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Abstract

In this work we study a Klein-Gordon system with mixed boundary conditions and a

thermoelastic plate system with Neumann boundary conditions. In the first system

we analyze the existence and uniqueness of global solution. Moreover, we show the

exponential decay of energy associated to solution. In the second system we show the

existence, uniform boundedness, and continuity of the global attractors when some

reaction terms are concentrated in a neighborhood of the boundary and this neighbor-

hood shrinks to boundary as a parameter goes to zero.

Keywords: global attractor; thermoelastic plate systems; concentrated term in the

boundary; Klein-Gordon system; asymptotic behavior; energy functional.
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Resumo

Neste trabalho estudamos um sistema de Klein-Gordon com condições de fronteira

mista e um sistema termoelástico da placa com condições de fronteira de Neumann.

No primeiro sistema, analisamos a existência e unicidade de solução global. Além disso,

mostramos o decaimento exponencial da energia associada a solução. No segundo sis-

tema mostramos a existência, limitação uniforme, e continuidade dos atratores globais

quando alguns termos de reação estão concentrado em uma vizinhança da fronteira e

essa vizinhança comprime para a fronteira quando um parâmetro vai para zero.

Palavras-chave: atrator global; sistema termoelástico da placa; termo concentrado

na fronteira; sistema de Klein-Gordon; comportamento assintótico; funcional energia.
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Introduction

This thesis is divided in two parts. In the first part we analyze the asymptotic

behavior of solution for a Klein-Gordon system with mixed boundary conditions and

with linear damping acting on part of the boundary, which is represented by

∂2
t u−∆u+ |u|ρ|v|ρv = 0 in Ω× (0,∞)

∂2
t v −∆v + |u|ρu|v|ρ = 0 in Ω× (0,∞)

u = v = 0 on Γ0 × (0,∞)

∂u

∂~n
+ δ(·)∂tu = 0 on Γ1 × (0,∞)

∂v

∂~n
+ δ(·)∂tv = 0 on Γ1 × (0,∞)

u(0) = u0, v(0) = v0, ∂tu(0) = u1, ∂tv(0) = v1,

(1)

where Ω is an open bounded set of Rn with boundary Γ = ∂Ω of class C2, Γ is

constituted by two parts Γ0 and Γ1, both with positive measure and Γ0∩Γ1 empty, see

Figure 1

Figure 1: The set Ω.

and ~n(x) is represented the unit outward normal at x ∈ Γ1, δ is a real function belong



to W 1,∞(Γ1) such that δ(x) > δ0 > 0 on Γ1 and ρ is a positive real number which

depend of the spatial dimension of the space Rn.

The system (1) is a generalization of the model proposed by Segal [39]∂
2
t u−∆u+ σ2u+ φv2u = 0,

∂2
t v −∆v + %2v + τu2v = 0,

which describes the interaction of two electromagnetic fields u and v with masses σ

and %, respectively, and with interaction constants φ > 0 and τ > 0.

Further generalizations of these problems are given in Medeiros and Milla Mi-

randa [33], Medeiros and Milla Miranda [35], in this papers the authors have analyzed

the existence and uniqueness of weak solutions of the mixed problem for a class of

systems of nonlinear Klein-Gordon equations by using Galerkin methods and potential

well method, respectively. The existence of solutions and decay of the energy of the

problem for the coupled system of Klein-Gordon equations by using Galerkin methods

is analyzed by Lourêdo and Milla Miranda [28].

Motivated by these papers we study the problem (1) using the ideas of Milla

Miranda, Lourêdo and Medeiros [32] and Milla Miranda, Lourêdo and H. Clark [34].

More precisely, we analyze global existence, uniqueness and decay of solutions of the

problem (1). Our approach in this problem be through of Faedo-Galerkin method,

which consists of three steps. The first setp is the construction of the approximate

problem in a finite dimensional space, the second step is to obtain a priori estimates

to prolong the solutions of approximate problem, and finally, the third is the passage

to the limit in the approximate solutions.

In order to establish the existence of global solution of the system (1), firstly we

note that its energy which will be defined later, does not definite sign. Therefore the

energy method to obtain global solution of (1) does not work. To overcome this serious

difficulty we use a method introduced by Milla Miranda, Lourêdo and Medeiros [32],

which was inspirated in one idea of Tartar [40]. This method simplifies the potential

well one. We complement our approach by using the Faedo-Galerkin method with a

special basis, due to the dissipative boundary conditions, and compactness argument.

With this considerations, we obtain a global weak solution of (1) with restrictions on

the norm of initial data and ρ > 0 which depends of the dimension of Rn.
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The uniqueness of solutions is derived by using the energy method. Thus if ρ > 1,

we consider n = 1, 2 and if ρ = 1 we consider n 6 3. This restriction on n is due to

the fact that we need to differentiate with respect to t the difference of the nonlinear

parts in order to apply the mean value theorem.

To obtain the decay of the energy of problem (1), we consider the same restrictions

of the uniqueness of solutions and make δ(x) = m(x) · ~n(x), where m(x) = x − x0,

x, x0 ∈ Rn. In this conditions, by using the multiplier method and the ideas contained

in Komornik and Zuazua [25] and Komornik [24], we obtain the exponential decay of

the energy.

In the second part of this thesis, we analyze the asymptotic behavior of an au-

tonomous thermoelastic plate systems with Neumann boundary conditions when some

reaction terms are concentrated in a neighborhood of the boundary, and this neighbor-

hood shrinks to boundary as a parameter ε goes to zero, which is represented by

∂2
t u

ε + ∆2uε + uε + ∆θε − θε = f(uε) +
1

ε
χωεg(uε) in Ω× (0,∞),

∂tθ
ε −∆θε + θε −∆∂tu

ε + ∂tu
ε = 0 in Ω× (0,∞),

∂uε

∂~n
= 0,

∂(∆uε)

∂~n
= 0,

∂θε

∂~n
= 0 on Γ× (0,∞),

uε(0) = u0 ∈ H2(Ω), ∂tu
ε(0) = v0 ∈ L2(Ω), θε(0) = θ0 ∈ L2(Ω),

(2)

where Ω is a bounded and smooth open set of Rn, n > 2, with boundary Γ = ∂Ω

smooth, ωε, 0 < ε 6 ε0, is a neighborhood of Γ, see Figure 2,

Figure 2: The set ωε ⊂ Ω.

χωε is the characteristic function of set ωε, 0 < ε 6 ε0, and f, g : R → R are nonlin-

earities under suitable growth conditions.

The above system represents a certain plate subject to small vibrations in which

u(x, t) denotes the displacement of wave at point x at time t and θ(x, t) denotes the

3



temperature at point x at time t, which the plate is subjected.

The first work to consider this technique of concentrating terms in a neighbor-

hood of boundary was done by Arrieta, Jiménez-Casas and Rodríguez-Bernal [10]. In

this work they analyzed the limit of the solutions of an elliptic problem when some

reaction and potential terms are concentrated in a neighborhood of certain partition

of the boundary and this neighborhood shrinks to this partition as a parameter ε goes

to zero. They proved that these solutions converge, in certain Sobolev spaces, to the

solution of an elliptic problem, where the reaction term and the concentrating potential

are transformed into a flux condition and a potential in the partition. This conver-

gence result can be seen as a tool to transfer information from interior of the domain

to its boundary. After this same technique was used by Jiménez-Casas and Rodríguez-

Bernal [22], [23] for parabolic problems. They have analyzed the asymptotic behavior

of the attractors of a parabolic problem, more precisely, they have proved the exis-

tence of a family of attractors and that this family is upper semicontinuous at ε = 0.

With this same technique of concentrating terms in the boundary we can still mention

some papers, for instance, Aragão and Oliva [6], [7], Aragão and Pereira [8], [9] and

Jiménez-Casas and Rodríguez-Bernal [21]. In Aragão and Bezerra [2] was analyzed

the asymptotic behavior of the pullback attractors of a non-autonomous damped wave

equation with terms concentrating on the boundary, that is, has been proved a regu-

larity result of the pullback attractors and that the family of these attractors is upper

semicontinuous at ε = 0 and in Aragão and Bezerra [3] was shown the continuity of

the set of equilibria of the same equation considered in Aragão and Bezerra [2].

Motivated by Aragão and Bezerra [2], [3] and using results of Arrieta, Jiménez-

Casas and Rodríguez-Bernal [10] and Jiménez-Casas and Rodríguez-Bernal [23] we

study the asymptotic behavior of the problem (2) in the sense of global attractors.

Note that in (2) the nonlinear term g(uε) is only effective on the region ωε which

collapses to Γ as ε → 0, then we show that the limit problem for the autonomous

4



thermoelastic plate system (2) is given by

∂2
t u+ ∆2u+ u+ ∆θ − θ = f(u) in Ω× (τ,∞),

∂tθ −∆θ + θ −∆∂tu+ ∂tu = 0 in Ω× (0,∞),

∂u

∂~n
= 0,

∂(∆u)

∂~n
= −g(u),

∂θ

∂~n
= 0 on Γ× (0,∞),

u(0) = u0 ∈ H2(Ω), ∂tu(0) = v0 ∈ L2(Ω), θ(0) = θ0 ∈ L2(Ω).

(3)

In other words, we prove that the nonlinear semigroup associated to (2) converges

to the nonlinear semigroup associated to (3). Moreover, we show the existence, uni-

form boundedness and continuity of the global attractors at ε = 0 associated to these

semigroups.

Firstly we write the problems (2) and (3) in the abstract forms and to analyze the

local and global well-posedness of this problems, we use strongly continuous semigroup

theory; namely, we rewrite the problems as abstract Cauchy problems and we show

that the linear part of the problem is a parabolic problem to according Henry [20].

We also analyze the behavior of nonlinearity Fε, related to Lipschitz and differentiable

conditions, that allows us to use the classic results of the theory of ordinary differential

equations in Banach spaces to ensure the local well-posedness of the parabolic problems

associated to (2) and (3). After we make use of the functional energy associated to

(2) and (3) with the same results above, for show that the parabolic problems are

global well-posedness and that the semigroups associated the this parabolic problems,

which are given by a variation of constants formula, are dissipative. On the other

hand, to ensure the existence of attractor of the abstract problems associated to (2)

and (3), first we observe that, due to the functional energy, the systems are gradient

and asymptotically smooth, then using a result of Hale [19, Theorem 3.8.5, p.51],

we show that the problems has attractors and that this attractors are characterized by

manifold unstable of the set of equilibria of nonlinear semigroup generated by parabolic

problems.

Finally, we show the continuity of the attractors at ε = 0; first, we prove upper

semicontinuity, that follows as a consequence of its uniform bounds and of the con-

vergence result of the nonlinear semigrups. After, we prove lower semicontinuity, in

this case was need to show the continuity of the set of equilibria associated to abstract

5



problems associated to (2) and (3) and also we have to show the continuity of local

unstable manifolds around these equilibria. With this and using the results due to

Henry [20, Chapter 6] we obtain the lower semicontinuity of these attractors at ε = 0.

This thesis is composed of three chapters and three appendices. In the Chapter

1 we analyze global existence, uniqueness and decay of solutions of problem (1). This

chapter resulted in the following paper:

• C. O. P. Da Silva, A. T. Louredo and M. Milla Miranda, Existence and asymp-

totic behavior of solutions for a Klein-Gordon system, see [17].

In the Chapter 2 we show existence of global attractors for nonlinear semigroups

associated to the problems (2) and (3). Moreover, we show the continuity of these

attractors at ε = 0, in the sense of Hausdorff distance. This chapter resulted in two

papers:

•G. S. Aragão, F. D. M. Bezerra and C. O. P. Da Silva, Dynamics of thermoelastic

plate system with terms concentrated in the boundary, Differential Equations and

Applications, 11, 3 (2019), 379 – 407, see [4].

•G. S. Aragão, F. D. M. Bezerra and C. O. P. Da Silva, Dynamics of thermoelastic

plate system with terms concentrated in the boundary: the lower semicontinuity of the

global attractors, see [5].

In the Chapter 3 we present final considerations and conclusions on the Chapter

1 and Chapter 2.

Finally, in the Appendix A we present concepts and results related to the theory

of partial differential equations. In the Appendices B and C we present concepts and

results related to the theory of linear and nonlinear semigroups and global attractors.

6



Notations

General

• |Ω| measure of Lesbegue of Ω ⊂ Rn;

• p′ = p

p− 1
exponent conjugate of p;

• supp(u) = {x ∈ Ω ;u(x) 6= 0};

• ↪→ embedding continuous;

• c
↪→ embedding compact;

• {eAt : t > 0} linear semigroup generated by operator A;

• {S(t) : t > 0} nonlinear semigroup;

• ρ(A) resolvent set of operator A;

• σ(A) spectrum of operator A.

Spaces of functions

• C(Ω) = {u : Ω→ R ; u is continuous};

• Ck(Ω) = {u : Ω→ R ; u is k-times continuously differentiable};

• C∞(Ω) = {u : Ω→ R ; u is infinitely differentiable};

• Ck
0 (Ω) = {u ∈ Ck(Ω) ; suppu ⊂ Ω is compact}, k ∈ N or k =∞;

• Ck,α(Ω) = {u ∈ Ck(Ω) ; Dαu is α− Hölder continuous};



• D(Ω) space of test functions;

• Lploc(Ω) = {u : Ω→ R mensurable; u ∈ Lp(K), ∀ K ⊂ Ω compact};

• Wm,p(Ω) = {u ∈ Lp(Ω) ; Dαu ∈ Lp(Ω), 0 6 |α| 6 m};

• Wm,p
0 (Ω) = C∞0 (Ω)

Wm,p(Ω)
;

• C([0, T ];X) = {u : [0, T ]→ X ; u(t) is continuous};

• Ck([0, T ];X) = {u : [0, T ]→ X ; u(t) is k-times continuously differentiable};

• Lp(0, T ;X) = {u : (0, T )→ X mensurable ;
∫ T

0
‖u(t)‖pXdt <∞};

• L∞(0, T ;X) = {u : (0, T )→ X mensurable ; ess supt∈(0,T ) ‖u(t)‖X <∞};

• Lploc(0, T ;X) = {u : (0, T )→ X mensurable ; ‖u(s)‖X ∈ Lp(I), I ⊂ (0, T ) compact};

• L (X, Y ) = {T : X → Y ; T is linear continuous};

• X ′ = L (X,R) dual space of X;

• D ′(Ω) = L (D(Ω),R);

• D ′(0, T ;X) = L (D(0, T );X);

• Hs,p(Ω), s ∈ R and 1 6 p <∞, Bessel Potentials spaces.

Norms

• ‖u‖Lp(0,T ;X) =
( ∫ T

0
‖u(t)‖pXdt

) 1
p ;

• ‖u‖L∞(0,T ;X) = ess sup
t∈(0,T )

‖u(t)‖X ;

• ‖u‖Ck([0,T ];X) =
∑k

i=0 max
t∈[0,T ]

∥∥∥∥diu(t)

dti

∥∥∥∥
X

;

• ‖f‖X′ = sup
x∈X,‖x‖X61

|〈f, x〉|;

• ‖T‖L (X,Y ) = sup
x∈X,x 6=0

‖Tx‖Y
‖x‖X

= sup
x∈X,‖x‖X=1

‖Tx‖Y .
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Convergences

• → convergence strong;

• ⇀ convergence weak;

• ∗
⇀ convergence weak star.
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Chapter 1

Asymptotic behavior of solutions for a
Klein-Gordon system

In this chapter we present results on existence and uniqueness of global solution

for the system (1) and we analyze the asymptotic behavior of this solution. In the first

section we treat the preliminary part. In the second section we analyze the existence

of a global solution presenting some results according to the values of the real number

ρ > 0 and spatial dimension n. In the third section concerns the uniqueness of solution.

We show the uniqueness when ρ = 1 and n 6 3, ρ > 1 and n = 1, 2. Finally in the

fourth section we analyze asymptotic behavior with the same restrictions on ρ and n,

in the case of uniqueness.

1.1 Preliminary

In this section we introduce some notations and also show results related to

separability, density and trace theory that will be important throughout this chapter.

1.1.1 Separability

In this chapter the inner product and norm of L2(Ω) are represented, respectively,

by (·, ·) and ‖ · ‖L2(Ω). Denote by V the Hilbert space

V = {u ∈ H1(Ω) ; u = 0 on Γ0}



equipped with the inner product and norm, respectively,

((u, v)) =
n∑
i=1

∫
Ω

∂u

∂xi

∂v

∂xi
dx and ‖u‖2

V =
n∑
i=1

∫
Ω

∣∣∣∣ ∂u∂xi
∣∣∣∣2 dx.

Let θ be a real number with 1 6 θ < 2 such that
1

θ
+

1

θ′
= 1. We consider the

following Banach spaces equipped with respective norms

W 1,θ′(Ω), ‖u‖W 1,θ′ (Ω) =

(∫
Ω

|u(x)|θ′dx+
n∑
i=1

∫
Ω

∣∣∣∣∂u(x)

∂xi

∣∣∣∣θ′ dx
) 1

θ′

and

W 1,θ′

Γ0
(Ω) = {u ∈ W 1,θ′(Ω);u = 0 on Γ0}; ‖u‖

W 1,θ′
Γ0

(Ω)
=

(
n∑
i=1

∫
Ω

∣∣∣∣∂u(x)

∂xi

∣∣∣∣θ′ dx
) 1

θ′

.

We also consider the Banach space

X = {u ∈ V ; ∆u ∈ Lθ(Ω)}

with the norm

‖u‖X = ‖u‖V + ‖∆u‖Lθ(Ω).

Now consider X, Y andW be Banach spaces such thatW ↪→ X andW ↪→ Y . Let

Z be a topological vector space that separates points, such that X ↪→ Z and Y ↪→ Z.

Then the space E = X ∩ Y provided with the norm

‖u‖E = ‖u‖X + ‖u‖Y

is a Banach space.

Proposition 1.1.1 If W is dense in X and dense in Y then W is dense in E.

Proof. Consider T ∈ E ′ such that

〈T,w〉E′×E = 0, ∀w ∈ W.

Note thatW has the same topology considered as a subspace of X∩Y or as a subspace

of X × Y . So T is continuous on W with the topology of X ∩ Y . Then by the Hahn-

Banach Theorem there exist R ∈ X ′ and S ∈ Y ′ such that

〈T,w〉E′×E = 〈R,w〉X′×X + 〈S,w〉Y ′×Y , ∀w ∈ W. (1.1)
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Observe that X ′ ↪→ W ′ and Y ′ ↪→ W ′. Then

〈R,w〉X′×X = 〈R,w〉W ′×W

〈S,w〉Y ′×Y = 〈S,w〉W ′×W .
(1.2)

Thanks to (1.1) and (1.2), we obtain

〈R + S,w〉W ′×W = 〈T,w〉E′×E = 0, ∀w ∈ W. (1.3)

By the density of W in X and in Y , using (1.3) and Brezis [11, Corollary 1.8, p. 8]

implies

R + S = 0 on X and R + S = 0 on Y.

Therefore T = R + S = 0 on E. Again using Brezis [11, Corollary 1.8, p. 8], we

conclude that W is dense in E. �

Proposition 1.1.2 Assume the hypotheses of Proposition 1.1.1. Then if W is sepa-
rable we have that E is separable.

Proof. Let {w1, w2, . . .} be a basis of W . Consider u ∈ E. Then by Proposition 1.1.1,

there exists ϕ ∈ W such that

‖u− ϕ‖E <
ε

2
.

Also there exists
n∑
j=1

αjwj such that

∥∥∥∥∥ϕ−
n∑
j=1

αjwj

∥∥∥∥∥
W

<
ε

2c
.

Thus∥∥∥∥∥u−
n∑
j=1

αjwj

∥∥∥∥∥
E

6 ‖u−ϕ‖E +

∥∥∥∥∥ϕ−
n∑
j=1

αjwj

∥∥∥∥∥
E

6 ‖u−ϕ‖E +c

∥∥∥∥∥ϕ−
n∑
j=1

αjwj

∥∥∥∥∥
W

< ε.

�

1.1.2 Density of D(Ω) in X

In what follows we show that D(Ω) is dense in X . For this, let O be a star-shaped

subset of Rn with respect to 0 ∈ Rn. Consider the linear homotetic transformation

ση(x) = ηx, η > 0. Note that for η > 1,

O ⊂ O ⊂ ση(O). (1.4)
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Consider a function w : O → R defined in O. For η > 0 introduce the function

ση ◦ w : ση(O)→ R, y 7−→ (ση ◦ w)(y) = w(σ 1
η
(y)).

Note that when η > 1, the domain of the function ση ◦w contain the domain of w (see

(1.4))

Proposition 1.1.3 Let S ∈ D ′(O). Then

1) ση ◦ S defined by

〈ση ◦ S, ξ〉 =
1

ηn
〈S, ση ◦ ξ〉, ξ ∈ D(ση(O)),

belongs to D ′(ση(O)), (η > 0).

2)
∂

∂yi
(ση ◦ S) = ηση ◦

(
∂

∂yi
S

)
, (η > 0).

3) If η > 1, η → 1, the restriction to O of ση◦S convergs to S in the distribution sense.

4) If v ∈ Lp(O), (1 6 p < ∞), ση ◦ v ∈ Lp(ση(O)), (η > 0). For η > 1, η → 1, the
restriction to O of ση ◦ v convergs to v in Lp((O)).

Proof. The proof can be found in Temam [42, Lemma 1.1, p. 7]. �

We have the following results:

Theorem 1.1.4 The space D(Ω) is dense in X .

Proof. Let U be an open set of Rn with boundary ∂U of class C2. Introduce the

Banach space

X (U) = {u ∈ V (U); ∆u ∈ Lθ(U)}

equipped with the norm

‖u‖X (U) = ‖u‖V (U) + ‖∆u‖Lθ(U).

We divide the proof in four parts.

First part. By truncation and regularization we prove that D(Rn) is dense in

X (Rn). For more details see Medeiros and Milla Miranda [30, Theorem 1.1, p. 8].
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Second part. Let (Uk)16k6m be an open covering of Γ0 and Γ1 with

U+
k = Ω∩Uk star-shaped with respect to one of its points, k = 1, . . . ,m. Let (ϕk)06k6m

be a C∞−partition of unity subordinate to the open covering Ω, (Uk)16k6m of Ω. Thus

ϕ0(x) +
m∑
k=1

ϕk(x) = 1, ∀x ∈ Ω, ϕ0 ∈ D(Ω), ϕk ∈ D(Uk), k = 1, . . . ,m.

Consider u ∈X . Then

u = ϕ0(x)u+
m∑
k=1

ϕk(x)u. (1.5)

We use the notations

vk = ϕk(x)u, k = 0, 1, . . . ,m.

We analyze v0. Represent by U0 an open set of Rn such that (suppϕ0)∩Ω is contained

in U0. After translation, we can choose U0 such that U0 is star-shaped with respect to

0 ∈ Rn. Define ση ◦ v0, η > 1. Then by (1.4) and Proposition 1.1.3, first part, we have

that ση ◦ v0 is defined in ση(U0). Consider

ψ ∈ D(ση(U0)) such that ψ ≡ 1 on U0, and w0η = ψ[ση ◦ v0], η > 1.

Then supp(w0η) is contained in ση(U0). By Proposition 1.1.3, item 2), we obtain

∂w0η

∂xi
=
∂ψ

∂xi
[ση ◦ v0] + ηψ

(
ση ◦

∂v0

∂xi

)
, (1.6)

∆w0η = η2ψ[ση ◦∆v0] + ∆ψ[ση ◦∆v0] + 2η
n∑
i=n

∂ψ

∂xi

[
ση ◦

∂v0

∂xi

]
. (1.7)

By the preceding equalities, we obtain that w0η ∈ X (ση(U0)). Consider w̃0η the

extension of w0η, that is,

w̃0η =

w0η in ση(U0);

0 in Rn/ση(U0).

Then w̃0η ∈X (Rn). By the first part we have w̃0η can be approximated in X (Rn) by

functions of D(Rn). Consequently

w0η can be approximated in X (ση(U0)) by functions of D(ση(U0)). (1.8)

By (1.6) and (1.7) we have

w0η|U0 = [ση ◦ v0]|U0
,

∂w0η

∂xi
|
U0

= η

[
ση ◦

∂v0

∂xi

]
|
U0

, ∆w0η|U0
= η2[ση ◦∆v0]|U0

.
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Then by Proposition 1.1.3, items 3) and 4), we obtain

w0η|U0 → v0 in L2(U0) as η → 1;

∂w0η

∂xi
|
U0

→ ∂v0

∂xi
in L2(U0) as η → 1;

∆w0η|U0
→ ∆v0 in Lθ(U0) as η → 1.

By (1.8) and the last three convergences we conclude that v0 can be approximated in

X (U0) by functions of D(U0).

Third part. Analyze vk, k = 1, . . . ,m. In this case we apply similar arguments

to those used in the case v0. Thus we take U+
k instead U0. We can assume that U+

k is

star-shaped with respect to 0 ∈ Rn. Consider ση(U+
k ) instead ση(U0). Introduce

ψ ∈ D(ση(U
+
k )) with ψ ≡ 1 on U+

k .

Consider wkη = ψ[ση ◦ vk], η > 1. Then

wkη ∈X (ση(U
+
k )); supp(wkη) ⊂X (ση(U

+
k )); w̃kη ∈X (Rn)

and

wkη|U+
k
→ vk in X (ση(U

+
k )) as η → 1.

Thus vk can be approximated in X (U+
k ) by functions of D(U+

k ).

By (1.5) and the above results we conclude that u ∈X can be approximated in

X (U) by functions of D(U).

Fourth part. The theorem follow since that X (U) and X has equivalent norms

in X . �

1.1.3 A trace theorem

It is known by trace theorem that there exists a linear continuous and sobrejective

map

γ0 : W 1,θ′(Ω)→ W
1
θ
,θ′(Γ), γ0u = u|Γ

and has inverse continuous,

W
1
θ
,θ′(Γ)→ W 1,θ′(Ω), ξ 7−→ u
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In particular, we have

γ0 : W 1,θ′

Γ0
(Ω)→ W

1
θ
,θ′(Γ1), γ0u = u|Γ1

and

W
1
θ
,θ′(Γ1)→ W 1,θ′

Γ0
(Ω), ξ 7−→ u,

are continuous. For more details see Nečas [37, Theorem 5.5, p. 95].

We want to prove a similar result for the functions in X . We have the following

trace theorem, which means that we can define
∂u

∂~n
on Γ1 when u ∈X .

Theorem 1.1.5 There exists a linear continuous map

X → W− 1
θ
,θ(Γ1), u 7−→ γ1u =

∂u

∂~n
such that

〈γ1u, γ0z〉
W−

1
θ
,θ(Γ1)×W

1
θ
,θ′ (Γ1)

= 〈∆u, z〉Lθ(Ω)×Lθ′ (Ω) +
n∑
i=1

∫
Ω

∂u

∂xi

∂z

∂xi
dx, (1.9)

for all z ∈ W 1,θ′

Γ0
(Ω).

Proof. Note that (1.9) is well defined and hold for u ∈ D(Ω). In fact, let u ∈ D(Ω),

using W 1,θ′

Γ0
(Ω) ↪→ V and W 1,θ′

Γ0
(Ω) ↪→ Lθ

′
(Ω), we have∣∣∣∣∫

Γ1

(γ1u)(γ0z)dΓ

∣∣∣∣ 6 ‖u‖V ‖z‖V + ‖∆u‖Lθ(Ω)‖z‖Lθ′ (Ω)

6 c‖u‖V ‖z‖W 1,θ′
Γ0

(Ω)
+ c‖∆u‖Lθ(Ω)‖z‖W 1,θ′

Γ0
(Ω)

6 c‖u‖X ‖z‖W 1,θ′
Γ0

(Ω)
,

for some positive constant c.

Let ξ ∈ W 1
θ
,θ′(Γ1). Then by trace theorem there exists z ∈ W 1,θ′

Γ0
(Ω) such that

ξ = γ0z and

‖z‖
W 1,θ′

Γ0
(Ω)
6 c‖ξ‖

W
1
θ
,θ′ (Γ1)

.

Thus ∣∣∣∣∫
Γ1

(γ1u)ξdΓ

∣∣∣∣ 6 c‖u‖X ‖ξ‖
W

1
θ
,θ′ (Γ1)

,

that is,

γ1u ∈ (W
1
θ
,θ′(Γ1))′ = W− 1

θ
,θ(Γ1)

and

‖γ1u‖
W−

1
θ
,θ(Γ1)

6 c‖u‖X , ∀u ∈ D(Ω).

Now, the results follows by density. �
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1.2 Existence of global solutions

This section concerns the existence of global solution for the problem (1) with

linear damping at the boundary.

Introduce the hypothesis

ρ > 0 and θ > 1 with 4ρθ > 1, if n = 1, 2; (1.10)

n+ 2

8n
6 ρ 6

n+ 2

4(n− 2)
, if 3 6 n 6 6. (1.11)

Remark 1.2.1 (i) Note that for n > 3 we have 0 < ρ <
2

n− 2
, then 1 < 2(ρ+ 1) 6 q,

therefore the following embeddings of Sobolev

V ↪→ Lq(Ω) ↪→ L2(ρ+1)(Ω),

are holds, where q =
2n

n− 2
. In particular, for ρ = 1 we have V ↪→ L4(Ω). Thus, there

exist positive constants c0 and c1 such that

‖v‖L2(ρ+1)(Ω) 6 c0‖v‖V , and ‖v‖L4(Ω) 6 c1‖v‖V , ∀ v ∈ V. (1.12)

(ii) Under the restrictions (1.11) on ρ and n we obtain

V ↪→ Lq(Ω) ↪→ L
8nρ
n+2 (Ω) and V ↪→ Lq(Ω) ↪→ L

4n
n+2 (Ω).

Introduce the following restrictions on the initial data and some constants:

‖u0‖V , ‖v0‖V < λ∗ and L <
1

4
(λ∗)2, (1.13)

where

λ∗ =

(
1

4N

) 1
2ρ

; (1.14)

L =
1

2

[
‖u1‖2

L2(Ω) + ‖v1‖2
L2(Ω)

]
+

1

2

[
‖u0‖2

V + ‖v0‖2
V

]
+N

[
‖u0‖2(ρ+1)

V + ‖v0‖2(ρ+1)
V

]
;

(1.15)

N =
c

2(ρ+1)
0

2(ρ+ 1)
; (1.16)

δ ∈ W 1,∞(Γ1) such that δ(x) > δ0 > 0 on Γ1. (1.17)
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Theorem 1.2.2 Assume hypotheses (1.11) and (1.13)–(1.17). Consider u0, v0 ∈ V

and u1, v1 ∈ L2(Ω). Then there exists functions u, v in the class
u, v ∈ L∞(0,∞;V ),

∂tu, ∂tv ∈ L∞(0,∞;L2(Ω)),

∂tu, ∂tv ∈ L∞(0,∞;L2(Γ1)),

such that u and v satisfies the equations
∂2
t u−∆u+ |u|ρ|v|ρv = 0 in H−1

loc (0,∞;Lq
′
(Ω))

∂2
t v −∆v + |u|ρu|v|ρ = 0 in H−1

loc (0,∞;Lq
′
(Ω))

∂u
∂~n

+ δ(·)∂tu = 0 in L2
loc(0,∞;L2(Γ1))

∂v
∂~n

+ δ(·)∂tv = 0 in L2
loc(0,∞;L2(Γ1)).

(1.18)

and the initial conditions

u(0) = u0, v(0) = v0, ∂tu(0) = u1, ∂tv(0) = v1.

Proof. To following, we use Faedo-Galerkin Method with compactness arguments and

ideas used by MiIla Miranda, Lourêdo and Medeiros [32].

Approximate problem. Let (wi)i∈N be a basis of the separable Banach space V ,

that is, the vectors (wi)i∈N are linearly independent and the finite linear combinations

of vectors of (wi)i∈N are denses in V . Let Vm = [w1, · · · , wm] be the subspace generated

by the m first vectores w1, w2, · · · , wm. Consider

um(t) =
m∑
j=1

gjm(t)wj, and vm(t) =
m∑
`=1

h`m(t)w`

such that um and vm are approximate solutions of the problem (1); that is,

(∂2
t um(t), wj) + ((um(t), wj)) +

∫
Γ1

δ∂tum(t)wjdΓ +

∫
Ω

|um(t)|ρ|vm(t)|ρvm(t)wjdx = 0,

(∂2
t vm(t), w`) + ((vm(t), w`)) +

∫
Γ1

δ∂tvm(t)w`dΓ +

∫
Ω

|um(t)|ρum(t)|vm(t)|ρw`dx = 0,

um(0) = u0m → u0 in V and ∂tum(0) = u1m → u1 in L2(Ω),

vm(0) = v0m → v0 in V and ∂tvm(0) = v1m → v1 in L2(Ω),

(1.19)

for all j = 1, 2, . . . ,m and for all ` = 1, 2, . . . ,m.

The above finite-dimensional system has solutions {um(t), vm(t)} defined on [0, tm).

The following estimate allows us to extend this solution to the interval [0,∞).
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Remark 1.2.3 We prove initially that the integral∫
Ω

|um(t)|ρ|vm(t)|ρvm(t)wjdx (1.20)

makes sense. Indeed, firstly we note that wj ∈ Lq(Ω), q and ρ as in the Remark 1.2.1.
If 3 6 n 6 6 and we use the item (ii) of Remark 1.2.1. We obtain, noting that

q′ =
2n

n+ 2∫
Ω

|um(t)|ρq′ |vm(t)|ρq′|vm(t)|q′dx =

∫
Ω

|um(t)|
2nρ
n+2 |vm(t)|

2nρ
n+2 |vm(t)|

2n
n+2dx

6

(∫
Ω

|um(t)|
8nρ
n+2dx

) 1
4
(∫

Ω

|vm(t)|
8nρ
n+2dx

) 1
4
(∫

Ω

|vm(t)|
4n
n+2dx

) 1
2

= ‖um(t)‖
2nρ
n+2

L
8nρ
n+2 (Ω)

‖vm(t)‖
2nρ
n+2

L
8nρ
n+2 (Ω)

‖vm(t)‖
2n
n+2

L
4n
n+2 (Ω)

6 C‖um(t)‖
2nρ
n+2

V ‖vm(t)‖
2nρ
n+2

V ‖vm(t)‖
2n
n+2

V .

Therefore the above integral (1.20) makes sense. Similar considerations for the integral∫
Ω

|um(t)|ρum(t)|vm(t)|ρw`dx.

A priori estimates. Multiplying both of sides of (1.19)1 by g′jm(t) and adding from

j = 1 to j = m. We obtain

(∂2
t um(t), ∂tum(t)) + ((um(t), ∂tum(t))) +

∫
Γ1

δ[∂tum(t)]2dΓ

+

∫
Ω

(|um(t)|ρ∂tum(t))(|vm(t)|ρvm(t))dx = 0.

Then

1

2

d

dt
‖∂tum(t)‖2

L2(Ω) +
1

2

d

dt
‖um(t)‖2

V +

∫
Γ1

δ[∂tum(t)]2dΓ

+

∫
Ω

(|um(t)|ρ∂tum(t))(|vm(t)|ρvm(t))dx = 0.

(1.21)

We observe that
d

dt
(|um(t)|ρum(t)) = (ρ+ 1)|um(t)|ρ∂tum(t). (1.22)

Taking into account (1.22) in (1.21), we obtain

1

2

d

dt
‖∂tum(t)‖2

L2(Ω) +
1

2

d

dt
‖um(t)‖2

V +

∫
Γ1

δ[∂tum(t)]2dΓ

+
1

ρ+ 1

∫
Ω

d

dt
(|um(t)|ρum(t))(|vm(t)|ρvm(t))dx = 0.

(1.23)
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Similarly multiplying both of sides of (1.19)2 by h′jm(t) we obtain

1

2

d

dt
‖∂tvm(t)‖2

L2(Ω) +
1

2

d

dt
‖vm(t)‖2

V +

∫
Γ1

δ[∂tvm(t)]2dΓ

+
1

ρ+ 1

∫
Ω

(|um(t)|ρum(t))
d

dt
(|vm(t)|ρvm(t))dx = 0.

(1.24)

Adding (1.23) and (1.24), we have

1

2

d

dt

{
‖∂tum(t)‖2

L2(Ω) + ‖um(t)‖2
V + ‖∂tvm(t)‖2

L2(Ω) + ‖vm(t)‖2
V

}
+

∫
Γ1

δ[∂tum(t)]2dΓ

+

∫
Γ1

δ[∂tvm(t)]2dΓ +
1

ρ+ 1

d

dt

∫
Ω

(|um(t)|ρum(t))(|vm(t)|ρvm(t))dx = 0.

Integrating the above expression from 0 to t with t < tm, and using the hypothesis on

δ, we obtain

1

2

{
‖∂tum(t)‖2

L2(Ω) + ‖um(t)‖2
V + ‖∂tvm(t)‖2

L2(Ω) + ‖vm(t)‖2
V

}
+ δ0

∫ t

0

∫
Γ1

[∂tum(s)]2dΓds

+ δ0

∫ t

0

∫
Γ1

[∂tvm(s)]2dΓds+
1

ρ+ 1

∫
Ω

(|um(t)|ρum(t))(|vm(t)|ρvm(t))dx

6
1

2

{
‖u1m‖2

L2(Ω) + ‖u0m‖2
V + ‖v1m‖2

L2(Ω) + ‖v0m‖2
V

}
+

1

ρ+ 1

∫
Ω

(|u0m(x)|ρu0m(x))(|v0m(x)|ρv0m(x))dx.

(1.25)

By Young inequality, we get∣∣∣∣ 1

ρ+ 1

∫
Ω

(|um(t)|ρum(t))(|vm(t)|ρvm(t))dx

∣∣∣∣ 6 1

ρ+ 1

∫
Ω

|um(t)|ρ+1|vm(t)|ρ+1dx

6
1

2(ρ+ 1)

{
‖um(t)‖2(ρ+1)

L2(ρ+1)(Ω)
+ ‖vm(t)‖2(ρ+1)

L2(ρ+1)(Ω)

}
.

Now using the fact V ↪→ L2(ρ+1)(Ω), (see (1.12)), we obtain∣∣∣∣ 1

ρ+ 1

∫
Ω

(|um(t)|ρum(t))(|vm(t)|ρvm(t))dx

∣∣∣∣ 6 N
[
‖um(t)‖2(ρ+1)

V + ‖vm(t)‖2(ρ+1)
V

]
,

(1.26)

where N was defined in (1.16). Analogously, we obtain∣∣∣∣ 1

ρ+ 1

∫
Ω

(|u0m|ρu0m)(|v0m|ρv0m)dx

∣∣∣∣ 6 N
[
‖u0m‖2(ρ+1)

V + ‖v0m‖2(ρ+1)
V

]
. (1.27)
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Substituting (1.26) and (1.27) in (1.25), we obtain

1

2

{
‖u′m(t)‖2

L2(Ω) + ‖um(t)‖2
V + ‖∂tvm(t)‖2

L2(Ω) + ‖vm(t)‖2
V

}
−N

{
‖um(t)‖2(ρ+1)

V + ‖vm(t)‖2(ρ+1)
V

}
+ δ0

∫ t

0

∫
Γ1

[∂tum(s)]2dΓds

+ δ0

∫ t

0

∫
Γ1

[∂tvm(s)]2dΓds

6
1

2

{
‖u1m‖2

L2(Ω) + ‖u0m‖2
V + ‖v1m‖2

L2(Ω) + ‖v0m‖2
V

}
+N

{
‖u0m‖2(ρ+1)

V + ‖v0m‖2(ρ+1)
V

}
.

(1.28)

By hypotheses and convergences (1.19), for small η > 0, there exists m0 ∈ N such that

‖u0m‖V < ‖u0‖V + η < λ∗, ‖v0m‖V < ‖v0‖V + η < λ∗, ∀m > m0 (1.29)

and

Lm =
1

2
[‖u1m‖2

L2(Ω) + ‖v1m‖2
L2(Ω)] +

1

2
[‖u0m‖2

V + ‖v0m‖2
V ] +N [‖u0m‖2(ρ+1)

V + ‖v0m‖2(ρ+1)
V ]

< L+ η <
1

2
(λ∗)2, ∀m > m0,

(1.30)

where L was introduced in (1.15). Therefore from (1.28) and (1.30), we have for small

η > 0,

1

2

{
‖∂tum(t)‖2

L2(Ω) + ‖um(t)‖2
V + ‖∂tvm(t)‖2

L2(Ω) + ‖vm(t)‖2
V

}
−N

{
‖um(t)‖2(ρ+1)

V + ‖vm(t)‖2(ρ+1)
V

}
+ δ0

∫ t

0

∫
Γ1

[∂tum(s)]2dΓds

+ δ0

∫ t

0

∫
Γ1

[∂tvm(s)]2dΓds < L+ η <
1

4
(λ∗)2, ∀m > m0.

(1.31)

Motivated by (1.31), we set the function

J(λ) =
1

4
λ2 −Nλ2(ρ+1), λ > 0. (1.32)

Then (1.31) provides

1

2
‖∂tum(t)‖2

L2(Ω) +
1

4
‖um(t)‖2

V + J(‖um(t)‖V ) +
1

2
‖∂tvm(t)‖2

L2(Ω) +
1

4
‖vm(t)‖2

V

+ J(‖vm(t)‖V ) + δ0

∫ t

0

∫
Γ1

[∂tum(s)]2dΓds+ δ0

∫ t

0

∫
Γ1

[∂tvm(s)]2dΓds

< L+ η <
1

4
(λ∗)2, ∀m > m0.

(1.33)
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In order to obtain a priori estimates for the approximate solutions {um(t), vm(t)},

we need that the left side of (1.33) would be non-negative. It is possible if J(‖um(t)‖V )

and J(‖vm(t)‖V ) are non-negative. In the next result, we prove that if the hypothesis

(1.13) is satisfied then

J(‖um(t)‖V ) > 0, J(‖vm(t)‖V ) > 0, ∀ t ∈ [0,∞).

Remark 1.2.4 We have

J(λ) =
1

4
λ2 −Nλ2(ρ+1) > 0, ∀ 0 6 λ 6 λ∗.

This fact is consequence of

J(λ) = λ2

(
1

4
−Nλ2ρ

)
, λ > 0.

Lemma 1.2.5 Consider u0, v0 ∈ V and u1, v1 ∈ L2(Ω) such that

‖u0‖V , ‖v0‖V < λ∗

and
L <

1

4
(λ∗)2

where λ∗ and L were defined, respectively, in (1.14) and (1.15). Then

‖um(t)‖V < λ∗ and ‖vm(t)‖V < λ∗, ∀t ∈ [0,∞) and ∀m > m0.

Proof. We fix m > m0. We show the lemma by contradiction argument. Thus assume

that there exists t1 ∈ (0, tm) or t2 ∈ (0, tm) such that

‖um(t1)‖V > λ∗ or ‖vm(t2)‖V > λ∗.

There are two possibilities, which are

1) ‖um(t1)‖V > λ∗ and ‖vm(t2)‖V > λ∗,

2) ‖um(t1)‖V > λ∗ and ‖vm(t)‖V < λ∗, ∀t ∈ [0,∞).
(1.34)

Assume that occurs possibility 1). Note that

‖um(t1)‖V > λ∗ > ‖um(0)‖V and ‖vm(t2)‖V > λ∗ > ‖vm(0)‖V .
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Then by intermediate value theorem there exists τ1 ∈ (0, tm) and τ2 ∈ (0, tm) such that

‖um(τ1)‖V = λ∗ and ‖vm(τ2)‖V = λ∗.

Set

t∗1 = inf{τ ∈ (0, tm); ‖um(τ)‖V = λ∗}

t∗2 = inf{τ ∈ (0, tm); ‖vm(τ)‖V = λ∗}.

By continuity of ‖um(t)‖V and ‖vm(t)‖V , we obtain

‖um(t∗1)‖V = λ∗ and ‖vm(t∗2)‖V = λ∗.

From (1.29)1 it follows that t∗1 > 0 and t∗2 > 0. Thus

‖um(t)‖V < λ∗ for 0 6 t < t∗1

‖vm(t)‖V < λ∗ for 0 6 t < t∗2.

Therefore by Remark 1.2.4, we get

J(‖um(t)‖V ) > 0 for 0 6 t < t∗1

J(‖vm(t)‖V ) > 0 for 0 6 t < t∗2.

Assume t∗1 6 t∗2. Similar arguments if t∗2 6 t∗1. Return to expression (1.33). Then

1

4
‖um(t)‖2

V + J(‖um(t)‖V ) +
1

4
‖vm(t)‖2

V + J(‖vm(t)‖V ) 6 L+ η <
1

4
(λ∗)2, 0 6 t < t∗1.

So
1

4
‖um(t)‖2

V 6 L+ η <
1

4
(λ∗)2, 0 6 t < t∗1, ∀m > m0.

Taking the limit as t → t∗1, 0 < t < t∗1, in this inequality we obtain a contradiction.

This prove the part 1) of (1.34).

The proof of possibility 2) of (1.34) follows by applying the arguments used in

part 1) to ‖um(t1)‖V > λ∗ and this conclude the proof of the lemma. �

By Lemma 1.2.5 we have

‖um(t)‖V < λ∗ and ‖vm(t)‖V < λ∗, ∀ 0 6 t <∞ and ∀ m > m0.

Consequently

J(‖um(t)‖V ) > 0 and J(‖vm(t)‖V ) > 0, ∀ t ∈ [0,∞).
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Therefore, from (1.33)

1

2
‖∂tum(t)‖2

L2(Ω) +
1

4
‖um(t)‖2

V +
1

2
‖∂tvm(t)‖2

L2(Ω) +
1

4
‖vm(t)‖2

V

+ δ0

∫ t

0

∫
Γ1

[∂tum(s)]2dΓds+ δ0

∫ t

0

∫
Γ1

[∂tvm(s)]2dΓds 6 L+ η <
1

4
(λ∗)2,

(1.35)

for all t ∈ [0,∞) and for all m > m0. By (1.35) we obtain
(um), (vm) are bounded in L∞(0,∞;V ), ∀m > m0;

(∂tum), (∂tvm) are bounded in L∞(0,∞;L2(Ω)), ∀m > m0;

(∂tum), (∂tvm) are bounded in L2(0,∞;L2(Γ1)), ∀m > m0.

(1.36)

With similar arguments used in the item (ii) of Remark 1.2.3 we obtain

‖|um(t)|ρ|vm(t)|ρvm(t)‖Lq′ (Ω) 6 C, ∀ m > m0.

where the constant C > 0 is independent of t and m. It follows that

(|um|ρ|vm|ρvm) is bounded in L∞(0,∞;Lq
′
(Ω)), ∀ m > m0. (1.37)

In similar way, we find

(|um|ρum|vm|ρ) is bounded in L∞(0,∞;Lq
′
(Ω)), ∀ m > m0. (1.38)

Passage to the limit. Estimates (1.36), (1.37) and (1.38) allow us, by induction and

diagonal process, to obtain a subsequences of (um) and (vm), still denoted by (um) and

(vm), and functions u, v : Ω× [0,∞)→ R, such that



um
∗
⇀ u and vm

∗
⇀ v in L∞(0,∞;V ),

∂tum
∗
⇀ ∂tu and ∂tvm

∗
⇀ ∂tv in L∞(0,∞;L2(Ω)),

∂tum ⇀ ∂tu and ∂tvm ⇀ ∂tv in L2(0,∞;L2(Γ1)),

|um|ρ|vm|ρvm
∗
⇀ ξ in L∞(0,∞;Lq

′
(Ω)),

|um|ρum|vm|ρ
∗
⇀ ζ in L∞(0,∞;Lq

′
(Ω)).

(1.39)

We must show that ξ = |u|ρ|v|ρv and ζ = |u|ρu|v|ρ.

Consider T > 0 fixed but arbitrary. By convergences (1.39)1 and (1.39)2 and

noting that V
c
↪→ L2(Ω), we obtain by Aubin-Lions Theorem, see Lions [26, Theorem
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5.1, p. 58], that there are subsequences of (um) and (vm), which we still denoted by

(um) and (vm), respectively, such that

um → u in L∞(0, T ;L2(Ω)),

vm → v in L∞(0, T ;L2(Ω)).
(1.40)

By (1.40) there are subsequences of (um) and (vm) such that

um → u a.e. in Ω× (0, T ),

vm → v a.e. in Ω× (0, T ).
(1.41)

By (1.41) we have that

|um|ρ → |u|ρ a.e. in Ω× (0, T ),

|vm|ρvm → |v|ρv a.e. in Ω× (0, T ).

Therefore

|um|ρ|vm|ρvm → |u|ρ|v|ρv a.e. in Ω× (0, T ). (1.42)

From (1.37), (1.42) and of Lions’ Lemma, see [26, Lemma 1.3, p. 12], we obtain

|um|ρ|vm|ρvm ⇀ |u|ρ|v|ρv in L2(0, T ;Lq
′
(Ω)).

In similar way, we find

|um|ρum|vm|ρ ⇀ |u|ρu|v|ρ in L2(0, T ;Lq
′
(Ω)).

By a diagonal process we obtain

|um|ρ|vm|ρvm
∗
⇀ |u|ρ|v|ρv in L∞loc(0,∞;Lq

′
(Ω)). (1.43)

In similar way, we find

|um|ρum|vm|ρ
∗
⇀ |u|ρu|v|ρ in L∞loc(0,∞;Lq

′
(Ω)). (1.44)

By (1.39), (1.43) and (1.44) we have ξ = |u|ρ|v|ρv and ζ = |u|ρu|v|ρ.

Multiplying both sides of the approximate equation (1.19)1 by ϕ ∈ D(0,∞),

integrating in [0,∞), using the convergences (1.39) and noting that Vm is dense in V ,

we obtain∫ ∞
0

(∂2
t u(t), w)ϕ(t)dt+

∫ ∞
0

((u(t), w))ϕ(t)dt+

∫ ∞
0

∫
Γ1

δ∂tu(t)wϕ(t)dΓdt

+

∫ ∞
0

(|u(t)|ρ|v(t)|ρv(t), w)ϕ(t)dt = 0, ∀w ∈ V, ∀ϕ ∈ D(0,∞).

(1.45)
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Since V is dense in L2(Ω) it follows that (1.45) is true for all w ∈ L2(Ω).

In similar way, we find∫ ∞
0

(∂2
t v(t), z)ϕ(t)dt+

∫ ∞
0

((v(t), z))ϕ(t)dt+

∫ ∞
0

∫
Γ1

δ∂tu(t)zϕ(t)dΓdt

+

∫ ∞
0

(|u(t)|ρu(t)|v(t)|ρ, z)ϕ(t)dt = 0, ∀z ∈ V, ∀ϕ ∈ D(0,∞).

Taking in (1.45) w ∈ D(Ω) ⊂ V , it follows that

∂2
t u−∆u+ |u|ρ|v|ρv = 0 in D ′(Ω× (0,∞)). (1.46)

In similar way

∂2
t v −∆v + |u|ρu|v|ρ = 0 in D ′(Ω× (0,∞)).

Let T > 0 fix. Note that ∂tu ∈ L2(0, T ;L2(Ω)) ↪→ L2(0, T ;Lq
′
(Ω)) then

∂2
t u ∈ H−1(0, T ;Lq

′
(Ω)) see Proposition A.16. Since

|u|ρ|v|ρv ∈ L∞(0,∞;Lq
′
(Ω)) ↪→ L2(0, T ;Lq

′
(Ω)) ↪→ H−1(0, T ;Lq

′
(Ω))

then by (1.46) we have −∆u ∈ H−1(0, T ;Lq
′
(Ω)). Therefore

∂2
t u−∆u+ |u|ρ|v|ρv = 0 in H−1

loc (0,∞;Lq
′
(Ω)). (1.47)

In similar way

∂2
t v −∆v + |u|ρu|v|ρ = 0 in H−1

loc (0,∞;Lq
′
(Ω)).

As u ∈ L2(0,∞;V ) and ∆u ∈ H−1(0, T ;Lq
′
(Ω)) then by Theorem 1.1.5 with θ = q′,

we obtain
∂u

∂~n
∈ H−1(0, T ;W

− 1
q′ ,q
′
(Γ1)) (1.48)

Multiplying both sides of (1.46) by wϕ with w ∈ V and ϕ ∈ D(0,∞), integrating on

Ω× (0,∞) and using (1.48) and Green’s Formula of the Theorem 1.1.5,∫ ∞
0

(∂2
t u(t), w)ϕ(t)dt+

∫ ∞
0

((u(t), w))ϕ(t)dt−
∫ ∞

0

〈
∂u(t)

∂~n
, w

〉
ϕ(t)dt

+

∫ ∞
0

(|u(t)|ρu(t)|v(t)|ρ, w)ϕ(t)dt = 0, ∀w ∈ V, ∀ϕ ∈ D(0,∞),

where 〈·, ·〉 denotes the duality paring between W− 1
q′ ,q
′
(Γ1) and W

1
q′ ,q(Γ1). Comparing

this lest equation with (1.45), we obtain∫ ∞
0

〈
∂u(t)

∂~n
+ δ∂tu(t), w

〉
ϕ(t)dt = 0, ∀w ∈ V, ∀ϕ ∈ D(0,∞).
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Therefore
∂u

∂~n
+ δ∂tu = 0 in W

− 1
q′ ,q
′
(Γ1).

In similar way
∂v

∂~n
+ δ∂tv = 0 in W

− 1
q′ ,q
′
(Γ1).

Since δ∂tu ∈ L2(0,∞, L2(Γ1)), then

∂u

∂~n
+ δ∂tu = 0 in L2

loc(0,∞;L2(Γ1)).

In similar way
∂v

∂~n
+ δ∂tv = 0 in L2

loc(0,∞;L2(Γ1)).

Initial conditions. We see that u ∈ L∞(0,∞;V ), ∂tu ∈ L∞(0,∞;L2(Ω)) and

∂2
t u ∈ H−1(0,∞;Lq

′
(Ω)), then u ∈ C([0,∞);L2(Ω)) and ∂tu ∈ C([0,∞);Lq

′
(Ω)).

So it makes sense to calculate u(0) and ∂tu(0).

We show that u(0) = u0. In fact, let ϕ ∈ C1([0, T ];R) such that ϕ(0) = 1 and

ϕ(T ) = 0. By (1.39)2 we have∫ T

0

(∂tum(t), w)ϕ(t)dt→
∫ T

0

(∂tu(t), w)ϕ(t)dt. (1.49)

Integrating by parts (1.49) we obtain

− (um(0), w)−
∫ T

0

(um(t), w)ϕ′(t)dt→ −(u(0), w)−
∫ T

0

(u(t), w)ϕ′(t)dt. (1.50)

By (1.39)1 we have um
∗
⇀ u in L∞(0, T ;L2(Ω)) and∫ T

0

(um(t), w)ϕ′(t)dt→
∫ T

0

(u(t), w)ϕ′(t)dt. (1.51)

Adding (1.50) and (1.51) we obtain

(um(0), w)→ (u(0), w), ∀ w ∈ L2(Ω). (1.52)

On the other hand, by (1.19)3 we have um(0) ⇀ u0 in L2(Ω) and thus

(um(0), w)→ (u0, w), ∀ w ∈ L2(Ω). (1.53)

By (1.52), (1.53) and uniquenesses of limit u(0) = u0.
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Now we show that ∂tu(0) = u1. In fact, let ϕ ∈ C1([0, T ];R) such that ϕ(0) = 1

and ϕ(T ) = 0. Multiplying both of sides of (1.19)1 by ϕ we have∫ T

0

(∂2
t um(t), w)ϕ(t)dt+

∫ T

0

((um(t), w))ϕ(t)dt+

∫ T

0

∫
Γ1

δ∂tum(t)wϕ(t)dΓdt

+

∫ T

0

(|um(t)|ρ|vm(t)|ρvm(t), w)ϕ(t)dt = 0, ∀w ∈ V.

Integrating by parts the expression above we get

− (∂tum(0), w)−
∫ T

0

(∂tum(t), w)ϕ′(t)dt+

∫ T

0

((um(t), w))ϕ(t)dt

+

∫ T

0

∫
Γ1

δ∂tum(t)wϕ(t)dΓdt+

∫ T

0

(|um(t)|ρ|vm(t)|ρvm(t), w)ϕ(t)dt = 0, ∀w ∈ V.

Taking the limit in the expression above we obtain

− (u1, w)−
∫ T

0

(∂tu(t), w)ϕ′(t)dt+

∫ T

0

((u(t), w))ϕ(t)dt

+

∫ T

0

∫
Γ1

δ∂tu(t)wϕ(t)dΓdt+

∫ T

0

(|u(t)|ρ|v(t)|ρv(t), w)ϕ(t)dt = 0, ∀w ∈ V.
(1.54)

Let T > 0. Introduce the notation Y = L1(0, T ;X). Then Y ′ = L∞(0, T ;X ′).

Consider ϕ ∈ C1([0, T ]) with ϕ(0) = 1, ϕ(T ) = 0 and w ∈ X. Then ϕw ∈ Y . By

(1.47) we obtain

〈∂2
t u, ϕw〉Y ′×Y + 〈−∆u, ϕw〉Y ′×Y + 〈|u|ρ|v|ρv, ϕw〉Y ′×Y = 0. (1.55)

Noting that u′ ∈ C0([0, T ];X ′), we find

〈∂2
t u, ϕw〉Y ′×Y =

∫ T

0

〈∂2
t u(t), w〉X′×Xϕ(t)dt =

∫ T

0

d

dt
〈∂tu(t), w〉X′×Xϕ(t)dt

= −
∫ T

0

〈∂tu(t), w〉X′×Xϕ(t)′dt− 〈∂tu(0), w〉X′×X .

We also that

〈−∆u, ϕw〉Y ′×Y =

∫ T

0

((u(t), w))ϕ(t)dt+

∫ T

0

∫
Γ1

δ∂tu(t)wϕ(t)dΓdt,

〈|u|ρ|v|ρv, ϕw〉Y ′×Y =

∫ T

0

〈|u(t)|ρ|v(t)|ρv(t), w〉X′×Xϕ(t)dt.

The last three equalities and (1.55) provide

− 〈∂tu(0), w〉X′×X −
∫ T

0

〈∂tu(t), w〉X′×Xϕ(t)′dt+

∫ T

0

((u(t), w))ϕ(t)dt

+

∫ T

0

∫
Γ1

δ∂tu(t)wϕ(t)dΓdt+

∫ T

0

〈|u(t)|ρ|v(t)|ρv(t), w〉X′×Xϕ(t)dt = 0.
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Combining this expression with (1.54), we get ∂tu(0) = u1.

In similar way, we obtain

v(0) = v0 and ∂tv(0) = v1.

Therefore, we conclude the proof of the Theorem 1.2.2. �

Corollary 1.2.6 We obtain similar results to the Theorem 1.2.2 for the case ρ > 0

and n = 1, 2.

Now we consider the following hypothesis

ρ > 0 and θ > 1 with 4ρθ > 1, if n = 1, 2; (1.56)

ρ =
2

n− 2
and θ =

n

n− 2
, if 7 6 n 6 11. (1.57)

Remark 1.2.7 Under the restrictions (1.57) on ρ and n we have:

V ↪→ Lq(Ω) ↪→ L4ρθ(Ω), and V ↪→ Lq(Ω) ↪→ L2θ(Ω).

Theorem 1.2.8 Consider u0, v0 ∈ V ∩ Lθ′(Ω) and u1, v1 ∈ L2(Ω). Then under hy-
potheses (1.13)–(1.17) and (1.57), we have that there exist functions u, v in the class

u, v ∈ L∞(0,∞;V );

∂tu, ∂tv ∈ L∞(0,∞;L2(Ω));

∂tu, ∂tv ∈ L∞(0,∞;L2(Γ1)),

such that u and v satisfies the equations

∂2
t u−∆u+ |u|ρ|v|ρv = 0 in H−1

loc (0,∞;Lθ(Ω))

∂2
t v −∆v + |u|ρu|v|ρ = 0 in H−1

loc (0,∞;Lθ(Ω))
∂u

∂~n
+ δ(·)∂tu = 0 in L2

loc(0,∞;L2(Γ1))

∂v

∂~n
+ δ(·)∂tv = 0 in L2

loc(0,∞;L2(Γ1))

(1.58)

and the initial conditions

u(0) = u0, v(0) = v0, ∂tu(0) = u1, ∂tv(0) = v1.

Proof. Since the separable space W 1,θ′

Γ0
(Ω) is dense in V and dense in Lθ

′
(Ω) and

W 1,θ′

Γ0
(Ω) ↪→ V ∩ Lθ′(Ω) by Proposition 1.1.1 and Proposition 1.1.2 we have that

V ∩ Lθ′(Ω) is a separable Banach space. Thus, taking a basis (w`)`∈N in V ∩ Lθ′(Ω),

where
1

θ
+

1

θ′
= 1, and using similar arguments to those used in the Theorem 1.2.2 we

show the Theorem 1.2.8. �
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Corollary 1.2.9 Under the hypothesis (1.56), we obtain similar results to Theorem
1.2.8.

In order to obtain results on the uniqueness and decay of solutions of problem

(1), we prove the following theorem on existence of solutions for ρ = 1 and n = 1, 2, 3.

Remark 1.2.10 We observe that for 0 < ρ 6
1

n− 2
and from trace theorem, we have

V ↪→ H
1
2 (Γ1) ↪→ Lq1(Γ1) ↪→ L2(ρ+1)(Γ1),

where q1 = 2(n−1)
n−2

for n > 3. In particular for ρ = 1 or n = 3, we obtain

V ↪→ H
1
2 (Γ1) ↪→ L4(Γ1) ↪→ L2(Γ1).

Thus there exists positive constants c2 and c3 such that

‖w‖L4(Γ1) 6 c2‖w‖V and ‖w‖L2(Γ1) 6 c3‖w‖V , ∀w ∈ V. (1.59)

We also consider the following restrictions on the initial data and some constants:

‖u0‖V , ‖v0‖V < λ∗1 and L1 <
1

4
(λ∗1)2, (1.60)

where

λ∗1 =

(
1

4N1

) 1
2

; (1.61)

L1 =
1

2

[
‖u1‖2

L2(Ω) + ‖v1‖2
L2(Ω)

]
+

1

2

[
‖u0‖2

V + ‖v0‖2
V

]
+N1

[
‖u0‖4

V + ‖v0‖4
V

]
; (1.62)

N1 =
c4

1

2

[
n+

1

4

]
+
Rc4

2

2
+ c4

1(n− 1). (1.63)

To show the next theorem we need of the following propositions.

Proposition 1.2.11 Let us consider f ∈ L2(Ω) and g ∈ H 1
2 (Γ1). Then, the solution

u of the boundary value problem:
−∆w = f in Ω,

w = 0 on Γ0,
∂w

∂~n
= g on Γ1,

belongs to V ∩H2(Ω) and

‖w‖H2(Ω) 6
(
|f |+ ‖g‖

H
1
2 (Γ1)

)
.

Proof. See Milla Miranda and Medeiros [36, Proposition 1, p. 49]. �
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Proposition 1.2.12 Suppose u0 ∈ V ∩H2(Ω), u1 ∈ V and

∂u0

∂~n
+ δ(·)u1 = 0 on Γ1.

Then, for each ε, there exists w and z in V ∩H2(Ω) such that:

‖w − u0‖V ∩H2(Ω) < ε, ‖z − u1‖V < ε and
∂w

∂~n
+ δ(·)z = 0 on Γ1.

Proof. See Milla Miranda and Medeiros [36, Proposition 3, p. 50]. �

Theorem 1.2.13 Let ρ = 1 and n = 3. Consider (1.60)–(1.63) and that
u0, v0 ∈ V ∩H2(Ω) and u1, v1 ∈ V satisfying

∂u0

∂~n
+ δ(·)u1 = 0 on Γ1

∂v0

∂~n
+ δ(·)v1 = 0 on Γ1.

Then there exists functions u, v in the class
u, v ∈ L∞(0,∞;V ∩H2(Ω)), ∂tu, ∂tv ∈ L∞loc(0,∞;V )

∂2
t u, ∂

2
t v ∈ L∞loc(0,∞;L2(Ω)),

∂tu, ∂tv ∈ L∞(0,∞;L2(Γ1)), ∂2
t u, ∂

2
t v ∈ L∞loc(0,∞;L2(Γ1)),

(1.64)

such that u and v satisfies the equations

∂2
t u−∆u+ |u||v|v = 0 in L∞loc(0,∞;L2(Ω))

∂2
t v −∆v + |u|u|v| = 0 in L∞loc(0,∞;L2(Ω))
∂u

∂~n
+ δ(·)∂tu = 0 in L∞loc(0,∞;H

1
2 (Γ1))

∂v

∂~n
+ δ(·)∂tv = 0 in L∞loc(0,∞;H

1
2 (Γ1)).

(1.65)

and the initial conditions

u(0) = u0, v(0) = v0, ∂tu(0) = u1, ∂tv(0) = v1.

Proof. The proof of Theorem 1.2.13 be done by applying the Faedo-Galerkin Method

with a special basis of V ∩H2(Ω).

Approximate problem. From Proposition 1.2.12, we obtain sequences (u0
k), (v

0
k) and

(u1
k), (v

1
k) of vectors of V ∩H2(Ω) such that

u0
k → u0 in and v0

k → v0 in V ∩H2(Ω)

u1
k → u1 in and v1

k → v1 in V,
(1.66)
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and
∂u0

k

∂~n
+ δu1

k = 0 and
∂v0

k

∂~n
+ δv1

k = 0 on Γ1 for all k ∈ N.

Now we fix k ∈ N and consider the basis {wk1 , wk2 , wk3 , wk4 , . . .} of V ∩H2(Ω) such

that u0
k, v

0
k, u

1
k and v1

k belong to the subspace [wk1 , w
k
2 , w

k
3 , w

k
4 ] spanned by wk1 , w

k
2 , w

k
3

and wk4 . For each m ∈ N we built the subspace V k
m = [wk1 , w

k
2 , . . . , w

k
m]. Consider

ukm(t) =
m∑
j=1

gjkm(t)wkj , and vkm(t) =
m∑
j=1

hjkm(t)wkj

such that ukm and vkm are approximate solutions of the problem (1); that is,

(∂2
t ukm(t), w) + ((ukm(t), w)) +

∫
Γ1

δ∂tukm(t)zdΓ +

∫
Ω

|ukm(t)||vkm(t)|vkm(t)wdx = 0,

(∂2
t vkm(t), z) + ((vkm(t), z)) +

∫
Γ1

δ∂tvkm(t)zdΓ +

∫
Ω

|ukm(t)|ukm(t)|vkm(t)|zdx = 0,

ukm(0) = u0
k, ∂tukm(0) = u1

k,

vkm(0) = v0
k, ∂tvkm(0) = v1

k,

(1.67)

for all w, z ∈ V k
m. The above finite-dimensional system has solutions {ukm(t), vkm(t)}

defined on [0, tkm). The following estimate allows us to extend this solution to the

interval [0,∞).

Remark 1.2.14 We prove initially that the integral∫
Ω

|ukm(t)||vkm(t)|vkm(t)wdx (1.68)

makes sense. Indeed, firstly we note that w ∈ L2(Ω),∫
Ω

[|ukm(t)||vkm(t)|vkm(t)]2dx 6
∫

Ω

|ukm(t)|2|vkm(t)|2|vkm(t)|2dx

6

(∫
Ω

|ukm(t)|6dx
) 1

3
(∫

Ω

|ukm(t)|6dx
) 1

3
(∫

Ω

|vkm(t)|6dx
) 1

3

= ‖ukm(t)‖2
L6(Ω)‖vkm(t)‖2

L6(Ω)‖vkm(t)‖2
L6(Ω)

6 C‖ukm(t)‖2
V ‖vkm(t)‖2

V ‖vkm(t)‖2
V .

Therefore the above integral (1.68) makes sense. Similar considerations for the integral∫
Ω

|ukm(t)|ukm(t)|vkm(t)|zdx.

32



First estimate. To obtain the first estimate we apply similar arguments used in

Theorem 1.2.2 with ρ = 1. In this case, we replace the function J by

J1(λ) =
1

4
λ2 −N1λ

4, (1.69)

where N1 was defined in (1.63). We also obtain the following lemma

Lemma 1.2.15 Consider u0, v0 ∈ V ∩H2(Ω) and u1, v1 ∈ V such that

‖u0‖V , ‖v0‖V < λ∗1

and
L1 <

1

4
(λ∗1)2,

where λ∗1 and L1 were defined, respectively, in (1.61) and (1.62). Then

‖ukm(t)‖V < λ∗1 and ‖ukm(t)‖V < λ∗1, ∀t ∈ [0,∞), ∀k > k0, ∀m.

Therefore, we get

(ukm), (vkm) are bounded in L∞(0,∞;V ), ∀k > k0, ∀m ∈ N,

(∂tukm), (∂tvkm) are bounded in L∞(0,∞;L2(Ω)), ∀k > k0, ∀m ∈ N,

(∂tukm), (∂tvkm) are bounded in L2(0,∞;L2(Γ1)), ∀k > k0, ∀m ∈ N,

(|ukm||vkm|vkm) is bounded in L∞(0,∞;L2(Ω)), ∀k > k0, ∀m ∈ N,

(|ukm|ukm|vkm|) is bounded in L∞(0,∞;L2(Ω)), ∀k > k0, ∀m ∈ N.

(1.70)

Second estimate Deriving (1.67)1 with respect to t, as the function F (λ) = |λ|, λ ∈ R

is Lipschitz continuous, F (0) = 0, using Brezis and Cazenave [12, Theorem A.3.12, p.

35], we obtain

(∂3
t ukm(t), w) + ((∂tukm(t), w)) +

∫
Γ1

δ∂2
t ukm(t)wdΓ

6
∫

Ω

|∂tukm(t)||vkm(t)|2|w|dx+ 2

∫
Ω

|ukm(t)||vkm(t)||∂tvkm(t)||w|dx

Making w = ∂2
t ukm(t) in the inequality above we get

1

2

d

dt
‖∂2

t ukm(t)‖2
L2(Ω) +

1

2

d

dt
‖∂tukm(t)‖2

V +

∫
Γ1

δ[∂2
t ukm(t)]2dΓ

6
∫

Ω

|∂tukm(t)||∂2
t ukm(t)||vkm(t)|2dx+ 2

∫
Ω

|ukm(t)||∂2
t ukm(t)||vkm(t)||∂tvkm(t)|dx.

(1.71)
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Using the Hölder inequality, the Sobolev embedding V ↪→ L6(Ω) and (1.70) we

have∫
Ω

|∂tukm(t)||∂2
t ukm(t)||vkm(t)|2dx 6 ‖∂tukm(t)‖L6(Ω)‖vkm(t)‖2

L6(Ω)‖∂2
t ukm(t)‖L2(Ω)

6 C‖∂tukm(t)‖V ‖∂2
t ukm(t)‖L2(Ω)

6 C(‖∂tukm(t)‖2
V + ‖∂2

t ukm(t)‖2
L2(Ω)).

(1.72)

Analogously, we obtain∫
Ω

|ukm(t)||∂2
t ukm(t)||vkm(t)||∂tvkm(t)|dx 6 C(‖∂tvkm(t)‖2

V + ‖∂2
t ukm(t)‖2

L2(Ω)), (1.73)

where C denote the several constant independent of k and m.

Combining (1.72) and (1.73) with (1.71) and using the fact that δ(x) > δ0 > 0,

we have
1

2

d

dt
‖∂2

t ukm(t)‖2
L2(Ω) +

1

2

d

dt
‖∂tukm(t)‖2

V + δ0

∫
Γ1

[∂2
t ukm(t)]2dΓ

6 C(‖∂tukm(t)‖2
V + ‖∂tvkm(t)‖2

V + 2‖∂2
t ukm(t)‖2

L2(Ω)).

In similar way

1

2

d

dt
‖∂2

t vkm(t)‖2
L2(Ω) +

1

2

d

dt
‖∂tvkm(t)‖2

V + δ0

∫
Γ1

[∂2
t vkm(t)]2dΓ

6 C(‖∂tukm(t)‖2
V + ‖∂tvkm(t)‖2

V + 2‖∂2
t vkm(t)‖2

L2(Ω)).

Adding the last inequalities above and integrating on [0, t], we get

1

2
(‖∂2

t ukm(t)‖2
L2(Ω) + ‖∂2

t vkm(t)‖2
L2(Ω) + ‖∂tukm(t)‖2

V + ‖∂tvkm(t)‖2
V )

+ δ0

∫ t

0

∫
Γ1

[∂2
t ukm(s)]2dΓds+ δ0

∫ t

0

∫
Γ1

[∂2
t vkm(s)]2dΓds

6
1

2
(‖∂2

t ukm(0)‖2
L2(Ω) + ‖∂2

t vkm(0)‖2
L2(Ω) + ‖u1

k‖2
V + ‖v1

k‖2
V )

+

∫ t

0

C(‖∂2
t ukm(s)‖2

L2(Ω) + ‖∂2
t vkm(s)‖2

L2(Ω) + ‖∂tukm(s)‖2
V + ‖∂tvkm(s)‖2

V )ds.

(1.74)

We need to bound ‖∂2
t ukm(0)‖2

L2(Ω) and ‖∂2
t vkm(0)‖2

L2(Ω) by a constant indepen-

dent of k and m. This is one of the key points of the proof. These bounds are obtained

thanks to the choice of the special basis of V ∩H2(Ω). In fact, taking t = 0 in (1.67)1

we obtain

(∂2
t ukm(0), w)+((ukm(0), w))+

∫
Γ1

δ(x)∂tukm(0)wdΓ+

∫
Ω

|ukm(0)||vkm(0)|vkm(0)wdx = 0.

(1.75)
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We have ukm(0) = u0
k, ∂tukm(0) = u1

k and
∂u0

k

∂~n
= −δ(·)u1

k on Γ1. Applying

Green’s formula to (1.75), we see that

(∂2
t ukm(0), w) = (∆u0

k, w) +

∫
Ω

|u0
k||v0

k|v0
kwdx, ∀w ∈ V k

m.

Taking w = ∂2
t ukm(0) in this equality, using Hölder inequality and observing the con-

vergences (1.66), we have

‖∂2
t ukm(0)‖L2(Ω) 6 ‖∆u0

k‖L2(Ω) + ‖u0
k‖L6(Ω)‖v0

k‖2
L6(Ω) 6 C, ∀k,m.

Thus (∂2
t ukm(0)) is bounded in L2(Ω), for all k,m. In similar way (∂2

t vkm(0)) is bounded

in L2(Ω), for all k,m.

From (1.74), observing the fact (∂2
t ukm(0)), (∂2

t vkm(0)) are bounded in L2(Ω) and

the convergences (1.66) we have

1

2
(‖∂2

t ukm(t)‖2
L2(Ω) + ‖∂2

t vkm(t)‖2
L2(Ω) + ‖∂tukm(t)‖2

V + ‖∂tvkm(t)‖2
V )

+ δ0

∫ t

0

∫
Γ1

[∂2
t ukm(s)]2dΓds+ δ0

∫ t

0

∫
Γ1

[∂2
t vkm(s)]2dΓds

6 C +

∫ t

0

C(‖∂2
t ukm(s)‖2

L2(Ω) + ‖∂2
t vkm(s)‖2

L2(Ω) + ‖∂tukm(s)‖2
V + ‖∂tvkm(s)‖2

V )ds.

Therefore by Gronwall’s inequality there exists C(t), t > 0, such that

‖∂2
t ukm(t)‖2

L2(Ω) + ‖∂2
t vkm(t)‖2

L2(Ω) + ‖∂tukm(t)‖2
V + ‖∂tvkm(t)‖2

V

+

∫ t

0

∫
Γ1

[∂2
t ukm(s)]2dΓds+

∫ t

0

∫
Γ1

[∂2
t vkm(s)]2dΓds 6 C(t),

it follows that 
(∂tukm), (∂tvkm) are bounded in L∞loc(0,∞;V );

(∂2
t ukm), (∂2

t vkm) are bounded in L∞loc(0,∞;L2(Ω));

(∂2
t ukm), (∂2

t vkm) are bounded in L2
loc(0,∞;L2(Γ1)).

(1.76)

Passage to the limit in m. Estimates (1.70), (1.76) and using similar arguments to
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Theorem 1.2.2 with ρ = 1 allow us

ukm
∗
⇀ uk and vkm

∗
⇀ vk in L∞(0,∞;V ),

∂tukm
∗
⇀ ∂tuk and ∂tvkm

∗
⇀ ∂tvk in L∞loc(0,∞;V ),

∂2
t ukm

∗
⇀ ∂2

t uk and ∂2
t vkm

∗
⇀ ∂2

t vk in L∞loc(0,∞;L2(Ω)),

∂tukm ⇀ ∂tuk and ∂tvkm ⇀ ∂tvk in L2(0,∞;L2(Γ1)),

∂2
t ukm ⇀ ∂2

t uk and ∂2
t vkm ⇀ ∂2

t vk in L2
loc(0,∞;L2(Γ1)),

|ukm||vkm|vkm
∗
⇀ |uk||vk|vk in L∞(0,∞;L2(Ω)),

|ukm|ukm|vkm|
∗
⇀ |uk|uk|vk| in L∞(0,∞;L2(Ω)).

(1.77)

From (1.76)2 and trace theorem we obtain

(∂tukm), (∂tvkm) are bounded in L∞loc(0,∞;H
1
2 (Γ1)),

and thus

∂tukm
∗
⇀ ∂tuk in L∞loc(0,∞;H

1
2 (Γ1));

∂tvkm
∗
⇀ ∂tvk in L∞loc(0,∞;H

1
2 (Γ1)).

(1.78)

Multiplying both sides of the approximate equation (1.67)1 by ϕ ∈ D(0,∞), integrating

in [0,∞), using the convergences (1.77)1,3,6 and (1.78)1, we obtain∫ ∞
0

(∂2
t uk(t), w)ϕ(t)dt+

∫ ∞
0

((uk(t), w))ϕ(t)dt+

∫ ∞
0

∫
Γ1

δ∂tuk(t)wϕ(t)dΓdt

+

∫ ∞
0

(|uk(t)||vk(t)|vk(t), w)ϕ(t)dt = 0, ∀w ∈ V k
m, ∀ϕ ∈ D(0,∞).

(1.79)

Since V k
m is dense in V ∩H2(Ω) it follows that (1.79) is true for all w ∈ V ∩H2(Ω). In

similar way, we find∫ ∞
0

(∂2
t vk(t), w)ϕ(t)dt+

∫ ∞
0

((vk(t), w))ϕ(t)dt+

∫ ∞
0

∫
Γ1

δ∂tuk(t)wϕ(t)dΓdt

+

∫ ∞
0

(|uk(t)|uk(t)|vk(t)|, w)ϕ(t)dt = 0, ∀w ∈ V ∩H2(Ω), ∀ϕ ∈ D(0,∞).

We can see that the estimates (1.70) and (1.76) are also independent of k. There-

fore by the same argument used to obtain (1.77) and (1.78) we get a diagonal sequence
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(ukk), (vkk), still denoted by (uk), (vk), and functions u, v : Ω× [0,∞)→ R such that

uk
∗
⇀ u and vk

∗
⇀ v in L∞(0,∞;V );

∂tuk
∗
⇀ ∂tu and ∂tvk

∗
⇀ ∂tv in L∞loc(0,∞;V );

∂2
t uk

∗
⇀ ∂2

t u and ∂2
t vk

∗
⇀ ∂2

t v in L∞loc(0,∞;L2(Ω));

∂tuk ⇀ ∂tu and ∂tvk ⇀ ∂tv in L2(0,∞;L2(Γ1));

∂2
t uk ⇀ ∂2

t u and ∂2
t vk ⇀ ∂2

t v in L2
loc(0,∞;L2(Γ1));

|uk||vk|vk
∗
⇀ |u||v|v in L∞(0,∞;L2(Ω));

|uk|uk|vk|
∗
⇀ |u|u|v| in L∞(0,∞;L2(Ω));

∂tuk
∗
⇀ ∂tu and ∂tvk

∗
⇀ ∂tv in L∞loc(0,∞;H

1
2 (Γ1)).

(1.80)

Taking the limit in (1.79), using convergences (1.80)1,3,6,8 and observing that V ∩H2(Ω)

is dense in V , we obtain∫ ∞
0

(∂2
t u(t), w)ϕ(t)dt+

∫ ∞
0

((u(t), w))ϕ(t)dt+

∫ ∞
0

∫
Γ1

δ∂tu(t)wϕ(t)dΓdt

+

∫ ∞
0

(|u(t)||v(t)|v(t), w)ϕ(t)dt = 0, ∀w ∈ V, ∀ϕ ∈ D(0,∞).

(1.81)

In similar way, we find∫ ∞
0

(∂2
t v(t), z)ϕ(t)dt+

∫ ∞
0

((v(t), z))ϕ(t)dt+

∫ ∞
0

∫
Γ1

δ∂tu(t)zϕ(t)dΓdt

+

∫ ∞
0

(|u(t)|u(t)|v(t)|, z)ϕ(t)dt = 0, ∀z ∈ V, ∀ϕ ∈ D(0,∞).

Taking in (1.81) w ∈ D(Ω) ⊂ V , it follows that

∂2
t u−∆u+ |u||v|v = 0 in D ′(Ω× (0, T )).

In similar way

∂2
t v −∆v + |u|u|v| = 0 in D ′(Ω× (0, T )).

Therefore, by (1.80)3,6, we get

∂2
t u−∆u+ |u||v|v = 0 in L∞loc(0,∞, L2(Ω)),

∂2
t v −∆v + |u|u|v| = 0 in L∞loc(0,∞, L2(Ω)).

(1.82)
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Since u ∈ L∞(0,∞;V ) and by (1.82)1, ∆u ∈ L∞loc(0, T ;L2(Ω)) then, by Milla

Miranda [31] we obtain
∂u

∂~n
∈ L∞(0,∞;H−

1
2 (Γ1)). (1.83)

Multiplying both sides of (1.82) by wϕ with w ∈ V and ϕ ∈ D(0,∞), integrating on

Ω× (0, T ) and using (1.83) and Green’s formula∫ ∞
0

(∂2
t u(t), w)ϕ(t)dt+

∫ ∞
0

((u(t), w))ϕ(t)dt−
∫ ∞

0

〈
∂u(t)

∂~n
, w

〉
ϕ(t)dt

+

∫ ∞
0

(|u(t)|u(t)|v(t)|, w)ϕ(t)dt = 0, ∀w ∈ V, ∀ϕ ∈ D(0,∞),

where 〈·, ·〉 denotes the duality paring between H−
1
2 (Γ1) and H

1
2 (Γ1). Comparing this

last equation with (1.81), we obtain∫ ∞
0

〈
∂u(t)

∂~n
+ δ∂tu(t), w

〉
ϕ(t)dΓdt = 0, ∀w ∈ V, ∀ϕ ∈ D(0,∞).

Therefore
∂u

∂~n
+ δ∂tu = 0 in H−

1
2 (Γ1).

In similar way
∂v

∂~n
+ δ∂tv = 0 in H−

1
2 (Γ1).

Since δ∂tu ∈ L∞loc(0,∞, H
1
2 (Γ1)), then

∂u

∂~n
+ δ∂tu = 0 in L∞loc(0,∞, H

1
2 (Γ1)). (1.84)

In similar way
∂v

∂~n
+ δ∂tv = 0 in L∞loc(0,∞, H

1
2 (Γ1)). (1.85)

To complete the proof of the Theorem 1.2.13, we shall show that u ∈ L∞loc(0,∞, H2(Ω)).

In fact, note that u ∈ L∞(0,∞;V ). With this, using (1.82)1, (1.84) we see that u is

the solution of the following boundary value problem:
−∆u = f in Ω× [0, T ],

u = 0 on Γ0 × [0, T ],

∂u

∂~n
= g on Γ1 × [0, T ],

for all real number T > 0. Since

f = −∂2
t u− |u||v|v ∈ L∞loc(0,∞;L2(Ω)) and g = −δ∂tu ∈ L∞loc(0,∞;H

1
2 (Γ1)),

38



it follows by the Proposition 1.2.11 that

u ∈ L∞loc(0,∞;V ∩H2(Ω)). (1.86)

In similar way

v ∈ L∞loc(0,∞;V ∩H2(Ω)). (1.87)

The verification of the initial conditions follows by similar arguments used in the

Theorem 1.2.2. �

Remark 1.2.16 From (1.77), we obtain uk and vk in the class (1.64). From (1.79)
and using the same arguments for obtain (1.82), (1.84) and (1.85), we get

∂2
t uk −∆uk + |uk||vk|vk = 0 in L∞loc(0,∞;L2(Ω))

∂2
t vk −∆vk + |uk|uk|vk| = 0 in L∞loc(0,∞;L2(Ω))
∂uk
∂ν

+ δ(·)∂tuk = 0 in L∞loc(0,∞;H
1
2 (Γ1))

∂vk
∂ν

+ δ(·)∂tvk = 0 in L∞loc(0,∞;H
1
2 (Γ1)).

(1.88)

Also using the same arguments for obtain the regularities (1.86) and (1.87), we get

uk, vk ∈ L∞loc(0,∞;V ∩H2(Ω)). (1.89)

Corollary 1.2.17 We obtain similar results to Theorem 1.2.13 for the case ρ > 1 and
n = 1, 2.

1.3 Uniqueness of solutions

In this section we show that the solution in the case of the Theorem 1.2.13 and

Corollary 1.2.17 is unique. For this we use the energy method.

Theorem 1.3.1 The solution {u, v} obtained in the Theorem 1.2.13 or Corollary
1.2.17 is unique.

Proof. First we show the case ρ = 1 for n = 3. Let {u, v} and {w, z} solutions of

system (1) satisfying the Theorem 1.2.13. We define

U = u− w and Z = v − z.
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Then U and Z satisfies the following problem

∂2
tU −∆U + |u||v|v − |w||z|z = 0;

∂2
tZ −∆Z + |u|u|v| − |w|w|z| = 0;

U = Z = 0 on Γ0;

∂U

∂~n
+ δ(·)∂tU = 0 on Γ1;

∂Z

∂~n
+ δ(·)∂tZ = 0 on Γ1,

(1.90)

with initial conditions U(0) = 0, ∂tU(0) = 0, Z(0) = 0 and ∂tZ(0) = 0.

Remark 1.3.2 We note that

∂2
tU(t) ∈ L2(Ω) and ∂tU(t) ∈ L2(Ω).

Therefore, make sense to calculate the duality 〈∂tU(t), ∂tU(t)〉. Thus, the uniqueness
results from the energy method.

Taking the scalar product of (1.90)1 and (1.90)2 with ∂tU and ∂tZ, respectively and

integrating on [0, T ] we have

1

2
‖∂tU(t)‖2

L2(Ω) +
1

2
‖U(t)‖2

V + δ0

∫ t

0

‖∂tU(s)‖2
L2(Γ1)dt

+

∫ t

0

(|u(s)||v(s)|v(s)− |w(s)||z(s)|z(s), ∂tU(s))dt 6 0.

(1.91)

1

2
‖∂tZ(t)‖2

L2(Ω) +
1

2
‖Z(t)‖2

V + δ0

∫ t

0

‖∂tZ(s)‖2
L2(Γ1)dt

+

∫ t

0

(|u(s)|u(s)|v(s)| − |w(s)|w(s)|z(s)|, ∂tZ(s))dt 6 0.

(1.92)

Adding (1.91) and (1.92) and denoting by M and N the left hand side of (1.91) and

(1.92), respectively, we have

1

2
‖∂tU(t)‖2

L2(Ω) +
1

2
‖∂tZ(t)‖2

L2(Ω) +
1

2
‖U(t)‖2

V +
1

2
‖Z(t)‖2

V 6M +N. (1.93)

We write M and N respectively by

M =

∫ t

0

([|u(s)| − |w(s)|]|v(s)|v(s), ∂tU(s))dt

+

∫ t

0

([|v(s)|v(s)− |z(s)|z(s)]|w(s)|, ∂tU(s))dt

(1.94)
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and

N =

∫ t

0

([|v(s)| − |z(s)|]|u(s)|u(s), ∂tZ(s))dt

+

∫ t

0

([|u(s)|u(s)− |w(s)|w(s)]|z(s)|, ∂tZ(s))dt.

(1.95)

We examine each of the integrals above.

• Analysis of I1 = ([|u(s)| − |w(s)|]|v(s)|v(s), ∂tU(s)):

Using the fact that the function F (λ) = |λ| is Lipschitz continuous and F (0) = 0,

it follows by Brezis and Cazenave [12, Theorem A.3.12, p. 35] that

I1 = ([|u(s)| − |w(s)|]|v(s)|v(s), ∂tU(s))

6
∫

Ω

||u(s)| − |w(s)|||v(s)|2|∂tU(s)|dx

6
∫

Ω

|v(s)|2|U(s)||∂tU(s)|dx

6 ‖v(t)‖2
L6(Ω)‖∂tU(s)‖L2(Ω)‖U(s)‖L6(Ω)

6 C‖∂tU(s)‖L2(Ω)‖U(s)‖V ,

(1.96)

for some positive constant C.

• Analysis of I2 = ([|v(s)|v(s)− |z(s)|z(s)]|w(s)|, ∂tU(s)) :

Again by Brezis and Cazenave [12, Theorem A.3.12, p. 35] and using the mean

value theorem we can conclude that there exists C > 0 such that

I2 = ([|v(s)|v(s)− |z(s)|z(s)]|w(s)|, ∂tU(s))

6
∫

Ω

||v(s)|v(s)− z(s)z(s)||w(s)||∂tU(s)|dx

6 C

∫
Ω

[|v(s)|+ |z(s)|]|w(s)||Z(s)||∂tU(s)|dx

6 C(‖v(s)‖L6(Ω) + ‖z(s)‖L6(Ω))‖w(s)‖L6(Ω)‖∂tU(s)‖L2(Ω)‖Z(s)‖L6(Ω)

6 C‖∂tU(s)‖L2(Ω)‖Z(s)‖V .

(1.97)

Therefore from (1.94), (1.96) and (1.97) we obtain

M 6 C

∫ t

0

(‖U(s)‖V + ‖Z(s)‖V )‖∂tU(s)‖L2(Ω)dt.

By a similar argument, with (1.95) we also find
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N 6 C

∫ t

0

(‖U(s)‖V + ‖Z(t)‖V )‖∂tZ(s)‖L2(Ω)dt. (1.98)

It follows that

|M | 6 C

2

∫ t

0

‖U(s)‖2
V dt+

C

2

∫ t

0

‖Z(s)‖2
V dt+ C

∫ t

0

‖∂tU(s)‖2
L2(Ω)dt, (1.99)

for some constant C > 0. Similarly from (1.98) we have

|N | 6 C

2

∫ t

0

‖U(s)‖2
V dt+

C

2

∫ t

0

‖Z(s)‖2
V dt+ C

∫ t

0

‖∂tZ(s)‖2
L2(Ω)dt. (1.100)

Combining (1.99) and (1.100) with (1.93), we get

‖∂tU(s)‖2
L2(Ω) + ‖∂tZ(s)‖2

L2(Ω) + ‖U(t)‖2
V + ‖Z(t)‖2

V

6 2C

∫ t

0

(‖∂tU(s)‖2
L2(Ω) + ‖∂tZ(s)‖2

L2(Ω) + ‖U(s)‖2
V + ‖Z(s)‖2

V )dt
(1.101)

Thus from (1.101) and Gronwall’s inequality we get U(t) = Z(t) = 0 for all 0 6 t 6 T .

For the cases n = 1, 2, we have V ↪→ Lq(Ω), 1 6 q < ∞. Then the estimates

(1.99) and (1.100) are hold. The proof in this case follows by similar arguments used

for n = 3. �

1.4 Asymptotic behavior: energy estimates

Next we state the result on the decay of solutions of the problem (1) in the cases

of the Theorem 1.2.13 and Corollary 1.2.17. To this we assume that there exists a

point x0 ∈ Rn, such that

Γ0 = {x ∈ Γ : m(x) · ~n(x) 6 0} and Γ1 = {x ∈ Γ : m(x) · ~n(x) > 0},

where m(x) = x− x0, x ∈ Rn, see Figure 1.1.
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Figure 1.1: The sets Γ0 and Γ1.

In this section we consider δ(x) = m(x) · ~n(x) and R = max
x∈Ω
‖m(x)‖Rn . The

energy of system (1) with ρ = 1 is defined by

E(t) =
1

2

(
‖∂tu(t)‖2

L2(Ω)+‖∂tv(t)‖2
L2(Ω)+‖u(t)‖2

V +‖v(t)‖2
V

)
+

1

2

∫
Ω

|u(t)|u(t)|v(t)|v(t)dx.

We have the following result:

Theorem 1.4.1 Let {u, v} be the solution obtained in Theorem 1.2.13. Then

E(t) 6 3E(0)e−
τ
3
t, ∀ t ∈ [0,∞), (1.102)

where

τ = min

{
1

2P
,
m0

D

}
> 0;

P = 4

(
2R +

n− 1

2
+
n− 1

2λ1

)
;

D = R3 +R +R2(n− 1)2c2
3;

m0 = min{m(x) · ~n(x);x ∈ Γ1} > 0.

(1.103)

Proof. To prove the Theorem 1.4.1 we show that the energy

Ek(t) =
1

2

(
‖∂tuk(t)‖2

L2(Ω) + ‖∂tvk(t)‖2
L2(Ω) + ‖uk(t)‖2

V + ‖vk(t)‖2
V

)
+

1

2

∫
Ω

|uk(t)|uk(t)|vk(t)|vk(t)dx
(1.104)

associated with the solution {uk(t), vk(t)} of the equations in (1.88) satisfies the in-

equality (1.102). Thus, the exponential decay of E(t) be obtained by taking the lim inf

of Ek(t) as k →∞.

Now, we introduce the function

ψk(t) = 2(∂tuk(t),m · ∇uk(t)) + (n− 1)(∂tuk(t), uk(t))

+ 2(∂tvk(t),m · ∇vk(t)) + (n− 1)(∂tvk(t), vk(t)).
(1.105)
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For ε > 0, we introduce the perturbed energy

Ekε(t) := Ek(t) + εψk(t).

First we prove that Ekε(t) and Ek(t) are equivalent. Then we show that

E ′kε(t) 6 −εEk(t). (1.106)

Equivalence between Ekε(t) and Ek(t). First of all, we note that

Ak(t) :=
1

4
(‖uk(t)‖2

V + ‖vk(t)‖2
V ) +

1

2

∫
Ω

(|uk(t)|uk(t))(|vk(t)|vk(t))dx > 0, ∀t ∈ [0,∞).

(1.107)

In fact,

1

2

∣∣∣∣∫
Ω

(|uk(t)|uk(t))(|vk(t)|vk(t))dx
∣∣∣∣ 6 1

4
c4

1(‖uk(t)‖4
V + ‖vk(t)‖4

V ).

Then

Ak(t) >
1

4
‖uk(t)‖2

V −
1

4
c4

1‖uk(t)‖4
V +

1

4
‖vk(t)‖2

V −
1

4
c4

1‖vk(t)‖4
V . (1.108)

As −1
4
c4

1 > −N1, we obtain

1

4
‖uk(t)‖2

V −
1

4
c4

1‖uk(t)‖4
V >

1

4
‖uk(t)‖2

V −N1‖uk(t)‖4
V .

If we take the limit m→∞ in Lemma 1.2.15, we find

J1(‖uk(t)‖V ) =
1

4
‖uk(t)‖2

V −N1‖uk(t)‖4
V > 0, ∀t ∈ [0,∞). (1.109)

In similar way
1

4
‖vk(t)‖2

V −N1‖vk(t)‖4
V > 0, ∀t ∈ [0,∞). (1.110)

Taking into account (1.109) and (1.110) in (1.108), we derive (1.107).

Observe that

Ek(t) >
1

4
(‖∂tuk(t)‖2

L2(Ω) + ‖∂tvk(t)‖2
L2(Ω)) +

1

4
(‖uk(t)‖2

V + ‖vk(t)‖2
V ) + Ak(t).

Then by (1.107)

Ek(t) >
1

4
(‖∂tuk(t)‖2

L2(Ω) + ‖∂tvk(t)‖2
L2(Ω)) +

1

4
(‖uk(t)‖2

V + ‖vk(t)‖2
V ), ∀t ∈ [0,∞).

(1.111)
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On the other side, we have

|ψk(t)| 6
(
R +

n− 1

2

)
(‖∂tuk(t)‖2

L2(Ω) + ‖∂tvk(t)‖2
L2(Ω))

+

(
R +

n− 1

2λ1

)
(‖uk(t)‖2

V + ‖vk(t)‖2
V ),

where λ1 is the first eigenvalue of the spectral problem ((u, v)) = λ(u, v), u, v ∈ V .

Thus

|ψk(t)| 6
P

4
(‖∂tuk(t)‖2

L2(Ω) + ‖∂tvk(t)‖2
L2(Ω) + ‖uk(t)‖2

V + ‖vk(t)‖2
V ), (1.112)

where P was defined in (1.103).

From (1.111) and (1.112) it follows that

|ψk(t)| 6 PEk(t), ∀t ∈ [0,∞).

Since that

|Ekε(t)− Ek(t)| = |εψk(t)| 6 εPEk(t)

we have

Ek(t)(1− εP ) 6 Ekε(t) 6 (1 + εP )Ek(t).

Then
1

2
Ek(t) 6 Ekε1(t) 6

3

2
Ek(t), 0 < ε1 6

1

2P
. (1.113)

From now on, to simplify the notation we will do not write the variable t.

Proof of (1.106). Multiplying (1.88)1 and (1.88)2 by ∂tuk and ∂tvk, respectively, using

the fact δ(x) = m(x) · ~n(x) the hypothesis (1.103), we get

E ′k 6 −m0(‖∂tuk‖2
L2(Γ1) + ‖∂tvk‖2

L2(Γ1)). (1.114)

The idea to prove (1.106) is to find that

ψ′k 6 −Ek −
[

1

4
(‖uk‖2

V + ‖vk‖2
V )−N1(‖uk‖4

V + ‖vk‖4
V )

]
+D(‖∂tuk‖2

L2(Γ1) + ‖∂tvk‖2
L2(Γ1)),

where N1 and D are positive constants independent of k.

Then to prove an existence theorem of solutions which permits us to say

1

4
(‖uk‖2

V + ‖vk‖2
V )−N1(‖uk‖4

V + ‖vk‖4
V ) > 0, ∀t ∈ [0,∞).
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Thus

E ′kε = E ′k + εψ′k 6 −εEk − (m0 − εD)(‖∂tuk‖2
L2(Γ1) + ‖∂tvk‖2

L2(Γ1)).

For small ε > 0, we obtain (1.106).

Differentiating the function ψk, we obtain

ψ′k = 2(∂2
t uk,m · ∇uk) + 2(∂tuk,m · ∇∂tuk) + (n− 1)(∂2

t uk, uk) + (n− 1)‖∂tuk‖2
L2(Ω)

+ 2(∂2
t vk,m · ∇vk) + 2(∂tvk,m · ∇∂tvk) + (n− 1)(∂2

t vk, vk) + (n− 1)‖∂tvk‖2
L2(Ω).

From (1)1 and (1)2, we find

ψ′k = 2(∆uk,m · ∇uk)− 2(|uk||vk|vk,m · ∇uk) + 2(∂tuk,m · ∇∂tuk)

+ (n− 1)(∆uk, uk)− (n− 1)(|uk||vk|vk, uk) + (n− 1)‖∂tuk‖2
L2(Ω)

+ 2(∆vk,m · ∇vk)− 2(|uk|uk|vk|,m · ∇vk) + 2(∂tvk,m · ∇vk)

+ (n− 1)(∆vk, vk)− (n− 1)(|uk|uk|vk|, vk) + (n− 1)‖∂tvk‖2
L2(Ω)

=: I1 + · · ·+ I12.

(1.115)

respectively.

Our goal is to derive a bound above for each terms on the right hand side of

(1.115).

• The regularity (1.89) allows us to obtain Rellich’s identity for uk, see Komornik

and Zuazua [25, Remark 2.3, p. 41]; that is,

I1 = 2(∆uk,m ·∇uk) = (n−2)‖uk‖2
V +2

∫
Γ

∂uk
∂~n

(m ·∇uk)dΓ−
∫

Γ

(m ·~n)|∇uk|2dΓ.

Since |∇uk|2 =
(
∂uk
∂~n

)2 and m · ∇uk = (m · ~n)∂uk
∂~n

on Γ0, then∫
Γ

(m · ~n)|∇uk|2dΓ =

∫
Γ0

(m · ~n)

(
∂uk
∂~n

)2

dΓ +

∫
Γ1

(m · ~n)|∇uk|2dΓ

and ∫
Γ

∂uk
∂~n

(m · ∇uk)dΓ =

∫
Γ0

(m · ~n)

(
∂uk
∂~n

)2

dΓ +

∫
Γ1

∂uk
∂~n

(m · ∇uk)dΓ.

Thus

I1 = (n− 2)‖uk‖2
V + 2

∫
Γ0

(m · ~n)

(
∂uk
∂~n

)2

dΓ + 2

∫
Γ1

∂uk
∂~n

(m · ∇uk)dΓ

−
∫

Γ0

(m · ~n)

(
∂uk
∂~n

)2

dΓ−
∫

Γ1

(m · ~n)|∇uk|2dΓ.

(1.116)

46



Since
∂uk
∂~n

+ (m · ~n)∂tuk = 0 on Γ1 we have∣∣∣∣2∫
Γ1

∂uk
∂~n

(m · ∇uk)dΓ

∣∣∣∣ =

∣∣∣∣2∫
Γ1

(m · ~n)∂tuk(m · ∇uk)dΓ

∣∣∣∣
6 R3

∫
Γ1

|∂tuk|2dΓ +

∫
Γ1

(m · ~n)|∇uk|2.
(1.117)

Substituting (1.117) in (1.116), making the reduction of similar terms and ob-

serving that m · ~n 6 0 on Γ0, we get

I1 6 (n− 2)‖uk‖2
V +R3‖∂tuk‖2

L2(Γ1). (1.118)

In similar way

I7 6 (n− 2)‖vk‖2
V +R3‖∂tvk‖2

L2(Γ1). (1.119)

• Note that

I2 = −2(|uk||vk|vk,m · ∇uk)

= −2

∫
Ω

|uk||vk|vk(m · ∇uk)dx

= −2
n∑
i=1

∫
Ω

|uk||vk|vkmi
∂uk
∂xi

dx

= −
n∑
i=1

∫
Ω

mi

[
∂

∂xi
(|uk|uk)

]
(|vk|vk)dx.

Similarly we find

I8 = −2(|uk|uk|vk|,m · ∇vk) = −
n∑
i=1

∫
Ω

mi(|uk|uk)
[
∂

∂xi
(|vk|vk)

]
dx.

From Green’s Theorem, using the fact
∂mi

∂xi
= 1 and uk = vk = 0 on Γ0, we have

I2 + I8 = n

∫
Ω

(|uk|uk)(|vk|vk)dx−
∫

Γ1

(m · ~n)(|uk|uk)(|vk|vk)dΓ.

Using (1.59), we have∣∣∣∣−∫
Γ1

(m · ~n)(|uk|uk)(|vk|vk)dΓ

∣∣∣∣ 6 Rc4
2

2

(
‖uk‖4

V + ‖vk‖4
V

)
.

Therefore

I2 + I8 6 n

∫
Ω

(|uk|uk)(|vk|vk)dx+
Rc4

2

2

(
‖uk‖4

V + ‖vk‖4
V

)
. (1.120)
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• From Green’s Theorem and since
∂mi

∂xi
= 1 and ∂tuk = 0 on Γ0, we obtain

I3 = 2(∂tuk,m · ∇∂tuk) = 2
n∑
i=1

∫
Ω

∂tukmi
∂

∂xi
∂tukdx =

n∑
i=1

∫
Ω

mi
∂

∂xi
(∂tuk)

2dx

= −
n∑
i=1

∫
Ω

∂mi

∂xi
(∂tuk)

2dx+
n∑
i=1

∫
Γ1

(mi · ~ni)(∂tuk)2dΓ,

it follows that

I3 6 −n‖∂tuk‖2
L2(Ω) +R‖∂tuk‖2

L2(Γ1).

In similar way

I9 6 −n‖∂tvk‖2
L2(Ω) +R‖∂tvk‖2

L2(Γ1).

• From the boundary conditions
∂uk
∂~n

+ (m · ~n)∂tuk = 0 on Γ1, we find

(∆uk, uk) = −‖uk‖2
V −

∫
Γ1

(m · ~n)∂tukukdΓ.

Note that, using (1.59) we obtain∣∣∣∣∫
Γ1

(m · ~n)∂tukukdΓ

∣∣∣∣ 6 R

∫
Γ1

|∂tuk||uk|dΓ

6
1

2
R2c2

3(n− 1)‖∂tuk‖2
L2(Γ1) +

1

2(n− 1)c2
3

‖uk‖2
L2(Γ1)

6
1

2
R2(n− 1)c2

3‖∂tuk‖2
L2(Γ1) +

1

2(n− 1)
‖uk‖2

V .

Thus

I4 = (n− 1)(∆uk, uk) 6 −(n− 1)‖uk‖2
V +

1

2
R2(n− 1)2c2

3‖∂tuk‖2
L2(Γ1) +

1

2
‖uk‖2

V .

In similar way

I10 6 −(n− 1)‖vk‖2
V +

1

2
R2(n− 1)2c2

3‖∂tvk‖2
L2(Γ1) +

1

2
‖vk‖2

V .

• From (1.12) we have

(|uk||vk|vk, uk) 6
∫

Ω

|uk|2|vk|2dx 6
c4

1

2
(‖uk‖4

V + ‖vk‖4
V ).

Therefore

I5 = −(n− 1)(|uk||vk|vk, uk) 6
c4

1

2
(n− 1)(‖uk‖4

V + ‖vk‖4
V ).

In similar way

I11 6
c4

1

2
(n− 1)(‖uk‖4

V + ‖vk‖4
V ). (1.121)
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Taking into account (1.118)–(1.121) in (1.115) and reducing similar terms, we obtain

I1 + · · ·+ I12 6 −(‖∂uk‖2
L2(Ω) + ‖∂vk‖2

L2(Ω))−
1

2
(‖uk‖2

V + ‖vk‖2
V )

+ n

∫
Ω

(|uk|uk)(|vk|vk)dx+

[
Rc4

2

2
+ c4

1(n− 1)

]
(‖uk‖4

V + ‖vk‖4
V )

+D(‖u′k‖2
L2(Γ1) + ‖v′k‖2

L2(Γ1)),

where D was defined in (1.103). Thus,

I1 + · · ·+ I12 6 −
1

2
(‖∂uk‖2

L2(Ω) + ‖∂vk‖2
L2(Ω))−

1

4
(‖uk‖2

V + ‖vk‖2
V )

− 1

4

∫
Ω

(|uk|uk)(|vk|vk)dx−
1

4
(‖uk‖2

V + ‖vk‖2
V )

+

[
n+

1

4

] ∫
Ω

(|uk|uk)(|vk|vk)dx+

[
Rc4

2

2
+ c4

1(n− 1)

]
(‖uk‖4

V + ‖vk‖4
V )

+D(‖u′k‖2
L2(Γ1) + ‖v′k‖2

L2(Γ1))

(1.122)

Now using (1.12), we have∣∣∣∣∫
Ω

(|uk|vk)(|vk|vk)dx
∣∣∣∣ 6 c4

1

2
(‖uk‖4

V + ‖vk‖4
V ). (1.123)

Combining (1.123) with (1.122) we get

I1 + · · ·+ I12 6 −
1

2
Ek −

(
1

4
(‖uk‖2

V + ‖vk‖2
V )−N1(‖uk‖4

V + ‖vk‖4
V )

)
+D(‖u′k‖2

L2(Γ1) + ‖v′k‖2
L2(Γ1)),

where N1 was defined in (1.63). From (1.109) and (1.110) we obtain

1

4
(‖uk‖2

V + ‖vk‖2
V )−N1(‖uk‖4

V + ‖vk‖4
V ) > 0.

Therefore

ψ′k 6 −
1

2
Ek +D(‖∂tuk‖2

L2(Γ1) + ‖∂tvk‖2
L2(Γ1)). (1.124)

Thanks to (1.114), (1.124) and E ′kε = E ′k + εψ′k we get

E ′kε 6 −
ε

2
Ek − (m0 −Dε)(‖∂tuk‖2

L2(Γ1) + ‖∂tvk‖2
L2(Γ1)).

Therefore

E ′kε2 6 −
ε2

2
Ek, for all 0 6 ε2 6

m0

D
. (1.125)
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The choice τ given in (1.103) implies that (1.113) and (1.125) hold simultaneously

for this τ . Thus, from (1.113) we have

−τ
2
Ek 6 −

τ

3
Ekτ .

Consequently, using the above inequality in (1.125), we obtain

E ′kτ 6 −
τ

3
Ekτ .

This give us that

Ekτ (t) 6 e−
τ
3
tEkτ (0).

From this inequality and (1.113) we have

Ek(t) 6 3Ek(0)e−
τ
3
t, for all t ∈ [0,∞).

With this we conclude the proof of the Theorem 1.4.1. �
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Chapter 2

Asymptotic behavior of solutions for a
thermoelastic plate system

In this chapter we aim to make a study of the asymptotic behavior, in the sense

of global attractors, of the solutions of an autonomous thermoelastic plate system with

n > 2 and Neumann boundary conditions when some reaction terms are concentrated

in a neighborhood of the boundary and this neighborhood shrinks to boundary as a

parameter ε goes to zero. More precisely, we show the existence, uniform bound of

the global attractors of the problems (2) and (3) and that the semigroup associated to

(2) converges for the semigroup associated to (3). Moreover we show the continuity of

these attractors at ε = 0.

2.1 Preliminary

We begin this section with some notations and we present hypotheses and a

dissipative condition on nonlinearities. After we write (2) and (3) in abstract problems.

We finished the section with a result, that ensure us the sectoriality of operator and

with an exponential estimate for the linear semigroup.

2.1.1 Abstract setting

To better describe the problem we introduce some terminology, let Ω be an open

bounded smooth set in Rn, n > 2 with a smooth boundary Γ = ∂Ω. We define the



strip of width ε and base ∂Ω as

ωε = {x− σ →n (x) : x ∈ Γ and σ ∈ [0, ε)},

for sufficiently small ε, say 0 < ε 6 ε0, where ~n(x) denotes the outward normal vector

at x ∈ Γ. We note that the set ωε has Lebesgue measure |ωε| = O(ε) with |ωε| 6 k |Γ| ε,

for some k > 0 independent of ε, and that for small ε, the set ωε is a neighborhood of

Γ in Ω, that collapses to the boundary when the parameter ε goes to zero.

We are interested in the behavior, for small ε, of the solutions of the autonomous

thermoelastic plate systems with concentrated terms given in (2)

We take j : R→ R to be C 2 and assume that it satisfies the growth estimates

|j(s)|+ |j′(s)|+ |j′′(s)| 6 K, ∀s ∈ R, (2.1)

for some constant K > 0, we also assume the standard dissipative assumption given

by

lim sup
|s|→+∞

j(s)

s
6 0, (2.2)

with j = f or j = g. We note that (2.2) is equivalent to saying that for any γ > 0

there exists cγ > 0 such that

sj(s) 6 γs2 + cγ, ∀s ∈ R. (2.3)

Let us consider the Hilbert space Y := L2(Ω) and the unbounded linear operator

Λ : D(Λ) ⊂ Y → Y defined by

Λu = (−∆)2u, u ∈ D(Λ),

with domain

D(Λ) :=
{
u ∈ H4(Ω) :

∂u

∂~n
=
∂(∆u)

∂~n
= 0 on Γ

}
.

The operator Λ has a discrete spectrum formed of eigenvalues satisfying

0 = µ1 6 µ2 6 · · · 6 µn 6 · · · , lim
n→∞

µn =∞.

Since this operator turns out to be sectorial in Y in the sense of Henry [20,

Definition 1.3.1, p.18] and Cholewa and Dłotko [15, Example 1.3.9, p.42], associated to

it there is a scale of Banach spaces (the fractional power spaces) Y α, α ∈ R, denoting
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the domain of the fractional power operators associated with Λ, that is, Y α := D(Λα),

α > 0. Let us consider Y α endowed with the norm ‖(·)‖Y α = ‖Λα(·)‖Y +‖(·)‖Y , α > 0.

The fractional power spaces are related to the Bessel Potentials spaces Hs(Ω), s ∈ R,

and it is well known that

Y α ↪→ H2α(Ω), Y −α = (Y α)′, α > 0, (2.4)

with

Y
1
2 =

{
u ∈ H2(Ω) :

∂u

∂~n
= 0 on Γ

}
.

We also have

Y −
1
2 = (Y

1
2 )′, Y = Y 0 = L2(Ω) and Y 1 = D(Λ).

Since the problem (3) has a nonlinear term on boundary, choosing 1
2
< s 6 1

and using the standard trace theory results that for any function v ∈ Hs(Ω), the

trace of v is well defined and lies in L2(Γ). Moreover, the scale of negative exponents

Y −α, for α > 0, it is necessary to introduce the nonlinear term of (3) in the abstract

equation, since we are using the operator Λ with homogeneous boundary conditions.

If we consider the realizations of Λ in this scale, then the operator Λ− 1
2
∈ L (Y

1
2 , Y −

1
2 )

is given by

〈Λ− 1
2
u, v〉Y =

∫
Ω

∆u∆vdx+

∫
Ω

uvdx, u, v ∈ Y 1
2 .

With some abuse of notation we identify all different realizations of this operator and

we write them all as Λ.

We also consider the operator Λ + I : D(Λ + I) ⊂ Y → Y , it is a positive

defined and sectorial operator in Y in the sense of Henry [20, Definition 1.3.1, p.18]

and Cholewa and Dłotko [15, Example 1.3.9, p.42], associated to it there is a scale

of Banach spaces (the fractional power spaces) D((Λ + I)α), α > 0, domain of the

operator (Λ+ I)α. Let us consider D((Λ+ I)α) endowed with the graph norm

‖(·)‖D((Λ+I)α) = ‖(Λ+ I)α(·)‖Y , α > 0 (0 ∈ ρ((Λ+ I)α)).

Consequentely, by Cholewa and Dłotko [15, Corollary 1.3.5] and D(Λ+ I) = D(Λ), we

also have that

Y α = [Y,D(Λ)]α = [Y,D(Λ+ I)]α = D((Λ+ I)α), 0 < α < 1,
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endowed with equivalent norms.

The operator Λ+ I has a discrete spectrum formed of eigenvalues satisfying

1 = µI1 6 µI2 6 · · · 6 µIn 6 · · · , lim
n→∞

µIn =∞.

Also, let us consider the following Hilbert space

X = X0 = Y
1
2 × Y × Y,

equipped with the inner product〈( u1
v1
θ1

)
,
( u2
v2
θ2

)〉
X

= 〈u1, u2〉Y 1
2

+ 〈v1, v2〉Y + 〈θ1, θ2〉Y ,

where 〈·, ·〉Y is the usual inner product in L2(Ω) and

H = H2(Ω)×H−s(Ω)× L2(Ω)

equipped with the usual inner product with 1
2
< s 6 1.

To better explain the results in the chapter, initially, we define the abstract

problems associated to (2) and (3) respectively. For this we define the unbounded

linear operator A : D(A) ⊂ X → X by

A
(
u
v
θ

)
=


0 I 0

−Λ− I 0 Λ
1
2 + I

0 −Λ 1
2 − I −Λ 1

2 − I

( uvθ ) =


v

−Λu− u+ Λ
1
2 θ + θ

−Λ 1
2v − v − Λ 1

2 θ − θ

 , (2.5)

for all
(
u
v
θ

)
∈ D(A), with domain

D(A) = Y 1 × Y
1
2 × Y

1
2 . (2.6)

For each ε ∈ (0, ε0], we write (2) in the abstract form as


dwε

dt
= Awε + Fε(w

ε), t > 0,

wε(0) = w0,

(2.7)

with

wε =
(

uε

∂tuε

θε

)
, w0 =

( u0
v0
θ0

)
∈ X
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and nonlinear map Fε : X →H , with 1
2
< s 6 1, defined by

Fε(w) =


0

fΩ(u) +
1

ε
χωεgΩ(u)

0

 , w =
(
u
v
θ

)
∈ X,

where fΩ,
1

ε
χωεgΩ : H2(Ω)→ H−s(Ω) are the operators, respectively, given by

〈fΩ(u), ϕ〉 =

∫
Ω

f(u)ϕdx, u ∈ H2(Ω) and ϕ ∈ Hs(Ω) (2.8)

and 〈1

ε
χωεgΩ(u), ϕ

〉
=

1

ε

∫
ωε

g(u)ϕdx, u ∈ H2(Ω) and ϕ ∈ Hs(Ω). (2.9)

While the problem (3) can be written in the abstract form as
dw

dt
= Aw + F0(w), t > 0,

w(0) = w0,

(2.10)

with

w =
(

u
∂tu
θ

)
and nonlinear map F0 : X →H , with 1

2
< s 6 1, defined by

F0(w) =


0

fΩ(u) + gΓ(u)

0

 , w =
(
u
v
θ

)
∈ X,

where fΩ is defined in (2.8) and gΓ : H2(Ω)→ H−s(Ω) is the operator given by

〈gΓ(u), ϕ〉 =

∫
Γ

γ(g(u))γ(ϕ)dS, u ∈ H2(Ω) and ϕ ∈ Hs(Ω), (2.11)

where γ : Hs(Ω)→ L2(Γ) is the trace operator, to according with Triebel [43].

2.1.2 Sectoriality

In this section we prove that the unbounded linear operator A generates a analytic

semigroup, which we denote {eAt : t > 0}, more precisely, we show that unbounded

linear operator −A is sectorial.

On analyticity of a C0−semigroup of contractions on a Hilbert space, we have

following result.
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Theorem 2.1.1 Let {S(t) : t > 0} be a C0-semigroup of contractions of linear opera-
tors in a Hilbert space with infinitesimal generator B. Suppose that iR ⊂ ρ(B). Then,
{S(t) : t > 0} is analytic if and only if lim sup

|β|→+∞
‖β(iβI −B)−1‖ <∞.

Proof. For the proof, see Liu and Zheng [27, Theorem 1.3.3, p.5]. �

In the following two results we verify that the unbounded linear operator A is

dissipative, closed and densely defined.

Lemma 2.1.2 The unbounded linear operator A : D(A) ⊂ X → X defined in (2.5)-
(2.6) satisfy the following equality

Re
〈
A
(
u
v
θ

)
,
(
u
v
θ

)〉
X

= −‖Λ
1
4 θ‖2

Y − ‖θ‖2
Y 6 0, ∀

(
u
v
θ

)
∈ D(A). (2.12)

Proof. Note that〈
A
(
u
v
θ

)
,
(
u
v
θ

)〉
X

=

〈( v

−Λu−u+Λ
1
2 θ+θ

−Λ
1
2 v−v−Λ

1
2 θ−θ

)
,
(
u
v
θ

)〉
Y

1
2×Y×Y

= 〈v, u〉
Y

1
2
− 〈Λu− Λ

1
2 θ, v〉Y − 〈u− θ, v〉Y − 〈Λ

1
2v + Λ

1
2 θ, θ〉Y − 〈v + θ, θ〉Y

= 〈Λ 1
2u, Λ

1
2v〉Y − 〈Λ

1
2u, Λ

1
2v〉Y + 〈u, v〉Y − 〈u, v〉Y + 〈Λ

1
2 θ, v〉Y − 〈Λ

1
2 θ, v〉Y

+ 〈v, θ〉Y − 〈v, θ〉Y − ‖Λ
1
4 θ‖2

Y − ‖θ‖2
Y .

Finally, from this we get (2.12). �

Theorem 2.1.3 The unbounded linear operator A : D(A) ⊂ X → X defined in (2.5)-
(2.6) is closed and densely defined.

Proof. Let wn = [un vn θn]T ∈ D(A) with wn → [u v θ]T in X as n→∞, and

Awn → ϕ = [ϕ1 ϕ2 ϕ3]T in X as n→∞, or equivalently
vn → ϕ1 in Y

1
2 as n→∞;

−Λun − un + Λ
1
2 θn + θn → ϕ2 in Y as n→∞;

−Λ 1
2vn − vn − Λ

1
2 θn − θn → ϕ3 in Y as n→∞,

then v = ϕ1 ∈ Y
1
2 . Since

−(Λ
1
2 + I)θn = [−(Λ

1
2 + I)vn − (Λ

1
2 + I)θn] + (Λ

1
2 + I)vn → ϕ3 + Λ

1
2ϕ1 + ϕ1

in Y as n→∞, we have

θ ∈ D(Λ
1
2 + I) = Y

1
2 and − (Λ

1
2 + I)θ = ϕ3 + Λ

1
2ϕ1 + ϕ1.
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Finally, since

−(Λ+ I)un = [−(Λ+ I)un + (Λ
1
2 + I)θn]− (Λ

1
2 + I)θn → ϕ2 + ϕ3 + Λ

1
2ϕ1 + ϕ1

in Y as n→∞, we conclude

u ∈ D(Λ+ I) = Y 1 and − (Λ+ I)u = ϕ2 + ϕ3 + Λ
1
2ϕ1 + ϕ1,

that is, [u v θ]T ∈ D(A) and

[ϕ1 ϕ2 ϕ3]T = [v − (Λ+ I)u+ (Λ
1
2 + I)θ − (Λ

1
2 + I)v − (Λ

1
2 + I)θ]T = A[u v θ]T .

Clearly A is densely defined. �

Remark 2.1.4 Note that zero is in the resolvent set of A and

A−1 =

−(Λ+ I)−1(Λ
1
2 + I) −(Λ+ I)−1 −(Λ+ I)−1

I 0 0

−I 0 −(Λ
1
2 + I)−1

 .

Since A is dissipative, closed, densely defined and zero is in the resolvent set of

A, by Lumer-Phillips theorem, A is generator of a C0-semigroup of contractions.

The next theorem shows that the operator A generates an analytic semigroup,

that is, −A is a sectorial operator, for this we use the Theorem 2.1.1.

Theorem 2.1.5 The unbounded linear operator −A such that A : D(A) ⊂ X →
X is defined in (2.5)-(2.6) is sectorial with Reσ(−A) > 0. Thus the semigroup of
contractions {eAt : t > 0} is analytic.

Proof. First, we show that iR ⊂ ρ(A). We show this result by a contradiction

argument. That is, let us suppose that there exists 0 6= β ∈ R, such that iβ is in the

spectrum of A. Then iβ must be an eigenvalue of A, because A−1 is compact. Thus

there is a vector function w = [u v θ]T ∈ D(A), ‖w‖X = 1, such that

(iβI − A)w = 0 in X

or equivalenty 
iβu− v = 0,

iβv + (Λ+ I)u− (Λ
1
2 + I)θ = 0,

iβθ + (Λ
1
2 + I)v + (Λ

1
2 + I)θ = 0,

(2.13)
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and so

Re〈Aw,w〉X = −‖Λ
1
4 θ‖2

Y − ‖θ‖2
Y = 0.

Thus θ = 0 and by (2.13), u = v = 0. Thus, we have a contradition. Therefore,

iR ⊂ ρ(A).

Finally, we show that there exists a positive constant C such that

|β|
∥∥∥( uv

θ

)∥∥∥
X
6 C‖F‖X , for all F =

(
f1

f2

f3

)
∈ X, β ∈ R,

where w = [u v θ]T = (iβI − A)−1F ∈ D(A). In fact, multiplying equation

(iβI − A)w = F in X (2.14)

with w = [u v θ]T ; that is, in terms of its components yields
iβu− v = f1,

iβv + (Λ+ I)u− (Λ
1
2 + I)θ = f2,

iβθ + (Λ
1
2 + I)v + (Λ

1
2 + I)θ = f3,

(2.15)

we get

iβ‖w‖2
X − 〈Aw,w〉X = 〈F , w〉X . (2.16)

Taking the real part in (2.16) it follows that

|Re〈Aw,w〉X | = ‖Λ
1
4 θ‖2

Y + ‖θ‖2
Y 6 ‖F‖X‖w‖X , (2.17)

and taking the imaginary parts in (2.16), and using (2.17) and Young’s inequality we

have that

|β|‖w‖2
X 6 2|〈Λ

1
2u, Λ

1
2v〉Y |+ 2|〈u, v〉Y |+ 2|〈Λ

1
2v, θ〉Y |+ 2|〈v, θ〉Y |+ 2‖F‖X‖w‖X

= 2|〈Λ
3
4u, Λ

1
4v〉Y |+ 2|〈u, v〉Y |+ 2|〈Λ

1
4v, Λ

1
4 θ〉Y |+ 2|〈v, θ〉Y |+ 2‖F‖X‖w‖X

6 ‖Λ
3
4u‖2

Y + ‖u‖2
Y + 2‖Λ

1
4v‖2

Y + 2‖v‖2
Y + ‖Λ

1
4 θ‖2

Y + ‖θ‖2
Y + 2‖F‖X‖w‖X

6 ‖Λ
3
4u‖2

Y + ‖u‖2
Y + 2‖Λ

1
4v‖2

Y + 2‖v‖2
Y + ‖Λ

1
4 θ‖2

Y + ‖θ‖2
Y + 2‖F‖X‖w‖X

(2.18)

Thanks to (2.17) and (2.18) we obtain that

|β|‖w‖2
X 6 ‖Λ

3
4u‖2

Y + ‖u‖2
Y + 2(‖Λ

1
4v‖2

Y + ‖v‖2
Y ) + 3‖F‖X‖w‖X . (2.19)
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Multiplying (2.14) by [0 0 v]T , in the sense of X, using the second equation of

the (2.15) and the Young’s inequality we have that

2(‖Λ
1
4v‖2

Y + ‖v‖2
Y )

6 2(‖f2‖Y ‖θ‖Y + ‖f3‖Y ‖v‖Y ) + ‖Λ
3
4u‖2

Y + ‖u‖2
Y +

(
1 +

1

γ 0

)
(‖Λ

1
4 θ‖2

Y + ‖θ‖2
Y )

+ γ0(‖Λ
1
4v‖2

Y + ‖v‖2
Y ),

for some constant γ0 > 0 to be choose later.

Thus

(2− γ0)(‖Λ
1
4v‖2

Y + ‖v‖2
Y ) 6 2(‖f2‖Y ‖θ‖Y + ‖f3‖Y ‖v‖Y ) + ‖Λ

3
4u‖2

Y + ‖u‖2
Y

+

(
1 +

1

γ 0

)
(‖Λ

1
4 θ‖2

Y + ‖θ‖2
Y ),

for some constant γ0 > 0 to be choose later.

With this, by (2.17) and choosing 0 < γ0 < 2 we get

(2− γ0)(‖Λ
1
4v‖2

Y + ‖v‖2
Y ) 6 C1‖F‖X‖w‖X + ‖Λ

3
4u‖2

Y + ‖u‖2
Y , (2.20)

for some constant C1 > 0.

Now, multiplying (2.14) by [0 Λ
1
2u+ u 0]T , in the sense of X, we have

〈iβv + (Λ+ I)u− (Λ
1
2 + I)θ, Λ

1
2u+ u〉Y = 〈f2, Λ

1
2u+ u〉Y ,

that is, using the first equation of the (2.15) in the above equation,

‖Λ
3
4u‖2

Y + ‖Λ
1
2u‖2

Y + ‖Λ
1
4u‖2

Y + ‖u‖2
Y

6 (‖Λ
1
2f1‖Y + ‖f1‖Y )‖v‖Y + ‖f2‖Y (‖Λ

1
2u‖Y + ‖u‖Y ) +

2 + γ1

2γ1

‖Λ
1
4 θ‖2

Y +
1

2
‖Λ

3
4u‖2

Y

+ γ1‖Λ
1
4u‖2

Y +
1

2
‖θ‖2

Y +
1

2
‖u‖2

Y − ‖Λ
1
4v‖2

Y − ‖v‖2
Y

6 (‖Λ
1
2f1‖Y + ‖f1‖Y )‖v‖Y + ‖f2‖Y (‖Λ

1
2u‖Y + ‖u‖Y ) +

2 + γ1

2γ1

(‖Λ
1
4 θ‖2

Y + ‖θ‖2
Y )

+
1

2
‖Λ

3
4u‖2

Y + γ1‖Λ
1
4u‖2

Y +
1

2
‖u‖2

Y ,

for some constant γ1 > 0 to be choose later.

Thus

1

2
(‖Λ

3
4u‖2

Y + ‖u‖2
Y ) + (1− γ1)‖Λ

1
4u‖2

Y

6 (‖Λ
1
2f1‖Y + ‖f1‖Y )‖v‖Y + ‖f2‖Y (‖Λ

1
2u‖Y + ‖u‖Y ) +

2 + γ1

2γ1

(‖Λ
1
4 θ‖2

Y + ‖θ‖2
Y ),
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for some constant γ1 > 0 to be choose later.

Now, take 0 < γ1 < 1 and see that by (2.17) we get

‖Λ
3
4u‖2

Y + ‖u‖2
Y 6 C2‖F‖X‖w‖X ,

for some constant C2 > 0.

Thanks to (2.20) we have

‖Λ
1
4v‖2

Y + ‖v‖2
Y 6 C3‖F‖X‖w‖X ,

for some constant C3 > 0.

Finally, from (2.19) we obtain

|β|‖w‖2
X 6 c0‖F‖X‖w‖X ,

for some constant c0 > 0, and we conclude by Theorem 2.1.1 that A generates an

analytic semigroup and therefore −A is a sectorial operator. �

Theorem 2.1.6 The following conditions hold:
(i) −A is maximal accretive or, equivalently, A is maximal dissipative;
(ii) A has compact resolvent;
(iii) A has imaginary powers are bounded and

‖Ait‖L (X) 6 e
π
2
|t|, t ∈ R;

(iv) The semigroup {eAt : t > 0} is compact.

Proof. A part of item (i) follows of Lemma 2.1.2. To complete part (i) it suffices to

note that the equation

(Id − A)


u

v

θ

 =


ũ

ṽ

θ̃


possesses, for each

(
ũ ṽ θ̃

)T
∈ X, a unique solution

u

v

θ

 =


(Λ

3
2 + 3Λ+ 4Λ

1
2 + 5I)−1[(Λ+ 3Λ

1
2 + 3I)ũ− (Λ

3
2 + 2Λ+ Λ

1
2 + 2I)ṽ]

(Λ
3
2 + 3Λ+ 4Λ

1
2 + 5I)−1[−(Λ

3
2 + 2Λ+ Λ

1
2 + 2I)ũ+ (Λ

1
2 + 2I)ṽ − (Λ+ 2Λ

1
2 + I)θ̃]

(Λ
3
2 + 3Λ+ 4Λ

1
2 + 5I)−1[−(Λ+ 2Λ

1
2 + I)ṽ + (Λ

3
2 + 2Λ+ 2Λ

1
2 + 4I)θ̃]


60



belong to X1. The item (ii) follows from Remark 2.1.4 and compactness of the Sobolev

inclusions between Y α spaces resulting from compactness of the resolvent of Λ+ I and

Λ
1
2 + I. The item (iii) follows from the observations concerning powers of accretive

operators reported in [1, Example 4.7.3 (b), p. 164]. The item (iv) is a consequence of

(ii). �

2.1.3 Partial description of the fractional power scale

Connecting the properties of listed above with the results of Amann

[1, Chapter v] we obtain a partial description of the fractional power scale associ-

ated to A. Before we can proceed we need the following general interpolation result:

Proposition 2.1.7 Let Wi,Zi, i = 1, 2, 3 be the Banach spaces such that

Wi ⊂ Zi,

topologically and algebraically. Then,

[Z1×Z2×Z3,W1×W2×W3]α = [Z1,W1]α× [Z2,W2]α× [Z3,W3]α, α ∈ (0, 1). (2.21)

Proof. The proof is an immediate consequence of the definition of complex interpola-

tion spaces in Triebel [43, Section 1.9.2]. �

Based on Proposition 2.1.7 it is now easy to get characterizations of the fractional

power spaces Xα, α ∈ (0, 1).

Proposition 2.1.8 For α ∈ [0, 1] we have:

Xα = D(Aα) = Y
α+1

2 × Y
α
2 × Y

α
2

Proof. Recall that X0 = Y
1
2 ×Y 0×Y 0, X1 = Y 1×Y 1

2 ×Y 1
2 and from Theorem 2.1.5,

Xα = [X0, X1]α, α ∈ [0, 1]. (2.22)

Combining (2.22) and (2.21) we obtain

Xα = [Y
1
2 , Y 1]α × [Y 0, Y

1
2 ]α × [Y 0, Y

1
2 ]α.
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Next, by our assumptions on Λ, we have the equalities:

[Y
1
2 , Y 1]α = Y

α+1
2 , [Y 0, Y

1
2 ]α = Y

α
2 , [Y 0, Y

1
2 ]α = Y

α
2 ,

which justify the relation for D(A). �

Remark 2.1.9 Denote by X−1 the extrapolation space of X = Y
1
2 × Y × Y generated

by the operator A−1. The following equality holds

X−1 = Y × Y −
1
2 × Y −

1
2 .

In fact, recall first that X−1 is the completion of the normed space (X, ‖A−1 · ‖). Now,
note that

∥∥∥A−1
(
u
v
θ

)∥∥∥
X

=

∥∥∥∥∥∥∥
−(Λ+ I)−1(Λ

1
2 + I)u− (Λ+ I)−1v − (Λ+ I)−1θ

u

−u− (Λ
1
2 + I)−1θ


∥∥∥∥∥∥∥
X

6 ‖(Λ+ I)−1(Λ
1
2 + I)u‖

Y
1
2

+ ‖(Λ+ I)−1v‖
Y

1
2

+ ‖(Λ+ I)−1θ‖
Y

1
2

+ 2‖u‖Y + ‖(Λ
1
2 + I)−1θ‖Y

6 3‖u‖Y + ‖v‖
Y −

1
2

+ 2‖θ‖
Y −

1
2

6 C1

∥∥∥( uv
θ

)∥∥∥
X−1

,

for any
(
u
v
θ

)
∈ X−1 and for some constant C1 > 0. We also have that∥∥∥( uv

θ

)∥∥∥
X−1

= ‖u‖Y + ‖v‖
Y −

1
2

+ ‖θ‖
Y −

1
2

= ‖u‖Y + ‖(Λ+ I)−
1
2v‖Y + ‖(Λ

1
2 + I)−1θ‖Y .

(2.23)

The last two parcels of (2.23) can be estimated as follows

‖(Λ+ I)−
1
2v‖Y 6 ‖(Λ+ I)−

1
2v + (Λ+ I)−

1
2 θ + (Λ+ I)−

1
2 (Λ

1
2 + I)u‖Y

+ ‖(Λ+ I)−
1
2 (Λ

1
2 + I)u‖Y + ‖(Λ+ I)−

1
2 θ‖Y

= ‖(Λ+ I)
1
2 [(Λ+ I)−1v + (Λ+ I)−1θ + (Λ+ I)−1(Λ

1
2 + I)u]‖Y

+ ‖(Λ+ I)−
1
2 (Λ

1
2 + I)u‖Y + ‖(Λ+ I)−

1
2 θ‖Y

= ‖(Λ+ I)−1v + (Λ+ I)−1θ + (Λ+ I)−1(Λ
1
2 + I)u‖

Y
1
2

+ 2‖u‖Y + ‖u+ (Λ
1
2 + I)−1‖Y

(2.24)

and
‖(Λ

1
2 + I)−1‖Y 6 ‖u+ (Λ

1
2 + I)−1‖Y + ‖u‖Y . (2.25)
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Then, combining (2.23) with (2.24) and (2.25), we obtain that for some constant
C2 > 0, ∥∥∥( uv

θ

)∥∥∥
X1

6 ‖(Λ+ I)−1v + (Λ+ I)−1θ + (Λ+ I)−1(Λ
1
2 + I)u‖

Y
1
2

+ 4‖u‖Y + 2‖u+ (Λ
1
2 + I)−1‖Y

6 C2

∥∥∥A−1
(
u
v
θ

)∥∥∥
X
.

So we conclude that the completion of (X, ‖A−1 · ‖X) and (X, ‖ · ‖X−1) coincide.

Remark 2.1.10 The operator A can be extended to its closed X−1−realization (see
Amann [1]), which we still denote by the same symbol so that A considered in X−1 is
then sectorial positive operator. Our next concern be to obtain embedding of the spaces
from the fractional powers scale Xα−1, α > 0, generated by (A, X−1).

Below we have a partial description of the fractional power spaces scale for A:
for convenience we denote X by X0, then

X0 ↪→ Xα−1 ↪→ X−1, for all 0 < α < 1,

where
Xα−1 = [X−1, X0]α = Y

α
2 × Y

α−1
2 × Y

α−1
2

and [·, ·]α denotes the complex interpolation functor (see Triebel [43]). The first equality
follows from Theorem 2.1.5 (since 0 ∈ ρ(A)) see Amann [1, Example 4.7.3 (b)] and
the second equality follows from Carvalho and Cholewa [13, Proposition 2].

Remark 2.1.11 The operator A or, more precisely, a suitable realization of it, gener-
ates an analytic semigroup, {eAt : t > 0}, in X−1, this semigroup is order preserving
and satisfies the smoothing estimates. Thanks to Henry [20, Theorem 1.4.3, p. 26] we
have ∥∥eAtv∥∥

X
6Me−ωtt−1‖v‖X−1 ,

for any t > 0, v ∈ X−1, for some constants M > 0 and ω > 0.
Finally, thanks to (2.4) we have Y

1
2 ↪→ Hs(Ω), s 6 2 and consequently,

H ↪→ X−1 and ∥∥eAtv∥∥
X
6Me−ωtt−1‖v‖H , (2.26)

for any t > 0, v ∈H , for some constants M > 0 and ω > 0.

2.2 Existence and uniqueness of local solutions and
differentiability

Since the operator −A is sectorial, we prove local existence and uniqueness of

the solutions of the abstract problems (2.7) and (2.10) and that the solutions are

continuously differentiable with respect to initial conditions.
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2.2.1 Existence and uniqueness of local solutions

We are interested in obtaining the local well-posedness of the parabolic problems

(2.7) and (2.10) (or (2) and (3)), for this it is necessary to study the behavior of

nonlinearity Fε, ε ∈ [0, ε0].

The next lemmas are crucial results in our analysis.

Lemma 2.2.1 Assume that v ∈ Hs,p(Ω) with 1
p
< s 6 2 and s − N

p
> −N−1

q
, or

v ∈ H1,1(Ω), i.e., s = 1 = p and q = 1 below. Then for sufficiently small ε0, we have

(i) The map

[0, ε0] 3 σ 7→
∫

Γσ

|v|qdS

is continuous, where for sufficiently small σ > 0, Γσ = {x− σ →n (x) : x ∈ Γ} is
the “parallel” interior boundary.

(ii) There exists C > 0 independent of ε and v such that for any 0 < ε 6 ε0, we have

sup
σ∈[0,ε)

‖v‖Lq(Γσ) 6 C‖v‖Hs,p(Ω),

∫
ωε

|v|qdx =

∫ ε

0

(∫
Γσ

|v|qdS
)
dσ,

with the same equality, without the absolute value, if q = 1.

In particular
1

ε

∫
ωε

|v|qdx 6 C‖v‖qHs,p(Ω),

and
lim
ε→0

1

ε

∫
ωε

|v|qdx =

∫
Γ

|v|qdS.

Proof. See Arrieta, Jiménez-Casas and Rodríguez-Bernal [10, Lemma 2.1]. �

Now, we consider a family of functions g0
ε : Ω×R→ R for 0 6 ε 6 ε0, satisfying

the following conditions:

(i) {g0
ε(x, u)}ε is uniformly bounded in Ω on bounded sets of R, that is, for any

R > 0 there exists a positive constant C(R) independent of ε such that

∣∣g0
ε(x, u)

∣∣ 6 C(R), for all x ∈ Ω, and |u| 6 R. (2.27)
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(ii) {g0
ε(x, u)}ε is uniformly bounded in Ω on bounded sets of R and also uniformly

Lipschitz on bounded sets of R, that is, for any R > 0 there exists a positive

constant L(R) independent of ε such that

∣∣g0
ε(x, u)− g0

ε(x, v)
∣∣ 6 L(R)|u−v|, for all x ∈ Ω, and |u| 6 R, |v| 6 R. (2.28)

(iii) g0
ε(x, u) converges to g0

0(x, u) uniformly on Γ and on bounded sets of R, that is,

for any R > 0

g0
ε(x, u)→ g0

0(x, u) as ε→ 0, uniformly on x ∈ Γ and |u| 6 R. (2.29)

Then we have the following result.

Lemma 2.2.2 Consider a family of functions

g0
ε : Ω× R→ R

for 0 6 ε 6 ε0. Also, consider a family of functions, C, in Ω such that, for some
1 < p <∞ and R > 0

‖v‖H1,p(Ω)∩L∞(Ω) 6 R, for all v ∈ C.

(i) If {g0
ε}ε satisfies (2.27), then there exists a positive constant, M(R), independent

of ε such that for every 1 < q < ∞ and any ϕ ∈ Hs,q′(Ω) with s > 1
q′

and every
v ∈ C we have ∣∣∣∣1ε

∫
ωε

g0
ε(·, v)ϕ

∣∣∣∣ 6M(R)‖ϕ‖Hs,q′ (Ω).

In particular

sup
v∈C

∥∥∥∥1

ε
χωεg

0
ε(·, v)

∥∥∥∥
H−s,q(Ω)

6M(R).

(ii) If {g0
ε}ε satisfies (2.27), (2.28) and (2.29), then there existsM(ε, R) withM(ε, R)→

0 as ε→ 0 such that for every ϕ ∈ H1,q′(Ω) and v ∈ C∣∣∣∣1ε
∫
ωε

g0
ε(·, v)ϕ−

∫
Γ

g0
0(·, v)ϕ

∣∣∣∣ 6M(ε, R)‖ϕ‖H1,q′ (Ω),

provided

p >
q(N − 1)

N
.

In particular

1

ε
χωεg

0
ε(·, v)→ g0

0(·, v), in H−1,q(Ω), uniformly in v ∈ C.
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Proof. See Jiménez-Casas and Rodríguez-Bernal [23, Lemma 5.2]. �

Lemma 2.2.3 Suppose that f and g satisfy the growth estimate (2.1) and 1
2
< s 6 1.

Then:

(i) There exists C > 0, independent of ε, such that

‖Fε(w)‖H 6 C, for all w =
(
u
v
θ

)
∈ X and 0 6 ε 6 ε0.

(ii) For each 0 6 ε 6 ε0, the map Fε : X →H is globally Lipschitz, uniformly in ε.

(iii) For each w =
(
u
v
θ

)
∈ X, we have

‖Fε(w)− F0(w)‖H → 0, as ε→ 0.

Furthermore, this limit is uniform for w ∈ X such that ‖w‖X 6 R, for some
R > 0.

(iv) If wε → w in X, as ε→ 0, then

‖Fε(wε)− F0(w)‖H → 0, as ε→ 0.

Proof. (i) Initially note that

‖Fε(w)‖H =

∥∥∥∥fΩ(u) +
1

ε
χωεgΩ(u)

∥∥∥∥
H−s(Ω)

, ε ∈ (0, ε0],

‖F0(w)‖H = ‖fΩ(u) + gΓ(u)‖H−s(Ω) ,

with fΩ, 1
ε
χωεgΩ and gΓ defined, respectively, by (2.8), (2.9) and (2.11).

Using (2.1), Cauchy-Schwarz inequality and Sobolev embedding Hs(Ω) ↪→ L2(Ω)

with 1
2
< s 6 1, we have

|〈fΩ(u), ϕ〉| 6
∫

Ω

|f(u(x))||ϕ(x)|dx 6
∫

Ω

K|ϕ(x)|dx

6 cK ‖ϕ‖L2(Ω) 6 k1 ‖ϕ‖Hs(Ω) , ∀ϕ ∈ Hs(Ω).

Thus,

‖fΩ(u)‖H−s(Ω) 6 k1. (2.30)

Using (2.1), Cauchy-Schwarz inequality, |ωε| 6 k |Γ| ε for some k > 0 independent

of ε, and Lemma 2.2.1, we have∣∣∣∣〈1

ε
χωεgΩ(u), ϕ

〉∣∣∣∣ 6 1

ε

∫
ωε

|g(u(x))||ϕ(x)|dx 6 K

ε

∫
ωε

|ϕ(x)|dx

6 K

[
1

ε

∫
ωε

1dx

] 1
2
[

1

ε

∫
ωε

|ϕ(x)|2dx
] 1

2

6 k2 ‖ϕ‖Hs(Ω) , ∀ϕ ∈ Hs(Ω),
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with k2 > 0 independent of ε. Thus,∥∥∥∥1

ε
χωεgΩ(u)

∥∥∥∥
H−s(Ω)

6 k2. (2.31)

Now, using (2.1), Cauchy-Schwarz inequality and the continuity of the trace op-

erator γ : Hs(Ω)→ L2(Γ) with 1
2
< s 6 1, we have

|〈gΓ(u), ϕ〉| 6
∫

Γ

|γ(g(u(x)))||γ(ϕ(x))|dσ 6 K

∫
Γ

|γ(ϕ(x))|dσ

6 cK

[∫
Γ

|γ(ϕ(x))|2dσ
] 1

2

= cK ‖γ(ϕ)‖L2(Γ) 6 k3 ‖ϕ‖Hs(Ω) , ∀ϕ ∈ Hs(Ω).

Thus,

‖gΓ(u)‖H−s(Ω) 6 k3. (2.32)

Now, the item (i) follows in a straightforward from (2.30), (2.31) and (2.32).

(ii) Initially, note that

‖Fε(w1)− Fε(w2)‖H

=

∥∥∥∥[fΩ(u1)− fΩ(u2)] +
1

ε
χωε [gΩ(u1)− gΩ(u2)]

∥∥∥∥
H−s(Ω)

, ε ∈ (0, ε0],

and

‖F0(w1)− F0(w2)‖H = ‖[fΩ(u1)− fΩ(u2)] + [gΓ(u1)− gΓ(u2)]‖H−s(Ω) ,

with fΩ,
1

ε
χωεgΩ and gΓ defined, respectively, by (2.8), (2.9) and (2.11).

Using (2.1), Cauchy-Schwarz inequality and Sobolev embeddingsH2(Ω) ↪→ L2(Ω)

and Hs(Ω) ↪→ L2(Ω) with 1
2
< s 6 1, we have

|〈fΩ(u1)− fΩ(u2), ϕ〉| 6
∫

Ω

|f(u1(x))− f(u2(x))||ϕ(x)|dx

6
∫

Ω

|f ′(σ(x)u1(x) + (1− σ(x))u2(x))||u1(x)− u2(x)||ϕ(x)|dx

6 K

[∫
Ω

|u1(x)− u2(x)|2dx
] 1

2
[∫

Ω

|ϕ(x)|2dx
] 1

2

= K ‖u1 − u2‖L2(Ω) ‖ϕ‖L2(Ω)

6 c1 ‖u1 − u2‖H2(Ω) ‖ϕ‖Hs(Ω) , ∀ϕ ∈ Hs(Ω),

for some 0 6 σ(x) 6 1, x ∈ Ω. Thus,

‖fΩ(u1)− fΩ(u2)‖H−s(Ω) 6 c1 ‖u1 − u2‖H2(Ω) . (2.33)
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Using (2.1), Cauchy-Schwarz inequality and Lemma 2.2.1, we have∣∣∣∣〈1

ε
χωε [gΩ(u1)− gΩ(u2)], ϕ

〉∣∣∣∣ 6 1

ε

∫
ωε

|g(u1(x))− g(u2(x))||ϕ(x)|dx

6
1

ε

∫
ωε

|g′(σ(x)u1(x) + (1− σ(x))u2(x))||u1(x)− u2(x)||ϕ(x)|dx

6 K

[
1

ε

∫
ωε

|u1(x)− u2(x)|2dx
] 1

2
[

1

ε

∫
ωε

|ϕ(x)|2dx
] 1

2

6 c2 ‖u1 − u2‖H2(Ω) ‖ϕ‖Hs(Ω) , ∀ϕ ∈ Hs(Ω),

with c2 > 0 independent of ε and for some 0 6 σ(x) 6 1, x ∈ Ω. Thus,∥∥∥∥1

ε
χωε [gΩ(u1)− gΩ(u2)]

∥∥∥∥
H−s(Ω)

6 c2 ‖u1 − u2‖H2(Ω) . (2.34)

Now, using (2.1), Cauchy-Schwarz inequality and the continuity of the trace op-

erators γ : H2(Ω)→ L2(Γ) and γ : Hs(Ω)→ L2(Γ) with 1
2
< s 6 1, we have

|〈gΓ(u1)− gΓ(u2), ϕ〉| 6
∫

Γ

|γ(g(u1(x))− g(u2(x)))||γ(ϕ(x))|dσ

6
∫

Γ

|γ(g′(σ(x)u1(x) + (1− σ(x))u2(x)))||γ(u1(x)− u2(x))||γ(ϕ(x))|dσ

6 K

[∫
Γ

|γ(u1(x)− u2(x))|2dσ
] 1

2
[∫

Γ

|γ(ϕ(x))|2dσ
] 1

2

6 c3 ‖u1 − u2‖H2(Ω) ‖ϕ‖Hs(Ω) , ∀ϕ ∈ Hs(Ω),

for some 0 6 σ(x) 6 1, x ∈ Γ. Thus,

‖gΓ(u1)− gΓ(u2)‖H−s(Ω) 6 c3 ‖u1 − u2‖H2(Ω) . (2.35)

Now, the item (ii) follows in a straightforward from (2.33), (2.34) and (2.35).

(iii) Notice that

‖Fε(w)− F0(w)‖H =

∥∥∥∥1

ε
χωεgΩ(u)− gΓ(u)

∥∥∥∥
H−s(Ω)

.

As in Lemma 2.2.2 we can prove that there exists M(ε, R) with M(ε, R)→ 0 as

ε→ 0 such that∣∣∣∣〈1

ε
χωεgΩ(u)− gΓ(u), ϕ

〉∣∣∣∣ =

∣∣∣∣1ε
∫
ωε

g(u(x))ϕ(x)dx−
∫

Γ

γ(g(u(x)))γ(ϕ(x))dS

∣∣∣∣
6M(ε, R) ‖ϕ‖H1(Ω) , ∀ϕ ∈ H1(Ω).
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Thus, ∥∥∥∥1

ε
χωεgΩ(u)− gΓ(u)

∥∥∥∥
H−1(Ω)

→ 0, as ε→ 0, (2.36)

uniformly for u ∈ H2(Ω) such that ‖u‖H2(Ω) 6 R.

Now, fix 1
2
< s0 < 1. Then for any s such that −1 < −s < −s0 < −1

2
, using

interpolation we have∥∥∥∥1

ε
χωεgΩ(u)− gΓ(u)

∥∥∥∥
H−s(Ω)

6

∥∥∥∥1

ε
χωεgΩ(u)− gΓ(u)

∥∥∥∥θ
H−s0 (Ω)

∥∥∥∥1

ε
χωεgΩ(u)− gΓ(u)

∥∥∥∥1−θ

H−1(Ω)

,

for some 0 < θ < 1. By (2.31) and (2.32), the first term in the right hand side above

is uniformly bounded while, by (2.36), the second goes to zero, both uniformly for

u ∈ H2(Ω) such that ‖u‖H2(Ω) 6 R.

(iv) This item follows from (ii) and (iii), adding and subtracting Fε(w). In fact

‖Fε(wε)− F0(w)‖H 6 ‖Fε(wε)− Fε(w)‖H + ‖Fε(w)− F0(w)‖H

6 L‖wε − w‖X + ‖Fε(w)− F0(w)‖H → 0, as ε→ 0,

where L > 0 is the constant of Lipschitz, and we conclude the proof of Lemma 2.2.3.

�

From Lemma 2.2.3 follows that the map Fε : X → H is bounded, uniformly

in ε, in bounded set of X, and it is locally Lipschitz, uniformly in ε. Thus, it follows

from the classic results of the theory of ordinary differential equations in Banach spaces

that, given w0 ∈ X, there is an unique local solution wε(t, w0) of (2.7), with ε ∈ (0, ε0],

defined on a maximal interval of existence [0, tεmax(w0)), and there is an unique local

solution w(t, w0) of (2.10) defined on a maximal interval of existence [0, tmax(w0)).

Moreover, these solutions depend continuously on the initial data.

2.2.2 The differentiability

We prove that the solutions of (2.7) and (2.10) are continuously differentiable with

respect to initial conditions, for this it is necessary to prove the Fréchet differentiability

of Fε : X → H , ε ∈ [0, ε0]. It is enough to prove the Fréchet differentiability of

fΩ,
1

ε
χωεgΩ, gΓ : H2(Ω)→ H−s(Ω).

We define the maps DfΩ,
1

ε
χωεDgΩ, DgΓ : H2(Ω) → L (H2(Ω), H−s(Ω)), with
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1
2
< s 6 1, respectively by

〈DfΩ(u) · h, ϕ〉 =

∫
Ω

f ′(u)hϕdx, ∀u, h ∈ H2(Ω) and ∀ϕ ∈ Hs(Ω), (2.37)

〈
1

ε
χωεDgΩ(u) · h, ϕ

〉
=

1

ε

∫
ωε

g′(u)hϕdx, ∀u, h ∈ H2(Ω) and ∀ϕ ∈ Hs(Ω) (2.38)

and

〈DgΓ(u) · h, ϕ〉 =

∫
Γ

γ(g′(u)h)γ(ϕ)dS, ∀u, h ∈ H2(Ω) and ∀ϕ ∈ Hs(Ω), (2.39)

where γ : Hs(Ω)→ L2(Γ) is the trace operator.

Lemma 2.2.4 Suppose that f and g satisfy the growth estimates (2.1) and
1

2
< s 6 1. Then, fΩ,

1

ε
χωεgΩ,gΓ : H2(Ω) → H−s(Ω) are Fréchet differentiable, uni-

formly in ε, and your Fréchet differentials are respectively given by (2.37), (2.38) and
(2.39). Consequently, for each ε ∈ [0, ε0], Fε : X → H is also Fréchet differentiable,
uniformly in ε.

Proof. First we check that (2.37), (2.38) and (2.39) are well defined. In fact, for

h ∈ H2(Ω), using (2.1), Cauchy-Schwarz inequality and Sobolev embeddings, we get

|〈DfΩ(u) · h, ϕ〉| 6
∫

Ω

|f ′(u)h||ϕ|dx 6 K

∫
Ω

|h||ϕ|dx

6 K

[∫
Ω

|h|2dx
] 1

2
[∫

Ω

|ϕ|2dx
] 1

2

= K‖h‖L2(Ω)‖ϕ‖L2(Ω) 6 k1‖h‖H2(Ω)‖ϕ‖Hs(Ω), ∀ϕ ∈ Hs(Ω).

Thus,

‖DfΩ(u) · h‖H−s(Ω) 6 k1‖h‖H2(Ω), ∀h ∈ H2(Ω), (2.40)

and DfΩ(u) ∈ L (H2(Ω), H−s(Ω)).

Using (2.1), Cauchy-Schwarz inequality and Lemma 2.2.1, we have∣∣∣∣〈1

ε
χωεDgΩ(u) · h, ϕ

〉∣∣∣∣ 6 1

ε

∫
ωε

|g′(u)h||ϕ|dx 6 K

ε

∫
ωε

|h||ϕ|dx

6 K

[
1

ε

∫
ωε

|h|2dx
] 1

2
[

1

ε

∫
ωε

|ϕ|2dx
] 1

2

6 k2‖h‖H2(Ω)‖ϕ‖Hs(Ω), ∀ϕ ∈ Hs(Ω),

where the positive constant k2 is independent of ε. Thus,∥∥∥1

ε
χωεDgΩ(u) · h

∥∥∥
H−s(Ω)

6 k2‖h‖H2(Ω), ∀h ∈ H2(Ω), (2.41)
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and 1
ε
χωεDgΩ(u) ∈ L (H2(Ω), H−s(Ω)).

Now, using (2.1), Cauchy-Schwarz inequality and trace theorem, we get

|〈DgΓ(u) · h, ϕ〉| 6
∫

Γ

|γ(g′(u)h)||γ(ϕ)|dσ 6 K

∫
Γ

|γ(h)||γ(ϕ)|dσ

6 K

[∫
Γ

|γ(h)|2dσ
] 1

2
[∫

Γ

|γ(ϕ)|2dσ
] 1

2

6 k3‖h‖H2(Ω)‖ϕ‖Hs(Ω), ∀ϕ ∈ Hs(Ω).

Thus,

‖DgΓ(u) · h‖H−s(Ω) 6 k3‖h‖H2(Ω), ∀h ∈ H2(Ω), (2.42)

and DgΓ(u) ∈ L (H2(Ω), H−s(Ω)).

Now, let u, h ∈ H2(Ω) and using (2.1), Cauchy-Schwarz inequality and Sobolev

embeddings, we have

|〈fΩ(u+ h)− fΩ(u)−DfΩ(u) · h, ϕ〉| 6
∫

Ω

|f(u+ h)− f(u)− f ′(u)h||ϕ|dx

=

∫
Ω

|f ′(u+ σh)− f ′(u)||h||ϕ|dx

=

∫
Ω

|f ′′(θ(u+ σh) + (1− θ)u)||σh||h||ϕ|dx

6 K

∫
Ω

|h|2|ϕ|dx

6 K‖h‖2
L4(Ω)‖ϕ‖L2(Ω)

6 c1‖h‖2
H2(Ω)‖ϕ‖Hs(Ω), ∀ϕ ∈ Hs(Ω),

where σ = σ(x) ∈ [0, 1] and θ = θ(x) ∈ [0, 1], x ∈ Ω̄. Thus,

‖fΩ(u+ h)− fΩ(u)−DfΩ(u) · h‖H−s(Ω) 6 c1‖h‖2
H2(Ω).

This proves that fΩ is Fréchet diferentiable and your Fréchet diferential is given by

(2.37).

71



Let u, h ∈ H2(Ω) and using (2.1), Cauchy-Schwarz and Lemma 2.2.1, we have∣∣∣∣〈1

ε
χωεgΩ(u+ h)− 1

ε
χωεgΩ(u)− 1

ε
χωεDgΩ(u) · h, ϕ

〉∣∣∣∣
6

1

ε

∫
ωε

|g(u+ h)− g(u)− g′(u)h||ϕ|dx

=
1

ε

∫
ωε

|g′(u+ σh)− g′(u)||h||ϕ|dx

=
1

ε

∫
ωε

|g′′(θ(u+ σh) + (1− θ)u)||σh||h||ϕ|dx

6 K

[
1

ε

∫
ωε

|h|4dx
] 1

2
[

1

ε

∫
ωε

|ϕ|2dx
] 1

2

6 c2‖h‖2
H2(Ω)‖ϕ‖Hs(Ω), ∀ϕ ∈ Hs(Ω),

where σ = σ(x) ∈ [0, 1] and θ = θ(x) ∈ [0, 1], x ∈ Ω̄, and with c2 > 0 independent of

ε. Thus,∥∥∥1

ε
χωεgΩ(u+ h)− 1

ε
χωεgΩ(u)− 1

ε
χωεDgΩ(u) · h

∥∥∥
H−s(Ω)

6 c2‖h‖2
H2(Ω).

This proves that 1
ε
χωεgΩ is Fréchet differentiable, uniformly in ε, and your Fréchet

differential is given by (2.38).

Now, let u, h ∈ H2(Ω) and using (2.1), Cauchy-Schwarz and trace theorem, we

have

|〈gΓ(u+ h)− gΓ(u)−DgΓ(u) · h, ϕ〉| 6
∫

Γ

|γ(g(u+ h))− γ(g(u))− γ(g′(u)h)||γ(ϕ)|dσ

=

∫
Γ

|γ(g′′(θ(u+ σh) + (1− θ)u))||γ(h)|2|γ(ϕ)|dσ

6 K‖γ(h)‖2
L4(Γ)‖γ(ϕ)‖L2(Γ)

6 c3‖h‖2
H2(Ω)‖ϕ‖Hs(Ω), ∀ϕ ∈ Hs(Ω),

where σ = σ(x) ∈ [0, 1] and θ = θ(x) ∈ [0, 1], x ∈ Γ. Thus,

‖gΓ(u+ h)− gΓ(u)−DgΓ(u) · h‖H−s(Ω) 6 c3‖h‖2
H2(Ω).

This proves that gΓ is Fréchet differentiable and your Fréchet differential is given by

(2.39).

The Fréchet differentiability of Fε, uniformly in ε, follows immediately. �

Lemma 2.2.5 Suppose that f and g satisfy the growth estimates (2.1). Then, DfΩ,
1
ε
χωεDgΩ,DgΓ : H2(Ω) → L (H2(Ω), H−s(Ω)) are globally Lipschitz, uniformly in ε.

Consequently, for ε ∈ [0, ε0], DFε : X → L (X,H ) is also globally Lipschitz, uniformly
in ε.
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Proof. Let u, v ∈ H2(Ω) and using (2.1), Hölder’s inequality and Sobolev embeddings,

we have

|〈DfΩ(u) · h−DfΩ(v) · h, ϕ〉| 6
∫

Ω

|f ′(u)h− f ′(v)h||ϕ|dx

=

∫
Ω

|f ′′(u+ σv)||u− v||h||ϕ|dx

6 K

∫
Ω

|u− v||h||ϕ|dx

6 K‖u− v‖L6(Ω)‖h‖L3(Ω)‖ϕ‖L2(Ω)

6 k1‖u− v‖H2(Ω)‖h‖H2(Ω)‖ϕ‖Hs(Ω),

for any h ∈ H2(Ω) and ϕ ∈ Hs(Ω), where σ = σ(x) ∈ [0, 1], x ∈ Ω. Thus,

‖DfΩ(u)−DfΩ(v)‖L (H2(Ω),H−s(Ω)) 6 k1‖u− v‖H2(Ω).

Let u, v ∈ H2(Ω) and using (2.1), Hölder’s inequality and Lemma 2.2.1, we have∣∣∣〈1

ε
χωεDgΩ(u) · h− 1

ε
χωεDgΩ(v) · h, ϕ

〉∣∣∣ 6 1

ε

∫
ωε

|g′(u)h− g′(v)h||ϕ|dx

=
1

ε

∫
ωε

|g′′(u+ σv)||u− v||h||ϕ|dx

6 K

[
1

ε

∫
ωε

|u− v|4dx
] 1

4
[

1

ε

∫
ωε

|h|4dx
] 1

4
[

1

ε

∫
ωε

|ϕ|2dx
] 1

2

6 k2‖u− v‖H2(Ω)‖h‖H2(Ω)‖ϕ‖Hs(Ω),

for any h ∈ H2(Ω) and ϕ ∈ Hs(Ω), where k2 > 0 is independent of ε and σ = σ(x) ∈

[0, 1], x ∈ Ω. Thus,∥∥∥1

ε
χωεDgΩ(u)− 1

ε
χωεDgΩ(v)

∥∥∥
L (H2(Ω),H−s(Ω))

6 k2‖u− v‖H2(Ω).

Now, let u, v ∈ H2(Ω) and using (2.1), Hölder’s inequality and trace theorems,

we have∣∣∣〈DgΓ(u) · h−DgΓ(v) · h, ϕ〉
∣∣∣ 6 ∫

Γ

|γ(g′(u)h)− γ(g′(v)h)||γ(ϕ)|dσ

=

∫
Γ

|γ(g′′(u+ σv))||γ(u− v)||γ(h)||γ(ϕ)|dσ

6 K‖γ(u− v)‖L4(Γ)‖γ(h)‖L4(Γ)‖γ(ϕ)‖L2(Γ)

6 k3‖u− v‖H2(Ω)‖h‖H2(Ω)‖ϕ‖Hs(Ω),

for any h ∈ H2(Ω) and ϕ ∈ Hs(Ω), where σ = σ(x) ∈ [0, 1], x ∈ Γ. Thus,

‖DgΓ(u)−DgΓ(v)‖L (H2(Ω),H−s(Ω)) 6 k3‖u− v‖H2(Ω).
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Consequently, it is immediate that for each ε ∈ [0, ε0], DFε is globally Lipschitz,

uniformly in ε. �

Under the assumptions of Lemma 2.2.4 and Lemma 2.2.5, we have that the map

Fε is continuously Fréchet differentiable. Now, from the classic results of the theory of

ordinary differential equations in Banach spaces the solutions of (2.7) and (2.10) are

continuously differentiable with respect to initial conditions.

2.3 Existence and uniqueness of global solutions and
dissipativity

In this section we wish to prove that the solutions wε(t, w0), ε ∈ (0, ε0], and

w(t, w0) of the problems (2.7) and (2.10), respectively, are globally defined, that is,

that for each w0 ∈ X, tεmax(w0) = ∞ and tmax(w0) = ∞. Moreover, we show that the

semigroups associated to solutions are strongly bounded dissipativite. To prove this,

we assume the previous hypotheses and additional dissipativity assumption (2.2)(which

is equivalent to (2.3)) and we consider continuous functionals on X which are bounded

in bounded subsets of X and non-increasing along solutions of these problems.

2.3.1 Perturbed problems

Let Vε : X → R be the continuous functional defined by

Vε

(
u
v
θ

)
=

1

2

[
‖∆u‖2

L2(Ω) + ‖u‖2
L2(Ω) + ‖v‖2

L2(Ω) + ‖θ‖2
L2(Ω)

]
−
∫

Ω

∫ u

0

f(s)dsdx

− 1

ε

∫
ωε

∫ u

0

g(s)dsdx, ε ∈ (0, ε0].

(2.43)

It follows from (2.2) that for any γ1 > 0 and γ2 > 0, there exists k1 = k1(γ1) > 0

and k2 = k2(γ2) > 0 such that∫ u

0

f(s)ds 6
∫ u

0

[γ1s

2
+ k1

]
ds 6

γ1u
2

4
+ k1u 6 γ1u

2 + c1 (2.44)

and ∫ u

0

g(s)ds 6
∫ u

0

[γ2s

2
+ k2

]
ds 6

γ2u
2

4
+ k2u 6 γ2u

2 + c2, (2.45)

where c1 = c1(γ1) > 0 and c2 = c2(γ2) > 0 are independent of ε.
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Using (2.44) and (2.45), it follows that

1

2
‖∆u‖2

L2(Ω) +
1

2
‖u‖2

L2(Ω) +
1

2
‖v‖2

L2(Ω) +
1

2
‖θ‖2

L2(Ω)

= Vε

(
u
v
θ

)
+

∫
Ω

∫ u

0

f(s)dsdx+
1

ε

∫
ωε

∫ u

0

g(s)dsdx

6 Vε

(
u
v
θ

)
+

∫
Ω

(γ1|u|2 + c1)dx+
1

ε

∫
ωε

(γ2|u|2 + c2)dx.

Thus

1

2
‖∆u‖2

L2(Ω) +
(1

2
− γ1

)
‖u‖2

L2(Ω) +
1

2
‖v‖2

L2(Ω) +
1

2
‖θ‖2

L2(Ω)

6 Vε

(
u
v
θ

)
+
γ2

ε

∫
ωε

|u|2dx+ c2k|Γ|+ c1|Ω|,

and from Lemma 2.2.1 there exists C > 0 independent of ε such that

γ2

ε

∫
ωε

|u|2dx 6 γ2C‖u‖2
H2(Ω), (2.46)

and this implies that

1

2
‖∆u‖2

L2(Ω) +
(1

2
− γ1

)
‖u‖2

L2(Ω) − γ2C‖u‖2
H2(Ω) +

1

2
‖v‖2

L2(Ω) +
1

2
‖θ‖2

L2(Ω)

6 Vε

(
u
v
θ

)
+ c2k|Γ|+ c1|Ω|.

Consequently, for wε(t) =
(
uε
vε

θε

)
(t) being the solution of the problem (2) we have

that

1

2
‖∆uε‖2

L2(Ω) +
(1

2
− γ1

)
‖uε‖2

L2(Ω) − γ2C‖uε‖2
H2(Ω) +

1

2
‖vε‖2

L2(Ω) +
1

2
‖θε‖2

L2(Ω)

6 Vε

(
uε
vε

θε

)
+ c2k|Γ|+ c1|Ω|.

For 0 < γ1 <
1
2
and choosing γ2 sufficientely small in the inequality above, we

obtain

‖wε(t)‖2
X 6 C1Vε(w

ε(t)) + C2, (2.47)

for some C1, C2 > 0 independent of ε.

We note that by subsection 2.2.2 we obtain that a map t 7→ wε(t, w0) is differen-

tiable.

It is clear that for wε(t) =
(
uε
vε

θε

)
(t) being the solution of the problem (2) we have

that [0, tmax(w0)) 3 t 7→ Vε(w
ε(t, w0)) ∈ R is non-increasing because

dVε
dt

(t) = −‖∇θε(t)‖2
L2(Ω) − ‖θε(t)‖2

L2(Ω) 6 0,
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for Vε(t) = Vε(w
ε(t, w0)), t ∈ [0, tmax(w0)).

Using Lemma 2.2.1 we can prove that Vε is continous and uniformly bounded in

uniformly bounded subsets of X. From (2.47) we have that given r > 0, there is a

constant C(r) > 0 independent of ε such that

sup{‖wε(t, w0)‖X : ‖w0‖X 6 r, t ∈ [0, tεmax(w0))} 6 C. (2.48)

From (2.48) we have that for each w0 ∈ X, the solution of (2.7) is defined for all

t > 0, that is, tεmax(w0) = ∞. Consequently, for each ε ∈ [0, ε0), we can to define a

nonlinear semigroup {Sε(t) : t > 0} in X by

Sε(t)w0 = wε(t, w0), t > 0.

This also implies that each uniformly bounded subset of X has orbit and global orbit

uniformly bounded in ε.

Note that the nonlinear semigroups are given by the variation of constants formula

Sε(t)w0 = eAtw0 +

∫ t

0

eA(t−s)Fε(Sε(s)w0)ds, t > 0,

see Henry [20, Chapter 3] for details.

Remark 2.3.1 Note that (2.43) is a Lyapunov function with the properties of Defini-
tion C.17 and thus {Sε(t) : t > 0}, ε ∈ (0, ε0] is a gradient system.

2.3.2 Limit problem

Let V0 : X → R be the continuous functional defined by

V0

(
u
v
θ

)
=

1

2

[
‖∆u‖2

L2(Ω) + ‖u‖2
L2(Ω) + ‖v‖2

L2(Ω) + ‖θ‖2
L2(Ω)

]
−
∫

Ω

∫ u

0

f(s)dsdx

−
∫

Γ

∫ u

0

g(s)dsdx.

(2.49)

Using (2.44) and (2.45), it follows that

1

2
‖∆u‖2

L2(Ω) +
1

2
‖u‖2

L2(Ω) +
1

2
‖v‖2

L2(Ω) +
1

2
‖θ‖2

L2(Ω)

= V0

(
u
v
θ

)
+

∫
Ω

∫ u

0

f(s)dsdx+

∫
Γ

∫ u

0

g(s)dsdσ

6 V0

(
u
v
θ

)
+

∫
Ω

(γ1|u|2 + c1)dx+

∫
Γ

(γ2|γ(u)|2 + c2)dσ.
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Thus
1

2
‖∆u‖2

L2(Ω) +
(1

2
− γ1

)
‖u‖2

L2(Ω) +
1

2
‖v‖2

L2(Ω) +
1

2
‖θ‖2

L2(Ω)

6 V0

(
u
v
θ

)
+ γ2

∫
Γ

|γ(u)|2dS + c2|Γ|+ c1|Ω|,

and from trace theorem there exist C > 0 such that

γ2

∫
Γ

|γ(u)|2dS 6 γ2C‖u‖2
H2(Ω),

and this implies that
1

2
‖∆u‖2

L2(Ω) +
(1

2
− γ1

)
‖u‖2

L2(Ω) − γ2C‖u‖2
H2(Ω) +

1

2
‖v‖2

L2(Ω) +
1

2
‖θ‖2

L2(Ω)

6 V0

(
u
v
θ

)
+ c2|Γ|+ c1|Ω|.

Consequently, for w(t) =
(
u
v
θ

)
(t) being the solution of the problem (3) we have that

1

2
‖∆u‖2

L2(Ω) +
(1

2
− γ1

)
‖u‖2

L2(Ω) − γ2C‖u‖2
H2(Ω) +

1

2
‖v‖2

L2(Ω) +
1

2
‖θ‖2

L2(Ω)

6 V0

(
u
v
θ

)
+ c2|Γ|+ c1|Ω|.

For 0 < γ1 <
1
2
and choosing γ2 sufficiently small in the inequality above, we have that

‖w(t)‖2
X 6 C1V (w(t)) + C2, (2.50)

for some C1, C2 > 0.

Again in the subsection 2.2.2 we obtain that a map t 7→ w(t, w0) is differentiable.

It is clear that for w(t) =
(
u
v
θ

)
(t) being the solution of the problem (3) we have

that [0, tmax(w0)) 3 t 7→ V0(w(t, w0)) ∈ R is non-increasing because

dV0

dt
(w(t)) = −‖∇θ(t)‖2

L2(Ω) − ‖θ(t)‖2
L2(Ω) 6 0,

for V0(t) = V0(w(t, w0)) and t ∈ [0, tmax(w0)).

Using trace theorem we can prove that V is continuous and uniformly bounded

in uniformly bounded subsets of X. From (2.50) we have that given r > 0, there is a

constant C(r) > 0 such that

sup{‖w(t, w0)‖X : ‖w0‖X 6 r, t ∈ [0, tmax(w0))} 6 C. (2.51)

From (2.51) we have that for each w0 ∈ X, the solution of (2.10) is defined for

all t > 0, that is tmax(w0) =∞. Consequently, we can to define a nonlinear semigroup

{S0(t) : t > 0} in X by

S0(t)w0 = w(t, w0), t > 0.
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This also implies that each uniformly bounded subset of X has orbit and global orbit

uniformly bounded.

Note that the nonlinear semigroup is given by the variation of constants formula

S0(t)w0 = eAtw0 +

∫ t

0

eA(t−s)F0(S0(s)w0)ds, t > 0,

see Henry [20, Chapter 3] for details.

Remark 2.3.2 Note that (2.49) is a Lyapunov function with the properties of Defini-
tion C.17 and thus {S0(t) : t > 0} is a gradient system.

2.4 Existence and upper semicontinuity of global at-
tractors

From this section onwards we be assuming all the previous hypotheses. The

results obtained in the previous sections and smoothing effect of the equations assure

us that the nonlinear semigroups generated by our problems (2.7) and (2.10) have

global compact attractors Aε for 0 6 ε 6 ε0. Moreover, we get a result of boundedness

uniform in ε of the attractores, the convergence of the nonlinear semigroups and upper

semicontinuity of the global attractors.

2.4.1 Existence of the global attractors

In this subsection, we establish the existence and characterization of the global

compact attractors for the nonlinear semigroups generated by our problems (2.7) and

(2.10) using the results of Hale [19, Theorem 3.8.5, p. 51]. Moreover, we obtain uniform

boundedness of the attractors.

Theorem 2.4.1 For sufficiently small ε > 0, the parabolic problems (2.7) and (2.10)
have a global compact attractor Aε and Aε = W u(Eε), where

W u(Eε) =
{
w ∈ X : Sε(−t)w is defined for t > 0 and lim

t→+∞
dist(Sε(−t)w,Eε) = 0},

and Eε denotes the set of equilibria of the nonlinear semigroup {Sε(t) : t > 0} generated
by our problems (2.7) and (2.10). Moreover, Aε is connected.

Proof. Using the functionals Vε and V0 defined in (2.43) and (2.49), respectively, for

ε > 0 enough small, from the smoothing effect of the systems and the Theorem C.18
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we get that the problems (2.7) and (2.10) have global attractor Aε in X with the

characterization Aε = W u(Eε), for 0 6 ε 6 ε0. Moreover, Aε is connected because X

is a Hilbert space. �

Here, we present a result on the uniform bounds of the attractors that we use to

show the upper semicontinuity at ε = 0 of the attractors.

Theorem 2.4.2 For sufficiently small ε > 0, the union of the global attractors⋃
ε∈[0,ε0] Aε is a bounded set in X.

Proof. For sufficiently small ε > 0, it is important to note that for global bounded

solutions of (2.7) in (2.47), we can estimate Vε(wε(t)) by a constant independent of ε

thanks to (2.46), as well as, the constant C2 > 0 in (2.47) is independent of ε. Hence,

this boundedness uniform in ε jointly with (2.48), (2.51), and the invariance of the

attractors by the semigroups, allows to conclude that the union of the global attractors⋃
ε∈[0,ε0] Aε is a bounded set in X. �

2.4.2 Convergence of the nonlinear semigroups

From now on we show the convergence of the nonlinear semigroups as ε → 0.

With this convergence result we concluded that the limit problems for the autonomous

thermoelastic plate system (2) is given by (3). Initially, we estimate the linear semi-

group.

We use the Remark 2.1.11 to show that the nonlinear semigroups behave contin-

uously at ε→ 0.

Proposition 2.4.3 Under the above hypothesis, let 1
2
< s 6 1 and some fixed τ > 0.

Then, there exists a function C(ε) > 0 with C(ε)→ 0 as ε→ 0, such that for w0 ∈ B,
where B ⊂ X is a bounded set, we have∥∥∥Sε(t)w0 − S0(t)w0

∥∥∥
X
6M(τ, B)C(ε), ∀ t ∈ [0, τ ], (2.52)

for some constant M(τ, B) > 0.

Proof. Let B ⊂ X be a bounded set, and let w0 ∈ B. Fixed τ > 0, we consider the

nonlinear semigroups given by the variation of constant formula

Sε(t)w0 = eAtw0 +

∫ t

0

eA(t−ξ)Fε(Sε(ξ)w0)dξ, ε ∈ [0, ε0] (2.53)
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associated with (2.7) and (2.10).

Note that from (2.53), for t ∈ (0, τ ] we have∥∥∥Sε(t)w0 − S0(t)w0

∥∥∥
X
6
∫ t

0

∥∥∥eA(t−ξ)
∥∥∥

L (H ,X)

∥∥∥Fε(Sε(ξ)w0)− F0(S0(ξ)w0)
∥∥∥

H
dξ.

(2.54)

Adding and subtracting the term Fε(S0(ξ)w0) in the second norm on right side

of (2.54), from (2.26) we can to write the inequality above of the following form∥∥∥Sε(t)w0 − S0(t)w0

∥∥∥
X
6
∫ t

0

∥∥∥eA(t−ξ)
∥∥∥

L (H ,X)

∥∥∥Fε(Sε(ξ)w0)− Fε(S0(ξ)w0)
∥∥∥

H
dξ

+

∫ t

0

∥∥∥eA(t−ξ)
∥∥∥

L (H ,X)

∥∥∥Fε(S0(ξ)w0)− F0(S0(ξ)w0)
∥∥∥

H
dξ

6Mω

∫ t

0

(t− ξ)−1e−ω(t−ξ)
∥∥∥Fε(Sε(ξ)w0)− Fε(S0(ξ)w0)

∥∥∥
H
dξ

+Mω

∫ t

0

(t− ξ)−1e−ω(t−s)
∥∥∥Fε(S0(ξ)w0)− F0(S0(ξ)w0)

∥∥∥
H
dξ.

(2.55)

We analyze each term on right side of (2.55) separately. From (2.48) and (2.51)

we have that there exists C = C(w0) > 0 independent of ε, such that

‖Sε(ξ)w0‖X 6 C, ∀ ε ∈ [0, ε0] and ∀ ξ ∈ [0, τ ].

Now, from item (ii) of Lemma 2.2.3, Fε is globally Lipschitz, uniformly in ε, thus

there exists L > 0 independent of ε, such that∫ t

0

(t− ξ)−1e−ω(t−ξ)
∥∥∥Fε(Sε(ξ)w0)− Fε(S0(ξ)w0)

∥∥∥
H
dξ

6 L

∫ t

0

(t− ξ)−1e−ω(t−ξ)
∥∥∥Sε(ξ)w0 − S0(ξ)w0

∥∥∥
X
dξ.

(2.56)

Since {S0(s)w0 : s ∈ [0, τ ]} is bounded set contained in X. Thanks to item (iii)

of Lemma 2.2.3, there exists a function C(ε) > 0 with C(ε)→ 0 as ε→ 0 such that∫ t

0

(t− ξ)−1e−ω(t−ξ)
∥∥∥Fε(S0(ξ)w0)− F0(S0(ξ)w0)

∥∥∥
H
dξ

6M(τ, w0)C(ε)

∫ t

0

(t− ξ)−1e−ω(t−ξ)dξ

6M(τ, w0)C(ε)

∫ +∞

0

z−1e−zdz

= M(τ, w0)C(ε)Γ(0), (Γ(0) = 1),

(2.57)
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where M(τ, w0) > 0 and Γ(x) =
∫∞

0
zx−1e−zdz is the gamma function.

Combining (2.55) with (2.56) and (2.57), we get for all t ∈ (0, τ ],∥∥∥Sε(t)w0 − S0(t)w0

∥∥∥
X

6 C(ε)M(τ, w0)M + LMω

∫ t

0

(t− ξ)−1e−ω(t−ξ)
∥∥∥Sε(ξ)w0 − S0(ξ)w0

∥∥∥
X
dξ,

where C(ε) > 0 with C(ε)→ 0 as ε→ 0.

From Gronwall’s inequality, Henry [20, Lemma 7.1.1, p.188] it follows that∥∥∥Sε(t)w0 − S0(t)w0

∥∥∥
X
6M(τ, ω, L,B)C(ε)e−ωt,

and consequently we conclude that (2.52) holds. �

Similarly, we can prove the following result.

Proposition 2.4.4 Under the above hypothesis, let 1
2
< s 6 1 and some fixed

τ > 0.Then, there exists a function C(ε) > 0 with C(ε) → 0 as ε → 0, such that
for wε ∈ Aε, ε ∈ (0, ε0], we have∥∥∥Sε(t)wε − S0(t)wε

∥∥∥
X
6M(τ)C(ε), ∀ t ∈ [0, τ ], (2.58)

for some constant M(τ) > 0.

2.4.3 Upper semicontinuity of the global attractors

Finally, in this subsection we show the upper semicontinuity of global attractors

at ε = 0, in the sense of Hausdorff semidistance in X.

Theorem 2.4.5 The family of attractors Aε is upper semicontinuous at ε = 0; that
is,

distH(Aε,A0)→ 0, as ε→ 0,

where
distH(Aε,A0) := sup

wε∈Aε

dist(wε,A0) = sup
wε∈Aε

inf
w0∈A0

{‖wε − w0‖X}.

Proof. Thanks to Theorem 2.4.2, there exists B0 ⊂ X a bounded set such that

B0 ⊃
⋃
ε∈[0,ε0] Aε for some ε0 > 0. Hence, A0 attracts

⋃
ε∈[0,ε0] Aε ⊃ Aε under the

nonlinear semigroup S0(·). Thus, given δ > 0, there exists τ = τ(δ) > 0 such that

dist(S0(τ)wε,A0) <
δ

2
, ∀wε ∈ Aε. (2.59)
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Since Aε is invariant then given ϕε ∈ Aε there exists ϑε ∈ Aε such that ϕε = Sε(τ)ϑε.

Thus,

dist(ϕε,A0) = inf
w0∈A0

‖ϕε − w0‖X 6 inf
w0∈A0

{‖ϕε − S0(τ)ϑε‖X + ‖S0(τ)ϑε − w0‖X}

= ‖Sε(τ)ϑε − S0(τ)ϑε‖X + dist(S0(τ)ϑε,A0).

From Proposition 2.4.4, for ε enough small, we get

‖Sε(τ)ϑε − S0(τ)ϑε‖X 6
δ

2
. (2.60)

Using (2.59) and (2.60), for ε enough small, we have

dist(ϕε,A0) < δ, ∀ ϕε ∈ Aε,

and thus we conclude the upper semicontinuity of the family of attractors at ε = 0. �

2.5 Lower semicontinuity of global attractors

In this section we finished the analysis on the continuity of the global attractors of

the nonlinear semigroups generated by the abstract problems (2.7) and (2.10), showing

the lower semicontinuity of these attractors, since in the previous sections was showed

the existence and upper semicontinuity. But for this end we need to show the continuity

of the set of equilibria associated to abstract problems (2.7) and (2.10) and also we

have to show the continuity of local unstable manifolds around these equilibria. With

this and using the results of Henry [20, Chapter 6] we obtain the lower semicontinuity

of these attractors.

2.5.1 Continuity of the set of equilibria

Firstly, we prove a result of uniform boundedness and convergence of the Fréchet

differential of the nonlinearity Fε, that we need for show some results that we utilize

in the proof of the lower semicontinuity of the set of equilibria at ε = 0.

Lemma 2.5.1 Suppose that f and g satisfy the growth estimates (2.1) and
1

2
< s 6 1.

Then

(i) There exists k > 0 independent of ε such that

‖DFε(w)‖L (X,H ) 6 k, w ∈ X and ε ∈ [0, ε0].
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(ii) For each w ∈ X, we have

‖DFε(w)−DF0(w)‖L (X,H ) → 0 as ε→ 0,

and this limit is uniform for w ∈ X such that ‖w‖X 6 R, for some R > 0.

(iii) If wε → w0 in X as ε→ 0, then

‖DFε(wε)−DF0(w0)‖L (X,H ) → 0 as ε→ 0.

(iv) If wε → w0 in X as ε→ 0, and hε → h0 in X as ε→ 0, then

‖DFε(wε)hε −DF0(w0)h0‖H → 0 as ε→ 0.

Proof. (i) Let w ∈ X, ε ∈ [0, ε0] we have

‖DFε(w)‖L (X,H ) = sup

h ∈ X

‖h‖X = 1

‖DFε(w)h‖H .

Note that, for each h =
(
h1
h2
h3

)
∈ X,

‖DFε(w)h‖H =

∥∥∥∥DfΩ(u)h1 +
1

ε
χωεDgΩ(u)h1

∥∥∥∥
H−s(Ω)

, ε ∈ (0, ε0],

‖DF0(w)h‖H = ‖DfΩ(u)h1 +DgΓ(u)h1‖H−s(Ω),

where the maps DfΩ,
1
ε
χωεDgΩ and DgΓ are given respectively by (2.37), (2.38) and

(2.39). From (2.40), (2.41) and (2.42) we conclude (i).

(ii) For each w ∈ X, notice that

‖DFε(w)−DF0(w)‖L (X,H ) =

∥∥∥∥1

ε
χωεDgΩ(u)−DgΓ(u)

∥∥∥∥
L (H2(Ω),H−s(Ω))

.

As in Lemma 2.2.2 we can prove that there exists M(ε, R) with M(ε, R)→ 0 as

ε→ 0 such that∣∣∣∣〈1

ε
χωεDgΩ(u)h1 −DgΓ(u)h1, ϕ

〉∣∣∣∣ =

∣∣∣∣1ε
∫
ωε

g′(u)h1ϕdx−
∫

Γ

γ(g′(u)h1)γ(ϕ)dS

∣∣∣∣
6M(ε, R) ‖h1‖H2(Ω) ‖ϕ‖H1(Ω) , ∀h1 ∈ H2(Ω) and ∀ϕ ∈ H1(Ω).

Thus, ∥∥∥∥1

ε
χωεDgΩ(u)−DgΓ(u)

∥∥∥∥
L (H2(Ω),H−1(Ω))

→ 0, as ε→ 0, (2.61)
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uniformly for u ∈ H2(Ω) such that ‖u‖H2(Ω) 6 R.

Now, fix 1
2
< s0 < 1. Then for any s such that −1 < −s < −s0 < −1

2
, using

interpolation, (2.41) and (2.42) we have∥∥∥∥1

ε
χωεDgΩ(u)h1 −DgΓ(u)h1

∥∥∥∥
H−s(Ω)

6

∥∥∥∥1

ε
χωεDgΩ(u)h1 −DgΓ(u)h1

∥∥∥∥θ
H−s0 (Ω)

∥∥∥∥1

ε
χωεDgΩ(u)h1 −DgΓ(u)h1

∥∥∥∥1−θ

H−1(Ω)

6 (k2 + k3)θ
∥∥∥∥1

ε
χωεDgΩ(u)−DgΓ(u)

∥∥∥∥1−θ

L (H2(Ω),H−1(Ω))

‖h1‖H2(Ω), ∀h1 ∈ H2(Ω),

for some 0 < θ < 1. Thus using (2.61), we obtain∥∥∥∥1

ε
χωεDgΩ(u)−DgΓ(u)

∥∥∥∥
L (H2(Ω),H−s(Ω))

→ 0, as ε→ 0,

uniformly for u ∈ H2(Ω) such that ‖u‖H2(Ω) 6 R.

(iii) From Lemma 2.2.5, we have that there exists L > 0 independent of ε such that

‖DFε(wε)−DF0(w0)‖L (X,H )

6 ‖DFε(wε)−DFε(w0)‖L (X,H ) + ‖DFε(w0)−DF0(w0)‖L (X,H )

6 L‖wε − w0‖X + ‖DFε(w0)−DF0(w0)‖L (X,H ) → 0, as ε→ 0,

where we also use the item (ii) and wε → w0 in X, as ε→ 0.

(iv) We take wε → w0 in X, as ε → 0, and hε → h0 in X, as ε → 0. Using the items

(i) and (iii), we get

‖DFε(wε)hε −DF0(w0)h0‖H

6 ‖DFε(wε)hε −DFε(wε)h0‖H + ‖DFε(wε)h0 −DF0(w0)h0‖H

6 ‖DFε(wε)‖L (X,H )‖hε − h0‖X + ‖DFε(wε)−DF0(w0)‖L (X,H )‖h0‖X

6 k‖hε − h0‖X + ‖DFε(wε)−DF0(w0)‖L (X,H )‖h‖X → 0,

as ε→ 0. �

In order to obtain the lower semicontinuity of global attractors at ε = 0 we

need to obtain the continuity of the set of equilibria and then study the continuity

of the linearization around each equilibrium. In this section we prove that the family

{Eε : ε ∈ [0, ε0]} of (2) and (3) is continuous at ε = 0.
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Definition 2.5.2 The equilibrium solutions of (2) and (3) are those which are inde-
pendent of time. In other words, the equilibrium solutions of (2) are those which are
solutions of the elliptic problems

∆2uε + uε = f(uε) +
1

ε
χωεg(uε) in Ω,

∂uε

∂~n
=
∂(∆uε)

∂~n
= 0 on Γ, 0 < ε 6 ε0,

(2.62)

and ∆θε − θε = 0 in Ω,
∂θε

∂~n
= 0 on Γ, 0 < ε 6 ε0,

(2.63)

that is, θε is identity null in Ω. The equilibrium solutions of (3) are those which are
solutions of the elliptic problems∆2u+ u = f(u) in Ω,

∂u

∂~n
=
∂(∆u)

∂~n
= −g(u) on Γ,

(2.64)

and ∆θ − θ = 0 in Ω,
∂θ

∂~n
= 0 on Γ,

(2.65)

that is, θ is identity null in Ω.

Remark 2.5.3 Equivalently, for each ε ∈ (0, ε0] the equilibrium solutions of (2) are
those which are solutions of the semilinear problems

Awε + Fε(w
ε) = 0, wε =

(
uε
0
0

)
. (2.66)

As well as, the equilibrium solutions of (3) are those which are solutions of the semi-
linear problem

Aw + F0(w) = 0, w =
(
u
0
0

)
. (2.67)

Thus, the set of equilibria Eε of (2) and (3), or equivalently, the set of solutions

of (2.66) and (2.67) with ε ∈ [0, ε0], is given by

Eε =
{
wε∗ =

(
uε∗
0
0

)
∈ X; uε∗ is solution of (2.62)

}
, ε ∈ (0, ε0],

and

E0 =
{
w0
∗ =

(
u0
∗

0
0

)
∈ X; u0

∗ is solution of (2.64)
}
.

We see that each set Eε is not empty and it is compact, but for this, we need of

following result
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Theorem 2.5.4 Let X, Y, Z be normed linear spaces, and suppose T ∈ L (X, Y ),

S ∈ L (Y, Z). Then ST is compact, whenever S or T is compact.

Proof. See Taylor and Lay [41, Theorem 7.2, p. 298] �

Lemma 2.5.5 For each ε ∈ [0, ε0] fixed, the set Eε is not empty. Moreover, Eε is
compact in X.

Proof. The bounded linear operator (Λ+I)−1 : H−s(Ω)→ H2(Ω) is compact, because

the linear operator (Λ+I)−1 : H−s(Ω)→ H4−s(Ω) is bounded and we have the compact

embeddingH4−s(Ω) ↪→ H2(Ω) for 4−s > 2. Moreover, we have the compact embedding

H4(Ω) ↪→ H2(Ω) and therefore the bounded linear operator (Λ+I)−1 : L2(Ω)→ H2(Ω)

is compact. We also have the compact embedding H2(Ω) ↪→ L2(Ω) and therefore the

bounded linear operator (Λ
1
2 + I)−1 : L2(Ω)→ L2(Ω) is compact.

Finally, the linear operator (Λ + I)−1(Λ
1
2 + I) : H2(Ω) → H2(Ω) is compact,

because the linear operator (Λ + I)−1(Λ
1
2 + I) : H2(Ω) → H4(Ω) is bounded and

we have the compact embedding H4(Ω) ↪→ H2(Ω). Therefore the linear operator

A−1 : H → X is compact and consequently A−1Fε : X → X is compact.

Now, we show that for each ε ∈ [0, ε0] fixed, the set Eε is not empty, it is equivalent

to show that the compact operator A−1Fε : X → X has at least one fixed point. From

Lemma 2.2.3, we have that there exists k > 0 independent of ε such that

‖Fε(w)‖H 6 k, ∀w ∈ X and ε ∈ [0, ε0].

We consider the closed ball Br(0) in X, where r = k‖A−1‖L (H ,X). For each

w ∈ X, we have

‖A−1Fε(w)‖X 6 ‖A−1‖L (H ,X)‖Fε(w)‖H 6 r. (2.68)

Therefore, the compact operator A−1Fε : X → X takes X in the ball Br(0), in

particular, A−1Fε takes Br(0) into itself. From Schauder Fixed Point Theorem, we

obtain that A−1Fε has at least one fixed point in X.

Now, for each ε ∈ [0, ε0] fixed, we prove that Eε is compact in X. For each

ε ∈ [0, ε0] fixed, let {wε∗,n}n∈N be a sequence in Eε, then wε∗,n = −A−1Fε(w
ε
∗,n),

for all n ∈ N. Similarly to (2.68), we get that {wε∗,n}n∈N is a bounded sequence
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in X. Thus, {−A−1Fε(w
ε
∗,n)}n∈N has a convergent subsequence, that we denote by

{−A−1Fε(w
ε
∗,nk)}k∈N, with limit w ∈ X, that is,

−A−1Fε(w
ε
∗,nk)→ w in X, as k →∞.

Hence, wε∗,nk → w in X, as k →∞.

By continuity of operator A−1Fε : X → X, we get

−A−1Fε(w
ε
∗,nk)→ −A

−1Fε(w) in X, as k →∞.

By the uniqueness of the limit, w = −A−1Fε(w). Thus, Aw + Fε(w) = 0 and w ∈ Eε.

Therefore, Eε is a compact set in X. �

The upper semicontinuity of the family {Eε : ε ∈ [0, ε0]} at ε = 0 is a consequence

of the upper semicontinuity of attractors at ε = 0.

Theorem 2.5.6 The family {Eε : ε ∈ [0, ε0]} is upper semicontinuous at ε = 0.

Proof. Initially, we observe that Eε ⊂ Aε for any ε ∈ [0, ε0], and therefore, Eε is

bounded in X. We prove that for any sequence of εn → 0 and for any wεn∗ ∈ Eεn

we can extract a subsequence which converges to an element of E0. From the upper

semicontinuity of the attractors and using that wε∗ ∈ Eε ⊂ Aε, we can extract a

subsequence wεk∗ ∈ Eεk with εk → 0, as k → ∞, and we obtain the existence of a

w0 ∈ A0 such that

‖wεk∗ − w0‖X → 0, as k →∞.

We need to prove that w0 ∈ E0; that is, S0(t)w0 = w0, for any t > 0.

We first observe that for any t > 0,

‖wεk∗ − S0(t)w0‖X 6 ‖wεk∗ −w0‖X + ‖w0 − S0(t)w0‖X → ‖w0 − S0(t)w0‖X , as k →∞.

Moreover, for a fixed τ > 0 and for any t ∈ (0, τ), we obtain

‖wεk∗ − S0(t)w0‖X = ‖Sεk(t)wεk∗ − S0(t)w0‖X

6 ‖Sεk(t)wεk∗ − S0(t)wεk∗ ‖X + ‖S0(t)wεk∗ − S0(t)w0‖X → 0, as k →∞,

where we have used the continuity of semigroups given by Proposition 2.4.4. In par-

ticular, we have that for each t > 0, S0(t)w0 = w0, which implies that w0 ∈ E0. �
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The proof of lower semicontinuity requires additional assumptions. We need to

assume that the equilibrium solutions of (2.67) are stable under perturbation, this

stability under perturbation be given by the hyperbolicity.

Definition 2.5.7 We say that the solution w0
∗ of (2.67) is hyperbolic if the spectrum

σ(A +DF0(w0
∗)) of A +DF0(w0

∗) is disjoint from the imaginary axis.

Theorem 2.5.8 If all solutions of (2.67) are isolated, there are only a finite number
of them. Any hyperbolic solution of (2.67) is isolated.

Proof. Since E0 is compact we only need to prove that hyperbolic solution is isolated.

We note that w0
∗ ∈ E0 is a solution of (2.67) if and only if w0

∗ is a fixed point of

T (ξ) := −(A +DF0(w0
∗))
−1(F0(ξ)−DF0(w0

∗)ξ).

It is not difficult to see that there is δ > 0 such that T is a contraction map from closed

ball centered at w0
∗ and of radius δ in X, Bδ(w

0
∗), into itself. Thus we obtain that w0

∗

is the only element in E0 in the ball Bδ(w
0
∗). �

Lemma 2.5.9 Let w∗ ∈ X. Then, for each ε ∈ [0, ε0] fixed, the operator
A−1DFε(w

∗) : X → X is compact. For any bounded family {wε}ε∈(0,ε0] in X, the
family {A−1DFε(w

∗)wε}ε∈(0,ε0] is relatively compact in X. Moreover, if wε → w0 in
X, as ε→ 0, then

A−1DFε(w
∗)wε → A−1DF0(w∗)w0 in X, as ε→ 0.

Proof. For each ε ∈ [0, ε0] fixed, the compactness of linear operator A−1DFε(w
∗) :

X → X follows from item (i) of Lemma 2.5.1 and of compactness of linear operator

A−1 : H → X.

Let {wε}ε∈(0,ε0] be a bounded family in X. Since

‖DFε(w∗)wε‖H 6 ‖DFε(w∗)‖L (X,H ) ‖wε‖X , ∀ ε ∈ (0, ε0],

and from item (i) of Lemma 2.5.1, {DFε(w∗)}ε∈(0,ε0] is a bounded family in L (X,H ),

uniformly in ε, then {DFε(w∗)wε}ε∈(0,ε0] is a bounded family in H . By compactness

of the linear operator A−1 : H → X, we have that {A−1DFε(w
∗)wε}ε∈(0,ε0] has a con-

vergent subsequence in X. Therefore, the family {A−1DFε(w
∗)wε}ε∈(0,ε0] is relatively

compact.
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Now, let us take wε → w0 in X, as ε→ 0. Thus, from item (iv) of Lemma 2.5.1,

DFε(w
∗)wε → DF0(w∗)w0 in H , as ε→ 0.

By continuity of the linear operator A−1 : H → X, we conclude that

A−1DFε(w
∗)wε → A−1DFε(w

∗)w0 in X, as ε→ 0.

�

Lemma 2.5.10 Let w∗ ∈ X such that 0 6∈ σ(A+DF0(w∗)). Then, there exists ε0 and
C > 0 independent of ε such that 0 6∈ σ(A +DFε(w

∗)) and

‖(A +DFε(w
∗))−1‖L (H ,X) 6 C, ∀ε ∈ [0, ε0]. (2.69)

Furthermore, for each ε ∈ [0, ε0] fixed, the operator

(A +DFε(w
∗))−1 : H → X

is compact. For any bounded family {wε}ε∈(0,ε0] in H , we have that the family
{(A + DFε(w

∗))−1wε}ε∈(0,ε0] is relatively compact in X. Moreover, if wε → w0 in
H , as ε→ 0, then

(A +DFε(w
∗))−1wε → (A +DF0(w∗))−1w0 in X, as ε→ 0.

Proof. First, for each ε ∈ [0, ε0], we note that

(A +DFε(w
∗))−1 = [A(I + A−1DFε(w

∗))]−1 = (I + A−1DFε(w
∗))−1A−1.

Then, prove that 0 6∈ σ(A+DFε(w
∗)) it is equivalent to prove that 1 ∈ ρ(A−1DFε(w

∗)).

Moreover, to prove that there exists ε0 and C > 0 independent of ε such that (2.69)

holds, it is enough to prove that there exist ε0 and K > 0 independent of ε such that

‖(I + A−1DFε(w
∗))−1‖L (X) 6 K, ∀ε ∈ [0, ε0]. (2.70)

Indeed, we note that

‖(A +DFε(w
∗))−1‖L (X,H ) 6 ‖(I + A−1DFε(w

∗))−1‖L (X)‖A−1‖L (H ,X)

= K‖A−1‖L (H ,X) = C, ε ∈ [0, ε0].

Then we show (2.70). From hypothesis 0 6∈ σ(A+DF0(w∗)) then 1 ∈ ρ(A−1DF0(w∗)).

Thus, there exists the inverse

(I + A−1DF0(w∗))−1 : X → X
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and, particular we have N(I + A−1DF0(w∗)) = {0}.

For simplicity of notation, let Jε = A−1DFε(w
∗), for all ε ∈ [0, ε0]. From Lemma

2.5.9 we have that, for each ε ∈ [0, ε0] fixed, the operator Jε : X → X is compact.

Using the compactness of Jε we show that (2.70) hold, if and only if,

‖(I + Jε)w
ε‖X >

1

K
, ∀ε ∈ [0, ε0] and ‖wε‖X = 1. (2.71)

Indeed, suppose that (2.70) holds, then there exists the inverse (I+Jε)
−1 : X → X

and it is continuous. Moreover,

‖(I + Jε)
−1yε‖X 6 K‖yε‖X , ∀ε ∈ [0, ε0] and ∀yε ∈ X.

Now if wε ∈ X is such that ‖wε‖X = 1 and taking yε = (I + Jε)w
ε, we have

‖(I + Jε)
−1(I + Jε)w

ε‖X 6 K‖(I + Jε)w
ε‖X

and

1 = ‖wε‖X 6 K‖(I + Jε)w
ε‖X ,

in other words,

‖(I + Jε)w
ε‖X >

1

K
.

On the other hand, suppose that (2.71) holds. We show that there exists the

inverse (I + Jε)
−1 : X → X, it is continuous and satisfies (2.70). From (2.71), we

obtain the following estimative

‖(I + Jε)w
ε‖X >

1

K
‖wε‖X , ∀ε ∈ [0, ε0] and ∀wε ∈ X. (2.72)

Now, let wε ∈ X such that (I + Jε)w
ε = 0. From (2.72) follows wε = 0. Thus,

for each ε ∈ [0, ε0], N(I + Jε) = {0} and the operator I + Jε is injective. Since there

exists the inverse (I + Jε)
−1 : R(I + Jε) → X and Jε is compact, then by Fredhlom

Alternative Theorem, we have

N(I + Jε) = {0} ⇔ R(I + Jε) = X.

Then I + Jε is bijective, thus there exists the inverse (I + Jε)
−1;X → X.

Now, taking yε ∈ X there exists wε ∈ X such that yε = (I + Jε)w
ε and

wε = (I + Jε)
−1yε. From (2.72) we have

‖(I + Jε)
−1yε‖X = ‖wε‖X 6 K‖(I + Jε)w

ε‖X = K‖yε‖X
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and

‖(I + Jε)
−1‖L (X) 6 K, ∀ε ∈ [0, ε0],

and thus (2.70) holds.

Therefore (2.70) and (2.71) are equivalents, then we show (2.71). Suppose that

(2.71) is not true, that is, there exists a sequence {wn}n∈N in X, with ‖wn‖X = 1 and

εn → 0, as n→∞, such that

‖(I + Jεn)wn‖X → 0, as n→∞.

From Lemma 2.5.9 we get that {Jεnwn}n∈N is relatively compact. Thus, {Jεnwn}n∈N
has a convergent subsequence, which still we denote by {Jεnwn}n∈N, with limit w ∈ X,

that is,

Jεnwn → w in X, in n→∞

Since wn + Jεnwn → 0 in X, as n → ∞, then wn → −w in X, as n → ∞ and

thus ‖w‖X = 1. Moreover, using the Lemma 2.5.9 we get Jεnwn → −J0w as n → ∞.

Then,

wn + Jεnwn → −(w + J0w) in X, as n→∞.

By uniqueness of the limit, (I + J0)w = 0, with w 6= 0, contradicting the fact of the

operator I + J0 be injective, because 0 6∈ σ(A +DF0(w∗)). Showing that (2.71) holds.

With this we conclude that there exists ε0 > 0 and C > 0 independent of ε such

that (2.69) holds.

Now, for each ε ∈ [0, ε0], the operator (A+DFε(w
∗))−1 is compact and the prove

of this compactness follows similarly to account below. Let {wε}ε∈(0,ε0] be a bounded

family in H . For each ε ∈ (0, ε0], let ϑε = (A +DFε(w
∗))−1wε. From (2.69) we have

‖ϑε‖X 6 ‖(A +DFε(w
∗))−1wε‖X 6 ‖(A +DFε(w

∗))−1‖L (H ,X) ‖wε‖H

6 C ‖wε‖H .

Hence, {ϑε}ε∈(0,ε0] is a bounded family in X. Moreover,

ϑε = (A +DFε(w
∗))−1wε = (I + A−1DFε(w

∗))−1A−1wε

in other words,

(I + A−1DFε(w
∗))ϑε = A−1wε,
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and equivalently,

ϑε = A−1DFε(w
∗)ϑε + A−1wε.

By compactness of A−1 : H → X, we get that {A−1wε}ε∈(0,ε0] has a convergent

subsequence inX. Moreover, using the Lemma 2.5.9, we have that {A−1DFε(w
∗)ϑε}ε∈(0,ε0]

is relatively compact in X, then {A−1DFε(w
∗)ϑε}ε∈(0,ε0] has a convergent subsequence

in X. Therefore, {ϑε}ε∈(0,ε0] has a convergent subsequence in X, that is, the family

{(A + DFε(w
∗))−1wε}ε∈(0,ε0] has a convergent subsequence in X, thus it is relatively

compact in X.

Now, we take wε → w0 in H , as ε→ 0. By continuity of operator A−1 : H → X,

we have

A−1wε → A−1w0 in X, as ε→ 0.

Moreover, {wε}ε∈(0,ε0] is bounded in H , for some ε0 > 0 enough small, and we have

that from the above that {ϑε}ε∈(0,ε0], with ε0 > 0 enough small, has a convergent

subsequence, which we again denote by {ϑε}ε∈(0,ε0], with limit ϑ0 ∈ X, that is,

ϑε → ϑ0 in X, as ε→ 0.

From Lemma 2.5.9 we get

A−1DFε(w
∗)ϑε → A−1DF0(w∗)ϑ0 in X, as ε→ 0.

Thus, ϑ0 satisfies ϑ0 = A−1DF0(w∗)ϑ0 +A−1w0, and so ϑ0 = (A+DF0(w∗))−1w0.

Therefore,

(A +DFε(w
∗))−1wε → (A +DF0(w∗))−1w0 in X, as ε→ 0.

The limit above is independent of the subsequence, thus whole family

{(A +DFε(w
∗))−1wε}ε∈(0,ε0] converges to (A +DF0(w∗))−1w0 in X, as ε→ 0. �

Theorem 2.5.11 Suppose that w0
∗ is a solution for (2.67) and that 0 6∈ σ(A+DF0(w0

∗)).
Then there are ε0 > 0 and δ > 0 such that the problem (2.66) has exactly one solution,
wε∗, in the closed ball centered at w0

∗ and radius δ, {ξ ∈ X : ‖ξ − w0
∗‖X 6 δ}, for any

ε ∈ (0, ε0]. Futhermore,
‖wε∗ − w0

∗‖X → 0, as ε→ 0.
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Proof. Initially, note that from Lemma 2.5.10 there exists ε0 > 0 and C > 0, inde-

pendent of ε0, such that

‖(A +DFε(w
0
∗))
−1‖L (H ,X) 6 C, ∀ε ∈ (0, ε0]. (2.73)

We note that if wε∗, ε ∈ (0, ε0], is a solution of (2.66), then

0 = (A +DFε(w
0
∗))[w

ε
∗ + (A +DFε(w

0
∗))
−1(Fε(w

ε
∗)−DFε(w0

∗)w
ε
∗)].

Since (A + DFε(w
0
∗)) is invertible, then wε∗ is a solution of (2.66) if, and only if,

wε∗ is a fixed point of the map Tε : X → X defined by

Tε(w
ε
∗) = −(A +DFε(w

0
∗))
−1(Fε(w

ε
∗)−DFε(w0

∗)w
ε
∗).

Note that

Tε(w
0
∗)→ w0

∗ in X as ε→ 0. (2.74)

In fact, using (2.73), item (iii) of Lemma 2.2.3, item (iv) of Lemma 2.5.1 and Lemma

2.5.10, for ε ∈ (0, ε0], we have

‖Tε(w0
∗)− w0

∗‖X = ‖Tε(w0
∗)− T (w0

∗)‖X

6 ‖ − (A +DFε(w
0
∗))
−1[Fε(w

0
∗)−DFε(w0

∗)w
0
∗)− (F0(w0

∗)−DF0(w0
∗)w

0
∗)‖X

+ ‖[(A +DFε(w
0
∗))
−1 − (A +DF0(w0

∗))
−1](DF0(w0

∗)w
0
∗ − F0(w0

∗))‖X

6 C(‖Fε(w0
∗)− F0(w0

∗)‖H + ‖DFε(w0
∗)w

0
∗ −DF0(w0

∗)w
0
∗‖H )

+ ‖[(A +DFε(w
0
∗))
−1 − (A +DF0(w0

∗))
−1](DF0(w0

∗)w
0
∗ − F0(w0

∗))‖X → 0,

as ε→ 0.

Next, we prove that there exists δ > 0 and that for ε ∈ (0, ε0], the map Tε is

contraction from

Bδ(w
0
∗) = {ξ ∈ X : ‖ξ − w0

∗‖X 6 δ}

into itself, uniformly in ε. First note that from Lemma 2.2.4 there exist δ̃ = δ̃(C) > 0

independent of ε such that

C‖Fε(wε∗)− Fε(zε∗)−DFε(w0
∗)(w

ε
∗ − zε∗)‖H 6

1

2
‖wε∗ − zε∗‖X , ∀ε ∈ (0, ε0], (2.75)

for ‖wε∗ − zε∗‖X 6 δ̃.
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We take δ =
δ̃

2
and let wε∗, zε∗ ∈ Bδ(w

0
∗) and using (2.73) and (2.75), for ε ∈ (0, ε0]

we have

‖Tε(wε∗)− Tε(zε∗)‖X = ‖ − (A +DFε(w
0
∗))
−1(Fε(w

ε
∗)− Fε(zε∗)−DFε(w0

∗)(w
ε
∗ − zε∗)‖X

6 C‖Fε(wε∗)− Fε(zε∗)−DFε(w0
∗)(w

ε
∗ − zε∗)‖H

6
1

2
‖wε∗ − zε∗‖X .

To show that Tε(Bδ(w
0
∗)) ⊂ Bδ(w

0
∗), we observe that if wε∗ ∈ Bδ(w

0
∗) and from (2.74)

there is ε̄ such ‖Tε(w0
∗)− w0

∗‖X 6 δ
2
, then

‖Tε(wε∗)− w0
∗‖X 6 ‖Tε(wε∗)− Tε(w0

∗)|X + ‖Tε(w0
∗)− w0

∗‖X

6
1

2
‖wε∗ − w0

∗‖X + ‖Tε(w0
∗)− w0

∗‖X

6
δ

2
+
δ

2
= δ.

Therefore, Tε : Bδ(w
0
∗) → Bδ(w

0
∗) is a contraction, for all ε ∈ (0, ε̄], and then by

Contraction Theorem there is only one point fixed of Tε in Bδ(w
0
∗).

Now we show that wε∗ → w0
∗ in X as ε→ 0. In fact,

‖wε∗ − w0
∗‖X = ‖Tε(wε∗)− w0

∗‖X 6 ‖Tε(wε∗)− Tε(w0
∗)‖X + ‖Tε(w0

∗)− w0
∗‖X

6
1

2
‖wε∗ − w0

∗‖X + ‖Tε(w0
∗)− w0

∗‖X .

Thus, using again (2.74) we have

‖wε∗ − w0
∗‖X 6 2‖Tε(w0

∗)− w0
∗‖X → 0, as ε→ 0.

�

Remark 2.5.12 The Theorem 2.5.6 and the Theorem 2.5.11 show the continuity of
the set of equilibria Eε, ε ∈ [0, ε0] at ε = 0; namely, the Theorem 2.5.11 shows the
lower semicontinuity of the set of equilibria. Moreover, the Theorem 2.5.11 shows that
if w0

∗ is a solution of the problem (2.67), which satisfies 0 6∈ σ(A+DF0(w0
∗)), then, for

each 0 < ε 6 ε0, with ε0 suficiently small, there exists a unique solution wε∗ of problem
(2.66) in a neighborhood of w0

∗.

Therefore we conclude the continuity of the set of equilibria {Eε : ε ∈ [0, ε0)} at ε = 0.

Remark 2.5.13 Now that we have obtained a unique solution wε∗ for (2.62)-(2.63) in a
small neighborhood of the hyperbolic solution w0

∗ for (2.64)-(2.65), we can consider the
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linearization A+DFε(w
ε
∗) and from the convergence of wε∗ to w0

∗ in X it is easy to obtain
that (A + DFε(w

ε
∗))
−1wε converges to (A + DF0(w0

∗))
−1w0 in X, whenever wε → w0

in H , as ε→ 0. Consequently, the hyperbolicity of w0
∗ implies the hyperbolicity of wε∗,

for suitably small ε.

Theorem 2.5.14 If all solutions w0
∗ of (2.67) satisfy 0 /∈ σ(A+DF0(w0

∗)), then (2.67)
has a finite number k of solutions, w0,1

∗ , ..., w0,k
∗ , and there exists ε0 > 0 such that, for

each ε ∈ (0, ε0], the equation (2.66) has exactly k solutions, wε,1∗ , ..., wε,k∗ . Moreover,
for all i = 1, ..., k,

wε,i∗ → w0,i
∗ in X, as ε→ 0.

Proof. The proof follows of Theorem 2.5.11. �

2.5.2 Continuity of local unstable manifolds

Next, we show that the local unstable manifolds of wε,i∗ fixed, are continuous in

X as ε→ 0. This fact and the continuity of the set of equilibria enable us to prove the

lower semicontinuity of the attractors at ε = 0. For this we use the convergence results

of the previous sections and the convergence of the linearized semigroups proved next.

The main aim of this section is the proof of existence unstable local manifolds

as a graph of a Lipschitz function, its convergence and exponential attraction. Let us

consider wε,i∗ be an equilibrium solution for (2.7), thus Awε,i∗ + Fε(w
ε,i
∗ ) = 0. To deal

with a neighborhood of the equilibrium solution wε,i∗ , we rewrite the problem (2.7) as
dwε

dt
= Aεw

ε + Fε(w
ε + wε,i∗ )− Fε(wε,i∗ )−DFε(wε,i∗ )wε, t > 0,

wε(0) = w0 − wε,i∗
(2.76)

where wε = wε − wε,i∗ and Aε = A + DFε(w
ε,i
∗ ). With this, one can look for the

previous sections with the unbounded linear operator Aε instead of the unbounded

linear operator A.

Let γ be a smooth, closed, simple, rectifiable curve in {z ∈ C : Rez > 0},

oriented counterclockwise and such that the bounded connected component of C\{γ};

here, {γ} denotes the trace of γ, contains {z ∈ σ(A0) : Rez > 0}. Let {γ} ⊂ ρ(Aε),

for all ε ∈ [0, ε1], for some ε1 > 0. We define Qε by

Qε =
1

2πi

∫
γ

(λ−Aε)
−1dλ,
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for any ε ∈ [0, ε1].

There exist β > 0 and C ≥ 1 such that

‖eAεtQε‖L (H ,X) ≤ Ceβt, (2.77)

for any t 6 0 and ∥∥eAεt(I −Qε)
∥∥

L (H ,X)
6 Ce−βtt−1 (2.78)

‖eAεt(I −Qε)‖L (H ,X) 6 Ce−βt (2.79)

for any t > 0 and ε ∈ [0, ε1].

Using the decomposition X = QεX ⊕ (I −Qε)X the solution wε of (2.76) can

be decomposed as wε = ωε + ϑε, where ωε = Qεw
ε and ϑε = (I −Qε)w

ε. As Qε and

I −Qε commutate with Aε, we rewrite (2.76) as following∂tω
ε = Aεω

ε +Hε(ω
ε, ϑε),

∂tϑ
ε = Aεϑ

ε +Gε(ω
ε, ϑε),

(2.80)

where Hε, Gε : X →H are given by

Hε(ω
ε, ϑε) := Qε[Fε(ω

ε + ϑε + wε,i∗ )− Fε(wε,i∗ )− F ′ε(wε,i∗ )(ωε + ϑε)]

and

Gε(ω
ε, ϑε) := (I −Qε)[Fε(ω

ε + ϑε + wε,i∗ )− Fε(wε,i∗ )− F ′ε(wε,i∗ )(ωε + ϑε)],

respectively. Thus implies that Hε(0, 0) = Gε(0, 0) = 0. Moreover the maps Hε and Gε

are continuously differentiable with H ′ε(0, 0) = G′ε(0, 0) = 0. Hence, given ρ > 0, there

exists ε1 > 0 and r > 0 such that if ‖ωε‖QεX + ‖ϑε‖(I−Qε)X < r and ε ∈ [0, ε1], then

‖Hε(ω
ε, ϑε)‖H ≤ ρ and ‖Gε(ω

ε, ϑε)‖H ≤ ρ, (2.81)

‖Hε(ω
ε, ϑε)−Hε(ω̄

ε, ϑ̄ε)‖H ≤ ρ(‖ωε − ω̄ε‖QεX + ‖ϑε − ϑ̄ε‖(I−Qε)X) (2.82)

and

‖Gε(ω
ε, ϑε)−Gε(ω̄

ε, ϑ̄ε)‖H ≤ ρ(‖ωε − ω̄ε‖QεX + ‖ϑε − ϑ̄ε‖(I−Qε)X). (2.83)

Remark 2.5.15 It is possible to extend Hε and Gε outside a ball BX(wε∗, δ) in such
a way that the conditions (2.81), (2.82) and (2.83) holds for all ωε ∈ QεX and
ϑε ∈ (I −Q)εX. In fact, define H̃ε : X →H by
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H̃ε(ω
ε, ϑε) =

Hε(ω
ε, ϑε), ‖wε‖X 6 δ,

Hε

(
δ ωε

‖wε‖X
, δ ϑε

‖wε‖X

)
, ‖wε‖X > δ,

The extension H̃ε becomes globally Lipschitz and its Lipschitz constant is that of
Hε restricted to the ball BX(wε∗, δ). In similar way, we have Gε.

Given ε > 0, we denote by ΣD,L the metric space of map S : QεX → (I −Qε)X,

bounded and globally Lipschitz continuous, that is,

ΣD,L = {S : QεX → (I−Qε)X; sup
x∈QεX

‖S(x)‖X 6 D e ‖S(x)−S(x̃)‖X ≤ L‖x−x̃‖QεX}.

In ΣD,L we define the following metric

|||S − S̃||| := sup
x∈QεX

‖S(x)− S̃(x)‖X

We have that (ΣD,L, ||| · |||) is a complete metric space.

Considering the coupled system (2.80), we can show an unstable manifold theorem

using similar arguments used in the results in Henry [20, Chapter 6]. For this, we

consider the following theorem.

Theorem 2.5.16 Let w0
∗ be an equilibrium hyperbolic of problem (3). Then from The-

orem 2.5.11, the problem (2) has a unique equilibrium solution, wε∗ next of w0
∗. Given

D > 0, L > 0 and 0 < κ < 1, let ρ0 > 0 such that, for all 0 < ρ 6 ρ0 and the following
estimates are holds

ρC 6 D; ρC2(1 + L) 6 L; ρC + ρ2C2(1 + L)β−1 6 κ < 1

ρC + ρ2C2β−1(1 + L) 6
1

2
; β −

[
ρC +

ρ2C2(1 + L)

2β − ρC(1 + L)
(1 + C)

]
> 0

2β − ρ(1 + L) < 0.

(2.84)

For the choice of ρ above, suppose Hε and Gε satisfying the above conditions for all
(ω, ϑ) ∈ QεX × (I −Qε)X. Then there exists a map Sε∗ : QεX → (I −Qε)X such that
the unstable manifold of wε∗ is given by

W u(wε∗) = {(ω, ϑ) ∈ X; ϑ = Sε∗(ω), ω ∈ QεX}.

The map Sε∗ satisfies

|||Sε∗||| := sup
ω∈QεX

‖Sε∗(ω)‖X 6 D, ‖Sε∗(ω)− Sε∗(ω̃)‖X 6 L‖ω − ω̃‖QεX ,

where D > 0 is constant independent of ε, and

|||Sε∗ − S0
∗ ||| → 0,
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as ε→ 0.
Furthermore, there exists ρ1 > 0, k > 0, independents of ε, and t0 > 0 such that,

for any solution (ωε(t), ϑε(t)) ∈ X (t ∈ [t0,∞)) of (2.80), we have

‖ϑε(t)− Sε∗(ωε(t))‖X 6 ke−ρ1(t−t0)‖ϑε(t0)− Sε∗(ωε(t0))‖X , t > t0.

Proof. First we show the existence of the unstable manifold, for this, we use the

Banach fixed point theorem for contraction.

Let Sε ∈ ΣD,L and ωε(t) = ψ(t, τ, η, Sε) a solution of∂tω
ε = Aεω

ε +Hε(ω
ε, Sε(ωε)), t < τ

ωε(τ) = η,

that is,

ωε(t) = eAε(t−τ)η +

∫ t

τ

eAε(t−s)Hε(ω
ε(s), Sε(ωε(s)))ds.

We consider the map Φ : ΣD,L → ΣD,L defined by

Sε → Φ(Sε) :=

∫ τ

−∞
eAε(τ−s)Gε(ω

ε(s), Sε(ωε(s)))ds.

Note that, by (2.78) and (2.81) we have

‖Φ(Sε)(η)‖X 6
∫ τ

−∞
‖eAε(τ−s)Gε(ω

ε(s), Sε(ωε(s)))‖Xds

6 C

∫ τ

−∞
(τ − s)−1e−β(τ−s)‖Gε(ω

ε(s), Sε(ωε(s)))‖H ds

6 ρC

∫ τ

−∞
(τ − s)−1e−β(τ−s)ds = ρCΓ(0).

From (2.84) we obtain

‖Φ(Sε)(η)‖X 6 D. (2.85)

Now we consider η, η̄ ∈ QεX and Sε, S̄ε ∈ ΣD,L. Denote ωε(t) = ψ(t, τ, η, Sε) and

ω̄ε(t) = ψ(t, τ, η̄, S̄ε). Then

ωε(t)−ω̄ε(t) = eAε(t−τ)(η−η̄)+

∫ t

τ

eAε(t−s)[Hε(ω
ε(s), Sε(ωε(s)))−Hε(ω̄

ε(s), S̄ε(ω̄ε(s)))]ds.
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Using (2.77) and (2.82), it follows that

‖ωε(t)− ω̄ε(t)‖QεX 6 ‖eAε(t−τ)(η − η̄)‖X

+

∫ τ

t

‖eAε(t−s)[Hε(ω
ε(s), Sε(ωε(s)))−Hε(ω̄

ε(s), S̄ε(ω̄ε(s)))]ds‖X

6 Ceβ(t−τ)‖η − η̄‖QεX

+ C

∫ τ

t

eβ(t−s)‖[Hε(ω
ε(s), Sε(ωε(s)))−Hε(ω̄

ε(s), S̄ε(ω̄ε(s)))]‖H ds

6 Ceβ(t−τ)‖η − η̄‖QεX

+ ρC

∫ τ

t

eβ(t−s)((1 + L)‖ωε(s)− ωε(s)‖QεX + ‖Sε(ωε(s))− S̄ε(ω̄ε(s))‖(I−Qε)X)ds

6 Ceβ(t−τ)‖η − η̄‖QεX

+ ρC|||Sε − S̄ε|||
∫ τ

t

eβ(t−s)ds+ ρC(1 + L)

∫ τ

t

eβ(t−s)‖ωε(s)− ωε(s)‖QεXds.

Making φ(t) = e−β(t−τ)‖ωε(t)− ωε(t)‖QεX , we obtain

φ(t) 6 C‖η − η̄‖QεX + ρC|||Sε − S̄ε|||
∫ τ

t

eβ(τ−s)ds+ ρC(1 + L)

∫ τ

t

φ(s)ds,

and by Gronwall lemma we conclude

‖ωε(t)− ωε(t)‖QεX

6

[
Ceβ(t−τ)‖η − η̄‖QεX + ρC|||Sε − S̄ε|||

∫ τ

t

eβ(t−s)ds

]
eρC(1+L)(τ−t)

6

[
C‖η − η̄‖QεX +

ρC

β
|||Sε − S̄ε|||

]
eρC(1+L)(τ−t).

(2.86)

Now using again (2.78) and (2.83), it follows that

‖Φ(Sε)(η)− Φ(S̄ε)(η̄)‖X

6
∫ τ

−∞
‖eAε(τ−s)[Gε(ω

ε(s), Sε(ωε(s)))−Gε(ω̄
ε(s), S̄ε(ω̄ε(s)))]‖Xds

6 C

∫ τ

−∞
(τ − s)−1e−β(τ−s)‖Gε(ω

ε(s), Sε(ωε(s)))−Gε(ω̄
ε(s), S̄ε(ω̄ε(s)))‖H ds

6 ρC

∫ τ

−∞
(τ − s)−1e−β(τ−s)[(1 + L)‖ωε(s)− ωε(s)‖QεX + |||Sε − S̄ε|||]ds.
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Substituting (2.86) in the above inequality, we get

‖Φ(Sε)(η)− Φ(S̄ε)(η̄)‖X

6 ρC2(1 + L)

∫ τ

−∞
(τ − s)−1e−[β−ρC(1+L)](τ−s)ds‖η − η̄‖QεX

+
ρ2C2

β
(1 + L)

∫ τ

−∞
(τ − s)−1e−[β−ρC(1+L)](τ−s)ds|||Sε − S̄ε|||

+ ρC

∫ τ

−∞
(τ − s)−1e−β(τ−s)ds|||Sε − S̄ε|||

= ρC2(1 + L)Γ(0)‖η − η̄‖QεX +
[
ρCΓ(0) + ρ2C2(1 + L)β−1Γ(0)

]
|||Sε − S̄ε|||,

And by (2.84) we conclude

‖Φ(Sε)(η)− Φ(S̄ε)(η̄)‖X 6 L‖η − η̄‖QεX + κ|||Sε − S̄ε|||. (2.87)

The inequality (2.87) with Sε = S̄ε and (2.85) imply that Φ takes ΣD,L into ΣD,L.

And (2.87) with η = η̄, follows from (2.84) that Φ : ΣD,L → ΣD,L is a contraction.

Therefore, there exists a unique fixed point Sε∗ = Φ(Sε∗) in ΣD,L.

Now we prove that

W u(wε∗) = {(ωε, Sε∗(ωε)) : ωε ∈ QεX}

is an invariant manifold for (2.80).

Let (ωε0, ϑ
ε
0) ∈ W u(wε∗), ϑ

ε
0 = Sε∗(ω

ε
0). Denote by ωε∗ the solution of the initial

value problem ω
ε
t = Aεω

ε +Hε(ω
ε, Sε∗(ω

ε)), t < τ

ωε(τ) = ωε0.

Thus {(ωε∗(t), Sε∗(ωε∗(t)))}t∈R defines a curve on W u(wε∗). However the unique solution

of equation

ϑεt = Aεϑ
ε +Gε(ω

ε
∗(t), S

ε
∗(ω

ε
∗(t)))

which remains bounded when t→ −∞ is given by

ϑε∗(t) =

∫ t

−∞
eAε(t−s)Gε(ω

ε
∗(s), S

ε
∗(ω

ε(s)))ds = Sε∗(ω
ε
∗(t)).

Therefore (ωε∗(t), S
ε
∗(ω

ε
∗(t))) is a solution of (2.80) through (ωε0, ϑ

ε
0), and thus W u(wε∗)

is an invariant manifold.
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Next, we show that ϑ(t) = Sε∗(ω
ε(t)) for all t ∈ R; that is, there exists ρ1 > 0,

independent of ε such that

‖ϑε(t)− Sε∗(ωε(t))‖X 6 ke−ρ1(t−t0)‖ϑε(t0)− Sε∗(ωε(t0))‖X , ∀t > t0.

When t0 → −∞, we obtain ϑ(t) = Sε∗(ω
ε(t)) for all t ∈ R.

Let

ξε(t) = ϑε(t)− Sε∗(ωε(t)) (2.88)

and let yε = yε(s, t) be the solution of the initial value problem∂ty
ε = Aεy

ε +Hε(y
ε, Sε∗(y

ε)), s 6 t

yε(t, t) = ωε(t),

that is,

yε(s, t) = eAε(s−t)ωε(t) +

∫ s

t

eAε(s−θ)Hε(y
ε(θ, t), Sε∗(y

ε(θ, t)))dθ.

Thus, by (2.77) we have

‖y(s, t)− ωε(s)‖QεX 6
∫ t

s

∥∥eAε(s−θ)Hε(y
ε(θ, t), Sε∗(y

ε(θ, t)))−Hε(ω
ε(θ), ϑε(θ))

∥∥
X
dθ

6 C

∫ t

s

eβ(s−θ) ‖Hε(y
ε(θ, t), Sε∗(y

ε(θ, t)))−Hε(ω
ε(θ), ϑε(θ))‖H dθ,

and thanks to (2.82) and (2.88) we get

‖y(s, t)− ωε(s)‖QεX 6 ρC

∫ t

s

eβ(s−θ)[(1 + L)‖yε(θ, t)− ωε(θ)‖QεX + ‖ξε(θ)‖X ]dθ.

If we denote φε(s) = e−βs‖yε(s, t)− ωε(s)‖QεX then

φε(s) 6 ρC

∫ t

s

e−βθ‖ξε(θ)‖Xdθ + ρC(1 + L)

∫ t

s

φε(θ)dθ.

Using Gronwall’s lemma we obtain

‖yε(s, t)− ωε(s)‖QεX 6 ρC

∫ t

s

e−(β−ρC(1+L))(θ−s)‖ξε(θ)‖Xdθ. (2.89)

Now, using (2.77), for any s 6 t0 6 t we have

‖yε(s, t)− yε(s, t0)‖QεX 6 ‖eAε(s−t0)[yε(t0, t)− ωε(t0)]‖X

+

∥∥∥∥∫ s

t0

eAε(s−θ)[Hε(y
ε(θ, t), Sε∗(y

ε(θ, t)))−Hε(y
ε(θ, t0), Sε∗(y

ε(θ, t0)))]dθ

∥∥∥∥
X

6 Ceβ(s−t0)‖yε(t0, t)− ωε(t0)‖QεX

+ C

∫ t0

s

eβ(s−θ) ‖Hε(y
ε(θ, t), Sε∗(y

ε(θ, t)))−Hε(y
ε(θ, t0), Sε∗(y

ε(θ, t0)))‖H dθ.
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and thanks to (2.82) we get

‖yε(s, t)− yε(s, t0)‖QεX 6 Ceβ(s−t0)‖yε(t0, t)− ωε(t0)‖QεX

+ ρC

∫ t0

s

eβ(s−θ)[‖yε(θ, t)− yε(θ, t0)‖QεX + ‖Sε∗(yε(θ, t)))− Sε∗(yε(θ, t0)))‖X ]dθ

6 Ceβ(s−t0)‖yε(t0, t)− ωε(t0)‖QεX

+ ρC

∫ t0

s

eβ(s−θ)(1 + L)‖yε(θ, t)− yε(θ, t0)‖QεXdθ.

Using (2.89), in the above inequality

‖yε(s, t)− yε(s, t0)‖QεX 6 ρC2eβ(s−t0)

∫ t

t0

e−(β−ρC(1+L))(θ−t0)‖ξε(θ)‖Xdθ

+ ρC(1 + L)

∫ t0

s

eβ(s−θ)‖yε(θ, t)− yε(θ, t0)‖QεXdθ.

Again by Gronwall’s lemma follows that, for s 6 t0 6 t,

‖yε(s, t)− yε(s, t0)‖QεX 6 ρC2

∫ t

t0

e−(β−ρC(1+L))(θ−s)‖ξε(θ)‖Xdθ. (2.90)

We use the last bound to estimate ξ(t), we have

ξε(t)− eAε(t−t0)ξε(t0) = ϑε(t)− Sε∗(ωε(t))− eAε(t−t0)[ϑε(t0)− Sε∗(ωε(t0))]

=

∫ t

t0

eAε(t−s)Gε(ω
ε(s), ϑε(s))ds−

∫ t

−∞
eAε(t−s)Gε(y

ε(s, t), Sε∗(y
ε(s, t)))ds

+ eAε(t−t0)

∫ t0

−∞
eAε(t0−s)Gε(y

ε(s, t0), Sε∗(y
ε(s, t0)))ds

=

∫ t

t0

eAε(t−s)[Gε(ω
ε(s), ϑε(s))−Gε(y

ε(s, t), Sε∗(y
ε(s, t)))]ds

−
∫ t0

−∞
eAε(t−s)[Gε(y

ε(s, t), Sε∗(y
ε(s, t)))−Gε(y

ε(s, t0), Sε∗(y
ε(s, t0)))]ds.

Taking the norm and using (2.79) and (2.83), we get∥∥ξε(t)− eAε(t−t0)ξε(t0)
∥∥
X

6
∫ t

t0

∥∥eAε(t−s)[Gε(ω
ε(s), ϑε(s))−Gε(y

ε(s, t), Sε∗(y
ε(s, t)))]

∥∥
X
ds

+

∫ t0

−∞

∥∥eAε(t−s)[Gε(y
ε(s, t), Sε∗(y

ε(s, t)))−Gε(y
ε(s, t0), Sε∗(y

ε(s, t0)))]
∥∥
X
ds

6 ρC

∫ t

t0

e−β(t−s)[(1 + L)‖ωε(s)− yε(s, t)‖QεX + ‖ϑε(s))− Sε∗(yε(s, t)))]‖Xds

+ ρC(1 + L)

∫ t0

−∞
e−β(t−s)‖yε(s, t)− yε(s, t0)‖QεXds.
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Thus, using (2.89) and (2.90), we obtain

∥∥ξε(t)− eAε(t−t0)ξε(t0)
∥∥
X
6 ρC

∫ t

t0

e−β(t−s)‖ξε(s)‖Xds

+ ρ2C2(1 + L)

∫ t

t0

e−β(t−s)
∫ t

s

e−(β−ρC(1+L))(θ−s)‖ξε(θ)‖Xdθds

+ ρ2C3(1 + L)

∫ t0

−∞
e−β(t−s)

∫ t

t0

e−(β−ρC(1+L))(θ−s)‖ξε(θ)‖Xdθds

= ρC

∫ t

t0

e−β(t−s)‖ξε(s)‖Xds

+ ρ2C2(1 + L)e−βt
∫ t

t0

e−(β−ρC(1+L))θ‖ξε(θ)‖X
[∫ θ

t0

e(2β−ρC(1+L))sds

]
dθ

+ ρ2C3(1 + L)e−βt
∫ t

t0

e−(β−ρC(1+L))θ‖ξε(θ)‖X
[∫ t0

−∞
e(2β−ρC(1+L))sds

]
dθ.

So we write,

∥∥ξε(t)− eAε(t−t0)ξε(t0)
∥∥
X
6

[
ρC +

ρ2C2(1 + L)

2β − ρC(1 + L)

] ∫ t

t0

e−β(t−s)‖ξε(s)‖Xds

+
ρ2C3(1 + L)

2β − ρC(1 + L)
e−β(t−t0)

∫ t

t0

e−(β−ρC(1+L))(θ−t0)‖ξε(θ)‖Xdθ,

it follows that,

eβ(t−t0)‖ξε(t)‖X 6 C‖ξε(t0)‖X +

[
ρC +

ρ2C2(1 + L)

2β − ρC(1 + L)

] ∫ t

t0

eβ(s−t0)‖ξε(s)‖Xds

+
ρ2C3(1 + L)

2β − ρC(1 + L)

∫ t

t0

e−(2β−ρC(1+L))(s−t0)eβ(s−t0)‖ξε(s)‖Xds

6 C‖ξε(t0)‖X +

[
ρC +

ρ2C2(1 + L)

2β − ρC(1 + L)
(1 + C)

] ∫ t

t0

eβ(s−t0)‖ξε(s)‖Xds.

From Gronwall’s lemma we obtain

‖ξε(t)‖X 6 C‖ξε(t0)‖Xe−ρ1(t−t0), ∀t > t0

where

ρ1 = β −
[
ρC +

ρ2C2(1 + L)

2β − ρC(1 + L)
(1 + C)

]
> 0,

with ρ1 independent of ε, once β, C, ρ and L are independents of ε for 0 < ε < ε̄. Thus,

‖ϑε(t)− Sε∗(ωε(t))‖X 6 Ce−ρ1(t−t0)‖ϑε(t0)− Sε∗(ωε(t0))‖X , ∀t > t0.

Therefore, letting t0 → −∞, we have ϑε(t) = Sε∗(ω
ε(t)), for all t ∈ R.
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Finally we show that the fixed points Sε∗ continuously depend in ε, that is, if

0 < ε < ε̄ its such that the unstable manifold is given by the graph of Sε∗, we want to

prove that

|||Sε∗ − S0
∗ ||| := sup

η∈QεX
‖Sε∗(η)− S0

∗(η)‖X → 0,

as ε→ 0. To this end, let us first observe that as the map QεX 3 ω0 → G0(ω0, S0
∗(ω

0))

is continuous and takes bounded subsets of QεX into subsets relatively compacts of

X. Therefore, adding and subtracting terms, we get

‖Sε∗(η)− S0
∗(η)‖X

6
∫ τ

−∞

∥∥eAε(τ−s)Gε(ω
ε(s), Sε∗(ω

ε(s)))− eA0(τ−s)G0(ω0(s), S0
∗(ω

0(s)))
∥∥
X
ds

6
∫ τ

−∞

∥∥eAε(τ−s)[Gε(ω
ε(s), Sε∗(ω

ε(s)))−Gε(ω
0(s), S0

∗(ω
0(s)))]

∥∥
X
ds

+

∫ τ

−∞

∥∥eAε(τ−s)[Gε(ω
0(s), S0

∗(ω
0(s)))−G0(ω0(s), S0

∗(ω
0(s)))]

∥∥
X
ds

+

∫ τ

−∞

∥∥[eAε(τ−s) − eA0(τ−s)]G0(ω0(s), S0
∗(ω

0(s)))
∥∥
X
ds

:= I1 + I2 + I3,

respectively.

Thus, using (2.78) and (2.83), we get

I1 6 C

∫ τ

−∞
(τ − s)−1e−β(τ−s) ∥∥Gε(ω

ε(s), Sε∗(ω
ε(s)))−Gε(ω

0(s), S0
∗(ω

0(s)))]
∥∥

H
ds

6 ρC

∫ τ

−∞
(τ − s)−1e−β(τ−s)[(1 + L)‖ωε(s)− ω0(s)‖QεX + |||Sε∗ − S0

∗ |||]ds

= ρCΓ(0)|||Sε∗ − S0
∗ |||+ ρC(1 + L)

∫ τ

−∞
(τ − s)−1e−β(τ−s)‖ωε(s)− ω0(s)‖QεXds.

Since Gε converges to G0 pointwise on compacts as ε→ 0, we have that Gε → G0,

as ε→ 0, uniformlly, see item (iii) of Lemma 2.2.3 and therefore I2 is o(1), where o(1)

denote the quantity which goes to zero as ε → 0. Note that G0(ω0, S0
∗(ω

0)) is in a

compact set of X, and by Lemma 2.5.1, item (iii) we obtain A−1
ε → A−1

0 . Then by

results due to Trotter-Kato, see [38], we get

eAεtu0 → eA0tu0, ∀t > 0 and u0 ∈ X.

This we ensure that I3 its also o(1) as ε→ 0. Thus

‖Sε∗(η)− S0
∗(η)‖X

6 ρCΓ(0)|||Sε∗ − S0
∗ |||+ ρC(1 + L)

∫ τ

−∞
(τ − s)−1e−β(τ−s)‖ωε(s)− ω0(s)‖QεXds+ o(1).
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Then, it is sufficient to estimate the term ‖ωε(s) − ω0(s)‖QεX . Once ‖η‖QεX 6 R,

proceeding as above we have

‖ωε(t)− ω0(t)‖QεX 6 ‖eAε(t−τ)η − eA0(t−τ)η‖X

+

∫ τ

t

∥∥eAε(t−s)[Hε(ω
ε(s), Sε∗(ω

ε(s)))−Hε(ω
0(s), S0

∗(ω
0(s)))]

∥∥
X
ds

+

∫ τ

t

∥∥eAε(t−s)[Hε(ω
0(s), S0

∗(ω
0(s)))−H0(ω0(s), S0

∗(ω
0(s)))]

∥∥
X
ds

+

∫ τ

t

∥∥[eAε(t−s) − eA0(t−s)]H0(ω0(s), S0
∗(ω

0(s)))
∥∥
X
ds

6 ρC|||Sε∗ − S0
∗ |||
∫ τ

t

eβ(t−s)ds+ ρC(1 + L)

∫ τ

t

eβ(t−s)‖ωε(s)− ω0(s)‖QεXds+ o(1).

If φ(t) = eβ(τ−t)‖ωε(t)− ω0(t)‖QεX we have

φ(t) 6 ρC|||Sε∗ − S0
∗ |||
∫ τ

t

eβ(τ−s)ds+ ρC(1 + L)

∫ τ

t

φ(s)ds+ o(1).

From Gronwall’s lemma we obtain

‖ωε(t)− ω0(t)‖QεX 6 [o(1) + ρCβ−1|||Sε∗ − S0
∗ |||]e(ρC(1+L)−β)(τ−t).

Then from (2.84), it follows that

‖Sε∗(η)− S0
∗(η)‖X 6 o(1) + ρCΓ(0)|||Sε∗ − S0

∗ |||

+ ρC(1 + L)[o(1) + ρCβ−1|||Sε∗ − S0
∗ |||]
∫ τ

−∞
(τ − s)−1e(−2β+ρC(1+L))(τ−s)ds

= o(1) +
[
ρCΓ(0) + ρ2C2β−1(1 + L)Γ(0)

]
|||Sε∗ − S0

∗ |||

6 o(1) +
1

2
|||Sε∗ − S0

∗ |||.

Therefore,

|||Sε∗ − S0
∗ ||| = sup

η∈QεX
‖Sε∗(η)− S0

∗(η)‖X 6 o(1) +
1

2
|||Sε∗ − S0

∗ |||,

and thus,

|||Sε∗ − S0
∗ ||| → 0 as ε→ 0.

�

Theorem 2.5.17 The family of attractors {Aε : ε ∈ (0, ε0]} is lower semicontinuous
at ε = 0; that is,

distH(A0,Aε)→ 0, as ε→ 0,

where
distH(A0,Aε) := sup

w0∈A0

inf
wε∈Aε

{‖wε − w0‖X}.
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Proof. Thanks to the results of previous sections, the proof follows using arguments

already known in the literature, see Carvalho, Langa and Robinson [14, Chapter 3],

that is, using the item (ii) of the Lemma C.20. Let w0 ∈ A0. Since {S0(t) : t > 0} is

a gradient system, we have that

A0 =
⋃

w0
∗∈E0

W u(w0
∗)

and then w0 ∈ W u(w0
∗), for some w0

∗ ∈ E0. Let τ ∈ R and ϕ0 ∈ W u
loc(w

0
∗) be such

that S0(τ)ϕ0 = w0. Let wε∗ be such that wε∗ → w0
∗ as ε→ 0. From the convergence of

unstable manifolds there is a sequence {ϕε}ε∈[0,ε0], ϕε ∈ W u
loc(w

ε
∗) such that ϕε → ϕ0

as ε → 0. Finally, from Proposition 2.4.4, we obtain that Sε(τ)ϕε → S0(τ)ϕ0 = w0.

To conclude, we observe that if wε = Sε(τ)ϕε, then wε ∈ Aε, since

ϕε ∈
⋃

wε∗∈Eε

W u(wε∗) = Aε

and Aε is invariant. �

Corollary 2.5.18 The family of global attractors {Aε : ε ∈ (0, ε0]} is continuous at
ε = 0.
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Chapter 3

Final considerations and conclusions

In this short chapter we will present possible improvements of the results obtained

in previous chapters, under the best of our knowledge.

(i) On the Klein-Gordon system, in order to obtain results on the uniqueness and decay

of solutions of problem (1), we prove the Theorem 1.2.13 on existence of solutions for

the case ρ = 1 and n = 1, 2, 3. For the case ρ > 1 and n > 3, the regularity of the

solution u obtained is an open problem;

(ii) A new paper is in phase of conclusion, we will consider the system (1) with non-

linearities which are strongly monotone, acting as damping on a part of the boundary;

(iii) We want study a semigroup approach, in the sense of Pazy [38], to the problem

associated with the Klein-Gordon system as in Chapter 1. In this way we will search

results of regularity of solutions and behavior asymptotic of solutions;

(iv) On the thermoelastic plate systems, the X1−regularity of the global attractors

for the problems (2.7) and (2.10) are open problems, probably this result can be ob-

tained, for example, by using the same arguments of Carvalho, Langa and Robinson

[14, Chapter 15, Section 15.6];

(v) Thanks to parabolic structure of the problems (2.7) and (2.10), in the sense of

Henry [20], we want study the the behavior asymptotic of solutions, in the sense of

global attractors, in the fractional power space Xα for some 0 < α < 1;

(vi) We also want study evolution systems as in the Chapter 1 and Chapter 2 with

reaction terms concentrated in a neighborhood of only part of the boundary and this



neighborhood shrinks to boundary as a parameter goes to zero. Thus, we want to use

the analysis done in Chapter 1 and Chapter 2 in one unique research project;

(vii) Finally, we also want study the non-autonomous dynamical systems, in the sense

of Carvalho, Langa and Robinson [14], associated with non-autonomous formulations

of the systems in Chapter 1 and Chapter 2. In this case, initially, we can consider non-

autonomous damped for these systems. More precisely, we will analyze the asymptotic

behavior of a non-autonomous thermoelastic plate systems with Neumann boundary

conditions when some reaction terms are concentrated in a neighborhood of the bound-

ary, and this neighborhood shrinks to boundary as a parameter ε goes to zero, which

is represented by

∂2
t u

ε + ∆2uε + uε + a(t)∆θε − a(t)θε = f(t, uε) +
1

ε
χωεg(uε) in Ω× (0,∞),

∂tθ
ε −∆θε + θε − a(t)∆∂tu

ε + a(t)∂tu
ε = 0 in Ω× (0,∞),

∂uε

∂~n
= 0,

∂(∆uε)

∂~n
= 0,

∂θε

∂~n
= 0 on Γ× (0,∞),

uε(0) = u0 ∈ H2(Ω), ∂tu
ε(0) = v0 ∈ L2(Ω), θε(0) = θ0 ∈ L2(Ω),

(3.1)

where Ω is a bounded and smooth open set of Rn, n > 2, with boundary Γ = ∂Ω

smooth, ωε, 0 < ε 6 ε0 is a neighborhood of Γ, χωε is the characteristic function of set

ωε, 0 < ε 6 ε0, a ∈ L∞(R) is Hölder continuous, and f, g : R → R are nonlinearities

under suitable growth conditions.

We want study the asymptotic behavior of the problem (3.1) in the sense of

pullback attractors. We also want show that the limit problem for the autonomous

thermoelastic plate system (3.1) is given by

∂2
t u+ ∆2u+ u+ a(t)∆θ − a(t)θ = f(t, u) in Ω× (τ,∞),

∂tθ −∆θ + θ − a(t)∆∂tu+ a(t)∂tu = 0 in Ω× (0,∞),

∂u

∂~n
= 0,

∂(∆u)

∂~n
= −g(u),

∂θ

∂~n
= 0 on Γ× (0,∞),

u(0) = u0 ∈ H2(Ω), ∂tu(0) = v0 ∈ L2(Ω), θ(0) = θ0 ∈ L2(Ω).

(3.2)

In other words, we prove that the nonlinear evolution process associated to (3.1) con-

verges to the nonlinear evolution process associated to (3.2). Moreover, we show the

existence, uniform boundedness, and continuity of the pullback attractors at ε = 0
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associated to these process.
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Appendix A

Preliminary results

In this appendix we will present some definitions and basic concepts related to

functional analysis, measure theory and distributions theory that was necessary for the

development of our work. As our goal and to establish a theoretical base for our work,

we will not worry about formal proofs for the theorems that will be presented here

but for more details we recommend the following references, Lions [26], Brezis [11],

Medeiros and Milla Miranda [30], Medeiros [29] and Evans [18].

A.1 Functional spaces and basic results

Given a multi-index α = (α1, α2, . . . , αn) ∈ Nn. We define the derivative operator

of order |α|, by

Dα =
∂|α|

∂xα1
1 ∂x

α2
2 · · · ∂xαnn

if α 6= (0, 0, . . . , 0).

with |α| = α1 + α2 + · · ·+ αn.

Remark A.1 If α = (0, 0, . . . , 0) we define Dαu = u for all function u. When the
multi-index is α = (0, . . . , 0, i, 0, . . . , 0) ∈ Nn the derivative operator can to be repre-
sented by derivative partial Di = ∂

∂xi
, i = 1, 2, . . . , n.

For k = 1, 2, . . ., denote by Ck(Ω) the Banach space of all the functions u : Ω→ R

k-times differentiable, equipped with the norm

‖u‖Ck(Ω) =
k∑
|α|=0

sup
x∈Ω
|Dαu(x)|.



In particular C0(Ω) is the space of the functions continuous on Ω and C∞(Ω) is the

space of the functions infinitely differentiable. Also we denote by C∞0 (Ω) the subspace

of C∞(Ω) which is constituted of all functions with support compact on Ω, that is,

supp(u) is a compact subset of Ω.

Definition A.2 Let Ω be an open set of Rn. A sequence (ϕν)ν∈N in C∞0 (Ω) converge
for ϕ in C∞0 (Ω), when the following conditions are satisfied

(i) There exists a compact K ⊂ Ω such that supp(ϕν) ⊂ K, ∀ν ∈ N.

(ii) For all multi-index α, Dαϕν −→ Dαϕ uniformly in K.

The vectorial space C∞0 (Ω) equipped of notion of convergence above is denoted

by D(Ω) and is called of space of the test functions.

Let Ω be an open and bounded set of Rn we denote by Lp(Ω), 1 6 p < ∞ the

Banach space of (classes of equivalence) measurable functions u in Ω such that |u|p is

an integrable function on Ω, that is,

Lp(Ω) =

{
u : Ω→ R; u is mensurable and

∫
Ω

|u(x)|pdx <∞
}

equipped with the norm

‖u‖Lp(Ω) =

(∫
Ω

|u(x)|pdx
) 1

p

, 1 6 p <∞.

For p =∞ we denote by L∞(Ω) the Banach space of (classes of equivalence) mensurable

functions u in Ω and that are essentialy bounded in Ω, that is,

L∞(Ω) =

{
u : Ω→ R; u is mensurable and ess sup

x∈Ω
|u(x)| <∞

}
equipped with the norm

‖u‖L∞(Ω) = ess sup
x∈Ω
|u(x)|.

In particular the space L2(Ω) equipped with norm ‖u‖2
L2(Ω) = (u, v)L2(Ω) where,

(u, v)L2(Ω) =

∫
Ω

u(x)v(x)dx

is usual inner product of L2(Ω), is a Hilbert space.

We also define by Lploc(Ω) as the space of the mensurable functions u in Ω such

that |u|p is a locally integrable function on Ω, that is, there exists K ⊂ Ω such that∫
K

|u(x)|pdx <∞.
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Definition A.3 A distribution is a linear functional T : D(Ω) → R such that T is
continuous, that is, if ϕν converge for ϕ in D(Ω) then 〈T, ϕν〉 converge for 〈T, ϕ〉 in
R.

We denote by D ′(Ω) or L (D(Ω),R) the space of all the distributions on Ω.

In what follows we have an example of distribution.

Example A.4 Let u ∈ L1
loc(Ω) the functional Tu : D(Ω)→ R, defined by

〈Tu, ϕ〉 =

∫
Ω

u(x)ϕ(x)dx,

is a distribuiton.

Theorem A.5 (Du Bois Reymond) Let u ∈ L1
loc(Ω). Then Tu = 0 if, and only if,

u = 0 a.e. in Ω.

Proof. See Medeiros and Milla Miranda [30, Proposition 1.4, p. 11] �

Remark A.6 From Du Bois Raymond’s Lemma it follows that if u, v ∈ L1
loc(Ω) then

Tu = Tv in D ′(Ω), if and only if, u = v a.e. in Ω. For this reason, u is identified with
the distribution Tu.

Definition A.7 Let T be a distribution on Ω and α ∈ Nn a multi-index. The deriva-
tive of order |α| of T is the functional DαT : D(Ω)→ R defined by

〈DαT, ϕ〉 = (−1)|α|〈T,Dαϕ〉.

Moreover DαT is a distribution on Ω called derivative in the sense of distribuitions.

Remark A.8 It follows from the definition that a distribution has derivative of all
orders.

Let Ω be an open and bounded set of Rn. If u ∈ Lp(Ω) with 1 6 p 6 ∞, from

definition of derivative distributional, we know that u has derivatives of all orders in the

sense of distributions, but it is not true in general that Dαu is defined by a function of

Lp(Ω). When Dαu is defined by a function of Lp(Ω), we can define the Sobolev space.

Give an integer number m > 0, we represent by Wm,p(Ω), 1 6 p 6∞, the vector

space of all the functions u belongs to Lp(Ω), such that for all multi-index |α| 6 m,

the derivative of u in the sense of distributions Dαu belongs to Lp(Ω), that is,

Wm,p(Ω) = {u ∈ Lp(Ω); Dαu ∈ Lp(Ω), 0 6 |α| 6 m}.
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For each u ∈ Wm,p(Ω), we define the norm

‖u‖Wm,p(Ω) =

∑
|α|6m

∫
Ω

|Dαu(x)|pdx

 1
p

, 1 6 p <∞,

and

‖u‖Wm,∞(Ω) =
∑
|α|6m

ess sup
x∈Ω
|Dαu(x)|.

With this norm it follows that the Sobolev space Wm,p(Ω) is a Banach space. In

particular, for p = 2, we denote Wm,2(Ω) by Hm(Ω) and W 0,p(Ω) = Lp(Ω).

Remark A.9 The space Hm(Ω) equipped with inner product

((u, v))Hm(Ω) =
∑
|α|6m

(Dαu,Dαv)L2(Ω)

is a Hilbert space.

We also define the space Hm
0 (Ω) as being the closure of D(Ω) in Hm(Ω) and by H−1(Ω)

the dual topological of Hm
0 (Ω).

Next we list some classic results of the Sobolev spaces theory.

Theorem A.10 The Banach space W 1,p(Ω) is reflexive for 1 < p < ∞, and it is
separable for 1 6 p <∞ and H1(Ω) is a separable Hilbert space.

Proof. See Brezis [11, Proposition 9.1, p. 264] �

Theorem A.11 (Green’s formula) Let Ω be an open and bounded set of Rn with
boundary Γ smooth. If u ∈ H2(Ω) and v ∈ H1(Ω) then∫

Ω

v∆udx+

∫
Ω

∇u∇vdx =

∫
Γ

∂u

∂~n
vdS

where ~n denotes the outward normal vector on Γ and
∂u

∂~n
= ∇u·~n the derivative normal

of u.

Proof. See Evans [18, Appendix C, p. 628] �

Theorem A.12 (Poincare’s inequality) Let Ω be a bounded, open subset of Rn.
Suppose u ∈ W 1,p

0 (Ω) for some 1 6 p < n. Then there exists a constant
C = C(p, q, n,Ω) > 0 such that

‖u‖Lq(Ω) 6 C‖∇u‖Lp(Ω),

for each q ∈ [1, p∗], where p∗ =
np

n− p
.
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Proof. See Evans [18, Theorem 3, p. 265] �

Theorem A.13 (Sobolev embedding) Let Ω be an open and bounded set of Rn with
boundary ∂Ω of class Cm. Then the following embedding are holds

(i) Wm,p(Ω) ↪→ Lq(Ω), 1 6 q 6 q∗ =
np

n−mp
if mp < n

(ii) Wm,p(Ω) ↪→ Lq(Ω), 1 6 q <∞ if mp = n

(iii) Wm,p(Ω) ↪→ Ck,λ(Ω), k < m − n

p
6 k + 1 if mp > n, where k is an integer

non-negative and λ a real satisfying 0 < λ 6 m − k − n

p
= λ0 if λ0 < 1 and

0 < λ < 1 if λ0 = 1.

Proof. See Medeiros and Milla Miranda [30, Theorem 2.15, p. 74] �

Theorem A.14 (Rellich-Kondrachov) Let Ω be an open and bounded set of Rn

with boundary ∂Ω of class Cm. Then the following embedding are holds

(i) Wm,p(Ω)
c
↪→ Lq(Ω), 1 6 q < q∗ =

np

n−mp
if mp < n

(ii) Wm,p(Ω)
c
↪→ Lq(Ω), 1 6 q <∞ if mp = n

(iii) Wm,p(Ω)
c
↪→ Ck(Ω), k < m− n

p
6 k + 1 if mp > n, where k is an integer

non-negative.

Proof. See Medeiros and Milla Miranda [30, Theorem 2.20, p. 83] �

Now let us consider the open interval (0, T ), of the real line R and a real Banach

space X equipped with norm ‖ · ‖X . We represent by C([0, T ], X) the Banach space of

the applications u defined in (0, T ) with values in X, whose norm is given by

‖u‖∞ = sup
t∈[0,T ]

‖u(t)‖X .

For 1 6 p < ∞ we denote by Lp(0, T ;X) the vectorial space of the applications

u : (0, T ) → X such that, for each t ∈ (0, T ), the vector u(t) ∈ X is measurable on

(0, T ) and ‖u(t)‖X belongs to Lp(0, T ), that is,

Lp(0, T ;X) =

{
u : (0, T )→ X mensurable;

∫ T

0

‖u(t)‖pXdt <∞
}
, 1 6 p <∞

and

L∞(0, T ;X) =

{
u : (0, T )→ X mensurable; ess sup

t∈(0,T )

‖u(t)‖X <∞

}
.
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In Lp(0, T ;X) we define the norm

‖u‖Lp(0,T ;X) =

(∫ T

0

‖u(t)‖pXdt
) 1

p

, 1 6 p <∞

and

‖u‖L∞(0,T ;X) = ess sup
t∈(0,T )

‖u(t)‖X .

With this norm it follows that Lp(0, T ;X) is a Banach space. In particular, if X is a

Hilbert space then L2(0, T ;X) is a Hilbert space equipped with inner product

(u, v)L2(0,T ;X) =

∫ T

0

(u(t), v(t))Xdt.

We also define the following space

Lploc(0, T ;X) = {u : (0, T )→ X mensurable; ‖u(s)‖X ∈ Lp(I), ∀I ⊂ (0, T )} ,

where I is a compact set of R.

Finally, we denote by H1
0 (0, T ;X) the Hilbert space

H1
0 (0, T ;X) = {u ∈ L2(0, T ;X);u′ ∈ L2(0, T ;X), u(0) = u(T ) = 0},

equipped with inner product

((u, v))H1
0 (0,T ;X) =

∫ T

0

(u(t), v(t))Xdt+

∫ T

0

(u′(t), v′(t))Xdt.

If X is a reflexive and separable space, then Lp(0, T ;X) is a reflexive and separable

space, for 1 < p <∞, whose topological dual is identified to space Lp′(0, T ;X ′), where

p and p′ are conjugate exponentes, that is,
1

p
+

1

p′
= 1. More precisely, we show that

for each u ∈ Lp(0, T ;X), there exists ũ ∈ Lp′(0, T ;X ′) such that

〈u, ϕ〉(Lp(0,T ;X))′×Lp(0,T ;X) =

∫ T

0

〈ũ(t), ϕ(t)〉X′×Xdt

In particular for p = 1, we identify [L1(0, T ;X)]′ = L∞(0, T ;X ′).

Remark A.15 If Ω is an open and bounded set of Rn, T > 0 and Q = Ω× (0, T ) the
cylinder in Rn+1 then

Lp(0, T ;Lp(Ω)) = Lp(Q), 1 6 p <∞.
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In general the space L (D(0, T ), X) is called the space of vector distributions on

(0, T ) with value in X and is denoted by D ′(0, T ;X).

Identifying L2(0, T ;X) with its dual (L2(0, T ;X))′ we obtain the following em-

bedding

D(0, T ;X) ↪→ H1
0 (0, T ;X) ↪→ L2(0, T ;X) ↪→ H−1(0, T ;X) ↪→ D ′(0, T ;X),

where H−1(0, T ;X) = (H1
0 (0, T ;X))′.

Proposition A.16 Let u ∈ L2(0, T ;X). There exists an unique f ∈ H−1(0, T ;X)

such that
〈f, ϕξ〉 = (〈u′, ϕ〉, ξ), ∀ϕ ∈ D(0, T ), ∀ξ ∈ X.

Proof. See Milla Miranda [31, Proposition 1, p. 175]. �

From above proposition we can identify u′ with f . Therefore, if u ∈ L2(0, T ;X)

then u′ ∈ H−1(0, T ;X).

Corollary A.17 The map

u ∈ L2(0, T ;X) 7−→ u′ ∈ H−1(0, T ;X)

is linear and continuous.

Proof. See Milla Miranda [31, Corollary 1, p. 176] �

Now we will see the concept of vector distribution and some of its properties. We

denote by C∞0 (0, T ) space of infinitely differentiable functions on (0, T ), with compact

support on (0, T ).

Definition A.18 We say that a sequence (ϕν)ν∈N converge for ϕ in C∞0 (0, T ), when
the following conditions are satisfied

(i) There exists a compact K of (0, T ) such that supp(ϕν) ⊂ K, ∀ν ∈ N.

(ii) The sequence (ϕν)ν∈N converge for ϕ uniformly in K, together with its derivative
of all orders.

The vectorial space C∞0 (0, T ), equipped of the notion of convergence above will be

represented by D(0, T ).

Let u ∈ Lp(0, T ;X) and ϕ ∈ D(0, T ), we define the map Tu : D(0, T )→ X by

〈Tu, ϕ〉 =

∫ T

0

u(t)ϕ(t)dt
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with the integral calculated in X. The mapping Tu, above defined, is linear and con-

tinuous on D(0, T ). In this case we say that Tu is a distribution on (0, T ) with value in

X, called vector distribution, defined by u of Lp(0, T ;X). Then Tu ∈ D ′(0, T ;X).

Lemma A.19 If u ∈ L1(0, T ;X) and∫ T

0

u(t)ϕ(t)dt = 0

for all ϕ ∈ D(0, T ), then u(t) = 0 a.e. in (0, T ).

Proof. See Medeiros [29, Lema 1. p. 4]. �

From Lemma A.19, it follows that Tu is unically defined by u ∈ Lp(0, T ;X). Then

we can identify the vector u ∈ Lp(0, T ;X), with Tu ∈ D ′(0, T ;X) and we say that u is

a distribution defined on (0, T ) with values on X. We write Lp(0, T ;X) ⊂ D ′(0, T ;X).

Thus each u ∈ Lp(0, T ;X) is derivable in the sense of distributions, that is,〈
du

dt
, ϕ

〉
= −

〈
u,
dϕ

dt

〉
, ∀ ϕ ∈ D(0, T )

In general, we have〈
dnu

dtn
, ϕ

〉
= (−1)n

〈
u,
dnϕ

dtn

〉
, ∀ ϕ ∈ D(0, T )

Next we list some results that are used in the proof of the result in the chapter 1.

Theorem A.20 Let X, Y be a Hilbert spaces such that X ↪→ Y . If u ∈ Lp(0, T ;X)

and ut ∈ Lp(0, T ;Y ), 1 6 p <∞, then u ∈ C0([0, T ];Y ).

Proof. See Medeiros [29, Corollary 1, p. 9]. �

Lemma A.21 (Lions Lemma) Let O be an open and connected set Rn+1 and
gm, g ∈ Lq(O), 1 < q <∞ such that

‖gm‖Lq(O) 6 C and gm → g a.e. in O.

Then gm ⇀ g in Lq(O).

Proof. See Lions [26, Lemma 1.3, p. 12]. �
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Theorem A.22 (Aubin-Lions Theorem) Let X0, X,X1 be a Banach spaces such
that X0

c
↪→ X ↪→ X1 with X0 and X1 reflexives. Moreover for any p0, p1 with

1 6 p0, p1 <∞ we consider the space

W = {u | u ∈ Lp0(0, T,X0), u′ ∈ Lp1(0, T,X1)},

endowed with the norm ‖u‖W = ‖u‖Lp0 (0,T,X0) + ‖u′‖Lp1 (0,T,X1). Then

W
c
↪→ Lp0(0, T,X).

Proof. See Lions [26, Theorem 5.1, p. 58]. �

As consequence of the above result we have, if (uk)k∈N is a bounded sequence in

L2(0, T,X0) and (u′k)k∈N is a bounded sequence in L2(0, T,X1), then (uk)k∈N is bounded

in W . It follows that, there exists a subsequence of (uk)k∈N still denoted by (uk)k∈N,

such that uk → u in L2(0, T,X).

Theorem A.23 (Compactness weak) Let X be a reflexive Banach space. If B is
a bounded subset of X, then B is compact in weak topology σ(X,X ′), that is, for any
sequence {xn} bounded in X there exists a subsequence {xnk} convergent in X in weak
topology σ(X,X ′).

Proof. See Brezis [11, Theorem 3.18, p. 69] �

Theorem A.24 (Compactness weak star) Let X be a separable Banach space. If
F is a bounded subset of X ′, then F is compact in weak star topology σ(X ′, X), that
is, for any sequence {fn} bounded in X ′ there exists a subsequence {fnk} convergent in
X ′ in the weak star topology σ(X ′, X).

Proof. See Brezis [11, Corollary 3.30, p. 76] �

Theorem A.25 (Banach Fixed Point Theorem) Let X be a non-empty complete
metric space and let S : X → X be a strict contraction; that is,

d(Sv1, Sv2) 6 kd(v1, v2), ∀v1, v2 ∈ X with 0 < k < 1.

Then S has an unique fixed point, u = Su.

Proof. See Brezis [11, Theorem 5.7, p. 138] �

Theorem A.26 (Schauder Fixed Point Theorem) Let X be a Banach space and
suppose K ⊂ E is compact and convex, and assume also T : K → K is continuous.
Then T has a fixed point in K.

Proof. See Evans [18, Theorem 3, p. 502] �
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A.2 Essential results

In this section we will present the Carathéodory theorem which will be used to

ensure the existence of solution to a Cauchy problem in the interval [0, tm] for every

m ∈ N.

We consider the following Cauchy problem
dY

dt
= f(t, Y (t)), t > t0,

Y (t0) = Y0.

(A.1)

In the case that f is a mensurable function we ensure that there is a solution to (A.1)

through of the Carathéodory theorem.

Definition A.1 We say that the function f : [0, T ]× Ω→ Rn satisfies the conditions
of Carathéodory on Q = [0, T ]× Ω if:

(i) f(t, x) is mensurable in t for each x fixed;

(ii) f(t, x) is continuous in x for each t fixed;

(iii) For each K ⊂ Ω compact set, there exists an integrable real function mK(t), such
that

‖f(t, x)‖Rn 6 mK(t), for all (t, x) ∈ K.

Theorem A.2 (Caratheodory Theorem) Suppose that f : [0, T ]×Ω→ Rn satisfies
the conditions of Carathéodory on Q = [0, T ]×Ω. Then there exists a solution Y (t) of
(A.1) on some interval |t− t0| 6 β, where β is a positive constant.

Proof. See Coddington-Levinson [16] �

Theorem A.3 (Prolongation Theorem) Let Ω = [0, T ] × B with T > 0 and
B = {x ∈ Rn; ‖x‖Rn 6 b}, where b is a positive constant and ‖ · ‖Rn the norm eu-
clidian of the Rn. Suppose that f is a function that satisfies (i), (ii) and that there
exists a function m ∈ L1(0, T ) such that

|f(t, x)| 6 m(t), for all (t, x) ∈ Ω.

Let Y (t) a solution of (A.1) and suppose that Y (t) is defined in I, satisfying |Y (t)| 6M

with M independent of I and M < b for all t ∈ I. Then Y (t) can to be prolonged in
all interval [0, T ].
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Proof. See Coddington-Levinson [16] �

Now we present inequalities frequently used in our work.

Lemma A.4 (Gronwall’s inequality, integral form) Let X ∈ L1(0, T ;R+) satisfy

X(t) 6 a(t) +

∫ t

0

b(s)X(s)ds, a.e. t ∈ (0, T )

where a, b ∈ L∞(0, T ) and a(·) is increasing. Then,

X(t) 6 a(t)e
∫ t
0 b(s)ds, for all t ∈ [0,∞].

Proof. See Carvalho, Langa and Robinson [14, Lemma 6.23, p. 167]. �

Lemma A.5 (Gronwall’s inequality, differential form) Let J(·) be a non-negative,
absolutely continuous function on [0, T ], which satisfies for a.e. t the differential in-
equality

J ′(t) 6 α(t)J(t) + β(t),

where α(t), β(t) are non-negative, integrable functions in [0, T ] . Then,

J(t) 6 J(0)e
∫ t
0 α(s)ds +

∫ t

0

β(τ)e
∫ t
τ α(s)dsdτ, for all t ∈ [0, T ].

Proof. See Evans [18, Appendix B, p. 624]. �

Lemma A.6 (Young’s inequality) Let 1 < p, q <∞ with
1

p
+

1

q
= 1. Then,

ab 6
ap

p
+
bq

q
, ∀ a, b > 0.

Proof. See Evans [18, Appendix B, p. 622]. �

Theorem A.7 (Hölder’s inequality) Let Ω ⊂ Rn be a bounded open and

1 6 p, q < ∞ with
1

p
+

1

q
= 1. If u ∈ Lp(Ω) and v ∈ Lq(Ω) then uv ∈ L1(Ω)

and
‖uv‖L1(Ω) 6 ‖u‖Lp(Ω)‖v‖Lq(Ω).

Proof. See Evans [18, Appendix B, p. 622]. �

Theorem A.8 (Minkowski’s inequality) If u, v ∈ Lp(Ω) with 1 6 p < ∞ then
u+ v ∈ Lp(Ω) and

‖u+ v‖Lp(Ω) 6 ‖u‖Lp(Ω) + ‖v‖Lp(Ω).
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Proof. See Evans [18, Appendix B, p. 623]. �

Theorem A.9 (Integration by parts formula) Let u, v ∈ C1(Ω). Then∫
Ω

uxivdx+

∫
Ω

uvxi =

∫
∂Ω

uvνidS, (i = 1, . . . , n).

Proof. See Evans [18, Appendix C, p. 628]. �
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Appendix B

Linear semigroups

In this chapter we recall a few from theory semigroup of bounded linear operators

but with the main objective of presenting the theory of strongly continuous semigroups

and analytic semigroups. We present definitions and results of this theory that we use

throughout this work. The proof of the results we do not make here, for more details

we recommender Carvalho, Langa and Robinson [14], Henry [20] and Pazy [38].

B.1 Definitions and basic concepts

In what follows let X and Y be Banach space over a field K (K = R or K = C)

and we denote by L (X, Y ) the space of bounded linear operators from X into Y with

the usual norm, that is, for T ∈ L (X, Y ),

‖T‖L (X,Y ) = sup
x∈X, x 6=0

‖Tx‖Y
‖x‖X

.

If X = Y we write L (X) to denote L (X, Y ). Let X ′ be the topological dual of X,

that is, X ′ = L (X,K) with the norm defined above.

Definition B.1 A semigroup strongly continuous (or a C0-semigroup) of bounded
linear operators is a family of maps {S(t) : t > 0} ⊂ L (X) such that

(i) S(0) = IX ;

(ii) S(t+ s) = S(t)S(s), for any t, s > 0;

(iii) limt→0+ ‖S(t)x− x‖X = 0 or (limt→0+ S(t)x = x) for all x ∈ X.



In general in the space of operators the composition of operators does not commute,

however if {S(t) : t > 0} ⊂ L (X) is a semigroup we have

S(t)S(s) = S(s)S(t), for all t, s > 0.

The study of semigroups of linear operators is associated with the study of linear

Cauchy problems of the form
du(t)

dt
+ Au(t) = 0, t > 0,

u(0) = u0.

(B.1)

where −A : D(A) ⊂ X → X is linear operator (in general unbounded). The semigroup

{S(t) : t > 0} is the solution operator associated to (B.1); that is, for each u0 ∈ X, the

function [0,∞) 3 t 7→ S(t)u0 ∈ X is the solution (in some sense) of (B.1).

On the other hand given any semigroup of linear operators we can associate it to

a differential equation through the following definition.

Definition B.2 Let {S(t) : t > 0} ⊂ L (X) be a C0-semigroup its infinitesimal gen-
erator is the linear operator defined by A : D(A) ⊂ X → X, where

D(A) =

{
x ∈ X : lim

t→0+

S(t)x− x
t

exists
}

and
Ax = lim

t→0+

S(t)x− x
t

, for all x ∈ D(A).

The next result show that all C0-semigroup of bounded linear operator has an

exponential bound.

Theorem B.3 Let {S(t) : t > 0} ⊂ L (X) be a C0-semigroup. There exists constants
M > 1 and β ∈ R such that

‖S(t)‖L (X) 6Meβt, ∀t > 0.

Proof. See Pazy [38, Theorem 2.2, p. 4]. �

In above theorem if β < 0 we tell that the semigroup has decay exponential or

is exponentially stable. If β = 0, that is, ‖S(t)‖L (X) 6 M the semigroup is uniformly

bounded, moreover if M = 1 it is called a C0-semigroup of contractions.

Now we present some properties of the strongly continuous semigroup which will

be the main point in the applications in this work.
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Theorem B.4 Let {S(t) : t > 0} be a C0-semigroup and A its infinitesimal generator.
The following statements are holds.

(i) For x ∈ X
[0,∞) 3 t 7→ S(t)x ∈ X

is a continuous map;

(ii) The map
[0,∞) 3 t 7→ ‖S(t)‖L (X)

is lower semicontinuous, and therefore mensurable;

(iii) The operator A is closed and densely defined. For each x ∈ D(A), S(t)x ∈ D(A)

for all t > 0, the map
(0,∞) 3 t 7→ S(t)x ∈ X

is continuously differentiable and

d+

dt
S(t)x = AS(t)x = S(t)Ax, ∀t > 0;

(iv) We have that
∞⋂
m=1

D(Am) is dense subspace of X;

(v) (Representation of the resolvent operators of A through of Laplace transform of
the semigroup) If λ ∈ C is such that Re λ > β, where β is given by Theorem B.3,
then λ ∈ ρ(A) and

(λ− A)−1x =

∫ ∞
0

e−λtS(t)xdt, for all x ∈ X.

Proof. See Pazy [38, Theorem 2.4, Corollary 2.5 and Theorem 2.7]. �

Theorem B.5 Let {S(t) : t > 0} ⊂ L (X) and {T (t) : t > 0} ⊂ L (X) be a
C0-semigroup with infinitesimal generator A and B respectively. If A = B then
S(t) = T (t), t > 0.

Proof. See Pazy [38, Theorem 2.6, p. 6]. �

We define the resolvent set of a closed linear operator A : D(A) ⊂ X → X as

ρ(A) = {λ ∈ C : λ− A is continuous, injective and surjective}.

The set σ(A) = C \ ρ(A) is called spectral set or spectrum of A.

It is easy see by closed graph theorem that, if λ − A is continuous injective and

surjective then (λ − A)−1 ⊂ L (X), which is called resolvent operator associated

with A.
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Remark B.6 The resolvent set ρ(A) is an open set; that is, the spectrum
σ(A) = C \ ρ(A) is a closed set.

Remark B.7 We consider the Cauchy problem (B.1) such that it is known that −A
is the infinitesimal generator of a C0-semigroup {S(t) : t > 0} ⊂ L (X), a direct
consequence of Theorem B.4 is the fact that u : [0,∞)→ X given by

u(t, u0) = S(t)u0, t > 0

is a unique solution of (B.1) (in some sense) such that

u(·, u0) = S(·)u0 ∈ C([0,∞);X) ∩ C1([0,∞);D(A)).

Now we will dedicate the characterization of the infinitesimal generator of a C0-

semigroup. We can characterize an infinitesimal generator of a C0-semigroup through

the theorems of Hille-Yosida and Lumer-Phillips.

Theorem B.8 (Hille-Yosida) Let A : D(A) ⊂ X → X a linear operator. Then the
following statements are equivalent

(i) A is the infinitesimal generator of a C0-semigroup {S(t) : t > 0} ⊂ L (X) such
that

‖S(t)‖L (X) 6 eβt, for all t > 0.

(ii) A is a closed, densely defined linear operator such that ρ(A) ⊃ (β,∞) and

‖(λ− A)−1‖L (X) 6
1

λ− β
, for all λ > β.

Proof. See Pazy [38, Theorem 3.1 and Corollary 3.8, p. 8 and p.12]. �

Let X∗ be the dual space of the Banach space X. We denote the value of x∗ ∈ X∗

at x ∈ X by 〈x∗, x〉 or 〈x, x∗〉.

Definition B.9 For every x ∈ X we define the map duality J : X → 2X
∗ by

J(x) = {x∗ ∈ X∗ : Re〈x, x∗〉 = ‖x‖2
X , ‖x∗‖X∗ = ‖x‖X}.

Definition B.10 A linear operator A : D(A) ⊂ X → X is dissipative if for every
x ∈ D(A) there exists x∗ ∈ J(x) tal que Re〈Ax, x∗〉 6 0.

The following result give a characterization of dissipative operators.

Theorem B.11 A linear operator A is dissipative if and only if

‖(λ− A)x‖ > λ‖x‖ ∀x ∈ D(A) and λ > 0.
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Proof. See Pazy [38, Theorem 4.2, p. 14]. �

Theorem B.12 (Lumer-Phillips) Let A : D(A) ⊂ X → X be a densely defined linear
operator. Then

(i) If A is the infinitesimal generator of a C0-semigroup of contractions on X then
A is dissipative and R(λ− A) = X for all λ > 0.

(ii) If A is dissipative and R(λ0−A) = X for some λ0 > 0, then A is the infinitesimal
generator of a C0-semigroup of contractions on X.

Proof. See Pazy [38, Theorem 4.3, p. 14]. �

A direct consequence of the above theorem, and that is used in the applications

is given by corollary below.

Corollary B.13 Let A be a linear operator with dense domain D(A) in a Hilbert
space H. If A is dissipative and 0 ∈ ρ(A), then A is the infinitesimal generator of a
C0-semigoup of contractions on H.

Proof. See Liu and Zheng [27, Theorem 1.2.4, p. 3]. �

Definition B.14 Let A : D(A) ⊂ X → X be a linear operator with D(A) = X. The
operator A∗ : D(A∗) ⊂ X∗ → X∗ defined by

D(A∗) = {x∗ ∈ X∗ : ∃ y∗ ∈ X∗ with 〈x∗, Ax〉 = 〈y∗, x〉, ∀x ∈ D(A)}

and
A∗x∗ = y∗, ∀x∗ ∈ D(A∗),

is called the adjoint operator of A.

The fact D(A) = X ensures that there is unique y∗ ∈ X∗ with the property above for

some x∗ ∈ X∗, that is, D(A∗) 6= ∅.

Remark B.15 When X is Hilbert space and we identified its topological dual X∗ we
have the following

(i) If 〈Ax, y〉 = 〈x,Ay〉, for all x, y ∈ D(A) holds, we tell that A is symmetric and
we denote by A ⊂ A∗;

(ii) If A = A∗ we tell that A is self-adjoint;

(iii) If A = −A∗ we tell that A is skew-adjoint.
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Corollary B.16 Let A be a closed and densely defined linear operator. If both A

and A∗ are dissipative, then A is the infinitesimal generator of a C0-semigroup of
contractions on X.

Proof. See Pazy [38, Corollary 4.4, p. 15]. �

B.2 Sectorial operators and analytic semigroups

In this section we will define the sectorial operators and we present an important

class of C0-semigroups which are the analytic semigroups and we present a result that

show that the semigroup generated by this kind of operator is analytic semigroups.

Definition B.1 We say that the closed densely defined linear operator
−A : D(A) ⊂ X → X is sectorial if, for some a ∈ R and ϕ ∈ (π

2
, π),

Σϕ,a = {λ ∈ C : | arg(λ− a)| 6 ϕ;λ 6= a} ⊂ ρ(A)

and, for some M > 0,

‖(λ− A)−1‖L (X) 6
M

|λ− a|
, for all λ ∈ Σa,ϕ.

Now we consider the sector

∆ = {z ∈ C : φ1 < arg z < φ2 with φ1 < 0 < φ2}

and for each z ∈ ∆, let S(z) be a bounded linear operator.

Definition B.2 We say that a C0-semigroup {S(z) : z ∈ ∆} ⊂ L (X) is an analytic
semigroup on ∆, if z 7→ S(z) is analytic in ∆.

Theorem B.3 If A : D(A) ⊂ X → X is a sectorial operator, then −A is the infinites-
imal generator of an analytic semigroup {S(t) : t > 0} ⊂ L (X). Moreover,

S(t) = e−At =
1

2πi

∫
Γ

eλt(λI + A)−1dλ

where Γ is a contour in ρ(−A) with arg λ→ +θ as |λ| → ∞ for some π
2
< θ < π.

Proof. See Henry [20, Theorem 1.3.4, p. 21]. �

Remark B.4 The converse is also true, that is, if −A generates an analytic semi-
group, then A is sectorial.
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Definition B.5 Let A be a sectorial operator and Re σ(A) > 0; then for any α > 0

we define

A−α =
1

Γ(α)

∫ ∞
0

tα−1e−Atdt.

The operator Aα is called fractional power operator associated with operator A. We

define Aα as being the inverse of the A−α for α > 0, with D(Aα) = R(A−α) and A0 as

being the identity in X.

If A : D(A) ⊂ X → X is a sectorial operator and α > 0, we define the fractional

power space Xα associated with A as being Xα = D(Aα1 ), equipped with norm of

graph ‖x‖α = ‖Aα1x‖X , x ∈ Xα, where A1 = A+aI satisfies Reσ(A1) > 0. In the case

Reσ(A) > 0 then we can take Xα = D(Aα).

Theorem B.6 If A is a sectorial operator in X with Re σ(A) > 0, then for any
α > 0, A−α is a bounded linear operator on X which is one-one and satisfies
A−αA−β = A−(α+β) whenever α > 0, β > 0. Also, for 0 < α < 1,

A−α =
sen(πα)

π

∫ ∞
0

λ−α(λ+ A)−1dλ.

Proof. See Henry [20, Theorem 1.4.2, p. 25]. �

Theorem B.7 If A : D(A) ⊂ X → X is a sectorial operator with Re σ(A) > 0, then
Xα is a Banach space with the norm ‖ · ‖α, for α > 0, X0 = X and for α > β > 0, we
have Xα ↪→ Xβ. Moreover, if A has resolvent compact, then the embedding Xα ↪→ Xβ

is compact for α > β > 0.

Proof. See Henry [20, Theorem 1.4.8, p. 29]. �

Theorem B.8 Suppose that A is sectorial and Re σ(A) > δ > 0. For all α > 0 there
exixts Cα <∞ such that

‖Aαe−At‖L (X) 6 Cαt
−αe−δt for t > 0.

Proof. See Henry [20, Theorem 1.4.3, p. 26]. �

We consider the following Cauchy problem nonlinear
du

dt
+ Au = f(t, u), t > t0,

u(t0) = u0,

(B.2)
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where A : D(A) ⊂ X → X is a positive sectorial operator, such that the fractional

power Aα are well defined and the spaces Xα = D(Aα) with the norma of graph

‖x‖α = ‖Aαx‖X are defined for α > 0 and f : R×Xα → X.

Here are some definitions of the type of solutions to the abstract problem given

above.

Definition B.9 A classic solution of Cauchy problem (B.2) on [t0, t1) is a contin-
uous function u : [t0, t1) → X, differentiable in (t0, t1), with u(t0) = u0, such that
f(·, u(·)) : [t0, t1) → X is continuous, u(t) ∈ D(A), for t ∈ (t0, t1) and that u satisfies
(B.2).

Definition B.10 A mild solution of Cauchy problem (B.2) is a continuous function
u : [t0, t1)→ X, satisfying the integral equation

u(t) = e−Atu0 +

∫ t

0

e−A(t−s)f(s, u(s))ds, t0 6 t < t1,

for which u0 ∈ X and f(·, u(·)) : [t0, t1) → X is continuous and A is a sectorial
operator.

The following theorem ensures us the existence and uniqueness of local solutions

for the problem (B.2).

Theorem B.11 Let A be a sectorial operator, with 0 6 α < 1. Suppose that
f : R × Xα → X is Hölder continuous in the variable t and locally Lipschitz
continuous in the variable x, that is, f is continuous and, for any bounded set B in
R×Xα, there is a constant LB such that

‖f(t, u)− f(s, v)‖X 6 LB(|t− s|θ + ‖u− v‖α), (t, u), (s, v) ∈ B,

where θ, LB are positive constants. Then, there is τ = τ(t0,u0) > 0, such that, the

problem (B.2) has a unique solution u defined in (t0, τ + t0). Proof. See Hale [19,

Theorem 4.2.1, p. 73]. �

To existence of global solution, dependence continuous and differentiable on initial

data, we have the following theorem.

Theorem B.12 Suppose that the hypothesis on A, f as in the Theorem B.11 are holds
and that, for all bounded set B ⊂ R × Xα, f(B) be bounded in X. If u is a solution
of (B.2) in the interval maximal (t0, t1), such that t1 < ∞, then there is a sequence
tn → t−1 such that ‖u(tn)‖X → ∞. Moreover, if f is a Cr-function in u, then the
solution u(t) is a Cr-function in the domain of definition of the function.

Proof. See Hale [19, Theorem 4.2.1, p. 73]. �
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Appendix C

Nonlinear semigroups

In this chapter we present some concepts of the theory of semigroup of continuous

operators that are of fundamental importance for the understanding the solution tech-

niques of autonomous semilinear parabolic and hyperbolic problems. We begin with a

review of the concept of the semi-distance of Hausdorff and some properties. We also

do a summary of the theory of global attractors which will be very important through-

out this work. For more details we recommender Carvalho, Langa and Robinson [14]

and Hale [19].

Throughout of this chapter (M,d) denote a complete metric space equipped with

metric d(·, ·). We also denote by C (M) the set of all continuous maps defined on M

into self equipped with the uniform convergence metric.

C.1 Nonlinear semigroups

In this section we present some definitions related to nonlinear semigroups theory.

Definition C.1 A family of maps {S(t); t > 0} in C (M) is a nonlinear semigroup
if satisfies

(i) S(0) = IM ,

(ii) S(t+ s) = S(t)S(s) for all t, s > 0,

(iii) The map (t, x) 7→ S(t)x ∈M is continuous, from [0,∞)×M to M.



Definition C.2 Let {S(t); t > 0} be a semigroup in a metric spaceM . A point x∗ ∈M
is called an equilibrium point of {S(t); t > 0} if, S(t)x∗ = x∗ for any t > 0.
In this case, the map φ : R → M defined by φ(t) = x∗ for any t > 0 is called a
equilibrium solution or stationary solution of {S(t); t > 0}. We denote by E the
set of equilibrium points for {S(t); t > 0}.

Next we define the Hausdorff semi-distance between two bounded subsets A and

B of M . This notion relationship between sets will be extremely useful for us to

understand the concept of global attractor.

Definition C.3 Let A and B be bounded subsets ofM . TheHausdorff semi-distance
of A from B is defined by

distH(A,B) = sup
a∈A

inf
b∈B

d(a, b).

We admit distH(∅, B) = 0 for every B ⊂M , and distH(A, ∅) =∞ if A 6= ∅.

The Hausdorff semi-distance of A from B, distH(A,B), allows us to examine how

the set A is contained in the set B it is what tells us the following result.

Proposition C.4 Let A and B be bounded subsets of M . Then distH(A,B) = 0 if
and only if A is a subset of B.

Proof. Firstly, we recall that for x ∈ M , C ⊂ M , d(x,C) = infc∈C d(x, c) = 0 is

equivalent to say that for each ε > 0, there exists cε ∈ C such that d(x, cε) < ε; that

is,

d(x,C) = 0⇔ x ∈ C.

Thus

distH(A,B) = 0⇔ ∀a ∈ A, a ∈ B ⇔ A ⊂ B.

�

Definition C.5 Let {S(t); t > 0} be a semigroup in a metric space M . An equilib-
rium point x∗ ∈ M of {S(t); t > 0} is said to be asymptotically stable if, some
neighborhood B of x∗ is attracted by x∗, i.e.,

lim
t→∞

distH(S(t)B, x∗) = 0.
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Definition C.6 Let {S(t); t > 0} be a semigroup in a metric space M . Let B be a
subset of M . The positive orbit through B is defined by

γ+(B) = {S(t)x; t > 0, x ∈ B}.

The positive orbit through B in the instant s > 0 is defined by

γ+
s (B) = {S(t)x; t > s, x ∈ B} (γ+

0 (B) = γ+(B)).

In particular, for any x ∈M the positive orbit through x is defined by

γ+(x) = {S(t)x; t > 0}.

The positive orbit through x in the instant s > 0 is defined by

γ+
s (x) = {S(t)x; t > s} (γ+

0 (x) = γ+(x)).

Definition C.7 Let {S(t); t > 0} be a semigroup in a metric space M . We say that
{S(t); t > 0} is a bounded semigroup if,

γ+(B) = {S(t)x; t > 0, x ∈ B}

is bounded for every bounded B ⊂M .

Definition C.8 Let x ∈ M . A global solution for the semigroup {S(t); t ≥ 0}
through x is a map φ : R→M such that φ(0) = x, and for t ∈ R,

∀s > 0, S(s)φ(t) = φ(s+ t).

that is,

φ(t) =

S(t)x, if t > 0,

S(s)φ(t) = φ(t+ s), for 0 6 s 6 t, if t < 0,

Given x ∈ M global solutions for the semigroup {S(t); t > 0} through x, not

necessarily exist, and if there exists them, can not to be unique.

Definition C.9 Let {S(t); t > 0} be a semigroup in a metric space M . Let B be a
subset of M . The negative orbit through B is defined by

γ−(B) =
⋃
x∈B

γ−(x),

where for each x ∈ B,
γ−(x) =

⋃
t>0

H(t, x),
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the set γ−(x) is called negative orbit through x, and for each t > 0, x ∈ B,

H(t, x) = {y ∈M ; there exists a global solution φ : R→M through x such that y = φ(−t)}.

The negative orbit through B in the instant s > 0 is defined by

γ−s (B) =
⋃
x∈B

γ−s (x),

where
γ−s (x) =

⋃
t>s

H(t, x).

Note that negative orbit through of a subset B of M not necessarily exists.

Definition C.10 Let {S(t); t > 0} be a nonlinear semigroup in a metric space M . Let
B be a subset of M . The complete orbit of B is defined by

γ(B) = γ+(B) ∪ γ−(B).

In particular, for x ∈M the complete orbit of the point x is defined by

γ(x) = γ+(x) ∪ γ−(x).

Note that the complete orbit of a subset B of M not necessarily exists.

Definition C.11 Let {S(t); t > 0} be a nonlinear semigroup in a metric space M . Let
B a subset of M . The ω−limit and α−limit sets of B are defined, respectively by

ω(B) =
⋂
s>0

γ+
s (B) and α(B) =

⋂
s>0

γ−s (B).

Next we have a characterization of the ω−limit set, and it will follows from these

characterization that ω−limit sets are properties of the orbit of a set, and not of a set.

More precisely, we will see that all subsets of a same orbit have the same ω−limit set.

Proposition C.12 Let {S(t); t > 0} be a semigroup in a metric space M . Let B a
subset of M . The ω−limit set of B can be characterized by following set,

ω(B) = {y ∈M ; there exist sequences {tn} with tn > 0, lim
n→∞

tn =∞ and {xn} ⊂ B

such that y = lim
n→∞

S(tn)xn}.

Proof. Let y ∈ ω(B), then for each s > 0, there exist sequences {tsn} with tsn > s,

limn→∞ t
s
n =∞, and {xsn} ⊂ B such that y = limn→∞ S(tsn)xsn. In particular, for each

k ∈ N, there exist sequences {tkn} with tkn > k, limn→∞ t
k
n = ∞, and {xkn} ⊂ B such

that

y = lim
n→∞

S(tkn)xkn.
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Thus, there exits Nk ∈ N such that

∀n > Nk, d(y, S(tkn)xkn) <
1

k
.

In particular, for each k ∈ N, we have

d(y, S(tkNk)x
k
Nk

) <
1

k
.

Reciprocally, if y = limn→∞ S(tn)xn, where tn > 0, limn→∞ tn = ∞, and {xn} ⊂

B, then for each s > 0, there exists Ns ∈ N such that tn > s for all n > Ns, hence

y = limn→∞, n>Ns S(tn)xn and y ∈ γ+
s (B). �

Definition C.13 Let {S(t); t > 0} be a semigroup in a metric space M . The subset
B of M is called invariant under the semigroup {S(t); t > 0}, if S(t)B = B for all
t > 0. The subset B of M is called positively invariant (negatively invariant)
under the semigroup {S(t); t > 0}, if S(t)B ⊂ B (S(t)B ⊃ B) for all t > 0.

Proposition C.14 Let {S(t); t > 0} be a semigroup in a metric space M . Let B a
subset of M . The set B is invariant under the semigroup {S(t); t > 0} if and only if
it consists of a collection of complete orbits of points of B; that is,

B =
⋃
b∈B

γ(b).

Proof. See Carvalho, Langa and Robinson [14, Lemma 1.4, p. 6] �

C.2 Global attractors for semigroups

The study of the longtime dynamics of semigroups acting in infinite dimensional

spaces can often be reduced to the study of the dynamics on the global attractor. In

this section we will present the concept of global attractor for a nonlinear semigroup,

for more details see Carvalho, Langa and Robinson [14].

Definition C.1 Let {S(t); t > 0} be a semigroup in C (M). Let A and B subsets of
M , we say that A attracts B under the semigroup {S(t); t > 0}, if

lim
t→∞

distH(S(t)B,A) = 0.

Definition C.2 Let {S(t); t > 0} be a semigroup in C (M). Let A and B subsets of
M , we say that A absorbs B under the semigroup {S(t); t > 0}, if there exists t0 ≥ 0

such that S(t)B ⊂ A for all t ≥ t0.
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Remark C.3 If A absorbs B then A attracts B under a semigroup {S(t); t > 0}. The
converse may not be true.

Definition C.4 A subset of M is called an attracting set, if it is attracts all the
bounded subsets of M .

When there is a bounded attracting set by semigroup {S(t); t > 0}, we say that

the semigroup is bounded dissipative.

Definition C.5 A subset of M is called an absorbing set, if it is absorbs all the
bounded subsets of M .

Now we define a global attractor for a semigroup.

Definition C.6 A subset A of M is a global attractor for the semigroup
{S(t); t > 0} if A is compact, invariant and it is an attracting set for the semigroup.

Theorem C.7 (Uniqueness of the attractor) The global attractor for a semigroup
{S(t); t > 0}, if it exists, is unique.

Proof. Suppose that A1 and A2 are two global attractors. Then, since A2 is bounded,

it is attracted by A1,

lim
t→∞

distH(S(t)A2,A1) = 0.

But A2 is invariant, S(t)A2 = A2, and so distH(A2,A1) = 0; by Proposition C.4,

A2 ⊂ A1 (since A1 is closed). In similar way we have A1 ⊂ A2, from which it follows

that A1 = A2. �

Two alternative characterizations of the global attractor it follow from a similar

argument to prove of Theorem C.7.

(i) The global attractor for a semigroup {S(t); t > 0} ⊂ C (M) if it exists, is the

minimal (with respect to the inclusion relation in M) compact set that attracts

each bounded subset of M : In fact, let A∗ be a compact set that attracts all

bounded subsets of M . In particular, A∗ attracts A , and so, since A = S(t)A

for any t > 0,

distH(A ,A∗) = lim
t→∞

distH(S(t)A ,A∗) = 0, and A ⊂ A∗.
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(ii) The global attractor for a semigroup {S(t); t > 0} ⊂ C (M) if it exists, is the

maximal (with respect to the inclusion relation inM) closed and bounded invari-

ant set: In fact, if A∗ is closed, bounded, and invariant then A attracts A∗, and

so

distH(A∗,A ) = lim
t→∞

distH(S(t)A∗,A ) = 0, and A∗ ⊂ A .

Remark C.8 The equilibria set of a semigroup is always a closed and invariant set,
and from (ii) above, if equilibria set is bounded then equilibria set is always contained
at global attractor of the semigroup. Indeed, it is sufficient to prove that the equilibria
set of a semigroup is closed: if x∗ ∈ M is such that x∗ = limxn with {xn} ⊂ E , then
for each t > 0, we have

d(S(t)x∗, S(t)xn)→ 0,

as n→∞, and

d(S(t)x∗, x∗) 6 d(S(t)x∗, S(t)xn) + d(xn, x
∗)→ 0,

as n→∞, and therefore x∗ ∈ E .

In addition, the global attractor can be characterised as the collection of all

globally defined bounded solutions.

Theorem C.9 If the smigroup {S(t); t > 0} has a global attractor A , then

A = {y ∈ X; there exists a bounded global solution φ : R→ X with y = φ(0)}.

Proof. See Carvalho, Langa and Robinson [14, Theorem 1.7, p. 8] �

Now we will present some existence results for global attractors for the semigroup.

We do not do the proof here for more details we refer to Carvalho, Langa and Robinson

[14], Hale [19].

Proposition C.10 Suppose that there exists a compact attracting set K. Then, for
any bounded set B, the ω−limit set ω(B) is a non-empty compact subset of K that is
invariant and attracts B.

Proof. See Carvalho, Langa and Robinson [14, Corrolary 2.6, p. 26]. �

Proposition C.11 Let {S(t); t > 0} be a semigroup in a metric space M . If
{S(t); t > 0} is an asymptotically compact semigroup and B is a non-empty bounded
subset of M , then
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(i) The omega limit set ω(B) is non-empty, compact, and invariant and attracts B;

(ii) The omega limit set ω(B) is the minimal closed set that attracts B.

Proof. See Carvalho, Langa and Robinson [14, Corollary 2.11, p. 28] �

In many cases we can show something stronger than the existence of a compact

attracting set, namely the existence of a compact absorbing set. Clearly the existence

of a compact absorbing set implies the existence of a compact attracting set, which we

know implies the existence of a global attractor.

Definition C.12 Let {S(t); t > 0} be a semigroup in a metric space M . We say that
the semigroup is asymptotically compact if, for every sequence {tn} with tn > 0

and lim tn = ∞ and {xn} ⊂ B, with B ⊂ M bounded, {S(tn)xn} has a convergent
subsequence.

The definition above is equivalent to say that the semigroup {S(t); t > 0} is

asymptotically compact (or asymptotically smooth) if, and only if, for any non-

empty, closed, bounded set B ⊂ M for which S(t)B ⊂ B for all t > 0, there exists

K ⊂ B compact set such that K attracts B.

Theorem C.13 Let {S(t); t > 0} be a bounded semigroup defined in M such that for
each t > 0, we can write

S(t) = T (t) + U(t)

where

(i) For every bounded set B and each t > 0 there exists t(B,t) > 0 and compact set
K(B, t), such that U(s)B ⊂ K(B, t), always that t > s > t(B,t), (U is strongly
compact);

(ii) There exists a function g : [0,∞) × [0,∞) → R with g(·, r) non-increasing for
each r > 0, lims→∞ g(s, r) = 0 and for all x ∈M with ‖x‖ 6 r,

‖T (t)x‖M 6 g(t, r).

Then the semigroup {S(t); t > 0} is asymptotically compact.

Proof. See Carvalho, Langa and Robinson [14, Theorem 2.37, p. 41] �

Any finite-dimensional semigroup with a bounded absorbing set is asymptotically

compact; in an infinite-dimensional system this is much weaker than the existence of

a compact absorbing set.
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Definition C.14 Let {S(t); t > 0} be a semigroup system in a metric space M . We
say that the semigroup is eventually compact if, it is bounded and there exists a
t0 > 0 such that S(t0)B is compact for each bounded subset B of X.

Proposition C.15 Let {S(t); t > 0} be a semigroup in a metric spaceM . If {S(t); t >

0} is eventually compact, then {S(t); t > 0} is asymptotically compact.

Proof. See Carvalho, Langa and Robinson [14, Corollary 2.18, p. 33] �

Theorem C.16 Let {S(t); t > 0} ⊂ C (M) be a bounded semigroup. There exists a
global attractor A if and only if there exists a bounded attracting set (bounded
dissipative) and the semigroup is asymptotically compact, in which case

A =
⋃

B⊂M,B 6=∅ Bounded
ω(B).

Proof. See Carvalho, Langa and Robinson [14, Corollary 2.21, p.34] �

Definition C.17 A semigroup {S(t); t > 0} is said to be a gradient system if there
is a continuous function V : M → R, a Lyapunov function, with the following
properties:

(i) t 7→ V (S(t)x) is non-increasing for each x ∈M ; and

(ii) if x is such that V (S(t)x) = V (x) for all t > 0, then x ∈ E .

We define the unstable manifold of x ∈ E as being the set

W u(x) = {y ∈M : S(−t)y is defined for all t > 0 and S(−t)y → x as t→∞}.

Now we present a result that ensures us the existence of global attractors for

gradient systems.

Theorem C.18 If {S(t); t > 0}, is a gradient system, asymptotically smooth, and E

is bounded, then there is a global attractor A for {S(t); t > 0} and

A = W u(E ) = {y ∈M : S(−t)y is defined for t > 0 and S(−t)y → E as t→∞}.

If M is a Banach space, then A is connected. If, in addition, each element of E is
hyperbolic, then E is a finite set and

A =
⋃
x∈E

W u(x).
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Proof. See Hale [19, Theorem 3.8.5, p. 51] �

In order we define and we present a characterization to upper and lower semicon-

tinuity to a family subsets of M . In particular we have the upper and lower semicon-

tinuity of global attractors.

Definition C.19 Let T be topology space and {Aλ}λ∈T a family of subsets of M . We
say that the family Aλ is upper semicontinuous at λ0 ∈ T if

lim
λ→λ0

distH(Aλ,Aλ0) = 0.

We say that Aλ is lower semicontinuous at λ0 ∈ T if

lim
λ→λ0

distH(Aλ0 ,Aλ) = 0.

We say that Aλ is continuous at λ0 ∈ T if it is both upper and lower semicontin-
uous as λ→ λ0.

The following result show that (semi)continuity with respect to λ ∈ T at λ0 is

completely characterized by the behavior of sequences {Aλn} where λ→ λ0.

Lemma C.20 Let T be topology space and let {Aλ}λ∈T be a family of compact subsets
of M . Then

(i) {Aλ}λ∈T is upper semicontinuous at λ0 ∈ T if and only if, whenever λn → λ0

as n → ∞, any sequence {xλn} with xλn ∈ Aλn has a convergent subsequence
whose limit belongs to Aλ0;

(ii) {Aλ}λ∈T is lower semicontinuous at λ0 ∈ T if and only if, Aλ0 is compact
and for any x0 ∈ Aλ0 and λn → λ0 there is a sequence xλn ∈ Aλn such that
xλn → x0 as n→∞.

Proof. (i) If any sequence {xλn} with xλn ∈ Aλn and λn → λ0, has a convergent

subsequence with limit belonging to Aλ0 , and {Aλ}λ∈T is not upper semicontinuous

at λ0 ∈ T then, there are ε > 0 and sequence {λn} with λn → λ0 such that

distM(Aλn ,Aλ0) = sup
x∈Aλn

d(x,Aλ0) > ε, ∀n ∈ N.

Thus, for some xλn ∈ Aλn , we have that d(xλn ,Aλ0) > ε, n ∈ N. But this contradicts

the fact that xλn has a subsequence which converges to an element of Aλ0 . Conversely,

suppose that {Aλ}λ∈T is upper semicontinuous at λ0 ∈ T . If xλn ∈ Aλn , where

λn → λ0, then

0 6 d(xλn ,Aλ0) 6 distH(Aλn ,Aλ0).
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Thus d(xλn ,Aλ0)→ 0, and Aλ0 is compact.

(ii) Suppose that for any x0 ∈ Aλ0 and any sequence λn → λ0 there is a sequence

{xλn} with xλn ∈ Aλn which converges to x0. If {Aλ}λ∈T is not lower semicontinuous

at λ0, then there are ε > 0 and sequence {λn} with λn → λ0 such that

distH(Aλ0 ,Aλn) = sup
x∈Aλ0

d(x,Aλn) > ε, ∀n ∈ N

Thus for each n ∈ N there exists yλn ∈ Aλ0 , such that d(yλn ,Aλn) > ε. Since Aλ0 is

compact, we may assume that yλn → x0 ∈ Aλ0 and that

d(x0,Aλn) > ε, ∀ n ∈ N.

But this contradicts the fact that there must be a sequence xλn ∈ Aλn that converges to

x0. Conversely, suppose that {Aλ}λ∈T is lower semicontinuous at λ0 ∈ T . If λn → λ0

and x0 ∈ Aλ0 , then there exists xλn ∈ Aλn such that

d(x0, xλn) 6 d(x0,Aλn) 6 distH(Aλ0 ,Aλn).

which converges to zero as n→∞. �
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