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RESUMO

O estanato de calcio (CaSnOs3) é uma perovskita do tipo ortorrdombica que, por ser um
material semicondutor, apresenta diversas aplicacdes tecnoldgicas, destacando o seu
uso como catalisadores em processos redox. Neste trabalho, foram sintetizados o
CaSnOs puro e dopado com Fe3*, Cu?*, Co?* e Pd?* pelo método Pechini-modificado
e tiveram suas atividades cataliticas avaliadas pela reacdo modelo de fotodegradacao
do corante téxtil remazol amarelo ouro (RNL). A participacdo das espécies reativas
nesta reacao foi determinada pela utilizacdo de agentes supressores, de modo a
elucidar o mecanismo reacional que cada um dos fotocatalisadores assumem. Os
materiais sintetizados foram caracterizados por analise termogravimétrica (TG/DTA),
difracéo de raios-X (DRX), espectroscopia de absorcao na regidao do ultravioleta e do
visivel (UV-Vis), espectroscopia vibracional na regido do infravermelho (IV),
espectroscopia Raman e microscopia eletrénica de varredura (MEV). Os resultados
de DRX mostraram uma mudanca na ordem a longo alcance das amostras dopadas
ocasionadas pela introducédo dos cétions dopantes na rede cristalina. As amostras que
apresentaram maior atividade catalitica foram CaSnOs, CaSnoeCuo103 e
CaSno,99Pdo,0103, alcancando degradacdo total do RNL. Estas mesmas amostras
apresentaram valores préximos de band gap. O uso de supressores nos testes
fotocataliticos indicou que apenas o CaSnogFeo,103 apresentou a contribuicdo de
ambos portadores de carga, e e h* fotogerados, na geracao do radical hidroxila. Para
as demais amostras, a formacao do radical hidroxila ocorre apenas pela participacéo

do h* fotogerados.

Palavras-chave: perovskita, CaSnOs, catalisadores, processos oxidativos,

fotodegradacéo.



ABSTRACT

Calcium stannate (CaSnQOs) is an orthorhombic perovskite-type semiconductor that
presents several technological applications, with a noteworthy use as catalysts in
redox processes. In this work, pure CaSnOs and doped stannate with Fe3*, Cu?*, Co?*
e Pd?* were synthesized by the modified Pechini method. The catalytic activities of the
samples were evaluated by the photo-degradation probe reaction of the textile dye
golden yellow remazol. The participation of the reactive species in photo-degradation’s
reaction was determined by the use of suppressor agents in order to elucidate the
reaction mechanism assumed by each of the photocatalysts. The samples were
characterized by thermogravimetric analysis (TG/DTA), X-ray diffraction (XRD),
ultraviolet-visible spectroscopy (UV-Vis), infrared spectroscopy (IR), Raman
spectroscopy and scanning electron microscopy (SEM). The samples were submitted
to terephthalic acid photohydroxylation reaction. The XRD results expressed a change
in the long range order of the doped samples caused by the introduction of the doping
cations in the crystal lattice. CaSnOs, CaSno,eCuo,103 e CaSno,g9Pdo,0103, showed the
highest catalytic activity, reaching total degradation of the textile dye. Besides that,
these samples showed close band gap values. With the use of suppressors agents in
photocatalytic tests, it is able to notice that only CaSnogFeo103 presented the
contribution of both charge carriers, photogenerated e- and h+, in the hydroxyl radical
generation. While for the other samples, the formation of the hydroxyl radical occurs

only by the participation of the photogenerated h+.

Keywords: perovskite, CaSnOs, catalysts, oxidative processes, photodegradation.
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1 INTRODUCAO

O exponencial desenvolvimento tecnologico e industrial proporcionou
diversos beneficios para a populacdo mundial, pela criacdo de novos processos que
permeiam varias esferas industriais como: alimenticia, téxtil, papeleira, petroquimica,
farmacéutica, entre outras. Em contrapartida, a quantidade de produtos quimicos
descartados sem um tratamento prévio adequado s6 tem crescido, desencadeando
um aumento na poluicdo ambiental nos diferentes compartimentos ambientais, solos,
aguas superficiais, corpos aquiferos e atmosfera.

Os efluentes industriais sdo, na maioria das vezes, compostos por
substancias organicas. Diversos tratamentos industriais vém sendo desenvolvidos e
aplicados no intuito de reduzir a poluicdo gerada por esses agentes. Dentre eles,
podemos citar o tratamento bioldgico - o qual necessita de longos periodos para a
mineralizacdo dos efluentes (JIMENEZ et al., 2019). Neste ambito, 0S processos
oxidativos avancados (POAs) vém ganhando bastante atencao por serem métodos de
remediacao mais rapidos e eficazes.

Entre os diferentes processos oxidativos avancados, a fotocatalise
heterogénea vém se destacando por ser uma técnica promissora na degradacédo de
variados compostos organicos. Esta técnica consiste na utilizacdo de um material
semicondutor que, ao ser irradiado com energia igual ou superior a do seu band gap,
tém seus elétrons excitados, gerando radicais com alto poder oxidativo (*OH) e
intermediarios que atuam na degradacao dos poluentes organicos.

A reacdo de fotocatélise pode ser regida por dois mecanismos distintos: o
direto e o indireto. O estudo dos mecanismos reacionais envolvidos no processo de
fotocatélise € de grande importancia, apontando caracteristicas especificas dos
fotocatalisadores que sejam mais adequadas a esta aplicacdo. A participacdo das
espécies reativas (radicais, elétrons e buracos) nos mecanismos pode ser avaliada
pelo acompanhamento da reacdo com a adi¢cdo de substancia supressoras dessas
espécies (ALAMMAR et al., 2017).

Os oOxidos do tipo perovskita ABO3 tém se mostrado um forte aliado nesse
processo de degradacao, principalmente, por suas propriedades redox. A atividade
fotocatalitica e outras propriedades desses materiais estdo relacionadas a
deformacbes e/ou defeitos na sua rede cristalina. Entre a classe dos estanatos de

metais alcalinos terrosos, com férmula ASnOs (A = Sr, Ba e Ca), o estanato de calcio
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vem ganhando espaco na literatura por apresentar propriedades que possibilitam sua
aplicacado em diversos segmentos, desde processos fotocataliticos a sensores de gas
(HONORIO et al., 2018).

O presente trabalho voltou-se para a sintese do estanato de célcio (CaSnOs)
puro e dopado com diferentes metais (Fe3*, Cu?*, Co?* e Pd?*) pelo método dos
precursores poliméricos (Pechini), com a finalidade de investigar as possiveis
mudancgas estruturais ocasionadas pela dopagem, bem como explorar a atividade
catalitica desses materiais em processos oxidativos avancgados, através da reacao

modelo de fotodegradacéo de corantes.
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2 OBJETIVOS

2.1

OBJETIVO GERAL

Preparar catalisadores, do tipo perovskita CaSnOs, para utilizagdo em

processos oxidativos avangados, como a reacdo modelo de degradagéao do corante

téxtil remazol amarelo ouro por fotocatélise.

2.2

OBJETIVOS ESPECIFICOS

Sintetizar as perovskitas CaSnQOs, CaSnosMo,103 (M=Fe®*, Cu?* e Co?*) e
CaSno,99Pdo,0103, utilizando o método Pechini modificado;

Analisar a organizacdo do material a curto, médio e longo alcance e a
morfologia, bem como, avaliar a influéncia dos dopantes nesses fatores, por
meio de diferentes técnicas de caracterizacao;

Avaliar a participacdo das espécies radical hidroxila (*OH), elétron fotogerado
(e") e buraco fotogerado (h*) no mecanismo reacional,

Comparar a atividade catalitica dos materiais a partir da reacdo modelo de
fotodegradacéao de solucdes do corante remazol amarelo ouro, em presenca
ou nao de marcadores;

Relacionar a influéncia dos marcadores como evidéncia da participacao de
cada espécie reativa na fotocatalise;

Relacionar a composicdo quimica dos sélidos sintetizados com a atividade

catalitica.
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3 FUNDAMENTACAO TEORICA

3.1 OXIDOS DO TIPO PEROVSKITA

Em meados de 1830, o mineral titanato de célcio (CaTiOs3) foi descrito pelo
geodlogo Gustav Rose, que empregou o termo perovskita a este composto como forma
de homenagem ao mineralogista russo Lev Aleksevich Perovski. Desde entédo, o termo
perovskita é utilizado para descrever a familia de compostos naturais ou sintéticos que
apresentam estequiometria e organizagdo estrutural semelhantes ao CaTiOs3
(HWANG et al., 2017).

Os oxidos mistos do tipo perovskita, geralmente, sdo descritos pela férmula
ABOs3, sendo A e B cétions de diferentes tipos de elementos, seguindo a regra de que
o sitio A deve ser ocupado por um cation de maior raio iénico frente ao cation do sitio
B. A estrutura cristalina ideal para esses compostos é cubica (Pm3m). Nessa
estrutura, os cations A e B ocupam sitios de alta simetria. O céation A é
dodecacoordenado com anions de oxigénio, enquanto que B encontra-se no centro
do octaedro, ou seja, é hexacoordenado (MOURE; PENA, 2015). A forma ideal de
uma perovskitas do tipo ABOs é apresentada na Figura 3.1.

Figura 3.1 - Estrutura ideal de uma perovskita ABOs: (a) Céation A e (b) Céation B no centro da célula
unitaria

Fonte: (SUNARSO et al., 2017)

A estabilidade das perovskitas € influenciada pela energia eletrostatica que é
atingida de acordo com a posi¢do que 0s cations assumem na estrutura do material.
Assim, 0 sistema requer que o céation que ocupa o sitio B tenha preferéncia por

coordenacao octaédrica, formando blocos estruturais estaveis com sitios octaédricos.
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E ainda, que o cation A possua um tamanho adequado para ocupar o intersticio

formado pelos octaedros posicionados nos vértices da célula. De modo a satisfazer

essas condi¢cdes, o cation do sitio A deve ter um raio i6nico superior a 0,9 A e o do

sitio B, superior a 0,51 A. (SPINICCI et al., 2001).

O fator de tolerancia de Goldschmidt (t) permite-nos estimar o grau de
distorcdo da estrutura e, assim, verificar a simetria do sistema e efeitos ocasionados
pelas propriedades dielétricas do composto. Este parametro é calculado através da
Equacéo 1 (ZHANG, TANG; YE, 2007).

Ry +R
T+ @

Onde Ry, Ry € Ry, S@0, respectivamente, 0s raios idnicos do ion do sitio A, do
sitio B e do anion OZ.

Quando o valor do fator de tolerancia estiver em entre 0,75 e 1,0, a estrutura
perovskita é formada e quanto mais proximo de 1, a estrutura obtida é a cubica ideal
com elevada simetria. Em valores abaixo de 1, o angulo das ligacbes B—O—B
diminui, acarretando a mudanca do grupo espacial. Assim, quando o valor de t estiver
compreendido entre 0,9 e 1, a distor¢cdo serd romboédrica e se for entre 0,75 e 0,9,
serd ortorrdmbica (MELO, 2011).

Howard et al. (2003) e Moure e Pefia (2015) mostram que as distor¢des
sofridas pelas perovskitas para simetrias mais baixas (tetragonal, ortorrébmbica,
romboédrica, monoclinica e triclinica) podem ser causadas por trés mecanismos
distintos; sendo eles: a distorcdo dos octaedros BOs pelo efeito Jahn-Teller;
deslocamento dos cations nos sitios B; e pela inclinacdo ou rotacdo dos octaedros
BOs gerados pela substituicdo dos cations do sitio A.

A eletroneutralidade € um dos fatores que também contribui para a
estabilidade da estrutura perovskita. Ou seja, a soma das cargas dos cations, A e B,
deve serigual ao total de carga dos anions de oxigénio. Dessa forma, os 6xidos podem
assumir as seguintes cargas: A*B>*Os, A>*B4*03 e A3*B3*O3 (SUNARSO et al., 2017).

As perovskitas sdo materiais que apresentam grande diversidade de
composigdo quimica, ja que varios metais se encontram estaveis nesta estrutura e,

também, permitem a substituicdo parcial dos cations A ou B por outros metais com
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diferentes estados de oxidacdo. Ao realizar as substituicbes, pode proporcionar
diferentes propriedades ao material, devido ao aumento do estado de oxidacéo do
sitio B ou defeitos estruturais, 0os quais resultam na deficiéncia catibnica e/ou vacancia
de anions de oxigénio (SANTOS et al., 2015).

As substituicdes nas perovskitas sdo denominadas processos de dopagem -
0S quais envolvem a substituicdo do cation dos sitios A e B na estrutura do material
por outros cétions. O processo de dopagem afeta diversas propriedades do material;
sendo uma delas o band gap - podendo ser diminuido por causa da introdugédo de um
novo nivel de banda proibido (BIN ADNAN et al., 2018).

Algumas das propriedades fisicas que podem ser encontradas em materiais
do tipo perovskita, sdo: supercondutividade elétrica e ibnica, ferromagnetismo,
condutividade térmica, piezoeletricidade e ferroeletricidade. (MOURE & PENA, 2015).
Em decorréncia dessas propriedades, as perovskitas possuem grande versatilidade
de aplicacdes. Dentre outras: catalisadores e fotocatalisadores (IANO et al., 2018),
pigmentos (IANO et al., 2018), células solares (GUO et al., 2019), eletrodos (HE et al.,
2019) e sensores de gas (GILDO-ORTIZ et al., 2019).

Diversas reacdes podem ser catalisadas pelos o0xidos do tipo perovskita. A
atividade catalitica das perovskitas tem sido atribuida a condutividade elétrica e ibnica,
a presenca de vacancias e a mobilidade de oxigénio no interior da estrutura -
favorecendo essa atividade catalitica. Segundo Santos e colaboradores (2015), em
reacOes de oxidacao, a atividade catalitica é atribuida ao cétion B, enquanto o cation

A é responsavel pela estabilizacdo do estado de oxidacao do céation B

3.1.1 Estanatos de metais alcalinos terrosos

Os estanatos de metais alcalinos terrosos pertencem a familia de perovskitas
gue possuem o estanho (Sn) como cation do sitio B e os metais alcalinos terrosos
ocupando o sitio A da estrutura ABOgs, tendo como formula geral MSnOs. Dentro dessa
familia, destacam-se o0s estanatos de bario (BaSnQOs), estréncio (SrSnOs) e caélcio
(CaSn0s). As estruturas tridimensionais desses compostos sdo apresentadas na

Figura 3.2.
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Figura 3.2 - Estrutura trimidensional do (a) BaSnOs, (b) SrSnOs e (c) CaSnOs.

Sr ca
® @ - am )

Fonte: (WANG et al., 2014)

O estanato de bario é uma perovskita com estrutura ideal cubica (Pm3m) e
com octaedros SnOs simétricos. Quando o cation do sitio A é substituido por Sr?* e
Ca?*, a estrutura cristalina muda para ortorrombica (Pbnm) devido as distorcdes
octaédricas (ZHONG et al., 2016). Na medida em que o raio i6nico diminui, 0 angulo
da ligacdo Sn-O-Sn diminui, saindo do angulo ideal (180°) e perturbando a simetria da
rede (MIZOGUCHI, ENG; WOODWARD, 2004).

Recentemente, os estanatos tém apresentado um grande potencial para
serem caracterizados como 6xidos condutores transparentes por possuirem band
gaps opticos largos (energia de gap — Eg — acima de 2,5 eV), sendo as bandas de
valéncias compostas, principalmente, por estados 2p do oxigénio e as bandas de
conducdo, principalmente, por orbitais 5s do estanho acima do nivel de Fermi (LIU et
al., 2017).

Estes estanatos recebem bastante atencdo devido as suas diversas
possibilidades de aplicacdes; sendo algumas delas: como corpos ceramicos
dielétricos (AZAD; SHYAN, 1999; AZAD, PANG; ALIM, 2003), sensores de gas e
umidade (UPADHYAY; KAVITHA, 2007), fotocatalisadores (GOMEZ-SOLIS et al.,

2019) e materiais anédicos para baterias de Litio (HU et al., 2010).

3.1.1.1 Estanato de célcio (CaSnQOs3)

O estanato de calcio (CaSnOs) é classificado como uma perovskita do tipo
GdFeOs e apresenta estrutura ortorrdombica com grupo espacial Pbnm, decorrente da

inclinagdo dos octaedros SnOs. Os valores dos parametros de rede para esse
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composto sdo: a = 5,5142(2) A, b = 5,6634(2) A, ¢ = 7,8816(17) A (MOUNTSTEVENS,
ATTFIELD; REDFERN, 2003). A estrutura do CaSnOs € representada na Figura 3.3.

Figura 3.3 - () Estrutura do CaSnOs (Pbnm), (b) cuboctaédro COz12 distorcido e (c) octaedro SnOe.
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Fonte: Adaptado de MAUL et al. (2015).

Segundo Mizoguchi e Woodward (2004), além da fase ortorrébmbica, o
CaSnOs pode apresentar fases romboédrica e hexagonal, assemelhando-se a
cristalinidade de uma ilmenita, cujos parametros de rede séo, respectivamente, a =
5,487(1) A, c =15,287(6) Ae a=6,000(2) A, a =54,42(3)°.

Nas ultimas décadas, o CaSnOs vem conquistando bastante espagco no
estudo de suas propriedades e aplicacbes, por ser considerado um excelente
semicondutor com caracteristicas dielétricas. Possuindo uma Eg em torno de 4,4 eV,
podem ser aplicados em diversos ramos tecnologicos, como sensores, capacitores,
fotocatalisadores e eletrodos de baterias de ions litio (AZAD; SHYAN, 1999; LIU et al.,
2017)

3.1.2 Métodos de obtencédo dos 6xidos do tipo perovskita

A escolha do método de preparacdo de 6xidos mistos, do tipo perovskita,
influencia diretamente as propriedades fisico-quimicas desses compostos.
Propriedades como area superficial, tamanho da particula, morfologia, cristalinidade,
energia de gap (Eg) e estabilidade séo afetadas pelo tipo de metodologia de sintese

escolhida.
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Véarias metodologias de sintese sdo descritas na literatura para a obtencao
dos estanatos de metais alcalinos terrosos, tais como: reacdo no estado sélido
(GORDO et al., 2015); sal fundido (AL-HYDARY; AL-MOHANA; AL-MARZOOQEE,
2018); sol-gel (SHARMA et al., 2002); Pechini (OCHOA et al., 2016); Pechini
modificado (TEIXEIRA et al., 2019); hidrotermal (WANG et al., 2009); coprecipitacao
(MOSHTAGHI; GHOLAMREZAEI; NIASARI, 2017); e microemulsdao (SHOJAEI;
HASSANZADEH-TABRIZI; GHASHANG, 2014).

3.1.2.1 Método Pechini ou dos precursores poliméricos

O método Pechini € uma metodologia derivada do processo sol-gel. Foi
desenvolvida e patenteada por Margio Pechini em 1967. Essa metodologia baseia-se
na capacidade de acidos orgéanicos, como o0s &cidos citrico, latico e o glicdlico,
formarem complexos metalicos de acidos a-hidroxicarboxilicos. Os céations metalicos
sdo adicionados a solucdo aguosa do acido, podendo esses cations estarem na forma
de hidréxidos, 6xidos, carbonatos, oxalatos ou acetatos. O pH dessa solucao deve ser
ajustado para o intervalo favoravel a complexacéo, o qual deve estar entre 1 e 4. O
complexo citrato-ion metalico (quelatos) formado possui grande estabilidade devido a
forte coordenacdo entre os grupos carboxilicos e hidroxilicos. Ao adicionar um
polialcool, como o etilenoglicol, esses quelatos sofrem o processo de poliesterificacao
e com a eliminacdo da agua, polimerizam e formam uma resina polimérica, a qual é
submetida a tratamentos térmicos para ocorrer a quebra da cadeia polimérica, a
oxidac&o/eliminacdo da matéria organica e a cristalizacio do material (CESARIO,
2009; VILELA, 2016). As reacbes organicas que ocorrem durante o processo de

sintese pelo método Pechini sdo apresentadas na Figura 3.4.
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Figura 3.4 - Representacdo esquematica das reacfes organicas envolvidas no método Pechini.
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Fonte: préprio autor.

Duas propor¢des importantes na sintese de 6xidos pelo método Pechini, sdo:
(a) acido citrico/metal e (b) &cido citrico/etilenoglicol; sendo a primeira associada a
estequiometria dos 6xidos, garantindo a quelacdo total dos cations metalicos e a
segunda, esta associada a temperatura necessaria para a eliminacdo da matéria
organica (SANTOS, 2017).

Algumas das vantagens que esse método de sintese apresenta, sdo: controle
da estequiometria, boa reprodutibilidade, formacao de 6xidos com baixos tamanhos
de particulas e alta homogeneidade. J4 as desvantagens sdo a formacdo de
aglomerados durante a calcinacéo e a elevada perda de massa (LEITE et al., 1995).

Alves et al. (2007) estudaram a influéncia de diferentes precursores de célcio
na sintese do CaSnOs, tais como CaClz, CaCOs, Ca(CH3C0OO0)2.H20 e Ca(NOs)2, pelo
método Pechini e como precursor de estanho, utilizaram o SnCl2.0Os materiais obtidos
foram analisados por difracdo de raios-X, constatando uma baixa cristalinidade e
presenca de fases secundarias para todas as amostras.

Uma nova rota de sintese para o SrSnOs foi proposta por Lucena e
colaboradores (2013), utilizando o Sn metéalico como precursor, ao invés de SnClz. Os
resultados indicaram que o material obtido pela rota proposta teve uma maior
organizagdo a curto alcance, reducdo de fases secundarias e maior energia de gap,
gquando comparado com o obtido a partir do SnCl2. Outro ponto satisfatério, foi a
eliminacdo da etapa de lavagem do citrato de estanho para a eliminacao de cloreto,
reduzindo o tempo de sintese e a quantidade de residuos.

O CaSnOs também pode ser obtido seguindo a mesma metodologia
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proposta por Lucena et al. (2013), apresentando organizagao a curto e longo

alcance, alta cristalinidade e elevada energia de gap (LUCENA et al., 2017).

3.2 TRATAMENTO DE EFLUENTES INDUSTRIAIS

Um dos assuntos mais abordados na atualidade é a preocupacdo com 0 meio
ambiente. Com o elevado desenvolvimento tecnolégico e industrial, nas udltimas
décadas, elevou-se também a geracdo de residuos e efluentes industriais e com isso,
a preocupacao com os danos causados ao meio ambiente.

Um dos problemas ambientais decorrentes dos efluentes industriais pode ser
relacionado a toxicidade dos compostos recalcitrantes que séo liberados nos corpos
aquaticos. Esses compostos ndo sdo biodegradados pelos organismos presentes nos
sistemas bioldgicos de tratamento e com a acumulagéo, podem atingir concentracdes
mais elevadas do que a dose letal para alguns organismos, como peixes, levando-os
a morte. Podem ser observados, além disso, efeitos cancerigenos em seres humanos,
decorrentes da bioacumulagéo ao longo da cadeia alimentar (ALMEIDA; ASSALIN &
ROSA, 2004).

Existem diversos tipos de efluentes industriais, tais como o papeleiro, téxtil,
farmacéutico, petroquimico, pesticidas, entre outros. As industrias papeleiras utilizam
cloro elementar na etapa de branqueamento da celulose, gerando grande variedade
e quantidade de substancias organocloradas, como clorofendis (HELBLE et al., 1999).
Os efluentes de industrias téxteis, geralmente, sao caracterizados por residuos de
corantes de diferentes composi¢cdes quimicas, entre eles pode-se citar o corante
vermelho reativo 183, azul acido 158, remazol amarelo ouro e outros (CHEN et al.,
2018). Alguns dos compostos tipicos presentes nos efluentes farmacéuticos, séao:
ibuprofeno, dicoflenaco, acido clorofibrico e penicilina (ZWIENER; FRIMMEL, 2002).

Na fabricacdo de pesticidas, sdo gerados residuos contendo substancias
toxicas e ndao-biodegradaveis, tais como pirimifosmetil, organoclorados
(clorobenzaldeido e dicofol), tetradifon, entre outros (CORTES et al., 2000). Os
efluentes petroquimicos possuem elevados teores de compostos organicos, dentre
eles os compostos fendlicos, como clorofendis, resorcinol e cresoéis (PHU et al., 2002).

Pela grande diversidade e quantidade de efluentes, bem como os problemas

ambientais atrelados, medidas vém sendo tomadas, por meio de
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legislacdes/resolucdes ambientais e de diversos estudos, realizados com a finalidade
de desenvolver tecnologias capazes de diminuir a carga de toxicidade dos efluentes
industriais.

O Conselho Nacional do Meio Ambiente (CONAMA) publicou a resolugéo
n° 430, de 13 de maio de 2011, estabelecendo que “Os efluentes de qualquer fonte
poluidora somente poder&o ser langados, direta ou indiretamente, nos corpos de agua,
apos o devido tratamento e desde que obedecam as condi¢cfes, padrdes e exigéncias
dispostos nesta resolugao e em outras normas aplicaveis” (BRASIL, 2011).

Os tratamentos convencionais de efluentes séo: filtracdo, extracao, adsorcao,
processos térmicos e degradacao bioldgica. Porém, muitos desses métodos, como a
filtracdo, extragdo e adsorgcdo, ndo sao capazes de mineralizar as substancias
poluentes, ocorrendo apenas a separacao ou mudanca de fase. Com a finalidade de
degradar essas substancias, comecaram a ser estudados e desenvolvidos métodos
quimicos, baseados na oxidacao de compostos organicos - 0s quais sdo denominados
Processos Oxidativos Avancados (POAs) (ASGHAR; RAMAN; DAUD, 2015).

3.2.1 Processos Oxidativos Avancados (POAS)

Os processos oxidativos avangados foram definidos por Glaze, Kang e Chapin
(1987), como processos que se baseiam na geracdo in-situ de radicais livres,
predominantemente, o radical hidroxila (*OH), que atuam como forte agente oxidante
na degradagcdo de compostos organicos. Esses processos podem ser classificados
em homogéneos ou heterogéneos, podendo ter participacdo ou ndo de radiacao
eletromagnética; ou seja, fotoquimicos ou néo fotoquimicos. Dentre 0s processos de
geracédo do radical *OH, destacam-se 0s processos Fenton, oxidacdo com peréxidos
(H2032) e/ou ozbnio (O3), fotdlise e fotocatalise, bem como a combinacao entre estes
métodos (MIKLOS et al., 2018).

As principais vantagens da utilizacdo de POAs na degradac¢éo de substancias
poluentes séo: elevadas taxas de reacdes, alta capacidade de oxidacao/degradacao
de compostos organicos e compostos nao biodegradaveis, ndo concentracdo de
residuos para tratamentos posteriores e aplicabilidade em tratamento de efluentes
combinado a outros processos (OTURAN; AARON, 2014).
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Dentre os processos oxidativos avancados, a fotocatalise heterogénea vem
ganhando bastante espaco na literatura, por se mostrar uma técnica promissora na

degradacgéo de compostos orgéanicos (CHEN et al., 2019).

3.2.1.1 Fotocatalise heterogénea

A fotocatalise heterogénea é uma tecnologia que se baseia na irradiacéo de
um catalisador sélido, em geral um semicondutor, e foi primeiramente observada pelos
pesquisadores Fujishima e Honda (1972), quando irradiou-se o TiO2 por uma fonte de
luz, promovendo a decomposicao da agua em Hzg) e Ozg). A radiacdo mais utilizada
nesta tecnologia é a ultravioleta, a qual esta situada na regido de 100 a 380 nm do
espectro eletromagnético, sendo dividida nas bandas UV-A, UV-B e UV-C.
(WETCHAKUN; WETCHAKUN; SAKULSERMSUK, 2019).

Os mecanismos fotocataliticos iniciam-se com a irradiacdo do material
semicondutor, promovendo a excitacdo dos elétrons da banda de valéncia (BV) para
a banda de conducéo (BC) e a geracao de pares elétron/buraco (e/h*), conforme a
Equacdo 3.1 e Figura 3.5. Para que ocorra a excitagdo dos elétrons, a fonte de
irradiacdo deve emitir fotons com energia igual ou superior a energia de band gap - Eq
(DONG et al., 2015).

Catalisador + hv > ez. + hfy (3.1)

Figura 3.5 - Representacdo esquematica da fotogeracéo dos pares é/h+ na superficie do
fotocatalisador.
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Fonte: préprio autor.
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Os pares e/h* fotogerados podem se recombinar diretamente, levando a
inatividade do material semicondutor ou migrar para a superficie do material,
conferindo propriedades oxi-redutoras a este. Dessa forma, as reagdes de oxidagao
acontecem na banda de valéncia; j4 as de reduc¢é&o, ocorrem na banda de conducéo.

A literatura reporta dois mecanismos distintos para descrever o0 processo
fotocatalitico, sendo eles o direto e o indireto. No mecanismo direto, a oxidacdo ou
reducdo dos compostos organicos ocorre na superficie do catalisador, apds a
fotogeracao dos pares e/h* (Equacgéo 3.1). Os compostos adsorvidos na superficie do
catalisador atuam como espécies receptoras (R) ou doadoras (D) de elétrons,
ocorrendo a transferéncia de cargas, conforme é mostrado nas Equacdes quimicas
3.2 e 3.3 e, assim, a degradacdo desses compostos, que Sao posteriormente
dessorvidos da superficie do fotocatalisador (ONG; NG; MOHAMMAD, 2018). A

representacdo do mecanismo direto é apresentada na Figura 3.6.

Rads + eEC - R;ds (3-2)

Dads + th - Dc-ll-ds (33)

Figura 3.6 - Representacéo do mecanismo de reacéo fotocatalitica via direta.
: &’Rads + egc = Rads

FOTOCATALISADOR

"

SUBSTRATO
ORGANICO

i} )
Dags + hBV — Dags

Fonte: Adaptado de Ong, Ng e Mohammad (2018).

Em contrapartida, no mecanismo por via indireta 0 composto organico nao se
adsorve a superficie do fotocatalisador, portanto sua degradacdo se da por meio da
reacao com radicais hidroxila (*OH). Esses radicais sao considerados fortes agentes
oxidantes, possuem elevado potencial de reducéo (E° = 2,7 V) e alta reatividade, frente
a outras espécies oxidantes (AJMAL et al., 2014). O processo de geracao in situ do
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radical *OH é demonstrado na Figura 3.7 e, também, pela sequéncia de reacdes

propostas pelas Equacbes 3.4 a 3.11.

Figura 3.7 - Representagdo o mecanismo de reagao fotocatalitica via indireta.
02._ —* OHZ_ — Hzoz — "0H

Banda de Conducie (BC)

e
"""""""""""""" 0,
12 7003 0) : S
Bﬂndagﬁncja (BV)
~OH
Fonte: préprio autor.
H;0qas) + ht. — H(':lds) + OH(.ads) (3.4)
0, + egy = OEZads) (3.5)
O3(aasy ¥ H™ = HO3qq5 (3.6)
HO3qas) + Oz(aas) = H202(aas) + 2 03 (3.7)
H,0,+ 03~ — OH*+ OH- + 0, (3.8)
H3050aas) + €gv = OHgasy + OH(qqs) (3.9)
OHjgs) + hic = H* + OH' (3.10)
H;0;qas) iy OH(gqs) (3.11)

Os buracos (hf:) reagem com a &agua presente no meio, formando as
espécies H* e *OH (Equacédo 3.4). Os radicais *OH podem atacar o composto organico
ou se combinar para formar peréxido de hidrogénio (H202). A Equacgéo 3.5 representa
a reducéo do oxigénio dissolvido no meio (O2), gerando o radical aniénico superoxido
(057), os quais reagem obtendo os radicais hidroperéxido (HO3) e, posteriormente, 0
peréxido de hidrogénio (Equacgdes 3.6 e 3.7). Os radicais hidroxila podem ser, entéo,
obtidos a partir da reducéo do H20:2 pelos elétrons fotogerados (Equacgéo 3.9), pela
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oxidacdo dos anions hidroxila (Equacdo 3.10) e pela quebra homolitica do H20:2
adsorvido a superficie do fotocatalisador (Equacdo 3.11) (PELIZZETTI; MINERO,
1993; RAUF; MEETANI; HISAINDEE, 2011)

Os radicais hidroxilas formados (ou até os radicais intermediarios) reagem
com o composto organico, degradando-o e levando a formacgéo agua e gas carboénico
(CO2); dando-se, assim, o processo de mineralizagdo do composto recalcitrante
(AJMAL et al., 2014).

A eficiéncia da fotocatélise heterogénea depende de diferentes fatores: a
concentragéo inicial do substrato (Co), pH do meio reacional, a intensidade da
radiacdo, a velocidade de agitacdo do sistema, 0 uso de receptores ou doadores de
elétrons, a natureza do fotocatalisador escolhido e sua concentracdo (WU; CHANG;
CHERN, 2006; RAJAMANICKAM; SHANTHI, 2016).

3.2.1.1.1 Métodos de elucidacado do mecanismo de reacdes fotocataliticas

Os supressores ou marcadores - como também s&o conhecidos, consistem
em substancias capazes de competir com o substrato orgénico pelas espécies
reativas (oxidantes ou redutoras), oriundas da superficie do catalisador,
potencializando ou impedindo a fotodegradacdo do substrato (RAUF & ASHRAF,
2009). Constituindo-se, assim, numa forma de elucidar os possiveis mecanismos
reacionais da fotocatélise.

Conhecer o mecanismo por inteiro possibilita a identificacdo das espécies
reativas mais importantes — o que contribui para o aperfeicoamento do processo, seja
pelo desenvolvimento de materiais com propriedades adequadas, condicdes
reacionais, adicdo de espécies que favorecam o processo ou eliminacéo de espécies
interferentes (PELIZZETTI; MINERO, 1993).

3.2.1.1.1.1 Supressores de radicais ‘OH

Alcoois de cadeia curta vém sendo utilizados como supressores de radicais

‘OH nas reag0Oes fotocataliticas para avaliar se 0 mecanismo de oxidagdo acontece
via direta ou indireta; ou seja, pelos radicais *OH. Os radicais hidroxila possuem maior
seletividade para reagir com o alcool adicionado ao meio, levando a total oxidagao
destes - 0 que resulta na formacdo de compostos carbonilados, como aldeidos e
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cetonas (DIONiZIO, 2018). O mecanismo de supressdo de radicais ‘OH é

representado na Figura 3.8.

Figura 3.8 - Representacéo esquematica do mecanismo fotocatalitico na presencga do supressor de

radicais *OH.
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Fonte: Dionizio (2018)

Mesmo que a oxidacdo direta de alcoois por buracos fotogerados seja
possivel, ela ndo é favoravel pela baixa capacidade de adsorcédo destes alcoois a
superficie dos catalisadores em meio aquoso (CHEN et al., 2005).

Diversos trabalhos apresentam o &alcool isopropilico e o metanol como
eficientes sequestradores de *OH, como os trabalhos desenvolvidos por Chen e Liu
(2016) e Xu e colaboradores (2018).

3.2.1.1.1.2 Supressores de buracos (h*)

A participacéo da oxidacéao direta pelos buracos pode ser avaliada a partir da
adicdo de compostos doadores de elétrons. Estes interagem, preferencialmente, em
relacdo ao substrato com os buracos fotogerados na superficie do catalisador e, ao
se adsorverem, doam elétrons, resultando na desativacdo do semicondutor.

O uso do EDTA como um eficiente doador de e tem sido reportado na
literatura (CHACHVALVUTIKUL et al., 2019). Dessa forma, o EDTA age como uma
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armadilha de h*, sofrendo a oxidacéo ao invés das moléculas de H20 (Equacéo 3.4),

inibindo a formacéao do radical *OH, como é apresentado na Figura 3.9.

Figura 3.9 - Representacao esquematica dos mecanismos de inibicdo da produgéo dos radicais "OH
pela presenca de supressores de h* ou e ou remog¢éo do Oz-dissolvido no meio.
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Fonte: Dionizio (2018)

3.2.1.1.1.3 Supressores de elétrons (e°)

7

A participacdo dos elétrons fotogerados € atribuida a sua capacidade de
reduzir o Oz presente no meio reacional a radical superoxido (Equagéo 3. 5). A
recombinacado desses elétrons com os buracos também pode acontecer, desativando
0 semicondutor e, com isso, 0 processo fotooxidativo é prejudicado.

Diversas espécies vem sendo reportadas como espécies supressoras de e,
por exemplo: a utilizagédo de ions Ag(l) e Cr(VI) (KALANTARY et al., 2019; TEIXEIRA
et al., 2019). Além delas, outra forma de impedir a ocorréncia da reacao representada
na Equacgéo 3.5 seria a remogéo do O2 dissolvido no meio reacional. Ao remover o Oz,
a formacédo do radical superoxido (05°) € inibida, podendo correlacionar com o
trapeamento de e. Um dos métodos propostos para remocéo do oxigénio dissolvido
€ 0 borbulhamento de N2 nho meio reacional (ZHU et al., 2013), como apresentado

na Figura 3.9.
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Também ¢é relatado o uso da benzoquinona (BQ) como um supressor do
radical superoxido, capaz de reagir com o radical segundo a Equacéo 3.12 (NUNEZ;
CRUZ, 2018)

05"+ BQ —» BQ™" + 0, (3.12)

3.2.1.2 Aplicacdo do CaSnQO3 na fotocatalise

Varios 6xidos a base de estanho — dentre eles, os estanatos de metais
alcalinos terrosos - vém sendo considerados eficientes fotocatalisadores, pois
apresentam uma larga energia de band gap: a banda de conducéo encontra-se em
uma posi¢ao mais negativa do que o potencial de reducéo do hidrogénio e a posicao
da banda de valéncia é mais positiva do que o potencial de oxida¢gdo da maioria dos
substratos organicos. (ZHONG et al., 2016).

Zhang e colaboradores (2007) estudaram a atividade fotocatalitica dos
estanatos de metais alcalinos terrosos, sintetizados pela reacédo no estado sélido, na
producgéo de hidrogénio com radiagdo UV. Os resultados mostraram que os valores
de Eg, de energia de excitacao transferida e a atividade fotocatalitica apresentaram a
seguinte ordem: CaSnOs > SrSnO3 > BaSnOs.

No estudo desenvolvido por Goméz-Soliz e colaboradores (2019), os
estanatos de metais alcalinos terrosos, sintetizados via hidrotermal, foram utilizados
como fotocatalisadores nas reacOes de producdo de Hz e na fotoreducdo do 4-
nitrofenol. Observou-se que o CaSnOs foi 0 que apresentou a maior atividade
fotocatalitica em ambas reacdes.

Wang e colaboradores (2014) realizaram testes com &cido tereftalico para
indicar a capacidade de producao de radicais hidroxilas dos estanatos e, também,
avaliram o desempenho destes na fotodegradacdo do corante alaranjado de metila.
Dentre os estanatos, o CaSnOs foi 0 que se mostrou mais eficiente na geracéo de
radicais *OH e, corroborando com esse resultado, apresentou melhor desempenho na
fotodegradacao do corante.

Santos (2017) sintetizou o CaSnOs dopado com Co?*, Cu?* e Fe®*, aplicando-
os como fotocatalisadores na reacéo de fotodegradagéo do corante remazol amarelo
ouro. Os testes de fotodegradacao foram realizados em um reator sem agitacdo com

10 mg do catalisador para 15 mL da solu¢do de RNL a 10 ppm. Em pH = 6, apds 5
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horas de reacdo, o catalisador CaSnOs puro foi o que alcangou maior taxa de
degradacédo do corante; sendo esta de apenas 34%.

Outros trabalhos apresentam o CaSnOs como eficiente fotocatalisador nas
reacoes de fotodegradacéo de corantes, como: remazol amarelo ouro (LUCENA et al.,
2017), azul acido 92 e marrom acido 14 (MOSHTAGHI; GHOLAMREZAEI; NIASARI,
2017).

A dopagem, ou substituicdo parcial, dos cations Ca?* ou Sn** por ions de
metais com estado de oxidag&o igual ou diferentes, resultam na formacgéo de defeitos
estruturais, tais como: defeitos catibnicos ou vacancias de oxigénio - responsaveis
por melhorar a atividade catalitica. Com o processo de dopagem pode haver o
aumento na adsor¢do das espécies organicas na superficie do catalisador, aumento
da condutividade elétrica e até uma separacéo eficiente dos pares e/h* fotogerados
(WETCHAKUN; WETCHAKUN; SAKULSERMSUK, 2019).

Pode-se encontrar na literatura diversos trabalhos em que foi avaliada a
influéncia da dopagem do CaSnOs com metais terras raras (Dy3*, Er3*, Eu®*, Gd®*,
Nd3*, Sm3*, Th®*, Yb3*); principalmente, nas propriedades luminescente (PANG et al.,
2011; ZHANG et al., 2014; CANIMOGLU et al., 2015; GORDO et al., 2015; ZHAO et
al., 2017).

A dopagem do estanato de célcio com metais de transi¢cdo é pouco reportada
na literatura. A utilizacdo desses metais (ferro, cobre, cobalto, entre outros), torna-se
uma opc¢ao viavel devido a abundéancia, facil manipulacdo, preco acessivel e a
possibilidade da formacdo de vacancias catibnicas ou anidnicas na estrutura
perovskita. A formacao das vacancias apds a dopagem com 0s metais de transicao,
estudadas nesse trabalho, pode ser visualizada a partir da notagédo de Kroger-Vink
(CHIANG; BIRNIE; KINGERY, 1997), apresentada nas Equac¢des 3.13 a 3.16.

Fe,05 "% 2 Fel + V3* +3 0% (3.13)
cuo 2% cur 4 v+ 0X (3.14)
Co0 =% coll 4 Vg + 0X (3.15)
Pdo "% par + v+ 0X (3.16)
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4 METODOLOGIA

4.1 SINTESE DAS PEROVSKITAS PURAS E DOPADAS

As perovskitas CaSnOs, CaSnooMo103 (M = Fe3*, Cu?* e Co?) e
CaSno,09Pdo,0103 foram sintetizadas pelo método Pechini-modificado, seguindo a
metodologia adaptada da proposta pela literatura (LUCENA et al., 2013; SANTOS,
2017). Na Tabela 4.1, sado apresentados os reagentes utilizados para a sintese dos

materiais em estudo.

Tabela 4.1 - Reagentes utilizados na sintese das perovskitas.

Reagente Formula quimica Procedéncia PUREZA (%)
Acido nitrico HNOs Anidrol 70
Acido citrico CsHgO7 Cargill 99,5
Etilenoglicol C2Hs02 Isofar 99,5

Hidréxido de amdnio NH4OH Vetec 30
Estanho metalico Sngs) Vetec 99
Nitrato de Calcio Ca(NOs3)2.4H20 Dinamica 97
Nitrato de Ferro Fe(NO3)3.9H20 Vetec 99,5
Nitrato de Cobre Cu(NOs3)2.3H20 Sigma-Aldrich 99
Nitrato de Cobalto Co(NO3)2.6H20 Dinamica 98
Nitrato de Paladio Pd(NO3)2.2H20 Vetec 98

Fonte: préprio autor.

As quantidades de cada um dos reagentes utilizados para a obtencao de 1,0

g de perovskita estdo dispostas na Tabela 4.2.
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Tabela 4.2 - Quantidade dos reagentes utilizados para sintese de 1 g das perovskitas

PEROVSKITAS

Reagente CaSn0O3 Cao‘gsno‘gFeo‘103 Cao|gSno|gCuo,103 Cao,gSno,gCoo;Og Cao,ggsno,ggpdo,0103

Sn (metélico) 0,5746 g 0,5437¢ 0,5421 ¢ 0,5425¢g 0,5698 g

Acido citrico  5,5746 ¢ 557359 5,5550 g 557309 5,5638 g

Etilenoglicol  3,7198 g 3,7166 g 3,7039 g 3,7150 g 3,7092 g
Ca(NOs)2.4H0 1,178 g 1,11409 1,1134 g 1,1145¢ 1,169 g
Fe(NO3)3.9H20 - 0,2065 g - - -
Cu(NO3)2.3H20 - = 0,1237 g - -
Co(NO3)2.6H20 - - - 0,15104¢ -
Pd(NOs)2.2H20 - - - - 0,0129 g

Fonte: préprio autor.

4.1.1 Sintese do CaSnOs puro

A preparacdo do estanato de célcio (CaSnOzs) se deu da seguinte forma: em
um béquer, o estanho metalico (Sn)) granulado foi adicionado a 100 mL de uma
solucdo de HNO3s (0,1 mol L?). Esse sistema foi mantido sob agitacdo e resfriamento
por banho gelo. Apds a completa dissolucdo do estanho, foi adicionado o nitrato de
calcio tetrahidratado (Ca(NOs3)2.4H20), na proporgdo molar de 1:1 calcio-estanho, e
em seguida, o &cido citrico, na proporcédo molar de 3:1 acido citrico-metal. O sistema
permaneceu sob agitacdo e sua temperatura foi elevada até 60 °C. O pH da mistura
reacional foi ajustado para um valor entre 3 e 4 por meio da adicdo de hidroxido de
amonio (NH4OH); possibilitando-se, assim, a quelacéo dos céations (Ca?* e Sn**) pela
desprotonacao dos sitios do acido citrico. O sistema foi aquecido e ao atingir 70 °C,
adicionou-se o etilenoglicol, na propor¢cao molar de 60:40 &cido citrico-etilenoglicol.
Apds a homogeneizacao do sistema, a temperatura foi elevada e mantida em 110 °C,
de modo a promover a polimerizacdo e a reducao do volume da solugcéo a 1/3 do
volume inicial.

A resina polimérica obtida foi submetida a uma calcinagéo primaria a 300 °C
por 90 minutos, com taxa de aquecimento de 10 °C/min. O pd precursor foi
desaglomerado com almofariz e pistilo, peneirado até obter uma granulometria de 200
mesh e submetido a uma calcinacéo secundaria em atmosfera de ar a 800 °C por 240

minutos, com taxa de aquecimento de 10°C/min, para formacao da rede cristalina.
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4.1.2 Sintese das perovskitas dopadas CaSnosMo103 (M = Fe3*, Cu?* e Co?*) e

CaSno,99Pdo,0103

Para a sintese do CaSnogFeo103, CaSnoeCuo,103, CaSnoeC00,103 (e
CaSno,09Pdo,0103, seguiu-se a mesma metodologia proposta para o CaSnOs. Porém,
antes da adicdo do nitrato de célcio, foram adicionados os nitratos metéalicos dos
respectivos dopantes, obedecendo a proporcédo de 10% em relacéo a quantidade de
Sn** para os dopantes Fe3*, Cu?* e Co?*;enquanto que para o Pd?*, essa proporgéo
foi de 1%. E, em seguida, o acido citrico foi adicionado, mantendo o sistema sob
agitacao por 20 minutos para a total homogeneizacéao.

Os materiais obtidos foram caracterizados por analise térmica (TG/DTA),
difracéo de raios-X (DRX), espectroscopia na regido do ultravioleta e visivel (UV-Vis),
espectroscopia na regido do infravermelho (IV), espectroscopia Raman e microscopia
eletrdnica de varredura (MEV). O fluxograma do processo de sintese € apresentado
na Figura 4.1.

Figura 4.1 - Fluxograma do procedimento experimental para a sintese das perovskitas.
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Fonte: préprio autor.
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4.2 TECNICAS DE CARACTERIZACAO

4.2.1 Anélise térmica (TG/DTA)

As medidas termogravimétricas foram obtidas a partir dos p0s percussores
das perovskitas CaSnOz, CaSno,sMo,103 (M=Fe3*, Cu?* e Co?*) e CaSno,goPdo,0103 pré
calcinados a 300 °C por 600 minutos, em atmosfera oxidante (O2) e foram realizadas
em um analisador térmico (modelo DTG-60H, da Shimadzu), utilizando,
aproximadamente, 10 mg dos pos percussores em cadinhos de alumina sob fluxo de
50 mL/min de ar sintético, variando a temperatura entre 30-1200 °C, com taxa de
aguecimento de 10 °C/min. Essas analises foram realizadas no Laboratoério
Interdiciplinar de Caracterizagédo e Desenvolvimento de Nanomateriais (LANANO) do
Instituto Federal da Paraiba - IFPB.

4.2.2 Difracao de raios-X (DRX)

A analise de Difracdo de Raios-x (DRX) foi realizada a fim de identificar as
fases cristalinas presentes e avaliar a organizacéo a longo alcance dos materiais; bem
como, verificar a influéncia das diferentes dopagens na formacao da perovskita.

Os difratogramas de raios-X (DRX) das perovskitas foram registados a partir
do pé a temperatura ambiente. Para essa analise, utilizou-se um difratbmetro (da

marca Shimadzu, modelo XRD 6000), utilizando-se uma voltagem de 30 kV, corrente

de 30 mA e uma fonte de radiacdo KaCu (A=0,15406 A). Os dados foram coletados

na faixa 26 de 10° - 80°, em passos de 0,02° e velocidade de 2°/min.

4.2.2.1 Largura a meia altura (FWHM)

A largura & meia altura (FWHM, do inglés Full Width at Half Maximum) foi
calculada através do software Peak Fit, utilizando-se gaussianas dos picos dos

difratogramas de raios-X.

4.2.2.2 Parametros de rede

Os parametros de rede (a, b e ¢) das perovskitas foram calculados utilizando
o programa UnitCell, a partir dos planos (020),(111),(2121),(220),(022), (02
0),(141),(321),(123),(242)e(161)doCaSnOs (ICDD 031-0312).
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4.2.2.3 Volume da célula (V) e tamanho de cristalitos (TC)

Para cada uma das perovskitas, foram determinados os valores de volume da
célula unitaria e o tamanho de cristalitos.

O volume da célula unitaria (V) foi calculado a partir dos valores dos
parametros de redes, obtidos pelo programa Rede 93, utilizando-se a Equacgao 4.1.

V=axbXxXc (4.1)

Os valores do tamanho de cristalitos (TC) foram obtidos a partir da equagéo
de Scherrer, a qual é apresentada na Equacéo 4.2 (OGUNDARE et al., 2019).

09 A

TC =
¢ pB .cos@

(4.2)

Onde: A é o comprimento de onda da radiagao eletromagnética utilizada
(0,15406 A); 8 é o angulo de difracdo de Bragg; e B é o valor da largura a meia altura
(FWHM) do pico mais intenso, sendo corrigido pela Equacéo 4.3 (OGUNDARE et al.,
2019).

B = \B?— b2 (4.3)

Sendo B, o FWHM da amostra; e b, o FWHM do padréo de quartzo.

4.2.3 Espectroscopia vibracional naregiao do infravermelho (1V)

De modo a avaliar a ordem a curto alcance dos materiais, foram realizadas
analises de espectroscopia vibracional na regido do infravermelho (1V). Os ensaios
foram realizados em um espectrofotometro Shimadzu, modelo IR Prestige-21. A
varredura de transmitancia foi feita na regido entre 400 e 4000 cm™, utilizando-se
pastilhas de KBr. Para a confecgcao das pastilhas, as amostras foram dispersas na
proporcdo de 1:100 mg perovskitas:brometo de potassio (KBr). Em seguida, foram

prensadas; resultando-se em pastilhas de 1,2 cm de diametro.
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4.2.4 Espectroscopia Raman

A fim de avaliar a organizacao a curto alcance das estruturas cristalinas, foram
realizadas andlises de espectroscopia Raman. Os materiais foram analisados por um
espectrofotometro inVia, da Renishaw, utilizando-se um laser de Ar com poténcia de
20 mW e comprimento de onda de 518nm. Os espectros foram obtidos entre 100 e

1100 cm* de deslocamento Raman com poténcia do laser em 100%.

4.2.5 Espectroscopia de reflectancia difusa na regido do ultravioleta e visivel
(UV-Vis)

Os espectros de absorcdo na regido do UV-Vis foram realizadas em um
espectrofotometro (modelo UV-2550, da Shimadzu), no modo reflectancia difusa,
utilizando-se esfera de integracdo. Para andlise das perovskitas, foram obtidas
pastilhas contendo 20 mg da amostra e 1000 mg de sulfato de bario (BaS0Oa4). A janela
de varredura de comprimento de onda utilizada foi de 190 a 800 nm.

A analise foi realizada no Laboratorio de Compostos de Coordenacgdo e
Quimica de Superficie (LCCQS) do Departamento de Quimica da Universidade
Federal da Paraiba - UFPB.

A partir dos espectros de absorbancia obtidos, chegou-se aos valores de
energia do band gap, utilizando-se o modelo de Tauc, Davis e Mott (Equacéo 4.4),
corrigido pela funcdo de Kubelka-Munk — F(R.) (Equacdo 4.5) (TAUC, 1968;
DZIMBEG-MALCIC; BARBARIC-MIKOCEVIC; ITRIC, 2011).

(hv X F(Ry))'/n = A(hv — E,) (4.4)

F(Ry,) = k/s (4.5)

Sendo h a constante de Planck; v a frequéncia vibracional; A a constante de
absorcao; k o coeficiente de absorcéo; s o coeficiente de disperséo; e n %2, admitindo

uma transicdo de band gap direta permitida.

42



Dissertacao de Mestrado — VILELA, V. B.

4.2.6 Microscopia Eletronica de Varredura (MEV)

Realizou-se a andlise de microscopia eletronica de varredura (MEV) com o
intuito de se identificar as caracteristicas morfolégicas das perovskitas sintetizadas.

As imagens eletrbnicas foram obtidas por um microscépio eletrénico de
varredura da marca Shimadzu, modelo SSX 550, gerando ampliacdes de 1000 e 5000
vezes. As analises foram realizadas no Laboratorio de Tecnologia de Novos Materiais
(TECNOMAT), localizado no Centro de Tecnologia da UFPB.

4.2.7 Foto-hidroxilagdo do acido tereftalico

A avaliacdo da producdo de radicais hidroxila (*OH), para cada uma das
perovskitas, deu-se a partir da realizacdo da reacdo de hidroxilacdo do &acido
tereftalico sob irradiagdo UVC.

Os ensaios de foto-hidroxilagéo foram realizados em um reator lab made, com
3 lampadas para irradiacédo na regido do ultravioleta C, com poténcia de 9 W. Utilizou-
se 50 mL de solucéo de acido tereftalico a 4x10 mol L't em NaOH 2x10-3 mol L1e 20
mg de catalisador, mantendo-se a agitacdo mecanica durante os 60 minutos de
reacdo. Foram retiradas aliquotas em 15, 30 e 60 minutos de reacdo. Em seguida,
essas aliquotas eram centrifugadas e diluidas até atingir a concentracédo de 1,3x10*
mol L* da solucédo resultante apés o tempo de irradiacéo.

Os espectros de emissdao das aliquotas foram obtidos em um
espectrofluorimetro da Shimadzu, modelo RF-5301PC, com lampada de xen6nio 150
W e excitacdo em 315 nm. Os dados foram coletados entre 316 e 550 nm. As leituras
foram realizadas na Central Analitica do Instituto de Quimica da Universidade Federal
do Rio Grande do Norte - UFRN.

4.3 TESTES FOTOCATALITICOS

4.3.1 Atividade fotocatalitica das perovskitas

Neste trabalho, as perovskitas sintetizadas foram utilizadas na reacédo modelo
de degradacéo do azo-corante remazol amarelo ouro (RNL), cedido pela DyStar, além
da avaliacdo da participacdo das espécies reativas neste processo. Na Tabela 4.2 séo
apresentadas algumas informacgdes do corante utilizado.Tabela 4.3 - Informagdes do

corante remazol amarelo ouro (RNL).
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Caracteristicas do corante

Formula molecular C16H16N4O10S3Na2

Nomenclatura Bis-sodio((4-(2-acetamido-4-amino-5-

sulfonatofenil)diaznil)sufonil) estilsulfato

Massa molar (g/mol) 566,49
Registro CAS 90597-79-8/12220-08-5
SO3Na
(0]
ﬁ g@N:N NH,
Férmula estrutural o@@—s—ofu
e L' H3CCHN
I
(0]
pKa 3;35;6

Fonte: préprio autor.

O reator utilizado para a realizacdo das reacdes de fotocatalise foi lab made,
feito em madeira, de dimensdo 50 cm x 50 cm x 50 cm e com seu interior revestido
por folhas de aluminio para melhorar o espalhamento da radiagéo dentro do sistema.
Reator equipado com ventoinhas para a circulagédo do ar e com trés lampadas para
irradiacdo na regido ultravioleta C (254 nm), com poténcia de 9 W cada uma. As
lampadas eram da marca OSRAM, modelo Puritec HNS S 9W. O reator é

representado, esquematicamente, na Figura 4.2.

Figura 4.2 - Representacdo esquematica do reator lab made utilizado nos ensaios fotocataliticos

Coleta
de aliquotas

3 LAmpadas UV 9W |

Sistema
de <:]::|
ventilagdo
\ Sistema
, <:J:| de
Q) ventilagéo

Agitador
magnético

Fonte: Silva (2018)
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Para as reacdes de fotocatalise, utilizou-se um recipiente de quartzo com
capacidade de 150 mL e 4,5 cm de diametro interno. Neste recipiente, foram
adicionados 100 mL da solucéo do corante na concentracdo de 10 mg L e 66,7 mg
do catalisador. O sistema foi mantido sob agitagdo de 900 RPM durante os 360
minutos de reacdo. As coletas de aliquotas com volume de 5 mL eram feitas a cada
30 min, estas foram submetidas a centrifugacdo em 5000 RPM por 10 minutos para a
eliminagdo do catalisador.

Apbs o tratamento, as aliquotas foram analisadas em um espectrofotdmetro
na regido do ultravioleta e visivel, marca Shimadzu, modelo UV-2550, com cubetas
de quartzo e tendo como padrdo a agua destilada. O espectro de absorbancia foi
realizado na faixa de 190 a 900 nm. Os percentuais de descoloracdo foram
quantificados avaliando-se a banda de absorcao na regido de 411 nm, relacionada
com a ligacdo N=N (ligac&o azo) do corante RNL.

Partindo-se de solu¢cbes com concentracdes conhecidas do corante RNL, foi
feita uma curva de calibragdo com a finalidade de auxiliar na determinacao dos valores

de degradacao do corante, segundo a Equacéo 4.6

C
Degradagio (%) = 100 — (C_ X 100) (4.6)

o

Onde, C é a concentracdo da solu¢do (mg L) apés a fotocatdlise; e Co, a
concentragdo inicial da solugéo de corante (mg L?).

Para cada um dos catalisadores, foram realizados testes de adsorcao,
seguindo-se a mesma metodologia dos ensaios de fotocatalise. Porém, sem a

presenca das lampadas de irradiagéo na regido do UVC.

4.3.2 Teste de adsorcao

A fim de avaliar a capacidade de adsorcao do corante RNL na superficie dos
fotocatalisadores, foram realizados testes de adsor¢cédo em condi¢cdes semelhantes as
dos testes de fotodegradacédo (massa do fotocatalisador, tempo reacional, agitacao,
concentracédo e volume da solugcdo do corante) sem a irradiagdo do sistema pela
radiagéo UVC.

As aliquotas retiradas a cada 30 min de reacdo foram analisadas por um

espectrofotometro (marca Shimadzu, modelo UV-2550, com cubetas de quartzo) na
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regido do ultravioleta e visivel ; tendo-se como padrdo a agua destilada e se avaliando
a banda de absorcao na regido de 411 nm, relacionada com a ligacdo N=N (ligacao

azo) do corante RNL.

4.3.3 Avaliacdo da participacdo de espécies reativas

Com a motivacdo de avaliar a participacdo de espécies reativas, testes de
fotocatélise foram realizados na presenca de marcadores capazes de interagir com
espécies reativas, inibindo a participacdo dessas espécies na fotodegradagcdo do
corante. Para a realizacdo dos testes, seguiu-se a mesma metodologia e condi¢des

propostas anteriormente.

4.3.3.1 Avaliacao da participacdo de buracos (h*)

A participacdo dos buracos na oxidagdo direta da molécula do corante foi
avaliada a partir da incorporacdo do EDTA no meio reacional. Assim, antes de cada
ensaio, eram adicionados 7,2 mg de EDTA a 100ml da solucao de corante a 10 mg L

1, obtendo-se uma solucdo com concentragdo de 2,46x102 mol L.

4.3.3.2 Avaliacao da participacdo de elétrons (&)

Para esta avaliacdo, utilizou-se um método indireto a partir da utilizacdo de
um supressor do radical O2"; uma vez que, este radical € formado a partir da liberagéo
de elétrons no meio reacional, de acordo com a Equacéo 3.5

Os ensaios de avaliagdo da participacdo do radical foram realizados nas
condicdes padrdes; porém, com borbulhamento de N2 (1 Nm2 h1) durante todo o

tempo reacional, removendo-se o Oz dissolvido.
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5 RESULTADOS E DISCUSSAO

5.1 SINTESE

A metodologia de sintese utilizada neste trabalho sofreu uma otimizacéo na
etapa de calcinagéo, uma vez que na metodologia proposta por LUCENA et al. (2013)
realizava-se uma calcinac&o do po precursor em atmosfera rica em oxigénio, antes da
calcinacdo em atmosfera de ar, cuja finalidade era eliminar a matéria organica residual
do processo de sintese.

Dessa forma, o po6 precursor foi submetido a duas rotas distintas de
calcinacdo. Em uma delas, o p6 precursor foi calcinado apenas em atmosfera de ar a
800 °C por 240 minutos e na outra, primeiramente, o po foi calcinado em atmosfera
rica em O2 a 300 °C por 600 minutos, com taxa de aquecimento de 1°C/min e fluxo de
Oz de 1,5 L't min*! para, em seguida, ser submetido a calcinacdo em atmosfera de ar.
As perovskitas obtidas em ambas as rotas foram caracterizadas por difracdo de raios-
X e espectroscopia Raman e, entdo, comparadas. Assim, assumiu-se que a rota de
sintese mais viavel seria a que possuia apenas uma calcinacdo em atmosfera de ar,
uma vez que esta rota resultou em perovskitas com menos fases secundarias, além
de ter um menor custo e tempo de sintese. Os resultados obtidos nas analises para
as perovskitas calcinadas em atmosfera oxidante estdo contidos no Apéndice I.

Na Figura 5.1 sdo apresentados o0s estanatos sintetizados pelo método

Pechini-modificado, utilizando-se a rota de calcinag&o escolhida (800 °C por 240 min).

Figura 5.1 - Estanatos de cdélcio sintetizados pelo método Pechini-modificado a 800 °C por 240 min.
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Fonte: préprio autor.
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5.2 ANALISE TERMICA (TG/DTA)

A analise termogravimétrica (TG) e a térmica diferencial (DTA) foram
realizadas simultaneamente para a avaliagdo da decomposicdo térmica e a
estabilidade dos pés precursores.

As curvas TG e DTA obtidas dos poés precursores dos estanatos, calcinados
a 300 °C/900 min, sao apresentadas na Figura 5.2. J& os percentuais de perda de

massa para cada evento térmico sédo apresentados na Tabela 5.1.

Figura 5.2 - Curvas de perda de massa (TG) e DTA obtidas dos pds precursores das amostras a)
CaSn0s, b) CaSho,oFeo,103, ¢) CaSno,sCuo,103, d) CaSne,eC00,103 e €) CaSho,99Pdo,0103.
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Tabela 5.1 - Perda de massa dos pés precursores dos estanatos.

Temperatura do
Temperatura Perda de massa

Amostras Etapas pico de DTA
(°C) (%)

(°C)
1 25 -200 10 79
CaSnOs 2 200 — 600 35 490
3 600 — 1000 5 172
1 22 — 165 10 77

CaSno,9Fe0,103 2 165 -575 40 370/ 454
3 575 -1000 5 743
1 25 —-127 12 80

CaSno,9Cuo,103 2 127 — 536 52 362 /440

3 536 — 1000 6 563 /663 /797

1 23 - 130 8 81

CaSno,9C00,103 2 130 — 532 59 372 /473
3 532 - 1000 3 815
1 22 — 150 9 78

CaSno,99Pd0,0103 2 150 — 605 61 381/ 462
3 605 — 1000 2 820

Fonte: préprio autor.

Analisando-se as curvas TG/DTA, observa-se que a decomposicéo de todos
0s pds precursores acontece em trés etapas. A primeira etapa de decomposicao é
decorrente da desidratacdo e eliminacdo de gases adsorvidos na superficie dos
precursores. Esta etapa associa-se a um pico endotérmico nas curvas de DTA. A
segunda etapa (exotérmica) ocorre em temperaturas medianas e esta relacionada
com a combustédo da matéria organica presente, acarretando a formacéo de CO, CO:
e H20 e sendo essa etapa a que apresenta maior perda de massa. A terceira etapa
estd associada a eliminacdo lenta de material residual e da decomposicdo de
carbonatos (STANULIS et al., 2012).

A grande quantidade de matéria orgéanica eliminada é caracteristica da
metodologia de sintese utilizada, uma vez que séo utilizados o acido citrico e o
etilenoglicol na formagédo da resina polimérica. Ocorre também um favorecimento da

formacao de carbonatos, principalmente, pela presenca de metais alcalino-terrosos.
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A forma e a posicdo do pico exotérmico mais intenso sdo influenciadas pela
presenca dos dopantes. Analisando-se as temperaturas de pico na DTA, referente a
2° e 3° etapa, observa-se que houve um deslocamento nas amostras CaSnogFeo,103,
CaSno,9Cuo,103, CaSno,9C00,103 e CaSno,99Pdo,0103, em relagcdo ao CaSnOs néo
dopado. Este comportamento pode estar relacionado com a formacao de diferentes
citratos metalicos, resultando em diferentes energias de decomposicéo. Além disso, a
sobreposicao de picos para as amostras dopadas € um indicativo de que a matéria
organica nao é totalmente eliminada em um Unico evento (OLIVEIRA et al., 2013).

Na curva DTA da amostra CaSnosFeo10s3 (Figura. 5.2b) observa-se a
presenca de um pico endotérmico situado em 743°C com pequena perda de massa.
Esse evento pode ser decorrente da reducdo das espécies de ferro Fe3* a Fe?*
(MURAISHI et al., 1981). A curva DTA da amostra CaSno,9Cuo,103 apresenta picos
exotérmicos sobrepostos na terceira etapa de decomposicdo. A presenca desses

picos pode ser decorrente da reducdo do Cu?* (MELO et al., 2011).
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53  DIFRACAO DE RAIOS-X (DRX)

A partir dos difratogramas obtidos, pode-se avaliar a cristalinidade e a ordem
a longo alcance dos materiais sintetizados. Na Figura 5.3, apresenta-se o difratograma
obtido para o CaSnOs calcinado a 800°C e a indexacgdo dos picos de difragéo,

conforme a ficha cristalogréafica de referéncia ICDD 031-0312 do estanato de calcio

ortorrdmbico.
Figura 5.3 - Difratograma de raios-X do CaSnOs.
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Fonte: préprio autor.

Por meio do difratograma do estanato de célcio sintetizado, foi possivel a
identificacdo de uma Unica fase cristalina, a perovskita ortorrdmbica CaSnOs; ndo
apresentando correspondéncia de picos com o carbonato de calcio (CaCOz3) - o qual

€ uma fase secundaria bastante comum para esse tipo de material.
Na Figura 5.4, sédo apresentados os difratogramas das perovskitas CaSnOs,

CaSno,9Fe0,103, CaSno,9Cuo,103, CaSno,9C00,103 e CaSno,99Pdo,0103 sintetizadas pelo

método Pechini modificado e calcinadas a 800°C.
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Figura 5.4 - Difratogramas de raios-X das perovskitas CaSnOs, CaSno,gFeo,103, CaSno,sCuo,10s3,
CaSno,9C00,103 € CaSno,99Pdo,0103.
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Fonte: préprio autor.

Apbs a dopagem com os metais de transicdo, os difratogramas apresentaram
o mesmo perfil de picos para o CaSnOs puro na fase ortorrombica e ndo foram
observados picos referentes a 6xidos dos metais dopantes; indicando, assim, uma
possivel incorporacao total destes na rede cristalina da perovskita.

Ampliando-se a regido entre 30° e 40° como apresenta a Figura 5.5, observa-se
um deslocamento dos angulos de Bragg em relacdo ao plano (1 2 1) do CaSnOs. Esse
fenémeno pode ser um indicativo da substituicdo do Ca?* e/ou Sn** pelos metais de
transicdo. Os deslocamentos mais acentuados podem ser observados nas amostras

em que foram incorporados os ions de Fe3* e Pd?*.
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Figura 5.5 - Regiao entre 30° e 40° dos difratogramas de raios-X das perovskitas sintetizadas.
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Fonte: préprio autor.

O mesmo comportamento de deslocamento foi reportado por Oliveira e

colaboradores (2013) que, ao sintetizarem o estanato SrSnixTixOs, observaram o

deslocamento dos angulos de Bragg para valores maiores de 20, na medida em que

a concentracdo de Ti** aumentava na solucéo sélida. Santos (2017) também observou
esse fendmeno ao dopar o estanato de calcio com Fe3*, Co?* e Cu?*.

Com o conjunto de difratogramas das perovskitas sintetizadas, foram
calculados os parametros de rede em funcao da introducdo dos metais dopantes na
estrutura. Os célculos foram realizados utilizando o programa UnitCell, tendo como

dados de entrada, os planos (h k I) citados na metodologia e seus respectivos valores

experimentais de 20. Apés a obtencéo dos valores dos parametros de rede, calculou-

se o0 volume da célula unitaria pela Equacéo 4.1. Os valores obtidos séo apresentados
na Tabela 5.2
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Tabela 5.2 - Parametros de rede e volume da célula unitaria das perovskitas CaSnO3, CaSno,oFeo,10s,
CaSno sCuo,103, CaSno,9C00,103 € CaSno,eePdo,0103 calculados pelo software UnitCell.

Parametros de rede (A) Volume da célula
Amostras - - _ (A3)
CaSnOs Padréao* 5,6615 7,8825 5,5162 246,2
CaSnOs 5,8456 17,4847 5,6985 2493
CaSno,gFe0,103 5,8231 7,4828 5,6778 247 .4
CaSno,9Cuo,103 5,8313 17,4793 5,6845 2479
CaSno,9C00,103 5,8324 17,4847 5,6273 245,6
CaSno,99Pd0,0103 5,8543 7,5017 5,7049 250,5

* Ficha cristalografica ICDD 031-0312

Fonte: préprio autor.

Observa-se que os valores dos parametros de rede do CaSnOs sintetizado
sofreram um aumento em relag&o aos valores do CaSnOs padréo (ICDD 031-0312) e,
consequentemente, o volume da célula. Avaliando-se a introducdo dos metais
dopantes, percebe-se que a dopagem transicdo ndo leva a modificacdes
consideraveis dos parametros de rede quando comparados ao CaSnOs puro.

Analisando-se os volumes da célula unitaria, percebe-se uma tendéncia de
compressao quando esta é dopada com os metais Fe3*, Cu?* e Co?* - podendo estar
relacionada ao deslocamento dos angulos de Bragg para valores maiores apds o
processo de dopagem. Tal comportamento pode ser explicado pelo maior carater
ibnico dos metais dopantes, facilitando a entrada deste na célula unitaria e
aumentando o fator de empacotamento (GANGULY et al., 1993).

Para a avaliacdo da ordem a longo alcance e do tamanho de cristalito (TC) das

perovskitas, calculou-se a largura a meia altura (FWHM), a partir da deconvolucao dos

picos referentes ao plano (1 2 1), localizados em 20 ~ 32°. Utilizando-se a equacéo

de Scherrer (Equacao 4.2) e a correcao da largura a meia altura (Equacéao 4.3), foram

obtidos os valores apresentados na Figura 5.6.
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Figura 5.6 - Valores da largura a meia altura (FWHM) e tamanho de cristalito (TC) das perovskitas
CaSn0s, CaSno,oFen,103, CaSnoe,9Cuo,103, CaSno eC00,103 € CaSno,eoPdo,010:s.
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Fonte: préprio autor.

A partir da equacdo de Scherrer (Equacao 4.2), observa-se que o TC é
inversamente proporcional & largura a meia altura. Assim, os resultados obtidos sdo
coerentes com essa afirmagao.

Avaliando-se a influéncia do dopante na organizacdo a longo alcance dos
materiais, percebeu-se que as amostras sofreram um decréscimo nos valores da
largura a meia altura e aumento nos tamanhos de cristalito. Porém, sendo a variacao
desses valores muito pequena. Dentre os estanatos dopados, 0 CaSno,9Cuo,103 foi 0
gue apresentou maior cristalinidade frente ao estanato puro e maior tendéncia de
organizacédo a longo alcance a partir da comparacao das intensidades e definicdo dos
picos nos difratogramas apresentados nas Figuras 5.4, bem como os valores de
FWHM e TC.

5.4 ESPECTROSCOPIA VIBRACIONAL NA REGIAO DO INFRAVERMELHO (1V)

A literatura reporta que o estanato de calcio com estrutura ortorrdmbica possui
25 modos ativos no infravermelho - cuja representacéo irredutivel é dada por Iy =
9B,, + 7B, + 9B3,. As vibragdes caracteristicas dos estanatos (SO3~) produzem
bandas com alta intensidade no infravermelho na regido de 400—600 cm™ (ZHENG et
al., 2012; MAUL et al., 2015).
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Na Figura 5.7, sdo apresentados 0s espectros vibracionais na regido do

infravermelho das perovskitas sintetizadas.

Figura 5.7 - Espectro do IV para as amostras CaSnOs, CaSno,oFeo,103, CaSno sCuo,103, CaSno,9C00,103
e CaSno,99Pdo,010s.
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Fonte: préprio autor

As atribuicdes dos modos vibracionais presentes nos espectros na regiao do

infravermelho sdo apresentadas na Tabela 5.4.
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Amostras Banda (cm™) Atribuicado
1450 v(Co3) Estiramento assimétrico do C0O3~
877 5(C037) Flex&o fora do plano do CO%~
CaSnOs 646 u(Sn-0) Estiramento simétrico Sn-O-Sn
501 u(SnOs) Estiramento simétrico do octaedro SnOs
428 T(SnOs) Torcao do octaedro SnOs
1450 v(co37) Estiramento assimétrico do C0O3~
875 5(C037) Flex&o fora do plano do CO%~
CaSnosFeo 103 650 u(Sn-0) Estiramento simétrico Sn-O-Sn
501 L(SnOs) Estiramento simétrico do octaedro SnOs
426 T(SnGe) Torcéo do octaedro SnOs
1444 v(co37) Estiramento assimétrico do CO3~
875 5(C037) Flex&o fora do plano do CO3~
CaSno,sCuo10s 646 b(Sn-0) Estiramento simétrico Sn-O-Sn
501 u(SnOs) Estiramento simétrico do octaedro SnOs
424 T(SnOe) Torcéo do octaedro SnOs
1421 v(co37) Estiramento assimétrico do CO%~
877 5(Co37) Flex&o fora do plano do CO3~
CaSne9C00103 650 u(Sn-0) Estiramento simétrico Sn-O-Sn
501 u(SnOs) Estiramento simétrico do octaedro SnOs
428 T(SnOs) Torcao do octaedro SnOs
1451 v(co37) Estiramento assimétrico do CO%~
877 5(C037) Flexao fora do plano do CO%~
CaSno,s9Pdo,0103 646 u(Sn-0) Estiramento simétrico Sn-O-Sn
501 L(SnOs) Estiramento simétrico do octaedro SnOs
430 T(SnOs) Torg&o do octaedro SnOs

*y = estiramento, & = deformacédo, T = movimento torcional.
Fonte: préprio autor.
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Os espectros do IV de todas as amostras mostram duas bandas relacionadas
as vibracdes dos grupos carbonatos. A banda referente ao estiramento assimétrico
dos grupos carbonatos — v(CO%™) — encontra-se posicionada em torno de 1450 cm!
(ANDOULSI; HORCHANI-NAIFER; FERID, 2012), a qual sofre pequeno
deslocamento para as amostras dopadas com cobre e cobalto. A segunda banda —
8(CO37) — localiza-se em 875 cm™ , é decorrente da flexdo fora do plano dos
carbonatos (BERBENNI et al.,, 2015; SUN et al.,, 2016) e apresenta uma baixa
intensidade. Ambas as bandas podem ser visualizadas com maior intensidade nas
amostras CaSnOs e CaSno9C00,103. A presenca das bandas de vibragdo dos
carbonatos é uma caracteristica da metodologia de sintese empregada no presente
trabalho, indicando a formacédo de carbonatos derivados dos citratos metélicos
(ALVES et al., 2007).

A banda atribuida as vibracbes do estiramento simétrico (v(Sn-O)) das
ligagbes de Sn—O-Sn aparece em torno de 646 cm™ e ndo sofre deslocamento
significativo com o processo de dopagem. Uma maior ordem a curto alcance pode ser
identificada quando esta banda apresenta elevada intensidade e definicdo (ZHENG et
al, 2012; OLIVEIRA, 2013).

As vibragbes dos octaedros SnOs podem ser observadas na regiao de
menores comprimentos de onda, sendo a banda em 501 cm decorrente do
estiramento simétricos (v(SnOe)) e a em torno de 430 cm™ referente aos movimentos
torcionais (t(SnOs)) desses octaedros (BICHARA et al., 2012; AL-HYDARY; AL-
MOHANA; AL-MARZOOQEE, 2018; TEIXEIRA et al., 2019). Todas as amostras
apresentam um mesmo perfil de espectro, permanecendo com as mesmas posi¢cdes

mesmo apos o processo de dopagem com os diferentes metais.

5.5 ESPECTROSCOPIA RAMAN

De acordo com a literatura, o CaSnOs com estrutura ortorrdombica apresenta
24 modos ativos no Raman com representagao Ix = 7Ag + 5B;4 + 7B;g + 5B3,: dois
modos de alongamento octaédrico simétrico, seis modos rotacionais octaédricos,
guatro modos antissimétricos e 0os doze modos restantes estdo relacionados aos
cations Ca?* (SUMITHRA; JAYA, 2018).

58



Dissertacao de Mestrado — VILELA, V. B.

Os espectros Raman das perovskitas CaSnOs, CaSnooFeo,10s3,
CaSno,9Cuo,103, CaSno,9C00,103 € CaSno,w9Pdo,0103 obtidas pelo método Pechini-

modificado sdo apresentados na Figura 5.8

Figura 5.8 - Espectro Raman das amostras CaSnOs, CaSho,oFeo0,103, CaSnoeCuo 103, CaSno9C00,103 €
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Fonte: préprio autor.
Os valores da largura do pico a meia altura (FWHM) foram calculados a partir
da deconvolucéo da banda referente as vibragcdes de O-Sn-O posicionadas em torno
de 320-360 cm™ e sdo apresentados na Tabela 5.4. As gaussianas geradas nessas

deconvolugdes sdo apresentadas no Apéndice Il
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Tabela 5.4 - Valores da largura do pico a meia altura (FWHM) da manda localizada em torno de 350

cmt,
Amostras FWHM*
CaSnO3 14,3
CaSngoFeo 103 25,6
CaSnpoCup 103 25,5
CaSnp9C00,103 30,9
CaSno,99Pdo,0103 24,3

Fonte: préprio autor.

No espectro do CaSnOs, as bandas de maior intensidade estéo localizadas
no inicio do espectro em 180, 277 e 356 cm™. A primeira é resultante das vibracoes
de Ca-SnOs e as outras duas referem-se as vibragbes O-Sn—O (LUCENA et al.,
2014). O modo presente em 441 cmt é decorrente das vibracdes torcionais de SnOs
e em 701 cm? pelo estiramento simétrico Sn—0. A presenca da banda em 1085 é
atribuida a vibrag&o dos grupos carbonatos Ca-COs (ALVES et al., 2009; PANG et al.,
2011).

A dopagem com os metais promoveu uma modifica¢ao no perfil dos espectros
Raman do estanato. De acordo com a Figura 5.6, os modos vibracionais com maior
intensidade do CaSnOz puro (180, 277 e 356 cm™) sofreram deslocamento para
regides de mais baixas frequéncias nas amostras dopadas.

O surgimento de um modo vibracional com intensidade significativa para as
amostras CaSno oCuo,103 e CaSno,ePdo,0103 em 590 cm?, referente aos movimentos
torcionais de SnOs, pode ser atribuido a uma maior contribuicdo dos movimentos do
oxigénio, resultantes da formagé&o de vacancias e/ou defeitos estruturais no material
(SANTOS, 2017). Dentre as amostras dopadas, o modo referente a vibragdo do
carbonato de célcio pode ser visualizado apenas na amostra dopada com ferro e
paladio.

Analisando os valores de FWHM das perovskitas, pode-se observar um
aumento nesses valores apds o processo de dopagem, indicando uma tendéncia de
menor organizacdo a curto alcance na estrutura do CaSnOs com a introducao dos
dopantes. Comparando o FWHM e a quantidade dos metais utilizados nas diferentes

dopagens, a amostra CaSno,99Pdo,0103 € a que indica maior desorganiza¢do a curto
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alcance, visto que com a introducdo de apenas 1% (mol/mol) do paladio, ocasionou

um aumento consideravel no FWHM frente as outras dopagens.

5.6 ESPECTROSCOPIA DE REFLECTANCIA DIFUSA NA REGIAO DO
ULTRAVIOLETA-VISIVEL (UV-VIS)

A espectroscopia de absorcao na regido do UV-Vis permite a obtencéo de
informacbes quanto a organizacdo a curto alcance dos materiais, além da
determinacao do valor de energia do band gap. A organizagédo a curto alcance dos
materiais pode ser identificada por meio da presenca ou auséncia da cauda de Urbach
- sendo esta atribuida a existéncia de estados eletronicos deslocalizados proximos as
bandas de valéncia ou conducéo.

A Figura 5.9 apresenta os espectros de absor¢cao na regido do ultravioleta-
visivel e o gréfico de tratamento matemético para determinacdo da energia de band

gap (Eg) para cada uma das amostras.
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Figura 5.9 - Espectros de absorbancia na regido do UV-Vis e tratamento matematico para
determinagéo do Eq (insert) para a) CaSnOs, b) CaSno,gFe0103, ¢) CaSne,9eCuo,103, d)

CaSnop,9C00,103 e €) CaSno,99Pdo,010s.
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Segundo a literatura, as bandas de absorcdo em torno de 200 e 300 nm, sdo
atribuidas as transicfes de transferéncia de carga ligante-metal (LMCT, do inglés
ligand-metal charge transfer) 0> — Sn** contidos em um ambiente tetraédrico ou
octaédrico (LIU et al., 2006; SEFTEL et al., 2008).

Para o CaSnOs, a regido de maior absorgdo estd compreendida entre 250 e
300 nm. Em comprimentos de onda superiores, a absorcdo é constante, tendendo a
zero. Este comportamento pode indicar uma certa ordem a curto alcance, visto que a
cauda de Urbach néo se faz presente no espectro.

Diferindo do que foi observado para o estanato puro, as amostras dopadas
CaSno,9Cuo,103, CaSno,9C00,103 e CaSno,e9Pdo,0103, apresentaram absorgao na regiao
ente 300 e 800 nm. Este comportamento pode ser explicado, provavelmente, pelas
transicbes d-d dos cations dopantes, as quais podem acontecer nesta faixa de
comprimento de onda (LEE, 1999). As transicbes d-d em espécies de Fe3* com
coordenacdo seis, como na amostra CaSnosFeo103, sdo dificeis de serem
visualizadas por possuirem baixa intensidade, sendo mascaradas pela absor¢céo
atribuida a transferéncia de carga entre o ligante-metal (LEVER, 1984).

A amostra CaSno,9Cuo,103 apresenta uma larga banda de absor¢éo apés 280
nm e sua formacao pode ter se dado a partir da sobreposi¢do de bandas; sendo a
regido de absorcéo atribuida a transicédo ?T2g — 2Eg do Cu?* (Dagh et al., 2017). As
transicdes d-d referentes ao Co?* podem ser observadas na amostra CaSno,9C00,10a.
Estando essas transicdes “Tig(P) — “4Tig(F) e *Tig(F) — “Axg(F) centradas em,
respectivamente, 450 nm e 715 nm (MORISHITA; TANAKA, 2003; DONDI;
MATTEUCCI; CRUCIANI, 2006). Enquanto isso, na amostra dopada com paladio
pode ser observada a transicdo 'Big — 'Aig referente ao cation Pd** em 500 nm
(LEVER, 1984).

Os valores de band gap foram determinados a partir do modelo de Tauc, Davis
e Mott corrigido pela funcao de Kubelka-Munk (Equacéo 4.4 e 4.5) e sdo apresentados
na Tabela 5.5.
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Tabela 5.5 - Valores de band gap para as perovskitas sintetizadas pelo método Pechini-modificado.

Amostras Band gap (eV)

CaSnOs 4,0
CaSno,gFe0,103 2,6
1,5

CaSno,9Cuo,103
3,8
2,0

CaSno,9C00,103
4,3
CaSno,99Pd0,0103 3,9

Fonte: préprio autor.

A reducéo da energia de band gap observada para os estanatos dopados,
pode ter acontecido devido ao processo de substituicdo ocorrido nos sitios,
influenciando diretamente na estrutura de bandas, ja que alteram a simetria do 6xido
e podem ocasionar defeitos (CHEN et al., 2011). E possivel observar a presenca de
dois band gaps para as amostras dopadas com cobre e cobalto. Presenca esta que
pode estar relacionada a energia de gap desses metais dopantes.

A semelhanca entre os perfis dos espectros e a proximidade dos valores de
band gap para o estanato puro e o dopado com Pd?* pode ser explicada pela baixa
quantidade de paladio utilizada no processo de dopagem; sendo esta de 1% (em mol),
engquanto que a propor¢cao para os outros metais foi de 10% (em mol).

A literatura reporta valores de Eg para o CaSnOs préximos aos obtidos neste
trabalho. Junploy et al. (2018) sintetizaram o0 estanato de calcio pelo método de
microondas e encontraram uma energia de gap de 4,1 e V. Zhong et al. (2016)
encontraram um valor de 4,3 eV para o estanato sintetizado via hidrotermal. Lucena
et al. (2017) utilizaram o método pechini-modificado para a obtencdo do estanato,
obtendo um band gap de 4,2 eV. Sumithra e Jaya (2018) sintetizaram por hidrotermal
o CaSnOs puro e dopado com 5% de ferro, encontrando para esses materiais 4,3 e
3,0 eV de Eg, respectivamente.
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5.7 MICROSCOPIA ELETRONICA DE VARREDURA (MEV)

Os estanatos de calcio podem apresentar diferentes morfologias que estao
diretamente ligadas ao método de sintese utilizado. Algumas dessas morfologias
relatadas na literatura sao: nanocubos (LIU et al., 2019), nanoparticulas esféricas
aglomeradas de tamanhos semelhantes ou diferentes (SHARMA et al., 2002;
GOMEZ-SOLIS et al., 2019) e cubos poliédricos com furos rasos ou profundos no
centro, podendo ter crescimento dos cristais em espiral (JUNPLOY et al., 2018).

. As Figuras 5.10 e 5.11 apresentam as micrografias para as perovskitas
CaSn03, CaSno,oFeo0,103, CaSno,9Cuo,103, CaSno,0C00,103 e CaSno,99Pdo,0103 obtidas

através do método Pechini-modificado a 800 °C.

Figura 5.10 - Micrografias obtidas das amostras a) CaSnOs e b) CaSno sFeo,10s3.
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Fonte: préprio autor.
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Figura 5.11 - Micrografias obtidas das amostras a) CaSnoeCuo,103, b) CaSno,eCo00,103 € )
CaSno,09Pdo,0103.
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Fonte: préprio autor.

Ao visualizar-se as imagens obtidas a partir da microscopia eletrénica de
varredura, faz-se possivel verificar que as amostras sintetizadas, pelo método Pechini

modificado, apresentaram um mesmo perfil morfolégico.
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5.8 AVALIACAO DA PRODUGCAO DE RADICAIS HIDROXILA (*OH)

A partir do desenvolvimento de calculos tedricos dos potenciais de borda das
bandas de conducédo e de valéncia para os estanatos de metais alcalinos terrosos,
assume-se que a borda da banda de valéncia é suficientemente positiva possibilitando
0 processo de doacédo de elétrons da agua para os buracos na banda de valéncia,
levando a formac&o de radicais hidroxila (ALAMMAR et al., 2017). No entanto, o
radical hidroxila também pode ser obtido apds a reacdo entre O2 adsorvido na
superficie do fotocatalisador e elétrons fotogerados, formando o ion perdxido, o qual
€ convertido a *OH de acordo com as Equacdes 3.5 a 3.9

Os radicais *OH fotogerados reagem com o acido tereftalico (AT) presente no
meio, obtendo o produto fluorescente acido 2-hidroxitereftalico (ATOH), como
demonstrado na Figura 5.12. A taxa de formacdo desse produto pode ser
acompanhada pela espectroscopia de fluorescéncia, visto que o ATOH possui uma

banda de fluorescéncia caracteristica em 426 nm. (ISHIBASHI et al., 2000).

Figura 5.12 - Representacéo da formagéo do acido 2-hidroxitereftalico pela reagdo de foto-hidroxilagao.
COOH COOH

OH
~ °*OH ——
COOH COOH
Acido tereftalico Acido
(AT) 2-hidroxitereftalico

Fonte: préprio autor.

Portanto, a formacdo do ATOH torna-se um indicativo da capacidade da
geracéo de radicais hidroxila pelos fotocatalisadores empregados no processo de foto-
hidroxilagao (JING; CHAPLIN, 2017).

Nas Figuras 5.13 e 5.14, sdo apresentados, respectivamente, o espectro de
fluorescéncia da foto-hidroxilagcdo do AT e o grafico da intensidade maxima da banda
de fluorescéncia em 426 nm em funcdo do tempo de irradiacéo, tanto para a perovskita

CaSnOs pura e as dopadas com os metais Fe3*, Cu?*, Co?*+ e Pd?".
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Figura 5.13 - Espectro de fluorescéncia da solucao de acido tereftalico apds a irradiacdo UVC por 60
min na presenc¢a do CaSnOs puro e dopado (excitacdo em 312 nm).
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Figura 5.14 - Intensidade maxima de emisséo da banda atribuida ao 4cido 2-hidroxitereftalico
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Fonte: préprio autor.

Analisando-se os dados obtidos, observa-se, para todos os fotocatalisadores,

o crescimento gradual da intensidade de fluorescéncia em 426 nm na medida em que

aumenta o tempo de irradiacdo UVC. Porém, as taxas de geracéo do radical hidroxila
séo diferentes.
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A capacidade geracédo do radical "OH das amostras sintetizadas no presente
trabalho segue a ordem: CaSnOs > CaSnogPdoo01Os > CaSnooeCuo103 >
CaSno,9C00,103 > CaSno,9Feo,103. Segundo a literatura, elevadas taxas de geracao
desses radicais significam uma eficiente separacdo dos pares elétron-buraco e uma
maior mobilidade dos transportadores de cargas (YIN etal., 2003; WANG et al., 2014).

5.9 TESTES FOTOCATALITICOS

Diversos trabalhos utilizando a reacdo modelo de fotodegradacao do corante
RNL foram desenvolvidos pelo grupo de pesquisa. Eles mostraram que o resultado
final da reacdo de fotocatalise ndo sofre influéncia com a variacdo do volume de
solucéo e da proporc¢éo catalisador:volume da solu¢do de RNL pela retirada de varias
aliquotas durante o processo (TEIXEIRA, 2015; MEDEIROS, 2018).

Os resultados do teste de fotdlise do corante RNL, reacdo controle na
auséncia de fotocatalisador, indicaram uma descoloracdo maxima de 6,3% apos 360
min de irradiagdo em pH = 6. Esses resultados podem ser considerados despreziveis

nas reacdes fotocataliticas e sdo apresentados na Figura 5.15.

Figura 5.15 - Espectro de absor¢do molecular no UV-Vis do RNL, antes e apds a reacgdo de fotolise do
RNL. Insert: porcentagem de degradacéo da fotdlise.
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Os testes de adsorcédo foram realizados para todos 0os materiais; obtendo-se
resultados que apontam a auséncia da capacidade adsortiva do corante pelos
fotocatalisadores empregados e dando indicios da ocorréncia de um possivel
mecanismo indireto para a reacéo de fotodegradacéo do corante RNL pelos estanatos
de calcio. Os espectros de absor¢cdo molecular na UV-Vis obtidos na realizacdo dos
testes de adsorcédo do RNL pelos fotocatalisadores sao apresentados no Apéndice IV.

Na Figura 5.16 estdo dispostos os resultados de C/Co para as amostras
CaSn03, CaSno,oFeo0,103, CaSno,9Cuo,103, CaSno,9Co00,103 € CaSno,09Pdo,0103, bem

como, suas porcentagens de degradacéao fotocatalitica do RNL.

Figura 5.16 - a) Valores de C/Co e b) porcentagem de degradacéo fotocatalitica do RNL.
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ApoOs as reacdes de fotocatalise com 360 minutos de irradiacao, observa-se
que trés amostras foram capazes de promover uma degradacdo satisfatéria do
corante:  CaSnOs, CaSnosCuo103, e  CaSnogPdoo0iOs.  Apresentando,
respectivamente, 98,4%, 99,9% e 100% de diminuicdo da banda em 411 nm,
indicando a degradacédo das moléculas do RNL. Nas mesmas condi¢des, as amostras
CaSno,9Feo0,103 e CaSno,9Co00,103 atingiram as menores taxas de degradacgao: 39,6%
e 45,5%.

As baixas porcentagens de degradacao alcancadas pelo CaSnogFeo103 e
CaSno,9C00,103 podem estar relacionadas ao valor de band gap dessas amostras: 2,6
eV para a amostra dopada com cobalto, 2,0 e 4,3 eV para a dopada com ferro.
Sugerindo-se, assim, que 0 processo de dopagem com esses cations pode acarretar

a formacdo de niveis intermediarios na regido do gap, podendo favorecer a
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recombinacdo dos pares elétron-buraco e influenciar o processo fotocatalitico. A

propriedade redox do ferro (Fe?* — Fe3*) e do cobalto (Co?* — Co3") também pode

favorecer a recombinacgéo dos portadores de carga (SEFTEL et al., 2008).

Os resultados obtidos através da reacdo de foto-hidroxilagdo do &cido
tereftalico, citados anteriormente, corroboram os observados pela fotodegradacédo do
corante RNL, ja que os trés fotocatalisadores (CaSnOs, CaSnooCuoi103, €
CaSno,99Pdo,0103) que apresentaram as maiores taxas de producao do radical hidroxila
foram os mesmos que alcancaram maiores taxas de degradagdo. Ou seja, maior
atividade fotocatalitica na reacdo de fotodegradacdo. Além disso, esses mesmos

materiais apresentaram valores da energia de band gap bastante proximos.

5.9.1 Testes de fotocatalise na presenca de supressores das espécies reativas

Os resultados obtidos pelos testes de adsor¢cdo dao fortes indicios da
ocorréncia do mecanismo indireto na reagéo de fotodegradacao - ja que nenhum dos
fotocatalisadores apresentou capacidade de adsorver o substrato a sua superficie.
Dessa forma, os pares e/h* fotogerados devem desempenhar um papel importante
no mecanismo reacional e, para melhor entendimento da contribuicdo de cada uma
dessas espécies na formacdo do radical *OH, foram realizadas as rea¢bes de
fotodegradacao na presenca dos agentes supressores dessas espécies reativas.

A ocorréncia do mecanismo direto se da quando a molécula do substrato é
adsorvida a superficie do fotocatalisador, sofrendo uma oxidacdo direta pelos h*
fotogerados. A partir dos testes de adsor¢cdo em pH = 6, fica evidenciado que a reacéo
de fotodegradacao, nesse valor de pH, ndo possui contribuicdo significativa do
mecanismo direto.

O mecanismo reacional indireto necessita da formacao dos radicais *OH, além
de outras espécies e radicais intermediarios reativos, para sua ocorréncia. Estas
espécies reativas sdo formadas a partir de processos de oxidacao e reducdo da adgua
ocasionados pelos pares e/h* fotogerados na superficie do fotocatalisador. O
emprego dos agentes supressores no meio reacional possibilita a elucidagdo do
mecanismo, indicando a contribuicdo de cada um desses na formacgao dos radicais

essenciais para a reacao de fotodegradacéao.
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Vale salientar que o pH do meio reacional foi medido antes e depois da adicdo

dos agentes supressores, permanecendo inalterado mesmo com a adicdo desses

agentes. Eliminando, assim, uma possivel adsor¢cdo do substrato e a contribui¢cdo do

mecanismo direto.

As Figuras 5.17 a 5.21 apresentam as curvas de C/Co e o percentual de

degradacéo para os testes fotocataliticos utilizando os agentes supressores para cada

um dos catalisadores, CaSnO3z, CaSnooFe0,103, CaSno,oCuo,103, CaSnoeC00,103 e

CaSno,09Pdo,010s3.

Figura 5.17 - a) Valores de C/Co e b) porcentagem de degradacéo para os testes de fotodegradacéo
com os supressores de h* e do radical 05~ (") para o CaSnOs.
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Figura 5.18 - a) Valores de C/Co e b) porcentagem de degradacéo para os testes de fotodegradacdo
com os supressores de h* e do radical 05~ (e") para o CaSno,9Feo,10s3.
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Figura 5.19 - a) Valores de C/Co e b) porcentagem de degradacgéo para os testes de fotodegradacgéo
com os supressores de h* e do radical 05~ (e”) para 0 CaSno,9sCuo,103.
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Figura 5.20 - a) Valores de C/Co e b) porcentagem de degradacéo para os testes de fotodegradacéo
com os supressores de h* e do radical 05~ (") para 0 CaSno,9C00,103.
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Figura 5.21 - a) Valores de C/Co e b) porcentagem de degradacao para os testes de fotodegradacdo
com os supressores de h* e do radical 05~ (e) para o CaSno,09Pdo,010s3.
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No presente trabalho, a supresséo de e~ se deu de forma indireta atraves da
supressdo do radical aniénico superoxido (0;7), uma vez que a formacdo desse
radical esta diretamente relacionada a fotogeracéo de elétrons. Os resultados obtidos
podem indicar a formagé&o do radical “OH pelo radical 05~ (obtido a partir da reducéo
do Oz pelos e fotogerados).

Avaliando-se as reacdes fotocataliticas realizadas sob borbulhamento de Nz,
percebe-se uma inibicdo inicial da reacdo de fotodegradacéo para as amostras
CaSno,gFeo,103, CaSno,9Cuo,103, CaSno,9Co00,103; sendo que para a amostra com ferro
a capacidade de degradacéo foi, consideravelmente, reduzida, enquanto que para a
amostra com cobalto, observou-se um perfil de degradacdo semelhante a reacdo sem
a supressao, apenas com uma pequena reducao na porcentagem de degradacéo final
do corante. Apds 150 minutos de reacao, o processo de inibicdo na amostra com cobre
foi cessado, alcancando uma taxa de degradacédo similar a reacdo sem supressao.
Para as amostras CaSnOs e CaSnogPdo010s, verificou-se a aceleragdo da
degradacdo do RNL. Desse resultado infere-se que os elétrons possuem pequena
participacdo na geracao dos radicais reativos que atuam na degradacao do substrato,
e que o radical 057, obtido pela redugcdo do O2 pelos e, também apresenta baixa
participacdo no processo. Sendo assim, a amostra CaSnogFeo,103, a qual sofreu
drastica reducdo na sua capacidade de degradacdo, apresenta uma maior
contribuicdo dos elétrons e radicais superéxido no processo de formacgédo dos radicais
hidroxilas.

A presenca do supressor de h* (EDTA) no meio reacional desencadeou a
inibicdo da atividade de todos os fotocatalisadores; porém, de forma mais brusca para
as amostras CaSnOs, CaSnosCuo103 e CaSnowPdo010s, resultando em
porcentagens de degradacédo bastante inferiores frente a reacdo sem nenhum tipo de
supressdo. A partir desse resultado, compreende-se que todas as amostras
apresentam uma contribuicdo dos buracos fotogerados no mecanismo de formacgao
dos radicais *OH.

A utilizacdo dos agentes supressores na reacdo de fotodegradacao resulta
em dados que indicam que, para todos os fotocatalisadores analisados, a reacéo de
descoloracao do corante RNL ocorre via mecanismo indireto; ou seja, pela formacéao

do radical *OH. Para os fotocatalisadores CaSnQO3, CaSnooCuo,103, CaSno9C00103 e
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CaSno,9Pdo,0103, a formacdo do radical *OH se da, principalmente, através da
oxidacao das moléculas de agua pelos h* fotogerados.

Diferente dessas amostras, o mecanismo regente para o CaSnogFeo,103
apresenta a participacado dos dois tipos de portadores de cargas na formagédo do
radical *OH; ou seja, este € formado tanto pela reducdo do Oz adsorvido pelos e

fotogerados, quanto pela oxidacdo das moléculas de H20 pelos h* fotogerados.
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6 CONSIDERACOES FINAIS

A sintese do estanato de célcio puro e dopado pelo método Pechini modificado
se mostrou eficaz na preparacdo dos oxidos desejados. De modo geral, todas as
amostras apresentaram uma alta cristalinidade e pequena quantidade de fase
secundaria (CaCOs), ja que sua identificagdo sO foi possivel por técnicas de alta
sensibilidade, como espectroscopia Raman e espectroscopia na regido do IV.

A partir da comparacdo dos resultados obtidos pela andlise de difracdo de
raios-X, ficou evidenciada a entrada dos metais dopantes na rede cristalina do
CaSn0Os, comprovando o sucesso do processo de dopagem com os metais Fe3*, Cu?*,
Co?* e Pd?*. Corroborando com estes resultados, os modos vibracionais nos espectros
de IV e Ramam das amostras dopadas foram deslocados para regides de mais baixa
frequéncia e tiveram suas intensidades reduzidas.

A sintese e o0 processo de dopagem desenvolvidos no presente trabalho
mostraram alto grau de eficiéncia, uma vez que, a partir da caracterizacdo dos
materiais sintetizados, observou-se que a entrada dos dopantes na estrutura foi de
forma uniforme e organizada, gerando defeitos estruturais; porém, com certa
organizacédo a longo e curto alcance.

Para as reacfes de fotocatalise, foi observada a maior capacidade de
degradacdo do corante remazol amarelo ouro pelos catalisadores CaSnOs,
CaSno,9Cuo,103 e CaSno,ePdo,0103; sendo que para a amostra dopada com Cu?* a
degradacéo total do RNL foi alcangada em menores tempos de irradiacao.

Relacionando os resultados da fotocatalise com os das técnicas de
caracterizacdo, pode-se supor que a elevada atividade catalitica do CaShno,9Cuo,103
estaria ligada aos efeitos eletronicos do cobre e ndo, somente, pelo efeito estrutural
(desordem).

Quanto ao uso dos supressores, um comportamento semelhante foi
observado para as amostras CaSnOs, CaSnogCuo103, CaSnoeCo00103 e
CaSno,99Pdo,0103. Estas sofreram uma maior inibicdo no processo catalitico quando o
EDTA estava presente no meio reacional, caracterizando uma maior participacao dos
h* fotogerados na formagdo do radical hidroxila. Ja a amostra CaSno,sFeo,103,
apresentou um comportamento diferente das demais, tendo a participagdo dos dois

portadores de carga (e- e h* fotogerados) na geracao do radical.
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7 PERSPECTIVAS

Com o desenvolvimento do presente trabalho, percebeu-se a necessidade de

sua complementagé&o, visando um melhor entendimento sobre a dopagem do CaSnOs

com metais de transicao, a partir da realizacao das seguintes etapas:

YV V V VYV V

Avaliacdo por XPS das amostras dopadas, a fim de identificar a presenca de
diferentes niumeros de oxidagdo dos metais dopantes;

Realizacéo de medidas de fotoluminescéncia (PL) com a finalidade de avaliar
a desordem a curto alcance;

Avaliacéo toxicoldgica dos efluentes das reacdes de fotodegradacdo do RNL;
Estudo cinético da reacao de fotodegradacdo do RNL;

Caracterizacao dos fotocatalisadores apds a realizacao dos testes cataliticos;
Realizac&o de testes de reutilizacdo dos fotocatalisadores;

Avaliacéo fotocatalitica utilizando outros tipos de compostos organicos, como
farmacos; e

Avaliacao catalitica em outros processos oxidativos, como na reacao seletiva
catalitica (SCR) de oxidacdo do NO.
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APENDICE

APENDICE |

Neste Apéndice estdo contidos os difratogramas e os espectros Raman das
CaSno,9C00,103

CaSno,99Pdo,0103 sintetizadas pelo método Pechini com a etapa de tratamento térmico

CaSnO0g3,

CaSno,9Feo,103,

CaSno,9Cuo,10s3,

e

em atmosfera oxidante (Oz) a 300 °C por 600 min, com subsequente calcinagdo em
800 °C por 240 min.

Figura 1 — Difratograma das perovskitas sintetizadas com a etapa de calcinacdo em
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Figura 2 — Espectro Raman das perovskitas sintetizadas com a etapa de calcinacdo em atmosfera
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APENDICE Il

Neste Apéndice sdo apresentados os graficos originados a partir das
deconvolucdes, as quais foram obtidas pelo programa Peak Fit, do pico referente ao

plano (1 2 1) de cada um dos estanatos sintetizados no presente trabalho.

Figura 3 — Deconvolucéo do pico referente ao plano (1 2 1) do CaSnOs.
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Figura 4 — Deconvolucéo do pico referente ao plano (1 2 1) do CaSno,sFeo,10s3.
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Figura 5 — Deconvolucao do pico referente ao plano (1 2 1) do CaSho,eCuo,10s.
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Figura 6 — Deconvolucao do pico referente ao plano (1 2 1) do CaShno,9C00,10s.
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Figura 7 — Deconvolucao do pico referente ao plano (1 2 1) do CaSno,090Pdo,010s.
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APENDICE Il

Neste Apéndice sdo apresentados os graficos originados a partir das

deconvolugdes, as quais foram obtidas pelo programa Peak Fit, do pico referente a
banda em torno de 350 cm™ no espectro Raman de cada um dos estanatos

sintetizados no presente trabalho.

Figura 8 — Deconvolucédo banda em de 356 cm* do CaSnOa.
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Fonte: préprio autor.

Figura 9 — Deconvolucéo banda em de 343 cm* do CaSno,sFeo,10:s.
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Fonte: préprio autor.

92



Dissertacao de Mestrado — VILELA, V. B.

Figura 10 — Deconvolugdo banda em de 331 cm do CaSno,9Cuo,10s.
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Fonte: préprio autor.

Figura 11 — Deconvolucéo banda em de 323 cm™ do CaSno,9C00,103.
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Fonte: préprio autor.
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Figura 12 — Deconvolugéo banda em de 349 cm* do CaSnog9Pdo,010a.
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APENDICE IV

Neste Apéndice sdo apresentados os espectros de absor¢do molecular no

UV-Vis das aliquotas retiradas nos testes de adsorcdo e nas reacdes de

fotodegradacdo do RNL (sem e com a presenca dos supressores) para todos os

materiais.

Figura 13 — Curvas dos testes de a) adsorc¢ao, b) fotodegradacao do RNL, c) fotodegradacédo com a

presenca do EDTA e d) fotodegradag&o com borbulhamento de N: utilizando o fotocatalisador
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Figura 14 — Curvas dos testes de a) adsorc¢éo, b) fotodegradacdo do RNL, c) fotodegradacdo com a

presenca do EDTA e d) fotodegradag&o com borbulhamento de N2 utilizando o fotocatalisador

CaSno,oFeo,10s.

T
200

0.8
Casn,Fe, O+RNL_Omin (b) Casn,Fe, O +RNL_Omin
CaSn“Fea‘OJRNL 30min 0.7 Casn,Fe, O +RNL_30min
CaSn,Fe, 0+RNL_60min Casn Fe O +RNL_80min
CaSn“Fea‘OJRNL S0min 0.6 Casn,Fe, O +RNL_S0min
Casn,Fe O +RNL_120min ' CaSn”Fe&‘O FRNL_120min
Casn, Fe O +RNL_150min Casn,Fe 0 +RNL_150min
CaSn“Fea‘Oe-i-RNL 180min © 0,5 CaSn,Fe, 0 +RNL_180min
CaSn  Fe O +RNL_210min i CaSn”Fem03+RNL 210min
CaSn”Fea‘OJRN L_240min ‘g 0,4 Casn,Fe, O +RNL_240min
Casn,Fe, O +RNL_270min e Casn, Fe O +RNL_270min
Casn,Fe, 0, #RNL_300min 2 03 Casn,Fe,,0 +RNL_300min
CaSn“F a‘Oe-i-FlNL 330min 2 ' CaSn,Fe, 0 +RNL_330min
Casn,Fe,,0, +RNL_360min Casn Fe O +RNL_350min

0,2

0.1

0,0

T T T T T T T T T T T T T T T T T T T T T
300 400 500 600 700 800 200 300 400 500 600 700 800

Comprimento de onda (nm)

Casn,|
Casn, |
Casn
Casn
Casn
Casn
Casn
Casn
Casn
Casn

Casn
Casn
Casn

Fem03+E DTA_Omin
.,0,+EDTA_30min

08Fem03+E DTA_E0min

asF 840, *EDTA_30min

asf €5, 0, FEDTA_120min

asF 8g4 0, *EDTA_150min

08Fem03+E DTA_180min

asF 8q O, YEDTA_210min

asF €q1 0, *EDTA_240min

aaFea‘Oe-l-EDTl\ 2T0min
asF ey O, *EDTA_300min
ast €4, 0, *EDTA_330min

asF 840, *EDTA_360min

Comprimento de onda (nm)

(d)

Absorblncia

T
200

T T T T
300 400 500 600

Comprmento de onda (nm)

CaSn,Fe, 0+N_0min
Casn_Fe O +N_30min
Casn Fe 0O +N_60min
Casn_Fe O +N_90min
Casn_Fe 0O +N_120min
CaSn,Fe, 0+N_150min
Casn_Fe 0O +N_180min
Casn Fe 0O +N_210min
Casn_Fe 0O +N_240min
Casn Fe 0O +N_270min
CaSn,Fe, 0+N_300min
Casn_Fe 0O +N_330min

Casn Fe 0O +N_360min

T T
700 800 200

Fonte: préprio autor.

T
300

T T T
400 500 600 700 800

Comprmento de onda (nm)

96



_—
2

Absorbancia

—
o
S

Absorbancia

Dissertacao de Mestrado — VILELA, V. B.

Figura 15 — Curvas dos testes de a) adsorc¢ao, b) fotodegradacdo do RNL, c) fotodegradacdo com a

presenca do EDTA e d) fotodegradag&o com borbulhamento de N2 utilizando o fotocatalisador
CaSno,9Cuo,10s.
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Figura 16 — Curvas dos testes de a) adsorc¢éo, b) fotodegradacdo do RNL, c) fotodegradacdo com a

presenca do EDTA e d) fotodegradag&o com borbulhamento de N2 utilizando o fotocatalisador
CaSnop,9C00,10s.
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Figura 17 — Curvas dos testes de a) adsorc¢ao, b) fotodegradacdo do RNL, c) fotodegradacdo com a

presenca do EDTA e d) fotodegradag&o com borbulhamento de N2 utilizando o fotocatalisador
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