

UNIVERSIDADE FEDERAL DA PARAÍBA CENTRO DE CIÊNCIAS AGRÁRIAS CURSO DE AGRONOMIA

ALAN OLIVEIRA DE MALTA

CRESCIMENTO DE MUDAS DE LIMA 'TAHITI' EM FUNÇÃO DE DOSES DE MICRONUTRIENTES

AREIA

2020

ALAN OLIVEIRA DE MALTA

CRESCIMENTO DE MUDAS DE LIMA 'TAHITI' EM FUNÇÃO DE DOSES DE MICRONUTRIENTES

Trabalho de Conclusão de Curso apresentado à Cooredenação do Curso em Agronomia, do Centro de Ciências Agrárias, da Universidade Federal da Paraíba em cumprimento às exigências para a obtenção do título de Engenheiro Agrônomo.

Orientador: Prof. Dr. Walter Esfrain Pereira

AREIA

Catalogação na publicação Seção de Catalogação e Classificação

M26lc Malta, Alan Oliveira de.

Crescimento de mudas de lima Tahiti em função de doses de micronutrientes / Alan Oliveira de Malta. Areia:UFPB/CCA, 2020.

31 f.: il.

Orientação: Walter Esfrain Pereira.
TCC (Graduação) - UFPB/UFPB/CCA-AREIA.

1. Agronomia. 2. Citrus latifolia. 3. Matéria orgânica.
4. Tratamentos. I. Pereira, Walter Esfrain. II. Título.

UFPB/CCA-AREIA CDU 631/635(02)

ALAN OLIVEIRA DE MALTA

CRESCIMENTO DE MUDAS DE LIMA 'TAHITI' EM FUNÇÃO DE DOSES DE MICRONUTRIENTES

Trabalho de Conclusão de Curso apresentado à Cooredenação do Curso em Agronomia, do Centro de Ciências Agrárias, da Universidade Federal da Paraíba em cumprimento às exigências para a obtenção do título de Engenheiro Agrônomo.

APROVADO EM: 04 / 12 /2020

Prof. Dr. Walter Esfrain Pereira

Orientador, CCA, UFPB

Biólogo Dr. Robério de Oliveira (Examinador)

Falsiano Simplicio Bezerra

Eng. Agr. Msc. Fabiano Simplício Bezerra (Examinador)

Dedico este manuscrito que representa uma grande vitória e uma longa jornada, a toda minha família e principalmente a minha mãe dona Rosimar, pela motivação, companheirismo, amizade e principalmente pelo o incentivo de lutar pelos meus objetivos, **DEDICO**.

AGRADECIMENTOS

Penhoro, este trabalho a Deus por tudo que ele me proporciona, me dando saúde, perseverança e confiança de alcançar os meus objetivos profissionais e diários.

Aos meus pais Rosimar Oliveira Gomes por ser fonte de inspiração e um exemplo de mulher em minha vida, me dando apoio, seguridade e principalmente pela honestidade que ela me deu durante toda minha vida e ao meu pai João Berlamino de Malta Neto. Aos meus irmãos Juliana Oliveira de Malta, Altamiro Oliveira de Malta e Abílio Oliveira de Malta por serem amigos, fonte de inspiração e que me ajudam e me motivam a cada dia. Aos meus avós José Oliveira Gomes (*in memoriam*) que foi exemplo de homem trabalhador, honesto e zelador da família e Maria Gomes Batista por ser uma mulher que sempre em sua vida batalhou pelos os filhos e zelou pela a sua família. E todos os meus familiares que participaram de maneira direta e indireta na minha formação. A minha namorada Ana Camila Oliveira da Silva pela a compreensão em estar comigo nos momentos bons e difíceis e por sempre me cobrar a dar o meu melhor. A todos vocês o meu muito obrigado!

À Universidade Federal da Paraíba (UFPB), Colégio Agrícola Vidal de Negreiros (CAVN) que me acolheram desde o ano de 2012, quando ingressei no curso técnico e onde na oportunidade saí com o título de Técnico em Agropecuária e Engenheiro Agrônomo, onde durante todo esse período aprendi, conquistei e obtive amizades verdadeiras, que levarei por toda a minha vida, sendo esta instituição a principal responsável pela minha formação e evolução profissional.

A Secretaria de Agricultura do Município de Floresta-PE. Muito obrigado!

Aos meus orientadores, Prof. Dr. Walter Esfrain Pereira e ao Prof. Dr. Lourival Ferreira Cavalcante (*in memoriam*), que sempre me atenderam e estiveram disponíveis para tirar minhas dúvidas e me orientar para os melhores caminhos e, que além de professores, considero como amigos que o Campus me forneceu. Meu sincero obrigado!

Aos meus professores, Álvaro Carlos, Elton Oliveira, Thiago Jardelino, Hemmannuella Santos e Leonardo Dantas e aos demais professores (UFPB/CCHSA).

A todos os funcionários do CCA, que não mediram esforços para proporcionar uma estadia mais agradável possível para os alunos do Centro, em especial a Assis, Ronaldo, Candinho e aos demais funcionários, que resolveram os mais variados problemas. Muito obrigado!

A todos da minha turma do curso Técnico em Agropecuária (Pós-Médio Supremo), onde conheci pessoas fantásticas e com excelentes histórias de vida e que sempre farão parte da minha vida. Muito obrigado a todos!

A minha turma do curso de Agronomia 2014.2, sem exceção, cada um com suas personalidades, mas que fazem parte da minha história no curso de Agronomia. Grato a todos!

Aos meus amigos Joeldson e toda família, Auricélio, Cleudin (*in memoriam*), Cadin, Thaciano, Fabrício, Fabiano (Galinho), Samuel Inocêncio, Josevan Andrade, Vandeilson, Jefesson, Jardélio, Diego, Robério, Fabiano, Mayra (GESUCRO) Francivaldo, Jorge, Glaydosn, Rafael Ramalho e aos demais amigos da RUM IV (Bananeiras-PB) e aos amigos que estiveram comigo de maneira direta ou indiretamente durante essa minha caminhada de vida e acadêmica.

Em especial aos meus grandes amigos e 'irmãos' que a universidade me proporcionou em conhecer e conviver José Fidelis, Henrique Medeiros, Misael Mendes, Edson Souza, Alfredo Nunes, Renato. Não há palavras para descrever a amizade que tenho por vocês e sem dúvidas posso confiar. Ao lado deles passei momentos difíceis, mas durante todo esse tempo tive o orgulho de ter momentos incríveis durante nosso período de curso. Sei que nossas amizades serão eternas e terei o prazer em dizer aos meus descendentes que vocês são meus amigos.

"A maior dignidade para um homem é morrer trabalhando"

Lourival Ferreira Cavalcante

RESUMO

A utilização de adubação mineral com micronutrientes é de suma importância para evitar deficiências nutricionais das plantas, podendo comprometer o crescimento e desenvolvimento das culturas agrícolas, a exemplo da lima ácida "Tahiti". O trabalho foi desenvolvido para avaliar o crescimento de mudas de lima "Tahiti" (Citrus latifolia) em função de doses de micronutrientes. O experimento foi instalado em março de 2018 a fevereiro de 2019, localizado nas coordenadas (6°53'00'' S, 36°02'00'' O e a 470 m de altitude). Devido ao solo ser pobre em matéria orgânica, foi acrescentado três doses de 3 kg planta⁻¹ de esterco bovino a cada quatro meses, sendo a cada dia dois dos respectivos meses de março, junho e novembro de 2018. Os tratamentos foram doses anuais de 0, 15, 30, 45 e 60 g planta⁻¹ de FTE-BR 12. O delineamento experimental foi em blocos ao acaso, com cinco tratamentos e quatro repetições, totalizando vinte plantas para efeito de avaliações. Foram avaliados diâmetro do colo da planta, diâmetro do porta-enxerto, diâmetro do enxerto, altura do porta-enxerto e altura total da planta. Os dados obtidos foram submetidos à análise de variância e de regressão. Para a cultura recomendasse a dose de 15 g planta⁻¹ para diâmetro do porta enxerto e colo da planta e a dose de 60 g proporcionou um melhor crescimento em altura do portaenxerto da planta.

Palavras-Chave: Citrus *latifólia*. Matéria orgânica. Tratamentos.

ABSTRACT

The use of mineral fertilization with micronutrients is of paramount importance to avoid nutritional deficiencies of the plants, which can compromise the growth and development of agricultural crops like the acid lime "Tahti". The work was developed to evaluate the growth of "Tahti" lime (*Citrus latifolia*) seedlings in function of micronutrient doses. The experiment was installed in March 2018 to February 2019, located at the coordinates (6°53'00" S, 36°02'00" O and at 470 m altitude). Due to the soil being poor in organic matter, three doses of 3 kg plant-1 of bovine manure were added every four months, being every day two of the respective months of March, June and November of 2018. The treatments were annual doses of 0, 15, 30, 45 and 60 g plant-1 of FTE-BR 12. The experimental design was in random blocks, with five treatments and four repetitions, totaling twenty plants for evaluation purposes. The diameter of the plant neck, diameter of the rootstock, diameter of the graft, height of the rootstock and total height of the plant were evaluated. The data obtained were submitted to variance and regression analysis. For the culture it was recommended a dose of 15 g plant-1 for the diameter of the rootstock and neck of the plant and the dose of 60 g provided better growth in height of the rootstock of the plant.

Keywords: Citrus latifolia. Organic Matter. Treatments.

LISTA DE FIGURAS

Figura 1. Localização geográfica da área experimental, município de Remíg	jio, Paraíba,
Brasil	16
Figura 2. Diâmetro do colo da lima ácida 'Taithi' em função dos dias após c	ada dose de
FTE BR 12	20
Figura 3. Diâmetro do porta-enxerto da lima ácida 'Taithi' em função do	os dias após
cada dose de FTE BR 12.	21
Figura 4. Diâmetro do enxerto da lima ácida 'Taithi' em função dos dias apo	ós cada dose
de FTE BR 12	22
Figura 5. Altura do porta-enxerto da lima ácida 'Taithi' em função dos dia	ıs após cada
dose de FTE BR 12.	23
Figura 6. Altura total do limoeiro da lima ácida 'Taithi' em função dos dia	as após cada
dose de FTE BR 12	25

LISTA DE TABELAS

Tabela 1. Características da análise química e física do solo coletado na pr	ofundidade de
0-20 e 20-40 cm	17
Tabela 2. Teores de macro e micronutrientes presentes no esterco analisad	o 18

SUMÁRIO

1. INTRODUÇÃO	
2. REVISÃO BIBLIOGRÁFICA	13
2.1. Origem e usos de lima ácida Tahiti	13
2.2. Importância econômica da lima ácida Tahiti.	13
2.3. Adubação Organomineral	14
2.4 FTE BR-12	15
3. MATERIAL E MÉTODOS	15
3.1. Localização e caracterização da área	15
3.2. Classificação e coleta de solo	16
3.3. Instalação do pomar na área experimental	16
4. RESULTADOS E DISCUSSÃO	19
5. CONCLUSÕES	26
6 REFERÊNCIAS BIBLIOGRÁFICAS	26

1. INTRODUÇÃO

A lima ácida 'Tahiti' (*Citrus latifolia* Tanaka) é naturalmente entendida e negociada nacionalmente como limão em todas as regiões do Brasil. O país se destaca com maiores produções de laranja no mercado internacional, enquanto a lima ácida 'Tahiti' predomina no mercado de exportação, sendo mais consumida no mercado nacional como produto *in natura* (IBRAF, 2015).

O Brasil, no ano de 2017 superou os 48 mil hectares de lima ácida 'Tahiti' em todo território brasileiro, tendo o estado de São Paulo se destacado com cerca de 25.869 hectares colhidas, se tornando um destaque como o principal produtor nacional (IBGE, 2018). No Nordeste brasileiro, apesar das condições edafoclimáticas serem favoráveis, a produtividade média de *C. latifolia* é de aproximadamente 17,4 t ha⁻¹ ainda considerada baixa quando comparada com a região Sudeste, cuja à produtividade média em 2017 foi de 34,9 t ha⁻¹ (IBGE, 2018).

À adubação mineral, em geral, tem como finalidade proporcionar uma produtividade elevada e imediata às culturas agrícolas, onde, apresenta alta concentração de nutrientes, elevando o crescimento e o desenvolvimento da cultura, quando se correlaciona aos adubos orgânicos.

Entretanto, o efeito residual da adubação com produtos alternativos de maneira orgânica é bastante importante na fertilidade e estruturação dos solos, pois os atributos como: pH, a saturação por bases, atividade biológica e a capacidade de troca catiônica são influenciados pela adubação orgânica aumentando a vida útil dos solos (BARBOSA et al., 2007; MENEZES JÚNIOR; GONÇALVES; KURTZ, 2013).

Os micronutrientes também são de suma importância para o cultivo dos citros. Estão envolvidos no transporte de metabólitos, síntese de pectinas, divisão celular, crescimento das folhas, interferindo na evapotranspiração, desenvolvimento do sistema radicular, falta de emissão de botões florais, baixa produtividade e frutos pequenos, pálidos e com pouco suco (MACHADO, 2004).

Diante do exposto, o trabalho foi desenvolvido para avaliar o crescimento de mudas de lima 'Tahiti' em função de doses de micronutrientes.

2. REVISÃO BIBLIOGRÁFICA

2.1. Origem e usos de Lima ácida 'Tahiti'

Originário do continente Asiático, o limoeiro é uma espécie de planta perene pertencente à família botânica das Rutáceas e do gênero *Citros*. Na antiguidade as espécies de frutas cítricas em particular os limões, eram utilizados na dieta diária dos povos da região do Ocidente, tanto como condimento e aromatizante nas suas refeições diárias, como também pelas suas propriedades nutricionais e seus benefícios medicinais como fitoterápicos na prevenção de doenças e cura de doenças a exemplo do escorbuto, distúrbio causado pela deficiência da vitamina C no organismo, tornando os frutos de limões de maneira obrigatória em viagens longas com ênfase nas marítimas (VIANA, 2010).

2.2. Importância econômica e edafoclimáticas da Lima Ácida 'Tahiti'

O cultivo da lima ácida 'Tahiti', no estado de São Paulo que é o maior produtor do fruto, representa um impacto social e econômico local, pela participação na sua larga escala de maioria de pequenos produtores rurais, com propriedades de tamanho médio aproximado de 42 hectares (IEA, 2017).

A maioria dos plantios de citros, no estado da Paraíba, está localizada no Planalto da Borborema, onde a altitude está acima de 500 m, o que favorece a existência de um microclima ameno e propício, com chuvas abundantes, em média de 1.000 mm/ano, distribuídas em seis meses, com chuvas bem distribuídas anualmente, ocorrendo um período de veranico a partir do mês de setembro. A umidade relativa do ar é, em média, de 85% nos meses mais frios do ano (maio a agosto), e a temperatura noturna varia de 10 a18 °C. Durante o dia, a temperatura varia de 20 a 25 °C nos meses mais frios e, acima de 25 °C, no período de verão (EMEPA, 2007).

O Brejo Paraibano é uma Microrregião do estado supracitado que se destaca por possuir solos férteis e um clima ameno, favorável à agricultura. Segundo a EMEPA (2007), Matinhas é a cidade que se destaca com maior produção e possui uma área plantada superior a 850 hectares de laranjas, tangerinas e limões, distribuídas entre 421 produtores, o que representa uma área média de aproximadamente 2,0 hectares por produtor.

2.3. Adubação organomineral

A adubação adequada de um pomar é fator de grande importância para a alta produtividade da cultura. Entretanto, esse objetivo pode não ser alcançado caso não sejam observados os diversos fatores que contribuem para o crescimento e produção, dentre os quais os fatores genéticos e aqueles relacionados ao clima, solo, etc. (MAGALHÃES, 1997).

De acordo com Koller (2008), plantas bem nutridas são mais resistentes ao ataque de doenças e pragas, sendo que cada nutriente afeta características importantes no comportamento das plantas, principalmente na produtividade e qualidade físico-química dos frutos.

Devido aos baixos teores de matéria orgânica e baixa capacidade de retenção de água, a aplicação de adubos orgânicos poderá trazer inúmeros benefícios devido aos efeitos que causam no solo. Apesar das vantagens, os baixos teores de nutrientes das fontes orgânicas implicam na utilização de quantidades elevadas destas e a disponibilidade e viabilidade econômica passam a ser fatores limitantes do seu uso.

Porém, se o produtor dispõe de tais adubos na sua propriedade ou nas proximidades, essas desvantagens podem ser minimizadas. A utilização de diferentes fontes orgânicas, tais como esterco de bovinos, de aves e torta de mamona não tem mostrado diferenças nos efeitos observados, ficando a escolha da mesma em função da disponibilidade para o produtor (EMBRAPA, 2005).

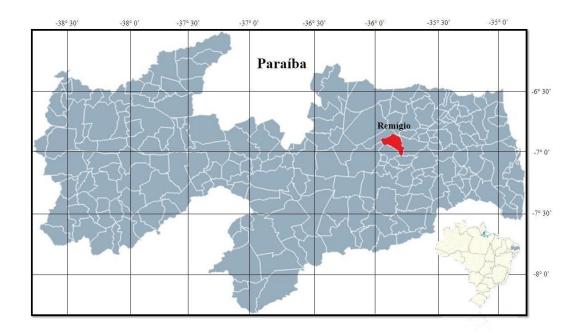
Trabalhos desenvolvidos por Almeida *et al.* (2005), que avaliaram o efeito do esterco de curral curtido na adubação em fundação na formação do pomar de tangerineira 'Poncã' (*Citrus reticulata*, Blanco), em comparativo com à adubação mineral convencional, não houve diferença significativa entre as mesmas. Os autores observaram um crescimento linear retilíneo das plantas em função das quantidades de adubo orgânico adotadas por tratamento.

Para Koller (2008) os micronutrientes não têm grande influência no número de frutos produzidos, mas aumenta o tamanho dos mesmos, a espessura da casca e a acidez do suco.

2.4 FTE BR-12

As fritas ou FTEs (Fritted Trace Elements), embora apresentem uma baixa solubilidade, são as fontes mais recomendadas e citadas em textos técnico-científicos como fonte de adubação de micronutrientes (CANTARUTTI et al. 1999).

A solubilidade das fritas depende da granulometria e composição de suas partículas. Às fritas são obtidas pela fusão, à aproximadamente 1.000° C, de silicatos ou fosfatos possuindo uma ou mais fontes de micronutrientes em sua composição, seguida de resfriamento rápido com água, secagem e moagem (MORTVEDT e COX, 1985, apud LOPES, 1999).


A recomendação de adubações com fonte de FTE, para o fornecimento de micronutrientes, está na contramão de vários resultados experimentais publicados que relatam nenhum efeito das fritas na produtividade das gramíneas forrageiras, quando usadas na nutrição das mesmas (COSTA et al., 1998; COSTA e PAULINO, 2001; CUNHA e FRANCO, 2017; DRUDI e BRAGA, 1990; OLIVEIRA et al., 2006; SOUZA FILHO e DUTRA, 1991).

A forma de aplicação do adubo contendo micronutrientes, visando-se ter uma eficiência agronômica e uma absorção pelas culturas desejáveis é também de grande importância. Pode-se ter aplicação via solo, via foliar, e nas sementes. Com a aplicação via solo pretendendo aumentar a concentração na solução do solo, onde se concentra as raízes responsáveis pela absorção. É necessário, portanto, utilizar fontes de micronutrientes que se solubilizem em velocidade compatível com a absorção pelas raízes e que sejam aplicadas de forma compatível e possível de serem por elas atingidas aumentando a capacidade de assimilação e absorção (VOLKWEISS, 1991).

3. MATERIAL E MÉTODOS

3.1. Localização e caracterização da área

O experimento foi realizado na propriedade Sítio Macaquinhos, município de Remígio, Estado da Paraíba, de março de 2018 a fevereiro de 2019. O município está localizado a 6°53'00'' S, 36°02'00'' O, a 470 m acima do nível do mar. Pela classificação de Köppen (ALVARES et al., 2013), o clima é do tipo As', que significa quente e úmido, com chuvas concentradas de março a julho.

Fonte: OLIVEIRA, F. F.

Figura 1. Localização geográfica da área experimental, município de Remígio, Paraíba, Brasil.

3.2. Classificação e coleta de solo.

O solo da área experimental foi classificado como Neossolo Regolítico, conforme os critérios do Sistema Brasileiro de Classificação de Solos - SiBCS (EMBRAPA, 2013). Antes da instalação do experimento foram coletadas amostras de solo na camada de 0-20 cm, na área de projeção da copa das plantas, para caracterização química quanto à fertilidade e dos atributos físicos.

3.3.Instalação do pomar na área experimental

O pomar de lima 'Tahiti' foi instalado em janeiro de 2018, com mudas propagadas por enxertia tendo como porta-enxerto o limão cravo *Citrus limonia* Osbeck., e aos 2 meses após o plantio, foram aplicados os tratamentos. As plantas foram cultivadas no espaçamento de 4 m x 4 m, e para redução das perdas de água por evaporação, as áreas de projeção das copas foram mantidas cobertas com uma camada de capim *Brachiaria decumbens* de 8 cm de espessura.

As covas foram abertas nas dimensões de 40 cm x 40 cm x 40 cm e preparadas com uma mistura de 20 L de esterco bovino de relação C/N = 19:1, 274,2 e 159,1 g kg⁻¹ de MO e

CO, respectivamente, além de 8,2 g kg⁻¹ de N, logo após o segundo mês de plantio das mudas devido ao solo ser pobre em matéria orgânica, foi acrescentado três doses de 3 kg planta⁻¹ de esterco bovino a cada quatro meses, sendo a cada dia dois dos respectivos meses de março, junho e novembro de 2018 a aplicação dos tratamentos adotados. Para tanto, descontou-se 5% de umidade do esterco, aplicando em seguida 90 g da mistura por cova, composta de g 50 de superfosfato simples (20% P₂O₅, 20% Ca²⁺, 12% S) + 20 g de KCl (60% K₂O = 50% K) + 20 g de FTE - BR 12 ((B - 1,8%; Cu - 0,8%; Mn - 2,6%; Mo - 0,1%; Zn - 9%).

Tabela 1. Características da análise química e física do solo coletado na profundidade de 0-20 e 20-40 cm.

	Atributos químicos												
Prof.	pН	P	S- 3	SO ²	K	Na	H++Al+3	Al+3	Ca+2	Mg+²	SB	CTC	M.O.
ŀ	H2O (1	:2,5)	r	ng/dm	•••••		•••••		cmolc/dm³	•••••		g/	kg
0-20	H2O (1		3,89	ng/dm	27,06	0,05	2,43	0,05	1,04	1,28	2,44	g/	/kg 8,23

	Atributos físicos										
Prof.	Areia	Silte	Argila	Argila	Grau de	Densidade	Densidade	Porosidade	Classe textural		
	2-0,05	0,05-	<0,002mm	dispersa	floculação	do solo	de	total			
		0,002 mm					partícula				
		g/kg	Ţ	g/kg	Kg/dm³	g/cm³	g/cm³	m ³ /m ³	Frac. Arenoso		
0-20	796	95	109	13	881	1,55	2,58	0,4			
0-40	786	88	126	25	802	1,59	2,57	0,38			

Classificação: pH= potencial hidrogeniônico; P= fósforo (Muito Baixo); S-SO²= dióxido de enxofre; K + = potássio (Baixo); Na+ = sódio; H + + Al+3 = hidrogênio mais alumínio; Ca+2= cálcio; Mg+2= magnésio; SB= soma de bases; CTC= capacidade de troca catiônica; M.O.S= matéria orgânica do solo (Baixo) (PREZOTTI e MARTINS. 2013).

Durante o primeiro ano (mar/2018 a fev/2019), na fase de crescimento, devido ao solo ser pobre em matéria orgânica e potássio, as adubações com N (234 g de ureia + 75 g de sulfato de amônio) e K (240 g de cloreto de potássio) correspondeu a 120 g de N e 120 g de K g planta⁻¹ ano⁻¹ de K, e parcelada em seis fornecimentos a cada 60 dias após o transplantio das mudas. A primeira adubação nitrogenada foi feita com sulfato de amônio (20% N, 22% S), as demais com ureia (45% N) e as de potássio com cloreto de potássio (60% K₂O, 50% K) simultaneamente com a fonte de nitrogênio.

Tabela 2. Teores de macro e micronutrientes presentes no esterco analisado.

Identificação da amostra	N	P	K	Ca	Mg	S	CO	C/N
_			%			(%)		
Esterco Bovino	0,83	0,28	1,04	0,822	0,5	0,18	15,9	19,17
							**	
Identificação da amostra	Zn	Fe	Mn	Cu	В		pH	Na
				lm ³			(H2O)	(%)
Esterco Bovino	58	9941	250	8	21,3		8,81	0,079

Teores Totais, determinados no extrato ácido (ácido nítrico com ácido perclórico); N - Método do Kjeldahl; CO - Método Walkley - Black.

Devido ao solo ser pobre em fósforo e ter-se fornecido apenas 10 g de P₂O₅ na preparação das covas via superfosfato simples (20% de P₂O₅ e 18% de Ca), a adubação fosfatada em cobertura foi realizada ao nível de 700 g de superfosfato simples, sendo equivalente a 140 g cova⁻¹ de P₂O₅, aplicada juntamente com N e K, aos níveis de 12, 28, 30, 35 e 35 g cova⁻¹ de P₂O₅. A matéria orgânica na forma de esterco bovino foi aplicada nas covas, correspondendo a 3 L planta⁻¹, aplicada juntamente com a adubação de N e K a cada 120 dias.

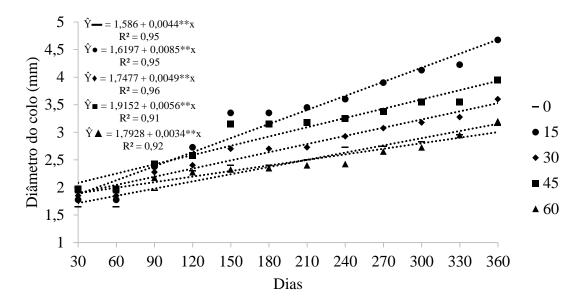
Os tratamentos foram fundamentados numa dose 20% superior, a 50 g planta⁻¹ ano⁻¹ de FTE - BR 12 sugerida por Silva et al. (2016); esse valor foi dividido nas doses anuais de 0, 15, 30, 45 e 60 g planta⁻¹ e aplicados em três parcelas iguais, de 0, 5, 10, 15 e 20 g planta⁻¹ ano de cada dose respectivamente fornecidas na área de projeção da copa das plantas, aos dois, cinco e aos oito meses após o transplantio das mudas para o seu local definitivo.

A irrigação das plantas foi feita utilizando regadores de 10 litros, sendo através de aguação, aplicando 20 litros de água por planta a cada três dias para molhamento da área de projeção da copa das plantas.

As avaliações de crescimento foram efetuadas nos dias 20 de cada mês no período de um ano. Para as medições de diâmetro do caule da planta, foram utilizados paquímetro e régua de metal de 60 cm para avaliar o crescimento vegetativo da cultura. As variáveis avaliadas foram diâmetro do colo da planta, diâmetro da haste principal do porta-enxerto a uma altura de 10 cm, altura total do porta-enxerto, altura a 30 cm do enxerto e altura total individual de cada planta analisada.

O delineamento experimental utilizado foi em blocos ao acaso, com cinco tratamentos (T) em quatro repetições. Os dados obtidos foram submetidos à análise de variância (Teste F) e ajustes de regressão, e tendo-se selecionado aqueles com significância mínima de 5% de probabilidade, com maior coeficiente de determinação (R2).

4. RESULTADOS E DISCUSSÃO


4.1. Diâmetro do colo da planta

O diâmetro de colo do limoeiro foi incrementado com aumento das doses de FTE BR-12 aplicadas via solo (Figura 2). É possível observar que a dose de 15 g planta-¹ ano-¹, foi a que obteve efeito linear para o diâmetro do colo da planta em (mm), possuindo assim resultado satisfatório em relação aos demais tratamentos adotados. O crescimento linear começou a se destacar a partir dos 120 dias após aplicação dos tratamentos, atingindo seu pico máximo de crescimentos aos 360 dias, chegando a um resultado de 4,5 mm de diâmetro de colo. Isto evidência a importância da nutrição com micronutrientes para a formação de portaenxertos de qualidade e demostra que os micronutrientes, mesmo em quantidades reduzidas são capazes de suprir a demanda nutricional das plantas.

Esse resultado corrobora com as observações feitas por Mattos Júnior et al. (2010), que em estudo com nitrogênio e cobre na produção de mudas de citros em diferentes portaenxertos, evidenciaram que o Cu em doses de 5-10 mg L promove o desenvolvimento de mudas, dentre outros, pelo incremento do diâmetro do caule.

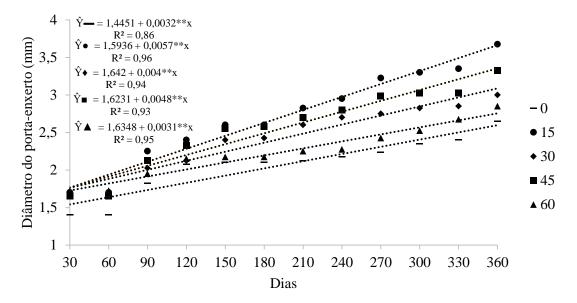
Para diâmetro do colo da lima ácida 'Tahiti', a dose de 15 g planta-¹ ano-¹ apresentou resultados aos 30 dias um diâmetro de 1,8 mm de espessura e aos 360 dias obteve um diâmetro de 4,6 mm com um incremento na variável avaliada de 61%, onde esses valores podem ser atribuídos à disponibilidade dos micronutrientes no solo na fonte de FTE BR-12.

Segundo Grave et al. (2007), plantas com maior diâmetro de colo possuem relação com o desenvolvimento mais acentuado da parte aérea e, em especial, do sistema radicular, contribuindo para sobrevivência e seu desenvolvimento no campo.

Figura 2. Diâmetro do colo da lima ácida 'Tahiti' em função dos dias após cada dose de FTE BR 12.

O diâmetro do caule é uma das mais importantes variáveis utilizadas em estudos acadêmicos de avaliação de porta-enxertos, pois, ajuda a definir o início do momento da enxertia, uma vez que vegetais que apresentam maior diâmetro podem ser enxertadas mais precocemente (SERRANO et al., 2013).

Segundo Grave et al. (2007), plantas com maior diâmetro de colo possuem relação com o desenvolvimento mais acentuado da parte aérea e, em especial, do sistema radicular, contribuindo para sobrevivência e seu desenvolvimento no campo.


4.2. Diâmetro do porte-enxerto

A dose de 15 g planta-¹ ano-¹ de FTE BR-12 apresentou melhor desempenho em diâmetro do porta-enxerto do limoeiro (Figura 3). Este resultado é de suma importância devido ao crescimento retilíneo e de maneira do porta-enxerto do limoeiro, evidenciando que adubações com micronutriente tem potencial de suprir as exigências nutricionais, trazendo resultados significativos e expressivos no crescimento de plantas de limoeiros. O efeito deste tratamento obteve um resultado de crescimento neste parâmetro a partir do trigésimo dia após a aplicação do FTE BR-12 chegando a 3,7 mm de crescimento no diâmetro do porta-enxerto nos 360 dias da pesquisa experimental.

Com a utilização dos tratamentos adotados a dose em destaque sobre as demais foi a de 15 g planta-1 ano-1 de FTE BR-12, obtendo um diâmetro do porta-enxerto aos 30 dias um

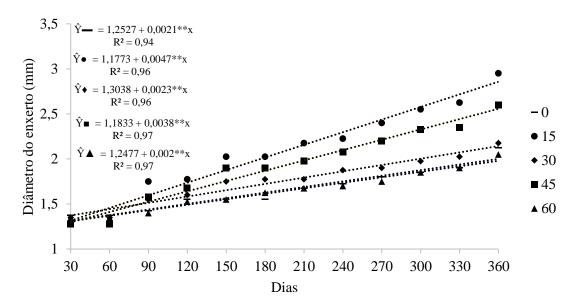
resultado de 1,8 mm de espessura e aos 360 dias teve um resultado de 3,6 mm e um incremento de 56% para diâmetro do porta-enxerto.

Esse resultado está em consonância com as observações descritas por Ferrarezi et al. (2007), que ao estudar fontes de Fe no desenvolvimento de porta-enxertos cítricos, constataram que o Fe proporciona, dentre outros, resultados positivos para a altura das plantas.

Figura 3. Diâmetro do porta-enxerto da lima ácida 'Tahiti' em função dos dias após cada dose de FTE BR 12.

Os resultados obtidos por Girardi e Mourão Filho (2004) e Mattos Júnior et al. (2006) ao estudarem o comportamento de porta-enxerto simples de 'Swingle' sobre o efeito da adubação com o micronutriente Boro, mostraram que ocorrem maiores teores foliares de B em comparação a copas sobre limoeiro 'Cravo' e tangerina 'Sunki'.

(SWIETLIK, 1999; HIPPLER et al., 2014, 2015) mostram que os micronutrientes Zn, Mn e Cu possuem baixa mobilidade em solos, garantido a baixa lixiviação desses nutrientes no solo e trazendo um maior desempenho do porta-enxerto e consequentemente um melhor crescimento e desenvolvimentos da cultura.


4.3.Diâmetro do enxerto da planta

O diâmetro do enxerto obteve um crescimento retilíneo com a aplicação da adubação com micronutrientes na fonte FTE BR-12 durante o período de experimentação da lima ácida 'Tahiti' (Figura 4). A dose e 15 g planta-¹ ano-¹ de FTE BR-12 sobrepôs os demais, tendo de

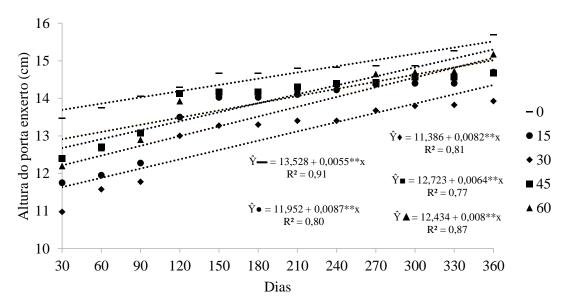
início um diâmetro de 1,4 mm, onde um crescente aumento a partir dos 120 dias após o plantio chegou-se a 2,8 mm no diâmetro do enxerto ao final do período experimental das plantas de limoeiro.

Para diâmetro do enxerto da lima ácida 'Tahiti', a dose de 15 g planta-¹ ano-¹ apresentou resultados aos 30 dias um diâmetro de 1,3 mm de espessura e aos 360 dias obteve um diâmetro de 2,8 mm com um incremento na variável avaliada de 54%, onde esses valores podem ser atribuídos à disponibilidade e o uso dos micronutrientes para um melhor desempenho nesta variável, usando a fonte de FTE BR-12.

(Malavolta et al. 1997) mostra em seus estudos com adubação com o micronutriente boro tem como resultados positivos nos incrementos promovidos a os caráteres de desenvolvimento, tais como diâmetro do caule, altura e área foliar das plantas.

Figura 4. Diâmetro do enxerto da lima ácida 'Tahiti' em função dos dias após cada dose de FTE BR 12.

Grave et al. (2007) enfatiza que à adubação boratada mostra que o diâmetro do caule em maracujazeiro tem sido reconhecido como um dos melhores indicadores de padrão de qualidade. As mudas que apresentam um pequeno diâmetro e muito altas são consideradas de qualidade inferior, comparadas com aquelas de maior diâmetro de caule. Um maior diâmetro do caule está associado a um melhor desenvolvimento mais padronizado e regular da parte aérea e, em especial, do sistema radicular, favorecendo a sobrevivência, crescimento e desenvolvimento da muda, após o plantio em seu local definitivo.


4.4. Altura do porte-enxerto

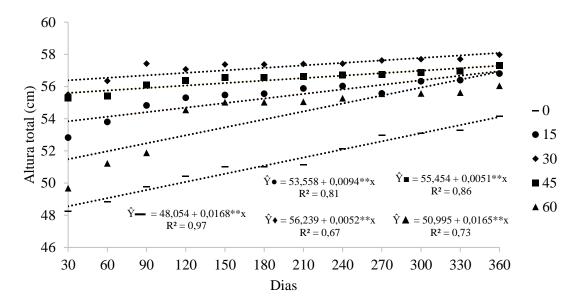
O resultado da altura do porta-enxerto (Figura 5) mostra que não houve significância entre os tratamentos, havendo uma variação de comportamento no crescimento na dosagem de 0 g planta-¹ ano-¹ de FTE BR-12, sendo à testemunha. Este crescimento se deu nos intervalos entre 120 e 210 dias, obtendo um crescimento de 14,5 cm planta-¹ ano-¹.

A influência dos micronutrientes na altura do porta-enxerto de citros até a dose 60 g planta-¹ ano-¹ pode ser atribuída à sua função no metabolismo da planta, como componente de sistemas enzimáticos que regulam atividades bioquímicas, tomando parte na síntese de proteínas mais ativas e com melhor desempenho em suas atividades metabólicas.

O tratamento com a dose de 0 g planta-1 ano-1 de FTE BR-12, obteve melhor resultado em altura do porta-enxerto comparada com as demais, tendo aos 30 dias um crescimento de 13,693 cm de altura, e aos 360 dias tendo um resultado de 15,508 cm com um incremento de 12% no crescimento em altura do porta-enxerto da planta.

Resultados encontrados por Pestana; Varennes; Abadi, (2005) que na ocasião avaliaram doses de Fe na produção de porta-enxertos de citros, observaram menor altura em plantas cultivadas sem Fe ou com menor nível de Fe, mostrando que adubações com micronutrientes são de suma importância para o crescimento e desenvolvimento vegetal.

Figura 5. Altura do porta-enxerto da lima ácida 'Tahiti' em função dos dias após cada dose de FTE BR 12.


4.5. Altura do total

Em relação à altura total da lima observa-se crescimento linear positivo com o aumento das doses de FTE BR-12 (Figura 6). Percebe-se que todas as doses de FTE foram superiores ao tratamento sem aplicação dos micronutrientes, isso demostra a importância que os nutrientes, mesmo em doses pequenas, são capazes de afetar o crescimento das plantas. Entre as doses, limoeiros adubados com 30 g planta-1 ano-1 foram as que apresentaram maior crescimento em altura, chegando aos 58 cm de altura aos 360 dias.

Para altura total das plantas de lima ácida 'Tahiti' utilizando a fonte de micronutrientes de FTE BR-12, o tratamento que apresentou o melhor desempenho em comparativo com os demais foi a dose 30 g planta-¹ ano-¹, com resposta aos 30 dias uma altura de 56,395 cm e aos 360 dias apresentou-se 58,111 cm, obtendo um incremento de 3% devido a utilização da adubação com os micronutrientes fornecidos pela a fonte adotada.

Segundo Gomes et al. (2002) à altura da parte superior quando avaliada isolada e individualmente, serve como indicativo de qualidade das plantas, mostrando o potencial de uma nutrição balanceada de plantas bem-sucedidas.

Koller (2008) ainda faz a seguinte afirmação a respeito de outros micronutrientes essenciais para o cultivo de citros, focando que a deficiências de zinco (Zn) diminuem as ramificações, cujas folhas novas diminuem de tamanho, tornam-se lanceoladas e apresentam manchas cloróticas entre nervuras do limbo foliar, podendo ocorrer a morte de ramos jovens, fazendo com que a planta não cresça e nem se desenvolva, prejudicando à amplificação do limoeiro através de deficiências nutricionais por micronutrientes.

Figura 6. Altura total da lima ácida 'Tahiti' em função dos dias após cada dose de FTE BR 12.

Os micronutrientes independentemente da fonte são de suma importância para o cultivo em plantio de citros. Estão envolvidos principalmente no transporte de metabólitos, síntese de pectinas, divisão celular, crescimento das folhas, atuantes na evapotranspiração, desenvolvimento completo do sistema radicular, falta de emissão de botões florais, evitando à baixa produtividade e frutos pequenos, pálidos e com pouco suco (Machado, 2004).

5. CONCLUSOES

Recomenda-se utilizar adubação com micronutrientes para obter melhor crescimento da lima 'Tahiti'.

Para a cultura recomenda-se a dose de 15 g planta⁻¹ para diâmetro do porta enxerto e colo da planta.

A dose de 60 g proporciona melhor crescimento em altura do porta-enxerto da planta.

6. REFERÊNCIAS

ALMEIDA, T. R. P.; LEONEL, S.; TECCHIO, M. A.; MISCHAN, M. M. Formação do pomar de tangerineira 'Poncã', em função da adubação química e orgânica. **Revista Brasileira de Fruticultura**. v. 27, n. 2, p. 288-291, 2005.

AMORIM, F. F. V. R. **Doses de ferro no crescimento, trocas gasosas e eficiência nutricional de mudas enxertadas de cajueiro-anão**. Dissertação de mestrado. Universidade Federal do Ceará, Centro de Ciências Agrárias, Programa de Pós-Graduação em Agronomia (Fitotecnia), Fortaleza, 2019.

BARBOSA, G. M. C.; TAVARES FILHO, J.; BRITO, O. R.; FONSECA, I. C. B. Efeito residual do lodo de esgoto na produtividade do milho safrinha. **Revista Brasileira de Ciência do Solo**, v. 31, n. 3, p. 601–605, 2007.

CAVALCANTE JÚNIOR, L. F. Porta-enxerto para a produção de mudas de cajueiro. **Pesquisa Agropecuária Brasileira**, v. 48, p. 1237-1245, 2013.

CANTARUTTI, R.B. et al. Pastagens. In: RIBEIRO, A.C.; GUIMARÃES, P.T.G.; ALVAREZ V. V.H. [Ed.]. Recomendações para o uso de corretivos e fertilizantes em Minas Gerais. **5**^a **Aproximação**. p. 332 – 341. 1999.

COSTA, N. de L.; PAULINO, V.T.; RODRIGUES, A.N.; TOWNSEND, C.R. Nutrientes limitantes ao crescimento de Paspalum atratum. In: **Pasturas tropicales**, v. 20, n.2, p. 46-48, 1998. Disponível em: Acesso em: 13 Ago.2020.

CUNHA, M, K.; VIANA, S. S.; S. M. K.; Efeito do uso de fte br12 na produtividade inicial do capim massai. **Revista Integração Universitária**. v. 13, n.20, p. 08-16. 2019.

Embrapa - Empresa Brasileira de Pesquisa Agropecuária (2013) Sistema Brasileiro de Classificação de Solos. 2ª ed. Rio de Janeiro, Embrapa Solos. 353p.

EMBRAPA. Mandioca e Fruticultura Tropica. Sistema de Produção, 17. Sistema de Produção para Pequenos Produtores de Citros do Nordeste. **Versão eletrônica**. Dez/2005.

EMEPA. Empresa Estadual de Pesquisa Agropecuária da Paraíba S/A. **Diagnóstico** sócioagropecuário da citricultura do município de Matinhas-PB. Tecnologia & Ciência Agropecuária. João Pessoa, 2007.

FIDALSKI, J.; STENZEL, N.M.C, Nutrição e produção da laranjeira "Folha Murcha" em porta-enxertos e plantas de cobertura permanente na entrelinha. **Ciência Rural** v.36 n.3. 2006.

GRAVE, F.; FRANCO, E. T. H.; PACHECO, J. P.; SANTOS, S. R.V. Crescimento de plantas jovens de açoita cavalo em quatro diferentes substratos. **Ciência Florestal**, v. 17, n. 4, p. 289-298, 2007.

GIRARDI, E.A.; MOURÃO FILHO, F.A.A. Crescimento inicial de laranjeira 'Valência' sobre dois porta-enxertos em função da adubação nitrogenada no plantio. **Revista Brasileira Fruticultura**, v. 26, n. 1, p. 117-119, 2004.

IBRAF - Instituto Brasileiro de Frutas. **Exportações de frutas frescas-2015**. Disponível em: http://www.ibraf.org.br/estatisticas/est_frutas.asp. Acesso em: 10/09/2020.

IBGE – Instituto Brasileiro de Geografia e Estatística. **Estatísticas sobre produção agrícola municipal**. [2018]. Disponível em: <www.sidra.ibge. gov.br> Acesso em: 10 set. 2020.

INSTITUTO DE ECONOMIA AGRÍCOLA - (IEA). Disponível em: http://www.iea.sp.gov.br. Accesso em: 13 set. 2020.

JUNQUIERA, L.P. Efeito de Fertilizante, fungicida e indutor de resistência na produtividade, taxa de vingamento de flores, incidência e severidade de gomose e características físicas de frutos de limeira ácida 'tahiti'. Brasília: Faculdade de Agronomia e Medicina Veterinária, Universidade de Brasília, 2013, 134 f. Tese de Doutorado.

KOLLER, O.C. Adubação e Práticas de manejo no Controle do Cancro Cítrico. **XV Ciclo de Palestras sobre citricultura do RS**. 2008.

LOPES, A.S. Micronutrientes: filosofias de aplicação e eficiência agronômica. São Paulo: ANDA, 1999. 59 p. (**Boletim Técnico, 8**). Disponível em: Acesso em: 13 Ago. 2020.

MACHADO, C.C. Consumo de soluções fertilizantes por plantas adultas de lima ácida 'Tahiti' sobre limão 'cravo' em irrigação localizada. 139 p. il. Tese (doutorado) Escola Superior de Agricultura Luiz de Queiroz, 2004.

MAGALHÃES, A., F., J., Citros: Nutrição e Adubação. Cruz das Almas, BA: EMBRAPACNPMF, 1997. 37 p. (EMBRAPA-CNPMF. Circular Técnica, 28).

MALAVOLTA, E.; VITTI, G. C.; OLIVEIRA, S. A. Avaliação do estado nutricional das plantas: princípios e aplicações. 2. ed. Piracicaba: **Associação Brasileira para Pesquisa do Potássio e do Fosfato**, 1997.

MALAVOLTA, E.; VIOLANTE NETTO, A. Nutrição mineral, calagem, gessagem e adubação dos citros. 1989. 153p.

MATTOS JÚNIOR, D.; QUAGGIO, J.A.; CANTARELLA, H.; ALVA, A.K.; GRAETZ, D.A. Response of young citrus trees on selected rootstocks to nitrogen, phosphorus, and potassium fertilization. **Journal of Plant Nutrition**, v. 29, p. 1371-1385, 2006.

MATTOS JÚNIOR, D.; RAMOS, U. M.; QUAGGIO, J. A.; FURLANI, P. R. Nitrogênio e cobre na produção de mudas de citros em diferentes porta-enxertos. v. 69, n. 1, p.135-147, 2010.

MENEZES JÚNIOR, F. O. de; GONÇALVES, P. A. S.; KURTZ, C. Biomassa e extração de nutrientes da cebola sob adubação orgânica e biofertilizantes. **Horticultura Brasileira**, v. 31, n. 4, p. 642–648, 2013.

PESTANA, M.; VARENNES, A. DE; ABADI, J. Differential tolerance to iron deficiency of citrus rootstocks grown in nutrient solution. **Scientia Horticulturae**, v. 104, p. 25–36, 2005.

PREZOTTI, L.C.; MARTINS, A.G. GUIA DE INTERPRETAÇÃO DE ANÁLISE DE SOLO E FOLIAR. : **Incaper**, 2013. 104 p.

RICHTER, J. Adubação verde em pomar de citros: disponibilização de nitrogênio e fósforo, para a cultura de citros com o uso de nabo forrageiro e ervilhaca. Trabalho de conclusão de curso (Graduação). Universidade Federal da Fronteira Sul, curso Agronomia. Erechim, RS, 2019.

SETIN, D.W.; CARVALHO.S.A.; JUNIOR.D.M. Crescimento inicial e estado nutricional da laranjeira 'valência' sobre porta-enxertos múltiplos de limoeiro 'cravo' e citrumeleiro 'swingle'. **Bragantia**, v.68, n.2, p.397-406, 2009.

SILVA, J.T.A.; SILVA, I.P.; SIMÃO. F.R. S. Produção e nutrição de limoeiro 'Tahiti' em função da adubação com nitrogênio e potássio em cinco safras. **Pesquisa agropecuária brasileira**, v.51, n.4, p.357-363, 2016.

SERRANO, L. A. L.; MELO, D. S.; TANIGUCHI, C. A. K.; VIDAL NETO, F. das. C.; GRAVE, F. G.; FRANCO, E. T. H.; PACHECO, J. P.; SANTOS, S. R. Crescimento de plantas jovens de açoita-cavalo em quatro diferentes substratos. **Ciência Florestal**, v. 17, n. 4, p. 289-298, 2007.

HIPPLER, F.W.R.; REIS, I.M.S.; BOARETTO, R.M.; QUAGGIO, J.A.; MATTOS, D. Características adsortivas de solos e o suprimento de zinco e manganês para os citros. **Citrus Research Technology**. v.35, p.73–83, 2014.

FERRAREZI, R. S.; BATAGLIA, O. C.; FURLANI, P. R.; SCHAMMASS, E. A. Iron sources for citrus rootstock development grown on pine bark/vermiculite mixed substrate. **Scientia Agricola**. v. 64, n. 5, p. 520-531, 2007.

GOMES, J. M.; COUTO, L.; LEITE, H. G.; XAVIER, A.; GARCIA, S. L. R. Parâmetros morfológicos na avaliação da qualidade de mudas de Eucalyptus grandis. **Revista Árvore**, v. 26, n. 6, p. 655-664, 2002.

GRIEBELER, S.R.; GONZATTO, M.P.; SCIVITTARO, W.B.; OLIVEIRA, R.P.; SCHARZ, S.F. Diagnóstico nutricional de pomares de laranjeiras da Fronteira Oeste do Rio Grande do Sul. **Pesquisa agropecuária gaúcha**, v.26, n.1, p. 114 - 130, 2020.

SANTOS, R.M. Adubos de liberação controlada e foliar na produção de mudas de cajueiro-anão 'BRS 226'. Dissertação (mestrado) — Universidade Federal do Ceará, Centro de Ciências Agrárias, Programa de Pós-Graduação em Ciência do Solo, Fortaleza, 2017.

SOUZA, M.S.P.; GALDINO, M.S.S.; Crescimento inicial de laranjeiras cultivadas com recomendações de adubação no nordeste paraense. Trabalho de Conclusão de Curso (Graduação – Agronomia) – Universidade Federal Rural da Amazônia, Capitão Poço, 2019.

SOUSA, G.G.; NOVELINO, J.O.; SCALON, S.Q.P.; MARCHETTI, M.E. Crescimento de mudas de maracujazeiro em função de adubação à base de boro e material de cupinzeiro. **Pesquisa Agropecuária Tropical**. v. 41, n. 2, p. 170-178, 2011.

SWIETLIK, D. Zinc nutrition of fruit trees by foliar sprays. **Acta Horticulturae**, v.594, p.123–129, 2002.

VIANA, D. S. Limão (*Citrus latifolia*, Tanaka), cv. tahiti, de cultivos convencional e orgânico biodinâmico: avaliação da capacidade antioxidante dos sucos in natura e clarificados por membranas de microfiltração, 2010. 100 f. Dissertação (Mestrado em Ciências Farmacêuticas) — Universidade Federal do Rio de Janeiro, Faculdade de Farmácia, Rio de Janeiro, 2010.

WOLKWEISS, S.J. Formas e métodos de aplicação. In: FERRE M.E.; CRUZ, M.C.P. Micronutrientes na Agricultura. Piracicaba: **Potafós**, p 391-412, 1991.