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“All analysts spend half their time hunting through
the literature for inequalities which they want to
use and cannot prove.”

- G. H. Hardy.



Abstract

In this thesis, we prove two Hardy-Sobolev type inequalities and as a consequence we establish
embedding results of a certain Sobolev space defined on the upper half-space into weighted
Lebesgue spaces. Furthermore, some Trudinger-Moser type inequalities for functions defined in
the upper half-space are obtained. As applications, we also prove existence, nonexistence and
multiplicity of solutions for three class of indefinite quasilinear elliptic problems with weights in

anisotropic spaces.

Keywords: Hardy-Sobolev inequality, Sobolev space, Weighted Lebesgue space, Quasilinear

elliptic problem, Anisotropic space.
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Resumo

Nesta tese, provamos duas desigualdades do tipo Hardy-Sobolev e, como consequéncia, es-
tabelecemos resultados de imersao de um determinado espago de Sobolev definido no semi es-
paco superior em espacos de Lebesgue com peso. Além disso, algumas desigualdades do tipo
Trudinger-Moser para func¢oes definidas no semi espago superior sao obtidas. Como aplicagoes,
também provamos a existéncia, nao existéncia e multiplicidade de solugoes para trés classes de

problemas elipticos quasilineares indefinidos com pesos em espagos anisotropicos.

Palavras-chave: Desigualdade de Hardy-Sobolev, Espaco de Sobolev, Espaco de Lebesgue com

peso, Problema eliptico quasilinear, Espaco anisotrépico.
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Notation

We select here some notations used throughout the work.

Spaces

¢ is Lebesgue measurable with
Jo a(@)]p(z)|Pdr < oo
o [>®(Q,a(x)) ={¢: Q2 =R, a(x)pis bounded and Lebesgue measurable};

OLP(Q,a(x)):{w:Q—)]R: },1§p<00;

e 00, Q, Q° denote boundary, closure, and complement of the set Q, respectively.
e R" denotes the usual euclidean space with the norm |z| = (31, a:?)l/ reRn
o R} :={z = (2 2,) e R" : 2, > 0};

o W'P(R") denotes the usual Sobolev space of p-weak derivatives;

LP(R™1 d
o EVP(RY) = {u € L, (R%) : Ul € LF ) an };

uy, € LP(RY), Vi=1,...,n
e () denotes the space of continuous real functions in Q C R™;

e For an integer k > 1, C*(Q) denotes the space of k-times continuously differentiable real

functions in Q@ C R7};
[ ] COO(Q) = ﬂkeNCk(Q);

o (C5°(92) denotes the space of infinitely differentiable real functions whose support is compact
in 2 C R™;

e D'P(Q) denotes the completion of C§°(€2) with respect to the norm ||ul|, = ([, [Vu[Pdz)"/?,
1<p<mnm

e F' denotes the topological dual of the Banach space F;

Norms

e For 1 < p < oo, the standard norm in LP(R%, a(z)) is denoted by || - || zr& a(2));

X1l



Other Notation

|A| denotes the Lebesgue measure of a set A C R™;

supp(p) denotes the support of function ¢;

C, Cy, C1, Cy, Cs, ... denote positive constants possibly different;
C'(s) denotes constant which depends of s;

or(1) denotes a sequence which converges to 0 as k — oo;

— denotes weak convergence in a normed space;

— denotes strong convergence in a normed space;

— denotes continuous embedding;

(-,+) denotes the duality pairing between E and E';

Weight functions are functions measurable and positive almost everywhere (a.e.)

xiil



Introduction

The purpose of this thesis is twofold: firstly, we prove the Hardy-Sobolev type inequalities

juf” Y : o0 (TRn
B Sy VuPde+ [ JuPde ), YueCR®RY, (1)
ry (1+2n)? p—1 R Rn—1

where n > 2 and 1 < p < oo and

lu

p/P+
D=
— dr < 0/ \VulPdz, VYu € Cy(R™), (2)
</Ri (1+ $n)a) R ’

where n > 3, a > 1 and p, := p(n — 1)/(n — p); and secondly, we use these inequalities to study

the following class of quasilinear elliptic

{ A ([Vul V) = gleu) i R 3)

IVulP2Vu- v+ kluP?u = 0 on R" 1

where 1 < p < n and ¢ satisfies some suitable growth conditions that will be specified later.
Our interest in the type of inequalities has been mostly motivated by their deep connections
with Hardy and Sobolev inequalities. We quote here that the proof of (1) was strongly inspired by
the arguments used in |23, Theorem 1.4, where the authors obtain a similar result for functions
in C3°(R?) and the proof of inequality (2) was inspired by the arguments used in the paper
[11, Proposition 3.4].
We also point out that (1) is an extension of the weighted Hardy-type inequality proved in

[34, Lemma 1| where the author proved a similar result:

/Q%dxgco ([)|Vu|pdx+L%|u|pdr)a (4)

for 1 < p < n and some Cy > 0.
As a consequence of (1) we establish embedding results of a certain Sobolev space EMF(R"})
defined on the upper half-space and we investigate existence, nonexistence and multiplicity of

solutions for a class of indefinite quasilinear elliptic problems with weights in anisotropic spaces.



The problems studied in this thesis have the form

{ —div(|VulP~2Vu) = a(z)f(z,u) —b(@)|u2u in R?, 5)

|VulP=2Vu - v+ kluf?u = 0 on R

where v denotes the unit outward normal on the boundary R*~!, x > 0, ) is a real parameter,
the nonlinearity f can assume polynomial growth or exponential growth in the Trudinger-Moser
sense in R}, n > 2, and the weight functions a, b satisfy some suitable conditions that we will
describe later on.

Problems of this type have been investigated by many authors, see for instance [12,14, 16,
25,32-35| and references therein. In many of these papers a relevant Sobolev inequality proved
by Pfliiger in [34] has played an important role in their variational approach. Precisely, let

1 < p < n and assume that the weight function h(zx) satisfies the hypothesis:
1/C(1+ |z|)Pt < h(z) <C/(1+|2))P7!, ae in Q,

for some C' > 0 and denote by C5°(€2) the space of C§°(R™)—functions restricted to 2. Defining
the weighted Sobolev space E as the completion of C§°(€2) in the norm

e = ([ (uae+ [ A )Up
U||lg = ulrar + —F——az ,
r 0 o (14 ]z])p

in [34], the author proved that || - ||z is an equivalent norm to (see [34, Lemma 2|)

1/p
il = ([ 1vap+ [ ntoparas’) .
Q o

To this, the Hardy-Sobolev type inequality (4) was crucial.

Let us now describe the content of this thesis. The thesis is written in four chapters. Each
chapter corresponds to a submitted paper. In this way, each chapter in this thesis is self-
contained.

In Chapter 1, we consider the Sobolev space defined by

LP(R"1)  and
EVP(RY) = {u e Lh(Ry) : et S (R an },

ug, € LP(RY), Vi=1,....,n

where u,, denotes the distributional derivative of u, v , , is understood in the trace sense and

1

R denotes the boundary of R and £'*(R"), from now on denoted by £'?, is equipped with

1/p
[ullgrr := /|Vu|pdx+/ lufPdz’ | .
Ri Rn—1

For 1 < p < n we obtain the following embedding result.

the norm



Theorem 0.0.1. Assume 1 < p < n. Then the weighted Sobolev embedding

1
51’p‘—>Lq(Ri,—(1+ >p), Vp <q<p,
Tn

and the Sobolev trace embedding

are continuous.
In the borderline case p = n, we establish the following result:

Theorem 0.0.2. Assume p =n. Then the weighted Sobolev embedding

1
ey L9(RY, ——— <
gln oy ( +’(1+xn)”)’ Vn < q< oo, (6)
and the Sobolev trace embedding
EYm s LYR™Y), ¥Yn<g<oo (7)

are continuous.

The embeddings (6) and (7) are not valid if ¢ = 0o, see Remark 1.1.5. Thus, it is natural to
study embedding from £M" into Orlicz space. To this end, we introduce a new weighted Sobolev

space, which plays a central role in the proof of our Trudinger-Moser type inequality.

Definition 0.0.3. Consider the weight function b(x) := (1+|x|)~". We define the space £, as

the completion of C3°(R™) with respect to the norm

iy = [ (9l + b)) d

n
We establish the following embedding result involving Sbl o
Theorem 0.0.4. For any n < q < oo, the embedding

& = L (R, b)) (8)

is continuous. Furthermore, this embedding is false if ¢ = oco.

Considering the Young function defined by

n—2
als” a®
\:[104(8):6|| _ZF|S| ka s €R,
k=0
where n' := n/(n — 1) and according to (8), inspired by the arguments used in [18|, we prove

the following Trudinger-Moser type inequality in the setting of Ebl o,

3



Theorem 0.0.5. For any a > 0 we have that V. (u) € L'(R",b(x)). Moreover, there exists a

constant ag > 0, independent of u € 5,)1’", such that

L(a) = sup /]R" b(z)W, (u)dr < o0,

{ueg, ™ g1 n <1}

for any 0 < a < ay.

As a consequence of Theorem 0.0.5, the following Trudinger-Moser type inequality in the
setting of £-™ holds.

Corollary 0.0.6. For any u € £V and a > 0, we have that ¥, (u) € L'(R’}, b(x)). Moreover,

l(a) := sup /R” b(z)V, (u)dr < o0,

{uem: fluflg1,.n <1}

for any 0 < a < ap/ (2n/(n —1))".
In the trace sense, we have the following Trudinger-Moser type inequality:

Corollary 0.0.7. For any u € " and « > 0, we have that ¥, (u(-,0)) € LY(R"1 b(2’,0)).

Moreover,

T(a) := sup / b(z',0)W, (u(2,0))dx’ < +oo,
Rn—1

{uegl,n: ”u”gl,ngl}
for any 0 < a < ((n —1)/n)* ao/ (2n/(n —1))".
In the case p > n we obtain a Morrey’s type inequality.

Theorem 0.0.8. Assume n < p < oo and a(x) := (1 + x,)"P. Then the following weighted
Sobolev embedding holds
EVP — L®(RY, a(x)).

Furthermore, for all u € EYF there exists Co = Co(n,p) > 0 such that for a.e. z,y € R"
afw)u(z) - ay)u(y)| < Cola =yl (IIVullzoen) + lulls@rac)
where vy =1 —n/p.

In Chapter 2, we investigate the problem (5) when x > 0 and f has polynomial growth in
R? . Precisely, the problem studied in this chapter has the form

—div(|VulP~2Vu) = Xa(z)u”?u—b(x)|u[?u in R, )
|VulP2Vu- v+ ufu = 0 on R°L

We begin by considering the case r > ¢. To this end, we shall assume the following assump-

tions:



(Hy) a:R? — R is a nontrivial measurable function and there are constants o > n and ¢; > 0

such that
&1

0<a(z) < (1"‘—%)0[7

. n.
a.e. in  RY;

(Hz) b: R} — Ris a positive continuous function satisfying

T
ar-a

/ —dr < 0.
R bra

Under this hypotheses, our main result can be stated as follows.

Theorem 0.0.9. Let r > q and assume the hypotheses (Hy) — (Ha).

(i) If 1 < p < q < p*, there exists \* > 0 such that problem (9) has only the trivial solution
for all X € (—o0, X*);

(ii) If max{2,p} < q < p*, there exists X\ > 0 such that problem (9) has at least a nontrivial
weak solution for all X € (X\,00). Furthermore, if p < q then (Ps) has a nontrivial weak

solution;

(iii) If max{2,p} < q < p*, there exists A > X\ such that problem (9) has at least two nontrivial

weak solutions uy >y for all X € (A, 00);

() If 1 < p < q < p*, for any m € N there exists A,,, > 0 such that problem (9) has at least

m pairs of nontrivial weak solutions for all A > A,,.

Next we deal with the case r < ¢. In order to prove the existence of solutions for problem

(9), instead of hypotheses (Hy) — (Hz), we will assume:

(ﬁ 1) a:R? — R is a nontrivial measurable function and there are c; > 0 and o > n such that

0<a(x) < ©

——F——, ae. in R".
- (1 + [z])e "

(H) b R? — R is a measurable positive function.

In this case, our main result is stated as follows.
Theorem 0.0.10. Let 1 < p <r < q < p* and assume the hypotheses (Hy) — (Hy). Then

(i) the problem (9) has no nontrivial weak solution for every \ € (—o0,0];

(i1) the problem (9) has an infinite number of nontrivial weak solutions for every A € (0,00).

Chapter 3 contains our study of the problem (5) when x > 0 and f has exponential growth
in the Trudinger-Moser sense. Precisely, we study the following class of quasilinear elliptic
problems

{ —div(|Vu|""2Vu) + b(z)|u["2u = Xa(z)f(z,u) in R (10)

Vu|"?Vu- v+ [u["u = 0 on R"1

5



where v denotes the unit outward normal on the boundary R"!, X is a real parameter, 1 < p <
r < 0o, the weight functions a(x) and b(z) satisfy some suitable conditions that we will describe
later on and we assume that f is a continuous function with subcritical exponential growth in

the Trudinger-Moser sense, i.e., for any 5 > 0

|f(z, )|

= 0, uniformly in z € RY.
|s|—o0  eBlsl™
Setting F(x, s) fo x,t)dt, we also will assume that f satisfies the following assumptions:

(f1) lim "Fs(x %2 < Ay uniformly with respect to € R", where

s—0t

n n /
N {fRi |Vl al:zH—faR1 lu|"dx

T G {0}} ;
(f2) there exists pu > r such that
0<pF(x,s) < f(w,s)s, Ve eR} and s#0;
(f3) there exist constants Ry, M > 0 such that for all z € R” and s > Ry
F(z,s) < Myf(z,s).
We assume the following assumptions on the weighted functions a(z), b(z):

(H1) a: R} — Ris a nontrivial mensurable function and there exists ¢; > 0 such that

(Hz) b:R% — Ris a positive continuous function satisfying

a'r'n
/ dr < 0.
R" brw

Under these hypotheses, our first result concerning problem (10) is as follows.

Theorem 0.0.11. Assume (f1) — (f3) and (Hy) — (H3). If n <r < oo then
(i) Problem (10) has no nontrivial weak solution for every A € (—oo,0];
(ii) Problem (10) has at least a nontrivial weak solution for every A € (0, 00).

In order to obtain a multiplicity result, in addition, we will assume the assumption on f:



(f1) there exist vy, s9 > 0 and ~y > r such that

F(z,s) > 1p]s|", uniformly with respect to x € R}, V|s| < so.

Our multiplicity result is established as follows.

Theorem 0.0.12. Assume (Hy) — (Hz) and that f(z,-) is odd and satisfies (f1) — (fs). If
n < r < oo, then Problem (10) has an infinite number of nontrivial weak solutions for every

A € (0,00).

Finally, in Chapter 4, using inequality (2) we develop our approach to problem (5) with
x = 0 and f having polynomial growth which correspond to Neumann boundary value problem.

Precisely, we concerned with the following quasilinear elliptic problem

(11)

—div(|VulP~2Vu) = Xa(z)|u|?u—b(x)|u[?u in R,
|VulP2Vu-v = 0 on R" 1

where n > 3, v denotes the unit outward normal on the boundary, A is a real parameter and
the weighted functions a(x) and b(z) satisfy some suitable conditions that we will describe later
on. As our interest is to analyze the interplay between the powers ¢ and r, we will consider two

cases:

(n—1) _ . % . np .
(I) r>qandpnfp—.p*<q<p .—n—_’;)lf1<p<n,

(II) 1 <p. <7 <gq<p"

We begin by considering the case r > ¢. To this end, we shall assume the following assump-

tions:

(H1) a:R? — R is a nontrivial measurable function and there are constants o > n and ¢; > 0
such that

0<a(zr) < a

< m, a.e. in Ri,

(Hz) b:R% — Ris a positive continuous function satisfying

ar—a
/ —dxr < o0.
R? br=a

Under this hypotheses, our main result can be stated as follows.

Theorem 0.0.13. Let r > q and assume the hypotheses (Hy) — (Hs).

(1) If 1 < p < q < p*, there exists \* > 0 such that problem (11) has only the trivial solution
for all A € (—oo, \*);



(i1) If max{2,p} < q < p*, there exists A > 0 such that problem (11) has at least a nontrivial
weak solution for all X € (X\,00). Furthermore, if p < q then (P;) has a nontrivial weak

solution;

(iii) If max{2,p} < q < p*, there exists A > X such that problem (11) has at least two nontrivial

weak solutions uy > uy for all X € (A, 00);

() If 1 < p < q < p*, for any m € N there exists A, > 0 such that problem (11) has at least

m pairs of nontrivial weak solutions for all A > A,,.

Next we deal with the case r < ¢. In order to prove the existence of solutions for problem

(11), instead of hypotheses (Hy) — (H3), we will assume:

(j-v[ 1) a:R? — R is a nontrivial measurable function and there are c; > 0 and o > n such that

0<a(r) < e

——— ae. in R".
- (L + [z[) i

(ﬁg) b:R? — R is a measurable positive function.
In this case, our main result is stated as follows.
Theorem 0.0.14. Let 1 <p <r < q < p* and assume the hypotheses (ffl) — (ﬁg) Then
(i) the problem (11) has no nontrivial weak solution for every A € (—o0,0];
(i1) the problem (11) has an infinite number of nontrivial weak solutions for every A € (0, 00).

Motivated by the works of Alama-Tarrantelo [7], Filippucci-Pucci-Radulescu [25], Lyberopou-
los [27], Perera [31] and Pfltiger [34], we will use the variational method to study the problems
(9), (10) and (11).

In order to do not get resorting to Introduction and for the sake of independence of the

chapters, we will present again in each chapter the main results and the hypotheses.



Part 1

A Hardy-Sobolev type inequality and its

applications



Chapter 1

A Hardy-Sobolev type inequality and its

consequences

This chapter is devoted to the paper [2]|, where we prove a new Hardy-Sobolev type inequality
and as a consequence we establish embedding results of a Sobolev space £'*(R") defined on the
upper half-space. Precisely, for 1 < p < n we obtain an embedding from £%*(R") into weighted
Lebesgue spaces. In the borderline case p = n, we derive some Trudinger-Moser type inequalities,

and in the case p > n we obtain a Morrey’s type inequality.

1.1 Introduction and main results

Let n > 2 an integer number and denote by R} = {z = (2/,2,) € R" : 2, > 0} the upper
half-space. Inspired by the paper [6], for any 1 < p < 0o, we consider the Sobolev space defined
by
uy,,_, € LP(R*") and }’ (1.1)

gl,P R*") :={uc Ll R™)
( +) { loc( +) Uy, € Lp(]Ri)7 Vi=1,...,n

where u,, denotes the distributional derivative of u, u_, , is understood in the trace sense and
R™! denotes the boundary of R”. We can see that E'?(R"), from now on denoted by £'F, is a

reflexive Banach space when equipped with the norm

1/p
|ul|grr = / |Vu|pdx—|—/ |ulPda’ :
R? Rn-1

From the classical Sobolev trace embedding W'?(R) < LP(R™!), one can see that the
embedding Wh*(R”") < £ is continuous, but with strict inclusion. In fact, a straightforward

computation shows that, for any (n —1)/2 < 8 < n/2, the function

)—B/p

ug(@', x,) = (1+ |2/ + 27, , o eR™Y 2, >0,

belongs to the Sobolev space £ but not in W'P(R"). Moreover, if for any open set Q C
R" D'*(Q) with 1 < p < n denotes the completion of C5°(Q) with respect to the norm

10



1. A Hardy-Sobolev type inequality and its consequences

lul, = (J, |[VulPdz)'/?, it is well known that the best constant of the Sobolev trace embed-
ding DP(R?) < LP+(R™ ') with p, = p(n — 1)/(n — p), is achieved (see [20]) by the function

u(@' x,) = cp(1+ |22 4 22)e-m2e=D g e R g >0,

for some convenient constant ¢, > 0, however u ¢ £'P. Therefore, we have the continuous

embeddings with strict inclusions
WP(RY) — £V — DVP(RY).

In this chapter we focus our attention on embedding results of £7. To this end, we start by

proving the following weighted Hardy-Sobolev type inequality:

Theorem 1.1.1. Letn > 2 and 1 < p < co. Then the following inequality holds

Jul” p_\ / oo (o
g < (2 Valde + [ Julde’ |, Yue CE(RY).
R™ (1 + .fl'n)p P — 1 R? Rn-1

Our interest in this type of inequality has been mostly motivated by their deep connections
with Hardy-type inequalities. As it is well known, the Hardy inequality in the upper half space
for function u € C§°(R") has been extensively investigated by many authors, see for instance
[23,24,28,34,42] and references therein. We quote here that the proof of Theorem 1.1.1 is strongly
inspired by the arguments used in [23, Theorem 1.4|, where the authors obtain a similar result
for function in C§°(R% ). We also point out that Theorem 1.1.1 is an extension of the weighted
Hardy-type inequality proved in [34, Lemma 1| where the author proved a similar result with
1 <p < n (see also [48] for a related results).

For future applications, let us introduce the Banach space E'? defined as the completion of
C°(R™) with respect to the norm

|u|p 1/p
1,p — :7 pd +/ —d .
HUHE (/R ‘ U‘ ! R” (1 + xn)p x)

An useful consequence of Theorem 1.1.1 is the following corollary which extends [34, Lemma

n
+

2| to the case p > n:

Corollary 1.1.2. Assume n > 2 and 1 < p < oco. Then the norms || - ||e1» and || - |p1r are

equivalent in E'P.

In order to put our results into perspective, we recall some well known results concerning
Hardy inequalities in the upper half-space. As pointed in the paper [42], in the well known book
Sobolev Spaces by Maz'ya 28], the following inequality is obtained

2 2
i/ il d;pg/ Nl e e o). (12)
R R

16 (22_, + x2)1/? T

n n
+ +

11



1. A Hardy-Sobolev type inequality and its consequences

Taking u(x) = |z,|~"?v(z) into (1.2) we get

1 2 1 2
—/ i dx+—/ ﬂdxg/ Vol2de, VoeCR@®Y).  (13)

rr (Tp_y +2)? 2] n Ty n

In fact, this inequality was improved in [42, Lemma 3.1]. Tt is an open problem, formulated by

Maz’ya, whether the following generalization of the above inequality holds or not:

|ul? (p—1>p/ |ul? /
alp, T — de + ( —— ——dr < VulPdz,
( )/Ri wn (@ +a3)7/? p RY Tn R Ve

n n
+ +

where p > 1, 7 > 0, a(p,7) is a positive constant and u € Cj°(R"}). It is worth pointing out
that inequality (1.2) and their variants were studied by a great number of authors, most of
them focused on the context of C§°(R), which is motivated mainly on the study of Dirichlet
boundary value problems. However, motivated by study of elliptic problems involving nonlinear
boundary conditions, it is quite natural to ask if similar results can by forwarded to inequality
(1.2) and its variants in the setting of C§°(R"™), which is used in many papers, see for instance
[16,32] and references therein. In the last section of this chapter, we comment some applications
of our embedding results for the study of some nonlinear elliptic problems involving nonlinear

boundary conditions.

With the aid Theorem 1.1.1, we can now prove the embedding of £ into weighted Lebesgue

spaces, as it is showed in the next theorem.

Theorem 1.1.3. Assume 1 < p < n. Then the weighted Sobolev embedding

EWP s L1 (Ri,m) , Vp<qg<p':= nrfjp, (1.4)
and the Sobolev trace embedding
EYP ey LYR™), Vp<qg<p, = (2__2]7 (1.5)
are continuous.
In the borderline case p = n, we establish the following result:
Theorem 1.1.4. Assume p =n. Then the weighted Sobolev embedding
EVM s 9 (R’}r,;) , Vn<g< oo, (1.6)
(14 z,)"
and the Sobolev trace embedding
EYm s LYR™Y), ¥Yn<g<oo (1.7)

are continuous.

12



1. A Hardy-Sobolev type inequality and its consequences

Remark 1.1.5. The embeddings (1.6) and (1.7) are not valid if ¢ = oo. In fact, considering
the function u(x’,x,) = (1 + 2,)"In (1 —In|z|)) if (2/,2,) € Bf and zero otherwise, where
Bf :={z = (2/,x,) € RY; |z] < 1}, one can see that u € EY" but uw & L= (R, (14 2,)™) as
well as u & L>®(R"1).

Remark 1.1.6. Since (14 x,)" < (1 + |z|)", by Theorem 1.1.1 with p =n, one has

juf” ( n ) [ [ ,
———dx < Vul"dx + ul"dz" |, Vue Cy°(R").
| < (5 [ ward [ (R

n
+

Furthermore, from the embedding (1.6) we have the continuous embedding

1

EMr e LI (R”, —
U fa|)

), Vn <q<oo. (1.8)
which is not valid if ¢ = co. In fact, considering the function u(z', z,) = (1+|z|)"In (1 — In |z|))
if (¢/,2,) € Bf and zero otherwise, one can see that u € EX" but, u ¢ L (R, (1 + |z|)™).

In view of Remarks 1.1.5 and 1.1.6, it is natural to study embedding from £'" into Orlicz
space. To this end, we introduce a new weighted Sobolev space, which plays a central role in

the proof of our Trudinger-Moser type inequality.

Definition 1.1.7. Consider the weight function b(x) := (1+|x|)~". We define the space £, as
the completion of C3°(R™) with respect to the norm

lullg = [ (V" + blaful) .
+

We establish the following embedding result involving Sbl .
Theorem 1.1.8. For any n < q < oo, the embedding
g — L (R, b(x)) (1.9)
15 continuous. Furthermore, the same example in Remark 1.1.6 shows that this embedding s
false if g = oc.

Considering the Young function defined by
, n—2 O./k
W, (s) = el — Z —|s|"*, s eR, (1.10)

k=0

where n’ ;= n/(n — 1) and according to (1.9), the following Trudinger-Moser type inequality in

the setting of ™ is natural.

13



1. A Hardy-Sobolev type inequality and its consequences

Theorem 1.1.9. For any a > 0 we have that V. (u) € L'(R",b(x)). Moreover, there exists a

constant ag > 0, independent of u € 5,)1’", such that

L(a) = sup / b(z)W, (u)dr < o0, (1.11)
{uet) ™ Jull <1} /RY
for any 0 < a < ay.

As a consequence of Theorem 1.1.9, the following Trudinger-Moser type inequality in the
setting of £-™ holds.

Corollary 1.1.10. For any u € "™ and o > 0, we have that ¥, (u) € L*(R",b(x)). Moreover,

l(a) := sup /n b(z)W, (u)dr < o0,

{ue€tm: Jlullg1,, <1} JR
for any 0 < a < ap/ (2n/(n —1))".
In the trace sense, we have the following Trudinger-Moser type inequality:
Corollary 1.1.11. For any u € EY" and o > 0, we have that ¥, (u(-,0)) € LY(R"1 b(2',0)).

Moreover,

T(a) := sup / b(z',0)V, (u(2,0))da’ < +oo,
Rn—1

{uegl,n: ”u”gl,'ngl}
for any 0 < a < ((n—1)/n)* ao/ (2n/(n —1))"".

Remark 1.1.12. [t is worthwhile to mention here, that we believe that the natural weight func-
tion to consider in the Trudinger-Moser inequalities above must be a(x) = (1 +z,)~". However,
we were not able to consider this situation in our approach. As usual, we can not apply Schwarz
symmetrization arquments as considered in many papers (see for instance [39] and references
therein).

Finally, we consider the case p > n that corresponds to the Morrey’s case.

Theorem 1.1.13. Assume n < p < oo and a(x) := (1 + z,)"P. Then the following weighted
Sobolev embedding holds
EVP — L®(RY, a(x)). (1.12)

Furthermore, for all u € EYF there exists Co = Co(n,p) > 0 such that for a.e. z,y € R"
afw)u(z) - aly)u(y)| < Cole =yl (IIVullzoen) + lulls@rac) (1.13)

where vy =1 —n/p.

This chapter is organized as follows. In Section 1.2, we prove Theorem 1.1.1 and Corol-
lary 1.1.2. The Sobolev embedding, for 1 < p < n, into Lebesgue spaces are proved in Sections 1.3
and 1.4. In Section 1.5, we prove the Trudinger-Moser inequalities established in Theorem 1.1.9

and Corollaries 1.1.10 and 1.1.11. Finally, in Section 1.6 we prove Theorem 1.1.13.
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1. A Hardy-Sobolev type inequality and its consequences

1.2 A Hardy-Sobolev type inequality

This section is devoted to the proof of Theorem 1.1.1 which is the main step in the proof
of our embedding results. The proof is inspired in the paper [23]|, where the authors obtain a

similar result for function in C§°(R’"). We also included the proof of Corollary 1.1.2.

Proof of Theorem 1.1.1. Let v € C3(R") and o € R with 0 # —1. Using integration by parts,

we obtain

(o—i—l)/n(l—l—xn)"]v]dx:/R 0 (1 + 2,)7 ™) |v|da

+ ¥ Oy,

:_/ (1—|—:1:n)"+1(|v])xndx—/ vlda,
R

1 Rn—1
where above we used that n = (0/, —1) is the outwards normal to R"~!. Thus, we get

lo+ 1] [ (14 x,)7|v|dx < /

(1+xn)"+1|VU|d:L'+/ lv|dz’.
R? R

n n—1
i R

Applying this inequality with v = |ul?, p > 1 and u € C{°(R™) we infer that

041 (1—|—xn)”]u|pd:c§/

RY R

(14 2,)  plulPH Vu|dz + / lulPda’. (1.14)

n n—1
n R

Now, for any € > 0 and a,b > 0 we can use the elementary inequality

w= (o70) () < 2D oy L (L)

e r

to derive the inequality

',

Choosing ¢ = p(o+1)/(p — 1), that is, 0 = —p and combining inequalities (1.14) and (1.15),

up I [ [ ,
dr < VulPdr + ulPdz’ |,
/M Gy ™ = o =) gy VT

for any 0 < & < 1. Taking into account that the function g(e) = 1/(e?~! — &P) with 0 < e < 1

(1 + @) Hul ™ [Vulde < (p— 1)5/

n
R%

(e+Dp p 1 P
(1+z,) 71 |ufPdz + o /. [VulPde. (1.15)
+

n
+

one has

n
+

achieves its minimum at ey = (p — 1)/p and g(ey) = p*/(p — 1)?~! we conclude that

Jul” p Y :
————dr < [ —— \Vu|Pdx + |uPdz" | ,
e (1+20)P p—1 R™ Rn—1

which completes the proof. O]
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1. A Hardy-Sobolev type inequality and its consequences

Proof of Corollary 1.1.2. Let u € C§°(R™). By Theorem 1.1.1 we have ||ul|g1» < Cy||u||grs. To
prove the reverse inequality, using the Young inequality with the conjugate exponents p and

p/(p — 1), we observe that

+oo a |u|p
/ P — _ d
o == [ (A as,
T ulP V| 0 Jufp
< ——dz, —dz,
_p/(; <1+l‘n)p € +p/0 (1+xn)p+1 X

™ valrd o1y [,
< (20— — L _dx,,
_/0 \VulPdz, + (2p )/0 Tr oy T

where above we used that 1/(1 + z,,)P™ < 1/(1 + z,,)?. Integrating this inequality we obtain

|ul”
lu(z, 0)Pda’ < / VulPde + (2p — 1)/ g
/]R"—l R™ rr (1+25)?
Thus,
fullt, = [ IVaPds+ [t o)pas
R? Rn—1
jul”
< 2/ VulPdx + (2p — 1)/ ————dzx
R" [Vl e (1+20)P
< max{2, 2p — 1}H|uflf,
and the proof is complete. O

1.3 Embedding into Lebesgue spaces (1 < p < n)

In this section, we prove Theorem 1.1.3. To this end, we first establish a density result in
the context of the Sobolev space £, which is a consequence of Theorem 1.1.1. Hereafter in
this chapter, Bxr denotes the ball of center zero and radius R > 0 in R", B} := Bz N R,
(Bgr)¢ denotes R™ \ Bg, the complement of the set Br C R", and (B};)® denotes R \ Bj; the
complement of the set B}, C R".

Lemma 1.3.1. Let n > 2. Then the set of restrictions to R} of functions in C§°(R") is dense

in EVP.

Proof. We start by proving that the Sobolev space W'P(R") is dense in EMF. In fact, let R > 0
and consider a smooth function pg : R®™ — R defined by

1, |(@,2,)|<R
0, |(«,2z,)]>R+1,

QOR(*%I» xn) = {

16



1. A Hardy-Sobolev type inequality and its consequences

0 <¢r <1and|Vpg| <1/R. Given u € £ we can see that ur = upr € WH(R") and

lu—ugl?:, = / + |Vu — Vug|Pdx "‘/ u(l — pr)[Pda’
)c

(Bg lz’'|>R

:oR(1)+2p/ VugplPdz + on(1),
(Bh)e

Br

where og(1) — 0 denotes a quantity that goes to zero as R — o0o. Using straightforward

calculations we obtain

/(B+) |Vug|Pde < C </(B+) \Vu|pg0%dx—|—/(3+) \u!”lVng]pda:)
R R

R
1
C </ |Vu|Pdx + —/ ]u\pdx)
(Bh)e B Jaf e

C
<onl)+ 35 [ lulds,

R,R+1

IN

where A% 5oy = {(2',2,) €RY : R < (2, 2,)] < R+ 1}. We claim that

1

P | A+
R AR Rt

|u|Pdx = og(1). (1.16)

Indeed, by the Friedrichs inequality there exists C'; > 0 satisfying the inequality

/ [v|Pdx < C4 / ]Vv|pdx+/ lv|Pdx |,
At At Tr,Rt1

R,R+1 R,R+1

where I'g 11 = {(2/,0); R < |(2/,0)| < R+ 1}. Choosing v(z) = u(Rx) in this inequality and

performing a change of variable we obtain

1 1
= P P Pt | —
7 /. lulPde < C4 </+ |VulPdz + o1 /Rnl |v] dx) = or(1)

R,R+1 AR Rt1

as claimed in (1.16). Now fixed v € £ and ¢ > 0, by the first step there exists u; € WP(R")
such that
||U—U1||gl,p <e. (117)

On the other hand, taking into account that C§°(R™) is dense in W'P(R"}) (see [5, Theorem
3.18]), there exists v € C§°(R") such that [lu; — v[|lwie@n) < €. Since uy —v € WH(RY) —
e we get |lup — vllgrr < Cllur — vflwrp@n) < Ce, which in combination with (1.17) imply

lu —vl|[gre < ||lu—ui|gre + ||ur — v||g1» < €+ Ce, and this completes the proof. O

As an immediate consequence of Lemma 1.3.1, we have the following result.
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1. A Hardy-Sobolev type inequality and its consequences

Corollary 1.3.2. Define EY? as the completion of C3°(R™) with respect to the norm
1/p
]| = / VupPdz +/ wpdz’ |
R Rn—1
Then, EYP = ELp.
Now we are ready to prove Theorem 1.1.3.

Proof of Theorem 1.1.3. To prove the embedding (1.4), we first recall that for 1 < p < n it
follows from the Gagliardo-Nirenberg-Sobolev inequality and a suitable reflexion argument (see
[43, Lemma 2.10]) that there exists Cy = Cy(n, p) such that

(/

This in combination with the fact that (1 + z,)™ < 1 and Lemma 1.3.1 imply that &7 —
LP"(R7, (1 + 2,)7?). This together with Theorem 1.1.1 and an interpolation argument imply
that EW7 — LIY(R7Y, (1 + x,)7P) for all ¢ € [p,p*], as stated in (1.4). Now we will prove the

(n—p)/n
]u\p*dx> < CO/ |VulPdz, Yu e Cy(R™). (1.18)
R

n n
+ +

embedding (1.5). From the trace inequality (see [20])

(Lo

we see that EMP < LP+(R™1). On the other hand, by definition we have £'* — LP(R"1).
Thus, by an interpolation argument we obtain that £7 < LI(R"~!) for any ¢ € [p, p.] and this

(n—p)/(n—1)
p*daz’) < CO/ \VulPdz, Yue CHRM, (1.19)
RY

completes the proof of Theorem 1.1.3. n

1.4 Embedding into Lebesgue spaces (p = n)

In this section we present the proof of Theorems 1.1.4 and 1.1.8.

Proof of Theorem 1.1.4. First we prove the embedding (1.6). For that, from estimate (1.18)

with p = 1 we have
(/

(n—1)/n
|U|n"1dx> < CO/ |Vo|dz, Vv e CHR"). (1.20)
Rn

n
+ +
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1. A Hardy-Sobolev type inequality and its consequences

Applying (1.20) with v = (1 + z,,)*|u|™ for any u € C§°(R") we infer that

(/

(n=1)/n
1(1+ xn)o‘|u|”|nn1d:c> < CO/ |l (1 + ) Hu|"dx
¥ R%
+ C’On/ (1 + 2,)|u|" | Vu|dz.
R%
Choosing @« = —(n — 1) and using the Young inequality with the conjugate exponents n and

n/(n — 1), ones has

| ‘n2 (n=1)/n | |
u|n—1 un
B e R <C — g +/ Vul'dz |,
/Ri @+ B </ TR AL )

where C depends only on n. This in combination with Theorem 1.1.1 and Lemma 1.3.1 imply
n2

that EV" — LaT(R%, (1 +2,)™"). If n < ¢ < n?/(n— 1), by an interpolation argument, there

exists 0 < # < 1 such that

< Jlull; ™, < Clluflern.
) "R, ) L(nfn (RY, )

“uHLQ(R",

1
(It+zn)™

In particular, using that n < n+1 < n?/(n — 1), one has " < L"! (R, (1 + x,)™) . On the
other hand, applying again (1.20) with v = (1 + z,,)~("~V|u|/"*! and using the Young inequality

with the conjugate exponents n and n/(n — 1) we get

= ! ul" [Vl

u| n—-1 u u u

g <n-1C | ————de+(n+1 C/ LR D e
|u|n+1

7L2
M |
gn—1c/ Y g+ (n+1)C / T ey | | Valrde |

which implies that £V — L%(R’}r, (1 +z,)™") and by using an interpolation argument we
get EV" — LURT, (1 + x,)™") for any n < ¢ < n(n+1)/(n—1). Reiterating this argument
with k =n+2,n+3,..., one has EM" — L%(RTF, (1+2,)™™). Now, given ¢ € [n,c0), one can
choose k£ > n such that n < g < nk/(n — 1) and once again using an interpolation argument we
get

HUHL‘Z(R”,(l—i-rn)_”) < HuH?L"(Ri,(l—i-mn)*")HUH;;ijf(Rn (L)) < Cllullgrn,
+7 n

which proves the embedding (1.6). Now we will prove the trace embedding (1.7). For that, by
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1. A Hardy-Sobolev type inequality and its consequences

Lemma 1.3.1 we may assume that u € C§°(R"™). Fixed ¢ > n we have

+00 a |U|q
! q —
lu(z’, 0)| /0 py <<1 n xn)") dzy,

T w97Vl o ul?
< - I el
< q/o ATz dxn+n/0 § +xn)”+1dxn'

Integrating this inequality and using the Holder inequality together with the fact that (1 +

z,)" ' < 1 we infer that
’u‘(q_l)# (n—1)/n 1/n ’ulq
/ lu(2’,0)|%dz" < q / ———dx / \Vu|"dz +n/ ————du.
Rn-1 rr (L4 z0)" R% e (1+2,)"

Since n(q — 1)/(n — 1) > n, by the embedding (1.6) we get HquLq(Rn,l) < OlHUHZ‘I}IHUHgl,n +
Col|ul[¢1,., which completes the proof of Theorem 1.1.4. O

Now we present the proof of Theorem 1.1.8.

Proof of Theorem 1.1.8. Applying (1.20) with v = (1 + |x])*|u|", we get

(/.

+

(n—1)/n
n x
|<1+rx\>“ru|"rn—1dx) <Co [ ol + fa luf o
R

+ C’on/ (1 + 2w [ Vu|d.

R%

n
+

Choosing @« = —(n — 1) and using the Young inequality with the conjugate exponents n and
n/(n — 1) we obtain

( /R b@)]mﬁldl«) o <0 ( /R

where C; depends only on n. This implies that & < LI(R?, b(x)) for any n < ¢ <

n
+

b(:c)]u\”d:v—l—/ \Vu\"dx),
R%

n
+

n?/(n —1). In particular, one has & < L (R, b(x)) . Applying again (1.20) with v =
(1+|2])~=Y|u|"*! and using the Young inequality with the conjugate exponents n and n/(n—1)

we get

(n=1)/n
n(n+1) € |u’n|vu|
b(x)|u| =1 dx <|(n-—-1 C/ b(x)|u|" T —dx + n+1C’/ ——dx
(4 (@)]ul ) ( )| s (2)]ul . ( ) Ot )

i T T
< (Y /
R

where C5 depends only on n. Hence by an interpolation argument Sbl " LR, b(x)), for any
n < q<n(n+1)/(n—1). Reiterating this argument with k =n+2,n+3,..., one has "™

nk

L»-1(R",b(z)). Now, given ¢ € [n,00), one can choose k > n such that n < ¢ < nk/(n —1)

b(x)\u]”“dx%—/ b(x)\u]nn—ldx—i-/ |Vu]”dx>.
n 7y Ry
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1. A Hardy-Sobolev type inequality and its consequences

and once again by an interpolation argument we get 5b1 ey L%(Ri, b(x)) which proves the

embedding (1.9) and this completes the proof. O

1.5 Trudinger-Moser inequalities

In this section, we present the proof of Theorem 1.1.9 and Corollary 1.1.10. To prove The-
orem 1.1.9 we will combine the ideas of Kufner-Opic [30] and Yang-Zhu [47|. First we recall a

basic fact.

1

Lemma 1.5.1 ([47]). Let o, := nw,’~ |, where wy,_1 is the measure of the unit sphere in R"™. For

any R > 0, there exists a constant Co = Co(n) > 0 such that for anyy € R™ andv € Wy (Bg(y))
with ||Vl Ln(Bry) < 1 we have

/ U, (v)dx < CoR".
Br(y)

Our strategy to prove Theorem 1.1.9 is consider for u € 6'b1 "™ its extension to the whole space
RTL

~ u(z, z,), T, >0
w(z, z,) = (1.21)
u(z, —x,),  x, <O0.

For any R > 0 we can split the integral in (1.11) as follows

'),

Now we will estimate the first integral on the right hand side of (1.22).

b(2) W, (u)dz = /

Bgr

b(2) W, (@) dz + / b(2) T, (7)d. (1.22)

T (Br)©

Lemma 1.5.2. Let u € £ be such that ||U/”g;n <1 and R > 1. Then there are a; > 0 and
Co = Co(R) > 0 such that

/ b(@) W, (@)dz < Co,

for any 0 < a < a;.

Proof. Consider a cut-off function ¢ € C§°(Byg) such that 0 < ¢ <1 and
: C .
¢=1in Bg and |Vyp|< 3 i Bsr

for some C' > 0. Note that p@ € W, (Bag) and by straightforward calculation we check that
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1. A Hardy-Sobolev type inequality and its consequences

[ Wi <2 ( | telvara+ | |w|"rm"dx>
Bsor Bar Baogr
n—1 —n On —n
<2 |Va|"dz + — |u|"dx
Bap Rr Bop

<o (/ |Vay"dx+cnw/ b(a:)m\”dac),
BQR R B2R

/B 1V (pm)["dz < C, / (Val" + b(z)al") d,

Bar

and hence,

where C := 2" ' max{1, (3C)"}. Note that v := ou//2C; € Wy (Byg) and

. IV () |75 1 i .
IVl En (g, = Ber) < —/ (IVa|™ + b(z)|a|”) de < 1.

Since b(x) <1, in view of Lemma 1.5.1 and the fact that W,(cs) = V¥, (s), for all ¢ € R, we

conclude that
/ D)W () da: < / W, (i) dz < / U (0)dr < Co(2R)",
B B By (€0
R R 2R

fo<a<a:= ozn/(QCl)ﬁ and this completes the proof of Lemma 1.5.2. O
Now we proceed to estimate the second integral on the right hand side of (1.22).

Lemma 1.5.3. Let u € & be such that ||U||gb1n < 1. Then there are ag > 0 and Cy > 0
independent of u € £ such that

/ b(x)V,(u)dr < Cy,

3r

foranyr>1and 0 < a < as.

Proof. Given r > 1 and o > r we define the annuli
A ={ze B |z|<o}={zeR":r <|z|] <o}

A trick adaption of Besicovitch covering lemma [26] (see [18, estimate (4.8)]) shows that there

exist a sequence of points {zy}r € A7 and a universal constant § > 0 such that

A‘l’QLJU,i/2 and ZXUk(az)gﬁ, VzeR",
k k

where U ;/ .= B <xk, %) and xy, denotes the function characteristic of Uy, := B (:L’k, %) Let

u € £ be such that ||U,||gbln < 1. In order to estimate the integral of z in A, wefix 1 <r <o
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1. A Hardy-Sobolev type inequality and its consequences

and we follow as in [30] introducing the set of indices

Ky = {keN: U;/“"mBgﬂé@}.

It is easy to see that, if Uy N BS, # @, then Uy, C BS. Moreover, since 1 < r < 3r, we have that

A3, C A7. Now using and the definition of K, , we get

A, |Juc U uieBicB

k€K, o k€K, o

and hence

/A b(2) Vo (u)dr < ) /U ;/Qb(x)\lfa(ﬁ)da;.

o
3r keK'r,a

Next, we estimate the integral on the right hand side of (1.24). Since
2 4
§|mk| <lz| < §|xk|, Ve Uy,

we have
1 1

< b(z) < :
(14 (4/3)]x])" (14 (2/3)]x])"
For any k € K, , fixed, in view of (1.25) we get

) 1 )
/U;ﬂ )Vl < /U;/Z , (3)da.

Va e Uk

(1.23)

(1.24)

(1.25)

(1.26)

Now, consider a cut-off function ¢ € C§°(Uy) such that 0 < ¢, < 1 in Uy, ¢, = 1 in U,im
and |V < C/|zx| in Uy for some constant C' > 0. Then we see that o, € Wy (Uy) and by

straightforward computation we have

V(pn)|"dr < 271 ( oul" V" dz + |wk|"|u|"dx)
Uk Uk

§2”1< \Va|"dz + ¢ /|a|"dx)
U |‘rk’n U

Uk

§2"‘1< \vm”dﬁcn(l*(‘l/?’)'“')n/ b(x)|ﬂ]"dx).
Us Uk

||

Recalling that k € K, ,, in view of (1.23), we have that z;, € B¢ and consequently |zx| > r > 1.

This and the above estimate imply that

V(ea)"dz < Cs / (IVal" + b(a)al") de,

Uy, Uy,

where Cs := 2" max{1, (7C'/3)"}. Thus, the function vy, := @i/ y/2Cs € W, (Uy) and

IVeorulinw,) 1

VRl ) = e < / (IVal" + b(a)lal") d < 1.
k

205 -2
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1. A Hardy-Sobolev type inequality and its consequences

Applying Lemma 1.5.1 with Bg(y) = U, v = v and using the fact that Uo(cs) = U, (s), for
all ¢ € R, we obtain

T |2k \" .

for any 0 < o < g 1= an/(QCg)ﬁ and hence

/ W, (@)dz < OO'%’“'/ (Val" + b(x)|a]") dz.
Ué/2 3 2 Ug

This together with estimates (1.24), (1.26) and the fact that s"/(1+c¢s)" < 1/c" for any ¢, s > 0
imply that

i ﬁ i u|™ z)|u|™) dx
| v < £ k; eSO /Uk<|v 4 b(a)lal") d

C o .
<o 2 [ (A b)) e,

keKT,D'

where the last inequality we used (1.23). In view of the Besicovitch covering lemma we obtain

_ Cob _in i
/A b(x)V,(u)dx < s /Bg (IVal™ + b(z)|u|") dz.

o
3r

Taking the limit as ¢ — 400 we get

J

for any 0 < a < ag := an/(QCg)ﬁ and this completes the proof of Lemma 1.5.3. O

b(2) W, () dw < ce/ (V" + b(z)|al”) de,

Bg

c
3r

Finalizing the proof of Theorem 1.1.9. The proof follows directly from (1.22), Lemmas 1.5.2 and
Lemma 1.5.3 by choosing R = 3r and ay = min{ay, as}. O

Proof of Corollary 1.1.10. By Remark 1.1.6 we have that ||u||5;n < 2n/(n — 1)|jul|grn, for all
u € &Y™, This together with the fact that U, (cs) = ¥ (s), for all ¢ € R, imply that

u
b(x)W ! dzx,
/R (x) 2n/(n—1))" o <||U||gb1">

for all u € Y™ with |lulgr.n < 1. Thus, the result follows from Theorem 1.1.9. O

ale|™’

D)W, (u)dz < /

n n
+ R%

To prove Corollary 1.1.11, we need establish some auxiliary results. First we observe that we
can write the function ¥,(s) defined in (1.10) as

n—1

U, (s) = Pu(s) +

sl

(n—1)
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1. A Hardy-Sobolev type inequality and its consequences

where
n—1

! k /
Bo(s) = eFI" =3 %|s|nk, sER.
k=0

The crucial point for the proof of Corollary 1.1.11 is the following result.

Lemma 1.5.4. For any o > 0 and u € EY", we have

/R b, 0)@a(u(e’, 0))ds’ < an < /R

(!

Proof. By Lemma 1.3.1 we may assume that v € C§°(R"). Straightforward computation shows
that @ (s) = an’|s|” ~1W,(s). Thus,

(n—1)/n
b(x)|u| =12 \Ifn/a(u)dx>
n

n (1.27)
|Vu]”dx> +n/R b(x)WU,(u)de.

n n
+ +

b2/, 0) Do (u(a’, 0)) = — /0 N ain (b(2)®u(w) dz,
= —an’ = ) |u|” T, (W), dz, +n T Ga(w)n x
_ /O b(@) |l =W (), d + /0 T T (1.28)

+o0 +o0
< om’/ b(a) [u)” W, (u) | Vu|dz, + n/ b(z)W, (u)dz,.
0 0

Integrating this inequality on R"~! and using Holder’s estimates we deduce

/R b, 0)@a (u(e’, 0)da’ < an ( /R

(!

/ /

Now using that (b(z))” < b(z) and (¥,(s))" < U,u(s) (see [45, Lemma 2.1|) we finish the
proof. O]

) (n—1)/n
(b(rc))”lluw—”z(‘l’a(w)”'dw)

n
+

1/n
\Vu|”dm> +n/ b(z)V, (u)d.
R

n n
+ +

Proof of Corollary 1.1.11. Since

n—1

[ 0w e’ = [ b 0wl 0o+ L [ b 0fute 0,

Rn—1

by Lemma 1.5.4 and the trace embedding (1.7) it is sufficient to prove that

sup / b(x)|ul )2 U,o(u)dr < 400, (1.29)

{ueetm:ull <1} JR

for any 0 < a < ((n—1)/n)*ay/ (2n/(n —1))" where g > 0 is the constant obtained in
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1. A Hardy-Sobolev type inequality and its consequences

Theorem 1.1.9. To this end, by Hélder’s estimates we see that

) 1/n 1/n/
/R b(z) |2 W, (u)da g( /R b(x)|uy<n”1>2da;> ( /R b(a:)(\I/n/a(u))”/dx> .

n
Now using that (¥,0(s))" < ¥(24(s) (see [45, Lemma 2.1]) by Proposition 1.1.8 we get

J

This together with Corollary 1.1.10 imply that (1.29) holds. The proof is complete. O

n
+

1/n’
b(:c)|u|<nf"1r2 Vo (w)de < Clul|grn (/ b(x)ﬁl(n/)za(u)dx) .
R

n n
+ +

1.6 Morrey-Sobolev type embedding (p > n)

In this section we prove Theorem 1.1.13. To this end, we fix z = (0', 29) € R} and let @ C R"
be an open cube centered at the origin 0 containing z whose sides-of length r-are parallel to the

coordinate axes. Setting
1

— a
QF| S+

where QT := Q@ NR" and a(z) := (1 + z,) 7P, we have the following result.

u =

(@)u(z)dz,

Lemma 1.6.1. There exists Cy = Co(p) > 0 such that
|?_L — a(:v)u(x)\ < 007"1_% (HquLp(Q+) + Hu|]Lp(Q+7a(y))) y Ve Q+.

Proof. Note that for any x € Q" we have

a(x)u(z) —a(2)u(z) = /0 %[a(tx + (1 —t)2)u(te + (1 —t)z)]dt.

Since
u(te + (1 —t)2)(x, — 20)

(14 (tzy, + (1 —t)2g))PH!
Vu(te + (1 —1t)z) - (z — 2)
(1+ (tzy + (1 —t)20))P

and taking into account that a(x) < 1, for x € QT, it follows that

d
E[a(tm + (1 =t)z)ute+ (1 —t)z)] = —p

la(x)u(z) — a(2)u(z)| < pr/o a(te + (1 —t)2)|u(te + (1 —t)z)|dt

1 n
—l—r/ D fug, (tz + (1 — t)2)|dt.
0 =1
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1. A Hardy-Sobolev type inequality and its consequences

Integrating this inequality on Q* with respect to the variable x we obtain

|ﬂ - CL(Z)U(Z)l = |Q+|

+ @/ﬁ/ Z]uxi(t:c—l— (1— t)2)|dtdz

u(y)|
. —dt
_7”"1//@+ 1+ynptn //QJrZ‘UZ )

Since tQ1 C QT for t € (0,1), from Holders estimate we get

/ / (tx + (1 —t)2)|u(te + (1 — t)z|dtdx
Q+

n
/

u(y)] 44
dy < o |tQT]7 < C t)»
/Q+ Aty = [ull Lo+ aup PR < Collull Lot .at) (1) 7

n
o’

[ wtlan = ([t Pis) Q71 < Call Ve o)
tQ+ Qt
This immediately implies that for all p > n,

@ — a(z)u(z)| < Cor'™ v ([Vull @+ + lull o+ o) -

By translation, this inequality remains true for all cubes ) whose sides-of length r-are parallel

to the coordinate axes and this completes the proof. O

Finalizing the proof of Theorem 1.1.13. First we shall prove (1.12). Let u € C}(R"), = € R
and Q C R"™ be an open cube centered at the 0 containing x. In view of Lemma 1.6.1 and

Theorem 1.1.1 we obtain
la(z)u(z)| < |a] + Cor'™» (IVull Lo+ + lullzr@+.aw))
< Cs/ a(x)|uldz + Cor' v (IIVullLr@+) + lull e+ o))
Q+
1—n
< CsHUHLp(Q+,a(x)) + Cor v (”VUHLP(Qﬂ + HUHLP(Q+,a(y))) < CHU\|£W(R1)~

Therefore, [lul[zee®n o)) < Cllullerr@n), as stated in (1.12). Next we will prove the estimate
(1.13). To do this, we observe that given any two points z,y € R’} there exists a cube @ with
side r = 2|z — y| such that x,y € Q. Since z,y € Q1 form Lemma 1.6.1 we infer that

a@)u(z) — aly)uly)] < la(z)u(z) - @l + i — aly)uy)
< Golz = yl' % (IVullzsy) + lullesey )

for all u € C}(R™), as stated in (1.13) and this finishes the proof. O
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1. A Hardy-Sobolev type inequality and its consequences

1.7 Final remarks and comments

As it is well known, Sobolev embeddings turn out to be efficient tools for study nonlinear
boundary value problems. In the sequel, we comment a few further examples for which our main
theorem can be applied.

A remarkable class of nonlinear equations appears in the study of the best constant of certain
Sobolev trace embeddings in bounded domain is the limit problem (see for instance 1] and

references therein):

{ —Au = 0, in R?, P
1

ou _ q—2 n
Set+u = |u[Pu, on  JRY,

where v denotes the unit outer normal to the boundary R%, 2 < ¢ < 2, :=2(n—1)/(n—2) if
n>3and ¢ >2ifn=2.

Another illustrative example we bring up here concerns the weighted eigenvalue problem:

{ —Au = Xa(z)u, in R, (Py)
2

%—’—U = 0, on OR".

2

where n > 2, X is a real parameter and a(z) < (1 4+ x,)"%. Let u be an eigenfunction with

corresponding eigenvalue . As a consequence of Theorem 1.1.1, we get

J

|Vu|2dx—|—/ lu|*dz’ = )\/ a(x)u?
Rn-1 R

n
2
gA/ “—2 < M / \vu|2dx+/ ul*da’
R (14 ) R Rr—1

which implies A > 1/4. Therefore, all eigenvalues of the problem (P;) are greater than or equal

n
+
n
+

to 1/4. This eigenvalue problem has been studied in the paper [6] with more general elliptic
operator perturbed by a potential, and with Robin boundary conditions. We also quote here that
this eigenvalue problem is related with the Sobolev trace inequality see [10]. We also mention
the works [13,36,37] where the authors studied the eigenvalue problem with Robin boundary
conditions in a bounded domain.

Finally, we mention that based on the theorems proved in the present chapter one can study
a wide class of quasilinear elliptic problems. Precisely, if 1 < p < n and a(z) = (1 + z,)”* with

a > p then with the aid of Theorems 1.1.3 and 1.1.4 we can study the problem:

{ Ay = a(z)f(u), i RY (Ps)

[VulP=288 + [u~u = g(u), on  ORY,

when f(u) ~ |u|” withp <7 < p*:=np/(n—p) (p <r < oo if p=mn) and g(u) ~ |u|? with
p<r<p.:=m—1p/(n—p) (p<q<ocif p=n). Furthermore, in the limit case p =n = 2
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1. A Hardy-Sobolev type inequality and its consequences

(to simplify), we can study the problem:

—Au = a(z)f(u), in RZ, )
outu = b(a')g(u), on IR, !

when f and g have growth in the Trudinger-Moser sense, that is, f(u) ~ e and g(u) ~ ePov®

for some ayg, By > 0, at infinity and a(x), b(z’) satisfying suitable conditions.
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Chapter 2

An indefinite quasilinear elliptic problem

with weights in anisotropic spaces

In this chapter we present the results of the paper [3], where we investigate existence, nonex-
istence and multiplicity of solutions for a class of indefinite quasilinear elliptic problems in the
upper half-space involving weights in anisotropic Lebesgue spaces. One of our basic tools con-
sists in a Hardy type inequality proved in [3] that allows us to establish Sobolev embeddings

into Lebesgue spaces with weights in anisotropic Lebesgue spaces.

2.1 Introduction and main results

Consider the Euclidean upper half-space R} = {z = (2/,z,) € R" : z, > 0} with n > 2 and
denote by R"! its boundary. This chapter is concerned with the existence, nonexistence and

multiplicity of solutions for the indefinite quasilinear elliptic problem:

{ —div(|VulP2Vu) = Aa(z)|u|??u — b(z)|u|"u in R}, Py
py

IVulP?Vu - v+ [ufP2u =0 on R"1

where v denotes the unit outward normal on the boundary, 1 < p < n, A is a real parameter and
the weight functions a(x) and b(x) satisfy some suitable conditions that we will describe later
on. Our main interest is to analyze the interplay between the powers ¢ and r. Thus, we will

consider two cases:
Case I: r>qand1<p§q§p*::%if1<p<n(p*::mifp:n);
CaseIl: 1<p<r<gqg<p'

The model problem (P)) arises in the study of nonlinear diffusion equations, in particular, in
the mathematical modeling of non-Newtonian fluids, see [34]. For a Physics background related
to this problem, we refer the reader to [19] and references therein.

The existence, nonexistence and multiplicity of solutions for quasilinear elliptic problems of

the form
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2. An indefinite quasilinear elliptic problem with weights in anisotropic spaces

—div(|VuP™2Vu) = f(z,u), in Q,
IVu|P=2Vu - v+ h(z)|uf?u = 0, on T,

where (2 C R” is an unbounded domain, I" denotes the boundary of 2 and the functions h, f
satisfy some growth conditions, have been investigated by many authors, see for instance [12,14,
16,25,32-35] and references therein. In many of these papers, a relevant Sobolev type inequality
proved by Pfliiger in [34] has played an important role in their variational approach. Precisely,

let 1 < p < n and assume that the weight function h(z) satisfies the hypothesis
1/C(1+ 2Pt <h(z) <C/(1+ 2P, ae x€Q,

for some C' > 0 and denote by C5°(€2) the space of C§°(R™)—functions restricted to 2. Defining
the weighted Sobolev space E as the completion of C§°(2) in the norm

H H </ ’V |pd / ‘U|p 4 )I/P
U||g 1= u|”ar + ———ax ,
" Q o (1+ [z])P

in [34], the author proved that || - || is an equivalent norm to (see [34, Lemma 2|)

1/p
Ml = ([ 19ur+ [ p@lapar)
Q o0

To this, the following Hardy type inequality was crucial:

/ﬂdx<0 (/ |Vu|pdx+/M|u|de) (2.1)
o L+ = " g r (14 [zf)r ’ '

for some Cy > 0. As pointed in [27], in contrast to the classical Hardy and Sobolev inequalities in
R™, the exact values of the constant Cj in inequality (2.1) is not known and their determinations
seem to be a challenging problem even when the domain €2 has special geometry such as, for
example, the half-space R” .

Here, we will prove a version of the Hardy type inequality (2.1) that includes p = n and this
inequality will allows us to consider weights like a(z) = (1+x,)~* for some o > n, which belongs
to an anisotropic Lebesgue space (for the definition of anisotropic Lebesgue spaces, see [5,9]).
Then, we set up some new Sobolev embeddings into weighted Lebesgue spaces with where the
weight belongs is in anisotropic Lebesgue spaces. We also quote that recent developments on
Hardy type inequalities in the half-space were addressed in the context of C§°(R") in [23,24,42].

Motivated by the works of Alama-Tarrantelo [7], Filippucci-Pucci-Radulescu [25], Lyberopou-
los [27], Perera [31] and Pfliiger [34], our main purpose in the present chapter is to use variational
techniques to investigate the existence, nonexistence and multiplicity of nontrivial weak solu-
tions for the problem (P,). We want to remark that the main features of this class of problems
is that we are facing an indefinite nonlinearity and the weight function a(z) is allowed to be in

anisotropic Lebesgue spaces.
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2. An indefinite quasilinear elliptic problem with weights in anisotropic spaces

We begin by considering the case r > ¢. To this end, we shall assume the following assump-

tions:

(Hy) a: R? — R is a nontrivial measurable function and there are constants o > n and ¢; > 0

such that
C1

0<a(r) < m,

n.
a.e. x€RY;

(Hy) b:R? — R is a positive continuous function satisfying

T

ar—=a
/ —dxr < 00.
re br—a

n
+

It is worthwhile mentioning that the hypothesis (Hs) appears in the paper [7].
Remark 2.1.1. Note that if a(x) satisfies (Hy) then the function b(x) = (1 + |x])? /(1 + 2,)¢
with 0 > n(r — q)/q satisfies the assumption (Hy). In fact, if 0 > n(r — q)/q we have

= 1 . o
/ a qqdmg/ C1 i( +:E ) eqngj:/ Leqdaj<oo
Ry b7 B (L 20) 77 (14 |z])7=a Ry (1+]a])7=

Under these hypotheses, our main result can be stated as follows.

Theorem 2.1.2. Let r > q and assume the hypotheses (Hy) — (Ha).

(1) If 1 < p < q < p*, there exists \* > 0 such that problem (P,) has only the trivial solution
for all A € (—oo, \*);

(i) If max{2,p} < q < p*, there exists X > 0 such that problem (Py) has at least a nontrivial
weak solution for all A € (X, 00). Furthermore, if p < q then (P5) has a nontrivial weak

solution;

(iii) Ifmax{2,p} < q < p*, there exists A > X such that problem (Py) has at least two nontrivial

weak solutions uy > uy for all X € (A, 00);

(iv) If 1 < p < q < p*, for any m € N there exists A, > 0 such that problem (P,) has at least

m pairs of nontrivial weak solutions for all A > A,,.

The proof of the existence in Theorem 2.1.2 is based on minimization techniques. To obtain
the second solution we will follow a truncation argument. The multiplicity result is obtained by

applying the symmetric mountain pass theorem.

Next, we deal with the case r < ¢. In order to prove the existence of solutions for problem

(Py), instead of hypotheses (H;) — (Hz), we will assume:
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2. An indefinite quasilinear elliptic problem with weights in anisotropic spaces

(Hy) a: R? — R is a nontrivial measurable function and there are c; > 0 and a > n such that

0<a(z) < =

————, ae. in z€eRY;
- (L + [a]) !

(Hy) b R"? — R is a measurable positive function.

In this case, our main result is stated as follows.
Theorem 2.1.3. Let 1 <p <r < q<p* and assume the hypotheses (ﬁl) — ([:TQ) Then
(i) the problem (Py) has no nontrivial weak solution for every A € (—oo,0];
(ii) the problem (Py) has an infinite number of nontrivial weak solutions for every A € (0,00).

The proof of Theorem 2.1.3 is obtained by performing a variational approach based on the
symmetric mountain pass theorem.

Hereafter in this chapter, Br denotes the ball of center zero and radius R > 0 in R”,
B} := BrNRY, (Bg)° denotes R™\ Bg, the complement of the set By C R™, and (Bj;)¢ denotes
R™ \ B}, the complement of the set B, C R".

This chapter is organized as follows. Section 2.2 contains the necessary preliminary results
on the weighted Sobolev embeddings needed in the sequel. In Section 2.3, we present the proof

of Theorem 2.1.2. Finally, in Section 2.4, we discuss the proof of Theorem 2.1.3.

2.2 Variational framework

In this section, in order to perform a variational approach we introduce our functional space
and its embeddings into weighted Lebesgue spaces. To this, denote by C§°(R) the space of
Cg°(R™)—functions restricted to R”. We define the weighted Sobolev space E as the completion
of C§°(R") with respect to the norm

fuf? 1/p
|lu|| == / <|Vu|p + —) de| .
R? (1 + )P

We have the following embedding result.

Lemma 2.2.1. Assume 1 < p < n. Then the weighted Sobolev embedding

1
E— LR}, —— Vp<qg<p* 2.2
< (+,<1+xn)p>, p<q<p, (2.2)
and the trace embedding
E < LR, Vp<qg<p., (2.3)

are continuous.
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2. An indefinite quasilinear elliptic problem with weights in anisotropic spaces

Proof. We first recall that for any 1 < p < n it follows from the Gagliardo-Nirenberg-Sobolev
inequality that there exists Cy = Cy(n,p) > 0 such that

(/

This in combination with the fact that (1 + z,)™ < 1 imply that E < L?" (R", (1 +z,)7?) .
By interpolation we see that F — L4 (Rﬁ, (1+ xn)_p) for all g € [p, p*], as stated in (2.2). Now
we will prove the embedding (2.3). For that, observe that for all u € C}(R") we have

0 |ul? T P V) oo fulp
! NP = — d n < —d n e d n.
lu(z’,0)] /0 o ((1+xn)7’> T _p/o o) T +p/0 7o) T

Integrating this inequality and using the Holder inequality together with the fact that (1 +

(n—p)/n
lu p*dx> < Cg/ |VulPdz, Yu e Cy(R™). (2.4)
t R}

z,)"t < 1 we obtain

(-1)/p
[ topar <p( [ /
Rn—1 e (1+20)P R

Using the embedding (2.2) we get

/p uf?
Pd ——dz.

n
+

[ull o n-1y < CullulP~ [l + Calull”,

which implies that £ < LP(R™!). On the other hand, from the trace inequality (see [20,29]),
for all 1 < p < n we have

(o

and hence £ < LP<(R™'). Thus, by interpolation we obtain that E < LI(R""!) for any
q € [p, p+] and this completes the proof of Lemma 2.2.1. O

(n—p)/(n—1)
p*dx) < CO/ |VulPdz, VYu € CH(R™),
R

n
+

Next we consider the borderline case p = n.

Lemma 2.2.2. Assume p =n. For any n < q < oo the weighted Sobolev embedding

1
E— LR}, —— 2.5
S (25)
and the Sobolev trace embedding
E — LYR™ 1) (2.6)

are continuous.
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Proof. We first prove the embedding (2.5). To this, using inequality (2.4) with p = 1 we get

(/

Applying (2.7) with v = (1 + z,,)%|u|" and u € C}(R"™) we obtain

(/

(n—1)/n
|U‘n"1d3;> <C \Voldz, Vv e Ci(R™). (2.7)

n n
+ RY

(n—1)/n
1(1+ xn)o‘|u|”|nn1d:c> < C’O/ || (1 4 2,)* Hu|"dz
R

n n
+ +

+ C’on/ (1 + 2,)*|u|" | Vu|dz.
R

n
+

Choosing a = —(n — 1) and using the Young inequality we obtain

2 (n=1)/n
|u|n/(n—1) / ( |u|n )
L <C Vau|* + ———— | da,
</ At o) =G, Ve e )

where '} depends only on n and hence we conclude that

e
E «— Ln1 (R_,_,m) .

n
+

If n < g <n?/(n—1), by interpolation, there exists 0 < # < 1 such that

[ll o (e Sy < ll? Syl < Clul-
LR (1)) (R4 ™) T 625 (g (1))

In particular, using that n < n+ 1 < n?/(n — 1), one has E < L"! (Ri’ (1+ xn)_”) . On the
other hand, applying again (2.7) with v = (1 4 z,,)~" Y|u|"*! and using the Young inequality

we get
n(n+1)

|l 7 o Juf "
u| n— u
—d <C —d

n2
+ Csy(n / ——dx + Vu|"dx ,
2( ) Ri (1+$n>n R ’ |

n
+

n(n+1)
which implies that £ < L™=0 (R%, (1 +x,)™"). For any n < ¢ < n(n+1)/(n — 1), by interpo-
lation, there exists 0 < 6 < 1 such that

+
[, (n—1) (Rn,(] x )771)

Reiterating this argument with K =n+2,n+3,..., one has £ — L%(Rﬁ, (14 z,)™™). Now,

given g € [n,00), one can choose k > n such that n < ¢ < nk/(n — 1) and once again using
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interpolation we get

e im0 S Il o Vol i S el

which proves the embedding (2.5). Now we will prove the trace embedding (2.6). For that, fixed

q > n, we have

oo g Jul? O Jule! |Vl O fulr
/ 0 q_ _ d n < d n d n-
lu(z’,0)] /o O, ((1-1-%)”) x, < Q/O (1+z,)" x +n/0 (14 x,)"H x

Integrating this inequality and using the Holder inequality together with the fact that (1 +

r,)" ' < 1 we obtain

‘u|(q_1)ﬁ (n—1)/n 1/n |u’q
/ lu(2,0)|9dz" < q / ——dx / |Vul"dx + n/ — .
Rn—1 1 (1 + .Tn)n 1 Ri (1 + x‘n)"

Since (¢ — 1)n/(n — 1) > n, by the embedding (2.5) we get
[ull T o1y < Cullull®Hllull + Collull,

which completes the proof of Lemma 2.2.2. O

Next we prove a weighted Hardy-type inequality which is in some way a version of [34, Lemma

9.

Lemma 2.2.3. Let 1 < p <n. Then the following inequality holds

’ulp p P / 1
B Sy e VuPde + [ JuPde' ), Vue CLRY).
e (1+20)P p—1 n Rn—1

Proof. Let v € Cj(R™) and ¢ € R with o # —1. Using the divergence theorem we obtain

v Vg
— dx = L — da’
0/1(14‘-’%)”“ x / (1+$n) x—l—/Rn_lv X,

where we are using that the normal unit vector pointing out of R"~! is n = (0/, —1). Applying

this equality with v = |u|P, we get

Y T g
o ———————dxr < ——————dx + ulPdx’. 2.8
| ‘ Ri (1 -+ In)a+1 1 (]. +x ) Rn-1 | | ( )

Now using the Young inequality with 0 < ¢ < 1 we obtain

p=l|y P 1
p/ Mdm <(p 1)5/ Lﬂ x — |VulPdz. (2.9)
n (L4 ,)7 R (14 2,)7 T ele-1) R?

Choosing op/(p — 1) = 0 + 1, that is, 0 = p — 1 and combining inequalities (2.8) and (2.9), one
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jup i [ [ ,
dr < VulPdr + ul|Pdx’ | .
4¢m+%w = DT —er) o VT [T

Using that the function g(¢) = 1/(eP~! — &P) for € > 0 achieves its minimum at e = (p — 1) /p we

Jul? P\’ :
g < (2 VuPde+ [ JulPda’ |,
Ri (1 =+ xn)p P — 1 Ri Rn—1

which is the desired result. O

has

conclude that

As a consequence of Lemma 2.2.2 and Lemma 2.2.3 we have

Corollary 2.2.4. The quantity

wmm:(/
R

define an equivalent norm on E.

1/p
|VulPdx + / |u|pd:17'> , l<p<n,
Rn—1

n
+

Proof. By Lemma 2.2.3 we have ||u|| < Ci||u| grr. On the other hand, using Lemmas 2.2.2 and
2.2.3 we obtain

fullpn, = [ 1VuPds+ [ 0pds < [ Vupd+ Gl
R? Rt R%

which implies the desired result and this completes the proof. O

In view of Corollary 2.2.4, from now on we consider the space E equipped with the norm

| - ||z1e, and we denote by E'P.

Remark 2.2.5. Suppose that the weight function a(z) satisfies hypotheses (Hy) or (ﬁl) By
Lemma 2.2.1 and Lemma 2.2.2, respectively, the weighted Sobolev embeddings

EY — L (R}, a(z)), Vp<q<p" if 1<p<n, (2.10)

and
EY — L9 (R%,a(z)), Vn<g<oo, (2.11)

are continuous.

Now we are ready to define our variational approach. Since the weight function b(x) does

not belong to any Lebesgue space we need to consider the subspace of E'? defined by

E™P = {u € EY: / b(x)|u|"dr < oo} ,

+
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equipped with the norm

1/p
e = (Nl + el e ) -

The next two compactness results play a crucial role in the proof of Theorem 2.1.2 and

Theorem 2.1.3, respectively.

Lemma 2.2.6. Assume hypotheses (Hy) — (Hs). Then the embedding E™P — L7 (R%, a(z)) is

compact:
(i) Forallp<q<p* if 1<p<ny
(ii) Foralln<g<oo if p=n.

Proof. We will show that u, — 0 in LY(R", a(z)) whenever u; — 0 in E™P. Indeed, let C' > 0 be
such that ||ug||grr < C and R > 0 to be chosen during the proof independently of u. We have

/ alug|?dx = / alug|'dx + / aug|?dz. (2.12)

RY Bj; RT\BE

Since the restriction operator u |, is continuous from E"P into E"P(B}) := {U|B+ NS EW}
R R

and the embedding E™F(B}) < LI(B},a(z)) is compact, in case that, p < g <p*if 1l <p<n
and n < ¢q if p = n, there exists k1 € N such that

/B+ aluy|?dz < g Vk >k (2.13)

R

for any p < g < p*if 1 <p <nandn < qif p=mn. On the other hand, by assumption (H;),
the Holder inequality and choosing R > 0 sufficiently large, we get

o= (r—q)/r a/r
r—q
/ aluglldr < / —dx / blug|"dx
T\BE RY\Bj, b LA
o (r—a)/r
r—q
S Cl / q dx S
R?\Bf, b=t

This combined with (2.12) and (2.13) imply the desired result. O

Do M

Lemma 2.2.7. Assume hypothesis (?[1) If o > n then the weighted Sobolev embeddings (2.10)
and (2.11) are compact.

Proof. Since E'? — L7 (R%, (1 + |z])™®) < L4 (R, a(z)), is sufficient to show that w; — 0 in
LY(R™, (14 |z])~*) whenever uj, — 0 in E'?. To this end, let C' > 0 be such that |juy||gi» < C
and R > 0 to be chosen later on. Note that

q q q
/ —|uk| dx:/ —|uk| dx+/ —|uk| dz.
e (1+[z])* g (1 + [z[) r\gg (14 [z])°
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Arguing as in the proof of Lemma 2.2.6 we obtain k; € N such that
|| €
L ) e
/B,g (1+ |z])* 2
On the other hand, using that o > p we see that (1+x,)?/(1+|z])* — 0 as |z| — co. Thus, we

can choose R > 0 sufficiently large such that (1 + x,)?/(1 + |z|)* < ¢/2C. Hence, there exists
ks € N such that

q a (1 P
/ %dx:/ ugl? (L4 2a)” S V> ky,
r\gh (14 [z]) r\gg (14 20)P (1+ [z]) 2

which implies the desired result. O

In this chapter we seek for weak solutions of problem (P,), which means a function u € E™

verifying

J

for all ¢ € E™. In view of assumption (H;) and using Lemmas 2.2.1 and 2.2.2 the energy

|VulP2VuVpds + /

lu|P~2updx’ = )\/
Rn—1

a|u|q_2ug0dx—/ blul"Pupdr,  (2.14)
R R

n n n
+ + +

functional associated to problem (P,), namely I) : E™” — R defined by

1 1 1
I\(u) = —/ \VulPdx + —/ lulPdx’ + —/
P Jr P Jrn—1 rJr

is well defined. Furthermore, standard arguments show that v € E™P is a critical point of I if,

A
b]u|rdx——/ alul?dz,
4 Jr

n n n
+ + +

and only if, it is a weak solution of problem (Py).

2.3 Proof of Theorem 2.1.2

In this section, we present the proof of Theorem 2.1.2. We split the proof into three parts.

2.3.1 Nonexistence

First, we present the proof of the nonexistence statement (i) in Theorem 2.1.2. Suppose that
u € E™P is a nontrivial weak solution of (P,). If A < 0 the result is immediate. Thus, we assume

that A > 0 and taking ¢ = u as a test function in (2.14) we obtain

J

Using the Young inequality we get

g

\Vu|pdx+/ |u\pdx’:)\/ a|u|qu—/ blu|dz. (2.15)
Rn-1 n R

n n
+ RY +

T

a]u|qu:/ )\qa (b%|u|q) dr < T_q/\TTQ/ arqqu+g/ blu|"dx. (2.16)
re br r re br—a R

7_‘7,_ r T_‘L— br—q T

n
+
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This together with (2.15) and the fact that ¢ < r imply

T

fulfs < 505 [ Slaer 2 [ s < 0 [ Dlan @an

T br—qa T Ri r—q

n n
+ +

Since p < ¢, combining (2.2) with (2.15) and the fact that b > 0 we get

p/q
C </ a\u!%ix) < ulh, < )\/ alul?dx, (2.18)
Rn RTL

+ +

for some constant C' > 0. If p = ¢ we obtain A > C. In case that ¢ > p we have

(C’A‘l)ﬁ S/ alul?dzx.

R}

Using the first inequality in (2.18) we obtain C (C_’)\*l)q%p < |Jul[%,.,- This together with (2.17)

imply that
(r—q)(g—p)/q(r—p)

r —1
A>A= oL / il
r—q R br—d

To conclude, we define

A" =sup{A > 0: (P,) does not admits any nontivial weak solution for all ;1 < A}.

Therefore, \* > C > 0 if p = ¢ and \* > X\ > 0 if ¢ > p, and hence item (i) in Theorem 2.1.2
holds for all A < A*.

2.3.2 The first solution

In this subsection, by using minimization argument we will prove item (ii) in Theorem 2.1.2.

We first recall a basic estimate (see [7]).

Remark 2.3.1. Let 0 < f < and k,l € (0,00). Then there ezists a constant C' = C(f,7v) >0
such that ,
E\ 77
kls|? —1|s|" < C(B,7v)k (7) , VseR.

In order to use the direct methods of the calculus of variations we need the following result.

Lemma 2.3.2. Let max{2,p} < q < p*, r > q and assume (Hy) — (Hz). Then, for all X > 0,
the functional Jy : E™P — R defined by

= [ Flow),
R
where Fy\(z,s) := Aa(z)|s|9/q — b(x)|s|"/r, is weakly lower semicontinuous. As a consequence

the functional I 1s lower semicontinuous in E™P.
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Proof. Assume that u;, — ug in E™P. Taking into account that

Fy(z,s) = a(z)|s|"*s—b(z)|s|" s, Fu(@,s) = (g—1a(@)|s|"*=(r—1)b(z)|s|"* s € R\{0},

we get .
F(z,ug) — F(z,u) = /0 Fy(x,up + t(ugp — uo))(ugp — ug)dt
and .
Fy(x,ug + t(ug —ug)) — Fs(x,up) = /0 Fis(x,up + s(ur — up))(up — ug)ds.
Consequently,

Pz, ue) = F(z,u0) = /0 {/0 Fou(, ug + s(uy, — uo)) (ug — uo)ds + Fou(x, up) | (ur, — uo)dt
= /0 /0 Fou(z,ug + s(up — uo)) (ug, — ug)*dsdt + %Fu(:v, o) (up — ug)-

Thus, using Remark 2.3.1 we get

r—2
ar-a
|F'(2, ur) — F(z,u0)| < Cy—= (up, — up)? + | Fy (2, uo) (ug, — up)|,

T—q

where Cy = C4(q, r))\%. Applying the Holder inequality and using Lemma 2.2.6 we obtain
r—2

v —2 2
La s (¢-2)/q . /4
(ug — up) == < —dx aluy, — uplldz — 0.
R br=a R br=q R™

n
+ +

On the other hand, considering the linear functional &4 : E™? — R defined by
Oy(v) = / F,(z,up)vdz,
n

we see that

LY

alug|” |v|dx + / blug|" v |dx
R

n n
+ R%

-1 r—
< HUOH%q(Rz,a(m))HU||L‘1(R1,a(x)) + HUOHLr(lRi,b(x))||U‘|L*(R1,b(w)) < O]l gr,

and hence ®( is continuous. Therefore, if u;, — ug in £™P we have

lim Fo(z,up)(ur — up)dx = 0,
k—o0 R?

which implies the desired result. O

Now we establish some geometric properties of the energy functional 7.
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Lemma 2.3.3. Let 1 < p < q < p*, r > q and assume (Hy) — (Hy). For all A > 0 the functional

I, is coercive.
Proof. Since A\, a,b > 0 and g < r, by Remark 2.3.1 we obtain

1 =3 § =
/ (&W - ﬁw) <Cr—rr [ 2a (&) —C [ (] <o
n q 27' qrr—q RZ}_ b 1 b'f‘fq

+

Thus, we get

IA(U)Z%/IM

1 1
> —||ul|? — blu|"dx — C
> Sl + 5, / [uld — Ci,

n
+

1 1 A b
\VulPdz + —/ uPde’ + — [ blul"da — / 2t =l ) da
D Jrn—1 2r Ri R™ q 2r

+

which implies that I, is coercive and the proof is completed. O

Lemma 2.3.4. Let max{2,p} < q < p*, r > q and assume (Hy)— (Hs). Then there exists A > 0
such that
—oo < inf Ij(u) <0, VYA>A (2.19)

ueEmP
blu|"dx :/ alul?=15.
RY

. q q
A= inf < =|u|? =
uérElJTvP {pHu”ELP + T /R

We claim that A > 0. Otherwise, there exists a sequence (ux) C E™ such that

q P q
—_— u -_—
Dl + 2 |

Thus, by using the Hélder inequality we have

. (r—a)/r
ar—a
1=/ alug|? < / —dr /
R? R? br=a R

n
+

Proof. Let

n
+

blug|"dz = ox(1) and / alugl? = 1.
R

n n
+ +

r/q
b]uk|rdx> — 0,
n
which is a contradiction. Now if A > A, by the definition of A there exists u), € E™P with
Jzn alux|? =1 such that
+
A > L, + g/ blus|"da.
p rJre

Consequently,

1 v 1 ., A .

I(uy) = =||uallps + = bluy|"dx — — aluy|? < 0.
p T Jrn q Jrn

Therefore, (2.19) holds. O

Lemma 2.3.5. Let max{2,p} < ¢ < p*, r > q and assume (Hy) — (Hz). For all A\ > A problem

(Py) has a nontrivial weak solution.
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Proof. Using the direct method of the calculus of variations, from Lemmas 2.3.2, 2.3.3 and 2.3.4,
for all A > A there exists uy € E™ \ {0} such that

—00 < ueirEl‘gvP I,\(u) = [)\(U)\) < 0.

Therefore, problem (P,) has a nontrivial weak solution u, with I, (u,) < 0 for all A > A. Since

I\(uy) = I\(Juy|) we may assume that uy > 0. O

Setting
X :=inf{\ > 0: (P,) has a nontrivial weak solution for all ;1 > \},

we clearly have that \* < A < A.
Next we will prove that problem (Pj5) has a nontrivial weak solution when p < ¢. To this
end, we need the following result.

Lemma 2.3.6. Let 1 <p < q <p*, r > q and assume (Hy) — (Hy). If A\ > 0 and u € E™ is a

nontrivial weak solution of problem (Py) then

r— r—q,_r ari
|| %0, + L1 blu|"dz < )75 / Lq dx. (2.20)
r R r R bra

Furthermore, there exists a constant K > 0 independent of u such that

]| pro > KNTr. (2.21)

Proof. If u € E™ is a nontrivial weak solution of problem (P,), proceeding as in (2.16), we get

[ull.e., +/ blul"dx = )\/ alul?dz < T_qﬂq/ Cdr+ Q/ blul"dz,
R R r R™ br—qa r Jr

n n n
+ + +

which gives estimate (2.20). Now we will prove (2.21). Using again that wu is a nontrivial weak

solution of problem (P,) we see that

1
XHUH%m < ||“||%q(m,a(x))-

This combined with Lemmas 2.2.1 and 2.2.2 show that

lullr,, Yue B,

> =

Collulzre = N1ullza@n ag)) =

for some constant Cy > 0. Thus, using that p < ¢ and u # 0 we get

=1 _
lull g0 > CF 7 N,
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which implies that (2.21) holds by choosing K = qu%” . O
Lemma 2.3.7. The problem (P5) has a nontrivial weak solution.

Proof. Consider a sequence A\, — A with A\, > . By the definition of :\, for each k the problem
(P,,) has a nontrivial weak solution uy. Furthermore, the sequence (u) is bounded in E*? in
view of Lemma 2.3.6. Thus, we may assume that uy — us in E'? and, by Lemma 2.2.6, ux — us
in L9(R%, a(z)). Consequently, u; is a nontrivial weak solution of (P5). We claim that uj is not

trivial. Indeed, since w;, and u; are weak solutions of (P,,) and (Pj), respectively, we have

oe(1) = (I, (uk) — I5(ug), we — uz) = / (IVur P72V, — |Vus [P Vus) (Vg — Vug) do
R

n
+/ (|uk|p’2ul‘C — ]u;\|p’2u5\) (ug — uy) da’ +/ b (|uk|r’2uk — ]u;\|r’2u;) (up — u3) dz
Rn-1 R?

— (J1g + Jok),

where
Jig = /\k/ a (el ug — Jus )" us) (up — uy) da
R%}
and
J27k = </\l~c — 5\) / a|u;\q_2u;\ (Uk - U;\) dz.
RY

Using the Hoder inequality together with the fact that ()\;) is bounded we get

(¢=1)/q (¢=1)/q 1/q
|| <C / alug|?dx + / aluz|?dx / alug — us|'dx :
R7 R? R

Consequently, by Lemma 2.2.6 we obtain .J; ; = 0j(1). Similarly, we have J; = 0k (1). Therefore,

n
+

we conclude that

(/ (VP2 Vug — [Vug [P7*Vuy) (Vuy, — Vug) do
R

n
+

+ / (JeelP g, — Jug [P %uy) (we — uy) do’ (2.22)
Rn—1

o,

Now we recall that for all £, € R", we know that there exists a constant C' = C(p) > 0 (see
inequality (2.2) in [40]) such that

n
+

b (Jul™ ur — Jus|"*us) (ur — uz) dic) = o(1).

I E-q it p=2
p=2¢ _ | #|P—2 —O)>C 2.23
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If p > 2, using the fact that b > 0 together with (2.22) we obtain

up — us ||, < C (/ (IVuk P2V — [Vug [P7*Vuy) (Vuy, — Vug) do
R

n
+

+ / (|uk]p_2uk — |u5\]7’_2u/~\) (wr, — u3) dx') = ox(1).
Rn—l

On the other hand, if 1 < p < 2 we can use the inequality (2.23) again to obtain

/ (|Vuy, — Vus)?) 2 dz
R

n
+

= / [(|Vur P>V, — |Vus [P Vus) (Vuy — Vug) ]
R

n
+

[N4S]

2-p)
((IVug] + [Vus)) = da.

This together with the Hoder inequality, (2.22) and the fact that (uy) is bounded imply that

C, \Vuy, — Vus [Pdx

RY

“(

p/2 (2—p)/2
(|Vuk|P—2Vuk. — |Vu;\|P—2Vu;\) (Vu, — Vuy) d:L‘) (/ (|Vug? + |Vu/~\|P)dx)
R

n
+

Similarly, we obtain
| = wspa = o)

Hence, u, — us in E'?. Since uy, is a nontrivial weak solution of problem (P,, ), by Lemma 2.3.6
there exists K = K(p, ¢) such that

|u || pre > KA,jﬁ, VkeN.
Since ||ug||gre — [|us]lpe and A, — X > 0 we get
lusllnr > K(3)~5 >0,
and hence uj is nontrivial. Since I5(uy) = I;(Juz|) we may assume that ugy > 0 a.e. in R}. O

2.3.3 The second solution

In what follows we will prove item (iii) in Theorem 2.1.2. This will be done by using a
truncation argument. Let A > A be fixed and consider the truncated Carathéodory function
defined by

0, if t<0,
gz, t) =< da(x)tr™t —b(x)t™, if 0 <t <wuy(w),
Aa(z)ul ™" —b(x)ui ™, it > un(x),
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where uy, € E™P is the weak solution of problem (Py) with I)(u,) < 0 obtained in Lemma 2.3.5.
Setting Gy(z,t) = f(f gx(z, s)ds, we define the functional I, : E"? — R by

~ 1
I(u) = ]—9||u||%1p —/R Gi(z,u)dx.

n
+

Notice that for all v, € EY? it holds
I (v)y :/ |Vv|p_2VUVgodx+/ |v[P~2vpda’
R Rn-1

- /{o< < }[)\avq_l — b Hpdr — / Maul™" — bulpd.
SUSUN

{v>ux}

Furthermore, by choosing ¢ = v~ := — min{v, 0} we see that critical points of I, are nonnegative.

Next, to prove that critical point of I is a critical point of I, inspired in [31, Lemma 2.1]

(see also [35]) we have the following a priori estimate.

Lemma 2.3.8. Let max{2,p} < ¢ < p*, r > q and assume (Hy) — (Hy). If uy is the solution

obtained in item (i) of Theorem 2.1.2 and Uy is a critical point of ]~>\ then uy < uy.

Proof. For a function v € E'P let us denote by v (z) = max{v(x),0}. Since u, is a critical

point of I, and u, is a critical point of I~,\ we get
0= <~;\(a)\) — I;\(’LL)\% (fL)\ — u,\)+> = / (|V’L~L)\|p_2va)\ — |VU)\‘p_2V’LL)\) (V’ll)\ — VU,\) dx
{@r>uxr}
—f-/ (’ﬂ)\|p_21,~t)\ — |U)\|p_2u/\) (ﬂ)\ - U)\) dlE, Z 0.
{ax>u)}NRn—1

This combined with inequality (2.23) imply that |{z € R} : ax(xz) > ur(z)}| = 0. Thus,

(ay —ux)t =0 a.e. in R?}. Therefore, @y < uy and the proof is complete. O

Lemma 2.3.9. Let max{2,p} < q < p*, v > q and assume (Hy) — (Hs). Then there exist
p € (0, ||ux]|grr) and a > 0 such that Iy(u) > o > 0 if ||u| gre = p;

Proof. Notice that for all u € E'? we can write

J

Now observing that

i (x, u)da — /

{0<u<uy}

G,\(x,u)dx+/ Gi(z,u)dz.

n {u>un}

A
/ Gi(z,u)dx = / {—uq — —u’} dr < —/ auldz
{0<u<uy} {o<u<uy} L 4 r d J{o<u<uy}
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2. An indefinite quasilinear elliptic problem with weights in anisotropic spaces

and - y
/ Gy(z,u)dz :/ / g,\(x,t)dt—l—/ g,\(a:,t)dtl dx
{u>ux} {u>ux} LJO u)
[Nau!  bub
— / AN T (Aauf ™t —buy ™) (u - u,\)l dx
{u>ux} q r
B
S/ Aauy —i—)\au‘/’\_lu] 7
{usuy} L 4
we get
7 L o A us g—1
I(u) > ~[Jul|%, — = auldr — \ a|—=+ul ul. (2.24)
p q {0<u<uy} {u>ur} q

This combined with Remark 2.2.5 imply that there exists C; > 0 such that
T 1 p A q 1 q—p p
In(u) = ];I\u\lEl,p - Ecll\uHEl,p =5~ AC[[ull oty | llull -

Since ¢ > p we obtain the desired result and the proof is completed. O

By Lemma 2.3.9 we have that

inf  Iy(u) > 0> L\(uy), YX>A.

lull g1.p=p

Thus, the minimax level

cx = inf max I,(y(t)) >0, VA>A,

v€T t€0,1]

where I := {y € C([0,1], E*?) : 4(0) = 0 and (1) = uy}. Applying the mountain pass theorem
without the Palais-Smale condition (see [44, Theorem 1.15])), or (PS) for short, we find a

sequence (uy) C E'P at the minimax level cy, that is

L(ug) = ¢ex and I} (ug) — 0. (2.25)

Lemma 2.3.10. Let max{2,p} < q < p*, r > q and assume (Hy) — (Hy). Then, the sequence

(ug) in (2.25) has a convergent subsequence.

Proof. From estimate (2.24), there exists C| > 0 such that

. 1 A »
In(u) = EHUH%M Y /}R1 auidr — >\Cl||ux\||qu(R1,a(x))HUHELP,

from where we obtain that I is coercive and consequently (uy,) is bounded in E'?. By Lemma 2.2.7,

up to a subsequence, we can assume that

U — Uy in 1P
ug(z) = ax(xz) a.e. in R%
up — Uy in LY(R?, a(x)).

Arguing as in proof of Lemma 2.3.2 we can see that fg(m) = 0 and hence 0 < 1y < uy in RY
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2. An indefinite quasilinear elliptic problem with weights in anisotropic spaces

by Lemma 2.3.8. Thus, we get
Ok(l) = <f§\(uk) — i;\(ﬂ)\), U — 174> == Ak - Bk + Ck, (226)

where oy (1) denotes a quantity that goes to zero as k — 400 and

’VUMP Vuy, — |Vay|P~ ZVu,\) (Vuy, — Vay) dz

%\

|uk|p U — |U)\|p_2’t~t)\) (uk — ﬂ)\) dl’/

_l’_
\

Rn—1
= / Naul™" — bui ™ (uy, — 1) da + / Naul™" — bul Y (g — ) da
{0<up<un} {up>uxr}
= / Naad ™" — b (up — 1y) da + / atd™" — by (uy, — 1) da.
{0<ar<ux} {ax>ux}
Therefore,
Ap = o(1) + / Naul™" — bui ™ (uy, — 1iy) do — / Matd™" — b (uy, — ) do.
{0<up<ux} {0<@r<ux}

Now, proceeding as in the proof of Lemma 2.3.2 we see that
/ Naul™" — bui ™Y (g — i) dz = ox(1)
{0<up<uy}

and
/{0< < }[Aaﬂ‘f\_l — by (ug — Ty) do = op(1).
) <uy

Thus, we conclude that Ay = ox(1). If 2 < p < ¢ < r, using inequality (2.23), we get
|ur, — @x |1, = ox(1). Furthermore, if 1 < p < 2, arguing as in the proof of Lemma 2.3.7

we obtain [|uy, — @x|%,., = 0k(1). This completes the proof of Lemma 2.3.10. O

Finalizing the proof of item (4ii) in Theorem 2.1.2. By Lemma 2.3.10, and standard arguments
we conclude that , is a critical point of 1. To conclude, by Lemma 2.3.8, we have 0 < u, < u,.
Thus,

g(x,0y) = Ma(x)al " —b(x)ay ' and Gz, i) = —

so that
I)\(’a/\) = I)\(QNLA) and f;\(ﬂ)\) = [;\(ﬂ,\)

More precisely, we find
]A(a)\) >02> ]A(U)\) and ];\(ﬂk) =0.

Therefore, u, is a nontrivial weak solution of problem (P,) such that 0 < a, < uy, @) # 0 and
ﬂ)\ 7é Uy- ]
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2. An indefinite quasilinear elliptic problem with weights in anisotropic spaces

2.3.4 Multiplicity

Finally, in this subsection we will complete the proof of Theorem 2.1.2 by proving state-
ment (iv). It consists in applying the symmetric mountain pass theorem due to Ambrosetti-
Rabinowitz [8] and Clark [17]. To this, we need to recall some notations. Let E be a Banach
space and denotes by & the class of all subsets of E'\ {0} closed and symmetric with respect to
the origin :

E={AC E\{0}: Aisclosed and A = —A}.

For A € £\ {@} the genus y(A) is define by
Y(A) ;== min{m € N: Jp € C(A,R™\ {0}) such that p(z) = —p(—2x)}.

If the minimum does not exist, we define y(A) = oo and y(&) = 0. Let £, = {A € & : y(4) >

m}. The main properties of the genus can be found in [38,41].
Now, we recall the following classical multiplicity result (see for instance [8,17]).

Theorem 2.3.11. Let E be an infinite dimensional Banach space and I € C*(E,R) satisfying

(A1) I(u) is even, bounded from below, I(0) = 0 and I(u) satisfies the Palais-Smale condition
(PS);

(Ag) For each m € N, there exists an A,, € &, such that sup,c, I(u) <O0.

Defining

cn = Inf sup I (u
m AeSmueg ()’

then each ¢, is a critical value of I(u), ¢y < i1 < 0 for m € N and (¢,,) converges to zero.

Moreover, if ¢ = ¢y = Cppp1 =+ -+ = Cyj < 00, then y(K.) > j+ 1. Here, K. is defined by
K.={ue€ E" : I,(u) = c and I} (u) = 0}.

To prove item (iv) in Theorem 2.1.2, it is sufficient to show that I, satisfies the conditions
(A;) and (Ay) above. Arguing as in the proof of Lemma 2.3.10 one can see that I, satisfies
condition (A;). In order to verify condition (As), we consider Qy = {z € R} : a(z) = 0} and
Q5 = R\ €. Denote

Eoy={ue E"?:u(x)=0 ae z€Q}.

If Qp = @, i.e., a(x) > 0 in R then we let £y = E™P. Obviously, £y is an infinitely dimensional

linear subspace of E™P. A seminorm [-], on E™? is defined by

(], = (/ a(:v)|u|qd:)3> l/q.

+
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2. An indefinite quasilinear elliptic problem with weights in anisotropic spaces

Lemma 2.3.12. The seminorm -], is a norm in E.

Proof. It is sufficient to show that u € Ey, [u], = 0 implies that u = 0, a.e. in R". Indeed,

o=y~ [

This together with fact a(z) > 0 in Qf imply that u(z) = 0, a.e. in Q. Since u € Ey, u(x) = 0,

a(x)\u]qu:/ﬂ a(x)|u|?dzx.

n c
+ 0

a.e. in €. Therefore, u(x) = 0, a.e. in R’ and this completes the proof.
Lemma 2.3.13. Let 1 < p < q < p*, r > q and assume (Hy). Then for each m € N, there exist
an A,, € &, and \,, such that

sup In(u) <0, YA>\,.

ueAm

Proof. Let E,, be a m-dimensional subspace of Ej. Since all norms on the finite dimension space

E,, are equivalent, there exists b, > 0 such that

1 1 . Ab,, 2 Ab,
]A(U) < 5““”’&:7 + ;||U||Em» - THUH(]ET»P > 7

for all uw € E,, with ||u||gr» = 1. Thus, for \,, = 4q/pby, Ix(u) < —=2/p if ||u||gr» = 1, for all
A > Ap. Let A, = S™(1) be a sphere with radius 1 in E,,. Then

sup Iy(u) <0, VA> A\,

’lLEA'm
and by properties of genus A, € &,,. n

Finalizing the proof of item (iv) in Theorem 2.1.2. It follows directly from Theorem 2.3.11. [

2.4 Proof of Theorem 2.1.3

This section is devoted to the proof of Theorem 2.1.3. In order to prove our multiplicity

result we recall the original statement of the symmetric mountain pass theorem (see [8]).

Theorem 2.4.1. Let E be a real infinite-dimensional Banach space and I € C*(E, R) an even
functional satisfying the (PS) condition and the following hypotheses:

(I1) I(0) = 0 and there are constants p, o > 0 such that I|pp,0) > o;
(1) for any finite dimensional E C E, EN{u € E : I(u) > 0} is bounded.
Then I has an unbounded sequence of critical values.

Now, we establish some properties of the energy functional I,.

Lemma 2.4.2. Let 1 < p <r < q < p* and assume (H,) — (Hy). Then for each X\ > 0 there
exist p,ag > 0 such that I (u) > ag > 0 if ||ul|grr = p.
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2. An indefinite quasilinear elliptic problem with weights in anisotropic spaces

Proof. First we observe that

r/p r
e < (Walls + Nl i) < 2 (il + Nl - (220
Without loss of generality we may assume that ||ul|%.., + [Jul?, ®2 b)) = lu|pry = PP < 1 and
using that p < r we see that ||u||'., > ||u/|,. Thus, we conclude that

A
I\(u) = ];HUHEIP + - ||u||LT R% b(z)) EHUH%Q(Ri,a(@)'

This together with (2.27), Lemmas 2.2.1 and 2.2.2 and the fact that r < ¢ imply

A 1 A
[ u Z T u rr,p - _C U 4 TP == (_7‘ - _C qT) 7",
A(w) T25\| ¥ . 1[[ullE T )
which implies (/;) by choosing p sufficiently small. O

Next, let us ensure that any (PS) sequence associated to I has a convergent subsequence.

This is done in the next lemma.

Lemma 2.4.3. Let 1 < p <1 < q < p* and assume (Hy)— (Hs). Then any sequence (uy) C E"™
such that
I(ug) — ¢ and Iy(ux) — 0, (2.28)

has a convergent subsequence.
Proof. First, we observe that

1 1 1 1 1
(3= 2 ol (3= 2) [ hunlrde = o) = 20300, 00) < x4 oullunlze). (229
+

p

We claim that (u;) C E™ is bounded. Arguing by contradiction, let us suppose that ||ug|| gro —
oo. Since 1 < p <r < ¢, in view of (2.29) we get

(A 1wkl Zr gn pay)

= on(1) — on(1). (2.30)

|ur|| gro |ur|| gro

This in combination with the fact that

e, sl Zr@n by

(|ur| grr |ur| gro

= | kHErp—>oo as k — oo

imply that
k12 ey oo
———— =00, as k — oc. (2.31)
g || v

If p = r, combining (2.30) and (2.31) we obtain a contradiction. In case that p < r, using again
(2.31) we conclude that |u|” < C. On the

Lr(RD b)) 7 OO 88 k — oo and hence |u||}, R” ()

52



2. An indefinite quasilinear elliptic problem with weights in anisotropic spaces

other hand,

”uk|’§ﬁ(R1,b(m)) ||u’f||zr(Ri,b(:c))

= ”uk”i:(Ri,b(g:)) 0, as k — oo,

[kl v k]| v

which contradicts (2.31) and hence (uy) is bounded. By Lemma 2.2.7 we may assume that
Uy, — Up in E™P

up(x) = uo(r) a.e. in RY
U — U in LY(R?, a(z))

as k — oo. From (2.28), it follows that
or(1) = (I\(ug) — I\ (ug), ux, — ug) = Ay, — /R" Aa (Jug] " — |uol" *uo) (uk — uo) dz,  (2.32)
&
where
Ap = /R" (IVuk P2 Vg — [Vuo|"*Vug) (Vug, — V) dz
&

+ / (P2 ur, — |uolPuo) (up — uo) da’ +/ b (] — Juo| " ?uo) (ur, — uo) d.
Rn—1 R

n
By the Holder inequality and Lemma 2.2.7, we obtain
/ At (Jua ], — uo|" ) (g — ) de = ox(1).
R}
Thus, from (2.32) we conclude that Ay = o(1). If 2 < p < r < ¢, we can use the inequality
(2.23) and the fact that b > 0 to get

/ ([Vuk P2 Vug — [Vuo|*Vug) (Vuy, — Vug) dz = oy, (1)
R

n
+

/ (Juw]P~2wr, — |uolP2uo) (ur — uo) dz’ = oj(1) (2.33)
Rn—1

/ b (Jur]"?ur — Juo|"?uo) (ur, — uo) dz = ox(1).
R

n
Using once again inequality (2.23), we get
s = ol = = 0ol + itk = 0l gy ey = 061,

which implies that u;, — ug in E™P. Now, if 1 < p < 2 we have two cases to consider, r > 2 and
p <r <2 Ifr>2 by inequality (2.23) and (2.33) we obtain

[|ug — UOHZT(Ri,b(z)) < / b (|Uk|T72uk — |u0\7"’2u0) (ugp — ug) dz = og(1). (2.34)

n

+
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2. An indefinite quasilinear elliptic problem with weights in anisotropic spaces

Now, if p < r < 2, by inequality (2.23) and the Hoder inequality we get

_ — r 2270
l[ur = ol @ by < /n b ((Jur]"ur — ol uo) (ur — u0)) * ((Jug| + |uol)") 2 dx

g(/R +

(2-1)/2
b (Jug| —|—|u0|)rdx> :

r/2
b (|uk|r—2uk o |UO|T_2U/0) (Uk — Uo) dx> (/
R

This combined with inequalities (2.33) and (2.34) and the fact that (u) is bounded imply that

|| — u0||ET(R1 by = Ok(1). Now, if 1 < p < 2, arguing as in the proof of Lemma 2.3.7 we obtain

n n
+ +

[ur — ol = ok(1). Therefore, |lux — uollfprs = [lur — wollp, + [lur — UO“ir(Ri,b(m)) = ox(1),

and this completes the proof. O]

Finalizing the proof of Theorem 2.1.3. If u is a weak solution of problem (P,), choosing ¢ = u
in (2.14) we ot [l + 05 ey gy = Al Which implies that u = 0if A < 0
and item (i) in Theorem 2.1.3 is proved. Now we will use Theorem 2.4.1 to prove item (ii)
in Theorem 2.1.3. By Lemma 2.4.2, for any A > 0 the functional I, satisfies condition (I).
Now we prove item (I3). Suppose by contradiction that (I3) is false. Then, there exist a finite

dimensional E C E™ and a sequence (ug) C E satisfying
I\(ug) >0, keN and |ug||ge — o0 as k— oo. (2.35)

Using the fact that all the norms in E are equivalent, there exists ¢ > 0 such that

1 AC

1
0 < Ix(ug) < ];Hu/cll%r,p + —llunlpro — ?HWH%W, VkeN.

-
Thus,

1 1
;HuquEnp < ]_QHUI@H%T,;; + ;“uk“%r,p, VkeN,

which contradicts (2.35), since p < r < ¢, and item (I5) is proved. In view of Lemma 2.4.3, for
each A > 0 we can apply Theorem 2.4.1 to obtain an unbounded sequence of critical values of
I, to which we can associate at least two critical points because the functional I is even. This

completes the proof. O
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Chapter 3

A quasilinear elliptic equation with
exponential growth and weights in

anisotropic spaces

In this chapter we establish embedding results of a certain Sobolev space into weighted
Lebesgue spaces and we derive some Trudinger-Moser type inequalities. As an application we
prove existence, nonexistence and multiplicity of solutions for a class of quasilinear elliptic prob-
lems with nonlinear boundary condition and involving exponential nonlinearities and weights in

anisotropic Lebesgue spaces. This chapter is also in article format submitted in [21].

3.1 Introduction and main results

Here, we are concerning with the existence, nonexistence and multiplicity of solutions for the

following nonlinear eigenvalue problem

{—div<|vu\n—2w)+h(g;)yur—2u = Xa(z)f(z,u) in R" )

|Vu|"2Vu-n+ |[u["2u = 0 on  OJRY,

where n > 2 is an integer, R} = {z = (2/,z,) € R" : z,, > 0} denotes the upper half-space, 7
is the unit outward normal vector on the boundary OR” = R"' n < r < oo, and a,h and f
satisfy some suitable conditions.

We assume that f is a continuous function with subcritical exponential growth in the

Trudinger-Moser sense, i.e., for any o > 0

o 1)l

/
|s| =00 eals|™

= 0, uniformly in x € R} (3.1)

Setting F'(x,s) = fos f(z,t)dt, we assume that f is continuous and satisfies the following as-

sumptions:
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3. A quasilinear elliptic equation with exponential growth and weights in anisotropic spaces

(f1) Sli_r[r)l+ % < Ay uniformly with respect to € R}, where

R . {fRi |Vu|dx + fam lu|"dx’
1 .= 11 -
fRi alu|"dz

tu € Cy(R™)\ {0}};

(f2) there exists p > r such that

0 < pF(z,s) < f(x,s)s, VeeR} and s#0;

(f3) there exist Ry, My > 0 such that

F(x,5) < Myf(z,s), Yoz R} and s> R.

We assume the following assumptions on the weight functions a, h:

(H1) a:R} — Ris a nontrivial mensurable function and there are ¢; > 0 and 3 > n such that

&1
0< <
=4 = T

for a.e. z € RY.

(Hy) h:R% — R is a positive continuous function.

Under these hypotheses, our first result concerning problem (P,) can be stated as follows:
Theorem 3.1.1. Assume (Hy) — (Hy) and (f1) — (fs) . If n <r < oo then
(i) Problem (Py) has no nonzero weak solution for every A € (—oo,0];
(ii) Problem (P») has at least a nonzero weak solution for every A € (0,00).

In order to obtain a multiplicity result, in addition, we assume that

(f1) there exist vy, sp > 0 and 7o > r such that
F(x,s) > 1p]s|", uniformly with respect to z € R}, V|s| < so.

Our multiplicity result is stated below:

Theorem 3.1.2. Assume (H,)—(Hz) and that f(x,-) is odd and satisfies (f1)—(f1). Ifn <r <

00, then problem (Py) has an infinite number of nonzero weak solutions for every \ € (0,00).

3.2 Variational Framework

In this section, we set-up under which space we shall work in the present chapter. Firstly we

collect a few definitions and embeddings results. Denote by C5°(R?" ) the space of Cg°(R™)—functions
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3. A quasilinear elliptic equation with exponential growth and weights in anisotropic spaces

restricted to R7. We define the weighted Sobolev space E as the completion of C5°(R") with

respect to the norm
1/n
Jul
ul| = / (ywn SIS S M
Ri (]. + $n)n

Hereafter in this chapter, Br denotes the ball of center zero and radius R > 0 in R",
B} := BRNR™, (Bg)° denotes R™\ Bg, the complement of the set Bg C R", and (B};)¢ denotes
R" \ B}, the complement of the set B C R.

3.2.1 Sobolev embedding

In this subsection, we establish some embedding results from E into weighted Lebesgue

spaces. We start with following:

Lemma 3.2.1. For any n < q < oo the weighted Sobolev embedding

1
E— LR}, ——— 3.2
- o (B ) .
and the Sobolev trace embedding
E s LYR"1), (3.3)

are continuous.

Proof. Recall that, for any 1 < p < n, by the Gagliardo-Nirenberg-Sobolev inequality and a
suitable reflexion argument (see [43, Lemma 2.10]) that there exists C' = C(n, p) such that

(/

In particular, if p = 1 we have

I

Applying (3.4) with v = (1 + z,,)?|u|", o € R to be chosen later on, we obtain

]

Choosing 0 = —(n — 1) and using the Young inequality we obtain

(n—p)/np
|v|p*dx> < C’/ \VolPdz, VYove CyP(R").
R

n n
+ +

(n—1)/n
|v|f—1dﬂf> < Co/ |Voldz, Vv e Cg®(R"). (3.4)
R

n n
+ +

n—1

\(1+$n)"\uyn\nﬁ1dx> §C’0/ |0\(1+$n)"_1\u|”daz+C’0n/ (1 + 2,)° Ju|" | Vu|dz.
R

n n n
+ + R%

(n—1)/n

n2
]u n—1 /
——dx <Oy
/Ri (1 +x,)" R

(v s 0 Vs

n
+
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where C depends only on n. Hence, we conclude that

n? 1
E—Ln1 (R —n— .
( +’(1+$n)n)

If n < g <n?/(n—1), by interpolation, there exists 0 < # < 1 such that

< 0l gy I < Clul.

U n —n
lellzo(ier 0.-0) LT (R (L))

In particular, using that n < n+ 1 < n?/(n — 1), one has E < L"*! (R%, (1 4+ z,)™"). On the
other hand, applying again (3.4) with v = (1 4 z,,)~™ Y |u|**! and using the Young inequality

we get
n(n+1) (n=1)/n
Ju 1 Juf"* jul*[Vul
—d <(n-1C —d no ——d
n2
Jul" Juf»T n
<(n-1)C ————dx + (n+ 1) ———dr + |Vu|"dx
r (1+25)" e (1+25)" R™

n(n+1)
This together with (3.5) imply that E < L0 (R, (14 2,)™"). If n < ¢ < n(n + 1)/(n — 1),
by interpolation, there exists 0 < # < 1 such that

HUHL‘?(RL(H—OM)*”) < ||U||%n(R1,(1+xn)—n)||U||1_n?n+1) < Cllul.
L =1 (R, (142n)~")

Iterating this process with k =n+2,n+3,..., one has F — L%(RZ, (14+z,)™"). Now, given
q € [0,00), one can choose k > n such that n < ¢ < nk/(n — 1) and once again use interpolation
to get

HU‘|L‘1(R¢7(1+xn)—") < HUH?LH(RQ,(H%)W)HUH;;%(RL(H%)%) < Clfull,

which proves the embedding (3.2).
Now we will prove the trace embedding (3.3). For that, we fix ¢ > n and compute

MR’ |ul? T fuli |Vl e Julf
/ q _ _ d n < —d n VT d n.
IU(:U 7O>| /0 0Ty ((1 + xn)n) = q/D (14 z,)" ot n/O (1 + )" !

Integrating and using Holder’s inequality together with the fact that (1 + z,)~! < 1 we obtain

) e |lL|(q—1)T7_l1 (n—=1)/n } 1/n |u|q
Rn—1 R Tn) R n (1+an)

Since (¢ — 1)n/(n — 1) > n, we obtain from the embedding (3.2) that

ullFo -1y < Cullull®H flull + Collull,
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which completes the proof of Lemma 3.2.1. ]

A fundamental result in the context of this chapter regards on a weighted Hardy-type in-
equality. This is the subject of the next lemma (see for instance 33|, for a similar result in

dimension n > 3).

Lemma 3.2.2. Let n > 2. Then the following inequality holds

|u|n n " / / /
/Ri (1 + ffn)" HARS n_1 - |VU| xr + - |u| T |, Yuée CO ( )

Proof. Let v € C§°(R"™) and 0 € R with o # —1. Using the Divergence Theorem we obtain

(% (%
o —————dzx :/ $d:c+/ vda',
/Ri (1+ @)+ rr (14 @) Rr-1

where we used that the normal unit vector pointing out of R"™! is n = (0/, —1). Applying this

equality with v = |u|™, we get

|ul" / njul" | Vul / )
——  dzr< - —dr + u|dx’. 3.6
o R% (I 4zp)ot 7 Jgn (L4 20)° Rn—1 Ful (3:6)

n
+

Now using the Young inequality with 0 < ¢ < 1 we obtain

n—1 n' n—1
[ LTy [ YR,
g (1+20)7 re (L4 20)7 R/E

" 1
< (n-— 1)6/ [ s dx + - / \Vu|"dz.
Ry (L4 a,)mr e g

Choosing -7~ = o + 1, that is, 0 = n — 1 and combining inequalities (3.6) and (3.7), one has

|ul" 1 / / /
——dz < Vul"dxr + w|"dz’ | .
/IR‘& (1 + xn)” (n _ 1)<€n71 _ €n) R7 ’ ’ Re—1 ’ ‘

n
+

n
+

(3.7)

Using that the function g(g) = 1/("~! —&") for 0 < & < 1 achieves its minimum at ¢ = (n—1)/n

we conclude that

|u|™ no\" / / /
W e < [ nd nd
/M L z< |3 o |Vu|"dz + - lu|"dz" | |

which is the desired result. O

As a corollary of Lemma 3.2.1 and Lemma 3.2.2 we have

Corollary 3.2.3. The quantity

1/n
|ullg = (/ |Vu\"d:v+/ \u!"dx')
R™ Rn—1
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3. A quasilinear elliptic equation with exponential growth and weights in anisotropic spaces

define an equivalent norm on E.

Proof. Let u € C§°(R™). By Lemma 3.2.2 we have ||u]| < C(n)||ul|g. Now we observe that

;o 0 Jul”
+o00 ]u\"_IIVu] +o00 |u’n
< e, + / e,
—”/o T e A T

< /+00 |Vu|"dz, + (2n — 1) /+00 Ldm
— 0 n 0 (1 +$n)n ny

where above we used the Young inequality and the fact that (1 + z,)~ ") < (1 +2,)™ < 1.

Integrating we obtain

[ o < [
Rn—1 R

Jul"

— 2.
(14 z,)" v

|Vu|"dz + (2n — 1)/

n n
+ R%

Therefore,
fullp = [ vuptar s [t o
R Rn—1

<2
R

and this completes the proof. O]

o ul

" 2n —1 <(@2n-1 "
Vade + (2n-1) [ e < @ Dl
+

n
From now on, the space E is equipped with the norm || - || 5.

Remark 3.2.4. The embeddings (3.2) and (3.3) are not valid if ¢ = co. In fact, considering
the function u(z', x,) == (14+2,)"In(1 —In|x|) if (2/,x,) € B and zero otherwise, one can see
that uw € E but u & L= (R, (1 + z,)™").

Remark 3.2.5. Using that (1 + |z|)™° < (1 +2,)™™ for any B > n and assumptions (H,), in
wiew of Lemma 3.2.1, the embedding

E < L' (R}, a(z)), Vn<g<oo, (3.8)

1s continuous, which also is not valid if ¢ = oco. In fact, considering the function

In(1—Inlz|))
a()

if v € B and zero otherwise, one can see that u € E, but u ¢ L™ (Rﬁ, a(:r;)).

u(z) =

The next two compactness results play a crucial role in the proof of Theorem 3.1.1.

Lemma 3.2.6. Assume hypothesis (Hy). If 8 > n then the weighted Sobolev embedding (3.8) is

compact.
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Proof. Since E — L7 (R%, (1 + |z])™%) < L7 (R?,a(z)), is sufficient to show that uy — 0 in
LY(R", (1 + |z[)~#) whenever uy — 0 in E. To this end, let C' > 0 be such that |lu||z < C and
R > 0 to be chosen later on. Note that

|| / || / ||
B L] Y S (] S s B ] (3.9)
/m 1+ |=))? By (1+|z])? ez (1+ [2])P

Since the restriction operator u — w_, is continuous from E into E(B}) = {U|B+ NS E}
R R

and the embedding F(B}) < LY(B}, (1 + |z|)~") is compact for any ¢ > n, there exists k; € N
such that

|u|? 2

—_— - > k. 1

foyTite < vhzh (310)
R

On the other hand, using that 8 > n we see that (1 + z,)"/(1 + |z|)? — 0 as |z| — co. Thus,
we can choose R > 0, large enough, such that (1 + x,)"/(1 + |z|)? < ¢/2C. Hence, there exists
ks € N such that

ALY Y B SR
dr = dr < =, Vk2> ks 3.11
/M\B; T 1P~ Sz A+ any A+ 2P =2 > G

Since £ > 0 is arbitrary, the result follows from (3.9), (3.10) and (3.11). O

3.2.2 Trudinger-Moser type inequalities

In view of Remarks 3.2.4 and 3.2.5, it is natural to study embedding from FE into Orlicz
spaces. In all this section we consider the weight function b(z) := 1/(1 + |z|)" < 1/(1 + x,)™.

In view of Lemma 3.2.1, for any n < g < oo the embedding
E < L7 (R}, b(x)) (3.12)

is continuous. Furthermore, the same example in Remark 3.2.5 shows that this embedding is
false if ¢ = oo.

Now, considering the Young function defined by

n—2

/ k /
Wo(s) = e =% %|S|n EosER,

k=0

where n’ := n/(n — 1) and according to embedding 3.12, the following Trudinger-Moser type

inequality in the setting of F is natural.

Proposition 3.2.7. For any a > 0 we have that ¥,(u) € L*(R",b(x)). Moreover, there exists
a constant ag > 0, independent of u € E, such that

L(a) = sup /]R b(x)V,(u)dr < +o0, (3.13)

{(ueE: |lull p<1} JR?
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3. A quasilinear elliptic equation with exponential growth and weights in anisotropic spaces

for any 0 < a < «g.

Before to present the proof of Proposition 3.2.7, we establish the following version Trudinger-

Moser type inequality which will be used in the proof of Theorem 3.1.1.

Corollary 3.2.8. Assume (Hy) and let ag > 0 be given by Proposition 3.2.7. Then, for any
ue€ E and o > 0, we have that V. (u) € L'(R", a(z)). Moreover,

l(a) := sup /R” a(z)V,(u)dr < +oo,

{u€E: ||u||p<1}
for any 0 < a < ay.

Proof. By assumption (H;) we get

J

for all v € E with ||u||gz < 1. Thus, the result follows from Proposition 3.2.7. O

a(a:)llla(u)dwg/ b(x)¥,(u)de,

n n
+ R%

Now we will prove (3.13). Since

full = ( /

it is sufficient to prove that for some aq > 0 we have

1/n
(|Vul™ + b(x)|u|")dm) <Cn)|ullp, YuekFr, (3.14)

n
+

sup / b(z)V,(u)de < +o00, V0 <a<a. (3.15)
R}

{ueE: [[ullp<1}

To prove (3.15) we will combine the ideas of Kufner-Opic [30] and Yang-Zhu [47] and this will
be fulfilled in some lemmatas. First we recall a local estimate concerning the Trudinger-Moser

inequality.

Lemma 3.2.9 ([47]). For any R > 0, there exists a constant Cy = Cy(n) > 0 such that for any
y € R™ and v € Wy (Bg(y)) with |V 1r () < 1 we have

/ U, (v)dr < COR"/ |Vo|"dx.
Br(y)

Br(y)

Proof. For the proof, we refer the reader to [46, Lemma 4.1] or [47, Lemma 1]. O

Our strategy to prove Proposition 3.2.7 consists in to consider for any u € E their extensions
to the whole space R™ defined by:

uw(@' x,),  x, >0
g = (3.16)

u(z' x,),  x, <O.
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For any R > 0 we can split the integral (3.13) as follows

'),

Now we will estimate the first integral on the right hand side of (3.17).

b(2) W o (u)dz = /

Br

b(2) W, (@) dz + / b(2) W, (@)dz. (3.17)

n B

c
R

Lemma 3.2.10. Let u € E be such that ||u||lg < 1 and R > 1. Then there are as > 0 and
Co = Co(R) > 0 such that

/ b(z)W,(u)dz < Cy,

for any 0 < a < as.

Proof. Consider a cut-off function ¢ € C§°(Bag) such that 0 < ¢ < 1, ¢ = 1 in Bg and
IVe| < C/R in Byg for some C > 0. Note that i € W, "(Byz) and by straightforward
calculation we check that

[ 19enrar< 2 (/ el ivaras + [ |W|”|u|"da:)
Bagr Baor Bar

<2t (/ |Va|"dx + O—n/ \a]”da;)
Bar R Bar

1+ 2R)"
< gnt (/ \Va|"dz + C”ﬂ/ b(x)|a|”dx) :
Bar Rr Bar

/B 1V (pn)|"de < C / (Val" + b(z)al") da,

Bar

and hence,

where C} := 2" " max{1, (3C)"}. Note that v := @u/{/2C,C(n) € W, (Bag) and

IVoul|7n s, 1

—|n —|n < n <
Vol s < s | (A b)) de <l < 1

n
L™(Bar) —

where we have used b(z) < (1 + x,)7", if z, > 0, and (3.14). Since b(x) < 1, in view of
Lemma 3.2.9 and the fact that W, (cs) = ¥, (s), for all ¢ € R, we conclude that

W)U, (@)de < | U (oa)de < [ W L ()dz < Cy(2R)",
[ e < [ waemdr< [ w0 < Cuz)

Bar
fo<a<ay:= Ozn/(2C1C’(n))ﬁ and this completes the proof of Lemma 3.2.10.

Now we proceed to estimate the second integral on the right hand side of (3.17).

Lemma 3.2.11. Let uw € E be such that ||ul|lg < 1.

Then there exist ag > 0 and Cy > 0
independent of u € E such that

/ b(x)V,(u)dx < Oy,

3r

foranyr>1and 0 < a < as.

63



3. A quasilinear elliptic equation with exponential growth and weights in anisotropic spaces

Proof. Given r > 1 and o > r we define the annuli
A7 ={ze Bl |z|<o}={zeR":r <|z| <o}

A trick adaption of Besicovitch covering lemma [26] (see [18, estimate (4.8)]) shows that there

exist a sequence of points {zy}r € A7 and a universal constant § > 0 such that

A‘{QUU;” and ZXUk(x)ge, VreR",
k k

where U;/Q =B <xk, %) and xy, denotes the function characteristic of Uy, := B (xk, %) Let
u € F be such that ||u]|g < 1. In order to estimate the integral of u in Af,, we fix 1 <r <o

and we follow as in [30] introducing the set of indices
Kpoi={keN: 037N B;, £ o}

It is easy to see that, if U, N B, # &, then Uy, C Bf. Moreover, since 1 < r < 3r, we have that
A§,. C AJ. Now using and the definition of K, , we get

ag.c | n’c | neBcn (3.18)

keKr,o keKr,a

and hence

/A b Va(i)dr < 3 /U @)W (), (3.19)

o
3r keK’r,o

Next, we estimate the integral on the right hand side of (3.19). Since

2 4
§|xk| < x| < §|xk|, Ve U,

we have . .
< bz) < , VzeU. (3.20)
(1+ (4/3)[zel)" (1+ (2/3)]ax])" *
For any k € K,, fixed, in view of (3.20) we get
/ b(a) U (@) de < L / W, (i)d (3.21)
)V, (u)dr < o(u)dx. .
ul/2 (1 +(2/3)|zx)™ Jupre

Now, consider a cut-off function ¢, € C§°(Uy) such that 0 < ¢ < 1in U, ¢ = 1 in U;/Q
and |Vei| < C/|zx| in U, for some constant C' > 0. Then we see that ¢, € W, (Uy) and by
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3. A quasilinear elliptic equation with exponential growth and weights in anisotropic spaces

straightforward computation we have

V(pn)|"de < 271 ( oul" [Vl dz + |wk|"|u|"dx)
Uk Uk

<o </ Valrds + £ /|a|"dx)
U |xk’n U

§2"1< \vm”dﬁcn(l*<4/3)|“”|)n/ b(x)|ayndx).
Up Uk

||

Uk

Recalling that k € K, ,, in view of (3.18), we have that z;, € B¢ and consequently |zx| > r > 1.
This and the above estimate imply that

V(gua)"de < Cs / (IVal" + b(a)al") da,

Uk Uy

where Cs := 2" " max{1, (7C/3)"}. Thus, the function vy, := @i/ /2C5C(n) € Wy ™(Uy) and

IVertlfn,) 1
2C05C(n)  — 2C(n)

IVl ) =

/ (|Va|™ + b(z)|a|™) dz < 1.
Uy

Applying Lemma 3.2.9 with Bg(y) = U, v = v;, and using the fact that ¥, (cs) = ¥
all c € R, we get

(s), for

ale[”’

/ ) U, (prt)dx §/ v 1 (vg)dr < Cy (@) |Voug|"dz,
U,/

U a(2C3C(n))n—1

for any 0 < a < oz := an/(QCgC(n))ﬁ and hence

_ Co|$k|"/ _ _
U, (0)dr < ———— Va|™ + b(x)|a|™) dx.
o e < g |9+

This together with estimates (3.19), (3.21) and the fact that s"/(1+c¢s)" < 1/c" for any ¢, s > 0
imply that

i _Go [ze" ul” x)|ul") dx
| bpvatnis < b X ey [ v v

Co o o
< 2+1C () Z / (IVal™ + b(x)[ul") xv,dz,

keK”’,O’

where the last inequality we used (3.18). In view of the Besicovitch covering lemma we obtain

/U b(a) W, (@)da < 25—279(71)/3 (IVal" + b(x)[al") da.

3r
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Taking the limit as 0 — 400 we get

/B D)o (@)dz < CO | (IVal" + b(x)|al") da,

8r B
for any 0 < a < a3 := ozn/(QCgC(n))ﬁ and this completes the proof of Lemma 3.2.11. O

Finalizing the proof of (3.15). The proof follows directly from (3.17), Lemmas 3.2.10 and 3.2.11

by choosing R = 3r and a; = min{ay, ag}. ]

Finalizing the proof of Proposition 3.2.7. By (3.14) and the fact that U, (cs) = \Iialdn/(s), for all

c € R, we get
U
b(w)\lfallung' (Hqu) dr < /]R

J

for all uw € F with ||u||g < 1. This together with (3.14) imply that

sup /b(x)\lla(u)dxg sup /b(:p)\l}a(c(n))n, <L> dx
{ueE: ullp<1} JR2 {ueE: |ul|p<1} JR2 (i

< sup / ()W iy’ (—> dx
fueB: July<1} Jr2 N

and the result follows from (3.15) by choosing ag = ay/(C(n))". O

b(2) W, (u)dz = / D)W oy (H;W) dx

2 2 2
+ R +

3.3 Proof of the main results

In this section, we prove Theorems 3.1.1 and 3.1.2. Since h does not belong to any Lebesgue

space we will consider the subspace of E defined by

E" = uEE:/
R

hlu|"dx < oo} :

n
equipped with the norm

1/n

n/r
Jullgr = | s + ( | h|u|’"dx)

+

Here we seek for weak solutions of problem (P,), which means a function u € E” verifying

J

for all p € E”. In view of assumption (H;), Lemma 3.2.1 and Theorem 3.2.8 the energy functional

lu|" " 2upds’ + /

hlu|" " *updr = )\/ af(z,u)pdr, (3.22)
R

R}

|Vu|"2VuVedr + /

n n—1 n
+ R +
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associated to problem (P,), namely I, : E” — R defined by

1 1 1
I\(u) = - / \Vu|"dz + — / |u|"dx" + ;/ hlu|"dz — )\/ aF (z,u)dz,
n Rn—1 ’i ’i

is well defined. Furthermore, standard arguments show that v € E" is a critical points of I, if,
and only if, it is a weak solution of problem (P,).
Now, we will prove that I, satisfies the Mountain Pass geometry.
Lemma 3.3.1. Assume n <r < oo, (f1), (f2) and (Hy) — (H3). Then
(i) there exist p > 0 and co > 0 such that I(u) > co > 0 if ||ul|gr = p;
(ii) there exists vy € E" with ||vo||gr > p such that I\(vy) < 0.
Proof. By (f1), given 7 > 0 there exists § > 0 such that

(A1

F(z,s) < T_T)|s|"7 V(x,s) € R} x(0,9).

This together with (3.1) imply that there exists Cy > 0 such that
F( ()‘1 - 7_) n r+1 n
z,5) < ——=|s|" + CyWUq(s)|s|"™, V(z,s) € R} xR, (3.23)
n

where ag > 0 is given by Corollary 3.2.8. By Holder inequality with conjugate exponents
1/ry +1/ry =1, we get

1/7‘1 1/7’2
/a\uv““\yao(u)dxg(/ afu| D" ) </ a[\Ifao(u)]”d:c> |
n n Rn
+

+

Using that W,(cs) = W, w(s), for all ¢ € R, (Wa(s))? < Wpa(s) (see [45, Lemma 2.1]),
lullg < ||u||gr, for all uw € E", and Corollary 3.2.8 we get

1/r1 1/re
u
/ alu|" T, (u)dr < / alu|"TM / a¥, ool dx < Cy|lullt,
n n R" rraoitlipr ||u||E
¥ ¥ ¥

if 7, > 1 sufficiently close to 1 and ||u||z- sufficiently small such that r5||ul|%, < 1. This together
with (3.23) and the definition of A; imply that

(A1 —17) ()\1 )

[l e o + CallullsE < lullz + Csllull:

/ aF(z,u)dx <
n
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Thus,

| DA
D) = el + el = A [ aPla)ds

n
+

1 n 1 r (/\1 B T) n r+1
> Ll + ol — A (Pl + Calul (3.24)
1 /\<)\1 B T) n 1 r r
= (5= 2= o+ bl — ol

Since we can choose 0 < 7 < A; sufficiently close to A; such that A(A\y — 7)/nA; < 1/2n and

assume without loss of generality that ||ul|g < 1, from (3.24), we get

1 T 1 T T
I\(u) > %HUHE + ;HUHLT(Ri,h) — Csllul|z
11y 1,
ZM%%Q}EMW—%M$E

where in the last inequality we used that |jul[, < 2% (||jul[} + ||u||2r(Ri7h)), and the item (i) is

proved. Now we prove item (ii). By (f2) for each M > 0 there exists sq > 0 such that
F(x,s) > Ms", V(x,5) € R} x (s0,00). (3.25)

Assume ¢ # 0 is supported in a bounded domain € C R?. Using that F' is continuous, we
conclude that F' is bounded in the compact € x [0, so]. This together with (3.25) imply that

there exist ¢q, co > 0 such that
F(x,8) > c18" —ca, VY (z,s) € R} x RY.
It follows that

1 1
Bite) = Ll + 1 [ Htelrde =X [ aP(o,t)ds
n rJo Q
t" t"
< Dellp+ = [ hlelds v [ alepide + cafol.
n T Jo Q
Since pu > r, I verifies (i7) by choosing vy = top with ¢ sufficiently large. O]

In view of Lemma 3.3.1, it is well defined the minimax level

¢x = Inf max L(y(t) >0, VA>0,

where I' := {v € C([0,1], E") : v(0) = 0 and (1) = vo}. Applying the mountain pass theorem
without the (PS) condition (see [44, Theorem 1.15])) we find a sequence (u;) C E" at the
minimax level ¢y, that is
I)\(Uk) — C) and I;\(Uk) — 0.
The next result prove that I, satisfies the Palais-Smale condition.

Lemma 3.3.2. Assume n <r < oo and (Hy). Then the functional I satisfies (PS)-condition.
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Proof. Let (ug) C E” be a (PS)-sequence associated to Iy, i.e.,
In(ug) = ¢ and  I§(u) — 0.

By assumption (fy) we have

1 1 1 1 1
L(ug) — —(, Sy Y (L Y A A
A(ur) M< Aur), ur) (n #) |url|% + (T u)/R lug|"dx

i
R

1
a <—f(:1:, u)u — F(x,u)) dx
i H
1 1 1 1
> (— — —) HukH% + <— - —> / h\uk\’"daj
noop row) Jen

Thus, we get

1 1 1 1
(— — —) |k |ls + (— — —) / hlug|"dx < ¢+ o (||ukl|gr), VEk €N (3.26)
7 rou) e

n n
+

We claim that (uy) is bounded. Indeed, suppose by contradiction that ||ug||zr — oo as k — oc.
Since n < 1 < u, in view of (3.26) we get

r
g || 0 [kl n )

0, as k — oo. (3.27)
g - l|ur| -

This combined with the fact that

I
ek | DD gt = 00, sk — oo,
imply that
HukHZT(Ri,h)
W 00, as k — oo.
Consequently,

||uk||7£T(Ri’h) — 00, as k — oo.

This together with (3.27) and the fact that n < r imply

||uk||7LLT(Ri,h) ||Uk||2r(m,h)

[|ur| -

n—r

= ||ug |7 mn — 0, as k — oo,
L™ (R, h)

| ur £r

which is a contradiction and hence (uy) is bounded. Hence, we can use Lemma 3.2.6 to assume
that

up — uin B
up(z) = u(z) a.e. in R}

ur, — win LY(RY, a)
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and (I3 (ug) — I5(u), uxy —u) = 0x(1). Now we observe that
k(1) = (T (ug) — Ty(0), s — ) = A(K) — AB(E), (3.28)
where

Ak) = / (IVug|" 2V — |Vl 2Vu) (Vuy, — Vu) dz
R

+

/ (Jur"2ug = u)""?u) (ugp — ) da’ + / ho(Jug|" g, — |u]""*u) (up — u) do
Rn—1

R}

and

B(k) = /R" a(f(x,ur) — f(z,u)) (up —u) dz.

We claim that B(k) = ox(1). In fact, we have

|B(k)| < /R a(|f (@, u)| + |f (2, u)]) lug = ulde < Bi(k) + Ba(k),

n
+

where

By(k) == / alf(x,ug)||ug —ulde and Bs(k) := / alf(x,u)||uy — uldz.
R R}
On the other hand, it follows from (3.1) and (f;) that there are constants C;,Cy > 0 and a > 0

to be chosen later such that
|f(2,8)] < Cils|" ' + CoWy(s), V(z,s) € R} xR.

Thus,
Bi(k) < C) /

alug|" " ug — uldz + Cy / aW o (ug) |ug — uldz.
R

¥ R}
Now we observe that using the Holder inequality with conjugate exponents 1/n+ 1/n’ =1 and

the fact that (U, (s))” < Ua(s) (see [45, Lemma 2.1]) we get

1/n'
Bulh) < Crlluel2bey oo Ntk — e ey + ( / awnfawwda:) et = ll e ey

n
+

Since uy — u in L"(R%, a(x)) we get

Bi(k) < ox(1) + < /

Using that (uy) is bounded in E, by choosing a > 0 such that n’a/||u.||% < oo, and applying the

1/n'
a\IJn/a(uk)dx> or(1).

n
+
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Corollary 3.2.8 we obtain C' > 0 that does not depend on & such that

/ CL\I/n’OJ(uk')de‘ S / aan’allw\\’gf (u—> dl’ C
" i [ur s

Hence Bi(k) = o(1), and similarly Bs(k) = og(1). Thus, from (3.28) we concluded that
A(k) = ox(1). For all £,¢ € R™, we know that there exists a constant C; = Cy(n) > 0 (see
inequality (2.2) in [40]) such that

Cilg = ¢" < (JE" e =[O =), if n>2 (3.29)

This inequality together with the facts that A(k) = ox(1) and h > 0 imply that
C(k) ::/ (|Vuk|"*Vuy, — [Vue|"*Vug) (Vuy, — Vug) da = o(1)
n

D(k) := /Rn1 (] ?ur — Juol"*uo) (ux — uo) da’ = o0x(1)
B(k) = / B (el — o™ 2uo) (ux — o) dx = o (1).
T
Using once again inequality (3.29), we get Cy = Cy(n) > 0 such that
Jur — wollr = llur — volll + [lux — wollZr@n ny < C1 (C(k) + D(k) + (E(k))") = ox(1),

which implies that u;, — ug in £" and this completes the proof. O

Finalizing the proof of Theorem 3.1.1. Taking ¢ = w in (3.22), we have that any weak solution
u of problem (P,) satisfies the equality

ol + el ey = Mol e

so that problem (P,) does not have any nontrivial solution whenever A < 0 and hence the item
(7) in Theorem 3.1.1 is provided. Finally the item (éi) in Theorem 3.1.1 follows by Lemmas 3.3.1
and 3.3.2 and the Mountain Pass theorem. O

In order to prove our multiplicity result we shall use the following version of the symmetric

mountain pass theorem (see [8]).

Theorem 3.3.3. Let E be a real infinite-dimensional Banach space and I € CY'(E, R) an even
functional satisfying the PS condition and the following hypotheses:

(I1) I(0) = 0 and there are constants p, o > 0 such that I|pp,0) > ;
(Iy) for any finite dimensional E C E, EN{u € E : I(u) > 0} is bounded.

Then I has an unbounded sequence of critical values.
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Finalizing the proof of Theorem 3.1.2. The proof of item (I ) follows as in the proof of Lemma 3.3.1.
Now we prove item (/). Suppose by contradiction that (/3) does not hold. Then, there exists a

finite dimensional £ C E” and a sequence (uy,) C E satisfying
Ii(ug) >0, k€N and |ug||gr — ccask — co. (3.30)
By using the local condition (f;) and (f3) we can obtain v > 0 such that
F(z,s) > v|s|™, uniformly with respect tox € R, Vs &R,

This inequality together with the fact that all the norms in E are equivalent, there exist b > 0
such that . .
0< () = sl + ke~ [ aF(eu)ds

RJr
1 1
< ﬁ”“kH% + ;Hukuzr(m,h) - Mllukl%(m,a)

1 n c , =
< il + el = Avbllullz, VheN.
Thus,

7 1 n 1 T
Al < lleller + Zlluller, VEEN,

which contradicts (3.30), since n < r < 7y, and item ([3) is proved. In view of Lemma 3.3.2,
for each A > 0 we can apply Theorem 3.3.3 to obtain an unbounded sequence of critical values
of I, to which we can associate at least two critical points because the functional I, is even.

Therefore, the proof of Theorem 3.1.1 is complete. O
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Chapter 4

A Hardy-Sobolev type inequality and its

applications

In this chapter we present a new Hardy-Sobolev type inequality without the the trace and
as an application we prove existence, nonexistence and multiplicity of solutions for an indefi-
nite quasilinear elliptic equation with Neumann boundary condition and weights in anisotropic
spaces. This results is part of the submitted paper [22].

This chapter is organized as follows. Section 4.1 contains the necessary preliminary results
on the weighted Sobolev embeddings needed in the sequel. Section 4.2 presents the indefinite
quasilinear elliptic problem which will be studied in this chapter. In Section 4.3, we present the

proof of Theorem 4.2.2. Finally, in Section 4.4, we discuss the proof of Theorem 4.2.3.

4.1 A Hardy-Sobolev type inequality and its consequences

In order to study quasilinear elliptic problems in the upper half-space with Neumann bound-
ary conditions we will establish another Hardy-Sobolev type inequality. The next weighed Hardy-

Sobolev inequality will be fundamental in our approach.

Proposition 4.1.1. Let 1 < p <n and a > 1. Then there is C' = C(n,«,p) > 0 such that

- p/p+ .

/ \u— dz < C/ \VulPdz, Yu€ Cy(R"), where p,:= ]M

gy (1 +2,)” R n—op
+

n
+

Proof. Let v € Cj(R") and ¢ € R with o # —1. Using integration by parts, we obtain

(0 +1) /n (14 x,)%|v|dx = /R" O, (1 + 2,) ) |v|dz
el AR () Iy

n n—1
n R
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4. A Hardy-Sobolev type inequality and its applications

where we are using that the normal unit vector pointing out of R*~! is n = (0/, —1). Thus,

lo+1] | (14 2,)|v|dx < /

R? R

(1+xn)”+1|VU\d:1:—|—/ lv|da’.

n n—1
n R

Applying this inequality with v = |u|?, ¢ > 1, and 0 + 1 < 0 we get

n—1

o+ 1] (1—|—xn)"|u|qd$§/

R? R?

<o
R

From the trace inequality, for u € C}(R") and ¢ = p., there exists C; = C(n) > 0 such that

(n—1)/(n—p)
/ P da’ < C / Vuldz | (4.2)
Rn—1 R

On the other hand, by the Hélder inequality and the embedding D*F(R) — LP (R) we see
that

(p—1)/p 1/p

P Vuldz < p. / |ulP” da / |Vu|Pdx
R™ R%}
(n—1)/(n—p)
< p.Cy (/ |Vu|pd:p) :
R

Combining inequalities (4.1), (4.2) and (4.3) we get

(n=1)/(n—p)
|Vu|pdx> +Cy (/
R

(n—1)/(n—p)
|Vul? dx) :

(14 2,)7 M q|u| | Vu|ds + / |u|?dx’
R

(4.1)

(14 2,)7 Hu|T ! Vu|de + / |ul?dx’.

n n—1
i R

n
+

p*/ (14 2,)7Hu
R}

(4.3)

n
+

up- (n=1)/(np)
o+ 1 —————dx < p.Cy / |Vu|Pdx
rr (1+2)77 R

.Gyt ) ( /

Thus, considering o = —o, we obtain

P p/p- p/ps
/ u I < (p*Cg + C1> / \VulPdz,
e (1+2,) | —a+1| R

which is the desired result. O

n
+

n
+

As a consequence of Proposition 4.1.1 we have the following inequality.

Lemma 4.1.2. Let 1 < p <n and o > 1. Then there is C = C(n,a,p,q) > 0 such that

ulr_ ™" np
/ o) w0 [ vupdn Ve Cr@). vpo<q<p =T (4
R? -

I0)



4. A Hardy-Sobolev type inequality and its applications

Furthermore, the condition q > p, is necessary.

Proof. The proof follows of Proposition 4.1.1 and an interpolation argument. To see that the
condition g > p, is necessary, we will argue as in [11, Proposition 3.5]. Let ¢ € C§°(R™) such
that ¢(x) =1 for |z| <1 and ¢(x) = 0 for |x| > 2. We define, for any t > 0, ¢:(x) = ¢(x/t) for
x € R™. A straightforward calculation shows that there exist C,Cs > 0 independent of ¢ such
that

| woras=ci (45)

n
+

q t/\/§ 1
/ Mdm > / / —didz,,
e (1+20) 0 <tz (14 2n)*

1 1 .
B [(a -1) (o —1)(1 +t/\/§)a1] Cat™.

Assume by contradiction that there exists a constant C3 > 0 such that for all v € C§°(R") we

/ VupPdz / Vo, |dz
n R p(n—1)

0<Cy< + < i <" (4.6)

- /q — p/qa —
[l g 6]
</Rz <1+xn>ad”’) (fm <1+wn>adx>

for some Cy > 0 and ¢ large. If ¢ < p, we obtain a contradiction letting ¢ — oo and this finishes
the proof. 0

and

have

In order to perform a variational approach we introduce our functional space and its embed-
dings into weighted Lebesgue spaces. To this, denote by C§°(R" ) the space of C§°(R")—functions
restricted to R”. We define the weighted Sobolev space E as the completion of C§°(R") with

respect to the norm
1/p
Julp = ( / |w|pda:> .
RTL

+

As a consequence of Lemma 4.1.2, we have the following embedding result.
Lemma 4.1.3. Assume 1 <p <n and o > 1. Then the weighted Sobolev embedding

1

FE—IR" ———
( " (1+2n)

) , Vpe <q<p, (4.7)

1S continuous.

4.2 Applications

In this section, we present the indefinite quasilinear elliptic problem which will be studied

existence, nonexistence and multiplicity of nontrivial solutions, as a consequence of Hardy-
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4. A Hardy-Sobolev type inequality and its applications

Sobolev inequality obtained in Proposition (4.1.1), to namely:

{—div(|Vu|p2Vu) = Xa(z)u|"?u —b(z)lu]"?u in RY, Py)
py

|Vu|P2Vu-v = 0 on R"1

where 1 < p < n, v denotes the unit outward normal on the boundary, A is a real parameter and
the weighted functions a(z) and b(z) satisfy some suitable conditions that we will describe later
on. Our interest is to analyze the interplay between the powers ¢ and r. Thus, we will consider

two cases:
(I) r>qand p, < q < p%
(I) 1<p<r<gqandp, <qg<p"

Motivated by the works of Alama-Tarrantelo [7], Filippucci-Pucci-Radulescu [25], Lyberopou-
los [27], Perera [31] and Pfliger [34], our main purpose in the present paper is to use variational
techniques to investigate the existence, nonexistence and multiplicity of nontrivial weak solu-
tions for the problem (P,). We want to remark that the main features of this class of problems
is that we are facing an indefinite nonlinearity and the weight function a(x) is allowed to be in

anisotropic Lebesgue spaces.

We begin by considering the case r > ¢. To this end, we shall assume the following assump-

tions:

(H1) a:RY — R is a nontrivial measurable function and there are constants a > 1 and ¢; > 0

such that
&

0<al@) < Ty

. "
a.e. in  RY;

(H2) b:R? — R is a positive continuous function satisfying

T

a1
/ —dr < oc0.
r? br—a

n
+

It is worthwhile mentioning that the hypothesis (Hs) appears in the paper [7].

ar
q

Remark 4.2.1. Note that if a(x) satisfies (Hy) then the function b(x) = (1 + |z|)?/(1 + x,)
with @ > n(r — q)/q satisfies the assumption (Hs). In fact, if 0 > n(r — q)/q we have

= 1 1+a,)ma 1
/ aqqdmg/ ﬂ( +x )gqqu:/ — dx<oo
R br=a 'y (L4 an) =0 (1 + |z|)7 RY (14 |z|)7=a

Under this hypotheses, our main result can be stated as follows.

Theorem 4.2.2. Let r > q and assume the hypotheses (Hy) — (Ha).

(1) If p. < q < p*, there exists \* > 0 such that problem (Py) has only the trivial solution for
all A € (—o0, A*);

7



4. A Hardy-Sobolev type inequality and its applications

(ii) If p. < q < p*, there exists A > 0 such that problem (Py) has at least a nontrivial weak
solution for all \ € [\, 00);

(iii) If p. < q < p*, there exists A > X such that problem (Py) has at least two nontrivial weak

solutions uy >y for all X € (A, 00);

(iv) If p. < q < p*, for any m € N there exists A,,, > 0 such that problem (P,) has at least m

pairs of nontrivial weak solutions for all A > A,,.

The proof of the existence in Theorem 4.2.2 is based on minimization techniques. To obtain
the second solution we will follow a truncation argument. The multiplicity result is obtained by

applying the symmetric mountain pass theorem.
Next we deal with the case r < ¢. In order to prove the existence of solutions for problem
(Py), instead of hypotheses (H;) — (Hz), we will assume:

(IT[ 1) a:R% — R is a nontrivial measurable function and there are c; > 0 and o > 1 such that

0<a(z) < e

——— ae. in R".
- (1+ Jzf)e ’

(?[2) b: R} — R is a measurable positive function.
In this case, our main result is stated as follows.
Theorem 4.2.3. Let p, <r < q < p* and assume the hypotheses (Hy) — (Hy). Then
(i) the problem (Py) has no nontrivial weak solution for every A € (—oo,0];
(ii) the problem (Py) has an infinite number of nontrivial weak solutions for every A € (0,00).

The proof of Theorem 4.2.3 is obtained by performing a variational approach based on the
symmetric mountain pass theorem.

Hereafter in this chapter, Br denotes the ball of center zero and radius R > 0 in R",
B} := BRNR", (Bg)° denotes R™\ By, the complement of the set By C R", and (B};)¢ denotes
R™ \ B}, the complement of the set B}, C R".

4.3 Proof of Theorem 4.2.2

In this section, we present the proof of Theorem 4.2.2. We will split the proof into three
subsections.
First, we will define our variational approach. Since the weighted function b(x) does not

belongs to any Lebesgue space we need consider the subspace of E defined by

ETP = uEE:/
R

78
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equipped with the norm
1/p
ealls = (ol + el ey ) -

Remark 4.3.1. Suppose that the weight function a(z) satisfies hypotheses (Hy) or (f[l) By
Lemma 4.1.3, the weighted Sobolev embeddings

E < L (R}, a(z)) (4.8)
and
E™ — L9 (R}, a(z)) (4.9)
are continuous if p, < q < p*.

The next two compactness results play a crucial role in the proof of Theorem 4.2.2 and

Theorem 4.2.3, respectively.

Lemma 4.3.2. Assume 1 < p <n and (Hy)— (Hs). Then the weighted Sobolev embedding (4.9)
1s compact if p, < q < p*.

Proof. We will show that u, — 0 in LY(R", a(z)) whenever u;, — 0 in E™P. Indeed, let C' > 0 be
such that ||ug| grr < C and R > 0 to be chosen during the proof independently of u. We have

J

Since the restriction operator u — v . is continuous from £™ into E™P(B}) := {U|B+ NS E’”’p}
R R

a|uk|qu—/ a|uk|qu+/ aluy|?dx. (4.10)
S R

+
1 Bp T\Br

and the embedding E"?(Bj},) — LB}, a(x)) is compact, there exists k; € N such that

/B+ aluy,|?dz < % V> ki, (4.11)

for any p. < ¢ < p*. On the other hand, by assumption (Hs), the Holder inequality and choosing
R > 0 sufficiently large, we get

r (r=q)/r q/r
ar-a
/ alug|?dx < / —dx / blug|"dx
R7\B} R7\B} br=a n\Bt
e (r—q)/r .
r—q

<C / —dx < -.
R7\B}; br=a 2

n
+

This combined with (4.10) and (4.11) imply the desired result. O

Lemma 4.3.3. Assume 1 < p < n and (Ifll) If a > n then the weighted Sobolev embedding
(4.8) is compact if p. < q < p*.

Proof. Since E — L7 (R%, (1 + |z])™®) < L (R7%,a(x)), is sufficient to show that uy — 0 in
LYRY, (1 + |z|)~*) whenever ux — 0 in E. To this end, let C' > 0 be such that |Ju|p < C and
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4. A Hardy-Sobolev type inequality and its applications

R > 0 to be chosen during the proof independently of u. We have

q q q
/ —|uk| dz :/ —|uk| d:zc—l—/ —|uk| dz.
re (14 [z[)® B (1+[z])* r\gf (1 [z])

n
+

Arguing as in the proof of Lemma 4.3.2, we obtain k; € N such that

|up|? £
g e S > ky
/B; (1 + Ja])e 2 '

for any p, < ¢ < p*. On the other hand, choosing 1 < 8 < a we see that (1+z,)?/(1+|z[)* = 0
as |x| — oo. Thus, we can choose R > 0, large enough, such that (1 + z,,)?/(1 + |z])* < &/2C.
Hence, there exists k3 € N such that

q q 1 B
/ ﬂdaz:/ ] 6( ) < S Wk h,
R \B}, (1+ [z])* R \B}; (1+2a)7 (1 + |z])* 2

which implies the desired result. O

Here, by a weak solution of problem (P,), we mean a nontrivial function u € E™ verifying

J

In view of assumption (H;), Lemma 4.1.3 the energy functional associated to problem (Py)
I, : E"P — R defined by

I\(u) = %/R

is well defined. Furthermore, standard arguments show that v € E™P is a critical point of I, if

|VulP2VuVpdr = )\/

alu| " *updz —/ blu|"2updr, Vo€ E™P. (4.12)
R R

n n n
+ + +

1
|Vu|pdx+—/ b|u|rdx—é/ alul?dz,
rJre q Jr

n n
+ +

and only if is a weak solution of problem (Py).

4.3.1 Nonexistence

In this section we present the proof of item (i) in Theorem 4.2.2. Suppose that u € E™ is a
nontrivial weak solution of (P,). If A < 0 the result is immediate. Thus, we assume that A > 0

and taking ¢ = u as a test function in (4.12) we obtain

J

Using the Young inequality we get

\a /g —q. T
)\/ ayu|qcza;=/ ?(bqu\q) o <. q)\rq/ “ d:v—i—g/ blu|" da.
R rn br r Rr br—a T Jr

n n n
+ + +

]Vu]pda::)\/ a]u|qda:—/ blu|"dz. (4.13)
n R

n n
+ RZ +

n
+
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This together with (4.13) and the fact that ¢ < r imply

Jully < “=IA /R Cdr+ I pfuprae < T /R Y da. (4.14)

— T
r—q RQL_

n n r—q
+ +

Since p < ps < ¢, combining (4.13) with Lemma 4.1.3 and the fact that b > 0 we get

p/q
C (/ a|u\qu> <N ullf < )\/ alul?dx (4.15)
R” R?

+ +

for some constant C' > 0. Thus,

(C’A‘l)ﬁ < / alul?dzx.
Ry
Using the first inequality in (4.15) we obtain C (C_')Fl)ﬁ < ||lul/%. This together with (4.14)

imply that
(r—q)(g—p)/q(r—p)

r —1
A>a= oL /‘”;qu
r—q R br—d

To conclude, we define

A" =sup{A > 0: (P,) does not admits any nontivial weak solution for all ;1 < A}.

Therefore, A* > X\ > 0 and Theorem 4.2.2 holds true for all A < \*.

4.3.2 The first solution

In this subsection, by using minimization argument we will prove item (ii) in Theorem 4.1.3.

We first recall a basic estimate (see [7]).

Remark 4.3.4. Let 0 < f < and k,l € (0,00). Then there ezists a constant C' = C(f,7v) >0

such that ,

k\ -8
krsrﬁ—uswgcw,wk(T) . WseR

In order to use the direct methods of the calculus of variations we need the following result.

Lemma 4.3.5. Let p. < q < p*, v > q and assume (Hy) — (Hs). Then, for all X > 0, the
functional Jy : E™P — R defined by

= [ P,
RY
where F)\(z,s) := Aa(x)|s|?/q—b(z)|s|"/r is weakly lower semicontinuous. As a consequence the

functional I is lower semicontinuous in E™P.
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Proof. Assume that u;, — ug in E™P. Taking into account that

Fy(z,s) = a(z)|s|"*s—b(z)|s|" s, Fu(@,s) = (g—1a(@)|s|"*=(r—1)b(z)|s|"* s € R\{0},

we get .
F(z,ug) — F(z,u) = /0 Fy(x,up + t(ugp — uo))(ugp — ug)dt
and .
Fy(x,ug + t(ug —ug)) — Fs(x,up) = /0 Fis(x,up + s(ur — up))(up — ug)ds.
Consequently,

Pl = Fl o) = /0 Uo o, uo + s(ug — o)) (ux — uo)ds + F(w, uo) | (ur — uo)dt
= /O /Ot Fou(x,uo + s(up, — uo)) (ug, — ug)?dsdt + F (2, uo) (ugp — ug).

Thus, using Remark 4.3.4 we get

r—2
ar-a
|F'(2, up) — F(z,u0)| < Cy—= (up, — up)? + | Fy (2, uo) (ug, — up)|,

T—q

where Cy = C4(q, r))\%. Applying the Holder inequality and using Lemma 4.3.2 we obtain
r—2

v —2 2
La s (¢-2)/q . /4
(ug — up) == < —dx aluy, — uplldz — 0.
R br=a R br=q R™

n
+ +

On the other hand, considering the linear functional &4 : E™? — R defined by

Oy(v) = /n F,(z,up)vdz,

+

we see that

Y

a|u0\q1\v\dx+/ blug|" "t v|d
R

n n
+ R

-1 r—
< Nuoll o e a1V 1 2o a@) + 110l gy 10 2r @y b < Cllullzer,

and hence ®( is continuous. Therefore, if u;, — ug in £™P we have

lim Fo(z,up)(ur — up)dx = 0,
k—o0 R

which implies the desired result. O

Now we establish some geometric properties of the energy functional 7.
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Lemma 4.3.6. Let p, < g < p*, r > q and assume (Hy) — (Hs). For all A > 0 the functional I,

1S coercive.
Proof. Since A\, a,b > 0 and g < r, by Remark 4.3.4 we obtain

1 =3 § =
/ (&W - ﬁw) <Cr—rr [ 2a (ﬁ) —C [ (] <o
n q 27' qrr—q Ry_'z— b n b'f‘fq

+ +

Thus, we get

1 1 A b
L(w) == [ |VuPdz+— | blul'ds— 2t = |uf") da
P Jr 2r R? r? \ 4

1 1
> —||lully + — blu|"dz — C
> lully+ 5 [ Hulde =,

n
+

n
which implies that I, is coercive and the proof is completed. O

Lemma 4.3.7. Let p. < q < p*, r > q and assume (Hy) — (Hz). Then there exists A > 0 such
that

—oo < inf Ij(u) <0, VA>A (4.16)

uEE™P
blu|"dx :/ alul?=15.
R}

A= inf {guu\|’;+9/
ueE™r | p r Jr

We claim that A > 0. Otherwise, there exists a sequence (ux) C E™ such that

Proof. Let

n
q p 94 . q_
=gl + = blug|"dr = ox(1) and alugl? = 1.
p T Jrn R?

Thus, by using the Hélder inequality we have

. (r—a)/r
ar—a
1=/ alug|? < / —dr /
R? R? br—a R

n
+

/4
b]uk|rdx> — 0, (4.17)

n
+

which is a contradiction. Now if A > A, by the definition of A there exists u), € E™ with
Jan alux|? =1 such that
+

A>€mﬂ%+€/ blus|"da.
p rJry

Consequently,
Lo ] LA ,
I(uy) = —|lually + = bluy|"dx — — aluy|? < 0.
p T JRrn q Jr

n
+

Therefore, (4.16) holds. O

Lemma 4.3.8. Let p, < ¢ < p*, r > q and assume (Hy) — (Hs). For all A\ > A problem (P))

has a nontrivial weak solution.
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Proof. Using the direct method of the calculus of variations, from Lemmas 4.3.5, 4.3.6 and 4.3.7,
for all A > A there exists uy € E™ \ {0} such that

—00 < ueirEl‘gvP I,\(u) = [)\(U)\) < 0.

Therefore, problem (P,) has a nontrivial weak solution u, with I, (u,) < 0 for all A > A. Since

I\(uy) = I\(Juy|) we may assume that uy > 0. O

Setting
A :=inf{\ > 0: (P,) has a nontrivial weak solution for all y > A},

we clearly have that \* < A< A.
Next we will prove that problem (Pj5) has a nontrivial weak solution when p < ¢. To this

end, we need the following result.

Lemma 4.3.9. Let p. < g < p*, r > q and assume (Hy) — (Hs). If A > 0 and u € E™ is a

nontrivial weak solution of problem (Py) then

T

T

||lull% + i / blu|"dz < T— 4954 / ar;q dr. (4.18)
R7 r R

r 1 br—q

Furthermore, there exists a constant K > 0 independent of u such that
)|z > KXo (4.19)

Proof. If u € E is a weak solution of problem (P,), proceeding as in (4.17), we get

lull% + /
R

which gives estimate (4.18). Now we will prove (4.19). Using again that u is a weak solution of

T

b|u|rdx:)\/ alu|?dx < T_q/\""ifI/ az daH—g/ blul"dx
R r R rJr

n n r—q n
+ + +

n
+

problem (P,) we see that
1
XHUH% < ||U||qu(R1,a(x))-

This combined with Lemma 4.1.3 show that

1
Collull: = ||u||%q(R1,a(x)) 2 XHU||%7 VueF,

for some constant C;, > 0. Thus, using that p < ¢ and u # 0 we get
=L
[ul|p = Cq~" Av=r,

-1
which implies that (4.19) holds by choosing K = C{7". O

Lemma 4.3.10. The problem (P5) has a nontrivial weak solution.
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Proof. Consider a sequence A\, — A with A\, > \. By the definition of \, for each & the problem
(P, ) has a nontrivial weak solution uy. Furthermore, the sequence (uy) is bounded in E in view
of Lemma 4.3.9. Thus, we may assume that u; — u; in £ and, by Lemma 4.3.3, u;, — uj in
LR, a(x)). Consequently, us is a nontrivial weak solution of (P;). We claim that uj is not

trivial. Indeed, since u; and uj are weak solutions of (P,,) and (Pj), respectively, we have

or(1) = <ng (ug) — If\(fu;\),uk —u3) = / (\Vuk|p’2Vuk — |Vu;\|p’2Vu;\) (Vug, — Vuy) de
Ry
—I—/ b (|uk|r_2uk — |u;\|T_2u5\) (wp —us) de — (Jigp + o),

+

where
Jig = /\k/ a (|u| e — |ug|"2uy) (up — uz) do
R}
and
Taw = =) [ alus| o2 (e u3) o
R}

Using the Hoder inequality together with the fact that ()\;) is bounded we get

(¢=1)/q (¢=1)/q 1/q
|l <C / alug|?dx + / aluz|?dx / aluy — us|'dx :
R7 R? R

Consequently, by Lemma 4.3.3 we obtain J; ; = 0j(1). Similarly, we have J; = 0j(1). Therefore,

n
+

we conclude that

VP2V, — [Vus [P2Vus) (Vuy, — Vus) do
A A A
- (4.20)

+ / b (Jur]" g — fus|""us) (ur — uy) diﬂ) = ox(1).
R

Now we recall that for all £, € R™, we know that there exists a constant C' = C(p) > 0 (see
inequality (2.2) in [40]) such that

n
+

§—=¢PP, i p=2,
p=2¢ | Alp—2 —as>C 4.21
(|§| S |C| O(g C) - {’f—C‘Qﬂg“"KDp_Z? if 1 <p§2, ( )

If p > 2, using the fact that b > 0 together with (4.20) we obtain

Hw—w%§0</
R

(|Vur P>V — [Vug [P Vuy) (Vuy, — Vuy) daz) = ox(1).

n
+
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On the other hand, if 1 < p < 2 we can use the inequality (4.21) again to obtain

/ (IVuy, — Vg [*) 2 d
R

n
+

VS|

< [ 10V Ve Va2V 03) (Vo = Vag)] (V] + [95])7) 7 d
R

n
+

This together with the Hoder inequality, (4.20) and the fact that (uy) is bounded imply that

C’p/ |V, — Vs [Pde < (/
R R
(1

R

Hence, u; — u; in E. Since uy, is a nontrivial weak solution of problem (P, ), by Lemma 4.3.9
there exists K = K(p, q) such that

p/2
(|Vuk\p_2Vuk — |Vu;\p_2Vu5\) (Vuy, — Vuy) dx)

n n
+ +

(2—-p)/2
(|Vug|P + |Vu5\|p)dx> = ox(1).

n
+

1
HukHEzK)\kq_p, VkEN
Since |lugllz — |lus]lz and Ay — X > 0 we get
ol
luslle = K(X) "% >0,

and hence uj is nontrivial. Since I5(uy) = I;(Juz|) we may assume that ugy > 0 a.e. in R}?. O

4.3.3 The second solution

In what follows we will prove item (iii) in Theorem 4.1.3. This will be done by using a
truncation argument. Let A > A be fixed and consider the truncated Carathéodory function
defined by

0, if t<0,
gz, t) =< da(x)ti=t —b(x)t=, i 0 <t <wuy(w),
Aa(z)ul ™" — b(x)uit, it > uy(x),

where uy € E™ is the weak solution of problem (P,) with I)(uy) < 0 obtained in Lemma 4.3.8.
Setting G (x,t) = fot gx(z, s)ds, we define the functional I,: E—>Rby

~ 1
I\(u) = ]—QHUH% —/]R Gy(x,u)dz.

n
+

Notice that for all v, € E it holds

I (v)p = /

|VuP~2VoVpdr — /

{0<v<uy}

Aav?™ — b Yopdr — / [)\aug\_l — bug_l]ﬁpd”

4 {v>uy}
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Furthermore, by choosing ¢ = v~ := —min{v, 0} we see that critical points of I, are nonnegative.
Next, to prove that critical point of I, is a critical point of I, inspired in [31, Lemma 2.1

(see also [35]) we have the following a priori estimate.

Lemma 4.3.11. Let p, < q < p*, v > q and assume (Hy) — (Ha). If uy is the solution obtained

in item (ii) of Theorem 4.1.3 and 1y is a critical point of Iy then 0 < @y < uy, in R™.

Proof. For any v € E let us denote by v*(x) = max{v(z),0}. If @, is a critical point of I we
get

0= (I}(iiy) — It (uy), (fiy — up) ) = / (|Var P2V, — [Vus|P*Vuy) (Vay, — Vuy) da.
{u>ur}

This combined with inequality (4.21) imply that |{z € R} : ax(xz) > ur(z)}| = 0. Thus,

(@ —ux)t =0 a.e. in R?}. Therefore, @y < uy and the proof is complete. O

Lemma 4.3.12. Let p, < q < p*, r > q and assume (Hy) — (Hs). Then there exist p €
(0, |lur||gre) and o > 0 such that I\(v) > a > 0 if ||[v]|g = p.

Proof. Notice that for all v € E we can write

J

Now observing that

Ga(z,v)dr = /

{0<w<uy}

Gx(x,v)dij/ Gi(z,v)dx.

n {v>uy}

A b A
/ Gy(z,v)dr = / [—avq - —v’"} dx < —/ avidz
{0<v<uy} {o<v<ux} L 4 r 4 J{o<v<uy}

and - )
/ Gi(z,v)dx :/ / g,\(x,t)dt—l—/ g,\(x,t)dt} dx
{v>ur} {v>ux} LJO ux
Mau?  buj
- / k) QL (Aaul ' —buy ™) (v — uA)] dx
{v>ux} q r
- q
< / Aau) + )\au‘i_lv] ,
{v>uyy L 4
we get
~ 1 )\ ’UJC)I\ -1
I(v) > =|jv||f, — = avldr — \ a|—=+ul vl (4.22)
p 4 J{o<v<uy} {v>ux} q

This combined with Remark 4.3.1 imply that there exists C; > 0 such that
- 1 A 1 _
B(0) 2 Sl = Silelly = (5 = ACH ol ) ol

Since ¢ > p we obtain the desired result and the proof is completed. O]

By Lemma 4.3.12 we have that

inf I(v) > 0> I(uy), YA>A.

lvllz=p
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Thus, the minimax level

Cx _iﬂﬁﬁg‘}ﬁ] A1) >0, VA>A,

where I' := {y € C([0,1], E) : v(0) =0 and (1) = u,}. Applying the mountain pass theorem
without the (PS) (see [44, Theorem 1.15])) we find a sequence (ux) C E at the minimax level

cx, that is

L(ug) = ¢y and  I}(ug) — 0. (4.23)

Lemma 4.3.13. Let p. < q < p*, r > q and assume (Hy) — (Hy). Then, the sequence (uy) in

(4.23) has a convergent subsequence.
Proof. From estimate (4.22), there exists C; > 0 such that

~ 1 A
L(u) > —[Jullz — —/ aufde — ACh [lux |97, koo 11125
p q Jrr

from where we obtain that Iy is coercive and consequently (uy,) is bounded in E. By Lemma 4.3.3,

up to a subsequence, we can assume that

Up, — Uy in K
ug(z) = ax(x) a.e. in R%
up —> Uy in LY(R?, a(z)).

Arguing as in proof of Lemma 4.3.5 we can see that fg(m) = 0 and hence 0 < uy < uy in RY

by Lemma 4.3.11. Thus, we get
where o0 (1) denotes a quantity that goes to zero as k — +oo and

]Vuk|” Vuk — |VU)\|p VU)\) (Vuk — Vft)\) dx

= / Naul™" — bui ™ (uy, — 1) da + / Naul™" — bul ™Y (g — @) da
{0<ur<uyr}
o

{up>uxr}
_ il — bl (up — i) da + / il — b (w — i) der
0<a@y<ux} {Gx>ux}
Therefore,
Ap = o(1) + / Naul™" — buy ™ (uy, — 1iy) do — / Matd™" — b (uy, — 1y do.
{0<up<un} {0<a\<uy}

Now, proceeding as in the proof of Lemma 4.3.5 we see that

/;0< < }[)\G/U/Z_l _ buz_l] (Uk — 17/)\> dJ} = Ok(1>
UL SUN
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and
/{0<~ < }[)\aﬂ‘}\_l — by (ug — Ty) do = op(1).
SUNSUN

Thus, we conclude that Ay = ox(1). If 2 < p < g < r, using inequality (4.21), we get
|lug — x| = o (1). Furthermore, if 1 < p < 2, arguing as in the proof of Lemma 4.3.10 we

obtain ||uy — @y|/% = ox(1). This completes the proof of Lemma 4.3.13. O

Finalizing the proof of item (i) in Theorem 4.2.2. By Lemma 4.3.13, and standard arguments
we conclude that , is a critical point of 1. To conclude, by Lemma 4.3.11, we have 0 < u) < u,.
Thus,

g(z,0y) = Ma(x)al " —b(x)ay "t and Gz, i) = —

so that

I)\(ZNLA) = I)\(’L~L>\) and f;\(ﬂ)\) = ];\(ﬂ/\)

More precisely, we find
I)\(ﬂ)\) >02> I)\(U)\) and I;\(fb)\) =0.

Therefore, 1, is a nontrivial weak solution of problem (P,) such that 0 < 4, < uy, @) # 0 and
ﬂ)\ 7& uy. ]

4.3.4 Multiplicity

Finally, in this subsection we will complete the proof of Theorem 4.1.3 by proving state-
ment (iv). It consists in applying the symmetric mountain pass theorem due to Ambrosetti-
Rabinowitz [8] and Clark [17]. To this, we need to recall some notations. Let E be a Banach
space and denotes by & the class of all subsets of E'\ {0} closed and symmetric with respect to
the origin :

E={AC E\{0}: Aisclosed and A = —A}.

For A € £\ {@} the genus 7(A) is define by
Y(A) ;== min{m € N: 3¢ € C(A,R™\ {0}) such that p(z) = —p(—2)}.

If the minimum does not exist, we define y(A) = oo and v(&) = 0. Let &, = {A € £ :~v(A) >

m}. The main properties of the genus can be found in [38,41].

Now, we recall the following classical multiplicity result (see for instance [8,17]).
Theorem 4.3.14. Let E be an infinite dimensional Banach space and I € C*(E,R) satisfying

(A1) I(u) is even, bounded from below, I(0) = 0 and I(u) satisfies the Palais-Smale condition
(PS);

(Ag) For each m € N, there exists an A,, € &, such that sup,c, I(u) <O0.

89



4. A Hardy-Sobolev type inequality and its applications

Defining

¢y = Inf supl\(u
m Ae&nueg A( %

then each ¢, is a critical value of I(u), ¢y < ¢py1 < 0 for m € N and (¢,,) converges to zero.

Moreover, if ¢ = ¢y, = Cpgp1 = - -+ = Cimyj < 00, then y(K,) > j+ 1. Here, K. is defined by
K.={ue€ E" : I,(u) = c and I} (u) = 0}.

To prove item (iv) in Theorem 4.1.3, it is sufficient to show that I, satisfies the conditions
(A;) and (Ay) above. Arguing as in the proof of Lemma 4.3.13 one can see that [, satisfies
condition (A;). In order to verify condition (As), we consider Qy = {z € R} : a(z) = 0} and
Q5 = R\ €. Denote

Ey={ue E™:u(x) =0 ae x€Q}.

If Qg = @, i.e., a(x) > 0 in R then we let £y = E™P. Obviously, £y is an infinitely dimensional

linear subspace of E"P. A seminorm [-], on E™? is defined by

], = (/R a(x)|u|qu> "

Lemma 4.3.15. The seminorm -], is a norm in Ey.

n
+

Proof. It is sufficient to show that u € Ey, [u], = 0 implies that u = 0, a.e. in R". Indeed,

o=y~ [

This together with fact a(z) > 0 in Qf imply that u(z) = 0, a.e. in Q. Since u € Ey, u(x) = 0,

a(x)\u]qd:c:/ﬂ a(x)|u|?dzx.

n c
+ 0

a.e. in €. Therefore, u(x) = 0, a.e. in R’ and this completes the proof.

Lemma 4.3.16. Let 1 < p < q < p*, r > q and assume (Hy). Then for each m € N, there exist
an A, € &, and \,, such that

sup Iy(u) <0, YA> A\,

u€Am

Proof. Let E,, be a m-dimensional subspace of Ej. Since all norms on the finite dimension space

E,, are equivalent, there exists b,, > 0 such that

Ab

1 1 m by,
D(u) < Zlullrs + Zlllzrs = = =lulers <

2
p q

for all u € E,, with ||u||gr» = 1. Thus, for \,, = 4q/pby,, I\(uv) < —=2/p if ||u||g-» = 1, for all
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A > A\p,. Let A,, = S™(1) be a sphere with radius 1 in E,,. Then

sup Iy(u) <0, VA> A\,

u€Am
and by properties of genus A,, € &,,. ]

Finalizing the proof of item (iv) in Theorem 4.1.3. It follows directly from Theorem 4.3.14. [

4.4 Proof of Theorem 4.2.3

This section is devoted to the proof of Theorem 4.2.3. In order to prove our multiplicity

result we recall the original statement of the symmetric mountain pass theorem (see [8]).

Theorem 4.4.1. Let E be a real infinite-dimensional Banach space and I € CY(E, R) an even
functional satisfying the (PS) condition and the following hypotheses:

(I1) 1(0) = 0 and there are constants p,a > 0 such that I|sp,0) > a;
(I) for any finite dimensional E C E, EN{u € E : I(u) > 0} is bounded.
Then I has an unbounded sequence of critical values.

Now, we establish some properties of the energy functional I.

Lemma 4.4.2. Let 1 < p <r < q < p* and assume (H,) — (Hy). Then for each X\ > 0 there
exist p, g > 0 such that I (u) > ag > 0 if ||ul|gre = p.

Proof. First we observe that

r/p z r r
lllrs < (Il + Tl o)) < 28 (el + il o) - (4.25)

Without loss of generality we may assume that ||ul/% + ”qu’“(Ri,b(x)) = [Jul[%., = p? < 1 and

using that p < r we see that ||ul/%, > ||u||%;. Thus, we conclude that

1 1 A
- T - T A q
Ii(u) > pHuHE + THUHLT(Ri,b(x)) qHu”LQ(Ri,a(z))'

This together with (4.25), Lemmas 4.1.3 and the fact that r < ¢ imply

1A D W
B 2 el = 2Ciullys = (0 = 260 ) o7
r2e q r2r 4
which implies (1;) by choosing p sufficiently small. ]

Next, let us ensure that any (PS) sequence associated to I, has a convergent subsequence.

This is done in the next lemma.
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Lemma 4.4.3. Let 1 < p < r < q < p* and assume (Hy)— (Hs). Then any sequence (uy,) C E™P
such that
L(ug) = ¢ and | I3(ug)||(grey» = 0, as k— oo, (4.26)

has a convergent subsequence.
Proof. First, we observe that

1 1 1 1 1
(=Yl + (2= [ ol = 1) = 03000 0) < o + oullunlo). (420
R

P :
We claim that (u;) C E™ is bounded. Arguing by contradiction, let us suppose that ||ug|| gro —
oo. Since 1 < p <r < ¢, in view of (4.27) we get

llur % ~ (1) HukHzr(Rﬁr,b(z))

[k || v

[k ]| v

This in combination with the fact that

luel® ekl Zr @ by

[

= Hukﬂ%ﬁ — 00, as k— oo

B [k ]| v

imply that
k12 ey oo
— = 500, as k — oc. (4.29)
g v

If p = r, combining (4.28) and (4.29) we obtain a contradiction. In case that p < r, using again

(4.29) we conclude that HukH’iT(Rib(x)) — 00 as k — oo and hence ||uy| Ii:(m,b(z)) < C. On the
other hand,

|’uk”§ﬁ(R1,b(x)) H“kHET(Ri,b(x))

p—r

= “uk“LT(Ri,b(a:)) , as k — oo,

k]| v k]| £

which contradicts (4.29) and hence (ug) is bounded in E™?. By Lemma 4.3.2 we may assume
that

U, — Up in E™P
ug(x) = uo(z) a.e. in R}

U —> Ug in LY(R?, a(x))

as k — oo. From (4.26), it follows that

or(1) = (I (ug) — I3 (ug), ux, — ug) = Ay — / Aa (Jug] " — |uol" *uo) (uk — uo) dz,  (4.30)

R}

92



4. A Hardy-Sobolev type inequality and its applications

where

Ay = / ([Vug P> Vug — [Vuo|P*Vug) (Vuy, — Vug) dz
R

n
+

+/ b (k] ?ur — Juol™?uo) (ur — uo) da.
RY
By the Holder inequality and Lemma 4.3.3, we obtain
/ Aa (Jug] Pk — uol " *uo) (ur — o) dz = o0k (1).
RY

Thus, from (4.30) we conclude that A, = o(1). If 2 < p < r < ¢, we can use the inequality
(4.21) and the fact that b > 0 to get

/ (IVuk P2V — [Vuo|P*Vug) (Vuy, — Vug) dz = og,(1)

o (4.31)
/ b (Jur]" 2wk — Juo|"?uo) (ur, — ug) dz = ox(1).

R

n
+

Using once again inequality (4.21), we get
llur = tollrs = llux = wolls + [k = wollZr (g bay) = 0x(1),;

which implies that u; — ug in E™P. Now, if 1 < p < 2 we have two cases to consider, » > 2 and
p <r <2 Ifr>2 by inequality (4.21) and (4.31) we obtain

[k — wol|Zr e pay) < /R b (Jur]" 2wk — Juo|?uo) (ur, — ug) dz = ox(1). (4.32)

n
+

Now, if p <r < 2, by inequality (4.21) and the Hoéder inequality we get

T 227
lur—ollzr@n sy < [ 0 ((lurl2ur — Juol™uo) (ur — u0))? ((Jur| + [uo])") 2~ da
®2be) = [

g(/R +

(2-r)/2
b(|uk|+|u0|)rd:v> .

r/2
b (k] >up — || *uo) (wr — uo) dw) (/
R

This combined with (4.31), (4.32) and the fact (uy) is bounded imply that ||ug — UOHET(Ri,b(m)) =
or(1). Now, if 1 < p < 2, arguing as in the proof of Lemma 4.3.10 we obtain ||ux — uo||y = ox(1).

n n
+ +

Therefore, |ur — uo|'pre = [Jur — woll% + |lux — u0||’£T(Riyb(x)) = o0x(1), and this completes the

proof. O

Finalizing the proof of Theorem 4.2.3. If u is a weak solution of problem (P,), choosing ¢ = u
in (4.12) we get ||ully + HuHET(Ri’b(w)) = )\HquLT(Ri’a(z)), which implies that v = 0 if A < 0
and item (i) in Theorem 4.2.3 is proved. Now we will use Theorem 4.4.1 to prove item (ii)
in Theorem 4.2.3. By Lemma 4.4.2, for any A > 0 the functional I, satisfies condition (I;).

Now we prove item (I). Suppose by contradiction that (I3) is false. Then, there exist a finite
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dimensional E C E™ and a sequence (u;,) C E satisfying

I,\(uk) > 0, ke N and ||uk|

gre — 00 as k — 00. (4.33)

Using the fact that all the norms in E are equivalent, there exists ¢ > 0 such that

1 AC

1
0 < In(ug) < ]—?Huk“%np + =kl Bre — ?HU/@H%m VEkeN.

r
Thus,

1 1
?HuquEnp < ];HukaET,p + ;HukH%T,p, VkeN,

which contradicts (4.33), since p < r < ¢, and item (I5) is proved. In view of Lemma 4.4.3, for
each A > 0 we can apply Theorem 4.4.1 to obtain an unbounded sequence of critical values of
I, to which we can associate at least two critical points because the functional I is even. This

completes the proof. O
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