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Téssio Rogério Nóbrega Borja de Melo
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Resumo

O Modelo Padrão (SM) da F́ısica de Part́ıculas fornece a descrição mais precisa

do comportamento da matéria nas menores escalas de distância acesśıveis. No entanto,

como o SM não explica a massa não-nula dos neutrinos, a existência da matéria escura

e também sofre com diversos problemas teóricos, é amplamente aceito que ele deve ser

estendido. A parte menos compreendida do SM, o seu setor escalar, começou a ser in-

vestigada apenas recentemente e a questão de o bóson de massa 125 GeV encontrado

no CERN Large Hadron Collider (LHC) ser o bóson de Higgs do SM ou apenas um de

muitos escalares de um modelo além do SM ainda está em aberto. Uma das extensões

do SM mais populares é o modelo de dois dubletos de Higgs (2HDM), que apresenta dois

dubletos escalares, ao invés de apenas um como no SM. Os modelos 2HDM em geral

sofrem de troca de sabor na corrente neutra (FCNI) devido à presença de escalares neu-

tros extras. Além disso, a geração da massa dos neutrinos é tipicamente ignorada nas

discussões sobre o 2HDM. Nesta Tese estudamos uma classe de 2HDM livre de FCNI por

meio de uma simetria abeliana de gauge, que também permite acomodar massa para os

neutrinos. Discutimos várias realizações do mecanismo seesaw nesse contexto, destacando

as implicações fenomenológicas em cada caso. Em particular, estudamos em detalhes o

novo bóson de gauge Z ′, investigamos a fenomenologia das misturas cinética e de massa

que engloba vários v́ınculos provenientes da violação de paridade atômica, momento mag-

nético anômalo do múon, decaimentos raros de mésons, f́ısica do Higgs, dados de precisão

do LEP, espalhamento neutrino-elétrons, aceleradores de baixa energia e dados do LHC.

Palavras-chave: 2HDM, Massa de neutrinos, Mecanismo seesaw, simetria U(1), bóson

Z ′.
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Abstract

The Standard Model (SM) of Particle Physics provides the most accurate descrip-

tion of the behaviour of matter in the smallest accessible distance scales. However, since

the SM does not account for the nonzero neutrino masses, dark matter and also is plagued

with a number of theoretical issues, it is widely accepted that the SM must be extended.

The least understood part of the SM, the scalar sector, have just begun to be probed and

the question whether the 125 GeV boson found in the CERN Large Hadron Collider (LHC)

is the SM Higgs boson or just one of many scalars from a more complex model is still open.

One of the most popular SM extension is the Two Higgs Doublet Model (2HDM), which

features two scalar doublets, instead of only one, as in the SM. General 2HDM suffer

from excessive Flavor Changing Neutral Interactions (FCNI) due to the presence of extra

neutral scalars. Also, the generation of neutrino masses is typically neglected in 2HDM

investigations. In this Thesis we study a class of 2HDM which is free from FCNI by means

of an Abelian gauge symmetry, which also allows the accommodation of neutrino masses.

We discuss several realizations of the seesaw mechanism in this framework, highlighting

the phenomenological implications in each case. In particular we study in detail the new

Z ′ gauge boson, investigate the kinetic and mass mixing phenomenology which encompass

several constraints coming from atomic parity violation, muon anomalous magnetic mo-

ment, rare meson decays, Higgs physics, LEP precision data, neutrino-electron scattering,

low energy accelerators and LHC probes.

Keywords: 2HDM, Neutrino masses, Seesaw mechanism, U(1) symmetry, Z ′ boson.
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Introduction

The branch of Physics devoted to unvail the elementary building blocks of matter

in the Universe and the fundamental interactions that rule their behaviour is the field of

Particle Physics. Over the past century, the effort expended both on theory and exper-

imental sides to achieve this goal, culminated in the formulation of the Standard Model

(SM) [4, 5], the theory which underlies the Particle Physics nowadays. This theory is

based on the principles of Relativity and Quantum Mechanics and describes with enor-

mous success three of the four known fundamental interactions 1. In the SM framework,

there are three types of fields: gauge bosons, fermions and scalars. The fermions are the

fundamental constituents of matter and the gauge bosons are the force carriers, which me-

diate the fundamental interactions. The rationale that underlies the description of these

interactions is the gauge principle, which relates each fundamental force with an internal

local symmetry: the strong interaction is related to the symmetry of the group SU(3)C ;

whereas the weak and electromagnetic interactions are related to the SU(2)L ⊗ U(1)Y

group.

As the gauge symmetries forbid mass terms for the fermions and gauge bosons in

the Lagrangian, a crucial idea for the SM consistency is the Higgs mechanism, which is

responsible for reconciling the gauge principle with the existence of mass for the parti-

cles. The consequence of this mechanism is one of the most important SM predictions:

the existence of the Higgs boson, the elementary scalar field remnant of the process of

electroweak symmetry breaking. The announcement in 2012 by the ATLAS and CMS

collaborations [6, 7] of the discovery of a spin-0 particle compatible with the SM Higgs

boson, ended a search which lasted for decades, finally completing the missing piece in

the SM puzzle.

1The gravitational interaction is outside the scope of the SM and will not be subject of further

discussion in this Thesis.
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The discovery of the Higgs boson, however, raises a natural question: is this scalar

found in the LHC the only kind of scalar field in Nature? Differently from the gauge

bosons, whose number is fixed by the number of generators of the gauge symmetries,

there is no theoretical constraint on the number of fermions and scalars; they need to

be determined experimentally. The number of fermion families below half the Z boson

mass was determined by the LEP as being 3. Thus, it remains to be known how many

fundamental scalars there are in Nature. Looking at the fermion and gauge sectors, which

display a rich structure, it is reasonable to expect the existence of many more scalars

besides the SM Higgs, which motivates the study of models with extended scalar sector.

One of the most popular of these extensions is the Two Higgs Doublet Model (2HDM),

which features four new scalars and presents a rich phenomenology [8].

Despite the enormous success of the SM, the predominant view in the Particle

Physics community is that the SM cannot be the ultimate theory about the fundamental

interactions. Beyond the reasonable expectation of the existence of more scalars, there are

several other reasons that strongly suggest that the SM is still an incomplete description

of Nature. One of the most clear indications of that is the fact that neutrinos have

mass. Looking at the SM spectrum, we see that the absence of right-handed neutrino

fields in the theory forbids the neutrinos from interacting with the Higgs field and, thus,

from acquiring a Dirac mass after the spontaneous symmetry breaking. Therefore, the

simplest way of incorporating neutrino masses to the SM would be adding the missing

right-handed neutrino fields, NR. Nevertheless, this minimal fermionic extension rises a

further question: why are the neutrino masses so much smaller than the other fermion

masses?

A particular feature of the NR fields is that they are singlets under the full SM

gauge group and, therefore, nothing forbids them from having a Majorana mass. These

two different masses, Dirac and Majorana, are the basic ingredients of the well known type

I seesaw mechanism, which elegantly explains the smallness of the observed light neutrino

masses as the ratio of two very distinct mass scales. In this scenario, the physical neutrino

spectrum consists of one heavy and one light Majorana neutrino per generation. An

interesting variation of this mechanism is the type II seesaw, in which the light neutrinos

also have Majorana nature but the high energy scale is associated with new scalar degrees

of freedom, and right-handed neutrinos are not required at all.
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In this Thesis we study scalar and gauge extensions of the SM in connection with

the generation of neutrino masses via seesaw mechanism. We focus mostly on the 2HDM,

which is one of the most well studied SM extensions in the literature and have been used

as a benchmark model by experimental collaborations [9]. This Thesis is organized as

follows:

• In Chapter 1 we review the SM, emphasizing its key features, such as its symmetries

and physical content, the generation of mass for the elementary particles through

the Higgs mechanism, and the Higgs boson interactions. In the last section of the

Chapter we comment about some of its main problems, which motivate the search

for new physics beyond the SM, with emphasis on neutrino masses.

• In Chapter 2 we go beyond the SM and introduce the 2HDM, stressing the new

features it adds as compared to the SM. We present the main phenomenological

issue with this kind of scalar extension, which is the appearance of Flavor Changing

Neutral Interactions (FCNI) at tree level, and the usual solution by means of a dis-

crete Z2 symmetry, which allows the realization of the Natural Flavor Conservation

(NFC) criterion. We also discuss the so called alignment limit in which one of the

scalars of the model behaves like the SM Higgs boson, as required by the recent

LHC results.

• In Chapter 3 we start to present our original contributions. In this Chapter we

discuss a gauge solution to the FCNI problem in the 2HDM, which in addition allows

the generation of Majorana neutrino masses naturally. The idea is to substitute

the ad-hoc Z2 symmetry by a more fundamental Abelian U(1)X gauge symmetry.

We discuss the effect of the presence of right-handed neutrinos on the anomaly

cancellation conditions, and show how a whole class of models arises from this idea.

Then we confront the models with various phenomenological constraints, specially

the ones related to the new gauge boson Z ′ that has mass and kinetic-mixing with

the SM Z boson, including a limit in which it resembles the so called dark photon.

• In the Chapter 4 we study a new model, still within the scope of 2HDM-U(1), in

which neutrino masses are generated via type II seesaw mechanism, without the

need of right-handed neutrinos. We investigate the phenomenology of the light Z ′

and also discuss the possibility of inclusion of a dark matter candidate in the model.
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• In Chapter 5 we extend the results of the models from the previous chapters and

consider general realizations of type I + II seesaw mechanism in the 2HDM-U(1)

framework, highlighting the general phenomenological features in each scenario.

The Chapter 6 is reserved for our final considerations and perspectives. We also included

three Appendices at the end of this document to cover in more detail some specific parts

of the text.
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Chapter 1

The Standard Model of Particle

Physics

The Standard Model (SM) offers the best description of the strong, weak and

electromagnetic interactions in nature. It is a quantum field theory formulated according

to the gauge principle under the symmetry group,

GSM ≡ SU(3)C ⊗ SU(2)L ⊗ U(1)Y , (1.1)

where the SU(3)C group corresponds to the strong color sector and the SU(2)L ⊗ U(1)Y

group encompass the weak and electromagnetic sectors in an unified way. This unification

is not apparent at low energies due to the spontaneous symmetry breaking phenomenon,

which is crucial to explain the origin of mass of the elementary particles in the theory.

The discovery of a scalar particle in 2012 in the LHC [6, 7], with properties consistent

with those of the Higgs boson, corroborated this mechanism and completed the last piece

in the SM puzzle, crowning decades of phenomenological success.

This Chapter is divided in two parts. The purpose of the first part is to make

a short review of this theory which is the basis of particle physics, presenting briefly its

main features and fundamental ideas. In the second part of the Chapter, we will point

out some of its main problems to emphasize the need to go beyond the SM. This Chapter

will also serve to fix the notation used throughout the Thesis.



1.1 The Standard Model Lagrangian

The Lagrangian of the SM is the most general Lagrangian which is Lorentz invari-

ant, renormalizable and gauge invariant under the GSM group. We can write it compactly

as,

LSM = Lgauge + Lmatter + Lscalar + Lyukawa. (1.2)

In the following sections we will explain each one of the terms in this expression.

1.1.1 The Gauge Sector

The first piece in the expression (1.2), Lgauge, is the term corresponding to the

kinetic terms for the gauge bosons, which are fixed by the symmetry group GSM . It

contains eight gluons Ga
µ (a = 1, ..., 8), one for each SU(3)C generator; three weak bosons

W a
µ (a = 1, ..., 3) corresponding to the three SU(2)L generators; and one boson Bµ from

the U(1)Y group. Explicitly, Lgauge reads,

Lgauge = −1

4
Ga
µνG

aµν − 1

4
W a
µνW

aµν − 1

4
BµνB

µν , (1.3)

where the field strength tensors are given by,

Ga
µν = ∂µG

a
ν − ∂νGa

µ + gsf
abcGb

µG
c
ν (1.4)

W a
µν = ∂µW

a
ν − ∂νW a

µ + gεabcW b
µW

c
ν (1.5)

Bµν = ∂µBν − ∂νBµ, (1.6)

with gs and g the strong and weak coupling constants (the U(1)Y gauge coupling con-

stant, g′, does not appear in these expressions), fabc and εabc being the SU(3) and SU(2)

structure constants. Notice that Lgauge does not contain any mass term for the gauge

bosons because they are forbidden by the GSM symmetries, but they will surface after

spontaneous symmetry breaking.

1.1.2 The Matter Sector

The fermionic sector in the SM is composed by leptons and quarks. Leptons are

fermions that do not possess strong interactions. There are six different flavors: electron,

2



muon, tau and their respective neutrinos. The left-handed leptons transform as doublets

under the SU(2)L group, while the right-handed ones are singlets,νe
e


L

,

νµ
µ


L

,

ντ
τ


L

, eR, µR, τR.

Notice that in the SM there are no right-handed neutrinos.

As for the quarks, which are the fermions that participate in all the fundamental

interactions, come in six flavors as well, and they correspond to color triplets. They are

named up, down, charm, strange, top and bottom. The left-handed quarks transform as

doublets, whereas the right-handed ones transform as singlets under SU(2)L,u
d


L

,

c
s


L

,

t
b


L

, uR, dR, cR, sR, tR, bR.

The quantum numbers for the SM fermion fields are summarized in the Table 1.1,

where T3 is the third component of the weak isospin, Y is the hypercharge and Q is the

electric charge.

Fermion T3 Y Q

eL -1/2 -1 -1

eR 0 -2 -1

νL 1/2 -1 0

dL -1/2 1/3 -1/3

dR 0 -2/3 -1/3

uL 1/2 1/3 2/3

uR 0 4/3 2/3

Table 1.1: SM fermionic quantum numbers.

Once the fermion content and their respective representations are fixed, the La-

grangian Lmatter is uniquely determined by gauge invariance,

Lmatter =
∑

fermions

(
Ψ̄LiγµDµΨL + Ψ̄RiγµDµΨR

)
, (1.7)

where the sum extends to all fermions. Similarly to what happens to the gauge bosons,

gauge invariance forbids mass terms to the fermions. Their masses will be generated by

the Yukawa interaction only after the Electroweak Symmetry Breaking (EWSB).
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1.1.3 The Scalar Sector and Higgs Mechanism

As mentioned in the previous sections, mass terms for the fermions and gauge

bosons explicitly violate the symmetry of the group SU(2)L ⊗ U(1)Y . However, these

terms may be generated without spoiling the symmetry of the theory through the Higgs

mechanism [10, 11]. The main idea behind this mechanism is the spontaneous symmetry

breaking, which occurs when the vacuum state of the theory is not invariant by the same

symmetry transformations respected by the Lagrangian.

The implementation of the Higgs mechanism requires that one or more fields ac-

quire a nonzero vacuum expectation value (VEV). In order to not spontaneously break

the Lorentz symmetry as well, this field must be a scalar. The minimum scalar content

capable of generating the masses for the SM fermions and gauge bosons is a scalar doublet

Φ with hypercharge Y = 1, parameterized as,

Φ =

φ+

φ0

 , (1.8)

where φ+ and φ0 are complex scalar fields. In the SM, this minimum content comprises

the whole scalar sector.

The most general renormalizable Lagrangian for the scalar Φ reads,

Lscalar = (DµΦ)†DµΦ− µ2Φ†Φ− λ
(
Φ†Φ

)2
, (1.9)

where µ2 and λ are free parameters, with the restriction on the quartic coupling λ > 0, in

order to ensure the stability of the potential. The covariant derivative for the doublet is,

DµΦ =

[
∂µ + igT aW a

µ + ig′
Y

2
Bµ

]
Φ, (1.10)

where T a are the SU(2)L generators,

T a =
σa

2
, (1.11)

with σa the Pauli matrices.

The spontaneous symmetry breaking occurs when µ2 < 0, in which case the po-

tential is minimized by a nontrivial value of the scalar field,

〈Φ〉 =

 0

v/
√

2

 , (1.12)
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where v2 = −µ2/λ. In this case, the generators of the group SU(2)L ⊗ U(1)Y are broken

and only the particular linear combination T3 + Y/2 maintains the vacuum invariant.

This combination is the generator of the remaining symmetry U(1)em from the Quantum

Electrodynamics (QED). Thus, it is identified as the electric charge,

Q = T3 +
Y

2
. (1.13)

This is the Gell-Mann - Nishijima relation. Using this relation we can fix the weak

hypercharges of the particles knowing their electric charges (this is how the values of Y

were determined for the fermions in Table 1.1).

Since only one generator of the group SU(2)L ⊗ U(1)Y remained unbroken out of

the initial four, Goldstone theorem would imply the existence of three Goldstone bosons.

In the Higgs mechanism, however, these would-be Goldstone bosons are absorbed by the

gauge bosons as longitudinal components, making them massive. Therefore, from the

four scalar fields in the doublet Φ, only one is physical, which can be made explicit in the

unitary gauge, in which the scalar doublet is brought to the form,

Φ =
1√
2

 0

v +H

 . (1.14)

The physical field H is the Higgs field. Its mass, in terms of the parameters of the

potential, is given by,

mH =
√

2λv2 =
√
−2µ2,

and the experimental value obtained in the LHC is mH = 125.09(24) GeV [12]. As the

low energy phenomenology requires that the electroweak VEV v be related to the Fermi

constant GF by,

v2 =
1√
2GF

, (1.15)

which in turn is precisely measured through the muon lifetime, GF = 1.1663787(6) ×

10−5 GeV−2 [13], the value of v is fixed as v ' 246 GeV, which in turn also fix the quartic

coupling of the potential as λ = m2
H/(2v

2) ' 0.13.

The mass terms for the gauge bosons come from the kinetic term (DµΦ)†DµΦ in

the Lagrangian (1.9). Expanding it with Φ in the unitary gauge (1.14) and ignoring the

derivative and interaction terms, we have,

(DµΦ)† (DµΦ) =
1

4
g2v2W−

µ W
+µ +

1

8
v2
[
g2W 3

µW
3µ + g′

2
BµB

µ − 2gg′W 3
µB

µ
]
, (1.16)
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where the physical W± bosons were defined,

W±
µ =

1√
2

(
W 1
µ ∓ iW 2

µ

)
. (1.17)

The other physical gauge bosons, Z and the photon Aµ, are obtained from Bµ and W 3

after the electroweak rotation,Aµ
Zµ

 =

 cos θW sin θW

− sin θW cos θW

Bµ

W 3
µ

 , (1.18)

where the electroweak angle θW is given by,

tan θW =
g′

g
, (1.19)

and relates to the electric charge as,

e = g sin θW = g′ cos θW . (1.20)

After this rotation the mass of the photon is identified as being zero, and the masses of

W± and Z bosons as,

mW =
1

2
gv , mZ =

1

2

gv

cos θW
. (1.21)

The current experimental values of these masses, as verified at different experiments such

as LEP, Tevatron and LHC, are mW = 80.385(15) GeV and mZ = 91.1876(21) GeV [13].

The relations among the couplings and masses of the electroweak gauge bosons is one of

the most important predictions of the SM. The ρ parameter,

ρ =
m2
W

m2
Z cos2 θW

, (1.22)

which measures the relative intensity between the neutral and charged currents, is pre-

dicted to be ρ = 1 at tree level in the SM, as can be seen from the mass expressions (1.21).

Its experimental value is indeed very close to ρ = 1, in excellent accord with the SM. At

1σ level [13],

ρ = 1.00039± 0.00019. (1.23)

The small deviation from the unity can be accounted for when radiative corrections are

included.
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1.1.4 The Yukawa Sector

The last piece in the SM Lagrangian (1.2), Lyukawa, describes the interaction among

the scalars and fermions. Through this interaction the fermions acquire mass terms with-

out spoiling any of the SM gauge symmetries. It reads,

Lyukawa = −ylijLiΦeRj − ydijQiΦdRj − yuijQiΦ̃uRj + h.c., (1.24)

where L and Q are the left-handed lepton and quark weak doublets, Φ̃ = iσ2Φ∗ is the

conjugate scalar doublet, and the Yukawa couplings yl,u,d are 3 × 3 complex matrices in

flavor space. Notice that in the Lagrangian (1.24) a term like yνijLiΦ̃νRj would be possible

if right-handed neutrinos were included in the particle content. However, as the SM was

constructed without right-handed neutrinos, this term is absent and the neutrinos remain

massless, differently of the other fermions, as explained below.

After the EWSB in the unitary gauge, Lyukawa becomes,

Lyukawa = −v +H√
2

[ylij ēLieRj + ydij d̄LidRj + yuijūLiuRj + h.c.], (1.25)

from where the mass matrices for the fermions can be identified as,

M l,u,d =
v√
2
yl,u,d. (1.26)

These matrices can be diagonalized by biunitary transformations on the flavor eigenstates

ψL and ψR (here ψ denotes generically the several fermion fields), leading to the basis of

the mass eigenstates ψ′L and ψ′R,

ψ′L = V †LψL

ψ′R = V †RψR,
(1.27)

where V l,u,d
L e V l,u,d

R are such that,

V l,u,d
L

†
M l,u,dV l,u,d

R = M l,u,d
diag . (1.28)

After the diagonalization, Lyukawa can be rewritten as,

Lyukawa = −(ml,u,d
i +

ml,u,d
i

v
H)[ēiei + d̄idi + ūiui]. (1.29)

which makes clear that in the SM the strength of the Higgs boson interactions is propor-

tional to the mass of the respective particle.

After this short review of the main features of the SM, in the next section we will

discuss some of its problems.
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1.2 Some Problems in the Standard Model

Despite the SM enormous success in explaining the observed physical phenomena

from low energies all the way up to the highest energies available in the current experi-

ments, there are several unanswered questions that strongly indicates that the SM cannot

be the final theory of the fundamental interactions. The current understanding is that the

SM is an effective theory valid up to some energy scale ΛNP , where new physics effects

become relevant. We list below some import SM issues that have motivated the search of

physics beyond the SM and have been active research topics in the field of particle physics

in the last decades:

• Hierarchy problem: Since scalar field masses are not protected by any symmetry

(differently from fermion masses, e. g., which are protected by chiral symmetry), they

become very sensitive to ultraviolet physics and their values are naturally pushed to

be of order of the energy cutoff Λ of the theory (perturbatively this is reflected by

the fact that loop corrections to the scalar masses are quadratically divergent with

Λ). In the SM, the quantum corrections to the Higgs mass comes mostly from the

top and gauge boson loops, giving,

δm2
H ∼

Λ2
NP

v2

[
4m2

t − 2m2
W −m2

Z −m2
H +O

(
log

ΛNP

mH

)]
. (1.30)

If one assumes that new physics effects appear only at the Planck scale, ΛNP ∼

Mplanck ∼ 1019 GeV, it is apparent that the bare Higgs mass and its counter term

must be tuned to an enormous accuracy in order to result in mH = 125 GeV. This

fine tuning generated by the large hierarchy between the electroweak and Planck

scales, mH �Mplanck, is referred to as the hierarchy problem.

The main attempts to solve this problem, such as supersymmetry [14], extra dimen-

sions [15] and Little Higgs models [16], requires ΛNP ∼ TeV, which is in tension

with the LHC null results. One recent proposal which does not require new physics

at the TeV scale is the cosmic relaxation mechanism [17].

• Strong CP problem: The SM gauge symmetries allows a CP-violating term in

the QCD Lagrangian,

L =
θ̄

32π2
εµνρσGa

µνG
a
ρσ, (1.31)
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where θ̄ = θ + arg(det(mQ)) and mQ is the quark mass matrix. This CP-violating

term leads in principle to a measurable electric dipole moment for the neutron,

dn ≈ θ̄ × 10−16 e-cm. However, current upper bounds on dn constrain the θ̄ angle

to be extremely small, |θ̄| < 10−11. As the quark masses and the bare θ parameter

come from completely unrelated sources, it is very unnatural that they cancel so

perfectly to give a θ̄ so close to zero. This is the strong CP problem.

The most popular solution is based on the so called Peccei-Quinn symmetry and its

very light pseudo-Goldstone boson, the axion, which can also account for the DM in

the Universe if the Peccei-Quinn symmetry is broken at energies < 1012 GeV [18].

• Matter-antimatter asymmetry: There is no indication of large concentrations

of antimatter in any part of the observable Universe, so that the notorious predom-

inance of matter over antimatter seems to hold everywhere. A successful model of

baryogenesis, in which the matter-antimatter asymmetry in the Universe is gener-

ated dynamically, must fulfill the three Sakharov conditions: violation of baryon

number; violation of CP symmetry; and departure from thermal equilibrium (to

prevent the washout of the asymmetry once it be generated). It turns out that the

SM meets all these requirements, but not with a sufficient amount of CP-violation

to account for the observed baryon asymmetry, η = (nB − nB̄)/nγ = 6.1 × 10−10.

The most studied beyond SM scenarios for baryogenesis include: GUT baryogenesis

[19]; strong first order electroweak phase transition [20] and leptogenesis [21].

• Dark Matter: Current astrophysical and cosmological data suggest that approx-

imately 85% of the total amount of matter in the Universe is constituted by dark

matter, i. e., a form of non-baryonic matter which does not interact appreciably

with photons. The existence of dark matter is required at several different distance

scales, from observations in the CMB power spectrum to the dynamics of clusters

of galaxies. The formation process of structures in the Universe favors the so called

cold dark matter candidates, i. e., particles which were non-relativistic in the epoch

of recombination. For this reason, the SM neutrinos, which otherwise seemed to

be perfectly good dark matter candidates, are actually ruled out, since their ex-

tremely small masses make them behave as hot dark matter. Therefore, the SM is

not capable of explaining the existence of dark matter in the Universe.
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The most popular dark matter candidates are the WIMPs (Weakly Interacting Mas-

sive Particles), which are well motivated by the fact that their thermal production

in the early Universe through interaction cross sections of order of the weak interac-

tion, leads to the correct relic abundance (the so called “WIMP miracle”). However,

there are several other proposals, such as: QCD axions and axion like particles (not

related to the strong CP problem); FIMPs (Feebly Interacting Massive Particles);

and even primordial black holes, just to cite a few.

In this short list we did not include the problem which is perhaps the most convincing

evidence of physics beyond the SM, which is the experimental fact that neutrinos have

mass. We reserved the last section of this Chapter to discuss this subject in more detail.

We will come back to this theme in the following chapters, when models for generation of

neutrino masses will be discussed.

1.2.1 Neutrino Masses

In the epoch the SM was built there was not any evidence that neutrinos could

be massive particles. They had been discovered in the fifties by Cowan and Reines [22]

and quite soon was demonstrated in subsequent experiments [23, 24] that the neutrinos

produced in charged weak interactions are always left-handed. The picture of left-handed

massless neutrinos fitted well the experimental data available at the time and, therefore,

the introduction of right-handed neutrino fields in the SM seemed to be unnecessary. This

picture remained the same for almost half of a century, until the late nineties, when the

phenomenon of neutrino oscillations was first observed [25, 26, 27].

The simplest explanation for this phenomenon, and the only one that survives to

all the data from oscillation experiments, is that the neutrino flavor eigenstates νe, νµ and

ντ , do not correspond to physical massless neutrinos. Rather, the actual mass eigenstates,

denoted as ν1, ν2 and ν3, have nonzero masses and mix according to,

να =
3∑
i=1

(UPMNS)αiνi, (1.32)

where α = e, µ, τ , and the mixing matrix UPMNS is the so-called PMNS matrix, after

Bruno Pontecorvo, who first proposed neutrino oscillations [28], and Maki-Nakagawa-

Sakata, who introduced the mixing matrix [29]. This matrix is analogous to the quark
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CKM matrix, and is usually parameterized as,

UPMNS =


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 .P, (1.33)

where cij = cos θij, sij = sin θij, θij are the neutrino mixing angles, δ is the CP-violating

Dirac phase and the matrix P = diag(1, e−iα1 , e−iα2) bears additional CP-violating Majo-

rana phases.

The oscillation occurs because neutrinos are produced by the weak interaction as

flavor eigenstates, i. e., as a quantum superposition of the mass eigenstates. Assuming the

physical neutrinos have different masses m1, m2 and m3, as the flavor neutrino propagates,

the phases of the superposition (which are dependent on the masses) will evolve differently

for each mass eigenstate, changing the neutrino flavor over time. Therefore, there is a

nonzero probability that a neutrino produced as a specific flavor eigenstate να, be later

detected as another flavor eigenstate νβ. It can be shown [30] that the probability of

oscillation in vacuum depends on the UPMNS matrix and on the squared mass differences

∆m2
ij = m2

i −m2
j ,

Pνα→νβ =
3∑

i,j=1

U∗αiUβiUαjU
∗
βj exp

(
−i

∆m2
ijL

2E

)
, (1.34)

where L is the propagation distance and E is the neutrino energy. Therefore, oscillations

occur if neutrinos have nonzero masses, and these masses are non-degenerate.

The accumulated data from neutrino oscillation experiments, allowed to determine

the mixing angles and mass differences with great precision. However, they still leave open

two possibilities for the neutrino mass ordering: normal ordering, where m1 < m2 < m3;

and inverted ordering, where m3 < m1 < m2. Also, the CP-violating phases have not

been measured yet. Besides this, the absolute values of the masses are still unknown. As

neutrino oscillation experiments are not sensitive to the absolute masses, they are probed

in beta decay experiments, through kinematic effects. The determination of all these

parameters are target of ongoing and future experiments [31, 32, 33, 34]. The current

values of the available parameters at 1σ level are given below [35]. Assuming the masses

follow the normal ordering:

∆m2
21 = 7.50+0.19

−0.17 × 10−5eV2 , ∆m2
31 = 2.524+0.039

−0.040 × 10−3eV2 , δ = 261◦+51◦

−59◦
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Figure 1.1: Representation of neutrino mixing and mass differences in normal and inverted orderings.

Figure taken from the Ref. [1].

sin2 θ12 = 0.306+0.012
−0.012 , sin2 θ23 = 0.441+0.027

−0.021 , sin2 θ13 = 0.02166+0.00075
−0.00075.

Whereas for the inverted ordering:

∆m2
21 = 7.50+0.19

−0.17 × 10−5eV2 , ∆m2
32 = −2.514+0.038

−0.041 × 10−3eV2 , δ = 277◦+40◦

−46◦

sin2 θ12 = 0.306+0.012
−0.012 , sin2 θ23 = 0.587+0.024

−0.020 , sin2 θ13 = 0.02179+0.00076
−0.00076.

These numbers are also nicely illustrated compactly in Fig. 1.1.

As we saw in the previous sections of this Chapter, the SM symmetries and particle

content does not allow neutrino mass terms in the Lagrangian. On the other hand, the

evidence for the existence of neutrino masses is overwhelming. Therefore, the solution of

this problem definitely lies beyond the SM. Although it may appear trivial to generate

neutrino masses simply by introducing right-handed neutrinos and proceeding in the same

way as for the other fermions, there is more than one way to do that, since it is not known

whether right-handed neutrinos (if they do exist in first place) are Dirac or Majorana

particles. Moreover, there are ways to generate neutrinos masses without the need of right-

handed neutrinos at all. Therefore, it is important to explore the different possibilities. In

the following chapters, starting in Chapter 3, we will study some SM extensions capable

of accommodating massive neutrinos.

12



Chapter 2

Two Higgs Doublet Models

The fermion and gauge sectors of the SM have been experimentally tested in the

last decades with great precision, confirming with enormous success the predictions of

this theory. However, the scalar sector began to be explored directly only in the last

years with the LHC, and remains as the part of the theory with the largest experimental

uncertainties. In the SM, it is assumed that the structure of this sector is the simplest

possible, with only one SU(2) doublet, which suffices to generate the masses for the

fermions and gauge bosons, as discussed in the Chapter 1. As there is no fundamental

reason for the existence of only one Higgs doublet, and the other sectors show a rich

structure with several different particles, it is reasonable to consider the possibility of the

existence of more scalar particles besides the SM Higgs.

As mentioned in Chapter 1, the experimental value of the ρ parameter,

ρ =
m2
W

m2
Z cos2 θW

, (2.1)

is in very good agreement with the SM prediction ρ ' 1. This precise agreement, however,

can be spoiled in new physics models which add extra scalars to the particle content, if

they contribute to the W and Z boson masses. It can be shown that in a gauge theory

with scalar multiplets of weak isospin Ti, weak hypercharge Yi and neutral component

VEVs vi, the ρ parameter at tree level is generally given by [36],

ρ =

∑n
i

[
Ti (Ti + 1)− 1

4
Y 2
i

]
v2
i∑n

i
1
2
Y 2
i v

2
i

. (2.2)

Therefore, a generic scalar sector with several multiplets will lead to a ρ value different

from ρ = 1. However, according to this expression, SU(2) doublets of hypercharge Y = 1



do not change the ρ value, so in this sense, they are natural candidates for building scalar

extensions of the SM. One of the simplest extensions, the Two Higgs Doublet Model

(2HDM), takes advantage of this fact and introduces two scalar doublets, Φ1 and Φ2,

while keeping the ρ = 1 value unchanged,

Φi =

φ+
i

φ0
i

 , i = 1, 2. (2.3)

This kind of model has been extensively studied since the original proposal by T. D. Lee

in 1973 [37].

One motivation to study 2HDMs is the supersymmetry. In supersymmetric models

the scalar fields are written as components of chiral multiplets together with chiral spin-1/2

fields. Since the complex conjugate of such a chiral multiplet have opposite chirality and

the supersymmetry forbids the coupling of fields of opposite chiralities in the Lagrangian, a

single Higgs doublet is unable to generate mass for both the up and down quarks. Besides

this, as the multiplets also contain chiral fermions, the anomaly cancellation is another

reason for introducing a second doublet. Therefore, in the Minimal Supersymmetric

Standard Model (MSSM), there are two Higgs doublets.

Another motivation is the fact that the SM is not able to produce the necessary

amount of CP violation to explain the matter-antimatter asymmetry in the Universe.

The 2HDM presents new possible sources of CP violation in its scalar sector and the

baryogenesis in the 2HDM has been studied [38, 39, 40]. 2HDMs have also been studied

in the context of axions [41, 42], and dark matter in the so called Inert Doublet Model

(IDM) [43, 44].

In the following we present the main features of the most popular version of the

2HDM, which features a discrete Z2 symmetry, stressing the novelties introduced by the

presence of the second doublet as compared to the SM, specially in the scalar and Yukawa

sectors.

2.1 The Scalar Sector with Two Higgs Doublets

The scalar sector in the 2HDM is described by the following Lagrangian,

Lescalar = (DµΦ1)†DµΦ1 + (DµΦ2)†DµΦ2 − V (Φ1,Φ2) , (2.4)
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where the covariant derivative is the same as in the SM, since the gauge symmetries are

the same,

Dµ = ∂µ + igT aW a
µ + ig′

Y

2
Bµ. (2.5)

The most general renormalizable potential for two scalar doublets of hypercharge Y = 1

is given by,

V (Φ1,Φ2) = m2
1Φ†1Φ1 +m2

2Φ†2Φ2 −
(
m2

12Φ†1Φ2 + h.c.
)

+
λ1

2

(
Φ†1Φ1

)2

+

+
λ2

2

(
Φ†2Φ2

)2

+ λ3

(
Φ†1Φ1

)(
Φ†2Φ2

)
+ λ4

(
Φ†1Φ2

)(
Φ†2Φ1

)
+

+

[
λ5

2

(
Φ†1Φ2

)2

+ λ6

(
Φ†1Φ1

)(
Φ†1Φ2

)
+ λ7

(
Φ†2Φ2

)(
Φ†1Φ2

)
+ h.c.

]
.

(2.6)

The requirement that the potential be hermitian implies that the parameters m2
1, m2

2, λ1,

λ2, λ3 and λ4 are real, while m2
12, λ5, λ6 and λ7 are in general complex and can be sources

of CP violation. From the 14 free parameters (6 real and 4 complex) only 11 are physical,

since there is some freedom to redefine the fields Φ1 and Φ2 [8].

A general feature of 2HDMs is the existence of Flavor Changing Neutral Interac-

tions (FCNI) at tree level, mediated by the extra neutral scalars, which imposes several

constraints on the model since this kind of process is known to be very suppressed exper-

imentally. For instance, the Yukawa coupling for the down quarks is (see Eq. 2.32),

− LYdown = y1d
ij Q̄

iΦ1d
j
R + y2d

ij Q̄
iΦ2d

j
R + h.c. (2.7)

where i, j are generation indices. The mass matrix after EWSB is,

Md
ij = y1d

ij

v1√
2

+ y2d
ij

v2√
2
. (2.8)

FCNI will be present if the Yukawa interaction matrices y1 and y2 are non-diagonal. As

y1 and y2 are generic complex matrices, the diagonalization of Md does not imply the

individual diagonalization of both y1 and y2, thus leading to FCNI. In the SM this does

not occur because the mass and Yukawa interaction matrices are proportional to each

other so that in the physical basis the Yukawa interactions are diagonal.

In order to avoid these dangerous interactions, usually is implemented the Natu-

ral Flavor Conservation criterion, by imposing discrete or global symmetries in the La-

grangian. The most commonly adopted is the Z2 discrete symmetry, under which the

doublets transform as,

Φ1 → −Φ1

Φ2 → Φ2.
(2.9)
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By imposing this symmetry in the potential, the Z2 non-invariant terms m12, λ6 e λ7 must

be discarded. However, as is well known that the spontaneous breaking of an exact discrete

symmetry leads to the domain wall problem [45], the m12 term is kept in the potential in

order to explicitly break the Z2 symmetry. Under these conditions, and assuming no CP

violation, V (Φ1,Φ2) reduces to,

V (Φ1,Φ2) = m2
1Φ†1Φ1 +m2

2Φ†2Φ2 −m2
12

(
Φ†1Φ2 + Φ†2Φ1

)
+
λ1

2

(
Φ†1Φ1

)2

+

+
λ2

2

(
Φ†2Φ2

)2

+ λ3

(
Φ†1Φ1

)(
Φ†2Φ2

)
+ λ4

(
Φ†1Φ2

)(
Φ†2Φ1

)
+

+
λ5

2

[(
Φ†1Φ2

)2

+
(

Φ†2Φ1

)2
]
,

(2.10)

where now all the parameters are real.

Parameterizing Φ1 and Φ2 as,

Φi =

 φ+
i

(vi + ρi + iηi) /
√

2

 , i = 1, 2 (2.11)

we have in principle four charged and four neutral scalars. After the EWSB three of them

become the longitudinal components of the gauge bosons W+, W− and Z, leaving five

physical scalares: two neutral H and h; two charged H+ and H− and one pseudoscalar

A.

The spontaneous symmetry breaking occurs when the doublets acquire nonzero

VEVs. As the vacuum must be invariant under Uem(1) transformations, only the neutral

scalars can develop VEVs,

〈Φi〉0 =
1√
2

0

vi

 , i = 1, 2 (2.12)

with v1 and v2 real. In order to this configuration correspond to a minimum of the

potential, (
∂V

∂ρi

)
Φi=〈Φi〉0

=

(
∂V

∂ηi

)
Φi=〈Φi〉0

=

(
∂V

∂φ±i

)
Φi=〈Φi〉0

= 0, (2.13)

the following conditions must be satisfied,

m2
1v1 −m2

12v2 +
1

2
λ1v

3
1 +

1

2
(λ3 + λ4 + λ5) v1v

2
2 = 0

m2
2v2 −m2

12v1 +
1

2
λ2v

3
2 +

1

2
(λ3 + λ4 + λ5) v2

1v2 = 0.
(2.14)

The neutral mixing matrix after using the minimum conditions (2.14) reads,

M2
H,h =

 m2
12
v2
v1

+ λ1v
2
1 −m2

12 + λ345v1v2

−m2
12 + λ345v1v2 m2

12
v1
v2

+ λ2v
2
2

 , (2.15)

16



where λ345 = λ3 + λ4 + λ5 was defined. M2
H,h is diagonalized by the rotation,h

H

 =

 cosα sinα

− sinα cosα

ρ1

ρ2

 , (2.16)

with the angle α given by,

tan 2α =
−2m2

12v1v2 + 2λ345v
2
1v

2
2

m2
12v

2
2 −m2

12v
2
1 + λ1v3

1v2 − λ2v1v3
2

. (2.17)

The masses of the physical fields h and H are given by (notice that h is always lighter

than H),

m2
h =

1

2

m2
12v

2

v1v2

+ λ1v
2
1 + λ2v

2
2 −

√(
m2

12 (v2
1 − v2

2)

v1v2

− λ1v2
1 + λ2v2

2

)2

+ 4 (m2
12 − λ345v1v2)

2

 ,
(2.18)

m2
H =

1

2

m2
12v

2

v1v2

+ λ1v
2
1 + λ2v

2
2 +

√(
m2

12 (v2
1 − v2

2)

v1v2

− λ1v2
1 + λ2v2

2

)2

+ 4 (m2
12 − λ345v1v2)

2

 .
(2.19)

In the same manner for the pseudo and charged scalars we have,

M2
A =

[
m2

12 − λ5v1v2

] v2
v1
−1

−1 v1
v2

 , (2.20)

M2
H± = [m2

12 −
1

2
(λ4 + λ5)v1v2]

 v2
v1
−1

−1 v1
v2

 . (2.21)

The mass matrices M2
A e M2

H± are both diagonalized by the same angle β, given by,

tan β =
v2

v1

, (2.22)

such that, G
A

 =

 cos β sin β

− sin β cos β

η1

η2

 , (2.23)

and, G+

H+

 =

 cos β sin β

− sin β cos β

φ+
1

φ+
2

 . (2.24)

The pseudoscalar masses are,

mG = 0 (2.25)
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m2
A =

[
m2

12/v1v2 − λ5

] (
v2

1 + v2
2

)
, (2.26)

and for the charged scalars,

mG+ = 0 (2.27)

m2
H+ =

[
m2

12/v1v2 −
1

2
(λ4 + λ5)

] (
v2

1 + v2
2

)
, (2.28)

from which we can identify A, H+ and H− as the physical fields and G, G+ and G− as

the Goldstone bosons absorbed by the Z, W+ and W− gauge bosons.

The doublet VEVs v1 and v2 are constrained in order to reproduce the correct

EWSB pattern. Both VEVs contribute to the physical gauge boson masses, as can be seen

from the kinetic term in the Eq. (2.4). With the additional doublet, the SM Lagrangian

for the gauge boson masses (1.16) gets modified to,

Lgauge mass =
1

4
g2(v2

1 + v2
2)W−

µ W
+µ +

1

8
(v2

1 + v2
2)
[
g2W 3

µW
3µ + g′

2
BµB

µ − 2gg′W 3
µB

µ
]
.

(2.29)

The mixing is eliminated by the same rotation (1.18) and the W and Z masses are,

mW =
1

2
g
√
v2

1 + v2
2 , mZ =

1

2

g
√
v2

1 + v2
2

cos θW
. (2.30)

Therefore, v1 and v2 must obey the constraint,

v ≡
√
v2

1 + v2
2 ' 246GeV. (2.31)

The coupling of the neutral Higgs bosons h and H to the W and Z are as follows:

the light Higgs h couples to either WW or ZZ in the same way as the SM Higgs, times

the prefactor cos(α−β); whereas the coupling of the heavier Higgs, H, is the same as the

SM coupling times the prefactor sin(β − α). Finally, the coupling of the pseudoscalar A

to the vector bosons vanishes.

2.2 The Yukawa Sector and FCNI

The most general Yukawa coupling with two Higgs doublets is the following,

−LY2HDM
= y1dQ̄Φ1dR + y1uQ̄Φ̃1uR + y1eL̄Φ1eR+

+ y2dQ̄Φ2dR + y2uQ̄Φ̃2uR + y2eL̄Φ2eR + h.c.
(2.32)

As already mentioned, this full Lagrangian leads to the appearance of FCNI at tree level.

The imposition of the Z2 symmetry, however, allows us to eliminate conveniently some
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2HDM uR dR eR

Type I Φ2 Φ2 Φ2

Type II Φ2 Φ1 Φ1

Type X Φ2 Φ2 Φ1

Type Y Φ2 Φ1 Φ2

Table 2.1: The four 2HDM types that satisfy the NFC criterion. Each type is defined according to

which scalar couples to which right-handed fermion.

terms in this expression. The specific terms which will be eliminated depend upon the

parity assignment for the right-handed fermions under Z2 (assuming that the left-handed

fermions have always positive parity). We can, e. g., consider that all the right-handed

fermions are even, i. e., they transform trivially. In this case, by the Eq. (2.9), the terms

in LY2HDM
which contain Φ1 change sign, violating the Z2 symmetry, so that they must be

discarded. Therefore LY2HDM
reduces to,

− LY2HDM
= yd2Q̄Φ2dR + yu2 Q̄Φ̃2uR + ye2L̄Φ2eR + h.c. (2.33)

and only Φ2 couples to the fermions. Another possible choice is to consider that the

leptons and down quarks have negative parity under Z2,

dR → −dR

eR → −eR.
(2.34)

In this case, LY2HDM
becomes,

− LY2HDM
= yd1Q̄Φ1dR + ye1L̄Φ1eR + yu2 Q̄Φ̃2uR + h.c. (2.35)

and we have that Φ2 couples to up quarks only, while Φ1 couples to leptons and down

quarks. In this scenario, the up and down quark masses come from different sources,

which could help to alleviate the mass hierarchy between these types of quarks.

In general, it is easy to see that if all the fermions which have the same quantum

numbers (which in principle can mix one another) couples to the same Higgs multiplet,

then FCNI are absent. This Natural Flavor Conservation (NFC) criterion was formalized

by the Paschos-Glashow-Weinberg theorem [46, 47] which states that a necessary condition

for the absence of FCNI at tree level is that all the fermions of the same charge and chirality

receive contribution for their mass matrices from only one source. In the SM this theorem
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Model Φ1 Φ2 uR dR eR Q L

Type I − + + + + + +

Type II − + + − − + +

Type X − + + + − + +

Type Y − + + − + + +

Table 2.2: Parity assignment for fermions and scalars under the Z2 symmetry in the different types of

2HDM.

is trivially satisfied, preventing FCNI, as there is only one source for the fermion masses.

Whereas in models in which there are several sources for the fermion masses, such as the

2HDM, the absence of FCNI can be guaranteed only by the introduction of symmetries.

There are only four different types of 2HDM which satisfy the NFC criterion, as

shown in the Table 2.1. In order to realize this condition by means of the Z2 symmetry,

the required Z2 parities of the fermions and scalars are as shown in the Table 2.2. The

two examples discussed above related to the Yukawa Lagrangians in Eqs. (2.33) and

(2.35) correspond to type I and type II 2HDMs, respectively. From the Table 2.1 it is

straightforward to construct the Yukawa Lagrangians for the other two cases, the 2HDMs

type X and type Y, which are also commonly referred as Lepton-specific and Flipped,

respectively. The model in which there is not any symmetry and therefore have the most

general Yukawa coupling of the Eq. (2.32) is called type III 2HDM.

Expanding the Yukawa Lagrangian for each 2HDM type in the physical basis after

the rotations (2.24), (2.23) and (2.16), we obtain the interaction terms of the physical

scalars h, H, H+ and A with the fermions,

−LY2HDM
=
∑

f=u,d,`

mf

v

(
ξfhffh+ ξfHffH − iξ

f
Afγ5fA

)
+

[√
2Vud
v

u
(
muξ

u
APL +mdξ

d
APR

)
dH+ +

√
2m`ξ

`
A

v
νL`RH

+ + h.c.

]
,

(2.36)

where PL/R are the projection operators for left-/right-handed fermions and the parame-

ters ξfh , ξ
f
H , ξ

f
A were defined following the notation of Ref. [48]. This notation is convenient

as it allows to express the Yukawa interactions for all the four 2HDM types in one single

expression. The factors ξ are presented in Table 2.3.

One last thing that worth to be stressed is that the coupling of the scalars to the
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Type I Type II Lepton-specific Flipped

ξuh sinα/ sin β sinα/ sin β sinα/ sin β sinα/ sin β

ξdh sinα/ sin β cosα/ cos β sinα/ sin β cosα/ cos β

ξ`h sinα/ sin β cosα/ cos β cosα/ cos β sinα/ sin β

ξuH cosα/ sin β cosα/ sin β cosα/ sin β cosα/ sin β

ξdH cosα/ sin β − sinα/ cos β cosα/ sin β − sinα/ cos β

ξ`H cosα/ sin β − sinα/ cos β − sinα/ cos β cosα/ sin β

ξuA cot β cot β cot β cot β

ξdA − cot β tan β − cot β tan β

ξ`A − cot β tan β tan β − cot β

Table 2.3: Yukawa couplings for the physical scalars to fermions in the different types of

2HDM.

gauge bosons are same as described in the previous section, regardless of the 2HDM type.

2.3 The Alignment Limit

The LHC discovery of a scalar particle of mass 125 GeV which is compatible with

the SM Higgs boson to the current precision limits, puts a strong constraint on the 2HDM

scalar sector. One of the physical fields h or H must behave approximately in the same

way as the SM Higgs, which means that their couplings to the other fields must mimic the

SM Higgs couplings. This condition is satisfied in the so-called alignment limit [49, 50].

We can identify what would be the SM Higgs boson in the context of the 2HDM

by working in a basis in which one of the doublets concentrates all of the VEV and the

other is inert. The doublet that acquires the VEV behaves in the same manner as the

SM doublet, since it is responsible to drive the EWSB. Therefore, its neutral component

may be identified as the SM Higgs boson. This basis can be achieved by the following

transformation on the original doublets Φ1 and Φ2,

H1 = cos βΦ1 + sin βΦ2

H2 = − sin βΦ1 + cos βΦ2,
(2.37)
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with β given by Eq. (2.22). After using (2.23) and (2.24), H1 and H2 read,

H1 =

 G+

1√
2
(v +HSM + iG)

 , H2 =

 H+

1√
2
(χ+ iA),

 (2.38)

where HSM = ρ1 cos β + ρ2 sin β and χ = −ρ1 sin β + ρ2 cos β. In this basis the physical

fields H+ and A and the Goldstone bosons G+ and G are explicit, though the physical

neutral scalars are not. By using Eq. (2.16), HSM can be written in terms of h and H,

HSM = h cos(β − α) +H sin(β − α). (2.39)

Thus we see that neither of the physical fields of the 2HDM correspond exactly to the

SM Higgs boson for generic values of the mixing angles α and β. However, Eq. (2.39)

reveals the condition that α and β must satisfy in order to obtain the alignment limit:

when cos(α− β) = 1, h becomes SM-like Higgs; whereas if sin(α− β) = 1, then H is the

SM-like Higgs.

This condition can be verified using the couplings of the Table 2.3. For instance,

if we identify h as the SM-like Higgs, the alignment limit is α = β. In this case, it is

easy to see from the Table that the ξ factors become ξuh = ξdh = ξ`h = 1, confirming that h

couples to fermions as the SM Higgs boson. It is interesting to notice that this happens

regardless the type of 2HDM. The couplings with the gauge bosons also reduces to the

SM ones, since the proportionality factor for these couplings is cos(α− β).
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Chapter 3

Neutrino Masses and Absence of

Flavor Changing Interactions in the

2HDM from Gauge Principles

In the previous Chapter we presented the 2HDMs, which are attractive SM exten-

sions due to, among other things, its simplicity and phenomenological richness. However,

the 2HDM framework in its general form is plagued with FCNI and to cure this problem,

an ad-hoc discrete symmetry is usually evoked. Furthermore, neutrino masses, one of the

major observational evidences for physics beyond the SM, are typically not addressed in

2HDM.

In this Chapter we discuss a gauge solution to the FCNI problem which in addition

naturally can incorporate Majorana neutrino masses. The idea is to add a gauged Abelian

U(1)X symmetry to the 2HDM and find anomaly-free models that effectively lead to the

usual 2HDM classes that have no FCNI. Anomaly-free models are also possible when

right-handed neutrinos are added to the particle content. Their mass terms generate

Majorana masses for the light neutrinos. Tracing the absence of dangerous flavor physics

and the presence of neutrino masses to the same anomaly-free gauge origin is an attractive

approach within 2HDM that deserves careful study. A whole class of models is generated

by the idea. A new vector gauge boson that has mass and kinetic-mixing with the SM Z

boson is present, and we investigate its phenomenology in a limit which resembles often

studied dark photon models. In particular, we address several constraints coming from

low energy as well as high energy probes, including atomic parity violation, the muon



anomalous magnetic moment, electron-neutrino scattering, and new physics searches at

the LHC and several other MeV-GeV colliders such as BaBar.

This Chapter is structured as follows: in section 3.1 we introduce the 2HDM

framework with gauged Abelian symmetries and study the constraints on the models

from anomaly cancellation, including right-handed neutrinos. After that we explain how

the neutrino masses are generated in this setup. In section 3.2 the models are confronted

with various phenomenological constraints before we summarize our discussion in section

3.3. Some details of this Chapter are delegated to the Appendix A.

3.1 2HDM with U(1)X Symmetries

As discussed in the Chapter 2, the introduction of a Z2 symmetry is sufficient to

successfully implement the NFC criterion and avoid the problem of FCNI at the tree level

in the 2HDM. Although effective to overcome this problem, the origin of this symmetry

is not clear. Moreover, the ad-hoc introduction of the m12 term in the scalar potential to

save the model from the cosmological domain wall problem does not seem natural.

However, the Z2 symmetry is not the only way available to avoid the FCNI prob-

lem [51]. A fundamental solution to this flavor problem in the 2HDM could come from

well-established gauge principles. The implementation of an Abelian gauge symmetry

U(1)X can also be effective to eliminate conveniently terms in the Yukawa Lagrangian

and generate all four 2HDM types free from FCNI, once suitable charges are assigned to

the fields. In the next section we will explain how this can be achieved. The fundamental

requirement, as we will see, is that the two Higgs doublets have different U(1)X charges.

This requirement on Φ1 and Φ2 and the U(1)X invariance reduces the scalar potential to,

V (Φ1,Φ2) = m2
1Φ†1Φ1 +m2

2Φ†2Φ2 +
λ1

2

(
Φ†1Φ1

)2

+
λ2

2

(
Φ†2Φ2

)2

+ λ3

(
Φ†1Φ1

)(
Φ†2Φ2

)
+ λ4

(
Φ†1Φ2

)(
Φ†2Φ1

)
.

(3.1)
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Generally speaking, a local Abelian transformation change the fields as follows,

LL → L′L = eilα(x)LL

QL → Q′L = eiqα(x)QL

eR → e′R = eieα(x)eR

uR → u′R = eiuα(x)uR

dR → d′R = eidα(x)dR

Φ1 → Φ′1 = eiQX1α(x)Φ1

Φ2 → Φ′2 = eiQX2α(x)Φ2,

(3.2)

where l, q, e, u, d,QX1, QX2 are the charges of the fields under U(1)X . The fermion charges

have also to obey certain conditions dictated by gauge invariance and anomaly cancella-

tion. In what follows we will derive these conditions.

3.1.1 Realizing NFC criterion with U(1)X Symmetries

The requirement that the scalar doublets transform differently still leaves enough

freedom to construct several models, based on the specific charge assignments for the SM

particles. Once we write down a Yukawa Lagrangian and demand gauge invariance, the

transformations in Eq. (3.2) are no longer arbitrary, and the charges under U(1)X will be

interconnected. For instance, in the Type I 2HDM, where fermions couple only with Φ2,

the following U(1)X transformations apply,

−LY2HDM
→ −L′Y2HDM

= eiα(−q+QX2+d)yd2Q̄Φ2dR + eiα(−q−QX2+u)yu2 Q̄Φ̃2uR

+ eiα(−l+QX2+e)ye2L̄Φ2eR + h.c.
(3.3)

The U(1)X invariance imposes the following conditions on the charges of the fields:

d− q +QX2 = 0

u− q −QX2 = 0

e− l +QX2 = 0.

(3.4)

Notice that in this case couplings of fermions with Φ1 are forbidden by the U(1)X sym-

metry. These couplings would be allowed only if QX1 satisfies the same equations (3.4)

as QX2, implying that QX1 = QX2. However, since we require that QX1 6= QX2, there

is no value of QX1 satisfying these equations. Therefore, this charge assignment indeed

implements the desired Yukawa coupling of the type I 2HDM.
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We can proceed in the same way to obtain the other NFC types of 2HDM. We get

type II 2HDM with the following condition,

d− q +QX1 = u− q −QX2 = e− l +QX1 = 0, (3.5)

whereas for the type X 2HDM,

d− q +QX2 = u− q −QX2 = e− l +QX1 = 0, (3.6)

and finally for the type Y 2HDM,

d− q +QX1 = u− q −QX2 = e− l +QX2 = 0. (3.7)

Besides the constraints on the charges from these equations, there are also the constraints

from anomaly cancellation, which we now discuss.

3.1.2 Anomaly Cancellation

Anomalies occur when an apparent symmetry of the Lagrangian in a field theory

is not actually a symmetry in the quantum theory. When this happens the symmetry is

said to be anomalous. The anomaly manifests itself as a non-invariance of the measure in

the path integral formulation (although the Lagrangian is invariant), or, in the canonical

formalism, with the presence of a would-be conserved current with an anomalous nonzero

divergence. Either way, anomalies must be avoided at all cost if the symmetry in question

is a gauge symmetry, since in this case they lead to the violation of the Ward identities,

which are responsible for the cancellation of non-physical gauge degrees of freedom and

for the S matrix unitarity.

Chiral theories often have this issue, once the axial current acquire divergence

through quantum corrections at the level of 1-loop, which couple this current to a pair of

gauge bosons, as represented by the triangle diagram in Fig. 3.1. It can be shown that

the anomalous term in the triangular diagram is proportional to

Aabc = Tr
[{
T aR, T

b
R

}
T cR
]
− Tr

[{
T aL, T

b
L

}
T cL
]
, (3.8)

where T aR and T aL are the group generators in the right-handed and left-handed representa-

tions of the matter fields and Tr indicates the ordinary trace of the matrices involved and

also the sum over all fermions that can participate in the loop. Demanding that Aabc = 0
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Figure 3.1: Triangle diagram of the chiral anomaly.

is a necessary condition to avoid the presence of anomalies. If a gauge theory satisfies this

condition, it is said to be anomaly free.

Once the U(1)X symmetry in our model is a gauge chiral symmetry, we have to

guarantee that it is anomaly free. The general constraints for the anomaly freedom of

the U(1)X symmetry are shown in Appendix A.1. In the Type I 2HDM, in which we will

focus our attention for the rest of this Chapter, the anomaly cancellation can be achieved

by writing the charges of the fields as a function of u and d (to see this, combine Eq.

(A.2) (l = −3q) with the constraints from (3.4)),

q =
(u+ d)

2
,

l =
−3 (u+ d)

2
,

e = − (2u+ d) ,

QX2 =
(u− d)

2
.

(3.9)

It is then straightforward to prove that these charge assignments in Eq. (3.9) satisfy the

anomaly conditions Eqs. (A.1)-(A.4). However, for the cancellation of the [U(1)X ]3 term,

Eq. (A.5), we find,

e3 + 3u3 + 3d3 − 2l3 − 6q3 = [− (2u+ d)]3 + 3u3 + 3d3 − 2

[
−3 (u+ d)

2

]3

− 6

[
(u+ d)

2

]3

= − (2u+ d)3 + 3u3 + 3d3 + 6 (u+ d)3

= u3 + 8d3 + 6u2d+ 12ud2

= (u+ 2d)3 .

(3.10)

and this anomaly is not canceled for u and d arbitrary.
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Here is the point at which neutrino physics can enter: if we decide to keep u and d

arbitrary, the most straightforward possibility is to add right-handed neutrinos (one per

generation). If their charge n is given by

n = − (u+ 2d) , (3.11)

the [U(1)X ]3 anomaly term is canceled because Eq. (A.5) becomes

n3 + e3 + 3u3 + 3d3 − 2l3 − 6q3 = − (u+ 2d)3 + (u+ 2d)3 = 0. (3.12)

The presence of right-handed neutrinos is an essential ingredient to the implementation

of the type I seesaw mechanism, as we will discuss in the next section. It is important to

note, however, that this anomaly can also be canceled without right-handed neutrinos if

u = −2d, but in this case the implementation of type I seesaw mechanism is not possible.

Concerning the Φ1 charge under U(1)X , we have only demanded so far that QX1 6=

QX2 to respect the NFC criterion, and no relation between QX1 and QX2 exist. By adding

a singlet scalar to generate a Majorana mass term for the neutrinos, also necessary for

the implementation of the seesaw mechanism, the values of QX1 and QX2 are no longer

independent, as we will see next.

3.1.3 Neutrino Masses

As aforementioned, in the conventional 2HDM neutrinos are massless. Similarly

to the SM one can simply add right-handed neutrinos and generate Dirac masses to the

neutrinos. However, a compelling explanation for tiny neutrino masses arises via the

seesaw mechanism [52, 53, 54, 55, 56]. In order to realize the type I seesaw mechanism

one needs Dirac and Majorana mass terms for the neutrinos. This can be realized in our

2HDM framework by proper assignments of the quantum numbers, as we will demonstrate

in what follows.

Typically, a bare mass term is introduced for the right-handed neutrinos in the

realization of the seesaw mechanism without explaining its origin. Here, we explain the

neutrino masses by adding a scalar singlet Φs, with charge qX under U(1)X . The first

consequence of introducing a new singlet scalar is the extension of the scalar potential

which adds to Eq. (3.1) the potential

Vs = m2
sΦ
†
sΦs +

λs
2

(
Φ†sΦs

)2
+ µ1Φ†1Φ1Φ†sΦs + µ2Φ†2Φ2Φ†sΦs +

(
µΦ†1Φ2Φs + h.c.

)
, (3.13)
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where

Φs =
1√
2

(vs + ρs + iηs) .

All these terms are straightforwardly invariant under U(1)X except for the last term which

requires qX = QX1−QX2. That said, the Yukawa Lagrangian involving the neutrinos reads

−L ⊃ yDij L̄iLΦ̃2NjR + Y M
ij (NiR)cΦsNRj + h.c.. (3.14)

After the spontaneous symmetry breaking, picking up only the neutrino mass terms, we

have the Lagrangian corresponding to the type I seesaw mechanism,

−Lν = νLmDNR +
1

2
N c
RMRNR + h.c.

=
(
νLN c

R

) 0 mD

mT
D MR

 νL

N c
R

+ h.c.
(3.15)

where mD = yDv2
2
√

2
and MR = yMvs

2
√

2
. As long as MR � mD, the mass of the light neutrinos

become suppressed by the large MR, giving the seesaw relation,

mν = −mT
D

1

MR

mD, (3.16)

whereas the masses of the heavy neutrinos are mN = MR. We take vs to be at the

TeV scale, and in this case yD ∼ 10−4 and yM ∼ 1 lead to mν ∼ 0.1 eV in agreement

with current data [57]. In this scenario right-handed neutrinos have masses at around

300− 400 GeV, although smaller right-handed neutrino masses are also possible.

Let us now take a closer look at Eq. (3.14). Gauge invariance of the first term

requires

− l −QX2 + n = 0. (3.17)

Using Eq. (3.9) and Eq. (3.11) we get

−l −QX2 + n = −
[
−3 (u+ d)

2

]
−
[

(u− d)

2

]
− (u+ 2d) = 0. (3.18)

Therefore, the condition in Eq. (3.17) is automatically fulfilled. However, the Majorana

mass term in Eq. (3.14) is gauge invariant if 2n + qX = 0, which implies from Eq. (3.11)

that qX = 2u + 4d. Using that qX = QX1 − QX2 from the term µΦ†1Φ2Φs in the scalar

potential Eq. (3.13), we get

QX1 =
5u

2
+

7d

2
. (3.19)
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Two Higgs Doublet Models free from FCNI

Fields uR dR QL LL eR NR Φ2 Φ1

Charges u d (u+d)
2

−3(u+d)
2

−(2u+ d) −(u+ 2d) (u−d)
2

(5u+7d)
2

U(1)A 1 −1 0 0 −1 1 1 −1

U(1)B −1 1 0 0 1 −1 −1 1

U(1)C 1/2 −1 −1/4 3/4 0 3/2 3/4 −9/4

U(1)D 1 0 1/2 −3/2 −2 −1 1/2 5/2

U(1)E 0 1 1/2 −3/2 −1 −2 −1/2 7/2

U(1)F 4/3 2/3 1 −3 −10/3 −8/3 1/3 17/3

U(1)G −1/3 2/3 1/6 −1/2 0 −1 −1/2 3/2

U(1)B−L 1/3 1/3 1/3 −1 −1 −1 0 2

U(1)Y 4/3 −2/3 1/3 −1 −2 1 6= QX2

U(1)N 0 0 0 0 0 0 6= QX2

Table 3.1: The first block of models is capable of explaining neutrino masses and the absence of flavor

changing interactions in the 2HDM type I, whereas the second block refers to models where only the

flavor problem is addressed. The first block accounts for type I 2HDM in which right-handed neutrinos

are introduced without spoiling the NFC criterion (QX1 6= QX2). This is possible when u 6= −2d (see Eq.

(3.9) and Eq. (3.19)). Conversely, the second block shows Type I 2HDM with u = −2d. To preserve the

NFC criterion, right-handed neutrinos can not be introduced while at the same time QX1 is kept as a free

parameter. The U(1)N model leads to a fermiophobic Z ′ setup [3]. The U(1)Y yields a ”right-handed-

neutrino-phobic” Z ′ boson. The U(1)B−L is the well-known model in which the accidental baryon and

lepton global symmetries are gauged. The U(1)C,G models feature null couplings to right-handed charged

leptons, whereas the U(1)A,B models have vanishing couplings to left-handed leptons. The U(1)D has

null couplings to right-handed down-quarks. The U(1)E,F models induce Z ′ interactions to all fermions,

but have rather exotic U(1)X charges.

Now the Φ1 charge under U(1)X is generally determined so that neutrino masses are

generated. If we happened to choose u = d = 1/3, then qX = QX1 = 2, QX2 = 0,

and the U(1)X symmetry is identified to be U(1)B−L symmetry, which is spontaneously

broken when Φs gets a vacuum expectation value. Various other choices of the charges are

possible, see Table 3.1 for a list. From the list, the U(1)B−L, U(1)N have been previously

investigated in the literature in different contexts [58, 59, 60, 61, 62, 63, 64, 65, 66, 67,

68, 69].
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The spontaneous symmetry breaking pattern from high to low energy goes as

follows: (i) the vev vs sets the scale which the U(1)X symmetry is broken, say TeV; (ii)

then v2 breaks the SU(2)L ⊗ U(1)Y group to Quantum Electrodynamics. As for the v1

scale, there is some freedom, but it should be either comparable to v2 or smaller, as long

as v2 = v2
2 + v2

1, where v = 246 GeV, since m2
W = g2v2/4 (see Appendix A.2). In the

regime in which vs > v2 > v1 one needs to tune down the gX coupling in order to have a

Z ′ boson that is lighter than the SM Z, which is the regime we will focus in here.

In summary, the introduction of a new gauge symmetry with the charge assign-

ments as exhibited in Table 3.1 leads to a compelling solution to the flavor problem in

the Type I 2HDM, while successfully generating fermion masses. In particular, neutrino

masses are explained via the seesaw mechanism. A similar reasoning, respecting the NFC

criterion (QX1 6= QX2), can be applied to other types of 2HDM preventing them of FCNI.

Nevertheless, the addition of extra chiral fermions is required to preserve them free of

anomalies. Therefore, we focus here on 2HDM of Type I, see Table 3.1.

Now that we have reviewed the theoretical motivations for introducing an Abelian

symmetry to the framework of the 2HDM we discuss in more detail the spectrum of the

gauge bosons and neutral currents.

3.1.4 Physical Gauge Bosons and Neutral Currents

We emphasize that we are including all renormalizable terms allowed guided by

gauge invariance. Therefore, kinetic mixing between the two Abelian groups is present.

To understand the impact of kinetic mixing in the determination of the physical gauge

boson we should start off writing down the kinetic terms of the gauge bosons. Note that

throughout, the kinetic mixing parameter should fulfill ε � 1 to be consistent with pre-

cision electroweak constraints. That said, the most general gauge Lagrangian associated

to these groups is [70, 71, 72]:

Lgauge = −1

4
B̂µνB̂

µν +
ε

2 cos θW
X̂µνB̂

µν − 1

4
X̂µνX̂

µν , (3.20)

with the following covariant derivative

Dµ = ∂µ + igT aW a
µ + ig′

QY

2
B̂µ + igX

QX

2
X̂µ. (3.21)

Here T a, W a
µ and g are the generators, gauge bosons and gauge coupling constant

of SU(2)L respectively; X̂µ and B̂µ the U(1)X and U(1)Y gauge bosons, gX (QX) is
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the U(1)X coupling constant (charge) and g′ (QY ) is U(1)Y coupling constant (charge).

The hats means that they are non-physical, i.e. yet to be diagonalized, fields. As usual

B̂µν = ∂µB̂ν − ∂νB̂µ and X̂µν = ∂µX̂ν − ∂νX̂µ.

One first performs a GL(2, R) transformation in order to make the kinetic terms

canonical, Xµ

Bµ

 =

√1− (ε/ cos θW )2 0

−ε/ cos θW 1

X̂µ

B̂µ

 . (3.22)

Therefore B̂µ = ηXXµ +Bµ, and X̂µ = Xµ, where

ηX =
ε/ cos θW√

1− (ε/ cos θW )2
' ε/ cos θW , (3.23)

since we are taking ε/ cos θW � 1 throughout. Thus, the covariant derivative now reads,

Dµ = ∂µ + igT aW a
µ + ig′

QY

2
Bµ +

i

2

(
gXQX + g′

ε

cos θW
QY

)
Xµ. (3.24)

which is from where we derive the gauge boson masses.

The general formalism of diagonalizing the neutral gauge boson mass matrix is

delegated to Appendix A.2. The gauge boson mixing is parametrized in terms of εZ and

ε, coming from the contributions of the second Higgs doublet and the kinetic mixing

between the U(1) groups respectively (see below and (A.37)). In the regime in which the

new vector boson is much lighter than the SM Z boson, we get two mass eigenstates; one

identified as the SM Z boson, labeled Z0 with, m2
Z0 = g2v2

4 cos2W
and the Z ′ boson with,

m2
Z′ =

v2
s

4
g2
Xq

2
X +

g2
Xv

2 cos2 β sin2 β

4
(QX1 −QX2)2, (3.25)

where qX , QX1, QX2 are the charges under U(1)X of the singlet scalar, Higgs doublets Φ1

and Φ2 respectively, tan β = v2/v1, v =
√
v2

1 + v2
2 = 246 GeV, vs sets the U(1)X scale of

spontaneous symmetry breaking, and gX is the coupling constant of the U(1)X symmetry.

It will be useful to write the Z ′ mass in a compact form as (see Appendix A.3) by

defining tan βd =
vs
v1

as follows,

mZ′ =
gXv cos2 β

δ
, (3.26)

where

δ =
2 cos β cos βd√

q2
X + cos2 βd

(
sin2 β(QX1 −QX2)2 − q2

X

) . (3.27)
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The mixing angle for the diagonalization of the gauge bosons, ξ, in this general

setup can be parametrized as follows (see (A.34)),

ξ ≡ εZ + ε tan θW , (3.28)

where,

εZ ≡
gX
gZ

(QX1 cos2 β +QX2 sin2 β). (3.29)

For instance, in the B − L model one has,

εZ = 2
gX
g

cos2 β, (3.30)

and with the use of Eq. (3.26) we get,

δ =
mZ

mZ′
εZ , (3.31)

which agrees with [62], validating our findings.

Having obtained the physical fields we can rewrite the neutral current Lagrangian

(see Appendices A.2 and A.4):

LNC =− eJµemAµ −
g

2 cos θW
JµNCZµ −

(
εeJµem + εZ

g

2 cos θW
JµNC

)
Z ′µ

+
1

4
gX sin ξ

[(
QR
Xf +QL

Xf

)
ψ̄fγ

µψf +
(
QR
Xf −QL

Xf

)
ψ̄fγ

µγ5ψf
]
Zµ

− 1

4
gX cos ξ

[(
QR
Xf +QL

Xf

)
ψ̄fγ

µψf −
(
QL
Xf −QR

Xf

)
ψ̄fγ

µγ5ψf
]
Z ′µ,

(3.32)

where QR
X (QL

X) are the left-handed (right-handed) fermion charges under U(1)X . We

emphasize that Eq. (3.32) is the general neutral current for 2HDM augmented by a U(1)X

gauge symmetry.

Again, it is important to validate our results with the existing literature. For

instance, in the U(1)B−L model we get

LNC =− eJµemAµ −
g

2 cos θW
JµNCZµ −

(
εeJµem + εZ

g

2 cos θW
JµNC

)
Z ′µ

− gX
2
QXf

[
ψ̄fγ

µψf
]
Z ′µ,

(3.33)

where QXf = −1 for charged leptons and QXf = 1/3 for quarks, with gX and εZ related

by Eq. (3.30), in agreement with [73].

Now that we have obtained the neutral current for a generic U(1)X model in the

context of the 2HDM we will address the relevant constraints these U(1)X models are

subject to.
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3.1.5 Z ′ Decays

We have introduced a multitude of Abelian gauge groups in the context of the

2HDM that address two major issues in the original 2HDM framework, namely the ab-

sence of neutrino masses and the presence of flavor changing interactions. Abelian groups

generally give rise to neutral gauge bosons which are subject to a rich phenomenology

that we plan to explore in what follows. Before doing so, some general remarks are in

order:

(i) The kinetic mixing (ε) as well as the mass mixing (εZ) parameters are required to be

smaller than 10−3 to be consistent with a variety of constraints that we will discuss.

(ii) We will focus on the regime mZ′ � mZ , say mZ′ = 1 MeV−10 GeV. Some comments

on different regimes will nevertheless be made whenever relevant.

(iii) A light Z ′ can be achieved at the expense of tuning the gauge coupling gX .

(iv) The phenomenology of our models will be dictated by either the kinetic mixing or

the mass-mixing terms.

That said, some of the constrains we will investigate are based on dark photon searches.

Notice that our models are a bit different than the dark photon model that has only the

kinetic mixing term, due to the presence of mass-mixing and the non-vanishing U(1)X

charges of the SM fermions. We remind the reader that only the models that simultane-

ously explain neutrino masses and free the 2HDM from flavor changing interactions are

of interest throughout this work, as displayed in the first block of Table 3.1. With this in

mind we discuss the Z ′ decays in each one of the models.

• It is important to first mention the dark photon model. In such models the coupling

of the dark photon A′ with SM fermions f goes as f̄γµfA′µ. The corresponding

branching ratios are shown in Fig. 3.2. It is important to have a clear picture of

the dark photon model because some of the bounds discussed in this work have the

dark photon model as benchmark as we shall see when we address neutrino-electron

scattering and low energy accelerator constraints.

• In the U(1)A model, the charged leptons and light quarks charges under U(1)A are

the same but due to color multiplicity the Z ′ decays mostly into light quarks as
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shown in Fig. 3.2. As for the U(1)B model, the results are same. Notice that the

label B has nothing to do with baryon number. No decays into active neutrinos

exist since the lepton doublet is uncharged under the new gauge group.

• In the U(1)C model, the branching ratio into neutrinos is more relevant in compar-

ison with previous models since now the lepton doublet has charge 3/4 under the

new gauge group. However, decays into light quarks are still the most relevant. The

U(1)G model has a similar behavior.

• In the U(1)D model, the branching ratio into leptons prevails. A similar feature

happens in the U(1)B−L model, where B and L account for the baryon and lepton

numbers. In the former, the branching ratios into charged fermions and neutrinos are

very similar, but as soon the decay into muons becomes kinematically accessible the

branching ratio into charged leptons increases. In the latter, decays into neutrinos

are always dominant in the mass region of interest, as a straightforward consequence

of the baryon and lepton quantum numbers of the fermions.

• In the U(1)E model, decays into neutrinos are dominant until the Z ′ mass approxi-

mates the strange quark and muon kinematic thresholds.

Now that we have highlighted the properties of the Z ′ gauge boson for each U(1)X

model we will discuss a variety of constraints going from mesons decays to low energy

accelerators.

3.2 Phenomenological Constraints

In this section we will span over the existing limits on the U(1)X models proposed

previously. Our main goal is to estimate limits on the parameter space of these models

and assess how relevant they are. A more dedicated study will be conducted elsewhere.

We start with meson decays.
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Figure 3.2: Branching ratios as a function of the Z ′ mass for several U(1)X models under study.
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3.2.1 Meson Decays

Rare K Decays

The main decays modes of the charged Kaon are µνµ, π
+π0 and π+π+π− with

branching ratios of 64%, 21% and 6% respectively. Searches for rare meson decays such as

K+ → π+l+l− have also been performed [74, 75], which led to the experimental constraints

[76],

BR(K+ → π+e+e−)exp = (3.00± 0.09)× 10−7, (3.34)

BR(K+ → π+µ+µ−)exp = (9.4± 0.6)× 10−8, (3.35)

BR(K+ → π+νν̄)exp = (1.7± 1.1)× 10−10. (3.36)

In a Two Higgs Doublet Model with Z − Z ′ mass mixing the branching ratio of

K+ → π+Z ′ is estimated to be [77],

BR(K+ → π+Z ′) ' 4× 10−4 δ2, (3.37)

where δ = εZmZ/mZ′ (see Appendix A.3). Comparing Eq. (3.37) with Eqs. (3.34)-(3.36)

we conservatively find that,

δ .
2× 10−2√

BR(Z ′ → l+l−)
, (3.38)

δ .
7× 10−4√

BR(Z ′ → missing energy)
. (3.39)

These bounds should be used with care since they are not applicable to any Z ′

mass. For instance, the bound obtained in Eq. (3.34) was obtained with a hard cut in

the dilepton invariant mass, namely mee > 140 MeV [75]. Thus this limit is valid for

mZ′ > 140 MeV.

In the U(1)B−L model, for instance, for m′Z < 2mµ, the Z ′ decays with ∼ 75%

braching ratio into neutrinos and therefore Eq. (3.39) should be used, giving stronger

constraints. In the U(1)N model, on other hand, the situation strongly depends on the

ratio ε/εZ . In particular, for ε/εZ � 1, the Z ′ decays mostly into charged leptons with Eq.

(3.38) yielding stronger limits, conversely for ε/εZ < 1, Eq. (3.39) is more restrictive in

agreement with [59]. Either way it is clear that rare kaon decays introduce an interesting

pathway to probe new physics, specially low mass Z ′ gauge bosons [78, 79, 80, 81, 82].
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K Decays

δ . 2× 10−2/
√
BR(Z ′ → l+l−)

δ . 7× 10−4/
√
BR(Z ′ → missing energy)

B Decays

δ . 2× 10−3/
√
BR(Z ′ → l+l−)

δ . 1.2× 10−2/
√
BR(Z ′ → missing energy)

Table 3.2: Summary of constraints on the model from meson decays.

Rare B Decays

Similar to the K mesons discussed previously rare B decays offer a promising

environment to probe new physics. In particular, the charged B meson with mass of

5.3 GeV, comprised of ub̄, may possibly decay into K+l+l− [83, 84, 85] or K+νν̄ [86, 87].

Such decays have been measured to be [76],

BR(B+ → K+l̄+l−)exp < 4.5× 10−7, (3.40)

BR(B+ → K+ν̄ν)exp < 1.6× 10−5. (3.41)

Having in mind that the mass mixing in the 2HDM induces [77, 84, 59],

BR(B → KZ ′) ' 0.1δ2, (3.42)

implying that,

δ .
2× 10−3√

BR(Z ′ → l+l−)
, (3.43)

δ .
1.2× 10−2√

BR(Z ′ → missing energy)
. (3.44)

Comparing Eqs. (3.43)–(3.44) with Eqs. (3.38)–(3.39) we can see the rare B decays

give rise to more stringent limits on the parameter δ when the Z ′ decays mostly into

charged leptons. We highlight that the large factor in Eq. (3.42) is result of the presence

of the top quark in the Feynman diagram responsible for the b → s conversion, and

consequently the B → KZ ′ decay.

As for Z ′ decays into neutrino pairs, then precise measurements on Kaon decays

offer the leading constraints. The constraints from meson decays are summarized in Table

3.2. We will now move to Higgs physics.
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vertex coupling constant

H tt̄,H bb̄,H τ τ̄ sinα
sinβ

HWW,H ZZ cos(β − α)

h tt̄, h bb̄, h τ τ̄ cosα
sinβ

hWW,hZZ sin(β − α)

Table 3.3: Higgs and light scalar interactions in the 2HDM type I. The coupling constants in the second

column are the overall multiplicative factor in front of the SM couplings. In other words, when α = β

the Higgs in the 2HDM type I interacts with fermions and gauge bosons identically to the SM Higgs.

3.2.2 Higgs Physics

Higgs Properties

Our models are comprised of two Higgs doublets and a singlet scalar. In the limit

in which the scalar doublets do not mix with the singlet, i.e. the regime in which the

parameters µ1, µ2, µ in the potential (3.13) are suppressed, one finds,

m2
s = λsv

2
s ,

m2
h =

1

2

(
λ1v

2
1 + λ2v

2
2 −

√
(λ1v2

1 − λ2v2
2)2 + 4(λ3 + λ4)2v2

1v
2
2

)
, (3.45)

m2
H =

1

2

(
λ1v

2
1 + λ2v

2
2 +

√
(λ1v2

1 − λ2v2
2)2 + 4(λ3 + λ4)2v2

1v
2
2

)
,

and the H-h mixing is given by, H

h

 =

 cosα sinα

− sinα cosα

 ρ1

ρ2

 (3.46)

with

tan 2α =
2(λ3 + λ4)v1v2

λ1v2
1 − λ2v2

2

. (3.47)

We are considering here that the scalar H is the SM-like Higgs (notice from the Eqs.

(3.45) that H is always heavier than h). Their interaction strengths with SM particles

are summarized in Table 3.3. The coupling constants in the second column of the table

are multiplicative factors appearing in front of the SM couplings. In other words, when

α = β the Higgs in the 2HDM type I interacts with fermions and gauge bosons identically

to the SM Higgs (the alignment limit). Furthermore, close to the alignment β ∼ α, the

h tt̄, h bb̄ and h τ τ̄ couplings are governed by cot β, whereas the hWW , hZZ interactions

are dwindled.
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Figure 3.3: Higgs associated production at LEP followed by its invisible decay, illustrated by h→ XX.
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Figure 3.4: Upper limits from invisible Higgs decay searches translated to the light Higgs mass mh.

Higgs Associated Production

Several experiments have searched for scalars with similar properties to the SM

Higgs at LEP. They were particularly focused on the associated production with the Z

boson, with the scalar decaying either into fermions or invisibly as displayed in Fig. 3.3.

The light Higgs in the models under study, h, decays at tree-level into Z ′Z ′. Since the

LEP searches did not cover fermions with very small invariant mass, i.e. stemming from

a light Z ′, one should use the results from the invisible decay search. That said, the Zh

associated production search resulted into limits on the product of the production cross

section strength and branching ratio, i.e. σ(Zh)/σ(ZHSM)BR(h→ inv).

Assuming BR(h → inv) ' 1 throughout, one can reinterpret the results from

[88, 89, 90] for the light Higgs h, having in mind that the hZZ coupling goes with

sin(β − α), to place a bound on sin2(β − α) as a function of the scalar mass as shown in

the Fig. 3.4 [62]. From Fig. 3.4, one can conservatively conclude that sin2(β − α) . 0.1,

cos2(β − α) > 0.9, independent of tan β. Weaker limits are applicable depending on the

light Higgs mass.
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Figure 3.5: Ratio of the light Higgs decay width for different values of tanβ. In the left panel we set

δ = 10−2, while in the right one δ = 10−3. One can see that if the product δ tanβ is sufficiently large,

the light Higgs decays dominantly into Z ′Z ′. In this regime, the limits presented in the Fig. 3.4 can be

directly applied.

However, the limit presented in Fig. 3.4 may be not robust because it relies on the

assumption that BR(h→ inv) ' 1. A simple check can be done by comparing the decay

into Z ′Z ′ with the usually dominant bb̄ mode that lead to the following decay rates,

Γh→Z′Z′ =
g2
Z

128π

m3
h

m2
Z

(δ tan β)4

(
cos3 β cosα− sin3 β sinα

cos β sin β

)2

, (3.48)

Γh→bb̄ =
3m2

bmh

8πv2

(
cosα

sin β

)2

. (3.49)

We thus conclude that the ratio reads

Γh→bb̄
Γh→Z′Z′

=
12m2

b

m2
h

1

(δ tan β)4

(
cos β sin β

cos3 β cosα− sin3 β sinα

)2(
cosα

sin β

)2

, (3.50)

which is displayed in Fig. 3.5, where we plot this ratio for different values of tan β as a

function of the light Higgs mass. In the left panel we fix δ = 10−2, whereas in the right

one δ = 10−3. One can see that if the product δ tan β is sufficiently large, the light Higgs

decays dominantly into Z ′Z ′, as predicted by Eq. (3.49), justifying our procedure in the

derivation of Fig. 3.4. A more detailed study regarding the light Higgs properties has

been conducted in the Ref. [62]. In this work, we are limited to discuss all relevant limits

to the U(1)X models introduced above.

Higgs Decays

After the Higgs discovery the LHC has turned into a Higgs factory and today we

have at our disposal much better measurements of the Higgs branching ratio (see Table
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Higgs decay channel branching ratio error

bb̄ 5.84× 10−1 1.5%

cc̄ 2.89× 10−2 6.5%

g g 8.18× 10−2 4.5%

ZZ∗ 2.62× 10−2 2%

WW ∗ 2.14× 10−1 2%

τ+τ− 6.27× 10−2 2%

µ+µ− 2.18× 10−4 2%

γγ 2.27× 10−3 2.6%

Zγ 1.5× 10−3 6.7%

ZZ∗ → 4` 2.745× 10−4 2%

ZZ∗ → 2`2ν 1.05× 10−4 2%

Table 3.4: List of experimental limits on the branching ratio of the SM Higgs. The channel ZZ∗ → 2`2ν

was obtained using the relation BR(H → ZZ∗ → 2`2ν) = BR(H → ZZ∗)BR(Z → 2`)BR(Z → 2ν)2.

3.4). Since we are mostly interested in the regime in which the Z ′ is light enough for

the Higgs to decay into, some channels are of great interest for our purposes, namely

H → ZZ∗ → 4` and H → ZZ∗ → 2`2ν. In the context of 2HDM it has been shown that

in the limit in which the Z ′ gauge boson is much lighter than the Z boson we get [62],

Γ(H → ZZ ′) =
g2
Z

64π

(m2
H −m2

Z)3

m3
Hm

2
Z

δ2 tan2 β sin2(β − α), (3.51)

and

Γ(H → Z ′Z ′) =
g2
Z

128π

m3
H

m2
Z

δ4 tan4 β

(
cos3 β sinα + sin3 β cosα

cos β sin β

)2

. (3.52)

One can now use precision measurements on Higgs properties summarized in Table

3.4 to constrain the model. We will focus on the decay into ZZ ′ since δ is supposed to be

small to obey meson decay constraints1. Enforcing the branching ratio Γ(H → ZZ ′ →

4`)/Γtotal with Γtotal = 4.1 MeV, to match the measured value within the error bars as

indicated in the Table 3.4 we obtain,

δ2 ≤ 4.6× 10−6

BR(Z ′ → l+l−) sin2(β − α) tan2 β
. (3.53)

1In some regions of the parameter space with sufficiently large tanβ the decay Z ′Z ′ might become

relevant as discussed in [62].
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To have an idea on how competitive this constraint is compared to previous dis-

cussions we shall plug in some numbers. Taking sin2(β − α) = 0.01 and tan β = 10, we

get

δ ≤ 0.002√
BR(Z ′ → l+l−)

, (3.54)

which is comparable to the bound stemming from Kaon decays. We emphasize that this

bound is applicable to all U(1)X models under study here. One need now to simply choose

a model and substitute the respective branching ratio into charged leptons as provided

by Fig. 3.2.

3.2.3 Z Decays

In the models we are investigating both the light Higgs h and the Z ′ can be much

lighter than the Z, kinematically allowing the decay Z → hZ ′. In the limit that the Z ′

mass is very small compared to the Z mass we find,

Γ(Z → hZ ′) = (Ch−Z−Z′)2 mZ

64πm2
Z′

(
1− m2

h

m2
Z

)3

. (3.55)

where (see Appendix A.6)

Ch−Z−Z′ = gZgXv cos β sin β cos(β − α). (3.56)

Knowing that we can write down the Z ′ mass as a function of δ, as derived in

Appendix A.3, we get

Γ(Z → hZ ′) =
g2
ZmZ

64π
(δ tan β)2 cos2(β − α)

(
1− m2

h

m2
Z

)3

. (3.57)

We highlight that the exact expression for this decay depends on the Φ1 charge

under U(1)X . Eq. (3.57) is valid for the B − L model for instance, and it agrees with

[62]. Anyways, knowing that the total decay width of the Z is ΓZ = 2.4952± 0.0023 GeV

[91], one can conservatively enforce the new physics decay to be within the error bars of

the measured value. One can use this to place a lower mass limit on mh as a function of

δ tan β taking cos2(β − α) ∼ 0.9− 1 as shown in Fig. 3.6.

One can conclude that for sufficiently small δ tan β the bounds from LEP substan-

tially weaken. We have seen in the previous sections that δ < 10−2 − 10−3, and since

we are interested in the limit of large tan β, say tan β ∼ 10, then the light Higgs in the

U(1)X models under study can be arbitrarily light as long as a fine-tuning in Eq. (3.45) is
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Figure 3.6: Lower mass bound on the light Higgs stemming from the LEP precision measurement on

the Z width.

invoked. It has been noted that if sinα is different from unity, mh cannot be lighter than

mH/2, otherwise the heavy Higgs, i.e. the SM Higgs, would decay dominantly into hh in

strong disagreement with data [92]. Thus this very light Higgs scenario is only possible

in the limit sinα = 1.

3.2.4 Charged Higgs Searches

In 2HDM type I, the coupling of the charged Higgs to fermions is suppressed by a

factor of tan β. In the models under study, the charged Higgs mass is found to be m2
H+ =

λ4
2
v2. This mass determines which final state is dominant in its decays [93, 94, 8, 95, 96].

In this work we will adopt λ4 ∼ 1, and this case the hW , HW and tb̄ decays are the

dominant ones and are found to be described by [97, 98]

Γ(H± → hW±) =
cos2(β − α)

16πv2

1

m3
H±

λ3/2(m2
H± ,m

2
h,m

2
W ) (3.58)

with λ(x, y, z) ≡ x2 + y2 + z2 − 2xy − 2yz − 2zx,

Γ(H± → HW±) =
sin2(β − α)

16πv2

1

m3
H±

λ3/2(m2
H± ,m

2
H ,m

2
W ), (3.59)

and the decay width into tb̄ is given by

Γ(H± → tb̄) ' 3mH±

8πv2

m2
t

tan2 β

(
1− m2

t

m2
H±

)2

(3.60)

where we have taken Vtb = 1.
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Experiment 〈Q〉 sin2 θW (mZ) Bound on dark Z (90% CL)

Cesium APV 2.4 MeV 0.2313(16) ε2 < 39×10−6

δ2

(
mZ′
mZ

)2
1

K(mZ′ )
2

E158 (SLAC) 160 MeV 0.2329(13) ε2 < 62×10−6

δ2

(
(160 MeV)2+m2

Z′
mZ mZ′

)2

Qweak (JLAB) 170 MeV ±0.0007 ε2 < 7.4×10−6

δ2

(
(170 MeV)2+m2

Z′
mZ mZ′

)2

Moller (JLAB) 75 MeV ±0.00029 ε2 < 1.3×10−6

δ2

(
(75 MeV)2+m2

Z′
mZ mZ′

)2

MESA (Mainz) 50 MeV ±0.00037 ε2 < 2.1×10−6

δ2

(
(50 MeV)2+m2

Z′
mZ mZ′

)2

Table 3.5: Existing (Cesium, E158) and projected constraints on the kinetic mixing parameter as a

function of the mass mixing parameter δ and the Z ′ mass. All masses are in MeV, hence mZ = 91000

MeV.

The constraints coming from charged Higgs bosons searches are not very restrictive

and in the limit of large tan β as assumed in this work, charged Higgs searches do not

yield competitive limits and thus ignored henceforth. For a detailed discussion see [99].

3.2.5 Atomic Parity Violation

The search for Atomic Parity Violation (APV) provides a promising pathway to

probe new physics, especially the existence of neutral light bosons. It is known that for

mZ′ ∼ 0.1−1 GeV, existing limits exclude ε2 > 10−6 [65]. As we shall see in what follows,

APV offers an orthogonal and complementary probe for new physics depending on the

parameter δ.

Anyways, this parity violation is two fold: (i) it can be induced via the non-zero

SM fermion charges under the U(1)X symmetry; (ii) it can arise via the Z ′ − Z mass

mixing. That said, let us first review how one can constrain U(1)X models via atomic

parity violation. Using effective field theory APV is parametrized as [100],

−Leff =
1

4

g2 + g′2

m2
Z

ēγµγ5e

[(
1

4
− 2

3
sin2 θW

)
ūγµu+

(
−1

4
+

1

3
sin2 θW

)
d̄γµd

]
− fAe
m2
Z′
ēγµγ5e

[
fVuūγ

µu+ fVd d̄γ
µd
]
.

(3.61)

Here fxy are effective couplings to be derived below for the different models.

The Lagrangian involves the product of the Z and Z ′ axial vector currents of the

electron with the vector neutral currents of the quarks. Remembering that the vector

part of the Z weak neutral current is associated with the Z weak charge, we get from Eq.
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Figure 3.7: Upper limits on the kinetic mixing as a function of the Z ′ mass for different values of the

mass mixing parameter δ according to the first line of Table 3.5.

(3.61)

QZ = (2Z +N)

(
1

4
− 2

3
sin2 θW

)
+ (Z + 2N)

(
−1

4
+

1

3
sin2 θW

)
, (3.62)

=
1

4

[
Z(1− 4 sin2 θW )−N

]
=

1

4
QSM
W (Z,N).

The quantity QSM
W is usually referred to as weak charge of a nucleus of Z protons and N

neutrons. Similarly, the quark contribution to the charge QZ′ associated with the vector

part of the Z ′ current is found to be

QZ′ = (2Z +N)fVu + (Z + 2N)fVd (3.63)

= (2fVu + fVd)Z + (fVu + 2fVd)N. (3.64)

The effective Lagrangian Eq. (3.61) implies the following parity violation Hamiltonian

density for the electron field in the vicinity of the nucleus2

Heff =e†(~r)γ5e(~r)

[
g2 + g′2

4m2
Z

1

4
QSM
W −

g2 + g′2

4m2
Z′

ε2Z

(
1− l − e

QX1 cos2 β +QX2 sin2 β

)
QZ′

]
δ(~r)

=e†(~r)γ5e(~r)
GF

2
√

2
Qeff
W (Z,N)δ(~r),

(3.65)

2δ(~r) can be replaced by the nuclear density ρ(~r) to take into account finite size effects of the nucleus.

For a more detailed discussion about APV see reference [100].
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where

Qeff
W = QSM

W − 4δ2QZ′

(
1− l − e

QX1 cos2 β +QX2 sin2 β

)
, (3.66)

using that εZ =
mZ′
mZ

δ. We remind the reader that l and e are the charges of the left-handed

and right-handed electron under U(1)X .

Notice that the effective weak charge of the nucleus Qeff
W includes in addition to

the standard contribution QSM
W an additional Z ′ contribution. In order to know Qeff

W , it

is necessary to calculate QZ′ . To do so, we need to specify from Eq. (3.32) fVu and fVd

associated to the Z ′ boson,

fVu =

[
1

4
− 2

3
sin2 θW (1− ε cos θW

εZ sin θW
) +

1

4

q + u

QX1 cos2 β +QX2 sin2 β

]
, (3.67)

fVd =

[
−1

4
+

1

3
sin2 θW (1− ε cos θW

εZ sin θW
) +

1

4

q + d

QX1 cos2 β +QX2 sin2 β

]
, (3.68)

where q(u) is the charge of the left-handed (right-handed) quark field under U(1)X .

Substituting (3.67) and (3.68) into (3.66) we obtain the following general expression

for ∆QW = Qeff
W −QSM

W ,

∆QW = −δ2QSM
W − δ24Z sin θW cos θW

ε

εZ
− δ2 (q + u)(2Z +N)

QX1 cos2 β +QX2 sin2 β

− δ2 (q + d)(Z + 2N)

QX1 cos2 β +QX2 sin2 β

(
1− l − e

QX1 cos2 β +QX2 sin2 β

)
.

(3.69)

Currently, the SM prediction for the weak nuclear charge in the Cesium case is

[101]

QSM
W = −73.16(5), (3.70)

so that the general expression Eq. (3.69) becomes:

∆QW = 73.16δ2 − 220δ

(
ε
mZ

mZ′

)
sin θW cos θW − δ2 188(q + u)

QX1 cos2 β +QX2 sin2 β

− δ2 211(q + d)

QX1 cos2 β +QX2 sin2 β

(
1− l − e

QX1 cos2 β +QX2 sin2 β

)
.

(3.71)

On the other hand the experimental value for the weak nuclear charge in the

Cesium case is [102, 103]

Qexp
W = −73.16(35), (3.72)

and the 90% CL bound on the difference is [58]

|∆QW (Cs)| = |Qexp
W −Q

SM
W | < 0.6, (3.73)
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which yields the general APV expression for U(1)X models for the Cesium nucleus:∣∣∣∣73.16δ2 − 220δ

(
ε
mZ

mZ′

)
sin θW cos θW − δ2 188(q + u)

QX1 cos2 β +QX2 sin2 β

− δ2 211(q + d)

QX1 cos2 β +QX2 sin2 β

(
1− l − e

QX1 cos2 β +QX2 sin2 β

)∣∣∣∣×K(Cs) < 0.6.

(3.74)

The correction factor K(Cs) is introduced for low values of mZ′ where the local

limit approximation is not valid. Different values for this correction factor are listed in

Table I of reference [100]. At first order, one can drop the terms proportional to δ2 in Eq.

(3.74) and then solve it for ε in terms of δ, using 220δ
(
ε mZ
mZ′

)
sin θW cos θW = 0.6.

Doing so, we find the bound shown in the first line of Table 3.5. The numerical

upper limit on the kinetic mixing as a function of the Z ′ mass for different values of δ

taking into account the energy dependence on K(Cs) is displayed in Fig. 3.7.

It is useful again to apply our procedure to a well known model in the literature

such as the B − L model. In this case q = u = d = 1/3, QX2 = 0, QX1 = 2, ` = e. With

these values the expression (3.71) becomes

∆QW = −59.84δ2 − 220δ

(
ε
mZ

mZ′

)
sin θW cos θW − 133δ2 tan2 β, (3.75)

which coincides with the expressions obtained in [59, 58], except for the last term, that

arises due to the non-zero U(1)B−L charges of the fermions. Applying the 90% CL bound

in Eq. (3.74) we get∣∣∣∣−59.84δ2 − 220δ

(
ε
mZ

mZ′

)
sin θW cos θW − 133δ2 tan2 β

∣∣∣∣×K(Cs) < 0.6. (3.76)

From Eq. (3.76) we can see the term proportional to δ2 can not always be dropped as we

did before to obtain the limit in the first line of Table 3.5. For sufficiently large tan β the

last term in Eq. (3.76) might become relevant yielding changes for the upper limits on the

kinetic mixing. Since the importance of this last term is rather model dependent we will

not devote time to discuss its impact here.

Regardless, the conclusion that Cesium nucleus provides an interesting and orthog-

onal test for new physics stands, and depending on the U(1)X model under study it gives

rise to restrictive limits on the kinetic mixing parameter following Table 3.5.

Another observable in APV experiments is given by the value of sin θW that is

measured at low energies. The shift in sin2 θW caused by the presence of a new vector

boson that mixes with the Z boson is found to be [58]

∆ sin2 θW = −0.42εδ
mZ

mZ′

m2
Z′

m2
Z′ +Q2

, (3.77)
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where Q is the energy at which sin θW is measured and ∆ sin2 θW refers to the error on the

measurement of sin2 θW as shown in Table 3.5. By plugging the experimental error bar

as displayed in the third column of Table 3.5 into Eq. (3.77) one can derive upper limits

on ε as a function of δ as shown in the fourth column of Table 3.5. The first two rows

in Table 3.5 refer to past experiments, whereas the remaining rows represent projected

experimental sensitivities.

Anyways, one can see that the Qweak experiment is not expected to be as sensitive

to the kinetic mixing as the first measurements, but both Moller and MESA experiments

should be able to surpass previous experiments yielding tight bounds on the kinetic mixing

[104, 105, 106].

3.2.6 Muon Anomalous Magnetic Moment

Any charged particle has a magnetic dipole moment (~µ) defined as

~µ = g
( q

2m

)
~s, (3.78)

where s is the spin of the particle, g is the gyromagnetic ratio, q = ±e is the electric

charge of a given charged particle, and m its mass (see [107] for a recent and extensive

review). Loop corrections induce deviations from the tree-level value g = 2, which are

parametrized for the muon in terms of aµ = (gµ − 2)/2, referred to as the anomalous

magnetic moment. An enormous effort has been dedicated to precisely determine the SM

contribution to g− 2 [108, 109, 110]. Interestingly, the SM prediction does not agree with

recent measurements leading to [111]

∆aµ = aexpµ − aSMµ = (287± 80)× 10−11, (3.79)

which implies a 3.6σ evidence for new physics. Therefore, it is definitely worthwhile to

explore new physics models capable of giving rise to a positive contribution to g − 2. In

the U(1)X models under investigation, a particle that fulfills this role is the massive Z ′

that yields [107, 112, 113]

∆aµ (f, Z ′) =
1

8π2

m2
µ

m2
Z′

∫ 1

0

dx
∑
f

∣∣gfµv ∣∣2 F+(x) +
∣∣gfµa ∣∣2 F−(x)

(1− x) (1− λ2x) + ε2fλ
2x

, (3.80a)

with

F± = 2x(1− x)(x− 2± 2εf ) + λ2x2(1∓ εf )2(1− x± εf ) (3.80b)
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and εf ≡ mf
mµ

, λ ≡ mµ
mZ′

. Here f are charged leptons. Since we are not dealing with flavor

changing interactions in this work, εf ≡ 1 and mf = mµ. Moreover, in the limit of a Z ′

much heavier than the muon, the contribution simplifies to

∆aµ (Z ′) ' 1

12π2

m2
µ

m2
Z′

(g2
v − 5g2

a), (3.81)

where gv and ga are the vector and axial vector couplings of the Z ′ with the muon. Notice

that only models where the vector coupling is more than five times larger than the axial

vector couplings are capable of addressing the g − 2 anomaly in agreement with [114].

This condition is satisfied only in the U(1)D and U(1)F models.

That said, the region that explain the g − 2 anomaly is easily obtained through

the equality
g2
v

(mZ′ [GeV])2
' 3.3× 10−5. (3.82)

For instance, in the U(1)D model gv = −1.75gX . Keeping gX = 1, we need mZ′ ∼ 540 GeV

to accommodate the g − 2 anomaly, which is way beyond the region of interest in this

work. Anyways, such heavy gauge bosons are subject to stringent limits from dimuon

searches as shown in [115, 116, 117, 118, 119, 120, 121, 122, 123, 124], preventing such

gauge bosons to be a solution to the g − 2 anomaly. However, if we set gX = 10−4, then

mZ′ ∼ 54 MeV is required, being potentially able to explain the g − 2 anomaly, as long

as the kinetic and mass mixing parameters are kept sufficiently small. A more thorough

discussion of the possibility of explaining g − 2 in each of these models will be made

elsewhere. It is interesting to see though, that one might be able to cure 2HDM from

flavor changing interactions, generate neutrino masses, while solving a relevant and long

standing anomaly in particle physics.

3.2.7 Neutrino-Electron Scattering

Intensity frontier constitutes a promising endeavor in the quest for new physics,

being able to explore models inaccessible at high-energy frontiers. One canonical example

are the precise measurements on neutrino-electron scattering using different targets, as

measured by several experiments such as TEXONO, GEMMA, BOREXINO, LSND and

CHARM. Since neutrino interactions are purely leptonic, they are subject to small uncer-

tainties. Moreover, interesting models such as the dark photon and light Z ′ models such as

ours, predict different signals at these experiments. Therefore, the use of neutrino-electron
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Figure 3.8: Feynman diagrams relevant for neutrino-electron scattering.

scattering to explore hints of new physics is both theoretically and experimentally well

motivated.

That said, several works have been done to place limits on new physics models

based on neutrino-electron scattering data [125, 126, 127, 128, 129, 130]. Here we will

briefly review the concept behind these and derive constraints on the gauge couplings as

a function of the Z ′ mass.

The physics behind these constraints lies on the computation of the neutrino-

electron scattering due to new physics. In Fig. 3.8 we exhibit the SM diagram alongside

the new physics ones. Following Ref. [131] the new physics neutrino-electron scattering

cross section can be parametrized in terms of the B−L model which is found to be [128]

dσ

dER
=

g4
B−Lme

4πE2
ν(m

2
Z′ + 2meER)2

(2E2
ν + E2

R − eEREν −meER) (3.83)

where ER is the electron recoil energy, Eν is the energy of the incoming neutrino, me is

the electron mass.

The idea is to compute the expected neutrino-scattering rate from new physics,

(dR/dER)NP, which is related to the neutrino-electron scattering through(
dR

dER

)
NP

= t ρe

∫ ∞
Eminν

dΦ

dEν

dσ

dER
dEν , (3.84)

where Φ is the neutrino flux, t is period of mock data taking, and ρe is electron number

density per kg of the target mass. Once that has been computed, one compares it with

the measured rate and finds 90% level limits applying a χ2 statistics as follows:

χ2 =
∑
i=1

(Rexp i − (RSM i +RNP))2

σi
(3.85)
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Experiment Type of neutrino 〈Eν〉 T

TEXONO-NPCGe [132] ν̄e 1−2 MeV 0.35−12 keV

TEXONO-HPGe [133, 134] ν̄e 1−2 MeV 12−60 keV

TEXONO-CsI(Tl) [135] ν̄e 1−2 MeV 3−8 MeV

LSND [136] νe 36 MeV 18−50 MeV

BOREXINO [137] νe 862 keV 270−665 keV

GEMMA [138] ν̄e 1−2 MeV 3−25 keV

CHARM II [139] νµ 23.7 GeV 3-24 GeV

CHARM II [139] ν̄µ 19.1 GeV 3-24 GeV

Table 3.6: Summary of experiments that constrained ν − e scattering.

where Rexp, RSM are the measured and SM predicted rates respectively, and σi is the

statistical error on the measurement of Rexp. The index i runs through energy bins.

Using data from several experiments subject to different energy threshold and type of

incoming neutrino flavor as summarized in Table 3.2.7, constraints on the new physics

have been placed [131]. The limits were interpreted in terms of the B − L model, as

shown in Fig. 3.9. These bounds are the most restrictive for mZ′ ∼ 100 MeV − 1 GeV, as

exhibited in Fig. 3.10 where all relevant constraints are put together. See [2] for a recent

review on neutrino-electron scattering experiments.

One needs to apply these constraints to the U(1)X models under study with care.

Obviously, for the B −L model in Table 2, the limits in Fig. 3.10 are directly applicable.

For the remaining U(1)X models, one can estimate the limits through rescaling. Since the

kinetic and mass-mixing are constrained to be small, the leading diagram is the t-channel

Z ′ exchange in Fig. 3.8. Therefore, the scattering cross section scales with g2
Z′−ν−νg

2
Z′−e−e,

where gZ′−ν−ν , gZ′−e−e are the Z ′ vectorial couplings with the neutrinos and electrons

respectively. These are easily obtained knowing that the vector coupling with a given

fermion field is gfv = gX/2(QfL + QfR), where QfL and QfR are the charges of the left-

handed and right-handed field components under U(1)X as displayed in Table 3.1. In

summary, there is a plot similar to Fig. 3.9 for each U(1)X model in this work. Clearly

this exercise is outside the scope of this work. Anyways, it is clear that neutrino-electron

scattering provides a competitive probe for new physics and is relevant for the U(1)X

models under study. These bounds can be circumvented by tuning the kinetic mixing to
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Constraints from neutrino-electron scattering experiments
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Figure 3.9: Constraints on the B − L model based on measurements of neutrino-electron scattering.

sufficiently small values, similarly to the dark photon model.

3.2.8 Low Energy Accelerators

Low energy accelerators are capable of probing new physics models out of reach

of high-energy colliders. Models with light mediators, such as the dark photon model are

considered a benchmark [140, 141]. The sensitivity of low energy accelerators is driven

by high-intensity beams and/or high precision detectors. Such accelerators are usually

divided into two classes: (i) collider; (ii) fixed-target experiments. In the former, high-

intensity beams of e+e− are capable of directly producing on-shell light mediators, whereas

in the latter, light particles are produced as result of a decay chain created after the beam

hits the target. In either case, the low-energy accelerators are excellent laboratories to

spot new physics effects. In Fig. 3.11 we present a summary of current constraints on the

dark photon model, with the dark photon, A′, decaying into charged leptons. With care,

the limits exhibited in Fig. 3.11 can be applicable to the U(1)X under investigation. For

instance, the BaBar experiment searched for the e+e− → γA′, with A′ decaying into l+l−.

The interaction of the dark photon with charged leptons reads ε l̄γµl A
′µ. Having in mind

that the two important quantities are the production cross section and the branching ratio

into electrons, one can recast the BaBar upper limits on the dark photon kinetic mixing
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Figure 3.10: Summary of constraints from neutrino-electron scattering on U(1)X models with very

light Z ′ gauge bosons. These constraints have been interpreted from dark photon searches.

(εDP) to other U(1)X models as follows

ε2DP → (glv)
2BR(Z ′ → l+l−), (3.86)

where glv = gX/2(Ql
L +Ql

R) is the Z ′ vectorial coupling to charged leptons. Here Ql
L and

Ql
R are the left-handed and right-handed charged lepton charges under U(1)X .

In all U(1)X models that accommodate neutrino masses and are free from flavor

changing interactions the Z ′ boson features a vectorial coupling with electrons. Since the

SM fermions are charged under U(1)X , in addition to the kinetic mixing term, a vectorial

interaction proportional to gX also arises. Therefore, Eq. (3.86) is valid when the term

proportional to gX is dominant, otherwise, the bounds in Fig. 3.11 are directly applicable.

Hence, one can use Eq. (3.86) to obtain limits for each U(1)X model. A similar reasoning

can be applied to other collider experiments.

As for fixed target experiments such as NA48/2, the rescaling is restricted to the

branching ratio into charged leptons. Sometimes these experiments include both e+e−

and µ+µ− decay modes in the analysis, while other times they consider only one of those.

Our goal here is not to describe each one of these searches individually but rather present

to the reader the existence of limits on the kinetic-mixing stemming from low energy

accelerators. The precise bound on ε for each U(1)X model is not relevant for us, since
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Figure 3.11: Summary of bounds from low energy accelerators constraints on the dark photon model

[2]. After proper rescaling these constraints are also applicable to the U(1)X models in this work. In

particular, the BaBar limits can be recast using the relation ε2DP → (glv)2BR(Z ′ → l+l−). See text for

details.

they can all be evaded by simply tuning down the free kinetic mixing parameter.

Furthermore, it is worth pointing out that there is also a similar plot considering

only invisible decays of the dark photon. However, as far as the U(1)X models go, the

only possible invisible decay modes are the active neutrinos and right-handed neutrinos.

Except in the case of the U(1)B−L model, this branching ratio is expected to be small,

substantially weakening the limits on ε. Thus the searches for visible decays are more

constraining.

In summary, low energy accelerators yield very strong limits on the kinetic mixing

parameter of the U(1)X models.

3.3 Discussion

We have discussed a variety of limits on the parameters δ and the kinetic mixing ε.

They are model dependent. The bounds on δ were derived under the assumption that the

fermions were uncharged under U(1)X , where only the mass-mixing would dictate the Z ′

interactions with fermions. However, due to the presence of new interactions between the

SM fermions and the Z ′ gauge boson these limits might be subject to changes by a factor

of few depending on the value of gX and fermion charges under U(1)X . As for the limits
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on the kinetic mixing, they were obtained assuming that the kinetic mixing alone dictates

the observables since they were originally meant for the dark photon model. Since both

δ and ε, in principle, are arbitrarily small, the constraints presented in this work might

be circumvented. A more detailed analysis incorporating precise bounds on the U(1)X

models is left for the future.

In summary, in this Chapter we presented new 2HDM gauge models capable of

accommodating neutrino masses through type I seesaw and freeing the 2HDM from flavor

changing interactions, as well as estimated what kind of phenomenology these models can

generate. In the next Chapter we will see that the implementation of the type II seesaw

mechanism is also possible in this framework and discuss its phenomenology.
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Chapter 4

Neutrino Masses in a Two Higgs

Doublet Model with a U(1) Gauge

Symmetry

In the Chapter 3 we have discussed how the FCNI problem in the 2HDM can be

elegantly addressed by means of an Abelian gauge symmetry. In this 2HDM-U(1) frame-

work, we showed how neutrino masses could be generated via type-I seesaw mechanism.

The requirement is the introduction of right-handed neutrinos and also a scalar singlet, in

order to generate a neutrino Majorana mass term. A natural question that rises is then:

is there a way to explain neutrino masses without adding right-handed neutrinos within

the 2HDM-U(1) framework?

Motivated by this question, in this Chapter we describe how one could accomplish

that. We will study a new model, within the scope of 2HDM with U(1)X symmetry, in

which neutrino masses are generated via type II seesaw mechanism which requires the

introduction of a scalar triplet. As we will see, the anomaly cancellation in this case

impose rather restrictive conditions on the possible models, and also, as there is not a

scalar singlet, the Z ′ gauge boson is necessarily light.

4.1 Type II seesaw in the 2HDM-U(1)

A popular mechanism to explain the active neutrino masses without the presence

of right-handed neutrinos is the so called type II seesaw mechanism [53, 56, 55, 142, 54]. In



the following, we will describe how it can be implemented in the 2HDM-U(1) framework.

First, recall from the Chapter 3 that the anomaly cancellation procedure for the type

I 2HDM in the general case in which right-handed neutrinos are included, leads to the

following charge relations,

q =
1

2
(u+ d) , l = −3

2
(u+ d) , e = −(2u+ d) , n = −(u+ 2d),

QX1 =
1

2
(5u+ 7d) , QX2 =

1

2
(u− d) , qX = 2u+ 4d,

(4.1)

where u and d are the U(1)X charges of the up and down quarks respectively, q (l) the

charge of the quark (lepton) doublet, e (n) the charge of the right-handed charged leptons

(neutrinos), and lastly QXi (qX) the U(1)X charge of the scalar doublet (singlet). One

of the anomaly cancellation conditions is n = −(u + 2d), which comes from the U(1)3

anomaly as shown in the Appendix A.1. Therefore, as we are interested in a case where

there are no right-handed neutrinos, we must set u = −2d to be free from gauge anomalies.

Compared to the type I seesaw scenario, instead of having two independent charges (u

and d), we now have only one, say d. That implies into,

q = −d
2

, l =
3d

2
, e = 3d,

u = −2d , QX2 = −3d

2
.

(4.2)

The charge of the first doublet is free, as long as QX1 6= QX2 , in order to recover

the Yukawa Lagrangian (2.33) of the type I 2HDM, and keep the model free from FCNI.

As shown in the Table 4.1, there is essentially only two different possibilities. One where

the SM fermions are neutral and the other where they are charged under U(1)X . If a

particular nonzero value is chosen for d, any other multiple of this value would produce

a physically equivalent model, because a change in d can be balanced by a rescaling on

the gauge coupling constant gX , so that the U(1)X interaction remains the same. In

particular, taking d = −2/3 we notice that the charges of the SM fermions under U(1)X

are similar to the SM weak hypercharge. In this way, it is clear that a type II seesaw

realization in the 2HDM-U(1) gives rise either to a fermiophobic or a sequential Z ′ boson.

The implementation of type II seesaw mechanism requires an SU(2)L scalar triplet

∆ ∼ (1, 3, 2, qXt), where the quantum numbers refers to the transformation properties

under the symmetry group SU(3)c × SU(2)L × U(1)Y × U(1)X . The field ∆ can be
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Charges in Type II seesaw 2HDMs free from FCNI

Fields uR dR QL LL eR ∆ Φ2 Φ1

Charges −2d d −d/2 3d/2 3d −3d −3d/2 6= QX2

U(1)N 0 0 0 0 0 0 0 6= QX2

U(1)Y ′ 4/3 −2/3 1/3 −1 −2 2 1 6= QX2

Table 4.1: The table shows anomaly free Type I 2HDM where neutrino masses are generated via a type

II seesaw mechanism. The first row shows the generic charges as functions of the dR quark charge, d. Two

particular cases are shown for d = 0 and d = −2/3, which correspond to sequential Z ′ and dark photon

models, respectively. Notice that to prevent FCNI the scalar doublets have different charges under the

U(1)X gauge symmetry.

parameterized as,

∆ =

∆+/
√

2 ∆++

∆0 −∆+/
√

2

 , (4.3)

with,

∆0 =
ρt + vt + iηt√

2
. (4.4)

The SU(2)L symmetry allows the introduction of an interaction between ∆ and the leptons

via,

− LYt = yLLcLiσ
2∆LL + h.c. (4.5)

which requires ∆ to have hypercharge Yt = 2 and lepton number Lt = 2, automatically

forbidding interactions to quarks. The inclusion of Eq. (4.5) implies,

2l + qXt = 0, (4.6)

and using eq. (4.2) we get,

qXt = −3d, (4.7)

explaining the ∆ charge shown in Table 4.1.

Since ∆ carries lepton number, when the neutral scalar ∆0 develops a VEV, vt,

lepton number is violated, and from eq. (4.5) we can easily see that it generates a Majorana

mass term for the neutrinos with,

mν =
√

2yLvt. (4.8)

Thus, vt has to be very small in order to accommodate neutrino masses in the sub-eV

range. In the next section we study the mass spectrum of the model.
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4.1.1 Mass Spectrum - Scalars

Our goal in this section is to study the spontaneous symmetry breaking pattern

to find the physical scalars, gauge bosons, and neutrino masses. The SM charged lepton

masses are the same as in the SM. That said, we begin our reasoning with the scalar

sector.

The scalar sector is described by the Lagrangian,

Lscalar = (DµΦi)
†(DµΦi) + Tr[(Dµ∆)†(Dµ∆)]− V (Φ1,Φ2,∆), (4.9)

where the covariant derivatives of the scalar doublets and the triplet read,

DµΦi = ∂µΦi + igτaW a
µ + ig′

Y

2
B̂µΦi + igX

QXi

2
X̂µΦi, (4.10)

Dµ∆ = ∂µ∆ + ig[τaW a
µ ,∆] + ig′

Yt
2
B̂µ∆ + igX

qXt
2
X̂µ∆, (4.11)

where τa are the generators of the SU(2)L group. The scalar potential in eq. (4.9),

invariant under all gauge symmetries is given by

V (Φ1,Φ2,∆) = m2
1Φ†1Φ1 +m2

2Φ†2Φ2 +m2
tTr(∆†∆) + λ1(Φ†1Φ1)2 + λ2(Φ†2Φ2)2

+ λ3(Φ†1Φ1)(Φ†2Φ2) + λ4(Φ†1Φ2)(Φ†2Φ1) + λt1(Φ†1Φ1)Tr(∆†∆)

+ λt2(Φ†2Φ2)Tr(∆†∆) + λtt1Φ†1∆∆†Φ1 + λtt2Φ†2∆∆†Φ2

+ λt[Tr(∆†∆)]2 + λttTr(∆†∆)2 + µt2(ΦT
2 iσ

2∆†Φ2 + h.c.).

(4.12)

Observe in the potential above that the terms ΦT
1 iσ

2∆†Φ2 and ΦT
1 iσ

2∆†Φ1 are

forbidden by the U(1)X symmetry, as we require QX1 6= QX2. There is only one non-

hermitian term ΦT
2 iσ

2∆†Φ2, which violates (explicitly) lepton number in two units. Such

lepton number violation is a common feature in seesaw type II models. It is important to

note that neutrino masses are generated when ∆0 develops a vacuum expectation value

as shown in eq.(4.8) and that would be related to lepton number violation since the scalar

triplet carries lepton number. However, notice that the non-hermitian term in eq.(4.12)

already explicitly violates lepton number, thus lepton number had been violated even

before ∆0 develops a non-trivial vacuum expectation value. We checked that without this

non-hermitian term in the scalar potential the pseudoscalar from the scalar triplet field

would remain massless, i.e. a majoron field [143].

Anyway, substituting the VEVs,

〈φ0
i 〉 =

vi√
2
, 〈∆0〉 =

vt√
2
, (4.13)
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in order to break spontaneously the gauge symmetries, we have the following constraint

equations for a minimal point of the potential,

m2
1 +

1

2

[
2λ1v

2
1 + (λ3 + λ4)v2

2 + (λt1 + λtt1)v2
t

]
= 0, (4.14)

m2
2 +

1

2

[
(λ3 + λ4)v2

1 + 2λ2v
2
2 + (λt2 + λtt2)v2

t − 2
√

2µt2vt

]
= 0, (4.15)

vt
2

[
2m2

t + (λt1 + λtt1)v2
1 + (λt2 + λtt2)v2

2 + 2(λt + λtt)v
2
t

]
− µt2v

2
2√

2
= 0. (4.16)

In the SM, the symmetry is spontaneously broken when the m2 term is negative. In the

case of a type II seesaw, the mass terms m2
1, m2

2 and m2
t in the scalar potential do not have

to be all negative to break the symmetry (see, e. g., Ref. [144] for a detailed discussion

about the type II seesaw vacuum). In fact, we will see later on that the mass term of the

scalar triplet should be positive in order to generate a pseudoscalar with positive mass.

Assuming that 2m2
t is the dominant term between the brackets in the constraint

equation (4.16), we have a seesaw relation,

vt '
µt2v

2
2√

2m2
t

, (4.17)

which leads to a naturally dwindled vt for |m2
t | � |µt2v2|. In this way, a small vt can be

understood as a simple consequence of having the coefficient of the bilinear term in ∆

to be comparatively large with respect to the other energy scales of the scalar potential.

Note that from eq. (4.17) we conclude that m2
t and µt2 should have the same sign.

In the scalar sector, Φi and ∆ render the existence of seven physical fields: 3

CP-even scalars, h, H and Ht; one CP-odd, A; two singly charged H+, H+
t and one

doubly charged H++. The other scalar degrees of freedom are absorbed as longitudinal

components by the gauge bosons, W±, Z and Z ′, making them massive.

In the basis (ρ1, ρ2, ρt) the neutral scalars mix according to the following mass

matrix,

M2
CPeven =


2λ1v

2
1 (λ3 + λ4)v1v2 (λt1 + λtt1)v1vt

(λ3 + λ4)v1v2 2λ2v
2
2 (λt2 + λtt2)v2vt −

√
2µt2v2

(λt1 + λtt1)v1vt (λt2 + λtt2)v2vt −
√

2µt2v2 2(λt + λtt)v
2
t +

µt2v22√
2vt

 .

(4.18)

From the diagonalization procedure of this mass matrix we will get three physical scalars,

h, H and Ht. We can parametrize this diagonalization in terms of three mixing angles α,
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Figure 4.1: Region of parameter space that leads to a 125 GeV SM-like Higgs boson for v2 = 200 GeV,

vt = 1 MeV and λ1 = 0.6. In the left panel µt2 = 100 GeV and in the right panel, µt2 = 100 TeV.

α1 and α2,
h

H

Ht

 =


cα sα 0

−sα cα 0

0 0 1




cα1 0 sα1

0 1 0

−sα1 0 cα1




1 0 0

0 cα2 sα2

0 −sα2 cα2



ρ1

ρ2

ρt

 , (4.19)

where sα,α1,α2 and cα,α1,α2 are sine and cosine functions. We choose h to denote the 125

GeV SM-like Higgs found in the LHC. The angles are determined by the parameters of the

potential and the scalar VEVs. Fully analytic expressions for the masses and eigenvectors

are complicated but we can obtain approximate results. As shown in the Appendix B, in

the limit vt � vi, the masses of the CP-even scalars are approximately,

m2
h = λ1v

2
1 + λ2v

2
2 −

√
(λ1v2

1 − λ2v2
2)2 + (λ3 + λ4)2v2

1v
2
2 − 2

√
2 sin2 α µt2vt (4.20)

m2
H = λ1v

2
1 + λ2v

2
2 +

√
(λ1v2

1 − λ2v2
2)2 + (λ3 + λ4)2v2

1v
2
2 − 2

√
2 cos2 α µt2vt (4.21)

m2
Ht =

µt2v
2
2√

2vt
. (4.22)

The limit vt � vi, that will be assumed throughout this Chapter, yields a Higgs

boson, h, with the correct mass is shown in Fig. 4.1. It is straightforward to see that we

can easily find a Higgs with the correct mass for couplings of order one and µt2 either at

the weak of multi-TeV scale.
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As for the pseudoscalars, in the basis (η1, η2, ηt) the mass matrix is given by,

M2
CPodd =

√
2µt2


0 0 0

0 2vt −v2

0 −v2
v22
2vt

 . (4.23)

Note that η1 is decoupled and massless. Thus it can be immediately recognized as a

Goldstone boson, G1. After the diagonalization procedure we found another Goldstone

boson, G2. These two massless pseudoscalars represent the degrees of freedom needed

to generate the Z and Z ′ masses. In the diagonalization procedure we find the rotation

matrix, 
G1

G2

A

 =


1 0 0

0 cβ′ sβ′

0 −sβ′ cβ′



η1

η2

ηt

 , (4.24)

where,

tan β′ =
2vt
v2

, (4.25)

which gives rise to two massless fields as aforementioned and a massive pseudoscalar, A,

with mass,

m2
A =

µt2(v2
2 + 4v2

t )√
2vt

. (4.26)

Observe that vt and µt2 must have the same sign in order to have m2
A > 0. We had

concluded previously from Eq.(4.17) that µt2 and m2
t should have the same sign to keep vt

positive definite, thus from Eq.(4.26) µt2 must be positive to generate a positive squared

mass for the pseudoscalar A. Hence, both µt2 and m2
t are strictly positive.

It is important to stress that even with the introduction of a new gauge symmetry,

the pseudoscalar A, which is a common figure in 2HDM, remains in the spectrum. Under

the assumption that vt is smaller than µt2 the pseudoscalar can have a mass sufficiently

large to evade existing bounds, as we shall discuss further.

The charged scalars mass matrix in the basis (φ+
1 , φ

+
2 ,∆

+) is,

M2
Charged =

1

2


−λ4v

2
2 − λtt1v2

t λ4v1v2 λtt1v1vt/
√

2

λ4v1v2 −λ4v
2
1 − λtt2v2

t + 2
√

2µt2vt
1
2(
√

2λtt2vt − 4µt2)v2

v1vtλtt1/
√

2 1
2(
√

2λtt2vt − 4µt2)v2

√
2µt2v22
vt

− 1
2(λtt1v

2
1 + λtt2v

2
2)

 .

(4.27)
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The physical fields are given by performing the following rotation,
G+

H+

H+
t

 =


cβ sβ 0

−sβ cβ 0

0 0 1




cβ1 0 sβ1

0 1 0

−sβ1 0 cβ1




1 0 0

0 cβ2 sβ2

0 −sβ2 cβ2



φ+

1

φ+
2

∆+

 . (4.28)

The Goldstone boson G+ is absorbed by W+, and the physical states H+ and H+
t have

masses,

m2
H+ =

1

8
(A−

√
A2 −B), (4.29)

m2
H+
t

=
1

8
(A+

√
A2 −B), (4.30)

where,

A = −2λ4

(
v2

1 + v2
2

)
− λtt1

(
v2

1 + 2v2
t

)
− λtt2

(
v2

2 + 2v2
t

)
+ 2
√

2
µt2
vt

(
v2

2 + 2v2
t

)
,

B = 8(v2
1 + v2

2 + 2v2
t )

[
λ4

(
λtt1v

2
1 + λtt2v

2
2

)
+ λtt1λtt2v

2
t − 2

√
2
µt2
vt

(
λ4v

2
2 + λtt1v

2
t

)]
.

The doubly charged scalar ∆++ does not mix any other field. This mass eigenstate,

which we will denote henceforth by H++, has a mass given by,

m2
H±± =

µt2v
2
2√

2vt
− 1

2
(λtt1v

2
1 + λtt2v

2
2 + 2λttv

2
t ). (4.31)

In summary, the scalar mass spectrum is largely controlled by the relative sizes of

vt, µt2 and vi. As vi is fixed to be ∼ 100 GeV and, as we will see later on, vt is constrained

to be . O(1) GeV, we will always take vt � vi. In this limit, the masses of h, H and

H+ are rather insensitive to vt and µt2, while the masses of Ht, A, H+
t and H++ strongly

depend on them. As µt2, in principle, remains as a free parameter, we can distinguish

three different regimes according to its size:

• µt2 ∼ vt � vi: In this case, µt2 has little influence on the masses of h and H. H

remains always heavier than h, with a mass around the 100 − 300 GeV range, for

λ’s of order ∼ 1. The masses of Ht, A, H+
t and H++ are controlled by the ratio

µt2/vt, with Ht and A nearly mass degenerate. In particular, for µt2 = vt, the masses

are around 200 GeV. Such low masses can be dangerous in light of existing bounds

[145, 146, 147, 148, 149, 150, 151, 152, 153].

• µt2 ∼ vi: In this scenario the spectrum is shifted up and the scalar masses can be

significantly larger than 100 GeV. A, Ht, H
+
t and H++ are mass degenerate and
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may reach masses in the TeV domain. For example, taking µt2 = v2 = 100 GeV

and vt = 100 MeV, we obtain mh = 125 GeV, mH = 404 GeV, mH+ = 507 GeV,

mHt ' mA ' mH+
t
' mH++ ' 2.65 TeV. We have adopted λ1 = 1.6, λ2 = 0.9,

λ3 = 7.7, λ4 = −8.5, λti = λtti = 0.5.

• µt2 � vi: This case can be recognized as the canonical type II seesaw scenario,

in which mt and µt2 come from new physics at very high energy scale, like Grand

Unification scale. In this case, only h, H and H+ remain in the weak scale, while

Ht, A, H+
t and H++ decouple and are still degenerate, getting very high masses of

order ∼ v
√
µt2/vt.

As stressed above, the masses of Ht, A, H+
t and H++ are always close to each

other because they follow m2
Hi

= m2
t + O(v, vt), with m2

t ' µt2v
2
2/
√

2vt. Thus, for small

vt, the m2
t term is the dominant one, so that the masses are all approximately given by

m2
Hi
' m2

t . The mass splittings are controlled by the scalar VEVs. At leading order,

m2
Ht −m

2
A ' O(v2

t ),

m2
A −m2

H+
t
' m2

H+
t
−m2

H++ '
1

4
(λtt1v

2
1 + λtt2v

2
2).

(4.32)

These mass splittings are noticeable only when the masses are small, i.e., for small µt2.

For µt2 & vi, they are basically mass degenerate.

As aforementioned, the masses of h, H and H+ are less sensitive to vt and µt2,

and depend mostly on the VEVs vi and the λi’s. Therefore, they naturally lie at the

weak scale. As for H+, we find m2
H+ ' −1

2
λ4v

2 (see eq. (B.36) in the Appendix B), which

requires λ4 to be negative. If we took |λ4| > 1, we would have charged scalar masses above

500 GeV, which can easily evade existing limits [154, 155, 156, 157, 158, 159, 160, 161]. In

order to have scalar masses above 500GeV we need couplings larger than the unit. This

typically true in seesaw type II models.

Returning to the mass expressions of the CP-even scalars, Eqs. (4.20) and (4.21),

we see that if there were just the two scalar doublets, the neutral scalar masses would be

given by these expressions with vt, µt2 set to zero. However, the scalar triplet generate

negative correction terms proportional to µt2vt, so that these scalars become lighter than

they would be if there was not the triplet. However, as shown in Figure 4.1, the parameter

space allows to fit a mass mh = 125 GeV for the Higgs boson h. Furthermore, the Eqs.

(4.20) and (4.21) imply an upper bound in the combination µt2vt: a large value of µt2
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must be balanced by a small value of vt in order to avoid negative squared masses for

h and H. Looking at these equations, we conclude that in order to preserve the masses

positive, vt must satisfy,

vt .
(λv)2

µt2
, (4.33)

where we assume λv ∼ 100 GeV. For instance, µt2 ∼ 1014 GeV implies vt . 10−1 eV.

Thus, one may naturally generate small vt taking µt2 at a Grand Unification scale [162].

Notice that Eq. (4.33) is another kind of seesaw relation between vt and µt2 valid in the

limit vt � µt2, which is independent of the relation in Eq. (4.17).

Now that we have finished with the scalar sector, we will derive the masses of the

gauge bosons.

4.1.2 Mass Spectrum - Gauge Bosons

The Lagrangian for the kinetic terms of the gauge fields associated to the hyper-

charge U(1)Y and the U(1)X symmetry is given by,

Lgauge = −1

4
B̂µνB̂

µν +
ε

2 cos θW
X̂µνB̂

µν − 1

4
X̂µνX̂

µν , (4.34)

where ε is the kinetic mixing parameter.

Similarly to what was done in the Chapter 3, a canonical gauge kinetic Lagrangian

is obtained through a GL(2, R) transformation on the fields B̂µ and X̂µ,

X̂µ ' Xµ

B̂µ 'Bµ +
ε

cos θW
Xµ,

(4.35)

so that the covariant derivatives (4.10) and (4.11) become,

DµΦi = ∂µΦi + igτaW a
µ + ig′

Y

2
BµΦi +

i

2
GXiXµΦi, (4.36)

Dµ∆ = ∂µ∆ + ig[T aW a
µ ,∆] + ig′

Yt
2
Bµ∆ +

i

2
GXtXµ∆, (4.37)

where GXi = g′ εYi
cos θW

+ gXQXi and GXt = g′ εYt
cos θW

+ gXqXt .

After spontaneous symmetry breaking and performing the electroweak rotation,

Bµ = cos θWAµ − sin θWZ
0
µ,

W 3
µ = sin θWAµ + cos θWZ

0
µ,
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the spectrum of vector bosons turns out to be comprised of: the charged W±
µ ; the photon,

Aµ; two neutral states, Z0
µ and Xµ, mixing to each other. They have the following mass

Lagrangian

Lmass = m2
WW

−
µ W

+µ +
1

2
m2
Z0XZ

0
µZ

0µ −m2
Z0XZ

0
µX

µ +
1

2
m2
XXµX

µ, (4.38)

where,

m2
W =

1

4
g2(v2 + 2v2

t ), (4.39)

m2
Z0 =

1

4
g2
Z(v2 + 4v2

t ), (4.40)

m2
Z0X =

1

4
gZ(GX1v

2
1 +GX2v

2
2 + 2GXtv

2
t ), (4.41)

m2
X =

1

4
(v2

1G
2
X1 + v2

2G
2
X2 +G2

Xtv
2
t ), , (4.42)

with g2
Z = g2 + g

′2 = g2/ cos2 θW , v2 = v2
1 + v2

2 and v2 + 2v2
t = (246GeV)2.

We see that the W±
µ bosons are already the mass-eigenstates with mass mW . The

Z and Z ′ gauge bosons on the other hand mix and lead to the following mass matrix,

M2
Z′Z =

 m2
Z0 −m2

Z0X

−m2
Z0X m2

X

 . (4.43)

The diagonalization leads to,

m2
Z =

1

2

[
m2
Z0 +m2

X +

√(
m2
Z0 −m2

X

)2
+ 4

(
m2
Z0X

)2
]
,

m2
Z′ =

1

2

[
m2
Z0 +m2

X −
√(

m2
Z0 −m2

X

)2
+ 4

(
m2
Z0X

)2
]
.

(4.44)

where,

Zµ
Z ′µ

 =

cos ξ − sin ξ

sin ξ cos ξ

Z0
µ

Xµ

 , (4.45)

with ξ given by,

tan 2ξ =
2m2

Z0X

m2
Z0 −m2

X

. (4.46)

This mixing angle is constrained to be very small by the LEP electroweak precision

measurements on the Z boson pole [163]. Thus,

ξ '
m2
Z0X

m2
Z0 −m2

X

. (4.47)
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Also, as we are interested in a light Z ′, we will assume the limit m2
Z0 � m2

X (which implies

m2
Z0 � m2

Z0X as well). In this limit,

ξ '
m2
Z0X

m2
Z0

, (4.48)

and we can write approximate expressions for the masses of Z and Z ′ as

m2
Z,Z′ =

1

2

m2
Z0 +m2

X ±
(
m2
Z0 −m2

X

) [
1 +

4
(
m2
Z0X

)2(
m2
Z0 −m2

X

)2

] 1
2


' 1

2

[
m2
Z0 +m2

X ±

(
m2
Z0 −m2

X +
2
(
m2
Z0X

)2

m2
Z0

)]
.

For the Z, we have

m2
Z ' m2

Z0 +

(
m2
Z0X

)2

m2
Z0

,

and, at leading order, m2
Z ' m2

Z0 ,

m2
Z '

1

4
g2
Z(v2 + 4v2

t ). (4.49)

For Z ′,

m2
Z′ ' m2

X −
(
m2
Z0X

)2

m2
Z0

' g2
X

4
(QX1 −QX2)

2v
2
1v

2
2

v2
(1− 4v2

t

v2
).

In terms of β, defined by tan β = v2/v1 (see Appendix B),

m2
Z′ '

g2
X

4
(QX1 −QX2)

2v2 sin2 β cos2 β(1− 4v2
t

v2
). (4.50)

Note that the presence of the triplet induces only a tiny correction proportional to (vt/v)2,

so that the addition of a triplet scalar cannot generate a heavy Z ′, as opposed to the singlet

case [164]. Thus, the Z ′ mass lies below the electroweak scale, being controlled by the

value of gX . For instance, taking tan β = 10 and QX1 − QX2 = 1, mZ′ varies from

1MeV− 1GeV, for gX in the range of 10−3− 10−1, regardless of the value of vt, as long as

vt < 2 GeV.

In summary, we have proposed a type II seesaw mechanism for neutrino masses

within the scope of 2HDM which prevent FCNI via gauge symmetries. Having discussed

the mass spectrum of the model, we now will pay attention to some phenomenological

constraints.
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4.2 Phenomenological constraints

4.2.1 Electroweak Precision

In our model, the ρ parameter (see Eq. (1.22)) places an upper bound on the VEV

of the triplet scalar, because it contributes to the masses of Z and W± bosons according

to eqs. (4.39) and (4.49), which translates into,

ρ =
v2 + 2v2

t

v2 + 4v2
t

. (4.51)

Hence at 3σ level, we obtain,

vt ≤ 2.3 GeV, (4.52)

where we used v2 + 2v2
t = 2462 GeV2. As we are interested in a small vt for the generation

of tiny neutrino masses, this constraint can be easily satisfied in our model. Notice that as

vt becomes very small the scalar masses increase as can be seen, for instance in eq.(4.26)

and eq.(4.31).

4.2.2 Collider Bounds

LHC - Z ′

The U(1)X symmetry is spontaneously broken by the VEV of the doublets and

the triplet, which also contributed to the mass generation of the Z ′ vector boson. As vt

is small and v is at the electroweak scale, the Z ′ mass will be at the electroweak scale or

below, depending on the value of gX and the other parameter such as tan β. Such a light

Z ′ is subject to a variety of experimental constraints, of the same nature as those discussed

in Chapter 3. Notice that we have two possible Z ′ models (U(1)N or U(1)Y ′), one which

resembles the sequential Z ′ model, and other the dark photon model. Concerning the

latter, LHC bounds are weakened because the Z ′ − Z mixing is necessarily small, and

that would suppress its production cross section at the LHC [165, 166, 167].

As for the U(1)Y ′ model, we do not have much freedom since the SM fermions are

charged under U(1)Y ′ the production cross section is much larger. In this scenario the

LHC bounds are rather restrictive. Assuming gX = 1 the LHC severely rules Z ′ masses

below 3 TeV [168]. In our model the Z ′ mass is set by gX . In order to have Z ′ masses

around 100 GeV, gX should be around 0.1, which is not sufficiently small to evade LHC
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limits [116]. If we adopt gX = 0.01 we will get mZ′ = 1 GeV, and for such small coupling

we can easily evade LHC limits [116]. We have used eq. (4.50) and assumed QX1 of the

same order of QX2 to find the corresponding Z ′ mass. We point out that the kinetic

mixing parameter ε while not relevant for the Z ′ mass it is important to determine the

Z ′ interactions with SM fermions. The conclusions drawn above are valid for sufficiently

small kinetic mixing.

LHC - Doubly Charged Scalar

Regarding the scalar spectrum of our model, the most relevant ones come from

LHC searches for heavy Higgs and triplet scalars. The cleanest signature signal is the

doubly charged Higgs. We have then implemented the model in Madgraph [169, 170] and

followed the recipe described in [171]. Assuming no hierarchy in the Yukawa couplings the

doubly charged scalar decays essentially, with equal branching ratios, into charged leptons.

That said, we found the current LHC bound with L = 36fb−1 of integrated luminosity

and performed future prospects for the High Luminosity and High Energy LHC setups as

summarized in the Table 4.2.

LHC 13TeV - L = 12.9fb−1 mH++ > 760 GeV

LHC 13TeV - L = 36fb−1 mH++ > 980 GeV

High-Luminosity LHC - L = 1000fb−1 mH++ > 1.9 TeV

High-Energy LHC 27TeV, L = 1000fb−1 mH++ > 3 TeV,

Table 4.2: Summary of collider bounds on the doubly charged scalar in our model using current and

planned configurations. We used 13TeV of center-of-mass energy for the LHC configurations, whereas

27TeV for the high-energy upgrade. We can see that LHC and its upgrade will be paramount to probe

the model up to the TeV scale.

In the light of current bounds our model is in agreement with existing bounds if we

take µt2 ≤ vi which predicts masses at the TeV scale as discussed previously. We highlight

that we need couplings larger than one to find charged scalar masses above the TeV scale.

Therefore, LHC and its planned upgrade will be important because it will probe a large

portion of the model. The presence of a doubly charged scalar is the key signature of the

type II seesaw mechanism.
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4.2.3 LHC- Higgs

Now the Higgs decays to SM fermions and gauge bosons fermions have been con-

strained [172, 173, 174], one can use Higgs data to place important limits on the model.

The couplings of the Higgs-like scalar h with the SM fermions and gauge bosons are given

by,

Chf̄f =
(sαcα2 − cαsα1sα2)

sβ
CSMhf̄f (4.53)

ChWW = (cαcα1cβ + sαcα2sβ − cαsα1sα2sβ)CSMhWW (4.54)

ChZZ = (cαcα1cβ + sαcα2sβ − cαsα1sα2sβ)CSMhZZ , (4.55)

where CSM
hf̄f

=
mf
v

, CSMhWW = 1
2
g2v and CSMhZZ = 1

2
g2v

cos2 θW
. In the expressions for the gauge

bosons we have neglected small terms proportional to ε and sin ξ. As shown in the

Appendix B, the angles α1 and α2 (and also β1 and β2) are suppressed by vt/v2, so they

can be neglected at leading order. Taking α1, α2 → 0 in the above expressions, we get,

Chf̄f =
sα
sβ
CSMhf̄f (4.56)

ChWW = cβ−αCSMhWW (4.57)

ChZZ = cβ−αCSMhZZ , (4.58)

with cβ−α ≡ cos(β−α). Therefore, when α1, α2 → 0 and α = β, we recover the alignment

limit, in which h couples to the SM particles identically to the SM Higgs. For cos(β−α) ∼

1, tan β can take on essentially any value, as long as the Higgs-like decays are concerned.

Conversely, in this limit the couplings of the havier Higgses H and Ht vanish, since

they are proportional to sβ−α and sαi , respectively. An interesting signature of our model

is the decay of the heavy Higgs H into gauge bosons [175]. From the Eq. (3.48) in the

Chapter 3 1,

Γ(H → Z ′Z ′) =
g2

128π

m3
H

m2
Z

(δ tan β)4

(
cos3 β cosα− sin3 β sinα

cos β sin β

)2

. (4.59)

This decay is kinematically available because the Z ′ gauge boson is very light. Depending

on the magnitude of gX , Z ′ might decay inside the detector. Thus, the possible signature of

1Notice that the expression (3.48) refers to h instead of H. However, comparing Eqs.(3.46) and (4.19),

we see that the convention used to define the α angle changes in the two situations (notice that the

position of h and H are interchanged in the two expressions). Therefore, the equations for the h scalar

in Chapter 3 correspond to the scalar H in this Chapter, and vice-versa.
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this heavy scalar is the four lepton channel [176, 177]. However, if this channel becomes

relevant, one has to check whether the decay of the SM-like Higgs h → Z ′Z ′ is also

significant, and assess the constraints. This is a possibility that deserves further analysis.

Finally, regarding the charged Higgs H+, its coupling to fermions is suppressed by a factor

of tan β. Therefore, large values of tan β weakens the LHC limits. In summary, our model

can be made fully consistent with the current constraints in the alignment limit.

Belle-II and KLOE2

Belle and KLOE collaborations represent e+e− colliders searching for light gauge

bosons with the ε/2F µνF ′µν . The two models proposed here feature a similar term. In

the U(1)N model SM fermions are uncharged under U(1)N , thus the Z ′ will couple to SM

fermions only via its mixing with the Z boson generated by the presence of the kinetic

mixing. In this case, our model would be a UV complete version of the simplified dark

photon model [178, 179]. This scenario for heavy Z ′ masses was investigated in [180]. For

the U(1)Y ′ model, where the SM fermions are charged under the gauge symmetry, if we

take gX � 1 and gX < ε, again the model falls back to the dark photon model because the

Z ′ interactions to SM via the kinetic mixing would be more pronounced, the experimental

limits on dark photon become applicable to our study.

In summary, the experimental limits derived for dark photon models apply here,

except in the case where gX � ε and mZ′ � 1 GeV. Experimental collaborations usually

display their bounds in terms of ε2. In Figure 4.2 we display a summary of the existing

(gray) and planned (color) constraints. For mZ′ ∼ 10− 30 MeV, current bound imposes

ε < 10−4, limiting the region of parameter of our model. Anyhow, we emphasize that we

can still obey such bounds by taking gX and ε to be very small as it is usually assumed

in dark photon models.

4.2.4 Accelerators

There are several accelerators using electron/positron or hadronic beams which

search for bremsstrahlung of dark photons or its appearance in meson decays. These

bounds are inside the gray region in Figure 4.2. It is important to point out the future

sensitivity on the flavor violating decay µ→ 3e [181], in case of no signal, will give rise to

the upper limit in cyan. Moreover, The Heavy Photon Search Experiment (HPS) which
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Figure 4.2: Summary of experimental limits applicable to the model U(1)N and to the model U(1)Y ′

assuming gX � ε. Current limits are in gray while projected ones in color.

was already installed at SLAC collides highly energetic electrons into a tungsten target,

and in the process electrons may radiate dark photons. The experimental sensitivity of

HPS is shown in blue.

4.2.5 Low Energy Probes

The muon anomalous magnetic moment (g− 2) [107], neutrino-electron scattering

[182] and atomic parity violation [164] provide complementary but subdominant limits

to our model. For instance, neutrino-electron scattering rules out ε > 10−5 [182]. One

cannot accommodate g−2 with the U(1)Y ′ model because the electrons are charged under

the gauge symmetry, and these couplings are subject to tight constraints [183, 184, 185].

In the U(1)N model, where our model resembles the dark photon one, the favored region

to explain g − 2 has already been excluded [107].

4.2.6 Dark Matter Possibility

In the two models described here, there are no dark matter candidates. One could

simply add a vector-like fermion charged under the gauge symmetry while preserving

the gauge anomaly cancellation. The dark matter relic abundance, direct detection and

indirect detection signals would be governed by the kinetic mixing term and the gX gauge

coupling. For concreteness, if we take the U(1)N model, where SM fermions are not

charged under the new gauge symmetry, the dark matter phenomenology would be similar

to the dark photon portal investigated recently in the literature [186]. It has been shown
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that in this setup if the dark matter mass is smaller than the Z ′ one, only s-channel

processes would be relevant, and this case is nearly ruled out by current data for dark

matter masses above 10 MeV. There is tiny region for ε ∼ 10−5 and mZ′ ∼ 10 MeV which

obeys on existing limits and reproduce the correct relic density. If the dark matter particle

is heavier than the Z ′ then the secluded dark matter setup arises [187], scenario which is

much less restricted by data.

4.3 Discussion

There are important things to be stressed about the two models we proposed:

• The gauge symmetry imposed to distinguish Φ1 from Φ2 and then allow just one

scalar doublet to couple to SM fermions gives rise to two very different type of

models. In the U(1)N model, the SM fermions are uncharged under the gauge

symmetry, and the corresponding massive Z ′ only couples to SM fermions via its

mixing with the Z boson. In the U(1)Y ′ setup, the Z ′ gauge boson will have a

neutral current with SM fermions determined by the U(1)Y ′ SM fermion charges,

leading to a sequential Z ′ model [118].

• Since we have added a triplet scalar to explain neutrino masses via a type II seesaw

mechanism, nothing prohibits one from considering off-diagonal Yukawa couplings,

involving for instance the scalar triplet, to be non-vanishing. This will lead again

to flavor changing interactions and give rise to µ → eγ, µ → 3e, µ − e conversion

processes which are rather restricted by data. In particular, the product of the

Yukawa terms are limited to be smaller than 10−7 [107]. Anyways, this feature is

common in the models which extend the SM scalar sector and, thus, we can set to

zero off-diagonal couplings involving the extra scalars without prejudice.

• The additional gauge symmetry allows us to easily introduce a dark matter candi-

date, a vector-like fermion, without spoiling the anomaly cancellation requirements.

In summary, we argue that the addition of a gauge symmetry and a triplet scalar is

well-motivated since it adds nice features to the original 2HDM proposal.

• The bounds discussed previously can be safely satisfied by taking gX and ε to be

sufficiently small, below 10−3 similarly to dark photon models.
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In conclusion, in this Chapter we studied two models where neutrino masses are

explained within the type II seesaw mechanism via the addition of a scalar triplet and a

gauge symmetry that allows only one scalar doublet to couple to fermions. In this way

we can simultaneously explain neutrino masses and avoid FCNI. We have investigated

several constraints coming from low energy probes, electroweak precision and colliders.

In particular, we derived collider bounds on the mass of the doubly charged scalar using

current and planned LHC reach with high-luminosity and high-energy configurations. We

discussed which regions of parameter space are consistent with current data to conclude

that both models stand as viable alternatives to the original 2HDM proposal.
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Chapter 5

Type I + II Seesaw in the Two

Higgs Doublet Model

In the previous chapters we saw that the existence of right-handed neutrinos, scalar

singlets or triplets allows different realizations of the seesaw mechanism. In view of the fact

that there are several ways to accommodate neutrinos masses, in this Chapter we review

these aspects in a general setting and show that one can combine the type I and type II

seesaw, and assess under which conditions one seesaw dominates over the other. Several

type I+II seesaw studies have been performed in the literature [188, 189, 190, 191, 192],

but here we focus our discussion on the general realizations of type I, type II, and type

I+II seesaw embedded in the well motivated 2HDM-U(1) framework. We also highlight

the general phenomenological features in each one of the scenarios.

5.1 Seesaw realizations in the 2HDM-U(1)

As discussed in Chapters 3 and 4, the charges of the fields under the U(1)X symme-

try, which makes the 2HDM free from FCNI, are constrained by the Yukawa Lagrangian

and by the anomaly cancellation. As we have seen, when there are right-handed neutrinos

in the spectrum, the charges are given by,

q =
1

2
(u+ d) , l = −3

2
(u+ d) , QX2 =

1

2
(u− d)

e = −(2u+ d) , n = −(u+ 2d).

(5.1)

For later convenience, we will refer to this as charge assignment I (see Table 5.1). However,

it is also possible cancel the anomalies without extra fermions. In this case, in which the



BM Fields Charge Assignment Yukawa Lagrangian Seesaw Type Neutrino Nature

1 NR,Φs,∆ I yLLcLiσ
2∆LL + yDL̄LΦ̃2NR + yRN c

RΦsNR Type I + II Majorana

2 NR,Φs I yDL̄LΦ̃2NR + yRN c
RΦsNR Type I Majorana

3 NR,∆ I yLLcL∆LL + yDL̄LΦ̃2NR Type II + Dirac Majorana

4 NR I yDL̄LΦ̃2NR Dirac Dirac

5 Φs,∆ II yLLcL∆LL Type II Majorana

6 ∆ II yLLcL∆LL Type II Majorana

Table 5.1: Summary of the six general benchmark cases in this work where we investigate neutrino mass

generation with and without the presence of right-handed neutrinos, a scalar triplet, and scalar singlet.

Each scenario yields different scalar potentials and neutrino masses. See text for details.

fermion content of the SM is maintained, the cancellation of the [U(1)X ]3 anomaly forces

the relation u = −2d, such that,

q = −d
2

, l =
3d

2
, QX2 = −3d

2
,

u = −2d , e = 3d,

(5.2)

We will refer to it as charge assignment II.

In this class of models, the implementation of the seesaw mechanism for the gen-

eration of neutrino masses calls for the presence of extra scalar fields. With right-handed

neutrinos charged under U(1)X , a bare Majorana mass term MRN c
RNR is forbidden. Thus

the type I seesaw mechanism cannot be realized. However, the inclusion of a scalar singlet

Φs, allows for the coupling,

− Lν = yRN c
RΦsNR + h.c., (5.3)

which, after spontaneous symmetry breaking of U(1)X , generates a Majorana mass term.

Note that Eq. (5.3) fixes the U(1)X charge of Φs as qXs = 2u+ 4d.

If right-handed neutrinos are not included, neutrino masses can still be generated

provided that we add to the model a scalar triplet, so that the Yukawa coupling,

− Lν = yLLcLiσ
2∆LL + h.c., (5.4)

generates a Majorana mass term for the neutrinos after ∆ acquires a VEV. The term in

Eq.(5.4) is only present if the U(1)X charge of ∆ is qXt = −3d.

Notice that nothing forbids the possibility that these several fields may exist simul-

taneously, i. e., one can generate neutrino masses through type I and/or type II seesaw

mechanisms in the 2HDM-U(1)X framework. Given the several ways to accommodate

neutrino masses, we will divide them into six benchmark scenarios, as follows:
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• BM 1: Is the scenario where right-handed neutrinos, a scalar triplet and a scalar

singlet are added to the 2HDM, inducing a type I +II seesaw mechanism;

• BM 2: Concerns the setup where the 2HDM is augmented with only right-handed

neutrinos and a scalar singlet, which leads to type I seesaw;

• BM 3: In this case, in addition to three right-handed neutrinos a scalar triplet is

invoked, yielding a type II seesaw;

• BM 4: In this case only right-handed neutrinos are added to the 2HDM;

• BM 5: Refers to the case where there are no right-handed neutrinos but singlet

and triplet scalar fields are invoked;

• BM 6: Is the setup where we simply add one scalar triplet.

We summarize these setups in Table 5.1 and will describe each one in more detail below.

5.1.1 Type I + II seesaw mechanism (BM 1)

It is possible to merge the Type I and Type II seesaw mechanisms by including both

the scalar singlet and triplet. As right-handed neutrinos are also included, the charges

follow the charge assignment I, under which the charge of the triplet is qXt = 3(u+ d). In

this general case, the Yukawa Lagrangian relevant for neutrino masses is given by,

− Lν = yLLcLiσ
2∆LL + yDL̄LΦ̃2NR + yRN c

RΦsNR + h.c. (5.5)

As the scalars develop their respective VEVs, the neutrinos acquire masses according to

− Lν =
1

2
νcLMLνL + ν̄LMDNR +

1

2
N c
RMRNR + h.c., (5.6)

with,
1

2
ML =

yLvt√
2

, MD =
yDv2√

2
,

1

2
MR =

yRvs√
2
, (5.7)

where vt, v2 and vs are respectively the VEVs of ∆, Φ2 and Φs. Although we have sup-

pressed the flavor indices, it is to be understood that ML, MR, MD and the corresponding

Yukawa couplings are 3× 3 matrices in flavor space.
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We can arrange the left-handed active neutrinos and right-handed ones in a left-

handed neutrino field as,

NL =

 νL

N c
R

 , (5.8)

and rewrite Eq.(5.6) in a matrix form,

− Lν =
1

2
N c
LMνNL + h.c., (5.9)

with the mass matrix

Mν =

ML MT
D

MD MR

 , (5.10)

whose eigenvalues give the physical neutrino masses.

As we are interested in estimating the order of magnitude of the physical neu-

trino masses, we will use the simplifying assumption that the matrices ML, MR and

MD are diagonal, i.e., ML = diag(mL,mL,mL), MR = diag(mR,mR,mR) and MD =

diag(mD,mD,mD), where these masses are real and positive. Consequently, Mν reads,

Mν =



mL 0 0 mD 0 0

0 mL 0 0 mD 0

0 0 mL 0 0 mD

mD 0 0 mR 0 0

0 mD 0 0 mR 0

0 0 mD 0 0 mR


, (5.11)

and its eigenvalues are degenerate and given by,

m,M =
1

2

[
mL +mR ∓

√
4m2

D + (mL −mR)2

]
, (5.12)

where the minus (plus) sign corresponds to neutrino masses m (M). It should be clear

that there are six eigenvalues actually, three of them equal to m and the others equal

to M . This degeneracy is a result of our simplifying assumption on Mν . Obviously, this

scenario of mass degenerate neutrinos does not reproduce the neutrino oscillation data,

but that can be easily achieved by letting ML and MD not be diagonal as shown in [193].

Depending on the relative sizes of mD, mR and mL, there are several distinct

scenarios for the neutrino masses. In the Table 5.2 approximate expressions for them are

summarized, and the explicit derivation is shown in the Appendix C. We see that the
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first four cases in Table 5.2 commonly feature mR � mD, i.e. the neutrino masses are

essentially given by m = mL (M = mR), so that to obtain active neutrino masses of order

∼ 0.1 eV, mL is forced to be very small, mL . 0.1 eV.

In the next two rows which assumemD � mR, all the neutrinos are practically mass

degenerate, with masses set by mD, and are known as pseudo-Dirac neutrinos [194, 195,

196]. This scenario however is not realistic because, on one hand, CMB data constrains

the sum of active neutrino masses [57],∑
i

mi . 0.1 eV, (5.13)

and on the other hand, stable right-neutrinos behave like dark matter, and successful

structure formation impose, [197, 198, 199, 200, 201],

M & 1 keV, (5.14)

ruling out this kind of pseudo-Dirac neutrinos. Nevertheless, if the right-handed neutrinos

are unstable particles, then the bounds can be avoided and, in principle, would be possible

to have M as low as 0.1 eV. Specifically in our model, this possibility could only be realized

through the decay channel enabled by the Yukawa interaction,

−Lν ⊃ yDL̄LΦ̃2NR =
yDv2√

2
ν̄LNR +

yD√
2
ν̄Lρ2NR,

where ρ2 is the CP-even scalar of the Φ2 doublet. However, with such a small mass of NR

this decay becomes kinematically forbidden, what makes right-handed neutrinos stable in

our model, conclusively excluding this scenario.

In the last row, mD and mR being of the same order of magnitude imply that m

and M are also of the same order or magnitude, but with m being slightly smaller than

M , unless mD and mR are finely tuned. Therefore, this scenario is similar to the previous

pseudo-Dirac case, in other words, ruled out.

Each one of the cases discussed previously will lead to a different scalar potential

that we describe further. We remind the reader that we are focused on the 2HDM-

U(1)X models where the doublet Φ1 does not couple to the SM fermions. Therefore,

there is freedom to choose different U(1)X charges, consequently leading to various scalar

potentials. In general, the scalar potential can be written as,

V (Φ1,Φ2,Φs,∆) = VH + VNH , (5.15)
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Limit m M Neutrino Nature

mR � mD � mL mL −
m2
D

2mR
mR +

m2
D

2mR
Majorana

mR � mL � mD mL −
m2
L

4mR
mR +

m2
L

4mR
Majorana

mR � mD,mL and mD ∼ mL mL −
m2
D

2mR
− m2

L

4mR
mR +

m2
D

2mR
+

m2
L

4mR
Majorana

mD � mR,mL and mR ∼ mL mL −
m2
D

(mR−mL)
mR +

m2
D

(mR−mL)
Majorana

mD � mR � mL −mD + 1
2
mR −

m2
R

8mD
mD + 1

2
mR +

m2
R

8mD
Pseudo-Dirac

mD � mR,mL and mR ∼ mL −mD + mL+mR
2
− (mL−mR)2

8mD
mD + mL+mR

2
+ (mL−mR)2

8mD
Pseudo-Dirac

mL � mR,mD and mR ∼ mD
1
2

[
mR −

√
4m2

D +m2
R

]
1
2

[
mR +

√
4m2

D +m2
R

]
Pseudo-Dirac

Table 5.2: Physical neutrino masses in different limits of the type I + II seesaw mechanism in 2HDM

(bechmark scenario BM 1).

where VH stands for the part of the potential that contains Hermitian terms,

VH = m2
1Φ†1Φ1 +m2

2Φ†2Φ2 +m2
sΦ
†
sΦs +m2

tTr(∆†∆) + λ1(Φ†1Φ1)2 + λ2(Φ†2Φ2)2

+ λs(Φ
†
sΦs)

2 + λt[Tr(∆†∆)]2 + λttTr(∆†∆)2 + λ3(Φ†1Φ1)(Φ†2Φ2) + λ4(Φ†1Φ2)(Φ†2Φ1)

+ λs1(Φ†1Φ1)(Φ†sΦs) + λs2(Φ†2Φ2)(Φ†sΦs) + λt1(Φ†1Φ1)Tr(∆†∆) + λt2(Φ†2Φ2)Tr(∆†∆)

+ λtt1Φ†1∆∆†Φ1 + λtt2Φ†2∆∆†Φ2 + λst(Φ
†
sΦs)Tr(∆†∆)

(5.16)

and VNH corresponds to the remaining non-Hermitian ones.

There are three possibilities, depending on the charge of Φ1, QX1. These three

possibilities rise after considering the Yukawa lagrangians which should remain intact.

They read,

(i) for QX1 = 1
2
(5u+ 7d) we get,

VNH = µs(Φ
†
1Φ2Φs + h.c.) + µt(Φ

T
1 iσ

2∆†Φ2 + h.c.)

+ κ′1(ΦT
1 iσ

2∆†Φ1Φ†s + h.c.)

+ κ2(ΦT
2 iσ

2∆†Φ2Φs + h.c.);

(5.17)

(ii) for QX1 = 3
2
(u+ d) we find,

VNH = µt1(ΦT
1 iσ

2∆†Φ1 + h.c.) + κ2(ΦT
2 iσ

2∆†Φ2Φs + h.c.); (5.18)

(iii) and for QX1 = 3
2
(3u+ 5d):

VNH = κ′(ΦT
1 iσ

2∆†Φ2Φ†s + h.c.) + κ2(ΦT
2 iσ

2∆†Φ2Φs + h.c.). (5.19)

Notice that indeed there are three different distinct non-Hermitian scalar potentials

which can be further modified depending on the presence or not of the scalar triplet and

singlet field. We will consider these cases below.
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5.1.2 Scalar singlet absent (BM 3)

In this section we shall consider the case in which the scalar sector is composed

only by the doublets Φi and the triplet ∆. Without the scalar singlet Φs, the last term in

equation (5.6) is absent, which amounts to a vanishing MR, so that,

Mν =

ML MT
D

MD 0

 . (5.20)

The eigenvalues of this matrix are,

m =
1

2

[√
4m2

D +m2
L −mL

]
, (5.21)

and,

M =
1

2

[
mL +

√
4m2

D +m2
L

]
. (5.22)

In this setup there are three variants, summarized in Table 5.3. The first possibility

is mD � mL. In this limit we get,

m,M ' mD ∓
1

2
mL +

m2
L

8mD

,

which approximately means that,

m,M ' mD. (5.23)

Thus the neutrinos are pseudo-Dirac neutrinos, and as we discussed previously,

this scenario is excluded.

The second possibility happens when mL ∼ mD. If mL and mD are of the same

order of magnitude the same happens for m and M , but with m being slightly smaller

than M , unless again we invoke some fine tuning.

The third case occurs for mL � mD, which leads to,

m ' m2
D

mL

, (5.24)

and,

M ' mL. (5.25)

From eq.(5.24) we see that m can be very small for sufficiently large mL. However, we

must take into account the constraints coming from the ρ parameter, which preclude the

VEV of the scalar triplet take on high values, thus limiting the maximum value of mL. We
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Limit m M Neutrino Nature

mD � mL mD mD pseudo-Dirac

mD ∼ mL
1
2
[
√

4m2
D +m2

L −mL] 1
2
[mL +

√
4m2

D +m2
L] Majorana

mD � mL m2
D/mL mL Majorana

Table 5.3: Physical neutrino masses in different limits of type II seesaw mechanism of benchmark

scenario BM 3 in 2HDM.

can expect mL . 1 GeV as a reasonable upper limit. Therefore, the only way to achieve

mL � mD is to make the Yukawa couplings yD very small. For example, assuming

v2 ∼ 100 GeV and mL ∼ 100 MeV, we need yD ∼ 10−8 to obtain m ∼ 0.1 eV. Here,

the right-handed neutrinos would have masses of M ∼ 100 MeV. Right-handed neutrinos

with masses around 100 MeV are fully consistent with structure formation bounds if they

are potential dark matter candidates [202].

In this case, the Hermitian part of the potential is the same as the one in Eq.

(5.16), omitting the terms which contain the singlet:

VH = m2
1Φ†1Φ1 +m2

2Φ†2Φ2 +m2
tTr(∆†∆) + λ1(Φ†1Φ1)2 + λ2(Φ†2Φ2)2

+ λt[Tr(∆†∆)]2 + λttTr(∆†∆)2 + λ3(Φ†1Φ1)(Φ†2Φ2) + λ4(Φ†1Φ2)(Φ†2Φ1)

+ λt1(Φ†1Φ1)Tr(∆†∆) + λt2(Φ†2Φ2)Tr(∆†∆) + λtt1Φ†1∆∆†Φ1 + λtt2Φ†2∆∆†Φ2.

(5.26)

Regarding the non-Hermitian part of the potential there are some possibilities

depending on the charge of QX1. Two straightforward possibilities are QX1 = 1
2
(5u+ 7d)

that yields,

VNH = µt(Φ
T
1 iσ

2∆†Φ2 + h.c.), (5.27)

and QX1 = 3
2
(u+ d) whic leads to,

VNH = µt1(ΦT
1 iσ

2∆†Φ1 + h.c.). (5.28)

There is also a less obvious third option in which QX1 remains free and u and d are not

independent anymore, but satisfy u = −2d:

VNH = µt2(ΦT
2 iσ

2∆†Φ2 + h.c.). (5.29)

The condition u = −2d requires the scalar singlet to be neutral under the U(1)X

symmetry, and thus it cannot break this symmetry spontaneously. However, as we are not

including the singlet here, we do not have to worry about this. Note also that the condition
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u = −2d forces the right-handed neutrinos to have zero U(1)X charges. Consequently,

the bare mass term MRN c
RNR is now allowed going back to the case where a right-handed

mass term is present. Albeit, the situation is fundamentally different because the entries

of the matrix MR are free parameters.

5.1.3 Scalar triplet absent - Type I seesaw (BM 2)

Without the presence of the scalar triplet, the first term in equation (5.5) is absent,

so that,

− LYNR = yD2 L̄LΦ̃2NR + yMN c
RΦsNR + h.c. (5.30)

After spontaneous symmetry breaking, the Dirac and Majorana mass terms leads to the

following mass matrix,

Mν =

 0 MT
D

MD MR

 (5.31)

The physical neutrino masses are,

m,M =
1

2

[
mR ±

√
4m2

D +m2
R

]
. (5.32)

In the limit mR � mD, the type I seesaw mechanism is realized, so that,

m ' m2
D

mR

, (5.33)

M ' mR. (5.34)

In this scenario the scalar potential is uniquely defined with,

V = m2
1Φ†1Φ1 +m2

2Φ†2Φ2 +m2
sΦ
†
sΦs + λ1(Φ†1Φ1)2 + λ2(Φ†2Φ2)2

+ λs(Φ
†
sΦs)

2 + λ3(Φ†1Φ1)(Φ†2Φ2) + λ4(Φ†1Φ2)(Φ†2Φ1)

+ λs1(Φ†sΦs)(Φ
†
1Φ1) + λs2(Φ†sΦs)(Φ

†
2Φ2) + µs(Φ

†
1Φ2Φs + h.c.),

(5.35)

where QX1 = 1
2
(5u+ 7d).

5.1.4 Scalar singlet and triplet absent - Dirac neutrinos (BM 4)

In the 2HDM without extra scalars, the Yukawa Lagrangian reduces to,

− LYNR = yD2 L̄LΦ̃2NR + h.c.. (5.36)

84



In this case, the neutrinos are Dirac particles and acquire mass similarly to the other SM

fermions,

m =
yD2 v2√

2
. (5.37)

In this case, the smallness of neutrino masses requires small Yukawa couplings,

as it happens when the SM is simply augmented by right-handed neutrinos. The scalar

potential is given by,

V (Φ1,Φ2) = m2
1Φ†1Φ1 +m2

2Φ†2Φ2 + λ1(Φ†1Φ1)2 + λ2(Φ†2Φ2)2

+ λ3(Φ†1Φ1)(Φ†2Φ2) + λ4(Φ†1Φ2)(Φ†2Φ1),
(5.38)

with the Φ1 charge freely defined.

Since the scalar Φ1 plays no role, in some models such scalar is assumed not

to develop a vacuum expectation value as happens in the so-called scotogenic model

[203, 204, 205]. It is nice to see that generally considering 2HDM-U(1)X models, one can

find situations where such models mimic other well-known models in the literature. The

key difference between them would be the presence of a Z ′.

5.1.5 Right-handed neutrinos and scalar singlet absent - type II

seesaw (BM 6)

In this setup only the first term in equation (5.5) is present, so that the matrix Mν

degenerates to a 3× 3 matrix, Mν = ML. The neutrino masses are given simply by,

m =
√

2yLvt. (5.39)

In this case the potential is uniquely determined with,

VH = m2
1Φ†1Φ1 +m2

2Φ†2Φ2 +m2
tTr(∆†∆) + λ1(Φ†1Φ1)2 + λ2(Φ†2Φ2)2 + λt[Tr(∆†∆)]2

+ λttTr(∆†∆)2 + λ3(Φ†1Φ1)(Φ†2Φ2) + λ4(Φ†1Φ2)(Φ†2Φ1) + λt1(Φ†1Φ1)Tr(∆†∆)

+ λt2(Φ†2Φ2)Tr(∆†∆) + λtt1Φ†1∆∆†Φ1 + λtt2Φ†2∆∆†Φ2 + µt2(ΦT
2 iσ

2∆†Φ2 + h.c.).

(5.40)

where the Φ1 charge is free. This is of course, the model studied in detail in Chapter 4.

85



5.1.6 Right-handed neutrinos absent - Type II seesaw + singlet

(BM 5)

Similarly to the type II case, the neutrino masses are generated only by the scalar

triplet. Therefore the expression for the neutrinos masses is the same as in Eq.(5.39).

Concerning the scalars, the charge of Φ1 and Φs are not fixed by Yukawa Lagrangian

anymore, because right-handed neutrinos are absent. Fixing the value of qXs and keeping

QX1 free, we have the Hermitian part of the potential VH identical to the one in the Eq.

(5.40), and three possibilities for VNH .

(i) For qXs = QX1 −QX2 we find,

VNH = µs(Φ
†
1Φ2Φs + h.c.) + µt2(ΦT

2 iσ
2∆†Φ2 + h.c.)

+ κ′(ΦT
1 iσ

2∆†Φ2Φ†s + h.c.);
(5.41)

(ii) For qXs = 2(QX2 −QX1) we obtain,

VNH = µt2(ΦT
2 iσ

2∆†Φ2 + h.c.) + κ1(ΦT
1 iσ

2∆†Φ1Φs + h.c.); (5.42)

(iii) For qXs = 0 we find,

VNH = µt2(ΦT
2 iσ

2∆†Φ2Φ†s + h.c.) + κ2(ΦT
2 iσ

2∆†Φ2Φs + h.c.). (5.43)

In this last case, notice that the role of Φs is reduced because it contributes neither to

neutrino masses (as there are no right-handed neutrinos) nor to Z ′ one, because it is

uncharged under U(1)X (see next section). Nevertheless, it does not mean that Φs is

totally irrelevant, as it mixes with the other scalars and induces effects on the Higgs

properties.

5.2 Discussion

One of the nice features of the 2HDM-U(1)X is the presence of a new gauge boson,

a Z ′, which can be heavy or light and have different properties. These features are

determined mostly by the charge assignments of the particles under U(1)X and by the

scalar content of the model. For models that follow the charge assignment II (see Table

5.1), there are only two nontrivial particular charge assignments: one in which d = 0 in

Eq.(5.2), i.e. where all fermions are neutral under U(1)X ; and another where d = −2/3
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that leads to fermions with U(1)X charges identical to the SM hypercharge. Different

values for d are in fact not distinct from the case d = −2/3, because it represents simply

a rescaling on the U(1)X gauge coupling, gX . Therefore, charge assignment II gives rise

either to a fermiophobic or a sequential Z ′ [206]. We emphasize that collider bounds on

such sequential Z ′ bound are rather stringent, excluding Z ′ masses below ∼ 5 TeV [207],

and future projection for the LHC upgrade expects to rule masses up to 10 TeV [208].

For the models that follow charge assignment I, the freedom in u and d charges

in Eq. (5.1) yields more possibilities, including the fermiophobic and sequential Z ′ of the

previous case, but also, a multitude of other cases, like fermiophilic Z ′, X = B − L, etc

[164].

It is important to highlight that when there are scalar doublets, like in the model of

section 5.1.4 (BM 4), the Z ′ mass tends to be of the same order of the Z mass or smaller,

given that the VEV of the doublets cannot be arbitrarily large, since v2
1 +v2

2 = (246 GeV)2.

In order to evade the collider bounds gX must be very small because for a sufficiently light

Z ′ boson, LHC loses sensitivity.

In the case of sections 5.1.2 and 5.1.5 (BM 3 and BM 6) in which the triplet is

included besides the doublets, the condition from the W boson mass reads v2 + 4v2
t =

(246 GeV)2. However, the contribution of vt to the Z ′ mass is rather restricted because of

the bound from the ρ parameter, vt < 2 GeV. Therefore, in all the cases in which there

are only doublets and the triplet, the Z ′ is necessarily light. In particular, for a Z ′ lighter

than Z, we can generally write,

m2
Z′ =

g2
X

4v2
[(QX1 −QX2)2v1v2 + q2

Xsv
2
s ](v

2 − 4v2
t ). (5.44)

Notice that, even with the presence of the scalar singlet, Z ′ can be light as long as vs is not

so large and gX is very small. We stress that this expression for a light Z ′ can be applied

to the several specific cases treated above by setting to zero the VEV of the corresponding

scalar that is absent. For sufficiently low mass, Z ′ can behave like a dark photon when

gX is small and the Z ′ interactions with fermions is dominated by the kinetic mixing term

ε/2F µνF ′µν , as discussed in the previous chapters. For gX not so small, the Z ′ is allowed

to have more general interactions with fermions.

As the VEV of the singlet is unconstrained from above, this means that Z ′ can be

made very heavy and easily evade LHC bounds that lie at the TeV scale. In this case,
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the contribution of vs dominates and we can approximate,

mZ′ =
1

2
gXqXsvs. (5.45)

Hence, as long as vs is sufficiently large, we can easily accommodate a heavy Z ′, so that

the models we discussed can be made consistent with existing bounds, while featuring

a light or heavy Z ′. Although we have not mentioned the bounds on the scalar fields

masses, they can be circumvented by considering vt sufficiently small and vs sufficiently

large.

In summary, in the 2HDM-U(1) framework, the U(1) gauge symmetry suffices to

explain the absence of FCNI, the presence of massive active neutrinos and dark matter.

As far as neutrino masses are concerned, we proposed models that can successfully realize

combinations of the type I and/or type II seesaw. We have shown that some possibilities

are already excluded by data, while others remain viable, containing either relatively light

or very heavy right-handed neutrinos. Such models stand as plausible alternatives to the

2HDM, because they are theoretically compelling, and also experimentally attractive for

being subject to searches for right-handed neutrinos, dark matter, doubly charged scalars,

dark photon or Z ′ fields.
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Chapter 6

Conclusions and Perspectives

In this document, we have reviewed some key aspects of the Standard Model and

neutrino masses. Later on, we have addressed the problem of neutrino masses in a well

motivated Standard Model extension, Two Higgs Doublet Model, encompassing several

implementations of the seesaw mechanism. We have shown that such Two Higgs Doublet

Model is plagued with flavor changing neutral interactions, which are subject to stringent

flavor bounds. We have proposed a solution to this flavor problem by implementing a new

Abelian gauge symmetry that discriminates the two Higgs doublets present in our study.

This discrimination is exactly what we need to solve the flavor problem. Nevertheless, this

new gauge symmetry is anomalous and requires the existence of new chiral fermions. We

have shown that the addition of three right-handed neutrinos suffices to keep the model

anomaly free. These right-handed neutrinos are the key players of the so-called type I

seesaw mechanism. There are other ways to cancel such gauge anomaly as we explored

in this work and they lead to different and interesting phenomenological signatures and

allow us to accommodate a type II seesaw. Moreover, a vector gauge boson arises as

a result of this symmetry. This vector boson has been searched for at several low and

high energy experiment and result of these searches have been explored in this document.

Therefore, we discussed models that are capable of solving an important problem in the

canonical Two Higgs Doublet Model, and in addition offer viable mechanism to generate

neutrino masses. We highlight that these models free Two Higgs Doublet Models from

flavor changing interactions and generate neutrino masses while being consistent with

current data. Our findings were published in journals with high scientific impact as listed

in the beginning of the document.



In the near future we plan to connect neutrino physics and dark matter to explore

signatures at neutrino detectors, and tease out the correlation between neutrino mass

ordering and lepton flavor violation.
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Appendix A

Appendix A

A.1 Conditions for Anomaly Freedom

Generically we will call the U(1)X charges Y ′, where Y ′ = l, q, e, u, d. The anomaly

free conditions can be read as:

[SU(3)c]
2 U(1)X :

A = Tr

[{
λa

2
,
λb

2

}
Y ′R

]
− Tr

[{
λa

2
,
λb

2

}
Y ′L

]
A ∝

∑
quarks

Y ′R −
∑

quarks

Y ′L = [3u+ 3d]− [3 · 2q] = 0.

Therefore,

u+ d− 2q = 0. (A.1)

[SU(2)L]2 U(1)X :

A = −Tr

[{
σa

2
,
σb

2

}
Y ′L

]
∝ −

∑
YL = − [2l + 3 · 2q] = 0.

Therefore,

l = −3q. (A.2)

[U(1)Y ]2 U(1)X :

A = Tr [{YR, YR}Y ′R]− Tr [{YL, YL}Y ′L] ∝
∑

Y 2
RY
′
R −

∑
Y 2
LY
′
L

A ∝

[
(−2)2 e+ 3

(
4

3

)2

u+ 3

(
−2

3

)2

d

]
−

[
2 (−1)2 l + 3 · 2

(
1

3

)2

q

]
= 0.

Therefore,

6e+ 8u+ 2d− 3l − q = 0. (A.3)



U(1)Y [U(1)X ]2 :

A = Tr [{Y ′R, Y ′R}YR]− Tr [{Y ′L, Y ′L}YL] ∝
∑

YRY
′
R

2 −
∑

YLY
′
L

2

A ∝
[
(−2) e2 + 3

(
4

3

)
u2 + 3

(
−2

3

)
d2

]
−
[
2 (−1) l2 + 3 · 2

(
1

3

)
q2

]
= 0.

Therefore,

− e2 + 2u2 − d2 + l2 − q2 = 0. (A.4)

[U(1)X ]3 :

A = Tr [{Y ′R, Y ′R}Y ′R]− Tr [{Y ′L, Y ′L}Y ′L] ∝
∑

Y ′R
3 −

∑
Y ′L

3

A ∝
[
e3 + 3u3 + 3d3

]
−
[
2l3 + 3 · 2q3

]
= 0.

Therefore,

e3 + 3u3 + 3d3 − 2l3 − 6q3 = 0. (A.5)

A.2 Gauge bosons

We will now derive the physical gauge boson spectrum, first of all let us write the

covariant derivative Eq. (3.24) in terms of ε as

Dµ = ∂µ + igT aW a
µ + ig′

QY

2
Bµ +

i

2

(
g′

εQY

cos θW
+ gXQX

)
Xµ, (A.6)

or explicitly,

Dµ = ∂µ +
i

2

gW 3
µ + g′QYBµ +GXXµ g

√
2W+

µ

g
√

2W−
µ −gW 3

µ + g′QYBµ +GXXµ

 , (A.7)

where we defined for simplicity

GXi =
g′εQYi

cos θW
+ gXQXi (A.8)

with QYi being the hypercharge of the scalar doublet under SU(2)L, which in the 2HDM

is taken to equal to +1 for both scalar doublets; QXi is charge of the scalar doublet i

under U(1)X .

We will use DµΦi to refer to the action of the covariant derivative on the i scalar

doublet of Y = 1 (i = 1, 2). Disregarding the term ∂µ we have

DµΦi =
i

2
√

2

gW 3
µ + g′Bµ +GXiXµ g

√
2W+

µ

g
√

2W−
µ −gW 3

µ + g′Bµ +GXiXµ

0

vi

 , (A.9)
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DµΦi =
i

2
√

2
vi

 √
2gW+

µ

−gW 3
µ + g′Bµ +GXiXµ

 . (A.10)

Consequently,

(DµΦi)
† (DµΦi) = 1

4
v2
i g

2W−
µ W

+µ + 1
8
v2
i

[
g2W 3

µW
3µ + g

′2BµB
µ +G2

XiXµX
µ
]

+1
8
v2
i

[
−2gg′W 3

µB
µ − 2gGXiW

3
µX

µ + 2g′GXiBµX
µ
]
. (A.11)

Carrying out the electroweak rotation as usual,

Bµ = cos θWAµ − sin θWZ
0
µ

W 3
µ = sin θWAµ + cos θWZ

0
µ, (A.12)

we obtain

(DµΦi)
† (DµΦi) =

1

4
v2
i g

2W−
µ W

+µ +
1

8
v2
i

[
g2
ZZ

0
µZ

0µ +G2
XiXµX

µ − 2gZGXiZ
0
µX

µ
]
,

(A.13)

where g2
Z = g2 + g

′2 = g2/ cos2 θW . As we can see, after the rotation Eq. (A.12) the field

Aµ identified as the photon is massless, as it must be.

For the singlet ΦS (with QY = 0 and T a = 0 and disregarding the ∂µ term) we

obtain

DµΦS =
i

2
√

2
vsgXqXXµ, (A.14)

so that

(DµΦS)† (DµΦS) =
1

8
v2
sg

2
Xq

2
XXµX

µ. (A.15)

Notice from Eq. (A.15) that the singlet only contributes to the U(1)X gauge boson mass.

Then:

Lmass = (DµΦ1)† (DµΦ1) + (DµΦ2)† (DµΦ2) + (DµΦS)† (DµΦS)

=
1

4
g2v2W−

µ W
+µ +

1

8
g2
Zv

2Z0
µZ

0µ − 1

4
gZ
(
GX1v

2
1 +GX2v

2
2

)
Z0
µX

µ

+
1

8

(
v2

1G
2
X1 + v2

2G
2
X2 + v2

sg
2
Xq

2
X

)
XµX

µ,

(A.16)

where v2 = v2
1 + v2

2. Finally Eq. (A.16) can be written as

Lmass = m2
WW

−
µ W

+µ +
1

2
m2
Z0Z0

µZ
0µ −∆2Z0

µX
µ +

1

2
m2
XXµX

µ, (A.17)
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where

m2
W =

1

4
g2v2, (A.18)

m2
Z0 =

1

4
g2
Zv

2, (A.19)

∆2 =
1

4
gZ
(
GX1v

2
1 +GX2v

2
2

)
, (A.20)

m2
X =

1

4

(
v2

1G
2
X1 + v2

2G
2
X2 + v2

sg
2
Xq

2
X

)
. (A.21)

Summarizing, after the symmetry breaking pattern of this model we realize that

there is a remaining mixing between Z0
µ and Xµ, that may expressed through the matrix

m2
Z0X =

1

2

m2
Z0 −∆2

−∆2 m2
X

 , (A.22)

or explicitly

m2
Z0X =

1

8

 g2
Zv

2 −gZ (GX1v
2
1 +GX2v

2
2)

−gZ (GX1v
2
1 +GX2v

2
2) v2

1G
2
X1 + v2

2G
2
X2 + v2

sg
2
Xq

2
X

 (A.23)

The above expression Eq. (A.23) for the mixing between the Z0
µ and Xµ bosons is given

as function of arbitrary U(1)X charges of doublets/singlet scalars. It is important to note

that when QX1 = QX2, and there is not singlet contribution, the determinant of the

matrix Eq.(A.23) is zero.

Eq. (A.23) is diagonalized through a rotation O(ξ)Zµ
Z ′µ

 =

cos ξ − sin ξ

sin ξ cos ξ

Z0
µ

Xµ

 , (A.24)

and its eigenvalues are:

m2
Z =

1

2

[
m2
Z0 +m2

X +

√(
m2
Z0 −m2

X

)2
+ 4 (∆2)2

]
m2
Z′ =

1

2

[
m2
Z0 +m2

X −
√(

m2
Z0 −m2

X

)2
+ 4 (∆2)2

]
.

(A.25)

The ξ angle is given by

tan 2ξ =
2∆2

m2
Z0 −m2

X

. (A.26)

The expressions for the gauge boson masses above are general but not very intuitive. We

will simplify these equations by working in the limit in which the mass mixing is small
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and the Z ′ is much lighter than the Z boson. That said, we can find a reduced formula

for the masses as follows

m2
Z '

1

2

[
m2
Z0 +

√
m4
Z0 + 4 (∆2)2

]
' 1

2

[
m2
Z0 +m2

Z0

]
.

In this case:

m2
Z ' m2

Z0 =
1

4
g2
Zv

2, (A.27)

being gZ = g
cos θW

. Similarly for the Z ′ one finds

m2
Z′ =

1

2

[
m2
Z0 +m2

X −
√(

m2
Z0 −m2

X

)2
+ 4 (∆2)2

]

=
1

2

m2
Z0 +m2

X −
(
m2
Z0 −m2

X

) [
1 +

4 (∆2)
2(

m2
Z0 −m2

X

)2

] 1
2


' 1

2

{
m2
Z0 +m2

X −
(
m2
Z0 −m2

X

) [
1 +

2 (∆2)
2(

m2
Z0 −m2

X

)2

]}

' 1

2

[
m2
Z0 +m2

X −m2
Z0 +m2

X −
2 (∆2)

2

m2
Z0

]

' m2
X −

(∆2)
2

m2
Z0

,

(A.28)

We may also further simplify Eq. (A.28) by working out explicitly ∆ in the small-mixing

regime of interest. The mixing angle must satisfy ξ � 1 by the measurements of LEP

experiment, i.e.

tan 2ξ ' sin 2ξ ' 2ξ (A.29)

with which one gets

ξ ' ∆2

m2
Z0 −m2

X

. (A.30)

For the case m2
Z0 � m2

X we find

ξ ' ∆2

m2
Z0

=
1

gz
(GX1 cos2 β +GX2 sin2 β). (A.31)

Substituting the Eq. (A.8) into Eq. (A.31) we obtain

ξ ' 1

gZ

[(
g′εQY1

cos θW
+ gXQX1

)
cos2 β +

(
g′εQY2

cos θW
+ gXQX2

)
sin2 β

]
. (A.32)

which simplifies to

ξ ' 1

gZ

[(
gXQX1 cos2 β + gXQX2 sin2 β

)
+

(
g′εQY1

cos θW
cos2 β +

g′εQY2

cos θW
sin2 β

)]
. (A.33)
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Since both Higgs doublets have the same hypercharge equal to +1, g′ = e/ sin θW and

g = e/ cos θW , we further reduce Eq. (A.33) to

ξ ' ∆2

m2
Z0

=
gX
gZ

(QX1 cos2 β +QX2 sin2 β) + ε tan θW , (A.34)

which can also be written as

ξ = εZ + ε tan θW (A.35)

where

εZ ≡
gX
gZ

(QX1 cos2 β +QX2 sin2 β). (A.36)

Eq. (A.34) is the general expression for the mass-mixing between the Z boson and the Z ′

stemming from an arbritarry U(1)X symmetry in the limit mZ′ � mZ .

In particular, for the B − L case it is straightforward to prove that Eq. (A.34)

becomes

ξ ' ∆2

m2
Z0

' 2
gX
gZ

cos2 β + ε tan θW = εZ + ε tan θW , (A.37)

where

εZ = 2
gX
gZ

cos2 β, (A.38)

in agreement with [62]. The parameter εZ appears often throughout the manuscript via

its connection to the ξ in Eq. (A.34).

Anyways, with Eq. (A.34) we can obtain the general expression for the Z ′ mass.

To do so, we need a few ingredients. Firstly, notice that

∆4

m2
Z

=
g2
Xv

2

4
QX1 cos2 β(1− sin2 β) +

g2
Xv

2

2
QX1QX2 cos2 β sin2 β

+
g2
Xv

2

4
Q2
X2 sin2 β(1− cos2 β) +

g2
Zv

2ε2

4
tan2 θW

gXgZv
2

2
(QX1 cos2 β +QX2 sin2 β)ε tan θW , (A.39)

with m2
Z defined in Eq. (A.19). Secondly, expanding Eq. (A.21) we get

m2
X =

1

4

[
v2

1 (gXQX1 + gZε tan θWQY 1)2 + v2
2 (gXQX2 + gZε tan θWQY 2)2 + v2

sg
2
Xq

2
X

]
(A.40)

which simplifies to

m2
X =

g2
Zε

2 tan2 θWv
2

4
+
g2
X

4
(Q2

X1v
2
1 +Q2

X2v
2
2)

+
gXgZε tan θW

2
(QX1v

2
1 +QX2v

2
2) +

v2
Sg

2
Xq

2
X

4
.

(A.41)
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Now substituting Eq. (A.39) and Eq. (A.41) into Eq. (A.28) we find

m2
Z′ =

v2
s

4
g2
Xq

2
X +

g2
Xv

2

4
Q2
X1 sin2 β cos2 β +

g2
Xv

2

4
Q2
X2 cos2 β sin2 β

− g2
Xv

2

2
QX1QX2 cos2 β sin2 β

(A.42)

which reduces to

m2
Z′ =

v2
s

4
g2
Xq

2
X +

g2
Xv

2 cos2 β sin2 β

4
(QX1 −QX2)2. (A.43)

We emphasize that qX , QX1, QX2 are the charges under U(1)X of the singlet scalar, Higgs

doublets Φ1 and Φ2 respectively, tan β = v2/v1, v = 246 GeV, vs sets the U(1)X scale of

spontaneous symmetry breaking, and gX is the coupling constant of the U(1)X symmetry.

Eq. (A.43) accounts for the Z ′ mass for every single U(1)X models studied in this work.

A few remarks are in order:

(i) The Z ′ mass is controlled by gX . Thus in order to achieve mZ′ � mZ one needs to

sufficiently suppress this coupling.

(ii) The Z ′ mass is generated via spontaneous symmetry breaking and for this reason

it depends on the vs which sets the U(1)X breaking and v due to the Z − Z ′ mass

mixing.

(iii) The Z ′ mass as expected depends on the U(1)X charges of the scalar doublets and

the singlet scalar since they all enter into the covariant derivative of the respective

scalar field from which the Z and Z ′ are obtained.

(iv) If (QX1 − QX2)2 is not much larger than four as occurs for many U(1)X models in

Table 4.1, then mZ′ is approximately

m2
Z′ =

v2
s

4
g2
Xq

2
X . (A.44)

For instance, in the B − L model, QX1 = 2, qX = 2, QX2 = 0, implying that

B − L : m2
Z′ = v2

sg
2
X + g2

Xv
2 cos2 β sin2 β. (A.45)

Setting vs = 1 TeV, we need gX = 10−3 − 10−6 to achieve mZ′ = 1 MeV − 1 GeV. Notice

that this small coupling constant is a feature common to all dark photon-like models such

as ours.
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A.3 δ Parameter

Defining tan βd =
vs
v1

, we can write mZ′ from (A.43) as:

m2
Z′ =

g2
Xv

2 cos2 β
[
sin2 β(QX1 −QX2)2 + tan2 βdq

2
X

]
4

,

=
g2
Xv

2 cos2 β
[
q2
X + cos2 βd

(
sin2 β(QX1 −QX2)2 − q2

X

)]
4 cos2 βd

,

(A.46)

⇒ mZ′ = gXv cos2 β

√[
q2
X + cos2 βd

(
sin2 β(QX1 −QX2)2 − q2

X

)]
2 cos β cos βd

,

=
gXv cos2 β

δ
,

(A.47)

with

δ =
2 cos β cos βd√[

q2
X + cos2 βd

(
sin2 β(QX1 −QX2)2 − q2

X

)] . (A.48)

Even in this general scenario we realize that there is a relation among the masses of the

neutral gauge bosons and εZ from Eq. (A.36):

δ =
mZ

mZ′
εZ . (A.49)

In the B − L model where QX1 = 2, qX = 2, QX2 = 0, δ from Eq. (A.48) is reduced to

δ =
cos β cos βd√

1− cos2 β cos2 βd
, (A.50)

and Eq. (A.49) is reproduced for the mZ′ and δ values given in equations Eq. (A.45) and

Eq. (A.50), respectively. In the doublets only case, vs = 0, cos βd = 1 and consequently

(A.50) becomes

δ tan β = 1. (A.51)

On the other hand, in the limit v2 � v1 and vs � v1:

δ ' cos β cos βd '
1

tan β tan βd
. (A.52)

A.4 Currents for Z and Z ′

In this section we will derive the generalized interactions among fermions and gauge

bosons from the following Lagrangian:

Lfermion =
∑

fermions

Ψ̄LiγµDµΨL + Ψ̄RiγµDµΨR. (A.53)
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After the electroweak rotation (A.12) the covariant derivative Eq. (3.24) for neutral gauge

bosons becomes (the charged interactions are the same as those of the SM):

DL
µ =igT 3

(
sin θWAµ + cos θWZ

0
µ

)
+ ig′

QY

2

(
cos θWAµ − sin θWZ

0
µ

)
+
i

2

(
g′QY

ε

cos θW
+ gXQX

)
Xµ.

(A.54)

In Appendix A.2 we have demonstrated that after the final SSB process a mixing between

Z0
µ and Xµ remains, and this is the origin of δ. Replacing Z0

µ and Xµ as function of the

physical bosons Zµ and Z ′µ, Eq. (A.24), we obtain

Ψ̄LiγµDL
µΨL =− eQf ψ̄

L
f γ

µψLfAµ

−
[
gZ
(
TL3f −Qf sin2 θW

)
cos ξ − 1

2

(
εgZQ

L
Y f tan θW + gXQ

L
Xf

)
sin ξ

]
ψ̄Lf γ

µψLf Zµ

−
[
gZ
(
TL3f −Qf sin2 θW

)
sin ξ +

1

2

(
εgZQ

L
Y f tan θW + gXQ

L
Xf

)
cos ξ

]
ψ̄Lf γ

µψLf Z
′
µ,

(A.55)

where the relations g sin θW = g′ cos θW = e, gZ = g/ cos θW , g′ = gZ sin θW and T 3 +

QY /2 = Qf have been used. For the right-handed fields it suffices to replace TL3f for

TR3f = 0, in which case:

Ψ̄RiγµDR
µΨR =− eQf ψ̄

R
f γ

µψRf Aµ

−
[
−gZQf sin2 θW cos ξ − 1

2

(
εgZQ

R
Y f tan θW + gXQ

R
Xf

)
sin ξ

]
ψ̄Rf γ

µψRf Zµ

−
[
−gZQf sin2 θW sin ξ +

1

2

(
εgZQ

R
Y f tan θW + gXQ

R
Xf

)
cos ξ

]
ψ̄Rf γ

µψRf Z
′
µ.

(A.56)
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The generalized interactions among fermions and gauge bosons, Eq. (A.53), is the sum of

the contributions (A.55) and (A.56), and can be written as follows:

Lfermion =− eQf ψ̄fγ
µψfAµ

−
[
gZ
(
T3f −Qf sin2 θW

)
cos ξ − 1

2
εgZQ

L
Y f tan θW sin ξ

]
ψ̄Lf γ

µψLf Zµ

−
[
−gZQf sin2 θW cos ξ − 1

2
εgZQ

R
Y f tan θW sin ξ

]
ψ̄Rf γ

µψRf Zµ

−
[
gZ
(
T3f −Qf sin2 θW

)
sin ξ +

1

2
εgZQ

L
Y f tan θW cos ξ

]
ψ̄Lf γ

µψLf Z
′
µ

−
[
−gZQf sin2 θW sin ξ +

1

2
εgZQ

R
Y f tan θW cos ξ

]
ψ̄Rf γ

µψRf Z
′
µ

+
1

2
gXQ

L
Xf sin ξψ̄Lf γ

µψLf Zµ +
1

2
gXQ

R
Xf sin ξψ̄Rf γ

µψRf Zµ −
1

2
gXQ

L
Xf cos ξψ̄Lf γ

µψLf Z
′
µ

− 1

2
gXQ

R
Xf cos ξψ̄Rf γ

µψRf Z
′
µ.

(A.57)

The last two lines of (A.57) are the contributions introduced when the charges of the

fermions under U(1)X are non-zero. In Appendix A.5 we derive explicitly the neutral

currents of both Z and Dark Z bosons of reference [62] (QL,R
X = 0 case). After that Eq.

(A.57) can be written as

L =− eJµemAµ −
gZ
2
JµNCZµ −

(
εeJµem +

εZgZ
2

JµNC

)
Z ′µ

+
1

4
gX sin ξ

[(
QR
Xf +QL

Xf

)
ψ̄fγ

µψf +
(
QR
Xf −QL

Xf

)
ψ̄fγ

µγ5ψf
]
Zµ

− 1

4
gX cos ξ

[(
QR
Xf +QL

Xf

)
ψ̄fγ

µψf −
(
QL
Xf −QR

Xf

)
ψ̄fγ

µγ5ψf
]
Z ′µ.

(A.58)

Eq. (A.58) is the general neutral current for all U(1)X models studied in this work. Since

we are interested in the regime in which the mixing angle is much smaller than one, ξ � 1,

and gX � 1, then Z properties will be kept unmodified.

For concreteness, we shall obtain again the neutral current for a well-known model,

such as the U(1)B−L model. In this case, we find

L =− eJµemAµ −
gZ
2
JµNCZµ −

(
εeJµem +

εZgZ
2

JµNC

)
Z ′µ

− εZgZ
2

[
a

4 cos2 β
ψ̄fγ

µψf

]
Z ′µ,

(A.59)

Here a = −2 for charged leptons and a = 2/3 for quarks. Notice that in our case we have

a new vector coupling for Z ′ when compared to the Z ′ of the Dark 2HDM [62].
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A.5 Comparison with the 2HDM with Gauged U(1)N

It is important to cross-check our findings with the existing literature. In [62] a

2HDM similar to the U(1)N model in Table 4.1 was studied. Therefore, in this setup all

fermions are uncharged under the U(1)X symmetry, i.e. QL,R
X = 0. Using Eq. (A.57) the

neutral current involving the Z boson reads

LZ = −gZ
2

cos ξJµNCZµ − εgZ tan θW sin ξ

[(
T3f

2
−Qf

)
ψ̄fγ

µψf −
T3f

2
ψ̄fγ

µγ5ψf

]
Zµ.

(A.60)

Since the mixing angle (ξ) and the kinetic mixing (ε) are much smaller than one, only the

SM neutral current, the first term of Eq. (A.60) is left. In other words, the Z properties

are kept identical to the SM.

As for the neutral current of the Z ′ boson, we get from Eq. (A.57) that

LZ′ = −gZ sin ξ

[(
T3f

2
−Qf sin2 θW

)
ψ̄fγ

µψf −
T3f

2
ψ̄fγ

µγ5ψf

]
Z ′µ

+ εgZ tan θW cos ξ

[(
T3f

2
−Qf

)
ψ̄fγ

µψf −
1

2
T3f ψ̄fγ

µγ5ψf

]
Z ′µ.

(A.61)

Using Eq. (A.37) and taking ξ � 1, we find

LZ′ = −εeQf ψ̄fγ
µψfZ

′
µ−

εZgZ
2

[(
T3f − 2Qf sin2 θW

)
ψ̄fγ

µψf − T3f ψ̄fγ
µγ5ψf

]
Z ′µ (A.62)

which simplifies to

LZ′ = −
(
εeJµem +

εZgZ
2

JµNC

)
Z ′µ. (A.63)

Our limiting case of the U(1)N model matches the result of [62], once again vali-

dating our findings.

A.6 Higgs Interactions to Vector Bosons

In this section we summarize the Higgs-gauge boson vertices under the assumption

that the mixing between the Higgs doublets and the singlet scalar is suppressed. We find

that

CH−Z−Z =
g2
Zv

2
cos(β − α), (A.64)

CH−Z−Z′ = −gZgXv cos β sin β sin(β − α), (A.65)
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CH−Z′−Z′ = 2g2
Xv cos β sin β(cos3 β sinα + sin3 β cosα), (A.66)

Ch−Z−Z =
g2
Zv

2
sin(β − α), (A.67)

Ch−Z−Z′ = −gZgXv cos β sin β cos(β − α), (A.68)

Ch−Z′−Z′ = 2g2
Xv cos β sin β(cos3 β sinα− sin3 β cosα). (A.69)
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Appendix B

Appendix B

In this Appendix we show in details how to obtain approximate expressions for the

masses and mixing angles for the physical scalars in the relevant regime adopted in the

Chapter 3, vi ∼ 100 GeV, vt � vi. In the first section we treat the CP-even scalars, and

in the next we treat the charged scalars.

CP-even scalars

In general, it is not possible to obtain analytic expressions for the diagonalization

of the mass matrix M2
CPeven, given in eq. (4.18). The masses of the neutral scalars (eigen-

values of that matrix) are given implicitly as the solutions of the polynomial equation,

ax3 + bx2 + cx+ d = 0, (B.1)

with a, b, c and d given by,

a = 8v1v2vt, (B.2)

b = −16v1v2vt[λ1v
2
1 + λ2v

2
2 + v2

t (λt + λtt)]− 4
√

2µt2
(
v2

1v
2
2 + v2

1v
2
t + v2

2v
2
t

)
(B.3)

c = 8v1v2vt[4λ1λ2v
2
1v

2
2 − (λ3 + λ4)2v2

1v
2
2 +

(
4λ1λt − λ2

t1

)
v2

1v
2
t +

(
4λ2λt − λ2

t2

)
v2

2v
2
t

+ 4λttv
2
t

(
λ1v

2
1 + λ2v

2
2

)
− 2v2

t

(
λt1λtt1v

2
1 + λt2λtt2v

2
2

)
− v2

t

(
λ2
tt1v

2
1 + λ2

tt2v
2
2

)
]

+ 8
√

2µt2[λ1v
4
1

(
v2

2 + v2
t

)
+ λ2v

4
2

(
v2

1 + v2
t

)
+ λtv

4
t

(
v2

1 + v2
2

)
+ λttv

4
t

(
v2

1 + v2
2

)
+ (λ3 + λ4)v2

1v
2
2v

2
t + (λt1 + λt2)v2

1v
2
2v

2
t + (λtt1 + λtt2)v2

1v
2
2v

2
t ]

(B.4)



d = 16v3
1v

3
2v

3
t {λ1(λt2 + λtt2)2 + λ2(λt1 + λtt1)2 + (λt + λtt)[(λ3 + λ4)2 − 4λ1λ2]

− (λ3 + λ4)(λt1 + λtt1)(λt2 + λtt2)} − 4
√

2µt2{[4λ1λ2 − (λ3 + λ4)2]v4
1v

4
2

+ [4λ2(λt + λtt)− (λt2 + λtt2)2]v4
2v

4
t + [4λ1(λt + λtt)− (λt1 + λtt1)2]v4

1v
4
t }

+ 8
√

2µt2v
2
1v

2
2v

2
t {[(λt1 + λtt1)(λt2 + λtt2)− 2(λ3 + λ4)(λt + λtt)]v

2
t

+ [(λ3 + λ4)(λt1 + λtt1)− 2λ1(λt2 + λtt2)]v2
1 + [(λ3 + λ4)(λt2 + λtt2)− 2λ2(λt1 + λtt1)]v2

2}

− 16µ2
t2v1v2vt[(λ3 + λ4)v2

1v
2
2 + (λt1 + λtt1)v2

1v
2
t + (λt2 + λtt2)v2

2v
2
t ] + 8

√
2µ3

t2v
2
1v

2
2v

2
t ,

(B.5)

This equation can be solved numerically once the set of parameters is fixed. For the mixing

angles, it is very difficult even to furnish an equation that determine them in terms of

the parameters of the potential, because of the difficulty in computing the eigenvectors of

M2
CPeven.

There are some limits, however, in which these expressions are calculable. The idea

is to take advantage of the different energy scales involved and decompose the original

matrix into matrices whose entries belong to the same scale.

Let us decompose M2
CPeven,

M2
CPeven =


2λ1v

2
1 (λ3 + λ4)v1v2 (λt1 + λtt1)v1vt

(λ3 + λ4)v1v2 2λ2v
2
2 (λt2 + λtt2)v2vt −

√
2µt2v2

(λt1 + λtt1)v1vt (λt2 + λtt2)v2vt −
√

2µt2v2 2(λt + λtt)v
2
t +

µt2v22√
2vt

 ,

in the following way,

M2
CPeven = M2

1 +M2
2

= v1v2


2λ1

v1
v2

λ3 + λ4 0

λ3 + λ4 2λ2
v2
v1

0

0 0 0



+
√

2µt2v2


0 0 (λt1 + λtt1) v1vt√

2µt2v2

0 0 (λt2 + λtt2) vt√
2µt2
− 1

(λt1 + λtt1) v1vt√
2µt2v2

(λt2 + λtt2) vt√
2µt2
− 1 (λt + λtt)

2v2t√
2µt2v2

+ v2
2vt

 .

(B.6)

The matrix M2
1 would be the mixing matrix of the neutral scalars in case there were just

the two doublets, while M2
2 account for the effects of the presence of the triplet. Let us

first consider the limit vt, µt2 � vi. In this case, the decomposition (B.6) makes it clear
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that the triplet decouples from the doublets. The matrix M2
1 remains the same and M2

2

reduces to M2
2 = diag(0, 0, µt2v

2
2/
√

2vt), from which we obtain immediately the mass of

Ht. To diagonalize M2
1 we need only one mixing angle, so that we can make α1, α2 → 0

in eq.(4.19), leading to the following physical fields,
h

H

Ht

 =


cα sα 0

−sα cα 0

0 0 1



ρ1

ρ2

ρt


with α given by,

tan 2α =
(λ3 + λ4)v1v2

λ1v2
1 − λ2v2

2

. (B.7)

From the eigenvalues of M2
1 and M2

2 , we have the masses,

m
′2
h,H = λ1v

2
1 + λ2v

2
2 ±

√
(λ1v2

1 − λ2v2
2)2 + (λ3 + λ4)2v2

1v
2
2 (B.8)

m2
Ht =

µt2v
2
2√

2vt
, (B.9)

with m′h < m′H
1.

Now, relaxing the condition on µt2 and allowing it to increase to the same order of

vi or higher, this comparatively large value of µt2 produces a sizable perturbation on the

spectrum obtained above, but as we will see, the mass expressions are somewhat similar

to the ones obtained in eqs. (B.8) and (B.9). In this case, it is still possible to diagonalize

the matrices M2
1 and M2

2 almost independently. First, as vt is always taken to be small

but now µt2 can be large, M2
2 can be approximated by,

M2
2 =
√

2µt2v2


0 0 0

0 0 −1

0 −1 v2
2vt

 . (B.10)

M2
2 is diagonalized by moving to an intermediate basis (H1, H2, H3) through a rotation

Rα2 , 
H1

H2

H3

 =


1 0 0

0 cα2 sα2

0 −sα2 cα2



ρ1

ρ2

ρt

 , (B.11)

1The prime in m
′2
h,H was inserted here to differentiate these mass expressions from the masses m2

h,H ,

given in eqs. (B.19) and (B.20), which are the masses of h and H calculated in another limit.
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with,

sinα2 =
2vt
v2

, cosα2 ' 1, (B.12)

so that,

M2
2diag = Rα2M

2
2R

T
α2

=
√

2µt2v2


0 0 0

0 −2vt
v2

O(
v2t
v22

)

0 O(
v2t
v22

) v2
2vt

 .
(B.13)

The effect of this rotation on M2
1 is

Rα2M
2
1R

T
α2

= v1v2


2λ1

v1
v2

(λ3 + λ4)cα2 −(λ3 + λ4)sα2

(λ3 + λ4)cα2 2λ2
v2
v1
c2
α2

−2λ2
v2
v1
sα2cα2

−(λ3 + λ4)sα2 −2λ2
v2
v1
sα2cα2 2λ2

v2
v1
s2
α2

 . (B.14)

As sinα2 � 1, at leading order we have Rα2M
2
1R

T
α2
'M2

1 , and the rotation Rα2 does not

change M2
1 . Then, rotating M2

1 by Rα, with α given in eq. (B.7), we move to the physical

basis, 
h

H

Ht

 =


cα sα 0

−sα cα 0

0 0 1



H1

H2

H3

 , (B.15)

such that,

M2
1diag = RαM

2
2R

T
α

=


m
′2
h 0 0

0 m
′2
H 0

0 0 0

 ,
(B.16)

where m
′2
h and m

′2
H are as given in eq. (B.8). This second rotation Rα, albeit diagonalize

M2
1 , tends to disturb the previous diagonalization of M2

2 , by generating corrections to the

diagonal elements and also off-diagonal elements in M2
2diag,

M
′2
2diag = RαM

2
2diagR

T
α =
√

2µt2v2


−2sα

2 vt
v2

O( vt
v2

) 0

O( vt
v2

) −2cα
2 vt
v2

0

0 0 v2
2vt

 . (B.17)

This matrix is diagonal up to O(vt/v2) terms, which can be discarded for sufficiently small

vt. As we are interested in extracting the leading order correction to the masses of h and

H, we shall keep the diagonal elements.
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In summary what we have done is,

ρTM2
CPevenρ = ρT (M2

1 +M2
2 )ρ

= HT
1 (Rα2M

2
1R

T
α2

+Rα2M
2
2R

T
α2

)H1

'HT
1 (M2

1 +M2
2diag)H1

= HT (RαM
2
1R

T
α +RαM

2
2diagR

T
α)H

ρTM2
CPevenρ 'HT (M2

1diag +M
′2
2diag)H .

From,

M2
1diag +M

′2
2diag =


m
′2
h − 2

√
2sα

2µt2vt 0 0

0 m
′2
H − 2

√
2cα

2µt2vt 0

0 0
µt2v22√

2vt

 , (B.18)

we can read the scalar masses,

m2
h = λ1v

2
1 + λ2v

2
2 −

√
(λ1v2

1 − λ2v2
2)2 + (λ3 + λ4)2v2

1v
2
2 − 2

√
2 sin2 α µt2vt (B.19)

m2
H = λ1v

2
1 + λ2v

2
2 +

√
(λ1v2

1 − λ2v2
2)2 + (λ3 + λ4)2v2

1v
2
2 − 2

√
2 cos2 α µt2vt (B.20)

m2
Ht =

µt2v
2
2√

2vt
. (B.21)

Note that the expressions obtained agree with those given in eq. (B.8)-(B.9) if we take

µt2 � vi, as expected. The main difference in the expressions in these two limits is the

presence of the correction terms −2
√

2 sin2 αµt2vt and −2
√

2 cos2 αµt2vt in m2
h and m2

H ,

respectively, which pushes down their values, making h and H lighter than it would be in

the absence of the triplet. Notice also that in this approximation, we managed to perform

the diagonalization using only two mixing angles, α and α2, instead of the three angles

needed in the general case.

Charged scalars

In this section we will apply to the charged scalars mass matrix the same method

used in the previous section for the neutral scalars. First note that the matrix (4.27),

M2
Charged =

1

2


−λ4v

2
2 − λtt1v2

t λ4v1v2 λtt1v1vt/
√

2

λ4v1v2 −λ4v
2
1 − λtt2v2

t + 2
√

2µt2vt
1
2
(
√

2λtt2vt − 4µt2)v2

v1vtλtt1/
√

2 1
2
(
√

2λtt2vt − 4µt2)v2

√
2µt2v22
vt
− 1

2
(λtt1v

2
1 + λtt2v

2
2)

 ,
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can be decomposed as,

M2
Charged = M2

1+ +M2
2+

=
1

2


−λ4v

2
2 λ4v1v2 0

λ4v1v2 −λ4v
2
1 0

0 0 0



+
1

2


−λtt1v2

t 0 λtt1v1vt/
√

2

0 −λtt2v2
t + 2

√
2µt2vt

1
2
(
√

2λtt2vt − 4µt2)v2

v1vtλtt1/
√

2 1
2
(
√

2λtt2vt − 4µt2)v2

√
2µt2v22
vt
− 1

2
(λtt1v

2
1 + λtt2v

2
2)

 .

(B.22)

In the matrix M2
2+ are contained all the mixing effects among the doublets and the triplet.

If M2
2+ vanished, there would be mixing only between the two doublets, as described by

M2
1+, leading to a charged Goldstone boson and a charged physical scalar, as in the usual

2HDM. Let’s again consider the limit vt, µt2 � vi, in which M2
1+ remains the same and

M2
2+ reduces to M2

2+ = diag(0, 0,
√

2µt2v
2
2/2vt − λtt1v2

1/2 − λtt2v2
2/2), so that the triplet

completely decouples from the doublets, which still mix with themselves. In this case, it is

necessary only one angle in the diagonalization and we can make β1, β2 → 0 in eq.(4.28),

leading to the following physical fields,
G+

H+

H+
t

 =


cβ sβ 0

−sβ cβ 0

0 0 1



φ+

1

φ+
2

∆+


with,

tan 2β =
2v1v2

v2
1 − v2

2

, (B.23)

which can be put in the form tan 2β = 2 tan β/(1 − tan2 β) by dividing numerator and

denominator by v2
1, so that

tan β =
v2

v1

. (B.24)

The masses of H+ and H+
t in this approximation are,

m2
H+ = −1

2
λ4v

2, (B.25)

m2
H+
t

=
µt2v

2
2√

2vt
− 1

4
(λtt1v

2
1 + λtt2v

2
2). (B.26)
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As mentioned early, for µt2 ' vt the mass of H+
t is small and may be in tension with

existing bounds, so that in this limit µt2/vt > 1 is favored.

Now, allowing µt2 be large but keeping vt small, M2
2+ reduces to,

M2
2+ = µt2


0 0 0

0
√

2vt −v2

0 −v2
v22√
2vt

 . (B.27)

M2
2+ is diagonalized by moving to an intermediate basis (H+

1 , H
+
2 , H

+
3 ) through a rotation

Rβ2 , 
H+

1

H+
2

H+
3

 =


1 0 0

0 cβ2 sβ2

0 −sβ2 cβ2



φ+

1

φ+
2

∆+

 , (B.28)

so that,

Rβ2M
2
2+R

T
β2

= M2
2+diag, (B.29)

with,

sin β2 =

√
2vt√

v2
2 + 2v2

t

'
√

2vt
v2

, (B.30)

and,

cos β2 =
v2√

v2
2 + 2v2

t

' 1. (B.31)

The effect of this rotation on M2
1+ is

Rβ2M
2
1+R

T
β2

=
1

2


−λ4v

2
2 λ4v1v2cβ2 λ4v1v2sβ2

λ4v1v2cβ2 −λ4v
2
1c

2
β2

+
λtt1v21+λtt2v22

2
s2
β2
−(λ4v

2
1 +

λtt1v21+λtt2v22
2

)sβ2cβ2

−λ4v1v2sβ2 (λ4v
2
1 +

λtt1v21+λtt2v22
2

)sβ2cβ2 −λtt1v21+λtt2v22
2

s2
β2

+ λ4v
2
1c

2
β2


(B.32)

As sin β2 � 1, at leading order we have Rβ2M
2
1+R

T
β2
' M2

1+, and the rotation Rβ2 does

not change M2
1+, as we wanted. Then, rotating M2

1+ by a matrix Rβ, with β given by eq.

(B.24), we move to the physical basis,
G+

1

H+

H+
t

 =


cβ sβ 0

−sβ cβ 0

0 0 1



H+

1

H+
2

H+
3

 . (B.33)
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Note that this second rotation Rβ does not disturb the diagonalization of M2
2+,

RβM
2
2+diagR

T
β =


cβ sβ 0

−sβ cβ 0

0 0 1




0 0 0

0 0 0

0 0
µt2v22√

2vt



cβ −sβ 0

sβ cβ 0

0 0 1

 =


0 0 0

0 0 0

0 0
µt2v22√

2vt

 = M2
2+diag.

(B.34)

Thus, the diagonalization of M2
1+ and M2

2+ leads to,

M2
1+diag +M2

2+diag =


0 0 0

0 −1
2
λ4v

2 0

0 0
µt2v22√

2vt

 , (B.35)

from which we obtain the masses for H+ and H+
t ,

m2
H+ = −1

2
λ4v

2, (B.36)

m2
H+
t

=
µt2v

2
2√

2vt
. (B.37)

As a consistency check, notice that taking the limit vt � vi directly in the eqs. (4.29)

and (4.30), we obtain as result the eqs. (B.36) and (B.37). Finally, note that for the

diagonalization in this limit we need to use only two mixing angles, β and β2, instead of

the three angles needed in the general case.
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Appendix C

Appendix C

In this appendix we will describe in more detail the limiting cases of type I and

type II seesaw dominance considering different scales for the mR, mD and mL masses. We

will consider the case in which we have the complete scalar sector, with the two doublets

Φi, the triplet ∆ and the singlet Φs, so that it is necessary to analyze the full mass matrix

Eq.(5.11). As we assume that the block matrix components of Mν have equal diagonal

elements, we obtain degenerate eigenvalues given by,

m =
1

2

[
mL +mR −

√
4m2

D + (mL −mR)2

]
, (C.1)

and,

M =
1

2

[
mL +mR +

√
4m2

D + (mL −mR)2

]
. (C.2)

As there are different limits, we can classify them based on the relative size of mL,mR

and mD:

(i) The three variables are of the same order of magnitude:

mD ∼ mR ∼ mL.
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(ii) The three variables are of different orders:

mR � mD � mL,

mR � mL � mD,

mL � mD � mR,

mL � mR � mD,

mD � mR � mL,

mD � mL � mR.

(iii) Two of them are of the same order and the third one is much larger than the others:

mR � mD,mL and mD ∼ mL,

mL � mD,mR and mD ∼ mR,

mD � mR,mL and mR ∼ mL.

(iv) Two of them are of the same order and the third one is much smaller than the

others:

mL � mR,mD and mD ∼ mR,

mR � mL,mD and mD ∼ mL,

mD � mR,mL and mR ∼ mL.

Instead of considering all these possibilities, we can deal with a reduced number

of them, by noting that the masses m and M are symmetrical under the exchange of mR

and mL. So, we are left with:

(i) The three variables are of the same order of magnitude:

mD ∼ mR ∼ mL.

(ii) The three variables are of different orders:

mR � mD � mL,

mR � mL � mD,

mD � mR � mL.
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(iii) Two of them are of the same order and the third one is much larger than the others:

mR � mD,mL and mD ∼ mL,

mD � mR,mL and mR ∼ mL.

(iv) Two of them are of the same order and the third one is much smaller than the

others:

mR � mL,mD and mD ∼ mL,

mD � mR,mL and mR ∼ mL.

The remaining cases are obtained by swapping mR and mL in the corresponding expres-

sions.

For the case mD ∼ mR ∼ mL, the Eq. (C.1) and Eq.(C.2) should be used without

modification, as they are not amenable to simplifications in this regime. Now, for mR �

mD,mL, we can use the approximation:√
4m2

D + (mL −mR)2 ' mR

(
1 +

m2
D

m2
R

+
m2
L

2m2
R

− mL

mR

)
= mR −mL +

m2
D

mR

+
m2
L

2mR

.

Then, using Eq. (C.1) and Eq.(C.2), we get,

• If mD ∼ mL, then,

m ' mL −
m2
D

2mR

− m2
L

4mR

, (C.3)

and,

M ' mR +
m2
D

2mR

+
m2
L

4mR

. (C.4)

• If mD � mL, then,

m ' mL −
m2
D

2mR

, (C.5)

and,

M ' mR +
m2
D

2mR

. (C.6)
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• If mL � mD, then,

m ' mL −
m2
L

4mR

, (C.7)

and,

M ' mR +
m2
L

4mR

. (C.8)

Now, for mD � mR,mL we use the approximation:√
4m2

D + (mL −mR)2 ' 2mD

[
1 +

(mL −mR)2

8m2
D

]
= 2mD +

(mL −mR)2

4mD

.

Hence:

• If mR ∼ mL, then,

m ' −mD +
mL +mR

2
− (mL −mR)2

8mD

, (C.9)

and,

M ' mD +
mL +mR

2
+

(mL −mR)2

8mD

. (C.10)

• If mR � mL, then,

m ' −mD +
1

2
mR −

m2
R

8mD

, (C.11)

and,

M ' mD +
1

2
mR +

m2
R

8mD

. (C.12)

Now, if mR � mL,mD and mL ∼ mD:

√
4m2

D + (mL −mR)2 '
√

4m2
D +m2

L.
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Hence,

m ' 1

2

[
mL −

√
4m2

D +m2
L

]
, (C.13)

and,

M ' 1

2

[
mL +

√
4m2

D +m2
L

]
, (C.14)

Finally, for mD � mR,mL and mR ∼ mL:√
4m2

D + (mL −mR)2 = −(mL −mR)

(
1 +

2m2
D

(mL −mR)2

)
= mR −mL −

2m2
D

(mL −mR)
.

Hence,

m ' mL −
m2
D

(mR −mL)
, (C.15)

and,

M ' mR +
m2
D

(mR −mL)
. (C.16)
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Fermionic Operators on the Gauge Legacy of the LHC Run I, Phys. Rev. D98

(2018), no. 1 013006.

[174] M. Cepeda et. al., Report from Working Group 2, CERN Yellow Rep. Monogr. 7

(2019) 221–584.

[175] P. Ko, Y. Omura, and C. Yu, Dark matter and dark force in the type-I inert

2HDM with local U(1)H gauge symmetry, JHEP 11 (2014) 054.

[176] CMS Collaboration, A. M. Sirunyan et. al., Search for electroweak production of

charginos and neutralinos in multilepton final states in proton-proton collisions at
√
s = 13 TeV, JHEP 03 (2018) 166.

[177] CMS Collaboration, C. Collaboration, Search for production of a Higgs boson and

a single top quark in multilepton final states in proton collisions at
√
s = 13 TeV,

CERN Document Server (2017).

[178] P. Fayet, Extra U(1)’s and New Forces, Nucl. Phys. B347 (1990) 743–768.

[179] P. Fayet, U-boson production in e+ e- annihilations, psi and Upsilon decays, and

Light Dark Matter, Phys. Rev. D75 (2007) 115017.

[180] G. Arcadi, T. Hugle, and F. S. Queiroz, The Dark Lµ − Lτ Rises via Kinetic

Mixing, Phys. Lett. B784 (2018) 151–158.

[181] A. Blondel et. al., Research Proposal for an Experiment to Search for the Decay

µ→ eee, arXiv:1301.6113 (2013).

[182] M. Lindner, F. S. Queiroz, W. Rodejohann, and X.-J. Xu, Neutrino-electron

scattering: general constraints on Z
′

and dark photon models, JHEP 05 (2018) 098.

131



[183] A. Freitas, J. Lykken, S. Kell, and S. Westhoff, Testing the Muon g-2 Anomaly at

the LHC, JHEP 05 (2014) 145. [Erratum: JHEP09,155(2014)].

[184] Y. Kaneta and T. Shimomura, On the possibility of a search for the Lµ − Lτ gauge

boson at Belle-II and neutrino beam experiments, PTEP 2017 (2017), no. 5

053B04.

[185] K. Kowalska and E. M. Sessolo, Expectations for the muon g-2 in simplified models

with dark matter, JHEP 09 (2017) 112.

[186] M. Dutra, M. Lindner, S. Profumo, F. S. Queiroz, W. Rodejohann, and

C. Siqueira, MeV Dark Matter Complementarity and the Dark Photon Portal,

JCAP 1803 (2018) 037.

[187] S. Profumo, F. S. Queiroz, J. Silk, and C. Siqueira, Searching for Secluded Dark

Matter with H.E.S.S., Fermi-LAT, and Planck, JCAP 1803 (2018), no. 03 010.

[188] E. Ma, Neutrino mass from triplet and doublet scalars at the TeV scale, Phys. Rev.

D66 (2002) 037301.

[189] Y. Sui and Y. Zhang, Prospects of type-II seesaw models at future colliders in light

of the DAMPE e+e− excess, Phys. Rev. D97 (2018), no. 9 095002.

[190] C. Bonilla, J. M. Lamprea, E. Peinado, and J. W. F. Valle, Flavour-symmetric

type-II Dirac neutrino seesaw mechanism, Phys. Lett. B779 (2018) 257–261.

[191] A. Biswas and A. Shaw, Explaining Dark Matter and Neutrino Mass in the light of

TYPE-II Seesaw Model, JCAP 1802 (2018), no. 02 029.

[192] P. S. B. Dev, C. M. Vila, and W. Rodejohann, Naturalness in testable type II

seesaw scenarios, Nucl. Phys. B921 (2017) 436–453.

[193] M. M. Ferreira, T. B. de Melo, S. Kovalenko, P. R. D. Pinheiro, and F. S. Queiroz,

Lepton Flavor Violation and Collider Searches in a Type I + II Seesaw Model,

Eur. Phys. J. C79 (2019), no. 11 955.

[194] A. Geiser, PseudoDirac neutrinos as a potential complete solution to the neutrino

oscillation puzzle, Phys. Lett. B444 (1999) 358.

132



[195] D. Chang and O. C. W. Kong, Pseudo-Dirac neutrinos, Phys. Lett. B477 (2000)

416–423.

[196] J. F. Beacom, N. F. Bell, D. Hooper, J. G. Learned, S. Pakvasa, and T. J. Weiler,

PseudoDirac neutrinos: A Challenge for neutrino telescopes, Phys. Rev. Lett. 92

(2004) 011101.

[197] M. Safarzadeh, E. Scannapieco, and A. Babul, A limit on the warm dark matter

particle mass from the redshifted 21 cm absorption line, Astrophys. J. 859 (2018),

no. 2 L18.

[198] J. S. Martins, R. Rosenfeld, and F. Sobreira, Forecasts for Warm Dark Matter

from Photometric Galaxy Surveys, Mon. Not. Roy. Astron. Soc. 481 (2018), no. 1

1290–1299.

[199] P. Villanueva-Domingo, N. Y. Gnedin, and O. Mena, Warm Dark Matter and

Cosmic Reionization, Astrophys. J. 852 (2018), no. 2 139.

[200] L. Lopez-Honorez, O. Mena, S. Palomares-Ruiz, and P. Villanueva-Domingo,

Warm dark matter and the ionization history of the Universe, Phys. Rev. D96

(2017), no. 10 103539.

[201] V. Irsic et. al., New Constraints on the free-streaming of warm dark matter from

intermediate and small scale Lyman-α forest data, Phys. Rev. D96 (2017), no. 2

023522.

[202] D. Hooper, F. Ferrer, C. Boehm, J. Silk, J. Paul, N. W. Evans, and M. Casse,

Possible evidence for MeV dark matter in dwarf spheroidals, Phys. Rev. Lett. 93

(2004) 161302.

[203] Y. Farzan and E. Ma, Dirac neutrino mass generation from dark matter, Phys.

Rev. D86 (2012) 033007.

[204] T. Toma and A. Vicente, Lepton Flavor Violation in the Scotogenic Model, JHEP

01 (2014) 160.

[205] T. Hugle, M. Platscher, and K. Schmitz, Low-Scale Leptogenesis in the Scotogenic

Neutrino Mass Model, Phys. Rev. D98 (2018), no. 2 023020.

133



[206] D. A. Camargo, A. G. Dias, T. B. de Melo, and F. S. Queiroz, Neutrino Masses in

a Two Higgs Doublet Model with a U(1) Gauge Symmetry, JHEP 04 (2019) 129.

[207] ATLAS Collaboration, G. Aad et. al., Search for high-mass dilepton resonances

using 139 fb−1 of pp collision data collected at
√
s =13 TeV with the ATLAS

detector, Phys. Lett. B796 (2019) 68–87.

[208] X. Cid Vidal et. al., Report from Working Group 3, CERN Yellow Rep. Monogr. 7

(2019) 585–865.

134


	8084c4f4d99785851049a3b6cfd3c5b45b646a3166257ac6d1ef5241e5fa114b.pdf
	beb324eed30e71416ab208cd2e05d6ad22fb2d53515c060bb37e486fc8843997.pdf

	0cc0af26a625a01f5631d6486c30d9b709e232d1117f7cc1128dae4bb71ffcf2.pdf
	8084c4f4d99785851049a3b6cfd3c5b45b646a3166257ac6d1ef5241e5fa114b.pdf
	db9bfb1a07b27e0cf42c87ac172305e4d5a777b8f247f31372c00e1661c84b97.pdf
	34c0c9fc7f069254542a1ec713ed19a7cc55ae07a2204611c4bc86d7ae59ca2d.pdf
	beb324eed30e71416ab208cd2e05d6ad22fb2d53515c060bb37e486fc8843997.pdf
	Acknowledgements
	List of Publications
	List of Figures
	List of Tables
	Contents
	Resumo
	Abstract
	Introduction
	The Standard Model of Particle Physics
	The Standard Model Lagrangian
	The Gauge Sector
	The Matter Sector
	The Scalar Sector and Higgs Mechanism
	The Yukawa Sector

	Some Problems in the Standard Model
	Neutrino Masses


	Two Higgs Doublet Models
	The Scalar Sector with Two Higgs Doublets
	The Yukawa Sector and FCNI
	The Alignment Limit

	Neutrino Masses and Absence of Flavor Changing Interactions in the 2HDM from Gauge Principles
	2HDM with U(1)X Symmetries
	Realizing NFC criterion with U(1)X Symmetries
	Anomaly Cancellation
	Neutrino Masses
	Physical Gauge Bosons and Neutral Currents
	Z Decays

	Phenomenological Constraints
	Meson Decays
	Higgs Physics
	Z Decays
	Charged Higgs Searches
	Atomic Parity Violation
	Muon Anomalous Magnetic Moment
	Neutrino-Electron Scattering
	Low Energy Accelerators

	Discussion

	Neutrino Masses in a Two Higgs Doublet Model with a U(1) Gauge Symmetry
	Type II seesaw in the 2HDM-U(1)
	Mass Spectrum - Scalars
	Mass Spectrum - Gauge Bosons

	Phenomenological constraints
	Electroweak Precision
	Collider Bounds
	LHC- Higgs
	Accelerators
	Low Energy Probes
	Dark Matter Possibility

	Discussion

	Type I + II Seesaw in the Two Higgs Doublet Model
	Seesaw realizations in the 2HDM-U(1)
	Type I + II seesaw mechanism (BM 1)
	Scalar singlet absent (BM 3)
	Scalar triplet absent - Type I seesaw (BM 2)
	Scalar singlet and triplet absent - Dirac neutrinos (BM 4)
	Right-handed neutrinos and scalar singlet absent - type II seesaw (BM 6)
	Right-handed neutrinos absent - Type II seesaw + singlet (BM 5)

	Discussion

	Conclusions and Perspectives
	Appendix A
	Conditions for Anomaly Freedom
	Gauge bosons
	  Parameter
	Currents for Z and Z
	Comparison with the 2HDM with Gauged U(1)N
	Higgs Interactions to Vector Bosons

	Appendix B
	Appendix C



