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RESUMO

A presenca de fissuras em uma estrutura € um fato que chama a atencdo sobre
potenciais problemas de funcionalidade ou perda de capacidade resistente. Lajes de
concreto armado tém um padréo diferente de fissura em comparacdo com as vigas, onde
as fissuras tendem a se espalhar na superficie do elemento, ndo necessariamente
atingindo as bordas da laje, com profundidade visivel a partir da mesma. A taxa de
armadura também € um fator que pode mudar esse padrdo. Para avaliar o efeito do dano
no padréo de fissuragéo, nas frequéncias naturais e formas modais em lajes de concreto
armado, foram testadas duas dessas estruturas com diferentes dimensfes e taxas de
armadura em ambas as direcfes, nas quais foram induzidas fissuras por aplicacdo de
carga estatica, seguidas por testes modais usando excitacdo de impacto. Extraindo
frequéncias e modos usando o software StarModal, diferentes indices de danos foram
avaliados para comparar ambas as lajes, atentando que o padrdo de fissuragdo foi
diferente para ambas as estruturas. Para entender o motivo de um comportamento
diferente (estimado como causado por uma mudanga no comportamento isotropico para
ortotrépico devido a fissuras), ambas as lajes foram modeladas numericamente
utilizando elementos finitos. O modelo considerando a perda da rigidez no elemento
finito que continha a fissura e nos elementos vizinhos mostrou-se mais adequado que o
modelo onde a rigidez era reduzida em todos os elementos que atingiam o momento de
fissuracdo, seja na comparacao em frequéncia ou por forma modal através do parametro
MAC. Modelos isotropicos e ortrotropicos ndo apresentaram diferencas significativas
entre si, 0 que traz resultados inconclusivos sobre a transicdo de comportamento de
isotropico para ortrotropico como causa do diferente padrdo de fissuracdo. As tangentes
nas curvas experimentais carga versus deslocamento no carregamento e
descarregamento apresentaram valores relativamente proximos indicando que o0s
modelos, embora elaborados para o estdgio de descarregamento, também podem ser
aplicados na fase de carregamento.

PALAVRAS-CHAVE: Lajes, dano, fissuracdo, modelagem, armadura



ABSTRACT

Slabs of reinforced concrete (RC) have a different crack pattern in comparison to
beams, where the cracks in bending tend to spread on the surface of the element. The
reinforcement ratio is also a factor that can change this pattern. In order to evaluate the
effect of damage on cracking pattern, natural frequency and mode shapes in RC slabs,
two of such structures with different dimensions and reinforcement ratios in both
directions were tested, in which cracks were induced through application of static load,
followed by modal tests using impact excitation. Extracting the frequencies and mode
shapes using StarModal software, different damage indexes were used to compare both
slabs, bearing in mind that differences in the cracking pattern occurred in both
structures. To understand the reason for a different behavior, both slabs were modelled
numerically using finite elements. The model considering the loss of stiffness in the
finite element which have the crack and its nearby elements showed better results than
the model in which the stiffness reduction was applied in all elements that reached the
cracking moment; the comparison was made through the evaluation of frequencies and
modal parameter MAC, which indicate that the cracking affects locally the stiffness of
the elements. Isotropic and orthotropic models did not show significant diferences
among themselves, what brings inconclusive results about the transition from isotropic
to orthotropic behavior as the cause of different cracking pattern. The slopes in loading
and unloading stages presented values relatively close to each other, indicating that the
models, although adjusted for unloading stage, can also be used for the loading stage.

KEYWORDS: Slabs, damage, cracking, modeling, reinforcement
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1. INTRODUCTION

The design of civil engineering structures is made worldwide using building
code requirements where it is expected that the most unfavorable load cases are
considered, so that the structure remains safe and functional along its lifetime. However,
during its use, structures can be subjected to severe load conditions that can affect their
integrity. Additionally, even if undamaged, it is of growing interest to monitor the
structural performance and level of integrity, optimizing the maintenance and repair
operations whose costs grows with the damage level. An interesting strategy is the use
of nondestructive tests, which can provide information without damaging the structure .

Different classifications for nondestructive tests are available in literature. A
well known classification was proposed by Rytter (1993) based on the deepness of the
information provided by the tests. Another classification proposed by Saadt et al (2004)
is based either on the detection capabilities of the techniques (with global techniques
having the capability to detect and locate the damage) or on the available information
about the damaged structure (based or not in models).

Considering the point of view of material’s behavior, the detection techniques
can be either linear or nonlinear. On linear techniques, as mentioned by Zamuy et al
(2014), the behavior is considered approximately linear even after the damage, within a
certain range of excitation, where there is a direct relationship between vibratory
properties (natural frequencies, mode shapes and damping ratio) and changes in
physical properties (mass, stiffness and damping). Considering the nonlinear
techniques, specially in structures of cracked reinforced concrete, the consideration of
nonlinearity is more realistic, since nonlinearity is an intrinsic condition of this material
(Ebrahimian et al,2017). The occurrence of super and subharmonics, for example,
which are originated from nonlinear behavior, were studied by Gianninni et al (2003).
Responses depending on the level of excitation is another characteristic of nonlinearity,
as studied by Waltering et al (2008) or Hamad et al (2010).

The behavior of cracks during the process of excitation is also a source of
nonlinearity when they open and close, what is called breathing cracks (Nguyen, 2013;
Andreaus and Baragatti, 2009; Chrondros et al, 2001; Paolo et al, 2014).

Still about the cracking process of reinforced concrete (RC) structures, it is
influenced by the reinforcement ratio. However, in comparison to RC beams, that are

investigated to a large extent, reinforced concrete slabs have a different patern of
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cracking, what brings doubts about the use, for slabs, of beam-based linear or nonlinear
damage evaluation methods.

This work makes an investigation over the usability of linear and nonlinear
techniques to evaluate damage in two reinforced concrete slabs with different
reinforcement ratios in both longitudinal and transverse directions. Both slabs received
stepped growing static load (steps being based on the design collapse load), followed by
dynamic tests after each step to evaluate the changes in their modal properties as the
induced damage increases. The crack pattern and evolution with the applied load is also
detected. A numerical model of both slabs is then produced based on the experimental
data to help finding, as a first goal, the best cracking model that can be used in both
tested structures.

It is also important to mention that this work is result of a cooperation between
UFPB and Federal University of Juiz de For a (UFJF) in the modeling, experimental
testing and processing of the data, with fundraise of the project PROCAD/CAPES:
Rede de Cooperacdo Académica em Durabilidade de Estruturas — Experimentacéo e
Modelagem Rede de Cooperagdo Académica em Durabilidade de Estruturas —

Experimentacdo e Modelagem.

Main objective:

Evaluate damage in reinforced concrete slabs having different reinforcement
ratios and damaged by bending (where the behavior is naturally nonlinear) using linear

and nonlinear techniques based on the experimental data and numerical modelling.
Specific objectives:

e Evaluate the viability of using linear damage indicators (based on
changes of eigenfrequency, mode shapes or damping ratios) in concrete
slabs with different reinforcement ratios and different crack patterns;

e Evaluate the viability of using a nonlinear damage indicator, based on the
ratio of changes of natural frequency along the decay signal induced by
an applied impact

e Create a numerical model of slabs initially as linear elastic material and

adjust it using experimental data (frequencies and mode shapes);
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e Evaluate a better crack model that can be used in both slabs (that present

different crack pattern);

The structure of the dissertation is the following: in the first chapter an
Introduction about the theme was shown. Chapter 2 makes a literature review on
the topics related to the research. Chapter 3 presents the materials and methods
used in the investigation. Chapter 4 shows the results obtained and a discussion

about them. The final chapter have the conclusions about the research.
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2. LITERATURE SURVEY

2.1. Damage detection techniques: linear and nonlinear aproaches

The presence of cracks in reinforced concrete structures is a sign of problems
and can have several origins: due to loading (excessive or not), foundation problems,
design errors, among others. Since cracking changes the structure’s physical properties,
it can be related with changes in vibratory properties, like natural frequencies, mode
shapes or damping ratios, for the detection, localization and quantification of damage.
The research on damage detection techniques based on vibration-data began in late
1970s in aerospace structures. Applications regarding this in different structures and
employing different techniques can be cited (Zanuy et al., 2014; Capozucca and
Magagnini, 2017; Xu et al., 2018; Cao et al., 2017). The choice of the damage
evaluation technique depends on the level of information that can be extracted from data
as well as on the structural behavior after damage.

A review of damage detection techniques can be found in Sinou (2009), Das,
Saha and Patro (2016), Fand and Quiao (2010), and Jassim et al (2013). By considering
the structural behavior, two groups of techniques can be specified: linear and nonlinear

techniques.

2.1.1. Linear techniques

The group of linear techniques considers that the structure is approximately linear
after damage, within a certain range of excitation, and consequently a direct relationship
is assumed between changes in vibratory properties (natural frequencies, mode shapes
and damping ratios) and changes in physical properties (mass, stiffness and damping).
The magnitude and the amount of modes affected will depend on the severity and
location of the damage as these two factors can affect modes differently.

Fan and Quiao (2010) made a classification of these techniques into four
categories: based on mode shape, based on curvature mode shape changes, based on

natural frequencies, and on a combination of natural frequencies and mode shapes.

2.1.1.1. Changes in natural frequency
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Changes in natural frequency associated to damage is the most popular and used
method in structural assessment. Its use is simple for two main reasons: first, the use of
a few sensors is enough for many applications. The second point is that frequencies are
less subjected to the influence of noise and can be obtained with a relative confidence.

The simplest model consists of an undamped system having mass m and attached
to a spring of stiffness k, vibrating at one of its natural frequencies. The respective

natural frequency of this model is given by Equation 1:

1 k

f=3J% ®

2w\ m

Based on Equation 1, it can be seen the frequencies of the damaged or undamaged
structure is mainly related to the stiffness of the system since cracks don’t imply in mass
changes. Based on this information, as the damage produce stiffness reduction, it results
in changes of frequency (reduction), which can be associated to damage.

As mentioned by Fan and Quiao (2010), natural frequency-based methods can be
divided into two groups: the forward problem and the inverse problem. In the forward
problem there is a damaged structure with location and severity known and the
frequency changes must be determined. In the inverse problem, the frequency is known
but the position and intensity of damage is the desired information.

According to Doebling et al. (1996), Lifshitz and Rotem (1969) presented what
may be the first journal article to propose damage detection via vibration measurements.
They used the shift in natural frequencies through changes in Young’s modulus, what
can be associated to the frequency change as a damage indicator, an example of inverse
problem. The use of frequency change in damage detection can be found in several
studies along the literature evolution (Pan et al, 2019; Lee and Chung, 2000; Springer et
al, 1988).

2.1.1.2.  Changes in damping ratio

The dissipation of energy provided by crack friction in reinforced concrete is an
interesting source for damage index that can be more sensitive than natural frequency
decrease. Tests made by Modena et al. (1999) on panels of reinforced concrete
indicated that the presence of small cracks caused trivial changes in natural frequencies

(due to little decreases or uncertainties) but noticeable changes in damping.
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Corroborating the limitation of frequency change on damage detection, Pandey and
Biswas (1994) pointed that the localization of damage using such changes is difficult
since damage at two different locations associated with a certain amount of damage can
produce the same frequency change.

Experimental tests made by Bovsunovsky (2004) concluded that the source of
dissipation on cracks is not always provided by friction of crack surfaces: the energy
dissipation in an edge non-propagating fatigue crack is caused mainly by the
elastoplastic zone in the vicinity of crack tip.

Different authors have explored damping as a damage index (Xu et al, 2018; Pesi¢
et al, 2015; Hsu et al, 2014; Limongelli and Carvelli, 2015; Cao et al, 2017).
Limitations of damping usage are its difficulty of measurement and sensibility to
environmental conditions such as temperature and humidity (Modena et al, 1999). A
state-of-art about the use of damping can be found in Cao et al (2017).

2.1.1.3. Changes in mode shapes and mode shape curvature

In comparison to natural frequency or damping changes, the mode shapes and
their derivatives (the curvatures and their numerical adjustments) have more
advantages. Since the mode shape is a spatial information for each natural frequency,
they contain local information that can be used directly in the detection of multiple
damages and their evolution. On the other hand, this method requires more sensors and
is more susceptible to noise disturbance than natural frequency measurements, which
may hinder the detection of damage (Pandey et al, 1991). In the same article, Pandey et
al (1991) used the curvature of mode shape instead (second derivative of mode shape
obtained through a central difference approximation).

In literature it could be seen that damage detection techniques based on mode
shapes and derivatives has been used successfully (Cao et al, 2014; Ratcliffe, 2000;
Wahab and De Roeck, 1999), because they come from the fact that damage affects
mode shapes (and its derivatives). Roy (2017) presented a damage localization method
using the derivative of mode shapes of an intact and a damaged frame simulating a
building. Frans et al (2017) used variation of mode shape curvature of a truss bar
modelled numericaly and observed changes in nearby nodes, associating it to damage.

Rucevskis et al. (2016), in turn, employed modal curvature to detect damage on metal
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plates but without the need of a baseline for the undamaged state, and successfully
detected the existing damage.

Still on curvature of mode shapes, the use of different approximation functions
has been cited in literature. Ratcliffe (1997) proposed an indicator based on a
relationship of modal curvature affected by damage and a third-degree polynomial
representing the undamaged stage. As an improvement, Qiao et al (2007) proposed the
use of a fourth-degree polynomial. Dessi and Camerlengo (2015) used sine and cosine
functions to model the mode shape of and Euler-Bernouli cantilever beam, using several
indicators reported in literature and based in curvature. Jiao et al (2015) evaluated
numerically the use of Chebyshev polynomials aiming to obtain the curvature of bridges
beams. Xu et al (2017) evaluated the use of modal curvature adjusted by polynomials in

aluminium plates.

2.1.1.4. Modal Assurance Criterion (MAC), Coordinate Modal

Assurance Criterion (COMAC) and other assurance criteria

The Modal Assurance Criterion (MAC) is a scalar constant that evaluates the
degree of linearity (consistency) between two modal vectors. It shows more sensibility
to large differences and little sensibility to small differences in the mode shapes,
producing a good statistic indicator and a degree of consistency between mode
shapes. The MAC between two sets of vectors {pa} and {px} can be expressed by

Equation 2:

2
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Making use of orthogonality for comparison of two mode shapes vectors, MAC
ranges from zero (representing no consistent correspondence) to one — what represents
that two sets of data are fully correlated. Based on this fact, a low MAC value for the
same resonant frequency can be interpreted as a damage indicator (Pastor et al, 2012).
As mentioned by Allemang (2003), MAC has several applications listed on
literature, like:
o Validation of experimental modal models;
e Correlation with analytical modal models (mode pairing);

e Correlation with operating response vectors;
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e Mapping matrix between analytical and experimental modal models;

e Modal vector error analysis;

e Modal vector averaging;

e Experimental modal vector completion and/or expansion;

e Weighting for model updating algorithms;

e Modal vector consistency/stability in modal parameter estimation algorithms;
e Structural fault/damage detection;

e Quality control evaluations;

e Optimal sensor placement.

Though MAC criteria can assess the orthogonality of two data sets of mode
shapes, its limitation lies in not showing the exact points where this comparison has low
correspondence. To overcome this issue, a new indicator based on correlation between
vectors was proposed by Lieven and Ewins (1988). This way, the Co-Ordinate Modal
Assurance Criterion (COMAC) identifies the co-ordinates at which the correspondence
of two data sets is poor, that is, those parts of the structure which are contributing to low
degrees of correlation. The COMAC factor at a point i between n sets of mode shapes is

given by Equation 3:
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where n defines the number of correlated mode shapes, (®a)ij and (®g)ij denote
the j" value at a point i for the states (eg. numerical, experimental) A and B
respectively.

Other assurance criterion factors were developed like Weighted Modal Analysis
Criterion (WMAC), Partial Modal Analysis Criterion (PMAC) (Heylen, 1990), Modal
Assurance Criterion Square Root (MACSR) (O’Callahan, 1998), Scaled Modal
Assurance Criterion (SMAC) (Brechlin et al, 1998), Modal Assurance Criterion Using
Reciprocal Vectors (MACRV) (Wei et al, 1990), Enhanced Coordinate Modal
Assurance Criterion (ECOMAC) (Hunt, 1992), Mutual Correspondence Criterion
(MCC) (Milecek, 1994), Inverse Modal Assurance Criterion (IMAC) (Mitchell, 2001),
Frequency Response Assurance Criterion (FRAC) (Heylen and Lammens, 1996;
Fregolent and D’ Ambroglo, 1997).
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2.1.2.  Nonlinear techniques

As mentioned by Frizzarin et al (2010), the techniques based on modal parameters
as previously mentioned (based on natural frequencies, damping and mode shapes) have
an important difference from the methods based on identification of anomalies, which
are the nonlinear methods.While in the methods based on classical modal parameters,
damage is revealed though a difference in behavior between undamaged and damaged
conditions (becoming compromised if the data of the undamaged state is unknown or
unavailable), in the methods based on nonlinearity, the anomaly itself reveals the
damage, without any reference to the undamaged state.

In cracked reinforced concrete structures, nonlinearity is an intrinsic condition of
this material. The crack pattern during the excitation stage or immediately after it is
relevant in nonlinear methods and there are two major cracking models: the models that
consider the cracks remaining open (called open crack models), and the models
considering cracks opening and closing (called breathing cracks models) (Nguyen,
2013; Andreaus et al.,2007; Chondros et al., 2001). Breathing cracks, in special, are
sources of nonlinearity because they change the stiffness of the structure during the
process of vibration. The majority of the works explored this feature of breathing cracks
through use of cyclic excitation (Cheng et al., 1999; Andreaus and Baragatti, 2011;
Bovsunovsky and Surace, 2005; Xu and Castel, 2016).

Still in the group of nonlinear damage detection techniques, the use of impact
excitation in concrete structures remains less explored, although it is a quick assessment
technique, with data being promptly acquired by few sensors positioned on the
structure. The majority of works using this technique are devoted to beams. Neild et al.
(2003) carried out tests with impact excitation on beams for increasing damage levels
produced by static load intercalated by modal tests, and explored the changes of natural
frequency along the decay as a nonlinear assessment method. An addition to the
previous research line was made by Zhu and Law (2007) who applied the Hilbert-
Huang Transform on cracked reinforced concrete beams to evaluate the changes in
natural frequency along the decay. Wang et al. (2012), in turn, tested reinforced
concrete beams and proposed a window width to evaluate the natural frequencies after

the impact.
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Different from beams, reinforced concrete slabs have a crack pattern in which the
existing cracks tend to spread on the surface of the structure. Still, a factor that can
affect the crack pattern is the reinforcement ratio. Han (2011) observed that the
transverse reinforcement in one-way slabs can restrain flexural crack opening,
indicating that this reinforcement can modify the cracking pattern, as was also observed
by Lantsoght et al. (2013) in slabs under concentrated load. The influence of
reinforcement ratio in RC slabs was also noticed when they were subjected to blast
loads because the deformation and damage degree decreased with the increase of this
ratio (Yao et al., 2016).

The major use of damage index models and crack models in literature is for beams
ellements. In this work, the investigation about the applicability of them is made for
reinforced concrete one-way slabs. Although the cracking pattern and deformation of
one-way slabs is different from beams, the support conditions of the tested structures
(similar to simply supported beam) and the results of previous investigations justify the

research interest.

2.2. Crack modeling

Cracks are among the events that can affect structure and so the evaluation of
damage produced by them is a typical application of structural health monitoring. In the
literature, the crack modeling fall in three main categories: local stiffness reduction,
continuous models and discrete spring models. A review of these and other models can
be found in Meruane (2016). The choice of the best crack model depends, among other,
in the structure behavior (linear or not) and the number of dimensions it has. If detailing
the stress-strain distribution around the crack is necessary, a finite element in three or
two dimensions is adequate, while a one dimension model is better for beam-like or
fames structures. The representation of breathing effect in cracks can be made by the
use of nonlinear contact elements or constraints (Xu and Castel, 2016; Nandi and
Neogy, 2002). However, iterative models with meshing update may be required in order
to provide precise information like location and depth of crack (Carneiro and Inman,
2002).

The methods in the first group (local stiffness reduction, also called smeared crack
models) are the simplest approaches to develop a finite model of a damaged structure
since it is just required a well refined mesh in order to reduce the stiffness component

(as bending stiffness, for example) in the elements where the damage is located [7, 8, 9].
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An adequate model requires a fine mesh and the main question relies on the amount of
stiffness reduction in each element with crack in order to match global modal
parameters. Coming from experimental data, it is possible to quantify and localize
damage. The method is well consolidated for use in beam elements and many
applications can be found in literature (Pandey and Biswas, 1991; Zou et al, 2002; Dixit
and Hanagud, 2011; Pandey and Biswas, 1994).

In the second group of methods (discrete spring or lumped flexibility models), the
cracks are represented by spring elements without mass (Patil and Maiti, 2003),
allowing the cracked element to separate in two parts linked by the springs. Since the
elements along the crack can change position, the model can represent the severity of
the damage.

In the third group of methods, the strain-stress distribution around the crack in the
continuous cracked models is defined by a decay function, in an attempt to clearly
represent significant properties of crack (like location and depth). Christides and Barr
(1984) tested this method in beams and obtained great correlation between the
experimental and predicted frequencies. A validation of the formulation was made by
Shen and Pierre (1990) using finite element models for comparison and, going beyond,
extended the same model validity for single edge breathing cracks. Sinha et al. (2002)
followed the studies by developing a model for multi-cracked beams and discovered
that the exponential decay of Christides and Barr (1984) could be approximated by a
linear decay. Although the model of Sinha et al. (2002) not accurate at high frequencies,

it is simple for use and can be applied in structures of low-frequency (like slabs).
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3. MATERIALS AND METHODS

3.1. The slabs specimens

Two reinforced concrete slabs were tested in laboratory. Although they had
similar dimensions, their reinforcement ratio was different in both directions as their
bearing capacity. Both slabs were 0.08 m thick and simply supported along all their
width. Figure 1 shows a sketch of both tested slabs.

> 8 em 8cm
(thickness) (thickness)

(a) (b)

Figure 1 — Sketch of the slab (a) S1 and (b) S2

3.1.1. Fistslab (S1)

The first slab was named S1 and had a length of 3.0 m and a width of 1.35 m, with
rebars of 5.0 mm diameter spaced 9.0 cm along the width and 22.0 cm along the length.

The rebar used was type CA-50 (yielding strength 500 MPa) of 5,0 mm diameter.
Fifteen bars with 3,0 m of length and spaced every 9,0 cm along the width were used in
main reinforcement ,and fourteen bars with 1,5 m length and spaced every 22,0 cm were
used along the length. All bars were bent 4,0 cm and 90° in the ends. The longitudinal
and transverse reinforcement ratio in S1 was, respectively, 2.15 cm?/m and 0.98 cm?/m.

The S1 casting used concrete with 25 MPa compression strength. The mix in

terms of unit weight was 1:2,26:2,60-0,54, where, one unit in weight of cement was
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mixed to 2,26 units of sand and 2,60 units of gravel, using a water/cement ratio of 0,54.
The cement used was CPV-ARI, a rapid hardening cement. No additives were used.

In order to evaluate the compression resistance, fifteen speciments of 10 cm
diameter and 20 cm height were cast, according to the Brazilian standard NBR NM33
and the curing process last 21 days under shadowed place, following the standard NBR
5758.

Table 1 shows the results of compression tests for the speciments. The
characteristic strength (fck) found was of 24,7 MPa, a bit lower than the design fck (25
MPa).

CHARACTERISTIC STRENGTH —S1
Speciment Load (kgf) Strength (MPa)
1 20000 25,465
2 23200 29,539
3 24800 31,576
4 19000 24,192
5 22000 28,011
6 19000 24,192
7 22000 28,011
8 22600 28,775
9 22600 28,775
10 23900 30,430
11 23600 30,048
12 22600 28,775
13 27000 34,377
14 22000 28,011
15 22000 28,011

Table 1 — Characteristic strength of concrete speciments — S1.

3.1.2. Second slab (S2)

The second slab, named S2, had a length of 2.50 m and was 1.65 m wide, using
rebars of 6.3 mm spaced 7.0 cm along the width and 7.5 cm along the length, and a
concrete of 30 MPa of compression strength. The longitudinal and transverse
reinforcement ratio in the slab were, respectively, 4,36 cm?/m and 4,05 cm?/m. The mix
in terms of unit weight was 1:2,42:1,21-0,46. Four specimens with the same dimensions

of the ones used in S1 were cast to evaluate the compression strength but were tested for
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compression more than 28 days after casting. The average strength was 32,59 MPa.

Table 2 shows the results of compression tests for the speciments.

CHARACTERISTIC STRENGTH — S2
Speciment Strength (MPa)
1 31,00
2 33,12
3 33,38
4 32,87

Table 2 — Characteristic strength of concrete speciments — S2.

3.2. Equipment used on tests
3.2.1. Load Cell

Load cell is a transducer equipment that converts force into electrical signals
proportional to the load. The load cell used had a capacity of 1 MN (Figure 2) and 0.1

KN resolution connected to an Ahlborn data logger model Almemo 2890-9.
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Figure 2 — Load cell used for static load aplication.

3.2.2. LVDTs (Linear Variable Differential Transformer)

LVDT (Linear Variable Differential Transformer ou Transformador Diferencial
Variavel Linear) is a displacement sensor that converts linear movements into a signal.
It basically contains some coils that create current according to the tip position. The

LVDTs were used for measuring the slab deflection in static load tests, and had a
sensibility of 0,01mm, as illustrated in Figure 3.
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Figure 3 — One of the LVDT sensors used on tests.

3.2.3. Impact hammer

An instrumented impact hammer consists of a hammer that uses tips of different
stiffness and a piezoelectric cell inside its head to measure the applied force. Therefore,
when the structure is excited, a current is generated and read by an acquisition system.

There are tips with different stiffness that can be used. The choice depends on the
stiffness of the structure under test. The stiffer the structure, the shorter is the impulse
length and, as result, the longer is the frequency range. Analogously, the more flexible
the tip the shortest is the excited frequency range. In the test case, the chosen head was
the most flexible one, in order to concentrate the impact energy in the lower frequency
range, which contained the structural frequencies of interest. The model used in both
slabs was Type 8208 from Briel&Kjaer as shown in Figure 4.

Figure 4 — Impact hammer used on tests highlighting the tip used. (Source: Product brochure, modified)
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According to the equipment brochure, hammer tips allow to control the amplitude
and decay of impact. This can be seen in Figure 5(a), where it can be seen the shape of
impulse function as a function of the hammer tip; the stiffer the tip the short is the
duration of the hammer blow. Figure 5(b) exhibit force spectra of the hammers showing
the frequency response as a function of the used impact tip. The tip used for testing both

slabs was the medium one as highlighted in Figure 5(a).
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Figure 5 — (a) shape of impulse function (b) spectra of the hammers. (Source: Product brochure)
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3.2.4. Piezoelectric accelerometer

Similarly to load cells, accelerometers are also among the equipments called
transducers, that work converting mechanical energy into electrical current. The process
in an accelerometer is different since it uses an auxiliary mass. According to EWINS
(1984), when the structure is excited, the group move together, where the ratio of
acceleration of auxiliary mass and accelerometer body (x"/y") is unitary for a range of
frequencies from zero up to the transducer’s resonant frequency. When the body of the
accelerometer moves, the auxiliary mass moves relative to the transducer body causing
a deformation of the piezoelectric crystal, generating a current that is transmitted to the
acquisition system.

In both tests the accelerometer employed was a Isotron® 752A13 from
Endevco®, sensitivity of 1V/g (nominal) and able to work in a frequency range until

100 kHz. It can be seen in Figure 6.
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Figure 6 — Accelerometer used for testing

3.2.5. Signal conditioner

The signals produced by the impact hammer or the accelerometers cannot be
directly read by the acquisition system due to their low intensity. In order to overcome
it, the sinals need to be previously conditioned, and that works in two ways: amplifying
current or tension. The conditioner used for both sensors was model 4416B from

Endevco®, as can be seen in Figure 7.

Figure 7 — Signal conditioner

3.2.6. Spectrum analyser

The acquisition system consisted of a spectrum analyser; it measures and process
the conditioned signals from sources of excitation and response. From the processed

signals it is possible to get the modal properties of the structure (damping ratio, natural
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frequencies and mode shapes). The analyser used in tests was SignalCalc® Quattro,

from Data Physics.

3.3. Slab testing

3.3.1. Impact excitation

Before modal testing, a mesh used for measurement and excitation was marked
on S1 surface and the same mesh was marked under the slab to follow the crack
evolution as the load levels increased. The 300 cm of length were divided into six parts
of 48,33 cm each and the 135 cm of width were divided into four parts of 28,75 each.
Additional points were marked along the central line of the slab. Another additional
point was marked in order to be the driving point where the response should be
acquired. This way, S1 had a total of 42 test points. Figure 8(a) illustrate the modal
mesh used for experimental tests side by side to the in situ mesh shown in Figure 8(b).
The definition of mesh dimensions, excitation and measurement points were done based

on a numerical model in order to get the three first mode shapes of the structure.
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Figure 8 — S1 marked nodes (a) in scheme and (b) in place.
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In S2, due to its different dimensions in comparison with S1, an approximately
square mesh was employed, with points being 25 cm by 25.6 cm apart along the width
and length, respectively, with a total of 77 test points (see Figure 9). In both slabs, the
definition of the mesh dimensions were based on obtaining a good resolution for mode
shapes, particularly for the first mode, that was similar to the one of a simply supported
beam. This was also the main reason for using additional points in the central line of S1.
On the other hand, although S2 behaved as a beam-like structure, the way the modes
were going to change with increasing damage was unknown. That was the reason to use

a denser mesh and an additional driving point, as will be discurssed later on.
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Figure 9 — Mesh used in S2 showing the marked nodes.

After marking the points that were used in modal testing, both slabs were raised
using iron cables. Figure 10 shows S1 in its final position for testing. Both slabs were

simply supported along their width extremities but using different metallic profiles for
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that. Figure 11 shows the support used in S1, being conceived to be a roller and pinned

support. Figure 12 shows a detail of S2 supports.

Front \
support [ 35 SB&:;:)I:;

Figure 10 — Side view of S1 showing the continuous support line.

(@) ' o (b)

Figure 11 — Detail of continuous support line of S1 from (a) front side and (b) bottom side
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Figure 12 — Detail of continuous support line of S2 (both bottom and front)

After positioning the slab on its final position, the next step was performing a
modal testing to evaluate modal properties of the uncracked structure and compare their
evolution as the damage increased. Figure 13 illustrate the final position of both mesh
and driving point used in both slabs. In S1 a single driving point was used while two
driving points were used in S2. The modal testing was performed after each load level

was applied and removed in slabs S1 and S2.
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Figure 13 — Nodes and driving point positions for slabs (a) S2 ans (b) S1.

The excitation was applied in each point using an instrumented impact hammer
B&K model 8210. At the driving point in S1 (the point of the experimental mesh where
the response acquisition was recorded), an Endevco accelerometer model 752A13 was
placed, while the impact hammer excited all the points, one at a time, to perform a
modal test. In the case of S2, based on the reciprocity tests (that will be explained later
on), the excitation remained fixed at two points while the accelerometer moved along
the points of the experimental mesh. The spectrum analyzer SignalCalc Quattro was
employed to acquire the excitation and response signals and was connected to a PC
Notebook. Each acquired signal lasted 4s and had 4096 points for the tests in S1, and 8s
with 8192 points for the tests in S2 (that means an acquisition ratio of 1024 points per
second), using in both cases five impacts in each test point so as to obtain average
Frequency Response Functions (FRFs) with minimized noise effects, as will be

explained later on.
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The choice of candidates for driving points (where the excitation or response
remained fixed) was priorly made using a simple numerical model (that also was used
for testing the mesh definition). For S2, for example, the five first modes had
frequencies of 18,24 Hz, 42,26 Hz, 75,72 Hz, 107,25 Hz and 127,92 Hz). In order to
confirm the frequencies, adjust the acquisition ratio and verify if the slabs were in the
linear-elastic state, several initial tests were performed. Such tests were of linearity,
repeatability and reciprocity (HERMEZ et al. 2012; RAO, 2012).

The purpose behind the linearity test is to verify if the relationship between
output response and input excitation is constant for a given frequency response function
(FRF). This means that the FRF does not depend on input magnitude, what can be
evaluated by performing several tests in the same point at different input levels. Then
the responses are overlapped to evaluate similarities between them. The reciprocity tests
verify if the waves from the excitation do not depend on the input location, and follow
the same transfer path. That was verified by applying the excitation at a point X and
measuring the response at a point Y and then reversing the configuration by swapping
between response and excitation points. An overlap of FRF is expected if the structure
is linear. The final verification, repeatability principle, as its name suggests, states that
identical samples tested within the same configuration should demonstrate an equal
structural behavior. This was made exciting a same point more than once and evaluating
if there was difference on the FRFs obtained. Through repeatibility tests it was observed
that there was convergence of the average FRF for five excitations (10 and 15
excitations were also tested). It was also noticed that there was an approximate

difference of up to 10%. Figure 14 illustrate a modal testing performed

37



Driving point

ERAY | ‘ (response)
= o
./ Excitation point

Figure 14 — lllustration of modal test in S1

Impact excitation

3.3.2. Static tests

Both slabs used the same load system to perform static load test, using three
metallic beams, two dividing the free span in three equal parts (positioned at 1/3 and 2/3
of slab’s main span) and the third beam along the central length line. Figures 15 to 17

shows the load application for both slabs.

FRONT!
SUPPORT

Figure 15 — Static load application in S1 (side view).
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Figure 16 — Static load application in S1 (superior view).

(@) (b)

Figure 17 — Static load system to induce cracking in S2 (a) superior view and (b) side view.

The deflection of slabs according to load level was also of interest. To do that,
two LVDT sensors were used above S2. Due to problems in one of the sensors, only
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LVDT number 1 was available for S2. The position of the sensors is shown in Figure 18
and Figure 19 shows the LVDTs in use.

s/
"/"6‘/6‘/7/@/?’/ V

Figure 18 — Distribution of LVDT sensors in S2
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Figure 19 — LVDT used on S2 to measure deflection during static load test
Considering that both slabs were subjected to the same loading configuration but
had different reinforcement ratios, the evolution and distribution of crack pattern was
also of interest. To follow the evolution with the increase of static load, the same
experimental mesh was marked under each slab and the cracks were painted using

different colors and line types, as illustrated in Figure 20 for S2.

-;::11

Figure 20 — Illustration of mesh marked under the S2 to follow crack evolution with static load increase.
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3.4. Data processing

Natural frequencies and mode shapes from both slabs were obtained using
StarModal software v5.3. A polynomial and least-squares complex exponential curve-
fitting algorithm is used for extracting the vibration parameters. After importing all
FRFs from the whole modal test into a model with nodes previously created and equal
to the experimental mesh used on each slab (as illustrated in Figures 21 and 22), the
resonant peak is identified using a frequency curve-fitting range that includes all the
measurements (as Figure 23 shows). The user defines the range and the number of
frequencies in a selected band around the peaks. This is then repeated for the other
frequencies. Frequencies and mode shapes are then obtained (Figures 24 and 25).

Figure 22 — Detail of FRFs of some points from S1 undamaged modal testing.
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Figure 23 — Band definition for the three initial frequencies (detail of band isolating the first natural
frequency).

Frequency Results

Frequency and Damping | Points | Shapes | MAC || Constraints

Mode | Freguency [Hz] | Damping [Hz] | Damping (3]

1 [16.5311 0.0345 057

2 |33.3466 1.3261 397
3 |GREe2 07553 1.30
Def | 0.0000 0.0000 0.00 w

Figure 24 — Example of results of modal properties from curve fitting
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b ode

1-16.59 w D amping:| 0.0345 Hz|0.57 x Scaling: | Residues

Faint | Dir 1 [Mag) Dir 1 [Phaze] Diir 2 [Mag] Diir 2 [Phaze] Diir 3 [Mag] Oir 3 [Phaze]
2 |0.0000e+000  0.00 0.0000e+000 0,00 34785
3 |0.0000e+000  0.00 0.0000e+000 0,00 41927e+000 34614
4 |0.0000e+000 0.00 0.0000e+000  0.00 29311e+000 349,50
5 | 0.0000e+000  0.00 0.0000e+000 0,00 31864e+000 35433
F |0.0000e+000  0.00 0.0000e+000 0,00 1.1220e+000 34329
7 |0.0000e+000  0.00 0.0000e+000 0,00 2.2385e+0001 35490
& | 0.0000e+000  0.00 0.0000e+000 0,00 24932e+000 35010
9 | 0.0000e+000  0.00 0.0000e+000 0,00 25138e+0001 350,20
10 | 0.0000e+000 Q.00 0.0000e+000 0,00 33497e+0001 34662
11 | 0.0000e+000 Q.00 0.0000e+000 0,00 3.2983e+000  348.07 w

Mode1: 1659 Hz

Figure 25 — Example of mode shape of the first natural frequency of S1 and its coordinates.

One of the results from modal testing is the angular coefficient of the signal
along the decay, what will be called in this dissertation “gradient” of frequency along
the decay. The responses in time domain were filtered, to isolate the component of
response at the fundamental natural frequency of the tested slab. The band-pass filter
employed was a basic application running in Matlab software. The isolation of the
frequency component of interest was carried out in the frequency domain after applying
a Fourier Transform to the time domain signal. An Inverse Fourier Transform returned
the filtered time domain signal, and frequency spectra of the original and filtered signals
were compared to assure the filtering procedure was successful. Then, the variation of
the fundamental frequency along the decay of the signal after impact was obtained for
each level of induced damage and is discussed in the results section. It should be
mentioned that not all the data acquired during the modal tests were employed; this is
just a general description of the whole test setup. Figure 26 shows a step-by-step

procedure of gradient obtainment.
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Figure 26 — Schematic representation of gradient obtainment.

From Figure 26 it can be seen that the filter applied is a vertical one used to
isolate the frequency of intertest and, as result, the variation of signal along time (Figure
26, step 4) have an initial perturbation the the initial cycles (in the example, two cycles),
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after what the sinal presents the expected decay. In other to investigate the influence of
the adopted filter, two experiments were performed. In the first one, the adopted filter is
applied on experimental data of an impact excitation and compared to Butterworth
filters of different orders. The results are shown in Figure 27 and, knowing that the
frequency band was from 16 Hz to 17 Hz, it is possible to observe that the original
signal and the signal obtained with the adopted filter have the same amplitude in the
frequency range of interest. The Butterworth filters had differenc in amplitude where,
the higher the order of the filter, the lower the amplitude.

10,0025

Driginal

?’ 0,0020 —sed filter
®
B
n? 0015 = Butierworth
.- finer 40th order
[<]
@
© 0,0010 e Butierworth
= fiter 20th order
-
5 0.0005

0,0000

15.40 15.60 15,80 16,00 16,20 16.40 16,60 16,80 17.00 17.20
Frequency (Hz)

Figure 27 — Filters comparison in frequency domain signal.

The second experiment consisted in obtaining the gradient of a sine sweep
signal, where the amplitude of a sine signal with 4096 points in four seconds had an
increase of 0,1 Hz in each cycle (approximately 60 points). Comparing the initial cycles
from the beginning (0.5 initial seconds) and the ending (0.5 final seconds), it is
observed that both Butterworth filter and the adopted filter have a delay of half cycle
but the adopted filter does not affect the amplitude of signal (Figures 28 and 29).

1.00
0,80 |
0.60
0.40
0,20
0,00
2 020"{°
§ 0,40
0,60
-0.80
1.00

~Original signal
-——Used filter
BT 40th

de of signal

Time (s)

Figure 28 — Signal delay of different filters from 0 to 0.5 seconds.
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Figure 29 — Signal delay from 3.5 to 4.00 seconds.

Time (s)

The next test was obtaining the gradient of signals. Due the nature of sine-
sweep signal, it is expected that the gradient have a linear behavior along the cycles.
Taking the ten inicial cycles and comparing the gradient obtained from different signals
(Figures 30 to 33), it is noticeable that the gradient of the original signal is equal to the
one after applying the adopted filter . For the Butterworth filter, higher order of the

filters produced gradients far from the ideal.

Original signal
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<
> 18 -
|~
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g
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Number of cycle

Figure 30 — Gradient obtained from original signal.
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Figure 31 — Gradient obtained from the used filter signal: same gradiant of original signal.
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Figure 32 — Gradient obtained from a 20" order Butterworth filter.
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Figure 33 — Gradient obtained from a 40" order Butterworth filter.
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Based on the tests made using different filters, it is possible to conclude that,
alghough the used filter adds delay to the filtered signal, this delay does not affect the
gradient obtainment. In addition, the adopted filter does not affect the signal amplitude.
Therefore, the adopted filter is adequate to the use made in this research.

3.5. Numerical modelling

Considering the dimensions, the support condition and the loads applied in both
slabs, the numerical model was made using the ANSYS software. The finite element
employed was one the library of elements of the software, named SHELLG63, a four
node element with bending and membrane capabilities, with six degree of freedom at
each node: translations in the nodal X, y, and z directions and rotations about the nodal

X, Y, and z-axes. The element is illustrated in Figure 34.

Figure 34 — Element SHELL62 (Source: ANSYS manual)

There were seventy-seven experimental nodes on S2 and, as it has a more dense
experimental mesh, it was chosen as reference for start the modeling. When the
numerical model was created, experimental nodes remained coincident to computer
model nodes, and additional nodes were created between every two real (ie,
experimental) nodes. In order to model the support conditions more properly, two
coincident (in position) nodes at each experimental node at the supports were used, one
restrained in all directions and the other (at the slab) free to move vertically. To connect
both nodes, a COMBIN14 element was used. COMBIN14 is a longitudinal spring-
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damper connected by two nodes with also torsion capabilities (that were not used), as
illustrated in Figure 35.
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Figure 35 — COMBIN14 element (Source: ANSY'S manual)

To define the spring constant of the support nodes, the results of modal testing
were employed. First, the mode shape of each natural frequency extracted from modal
testing were plotted in vector mode, as shown in Figure 36. The modal displacement of
each node along the support was obtained and divided by the maximum nodal value in
order to obtain a relative absolute value. The next step was the use linear interpolation
for the numerical nodes as shown in Figure 37. In the numerical model each node at the
support line has a spring-damper element COMBIN14 where the spring coefficient is
adjusted using the data from modal testing. An illustration of the slab with the
COMBIN14 elements used at the supports nodes is shown in Figure 38.

Mode 2 Mode 3

Mode 1 Mode 2 g:é‘ § Mode 3

Support line 0

o Support line

Figure 36 — Mode shape of each frequency (on top) and its correspondent vectorial form (bottom)
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Figure 37 — Modal displacement at support nodes used for COMBIN14 stiffness adjust.
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Figure 38 — Scheme of COMBINZ14 nodes used at support line.

Regarding the material properties, according to NBR 6118/2014 and ACI
318/95, the secant modulus of concrete (Esc) is related to the initial tangent modulus

(Ec) by two expressions
Esc = 0.85 * E ()
Esc = 4730,/f.x, MPa (5)
Combining equations (4) and (5), the result is:
E; = 5565,/f.x, MPa (6)

In Brazilian standard NBR 6118/2014, the coefficient of Equation (6) is 5600
(the value 5565 is used in ACI 318/95) and it was the expression used to calculate the

elastic module of concrete used in the numerical model (5600 as the coefficient). The
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elastic tangent modulus Ec is the tangent at the beginning of a stress-strain curve, as
shown in Figure 39. Similarly, the secant modulus of elasticity Esc represents the slope
of a line passing through the origin of the diagram and intercepting it at a stress of about
0.4 fc, where fc is the compression strength.
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Figure 39 — Stress-strain diagram of concrete

During modal testing, the Young’s module of concrete can increase until 40% as
a dynamic effect (Metha, 1994), this being confirmed by other authors (Alves et al,
2011). As a result, the initial Young’s module of each slab was calculated using
Equation 6 but was tested for values increasing until 40% of the value obtained from the
equation and the concrete streght used was the average resistance to compression f;
instead of f«. Furthermore, the spring constant of supports were tested for different
values but respecting the proportions of modal displacement from the tests, starting at
10° N/m2 until 1*° N/m2, the latter being an extreme value where there were no changes

in the three natural frequencies evaluated, meaning a rigid support condition.

By dividing the values of frequencies obtained from the numerical model by the
experimental ones (taken as reference values), the results for both slabs was surfaces of
adjustment with Young’s module and spring constant in X-Y plane and the ratio of
frequencies in Z plane. For each spring constant adjusted at the nodes of support line
(based in the first, second or third mode shapes) and respecting the proportions found
for that adjustment, a corresponding model was created and the three first frequencies
were obtained. Following the proportion of each adjustment, the spring constant of
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COMBIN14 element is evaluated for different values and for a fixed elastic module of
croncrete. The best adjust was in the line where the ratio was equal to 1, which means
that the experimental frequency was equal to the numerical one. The 3D surfaces and
their respective superior view for both slabs are shown in Figures 33 to 57. For S1, due
to small values of modal displacement of this mode along the support nodes, the
adjustment could not be done. For this slab, the best adjustment was obtained using the
second mode shape, the same being observed for S2. The best adjust in frequency was
also observed for the maximum value of elastic module (40% higher than the calculated
by Eq. 6). This adjustment of support conditions was made in both slabs for the
uncracked stage and the spring constants remained unchanged for the following load

levels.
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Figure 40 — S1 surface adjust of 1% natural frequency using 2" mode shape.
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Figure 41 — S1 surface adjust of 2" natural frequency using 2" mode shape.
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Figure 42 — S1 surface adjust of 3" natural frequency using 2" mode shape.
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Figure 45 — S1 surface adjust of 3" natural frequency using 2" mode shape.
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The adjusts seeking the best fitting considered two aspects: the difference of
frequency values and the mode shapes from the reference ones (that is, experimental
values). To evaluate the mode shape at the supports, the COMAC between the
numerical and experimental values were compared in order to first identify problematic
nodes (for which the experimental values did not seem reliable) and remove them from
data set. In Tables 3 and 4, it is possible to see that the COMAC had poor values for
node 73 considering the excitation at both driving points 18 and 62. After the final
verification, the spring constants of both slabs supports were considered to remain
constant until the collapse and the changes on frequency were obtained through changes
in the Young’s module of concrete. It must be mentioned that other support node
conditions are available in the literature, as shown in the research of Freitas (2019).

COMAC VALUES - S2 - EXCITATION AT POINT 62
NODE | COMAC NODE | COMAC
_ 1| 09686 71| 07643
l_

= 2| oss2| & 72| 04340

& Q 3] 06079 £ 73| 0,009

7 mla)

» 9 4] 05162 R8 74| 02603

2z 5| 06165 X2 75| 05950

& 6| 03141 < 76| 07701
7] 06232 77| 08521

Table 3 — COMAC values for S2 support nodes for excitation at node 62
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COMAC VALUES - S2 - EXCITATION AT POINT 18
NODE | COMAC NODE | COMAC

_ 1] 0633799 | 71| 0895816
x 2| o67302| o 72| 0737826
& Q 3| 022148 & & 73 0,05
» 9 4| 0515105| B8 74| 044449
ZZ 5| 0541705 | X2 75 | 0,285479
& 6| 0525643 < 76 | 0,802916

7] 082411 77| 0,930627

Table 4 — COMAC values for S2 support nodes for excitation at node 18

Once the spring constants of the support nodes were defined in each slab, the
next step was a choice of numerical mesh. For the definition of the final computer
model, an initial analysis was made evaluating the nodal displacement of both slabs for
unitary load lines in the same position of the experimental setup (1/3 and 2/3 of main
span). The comparison was made between the results from the numerical model with a
mesh identical to the experimental mesh and a refined version (where the number of
divisions in each edge was doubled). The displacement of nodes in the central line along
the width of the slab is shown in Figure 58 for S1 with a “experimental” mesh and
Figure 59 for S1 with a refined mesh.

Figure 58 — S1 experimental model in (a) CAD version and (b) numerical analysis software with unitary
load line and displacement measured at central node line (arrow highlights the central line).
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Figure 59 — S1 refined numerical model with unitary load line.

After model refinement, nodal displacements can be numerically evaluated to
compare their changes. Figures 60 and 61 shows equivalent nodes (from the top to
down direction). Comparing equivalent nodes from gross mesh to the refined mesh used
(for example, nodes 8 in gross to node 14 in refined, node 49 in gross mesh to node 199
in the refined), it it is observed the the maximum difference in displacement is less the
0.3%. Although the evaluation of the model adequacy could have been made using
experimental nodal displacements, there are some limitations. The first is that there are
a low number of LVDTSs available: only one was used in S1 and despite the fact that
two where used in S2, only one was in fact trustful in the tests. The second is that the
numerical model was created for an unloading situation while the real structures are
subjected to several loading and unloading stages. Based on these facts, the evaluation
of mesh refinement was based in frequencies and mode shapes (through MAC index),
as will be discussed later on. The evaluation of adequacy of the model based on
unloading condition for the loading condition is also discussed in results section.
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Gross mesh nodes

node number

uz displacement (m)

node number

Refined used mesh

uz displacement (m)

14

0,00053285

134

000052323

195

0,00051558

8

000053535

196

0,00050975

43

0,00051083

137

0,00050567

49

0,00050295

193

000050325

50

0,00051083

199

0,00050245

24

000053535

200

000050325

201

0,00050567

202

0,00050975

203

0,00051558

204

000052323

30

0,00053285

Figure 60 — S1 comparison of nodal displacement for unitary load line.

Gross mesh nodes

Refined used mesh

node number | uz displacement (m)

12

0,000212

164

0,00020484

node number | uz displacement (m)

165

0,00019933

7 0,00021336

0,00019526

53 0,0001999

000019246

54 0,00019247

0,00019083

55 0,0001301

00001903

56 0,00019247

0,00019083

57 0,0001999

0,00019246

23 0,00021336

000019526

0,00019933

Figure 61 — S2 comparison of nodal displacement for unitary load line.

3.6. Crack modelling

Both slabs were designed as beam strips subjected to four-point loads (Figure
62). In fact, as Slabs 1 and 2 are one-way slabs, the bending moment diagram in this
kind of structure is constant across the width of the element, what allows the design
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procedure to employ a beam strip of unit width, using the same formulas and procedures
for rectangular beams elements (Chen and Lui, 2004).

P2 P/2

SPAN |

L (m)
Figure 62 — Slab considered as simply supported beam.

The first visible crack in S1 appeared for the load of 8 kN while for S2 it
occurred at 15 KN. It is possible to evaluate the correspondence of the phenomenon with
the calculated cracking moment, which is the moment that causes the first crack to
appear. According to brazilian concrete design standard NBR 6118/2014, the cracking
moment of a concrete element is given by Equation 7:

Mcg = (a* fer x 1) /Y; (7

where «a is a factor that aproximately correlates concrete’s tension strength in bending to
direct tension strength. The value of « is 1.2 for T or double-T sections and 1.5 for
rectangular sections. The value fcr is the direct tension strength of concrete. For
excessive crack formation, according to NBR 6118/2014 standard:

2

o MPa (8)

fer = 0.21 %
I is the gross moment of inertia (reinforcement is neglected)
Yt is the distance from neutral axis to the most extreme fiber subjected to tension.
For both slabs:
Ig = (b*h°)/12 9)
Y; = (height of slab)/2 = 0.04m (10)

Making the inverse way it is possible to find the load P that generates the
cracking moment. Considering both rectangular sections (S1 having 1.35m x 0.08 m
and S2 having 1.65m x 0.08 m), the cracking moments of slabs 1 and 2 were equivalent
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to a load of, respectively, 7.69 kN and 13.62 kN. Considering that load tests, the first
cracks appeared at 8 kN for S1 and 15 kN for S2; it is, thus, in accordance to the
theoretical calculations.

In sequence, cracks produce changes in a section of concrete subjected to
bending, as shown in Figure 63.

M1 < |5 g LT‘> M:

M=

t
|
i
|
I
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|
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:
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™\
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Figure 63 — Cracking in a reinforced concrete element subjected to flexure (a) produce changes in (b)
bending moment distribution, (c) bond stress distribution, (d) concrete tensile stress distribution and (e)
flexural rigidity distribution. (Source: Park and Paulay, 1975)

Considering the flexural stiffness El, there is a reduction caused by cracking.
Based on ACI 318 and NBR 6118, the moment of inertia of a cracked section of
concrete (lcr) in a stage where the contribution of cracked concrete is not considered (as
shown in Figure 64) is:

b#x3

X 2 2
Icr 12 + b xx * (E) + Aegq * Asteel * (d - x) (11)

The position of neutral axis x is given by:

b
2 *x% + Aeg * Asteer ¥ X — Aeg * Asteer *d =0 (12)
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The value aeq converts concrete into steel by dividing the elastic module of both
materials (ceq = Eeteel /Esc, Where Eseel = 210 GPa according to NBR6118/2014 and Esc
comes from Equations 5 and 6). In Eqg. (11), x stands for the position of neutral axis
with respect to the top border of the section, and d is the distance between the center of
gravity of reinforcement and the compressed edge. According to ACI 318 and NBR
6118/2014, the following approximation gives reasonable results for the equivalent
moment of inertia of a cracked section as the applied moment increases:

leg = (522) + 1o+ [1 - (52

a

)3] * Icr < IG (13)

where Ma is the maximum service load moment (unfactored) in member at stage of
deflection is computed (the moment in the section at that stage of load) and Mcr is the
cracking moment. It can also be noticed that the equivalent moment of inertia leq is, at
most, equal to the gross moment of intertia. Calculating the equivalent moment of
intertia (that occurs after the section reaches the cracking moment) for both slabs and
dividing by the gross moment of inertia, a factor of stiffness reduction can be found.
The results are arranged in Table 5 for S1 and Table 6 for S2.

Gsteel
Gequivalent

Asteel

Figure 64 — Stress distribution in a concrete section in flexure with no contribution of concrete.

Load

(kN) (Mcr/Ma)® le (cm™4) le/lg
8 0,889678 5186,296 0,9004
16 0,111210 1138,030 0,1976
22 0,042779 782,172 0,1358
24 0,032951 731,062 0,1269

Table 5 — Ratio between moments of intertia for S1
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Load

(KN) (Mcr/Ma)3 le (cm™4) le/lg
15 0,742198 5467,241 | 0,7766
17 0,509855 4049,802 | 0,5753
18 0,412285 3454,564 | 0,4907
21 0,270480 2589,464 | 0,3678
24 0,181201 2044,802 | 0,2905
27 0,127263 1715,748 | 0,2437
42,5 0,032631 1138,430 | 0,1617
62,5 0,010260 1001,956 | 0,1423

Table 6 — Ratio between moments of intertia for S2

The ratios of moment of inertia confirms a decrease in stiffness due to cracking.
As both slabs are simply supported structures, that is, statically determined (isostatic),
the stiffness distribution keeps depending on load configuration even after reaching the
cracking moment, as can be seen on moment-curvature curve shown in Figure 65. It can
be concluded that there is a direct relationship between moment applied and curvature
of section and the link between them is the stifness EI which is the slope of this graph.
Based on this fact and considering that S2 presented a decrease in frequency until the
the level of 12 kN (before cracking moment was reached), a linear decrease of stiffness
is proposed, based on moment applied as shown in Figure 66. The moment distribution
has a trapezoid shape. As the moment applied increases from M1 to M., more regions
reach the cracking moment. For a line of finite elements at the same distance x from the
origin, the proportional stiffness reduction was the same. The ratio used to decrease the
stiffness considered the position of the element at that level of load and the quotient
between the moment generated by the applied load P and the ultimate load moment
(caused by a force of 62.5 kN). This modeling has already been tested for reinforced
concrete cracked beams by other authors as Castel et al (2012) or Xu et al (2018). As
the bending stiffness is the product of Young’s module E and moment of inertia I, the
reduction of stifness was made by penalising E. The model was initially considered
isotropic and then was evaluated considering an orthotropic aproach.
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Figure 65 — Moment-curvature curve for a reinforced concrete section.
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Figure 66 — Moment distribution for different levels of load.

Some visual indicators can corroborate the model adopted. For example, to the
collapsed slab it is expected that the moment of cracking started at 33 cm from the
support line. In an in-situ inspection it can be confirmed that this is the distance from
the center line of support to the closer visible crack, as shown in Figure 67.

70



Figure 67 — Visual crack in the bottom of S2.

Another fact that agrees with the initial consideration of linear material is that, as
shown in Equation 1, there is a direct relationship between frequency and stiffness,
which is related to the load applied. Ploting frequency against square-root of load
applied in Figure 68, it can be seen that there is a linear relation until 12 kN, followed
by a change of slope in the next load level because the cracking moment was reached.

Slab 2 experimental frequency versus square root of load

12 kN

R

Experimental frequency (Hz)
e I S )
NWwh NSO %O D

=
_—

2 3 4

Square root of load (kN)

18 kN

Load (kN) Load”(1/2) | Experimental
(kN) Frequency
0 0 19,06
3 1,73205081 18,81
6 2,44948574 18,77
9 3 18,7
12 3,46410162 18,68
15 387298335 16,62
18 | 4,24268069 14,02
21 458257569 15,15
24 4,89897949 14,15
27 5,19615242 14,62
5 6

Figure 68 — Frequency versus square-root of load for S2

In addition to the reduction of inertia for the region that overcome the cracking
moment, the presence of a visible crack also produces local stiffness reduction.
Christides and Barr (1984) considered the effect of a crack in a continuous beam and
calculated the stiffness, El, for a rectangular beam adopting an exponential function

given by

EI(x) = (Elp)/(1 + C * e(—2aly — yj|/h))

(14)

where C = (lo - l¢j)/l¢j, lo = w*h¥/12 and I¢j = w(h- hc;)3/12 are the second moment of
areas of the undamaged beam and at the jth crack, w and h are the width and depth of
the undamaged beam, and hg; is the crack depth. y is the position along the beam and vy;
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the position of the crack; finally, « is a constant that Christides and Barr estimated from
experiments to be 0.667. Sinha et al (2002) used a simplified approach, where the
stiffness reduction of Christides and Barr (1984) was approximated by a triangular
reduction in stiffness. It should be mentioned that, based in this model of crack, nearby
cracks causes superposition of stiffness loss. This approach was tested by Friswell and
Penny (2002) for different crack depths in numerical modeling using the models of
Sinha et al. (2002) and Christides and Barr (1984) and the crack effects of both models
are illustrated in Figure 69. The squares represents the ares of influence of a crack
where the peak of stifnness loss is located in the exact position of the crack. It is
important to mention that a superposition of stiffness loss can happen for cracks close to
other cracks.

w N\
3 Crack model of Sinha et al (2002)
g Crack  Crack Crack
& Eb
- V V V
0
[ Fi-
o
c
o Crack model of Christides and Barr (1984)
E Crack  Crack Crack
 Eb ~
S v’ v
~N

Position (x)
Figure 69 — Variation of stiffness using approaches of Christides and Barr (1984) (curved line)
and Sinha et al (2002) (straight line) for crack depth of (a) 5% and (b) 25%.

For both slabs, two main models were used:

e In the named “Model 17, for the region reaching crack moment of inertia,
the elastic module was reduced through a factor obtained by the ratio of
equivalent moment of intertia (leq in Equation 13) and the gross moment
of inertia (g where the section was considered composed only by
concrete and uncracked). As the load level increases, the reduction
factors produded higher decrease of stiffness and more regions reaches
cracking moment;

e In the named “Model 2, for the elements that contained cracks, an initial
reduction of 0.85 was used to consider the local stiffness reduction
caused by a crack with 5% depth based in Christides and Barr (1984),
increasing this loss for higher load levels. This initial consideration of
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crack deepness was made since no experimental measurement was

available.
For “Model 2”, based on Christides and Barr (1984) and Sinha et al (2002), the
area of incluence of new cracks was set as three times the slab thickness (3*8cm = 24
cm) for both slabs. Since no information about the crack’s depth was available, they
were initially set as 5% of slab height (4.2 mm). The older the crack, the more intense
was the local loss. Additionally, the elements with new cracks (for a given level of load)
and already containing cracks of previous load levels had an additional loss of sitffness.
In fact, for the load level of 15 kN in S2, for example, not only the first crack appeared
because the moment of cracking was exceeded but also edge crack reaching more than

half the slab thickness also appeared, as shown in Figure 70.

Figure 70 — Lateral cracks on S2 for different load levels.

For both models mentioned above, two constitutive relations were used: an
isotropic and an orthotropic model. In a linear regime, the shear modulus of concrete is
given by Equation 15, which was used in the isotropic model. In the isotropic model,

the reduction of stiffness was the same in both directions.

G(xy) = (Ex)/2(1 +v) (15)

When the element used was orthotropic, due to the direction of cracks, the
elastic modulus in x-direction was penalized in order to simulate a stiffness reduction,
which was reduced only in the direction along the main span. The shear modulus of

orthotropic linear material is given by Equation 16:
G(xy) = (Ex<E))/(Ex +E, +2*Vv*E,)) (16)
In order to illustrate the decrease of elastic modulus based on the distribution of

moment at each stage of load, the position of the element and the final moment (at the
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collapse load), Figure 71 shows a scheme of the adopted method. The reductions are
made over the initial elastic module Ebeginning described in section 3.5. It can be seen
that the higher the load level and the closer to the load line, the higher the elastic
module decrease (what implies in stiffness “EI” reduction”). This method of reduction
was used in Model 1 for the elements that did not reach the cracking moment and in
Model 2 in the elements that did not show visible cracks. A basic fluxogram of the

whole process os slab testing and modeling is shown in Figure 72.

E1 = (1-mmax*1/(7*mfinal))* Esegmmns P/2
E2 = (1-mmax*2/(7*mfinal))*Eseginning

oy VI " Maximum
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\/ line of elements
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Figure 71 — Stiffness El reduction based on moment distribution and element position.

74



Impact excitation

(a) Modal testing (b) Static load application

V1Y
W

(c) Modal data processing (d) Numerical model is built
Figure 72 — Scheme of slabs testing and modeling.

4.RESULTS AND DISCUSSION

4.1. Static Load
a) S1

For S1, three load levels were used: 8 kN, 16 kN, 22 kN, that represented 33,33%,
66,67% and 91,67% of the collapse load, the latter being 24 kN. Although both slabs
used the same loading system (beams at 1/3 and 2/3 of main span) and the measurement
of displacement was made for all loading and unloading stages, measurements were

made writing manually some points just for loading, what makes an evaluation of load

versus displacement unable for S1.

b) S2

For S2, ten load stages were used in order to evaluate slab behavior about modal
properties and cracking pattern. The stages were 3 kN, 6 kN, 9 kN, 12 kN, 15 kN, 18
kN, 21 kN, 24 kN, 27 kN and 42.5 kN, and the collapse was reached for a load of 62.5
kN. The displacement versus load is shown in Figure 74. An initial horizontal step is
observed before deflection starts and it can be caused by an accommodation of the

loading beams used for testing (the interface between loading beams and slab was filled
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with plaster) or caused by an equipment error. For instance, for load level of 24 kN the
graph shows that deflection starts only after 21 kN load level, what means that the data
for this level is no longer trustworthy. For S2 the first visible crack began at the stage of
15 kN and this is the first loading level after cracking moment is reached, what can be
observed in the change of loading slope shown in Figure 77. The changes in slopes at

loading curves will be discussed later on.
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Figure 73 — Displacement of S2 along load.
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Figure 74 — Displacement of S2 along 15 kN load stage.
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4.2. Impact tests on slabs

4.2.1. Evaluating sources of error

Prior to signal processing in time domain (particularly for evaluation of
frequency along decay), it is important to have accuracy in determining the natural
frequency in each vibration cycle. From the acquisition rate of 1/1024 s (1024 Hz) used
in both slabs, one may think that the error in time domain are of aproximately +/-
0.001s. For the second slab, in special, the reduction in natural frequencies is related to
a change in period of vibration around the error range previously mentioned. For S2, for
example, the first experimental frequency is f1 = 19.06 Hz, meaning a period of t;=
0.05246 s for the undamaged state. When the error is added (+/- 0.001s), the frequency
range from the error is (18.70 Hz; 19.43 Hz), meaning a difference of +/- 0.37 Hz.

In fact, the error in frequency is lower than the one previously mentioned. To
evaluate it, a simple and undamped system ruled by and harmonic function will

represent S2 vibrating in one of its modes, as shown in Equation 17:

X (t) = A * sin(wyt) a7

where Ag is the amplitude of movement, wo is the angular frequency and t is the time.

Consider, for instance, that this system has the same amplitude of a signal in
time domain used for gradient obtainment in S2 (for instance, with a value of 0.02 V),
and the same frequency f1 =19.06 Hz of the first mode (which means that wo = 2* z* f1
= 119.697 rad/s). Plotting the graph of Equation 17 and making an interpolation
between two consecutive points, as shown in Figure 75, the time At can be obtained.
The time 4t is the difference between two consecutive points of the discrete time
domain signal, the actual one and the interpolated, as shown in Figure 76. The
maximum error that can occur when evaluating the period of the vibration cycle is twice
At (at the beginning and the end of sine curve). In the most unfavourable situation,
At=9.3578e-6 from the interpolation shown in Figure 76, and the maximum error is t =

2*At, which is not significant.
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Figure 75 — Harmonic undamped system plot.
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Figure 76 — Detail of maximum possible error.

Another possible source of error is the level of noise at which the structure is
subjected. As can be seen in Figure 77 for S2 for the spectrum obtained by considering
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the ambient excitation sources only, the noise level is significantly lower than the

produced by an impact excitation, meaning that it it is negligible

Slab 2 - Noise level
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Figure 77 — Noise level in S2 at point 18.

4.2.2. Results from modal testing

As mentioned in the previous section, repeatability, reciprocity and linearity
tests were performed in order to follow the behavior of slabs as damage increased (the
result of a cracking process). The results of repeatability tests for S1 were processed by
Guedes (2016) and are shown in Figures 78 to 85. Linearity tests indicate that, for
increasing damage levels, less agreement is observed at the same excitation point. As
the structure cracks, the opening and closing of the crack makes excitation at different

nodes in reciprocity test excites much one frequency than other.
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Figure 78 — Reciprocity test for S1 in 0 kN load level. (Guedes, 2016)
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Figure 79 — Reciprocity test for S1 in 8 kN load level. (Guedes, 2016)
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Figure 80 — Reciprocity test for S1 in 16 kN load level. (Guedes, 2016)
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Figure 81 — Reciprocity test for S1 in 22 kN load level. (Guedes, 2016)

The results of linearity test in S1 (Figures 82 to 85) shows that, for increasing
load levels, stronger impact excitations produced shift in frequency in comparison to

normal impact excitation, an indicator of change in linear behavior.
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Slab 1 - Linearity test - 0 kN load
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Figure 82 — Linearity test of S1 for undamaged state. (Guedes, 2016)
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Figure 83 — Linearity test of S1 for loading level of 8 kN. (Guedes, 2016)
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Figure 84 — Linearity test of S1 for loading level of 16 kN. (Guedes, 2016)
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Figure 85 — Linearity test of S1 for loading level of 22 kN. (Guedes, 2016)

The test of repeatability of S2 for the undamaged (0 kN) state shows good
agreement in the peaks of frequency of interest (the three initial peaks), what is an
indicator of linear behavior for the undamaged structure, as shown in Figure 86 for one
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of the driving points. As for the reciprocity test, it could be noticed that the
supperposition of FRFs tends to decrease with the increase of load level, as shown in
Figures 87 to 95. In agreement to the repetability test made in the undamaged structure
(Figure 86), the reciprocity for the same load level of 0 kN shows supperposition in the
peaks of frequency (Figure 87). When load level increases, the magnitude of the signal
in the peaks change (Figures 89 to 95), in agreement to a reduction of stiffness due to
cracking process. It is also noticed in the reciprotity test that the impact at different
points produce different peaks of frequency as the damage increase. For load of 18 kN,
for example, the excitation at node 18 excites more the first and third modes while the

excitation at node 62 excites more the second mode.

0.03 1 Slab 2 - Repeatability test - 0 kN load level
’>\ 0.03 ~ | st excitation
~ impact at point 62,
_g 0.02 response at point 62
= —2nd excitation
_- . impact at point 62,
g‘“-()- response at point 62
«
= 001
=
=
@ 0,01

0,00 - \

0 10 20 30 40 50 60 70 80
Frequency (Hz)

Figure 86 — Repeatability of S2 for 0 kN load level.
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Figure 87 — Reciprocity test of S2 for 0 kN load level.
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Figure 88 — Reciprocity test of S2 for 9 kN load level.
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Figure 89 — Reciprocity test of S2 for 12 kN load level.
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Figure 90 — Reciprocity test of S2 for 15 kN load level.
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Figure 91 — Reciprocity test of S2 for 18 kN load level.
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Figure 92 — Reciprocity test of S2 for 21 kN load level.
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Figure 93 — Reciprocity test of S2 for 24 kN load level..
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Figure 94 — Reciprocity test of S2 for 27 kN load level.
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Figure 95 — Reciprocity test of S2 for 42.5 kN load level.

For linearity tests, it could be observed that an agreement at peaks of frequencies

remained as damage increased but between peaks the divergence remained (Figures 96

to 98). For S2, linearity test showed that there was a better superposition of the signals

in comparison to S1 (superposition in magnitude and frequency), while S1 had different

peak magnitude and frequency shift.
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Figure 96 — Linearity test of S2 for 15 kN load level.
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Figure 97 — Linearity test of S2 for 18 kN load level.
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Figure 98 — Linearity test of S2 for 42.5 kN load level.
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After the whole modal testing, the frequencies of interest were obtained. The

three initial natural frequencies are listed in Tables 7 and 8. The results shown in Table

7 were initially obtained by Guedes (2016) but an incorrect frequency value was

detected after data reprocessing, so Table 7 presents the correct values. In both slabs,

the first and third experimental frequencies were the first and second of bending,

respectively. The second experimental mode was the first torsional. This can be seen in

Figures 99 and 100.
S1 - Evolution of frequencies to load level
Frequency LOAD LEVEL (kN
Mode (kN)
(experimental) 0 8 16 22 24
1st 16.60 15.92 11.58 11.13 "
%]
o
2nd 33.36 31.17 32.44 32.46 §
8
3rd 58.63 55.53 49.33 47.87
Table 7 — Evolution of natural frequencies in S1 from modal testing
S2 - Evolution of frequencies to load level (driving point 18)
Frequency LOAD LEVEL (kN)
(expxi?;fntal) 0 3 6 9 12 15 18 21 24 27 | 42,5 | 625
1st 19,06 | 18,81 | 18,77 | 18,70 | 18,68 | 16,62 | 14,02 | 15,15 | 14,15 | 14,62 | 15,22 'jf
<
2nd 33,25 32,37 | 31,98 | 32,46 | 31,63 | 30,26 | 29,87 | 28,33 | 36,03 | 29,06 | 28,29 -
@)
3rd 43,92 | 43,50 | 43,32 | 42,74 | 42,69 | 42,50 | 39,72 | 38,32 | 40,57 | 36,97 | 37,58 o

Table 8 — Evolution of natural frequencies in S2 from modal testing

Figure 99 — Mode shapes of S1 for OkN load level.
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Figure 100 — Mode shapes of S2 for OkN load level.

4.2.3. Cracking and natural frequency

The pattern of cracking for both slabs are shown in Figures 101 and 102, until
near or at the collapse. In order to compare both slabs, the same applied load levels were
adopted. A difference is observed in the crack intensity in early load levels (33% of
collapse load), in which S2 showed a much severe crack rise. Both slabs S1 and S2 have
transverse reinforcement, but with different ratio. As explained by Pillai and Menon
(2005), while beams on bending moments tend to deform to a trapezoid (as
exaggeratedly shown in Figura 103-a) due to Poisson effect (so the hypothesis of plane
section is not strictly right), one-way slabs are restrained laterally, what generates
secondary moments that are resisted by transverse reinforcement, as shown in Figure
103-b. The difference in the ratio used in both elements can be a cause for the difference
in the cracking pattern. Change on reinforcement is a factor that can cause variation in
cracking pattern. Han (2011) evaluated the influence of transverse reinforcement
spacing on the cracking behavior in slab strips through a proposed model and compared
it to the values predicted by standard DIN1045. Other evaluation of transverse
reinforcement spacing effects on cracks in one-way and two-way slabs can be found in
Han et al (2011). Gurutzeaga et al (2015) evaluated the influence of the bottom
transverse reinforcement and longitudinal bar spacing in one-way slabs and beams
subjected to shear and concluded that slabs with a large longitudinal bar spacing show a
less rigid load-deformation behaviour.
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The fundamental natural frequencies of uncracked and cracked slabs are shown in
Figure 104 as a function of the percentage of collapse load, and thus, the crack level.
There is a decrease in the first natural frequency of S1, as observed in several tested RC
elements (Pesic et al., 2015). The behaviour of S2 is similar to S1 up to 40% of collapse
load; after that, it showed an almost steady value of natural frequency until 70% of
collapse load. It was not possible to carry on measurements at high levels of load for
this slab due to a testing problem. However, since cracking reduces the stiffness of the
slab and thus its natural frequency, it can be seen that the changes of natural frequency
in each slab are consistent with its respective cracking pattern. This is because the
cracking intensity is much higher in S2 than in S1 for low percentage levels of applied
load. S2 also has a variation of natural frequency to damage that resembles the
behaviour observed in Hamad et al. (2014), in which the fundamental natural frequency
stabilized after 60% of collapse load.
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Figure 104 — Natural frequency versus percentage of ultimate load

4.2.4. Gradient of natural frequency

Natural frequencies grew along the decay of response after impact excitation, as
the cracks initially opened tend to close with the reduction of vibration level. This made
it possible to obtain curves of variation of natural frequency along the decay. For a
given modal test, since the level of vibration differed among different test points, first
each response signal had a decay interval selected for further processing, in order to
keep constant the amplitude of the first cycle of vibration among the signals. In
sequence, the natural frequency was calculated for each vibration cycle; a curve was
then obtained when plotting the natural frequency against the cycle number. Linear

regression was then applied, and a gradient was obtained from the curve. This procedure
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was repeated for several test points in each cracking stage, and then an average
regression line was produced for that stage of induced cracking. Finally, in order to
better compare frequency regression lines from different cracking conditions, each
average regression line was replotted employing relative frequency values, which were
obtained by taking the ratio of the instantaneous natural frequency and the maximum
natural frequency observed in that respective regression line. The value of the gradient
of each final average regression line representative of a cracking condition was
calculated and plotted in Figure 105, against the percentage of ultimate load applied to
induce cracking in the respective slab.
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Figure 105 — Gradient of frequency regression lines versus percentage of ultimate load

The pattern of changes of the gradient in S2 is in accordance with results obtained
for beams tested in similar conditions by Neild et al. (2003) and Wang et al. (2012),
who observed that the gradient grew until an intermediate level of damage and then
decreased. Herein, the growth of the gradient occurred for S2 until 33% of collapse
load, and then reduced for the following load levels. However, for S1, there is growth of
the gradient until near the collapse. A possible explanation for this difference would be
a distinct balance between the existing breathing and open cracks in both slabs for a
given percentage of collapse load, reminding that it is the breathing crack that causes
the variation of natural frequency along the decay. Still regarding this, it could be
argued that that amplitude dependent material behaviour would lead to changes in

natural frequencies along the decay, independent of the cracking condition and even for
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the uncracked state. This was already investigated (Pimentel et al., 2017) and it was
shown that the gradient of time-frequency curves due to damage could be distinguished
from other causes related to nonlinear behaviour of the tested slabs.

Reinforced concrete slabs can present a residual deflection after unloading and
some of the cracks remain open, as noticed by Mahowald et al. (2010) in reinforced
concrete slabs. However, it was not possible to quantify the number of open and
breathing cracks for each cracking stage. On the other hand, a clue regarding the
cracking behaviour could be made by plotting the total length of existing cracks versus
the percentage of collapse load. This is shown in Figure 106 and it is possible to notice
a difference in the behavior of the crack opening rate between the two slabs, from the
slope of the curves. While S1 shows increasing slope (that is, crack rate) with damage
level, S2 shows a decrease in crack rate. A probable cause of this difference in crack
rate is that the S2 had more cracks for a lower percentage of collapse load when
compared to S1. This can be visually confirmed (Figs. 101 and 102) from the different
crack evolution pattern in both slabs. By considering that old cracks are wider than new
cracks, the former tended to be of the open type, as opposite to new cracks that tended
to be more of the breathing type. This way, S2 would have a greater incidence of open
cracks for higher cracking levels than S1. This leads to a difference in nonlinear
behavior between the two slabs, implying different behavior of the gradients of
frequency, as seen in Figure 98. It should be noted that the behaviour of the gradient
depicted in Figure 105 is consistent with the difference in cracking evolution between

the two slabs shown in Figure 106.
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Figure 106 — Cracking evolution in S2 for (a) 33,6%, (b) 68% and (c) ultimate load
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4.2.5. Gradient versus global damage index

It is possible to relate the gradient of the frequency-decay curves and a global
damage index based on the variation of the fundamental natural frequency. Rodriguez-
Gomes and Cakmak (1990) proposed a damage index based on the relationship between
the changes of natural frequency at the beginning and ending of the decay. Pimentel et
al. (2017) introduced a modification of this index (DIm), shown in Equation 18, to make
a comparison of the structural condition when cracked with its respective uncracked
stage, by adopting the initial natural frequency w, for the undamaged state, and the final
natural frequency wn as the natural frequency of damaged stage. These frequencies
where obtained from processing the signals for each load stage, using StarModal

software.
DIy =1 - (Z)? (18)
Wo

The plot between the damage index DIy and the gradient for both slabs is shown
in Figure 107. While the index grows steadily with the increase of damage level for S1,
the pattern on S2 is similar to S1 until a certain load level (corresponding to 33.6% of
the collapse load), and after that the damage index stabilizes. Since natural frequencies
did not show expressive change in S2 for higher levels of damage, there is no
significant changes of its damage index, as expected, while the same natural frequencies
decrease until the last load level for S1. On the other hand, for initial damage levels, the
curves obtained for both slabs are very similar until a damage index DIy around 0.3,
what implies that both slabs had reduction of the frequency with the load level until this

damage index value.
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Figure 107 — Dim versus gradient for slabs 1 and 2

4.3. Numerical modeling: evaluation of numerical mesh

0,15

It can be argued the effect of the chosen mesh on MAC calculation since there is
a direct relationship of both (Chen, Zhao and Makurat, 2000; Nefske and Sung, 1996).

To investigate the effect of the mesh used in comparison to the experimental (gross)

mesh, a new model was tested, were both frequencies and MAC were compared with

the experimental data. In the new model named “R” (refined), each previous element of

the current FE model was divided into 9 smaller elements. The results are shown in

tables 9 to 12. In both slabs there is a numerical stabilization comparing the used mesh

(U) to the refined mesh (R). For S1 the first frequency shows a decrease in the first

frequency when the mesh is refined while the second and third frequencies remain

stable. MAC values are not affected by refinement.

Load

level

(kN)
0

1st Frequency

2nd Frequenc)

M.A.

(Hz) |E(Hz) U (Hz) R (Hz)
16.60 [ 15.12] 16,00|15,56

M.A.
._(Hz)
33,36

E (H2)|U (Hz)| R (Hz)
35,18|37,96| 37,96

M.A

(Hz)
58,63

E (Hz) U (Hz)| R (Hz) |
46,22 5147 51,43 |

LEGEND

M.A. = modal analysis

N = numeric

o
w
L)

=

E = experimental mesh

U = used

R =refined mesh

Table 9 — Comparison of frequencies of different model refinements for S1
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Load MAC 1st Frequency MAC 2nd Frequency MAC J3rd Frequency
level
E U R E U R E ) R
(KN)
0 0,959 | 0,966 0,566 0,520 | 0,518 | 0,518 | 0,733 | 0,810 | 0,796
E = experimental mesh U = used
LEGEND
R =refined mesh
Table 10 — Comparison of MAC of different model refinements for S1
Load 1st Frequency 2nd Frequency 3rd Frequency
level MA. MA. M.A.
{(kN) (Hz) |E (Hz)|U {Hz)|R {(Hz)| (Hz) |E (Hz)|U (Hz)| R(Hz) | (Hz) |E (Hz)|U (Hz)| R (Hz)
0 19,06 |16,39 (1924192433 25|27 52|32 27| 3226 |4392|36,11]46,29| 46 27
M.A. = modal analysis| < E = experimental mesh U =used
LEGEND W
N = numeric = R = refined mesh
Table 11 — Comparison of frequencies of different model refinements for S2
Load MAC 1st Frequency MAC 2nd Frequency MAC 3rd Frequency
level E U R E U R E u R
(kN)
0 0,903 | 0,936 0,936 0852 | 0895 | 0895 | 0,594 | 0615 | 0.B15
E = experimental mesh U = used
LEGEMND
R =refined mesh

Table 12 — Comparison of MAC of different model refinements for S2

In the case of the cracked slabs, the effect of meshing refinement can be

demonstrated in Figure 108, considering three adjacent elements in a slab with a crack

in the center of the middle element. The area of influence of a crack, coming from its

center, reach an area of three times the height of the slab (Figure 108-a). With

refinement of mesh, the elements in the neighborhood of the element with crack can

have a more realistic stifness variation based in Christides and Bar (1984) or Sinha
(2002) models, as shown in Figure 108-b.
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Figure 108 — Effect of mesh refinement in the use of stiffnes reduction rules

It must be mentioned that the used mesh was also tested for a load level with
cracks and presented good results in frequency and mode shapes (through MAC
indicator), what implies in an adequation of the adopted mesh.

4.4. Results from numerical modeling

For both the isotropic and orthotropic versions of Models 1 and 2, the
frequencies, mode shapes and nodal displacement are obtained and compared with the
experimental data. Reminding that in Model 1 the stiffness reduction was made based
on the cracking moment and in Model 2 the stiffness reduction was made in the
elements presenting cracks and the area of influence of these cracks. The first three
frequencies were evaluated in both slabs, which were the first and third ones
corresponding to the first and second modes in flexure, respectively, and the second
frequency corresponding to the first torsional mode shape. Tables 13 to 18 shows the
resulting frequencies obtained in both models for the two slabs. In the column named
“% diff” it is shown the percentage of difference in frequency of that model to the
reference value (experimental data). The frequencies of 0 kN are the same for Models 1
and 2 (isotropic and orthotropic) in both slabs because both considers the presence of
load: Model 1 starts being applied after the cracking is reached (before this moment is
achieved the stiffness reduction based on moment distribution is used, as illustrated in
Figure 71) and Model 2 starts being applied for the first load level (8 kN in S1 and 15
KN in S2). It must be mentioned that the rule of trapezoid distribution of moment
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(shown in Figure 71) remained in use for both models in the elements that did not reach

the cracking moment (Model 1) or did not show visible cracks (Model 2). In S2 there

was a frequency reduction until the first visible crack was seen and, to compute this

decrease, the elastic module decrease (as Figure 70 shows) was applied in all the

elements and remained in use even in the next load levels for the elements that did not

show visible cracks. For Model 2, the same happened for the elements that did not have

visible cracks or were not in the area of influence of a crack.

S1
Model 2 (Christides and Barr
Load Experimental Model 1 (ACI) (
z| ‘tevel results (Hz) (1984))
[8)
s (kN) ISO | % diff | ORTHO | % diff | ISO % diff | ORTHO | % diff
§- 0 16,600 15,57 | 6,23 | 15,57 | 6,23 | 15,57 | 6,23 15,57 | 6,23
E 8 15,920 12,97 | 18,51 | 12,78 | 19,74 | 13,62 | 14,43 | 13,58 | 14,72
A 16 11,580 492 | 57,50 | 482 |5840| 11,95 | -3,23 | 11,87 | -2,51
22 11,130 4,05 63,61 | 2,11 |81,08| 10,34 | 7,11 10,24 | 8,01
Table 13 — First frequency in S1 for the two models
S1
Model 2 (Christides and Barr
Load Experimental Model 1 (ACl) (Christi
Level results (Hz) (1984)
E; (kN) ISO | % diff | ORTHO | % diff | ISO | % diff | ORTHO | % diff
(] - -
> - -
s 0 33,360 37,97 13,81 37,97 13,81 37,97 | -13,81 | 37,97 13,81
(7' - -
° - -
2 8 31,170 36,24 16,27 37,00 18,70 36,39 | -16,75 | 37,12 19,10
16 32,440 24,76 | 23,66 | 24,21 | 25,36 | 34,82 | -7,34 36,25 | -11,75
22 32,460 15,68 | 51,69 | 11,97 | 63,13 | 33,43 | -3,00 35,36 -8,93
Table 14 — Second frequency in S1 for the two models
S1
Model 2 (Christides and Barr
Load Experimental Model 1 (ACI) (
g | Level results (Hz) (1984))
S| (kN) ISO % diff | ORTHO | % diff ISO % diff | ORTHO | % diff
=]
54 0 58,630 51,475 | 12,204 | 51,475 | 12,204 | 51,475 | 12,204 | 51,475 | 12,204
_"E 8 55,530 47,420 | 14,605 | 47,999 | 13,562 | 47,743 | 14,023 | 47,578 | 14,320
o 16 49,660 28,055 | 43,506 | 31,626 | 36,315 | 43,893 | 11,613 | 43,596 | 12,211
22 47,870 23,403 | 51,111 | 23,123 | 51,696 | 40,411 | 15,582 | 40,019 | 16,401

Table 15 — Third frequency in S1 for the two models
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Load ‘ Model 1 (ACI) Model 2 (Christides and Barr
Level Experimental _ . (1984))
k) | resuits 2 eg di/‘;f ORTHO di/‘;f ISO | %diff | ORTHO | % diff
0 19,06 19,24 | -0,94 19,24 | -0,94 | 19,24 | -0,94 19,24 -0,94
- 3 18,81 19,01 | -1,05 19,00 | -1,00 | 19,01 | -1,05 19,01 -1,05
g 6 18,77 18,76 | 0,07 18,74 0,17 | 18,76 0,07 18,76 0,07
Z’-; 9 18,70 18,49 | 1,12 | 18,46 | 1,27 | 18,49 | 1,12 | 18,49 | 1,12
L 12 18,68 18,21 | 2,54 | 18,17 | 2,74 | 1821 | 2,54 | 1821 | 2,54
“ 15 16,62 17,00 | -2,26 16,90 | -1,67 | 17,37 | -4,49 17,35 4,39
18 14,02 14,95 | -6,63 14,77 -5,34 | 16,33 | -16,50 16,35 16,60
21 15,15 14,84 | 2,05 14,64 3,39 | 15,89 | -4,90 15,44 1,88
24 14,15 12,34 | 12,79 | 12,07 | 14,71 | 15,36 | -8,52 15,32 8,29
27 14,65 11,24 | 23,27 | 10,87 | 25,82 | 14,61 0,26 14,58 -0,46
42,5 15,22 9,12 | 40,09 8,96 41,16 | 13,70 | 10,00 13,71 -9,95

Table 16 — First frequency in S2 for the two models

Load ‘ Model 1 (ACI) Model 2 (Christides and Barr
Level Experimental _ . (1984))
k) | resuits 2 eg dﬁf ORTHO dﬁf ISO | %diff | ORTHO | % diff
0 33,25 32,27 | 2,95 | 32,27 | 2,95 | 32,27 | 2,95 | 32,27 | 2,95
> 3 32,37 32,41 | -0,14 | 32,18 0,57 | 32,41 | -0,14 32,18 0,57
::: 6 31,98 32,01 | -0,08 | 32,09 -0,35 | 32,01 | -0,08 32,09 -0,35
§' 9 32,46 31,86 | 1,85 32,00 1,42 | 31,86 | 1,85 32,00 1,42
_'-c'; 12 31,63 31,71 | -0,25 | 31,90 | -0,84 | 31,71 | -0,25 31,90 -0,84
S 15 30,26 31,42 | -3,82 | 31,65 -4,60 | 31,43 | -3,87 31,73 4,84
18 29,87 30,62 | -2,52 | 31,09 -4,08 | 31,10 | 4,10 31,43 5,23
21 28,33 30,52 | -7,73 | 31,04 | -9,56 | 30,77 | -8,62 31,20 10,13
24 36,03 29,56 | 17,97 | 30,40 | 15,62 | 30,36 | 15,73 30,94 -14,12
27 29,06 28,68 | 1,30 29,71 -2,24 | 29,94 | -3,03 30,68 5,57
42,5 28,29 26,15 | 7,58 28,18 0,39 | 29,61 | -4,68 30,25 6,94

Table 17 — Second frequency in S2 for the two models
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Load Experimental Model 1 (ACI) Model 2 (Christides and Barr
Level (1984))
(kn) | results (M2 THes T it | ORTHO | % diff | 1SO | %diff | ORTHO | % diff
0 43,92 46,29 | -5,40 | 4629 | -540 | 46,29 | -540 | 46,29 | -5,40
3 43,50 | 46,13 | -6,03 | 46,14 | -6,06 | 46,13 | -6,03 | 46,14 | -6,06
| e 43,32 45,95 | -6,07 | 4598 | -6,13 | 4595 | -6,07 | 4598 | -6,13
gl o 42,74 | 45,76 | -7,07 | 4580 | -7,16 | 45,76 | -7,07 | 4580 | -7,16
3 1 42,69 45,56 | -6,72 | 4561 | -6,84 | 4556 | -6,72 | 4561 | -6,84
£l 15 42,50 | 44,97 | -5,80 | 4503 | -596 | 45,17 | -6,28 | 4521 | 6,39
el
& | 18 39,72 BIL| joog | 9377 | 1500 | 4456 | 1218 | as6e | 1243
21 38,32 4361 | y5go | 4367 | 159y | 4401 | -1485 | 440 | 1509
24 40,57 41,54 | -2,39 | 41,49 | -2,27 | 4355 | -7,35 | 43,68 | 7,66
27 36,97 39,57 | -7,03 | 3891 | -525 | 42,77 | -15,67 | 42,88 | 15,98
42,5 37,58 34,19 | 9,03 | 34,30 | 873 | 42,68 | -13,58 | 41,68 | 10,92

Table 18 — Third frequency in S2 for the two models

Plotting the results in frequency gives the reader a better overall view about the
differences between the four models (isotropic for Models 1 and 2 and orthotropic for
Models 1 and 2). For S1 (Figures 109 to 111), Model 2 produces better results than
Model 1 for the first three modes. While there is a good visual correspondence for the
first frequency in Model 2, there is a positive difference of frequency for the second one
and a negative difference for the third frequency. The use of a higher reduction of local
stiffness for Model 2 would decrease the difference for the second frequency but would
increase it for the first and third modes. Model 1, on the other hand, produces growing
discrepant results for higher load levels. For S2 (Figures 112 to 114), Model 2 produced
better results than Model 1, similarly to what was observed in S1. The reason why
Model 1 was not adequate is because it penalizes cracked and uncracked elements in the
same way and do not considers that some elements can reach cracking moment without
the presence of visible cracks. Model 2, in a different approach, considered the
peculiarities given by each crack in the element it appeared and in its neighborhood.
Finally, in both slabs, there was no considerable diference between isotropic and

orthotropic elements for the same model.
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Figure 109 — Comparison of first frequency in S1 for the four numerical models used
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Figure 111 — Comparison of third frequency in S1 for the four numerical models used
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Figure 112 — Comparison of first frequency in S2 for the four numerical models used
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Figure 113 — Comparison of second frequency in S2 for the four numerical models used
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Figure 114 — Comparison of third frequency in S2 for the four numerical models used

The comparison of frequency can be associated with other modal properties.

Since damage affects mode shapes, these can be used to evaluate the correlation

between experimental and numerical models using MAC (Ngan, Caprani and Bai, 2019;

Pérez and Serra-L6pez, 2019). For S1, the MAC for the first mode remain similar in the
four models tested (Figure 115) while MAC for second and third modes for Model 1 at
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load levels of 16 kN and 22 kN are lower than respective levels for Model 2 (Figures

116 and 117), which is in agreement with was was observed for frequency results.

For S2 a first observation must be made: two driving points were used in this
structure while only one was available for S1. Based on the position of these excitation
points (nodes 18 and 62 in the experimental mesh as shown in Figure 13) and
considering that the second frequency measured was the first of torsion (according to
the modal testing), the experimental data of driving point 18 was used to evaluate the
MAC of first and third modes while the data of driving point 62 was used to evaluate
the second vertical mode shape. As the results shows (Figure 118) the compasiron of
isotropic and orthotropic models shows no significant difference for the first frequency,
as was observed in S1. For the second frequency (Figure 119), the most visible
difference among modes occur in the two final load levels, what indicates that the
model based on inertia changes (Model 1) can reproduce the mode of torsion in a
similar way of Model 2. A decrease in MAC at the load level of 24 kN in the second
frequency in comparison to the tendency observed in the previous and next load levels
seems to be a problem in experimental data. For the third frequency (Figure 120),
similar results are also seen between the four models and a reduction in the load level of
12 kN (in comparison to the observed tendency) indicates problem in experimental data.
Although the correspondence in frequency was poor for Model 1 in S2, the MAC index
had similar results for the three frequencies evaluates (differently from S1 results). This
could be due to the influence of the different cracking pattern of both slabs (S2 had
more cracks in the area between the load lines).
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Figure 115 — MAC evolution for different models of S1 for the first frequency
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Figure 120 — MAC evolution for different models of S2 for the third frequency

4.5. Evaluation of slope of deflection

Reinforced concrete is a nonlinear material, what can be confirmed by the
changes of slope in stress-strain curves due to several loading and unloading stages,
leaving residual strain (er), as shown in Figure 121. Taking, for example, the load-
deflection curve for 15 kN load level of S2 (Figure 122), it is possible to see that there
are two slopes in loading and one in unloading stage. Comparing the slopes of loading
(ml-a) and unloading (m2) for the same loading level (Figures 123 to 129), the
proximity of the values in an indication that, although the numerical models of both
slabs were constructed for the unloading situation (m2 slope) (since the modal testing

was applied after the removal of the load), it also applies for the loading case.
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Figure 122 — Load versus displacement for S2 at 15 kN load level

3 kN LVDT 2

Figure 123 — Slopes for S2 loading-unloading at 3 kN load level
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6 kN LVDT 2

Figure 124 — Slopes for S2 loading-unloading at 6 kN load level

9 kN LVDT 1

Figure 125 — Slopes for S2 loading-unloading at 9 kN load level

12 kN LVDT 2

Figure 126 — Slopes for S2 loading-unloading at 12 kN load level

111



15 kN LVDT 1 15 kN LVDT 2

Figure 127 — Slopes for S2 loading-unloading at 15 kN load level

18 kN LVDT 2

Figure 128 — Slopes for S2 loading-unloading at 18 kN load level

21 kN LVDT 2

Figure 129 — Slopes for S2 loading-unloading at 21 kN load level

4.6. Mapping the crack depth

The use of Model 2, based in the works of Christides and Barr (1984) and Sinha
et al. (2002) was made in a different form. Instead of assigning a crack depth and then
find the corresponding loss of stiffness factor (Friswell and Penny, 2002), in this paper
the loss of stiffness was first assigned and the models for two slabs S1 and S2 (isotropic
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and orthotropic) were checked in frequency and mode shape with the experimental data
from modal testing as a reference. With great correspondence from Model 2 to
experimental data, it is possible to find the equivalent crack depth in each element using
Equation 14. The crack is equivalent since each element can have a crack or can be in
the area of influence produced by a crack. The results of crack depth mapping are
shown in Figure 130 for S1 and Figure 131 for S2. A great advantage of the Model 2 it
that it is possible to detect the areas more penalized by cracks or its influence.

Crack depth legend
|4 mm-7.6 mm|

& mm-11.2 mm
[TT.2mm-14.8 mm[
(748 mm-18.2 mm][

[18.4 mm-22 mm]

FHE

(a) (b) (c)
S1-33.33% S1 - 66.7% S1-91.7%
of ultimate load  of ultimate load  of ultimate load

Figure 130 — Crack mapping for S1

TTITTTTT
Crack depth legend
4 mm - 10 mm[
10 mm - 16 mm[
16 mm - 21 mm|
21T mm - 27 mm|
27 mm - 33 mm]
(a) (b) ()
S2 - 15 kN load S2 -33.2% of S2 - 68.0 % of
(first cracks) ultimate load ultimate load

Figure 131 — Crack mapping for S2

5. CONCLUSIONS
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Two reinforced simply supported concrete slabs, named S1 and S2, were tested.
Although they had the same support conditions, dimensions and reinforcement ratios
were distinct between them, highlighting that the reinforcement ratio of S2 was the
highest. Different behaviour was observed from the results of the modal test between
the slabs, that could be related to the differences in the cracking pattern. First, the
variation of the first natural frequency for different damage levels was evaluated. The
S1 presented monotonic decrease of the fundamental frequency as the static load
increased (and so the induced crack). On the contrary, S2 presented a decrease of
natural frequency until about 40% of collapse load and then it became steady until the

last load level tested.

A global damage index based on a relationship between the fundamental natural
frequency of each slab with respect to the natural frequency of the uncracked state was
evaluated and both slabs showed similar behavior until a certain value of the damage
(0.3); after that the slabs showed different pattern. This behavior of changes of the
damage index followed the pattern of variation of the natural frequencies in both slabs,
since the damage index was based on changes of the natural frequency. However, the
rise of nonlinear effects for high levels of damage might cause the use of natural
frequency not suitable in terms of identifying the level of damage, as it occurred in S2.
On the other hand, the correlation between the damage index and the gradient was
significant for low levels of damage, making it possible to relate the gradient to the

intensity of damage.

Two numerical models were then elaborated for both slabs following the same
rules, one based on a relationship of the inertia of the regions that reached the cracked
moment (named Model 1) and the other based on the stiffness reduction caused by
visible cracks (named Model 2). Isotropic and orthotropic elements were tested for both
models. For S2, until the load of 12 kN, no cracks were visible and the cracking
moment was not reached, but there was a frequency reduction (observed through modal
testing), so the use of moment trapezoid distribution rules in order to proportionally
reduce stiffness produced good results. A possible cause for this frequency decrease can
be the existence of microcracks around reinforcement due to an acccommodation. This
rule of trapezoid distribution was applied in both slabs in the elements that did not
present visible cracks (Model 2) or haven’t reached the cracking moment (Model 1).
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Comparing frequency results, Model 2 produced better adjustments in
comparison to Model 1, for both slabs. The reason is that Model 1 penalizes all the
elements the same way, not considering that uncracked elements have higher stiffness
than a cracked one. Model 2, on the other hand, consider the effects of cracks in the
element and its neighborhood using a triangular distribution but requiring a dense mesh
to properly apply this distribution. When MAC indicator was used to evaluate both
models it was shown that the four models in S2 produced similar results. For S1, Model
2 (iso and orthotropic) produced higher MAC values (what implies in a better

correlation) in comparison to Model 1.

Although the models were checked for unloading stage (modal testing is
performed after the load application and beams removal), the comparison of slopes for
the same load level shows that the models can be used for loading stage. The changes of
slope for different levels is expected since reinforced concrete is a nonlinear material

when subjected to loading-unloading stages.

In general, the Model 2 was an inverse approach of what was proposed by their
original authors. As the stiffness reduction factors for all load levels had great
correspondence in frequency and mode shapes, it is possible to find the corresponding
crack depth in each element to each load level, that can be useful in for future works.
The proposed methodology can be associated to a cracking prediction algorithm that can
apply reduction factors and, comparing the results with experimental data, find crack

distribution and depth.
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