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RESUMO 

A presença de fissuras em uma estrutura é um fato que chama a atenção sobre 

potenciais  problemas de funcionalidade ou perda de capacidade resistente. Lajes de 

concreto armado têm um padrão diferente de fissura em comparação com as vigas, onde 

as fissuras  tendem a se espalhar na superfície do elemento, não necessariamente 

atingindo as bordas da laje, com profundidade visível a partir da mesma. A taxa de 

armadura também é um fator que pode mudar esse padrão. Para avaliar o efeito do dano 

no padrão de fissuração, nas freqüências naturais e formas modais em lajes de concreto 

armado, foram testadas duas dessas estruturas com diferentes dimensões e taxas de 

armadura em ambas as direções, nas quais foram induzidas fissuras por aplicação de 

carga estática, seguidas por testes modais usando excitação de impacto. Extraindo 

frequências e modos usando o software StarModal, diferentes índices de danos foram 

avaliados para comparar ambas as lajes,  atentando que o padrão de fissuração foi 

diferente para ambas as estruturas. Para entender o motivo de um comportamento 

diferente (estimado como causado por uma mudança no comportamento isotrópico para 

ortotrópico devido a fissuras), ambas as lajes foram modeladas numericamente 

utilizando elementos finitos. O modelo considerando a perda da rigidez no elemento 

finito que continha a fissura e nos elementos vizinhos mostrou-se mais adequado que o 

modelo onde a rigidez era reduzida em todos os elementos que atingiam o momento de 

fissuração, seja na comparação em frequência ou por forma modal através do parâmetro 

MAC. Modelos isotrópicos e ortrotrópicos não apresentaram diferenças significativas 

entre si, o que traz resultados inconclusivos sobre a transição de comportamento de 

isotrópico para ortrotrópico como causa do diferente padrão de fissuração. As tangentes 

nas curvas experimentais carga versus deslocamento no carregamento e 

descarregamento apresentaram valores relativamente próximos indicando que os 

modelos, embora elaborados para o estágio de descarregamento, também podem ser 

aplicados na fase de carregamento. 

 

PALAVRAS-CHAVE: Lajes, dano, fissuração, modelagem, armadura 
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ABSTRACT 

 Slabs of reinforced concrete (RC) have a different crack pattern in comparison to 

beams, where the cracks in bending tend to spread on the surface of the element. The 

reinforcement ratio is also a factor that can change this pattern. In order to evaluate the 

effect of damage on cracking pattern, natural frequency and mode shapes in RC slabs, 

two of such structures with different dimensions and reinforcement ratios in both 

directions were tested, in which cracks were induced through application of static load, 

followed by modal tests using impact excitation. Extracting the frequencies and mode 

shapes using StarModal software, different damage indexes were used to compare both 

slabs, bearing in mind that differences in the cracking pattern occurred in both 

structures. To understand the reason for a different behavior, both slabs were modelled 

numerically using finite elements. The model considering the loss of stiffness in the 

finite element which have the crack and its nearby elements showed better results than 

the model in which the stiffness reduction was applied in all elements that reached the 

cracking moment; the comparison was made through the evaluation of frequencies and 

modal parameter MAC, which indicate that the cracking affects locally the stiffness of 

the elements. Isotropic and orthotropic models did not show significant diferences 

among themselves, what brings inconclusive results about the transition from isotropic 

to orthotropic behavior as the cause of different cracking pattern. The slopes in loading 

and unloading stages presented values relatively close to each other, indicating that the 

models, although adjusted for unloading stage, can also be used for the loading stage. 

 

KEYWORDS: Slabs, damage, cracking, modeling, reinforcement  
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1. INTRODUCTION 

The design of civil engineering structures is made worldwide using building 

code requirements where it is expected that the most unfavorable load cases are 

considered, so that the structure remains safe and functional along its lifetime. However, 

during its use, structures can be subjected to severe load conditions that can affect their 

integrity. Additionally, even if undamaged, it is of growing interest to monitor the 

structural performance and level of integrity, optimizing the maintenance and repair 

operations whose costs grows with the damage level. An interesting strategy is the use 

of nondestructive tests, which can provide information without damaging the structure . 

Different classifications for nondestructive tests are available in literature. A 

well known classification was proposed by Rytter (1993) based on the deepness of the 

information provided by the tests. Another classification proposed by Saadt et al (2004) 

is based either on the detection capabilities of the techniques (with global techniques 

having the capability to detect and locate the damage) or on the available information 

about the damaged structure (based or not in models). 

Considering the point of view of material’s behavior, the detection techniques 

can be either linear or nonlinear. On linear techniques, as mentioned by Zamuy et al 

(2014), the behavior is considered approximately linear even after the damage, within a 

certain range of excitation, where there is a direct relationship between vibratory 

properties (natural frequencies, mode shapes and damping ratio) and changes in 

physical properties (mass, stiffness and damping). Considering the nonlinear 

techniques, specially in structures of cracked reinforced concrete, the consideration of 

nonlinearity is more realistic, since nonlinearity is an intrinsic condition of this material 

(Ebrahimian et al,2017). The occurrence of super and subharmonics, for example, 

which are originated from nonlinear behavior, were studied by Gianninni et al (2003). 

Responses depending on the level of excitation is another characteristic of nonlinearity, 

as studied by Waltering et al (2008) or Hamad et al (2010). 

The behavior of cracks during the process of excitation is also a source of 

nonlinearity when they open and close, what is called breathing cracks (Nguyen, 2013; 

Andreaus and Baragatti, 2009; Chrondros et al, 2001; Paolo et al, 2014). 

Still about the cracking process of reinforced concrete (RC) structures, it is 

influenced by the reinforcement ratio. However, in comparison to RC beams, that are 

investigated to a large extent, reinforced concrete slabs have a different patern of 
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cracking, what brings doubts about the use, for slabs, of beam-based linear or nonlinear 

damage evaluation methods. 

This work makes an investigation over the usability of linear and nonlinear 

techniques to evaluate damage in two reinforced concrete slabs with different 

reinforcement ratios in both longitudinal and transverse directions. Both slabs received 

stepped growing static load (steps being based on the design collapse load), followed by 

dynamic tests after each step to evaluate the changes in their modal properties as the 

induced damage increases. The crack pattern and evolution with the applied load is also 

detected. A numerical model of both slabs is then produced based on the experimental 

data to help finding, as a first goal, the best cracking model that can be used in both 

tested structures. 

It is also important to mention that this work is result of a cooperation between 

UFPB and Federal University of Juiz de For a (UFJF) in the modeling, experimental 

testing and processing of the data, with fundraise of the project PROCAD/CAPES: 

Rede de Cooperação Acadêmica em Durabilidade de Estruturas – Experimentação e 

Modelagem Rede de Cooperação Acadêmica em Durabilidade de Estruturas – 

Experimentação e Modelagem. 

 

Main objective: 

Evaluate damage in reinforced concrete slabs having different reinforcement 

ratios and damaged by bending (where the behavior is naturally nonlinear) using linear 

and nonlinear techniques based on the experimental data and numerical modelling. 

Specific objectives: 

• Evaluate the viability of using linear damage indicators (based on 

changes of eigenfrequency, mode shapes or damping ratios) in concrete 

slabs with different reinforcement ratios and different crack patterns; 

• Evaluate the viability of using a nonlinear damage indicator, based on the 

ratio of changes of natural frequency along the decay signal induced by 

an applied impact 

• Create a numerical model of slabs initially as linear elastic material and 

adjust it using experimental data (frequencies and mode shapes); 
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• Evaluate a better crack model that can be used in both slabs (that present 

different crack pattern); 

The structure of the dissertation is the following: in the first chapter an 

Introduction about the theme was shown. Chapter 2 makes a literature review on 

the topics related to the research. Chapter 3 presents the materials and methods 

used in the investigation. Chapter 4 shows the results obtained and a discussion 

about them. The final chapter have the conclusions about the research.  
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2. LITERATURE SURVEY 

   

2.1. Damage detection techniques: linear and nonlinear aproaches  

The presence of cracks in reinforced concrete structures is a sign of problems 

and can have several origins: due to loading (excessive or not), foundation problems, 

design errors, among others. Since cracking changes the structure’s physical properties, 

it can be related with changes in vibratory properties, like natural frequencies, mode 

shapes or damping ratios, for the detection, localization and quantification of damage. 

The research on damage detection techniques based on vibration-data began in late 

1970s in aerospace structures.  Applications regarding this in different structures and 

employing different techniques can be cited (Zanuy et al., 2014; Capozucca and 

Magagnini, 2017; Xu et al., 2018; Cao et al., 2017). The choice of the damage 

evaluation technique depends on the level of information that can be extracted from data 

as well as on the structural behavior after damage.  

A review of damage detection techniques can be found in  Sinou (2009), Das, 

Saha and Patro (2016), Fand and Quiao (2010), and Jassim et al (2013). By considering 

the structural behavior, two groups of techniques can be specified: linear and nonlinear 

techniques.  

2.1.1. Linear techniques 

The group of linear techniques considers that the structure is approximately linear 

after damage, within a certain range of excitation, and consequently a direct relationship 

is assumed between changes in vibratory properties (natural frequencies, mode shapes 

and damping ratios) and changes in physical properties (mass, stiffness and damping).  

The magnitude and the amount of modes affected will depend on the severity and 

location of the damage as these two factors can affect modes differently. 

Fan and Quiao (2010) made a classification of these techniques into four 

categories: based on mode shape, based on curvature mode shape changes, based on 

natural frequencies, and on a combination of natural frequencies and mode shapes.  

 

2.1.1.1. Changes in natural frequency 
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Changes in natural frequency associated to damage is the most popular and used 

method in structural assessment. Its use is simple for two main reasons: first, the use of 

a few sensors is enough for many applications. The second point is that frequencies are 

less subjected to the influence of noise and can be obtained with a relative confidence.  

The simplest model consists of an undamped system having mass m and attached 

to a spring of stiffness k, vibrating at one of its natural frequencies. The respective 

natural frequency of this model is given by Equation 1: 

 

 𝑓 =
1

2𝜋
√

𝑘

𝑚
          (1) 

 

Based on Equation 1, it can be seen the frequencies of the damaged or undamaged 

structure is mainly related to the stiffness of the system since cracks don’t imply in mass 

changes. Based on this information, as the damage produce stiffness reduction, it results 

in changes of frequency (reduction), which can be associated to damage. 

As mentioned by Fan and Quiao (2010), natural frequency-based methods can be 

divided into two groups: the forward problem and the inverse problem. In the forward 

problem there is a damaged structure with location and severity known and the 

frequency changes must be determined. In the inverse problem, the frequency is known 

but the position and intensity of damage is the desired information.  

According to Doebling et al. (1996), Lifshitz and Rotem (1969) presented what 

may be the first journal article to propose damage detection via vibration measurements. 

They used the shift in natural frequencies through changes in Young’s modulus, what 

can be associated to the frequency change as a damage indicator, an example of inverse 

problem. The use of frequency change in damage detection can be found in several 

studies along the literature evolution (Pan et al, 2019; Lee and Chung, 2000; Springer et 

al, 1988). 

2.1.1.2. Changes in damping ratio 

The dissipation of energy provided by crack friction in reinforced concrete is an 

interesting source for damage index that can be more sensitive than natural frequency 

decrease. Tests made by Modena  et al. (1999) on panels of reinforced concrete  

indicated  that  the presence of small cracks caused trivial changes in natural frequencies 

(due to little decreases or uncertainties) but noticeable changes in damping. 



20 

 

Corroborating the limitation of frequency change on damage detection, Pandey and 

Biswas (1994) pointed that the localization of damage using such changes is difficult 

since damage at two different locations associated with a certain amount of damage can 

produce the same frequency change. 

Experimental tests made by Bovsunovsky (2004) concluded that the source of 

dissipation on cracks is not always provided by friction of crack surfaces: the energy 

dissipation in an edge non-propagating fatigue crack is caused mainly by the 

elastoplastic zone in the vicinity of crack tip. 

Different authors have explored damping as a damage index (Xu et al, 2018; Pešić 

et al, 2015;  Hsu et al, 2014; Limongelli and Carvelli, 2015; Cao et al, 2017). 

Limitations of damping usage are its difficulty of measurement and sensibility to 

environmental conditions such as temperature and humidity (Modena et al, 1999). A 

state-of-art about the use of damping can be found in Cao et al (2017). 

 

2.1.1.3. Changes in mode shapes and mode shape curvature 

In comparison to natural frequency or damping changes, the mode shapes and 

their derivatives (the curvatures and their numerical adjustments) have more 

advantages. Since the mode shape is a spatial information for each natural frequency, 

they contain local information that can be used directly in the detection of multiple 

damages and their evolution. On the other hand, this method requires more sensors and 

is more susceptible to noise disturbance than natural frequency measurements, which 

may hinder the detection of damage (Pandey et al, 1991). In the same article, Pandey et 

al (1991) used the curvature of mode shape instead (second derivative of mode shape 

obtained through a central difference approximation). 

In literature it could be seen that damage detection techniques based on mode 

shapes and derivatives has been used successfully (Cao et al, 2014; Ratcliffe, 2000; 

Wahab and De Roeck, 1999), because they come from the fact that damage affects 

mode shapes (and its derivatives). Roy (2017) presented a damage localization method 

using the derivative of mode shapes of an intact and a damaged frame simulating a 

building. Frans et al (2017) used variation of mode shape curvature of a truss bar 

modelled numericaly and observed changes in nearby nodes, associating it to damage. 

Rucevskis et al. (2016), in turn, employed modal curvature to detect damage on metal 
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plates but without the need of a baseline for the undamaged state, and successfully 

detected the existing damage. 

Still on curvature of mode shapes, the use of different approximation functions 

has been cited in literature. Ratcliffe (1997) proposed an indicator based on a 

relationship of modal curvature affected by damage and a third-degree polynomial 

representing the undamaged stage. As an improvement, Qiao et al (2007) proposed the 

use of a fourth-degree polynomial. Dessi and Camerlengo (2015) used sine and cosine 

functions to model the mode shape of and Euler-Bernouli cantilever beam, using several 

indicators reported in literature and based in curvature. Jiao et al (2015) evaluated 

numerically the use of Chebyshev polynomials aiming to obtain the curvature of bridges 

beams. Xu et al (2017) evaluated the use of modal curvature adjusted by polynomials in 

aluminium plates. 

2.1.1.4. Modal Assurance Criterion (MAC), Coordinate Modal 

Assurance Criterion (COMAC) and other assurance criteria 

The Modal Assurance Criterion (MAC) is a scalar constant that evaluates the 

degree of linearity (consistency) between two modal vectors. It shows more sensibility 

to  large  differences  and  little sensibility  to  small  differences  in  the  mode  shapes, 

producing a  good  statistic indicator  and  a  degree  of  consistency  between  mode  

shapes. The MAC between two sets of vectors {φA} and {φX} can be expressed by 

Equation 2: 

 

𝑀𝐴𝐶 (𝑖, 𝑗) =  
|{𝜑𝐴}𝑖

𝑇{𝜑𝑋}𝑗|
2

({𝜑𝐴}𝑖
𝑇{𝜑𝐴}𝑖)({𝜑𝑋}𝑗

𝑇{𝜑𝑋}𝑗)
      (2) 

 

Making use of orthogonality for comparison of two mode shapes vectors, MAC 

ranges from zero (representing no consistent correspondence) to one – what represents 

that two sets of data are fully correlated. Based on this fact, a low MAC value for the 

same resonant frequency can be interpreted as a damage indicator (Pastor et al, 2012). 

As mentioned by Allemang (2003), MAC has several applications listed on 

literature, like: 

• Validation of experimental modal models; 

• Correlation with analytical modal models (mode pairing); 

• Correlation with operating response vectors; 
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• Mapping matrix between analytical and experimental modal models; 

• Modal vector error analysis; 

• Modal vector averaging; 

• Experimental modal vector completion and/or expansion; 

• Weighting for model updating algorithms; 

• Modal vector consistency/stability in modal parameter estimation algorithms; 

• Structural fault/damage detection; 

• Quality control evaluations; 

• Optimal sensor placement. 

 

Though MAC criteria can assess the orthogonality of two data sets of mode 

shapes, its limitation lies in not showing the exact points where this comparison has low 

correspondence. To overcome this issue, a new indicator based on correlation between 

vectors was proposed by Lieven and Ewins (1988). This way, the Co-Ordinate Modal 

Assurance Criterion (COMAC) identifies the co-ordinates at which the correspondence 

of two data sets is poor, that is, those parts of the structure which are contributing to low 

degrees of correlation. The COMAC factor at a point i between n sets of mode shapes is 

given by Equation 3: 

 

𝐶𝑂𝑀𝐴𝐶 (𝑖) =  
(∑ |(Φ𝐴)𝑖𝑗(Φ𝐵)𝑖𝑗

∗ |𝑛
𝑗=1 )

2

∑ |((Φ𝐴)𝑖𝑗)|𝑛
𝑗=1

2
∑ |((Φ𝐵)𝑖𝑗)|𝑛

𝑗=1
2     (3) 

 

where n defines the number of correlated mode shapes, (ΦA)ij and (ΦB)ij denote 

the jth value at a point i for the states (eg. numerical, experimental) A and B 

respectively. 

Other assurance criterion factors were developed like Weighted Modal Analysis 

Criterion (WMAC), Partial Modal Analysis Criterion (PMAC) (Heylen, 1990), Modal 

Assurance Criterion Square Root (MACSR) (O’Callahan, 1998), Scaled Modal 

Assurance Criterion (SMAC)  (Brechlin et al, 1998), Modal Assurance Criterion Using 

Reciprocal Vectors (MACRV) (Wei et al, 1990), Enhanced Coordinate Modal 

Assurance Criterion (ECOMAC) (Hunt, 1992), Mutual Correspondence Criterion 

(MCC) (Milecek, 1994), Inverse Modal Assurance Criterion (IMAC) (Mitchell, 2001), 

Frequency Response Assurance Criterion (FRAC) (Heylen and Lammens, 1996; 

Fregolent and D’Ambroglo, 1997). 
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2.1.2. Nonlinear techniques 

As mentioned by Frizzarin et al (2010), the techniques based on modal parameters 

as previously mentioned (based on natural frequencies, damping and mode shapes) have 

an important difference from the methods based on identification of anomalies, which 

are the nonlinear methods.While in the methods based on classical modal parameters, 

damage is revealed though a difference in behavior between undamaged and damaged 

conditions (becoming compromised if the data of the undamaged state is unknown or 

unavailable), in the methods based on nonlinearity, the anomaly itself reveals the 

damage, without any reference to the undamaged state. 

In cracked reinforced concrete structures, nonlinearity is an intrinsic condition of 

this material. The crack pattern during the excitation stage or immediately after it is 

relevant in nonlinear methods and there are two major cracking models: the models that 

consider the cracks remaining open (called open crack models), and the models 

considering cracks opening and closing (called breathing cracks models) (Nguyen, 

2013; Andreaus et al.,2007; Chondros et al., 2001). Breathing cracks, in special, are 

sources of nonlinearity because they change the stiffness of the structure during the 

process of vibration. The majority of the works explored this feature of breathing cracks 

through use of cyclic excitation (Cheng et al., 1999; Andreaus and Baragatti, 2011; 

Bovsunovsky and Surace, 2005; Xu and Castel, 2016). 

Still in the group of nonlinear damage detection techniques, the use of impact 

excitation in concrete structures remains less explored, although it is a quick assessment 

technique, with data being promptly acquired by few sensors positioned on the 

structure. The majority of works using this technique are devoted to beams. Neild et al. 

(2003) carried out tests with impact excitation on beams for increasing damage levels 

produced by static load intercalated by modal tests, and explored the changes of natural 

frequency along the decay as a nonlinear assessment method. An addition to the 

previous research line was made by Zhu and Law (2007) who applied the Hilbert-

Huang Transform on cracked reinforced concrete beams to evaluate the changes in 

natural frequency along the decay. Wang et al. (2012), in turn, tested reinforced 

concrete beams and proposed a window width to evaluate the natural frequencies after 

the impact.  



24 

 

Different from beams, reinforced concrete slabs have a crack pattern in which the 

existing cracks tend to spread on the surface of the structure. Still, a factor that can 

affect the crack pattern is the reinforcement ratio. Han (2011) observed that the 

transverse reinforcement in one-way slabs can restrain flexural crack opening, 

indicating that this reinforcement can modify the cracking pattern, as was also observed 

by Lantsoght et al. (2013) in slabs under concentrated load. The influence of 

reinforcement ratio in RC slabs was also noticed when they were subjected to blast 

loads because the deformation and damage degree decreased with the increase of this 

ratio (Yao et al., 2016).  

The major use of damage index models and crack models in literature is for beams 

ellements. In this work, the investigation about the applicability of them is made for 

reinforced concrete one-way slabs. Although the cracking pattern and deformation of 

one–way slabs is different from beams, the support conditions of the tested structures 

(similar to simply supported beam) and the results of previous investigations justify the 

research interest. 

 

2.2. Crack modeling  

Cracks are among the events that can affect structure and so the evaluation of 

damage produced by them is a typical application of structural health monitoring. In the 

literature, the crack modeling fall in three main categories: local stiffness reduction, 

continuous models and discrete spring models. A review of these and other models can 

be found in Meruane (2016). The choice of the best crack model depends, among other, 

in the structure behavior (linear or not) and the number of dimensions it has. If detailing 

the stress-strain distribution around the crack is necessary, a finite element in three or 

two dimensions is adequate, while a one dimension model is better for beam-like or 

fames structures. The representation of breathing effect in cracks can be made by the 

use of nonlinear contact elements or constraints (Xu and Castel, 2016; Nandi and 

Neogy, 2002). However, iterative models with meshing update may be required in order 

to provide precise information like location and depth of crack (Carneiro and Inman, 

2002). 

The methods in the first group (local stiffness reduction, also called smeared crack 

models) are the simplest approaches to develop a finite model of a damaged structure 

since it is just required a well refined mesh in order to reduce the stiffness component 

(as bending stiffness, for example) in the elements where the damage is located [7, 8, 9]. 
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An adequate model requires a fine mesh and the main question relies on the amount of 

stiffness reduction in each element with crack in order to match global modal 

parameters. Coming from experimental data, it is possible to quantify and localize 

damage. The method is well consolidated for use in beam elements and many 

applications can be found in literature (Pandey and Biswas, 1991; Zou et al, 2002; Dixit 

and Hanagud, 2011; Pandey and Biswas, 1994). 

In the second group of methods (discrete spring or lumped flexibility models), the 

cracks are represented by spring elements without mass (Patil and Maiti, 2003), 

allowing the cracked element to separate in two parts linked by the springs. Since the 

elements along the crack can change position, the model can represent the severity of 

the damage.  

In the third group of methods, the strain-stress distribution around the crack in the 

continuous cracked models is defined by a decay function, in an attempt to clearly 

represent significant properties of crack (like location and depth). Christides and Barr 

(1984) tested this method in beams and obtained great correlation between the 

experimental and predicted frequencies. A validation of the formulation was made by 

Shen and Pierre (1990) using finite element models for comparison and, going beyond, 

extended the same model validity for single edge breathing cracks. Sinha et al. (2002) 

followed the studies by developing a model for multi-cracked beams and discovered 

that the exponential decay of Christides and Barr (1984) could be approximated by a 

linear decay. Although the model of Sinha et al. (2002) not accurate at high frequencies, 

it is simple for use and can be applied in structures of low-frequency (like slabs). 
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3. MATERIALS AND METHODS 

3.1. The slabs specimens 

Two reinforced concrete slabs were tested in laboratory. Although they had 

similar dimensions, their reinforcement ratio was different in both directions as their 

bearing capacity. Both slabs were 0.08 m thick and simply supported along all their 

width. Figure 1 shows a sketch of both tested slabs.  

 

 

      (a)     (b) 

Figure 1 – Sketch of the slab (a) S1 and (b) S2 

 

3.1.1. Fist slab (S1) 

The first slab was named S1 and had a length of 3.0 m and a width of 1.35 m, with 

rebars of 5.0 mm diameter spaced 9.0 cm along the width and 22.0 cm along the length.  

The rebar used was type CA-50 (yielding strength 500 MPa) of 5,0 mm diameter. 

Fifteen bars with 3,0 m of length and spaced every 9,0 cm along the width were used in 

main reinforcement ,and fourteen bars with 1,5 m length and spaced every 22,0 cm were 

used along the length. All bars were bent 4,0 cm and 90º in the ends. The longitudinal 

and transverse reinforcement ratio in S1 was, respectively, 2.15 cm2/m and 0.98 cm2/m. 

The S1 casting used concrete with 25 MPa compression strength. The mix in 

terms of unit weight was 1:2,26:2,60-0,54, where, one unit in weight of cement was 
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mixed to 2,26 units of sand and 2,60 units of gravel, using a water/cement ratio of 0,54. 

The cement used was CPV-ARI, a rapid hardening cement. No additives were used.  

 In order to evaluate the compression resistance, fifteen speciments of 10 cm 

diameter and 20 cm height were cast, according to the Brazilian standard NBR NM33 

and the curing process last 21 days under shadowed place, following the standard NBR 

5758. 

 Table 1 shows the results of compression tests for the speciments. The 

characteristic strength (fck) found was of 24,7 MPa, a bit lower than the design fck (25 

MPa). 

 

CHARACTERISTIC STRENGTH – S1 

Speciment  Load (kgf) Strength (MPa) 

1 20000 25,465 

2 23200 29,539 

3 24800 31,576 

4 19000 24,192 

5 22000 28,011 

6 19000 24,192 

7 22000 28,011 

8 22600 28,775 

9 22600 28,775 

10 23900 30,430 

11 23600 30,048 

12 22600 28,775 

13 27000 34,377 

14 22000 28,011 

15 22000 28,011 

Table 1 – Characteristic strength of concrete speciments – S1. 

3.1.2. Second slab (S2) 

The second slab, named S2, had a length of 2.50 m and was 1.65 m wide, using 

rebars of 6.3 mm spaced 7.0 cm along the width and 7.5 cm along the length, and a 

concrete of 30 MPa of compression strength. The longitudinal and transverse 

reinforcement ratio in the slab were, respectively, 4,36 cm2/m and 4,05 cm2/m. The mix 

in terms of unit weight was 1:2,42:1,21-0,46. Four specimens with the same dimensions 

of the ones used in S1 were cast to evaluate the compression strength but were tested for 
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compression more than 28 days after casting. The average strength was 32,59 MPa. 

Table 2 shows the results of compression tests for the speciments. 

 

CHARACTERISTIC STRENGTH – S2 

Speciment  Strength (MPa) 

1 31,00 

2 33,12 

3 33,38 

4 32,87 

Table 2 – Characteristic strength of concrete speciments – S2. 

 

3.2. Equipment used on tests 

3.2.1. Load Cell 

Load cell is a transducer equipment that converts force into electrical signals 

proportional to the load. The load cell used had a capacity of 1 MN (Figure 2) and 0.1 

kN resolution connected to an Ahlborn data logger model Almemo 2890-9. 
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Figure 2 – Load cell used for static load aplication. 

3.2.2. LVDTs (Linear Variable Differential Transformer) 

LVDT (Linear Variable Differential Transformer ou Transformador Diferencial 

Variável Linear) is a displacement sensor that converts linear movements into a signal. 

It basically contains some coils that create current according to the tip position. The 

LVDTs were used for measuring the slab deflection in static load tests, and had a 

sensibility of 0,01mm, as illustrated in Figure 3. 
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Figure 3 – One of the LVDT sensors used on tests. 

 

3.2.3. Impact hammer 

An instrumented impact hammer consists of a hammer that uses tips of different 

stiffness and a piezoelectric cell inside its head to measure the applied force. Therefore, 

when the structure is excited, a current is generated and read by an acquisition system. 

There are tips with different stiffness that can be used. The choice depends on the 

stiffness of the structure under test. The stiffer the structure, the shorter is the impulse 

length and, as result, the longer is the frequency range. Analogously, the more flexible 

the tip the shortest is the excited frequency range. In the test case, the chosen head was 

the most flexible one, in order to concentrate the impact energy in the lower frequency 

range, which contained the structural frequencies of interest. The model used in both 

slabs was Type 8208 from Brüel&Kjaer as shown in Figure 4. 

 

 

Figure 4 – Impact hammer used on tests highlighting the tip used. (Source: Product brochure, modified) 
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According to the equipment brochure, hammer tips allow to control the amplitude 

and decay of impact. This can be seen in Figure 5(a), where it can be seen the shape of 

impulse function as a function of the hammer tip; the stiffer the tip the short is the 

duration of the hammer blow. Figure 5(b) exhibit force spectra of the hammers showing 

the frequency response as a function of the used impact tip. The tip used for testing both 

slabs was the medium one as highlighted in Figure 5(a). 

 
 Figure 5 – (a) shape of impulse function (b) spectra of the hammers. (Source: Product brochure) 

 

3.2.4. Piezoelectric accelerometer 

Similarly to load cells, accelerometers are also among the equipments called 

transducers, that work converting mechanical energy into electrical current. The process 

in an accelerometer is different since it uses an auxiliary mass. According to EWINS 

(1984), when the structure is excited, the group move together, where the ratio of 

acceleration of auxiliary mass and accelerometer body (x"/y") is unitary for a range of 

frequencies from zero up to the transducer’s resonant frequency. When the body of the 

accelerometer moves, the auxiliary mass moves relative to the transducer body causing 

a deformation of the piezoelectric crystal, generating a current that is transmitted to the 

acquisition system. 

In both tests the accelerometer employed was a Isotron® 752A13 from 

Endevco®, sensitivity of 1V/g (nominal) and able to work in a frequency range until 

100 kHz. It can be seen in Figure 6. 
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Figure 6 – Accelerometer used for testing  

 

3.2.5. Signal conditioner 

The signals produced by the impact hammer or the accelerometers cannot be 

directly read by the acquisition system due to their low intensity. In order to overcome 

it, the sinals need to be previously conditioned, and that works in two ways: amplifying 

current or tension. The conditioner used for both sensors was model 4416B from 

Endevco®, as can be seen in Figure 7. 

 

 

Figure 7 – Signal conditioner  

3.2.6. Spectrum analyser 

The acquisition system consisted of a spectrum analyser; it measures and process 

the conditioned signals from sources of excitation and response. From the processed 

signals it is possible to get the modal properties of the structure (damping ratio, natural 
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frequencies and mode shapes). The analyser used in tests was SignalCalc® Quattro, 

from Data Physics.  

 

3.3. Slab testing 

3.3.1. Impact excitation 

Before modal testing, a mesh used for measurement and excitation was marked 

on S1 surface and the same mesh was marked under the slab to follow the crack 

evolution as the load levels increased. The 300 cm of length were divided into six parts 

of 48,33 cm each and the 135 cm of width were divided into four parts of 28,75 each. 

Additional points were marked along the central line of the slab. Another additional 

point was marked in order to be the driving point where the response should be 

acquired. This way, S1 had a total of 42 test points. Figure 8(a) illustrate the modal 

mesh used for experimental tests side by side to the in situ mesh shown in Figure 8(b). 

The definition of mesh dimensions, excitation and measurement points were done based 

on a numerical model in order to get the three first mode shapes of the structure.  

 

 

Figure 8 – S1 marked nodes (a) in scheme and (b) in place. 
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In S2, due to its different dimensions in comparison with S1, an approximately 

square mesh was employed, with points being 25 cm by 25.6 cm apart along the width 

and length, respectively, with a total of 77 test points (see Figure 9). In both slabs, the 

definition of the mesh dimensions were based on obtaining a good resolution for mode 

shapes, particularly for the first mode, that was similar to the one of a simply supported 

beam. This was also the main reason for using additional points in the central line of S1. 

On the other hand, although S2 behaved as a beam-like structure, the way the modes 

were going to change with increasing damage was unknown. That was the reason to use 

a denser mesh and an additional driving point, as will be discurssed later on. 

 

Figure 9 – Mesh used in S2 showing the marked nodes. 

 

After marking the points that were used in modal testing, both slabs were raised 

using iron cables. Figure 10 shows S1 in its final position for testing. Both slabs were 

simply supported along their width extremities but using different metallic profiles for 
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that. Figure 11 shows the support used in S1, being conceived to be a roller and pinned 

support. Figure 12 shows a detail of S2 supports. 

 
Figure 10 – Side view of S1 showing the continuous support line. 

 

 
(a)      (b) 

Figure 11 – Detail of continuous support line of S1 from (a) front side and (b) bottom side 

 

 



36 

 

Figure 12 – Detail of continuous support line of S2 (both bottom and front) 

 

After positioning the slab on its final position, the next step was performing a 

modal testing to evaluate modal properties of the uncracked structure and compare their 

evolution as the damage increased. Figure 13 illustrate the final position of both mesh 

and driving point used in both slabs. In S1 a single driving point was used while two 

driving points were used in S2. The modal testing was performed after each load level 

was applied and removed in slabs S1 and S2. 

 

 

  (a)      (b) 

Figure 13 – Nodes and driving point positions for slabs (a) S2 ans (b) S1.  

 

The excitation was applied in each point using an instrumented impact hammer 

B&K model 8210. At the driving point in S1 (the point of the experimental mesh where 

the response acquisition was recorded), an Endevco accelerometer model 752A13 was 

placed, while the impact hammer excited all the points, one at a time, to perform a 

modal test. In the case of S2, based on the reciprocity tests (that will be explained later 

on), the excitation remained fixed at two points while the accelerometer moved along 

the points of the experimental mesh. The spectrum analyzer SignalCalc Quattro was 

employed to acquire the excitation and response signals and was connected to a PC 

Notebook. Each acquired signal lasted 4s and had 4096 points for the tests in S1, and 8s 

with 8192 points for the tests in S2 (that means an acquisition ratio of 1024 points per 

second), using in both cases five impacts in each test point so as to obtain average 

Frequency Response Functions (FRFs) with minimized noise effects, as will be 

explained later on.  
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The choice of candidates for driving points (where the excitation or response 

remained fixed) was priorly made using a simple numerical model (that also was used 

for testing the mesh definition). For S2, for example, the five first modes had 

frequencies of 18,24 Hz, 42,26 Hz, 75,72 Hz, 107,25 Hz and 127,92 Hz). In order to 

confirm the frequencies, adjust the acquisition ratio and verify if the slabs were in the 

linear-elastic state, several initial tests were performed. Such tests were of linearity, 

repeatability and reciprocity (HERMEZ et al. 2012; RAO, 2012). 

The purpose behind the linearity test is to verify if the relationship between 

output response and input excitation is constant for a given frequency response function 

(FRF). This means that the FRF does not depend on input magnitude, what can be 

evaluated by performing several tests in the same point at different input levels. Then 

the responses are overlapped to evaluate similarities between them. The reciprocity tests 

verify if the waves from the excitation do not depend on the input location, and follow 

the same transfer path. That was verified by applying the excitation at a point X and 

measuring the response at a point Y and then reversing the configuration by swapping 

between response and excitation points. An overlap of FRF is expected if the structure 

is linear. The final verification, repeatability principle, as its name suggests, states that 

identical samples tested within the same configuration should demonstrate an equal 

structural behavior. This was made exciting a same point more than once and evaluating 

if there was difference on the FRFs obtained. Through repeatibility tests it was observed 

that there was convergence of the average FRF for five excitations (10 and 15 

excitations were also tested). It was also noticed that there was an approximate 

difference of  up to 10%. Figure 14 illustrate a modal testing performed  
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Figure 14 – Illustration of modal test in S1  

 

3.3.2. Static tests 

Both slabs used the same load system to perform static load test, using three 

metallic beams, two dividing the free span in three equal parts (positioned at 1/3 and 2/3 

of slab’s main span) and the third beam along the central length line. Figures 15 to 17 

shows the load application for both slabs. 

 

Figure 15 – Static load application in S1 (side view). 
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Figure 16 – Static load application in S1 (superior view). 

 

 

 

(a)         (b) 

Figure 17 – Static load system to induce cracking in S2 (a) superior view and (b) side view. 

 

The deflection of slabs according to load level was also of interest. To do that, 

two LVDT sensors were used above S2. Due to problems in one of the sensors, only 
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LVDT number 1 was available for S2. The position of the sensors is shown in Figure 18 

and Figure 19 shows the LVDTs in use. 

 

Figure 18 – Distribution of LVDT sensors in S2 
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Figure 19 – LVDT used on S2 to measure deflection during static load test 

Considering that both slabs were subjected to the same loading configuration but 

had different reinforcement ratios, the evolution and distribution of crack pattern was 

also of interest. To follow the evolution with the increase of static load, the same 

experimental mesh was marked under each slab and the cracks were painted using 

different colors and line types, as illustrated in Figure 20 for S2. 

 

 
Figure 20 – Illustration of mesh marked under the S2 to follow crack evolution with static load increase. 
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3.4. Data processing 

Natural frequencies and mode shapes from both slabs were obtained using 

StarModal software v5.3. A polynomial and least-squares complex exponential curve-

fitting algorithm is used for extracting the vibration parameters. After importing all 

FRFs from the whole modal test into a model with nodes previously created and equal 

to the experimental mesh used on each slab (as illustrated in Figures 21 and 22), the 

resonant peak is identified using a frequency curve-fitting range that includes all the 

measurements (as Figure 23 shows). The user defines the range and the number of 

frequencies in a selected band around the peaks. This is then repeated for the other 

frequencies. Frequencies and mode shapes are then obtained (Figures 24 and 25). 

 

 

Figure 21 – FRFs of a full modal testing made in S1 before applying load. 

 

 

Figure 22 – Detail of FRFs of some points from S1 undamaged modal testing. 
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Figure 23 – Band definition for the three initial frequencies (detail of band isolating the first natural 

frequency). 

 

 

 

Figure 24 – Example of results of modal properties from curve fitting 
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Figure 25 – Example of mode shape of the first natural frequency of S1 and its coordinates. 

 

One of the results from modal testing is the angular coefficient of the signal 

along the decay, what will be called in this dissertation “gradient” of frequency along 

the decay. The responses in time domain were filtered, to isolate the component of 

response at the fundamental natural frequency of the tested slab. The band-pass filter 

employed was a basic application running in Matlab software. The isolation of the 

frequency component of interest was carried out in the frequency domain after applying 

a Fourier Transform to the time domain signal. An Inverse Fourier Transform returned 

the filtered time domain signal, and frequency spectra of the original and filtered signals 

were compared to assure the filtering procedure was successful. Then, the variation of 

the fundamental frequency along the decay of the signal after impact was obtained for 

each level of induced damage and is discussed in the results section. It should be 

mentioned that not all the data acquired during the modal tests were employed; this is 

just a general description of the whole test setup. Figure 26 shows a step-by-step 

procedure of gradient obtainment. 



45 

 

 

 

Figure 26 – Schematic representation of gradient obtainment. 

 

From Figure 26 it can be seen that the filter applied is a vertical one used to 

isolate the frequency of intertest and, as result, the variation of signal along time (Figure 

26, step 4) have an initial perturbation the the initial cycles (in the example, two cycles), 
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after what the sinal presents the expected decay. In other to investigate the influence of 

the adopted filter, two experiments were performed. In the first one, the adopted filter is 

applied on experimental data of an impact excitation and compared to Butterworth 

filters of different orders. The results are shown in Figure 27 and, knowing that the 

frequency band was from 16 Hz to 17 Hz, it is possible to observe that the original 

signal and the signal obtained with the adopted filter have the same amplitude in the 

frequency range of interest. The Butterworth filters had differenc in amplitude where, 

the higher the order of the filter, the lower the amplitude. 

 

Figure 27 – Filters comparison in frequency domain signal. 

 The second experiment consisted in obtaining the gradient of a sine sweep 

signal, where the amplitude of a sine signal with 4096 points in four seconds had an 

increase of 0,1 Hz in each cycle (approximately 60 points). Comparing the initial cycles 

from the beginning (0.5 initial seconds) and the ending (0.5 final seconds), it is 

observed that both Butterworth filter and the adopted filter have a delay of half cycle 

but the adopted filter does not affect the amplitude of signal (Figures 28 and 29).  

 

Figure 28 – Signal delay of different filters from 0 to 0.5 seconds. 
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Figure 29 – Signal delay from 3.5 to 4.00 seconds. 

 

The next test was  obtaining the gradient of signals. Due the nature of sine-

sweep signal, it is expected that the gradient have a linear behavior along the cycles. 

Taking the ten inicial cycles and comparing the gradient obtained from different signals 

(Figures 30 to 33), it is noticeable that the gradient of the original signal is equal to the 

one after applying the adopted  filter . For the Butterworth filter, higher order of the 

filters produced gradients far from the ideal. 

 

 

Figure 30 – Gradient obtained from original signal. 
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Figure 31 – Gradient obtained from the used filter signal: same gradiant of original signal. 

 

 

Figure 32 – Gradient obtained from a 20th order Butterworth filter. 

 

 

Figure 33 – Gradient obtained from a 40th order Butterworth filter. 
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Based on the tests made using different filters, it is possible to conclude that, 

alghough the used filter adds delay to the filtered signal, this delay does not affect the 

gradient obtainment. In addition, the adopted filter does not affect the signal amplitude. 

Therefore, the adopted filter is adequate to the use made in this research. 

 

3.5. Numerical modelling 

Considering the dimensions, the support condition and the loads applied in both 

slabs, the numerical model was made using the ANSYS software. The finite element 

employed was one the library of elements of the software, named SHELL63, a four 

node element with bending and membrane capabilities, with six degree of freedom at 

each node: translations in the nodal x, y, and z directions and rotations about the nodal 

x, y, and z-axes. The element is illustrated in Figure 34. 

 

 

Figure 34 – Element SHELL62 (Source: ANSYS manual) 

 

There were seventy-seven experimental nodes on S2 and, as it has a more dense 

experimental mesh, it was chosen as reference for start the modeling. When the 

numerical model was created, experimental nodes remained coincident to computer 

model nodes, and additional nodes were created between every two real (ie, 

experimental) nodes. In order to model the support conditions more properly, two 

coincident (in position) nodes at each experimental node at the supports were used, one 

restrained in all directions and the other (at the slab) free to move vertically. To connect 

both nodes, a COMBIN14 element was used. COMBIN14 is a longitudinal spring-
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damper connected by two nodes with also torsion capabilities (that were not used), as 

illustrated in Figure 35.  

 

 
Figure 35 – COMBIN14 element (Source: ANSYS manual) 

 

To define the spring constant of the support nodes, the results of modal testing 

were employed. First, the mode shape of each natural frequency extracted from modal 

testing were plotted in vector mode, as shown in Figure 36. The modal displacement of 

each node along the support was obtained and divided by the maximum nodal value in 

order to obtain a relative absolute value. The next step was the use linear interpolation 

for the numerical nodes as shown in Figure 37. In the numerical model each node at the 

support line has a spring-damper element COMBIN14 where the spring coefficient is 

adjusted using the data from modal testing. An illustration of the slab with the 

COMBIN14 elements used at the supports nodes is shown in Figure 38.  

 

 
Figure 36 – Mode shape of each frequency (on top) and its correspondent vectorial form (bottom) 
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Figure 37 – Modal displacement at support nodes used for COMBIN14 stiffness adjust. 

 

 
Figure 38 – Scheme of COMBIN14 nodes used at support line. 

 

Regarding the material properties, according to NBR 6118/2014 and ACI 

318/95, the secant modulus of concrete (Esc) is related to the initial tangent modulus 

(Ec) by two expressions 

𝐸𝑆𝐶 = 0.85 ∗ 𝐸𝐶         (4) 

𝐸𝑆𝐶 = 4730√𝑓𝑐𝑘, MPa       (5) 

 Combining equations (4) and (5), the result is: 

𝐸𝐶 = 5565√𝑓𝑐𝑘 , MPa       (6) 

 In Brazilian standard NBR 6118/2014, the coefficient of Equation (6) is 5600 

(the value 5565 is used in ACI 318/95) and it was the expression used to calculate the 

elastic module of concrete used in the numerical model (5600 as the coefficient). The 
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elastic tangent modulus Ec is the tangent at the beginning of a stress-strain curve, as 

shown in Figure 39. Similarly, the secant modulus of elasticity Esc represents the slope 

of a line passing through the origin of the diagram and intercepting it at a stress of about 

0.4 fC, where fC is the compression strength. 

 

Figure 39 – Stress-strain diagram of concrete 

 

During modal testing, the Young’s module of concrete can increase until 40% as 

a dynamic effect (Metha, 1994), this being confirmed by other authors (Alves et al, 

2011). As a result, the initial Young’s module of each slab was calculated using 

Equation 6 but was tested for values increasing until 40% of the value obtained from the 

equation and the concrete streght used was the average resistance to compression fcj 

instead of fck. Furthermore, the spring constant of supports were tested for different 

values but respecting the proportions of modal displacement from the tests, starting at 

105 N/m² until 115 N/m², the latter being an extreme value where there were no changes 

in the three natural frequencies evaluated, meaning a rigid support condition.  

By dividing the values of frequencies obtained from the numerical model by the 

experimental ones (taken as reference values), the results for both slabs was surfaces of 

adjustment with Young’s module and spring constant in X-Y plane and the ratio of 

frequencies in Z plane. For each spring constant adjusted at the nodes of support line 

(based in the first, second or third mode shapes) and respecting the proportions found 

for that adjustment, a corresponding model was created and the three first frequencies 

were obtained. Following the proportion of each adjustment, the spring constant of 
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COMBIN14 element is evaluated for different values and for a fixed elastic module of 

croncrete. The best adjust was in the line where the ratio was equal to 1, which means 

that the experimental frequency was equal to the numerical one. The 3D surfaces and 

their respective superior view for both slabs are shown in Figures 33 to 57. For S1, due 

to small values of modal displacement of this mode along the support nodes, the 

adjustment could not be done. For this slab, the best adjustment was obtained using the 

second mode shape, the same being observed for S2. The best adjust in frequency was 

also observed for the maximum value of elastic module (40% higher than the calculated 

by Eq. 6). This adjustment of support conditions was made in both slabs for the 

uncracked stage and the spring constants remained unchanged for the following load 

levels. 

 

 

 
Figure 40 – S1 surface adjust of 1st natural frequency using 2nd mode shape. 
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Figure 41 – S1 surface adjust of 2nd natural frequency using 2nd mode shape. 

 

 
Figure 42 – S1 surface adjust of 3rd natural frequency using 2nd mode shape. 
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Figure 43 – S1 surface adjust of 1st natural frequency using 2nd mode shape. 

 

 
Figure 44 – S1 surface adjust of 2nd natural frequency using 2nd mode shape. 
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Figure 45 – S1 surface adjust of 3rd natural frequency using 2nd mode shape. 

 

 
Figure 46 – S1 surface adjust of 1st natural frequency using 3rd mode shape. 
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Figure 47 – S1 surface adjust of 2nd natural frequency using 3rd mode shape. 

 

 
Figure 48 – S1 surface adjust of 3rd natural frequency using 3rd mode shape. 
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Figure 49 – S2 surface adjust of 1st natural frequency using 1st mode shape. 

 

 
Figure 50 – S2 surface adjust of 2nd natural frequency using 1st mode shape. 
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Figure 51 – S2 surface adjust of 3rd natural frequency using 1st mode shape. 

 

 
Figure 52 – S2 surface adjust of 1st natural frequency using 2nd mode shape. 
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Figure 53 – S2 surface adjust of 2nd natural frequency using 2nd mode shape. 

 

 
Figure 54 – S2 surface adjust of 3rd natural frequency using 2nd mode shape. 
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Figure 55 – S2 surface adjust of 1st natural frequency using 3rd mode shape. 

 

 

 
Figure 56 – S2 surface adjust of 2nd natural frequency using 3rd mode shape. 
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Figure 57 – S2 surface adjust of 3rd natural frequency using 3rd mode shape. 

 

 The adjusts seeking the best fitting considered two aspects: the difference of 

frequency values and the mode shapes from the reference ones (that is, experimental 

values). To evaluate the mode shape at the supports, the COMAC between the 

numerical and experimental values were compared in order to first identify problematic 

nodes (for which the experimental values did not seem reliable) and remove them from 

data set. In Tables 3 and 4, it is possible to see that the COMAC had poor values for 

node 73 considering the excitation at both driving points 18 and 62. After the final 

verification, the spring constants of both slabs supports were considered to remain 

constant until the collapse and the changes on frequency were obtained through changes 

in the Young’s module of concrete. It must be mentioned that other support node 

conditions are available in the literature, as shown in the research of Freitas (2019). 

 

COMAC VALUES - S2 - EXCITATION AT POINT 62 

  NODE COMAC   NODE COMAC 

F
R
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N

T
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1 0,9686 

B
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C
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N
O

D
E

S
 

71 0,7643 

2 0,8822 72 0,4340 

3 0,6079 73 0,0099 

4 0,5162 74 0,2603 

5 0,6165 75 0,5950 

6 0,3141 76 0,7701 

7 0,6232 77 0,8521 
Table 3 – COMAC values for S2 support nodes for excitation at node 62 
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COMAC VALUES - S2 - EXCITATION AT POINT 18 

  NODE COMAC   NODE COMAC 

F
R
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1 0,633799 

B
A
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U

P
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71 0,895816 

2 0,671302 72 0,737826 

3 0,22148 73 0,05 

4 0,515105 74 0,44449 

5 0,541705 75 0,285479 

6 0,525643 76 0,802916 

7 0,82411 77 0,930627 
Table 4 – COMAC values for S2 support nodes for excitation at node 18 

 

 Once the spring constants of the support nodes were defined in each slab, the 

next step was a choice of numerical mesh. For the definition of the final computer 

model, an initial analysis was made evaluating the nodal displacement of both slabs for 

unitary load lines in the same position of the experimental setup (1/3 and 2/3 of main 

span). The comparison was made between the results from the numerical model with a 

mesh identical to the experimental mesh and a refined version (where the number of 

divisions in each edge was doubled). The displacement of nodes in the central line along 

the width of the slab is shown in Figure 58 for S1 with a “experimental” mesh and 

Figure 59 for S1 with a refined mesh. 

 

 
Figure 58 – S1 experimental model in (a) CAD version and (b) numerical analysis software with unitary 

load line and displacement measured at central node line (arrow highlights the central line). 
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Figure 59 – S1 refined numerical model with unitary load line. 

 

 After model refinement, nodal displacements can be numerically evaluated to 

compare their changes. Figures 60 and 61 shows equivalent nodes (from the top to 

down direction). Comparing equivalent nodes from gross mesh to the refined mesh used 

(for example, nodes 8 in gross to node 14 in refined, node 49 in gross mesh to node 199 

in the refined), it it is observed the the maximum difference in displacement is less the 

0.3%. Although the evaluation of the model adequacy could have been made using 

experimental nodal displacements, there are some limitations. The first is that there are 

a low number of LVDTs available: only one was used in S1 and despite the fact that 

two where used in S2, only one was in fact trustful in the tests. The second is that the 

numerical model was created for an unloading situation while the real structures are 

subjected to several loading and unloading stages. Based on these facts, the evaluation 

of mesh refinement was based in frequencies and mode shapes (through MAC index), 

as will be discussed later on. The evaluation of adequacy of the model based on 

unloading condition for the loading condition is also discussed in results section. 



65 

 

 
Figure 60 – S1 comparison of nodal displacement for unitary load line. 

 

 
Figure 61 – S2 comparison of nodal displacement for unitary load line. 

 

3.6. Crack modelling 

Both slabs were designed as beam strips subjected to four-point loads (Figure 

62). In fact, as Slabs 1 and 2 are one-way slabs, the bending moment diagram in this 

kind of structure is constant across the width of the element, what allows the design 
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procedure to employ a beam strip of unit width, using the same formulas and procedures 

for rectangular beams elements (Chen and Lui, 2004).  

 
Figure 62 – Slab considered as simply supported beam. 

 

The first visible crack in S1 appeared for the load of 8 kN while for S2 it 

occurred at 15 kN. It is possible to evaluate the correspondence of the phenomenon with 

the calculated cracking moment, which is the moment that causes the first crack to 

appear. According to brazilian concrete design standard NBR 6118/2014, the cracking 

moment of a concrete element is given by Equation 7: 

𝑀𝐶𝑅 = (α ∗ 𝑓𝐶𝑇 ∗ 𝐼𝐺)/𝑌𝑡         (7) 

where α is a factor that aproximately correlates concrete’s tension strength in bending to 

direct tension strength. The value of α is 1.2 for T or double-T sections and 1.5 for 

rectangular sections. The value fCT is the direct tension strength of concrete. For 

excessive crack formation, according to NBR 6118/2014 standard: 

𝑓𝐶𝑇 = 0.21 ∗ 𝑓𝑐𝑘

2

3 , 𝑀𝑃𝑎         (8) 

IG is the gross moment of inertia (reinforcement is neglected) 

Yt is the distance from neutral axis to the most extreme fiber subjected to tension. 

 For both slabs: 

𝐼𝐺 = (𝑏 ∗ ℎ³)/12        (9) 

𝑌𝑡 = (ℎ𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑠𝑙𝑎𝑏)/2 = 0.04 𝑚       (10) 

Making the inverse way it is possible to find the load P that generates the 

cracking moment. Considering both rectangular sections (S1 having 1.35m x 0.08 m 

and S2 having 1.65m x 0.08 m), the cracking moments of slabs 1 and 2 were equivalent 
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to a load of, respectively, 7.69 kN and 13.62 kN. Considering that load tests, the first 

cracks appeared at 8 kN for S1 and 15 kN for S2; it is, thus, in accordance to the 

theoretical calculations. 

In sequence, cracks produce changes in a section of concrete subjected to 

bending, as shown in Figure 63.  

 
Figure 63 – Cracking in a reinforced concrete element subjected to flexure (a) produce changes in (b) 

bending moment distribution, (c) bond stress distribution, (d) concrete tensile stress distribution and (e) 

flexural rigidity distribution. (Source: Park and Paulay, 1975) 

 

Considering the flexural stiffness EI, there is a reduction caused by cracking. 

Based on ACI 318 and NBR 6118, the moment of inertia of a cracked section of 

concrete (Icr) in a stage where the contribution of cracked concrete is not considered (as 

shown in Figure 64) is: 

𝐼𝑐𝑟 =
𝑏∗𝑥3

12
+ 𝑏 ∗ 𝑥 ∗ (

𝑥

2
)

2

+ α𝑒𝑞 ∗ A𝑠𝑡𝑒𝑒𝑙 ∗ (𝑑 − 𝑥)²    (11) 

The position of neutral axis x is given by: 

𝑏

2
∗ 𝑥2 + α𝑒𝑞 ∗ A𝑠𝑡𝑒𝑒𝑙 ∗ 𝑥 − α𝑒𝑞 ∗ A𝑠𝑡𝑒𝑒𝑙 ∗ d = 0    (12) 
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The value αeq converts concrete into steel by dividing the elastic module of both 

materials (αeq = Eeteel /Esc, where Esteel = 210 GPa according to NBR6118/2014 and Esc 

comes from Equations 5 and 6). In Eq. (11), x stands for the position of neutral axis 

with respect to the top border of the section, and d is the distance between the center of 

gravity of reinforcement and the compressed edge. According to ACI 318 and NBR 

6118/2014, the following approximation gives reasonable results for the equivalent 

moment of inertia of a cracked section as the applied moment increases: 

𝐼𝑒𝑞 = (
𝑀𝐶𝑟

𝑀𝑎
)

3

∗ 𝐼𝐺 + [1 − (
𝑀𝐶𝑟

𝑀𝑎
)

3

] ∗ 𝐼𝑐𝑟 ≤ 𝐼𝐺    (13) 

 

where Ma is the maximum service load moment (unfactored) in member at stage of 

deflection is computed (the moment in the section at that stage of load) and MCR is the 

cracking moment. It can also be noticed that the equivalent moment of inertia Ieq is, at 

most, equal to the gross moment of intertia. Calculating the equivalent moment of 

intertia (that occurs after the section reaches the cracking moment) for both slabs and 

dividing by the gross moment of inertia, a factor of stiffness reduction can be found. 

The results are arranged in Table 5 for S1 and Table 6 for S2. 

 

 

Figure 64 – Stress distribution in a concrete section in flexure with no contribution of concrete. 

 

  

Load 

(kN) (Mcr/Ma)³ Ie (cm^4) Ie/Ig 

8 0,889678 5186,296 0,9004 

16 0,111210 1138,030 0,1976 

22 0,042779 782,172 0,1358 

24 0,032951 731,062 0,1269 
Table 5 – Ratio between moments of intertia for S1 
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Load 

(kN) (Mcr/Ma)³ Ie (cm^4) Ie/Ig 

15 0,742198 5467,241 0,7766 

17 0,509855 4049,802 0,5753 

18 0,412285 3454,564 0,4907 

21 0,270480 2589,464 0,3678 

24 0,181201 2044,802 0,2905 

27 0,127263 1715,748 0,2437 

42,5 0,032631 1138,430 0,1617 

62,5 0,010260 1001,956 0,1423 
Table 6 – Ratio between moments of intertia for S2 

  

 The ratios of moment of inertia confirms a decrease in stiffness due to cracking. 

As both slabs are simply supported structures, that is, statically determined (isostatic), 

the stiffness distribution keeps depending on load configuration even after reaching the 

cracking moment, as can be seen on moment-curvature curve shown in Figure 65. It can 

be concluded that there is a direct relationship between moment applied and curvature 

of section and the link between them is the stifness EI which is the slope of this graph. 

Based on this fact and considering that S2 presented a decrease in frequency until the 

the level of 12 kN (before cracking moment was reached), a linear decrease of stiffness 

is proposed, based on moment applied as shown in Figure 66. The moment distribution 

has a trapezoid shape. As the moment applied increases from M1 to M2, more regions 

reach the cracking moment. For a line of finite elements at the same distance x from the 

origin, the proportional stiffness reduction was the same. The ratio used to decrease the 

stiffness considered the position of the element at that level of load and the quotient 

between the moment generated by the applied load P and the ultimate load moment 

(caused by a force of 62.5 kN). This modeling has already been tested for reinforced 

concrete cracked beams by other authors as Castel et al (2012) or Xu et al  (2018). As 

the bending stiffness is the product of Young’s module E and moment of inertia I, the 

reduction of stifness was made by penalising E. The model was initially considered 

isotropic and then was evaluated considering an orthotropic aproach. 
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Figure 65 – Moment-curvature curve for a reinforced concrete section. 

 

 
Figure 66 – Moment distribution for different levels of load. 

 

 Some visual indicators can corroborate the model adopted. For example, to the 

collapsed slab it is expected that the moment of cracking started at 33 cm from the 

support line. In an in-situ inspection it can be confirmed that this is the distance from 

the center line of support to the closer visible crack, as shown in Figure 67. 
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Figure 67 – Visual crack in the bottom of S2. 

 

Another fact that agrees with the initial consideration of linear material is that, as 

shown in Equation 1, there is a direct relationship between frequency and stiffness, 

which is related to the load applied. Ploting frequency against square-root of load 

applied in Figure 68, it can be seen that there is a linear relation until 12 kN, followed 

by a change of slope in the next load level because the cracking moment was reached.  

 
Figure 68 – Frequency versus square-root of load for S2 

In addition to the reduction of inertia for the region that overcome the cracking 

moment, the presence of a visible crack also produces local stiffness reduction. 

Christides and Barr (1984) considered the effect of a crack in a continuous beam and 

calculated the stiffness, EI, for a rectangular beam adopting an exponential function 

given by 

EI(x) = (EI0)/(1 + C ∗ 𝑒(−2α|y − yj|/h))     (14) 

where C = (I0 - Icj)/Icj, I0 = w*h³/12 and Icj = w(h- hcj)³/12 are the second moment of 

areas of the undamaged beam and at the jth crack, w and h are the width and depth of 

the undamaged beam, and hcj is the crack depth. y is the position along the beam and yj 
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the position of the crack; finally, α is a constant that Christides and Barr estimated from 

experiments to be 0.667. Sinha et al (2002) used a simplified approach, where the 

stiffness reduction of Christides and Barr (1984) was approximated by a triangular 

reduction in stiffness. It should be mentioned that, based in this model of crack, nearby 

cracks causes superposition of stiffness loss. This approach was tested by Friswell and 

Penny (2002) for different crack depths in numerical modeling using the models of 

Sinha et al. (2002) and Christides and Barr (1984) and the crack effects of both models 

are illustrated in Figure 69. The squares represents the ares of influence of a crack 

where the peak of stifnness loss is located in the exact position of the crack. It is 

important to mention that a superposition of stiffness loss can happen for cracks close to 

other cracks. 

 

 
Figure 69 – Variation of stiffness using approaches of Christides and Barr (1984) (curved line) 

and Sinha et al (2002) (straight line) for crack depth of (a) 5% and (b) 25%. 

 

For both slabs, two main models were used: 

• In the named “Model 1”, for the region reaching crack moment of inertia, 

the elastic module was reduced through a factor obtained by the ratio of 

equivalent moment of intertia (Ieq in Equation 13) and the gross moment 

of inertia (Ig where the section was considered composed only by 

concrete and uncracked). As the load level increases, the reduction 

factors produded higher decrease of stiffness and more regions reaches 

cracking moment; 

• In the named “Model 2, for the elements that contained cracks, an initial 

reduction of 0.85 was used to consider the local stiffness reduction 

caused by a crack with 5% depth based in Christides and Barr (1984), 

increasing this loss for higher load levels. This initial consideration of 
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crack deepness was made since no experimental measurement was 

available. 

For “Model 2”, based on Christides and Barr (1984) and Sinha et al (2002), the 

area of incluence of new cracks was set as three times the slab thickness (3*8cm = 24 

cm) for both slabs. Since no information about the crack’s depth was available, they 

were initially set as 5% of slab height (4.2 mm). The older the crack, the more intense 

was the local loss. Additionally, the elements with new cracks (for a given level of load) 

and already containing cracks of previous load levels had an additional loss of sitffness. 

In fact, for the load level of 15 kN in S2, for example, not only the first crack appeared 

because the moment of cracking was exceeded but also edge crack reaching more than 

half the slab thickness also appeared, as shown in Figure 70. 

  

Figure 70 – Lateral cracks on S2 for different load levels. 

 

For both models mentioned above, two constitutive relations were used: an 

isotropic and an orthotropic model. In a linear regime, the shear modulus of concrete is 

given by Equation 15, which was used in the isotropic model. In the isotropic model, 

the reduction of stiffness was the same in both directions. 

𝐺(𝑥𝑦) = (𝐸𝑥)/2(1 + 𝜈)        (15) 

When the element used was orthotropic, due to the direction of cracks, the 

elastic modulus in x-direction was penalized in order to simulate a stiffness reduction, 

which was reduced only in the direction along the main span. The shear modulus of 

orthotropic linear material is given by Equation 16: 

𝐺(𝑥𝑦) = (𝐸𝑥 ∗ 𝐸𝑦)/(𝐸𝑥 + 𝐸𝑦 + 2 ∗ 𝜈 ∗ 𝐸𝑦)     (16) 

In order to illustrate the decrease of elastic modulus based on the distribution of 

moment at each stage of load, the position of the element and the final moment (at the 
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collapse load), Figure 71 shows a scheme of the adopted method. The reductions are 

made over the initial elastic module Ebeginning described in section 3.5. It can be seen 

that the higher the load level and the closer to the load line, the higher the elastic 

module decrease (what implies in stiffness “EI” reduction”). This method of reduction 

was used in Model 1 for the elements that did not reach the cracking moment and in 

Model 2 in the elements that did not show visible cracks. A basic fluxogram of the 

whole process os slab testing and modeling is shown in Figure 72. 

 

Figure 71 – Stiffness EI reduction based on moment distribution and element position. 
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Figure 72 – Scheme of slabs testing and modeling. 

4.RESULTS AND DISCUSSION 

4.1. Static Load 

a) S1 

For S1, three load levels were used: 8 kN, 16 kN, 22 kN, that represented 33,33%, 

66,67% and 91,67% of the collapse load, the latter being 24 kN. Although both slabs 

used the same loading system (beams at 1/3 and 2/3 of main span) and the measurement 

of displacement was made for all loading and unloading stages, measurements were 

made writing manually some points just for loading, what makes an evaluation of load 

versus displacement unable for S1. 

 

b) S2 

For S2, ten load stages were used in order to evaluate slab behavior about modal 

properties and cracking pattern. The stages were 3 kN, 6 kN, 9 kN, 12 kN, 15 kN, 18 

kN, 21 kN, 24 kN, 27 kN and 42.5 kN, and the collapse was reached for a load of 62.5 

kN. The displacement versus load is shown in Figure 74. An initial horizontal step is 

observed before deflection starts and it can be caused by an accommodation of the 

loading beams used for testing (the interface between loading beams and slab was filled 
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with plaster) or caused by an equipment error. For instance, for load level of 24 kN the 

graph shows that deflection starts only after 21 kN load level, what means that the data 

for this level is no longer trustworthy. For S2 the first visible crack began at the stage of 

15 kN and this is the first loading level after cracking moment is reached, what can be 

observed in the change of loading slope shown in Figure 77. The changes in slopes at 

loading curves will be discussed later on. 

 

Figure 73 – Displacement of S2 along load. 

 

 

Figure 74 – Displacement of S2 along 15 kN load stage. 
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4.2. Impact tests on slabs 

4.2.1. Evaluating sources of error 

 

Prior to signal processing in time domain (particularly for evaluation of 

frequency along decay), it is important to have accuracy in determining the natural 

frequency in each vibration cycle. From the acquisition rate of 1/1024 s (1024 Hz) used 

in both slabs, one may think that the error in time domain are of aproximately +/- 

0.001s. For the second slab, in special, the reduction in natural frequencies is related to 

a change in period of vibration around the error range previously mentioned. For S2, for 

example, the first experimental frequency is f1 = 19.06 Hz, meaning a period of t1= 

0.05246 s for the undamaged state. When the error is added (+/- 0.001s), the frequency 

range from the error is (18.70 Hz; 19.43 Hz), meaning a difference of +/- 0.37 Hz.  

In fact, the error in frequency is lower than the one previously mentioned. To 

evaluate it, a simple and undamped system ruled by and harmonic function will 

represent S2 vibrating in one of its modes, as shown in Equation 17: 

𝑋 (𝑡) = 𝐴0 ∗ sin(𝜔0𝑡)        (17) 

where A0 is the amplitude of movement, ω0 is the angular frequency and t is the time. 

Consider, for instance, that this system has the same amplitude of a signal in 

time domain used for gradient obtainment in S2 (for instance, with a value of 0.02 V), 

and the same frequency f1 =19.06 Hz of the first mode (which means that ω0 = 2* π* f1 

= 119.697 rad/s). Plotting the graph of Equation 17 and making an interpolation 

between two consecutive points, as shown in Figure 75, the time Δt can be obtained. 

The time Δt is the difference between two consecutive points of the discrete time 

domain signal, the actual one and the interpolated, as shown in Figure 76. The 

maximum error that can occur when evaluating the period of the vibration cycle is twice 

Δt (at the beginning and the end of sine curve). In the most unfavourable situation, 

Δt=9.3578e-6 from the interpolation shown in Figure 76, and the maximum error is t = 

2*Δt, which is not significant. 
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Figure 75 – Harmonic undamped system plot. 

 

 

Figure 76 – Detail of maximum possible error. 

 

Another possible source of error is the level of noise at which the structure is 

subjected. As can be seen in Figure 77 for S2 for the spectrum obtained by considering 
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the ambient excitation sources only, the noise level is significantly lower than the 

produced by an impact excitation, meaning that it it is negligible 

 

Figure 77 – Noise level in S2 at point 18. 

 

4.2.2. Results from modal testing 

As mentioned in the previous section, repeatability, reciprocity and linearity 

tests were performed in order to follow the behavior of slabs as damage increased (the 

result of a cracking process). The results of repeatability tests for S1 were processed by 

Guedes (2016) and are shown in Figures 78 to 85. Linearity tests indicate that, for 

increasing damage levels, less agreement is observed at the same excitation point. As 

the structure cracks, the opening and closing of the crack makes excitation at different 

nodes in reciprocity test excites much one frequency than other. 
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Figure 78 – Reciprocity test for S1 in 0 kN load level. (Guedes, 2016) 

 

 

Figure 79 – Reciprocity test for S1 in 8 kN load level. (Guedes, 2016) 
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Figure 80 – Reciprocity test for S1 in 16 kN load level. (Guedes, 2016) 

 

 

Figure 81 – Reciprocity test for S1 in 22 kN load level. (Guedes, 2016) 

 

The results of linearity test in S1 (Figures 82 to 85) shows that, for increasing 

load levels, stronger impact excitations produced shift in frequency in comparison to 

normal impact excitation, an indicator of change in linear behavior. 
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Figure 82 – Linearity test of S1 for undamaged state. (Guedes, 2016) 

 

 

Figure 83 – Linearity test of S1 for loading level of 8 kN. (Guedes, 2016) 
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Figure 84 – Linearity test of S1 for loading level of 16 kN. (Guedes, 2016) 

 

 

 

 

Figure 85 – Linearity test of S1 for loading level of 22 kN. (Guedes, 2016) 

 

 The test of repeatability of S2 for the undamaged (0 kN) state shows good 

agreement in the peaks of frequency of interest (the three initial peaks), what is an 

indicator of linear behavior for the undamaged structure, as shown in Figure 86 for one 
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of the driving points. As for the reciprocity test, it could be noticed that the 

supperposition of FRFs tends to decrease with the increase of load level, as shown in 

Figures 87 to 95. In agreement to the repetability test made in the undamaged structure 

(Figure 86), the reciprocity for the same load level of 0 kN shows supperposition in the 

peaks of frequency (Figure 87). When load level increases, the magnitude of the signal 

in the peaks change (Figures 89 to 95), in agreement to a reduction of stiffness due to 

cracking process. It is also noticed in the reciprotity test that the impact at different 

points produce different peaks of frequency as the damage increase. For load of 18 kN, 

for example, the excitation at node 18 excites more the first and third modes while the 

excitation at node 62 excites more the second mode. 

 

 

Figure 86 – Repeatability of S2 for 0 kN load level. 
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Figure 87 – Reciprocity test of S2 for 0 kN load level. 

 

 

Figure 88 – Reciprocity test of S2 for 9 kN load level. 
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Figure 89 – Reciprocity test of S2 for 12 kN load level. 

 

 

Figure 90 – Reciprocity test of S2 for 15 kN load level. 
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Figure 91 – Reciprocity test of S2 for 18 kN load level. 

 

 

Figure 92 – Reciprocity test of S2 for 21 kN load level. 
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Figure 93 – Reciprocity test of S2 for 24 kN load level.. 

 

 

Figure 94 – Reciprocity test of S2 for 27 kN load level. 
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Figure 95 – Reciprocity test of S2 for 42.5 kN load level. 

 

 For linearity tests, it could be observed that an agreement at peaks of frequencies 

remained as damage increased but between peaks the divergence remained (Figures 96 

to 98). For S2, linearity test showed that there was a better superposition of the signals 

in comparison to S1 (superposition in magnitude and frequency), while S1 had different 

peak magnitude and frequency shift.  

 

Figure 96 – Linearity test of S2 for 15 kN load level. 
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Figure 97 – Linearity test of S2 for 18 kN load level. 

 

 

Figure 98 – Linearity test of S2 for 42.5 kN load level. 
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After the whole modal testing, the frequencies of interest were obtained. The 

three initial natural frequencies are listed in Tables 7 and 8. The results shown in Table 

7 were initially obtained by Guedes (2016) but an incorrect frequency value was 

detected after data reprocessing, so Table 7 presents the correct values. In both slabs, 

the first and third experimental frequencies were the first and second of bending, 

respectively. The second experimental mode was the first torsional. This can be seen in 

Figures 99 and 100. 

 

S1 - Evolution of frequencies to load level 

Frequency 

Mode 

(experimental) 

LOAD LEVEL (kN) 

0 8 16 22 24 

1st 16.60 15.92 11.58 11.13 

C
O

L
L

A
P

S
E

 

2nd 33.36 31.17 32.44 32.46 

3rd 58.63 55.53 49.33 47.87 

Table 7 – Evolution of natural frequencies in S1 from modal testing 

S2 - Evolution of frequencies to load level (driving point 18) 

Frequency 

Mode 

(experimental) 

LOAD LEVEL (kN) 

0 3 6 9 12 15 18 21 24 27 42,5 62,5 

1st  19,06 18,81 18,77 18,70 18,68 16,62 14,02 15,15 14,15 14,62 15,22 

C
O

L
L

A
P

S
E

 
2nd 33,25 32,37 31,98 32,46 31,63 30,26 29,87 28,33 36,03 29,06 28,29 

3rd 43,92 43,50 43,32 42,74 42,69 42,50 39,72 38,32 40,57 36,97 37,58 
Table 8 – Evolution of natural frequencies in S2 from modal testing 

 

 

Figure 99 – Mode shapes of S1 for 0kN load level. 
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Figure 100 – Mode shapes of S2 for 0kN load level. 

 

4.2.3. Cracking and natural frequency 

The pattern of cracking for both slabs are shown in Figures 101 and 102, until 

near or at the collapse. In order to compare both slabs, the same applied load levels were 

adopted. A difference is observed in the crack intensity in early load levels (33% of 

collapse load), in which S2 showed a much severe crack rise. Both slabs S1 and S2 have 

transverse reinforcement, but with different ratio. As explained by Pillai and Menon 

(2005), while beams on bending moments tend to deform to a trapezoid (as 

exaggeratedly shown in Figura 103-a) due to Poisson effect (so the hypothesis of plane 

section is not strictly right), one-way slabs are restrained laterally, what generates 

secondary moments that are resisted by transverse reinforcement, as shown in Figure 

103-b. The difference in the ratio used in both elements can be a cause for the difference 

in the cracking pattern. Change on reinforcement is a factor that can cause variation in 

cracking pattern. Han (2011) evaluated the influence of transverse reinforcement 

spacing on the cracking behavior in slab strips through a proposed model and compared 

it to the values predicted by standard DIN1045. Other evaluation of transverse 

reinforcement spacing effects on cracks in one-way and two-way slabs can be found in 

Han et al (2011). Gurutzeaga et al (2015) evaluated the influence of the bottom 

transverse reinforcement and longitudinal bar spacing in one-way slabs and beams 

subjected to shear and concluded that slabs with a large longitudinal bar spacing show a 

less rigid load-deformation behaviour. 
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Figure 101 – Cracking evolution in S1 for (a) 33,3%, (b) 66,7% and (c) 91,7% of ultimate load 

 

 

Figure 102 – Cracking evolution in S2 for (a) 33,6%, (b) 68% and (c) ultimate load 

 

 
Figure 103 – Bending in (a) rectangular beam and (b) one-way slab. 
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The fundamental natural frequencies of uncracked and cracked slabs are shown in 

Figure 104 as a function of the percentage of collapse load, and thus, the crack level. 

There is a decrease in the first natural frequency of S1, as observed in several tested RC 

elements (Pesic et al., 2015). The behaviour of S2 is similar to S1 up to 40% of collapse 

load; after that, it showed an almost steady value of natural frequency until 70% of 

collapse load. It was not possible to carry on measurements at high levels of load for 

this slab due to a testing problem. However, since cracking reduces the stiffness of the 

slab and thus its natural frequency, it can be seen that the changes of natural frequency 

in each slab are consistent with its respective cracking pattern. This is because the 

cracking intensity is much higher in S2 than in S1 for low percentage levels of applied 

load. S2 also has a variation of natural frequency to damage that resembles the 

behaviour observed in Hamad et al. (2014), in which the fundamental natural frequency 

stabilized after 60% of collapse load. 

 

Figure 104 – Natural frequency versus percentage of ultimate load 

4.2.4. Gradient of natural frequency 

Natural frequencies grew along the decay of response after impact excitation, as 

the cracks initially opened tend to close with the reduction of vibration level. This made 

it possible to obtain curves of variation of natural frequency along the decay. For a 

given modal test, since the level of vibration differed among different test points, first 

each response signal had a decay interval selected for further processing, in order to 

keep constant the amplitude of the first cycle of vibration among the signals. In 

sequence, the natural frequency was calculated for each vibration cycle; a curve was 

then obtained when plotting the natural frequency against the cycle number. Linear 

regression was then applied, and a gradient was obtained from the curve. This procedure 
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was repeated for several test points in each cracking stage, and then an average 

regression line was produced for that stage of induced cracking. Finally, in order to 

better compare frequency regression lines from different cracking conditions, each 

average regression line was replotted employing relative frequency values, which were 

obtained by taking the ratio of the instantaneous natural frequency and the maximum 

natural frequency observed in that respective regression line. The value of the gradient 

of each final average regression line representative of a cracking condition was 

calculated and plotted in Figure 105, against the percentage of ultimate load applied to 

induce cracking in the respective slab. 

 

 

 

Figure 105 – Gradient of frequency regression lines versus percentage of ultimate load 

 

The pattern of changes of the gradient in S2 is in accordance with results obtained 

for beams tested in similar conditions by Neild et al. (2003) and Wang et al. (2012), 

who observed that the gradient grew until an intermediate level of damage and then 

decreased. Herein, the growth of the gradient occurred for S2 until 33% of collapse 

load, and then reduced for the following load levels. However, for S1, there is growth of 

the gradient until near the collapse. A possible explanation for this difference would be 

a distinct balance between the existing breathing and open cracks in both slabs for a 

given percentage of collapse load, reminding that it is the breathing crack that causes 

the variation of natural frequency along the decay. Still regarding this, it could be 

argued that that amplitude dependent material behaviour would lead to changes in 

natural frequencies along the decay, independent of the cracking condition and even for 
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the uncracked state. This was already investigated (Pimentel et al., 2017) and it was 

shown that the gradient of time-frequency curves due to damage could be distinguished 

from other causes related to nonlinear behaviour of the tested slabs.  

Reinforced concrete slabs can present a residual deflection after unloading and 

some of the cracks remain open, as noticed by Mahowald et al. (2010) in reinforced 

concrete slabs. However, it was not possible to quantify the number of open and 

breathing cracks for each cracking stage. On the other hand, a clue regarding the 

cracking behaviour could be made by plotting the total length of existing cracks versus 

the percentage of collapse load. This is shown in Figure 106 and it is possible to notice 

a difference in the behavior of the crack opening rate between the two slabs, from the 

slope of the curves. While S1 shows increasing slope (that is, crack rate) with damage 

level, S2 shows a decrease in crack rate. A probable cause of this difference in crack 

rate is that the S2 had more cracks for a lower percentage of collapse load when 

compared to S1. This can be visually confirmed (Figs. 101 and 102) from the different 

crack evolution pattern in both slabs. By considering that old cracks are wider than new 

cracks, the former tended to be of the open type, as opposite to new cracks that tended 

to be more of the breathing type. This way, S2 would have a greater incidence of open 

cracks for higher cracking levels than S1. This leads to a difference in nonlinear 

behavior between the two slabs, implying different behavior of the gradients of 

frequency, as seen in Figure 98. It should be noted that the behaviour of the gradient 

depicted in Figure 105 is consistent with the difference in cracking evolution between 

the two slabs shown in Figure 106.  

 

 

Figure 106 – Cracking evolution in S2 for (a) 33,6%, (b) 68% and (c) ultimate load 
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4.2.5. Gradient versus global damage index 

It is possible to relate the gradient of the frequency-decay curves and a global 

damage index based on the variation of the fundamental natural frequency. Rodriguez-

Gómes and Cakmak (1990) proposed a damage index based on the relationship between 

the changes of natural frequency at the beginning and ending of the decay. Pimentel et 

al. (2017) introduced a modification of this index (DIm), shown in Equation 18, to make 

a comparison of the structural condition when cracked with its respective uncracked 

stage, by adopting the initial natural frequency wo for the undamaged state, and the final 

natural frequency wn as the natural frequency of damaged stage. These frequencies 

where obtained from processing the signals for each load stage, using StarModal 

software. 

𝐷𝐼𝑚 = 1 − (
𝑤𝑛

𝑤0
)²        (18) 

The plot between the damage index DIm and the gradient for both slabs is shown 

in Figure 107. While the index grows steadily with the increase of damage level for S1, 

the pattern on S2 is similar to S1 until a certain load level (corresponding to 33.6% of 

the collapse load), and after that the damage index stabilizes. Since natural frequencies 

did not show expressive change in S2 for higher levels of damage, there is no 

significant changes of its damage index, as expected, while the same natural frequencies 

decrease until the last load level for S1. On the other hand, for initial damage levels, the 

curves obtained for both slabs are very similar until a damage index DIm around 0.3, 

what implies that both slabs had reduction of the frequency with the load level until this 

damage index value.  
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Figure 107 – Dim versus gradient for slabs 1 and 2 

 

 

4.3. Numerical modeling: evaluation of numerical mesh 

It can be argued the effect of the chosen mesh on MAC calculation since there is 

a direct relationship of both (Chen, Zhao and Makurat, 2000; Nefske and Sung, 1996). 

To investigate the effect of the mesh used in comparison to the experimental (gross) 

mesh, a new model was tested, were both frequencies and MAC were compared with 

the experimental data. In the new model named “R” (refined), each previous element of 

the current FE model was divided into 9 smaller elements. The results are shown in 

tables 9 to 12. In both slabs there is a numerical stabilization comparing the used mesh 

(U) to the refined mesh (R). For S1 the first frequency shows a decrease in the first 

frequency when the mesh is refined while the second and third frequencies remain 

stable. MAC values are not affected by refinement. 

 

Table 9 – Comparison of frequencies of different model refinements for S1 
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Table 10 – Comparison of MAC of different model refinements for S1 

 

 

Table 11 – Comparison of frequencies of different model refinements for S2 

 

 

Table 12 – Comparison of MAC of different model refinements for S2 

In the case of the cracked slabs, the effect of meshing refinement can be 

demonstrated in Figure 108, considering three adjacent elements in a slab with a crack 

in the center of the middle element. The area of influence of a crack, coming from its 

center, reach an area of three times the height of the slab (Figure 108-a). With 

refinement of mesh, the elements in the neighborhood of the element with crack can 

have a more realistic stifness variation based in Christides and Bar (1984) or Sinha 

(2002) models, as shown in Figure 108-b. 
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Figure 108 – Effect of mesh refinement in the use of stiffnes reduction rules 

   It must be mentioned that the used mesh was also tested for a load level with 

cracks and presented good results in frequency and mode shapes (through MAC 

indicator), what implies in an adequation of the adopted mesh. 

 

4.4. Results from numerical modeling 

For both the isotropic and orthotropic versions of Models 1 and 2, the 

frequencies, mode shapes and nodal displacement are obtained and compared with the 

experimental data. Reminding that in Model 1 the stiffness reduction was made based 

on the cracking moment and in Model 2 the stiffness reduction was made in the 

elements presenting cracks and the area of influence of these cracks. The first three 

frequencies were evaluated in both slabs, which were the first and third ones 

corresponding to the first and second modes in flexure, respectively, and the second 

frequency corresponding to the first torsional mode shape. Tables 13 to 18 shows the 

resulting frequencies obtained in both models for the two slabs. In the column named 

“% diff” it is shown the percentage of difference in frequency of that model to the 

reference value (experimental data). The frequencies of 0 kN are the same for Models 1 

and 2 (isotropic and orthotropic) in both slabs because both considers the presence of 

load: Model 1 starts being applied after the cracking is reached (before this moment is 

achieved the stiffness reduction based on moment distribution is used, as illustrated in 

Figure 71) and Model 2 starts being applied for the first load level (8 kN in S1 and 15 

kN in S2). It must be mentioned that the rule of trapezoid distribution of moment 



101 

 

(shown in Figure 71) remained in use for both models in the elements that did not reach 

the cracking moment (Model 1) or did not show visible cracks (Model 2). In S2 there 

was a frequency reduction until the first visible crack was seen and, to compute this 

decrease, the elastic module decrease (as Figure 70 shows) was applied in all the 

elements and remained in use even in the next load levels for the elements that did not 

show visible cracks. For Model 2, the same happened for the elements that did not have 

visible cracks or were not in the area of influence of a crack. 

 S1 

1
st

 F
re

q
u

en
cy

 

Load 
Level 
(kN) 

Experimental 
results (Hz) 

Model 1 (ACI) 
Model 2 (Christides and Barr 

(1984)) 

ISO % diff ORTHO % diff ISO % diff ORTHO % diff 

0 16,600 15,57 6,23 15,57 6,23 15,57 6,23 15,57 6,23 

8 15,920 12,97 18,51 12,78 19,74 13,62 14,43 13,58 14,72 

16 11,580 4,92 57,50 4,82 58,40 11,95 -3,23 11,87 -2,51 

22 11,130 4,05 63,61 2,11 81,08 10,34 7,11 10,24 8,01 
Table 13 – First frequency in S1 for the two models 

 S1 

2
n

d
 F

re
q

u
e

n
cy

 

Load 
Level 
(kN) 

Experimental 
results (Hz) 

Model 1 (ACI) 
Model 2 (Christides and Barr 

(1984)) 

ISO % diff ORTHO % diff ISO % diff ORTHO % diff 

0 33,360 37,97 
-

13,81 
37,97 

-
13,81 

37,97 -13,81 37,97 -13,81 

8 31,170 36,24 
-

16,27 
37,00 

-
18,70 

36,39 -16,75 37,12 -19,10 

16 32,440 24,76 23,66 24,21 25,36 34,82 -7,34 36,25 -11,75 

22 32,460 15,68 51,69 11,97 63,13 33,43 -3,00 35,36 -8,93 
Table 14 – Second frequency in S1 for the two models 

 

 S1 

3
rd

 F
re

q
u

en
cy

 

Load 
Level 
(kN) 

Experimental 
results (Hz) 

Model 1 (ACI) 
Model 2 (Christides and Barr 

(1984)) 

ISO % diff ORTHO % diff ISO % diff ORTHO % diff 

0 58,630 51,475 12,204 51,475 12,204 51,475 12,204 51,475 12,204 

8 55,530 47,420 14,605 47,999 13,562 47,743 14,023 47,578 14,320 

16 49,660 28,055 43,506 31,626 36,315 43,893 11,613 43,596 12,211 

22 47,870 23,403 51,111 23,123 51,696 40,411 15,582 40,019 16,401 
Table 15 – Third frequency in S1 for the two models 
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 S2 

1
st

 F
re

q
u

en
cy

 
Load 
Level 
(kN) 

Experimental 
results (Hz) 

Model 1 (ACI) 
Model 2 (Christides and Barr 

(1984)) 

ISO 
% 

diff 
ORTHO 

% 
diff 

ISO % diff ORTHO % diff 

0 19,06 19,24 -0,94 19,24 -0,94 19,24 -0,94 19,24 -0,94 

3 18,81 19,01 -1,05 19,00 -1,00 19,01 -1,05 19,01 -1,05 

6 18,77 18,76 0,07 18,74 0,17 18,76 0,07 18,76 0,07 

9 18,70 18,49 1,12 18,46 1,27 18,49 1,12 18,49 1,12 

12 18,68 18,21 2,54 18,17 2,74 18,21 2,54 18,21 2,54 

15 16,62 17,00 -2,26 16,90 -1,67 17,37 -4,49 17,35 4,39 

18 14,02 14,95 -6,63 14,77 -5,34 16,33 -16,50 16,35 16,60 

21 15,15 14,84 2,05 14,64 3,39 15,89 -4,90 15,44 1,88 

24 14,15 12,34 12,79 12,07 14,71 15,36 -8,52 15,32 8,29 

27 14,65 11,24 23,27 10,87 25,82 14,61 0,26 14,58 -0,46 

42,5 15,22 9,12 40,09 8,96 41,16 13,70 10,00 13,71 -9,95 
Table 16 – First frequency in S2 for the two models 

 S2 

2
n

d
 F

re
q

u
e

n
cy

 

Load 
Level 
(kN) 

Experimental 
results (Hz) 

Model 1 (ACI) 
Model 2 (Christides and Barr 

(1984)) 

ISO 
% 

diff 
ORTHO 

% 
diff 

ISO % diff ORTHO % diff 

0 33,25 32,27 2,95 32,27 2,95 32,27 2,95 32,27 2,95 

3 32,37 32,41 -0,14 32,18 0,57 32,41 -0,14 32,18 0,57 

6 31,98 32,01 -0,08 32,09 -0,35 32,01 -0,08 32,09 -0,35 

9 32,46 31,86 1,85 32,00 1,42 31,86 1,85 32,00 1,42 

12 31,63 31,71 -0,25 31,90 -0,84 31,71 -0,25 31,90 -0,84 

15 30,26 31,42 -3,82 31,65 -4,60 31,43 -3,87 31,73 4,84 

18 29,87 30,62 -2,52 31,09 -4,08 31,10 -4,10 31,43 5,23 

21 28,33 30,52 -7,73 31,04 -9,56 30,77 -8,62 31,20 10,13 

24 36,03 29,56 17,97 30,40 15,62 30,36 15,73 30,94 -14,12 

27 29,06 28,68 1,30 29,71 -2,24 29,94 -3,03 30,68 5,57 

42,5 28,29 26,15 7,58 28,18 0,39 29,61 -4,68 30,25 6,94 
Table 17 – Second frequency in S2 for the two models 
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 S2 

3
rd

 F
re

q
u

en
cy

 
Load 
Level 
(kN) 

Experimental 
results (Hz) 

Model 1 (ACI) 
Model 2 (Christides and Barr 

(1984)) 

ISO % diff ORTHO % diff ISO % diff ORTHO % diff 

0 43,92 46,29 -5,40 46,29 -5,40 46,29 -5,40 46,29 -5,40 

3 43,50 46,13 -6,03 46,14 -6,06 46,13 -6,03 46,14 -6,06 

6 43,32 45,95 -6,07 45,98 -6,13 45,95 -6,07 45,98 -6,13 

9 42,74 45,76 -7,07 45,80 -7,16 45,76 -7,07 45,80 -7,16 

12 42,69 45,56 -6,72 45,61 -6,84 45,56 -6,72 45,61 -6,84 

15 42,50 44,97 -5,80 45,03 -5,96 45,17 -6,28 45,21 6,39 

18 39,72 43,71 
-

10,04 
43,77 

-
10,20 

44,56 -12,18 44,66 12,43 

21 38,32 43,61 
-

13,80 
43,67 

-
13,97 

44,01 -14,85 44,10 15,09 

24 40,57 41,54 -2,39 41,49 -2,27 43,55 -7,35 43,68 7,66 

27 36,97 39,57 -7,03 38,91 -5,25 42,77 -15,67 42,88 15,98 

42,5 37,58 34,19 9,03 34,30 8,73 42,68 -13,58 41,68 10,92 
Table 18 – Third frequency in S2 for the two models 

Plotting the results in frequency gives the reader a better overall view about the 

differences between the four models (isotropic for Models 1 and 2 and orthotropic for 

Models 1 and 2). For S1 (Figures 109 to 111), Model 2 produces better results than 

Model 1 for the first three modes. While there is a good visual correspondence for the 

first frequency in Model 2, there is a positive difference of frequency for the second one 

and a negative difference for the third frequency. The use of a higher reduction of local 

stiffness for Model 2 would decrease the difference for the second frequency but would 

increase it for the first and third modes. Model 1, on the other hand, produces growing 

discrepant results for higher load levels. For S2 (Figures 112 to 114), Model 2 produced 

better results than Model 1, similarly to what was observed in S1. The reason why 

Model 1 was not adequate is because it penalizes cracked and uncracked elements in the 

same way and do not considers that some elements can reach cracking moment without 

the presence of visible cracks. Model 2, in a different approach, considered the 

peculiarities given by each crack in the element it appeared and in its neighborhood. 

Finally, in both slabs, there was no considerable diference between isotropic and 

orthotropic elements for the same model. 
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Figure 109 – Comparison of first frequency in S1 for the four numerical models used 

 

Figure 110 – Comparison of second frequency in S1 for the four numerical models used 
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Figure 111 – Comparison of third frequency in S1 for the four numerical models used 

 

 

Figure 112 – Comparison of first frequency in S2 for the four numerical models used 
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Figure 113 – Comparison of second frequency in S2 for the four numerical models used 

 

 

Figure 114 – Comparison of third frequency in S2 for the four numerical models used 
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Since damage affects mode shapes, these can be used to evaluate the correlation 

between experimental and numerical models using MAC (Ngan, Caprani and Bai, 2019; 

Pérez and Serra-López, 2019). For S1, the MAC for the first mode remain similar in the 
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load levels of 16 kN and 22 kN are lower than respective levels for Model 2 (Figures 

116 and 117), which is in agreement with was was observed for frequency results.  

For S2 a first observation must be made: two driving points were used in this 

structure while only one was available for S1. Based on the position of these excitation 

points (nodes 18 and 62 in the experimental mesh as shown in Figure 13) and 

considering that the second frequency measured was the first of torsion (according to 

the modal testing), the experimental data of driving point 18 was used to evaluate the 

MAC of first and third modes while the data of driving point 62 was used to evaluate 

the second vertical mode shape. As the results shows (Figure 118) the compasiron of 

isotropic and orthotropic models shows no significant difference for the first frequency, 

as was observed in S1. For the second frequency (Figure 119), the most visible 

difference among modes occur in the two final load levels, what indicates that the 

model based on inertia changes (Model 1) can reproduce the mode of torsion in a 

similar way of Model 2. A decrease in MAC at the load level of 24 kN in the second 

frequency in comparison to the tendency observed in the previous and next load levels 

seems to be a problem in experimental data. For the third frequency (Figure 120), 

similar results are also seen between the four models and a reduction in the load level of 

12 kN (in comparison to the observed tendency) indicates problem in experimental data. 

Although the correspondence in frequency was poor for Model 1 in S2, the MAC index 

had similar results for the three frequencies evaluates (differently from S1 results). This 

could be due to the influence of the different cracking pattern of both slabs (S2 had 

more cracks in the area between the load lines). 

 

 

Figure 115 – MAC evolution for different models of S1 for the first frequency 
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Figure 116 – MAC evolution for different models of S1 for the second frequency 

 

 

Figure 117 – MAC evolution for different models of S1 for the third frequency 

 

 

Figure 118 – MAC evolution for different models of S2 for the first frequency 
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Figure 119 – MAC evolution for different models of S2 for the second frequency 

 

 

Figure 120 – MAC evolution for different models of S2 for the third frequency 

 

4.5. Evaluation of slope of deflection 

Reinforced concrete is a nonlinear material, what can be confirmed by the 

changes of slope in stress-strain curves due to several loading and unloading stages, 

leaving residual strain (εr), as shown in Figure 121. Taking, for example, the load-

deflection curve for 15 kN load level of S2 (Figure 122), it is possible to see that there 

are two slopes in loading and one in unloading stage. Comparing the slopes of loading 

(m1-a) and unloading (m2) for the same loading level (Figures 123 to 129), the 

proximity of the values in an indication that, although the numerical models of both 

slabs were constructed for the unloading situation (m2 slope) (since the modal testing 

was applied after the removal of the load), it also applies for the loading case.  



110 

 

 

Figure 121 – Stress strain behavior for concrete at load-unload stages 

 

Figure 122 – Load versus displacement for S2 at 15 kN load level 

 

 

Figure 123 – Slopes for S2 loading-unloading at 3 kN load level 
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Figure 124 – Slopes for S2 loading-unloading at 6 kN load level 

 

Figure 125 – Slopes for S2 loading-unloading at 9 kN load level 

 

 

Figure 126 – Slopes for S2 loading-unloading at 12 kN load level 
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Figure 127 – Slopes for S2 loading-unloading at 15 kN load level 

 

 

Figure 128 – Slopes for S2 loading-unloading at 18 kN load level 

 

 

Figure 129 – Slopes for S2 loading-unloading at 21 kN load level 

 

4.6. Mapping the crack depth 

The use of Model 2, based in the works of Christides and Barr (1984) and Sinha 

et al. (2002) was made in a different form. Instead of assigning a crack depth and then 

find the corresponding loss of stiffness factor (Friswell and Penny, 2002), in this paper 

the loss of stiffness was first assigned and the models for two slabs S1 and S2 (isotropic 
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and orthotropic) were checked in frequency and mode shape with the experimental data 

from modal testing as a reference. With great correspondence from Model 2 to 

experimental data, it is possible to find the equivalent crack depth in each element using 

Equation 14. The crack is equivalent since each element can have a crack or can be in 

the area of influence produced by a crack. The results of crack depth mapping are 

shown in Figure 130 for S1 and Figure 131 for S2. A great advantage of the Model 2 it 

that it is possible to detect the areas more penalized by cracks or its influence. 

 

Figure 130 – Crack mapping for S1 

 

 

 

Figure 131 – Crack mapping for S2 

5. CONCLUSIONS 
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Two reinforced simply supported concrete slabs, named S1 and S2, were tested. 

Although they had the same support conditions, dimensions and reinforcement ratios 

were distinct between them, highlighting that the reinforcement ratio of S2 was the 

highest. Different behaviour was observed from the results of the modal test between 

the slabs, that could be related to the differences in the cracking pattern. First, the 

variation of the first natural frequency for different damage levels was evaluated. The 

S1 presented monotonic decrease of the fundamental frequency as the static load 

increased (and so the induced crack). On the contrary, S2 presented a decrease of 

natural frequency until about 40% of collapse load and then it became steady until the 

last load level tested. 

A global damage index based on a relationship between the fundamental natural 

frequency of each slab with respect to the natural frequency of the uncracked state was 

evaluated and both slabs showed similar behavior until a certain value of the damage 

(0.3); after that the slabs showed different pattern. This behavior of changes of the 

damage index followed the pattern of variation of the natural frequencies in both slabs, 

since the damage index was based on changes of the natural frequency. However, the 

rise of nonlinear effects for high levels of damage might cause the use of natural 

frequency not suitable in terms of identifying the level of damage, as it occurred in S2. 

On the other hand, the correlation between the damage index and the gradient was 

significant for low levels of damage, making it possible to relate the gradient to the 

intensity of damage. 

Two numerical models were then elaborated for both slabs following the same 

rules, one based on a relationship of the inertia of the regions that reached the cracked 

moment (named Model 1) and the other based on the stiffness reduction caused by 

visible cracks (named Model 2). Isotropic and orthotropic elements were tested for both 

models. For S2, until the load of 12 kN, no cracks were visible and the cracking 

moment was not reached, but there was a frequency reduction (observed through modal 

testing), so the use of moment trapezoid distribution rules in order to proportionally 

reduce stiffness produced good results. A possible cause for this frequency decrease can 

be the existence of microcracks around reinforcement due to an acccommodation. This 

rule of trapezoid distribution was applied in both slabs in the elements that did not 

present visible cracks (Model 2) or haven’t reached the cracking moment (Model 1). 
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Comparing frequency results, Model 2 produced better adjustments in 

comparison to Model 1, for both slabs. The reason is that Model 1 penalizes all the 

elements the same way, not considering that uncracked elements have higher stiffness 

than a cracked one. Model 2, on the other hand, consider the effects of cracks in the 

element and its neighborhood using a triangular distribution but requiring a dense mesh 

to properly apply this distribution. When MAC indicator was used to evaluate both 

models it was shown that the four models in S2 produced similar results. For S1, Model 

2 (iso and orthotropic) produced higher MAC values (what implies in a better 

correlation) in comparison to Model 1. 

Although the models were checked for unloading stage (modal testing is 

performed after the load application and beams removal), the comparison of slopes for 

the same load level shows that the models can be used for loading stage. The changes of 

slope for different levels is expected since reinforced concrete is a nonlinear material 

when subjected to loading-unloading stages. 

In general, the Model 2 was an inverse approach of what was proposed by their 

original authors. As the stiffness reduction factors for all load levels had great 

correspondence in frequency and mode shapes, it is possible to find the corresponding 

crack depth in each element to each load level, that can be useful in for future works. 

The proposed methodology can be associated to a cracking prediction algorithm that can 

apply reduction factors and, comparing the results with experimental data, find crack 

distribution and depth. 
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