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RESUMO 

 

O Brasil tem se consolidado no mercado internacional como um dos principais produtores e 

exportadores mundiais de fibra de algodão. Apesar do bom desempenho do setor, problemas 

fitossanitários, em particular, se configuram como um grande entrave, em que um dos principais 

meios de dispersão de patógenos ocorre por sementes contaminadas. Problemas metodológicos 

na detecção e diferenciação das espécies fúngicas Colletotrichum gossypii (CG) e 

Colletotrichum gossypii var. cephalosporioides (CGC) em sementes de algodoeiro têm sido 

objeto de pesquisas, pois a similaridade das estruturas morfológicas das espécies, geram 

resultados ambíguos que contribuem para a comercialização de sementes contaminadas. Neste 

contexto, objetivou-se com este estudo desenvolver uma metodologia para classificação de CG 

e CGC em sementes de algodoeiro, utilizando imagens hiperespectrais no infravermelho 

próximo (HSI-NIR), associadas à análise multivariada de dados. Para tanto, sementes de 

algodoeiro da cultivar BRS 286 foram contaminadas com 5 isolados de CG e 15 isolados de 

CGC e submetidas ao teste de sanidade, por meio do método Blotter test. Após o período de 

incubação foram adquiridas imagens hiperespectrais das sementes. Os espectros na faixa de 

1000 a 2500 nm foram pré-processados com derivativa Savitzky-Golay de primeira ordem. 

Uma análise exploratória do conjunto de dados foi executada utilizando uma PCA, realizando-

se, posteriormente, a classificação das amostras a partir do desenvolvimento de um modelo 

PLS-DA, o qual obteve 86,5% de acerto na classe CG e 81,6% de acerto na classe CGC. Na 

predição de amostras externas, o percentual de acerto foi variável entre amostras e, 

possivelmente, tem relação com a variabilidade das espécies. A performance do modelo PLS-

DA indica que o método permite a identificação de CG e CGC, entretanto, amostras com alta 

taxa de erro nas classificações devem ser incluídas no conjunto de calibração, e ajustes na 

construção do modelo são necessários para aperfeiçoar a identificação das espécies fúngicas 

em sementes de algodoeiro. 

 

Palavras-chave: antracnose, HSI-NIR, ramulose 

 



 

 

JESUS, H. I. Identification of Colletotrichum gossypii and Colletotrichum gossypii var. 

cephalosporioides in cotton seeds using hyperspectral imaging near infrared. Areia -PB, 

2019. 56 f. Dissertação (Mestrado em Agronomia). Universidade Federal da Paraíba.  

 

ABSTRACT 

 

Brazil is consolidating itself in the international market as one of the world’s leading cotton 

fiber producers and exporters. Despite the good performance, phytosanitary problems, in 

particular, are a major obstacle, in which one of the main sources of pathogens dispersions are 

contaminated seeds. Methodological problems in detection and differentiation of the fungal 

species Colletotrichum gossypii (CG) and Colletotrichum gossypii var. cephalosporioides 

(CGC) in cotton seeds have been subject for researches, because the species morphological 

structures similarity causes ambiguous results that contributes for commercialization of 

infected seeds. In this context, this study was aimed to develop a methodology for the 

classification of CG and CGC in cotton seeds, using hyperspectral imaging near infrared (HIS-

NIR) in association with data multivariate analysis. Therefore, cotton seeds of BRS 286 cultivar 

were contaminated with 5 CG isolates and 15 CGC isolates, and were submitted to seed health 

testing, using the Blotter test method. After the incubation period, hyperspectral images of the 

seeds were taken. The spectra in the range between 1000 to 2500 nm were pre-processed with 

Savitzky-Golay first-order derivative. An exploratory data analysis was executed using a PCA, 

posteriorly, samples classification was made by the development of a PLS-DA model, which 

correctly predicted 86.5% of CG class and 81.6% of CGC class. In external samples’ prediction, 

the correct prediction percentage was variable between samples and, possibly, it is related to 

species variability. The PLS-DA model performance indicates that this method allows CG and 

CGC identification, however, samples with high rate of misclassification should be included in 

calibration set, and model construction adjustments are necessary for improvement of the fungal 

species classification in cotton seeds. 

 

Keywords: Anthracnose, HSI-NIR, ramulosis 
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1. INTRODUÇÃO 

 

O algodão é uma das principais commodities mundiais. O produto do cultivo do 

algodoeiro é a fibra, sendo essa a principal matéria-prima da indústria têxtil no mundo; 

enquanto o seu subproduto, o caroço, é utilizado para extração de óleo, torta e farelo (KOUSER 

et al., 2015). Apesar do cultivo encontrar-se difundido em mais de 60 países, a produção 

mundial de algodão está concentrada, principalmente, nos Estados Unidos, China, Índia, 

Paquistão e Brasil.  O Brasil é o quinto maior produtor, com uma área de 1,61 milhão de hectares 

na safra 2018/2019, que visa atender principalmente a demanda por fibras da indústria têxtil 

interna e dos países asiáticos. Recentemente, após recorde de exportação de 1,5 milhão de 

toneladas registrado na safra 2018/2019, o país atingiu ainda um novo patamar no mercado 

internacional, tornando-se o segundo maior exportador mundial de pluma, atrás apenas dos 

Estados Unidos (CONAB, 2019). 

Considerando a importância socioeconômica da cultura, a produção e controle da 

qualidade de sementes do algodoeiro são cruciais para garantir o seu bom estabelecimento. 

Nesse aspecto, padrões de qualidade com abrangência nacional são propostos a fim de assegurar 

a pureza genética e as qualidades física, fisiológica e sanitária das sementes comercializadas. 

Problemas fitossanitários se configuram como um grande entrave no cenário agrícola nacional, 

em que a semente surge como um dos principais meios de dispersão de patógenos; a exemplo 

dos agentes causais da ramulose (Colletotrichum gossypii var. cephalosporioides) e da 

antracnose (Colletotrichum gossypii), que são disseminados no campo a partir de sementes 

infectadas e podem colocar em risco o êxito da atividade agrícola (SILVA-MANN et al., 2005; 

BRUNETTA; BRUNETTA; FREIRE, 2007).  

Em relação às doenças, sabe-se que o agente causal da ramulose, C. gossypii var. 

cephalosporioides, causa a morte do meristema apical do algodoeiro e induz o brotamento 

lateral anormal nos ramos afetados (KIRKPATRICK; ROTHROCK, 2001); enquanto C. 

gossypii, agente etiológico da antracnose, causa tombamento e morte de plântulas de 

algodoeiro, além de lesões nas hastes, folhas e capulhos (SOUTHWORTH, 1891). Apesar de 

se tratar de patologias distintas, os agentes etiológicos da ramulose e da antracnose do 

algodoeiro foram descritos como morfologicamente idênticos por Bailey et al. (1996). 

Entretanto, Costa e Fraga Júnior (1939) consideraram C. gossypii var. cephalosporioides, 

inicialmente, uma forma mais agressiva de C. gossypii. Posteriormente, tal hipótese foi 

contestada por Salustiano et al. (2014) por meio de análise filogenética, ao destacarem os 

agentes causais da ramulose e antracnose do algodoeiro como patógenos distintos, sendo, 
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inclusive, sugerida a inserção desses fungos no complexo de espécies pertencentes à 

Colletotrichum gloeosporioides. 

Diferente da antracnose do algodoeiro, que atualmente é considerada uma doença 

secundária, a ramulose é uma das principais doenças da cultura no país, cuja ocorrência também 

foi registrada no Paraguai, Venezuela e Colômbia (COSTA; FRAGA JÚNIOR, 1937; 

MATHIESON; MANGANO, 1985; MALAGUTTI, 1955; MORENO-MORAN; BURBANO-

FIGUEROA, 2016). Por representar elevado risco econômico à cultura do algodoeiro, a 

ramulose tem importância quarentenária, não sendo admitida a presença do patógeno da doença 

em lotes de sementes comerciais, conforme estabelecido pelo Ministério da Agricultura, 

Pecuária e Abastecimento (MAPA, 2009).  

Testes de sanidade são rotineiramente utilizados para a detecção de patógenos em 

sementes de algodoeiro. No entanto, são testes baseados em características morfológicas e 

fisiológicas e, portanto, não possibilitam uma identificação confiável de C. gossypii var. 

cephalosporioides, podendo contribuir para a comercialização de sementes contaminadas, bem 

como a condenação de lotes de sementes sadias. Por outro lado, a utilização de técnicas 

moleculares tem se mostrado bastante promissora na diferenciação de diversos fungos 

patogênicos, incluindo as espécies C. gossypii e C. gossypii var. cephalosporioides (SILVA-

MANN et al., 2002; 2005; AIRES et al., 2018), entretanto, são técnicas complexas, lentas e de 

custo elevado. Com isso, torna-se imprescindível o desenvolvimento de métodos de detecção 

que preencham os requisitos de maior precisão, rapidez e baixo custo.  

Além dos métodos morfológicos e moleculares, várias técnicas não destrutivas, como 

visão computacional, espectroscopia, imagem hiperespectral e raio X têm sido utilizadas na 

análise de sementes (RAHMAN; CHO, 2016). Dentre estas, a tecnologia de imagem 

hiperespectral de infravermelho próximo (HSI-NIR) surge como uma excelente alternativa na 

identificação de patógenos em sementes com maior rapidez e menor custo, quando comparada 

com métodos baseados em DNA (GOWEN et al., 2015). A técnica se baseia na identificação 

de ligações químicas a partir das suas vibrações moleculares, e na obtenção de espectros de 

uma série de compostos, na forma de uma imagem digitalizada em diferentes camadas ou 

camadas múltiplas, formando uma estrutura tridimensional de um cubo, com informações 

espaciais no plano x e y, enquanto o eixo z corresponde à camada associada ao único 

comprimento de onda espectral (LORENTE et al., 2012; WU; SUN, 2013). Uma imagem 

hiperespectral gera informações com alta complexidade, e o seu tratamento requer o uso de 

métodos de análise multivariados para reconhecimento padrão e classificação, que podem ser 



13 

  

 

determinantes na detecção de características específicas dentro de uma amostra, permitindo a 

sua identificação ou separação (QIN, 2010).  

Na agricultura, tecnologias utilizando imagens hiperespectrais estão sendo empregadas 

com êxito na detecção e quantificação de micotoxinas em diversos produtos agrícolas, assim 

como na constatação de doenças fúngicas em espécies como milho e trigo (MOSHOU et al., 

2011; TAO et al., 2018; WU; XIE; XU, 2018; FEMENIAS et al., 2019). Além disso, Aires et 

al. (2018) combinando a tecnologia HSI-NIR com estratégias de tratamento de dados obtiveram 

sucesso na identificação e separação de isolados de C. gossypii e C. gossypii var. 

cephalosporioides crescidos em meio de cultura. Neste contexto, a técnica HSI-NIR possibilita 

a sua aplicação para a diferenciação de fungos com características morfológicas similares em 

sementes. 

 

2. OBJETIVOS 

 

2.1 Objetivo Geral 

 

Desenvolver uma metodologia para classificação de sementes contaminadas com as 

espécies fúngicas C. gossypii e C. gossypii var. cephalosporioides, utilizando imagens 

hiperespectrais no infravermelho próximo (HSI-NIR).  

 

2.2 Objetivos Específicos 

 

• Identificar características espectrais que permitam a diferenciação interespecífica dos 

patógenos C. gossypii e C. gossypii var. cephalosporioides.  

• Estabelecer um método rápido e preciso na detecção de C. gossypii e C. gossypii var. 

cephalosporioides em sementes individuais. 

  

3. REVISÃO DE LITERATURA 

 

3.1 A cultura do algodoeiro (Gossypium hirsutum L.) 

  

 O algodoeiro (Gossypium hirsutum L.) é uma das espécies cultivadas mais antigas e está 

entre as culturas de fibra de maior importância no mundo. Mesmo com o crescimento das fibras 

sintéticas, o algodão é a fibra natural mais utilizada na indústria têxtil e ainda tem um amplo 



14 

  

 

espaço no mercado das commodities agrícolas (BUAINAIN; BATALHA, 2007). Além disso, 

o caroço do algodão é fonte de energia, fibra e proteína de qualidade. O óleo extraído representa 

uma alternativa importante para a produção de biodiesel e, na ausência do gossipol, também 

serve como matéria-prima na indústria alimentícia; enquanto os resíduos da extração do óleo, 

como a torta e farelo, são aproveitados na alimentação animal (ALVES et al., 2008). 

Atualmente, estima-se que a produção de pluma de algodão no mundo seja de 

aproximadamente 26 milhões de toneladas (USDA, 2019). O Brasil destaca-se nas posições de 

quinto maior produtor e segundo maior exportador mundial, e foi responsável pela produção, 

na safra 2018/2019, de cerca de 2,66 milhões de toneladas de pluma, um crescimento de 32,6% 

em relação ao produzido na safra anterior. Neste cenário, as regiões Centro-Oeste e Nordeste 

concentram juntas mais de 90% da produção nacional (CONAB, 2019).  

Com um mercado internacional promissor e o aumento expressivo em área plantada, os 

produtores demandam cada vez mais por tecnologias e insumos de qualidade que possam 

garantir a aceitação do produto frente ao mercado. Logo, a qualidade da semente é um dos mais 

importantes fatores atrelados ao sistema de produção, pois além de ser responsável por 

transmitir as características agronômicas ao campo, a semente é o principal meio de propagação 

de diversos patógenos considerados de riscos dentro do país ou entre países produtores, como 

é o caso do agente etiológico da ramulose do algodoeiro, o fungo C. gossypii var. 

cephalosporioides (ARAÚJO et al., 2009).  

 

3.2 Ramulose e antracnose do algodoeiro   

 

A ramulose do algodoeiro, causada pelo fungo C. gossypii var. cephalosporioides, é uma 

doença com ocorrência restrita à América do Sul. A mesma foi descrita pela primeira vez no 

Brasil por Costa e Fraga Júnior em 1937 e, atualmente, está presente nas principais regiões 

produtoras de algodão do país, contudo, sem causar danos significativos à cultura*. A doença 

afeta as plantas em qualquer fase de desenvolvimento, sendo os sintomas observados 

principalmente em tecidos jovens. Inicialmente, há a formação de manchas necróticas circulares 

nas folhas jovens que se desenvolvem, formando perfurações nas lâminas foliares (mancha 

estrela). O desenvolvimento desigual dos tecidos foliares causa o enrugamento da superfície. 

Em estágios avançados da doença, o fungo atinge também o meristema apical da planta, 

paralisando o crescimento do ramo afetado e causando a sua necrose, o que induz o 

 
* Comunicação pessoal de Wirton Macedo Coutinho, em 30 de outubro de 2019. 
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desenvolvimento anormal de brotos laterais. Como resultado, há o envassouramento da planta, 

com encurtamento dos entrenós e redução do seu crescimento (Figura 1); além disso, o gasto 

de energia para o crescimento vegetativo, em resposta ao desenvolvimento sucessivo de brotos 

laterais, acaba por exaurir completamente a planta para finalidade de frutificação (CIA; 

SALGADO, 1997; ARAUJO; SUASSUNA, 2003; SALUSTIANO et al., 2014).  

 

Figura 1. Algodoeiro com sintomas de ramulose causada pelo fungo C. gossypii var. 

cephalosporioides. A. Mancha estrela; B. Lesão inicial com enrugamento da superfície da 

folha; C. Morte do meristema apical; D-E. Desenvolvimento anormal de brotos laterais e 

envassouramento da planta 

 

Fotos: Wirton Macedo Coutinho  

 

A antracnose em plantas de algodoeiro, por sua vez, foi descrita pela primeira vez em 

1891 nos Estados Unidos, e hoje está disseminada em todas as áreas produtoras de algodão no 

mundo (ATKINSON, 1891; SOUTHWORTH, 1891). A doença é causada pelo fungo 

Colletotrichum gossypii, com sintomas que podem ocorrer em qualquer parte da planta, desde 

a sua fase inicial até a fase adulta. Nos primeiros 35 dias de estabelecimento da cultura, C. 

gossypii pode causar lesões de coloração pardo-avermelhadas a pardo-escuras nas raízes e no 

colo de plântulas de algodoeiro, com consequente tombamento e morte das mesmas; já na fase 

adulta dessas plantas, C. gossypii pode causar lesões necróticas nas folhas e nos capulhos. No 
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Brasil, C. gossypii ocorre no final do ciclo vegetativo do algodoeiro, com importância 

secundária para essa cultura (Figura 2) (KIRKPATRICK; ROTHROCK, 2001; SILVA-MANN 

et al., 2005).   

 

Figura 2. Algodoeiro com sintomas de antracnose nas folhas, causada pelo fungo C. gossypii. 

A. Lesões iniciais na superfície das folhas; B. Enrugamento na borda das folhas 

 

Fotos: Wirton Macedo Coutinho  

 

Tanto C. gossypii quanto C. gossypii var. cephalosporioides são transmitidos da semente 

à planta adulta do algodoeiro. Durante muito tempo, acreditou-se que C. gossypii e C. gossypii 

var. cephalosporioides tratavam-se da mesma espécie (COSTA; FRAGA JÚNIOR., 1939). A 

utilização de métodos moleculares para separar essas duas espécies foi inicialmente proposta 

por Silva-Mann et al. (2002; 2005); no entanto, de acordo com Hyde et al. (2009) não existem 

caracteres morfológicos ou moleculares consistentes para diferenciá-los. Posteriormente, 

Salustiano et al. (2014) elucidaram, por meio de análises filogenéticas, que a ramulose e a 

antracnose do algodoeiro são causadas por patógenos distintos, porém intimamente 

relacionados. Segundo esses autores, C. gossypii e C. gossypii var. cephalosporioides são 

membros pertencentes ao complexo de espécies C. gloesporioides, reconhecido pelas 

dificuldades em torno da sistemática do grupo, devido às características morfológicas pouco 

variáveis entre as espécies, o que torna os limites de separação ambíguos (CAI et al., 2009; 

WEIR, et al., 2012).  

No contexto da patologia de sementes, ainda que ambos os patógenos estejam 

relacionados com doenças que afetam a cultura do algodoeiro, a espécie C. gossypii var. 

cephalosporioides reúne maior atenção em virtude do impacto que ocasiona na produção. Desse 

modo, a similaridade das estruturas de ambos os fungos, que acaba por não permitir a sua 
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identificação em sementes por métodos convencionais, tem sido objeto de pesquisas sobre a 

sua identificação inequívoca (AIRES et al., 2018). 

 

3.3 Identificação de C. gossypii e C. gossypii var. cephalosporioides em sementes 

  

A avaliação da sanidade das sementes é um importante componente nos programas de 

controle de qualidade, destinados a garantir um desempenho satisfatório da cultura no campo. 

Para tanto, o método empregado na análise deve assegurar informações confiáveis sobre a 

qualidade sanitária da semente destinada à semeadura e/ou aos serviços de quarentena (MUNIZ 

et al., 2004; HENNING, 2005). De modo geral, as técnicas para detecção e classificação de 

microrganismos devem, antes de tudo, permitir a identificação do patógeno de interesse, de 

forma precisa, sendo também, importante preencher alguns requisitos, como facilidade de 

operação, rapidez na disponibilidade dos resultados e custos dentro de limites aceitáveis 

(TAYLOR, et al., 2001).  

Diversos procedimentos laboratoriais atendem às exigências necessárias e podem ser 

utilizados para a classificação taxonômica ou identificação de microrganismos em sementes. 

Os testes de sanidade são baseados em métodos descritos pela International Seed Testing 

Association (ISTA), e utilizam procedimentos variados a partir da análise de colônias, exames 

microscópicos, bem como testes bioquímicos e fisiológicos (ISTA, 1981). Em sua maioria, os 

métodos empregados nas análises de rotina laboratoriais utilizam a incubação de sementes para 

estimular a produção de estruturas típicas de cada fungo sobre as mesmas ou ao seu redor, de 

modo que a identificação da espécie seja possível por meio de observações das características 

morfológicas e fisiológicas destes microrganismos (NEERGAARD, 1979; KHARE, 1996).  

Por outro lado, ainda que os métodos recomendados para análise sanitária de sementes 

sejam comumente empregados, pode-se dizer que o seu nível de especialização ainda é 

deficiente na detecção de um grande número de espécies de patógenos, sobretudo ao considerar 

a diferenciação entre patógenos com características muito próximas, como é o caso das espécies 

do complexo Colletotrichum em sementes de algodoeiro (SILVA-MANN et al., 2002; 2005).  

Na avaliação sanitária de sementes de algodoeiro, o principal método empregado em 

análises de rotina é o do papel de filtro ou blotter test, que se baseia na observação das estruturas 

fúngicas crescidas sobre as sementes, seguida da sua identificação morfológica ou ainda da 

observação de sintomas nas plântulas (NEERGAARD, 1979; BRASIL, 1992). Contudo, na 

identificação das espécies C. gossypii e C. gossypii var. cephalosporioides em sementes de 

algodoeiro, as estruturas fúngicas, como formato e dimensões de conídios e coloração da 
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colônia, são muito variáveis, o que dificulta o reconhecimento de características particulares a 

cada uma das espécies (CARVALHO; VIEIRA; MACHADO, 1997; ROCA, et al., 2004). Com 

a ineficiência dos métodos tradicionais, a diferenciação entre os agentes causais da ramulose e 

antracnose do algodoeiro baseou-se principalmente no uso de marcadores moleculares, os quais 

têm demonstrado alta sensibilidade na distinção entre os fungos. Entretanto, são técnicas 

relativamente complicadas, laboriosas e de custo elevado, que podem inviabilizar o teste de 

sanidade economicamente (SILVA-MANN et al., 2002; SALUSTIANO, et al., 2014; AIRES 

et al., 2018).  

Diante dos problemas metodológicos na detecção e diferenciação das espécies C. gossypii 

e C. gossypii var. cephalosporioides, percebe-se a necessidade do desenvolvimento de métodos 

e aplicações de técnicas eficazes para uso nos laboratórios de patologia de sementes como testes 

de rotina. O desenvolvimento de técnicas no campo da análise espectral têm crescido 

substancialmente e surge como uma possibilidade dentro da patologia de sementes, pois poderá 

permitir a organização de um banco de dados com o(s) perfil(s) de cada espécie identificada, 

possibilitando a posterior identificação de isolados com base neste banco de dados (SINGH et 

al., 2012). 

  

3.4 Imagens hiperespectrais no infravermelho próximo e suas aplicações 

 

Imagens digitais são representações espaciais, onde o menor elemento espacial formador 

de uma imagem é o pixel (para imagens com duas dimensões espaciais) ou o voxel (para 

imagens com três dimensões espaciais). Cada pequena porção da imagem está determinada por 

coordenadas espaciais (x e y, para os pixels e x, y e z, para os voxels), além de uma dimensão 

adicional associada a cada pixel individualmente. Quando a imagem está representada na escala 

de cinza, tem-se uma matriz de dados bidimensional e cada pixel está associado a um único 

valor de intensidade na escala de cinza; enquanto que para as imagens RGB (formadas a partir 

dos canais das cores vermelha, verde e azul) tem-se uma matriz de dados tridimensional, e cada 

pixel terá três valores de intensidade, um para cada canal. Nas imagens multiespectrais e 

hiperespectrais, cada pixel contém um espectro específico dessa região, de modo que a 

quantidade de valores associados a cada pixel irá depender da quantidade de canais espectrais 

(Figura 3); em geral, considera-se que as imagens hiperespectrais são aquelas que apresentam 

mais de 100 canais de espectros (DE JUAN et al., 2005; PRATS-MONTALBÁN et al., 2011).   
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Figura 3. Matriz de dados de imagens em escala de cinza (A), em RGB (B) e hiperespectrais 

(C) 

 

Fonte: da autora 

 

As informações espectrais armazenadas nessas imagens podem ser obtidas a partir de 

diversas técnicas analíticas, sendo as técnicas de Raman e de Infravermelho, geralmente, as 

mais informativas. Câmeras de imagens na região do infravermelho próximo (NIR, do inglês 

near infrared) são capazes de adquirir imagens digitais de alta resolução. A espectroscopia na 

região NIR é o tipo de espectroscopia vibracional que corresponde à faixa de comprimentos de 

onda de 750 – 2500 nm. Nessa região, são observadas principalmente vibrações de ligações de 

–CH, –OH, –SH e –NH (ROGGO et al., 2007). 

As imagens hiperespectrais podem ser definidas como estruturas tridimensionais 

(hipercubos) formadas por um plano espacial (x - y) e uma dimensão referente ao comprimento 

de onda (λ) (BURGER; GOWEN, 2011a). Logo, o hipercubo de uma HSI-NIR compreende 

centenas de espectros distribuídos por toda a área mensurada, comportando-se como uma 

impressão digital, que pode ser usada para caracterizar cada pixel individualmente. Desse 

modo, é possível obter-se informações locais sobre a composição, bem como sobre a 

distribuição dos componentes de uma dada amostra, já que regiões com propriedades espectrais 

semelhantes apresentam composição química semelhante (BURGER; GELADI, 2005).  

Para ser analisada, a imagem hiperespectral precisa passar por um processo de 

desdobramento do hipercubo, resultando em uma complexa matriz de dados de duas dimensões, 

no qual as linhas correspondem aos espectros relacionados aos diferentes pixels, conforme 

representado na Figura 4 (DE JUAN et al., 2005). Após o desdobramento, é fundamental que a 

matriz de dados seja submetida a técnicas quimiométricas adequadas para facilitar a 

visualização de informações seletivas e de maior importância na análise. As metodologias 
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utilizadas neste campo são denominadas análise multivariada de imagem, e incluem métodos 

aplicados em conjuntos de dados multi ou hiperespectrais, adaptados para utilização em 

imagens. Além disso, técnicas de pré-processamento podem ser aplicadas para corrigir ou 

minimizar problemas decorrentes da aquisição de imagens (GOWEN, et al., 2007; GRAHN; 

GELADI, 2007).  

 

Figura 4. Estrutura tridimensional de um hipercubo e demonstração do seu desdobramento 

 

Fonte: da autora 

 

A espectroscopia de imagem hiperespectral foi introduzida na década de 70 e, 

inicialmente, suas aplicações eram limitadas ao sensoriamento remoto (GOETZ et al., 1985). 

Apenas a partir dos anos 90, a espectroscopia de imagem hiperespectral começou a ser aplicada 

em diversas áreas de conhecimento, como pesquisas farmacêuticas, controle de qualidade de 

alimentos, ciência forense, agricultura e medicina (AMIGO et al., 2008; LORENTE et al., 2012; 

FERNÁNDEZ DE LA OSSA, et al., 2014; LU; FEI, 2014). 

Sistemas de imagens hiperespectrais ou, mais especificamente, a tecnologia de imagem 

hiperespectral de infravermelho próximo, promete tornar-se uma das técnicas mais poderosas 

no fornecimento de informações espectrais de alta qualidade em superfícies. Claramente, a 

natureza não-destrutiva, robusta e flexível da imagem hiperespectral traz grandes perspectivas 

em torno da tecnologia para as mais diversas finalidades (DALE et al., 2013; AMIGO et al., 

2015).  

Na agricultura, as aplicações da espectroscopia de imagens hiperespectrais são vastas, 

incluindo o uso de sistemas de satélites para o mapeamento de áreas, com resultados 

significativos obtidos a partir do monitoramento do crescimento vegetal e estimativas do 
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potencial fotossintético de espécies agrícolas (BROGE; LEBLANC, 2001; TEKE et al., 2013). 

Sistemas de imagens hiperespectrais em drones ou em base terrestre no campo também são 

utilizados com sucesso para estimar produtividade, estresse hídrico, atributos bioquímicos e no 

monitoramento de plantas daninhas e doenças em áreas agrícolas (RASCHER, 2007; 

PENGRA; JOHNSTON; LOVELAND, 2007; YANG, 2009). Além disso, em escala de 

laboratório, o uso dessa tecnologia é bastante promissor para a automação de procedimentos de 

diagnósticos rápidos, com necessidades de preservação da constituição da amostra. Sistemas 

HSI-NIR têm sido utilizados para diversos fins qualitativos, desde a análise de componentes 

específicos em produtos agrícolas, monitoramento de qualidade e a detecção de doenças e 

injúrias em frutos e vegetais (WANG; ELMASRY, 2010; GÓMEZ-SANCHIS et al., 2012); 

além de diversas aplicações quantitativas, tais como a determinação de índices bioquímicos 

como parâmetros de qualidade, e a quantificação ou detecção de contaminantes químicos, 

microbianos ou biológicos em produtos agrícolas (GOWEN et al., 2007; DEL FIORE et al., 

2010; JIANG et al., 2015). 

 

3.5 Análise Multivariada de Imagem 

 

A Análise Multivariada de Imagem surgiu no final dos anos 1980 como uma adaptação 

da análise multivariada clássica para lidar com imagens com mais de uma medida por pixel 

(GELADI, 1989). Ao contrário das técnicas utilizadas até então, que estudavam as imagens 

como um todo, a análise multivariada de imagem permite que os pixels sejam analisados como 

amostras individuais. Com as imagens multiespectrais e hiperespectrais, essa nova abordagem 

traz informações relacionadas a cada pixel da imagem, tornando-a de fundamental importância. 

Além de fornecer novas percepções sobre as informações espaciais e espectrais de determinada 

amostra, a análise multivariada de imagem tem se constituído em uma forte ferramenta de 

classificação, segmentação, previsão, além de outras finalidades. Logo, dependendo do objetivo 

da análise, diferentes procedimentos podem ser aplicados (PRATS-MONTALBÁN et al., 2011; 

AMIGO et al., 2015). 

De modo geral, a análise de imagens hiperespectrais busca correlacionar as características 

individuais da amostra estudada com propriedades espectrais de interesse. Para tal, há duas 

etapas principais na análise do hipercubo: 1. O pré-processamento, a fim de eliminar artefatos 

indesejáveis para a análise da imagem, tais como pixels anômalos, comprimentos de onda 

ruidosos ou áreas da amostra que são indesejadas e, 2. O processamento do hipercubo, que está 
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ligado diretamente à aplicação de modelos multivariados para a análise dos dados (AMIGO, et 

al., 2013). 

 

3.5.1 Pré-processamento de imagens hiperespectrais 

 

Com a geração de uma grande quantidade de dados a partir de uma imagem espectral, o 

uso da análise multivariada de imagem tornou-se indispensável. Entretanto, tratando-se de uma 

medida espectroscópica, é comum a ocorrência de perturbações relacionadas à captura 

de medidas, como um alto nível de ruído, variações de linha de base ou a existência 

de pixels com espectros anômalos (pixel morto ou outlier). Desse modo, é fundamental 

submeter os espectros a determinadas técnicas de pré-processamento antes da análise 

propriamente dita, a fim de evitar ou minimizar a influência de fenômenos indesejados, bem 

como destacar diferenças relevantes para posterior análise (DE JUAN et al., 2009; SACRÉ et 

al., 2014; AMIGO et al., 2015). Existem diversas técnicas disponíveis para o pré-processamento 

de espectros. A escolha do método ou combinação de métodos requer cuidado e depende das 

diferentes propriedades dos dados e dos objetivos da análise, sendo possível empregar técnicas 

utilizadas na análise multivariada clássica. Normalmente, diferentes pré-processamentos são 

testados e os seus resultados comparados, para garantir uma análise correta e resultados 

robustos (VIDAL; AMIGO, 2012; ENGEL et al., 2013).  

Para remover a influência do ruído instrumental no espectro normalmente são empregados 

métodos de suavização, em que o algoritmo baseado no filtro Savitzky-Golay é um dos mais 

utilizados. Nele, faz-se um alisamento por todo o espectro a partir de um polinômio ajustado a 

uma janela ou intervalo de pontos simétrico do espectro, e o valor do ponto central dessa janela 

é substituído pelo valor do polinômio ajustado. A janela se move e o valor do polinômio é 

calculado no novo centro; esse processo se repete por todas as janelas para promover o 

alisamento do espectro completo. É fundamental encontrar a melhor combinação de parâmetros 

para otimizar o filtro Savitzky-Golay, especialmente o tamanho da janela. Com janelas muito 

pequenas a remoção do ruído é menor e com janelas muito grandes, apesar do decréscimo do 

ruído, existe o risco de perda de informações espectrais importantes que podem estar presentes 

em bandas estreitas (VIDAL; AMIGO, 2012; AMIGO et al., 2015). 

Além do ruído instrumental, os diferentes artefatos que um espectro pode apresentar 

dependem do tipo da radiação utilizada. O espectro do NIR normalmente é afetado pelo 

espalhamento de luz, podendo haver um deslocamento constante da linha de base. Esse desvio 

pode ser corrigido por métodos como variação normal padrão (SNV, do inglês standard normal 
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variate), correção do espalhamento multiplicativo (MSC, do inglês multiplicative scatter 

correction) e derivadas sobre os dados espectrais. O SNV é um método que subtrai o espectro 

médio de cada variável espectral e, subsequentemente, divide esse valor pelo desvio padrão do 

espectro, isto é, a constante de dispersão estimada. Alternativamente, a técnica MSC visa 

estimar o coeficiente que descreve a dispersão a partir de uma regressão de cada espectro em 

um espectro de referência, que normalmente é o espectro médio ou mediano. Normalmente, os 

pré-processamentos MSC e SNV fornecem resultados similares (FEARN et al., 2009; ENGEL 

et al., 2013). Transformações derivativas também podem ser utilizadas para correção espectral. 

A primeira derivada remove efeitos constantes sobre a linha de base, enquanto a segunda 

derivada remove, além dos efeitos constantes, tendências lineares. A derivação por Savitzky-

Golay, que também inclui uma etapa de suavização, é comumente empregada para fins de 

correção de linha de base e para aumentar diferenças entre espectros que podem ser úteis para 

fins qualitativos (RINNAN; VAN DEN BERG; ENGELSEN, 2009; SACRÉ et al., 2014).   

Uma etapa muito importante de pré-processamento e que, normalmente, é aplicada ao 

banco de dados é a seleção da região de interesse (ROI, do inglês region of interest). A seleção 

da ROI pode ser muito favorável para remover espectros indesejados de background ou manter 

apenas uma parte específica da amostra que contenha informações de relevância para a análise. 

A seleção de uma parte específica da imagem pode ser feita manualmente, a partir de 

histogramas ou através de valores limites na imagem dos escores da PCA (SACRÉ et al., 2014; 

VIDAL; AMIGO, 2012). Além disso, muitas vezes um espectro NIR completo pode conter 

dados redundantes e repetitivos, sendo comum a seleção de comprimentos de onda para uma 

boa performance da análise (XIAOBO et al., 2010). 

 

3.5.2 Análise de Componentes Principais (PCA) 

 

Conforme destacado anteriormente, um problema relacionado ao tratamento de imagens 

que carregam informações espectrais é a quantidade massiva de dados gerados a partir de uma 

única imagem. Neste contexto, a análise de componentes principais (PCA, do inglês principal 

components analysis) é o principal método utilizado para reduzir a dimensionalidade da matriz 

de dados conservando as informações relevantes. A PCA permite a extração de informações 

sobre as principais fontes de variabilidade na amostra e a visualização da distribuição espacial 

dos elementos em uma única imagem, sendo elementar na análise de imagem antes da aplicação 

de qualquer outro modelo multivariado (AMIGO; MARTÍ; GOWEN, 2013; JOLLIFFE; 
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CADIMA, 2016). A PCA decompõe a matriz original em um modelo bilinear, que segue a 

Equação 1. 

 

X = T. P + E 

(1) 

 

Nesse novo modelo, a matriz T (escores) indica as coordenadas dos pixels no novo sistema 

de eixos; a matriz P (pesos ou loadings) representa a importância de cada variável na variância 

dos dados; e a matriz E refere-se aos erros associados ao modelo. O objetivo é expressar as 

principais informações contidas nas variáveis originais em um número menor de variáveis, que 

são denominadas componentes principais (PCs, do inglês Principal Components) (BEEBE; 

PELL; SEASHOLTZ, 1998; BORRÀS et al., 2014). 

 As PCs são as representações dos novos eixos, formados a partir de combinações lineares 

das variáveis originais, e descrevem as principais fontes de variação nos dados. Depois da 

aplicação da PCA, é possível obter uma imagem de escores para cada componente principal, 

por meio da qual se identifica a contribuição individual para cada componente do hipercubo 

original. As PCs são ortogonais umas às outras, e classificadas de tal forma que as primeiras 

retêm a maior parte da variação presente em todas as variáveis originais (AMIGO; MARTÍ; 

GOWEN, 2013; CHEVALLIER et al., 2006). Desse modo, as novas imagens irão preservar as 

informações de maior relevância na amostra e a dimensionalidade do conjunto de dados será 

consideravelmente menor, pois são necessárias poucas componentes para explicar toda ou a 

maior parte da variância dos dados (DE JUAN et al., 2009). 

 

3.5.3 PLS-DA 

 

No que diz respeito à análise de imagens, os métodos de segmentação são bastante 

utilizados, pois permitem a separação de regiões da imagem a partir de uma seleção de pixels 

similares. Essas semelhanças devem estar associadas às características a serem avaliadas, já que 

pixels com espectros similares possuem composições químicas ou propriedades biológicas 

similares. Na prática, a segmentação de imagens organiza pixels em classes. Para isso, os 

principais objetivos das técnicas consistem em identificar a localização espacial das diferentes 

classes na imagem e compreender as propriedades das mesmas (PIQUERAS et al., 2011). 

Existem diversos métodos de segmentação de imagens, variando na forma de realizar a 

classificação dos pixels e/ou nos conhecimentos utilizados na implementação do processo. Os 
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métodos de segmentação podem ser classificados em não-supervisionados, quando a 

informação prévia dos possíveis grupos ou clusters não está disponível; ou supervisionados, 

onde o conhecimento prévio sobre os grupos esperados é usado ativamente na construção do 

modelo. Uma técnica quimiométrica supervisionada frequentemente empregada com fins 

classificatórios é a Análise Discriminante por Regressão dos Mínimos Quadrados Parciais 

(PLS-DA, do inglês Partial Least Squares – Discriminant Analysis) (PRATS-MONTALBÁN 

et al., 2011; PIQUERAS et al., 2011).  

No método de PLS-DA um conjunto de espectros representativos para o estudo em 

questão é selecionado pelo usuário e denominado como conjunto de calibração, sendo então 

utilizado para criar modelos de regressão PLS representando as classes no conjunto ou 

características associadas. O modelo de regressão relaciona variáveis independentes (matriz X, 

que corresponde aos dados espectrais) a um vetor Y contendo as classes do conjunto de 

treinamento, codificadas como números inteiros. Por exemplo, um (1) se a amostra de 

treinamento pertence a uma determinada classe de interesse, e zero (0) se a amostra pertence a 

uma classe diferente (Figura 5).  

 

Figura 5. Esquema de construção de um modelo PLS-DA 

 

Fonte: da autora 

 

Desse modo, quando uma amostra desconhecida com determinado perfil espectral é 

projetada no modelo PLS-DA construído, é possível prever o valor de Y dessa amostra no 

modelo, e assim determinar a classe em que ela será classificada. Este valor deve, 

necessariamente, estar próximo dos valores usados para codificar as classes (nesse caso, 0 ou 
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1). É necessário que um valor de corte entre 0 e 1 seja estabelecido, assim, uma amostra com 

valor de predição acima do valor de corte é atribuída à classe 1, ou caso contrário, é atribuída à 

classe 0. O método usa o número apropriado de variáveis latentes (ou fatores); que são 

combinações lineares das variáveis selecionadas inicialmente que maximizam a discriminação 

entre os grupos (BURGER; GOWEN, 2011b; BORRÁS et al., 2014).  

Os eventuais resultados de classificação a partir de um modelo PLS-DA podem ser 

pseudo-imagens da amostra estudada, no qual cada grupo predito é representado por uma cor 

simbólica.  
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MANUSCRITO 

 

HSI-NIR na identificação de Colletotrichum gossypii e Colletotrichum gossypii var. 

cephalosporioides em sementes de algodoeiro 

 

RESUMO 

 

As sementes são o principal meio de disseminação e transmissão dos patógenos Colletotrichum 

gossypii (CG) e Colletotrichum gossypii var. cephalosporioides (CGC), agentes causais, 

respectivamente, da antracnose e ramulose do algodoeiro. Esses fungos possuem características 

morfológicas similares, o que limita a identificação dessas duas espécies a partir do teste de 

sanidade de sementes realizado rotineiramente em laboratórios. Neste contexto, este estudo 

propõe o desenvolvimento de uma metodologia para a identificação de CG e CGC em sementes 

de algodoeiro, utilizando imagens hiperespectrais de infravermelho próximo (HSI-NIR) 

associadas à análise quimiométrica de dados. Sementes de algodoeiro da cultivar BRS 286 

foram inoculadas com 5 isolados de CG e 15 isolados de CGC e submetidas ao teste de 

sanidade, por meio do método Blotter test, antes da aquisição das imagens hiperespectrais. Os 

dados espectrais foram pré-processados e uma análise exploratória foi executada utilizando uma 

PCA. Posteriormente, realizou-se a classificação das amostras a partir do desenvolvimento de 

um modelo PLS-DA, o qual obteve 86,5% de acerto na classe CG e 81,6% de acerto na classe 

CGC. Na predição de amostras externas, o percentual de acerto foi variável entre amostras e, 

possivelmente, tem relação com a variabilidade das espécies. A performance do modelo PLS-

DA indica que o método permite a identificação de CG e CGC, entretanto, amostras com alta 

taxa de erro nas classificações devem ser incluídas no conjunto de calibração, e ajustes na 

construção do modelo são necessários para aperfeiçoar a identificação das espécies fúngicas 

em sementes de algodoeiro. 

 

Palavras-chave: Antracnose, ramulose, patologia de sementes 

 

ABSTRACT 

 

Seeds are the main source for dissemination and transmission of Colletotrichum gossypii 

(CG) and Colletotrichum gossypii var. cephalosporioides (CGC) pathogens, causal agents, of 

cotton anthracnose and ramulosis, respectively. These fungal species have similar 
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morphological characteristics, which limits species identification by seed health testing 

commonly used in laboratories. In this context, this study proposes the development of a 

methodology for CG and CGC identification in cotton seeds, using hyperspectral imaging near 

infrared (HIS-NIR) in association with data multivariate analysis. Cotton seeds of BRS 286 

cultivar were inoculated with 5 CG isolates and 15 CGC isolates, and were submitted to seed 

health testing, using the Blotter test method, before hyperspectral imaging acquisition. The 

spectral data were pre-processed, and an exploratory analysis was executed using a PCA. 

Posteriorly, samples classification was made by the development of a PLS-DA model, which 

correctly predicted 86.5% of CG class and 81.6% of CGC class. In external samples’ prediction, 

the correct prediction percentage was variable between samples and, possibly, it is related to 

species variability. The PLS-DA model performance indicates that this method allows CG and 

CGC identification, however, samples with high rate of misclassification should be included in 

calibration set, and model construction adjustments are necessary for improvement of the fungal 

species identification in cotton seeds. 

 

Keywords: Anthracnose, ramulosis, seed pathology  

 

1. INTRODUÇÃO 

 

O algodão é uma das principais commodities mundiais e movimenta, anualmente, cerca 

de US$ 12 bilhões (ABRAPA, 2019). Além da sua fibra, que se tornou a principal matéria-

prima da indústria têxtil no mundo, o óleo e outros subprodutos extraídos das sementes também 

são aproveitados para diversos fins.  

O cenário da cotonicultura brasileira frente ao mercado mundial tem sido promissor e, nos 

últimos anos, posicionou o Brasil como o quinto maior produtor e segundo maior exportador 

mundial de algodão (CONAB, 2019). Considerando a importância socioeconômica da 

cotonicultura para o Brasil, bem como o potencial de crescimento da atividade no país, a 

qualidade da semente é um dos mais importantes fatores atrelados ao sistema de produção. 

Além de ser responsável por transmitir as características agronômicas ao campo, as sementes 

são o principal meio de disseminação de diversos patógenos que ameaçam a cultura, dentre os 

quais estão os agentes etiológicos da ramulose e da antracnose do algodoeiro (ARAÚJO et al., 

2009; BRUNETTA; BRUNETTA; FREIRE, 2007).  

O agente etiológico da ramulose, identificado como Colletotrichum gossypii var. 

cephalosporioides (CGC), causa a formação de manchas necróticas e perfurações nas lâminas 
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foliares; em estágios avançados da doença, há a morte do meristema apical do algodoeiro e o 

brotamento lateral anormal nos ramos afetados. A antracnose, por sua vez, é uma doença 

causada pelo fungo Colletotrichum gossypii (CG) e possui importância secundária para a 

cultura do algodoeiro no país, com sintomas de tombamento e morte de plântulas, além de 

lesões nas hastes, folhas e capulhos (KIRKPATRICK; ROTHROCK, 2001). Durante muito 

tempo, acreditou-se que CG e CGC se tratavam da mesa espécie, pois, apesar de estarem 

relacionados com doenças fúngicas distintas, possuem características morfológicas similares. 

Por consequência da semelhança entre os patógenos, a separação das espécies, tradicionalmente 

baseada em características morfológicas, torna-se ineficiente (BAILEY et al., 1996; 

MENEZES, 2006). 

A tecnologia de imagem hiperespectral de infravermelho próximo (HSI-NIR) é uma 

ferramenta analítica com ampla capacidade para a verificação e quantificação de compostos em 

sistemas biológicos, o que têm impulsionado a aplicação da tecnologia nas mais diversas áreas 

de pesquisas (DALE et al., 2013). Em tecnologia de sementes, sistemas HSI-NIR estão sendo 

empregados com êxito na constatação de doenças fúngicas, assim como na detecção e 

quantificação de micotoxinas em cereais (FERNÁNDEZ-IBAÑEZ et al., 2009; TEKLE et al., 

2015; TAO et al., 2018; FEMENIAS et al., 2019). Logo, a tecnologia HSI-NIR surge como 

uma possibilidade na identificação rápida e precisa dos patógenos CG e CGC em sementes de 

algodoeiro.  

Neste contexto, o trabalho propõe desenvolver uma metodologia para identificar as 

espécies fúngicas CG e CGC em sementes de algodoeiro, utilizando a tecnologia HSI-NIR.  

 

2. MATERIAL E MÉTODOS 

 

2.1 Local de realização do experimento 

 

O trabalho foi desenvolvido nos Laboratórios de Fitopatologia e Laboratório de 

Tecnologia Química (LATECQ) da Empresa Brasileira de Pesquisa Agropecuária – Unidade 

Embrapa Algodão, no município de Campina Grande, Estado da Paraíba, Brasil. 

 

2.2 Isolados fúngicos 

 

Neste estudo, foram utilizados cinco (5) isolados de CG e 15 isolados de CGC, oriundos 

da Coleção de Trabalho de Culturas de Microrganismos Fitopatogênicos da Embrapa Algodão, 
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e previamente classificados como CG ou CGC, por diagnóstico molecular, via PCR (AIRES et 

al., 2018). Todos os isolados foram preservados pelo método de Castellani e foram coletados 

de plantas de algodoeiro com sintomas típicos de antracnose ou ramulose em diferentes regiões 

produtoras nos Estados de Goiás e Mato Grosso (Tabela 1). 

 

Tabela 1. Isolados de C. gossypii e C. gossypii var. cephalosporioides utilizados na inoculação 

das sementes de algodoeiro para identificação das espécies fúngicas a partir de imagens 

hiperespectrais no infravermelho próximo 

Espécie CNPA Hospedeiro/substrato Origem 

C. gossypii 0037 Algodoeiro – semente Acreúna – GO 

C. gossypii 0735 Algodoeiro – semente Sapezal – MT 

C. gossypii 0736 Algodoeiro – semente Sapezal – MT 

C. gossypii 0737 Algodoeiro – semente Sapezal – MT 

C. gossypii 0738 Algodoeiro – semente Sapezal – MT 

C. gossypii var. cephalosporioides 0040 Algodoeiro – folha Pedra Preta – MT  

C. gossypii var. cephalosporioides 0044 Algodoeiro – folha Pedra Preta – MT 

C. gossypii var. cephalosporioides 0050 Algodoeiro – folha Pedra Preta – MT 

C. gossypii var. cephalosporioides 0060 Algodoeiro – folha Campo Verde – MT 

C. gossypii var. cephalosporioides 0065 Algodoeiro – folha Primavera do Leste – MT 

C. gossypii var. cephalosporioides 0067 Algodoeiro – folha Chapadão do Céu – GO 

C. gossypii var. cephalosporioides 0080 Algodoeiro – folha Primavera do Leste - MT 

C. gossypii var. cephalosporioides 0081 Algodoeiro – folha Novo São Joaquim – MT 

C. gossypii var. cephalosporioides 0086 Algodoeiro – folha Novo São Joaquim - MT 

C. gossypii var. cephalosporioides 0087 Algodoeiro – folha Campo Verde – MT 

C. gossypii var. cephalosporioides 0116 Algodoeiro – folha Campo Verde – MT 

C. gossypii var. cephalosporioides 0121 Algodoeiro – folha Campo Verde – MT 

C. gossypii var. cephalosporioides 0124 Algodoeiro – folha Santa Helena de Goiás – GO 

C. gossypii var. cephalosporioides 0126 Algodoeiro – folha Cachoeira Dourada – GO 

C. gossypii var. cephalosporioides 0132 Algodoeiro - folha Alto Taquari – MT 

 

2.3 Inoculação das sementes de algodoeiro 

 

Neste estudo foram utilizadas sementes de algodoeiro da cultivar BRS 286, safra 

2017/2018 (Tabela 1). Para a inoculação das sementes utilizou-se a técnica de restrição hídrica 

(MACHADO et al., 2007), a qual se baseia no ajuste do potencial osmótico do meio de cultura, 

através da adição de restritores em solução, e na inoculação dos fungos por meio do contato 

direto desses com as sementes, maximizando o tempo de contato sem que haja germinação das 

mesmas.  

Os isolados fúngicos testados foram crescidos em placas de Petri de 9 cm de diâmetro, 

contendo 20 mL de meio de cultura BDA (Batata – Dextrose – Ágar) ajustado osmoticamente 
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para -1.0 MPa, por meio da adição de manitol (40,44 g/L), em câmara BOD ajustada para 25 

oC e fotoperíodo de 12 horas, durante 10 dias. O potencial osmótico do meio de BDA 

modificado foi calculado por meio da fórmula de Van’t Hoff (SALISBURY; ROSS, 1992). No 

cálculo do potencial osmótico do meio de cultura BDA, foi levado em consideração o potencial 

osmótico inicial desse meio de cultura, que é de -0,35 MPa (SOMMERS et al., 1970; 

WEARING, BURGERSS, 1979). 

As sementes utilizadas para inoculação dos fungos foram previamente desinfestadas com 

hipoclorito de sódio a 1% (v/v), e, depois de secas à temperatura ambiente, distribuídas nas 

placas de Petri sobre os isolados fúngicos crescidos. Após a distribuição das sementes sobre os 

fungos crescidos sobre o meio de cultura modificado osmoticamente, as mesmas foram 

incubadas em câmara BOD ajustada a temperatura de 25 oC e fotoperíodo de 12 horas, durante 

cinco dias, que foi o tempo necessário à inoculação/contaminação por contato dos fungos, sem 

que houvesse germinação, segundo descrito por Machado et al. (2007). Após esse 

procedimento, as sementes inoculadas/contaminadas foram desinfestadas novamente com 

hipoclorito de sódio a 0,5%, e postas para secar à temperatura ambiente, antes de serem 

submetidas ao teste de sanidade. 

 

2.4 Teste de sanidade 

 

O teste de sanidade foi realizado por meio do método de incubação em papel de filtro 

(blotter test) modificado osmoticamente. As sementes foram distribuídas em placas de Petri de 

15 cm de diâmetro (25 sementes/placa de Petri), contendo três folhas de papel de filtro 

previamente esterilizadas e umedecidas em uma solução osmótica, previamente esterilizada, de 

manitol (67,23 g/L) com potencial osmótico de -1.0 MPa, calculado por meio da fórmula de 

Van’t Hoff (SALISBURY; ROSS, 1992). Prévio a obtenção das imagens hiperespectrais, as 

sementes foram incubadas em câmara de crescimento a 25 ± 2 oC, e fotoperíodo produzido por 

lâmpadas fluorescentes brancas de 12 horas, durante sete dias. 

 

2.5 Aquisição das imagens hiperespectrais 

 

As imagens hiperespectrais das sementes contendo o crescimento micelial dos isolados 

de CG e CGC foram adquiridas por meio do espectrômetro sisuChema SWIR - Specim® 

(Spectral Imaging Ltd., Oulu, Finland), com o software ChemaDaq, versão 3.621.992.6-R. Para 
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a captura das imagens utilizou-se uma lente de ampliação de 50 mm (0,156mm = 156 μs), com 

resolução espectral de 10 nm a uma exposição de 1,6 ms; os espectros foram adquiridos em 

linha, com largura de varredura de 5 cm por linha. A faixa espectral utilizada foi de 1000 a 2500 

nm, com 256 bandas de comprimento de onda. A altura entre a lente e a amostra foi definida 

em 31 cm, a velocidade do transportador foi fixada em 30 mm/s para assegurar a mesma forma 

espacial das sementes na imagem, e o tempo de exposição foi ajustado em 3.000 μs para garantir 

uma intensidade de luz adequada. 

Para a realização das medidas, as placas de Petri contendo 25 sementes inoculadas com 

isolados fúngicos das espécies CG e CGC foram colocadas abertas sobre o suporte de amostras 

do espectrômetro. As placas foram medidas em uma linha de varredura contemplando 1 2⁄  placa, 

desse modo, foram adquiridas 2 imagens por placa de Petri. 

A aquisição das imagens hiperespectrais inclui a digitalização da matriz linear pelo 

detector ao longo do eixo Y, o movimento da placa de Petri sobre o eixo X, e os espectros NIR 

no eixo Z da amostra. Assim, um dado hipercubo 3D representando as imagens hiperespectrais 

contém a informação da imagem espacial e espectral (NIR), que será utilizada para identificar 

as espécies CG e CGC em sementes de algodão. As HSI-NIR obtidas foram salvas em formato 

bruto e, posteriormente, analisadas por estatística multivariada. 

 

2.6 Análise multivariada 

 

O pré-processamento dos espectros e a análise multivariada das imagens hiperespectrais 

foram realizados a partir do programa computacional Evince 2.7.0 (UmBio).  

 

2.6.1 Análise de componentes principais (PCA)  

 

Uma análise exploratória do conjunto de dados hiperespectrais para os 5 isolados de CG 

e 15 isolados de CGC associados às sementes foi inicialmente executada utilizando uma PCA. 

Os pixels referentes às sementes exibiram um padrão de coloração distinto no gráfico de escores 

do Contour 2D, o que permitiu a remoção manual dos pixels correspondentes ao plano de fundo, 

deixando nas imagens apenas os pixels das amostras. 

Para redução de ruído e dos efeitos de linhas de base, realizou-se o pré-processamento 

dos espectros com derivativa Savitzky-Golay de primeira ordem, suavização com janela de 5 

pontos antes e 5 pontos depois do ponto central e polinômio de segunda ordem. Em seguida, os 

espectros e os gráficos dos escores da PCA foram usados para análise exploratória. 
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2.6.2 Análise PLS-DA 

 

A identificação da presença de CG e CGC nas sementes foi realizada a partir do 

desenvolvimento de um modelo baseado na Análise Discriminante por Mínimos Quadrados 

Parciais (PLS-DA) utilizando os espectros pré-processados.  

A análise PLS-DA contou com dois conjuntos de matrizes espectrais, denominados 

conjuntos de calibração e validação, em que 50% dos pixels de cada semente fizeram parte do 

conjunto de calibração, e 50% dos pixels restantes fizeram parte do conjunto de validação. Para 

a composição dos conjuntos foram utilizadas 10 imagens hiperespectrais, sendo 5 imagens de 

amostras contaminadas com CG (isolados 0037, 0735 e 0737) e 5 imagens de amostras 

contaminadas com CGC (isolados 0040, 0060, 0080, 0086). A seleção dos isolados se deu a 

partir da análise exploratória da PCA, pela qual foram selecionados indivíduos representativos 

em cada classe para compor o modelo PLS-DA.  

As amostras eram compostas por sementes com nível de crescimento fúngico alto (corpos 

de frutificação dos fungos recobrindo a superfície da semente) e baixo (pouco ou nenhum 

crescimento micelial visível sobre a superfície da semente); no entanto, a partir da análise do 

perfil espectral das amostras, ficou evidente a influência da matriz (semente) nos espectros das 

amostras em que a presença dos fungos não era visível. Desse modo, no modelo PLS-DA foram 

mantidas apenas as sementes com um alto nível de crescimento dos fungos, a fim de se obter 

características espectrais próprias destes microrganismos.  

O desempenho do modelo PLS-DA foi verificado pela precisão da classificação do 

conjunto de validação. Posteriormente, o modelo foi utilizado na predição de um conjunto 

externo, constituído de 25 amostras (10 imagens de amostras contaminadas com isolados CG e 

15 imagens de amostras contaminadas com isolados CGC); onde cada pixel correspondente à 

área das sementes foi classificado individualmente em CG ou CGC, o que gerou mapas de 

previsão coloridos de acordo com sua classe equivalente. Os mapas de previsão e a porcentagem 

de pixels classificados corretamente em cada amostra foram usados como indicativos da 

exatidão do modelo PLS-DA.   

 

3. RESULTADOS E DISCUSSÃO 

 

Para conhecer a variabilidade dentro das espécies, realizou-se, inicialmente, um estudo 

exploratório com a PCA aplicada a cada classe separadamente. Na Figura 1, amostras 
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representativas dos isolados de CG e CGC associados às sementes estão representadas na PC1 

e PC2, conforme sua distribuição espacial em unidades de pixels, com variância total de 84,5% 

para a PCA de CG, e 83% para a PCA de CGC. Para melhor reconhecimento, os escores foram 

coloridos de acordo com os referentes isolados.  

 

Figura 1. Análise de componentes principais (PCA) para investigar a variabilidade dentro das 

espécies fúngicas C. gossypii e C. gossypii var. cephalosporioides. Amostras contaminadas com 

isolados de C. gossypii (A); Amostras contaminadas com isolados de C. gossypii var. 

cephalosporioides (B) 

 

 

Analisando-se os escores dos componentes em ambas as classes, observa-se que os 

diferentes isolados tendem a formar agrupamentos distintos, baseado em sua informação 

espectral. Os isolados CG 0738, CGC 0116 e CGC 0065, por sua vez, apresentaram uma 

distribuição espacial dispersa e uma menor tendência de agrupamento dos pixels na PCA, que 

pode ser justificado pelo baixo nível de crescimento dos respectivos isolados nas amostras 

obtidas no presente estudo, o que, claramente, resultou na interferência espectral da semente de 

algodoeiro nos espectros dos fungos. 

Na PCA do grupo CG (Figura 1 A), verifica-se uma maior tendência de separação dos 

isolados e um pequeno distanciamento das amostras CG 0037 e CG 0735 em relação às demais 

amostras da classe; enquanto a PCA do grupo CGC (Figura 1 B) revelou um menor 

distanciamento entre os isolados da classe e sobreposição de algumas amostras, de modo que, 

com exceção de CGC 0116 e CGC 0065, as demais amostras encontram-se distribuídas ao 

longo da PC1. Observando a conformação dos isolados dentro de cada classe, pode-se inferir 
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que na classe CG há uma maior variação das características entre os indivíduos, enquanto a 

classe CGC revela maior homogeneidade. É importante destacar a hipótese de que o processo 

evolutivo da espécie CGC teria se dado a partir dos isolados da espécie CG, o que justificaria a 

base genética mais restrita da espécie (SILVA-MANN et al., 2005). 

Tendo-se observado a organização dos indivíduos de cada classe, isolados representativos 

das espécies CG e CGC foram selecionados para compor uma nova PCA e, posteriormente, o 

modelo PLS-DA. Na Figura 2 estão apresentados, respectivamente, os espectros completos (A) 

e o espectro médio de cada isolado (B) de CG e CGC associados às sementes.  

 

Figura 2. Espectros completos (A) e espectro médio por isolado (B) de esporulações de C. 

gossypii e C. gossypii var. cephalosporioides em sementes de algodoeiro 

 

 

Analisando-se os espectros médios, percebe-se que, apesar de se tratar de espécies 

distintas, as diferenças entre as classes são pouco evidentes, havendo uma grande semelhança 

entre o perfil de alguns isolados CG e CGC, o que demonstra a presença de características 

inerentes à variabilidade das classes. Em contrapartida, na região entre 1150 a 1200 nm, 

correspondente ao grupamento químico de 2° sobretom de CH, é possível identificar uma sutil 

diferença entre os espectros de CG e CGC, o que, provavelmente, têm relação com as 

particularidades de cada classe quanto à absorção de compostos primários de extrema 

importância, a exemplo de aminoácidos, enzimas e proteínas, favoráveis nessa região espectral. 

Observando-se os espectros completos, é possível identificar diferenças na conformação 

de cada classe, com espectros mais constantes na classe CGC (azul) e alguns picos de 

absorbância positivos e negativos; enquanto na classe CG (verde) há uma menor constância e 

os picos de absorbância são mais acentuados por toda a região espectral. Na região entre 1700 
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a 1900 nm observa-se um pico de absorbância em ambas classes, o qual está relacionado com 

vibrações de moléculas de água nessa região espectral e, possivelmente, não é uma 

característica própria dos fungos, mas sim uma característica da absorção de água pelas 

sementes.   

A análise exploratória realizada por PCA foi empregada para examinar as diferenças 

qualitativas entre as espécies fúngicas. Na Figura 3, amostras contaminadas com isolados de 

CG e de CGC estão representadas na PC1 e PC5, conforme sua distribuição espacial em 

unidades de pixels.  

 

Figura 3. Análise de componentes principais (PCA) para investigar diferenças entre as espécies 

C. gossypii e C. gossypii var. cephalosporioides em sementes de algodoeiro 

 

 

A variação total dos dados nas componentes foi de 84%, sendo a maior parte da 

informação contida na primeira componente (83%). A distribuição dos escores nas 

componentes revela diferenças no agrupamento entre as classes de fungos, com uma tendência 

de separação das classes analisadas, sugerindo que as informações espectrais das amostras 

podem ser favoráveis na discriminação das espécies. É possível observar que as amostras da 

classe CGC estão distribuídas na parte superior do gráfico, enquanto as amostras da classe CG 

encontram-se distribuídas ao longo da PC1; contudo, é notável a sobreposição de pixels nos 

extremos das componentes, indicando a existência de características comuns às duas classes. 

Dessa forma, por se tratar de espécies com composições químicas muito semelhantes, fica 

evidente a alta correlação, como foi sugerido anteriormente na análise do perfil espectral.  
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Na Tabela 2 estão descritos os resultados da classificação no conjunto de validação do 

modelo PLS-DA. Constatou-se que houve 86,5% de acerto na classificação de CG e 81,6% de 

acerto na classificação de CGC, o que sugere a presença de propriedades espectrais distintas 

entre as espécies de fungos associadas às sementes. Entretanto, erros classificatórios foram 

verificados em ambas as classes do modelo e estão relacionados com as características comuns 

às espécies, conforme verificado pela sobreposição de pixels na análise exploratória por PCA. 

 

Tabela 2. Taxa de classificação por pixels do conjunto de validação do modelo PLS-DA  

Classes 
Taxa de Classificação do modelo PLS-DA (%) 

Correta Incorreta 

CG 86,5% 13,5% 

CGC 81,6% 18,4% 

 

Considerando a variabilidade entre isolados das espécies CG e CGC, utilizou-se o modelo 

PLS-DA para predição de um conjunto externo de validação, composto por 25 amostras com 

diferentes níveis de crescimento dos isolados de CG e de CGC sobre as sementes de algodoeiro. 

Na predição das imagens, cada pixel correspondente à área das sementes foi classificado 

individualmente, o que gerou mapas de previsão coloridos de acordo com sua classe 

equivalente, sendo elas: CG, CGC ou Não reconhecido. Os resultados em porcentagem da 

classificação das amostras com o modelo PLS-DA estão descritos na Tabela 3, e as imagens de 

previsão, coloridas de acordo com a classe equivalente, estão apresentadas no Apêndice A. 

   

Tabela 3. Resultado da classificação por pixels das amostras do conjunto externo de validação 

com modelo PLS-DA 

Amostras          Classe Taxa de Classificação (%) 

1 (CG 0037) 

CG 67,8% 

CGC 26,1% 

Não reconhecido 6,07% 

2 (CG 0037) 

CG 59,8% 

CGC 31,8% 

Não reconhecido 8,33% 

3 (CG 0735) 

CG 32,4% 

CGC 13,3% 

Não reconhecido 54,3% 

4 (CG 0735) 

CG 54,1% 

CGC 17,9% 

Não reconhecido 28% 

5 (CG 0736) 

CG 66,1% 

CGC 20,4% 

Não reconhecido 13,5% 

6 (CG 0736) 

CG 58,4% 

CGC 30,7% 

Não reconhecido 10,9% 
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7 (CG 0737) 

CG 53,6% 

CGC 20,9% 

Não reconhecido 25,5% 

8 (CG 0737) 

CG 61,1% 

CGC 24,7% 

Não reconhecido 14,2% 

9 (CG 0738) 

CG 1,07% 

CGC 34,1% 

Não reconhecido 64,8% 

10 (CG 0738) 

CG 0,06% 

CGC 7,2% 

Não reconhecido 92,7% 

11 (CGC 0040) 

CG 29% 

CGC 56,4% 

Não reconhecido 14,6% 

12 (CGC 0044) 

CG 8,29%  

CGC 75,6% 

Não reconhecido 16,1% 

13 (CGC 0050) 

CG 0% 

CGC 12,4% 

Não reconhecido 87,6% 

14 (CGC 0060) 

CG 7,6% 

CGC 60,4% 

Não reconhecido 32% 

15 (CGC 0065) 

CG 2,91% 

CGC 38,2% 

Não reconhecido 58,8% 

16 (CGC 0067) 

CG 42,6% 

CGC 53,8% 

Não reconhecido 3,6% 

17 (CGC 0080) 

CG 1,7% 

CGC 68,9% 

Não reconhecido 29,4% 

18 (CGC 0081) 

CG 57% 

CGC 34% 

Não reconhecido 9% 

19 (CGC 0086) 

CG 1,76% 

CGC 49% 

Não reconhecido 49,3% 

20 (CGC 0087) 

CG 0% 

CGC 12,4% 

Não reconhecido 87,6% 

21 (CGC 0116) 

CG 32,4% 

CGC 50,6% 

Não reconhecido 17% 

22 (CGC 0121) 

CG 4,85% 

CGC 46,4% 

Não reconhecido 48,8% 

23 (CGC 0124) 

CG 11% 

CGC 78,9% 

Não reconhecido 10,1% 

24 (GC 0126) 

CG 12,6% 

CGC 75,1% 

Não reconhecido 12,3% 

25 (CGC 0132) 

CG 12,5% 

CGC 67,3% 

Não reconhecido 20,3% 
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A partir das imagens de previsão das amostras (Apêndice A), é possível verificar que 

pixels não reconhecidos foram observados, principalmente, em regiões onde o desenvolvimento 

dos fungos não foi proeminente sobre a semente, com pouco ou nenhum crescimento vegetativo 

do patógeno visível; uma vez que, na construção do modelo PLS-DA, optou-se por utilizar 

apenas amostras características dos fungos. De modo geral, o crescimento sobre a semente foi 

muito variável entre os isolados; logo, amostras que apresentaram um baixo nível de 

crescimento dos fungos, como àquelas referente aos isolados CG 0738, CGC 0050 e CGC 0087, 

tiveram a maior parte dos pixels (>80%) não reconhecidos. Por outro lado, em amostras com 

um alto nível de crescimento dos fungos, a taxa de classificação dos pixels em CG e CGC foi 

superior, permitindo uma melhor análise da precisão do modelo PLS-DA (Tabela 3).  

Quanto aos resultados de classificação correta, o percentual de acerto foi variável entre 

amostras, o que possivelmente têm relação com a variabilidade dentro de cada espécie. Em 22 

amostras preditas verificou-se maior porcentagem de pixels classificados corretamente, de 

acordo com a classe correspondente. Observando-se as taxas de erro nas predições percebe-se 

que as amostras referentes aos isolados de CGC tiveram, em sua maioria, erro de predição 

inferior ao erro observado no conjunto de validação do modelo (18,4%), o que sugere que as 

informações relevantes para a identificação da espécie CGC em sementes estão, em sua maior 

parte, presentes no modelo PLS-DA. Já na classe CG, apesar da menor quantidade de isolados, 

as taxas de erro na classificação das amostras foram superiores ao observado no conjunto de 

validação (13,5%), com exceção da Amostra 3 (CG 0735) que teve apenas 13,3% dos pixels 

classificados incorretamente. Possivelmente, a maior taxa de erro nas predições de amostras 

CG seja resultado da alta variabilidade genética entre os indivíduos da espécie, conforme foi 

sugerido na análise exploratória utilizando a PCA.  

Como pode ser visto na Tabela 3, 57% da amostra 18 (CGC 0081) foi classificada 

incorretamente em CG; do mesmo modo, nas amostras 9 e 10 (isolado CG 0738) as 

porcentagens de pixels classificados em CGC foram superiores, ainda que as amostras tenham 

baixo crescimento dos fungos sobre as sementes. Apesar da amostra 16 (CGC 0067) ter 

apresentado 53,8% de classificação correta, a alta porcentagem de pixels classificados em CG 

(42,6%) sugere suscetibilidade ao erro na classificação desse indivíduo que, possivelmente, 

dispõe de características muito próximas à espécie CG. A alta taxa de erro nas classificações 

das amostras indica a necessidade de incluir os referentes isolados no modelo PLS-DA, de 

forma a introduzir essa variabilidade e torná-lo mais robusto. 
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4. CONCLUSÃO   

  

A performance do modelo PLS-DA nas predições indica que o método permite a 

identificação das espécies CG e CGC em sementes de algodoeiro, com capacidade para ser 

adaptado à rotina dos laboratórios de análise de sementes. O modelo apresentou sensibilidade 

em detectar características distintas entre as espécies fúngicas e obteve 86,5% de acerto na 

classificação de CG e 81,6% de acerto na classificação de CGC em sementes de algodoeiro.  

 

5. CONSIDERAÇÕES FINAIS 

 

Dependendo do nível do crescimento fúngico sobre a semente, é possível ocorrer 

interferência na classificação dos pixels das amostras. Desse modo, a fim de se obter um alto 

nível de esporulação ou crescimento fúngico sobre as sementes, o que demonstrou ser variável 

entre os isolados, o aumento do período de incubação no teste de sanidade pode ser favorável.   

Conforme observado a partir do estudo exploratório usando a PCA, os diferentes 

indivíduos dentro das espécies podem variar consideravelmente, sendo importante que as 

variações dentro de cada classe estejam presentes no modelo PLS-DA. Para aumentar a precisão 

do modelo, amostras características dos isolados que apresentaram alta taxa de erro nas 

classificações devem ser incluídas nos conjuntos de calibração.  

A similaridade entre pixels característicos de CG e CGC nas amostras resulta em 

problemas relacionados à classificação por pixels, empregada no presente estudo. Em trabalhos 

futuros, a classificação por objetos, onde cada semente é identificada como um único objeto e 

classificada de modo individual, pode ser favorável na distinção das espécies CG em CGC em 

sementes de algodoeiro. 
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APÊNDICE A– Mapas de previsão das amostras de validação externa 

 

Amostra 1 (CG 37) 

 

 

 

Amostra 2 (CG 37) 

 

 

Amostra 3 (CG 0735) 

 

 

 

Amostra 4 (CG 0735) 

 

 

 

Amostra 5 (CG 0736) 

 

 

Amostra 6 (CG 0736) 
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Amostra 7 (CG 0737) 

 

 

 

Amostra 8 (CG 0737) 

 

 

Amostra 9 (CG 0738) 

 

 

 

Amostra 10 (CG 0738) 

 

 

 

Amostra 11 (CGC 40) 

 

 

Amostra 12 (CGC 44) 
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Amostra 13 (CGC 50) 

 

 

 

Amostra 14 (CGC 60) 

 

 

 

Amostra 15 (CGC 65) 

 

 

 

Amostra 16 (CGC 67) 

 

 

 

Amostra 17 (CGC 80) 

 

 

Amostra 18 (CGC 81) 
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Amostra 19 (CGC 86) 

 

 

 

Amostra 20 (CGC 87) 

 

 

 

Amostra 21 (CGC 116) 

 

 

 

Amostra 22 (CGC 121) 

 

 

 

Amostra 23 (CGC 124) 

 

 

Amostra 24 (CGC 126) 
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Amostra 25 (CGC 132) 

 

 

 

 

 


