Hícaro Felipe Brasileiro de Macedo Silva

Um modelo de adaptação para Serious Games Educacionais baseado na avaliação de habilidades do jogador

João Pessoa

Abril, 2019

Hícaro Felipe Brasileiro de Macedo Silva

Um modelo de adaptação para Serious Games Educacionais baseado na avaliação de habilidades do jogador

Dissertação de mestrado apresentada ao Programa de Pós-Graduação em Informática da Universidade Federal da Paraíba como requisito para a obtenção do título de Mestre

Universidade Federal da Paraíba Programa de Pós-Graduação em Informática

Orientador: Liliane dos Santos Machado

João Pessoa Abril, 2019

Catalogação na publicação Seção de Catalogação e Classificação

S586m Silva, Hícaro Felipe Brasileiro de Macedo.

Um modelo de adaptação para Serious Games Educacionais baseado na avaliação de habilidades do jogador / Hícaro Felipe Brasileiro de Macedo Silva. - João Pessoa, 2019. 76 f.: il.

Orientação: Liliane dos Santos Machado. Dissertação (Mestrado) - UFPB/CI.

1. CbKST. 2. adaptação. 3. Taxonomia de Bloom. 4. Serious Games Educacionais. 5. avaliação de habilidades. I. Machado, Liliane dos Santos. II. Título.

UFPB/BC

Um modelo de adaptação para Serious Games Educacionais baseado na avaliação de habilidades do jogador

Dissertação de mestrado apresentada ao Programa de Pós-Graduação em Informática da Universidade Federal da Paraíba como requisito para a obtenção do título de Mestre

Trabalho aprovado. João Pessoa, 26 de abril de 2019:

Liliane dos Santos Machado Orientadora

Prof. Dr. Ismar Frango Silveira Universidade Presbiteriana Mackenzie

Profa. Dra. Thaise Kelly de Lima Costa Universidade Federal da Paraíba

Profa. Dra. Danielle Rousy Dias da Silva

Universidade Federal da Paraíba

João Pessoa Abril, 2019

Agradecimentos

Gostaria de agradecer a todos que contribuíram direta e indiretamente para o processo desse trabalho. Foi uma jornada árdua, entretanto engrandecedora e, no final de tudo, prazerosa. A pessoa que sou hoje é, em parte, resultado de toda essa jornada e faltam-me palavras para expressar a minha gratidão por tudo isso.

Agradeço à professora Liliane pela orientação, pelas experiências compartilhadas, pelas discussões promovidas, pelo conhecimento compartilhado, pelo suporte provido e pela paciência. Agradeço também ao professor Ronei, pelas dúvidas retiradas, pela paciência e pela contribuição com o trabalho.

Aos meus colegas de laboratório, que acompanharam toda essa jornada e estavam lá para ajudar e ouvir desabafos, Dandara, Zildomar, Lauciano, Elaine, Ingrid, Deynne, Júlio e Davi. À todos que procuraram o meu auxílio durante o mestrado, a prática e transmissão de conhecimento também são atividades que engrandecem o domínio do mesmo e por isso sou grato a vocês.

Agradeço também aos meus amigos e colegas que acompanharam de longe esse processo e que me desejaram força e sucesso durante esse etapa da minha vida.

À minha família, que foi o meu alicerce durante esses dois anos de trabalho. Seu apoio foi um fator decisor durante todo esse tempo. Agradeço profundamente pelo suporte.

Por fim, agradeço pelo apoio financeiro ao presente trabalho por parte da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Código de Financiamento 001.

"The field was lost
Hope had passed away
The sun went down
Beyond the sea
Dark was the hour
But day shall come again"
(A Dark Passage, Blind Guardian)

Resumo

A Teoria do Espaço de Conhecimento Baseado em Competência (do inglês Competence-based Knowledge Space Theory, CbKST) possibilita a avaliação das habilidades do jogador através da observação de sua performance em Serious Games Educacionais (SGE). Dadas estas informações sobre as habilidades de jogador, um SGE pode se adaptar às capacidades de cada pessoa. Embora o uso do CbKST seja pertinente no processo de adaptação, sua concepção tem como escopo a avaliação de habilidades cognitivas do indivíduo. Esse aspecto é limitante pois desconsidera fatores relevantes no processo educacional como habilidades afetivas e psicomotoras do jogador. Ademais, modelos de adaptação para SGE tem seu foco na escolha e apresentação de fases tendo em vista a adequação às habilidades do indivíduo. Nesse sentido, seus critérios não explicitam heurísticas que buscam a otimizar a experiência do jogador, tais como ajuste de dificuldade e progressão do jogo.

Dessa forma, o presente trabalho tem como objetivo a proposta de um modelo de adaptação para SGE baseado no CbKST capaz de avaliar as habilidades cognitivas, afetivas e psicomotoras e, a partir delas, realizar o sequenciamento de fases do jogo. O modelo proposto utiliza a Taxonomia de Bloom juntamente com a hierarquia de Dave do domínio psicomotor como fundamentação para a modelagem de habilidades e propõe um método próprio para avaliação das habilidades do jogador. Além disso, é assumido que SGE possuem um conjunto de marcos que delimitam diferentes momentos de jogo, tais como introdução de novos assuntos, aumento de dificuldade, etc. Assim, o modelo proposto faz o uso desse conjunto de marcos a serem atingidos juntamente com informações da avaliação das habilidades do jogador com o intuito de adequar o desafio às suas capacidades e potencializar sua experiência. Para validação do modelo proposto quanto à sua aplicabilidade é feita a sua aplicação no Caixa de Pandora, um SGE que lida com aspectos cognitivos e afetivos através do tema violência doméstica contra a mulher. Durante o processo de aplicação do modelo proposto foram necessárias adequações do modelo proposto ao Caixa de Pandora. Apesar disso o processo de adaptação implementado se mostrou capaz de acompanhar o habilidades do jogador e ajustar o desafio do jogo.

Palavras-chave: Teoria do Espaço de Conhecimento Baseado em Competências, adaptação, Taxonomia de Bloom, Serious Games Educacionais, avaliação de habilidades.

Abstract

The Competence-Based Knowledge Space Theory (CbKST) enables the assessment of player skills by observing their performance in Educational Serious Games (ESG). Given the information on player skills, a ESG can adapt to each person's abilities. Although its use is relevant in adaptation process, CbKST's design is aimed at assessing the individual's cognitive abilities. This aspect is limiting because it disregards educational factors such as player's affective and psychomotor skills. In addition, adaptation models for ESG have their focus on the choice and presentation of levels according to individual's abilities. In this sense, its criteria do not explain heuristics that seek to optimize the player's experience, such as difficulty adjustment and game progression.

Thus, the present work has the objective of proposing an adaptation model for ESG capable of evaluating cognitive, affective and psychomotor skills and from them to perform the sequencing of game levels. The proposed model uses the Bloom Taxonomy together with the Dave hierarchy of the psychomotor domain as foundation for ability modeling and proposes a proper method for evaluating player's abilities. In addition, it is assumed that ESG have a set of milestones that delimits different moments of play, such as introducing new subjects, increasing difficulty, etc. Thus, the proposed model makes use of this set of milestones to be achieved together with player's abilities information in order to match the challenge to their abilities to enhance their experience. In order to validate the proposed model regarding its applicability, it is applied in the Caixa de Pandora game, an ESG that deals with cognitive and affective aspects related to domestic violence against women. During the proposed model's application process, it was necessary to adapt the proposed model's aspects to the Caixa de Pandora game. Despite this, the implemented adaptation process was able to assess player's skills and adjust game's challenge accordingly.

Keywords: Competence-based Knowledge Space Theory, adaptation, Bloom's Taxonomy, Educational Serious Games, skill assessment.

Lista de ilustrações

Figura 1 –	Canal de Fluxo	20
Figura 2 –	Relações de pré-requisito entre competências: os elementos mais acima	
	possuem uma relação de dependência com os elementos conectados mais	
	abaixo	26
Figura 3 -	Níveis hierárquicos dos domínios cognitivo e afetivo	28
Figura 4 -	Nível hierárquico do domínio psicomotor de Dave (1970)	30
Figura 5 –	Situação-problema do jogo ELEKTRA, o jogador deve manipular os	
	controles para regular as forças do imã e ventilador para que a bolinha	
	caia no buraco	32
Figura 6 -	Escala de avaliação das respostas das perguntas e respectivos significados	39
Figura 7 –	Mapa Conceitual do jogo Caixa de Pandora	40
Figura 8 -	Critério de cálculo dos Graus de Importância de cada pergunta de	
	acordo com os temas envolvidos	40
Figura 9 -	Representação dos eventos do modelo de adaptação proposto	43
Figura 10 –	Representação das relações entre componentes do modelo de adaptação	48
Figura 11 –	Fase do Caixa de Pandora	50
Figura 12 –	Conceitos abordados na fase exemplo	51
Figura 13 –	Aplicação desenvolvida para a representação das relações de pré-requisito	
	entre competências	52
Figura 14 –	Elementos da aplicação desenvolvida	53
Figura 15 –	Conexão entre nós	54
Figura 16 –	Relações de pré-requisito entre as competências do domínio do Caixa	
	de Pandora	58
Figura 17 –	Progressão de dificuldade pretendida do modelo proposto	66
Figura 18 –	Caso de redução de desafio durante a aplicação no jogo Caixa de Pandora	67

Lista de tabelas

Tabela 1 –	Lista de competências do domínio do Caixa de Pandora juntamente
	com o nível no qual são apresentadas e o identificador utilizado para
	representação no código

Lista de abreviaturas e siglas

CbKST Competence Based Knowledge Space Theory

KST Knowledge Space Theory

SG Serious Games

SGE Serious Games educacionais

Sumário

1	INTRODUÇÃO	12
1.1	Motivação	15
1.2	Relevância	15
1.3	Objetivos	16
1.4	Contribuições	17
2	FUNDAMENTAÇÃO TEÓRICA	18
2.1	Serious Games e adaptação	18
2.1.1	Dimensão da dificuldade	19
2.1.2	Dimensão do jogador	20
2.1.3	Dimensão do aprendiz	21
2.1.4	Processo de Adaptação em <i>Serious Games</i> Educacionais	22
2.2	Teoria do Espaço de Conhecimento baseado em Competência (CbKST) 23
2.2.1	Taxonomia dos Objetivos Educacionais e o CbKST	27
2.2.2	Taxonomia de Bloom	27
2.2.3	Serious Games e CbKST	30
2.2.3.1	ELEKTRA	31
2.2.3.2	80Days	34
2.2.3.3	Outras aproximações	34
2.3	Considerações	35
3	MATERIAIS E MÉTODOS	37
3.1	Estudo de fundamentos de adaptação e CbKST	37
3.2	Definição do Modelo	37
3.3	Aplicação e validação do modelo	38
4	RESULTADOS	42
4.1	Modelo Proposto	
4.1.1	Modelagem de competências	44
4.1.2	Avaliação do estado de competência	44
4.1.3	Sequenciamento de fases	46
4.2	Aplicação no Caixa de Pandora	47
4.2.1	Modelagem de Competências	48
4.2.1.1	Procedimento de Identificação de Competências	49
4.2.1.2	Definição da Relações de pré-requisito	51
4.2.1.3	Geração da estrutura de competência	53

4.2.1.4	Resultados da modelagem de competências
4.2.2	Avaliação de Competência
4.2.3	Sequenciação de fases
5	DISCUSSÃO
5.1	Definição e representação de competências
5.2	Critérios de pré-requisito
5.3	Estrutura de competência
5.4	Progressão através do caminho de aprendizado
5.5	Aplicação no Caixa de Pandora
5.6	Síntese
5.6.1	Síntese teórica
5.6.2	Síntese prática
6	CONCLUSÃO 70
	REFERÊNCIAS 72

1 Introdução

Embora um jogo aja como ferramenta de motivação, o seu apelo pode variar de acordo com o jogador (MILDNER et al., 2016). Uma vez que jogadores têm gostos, habilidades e experiências diferentes, é natural que sejam afetados de maneiras distintas. Nesse sentido, destaca-se o conceito de adaptatividade: a característica de um jogo se adaptar de acordo com as ações e performance do usuário (GÖBEL; WENDEL, 2016). Assim, através da adaptação, um jogo teria potencial para promover uma melhor experiência para seus usuários (STREICHER; SMEDDINCK, 2016).

No âmbito de Serious Games Educacionais (SGE), o monitoramento da performance e ações do usuário deve ser feito levando em consideração o alcance dos objetivos educacionais do jogo. Dessa forma, o monitoramento de características do indivíduo relacionadas ao seu processo de aprendizado, tais como o seu conhecimento, estilo de aprendizado e caminho de aprendizado, se faz necessário para o processo de adaptação (GÖBEL; WENDEL, 2016).

O processo de captar as características relacionadas ao aprendizado de um indivíduo é denominado modelagem do aprendiz e, segundo Chrysafiadi e Virvou (2013), consiste na base para adaptação em sistemas educacionais computacionais. Compreende-se então que, para a implementação de adaptatividade em SGE, se torna imprescindível a definição do modelo de aprendiz a ser utilizado no jogo. Para isso, Chrysafiadi e Virvou (2013) afirmam que três perguntas devem ser respondidas: 1) Que características do usuário devem ser modeladas? 2) Como modelá-las? 3) Como utilizar o modelo proposto?

A escolha das características do jogador a serem modeladas depende diretamente do escopo do jogo. Nesse contexto é importante que estas características se alinhem com os objetivos educacionais em questão. Em sequência, é necessário definir como a modelagem deverá ser feita, ou seja, a representação e o método avaliação dessas características a serem modeladas. Por fim, deve-se definir como o modelo de aprendiz deve ser utilizado para a implementação do processo de adaptação.

Nesse contexto, Streicher e Smeddinck (2016) elicitam três perguntas que devem ser respondidas para a definição do processo de adaptação: 1) O que? 2) Quando? e 3) Como? Dessa forma é necessário definir: quais elementos de um SGE devem ser afetados pelo processo de adaptação, os critérios utilizados como gatilhos da adaptação em tais elementos e como tais elementos são afetados pelo processo. Tendo em consideração a modelagem de aprendiz como a base para o processo de adaptação em SGE e sua consequente influência no processo, tem-se que a escolha de um modelo de aprendiz caracteriza o passo inicial para a descrição da adaptação em um SGE.

Ao discutirem sobre modelagem do aprendiz em SGE, Göbel e Wendel (2016) citam a Teoria do Espaço de Aprendizado Baseado em Competência (do inglês Competence-based Knowledge Space Theory, CbKST). Essa teoria, inicialmente proposta por Korossy (KOROSSY, 1999), relaciona aspectos comportamentais observáveis com construtos de habilidades e conhecimentos que não são diretamente observáveis. Em outras palavras, através da performance do jogador, o CbKST é capaz de diagnosticar as competências possuídas por ele de forma indireta, uma vez que essa performance é resultado de suas competências (KOROSSY, 1999). Outra característica do CbKST é a relação de prérequisitos entre as competências: para que um aluno possua uma determinada competência é necessário que ele primeiro tenha adquirido as competências que são pré-requisito da mesma.

No âmbito de SGE, o CbKST não apenas provê uma estrutura para representação do conhecimento do aluno, mas também oferece possibilidade de escolha de caminhos de aprendizado e também a avaliação das suas competências de forma não invasiva. A escolha de caminhos de aprendizado é consequência direta da propriedade da relação de prérequisito entre competências. Ou seja, a ordem na qual as competências são apresentadas ao jogador altera diretamente as possibilidades de caminhos de aprendizado. Já a avaliação não invasiva do jogador evita o uso de meios tradicionais, tais como perguntas e testes, no diagnóstico do conhecimento, o que interrompe o fluxo de jogo e coloca em risco a experiência de jogador (KICKMEIER-RUST; STEINER; ALBERT, 2011).

Dois modelos de adaptação baseados em CbKST podem ser elicitados no domínio de SGE: o modelo proposto para o jogo ELEKTRA (KICKMEIER-RUST et al., 2006) e o modelo proposto para o jogo 80days (GÖBEL et al., 2009). Os dois modelos adotam uma aproximação probabilística para a avaliação das habilidades do jogador. Essa característica é decorrente de fatores tais como comportamento exploratório do jogo, tentativas de adivinhação e erros por descuido. O ELEKTRA é um jogo tridimensional que explora conceitos de física para alunos de oitavo ano. Seu modelo de adaptação foi proposto teoricamente em Kickmeier-Rust e Albert (KICKMEIER-RUST; ALBERT, 2010), sua formalização matemática foi definida em Augustin et al. (AUGUSTIN et al., 2011) e a avaliação do modelo foi apresentada em Augustin et al. (AUGUSTIN et al., 2015). O SGE 80Days, por sua vez, aborda o tema de geografia para jovens na faixa etária de 12 a 14 anos de acordo com o currículo europeu da matéria (KHENISSI et al., 2015). Seu modelo de adaptação (AUGUSTIN et al., 2013) consiste em uma derivação do modelo matemático proposto para o ELEKTRA com o propósito de simplificar a técnica em termos de complexidade computacional.

Os modelos de adaptação do ELEKTRA e 80Days seguem o mesmo princípio do problema explorado por Falmagne e Doignon (FALMAGNE; DOIGNON, 1988), ou seja, avaliar continuamente o conhecimento de um estudante de forma a apresentar-lhe novas

questões em função da resposta da questão anterior. Nos modelos, uma fase será escolhida (pelo modelo) para ser apresentada ao jogador em função de seu estado de competência atual. Entretanto, esses modelos não abordam profundamente uma característica comum tanto para jogos quanto para a educação: a existência de marcos.

No presente trabalho, entende-se como marco um ponto de divisa a partir do qual só será permitido o progresso se um determinado objetivo ou meta for alcançado. Um exemplo de marco em jogos poderia ser a transição para um novo "mundo de jogo", quando é necessário que o jogador tenha coletado uma quantidade específica de itens no "mundo de jogo" atual. Assim, marcos servem como divisa para mudanças que estão por vir, como o aumento de dificuldade, introdução de novas mecânicas de jogo, novos assuntos a serem abordados, etc. Na educação, um exemplo de marco pode ser visto na transição de um ano para o outro, ou seja, para que o aluno possa progredir para a próxima série ele deve ter sido aprovado em todas as matérias da série atual.

Desta forma, a escolha de fases tendo em mente o alcance dos marcos do jogo consiste em uma mecânica explícita para a progressão pelo caminho de aprendizado do jogo. Ademais, o uso de marcos também permite a manutenção do desafio do jogo ao apresentar fases de dificuldade pouco acima das habilidades do jogador.

Embora seu uso em adaptatividade para SGE seja pertinente, o CbKST, tanto em sua concepção quanto nas aplicações e pesquisas identificadas, é voltado para modelagem de características do jogador no domínio cognitivo. No escopo educacional, essa característica se torna limitante uma vez que os objetivos educacionais podem englobar também as habilidades afetivas e psicomotoras. Ademais a importância da abrangência de outros domínios é agravada pelo inter-relacionamento entre eles, principalmente a relação entre os domínios cognitivo e afetivo que, segundo Anderson et al. (2001), possui um alto nível de intercessão.

Nesse contexto vale citar o Caixa de Pandora (ALMEIDA et al., 2018), um SGE cujo propósito é a capacitação de profissionais de saúde quanto a questão da violência doméstica contra mulher. O jogo explora objetivos educacionais tanto no domínio cognitivo quanto no afetivo. Ademais, o jogo se estrutura em três níveis os quais cada um possui um tema principal. Dessa forma, a transição de um nível para outro consistiria em um marco.

Dito isso, o presente trabalho tem como objetivo propor um modelo de adaptação para SGE que considere as habilidades cognitivas, afetivas e psicomotoras do jogador. Para tal, são utilizados os conceitos do CbKST para a modelagem de competências. Adicionalmente, o modelo considera o uso de marcos para a progressão do jogo e os leva em consideração durante o sequenciamento de fases a serem apresentadas ao jogador. Além disso, o trabalho valida o modelo proposto quanto à sua aplicabilidade através de sua implementação em um SGE existente.

1.1 Motivação

O processo de adaptação permite a adequação do jogo ao jogador, edificando a sua experiência. Dessa forma, o jogo promove uma maior motivação, melhor aceitação e maior identificação por parte dos jogadores (STREICHER; SMEDDINCK, 2016). No âmbito de SGE, o monitoramento das características relacionadas ao aprendizado do jogador, também conhecido como modelagem do aprendiz, se faz necessário para o processo de adaptação (GÖBEL; WENDEL, 2016).

A partir desse monitoramento é possível que sejam feitas intervenções no jogo em prol da experiência do usuário. Um jogador, ao ter que passar por uma fase introdutória de um assunto que já domina pode se pode passar por uma experiência cansativa e entediante. Entretanto, se o conhecimento do jogador já foi modelado a *priori*, a apresentação dessa fase pode ser evitada através do processo de adaptação. Kickmeier-Rust, Steiner e Albert (2011), contudo, apontam para o risco do monitoramento se feito de forma inapropriada. Como exemplo disso pode-se citar a avaliação das habilidades do jogador através de perguntas e testes que alteram o fluxo de jogo caracterizando, assim, atitudes invasivas e que prejudicam a experiência do jogador.

Nesse contexto, o CbKST é uma teoria de modelagem de aprendiz que relaciona a performance do jogador com suas habilidades (KOROSSY, 1999). Dessa forma, através da observação e interpretação das ações do jogador durante o jogo, o CbKST permite a avaliação do jogador de forma não invasiva. Ademais, através da hipótese da hierarquização de habilidades em relações de pré-requisito, o CbKST permite a exploração de diversos caminhos de aprendizado, contribuindo para adaptação baseada no sequenciamento de fases.

Apesar de ser apropriado para o processo de adaptação, o CbKST foi proposto tendo em vista a avaliação de habilidades cognitivas de um indivíduo (STEFANUTTI; ANSELMI; ROBUSTO, 2011). Esse fato se torna motivador para a extensão do potencial fornecido pelo CbKST no processo de adaptação para a abrangência de habilidades afetivas e psicomotoras do jogador.

1.2 Relevância

A adaptação consiste no ato ou efeito de um jogo se adaptar frente as ações e performance do usuário. Em SGE, as ações e performance do usuário são encaradas sob uma ótica diferente: o alcance dos objetivos educacionais propostos para o jogo em questão. Nesse aspecto vale salientar ainda que objetivos educacionais podem ser classificados em três domínios: cognitivo, afetivo e psicomotor (BLOOM et al., 1956).

O domínio cognitivo remete a recordação, aprendizagem e domínio de determinado

conhecimento (FERRAZ; BELHOT, 2010). O afetivo, por sua vez, lida com valores, comportamentos e interesses (BLOOM; KRATHWOHL; MASIA, 1972). Por fim, o psicomotor remete às habilidades físicas do indivíduo (FERRAZ; BELHOT, 2010). Embora objetivos educacionais sejam separados em três domínios, isso não implica a independência entre eles. Anderson et al. (2001) aponta para esse fato ao afirmar que a divisão em três domínios pode isolar aspectos do mesmo objetivo educacional.

Apesar de SGE frequentemente se voltarem para o domínio cognitivo, os outros domínios podem ser explorados. Um exemplo disso é o jogo Caixa de Pandora que explora tanto o domínio cognitivo quanto o afetivo ao abordar o tema de violência doméstica contra a mulher (ALMEIDA et al., 2018). Nesse sentido, a expansão do CbKST para a avaliação de habilidades pertencentes aos domínios afetivo e psicomotor não apenas permite uma maior abrangência de aplicação, mas também a modelagem das relações desses domínios.

Outro aspecto que vale ser salientado quanto ao processo de adaptação é o equilíbrio entre habilidade e desafio. Dado que esse fator é determinante é para a experiência do jogador (TAKATALO et al., 2010), a manutenção constante desse equilíbrio se torna pertinente tendo em vista o objetivo característico do jogo.

Em formalizações do processo de adaptação CbKST em SGE, a manutenção da dificuldade do jogo não é diretamente abordada, de modo a manter o foco em apresentar fases apropriadas às habilidades do jogador. Nesse caso, o uso de marcos como parâmetro de seleção de fases tem o potencial de proporcionar uma constante apresentação de tarefas de dificuldade diretamente acima da capacidade do jogador se fazendo relevante para o processo de adaptação.

1.3 Objetivos

O objetivo do presente trabalho consiste na proposição de um modelo de adaptação para SGE, baseado nos conceitos CbKST, que a avalie habilidades cognitivas, afetivas e psicomotoras do jogador e, tendo em vista o conceito de marcos, sequencie as fases apresentadas. Dito isso, foram delineados os seguintes objetivos específicos:

- Estabelecer um método de avaliação das habilidades cognitivas, afetivas e psicomotoras do jogador
- Construir o modelo de adaptação baseado no método de avaliação estabelecido
- Implementar e validar o modelo obtido quanto à sua aplicabilidade no SGE Caixa de Pandora

1.4 Contribuições

Este trabalho apresenta como principal contribuição o estabelecimento de um modelo de adaptação para SGE. O modelo tem como base a avaliação das habilidades cognitivas, afetivas e psicomotoras do jogador, tendo uma abrangência para diversos escopos de SGE. Desse modo também são contribuições do trabalho o método de avaliação adotado e o algoritmo de sequenciamento de fases.

Ademais, também faz parte das contribuições do trabalho o processo implementação e validação quanto à aplicabilidade no Caixa de Pandora. Discutindo as ações tomadas na implementação bem como seu impacto no SGE Caixa de Pandora. Além disso, durante o processo de implementação foi criada uma ferramenta visual para o estabelecimento de hierarquia entre competências e sua conversão para estrutura de dados.

2 Fundamentação Teórica

Este capítulo apresenta os principais conceitos relacionados à adaptação em SG e também os conceitos fundamentais para o entendimento da Teoria de Espaço de Conhecimento Baseada em Competência. Assim, serão abordadas pesquisas que envolvem o CbKST em SGs com o fim de elicitar os aspectos principais de implementação da adaptatividade baseada em CbKST em um Serious Game Educacional.

2.1 Serious Games e adaptação

Enquanto de um lado os jogos vêm sendo desenvolvidos para fins de entretenimento, em outra vertente jogos vêm sendo desenvolvidos para outros fins tais como educação, treinamento e reabilitação. Esses jogos são denominados *Serious Games* (SG). Segundo Michael e Chen (2005) o principal propósito dos SG é diferente do entretenimento. Dörner et al. (2016) denominam este propósito de "objetivo característico" e definem SGs como jogos digitais cujas intenções são entreter e atingir um ou mais objetivos característicos. Essa definição evidencia o propósito do uso de SGs: fazer o uso do entretenimento proporcionado por jogos digitais para atingir um ou mais objetivos característicos.

Embora Serious Games utilizem o entretenimento como ferramenta, o seu impacto e sua eficiência em atingir seu(s) objetivos característicos pode variar de acordo com o jogador. Jogadores diferentes têm gostos, habilidades e experiências diferentes. Logo, é natural que sejam afetados de maneira diferente. Neste contexto surge a necessidade do jogo se adequar ao jogador.

Göbel e Wendel (2016) trazem o conceito de adaptação como "ato ou processo de se adaptar", ou seja, o ato de um jogo se alterar com o fim de se encaixar em uma nova situação. De forma complementar, a adaptatividade de um jogo é um processo contínuo no qual este se ajusta continuamente de acordo com as ações e performance do jogador (GÖBEL; WENDEL, 2016; STREICHER; SMEDDINCK, 2016).

Quanto ao processo de adaptação em Serious Games, Göbel e Wendel (2016) explicitam três principais dimensões de adaptação: dificuldade, jogador e aprendiz. Essas dimensões consistem em referenciais para as adaptações de SG. Dito isso, tem-se que a dimensão da dificuldade consiste no ajuste da dificuldade do jogo em função das habilidades do jogador. A dimensão do jogador remete no ajuste de elementos do jogo em função do perfil do jogador. Por fim, a dimensão do aprendiz, de forma semelhante à dimensão do jogador, refere-se ao ajuste do jogo em função da modelagem aprendiz.

2.1.1 Dimensão da dificuldade

Na dimensão da dificuldade, o principal conceito discutido por Göbel e Wendel (2016) é o conceito de estado de Fluxo. Esse conceito, proposto por Csikszentmihalyi e Csikszentmihalyi (1975), remete a um estado em que um indivíduo se encontra em total envolvimento com uma tarefa. Schell (2014) caracteriza o estado de Fluxo como um estado de foco sustentado, prazer e diversão. Nesse sentido, Takatalo et al. (2010) consideram a experiência do estado de Fluxo como a experiência ótima do jogo. Jackson e Marsh (1996) elicitam nove componentes que compõem o estado de Fluxo:

- Balanceamento entre desafio e nível de habilidade,
- Fusão entre ação e consciência,
- Objetivos claramente definidos,
- Feedback claro e imediato,
- Concentração na tarefa em execução,
- Senso de controle,
- Perda de autoconsciência,
- Transformação do tempo,
- Experiência autotélica.

Sobre o estado de Fluxo, Csikszentmihalyi e Csikszentmihalyi (1975) afirmam que suas atividades surgem a partir de uma margem de equilíbrio entre desafio e habilidade de um indivíduo, que se situa entre o tédio e a frustração. Se esse equilíbrio é perdido, o foco do jogador é quebrado. Essa margem é chamada de canal de Fluxo (NAKAMURA; CSIKSZENTMIHALYI, 2014) e é ilustrada pela Figura 1.

O canal de Fluxo representa a margem à qual o desafio provido pelo jogo é adequado à habilidade do jogador (Figura 1 (b)). Se o desafio provido pelo jogo é muito baixo, o jogador vai se sentir entendiado (Figura 1 (c)); caso seja alto demais, sentirá ansiedade (Figura 1 (a)). Esses dois casos são prejudiciais à experiência do jogador e impedem que o estado de Fluxo seja alcançado.

Embora o equilíbrio entre habilidade e desafio não garanta que a experiência de estado de Fluxo aconteça, ele ainda constitui indicativo psicologicamente válido para a avaliação de um jogo (TAKATALO et al., 2010). Desta forma, na dimensão da dificuldade, o jogo monitora constantemente a performance do jogador e ajusta seu nível de desafio de acordo. Um exemplo de adaptatividade nessa dimensão pode ser encontrado no trabalho de

(a) Ansiedade

(b) Canal de Fluxo

(c) Tédio

Habilidade do Jogador

Fonte: Adaptado de Schell (2014)

Sampayo-Vargas et al. (2013), que apresenta um SGE sobre palavras cognatas em espanhol. No jogo as repostas do jogador são acompanhadas. A cada três acertos consecutivos do jogador, o jogo aumenta a dificuldade, e a cada três erros consecutivos a dificuldade é

decrementada.

2.1.2 Dimensão do jogador

Na dimensão do jogador, o principal foco é, através da adaptação, atender as necessidades e preferências do jogador, elemento central do jogo. Para isso é necessário conhecimento sobre as características do jogador. Dessa forma essa dimensão se concentra na modelagem do jogador (GÖBEL; WENDEL, 2016). Dentre vários modelos existentes, pode-se citar como exemplo o modelo *Big Five* (GOLDBERG, 1990). Esse modelo, originado da área da Psicologia, representa a estrutura da personalidade do indivíduo a partir de cinco fatores, para cada um é atribuída uma pontuação para a representação da personalidade do indivíduo. Esses fatores são:

- Extroversão Pessoas que apreciam atividades sociais. Indivíduos com baixo nível de extroversão são considerados tímidos e reservados.
- Amabilidade Pessoas cooperativas, prestativas e amigáveis. Indivíduos com baixo nível de amabilidade são hostis e egoístas.
- Conscienciosidade Pessoas responsáveis, meticulosas e sistemáticas. Indivíduos com baixo nível de conscienciosidade tendem a ser desorganizadas, descuidadas e caóticas.

- Neuroticismo Remete a pessoas que apresentam instabilidade emocional, ansiedade e agressividade. Pessoas com baixo nível de neuroticismo são calmas e emocionalmente estáveis.
- Abertura para experiências Pessoas imaginativas, curiosas e receptivas. Baixos níveis de amabilidade indicam desinteresse e indiferença..

Apesar de vir da Psicologia (GOLDBERG, 1990), o modelo *Big Five* é aplicado na área de jogos. Lankveld et al. (2011), por exemplo, trazem um estudo sobre a modelagem do perfil *Big Five* de um indivíduo através da observação do seu comportamento ao jogar o jogo *Neverwinter Nights*. No contexto de adaptação pode-se citar o trabalho de Lima, Feijó e Furtado (2018), no qual utilizam o perfil do jogador para a adaptação do jogo quanto à sua narrativa. Outro exemplo no contexto de adaptação é o trabalho de Nagle, Riener e Wolf (2016), que estuda o impacto entre as recompensas oferecidas pelo jogo na motivação do jogador de acordo com seu perfil de personalidade.

Enquanto um processo contínuo, a adaptatividade em função da modelagem do jogador conta com a constante atualização do modelo do jogador baseada nas suas ações Göbel e Wendel (2016).

2.1.3 Dimensão do aprendiz

A dimensão do aprendiz tem como escopo a adaptação em Serious Games Educativos e, de forma análoga à dimensão do jogador, é baseada na modelagem do aprendiz. A modelagem do aprendiz incorpora aspectos como o conhecimento do usuário, estilos de aprendizado, rapidez do aprendizado e motivação para aprender (GÖBEL; WENDEL, 2016). Göbel e Wendel (2016) citam três teorias para a modelagem de aprendiz: Knowledge Space Theory (KST), Competence Based Knowledge Theory (CbKST) e o Extended Knowledge Space Theory (EKST).

A Teoria do Espaço do Conhecimento (do inglês KST) foi proposta por Doignon e Falmagne (1985) e tem como base o comportamento de solução observável do estudante. O KST define o estado de conhecimento de um indivíduo como o subconjunto de problemas de um dado domínio de conhecimento que o mesmo pode resolver para um dado conjunto de problemas propostos. Entretanto, o KST é puramente comportamental e o estado de conhecimento aferido pela teoria não leva em consideração aspectos como habilidades do indivíduo e objetivos de aprendizado.

A Teoria de Espaço de Conhecimento Baseado em Competência (do inglês CbKST), proposta por Korossy (1999), tem como objetivo relacionar aspectos comportamentais observáveis (como por exemplo a resolução de questões) com construtos de habilidades e conhecimentos que não são diretamente observáveis. Em outras palavras, através da performance do jogador, o CbKST é capaz de diagnosticar as competências possuídas

por ele de forma indireta, uma vez que a performance do usuário é resultado de suas competências (KOROSSY, 1999). O modelo também inclui o conceito de relações de pré-requisitos entre competências, dessa forma formando um grafo de dependências que viabiliza a escolha do caminho de aprendizado a ser tomado de acordo com o critério de adaptação do jogo.

Por fim a Teoria de Espaço de Conhecimento Estendida, proposta por Heller et al. (2006), estende a Teoria de Espaço de Conhecimento. Tal como o CbKST, a performance do indivíduo é interpretada em habilidades do jogador. Entretanto, diferentemente do CbKST, são considerados no EKST os objetos de aprendizado da aplicação. Dessa forma, para cada objeto de aprendizado são mapeadas as habilidades necessárias para o objeto de aprendizagem e as habilidades que cada cobradas por cada objeto de aprendizado. Apesar de pertinente, não foram identificadas aplicações do EKST na literatura.

2.1.4 Processo de Adaptação em Serious Games Educacionais

O processo de adaptação de um SGE tem como base a modelagem do aprendiz (CHRYSAFIADI; VIRVOU, 2013). Dito isso, Chrysafiadi e Virvou (2013) elicitam três perguntas a serem respondidas ao definir um modelo de aprendiz:

- Que características devem ser modeladas?
- Como modelá-las?
- Como utilizar o modelo de aprendiz?

As duas primeiras perguntas podem ser respondidas através da adoção de uma das teorias de modelagem elicitadas anteriormente, isto é, KST, CbKST ou EKST. Quanto às características a serem modeladas, o KST modela o estado de conhecimento do indivíduo, enquanto tanto o CbKST quanto o EKST modelam o seu conjunto de habilidades. O processo de modelagem dos três compreende a observação e consequente interpretação da performance do indivíduo.

A utilização do modelo do aprendiz, por sua vez, depende diretamente do algoritmo de adaptação adotado. Dito isso, Streicher e Smeddinck (2016) elicitam três questionamentos chave para a definição do processo de adaptação: quando, o que e como adaptar.

• Quando? A cada momento que o jogo realiza uma adaptação deve haver uma justificativa para fazê-la, nesse sentido é necessário estabelecer critérios que servem como gatilho para tal.

- O que? Para a implementação da adaptatividade em um SGE é necessário que elementos do jogo serão alterados durante a adaptação do sistema. Essa questão envolve aspectos do desenvolvimento do sistema. A reordenação de tarefas, por exemplo, apesar de ser pertinente em primeira instância, pode quebrar a narrativa do jogo se não forem desenvolvidas de forma modular.
- Como? Remete às mecânicas por trás da adaptação, isto é, a definição de como os elementos serão adaptados. Nesse contexto Linek et al. (2009) trazem duas classificações de adaptação para SGE: a macro adaptação e a micro adaptação. A macro adaptação remete consiste no sequenciamento de tarefas apresentadas ao jogador. Já a micro adaptação consiste em intervenções feitas durante a resolução de tarefas, esse tipo de adaptação pode englobar dicas, apontamentos sobre a performance do jogador, encorajamento, etc.

2.2 Teoria do Espaço de Conhecimento baseado em Competência (CbKST)

O CbKST foi proposto por Korossy (1999) como uma extensão à teoria do espaço de conhecimento (do inglês Knowledge Space Theory - KST) proposta por Doignon e Falmagne (1985). O KST pressupõe que o conhecimento de uma pessoa pode ser obtido através do comportamento de solução da mesma em relação à um conjunto X de problemas, os quais pertencem a um determinado domínio de conhecimento Korossy (1999). Dado que as soluções de problema assumem valores binários, isto é, certo ou errado, o estado de conhecimento de um indivíduo consiste no subconjunto de questões de X o qual o indivíduo é capaz de resolver. Outro conceito importante para o KST é o conceito de estrutura de conhecimento que é definida pelo par (X, K), onde K é definido como a família de subconjuntos de X, que contém todos os padrões "empiricamente esperados" das questões de X, e cada elemento de (X, K) constitui em um estado de conhecimento. Na prática, uma estrutura de conhecimento acaba modelando relações de dependências entre problemas, por exemplo, se um problema B depende de A, uma pessoa só irá responder B corretamente se ela for capaz de responder A. Quando, para uma dada estrutura de conhecimento (X,K), se os conjuntos $\emptyset, K \in (X,K)$ e K é estável sob união, isto é, a união de estados de conhecimento representados em K irá resultar em um estado ainda pertencente a K, a estrutura de conhecimento é denominada espaço de conhecimento. Um espaço de conhecimento se diferencia do conceito de estrutura de conhecimento por ser capaz de ser representada por uma base, uma subfamília mínima de K em que cada estado de conhecimento pertencente a K pode ser obtido através da uni \tilde{a} o de elementos dessa base.

O CbKST, por sua vez, se embasa em na diferenciação de dois conceitos: perfor-

mance e competência. Enquanto a performance se baseia no comportamento de solução empírico observável em relação à um conjunto de questões, a competência remete à entidades "teoricamente fundadas" responsáveis pelo comportamento de solução observável (KOROSSY, 1999). De forma exemplificada, o ato de um aluno acertar uma questão de soma em uma prova remete a sua performance, enquanto o fato do aluno saber somar consiste na sua competência, apresentada por Korossy (1999) como sinônimo de habilidade. De forma análoga ao KST, o CbKST introduz conceitos de estrutura de competência, espaço de competência, estado de competência, estrutura de performance, espaço de performance e estado de performance. Os conceitos relacionados a performance são diretamente equivalentes às definições de estrutura, espaço e estado de conhecimento introduzidos no KST. Outro conceito adicionado é uma função de interpretação que mapeia os problemas do domínio de conhecimento em questão para as respectivas competências que os representam. Dessa forma, baseado no estado de performance obtido pelo estudante, é possível mapear as competências que ele possui de forma indireta.

Com o fim de formalizar as definições do CbKST, considere considere E como o conjunto de competências necessárias para realizar todas as tarefas do jogo. Levando em conta a existência de relações de pré-requisito entre elementos de E, considere C como uma família de subconjuntos de E tal que os elementos de C obedecem tais relações. Dito isso, tem-se que cada elemento de C é denominado estado de competência (KOROSSY, 1999) e, na prática, consiste no conjunto de competências que um indivíduo pode possuir. Ademais, a tupla (E,C) é definida como estrutura de competência (AUGUSTIN et al., 2011; KOROSSY, 1999), a qual contém todos os estados de competência possíveis. De forma análoga ao conceito de espaço de conhecimento, tem-se que se $\emptyset, E \in (E,C)$ e C é estável sob união, (E,C) consiste em um espaço de competência.

Tendo em mente o conceito de espaço de competência, considere que para uma dada competência $e \in E$, têm-se que C_e consiste no conjunto de estados de competência que contém e:

$$C_e = \{ c \in C : e \in C \} \tag{2.1}$$

Ademais, define-se um estado de competência $\hat{C}_e \in C$ como um átomo em e quando \hat{C}_e consiste no menor estado de competência de C_e (STEFANUTTI; CHIUSOLE, 2017), representado formalmente como:

$$\hat{C}_e = \min C_e \tag{2.2}$$

Dessa forma, tem-se que a base de um espaço de competência B(C) consiste na união de todos os conjuntos de \hat{C}_e para cada competência $e \in E$:

$$B(C) = \bigcup \{\hat{C}_e : e \in E\} \tag{2.3}$$

Para exemplificar o funcionamento do CbKST, será utilizada como base a aplicação empírica do mesmo apresentada em Korossy (1999). Dado o domínio de conhecimento na área de "divisibilidade no conjunto dos números naturais", é possível modelar as competências de acordo principais tópicos instrucionais em forma de métodos computacionais, métodos estes que segundo Korossy (1999) "podem ser facilmente modelados como objetivos de ensino/aprendizado do currículo". A seguir estão as competências elicitadas para o domínio de conhecimento organizadas em tópicos instrucionais.

- 1. Computar a fatoração em números primos de um número natural a
 - a) P Fatorar a, passo a passo, até que todos os fatores sejam primos.
- 2. Computar o conjunto de todos divisores do um número natural a
 - a) D_F achar todas as decomposições de a = u.v, com $u, v \in N$.
 - b) D_P fatorar a em números primos, incluir o número 1 e todos os produtos possíveis obtidos com os números da fatoração de a no conjunto da resposta
- 3. Computar o conjunto dos divisores comuns dos números naturais $a \in b$.
 - a) C_D calcular os divisores de a e de b, em seguida computar a interseção dos dois conjuntos.
 - b) C_G computar o maior divisor comum entre a e b, em seguida computar o conjunto de todos os divisores em cima do divisor comum.
- 4. Computar o maior divisor comum dos números naturais $a \in b$
 - a) G_D computar a interseção dos divisores de a e de b, em seguida selecionar o maior valor do conjunto.
 - b) G_P computar a fatoração em números primos de a e de b, fazer o produtório com os números primos de menor multiplicidade entre a e b.
 - i. Exemplo: MDC(12, 15)
 - A. $P(12) = \{3,2,2\}$
 - B. $P(15) = \{5,3\}$
 - C. $MDC(12, 15) = 5^{0*} 3^{1} * 2^{0} = 3$
 - ii. Computar o mínimo múltiplo comum dos números naturais $a \in b$
 - iii. L_P computar a fatoração em números primos de a e de b, fazer o produtório com os números primos de menor multiplicidade entre a e b.
 - iv. Exemplo: MMC(12, 15)

A.
$$MDC(12, 15) = 5^1 * 3^1 * 2^2$$

v. L_G - calcular o máximo divisor comum entre a e b, dividir o produto entre a e b pelo MDC obtido.

Obtidas as competências, o próximo passo é modelar as relações de pré requisito entre elas. O autor cita três tipos de relações usadas como critérios para modelagem:

- 1. Relações lógicas/matemáticas
- 2. Relações sobre diferenças entre complexidade
- 3. Relações baseadas em experiências instrucionais

O primeiro tipo de relação remete a pré-requisitos de ordem lógica/ matemática. Um exemplo é a relação entre G_P e P, uma vez que G_P requer a fatoração em números primos fica clara a relação de pré-requisito. O segundo tipo de relação remete às diferenças na complexidade de computação dos processos, no caso do cálculo do conjunto de divisores. Por exemplo, o cálculo do conjunto para o número 230 é claramente mais custoso computacionalmente do que o número 77, logo, para esta operação, foram criadas duas competências $D_{\bar{P}}$ e $D_{\bar{P}}$ com problemas de complexidade mais baixas. E, por fim, o terceiro tipo de relação se baseia em convenções pedagógicas sobre a ordem de ensino de cada assunto, foi observado através da experiência instrucional que os alunos acham mais complicado computar fatores primos para o cálculo do MMC do que para o cálculo do MDC. Dessa forma, acaba-se criando uma relação de pré-requisito entre as respectivas competências. A Figura 1 ilustra os pré-requisitos entre as competências em forma de grafo. As competências que estão mais abaixo são pré-requisitos das que estão acima (quando ligadas por uma aresta) e os arcos entre duas arestas simbolizam o operador lógico "ou". Assim só é necessário o domínio de apenas uma das competências para que se domine a habilidade mais acima.

Figura 2 – Relações de pré-requisito entre competências: os elementos mais acima possuem uma relação de dependência com os elementos conectados mais abaixo.

Fonte: Elaborada pelo autor

Através da análise da Figura 2 é possível notar que vários percursos de aprendizado podem ser tomados para que o aluno domine todos os objetivos educacionais propostos para o dado domínio de conhecimento. Essa multiplicidade de possibilidades permite a implementação de um modelo adaptativo SGE. No entanto, vale salientar que, enquanto teoricamente para um aluno acertar uma questão que precise de uma determinada habilidade, ele precise dominar as habilidades que são requisitadas por ela, na prática isso não é necessariamente verdade. No teste empírico conduzido por Korossy (1999), apesar da maioria dos alunos obterem estados de performance condizentes com o espaço de performance construído, houveram casos em que os estados de performance não eram condizentes com o espaço. Esse problema pode ser agravado quando os problemas propostos fossem de carácter objetivo (múltipla escolha), que potencializa as chances de acerto "por chute".

2.2.1 Taxonomia dos Objetivos Educacionais e o CbKST

Heller et al. (2006) definem o conceito de habilidade como um par que consiste em um conceito (por exemplo, difração da luz) e um verbo de ação. Para Heller et al. (2006) verbos de ação descrevem performances ou comportamentos observáveis de um estudante. Os autores ainda afirmam que os verbos de ação podem representar objetivos educacionais. Neste contexto vale ainda salientar que a definição de habilidade de Heller et al. é utilizada no jogo ELEKTRA (KICKMEIER-RUST; ALBERT, 2008) em conjunto com uma versão revisada da Taxonomia de Bloom, proposta por Anderson et al. (2001). O uso de uma Taxonomia para a padronização de competências se torna pertinente não apenas para fins de representação, mas também como norteador para a identificação de competências de um determinado domínio de aprendizado.

Apesar da adoção da taxonomia revisada de Anderson et al. (2001) ser pertinente para os os SGE supracitados, o seu foco no domínio cognitivo (MARZANO; KENDALL, 2007), se torna limitante para o presente trabalho. Desta forma serão descritos na presente sessão os domínios cognitivo e afetivo da Taxonomia de Bloom bem como a taxonomia do domínio cognitivo proposta por Dave (1970).

2.2.2 Taxonomia de Bloom

A Taxonomia de Bloom classifica os objetivos educacionais em três domínios: cognitivo, afetivo e psicomotor. Os domínios são divididos em níveis hierárquicos nos quais para se atingir um nível mais elevado, deve-se passar pelos níveis inferiores. Dessa forma, sob a ótica do CbKST, cada nível seria um pré-requisito do seu sucessor. A Figura 3 ilustra a hierarquia de níveis dos domínios cognitivo e afetivo.

O domínio cognitivo é composto pelos seguintes níveis: conhecimento, compreensão, aplicação, análise, síntese e avaliação. O nível do conhecimento remete ao ato de lembrar

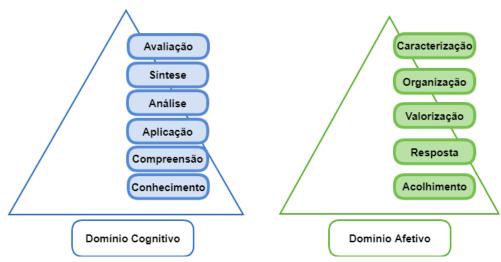


Figura 3 – Níveis hierárquicos dos domínios cognitivo e afetivo

Fonte:Elaborado pelo autor

ou recordar de processos padrões e métodos. Esse nível também inclui a capacidade de relacionar um conhecimento com uma dada situação, como por exemplo identificar o assunto de uma dada questão. Compreensão remete a um nível de entendimento em que um indivíduo é capaz de reconhecer o que está sendo mostrado a ele e consegue fazer o uso do conteúdo ou ideia relacionado sem que seja necessariamente capaz fazer conexão com outras ideias ou compreender completamente as implicações de uso. Aplicação consiste no uso de abstrações, isto é, ideias, métodos e procedimentos, em situações concretas. Análise consiste em separar um conteúdo em elementos e identificar os relacionamentos e princípios organizacionais com o intuito de entender o conteúdo como um todo. Síntese remete à habilidade de trabalhar com elementos de tal forma que, através do arranjo e combinação deles, se consiga obter um todo, isto é, um padrão ou estrutura que não era evidente antes do processo. Por fim avaliação consiste no processo de avaliar um material ou método para um dado propósito e com base em critérios, sejam eles qualitativos, quantitativos, baseados em um padrão de avaliação, determinados pelo aluno ou determinados a priori.

Em relação ao domínio afetivo, o mesmo é composto por: acolhimento, resposta, valorização, organização e caracterização. O nível do acolhimento é caracterizado pela sensibilização do aluno pela existência de certos fenômenos ou estímulos, nesse nível se encontram os processos de percepção de um estímulo, disposição a recebê-lo e atenção controlada à um estímulo, isto é a diferenciação de um estímulo. O nível da resposta compreende na reação ao estímulo, diferentemente do nível anterior, neste é possível observar um certo comprometimento por parte do aluno ao estímulo. O nível da valorização remete a internalização de valores, diferentemente do nível da resposta o qual remete a uma atitude em resposta a um estímulo, aqui a atitude advém do cometimento com o valor relacionado. O nível da organização surge a partir da internalização de vários valores, desta forma quando um indivíduo encontra uma situação que envolve mais de um valor se torna

necessária a organização destes em um sistema próprio, conceituando e inter-relacionando cada elemento, dessa forma o indivíduo é capaz de ponderar os seus valores para lidar com tal situação. Por fim no nível de caracterização por um valor ou complexo de valores consiste em uma internalização de valores em um dado grau que tais valores controlam o seu comportamento e estejam integrados com sua filosofia de vida e visão de mundo.

Embora os domínios afetivo e cognitivo sejam descritos de forma separada, Bloom, Krathwohl e Masia (1972), em seu trabalho sobre domínio afetivo, afirmam que: "O fato de que tentemos analisar a área afetiva, separadamente da cognitiva, não tem a intenção de sugerir que haja uma separação fundamental. Não há nenhuma". Nesse escopo, o trabalho discute sobre o relacionamento entre os dois domínios tendo em vista os níveis hierárquicos de cada um. Embora não tenha sido alcançado um mapeamento completo das relações entre os níveis de cada domínio, são apontadas relações importantes decorrentes das definições de cada nível. A seguir serão elicitados exemplos de relações entre os domínios.

A primeira relação elicitada pelos autores é entre o nível do conhecimento, no domínio cognitivo, e do acolhimento, no afetivo. Uma vez que o acolhimento envolve se tornar consciente de um estímulo esse acaba se tornado pré-requisito para o conhecimento no seguinte sentido: para se ter conhecimento de algo é preciso primeiro se tornar consciente de sua existência. Entretanto, vale denotar que essa ligação nem sempre acontece. Tomar "conhecimento" (no sentido do acolhimento) de um elemento ou mensagem de uma música pode exigir níveis cognitivos tais como compreensão ou análise dos elementos que compõem a mesma.

No nível da organização do afetivo, o processo de conceitualizar um determinado valor requer a um indivíduo pelo menos a compreensão dele. O processo de interrelacionamento de valores por sua vez indica a requisição de capacidade de análise de cada valor. Adicionalmente, o processo de comparar valores entre si implica na capacidade de avaliação no cognitivo.

Quanto aos níveis intermediários, isto é, resposta e valorização, sua relação com o cognitivo é, segundo os autores, mais difícil de denotar uma vez que essa parte do afetivo "parece abranger uma ampla parte do domínio cognitivo" (BLOOM; KRATHWOHL; MASIA, 1972). No nível da resposta é denotado pelos autores que se um indivíduo responde a um valor, ele compreende a razão para qual respondê-lo. No nível de valorização, no qual há uma busca de situações as quais envolvem os valores, relacionados para assim respondê-las, dessa forma pode haver a necessidade da capacidade de um indivíduo analisar situações com fim de determinar se os valores em questão são aplicáveis a uma dada situação.

A Taxonomia de Bloom, além de fornecer uma classificação para objetivos educacionais, facilitando a assim a modelagem de competências, ela tem uma função norteadora no que se refere a denotar relações de pré-requisito entre as competências identificadas. No âmbito das relações dentro do mesmo domínio, essas são definidas de forma objetiva

devido à organização hierárquica entre os níveis de cada domínio. Quanto às relações entre domínios, embora não seja fornecida uma forma objetiva de traçar todas as relações entre competências, são fornecidos meios para que relações entre competências de domínios diferentes sejam denotadas através de critérios subjetivos.

Quanto ao domínio psicomotor, embora não tenha sido explorado pelos autores da Taxonomia de Bloom, aproximações de outros grupos podem ser adotadas. Ferraz e Belhot (2010), ao descreverem o domínio psicomotor, exemplificam a taxonomia proposta por Dave (1970). A taxonomia em questão divide o domínio psicomotor em cinco níveis: imitação, articulação, manipulação e naturalização (KENNEDY, 2006).

Naturalização

Articulação

Precisão

Manipulação

Imitação

Domínio Psicomotor

Figura 4 – Nível hierárquico do domínio psicomotor de Dave (1970)

Fonte: Elaborado pelo autor

O nível da imitação compreende a capacidade de um indivíduo reproduzir uma ação através da observação da demonstração de outra pessoa. O nível da manipulação compreende a habilidade de um indivíduo conseguir realizar ações pela memória ou seguindo instruções. No nível da precisão, o indivíduo é capaz de performar ações sem ter que recorrer a um material de apoio, mantendo um alto grau de performance na sua ação. O nível da articulação remete à habilidade executar uma série de ações, sendo capaz de modificar o procedimento em execução para atender situações especiais caso necessário. Por fim, o nível da naturalização caracteriza tamanha habilidade que um indivíduo consegue realizar uma ação sem pensar (de forma natural).

2.2.3 Serious Games e CbKST

Várias aproximações podem ser observadas no que se diz respeito ao CbKST e Serious Games. Estas compreendem desde conceituação de jogos, frameworks voltados

para desenvolvimento de jogos e até modelos de avaliação de performance. Pesquisas identificadas durante o estudo foram agrupadas em três subseções: ELEKTRA, 80Days e outras aproximações. Foram alocadas sessões para os jogos ELEKTRA e 80Days devido à relevância à pesquisa proposta no presente trabalho e o número de referências englobadas por cada cada um.

2.2.3.1 ELEKTRA

O ELEKTRA, acrônimo de Enhanced Learning Experience and Knowledge Transfer, foi um jogo proposto por Kickmeier-Rust et al. (2006) em um projeto interdisciplinar envolvendo diversas áreas como ciência cognitiva, neurociência, pedagogia, game design e desenvolvimento de jogos. O ELEKTRA consiste em um jogo de aventura em primeira pessoa e explora em seu objetivo educacional a apresentação de conceitos de física do oitavo ano, tais como propagação da luz e magnetismo (AUGUSTIN et al., 2011). Durante o jogo, o jogador se depara com diversas situações-problema onde deve utilizar conceitos de física para manipular os objetos do cenário de forma que o problema seja resolvido, o jogo acompanha constantemente o jogador e associa cada interação (que seja significativa para a resolução do problema) à uma ou mais competências com o fim de inferir o conhecimento do jogador e assim fazer intervenções, tais como feedback, dicas, orientações, etc.

A Figura 5 ilustra uma situação-problema presente no jogo: o jogador precisa operar um dispositivo com uma rampa por onde bolinhas de diferentes materiais vão descer, no entanto esta rampa não é contínua e cabe ao jogador manipular a força do ventilador e a do ímã que estão integrados ao dispositivo para manter a trajetória da bolinha. Dada esta situação, o jogo irá monitorar o material da bola juntamente com as interações por parte do usuário de aumentar ou diminuir as forças do ímã e do ventilador, assim, se o jogador aumentar a força de atração do ímã quando o material da bola é plástico, é interpretado que ele não tenha domínio sobre o conhecimento de que tipos de materiais reagem com ímãs.

O jogo acompanha constantemente o jogador e toma providências de acordo com seu desempenho durante a fase, caracterizando assim sua aproximação como micro adaptativa com avaliação em tempo real, mas também faz parte do escopo do jogo o sequenciamento de atividades, fazendo-o também ter uma aproximação macro adaptativa. O modelo de micro adaptação é conceituado por Kickmeier-Rust e Albert (2010) e serve como base para a formulação do matemático por trás da adaptação do ELEKTRA descrito por Augustin et al. (2011) e Augustin et al. (2015).

A micro adaptação do ELEKTRA se embasa principalmente na avaliação não invasiva do conhecimento do jogador evitando a quebra de imersão e fluxo da experiência de jogo (KICKMEIER-RUST; ALBERT, 2010). Para isto o jogo faz avaliação constante das interações do jogador durante o jogo. Utilizando o CbKST, o modelo faz a associação

Figura 5 – Situação-problema do jogo ELEKTRA, o jogador deve manipular os controles para regular as forças do imã e ventilador para que a bolinha caia no buraco

Fonte: Augustin et al. (2011)

de cada ação do jogador com a presença ou ausência de determinadas habilidades.

De maneira um pouco mais detalhada, cada situação-problema (fase) é representada por um conjunto de objetos que são relevantes para a resolução do problema proposto. Cada objeto possui um estado dentro de um conjunto de estados possíveis (por exemplo uma lâmpada pode assumir o estado de "ligada" ou "desligada"). A interação do usuário com os objetos da situação altera seu estado e a partir dessa ação o sistema mapeia para a presença e/ou ausência de determinadas habilidades, no exemplo da rampa, aumentar a força do imã para suspender a bola de plástico indica que o jogador não tem conhecimento de que o imã não interage com o plástico. Como apenas uma observação não caracteriza evidência confiável para assumir a ausência ou presença de competências, uma aproximação probabilística é adotada. Assim, quando a ausência ou presença de uma competência/habilidade é detectada, as probabilidades de cada estado de competência possível são atualizadas de acordo, portanto se uma competência X é detectada, todos estados de competência que contêm X têm as suas probabilidades aumentadas, caso a sua ausência seja detectada as probabilidades de cada estado de competência que contém X é diminuída. A regra de atualização de probabilidades é descrita por Augustin et al. (2011) e Augustin et al. (2015). Depois de concluída a situação-problema o jogo, se baseando no estado de competência do jogador, constrói um conjunto de desafios compatíveis com o seu

nível e seleciona aleatoriamente uma fase dentro do conjunto (AUGUSTIN et al., 2011). Esta seleção de situações-problemas, apesar de não mencionado pelo autor, caracteriza a macro adaptação do ELEKTRA.

Quanto à definição de habilidades/competências Kickmeier-Rust et al. (2008), ao discutirem sobre o modelo de ontologia do ELEKTRA, afirmam que a abstração (no conceito de classe de programação) das habilidades consistem em dois elementos: um conceito factual (lentes convexas por exemplo) e verbos de ação associados (lembrar e aplicar, por exemplo). Essa definição de habilidade é baseada em Heller et al. (2006). Esses verbos de ação, no contexto do ELEKTRA estão diretamente ligados à Taxonomia Revisada de Bloom, propsota por Anderson et al. (2001), que define uma hierarquia para os objetivos de aprendizado no domínio cognitivo: conhecimento, compreensão, aplicação, analise, síntese e avaliação.

Sobre o desenvolvimento do ELEKTRA, Linek et al. (2009) definem um framework de desenvolvimento de jogos educativos que segue oito fases. Tendo em mente o desenvolvimento da adaptabilidade de um jogo educacional, serão elicitadas as cinco primeiras fases deste framework:

- 1. Identificar objetivos instrucionais
- 2. Análise instrucional
- 3. Analisar contexto de aprendizado e os estudantes
- 4. Definir objetivos de performance e estrutura geral do jogo
- 5. Design do jogo educacional

Vale denotar que é durante essas cinco etapas citadas que o modelo de adaptação é definido. Na primeira fase são definidas as principais decisões pedagógicas acerca do jogo, pois aqui serão definidos os objetivos educacionais bem como as áreas de aprendizado envolvidas. Na segunda etapa o conteúdo instrucional é traduzido para uma estrutura de conhecimento, nesse contexto a estrutura em questão segue a Teoria do Espaço de Conhecimento Baseado em Competência. Na terceira fase são analisados aspectos como público alvo e o contexto de aprendizado, aqui serão levados em conta o conhecimento a priori do público alvo, isto é, habilidades e competências já possuídas por possíveis usuários. A quarta etapa se refere a estruturação do jogo e objetivos quanto a performance, nessa fase são definidos a história do jogo, os capítulos, bem como seus subcomponentes. E finalmente temos o design do jogo, aqui será definido todo o funcionamento do jogo incluindo as regras de adaptação do mesmo.

Por fim, testes de validação do micro adaptação do protótipo do jogo ELEKTRA são discutidos por Kickmeier-Rust e Albert (2010) e Kickmeier-Rust et al (2008), que de forma

obtiveram resultados positivos em relação às intervenções feitas pelo modelo em contraste com aproximações sem intervenção e com intervenções feitas de forma inapropriada (por exemplo fornecer dicas sem que o usuário esteja precisando de ajuda).

2.2.3.2 80Days

O jogo 80Days é o sucessor do jogo ELEKTRA (KICKMEIER-RUST; ALBERT, 2010). Este é um jogo educativo de aventura cuja temática é o ensino de geografia para crianças de 13 a 14 anos. Como sucessor do ELEKTRA, o 80Days acaba herdando vários aspectos do seu antecessor tais como a micro adaptação e a macro adaptação. Enquanto herda muitas características do modelo de micro adaptação proposto para seu antecessor por Augustin et al. (2011), o 80Days tem como uma de suas principais propostas oferecer uma narrativa adaptativa (GÖBEL et al., 2009; KICKMEIER-RUST; GBEL; ALBERT, 2008).

O modelo macro adaptativo do 80Days é descrito por Augustin et al. (2013) e seus princípios são similares ao de seu antecessor. Este modelo também se embasa no CbKST e faz o uso de probabilidade como ferramenta para avaliação de conhecimento. Entretanto o objetivo principal é a construção de uma linha do tempo da narrativa do jogo, para isso a linha do tempo é representada como uma lista de elementos de jogo, elementos esses que podem ser classificados como elementos de história e elementos de ação. Elementos de história são elementos em que o jogador não interage com o jogo, nesses elementos ocorrerá o progresso da história do jogo e nenhuma informação acerca do conhecimento do usuário é obtida. Por outro lado, os elementos de ação são elementos do jogo onde o jogador precisa interagir com o jogo, uma situação-problema por exemplo, nesses elementos o jogo pode obter informações sobre o conhecimento do jogador. Assim como acontecia com o ELEKTRA, cada ação do jogador é mapeada para a presença e/ou ausência de competências, mas ao invés de atualizarmos as probabilidades dos estados de competência, desta vez são as probabilidades de cada competência que são contabilizadas. Desta forma a cada atualização da probabilidade de uma determinada competência, todas as competências relacionadas, isto é, que possuem relação de pré-requisito com ela também são atualizadas. Assim, ao final de cada elemento de ação, o estado de competência do jogador é atualizado. Desta dentre os elementos de jogo disponíveis para dar continuidade à narrativa, é selecionado aquele que possuir melhor compatibilidade com as probabilidades dos estados de competência do jogador.

2.2.3.3 Outras aproximações

Journey é um jogo educativo cujo propósito é o ensino de estatística para níveis do ensino médio e início do ensino superior (CARVALHO, 2016). O protótipo do jogo inclui os seguintes assuntos: espaço de probabilidade, eventos mutuamente exclusivos, eventos não

mutuamente exclusivos, eventos independentes e eventos dependentes. Ao contrário dos jorgos anteriores, o Journey tem como o diferencial a sua arquitetura baseada em serviços, dessa forma, a avaliação do conhecimento do usuário é gerenciada por um serviço web que implementa o funcionamento do CbKST (CARVALHO, 2016). Carvalho (2016) ainda afirmam que o jogo cobre as dimensões de lembrar, entender, aplicar, analisar e avaliar da Taxonomia revisada de Bloom, evidenciando, portanto, uma abordagem cognitivista.

Melero, El-Kechaï e Labat (2015) fazem um estudo sobre a aplicação de dois métodos de aproximação do CbKST em três SGEs diferentes (não adaptativos): Blockly: Maze, Les Cristaux d'Éhère e Refraction. Seus propósitos consistem respectivamente: na prática de conceitos fundamentais de programação, no ensino de conceitos relacionados a física e no desenvolvimento de habilidades em adição e multiplicação de frações. O artigo busca fazer o comparativo da aplicação de duas técnicas: modelo do domínio de aprendizado e a Q-Matriz. Enquanto a primeira usava uma abordagem mais tradicional, onde um profissional da área fazia a modelagem do domínio de aprendizagem e a partir dele eram identificadas as competências e suas dependências. O método do uso de Q-Matriz consiste em identificar as competências necessárias para cada atividade do jogo para assim montar um estado de competência para cada atividade e com os estados de competência obtidos gerar uma estrutura de competência. Em geral o primeiro método mostrou gerar uma estrutura de competência maior e mais completa, mas com a necessidade de um profissional, enquanto o segundo obteve uma estrutura de competência menor, entretanto o esforço de construção requer apenas informações sobre as competências de cada atividade. Em outra vertente vale citar os trabalhos de Wendel et al. (2014), que utilizam o CbKST com o intuito de simular comportamento de jogadores em agentes inteligentes em um ambiente de um Serious Game multijogador colaborativo e o de Kickmeier-Rust, Holzinger e Albert (2012), propõem um Serious Game para o combate ao declínio físico e mental para pessoas idosas.

2.3 Considerações

Neste capítulo foram abordados os principais conceitos a respeito de adaptação em Serious Games bem como as principais definições para o entendimento do CbKST e suas aplicações em Serious Games. O processo de adaptação em SG exige um acompanhamento contínuo da performance e ações do jogador. Além disso é necessário ponderar sobre quando, como e o que adaptar no jogo. No espectro de Serious Games educacionais é evidenciada a necessidade de ferramentas para avaliação do conhecimento do jogador. Apesar da modelagem do aprendiz segundo o CbKST se mostrar pertinente na representação do conhecimento do usuário, a prática apresentada pelo autor Korossy indica que inferir o domínio sobre uma competência com base em apenas uma evidência de sua presença pode gerar inferências erradas. Esse problema se agrava ainda mais quando a teoria é aplicada

no escopo de jogos, uma vez que a avaliação está a mercê de fatores como "chutes" de respostas e comportamentos exploratórios por parte do jogador. Nesse sentido um método de avaliação capaz de lidar com tais fatores se torna pertinente.

Vale reforçar novamente que os SGEs mostrados os quais são aplicados CbKST tem como seus objetivos educacionais voltados para a aquisição e desenvolvimento de conhecimento e, portanto, trabalham em cima do domínio cognitivo. Consequentemente se torna evidente a escassez de pesquisas em adaptação baseada em CbKST que atuam nos objetivos de aprendizado dos domínios afetivo e psicomotor. Nesse sentido, como indicado nos trabalhos de Heller et al. (2006) e Kickmeier-Rust e Albert (2008), a adoção de uma classificação para os três domínios se torna pertinente.

Dito isso, para a aplicação do CbKST no processo de adaptação de um SGE se faz necessária adoção de um método de avaliação bem como heurísticas para a definição e inter relação de competências. Ademais, enquanto um modelo de aprendiz, é necessário definir como será utilizado, isto é, como se dará o processo de adaptação baseado em CbKST. Nesse sentido, as três perguntas (o que?, quando? e como?) que definem o processo de adaptação devem ser respondidas. Tendo em vista as implementações elicitadas na literatura, a adoção do processo de macro adaptação (sequenciamento de fases) torna a concepção do processo sucinta, pois responde às questões de o que adaptar (apresentação de fases do jogo) e quando adaptar (durante a transição de fases).

3 Materiais e métodos

Nesse capítulo são abordados os métodos bem como os materiais adotados para a o desenvolvimento do presente trabalho. Como primeiro passo do trabalho foi realizado um estudo com o fim de elicitar os fundamentos de adaptação em *Serious Games* Educacionais. Em seguida, foi realizada uma revisão narrativa na área de adaptação e CbKST tendo em vista a identificação de modelos de adaptação existentes e elicitação das necessidades da área. Sequencialmente, foi estabelecido o modelo de adaptação baseado no que foi nos fundamentos elicitados de adaptação e nas necessidades na área da aplicação de CbKST para adaptação. Por fim, foi estabelecido um processo para implementação do modelo proposto no SGE Caixa de Pandora seguido da sua validação com base na literatura levantada.

3.1 Estudo de fundamentos de adaptação e CbKST

Um estudo inicial sobre adaptação em *Serious Games*, com um foco em SGE, foi realizado. O objetivo desse estudo consistiu na identificação dos principais conceitos de adaptação na área bem como a identificação do processo de definição de um modelo de adaptação.

Tendo em vista um maior entendimento sobre o CbKST e a construção de uma noção geral das suas aplicações, foi realizada uma revisão narrativa sobre o uso de CbKST em *Serious Games*. A revisão narrativa consiste em uma forma de revisão bibliográfica que permite a síntese narrativa de trabalhos previamente publicados da área a partir da análise crítica do pesquisador.

Foram buscados trabalhos que contemplassem a aplicação do CbKST em *Serious Games* ou que abordassem de forma satisfatória as aplicações na literatura. Apesar do foco em SGE, ainda foram consideradas aplicações fora desse escopo. Dito isso foram consultados os portais Periódicos Capes e Google Acadêmico tendo em vista a sua agregação de diversas bases de dados.

3.2 Definição do Modelo

Para a definição do modelo de adaptação descrito foram consideradas as três perguntas elicitadas por (CHRYSAFIADI; VIRVOU, 2013): 1) Que características do usuário devem ser modeladas? 2) Como modelá-las? 3) Como utilizar o modelo proposto?

As características a serem modeladas dependem diretamente do escopo do SGE,

delineado pelos seus objetivos educacionais. No escopo do CbKST, a reposta dessa pergunta se alinha com as competências do domínio do jogo e a definição da estrutura de competência do domínio do jogo. Dado o carácter genérico do modelo proposto, decidiu-se a adoção de uma padronização que abrangesse o escopo de habilidades do modelo. Dito isso, foi utilizada a Taxonomia de Bloom para os domínios cognitivo e afetivo juntamente com a taxonomia de Dave para o domínio psicomotor.

O processo de modelagem dessas características depende das suas relações e do método de avaliação dessas características. Nesse escopo, o CbKST fornece a base para a estruturação das características (competências no escopo do CbKST) através dos conceitos de estado de competência e estrutura de competência. Quanto ao método de avaliação, embora os modelos do ELEKTRA (AUGUSTIN et al., 2011) e do 80Days (AUGUSTIN et al., 2013) descrevam métodos para avaliação de competência, baseados em CbKST voltados para jogos, foi proposto um método próprio para avaliação de habilidades.

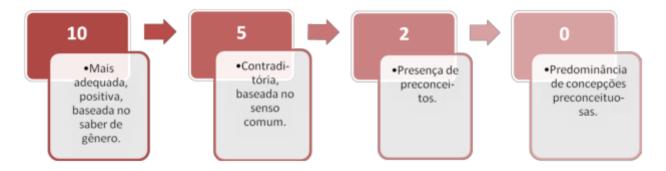
Definidas as características a serem avaliadas e o método de avaliação adotado, tem-se em mãos o modelo do aprendiz. Dito isso, a utilização do modelo do aprendiz remete diretamente à definição do algoritmo de adaptação. Para isso são respondidas as três perguntas de Streicher e Smeddinck (2016): o que, como e quando adaptar. Dada a natureza genérica do modelo proposto, a micro adaptação se torna inviável devido as particularidades de cada jogo, logo o presente modelo se limita ao sequenciamento de tarefas de SGE. Desta forma, a participação do modelo de aprendiz se faz no critério de sequenciação das fases do jogo aplicado.

Dito isso, tem-se que o presente modelo pode ser dividido em três componentes: a modelagem de competências, avaliação do usuário e sequenciador de fases. No qual cada um corresponde à resposta de uma das perguntas de Chrysafiadi e Virvou (2013), respectivamente.

3.3 Aplicação e validação do modelo

O SGE Caixa de Pandora consiste na plataforma alvo de validação do modelo proposto. A versão utilizada no presente trabalho é a versão para plataformas móveis do jogo, apresentada no trabalho de Felix et al. (2018).

O Caixa de Pandora tem como objetivo principal a qualificação de profissionais da saúde no âmbito da violência doméstica contra a mulher (ALMEIDA et al., 2018). O jogo também busca sensibilizar e conscientizar profissionais da saúde em relação à necessidade da identificação e intervenção em casos de violência contra a mulher.


No escopo de seus objetivos educacionais, o SGE abrange os domínios cognitivo e afetivo. Explorando o domínio cognitivo até o nível da compreensão e o afetivo até o nível

da resposta, com um possível alcance do nível da valorização.

O jogo gira em torno da personagem Marta que durante toda vida viveu situações de violência e opressão contra a mulher. Estas situações são mostradas ao jogador em formato de cenas seguidas por perguntas de múltipla escolha que devem ser respondidas pelo jogador, cada resposta revela não apenas informações de caráter teórico sobre o tema, mas também concepções pessoais do usuário. Como consequência a cada resposta dada, uma mensagem de cunho reflexivo e motivacional é dada ao jogador.

Para cada pergunta são apresentadas quatro alternativas, a cada alternativa é atrelada uma pontuação que reflete o alinhamento do saber e das concepções do jogador quanto ao tema em questão, ilustrada na Figura 6. As perguntas por sua vez, são agrupadas em três níveis que abordam três grandes temas: Gênero, Direitos Humanos e Saúde. Em cada nível predominam um dos temas citados em forma respectiva, entretanto suas perguntas podem envolver temas relativos aos outros níveis. Os conceitos abordados por cada grande tema do jogo estão explicitados no mapa conceitual do jogo, ilustrado na Figura 7.

Figura 6 – Escala de avaliação das respostas das perguntas e respectivos significados

Fonte: Almeida (2015), Almeida et al. (2018)

A progressão entre os níveis de jogo irá depender da pontuação do jogador, obtida através das suas respostas. Além da escala de avaliação de cada resposta, cada pergunta possui um Grau de Importância (GI), variante de acordo com o número e a importância dos temas envolvidos, seu cálculo é ilustrado na Figura 8 . Dito isso, temos que o cálculo da pontuação ganha por pergunta é obtido através da multiplicação do GI pelo valor de cada resposta. Ao final de cada nível se o jogador obtiver pontuação suficiente, ele será encaminhado para a próxima etapa do jogo, caso contrário ele acaba falhando e terá que iniciar o jogo novamente.

O processo de implementação do modelo deve abranger os três componentes do modelo proposto: modelagem de competências, método de avaliação e sequenciamento de fases. Dado que o método de avaliação e o sequenciamento de fases são descritos de forma objetiva, suas implementações são feitas de forma direta e objetiva.

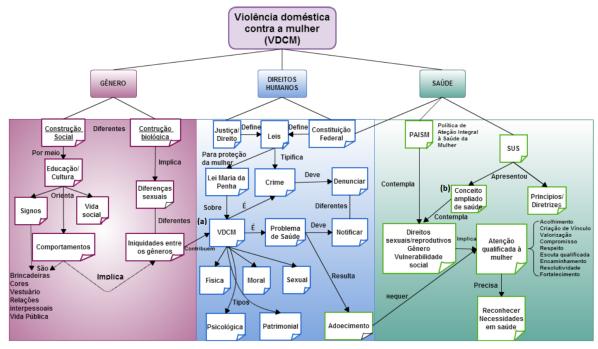
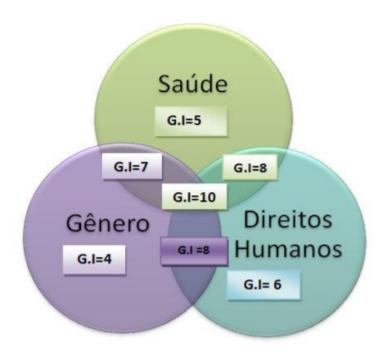



Figura 7 – Mapa Conceitual do jogo Caixa de Pandora

Fonte: Almeida (2015), Almeida et al. (2018).

Figura 8 – Critério de cálculo dos Graus de Importância de cada pergunta de acordo com os temas envolvidos

Fonte: Almeida (2015), Almeida et al. (2018)

Já a modelagem de competências do domínio do jogo tem uma natureza subjetiva, uma vez que se faz necessária a identificação de competências cobradas pelo Caixa de Pandora e, sequencialmente, o estabelecimento de suas relações de pré-requisito. Para a

realização desse processo são utilizados como heurística para a identificação de competência, a análise do mapa conceitual e fases do jogo. Para o estabelecimento das relações de prérequisito são utilizados os critérios propostos pelo modelo. E, por fim, a geração de estado de competência é feita através da aplicação do conceito de base de espaço de competência, definido pela Equação 2.3.

Quanto o processo de validação do modelo, este consiste na análise das decisões tomadas durante a aplicação do modelo no Caixa de Pandora bem como seu o impacto delas durante no jogo. Ademais, os pontos levantados tanto no aspecto teórico quanto no prático do modelo são comparados e discutidos com a literatura.

4 Resultados

Este capítulo apresenta os resultados do presente trabalho, contendo a proposta do modelo de adaptação bem como a sua validação quanto a sua aplicabilidade. A proposta do modelo de adaptação nesse capítulo constitui uma versão aprimorada do modelo proposto no trabalho de Silva, Machado e Moraes (2018), que fora formulada durante da pesquisa. Quanto ao processo de validação do modelo proposto, esse abrange a sua implementação no SGE Caixa de Pandora incluindo aspectos de implementação e ferramentas que não são abordados pelo modelo proposto porém necessários para o processo.

4.1 Modelo Proposto

O modelo proposto tem como objetivo principal a adaptação de SGE baseada na avaliação das habilidades do jogador abarcando não apenas o domínio cognitivo, mas também considerando os domínios afetivo e psicomotor. Enquanto modelo genérico, sua atuação sobre os requisitos dos jogos aplicados deve ser limitada para tanto manter a abrangência do modelo quanto para reduzir a sua invasividade nos requisitos de jogo.

Dito isso, o escopo de atuação do modelo proposto compreende a sequenciação de fases do jogo no qual será aplicado, isto é, a escolha de fases a serem apresentas ao jogador. Para isso, o modelo monitora as ações do jogador construindo o seu estado de competência.

Outra consideração do modelo proposto é a estruturação do SGE em marcos. Um marco é um ponto de divisa no qual só é permitida a progressão no jogo se um determinado objetivo for alcançado. No modelo proposto, um marco é tratado como um conjunto de habilidades, estado de competências na notação do CbKST, que deve ser obtido para que o jogador avance no jogo. Nesse escopo, marcos podem denotar a introdução de novos temas, assuntos ou até aumento da dificuldade do jogo.

Dessa forma, tendo em vista tendo em vista os marcos a serem atingidos e o estado de competência aferido, o modelo busca oferecer níveis de dificuldade diretamente acima da capacidade do jogador com intuito de otimizar a sua experiência e induzir o avanço pelo caminho de aprendizado do jogo. Para lidar com tal objetivo, o modelo proposto é dividido em três módulos: modelagem de competências, avaliação de estado de competência e sequenciamento de fases. As inter-relações entre os módulos bem como a maneira como devem ser inseridos no contexto do jogo são representados pelo fluxograma da Figura 9.

A modelagem de competências consiste na identificação e hierarquização das competências relacionadas ao domínio do jogo. Desses dois processos é obtida a estrutura

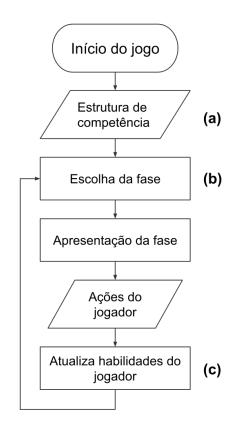


Figura 9 – Representação dos eventos do modelo de adaptação proposto

de competência que representa os caminhos de aprendizado que podem ser tomados pelo jogador durante o processo de adaptação do jogo. O processo de modelagem de competências é realizado apenas uma vez e serve como base para os outros dois módulos, configurando em uma entrada para para o processo de adaptação (Figura 9 (a)).

A avaliação do estado de competência, representado na Figura 9 (c), compreende a observação e interpretação das ações do jogador. Desta forma, a partir das evidências fornecidas pelo jogador, a partir de suas ações, é construído o seu perfil de competências. Esse processo ocorre durante a resolução dos passatempos fornecidos pelo jogador e é um processo contínuo.

Por fim, tem-se o módulo de sequenciamento de fases, Figura 9 (b), que lida com a escolha e apresentação de fases. Esse módulo também lida com a progressão através dos marcos do jogo e com condições de fim de jogo decorrentes das características do modelo. O módulo de sequenciamento utiliza como entrada as competências do jogador fornecidas através do módulo de avaliação.

4.1.1 Modelagem de competências

No modelo proposto, entende-se como competência uma sentença contendo um verbo de ação, representante da Taxonomia de Bloom (por exemplo: compreender, responder, identificar), ou termo equivalente que descreva o comportamento de performance de um jogador. Vale salientar que, por estar associada à Taxonomia de Bloom, uma competência pode representar tanto uma habilidade no domínio afetivo quanto uma referente ao domínio cognitivo ou domínio psicomotor. Ademais, considerando o CbKST, competências podem possuir relações de pré-requisito entre si. Para a definição de tais relações são elicitados quatro critérios:

- 1. Relações lógicas/matemáticas
- 2. Relações sobre diferenças entre complexidade
- 3. Relações baseadas na Taxonomia de Bloom e de Dave
- 4. Relações baseadas em decisões arbitradas

Enquanto os dois primeiros critérios são retirados diretamente do modelo CbKST (KOROSSY, 1999), os outros dois são inclusões próprias do modelo proposto. O terceiro critério remete às relações entre níveis da Taxonomia de Bloom e de Dave. Já o quarto critério é regido por decisões que não são cobertas pelos outros critérios, mas que ainda assim possuem embasamento. Esse critério engloba decisões tais como decisões de projeto do jogo, separação de conteúdo, etc. Vale salientar que o quarto critério abrange por definição o critério proposto por Korossy (1999) que remete a relações estabelecidas com base em experiência instrucional.

Dadas as relações de pré-requisito entre competências, tem-se que o estado de competência é definido como um conjunto de competências que um indivíduo pode possuir respeitando as tais relações. Dessa forma, o estado de competência de um indivíduo representa as suas habilidades. Dado o conceito de estado de competência, tem-se que o conjunto de estados de competência possíveis é denominado estrutura de competência.

No processo de desnvolvimento de um SGE com aplicação do modelo proposto, as tarefas de identificação de competências do domínio do jogo e de definição de suas relações de pré-requisito devem ser atribuidas a um especialista da área em questão.

4.1.2 Avaliação do estado de competência

A avaliação do estado de competência do presente modelo é feita através de uma abordagem baseada em pontuação. Dessa forma, as ações do jogador são interpretadas e traduzidas em pontuações que irão contribuir para a avaliação do jogador.

Dito isso, consideremos $P:(E,C)\to N$ a função que indica a pontuação do jogador para um determinado estado de competência e $T:(E,C)\to N$ a função que indica o valor de referência para obtenção do estado de competência. Dessa forma tem-se que o jogador possui um estado de competência $c\in(E,C)$ se as seguinte condições forem cumpridas:

$$P(c) \ge T(c) \tag{4.1}$$

$$\exists c' \subset c, P(c') \ge T(c') \ e \ |c| - 1 = |c'|$$
(4.2)

Assim, tem-se que só se pode afirmar que o jogador possui um estado de competência se ele oferecer pontuação maior que o valor de referência e que tenha obtido um estado predecessor c' ao estado c.

Para contabilização da pontuação, consideremos o estado de competência atual do jogador $C_{atual} \in (E, C)$, cujo valor inicial é \emptyset , e que

$$S(c \in (E, C)) = \{c'' \mid c'' \in C, c \subset c'' \mid c''$$

consiste no conjunto de estados de competência acessíveis a partir de c. Ademais, considere A, o conjunto de ações relevantes que tragam informações sobre a presença de um conjunto de competências formalizado por:

$$A = \{ a \mid a \subseteq E \}. \tag{4.4}$$

Assim, tem-se que para um dado $a \in A$ cada elemento de a consiste em uma competência observada. Dessa forma, para cada competência $e \in a$ têm-se que a pontuação vai ser atualizada da seguinte forma:

$$\forall c \in S(C_{atual}) \ e \ c \supset \{e\}, \ P(c) \leftarrow P(c) + k \tag{4.5}$$

na qual k é um valor que corresponde à força da evidência. Nesse sentido, vale salientar que a definição das evidências fornecidas para cada ação $a \in A$, bem como cada valor k correspondente à força de evidência devem ser definidos por um especialista da área do domínio do SGE.

Dados os pontos contabilizados, a atualização o estado de competência C_{atual} irá seguir a seguinte regra:

$$C_{atual} = max\{P(c) \mid c \in S(C_{atual}) \ e \ P(c) \ge T(c)\}$$

$$(4.6)$$

Esse método de avaliação consiste no percorrimento da estrutura de competência de acordo com a performance do jogador. Dessa forma, para uma dada posição na estrutura de competência, só poderá caminhar para um estado adjacente, havendo uma variação (adição) de uma competência a cada mudança de estado.

4.1.3 Sequenciamento de fases

O presente modelo assume a estruturação do jogo em marcos. Marcos são pontos de divisória em um jogo no qual só é permitido prosseguir se determinada condição for cumprida. Dito isso e considerando o contexto do uso dos fundamentos do CbKST, tem-se que um marco é representado como um estado de competência a ser alcançado. Enquanto parte da estrutura de competência, a definição dos marcos de um SGE recai sobre o especialista na área do domínio em questão.

Dessa maneira, seja M a sequência de marcos do jogo, com cada elemento $m \in M$ também pertencente ao conjunto (E,C). Nesse contexto, caso o estado de competência atual do jogador C_{atual} , definido na Equação 4.6, seja correspondente a um marco de M, este será retirado da sequência. De forma adicional, se |M| = 0 temos que não há mais objetivos a serem alcançados e assim interpreta-se que o jogo foi concluído de forma bem sucedida. Em contrapartida, se o conjunto F de fases do jogo for vazio, tem-se que o jogador jogou todas as fases mas não foi bem sucedido em atingir os marcos. Nesse caso, o jogo é finalizado de forma mal sucedida.

Dada a função $E: F \to (E, C)$ que representa as competências envolvidas em uma dada fase pertencente a F, é assumido que $E(f) \in C$, em outras palavras, as competências envolvidas em cada fase são coerentes entre si no que se diz respeito às suas relações de dependência. Dito isso, para cada estado de competência $c \in C$, existe um conjunto F_c tal que:

$$F_c = \left\{ f \in F | E(f) \subseteq c \right\} \tag{4.7}$$

Assim, F_c consiste no conjunto de fases as quais um indivíduo que possui o estado de competência c é capaz resolver. Entretanto, para que jogador progrida ao longo de um determinado caminho de aprendizado, é necessária a apresentação de competências que vão além de sua capacidade avaliada. Com isso em mente consideremos o conjunto F_c^{+1} :

$$F_c^{+1} = \left\{ f \in F | E(f) \subseteq c'', \forall c'' \in C \ e \ |c'' \cup c| = |c| + 1 \right\}$$
 (4.8)

Dessa forma, F_c^{+1} representa o conjunto de fases que podem ser solucionadas com o estado de competência c mais as fases correspondentes aos estados de competência c' subsequentes a c. Assim, tem-se que F_c^{+1} consiste no conjunto de fases elegíveis para

serem apresentadas ao jogador para um dado estado de competência c. Caso $F_c^{+1} = \emptyset$, são esgotadas as opções de progressão em qualquer caminho de aprendizado e, assim, o jogo é concluído de maneira mal sucedida.

Dado o conjunto de fases elegíveis, é necessário estabelecer um critério para a escolha da próxima fase. Uma vez que o objetivo é alcançar os marcos definidos e que se deve manter um nível de desafio relevante ao jogador, é desejável a apresentação de desafios diretamente acima da habilidade do jogador. Dessa forma, para um dado M_{atual} , o marco mais próximo de ser atingido, será escolhida uma fase de F_c^{+1} que melhor contribua para o aumento da probabilidade do jogador possuir M_{atual} . Para isso, considere $I_{max} \in N$, tal que:

$$I_{max} = \max\left\{ |f \cap M_{atual}| \mid \forall f \in F_c^{+1} \right\}. \tag{4.9}$$

Assim, tem-se que I_{max} corresponde ao maior tamanho da interseção de elementos de F_c^{+1} com M_{atual} . Considerando que mais de uma interseção pode possuir o tamanho I_{max} , define-se o conjunto F_{final} como:

$$F_{final} = \{ f \mid f \in F_c^{+1} \ e \mid f \cap M_{atual} \mid = I_{max} \}.$$
 (4.10)

O conjunto F_{final} contém as fases que têm o maior potencial para alcançar M_{atual} no sentido que possuem maior número de competências em M_{atual} que os elementos remanescentes do conjunto F_c^{+1} . Por fim, tem-se que a fase a ser apresentada ao jogador F_{atual} é resultado da escolha aleatória de um elemento de F_{final} .

Finalmente, após a escolha de F_{atual} , essa é retirada do conjunto F com o propósito de evitar a repetição de fases durante o jogo. Esse processo é análogo a quando um marco $m \in M$ é alcançado, m é retirado da sequência e, assim, quando todos os marcos forem atingidos, a condição de fim de jogo é alcançada.

4.2 Aplicação no Caixa de Pandora

Como dito anteriormente, o Caixa de Pandora é constituído por um conjunto de passatempos que, por sua vez, são agrupados em três níveis. Para o jogador avançar de um nível para outro é necessário atingir uma determinada pontuação.

Segundo a notação do modelo de adaptação proposto, cada passatempo é corresponde à uma fase e a transição de um nível para outro é interpretada como um marco. Dessa forma, a aplicação do modelo no SGE Caixa de Pandora pode ser ilustrado de acordo com a Figura 10.

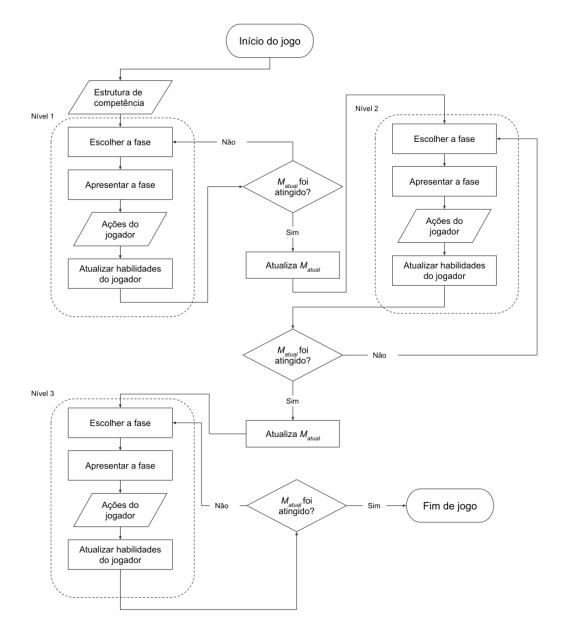


Figura 10 – Representação das relações entre componentes do modelo de adaptação

4.2.1 Modelagem de Competências

A modelagem de competências é composta por três processos: a identificação de competências, identificação das relações de pré-requisito entre elas e geração da estrutura de competência. Dessa forma, tendo em vista suas execuções, é necessária a definição de métodos para o cumprimento desses processos.

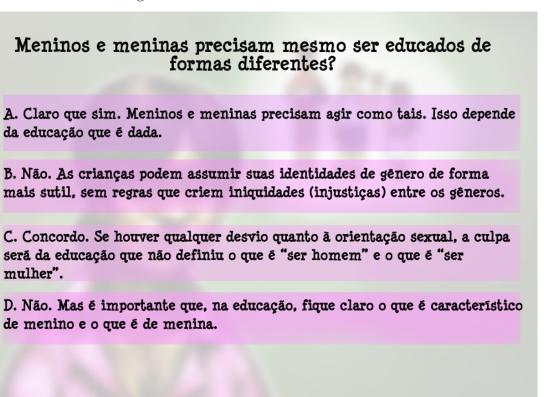
Nessa seção serão descritos os passos tomados para a modelagem de competências do SGE Caixa de Pandora e, de forma subsequente, os resultados obtidos através da aplicação desses métodos descritos. Vale salientar que os métodos descritos foram definidos tendo em vista a aplicação no Caixa de Pandora e informações e artefatos disponíveis sobre o jogo.

4.2.1.1 Procedimento de Identificação de Competências

Identificar as competências do domínio de um SGE significa explicitar todas as competências exigidas para a conclusão do jogo. Nesse escopo, Heller et al. (2006) discute sobre a elucidação das competências de um domínio através da análise de seu mapa conceitual. No caso do Caixa de Pandora o mapa conceitual elaborado por Almeida (2015) é ilustrado na Figura 7.

Embora a análise do mapa conceitual seja pertinente para o processo de identificação de competências, ele pode não ser o suficiente para tal. Quando se deseja identificar as competências em um jogo já produzido, as competências identificadas através do mapa conceitual podem não corresponder ao que o jogo de fato exige do jogador. Nessa perspectiva, uma aproximação voltada para a análise dos desafios do jogo e mapeamento de suas respectivas competências se faz mais apropriada. Ainda assim vale apontar que o uso do mapa conceitual como guia para a análise de tais atividades se torna um facilitador uma vez que o artefato consiste em uma representação sucinta do embasamento teórico do SGE. Dito isso, tem-se que o processo de de identificação de competências segue as seguintes etapas:

- 1. Correlação das fases do jogo com o mapa conceitual destacar os conceitos do mapa conceitual que são abordados por cada fase do jogo.
- 2. Identificação e rotulação de núcleos de conceitos identificar agrupamentos de conceitos que são abordados recorrentemente nas fases do jogo e rotulá-los com fim de obter um conceito mais abrangente. Essa etapa se deve ao fato de certos conceitos do mapa conceitual não serem abordados de forma individual no jogo, mas sim de forma conjunta e, geralmente, de forma recorrente ao longo do jogo. Dito isso surge a necessidade do agrupamento e posterior rotulação desses conceitos. Para a execução dessa etapa é preciso a análise dos conceitos abordados em todas as fases do jogo.
- Correlação com a Taxonomia de Bloom identificar qual domínio e nível na Taxonomia de Bloom está sendo explorado de cada conceito identificado nas fases do jogo.
- 4. **Definição do enunciado das competências observadas -** identificados os conceitos e suas respectivas cobranças dentro da Taxonomia de Bloom, estabelecer as competências de acordo com a definição do modelo.


Para exemplificar esse processo, as etapas que o compõem serão aplicadas na fase do Caixa de Pandora ilustrada na Figura 11. Nessa fase é questionado ao jogador se meninos e meninas precisam ser educados de formas diferentes. Ao analisar tanto o

REVER

DESISTIR

questionamento quanto as alternativas apresentadas são levantados conceitos como gênero, educação, construção social e iniquidade entre gêneros. Seguindo a primeira etapa do processo de identificação de competências, os conceitos abordados são mapeados para o mapa conceitual. O mapeamento resultante dessa etapa é ilustrado na Figura 12, no qual os conceitos do mapa que são abordados na fase exemplo estão marcados em vermelho.

Figura 11 – Fase do Caixa de Pandora

A próxima etapa é a identificação de agrupamentos de conceitos. Tais agrupamentos de conceitos são identificados depois da análise dos conceitos do mapa conceitual de todas as fases do jogo, entretanto, nesse exemplo, essa etapa será executada apenas com a fase em questão (Figura 11). Os conceitos elicitados na etapa anterior compõem uma linha de raciocínio que afirma que o gênero de um indivíduo é uma construção social, fruto da educação/cultura da sociedade, que rege os comportamentos do indivíduo. Esses comportamentos pré-estabelecidos, por sua vez, implicam em diferenças entre gêneros e por consequência iniquidades. De forma sucinta, essa linha de raciocínio implica no conhecimento sobre o conceito de gênero e suas implicações (iniquidades entre gêneros). Dessa forma o agrupamento de competências destacado na Figura 12 é rotulado sob o conceito de "gênero".

Identificados os conceitos abordados (no caso do exemplo, o conceito agrupado "gênero"), é necessário definir quais domínios e e níveis da Taxonomia de Bloom estão sendo abordados nas fases do jogo. No exemplo em questão, ao exigir uma certa reflexão sobre o

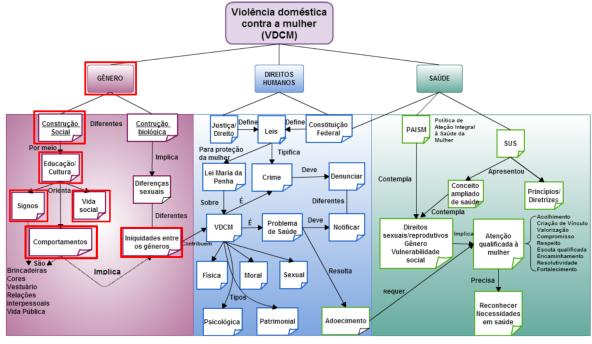


Figura 12 – Conceitos abordados na fase exemplo

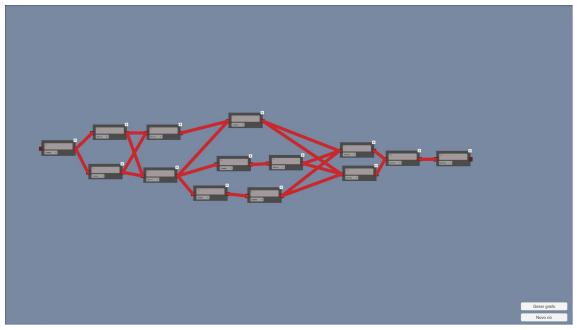
Fonte: Adaptado de Almeida (2015)

conceito de gênero, exige que o jogador não apenas tenha conhecimento cognitivo mas que também possua o nível da compreensão para que possa tirar suas próprias conclusões.

Por fim, a última etapa consiste na definição do enunciado das competências cobradas ao jogador. Ou seja, a formulação dos conceitos e suas respectivas cobranças na Taxonomia de Bloom em uma sentença composta de um ou mais conceitos e um verbo de ação. Desta tem-se que a competência identificada na fase exemplo é "Compreensão sobre gênero".

4.2.1.2 Definição da Relações de pré-requisito

O estabelecimento de relações de pré-requisito das competências identificadas no domínio do jogo é um processo intuitivo e pode ser resumido na análise de competências e correlação com os critérios do modelo proposto. Entretanto, uma vez que o objeto de aplicação do modelo é um jogo desenvolvido, existem relações que são derivadas de decisões de design tomadas no seu desenvolvimento.


Tais relações remetem ao critério de relações baseadas em decisões arbitradas e, por ser um critério abrangente, é necessário abordá-lo de forma adequada. Dito isso e levando em consideração o jogo Caixa de Pandora, são estabelecidos dois subcritérios para identificação desse tipo de relação:

 Ordenação - relações advindas de decisão de sequenciamento de temas e assuntos abordados no jogo. No Caixa de Pandora, isso se aplica às competências relacionadas a cada marco do jogo, uma vez que as questões de gênero, direitos humanos e saúde são tratados de forma sequencial.

2. Cobrança de competências - relações estabelecidas quando certas competências são apresentadas apenas em quando determinadas competências também se fazem presentes. Esse critério garante que tais casos não violem a graduação do estado de competência do jogo.

Dada a necessidade de representação em dados das relações de pré-requisito e o risco de alterações desses dados no decorrer da modelagem, foi desenvolvida uma ferramenta visual para a representação dessas relações. A aplicação em questão, ilustrada na Figura 13, foi desenvolvida através da ferramenta de desenvolvimento *Unity3D*. Ela permite o desenvolvedor representar visualmente as relações de pré-requisito entre competências e compilá-las em uma estrutura da dados que serve como entrada para o processo de obtenção da estrutura de competência.

Figura 13 – Aplicação desenvolvida para a representação das relações de pré-requisito entre competências

Fonte: Elaborado pelo autor

Nessa aplicação, cada competência é representada por um nó que, por sua vez, é constituído por elementos relevantes à representação da competência. Tais elementos são destacados na Figura 14 e constituem: o enunciado da competência (a), o domínio correspondente na Taxonomia de Bloom (b), o nível do domínio (c), os conectores (d) e o botão de deleção da competência (e). Enquanto os três primeiros elementos remetem à definição e caracterização da competência na Taxonomia de Bloom, os outros dois são voltados para o domínio da aplicação.

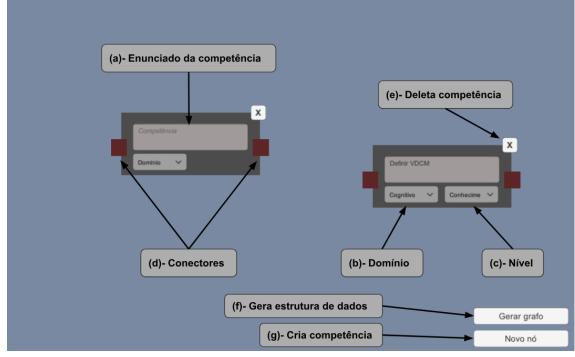


Figura 14 – Elementos da aplicação desenvolvida

Fonte: Elaborado pelo autor

Os conectores permitem a representação das relações de pré-requisito entre competências através da conexão entre nós, ilustrada na Figura 15. O papel de cada nó na relação de pré-requisito depende de qual conector está envolvido na conexão. Conexões realizadas a partir do conector esquerdo de um nó sinalizam que os nós conectados a ele são seus pré-requisitos. De forma análoga, conexões feitas a partir do conector direito significam que o nó atual é pré-requisito dos nós a ele conectados. Nesse sentido, tem-se que na Figura 15 é possível notar que a competência à esquerda é pré-requisito da direita.

O botão de deleção (Figura 14 (e)) por sua vez é responsável pela deleção do nó associado. Além de deletar o nó correspondente, o botão também elimina todas as conexões envolvidas.

Na Figura 14 é possível observar dois botões ainda não abordados: o botão "Gerar grafo" (f) e o "Novo nó" (g). O botão "Novo nó", como já indicado na figura, é responsável pela criação de novos nós. Enquanto o botão "Gerar grafo", é o botão responsável pela geração da estrutura de dados que representa as relações de pré-requisito entre competências. Vale salientar que nesse processo de geração um número identificador inteiro é associado a cada competência, simplificando a sua representação computacional.

4.2.1.3 Geração da estrutura de competência

Os processos de identificação de competências e de definição das suas relações de pré-requisito afetam diretamente a estrutura de competência. Uma vez que seus

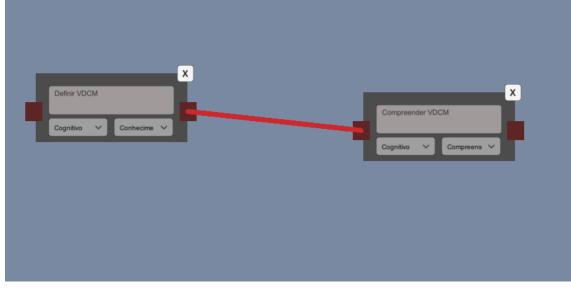


Figura 15 – Conexão entre nós

Fonte: Elaborado pelo autor

resultados atuam como entrada para o processo de geração de estrutura de competência, tem-se que qualquer alteração em uma das entradas implica na necessidade de gerar a estrutura de competência novamente. Dito isso e levando em consideração a natureza exponencial do tamanho de uma estrutura de competência, surge a necessidade de um método automatizado para obtê-la.

Para tal é utilizado o conceito de base de um espaço de competência, definida na Equação 2.3. A base de um espaço de competência consiste na união de todos os seus átomos (Equação 2.2). Ademais, uma vez que a base consiste uma forma reduzida da representação de um espaço de competência (KOROSSY, 1999), é possível obter a representação total de um espaço de conhecimento a partir de sua base.

Nesse ponto do processo de modelagem de competência, têm-se tanto a listagem de competências do domínio do jogo quanto as suas relações de pré-requisito. Dessa forma, levando em consideração o conceito de átomos e a natureza da relação de pré-requisito entre competências, é razoável afirmar que o átomo de uma competência e consiste na união de e com os átomos de seus pré-requisitos. Em outras palavras, o menor estado de competência quem contém e é composto apenas pelas competências necessárias para que e possa existir nesse estado, ou seja, os pré-requisitos de e, os pré-requisitos dos pré-requisitos de e e assim por diante.

Para formalizar essa ideia, considere o conjunto de competências que são prérequisitos de e como:

$$\pi(e) = \{\hat{e} \in E : \hat{e} \text{ \'e pr\'e-requisito de } e\}. \tag{4.11}$$

Dessa forma, considerando o conceito de π a ideia pode ser traduzida para um algoritmo recursivo representado no Algoritmo 1.

Algoritmo 1: Obtenção do átomo em e

```
1 Atomo(e)
       atomo \leftarrow \{e\};
       if \pi(e) = \emptyset then
            return \emptyset;
       end
 5
       for i in \pi(e) do
 6
            atomo \leftarrow atomo \cup Atomo(i);
       end
 8
        return atomo;
 9
       end
 10
11
```

Determinado o processo de obtenção dos átomos de um espaço de competência, o próximo passo é determinar uma estrutura de dados que abarque esses átomos e sirva como alicerce para a construção da estrutura de competência. Desta forma, considere a estrutura de dados $estrutura_parcial$, uma lista na qual cada elemento $estrutura_parcial[i]$ com $i \in N$ consiste em um conjunto de estados de competências de tamanho i. Em sua inicialização a $estrutura_parcial$ é preenchida com os átomos de cada competência. Esse processo é descrito no Algoritmo ?? e tem como entrada o conjunto de competências identificadas E.

Algoritmo 2: Obtenção do átomo em *e*

Com a inicialização da estrutura_parcial, têm-se que a estrutura em questão representa a base do espaço de competências. Como afirmado anteriormente, a partir da combinação dos elementos da base é possível construir o espaço de competência do jogo.

Esse processo é descrito no Algoritmo 3.

Algoritmo 3: Obtenção do espaço de competência

```
1 Espaço_Competencia(estrutura_parcial)
         for i = 1 \text{ to } /E/ - 1 \text{ do}
  \mathbf{2}
             for u in estrutura parcial/i/ do
  3
                 for v in estrutura_parcial/i/ do
  4
                     uniao \leftarrow u \cup v;
  5
                     tamanho \leftarrow |u \cup v|;
  6
                     if uniao \notin estrutura\_parcial[tamanho] then
  7
                          estrutura\_parcial[tamanho] \leftarrow estrutura\_parcial[tamanho] \cup
  8
                           uniao;
                     end
  9
                   end
10
              end
11
          \operatorname{end}
12
          return estrutura parcial;
13
      end
14
```

Nesse processo, optou-se pela combinação dos elementos de mesmo tamanho e em ordem crescente. Isso pode ser observado no laço da linha 2 do Algoritmo 3, o qual itera sobre elementos de estrutura_parcial. Cada elemento estrutura_parcial[i] constitui um conjunto de estados de competência de tamanho i. Assim, para cada tamanho i, os elementos correspondentes são combinados em pares formando novos estados de competência (linha 5). Uma vez que a combinação é feita através da operação de união de conjuntos de mesmo tamanho, conjunto resultante é maior ou igual (quando um estado é combinado com ele mesmo) em relação aos originais. Gerado o novo estado, é verificado se esse já pertence à estrutura_parcial (linha 7), em caso negativo o estado de competência gerado é adicionado à estrutura (linha 8), caso contrário ele não é utilizado. Dessa forma, só serão adicionados à estrutura de dados estados de competência cujo tamanho é maior que seus estados geradores. Esse fato, juntamente com a combinação de ordenada por tamanho, garante que estados adicionados também sejam computados pelo algoritmo. Ao final do laço da linha 2, é obtido o espaço de competência do jogo.

Vale salientar que o processo de obtenção do estado de competência não é feito durante o jogo e, portanto, não há preocupação direta com a sua complexidade computacional. A estrutura de competência serve como entrada para o resto do modelo e, sendo gerada a priori, seu processo de obtenção não influencia na performance do jogo.

Tabela 1 – Lista de competências do domínio do Caixa de Pandora juntamente com o
nível no qual são apresentadas e o identificador utilizado para representação
no código

Nível	Identificador	Competência
1	1	Compreensão sobre sexo
	2	Compreensão sobre gênero
	3	Resposta à manutenção dos direitos humanos
	4	Conhecimento sobre a lei Maria da Penha
	5	Conhecimento sobre VDCM
2	6	Compreender VDCM como caso de Saúde
	7	Compreender que VDCM é crime
	8	Resposta à manuntenção dos direitos humanos 2
	9	Conhecer os princípios doutrinários do SUS
	10	Perceber os problemas enfrentados pela vitima de VDCM
3	11	Perceber os problemas enfrentados pela vitima de VDCM 2
	12	Conhecimento sobre serviços de apoio à vítima de VDCM
	13	Responder aos problemas enfrentados pela vítima de VDCM
	14	Aplicação de VDCM

4.2.1.4 Resultados da modelagem de competências

No total foram definidas quatorze competências pertencentes ao domínio do jogo. Essas as quais, depois de estabelecidas as relações de pré-requisito, resultaram em uma estrutura de competência com vinte e seis estados de competência diferentes.

A lista de competências, bem como os níveis nas quais são apresentadas e seus respectivos identificadores estão listados na Tabela 1. A Figura 16, por sua vez, representa as relações de pré-requisito entre competências onde as competências mais abaixo dependem das que estão interligadas mais acima. Os números da Figura 16 representam os identificadores das competências apresentados na Tabela 1.

4.2.2 Avaliação de Competência

Para a implementação do módulo de avaliação de competências dois elementos precisaram ser definidos: os valores de incremento k para cada evidência do jogo e os valores de referência T(c), definido na Equação 4.5, para cada possível estado de competência.

Uma vez que as fases do Caixa de Pandora consistem em perguntas e respostas, foi atribuído um conjunto de competências, nomeado de ação (Equação 4.4), segundo a notação do modelo, e seus respectivos valores de evidência para cada resposta do jogo. Vale denotar que o conjunto "ação" é atribuído em função da pergunta. Logo, para uma dada pergunta é associado um mesmo $a \in A$ para cada alternativa dessa pergunta, variando apenas o valor associado àquela evidência entre as alternativas. Ademais, as variáveis associadas a cada evidência assumem valores de 0, 2, 5 e 10 correspondentes aos da Figura

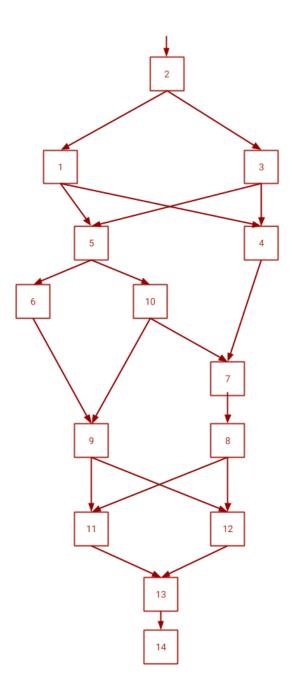


Figura 16 – Relações de pré-requisito entre as competências do domínio do Caixa de Pandora

5, mantendo a interpretação de importância de cada resposta, de acordo com a definição de Almeida et al. (2018).

Como dito anteriormente, o número de estados de competência possíveis obtidos através da modelagem de competências do Caixa de Pandora é de vinte e seis estados. Em contrapartida, tem-se que o número total de fases do Caixa de Pandora totalizam quarenta fases. Também vale salientar que mesmo que o conjunto de fases seja maior que o tamanho da estrutura de competência, as fases do jogo não abrangem totalmente a estrutura de

competência do jogo. Em outras palavras, há estados de competência os quais não são explorados por nenhuma fase do jogo.

Para lidar com esse tipo de situação, foi determinado que os valores de referência devem ser atribuídos durante a execução do jogo, em tempo real, com base nas fases disponíveis em função das jogadas realizadas. Levando em consideração que estados de competência adjacentes ao de C_{atual} , definidos na Equação 4.3, adicionam uma competência ao estado do jogador, é seguro dizer que para a transição acontecer o jogador precisa adquirir tal competência.

Para tal, levemos em consideração o conjunto $F_{c''} - F_{C_{atual}}$, onde c'' é um estado de competência adjacente ao estado atual do jogador. Dessa forma, o conjunto em questão corresponde aos passatempos resolvíveis a partir de c'' e que contém a competência nova competência inserida pelo estado adjacente. Assim, o conjunto $F_{c''} - F_{C_{atual}}$ é utilizado como base para o cálculo de T(c''). Entretanto, ainda vale denotar a situação na qual $F_{c''} - F_{C_{atual}} = \emptyset$, nesse contexto $F_{c''}$ é usado como base em seu lugar. Dessa forma, para um dado a_f , o conjunto de competências para qual um passatempo fornece evidências, o cálculo de T(c') é dado por:

$$T(c') = \begin{cases} \sum_{f}^{F_{c'} - F_{C_{atual}}} |a_f| * 5, & \text{se } F_{c'} - F_{C_{atual}} \neq \emptyset \\ \sum_{f}^{F_{c'}} |a_f| * 5, & \text{se } F_{c'} - F_{C_{atual}} = \emptyset \end{cases}$$
(4.12)

Levando em consideração as interpretações das pontuações trazidas na Figura 5, deseja-se que o jogador tenda a escolher respostas mais adequadas ao escopo do jogo, isto é, que sua pontuação para cada evidência se aproxime de 10. Uma vez que o valor referência é um valor a ser ultrapassado, a Equação 4.12 assume que o jogador obteve uma média de pontuação para cada evidência maior que 5.

4.2.3 Sequenciação de fases

Como abordado na sessão anterior, no jogo Caixa de Pandora nem todos os elementos da estrutura de competência possuem fases atreladas a eles. Dito isso, considere c'' um estado adjacente ao estado do jogador C_{atual} e que e' é a competência presente c'' e não presente em C_{atual} . Segundo a definição de F_{final} (Equação 4.10), são priorizadas as fases cujas as competências envolvidas tenham mais elementos em comum com o próximo marco. Dito isso, tem-se que a fase escolhida em F_{final} pode não conter e' e como consequência o jogador pode transitar para outro estado de competência sem ser exposto a e'.

Para lidar com essa situação, a definição de F_c^{+1} (Equação 4.8) é alterada de forma a dar prioridade a passatempos que exponham o jogador a competências que ele ainda

não demonstrou ter:

$$F_c^{+1} = \begin{cases} f \in F \mid E(f) \subseteq c'' \ e \ E(f) \supseteq c'' - c, \ \forall \ c'' \in C \ e \ |c'' \cup c| = |c| + 1, & \text{se } F_{c''} - F_c \neq \emptyset \\ f \in F \mid E(f) \subseteq c'', \ \forall \ c'' \in C \ e \ |c'' \cup c| = |c| + 1, & \text{caso contrário} \end{cases}$$

$$(4.13)$$

Outra característica adicionada em relação à adaptação é a separação de marcos de tal forma que não serão mostradas fases de outros marcos senão as do marco atual do jogador. Dessa forma, se o jogador falhar em prover respostas que permitam-lhe progredir no início de um determinado marco, não serão providas fases de marcos anteriores para avaliar o jogador. Essa decisão se alinha com a característica do Caixa de Pandora no qual se um jogador falhar atingir a pontuação mínima para passar de um marco, o jogo é terminado de forma mal sucedida.

5 Discussão

5.1 Definição e representação de competências

A definição de competência utilizada no modelo proposto compartilha semelhanças com a definição proposta por Heller et al. (2006) na qual uma competência consiste em um verbo de ação e um conceito atrelado a ele. Embora seja uma definição pertinente, ela se torna limitante quando se pretende envolver mais de um conceito em uma competência. Um exemplo disso pode ser visto na aplicação do modelo no jogo Caixa de Pandora na competência de identificador 6 na Tabela 1, "Compreender VDCM como caso de Saúde". Tem-se que, nesse caso, estão envolvidos os conceitos de "violência doméstica contra mulher" e de "saúde" (letras (a) e (b) da Figura 7). Nesse sentido, a definição adotada é mais abrangente e permite uma maior expressividade na hora da identificação de competências.

No modelo proposto foi utilizada a Taxonomia de Bloom como base para a modelagem de competências. Entretanto vale mencionar a Taxonomia Revisada de Bloom, proposta por Anderson et al. (2001), que foi utilizada no SGE ELEKTRA (KICKMEIER-RUST; ALBERT, 2008) e no jogo Caixa de Pandora (ALMEIDA et al., 2018). Embora em primeira instância seja pertinente o uso da taxonomia revisada, vale denotar que ela tem como foco de atuação o domínio cognitivo. Tendo em vista a proposta da capacidade do modelo de avaliar também habilidades afetivas e psicomotoras do jogador, optou-se por utilizar a taxonomia original. Vale salientar, entretanto, que a adoção de uma taxonomia alternativa que abranja outras habilidades pode ser realizada sem que sejam necessárias alterações no modelo.

Quanto à representação computacional, a definição de Heller et al. (2006) é utilizada no jogo ELEKTRA e descrita no trabalho de Kickmeier-Rust e Albert (2008). Na aplicação em questão cada competência é representada pelo verbo de ação e seu conceito associado. Apesar de ser uma representação apropriada para interpretação humana, ela não se faz necessária para o computador. Na aplicação do modelo proposto as competências são representadas computacionalmente por números identificadores, mostrados na Tabela 1. Em relação à adotada pelo ELEKTRA, a representação escolhida se faz mais simples e ainda assim funcional.

5.2 Critérios de pré-requisito

Os critérios para estabelecimento as relações de pré-requisito, como já indicado anteriormente, se baseiam nos critérios apresentados em Korossy (1999) no CbKST, fazendo

uso de dois critérios e modificando um terceiro. O critério modificado foi o relativo às relações baseadas em experiências instrucionais. No modelo proposto optou-se por uma aproximação mais abrangente que, ao mesmo tempo que mantém o critério original, engloba outros tipos de decisão.

O critério em questão é o de relações baseadas em decisões arbitradas. Tal critério permite que sejam estabelecidas relações de pré-requisito entre competências que não são necessariamente conectadas. Em outras palavras, permite a ordenação da apresentação de competências ao jogador a critério dos desenvolvedores. Dessa forma, o critério proposto oferece uma maior liberdade no design do SGE e também permite uma melhor aplicabilidade em SGE já existentes, como foi o caso da aplicação do Caixa de Pandora.

Outro critério elicitado no modelo proposto é o das relações decorrentes da Taxonomia de Bloom. Pode-se argumentar que as relações entre níveis de uma determinada dimensão possa recair sob o critério de relações lógicas ou até mesmo de diferenças entre a complexidade. Afinal, há uma linha lógica em relação à sequenciação dos níveis dos objetivos educacionais da Taxonomia de Bloom e eles também representam uma progressão por parte do indivíduo no seu processo educacional. Entretanto, devido a natureza objetiva e direta da definição de relações provida pela Taxonomia de Bloom em contraste com a subjetividade sobre relações lógicas e de complexidade em relação a temas abstratos, a separação e explicitação do critério se torna pertinente. Dessa forma, a objetividade provida pelo critério baseado na Taxonomia de Bloom torna o processo de aplicação do modelo mais sucinto em comparação à identificação de dependências de forma subjetiva.

5.3 Estrutura de competência

Quanto à estrutura de competência, vale denotar o seu tamanho de caráter exponencial em função do número de competências. Essa característica é apontada nos trabalhos de Augustin et al. (2011) e Augustin et al. (2013) e pode ser tornar preocupante tanto na geração da estrutura de competência quanto na sua representação e até mesmo na avaliação das habilidades do usuário. Vale denotar, entretanto, que as relações de pré-requisito possuem um papel limitante no tamanho da estrutura uma vez que elas restringem as possíveis combinações entre competências.

No que se diz respeito ao tempo de execução, o processo de geração da estrutura de competência, embora seja computacionalmente custoso, não afeta no processo de adaptação do jogo. Isso se deve ao fato de que a modelagem de competências não ocorre durante o jogo e portanto o seu tempo de geração não afeta a experiência do jogador.

Quanto à relação entre estrutura de competência e a avaliação do jogador, o problema do tamanho da estrutura é amenizado pela própria natureza do método de avaliação. O método de avaliação leva em consideração o estado de competência do jogador

e as pontuações referentes aos estados de competência adjacentes. Este método possui uma complexidade menor que o utilizado por Augustin et al. (2011) pois o mesmo lida com as ditas probabilidades de todos os estados de competência, enquanto no modelo proposto a medida que o jogador avança pelo caminho de aprendizado, as pontuações podem ser descartadas.

Por último, tem-se o problema da representação da estrutura de competência. Se este for grande demais pode ser inviável a sua representação na memória principal do dispositivo. Enquanto os trabalhos de Augustin et al. (2011) e Augustin et al. (2015) se limitam em lidar com o tamanho da estrutura no âmbito da avaliação de competências, o problema da representação pode ser abordado através do conceito de marcos. Uma vez que um marco na, prática, consiste em um estado de competência que deve ser alcançado, estados de competência além de um marco não precisam estar carregados na memória enquanto esse ainda não é atingido. De forma complementar, o mesmo acontece para estados de competência que precedem marcos já atingidos. Vale salientar que essa característica, embora proveniente do modelo, depende da implementação do mesmo, cabendo aos desenvolvedores a explorar ou não tal característica.

5.4 Progressão através do caminho de aprendizado

O modelo proposto utiliza o conceito de marcos para o estabelecimento de mecânicas para o avanço no caminho de aprendizado. Enquanto os modelos do ELEKTRA (AUGUSTIN et al., 2011) e do 80Days (AUGUSTIN et al., 2013) se concentram em apresentar fases adequadas ao jogador dado o seu estado de competência, o presente modelo busca de forma ativa apresentar fases que estão diretamente acima da capacidade do jogador. Assim, o modelo busca manter o desafio ao jogador e também induzir o seu progresso ao longo do jogo.

De forma complementar, o modelo proposto assume que a estrutura de competência do jogo é bem graduada, ou seja, através da transição de um estado de competência para outro apenas uma competência é adquirida. Dessa forma o jogador só pode ser exposto a uma nova competência por vez, evitando, assim, aumentos elevados de dificuldade do jogador.

Dessa forma, o modelo busca atingir o equilíbrio entre o desafio provido pelo jogo e a habilidade do jogador. Essa característica se alinha com o processo de busca do estado de Fluxo e, mesmo que não atinja de fato o estado de Fluxo, é edificante para experiência do jogador (TAKATALO et al., 2010).

O modelo proposto admite que o jogo possui fases suficientes para a avaliação cada estado de competência. Apesar disso, a possibilidade da ausência/esgotamento de fases correspondentes para um determinado estado de competência também é prevista.

Nesse contexto, são apresentadas fases cujas competências envolvidas pertençam ao estado de competência em questão. Assim, as evidências providas através de tais fases são contabilizadas para a transição ao estado de competência em questão. O fato da evidência de uma ou mais competências corroborar para a obtenção de estados que as contém se alinha com os conceitos dos trabalhos de Augustin et al. (2011) e Augustin et al. (2013).

Tal característica busca evitar a imposição de um evento de fim do jogo de forma prematura enquanto ainda há possibilidades para demonstrar as suas competências. Entretanto, vale salientar que esse aspecto dificulta o alcance do fim de jogo e pode estender demasiadamente a progressão no jogo. Nesse contexto, recomenda-se que os desenvolvedores estabeleçam critérios de fim de jogo adicionais caso essa característica seja indesejada.

No âmbito da avaliação de habilidades, optou-se por elaborar um método de avaliação em detrimento do uso dos pertencentes ao ELEKTRA e 80Days. Tais métodos são ditos probabilistas e fazem da estrutura de competência o espaço amostral da aplicação, tendo como eventos observáveis a presença ou ausência de competências. Como discorrido no trabalho de Korossy (1999), embora seu método de avaliação não seja probabilista, foram observados "estados de competência" "teoricamente impossíveis" os quais apesar de não fazerem parte da estrutura de competência, são estados observáveis. Dito isso, tem-se que os modelos de avaliação estão operando sobre um espaço amostral incompleto, afirmando que a soma das ditas probabilidades é 1, violando as regras da probabilidade. Desse modo, dada tal inconsistência teórica, optou-se por adotar um método próprio.

5.5 Aplicação no Caixa de Pandora

A implementação do modelo proposto no Caixa de Pandora permite a avaliação das habilidades cognitivas e afetivas do jogador e o sequenciamento de fases em função delas. O método de avaliação adotado substitui a abordagem holística da versão anterior do jogo, fornecendo um diagnóstico mais detalhado das competências do jogador.

Quanto ao processo de adaptação, embora seja funcional, vale denotar certas decisões envolvidas no processo de aplicação e suas respectivas consequências no jogo como um todo. Tais decisões permeiam os três componentes do modelo: modelagem de competências, avaliação do jogador e sequenciamento de fases.

Na modelagem de competências, vale destacar as decisões de "fusão" de competências e do estabelecimento de relações de pré-requisito devido à cobrança de competências. A fusão de competências, como apontada anteriormente, é proveniente da escassez de evidências para certas competências identificadas. Essa decisão afeta a representatividade das habilidades do jogador e, consequentemente, a precisão do diagnóstico de competências do jogador.

Quanto às relações de pré-requisito estabelecidas entre as competências, houveram casos em que uma determinada competência só é apresentada na presença de um conjunto determinado de competências. Apesar desses casos serem abarcados pelo critério de decisões arbitradas e, em primeira instância, não afetarem diretamente a efetividade do processo de adaptação, são decisões que não existiriam se o jogo fosse desenvolvido tendo a aplicação do modelo em mente. Assim, embora necessárias para o estabelecimento do modelo, tais relações não trazem contribuições para o objetivo característico do jogo.

No âmbito da avaliação de competências, vale salientar o critério estabelecido para a transição de estados de competência. Essa situação ocorreu devido à violação da hipótese de que existam fases o suficiente para a avaliação de cada estado de competência. Como consequência do critério, salienta-se a extensão do tempo de jogo e por conseguinte uma considerável exposição à fases de mesma competência.

Originalmente, para os marcos 1, 2 e 3 eram apresentadas 4, 6 e 8 fases ao jogador no Caixa de Pandora. Depois da implementação do processo de adaptação, esses valores são variáveis. Entretanto o número mínimo de fases possível apresentáveis a cada marco são 6, 10 e 12 tarefas. Esse aumento significativo pode causar um impacto negativo na experiência do jogador uma vez que o tempo de jogo de cada marco é aumentado. Uma alternativa para esse tipo de problema seria a quebra de marcos, ao inserir novos pontos de progressão no jogo o jogador teria uma melhor sensação de progressão e portanto uma experiência de jogo melhor. Vale salientar que essa decisão é tomada em função de adequar o jogo ao modelo proposto e que outros critérios de pontuação podem ser tomados para que essa maior exposição à fases de jogo seja evitada.

Por fim, no sequenciamento de fases, salienta-se o estabelecimento de um novo critério de seleção de fases. Assim como no contexto da avaliação de competências, o critério é criado devido à violação da hipótese de fases suficientes para avaliação de cada estado de competência. O critério estabelecido busca remediar a violação da hipótese e evita um impacto negativo no processo de adaptação.

O critério estabelecido, entretanto, afeta a forma de progressão de dificuldade pretendida originalmente. No modelo proposto, a progressão de dificuldade do jogo com o avançar do jogador seria ascendente, com a variação de uma competência de um nível para outro. Essa progressão de dificuldade, ilustrada na Figura 17, acontece em função da habilidade percebida do jogador, em outras palavras, as competências sobre as quais o jogador demonstrou proficiência durante o jogo. Essa intenção se alinha com o balanceamento entre o desafio provido e a habilidade do jogador, seguindo o Canal de Fluxo.

Contudo, em decorrência do critério de sequenciação de fases, tem-se que, em prol de garantir todas as competências, uma fase de complexidade menor pode ser apresentada. Nesse caso, argumenta-se que apesar da possibilidade de redução de dificuldade, a habilidade

Capítulo 5. Discussão 66

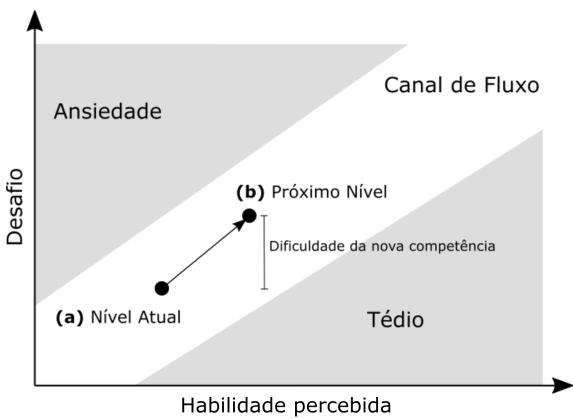


Figura 17 – Progressão de dificuldade pretendida do modelo proposto

Fonte: Elaborado pelo autor

percebida do jogador para a nova competência apresentada também é baixa, como ilustrado na Figura 18. Dito isso, apesar da alteração na dificuldade de progressão, o modelo continua apresentando fases correspondentes às habilidades do jogador.

As decisões tomadas e as violações das hipóteses do modelo proposto são decorrentes do fato do jogo não ter sido desenvolvido tendo em vista a adaptação. Esse fato é reforçado no trabalho de Linek et al. (2009) no qual as características relacionadas à adaptação de um SGE são definidas durante a fase de concepção do mesmo.

Embora o jogo Caixa de Pandora não corresponda à todas as hipóteses do modelo de adaptação proposto, vale salientar que o processo de adaptação foi implementado através de ajustes no modelo proposto. O modelo continua buscando apresentar habilidades ainda não adquiridas pelo jogador com o intuito de fomentar o progresso e manter a dificuldade. Mesmo assim não é possível avaliar a eficiência da adaptatividade implementada no Caixa de Pandora sem a execução de testes empíricos. Nesse caso considera-se como trabalho futuro o estudo do impacto do modelo na experiência de jogador do SGE Caixa de Pandora.

Capítulo 5. Discussão 67

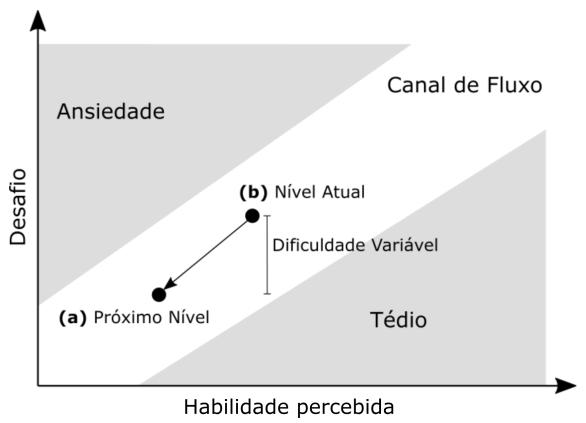


Figura 18 – Caso de redução de desafio durante a aplicação no jogo Caixa de Pandora

Fonte: Elaborado pelo autor

5.6 Síntese

Essa seção tem com objetivo sintetizar os tópicos abordados no presente capítulo. Dito isso a discussão acerca do modelo proposto é dividida em duas dimensões: teórica e aplicação do modelo. No aspecto teórico são discutidos aspectos teóricos do modelo bem como sua respectiva parte prática durante a implementação do modelo. Já a segunda parte remete aos impactos do processo de adaptação no Caixa de Pandora.

5.6.1 Síntese teórica

1. Definição de competências

- a) A definição de competência adotada no modelo proposto é mais abrangente do que as elicitadas na literatura, permitindo uma maior liberdade por parte dos desenvolvedores.
- b) A definição de competência abrange os domínios cognitivo, afetivo e psicomotor.
- c) A representação computacional de competência, realizada por meio de valores inteiros, é mais simples que as elicitadas na literatura, mas mantém a sua funcionalidade.

2. Critérios de pré-requisito

a) Os critérios de pré-requisito adotados no modelo proposto permitem uma maior liberdade no desenvolvimento do jogo, permitindo o sequenciamento arbitrado da apresentação de competências.

3. Estrutura de competência

- a) O tempo de geração de estrutura de competência não representa grandes problemas para o modelo uma vez que não é feita em tempo de execução.
- b) Embora tenha tamanho exponencial, o método de avaliação do jogador é capaz de lidar com o seu tamanho por considerar um número reduzido de estados de competência.
- c) O conceito de marcos permite que os desenvolvedores desconsiderem trechos da estrutura de competência não relevantes ao marco atual, reduzindo o consumo de memória.

4. Progressão através do caminho de aprendizado

- a) A utilização do conceito de marcos para a manutenção da dificuldade é edificante para a experiência do jogador e contribui para o alcance do estado de Fluxo.
- b) Caso o jogador não consiga fazer a transição para um estado de competência, o modelo apresenta fases mais simples para que o mesmo possa progredir no jogo.
- c) A apresentação de fases mais fáceis ao jogador pode prolongar o tempo de jogo.

5.6.2 Síntese prática

1. Aplicação no Caixa de Pandora

- a) O processo de adaptação implementado substitui a avaliação holística do Caixa de Pandora por um diagnóstico mais detalhado das capacidades do jogador.
- b) O processo de adaptação é capaz de sequenciar as fases de acordo com as habilidades do jogador, mantendo a dificuldade pertinente às suas capacidades.
- c) A representatividade das competências cobradas do jogo foram afetadas durante a implementação.
- d) O critério da escolha de fases estende o tempo de jogo
- e) O critério de escolha de fases foi alterado com intuito de garantir que todas as competências do Caixa de Pandora sejam exibidas durante o jogo.
- f) As modificações aplicadas no modelo proposto são decorrentes da necessidade de adequação a um jogo já desenvolvido, cuja adaptação não foi prevista em

sua concepção original requisitos do jogo. Nesse caso se torna pertinente o desenvolvimento do jogo tendo em mente a adaptação desde a sua fase de concepção.

g) Apesar das modificações, um estudo empírico se faz necessário para determinar os impactos da adaptação na experiência do jogador.

6 Conclusão

O presente trabalho apresenta a proposta de um modelo de adaptação para Serious Games Educacionais que se baseia na avaliação das habilidades cognitivas, afetivas e psicomotoras do jogador. Ademais, o modelo proposto é aplicado no SGE Caixa de Pandora para a sua validação.

A proposta do modelo de adaptação é dividida em três componentes: modelagem de competências, avaliação do estado de competência e sequenciamento de fases. Cada componente do modelo corresponde a uma pergunta de Chrysafiadi e Virvou (2013) respectivamente: o que modelar, como modelar, como utilizar o modelo de aprendiz.

A modelagem de competências é responsável pela identificação das competências do domínio do jogo (SGE), o estabelecimento de suas relações de pré-requisito e a geração da estrutura de competência correspondente. Esse componente também é responsável por uma das contribuições principais do modelo: a expansão da aplicação do CbKST para inclusão dos domínios afetivo e psicomotor. Essa expansão é realizada através da adoção da Taxonomia de Bloom (domínios cognitivo e afetivo) e a Taxonomia de Dave (domínio psicomotor). Além disso, tem-se como contribuição o proporcionamento de uma maior flexibilidade de desenvolvimento através das definições de competência e relações de pré-requisito frente à literatura elicitada.

No âmbito da avaliação, tem-se que foi adotado um método próprio para a avaliação do estado de competência do jogador. O método proposto compartilha semelhanças com os elicitados na literatura ao considerar as ações do jogador e mapeá-las para a presença de competências. Por outro lado diferencia-se ao adotar uma aproximação baseada em pontos. Essa aproximação, juntamente com a hipótese de estrutura de competência bem graduada, permite lidar com o problema do tamanho exponencial da estrutura de competência, reduzindo a complexidade do problema.

Quanto ao sequenciamento de fases, tem-se esse é responsável por outra das contribuições principais do modelo: a manutenção da dificuldade do jogo. Essa característica se deve ao uso do conceito de marcos como critério de escolha de fases. Dessa forma, juntamente com a hipótese de estrutura de competência bem graduada e da hipótese da existência de fases atreladas para cada estado de competência possível, tem-se que o modelo busca aumentar a dificuldade do jogo de forma constante mas evitando que hajam saltos na dificuldade no jogo. Esse aspecto não é abordado diretamente pelos modelos elicitados na literatura.

A separação do modelo proposto em componentes proporciona a modularidade entre eles. Dessa forma, é possível fazer modificações em cada componente sem que os

outros sejam afetados. Essa característica se faz útil caso seja necessário adaptar o modelo proposto ao aplicá-lo em um determinado jogo.

O presente trabalho também descreve o processo de implementação do modelo proposto no jogo Caixa de Pandora. O procedimento aplicado, bem como as ferramentas produzidas e utilizadas nele e as decisões tomadas, são aplicáveis em outros SGE educacionais e caracterizam uma contribuição do trabalho. Durante a aplicação do modelo, foi necessário adaptar aspectos do modelo ao jogo Caixa de Pandora (critério de pontuação e escolha de fases). Isso se deve ao fato do jogo alvo não ter sido desenvolvido tendo em mente o processo de adaptação.

Quanto ao impacto da adaptatividade no jogo, observou-se que a versão adaptativa expõe o jogador a um maior número de fases em relação ao jogo original. A razão desse fato reside no critério de pontuação adotado. Embora não seja possível afirmar, em primeira instância, se o impacto dessa característica é positivo ou negativo para experiência do jogador, vale salientar que essa característica é ajustável mediante a escolha do critério de pontuação.

Embora tenha caráter genérico, a aplicação do modelo é sensível aos requisitos do jogo. Dessa forma, a aplicação do modelo em um jogo já desenvolvido afeta tanto o processo de implementação, como mostrado na aplicação no Caixa de Pandora, quanto o próprio processo de adaptação. Nesse último caso salienta-se o risco à experiência do jogador.

Dito isso, embora o modelo seja capaz de sequenciar as fases do Caixa de Pandora e ajustar o desafio apresentado mediante às habilidades do jogador, ainda é pertinente a avaliação empírica da adaptatividade quanto à experiência de jogador. Assim, como trabalho futuro, deseja-se avaliar os impactos na experiência de jogador. Sequencialmente, baseado no que foi obtido sobre o estudo empírico, pretende-se realizar os devidos ajustes no modelo proposto e o retrabalho no jogo Caixa de Pandora para melhor adequação às hipóteses do modelo.

O modelos proposto usa os conceitos do CbKST como base e estende seu potencial para adaptação para aplicações que envolvem habilidades além do domínio cognitivo, incluindo havilidades cognitivas e psicomotoras. Essa característica amplia a aplicabilidade desses conceitos e permite a abrangência de SGE como um todo. Apesar do presente trabalho focar na sequenciação de fases ele provê base para outros tipos de adaptação, devido às habilidades avaliadas do jogador, tais como dicas durante o jogo e mensagens em tempo real.

ALMEIDA, L. R. et al. The caixa de pandora game: Changing behaviors and attitudes toward violence against women. *Computers in Entertainment (CIE)*, ACM, New York, NY, USA, v. 16, n. 3, p. 1–13, 2018. ISSN 1544-3574. Citado 7 vezes nas páginas 14, 16, 38, 39, 40, 58 e 61.

ALMEIDA, L. R. de. Serious game para qualificação das práticas de profissionais de saúde na abordagem à violência contra a mulher. Tese (Doutorado) — Universidade Federal da Paraíba, 2015. Citado 4 vezes nas páginas 39, 40, 49 e 51.

ANDERSON, L. W. et al. A Taxonomy for Learning, Teaching, and Assessing: A Revision of Bloom's Taxonomy of Educational Objectives. [S.l.: s.n.], 2001. ISBN 0321084055. Citado 5 vezes nas páginas 14, 16, 27, 33 e 61.

AUGUSTIN, T. et al. Individualized skill assessment in digital learning games: Basic definitions and mathematical formalism. *IEEE Transactions on Learning Technologies*, v. 4, n. 2, p. 138–148, 2011. ISSN 19391382. Citado 10 vezes nas páginas 13, 24, 31, 32, 33, 34, 38, 62, 63 e 64.

AUGUSTIN, T. et al. The simplified updating rule in the formalization of digital educational games. *Journal of Computational Science*, Elsevier B.V., v. 4, n. 4, p. 293–303, 2013. ISSN 18777503. Citado 6 vezes nas páginas 13, 34, 38, 62, 63 e 64.

AUGUSTIN, T. et al. Individualized skill assessment in educational games: The mathematical foundations of partitioning. *Journal of Mathematical Psychology*, Elsevier Inc., v. 67, p. 1–7, 2015. ISSN 10960880. Citado 4 vezes nas páginas 13, 31, 32 e 63.

BLOOM, B. S. et al. Taxonomy of Educational Objectives: The Classification of Educational Goals: Handbook I Cognitive Domain. *Longmans, Green and Co LTD*, v. 16, p. 207, 1956. ISSN 00131644. Citado na página 15.

BLOOM, B. S.; KRATHWOHL, D. R.; MASIA, B. B. Taxionomia de objetivos educacionais. *Compêndio Segundo: Domínio Afetivo*, v. 2, p. 49–53, 177–188, 1972. Citado 2 vezes nas páginas 16 e 29.

CARVALHO, M. B. Serious Games for Learning: A model and a reference architecture for efficient game development. [S.l.: s.n.], 2016. 189 p. ISBN 9789038642031. Citado 2 vezes nas páginas 34 e 35.

CHRYSAFIADI, K.; VIRVOU, M. Student modeling approaches: A literature review for the last decade. *Expert Systems with Applications*, Elsevier Ltd, v. 40, n. 11, p. 4715–4729, 2013. ISSN 09574174. Citado 5 vezes nas páginas 12, 22, 37, 38 e 70.

CSIKSZENTMIHALYI, M.; CSIKSZENTMIHALYI, I. Beyond boredom and anxiety. [S.l.]: Jossey-Bass San Francisco, 1975. v. 721. Citado na página 19.

DAVE, R. Psychomotor levels in developing and writing behavioral objectives. RJ Armstrong (Ed.), p. 20–21, 1970. Citado 3 vezes nas páginas 7, 27 e 30.

DOIGNON, J.-P.; FALMAGNE, J.-C. Spaces for the assessment of knowledge. *International journal of man-machine studies*, Elsevier, v. 23, n. 2, p. 175–196, 1985. Citado 2 vezes nas páginas 21 e 23.

- DÖRNER, R. et al. Serious Games Foundations, Concepts and Practice. [s.n.], 2016. 421 p. ISBN 978-3-319-40611-4. Disponível em: http://link.springer.com/10.1007/978-3-319-40612-1. Citado na página 18.
- FALMAGNE, J. C.; DOIGNON, J. P. A markovian procedure for assessing the state of a system. *Journal of Mathematical Psychology*, v. 32, n. 3, p. 232–258, 1988. ISSN 10960880. Citado na página 13.
- FELIX, Z. C. et al. Avaliando Satisfação do Usuário a Partir dos Modelos GameFlow e PENS: Um Estudo com o Jogo Caixa de Pandora Mobile. In: Simpósio Brasileiro de Jogos e Entretenimento Digital Trilha Educação. Foz do Iguaçú/PR. [S.l.: s.n.], 2018. p. 1047–1054. Citado na página 38.
- FERRAZ, A. P. d. C. M.; BELHOT, R. V. Taxonomia de Bloom: revisão teórica e apresentação das adequações do instrumento para definição de objetivos instrucionais. *Gestão & Produção*, v. 17, n. 2, p. 421–431, 2010. ISSN 0104-530X. Citado 2 vezes nas páginas 16 e 30.
- GÖBEL, S. et al. 80Days: Adaptive digital storytelling for digital educational games. *CEUR Workshop Proceedings*, v. 498, n. 498, 2009. ISSN 16130073. Citado 2 vezes nas páginas 13 e 34.
- GÖBEL, S.; WENDEL, V. Personalization and adaptation. In: *Serious Games*. [S.l.]: Springer, 2016. p. 161–210. Citado 7 vezes nas páginas 12, 13, 15, 18, 19, 20 e 21.
- GOLDBERG, L. R. An alternative description of personality: the big-five factor structure. Journal of personality and social psychology, American Psychological Association, v. 59, n. 6, p. 1216, 1990. Citado 2 vezes nas páginas 20 e 21.
- HELLER, J. et al. Competence-Based Knowledge Structures for Personalised Learning. *International Jl. on E-Learning*, v. 5, n. 1, p. 75–88, 2006. ISSN 15372456. Citado 6 vezes nas páginas 22, 27, 33, 36, 49 e 61.
- JACKSON, S. A.; MARSH, H. W. Development and validation of a scale to measure optimal experience: The flow state scale. *Journal of sport and exercise psychology*, v. 18, n. 1, p. 17–35, 1996. Citado na página 19.
- KENNEDY, D. Writing and using learning outcomes: a practical guide. [S.1.]: University College Cork, 2006. Citado na página 30.
- KHENISSI, M. A. et al. Learner Modeling Using Educational Games: A Review of the Literature. *Smart Learning Environments*, v. 2, n. 1, p. 6, 2015. ISSN 2196-7091. Citado na página 13.
- KICKMEIER-RUST, M.; HOLZINGER, A.; ALBERT, D. Fighting Physical and Mental Decline of Elderly With Adaptive Serious Games. *Proceedings of the 6th European Conference on Games Based Learning*, p. 631–634, 2012. ISSN 20490992. Citado na página 35.

KICKMEIER-RUST, M. et al. The ELEKTRA project: Towards a new learning experience. M3 - Interdisciplinary Aspects on Digital Media & Education. Proceedings of the 2nd Symposium of the WG HCI & UE of the Austrian Computer Society., v. 3, n. 4, p. 19–48, 2006. Citado 2 vezes nas páginas 13 e 31.

- KICKMEIER-RUST, M. D.; ALBERT, D. The ELEKTRA ontology model: A learner-centered approach to resource description. *Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)*, v. 4823 LNCS, p. 78–89, 2008. ISSN 03029743. Citado 3 vezes nas páginas 27, 36 e 61.
- KICKMEIER-RUST, M. D.; ALBERT, D. Micro-adaptivity: Protecting immersion in didactically adaptive digital educational games. *Journal of Computer Assisted Learning*, v. 26, n. 2, p. 95–105, 2010. ISSN 02664909. Citado 4 vezes nas páginas 13, 31, 33 e 34.
- KICKMEIER-RUST, M. D.; GBEL, S.; ALBERT, D. 80Days: Melding adaptive educational technology and adaptive and interactive storytelling in digital educational games. *CEUR Workshop Proceedings*, v. 386, 2008. ISSN 16130073. Citado na página 34.
- KICKMEIER-RUST, M. D. et al. Micro adaptive, Non-Invasive knowledge assessment in educational games. *Proceedings 2nd IEEE International Conference on Digital Game and Intelligent Toy Enhanced Learning, DIGITEL 2008*, p. 135–137, 2008. Citado na página 33.
- KICKMEIER-RUST, M. D.; STEINER, C. M.; ALBERT, D. Apt to adapt: Micro-and macro-level adaptation in educational games. In: *Technology-enhanced systems and tools for collaborative learning scaffolding*. [S.l.]: Springer, 2011. p. 221–238. Citado 2 vezes nas páginas 13 e 15.
- KOROSSY, K. Modeling knowledge as competence and performance. *Knowledge Spaces : Theories, Empirical Research and Applications*, p. 103–132, 1999. Citado 12 vezes nas páginas 13, 15, 21, 22, 23, 24, 25, 27, 44, 54, 61 e 64.
- LANKVELD, G. V. et al. Games as personality profiling tools. In: IEEE. 2011 IEEE Conference on Computational Intelligence and Games (CIG'11). [S.l.], 2011. p. 197–202. Citado na página 21.
- LIMA, E. S. de; FEIJÓ, B.; FURTADO, A. L. Player behavior and personality modeling for interactive storytelling in games. *Entertainment Computing*, Elsevier, v. 28, p. 32–48, 2018. Citado na página 21.
- LINEK, S. B. et al. Game-based learning:Conceptual methodology for creating educational games. 5th International Conference on Web Information Systems and Technologies, WEBIST 2009, n. September 2016, p. 135–142, 2009. Citado 3 vezes nas páginas 23, 33 e 66.
- MARZANO, R. J.; KENDALL, J. S. The new taxonomy of educational objectives. p. 193, 2007. ISSN 00405841. Citado na página 27.
- MELERO, J.; EL-KECHAÏ, N.; LABAT, J.-M. Comparing two CbKST approaches for adapting learning paths in serious games. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), v. 9307, n. January, 2015. ISSN 16113349. Citado na página 35.

MICHAEL, D. R.; CHEN, S. L. Serious games: Games that educate, train, and inform. [S.l.]: Muska & Lipman/Premier-Trade, 2005. Citado na página 18.

MILDNER, P. et al. Design of serious games. In: *Serious Games*. [S.l.]: Springer, 2016. p. 57–82. Citado na página 12.

NAGLE, A.; RIENER, R.; WOLF, P. How would you like to be rewarded? relating the big-five personality traits with reward contingency in a cognitive training puzzle game. In: IEEE. 2016 IEEE International Conference on Serious Games and Applications for Health (SeGAH). [S.l.], 2016. p. 1–7. Citado na página 21.

NAKAMURA, J.; CSIKSZENTMIHALYI, M. The concept of flow. In: *Flow and the foundations of positive psychology*. [S.l.]: Springer, 2014. p. 239–263. Citado na página 19.

SAMPAYO-VARGAS, S. et al. The effectiveness of adaptive difficulty adjustments on students' motivation and learning in an educational computer game. *Computers and Education*, Elsevier Ltd, v. 69, p. 452–462, 2013. ISSN 03601315. Citado na página 20.

SCHELL, J. The Art of Game Design: A book of lenses. [S.l.]: CRC Press, 2014. Citado 2 vezes nas páginas 19 e 20.

SILVA, H. F. B. d. M.; MACHADO, L. d. S.; MORAES, R. M. d. Um modelo de adaptação para serious games educacionais baseado na avaliação de habilidades cognitivas e afetivas. XVII Simpósio Brasileiro de Jogos e Entretenimento Digital - Trilha Educação, SBGames, p. 1256–1263, 2018. Citado na página 42.

STEFANUTTI, L.; ANSELMI, P.; ROBUSTO, E. Assessing learning processes with the gain-loss model. *Behavior Research Methods*, v. 43, n. 1, p. 66–76, 2011. ISSN 1554351X. Citado na página 15.

STEFANUTTI, L.; CHIUSOLE, D. de. On the assessment of learning in competence based knowledge space theory. *Journal of Mathematical Psychology*, Elsevier Inc., v. 80, p. 22–32, 2017. ISSN 10960880. Citado na página 24.

STREICHER, A.; SMEDDINCK, J. D. Personalized and adaptive serious games. In: *Entertainment Computing and Serious Games*. [S.l.]: Springer, 2016. p. 332–377. Citado 5 vezes nas páginas 12, 15, 18, 22 e 38.

TAKATALO, J. et al. Evaluating User Experience in Games. p. 23–46, 2010. Disponível em: http://link.springer.com/10.1007/978-1-84882-963-3. Citado 3 vezes nas páginas 16, 19 e 63.

WENDEL, V. et al. A Method for Simulating Players in a Collaborative Multiplayer Serious Game. *Proceedings of the 2014 ACM International Workshop on Serious Games - Serious Games '14*, p. 15–20, 2014. Citado na página 35.