

UNIVERSIDADE FEDERAL DA PARAÍBA CENTRO DE CIÊNCIAS DA SAÚDE DEPARTAMENTO DE CIÊNCIAS FARMACÊUTICAS CURSO DE FARMÁCIA

GRASIELA COSTA BEZERRA

ESTUDO COMPARATIVO DE PARÂMETROS INFLAMATÓRIOS NOS MODELOS EXPERIMENTAIS DE INFLAMAÇÃO PULMONAR ALÉRGICA AGUDA E CRÔNICA

JOÃO PESSOA – PB Junho 2018

GRASIELA COSTA BEZERRA

ESTUDO COMPARATIVO DE PARÂMETROS INFLAMATÓRIOS NOS MODELOS EXPERIMENTAIS DE INFLAMAÇÃO PULMONAR ALÉRGICA AGUDA E CRÔNICA

Trabalho de Conclusão de Curso apresentado à Coordenação do Curso de Graduação em Farmácia, do Centro de Ciências da Saúde, da Universidade Federal da Paraíba, como parte dos requisitos para obtenção do grau de **Bacharel em Farmácia.**

Orientadora: Profa. Dra. Marcia Regina Piuvezam

JOÃO PESSOA-PB Junho 2018 B574e Bezerra, Grasiela Costa.

Estudo comparativo de parâmetros inflamatórios nos modelos experimentais de inflamação pulmonar alérgica aguda e crônica / Grasiela Costa Bezerra. - - João Pessoa, 2018.

76f. : il. -

Orientadora : Marcia Regina Piuvezam. Monografia (Graduação) – UFPB/CCS.

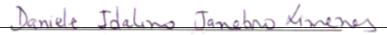
- 1. Inflamação Pulmonar. 2. Asma alérgica. 3. Modelos experimentais.
- 4. Remodelamento pulmonar. 5. Farmácia.

BS/CCS/UFPB CDU: 616.24-002(043.2)

UNIVERSIDADE FEDERAL DA PARAÍBA CENTRO DE CIÊNCIAS DA SAÚDE DEPARTAMENTO DE CIÊNCIAS FARMACÊUTICAS CURSO FARMÁCIA

GRASIELA COSTA BEZERRA

Trabalho de Conclusão de Curso apresentado à Coordenação do Curso de Graduação em Farmácia, do Centro de Ciências da Saúde, da Universidade Federal da Paraíba, como parte dos requisitos para obtenção do grau de **Bacharel em Farmácia.**


ESTUDO COMPARATIVO DE PARÂMETROS INFLAMATÓRIOS NOS MODELOS EXPERIMENTAIS DE INFLAMAÇÃO PULMONAR ALÉRGICA AGUDA E CRÔNICA

Aprovado em 05 de junho de 2018

BANCA EXAMINADORA

Profa. Dra. Marcia Regina Piuvezam

Programa de Pós-Graduação em Produtos Naturais Sintéticos e Bioativos Universidade Federal da Paraíba – Orientador/a

Profa. Dra. Daniele Idalino Janebro Ximenes Universidade Federal da Paraíba – Membro Interno

Lariera Korlo Diego Paivo Lovers

Ms. Laércia Karla Diega Paiva Ferreira
Universidade Federal da Paraíba – Membro Externo

Dedico esse trabalho a Deus meu protetor e amigo fiel de todas as horas que me manteve firme nessa camínhada, e aqueles que são mínha base, maiores incentivadores, amigos verdadeiros que me ensinaram as coisas mais importantes na vida e sempre estiveram comigo, meus queridos e amados país María José Costa Bezerra e Valdelino Costa Bezerra, sem vocês nada disso séria possível.

AGRADECIMENTOS

Deus, que desde o inicio esteve comigo preparando cada detalhe e cuidando de cada passo meu, me livrando do mal, e me dando força e sabedoria em cada momento. Com Ele aprendi que nada é impossível, que por trás de toda luta existe uma vitória e que nossos planos são pequenos comparados aos que Ele tem para nós, quando acreditamos. Em cada momento vi tua presença e teu cuidado, e a ti sou grata.

Aos meus pais, Maria José Costa Bezerra e Valdelino Costa Bezerra meus tesouros e maiores exemplos, que sempre estiveram comigo me apoiando constantemente, me ensinando e mostrando os bens mais preciosos da vida, amor, humildade e respeito. Agradeço por todo amor e carinho, pela educação que me deram e por todo esforço para minha criação. Ao meu querido irmão, Anderson Costa pelo carinho, amizade, e apoio de todas as horas. As minhas primas, Marcia Aparecida e Mercia Andreza pelas quais tenho carinho de irmã, elas que sempre estiveram comigo me apoiando, torcendo e me incentivando desde do ensino médio até minha vinda para UFPB, e me acompanharam durante todos os momentos dessa etapa. Aos meus avós paternos Helena Fiqueira e José Bezerra e aos maternos Edite Feitosa e José Pedro Calixto, apenas vovó Edite está entre nós, mas acredito que meus queridos avós sempre torceram e estão felizes com esse momento tão importante que vivo agora, lá no céu. A todos meus familiares: tios (as), primos (as), pelos momentos de alegria, pelas palavras de apoio e por se alegrarem com as minhas vitórias.

Ao meu amado noivo, **Henrique Júnior** por todo amor, pelos momentos felizes e a paz que me faz sentir. Por sempre está comigo distante ou perto, por ser um grande amigo, e me apoiar nos meus sonhos. Você é presente de Deus em minha vida e veio para tornar tudo ainda mais bonito. E a família do meu noivo, os quais sempre me receberam com muito carinho e torceram por mim.

Aos meus amigos que conheci antes da graduação, em especial Bianca Alves e Laisa Nunes pela linda amizade que construímos, pelos momentos de alegria inesquecíveis, e apesar da distância, foram e são pessoas marcantes na minha vida.

Aos meus professores do ensino médio da Escola EREM Luiz Alves da Silva, pelos ensinamentos e por sempre estarem me estimulando a alcançar meus objetivos, em especial ao professor **Ronaldo** por ter me apresentado o curso de Farmácia onde foi o momento que iniciou meu interesse. Ao professor **Paulo Rogério** por ser o melhor professor de química e a professora **Valdiana** pelo carinho e atenção.

Aos professores que tive na graduação, pelas contribuições acadêmicas que foram essenciais para minha formação. Em especial, aos professores do Departamento de Ciências Farmacêuticas por todos os ensinamentos, conselhos e por ter nos mostrado ainda mais a beleza e importância do curso de Farmácia.

À minha orientadora, a Professora Doutora **Marcia Regina Piuvezam** por ter aberto as portas do Laboratório de Imunofarmacologia e me acolhido tão bem. Obrigada pelos conhecimentos transmitidos, por sua orientação e pela confiança em mim depositada.

A todos que fazem parte do Laboratório de Imunofarmacologia, companheiros da ciência e pessoas que me mostraram a beleza da pesquisa. Aos que já passaram, Fernanda e Byanca, aos que hoje estão no laboratório Gabriel, Cosmo, João, Viviane, Tamires, Allysson, Raquel, Hianka, Larissa Rodrigues, Adriano, Heivila, Louise, Luiz Henrique, José Guilherme, Juliane, José Marreiro, Dayse, Éssia, Júlia, Isabela e Anne. Aos professores Giciane, Sandra e Claúdio pelas contribuições. E principalmente, aquelas que me acompanharam de perto, me ajudaram na superação dos obstáculos, foram indispensáveis para o meu crescimento na iniciação científica, que me ensinaram muito e pelas quais tenho um carinho enorme e sou extremamente grata, Laércia, Talissa e Larissa, vocês são demais.

Aos meus amigos da graduação, Cinthia, Larissa, Tuany, Lidiane, Geovânia, Severino Neto, Fernanda e Ana Luiza obrigada a vocês por todos os conhecimentos compartilhados, as conversas, os conselhos e os momentos de descontração, com vocês a graduação se tornou menos pesada. Cada um com seu jeito particular me ensinou algo especial. Que Deus continue abençoando cada um de vocês. Com certeza os melhores farmacêuticos.

A Banca Examinadora, **Daniele Idalino Janebro Ximenes, Laércia Karla Diega Paiva Ferreira** pela atenção, disponibilidade e contribuição para o enriquecimento do meu trabalho. Assim como também as examinadoras suplentes **Giciane Carvalho Vieira** e **Isabele Beserra Santos Gomes.**

Aos funcionários da Universidade Federal da Paraíba, em especial a **Evandro** e **Nilton** do DCF e Petrônio da Coordenação de Farmácia, a **Crispim** por suas contribuições principalmente no experimento do PCA, e a **Mônica** sempre simpática e muito gentil.

A Universidade Federal da Paraíba e Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), pelos recursos financeiros, humanos e estrutura física, que proporcionaram o desenvolvimento desse trabalho.

BEZERRA, G.C. Estudo comparativo de parâmetros inflamatórios nos modelos experimentais de inflamação pulmonar alérgica aguda e crônica. Trabalho de Conclusão de Curso. Coordenação do Curso de Farmácia, CCS/UFPB, 2018.

RESUMO

A inflamação pulmonar eosinofílica das vias aéreas inferiores, representa a característica central no mecanismo fisiopatológico da asma alérgica. A asma afeta cerca de 300 milhões de pessoas em todo o mundo, e aproximadamente 250.000 mortes são atribuídas à doença anualmente. Os modelos experimentais in vivo de inflamação pulmonar alérgica agudos e crônicos apresentam semelhanças nos sinais clínicos e fisiopatológicos à doença em humanos o que permite entender os mecanismos da doença, além de tornar os testes pré-clínicos mais eficazes. O presente trabalho teve como objetivo avaliar e comparar os parâmetros inflamatórios e alérgicos de diferentes modelos experimentais de inflamação pulmonar alérgica agudo (23 dias de sensibilização e desafio com o alérgeno) e crônico (35 dias de sensibilização e desafio com o alérgeno). Camundongos fêmeas BALB/c foram sensibilizados e desafiados com ovalbumina (OVA) e os parâmetros inflamatórios observados foram à migração de leucócitos no fluido do lavado broncoalveolar (BALF), os eventos histopatológicos foram inflamação, muco e remodelamento tecidual e os parâmetros alérgicos avaliados foram a produção de IgE – OVA específica e as citocinas do perfil Th2 (IL-4 e IL-13). O desafio prolongado com OVA no protocolo de asma alérgica crônica (35 dias), promoveu recrutamento significativo no número de leucócitos em relação ao grupo OVA do protocolo de asma alérgica aguda (23 dias), no BALF (8,63x10⁵ ± $0.81 \text{ vs } 5.63 \times 10^5 \pm 0.457$), e na histologia (score = $6.75 \pm 0.25 \text{ vs } 4.5 \pm 0.289$) e promoveu hiperprodução de muco (3,25 ± 0,25 vs 0,5 ± 0,289). Em adição, verificou-se que no grupo OVA do protocolo crônico houve remodelamento tecidual acentuado, o que não foi observado no grupo OVA do protocolo agudo (score =2,75 \pm 0,25 vs 0,25 \pm 0,25). Adicionalmente, nos protocolos de 23 e 35 dias houve produção de IgE-OVA específica (3822 ± 274 e 3947 ± 149. respectivamente) e das citocinas IL-4 (51,7 \pm 2,63 e 52,7 \pm 4,15, respectivamente) e IL-13 (66,4 \pm 1,84 e 78,2 \pm 1,75, respectivamente) comparando com os grupos basais. Demonstrando, com esses resultados, que o aumento da IL-13 foi mais acentuado (p<0,01) nos animais expostos de forma mais prolongada ao alérgeno (23 dias comparados a 35 dias). Os resultados obtidos nesse estudo demonstram que o desafio prolongado com alérgeno promove, a exacerbação dos parâmetros inflamatórios crônicos das vias aéreas inferiores, característicos da asma alérgica.

PALAVRAS-CHAVE: Inflamação Pulmonar. Asma alérgica. Modelos experimentais. Remodelamento pulmonar

BEZERRA, G.C. Comparative study of inflammatory parameters in the experimental models of acute and chronic allergic pulmonary inflammation. Completion of course work. Coordination of the Pharmacy Course, CCS/UFPB,2018.

ABSTRACT

Eosinophilic lung inflammation of the lower airways, is the central feature in the pathophysiological mechanisms of allergic asthma. Asthma affects about 300 million people worldwide, and approximately 250,000 deaths are attributed to the disease annually. In vivo experimental models of acute and chronic lower airway allergic inflammation present similarities in clinical and pathophysiological signs of disease in humans, which makes it possible to understand the mechanisms of the disease, in addition to making preclinical tests more effective. The goal of the present study was to evaluate and to compare the inflammatory and allergic parameters of different experimental models of acute allergic pulmonary inflammation (23 days of sensitization and challenge with the allergen) and chronic (35 days of sensitization and challenge with the allergen). Female BALB / c mice were sensitized and challenged with ovalbumin (OVA) and the inflammatory parameters observed were leukocyte migration in the bronchoalveolar lavage fluid (BALF), histopathological events as inflammation, mucus and tissue remodeling and the allergic parameters evaluated were specific IgE-OVA production and Th2 cytokine profile (IL-4 and IL-13). The prolonged OVA challenged, in the chronic allergic asthma protocol (35 days), induced a significant leukocyte recruitment into the BALF (8.63x105 \pm 0.81 vs 5.63x105 \pm 0.457), histological alterations (score = $6.75 \pm 0.25 \text{ vs } 4.5 \pm 0.299$) and mucus hyperproduction (3.25 ± 0.25 vs 0.5 ± 0.289) as compared to the OVA group of the acute allergic asthma protocol (23 days). In addition, it was verified that in OVA group of the chronic presented a marked tissue remodeling, which was not observed in the OVA group of the acute protocol (score = $2.75 \pm 0.25 \text{ vs } 0.25 \pm 0.25$). Additionally, it was observed that on both protocols (23- and 35-days) production of IgE-OVA specific (3822 ± 274 and 3947 \pm 149, respectively), IL-4 cytokines (51.7 \pm 2.63 and 52.7 \pm 4.15, respectively) and IL-13 (66.4 ± 1.84 and 78.2 ± 1.75, respectively) comparing with the basal groups. By demonstrating, with these results, that the increase in IL-13 was more pronounced (p<0,01) in intense allergic exposed animals (23 days compared to 35 days). The results obtained in this study demonstrate that the prolonged allergen challenge promotes the exacerbation of the chronic inflammatory parameters of the lower airways, characteristic of allergic asthma.

KEYWORDS: Pulmonary Inflammation. Allergic asthma. Experimental models. Pulmonary remodeling

LISTA DE ILUSTRAÇÕES

	PÁGINA
Figura 1: Fisiopatologia da asma alérgica Th2	26
Figura 2: Esquema representativo do protocolo experimental agudo	
de inflamação pulmonar alérgica induzida por ovalbumina	35
Figura 3: Esquema representativo do protocolo experimental crônico	
de inflamação pulmonar alérgica induzida por ovalbumina	35
Figura 4: Esquema representativo da contagem de células totais e	
diferenciais	37
Figura 5: Esquema representativo da preparação do corte	22
histológico pulmonar	39
Figura 6: Esquema representativo da dosagem de IgE OVA-	
específica pelo método de Anafilaxia Cutânea Passiva (PCA)	43
Figura 7: Esquema representativo da quantificação de citocinas	
pelo Ensaio Imunoenzimático de ELISA sanduíche	44
Figura 8: Análise do efeito inflamatório do desafio com Ovalbumina	
no processo histopatologico pulmonar em modelos experimentais	
agudo e crônico da inflamação pulmonar alérgica	48

LISTA DE GRÁFICOS

	PÁGINA
Gráfico 1: Efeito do desafio com Ovalbumina na migração de células	
totais e porcentagem de eosinófilos no BALF em modelos	
experimentais de inflamação pulmonar alérgica	46
Gráfico 2: Análise do efeito inflamatório do desafio com Ovalbumina	
no processo histopatologico pulmonar em modelos experimentais	
a agudo e crônico da inflamação pulmonar alérgica	51
Gráfico 3: Efeito do desafio com Ovalbumina sobre o título de IgE-	
OVA específica em modelos experimentais de inflamação pulmonar	
alérgica	52
Gráfico 4: Efeito do desafio com Ovalbumina na produção das	
citocinas do perfil celular Th2, em modelos experimentais da	
inflamação pulmonar alérgica agudo e crônico.	53

LISTA SIGLAS E ABREVIATURAS

AI(OH)2 Hidróxido de alumínio

ANOVA Análise de variância

APC Célula apresentadora de antígeno

BALF Fluído do Lavado Broncoalveolar

DC Célula dendrítica

e.m.p. Erro Padrão da Média

EUA Estados Unidos da América

FcεRI Receptor de alta afinidade pela região Fc da Imunoglobulina E

GM-CSF Fator estimulante de colônias de granulócitos e macrófagos

H Horas

HCL Ácido Clorídrico

HE Hematoxilina-eosina

IgE Imunoglobulina E

Ig Imunoglobulina

IL Interleucina

IL-4R Receptor da IL-4

i.m. Intramuscular

i.p. Intraperitoneal

JAK Janus Quinase

MHC-II Complexo Maior de Histocompatibilidade classe II

Min Minutos

Nm Nanómetro

NaCl Cloreto de Sódio

NaOH Hidróxido de Sódio

OVA Ovalbumina

PAF Fator Ativador de Plaquetas

PAS Ácido Periódico de Schiff

PCA Anafilaxia Cutânea Passiva

PBS Tampão Fosfato de Sódio

RPM Rotações por Minuto

SUS Sistema Único de Saúde

STAT Transdutor de Sinal e Ativação de Proteínas de Transcrição

TSLP Linfopoietina do Estroma Tímica

TM Tricrômio de Masson

SUMÁRIO

PÁGINA

DEDICATÓRIA
AGRADEICMENTOS
RESUMO
ABSTRACT
LISTA DE ILUSTRAÇÕES
LISTA DE GRÁFICOS
LISTA SIGLAS E ABREVIATURAS
SUMÁRIO
1. INTRODUÇÃO17
2. REFERENCIAL TEÓRICO19
2.1 Inflamação pulmonar alérgica e asma Th219
2.2 Aspectos epidemiológicos da asma alérgica e seu impacto social
e econômico
2.3 Fisiopatologia da asma alérgica23
2.4 Remodelamento pulmonar
2.5 Protocolos animais experimentais29
3. OBJETIVOS32
3.1 Geral32

3.2 Específicos	32
4. MATERIAL E MÉTODOS	33
4.1 Substâncias e sais	33
4.2 Aparelhos e equipamentos	33
4.3 Animais	33
4.4 Condições experimentais	33
4.5 Protocolos de inflamação pulmonar alérgica induzida por Ovalbumina	34
4.5.1 Coleta do fluído do lavado broncoalveolar (BALF)	36
4.5.1.1 Contagem total e diferencial de células do BALF	36
4.6 Histologia pulmonar	.37
4.6.1 Coleta de pulmão para análise histológica	37
4.6.2 Desidratação, diafanização, inclusão, microtomia e colagem do	
corte á lâmina	.38
4.6.3 Coloração H.E. (Hematoxilina-eosina)	.39
4.6.4 Coloração P.A.S. (Ácido periódico de Shiff)	.40
4.6.5 Coloração T.M. (Tricrômio de Masson)	.40
4.7 Coleta de sangue e preparação do soro	41
4.7.1 Teste de Anafilaxia Cutânea Passiva (PCA)	.42
4.8 Quantificação das citocinas do BALF	.43
4.9 Análise estatística	44
5. RESULTADOS	.45
5.1 Análise da celularidade total e porcentagem de eosinófilos no fluído do	

lavado broncoalveolar (BALF)	45
5.2 Análise histológica	47
5.3 Análise da produção de IgE OVA-específica pela técnica de Anafilaxia	
Cutânea Passiva (PCA)	52
5.4 Quantificação das citocinas IL-4 e IL-13	53
6. DISCUSSÃO	54
7.CONCLUSÃO	60
REFERÊNCIAS	.61
APÊNDICES	70
ANEXO	74

1. INTRODUÇÃO

A inflamação se apresenta como um evento fisiológico e protetor, sendo este marcadamente regulado, originado em resposta a estímulos nocivos, tais como agentes patogênicos, células potencialmente cancerígenas, células mortas ou injuria tecidual (GUO et al., 2015; KOTAS & MEDZHITOV, 2015). Os fenômenos inflamatórios podem ser divididos em duas categorias principais, inflamação aguda e crônica, fundamentado nos eventos temporais e patológicos. A inflamação aguda apresenta-se particularmente como uma resposta imediata e inespecífica com duração relativamente breve e autolimitada, e é caracterizada por vasodilatação, com exsudação de líquido rico em proteínas e migração de células para o local da lesão. Já o processo crônico é caracterizado como sendo um distúrbio de duração prolongada, com o surgimento de alterações histológicas ligadas ao aumento do grau de celularidade, neoformação de vasos sanguíneos, fibrose e necrose tecidual (SHERWOOD & TOLIVER-KINSKY, 2004).

As doenças alérgicas representam uma classe de entidades nosológicas extremamente frequentes, cuja prevalência tem aumentando significativamente nas últimas décadas. É estabelecido que a inflamação representa um fator primordial para o estabelecimento desse grupo de doenças (RAMOUTSAKI et al., 2002) As reações inflamatórias são, por principio, benéficas para o organismo, caracterizando um mecanismo de reparação autolimitado. Desse modo, pode-se assumir uma ruptura do equilíbrio necessário ao controle desse mecanismo, em relação ao aparecimento das doenças alérgicas. As doenças alérgicas são, portanto, um conjunto de afecções caracterizadas por uma inflamação conduzida por um alérgeno, originando uma resposta do sistema imunológico exacerbada localizada a um órgão, ou generalizada (RAMOUTSAKI et al., 2002).

Dentro da classe de doenças alérgicas encontram-se as doenças respiratórias alérgicas, desenvolvidas pelo contato com aeroalérgenos (alérgenos suspensos no ar), e algumas delas associadas à reação atópica. As doenças atópicas são aquelas provocadas por uma reação alérgica, em que a resposta exacerbada encontram-se relacionado a elevados níveis de imunoglobulina E (IgE) alérgeno específica. Alguns exemplos de doenças atópicas são: rinite, asma, e rinosinusite (HOLGATE e POLOSA, 2008).

A asma alérgica é considerada um problema mundial de saúde pública, uma vez que afeta cerca de 300 milhões de indivíduos dos mais variados grupos étnicos e faixas etárias (LAMBRECHT et al. 2015). Um dos mecanismos fisiopatológicos mais importantes da asma é inflamação pulmonar alérgica, que leva ao desenvolvimento de hiperresponsividade das vias aéreas inferiores resultando em estreitamento dessas, causando redução do fluxo de ar para os pulmões (CAMPOS, 2007). A presença e atividade eosinofílica e de linfócitos T_H2 com produção das citocinas IL-4, IL-13 e IL-5, associadas à produção de imunoglobulina E (IgE) alérgeno-específica são as principais características da doença (FULKERSON *et al.*, 2005) . São observadas também na asma mudanças estruturais das vias aéreas inferiores, incluindo espessamento da musculatura lisa, metaplasia epitelial e hiperplasia de células caliciformes (BOUSQUET et al. 2000).

Os modelos animais têm sido utilizados há décadas para melhor entendimento da fisiopatologia e descoberta de biomarcadores alvos de novas terapias para asma. O modelo murino é o mais amplamente utilizado em estudos de asma devido ao baixo custo, fácil manipulação e genética detalhadamente conhecida. Os camundongos BALB/c são animais isogênicos geralmente sensibilizados com ovalbumina (OVA) (ZOSKY; SLY 2007). Os modelos experimentais *in vivo* de inflamação alérgica das vias aéreas inferiores crônicos e agudos são frequentemente utilizados e descritos na literatura, esses modelos apresentam-se mais semelhantes à doença em humanos e com características mais abrangentes, o que permite entender melhor os mecanismos da doença, além de tornar os testes pré-clínicos mais eficazes (PEREIRA et. al., 2012).

Diante disso o objetivo desse estudo foi comparar os parâmetros inflamatórios e alérgicos de dois protocolos de inflamação pulmonar alérgica, característico da asma, sendo um de caráter agudo e outro crônico.

2. REFERÊNCIAL TEÓRICO

2.1 Inflamação Pulmonar Alérgica e Asma Th2

A inflamação pulmonar representa a característica central para o mecanismo fisiopatológico da asma alérgica, e envolve interações complexas entre células inflamatórias, mediadores e células estruturais dos pulmões. Está presente não apenas em asmáticos graves ou com doença de longa duração, como também naqueles pacientes que apresentam asma de início recente, e em pacientes que possuem as formas mais leves da doença e mesmo nos assintomáticos.

A denominação asma é utilizada há séculos, remetendo-se ao grego, cujo significado está associado a ofegante, arquejante (CAMPOS *et al.*, 2004). Na atualidade a asma por sua vez, é definida como uma doença heterogênea, geralmente caracterizada por uma condição inflamatória crônica das vias aéreas inferiores, associada a um grupo clínico de sintomas respiratórios, como sibilos, falta de ar, aperto no peito e tosse, que variam com o tempo e intensidade, juntamente com a limitação variável do fluxo expiratório (GINA, 2016).

Com o surgimento do conceito da divisão da imunidade nos perfis celulares Th1 e Th2, a asma tem sido considerada tipo Th2, associada à atopia e alergia, às reações de hipersensibilidade do tipo imediata (tipo I) e a presença prevalente de eosinófilos. Apesar de estudos atuais demonstrarem a existência de diversos fenótipos de asma, ainda ocorre a prevalência da asma associada ao tipo Th2 (cerca de 70%) (HALDAR *et al.*, 2008; MOORE *et al.*, 2010). É visto que a asma do tipo Th2 ocorre em cerca de 80% das crianças e na maioria dos adultos (HOLGATE *et al.*, 2015).

As principais características observadas na asma alérgica são resultado da presença e atividade eosinofílica e de linfócitos Th2 com produção das citocinas IL-4, IL-13 e IL-5, associadas à produção de imunoglobulina E (IgE) alérgeno-específica (CAMPOS, 2007; WYNN, 2015). O aumento sérico de IgE caracteriza uma atopia (predisposição genética para desenvolver alergias) e é considerada a marca da resposta imune adaptativa Th2 (CHENG et al., 2014). Na asma alérgica, a resposta mediada por IgE causa alterações imediatas, minutos após a exposição ao(s)

alérgeno(s), e alterações tardias, que representarão a resposta inflamatória crônica característica da doença (SILVA & DIAS 2013;).

O desenvolvimento da inflamação pulmonar alérgica presente na asma está associado a vários fatores externos (ambientais e ocupacionais) e individuais (genéticos e psicossociais), e depende da interação entre estes fatores externos e a predisposição genética ao desenvolvimento de hiperresponsividade brônquica e atopia, ou seja, predisposição genética para a produção demasiada de IgE específica para antígenos frequentes do meio ambiente (SILVA & DIAS 2013).

A asma afeta todas as faixas etárias, porém com maior magnitude em crianças e adolescentes, podendo os sintomas variar quanto à gravidade e frequência. (BOUSQUET et al., 2005). Durante um ataque de asma, a mucosa dos brônquios intumesce, resultando em estreitamento das vias aéreas e redução do fluxo de ar para dentro e para fora dos pulmões e consequente falta de ar. A falta de ar retrata uma das principais condições dos asmáticos (MOZZINI-MONTEIRO *et al.,* 2018). De acordo com as Diretrizes da Sociedade Brasileira de Pneumologia e Tisiologia para o Manejo da Asma (2012), o diagnóstico clínico da asma é sugerido por um ou mais sintomas, como dispnéia, tosse crônica, sibilância, opressão ou desconforto torácico, sobretudo à noite ou nas primeiras horas da manhã.

2.2 Aspectos Epidemiológicos da Asma Alérgica e seu Impacto Social e Econômico

A asma afeta cerca de 300 milhões de pessoas em todo o mundo, e aproximadamente 250.000 mortes são atribuídas à doença anualmente (GINA 2018). É estimada uma adição de mais 100 milhões de pessoas diagnosticadas com asma no ano de 2025 (WHO, 2016).

É considerada a doença crônica não transmissível mais comum da infância e adolescência. Representa um sério problema de saúde mundial, no entanto, apresenta-se com crescente predominância em grande parte dos países em desenvolvimento, promovendo um aumento significativo dos custos para os sistemas de saúde

associados com tratamento e hospitalização, e consequências negativas tanto para os pacientes como para os familiares (GINA, 2018). Tais consequências, como dias e custos decorrentes de hospitalizações, ocasionam impacto econômico e social.

Dentre os fatores que têm contribuido para o aumento do número de asmáticos ao redor do mundo, pode-se destacar o aumento do grau de industrialização e modernização. Com as crescentes taxas de urbanização da população mundial, e as mudanças ambientais que seguem esses processos (exposição à alérgenos, irritantes e poluentes químicos), é esperado que o número de asmáticos acompanhe este crescimento nas próximas décadas (FALCON-RODRIGUEZ *et al.*, 2017).

Os grupos com maior predomínio de asma (> 20% em crianças) estão em países de língua inglesa e na América Latina (SOLÉ *et al.*, 2015; CHONG, et. al. 2012). A prevalência da asma infantil na América Latina apresenta um alto grau de variação (de 4% a 30%), mas geralmente está acima de 10% em praticamente todos os países (SOLÉ *et al.*, 2015). O impacto da asma nesses países é normalmente complicado pela escassez e limitação dos serviços de saúde e medicamentos essenciais ofertados (CHONG *et al.*, 2012). Nos EUA, um dos países mais desenvolvidos do mundo, segundo o National Center for Health Statistics foram registradas em 2015, 3.615 mortes por asma e 1,7 milhões de visitas a serviços de emergência com asma como diagnóstico principal.

No Brasil a asma atinge 6,4 milhões de brasileiros acima de 18 anos, sendo as mulheres mais acometidas pela doença, cerca de 3,9 milhões delas afirmaram ter diagnóstico da enfermidade contra 2,4 milhões de homens, ou seja, prevalência de 39% a mais entre o sexo feminino (BRASIL, 2015). Considerando a população adulta, crianças e adolescentes, a asma atinge aproximadamente 20 milhões de pessoas no país. Desse total, aproximadamente 20% enfrentam a forma grave da doença. Em 2014, foram registradas 105,5 mil internações pela doença originando um custo de R\$ 57,2 milhões para a rede pública de saúde no país (BRASIL, 2015). A asma representa a quarta causa de hospitalização pelo Sistema Único de Saúde (2,3% do total) e a terceira causa entre crianças e adultos jovens (BRASIL, 2015).

Em um estudo realizado por Cardoso e colaboradores (2017) nos anos de 2008 a 2013, avaliou-se a prevalência da asma nas diferentes regiões do Brasil, e constatou-

se que as regiões Norte / Nordeste e Sudeste apresentaram as maiores taxas de internações relacionadas à asma e óbitos de pacientes internados respectivamente. A média do número de hospitalizações relacionadas com a asma por região em 2010 foi de 110 hospitalizações / 100,000, e a proporção de mortes entre pacientes hospitalizados foi de 0,46%. No sul do Brasil, 20% das crianças em idade escolar possuem asma, muitas delas com doença não controlada e altas taxas de inatividade física, absenteísmo escolar e hospitalizações (CARDOSO *et al.*, 2017).

Embora tenha sido observado uma pequena redução (10%) no total de óbitos nos anos de 2008 a 2013, a mortalidade relacionada à asma no Brasil ainda é alta, e aproximadamente três pacientes morrem diariamente de asma no Brasil, e as internações e atendimentos em emergência por asma seguem liderando as estatísticas do SUS (DATASUS, 2017; CARDOSO *et al.*, 2017). A mortalidade relacionada à asma na infância no Brasil também diminuiu de 1980 a 2000, (PRIETSCH *et al.*, 2012) sugerindo uma tendência nacional em direção a uma melhora lenta e gradativa das mortes relacionadas à asma no país.

Em relação ao impacto econômico da asma, Costa e colaboradores (2018) constataram em seu estudo, que os pacientes que obtinham a medicação de controle da asma de forma gratuita pelo SUS, alcançaram uma redução dos gastos gerando um impacto positivo no orçamento da maioria das famílias. Além disso, foi visto que quanto mais grave ou pior o controle da asma, maior é o seu custo, de modo que asmáticos graves tiveram custo duas a quatro vezes maiores se comparados a pacientes com asma moderada, leve ou intermitente (COSTA *et al.*, 2018).

Apesar da grande prevalência e gravidade das doenças alérgicas no Brasil, como em todo o mundo, o acesso a atendimento especializado, exames complementares e terapias que possibilitam o controle adequado delas, especialmente as com potencial fatal, é restrito a poucos centros do país, e muitas dessas condições e terapias não estão contempladas nos Protocolos Clínicos e Diretrizes Terapêuticas do Ministério da Saúde (SERPA et al., 2017).

A asma acarreta um impacto negativo na vida dos pacientes, gerando interferências não só em termos de custos financeiros associados ao tratamento e diagnóstico, mas também aqueles associados ao desenvolvimento de restrições

físicas, emocionais e sociais. Tais interferências são proporcionalmente maiores à medida que os sintomas não são adequadamente controlados apesar dos avanços significativos na compreensão e terapia da patogênese, a prevalência da doença persiste elevada na população mundial. Além disso, o controle total da asma não vem sendo alcançado, apesar do avanço terapêutico (NASCIMENTO, 2012)

2.3 Fisiopatologia da Asma Alérgica

O processo fisiopatológico da asma tem sido extensivamente estudado nas últimas décadas, com o objetivo de compreender seu mecanismo inflamatório e assim desenvolver pesquisas de novas alternativas para seu tratamento e desse modo, reduzir a morbi-mortalidade dessa doença, que acarreta prejuízos sociais e econômicos em todo mundo.

A patogênese da asma alérgica combina mecanismos complexos moleculares e celulares, e envolve alterações fisiopatológicas como a inflamação das vias aéreas, com obstrução variável do débito aéreo e a hiperreatividade brônquica.

A asma alérgica é desencadeada pela ativação do perfil de resposta celular Th2 e de células efetoras, tais como, eosinófilos, basófilos e mastócitos, associado a um importante aumento da expressão de citocinas, especialmente IL-4, IL-5 e IL-13, e produção de IgE específica ao alérgeno (CAMARGOS *et al.*, 2002; SILVA *et al.*, 2013) . Além disso, destaca-se o processo de eosinofilia no sangue periférico e nos tecidos, importante na asma alérgica.

Estudos recentes evidenciam que após a inalação de alérgenos em indivíduos susceptíveis ocorre a ativação e liberação de citocinas derivadas do epitélio respiratório IL-33 e TSLP (linfopoetina do estroma tímico), essas por sua vez recrutam e ativam as células apresentadoras de antígenos (APCs), em particular as células dendríticas presentes na mucosa brônquica. As APCs capturam e processam os alérgenos, e por meio do complexo de histocompatibilidade principal (MHC) classe II realizam a apresentação desses peptídeos processados para as células T CD4+ naive (HOLGATE, et. al. 2015). A interação entre essas duas células induz uma resposta

imune primária, levando a diferenciação das células T CD4+ naive em células Th2 efetoras (TODO-BOM *et al.*, 2006). Os linfócitos Th2 induzem a síntese de IgE específica ao alérgeno pelos plasmócitos através da ação da IL-4 e IL-13, e a diferenciação e ativação dos eosinófilos pela ação da IL-5 (TODO-BOM *et al.*, 2006; SILVA *et al.*, 2013). A IgE produzida é liberada na circulação. Essa imunoglobulina se ligará em seus receptores de alta afinidade do tipo FcεRI presentes na superfície de células efetoras como mastócitos e basófilos, promovendo a sensibilização destas células (HOLGATE, *et. al.*, 2015)

Na fase de reexposição (subsequente a etapa de sensibilização) do organismo ao alérgeno, ocorre a ligação do alérgeno com as IgEs presentes na superfície das células sensibilizadas (mastócitos e basófilos), e através da reação alérgeno-anticorpo ocorre a degranulação dessas células que liberam mediadores pré-formados (histamina) e derivados dos fosfolípidicos de membrana (serotonina, leucotrienos, prostaglandinas, fator de ativação plaquetária (PAF) (PALOMARES et al., 2017;TODO-BOM et al., 2006). Neste ponto, uma reação de hipersensibilidade inicial de tipo I mediada por IgE pode ocorrer em poucos minutos da exposição ao alérgeno. Estes eventos fisiopatológicos desencadeiam os sintomas associados à alergia, sendo esses, congestão nasal, sibilos, espirros, tosse, conjuntivite, corrimento nasal, dispneia e aperto no peito, característicos de uma reação aguda (PALOMARES et al., 2017).

Normalmente precedido por uma reação de fase inicial clinicamente evidente, a resposta em fase tardia produz efeitos retardados e persistentes, e é desenvolvida como consequência da regulação positiva de citocinas, quimocinas e de moléculas de adesão que contribuem com o recrutamento de eosinófilos e ativação de células efetoras (linfócitos Th2, basófilos, macrófagos). Os eosinófilos liberam uma série de mediadores e proteínas tóxicas (proteína catiônica eosinofílica, proteína básica principal, leucotrienos, etc.). Estes são responsáveis pelos achados fisiopatológicos típicos das fases tardias da asma alérgica: aumento da permeabilidade vascular, edema brônquico e broncoespasmo (PALOMARES, et al., 2017; SHAKOORY et al., 2004).

A resposta tardia pode evoluir para uma resposta inflamatória crônica, que pode ser desenvolvida por uma exposição repetitiva ao alérgeno, estimulando as células Th2, o que, por sua vez, promoverá mais eosinofilia e produção adicional de

IgE. A fase crônica normalmente não inclui apenas a presença de um vasto número de células efetoras no sitio afetado, mas também como a presença de alterações das células estruturais nos tecidos afetados. Diante disso, além de sua ação indireta na perpetuação da inflamação, a IgE também pode desempenhar um papel significativo no processo de remodelação das vias aéreas, como evidenciado em estudos recentes que sugeriram um efeito direto desta imunoglobulina nas mudanças estruturais das vias aéreas (ROTH et al., 2013; , REDHU et al., 2013). A inflamação persistente na resposta crônica pode gerar o remodelamento das vias aéreas, promovendo uma perda progressiva da função pulmonar e obstrução fixa das vias aéreas (PALOMARES et al., 2017).

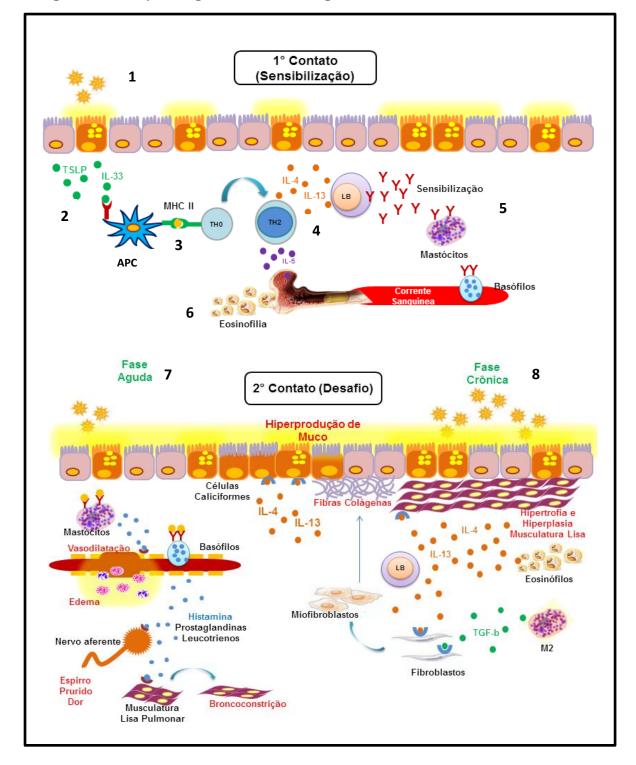


Figura 1. Fisiopatologia da Asma Alérgica

O alérgeno entra em contato com as vias aéreas (1), ocorrendo à produção de IL-33 e TSLP (2) que irão recrutar e ativar as APCs. As APCs por sua vez apresentam os peptídeos do alérgeno através do Complexo Principal de Histocompatibilidade tipo II (MHC II) as células THO (3), levando a diferenciação dessas em linfócitos Th2 que produzem as citocinas IL-4, -5 e -13 (4). As citocinas IL-4 e IL-13 atuam sobre os Linfócitos B (LB) que iram produzir IgE alérgeno-específica.

A IgE produzida se liga na superfície de mastócitos e basófilos promovedo a sensibilização dessas células (5). Em adição a IL-5 atua na ativação e recrutamento de eosinófilos produzindo assim a esoinófilia (6). Na etapa de reexposição ao alérgeno (segundo contato), ocorre a degranulação de mastócitos e basófilos, produzindo os sintomas da fase aguda da asma (7). A fase aguda pode evoluir para uma fase crônica, devido à persistência do contato com o alérgeno, desenvolvida por uma regulação positiva de citocinas e células inflamatórias, promovendo alterações estruturais (8), que caracterizam o remodelamento pulmonar associado na fase crônica. APC – célula apresentadora de antígeno; TSLP – linfoproteína do estroma tímico; IL – interleucina; TGF-β - Fator de crescimento transformador beta. Fonte : BEZERRA, 2018 adaptado de PAIVA FERREIRA 2016.

2.4 Remodelamento Pulmonar

Na asma, o aumento dos níveis de gravidade do processo inflamatório das vias aéreas é um dos principais fatores associados ao desenvolvimento do processo de remodelamento pulmonar (HOLGATE et al., 2015). Esse processo é dinâmico, ocorrendo à associação dos eventos de lesão inflamatória e reparo tecidual. As principais alterações estruturais ocorridas nas vias aéreas de asmáticos envolvem hiperplasia e hipertrofia da musculatura lisa das vias aéreas, espessamento da lâmina subepitelial brôquica (camada reticular), alteração no depósito/degradação dos componentes da matriz extracelular, hiperplasia das células caliciformes, aumento de glândulas e neoformação vascular e nervosa (HOLGATE et al., 2015; CAMPOS, 2007). Ao conjunto dessas alterações dá-se o nome de remodelamneto pulmonar, que representa as mudanças na composição, na quantidade e organização dos componentes celulares e moleculares das vias aéreas de asmáticos (BAI & KNIGHT, 2000). Todas estas alterações estruturais ocorrem devido à ativação e desregulação da atividade normal da chamada unidade trófica epitelial-mesenguimal, representada pelo epitélio brônquico, os miofibroblastos da camada subepitelial e o músculo liso brônquico.

Estudos mostram que o remodelamento está associado com a persistência dos mecânismos crônicos de reparação, que determinam as várias alterações ligadas ao processo (TAGAYA & TAMAOI 2007), e representa um determinante da gravidade e da

irreverssibilidadde da redução da luz brônquica. Além disso, as alterações ocorridas no músculo liso das vias aéreas, na mucosa e no parênquima pulmonar, podem modificar e contribuir para o processo de hiperresponsividade brônquica, bem como com a persistência dos sintomas (HOLGATE *et al.*, 2015; LANÇAS *et al.*, 2006).

Inicialmente, o remodelamento pulmonar foi associado como resultado das lesões teciduais decorrentes do processo inflamatório crônico nas vias aéreas asmáticas. Com evolução das pesquisas, entretanto, observou-se que esse processo é também resultado dos determinantes genéticos da asma (HOLGATE, 2004). O gene ADAM33 apresenta papel importante no remodelamento pulmonar da asma crônica, pois se apresenta potencialmente expresso nos fibroblastos das vias aéreas e nas células do músculo liso, resultando em mudanças estruturais no epitélio, na matriz extracelular e transformação dos fibroblastos em miofibroblasto (HOLGATE *et al.*, 2000).

Os fenômenos de hiperplasia e hipertrofia da musculatura lisa pulmonar estão correlacionadas á liberação de mediadores inflamatórios, fatores de crescimentos e citocinas (HOLGATE *et al.*, 2015). Os eosinófilos têm papel fundamental no processo de remodelamento, uma vez que são capazes de produzir, IL-4, IL-13 e TGF-ß1 que estão associados à transformação de fibroblastos em miofibroblastos (FATTOUH *et al.*, 2011). O grau de deposição subepitelial de colágeno é decorrente da proliferação de miofibroblastos que apresentam maior atividade na síntese de colágeno, do que os próprios fibroblastos (MAUAD *et al.*, 2000). Diante disso, os miofibroblastros são essenciais no processo de reparo tecidual.

Além disso os macrófagos M2 induzidos por IL-4 e IL-13 são importantes reparadores teciduais, os quais expressam altos níveis de TGF-β, um potente ativador da produção de colágeno e aumento da proliferação de fibroblastos

Um estudo realizado por Chakir e colaboradores em 2003 mostrou que em pacientes com asma crônica e moderada ocorre um aumento na deposição de colágeno tipo I e III, além de maior expressão de fator de transformador tecidual (TGF-β), do que pacientes com asma leve e controlada.

O aumento das células caliciformes epiteliais resulta da ação das interleucinas IL-4 e IL-13, originadas da reposta inflamatória mediada via T_H2. As céluas caliciformes

alteradas começam a produzir muco espesso contendo as mucinas MUC5AC e MUC5B, que obstruem o lúmen das vias aéreas (GRÜNIG et al., 1998; WILLS-KARP et al., 1998). Em adição, os linfócitos contribuem para o remodelamento através do efeito regulatório sobre a fibrose e inflamação com a produção de citocinas como interleucina 3 (IL-3), interleucina 5 (IL-5), fator estimulante de colônia de macrófagos e granulócitos (GM-CSF). Foi visto que em indivíduos asmáticos em que a IL-5 foi bloqueada, houve uma redução significativa na deposição de componentes da matriz extracelular (tenascin, lumican e procollageno III), possivelmente levando a uma diminuição do remodelamento das vias aéreas (FLOOD-PAGE et al., 2003). Já os macrófagos produzem citocinas, elastase e metaloproteases, que podem degradar os componentes da matriz extracelular (MAUAD, et. al. 2000).

O remodelamento pulmonar observado na asma é resultado, também, da interação entre o TIMP (inibidores teciduais de metaloproteinases) e a MMP (metaloproteínases). As MMPs participam do processo de expressão das proteases e antiproteases e fazem parte da família de proteinases neutras, reconhecidas como coadjuvantes importantes em processos patológicos pulmonares, que têm a capacidade de clivar proteínas estruturais como as das fibras colágenas e elásticas (ATKINSON & SENIOR 2003). Nos tecidos, seus inibidores são os TIMPs. O equilíbrio entre as MMPs e seus inibidores controla a deposição de colágeno nos tecidos, dessa forma, quantidades reduzidas de MMPs ou aumentadas de TIMPs podem contribuir para a fibrose excessiva (ATKINSON & SENIOR 2003)

2.5 Protocolos Animais Experimentais

Os modelos animais têm sido utilizados há mais de um século para melhor compreensão fisiopatogênica de doenças humanas e para avaliar novas terapias em potencial. Esses modelos representam uma ferramenta que possibilita que estudos sejam realizados em um contexto com sistemas biológicos íntegros. Em se tratando da asma alérgica, desde o início da década de 1990 foram firmados modelos

experimentais com camundongos isogênicos para o estudo de aspectos particulares dessa patologia (NIALS, 2008).

Principalmente quando se trata das considerações éticas que limitam muitos estudos em humanos, modelos animais têm sido desenvolvidos e utilizados como uma alternativa eficiente para estudo da asma alérgica (NIALS, 2008). Os modelos experimentais de inflamação pulmonar alérgica são gerados principalmente por meio de sensibilização com o alérgeno administrado por via intraperitoneal e posterior desafio com alérgeno em nebulização para aspiração (GUALDI *et al.*, 2010) a fim de desencadear uma resposta pulmonar alérgica semelhante as características da asma em humanos (NIALS, 2008).

Vários modelos animais são utilizados para estabelecer a inflamação pulmonar alérgica presente na asma, dentre os mais utilizados estão àqueles induzidos com ovalbumina (OVA) em camundongos BALB/c (GUALDI et al., 2010). A OVA é o antígeno mais popular na pesquisa de asma alérgica em camundongos, por se tratar de uma substância disponível comercialmente, de fácil manipulação e com a qual o camundongo de laboratório não tem contato ambiental (GUALDI et al., 2010). A OVA quando administrada em condições e intervalos adequados leva ao desencadeamento de vários sintomas da asma alérgica, como intenso infiltrado de células inflamatórias no pulmão, liberação de mediadores inflamatórios, produção exacerbada de muco por células caliciformes e de citocinas do perfil TH2 (FACINCONE et al.,1997). O desafio com OVA por inalação através de nebulização é o principal método de escolha por se mostrar mais adequado, pois o esse desafio é mais similar à forma como pacientes com asma são expostos a alérgenos (GUALDI et al., 2010).

Os camundongos da linhagem BALB/c, são os animais mais utilizados em estudos de asma alérgica, produzem níveis elevados de IgE específica, quando sensibilizados e desafiados com ovalbumina (OVA), além de maiores concentrações de citocinas T_H2 (IL-4 e IL-5) no lavado broncoalveolar, quando comparados, com animais de outras linhagens (KUMAR *et al.*, 2008) Outras linhagens são pouco utilizadas em modelos de asma, por serem pouco sensíveis à sensibilização e ao desafio a alérgenos (WHITEHEAD *et al.*, 2003) Além disso, os Camundongos BALB/c possuem as mesmas características genéticas (isogênicos) reduzindo muito resultados heterogêneos (GUALDI *et al.*, 2010).

O hidróxido de alumínio é amplamente utilizado juntamente com a OVA no processo de sensibilização, funciona como adjuvante, sendo capaz de promover uma ativação mais intensa da resposta celular T_H2, quando o sistema imune é exposto ao antígeno (BREWER *et al.*, 1999). Dentre as principais vias utilizadas para o processo de sensibilização a intraperitoneal se destaca, por proporcionar uma marcada sensibilização (GUALDI *et al.*, 2010; BREWER *et al.*, 1999).

Os modelos experimentais in vivo de inflamação alérgica das vias aéreas inferiores crônicos e agudos são amplamente descritos na literatura, esses modelos apresentam-se mais semelhantes à doença em humanos e com características mais abrangentes, o que permite entender melhor os mecanismos da doença, além de tornar os testes pré-clínicos mais eficazes (PEREIRA et al., 2012). Os modelos agudos de resposta alérgica têm sido registrados em diversos estudos, pois permitem elucidar mecanismos mais simples de respostas inflamatórias de curto prazo, níveis de IgE, hiperplasia e hipertrofia epitelial (DUTRA et al., 2017; CARDOSO et al., 2017). Por outro lado, os modelos crônicos apresentam resultados mais próximos da asma clínica como remodelamento das vias aéreas, espessamento da parede e produção de muco (DUTRA et al., 2017; CARDOSO et al., 2017).

3. OBJETIVOS

3.1 Geral

✓ Comparar os parâmetros inflamatórios e alérgicos de dois protocolos de inflamação pulmonar alérgica induzida com ovalbumia (OVA) (asma alérgica experimental) sendo um de caráter agudo (23 dias de sensibilização e desafios com OVA) e outro crônico (35 dias de sensibilização e desafios com OVA).

3.2 Específicos

- ✓ Avaliar a migração de células totais e a porcentagem de eosinófilos no Fluído do Lavado Broncoalveolar (BALF) nos diferentes grupos de animais dos protocolos experimentais agudo e crônico;
- ✓ Analisar os parâmetros histopatológicos envolvidos no remodelamento pulmonar nos diferentes grupos de animais dos protocolos experimentais agudo e crônico;
- ✓ Quantificar o título de IgE-OVA específica nos diferentes grupos de animais dos protocolos experimentais agudo e crônico;
- ✓ Quantificar a produção das citocinas caracteristicas do perfil celular Th2 (IL-4 e IL-13) no Fluido do Lavado Broncoalveolar (BALF) nos diferentes grupos de animais dos protocolos experimentais agudo e crônico.

4. MATERIAL E METÓDOS

4.1 Substâncias e Sais

A lista das substâncias utilizadas encontra-se no apêndice A.

4.2 Aparelhos e Equipamentos

A lista de aparelhos e equipamentos utilizados encontra-se no apêndice B.

4.3 Animais

Para esse estudo utilizou-se camundongos isogênicos fêmeas da linhagem BALB/c de 7 a 8 semanas, com peso corporal entre 20 e 30 g e ratos Wistar fêmeas, pesando em média 200 g. Os animais foram mantidos em gaiolas de polipropileno a uma temperatura de 25 ± 2 °C e submetidos a um ciclo de claro e escuro de 12 horas (6:00 às 18:00 claro e de 18:00 as 6:00 escuro) com livre acesso à água e a uma dieta controlada a base de ração do tipo *pellets* (PURINA) durante todo o período de experimentação. Os camundongos e os ratos foram fornecidos pelo biotério Professor Thomas George do Instituto de Pesquisa de Fármacos e Medicamentos (IPeFarM) / UFPB. A manipulação dos animais foi realizada de acordo com o Guia de Cuidado Animal (SHERWIN et al., 2003). Os animais foram eutanasiados por overdose de anestésicos (Xilazina 48 mg/kg + Quetamina 360 mg/kg).

4.4 Condições Experimentais

O presente trabalho foi desenvolvido no Laboratório de Imunofarmacologia / IPeFarM / UFPB. Cerca de 120 minutos antes dos testes, os camundongos foram previamente alojados em gaiolas de polietileno, contendo 4 - 6 animais cada, visando minimizar as possíveis alterações comportamentais dos animais decorrentes da

mudança de ambiente, bem como permitir uma adaptação à sala de experimentação. Os camundongos foram mantidos a temperatura de 21 ± 1° C e privados de água e ração 60 minutos antes dos testes. Antes de cada procedimento, a bancada foi limpa com etanol 70%, e durante os procedimentos foi utilizado etanol de baixa graduação (10%). Todos os procedimentos experimentais foram analisados e aprovados pelo Comitê de Ética em Pesquisa Animal (CEUA) do Centro de Biotecnologia CBiotec/UFPB, sob a certidão nº 042/17.

4.5 Protocolos de Inflamação Pulmonar Alérgica Induzida por Ovalbumina

Os animais foram divididos nos grupos (n=6): basal (não sensibilizado com OVA) e OVA (sensibilizado com OVA). Em ambos os protocolos (23 dias e 35 dias) os animais foram sensibilizados nos dias 0, 7 e 14, cada animal recebeu 10µL/ g por via intraperitoneal (i.p.) de uma suspensão contendo 50µg/mL de OVA grade V (SIGMA Chemical, St. Louis, MO) e 10mg/mL de Al(OH)3 (VETEC, Rio de Janeiro, RJ) em solução salina (NaCl 0,9%). No protocolo de 23 dias, os animais foram desafiados nos dias 19 a 22 com aerossol de OVA grade II (SIGMA Chemical, St. Louis, MO) a 5% em solução salina por 30 minutos diários, em uma câmara fechada, sob um fluxo contínuo de aerossol, com o auxílio de um nebulizador ultrassônico. O animais dos grupos basais de ambos os protocolos durante as etapas de sensibilização e desafio receberam o veículo (NaCl 0,9%) Este protocolo é caracterizado por apresentar uma inflamação alérgica pulmonar aguda. No protocolo de 35 dias, os animais passaram por duas etapas de desafios com aerossol. A primeira etapa ocorreu entre os dias 19 a 23, e a segunda etapa entre os dias 30 a 34. O procedimento de desafio ocorreu de igual modo ao protocolo de 23 dias. Este protocolo apresenta uma inflamação alérgica pulmonar crônica (MCMILLAN; XANTHOU; LLOYD, 2005).

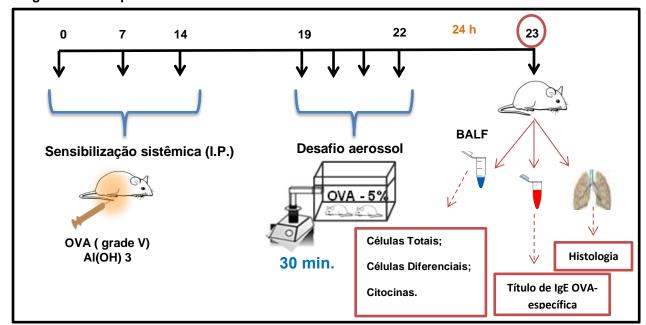
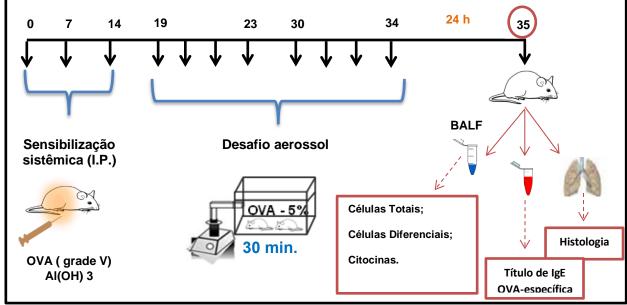



Figura 2. Esquema representativo do protocolo experimental agudo de inflamação pulmonar alérgica induzida por ovalbumina.

I.P.- intraperitoneal; Al(OH)2- hidróxido de alumínio; BALF – fluído do lavado broncoalveolar; min. – minutos; OVA – ovalbumina. Fonte: BEZERRA, 2018 adaptado de MCMILLAM, 2005.

Figura 3. Esquema representativo do protocolo experimental crônico de inflamação pulmonar alérgica induzida por ovalbumina

0. 7 14 19 23 30 34 24 h

I.P.- intraperitoneal; Al(OH)2- hidróxido de alumínio; BALF – fluído do lavado broncoalveolar; min. – minutos; OVA – ovalbumina. Fonte: BEZERRA, 2018 adaptado de MCMILLAM, 2005.

4.5.1 Coleta do Fluido do Lavado Broncoalveolar (BALF)

O BALF foi coletado nos dias 23° e 35° de cada protocolo experimental, 24 horas após o último desafio. O BALF foi realizado com 1,0mL de HBSS+/- a 8°C, injetado na traqueia do animal. O fluido foi coletado para posterior contagem de células. Com a finalidade de observar a migração celular para a cavidade broncoalveolar foi realizada a contagem do número total e diferenciais (determinação da porcentagem de eosinófilos) de células no BALF, nos modelos experimentais de inflamação pulmonar alérgica aguda e crônica.

4.5.1.1 Contagem Total e Diferencial de Células do BALF

A contagem do número total de células no BALF foi realizada em câmara hemocitométrica. O BALF coletado foi diluído (1:4) em solução de Turk (VETEC, Rio de Janeiro, RJ) e a contagem das células totais foi realizada no microscópio óptico (40 X - BX40, OLYMPUS). Após a contagem das células totais, os tubos foram centrifugados (centrífuga CR422, JONAM) a 1000 rpm, 4°C, 5 minutos, as células foram ressuspensas em 500µL de HBSS+/- e citocentrifugadas na citocentrífuga tipo cytospin (FANEN, São Paulo, SP, Brasil Mod 2400). As lâminas obtidas foram fixadas e coradas pelo método panótico (Kit Panótico, Renylab). A contagem diferencial de células foi realizada por microscopia óptica. Cada lâmina foi percorrida até a contagem de 100 células, utilizando para isso a objetiva de imersão (100x). A partir da contagem das células diferenciais determinou-se a porcentagem de eosinófilos.

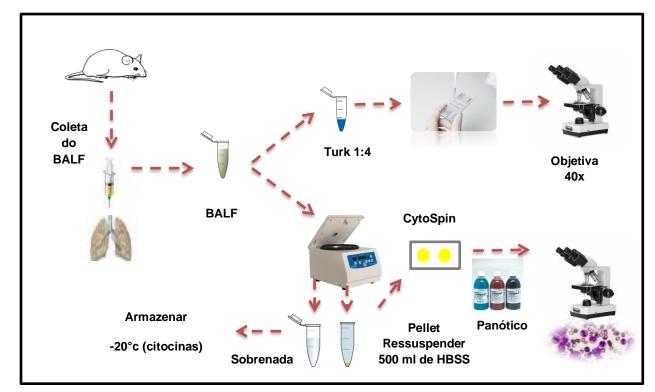


Figura 4. Esquema representativo da contagem de células totais e diferenciais.

BALF - fluído do lavado broncoalveolar; Fonte: BEZERRA, 2018.

4.6 Histologia Pulmonar

4.6.1 Coleta do Pulmão para Análise Histológica

Com a finalidade de analisar histologicamente os eventos envolvidos na inflamação pulmonar, foram coletados os pulmões de todos os camundongos BALB/c sensibilizados de acordo com os protocolos de inflamação pulmonar alérgica induzidos por OVA e aqueles que receberam apenas o veículo (NaCl 0,9%) analisados nesse estudo. Após os camundongos serem eutanasiados com uma solução contendo xilazina e quetamina, foi realizada a assepsia do animal com álcool a 70°, o tórax do animal foi aberto com auxílio de pinça e tesoura para retirada do pulmão. Inicialmente, foi realizada perfusão cardíaca para retirada da circulação sanguínea e lavagem do pulmão pela administração de 10 ml de salina no coração. Para manutenção da

integridade do tecido, evitando a digestão desses por enzimas presentes no interior das células (autólise) ou por bactérias e para preservar a estrutura e a composição celular, os cortes foram colocados em formol 10% por 24 h e logo após em álcool etílico 70%, podendo ficar por tempo indeterminado no segundo fixador, usando sempre o volume do fixador superior no mínimo 10x ao volume da peça. Cada grupo de animais tiveram três lâminas coradas em três colorações diferentes: Hematoxilina-Eosina (HE), Ácido Periódico – Schiff (P.A.S) e Tricrômio de Masson (TM).

4.6.2 Desidratação, diafanização, inclusão, microtomia e colagem do corte à lâmina

O material histológico foi inicialmente desidratado por imersões de 1 h em uma série crescente de álcool etílico a 70, 80, 90 e 100%, para se evitar retração pronunciada do tecido ocasionando lesões estruturais da célula de caráter irreversível. A imersão no álcool etílico a 100% foi realizada duas vezes. Em seguida, foi realizada a diafanização, onde o material foi imerso duas vezes em tolueno com duração de 1 h cada imersão. O tolueno funciona como solvente da parafina e ao mesmo tempo como desalcolizante. O material histológico foi banhado duas vezes em parafina, cada banho com duração de 1 h e depois colocado em estufa a 60°C para completa impregnação. Após o material estar completamente impregnado por parafina foi colocado em formas com parafina. Quando o material histológico foi totalmente imerso em parafina, cada forma foi deixada ao ar livre para endurecimento da parafina. Os blocos formados foram retirados das formas e após fixados no micrótomo, os cortes histológicos foram realizados com espessura de 5 µm. Após a microtomia, os cortes histológicos foram estirados em banho-maria (38 - 39 °C). Com auxílio das lâminas preparadas com albumina, os cortes foram retirados do banho-maria. Em seguida, as lâminas foram colocadas em placa aquecedora (60 °C) por 10 minutos para secagem. Com os cortes aderidos as lâminas foram então realizadas as colorações Hematoxilina-Eosina (HE), Ácido Periódico – Schiff (PAS) e Tricrômio de Masson (TM) e em seguida a montagem das lâminas. Como meio de montagem foi utilizado o Entellan.

Para a análise em HE as lesões avaliadas e os valores atribuídos foram: Infiltrado Peribroquiolovascular (00-03); Hipertrofia e Hiperplasia de Células Caliciformes (00-02); Tampão Mucoso (00-02); Infiltrado Perivascular (00-01);

Infiltrado Peribronquiolar (00-01) e Infiltrado Disperso na Mucosa (00-01). Nos *scores* de PAS e o número total de estruturas peribronquiolovasculares no TM, foram mensurados, onde até 05 bronquíolos o valor atribuído foi 1; de 06 a 10 bronquíolos (2); de 11 a 15 bronquíolos (3) e até 20 bronquíolos (4).

Fixar Formol 10% Etanol 70%

Coloração Histológica

Corte Histológica

Desidratação Alcool etilico 70,80,90,100%

Inclusão em Parafina

Inclusão em Parafina

Blocagem em Parafina

Figura 5. Esquema representativo da preparação do corte histológico pulmonar

Fonte; BEZERRA, 2018

4.6.3 Coloração H.E. (Hematoxilina-Eosina)

A técnica hematoxilina-eosina (HE) é clássica, básica, dicrômica e geral, uma vez que possui dois corantes: hematoxilina, corante básico que cora componentes ácidos como os núcleos de todas as células, e eosina corante ácido que cora componentes básicos como o citoplasma de todas as células, proporcionando uma observação geral de todas as estruturas pulmonares. As lâminas foram desparafinadas por imersão no xilol, o primerio xilol com duração de 5 min e o segundo xilol com duração de 3 min. Em seguida, hidratação em álcool absoluto, o primeiro álcool por 5 min e o segundo álcool por 3 min., colocadas sucessivamente em álcool 90% por 1

min, em álcool 70% por 1 min e água destilada por 1 min. Então, imersas na hematoxilina por 2 min, mergulhadas rapidamente em água destilada, depois em água acética, com a finalidade de retirar o excesso de corante, e colocada 10 min em água de torneira para "azulecer" o corte. Em seguida, as lâminas foram colocadas no corante eosina, por 1 min, desidratadas com álcool absoluto (02 banhos de 3 min cada). O material passou duas vezes pelo banho em xilol por 5 min, onde o primeiro xilol foi de 5 min e o segundo xilol de 10 min. Após coloração foi colocado sobre o corte Entellan e a uma lamínula. Depois, com auxílio de uma pinça, retiradas as bolhas e a lamínula foi comprimida com firmeza sobre o corte para o espalhamento do Entellan. Após 24 h foi retirado o excesso de Entellan para acabamento do preparo das lâminas. Nas lâminas coradas pela hematoxilina-eosina foram observadas em azul escuro os núcleos, em rosa os citoplasmas e em vermelho as hemácias.

4.6.4 Coloração P.A.S. (Ácido Periódico de Schiff)

O Ácido Periódico de Schiff revela glicogênio e mucina intracelular. As lâminas foram inicialmente desparafinadas por imersão no xilol, hidratadas em álcool absoluto e água destilada por 1 min., colocadas então no ácido periódico a 0,5% por 5 min, na água destilada por 1 min e no reativo de Schiff por 10 min, quando retiradas foram colocadas em 3 banhos sulfurosos de 5 min cada e mergulhadas 10 min em água de torneira. Em seguida, as lâminas foram desidratadas com álcool absoluto, sendo o primeiro álcool por 3 min bem como o segundo. Para clareamento será utilizado xilol, as lâminas foram imersas no primeiro xilol por 5 min e no segundo xilol por 10 min. Nas lâminas coradas por P.A.S. foi observado em vermelho à presença de glicogênio ou polissacarídeos neutros (contendo grupos 1,2 glicol), mucina (glicoproteína, principal constituinte do muco), proteoglicanos não se coram, os núcleos e os citoplasmas se coram em rosa claro.

4.6.5 Coloração T.M. (Tricômio de Masson)

Muitas técnicas disponíveis para a caracterização diferencial do tecido conjuntivo designam-se por Colorações Tricrômicas, sendo usadas para diferenciar fibras de colágeno e fibras musculares. O método mais utilizado é o Tricrômio de Masson que recorre ás soluções corantes; Hematoxilina férrica de Weigert (corante nuclear ácido-resistente), Fucsina Ácida/Ponceau de Xilidina (corante vermelho ácido) e Verde Luz (corante para fibras colágenas) (BANCROFT & GAMBLE, 2008). O principio de atuação da coloração de TM, baseia-se na diferença de permeabilidade que existe entre as fibras colágenas e outros elementos do tecido. As lâminas foram desparafinadas e posteriormente hidratadas em água destilada. Em seguida, foram imersas no corante Hematoxilina de Welgert por 6 minutos. Depois passaram pela água morna e logo após em água destilada por 5 minutos. As lâminas foram então colocadas no corante Ponceau de Xilidine / Fucsina Ácida durante 10 minutos. Posteriormente mergulharam-se as lâminas em água destilada para retirada do excesso de corante. Após isso, aplicou-se o diferenciador/mordente (Ácido fosfomolibdico a 1%), até a descoloração do colágeno. O verde luz foi aplicado por 10 minutos para obtenção contraste do material corando o colágeno. As lâminas foram então passadas em água destilada para retirada do excesso de corante, e em seguida aplicou-se o Ácido Acético a 1 %, que atua conservando os corantes e intensificando a coloração. As lâminas foram desidratadas, diafanizadas e montadas com Entellan. Depois, com auxílio de uma pinça, retiradas as bolhas e a lamínula foi comprimida com firmeza sobre o corte para o espalhamento do Entellan. Após 24 h foi retirado o excesso de Entellan para acabamento do preparo das lâminas. Nas lâminas coradas pela Tricômio de Masson foram observadas em preto os núcleos, em azul/verde o colágeno e em vermelho músculos e eritrócitos.

4.7 Coleta de Sangue e Preparação do Soro

Ao final de cada protocolo experimental (dias 23° e 35°), os animais foram anestesiados com solução de cloridrato de quetamina e xilazina, eutanasiados e coletado o sangue pelo plexo braquial para a obtenção do soro. Para tal, o sangue foi coletado com auxílio de uma pipeta Pasteur, através da qual foi aspirado cerca de 0,6 à 1 ml de sangue. O sangue foi armazenado em tubos tipo *eppendorfs* inclinados em 45°

e estocados em geladeira por 24 h, facilitando a formação dos coágulos e coleta dos soros. Após a separação do soro, esses foram centrifugados a 1.500 rpm, a 4°C por 10 minutos e novamente foi realizada uma segunda centrifugação para separar o soro das hemácias que por ventura ficaram no soro. Em seguida, as amostras foram estocadas, etiquetadas e congeladas à -20 °C para posterior utilização no teste de Anafilaxia Cutânea Passiva (PCA).

4.7.1 Teste de Anafilaxia Cutânea Passiva (PCA)

A partir do PCA foi determinado o título sérico de IgE OVA-específica dos dois grupos de animais em experimentação (grupos basal e OVA), de ambos os protocolos estudados. Os soros dos camundongos BALB/c (n=6) foram descongelados e diluídos (razão 2) em salina e administrados 50 µl de cada soro via intradérmica, em diferentes sítios do dorso de ratas Wistar (n=4-6). As diluições testadas foram 1:8, 1:16, 1:32, 1:64, 1:128, 1:256, 1:512, 1:1024 e 1:2048. Cada soro foi testado em diferentes ratos, os quais foram previamente depilados e anestesiados com solução de xilazina e quetamina. Após 24 h os ratos foram novamente anestesiados e suas caldas lavadas com água para administração na veia de 0,5 ml de uma solução contendo o corante Azul de Evans a 1% (VETEC) e 2,0 mg de OVA (grade V - SIGMA). Decorridos 30 minutos da injeção na veia da cauda, os animais foram sacrificados por deslocamento cervical e os diâmetros das manchas formadas no dorso, mensurados com o auxílio de uma régua milimétrica. O título do soro fornece, portanto, uma medida indireta da concentração de IgE OVA-específica nos grupos de animais testados e este foi determinado pela maior diluição capaz de promover mancha mensurável ≥ 5 milímetros (COSTA et al., 2008).

Centrifuga
1500 RPM,
4°C , 10 min.

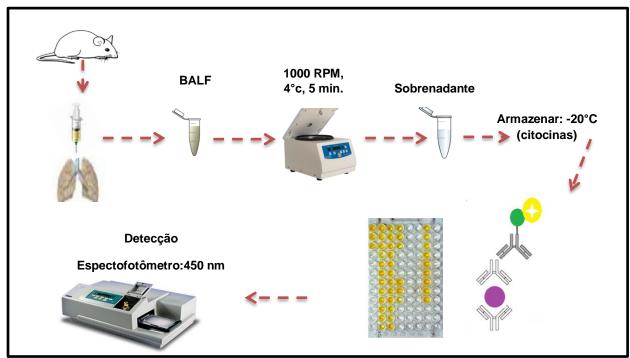
Soro

Diluições seriadas

OVA + Azul de
Evans

Mancha mensurável ≥ 5 mm

Figura 6. Esquema representativo da dosagem de IgE OVA- específica pelo método de Anafilaxia Cutânea Passiva (PCA).


RPM – rotações por minuto; h - horas; min. – minutos; mm – milímetros. Fonte: BEZERRA, 2018 adaptado de COSTA, 2008.

4.8 Quantificação das Citocinas no BALF

As citocinas presentes nos sobrenadantes do BALF de camundongos sensibilizados e desafiados com Ovalbumina foram quantificadas por ELISA, de acordo com o protocolo especificado no *Kit* do fabricante (BIOSCIENCE, Inc. Science Center Drive, San Diego, CA-USA). Placas de ELISA (NUNC-Immuno™) foram sensibilizadas com o anticorpo de captura, diluídos em tampão fosfato pH 6.5 (1:1000, 1:250, 1:250, 1:1000, e 1:1000, respectivamente) e incubadas por 18 h a 4°C. Após este período, as placas foram lavadas com PBS contendo 0,05% de tween 20 (PBST) (SIGMA-ALDRICH, St. Louis, MO-USA) e os sítios inespecíficos foram bloqueados com a solução de bloqueio (PBS contendo 10 % de SFB), por uma hora. Novamente, as placas foram lavadas em PBS e adicionadas tanto às amostras a serem analisadas, quanto diferentes concentrações das citocinas recombinantes, para a realização da curva. As placas foram novamente incubadas por 18 horas a 4°C. As placas foram, então, lavadas e o complexo detector formado pelo anticorpo de detecção biotinilado foi adicionado às placas e incubadas por uma hora. Posteriormente, foram novamente

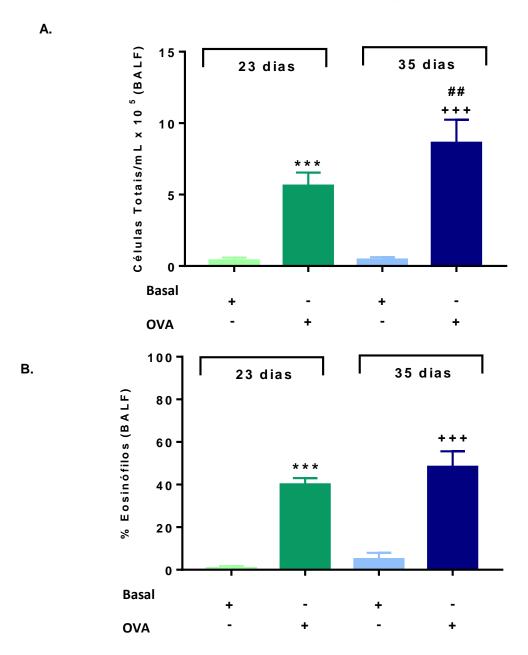
lavadas e o complexo enzimático avidina-peroxidase (*avidin-HRP*) foi adicionada. As placas foram incubadas por mais meia hora à temperatura ambiente. Após lavagens adicionais, a reação foi revelada pela adição da solução substrato contendo tetrametilbenzidina (TMB) e peróxido de hidrogênio (H2O2) e após 15 minutos, a reação foi interrompida com ácido sulfúrico 1N e a leitura realizada em leitor de placa (MICROPLATE READER versa Max, tunable, BN 2529 Molecular Devices) a 450 nm. As quantidades de citocinas foram calculadas a partir das curvas-padrão.

Figura 7. Esquema representativo da quantificação de citocinas pelo Ensaio Imunoenzimático de ELISA sanduíche.

BALF – fluído do lavado broncoalveolar; RPM – rotações por minuto; min – minutos; nm - nanômetros. Fonte: BEZERRA, 2018

4.9 Análise Estatística

Todos os dados foram analisados pelo programa Graph Pad Prism^(C) versão 7.0 (GraphPad Software, San Diego, CA, U.S.A.). Os resultados obtidos foram expressos como média ± erro padrão da média e analisados estatisticamente empregando-se o ANOVA *one-way* seguido de Tukey ou Test t, onde os valores de p< 0,05 foram considerados significantes. Os valores de * p<0.05; ** p<0.01; *** p<0.001 foram


considerados significativos quando comparados ao grupo Basal no protocolo de 23 dias. Os de + p<0.05; ++ p<0.01; +++ p<0.001 foram considerados significativos quando comparados ao grupo Basal no protocolo de 23 dias, e os de # p<0.05; ## p<0.01; ### p<0.001, foram considerados significativos quando comparados os grupos OVA dos protocolos agudo e crônico avaliados nesse estudo.

5. **RESULTADOS**

5.1 Análise da Celularidade Total e Porcentagem de Eosinófilos no Fluído do Lavado Broncoalveolar (BALF)

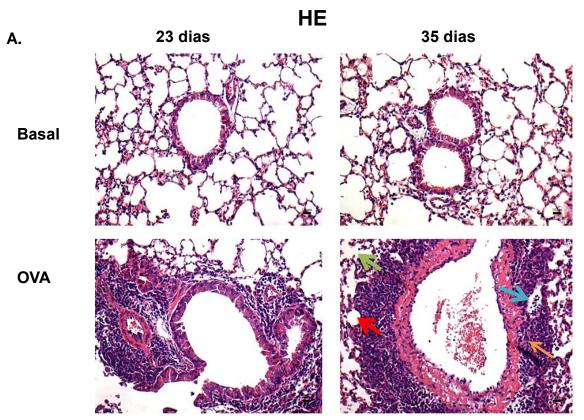
Como pode ser observado no Gráfico 1a, as várias etapas de desafio com OVA nos protocolos experimentais de 23 e 35 dias foram capazes de provocar aumento significativo da migração de leucócitos no BALF dos grupos OVA em relação aos grupos Basais: no protocolo de 23 dias $(5,63x10^5 \pm 0,46 \text{ vs } 0,4 \pm 0,1)$, respectivamente) e no de 35 dias $(8,63 \times 10^5 \pm 0,81 \text{ vs } 0,45 \pm 0,09)$, respectivamente). Além disso, pode ser observado (Gráfico 1a) que a migração de células inflamatórias no BALF do grupo OVA do protocolo crônico (35 dias) foi significativamente (p< 0,01) maior, em relação ao grupo OVA do protocolo agudo (23 dias). A porcentagem de eosinófilos presentes no BALF dos animais do protocolo agudo e crônico apresentou-se significativamente maior em relação aos grupos basais (23 dias - 40,10 \pm 1,47 vs 0,75 \pm 0,48) e no protocolo de 35 dias (35 dias - 48,40 \pm 3,63 vs 5,04 \pm 1,46) (Gráfico 1b). Entretanto, não houve diferença estatística quanto ao percentual de eosinófilos entre os grupos OVA dos diferentes protocolos experimentais agudo e crônico de inflamação pulmonar alérgica.

Gráfico 1- Efeito do desafio com Ovalbumina na migração de células totais e porcentagem de eosinófilos no BALF em modelos experimentais de inflamação pulmonar alérgica.

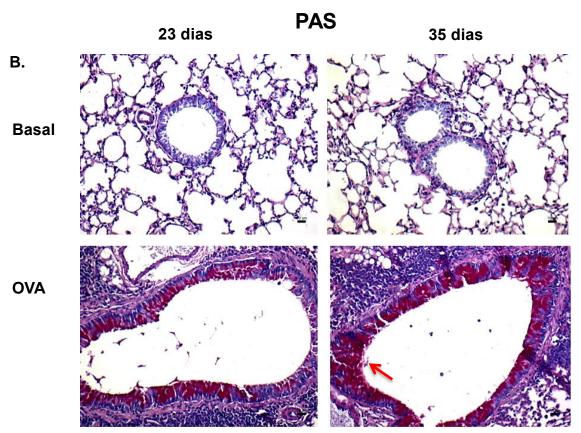
Camundongos BALB/c fêmeas (n=6) foram desafiados com ovalbumina (OVA) em diferentes tempos de exposição (agudo e crônico). Após 24h do último desafio os animais foram eutanasiados e foi realizada a coleta do BALF para obtenção e quantificação das células totais e determinação percentual de eosinófilos. **A**. Número total de células **B**. Percentual de eosinófilos. Os dados numéricos foram expressos em média ± e.p.m. (ANOVA *one-way* seguido pelo teste de Tukey). * significativo em relação ao grupo Basal no protocolo de 23 dias; *** p<0.001; +significativo em relação ao grupo Basal no protocolo de 35 dias +++ p<0.001; # significativo em relação aos grupos OVA de ambos protocolos; ## p<0.01.

5.2 Análise Histológica

Na figura 8 observa-se o processo histopatológico característico da inflamação alérgica das vias aéreas inferiores nos protocolos de 23 e 35 dias. A coloração Hematoxilina-eosina (HE) realizada nos cortes dos pulmões permitiu, nos grupos OVA dos dois protocolos, observar a presença de infiltrado de células inflamatório e edema multifocal peribronquiolovascular comparando aos do grupos basais (figura 8a). Observa-se ainda hipertrofia e hiperfplasia do epitélio bronquiolar nos tecidos pulmonares dos animais dos grupos OVA. Porém, no grupo OVA do protocolo de 35 dias esses eventos apresentam-se com maior prevalência, quando comparado ao grupo OVA do protocolo de 23 dias. A coloração pelo Ácido Periódico de Schiff (PAS) (figura 8b) revelou, nos grupos OVA dos dois protocolos, glicogênio e mucina intracelular, além da hipertrofia e hiperplasia de células caliciformes, quando em comparação com dos respectivos grupos Basais.


A coloração Tricrômio de Masson (M.T.) (figura 8c) nos tecidos pulmonares dos animais dos grupos OVA dos dois protocolos, demonstrou deposição de fibras colágenas do tecido conjuntivo quando comparados com os dos grupos Basais de ambos os protocolos. Todavia, a deposição de fibras colágenas aparece superior no grupo OVA do protocolo de 35 dias quando comparado ao grupo OVA de 23 dias.

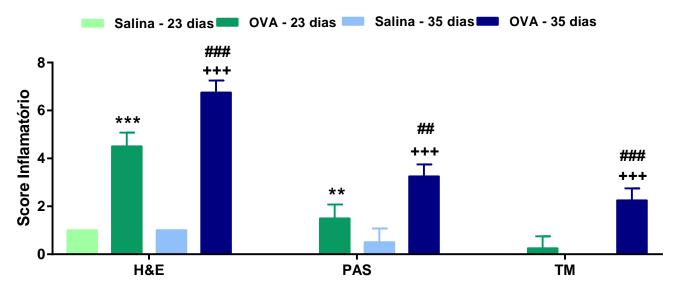
No protocolo de 23 dias, pode-se observar, tanto visualmente, representado pela figura 8 quanto estatisticamente, através do *score* inflamatório (Gráfico 2), que houve migração significativa de células inflamatórias para o espaço peribronquiolovascular nos animais do grupo OVA em relação ao do grupo Basal $(4,5 \pm 0,289 \text{ vs } 1)$ observados em HE, e ainda uma hiperprodução de muco pelas células caliciformes $(1,5 \pm 0,289 \text{ vs } 0)$ observadas em PAS. Todavia, não ocorreu a expansão significativa da matriz extracelular, no espaço peribronquiolovascular, entre os grupos.


No protocolo de 35 dias, observa-se tanto através da figura (8) representativa quanto pela analise estatística no *score* (Gráfico 2), que houve migração significativa de células inflamatórias para o espaço peribronquiolovascular no grupo OVA em relação ao Basal $(6,75 \pm 0,25 \text{ vs } 1)$ observados em HE, hiperprodução de muco pelas células caliciformes $(3,25 \pm 0,25 \text{ vs } 0,5 \pm 0,289)$ observadas em PAS, além de

expansão da matriz extracelular no espaço peribroquiolovascular, promovendo remodelamento tecidual $(2,25 \pm 0,25 \text{ vs } 0)$. Na análise estatística entre os dois protocolos, é observado entre os grupos OVA um aumento do processo inflamatório tecidual com migração celular para o espaço peribronquiolovascular e expansão da matriz com consequente remodelamento tecidual no de 35 dias em comparação ao de 23 dias (p < 0,001). Além de hiperprodução de muco (p<0,01)

Figura 8 - Análise do efeito inflamatório do desafio com Ovalbumina no processo histopatologico pulmonar em modelos experimentais agudo e crônico da inflamação pulmonar alérgica.

Camundongos fêmeas BALB/c (n=6) foram sensibilizadas e desafiadas com Ovalbumina (OVA). O tecido pulmonar dos animais foi coletado 24h após o último desafio. O pulmão foi submetido à técnica histológica e coloração por Hematoxilina-eosina. Os parâmetros inflamatórios observados foram: a migração de células para o espaço perivasculas e peribronquiolar (seta laranja), perda integridade epitelial bronquiolar (seta verde), vasodilatação (seta vermelha) e entupimento alveolar (azul). Tecidos corados por Hematoxilina -eosina, visto em microscópio óptico comum em aumento total de 20X. Este resultado foi realizado duplo cego.

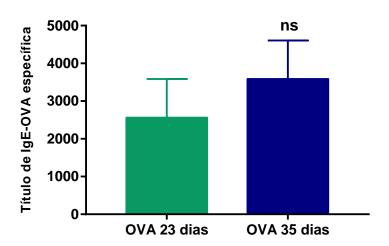


Camundongos fêmeas BALB/c (n=6) foram sensibilizadas e desafiadas com Ovalbumina (OVA). O tecido pulmonar dos animais foi coletado 24h após o último desafio. O pulmão foi submetido à técnica histológica e coloração por P.A.S (Ácido Periódico de Schiff). Os parâmetros inflamatórios observados foram: hipertrofia e hiperplasia de células caliciformes (seta vermelha). Tecidos corados pelo Ácido Periódico de Schiff, visto em microscópio óptico comum em aumento total de 20X. Este resultado foi realizado duplo cedo.

C. 23 dias 35 dias Basal OVA

Camundongos fêmeas BALB/c (n=6) foram sensibilizadas e desafiadas com Ovalbumina (OVA). O tecido pulmonar dos animais foi coletado 24h após o último desafio. O pulmão foi submetido à técnica histológica e coloração por T.M. (Tricrômio Masson). Os parâmetros inflamatórios observados foram: deposição de colágeno (seta laranja). Tecidos corados pelo Tricrômio de Masson, visto em microscópio óptico comum em aumento total de 20X. Este resultado foi realizado duplo cedo.

Gráfico 2- Análise do efeito inflamatório do desafio com Ovalbumina no processo histopatologico pulmonar em modelos experimentais agudo e crônico da inflamação pulmonar alérgica.

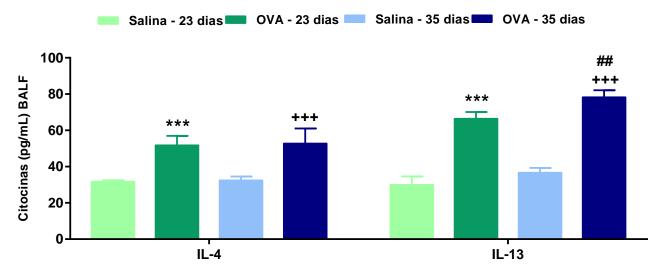


Camundongos fêmeas BALB/c (n=6) foram sensibilizadas e desafiadas com Ovalbumina (OVA). O tecido pulmonar dos animais foi coletado 24h após o último desafio. O pulmão foi submetido à técnica histológica e corados por: por Hematoxilina-Eosina (HE), Ácido Periódico de Schiff (PAS) e Tricrômio de Masson (TM). Para a análise em HE as lesões avaliadas e os valores atribuídos foram: Infiltrado Peribroquiolovascular (00-03); Hipertrofia e Hiperplasia de Células Caliciformes (00-02); Tampão Mucoso (00-02); Infiltrado Perivascular (00-01); Infiltrado Peribronquiolar (00-01) e Infiltrado Disperso na Mucosa (00-01). Nos *scores* de PAS e o número total de estruturas peribronquiolovasculares no TM, foram mensurados, onde até 05 bronquíolos o valor atribuído foi 1; de 06 a 10 bronquíolos (2); de 11 a 15 bronquíolos (3) e até 20 bronquíolos (4). Tecidos corados por HE, PAS e TM, visto em microscópio óptico comum em aumento total de 20X. Os resultados foram expressos como media ± e.p.m. A diferença entre os grupos foi analisada por ANOVA *one-way* seguido pelo teste de Tukey. * significativo em relação ao grupo Basal no protocolo de 23 dias ; *; ** p<0.01; *** p<0.001; +significativo em relação aos grupos OVA de ambos protocolos. ## p<0.01; ### p<0.001.

5.3 Análise da Produção de IgE Ova-Específica pela Técnica de Anafilaxia Cutânea Passiva (PCA)

Os soros dos animais dos grupos avaliados (OVA e Basal) foram utilizados para quantificação da presença de IgE-OVA específica. Como apresentado no gráfico 3, os grupos Basais que não foram expostos ao alérgeno em ambos os protocolos analisados neste estudo, não apresentaram concentrações detectáveis imunoglobulina E alérgeno específica (IgE- OVA específica) no soro, não estando expressos no gráfico (3). Contudo, a sensibilização efetiva com ovalbumina promoveu uma produção importante de IgE – OVA específica nos soros dos animais dos grupos OVA na diluição 1:2048, tanto no protocolo de 23 dias (3822 ± 274) como no protocolo de 35 dias (3947 ± 149), em que não foi observada diferença significativa entre os dois grupos.

Gráfico 3- Efeito do desafio com Ovalbumina sobre o título de IgE-OVA específica em modelos experimentais de inflamação pulmonar alérgica.



Camundongos BALB/c fêmeas (n=6) desafiados com ovalbumina (OVA) em diferentes tempos de exposição (agudo e crônico). Após 24h do último desafio os animais foram eutanasiados para obtenção do soro e posterior análise do título de IgE OVA-específica. Os dados numéricos foram expressos em media ± e.p.m. (ANOVA *one-way* seguido pelo Test t).

5.4 Quantificação das Citocinas IL-4 e IL-13

No protocolo de 23 dias, o grupo OVA $(51,7 \pm 2,73)$ apresentou aumento significativo (p< 0,001) de IL-4 no BALF, quando comparado ao grupo basal $(31,7 \pm 0,38)$. A IL-4 também apresentou-se aumentada significativamente (p<0,001) no grupo OVA $(52,7 \pm 4,15)$ no protocolo de 35 dias quando comparado ao respectivo grupo basal $(32,4 \pm 1,05)$. Em relação a IL-13 suas concentrações foram superiores no BALF em ambos os grupos OVA em relação aos grupos Basais: no protocolo de 23 dias $(66,4 \pm 1,84 \text{ vs } 29,8 \pm 2,38)$ e no de 35 dias $(78,2 \pm 1,95 \text{ vs } 36,6 \pm 1,33)$. Entretanto, apenas a IL-13 apresentou aumento significativo (p< 0,01) no grupo OVA do protocolo crônico quando comparado com o grupo OVA do protocolo agudo.

Gráfico 4- Efeito do desafio com Ovalbumina na produção das citocinas do perfil celular Th2, em modelos experimentais da inflamação pulmonar alérgica agudo e crônico.

Camundongos BALB/c fêmeas (n+6) desafiados com ovalbumina (OVA), em diferentes tempos de exposição (agudo e crônico). Após 24 h do último desafio, os animais foram eutanasiados para obtenção do BALF de onde se coletou o sobrenadante que foi utilizado para dosar citocinas. A. IL-4; B. IL-13. Os dados numéricos foram expressos em media ± e.p.m. (ANOVA *one-way* seguido pelo teste de Tukey). * significativo em relação ao grupo Basal no protocolo de 23 dias; *** p<0.001; +significativo em relação

ao grupo Basal no protocolo de 35 dias . +++ p<0.001; # significativo em relação aos grupos OVA de ambos protocolos. ; ## p<0.01.

6. DISCUSSÃO

Os modelos animais representam um dos principais métodos *in vivo* disponível para estudar alguns processos de doenças humanas como a asma (NIALS, et. al. 2007; KUCHAREWICZ *et al.*, 2008). Muitas características fisiopatológicas da asma de origem atópica foram descobertas por estudos realizados em espécies animais (TORRES *et al*, 2005). Destaca-se a importância dos modelos animais no desenvolvimento de características inflamatórias semelhantes às da doença em seres humanos, na descoberta do papel da resposta imune T_H2 e disponibilização de modelos pré-clínicos para realização de testes de novas terapias em potencial, que objetivam reduzir a inflamação pulmonar, hipersecreção de muco, hiperresponsividade das vias aéreas e a produção de IgE (GUALDI *et al.*, 2010).

Dentre os animais mais utilizados em modelos experimentais de inflamação pulmonar alérgica, estão os camundongos isogênicos da linhagem BALB/c, esses quando sensibilizados e desafiados com Ovalbumina (OVA) desenvolvem a inflamação pulmonar alérgica que reproduz alguns aspectos característicos da asma em humanos (GUALDI *et al.*, 2010). Os protocolos de asma agudo e crônico são bastante utilizados e descritos na literatura, esses protocolos quando estudados em paralelo possibilitam uma avaliação mais ampla e a obtenção de resultados mais detalhados. O modelo agudo por ser mais curto possibilita avaliar eventos como eosinofilia e o aumento dos níveis séricos de IgE, além disso, facilita os estudos pré-clínicos, reduzindo custos e tempo dos experimentos. Já os modelos de exposição crônica em camundongos parecem ser a escolha ideal para estudos que envolvam o papel específico de certos tipos celulares e de citocinas e mediadores inflamatórios (GUALDI *et al.*, 2010).

É evidente o grande interesse na identificação e caracterização de biomarcadores em diversas doenças, incluindo a asma. A necessidade se torna mais expressiva para os pacientes que apresentam asma severa, os quais não respondem de forma eficiente às terapias convencionais utilizando corticoides. São utilizadas cada vez mais doses crescentes de corticosteróides e de broncodilatadores de ação

prolongada no tratamento da asma alérgica, no entanto essas medicações não oferecem o controle adequado dos sintomas nem reduzem o risco de exacerbações, além disso, precisam ser utilizadas por tempo prolongado, podem gerar diversos efeitos colaterais (FRICKER et al., 2017). Em razão disso, o desenvolvimento de pesquisas utilizando modelos animais experimentais fornecem uma maior compreensão dos mecanismos evolvidos na asma alérgica, e possibilitam a descoberta de biomarcadores na busca de tratamentos mais seletivos, eficazes e com menores efeitos colaterais. Os biomarcadores representam uma base importante para a precisão no tratamento do paciente ao seu fenótipo e endótipo da asma. Um biomarcador ideal deve ser sensível e específico, fácil e reproduzível. Além disso deve fornecer informações biologicamente relevante que auxiliem nas tomadas de decisão (FRICKER et al., 2017).

A asma alérgica é uma doença que apresenta elevada prevalência em todo o mundo e é de grande preocupação por representar um problema sério de saúde pública (KOATZ *et al.*, 2016). Os pacientes asmáticos apresentam respostas exacerbadas do sistema imunológico, ocorrendo um predomínio do perfil T_H2, com altos níveis da imunoglobulina E (IgE) (CHEN *et al.*, 2014; KOATZ *et al.*, 2016).

Diante disso, esse estudo avaliou particularmente os eventos envolvidos na resposta inflamatória pulmonar alérgica em modelo experimental induzido por OVA, relacionando ao tempo de exposição ao alérgeno de 23 e 35 dias caracterizando protocolos de exposição aguda e crônica respectivamente.

A inflamação das vias aéreas inferiores é uma característica eminente da fisiopatologia da asma alérgica. O recrutamento de leucócitos para as vias aéreas inferiores é propriedade marcante para o desenvolvimento do processo inflamatório (HOLGATE *et al.*, 2015). Os resultados demostraram que, a sensibilização e desafios por aerossol de OVA nos animais, foi capaz de promover uma intensa migração de células inflamatórias para a cavidade pulmonar em ambos os protocolos (23 e 35 dias), indicando um parâmetro essencial no processo inflamatório dos modelos analisados no presente estudo. Adicionalmente, ao realizar a comparação entre os grupos OVA dos protocolos agudo e crônico, foi possível constatar que, a exposição por um período mais prologando (35 dias) ao agente promotor do processo inflamatório alérgico tem a capacidade de aumentar ainda mais o recrutamento celular. De acordo com Camargos

e colaboradores (2002) a inflamação crônica pulmonar na asma é caracterizada pela presença de infiltrado celular, composto por eosinófilos, mastócitos, linfócitos T e células da linhagem monocítica, tanto em pacientes humanos como em animais. Assim, esses resultados iniciais comprovam que a exposição crônica ao alérgeno é relevante para a exacerbação da crise alérgica. Consequentemente, o aumento da migração celular está associado à manutenção do processo inflamatório e sua cronicidade.

Uma das características relevantes para o estabelecimento da inflamação pulmonar na asma alérgica é a marcada migração dos eosinófilos para os pulmões (KARP, 2004; YOUSEFI; SIMON; SIMON, 2012). O influxo elevado de leucócitos nas vias aéreas dos camundongos apresenta um predomínio significativo de eosinófilos. O número de eosinófilos no fluído do lavado broncoalveolar atinge números entre 40-60% das células inflamatórias (GUALDI et al., 2010). Proteínas granulares derivadas de eosinófilos e mediadores pró-inflamatórios promovem inflamação persistente, e têm sido associadas ao aumento das exacerbações e declínio da função pulmonar (JATAKANON et al., 2000; SILVA et al., 2007). No presente estudo, foi constatado um aumento significativo da porcentagem de eosinófilos no BALF dos animais sensibilizados e desafiados com OVA, de ambos protocolos de inflamação pulmonar alérgica avaliados. A etapa de desafio com OVA resultou em uma média de 40% de eosinófilos no BALF dos grupos OVA, tanto do protocolo agudo como no crônico. Tal resultado corrobora com o apresentado por Gualdi e col. (2010). No entanto, essa porcentagem não apresentou relevância nos grupos basais de ambos os protocolos, devido à ausência de exposição ao alérgeno utilizado nesse estudo. Tal dado, demostra o padrão característico do fenótipo da asma alérgica, sendo esse configurado por uma inflamação crônica eosinofilica. (BEZERRA-SANTOS et al., 2006; CERQUEIRA-LIMA et al., 2010). E comprova que o contanto com alérgenos inalatórios conduz a um aumento acentuado de eosinófilos no fluído do lavado broncoalveolar (PINICIN et al., 2010)

O remodelamento pulmonar é definido como uma mudança inapropriada na estrutura tecidual no intuito de manter a função normal das vias aéreas. Com o objetivo de visualizar os processos envolvidos no remodelamento pulmonar, utilizamos nesse estudo as análises histológicas pelas colorações de Hematoxilina-eosina (HE), Ácido

Periódico de Schiff (PAS) e Tricrômio de Masson (MT), para observar a migração celular e arquitetura geral do tecido pulmonar, a produção de muco e deposição de fibras colágenas, respectivamente. Nos tecidos pulmonares dos animais sensibilizados e desafiados com o alérgeno OVA de ambos os protocolos estudados, a utilização da coloração permitiu a presença de leucócitos HE observar peribronquiolovascular. Comprovando assim a migração de células inflamatórias mensuradas no BALF. No entanto, a exposição de forma prolongada ao alérgeno, no protocolo de 35 dias, promoveu uma migração mais acentuada para o sitio inflamatório, quando comparado ao protocolo de exposição aguda (23 dias). Tal resultado torna claro que o tempo de exposição ao agente causador do processo inflamatório pulmonar influência diretamente na ativação e expressão da resposta celular T_H2 e migração leucocitária, sendo esses eventos responsáveis pela manutenção e cronicidade do processo inflamatório pulmonar na asma alérgica.

A coloração de PAS foi utilizada, com o propósito de analisar os parâmetros de hiperplasia e hipertrofia das células caliciformes e hiperprodução de muco característicos da inflamação pulmonar alérgica. Foi possível constatar um aumento destes parâmetros nos grupos OVA de ambos os protocolos, quando comparados aos respectivos grupos basais. Em adição, ao compararmos os protocolos desse estudo, verificou-se que o tempo de exposição ao alérgeno (OVA) interferiu no aumento das células caliciformes e consequentemente no volume da produção de muco na cavidade pulmonar. Diante disso, a exposição por um maior período de tempo ao alérgeno, leva a uma hiperplasia e hipertrofia das células caliciformes associado à produção de muco mais acentuada, como observado no grupo OVA do protocolo de 35 dias.

Para a avaliação da deposição de fibras colágenas, utilizou-se a coloração Tricrômio de Masson. Os resultados apresentam deposição de colágeno nos grupos OVA de ambos os protocolos avaliados. Entretanto, a deposição é mais acentuada no grupo em que a exposição foi mais prolongada. É descrito que modelos crônicos apresentam sinais característicos de depósito de colágeno na via aérea, semelhante a um dos aspectos do remodelamento brônquico (GUALDI *et al.*, 2010). Diante desses resultados, podemos classificar o protocolo de 23 dias como sendo um modelo experimental agudo de inflamação pulmonar alérgica, pois nesse o remodelamento tecidual não é observado. Já no protocolo de 35 dias o processo de remodelamento pulmonar é marcante, processo esse característico da inflamação crônica da asma.

Assim, a intensificação dos eventos no remodelamento das vias aéreas inferiores, está relacionada com o maior tempo de exposição alérgeno, acarretando mudanças estruturais presentes na asma crônica (HOLGATE *et al.*, 2015; TANG *et al.*, 2006).

A asma induzida por OVA em camundongos da linhagem BALB/c caracteriza-se por apresentar um perfil tipo T_H2. Este fenótipo é conhecido por ser dependente de IgE, sendo um marcador importante do fenótipo asma alérgica (LAMBRECHT *et al.*, 2015; FAJT *et al.*, 2015; MURARO *et al.*, 2016; FRICKER *et al.*, 2017). Assim, a asma alérgica está associada a níveis séricos aumentados de imunoglobulina E (IgE) específica, que desempenha um papel central desde o início da doença e ao longo de sua continuidade (PALOMARES *et al.*, 2017). É visto que a sensibilização com alérgenos em camundongos BALB/c resulta em uma forte resposta T_H2 nos pulmões, com altos níveis de IgE específica associadas a mastócitos e/ou basófilos, recrutamento e ativação de eosinófilos e redução do calibre das vias aéreas por ação de agentes broncoconstritores (GUALDI *et al.*, 2010). Nossos resultados, demostraram que o título de IgE-OVA-específica, estava ausente no grupo basal de ambos os protocolos analisados, diferentemente do que foi observado nos grupos OVA de ambos protocolos analisados. Ao compararmos os grupos sensibilizados e desafiados com OVA, independe do tempo de exposição ao alérgeno houve produção da IgE.

Baqueiro e colaboradores (2010) afirmam que a primeira condição para o desenvolvimento de um modelo eficiente de doença pulmonar alérgica é uma sensibilização efetiva, com síntese de IgE específica em níveis adequados. A IgE específica produzida tem inegável papel no processo, a resposta mediada por IgE causa alterações imediatas caracterizada por estreitamento, constrição e compressão dos brônquios, e alterações tardias, que representarão a resposta inflamatória crônica característica da doença (CAMARGOS et al., 2002; SILVA et al., 2013), estando presente nas reações agudas e crônicas da inflamação pulmonar alérgica que caracteriza a asma.

A asma do perfil T_H2 é caracterizada pela secreção das citocinas IL-4, IL-5 e IL-13. A IL-4 por sua vez, é responsável por promover a polarização dos linfócitos T CD4+ auxiliares em T_H2 efetores, que, através da ligação com o seu receptor IL-4R presentes nos linfócitos T_H0 (naive), promove a ativação da via JAK/STAT, induzindo a transcrição de genes alvo (WALFORD *et al.*, 2013), tais como, para IL-4, IL-5 e IL-13.

Adicionalmente, a IL-4 participa do processo de remodelamento das vias aéreas através da estimulação de fibroblastos, indução dos linfócitos B com produção de IgE, e regulação positiva de moléculas de adesão que permitem a migração de leucócitos para as vias aéreas (STEINE *et al.*, 2001)

A IL-13 por sua vez, atua de maneira semelhante a IL-4, em parte, pelo compartilhamento do receptor de IL-4, no qual a IL-13 se liga a porção da cadeia alfa do IL-4R (KIPS *et al.*, 2001). A IL-13 é necessária para a montagem da hiperreatividade brônquica e produção de muco pelas células caliciformes no pulmão (BRIGHTLING *et al.*, 2010). Os efeitos da IL-13 estão associados à inflamação pulmonar alérgica atuando no remodelamento tecidual, promovendo fibrose ao estimular a síntese de colágeno pelos fibroblastos (HOLGATE *et al.*, 2008), sendo está interleucina responsável pela manutenção da inflamação crônica das vias aéreas (TOMLINSOM *et al.*, 2010). As terapias biológicas para asma tipo T_H2, aprovadas ou ainda em fase de estudo clínicos, são norteadas para agir sob IgE, IL-5, IL-13, receptor IL-4 (IL-4Ra) e a linfopoietina estromal tímica (TSLP). As citocinas IL-4 e IL-13 são primordiais para a inflamação gerada pela resposta celular do tipo T_H2 (FAJT et al., 2015). Os modelos experimentais de inflamação pulmonar alérgica escolhidos para esse estudo envolvem a asma do tipo Th2, isto é, produção das citocinas IL-4, IL-5 e IL-13.

Nesse trabalho analisamos o efeito alérgeno OVA quanto à produção de citocinas IL-4 e IL-13. Na quantificação das citocinas do perfil celular T_H2, foi observado um aumento significativo de IL-4 e IL-13 nos grupos sensibilizados e desafiados com OVA de ambos os protocolos, quando comparados aos respectivos grupos que não tiveram contato com o alérgeno. Confirmando a modulação positiva para o perfil celular T_H2 desenvolvida em nosso estudo. No entanto, ao compararmos os grupos OVA dos dois protocolos avaliados, é visto uma diferença expressiva apenas nas concentrações da IL-13, que apresentou aumento no protocolo de exposição mais prolongada ao alérgeno. De modo, que o tempo de exposição ao alérgeno não influenciou nas concentrações de IL-4. É relatado na literatura que IL-13 juntamente com a IL-5, representam mediadores importantes associados com a exacerbação da asma alérgica (FAHY, 2015).

Em ensaios clínicos através de terapias dirigidas a essas citocinas, foi visto um efeito robusto de diminuir o agravamento da asma em pacientes com inflamação tipo 2, o que implica que a IL-13 e IL-5 aumentam a suscetibilidade das vias aéreas à

exacerbação da asma. Tal suscetibilidade pode resultar nos processos de eosinofilia e remodelação das vias aéreas (FAHY, 2015; LEE *et al.*, 2009). Diante disso, a IL-13 de fato está associada ao processo inflamatório crônico da asma alérgica, ao atuar na exacerbação e remodelamento pulmonar da doença. Além disso, é descrito níveis aumentados de IL-13 no escarro e espécimes de biópsia brônquica de quadros de asma grave (SAHA *et al.*, 2010).

7. CONCLUSÃO

Os resultados obtidos nesse estudo demonstraram a efetividade do processo de sensibilização e desafios de camundongos da linhagem BALB/c com a Ovalbumina (OVA) na formação e manutenção da inflamação pulmonar alérgica característica da asma humana pela migração de células inflamatórias com predominância de eosinófilos para o tecido pulmonar, formação de muco pelas células caliciformes pulmonares e deposição de fibras colágenas na região peribroncoalveloar e perivascular. Em adição, houve a produção sérica de IgE-OVA específica e de IL-4 e II-3, parâmetros correlacionados a inflamação pulmonar alérgica. Os protocolos de sensibilizações e desafios com a OVA em camundongos BALB/c de 23 (agudo) e 35 dias (crônico) demostraram que foram eficientes em promover a inflamação pulmonar alérgica experimental, entretanto quanto mais exposição ao alérgeno (OVA) mais intensa é a resposta inflamatória pulmonar. Portanto, o tempo de exposição ao alérgeno é imprescindível para o desenvolvimento da cronicidade no processo inflamatório, provocando o agravamento no quadro clinico asmático. Além disso, nosso estudo possibilitou avaliar envolvidos quais os principais elementos desenvolvimento da resposta celular TH2 na inflamação pulmonar presente na asma alérgica, e que tais elementos são alvos potenciais para a atuação de novas terapias mais específicas, fornecendo assim um melhor controle da asma associado com menores efeitos colaterais.

REFERÊNCIAS

ATKINSON, J.J., SENIOR, R.M. Matrix metalloproteinase-9 in lung remodeling. American Journal of Respiratory Cell and Molecular Biology. v. 28; p.12-24, 2003

BAI, T.R., KNIGHT, D.A. Structural changes in the airways in asthma: observations and consequences. **Clinical Science**. v. 108; p. 463-477, 2005.

BANCROFT, J., GAMBLE, M. Theory and Practice of Histological Techniques. 6^a ed. Philadelphia: **Elsevier**, 2008.

BAQUEIRO, T., RUSSO, M., SILVA, V.M., MEIRELLES, T., OLIVEIRA, P.R., GOMES, E., et al. Alergia respiratória a Blomia tropicalis: resposta imune em quatro linhagens de camundongos singênicos e avaliação de modelo experimental de curta duração e baixa dose de alérgenos. **Respiratory Research.** v. 11; p. 51, 2010.

BEZERRA-SANTOS, C. R.; VIEIRA-DE-ABREU, A.; BARBOSA-FILHO, J. M.; BANDEIRA-MELO, C.; PIUVEZAM, M. R.; BOZZA, P. T. Anti-allergic properties of *Cissampelos sympodialis* and its isolated alkaloid warifteine. **International Immunopharmacology**, v. 6, p. 1152-1160, 2006.

BOUSQUET, J.; JEFFERY, P.K.; BUSSE, W.W.; JOHNSON, M.; VIGNOLA, A.M. Asthma. From bronchoconstriction to airways inflammation and remodeling. **American Journal of Respiratory and Critical Care Medicine**, v.161 (5); p. 1720-45, 2000.

BRASIL. Ministério da Saúde. DATASUS. Informações de saúde. [Citado em 23 de janeiro de 2015. Disponível em: http://www.blog.saude.gov.br/570-perguntas-e-respostas/35040-asma-atinge-6-4-milhoes-de-brasileiros, 2015.

BREWER, J.M., CONACHER, M., HUNTER, C.A., et al. Aluminium hydroxide adjuvant initiates strong antigen-specif Th2 responses in the absence of IL-4 or IL-13 mediated signaling. **Journal of Immunology.** v.163; p. 6448-6454, 1999.

BRIGHTLING C., SAHA S., HOLLINS F. Interleucina-13: perspectivas de novos tratamentos. **Clinical and experimental allergy.** v.40 ;p. 42–49, 2010

CAMARGOS, P. A. M.; RODRIGUES, M. E. S. M.; DIRCEU, S. D.; SCHEINMANN, P. Asma e rinite alérgica como expressão de uma única doença: um paradigma em construção. **Jornal de Pediatria**, v.78; p.5. 2002.

CAMPOS, H. S. Asma e DPOC: vida e morte. **Boletim de Pneumologia Sanitária** Rio de Janeiro , v. 12, n. 1, 2004.

CAMPOS, H. S. Asma: suas origens, seus mecanismos inflamatórios e o papel do corticosteroide Asthma: its origins, inflammatory mechanisms and the role of the corticosteroid. **Revista Brasileira de Pneumologia Sanitária** Rio de Janeiro , v. 15, n. 1, p. 47-60, dez. 2007 .

CARDOSO, T.R., RONCADA, C., DA SILVA, E. R., PINTO, L. A., JONES, M. H., STEIN, R.T., PITREZ, P.M. Impacto da asma no Brasil: análise longitudinal de dados extraídos de um banco de dados governamental brasileiro **Jornal Brasileiro de Pneumologia.** v.43(3);p.163-168, 2017.

CERQUEIRA-LIMA, A. T. et al. Effects of Cissampelos sympodialis Eichl. and its Alkaloid, Warifteine, in an Experimental Model of Respiratory Allergy to Blomia tropicalis. **Current Drug Targets**, v. 11, p. 1458–1467, 2010.

CENTERS FOR DISEASE CONTROL AND PREVENTION [homepage na Internet] .Atlanta: CDC [citado 2017 maio 07. National Center for Health Statistics - Asthma. Disponível em: http://www.cdc.gov/nchs/fastats/asthma.htm. Acesso em: 08 de maio de 2018

COSTA, H. F. et al. Warifteine, a bisbenzylisoquinoline alkaloid, decreases immediate allergic and thermal hyperalgesic reactions in sensitized animals. **International Immunopharmacology**, v. 8, p. 519–525, 2008.

COSTA, E. CAETANO, R., WERNECK, G.L., BREGMANIV, M., ARAÚJO, D. V., RUFINO, R. Estimativa de custo da asma em tratamento ambulatorial: estudo com dados de mundo real **Revista de Saúde Pública**.v. 52; p.27,2018.

CHAKIR, J., SHANNON, J., MOLET, S., et al. Airway remodeling-associated mediators in moderate to severe asthma: effect of steroids on TGF-beta, IL-11, IL-17, and type I and type III collagen expression. **Journal of Allergy and Clinical Immunology**. v.111; p.1293-1298, 2003.

CHEN, C.; DENG, Y.; CHEN, H.; et al. Decreased concentration of IL-35 in plasma of patients with asthma and COPD. **Asian Pacific Journal of Allergy and Immunology**, v. 32; p. 211–217, 2014.

CHENG, D. et al. Epithelial interleukin-25 is a key mediator in Th2-high, corticosteroid-responsive asthma. **American Journal Respiratory Critical Care Medicine**, v. 190; p. 639–648, 2014.

CHONG NETO, H.J., ROSÁRIO, N.A., SOLÉ, D.; Latin American ISAAC Group. Asthma and Rhinitis in South America: How Different They are From Other Parts of the World. **Allergy, Asthma & Immunology Research.** v. 4(2);p.62-67, 2012.

DUTRA, M.S., RONCADA, C., SOUZA, R.G., CUNHA, A.A., PITREZ, P.M. Systematic review on experimental modelsof acute and chronic asthma induced with house dust mite extract. **Clinical and Biomedical Research.** v.37(2);p.132-139, 2017

FACINCONE, S., PEREIRA DE SIQUEIRA, A.L., JANCAR, S., RUSSO, M., BARBUTO, J.A.M., MARIANO M. A novel murine model of late-phase reaction of immediate hypersensitivity. **Mediators of Inflammation**. v.6; p.127-133, 1997.

FAJT, ML.; WENZEL, SE. Asthma phenotypes and the use of biologic medications in asthma and allergic disease: The next steps toward personalized care. **Clinical reviews in allergy and immunology**, v. 135; n. 2; p. 299-310, 2015.

FATTOUH, R. et al. Eosinophils are dispensable for allergic remodeling and immunity in a model of house dust mite-induced airway disease. **American Journal Respiratory Critical Care Medicine** v.183; p.179–188, 2011.

FAHY, J. V. Type 2 inflammation in asthma--present in most, absent in many. **Nature reviews. Immunology**, v. 15, n. 1, p. 57–65, 2015. GALLI, S. J.; TSAI, M. IgE and mast cells in allergic disease. **Nature Medicine**, v. 18, n. 5, p. 693–704, 2012.

FRICKER, M.; HEANEY, LG.;. UPHAM, JW. Can biomarkers help us hit targets in difficult-to-treat asthma. **Respirology**, v. 22; p. 430–442, 2017.

FLOOD-PAGE ,P., MENZIES-GOW , A., PHIPPS, S., YING, S., WANGOO, A., LUDWIG, M.S., BARNES, N., ROBINSON, D., KAY, A.B. Anti-IL-5 treatment reduces deposition of ECM proteins in the bronchial subepithelial basement membrane of mild atopic asthmatics. **Journal of Clinical Investigation.** v.112(7); p.1029-1036, 2003.

FULKERSON, P.C.; ROTHENBERG, M.E.; HOGAN, S.P. Building a better mouse model: experimental models of chronic asthma. **Clinical & Experimental Allergy**, v.35; p. 1251, 2005

GINA - Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention 2016.

GINA - Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention 2018.

GUO, H.; CALLAWAY, J. B.; TING, J. P. Inflammasomes: mechanism of action, role in disease, and therapeutics. **Nature Medicine**, v. 21, n. 7, p. 677-687, 2015.

GUALDI, L. P.; PEREIRA, A. C.; MASIERO, L.; NUÑEZ, N. K.; CAO, R.; PITREZ, P. M. C.MODELOS murinos para pesquisas em asma. **Scientia Medica**. v. 20, n. 3, p. 236-242, 2010.

HALDAR, P.;PAVORD, I.D.; SHAW, D.E.; BERRY, M.A.; THOMAS, M.; BRIGHTLING, C.E.; WARDLAW, A.J.;GREEN, R.H. Cluster analysis and clinical asthma phenotypes. **American Journal of Respiratory and Critical Care Medical**, v.178, p. 218–224, 2008.

HOLGATE, S.T., DAVIES, D.E., LACKIE, P.M., et. al. Interações epitéliomesenquimais na patogênese da asma. **Journal of Allergy and Clinical Immunology**, v.105; p.193 –204, 2000.

HOLGATE, S. T.; POLOSA, R. Treatment strategies for allergy and asthma. **Nature Reviews Immunology**, v. 8, p. 116-124, 2008.

HOLGATE, S.T., WENZEL, S., POSTMA, D. S., WEISS, S. T., HARALD RENZ, H., SLY. P. D. **Asthma Nature Reviews**, v.1 2015

JATAKANON, A.; UASUF, C.; MAZIAK, W.; LIM, S.; KIAN, F.C.; PETER, J.B. Neutrophilic inflammation in severe persistent asthma. American Journal of Respiratory and Critical Care Medical, v. 160, p. 1532–1539,2008.

KARP, M. W.-K. AND C. L. Eosinophils in Asthma: Remodeling a Tangled Tale. **Science**, v. 305, p. 1726–1729, 2004.

KOATZ, AM.; COE, NA.; CICERA, A.; ALTER, AJ. Clinical and Immunological Benefits of OM-85 Bacterial Lysate in Patients with Allergic Rhinitis, Asthma, and COPD and Recurrent Respiratory Infections. **Lung**, v. 194; p. 687–697, 2016.

KOTAS, M. E.; MEDZHITOV, R. Homeostasis, inflammation, and disease susceptibility. **Journal Celular**, v. 160; n. 5; p. 816-827, 2015.

KUCHAREWICZ, I., LUKASZYK, A.B., BUCZKO, W. Experimental asthma in rats. **Pharmacological Reports,** v. 60; p.783-788, 2008.

KUMAR, R.K., HERBERT, C., FOSTER, P.S. The "classical" ovalbumin challenge model of asthma in mice. **Current Drug Targets,** v.9; p.485-494, 2008.

LAMBRECHT BN AND HAMMAD H. The immunology of asthma. **Nature Immunology**, v. 16, p. 45-56, 2015.

LANÇAS T., KASAHARA, D. I., PRADO, C.M., TIBERIO, I.F., MARTINS, A.M., DOLHNINIOFF, M. Comparison of early and late responses to antigen of sensitized guinea pig parenchymal lung strips. **Journal of Applied Physiology**, v. 100 (5); p. 1610-1616, 2006.

LEE, C.G. et al. Role of breast regression protein 39 (BRP-39)/chitinase 3-like-1 in Th2 and IL-13-induced tissue responses and apoptosis. **Journal of Experimental Medicine**, v.206(5); p.1149–1166; 2009.

LEMANSKE, R. F. JR, BUSSE, W. W. Asthma: Factors underlying inception, exacerbation, and disease progression. **Journal of Allergy and Clinical Immunology,** v.117; p.456-461, 2006.

MAUAD, THAIS; SOUZA, SANDRINI LOPES DE; SALDIVA, PAULO HILÁRIO NASCIMENTO e DOLHNIKOFF, MARISA. Remodelamento brônquico na asma. **Journal Pneumologia**, v.26, n.2, p.91-98, 2000.

MCMILLAN, S. J.; XANTHOU, G.; LLOYD, C. M. Therapeutic administration of Budesonide ameliorates allergen-induced airway remodelling. Clinical and experimental allergy: journal of the British Society for Allergy and Clinical Immunology, v. 35, n. 3, p. 388–396, 2005.

MURARO, A.; LEMANSKE, RF.; HELLINGS, PWJ.; AKDIS, CA.; BIEBER, T. Precision medicine in patients with allergic diseases: Airway diseases and atopic dermatitis—PRACTALL document of the European Academy of Allergy and Clinical Immunology and the American Academy of Allergy, Asthma & Immunology. PRACTALL consensus report. **Journal of Allergy Clinical Immunology**, v. 137; p. 1347-1358, 2016.

MOORE, W.C., et. al. Identification of asthma phenotypes using cluster analysis in the Severe Asthma Research Program. **American Journal of Respiratory and Critical Care Medicine**, v.181(4); n.15; p.315-323, 2010.

MOZZINI-MONTEIRO,T. Estudo da Atividade Psicoimunomoduladora do Gama-Terpineno. Tese de Doutorado- Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Universidade Federal da Paraíba, João Pessoa-PB, 2018.

NIALS, A.T., UDDIN, S. Modelos de rato de asma alérgica: desafio alérgeno aguda e crônica. Modelos e Mecanismos da Doença. v.1 (4-5); p.213-220. 2008.

PAIVA FERREIRA, L.K.D. **Efeito Imunomodulador do Alcaloide Sintético MHTP na Inflamação Pulmonar Alérgica Experimental.** Dissertação de Mestrado - Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, Universidade Federal da Paraíba, João Pessoa-PB, 2016.

PALOMARES, Ó. et al. AdlvergEnt: How IgE Axis Contributes to the Continuum of Allergic Asthma and Anti-IgE Therapies. **International Journal of Molecular Sciences**, v. 18, n. 6, p. 1328, 2017.

PAWANKAR R. Perspectivas atuais sobre inflamação e remodelamento das vias aéreas na asma e na rinite alérgica. **Brazilian Journal of Allergy and Immunology, v.1**(5); p.243, 2013.

PEREIRA, L.F., Dispositivos para uso de aerossóis. **Medicina Respiratória**, v.2 , 2012.

PICININ, I. F. M.; CAMARGOS, P. A. M.; MARGUET, C. Celularidade do líquido de LBA em crianças e adolescentes saudáveis e com doenças pulmonares. **Jornal Brasileiro de Pneumologia**, v. 36; p. 372-385, 2010.

PRIETSCH, S.O., ZHANG L., CATHARINO, A.R., VAUCHINSK,I L., RODRIGUES F.E. Mortalidade por asma em crianças brasileiras de até 19 anos entre 1980 e 2007. **Jornal de Pediatria,** v. 88(5); p. 384-388, 2012.

RAMOUTSAKI, I. A., DIMITRIOU, H., MARKAKI, E. A., KALMANTI, M. Management of childhood diseases during the Byzantine period: III-- respiratory diseases of childhood. **Pediatrics International**, v. 44(4); p.460-462, 2002.

REDHU, N.S.; SHAN, L.; AL-SUBAIT, D.; ASHDOWN, H.L.; MOVASSAGH, H.; LAMKHIOUED, B.; GOUNNI, A.S. IgE induces proliferation in human airway smooth muscle cells: Role of MAPK and STAT3 pathways. Clinical Immunology, Allergy, Asthma & Clinical Immunology, v. 9; p. 41, 2013.

ROTH, M.; ZHONG, J.; ZUMKELLER, C.; S'NG, C.T.; GOULET, S.; TAMM, M. The role of IgE-receptors in IgE-dependent airway smooth muscle cell remodelling. **Plos One**, v. 8, p. 56, 2013.

SAHA, S.K., BERRY, M.A., PARKER, D., SIDDIQUI, S., MORGAN, A., MAY, R. et al. Increased sputum and bronchial biopsy IL-13 expression in severe asthma. **Journal of Allergy and Clinical Immunology**, v. 121; p. 685–691, 2008.

SERPA, F.S., ZANDONADE, E., REIS, J.L., BORJA, T.N., MOYSES, T., CAMPINHOS, F.L., NETO, F.B., CHIABAI, J. Prevalência de asma, rinite e eczema atópica em escolares do município de Vitória, Espírito Santo, Brasil. **Revista Brasileira de Pesquisa em Saúde,** v. 16; p. 107-114, 2014.

SILVA, D.R.N., SCHNEIDER, A.P., STEIN, R.T. O papel do aleitamento materno no desenvolvimento de alergias respiratórias. **Scientia Medica**, v.19; p. 35-42, 2009.

SILVA, E. C. F.; DIAS, G. A. C. Patogenia da asma. **Revista Hospital Universitário Pedro Ernesto**, v. 12(2); p.31-40, 2013

SIMÕES, S.M., CUNHA, S.S., BARRETO, M.L., CRUZ, A.A. Distribution of severity of asthma in childhood. **Journal of Pediatrics**, v. 86(5); p. 417-423, 2010.

SOLÉ, D., ROSÁRIO FILHO, N.A., SARINHO, E.S., CAMELO-NUNES, I.C., BARRETO, B.A., MEDEIROS, M.L., et al. Prevalence of asthma and allergic diseases in adolescents: nine-year follow-up study (2003-2012). **Journal of Pediatrics**, v.91(1); p. 30-35, 2015.

SHAKOORY, B. et al. The role of human mast cell-derived cytokinesin eosinophil biology. **Journal of Interferon & Cytokine Research,** v. 24; p.271, 2004.

SHERWIN, C.M.; CHRISTIANSEN, I.J.; DUNCAN, H.W.E.. Guidelines for the ethical use of animals in applied ethology studies. **Applied Animal Behavioral Science**, v. 8, p. 291–305, 2003.

SHERWOOD, E. R.; TOLIVER-KINSKY, T. Mechanisms of the inflammatory response. Best practice & research. **Clinical anaesthesiology**, v. 18,; n. 3; p. 85-405, 2004.

STEIN, R.T., MARTINEZ, F.D. Asthma phenotypes in childhood: lessons from an epidemiological approach. **Paediatric Respiratory Reviews,** v. 5(2); p.155-161, 2004.

TANG, M.L.K., WILSON, J.W., STEWART, A.G., ROYCE, S.G. Airway remodelling in asthma: Current understanding and implications for future therapies **Pharmacology** and **Therapeutics**, v. 112(2); p. 474-488, 2006.

TAGAYA, E., & TAMAOKI, J. Mechanisms of airway remodeling in asthma. **Allergology International**, v. 56; p. 331–340, 2007.

TAKAYAMA, G., ARIMA, K., KANAJI, T. et al. Periostin: a novel component of subepithelial fibrosis of bronchial asthma down-stream of IL-4 and IL-13 signals. **Journal of Allergy and Clinical Immunology**, v. 118; p. 98-104, 2006.

TORRES, R., PICABO, C., MORA, F. Use of the mouse to unravel allergic asthma: a review of the pathogenesis of allergic asthma in mouse models and its similarity to the conditions in humans. **Archivos de Bronconeumología**, v. 41; p.141-152, 2005.

TODO-BOM, A. E PINTO, A.M. Fisiopatologia da Asma Grave. **Revista Brasileira Alérgia e Imunopatologia**, v. 29, p. 113-116, 2006.

TOMLINSON, K.L., DAVIES, G.C., SUTTON, D., PALFRAMAN, R.T.Neutralisation of interleukin-13 in mice prevents airway pathology caused by chronic exposure to house dust mite. **PLoS One**, v. 10 (5), e p. 131-36, 2013.

WALFORD, H.H., DOHERTY, T.A. STAT6 and lung inflammation. **JAK STAT**. v. 2 (4); p. 25-301, 2013.

WILLS-KARP M, LUYIMBAZI J, XU X, SCHOFIELD B, NEBEN TY, KARP CL, DONALDSON DD. Interleukin-13: central mediator of allergic asthma. **Science**, v. 282; p.2258–2261, 1998.

WHITEHEAD, G.S., WALKER, J.K., BERMAN, K.G., et al. Allergeninduced airway disease is mouse strain dependent. **American Journal of Physiology. Lung Cellular and Molecular Physiology**, v. 285; p.32-42, 2003.

WHO Asthma. World Health Organization. Disponível em http://www.who.int/mediacentre/factsheets/fs307/en/. Acesso 13 de abril 2018.

WYNN, T. A. Type 2 cytokines: mechanisms and therapeutic strategies. **Nature Reviews Immunology**, v. 15, n. 5, p. 271–282, 2015.

YOUSEFI, S.; SIMON, D.; SIMON, H.-U. Eosinophil extracellular DNA traps: molecular mechanisms and potential roles in disease. **Current Opinion in Immunology**, v. 24, n. 6, p. 736–739, dez. 2012.

ZOSKY, G.R.; SLY, P.D. Animal models of asthma. **Clinical & Experimental Allergy**, v. 37; p. 7, 2007.

APÊNDICE

APÊNDICE A - Substâncias e sais

Ácido acétido glacial (C2H4O2) – VETEC

Ácido clorídrico (HCI) -VETEC

Ácido fosfotunguístico (H3PW12O40) – VETEC

Ácido periódico (HIO4) - VETEC

Álcool metílico (CH3OH) – VETEC

Aldeído fórmico (CH2O) – MERCK

Alúmen de potássio (KAI(SO4)2) - MERCK

Bissulfito de sódio (NaHSO3) – MERCK

Cloreto de potássio (KCI) – MERCK

Cloreto de sódio (NaCl) – SIGMA

Cloridrato de ketamina – VETBRANDS

Clorofórmio (CHCl3) – LTF

Corante azul de evans – VETEC

Corante cromotropo 2R - VETEC

Corante eosina azul de metileno segundo Giemsa – VETEC

Corante eosina azul de metileno segundo May-Grünwald – VETEC

Corante fucsina básica - VETEC

Corante hematoxilina – VETEC

Corante Hematoxilina férrica de Weigert

Corante Verde Luz

Corante Panótico - NEWPROV

Corante test-green F.C.F. – VETEC

Corante violeta de genciana – VETEC

D-gluxose (C6H12O6) - SIGMA

Etanol (C2H5OH) - LTF

Fosfato de potássio (KH2PO4) - REAGEN

Fosfato de sódio anidro (Na2HPO4) – MERCK

Formaldeído – MERCK

Glicerina (C3H3(OH)3) – VETEC

Hidróxido de alumínio (Al(OH)3) – VETEC

Hidróxido de sódio (NaOH) - REAGEN

Metabissulfito de sódio (Na2S2O5) – MERCK

OVA grade II – SIGMA

OVA grade V – SIGMA

Óxido de mercúrio amarelo (Hg2O) – LAFAN

Parafina para Histologia – COAL

Timol (C10H14O) - VETEC

Xilol (C6H4(CH3)2) - VETEC

APÊNDICE B - Aparelhos e equipamentos

Agitador Vortex – VWR – Scientific Products

Autoinclusor – Leica EG 120

Balança analítica – Sartorius

Banho histológico – ANCAP

Centrífuga refrigerada - Centra MP4R – International Equipement Company (IEC)

Estufa – ICAMO – modelo 3

Histotécnico processador automático de tecidos – OMA – DM – 40

Microscópio óptico – Nikon

Micrótomo – Leica RM 2125 – RT

Nebulizador - Pulmosonic Star - Soniclear

Platina aquecedora – Olidef CZ

ANEXO

ANEXO A - Certidão do Comitê de Ética em Pesquisa Animal

CERTIFICADO

Certificamos que o projeto intitulado "Efeito do tratamento com 4-carvomenthenol em modelos experimentais de inflamação aguda e pulmonar alérgica" protocolo nº 042/2017 sob a responsabilidade da pesquisadora Dra. Marcia Regina Piuvezam — que envolve a produção, manutenção e/ou a utilização de animais pertencentes ao filo Chordata, subfilo Vertebrata (exceto o homem), para fins de pesquisa científica (ou ensino) — encontra-se de acordo com os preceitos da Lei nº 11.794, de 08 de outubro de 2008, do Decreto nº 6.899, de 15 de julho de 2009, e com as normas editadas pelo Conselho Nacional de controle da Experimentação Animal (CONCEA), e foi aprovado pela Comissão de Ética no Uso de Animais da Universidade Federal da Paraíba (CEUA-UFPB) em reunião de 17/05/2017.

Vigência do Projeto	2017 – 2018
Espécie/linhagem	Camundongos Swiss (Mus musculus)
	Camundongos BALB/C (Mus musculus)
	Ratos Wistar (Rattus norvegicus)
Número de animais	Camundongos Swiss – 164 fêmeas
	Camundongos BALB/C - 110 fêmeas
	Ratos Wistar – 55 fêmeas
Idade/peso	Camundongos Swiss (6 – 8 semanas (25 – 30 g))
'	Camundongos BALB/C (6 – 8 semanas (25 – 30 g))
	Ratos Wistar (6 – 8 semanas (120 – 150 g))
Sexo	Fêmeas
Origem	Biotério Prof. Thomas George / IPerFarM/ UFPB

Profa. Dra. Islania Giselia Albuquerque Gonçalves Coordenadora da CEUA-UFPB

CEUA-UFPB – Campus I – Reitoria - 1º andar - E-mail: ceua@ufpb.br – Site: www.ufpb.br/ceua