o valor percentual do
erro em relação à referência, de forma que quanto maior o valor do erro, maior deve ser a
correção a ser aplicada ao sistema. O valor do fator de correção 𝛼 pode ser determinado
a partir Tabela 2. Os valores de 𝛼 foram determinados experimentalmente.

𝑀𝑆𝐸 “ p𝑦1p𝑡q ´𝑅p𝑡qq2 (3.19)

Δ𝐼 “ 𝛼 ¨ 𝑒𝑟𝑟𝑜 (3.20)
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Tabela 2 – Valores do fator de correção 𝛼 de acordo com o erro percentual entre força
medida e referência

Erro Percentual Fator de Correção 𝛼
𝑒𝑟𝑟𝑜 ą 20% 0, 02

10% ă 𝑒𝑟𝑟𝑜 ă 20% 0, 015
5% ă 𝑒𝑟𝑟𝑜 ă 10% 0, 01
1% ă 𝑒𝑟𝑟𝑜 ă 5% 0, 005

𝑒𝑟𝑟𝑜 ă 1% 0, 002
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4 Resultados e Discussões

Neste capítulo, são discutidos os resultados obtidos através das simulações e testes
experimentais das implementações apresentadas no Capítulo 3.

4.1 Interpretação das curvas de Resistência Elétricaˆ Força

Foram conduzidos experimentos de ciclagem completa nas diferentes frequências
especificadas na seção 3.2 e as curvas da relação Força ˆ Resistência Elétrica são
levantadas e mostradas na Figura 27.

Um fato interessante a se perceber na análise da Figura 27 é que, embora as
curvas pareçam seguir um mesmo padrão, elas encontram-se, graficamente, em diferentes
posições. Esse deslocamento entre as curvas em diferentes experimentos é explicado pelo
fato de que o Efeito de Memória de Forma em si varia de acordo com o uso do material.
De fato, a fadiga em LMFs é um das grandes dificuldades em encontrar repetibilidade em
atuadores feitos desses materiais.

Nesse sentido, é interessante, ao invés de estudar os valores absolutos de força
e resistência elétrica, estudar seus valores normalizados, de forma que fatores externos
tais como a fadiga do material e a temperatura possuam menor influência nas curvas
levantadas. Na Figura 28 são mostradas as curvas normalizadas de Força ˆ Resistência
Elétrica.

Analisando a Figura 28, percebe-se que as curvas, em geral, se sobrepoem. Isso
significa que a forma das curvas se mantém ao longo das ciclagens, embora sua posição
gráfica possa mudar devido a outros fatores. Dessa forma, uma Rede Neural deve ser
capaz de compreender e prever com certa precisão outras grandezas, tal como a força, a
partir da resistência elétrica. Além disso, é importante fornecer à RNA os valores iniciais
de resistência elétrica e força para que a estimação de valores seja mais fiel à realidade.

Um segundo ponto interessante a ser analisado nas curvas mostradas é a mudança
na inclinação das curvas, que pode ser mostrada através de assíntotas. Para exemplificar
a ideia, foi tomada uma das curvas realizadas no experimento (frequência de 400 Hz,
experimento 1) e traçadas duas assíntotas, conforme mostrado na Figura 29.
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Figura 27 – Relação Força ˆ Resistência Elétrica para a mola de LMF em diferentes
frequências

(a) Relação entre força e resistência
elétrica - 100 Hz

(b) Relação entre força e resistência
elétrica - 200 Hz

(c) Relação entre força e resistência
elétrica - 400 Hz

(d) Relação entre força e resistência
elétrica - 500 Hz

(e) Relação entre força e resistência
elétrica - 800 Hz

(f) Relação entre força e resistência
elétrica - 1000 Hz

(g) Relação entre força e resistência
elétrica - 2000 Hz
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Figura 28 – Relação Força ˆ Resistência Elétrica para a mola de LMF em diferentes
frequências (valores normalizados)

(a) Relação entre força e resistência
elétrica - 100 Hz

(b) Relação entre força e resistência
elétrica - 200 Hz

(c) Relação entre força e resistência
elétrica - 400 Hz

(d) Relação entre força e resistência
elétrica - 500 Hz

(e) Relação entre força e resistência
elétrica - 800 Hz

(f) Relação entre força e resistência
elétrica - 1000 Hz

(g) Relação entre força e resistência
elétrica - 2000 Hz
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Figura 29 – Curva Força x Resistência Elétrica com assíntotas

Nesta figura, através das assíntotas, pode-se perceber duas diferentes inclinações,
indicadas pela assíntota 1 e pela assíntota 2, respectivamente. A região coincidente com a
assíntota 1 corresponde à faixa onde o material encontra-se totalmente em seu estado de
martensita, enquanto a região coincidente com a assíntota 2 corresponde à faixa onde o
material encontra-se totalmente em seu estado de austenita. A região intermediária, onde
há mudança seguida de inclinação, corresponde a uma faixa de transição, onde o material
se transforma da fase martensita para fase austenita gradualmente. Esta interpretação
baseia-se no fato de que a inclinação da curva Força ˆResistência Elétrica depende da
porcentagem de martensita ou austenita no material, e que quando o material encontra-se
completamente na fase martensita ou austenita, esta inclinação tende a ser constante.

Para encontrar os pontos exatos de início e final da austenita e martensita (𝐴𝑠,
𝐴𝑓 , 𝑀𝑠 e 𝑀𝑓 , respectivamente), carecem experimentos que integrem as curvas levantadas
com as curvas de temperatura, nas quais as temperaturas de transformação estão bem
definidas.

Por fim, cabe destacar que as curvas apresentadas possuem histerese, em maior ou
menor grau, justificando, assim, o uso de redes neurais para desenvolvimento da estratégia
de controle dos atuadores de LMF.
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4.2 Escolha da frequência do sinal PWM

A análise da Figura 28 permitiu concluir a forma das curvas tendem a ser iguais,
variando apenas em seus valores inicias de força e resistência elétrica que, por sua vez,
dependem de fatores externos, tais como temperatura, fadiga do material e desgaste da
plataforma de teste. Para tornar a análise mais completa, realiza-se uma comparação das
curvas normalizadas a diferentes frequências, para verificação de algum padrão não-usual
neste comportamento. Nas figuras 30, 31 e 32 são mostrados gráficos de comparação das
curvas de diferentes frequências.

Figura 30 – Comparação das curvas de diferentes frequência - Experimento 1

Figura 31 – Comparação das curvas de diferentes frequência - Experimento 2
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Figura 32 – Comparação das curvas de diferentes frequência - Experimento 3

Ao analisar as figuras 30, 31 e 32, nota-se que as curvas de frequência 1000 Hz
e 2000 Hz tendem a se afastar das curvas de frequência mais baixa. Uma hipótese para
tal fato é que, pelo fato de os sistemas térmicos serem dezenas de vezes mais lentos que
os sistemas elétricos, frequências muito altas tendem a não conseguir prover o mesmo
nível de potência ao atuador de LMF. Porém, faltam dados suficientes para uma melhor
explanação do fenômeno, bem como a estimulação da mola a frequências mais altas.

Em termos de controle, contudo, prioriza-se a escolha das frequências mais baixas
(𝑓 ď 500𝐻𝑧), uma vez que tendem a ser mais próximas de um padrão único. Além
disso, a escolha de frequências mais baixas diminui a taxa de amostragem mínima, não
sobrecarregando, assim, o sistema de aquisição.

Para implementação do controle do atuador de LMF, será utilizada a frequência
de 100 Hz.

4.3 Treinamento da Rede Neural

Conforme exposto na seção 3.4, diversas ciclagens foram feitas utilizando duas
molas de LMF na plataforma experimental mostrada na Figura 19, e os dados coletados
nessas ciclagens foram utilizados para o treinamento das redes neurais propostas. Uma
terceira mola, de mesmo tamanho das utilizadas no treinamento, foi utilizada para rea-
lização dos testes da utilização das RNAs treinadas como sensor e como modelo para o
controlador preditivo.
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4.3.1 Rede Neural como Sensor

Iniciamente, nas figuras Figura 33 e Figura 34 são mostrados os testes feitos com
RNAs do tipo feedforward com uma e duas camadas escondidas, respectivamente. Estas
redes são mostradas na Figura 23.

Um segundo teste foi feito com os mesmos dados e é mostrado nas figuras Figura 35
e Figura 36. Neste teste, são utilizadas RNAs recorrentes, com realimentação a partir da
saída e das camadas ocultas, conforme visto na Figura 24. Novamente, são testadas redes
com uma e duas camadas escondidas.

A fim de comparação entre os resultados obtidos, foram calculados os erros médios
quadráticos (MSE) entre os valores fornecidos pelas RNAs que atuam como sensores e
o módulo HX711, leitor de força na célula de carga. Os valores de MSE calculados são
mostrados na tabela 3. Os valores de MSE apresentados se referem às médias entre os
três experimentos realizados para cada topologia de rede.

A análise da Tabela 3 permite verificar que um aumento no número de camadas
ocultas, tanto para as redes recorrentes quanto para as redes do tipo feedforward não
fornecem uma melhoria significativa no desempenho da estimação de força. Além disso, o
uso de RNAs recorrentes não se mostrou mais eficiente que as RNAs feedforward. De fato,
os valores de MSE são bem próximos para ambas as topologias. Portanto, tomando como
base estes dados, a RNA do tipo feedforward com uma camada oculta é escolhida para
implementação do sensor para feedback de resistência elétrica, visando a simplicidade de
implementação e menor custo de processamento computacional. Além disso, por possuir
um menor número de neurônios e pesos, esta topologia tende a ter melhor capacidade de
generalização.

4.3.2 Rede Neural como Modelo para o Controlador Preditivo

A partir dos resultados obtidos pela a RNA do tipo feedforward como sensor, é
projetada uma RNA feedforward com uma camada oculta, conforme mostrado na Fi-
gura 25. Na figura Figura 37 são mostrados os testes feitos com a rede treinada. Vale
ressaltar, conforme visto na subseção 3.4.2, que esta RNA utiliza como entrada os valores
de corrente elétrica aplicada à mola de LMF e o sinal de Tag, visto que são as variáveis
que efetivamente podem ser alteradas.

A média dos valores de MSE dos testes feitos foi de 1, 21. Não foram realizados
testes com RNAs com mais de uma camada oculta.
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Figura 33 – Treinamento de uma RNA do tipo feedforward com uma camada oculta

(a) Experimento 1

(b) Experimento 2

(c) Experimento 3
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Figura 34 – Treinamento de uma RNA do tipo feedforward com duas camadas ocultas

(a) Experimento 1

(b) Experimento 2

(c) Experimento 3
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Figura 35 – Treinamento de uma RNA recorrente com uma camada escondida

(a) Experimento 1

(b) Experimento 2

(c) Experimento 3
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Figura 36 – Treinamento de uma RNA recorrente com duas camadas escondidas

(a) Experimento 1

(b) Experimento 2

(c) Experimento 3
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Figura 37 – Treinamento da RNA do tipo feedforward com uma camada escondida para
modelo do controlador preditivo

(a) Experimento 1

(b) Experimento 2

(c) Experimento 3
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Tabela 3 – Valores do MSE para os diferentes tipos de RNAs

Tipo de Rede MSE
RNA feedforward com uma camada oculta 6, 25

RNA feedforward com duas camadas ocultas 2, 79
RNA recorrente com uma camada oculta 7, 98
RNA recorrente com três camadas ocultas 3, 02

4.4 Controlador Preditivo

Um controlador preditivo simplificado foi projetado conforme visto na seção 3.5.
O sistema como um todo, portanto, utiliza duas RNAs: uma como sensor e outra como
modelo para o controlador. O sistema em malha fechada controlado por feedback de resis-
tência elétrica é mostrado na Figura 38, onde 𝐼 1 é a corrente prevista pelo controlador a
ser aplicada ao sistema, Δ𝐼 é a quantidade de corrente a ser adicionada à corrente prevista
pelo controlador devido ao fator de correção, 𝐼 é a corrente elétrica efetivamente aplicada
à mola de LMF, 𝑅 é o valor de resistência elétrica estimada pelo Filtro de Kalman através
do sensor, 𝐹 é a força prevista pela RNA que atua como sensor e 𝐹 1 é a força prevista
pela RNA que atua como modelo do controlador.

Figura 38 – Diagrama de blocos do sistema em malha fechada
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Dois diferentes experimentos foram conduzidos para testar o controle e são mos-
trados na Figura 39 e na Figura 40, respectivamente. Nestes gráficos, são mostrados as
comparações entre os dados de força medidos pelo módulo HX711, pela rede neural e a
referência, além do sinal de entrada de corrente calculdo pelo controlador.
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Figura 39 – Controle de força usando controle preditivo baseado em RNA

(a) Comparação dos valores de força com a referência desejada

(b) Valores da corrente de entrada
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Figura 40 – Controle de força usando controle preditivo baseado em RNA

(a) Comparação dos valores de força com a referência desejada

(b) Valores da corrente de entrada

A partir da análise dos gráficos das figuras 39 e 40, percebe-se que o valor de
força estimado pela RNA sensora acompanha com boa precisão o valor de referência, fato
comprovado através dos gráficos mostrados na Figura 41. Porém, o valor de força lida
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pelo módulo HX711 não segue tão bem a referência quando o valor estimado pela RNA,
embora esteja sempre próximo a esse valor. Isto é explicado pelo fato que o controlador
utiliza como feedback de força a leitura da rede neural, ou seja, há uma convergência de
controle em relação à estimativa de força fornecida pela RNA sensora. Se o valor estimado
da RNA sensora difere do valor fornecido pelo sensor de força, o controle será satisfatório
em relação à leitura da rede, mas insatisfatório em relação ao sensor real de força. Este
fato exemplifica bem a razão de possuir boas aproximações nas redes neurais treinadas.

Figura 41 – Comparação do erro entre a força exercida e o valor de referência da força

(a) Erro entre os valores de força com a referência desejada para o
experimento 1

(b) Erro entre os valores de força com a referência desejada para o
experimento 2
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O controle preditivo baseado em redes neurais, portanto, mostrou-se eficiente no
controle do atuador de LMF, desde que as redes neurais utilizadas estejam próximas dos
valores reais estimados.
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5 Conclusões

Neste trabalho, foi desenvolvido um estudo sobre o funcionamento e técnicas de
sensoreamento e controle de atuadores de liga de memória de forma através de redes
neurais artificiais. Dentre os trabalhos desenvolvidos, destacam-se o projeto do Filtro de
Kalman para a dada aplicação, o projeto da RNA sensora e o projeto do controlador
preditivo simplificado baseado em uma RNA treinada como modelo do sistema. Também,
experimentos com uma mola de LMF foram conduzidos para levantamento das curvas de
Força ˆ Resistência Elétrica. A partir dos dados levantados, foi descrito o comportamento
da relação entre força e resistência elétrica com base nas transformações de fase do material
e foi escolhida uma frequência de acionamento para os fios de SMA a serem utilizados na
mola de LMF.

A partir dos resultados experimentais obtidos e explanados no Capítulo 4, destacam-
se nos seguintes pontos:

∙ O comportamento da relação entre força e resistência elétrica é não-linear e histe-
rético, sendo necessário, portanto, estratégias de análise e controle mais refinadas;

∙ A utilização do Filtro de Kalman Estendido trouxe mais exatidão e confiabilidade
às leituras realizadas, as quais tendem a ser ruidosas, especiamente devido ao sensor
de corrente por efeito Hall;

∙ As transformações de fase em LMFs modificam a inclinação da relação entre força
e resistência elétrica. Isso era esperado devido à mudança na estrutura cristalina do
material e é esperado que a inclinação das curvas que envolvem resistência elétrica
possuam comportamento semelhante em relação a outras grandezas físicas, tais como
temperatura e deformação do material;

∙ O formato das curvas de Força ˆ Resistência Elétrica tende a seguir um padrão es-
pecífico conforme visto nas curvas normalizadas obtidas pela mola de LMF, embora
estejam graficamente deslocadas devido ao desgaste natural do material. De fato, o
comportamento analisado tende a ser repetitivo ao se analisar as variações de força
e resistência elétrica, o que tornou possível o treinamento e uso de RNAs no projeto
do sensor para realimentação e no projeto do controlador;

∙ O uso de redes neurais feedforward foi eficiente em reproduzir as curvas dos experimentos-
teste realizados, tanto como sensor para feedback de resistência elétrica quanto para
atuar como um modelo para o controlador preditivo. Por outro lado, o uso de redes
neurais recorrentes não trouxe uma melhora significativa nas previsões, justificando
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assim o uso de uma topologia mais simples e que exige menor esforço computacional.
Além disso, o número de camadas utilizadas apresentou pouca influência em relação
à eficiência;

∙ O modelo de controlador proposto foi eficiente em se tratando de seguir a referência
a partir dos dados de leitura da RNA sensora. Houve pequenos erros em relação à
leitura proveniente do módulo HX711 devido aos desvios da leitura da RNA sensora
em relação à leitura do módulo, naturalmente ruidosa. Embora os erros não tenham
sido consideráveis, uma melhora no modelo da rede neural sensora, assim como
uma melhor filtragem da leitura do módulo HX711, acarretará maior precisão no
controle.

Em resumo, o uso de redes neurais artificiais no projeto de controle do atuador
de LMF mostrou-se interessante, tendo em vista que o comportamento não-linear e his-
terético foi bem descrito e um controle baseado utilizando feedback de resistência elétrica
foi bem sucedido. Naturalmente, o fenômeno de memória de forma envolve uma gama
maior de variáveis, o que teoricamente poderia dificultar o controle da força de um atu-
ador quando tem-se apenas a informação de resistência elétrica do mesmo. Porém, o uso
de RNAs, tanto no sensoreamento quanto no controle da mola conseguiu superar as difi-
culdades naturais da modelagem e atuação sobre o dispositivo. Obviamente, uma melhor
instrumentação eletrônica do sistema, bem como melhores modelos das redes neurais,
podem tornar o projeto mais eficiente.

São propostos, para a continuação da pesquisa, os seguintes itens:

∙ Melhoramento do circuito de acionamento e medição utilizado, visando maior pre-
cisão na obtenção de resultados;

∙ Levantamento de curvas de resistência elétrica para diferentes molas de diferentes
dimensões, visando maior generalidade no projeto de controle de atuadores de LMF;

∙ Estudo de topologias diferentes de redes neurais visando maior aproximação entre
modelos e dados experimentais;

∙ Estudo de metodologias diferentes de controle que envolvam os modelos de redes
neurais levantados
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