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Abstract

In this work we study a Klein-Gordon system with mixed boundary conditions and a
thermoelastic plate system with Neumann boundary conditions. In the first system
we analyze the existence and uniqueness of global solution. Moreover, we show the
exponential decay of energy associated to solution. In the second system we show the
existence, uniform boundedness, and continuity of the global attractors when some
reaction terms are concentrated in a neighborhood of the boundary and this neighbor-

hood shrinks to boundary as a parameter goes to zero.

Keywords: global attractor; thermoelastic plate systems; concentrated term in the

boundary; Klein-Gordon system; asymptotic behavior; energy functional.

vii



Resumo

Neste trabalho estudamos um sistema de Klein-Gordon com condigoes de fronteira
mista e um sistema termoelastico da placa com condicoes de fronteira de Neumann.
No primeiro sistema, analisamos a existéncia e unicidade de solucao global. Além disso,
mostramos o decaimento exponencial da energia associada a solucao. No segundo sis-
tema mostramos a existéncia, limitacao uniforme, e continuidade dos atratores globais
quando alguns termos de reacgao estao concentrado em uma vizinhanga da fronteira e

essa vizinhanca comprime para a fronteira quando um parametro vai para zero.

Palavras-chave: atrator global; sistema termoelastico da placa; termo concentrado

na fronteira; sistema de Klein-Gordon; comportamento assintotico; funcional energia.
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Introduction

This thesis is divided in two parts. In the first part we analyze the asymptotic
behavior of solution for a Klein-Gordon system with mixed boundary conditions and

with linear damping acting on part of the boundary, which is represented by

3t2u—Au+|u|p|v|pU:0 in Q x (0,00)
O2v — Av + |ulfulv]” =0 in Q x (0,00)
u=v = on FOX(O’OO)
ou (1)
? +6(-)0u=0 on Ty x (0,00)
v
95 +6(-)0w =0 on Ty x (0,00)
w(0) = u®, v(0) = 1°, du(0) = u', d(0) = v,

\

where  is an open bounded set of R" with boundary I' = 99 of class C?, T is
constituted by two parts I'y and I'y, both with positive measure and Iy N T; empty, see

Figure 1

I

Figure 1: The set (2.

and 7i(x) is represented the unit outward normal at = € I'y, § is a real function belong



to Wh>°(T'y) such that 6(z) > dy > 0 on I'; and p is a positive real number which
depend of the spatial dimension of the space R".

The system is a generalization of the model proposed by Segal [39]

O?u — Au+ o*u + ¢v’*u =0,
02v — Av + o*v + Tuv = 0,

which describes the interaction of two electromagnetic fields v and v with masses o
and p, respectively, and with interaction constants ¢ > 0 and 7 > 0.

Further generalizations of these problems are given in Medeiros and Milla Mi-
randa [33], Medeiros and Milla Miranda [35], in this papers the authors have analyzed
the existence and uniqueness of weak solutions of the mixed problem for a class of
systems of nonlinear Klein-Gordon equations by using Galerkin methods and potential
well method, respectively. The existence of solutions and decay of the energy of the
problem for the coupled system of Klein-Gordon equations by using Galerkin methods
is analyzed by Lourédo and Milla Miranda [2§].

Motivated by these papers we study the problem using the ideas of Milla
Miranda, Lourédo and Medeiros [32] and Milla Miranda, Lourédo and H. Clark [34].
More precisely, we analyze global existence, uniqueness and decay of solutions of the
problem . Our approach in this problem be through of Faedo-Galerkin method,
which consists of three steps. The first setp is the construction of the approximate
problem in a finite dimensional space, the second step is to obtain a priori estimates
to prolong the solutions of approximate problem, and finally, the third is the passage
to the limit in the approximate solutions.

In order to establish the existence of global solution of the system , firstly we
note that its energy which will be defined later, does not definite sign. Therefore the
energy method to obtain global solution of does not work. To overcome this serious
difficulty we use a method introduced by Milla Miranda, Lourédo and Medeiros [32],
which was inspirated in one idea of Tartar [40]. This method simplifies the potential
well one. We complement our approach by using the Faedo-Galerkin method with a
special basis, due to the dissipative boundary conditions, and compactness argument.
With this considerations, we obtain a global weak solution of with restrictions on

the norm of initial data and p > 0 which depends of the dimension of R".



The uniqueness of solutions is derived by using the energy method. Thus if p > 1,
we consider n = 1,2 and if p = 1 we consider n < 3. This restriction on n is due to
the fact that we need to differentiate with respect to t the difference of the nonlinear
parts in order to apply the mean value theorem.

To obtain the decay of the energy of problem , we consider the same restrictions
of the uniqueness of solutions and make §(z) = m(x) - 7i(x), where m(z) = x — a°,
x,2° € R™. In this conditions, by using the multiplier method and the ideas contained
in Komornik and Zuazua [25] and Komornik [24], we obtain the exponential decay of
the energy.

In the second part of this thesis, we analyze the asymptotic behavior of an au-
tonomous thermoelastic plate systems with Neumann boundary conditions when some

reaction terms are concentrated in a neighborhood of the boundary, and this neighbor-

hood shrinks to boundary as a parameter € goes to zero, which is represented by

( 1

O2us + A%uf + uf + AG° — 6° = f(uf) + Exwag(ue) in Q x (0,00),
81596 — Af° + 0° — Aatus + 8tu5 =0 in Qx (0, OO),
ou® d(Au®) a0°
77 =0, 77 =0, o =0 on I'x (0,00),
|u*(0) = ug € H*(Q), O (0) = € L*(), 6°(0) =0y € L*(Q),

(2)
where €2 is a bounded and smooth open set of R”, n > 2, with boundary I' = 9%

smooth, w., 0 < e < g, is a neighborhood of I', see Figure 2,

r

Figure 2: The set w. C Q.

Xw. 18 the characteristic function of set w., 0 < e < gy, and f,¢g : R — R are nonlin-
earities under suitable growth conditions.
The above system represents a certain plate subject to small vibrations in which

u(z,t) denotes the displacement of wave at point = at time ¢ and 6(x,t) denotes the



temperature at point x at time ¢, which the plate is subjected.

The first work to consider this technique of concentrating terms in a neighbor-
hood of boundary was done by Arrieta, Jiménez-Casas and Rodriguez-Bernal [10]. In
this work they analyzed the limit of the solutions of an elliptic problem when some
reaction and potential terms are concentrated in a neighborhood of certain partition
of the boundary and this neighborhood shrinks to this partition as a parameter € goes
to zero. They proved that these solutions converge, in certain Sobolev spaces, to the
solution of an elliptic problem, where the reaction term and the concentrating potential
are transformed into a flux condition and a potential in the partition. This conver-
gence result can be seen as a tool to transfer information from interior of the domain
to its boundary. After this same technique was used by Jiménez-Casas and Rodriguez-
Bernal [22], [23] for parabolic problems. They have analyzed the asymptotic behavior
of the attractors of a parabolic problem, more precisely, they have proved the exis-
tence of a family of attractors and that this family is upper semicontinuous at ¢ = 0.
With this same technique of concentrating terms in the boundary we can still mention
some papers, for instance, Aragao and Oliva [6], [7], Aragao and Pereira [§], [9] and
Jiménez-Casas and Rodriguez-Bernal [21]. In Aragdo and Bezerra [2] was analyzed
the asymptotic behavior of the pullback attractors of a non-autonomous damped wave
equation with terms concentrating on the boundary, that is, has been proved a regu-
larity result of the pullback attractors and that the family of these attractors is upper
semicontinuous at ¢ = 0 and in Aragdo and Bezerra [3] was shown the continuity of
the set of equilibria of the same equation considered in Aragao and Bezerra [2].

Motivated by Aragao and Bezerra [2], [3] and using results of Arrieta, Jiménez-
Casas and Rodriguez-Bernal [I0] and Jiménez-Casas and Rodriguez-Bernal [23] we
study the asymptotic behavior of the problem in the sense of global attractors.

Note that in the nonlinear term g(u®) is only effective on the region w. which

collapses to I' as ¢ — 0, then we show that the limit problem for the autonomous



thermoelastic plate system is given by

;

OFu+ A*u+u+ A0 —0 = f(u) in Qx(7,00),
@tH—AQ—i-Q—A@tu—i—atu:O in QX(0,00),
ou O(Au) a0

%—0, W——Q(U), aﬁ—O on I'x (0,00),
| u(0) = uo € H*(Q), 9u(0) = € L*(2), 6(0) =0y € L*(Q).

(3)
In other words, we prove that the nonlinear semigroup associated to converges
to the nonlinear semigroup associated to . Moreover, we show the existence, uni-
form boundedness and continuity of the global attractors at € = 0 associated to these
semigroups.

Firstly we write the problems and in the abstract forms and to analyze the
local and global well-posedness of this problems, we use strongly continuous semigroup
theory; namely, we rewrite the problems as abstract Cauchy problems and we show
that the linear part of the problem is a parabolic problem to according Henry [20].
We also analyze the behavior of nonlinearity F;, related to Lipschitz and differentiable
conditions, that allows us to use the classic results of the theory of ordinary differential
equations in Banach spaces to ensure the local well-posedness of the parabolic problems
associated to and . After we make use of the functional energy associated to
(2) and with the same results above, for show that the parabolic problems are
global well-posedness and that the semigroups associated the this parabolic problems,
which are given by a variation of constants formula, are dissipative. On the other
hand, to ensure the existence of attractor of the abstract problems associated to (2))
and , first we observe that, due to the functional energy, the systems are gradient
and asymptotically smooth, then using a result of Hale [I9, Theorem 3.8.5, p.51],
we show that the problems has attractors and that this attractors are characterized by
manifold unstable of the set of equilibria of nonlinear semigroup generated by parabolic
problems.

Finally, we show the continuity of the attractors at e = 0; first, we prove upper
semicontinuity, that follows as a consequence of its uniform bounds and of the con-
vergence result of the nonlinear semigrups. After, we prove lower semicontinuity, in

this case was need to show the continuity of the set of equilibria associated to abstract



problems associated to and and also we have to show the continuity of local
unstable manifolds around these equilibria. With this and using the results due to
Henry [20, Chapter 6] we obtain the lower semicontinuity of these attractors at € = 0.

This thesis is composed of three chapters and three appendices. In the Chapter
we analyze global existence, uniqueness and decay of solutions of problem . This
chapter resulted in the following paper:

e C. O. P. Da Silva, A. T. Louredo and M. Milla Miranda, Existence and asymp-
totic behavior of solutions for a Klein-Gordon system, see [17].

In the Chapter [2] we show existence of global attractors for nonlinear semigroups
associated to the problems and . Moreover, we show the continuity of these
attractors at € = 0, in the sense of Hausdorff distance. This chapter resulted in two
papers:

e G. S. Aragao, F. D. M. Bezerra and C. O. P. Da Silva, Dynamics of thermoelastic
plate system with terms concentrated in the boundary, Differential Equations and
Applications, 11, 3 (2019), 379 — 407, see [4].

e G. S. Aragao, F. D. M. Bezerra and C. O. P. Da Silva, Dynamics of thermoelastic
plate system with terms concentrated in the boundary: the lower semicontinuity of the
global attractors, see [5].

In the Chapter [3| we present final considerations and conclusions on the Chapter
and Chapter [2|

Finally, in the Appendix [A] we present concepts and results related to the theory
of partial differential equations. In the Appendices [B] and [C] we present concepts and

results related to the theory of linear and nonlinear semigroups and global attractors.



Notations

General

|Q2] measure of Lesbegue of Q@ C R™;

o p = 1 exponent conjugate of p;

e supp(u) = {z € Q ;u(z) # 0};
e — embedding continuous;
o 5 embedding compact;
o {eA:t >0} linear semigroup generated by operator A;
e {S(t):t > 0} nonlinear semigroup;
e p(A) resolvent set of operator A;
e 0(A) spectrum of operator A.
Spaces of functions
e C(Q) ={u:Q— R; uis continuous};
o CH(Q) ={u:Q — R ; uis k-times continuously differentiable};
o C°(Q) ={u:Q— R; uis infinitely differentiable};
o CH(Q) ={ue C*Q); suppu C Q is compact}, k€ N or k= oc;

o OF(Q) ={uec CkQ); D is a — Holder continuous};



2(92) space of test functions;

LV (Q) = {u: Q2 — R mensurable; u € L’(K), V K C Q compact};
Wme(Q) ={ue LP(Q) ; D e LP(Q), 0 < |a] < m};

WP (Q)

W' () = G5 () ;

C([0, T]; X) ={u:[0,T] - X ; u(t) is continuous};

C*([0,T); X) = {u: [0,T] — X ; u(t) is k-times continuously differentiable};
LP(0,7T;X) ={u:(0,7) — X mensurable ; fo |lu(t)]|%dt < oo}
L=(0,T;X) = {u: (0,7) — X mensurable ; esssup,c ) |lu(t)||x < oco};

LP

loc

(0,7;X) ={u:(0,T) — X mensurable ; |u(s)||x € LF(I),I C (0,T) compact};
Z(X,)Y)={T: X — Y ; T is linear continuous};

X' = Z(X,R) dual space of X;

7'(0,T;: X) = Z(2(0,T); X);
H*P(Q), s € Rand 1 < p < oo, Bessel Potentials spaces.

Norms

1

lullisoroy = (Jo lu®)ldt) "

|ul| L0, x) = ess sup |lu(t)]|x;

te(0,7)
d'u(t)

_ k .

lllex ooy = 2izo ma || =7~ .
I fllx = sup [(f,2)];

zeX, ||zl x <1
Tx
ITlooery = swp L2 g ey

vexa£0 |Zx  sex|ofx=1



Convergences

e — convergence strong;
e — convergence weak;

*
e — convergence weak star.



Chapter 1

Asymptotic behavior of solutions for a

Klein-Gordon system

In this chapter we present results on existence and uniqueness of global solution
for the system and we analyze the asymptotic behavior of this solution. In the first
section we treat the preliminary part. In the second section we analyze the existence
of a global solution presenting some results according to the values of the real number
p > 0 and spatial dimension n. In the third section concerns the uniqueness of solution.
We show the uniqueness when p =1 and n < 3, p > 1 and n = 1,2. Finally in the
fourth section we analyze asymptotic behavior with the same restrictions on p and n,

in the case of uniqueness.

1.1 Preliminary

In this section we introduce some notations and also show results related to

separability, density and trace theory that will be important throughout this chapter.

1.1.1 Separability

In this chapter the inner product and norm of L*(§2) are represented, respectively,

by (-,-) and || - ||z2(). Denote by V' the Hilbert space

V={ucH®Q); u=0 on T}



equipped with the inner product and norm, respectively,

ou Ov N~ ou |?
((u,0) Z/a% . Huuv;/Qa

Let 0 be a real number with 1 < 6 < 2 such that % + & = 1. We consider the
) ]

8%

following Banach spaces equipped with respective norms

W), Jullyroe = (/ ()"

R

and

R~

Wll(’)e'(Q) = {u e W (Q);u=0on Ty}; ||u||WF1@ (

) 0
We also consider the Banach space

X ={uecV;Auc L (Q)}

with the norm

[ull2r = llullv + |Aull Lo q)-

Now consider X, Y and W be Banach spaces such that W — X and W — Y. Let
Z be a topological vector space that separates points, such that X — Z and Y — Z.
Then the space £ = X NY provided with the norm

lullz = llullx + [lully

is a Banach space.

Proposition 1.1.1 If W is dense in X and dense in 'Y then W is dense in E.
Proof. Consider T' € E’ such that
(T,w>E/XE:O, Yw € W.

Note that W has the same topology considered as a subspace of X NY or as a subspace
of X x Y. So T is continuous on W with the topology of X NY. Then by the Hahn-
Banach Theorem there exist R € X’ and S € Y’ such that

<T,w>E/><E = <R, w>X/><X —+ <S, w>y/><y, Yw e W. (11)

11



Observe that X’ — W’ and Y/ — W’. Then

<R>w>X’><X = <Raw>W’><W

(1.2)
<S, ’LU)y/Xy = <S, 'LU)W/XW-
Thanks to (1.1)) and ((1.2)), we obtain
<R—|— S, 'LU)W’XW = <T,’LU>E/><E =0, Ywel (13)

By the density of W in X and in Y, using ([1.3) and Brezis [I1, Corollary 1.8, p. 8|
implies

R+S=0onX and R+S=0onY.
Therefore T = R+ S =0 on FE. Again using Brezis [11, Corollary 1.8, p. 8], we
conclude that W is dense in F. [

Proposition 1.1.2 Assume the hypotheses of Proposition |1.1.1. Then if W is sepa-

rable we have that E is separable.
Proof. Let {wy,ws,...} be a basis of W. Consider u € E. Then by Proposition [1.1.1]

there exists ¢ € W such that

€
lu—¢lle < 3

n
Also there exists Z a;w; such that
=1
- €
— QW < —.
¥ ; jW;j 9%

Thus

n
u — E Oéjwj
j=1

n
<llu—elle+|e = || <lu—glle+e
E J=1 E

< €.
w

n
Y — E Oéjwj
=1

1.1.2 Density of 2(Q) in 2

In what follows we show that 2(Q) is dense in 2". For this, let & be a star-shaped
subset of R™ with respect to 0 € R™. Consider the linear homotetic transformation

op(x) =nx, n > 0. Note that for n > 1,
0 COCa,0). (1.4)

12



Consider a function w : & — R defined in &. For n > 0 introduce the function
opow:0,y(0) =R, y— (0,0w)(y) =w(o

(y))-

Note that when 1 > 1, the domain of the function o, o w contain the domain of w (see

(L.4))

Proposition 1.1.3 Let S € 9'(0). Then
1) 0,08 defined by

(000 5,€) = nin<s, 0y 08), €€ Doy(0)),

belongs to 2'(0,(0)), (n > 0).

0 0
2) 50208) =10, (55) (4> 0)

3) If n > 1, n = 1, the restriction to O of 0,05 convergs to S in the distribution sense.

4) If v e LP(0), (1 < p < ), o,0v € LP(0,(0)), (n>0). Forn>1, n— 1, the

restriction to O of o, o v convergs to v in LP((0)).

Proof. The proof can be found in Temam [42, Lemma 1.1, p. 7|. |
We have the following results:

Theorem 1.1.4 The space 2(Q) is dense in 2 .

Proof. Let U be an open set of R® with boundary dU of class C?. Introduce the

Banach space

X (U)={uecV({U);Auc L)(U)}

equipped with the norm

Jull 220y = ullvw) + |Aullow)-

We divide the proof in four parts.
First part. By truncation and regularization we prove that Z(R") is dense in

Z (R™). For more details see Medeiros and Milla Miranda [30, Theorem 1.1, p. 8§].

13



Second part. Let (Ug)ick<m be an open covering of 'y and I'y with
U = QNUy star-shaped with respect to one of its points, k = 1,...,m. Let (¢k)ockem

be a O™ —partition of unity subordinate to the open covering €2, (Uy)1<x<m of Q. Thus
po(r) + Y wr(z) =1, VzeQ, g€ 2(), pp € 2(Us).k=1,....m.
k=1

Consider v € 2. Then

We use the notations

v = pr(x)u, k=0,1,...,m.

We analyze vy. Represent by Uy an open set of R such that (supp o) M€ is contained
in Uy. After translation, we can choose Uy such that Uy is star-shaped with respect to
0 € R™. Define 0,y 0wy, n > 1. Then by (1.4) and Proposition m, first part, we have

that o, o v is defined in o, (Up). Consider
Y € P(0,(Up)) such that y =1 on Uy, and wo, = Ylo, 0 v], n> 1.

Then supp(woy) is contained in o, (Up). By Proposition [1.1.3] item 2), we obtain

8’(1]077 . &p 8’(}0
3:13i - axl [0'77 © UO] + n¢ (UU © 8$2) ) (16)
~~ 0 9,
Awg, = n*[o, o Avg] + Ab[o, o Avg] + 21 Z 8_x¢ |:O'n o a—zo] , (1.7)

By the preceding equalities, we obtain that wy, € 2 (0,(Uy)). Consider w0y, the
extension of wy,, that is,
) wo, in o,(Up);
Wop =
0 in R"/o,(Up).
Then Wy, € 2 (R"). By the first part we have w0y, can be approximated in 2 (R") by
functions of Z(R"). Consequently

woy, can be approximated in 2 (o,(Uy)) by functions of (o, (U))). (1.8)

By (1.6) and (1.7]) we have

8w0 81}0
Wop|v, = [0y OUOHUO, 8—xn ’ = 77[‘777 © 8x»] | Aw0ﬁ|U0 = 772[“77 © AUO”UO'
? 0 ? Uy
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Then by Proposition [1.1.3] items 3) and 4), we obtain

Wopluy — Vo in L2(UO) as n— 1;
81}0

810077 |
ox i Up ox i

in L*(Up) as n—1;
Awoyly, — Avg  in L(Uy) as n— 1.

By and the last three convergences we conclude that vy can be approximated in
Z (Up) by functions of 2(Uy).

Third part. Analyze vy, £k =1,..., m. In this case we apply similar arguments
to those used in the case vyg. Thus we take U,j instead U,. We can assume that U ,:r is

star-shaped with respect to 0 € R". Consider o, (U;") instead o,(Up). Introduce
Y€ D(o,(U})) with =1 on U/
Consider wg, = [0, o v, n > 1. Then
wiy € X (0,(UF));  supp(wyy) C X (0,(U)); Wy € 2 (R™)

and

Wy ly+ = v in X (0,(U)) as n—1.

Thus vy, can be approximated in 2 (U,") by functions of 2 (U_,j)

By and the above results we conclude that u € 2" can be approximated in
Z (U) by functions of 2(U).

Fourth part. The theorem follow since that 2 (U) and 2" has equivalent norms
in Z. [

1.1.3 A trace theorem

It is known by trace theorem that there exists a linear continuous and sobrejective
map

o WH(Q) = W (D), ~ou = ulr

and has inverse continuous,

Wel' (T) - WH'(Q), &—u

15



In particular, we have
. 179, 179/ —
Yo : Wy () = Wao'(T'),  ~you = ulr,
and
1 g 1,0/
Wao? (Ty) = Wr7 (), §r—u,
are continuous. For more details see Necas [37, Theorem 5.5, p. 95].
We want to prove a similar result for the functions in 2Z". We have the following
U
trace theorem, which means that we can define B on I'y when v € 2.
n

Theorem 1.1.5 There exists a linear continuous map

0
25 W T, ues = oo
on
such that
u ou 0z
<71U7 702>W_%’9(F1)><W%’0,(1‘*1) = <Au, Z>L9(Q)><L9/(Q) + ZZ:;/Q al’l axzdil?, (19)

for all z € W7 (Q).

Proof. Note that (1.9) is well defined and hold for « € 2(Q). In fact, let u € 2(Q),
using erfl(Q) — V and WS(’JHI(Q) — L (Q), we have

/F mu)(%z)dr' < Nullvllzlly + 1Al o2l
1
< el ol gy + ellSull ool

< cllull 2l oy
for some positive constant c.

Let ¢ € Wa?(T';). Then by trace theorem there exists z € WFI(’)G/(Q) such that

& =7z and
”Zuwrlf'm) < CHfHW%,G’(Fl)-

Thus

[ Gnrear| <l el e
that is,

yiu € (Wa?' (1)) = W=a9(Ty)
and

Il g, < cllulle, Ve 2(9).

Now, the results follows by density. -
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1.2 Existence of global solutions

This section concerns the existence of global solution for the problem with
linear damping at the boundary.

Introduce the hypothesis

p>0and § > 1 with4pf > 1, if n=1,2; (1.10)

n+2 n+2
—— <p<——, if 3<n<6. 1.11
8n P 4(n —2) : " (1.11)

2
Remark 1.2.1 (i) Note that for n > 3 we have 0 < p < — then1 <2(p+1) < gq,
n R
therefore the following embeddings of Sobolev

V s LI(Q) — L2PH(Q),

2
are holds, where q = _n2 In particular, for p =1 we have V < L*(Q). Thus, there
n —_

exist positive constants ¢y and ¢y such that

||’U||L2(p+1)(Q) < COHUHV, cmd ||U||L4(Q) < Cl||’l}||v, \V/ v E V (112)

(74) Under the restrictions (1.11)) on p and n we obtain

Vs LUQ) < Lad2(Q) and V< LI(Q) — Litz(Q).

Introduce the following restrictions on the initial data and some constants:

1

Iy, I°ly <X* and L < Z(A*ﬁ (1.13)

where )

A Ly”
=] 1.14
(4N) ! ( )

1 1 2(p+1 2(p+1
L= 7 [l ey + 0" Bagey) + 3 [l + 1Pl + O [I2 0 + o))
(1.15)
Cg(pﬂ)

N="—-; 1.16
2(p+1) (1.16)
§ € Wh*(I'y) such that &(z) >0 >0 on Ty. (1.17)
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Theorem 1.2.2 Assume hypotheses (1.11)) and (1.13)—(1.17). Consider u°,v° € V

and ut,v! € L*(Q). Then there exists functions u,v in the class

u,v € L>=(0,00; V),
(9tu, atU S LOO(O, (& O L2(Q))7
dyu, v € L®(0, 00; L*(T1)),

such that u and v satisfies the equations

/

(8t2u — Au+ |ulP|v]Pv =0 i H;H0,00; LY (Q))
02v — Av + |ulPulv|? =0 in H;,1(0,00; L7 (Q)) (L18)
9u 4+ 5(-)0u =0 in L2 .(0,00; L*(T))

[ 28+ 5(-) 0w =0 in L2 (0,00; L*(I'))).

loc

and the initial conditions

u(0) = u”,v(0) =2°,  Qu(0) = u', Ju(0) ="

Proof. To following, we use Faedo-Galerkin Method with compactness arguments and
ideas used by Milla Miranda, Lourédo and Medeiros [32].

Approximate problem. Let (w;);en be a basis of the separable Banach space V,
that is, the vectors (w;);en are linearly independent and the finite linear combinations
of vectors of (w;);en are denses in V. Let V,,, = [wy, - -+ , wy,] be the subspace generated
by the m first vectores wy, ws, - - - , w,,. Consider

U () =D gim(Dwy,  and v (t) = hem(t)wy
=1 =1

such that u,, and v,, are approximate solutions of the problem ; that is,

(

(OFun(t). ) + (un(t)w)) + [

IS}

SO0 Uy, (t)w;dl + / U, (8) P |0 (8) [P0 () wjd = 0,
Q

(020 (1), 100) + (0 (£), w1)) + /

Iy

dO0y U (t)wedl +/ |2, (8) |t (8) | (£) |Pw0pd = 0,
0

Um(0) = ugp, > w® in V' and 9y, (0) = uyy, — u! in L2(Q),

Um(0) =vp = In V' and  9yv,,(0) = vy, — v in L*(Q),

\

(1.19)
forall j =1,2,...,mand forall {=1,2,...,m.
The above finite-dimensional system has solutions {u,,(t), v,,(t) } defined on [0, ¢,,).

The following estimate allows us to extend this solution to the interval [0, 00).
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Remark 1.2.3 We prove initially that the integral
[ ln®Plon(®F v tyuds (1.20)
Q
makes sense. Indeed, firstly we note that w; € L(Q), q¢ and p as in the Remark|1.2.1]

If 3 < n < 6 and we use the item (ii) of Remark |1.2.1. We obtain, noting that
2n

n—+ 2

/ [t (8)|7 [0 (8)| 7 [0 (8)| i = / 1t () 755 [ ()| 5 [ (1) 52
Q

< (/Q|um(t)|5”l%d$> (/ |0 ( |n+2dx> (/ U (£) n+2dx)

2np
= llum O 5, IIUm()\"Eip lom (I,
LTZ( Lm(m

q =

L+2 ()
< Cllum(t )||"”||vm( )||"”||vm( )II"“-

Therefore the above integral (1.20) makes sense. Similar considerations for the integral
[ len® (@m0 P
Q

A priori estimates. Multiplying both of sides of (1.19), by gj,, () and adding from
j =1to j = m. We obtain

(0t (1), Oetin (1)) + ((tm (1), Derim (1)) + / 0[Oyt (t)]*dT

I

n / (Tt (8) D110 (£)) ([ ()P 03 = 0.

Then

1d

||3tum( Mz + 57 lum @I +/F 0[O (1)) dT

2dt 2dt

(1.21)
+ [ (010t () )0 () = 0

We observe that

;Zt(\um( O um(t)) = (p + Dfum () Orum (t). (1.22)

Taking into account ((1.22) in (1.21]), we obtain

1d 1d ) )
3 100 Ola0) + 5 Gl O + [ a0, 0P
1 d

oo [ O () (01 = 0.

(1.23)
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Similarly multiplying both of sides of (1.19)), by A’,,(t) we obtain

1d ) 1d , ,
3 10Ol + 5 IO + [ alou o)

. ; (1.24)
o Q(|um(lf)|”um( )) = ([0 ()P a(t))dz = 0.

Adding ((1.23) and - we have

m{natum(t)n%z(m O+ 100 (Ol + 1o O} + [ 50T
T

+ [ ownOPar + G [ (nOPunO)fon(®) (e dz =0

1

Integrating the above expression from 0 to ¢ with ¢t < ¢,,, and using the hypothesis on

0, we obtain

1 t
—{||8tum(t)||i2(m + [[um @7 + 100 ()72 () + ||Um(t)||%/ + 50/ (O (5))*dTds

+60/ / [Orvm (s dFds+—/ [t (1) [Pt (£)) (|0 () [P (T) ) |

< 2 { e gy + ol + o ey + llvom} )
1

+ — Worm () [PUom () (|vom () [Prom () ) dzx.
1 (o ) Pt () (o ()1 v ()

(1.25)
By Young inequality, we get

1

m/Q<|um(7¢)|Pum(1t))(Izjm(rf)\pvm< )dz| <

Um p+1 U P

— [l ®F o)
—1 2(p+1) 2(p+1)

< 2(p+ 1) {Hum( )”L2P(P+1) + ||Um( )”Lgp(p+1) Q)}

Now using the fact V — L2*+D(Q), (see (1.12))), we obtain
1

e [0t ) e 0 (1)

2 1 1)
<N [lum @I + om @I

(1.26)
where N was defined in ((1.16)). Analogously, we obtain
1
[ Quom uom) Pooml?vom)| < N[l [+ oonl 0] (1.27)
p+1Jg
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Substituting ((1.26]) and (1.27)) in (1.25)), we obtain

1
S Oy + lun @I + 190m Ol + lom @)} }

\%4

t
— V{027 +\|vm(t>|\2v<f)“>}+5o/o [ (B (s)Paras

+50// Oy (s)])?dlds
I

1 2 1
< 5 Ll oy + ol + loam 3oy + Tom i s+ N ol + o 227},

(1.28)
By hypotheses and convergences (|1.19)), for small > 0, there exists my € N such that

Juomllv < [l +n <X, Jvomllvy < [W°llv +0 < X, Vm > (1.29)
and

1 1 2 1 2 1
Lin = 5 llwamZ2qo) + lovmlF2ey) + 5 ltom % + lfooml1}] + N ol + oo 5]

1
<L+n< 5()\*)2, Ym = my,

(1.30)

where L was introduced in ([1.15). Therefore from (1.28)) and ([1.30]), we have for small
n>0,

1
{10 120 + lum(®) I} + 100 (®)F2(0) + lom I }

t
N+ e (O} + 6, /O [ (B (5)ards

(1.31)
! 1
+ 50/ [Ovm(s))?dlds < L +n < Z(/\*)2, Ym = m
0o Jry
Motivated by ([1.31]), we set the function
1
J(\) = ZV — NX2PHD x> 0. (1.32)
Then ([1.31)) provides
1 1 , 1 1 ,
S10tm O1720) + 7 um @I + T(lwm@)1v) + S100m (D) 72) + ZllomOIF
+ J(|Jom(D)]lv) + (50/ (Ot (s)]2dTds + 50/ [0yvn(5)]?dTds (1.33)
I' ry

<L+77<4()\*) , Vm >
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In order to obtain a priori estimates for the approximate solutions {u, (), v, (t)},
we need that the left side of ((1.33]) would be non-negative. It is possible if J(||u,,(t)||v)

and J(||vm(t)]]v) are non-negative. In the next result, we prove that if the hypothesis

(1.13)) is satisfied then

J(lum@v) =0, J(llom(®)llv) =0, V1 el0,00).

Remark 1.2.4 We have
1
J(\) = ZAQ —NXPHD >0 VO<A< A

This fact is consequence of

1
J(\) = \? (Z — N/\Q”) . A=0.

Lemma 1.2.5 Consider u®,v° € V and u',v' € L*(Q) such that
[ullv, ol < A"

and .
L < = (\%)?
o
where \* and L were defined, respectively, in (1.14]) and (L.15)). Then

lum(@)|lv <A and |lva(t)|ly < A", Vte[0,00) and Ym = my.

Proof. We fix m > mgy. We show the lemma by contradiction argument. Thus assume

that there exists t; € (0,t,,) or ts € (0,t,,) such that
[um(t)llv = A" or - lum ()l = A

There are two possibilities, which are

1) Num(t)lly 2 A" and o (t2)[lvy 2 A%,
(1.34)
A

2) Nun(t)|ly =N and o, (@)|lvy < A, V¥Vt € [0,00).

Assume that occurs possibility 1). Note that

[um(t)llv 2 A" > lumO)]lv - and {lon(E2)[[v = A" > [lum (0)]]v-
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Then by intermediate value theorem there exists 7 € (0,t,,) and 7 € (0, t,,) such that
[um (o)l = A" and  [Jop(r2)|lv = A"

Set
tr =inf{7 € (0,tm); |[um(7)|lv = \*}

ty = inf{T € (0,t,); [|[om(T)|[v = A"}

By continuity of ||u.,(t)||v and ||vm,(t)||y, we obtain
[um ()l = A" and  [lon(65)[[v = A"
From ([1.29)), it follows that ¢; > 0 and ¢5 > 0. Thus
lum(@)||y < A for 0<t<t]

[om(@®)[ly < A" for 0<t <15

Therefore by Remark [I.2.4] we get
J(Jlum(®)|lv) =20 for 0<t<t]

T(lom® V) =0 for 0<t <t

Assume ¢} < ¢5. Similar arguments if ¢5 < ¢]. Return to expression ((1.33). Then

1 1 1. .
leum(t)llvarJ(||um(t)||v)+Z||Um(t)||2v+J(llvm(t)Hv) SLan< (A >, 0<t <t
So
1 2 ]‘ *\ 2 *
z_lHum(t)||V<L+n<Z(/\> , 0t <], Ym = my.

Taking the limit as ¢ — ¢}, 0 < ¢t < ¢}, in this inequality we obtain a contradiction.

This prove the part 1) of ((1.34)).
The proof of possibility 2) of (|1.34) follows by applying the arguments used in

part 1) to ||u,(t1)]lv = A* and this conclude the proof of the lemma. [

By Lemma we have
|lum(@)|[v < A" and  |v,()|lv <A, VO<t<oo and Vm>=my.
Consequently
J(lum@)]lv) =0 and  J([Jom(t)[v) =0, V€ ][0,00).
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Therefore, from (|1.33))

1 1 1 1
000y + (I + 5100 Oy + §lom ()

t t 1 (1.35)
+ (50/ / [8tum(s)]2dFdS + (50/ / [8tvm(s)]2dFds <L+n< Z()\*)Q’
0 Fl 0 Fl

for all t € [0, 00) and for all m > my. By ([1.35)) we obtain

(tm), (vy,) are bounded in  L*>(0,00; V'), Vm = mo;

(Osti,), (Oyvy,) are bounded in  L>(0, 00; L*(Q)), Vm = my; (1.36)

(Osti), (Oyvy,) are bounded in L?(0, 00; L2(T)), Ym = my.

\

With similar arguments used in the item (i7) of Remark we obtain
et (O)° 10 ()P0 ()| Lo ) < TV m = .
where the constant C' > 0 is independent of £ and m. It follows that
(|ttan|? [V |V, ) is bounded in  L=(0,00; LY (), ¥V m > my. (1.37)
In similar way, we find
(|t | Pt |Ume|?) is bounded in  L=(0,00; L7 (Q)), ¥ m > my. (1.38)

Passage to the limit. Estimates (|1.36), (1.37) and (|1.38)) allow us, by induction and

diagonal process, to obtain a subsequences of (u,,) and (v,,), still denoted by (u,,) and

(Unm), and functions u, v : Q X [0,00) — R, such that

(
* * .
Up —u and v, —v in  L*>(0,00; V),

Oty — Opu and Oy, — v in L=(0,00; L*()),

Oty — Ou and Oy, — v in  L*(0,00; L*(T)), (1.39)
[t ||V [PV = € in  L>®(0,00; LY(Q)),
|um|pum|vm|p = C in LOO(O, 0] Lq,<Q))

\

We must show that £ = |ul?|v|Pv and ¢ = |u|fulv|.
Consider T' > 0 fixed but arbitrary. By convergences ([1.39), and (1.39), and
noting that V <5 L?(Q), we obtain by Aubin-Lions Theorem, see Lions [26, Theorem
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5.1, p. 58|, that there are subsequences of (u,,) and (v,,), which we still denoted by

() and (v,,), respectively, such that
Uy —u in L2(0,T; L*(Q)),
Uy — v in L°(0,T; L*(2)).
By there are subsequences of (u,,) and (v,,) such that
Up —u ae. in Qx(0,7),

Uy — v ae in Qx (0,7).

By we have that
|um|? — |u|? a.e.in Qx (0,T),
|Um|PVm = [v]Pv ae. in Qx (0,7).
Therefore

[t ||V [P U — |ul?|v|Pv ae. in Q x (0,7).

From (1.37), (1.42)) and of Lions’ Lemma, see |26, Lemma 1.3, p. 12], we obtain

U [P |V [P — |ulP|v]Pv in L2(0,T; LY(Q)).
In similar way, we find

[ty [Py [V | = JulPulv]?  in L2(0,T; LY (Q)).
By a diagonal process we obtain
(0, 00; L7 ().

L L e Ul G R 2

In similar way, we find
(0, 005 L7(92)).

[t "t |0 = ulPuo]” in - L,

By (1:39). (T43) and (T44) we have & = [ul"[v|’v and ¢ = [ululv]".

(1.40)

(1.41)

(1.42)

(1.43)

(1.44)

Multiplying both sides of the approximate equation (L.19)), by ¢ € 2(0,00),
integrating in [0, 00), using the convergences (1.39)) and noting that V;, is dense in V,

we obtain

/Ooo(afu(t),w)@(t)dt + /Om((u(t),w))w(t)dt + /OOO dowu(t)wep(t)dldt

I8

+ /Om(|u(t)|p|v(t)|”v(t),w)gp(t)dt =0, YweV, Ype 2(0,00).
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Since V is dense in L?*(Q) it follows that (1.45) is true for all w € L?(Q).

In similar way, we find
/ (OFv(t), 2)p(t)dt +/ ((v(t), 2))p(t)dt —I—/ / dowu(t)zp(t)dl'dt
0 0 0o Jry
s [P OF. et =0, vz eV, Y€ 90,00).
0
Taking in (1.45) w € 2(Q2) C V, it follows that
Ot — Au+ |[ulfl)fv=0 in 2'(Q x (0,00)). (1.46)
In similar way
Ot — Av + [ulfulv]’ =0 in 2'(Q x (0,00)).
Let T > 0 fix. Note that du € L*0,T;L*Q)) < L*0,T;L%(Q)) then
O?u € H(0,T; LY(Q)) see Proposition [A.16/ Since
[ullolv € L2(0, 005 L7(Q)) = L*(0,T5 L7 () = H~'(0,T; L (2))
then by (T.46) we have —Au € H=*(0,T; L7 (Q)). Therefore

OPu— Au+ [ulflv|Pv =0 in  H;,}(0,00; L7 (Q)). (1.47)

loc

In similar way

v — Av+ |ulfulv]’ =0 in  H_ (0,00, L7 (Q)).

loc

Asu € L?(0,00; V) and Au € H~(0,T; LY (Q)) then by Theorem with 6 = ¢/,

we obtain

% e HY0,T; W77 (T,)) (1.48)

Multiplying both sides of (|1.46) by we with w € V and ¢ € 2(0,00), integrating on
Q x (0,00) and using (1.48) and Green’s Formula of the Theorem [I.1.5]

[ @t [T(oeod - [T 0w
0 0 0

+ /Ow(|u(t)|pu(t)|v(t)|p,w)gp(t)dt =0, YweV, Voe 20,00),

where (-, -) denotes the duality paring between W_i’q/(lﬂl) and Wi’q(f‘ 1). Comparing
this lest equation with ([1.45]), we obtain

/ <8gg) + (58tu(t),w> o(t)dt =0, Yw € V, Yo € 2(0,00).
0
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Therefore

% Y 6du=0 in W 77(T)).
In similar way

O o =0 in WD)

on T !

Since 60,u € L*(0, 00, L*(T)), then

0
A Sou=0 in L2 (0,00 L))
on
In similar way
v

P + 60w =0 in Li (0,00; L*(T)).

Initial conditions. We see that u € L*(0,00;V), du € L*(0,00;L*(Q)) and
O2u € H70,00; L7 (2)), then u € C(]0,00); L*(Q)) and dyu € C([0,00); LY ().
So it makes sense to calculate u(0) and J;u(0).

We show that u(0) = «". In fact, let ¢ € C'([0,T];R) such that ©(0) = 1 and
©(T) = 0. By (1.39), we have

/T(atum(t), w)(t)dt — /T(é?tu(t), w)(t)dt. (1.49)
0 0
Integrating by parts we obtain
T T
~ (un0),0) = [ (wn(®) ) @)t ~(@O),w) ~ [ (@ w)0dr. (150)
0 0
By (1:39), we have u,, — u in L>(0,T; L*(2)) and
T T
| et it [ (o), w0 (1.51)
0 0
Adding and we obtain
(U (0),w) — (u(0),w), Y w e L*Q). (1.52)
On the other hand, by (1.19), we have u,,(0) — uo in L?(Q) and thus
(U (0), w) = (ug,w), Y w e L*(). (1.53)

By (1.52)), (1.53) and uniquenesses of limit u(0) = u°.
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Now we show that d,u(0) = u'. In fact, let p € C*([0,T];R) such that p(0) =1
and ¢(T") = 0. Multiplying both of sides of (1.19); by ¢ we have

/O(afum(t),w)gﬁ(t)dt—l-/o ((um(t),w))go(t)dt—i—/o A53tum(t)w¢(t)dfdt

—i—/o (|tom (1) P[0 () [P (2), w)p(t)dt = 0, Yw € V.

Integrating by parts the expression above we get
T T
= @un0),0) = [ @uin(®) ) Ot + [ (n(0),0)) 01
0 0

+/O /F1 50tum(t)wgo(t)dfdt+/0 ([t ()P[0 (8) [P0 (), ) (£)dt = 0, Y € V.

Taking the limit in the expression above we obtain

(hw) - / (Brult), w) (£)dt + / ((u(t), w))plt)dt

T (1.54)

+/0 i 58tu(t)wgo(t)dl‘dt+/o ()| [o(t) [Pu(t), w)p(t)dt = 0, Yw € V.

Let T > 0. Introduce the notation Y = L'(0,T; X). Then Y’ = L>(0,T; X").
Consider ¢ € C([0,T]) with ¢(0) = 1, ¢(T) = 0 and w € X. Then pw € Y. By
(1.47) we obtain

(OFu, pw)yry + (—Au, ow)yry + ([ul’|v]Pv, pw)y iy = 0. (1.55)
Noting that v' € C°([0, T]; X'), we find
T T d
<at2u7 QW)yrxy = / <at2U(t)aw>X'xX90(t)dt = / E<atu(t)7w>X/xX<P(t)dt
0 0
T
== [ @u(t) whonxp 0t = Ou(0), ) xcx.
0

We also that

(— A, pw)yry = / (u(t), w)p(t)dt + / 50vu(tywe(t)dTdt,

Iy

(IUI”Ivlpv,sow>wY=/0 ([u@®)Plo@®)["v(t), w)xrxx p(t)dL.

The last three equalities and provide
T T
— (Ovu(0), w)xrxx — / (Ou(t), w)xrxxp(t)'dt +/ ((u(t),w))p(t)dt
0 0
T T
+/ / dOyu(t)wep(t)dl dt +/ (lu(®)[?|v(t)|Pv(t), w) x «xp(t)dt = 0.
0 Iy 0
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Combining this expression with (1.54), we get d,u(0) = u'.
In similar way, we obtain
v(0) =v" and Gw(0) = v’

Therefore, we conclude the proof of the Theorem [I.2.2] |

Corollary 1.2.6 We obtain similar results to the Theorem for the case p > 0
andn =1,2.

Now we consider the following hypothesis

p>0 and 6>1 with 4pf>1, if n=12; (1.56)

2 n
pP=— and 6 — | T<n (1.57)

Remark 1.2.7 Under the restrictions (1.57)) on p and n we have:

Vs LYQ) = LY(Q), and V — LYQ) — L¥(Q).
Theorem 1.2.8 Consider u°,0° € V N LY(Q) and u',v* € L*(Q). Then under hy-
potheses (1.13)—(1.17) and (1.57)), we have that there exist functions u,v in the class
u,v € L>(0,00; V);
Oy, Opv € L>=(0, 00; L*(2));
8{(,6, @v < LOO(O, (O O L2(F1)),

such that u and v satisfies the equations

(02u— Au+ [ulf|)Po =0  in H'0,00: LY(Q))
02v — Av + |ulfulv|? =0 in H,,1(0,00; L9())
1.58
% +(5()3tu =0 m L%OC(O,OO;Lz(Fl)) ( )
v :
{57 +6(1)0w =0 in L2 (0,00; L*(T'y))

and the initial conditions

u(0) = u”,v(0) =2°,  Qu(0) =u', du(0) ="

Proof. Since the separable space WFI(’JBI(Q) is dense in V' and dense in LY () and

WI}(;GI(Q) — V N LY(Q) by Proposition [1.1.1] and Proposition [1.1.2 we have that

V N LY(Q) is a separable Banach space. Thus, taking a basis (wg)eey in V N L7 (Q),

1 1
where ] + 7= 1, and using similar arguments to those used in the Theorem |1.2.2] we

show the Theorem [1.2.8] [ ]
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Corollary 1.2.9 Under the hypothesis (1.56)), we obtain similar results to Theorem
.28

In order to obtain results on the uniqueness and decay of solutions of problem

(1), we prove the following theorem on existence of solutions for p =1 and n = 1,2, 3.

Remark 1.2.10 We observe that for 0 < p <

and from trace theorem, we have

V < H2(Ty) < L9(Ty) — L*@+O(Dy),

2(n—1) . o o .
5> forn = 3. In particular for p =1 or n =3, we obtain

where ¢, =
V < H2(Iy) < LY(T) — LATy).
Thus there exists positive constants co and cs such that
[wllzay) < eollwllv and [Jwl[r2r,) < esllwllv, Yo € V. (1.59)

We also consider the following restrictions on the initial data and some constants:

1
luollv, [Jvolly < AT and Ly < Z(X{)Q, (1.60)

where

1 \:2

1 1
Li=3 [HulHiz(Q) + HUIH%2(Q):| + 5 [wolly + llvolli ] + N [lluollv + lleollv] ;- (1.62)
4 1 R 4
N, = % [n—i— Z] + —202 +ci(n—1). (1.63)

To show the next theorem we need of the following propositions.

Proposition 1.2.11 Let us consider f € L*(Q) and g € Hz(T'). Then, the solution

u of the boundary value problem:

—Aw=f in €,
w =70 on T,
ow

o7 9 on Iy,

belongs to VN H*(Q) and
HwHH2(Q) < (|f‘ + HgHH%(Fl)) ‘

Proof. See Milla Miranda and Medeiros |36, Proposition 1, p. 49|. |
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Proposition 1.2.12 Suppose v° € V. N H?(Q), u' € V and
ou’

7 +8()ut =0 on Ti.
Then, for each €, there exists w and z in' V N H*(Q) such that:
0 1 ow
|lw—u’|lvame@ <& |lz—ullv <e and %%—(5(-)2:0 on T4.
Proof. See Milla Miranda and Medeiros |36, Proposition 3, p. 50]. [

Theorem 1.2.13 Let p = 1 and n = 3. Consider (1.60)—(1.63) and that
w00 € VN H?(Q) and ul,v! € V satisfying

0
%iﬁ—l—(;(-)ul:O on I'
0
%%%—5()1)1:0 on T4.

Then there exists functions u,v in the class

u,v € L*=(0,00; VN H?(Q)), Oy, 0w € L2 (0,00;V)

loc

O, 0%v € L2 (0, 00; L3(Q)), (1.64)

loc

Oy, Opv € L>=(0,00; L*(T)), 0*u,0?v € L2(0, 00; LA(Ty)),

loc

such that u and v satisfies the equations

(020 — Au+ [ullolv =0 in L2(0,00; L(2))
02v — Av + |ululv| =0 in L2 (0, 00; L*(Q))
Ou _ . (1.65)
g_ﬁ +60(-)0u =0 in L (0,00; H2(T'y))

|55 +0()0w =0 in L22(0,00; H2(T)).

and the initial conditions

u(0) = u”,v(0) =2°,  Qu(0) =u', du(0) ="

Proof. The proof of Theorem be done by applying the Faedo-Galerkin Method
with a special basis of V' N H%(2).

Approximate problem. From Proposition , we obtain sequences (u}), (v?) and
(uy.), (vi) of vectors of V' N H%(2) such that

u) - u’ in and o) = in VNH(Q)
(1.66)
u, —u' in and v, —ov' in V,
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and
oul) 1 vy,
% -+ 5uk = O and %

Now we fix k& € N and consider the basis {w}, w§, wk w¥, ...} of V.0 H?(Q) such

+ovp =0 on Iy forall k&N

0,0 .1 1 k ook ok ok k ook ook
that uy, v}, u; and v, belong to the subspace [wf,ws,ws, wy] spanned by wY, ws, w}

and wf. For each m € N we built the subspace V¥ = [w}, w5, ... w"]. Consider

Uk () = gipm (W, and  vgn(t) = hjpm (t)w
j=1 j=1

such that wug,, and v, are approximate solutions of the problem ; that is,

;

(DPupm (1), w) + (ugm (), w)) + | 00stpn (t)2dT + /Q [tkern, (E) || Vs, () |V () = 0,

(OF0n(®)2) + (v, 2)) + [

I

50 (£)2dT + / b (8) ()| 0 (1) 2 = 0,
0

Ui (0) = U% Drurm(0) = Ullc’

\Ukm(o) = Ug, atvkm(o) - Ulia
(1.67)

for all w,z € V¥. The above finite-dimensional system has solutions {tu, (), Vem(t)}
defined on [0, tm,). The following estimate allows us to extend this solution to the

interval [0, co).

Remark 1.2.14 We prove initially that the integral
|t Ol ety (169
Q

makes sense. Indeed, firstly we note that w € L*(2),

/ [t () [ () ()P < / o (8) 20 (1) 2 3 () Pz
Q

Q

<(/ |ukm<t>|6das)é (f |um<t>|6da:)é (f |vm<t>|6dw)é

= l[ttkm () o 1 08m (B) | o ) [0k (D) | )
< Cllum O vkm O [vrm (D117

Therefore the above integral (1.68]) makes sense. Similar considerations for the integral

/Q | () [tk (1) |V ()| 2.
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First estimate. To obtain the first estimate we apply similar arguments used in

Theorem [1.2.2) with p = 1. In this case, we replace the function J by
Ji(A) = }lv — N4, (1.69)
where N; was defined in . We also obtain the following lemma
Lemma 1.2.15 Consider u’,v° € V N H?(Q) and u',v' € V such that
[ullv, lo"llv < A3
and

1 *
L1 < Z()\l)Qy

where X} and Ly were defined, respectively, in (1.61]) and (1.62)). Then

@y < N and  |fum(®)|ly < N V2 € [0,00), VE > ko, Vim.

Therefore, we get

(

(tkm), (Ugm) are bounded in  L>(0, c0; V'), Vk > ko, Vm € N,
(Osttm ), (Ovpm) are bounded in L>(0, 00; L3(R2)), Vk > ko, Vm € N,
(Byttm ), (Dyvgm) are bounded in L2(0,00; L2(Ty)), Vk > ko, Vm e N,  (1.70)

(|| |Vkm|Vem) is bounded in  L®(0,00; L3(2)),  Vk = ko, Ym € N,

(|%km|Ukm|Vem|) is bounded in L>(0,00; L*(Y)),  Vk > ko, Vm € N.

Second estimate Deriving ((1.67)), with respect to ¢, as the function F'(A) = [A[,A € R
is Lipschitz continuous, F'(0) = 0, using Brezis and Cazenave |12, Theorem A.3.12; p.
35|, we obtain

(O Upm (1), W) + ((Optigm (1), w)) + / 502 Upgn (1) wdl

I'1

< / 1Byttt () [ (8) P 0]+ 2 / [t ()] [0 ()14 (8 ]
[9] Q

Making w = 0, (t) in the inequality above we get

1d 1d

5 O Ol + 5 Gy 1w O + | a1

<[ 100010t (1) (€1 + 2 e (0115t 6 e (0) By ()
Q Q

(1.71)
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Using the Holder inequality, the Sobolev embedding V' < L%(Q) and (1.70) we

have

/Q |Ostttom ()10 s (8) [V (£) e < 1| Dot (8) ] 500 Ok (6 [ ) 1107 e (£) ] 222

< C|stn () 11105 e (8) | 2

C|0sturm (DI + 107 wkm () |[72(c))-
(1.72)

Analogously, we obtain

/QIUkm(t)II(?tQUkm(t)lIvkm(t)llé‘tvkm(t)ldﬂf < CUUl0wkm Y + 107 wrm (D)1 Z2(0), (1.73)

where C' denote the several constant independent of k£ and m.

Combining (1.72)) and (1.73]) with (1.71)) and using the fact that d(z) > dp > 0,

we have
L1 1d
2dt

1d
2dt

Cl10trm OV + 10km OV + 20107 tkm () L2 (0)-

0t (1) 2y + =~ [t (B)]2 + 6 / (Pt (£)2dT

I

In similar way

1d 1d
— N0 vk 1220y + 5 7 10wrm ()3 + 00 [ (07 v (8)]2dT
2dt 2dt .
C|0uwrm O + 10evkm (O + 20107 vk (8) 1 22()-
Adding the last inequalities above and integrating on [0, t], we get

1
5 102w () [22() + 107 0m (D)1 22(0) + 100ttiom (D)1 + 1000km (B)17/)

+ / / (02 Upn (8)]?dTds + 0 / / (020 (5)]?dlds

(Hazukm( a0y + 107 vkm (O 220y + sy + llogllT)

(1.74)

t
+ / C (107 wrm ()220 + 107 Vkm ()220 + 1Oetthn ()1} + 10r0rm (5)II5) s
0

We need to bound |02, (0 )||L2(Q) and || 02vg, (0 )||L2(Q by a constant indepen-
dent of £ and m. This is one of the key points of the proof. These bounds are obtained
thanks to the choice of the special basis of V'N H?(Q). In fact, taking ¢ = 0 in (1.67),

we obtain

(Ot (0): ) +{ (a1 (0) )+ [

ry

(5(x)8tukm(0)wdf+/g |6k (0) | |Ukm (0) | Vg (0)wdx = 0.
(1.75)
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0
ouy,

We have ug,(0) = 42, Oyupm(0) = up and o

Green’s formula to (1.75]), we see that

— —5(-)u} on Ty. Applying

(02upm (0), w) = (Au)), w) +/ [ud||o?|vdwdz,  Yw € V.
Q

Taking w = 0?u,(0) in this equality, using Holder inequality and observing the con-

vergences (|1.66)), we have

107 s (0)[[22(0) < ARl L2() + lugllzo) vk Loy < €. Vh,m.

Thus (8?up,(0)) is bounded in L2(£2), for all k, m. In similar way (0?vpm,(0)) is bounded
in L*(Q), for all k, m.

From ([1.74), observing the fact (82w (0)), (034 (0)) are bounded in L?(2) and
the convergences we have

1
5 (02w (O)[22(0) + 107 08m (D)1 22(0) + 10ettiom (D)1 + 1000km (B)17/)
t t
+ 66 / / [02usn (5)|2dTds + 0 / / 10204 (5)]2dTds
0 F1 0 F1
t
<C +/ C 107 urm($)1z2(0) + 107 vem () 1220 + 1Ot ()T + 100 (37, )ls.
0
Therefore by Gronwall’s inequality there exists C'(t), t > 0, such that
167wk (1) 172 + 1107 Vi ()1 Z2(0) + I Osttim ()13 + 1| Oevmm (1)
t t
+ / / 102us (5)]2dTds + / / (020 (5)]2dTds < C(F),
0 Fl 0 1—‘1

it follows that

(

(Optkm), (O4vkm) are bounded in L2 (0, 00; V);
(O2upm), (O?vgm) are bounded in L2, (0, 0o; L*(Q)); (1.76)

(02Ut ), (O?vgm) are bounded in L7

(0, 00; L*(T)).

\

Passage to the limit in m. Estimates ((1.70)), (1.76]) and using similar arguments to
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Theorem with p =1 allow us

(
Upm — up, and Vg, — g in  L>(0,00;V),
(0,005 V),

* * .
Oy — O and Oy, — O, in LYY,

OPupyy — OPuy, and  Pvgy, — v, in LE2(0,00; L2(R)),

Ot — Oy and Oy, — O, in L2(0,00; L2(T)), (1.77)

Pupm — Oup  and  Pug, — v, in L2 (0,00; L*(T)),

|UkaUkm\’Ukm = ’ukHUk‘Uk in LOO(O7OO;L2<Q))7

K|ukm|u,r€m|vly€m| g [ | g in  L>(0,00; L*(Q)).
From ([1.76]), and trace theorem we obtain
(O¢ttgm), (Opvgm) are bounded in L7 (0, oo; H%(Fl)),

and thus

Oyt — Oyuy  in LO;C(O,OO;H%(Fl));
' ' : 1 (1.78)
atvkm A atvk in L?:C(OJ o5 H§(P1))

Multiplying both sides of the approximate equation ((1.67); by ¢ € 2(0, 00), integrating

in [0, 00), using the convergences (1.77), 54 and ([1.78));, we obtain

| @uo.wpewar+ [ (owewa [T [ oo
o 0 0 /I (1.79)
—i—/o (Jug () [|o (8) Jor (1), w)p(t)dt =0, Vw € V¥ Yo € 2(0,00).

Since V¥ is dense in V N H%(Q) it follows that (1.79) is true for all w € V N H2(2). In

similar way, we find
/Ooo(atzvk(t),w)gp(t)dt + /Ow((vk(t),w))w(t)dt + /OOO/F dOyuy (t)we(t)dldt
+ /Ooo(luk(t)|uk(t)\vk(t)],w)w(t)dt =0, YweVNH*Q), Vo € 2(0,00).

We can see that the estimates ((1.70]) and (1.76|) are also independent of k. There-

fore by the same argument used to obtain ([1.77]) and ((1.78)) we get a diagonal sequence
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(ug, ), (vg, ), still denoted by (uy), (vg), and functions u, v : © x [0, 00) — R such that

p

w, =~ u and v, = v in  L*(0,00;V);
Oup = Oy and O — O in L2 (0,00, V);
OPup > 0?u and  OPvp > 0%v in L5 (0, 00; L2(Q));

Owup, — Ou and Oy — v in L?(0,00; L*(Ty));

(1.80)
OPup, — Ofu and OPvpy — 02v in L2 (0,00; L*(Ty));
el Jvelve = Jullvlv in - L°(0, 005 L(2));
| [ve| = Jululv] in L%(0, 00; L*(Q));

Oup, = dyu and v = v in L2 (0, oo; H%(Fl)).
\

Taking the limit in (L.79)), using convergences ([1.80), ;¢ s and observing that VN H?(Q)

is dense in V', we obtain

/Oo(ﬁfu(t),w)gp(t)dt + /oo((u(t),w))gp(t)dt + /00 dOwu(t)we(t)dldt
- ‘ ¢ (1.81)
+/0 (lu(®)[|v()|v(t), w)p(t)dt =0, Yw € V, Yo € 2(0,0).

In similar way, we find

/Ooo(ﬁfv(t),z)gp(t)dt + /Ooo((v(t),z))go(t)dt + /OOO A doyu(t)zp(t)dldt
+ /Ooo(|u(t)|u(t)|v(t)|, 2)p(t)dt =0, Vz € V, Yo € 2(0,00).
Taking in w e 2(02) C V, it follows that
O*u— Au+ |ullvjv =0 in Z2'(Qx(0,T)).
In similar way
020 — Av + |ufulv] =0 in 2'(Q x (0,T)).
Therefore, by 376, we get

O*u— Au+ |ullvjlv =0 in L

loc

(0,00, L*(2)),
(1.82)

020 — Av + |ululv] =0 in L

loc

(0,00, L*(2)).
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Since u € L>(0,00; V) and by (1.82),, Au € L2 (0,T; L*(52)) then, by Milla

loc

Miranda [31] we obtain

) 1
8—; e L0, 00; H3(I))). (1.83)

Multiplying both sides of (|1.82) by wy with w € V and ¢ € Z(0, 00), integrating on
2 x (0,7) and using ([1.83) and Green’s formula

[T [Tonena- 7200 poa

+ /Ooo(|u(t)|u(t)|v(t)|,w)gp(t)dt =0, Yw eV, Yy € 2(0,00),

where (-, -) denotes the duality paring between H ’%(F 1) and H %(F 1). Comparing this
last equation with ((1.81]), we obtain

/ <8u(t) + 5atu(t),w> p(t)dldt =0, Yw € V, Yy € 2(0,00).
0

on
Therefore
0 )
= d0u=0 in HH(I).
In similar way
v

5= 100w =0 in H3(T).

Since 00,u € L2(0, 00, H2(I'y)), then

loc

ou

o T00m =0 in L¥(0,00, Hz(T)). (1.84)
In similar way
g—:; +60w=0 in L2(0,00, Hz(T)). (1.85)

To complete the proof of the Theorem [1.2.13] we shall show that u € L2 (0, 0o, H*(Q2)).

loc

In fact, note that u € L*(0,00; V). With this, using (1.82),, (1.84) we see that u is

the solution of the following boundary value problem:
(
—Au=f in Qx][0,7T],
u=20 on [I'gx[0,7],
Ju
Lo 7

for all real number T > 0. Since

on Ty x[0,T],

f=—0%u— |u||lv|v € L32.(0,00; L*(?)) and g = —00,u € L;°.(0, o0; H%(Fl)),

loc
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it follows by the Proposition [1.2.11] that

u € L2(0,00;V N H*(Q)). (1.86)
In similar way
v e L2 (0,00;V N H*(Q)). (1.87)

The verification of the initial conditions follows by similar arguments used in the

Theorem [1.2.2] [ ]

Remark 1.2.16 From (1.77), we obtain uy and vy in the class (1.64). From (|1.79))
and using the same arguments for obtain (1.82)), (1.84) and (1.85)), we get

'afuk — Auy, + |ug]|vg|vr =0 in L52.(0,00; L2(Q))
(2))

vy, — Avy, + |ug|uglvg] =0 in L0, 00; L(Q

loc

(
(
ouy, (
(

1 (1.88)
g— +6(-)0ur =0 in L2 (0,00; H2(I'y))
ﬂ—1-5( )Ov =0 in L22(0,00; Hz(T'y)).

Also using the same arquments for obtain the reqularities (1.86)) and (1.87)), we get

ug, vy € Li2.(0,00; V N H*(Q)). (1.89)

loc

Corollary 1.2.17 We obtain similar results to Theorem [1.2.13 for the case p > 1 and
n=1,2.

1.3 Uniqueness of solutions

In this section we show that the solution in the case of the Theorem [[.2.13] and

Corollary is unique. For this we use the energy method.

Theorem 1.3.1 The solution {u,v} obtained in the Theorem or Corollary
[1.2.17 is unique.

Proof. First we show the case p = 1 for n = 3. Let {u,v} and {w, z} solutions of

system satisfying the Theorem |1.2.13, We define

U=u—w and Z=v-—2z.
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Then U and Z satisfies the following problem

(

02U — AU + |ul|vjv — |wl|z]z = 0;

027 — AZ + |ululv] — |w|w|z| = 0;

U=72=0 on I'y; (1.90)
ou
g—g + 6()815(] =0 on Fl;

\%—ké(-)atZ:O on I'y,

with initial conditions U(0) = 0,0,U(0) = 0, Z(0) = 0 and 9,Z(0) = 0.
Remark 1.3.2 We note that
OXU(t) € L*(Q) and O,U(t) € L*(Q).

Therefore, make sense to calculate the duality (OU(t),0:U(t)). Thus, the uniqueness

results from the energy method.

Taking the scalar product of (1.90)), and (1.90), with 6,U and 0,7, respectively and

integrating on [0, 7] we have

1 1 !
SOy + IV +0 [ 100, it
0 (1.91)

-+4(W@NM@W@%%w@mdﬁbwhaU@Dﬁ<0~

S0 2Ol + SN ZOI + b0 [ 1020 e, -
+ [ Qo)) = o) (s)|(3).2.2(5))dt <o

Adding (1.91)) and ((1.92) and denoting by M and N the left hand side of ((1.91) and
(11.92)), respectively, we have

1 1 1 1
SN0y + 31070 e + SN + 1207 < M+ N (193)
We write M and N respectively by

szmwm—wwmwmaawmw
0 (1.94)

= [ i) = 1l 00 ()
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and
N = [l = Euats). 02(5)
(1.95)
+Aqw<mw> wl)u)l(s), 2Z(s))dt

We examine each of the integrals above.

e Analysis of I1 = ([Ju(s)| — |w(s)|]|v(s)|v(s), D U(s)):

Using the fact that the function F'(\) = |A| is Lipschitz continuous and F'(0) = 0,
it follows by Brezis and Cazenave [12, Theorem A.3.12, p. 35| that

1, = (Ju(s)] — () |[o()]e(s), BU(s))
<KJW@N—hM$MM@W&U@Wm
<[JM@WU®M&U®WM (1.96)

< oz 10U ()2 U (5) ] 250
< CloU () l2@ U (s)lv,

for some positive constant C'.

o Analysis of I = ([[u(s)lu(s) — |2(s)]=(s)]lw(s)], U (5)) -
Again by Brezis and Cazenave [12, Theorem A.3.12, p. 35| and using the mean

value theorem we can conclude that there exists C' > 0 such that
Iy = ([[o(s)[v(s) = |z(s)|z(s)][w(s)], AU (s))
/ [v(s)[v(s) = z(s)z(s)|[w(s)||0:U (s)|dx
< C/Q[IU(SH +2(s)lJw(s)l| Z(s)]|0U (s)|de (1.97)

Cllv(s)ll sy + 12(s)l[Ls@)l[w(s) s 10U ()] 2@ 12 (5) | oo
< ClaU )@l Z(s)lv-

Therefore from ([1.94)), (1.96) and (|1.97) we obtain
t
M <C [ UGy + 120U .
By a similar argument, with (1.95]) we also find
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t
N <C [ QU + 120110232t (1.98)
It follows that
O t C t t
<G [WEa+ 5 [ 126+ [ 10U e (1.9

for some constant C' > 0. Similarly from ({1.98)) we have

C t C t t
M<5 [ WS [1zekasc [ 1026)0Ewe  00)
Combining ((1.99)) and ((1.100) with ((1.93)), we get
0.0 (5) 3aie) + 19.2(5) ey + U+ 1200)
' (1.101)
<20 [ (100 sy + 1026 ey + WG + 12 )

Thus from ((1.101]) and Gronwall’s inequality we get U(t) = Z(t) =0forall 0 <t < T.

For the cases n = 1,2, we have V < L9(Q), 1 < ¢ < oo. Then the estimates
(11.99) and ((1.100) are hold. The proof in this case follows by similar arguments used
for n = 3. |

1.4 Asymptotic behavior: energy estimates

Next we state the result on the decay of solutions of the problem in the cases

of the Theorem [1.2.13| and Corollary [1.2.17. To this we assume that there exists a
point 2° € R”, such that

To={z el :m(z) 7(x) <0} and Ty ={z el :m(z)- n(zx)> 0},

where m(x) =z — 2%, € R", see Figure 1.1.
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Figure 1.1: The sets 'y and T';.

In this section we consider d(z) = m(x) - 7i(z) and R = max|m(z)||g». The
e

energy of system with p =1 is defined by

E(t) = %(||atu(t)||%2(Q)+||atv(t)||%2(Q)+||u(t)||%/+||U ||v / u(®)[u(®)[v(t)]o(t)dz
We have the following result:
Theorem 1.4.1 Let {u,v} be the solution obtained in Theorem[1.2.15. Then
E(t) <3E(0)e™3", Vte]0,00), (1.102)

where

. I my )
T—mln{ﬁ,3}>0,
n—1 n-1
P:4(2R—|— >+ o ) (1.103)
D =R+ R+ R*(n—1)%c;
mo = min{m(x) - 7i(x);x € I'1} > 0.

Proof. To prove the Theorem we show that the energy
1
Ey(t) = <||5tuk( Wiz + 10k )22 0) + @I + ||Uk(t)||%/>
+3 | IOl s

associated with the solution {wuy(t),vx(t)} of the equations in (1.88|) satisfies the in-
equality ((1.102)). Thus, the exponential decay of E(t) be obtained by taking the lim inf

(1.104)

of Ex(t) as k — oo.

Now, we introduce the function

Ui (t) = 2(Qyug(t), m - Vug(t)) + (n — 1)(Oyug(t), ug(t))
+ 2(0v(t), m - Vug(t)) + (n — 1) (Opur(t), vg(t)).

(1.105)
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For € > 0, we introduce the perturbed energy
B (t) := Eg(t) + e (t).
First we prove that Ey.(t) and Ej(t) are equivalent. Then we show that
E (t) < —cEx(t). (1.106)
Equivalence between Fj.(t) and FEj(t). First of all, we note that

A) = U@ + @) + 5 [ (Ol ®)lon®lus()ds >0, ¥ € [0,00).

(1.107)
In fact,
1 L4 4 4
5 Q(|Uk(t)\Uk(t))(|Uk(t)|Uk(t))d«'1? < g llue@lly + o @)lly).
Then
1 o 1y 4 1 o 1y 4
Ar(t) = Zllux @)y = Jallu@lly + Zlle@lly = Zeillon@)l- (1.108)
As —3cf > —Nj, we obtain
1 s 1y g o 1 2 4
@y = zeillu®lly = @y = Niflux@)lly-
If we take the limit m — oo in Lemma [I1.2.15] we find
1
Tl ®lv) = 7lux@1y = Mllux @)l 2 0, vt € [0,00). (1.109)
In similar way
1
Fos®1y = Nl @Il >0, vt € [0, 00). (1.110)

Taking into account ((1.109) and ((1.110)) in (1.108)), we derive ({1.107)).

Observe that

1 1
Ei(t) 2 7 (100 (Dl 22 + 100Dl z2) + 7 (lux Ol + lox(OI) + Ax (D).

Then by (T.107)

1 1
Ex(t) 2 5 (100 (D22 + 100Dl z2@) + 7 (a5 + [ox@]i), ¥t € [0, 00).

(1.111)
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On the other side, we have

n—1

We(0)] < (R+ ) 1 0) gy + 100 (8) 2o

n—1

; <R+ - ) (e (@)1 + (@) 2),

where \; is the first eigenvalue of the spectral problem ((u,v)) = A(u,v), u,v € V.
Thus

P
9u(0)] < T (0Ol + 10n() Baey + I + [ou@IR),  (1.112)

where P was defined in (|1.103]).
From (|1.111)) and (1.112) it follows that

[ (t)] < PER(t), Vte[0,00).

Since that
|Ere(t) — Ex(t)| = |eyn(t)] < ePEL(t)
we have
Ep(t)(1 —eP) < Ep(t) < (1 +eP)E(t).
Then
L o) < B (1) < SEW(1), 0<ey < — (1.113)
2 k S keq S 9 k 3 81 x 2P .

From now on, to simplify the notation we will do not write the variable t.

Proof of (1.106]). Multiplying (1.88)); and ([1.88), by d;u; and dyvy, respectively, using
the fact d(x) = m(z) - 7i(x) the hypothesis (1.103]), we get

By < —mo([10sur 2,y + 1000kl 2r,)- (1.114)
The idea to prove ((1.106|) is to find that
1
U < =B — Z(”UkH%/ +lloelli) = Nu(llully + llvelly)

+ D(HatukH%Z(Fl) + ||atvk||%2(rl))a

where N, and D are positive constants independent of k.

Then to prove an existence theorem of solutions which permits us to say
1
7l + 1Holl) = Nalluwlly + lloilly) =0, vt € [0, 00),
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Thus
E;. = Ej, + ey, < —eEy — (mo — eD) (10| Z2 0,y + 1000kl 22r,)-

For small € > 0, we obtain (|1.106)).

Differentiating the function 1, we obtain

Uy, = 2(0up, m - Vug) + 2(0pug, m - Vo) + (n — 1)(02up, ug) + (n — 1)||8tuk||%2(9)
+ 2(0%v, m - Vo) + 2(0pvg, m - Vo) + (n — 1) (0w, vp,) + (n — 1)||8tvk||%2(9).
From 1 and 2, we find
Wy, = 2(Aug, m - Vug) — 2(|ug][vg|vg, m - Vug) + 2(0yug, m - VOyuy)
+(n = D(Aug, u) = (0 = 1)(Jul[velve, we) + (0 — 1) [ O |72 o
+ 2(Avg, m - Vi) = 2(Jug|ug|vi|, m - Vo) 4+ 2(0pr, m - V) (1.115)
+(n = 1)(Avg, o) — (0 = 1) (fuglurlvk|, vi) + (n = 1)]|0vk]|72(0
— L+ + I
respectively.

Our goal is to derive a bound above for each terms on the right hand side of

([T.115).

e The regularity ([1.89)) allows us to obtain Rellich’s identity for uy, see Komornik
and Zuazua [25], Remark 2.3, p. 41]; that is,

I = 2(Aug,m-Vuy) = (n—2)HUkH%/+2/ %(TmVuk)dF—/(m-ﬁ)]Vuk|2dF.
r r

Since |Vug|* = (%)2 and m - Vuy, = (m - 71) %% on Ty, then

2
/(m-ﬁ)\VudeF:/ (m - 1) (24 dF+/ (m - )|V 2dT
r o on I

and

8uk N R auk 2 Ouk
A %(m - Vug)dl' = /r0<m - 17) (%) dl' + . %(m - Vuy)dT.

Thus

Oug 2 Oug,
— _ 2 .7 —_r .
I = (n— 2)||uklly + Q/FO(m ) < 8ﬁ> dr’ + 2/r1 57 (m - Vuy,)dl

R auk 2 o 2
—/Fo(m-n) <%> dF—/Fl(m-n)|Vuk| dr.
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Since ai + (m - 7)Oyur = 0 on I'; we have

‘/&ukm Vude’ ‘
Iy

< R? / |0y | dF+/ (m - 71) | Vug|*.
Fl l—‘1

(m - 1) Oyug(m - Vuk)df"
I

(1.117)

Substituting (1.117) in ((1.116), making the reduction of similar terms and ob-

serving that m -7 < 0 on I'y, we get

1< (0= 2)uall} + R0 e, (1.118)
In similar way
I; < (n = 2)Juellyy + BP(|0cvel|Za - (1.119)
Note that
I = =2(|ug||vg| vk, m - Vug)

— —2/ [ug || v |vg (m - Vg )dx
Q

- Ouk
g / |ug || vk |vem; e x

i

_ _Z/mz{ |uk|uk)] (Joglve)da

Similarly we find

I = vV i
s = —2(|ug|ug|vk|, m - Vug) Z/m (| |ug) [ o

(|vk|vk)] dz.

m,
=1 and ux = v = 0 on I'y, we have

From Green’s Theorem, using the fact 5
T
I+ Ig = n/(]ukluk)ﬂvkwk)dﬂc — / (m - 77) (g |ug) (|vg|vg)dT.
Q B}
Using ((1.59), we have
- Re; 4 4
- (m - 7)) (o lvr) T < =2 ([luelly + lloxllv)
1

Therefore

4
Rc,

Bt I <n [ (udue)(oefodde + 552 (lall + oelld) . (1120)
Q
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i _ =1 and Oy;ur = 0 on I'y, we obtain

ox;

From Green’s Theorem and since

I3 = 2(Oyug, m - Voyuy,) = 2 Z/ atukmi%atukdx = Z/ miﬁ(atuk)%x

dm;
:_2/ 87112 (Oyuy) dx+2/ m; - 1) (Opuy ) *dT,

it follows that

I3 < _nHatukH2L2(Q) + RHatukH%?(Fl)'

In similar way
Iy < =nl|0vil| 720y + RlIOwvrlZor,)-
ouy,
From the boundary conditions F + (m - )Oyur = 0 on I'y, we find
(Aug, up) = —|lugll3 — / (m - 1) Opupugdl.
I
Note that, using ((1.59) we obtain

/ (m-ﬁ)@tukude‘ < R/ |Oyug | |ug |[dT
r, r,

2 2 2
R*ci(n — 1)||0vur| 720,y + WHWHB(H)

1 2
m“uk“v-

N | — L\:>|>—k

<

~

R*(n — 1)c3|Opur||72(p,y +
Thus
1 1
Ly = (n = D(Aug, w) < =(n = Dlunlly + 5B (0 = 1107, + 51wl
In similar way
2 1o 2 2 2 1 2

ho < =(n = Dlvelly + 570 = 1)°c3l|0vkllzary) + S ol

From (|1.12) we have

4
(|uk\|vk|vk7uk)</Q!uk|2|vk|2d$ 51(||Uk||v+“vk\|v)

Therefore
ci 4 4
Is = —(n = D(Jurlvelor, we) < 5 (= 1)([urlly + lloelly).
In similar way
4
c
L < 5 (0= D([lwelly + floelly)- (1.121)
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Taking into account (1.118)—(1.121)) in (1.115)) and reducing similar terms, we obtain

1
L+ o < =(10unllz20) + 100elz2) = 5 (lurlly + [lowlly)
4

Rc
[ Qunduo) Qoo+ |52+ et = 1)] (hunly + )
+ D(HUZH%?(H) + ||,U;€H%2(F1)>7
where D was defined in (1.103)). Thus,

1 1
It Do < =5 (10uelBagy + 19velZa) = 3 Qluliy + oel)

1 1
-3 [ Qusdun) ooz = 3l + el
Q

4

1 Rc
[ 3] [t doods + |52+ cttn =] Qi -+ oy
+ D(HUZH%?(H) + ||Ul/g||%2(r1))

(1.122)

Now using ([1.12]), we have

\ [l oy

Combining (|1.123]) with (| m we get

1

1
e D < =B = (0l + o) = Mol + o) )

oA
gl(HUkHv"‘ vgllv). (1.123)

+ D(llugllZ2ry) + N0kl zawy)s
where N; was defined in (1.63)). From (1.109)) and (|1.110|) we obtain
1
7 Ulelo + lloelli) = Nulllunlly + loslly) =0

Therefore
1
Uf < 3 B+ D100 e,y + 1000 acey) (1.124)

Thanks to (1.114)), (1.124)) and Ej,. = E} + ey, we get
5
i < —5Ex = (mo = De)([|OsunllZaeyy + 10nllzery)-

Therefore
mo

B, < —%Ek, forall 0<e <. (1.125)
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The choice 7 given in ([1.103]) implies that (1.113)) and ([1.125)) hold simultaneously
for this 7. Thus, from ([1.113]) we have

-
e <-lE..
ok 3k

Consequently, using the above inequality in ((1.125)), we obtain

El/m— < _%EkT

This give us that
Epr(t) < e 5 B (0).

From this inequality and (|1.113]) we have
Ei(t) < 3E,(0)e3t, forall te€[0,00).

With this we conclude the proof of the Theorem [I.4.1] |
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Chapter 2

Asymptotic behavior of solutions for a

thermoelastic plate system

In this chapter we aim to make a study of the asymptotic behavior, in the sense
of global attractors, of the solutions of an autonomous thermoelastic plate system with
n > 2 and Neumann boundary conditions when some reaction terms are concentrated
in a neighborhood of the boundary and this neighborhood shrinks to boundary as a
parameter € goes to zero. More precisely, we show the existence, uniform bound of
the global attractors of the problems and and that the semigroup associated to
converges for the semigroup associated to . Moreover we show the continuity of

these attractors at € = 0.

2.1 Preliminary

We begin this section with some notations and we present hypotheses and a
dissipative condition on nonlinearities. After we write and in abstract problems.
We finished the section with a result, that ensure us the sectoriality of operator and

with an exponential estimate for the linear semigroup.

2.1.1 Abstract setting

To better describe the problem we introduce some terminology, let €2 be an open

bounded smooth set in R", n > 2 with a smooth boundary I' = 9X2. We define the



strip of width ¢ and base 0f) as
we={z—on(x): T and o€ [0,e)},

for sufficiently small ¢, say 0 < ¢ < gy, where 7(z) denotes the outward normal vector
at © € I'. We note that the set w. has Lebesgue measure |w.| = O(e) with |w.| < k|T'| €,
for some k > 0 independent of ¢, and that for small €, the set w. is a neighborhood of
" in Q, that collapses to the boundary when the parameter ¢ goes to zero.

We are interested in the behavior, for small e, of the solutions of the autonomous
thermoelastic plate systems with concentrated terms given in

We take j : R — R to be €2 and assume that it satisfies the growth estimates
)+ )+ () < K, Vs eR, (2.1)

for some constant K > 0, we also assume the standard dissipative assumption given

by
j(s)

limsup —= < 0, (2.2)

|s| =400 S
with j = f or j = g. We note that (2.2)) is equivalent to saying that for any v > 0

there exists ¢, > 0 such that
sj(s) <vs*+c,, VseER. (2.3)

Let us consider the Hilbert space Y := L*(2) and the unbounded linear operator
A:D(A) CY — Y defined by

Au = (—=A)u, u € D(A),

with domain

D(A) == {u e HY(Q) % - a(ﬁﬁ“) ~ 0 on r}.

The operator A has a discrete spectrum formed of eigenvalues satisfying

O=pm <po < < pp <---,  lim p,, = 00.

n—0o0

Since this operator turns out to be sectorial in Y in the sense of Henry [20],
Definition 1.3.1, p.18] and Cholewa and Dlotko [15, Example 1.3.9, p.42], associated to

it there is a scale of Banach spaces (the fractional power spaces) Y*, o € R, denoting
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the domain of the fractional power operators associated with A, that is, Y := D(A%),
a > 0. Let us consider Y* endowed with the norm [|(+)||ye = [|[A“()|ly +||()]lv,a = 0.
The fractional power spaces are related to the Bessel Potentials spaces H*(Q2), s € R,

and it is well known that

Y H**(Q), Y = (Y% a>=0, (2.4)
with
1 8u
2 = 2 N —_— =
Y2 _{ueH (Q) : 9 OOnF}.

We also have
Y2 =(Y2), Y=Y"=12%Q) and Y'=D(A).

Since the problem has a nonlinear term on boundary, choosing % <s<1
and using the standard trace theory results that for any function v € H*(2), the
trace of v is well defined and lies in L?(T"). Moreover, the scale of negative exponents
Y= for a > 0, it is necessary to introduce the nonlinear term of in the abstract
equation, since we are using the operator A with homogeneous boundary conditions.

If we consider the realizations of A in this scale, then the operator A_1 € £ (Y%, Y_%)

1
2
is given by

<A_§u,v)y:/AuAvd:v+/uvda:, w,vE Y2,
Q Q

With some abuse of notation we identify all different realizations of this operator and
we write them all as A.

We also consider the operator A+ 1 : D(A+ 1) C Y — Y, it is a positive
defined and sectorial operator in Y in the sense of Henry [20, Definition 1.3.1, p.18]
and Cholewa and Dlotko [15, Example 1.3.9, p.42|, associated to it there is a scale
of Banach spaces (the fractional power spaces) D((A + I)*), a > 0, domain of the
operator (A + I)*. Let us consider D((A + I)*) endowed with the graph norm

IO lparne = A+ D*Clly,  a=0(0 € p((A+1)7)).

Consequentely, by Cholewa and Dtotko [15, Corollary 1.3.5] and D(A+ 1) = D(A), we

also have that
YO = [¥, D(A)]a = [V, DA+ D]a = D(A+ 1)), 0<a<1,
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endowed with equivalent norms.

The operator A + I has a discrete spectrum formed of eigenvalues satisfying

1:M{<M5<...<M{L<...7 hmlu,,[l:oo

n—oo

Also, let us consider the following Hilbert space
X=X"=Y:xY xYV,
equipped with the inner product
<<1”£>, <§§)>X = <U1,U2>Y% + (v, va)y + (01, 62)y,
where (-, )y is the usual inner product in L?*(2) and
H = H*(Q) x H*(Q) x L*(Q)

equipped with the usual inner product with % <s< 1.

To better explain the results in the chapter, initially, we define the abstract
problems associated to and respectively. For this we define the unbounded
linear operator A : D(A) C X — X by

0 I 0 v
u 1 uy 1
A<5>: “A—T 0 A2+ 1 (qé)— —Au—u+A20+6 |, (25)
0 —Ai—T —As—] —Azy—v— A20 — 0

for all (:) € D(A), with domain
DA)=Y'xY2 x Vs, (2.6)

For each ¢ € (0,¢0], we write (2]) in the abstract form as

d 15

U Awt 4+ Fo(wf), >0,

dt (2.7)
we(0) = wy,

with
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and nonlinear map F, : X — 7, with % < s < 1, defined by

0
Fw) = | fol) + Txegnl) | w=(}) e X,
0

1
where fo, =Xw.90 : H*(Q) — H~5() are the operators, respectively, given by
5

alu)so) = [ Flu)pds, we HQ) and o € H'(@) (28)
Q
and
1 1
(Gxgotunp) == [ gwpds, we B@andpe Q). (29)
While the problem can be written in the abstract form as
dw
— = Aw + Fy(w), t>0,
dt (2.10)
w(0) = wo,
with

U
w = <8tu>
0

and nonlinear map Fy : X — 77, with % < s < 1, defined by

0
Fo(w) = | fa(uw) + ac(w) | w=(}) € X.
0
where fq is defined in (2.8) and gr : H*(Q) — H~*(Q) is the operator given by

@ﬂwwwaéwmmwwM& we HYQ) and p € HQ),  (2.11)

where v : H*(Q) — L*(T) is the trace operator, to according with Triebel [43].

2.1.2 Sectoriality

In this section we prove that the unbounded linear operator A generates a analytic
semigroup, which we denote {e** : ¢ > 0}, more precisely, we show that unbounded
linear operator —A is sectorial.

On analyticity of a Cy—semigroup of contractions on a Hilbert space, we have

following result.
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Theorem 2.1.1 Let {S(t) : t > 0} be a Cy-semigroup of contractions of linear opera-
tors in a Hilbert space with infinitesimal generator 2. Suppose that iR C p(A). Then,

{S(t) : t = 0} is analytic if and only if limsup || 3(iBI — B) | < oco.
8] =00

Proof. For the proof, see Liu and Zheng [27, Theorem 1.3.3, p.5]. |

In the following two results we verify that the unbounded linear operator A is

dissipative, closed and densely defined.

Lemma 2.1.2 The unbounded linear operator A : D(A) C X — X defined in ([2.5))-
(2.6) satisfy the following equality

Re<A(§>, (0)>X — | A0 — 02 <o, v(lg) eD(A). (212
Proof. Note that

(a(5)- () ) = { (st ). ().,

= (v,u),y — (Au— AZ0,0)y — (u—0,v)y — (A7v + A70,0)y — (v +0,0)y

SSISES

= (Azu, A2v)y — (A2, A20)y + (u, )y — (u,v)y + (A20,0)y — (A20,0),,

1
+ (v, 0)y — (v, O)y — [ A30]5 — (1015

Finally, from this we get ([2.12]). |

Theorem 2.1.3 The unbounded linear operator A : D(A) C X — X defined in ([2.5))-
(2.6)) is closed and densely defined.

Proof. Let w, = [u, v, 0,7 € D(A) with w, = [u v 0] in X as n — oo, and

Aw, — o =[p1 ps @3]T in X as n — oo, or equivalently

( 1
Up — 01 inY2 asn — oo;

3 —Aun—un+/1%0n+9n—>g02 inY as n — oo;

1 1 .
—-A2v, — v, — A260, — 0, - ¢35 inY asn — oo,
.

then v = ¢y € Yz. Since
(A2 4 D), = [—(A% + D, — (A2 + DB,] + (A2 + D, — @3 + A21 + @
in Y as n — oo, we have
0 eD(AZ+1)=Y2 and — (A2 +1)0 =3+ A2p; + 1.
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Finally, since
—(A+ Dup = [—(A+ Dun + (A2 + 1)8,] — (A7 + 1), — 0o+ @3 + A2y + ¢
in Y as n — oo, we conclude
we DA+ =Y" and — (A+Du= s+ @3+ A2p + o1,
that is, [u v 60]7 € D(A) and
o1 @2 @3] =0 —(A+Du+ A2 +1)0 — (A2 +Dv— (A2 + D))" = Afu v 6]
Clearly A is densely defined. |

Remark 2.1.4 Note that zero is in the resolvent set of A and

—(A+1D) (A2 +1) —(A+D)P —(A+D)!
AT = I 0 0
~I 0 —(Az + 1)
Since A is dissipative, closed, densely defined and zero is in the resolvent set of
A, by Lumer-Phillips theorem, A is generator of a Cy-semigroup of contractions.

The next theorem shows that the operator A generates an analytic semigroup,

that is, —A is a sectorial operator, for this we use the Theorem [2.1.1]

Theorem 2.1.5 The unbounded linear operator —A such that A : D(A) C X —
X is defined in (2.5))-(2.6) is sectorial with Reo(—A) > 0. Thus the semigroup of

contractions {e*t : t > 0} is analytic.

Proof. First, we show that iR C p(A). We show this result by a contradiction
argument. That is, let us suppose that there exists 0 # g € R, such that i[5 is in the
spectrum of A. Then i must be an eigenvalue of A, because A~! is compact. Thus

there is a vector function w = [u v 0]T € D(A), ||w||x = 1, such that
(il —A)w=0in X

or equivalenty
(

1Pu —v =0,

iBv+ (A+ Du— (A2 + 16 =0, (2.13)

iBO + (Az + v + (Az +1)0 = 0,
\

57



and so

Re(Aw, w)x = —[|A30])3 — [|0])3 = 0.

Thus @ = 0 and by (2.13)), v = v = 0. Thus, we have a contradition. Therefore,
iR C p(A).

Finally, we show that there exists a positive constant C' such that
u f1
|5\H (9) H < O Z||x, for all F = <f) € X, BeR,
X f3
where w =[u v 0] = (i8I — A)~'.F € D(A). In fact, multiplying equation
(i —A)w=.7 in X (2.14)

with w = [u v 6]7; that is, in terms of its components yields

zﬁu — v = f17
iBv+ (A+ Du— (Az + 10 = f,, (2.15)
iB0+ (A2 + v+ (A2 +1)0 = fs,

we get

if||w||% — (Aw, w)x = (F,w)x. (2.16)

Taking the real part in (2.16|) it follows that
1
| Re(Aw, w)x| = [[AZ0]5 + 1015 < 7 ||x |wl|x, (2.17)

and taking the imaginary parts in (2.16)), and using (2.17)) and Young’s inequality we
have that

1 1 1
1Bll[wll% < 2[(AZu, AZ0)y| + 2|(u, v)y| + 2|{A20, )y | + 2|(v, )y | + 2||.Z | x||w] x
= 2(Atu, A1)y |+ 2|{u, v)y| + 2|(ATv, A10)y | + 2|(v, O)y | + 2| F||x|[w] x
3 1 1
< NATul2 + ull? +2[ATo)|2 + 2lv)|2 + [ AT0]1% + [16]1> + 2|2 ]| x]|w] x

3 1 1
< A%y + lully + 2450l + 200ll§ + | A0S + (1015 + 2] | x[lwlx

(2.18)
Thanks to (2.17)) and (2.18) we obtain that
3 1
Bllwllx < 1A5ull§ + [ully + 2(1450[5 + [lvl3) + 31 [ x[lwlx- (2.19)
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Multiplying (2.14) by [0 0 v]7, in the sense of X, using the second equation of
the (2.15) and the Young’s inequality we have that

1
2([A%v][5 + [v]I3)

3 1 1
<%WﬂﬂWy+WwﬂMWHWAWMAWM@+(L+;)MAWM+WW%

0
1
+(lATv]l§ +lv]3),

for some constant y9 > 0 to be choose later.

Thus
1 3
(2 =) (14302 + 1012 < 201 fally 161y + [fslly Iolly) + A%l + aull2
1 1
+Q+;)mmm%+wmx
0

for some constant vy > 0 to be choose later.

With this, by (2.17) and choosing 0 < vy < 2 we get
1 3
(2 =) (IA10[5 + [lv]F) < CillZ lIxllwllx + [[ATull5 + [Jull3, (2.20)

for some constant C; > 0.

Now, multiplying (2.14]) by [0 Azu+u 0]”, in the sense of X, we have
(iBv + (A+ Du — (A2 + 1)0, A3u+ u)y = (fo, A2u+ u)y,
that is, using the first equation of the (2.15)) in the above equation,

3 1 1
1A% ully + [ A2ully + | Asully + [ull

1 1 2471 1 I, s
< (22 filly + LAl + [[f2lly (A2 ully + [Jully) + o 14201 + Sl A%ully
o2 1 2 1 2 o2 2
FnllAtull + S0 + 3l — %ol — el
1 1 247, 42
< (22 fully + LAl + [[f2lly (A2 ully + lully) + - (143615 + [1e13)
1, .3 1 1
Sl Abuld + Sl
for some constant y; > 0 to be choose later.
Thus
1 3 19 2 L2
5 ATy +lully) + (1 = m)l|ATu]ly
1 1 247, 42
< (42 fully + LAl + [ 2l (A2 ully + lully) + - (I1A20]5- + 116113,
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for some constant y; > 0 to be choose later.
Now, take 0 < 71 < 1 and see that by (2.17) we get
3
ATl + Jully < Col| Zx [Jwllx,
for some constant Cy > 0.
Thanks to (2.20)) we have
1
ATVl + [[o]5- < CsllZ [ x[[wllx,

for some constant C3 > 0.

Finally, from (2.19) we obtain

Blllwllx < ol Z |l xllwllx.

for some constant ¢y > 0, and we conclude by Theorem that A generates an

analytic semigroup and therefore —A is a sectorial operator. |

Theorem 2.1.6 The following conditions hold:
(1) —A is mazimal accretive or, equivalently, A is maximal dissipative;
(73) A has compact resolvent;

(1i1) A has imaginary powers are bounded and
HAHH,Z(X) < e%m, teR;
(iv) The semigroup {e*t : t > 0} is compact.

Proof. A part of item (i) follows of Lemma [2.1.2] To complete part (i) it suffices to

note that the equation

U U
(Li—A)|lv|=1]%
0 0

(A2 +3A+4A2 + 51) "V [(A + 342 + 31)i — (A% + 2A + A2 + 21)7)]
(A2 +3A+ 442 + 51) (A2 + 2A + A2 + 21)ii + (A2 + 21)T — (A + 242 + 1)6)
(A2 +3A+ 443 + 51) 7 [—(A+ 242 + )i+ (A3 + 24 + 243 + 41)6]
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belong to X*. The item (i) follows from Remark[2.1.4and compactness of the Sobolev
inclusions between Y* spaces resulting from compactness of the resolvent of A+ I and
Az + 1. The item (i77) follows from the observations concerning powers of accretive
operators reported in [1, Example 4.7.3 (b), p. 164]. The item (iv) is a consequence of
(17). |

2.1.3 Partial description of the fractional power scale

Connecting the properties of listed above with the results of Amann
[1, Chapter v| we obtain a partial description of the fractional power scale associ-

ated to A. Before we can proceed we need the following general interpolation result:

Proposition 2.1.7 Let #;, %;, i = 1,2,3 be the Banach spaces such that
Vi C Z,
topologically and algebraically. Then,

[‘% X % X ‘g%; Wl X % X%]a = [‘%7 Wl]a X [‘%7 %]a X [‘%7 %]OU o E (07 1) (221>

Proof. The proof is an immediate consequence of the definition of complex interpola-

tion spaces in Triebel [43], Section 1.9.2]. |

Based on Proposition it is now easy to get characterizations of the fractional

power spaces X, a € (0,1).

Proposition 2.1.8 For « € [0, 1] we have:

Proof. Recall that X° =Yz xY?x Y% X'=Y!xYzxY2 and from Theorem m,
X*=[X%X"Y,, a€l0,1]. (2.22)

Combining (2.22)) and (2.21]) we obtain

X =Yz, Y, x [V, V2], x [Y°,Y2],.
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Next, by our assumptions on A, we have the equalities:

a+1

Yz, Y'],=v", [Y%vz,=Y%, [Y°V:],=Y",
which justify the relation for D(A). [ |

Remark 2.1.9 Denote by X_ the extrapolation space of X = YixY xY generated
by the operator A1, The following equality holds

X =Y xY 2xY 2

In fact, recall first that X _; is the completion of the normed space (X, ||A™* ). Now,

note that
U

Gl -
—u— (A2 +1)710 .

<A+ D747 + Dl Ly + [(A+ D)7 0]y + 1A+ D)7y
+2lfully + [[(A2 + 1)74]ly
< 3Blully + oll,—y + 2001,y

(O] Fe

for any ( > € X_;1 and for some constant Cy > 0. We also have that

—(A+D) (A2 4+ Du— (A+1) o — (A+1)70

<0

[G)L, = Mty el + 161,
= lully + [[(A+ D)~20]ly + (A + 1)7'6]y.

(2.23)

The last two parcels of (2.23)) can be estimated as follows

v (A+1)720 4+ (A+1)"2(A2 + DNully
(A +1)"2 (A% + Dyully + (A + )20y
I(A+Dz[(A+ D) v+ (A+ )10+

+ (A + )72 (A2 + Dyully +|[(A+ 1)~

=||(A4+ 1) v+(/1+]) 10+(/1+I)

+2lully + lu+ (A7 + 1)y

1A+ 1)~ 20lly < [[(A+1)”
_l_

’\3"“ w\»—A

+1)7H (A5 + Dyl

0
(4
0lly
(A2 + Tyl

(2.24)

and
1(AZ + D7 Yy < flu+ (A2 + D)7y + [Jully. (2.25)
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Then, combining (2.23) with (2.24) and (2.25), we obtain that for some constant

el

<A+ D) o+ (A+ D70+ (A+1)7H(A2 + Dl
1
+ dllully + 2w+ (4% + 1)y
—_1( U
<SG f|A (z)Hx'
So we conclude that the completion of (X, |[|[A™" - |x) and (X, - ||x_,) coincide.

Remark 2.1.10 The operator A can be extended to its closed X_1—realization (see
Amann [1]), which we still denote by the same symbol so that A considered in X_4 is
then sectorial positive operator. Our next concern be to obtain embedding of the spaces
from the fractional powers scale X1, o > 0, generated by (A, X_1).

Below we have a partial description of the fractional power spaces scale for A:

for convenience we denote X by Xo, then
Xo = Xg1=>X_q, forall0<a <1,

where
Xo1=[X_1,Xola=YExYT xY 2

and [-, ], denotes the complex interpolation functor (see Triebel [43]). The first equality
follows from Theorem (since 0 € p(A)) see Amann [1, Example 4.7.3 (b)] and
the second equality follows from Carvalho and Cholewa [13, Proposition 2].

Remark 2.1.11 The operator A or, more precisely, a suitable realization of it, gener-
ates an analytic semigroup, {e* : t > 0}, in X_y, this semigroup is order preserving
and satisfies the smoothing estimates. Thanks to Henry [20, Theorem 1.4.3, p. 26] we

have

HeAthX < Me_mt_1||v||x_1,

foranyt >0, ve X_q, for some constants M >0 and w > 0.
Finally, thanks to we have Yz < H*(Q), s < 2 and consequently,
FC — X_1 and
HeAtv”X < Me “ "7 ||| e, (2.26)

foranyt >0, v e I, for some constants M > 0 and w > 0.

2.2 Existence and uniqueness of local solutions and
differentiability
Since the operator —A is sectorial, we prove local existence and uniqueness of

the solutions of the abstract problems (2.7) and (2.10) and that the solutions are

continuously differentiable with respect to initial conditions.
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2.2.1 Existence and uniqueness of local solutions

We are interested in obtaining the local well-posedness of the parabolic problems
(2.7) and (2.10) (or and (B))), for this it is necessary to study the behavior of
nonlinearity Ft, € € [0, g¢).

The next lemmas are crucial results in our analysis.

Lemma 2.2.1 Assume that v € H*P(Q)) with }D < s < 2ands— % > —%, or

ve HY(Q), i.e., s=1=p and ¢ =1 below. Then for sufficiently small €y, we have

(i) The map

[0,e0] 2 0 — |v|dS
I's

is continuous, where for sufficiently smallc >0, ', ={z —0o n () x €T} is

the “parallel” interior boundary.

(ii) There ezists C' > 0 independent of € and v such that for any 0 < & < &g, we have

sup ||v|lzer,) < Cllv||ger(e),
o€l0,e)

/we |v|qu=/oa (/F |v|qd5’>da,

with the same equality, without the absolute value, if ¢ = 1.

In particular

1
= [ 1oltdn < ol
and .
lim—/ lv|tdz = / lv|?dS.
e—0 € we r
Proof. See Arrieta, Jiménez-Casas and Rodriguez-Bernal [10, Lemma 2.1]. |

Now, we consider a family of functions ¢° : @ x R — R for 0 < ¢ < &y, satisfying

the following conditions:

(i) {g%(x,u)}. is uniformly bounded in € on bounded sets of R, that is, for any

R > 0 there exists a positive constant C'(R) independent of € such that

192(z,u)| < C(R), forallz €, and |u| < R. (2.27)
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(ii) {g°(x,u)}. is uniformly bounded in © on bounded sets of R and also uniformly
Lipschitz on bounded sets of R, that is, for any R > 0 there exists a positive
constant L(R) independent of ¢ such that

92(2,u) — g2(z,v)| < L(R)|u—v|, forallz € Q, and |u| < R, |v] < R. (2.28)

(iii) ¢%(z,u) converges to gJ(x,u) uniformly on I' and on bounded sets of R, that is,

for any R >0

@ (z,u) = gy(z,u) ase— 0, uniformly on € T and |u| < R. (2.29)

Then we have the following result.
Lemma 2.2.2 Consider a family of functions
@ OxR—-R

for 0 < e < gg. Also, consider a family of functions, C, in € such that, for some

l<p<ooand R>0
]| e < R, for allv e C.

(i) If {¢°}. satisfies (2.27)), then there exists a positive constant, M(R), independent
of € such that for every 1 < q < oo and any p € H>7 (Q) with s > i and every

v € C we have

1
[ o] < Mol
In particular
1
sup || =Xw. 92 (-5 0) < M(R).
ve? || € H—5a(2)

(ii) If{g°}. satisfies (2.27)), (2.28)) and (2.29)), then there exists M (e, R) with M (e, R) —

0 as € — 0 such that for every p € H*(Q) and v € C

1
L[ e [[abeoe] < MBI,
provided
g(N -1)
> —.
P N

In particular

1
X2 0) = go (-, v),  in H M), uniformly in v € C.
€
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Proof. See Jiménez-Casas and Rodriguez-Bernal |23, Lemma 5.2]. |

Lemma 2.2.3 Suppose that f and g satisfy the growth estimate and % <s< 1.
Then:

(i) There exists C' > 0, independent of €, such that

| Fe(w)|l,, < C,  for all wz(%)EX and 0 < e < éy.

(11) For each 0 < € < &g, the map F. : X — J is globally Lipschitz, uniformly in €.
(111) For each w = (g) € X, we have
| Fe(w) — Fo(w)]|,, = 0, ase—0.

Furthermore, this limit is uniform for w € X such that ||w|y < R, for some
R>0.

() If we — w in X, as € — 0, then
| F.(we) — Fo(w)]|,, =0, ase—0.
Proof. (i) Initially note that

, €€ (0,e0],
H=3(Q)

Falw) + X900

17l = |

[Eo(w)ll e = lfaw) + gr (W)l g-s(q)

with fo, $Xw.go and gr defined, respectively, by (2.8), (2.9) and (2.11).
Using ([2.1), Cauchy-Schwarz inequality and Sobolev embedding H*(Q2) < L*(Q)

Al < [ ru@lielas < [ Klpllda

< K ol ) < kullellgs ), Ve € H(Q).

w1th < s <1, we have

Thus,
||fﬂ(u)||H*5(Q) < ki (2.30)

Using ([2.1)), Cauchy-Schwarz inequality, |w.| < k |I'| € for some k& > 0 independent
of £, and Lemma [2.2.1, we have

1
(Grem(.e)| < £ [ lotu@lletoits < _/|¢ e

IHECHE / o] < bl Ve € 1)
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with k3 > 0 independent of . Thus,

< ky. (2.31)
H=+(9)

H%Xwagﬂ(u)

Now, using (2.1)), Cauchy-Schwarz inequality and the continuity of the trace op-
erator v : H5(Q2) — L*(T") with § < s < 1, we have

Al < [ et Ihe@)lis < K [ bl

< oK [/ A Fr] = I ey < Rl o € 1)

Thus,
||9F(u)||H—s(Q) < ks, (2.32)

Now, the item () follows in a straightforward from ([2.30)), (2.31]) and (2.32)).

(77) Initially, note that
[F(w1) — Fe(wa)| 5

, € €(0,e0],
H-+()

= rati) = st + e fontn) = gt

and

| Fo(wr) — F0<w2)||jf = ||[fa(u1) = fa(u2)] + [gr(ui) — 91“(“2)]”1{—8(9) )

1

with fo, —Xw.g90 and gr defined, respectively, by {) {) and ([2.11]).
€

Using ([2.1)), Cauchy-Schwarz inequality and Sobolev embeddings H?(Q) < L?(Q)

and H*(Q) — L*(Q) with § < s < 1, we have

(o) = folus). )| < [ 1f(wn(z) = flusle)llp(a)lds
< [ 1Fe@u@ + (- ote)uale)llun(e) - ualo)lo(o)lds

SYCE w(z)ﬁdazf | Iw(w)Ider

=K |lu — U2||L2(Q) ||90||L2(Q)
HS(Q) ) VQD € HS(Q)7

< Jur = uall o) [l

for some 0 < o(x) < 1,2 € Q. Thus,

[fa(u1) = fa(u2)llg-so) < e llur — uall g, - (2.33)
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Using ([2.1)), Cauchy-Schwarz inequality and Lemma [2.2.1] we have

(xlonti) = antull o) < £ [ lata() - stua(ollotoits

< [ 9@ + (1 - o@)us@)us(e) - uale)lp(@)]da

8[/u1 )~ sl |dx] {/w de}

H5(Q) » Vo € HS<Q)7

< ¢ flur — szl g2 Il

with ¢, > 0 independent of ¢ and for some 0 < o(z) < 1,2 € Q. Thus,

< e f|ug — U2||H2(Q) . (2.34)
H-5(9)

Hést [9a(u1) — ga(us)]

Now, using (2.1)), Cauchy-Schwarz inequality and the continuity of the trace op-
erators v : H*(2) — L*(T') and v : H*(Q) — L*(T") with £ < s < 1, we have

ar(un) = grlua). ] < | Platun(a) = glua(o)) (@) ldo
< [/ e@nt) + (1= o)) () - w@)he)d

et ] ]

we) . Ve € H(Q),

< e flur — wal g2 Il

for some 0 < o(z) < 1,z € I'. Thus,

lgr(u1) = gr(u)ll g-s(q) < esllur = 2|l 2(q) - (2.35)
Now, the item (i7) follows in a straightforward from ({2.33)), (2.34) and (2.35)).

(7ii) Notice that

[F=(w) = Fo(w)]

1
L= H—stgn(U) T I
c H=#(Q)

As in Lemma we can prove that there exists M (e, R) with M (e, R) — 0 as
e — 0 such that

2 [ stu@eteds ~ [ ouniel)ds

€ r

‘<§XWSQQ(U) — gr(u), <P>‘ =

< M<57R) ||90||H1(Q) ) VQO € Hl(Q)
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Thus,

1
H —0, ase—0, (2.36)

gstga(u) — gr(u)

)
uniformly for u € H*(Q) such that [|ul| ;) < R

Now, fix £ < sy < 1. Then for any s such that —1 < —s < —s¢ <

2 using

1
interpolation we have

0 1-6

1

1
< HEXWEQQ(U) —gr(u)

gstgn(U) — gr(u)

H)

Héx%ga(w — gr(u)

H~=5(Q) H=50(%)

for some 0 < 6 < 1. By (2.31) and (2.32)), the first term in the right hand side above
is uniformly bounded while, by (2.36]), the second goes to zero, both uniformly for
u € H?(Q) such that [[ull g2y < R.

(1v) This item follows from (i7) and (iii), adding and subtracting F.(w). In fact

[ F2(we) — Fo(w)| o < [[Fo(we) — Fo(w)]] ,p + [[Fe(w) — Fo(w)]| .
< Lljw, — w||x + || Fe(w) — Fo(w)]|,, = 0, ase—0,

where L > 0 is the constant of Lipschitz, and we conclude the proof of Lemma [2.2.3]

From Lemma follows that the map F. : X — 2 is bounded, uniformly
in ¢, in bounded set of X, and it is locally Lipschitz, uniformly in €. Thus, it follows
from the classic results of the theory of ordinary differential equations in Banach spaces
that, given wy € X, there is an unique local solution w? (¢, wp) of (2.7)), with & € (0, &),

defined on a maximal interval of existence [0, . (wp)), and there is an unique local

’ Ymax

solution w(t,wp) of (2.10) defined on a maximal interval of existence [0, ¢4, (wo)).

Moreover, these solutions depend continuously on the initial data.

2.2.2 The differentiability

We prove that the solutions of (2.7]) and (2.10)) are continuously differentiable with

respect to initial conditions, for this it is necessary to prove the Fréchet differentiability

of F. : X — J, ¢ € [0,60]. It is enough to prove the Fréchet differentiability of
1

fa, ZXw:90, 91 H*(Q) — H™*(Q).

1
We define the maps D fq, gstDgQ,Dgp : H*(Q) — Z(H?*(Q), H*(Q)), with
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s < 1, respectively by

N[ —=

(D falu) - b, ) / Fluheds, Vu,h € HX(Q) and Yo € H(Q),  (2.37)

1 1
<ngEDgQ(u) : h,gp> = g/ g (w)hedr, Yu,h € H*(Q) and Vyp € H*(Q2) (2.38)

and
(Dgr(u) - h, ) = /Fv(g’(U)h)W(w)dS, Yu,h € H*(Q) and Y € H*(Q),  (2.39)

where v : H*(Q) — L*(T") is the trace operator.

Lemma 2.2.4 Suppose that [ and g satisfy the growth estimates and

1 1

5 <s < 1. Then, fa, —Xw.9a,9r : H*()) — H~*(QY) are Fréchet differentiable, uni-
£ . ,

formly in €, and your Fréchet differentials are respectively given by , and

. Consequently, for each € € [0,e¢], F. : X — J is also Fréchet differentiable,

uniformly in €.

Proof. First we check that (2.37), (2.38) and (2.39) are well defined. In fact, for
h € H*(Q), using (2.1)), Cauchy-Schwarz inequality and Sobolev embeddings, we get

(D falu) - b)) / F(whllpldz < K / Ih] | dz

<x|f |h|2dx} | de}

= KAl llellzz) < kallbllzz@llelms @), Yo € H(Q).

Thus,

and D fo(u) € ZL(H?*(Q), H*(Q)).
Using ([2.1)), Cauchy-Schwarz inequality and Lemma [2.2.1] we have

'<1X%Dgﬂ< >‘ /Ig )hllp|dz < —/|h||<p|dx
K[ wead] 2 o]

H3(Q)s VSO c HS(Q),

< kal[hll 2ol

where the positive constant ks is independent of €. Thus,
H = Y. Dgalu hH < kol Bllsey, VA € HY(Q), (2.41)
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and %X%Dgg(u) € L(H*(Q), H5()).
Now, using ([2.1]), Cauchy-Schwarz inequality and trace theorem, we get

(Dgr(u) - B, )| /w W (@)ldo < K/w ) ()ldo

K| |v<h>|2da} i |v<so>|2da}

< ksl|hl g2 llollas @), Vo € H¥(Q).

Thus,
| Dgr(u) - bl g-s(0) < ks||h||m2@), Yh € H* (), (2.42)

and Dgr(u) € Z(H*(Q), H*()).
Now, let u,h € H?*(Q2) and using (2.1]), Cauchy-Schwarz inequality and Sobolev

embeddings, we have
o+ 1) = folw) = Dfa(w) - he)| < [ 1w+ 1) = f() = F(u)hllelda
= [ 1+ oh) = £l bllplds
= [ 176+ oh) + (1= opu)llohllloids

<K / 1P lolde
Q

< K|AlIZso) 1] 2

<alhlipolelw, Yo € H(Q),
where o = o(x) € [0,1] and 6 = 6(x) € [0,1], z € Q. Thus,
Ifa(u+h) = fa(u) = Dfa(u) - hllr-+@) < cillbllzr o)

This proves that fq is Fréchet diferentiable and your Fréchet diferential is given by
(12.37)).
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Let u, h € H*(2) and using (2.1), Cauchy-Schwarz and Lemma we have
‘<1X%QQ(U +h) - leggQ(u) - 1><weDgQ(U) ~h, s@>‘
<2 [ ot ) = gfa) = o gl
- / 9/ (u+ o) — g/ )Pl

=2 | 19"0Cu+oh) + (1 = O)u)llohl[hl|pld

We

<kt / wdx] E [ 1 dx]

< aallblliz)llllaew, Ve € H(Q),
where o = o(z) € [0,1] and 6 = f(z) € [0,1], x € Q, and with ¢; > 0 independent of
e. Thus,

1 1 1
| Sxecgalut 1) = Sxegalw) = ZxeDgatw)-bl|, < eallhlfge

This proves that %st go is Fréchet differentiable, unlformly in ¢, and your Fréchet
differential is given by ([2.38)).
Now, let u,h € H*(Q) and using (2.1]), Cauchy-Schwarz and trace theorem, we

have
[(gr(u + h) — gr(u) — Dgr(u) - h, )| /Iv (u+h)) —v(g(u) = v(g'(w)h)||7(p)|do
=/F|v(g”(9(U+<fh) + (1= 0)w)||[y(h)P|y(p)ldo

< KW zay v (@)l 2y
< asllhlli o) llellm@, Ve € H(Q),
where 0 = o(x) € [0,1] and § = 6(x) € [0,1], € T'. Thus,

lgr(u + h) = gr(w) = Dgr(u) - hllg-+@) < csllhllz @)
This proves that gr is Fréchet differentiable and your Fréchet differential is given by
[2-39).

The Fréchet differentiability of F., uniformly in ¢, follows immediately. |
Lemma 2.2.5 Suppose that f and g satisfy the growth estimates . Then, D fq,
Lxw.Dga,Dgr = H*(Q) — ZL(H*(Q)), H*(Q)) are globally Lipschitz, uniformly in .
Consequently, fore € [0,e], DF. : X — L(X, ) is also globally Lipschitz, uniformly

m E.
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Proof. Let u,v € H?*(Q2) and using (2.1]), Holder’s inequality and Sobolev embeddings,

we have

(Dfa(u) -k — Dfalv) - b ¢) /|f Vo — ()] |plde
- / " (u+ 00) e — o] 1]l
< u — v||h||o|dx
<K [ Ju=vlibllg

< Kllu — vl s [Pl 3@yl ¢l L2

< kallu — vl g2l bl 2@ ll@l] 75 (@)

for any h € H%(Q) and ¢ € H*(2), where 0 = o(x) € [0,1], x € Q. Thus,
| D fa(u) — Dfa(v)ll 2@mz@).m-s@) < killu —vllg2
Let u,v € H*(2) and using (2.1)), Holder’s inequality and Lemma , we have
‘<1XWED99(U) +h— lengﬂ(’U) +h, 90>‘ < é/w lg'(w)h — g'(v)hl|pldx

/ 19" (u + 00)|u — vl|Al|oldz

<t [ wmatta] L[ ] [! [ 1otad]

< kallu = vl @ 7l 220 lel o @)
for any h € H*(Q) and p € H*(Q), where ky > 0 is independent of € and o = o(z) €
[0,1], # € Q. Thus,

1 1
Y. D — —Yu.D <k _
| SxecDgaw) = Zxe.Daa(w)| < Hallu = vl

Now, let u,v € H?(Q2) and using (2.1), Hélder’s inequality and trace theorems,

we have
[(Dar(w)-h = Dare) b )| < [ Pla'@h) =16/ I (e)ldo
- / (" (4 o)) (e — )W) ()ldo

< K|y(u — o) || ey [y (P) || 2oy |y (@) 22y

< ksllu — vl 2@l bl 20 @] 75 (0)

for any h € H*(Q) and ¢ € H*(Q), where 0 = o(z) € [0,1], € ['. Thus,

| Dgr(u) — Dgr(v)|| #az),m-+)) < ksl|u — v||m2()
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Consequently, it is immediate that for each € € [0, 0], DF. is globally Lipschitz,

uniformly in €. |

Under the assumptions of Lemma and Lemma [2.2.5] we have that the map
F is continuously Fréchet differentiable. Now, from the classic results of the theory of
ordinary differential equations in Banach spaces the solutions of (2.7)) and (2.10) are

continuously differentiable with respect to initial conditions.

2.3 Existence and uniqueness of global solutions and
dissipativity

In this section we wish to prove that the solutions w®(t,wg), ¢ € (0,&0], and

w(t,wy) of the problems (2.7) and ([2.10), respectively, are globally defined, that is,

that for each wy € X, t5 . (wo) = 00 and t,4.(wy) = co. Moreover, we show that the

semigroups associated to solutions are strongly bounded dissipativite. To prove this,

we assume the previous hypotheses and additional dissipativity assumption ({2.2])(which

is equivalent to (2.3)) and we consider continuous functionals on X which are bounded

in bounded subsets of X and non-increasing along solutions of these problems.

2.3.1 Perturbed problems

Let V. : X — R be the continuous functional defined by
V(s = 1 Aull2 9 2 912 . ! dsd
v ) =5 1Aullz2 ) + ullzz@) + l0l72@) + 101720 A f(s)dsdx
(

——// s)dsdx, ¢ € (0,¢ep).

It follows from ({2.2) that for any v, > 0 and ~, > 0, there exists ky = k1(71) >0

2.43)

and ks = ko(7y2) > 0 such that

/ f(s / [71 * kl] ds < e +kiu < vt 4 ¢ (2.44)

and

< u? + oy, (2.45)

u 2
V2 You

ds < 22 4k ld
/09(5)5/0[2“]5 4

where ¢; = ¢1(71) > 0 and ¢ = ¢2(2) > 0 are independent of .
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Using ([2.44) and (2.45)), it follows that

1 1 1 1
§||AU||%2(Q) + §||u||2L2(Q) + 5”“”%2(9) + 5“9”%2(9)

:ve(}j)+/Q/0uf(s)dsd:c+é/ws/oug(s)dsdx

u 1
< ‘/E<v> + (~y1]u|2 +¢)dr + — (*y2|u|2 + ¢o)dx.
0 Q € We

Thus
1 1 1 1
QHAUH%2(Q) + (5 - ”Yl) HUH%%Q) + §H’UH%2(Q) + 5”9”%2(9)

<)+ 2 [ JuPde + cabir) + o,

and from Lemma there exists C' > 0 independent of € such that

2
2 [ upde < 2aCllull (240
and this implies that

1 1 1 1
SHAula) + (5 =) lulla = v2Cllulliegy + 510l + 51602
<V<9> + k|| + 1|9

€

Consequently, for w®(t) = <1;1L§ > () being the solution of the problem (2)) we have
that

1 1 1 1
SHAFaey + (5 =) 012y = 2 ey + 51022 + 516N

< V(3 ) + eablT] + i),

For 0 <y < % and choosing v, sufficientely small in the inequality above, we
obtain

lw ()% < CLVe(w(8)) + Co, (2.47)

for some C7,Cy > 0 independent of e.

We note that by subsection we obtain that a map t — w® (¢, wy) is differen-
tiable.

It is clear that for w®(t) = (zg ) (t) being the solution of the problem ([2) we have

that [0, tyaex(wo)) Dt +— Vo(w(t,wp)) € R is non-increasing because

dVe
dt

(1) = =V O)l22(@) = 16° ()220 <O,
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for Vo(t) = Vo(w*(t,w)), t € [0, tinaz(wo)).
Using Lemma [2.2.1] we can prove that V. is continous and uniformly bounded in
uniformly bounded subsets of X. From (2.47)) we have that given r > 0, there is a

constant C(r) > 0 independent of € such that

sup{[|w®(t, wo)llx « lJwollx <7, ¢ €0, 17,4, (w0))} < C. (2.48)

’ Ymazx

From ([2.48) we have that for each wy € X, the solution of (2.7) is defined for all

t > 0, that is, t¢ . (wg) = oo. Consequently, for each £ € [0,e;), we can to define a

? max

nonlinear semigroup {S:(t) : ¢ > 0} in X by
Se(t)wo = we(t,wp), t=0.

This also implies that each uniformly bounded subset of X has orbit and global orbit
uniformly bounded in e.

Note that the nonlinear semigroups are given by the variation of constants formula
t
S (H)wy = e*wy +/ AU EL(S.(s)wo)ds, t >0,
0

see Henry [20, Chapter 3] for details.

Remark 2.3.1 Note that (2.43)) is a Lyapunov function with the properties of Defini-
tion and thus {S:(t) : t > 0}, € € (0,e0] is a gradient system.

2.3.2 Limit problem

Let V5 : X — R be the continuous functional defined by

u 1 u
vo(g)—5[||Au||%2(m+Hu||12(m+\|uy|§2(m+|ye|y§2(m]_/Q/O f(s)dsdz
(

—/F/Oug(s)dsd:v.

Using ([2.44) and (2.45)), it follows that

2.49)

1 1 1 1
§||AU||%2(Q) + 5““”%2(9) + 5””“%2(9) + §H0H%2(Q)

:%(%)4—/9/Ouf(s)dsd:v+/r/0ug(s)dsda

<Vo(§)+ [ Onlul? +ede + [ aby(@)? + co)do.
0 Q r
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Thus
1 1 1 1
SlAulzg + (5 =7 ) el + 1ol + 51000
<W(§) + [ hwPds + it + o),
r

and from trace theorem there exist C' > 0 such that

2 [ H@PAS < 2uCllulline

T

and this implies that
1 2 1 2 2 1 2 1 2
§||AU||L2(Q) + (5 - ’Yl) ullz2) — 2Cllullirz@) + §HUHL2(Q) + §||0||L2(Q)
<Vo(§) + el + el

Consequently, for w(t) = <§)(t) being the solution of the problem we have that

1 1 1 1
SHAull) + (5 =) lulifa@) = Clullie + Sl + 516050

<Vo(§) + el + el

For 0 <y < % and choosing 7, sufficiently small in the inequality above, we have that
lw(®)[[k < C1V(w(t)) + Ca, (2.50)

for some C7, Cy > 0.
Again in the subsection we obtain that a map ¢ — w(t, wy) is differentiable.
It is clear that for w(t) = (g) (t) being the solution of the problem (3) we have
that [0, taex(wo)) 3t +— Vo(w(t,wp)) € R is non-increasing because

dv
d—tO(UJ(t)) = —IVO0)lZ2() — 110(t)I[72(0) <O,

for Vo(t) = Vo(w(t, wo)) and t € [0, tyaq(wo)).
Using trace theorem we can prove that V is continuous and uniformly bounded
in uniformly bounded subsets of X. From (2.50) we have that given r > 0, there is a

constant C(r) > 0 such that
sup{||w(t, wo)||x : ||wollx <7, t € [0, timas(wp))} < C. (2.51)

From ([2.51)) we have that for each wy € X, the solution of is defined for
all t > 0, that is ¢4, (wp) = 0o. Consequently, we can to define a nonlinear semigroup
{So(t): t =0} in X by

So(t)we = w(t,wy), t=0.
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This also implies that each uniformly bounded subset of X has orbit and global orbit
uniformly bounded.

Note that the nonlinear semigroup is given by the variation of constants formula
t
So(t)wo = g +/ A=) Fy(So(s)wo)ds, t >0,
0
see Henry [20, Chapter 3| for details.

Remark 2.3.2 Note that (2.49) is a Lyapunov function with the properties of Defini-
tion and thus {Sy(t) : t > 0} is a gradient system.

2.4 Existence and upper semicontinuity of global at-

tractors

From this section onwards we be assuming all the previous hypotheses. The
results obtained in the previous sections and smoothing effect of the equations assure
us that the nonlinear semigroups generated by our problems and have
global compact attractors o7 for 0 < € < g9. Moreover, we get a result of boundedness
uniform in ¢ of the attractores, the convergence of the nonlinear semigroups and upper

semicontinuity of the global attractors.

2.4.1 Existence of the global attractors

In this subsection, we establish the existence and characterization of the global
compact attractors for the nonlinear semigroups generated by our problems ({2.7) and
(2.10]) using the results of Hale [19, Theorem 3.8.5, p. 51|. Moreover, we obtain uniform

boundedness of the attractors.

Theorem 2.4.1 For sufficiently small € > 0, the parabolic problems (2.7)) and ([2.10)
have a global compact attractor <. and of. = W" (&), where

W (&) = {w € X : S.(—t)w is defined for t =0 and lim dist(S.(—t)w, &) = 0},

t—+o00

and & denotes the set of equilibria of the nonlinear semigroup {S.(t) : t > 0} generated
by our problems (2.7)) and (2.10). Moreover, <. is connected.

Proof. Using the functionals V. and V; defined in (2.43)) and ({2.49)), respectively, for
e > 0 enough small, from the smoothing effect of the systems and the Theorem
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we get that the problems (2.7) and (2.10) have global attractor @7 in X with the
characterization o, = W*(&;), for 0 < & < g9. Moreover, 47 is connected because X

is a Hilbert space. [ |

Here, we present a result on the uniform bounds of the attractors that we use to

show the upper semicontinuity at ¢ = 0 of the attractors.

Theorem 2.4.2 For sufficiently small € > 0, the union of the global attractors
U&‘E[Oﬁfo} 4. 1is a bounded set in X.

Proof. For sufficiently small ¢ > 0, it is important to note that for global bounded
solutions of in ([2.47), we can estimate V.(w®(t)) by a constant independent of &
thanks to , as well as, the constant Cy > 0 in ([2.47)) is independent of €. Hence,
this boundedness uniform in € jointly with , , and the invariance of the
attractors by the semigroups, allows to conclude that the union of the global attractors

Uee[o,eo] 4. is a bounded set in X. -

2.4.2 Convergence of the nonlinear semigroups

From now on we show the convergence of the nonlinear semigroups as ¢ — 0.
With this convergence result we concluded that the limit problems for the autonomous
thermoelastic plate system is given by . Initially, we estimate the linear semi-
group.

We use the Remark to show that the nonlinear semigroups behave contin-

uously at ¢ — 0.

Proposition 2.4.3 Under the above hypothesis, let % < s < 1 and some fivzed T > 0.
Then, there exists a function C(g) > 0 with C(e) — 0 as € — 0, such that for wy € B,

where B C X 1s a bounded set, we have

|

for some constant M (1, B) > 0.

S.(t)wo — So(t)wOHX < M(r,B)C(), Vitelo,7], (2.52)

Proof. Let B C X be a bounded set, and let wy € B. Fixed 7 > 0, we consider the

nonlinear semigroups given by the variation of constant formula
t
Se(t)wo = e*wy + / PO FL(S.(E)wo)dE, e € [0, 2] (2.53)
0
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associated with (2.7)) and (2.10)).
Note that from (2.53)), for t € (0, 7] we have

S (t)u — Softyu| < /0 t

A=) H

FL(S-(€)wo) = Fo(So(©uo) | de.

(2.54)

L(H,X) ‘

Adding and subtracting the term F.(Sp(&)wp) in the second norm on right side
of (2.54)), from (2.26|) we can to write the inequality above of the following form

t
| <[ 1l
X B L(HX)

t
el )
0 LX)

< [ (- e | (S.eun) — Fu(So(uo)]| e

Sg (t)wo — So (t)wo

FL(S:(§)wo) — FL(So(§)wo) (}fdf

F(S0()wa) — Fo(So(€)wo)|| e

t
+ M, / (t — &) temwlt=9)
0

FL(So(§)wo) — Fo(So(&)wo) %df-

(2.55)

We analyze each term on right side of ([2.55)) separately. From (2.48) and ([2.51])
we have that there exists C' = C(wp) > 0 independent of ¢, such that

IS (E)wolx <C, Vee[0,e] and Vee[o,r].

Now, from item (7i) of Lemma m, F is globally Lipschitz, uniformly in £, thus

there exists L > 0 independent of ¢, such that

[t
0

<L /0 t(t _ g)*le*w@*é)Hse(g)wO — 50<g)wOHng.

FL(S:(§)wo) — FL(So(§)wo)||  d§
H” (2.56)

Since {Sp(s)wp : s € [0,7]} is bounded set contained in X. Thanks to item (i)
of Lemma there exists a function C'(¢) > 0 with C'(¢) — 0 as ¢ — 0 such that

[ =109 | sithun) — Rty de
< M(r,w0)C(e) /0 (= &) e g -
< M(1,w)C(e) /+°0 z e % dz

= M(7,w0)C(e)I'(0), (F(0) = 1),

80



where M (7,wo) > 0 and I'(z) = [° 2*"*e~*dz is the gamma function.

Combining (2.55)) with (2.56) and (2.57)), we get for all ¢ € (0, 7],

S.(#)wo — So(t)ngX

< Cle)M(1,wo)M + LM, /t(t _ 5)—1€—w(t—£)‘
0

Ss(f)wo - So(f)wo

dg,
X

where C'(e) > 0 with C(¢) - 0 as ¢ — 0.

From Gronwall’s inequality, Henry [20, Lemma 7.1.1, p.188] it follows that

and consequently we conclude that (2.52)) holds. [ |

S.(t)wo — So(t)wOHX < M(r,w, L, B)C(e)e™,

Similarly, we can prove the following result.

Proposition 2.4.4 Under the above hypothesis, let % < s < 1 and some fixed
7 > 0.Then, there exists a function C(e) > 0 with C(e) — 0 as ¢ — 0, such that
forw® € o, € € (0,e9], we have

for some constant M(7) > 0.

Se(t)w® — Sp(t)w?

L SM@D)CE), Ve, (2.58)

2.4.3 Upper semicontinuity of the global attractors

Finally, in this subsection we show the upper semicontinuity of global attractors

at ¢ = 0, in the sense of Hausdorff semidistance in X.

Theorem 2.4.5 The family of attractors <f. is upper semicontinuous at € = 0; that
18,
disty (e, o) — 0, as € —0,

where
disty (o, o) = sup dist(w®, o) = sup %nﬁ{{“wg—woﬂx}.
0

we €, wE Eafe W E.

Proof. Thanks to Theorem [2.4.2] there exists By C X a bounded set such that

By O USE[()’EO] <. for some gy > 0. Hence, o attracts | . O 4. under the

e€0,e0]

nonlinear semigroup Sy(-). Thus, given § > 0, there exists 7 = 7(d) > 0 such that

dist(Sp(T)w®, o) < g, Yw® € .. (2.59)
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Since o7 is invariant then given ¢° € o7 there exists ¥° € 4% such that ¢° = S_(7)v°.
Thus,

dist(¢%, ) = inf [¢° —w’|x < inf {[l¢" = So(T)0"|[x + [|So(7)9° — w’||x}
wle wOE,;z/O

= [[Se(T) 9" = So(T) 0" x + dist(So(7)0", ).

From Proposition [2.4.4] for € enough small, we get

15:(7)9° — So(T)0"[|x <

N

. (2.60)

Using (2.59) and ([2.60)), for € enough small, we have
dist(¢®, o) < 0, YV ¢° € o,

and thus we conclude the upper semicontinuity of the family of attractors at ¢ = 0. l

2.5 Lower semicontinuity of global attractors

In this section we finished the analysis on the continuity of the global attractors of
the nonlinear semigroups generated by the abstract problems and , showing
the lower semicontinuity of these attractors, since in the previous sections was showed
the existence and upper semicontinuity. But for this end we need to show the continuity
of the set of equilibria associated to abstract problems and and also we
have to show the continuity of local unstable manifolds around these equilibria. With
this and using the results of Henry [20, Chapter 6] we obtain the lower semicontinuity

of these attractors.

2.5.1 Continuity of the set of equilibria

Firstly, we prove a result of uniform boundedness and convergence of the Fréchet
differential of the nonlinearity F., that we need for show some results that we utilize

in the proof of the lower semicontinuity of the set of equilibria at ¢ = 0.

1
Lemma 2.5.1 Suppose that f and g satisfy the growth estimates and 5 <s< 1.
Then

(i) There exists k > 0 independent of € such that
||DF5(U))||$(X7%) <k, welX and € € [0,50].

82



(it) For each w € X, we have
|DF.(w) — DFy(w)||#x,») =0 as &—0,
and this limit is uniform for w € X such that ||w|x < R, for some R > 0.
(iii) If w® — w® in X ase — 0, then

|DF.(w®) — DFy(w°)||gx,e) — 0 as & —0.

(w) If w® — w® in X ase — 0, and h® — h® in X ase — 0, then

|DF.(w*)h® — DEy(w”)h||» =0 as &— 0.

Proof. (i) Let w € X, ¢ € [0, 9] we have

|DF.(w)||#x.zy = sup  ||[DF.(w)h]| .
he X
[hily =1

h1
Note that, for each h = (Z?) e X,
3

, € €(0,e0],

1
|DE.(w)h]r = HDwi)m - L Dga(uphn
c H=(®)

| DFo(w)h|r = |Dfa(w)hi + Dgr(u)hi||g-s),

where the maps D fq, %st Dgq and Dgr are given respectively by (2.37)), (2.38) and
(2.39)). From (12.40), (2.41) and (2.42) we conclude (7).

(11) For each w € X, notice that

1
IDF.(u) = DFy(u)txor) = | Do Do) ~ Do)

Z(H?(Q),H=5(Q)) .
As in Lemma we can prove that there exists M (e, R) with M (e, R) — 0 as

e — 0 such that

(Dot = Dar(wm. )| = |1 [ ez = [ 4 ()s

<M, R) [y Iy 1 € HE(@) and o € ().

Thus,

—0, ase—0, (2.61)

|
Z(H?(Q),H ()

~Xo-Dgolu) — Dyr(u)
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uniformly for u € H?(Q) such that ||ul| 52y < R.

Now, fix % < 59 < 1. Then for any s such that —1 < —s < —sy < —1

2
interpolation, (2.41)) and (2.42) we have

using

1
| Dt~ DarCt

H=3(Q
0( ) 1-6

1 1
< | SxeDanteon - Darct !\ Dgalu)hy — Dgr(u)hy

H=50(S)

) 1 H=1(Q)
. -
< (ko + k3)? HEX%DQQ(U) — Dgr(u)

|h 2y, Yhi € H*(Q),
ZL(H?(Q),H-1(Q))

for some 0 < 0 < 1. Thus using (2.61]), we obtain

— 0, ase—0,

1
H—st Dga(u) — Dgr(u)
€ ZL(H2(Q),H5())

uniformly for u € H?(Q) such that [|ul|z2q) < R.
(111) From Lemma [2.2.5, we have that there exists L > 0 independent of € such that

IDF(w*) = DFo(w") | 2(x.00)
< |DE.(wf) = DE.(w") | 2x. ) + [ DF.(w) = DFy(w®)]l .
< Lljw® — w||x + | DF.(w®) — DFy(w®)|| 2(x.2) — 0, ase —0,
where we also use the item (ii) and w® — w® in X, as € — 0.
(iv) We take w® — w® in X, as € — 0, and h® — h® in X, as ¢ — 0. Using the items
(1) and (iii), we get
| DF.(w)h® — DFy(w®)h|| »
< ||DE.(w)h® — DE.(w®)h°| s + || DF.(w*)h” — DFy(w”)h°|| »
< | DF(wf) | 2x.0m) 0 = 0O x + | DF.(w") = DFy(w”) | 2x,0)|10°] x
< klb® = by + | DF.(w®) — DFy(w’)|L2(x, [hllx = 0,
as e — 0. |
In order to obtain the lower semicontinuity of global attractors at ¢ = 0 we

need to obtain the continuity of the set of equilibria and then study the continuity

of the linearization around each equilibrium. In this section we prove that the family

{&. e €[0,e0]} of (2) and (3]) is continuous at € = 0.
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Definition 2.5.2 The equilibrium solutions of and are those which are inde-
pendent of time. In other words, the equilibrium solutions of are those which are

solutions of the elliptic problems

1
A%uf +uf = f(uf) + —xu.g(u) in 9, 2,62
2.62
ous  O(Au®)
et — F g ,
o5 57 0 on , 0<e e
and
AGT—60°=0 in £,
o0¢ (2.63)

aﬁ:O on I', 0<e< e,

that is, 0° is identity null in Q). The equilibrium solutions of are those which are

solutions of the elliptic problems

A%u+u= f(u) in

Ou _ 0(Au) () r (2.64)

an  om W b

and
A—0=0 in 9, 065
2.65

a—?,zo on T,
on

that is, @ is identity null in €.

Remark 2.5.3 Equivalently, for each ¢ € (0,e0] the equilibrium solutions of are

those which are solutions of the semilinear problems

Aw® + F.(w®) =0, w®= <U§>. (2.66)

As well as, the equilibrium solutions of are those which are solutions of the semi-

linear problem

Aw + Fy(w) =0, w= <§) (2.67)

Thus, the set of equilibria &, of and , or equivalently, the set of solutions
of (2.66) and (2.67)) with € € [0, 0], is given by

€

& = {wi = (%) € X; u is solution of }, e € (0,¢0),

0

and

’LLO
&y = {wg = ( 0") € X:; Y is solution of }

0

We see that each set &. is not empty and it is compact, but for this, we need of

following result
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Theorem 2.5.4 Let X,Y,Z be normed linear spaces, and suppose T € ZL(X,Y),
SeZ(Y,Z). Then ST is compact, whenever S or T is compact.

Proof. See Taylor and Lay [41, Theorem 7.2, p. 298| |

Lemma 2.5.5 For each ¢ € [0,¢0] fized, the set & is not empty. Moreover, &. is

compact in X.

Proof. The bounded linear operator (A+1)~' : H=5(Q2) — H?(f) is compact, because
the linear operator (A+1)~' : H=%(Q) — H**(Q) is bounded and we have the compact
embedding H*~%(Q)) — H?*(Q) for 4—s > 2. Moreover, we have the compact embedding
H*(Q)) — H?*(Q) and therefore the bounded linear operator (A+1)~1: L?(Q2) — H*(Q)
is compact. We also have the compact embedding H?*(Q2) — L?*(2) and therefore the
bounded linear operator (A2 + I)~!: L2(Q) — L3(2) is compact.

Finally, the linear operator (A + I)~'(A2 + 1) : H2(Q) — H2(Q) is compact,
because the linear operator (A + I)™Y(A2 + I) : H2(Q) — H*(Q) is bounded and
we have the compact embedding H*(Q) — H?*(Q)). Therefore the linear operator
A=l # — X is compact and consequently A~'F. : X — X is compact.

Now, we show that for each £ € [0, g¢] fixed, the set & is not empty, it is equivalent
to show that the compact operator A™'F. : X — X has at least one fixed point. From

Lemma [2.2.3] we have that there exists k£ > 0 independent of ¢ such that
|Eo(w)]|lr <k, YweX and e €0,

We consider the closed ball B,(0) in X, where r = k[[A™| #(r.x). For each

w € X, we have
AT FL(w)|x < 1A | zrx) | Fe(w)llr < 7. (2.68)

Therefore, the compact operator A™'F, : X — X takes X in the ball B,(0), in
particular, A~'F, takes B,(0) into itself. From Schauder Fixed Point Theorem, we
obtain that A=1F, has at least one fixed point in X.

Now, for each ¢ € [0,¢g¢] fixed, we prove that & is compact in X. For each
e € [0,e0) fixed, let {w:,}nen be a sequence in &, then wi, = —A7'F.(uwf,),

for all n € N. Similarly to (2.68)), we get that {wg, }nen is a bounded sequence
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in X. Thus, {—A‘lFE(win)}neN has a convergent subsequence, that we denote by

{—=A7'F.(we,, )}ren, with limit w € X, that is,

Mk
AT F(wi,)—w in X, as k—oo.

Hence, wg, — win X, as k — oo.

By continuity of operator A™'F, : X — X, we get
AR (wi,, ) > —AT'F(w) in X, ask— oo
By the uniqueness of the limit, w = —A~'F.(w). Thus, Aw + F.(w) = 0 and w € &..
Therefore, &, is a compact set in X. [ |

The upper semicontinuity of the family {&. : € € [0,£¢]} at € = 0 is a consequence

of the upper semicontinuity of attractors at ¢ = 0.

Theorem 2.5.6 The family {&. : € € [0,20]} is upper semicontinuous at € = 0.

Proof. Initially, we observe that & C @ for any ¢ € [0,50], and therefore, & is
bounded in X. We prove that for any sequence of ¢, — 0 and for any wi" € &,
we can extract a subsequence which converges to an element of &,. From the upper
semicontinuity of the attractors and using that wi € & C 9%, we can extract a
subsequence wik € &., with ¢, — 0, as & — oo, and we obtain the existence of a
w® € 4, such that
|lws —w?|x =0, ask — oo.
We need to prove that w® € &; that is, So(t)w® = w?, for any ¢ > 0.

We first observe that for any ¢ > 0,
lwes = So(H)w’llx < [lwer —w’llx + [[w” = So(t)u’[lx — [[w” — So(t)u’[|x, as k — co.

Moreover, for a fixed 7 > 0 and for any ¢ € (0, 7), we obtain

lwi* = So(t)w’|lx = [1e, (H)wz — So(t)u” | x
< 1S (wss = So(t)ws [[x + [|So(O)ws — So(t)w’|lx — 0, as k — oo,

where we have used the continuity of semigroups given by Proposition 2.4.4 In par-

ticular, we have that for each t > 0, Sy(t)w® = w®, which implies that w® € &. [ |
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The proof of lower semicontinuity requires additional assumptions. We need to
assume that the equilibrium solutions of (2.67)) are stable under perturbation, this

stability under perturbation be given by the hyperbolicity.

Definition 2.5.7 We say that the solution w® of (2.67)) is hyperbolic if the spectrum
(A + DFy(w?)) of A + DFy(w?) is disjoint from the imaginary axis.

Theorem 2.5.8 If all solutions of (2.67)) are isolated, there are only a finite number
of them. Any hyperbolic solution of (2.67)) is isolated.

Proof. Since & is compact we only need to prove that hyperbolic solution is isolated.

We note that w? € & is a solution of (2.67)) if and only if w? is a fixed point of
T(¢) := —(A+ DFy(w))) ™ (Fy(§) — DFy(w?)€).

It is not difficult to see that there is 6 > 0 such that 7" is a contraction map from closed
ball centered at w? and of radius ¢ in X, Bs(w?), into itself. Thus we obtain that w?

is the only element in & in the ball Bs(w?). [

Lemma 2.5.9 Let w* € X. Then, for each ¢ € [0,e0] fized, the operator
AT'DF.(w*) : X — X is compact. For any bounded family {ws}se(ofo] in X, the
family {A ' DF,(w*)w}.e (0,2 s relatively compact in X. Moreover, if w® — w® in
X, as e — 0, then

AT'DE (w*)w® — A'DFy(w*)w’ in X, ase— 0.

Proof. For each ¢ € [0,g] fixed, the compactness of linear operator A~'DF.(w*) :
X — X follows from item (i) of Lemma and of compactness of linear operator
Al = X.

Let {w®}.c(0,e0] Pe a bounded family in X. Since

[IDF(w)w |l < [[DF(w)|Lzx0n) [0l x ¥ € € (0, 0],

and from item (i) of Lemma [2.5.1, {DF.(w*)}<c(0,c) is a bounded family in .2(X, .2),
uniformly in €, then {DF.(w*)w®}.c0 is @ bounded family in 7. By compactness
of the linear operator A™! : " — X, we have that {A ' DF,(w*)w®}.c(0,,) has a con-
vergent subsequence in X. Therefore, the family {A ' DF.(w*)w®}.c(0z, is relatively

compact.
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Now, let us take w® — w® in X, as € — 0. Thus, from item (%) of Lemma ,
DFE.(w*)w® — DFy(w*)w® in 2, ase— 0.
By continuity of the linear operator A=! : # — X, we conclude that
AT'DE (w*)w® — AT'DE.(w*)w” in X, ase— 0.
|

Lemma 2.5.10 Let w* € X such that 0 & o(A+ DFy(w*)). Then, there exists €y and
C' > 0 independent of € such that 0 & o(A + DF.(w*)) and

(A + DE.(w*)) |\ zwrx) <C, Ve €[0,e). (2.69)
Furthermore, for each € € [0,¢0] fized, the operator
(A+ DF.(w*) ™ # - X

is compact. For any bounded family {w®}ocoz in €, we have that the family

{(A + DF.(w*)) " }ee(,e] s relatively compact in X. Moreover, if w® — w° in

FC, as e — 0, then

(A+ DF.(w*))'w® = (A + DFy(w*) ' in X, as e—0.
Proof. First, for each ¢ € [0, g9], we note that
(A+DF.(w)) ' = [AU+A'DF.(w)] ' = ([ +A'DF.(w*)) 'A™".

Then, prove that 0 € o(A+DF.(w*)) it is equivalent to prove that 1 € p(A~'DF.(w*)).
Moreover, to prove that there exists g and C' > 0 independent of & such that ([2.69))
holds, it is enough to prove that there exist ¢y and K > 0 independent of € such that

(I +A'DF.(w*) 2 < K, Ve €0, (2.70)
Indeed, we note that
I(A + DF(w") 20 < I+ AT DE(w") 200 llA™ | 20.x)
= K||[A | 2urx)=C, €€[0,&).
Then we show (2.70). From hypothesis 0 & o(A + DFy(w*)) then 1 € p(A~'DFy(w*)).
Thus, there exists the inverse

(I+A'DF(w")) ™ : X - X
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and, particular we have N(I + A~'DFy(w*)) = {0}.

For simplicity of notation, let J. = A™'DF_(w*), for all € € [0, g¢]. From Lemma
we have that, for each ¢ € [0,¢] fixed, the operator J. : X — X is compact.
Using the compactness of J. we show that hold, if and only if,

1
(I 4 Jo)w®||x > e Ve € [0,&0] and ||w®||x = 1. (2.71)

Indeed, suppose that (2.70]) holds, then there exists the inverse (I+.J.)71 : X — X

and it is continuous. Moreover,
11+ J) 7'y llx < Kly°[lx, Ve € [0,60) and ¥y € X.
Now if w® € X is such that |[w®||x = 1 and taking y* = (I + J.)w®, we have
(2 + o) (I + J)wlx < K[+ Jo)w?|lx
and
1= [luf][x < K[[(I + Jo)w®||x,

in other words,

1
(T + oyl > &

On the other hand, suppose that (2.71) holds. We show that there exists the
inverse (I + J.)™' : X — X, it is continuous and satisfies (2.70). From (2.71)), we

obtain the following estimative
1
(I + Jo)w®||x > %stHX, Ve € 0,60] and Yu® € X. (2.72)

Now, let w® € X such that (I + J.)w® = 0. From (2.72) follows w® = 0. Thus,
for each € € [0,e0], N(I + J.) = {0} and the operator I + J. is injective. Since there
exists the inverse (I + J.)™!' : R(I + J.) — X and J. is compact, then by Fredhlom

Alternative Theorem, we have
NI+ J.)={0} <= R(I+ J.)=X.

Then I + J. is bijective, thus there exists the inverse (I + J.)™'; X — X.
Now, taking y® € X there exists w® € X such that y* = (I + J.)w® and
w® = (I + J.) 'y, From (2.72)) we have

I+ 1) 7 llx = llwllx < KNI+ Jo)wsllx = Kyl x
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and

I+ Jo) e <K, Veel0 e

and thus (2.70]) holds.

Therefore (2.70) and (2.71]) are equivalents, then we show ([2.71]). Suppose that
(2.71)) is not true, that is, there exists a sequence {wy, }neny in X, with ||Jw,||x = 1 and

e, — 0, as n — o0, such that
(I + J.,)wnllx =0, as n— oco.

From Lemma we get that {J., w, fnen is relatively compact. Thus, {J;, Wy, }nen
has a convergent subsequence, which still we denote by {J., wy, }nen, with limit w € X,
that is,

Je,wp, —w In X, In n— o0

Since w, + J.,w, — 0 in X, as n — oo, then w, - —w in X, as n — oo and
thus |w||x = 1. Moreover, using the Lemma we get J. w, — —Jow as n — oo.
Then,

wp, + Jo,w, > —(w+ Jyow) in X, as n— oo.

By uniqueness of the limit, (I + Jy)w = 0, with w # 0, contradicting the fact of the
operator I + Jy be injective, because 0 € o(A + DFy(w*)). Showing that (2.71]) holds.

With this we conclude that there exists ¢g > 0 and C' > 0 independent of ¢ such

that (2.69)) holds.

Now, for each € € [0, &g}, the operator (A + DF.(w*))™! is compact and the prove
of this compactness follows similarly to account below. Let {w*®}.c(0,] be a bounded

family in 7. For each ¢ € (0, ], let ¥° = (A + DF.(w*)) *w®. From (2.69) we have

191l < (A + DF.(w")) " wf[lx < (A + DE(w")) " lzoex) [0l

< C’Hwa||;f-

Hence, {9°}.c(0,¢0) is @ bounded family in X. Moreover,
¥ = (A + DF.(w*)) 'w® = (I + A" DF.(w*)) A w®

in other words,

(I + A 'DFE.(w*))¥ = A~ s,
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and equivalently,

¥° = AT'DE (w*)9° + A .

By compactness of A™! : # — X, we get that {A™'w}.c (o, has a convergent
subsequence in X. Moreover, using the Lemma , we have that {A ' DF. (w*)9° }oe(0,]
is relatively compact in X, then {A ' DF,(w*)¥ }.c(0,,] has a convergent subsequence
in X. Therefore, {¥°}.c(., has a convergent subsequence in X, that is, the family
{(A + DF.(w*)) '"w®}.e(0,, has a convergent subsequence in X, thus it is relatively
compact in X.

Now, we take w® — w in S, as ¢ — 0. By continuity of operator A=~ : JZ — X,
we have

A7'w® - A ® in X, ase—0.

Moreover, {w*}.c(o,,) is bounded in J2, for some gy > 0 enough small, and we have
that from the above that {¥°}.c(.c,, With €9 > 0 enough small, has a convergent

subsequence, which we again denote by {¥°}.c(0.,], with limit ¥° € X, that is,
¥ =9 in X, ase—0.
From Lemma [2.5.9] we get
AT'DF.(w*)9° — A" DFy(w*)9° in X, ase— 0.

Thus, ¥° satisfies 9° = A~ D Fy(w*)9° + A~1w?, and so 9° = (A + D Fy(w*))tw®.

Therefore,
(A+ DF.(w*)'w® = (A + DFy(w*)) '’ in X, ase—0.

The limit above is independent of the subsequence, thus whole family

{(A+ DF.(w*)) " }ee(0,00) converges to (A + DFy(w*)) 'w® in X, as e — 0. [

Theorem 2.5.11 Suppose that w? is a solution for (2.67) and that 0 & o(A+D Fy(w?)).
Then there are g > 0 and 6 > 0 such that the problem has exactly one solution,
wE, in the closed ball centered at w® and radius 0, {£ € X : ||€ — w?||x < 0}, for any
e € (0,e9]. Futhermore,

|wS —w?||x =0, ase—0.
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Proof. Initially, note that from Lemma [2.5.10| there exists ¢y > 0 and C' > 0, inde-
pendent of ¢y, such that

(A + DE.(w))) M 2ex) < C, Ve € (0,&). (2.73)
We note that if wg, ¢ € (0, &), is a solution of (2.66), then
0= (A+ DF.(w)))[w: + (A + DF.(w))) " (F.(w) — DF.(w)w?)].

Since (A + DF.(w?)) is invertible, then w¢ is a solution of (2.66)) if, and only if,
w is a fixed point of the map 7. : X — X defined by

T.(w) = —(A + DE.(w?)) ™ (F.(w?) — DF.(uw?)uf).

Note that
T.(w?) = w? in X as e—0. (2.74)

In fact, using (2.73), item (i) of Lemma[2.2.3] item (iv) of Lemma and Lemma
for e € (0,ep), we have
I (w?) — wlllx = 1Te(w?) — T(wy)llx
< | = (A+ DF(wl) " [Fe(w)) — DFo(w))w) — (Fo(w?) — DFy(w))ul)|x
+HII[(A + DF(w)) ™ — (A + DFy(w?) ' (D Fy(w))wi — Fo(wy))llx
< C(IF(w) = Fo(wy)|le + | DF(wi)w] — DFy(wi)w]| )
(A + DF.(w)) ™ — (A + DFy(wl) " UDFy(w))wi — Fo(w))llx — 0,
as e — 0.
Next, we prove that there exists 6 > 0 and that for ¢ € (0,¢], the map 7. is

contraction from

Bs(wy) ={¢ € X 1 [|l¢ — willx <}

into itself, uniformly in €. First note that from Lemma there exist 6 = 6(C) > 0
independent of € such that

1
Cl|Fe(w?) = Fo(2) = DE(wy) (s = D)l < Sl = =llx, Ve € (0,20, (2.75)

for |lws — 2¢||x < 0.
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) —
We take 6 = 2 and let we, 2¢ € Bs(w?) and using (2.73)) and (2.75)), for € € (0, &)

we have

|17 (w?) = Te(2)llx = | = (A + DF-(w,)) ™ (Fe(w?) — Fo() — DF(wl)(w; — 25)|lx

*

< C|IFe(ws) — Fo(2) — DF:(w))(wi — 25) |

1
< St = £l

To show that T.(Bs(w?)) C Bs(w?), we observe that if we € Bs(w?) and from (2.74)

there is £ such || T.(w?) — w?|x < 2, then

172 (w?) — willx < ITe(wd) — Te(wd)]x + |1 Te(wd) — willx

*

1

< gllwt = wlllx + 1T (wh) — wlllx
56

<c+o=0
2 "2

Therefore, T, : Bs(w?) — Bs(w?) is a contraction, for all ¢ € (0,£], and then by
Contraction Theorem there is only one point fixed of T, in Bs(w?).

Now we show that w: — w? in X as ¢ — 0. In fact,
lws = wlllx = 1Te(ws) — willx < I Te(ws) — Te(w))llx + 1Te(w]) — wlllx
< gl = ulllx + 1T (w) = wlllx,
Thus, using again we have
lw? = willx < 2ITe(wl) —w)lx =0, as e—0.

Remark 2.5.12 The Theorem and the Theorem |2.5.11] show the continuity of
the set of equilibria &., ¢ € [0,e0] at € = 0; namely, the Theorem shows the
lower semicontinuity of the set of equilibria. Moreover, the Theorem |2.5.11| shows that
if w? is a solution of the problem ([2.67), which satisfies 0 & o(A+ DFy(w?)), then, for

each 0 < € < g9, with g suficiently small, there exists a unique solution ws of problem

[2.66) in a neighborhood of w?.

Therefore we conclude the continuity of the set of equilibria {&. : € € [0,0)} at e = 0.

Remark 2.5.13 Now that we have obtained a unique solution we for (2.62))-(2.63)) in a
small neighborhood of the hyperbolic solution w? for (2.64)-(2.65), we can consider the
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linearization A+DF.(we) and from the convergence of we to w? in X it is easy to obtain

that (A + DE.(w))'w® converges to (A + DFy(w?))"'w® in X, whenever w® — w°
in J, as € — 0. Consequently, the hyperbolicity of w® implies the hyperbolicity of we,

for suitably small ¢.

Theorem 2.5.14 If all solutions w? of (2.67) satisfy 0 & o(A+ DFy(w?)), then ([2.67)

has a finite number k of solutions, w%?, ..., w%*, and there exists g > 0 such that, for

each € € (0,g0], the equation (2.66) has evactly k solutions, wS*, ..., wsk. Moreover,
forallt=1,..k,
ws = w® in X, ase— 0.

Proof. The proof follows of Theorem [2.5.11 |

2.5.2 Continuity of local unstable manifolds

Next, we show that the local unstable manifolds of w2 fixed, are continuous in
X as ¢ — 0. This fact and the continuity of the set of equilibria enable us to prove the
lower semicontinuity of the attractors at ¢ = 0. For this we use the convergence results
of the previous sections and the convergence of the linearized semigroups proved next.

The main aim of this section is the proof of existence unstable local manifolds
as a graph of a Lipschitz function, its convergence and exponential attraction. Let us
consider wS" be an equilibrium solution for (2.7), thus Aws* + F.(ws") = 0. To deal
with a neighborhood of the equilibrium solution ws*, we rewrite the problem as

dwe

=AW + F.(w* +w®") — F.(wS") — DF.(wo")w®, t >0,
dt (2.76)

£,0
*

we(0) = wy —w

where w® = w® — w®" and A, = A + DF.(w2%). With this, one can look for the
previous sections with the unbounded linear operator A, instead of the unbounded
linear operator A.

Let v be a smooth, closed, simple, rectifiable curve in {z € C : Rez > 0},
oriented counterclockwise and such that the bounded connected component of C\{v};
here, {7} denotes the trace of v, contains {z € od(Ag) : Rez > 0}. Let {7} C p(A.),
for all € € [0, &4], for some 1 > 0. We define Q. by

1
Q.= — [ (A=A, tdA,

211 ~
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for any € € [0, 4].
There exist § > 0 and C' > 1 such that

12" Qe 2, x) < Ce™, (2.77)

for any ¢t < 0 and
AT = Q)| gy < Ce e 279
leA(1 — Q)| 2 x) < Ce™™ (2.79)

for any ¢ > 0 and ¢ € [0,¢4].

Using the decomposition X = Q. X & (I — Q.)X the solution w® of (2.76) can
be decomposed as w® = w® + ¥°, where w® = Q.w® and ¥° = (I — Q.)w*. As Q. and
I — Q. commutate with A., we rewrite (2.76]) as following

Ow® = Aw® + Ho(w,19°),

(2.80)
09° = AY° + G (wf, ),

where H.,G. : X — J¢ are given by
H. (0", 0°) = Qe[ Fe(w® + 07 + wi') — Fo(wl') — Fl(wl') (0" +0°)]
and

Ge(w®, 07) 1= (I = Qe)[Fe(w” + 97 +wi') — Fe(w') — FL(wl)(w® + 07)],

* 3

respectively. Thus implies that H.(0,0) = G.(0,0) = 0. Moreover the maps H. and G.
are continuously differentiable with H.(0,0) = G.(0,0) = 0. Hence, given p > 0, there

exists €; > 0 and r > 0 such that if ||w®|

Q.x + [[9°]|(1—q.)x <7 and € € [0,&1], then

[ He(w®,9%)[|r < p and [|Ge(w®,9°)|lr < p, (2.81)
| He(w®,9%) — He (&%, 9°) L < p(llw” — @ llq.x + 19° = [l 1—q.)x) (2.82)

and
|G (w, 9°) = Ge(@0,9°) [l < p([|w® — &Fllqex + 1197 — 9| (1—qu)x)- (2.83)

Remark 2.5.15 It is possible to extend H. and G. outside a ball Bx(wg,d) in such

a way that the conditions (2.81)), (2.82) and (2.83) holds for all w* € Q.X and
V¢ € (I —Q).X. In fact, define H. : X — by

96



P £Cotg) Wl <
€ w bl = = 14
H (05 o) Il >

wellx = flwellx

The extension H. becomes globally Lipschitz and its Lipschitz constant is that of
H. restricted to the ball Bx(ws,d). In similar way, we have G.

Given ¢ > 0, we denote by Xp ;, the metric space of map S : Q. X — (I — Q.)X,
bounded and globally Lipschitz continuous, that is,
Ypr=A{5: QX = (I-Q)X; Sup [15(2)llx <D e |[[S(x)=5(2)|lx < Lllz—7]q.x}-

reQe
In ¥p 1, we define the following metric
IS = S[l := sup [|S(x) - S(x)]x
r€Q: X

We have that (Xpz, | - ||) is a complete metric space.

Considering the coupled system ([2.80]), we can show an unstable manifold theorem
using similar arguments used in the results in Henry [20, Chapter 6]. For this, we

consider the following theorem.

Theorem 2.5.16 Let w® be an equilibrium hyperbolic of problem . Then from The-
orem |2.5.11|, the problem has a unique equilibrium solution, we next of w?. Given
D>0,L>0and0 <k <1, let pg > 0 such that, for all 0 < p < pg and the following

estimates are holds

pC < D; pC?*(1+L)<L; pC+p*C*A+ L) '<r<1
p’C%*(1+ L)

26— pC(1+ L)

pC+pPC°B (1 + L) < %; 8- |pC + 1+0) >0 (284
26—p(1+L)<0.

For the choice of p above, suppose H. and G. satisfying the above conditions for all
(w,0) € QX x (I —Q.)X. Then there exists a map S : Q. X — (I —Q.)X such that
the unstable manifold of WS is given by

W (ws) = {(w,9) € X; ¥ = S{(w), we Q:X}.
The map S5 satisfies

520 = sup [[Si(w)llx < D, [[S5(w) = Si(0)llx < Lljw - &llq.x,

weQe

where D > 0 is constant independent of €, and
1S5 — S20 — o,
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as € — 0.
Furthermore, there exists py > 0, k > 0, independents of €, and ty > 0 such that,

for any solution (w(t),V°(t)) € X (t € [to,0)) of (2.80), we have

19°(t) = SE(@*(8))llx < ke P[0 (k) — S5 (t0))llx, ¢ > to.

Proof. First we show the existence of the unstable manifold, for this, we use the
Banach fixed point theorem for contraction.

Let S¢ € ¥p 1 and w®(t) = ¢(t, 7,71, 5%) a solution of

Ow® = A.w® + Ho(w®, S5(wf)), t<T
w(7) =,

that is,
¢
wWe(t) = A<ty +/ A=) H_ (W (s), 5% (w®(s)))ds.

T

We consider the map ® : Xp ; — Xp 1 defined by

S — 9(5°) = /T eA TG (we(s), ST (w(s)))ds.

Note that, by and we have
B x < [ 1A TG (0), 57w 5 s
<C [ (=9 eI 5) 57w 5)) s
< pC /T (1 —5)te P=9ds = pCT(0).

From ([2.84) we obtain
[2(5%)(n)]|x < D. (2.85)

Now we consider 1,7 € Q.X and S¢,5° € ¥p . Denote w®(t) = 9(t,7,1,5%) and
@ (t) = (¢, 7,7,5%). Then

wh(t) =@ (t) = e (77—77)+/ A UIH, (w(5), S%(w(s)))— He(0%(s), S%(w5(s))) ds.
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Using ([2.77) and (2.82)), it follows that

o (1) = @* ()l @.x < lle 7 —7)llx

! /tT eI H (@ (), 8°(w"(5))) — He(@7(5), S7(@7(s))lds| x

< 0P| —

Q.X
+ C/; PUI|[Ho(wf(5), S (wF(5))) — He(@(s), 55(@°(s)))] || dls
< Ce’ |y = qllq.x

e / T BI04 L)W (s) — w(5)

< C D —djllq.x

+ pC|1S° — S°| / ePUt=5)ds + pC(1+ L)/ eﬁ(t_s)HwE(s) — w®(9)|lq.xds.
¢ ¢
Making ¢(t) = e #=7||w?(¢) — w(t)||q.x, We obtain
o(t) < Clln —qllq.x + pCJIS* — 57| / e’=*)ds 4+ pC(1 + L) / o(s)ds,
¢ ¢

and by Gronwall lemma we conclude

lw(#) = () llQex

< O~ lqux + g€l - 57 [ e as] evctios
t
_ PC e ae C(1+L)(r—t)
< | Clim = llaex + =515 = 571 e :
Now using again (2.78)) and (2.83), it follows that

12(5%)(n) — ©(S°) ()|l x
</ le<TGe(w(5), 5%(w?(5))) = G=(@(s), 87 (&7(5)))] | xds

< C/_T (7— — S)_le_ﬁ(T—S)HGs(u}E(S); SE(W€(5>>> - Ge((DE(S)v SE<@€(S)))|

< pC/ (1= )"t PTI(1 + L)wi(s) — w(s)llqux + 157 = S°[]ds.
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Substituting (2.86) in the above inequality, we get

12(5%)(n) — ©(S°)()llx

<mﬂu+by/ (r — 5) e P=rCUDIC g1y — ]|

—Oo0

pQCZ T _
+ 204 / (7 — 5) le B-rCODIE—9) gg 5 _ 5|

o0

3 )
400 [ (r =g te st - 57|
= pC*(1+ L)T(0)[|n = 7llq.x + [pCT(0) + p*C*(1 + L)B'T(0)] I5° = 57,
And by ([2.84) we conclude
12(5°) () = @(S*)(M)lx < Llln — 7llq.x + £l1S° = 5. (2.87)

The inequality ([2.87) with S* = S° and (2.85) imply that ® takes YXp  into ¥p .
And (2.87) with n = 7, follows from (2.84]) that ® : ¥p; — ¥p 1 is a contraction.
Therefore, there exists a unique fixed point ST = ®(5%) in Xp .

Now we prove that
W (wy) = {(w*, S(w")) - w” € QX}

is an invariant manifold for (2.80)).
Let (w§,v5) € W*(ws), 95 = Si(w§). Denote by we the solution of the initial
value problem
wi = ALw® + Ho(w®, SE(wf)), t<T
w(T) = w§.
Thus {(w5(t), S5(wi(t))) her defines a curve on W*(wg). However the unique solution

of equation

U = A + Go(wi(t), SZ(wi(t)))

which remains bounded when ¢ — —o0 is given by

&@:/«#W%wawxwwmwzﬁmmy

—00

Therefore (w$(t), S5(w5(t))) is a solution of (2.80) through (w§, v5), and thus W*(ws)

is an invariant manifold.
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Next, we show that 9(t) = SS(w(t)) for all t € R; that is, there exists p; > 0,
independent of € such that

19°(2) = SE(w () llx < ke [[05 (fo) — SE(w (o)) |lx, V> to.

When ¢y — —o0, we obtain J(t) = SZ(w(t)) for all ¢t € R.
Let

§°(t) = () — SL(w (1)) (2.88)

and let y© = y°(s,t) be the solution of the initial value problem

Oy = Acy® + Ho(y°, 9:(y°)), s<t
ye(tv t) = ws(t)a
that is,

yE(S,t) _ eAa(s—t)ws(t) _|_/ €AE(S_9)HE<y8(9,t), Si(yf(e,t)))de
t
Thus, by (2.77)) we have

ly(s, ) = w(s)llQ.x </ | eA<C=O H (y7(6, 1), S(y7(0,1))) — Ho(w"(6), 0°(6))]|  dO

t
<C / PO HL (0, ), S5 ( (6, 1)) — H.(w(6), 9%(8)) |, b,
and thanks to (2.82) and ({2.88]) we get

1y(s,t) = w(s)ll@ex < pC/ N1+ L)y (0, 1) — w7 (O) lq.x + 1€7(0) ] x]db.

S

If we denote ¢°(s) = e 7*||y°(s,t) — w(s)||q.x then

S

5) <00 [ Pl @lxan+pca+1) [ o 0)an

Using Gronwall’s lemma we obtain

t
ly=(s, 1) = w(s)llq-x < pC/ e~ PmPOUHENE=2)1¢2(9) | x o).

Now, using (2.77)), for any s <ty < t we have

(2.89)

ly=(s.£) = 7 (s, o)l x < [le T [y (fo, 8) — i (t0)]l1x

[s eAS(Sie) [Hs(ys((g? t)? Si(y6(97 t))) - Hs(y6(97 t0)7 S:(:gs(ea tO)))]dQ

< Oy (tg, 1) — W (fo) Q. x

+

X

+ C /to 65(879) HHE(yE(Q, t)v Si(ye(ev t))) - Hz—:(ye(eu to), Si(gf(@, tO)))”ﬁf df.
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and thanks to we get
ly*(s,8) = ¥ (s, to) . x < e’ |y (20, 1) — (o) laux
+pC /:O "Ny (0,) =y (0. to) laux + [1S2(y7(0, 1)) — SE(y* (0, 10))) I Jdb
< CPETN |y (to, 1) — W (to) [l .x

to
400 [N L)y (6.0) ~ (0, o) .
Using (2.89), in the above inequality

t
1y°(s,t) = y™ (s, to)llQ.x < 9026’3(8‘“’)/ e PmPOHENO=00)|1€2(9) | xdb

to

to
L pC(1+ L) / 0 47 (0, 1) — 4 (0, )| qx df.

Again by Gronwall’s lemma follows that, for s <ty < t,

t
ly°(s,t) =y (s, to)llQ.x < pCz/ e~ PO |£2(9) | xdb. (2.90)

to

We use the last bound to estimate £(t), we have

E°(t) — AT (ty) = 9°(1) — SE(W(t)) — e TR (t) — SE(w ()]

_ / A=) G (), 0 (s))ds — / A Gy (5, 1), SE(yF (5, )))ds

to —00

to
+ et / eA07IG (1 (s, 1), S5 (v (s, 1)) )ds

—0o0

:/ AUNG (W (5),0°(s)) — Gy (s, 1), S (7 (5,1)))ds

to

a / O eAE(t_S)[G€(y8(S7t)7 Si(ya(svt») - Ga(ya<svt0)v Sf(yg(s,to)))]ds.

— 00

Taking the norm and using (2.79) and (2.83)), we get
1€5(1) — A<= (ko)

</t et G(w(5), 9°(5)) — Gy (5,1), SE(y (s, )))] |  ds

i / A UG(y (s,1), S2(y7 (5. 8))) = Gely (s, t0), S (v (5, 10)))] || ds

—0o0

< pC/ e I+ L) wi(s) — 7 (s, t)llqux + 19°(s)) — SE(y7(s,1))] [ xds

to
to

+ pC(1+ L)/ e‘ﬁ(t_s)Hya(s, t) —y°(s,t0)||q.xds.

—00
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Thus, using and , we obtain
e — A e < o [ Ao
b RC2(14 1) / —B(t- 5)/ ~(B-PC+LNO-5) | ¢= (9) |y dBds
+p*C3(1+ L) / / e~ B=pCUFLNO=9)) ¢2(0)|| xdOds
—w/ 2 (9)] s

0
_|_p202 / —(B—pC(1+L))6 ||£€(0>||X |:/ e(2ﬁPC(1+L))st:| do

to

to
+p203 1—|—L / —(B—pC(14+L))0 ||§€(9>||X |:/

—0o0

6(25—p0(1+L))sd5} do.

So we write,

€ Ag(t to) 5 p202(1+L) ! —B(t—s)|| ¢c€
et — e el < o0+ ] [ e e ol

2,13 t
PCPA+ L) gy )/ —(B—pC(1+L))(0—to)

0 ONE5(0) || x dO
Qﬂ—pC’(l—i—L)e ‘ € E):xdb.

to

it follows that,

Blt—to) || ¢¢ c p’C*(1+ 1) " B(smto)|| e
AN < ClEl -+ o0+ D] [ e (o) s

2,13 !
p?PC3(1+ L) ) / e~ (2B=pC(1+L))(s~t0) oB(s—t0) || €2 () || x ds
t

26— pC(1+ L

<Ol + o0+

p*C*(1+ L)
28 —pC(1+ L)

a0 [ ole s

to

From Gronwall’s lemma we obtain
1€ (1) || x < CJ|€5 (o) || e Wt > ¢,

where
p*C*(1+ L)
26— pC(1+ L)

with p; independent of €, once 3, C, p and L are independents of € for 0 < £ < &. Thus,

(1+0)

pr=p5—|pC+

19e(t) = S5 (@ (1))llx < Ce™™[0e(to) — Si(w?(o))llx, ¥t > to

Therefore, letting ty — —o0, we have ¥°(t) = S¢(w®(t)), for all t € R.
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Finally we show that the fixed points SZ continuously depend in e, that is, if
0 < e < ¢ its such that the unstable manifold is given by the graph of 5%, we want to

prove that

155 = 520 == sup [IS5(n) — S2(n)llx — 0,
n€EQX

as € — 0. To this end, let us first observe that as the map Q. X 3 w? — Go(w?, S2(w?))
is continuous and takes bounded subsets of Q.X into subsets relatively compacts of

X. Therefore, adding and subtracting terms, we get
155 () — SY ()1 x
<[ A6 (0), S (5) — A IG(w(5), S 5)) | ds

—00

< [ A6 (6, ST () — Gl (6), S () s

—00

[ AT NG 5), SU) - Galw? (), S (s))]

+ /T ||[6A€(T_s) — eAO(T_s)]GO(wO(s), Sf(wo(s)))HX ds

= -[1 + IQ + 137
respectively.

Thus, using (2.78) and ([2.83)), we get

L<C / (7= ) e (|G (s), 85w (5))) — Galw(s), SUW )] ds

—00

< PC/ (1= )7 TI(1+ L) wi(s) — w(s)llq.x + 152 = S?llds

= pCT(0)[|S5 = S}l + pC(1+ L) / (1= )7 T |w(s) — w'(s)llquxds.

—00

Since G, converges to GGy pointwise on compacts as ¢ — 0, we have that G. — Gy,
as ¢ — 0, uniformlly, see item (iii) of Lemma and therefore I, is o(1), where o(1)
denote the quantity which goes to zero as e — 0. Note that Go(w?, S?(w)) is in a
compact set of X, and by Lemma [2.5.1] item (iii) we obtain A-' — Ag'. Then by

results due to Trotter-Kato, see [38], we get
eAetug — ePolyy, VE>0 and wup € X.
This we ensure that I3 its also o(1) as ¢ — 0. Thus
1S2(n) — S2(n)llx
< pCT(0)]1S2 = S+ pC (1 + L) /T (m—5) e P Iwi(s) — wO(s)lq.xds + o(1).

—0o0
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Then, it is sufficient to estimate the term [|w®(s) — w%(s)|lq.x. Once ||n]lq.x < R,

proceeding as above we have

o (8) — &(t)la.x < Ay — Aoty
/ e [HL (w0 (s), 83w (5))) — Halw™(s), S2 ()] ds
+/t HeAE(t_s)[HE(u} (5), S2(w"(s))) — Ho(w’(s), S(w’(s Hde

. /tr H[eAs(tfs) _ er(tfs)]]'_[(J(CL)O(S)7 SE(WO(S)))HXdS

<pOYSE = SO [ X940+ L) [ () — (s s + o),
t

If ¢(t) = "7V Jwe (t) — w(t)]

Q.x we have

6(t) < pC|ISE — S° /t A ds 4 pC(1+ L) /t " 6(s)ds + o(1).

From Gronwall’s lemma we obtain

lo? (8) = W’ (B)llq.x < lo(1) + pCBTH|1S5 — SYfJePetrB=AT=0,
Then from (2.84)), it follows that
1S5(n) = Si()llx < o(1) + pCT(0)]IS2 — S,

+ pC(1+ L)[o(1) + pCB~H|SE — SY|] (1 — 5)~Le(-28+pCA+D)(=5) g

— o(1) + [pCT(0) + p2C°671(1 + LYT(0)] IS5 — 7]
1
<of1) + 51155 - .

Therefore,

1
152 = S2 = sup [1SZ(n) = Si(m)llx < o(1) + 515 = 52U,

neEQ: X
and thus,

IS5 —=S° —0 as e —0.
|
Theorem 2.5.17 The family of attractors {<. : € € (0,¢0]} is lower semicontinuous
at € = 0; that 1s,
disty (%, ) — 0, as € —0,
where

dist g (o, @) == sup mf {Hw w’||x}.

w0ea weE
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Proof. Thanks to the results of previous sections, the proof follows using arguments
already known in the literature, see Carvalho, Langa and Robinson [14, Chapter 3|,
that is, using the item (i) of the Lemma [C.20] Let w® € o%. Since {Sy(t) : t > 0} is
a gradient system, we have that
oy = |J W)
wOES
and then w® € W*(w?), for some w? € &. Let 7 € R and ¢° € W} (w?) be such
that Sp(7)¢? = w®. Let we be such that w® — w? as ¢ — 0. From the convergence of
unstable manifolds there is a sequence {¢°}eeoe], ¢° € Wik (w?) such that ¢ — ¢
as ¢ — 0. Finally, from Proposition we obtain that S.(7)¢® — So(7)¢" = w°.
To conclude, we observe that if w® = S.(7)p°, then w® € o, since
e |J W) =
wEEL

and 7 is invariant. [ ]

Corollary 2.5.18 The family of global attractors {<f. : € € (0,e0]} is continuous at
e=0.
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Chapter 3

Final considerations and conclusions

In this short chapter we will present possible improvements of the results obtained
in previous chapters, under the best of our knowledge.
(7) On the Klein-Gordon system, in order to obtain results on the uniqueness and decay
of solutions of problem , we prove the Theorem on existence of solutions for
the case p = 1 and n = 1,2,3. For the case p > 1 and n > 3, the regularity of the
solution u obtained is an open problem;
(79) A new paper is in phase of conclusion, we will consider the system with non-
linearities which are strongly monotone, acting as damping on a part of the boundary;
(7i1) We want study a semigroup approach, in the sense of Pazy [3§], to the problem
associated with the Klein-Gordon system as in Chapter [I} In this way we will search
results of regularity of solutions and behavior asymptotic of solutions;
(iv) On the thermoelastic plate systems, the X'—regularity of the global attractors
for the problems and are open problems, probably this result can be ob-
tained, for example, by using the same arguments of Carvalho, Langa and Robinson
[14, Chapter 15, Section 15.6];
(v) Thanks to parabolic structure of the problems and (2.10)), in the sense of
Henry [20], we want study the the behavior asymptotic of solutions, in the sense of
global attractors, in the fractional power space X for some 0 < a < 1;
(vi) We also want study evolution systems as in the Chapter [l and Chapter [2[ with

reaction terms concentrated in a neighborhood of only part of the boundary and this



neighborhood shrinks to boundary as a parameter goes to zero. Thus, we want to use
the analysis done in Chapter [I] and Chapter [2]in one unique research project;

(vii) Finally, we also want study the non-autonomous dynamical systems, in the sense
of Carvalho, Langa and Robinson [14], associated with non-autonomous formulations
of the systems in Chapter [1land Chapter [2| In this case, initially, we can consider non-
autonomous damped for these systems. More precisely, we will analyze the asymptotic
behavior of a non-autonomous thermoelastic plate systems with Neumann boundary
conditions when some reaction terms are concentrated in a neighborhood of the bound-
ary, and this neighborhood shrinks to boundary as a parameter € goes to zero, which

is represented by

O2u® + A%uf + uf + a(t) A6 — a(t)6° = f(t,u®) + gxwig(ue) in Q x (0,00),

00° — AO° + 0° — a(t)Adwus + a(t)Ou® =0 in Q x (0,00),

ou® o(Auf) a0°

57 =0, 57 =0, o7 =0 on I'x (0,00),
|u*(0) = ug € H*(Q), 0 (0) = € L*(Q), 6°(0) =0y € L*(Q),

(3.1)
where 2 is a bounded and smooth open set of R" n > 2, with boundary I' = 9
smooth, w., 0 < € < g¢ is a neighborhood of I, x,,. is the characteristic function of set
we, 0 < e < eg, a € L®R) is Holder continuous, and f,g : R — R are nonlinearities
under suitable growth conditions.
We want study the asymptotic behavior of the problem in the sense of
pullback attractors. We also want show that the limit problem for the autonomous
thermoelastic plate system (3.1]) is given by

(

DPu+ A%u+u+ a(t)A0 — a(t)d = f(t,u) in Qx (1,00),

0 — AO + 6 — a(t)Adwu + a(t)Oyu =0 in Q x (0,00),

ou o(Au) a0

%—0, 57 = —g(u), %,—O on I x (0,00),
| u(0) =uo € H2(Q), 0wu(0) =vy € L*(2), 6(0) =0y € L*(Q).

(3.2)
In other words, we prove that the nonlinear evolution process associated to (3.1)) con-
verges to the nonlinear evolution process associated to (3.2]). Moreover, we show the

existence, uniform boundedness, and continuity of the pullback attractors at ¢ = 0
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associated to these process.
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Appendix A

Preliminary results

In this appendix we will present some definitions and basic concepts related to
functional analysis, measure theory and distributions theory that was necessary for the
development of our work. As our goal and to establish a theoretical base for our work,
we will not worry about formal proofs for the theorems that will be presented here
but for more details we recommend the following references, Lions [26], Brezis [11],

Medeiros and Milla Miranda [30], Medeiros [29] and Evans [18].

A.1 Functional spaces and basic results

Given a multi-index a = (g, ag, ..., a,) € N*. We define the derivative operator

of order ||, by
olal
Do = if a(0,0,...,0).

ol a9
0x ' 0x5? - - - Qxon

with |a] = a3 + as + -+ + .

Remark A.1 If a = (0,0,...,0) we define D*u = u for all function u. When the

multi-index is o = (0,...,0,4,0,...,0) € N" the deriative operator can to be repre-

sented by derivative partial D' = %, 1=1,2,...,n

For k =1,2,..., denote by C*(Q) the Banach space of all the functions u : Q — R

k-times differentiable, equipped with the norm

Juller@) = Z SUP|D u(x

jal=0"



In particular C°(Q) is the space of the functions continuous on € and C*(Q) is the
space of the functions infinitely differentiable. Also we denote by C°(€2) the subspace
of C*°(2) which is constituted of all functions with support compact on €2, that is,

supp(u) is a compact subset of 2.

Definition A.2 Let Q be an open set of R". A sequence (¢, )ven in C°(§2) converge
for ¢ in C§°(82), when the following conditions are satisfied

(i) There exists a compact K C ) such that supp(yp,) C K, Vv € N.
(11) For all multi-index o, D*p,, — D%p uniformly in K.
The vectorial space C§°(€2) equipped of notion of convergence above is denoted
by 2(f2) and is called of space of the test functions.
Let © be an open and bounded set of R™ we denote by L(Q2), 1 < p < oo the

Banach space of (classes of equivalence) measurable functions u in €2 such that |u|? is

an integrable function on €2, that is,
LP(Q) = {u : Q — R; u is mensurable and / |u(z)|Pde < oo}
Q

equipped with the norm

||l ) = (/ |u(:p)|pdx> , 1<p<oo.
Q
For p = oo we denote by L>(2) the Banach space of (classes of equivalence) mensurable

functions u in €2 and that are essentialy bounded in 2, that is,

L>(Q) = {u : Q — R; u is mensurable and esssup |u(x)| < oo}

€N

equipped with the norm
[l Lo () = esssup [u(z)].
€

In particular the space L*(2) equipped with norm [[u||Zq) = (u,v)r2() where,

(u, V) 12(0) :/Qu(x)v(x)dx

is usual inner product of L?(Q), is a Hilbert space.

We also define by L?

1,.(§2) as the space of the mensurable functions u in € such

that |ul? is a locally integrable function on (2, that is, there exists K C 2 such that

/K lu(z)Pdz < oo.
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Definition A.3 A distribution is a linear functional T : 2(Q) — R such that T is
continuous, that is, if @, converge for ¢ in P(Q) then (T, p,) converge for (T, ) in
R.

We denote by 2'(Q2) or Z(2(Q2),R) the space of all the distributions on (2.

In what follows we have an example of distribution.

Example A.4 Let u € L}, .(Q) the functional T, : 2(2) — R, defined by

loc
(Tos) = [ ul)eoi,
is a distribuiton.

Theorem A.5 (Du Bois Reymond) Let u € L}, (Q). Then T, = 0 if, and only if,

loc

u=0 a.e in €.

Proof. See Medeiros and Milla Miranda [30), Proposition 1.4, p. 11| |

Remark A.6 From Du Bois Raymond’s Lemma it follows that if u,v € L} (Q) then

loc
T, =T, in 2'(Q), if and only if, u =v a.e. in 2. For this reason, u is identified with
the distribution T,.

Definition A.7 Let T be a distribution on 2 and o € N* a multi-index. The deriva-
tive of order |a| of T is the functional D*T : 2(2) — R defined by

(DT, ) = (=1)"T, D*p).
Moreover D*T is a distribution on ) called derivative in the sense of distribuitions.

Remark A.8 [t follows from the definition that a distribution has derivative of all

orders.

Let © be an open and bounded set of R™. If u € LP(Q) with 1 < p < oo, from
definition of derivative distributional, we know that u has derivatives of all orders in the
sense of distributions, but it is not true in general that D“u is defined by a function of
LP(€2). When Du is defined by a function of LP(£2), we can define the Sobolev space.

Give an integer number m > 0, we represent by W”?(Q2), 1 < p < oo, the vector
space of all the functions u belongs to LP(2), such that for all multi-index |a| < m,

the derivative of u in the sense of distributions D*u belongs to LP(2), that is,
WmP(Q) = {u € LP(Q); D € LP(), 0 < |a| < m}.
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For each u € W™P(Q), we define the norm

P

[ /|Dau(x)]pdac 1< p< oo,
Q

|a|<m
and

||| oo () = Z esssup | D%u(x)|.

laf<m €N

With this norm it follows that the Sobolev space W™?(Q) is a Banach space. In
particular, for p = 2, we denote W2(Q2) by H™(Q) and WP (Q) = LP(Q).

Remark A.9 The space H™()) equipped with inner product

(u,0)) i) = Y (D*u, D*v) ()

laf<m

15 a Hilbert space.

We also define the space HJ'(€2) as being the closure of 2(Q) in H™(2) and by H~(Q)
the dual topological of H{"(£2).

Next we list some classic results of the Sobolev spaces theory.

Theorem A.10 The Banach space WYP(Q) is reflezive for 1 < p < oo, and it is
separable for 1 < p < oo and H'(Q) is a separable Hilbert space.

Proof. See Brezis [I1], Proposition 9.1, p. 264| |

Theorem A.11 (Green’s formula) Let Q be an open and bounded set of R™ with
boundary T smooth. If u € H*(Q) and v € H'(Q) then

/vAudx+/Vquda::/a—1fvdS
Q Q r On

0
where 11 denotes the outward normal vector on I' and au_ Vu- 7 the derivative normal

on
of u.
Proof. See Evans [18, Appendix C, p. 628| [

Theorem A.12 (Poincare’s inequality) Let Q2 be a bounded, open subset of R™.
Suppose u € Wol’p(Q) for some 1 < p < n. Then there exists a constant
C =0C(p,q,n,) >0 such that

[ull ey < ClIVullpr @),
np
n—p

for each q € [1,p*], where p* =
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Proof. See Evans [18, Theorem 3, p. 265| |

Theorem A.13 (Sobolev embedding) Let 2 be an open and bounded set of R™ with
boundary 9S) of class C™. Then the following embedding are holds

(i) Wmo(Q) = L9(Q), 1<q¢<q' =—2— if mp<n
(it) WmP(Q) — L1(Q), 1<g<oo if mp=n
(i1i) WmP(Q) — C*MNQ), k < m — g < k+1 if mp>n, where k is an integer
non-negative and A a real satisfying 0 < A < m — k — n_ X if A <1 and
0< A<l if Np=1. P

Proof. See Medeiros and Milla Miranda [30, Theorem 2.15, p. 74] |

Theorem A.14 (Rellich-Kondrachov) Let Q2 be an open and bounded set of R™
with boundary 02 of class C™. Then the following embedding are holds

np
n —mp

(i) W™P(Q) < LUQ), 1<q<q =

if mp<n

(ii) WmP(Q) < LI(Q), 1<qg<oo if mp=n
(iii) WmP(Q) < CKQ), k< m— U<kt if  mp > n, where k is an integer
p

non-negative.

Proof. See Medeiros and Milla Miranda [30, Theorem 2.20, p. 83] |

Now let us consider the open interval (0,7T), of the real line R and a real Banach
space X equipped with norm || - || x. We represent by C(]0, 7], X) the Banach space of
the applications u defined in (0,7") with values in X, whose norm is given by

[ulloc = sup [Ju(t)]|x-
te[0,T
For 1 < p < oo we denote by LP(0,T;X) the vectorial space of the applications
w: (0,7) — X such that, for each t € (0,T), the vector u(t) € X is measurable on
(0,7) and ||u(t)||x belongs to LP(0,T), that is,

T
LP(0,T; X) = {u : (0,7) — X mensurable; / |lu(t)][5dt < oo} , 1<p<o
0
and

L>0,T;X) = {u : (0,7) — X mensurable; ess sup |lu(t)|x < oo} :

te(0,T)

115



In LP(0,T; X) we define the norm

S =

T
Huummz(/ Hu(t)H;%dt) Cl<peo
0

and

|l Lo 0,x) = ess sup [[u(t)]|x-
te(0,T)

With this norm it follows that LP(0,7; X) is a Banach space. In particular, if X is a

Hilbert space then L?(0,T; X) is a Hilbert space equipped with inner product

T
(u, V) r2(0,1:x) = / (u(t),v(t))xdt.
0
We also define the following space

LP

loc

(0,T;X) ={u:(0,T) — X mensurable; |u(s)|x € L*(I), VI C (0,T)},

where [ is a compact set of R.

Finally, we denote by H{(0,T; X) the Hilbert space
Hy(0,T; X) = {u e L*(0,T; X);u' € L*(0,T; X),u(0) = w(T) = 0},
equipped with inner product

(0,2 s 0:7) = / (ult), v(t)) xdt + / (u/(£), /(1)) xdt.

If X is a reflexive and separable space, then LP(0,7; X) is a reflexive and separable
space, for 1 < p < oo, whose topological dual is identified to space L (0, T; X'), where

1 1

p and p’ are conjugate exponentes, that is, — + — = 1. More precisely, we show that
p p

for each u € LP(0,T; X), there exists & € L” (0,T; X') such that

T
(u, @) (o)) xLr(0,13x) = / ((t), p(t)) xrxxdt
0

In particular for p = 1, we identify [L'(0,T; X)]' = L>=(0,T; X’).

Remark A.15 If Q is an open and bounded set of R", T >0 and Q = Q x (0,T) the

cylinder in R"* then

L/(0,T: /() = I(Q), 1<p <.
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In general the space Z(2(0,T), X) is called the space of vector distributions on
(0,T) with value in X and is denoted by 2'(0,T; X).

Identifying L?(0,T; X) with its dual (L*(0,7; X))’ we obtain the following em-
bedding

2(0,T; X) — Hy(0,T; X) — L*(0,T; X) — H'(0,T; X) — 2'(0,T; X),

where H1(0,7; X) = (H}(0,T; X))

Proposition A.16 Let v € L*(0,T;X). There exists an unique f € H'(0,T; X)
such that
(f.08) = ((W,9),§), Vo€ 2(0,T), V{€ X.

Proof. See Milla Miranda [31, Proposition 1, p. 175]. |

From above proposition we can identify v’ with f. Therefore, if u € L?(0,T; X)
then ' € H~1(0,T; X).

Corollary A.17 The map
u€ L*0,T; X)) —u' € H(0,T; X)
18 linear and continuous.
Proof. See Milla Miranda [31, Corollary 1, p. 176] |

Now we will see the concept of vector distribution and some of its properties. We
denote by C§°(0,T") space of infinitely differentiable functions on (0,7"), with compact
support on (0, 7).

Definition A.18 We say that a sequence (v, ),en converge for ¢ in C§°(0,T), when

the following conditions are satisfied
(i) There exists a compact K of (0,T) such that supp(y,) C K, Vv € N.

(1) The sequence (p,),en converge for ¢ uniformly in K, together with its derivative

of all orders.

The vectorial space C§°(0,T), equipped of the notion of convergence above will be
represented by 2(0,T).
Let w € LP(0,T;X) and ¢ € 2(0,T), we define the map T, : 2(0,7) — X by

(T, o) = / ul(t)plt)dt
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with the integral calculated in X. The mapping T, above defined, is linear and con-
tinuous on Z(0,7"). In this case we say that T, is a distribution on (0, 7") with value in

X, called vector distribution, defined by u of L?(0,T; X). Then T,, € 2'(0,T; X).

Lemma A.19 [fu e LY0,T;X) and

T
/ w(®)p(t)dt = 0
0
for all p € D(0,T), then u(t) =0 a.e. in (0,T).

Proof. See Medeiros |29, Lema 1. p. 4. |

From Lemmal[A.19] it follows that T), is unically defined by u € LP(0,T; X). Then
we can identify the vector u € LP(0,T; X), with T,, € 2'(0,T; X) and we say that u is
a distribution defined on (0,7") with values on X. We write L”(0,7; X) C 2'(0,T; X).
Thus each u € LP(0,T; X) is derivable in the sense of distributions, that is,

du dy
— =— — T
In general, we have
d™u d"p
— =(-1)" — T
<dtn,<p> (—1) <u dtn>, Voe2(0,T)

Next we list some results that are used in the proof of the result in the chapter [I}

Theorem A.20 Let X,Y be a Hilbert spaces such that X — Y. Ifu € L*(0,T; X)
and uy € LP(0,T;Y), 1 < p < oo, then u € C°([0,T];Y).

Proof. See Medeiros |29, Corollary 1, p. 9. |

Lemma A.21 (Lions Lemma) Let & be an open and connected set R"™ and
gm,g € LY(0), 1 < q < 0o such that

lgmllLaey < C and g — g ae. in O.

Then g, — g in LY(0O).

Proof. See Lions |26, Lemma 1.3, p. 12]. |
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Theorem A.22 (Aubin-Lions Theorem) Let Xy, X, X; be a Banach spaces such
that X <= X — Xy with X and X, reflexives. Moreover for any po,p1 with

1 < po, p1 < 00 we consider the space
W=A{u|ueL0,T, X)), v € LP0,T,X;)},
endowed with the norm |[ullw = [|ul|zro0,7,x0) + ||t/ ]| o107, x,)- Then

W< L0, T, X).
Proof. See Lions [26, Theorem 5.1, p. 58|. |

As consequence of the above result we have, if (uy)ren is a bounded sequence in
L*(0,T, Xo) and (u},)ren is a bounded sequence in L?(0, T, X1), then (ug)gen is bounded
in W. It follows that, there exists a subsequence of (ug)ren still denoted by (ug)gen,

such that uy — w in L*(0,T, X).

Theorem A.23 (Compactness weak) Let X be a reflexive Banach space. If B is
a bounded subset of X, then B is compact in weak topology o(X, X"), that is, for any
sequence {x,} bounded in X there exists a subsequence {x,, } convergent in X in weak
topology o(X, X').

Proof. See Brezis [I1], Theorem 3.18, p. 69| |

Theorem A.24 (Compactness weak star) Let X be a separable Banach space. If
F is a bounded subset of X', then F is compact in weak star topology o(X', X), that
is, for any sequence { f,} bounded in X' there exists a subsequence { f,, } convergent in
X' in the weak star topology o(X', X).

Proof. See Brezis [I1], Corollary 3.30, p. 76] |

Theorem A.25 (Banach Fixed Point Theorem) Let X be a non-empty complete

metric space and let S : X — X be a strict contraction; that is,
d(Svy, Svy) < kd(vy,v9), Yvi,ve € X with 0<k < 1.

Then S has an unique fixed point, u = Su.
Proof. See Brezis [11, Theorem 5.7, p. 13§| |

Theorem A.26 (Schauder Fixed Point Theorem) Let X be a Banach space and
suppose K C E s compact and convex, and assume also T : K — K is continuous.
Then T has a fixed point in K.

Proof. See Evans [18, Theorem 3, p. 502] [ |
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A.2 Essential results

In this section we will present the Carathéodory theorem which will be used to
ensure the existence of solution to a Cauchy problem in the interval [0,¢,,] for every
m € N.

We consider the following Cauchy problem

ay
= Y ().t >t (A1)
Y(to) = 1/0

In the case that f is a mensurable function we ensure that there is a solution to (A.1))

through of the Carathéodory theorem.

Definition A.1 We say that the function f :[0,T] x Q — R™ satisfies the conditions
of Carathéodory on @Q = [0,T] x Q if:

(i) f(t,x) is mensurable in t for each x fized;
(i1) f(t,x) is continuous in x for each t fized;

(1ii) For each K C Q compact set, there exists an integrable real function mg(t), such
that
| f(t,x)||gn < mg(t), forall (t,x)e€ K.

Theorem A.2 (Caratheodory Theorem) Suppose that f : [0,T]xQ — R™ satisfies
the conditions of Carathéodory on Q@ = [0,T] x Q. Then there exists a solution Y (t) of

(A.1)) on some interval |t — to| < 8, where B is a positive constant.
Proof. See Coddington-Levinson [16] [

Theorem A.3 (Prolongation Theorem) Let Q@ = [0,7] x B with T > 0 and
B = {z € R™||z||gn < b}, where b is a positive constant and || - ||gn the norm eu-
clidian of the R™. Suppose that f is a function that satisfies (i), (ii) and that there
exists a function m € L*(0,T) such that

|f(t,2)] <m(t), forall (tz)e.

Let Y (t) a solution of (A.1)) and suppose that Y (t) is defined in I, satisfying |Y ()| < M
with M independent of I and M < b for allt € I. Then Y (t) can to be prolonged in
all interval [0,T].
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Proof. See Coddington-Levinson [16] [

Now we present inequalities frequently used in our work.

Lemma A.4 (Gronwall’s inequality, integral form) Let X € L'(0,T;R") satisfy
t
X(t) < aflt) +/ b(s)X (s)ds, a.e. t € (0,T)
0

where a,b € L>(0,T) and a(-) is increasing. Then,

X(t) < a(t)ef(f b&ds - for all t € [0, 00).
Proof. See Carvalho, Langa and Robinson |14, Lemma 6.23, p. 167]. |

Lemma A.5 (Gronwall’s inequality, differential form) Let J(-) be a non-negative,
absolutely continuous function on [0,T], which satisfies for a.e. t the differential in-
equality

J'(t) < a(t)J(t) + B(t),

where a(t), 5(t) are non-negative, integrable functions in [0,T] . Then,
t
J(t) < J(O)efo (s)ds —I—/ B(T)efT a$Mdsqr for all t € [0,T).
0

Proof. See Evans [I8, Appendix B, p. 624]. |

1 1
Lemma A.6 (Young’s inequality) Let 1 < p,q < oo with — + — = 1. Then,
p q

a? b

ab< —+ —, Va,b>0.
p q

Proof. See Evans [18, Appendix B, p. 622]. |

Theorem A.7 (Hoélder’s inequality) Let Q@ C R" be a bounded open and
1 1

1 < pg<oowth—-+==1 Ifu € LP(Q) and v € LI(Q) then wv € L'(Q)
p q

and

[uvllzre) < lulle@llvllo@)-
Proof. See Evans [18, Appendix B, p. 622]. |

Theorem A.8 (Minkowski’s inequality) If u,v € LP(Q) with 1 < p < oo then
u+wv e LP(Q) and

|u+v|[zr) < |lullze) + V] 2r)-
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Proof. See Evans [18, Appendix B, p. 623].

Theorem A.9 (Integration by parts formula) Let u,v € C*(Q). Then

/ux vdx—l—/uv:c / wr'dS, (i=1,...,n).
o0

Proof. See Evans [I8, Appendix C, p. 628|.
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Appendix B

Linear semigroups

In this chapter we recall a few from theory semigroup of bounded linear operators
but with the main objective of presenting the theory of strongly continuous semigroups
and analytic semigroups. We present definitions and results of this theory that we use
throughout this work. The proof of the results we do not make here, for more details

we recommender Carvalho, Langa and Robinson [I4], Henry [20] and Pazy [38].

B.1 Definitions and basic concepts

In what follows let X and Y be Banach space over a field K (K =R or K = C)
and we denote by .Z(X,Y’) the space of bounded linear operators from X into Y with
the usual norm, that is, for ' € Z(X,Y),

Tx Y
ITlooery = sup Lol
z€X, x#£0 ||IHX

If X =Y we write Z(X) to denote Z(X,Y). Let X’ be the topological dual of X,
that is, X' = Z(X,K) with the norm defined above.

Definition B.1 A semigroup strongly continuous (or a Cy-semigroup ) of bounded
linear operators is a family of maps {S(t) : t > 0} C Z(X) such that

(i) S(0) = Ix;
(1)) S(t+s)=S(t)S(s), for any t,s > 0;

(111) limy o+ ||S(t)x — z||x =0 or (limy_o+ S(t)z = z) for allz € X.



In general in the space of operators the composition of operators does not commute,

however if {S(¢) : t > 0} C Z(X) is a semigroup we have
S(t)S(s) = S(s)S(t), forall t s>0.

The study of semigroups of linear operators is associated with the study of linear
Cauchy problems of the form

du(t) ulf) —
o + Au(t) =0, t >0, (B.1)

u(0) = up.

where —A : D(A) C X — X is linear operator (in general unbounded). The semigroup
{S(t) : t > 0} is the solution operator associated to (B.1]); that is, for each uy € X, the
function [0,00) 3 ¢ = S(t)ug € X is the solution (in some sense) of (B.1]).

On the other hand given any semigroup of linear operators we can associate it to
a differential equation through the following definition.

Definition B.2 Let {S(t) : t > 0} C ZL(X) be a Cy-semigroup its infinitesimal gen-
erator is the linear operator defined by A : D(A) C X — X, where

D(A) = {x € X : lim w exists}

t—0t
and

Az = lim M

t—0+ t

, forall x e D(A).
The next result show that all Cy-semigroup of bounded linear operator has an
exponential bound.

Theorem B.3 Let {S(t) :t > 0} C Z(X) be a Cy-semigroup. There exists constants
M >1 and 5 € R such that

1S@®)]|2x) < Me?, vt > 0.

Proof. See Pazy 38, Theorem 2.2, p. 4]. [

In above theorem if § < 0 we tell that the semigroup has decay exponential or
is exponentially stable. If 3 = 0, that is, ||S(t)|| #x) < M the semigroup is uniformly
bounded, moreover if M =1 it is called a Cy-semigroup of contractions.

Now we present some properties of the strongly continuous semigroup which will

be the main point in the applications in this work.
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Theorem B.4 Let {S(t) : t > 0} be a Cy-semigroup and A its infinitesimal generator.

The following statements are holds.

(i) Forx e X
[0,00) 2t S(t)r e X

1S a continuous map;
(1) The map
[0,00) 3t = [[S(E)]l.2x)
18 lower semicontinuous, and therefore mensurable;
(111) The operator A is closed and densely defined. For each x € D(A), S(t)x € D(A)

forallt > 0, the map
(0,00) 5t S(t)zr e X

is continuously differentiable and

+
Cé—tS(t)a: = AS(t)x = S(t)Az, Vt>0;

(iv) We have that ﬂ D(A™) is dense subspace of X;

m=1
(v) (Representation of the resolvent operators of A through of Laplace transform of

the semigroup) If X € C is such that Re X\ > 3, where 3 is given by Theorem[B.3,
then A € p(A) and

A=A = / e MS()xdt, forall € X.
0
Proof. See Pazy [38, Theorem 2.4, Corollary 2.5 and Theorem 2.7]. |

Theorem B.5 Let {S(t) : t > 0} C Z(X) and {T(t) : t > 0} C Z(X) be a
Co-semigroup with infinitesimal generator A and B respectively. If A = B then
S(t)="T(t), t=0.

Proof. See Pazy 38, Theorem 2.6, p. 6]. |
We define the resolvent set of a closed linear operator A : D(A) C X — X as
p(A) ={A e C:\— A is continuous, injective and surjective}.

The set 0(A) = C\ p(A) is called spectral set or spectrum of A.
It is easy see by closed graph theorem that, if A — A is continuous injective and
surjective then (A — A)™' C Z(X), which is called resolvent operator associated

with A.
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Remark B.6 The resolvent set p(A) is an open set; that is, the spectrum
o(A) =C\ p(A) is a closed set.

Remark B.7 We consider the Cauchy problem (B.1)) such that it is known that —A
is the infinitesimal generator of a Cy-semigroup {S(t) : t > 0} C Z(X), a direct
consequence of Theorem is the fact that u : [0,00) — X given by

u(t,up) = S(t)ug, t=0
is a unique solution of (in some sense) such that
u(-, up) = S(-)ug € C([0,00); X) N C*([0, 00); D(A)).
Now we will dedicate the characterization of the infinitesimal generator of a Cjy-

semigroup. We can characterize an infinitesimal generator of a Cy-semigroup through

the theorems of Hille-Yosida and Lumer-Phillips.

Theorem B.8 (Hille-Yosida) Let A : D(A) C X — X a linear operator. Then the

following statements are equivalent

(i) A is the infinitesimal generator of a Co-semigroup {S(t) : t > 0} C L(X) such
that
1S®)|lzx) <€, forall t>0.

(1) A is a closed, densely defined linear operator such that p(A) D (,00) and

A= A) g < for all X\ > B.

1
A—pf’
Proof. See Pazy [38, Theorem 3.1 and Corollary 3.8, p. 8 and p.12|. |

Let X* be the dual space of the Banach space X. We denote the value of * € X*
at x € X by (z*,z) or (x,z").

Definition B.9 For every v € X we define the map duality J : X — 2% by

J(z) = {z" € X" : Re(z,2") = |k, ||

x+ = ||z]|x}-

Definition B.10 A linear operator A : D(A) C X — X is dissipative if for every
x € D(A) there exists x* € J(x) tal que Re(Ax,z*) < 0.

The following result give a characterization of dissipative operators.
Theorem B.11 A linear operator A is dissipative if and only if
(A= A)zx|| > A||z|]] Vz € D(A) and X> 0.
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Proof. See Pazy [38, Theorem 4.2, p. 14]. |

Theorem B.12 (Lumer-Phillips) Let A : D(A) C X — X be a densely defined linear

operator. Then

(i) If A is the infinitesimal generator of a Co-semigroup of contractions on X then

A is dissipative and R(A — A) = X for all X > 0.

(11) If A is dissipative and R(Ag—A) = X for some \g > 0, then A is the infinitesimal

generator of a Cy-semigroup of contractions on X.

Proof. See Pazy [38, Theorem 4.3, p. 14]. |

A direct consequence of the above theorem, and that is used in the applications

is given by corollary below.

Corollary B.13 Let A be a linear operator with dense domain D(A) in a Hilbert
space H. If A is dissipative and 0 € p(A), then A is the infinitesimal generator of a

Co-semigoup of contractions on H.

Proof. See Liu and Zheng |27, Theorem 1.2.4, p. 3|. |

Definition B.14 Let A: D(A) C X — X be a linear operator with D(A) = X. The
operator A* : D(A*) C X* — X* defined by

D(A*) ={z" € X* : Jy" € X* with (", Azx) = (y",x), Vo € D(A)}

and
A*z* =y*, Va* € D(A"),
is called the adjoint operator of A.

The fact D(A) = X ensures that there is unique y* € X* with the property above for
some z* € X*, that is, D(A*) # 0.

Remark B.15 When X is Hilbert space and we identified its topological dual X* we
have the following

(i) If (Ax,y) = (z, Ay), for all x,y € D(A) holds, we tell that A is symmetric and
we denote by A C A*;

(1) If A= A* we tell that A is self-adjoint;
(111) If A = —A* we tell that A is skew-adjoint.
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Corollary B.16 Let A be a closed and densely defined linear operator. If both A
and A* are dissipative, then A is the infinitesimal generator of a Cy-semigroup of

contractions on X .

Proof. See Pazy [38, Corollary 4.4, p. 15]. |

B.2 Sectorial operators and analytic semigroups

In this section we will define the sectorial operators and we present an important
class of Cy-semigroups which are the analytic semigroups and we present a result that

show that the semigroup generated by this kind of operator is analytic semigroups.

Definition B.1 We say that the closed densely defined linear operator
—A:D(A) C X — X is sectorial if, for some a € R and p € (5,7),

Yoo ={A€C:larg(A —a)| < p; A # a} C p(A)

and, for some M > 0,

M
A —al’

A= A) Y zx) < forall XeX,,.

Now we consider the sector
A={zeC:¢ <argz < ¢s with ¢ <0< o}

and for each z € A, let S(z) be a bounded linear operator.

Definition B.2 We say that a Cy-semigroup {S(z) : z € A} C Z(X) is an analytic
semigroup on A, if z — S(2) is analytic in A.

Theorem B.3 If A: D(A) C X — X is a sectorial operator, then —A is the infinites-
imal generator of an analytic semigroup {S(t) : t > 0} C Z(X). Moreover,

1
H=e = _—"— [ MM+ A)'d\
St)=e 5 Fe (AL +A)

where I is a contour in p(—A) with arg X — +0 as |A\| = oo for some 5 < 0 < .

Proof. See Henry [20, Theorem 1.3.4, p. 21]. |

Remark B.4 The converse is also true, that is, if —A generates an analytic semi-

group, then A is sectorial.
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Definition B.5 Let A be a sectorial operator and Re o(A) > 0; then for any o > 0

1 o0
A= — / o le= At gt
F(a) 0

we define

The operator A® is called fractional power operator associated with operator A. We
define A* as being the inverse of the A= for a > 0, with D(A%*) = R(A™*) and A° as
being the identity in X.

If A: D(A) C X — X is a sectorial operator and a > 0, we define the fractional
power space X associated with A as being X* = D(AY), equipped with norm of
graph ||z]|, = ||ASz||x, * € X, where A} = A+ al satisfies Reo(A;) > 0. In the case
Rec(A) > 0 then we can take X = D(A%).

Theorem B.6 If A is a sectorial operator in X with Re o(A) > 0, then for any

a > 0, A is a bounded linear operator on X which is one-one and satisfies
A=A P = A=(@B) whenever a > 0, > 0. Also, for 0 < a < 1,

gro = Senima) / A (A + A)ldA.
m 0
Proof. See Henry [20), Theorem 1.4.2, p. 25]. |

Theorem B.7 If A: D(A) C X — X is a sectorial operator with Re o(A) > 0, then
X 4s a Banach space with the norm || ||a, for a >0, X° = X and fora > >0, we
have X* < XP®. Moreover, if A has resolvent compact, then the embedding X* — X*
is compact for a > [ = 0.

Proof. See Henry [20, Theorem 1.4.8, p. 29]. [ |

Theorem B.8 Suppose that A is sectorial and Re o(A) > 6 > 0. For all a > 0 there

exixts C, < 00 such that

A% | g(x) < Cat ™™ for t>0.

Proof. See Henry [20, Theorem 1.4.3, p. 26]. |

We consider the following Cauchy problem nonlinear

du
— 4+ Au = f(t,u), t > to,
dt () " (B.2)

U(to) = Uy,
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where A: D(A) C X — X is a positive sectorial operator, such that the fractional
power A% are well defined and the spaces X¢ = D(A®) with the norma of graph
|z||o = ||A%z||x are defined for a > 0 and f: R x X — X.

Here are some definitions of the type of solutions to the abstract problem given
above.

Definition B.9 A classic solution of Cauchy problem (B.2)) on [to,t1) is a contin-
uous function u : [to,t1) — X, differentiable in (to,t1), with u(ty) = wug, such that
flu(v)) : [to, t1) = X is continuous, u(t) € D(A), fort € (to,t1) and that u satisfies

B2).

Definition B.10 A mild solution of Cauchy problem (B.2)) is a continuous function
w: [to,t1) — X, satisfying the integral equation

t
u(t) = e My +/ e A=) f(s,u(s))ds, to <t <t
0

for which uwy € X and f(-,u(:)) : [to,t1) — X is continuous and A is a sectorial

operator.

The following theorem ensures us the existence and uniqueness of local solutions
for the problem (B.2)).

Theorem B.11 Let A be a sectorial operator, with 0 < « < 1. Suppose that
f R x X* - X is Holder continuous in the variable t and locally Lipschitz
continuous in the variable x, that is, f is continuous and, for any bounded set B in
R x X%, there is a constant Lp such that

1F(tu) = f(s,0)llx < Lp(lt = s” + lu = vlla),  (t,u), (s,v) € B,

where 0, Lp are positive constants. Then, there is 7 = 74,4, > 0, such that, the
problem (B.2) has a unique solution u defined in (to, 7 + ¢y). Proof. See Hale [19,
Theorem 4.2.1, p. 73]. |

To existence of global solution, dependence continuous and differentiable on initial

data, we have the following theorem.

Theorem B.12 Suppose that the hypothesis on A, f as in the Theorem[B.11] are holds
and that, for all bounded set B C R x X, f(B) be bounded in X. If u is a solution
of in the interval mazimal (to,t1), such that t; < oo, then there is a sequence
tn — t7 such that ||u(t,)||x — oo. Moreover, if f is a C"-function in wu, then the

solution u(t) is a C"-function in the domain of definition of the function.

Proof. See Hale [19, Theorem 4.2.1, p. 73|. |
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Appendix C

Nonlinear semigroups

In this chapter we present some concepts of the theory of semigroup of continuous
operators that are of fundamental importance for the understanding the solution tech-
niques of autonomous semilinear parabolic and hyperbolic problems. We begin with a
review of the concept of the semi-distance of Hausdorff and some properties. We also
do a summary of the theory of global attractors which will be very important through-
out this work. For more details we recommender Carvalho, Langa and Robinson [I4]
and Hale [19].

Throughout of this chapter (M, d) denote a complete metric space equipped with
metric d(-,-). We also denote by € (M) the set of all continuous maps defined on M

into self equipped with the uniform convergence metric.

C.1 Nonlinear semigroups

In this section we present some definitions related to nonlinear semigroups theory.

Definition C.1 A family of maps {S(t);t > 0} in € (M) is a nonlinear semigroup
if satisfies

(1) 5(0) = In,
(i) S(t+s) = S(t)S(s) for allt,s >0,

(111) The map (t,x) — S(t)x € M is continuous, from [0,00) x M to M.



Definition C.2 Let {S(t);t > 0} be a semigroup in a metric space M. A point x* € M
is called an equilibrium point of {S(t);t > 0} if, S(t)z* = z* for any t > 0.
In this case, the map ¢ : R — M defined by ¢(t) = z* for any t > 0 is called a
equilibrium solution or stationary solution of {S(t);t > 0}. We denote by & the
set of equilibrium points for {S(t);t = 0}.

Next we define the Hausdorff semi-distance between two bounded subsets A and
B of M. This notion relationship between sets will be extremely useful for us to

understand the concept of global attractor.

Definition C.3 Let A and B be bounded subsets of M. The Hausdorff semi-distance
of A from B is defined by

disty (A, B) = sup inf d(a, b).

acA beB

We admit disty (0, B) = 0 for every B C M, and distg(A,0) = oo if A # (.

The Hausdorff semi-distance of A from B, disty (A, B), allows us to examine how

the set A is contained in the set B it is what tells us the following result.

Proposition C.4 Let A and B be bounded subsets of M. Then distg(A, B) = 0 if
and only if A is a subset of B.

Proof. Firstly, we recall that for x € M, C C M, d(z,C) = inf.ecd(x,c) = 0 is
equivalent to say that for each € > 0, there exists ¢. € C such that d(z,c.) < ¢; that
is,
d(r,0)=0«<2€C.
Thus
disty(A,B) =0 Vac€ A, ac B& ACB.

Definition C.5 Let {S(t);t > 0} be a semigroup in a metric space M. An equilib-
rium point x* € M of {S(t);t > 0} is said to be asymptotically stable if, some
neighborhood B of x* is attracted by x*, i.e.,

lim disty (S(¢)B,z*) = 0.
t—»00
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Definition C.6 Let {S(t);t > 0} be a semigroup in a metric space M. Let B be a
subset of M. The positive orbit through B is defined by

yH(B) ={S(t)z;t > 0,z € B}.
The positive orbit through B in the instant s > 0 is defined by
+ _ . + ot
Vs (B) ={S(t)z;t 2 s, € B} (v (B)=7"(B)).

In particular, for any x € M the positive orbit through x is defined by

Definition C.7 Let {S(t);t = 0} be a semigroup in a metric space M. We say that
{S(t);t > 0} is a bounded semigroup if,

yH(B)={S(t)x;t > 0,z € B}
18 bounded for every bounded B C M.

Definition C.8 Let x € M. A global solution for the semigroup {S(t);t > 0}
through = is a map ¢ : R — M such that $(0) = x, and fort € R,

Vs >0, S(s)o(t) = é(s+t).
that s,

S(t)x, ift >0,

¢(t) = ,
S(s)p(t) = p(t +s), for0 < s <t, ift <O,

Given x € M global solutions for the semigroup {S(¢);¢ > 0} through z, not

necessarily exist, and if there exists them, can not to be unique.

Definition C.9 Let {S(t);t > 0} be a semigroup in a metric space M. Let B be a
subset of M. The negative orbit through B is defined by

v (B)=Jv @),

where for each x € B,

(@) = JH(t,2),

t=0
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the set v~ (z) is called negative orbit through x, and for each t > 0,z € B,
H(t,z) = {y € M; there exists a global solution ¢ : R — M through x such that y = ¢(—t)}.

The negative orbit through B in the instant s > 0 is defined by
75 (B) = U (@),
T€EB

where

7 (@) = JHt, ).

t>s

Note that negative orbit through of a subset B of M not necessarily exists.

Definition C.10 Let {S(t);t > 0} be a nonlinear semigroup in a metric space M. Let
B be a subset of M. The complete orbit of B is defined by

Y(B) =~ (B)U~y™(B).

In particular, for x € M the complete orbit of the point x is defined by

V(@) =" (z) Uy (2).
Note that the complete orbit of a subset B of M not necessarily exists.

Definition C.11 Let {S(t);t > 0} be a nonlinear semigroup in a metric space M. Let
B a subset of M. The w—limit and a—limit sets of B are defined, respectively by

w(B) = (B) and a(B)= ()7 (B).
s=0 =0

Next we have a characterization of the w—limit set, and it will follows from these
characterization that w—limit sets are properties of the orbit of a set, and not of a set.
More precisely, we will see that all subsets of a same orbit have the same w—limit set.
Proposition C.12 Let {S(t);t > 0} be a semigroup in a metric space M. Let B a
subset of M. The w—1limit set of B can be characterized by following set,
w(B) = {y € M; there exist sequences {t,} with t, >0, lim ¢, = oo and {z,} C B

n—o0

such that y = lim S(t,)x,}.

n—so0
Proof. Let y € w(B), then for each s > 0, there exist sequences {t3} with t5 > s,
lim, o t5 = 00, and {zf} C B such that y = lim, o S(¢2)2z2. In particular, for each
k € N, there exist sequences {t*} with & > k. lim, ,.t*¥ = oo, and {zF} C B such
that

y = lim S(tF)zF.

n—o0
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Thus, there exits N € N such that

Vn = Ny, d(y, S(te)ak) <

T =

In particular, for each k£ € N, we have

o=

d(y, S(th, )k,) <

Reciprocally, if y = lim,,_,o, S(t,)x,, where t, > 0, lim,,_, t, = oo, and {x,} C
B, then for each s > 0, there exists Ny € N such that ¢, > s for all n > N,, hence

y = lim, 00 non, S(tn)z, and y € vF(B). [ |

Definition C.13 Let {S(t);t > 0} be a semigroup in a metric space M. The subset
B of M is called invariant under the semigroup {S(t);t > 0}, if S(t)B = B for all
t > 0. The subset B of M is called positively invariant (negatively invariant)
under the semigroup {S(t);t > 0}, if S(t)B C B (S(t)B D B) for allt > 0.

Proposition C.14 Let {S(t);t > 0} be a semigroup in a metric space M. Let B a
subset of M. The set B is invariant under the semigroup {S(t);t = 0} if and only if

it consists of a collection of complete orbits of points of B; that is,

B=|J~0).

beB

Proof. See Carvalho, Langa and Robinson [14, Lemma 1.4, p. 6] |

C.2 Global attractors for semigroups

The study of the longtime dynamics of semigroups acting in infinite dimensional
spaces can often be reduced to the study of the dynamics on the global attractor. In
this section we will present the concept of global attractor for a nonlinear semigroup,

for more details see Carvalho, Langa and Robinson [14].

Definition C.1 Let {S(t);t > 0} be a semigroup in € (M). Let A and B subsets of
M, we say that A attracts B under the semigroup {S(t);t > 0}, if

tllglo disty(S(t)B,A) = 0.

Definition C.2 Let {S(t);t > 0} be a semigroup in €(M). Let A and B subsets of
M, we say that A absorbs B under the semigroup {S(t);t > 0}, if there exists to > 0
such that S(t)B C A for all t > t.
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Remark C.3 If A absorbs B then A attracts B under a semigroup {S(t);t > 0}. The

converse may not be true.

Definition C.4 A subset of M is called an attracting set, if it is attracts all the
bounded subsets of M .

When there is a bounded attracting set by semigroup {S(¢);¢ > 0}, we say that

the semigroup is bounded dissipative.

Definition C.5 A subset of M 1is called an absorbing set, if it is absorbs all the
bounded subsets of M .

Now we define a global attractor for a semigroup.

Definition C.6 A subset o/ of M is a global attractor for the semigroup

{S(t);t = 0} if o is compact, invariant and it is an attracting set for the semigroup.

Theorem C.7 (Uniqueness of the attractor) The global attractor for a semigroup
{S(t);t = 0}, if it exists, is unique.

Proof. Suppose that 7 and o7, are two global attractors. Then, since 7 is bounded,
it is attracted by o7,
lim disty (S(t)et, o) = 0.

t—o00
But o is invariant, S(t)eh = 9%, and so disty (9%, o) = 0; by Proposition ,
oy C @ (since ) is closed). In similar way we have ; C 7, from which it follows
that & = o%4. |

Two alternative characterizations of the global attractor it follow from a similar

argument to prove of Theorem

(i) The global attractor for a semigroup {S(t);t > 0} C ¥(M) if it exists, is the
minimal (with respect to the inclusion relation in M) compact set that attracts
each bounded subset of M: In fact, let .o/, be a compact set that attracts all
bounded subsets of M. In particular, <7 attracts o7, and so, since &/ = S(t).o/

for any t > 0,

disty (o, o) = tlim disty(S(t)o, o) =0, and & C ..
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(i1) The global attractor for a semigroup {S(¢);t > 0} C € (M) if it exists, is the
maximal (with respect to the inclusion relation in M) closed and bounded invari-
ant set: In fact, if &7, is closed, bounded, and invariant then &7 attracts .7, and

SO

disty (o, o) = tlim disty(S(t) ., /) =0, and o C .
—00

Remark C.8 The equilibria set of a semigroup is always a closed and invariant set,
and from (ii) above, if equilibria set is bounded then equilibria set is always contained
at global attractor of the semigroup. Indeed, it is sufficient to prove that the equilibria
set of a semigroup is closed: if x* € M is such that z* = limx,, with {z,} C &, then
for each t > 0, we have

d(S(t)z*, S(t)x,) — 0,

as n — 0o, and
d(S(t)z", ") < d(S(t)x", S(t)xn) + d(zn,z*) — 0,

as n — oo, and therefore x* € &.

In addition, the global attractor can be characterised as the collection of all

globally defined bounded solutions.

Theorem C.9 If the smigroup {S(t);t > 0} has a global attractor <7, then

of = {y € X; there exists a bounded global solution ¢ : R — X with y = ¢(0)}.

Proof. See Carvalho, Langa and Robinson [14] Theorem 1.7, p. §] |

Now we will present some existence results for global attractors for the semigroup.
We do not do the proof here for more details we refer to Carvalho, Langa and Robinson

[14], Hale [19].

Proposition C.10 Suppose that there exists a compact attracting set K. Then, for
any bounded set B, the w—Ilimit set w(B) is a non-empty compact subset of K that is

invariant and attracts B.
Proof. See Carvalho, Langa and Robinson |14, Corrolary 2.6, p. 26]. |

Proposition C.11 Let {S(t);t > 0} be a semigroup in a metric space M. If
{S(t);t > 0} is an asymptotically compact semigroup and B is a non-empty bounded
subset of M, then
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(i) The omega limit set w(B) is non-empty, compact, and invariant and attracts B;

(11) The omega limit set w(B) is the minimal closed set that attracts B.

Proof. See Carvalho, Langa and Robinson [14] Corollary 2.11, p. 28| |

In many cases we can show something stronger than the existence of a compact
attracting set, namely the existence of a compact absorbing set. Clearly the existence
of a compact absorbing set implies the existence of a compact attracting set, which we
know implies the existence of a global attractor.

Definition C.12 Let {S(t);t > 0} be a semigroup in a metric space M. We say that
the semigroup is asymptotically compact if, for every sequence {t,} with t, > 0

and limt,, = oo and {x,} C B, with B C M bounded, {S(t,)x,} has a convergent
subsequence.

The definition above is equivalent to say that the semigroup {S(¢);¢ > 0} is
asymptotically compact (or asymptotically smooth) if, and only if, for any non-
empty, closed, bounded set B C M for which S(¢t)B C B for all ¢ > 0, there exists
K C B compact set such that K attracts B.

Theorem C.13 Let {S(t);t > 0} be a bounded semigroup defined in M such that for
each t > 0, we can write

S(t) = T(t) + U(t)

where

(1) For every bounded set B and each t > 0 there exists t(gy) > 0 and compact set
K(B,t), such that U(s)B C K(B,t), always that t > s > tgy, (U is strongly
compact);

(1i) There exists a function g : [0,00) X [0,00) — R with g(-,7) non-increasing for
each r > 0, lims o g(s,7) = 0 and for all x € M with ||z| < r,

[Tzl < g(t, 7).
Then the semigroup {S(t);t = 0} is asymptotically compact.

Proof. See Carvalho, Langa and Robinson |14, Theorem 2.37, p. 41| |

Any finite-dimensional semigroup with a bounded absorbing set is asymptotically
compact; in an infinite-dimensional system this is much weaker than the existence of

a compact absorbing set.
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Definition C.14 Let {S(t);t > 0} be a semigroup system in a metric space M. We

say that the semigroup is eventually compact if, it is bounded and there exists a

to > 0 such that S(ty)B is compact for each bounded subset B of X.

Proposition C.15 Let {S(t);t > 0} be a semigroup in a metric space M. If {S(t);t >
0} is eventually compact, then {S(t);t > 0} is asymptotically compact.

Proof. See Carvalho, Langa and Robinson [I4], Corollary 2.18, p. 33] |

Theorem C.16 Let {S(t);t > 0} C €(M) be a bounded semigroup. There exists a
global attractor < if and only if there exists a bounded attracting set (bounded

dissipative) and the semigroup is asymptotically compact, in which case

o = U w(B).

BcM,B#0 Bounded

Proof. See Carvalho, Langa and Robinson [I4], Corollary 2.21, p.34] [ |

Definition C.17 A semigroup {S(t);t > 0} is said to be a gradient system if there
is a continuous function V : M — R, a Lyapunov function, with the following

properties:
(i) t — V(S(t)x) is non-increasing for each x € M; and

(it) if x is such that V(S(t)z) = V(x) for allt >0, then x € &.
We define the unstable manifold of z € & as being the set
Wz)={ye M:S(—t)y is defined for all ¢ >0 and S(—t)y — = as t — oo}.

Now we present a result that ensures us the existence of global attractors for

gradient systems.

Theorem C.18 If {S(t);t > 0}, is a gradient system, asymptotically smooth, and &
is bounded, then there is a global attractor &7 for {S(t);t > 0} and

o =WUE)={y e M:S(—t)y is defined fort >0 and S(—t)y — & ast — oo}.

If M is a Banach space, then <f is connected. If, in addition, each element of & is
hyperbolic, then & is a finite set and

o = W)

TEE
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Proof. See Hale [19, Theorem 3.8.5, p. 51] |

In order we define and we present a characterization to upper and lower semicon-
tinuity to a family subsets of M. In particular we have the upper and lower semicon-
tinuity of global attractors.

Definition C.19 Let J be topology space and {Ax}recs a family of subsets of M. We

say that the family A is upper semicontinuous at \g € 7 if

lim diStH(AA,AAO) =0.

)\—>)\0

We say that A, is lower semicontinuous at \g € 7 if
lim diStH(A)\O, A)\) =0.
)\—))\0

We say that A is continuous at \g € 7 if it is both upper and lower semicontin-
uous as A — Ag.

The following result show that (semi)continuity with respect to A € 7 at A is

completely characterized by the behavior of sequences {A,, } where A — .

Lemma C.20 Let 7 be topology space and let { A} e be a family of compact subsets
of M. Then

(i) {A\}re7 is upper semicontinuous at \g € 7 if and only if, whenever \,, — g
as n — oo, any sequence {xy,} with x, € A,, has a convergent subsequence
whose limit belongs to Ay, ;

(1)) {Ax}res is lower semicontinuous at \g € .7 if and only if, Ay, is compact
and for any xy € Ay, and N\, — Ao there is a sequence x), € A, such that

Ty, — To GS N — 00.

Proof. (i) If any sequence {z,,} with z,, € A,, and A\, — )¢, has a convergent
subsequence with limit belonging to A,,, and {A,},c~ is not upper semicontinuous

at Ao € 7 then, there are ¢ > 0 and sequence {\,} with A\, — A¢ such that

diStM<A)\n,A)\O> = sup d(l’,A)\O) >e, VneN.

z€A,,
Thus, for some z,, € A, , we have that d(z,,,A,,) > ¢,n € N. But this contradicts
the fact that x,, has a subsequence which converges to an element of A, . Conversely,
suppose that {A,} ez is upper semicontinuous at A\g € 7. If z), € A,,, where
An — Ag, then
0 <d(zy,,Ay) <disty(Ay,,Ay)-
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Thus d(z),, Ay, ) — 0, and A, is compact.
(77) Suppose that for any xy € A, and any sequence \,, — Ag there is a sequence
{z,} with x,, € A, which converges to zy. If {A,}rcz is not lower semicontinuous

at Ao, then there are £ > 0 and sequence {\,} with A\, — Ao such that

distg (A, Ay,) = sup d(z,A,,) >, VneN

IEA)\O

Thus for each n € N there exists yy, € A,,, such that d(y,,,A,,) > . Since A,, is

compact, we may assume that y,, — z¢o € A, and that
d(zog,Ay,) >¢e, VneN

But this contradicts the fact that there must be a sequence =), € A, that converges to
xo. Conversely, suppose that {A )} ez is lower semicontinuous at \g € 7. If A\, = Ao

and zy € A),, then there exists z,, € A,, such that
d([L’o,CL’An> < d(l‘o,A)\n) < diStH(A)\O,A)\n).

which converges to zero as n — oo. [
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