

Universidade Federal da Paraíba

Centro de Tecnologia

Programa de Pós-Graduação em Engenharia Mecânica

Mestrado - Doutorado

IDENTIFICAÇÃO DO COMPORTAMENTO DO ESCOAMENTO EM GOLFADAS PARA RECONHECIMENTO DESSE PADRÃO EM RISERS DE EXTRAÇÃO DE PETRÓLEO UTILIZANDO RNA NARX

por

Priscilla Perussolo Cunico Conrado

Dissertação de Mestrado apresentada à Universidade Federal da Paraíba para obtenção do grau de Mestre.

Priscilla Perussolo Cunico Conrado

IDENTIFICAÇÃO DO COMPORTAMENTO DO ESCOAMENTO EM GOLFADAS PARA RECONHECIMENTO DESSE PADRÃO EM RISERS DE EXTRAÇÃO DE PETRÓLEO UTILIZANDO RNA NARX

Dissertação de Mestrado apresentada ao Programa de Pós-Graduação em Engenharia Mecânica, PPGEM, da Universidade Federal da Paraíba, como parte dos requisitos necessários à obtenção do título de Mestre em Engenharia Mecânica.

Orientador: Prof. Dr. Marcelo Cavalcanti Rodrigues

João Pessoa

Catalogação na publicação Seção de Catalogação e Classificação

```
C754i Conrado, Priscilla Perussolo Cunico.

Identificação do comportamento do escoamento em golfadas para reconhecimento desse padrão em risers de extração de petróleo utilizando RNA NARX / Priscilla Perussolo Cunico Conrado. - João Pessoa, 2020.

81 f.: il.

Dissertação (Mestrado) - UFPB/CT.

1. Risers. 2. Golfadas. 3. Petróleo. 4. CFD. 5. RNA. I. Titulo

UFPB/BC
```

IDENTIFICAÇÃO DO COMPORTAMENTO DO ESCOAMENTO EM GOLFADAS PARA RECONHECIMENTO DESSE PADRÃO EM RISERS DE EXTRAÇÃO DE PETRÓLEO UTILIZANDO RNA NARX

por

Priscilla Perussolo Cunico Conrado

Dissertação aprovada em 05 de junho de 2020

Prof. Dr. MARCELO CAVALCANTI RODRIGUES
Orientador – UFPB

Met- Could By

Prof. Dr. ABEL CAVALCANTE LIMA FILHO

Examinador Interno - UFPB

Prof. Dr. GUSTAVO CHARLES PEIXOTO DE OLIVEIRA Examinador Interno – UFPB

Prof. Dr. KOJE DANIEL VASCONCELOS MISHINA

anil U. Misting.

Examinador Externo - UFPB

AGRADECIMENTOS

Agradeço ao Prof. Dr. Marcelo Cavalcanti Rodrigues pela disponibilidade, paciência e cooperação.

Aos integrantes do Laboratório de Integridade e Inspeção (LabII) da UFPB que me auxiliaram nessa trajetória.

A minha família que me apoiou e incentivou.

Agradeço a CAPES pelo investimento na minha capacitação.

IDENTIFICAÇÃO DO COMPORTAMENTO DO ESCOAMENTO EM GOLFADAS PARA RECONHECIMENTO DESSE PADRÃO EM RISERS DE EXTRAÇÃO DE PETRÓLEO UTILIZANADO RNA NARX

RESUMO

A extração de petróleo está ocorrendo em ambientes progressivamente inóspitos, o que caracteriza um desafio de engenharia em várias frentes. Um desses desafios é a estabilização do escoamento em risers marinhos, tanto para minimização de riscos como também para o aumento da produtividade. O efeito das golfadas em particular, geradas pelo escoamento multifásico nos risers, em determinadas situações é potencialmente problemático. Isso se dá devido ao fato dele representar uma variação na taxa de vazão e na pressão em seu regime usual. Quando o regime de escoamento assume o padrão de golfadas extremas, qualifica um risco de hold ups impedindo a passagem do liquido. O escoamento de extração de petróleo pode ser definido genericamente como um escoamento multifásico liquido/gás e o padrão de golfadas é distinguido pela sua qualidade intermitente de bolhas de Taylor (fase gasosa) seguidas por uma fase liquida. Essa pesquisa busca desenvolver, por meio da criação de uma base de dados gerada a partir dos resultados obtidos em análise de dinâmica dos fluidos computacional (CFD), uma rede neural para identificação do escoamento em golfadas. A proposta é que essa seja uma ferramenta que possa ser aplicada em instalações já existentes sem haver a necessidade de equipamentos extras. Dessa forma busca-se utilizar os sensores presentes no BOP (blowout preventer) para identificar o padrão de escoamento em golfadas, trabalhando em conjunto com a rede neural desenvolvida, de forma que a válvula de estrangulamento possa ser acionada automaticamente antes mesmo dos kicks (variações de pressão devido a este padrão de escoamento) atingirem o final do riser.

Palavras Chaves: Risers, Golfadas; Petróleo; CFD; RNA.

IDENTIFICATION OF THE BEHAVIOR OF SLUG FLOW FOR RECOGNITION OF THIS PATTERN IN OIL EXTRACTION RISERS USING RNA NARX

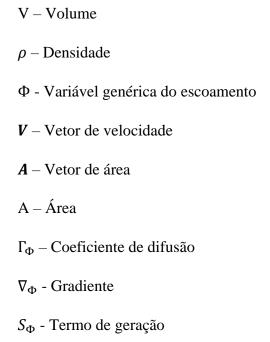
ABSTRACT

The oil extraction is occurring in environments increasingly inhospitable, which characterizes an engineering challenge in many fronts. One of those challenges is the stabilization of the flow in marine risers, for risks decrease and also increase in productivity. The slugging effect in particular, due to the multiphasic flow in risers, in some situations is a potential issue. This happens due to the fact that it represents a change in the flow rate and pressure in its usual regimen. When the flow regimen assumes the extreme slugging pattern, it qualifies as a risk of hold ups, preventing the passage of liquid. The oil extraction flow can be defined generically as a multiphasic flow liquid/gas and the slugging pattern is distinguished by its intermittent quality of Taylor's bubbles (gaseous phase) followed by a liquid phase. This research aims to develop, through the making of a database generated from the results obtained in computational fluid dynamic analysis (CFD), a neural network to identify slug flow. The proposal is that this be a tool which can be applied existing installations without the necessity of extra equipment. Thus, we are looking to use the sensors at the BOP (blowout preventer) in order to identify the slug flow pattern, working with the neural network developed, so that the strangle valve can be deployed automatically before the kicks (pressure variation due to the flow pattern) even reach the end of the riser.

Keywords: Risers; Slugs; Oil; CFD; ANN.

Sumário

CAPÍT	ULO I	13
1.1	INTRODUÇÃO	13
1.2	OBJETIVOS	17
	1.2.1 Objetivos Gerais	17
	1.2.2 Objetivos Específicos	17
CAPÍT	ULO II	20
2.1	REVISÃO BIBLIOGRÁFICA	20
2.2	QUANTO A CARACTERIZAÇÃO DO ESCOAMENTO	20
	2.2.1 Abordagens Experimentais	21
2.3	ABORDAGENS TEÓRICAS	23
2.4	QUANTO AO CONTROLE DO ESCOAMENTO	24
CAPÍT	ULO III	25
3 R	REFERENCIAL TEÓRICO	25
3.1	EXTRAÇÃO DE PETRÓLEO	25
3.2	RISERS MARINHOS	26
	3.2.1 RISER FLEXÍVEL	27
3.3	ESCOAMENTO MULTIFÁSICO	29
	3.3.1 ESCOAMENTO DE <i>SLUGS</i>	30
3.4	MODELO DE TAITEL	32
	3.4.1 Golfadas Extremas	32
	3.4.2 Modelo Matemático Para Escoamento Em Golfadas	35
	3.4.3 Identificação De Padrão De Escoamento	37
	3.4.4 Mapas De Padrões De Escoamento	38
3.5	MODELOS DE CONTROLE E OU MITIGAÇÃO DE SLUGS	39
3.6	REDES NEURAIS	42
3.7	ESPECTRO DE POTÊNCIA	43
СДРІ́Т	THOIV	44


4 N	MODELAGEM NUMÉRICA	44
4.1 I	PRÉ PROCESSAMENTO: Modelo e Malha	45
4.2 1	MÉTODOS APLICÁVEIS	48
4.3 (CONDIÇÕES DE CONTORNO	49
4.4 \$	SOLVER: MÉTODO DOS VOLUMES FINITOS	49
	4.4.1 Modelo matemático Geral	50
	4.4.2 Escoamento Multifásico e Volume de Fluidos (VOF)	52
CAPÍT	ULO V	55
5.1	INTRODUÇÃO	55
5.2	RESULTADOS	55
	5.2.1 COMPORTAMENTO DO ESCOAMENTO	59
	5.2.2 REDE NEURAL ARTIFICIAL RNA	68
CAPÍT	ULO VI	73
6. C	CONCLUSÃO	73
6.1.	SUGESTÕES PARA TRABALHOS FUTUROS	75
REFER	RÊNCIAS	77

LISTA DE FIGURAS

Figura 1. Configurações de instalação de risers.	14
Figura 2. Boia de sustentação de risers .	15
Figura 3. Tipos de escoamento vertical.	15
Figura 4. Configuração dos risers no processo de extração de petróleo.	27
Figura 5. Estrutura de um riser flexível.	28
Figura 6. Padrões de escoamento bifásico.	31
Figura 7. Passo 1 para a formação de golfada extrema.	32
Figura 8. Passo 2 para a formação de golfada extrema.	33
Figura 9. Blowout.	33
Figura 10. Operação estável.	35
Figura 11. PDF do escoamento em golfadas para $U_LS = 0.01 \text{ m/s}$, $U_LGS = 0.15 \text{ N}$ $V_max = 1080 \text{ My}$.	m/s e 38
Figura 12. Mapa de padrões de escoamento para uma configuração vertical de água-a um duto de 5cm de diâmetro a 25° C e 100 kPa.	ar em
Figura 13. Condicionadores de escoamento: Em ondas, à esq. por Xing et al. (20 elíptico à dir. Por Adedigba (2007).	13) e 40
Figura 14. Modelo computacional do riser simulado, com as dimensões principais.	46
Figura 15. Malha não estruturada ao longo do riser.	47
Figura 16. Refinamento da malha próximo as paredes.	47
Figura 17. Volume de Controle.	50
Figura 18. Volume de controle, a) centrado na célula, b) célula-vértice.	51
Figura 19. Simulação com VG = 8m/s e VL = 4 m/s.	57
Figura 20. Simulação com VG = 1m/s e VL = 0,5 m/s.	58
Figura 21. Simulação com VG = 10m/s e VL = 5m/s.	59
Figura 22. Grupo 1, curvas do espectro em potência x frequência normalizada escoamentos entre: $VG = 9.2$ a 9.8 m/s e $VL = 4.6$ a 4.9 m/s.	para 61
Figura 23. Grupo 2, curvas do espectro em potência x frequência normalizada escoamentos entre: $VG=6.0$ a 9.2 m/s e $VL=3.0$ a 4.6 m/s.	para 62

Figura 24. Grupo 3, curvas do espectro em potência x frequência normalizad escoamentos entre: $VG = 3,86$ a $6,0$ m/s e $VL = 1,90$ a $3,0$ m/s.	a para 63
Figura 25. Grupo 4, curvas do espectro em potência x frequência normalizad escoamentos entre: $VG = 3,26$ a $3,86$ e $VL = 1,60$ a $1,90$.	a para 64
Figura 26. Grupo 5, curvas do espectro em potência x frequência normalizad escoamentos entre: $VG = 1.0$ a 2.08 e $VL = 0.5$ a 1.0 .	a para 65
Figura 27. Grupo 6, curvas do espectro em potência x frequência normalizado escoamentos entre: $VG = 0.1$ a 0.89 e $VL = 0.01$ a 0.409 .	a para 66
Figura 28.Conceito de criação da RNA	69
Figura 29. RNA tipo NARX	68
Figura 30. Gráfico de regressão da RNA	70
Figura 31. Fluxo de dados	72
Figura 32. Proposta	73

LISTA DE SÍMBOLOS E ABREVIATURAS

CAPÍTULO I

INTRODUÇÃO

1.1 INTRODUÇÃO

Embora a tendência mundial seja a evolução da produção da energia para o que chamamos de "energia limpa" ainda somos extensivamente dependentes da produção de petróleo. Com o crescimento populacional e o aumento da demanda por energia é imperativo investir na salvaguarda da vida e do meio ambiente. Essa tarefa se torna cada vez mais difícil com ambientes progressivamente inóspitos e profundidades exorbitantes. Dentre os riscos envolvidos o escoamento multifásico é responsável por instabilidades no fluido, com acidentes já documentados.

Escoamentos multifásicos possuem diversas aplicações, podendo ser usando em prol de um processo, ou encontrado naturalmente. A extração de petróleo se encontra na segunda categoria. Os poços de petróleo são estruturas rochosas onde se encontram diversos elementos, cada poço possui uma característica individual. O que é comum a todos os poços produtores de hidrocarbonetos é a presença do óleo pesado e gás, caracterizando um escoamento multifásico.

Os risers marinhos são as estruturas responsáveis pela sucção e transporte do fluido para a superfície. Sendo que o método de bomba centrifuga submersa (SCP) é o método mais utilizado para extração no Brasil, segundo MENDES, F.A.A. et al.(2011). Os risers possuem estruturas flexíveis para melhor resistir aos esforços exigidos e possuem duas ligações principais. Ele é ligado a plataforma que recebe o petróleo na cabeça de produção

e na sua outra extremidade pode ser ancorado ao PLET (*pipeline end terminal* – terminal de duto), *manifold* ou ANM (árvore de natal molhada).

Existem poços operantes com diversas configurações de risers, dependendo das exigências de projeto. O formato de catenária livre é o mais comum em lâminas de água relativamente pequenas, visto que é uma das instalações mais fáceis de se fazer, porém causa tração em excesso na ancoragem de topo e outros esforços que fazem com que essa configuração não seja apropriada para regiões ultra fundas. Algumas opções de configurações podem ser vistas na Figura 1.

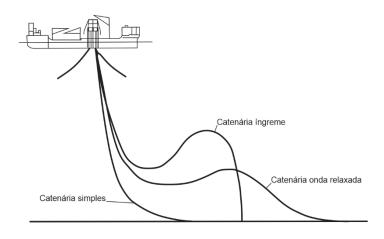


Figura 1. Configurações de instalação de risers.

Fonte: Adaptado de Júnior, J.V.O., 2011.

Devido aos novos desafios os risers mais atuais em grandes profundidades estão fazendo uso de boias de apoio. A qual ajuda a diminuir a movimentação do mesmo e reduzir os esforços aos quais está sujeito seja por força externa como pela sua própria força peso. Em contrapartida torna a configuração do riser mais complexa, como pode ser visto na Figura 2. Os pontos de transição – as curvas que a tubulação faz - são particularmente problemáticos pois são onde geralmente ocorrem *hold-ups*. Ou seja, alguma característica do escoamento faz com que aja uma redução no diâmetro interno do riser, fazendo com que diminua a vazão e consequentemente aumente a pressão.

Figura 2. Boia de sustentação de risers.

Fonte: PETROBRAS, 2015.

O escoamento vertical possui características diferentes do horizontal. No caso dos risers considera-se que o escoamento é na sua maior parte vertical. Como pode ser visto na Figura 3 existem diversas configurações que já foram identificadas.

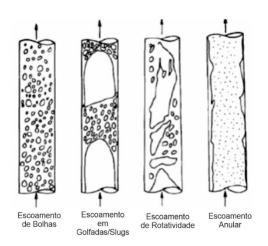


Figura 3. Tipos de escoamento vertical.

Fonte: Adaptado de Taitel et al., 1980.

O objeto desse estudo é o "escoamento de *slug*", o qual pode ser também encontrado na literatura como escoamento em golfadas. É o segundo caso apresentado na Figura 3 e representa um sério problema na indústria do petróleo. Quando cita-se neste trabalho o termo escoamento de *slug* ou *slugging* refere-se ao tipo de escoamento onde a fase liquida está estratificada da fase gasosa, sendo que a fase gasosa se encontra no formato de bolha

como apresentado na figura acima. Quando apenas o termo *slug* for utilizado, sem a identificação: liquido ou gasoso, o autor refere-se ao *slug* gasoso. Esse tipo de escoamento é considerado um escoamento instável pois gera flutuações significativas de pressão e vazão no riser. Sua característica principal é o escoamento intermitente da fase liquida, o petróleo, e da fase gasosa. São encontrados então bolhas de gás, as quais são conhecidas como bolhas de Taylor e possuem um formato arredondado na ponta com pequenas bolhas dispersas na sua cauda, entre espaços preenchidos pelo petróleo. Os espaços com os *slugs* líquidos, que são esses espaços entre as bolhas de Taylor são constituídos do petróleo com pequenas bolhas dispersas da cauda da bolha de Taylor.

O escoamento de *slugs* também é reconhecidamente um risco de *hold ups*, pois os *slugs* gasosos podem se aglomerar e impedir a passagem do liquido. Segundo JUNIOR, J.V.O.,2011 são dois os fatores que podem causar esse acúmulo de liquido – efeito hidrodinâmico ou geométrico. O fator geométrico está progressivamente complexo, como mostrado na Figura 2 e o efeito hidrodinâmico continua sendo material de estudos em busca de um sistema de controle eficaz.

De acordo com NILSEN, A.N. (2012) existem dois métodos principais de controle do escoamento de *slugs*. O primeiro e mais convencional se trata de uma válvula de estrangulamento no topo da tubulação e o segundo é um "agarrador" de *slugs*. A válvula de estrangulamento é de longe o método mais utilizado, por ser mais barato, bastante difundido e funcionar relativamente bem. O problema desse método é que cada vez que a válvula é utilizada para controlar a flutuação de pressão ocorre uma perda na produção, sem contar que a sua necessidade ou não é baseada na experiência do operador, o que faz com que esse método esteja sujeito a erros. O "agarrador" de *slugs* é um método mais caro e que deve ser previsto desde a fase de projeto, sendo dependente de uma estimativa fidedigna do tamanho dos *slugs*. Como já citado, com o escoamento sendo instável, a predição dos tamanhos dos *slugs* é de difícil execução.

Vários estudos, principalmente experimentais, foram desenvolvidos no intuito de identificar padrões e características do escoamento de *slugs* – MENDES,F.A.A. et al. (2011), ABDULKADIR, M. et al. (2010), SILVA, E.S. (2006) – são alguns exemplos. Outros pesquisadores buscaram desenvolver modelos matemáticos como JUNIOR, J.V.O.

(2011), RUAS, P.H.D.(2016). Esses trabalhos serão citados em maior detalhes posteriormente.

O intuito dessa dissertação é estabelecer um modelo numérico que reproduza o fenômeno do escoamento de *slugs*, com detalhes o suficiente para poder desenvolver e aplicar um método de controle. Controlando assim o fluxo do escoamento, evitando variações na produção – aumento da produtividade, e minimizando os riscos – salvaguardando a vida e o meio ambiente, e também identificar o padrão desse escoamento utilizando rede neural artificial (RNA) NARX. O método de controle escolhido foi o acionamento automático da válvula de estrangulamento por meio do diagnóstico rápido do escoamento em golfadas com base nos dados gerados pelos sensores presentes no BOP e processados pela rede neural artificial criada.

Os métodos de controle já empregados serão discutidos, e planeja-se ao final dessa pesquisa apresentar uma solução viável de diagnóstico e regularização dos problemas de fluxo causados pelo escoamento de *slugs*.

1.2 OBJETIVOS

1.2.1 Objetivos Gerais

Utilizar as técnicas computacionais de dinâmica dos fluidos disponíveis para modelar o escoamento multifásico em regime de *slugging*/golfadas que ocorre em um sistema de riser marinho para extração de petróleo/gás para a geração de uma ferramenta de identificação deste padrão de escoamento, por meio da criação de uma rede neural, que trabalhe em conjunto com os equipamentos já existentes neste tipo de instalação para acelerar e automatizar o processo de mitigação deste padrão de escoamento. Reduzindo assim o risco a vida e ao meio ambiente e aumentando a produtividade. Utilizando os sensores do BOP como entrada de dados na rede neural, a qual identificará a presença ou não de golfadas e acionará então a válvula de estrangulamento.

1.2.2 Objetivos Específicos

- Delimitar a faixa de operação onde ocorre esse padrão de escoamento com dados de entrada que possam ser utilizados em modelagem computacional;
- Desenvolver um modelo capaz de reproduzir o fenômeno e aplicar em toda a faixa definida anteriormente;
 - Analisar a possibilidade de uma modelagem em tamanho reduzido;
 - Modelagem do riser em formato 'S';
 - Definição e aperfeiçoamento de malha;
 - Escolha do modelo matemático:
 - Análise do custo computacional;
 - Validação dos resultados com os dados presentes na literatura;
 - Realização das análises para a gama de modelos definidos anteriormente.
- Obter os gráficos de variação de pressão ao longo do riser no domínio do tempo;
- Gerar um banco de dados e analisar graficamente os sinais utilizando o método de potência espectral;
 - Separação dos sinais em grupos de acordo com similaridades;
- Desenvolver uma rede neural artificial com esse banco de dados para identificação do comportamento típico de *slugging*.
 - Treinamento da RNA;
 - Validação da RNA;

1.3 ORGANIZAÇÃO DA DISSERTAÇÃO

A dissertação está estruturada em 6 capítulos, que apresentam a seguinte estruturação:

Capitulo 2: Apresenta a revisão bibliográfica a cerca do tema. Se trata de uma apresentação da literatura presente sobre o tema do trabalho e suas diferentes formas de abordagem.

Capitulo 3: Traz o referencial teórico necessário à elaboração do trabalho, explicando tudo aquilo que compõe a pesquisa e a literatura na qual a mesma está amparada.

Capitulo 4: Apresenta o método utilizado para a pesquisa. No caso, como foram executadas as analises em CFD, apresenta-se o modelo matemático utilizado, o método dos volumes finitos e como foram criados o modelo e a malha.

Capitulo 5: Apresenta os resultados encontrados com as análises efetuadas, as quais foram o cerne da pesquisa e os tratamentos de dados efetuados para a geração de uma ferramenta prática a partir dos estudos desenvolvidos;

Capitulo 6: Discussão dos principais resultados, conclusões e sugestões para trabalhos futuros.

CAPÍTULO II

REVISÃO BIBLIOGRÁFICA

2.1 REVISÃO BIBLIOGRÁFICA

As pesquisas relacionadas a escoamentos multifásicos horizontais servem como base no que diz respeito aos métodos utilizados e comprovados quanto a sua eficácia, visto que o escoamento e suas características não podem ser comparados por possuírem uma dinâmica diversa. Nesse ramo de pesquisa encontra-se ainda diversas abordagens, como o problema é bastante complexo ele pode ser destrinchado de diferentes maneiras. Uma simplificação utilizada nessa pesquisa é de não levar em consideração as partículas de rocha e outros sedimentos que são succionadas junto com o fluido.

A tese de mestrado de BUBERG, T. (2014) apresenta de forma bastante didática e completa o funcionamento dos risers, com suas diferentes configurações, métodos de instalação e esforços aos quais estão sujeitos. O intuito do trabalho é estudar o projeto desse tipo de duto para poços em grandes profundidades, para isso todos os pontos pertinentes são detalhados.

A compreensão do funcionamento da instalação é necessária, mesmo que a pesquisa aqui desenvolvida se atenha a um problema especifico, para que a solução de um efeito não afete negativamente outros critérios.

2.2 QUANTO A CARACTERIZAÇÃO DO ESCOAMENTO

Existe uma análise subjetiva envolvida na caracterização dos tipos de escoamento quando se trata de uma abordagem experimental, ou seja, a identificação dos padrões é feita por meio da análise de imagens dos experimentos. Porém observou-se que mesmo

com essa subjetividade há uma consonância na literatura referente a faixa onde ocorre o fenômeno de *slugging*.

2.2.1 Abordagens Experimentais

SILVA, E.S. (2006) utilizou a abordagem experimental para estudar os efeitos do escoamento multifásico em dutos nas condições de oscilação presentes nos risers de extração marítima, levando em consideração o movimento transversal alternado gerado pelo movimento do mar e da plataforma a qual está conectado. É apresentada uma comparação dos diversos padrões de escoamento para o riser estático e oscilando, e sua influência é discutida. Esse trabalho possibilitou a melhor compreensão do sistema de extração e os esforços envolvidos. Tendo viabilizado informações práticas quanto a estrutura e características gerais dos risers além de teoria pertinente aos padrões de escoamento multifásicos para escoamento vertical.

VALDIVIA, P.G. et al. (2007) fez uma consideração pertinente quanto a abordagem experimental de problemas relacionados a risers: é impossível atingir similaridade dinâmica, geométrica e cinemática com protótipos. Quando se aplica o fator de escala os diâmetros internos e externos obtidos são demasiadamente pequenos, o que não é aplicável, tanto por conta da falta de disponibilidade no mercado de tubos nessas condições como também por que causaria perdas de efeitos do escoamento. O trabalho cita que o menor diâmetro encontrado na literatura que apresentou um escoamento bifásico plenamente desenvolvido foi por TAITEL et al. (1980), com diâmetro de uma polegada. Essa pesquisa desenvolveu experimentos com o intuito de identificar os esforços causados na estrutura do riser pela intermitência do escoamento interno. Para isso, desenvolveram vários padrões de escoamento diferentes, utilizando como base o gráfico de padrão de escoamento de TAITEL et al. (1980). Eles identificaram que a vibração a qual o riser está sujeita devido a variação da massa de fluido com o tempo aumenta conforme a vazão de ar no sistema aumenta. Obtendo amplitudes de oscilação do protótipo de até 20 vezes o diâmetro externo do mesmo. Porém frisam que a similaridade completa não foi atingida e, portanto, simulação numérica futura é de interesse. Essa abordagem experimental levou as considerações quanto ao diâmetro do riser apresentadas posteriormente e a necessidade de garantir que o escoamento seja plenamente desenvolvido. Além de validar o uso do mapa de padrões de escoamento e embasar a necessidade de simulação numérica para aprofundamento.

MENDES, F.A.A., et al. (2011) desenvolveu um trabalho experimental de alta significância para essa pesquisa onde diversos escoamentos foram simulados, utilizando um duto com inclinação de 0 a 90 graus o que permitiu a caracterização, dentre outros, do escoamento de golfadas identificando o sinal de vibração causado e o PSD (densidade espectral de potência) desse sinal. Os dados adquiridos serviram para gerar um mapa de padrões de escoamento, onde pode-se analisar em qual faixa de velocidade superficial do liquido e do gás ocorre determinado tipo de escoamento. De forma mais abrangente, no quesito de compreensão do processo de extração, esse trabalho contribuiu no entendimento dos métodos de elevação, além da utilização do método de densidade espectral de potência para caracterização do escoamento.

Os gráficos de padrões de escoamento são uma forma de apresentação de resultados desse tipo de experimento bastante utilizados e comparativamente, como será discutido a posteriori, alcançaram uma convergência de dados bastante satisfatória. Para fins de pesquisa é uma ferramenta bastante útil, mas como não há o controle da vazão das diversas fases do escoamento na prática infelizmente não serve para fins de controle efetivo.

NILSEN, A.S. (2012) fez um projeto de especialização no intuito de identificar as diferenças de comportamento de risers em formato S e em formato L no que diz respeito ao escoamento com padrão intenso de golfadas. Utilizou simulação no software OLGA e experimentos laboratoriais com a justificativa que o desenvolvimento de um bom modelo de caracterização do sistema é a base para o controle. O mecanismo de geração do escoamento de *slug*, junto com os métodos disponíveis para controle do mesmo foram discutidos. Comparações entre abordagem experimental e numérica foram feitas, algumas divergências foram encontradas, porém demonstra-se que ambos os grupos de dados gerados seguem a mesma tendência. Assume-se então que as divergências encontradas foram devido a calibragem do sistema. Ressalva-se ainda que o aperfeiçoamento não foi efetuado por questões de tempo e não de alguma restrição dos métodos utilizados. A importância principal deste trabalho, além da comparação efetuada entre método

experimental e numérico – provando que os dois seguem a mesma tendência – foi a abordagem do controle do escoamento e a discussão e revisão sobre métodos de mitigação.

2.3 ABORDAGENS TEÓRICAS

JUNIOR, J.V.O. (2011) desenvolveu modelos teóricos para a predição de intermitência severa, também conhecido como *slugging*. Se baseou em dois modelos já existentes, um utilizando equações diferenciais ordinárias e outro com solução algébrica. Utilizou a configuração de catenária e validou o modelo com dados experimentais, inclusive de um sistema real *offshore*. Concluiu que o modelo modificado a partir da solução algébrica (TAITEL, 1986) gera uma boa precisão. Discutiu também efeitos gerados pelo escoamento de golfadas, como *hold up* e *fallback*. A teoria apresentada será discutida em capítulos posteriores.

PEREIRA, M.B.C. (2013) utilizou também a pesquisa de TAITEL (1986) para realizar um estudo sobre os parâmetros de condições de ocorrência, julgando o modelo analítico satisfatório na predição de intermitência severa e discutindo suas características e comportamento. Apresentou considerações quanto aos sistemas de mitigação da intermitência severa.

RUAS, P.H.D. (2016) desenvolveu uma análise teórica, aplicando a equação da energia em um escoamento multifásico (óleo-gás) para obter os campos térmicos buscando solucionar as equações que regem esse tipo de escoamento. Para isso aplicou a técnica da transformada integral generalizada e criou uma rotina no FORTRAN para obtenção da solução numérica.

As abordagens teóricas permitiram, num todo, maior compreensão do comportamento do escoamento. Trazendo maior clareza quanto a complexidade do problema e a dificuldade de se prever anteriormente esse padrão de escoamento. Permitindo ainda definir quais parâmetros influenciam no escoamento e deveriam futuramente serem levados em consideração para simulação numérica. Possibilitou a definição correta do problema.

2.4 QUANTO AO CONTROLE DO ESCOAMENTO

Os métodos de mitigação foram analisados e revisados no intuito de definir opções que pudessem trabalhar em consonância com o objetivo do trabalho de mitigar o padrão de golfadas sem a necessidade de instalar equipamentos extras. Levando em consideração sua viabilidade prática de ser ativado quando o padrão de golfadas fosse reconhecido pela rede neural desenvolvida.

JANSEN, F.E. et al., 1996, realizou um estudo teórico e experimental de dois métodos de mitigação de golfadas severas. O método de estrangulamento, onde utiliza-se uma válvula de estrangulamento para criar uma resistência ao escoamento proporcional a velocidade do *slug* liquido no riser. Esse método se comprovou eficaz, embora possa aumentar a pressão do sistema até um certo ponto e cause a diminuição da velocidade de extração. Em contrapartida é um método de baixo custo de instalação. A outra proposta analisada foi de injeção de gás no escoamento, aumentando as velocidades e assim aproximando o regime de escoamento para anular. Essa segunda abordagem causa um escoamento mais continuo porém é mais dispendiosa e precisa de um certo tempo para estabilizar o escoamento, visto que é necessário injetar grandes quantidades de gás para estabilizar o escoamento.

Alguns dos autores citados anteriormente como NILSEN, A.S. (2012), PEREIRA, M.B.C. (2013) fazem a abordagem dos métodos de mitigação de *slugs*. Significativamente mais difícil é encontrar trabalhos sobre o desenvolvimento de métodos de controle ou mitigação. A literatura disponível é na sua maior parte composta por patentes. Revisando essas patentes observa-se que há um grande número de sistemas de mitigação de *slugs* que preveem a utilização de separadores de fluidos em algum ponto do riser ou trabalha com válvulas de estrangulamento – o que causa diminuição da produção. GODHAVN, J.M. et al. (2004) apresenta um modelo de supressão do escoamento de *slugs* utilizando de forma automática uma válvula de estrangulamento no topo do duto, tendo desenvolvido um controlador PID.

CAPÍTULO III

REFERENCIAL TEÓRICO

3 REFERENCIAL TEÓRICO

3.1 EXTRAÇÃO DE PETRÓLEO

De acordo com MENDES, F.A.A. et al. (2011) o método mais comum de elevação artificial de petróleo utilizado no Brasil é o da bomba centrifuga submersa (BCS). Esse método tem como limitação a sucção de gás, por isso utiliza-se separadores de gases gravitacionais. É necessário aplicar essa tecnologia nos campos de exploração para aumentar a vazão e consequentemente a produtividade, adicionando energia do escoamento.

Outras tecnologias disponíveis, segundo SOUZA, J.N.M. (2010), são:

i.Gás lift

Utiliza uma injeção de gás controlada na coluna de produção para auxiliar a subida do liquido, é uma técnica de elevação artificial. Causa a diminuição da pressão hidrostática exercida pelo fluido produzido. Existem duas classificações: gás *lift* continuo ou intermitente.

ii.Bombeio elétrico centrífugo submerso (BCS)

Bomba centrifuga instalada no fundo do poço de petróleo acoplada a um motor elétrico de subsuperfície, transmitindo energia elétrica para o poço. Esse tipo de sistema – como todos que possuem o acionamento de bombas subaquáticas - possui sérios problemas que geram uma baixa vida útil do BCS.

iii.Bombeio elétrico por cavidades progressivas (BCP)

É um sistema composto por uma bomba de cavidade progressiva de deslocamento positivo, composta por um rotor e um estator onde devido a sua geometria forma

cavidades herméticas idênticas. O movimento de uma coluna de hastes, gerado através de um motor elétrico, é levada ao rotor.

iv.Bombeio hidráulico a jato

Utilizando o princípio de tubo de Venturi, fornece energia hidráulica pelo bombeio de água no poço. Gerando uma zona de baixa pressão onde o óleo é aspirado, misturado com a água e elevado.

v.Bombeio hidráulico centrifugo submerso

Visto que com o aumento da demanda buscou-se ampliar os campos de exploração de petróleo, esse movimento assegurou que a extração ocorra cada vez em maiores profundidades. O que constitui um ambiente fértil para grandes desafios tecnológicos e produtivos. De acordo com BUBERG, T. (2014) alguns dos esforços adicionais a serem levados em consideração, especificamente na concepção dos risers são: pressão hidrostática, aumento do peso próprio, forças de corrente e movimentos da plataforma/embarcação.

3.2 RISERS MARINHOS

De geometria geralmente bastante esbelta, os risers são dutos que fazem a ligação do poço de petróleo com a plataforma petrolífera na superfície da lâmina da água. Existem dois tipos de risers, os de perfuração e os de extração. O primeiro tipo enquanto em uso uma configuração na vertical e embora esteja sujeito aos esforços causados pelas condições ambientais o seu uso ocorre sob um relativamente curto período de tempo. Os risers de extração por outro lado, assumem uma configuração usualmente de catenária, e operam por longos períodos de tempo.

Eles são considerados uma das partes mais crítica de uma operação de produção petrolífera, pois estão sujeitos a variações dinâmicas de natureza aleatória. Quando se trata de extração em águas profundas a embarcação receptora não pode ser ancorada rigidamente ao fundo do oceano, dessa forma está sujeita a movimentação. Sendo ela o ponto de

ancoragem superior do duto de extração esse movimento causa esforços na estrutura do riser. Além disso tem-se também efeitos que não podem ser controlados ou minimizados, como a ação das correntes e das ondas. Como o fundo do mar é um terreno bastante acidentado, considera-se também que a geometria em forma de catenária é uma simplificação bastante utilizada, mas que sabemos que influencia no escoamento interno.

Os risers de extração, os quais são o objeto desse estudo, são então basicamente dutos responsáveis pela sucção e carregamento de petróleo, gases e sedimentos de dentro do poço para a superfície para a plataforma de produção. Esse tipo de riser pode ainda ser rígido ou flexível. Na Figura 4 é possível ver a configuração que os risers assumem em uma operação de extração de petróleo.

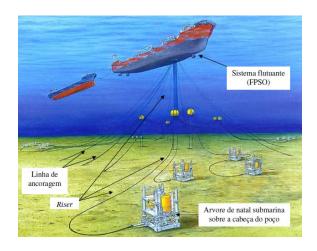


Figura 4. Configuração dos risers no processo de extração de petróleo.

Fonte: SILVA, E.S., 2006.

3.2.1 RISER FLEXÍVEL

O nome em si desse riser já descreve a sua geometria, flexível. Esse tipo de riser é utilizado em lâminas de água profundas quando a plataforma a qual ele é ligado é do tipo flutuante. Dessa forma, atualmente eles são a grande maioria dos risers empregados, visto que risers rígidos não conseguem se adaptar ao movimento dinâmico dos flutuantes sem romper. A escolha da configuração de instalação, alguns exemplos podem ser vistos na

Figura 1, depende de fatores como comportamento, integridade estrutural sob esforços dinâmicos e estáticos, material, custos, adaptação as condições locais, etc.

Estruturalmente eles são caracterizados pela sua baixa rigidez a flexão e segundo SILVA, E.S. (2006) possuem uma variação de diâmetros interno 102 mm a 305 mm. A estrutura interna dos risers varia marginalmente de empresa para empresa, mas uma configuração apresentada em trabalhos como SILVA, E.S.(2006) e BUBERG, T. (2014) pode ser vista na Figura 5, onde o mesmo é composto por uma capa externa, uma armadura de tração, seguido por uma camada plástica, uma armadura de reforço a pressão, bainha termoplástica e então a carcaça de aço intertravada. Dependendo das exigências de projeto outras camadas podem ser adicionadas. O que gera uma gama bastante grande de opções e possibilidades.

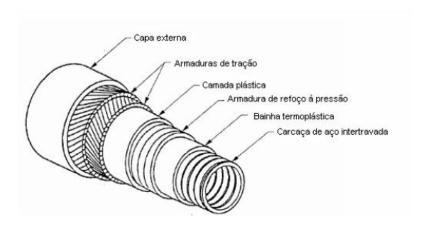


Figura 5. Estrutura de um riser flexível.

Fonte: SILVA, E.S., 2006.

Eles podem ser classificados em vulcanizados – onde todas as partes são acopladas – ou não vulcanizados – onde as partes tem liberdade de movimento entre elas.

Longitudinalmente uma série de componentes são utilizados também para compor a tubulação dentre eles temos: juntas de flexão, juntas de pressão, VIV supressores (supressores de vibração induzida por vórtices), conectores. Como com as camadas

estruturais, alguns componentes são ou não utilizados dependendo da necessidade, dentre eles temos as boias de subsuperfície de apoio do riser.

3.3 ESCOAMENTO MULTIFÁSICO

O escoamento multifásico, como diz o nome, é aquele que possui mais de uma fase. Podendo ser encontrado naturalmente ou induzido para aplicações práticas. Os trocadores de calor industriais, os circuitos de refrigeração primários de plantas nucleares são alguns exemplos onde o escoamento multifásico é utilizado a favor do processo. Já naturalmente podemos encontrar esse tipo de escoamento em processos como a extração do petróleo, onde o escoamento é composto por petróleo, gás natural, água e sedimentos geralmente. Na indústria petrolífera esse padrão natural de escoamento muitas vezes trabalha em detrimento ao processo.

Esse tipo de escoamento representa uma grande dificuldade na engenharia pois tem-se um número de fluidos – com características de densidade e viscosidade diferentes – passando pelo mesmo espaço. Digamos que uma tubulação seja planejada para o escoamento de petróleo, quando há o acréscimo da fase gasosa nessa tubulação o diâmetro pelo qual a vazão do petróleo ocorria não é mais o mesmo, pois o espaço está sendo divido de forma não previsível entre as fases. Quando a área transversal do escoamento diminui, tem-se um aumento de velocidade. Além disso são fases com comportamentos diferentes, elas não fluem na mesma velocidade pois possuem densidades e inércia diferentes. Devendo-se ainda levar em consideração a interação causada pela viscosidade de ambas e a interação delas com a parede da tubulação.

O conhecimento do comportamento dinâmico da pressão, das vazões das fases e dos padrões de escoamento durante o escoamento simultâneo de gás e liquido é fundamental para o projeto de sistemas da indústria química e de petróleo (SOUZA, J.N.M., 2010).

Em aplicações como a petrolífera é aceitável utilizar a simplificação de um escoamento bifásico, liquido - gás, para descrever o efeito de *slugging* visto que as outras fases não influenciam significativamente nesse fenômeno.

A grandeza mais utilizada para descrever os padrões e interfaces de escoamento é a velocidade superficial das fases presentes. O que é na verdade a velocidade que cada fase

iria apresentar se o escoamento fosse monofásico. Considerando então o escoamento liquido - gás como citado anteriormente, dentro de uma tubulação com uma área de seção transversal A e vazão volumétrica Q_L e Q_G para a fase liquida e gasosa respectivamente, temos a velocidade superficial liquida (V_{S_L}) e a velocidade superficial gasosa (V_{S_G}) como a razão da vazão volumétrica pela área da seção transversal do tubo.

$$V_{S_L} = \frac{Q_L}{A}, \qquad V_{S_G} = \frac{Q_G}{A} \tag{1}$$

A velocidade média das fases é a grandeza que representa o deslocamento da fase no sistema. Ela pode ser encontrada pela razão entre a vazão volumétrica da fase pela área da fração da seção transversal que essa fase ocupa no duto. A velocidade média da fase liquida (V_L) e a da fase gasosa (V_G) podem ser encontradas utilizando:

$$V_L = \frac{Q_L}{A_L}, \qquad V_G = \frac{Q_G}{A_G} \tag{2}$$

Considerando a característica do deslizamento de uma fase em relação a outra devido as suas diferentes velocidades causadas pelas duas densidades e viscosidade diversas, essa grandeza é importante.

3.3.1 ESCOAMENTO DE SLUGS

O escoamento de *slugs* ou em golfadas é um dos padrões de escoamento que podem ocorrer em um regime bifásico de liquido – gás. Inúmeros estudos vêm sendo desenvolvidos sobre esse padrão de escoamento pois ele pode causar um fluxo cíclico de extremas golfadas. Enquanto o escoamento em golfadas é característico de um escoamento com mudanças intensas e repentinas de pressão e velocidade na tubulação o escoamento de extremas golfadas é responsável pelo fenômeno do *blowout*.

A Figura 6 mostra os padrões de fluxo característicos de um escoamento bifásico, o primeiro caso é um escoamento em bolhas, o segundo é o escoamento em golfadas, seguido pelo escoamento agitante e por último o anular.

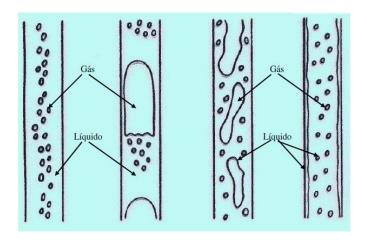


Figura 6. Padrões de escoamento bifásico.

Fonte: SILVA, E.S, 2006.

De acordo com STENMARK, E. (2013), um padrão de escoamento descreve a distribuição geométrica das fases o padrão de escoamento afeta significativamente a distribuição das fases.

Um dos primeiros modelos matemáticos apresentados na literatura descrevendo a velocidade de subida de uma bolha de Taylor, de acordo com ABDULKADIR, M. et al. (2010), foi de NICKLIN et al. (1962) o qual propôs a equação 3. Essa equação se trata de uma relação empírica que descreve a velocidade de subida de uma bolha de Taylor (a qual é responsável pela parte gasosa de um escoamento em golfadas) como uma função linear da velocidade da mistura. O valor da constante C_0 depende do sistema.

$$U_N = C_0 U_{LLS} + 0.35 \sqrt{gD} \tag{3}$$

 U_N é a velocidade de subida/ascensão da bolha de Taylor, U_{LLS} é a velocidade da mistura. Para encontrar essa relação utilizou-se dois planos de medição onde foi possível determinar o tempo entre uma bolha e outra. Aliando essa informação com a distância entre os planos, possibilitou o cálculo de U_N .

A frequência de *slugging* é definida segundo ABDULKADIR, M. et al. (2010) como o número de *slugs* que passam através uma seção transversal definida do tubo em um período de tempo. De acordo com HERNANDEZ-PEREZ (2007), a frequência de *slugs* periódicos pode ser definida utilizando a densidade espectral de potência (PSD). O qual se trata de uma medição de como a potência (ou variação) de um sinal no tempo é distribuída ao longo da frequência. Ainda segundo o mesmo, sendo definido matematicamente como a transformada de Fourier da sequência de auto correlação do sinal no tempo.

3.4 MODELO DE TAITEL

Taitel desenvolveu uma pesquisa continuada sobre o efeito de *slugging* em parceria com vários pesquisadores. Se tornando uma referência no assunto.

3.4.1 Golfadas Extremas

O escoamento de golfadas extremas é formado, segundo TAITEL (1986), em três etapas principais:

i.O liquido entrando na tubulação se acumula na parte baixa do tubo e causa um bloqueio a passagem do gás, fazendo com que o gás seja comprimido na entrada.

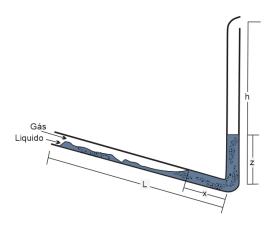


Figura 7. Passo 1 para a formação de golfada extrema.

Fonte: Adaptado de TAITEL,1984

ii.Quando a altura da coluna liquida (z) se iguala a altura da tubulação (h) começa-se a entrada do *slug* liquido no aparato que se encontrar no topo do riser.

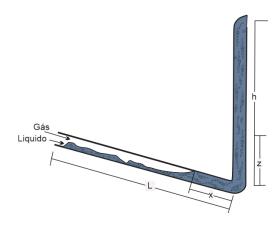


Figura 8. Passo 2 para a formação de golfada extrema.

Fonte: Adaptado de TAITEL, 1984.

iii.Quando o gás que estava comprimido na entrada do tubo por conta do bloqueio causado pela coluna liquida alcança a base da tubulação o liquido começa a fluir para o topo com uma velocidade bastante elevada, fenômeno conhecido como *blowout*.

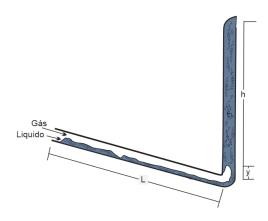


Figura 9. Blowout.

Fonte: Adaptado de TAITEL, 1984.

iv.Por último, antes do ciclo iniciar novamente tem-se então uma diminuição de pressão a qual causa que o liquido caia e volte a se acomodar na base do duto novamente. Reiniciando o processo.

Dessa forma, o *slugging* severo é possível por conta da propriedade de compressibilidade do gás. TAITEL (1986) desenvolveu então uma condição de estabilidade, onde não é possível a ocorrência de golfadas severas e consequentemente de *blowout*.

Para tanto ele assumiu um pequeno distúrbio y que possa carregar o liquido para mais alto, onde o mesmo é rápido o suficiente de forma que a baixa taxa de escoamento da mistura (como é típico do padrão de extrema golfada) é ignorada enquanto o distúrbio varia. A força liquida por unidade de área agindo no liquido dentro do riser é de acordo com a equação 4:

$$\Delta F = \left[(P_1 + \rho_L g h) - \frac{\alpha l}{\alpha l + \alpha' y} \right] - \left[P_1 + \rho_L g (h - y) \right]$$
(4)

Onde o tem-se ao lado direito dentro dos colchetes a força motriz de pressão na tubulação. A pressão varia com y como resultado da expansão do gás dentro da tubulação. O segundo termo se trata da força de contrapressão aplicada pela pressão do aparato de topo (no caso considerado um separador) e pela densidade da coluna liquida ρ_L e altura (h-y). As variáveis l e h são o comprimento da tubulação e do riser, respectivamente (vide Figura 10). Taitel ainda chama atenção ao fato que quando y=0 o sistema está em equilíbrio e $\Delta F=0$. P_1 é a pressão no separador, α é a retenção gasosa na parte com o escoamento estratificado e α' é a retenção gasosa na tampa de gás que penetra a coluna liquida. Para mais detalhes em como calcular esses parâmetros consultar TAITEL (1986).

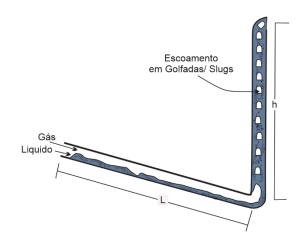


Figura 10. Operação estável.

Fonte: Adaptado de Taitel, 1984.

Algumas das simplificações assumidas nessa análise forma: a tensão de cisalhamento foi negligenciada devido as baixas velocidades nas quais ocorre *slugging* extremo, assumese que o gás expanda isotermicamente seguindo a lei do gás ideal. Estabeleceu-se que a coluna liquida será expelida da tubulação se ΔF aumentar com y, o que é uma condição necessária para o escoamento de golfadas extremas. Então um critério de estabilidade foi descrito pela equação 5, onde P_0 é a pressão atmosférica.

$$\frac{P_1}{P_0} > \frac{\left(\frac{\alpha}{\alpha'}\right)l - h}{P_0/\rho_L g} \tag{5}$$

3.4.2 Modelo Matemático Para Escoamento Em Golfadas

Informações mais detalhadas sobre o modelo de escoamento de *slug* de TAITEL (1986) podem ser encontradas no apêndice C do seu artigo. Resumidamente o modelo por ele

apresentado é baseado primariamente no modelo de FERNANDES et al. (1983). A velocidade translacional da bolha de Taylor é assumida como sendo (NICKLIN et al.(1962)):

$$U_t = 1.2 U_S + 0.35 \sqrt{gD} \tag{6}$$

Onde $U_S = U_{LS} + U_{GS}$. Ou seja, a velocidade superficial da mistura é igual a velocidade superficial da fase liquida mais a velocidade superficial da fase gasosa.

Efetuando um balanço da massa liquida, com um sistema de coordenadas que se move com a velocidade de translação U_t , tem-se:

$$R_f(U_t + U_f) = R_s(U_t - U_L) \tag{7}$$

Sendo U_L a velocidade liquida do slug, U_f a velocidade do filme envolta da bolha de Taylor (positiva quando o escoamento é para baixo), R_s é a retenção liquida no slug e R_f é a retenção liquida na seção transversal na área da bolha de Taylor e do filme liquido. É citado ainda que de acordo com Barnea & Brauner 1984 e Fernandes et al. 1983, a fração vazia no liquido é muito próxima de 30%, ou seja $R_s = 0.7$.

A velocidade relativa de subida da bolha no *slug* liquido, segundo HARMATHY (1960) é:

$$U_0 = 1,53 \left[\frac{g(\rho_L - \rho_G)\sigma}{\rho_L^2} \right]^{1/4} \tag{8}$$

Logo:

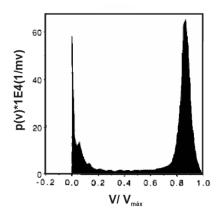
$$U_L = U_S - U_0(1 - R_S)$$

O filme (membrana) liquida em volta da bolha de Taylor pode ter a sua espessura calculada, de acordo com tait por:

$$\frac{\delta}{D} = k \left[\frac{\mu_L^2}{D^3 g(\rho_L - \rho_G) \rho_L} \right]^{\frac{1}{3}} \left[\frac{4\Gamma}{\mu_L} \right]^m \tag{9}$$

Onde:

 $\Gamma = \rho_L U_f \delta$: taxa de fluxo de massa por unidade de comprimento periférica;


k e m: para escoamento laminar =0,909 e 1/3, respectivamente;

A retenção liquida no filme (R_f) é diretamente proporcional a espessura do mesmo. A solução das equações precisa ser efetuada por meio de interações. Então efetuando o balanço das taxas de escoamento liquido pode-se encontrar finalmente a retenção liquida no escoamento em golfadas.

3.4.3 Identificação De Padrão De Escoamento

A classificação dos padrões de escoamento apresentados no tópico anterior foi efetuada por TAITEL E DUCKLER (1989). utilizando a função de densidade de probabilidade (PDF) na análise dos traços de voltagem obtidos com as sondas condutoras nos experimentos efetuados. Para maiores detalhes consultar TAITEL E DUCKLER (1989).

Foi definido então que para o escoamento em golfadas a sonda vai encontrar ou só a fase gasosa (quando a bolha de Taylor estiver passando) ou uma mistura das fases quando ocorrer a passagem da fase liquida com pequenas bolhas de gás. Dessa forma o comportamento visualizado na função PDF, como pode ser visto na Figura 11, é bimodal com um pico aproximadamente na voltagem zero e outro pico em uma voltagem mais alta.

- Figura 11. PDF do escoamento em golfadas para U_LS = 0,01 m/s, U_GS = 0,15 m/s e V_max = 1080 Mv.
 - Fonte:Taitel e Duckler, 1989

3.4.4 Mapas De Padrões De Escoamento

Uma ferramenta bastante difundida atualmente são os mapas de transição de padrões de escoamento. Esses mapas são baseados em análises experimentais e, portanto, possuem uma subjetividade na identificação da transição de padrões de escoamento. De acordo com TAITEL, et al. (1980) os mapas podem ser classificados em dois grupos principais: aqueles que apresentam os limiares de transição em coordenadas dimensionais (como velocidades superficiais) e aqueles que apresentam em coordenadas adimensionais no intuito de serem utilizáveis em condições mais abrangentes do que somente a do experimento que os gerou.

TAITEL, et al. (1980) propôs o mapa mostrado na Figura 12, o qual foi baseado em experimentos efetuados com tubos entre 2,0 a 6,0 cm de diâmetro com um escoamento arágua em baixas pressões.

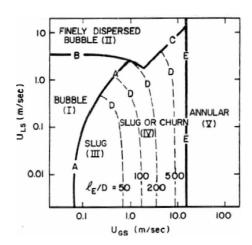


Figura 12. Mapa de padrões de escoamento para uma configuração vertical de água-ar em um duto de 5cm de diâmetro a 25° C e 100 kPa.

Fonte:Taitel e Duckler,1980

3.5 MODELOS DE CONTROLE E OU MITIGAÇÃO DE SLUGS

PEDERSEN et al. (2015) publicou um artigo de revisão do estado da arte em detecção de *slugging* e de técnicas de controle. Dentre as técnicas de detecção estão os mapas de padrões de escoamento já citados a priori, critérios matemáticos – critério de Bøe, de Taitel e de Jansen. Esses critérios são uteis em fase de projeto, visto que são capazes de nos prover com alguns parâmetros limitantes de projeto. Porém os mesmos requerem informações de pressão na base do riser ou informação das fases liquida e gasosa além de uma caracterização construtiva extensa. Ambos requerimentos não são realísticos quando se pensa em uma unidade de extração em operação real. De acordo com o autor supracitado o alinhamento desses modelos de critérios teóricos com o a análise de dados em tempo real levaria a melhores resultados de detecção do escoamento em golfadas.

Os métodos de controle de escoamento em golfadas existentes podem ser caracterizados como controle passivo ou ativo. Onde o controle ativo utiliza uma resposta do sistema para agir e se adaptar e o passivo não. Dentre as técnicas desenvolvidas podese apreciar recomendações de projeto/operação como também equipamentos desenvolvidos para tal propósito.

Dentro da primeira categoria supracitada – de controle passivo, alguns trabalhos relativamente recentes devem ser citados. É o caso dos condicionadores de escoamento, o qual trabalham com a modificação geométrica do riser no intuito de condicionar o escoamento de forma a impossibilitar a formação de golfadas extremas. Estudos foram feitos com a introdução de uma tubulação com 7 ondas - XING et al. (2013), e com formato elíptico – ADEDIGBA (2007) próximo a base do riser. A eficácia desse método é baseada na inserção de pequenos slugs na tubulação os quais tornariam a velocidade do gás elevada em relação com a do liquido impedindo a acumulação do mesmo. MAKOGAN (2007) desenvolveu uma tecnologia semelhante à de ALMEIDA E GONÇALVES (1999), se baseando nos conceitos do tubo de venturi para desenvolver um equipamento capaz de causar uma queda de pressão a qual gera um efeito de mistura das fases. Dessa forma, temporariamente, o escoamento perde a característica de estratificação. Esses métodos que propõem a regularização do escoamento com uma mudança geométrica na tubulação causam um decréscimo na produção pois vão reduzir a vazão da tubulação. Na figura 13 apresenta-se condicionadores de escoamento. os

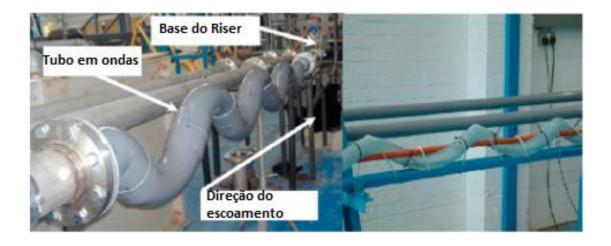


Figura 13. Condicionadores de escoamento: Em ondas, à esq. por Xing et al. (2013) e elíptico à dir. Por Adedigba (2007).

Fonte: Adaptado de Pedersen et al. (2015).

Outra tecnologia de controle passivo é, em tradução livre do inglês, o captador de *slugs*. O qual pode ter diferentes configurações dependendo do tipo de instalação e é instalado no topo do riser. Embora seja uma tecnologia bastante eficaz, de acordo com MCGUINESS E COOKE (1993) é também bastante dispendiosa. SARICA E TENGESDAL (2000)

propuseram diminuir o peso do liquido pela adição de uma tubulação extra a qual faria com que o gás pulasse a base do riser e fosse inserido diretamente na tubulação, gerando assim um sistema de "self-lifiting". A inserção de gás comprimido no riser, método usado atualmente em algumas instalações petrolíferas, foi investigado por TENGESDAL et al. (2002).

Métodos de controle ativo exigem um mecanismo de controle que produza um feedback da resposta do escoamento. Geralmente esse feedback é gerado por um sensor de aferição de pressão, temperatura ou de escoamento. Uma quantidade significativa de fontes literárias pode ser encontrada utilizando o método da válvula de estrangulamento. Se trata de usar esse equipamento, já característico de uma instalação petrolífera, para o controle do escoamento de forma a evitar o padrão de golfadas.

Alguns autores que focaram na utilização da válvula de estrangulamento no topo do riser de acordo com PEDERSEN et al. (2015) são HAVRE E DALSMO (2001), DI-MEGLIO et al.(2012a), STORKAAS E SKOGESTAD (2008), JAHANSHAHI et al. (2012). PEDERSEN et al. (2014) desenvolveu um controlador PDI no intuito de, com base na geração do gráfico de bifurcação, gerado por meio de ensaios experimentais identificar qual a abertura ideal da válvula de estrangulamento para maximizar a produção evitando o escoamento em golfadas. Simplificadamente, a teoria da bifurcação (Bifurcação de Hopf) utilizada define o ponto crítico onde o sistema perde estabilidade. Esse trabalho conseguiu um aumento de 7.8% no aparato experimento, porém com um tempo considerável de estabilização. Concluem os autores que testes futuros em instalações reais são necessários.

Outra linha de pesquisa discorrida dentro do tópico de controle ativo é a utilização de "gás-*lift*", pois a inserção de gás no escoamento pode, comprovadamente, evitar golfadas extremas. Autores como KRIMA et al. (2012) apresentam pesquisas sobre o desenvolvimento de controladores ativos na injeção de gás com o intuito de evitar o escoamento de golfadas extremas. Nesse caso em especifico foram desenvolvidos controladores PI utilizando simulações com o software OLGA.

A junção dessas duas linhas distintas (injeção de gás e manuseio da válvula de estrangulamento) geraram os controladores MIMO ou MISO. Autores como PAGANO et

al. (2008), ABARDEH (2013) e JAHANSHAHI et al. (2013b) são alguns dos quais tomaram parte nessa iniciativa.

Outras opções de controle ou mitigação podem ser encontradas na literatura, as opções apresentadas nesse tópico são as mais frequentemente citadas.

3.6 REDES NEURAIS

As redes neurais artificias são inspiradas nos neurônios presentes em sistemas biológicos. Sendo um mecanismo de aprendizado de máquina muito poderoso, utilizado para identificação de padrões, *clustering*, previsões, etc. A RNA é uma junção de elementos de processamento simples interconectados, unidades ou nós, que são de forma genérica semelhantes aos neurônios biológicos. As RNA podem ter várias camadas ocultas, fora a camada de entrada e saída. Cada uma das camadas possuem um certo numero de neurônios os quais se comunicam dentro do processo de decisão da rede por meio de pesos e a função de ativação. Cada neurônio possui um peso, bias e a função de ativação. Os pesos são números reais que basicamente expressam a importância de uma certa entrada em relação a uma saída. De acordo com o livro Deep Learning Book, 2019 os neurônios fazem uma transformação linear na entrada pelos pesos e bias e a função de ativação faz a transformação não linear. O valor do bias é ajustado da mesma forma que os pesos, possibilitando que um neurônio apresente uma saída não nula mesmo que todas as entradas sejam nulas.

Basicamente uma rede neural é formada pelas entradas, os neurônios, as camadas de entrada, de saída e camada oculta, os sinais de pesos sinápticos, os bias, a função de ativação e a saída. Existem tipos diferentes de redes para diferentes aplicações. A escolha dentre estes tipos é baseada no tipo de problema a ser resolvido. A rede NARX é uma rede indicada para prever séries que variam ao longo do tempo. Como um escoamento vária ao longo do tempo essa é uma série indicada para este tipo de problema. Se trata de uma rede não linear, autorregressiva com entrada exógena, podendo ser usados para modelar, segundo BOUSSAADA, et al., (2018) uma extensa variedade de sistemas dinâmicos não lineares.

3.7 ESPECTRO DE POTÊNCIA

A análise espectral é uma forma rápida e eficiente de analisar sinais, permitindo a identificação de componentes e descrição dos mesmos. O método do espectro de potência, de acordo com WELCH, P.D. (1967), faz uso da transformada rápida de Fourier na estimação do espectro de potência. Esse processo envolve o seccionamento dos dados, utilizando periodogramas modificados destas seções e o cálculo das médias desses periodogramas modificados. Uma das vantagens deste método é o menor número de cálculos em comparação com a maioria dos outros métodos, computacionalmente exigindo uma menor capacidade de armazenamento. Segundo WELCH, P.D. (1967) ainda este método produz de forma direta uma resolução em função de potencial, sendo útil para testar e medir a não estacionariedade de um sinal.

CAPÍTULO IV

MODELAGEM NUMÉRICA

4 MODELAGEM NUMÉRICA

Para a análise computacional o software ANSYS Fluent 17 foi utilizado. O Fluent é uma ferramenta CFD (*computational fluid dynamic*) que como todos os seus códigos semelhantes possui três elementos principais: pré-processamento, solver e pós processamento.

A etapa de pré-processamento é onde define-se o domínio computacional, gera-se a malha (que será discutida mais profundamente a posteriori), seleciona-se os fenômenos que precisam ser levados em consideração e define-se as condições de contorno. Basicamente é onde ocorre a descrição do problema.

O solver por sua vez pode implementar diferentes métodos de solução. De acordo com VERSTEEG, H.K. e MALALASEKERA, W. (2007) existem três diferentes correntes de técnicas de solução numérica: diferenças finitas, elementos finitos e métodos espectrais. No caso do código utilizado pelo ANSYS Fluent, a técnica de volumes finitos que faz parte das diferenças finitas é implementada e por conta disso será discorrido sobre.

Na última etapa da modelagem computacional é onde avalia-se criticamente a validade e consonância do modelo computacional com dados ou efeitos reais. Havendo os resultados, tanto numéricos (tabelas e valores de mínimos e máximos) como também a interface gráfica arrojada que busca demonstrar o efeito sendo modelado, é possível ter uma ótima visualização.

4.1 PRÉ PROCESSAMENTO: Modelo e Malha

A geração da malha é matematicamente a subdivisão do domínio em subdomínios menores para que os cálculos sejam efetuados de forma mais acurada. Esses subdomínios podem ser chamados de volumes de controle. A malha pode ser estruturada ou não estruturada. Segundo Versteeg e Malalasekera (2007) as melhores malhas são as não estruturadas pois elas permitem um refinamento maior em pontos onde ocorrem maiores variações e podem ser menos refinadas onde pouca variação é encontrada. Isso é especialmente verídico em análises de mecânica dos fluidos, onde a interação com a parede da tubulação/reservatório é significativa. Esse tipo de malha não estruturada permite também uma maior liberdade de forma, visto a sua capacidade de se adaptar a geometrias complexas.

O principal impeditivo de maiores refinamentos em malhas é o custo computacional. Quanto maior o número de volumes de controle criados, maior o número de cálculos sendo efetuados concomitantemente. O desafio é encontrar o ponto ótimo desse balanço. Alguns parâmetros, porém, podem ser usados para nortear a criação e qualidade da malha. Dentre eles temos a proporção da célula (*cell aspect ratio*), a assimetria (*skewness*), ortogonalidade e suavidade.

Respaldado pelas dimensões divergentes encontradas na literatura de protótipos reais de risers e no fato que o interesse do presente trabalho é a identificação do sinal típico do escoamento em golfadas, medidas foram tomadas para que esse padrão ocorresse sem falha. Para tanto o modelo criado possui 1 metro de diâmetro e as medidas principais conforme apresentadas na Figura 14. Esse diâmetro permite que efeitos de capilaridade não sejam levados em consideração e efeitos viscosos sejam bem desenvolvidos no escoamento. Esses efeitos são limitantes em estudos experimentais, visto que para que a construção do modelo o protótipo precisa passar por escalonamento e não é possível manter simultaneamente à similaridade dinâmica, cinemática e geométrica. VALDIVIA, P.G et al. (2007) desenvolve um experimento onde o modelo utilizado precisou assumir semelhança incompleta com o protótipo para que o padrão de escoamento esperado pudesse ser reproduzido, visto o comprometimento causado por efeitos capilares e viscosos devido ao diâmetro reduzido.

Um riser em formato de catenária com uma boia de sustentação foi simulado pois com o aumento das profundidades de extração no Brasil, esse é o formato sendo mais utilizado. O modelo precisou tem um tamanho considerável para que fosse possível observar os efeitos causados pelas mudanças geométricas e suas dispersões.

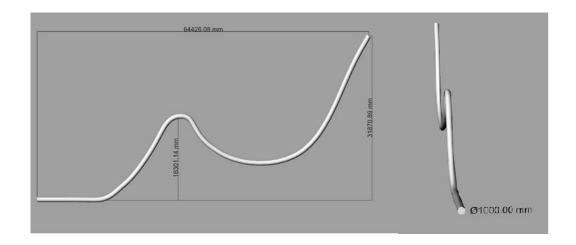


Figura 14. Modelo computacional do riser simulado, com as dimensões principais.

Fonte: Autor.

Na ânsia de sanar as limitações encontradas em estudos experimentais o modelo computacional adquiriu um tamanho considerável e consequentemente gerou um custo computacional significativo. Haja visto que em simulações do âmbito da dinâmica dos fluidos a interação dos mesmos com a parede, nesse caso, do riser é elementar a malha deve ser criada de acordo. Utilizando as opções disponíveis no software ANSYS Fluent uma malha não estruturada foi criada ao longo do riser (Figura 15) no intuito de melhor adaptação a geometria do modelo aliado a um custo computacional reduzido. Sendo as camadas próximas as paredes formadas por uma malha estruturada, com proporção de célula (*aspect ratio*) igual a 1, como pode ser visto na Figura 16.

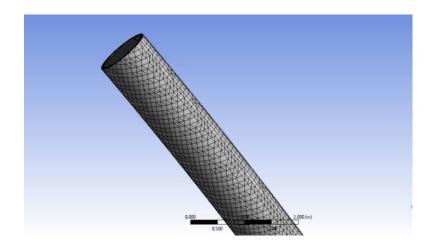


Figura 15. Malha não estruturada ao longo do riser.

Fonte: Autor.

Alguns parâmetros norteadores de qualidade de malha foram utilizados, embora saibase que não existe parâmetros definidos que sejam capazes de descrever se uma malha é acurada ou não independentemente do tipo de simulação. Existem linhas gerais as quais podem ser seguidas nos estágios de teste inicias. Refinamentos e adaptações são então desenvolvidos de acordo com a necessidade. Tem-se então que a assimetria das células (skewness), que varia entre 0 e 1, sendo que 0 indica uma qualidade boa de célula e 1 uma célula ruim, ficou em média 0,16. E a ortogonalidade da malha, que diz respeito ao ângulo entre o vetor que junta os nós dos volumes de controle e o vetor normal em cada superfície de integração associado, obteve uma média de 0,94.

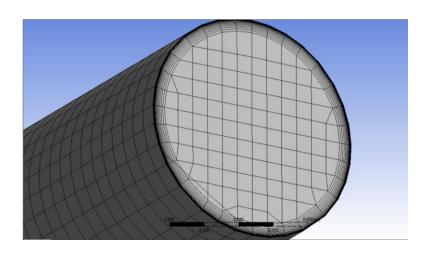


Figura 16. Refinamento da malha próximo as paredes.

Fonte: Autor.

Vários testes foram efetuados com diversas malhas, tanto mais refinadas como menos refinadas. Definindo-se assim que a configuração apresentada gerou resultados satisfatórios, reproduzindo o padrão de escoamento almejado com acurácia e detalhadamente. Vale ressaltar que maiores refinamentos não são necessários e também não seriam possíveis visto o número de simulações efetuadas e o tempo de cada uma delas.

A malha criada ficou então com 679 669 nós e 900 335 elementos. Com o menor tempo de simulação tendo sido de 3 dias e o maior de 10 dias dependendo do *time step* e o número de *time steps*.

4.2 MÉTODOS APLICÁVEIS

O software utilizado possui uma gama de modelos aplicáveis a escoamentos multifásicos dentro da abordagem Euler – Euler:

- a. Modelo VOF (volume do fluido);
- b. Modelo de mistura;
- c. Modelo Euleriano:

A abordagem Euler-Euler trata todas as fases como continuas, por isso é conhecido como abordagem multi-fluido. Ou seja, embora possa também ser usada para modelar escoamentos de dispersão onde o interesse se encontra no movimento geral da partícula invés de no rastreio de partículas individuais, essa abordagem é particularmente interessante para escoamentos onde as fases podem ser descritas como continuas.

O regime de escoamento foco é o em golfadas, multifásico. Para esses requisitos o software oferece o método VOF (volume do fluido), o qual soluciona para dois ou mais fluidos imiscíveis. Ele resolve um grupo de equações de momento, fazendo o rastreamento da fração de volume e fronteira entre eles. O método faz naturalmente a conservação de volume. Tendo sido o método escolhido para o desenvolvimento deste trabalho o mesmo é explicado com mais detalhes no item 4.4.2.

Existem dois esquemas de aplicação do VOF, são eles o esquema implícito e explicito. A diferença é que no caso implícito os valores de fração de volume utilizados na equação para obtenção do fluxo da face para todas as células são computados do *time step* atual, interativamente, enquanto que no sistema explicito os valores utilizados são os computados no *time step* anterior.

4.3 CONDIÇÕES DE CONTORNO

As condições de contorno utilizadas foram *velocity-inlet* (velocidade de entrada) e *pressure-outlet* (pressão de saída). A condição de entrada de velocidade é utilizada para definir velocidades de entrada e propriedades escalares relevantes na entrada do escoamento. A pressão total não é fixada e, portanto, vai aumentar em resposta a pressão estática computada de forma a gerar a velocidade inicial definida.

Essa condição de entrada foi escolhida baseado nos dados disponíveis para geração do escoamento, visto a utilização dos mapas de padrão de escoamento (figura 12), os quais são desenvolvidos de acordo com as velocidades de entrada das fases.

A condição de pressão de saída é utilizada para definir a pressão estática de saída do escoamento, possuindo melhor convergência no caso de ocorrência de *backflow* (retorno).

4.4 SOLVER: MÉTODO DOS VOLUMES FINITOS

A técnica de volumes finitos trabalha com o conceito básico de dividir o domínio em células de malha e aproximar a integral total do fluxo em cada célula dessa malha. Trabalhando diretamente com as leis de conservação, ou seja, a formulação integral das equações de Euler ou de Navier Stokes. Segundo VERSTEEG, H.K. E MALALASEKERA, W. (2007) o que distingue essa técnica das outras é a integração do volume de controle. A conservação de um dado parâmetro dentro de um certo volume de

controle pode ser expressado como o balanço dos vários processos (convecção, difusão e geração).

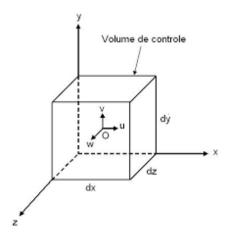


Figura 17. Volume de Controle.

Fonte: Autor.

4.4.1 Modelo matemático Geral

A equação base para compreender o que está sendo resolvido quando se utiliza um software CFD é a equação geral de transporte (1):

$$\frac{\partial}{\partial t} \int_{V} \rho \Phi dV + \oint_{A} \rho \Phi V \cdot dA = \oint_{A} \Gamma_{\Phi} \nabla_{\Phi} \cdot dA + \int_{V} S_{\Phi} dV$$
 (10)

Onde o primeiro termo é transiente e leva em consideração o acumulo da variável genérica do escoamento Φ em um dado volume de controle, o segundo termo é de convecção e computa o transporte de Φ devido a existência de um campo de velocidade. Temos então o termo de difusão, responsável pelo transporte de Φ devido aos seus gradientes e o termo de geração, é a criação ou extinção desse mesmo parâmetro dentro do volume, respectivamente.

Como estamos trabalhando com volumes de controle, utilizando o método dos volumes finitos, um balanço é calculado para cada volume de controle. Existem várias

possibilidades para definir a forma e posição do volume de controle em relação a malha, segundo BLAZEK, J. (2015) duas opções básicas podem ser descritas:

- a) Centrado na célula: Os volumes de controle são idênticos as células da malha, logo os parâmetros são guardados no centroide da célula de malha.
- b) Célula vórtice: Os parâmetros são guardados nos pontos da malha, o volume de controle pode ser a união das células da malha ou algum volume centrado em volta do ponto da malha. No primeiro caso existe a sobreposição de volumes de controle e no segundo existe volume de controle dobrado.

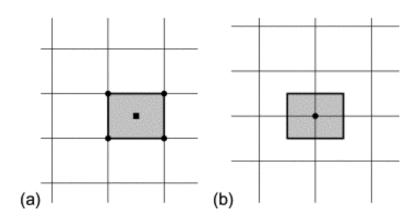


Figura 18. Volume de controle, a) centrado na célula, b) célula-vértice.

Fonte: BLAZEK, 2015.

No caso abordado, exibe-se o caso "a" da Figura 18, assim sendo os valores dos parâmetros pertinentes são calculados no centroide do volume de controle. Onde faz-se um balanço de quantidade de movimento e de continuidade, dependendo do caso há também um balanço de energia.

A equação da continuidade é dada por:

$$\frac{\partial \rho}{\partial t} + div \left(\rho \, u\right) = S_m \tag{11}$$

Essa equação é válida tanto para escoamentos incompressíveis como compressíveis. De acordo com o manual ANSYS Fluent 17, o termo S_m refere-se a massa adicionada a fase continua da fase dispersa — devido a vaporização de gotas liquidas, ou pode ser uma função definida pelo usuário.

Considerando o volume de controle apresentado na Figura 17, tem-se que o balanço do momento nas três direções é definido como:

Momento em x:

$$\frac{\partial(\rho u)}{\partial t} + div\left(\rho u \bar{u}\right) = -\frac{\partial p}{\partial x} + div\left(\mu \operatorname{grad} u\right) + S_{M_{\chi}}$$
(12)

Momento em y:

$$\frac{\partial(\rho v)}{\partial t} + div\left(\rho \ v \ \overline{\mathbf{u}}\right) = -\frac{\partial p}{\partial y} + div\left(\mu \ grad \ v\right) + S_{M_y} \tag{13}$$

Momento em z:

$$\frac{\partial(\rho w)}{\partial t} + div\left(\rho w \bar{\mathbf{u}}\right) = -\frac{\partial p}{\partial z} + div\left(\mu \operatorname{grad} w\right) + S_{M_z}$$
(14)

4.4.2 Escoamento Multifásico e Volume de Fluidos (VOF)

Seguindo o guia teórico do ANSYS Fluent, o modelo VOF não permite interpenetração das fases. Para cada fase nova adicionada em um modelo, uma variável nova é introduzida: a fração de volume da fase na célula computacional. Dentro de cada volume de controle as frações de volume da célula somam 1.

A equação de transporte é resolvida. No caso do escoamento multifásico ela é implementada para dois tipos de escalares, a pôr fase e a mistura. Temos que para um

escalar k arbitrário na fase 1 (\emptyset_l^k) a equação de transporte que será resolvida dentro do volume ocupado pela fase 1 pode ser escrita como:

$$\frac{\partial \alpha_l \rho_l \emptyset_l^k}{\partial t} + \nabla \cdot \left(\alpha_l \rho_l \boldsymbol{u_l} \emptyset_l^k - \alpha_l \Gamma_l^k \nabla \emptyset_l^k \right) = S_l^k \quad k = 1, ..., N$$
(15)

Onde α_l , ρ_l e u_l são a fração de volume, densidade física e velocidade da fase 1 respectivamente. Γ_l^k e S_l^k se trata do coeficiente de difusão e o termo de geração, respectivamente. Essa equação é associada a uma única fase, logo é considerado como um campo individual de variáveis para a fase 1.

O fluxo de massa da fase 1 é definida como:

$$F_l = \int_{S} \alpha_l \rho_l \, \boldsymbol{u_l} \, . \, d\boldsymbol{S} \tag{16}$$

O rastreio da interface entre as fases é obtido solucionando a equação da continuidade para cada fração de volume das fases, para a fase q^{th} temos então:

$$\frac{1}{\rho_q} \left[\frac{\partial}{\partial t} \left(\alpha_q \rho_q \right) + \nabla \cdot \left(\alpha_q \rho_q \bar{\nu}_q \right) = S_{\alpha_q} + \sum_{p=1}^n (\dot{m}_{pq} - \dot{m}_{qp}) \right]$$
(17)

Onde \dot{m}_{qp} é a transferência de massa da fase q para a fase p e \dot{m}_{pq} é o inverso. O termo de origem $S_{\alpha q}$ é por padrão igual a zero indicando que não há transferência de massa. Esse termo pode ser modificado dependendo das necessidades da análise.

O modelo VOF (volume de fluidos) foi aplicado pois ele leva em consideração a interface dos fluidos e à proporção que cada um deles ocupa, ou seja, torna possível a

modelagem de escoamento como o de golfada onde as fases precisam ter sua interface destacada.

Esse método faz parte da estrutura Euler-Euler, onde a principal característica é que todas as fases são tratadas como continuas e é uma modelagem multi-fluido. Diferentemente da modelagem que utiliza apenas o método Euler-Euler, o VOF não permite que as fases se misturem, de acordo com STENMARK, E. (2013)

CAPÍTULO V

RESULTADOS

5.1 INTRODUÇÃO

Neste capítulo apresenta-se os resultados das análises computacionais efetuadas, com a explicação de como os resultados apurados computacionalmente são consonantes com o efeito físico do escoamento em golfadas. Seguido pela apresentação e discussão dos gráficos de espectro de potência gerados a partir das curvas de pressão ao longo do tempo – no tópico 5.2.1, os quais foram aquisitado na analise computacional. Explica-se a divisão dos mesmo em seis grupos distintos no intuito de facilitar o reconhecimento dos padrões pela rede neural criada.

O último tópico evidenciado nesta seção – tópico 5.2.2 apresenta o processo de geração e resultados encontrados com a rede neural, discutindo a sua função e parâmetros de criação.

5.2 RESULTADOS

A faixa de operação onde ocorre o escoamento em golfadas foi delimitada com base nos estudos experimentais encontrados na literatura, as quais geraram os mapas de padrão de escoamento. O mapa escolhido, apresentado no item 3.6.4 se baseia na extensa pesquisa de Taitel sobre esse tipo de escoamento, com trabalhos anteriores tendo sido apresentados ao longo do tópico 3.6.

Como citado outrora, a modelagem do riser não pode ser feita em tamanho reduzido no que diz respeito ao diâmetro da tubulação. Porém como o foco era o comportamento do escoamento julgou-se plausível a redução do comprimento do riser. O formato escolhido

para o riser o poderia ter sido diverso, posto que o foco do trabalho é o comportamento do escoamento e a seção predominante dos risers em utilização hoje são em formato de catenária. A adição da seção simulando uma boia de sustentação no modelo do riser foi considerado prudente para analisar o quanto a mudança geométrica iria afetar no comportamento do escoamento. Essas considerações foram explicadas no item 4.1. Foi verificado que em concórdia com os modelos de mitigação de *slugs* apresentados no item 2.4 a mudança de forma tende a reduzir as golfadas ou influenciar irrisoriamente.

O desenvolvimento do modelo capaz de reproduzir o escoamento em golfadas foi possível. Após uma série de ajustes e modificações necessárias para que a modelagem fosse o mais eficiente possível sem prejudicar os resultados chegou-se em um consenso satisfatório em termos de resultados. As definições estipuladas de malha e modelo matemático escolhido foram apresentados no capitulo IV.

O custo computacional necessário para o desenvolvimento das simulações, cada uma delas não demorou menos do que 3 dias, é mais um motivo a favor da teoria de que precisa se desenvolver uma ferramenta de diagnóstico do escoamento em golfadas. Pois não existe viabilidade prática de efetuar uma análise desse tamanho em um ambiente de produção de petróleo operante. Com esse objetivo foi possível coletar os gráficos de variação de pressão ao longo do riser no domínio do tempo para então identificar e categorizar esses comportamentos por padrões de semelhança. Esses padrões foram posteriormente utilizados para a criação de uma rede neural artificial. Os resultados gráficos das análises podem ser vistos nas figuras 19 a 21.

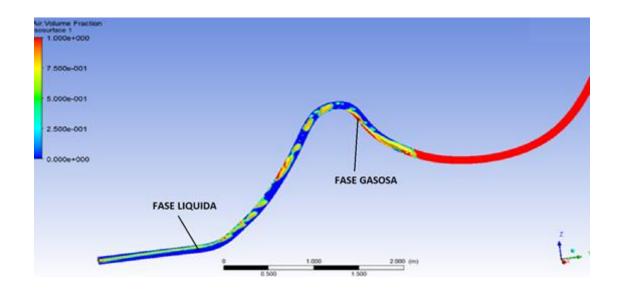


Figura 19. Simulação com VG = 8m/s e VL = 4 m/s.

Fonte: Autor.

As análises foram efetuadas com velocidades variando para a fase gasosa de 0,1 a 10 m/s e para a fase liquida de 0,01 a 5 m/s. Esse foi um espectro mais abrangente do que o de meramente escoamento em golfadas segundo o mapa de padrões de escoamento (TAITEL, et al., 1980) apresentado anteriormente pois o padrão seguinte do mapa em questão define um escoamento em golfadas ou agitado. Ambas as áreas do mapa foram levadas em consideração. Por conta disto foi possível constatar mudanças de comportamento dentro do escoamento em golfadas, marcando o inicio da mudança de padrão de escoamento. É congruente citar que a mudança entre os padrões de escoamento e a definição do limiar entre eles não possuem definições exatas.

A figura 19, acima, possui velocidades relativamente altas dentro deste espectro. Por conta disto é possível verificar que as bolhas gasosas já se encontram mais dispersas, com um tamanho reduzido em comparação as outras. A fase 100% liquida pode ser vista em azul enquanto que a fase completamente gasosa se encontra em vermelho. A parte mais a avante do riser se encontra toda na fase gasosa pois verificou-se ao longo das simulações que o ponto crítico se dava na mudança de forma (a curva que o riser faz) onde existe de fato uma mudança de comportamento. De resto, não havia necessidade de efetuar a análise

ao longo de toda a sua extensão pois era já possível estabelecer o comportamento típico do escoamento.

É interessante destacar o volume da mistura gás-liquida durante e após essa mudança geométrica no riser – pode ser visto na tonalidade amarela – pois nota-se que em vez de ser um ponto de estrangulamento e piora nas condições de escoamento, ele serve como um ponto de maior mistura das fases. Indo de encontro com alguns dos estudos de mitigação de *slugs* apresentados anteriormente no capitulo 3, item 3.11.

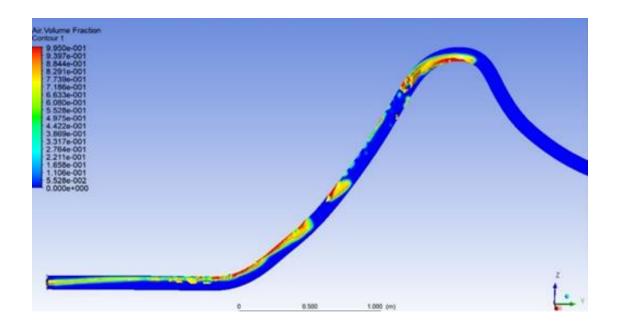


Figura 20. Simulação com VG = 1m/s e VL = 0.5 m/s.

Fonte: Autor.

A análise apresentada na figura 20 já mostra um comportamento bastante diverso da anterior. Considerando que estamos em velocidades bem mais baixas dentro do nosso leque de velocidades, era esperado. Nesse caso podemos ver então que a fase gasosa se estende de forma continua por maiores distâncias. Formando *slugs* maiores e potencialmente mais

arriscados para a operação de extração, pois é um comportamento semelhante ao predecessor do *hold up* e futuro *blow out*.

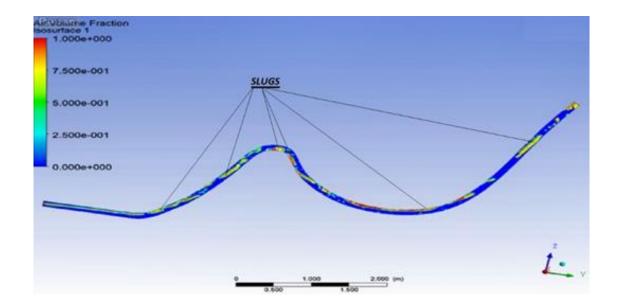


Figura 21. Simulação com VG = 10m/s e VL = 5m/s.

Fonte: Autor.

A figura 21 mostra o resultado da simulação para a velocidade máxima utilizada nas análises onde o escoamento em golfadas já começa a se dispersar, delimitando assim o alcance deste padrão de escoamento. As análises dos pontos considerados estratégicos, velocidade máxima e mínima definidas, foram efetuadas ao longo de toda a extensão do modelo. Ainda é possível identificar bolhas gasosas, características de escoamento em slugs. Porém considera-se que a dispersão e fração de mistura delas já alcançou um ponto de transição de padrão.

5.2.1 COMPORTAMENTO DO ESCOAMENTO

Para que a análise do comportamento do escoamento pudesse ser executada, gráficos de variação de pressão ao longo do riser foram extraídos. Os mesmos foram utilizados em relação ao número de amostras, para tanto foi efetuada a normalização do intervalor para sanar as diferenças de número de amostras que ocorreram. Para que pudessem ser então analisados quanto a padrões de semelhança o espectro de potência foi registrado. Foram

coletados um total de 98304 amostras. Os espectros de potência em relação a frequência normalizada dos sinais podem ser visualizados nas figuras seguintes.

O espectro de potência de uma curva é a distribuição da potência contida na curva distribuída ao longo da frequência normalizada. O espectro de potência é estimado utilizando transformada de Fourier Rápida (FFT). Outros métodos de análise foram considerados, porém o espectro de potência gerou o melhor resultado visual em termos de reconhecimento de características comuns. Os gráficos de espectro de potência foram gerados a partir da variação de pressão ao longo do riser em relação ao numero de amostras obtidas. A taxa de amostragem das simulações variou de caso em caso, pois dependendo das velocidades entradas necessitava-se estabelecer um *time-step* menor ou maior para obter a resposta desejada, dessa forma o tempo de simulação – de aquisição, também sofreu variação entre uma simulação e outra. Por conta disto optou-se por gerar o espectro de potência quanto ao número de amostras de cada simulação e normalizar para que pudesse-se estabelecer uma comparação entre eles. O espectro de potência trabalha com a divisão do sinal em segmentos de acordo com o número de amostras.

A análise dos gráficos identificou que havia uma gama de comportamentos diferentes dentro do escoamento em golfadas dependendo das velocidades. Por essa razão um esforço foi feito no sentindo de separar as análises em subgrupos dependentes da faixa de velocidade e comportamento gráfico em prol de facilitar a geração da rede neural.

O escoamento em forma de golfadas gera uma variação de pressão conforme ocorre a transição entre a passagem da fase gasosa para a passagem da fase liquida. Por essa razão o espectro de potência da curva de pressão do escoamento foi escolhido para caracterizar o fenômeno. Na figura 22 apresenta-se as curvas de espectro em potência para as velocidades de escoamento das fases gasosa e liquida.

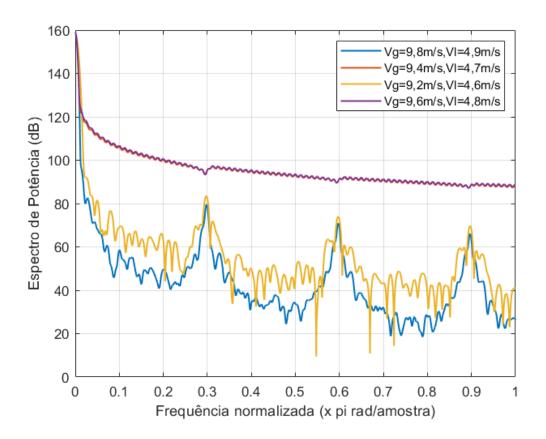


Figura 22. Grupo 1, curvas do espectro em potência x frequência normalizada para escoamentos entre: VG = 9,2 a 9,8 m/s e VL = 4,6 a 4,9 m/s.

Fonte: Autor.

O gráfico apresentado na figura 22 apresenta a faixa de velocidade mais alta analisada dentre as velocidades da região onde ocorrem escoamento em golfadas, segundo o mapa de padrões de escoamento de Taitel (tópico 3.6.4). É possível verificar que o comportamento do escoamento com Vg = 9,8 m/s (azul) e Vg = 9,2 m/s (amarelo) é o tipicamente esperado neste padrão de escoamento, ou seja, o escoamento em golfadas é caracterizado pelo escoamento da fase gasosa, seguido pelo escoamento da fase liquida. Isso gera uma variação de pressão. Quanto maior a bolha da fase gasosa, maior a variação de pressão. Como o gráfico apresentado representa a potência presente no gráfico de variação de pressão, era esperado o comportamento com picos de potência.

No entanto as curvas referentes ao escoamento com Vg = 9.6 m/s (roxo) e Vg = 9.4 m/s (vermelho) apresentam um comportamento bastante distinto. Infere-se que isso se dê

devido ao fato de estas faixas de velocidades já ser referente ao padrão de escoamento de golfadas ou agitado (churn) e, portanto, é possível que em velocidades especificas ocorra uma mistura maior das fases de forma que o comportamento perde a especificidade dos picos.

Na Figura 23, apresenta-se os escoamentos entre as velocidades da fase gasosa de 6,0 m/s a 9,2 m/s e da fase liquida 3,0 m/s a 4,6 m/s que abrange uma faixa maior de velocidades do que a apresenta a figura 22.

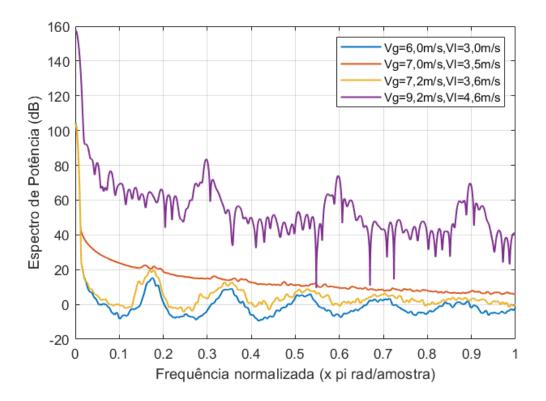


Figura 23. Grupo 2, curvas do espectro em potência x frequência normalizada para escoamentos entre: VG= 6,0 a 9,2 m/s e VL = 3,0 a 4,6 m/s.

Fonte: Autor.

Na Figura 23 pode-se notar que o escoamento na velocidade gasosa de 9,2 m/s (roxo) apresenta um espectro de potência consideravelmente maior do que os escoamentos em velocidades mais baixas, o que faz sentido fisicamente. Dentre as velocidades mais baixas ainda é possível apreciar os picos ocorrendo na mesma faixa de frequência - um pico por

volta dos 0,18 Hz, outro em 0,35 Hz, e assim por diante – esse padrão difere do escoamento mais rápido, onde o primeiro grande pico ocorre por volta dos 0,3 Hz.

Todavia repara-se que a curva para a velocidade gasosa de 7 m/s (vermelho) possui um comportamento distinto na medida que é mais retilínea com variações mais discretas. O porque deste comportamento nessa faixa de velocidade não foi apurado em mais detalhes visto que o intuito do trabalho é caracterizar o comportamento geral e para tanto não é necessário analisar a fundo as diferenças pontuais. Na Figura 24 apresenta-se mais curvas de espectro para as faixas de velocidade de escamento.

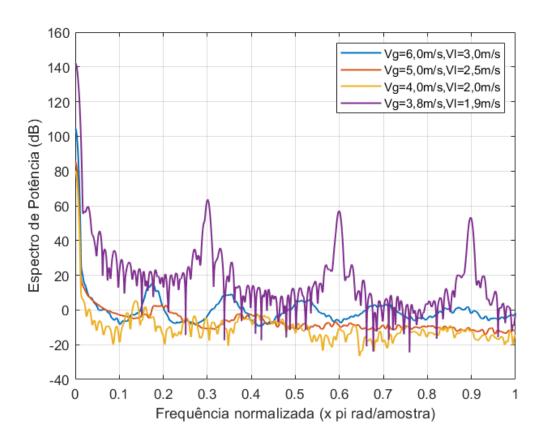


Figura 24. Grupo 3, curvas do espectro em potência x frequência normalizada para escoamentos entre: VG = 3,86 a 6,0 m/s e VL = 1,90 a 3,0 m/s.

Fonte: Autor.

Observa-se na figura 24 que para as velocidades da fase gasosa entre 3,8 m/s (roxo) e 6 m/s (azul) e da fase liquida entre 1,9 m/s (roxo) e 3 m/s (azul) nota-se um comportamento

um pouco diferente. Nota-se picos de potência marcadamente negativos. Isso pode ocorrer devido a alguns motivos, tem-se como hipótese que como o escoamento está mais lento os slugs estão causando uma diminuição na potência do escoamento, sendo um empecilho ao escoamento. Como no caso anterior, tivemos um caso com Vg = 3,8 m/s (roxo), que fugiu um pouco da potência padrão, semelhante ao ocorrido na figura 23 anterior. A curva em questão, com maior potência do que as outras, encontra-se na base do intervalo de velocidades consideradas. Nota-se ainda que a potência média do sistema diminuiu em relação ao gráfico anterior. Na Figura 25 apresenta-se mais curvas de espectro para as faixas de velocidade de escamento.

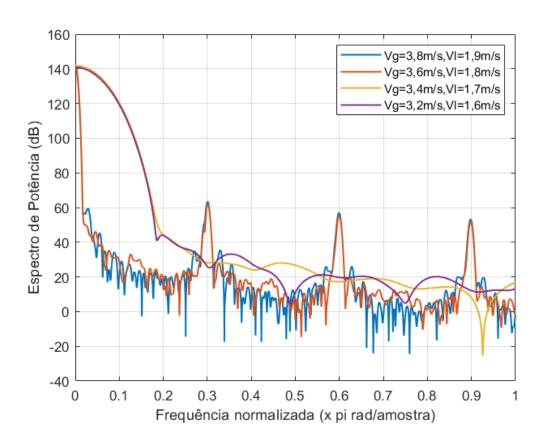


Figura 25. Grupo 4, curvas do espectro em potência x frequência normalizada para escoamentos entre: VG = 3,26 a 3,86 e VL = 1,60 a 1,90.

Fonte: Autor.

Já para as velocidades entre Vg = 3,2 m/s (roxo) a 3,8 m/s (azul) e Vl = 1,6 m/s a 1,9 m/s pode se identificar uma zona de transição de comportamento, com cada uma das curvas

tendo um comportamento um pouco diferente da outra, seja em questão de periodicidade (como as duas curvas com maior potência), ou em comportamento visto que as duas curvas abaixo apresentam potência mais baixas e todas apresentam picos negativos. Uma delas ainda apresenta alguns picos positivos seguido por picos negativos. Enquanto a outra apresenta um comportamento mais retilíneo com picos negativos, Vg = 3,4 m/s (amarelo). O interessante é que esse intervalo de velocidade não apresenta sinais que possam fazer parte nem do agrupamento posterior nem do sucessor e se tratam de velocidades relativamente próximas.

A seguir nas Figuras 26 e 27 apresentam-se os dois últimos grupos: o primeiro grupo com Vg entre 1,0 m/s (verde) a 2,0m/s (azul) e o segundo grupo com Vg entre 0,1 m/s (verde) a 0,3 m/s (azul) que são as velocidades mais baixas consideradas respectivamente. Dessa forma pode-se notar uma distinta diferença entre o comportamento dos dois gráficos das figuras 26 e 27.

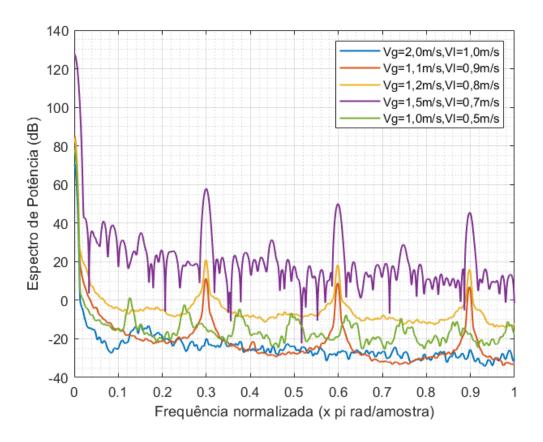


Figura 26. Grupo 5, curvas do espectro em potência x frequência normalizada para escoamentos entre: VG = 1.0 a 2.08 e VL = 0.5 a 1.0.

Fonte: Autor.

Na figura 26 é possível visualizar a mesma característica de picos anteriormente citada, com uma diminuição na potência média congruente com a diminuição de velocidade do sistema. O escoamento com Vg = 2,0 m/s (azul) apresenta maior estabilidade do que os outros visto a menor variação da curva.

Como as outras curvas também houve um comportamento diferente, dentro do grupo de velocidades, que é interessante ser citado a parte. A curva referente a velocidade gasosa de Vg = 1,5 m/s (roxo) possui um espectro em potência bastante elevada em comparação com as curvas para Vg = 1,2 m/s (amarelo) e 2,0 m/s (azul). Por esse motivo foi tão importante fazer a análise de várias velocidades dentro do intervalo onde ocorre escoamento em golfadas. Tendo computado esses comportamentos pontuais diferentes do padrão geral, é possível diagnostica-los utilizando a rede neural.

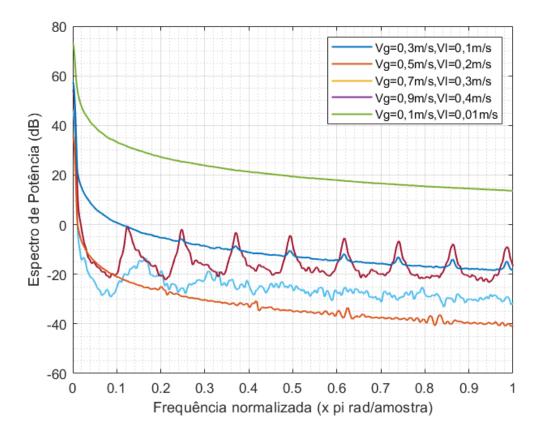


Figura 27. Grupo 6, curvas do espectro em potência x frequência normalizada para escoamentos entre: VG = 0,1 a 0,89 e VL = 0,01 a 0,409.

Fonte: Autor.

A figura 27 apresenta no mesmo grupo duas características distintas: para o Vg de 0,1 m/s (verde), 0,3 m/s (azul) e 0,9 m/s (roxo) onde pode-se notar um comportamento estável, com picos bastante discretos ou até mesmo sem picos como no caso do Vg = 0,3 m/s (azul). Ao mesmo tempo que para o Vg = 0,7 m/s (amarelo) e 0,5 m/s (vermelho) têm-se curvas com bastante variações. Uma das explicações para isso é que essa faixa de velocidade se encontra no começo da transição de padrão de escoamento em golfadas para escoamento de bolhas e por isso o comportamento varia. Essas curvas também foram computadas pois embora a transição já tenha iniciado, ainda ocorre o escoamento em golfadas e de acordo com os estudos desenvolvidos na literatura sobre golfadas extremas, quanto mais baixa a velocidade do escoamento maior o risco de ocorrência dos slugs.

Analisando esses comportamentos infere-se que a faixa onde o risco de *blowout* é perigoso, para essa concentração de gás e liquido, seja bastante limitada. O *blowout* ocorre quando existe um *hold up*, ou seja a fase liquida não possui velocidade o suficiente para percorrer todo o riser e acaba descendo para a parte mais baixa do riser, gerando um obstáculo para a passagem do escoamento. Esse evento iria gerar um gráfico de espectro de potência com uma grande queda quando o escoamento perdesse força para seguir em frente e parasse, e um aumento de potência bastante íngreme até atingir um pico onde o *blowout* ocorreria. Neste ponto a pressão, e consequentemente a potência do gráfico, voltaria a cair. Isto não foi visto nas análises porque o tipo de análise efetuada varia a pressão do sistema de forma a manter a velocidade definida como condição de contorno de entrada, impedindo então que o sistema perca força e sofra um colapso como o *blowout*. A faixa de risco de *blowout* foi analisada então baseando-se no tamanho dos slugs líquidos e gasosos.

Essa faixa não possui valores definidos, sabendo-se apenas que quanto maior os slugs maior a probabilidade de ocorrência de *hold up* e *blowout*. Além disso a relação de concentração gás/liquido é altamente variável dependendo do poço. Desta forma, essa faixa de risco, onde observa-se *slugs* maiores, não pode ser tomada como regra e extrapolada para outras situações. Justificando assim o foco na identificação do comportamento do escoamento em golfadas. Sabendo reconhecer o comportamento típico, o diagnostico será efetivo independentemente das concentrações e características particulares de cada

operação de extração e a mitigação de slugs pode ser implementada de forma a não se correr o risco de um evento de *hold up*.

5.2.2 REDE NEURAL ARTIFICIAL RNA

Para fazer a implementação dos dados em uma rede neural eles precisam primeiramente passar por um pré-processamento, sistematizando-os em um formato que possa ser lido e padrões identificados pela rede. Para tanto uma base de dados foi criada com todos os dados obtidos.

Com o grande número de dados obtidos observou-se a necessidade de implementar métodos de simplificação e consequentemente de redução de custo computacional. Por esse motivo foi efetuada a normalização da frequência da curva de variação de pressão ao longo do tempo. Além disso, em vez de usar a curva no domínio do tempo, o que tornaria a analise consideravelmente mais complexa, foi usado em relação ao número de amostras. Isso permitiu que os gráficos pudessem passar por uma análise prévia de padrões no intuito de diminuir o erro da rede neural, visto que se encontraram curvas de comportamento com características marcadamente distintas.

Nas figuras 22 a 27 pode-se observar os diferentes comportamentos dos gráficos de espectro de potência em relação a frequência normalizada dos sinais (de 0 a 1) em diferentes faixas de velocidade. Visto que todas as análises corridas foram baseadas nos gráficos de padrão de escoamento anteriormente apresentados, todas as velocidades estão dentro da faixa onde há a geração de *slugs*. Essas figuras representam os 6 grupos nos quais os sinais foram separados de forma a facilitar a identificação desses padrões dentro da rede neural. No tópico anterior cada agrupamento foi explanado e seus comportamentos comentados.

A rede neural artificial foi então implementada utilizando como dados de entrada as curvas de espectro de potência em relação a frequência normalizada e o alvo era a identificação dos 6 grupos distintos de escoamento em golfadas, como pode ser apreciado na figura 28.

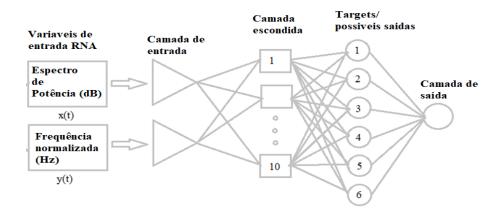


Figura 28. Conceito de criação da RNA

Fonte: Autor.

Como o intuito do trabalho foi possibilitar, em uma operação real, a identificação do padrão de escoamento em golfadas, utilizando por exemplo os sensores já presentes no BOP (*blowout preventer*) onde somente as curvas de comportamento desse padrão foram computadas. Dessa forma a RNA foi criada com o intuito de efetuar o reconhecimento dentro destes grupos previamente apresentados.

Na Figura 29 apresenta-se a RNA NARX, ela é não linear auto regressiva com entrada exógena, sendo uma rede recorrente. De acordo com ARAÚJO, C.F.L.C. (2019) nesse tipo de rede a camada de entrada recebe mais de um tipo de dado e sofre influência dos atrasos, dessa forma os valores anteriores vão influenciar os resultados subsequentes. Essa é então uma rede apropriada para fenômenos que variam de comportamento em função do tempo.

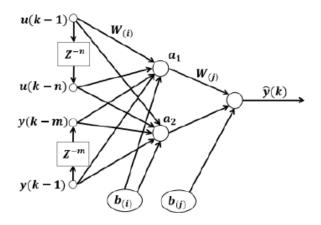


Figura 29. RNA tipo NARX.

Fonte: BELLOUARD, 2008

A topologia da rede foi definida, por meio de testes para encontrar a melhor formação possível, com 10 neurônios na camada escondida e dois atrasos.

O algoritmo utilizado foi o de Levenberg-Marquardt, o qual possui uma convergência estável e rápida em comparação com os outros algoritmos disponíveis. Com complexidade computacional Jacobiana.

Utilizou-se 70% dos dados das curvas de espectro de potência pela frequência normalizada baseados nas curvas de variação de pressão do escoamento para treinamento da rede, 15% para validação e 15% para teste da rede. Esses dados utilizados para o treinamento e validação foram escolhidos de forma aleatória. Os parâmetros de treinamento foram: épocas até 1000, performance menor possível, gradiente de 33.1 a $1,0x10^{-7}$, parâmetro de ajuste de Levenberg-Marquardt de 0.00 a $1x10^{10}$ e 6 checagens de validação.

Os gráficos de regressão apresentaram um erro mínimo de 0,999 no treinamento, validação e teste. Os valores de R - correlação entre saída real e saída desejada da rede - na fase de treinamento, validação e teste podem ser vistos na figura 30.

O desempenho da rede foi analisado também com base no erro quadrático médio (MSE), o qual é definido como a média dos quadrados das diferenças entre a saída real e a saída prevista pela rede. Para treinamento o máximo MSE aceito foi de 5,52x10⁻⁴ e para validação foi de 6,10x10⁻⁴.

Tabela 1. Erros quadráticos médios de teste dos grupos de 1 a 6

GRUPO	$Velocidades\ gasosa\ (V_G)\ e\ velocidade\ liquida\ (V_L)$	Erro quadrático médio de teste
1	V _G de 9,8 a 9,6 m/s e V _L de 4,9 a 4,6 m/s	5,85E-07
2	V _G de 9,2 a 6,0 m/s e V _L de 4,6 a 3,0 m/s	2,51E-07
3	V _G de 6,0 a 3,8 m/s e V _L de 3,0 a 1,9 m/s	1,03E-06
4	V _G de 3,8 a 3,2 m/s e V _L de 1,9 a 1,6 m/s	3,13E-07
5	V _G de 2,0 a 1,0 m/s e V _L de 1,0 a 0,5 m/s	9,95E-08
6	V _G de 0,9 a 0,1 m/s e V _L de 0,4 a 0,01 m/s	1,32E-07

Fonte: Autor

Como o intuito da RNA é identificar os grupos de 1 a 6 com base nas curvas de espectro de potência, mais testes foram efetuados utilizando separadamente os dados referentes a cada grupo considerado. Os erros quadráticos médios para os testes de cada grupo podem ser visualizados na tabela 1. Também foram efetuado testes com 70% dos dados, selecionados por meio da função de aleatoriedade, com MSE de reconhecimento de 2,65x10⁻³.

Considerando que não existe a necessidade de desnormalização dos dados nesse caso pois o resultado da rede neural é um dos 6 grupos anteriormente citados, a etapa de pós processamento se dá somente da fase de comparação e avaliação. Como já citado anteriormente, o desempenho da rede foi baseado nos valores do erro quadrático médio e de regressão. Na figura 30 apresentam-se os gráficos de regressão da RNA.

Figura 30. Gráfico de regressão da RNA.

Fonte: Autor.

Recapitulando então, a rede neural gerada com os dados de comportamento do escoamento em golfadas trabalha com o gráfico de espectro de potência por frequência normalizada como entrada e a saída é um dos grupos (de 1 a 6) definidos anteriormente como grupos onde há a ocorrência de *slugging*.

CAPÍTULO VI

CONCLUSÃO

6. CONCLUSÃO

A simulação CFD foi efetuada com sucesso, apresentando resultados coerentes, no que diz respeito ao comportamento, com aqueles encontrados tanto na literatura como em trabalhos experimentais. Considerando a necessidade de efetuar a modelagem mantendo pelo menos o diâmetro da tubulação aproximadamente o mesmo que o encontrado na prática, para não inserir efeitos físicos e interações com a parede indesejadas nas análises, o modelo ficou computacionalmente custoso. Isso gerou algumas limitações visto que aumentou o tempo necessário para as análises e o tamanho da malha. Porém como já apresentado foi possível estabelecer parâmetros de análise satisfatórios e cumprir os objetivos anteriormente citados. Isso significa que foi possível criar uma malha com boa convergência em um modelo suficientemente grande de modo a poder visualizar o efeito das golfadas, dentro de um custo computacional aceitável.

Tendo sido efetuada a criação do modelo, foi verificado se o comportamento do mesmo estava convergindo com o da literatura. Como era possível verificar nos pós processamento o comportamento do escoamento dividido entre as bolhas da fase gasosa seguidas pela fase liquida, assegurou-se que a simulação estava retratando o escoamento em golfadas esperado. Como o modelo estava apresentando o comportamento esperado e o aumento da malha não estava mais modificando os resultados, ele foi utilizado para todas as análises.

As análises foram feitas modificando as velocidades de entrada da fase gasosa e da fase liquida, de forma a analisar a faixa completa de velocidade onde ocorre escoamento em golfadas de acordo com o mapa de padrão de escoamento.

Cada uma dessas análises geraram um gráfico de variação de pressão ao longo do riser em relação ao tempo. Esses gráficos foram então tratados para melhor visualização de suas semelhanças. O método escolhido para o tratamento foi o espectro de potência, visto que dentre os testes efetuados esse método foi o que permitiu melhor visualização. Esses gráficos de espectro de potência foram então separados em grupos de acordo com uma análise de semelhanças aparentes para poderem então gerar uma RNA. O fluxo de dados foi como mostrado na figura 31.

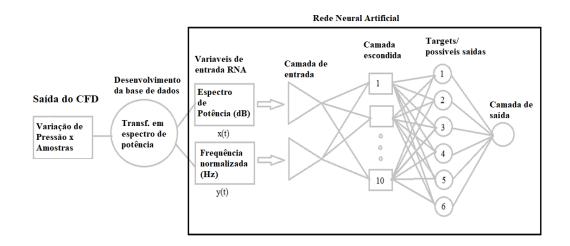


Figura 31. Fluxo de dados.

Fonte: Autor.

O intuito da geração da rede neural foi de criar uma ferramenta de diagnóstico desse padrão de escoamento – em golfadas – dentro de qualquer sistema, independentemente das frações gás/liquido e tamanho de tubulação.

A rede neural foi então gerada com base nas curvas de comportamento em espectro de potência, derivadas dos gráficos de pressão ao longo do riser no domínio do tempo. Os testes efetuados mostraram uma alta capacidade de identificação dos grupos de escoamento em golfadas e erros baixos.

Considera-se então como proposta de controle ativo de slugging em situações práticas a implementação da rede neural utilizando os sensores presentes no BOP para o acionamento da válvula de estrangulamento e regulagem do escoamento de forma automatizada, como mostra o diagrama de blocos da figura 32.

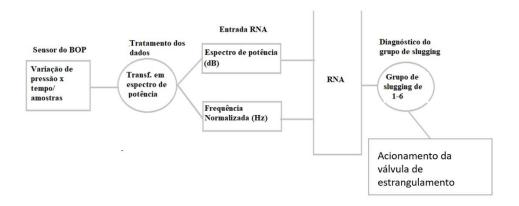


Figura 32. Proposta

Fonte: Autor.

Esse trabalho cumpriu o objetivo de efetuar a modelagem do sistema proposto e gerar uma ferramenta de diagnóstico deste padrão de escoamento, dando assim mais um passo em direção ao controle do *slugging*.

6.1. SUGESTÕES PARA TRABALHOS FUTUROS

Para trabalhos posteriores seria interessante:

- a) adicionar à rede neural sinais de outros tipos de padrões de escoamento para que possa ser feita a identificação do padrão de *slugs* dentre diferentes padrões de escoamento.
- b) Identificar e ordenar os seis grupos propostos em relação a severidade do *slugging*. Para que em uma aplicação real, não só a rede neural seja capaz de identificar se existe ou não *slugging*, mas também fornecer um parâmetro de severidade do efeito.

c) Montar um sistema de monitoramento que possa identificar o *slugging*.

REFERÊNCIAS

ABARDEH, M.E., Robust Control Solutions For Stabilizing Flow From The Reservoir: S -Riser Experiments, Dissertação De Mestrado, Norwegian University Of Science And Technology, Departamento De Engenharia Quimica, 2013

ABDULKADIR, M, HERNANDEZ, PEREZ V., ABDULKAREEM L., LOWNDES I. S., AZZOPARDI B. J., Characteristics Of *Slug* Flow In A Vertical Riser, 34^a Anual SPE Conferência Internacional, Nigeria, 2010

ADEDIGBA, A.G., Two, Phase Flow Of Gasliquid Mixtures In Horizontal Helical Pipes, Tese De Ph.D., Cranfield University, 2007

ALMEIDA, A. AND GONÇALVES, M., Device And Method For Eliminating Severe Slugging In Multiphase - Stream Flow Lines, Patente Us6041803a, 1999

ARAÚJO, C.F.L.C, Identificação Do Comportamento De Atuadores Ativos Com Molas LMF Utilizando Redes Neurais Artificiais Não, Linear Autorregressivas Com Entrada Exógena (RNA NARX), Dissertação De Mestrado, Universidade Federal Da Paraíba, 2019

BLAZEK, J., Principles Of Solution Of The Governing Equations, Computational Fluid Dynamics: Principles And Applications, Ed. 3^a, Vol. 29, Pp .72, 2015

BOUSSAADA, Z., CUREA, O., REMACI, A., CAMBLONG, H., BELLAAJ, N.M., A Nonlinear Autoregressive Exogenous (NARX) Neural Network Model for the Prediction of the Daily Direct Solar Radiation, Energies 11, 620 – 2018

BUBERG, T., Design And Analysis Of Steel Catenary Riser Systems For Deep Waters, Tese De Mestrado, Norwegian University Of Science And Technology, 2014

DATA SCIENCE ACADEMY. Deep Learning Book, 2019. Disponível em: http://www.deeplearningbook.com.br/>. Acesso em: 10 Abril. 2019

DI, MEGLIO, F., KAASA, G.O., PETIT, N., AND ALSTAD, V., Model Based Control Of Slugging: Advances And Challenges, 2012 IFAC Workshop On Automatic Control In Offshore Oil And Gas Production, Pp. 109–115, 2012a

FERNANDES, R.C., SEMIAT, R., DUCKLER, A.E., Hydrodynamic Model For Gas - Liquid Slug Flow In Vertical Tubes, – Alche Jl 29, Pp. 981 – 989, 1983

GODHAVN, J.M., FARD, M.P., FUCHS, P.H., New *Slug* Control Strategies - Tuning Rules And Experimental Results, Journal Of Process Control 15(2005), Pp. 547-557, 2004

HARMATAY, T. Z., Velocity Of Large Drops And Bubbles In Media Of Infinite Or Restricted Extent, Aiche Jl 6, Pp. 281, 1960

HERNANDEZ, PEREZ, V., Gas-Liquid Two-Phase Flow In Inclined Pipes, Tese Ph.D., University Of Nottingham, UK, 2007

JAHANSHAHI, E. AND SKOGESTAD, S., Simplified Dynamical Models For Control Of Severe Slugging In Multiphase Risers, 18th IFAC World Congress, Pp. 1634–1639, 2011

JAHANSHAHI, E., SKOGESTAD, S., AND GRTLI, E.I., Nonlinear Model - Based Control Of Two-Phase Flow In Risers By Feedback Linearization, IFAC Symposium On Nonlinear Control Systems, Ed. 9th, Pp. 301–306, 2013b

JANSEN, F.E., SHOHAM, O., AND TAITEL, Y., The Elimination Of Severe Slugging, Experiments And Modeling, Int. J. Multiphase Flow, Vol. 22, Pp. 1055–1072, 1996

JUNIOR, J.V.O., Modelagem De *Slugging* Severo De Risers Em Catenária, Dissertação De Mestrado COPPE, Rio De Janeiro/Brasil, 2011

KRIMA, H., CAO, Y., AND LAO, L., Gas Injection For Hydrodynamic Slug Control, IFAC Workshop On Automatic Control In Offshore Oil And Gas Production, Ed. 1, Pp. 116–121, 2012

MAKOGAN, B. – Patente Em Equipamento Para Controle De Slugging. Http://Patentscope.Wipo.Int/ Search/En/WO2007034142. URL Http://Patentscope.Wipo.Int/ Search/En/WO2007034142, 2007 MCGUINESS, M. AND COOKE, D., Partial Stabilization At St. Joseph, 3rd International Offshore And Polar Engineering Conference, 235–241, 1993

MENDES, F.A.A., RODRIGUEZ, O.M.H, ESTEVAM, V., LOPES, D., Flow Patterns In Inclined Gas-Liquid Annular Duct Flow, – WIT Transactions On Engineering Sciences, Vol. 70, 2011

NICKLIN, D.J., WILKES, J.O., AND DAVIDSON, J.F., Two -Phase Flow In Vertical Tubes, Trans. Inst. Chem. Engrs, Vol. 40, 1962

NILSEN, A.S., Simplified First Principle Model For Severe *Slugging* Flow In S -Shaped Risers, Projeto De Especialização, NTNU, Noruega, 2012

PAGANO, D.J., PLUCENIO, A., TRAPLE, A., AND GONZAGA, C.A., Controlling Oscillations And Re-Starting Operation In Gas -Lift Wells, XVII Congresso Brasileiro De Automtica, Juiz De Fora, 2008

PEDERSEN, S., DURDEVIC, P., YANG, Z., Learning Control For Rise, *Slug* Elimination And Production, Rate Optimization For An Offshore Oil And Gas Production Process, 19th World Congress The International Federation Of Automatic Control, Ed. 24, Pp. 29, 2014

PEDERSEN, S., DURDEVIC, P., YANG, Z., Review Of *Slug* Detection, Modeling And Control Techniques For Offshore Oil & Gas Production Processes, IFAC 48, Vol. 6, Pp .089 - 096, 2015

PEREIRA, M.B.C., Análise De Estabilidade E Modelagem Matemática De Intermitência Severa Em Um Sistema Pipeline- Riser, Projeto De Graduação, UFRJ, 2013

PETROBRAS, URL: (https://petrobras.com.br/fatos-e-dados/boia-de-sustentacao-de-risers-ja-opera-em-sapinhoa-e-lula-nordeste.htm), Acessado Em 12 de abril de 2020

RUAS, P.H.D., Análise Teórica Do Escoamento Bifásico E/Ou Dois- Fluidos Imiscíveis Anular Ascendente Via GITT, Dissertação De Mestrado, UFPB, João Pessoa/Brasil, 2016

SARICA, C. AND TENGESDAL, J., A New Technique To Eliminate Severe Slugging In Pipeline/Riser Systems, SPE Annual Technical Conference & Exhibition, SPE 63185, Pp. 633–641, 2000

SILVA, E.S., Estudo Do Escoamento Bifásico Em Risers Em Movimento Na Produção Marítima De Petróleo Em Águas Profundas, Dissertação De Mestrado, UEC, Campinas/Brasil, 2006

SOUZA, J.N.M., Modelagem E Simulação De Escoamento Multifásico Em Dutos De Produção De Óleo E Gás Natural, – Tese De D. Sc., COPPE/UFRJ, Rio De Janeiro, 2010

STENMARK, E., On Multiphase Flow Models In ANSYS CFD Software, Dissertação De Mestrado Em Mecânica Aplicada, Chalmers University Of Technology, 2013

STORKAAS, E. AND SKOGESTAD, S., Controllability Analysis Of Two-Phase Pipeline- Riser Systems At Riser Slugging Conditions, Control Engineering Practice, Vol. 15, Pp.567–581, 2008

TAITEL, Y., Stability Of Severe *Slugging*, International Journal Of Multiphase Flow, Vol. 12(2), Pp. 203 - 217, 1986

TAITEL, Y., BORNEA, D., DUKLER, A.E., Modelling Flow Pattern Transitions For Steady Upward Gas -Liquid Flow In Vertical Tubes, Aiche Journal, Vol. 26(3), Pp. 345-354, 1980

TAITEL, Y., Stability Of Severe Slugging, International Journal Of Multiphase Flow, Vol.12, Pp.203–217, 1986

TENGESDAL, J.O., SARICA, C., AND THOMPSON, L., Severe Slugging Attenuation For Deep Water Multiphase Pipeline And Riser Systems, PE Annual Technical Conference And Exhibition, Paper SPE 87089, 2002

VALDIVIA, P.G., MOROOKA, C.K., BORDALO, S.N., MATT, C.G.C., FRANCISS, R., Resposta Dinâmica De Um Riser Rígido Em Catenária Devido À Excitação Induzida Pelo Escoamento Interno, – 4º PDPETRO, Campinas/Brasil, 2007

VERSTEEG, H.K., MALALASEKERA, W., An Introduction To Computational Fluid Dynamics – The Finite Volume Method, Ed. 2^a, 2007

WALLIS, G.B., One-Dimensional Two- Phase Flow, Mcgraw – Hill, New York, USA, 1969

WELCH, P.D., The use of Fast Fourier Transform for the Estimation of Power Spectra: A Method Based on Time Averaging Over Short, Modified Periodogram - IEEE Transactions on audio and electroacoustics, Vol. AU-15, n° 2, 1967

XING, L., YEUNG, H., SHEN, J., AND CAO, Y., Experimental Study On Severe Slugging Mitigation By Applying Wavy Pipes, Chemical Engineering Research And Design, Ed. 91, Pp.1828, 2013