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“All analysts spend half their time hunting through
the literature for inequalities which they want to
use and cannot prove.”

- G. H. Hardy.



Abstract

In this thesis, we prove two Hardy-Sobolev type inequalities and as a consequence we establish
embedding results of a certain Sobolev space defined on the upper half-space into weighted
Lebesgue spaces. Furthermore, some Trudinger-Moser type inequalities for functions defined in
the upper half-space are obtained. As applications, we also prove existence, nonexistence and
multiplicity of solutions for three class of indefinite quasilinear elliptic problems with weights in
anisotropic spaces.

Keywords: Hardy-Sobolev inequality, Sobolev space, Weighted Lebesgue space, Quasilinear
elliptic problem, Anisotropic space.
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Resumo

Nesta tese, provamos duas desigualdades do tipo Hardy-Sobolev e, como consequência, es-
tabelecemos resultados de imersão de um determinado espaço de Sobolev definido no semi es-
paço superior em espaços de Lebesgue com peso. Além disso, algumas desigualdades do tipo
Trudinger-Moser para funções definidas no semi espaço superior são obtidas. Como aplicações,
também provamos a existência, não existência e multiplicidade de soluções para três classes de
problemas elípticos quasilineares indefinidos com pesos em espaços anisotrópicos.

Palavras-chave: Desigualdade de Hardy-Sobolev, Espaço de Sobolev, Espaço de Lebesgue com
peso, Problema elíptico quasilinear, Espaço anisotrópico.
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Notation

We select here some notations used throughout the work.

Spaces

• Lp(Ω, a(x)) =

{
ϕ : Ω→ R :

ϕ is Lebesgue measurable with∫
Ω
a(x)|ϕ(x)|pdx <∞

}
, 1 ≤ p <∞;

• L∞(Ω, a(x)) = {ϕ : Ω→ R, a(x)ϕ is bounded and Lebesgue measurable};

• ∂Ω,Ω,Ωc denote boundary, closure, and complement of the set Ω, respectively.

• Rn denotes the usual euclidean space with the norm |x| = (
∑n

i=1 x
2
i )

1/2, x ∈ Rn

• Rn
+ := {x = (x′, xn) ∈ Rn : xn > 0};

• W 1,p(Rn
+) denotes the usual Sobolev space of p-weak derivatives;

• E1,p(Rn
+) :=

{
u ∈ L1

loc(Rn
+) :

u|Rn−1 ∈ Lp(Rn−1) and
uxi ∈ Lp(Rn

+), ∀ i = 1, . . . , n

}
;

• C(Ω) denotes the space of continuous real functions in Ω ⊂ Rn;

• For an integer k ≥ 1, Ck(Ω) denotes the space of k-times continuously differentiable real
functions in Ω ⊂ Rn

+;

• C∞(Ω) = ∩k∈NCk(Ω);

• C∞0 (Ω) denotes the space of infinitely differentiable real functions whose support is compact
in Ω ⊂ Rn;

• D1,p(Ω) denotes the completion of C∞0 (Ω) with respect to the norm ‖u‖p = (
∫

Ω
|∇u|pdx)1/p,

1 < p < n;

• E ′ denotes the topological dual of the Banach space E;

Norms

• For 1 ≤ p <∞, the standard norm in Lp(Rn
+, a(x)) is denoted by ‖ · ‖Lp(Rn+,a(x));
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Other Notation

• |A| denotes the Lebesgue measure of a set A ⊂ Rn;

• supp(ϕ) denotes the support of function ϕ;

• C, C0, C1, C2, C3, . . . denote positive constants possibly different;

• C(s) denotes constant which depends of s;

• ok(1) denotes a sequence which converges to 0 as k →∞;

• ⇀ denotes weak convergence in a normed space;

• → denotes strong convergence in a normed space;

• ↪→ denotes continuous embedding;

• 〈·, ·〉 denotes the duality pairing between E and E ′;

• Weight functions are functions measurable and positive almost everywhere (a.e.)

xiii



Introduction

The purpose of this thesis is twofold: firstly, we prove the Hardy-Sobolev type inequalities

∫
Rn+

|u|p

(1 + xn)p
dx ≤

(
p

p− 1

)p(∫
Rn+
|∇u|pdx+

∫
Rn−1

|u|pdx′
)
, ∀u ∈ C∞0 (Rn), (1)

where n ≥ 2 and 1 < p <∞ and(∫
Rn+

|u|p∗
(1 + xn)α

)p/p∗

dx ≤ C

∫
Rn+
|∇u|pdx, ∀u ∈ C1

0(Rn), (2)

where n ≥ 3, α > 1 and p∗ := p(n− 1)/(n− p); and secondly, we use these inequalities to study
the following class of quasilinear elliptic{

−div(|∇u|p−2∇u) = g(x, u) in Rn
+,

|∇u|p−2∇u · ν + κ|u|p−2u = 0 on Rn−1,
(3)

where 1 < p ≤ n and g satisfies some suitable growth conditions that will be specified later.
Our interest in the type of inequalities has been mostly motivated by their deep connections

with Hardy and Sobolev inequalities. We quote here that the proof of (1) was strongly inspired by
the arguments used in [23, Theorem 1.4], where the authors obtain a similar result for functions
in C∞0 (Rn

+) and the proof of inequality (2) was inspired by the arguments used in the paper
[11, Proposition 3.4].

We also point out that (1) is an extension of the weighted Hardy-type inequality proved in
[34, Lemma 1] where the author proved a similar result:∫

Ω

|u|p

(1 + |x|)p
dx ≤ C0

(∫
Ω

|∇u|pdx+

∫
Γ

|ν · x|
(1 + |x|)p

|u|pdΓ

)
, (4)

for 1 < p < n and some C0 > 0.

As a consequence of (1) we establish embedding results of a certain Sobolev space E1,p(Rn
+)

defined on the upper half-space and we investigate existence, nonexistence and multiplicity of
solutions for a class of indefinite quasilinear elliptic problems with weights in anisotropic spaces.
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The problems studied in this thesis have the form{
−div(|∇u|p−2∇u) = λa(x)f̄(x, u)− b(x)|u|r−2u in Rn

+,

|∇u|p−2∇u · ν + κ|u|p−2u = 0 on Rn−1,
(5)

where ν denotes the unit outward normal on the boundary Rn−1, κ ≥ 0, λ is a real parameter,
the nonlinearity f̄ can assume polynomial growth or exponential growth in the Trudinger-Moser
sense in Rn

+, n ≥ 2, and the weight functions a, b satisfy some suitable conditions that we will
describe later on.

Problems of this type have been investigated by many authors, see for instance [12, 14, 16,
25, 32–35] and references therein. In many of these papers a relevant Sobolev inequality proved
by Pflüger in [34] has played an important role in their variational approach. Precisely, let
1 < p < n and assume that the weight function h(x) satisfies the hypothesis:

1/C(1 + |x|)p−1 ≤ h(x) ≤ C/(1 + |x|)p−1, a.e. in Ω,

for some C > 0 and denote by C∞δ (Ω) the space of C∞0 (Rn)−functions restricted to Ω. Defining
the weighted Sobolev space E as the completion of C∞δ (Ω) in the norm

‖u‖E :=

(∫
Ω

|∇u|pdx+

∫
Ω

|u|p

(1 + |x|)p
dx

)1/p

,

in [34], the author proved that ‖ · ‖E is an equivalent norm to (see [34, Lemma 2])

|||u|||E :=

(∫
Ω

|∇u|p +

∫
∂Ω

h(x)|u|pdx′
)1/p

.

To this, the Hardy-Sobolev type inequality (4) was crucial.
Let us now describe the content of this thesis. The thesis is written in four chapters. Each

chapter corresponds to a submitted paper. In this way, each chapter in this thesis is self-
contained.

In Chapter 1, we consider the Sobolev space defined by

E1,p(Rn
+) :=

{
u ∈ L1

loc(Rn
+) :

u|Rn−1 ∈ Lp(Rn−1) and
uxi ∈ Lp(Rn

+), ∀ i = 1, . . . , n

}
,

where uxi denotes the distributional derivative of u, u|Rn−1 is understood in the trace sense and
Rn−1 denotes the boundary of Rn

+ and E1,p(Rn
+), from now on denoted by E1,p, is equipped with

the norm

‖u‖E1,p :=

(∫
Rn+
|∇u|pdx+

∫
Rn−1

|u|pdx′
)1/p

.

For 1 < p < n we obtain the following embedding result.

2



Theorem 0.0.1. Assume 1 < p < n. Then the weighted Sobolev embedding

E1,p ↪→ Lq
(
Rn

+,
1

(1 + xn)p

)
, ∀ p ≤ q ≤ p∗,

and the Sobolev trace embedding

E1,p ↪→ Lq(Rn−1), ∀ p ≤ q ≤ p∗ :=
(n− 1)p

n− p

are continuous.

In the borderline case p = n, we establish the following result:

Theorem 0.0.2. Assume p = n. Then the weighted Sobolev embedding

E1,n ↪→ Lq
(
Rn

+,
1

(1 + xn)n

)
, ∀n ≤ q <∞, (6)

and the Sobolev trace embedding

E1,n ↪→ Lq(Rn−1), ∀n ≤ q <∞ (7)

are continuous.

The embeddings (6) and (7) are not valid if q =∞, see Remark 1.1.5. Thus, it is natural to
study embedding from E1,n into Orlicz space. To this end, we introduce a new weighted Sobolev
space, which plays a central role in the proof of our Trudinger-Moser type inequality.

Definition 0.0.3. Consider the weight function b(x) := (1 + |x|)−n. We define the space E1,n
b as

the completion of C∞0 (Rn) with respect to the norm

‖u‖nE1,nb :=

∫
Rn+

(|∇u|n + b(x)|u|n) dx.

We establish the following embedding result involving E1,n
b .

Theorem 0.0.4. For any n ≤ q <∞, the embedding

E1,n
b ↪→ Lq

(
Rn

+, b(x)
)

(8)

is continuous. Furthermore, this embedding is false if q =∞.

Considering the Young function defined by

Ψα(s) = eα|s|
n′ −

n−2∑
k=0

αk

k!
|s|n′k, s ∈ R,

where n′ := n/(n − 1) and according to (8), inspired by the arguments used in [18], we prove
the following Trudinger-Moser type inequality in the setting of E1,n

b .

3



Theorem 0.0.5. For any α > 0 we have that Ψα(u) ∈ L1(Rn
+, b(x)). Moreover, there exists a

constant α0 > 0, independent of u ∈ E1,n
b , such that

L(α) := sup
{u∈E1,nb : ‖u‖

E1,n
b

≤1}

∫
Rn+
b(x)Ψα(u)dx < +∞,

for any 0 < α ≤ α0.

As a consequence of Theorem 0.0.5, the following Trudinger-Moser type inequality in the
setting of E1,n holds.

Corollary 0.0.6. For any u ∈ E1,n and α ≥ 0, we have that Ψα(u) ∈ L1(Rn
+, b(x)). Moreover,

l(α) := sup
{u∈E1,n: ‖u‖E1,n≤1}

∫
Rn+
b(x)Ψα(u)dx < +∞,

for any 0 < α ≤ α0/ (2n/(n− 1))n
′
.

In the trace sense, we have the following Trudinger-Moser type inequality:

Corollary 0.0.7. For any u ∈ E1,n and α ≥ 0, we have that Ψα(u(·, 0)) ∈ L1(Rn−1, b(x′, 0)).

Moreover,

T (α) := sup
{u∈E1,n: ‖u‖E1,n≤1}

∫
Rn−1

b(x′, 0)Ψα(u(x′, 0))dx′ < +∞,

for any 0 < α ≤ ((n− 1)/n)2 α0/ (2n/(n− 1))n
′
.

In the case p > n we obtain a Morrey’s type inequality.

Theorem 0.0.8. Assume n < p < ∞ and a(x) := (1 + xn)−p. Then the following weighted
Sobolev embedding holds

E1,p ↪→ L∞(Rn
+, a(x)).

Furthermore, for all u ∈ E1,p there exists C0 = C0(n, p) > 0 such that for a.e. x, y ∈ Rn
+

|a(x)u(x)− a(y)u(y)| ≤ C0|x− y|γ
(
‖∇u‖Lp(Rn+) + ‖u‖Lp(Rn+a(x))

)
,

where γ = 1− n/p.

In Chapter 2, we investigate the problem (5) when κ > 0 and f̄ has polynomial growth in
Rn

+. Precisely, the problem studied in this chapter has the form{
−div(|∇u|p−2∇u) = λa(x)|u|q−2u− b(x)|u|r−2u in Rn

+,

|∇u|p−2∇u · ν + |u|p−2u = 0 on Rn−1.
(9)

We begin by considering the case r > q. To this end, we shall assume the following assump-
tions:

4



(H1) a : Rn
+ → R is a nontrivial measurable function and there are constants α ≥ n and c1 > 0

such that
0 ≤ a(x) ≤ c1

(1 + xn)α
, a.e. in Rn

+;

(H2) b : Rn
+ → R is a positive continuous function satisfying

∫
Rn+

a
r
r−q

b
q
r−q

dx <∞.

Under this hypotheses, our main result can be stated as follows.

Theorem 0.0.9. Let r > q and assume the hypotheses (H1)− (H2).

(i) If 1 < p ≤ q ≤ p∗, there exists λ∗ > 0 such that problem (9) has only the trivial solution
for all λ ∈ (−∞, λ∗);

(ii) If max{2, p} ≤ q < p∗, there exists λ̃ > 0 such that problem (9) has at least a nontrivial
weak solution for all λ ∈ (λ̃,∞). Furthermore, if p < q then (Pλ̃) has a nontrivial weak
solution;

(iii) If max{2, p} ≤ q < p∗, there exists Λ ≥ λ̃ such that problem (9) has at least two nontrivial
weak solutions uλ ≥ ũλ for all λ ∈ (Λ,∞);

(iv) If 1 < p ≤ q < p∗, for any m ∈ N there exists Λm > 0 such that problem (9) has at least
m pairs of nontrivial weak solutions for all λ > Λm.

Next we deal with the case r < q. In order to prove the existence of solutions for problem
(9), instead of hypotheses (H1)− (H2), we will assume:

(H̃1) a : Rn
+ → R is a nontrivial measurable function and there are c2 > 0 and α ≥ n such that

0 ≤ a(x) ≤ c2

(1 + |x|)α
, a.e. in Rn

+.

(H̃2) b : Rn
+ → R is a measurable positive function.

In this case, our main result is stated as follows.

Theorem 0.0.10. Let 1 < p ≤ r < q < p∗ and assume the hypotheses (H̃1)− (H̃2). Then

(i) the problem (9) has no nontrivial weak solution for every λ ∈ (−∞, 0];

(ii) the problem (9) has an infinite number of nontrivial weak solutions for every λ ∈ (0,∞).

Chapter 3 contains our study of the problem (5) when κ > 0 and f̄ has exponential growth
in the Trudinger-Moser sense. Precisely, we study the following class of quasilinear elliptic
problems {

−div(|∇u|n−2∇u) + b(x)|u|r−2u = λa(x)f(x, u) in Rn
+

|∇u|n−2∇u · ν + |u|n−2u = 0 on Rn−1,
(10)

5



where ν denotes the unit outward normal on the boundary Rn−1, λ is a real parameter, 1 < p ≤
r <∞, the weight functions a(x) and b(x) satisfy some suitable conditions that we will describe
later on and we assume that f is a continuous function with subcritical exponential growth in
the Trudinger-Moser sense, i.e., for any β > 0

lim
|s|→∞

|f(x, s)|
eβ|s|n

′ = 0, uniformly in x ∈ Rn
+.

Setting F (x, s) =
∫ s

0
f(x, t)dt, we also will assume that f satisfies the following assumptions:

(f1) lim
s→0+

nF (x,s)
sn

< λ1 uniformly with respect to x ∈ Rn
+, where

λ1 := inf

{∫
Rn+
|∇u|ndx+

∫
∂Rn+
|u|ndx′∫

Rn+
a|u|ndx

: u ∈ C1
0(Rn) \ {0}

}
;

(f2) there exists µ > r such that

0 < µF (x, s) ≤ f(x, s)s, ∀x ∈ Rn
+ and s 6= 0;

(f3) there exist constants R0,M0 > 0 such that for all x ∈ Rn
+ and s ≥ R0

F (x, s) ≤M0f(x, s).

We assume the following assumptions on the weighted functions a(x), b(x):

(H1) a : Rn
+ → R is a nontrivial mensurable function and there exists c1 > 0 such that

0 ≤ a(x) ≤ c1

(1 + |x|)n
, a.e. in Rn

+;

(H2) b : Rn
+ → R is a positive continuous function satisfying

∫
Rn+

a
r

r−n

b
2

r−n
dx <∞.

Under these hypotheses, our first result concerning problem (10) is as follows.

Theorem 0.0.11. Assume (f1)− (f3) and (H1)− (H2). If n ≤ r <∞ then

(i) Problem (10) has no nontrivial weak solution for every λ ∈ (−∞, 0];

(ii) Problem (10) has at least a nontrivial weak solution for every λ ∈ (0,∞).

In order to obtain a multiplicity result, in addition, we will assume the assumption on f :
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(f4) there exist ν0, s0 > 0 and γ0 > r such that

F (x, s) ≥ ν0|s|γ0 , uniformly with respect to x ∈ Rn
+, ∀ |s| ≤ s0.

Our multiplicity result is established as follows.

Theorem 0.0.12. Assume (H2) − (H2) and that f(x, ·) is odd and satisfies (f1) − (f4). If
n ≤ r < ∞, then Problem (10) has an infinite number of nontrivial weak solutions for every
λ ∈ (0,∞).

Finally, in Chapter 4, using inequality (2) we develop our approach to problem (5) with
κ = 0 and f̄ having polynomial growth which correspond to Neumann boundary value problem.
Precisely, we concerned with the following quasilinear elliptic problem{

−div(|∇u|p−2∇u) = λa(x)|u|q−2u− b(x)|u|r−2u in Rn
+,

|∇u|p−2∇u · ν = 0 on Rn−1,
(11)

where n ≥ 3, ν denotes the unit outward normal on the boundary, λ is a real parameter and
the weighted functions a(x) and b(x) satisfy some suitable conditions that we will describe later
on. As our interest is to analyze the interplay between the powers q and r, we will consider two
cases:

(I) r > q and p(n−1)
n−p =: p∗ < q < p∗ := np

n−p if 1 < p < n;

(II) 1 < p∗ < r < q < p∗.

We begin by considering the case r > q. To this end, we shall assume the following assump-
tions:

(H1) a : Rn
+ → R is a nontrivial measurable function and there are constants α ≥ n and c1 > 0

such that
0 ≤ a(x) ≤ c1

(1 + xn)α
, a.e. in Rn

+;

(H2) b : Rn
+ → R is a positive continuous function satisfying

∫
Rn+

a
r
r−q

b
q
r−q

dx <∞.

Under this hypotheses, our main result can be stated as follows.

Theorem 0.0.13. Let r > q and assume the hypotheses (H1)− (H2).

(i) If 1 < p ≤ q ≤ p∗, there exists λ∗ > 0 such that problem (11) has only the trivial solution
for all λ ∈ (−∞, λ∗);
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(ii) If max{2, p} ≤ q < p∗, there exists λ̃ > 0 such that problem (11) has at least a nontrivial
weak solution for all λ ∈ (λ̃,∞). Furthermore, if p < q then (Pλ̃) has a nontrivial weak
solution;

(iii) If max{2, p} ≤ q < p∗, there exists Λ ≥ λ̃ such that problem (11) has at least two nontrivial
weak solutions uλ ≥ ũλ for all λ ∈ (Λ,∞);

(iv) If 1 < p ≤ q < p∗, for any m ∈ N there exists Λm > 0 such that problem (11) has at least
m pairs of nontrivial weak solutions for all λ > Λm.

Next we deal with the case r < q. In order to prove the existence of solutions for problem
(11), instead of hypotheses (H1)− (H2), we will assume:

(H̃1) a : Rn
+ → R is a nontrivial measurable function and there are c2 > 0 and α ≥ n such that

0 ≤ a(x) ≤ c2

(1 + |x|)α
, a.e. in Rn

+.

(H̃2) b : Rn
+ → R is a measurable positive function.

In this case, our main result is stated as follows.

Theorem 0.0.14. Let 1 < p ≤ r < q < p∗ and assume the hypotheses (H̃1)− (H̃2). Then

(i) the problem (11) has no nontrivial weak solution for every λ ∈ (−∞, 0];

(ii) the problem (11) has an infinite number of nontrivial weak solutions for every λ ∈ (0,∞).

Motivated by the works of Alama-Tarrantelo [7], Filippucci-Pucci-Radulescu [25], Lyberopou-
los [27], Perera [31] and Pflüger [34], we will use the variational method to study the problems
(9), (10) and (11).

In order to do not get resorting to Introduction and for the sake of independence of the
chapters, we will present again in each chapter the main results and the hypotheses.
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Part I

A Hardy-Sobolev type inequality and its
applications
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Chapter 1

A Hardy-Sobolev type inequality and its
consequences

This chapter is devoted to the paper [2], where we prove a new Hardy-Sobolev type inequality
and as a consequence we establish embedding results of a Sobolev space E1,p(Rn

+) defined on the
upper half-space. Precisely, for 1 < p < n we obtain an embedding from E1,p(Rn

+) into weighted
Lebesgue spaces. In the borderline case p = n, we derive some Trudinger-Moser type inequalities,
and in the case p > n we obtain a Morrey’s type inequality.

1.1 Introduction and main results

Let n ≥ 2 an integer number and denote by Rn
+ = {x = (x′, xn) ∈ Rn : xn > 0} the upper

half-space. Inspired by the paper [6], for any 1 < p <∞, we consider the Sobolev space defined
by

E1,p(Rn
+) :=

{
u ∈ L1

loc(Rn
+) :

u|Rn−1 ∈ Lp(Rn−1) and
uxi ∈ Lp(Rn

+), ∀ i = 1, . . . , n

}
, (1.1)

where uxi denotes the distributional derivative of u, u|Rn−1 is understood in the trace sense and
Rn−1 denotes the boundary of Rn

+. We can see that E1,p(Rn
+), from now on denoted by E1,p, is a

reflexive Banach space when equipped with the norm

‖u‖E1,p :=

(∫
Rn+
|∇u|pdx+

∫
Rn−1

|u|pdx′
)1/p

.

From the classical Sobolev trace embedding W 1,p(Rn
+) ↪→ Lp(Rn−1), one can see that the

embedding W 1,p(Rn
+) ↪→ E1,p is continuous, but with strict inclusion. In fact, a straightforward

computation shows that, for any (n− 1)/2 < β < n/2, the function

uβ(x′, xn) =
(
1 + |x′|2 + x2

n

)−β/p
, x′ ∈ Rn−1, xn > 0,

belongs to the Sobolev space E1,p but not in W 1,p(Rn
+). Moreover, if for any open set Ω ⊂

Rn D1,p(Ω) with 1 < p < n denotes the completion of C∞0 (Ω) with respect to the norm

10



1. A Hardy-Sobolev type inequality and its consequences

‖u‖p = (
∫

Ω
|∇u|pdx)1/p, it is well known that the best constant of the Sobolev trace embed-

ding D1,p(Rn
+) ↪→ Lp∗(Rn−1) with p∗ = p(n− 1)/(n− p), is achieved (see [20]) by the function

u(x′, xn) = cn(1 + |x′|2 + x2
n)(p−n)/2(p−1), x′ ∈ Rn−1, xn > 0,

for some convenient constant cn > 0, however u /∈ E1,p. Therefore, we have the continuous
embeddings with strict inclusions

W 1,p(Rn
+) ↪→ E1,p ↪→ D1,p(Rn

+).

In this chapter we focus our attention on embedding results of E1,p. To this end, we start by
proving the following weighted Hardy-Sobolev type inequality:

Theorem 1.1.1. Let n ≥ 2 and 1 < p <∞. Then the following inequality holds

∫
Rn+

|u|p

(1 + xn)p
dx ≤

(
p

p− 1

)p(∫
Rn+
|∇u|pdx+

∫
Rn−1

|u|pdx′
)
, ∀u ∈ C∞0 (Rn).

Our interest in this type of inequality has been mostly motivated by their deep connections
with Hardy-type inequalities. As it is well known, the Hardy inequality in the upper half space
for function u ∈ C∞0 (Rn

+) has been extensively investigated by many authors, see for instance
[23,24,28,34,42] and references therein. We quote here that the proof of Theorem 1.1.1 is strongly
inspired by the arguments used in [23, Theorem 1.4], where the authors obtain a similar result
for function in C∞0 (Rn

+). We also point out that Theorem 1.1.1 is an extension of the weighted
Hardy-type inequality proved in [34, Lemma 1] where the author proved a similar result with
1 < p < n (see also [48] for a related results).

For future applications, let us introduce the Banach space E1,p defined as the completion of
C∞0 (Rn) with respect to the norm

‖u‖E1,p :=

(∫
Rn+
|∇u|pdx+

∫
Rn+

|u|p

(1 + xn)p
dx

)1/p

.

An useful consequence of Theorem 1.1.1 is the following corollary which extends [34, Lemma
2] to the case p ≥ n:

Corollary 1.1.2. Assume n ≥ 2 and 1 < p < ∞. Then the norms ‖ · ‖E1,p and ‖ · ‖E1,p are
equivalent in E1,p.

In order to put our results into perspective, we recall some well known results concerning
Hardy inequalities in the upper half-space. As pointed in the paper [42], in the well known book
Sobolev Spaces by Maz’ya [28], the following inequality is obtained

1

16

∫
Rn+

|u|2

(x2
n−1 + x2

n)1/2
dx ≤

∫
Rn+

|∇u|2

xn
dx, ∀u ∈ C∞0 (Rn). (1.2)

11



1. A Hardy-Sobolev type inequality and its consequences

Taking u(x) = |xn|−1/2v(x) into (1.2) we get

1

16

∫
Rn+

|v|2

(x2
n−1 + x2

n)1/2|xn|
dx+

1

4

∫
Rn+

|v|2

x2
n

dx ≤
∫
Rn+
|∇v|2dx, ∀ v ∈ C∞0 (Rn

+). (1.3)

In fact, this inequality was improved in [42, Lemma 3.1]. It is an open problem, formulated by
Maz’ya, whether the following generalization of the above inequality holds or not:

α(p, τ)

∫
Rn+

|u|p

xp−τn (x2
n−1 + x2

n)τ/2
dx+

(
p− 1

p

)p ∫
Rn+

|u|p

xpn
dx ≤

∫
Rn+
|∇u|pdx,

where p > 1, τ > 0, α(p, τ) is a positive constant and u ∈ C∞0 (Rn
+). It is worth pointing out

that inequality (1.2) and their variants were studied by a great number of authors, most of
them focused on the context of C∞0 (Rn

+), which is motivated mainly on the study of Dirichlet
boundary value problems. However, motivated by study of elliptic problems involving nonlinear
boundary conditions, it is quite natural to ask if similar results can by forwarded to inequality
(1.2) and its variants in the setting of C∞0 (Rn), which is used in many papers, see for instance
[16,32] and references therein. In the last section of this chapter, we comment some applications
of our embedding results for the study of some nonlinear elliptic problems involving nonlinear
boundary conditions.

With the aid Theorem 1.1.1, we can now prove the embedding of E1,p into weighted Lebesgue
spaces, as it is showed in the next theorem.

Theorem 1.1.3. Assume 1 < p < n. Then the weighted Sobolev embedding

E1,p ↪→ Lq
(
Rn

+,
1

(1 + xn)p

)
, ∀ p ≤ q ≤ p∗ :=

np

n− p
, (1.4)

and the Sobolev trace embedding

E1,p ↪→ Lq(Rn−1), ∀ p ≤ q ≤ p∗ :=
(n− 1)p

n− p
(1.5)

are continuous.

In the borderline case p = n, we establish the following result:

Theorem 1.1.4. Assume p = n. Then the weighted Sobolev embedding

E1,n ↪→ Lq
(
Rn

+,
1

(1 + xn)n

)
, ∀n ≤ q <∞, (1.6)

and the Sobolev trace embedding

E1,n ↪→ Lq(Rn−1), ∀n ≤ q <∞ (1.7)

are continuous.
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1. A Hardy-Sobolev type inequality and its consequences

Remark 1.1.5. The embeddings (1.6) and (1.7) are not valid if q = ∞. In fact, considering
the function u(x′, xn) := (1 + xn)n ln (1− ln |x|)) if (x′, xn) ∈ B+

1 and zero otherwise, where
B+

1 := {x = (x′, xn) ∈ Rn
+; |x| < 1}, one can see that u ∈ E1,n but u 6∈ L∞

(
Rn

+, (1 + xn)−n
)
as

well as u 6∈ L∞(Rn−1).

Remark 1.1.6. Since (1 + xn)n ≤ (1 + |x|)n, by Theorem 1.1.1 with p = n, one has

∫
Rn+

|u|n

(1 + |x|)n
dx ≤

(
n

n− 1

)n(∫
Rn+
|∇u|ndx+

∫
Rn−1

|u|ndx′
)
, ∀u ∈ C∞0 (Rn).

Furthermore, from the embedding (1.6) we have the continuous embedding

E1,n ↪→ Lq
(
Rn

+,
1

(1 + |x|)n

)
, ∀n ≤ q <∞. (1.8)

which is not valid if q =∞. In fact, considering the function u(x′, xn) := (1+|x|)n ln (1− ln |x|))
if (x′, xn) ∈ B+

1 and zero otherwise, one can see that u ∈ E1,n but, u 6∈ L∞
(
Rn

+, (1 + |x|)−n
)
.

In view of Remarks 1.1.5 and 1.1.6, it is natural to study embedding from E1,n into Orlicz
space. To this end, we introduce a new weighted Sobolev space, which plays a central role in
the proof of our Trudinger-Moser type inequality.

Definition 1.1.7. Consider the weight function b(x) := (1 + |x|)−n. We define the space E1,n
b as

the completion of C∞0 (Rn) with respect to the norm

‖u‖nE1,nb :=

∫
Rn+

(|∇u|n + b(x)|u|n) dx.

We establish the following embedding result involving E1,n
b :

Theorem 1.1.8. For any n ≤ q <∞, the embedding

E1,n
b ↪→ Lq

(
Rn

+, b(x)
)

(1.9)

is continuous. Furthermore, the same example in Remark 1.1.6 shows that this embedding is
false if q =∞.

Considering the Young function defined by

Ψα(s) = eα|s|
n′ −

n−2∑
k=0

αk

k!
|s|n′k, s ∈ R, (1.10)

where n′ := n/(n− 1) and according to (1.9), the following Trudinger-Moser type inequality in
the setting of E1,n

b is natural.
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1. A Hardy-Sobolev type inequality and its consequences

Theorem 1.1.9. For any α > 0 we have that Ψα(u) ∈ L1(Rn
+, b(x)). Moreover, there exists a

constant α0 > 0, independent of u ∈ E1,n
b , such that

L(α) := sup
{u∈E1,nb : ‖u‖

E1,n
b

≤1}

∫
Rn+
b(x)Ψα(u)dx < +∞, (1.11)

for any 0 < α ≤ α0.

As a consequence of Theorem 1.1.9, the following Trudinger-Moser type inequality in the
setting of E1,n holds.

Corollary 1.1.10. For any u ∈ E1,n and α ≥ 0, we have that Ψα(u) ∈ L1(Rn
+, b(x)). Moreover,

l(α) := sup
{u∈E1,n: ‖u‖E1,n≤1}

∫
Rn+
b(x)Ψα(u)dx < +∞,

for any 0 < α ≤ α0/ (2n/(n− 1))n
′
.

In the trace sense, we have the following Trudinger-Moser type inequality:

Corollary 1.1.11. For any u ∈ E1,n and α ≥ 0, we have that Ψα(u(·, 0)) ∈ L1(Rn−1, b(x′, 0)).

Moreover,

T (α) := sup
{u∈E1,n: ‖u‖E1,n≤1}

∫
Rn−1

b(x′, 0)Ψα(u(x′, 0))dx′ < +∞,

for any 0 < α ≤ ((n− 1)/n)2 α0/ (2n/(n− 1))n
′
.

Remark 1.1.12. It is worthwhile to mention here, that we believe that the natural weight func-
tion to consider in the Trudinger-Moser inequalities above must be a(x) = (1 + xn)−n. However,
we were not able to consider this situation in our approach. As usual, we can not apply Schwarz
symmetrization arguments as considered in many papers (see for instance [39] and references
therein).

Finally, we consider the case p > n that corresponds to the Morrey’s case.

Theorem 1.1.13. Assume n < p < ∞ and a(x) := (1 + xn)−p. Then the following weighted
Sobolev embedding holds

E1,p ↪→ L∞(Rn
+, a(x)). (1.12)

Furthermore, for all u ∈ E1,p there exists C0 = C0(n, p) > 0 such that for a.e. x, y ∈ Rn
+

|a(x)u(x)− a(y)u(y)| ≤ C0|x− y|γ
(
‖∇u‖Lp(Rn+) + ‖u‖Lp(Rn+a(x))

)
, (1.13)

where γ = 1− n/p.

This chapter is organized as follows. In Section 1.2, we prove Theorem 1.1.1 and Corol-
lary 1.1.2. The Sobolev embedding, for 1 < p ≤ n, into Lebesgue spaces are proved in Sections 1.3
and 1.4. In Section 1.5, we prove the Trudinger-Moser inequalities established in Theorem 1.1.9
and Corollaries 1.1.10 and 1.1.11. Finally, in Section 1.6 we prove Theorem 1.1.13.
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1. A Hardy-Sobolev type inequality and its consequences

1.2 A Hardy-Sobolev type inequality

This section is devoted to the proof of Theorem 1.1.1 which is the main step in the proof
of our embedding results. The proof is inspired in the paper [23], where the authors obtain a
similar result for function in C∞0 (Rn

+). We also included the proof of Corollary 1.1.2.

Proof of Theorem 1.1.1. Let v ∈ C1
0(Rn) and σ ∈ R with σ 6= −1. Using integration by parts,

we obtain

(σ + 1)

∫
Rn+

(1 + xn)σ|v|dx =

∫
Rn+

∂

∂xn
((1 + xn)σ+1)|v|dx

= −
∫
Rn+

(1 + xn)σ+1(|v|)xndx−
∫
Rn−1

|v|dx′,

where above we used that η = (0′,−1) is the outwards normal to Rn−1. Thus, we get

|σ + 1|
∫
Rn+

(1 + xn)σ|v|dx ≤
∫
Rn+

(1 + xn)σ+1|∇v|dx+

∫
Rn−1

|v|dx′.

Applying this inequality with v = |u|p, p > 1 and u ∈ C∞0 (Rn) we infer that

|σ + 1|
∫
Rn+

(1 + xn)σ|u|pdx ≤
∫
Rn+

(1 + xn)σ+1p|u|p−1|∇u|dx+

∫
Rn−1

|u|pdx′. (1.14)

Now, for any ε > 0 and a, b ≥ 0 we can use the elementary inequality

ab =
(
ε
p−1
p a
)( b

ε
p−1
p

)
≤ (p− 1)

p

(
ε
p−1
p a
)p/(p−1)

+
1

p

(
b

ε
p−1
p

)p
,

to derive the inequality

p

∫
Rn+

(1 + xn)σ+1|u|p−1|∇u|dx ≤ (p− 1)ε

∫
Rn+

(1 + xn)
(σ+1)p
p−1 |u|pdx+

1

ε(p−1)

∫
Rn+
|∇u|pdx. (1.15)

Choosing σ = p(σ + 1)/(p− 1), that is, σ = −p and combining inequalities (1.14) and (1.15),
one has ∫

Rn+

|u|p

(1 + xn)p
dx ≤ 1

(p− 1)(εp−1 − εp)

(∫
Rn+
|∇u|pdx+

∫
Rn−1

|u|pdx′
)
,

for any 0 < ε < 1. Taking into account that the function g(ε) = 1/(εp−1 − εp) with 0 < ε < 1

achieves its minimum at ε0 = (p− 1)/p and g(ε0) = pp/(p− 1)p−1 we conclude that

∫
Rn+

|u|p

(1 + xn)p
dx ≤

(
p

p− 1

)p(∫
Rn+
|∇u|pdx+

∫
Rn−1

|u|pdx′
)
,

which completes the proof.
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1. A Hardy-Sobolev type inequality and its consequences

Proof of Corollary 1.1.2. Let u ∈ C∞0 (Rn). By Theorem 1.1.1 we have ‖u‖E1,p ≤ C1‖u‖E1,p . To
prove the reverse inequality, using the Young inequality with the conjugate exponents p and
p/(p− 1), we observe that

|u(x′, 0)|p = −
∫ +∞

0

∂

∂xn

(
|u|p

(1 + xn)p

)
dxn

≤ p

∫ +∞

0

|u|p−1|∇u|
(1 + xn)p

dxn + p

∫ +∞

0

|u|p

(1 + xn)p+1
dxn

≤
∫ +∞

0

|∇u|pdxn + (2p− 1)

∫ +∞

0

|u|p

(1 + xn)p
dxn,

where above we used that 1/(1 + xn)p+1 ≤ 1/(1 + xn)p. Integrating this inequality we obtain∫
Rn−1

|u(x′, 0)|pdx′ ≤
∫
Rn+
|∇u|pdx+ (2p− 1)

∫
Rn+

|u|p

(1 + xn)p
dx.

Thus,

‖u‖pE1,p =

∫
Rn+
|∇u|pdx+

∫
Rn−1

|u(x′, 0)|pdx′

≤ 2

∫
Rn+
|∇u|pdx+ (2p− 1)

∫
Rn+

|u|p

(1 + xn)p
dx

≤ max{2, 2p− 1}‖u‖pE1,p ,

and the proof is complete.

1.3 Embedding into Lebesgue spaces (1 < p < n)

In this section, we prove Theorem 1.1.3. To this end, we first establish a density result in
the context of the Sobolev space E1,p, which is a consequence of Theorem 1.1.1. Hereafter in
this chapter, BR denotes the ball of center zero and radius R > 0 in Rn, B+

R := BR ∩ Rn
+,

(BR)c denotes Rn \ BR, the complement of the set BR ⊂ Rn, and (B+
R)c denotes Rn

+ \ B+
R the

complement of the set B+
R ⊂ Rn

+.

Lemma 1.3.1. Let n ≥ 2. Then the set of restrictions to Rn
+ of functions in C∞0 (Rn) is dense

in E1,p.

Proof. We start by proving that the Sobolev space W 1,p(Rn
+) is dense in E1,p. In fact, let R > 0

and consider a smooth function ϕR : Rn → R defined by

ϕR(x′, xn) =

{
1, |(x′, xn)| ≤ R

0, |(x′, xn)| ≥ R + 1,
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0 ≤ ϕR ≤ 1 and |∇ϕR| ≤ 1/R. Given u ∈ E1,p we can see that uR = uϕR ∈ W 1,p(Rn
+) and

‖u− uR‖pE1,p =

∫
(B+
R)c
|∇u−∇uR|pdx+

∫
|x′|>R

|u(1− ϕR)|pdx′

= oR(1) + 2p
∫

(B+
R)c
|∇uR|pdx+ oR(1),

where oR(1) → 0 denotes a quantity that goes to zero as R → ∞. Using straightforward
calculations we obtain∫

(B+
R)c
|∇uR|pdx ≤ C

(∫
(B+
R)c
|∇u|pϕpRdx+

∫
(B+
R)c
|u|p|∇ϕR|pdx

)

≤ C

(∫
(B+
R)c
|∇u|pdx+

1

Rp

∫
A+
R,R+1

|u|pdx

)
≤ oR(1) +

C

Rp

∫
A+
R,R+1

|u|pdx,

where A+
R,R+1 := {(x′, xn) ∈ Rn

+ : R ≤ |(x′, xn)| ≤ R + 1}. We claim that

1

Rp

∫
A+
R,R+1

|u|pdx = oR(1). (1.16)

Indeed, by the Friedrichs inequality there exists C1 > 0 satisfying the inequality

∫
A+
R,R+1

|v|pdx ≤ C1

(∫
A+
R,R+1

|∇v|pdx+

∫
ΓR,R+1

|v|pdx

)
,

where ΓR,R+1 = {(x′, 0);R ≤ |(x′, 0)| ≤ R + 1}. Choosing v(x) = u(Rx) in this inequality and
performing a change of variable we obtain

1

Rp

∫
A+
R,R+1

|u|pdx ≤ C1

(∫
A+
R,R+1

|∇u|pdx+
1

Rp−1

∫
Rn−1

|v|pdx′
)

= oR(1)

as claimed in (1.16). Now fixed u ∈ E1,p and ε > 0, by the first step there exists u1 ∈ W 1,p(Rn
+)

such that
‖u− u1‖E1,p ≤ ε. (1.17)

On the other hand, taking into account that C∞0 (Rn) is dense in W 1,p(Rn
+) (see [5, Theorem

3.18]), there exists v ∈ C∞0 (Rn) such that ‖u1 − v‖W 1,p(Rn+) ≤ ε. Since u1 − v ∈ W 1,p(Rn
+) ↪→

E1,p we get ‖u1 − v‖E1,p ≤ C‖u1 − v‖W 1,p(Rn+) ≤ Cε, which in combination with (1.17) imply
‖u− v‖E1,p ≤ ‖u− u1‖E1,p + ‖u1 − v‖E1,p ≤ ε+ Cε, and this completes the proof.

As an immediate consequence of Lemma 1.3.1, we have the following result.

17



1. A Hardy-Sobolev type inequality and its consequences

Corollary 1.3.2. Define Ẽ1,p as the completion of C∞0 (Rn) with respect to the norm

‖u‖ :=

(∫
Rn+
|∇u|pdx+

∫
Rn−1

|u|pdx′
)1/p

.

Then, E1,p = Ẽ1,p.

Now we are ready to prove Theorem 1.1.3.

Proof of Theorem 1.1.3. To prove the embedding (1.4), we first recall that for 1 ≤ p < n it
follows from the Gagliardo-Nirenberg-Sobolev inequality and a suitable reflexion argument (see
[43, Lemma 2.10]) that there exists C0 = C0(n, p) such that(∫

Rn+
|u|p∗dx

)(n−p)/n

≤ C0

∫
Rn+
|∇u|pdx, ∀u ∈ C1

0(Rn). (1.18)

This in combination with the fact that (1 + xn)−p ≤ 1 and Lemma 1.3.1 imply that E1,p ↪→
Lp
∗
(Rn

+, (1 + xn)−p). This together with Theorem 1.1.1 and an interpolation argument imply
that E1,p ↪→ Lq(Rn

+, (1 + xn)−p) for all q ∈ [p, p∗], as stated in (1.4). Now we will prove the
embedding (1.5). From the trace inequality (see [20])(∫

Rn−1

|u|p∗dx′
)(n−p)/(n−1)

≤ C0

∫
Rn+
|∇u|pdx, ∀u ∈ C1

0(Rn), (1.19)

we see that E1,p ↪→ Lp∗(Rn−1). On the other hand, by definition we have E1,p ↪→ Lp(Rn−1).
Thus, by an interpolation argument we obtain that E1,p ↪→ Lq(Rn−1) for any q ∈ [p, p∗] and this
completes the proof of Theorem 1.1.3.

1.4 Embedding into Lebesgue spaces (p = n)

In this section we present the proof of Theorems 1.1.4 and 1.1.8.

Proof of Theorem 1.1.4. First we prove the embedding (1.6). For that, from estimate (1.18)
with p = 1 we have(∫

Rn+
|v|

n
n−1dx

)(n−1)/n

≤ C0

∫
Rn+
|∇v|dx, ∀ v ∈ C1

0(Rn). (1.20)

18



1. A Hardy-Sobolev type inequality and its consequences

Applying (1.20) with v = (1 + xn)α|u|n for any u ∈ C∞0 (Rn) we infer that(∫
Rn+
|(1 + xn)α|u|n|

n
n−1dx

)(n−1)/n

≤ C0

∫
Rn+
|α|(1 + xn)α−1|u|ndx

+ C0n

∫
Rn+

(1 + xn)α|u|n−1|∇u|dx.

Choosing α = −(n − 1) and using the Young inequality with the conjugate exponents n and
n/(n− 1), ones has∫

Rn+

|u|
n2

n−1

(1 + xn)n
dx

(n−1)/n

≤ C1

(∫
Rn+

|u|n

(1 + xn)n
dx+

∫
Rn+
|∇u|ndx

)
,

where C1 depends only on n. This in combination with Theorem 1.1.1 and Lemma 1.3.1 imply
that E1,n ↪→ L

n2

n−1 (Rn
+, (1 + xn)−n). If n ≤ q ≤ n2/(n− 1), by an interpolation argument, there

exists 0 < θ < 1 such that

‖u‖Lq(Rn+, 1
(1+xn)n

) ≤ ‖u‖θLn(Rn+,
1

(1+xn)n
)
‖u‖1−θ

L
n2

(n−1) (Rn+,
1

(1+xn)n
)

≤ C‖u‖E1,n .

In particular, using that n < n+ 1 < n2/(n− 1), one has E1,n ↪→ Ln+1
(
Rn

+, (1 + xn)−n
)
. On the

other hand, applying again (1.20) with v = (1 + xn)−(n−1)|u|n+1 and using the Young inequality
with the conjugate exponents n and n/(n− 1) we get

(∫
Rn+

|u|
n(n+1)
n−1

(1 + xn)n
dx

)(n−1)/n

≤ (n− 1)C

∫
Rn+

|u|n+1

(1 + xn)n
dx+ (n+ 1)C

∫
Rn+

|u|n|∇u|
(1 + xn)(n−1)

dx

≤ (n− 1)C

∫
Rn+

|u|n+1

(1 + xn)n
dx+ (n+ 1)C

∫
Rn+

|u|
n2

n−1

(1 + xn)n
dx+

∫
Rn+
|∇u|ndx

 ,

which implies that E1,n ↪→ L
n(n+1)
(n−1) (Rn

+, (1 + xn)−n) and by using an interpolation argument we
get E1,n ↪→ Lq(Rn

+, (1 + xn)−n) for any n ≤ q ≤ n(n+ 1)/(n− 1). Reiterating this argument
with k = n+ 2, n+ 3, . . . , one has E1,n ↪→ L

nk
n−1 (Rn

+, (1 + xn)−n). Now, given q ∈ [n,∞), one can
choose k ≥ n such that n ≤ q ≤ nk/(n− 1) and once again using an interpolation argument we
get

‖u‖Lq(Rn+,(1+xn)−n) ≤ ‖u‖θLn(Rn+,(1+xn)−n)‖u‖1−θ

L
nk
n−1 (Rn+,(1+xn)−n)

≤ C‖u‖E1,n ,

which proves the embedding (1.6). Now we will prove the trace embedding (1.7). For that, by
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1. A Hardy-Sobolev type inequality and its consequences

Lemma 1.3.1 we may assume that u ∈ C∞0 (Rn). Fixed q ≥ n we have

|u(x′, 0)|q = −
∫ +∞

0

∂

∂xn

(
|u|q

(1 + xn)n

)
dxn

≤ q

∫ +∞

0

|u|q−1|∇u|
(1 + xn)n

dxn + n

∫ +∞

0

|u|q

(1 + xn)n+1
dxn.

Integrating this inequality and using the Hölder inequality together with the fact that (1 +

xn)−1 < 1 we infer that

∫
Rn−1

|u(x′, 0)|qdx′ ≤ q

(∫
Rn+

|u|(q−1) n
n−1

(1 + xn)n
dx

)(n−1)/n(∫
Rn+
|∇u|ndx

)1/n

+n

∫
Rn+

|u|q

(1 + xn)n
dx.

Since n(q − 1)/(n − 1) ≥ n, by the embedding (1.6) we get ‖u‖qLq(Rn−1) ≤ C1‖u‖q−1
E1,n‖u‖E1,n +

C2‖u‖qE1,n , which completes the proof of Theorem 1.1.4.

Now we present the proof of Theorem 1.1.8.

Proof of Theorem 1.1.8. Applying (1.20) with v = (1 + |x|)α|u|n, we get(∫
Rn+
|(1 + |x|)α|u|n|

n
n−1dx

)(n−1)/n

≤ C0

∫
Rn+
|α|(1 + |x|)α−1 x

|x|
|u|ndx

+ C0n

∫
Rn+

(1 + |x|)α|u|n−1|∇u|dx.

Choosing α = −(n − 1) and using the Young inequality with the conjugate exponents n and
n/(n− 1) we obtain(∫

Rn+
b(x)|u|

n2

n−1dx

)(n−1)/n

≤ C1

(∫
Rn+
b(x)|u|ndx+

∫
Rn+
|∇u|ndx

)
,

where C1 depends only on n. This implies that E1,n
b ↪→ Lq(Rn

+, b(x)) for any n ≤ q ≤
n2/(n− 1). In particular, one has E1,n

b ↪→ Ln+1
(
Rn

+, b(x)
)
. Applying again (1.20) with v =

(1+|x|)−(n−1)|u|n+1 and using the Young inequality with the conjugate exponents n and n/(n−1)

we get(∫
Rn+
b(x)|u|

n(n+1)
n−1 dx

)(n−1)/n

≤ |(n− 1)|C
∫
Rn+
b(x)|u|n+1 x

|x|
dx+ (n+ 1)C

∫
Rn+

|u|n|∇u|
(1 + |x|)n−1

dx

≤ C2

(∫
Rn+
b(x)|u|n+1dx+

∫
Rn+
b(x)|u|

n2

n−1dx+

∫
Rn+
|∇u|ndx

)
.

where C2 depends only on n. Hence by an interpolation argument E1,n
b ↪→ Lq(Rn

+, b(x)), for any
n ≤ q ≤ n(n+ 1)/(n− 1). Reiterating this argument with k = n+ 2, n+ 3, . . . , one has E1,n

b ↪→
L

nk
n−1 (Rn

+, b(x)). Now, given q ∈ [n,∞), one can choose k ≥ n such that n ≤ q ≤ nk/(n− 1)
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1. A Hardy-Sobolev type inequality and its consequences

and once again by an interpolation argument we get E1,n
b ↪→ L

nk
n−1 (Rn

+, b(x)) which proves the
embedding (1.9) and this completes the proof.

1.5 Trudinger-Moser inequalities

In this section, we present the proof of Theorem 1.1.9 and Corollary 1.1.10. To prove The-
orem 1.1.9 we will combine the ideas of Kufner-Opic [30] and Yang-Zhu [47]. First we recall a
basic fact.

Lemma 1.5.1 ([47]). Let αn := nω
1

n−1

n−1 , where ωn−1 is the measure of the unit sphere in Rn. For
any R > 0, there exists a constant C0 = C0(n) > 0 such that for any y ∈ Rn and v ∈ W 1,n

0 (BR(y))

with ‖∇v‖Ln(BR(y)) ≤ 1 we have ∫
BR(y)

Ψαn(v)dx ≤ C0R
n.

Our strategy to prove Theorem 1.1.9 is consider for u ∈ E1,n
b its extension to the whole space

Rn

ū(x, xn) =

{
u(x, xn), xn > 0

u(x,−xn), xn < 0.
(1.21)

For any R > 0 we can split the integral in (1.11) as follows

2

∫
Rn+
b(x)Ψα(u)dx =

∫
BR

b(x)Ψα(ū)dx+

∫
(BR)c

b(x)Ψα(ū)dx. (1.22)

Now we will estimate the first integral on the right hand side of (1.22).

Lemma 1.5.2. Let u ∈ E1,n
b be such that ‖u‖E1,nb ≤ 1 and R > 1. Then there are α1 > 0 and

C0 = C0(R) > 0 such that ∫
BR

b(x)Ψα(ū)dx ≤ C0,

for any 0 < α ≤ α1.

Proof. Consider a cut-off function ϕ ∈ C∞0 (B2R) such that 0 ≤ ϕ ≤ 1 and

ϕ ≡ 1 in BR and |∇ϕ| ≤ C

R
in B2R

for some C > 0. Note that ϕū ∈ W 1,n
0 (B2R) and by straightforward calculation we check that
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1. A Hardy-Sobolev type inequality and its consequences

∫
B2R

|∇(ϕū)|ndx ≤ 2n−1

(∫
B2R

|ϕ|n|∇ū|ndx+

∫
B2R

|∇ϕ|n|ū|ndx
)

≤ 2n−1

(∫
B2R

|∇ū|ndx+
Cn

Rn

∫
B2R

|ū|ndx
)

≤ 2n−1

(∫
B2R

|∇ū|ndx+ Cn (1 + 2R)n

Rn

∫
B2R

b(x)|ū|ndx
)
,

and hence, ∫
B2R

|∇(ϕū)|ndx ≤ C1

∫
B2R

(|∇ū|n + b(x)|ū|n) dx,

where C1 := 2n−1 max{1, (3C)n}. Note that v := ϕū/ n
√

2C1 ∈ W 1,n
0 (B2R) and

‖∇v‖nLn(B2R) =
‖∇(ϕū)‖nLn(B2R)

2C1

≤ 1

2

∫
Rn

(|∇ū|n + b(x)|ū|n) dx ≤ 1.

Since b(x) ≤ 1, in view of Lemma 1.5.1 and the fact that Ψα(cs) = Ψα|c|n′ (s), for all c ∈ R, we
conclude that∫

BR

b(x)Ψα(ū)dx ≤
∫
BR

Ψα(ϕū)dx ≤
∫
B2R

Ψ
α(2C1)

1
n−1

(v)dx ≤ C0(2R)n,

if 0 < α ≤ α1 := αn/(2C1)
1

n−1 and this completes the proof of Lemma 1.5.2.

Now we proceed to estimate the second integral on the right hand side of (1.22).

Lemma 1.5.3. Let u ∈ E1,n
b be such that ‖u‖E1,nb ≤ 1. Then there are α2 > 0 and C2 > 0

independent of u ∈ E1,n
b such that ∫

Bc3r

b(x)Ψα(ū)dx ≤ C2,

for any r > 1 and 0 < α ≤ α2.

Proof. Given r ≥ 1 and σ > r we define the annuli

Aσr := {x ∈ Bc
r : |x| < σ} = {x ∈ Rn : r < |x| < σ}.

A trick adaption of Besicovitch covering lemma [26] (see [18, estimate (4.8)]) shows that there
exist a sequence of points {xk}k ∈ Aσ1 and a universal constant θ > 0 such that

Aσ1 ⊆
⋃
k

U
1/2
k and

∑
k

χUk(x) ≤ θ, ∀x ∈ Rn,

where U1/2
k := B

(
xk,

|xk|
6

)
and χUk denotes the function characteristic of Uk := B

(
xk,

|xk|
3

)
. Let

u ∈ E1,n
b be such that ‖u‖E1,nb ≤ 1. In order to estimate the integral of ū in Aσ3r, we fix 1 < r < σ
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1. A Hardy-Sobolev type inequality and its consequences

and we follow as in [30] introducing the set of indices

Kr,σ :=
{
k ∈ N : U

1/2
k ∩Bc

3r 6= ∅
}
.

It is easy to see that, if Uk ∩Bc
3r 6= ∅, then Uk ⊂ Bc

r. Moreover, since 1 < r < 3r, we have that
Aσ3r ⊂ Aσ1 . Now using and the definition of Kr,σ we get

Aσ3r ⊆
⋃

k∈Kr,σ

U
1/2
k ⊆

⋃
k∈Kr,σ

Uk ⊆ Bc
r ⊆ Bc

1 (1.23)

and hence ∫
Aσ3r

b(x)Ψα(ū)dx ≤
∑
k∈Kr,σ

∫
U

1/2
k

b(x)Ψα(ū)dx. (1.24)

Next, we estimate the integral on the right hand side of (1.24). Since

2

3
|xk| ≤ |x| ≤

4

3
|xk|, ∀x ∈ Uk,

we have
1

(1 + (4/3)|xk|)n
≤ b(x) ≤ 1

(1 + (2/3)|xk|)n
, ∀x ∈ Uk. (1.25)

For any k ∈ Kr,σ fixed, in view of (1.25) we get∫
U

1/2
k

b(x)Ψα(ū)dx ≤ 1

(1 + (2/3)|xk|)n

∫
U

1/2
k

Ψα(ū)dx. (1.26)

Now, consider a cut-off function ϕk ∈ C∞0 (Uk) such that 0 ≤ ϕk ≤ 1 in Uk, ϕk ≡ 1 in U
1/2
k

and |∇ϕk| ≤ C/|xk| in Uk for some constant C > 0. Then we see that ϕkū ∈ W 1,n
0 (Uk) and by

straightforward computation we have∫
Uk

|∇(ϕkū)|ndx ≤ 2n−1

(∫
Uk

|ϕk|n|∇ū|ndx+

∫
Uk

|∇ϕk|n|ū|ndx
)

≤ 2n−1

(∫
Uk

|∇ū|ndx+
Cn

|xk|n

∫
Uk

|ū|ndx
)

≤ 2n−1

(∫
Uk

|∇ū|ndx+ Cn (1 + (4/3)|xk|)n

|xk|n

∫
Uk

b(x)|ū|ndx
)
.

Recalling that k ∈ Kr,σ, in view of (1.23), we have that xk ∈ Bc
r and consequently |xk| ≥ r > 1.

This and the above estimate imply that∫
Uk

|∇(ϕkū)|ndx ≤ C3

∫
Uk

(|∇ū|n + b(x)|ū|n) dx,

where C3 := 2n−1 max{1, (7C/3)n}. Thus, the function vk := ϕkū/
n
√

2C3 ∈ W 1,n
0 (Uk) and

‖∇vk‖nLn(Uk) =
‖∇ϕkū‖nLn(Uk)

2C3

≤ 1

2

∫
Uk

(|∇ū|n + b(x)|ū|n) dx ≤ 1.
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Applying Lemma 1.5.1 with BR(y) = Uk, v = vk and using the fact that Ψα(cs) = Ψα|c|n′ (s), for
all c ∈ R, we obtain∫

U
1/2
k

Ψα(ϕkū)dx ≤
∫
Uk

Ψ
α(2C3)

1
n−1

(vk)dx ≤ C0

(
|xk|
3

)n ∫
Uk

|∇vk|ndx,

for any 0 < α ≤ α2 := αn/(2C3)
1

n−1 and hence∫
U

1/2
k

Ψα(ū)dx ≤ C0|xk|n

3n2

∫
Uk

(|∇ū|n + b(x)|ū|n) dx.

This together with estimates (1.24), (1.26) and the fact that sn/(1 + cs)n ≤ 1/cn for any c, s > 0

imply that ∫
Aσ3r

b(x)Ψα(ū)dx ≤ C0

3n2

∑
k∈Kr,σ

|xk|n

(1 + (2/3)|xk|)n

∫
Uk

(|∇ū|n + b(x)|ū|n) dx

≤ C0

2n+1

∑
k∈Kr,σ

∫
Bcr

(|∇ū|n + b(x)|ū|n)χUkdx,

where the last inequality we used (1.23). In view of the Besicovitch covering lemma we obtain∫
Aσ3r

b(x)Ψα(ū)dx ≤ C0θ

2n+1

∫
Bcr

(|∇ū|n + b(x)|ū|n) dx.

Taking the limit as σ → +∞ we get∫
Bc3r

b(x)Ψα(ū)dx ≤ Cθ

∫
Bcr

(|∇ū|n + b(x)|ū|n) dx,

for any 0 < α ≤ α2 := αn/(2C3)
1

n−1 and this completes the proof of Lemma 1.5.3.

Finalizing the proof of Theorem 1.1.9. The proof follows directly from (1.22), Lemmas 1.5.2 and
Lemma 1.5.3 by choosing R = 3r and α0 = min{α1, α2}.

Proof of Corollary 1.1.10. By Remark 1.1.6 we have that ‖u‖E1,nb ≤ 2n/(n− 1)‖u‖E1,n , for all
u ∈ E1,n. This together with the fact that Ψα(cs) = Ψα|c|n′ (s), for all c ∈ R, imply that

∫
Rn+
b(x)Ψα(u)dx ≤

∫
Rn+
b(x)Ψ

(2n/(n−1))n
′
α

(
u

‖u‖E1,nb

)
dx,

for all u ∈ E1,n with ‖u‖E1,n ≤ 1. Thus, the result follows from Theorem 1.1.9.

To prove Corollary 1.1.11, we need establish some auxiliary results. First we observe that we
can write the function Ψα(s) defined in (1.10) as

Ψα(s) = Φα(s) +
αn−1

(n− 1)!
|s|n,
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1. A Hardy-Sobolev type inequality and its consequences

where

Φα(s) = eα|s|
n′ −

n−1∑
k=0

αk

k!
|s|n′k, s ∈ R.

The crucial point for the proof of Corollary 1.1.11 is the following result.

Lemma 1.5.4. For any α > 0 and u ∈ E1,n, we have

∫
Rn−1

b(x′, 0)Φα(u(x′, 0))dx′ ≤ αn′

(∫
Rn+
b(x)|u|

n
(n−1)2 Ψn′α(u)dx

)(n−1)/n

×

(∫
Rn+
|∇u|ndx

)1/n

+ n

∫
Rn+
b(x)Ψα(u)dx.

(1.27)

Proof. By Lemma 1.3.1 we may assume that u ∈ C∞0 (Rn). Straightforward computation shows
that Φ′α(s) = αn′|s|n′−1Ψα(s). Thus,

b(x′, 0)Φα(u(x′, 0)) = −
∫ +∞

0

∂

∂xn
(b(x)Φα(u)) dxn

= −αn′
∫ +∞

0

b(x)|u|n′−1Ψα(u)uxndxn + n

∫ +∞

0

Φα(u)xn
(1 + |x|)n+1|x|

dxn

≤ αn′
∫ +∞

0

b(x)|u|n′−1Ψα(u)|∇u|dxn + n

∫ +∞

0

b(x)Ψα(u)dxn.

(1.28)

Integrating this inequality on Rn−1 and using Hölder’s estimates we deduce

∫
Rn−1

b(x′, 0)Φα(u(x′, 0))dx′ ≤ αn′

(∫
Rn+

(b(x))n
′|u|

n
(n−1)2 (Ψα(u))n

′
dx

)(n−1)/n

×

(∫
Rn+
|∇u|ndx

)1/n

+ n

∫
Rn+
b(x)Ψα(u)dx.

Now using that (b(x))n
′ ≤ b(x) and (Ψα(s))n

′ ≤ Ψn′α(s) (see [45, Lemma 2.1]) we finish the
proof.

Proof of Corollary 1.1.11. Since∫
Rn−1

b(x′, 0)Ψα(u(x′, 0))dx′ =

∫
Rn−1

b(x′, 0)Φα(u(x′, 0))dx+
αn−1

(n− 1)!

∫
Rn−1

b(x′, 0)|u(x′, 0)|ndx,

by Lemma 1.5.4 and the trace embedding (1.7) it is sufficient to prove that

sup
{u∈E1,n:‖u‖E1,n≤1}

∫
Rn+
b(x)|u|

n
(n−1)2 Ψn′α(u)dx < +∞, (1.29)

for any 0 < α ≤ ((n− 1)/n)2 α0/ (2n/(n− 1))n
′
where α0 > 0 is the constant obtained in
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Theorem 1.1.9. To this end, by Hölder’s estimates we see that

∫
Rn+
b(x)|u|

n
(n−1)2 Ψn′α(u)dx ≤

(∫
Rn+
b(x)|u|

n2

(n−1)2 dx

)1/n(∫
Rn+
b(x)(Ψn′α(u))n

′
dx

)1/n′

.

Now using that (Ψn′α(s))n
′ ≤ Ψ(n′)2α(s) (see [45, Lemma 2.1]) by Proposition 1.1.8 we get

∫
Rn+
b(x)|u|

n
(n−1)2 Ψn′α(u)dx ≤ C‖u‖E1,n

(∫
Rn+
b(x)Ψ(n′)2α(u)dx

)1/n′

.

This together with Corollary 1.1.10 imply that (1.29) holds. The proof is complete.

1.6 Morrey-Sobolev type embedding (p > n)

In this section we prove Theorem 1.1.13. To this end, we fix z = (0′, z0) ∈ Rn
+ and let Q ⊂ Rn

be an open cube centered at the origin 0 containing z whose sides-of length r-are parallel to the
coordinate axes. Setting

ū =
1

|Q+|

∫
Q+

a(x)u(x)dx,

where Q+ := Q ∩ Rn
+ and a(x) := (1 + xn)−p, we have the following result.

Lemma 1.6.1. There exists C0 = C0(p) > 0 such that

|ū− a(x)u(x)| ≤ C0r
1−n

p
(
‖∇u‖Lp(Q+) + ‖u‖Lp(Q+,a(y))

)
, ∀x ∈ Q+.

Proof. Note that for any x ∈ Q+ we have

a(x)u(x)− a(z)u(z) =

∫ 1

0

d

dt
[a(tx+ (1− t)z)u(tx+ (1− t)z)]dt.

Since
d

dt
[a(tx+ (1− t)z)u(tx+ (1− t)z)] = −p u(tx+ (1− t)z)(xn − z0)

(1 + (txn + (1− t)z0))p+1

+
∇u(tx+ (1− t)z) · (x− z)

(1 + (txn + (1− t)z0))p
,

and taking into account that a(x) ≤ 1, for x ∈ Q+, it follows that

|a(x)u(x)− a(z)u(z)| ≤ pr

∫ 1

0

a(tx+ (1− t)z)|u(tx+ (1− t)z)|dt

+ r

∫ 1

0

n∑
i=1

|uxi(tx+ (1− t)z)|dt.
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1. A Hardy-Sobolev type inequality and its consequences

Integrating this inequality on Q+ with respect to the variable x we obtain

|ū− a(z)u(z)| ≤ pr

|Q+|

∫
Q+

∫ 1

0

a(tx+ (1− t)z)|u(tx+ (1− t)z|dtdx

+
r

|Q+|

∫
Q+

∫ 1

0

n∑
i=1

|uxi(tx+ (1− t)z)|dtdx

≤ pC1

rn−1

∫ 1

0

∫
tQ+

|u(y)|
(1 + yn)p

dy

tn
dt+

C1

rn−1

∫ 1

0

∫
tQ+

n∑
i=1

|uxi(y)|dy
tn
dt.

Since tQ+ ⊂ Q+ for t ∈ (0, 1), from Hölders estimate we get∫
tQ+

|u(y)|
(1 + yn)p

dy ≤ ‖u‖Lp(Q+,a(y))|tQ+|
1
p′ ≤ C2‖u‖Lp(Q+,a(y))(rt)

n
p′

∫
tQ+

|uxi(y)|dy ≤
(∫

Q+

|uxi(y)|pdy
) 1

p

|tQ+|
1
p′ ≤ C2‖∇u‖Lp(Q+)(rt)

n
p′ .

This immediately implies that for all p > n,

|ū− a(z)u(z)| ≤ C0r
1−n

p
(
‖∇u‖Lp(Q+) + ‖u‖Lp(Q+,a(y))

)
.

By translation, this inequality remains true for all cubes Q whose sides-of length r-are parallel
to the coordinate axes and this completes the proof.

Finalizing the proof of Theorem 1.1.13. First we shall prove (1.12). Let u ∈ C1
0(Rn), x ∈ Rn

+

and Q ⊂ Rn be an open cube centered at the 0 containing x. In view of Lemma 1.6.1 and
Theorem 1.1.1 we obtain

|a(x)u(x)| ≤ |ū|+ C0r
1−n

p
(
‖∇u‖Lp(Q+) + ‖u‖Lp(Q+,a(y))

)
≤ C3

∫
Q+

a(x)|u|dx+ C0r
1−n

p
(
‖∇u‖Lp(Q+) + ‖u‖Lp(Q+,a(y))

)
≤ C3‖u‖Lp(Q+,a(x)) + C0r

1−n
p
(
‖∇u‖Lp(Q+) + ‖u‖Lp(Q+,a(y))

)
≤ C‖u‖E1,p(Rn+).

Therefore, ‖u‖L∞(Rn+,a(x)) ≤ C‖u‖E1,p(Rn+), as stated in (1.12). Next we will prove the estimate
(1.13). To do this, we observe that given any two points x, y ∈ Rn

+ there exists a cube Q with
side r = 2|x− y| such that x, y ∈ Q. Since x, y ∈ Q+ form Lemma 1.6.1 we infer that

|a(x)u(x)− a(y)u(y)| ≤ |a(x)u(x)− ū|+ |ū− a(y)u(y)|

≤ C0|x− y|1−
n
p

(
‖∇u‖Lp(Rn+) + ‖u‖Lp(Rn+,a(y))

)
,

for all u ∈ C1
0(Rn), as stated in (1.13) and this finishes the proof.
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1. A Hardy-Sobolev type inequality and its consequences

1.7 Final remarks and comments

As it is well known, Sobolev embeddings turn out to be efficient tools for study nonlinear
boundary value problems. In the sequel, we comment a few further examples for which our main
theorem can be applied.

A remarkable class of nonlinear equations appears in the study of the best constant of certain
Sobolev trace embeddings in bounded domain is the limit problem (see for instance [1] and
references therein): {

−∆u = 0, in Rn
+,

∂u
∂ν

+ u = |u|q−2u, on ∂Rn
+,

(P1)

where ν denotes the unit outer normal to the boundary Rn
+, 2 < q ≤ 2∗ := 2(n− 1)/(n− 2) if

n ≥ 3 and q > 2 if n = 2.
Another illustrative example we bring up here concerns the weighted eigenvalue problem:{

−∆u = λa(x)u, in Rn
+,

∂u
∂ν

+ u = 0, on ∂Rn
+.

(P2)

where n ≥ 2, λ is a real parameter and a(x) ≤ (1 + xn)−2. Let u be an eigenfunction with
corresponding eigenvalue λ. As a consequence of Theorem 1.1.1, we get∫

Rn+
|∇u|2dx+

∫
Rn−1

|u|2dx′ = λ

∫
Rn+
a(x)u2

≤ λ

∫
Rn+

u2

(1 + xn)2
≤ λ4

(∫
Rn+
|∇u|2dx+

∫
Rn−1

|u|2dx′
)

which implies λ ≥ 1/4. Therefore, all eigenvalues of the problem (P2) are greater than or equal
to 1/4. This eigenvalue problem has been studied in the paper [6] with more general elliptic
operator perturbed by a potential, and with Robin boundary conditions. We also quote here that
this eigenvalue problem is related with the Sobolev trace inequality see [10]. We also mention
the works [13, 36, 37] where the authors studied the eigenvalue problem with Robin boundary
conditions in a bounded domain.

Finally, we mention that based on the theorems proved in the present chapter one can study
a wide class of quasilinear elliptic problems. Precisely, if 1 < p ≤ n and a(x) = (1 + xn)−α with
α ≥ p then with the aid of Theorems 1.1.3 and 1.1.4 we can study the problem:{

−∆pu = a(x)f(u), in Rn
+,

|∇u|p−2 ∂u
∂ν

+ |u|p−2u = g(u), on ∂Rn
+,

(P3)

when f(u) ≈ |u|r with p < r ≤ p∗ := np/(n− p) (p < r < ∞ if p = n) and g(u) ≈ |u|q with
p < r ≤ p∗ := (n− 1)p/(n− p) (p < q <∞ if p = n ). Furthermore, in the limit case p = n = 2
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1. A Hardy-Sobolev type inequality and its consequences

(to simplify), we can study the problem:{
−∆u = a(x)f(u), in R2

+,
∂u
∂ν

+ u = b(x′)g(u), on ∂R2
+,

(P4)

when f and g have growth in the Trudinger-Moser sense, that is, f(u) ≈ eα0πu2 and g(u) ≈ eβ0u
2 ,

for some α0, β0 > 0, at infinity and a(x), b(x′) satisfying suitable conditions.
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anisotropic spaces (Chapter 3)
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Chapter 2

An indefinite quasilinear elliptic problem
with weights in anisotropic spaces

In this chapter we present the results of the paper [3], where we investigate existence, nonex-
istence and multiplicity of solutions for a class of indefinite quasilinear elliptic problems in the
upper half-space involving weights in anisotropic Lebesgue spaces. One of our basic tools con-
sists in a Hardy type inequality proved in [3] that allows us to establish Sobolev embeddings
into Lebesgue spaces with weights in anisotropic Lebesgue spaces.

2.1 Introduction and main results

Consider the Euclidean upper half-space Rn
+ = {x = (x′, xn) ∈ Rn : xn > 0} with n ≥ 2 and

denote by Rn−1 its boundary. This chapter is concerned with the existence, nonexistence and
multiplicity of solutions for the indefinite quasilinear elliptic problem:{

−div(|∇u|p−2∇u) = λa(x)|u|q−2u− b(x)|u|r−2u in Rn
+,

|∇u|p−2∇u · ν + |u|p−2u = 0 on Rn−1,
(Pλ)

where ν denotes the unit outward normal on the boundary, 1 < p ≤ n, λ is a real parameter and
the weight functions a(x) and b(x) satisfy some suitable conditions that we will describe later
on. Our main interest is to analyze the interplay between the powers q and r. Thus, we will
consider two cases:

Case I: r > q and 1 < p ≤ q ≤ p∗ := np
n−p if 1 < p < n (p∗ :=∞ if p = n);

Case II: 1 < p ≤ r ≤ q ≤ p∗.

The model problem (Pλ) arises in the study of nonlinear diffusion equations, in particular, in
the mathematical modeling of non-Newtonian fluids, see [34]. For a Physics background related
to this problem, we refer the reader to [19] and references therein.

The existence, nonexistence and multiplicity of solutions for quasilinear elliptic problems of
the form
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2. An indefinite quasilinear elliptic problem with weights in anisotropic spaces

{
−div(|∇u|p−2∇u) = f(x, u), in Ω,

|∇u|p−2∇u · ν + h(x)|u|p−2u = 0, on Γ,

where Ω ⊂ Rn is an unbounded domain, Γ denotes the boundary of Ω and the functions h, f
satisfy some growth conditions, have been investigated by many authors, see for instance [12,14,
16,25,32–35] and references therein. In many of these papers, a relevant Sobolev type inequality
proved by Pflüger in [34] has played an important role in their variational approach. Precisely,
let 1 < p < n and assume that the weight function h(x) satisfies the hypothesis

1/C(1 + |x|)p−1 ≤ h(x) ≤ C/(1 + |x|)p−1, a.e. x ∈ Ω,

for some C > 0 and denote by C∞δ (Ω) the space of C∞0 (Rn)−functions restricted to Ω. Defining
the weighted Sobolev space E as the completion of C∞δ (Ω) in the norm

‖u‖E :=

(∫
Ω

|∇u|pdx+

∫
Ω

|u|p

(1 + |x|)p
dx

)1/p

,

in [34], the author proved that ‖ · ‖E is an equivalent norm to (see [34, Lemma 2])

|||u|||E :=

(∫
Ω

|∇u|p +

∫
∂Ω

h(x)|u|pdx′
)1/p

.

To this, the following Hardy type inequality was crucial:∫
Ω

|u|p

(1 + |x|)p
dx ≤ C0

(∫
Ω

|∇u|pdx+

∫
Γ

|ν · x|
(1 + |x|)p

|u|pdΓ

)
, (2.1)

for some C0 > 0. As pointed in [27], in contrast to the classical Hardy and Sobolev inequalities in
Rn, the exact values of the constant C0 in inequality (2.1) is not known and their determinations
seem to be a challenging problem even when the domain Ω has special geometry such as, for
example, the half-space Rn

+.
Here, we will prove a version of the Hardy type inequality (2.1) that includes p = n and this

inequality will allows us to consider weights like a(x) = (1+xn)−α for some α ≥ n, which belongs
to an anisotropic Lebesgue space (for the definition of anisotropic Lebesgue spaces, see [5, 9]).
Then, we set up some new Sobolev embeddings into weighted Lebesgue spaces with where the
weight belongs is in anisotropic Lebesgue spaces. We also quote that recent developments on
Hardy type inequalities in the half-space were addressed in the context of C∞0 (Rn

+) in [23,24,42].
Motivated by the works of Alama-Tarrantelo [7], Filippucci-Pucci-Radulescu [25], Lyberopou-

los [27], Perera [31] and Pflüger [34], our main purpose in the present chapter is to use variational
techniques to investigate the existence, nonexistence and multiplicity of nontrivial weak solu-
tions for the problem (Pλ). We want to remark that the main features of this class of problems
is that we are facing an indefinite nonlinearity and the weight function a(x) is allowed to be in
anisotropic Lebesgue spaces.
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2. An indefinite quasilinear elliptic problem with weights in anisotropic spaces

We begin by considering the case r > q. To this end, we shall assume the following assump-
tions:

(H1) a : Rn
+ → R is a nontrivial measurable function and there are constants α ≥ n and c1 > 0

such that
0 ≤ a(x) ≤ c1

(1 + xn)α
, a.e. x ∈ Rn

+;

(H2) b : Rn
+ → R is a positive continuous function satisfying

∫
Rn+

a
r
r−q

b
q
r−q

dx <∞.

It is worthwhile mentioning that the hypothesis (H2) appears in the paper [7].

Remark 2.1.1. Note that if a(x) satisfies (H1) then the function b(x) = (1 + |x|)θ/(1 + xn)
αr
q

with θ > n(r − q)/q satisfies the assumption (H2). In fact, if θ > n(r − q)/q we have∫
Rn+

a
r
r−q

b
q
r−q

dx ≤
∫
Rn+

c1

(1 + xn)
αr
r−q

(1 + xn)
αr
r−q

(1 + |x|)
θq
r−q

dx =

∫
Rn+

c1

(1 + |x|)
θq
r−q

dx <∞.

Under these hypotheses, our main result can be stated as follows.

Theorem 2.1.2. Let r > q and assume the hypotheses (H1)− (H2).

(i) If 1 < p ≤ q ≤ p∗, there exists λ∗ > 0 such that problem (Pλ) has only the trivial solution
for all λ ∈ (−∞, λ∗);

(ii) If max{2, p} < q < p∗, there exists λ̃ > 0 such that problem (Pλ) has at least a nontrivial
weak solution for all λ ∈ (λ̃,∞). Furthermore, if p < q then (Pλ̃) has a nontrivial weak
solution;

(iii) If max{2, p} < q < p∗, there exists Λ ≥ λ̃ such that problem (Pλ) has at least two nontrivial
weak solutions uλ ≥ ũλ for all λ ∈ (Λ,∞);

(iv) If 1 < p ≤ q < p∗, for any m ∈ N there exists Λm > 0 such that problem (Pλ) has at least
m pairs of nontrivial weak solutions for all λ > Λm.

The proof of the existence in Theorem 2.1.2 is based on minimization techniques. To obtain
the second solution we will follow a truncation argument. The multiplicity result is obtained by
applying the symmetric mountain pass theorem.

Next, we deal with the case r < q. In order to prove the existence of solutions for problem
(Pλ), instead of hypotheses (H1)− (H2), we will assume:
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2. An indefinite quasilinear elliptic problem with weights in anisotropic spaces

(H̃1) a : Rn
+ → R is a nontrivial measurable function and there are c2 > 0 and α ≥ n such that

0 ≤ a(x) ≤ c2

(1 + |x|)α
, a.e. in x ∈ Rn

+;

(H̃2) b : Rn
+ → R is a measurable positive function.

In this case, our main result is stated as follows.

Theorem 2.1.3. Let 1 < p ≤ r < q < p∗ and assume the hypotheses (H̃1)− (H̃2). Then

(i) the problem (Pλ) has no nontrivial weak solution for every λ ∈ (−∞, 0];

(ii) the problem (Pλ) has an infinite number of nontrivial weak solutions for every λ ∈ (0,∞).

The proof of Theorem 2.1.3 is obtained by performing a variational approach based on the
symmetric mountain pass theorem.

Hereafter in this chapter, BR denotes the ball of center zero and radius R > 0 in Rn,
B+
R := BR∩Rn

+, (BR)c denotes Rn \BR, the complement of the set BR ⊂ Rn, and (B+
R)c denotes

Rn
+ \B+

R the complement of the set B+
R ⊂ Rn

+.
This chapter is organized as follows. Section 2.2 contains the necessary preliminary results

on the weighted Sobolev embeddings needed in the sequel. In Section 2.3, we present the proof
of Theorem 2.1.2. Finally, in Section 2.4, we discuss the proof of Theorem 2.1.3.

2.2 Variational framework

In this section, in order to perform a variational approach we introduce our functional space
and its embeddings into weighted Lebesgue spaces. To this, denote by C∞δ (Rn

+) the space of
C∞0 (Rn)−functions restricted to Rn

+. We define the weighted Sobolev space E as the completion
of C∞δ (Rn

+) with respect to the norm

‖u‖ :=

[∫
Rn+

(
|∇u|p +

|u|p

(1 + xn)p

)
dx

]1/p

.

We have the following embedding result.

Lemma 2.2.1. Assume 1 < p < n. Then the weighted Sobolev embedding

E ↪→ Lq
(
Rn

+,
1

(1 + xn)p

)
, ∀ p ≤ q ≤ p∗, (2.2)

and the trace embedding
E ↪→ Lq(Rn−1), ∀ p ≤ q ≤ p∗, (2.3)

are continuous.
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Proof. We first recall that for any 1 ≤ p < n it follows from the Gagliardo-Nirenberg-Sobolev
inequality that there exists C0 = C0(n, p) > 0 such that(∫

Rn+
|u|p∗dx

)(n−p)/n

≤ C0

∫
Rn+
|∇u|pdx, ∀u ∈ C1

0(Rn). (2.4)

This in combination with the fact that (1 + xn)−p ≤ 1 imply that E ↪→ Lp
∗ (Rn

+, (1 + xn)−p
)
.

By interpolation we see that E ↪→ Lq
(
Rn

+, (1 + xn)−p
)
for all q ∈ [p, p∗], as stated in (2.2). Now

we will prove the embedding (2.3). For that, observe that for all u ∈ C1
0(Rn) we have

|u(x′, 0)|p = −
∫ +∞

0

∂

∂xn

(
|u|p

(1 + xn)p

)
dxn ≤ p

∫ +∞

0

|u|p−1|∇u|
(1 + xn)p

dxn + p

∫ +∞

0

|u|p

(1 + xn)p+1
dxn.

Integrating this inequality and using the Hölder inequality together with the fact that (1 +

xn)−1 < 1 we obtain

∫
Rn−1

|u(x′, 0)|pdx′ ≤ p

(∫
Rn+

|u|p

(1 + xn)p
dx

)(p−1)/p(∫
Rn+
|∇u|pdx

)1/p

+ p

∫
Rn+

|u|p

(1 + xn)p
dx.

Using the embedding (2.2) we get

‖u‖pLp(Rn−1) ≤ C1‖u‖p−1‖u‖+ C2‖u‖p,

which implies that E ↪→ Lp(Rn−1). On the other hand, from the trace inequality (see [20, 29]),
for all 1 < p < n we have(∫

Rn−1

|u|p∗dx
)(n−p)/(n−1)

≤ C0

∫
Rn+
|∇u|pdx, ∀u ∈ C1

0(Rn),

and hence E ↪→ Lp∗(Rn−1). Thus, by interpolation we obtain that E ↪→ Lq(Rn−1) for any
q ∈ [p, p∗] and this completes the proof of Lemma 2.2.1.

Next we consider the borderline case p = n.

Lemma 2.2.2. Assume p = n. For any n ≤ q <∞ the weighted Sobolev embedding

E ↪→ Lq
(
Rn

+,
1

(1 + xn)n

)
(2.5)

and the Sobolev trace embedding
E ↪→ Lq(Rn−1) (2.6)

are continuous.
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Proof. We first prove the embedding (2.5). To this, using inequality (2.4) with p = 1 we get(∫
Rn+
|v|

n
n−1dx

)(n−1)/n

≤ C

∫
Rn+
|∇v|dx, ∀ v ∈ C1

0(Rn). (2.7)

Applying (2.7) with v = (1 + xn)α|u|n and u ∈ C1
0(Rn) we obtain(∫

Rn+
|(1 + xn)α|u|n|

n
n−1dx

)(n−1)/n

≤ C0

∫
Rn+
|α|(1 + xn)α−1|u|ndx

+ C0n

∫
Rn+

(1 + xn)α|u|n−1|∇u|dx.

Choosing α = −(n− 1) and using the Young inequality we obtain(∫
Rn+

|u|n2/(n−1)

(1 + xn)n
dx

)(n−1)/n

≤ C1

∫
Rn+

(
|∇u|n +

|u|n

(1 + xn)n

)
dx,

where C1 depends only on n and hence we conclude that

E ↪→ L
n2

n−1

(
Rn

+,
1

(1 + xn)n

)
.

If n < q < n2/(n− 1), by interpolation, there exists 0 < θ < 1 such that

‖u‖Lq(Rn+,(1+xn)−n) ≤ ‖u‖
θ
Ln(Rn+,(1+xn)−n)‖u‖

1−θ

L
n2

(n−1) (Rn+,(1+xn)−n)
≤ C‖u‖.

In particular, using that n < n + 1 < n2/(n− 1), one has E ↪→ Ln+1
(
Rn

+, (1 + xn)−n
)
. On the

other hand, applying again (2.7) with v = (1 + xn)−(n−1)|u|n+1 and using the Young inequality
we get (∫

Rn+

|u|
n(n+1)
n−1

(1 + xn)n
dx

)(n−1)/n

≤ C1(n)

∫
Rn+

|u|n+1

(1 + xn)n
dx

+ C2(n)

∫
Rn+

|u|
n2

n−1

(1 + xn)n
dx+

∫
Rn+
|∇u|ndx

 ,

which implies that E ↪→ L
n(n+1)
(n−1) (Rn

+, (1 + xn)−n). For any n ≤ q ≤ n(n+ 1)/(n− 1), by interpo-
lation, there exists 0 ≤ θ ≤ 1 such that

‖u‖Lq(Rn+,(1+xn)−n) ≤ ‖u‖θLn(Rn+,(1+xn)−n)‖u‖1−θ

L
n(n+1)
(n−1) (Rn+,(1+xn)−n)

≤ C‖u‖.

Reiterating this argument with k = n+ 2, n+ 3, . . . , one has E ↪→ L
nk
n−1 (Rn

+, (1 + xn)−n). Now,
given q ∈ [n,∞), one can choose k ≥ n such that n < q < nk/(n− 1) and once again using
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interpolation we get

‖u‖Lq(Rn+,(1+xn)−n) ≤ ‖u‖θLn(Rn+,(1+xn)−n)‖u‖1−θ

L
nk
n−1 (Rn+,(1+xn)−n)

≤ C‖u‖,

which proves the embedding (2.5). Now we will prove the trace embedding (2.6). For that, fixed
q ≥ n, we have

|u(x′, 0)|q = −
∫ +∞

0

∂

∂xn

(
|u|q

(1 + xn)n

)
dxn ≤ q

∫ +∞

0

|u|q−1|∇u|
(1 + xn)n

dxn + n

∫ +∞

0

|u|q

(1 + xn)n+1
dxn.

Integrating this inequality and using the Hölder inequality together with the fact that (1 +

xn)−1 < 1 we obtain

∫
Rn−1

|u(x′, 0)|qdx′ ≤ q

(∫
Rn+

|u|(q−1) n
n−1

(1 + xn)n
dx

)(n−1)/n(∫
Rn+
|∇u|ndx

)1/n

+ n

∫
Rn+

|u|q

(1 + xn)n
dx.

Since (q − 1)n/(n− 1) ≥ n, by the embedding (2.5) we get

‖u‖qLq(Rn−1) ≤ C1‖u‖q−1‖u‖+ C2‖u‖q,

which completes the proof of Lemma 2.2.2.

Next we prove a weighted Hardy-type inequality which is in some way a version of [34, Lemma
2].

Lemma 2.2.3. Let 1 < p ≤ n. Then the following inequality holds

∫
Rn+

|u|p

(1 + xn)p
dx ≤

(
p

p− 1

)p(∫
Rn+
|∇u|pdx+

∫
Rn−1

|u|pdx′
)
, ∀u ∈ C1

0(Rn).

Proof. Let v ∈ C1
0(Rn) and σ ∈ R with σ 6= −1. Using the divergence theorem we obtain

σ

∫
Rn+

v

(1 + xn)σ+1
dx =

∫
Rn+

vxn
(1 + xn)σ

dx+

∫
Rn−1

vdx′,

where we are using that the normal unit vector pointing out of Rn−1 is η = (0′,−1). Applying
this equality with v = |u|p, we get

|σ|
∫
Rn+

|u|p

(1 + xn)σ+1
dx ≤

∫
Rn+

p|u|p−1|∇u|
(1 + xn)σ

dx+

∫
Rn−1

|u|pdx′. (2.8)

Now using the Young inequality with 0 < ε < 1 we obtain

p

∫
Rn+

|u|p−1|∇u|
(1 + xn)σ

dx ≤ (p− 1)ε

∫
Rn+

|u|p

(1 + xn)
σp
p−1

dx+
1

ε(p−1)

∫
Rn+
|∇u|pdx. (2.9)

Choosing σp/(p− 1) = σ + 1, that is, σ = p− 1 and combining inequalities (2.8) and (2.9), one
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has ∫
Rn+

|u|p

(1 + xn)p
dx ≤ 1

(p− 1)(εp−1 − εp)

(∫
Rn+
|∇u|pdx+

∫
Rn−1

|u|pdx′
)
.

Using that the function g(ε) = 1/(εp−1− εp) for ε > 0 achieves its minimum at ε = (p− 1)/p we
conclude that ∫

Rn+

|u|p

(1 + xn)p
dx ≤

(
p

p− 1

)p(∫
Rn+
|∇u|pdx+

∫
Rn−1

|u|pdx′
)
,

which is the desired result.

As a consequence of Lemma 2.2.2 and Lemma 2.2.3 we have

Corollary 2.2.4. The quantity

‖u‖E1,p :=

(∫
Rn+
|∇u|pdx+

∫
Rn−1

|u|pdx′
)1/p

, 1 < p ≤ n,

define an equivalent norm on E.

Proof. By Lemma 2.2.3 we have ‖u‖ ≤ C1‖u‖E1,p . On the other hand, using Lemmas 2.2.2 and
2.2.3 we obtain

‖u‖pE1,p =

∫
Rn+
|∇u|pdx+

∫
Rn−1

|u(x′, 0)|pdx′ ≤
∫
Rn+
|∇u|pdx+ C1‖u‖p,

which implies the desired result and this completes the proof.

In view of Corollary 2.2.4, from now on we consider the space E equipped with the norm
‖ · ‖E1,p , and we denote by E1,p.

Remark 2.2.5. Suppose that the weight function a(x) satisfies hypotheses (H1) or (H̃1). By
Lemma 2.2.1 and Lemma 2.2.2, respectively, the weighted Sobolev embeddings

E1,p ↪→ Lq
(
Rn

+, a(x)
)
, ∀ p ≤ q ≤ p∗ if 1 < p < n, (2.10)

and
E1,n ↪→ Lq

(
Rn

+, a(x)
)
, ∀n ≤ q <∞, (2.11)

are continuous.

Now we are ready to define our variational approach. Since the weight function b(x) does
not belong to any Lebesgue space we need to consider the subspace of E1,p defined by

Er,p =

{
u ∈ E1,p :

∫
Rn+
b(x)|u|rdx <∞

}
,
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equipped with the norm

‖u‖Er,p :=
(
‖u‖pE1,p + ‖u‖pLr(Rn+,b(x))

)1/p

.

The next two compactness results play a crucial role in the proof of Theorem 2.1.2 and
Theorem 2.1.3, respectively.

Lemma 2.2.6. Assume hypotheses (H1) − (H2). Then the embedding Er,p ↪→ Lq
(
Rn

+, a(x)
)
is

compact:

(i) For all p ≤ q ≤ p∗ if 1 < p < n;

(ii) For all n ≤ q <∞ if p = n.

Proof. We will show that uk → 0 in Lq(Rn
+, a(x)) whenever uk ⇀ 0 in Er,p. Indeed, let C > 0 be

such that ‖uk‖Er,p ≤ C and R > 0 to be chosen during the proof independently of u. We have∫
Rn+
a|uk|qdx =

∫
B+
R

a|uk|qdx+

∫
Rn+\B

+
R

a|uk|qdx. (2.12)

Since the restriction operator u 7→ u|
B+
R

is continuous fromEr,p intoEr,p(B+
R) :=

{
v|
B+
R

: v ∈ Er,p

}
and the embedding Er,p(B+

R) ↪→ Lq(B+
R , a(x)) is compact, in case that, p ≤ q < p∗ if 1 < p < n

and n ≤ q if p = n, there exists k1 ∈ N such that∫
B+
R

a|uk|qdx <
ε

2
, ∀ k ≥ k1 (2.13)

for any p ≤ q < p∗ if 1 < p < n and n ≤ q if p = n. On the other hand, by assumption (H2),
the Hölder inequality and choosing R > 0 sufficiently large, we get

∫
Rn+\B

+
R

a|uk|qdx ≤

(∫
Rn+\B

+
R

a
r
r−q

b
q
r−q

dx

)(r−q)/r(∫
Rn+\B

+
R

b|uk|rdx

)q/r

≤ C1

(∫
Rn+\B

+
R

a
r
r−q

b
q
r−q

dx

)(r−q)/r

≤ ε

2
.

This combined with (2.12) and (2.13) imply the desired result.

Lemma 2.2.7. Assume hypothesis (H̃1). If α > n then the weighted Sobolev embeddings (2.10)
and (2.11) are compact.

Proof. Since E1,p ↪→ Lq
(
Rn

+, (1 + |x|)−α
)
↪→ Lq

(
Rn

+, a(x)
)
, is sufficient to show that uk → 0 in

Lq(Rn
+, (1 + |x|)−α) whenever uk ⇀ 0 in E1,p. To this end, let C > 0 be such that ‖uk‖E1,p ≤ C

and R > 0 to be chosen later on. Note that∫
Rn+

|uk|q

(1 + |x|)α
dx =

∫
B+
R

|uk|q

(1 + |x|)α
dx+

∫
Rn+\B

+
R

|uk|q

(1 + |x|)α
dx.
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Arguing as in the proof of Lemma 2.2.6 we obtain k1 ∈ N such that∫
B+
R

|uk|q

(1 + |x|)α
dx <

ε

2
, ∀ k ≥ k1.

On the other hand, using that α > p we see that (1 +xn)p/(1 + |x|)α → 0 as |x| → ∞. Thus, we
can choose R > 0 sufficiently large such that (1 + xn)p/(1 + |x|)α ≤ ε/2C. Hence, there exists
k2 ∈ N such that∫

Rn+\B
+
R

|uk|q

(1 + |x|)α
dx =

∫
Rn+\B

+
R

|uk|q

(1 + xn)p
(1 + xn)p

(1 + |x|)α
dx <

ε

2
, ∀ k ≥ k2,

which implies the desired result.

In this chapter we seek for weak solutions of problem (Pλ), which means a function u ∈ Er,p

verifying∫
Rn+
|∇u|p−2∇u∇ϕdx+

∫
Rn−1

|u|p−2uϕdx′ = λ

∫
Rn+
a|u|q−2uϕdx−

∫
Rn+
b|u|r−2uϕdx, (2.14)

for all ϕ ∈ Er,p. In view of assumption (H1) and using Lemmas 2.2.1 and 2.2.2 the energy
functional associated to problem (Pλ), namely Iλ : Er,p → R defined by

Iλ(u) =
1

p

∫
Rn+
|∇u|pdx+

1

p

∫
Rn−1

|u|pdx′ + 1

r

∫
Rn+
b|u|rdx− λ

q

∫
Rn+
a|u|qdx,

is well defined. Furthermore, standard arguments show that u ∈ Er,p is a critical point of Iλ if,
and only if, it is a weak solution of problem (Pλ).

2.3 Proof of Theorem 2.1.2

In this section, we present the proof of Theorem 2.1.2. We split the proof into three parts.

2.3.1 Nonexistence

First, we present the proof of the nonexistence statement (i) in Theorem 2.1.2. Suppose that
u ∈ Er,p is a nontrivial weak solution of (Pλ). If λ ≤ 0 the result is immediate. Thus, we assume
that λ > 0 and taking ϕ = u as a test function in (2.14) we obtain∫

Rn+
|∇u|pdx+

∫
Rn−1

|u|pdx′ = λ

∫
Rn+
a|u|qdx−

∫
Rn+
b|u|rdx. (2.15)

Using the Young inequality we get

λ

∫
Rn+
a|u|qdx =

∫
Rn+

λa

b
q
r

(
b
q
r |u|q

)
dx ≤ r − q

r
λ

r
r−q

∫
Rn+

a
r
r−q

b
q
r−q

dx+
q

r

∫
Rn+
b|u|rdx. (2.16)
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This together with (2.15) and the fact that q < r imply

‖u‖pE1,p ≤
r − q
r

λ
r
r−q

∫
Rn+

a
r
r−q

b
q
r−q

dx+
q − r
r

∫
Rn+
b|u|rdx ≤ r − q

r
λ

r
r−q

∫
Rn+

a
r
r−q

b
q
r−q

dx. (2.17)

Since p ≤ q, combining (2.2) with (2.15) and the fact that b > 0 we get

C̄

(∫
Rn+
a|u|qdx

)p/q

≤ ‖u‖pE1,p ≤ λ

∫
Rn+
a|u|qdx, (2.18)

for some constant C̄ > 0. If p = q we obtain λ ≥ C̄. In case that q > p we have

(
C̄λ−1

) q
q−p ≤

∫
Rn+
a|u|qdx.

Using the first inequality in (2.18) we obtain C̄
(
C̄λ−1

) p
q−p ≤ ‖u‖pE1,p . This together with (2.17)

imply that

λ ≥ λ̄ :=

C̄ q
q−p

r

r − q

(∫
Rn+

a
r
r−q

b
q
r−q

dx

)−1
(r−q)(q−p)/q(r−p)

.

To conclude, we define

λ∗ = sup {λ > 0 : (Pµ) does not admits any nontivial weak solution for all µ < λ} .

Therefore, λ∗ ≥ C̄ > 0 if p = q and λ∗ ≥ λ̄ > 0 if q > p, and hence item (i) in Theorem 2.1.2
holds for all λ < λ∗.

2.3.2 The first solution

In this subsection, by using minimization argument we will prove item (ii) in Theorem 2.1.2.
We first recall a basic estimate (see [7]).

Remark 2.3.1. Let 0 ≤ β < γ and k, l ∈ (0,∞). Then there exists a constant C = C(β, γ) > 0

such that

k|s|β − l|s|γ ≤ C(β, γ)k

(
k

l

) β
γ−β

, ∀ s ∈ R.

In order to use the direct methods of the calculus of variations we need the following result.

Lemma 2.3.2. Let max{2, p} < q < p∗, r > q and assume (H1) − (H2). Then, for all λ > 0,
the functional Jλ : Er,p → R defined by

Jλ(u) :=

∫
Rn+
F (x, u),

where Fλ(x, s) := λa(x)|s|q/q − b(x)|s|r/r, is weakly lower semicontinuous. As a consequence
the functional Iλ is lower semicontinuous in Er,p.
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Proof. Assume that uk ⇀ u0 in Er,p. Taking into account that

Fs(x, s) = a(x)|s|q−2s−b(x)|s|r−2s, Fss(x, s) = (q−1)a(x)|s|q−2−(r−1)b(x)|s|r−2 s ∈ R\{0},

we get

F (x, uk)− F (x, u0) =

∫ 1

0

Fs(x, u0 + t(uk − u0))(uk − u0)dt

and

Fs(x, u0 + t(uk − u0))− Fs(x, u0) =

∫ t

0

Fss(x, u0 + s(uk − u0))(uk − u0)ds.

Consequently,

F (x, uk)− F (x, u0) =

∫ 1

0

[∫ t

0

Fuu(x, u0 + s(uk − u0))(uk − u0)ds+ Fu(x, u0)

]
(uk − u0)dt

=

∫ 1

0

∫ t

0

Fuu(x, u0 + s(uk − u0))(uk − u0)2dsdt+
1

2
Fu(x, u0)(uk − u0).

Thus, using Remark 2.3.1 we get

|F (x, uk)− F (x, u0)| ≤ C2
a
r−2
r−q

b
q−2
r−q

(uk − u0)2 + |Fu(x, u0)(uk − u0)|,

where C2 = C1(q, r)λ
r−2
r−q . Applying the Hölder inequality and using Lemma 2.2.6 we obtain

∫
Rn+

(uk − u0)2a
r−2
r−q

b
q−2
r−q
≤

(∫
Rn+

a
r
r−q

b
q
r−q

dx

)(q−2)/q(∫
Rn+
a|uk − u0|qdx

)2/q

→ 0.

On the other hand, considering the linear functional Φ0 : Er,p → R defined by

Φ0(v) =

∫
Rn+
Fu(x, u0)vdx,

we see that

|Φ0(v)| ≤ λ

∫
Rn+
a|u0|q−1|v|dx+

∫
Rn+
b|u0|r−1|v|dx

≤ ‖u0‖q−1
Lq(Rn+,a(x))‖v‖Lq(Rn+,a(x)) + ‖u0‖r−1

Lr(Rn+,b(x))‖v‖Lr(Rn+,b(x)) ≤ C‖v‖Er,p ,

and hence Φ0 is continuous. Therefore, if uk ⇀ u0 in Er,p we have

lim
k→∞

∫
Rn+
Fu(x, u0)(uk − u0)dx = 0,

which implies the desired result.

Now we establish some geometric properties of the energy functional Iλ.
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Lemma 2.3.3. Let 1 < p ≤ q < p∗, r > q and assume (H1)− (H2). For all λ > 0 the functional
Iλ is coercive.

Proof. Since λ, a, b > 0 and q < r, by Remark 2.3.1 we obtain

∫
Rn+

(
λa

q
|u|q − b

2r
|u|r
)
≤ Cr,q

1

qr
q
r−q

∫
Rn+
λa

(
λa

b

) q
r−q

= Cr,qλ
r
r−q

∫
Rn+

(
a

r
r−q

b
q
r−q

)
<∞.

Thus, we get

Iλ(u) =
1

p

∫
Rn+
|∇u|pdx+

1

p

∫
Rn−1

|u|pdx′ + 1

2r

∫
Rn+
b|u|rdx−

∫
Rn+

(
λa

q
|u|q − b

2r
|u|r
)
dx

≥ 1

p
‖u‖pE1,p +

1

2r

∫
Rn+
b|u|rdx− C1,

which implies that Iλ is coercive and the proof is completed.

Lemma 2.3.4. Let max{2, p} < q < p∗, r > q and assume (H1)−(H2). Then there exists Λ > 0

such that
−∞ < inf

u∈Er,p
Iλ(u) < 0, ∀λ > Λ. (2.19)

Proof. Let

Λ := inf
u∈Er,p

{
q

p
‖u‖pE1,p +

q

r

∫
Rn+
b|u|rdx :

∫
Rn+
a|u|q = 1

}
.

We claim that Λ > 0. Otherwise, there exists a sequence (uk) ⊂ Er,p such that

q

p
‖uk‖pE1,p +

q

r

∫
Rn+
b|uk|rdx = ok(1) and

∫
Rn+
a|uk|q = 1.

Thus, by using the Hölder inequality we have

1 =

∫
Rn+
a|uk|q ≤

(∫
Rn+

a
r
r−q

b
q
r−q

dx

)(r−q)/r(∫
Rn+
b|uk|rdx

)r/q

→ 0,

which is a contradiction. Now if λ > Λ, by the definition of Λ there exists uλ ∈ Er,p with∫
Rn+
a|uλ|q = 1 such that

λ >
q

p
‖uλ‖pE1,p +

q

r

∫
Rn+
b|uλ|rdx.

Consequently,

Iλ(uλ) =
1

p
‖uλ‖pE1,p +

1

r

∫
Rn+
b|uλ|rdx−

λ

q

∫
Rn+
a|uλ|q < 0.

Therefore, (2.19) holds.

Lemma 2.3.5. Let max{2, p} < q < p∗, r > q and assume (H1)− (H2). For all λ > Λ problem
(Pλ) has a nontrivial weak solution.
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Proof. Using the direct method of the calculus of variations, from Lemmas 2.3.2, 2.3.3 and 2.3.4,
for all λ > Λ there exists uλ ∈ Er,p \ {0} such that

−∞ < inf
u∈Er,p

Iλ(u) = Iλ(uλ) < 0.

Therefore, problem (Pλ) has a nontrivial weak solution uλ with Iλ(uλ) < 0 for all λ > Λ. Since
Iλ(uλ) = Iλ(|uλ|) we may assume that uλ ≥ 0.

Setting

λ̃ := inf{λ > 0 : (Pµ) has a nontrivial weak solution for all µ > λ},

we clearly have that λ∗ ≤ λ̃ ≤ Λ.

Next we will prove that problem (Pλ̃) has a nontrivial weak solution when p < q. To this
end, we need the following result.

Lemma 2.3.6. Let 1 < p < q < p∗, r > q and assume (H1)− (H2). If λ > 0 and u ∈ Er,p is a
nontrivial weak solution of problem (Pλ) then

‖u‖pE1,p +
r − q
r

∫
Rn+
b|u|rdx ≤ r − q

r
λ

r
r−q

∫
Rn+

a
r
r−q

b
q
r−q

dx. (2.20)

Furthermore, there exists a constant K > 0 independent of u such that

‖u‖E1,p ≥ Kλ
−1
q−p . (2.21)

Proof. If u ∈ Er,p is a nontrivial weak solution of problem (Pλ), proceeding as in (2.16), we get

‖u‖pE1,p +

∫
Rn+
b|u|rdx = λ

∫
Rn+
a|u|qdx ≤ r − q

r
λ

r
r−q

∫
Rn+

a
r
r−q

b
q
r−q

dx+
q

r

∫
Rn+
b|u|rdx,

which gives estimate (2.20). Now we will prove (2.21). Using again that u is a nontrivial weak
solution of problem (Pλ) we see that

1

λ
‖u‖pE1,p ≤ ‖u‖qLq(Rn+,a(x)).

This combined with Lemmas 2.2.1 and 2.2.2 show that

Cq‖u‖qE1,p ≥ ‖u‖qLq(Rn+,a(x)) ≥
1

λ
‖u‖pE1,p , ∀u ∈ E1,p,

for some constant Cq > 0. Thus, using that p < q and u 6= 0 we get

‖u‖E1,p ≥ C
−1
q−p
q λ

−1
q−p ,
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which implies that (2.21) holds by choosing K = C
−1
q−p
q .

Lemma 2.3.7. The problem (Pλ̃) has a nontrivial weak solution.

Proof. Consider a sequence λk → λ̃ with λk > λ̃. By the definition of λ̃, for each k the problem
(Pλk) has a nontrivial weak solution uk. Furthermore, the sequence (uk) is bounded in E1,p in
view of Lemma 2.3.6. Thus, we may assume that uk ⇀ uλ̃ in E

1,p and, by Lemma 2.2.6, uk → uλ̃
in Lq(Rn

+, a(x)). Consequently, uλ̃ is a nontrivial weak solution of (Pλ̃). We claim that uλ̃ is not
trivial. Indeed, since uk and uλ̃ are weak solutions of (Pλk) and (Pλ̃), respectively, we have

ok(1) = 〈I ′λk(uk)− I
′
λ̃
(uλ̃), uk − uλ̃〉 =

∫
Rn+

(
|∇uk|p−2∇uk − |∇uλ̃|

p−2∇uλ̃
)

(∇uk −∇uλ̃) dx

+

∫
Rn−1

(
|uk|p−2uk − |uλ̃|

p−2uλ̃
)

(uk − uλ̃) dx
′ +

∫
Rn+
b
(
|uk|r−2uk − |uλ̃|

r−2uλ̃
)

(uk − uλ̃) dx

− (J1,k + J2,k),

where
J1,k = λk

∫
Rn+
a
(
|uk|q−2uk − |uλ̃|

q−2uλ̃
)

(uk − uλ̃) dx

and
J2,k = (λk − λ̃)

∫
Rn+
a|uλ̃|

q−2uλ̃ (uk − uλ̃) dx.

Using the Höder inequality together with the fact that (λk) is bounded we get

|J1,k| ≤ C

(∫
Rn+
a|uk|qdx

)(q−1)/q

+

(∫
Rn+
a|uλ̃|

qdx

)(q−1)/q
(∫

Rn+
a|uk − uλ̃|

qdx

)1/q

.

Consequently, by Lemma 2.2.6 we obtain J1,k = ok(1). Similarly, we have J2,k = ok(1). Therefore,
we conclude that (∫

Rn+

(
|∇uk|p−2∇uk − |∇uλ̃|

p−2∇uλ̃
)

(∇uk −∇uλ̃) dx

+

∫
Rn−1

(
|uk|p−2uk − |uλ̃|

p−2uλ̃
)

(uk − uλ̃) dx
′

+

∫
Rn+
b
(
|uk|r−2uk − |uλ̃|

r−2uλ̃
)

(uk − uλ̃) dx

)
= ok(1).

(2.22)

Now we recall that for all ξ, ζ ∈ Rn, we know that there exists a constant C = C(p) > 0 (see
inequality (2.2) in [40]) such that

(|ξ|p−2ξ − |ζ|p−2ζ)(ξ − ζ) ≥ C

{
|ξ − ζ|p, if p ≥ 2,

|ξ − ζ|2(|ξ|+ |ζ|)p−2, if 1 < p ≤ 2.
(2.23)

45



2. An indefinite quasilinear elliptic problem with weights in anisotropic spaces

If p ≥ 2, using the fact that b > 0 together with (2.22) we obtain

‖uk − uλ̃‖
p
E1,p ≤ C

(∫
Rn+

(
|∇uk|p−2∇uk − |∇uλ̃|

p−2∇uλ̃
)

(∇uk −∇uλ̃) dx

+

∫
Rn−1

(
|uk|p−2uk − |uλ̃|

p−2uλ̃
)

(uk − uλ̃) dx
′
)

= ok(1).

On the other hand, if 1 < p < 2 we can use the inequality (2.23) again to obtain∫
Rn+

(|∇uk −∇uλ̃|
2)

p
2dx

≤
∫
Rn+

[(
|∇uk|p−2∇uk − |∇uλ̃|

p−2∇uλ̃
)

(∇uk −∇uλ̃)
] p

2 ((|∇uk|+ |∇uλ̃|)
p)

(2−p)
2 dx.

This together with the Höder inequality, (2.22) and the fact that (uk) is bounded imply that

C̃p

∫
Rn+
|∇uk −∇uλ̃|

pdx

≤

(∫
Rn+

(
|∇uk|p−2∇uk − |∇uλ̃|

p−2∇uλ̃
)

(∇uk −∇uλ̃) dx

)p/2(∫
Rn+

(|∇uk|p + |∇uλ̃|
p)dx

)(2−p)/2

= ok(1).

Similarly, we obtain ∫
Rn−1

|uk − uλ̃|
pdx′ = ok(1).

Hence, uk → uλ̃ in E
1,p. Since uk is a nontrivial weak solution of problem (Pλk), by Lemma 2.3.6

there exists K = K(p, q) such that

‖uk‖E1,p ≥ Kλ
− 1
q−p

k , ∀ k ∈ N.

Since ‖uk‖E1,p → ‖uλ̃‖E1,p and λk → λ̃ > 0 we get

‖uλ̃‖E1,p ≥ K(λ̃)−
1
q−p > 0,

and hence uλ̃ is nontrivial. Since Iλ̃(uλ̃) = Iλ̃(|uλ̃|) we may assume that uλ̃ ≥ 0 a.e. in Rn
+.

2.3.3 The second solution

In what follows we will prove item (iii) in Theorem 2.1.2. This will be done by using a
truncation argument. Let λ > Λ be fixed and consider the truncated Carathéodory function
defined by

gλ(x, t) =


0, if t < 0,

λa(x)tq−1 − b(x)tr−1, if 0 ≤ t ≤ uλ(x),

λa(x)uq−1
λ − b(x)ur−1

λ , if t > uλ(x),
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where uλ ∈ Er,p is the weak solution of problem (Pλ) with Iλ(uλ) < 0 obtained in Lemma 2.3.5.
Setting Gλ(x, t) =

∫ t
0
gλ(x, s)ds, we define the functional Ĩλ : E1,p → R by

Ĩλ(u) =
1

p
‖u‖pE1,p −

∫
Rn+
Gλ(x, u)dx.

Notice that for all v, ϕ ∈ E1,p it holds

Ĩ ′λ(v)ϕ =

∫
Rn+
|∇v|p−2∇v∇ϕdx+

∫
Rn−1

|v|p−2vϕdx′

−
∫
{0≤v≤uλ}

[λavq−1 − bvr−1]ϕdx−
∫
{v>uλ}

[λauq−1
λ − bur−1

λ ]ϕdx.

Furthermore, by choosing ϕ = v− := −min{v, 0} we see that critical points of Ĩλ are nonnegative.

Next, to prove that critical point of Ĩλ is a critical point of Iλ, inspired in [31, Lemma 2.1]
(see also [35]) we have the following a priori estimate.

Lemma 2.3.8. Let max{2, p} < q < p∗, r > q and assume (H1) − (H2). If uλ is the solution
obtained in item (ii) of Theorem 2.1.2 and ũλ is a critical point of Ĩλ then ũλ ≤ uλ.

Proof. For a function v ∈ E1,p let us denote by v+(x) = max{v(x), 0}. Since uλ is a critical
point of Iλ and ũλ is a critical point of Ĩλ we get

0 = 〈Ĩ ′λ(ũλ)− I ′λ(uλ), (ũλ − uλ)+〉 =

∫
{ũλ>uλ}

(
|∇ũλ|p−2∇ũλ − |∇uλ|p−2∇uλ

)
(∇ũλ −∇uλ) dx

+

∫
{ũλ>uλ}∩Rn−1

(
|ũλ|p−2ũλ − |uλ|p−2uλ

)
(ũλ − uλ) dx′ ≥ 0.

This combined with inequality (2.23) imply that |{x ∈ Rn
+ : ũλ(x) > uλ(x)}| = 0. Thus,

(ũλ − uλ)+ = 0 a.e. in Rn
+. Therefore, ũλ ≤ uλ and the proof is complete.

Lemma 2.3.9. Let max{2, p} < q < p∗, r > q and assume (H1) − (H2). Then there exist
ρ ∈ (0, ‖uλ‖Er,p) and α > 0 such that Ĩλ(u) ≥ α > 0 if ‖u‖E1,p = ρ;

Proof. Notice that for all u ∈ E1,p we can write∫
Rn+
Gλ(x, u)dx =

∫
{0≤u≤uλ}

Gλ(x, u)dx+

∫
{u>uλ}

Gλ(x, u)dx.

Now observing that∫
{0≤u≤uλ}

Gλ(x, u)dx =

∫
{0≤u≤uλ}

[
λa

q
uq − b

r
ur
]
dx ≤ λ

q

∫
{0≤u≤uλ}

auqdx

47



2. An indefinite quasilinear elliptic problem with weights in anisotropic spaces

and ∫
{u>uλ}

Gλ(x, u)dx =

∫
{u>uλ}

[∫ uλ

0

gλ(x, t)dt+

∫ u

uλ

gλ(x, t)dt

]
dx

=

∫
{u>uλ}

[
λauqλ
q
− burλ

r
+
(
λauq−1

λ − bur−1
λ

)
(u− uλ)

]
dx

≤
∫
{u>uλ}

[
λauqλ
q

+ λauq−1
λ u

]
,

we get

Ĩλ(u) ≥ 1

p
‖u‖pE1,p −

λ

q

∫
{0≤u≤uλ}

auqdx− λ
∫
{u>uλ}

a

[
uqλ
q

+ uq−1
λ u

]
. (2.24)

This combined with Remark 2.2.5 imply that there exists C1 > 0 such that

Ĩλ(u) ≥ 1

p
‖u‖pE1,p −

λ

q
C1‖u‖qE1,p =

(
1

p
− λC1‖u‖q−pE1,p

)
‖u‖pE1,p .

Since q > p we obtain the desired result and the proof is completed.

By Lemma 2.3.9 we have that

inf
‖u‖E1,p=ρ

Ĩλ(u) > 0 ≥ Ĩλ(uλ), ∀λ > Λ.

Thus, the minimax level
cλ = inf

γ∈Γ
max
t∈[0,1]

Ĩλ(γ(t)) > 0, ∀λ > Λ,

where Γ := {γ ∈ C([0, 1], E1,p) : γ(0) = 0 and γ(1) = uλ}. Applying the mountain pass theorem
without the Palais-Smale condition (see [44, Theorem 1.15])), or (PS) for short, we find a
sequence (uk) ⊂ E1,p at the minimax level cλ, that is

Ĩλ(uk)→ cλ and Ĩ ′λ(uk)→ 0. (2.25)

Lemma 2.3.10. Let max{2, p} < q < p∗, r > q and assume (H1) − (H2). Then, the sequence
(uk) in (2.25) has a convergent subsequence.

Proof. From estimate (2.24), there exists C1 > 0 such that

Ĩλ(u) ≥ 1

p
‖u‖pE1,p −

λ

q

∫
Rn+
auqλdx− λC1‖uλ‖q−1

Lq(Rn+,a(x))‖u‖E1,p ,

from where we obtain that Ĩλ is coercive and consequently (uk) is bounded inE1,p. By Lemma 2.2.7,
up to a subsequence, we can assume that

uk ⇀ ũλ in E1,p

uk(x)→ ũλ(x) a.e. in Rn
+

uk → ũλ in Lq(Rn
+, a(x)).

Arguing as in proof of Lemma 2.3.2 we can see that Ĩ ′λ(ũλ) = 0 and hence 0 ≤ ũλ ≤ uλ in Rn
+
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by Lemma 2.3.8. Thus, we get

ok(1) = 〈Ĩ ′λ(uk)− Ĩ ′λ(ũλ), uk − ũλ〉 = Ak −Bk + Ck, (2.26)

where ok(1) denotes a quantity that goes to zero as k → +∞ and

Ak =

∫
Rn+

(
|∇uk|p−2∇uk − |∇ũλ|p−2∇ũλ

)
(∇uk −∇ũλ) dx

+

∫
Rn−1

(
|uk|p−2uk − |ũλ|p−2ũλ

)
(uk − ũλ) dx′

Bk =

∫
{0≤uk≤uλ}

[λauq−1
k − bur−1

k ] (uk − ũλ) dx+

∫
{uk>uλ}

[λauq−1
λ − bur−1

λ ] (uk − ũλ) dx

Ck =

∫
{0≤ũλ≤uλ}

[λaũq−1
λ − bũr−1

λ ] (uk − ũλ) dx+

∫
{ũλ>uλ}

[λaũq−1
λ − bũr−1

λ ] (uk − ũλ) dx.

Therefore,

Ak = ok(1) +

∫
{0≤uk≤uλ}

[λauq−1
k − bur−1

k ] (uk − ũλ) dx−
∫
{0≤ũλ≤uλ}

[λaũq−1
λ − bũr−1

λ ] (uk − ũλ) dx.

Now, proceeding as in the proof of Lemma 2.3.2 we see that∫
{0≤uk≤uλ}

[λauq−1
k − bur−1

k ] (uk − ũλ) dx = ok(1)

and ∫
{0≤ũλ≤uλ}

[λaũq−1
λ − bũr−1

λ ] (uk − ũλ) dx = ok(1).

Thus, we conclude that Ak = ok(1). If 2 ≤ p ≤ q < r, using inequality (2.23), we get
‖uk − ũλ‖pE1,p = ok(1). Furthermore, if 1 < p < 2, arguing as in the proof of Lemma 2.3.7
we obtain ‖uk − ũλ‖pE1,p = ok(1). This completes the proof of Lemma 2.3.10.

Finalizing the proof of item (iii) in Theorem 2.1.2. By Lemma 2.3.10, and standard arguments
we conclude that ũλ is a critical point of Iλ. To conclude, by Lemma 2.3.8, we have 0 ≤ ũλ ≤ uλ.
Thus,

g(x, ũλ) = λa(x)ũq−1
λ − b(x)ũr−1

λ and G(x, ũλ) =
λa(x)ũqλ

q
− b(x)ũrλ

r

so that
Ĩλ(ũλ) = Iλ(ũλ) and Ĩ ′λ(ũλ) = I ′λ(ũλ).

More precisely, we find
Iλ(ũλ) > 0 ≥ Iλ(uλ) and I ′λ(ũλ) = 0.

Therefore, ũλ is a nontrivial weak solution of problem (Pλ) such that 0 ≤ ũλ ≤ uλ, ũλ 6= 0 and
ũλ 6= uλ.
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2.3.4 Multiplicity

Finally, in this subsection we will complete the proof of Theorem 2.1.2 by proving state-
ment (iv). It consists in applying the symmetric mountain pass theorem due to Ambrosetti-
Rabinowitz [8] and Clark [17]. To this, we need to recall some notations. Let E be a Banach
space and denotes by E the class of all subsets of E \ {0} closed and symmetric with respect to
the origin :

E := {A ⊂ E \ {0} : A is closed and A = −A}.

For A ∈ E \ {∅} the genus γ(A) is define by

γ(A) := min{m ∈ N : ∃ϕ ∈ C(A,Rm \ {0}) such that ϕ(x) = −ϕ(−x)}.

If the minimum does not exist, we define γ(A) = ∞ and γ(∅) = 0. Let Em = {A ∈ E : γ(A) ≥
m}. The main properties of the genus can be found in [38,41].

Now, we recall the following classical multiplicity result (see for instance [8, 17]).

Theorem 2.3.11. Let E be an infinite dimensional Banach space and I ∈ C1(E,R) satisfying

(A1) I(u) is even, bounded from below, I(0) = 0 and I(u) satisfies the Palais-Smale condition
(PS);

(A2) For each m ∈ N, there exists an Am ∈ Em such that supu∈Am I(u) < 0.

Defining
cm = inf

A∈Em
sup
u∈A

Iλ(u),

then each ck is a critical value of I(u), cm ≤ cm+1 < 0 for m ∈ N and (cm) converges to zero.
Moreover, if c = cm = cm+1 = · · · = cm+j <∞, then γ(Kc) ≥ j + 1. Here, Kc is defined by

Kc = {u ∈ Er,p : Iλ(u) = c and I ′λ(u) = 0}.

To prove item (iv) in Theorem 2.1.2, it is sufficient to show that Iλ satisfies the conditions
(A1) and (A2) above. Arguing as in the proof of Lemma 2.3.10 one can see that Iλ satisfies
condition (A1). In order to verify condition (A2), we consider Ω0 = {x ∈ Rn

+ : a(x) = 0} and
Ωc

0 = Rn
+ \ Ω0. Denote

E0 = {u ∈ Er,p : u(x) = 0 a.e. x ∈ Ω0}.

If Ω0 = ∅, i.e., a(x) > 0 in Rn
+ then we let E0 = Er,p. Obviously, E0 is an infinitely dimensional

linear subspace of Er,p. A seminorm [·]q on Er,p is defined by

[u]q =

(∫
Rn+
a(x)|u|qdx

)1/q

.
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Lemma 2.3.12. The seminorm [·]q is a norm in E0.

Proof. It is sufficient to show that u ∈ E0, [u]q = 0 implies that u = 0, a.e. in Rn
+. Indeed,

0 = [u]qq =

∫
Rn+
a(x)|u|qdx =

∫
Ωc0

a(x)|u|qdx.

This together with fact a(x) > 0 in Ωc
0 imply that u(x) = 0, a.e. in Ωc

0. Since u ∈ E0, u(x) = 0,
a.e. in Ω0. Therefore, u(x) = 0, a.e. in Rn

+ and this completes the proof.

Lemma 2.3.13. Let 1 < p ≤ q < p∗, r > q and assume (H1). Then for each m ∈ N, there exist
an Am ∈ Em and λm such that

sup
u∈Am

Iλ(u) < 0, ∀λ > λm.

Proof. Let Em be a m-dimensional subspace of E0. Since all norms on the finite dimension space
Em are equivalent, there exists bm > 0 such that

Iλ(u) ≤ 1

p
‖u‖pEr,p +

1

r
‖u‖rEr,p −

λbm
q
‖u‖qEr,p ≤

2

p
− λbm

q

for all u ∈ Em with ‖u‖Er,p = 1. Thus, for λm = 4q/pbm, Iλ(u) < −2/p if ‖u‖Er,p = 1, for all
λ > λm. Let Am = Sm(1) be a sphere with radius 1 in Em. Then

sup
u∈Am

Iλ(u) < 0, ∀λ > λm

and by properties of genus Am ∈ Em.

Finalizing the proof of item (iv) in Theorem 2.1.2. It follows directly from Theorem 2.3.11.

2.4 Proof of Theorem 2.1.3

This section is devoted to the proof of Theorem 2.1.3. In order to prove our multiplicity
result we recall the original statement of the symmetric mountain pass theorem (see [8]).

Theorem 2.4.1. Let E be a real infinite-dimensional Banach space and I ∈ C1(E,R) an even
functional satisfying the (PS) condition and the following hypotheses:

(I1) I(0) = 0 and there are constants ρ, α > 0 such that I|∂Bρ(0) ≥ α;

(I2) for any finite dimensional Ẽ ⊂ E, Ẽ ∩ {u ∈ E : I(u) ≥ 0} is bounded.

Then I has an unbounded sequence of critical values.

Now, we establish some properties of the energy functional Iλ.

Lemma 2.4.2. Let 1 < p ≤ r < q < p∗ and assume (H̃1) − (H̃2). Then for each λ > 0 there
exist ρ, α0 > 0 such that Iλ(u) ≥ α0 > 0 if ‖u‖Er,p = ρ.
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Proof. First we observe that

‖u‖rEr,p ≤
(
‖u‖pE1,p + ‖u‖pLr(Rn+,b(x))

)r/p
≤ 2

r
p

(
‖u‖rE1,p + ‖u‖rLr(Rn+,b(x))

)
. (2.27)

Without loss of generality we may assume that ‖u‖pE1,p + ‖u‖pLr(Rn+,b(x)) = ‖u‖pEr,p = ρp ≤ 1 and
using that p ≤ r we see that ‖u‖pE1,p ≥ ‖u‖rE1,p . Thus, we conclude that

Iλ(u) ≥ 1

p
‖u‖rE1,p +

1

r
‖u‖rLr(Rn+,b(x)) −

λ

q
‖u‖qLq(Rn+,a(x)).

This together with (2.27), Lemmas 2.2.1 and 2.2.2 and the fact that r < q imply

Iλ(u) ≥ 1

r2
r
p

‖u‖rEr,p −
λ

q
C1‖u‖qEr,p =

(
1

r2
r
p

− λ

q
C1ρ

q−r
)
ρr,

which implies (I1) by choosing ρ sufficiently small.

Next, let us ensure that any (PS) sequence associated to Iλ has a convergent subsequence.
This is done in the next lemma.

Lemma 2.4.3. Let 1 < p ≤ r < q < p∗ and assume (H̃1)−(H̃2). Then any sequence (uk) ⊂ Er,p

such that
Iλ(uk)→ c and I ′λ(uk)→ 0, (2.28)

has a convergent subsequence.

Proof. First, we observe that(
1

p
− 1

q

)
‖uk‖pE1,p +

(
1

r
− 1

q

)∫
Rn+
b|uk|rdx = Iλ(uk)−

1

q
〈I ′λ(uk), uk〉 ≤ cλ + ok(‖uk‖Er,p). (2.29)

We claim that (uk) ⊂ Er,p is bounded. Arguing by contradiction, let us suppose that ‖uk‖Er,p →
∞. Since 1 < p ≤ r < q, in view of (2.29) we get

‖uk‖pE1,p

‖uk‖Er,p
= ok(1) and

‖uk‖rLr(Rn+,b(x))

‖uk‖Er,p
= ok(1). (2.30)

This in combination with the fact that

‖uk‖pE1,p

‖uk‖Er,p
+
‖uk‖pLr(Rn+,b(x))

‖uk‖Er,p
= ‖uk‖p−1

Er,p →∞, as k →∞

imply that
‖uk‖pLr(Rn+,b(x))

‖uk‖Er,p
→∞, as k →∞. (2.31)

If p = r, combining (2.30) and (2.31) we obtain a contradiction. In case that p < r, using again
(2.31) we conclude that ‖uk‖pLr(Rn+,b(x)) → ∞ as k → ∞ and hence ‖uk‖p−rLr(Rn+,b(x)) ≤ C. On the
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other hand,

‖uk‖pLr(Rn+,b(x))

‖uk‖Er,p
= ‖uk‖p−rLr(Rn+,b(x))

‖uk‖rLr(Rn+,b(x))

‖uk‖Er,p
→ 0, as k →∞,

which contradicts (2.31) and hence (uk) is bounded. By Lemma 2.2.7 we may assume that
uk ⇀ u0 in Er,p

uk(x)→ u0(x) a.e. in Rn
+

uk → u0 in Lq(Rn
+, a(x))

as k →∞. From (2.28), it follows that

ok(1) = 〈I ′λ(uk)− I ′λ(u0), uk − u0〉 = Ak −
∫
Rn+
λa
(
|uk|q−2uk − |u0|q−2u0

)
(uk − u0) dx, (2.32)

where

Ak =

∫
Rn+

(
|∇uk|p−2∇uk − |∇u0|p−2∇u0

)
(∇uk −∇u0) dx

+

∫
Rn−1

(
|uk|p−2uk − |u0|p−2u0

)
(uk − u0) dx′ +

∫
Rn+
b
(
|uk|r−2uk − |u0|r−2u0

)
(uk − u0) dx.

By the Hölder inequality and Lemma 2.2.7, we obtain∫
Rn+
λa
(
|uk|q−2uk − |u0|q−2u0

)
(uk − u0) dx = ok(1).

Thus, from (2.32) we conclude that Ak = ok(1). If 2 ≤ p ≤ r < q, we can use the inequality
(2.23) and the fact that b ≥ 0 to get∫

Rn+

(
|∇uk|p−2∇uk − |∇u0|p−2∇u0

)
(∇uk −∇u0) dx = ok(1)∫

Rn−1

(
|uk|p−2uk − |u0|p−2u0

)
(uk − u0) dx′ = ok(1)∫

Rn+
b
(
|uk|r−2uk − |u0|r−2u0

)
(uk − u0) dx = ok(1).

(2.33)

Using once again inequality (2.23), we get

‖uk − u0‖pEr,p = ‖uk − u0‖pE1,p + ‖uk − u0‖pLr(Rn+,b(x)) = ok(1),

which implies that uk → u0 in Er,p. Now, if 1 < p < 2 we have two cases to consider, r ≥ 2 and
p ≤ r < 2. If r ≥ 2, by inequality (2.23) and (2.33) we obtain

‖uk − u0‖rLr(Rn+,b(x)) ≤
∫
Rn+
b
(
|uk|r−2uk − |u0|r−2u0

)
(uk − u0) dx = ok(1). (2.34)
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Now, if p ≤ r < 2, by inequality (2.23) and the Höder inequality we get

‖uk − u0‖rLr(Rn+,b(x)) ≤
∫
Rn+
b
((
|uk|r−2uk − |u0|r−2u0

)
(uk − u0)

) r
2 ((|uk|+ |u0|)r)

(2−r)
2 dx

≤

(∫
Rn+
b
(
|uk|r−2uk − |u0|r−2u0

)
(uk − u0) dx

)r/2(∫
Rn+
b (|uk|+ |u0|)r dx

)(2−r)/2

.

This combined with inequalities (2.33) and (2.34) and the fact that (uk) is bounded imply that
‖uk−u0‖rLr(Rn+,b(x)) = ok(1). Now, if 1 < p < 2, arguing as in the proof of Lemma 2.3.7 we obtain
‖uk − u0‖pE1,p = ok(1). Therefore, ‖uk − u0‖pEr,p = ‖uk − u0‖pE1,p + ‖uk − u0‖pLr(Rn+,b(x)) = ok(1),

and this completes the proof.

Finalizing the proof of Theorem 2.1.3. If u is a weak solution of problem (Pλ), choosing ϕ = u

in (2.14) we get ‖u‖pE1,p + ‖u‖rLr(Rn+,b(x)) = λ‖u‖qLr(Rn+,a(x)), which implies that u = 0 if λ ≤ 0

and item (i) in Theorem 2.1.3 is proved. Now we will use Theorem 2.4.1 to prove item (ii)
in Theorem 2.1.3. By Lemma 2.4.2, for any λ > 0 the functional Iλ satisfies condition (I1).
Now we prove item (I2). Suppose by contradiction that (I2) is false. Then, there exist a finite
dimensional Ẽ ⊂ Er,p and a sequence (uk) ⊂ Ẽ satisfying

Iλ(uk) > 0, k ∈ N and ‖uk‖Er,p →∞ as k →∞. (2.35)

Using the fact that all the norms in Ẽ are equivalent, there exists c̃ > 0 such that

0 < Iλ(uk) ≤
1

p
‖uk‖pEr,p +

1

r
‖uk‖rEr,p −

λc̃

q
‖uk‖qEr,p , ∀ k ∈ N.

Thus,
λc̃

q
‖uk‖qEr,p <

1

p
‖uk‖pEr,p +

1

r
‖uk‖rEr,p , ∀ k ∈ N,

which contradicts (2.35), since p ≤ r < q, and item (I2) is proved. In view of Lemma 2.4.3, for
each λ > 0 we can apply Theorem 2.4.1 to obtain an unbounded sequence of critical values of
Iλ to which we can associate at least two critical points because the functional Iλ is even. This
completes the proof.
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Chapter 3

A quasilinear elliptic equation with
exponential growth and weights in
anisotropic spaces

In this chapter we establish embedding results of a certain Sobolev space into weighted
Lebesgue spaces and we derive some Trudinger-Moser type inequalities. As an application we
prove existence, nonexistence and multiplicity of solutions for a class of quasilinear elliptic prob-
lems with nonlinear boundary condition and involving exponential nonlinearities and weights in
anisotropic Lebesgue spaces. This chapter is also in article format submitted in [21].

3.1 Introduction and main results

Here, we are concerning with the existence, nonexistence and multiplicity of solutions for the
following nonlinear eigenvalue problem{

−div(|∇u|n−2∇u) + h(x)|u|r−2u = λa(x)f(x, u) in Rn
+

|∇u|n−2∇u · η + |u|n−2u = 0 on ∂Rn
+,

(Pλ)

where n ≥ 2 is an integer, Rn
+ = {x = (x′, xn) ∈ Rn : xn > 0} denotes the upper half-space, η

is the unit outward normal vector on the boundary ∂Rn
+ = Rn−1, n ≤ r < ∞, and a, h and f

satisfy some suitable conditions.
We assume that f is a continuous function with subcritical exponential growth in the

Trudinger-Moser sense, i.e., for any α > 0

lim
|s|→∞

|f(x, s)|
eα|s|n

′ = 0, uniformly in x ∈ Rn
+. (3.1)

Setting F (x, s) =
∫ s

0
f(x, t)dt, we assume that f is continuous and satisfies the following as-

sumptions:
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3. A quasilinear elliptic equation with exponential growth and weights in anisotropic spaces

(f1) lim
s→0+

nF (x,s)
sn

< λ1 uniformly with respect to x ∈ Rn
+, where

λ1 := inf

{∫
Rn+
|∇u|ndx+

∫
∂Rn+
|u|ndx′∫

Rn+
a|u|ndx

: u ∈ C1
0(Rn) \ {0}

}
;

(f2) there exists µ > r such that

0 < µF (x, s) ≤ f(x, s)s, ∀x ∈ Rn
+ and s 6= 0;

(f3) there exist R0,M0 > 0 such that

F (x, s) ≤M0f(x, s), ∀x ∈ Rn
+ and s ≥ R0.

We assume the following assumptions on the weight functions a, h:

(H1) a : Rn
+ → R is a nontrivial mensurable function and there are c1 > 0 and β ≥ n such that

0 ≤ a(x) ≤ c1

(1 + |x|)β
, for a.e. x ∈ Rn

+.

(H2) h : Rn
+ → R is a positive continuous function.

Under these hypotheses, our first result concerning problem (Pλ) can be stated as follows:

Theorem 3.1.1. Assume (H1)− (H2) and (f1)− (f3) . If n ≤ r <∞ then

(i) Problem (Pλ) has no nonzero weak solution for every λ ∈ (−∞, 0];

(ii) Problem (Pλ) has at least a nonzero weak solution for every λ ∈ (0,∞).

In order to obtain a multiplicity result, in addition, we assume that

(f4) there exist ν0, s0 > 0 and γ0 > r such that

F (x, s) ≥ ν0|s|γ0 , uniformly with respect to x ∈ Rn
+, ∀ |s| ≤ s0.

Our multiplicity result is stated below:

Theorem 3.1.2. Assume (H1)−(H2) and that f(x, ·) is odd and satisfies (f1)−(f4). If n ≤ r <

∞, then problem (Pλ) has an infinite number of nonzero weak solutions for every λ ∈ (0,∞).

3.2 Variational Framework

In this section, we set-up under which space we shall work in the present chapter. Firstly we
collect a few definitions and embeddings results. Denote by C∞δ (Rn

+) the space of C∞0 (Rn)−functions
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3. A quasilinear elliptic equation with exponential growth and weights in anisotropic spaces

restricted to Rn
+. We define the weighted Sobolev space E as the completion of C∞δ (Rn

+) with
respect to the norm

‖u‖ :=

[∫
Rn+

(
|∇u|n +

|u|n

(1 + xn)n

)
dx

]1/n

.

Hereafter in this chapter, BR denotes the ball of center zero and radius R > 0 in Rn,
B+
R := BR∩Rn

+, (BR)c denotes Rn \BR, the complement of the set BR ⊂ Rn, and (B+
R)c denotes

Rn
+ \B+

R the complement of the set B+
R ⊂ Rn

+.

3.2.1 Sobolev embedding

In this subsection, we establish some embedding results from E into weighted Lebesgue
spaces. We start with following:

Lemma 3.2.1. For any n ≤ q <∞ the weighted Sobolev embedding

E ↪→ Lq
(
Rn

+,
1

(1 + xn)n

)
, (3.2)

and the Sobolev trace embedding
E ↪→ Lq(Rn−1), (3.3)

are continuous.

Proof. Recall that, for any 1 ≤ p < n, by the Gagliardo-Nirenberg-Sobolev inequality and a
suitable reflexion argument (see [43, Lemma 2.10]) that there exists C = C(n, p) such that(∫

Rn+
|v|p∗dx

)(n−p)/np

≤ C

∫
Rn+
|∇v|pdx, ∀ v ∈ C∞0 (Rn).

In particular, if p = 1 we have(∫
Rn+
|v|

n
n−1dx

)(n−1)/n

≤ C0

∫
Rn+
|∇v|dx, ∀ v ∈ C∞0 (Rn). (3.4)

Applying (3.4) with v = (1 + xn)σ|u|n, σ ∈ R to be chosen later on, we obtain

(∫
Rn+
|(1 + xn)σ|u|n|

n
n−1dx

)n−1
n

≤ C0

∫
Rn+
|σ|(1 + xn)σ−1|u|ndx+ C0n

∫
Rn+

(1 + xn)σ|u|n−1|∇u|dx.

Choosing σ = −(n− 1) and using the Young inequality we obtain∫
Rn+

|u|
n2

n−1

(1 + xn)n
dx

(n−1)/n

≤ C1

∫
Rn+

(
|∇u|n +

|u|n

(1 + xn)n

)
dx, (3.5)

57



3. A quasilinear elliptic equation with exponential growth and weights in anisotropic spaces

where C1 depends only on n. Hence, we conclude that

E ↪→ L
n2

n−1

(
Rn

+,
1

(1 + xn)n

)
.

If n < q < n2/(n− 1), by interpolation, there exists 0 < θ < 1 such that

‖u‖Lq(Rn+,(1+xn)−n) ≤ ‖u‖
θ
Ln(Rn+,(1+xn)−n)‖u‖

1−θ

L
n2
n−1 (Rn+,(1+xn)−n)

≤ C‖u‖.

In particular, using that n < n + 1 < n2/(n− 1), one has E ↪→ Ln+1
(
Rn

+, (1 + xn)−n
)
. On the

other hand, applying again (3.4) with v = (1 + xn)−(n−1)|u|n+1 and using the Young inequality
we get

(∫
Rn+

|u|
n(n+1)
n−1

(1 + xn)n
dx

)(n−1)/n

≤ (n− 1)C

∫
Rn+

|u|n+1

(1 + xn)n
dx+ (n+ 1)C

∫
Rn+

|u|n|∇u|
(1 + xn)(n−1)

dx

≤ (n− 1)C

∫
Rn+

|u|n+1

(1 + xn)n
dx+ (n+ 1)C2

∫
Rn+

|u|
n2

n−1

(1 + xn)n
dx+

∫
Rn+
|∇u|ndx

 .

This together with (3.5) imply that E ↪→ L
n(n+1)
(n−1) (Rn

+, (1 + xn)−n). If n ≤ q ≤ n(n+ 1)/(n− 1),
by interpolation, there exists 0 ≤ θ ≤ 1 such that

‖u‖Lq(Rn+,(1+xn)−n) ≤ ‖u‖θLn(Rn+,(1+xn)−n)‖u‖1−θ

L
n(n+1)
(n−1) (Rn+,(1+xn)−n)

≤ C‖u‖.

Iterating this process with k = n+ 2, n+ 3, . . . , one has E ↪→ L
nk
n−1 (Rn

+, (1 + xn)−n). Now, given
q ∈ [0,∞), one can choose k ≥ n such that n < q < nk/(n− 1) and once again use interpolation
to get

‖u‖Lq(Rn+,(1+xn)−n) ≤ ‖u‖θLn(Rn+,(1+xn)−n)‖u‖1−θ

L
nk
n−1 (Rn+,(1+xn)−n)

≤ C‖u‖,

which proves the embedding (3.2).
Now we will prove the trace embedding (3.3). For that, we fix q ≥ n and compute

|u(x′, 0)|q = −
∫ +∞

0

∂

∂xn

(
|u|q

(1 + xn)n

)
dxn ≤ q

∫ +∞

0

|u|q−1|∇u|
(1 + xn)n

dxn + n

∫ +∞

0

|u|q

(1 + xn)n+1
dxn.

Integrating and using Hölder’s inequality together with the fact that (1 + xn)−1 < 1 we obtain

∫
Rn−1

|u(x′, 0)|qdx′ ≤ q

(∫
Rn+

|u|(q−1) n
n−1

(1 + xn)n
dx

)(n−1)/n(∫
Rn+
|∇u|ndx

)1/n

+ n

∫
Rn+

|u|q

(1 + xn)n
dx.

Since (q − 1)n/(n− 1) ≥ n, we obtain from the embedding (3.2) that

‖u‖qLq(Rn−1) ≤ C1‖u‖q−1‖u‖+ C2‖u‖q,
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3. A quasilinear elliptic equation with exponential growth and weights in anisotropic spaces

which completes the proof of Lemma 3.2.1.

A fundamental result in the context of this chapter regards on a weighted Hardy-type in-
equality. This is the subject of the next lemma (see for instance [33], for a similar result in
dimension n ≥ 3).

Lemma 3.2.2. Let n ≥ 2. Then the following inequality holds

∫
Rn+

|u|n

(1 + xn)n
dx ≤

(
n

n− 1

)n(∫
Rn+
|∇u|ndx+

∫
Rn−1

|u|ndx′
)
, ∀u ∈ C∞0 (Rn).

Proof. Let v ∈ C∞0 (Rn) and σ ∈ R with σ 6= −1. Using the Divergence Theorem we obtain

σ

∫
Rn+

v

(1 + xn)σ+1
dx =

∫
Rn+

vxn
(1 + xn)σ

dx+

∫
Rn−1

vdx′,

where we used that the normal unit vector pointing out of Rn−1 is η = (0′,−1). Applying this
equality with v = |u|n, we get

|σ|
∫
Rn+

|u|n

(1 + xn)σ+1
dx ≤

∫
Rn+

n|u|n−1|∇u|
(1 + xn)σ

dx+

∫
Rn−1

|u|ndx′. (3.6)

Now using the Young inequality with 0 < ε < 1 we obtain

n

∫
Rn+

|u|n−1|∇u|
(1 + xn)σ

dx = n

∫
Rn+

n′
√
ε|u|n−1

(1 + xn)σ
|∇u|
n′
√
ε
dx

≤ (n− 1)ε

∫
Rn+

|u|n

(1 + xn)
σn
n−1

dx+
1

ε(n−1)

∫
Rn+
|∇u|ndx.

(3.7)

Choosing σn
n−1

= σ + 1, that is, σ = n− 1 and combining inequalities (3.6) and (3.7), one has

∫
Rn+

|u|n

(1 + xn)n
dx ≤ 1

(n− 1)(εn−1 − εn)

(∫
Rn+
|∇u|ndx+

∫
Rn−1

|u|ndx′
)
.

Using that the function g(ε) = 1/(εn−1−εn) for 0 < ε < 1 achieves its minimum at ε = (n−1)/n

we conclude that∫
Rn+

|u|n

(1 + xn)n
dx ≤

(
n

n− 1

)n(∫
Rn+
|∇u|ndx+

∫
Rn−1

|u|ndx′
)
,

which is the desired result.

As a corollary of Lemma 3.2.1 and Lemma 3.2.2 we have

Corollary 3.2.3. The quantity

‖u‖E :=

(∫
Rn+
|∇u|ndx+

∫
Rn−1

|u|ndx′
)1/n
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define an equivalent norm on E.

Proof. Let u ∈ C∞0 (Rn). By Lemma 3.2.2 we have ‖u‖ ≤ C(n)‖u‖E. Now we observe that

|u(x′, 0)|n = −
∫ +∞

0

∂

∂xn

(
|u|n

(1 + xn)n

)
dxn

≤ n

∫ +∞

0

|u|n−1|∇u|
(1 + xn)n

dxn + n

∫ +∞

0

|u|n

(1 + xn)n+1
dxn

≤
∫ +∞

0

|∇u|ndxn + (2n− 1)

∫ +∞

0

|u|n

(1 + xn)n
dxn,

where above we used the Young inequality and the fact that (1 + xn)−(n+1) ≤ (1 + xn)−n ≤ 1.
Integrating we obtain∫

Rn−1

|u(x′, 0)|ndx′ ≤
∫
Rn+
|∇u|ndx+ (2n− 1)

∫
Rn+

|u|n

(1 + xn)n
dx.

Therefore,

‖u‖nE =

∫
Rn+
|∇u|ndx+

∫
Rn−1

|u(x′, 0)|ndx′

≤ 2

∫
Rn+
|∇u|ndx+ (2n− 1)

∫
Rn+

|u|n

(1 + xn)n
dx ≤ (2n− 1)‖u‖n,

and this completes the proof.

From now on, the space E is equipped with the norm ‖ · ‖E.

Remark 3.2.4. The embeddings (3.2) and (3.3) are not valid if q = ∞. In fact, considering
the function u(x′, xn) := (1 + xn)n ln (1− ln |x|) if (x′, xn) ∈ B+

1 and zero otherwise, one can see
that u ∈ E but u 6∈ L∞

(
Rn

+, (1 + xn)−n
)
.

Remark 3.2.5. Using that (1 + |x|)−β ≤ (1 + xn)−n for any β ≥ n and assumptions (H1), in
view of Lemma 3.2.1, the embedding

E ↪→ Lq
(
Rn

+, a(x)
)
, ∀n ≤ q <∞, (3.8)

is continuous, which also is not valid if q =∞. In fact, considering the function

u(x) :=
ln (1− ln |x|))

a(x)

if x ∈ B+
1 and zero otherwise, one can see that u ∈ E, but u 6∈ L∞

(
Rn

+, a(x)
)
.

The next two compactness results play a crucial role in the proof of Theorem 3.1.1.

Lemma 3.2.6. Assume hypothesis (H1). If β > n then the weighted Sobolev embedding (3.8) is
compact.
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3. A quasilinear elliptic equation with exponential growth and weights in anisotropic spaces

Proof. Since E ↪→ Lq
(
Rn

+, (1 + |x|)−β
)
↪→ Lq

(
Rn

+, a(x)
)
, is sufficient to show that uk → 0 in

Lq(Rn
+, (1 + |x|)−β) whenever uk ⇀ 0 in E. To this end, let C > 0 be such that ‖uk‖E ≤ C and

R > 0 to be chosen later on. Note that∫
Rn+

|uk|q

(1 + |x|)β
dx =

∫
B+
R

|uk|q

(1 + |x|)β
dx+

∫
Rn+\B

+
R

|uk|q

(1 + |x|)β
dx. (3.9)

Since the restriction operator u 7→ u|
B+
R

is continuous from E into E(B+
R) :=

{
v|
B+
R

: v ∈ E
}

and the embedding E(B+
R) ↪→ Lq(B+

R , (1 + |x|)−β) is compact for any q ≥ n, there exists k1 ∈ N
such that ∫

B+
R

|uk|q

(1 + |x|)β
dx <

ε

2
, ∀ k ≥ k1. (3.10)

On the other hand, using that β > n we see that (1 + xn)n/(1 + |x|)β → 0 as |x| → ∞. Thus,
we can choose R > 0, large enough, such that (1 + xn)n/(1 + |x|)β ≤ ε/2C. Hence, there exists
k2 ∈ N such that∫

Rn+\B
+
R

|uk|q

(1 + |x|)β
dx =

∫
Rn+\B

+
R

|uk|q

(1 + xn)n
(1 + xn)n

(1 + |x|)β
dx <

ε

2
, ∀ k ≥ k2. (3.11)

Since ε > 0 is arbitrary, the result follows from (3.9), (3.10) and (3.11).

3.2.2 Trudinger-Moser type inequalities

In view of Remarks 3.2.4 and 3.2.5, it is natural to study embedding from E into Orlicz
spaces. In all this section we consider the weight function b(x) := 1/(1 + |x|)n ≤ 1/(1 + xn)n.
In view of Lemma 3.2.1, for any n ≤ q <∞ the embedding

E ↪→ Lq
(
Rn

+, b(x)
)

(3.12)

is continuous. Furthermore, the same example in Remark 3.2.5 shows that this embedding is
false if q =∞.

Now, considering the Young function defined by

Ψα(s) = eα|s|
n′ −

n−2∑
k=0

αk

k!
|s|n′k, s ∈ R,

where n′ := n/(n − 1) and according to embedding 3.12, the following Trudinger-Moser type
inequality in the setting of E is natural.

Proposition 3.2.7. For any α > 0 we have that Ψα(u) ∈ L1(Rn
+, b(x)). Moreover, there exists

a constant α0 > 0, independent of u ∈ E, such that

L(α) := sup
{u∈E: ‖u‖E≤1}

∫
Rn+
b(x)Ψα(u)dx < +∞, (3.13)
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for any 0 < α ≤ α0.

Before to present the proof of Proposition 3.2.7, we establish the following version Trudinger-
Moser type inequality which will be used in the proof of Theorem 3.1.1.

Corollary 3.2.8. Assume (H1) and let α0 > 0 be given by Proposition 3.2.7. Then, for any
u ∈ E and α > 0, we have that Ψα(u) ∈ L1(Rn

+, a(x)). Moreover,

l(α) := sup
{u∈E: ‖u‖E≤1}

∫
Rn+
a(x)Ψα(u)dx < +∞,

for any 0 < α ≤ α0.

Proof. By assumption (H1) we get∫
Rn+
a(x)Ψα(u)dx ≤

∫
Rn+
b(x)Ψα(u)dx,

for all u ∈ E with ‖u‖E ≤ 1. Thus, the result follows from Proposition 3.2.7.

Now we will prove (3.13). Since

‖u‖b :=

(∫
Rn+

(|∇u|n + b(x)|u|n)dx

)1/n

≤ C(n)‖u‖E, ∀u ∈ E, (3.14)

it is sufficient to prove that for some α1 > 0 we have

sup
{u∈E: ‖u‖b≤1}

∫
Rn+
b(x)Ψα(u)dx < +∞, ∀ 0 < α ≤ α1. (3.15)

To prove (3.15) we will combine the ideas of Kufner-Opic [30] and Yang-Zhu [47] and this will
be fulfilled in some lemmatas. First we recall a local estimate concerning the Trudinger-Moser
inequality.

Lemma 3.2.9 ([47]). For any R > 0, there exists a constant C0 = C0(n) > 0 such that for any
y ∈ Rn and v ∈ W 1,n

0 (BR(y)) with ‖∇v‖Ln(BR(y)) ≤ 1 we have∫
BR(y)

Ψαn(v)dx ≤ C0R
n

∫
BR(y)

|∇v|ndx.

Proof. For the proof, we refer the reader to [46, Lemma 4.1] or [47, Lemma 1].

Our strategy to prove Proposition 3.2.7 consists in to consider for any u ∈ E their extensions
to the whole space Rn defined by:

ū(x′, xn) :=

{
u(x′, xn), xn > 0

u(x′, xn), xn < 0.
(3.16)
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For any R > 0 we can split the integral (3.13) as follows

2

∫
Rn+
b(x)Ψα(u)dx =

∫
BR

b(x)Ψα(ū)dx+

∫
BcR

b(x)Ψα(ū)dx. (3.17)

Now we will estimate the first integral on the right hand side of (3.17).

Lemma 3.2.10. Let u ∈ E be such that ‖u‖E ≤ 1 and R > 1. Then there are α2 > 0 and
C0 = C0(R) > 0 such that ∫

BR

b(x)Ψα(ū)dx ≤ C0,

for any 0 < α ≤ α2.

Proof. Consider a cut-off function ϕ ∈ C∞0 (B2R) such that 0 ≤ ϕ ≤ 1, ϕ ≡ 1 in BR and
|∇ϕ| ≤ C/R in B2R for some C > 0. Note that ϕū ∈ W 1,n

0 (B2R) and by straightforward
calculation we check that∫

B2R

|∇(ϕū)|ndx ≤ 2n−1

(∫
B2R

|ϕ|n|∇ū|ndx+

∫
B2R

|∇ϕ|n|ū|ndx
)

≤ 2n−1

(∫
B2R

|∇ū|ndx+
Cn

Rn

∫
B2R

|ū|ndx
)

≤ 2n−1

(∫
B2R

|∇ū|ndx+ Cn (1 + 2R)n

Rn

∫
B2R

b(x)|ū|ndx
)
,

and hence, ∫
B2R

|∇(ϕū)|ndx ≤ C1

∫
B2R

(|∇ū|n + b(x)|ū|n) dx,

where C1 := 2n−1 max{1, (3C)n}. Note that v := ϕū/ n
√

2C1C(n) ∈ W 1,n
0 (B2R) and

‖∇v‖nLn(B2R) =
‖∇ϕū‖nLn(B2R)

2C1C(n)
≤ 1

2C(n)

∫
Rn

(|∇ū|n + b(x)|ū|n) dx ≤ ‖u‖nE ≤ 1,

where we have used b(x) ≤ (1 + xn)−n, if xn ≥ 0, and (3.14). Since b(x) ≤ 1, in view of
Lemma 3.2.9 and the fact that Ψα(cs) = Ψα|c|n′ (s), for all c ∈ R, we conclude that∫

BR

b(x)Ψα(ū)dx ≤
∫
BR

Ψα(ϕū)dx ≤
∫
B2R

Ψ
α(2C1C(n))

1
n−1

(v)dx ≤ C0(2R)n,

if 0 < α ≤ α2 := αn/(2C1C(n))
1

n−1 and this completes the proof of Lemma 3.2.10.

Now we proceed to estimate the second integral on the right hand side of (3.17).

Lemma 3.2.11. Let u ∈ E be such that ‖u‖E ≤ 1. Then there exist α3 > 0 and C2 > 0

independent of u ∈ E such that ∫
Bc3r

b(x)Ψα(ū)dx ≤ C2,

for any r > 1 and 0 < α ≤ α3.
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Proof. Given r ≥ 1 and σ > r we define the annuli

Aσr := {x ∈ Bc
r : |x| < σ} = {x ∈ Rn : r < |x| < σ}.

A trick adaption of Besicovitch covering lemma [26] (see [18, estimate (4.8)]) shows that there
exist a sequence of points {xk}k ∈ Aσ1 and a universal constant θ > 0 such that

Aσ1 ⊆
⋃
k

U
1/2
k and

∑
k

χUk(x) ≤ θ, ∀x ∈ Rn,

where U1/2
k := B

(
xk,

|xk|
6

)
and χUk denotes the function characteristic of Uk := B

(
xk,

|xk|
3

)
. Let

u ∈ E be such that ‖u‖E ≤ 1. In order to estimate the integral of ū in Aσ3r, we fix 1 < r < σ

and we follow as in [30] introducing the set of indices

Kr,σ :=
{
k ∈ N : U

1/2
k ∩Bc

3r 6= ∅
}
.

It is easy to see that, if Uk ∩Bc
3r 6= ∅, then Uk ⊂ Bc

r. Moreover, since 1 < r < 3r, we have that
Aσ3r ⊂ Aσ1 . Now using and the definition of Kr,σ we get

Aσ3r ⊆
⋃

k∈Kr,σ

U
1/2
k ⊆

⋃
k∈Kr,σ

Uk ⊆ Bc
r ⊆ Bc

1 (3.18)

and hence ∫
Aσ3r

b(x)Ψα(ū)dx ≤
∑
k∈Kr,σ

∫
U

1/2
k

b(x)Ψα(ū)dx. (3.19)

Next, we estimate the integral on the right hand side of (3.19). Since

2

3
|xk| ≤ |x| ≤

4

3
|xk|, ∀x ∈ Uk,

we have
1

(1 + (4/3)|xk|)n
≤ b(x) ≤ 1

(1 + (2/3)|xk|)n
, ∀x ∈ Uk. (3.20)

For any k ∈ Kr,σ fixed, in view of (3.20) we get∫
U

1/2
k

b(x)Ψα(ū)dx ≤ 1

(1 + (2/3)|xk|)n

∫
U

1/2
k

Ψα(ū)dx. (3.21)

Now, consider a cut-off function ϕk ∈ C∞0 (Uk) such that 0 ≤ ϕk ≤ 1 in Uk, ϕk ≡ 1 in U
1/2
k

and |∇ϕk| ≤ C/|xk| in Uk for some constant C > 0. Then we see that ϕkū ∈ W 1,n
0 (Uk) and by
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straightforward computation we have∫
Uk

|∇(ϕkū)|ndx ≤ 2n−1

(∫
Uk

|ϕk|n|∇ū|ndx+

∫
Uk

|∇ϕk|n|ū|ndx
)

≤ 2n−1

(∫
Uk

|∇ū|ndx+
Cn

|xk|n

∫
Uk

|ū|ndx
)

≤ 2n−1

(∫
Uk

|∇ū|ndx+ Cn (1 + (4/3)|xk|)n

|xk|n

∫
Uk

b(x)|ū|ndx
)
.

Recalling that k ∈ Kr,σ, in view of (3.18), we have that xk ∈ Bc
r and consequently |xk| ≥ r > 1.

This and the above estimate imply that∫
Uk

|∇(ϕkū)|ndx ≤ C3

∫
Uk

(|∇ū|n + b(x)|ū|n) dx,

where C3 := 2n−1 max{1, (7C/3)n}. Thus, the function vk := ϕkū/
n
√

2C3C(n) ∈ W 1,n
0 (Uk) and

‖∇vk‖nLn(Uk) =
‖∇ϕkū‖nLn(Uk)

2C3C(n)
≤ 1

2C(n)

∫
Uk

(|∇ū|n + b(x)|ū|n) dx ≤ 1.

Applying Lemma 3.2.9 with BR(y) = Uk, v = vk and using the fact that Ψα(cs) = Ψα|c|n′ (s), for
all c ∈ R, we get∫

U
1/2
k

Ψα(ϕkū)dx ≤
∫
Uk

Ψ
α(2C3C(n))

1
n−1

(vk)dx ≤ C0

(
|xk|
3

)n ∫
Uk

|∇vk|ndx,

for any 0 < α ≤ α3 := αn/(2C3C(n))
1

n−1 and hence∫
U

1/2
k

Ψα(ū)dx ≤ C0|xk|n

3n2C(n)

∫
Uk

(|∇ū|n + b(x)|ū|n) dx.

This together with estimates (3.19), (3.21) and the fact that sn/(1 + cs)n ≤ 1/cn for any c, s > 0

imply that∫
Aσ3r

b(x)Ψα(ū)dx ≤ C0

3n2C(n)

∑
k∈Kr,σ

|xk|n

(1 + (2/3)|xk|)n

∫
Uk

(|∇ū|n + b(x)|ū|n) dx

≤ C0

2n+1C(n)

∑
k∈Kr,σ

∫
Bcr

(|∇ū|n + b(x)|ū|n)χUkdx,

where the last inequality we used (3.18). In view of the Besicovitch covering lemma we obtain∫
Aσ3r

b(x)Ψα(ū)dx ≤ C0θ

2n+1C(n)

∫
Bcr

(|∇ū|n + b(x)|ū|n) dx.
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Taking the limit as σ → +∞ we get∫
Bc3r

b(x)Ψα(ū)dx ≤ Cθ

∫
Bcr

(|∇ū|n + b(x)|ū|n) dx,

for any 0 < α ≤ α3 := αn/(2C3C(n))
1

n−1 and this completes the proof of Lemma 3.2.11.

Finalizing the proof of (3.15). The proof follows directly from (3.17), Lemmas 3.2.10 and 3.2.11
by choosing R = 3r and α1 = min{α2, α3}.

Finalizing the proof of Proposition 3.2.7. By (3.14) and the fact that Ψα(cs) = Ψα|c|n′ (s), for all
c ∈ R, we get∫

R2
+

b(x)Ψα(u)dx =

∫
R2
+

b(x)Ψα‖u‖n′b

(
u

‖u‖b

)
dx ≤

∫
R2
+

b(x)Ψα(C(n))n′

(
u

‖u‖b

)
dx

for all u ∈ E with ‖u‖E ≤ 1. This together with (3.14) imply that

sup
{u∈E: ‖u‖E≤1}

∫
R2
+

b(x)Ψα(u)dx ≤ sup
{u∈E: ‖u‖E≤1}

∫
R2
+

b(x)Ψα(C(n))n′

(
u

‖u‖b

)
dx

≤ sup
{u∈E: ‖u‖b≤1}

∫
R2
+

b(x)Ψα(C(n))n′

(
u

‖u‖b

)
dx

and the result follows from (3.15) by choosing α0 = α1/(C(n))n
′ .

3.3 Proof of the main results

In this section, we prove Theorems 3.1.1 and 3.1.2. Since h does not belong to any Lebesgue
space we will consider the subspace of E defined by

Er =

{
u ∈ E :

∫
Rn+
h|u|rdx <∞

}
,

equipped with the norm

‖u‖Er :=

‖u‖nE +

(∫
Rn+
h|u|rdx

)n/r
1/n

.

Here we seek for weak solutions of problem (Pλ), which means a function u ∈ Er verifying∫
Rn+
|∇u|n−2∇u∇ϕdx+

∫
Rn−1

|u|n−2uϕdx′ +

∫
Rn+
h|u|r−2uϕdx = λ

∫
Rn+
af(x, u)ϕdx, (3.22)

for all ϕ ∈ Er. In view of assumption (H1), Lemma 3.2.1 and Theorem 3.2.8 the energy functional
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associated to problem (Pλ), namely Iλ : Er → R defined by

Iλ(u) =
1

n

∫
Rn+
|∇u|ndx+

1

n

∫
Rn−1

|u|ndx′ + 1

r

∫
Rn+
h|u|rdx− λ

∫
Rn+
aF (x, u)dx,

is well defined. Furthermore, standard arguments show that u ∈ Er is a critical points of Iλ if,
and only if, it is a weak solution of problem (Pλ).

Now, we will prove that Iλ satisfies the Mountain Pass geometry.

Lemma 3.3.1. Assume n ≤ r <∞, (f1), (f2) and (H1)− (H2). Then

(i) there exist ρ > 0 and c0 > 0 such that Iλ(u) ≥ c0 > 0 if ‖u‖Er = ρ;

(ii) there exists v0 ∈ Er with ‖v0‖Er > ρ such that Iλ(v0) < 0.

Proof. By (f1), given τ > 0 there exists δ > 0 such that

F (x, s) ≤ (λ1 − τ)

n
|s|n, ∀ (x, s) ∈ Rn

+ × (0, δ).

This together with (3.1) imply that there exists C0 > 0 such that

F (x, s) ≤ (λ1 − τ)

n
|s|n + C0Ψα0(s)|s|r+1, ∀ (x, s) ∈ Rn

+ × R, (3.23)

where α0 > 0 is given by Corollary 3.2.8. By Hölder inequality with conjugate exponents
1/r1 + 1/r2 = 1, we get

∫
Rn+
a|u|r+1Ψα0(u)dx ≤

(∫
Rn+
a|u|(r+1)r1

)1/r1 (∫
Rn+
a [Ψα0(u)]r2 dx

)1/r2

.

Using that Ψα(cs) = Ψα|c|n′ (s), for all c ∈ R, (Ψα(s))r2 ≤ Ψr2α(s) (see [45, Lemma 2.1]),
‖u‖E ≤ ‖u‖Er , for all u ∈ Er, and Corollary 3.2.8 we get

∫
Rn+
a|u|r+1Ψα0(u)dx ≤

(∫
Rn+
a|u|(r+1)r1

)1/r1 (∫
Rn+
aΨr2α0‖u‖n

′
Er

(
u

‖u‖n′Er

)
dx

)1/r2

≤ C1‖u‖r+1
Er ,

if r2 > 1 sufficiently close to 1 and ‖u‖Er sufficiently small such that r2‖u‖n
′
Er ≤ 1. This together

with (3.23) and the definition of λ1 imply that∫
Rn+
aF (x, u)dx ≤ (λ1 − τ)

n
‖u‖nLn(Rn+,a) + C3‖u‖r+1

Er ≤
(λ1 − τ)

nλ1

‖u‖nE + C3‖u‖r+1
Er .
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Thus,

Iλ(u) =
1

n
‖u‖nE +

1

r
‖u‖rLr(Rn+,h) − λ

∫
Rn+
aF (x, u)dx

≥ 1

n
‖u‖nE +

1

r
‖u‖rLr(Rn+,h) − λ

(
(λ1 − τ)

nλ1

‖u‖nE + C3‖u‖r+1
Er

)
=

(
1

n
− λ(λ1 − τ)

nλ1

)
‖u‖nE +

1

r
‖u‖rLr(Rn+,h) − C3‖u‖r+1

Er .

(3.24)

Since we can choose 0 < τ < λ1 sufficiently close to λ1 such that λ(λ1 − τ)/nλ1 < 1/2n and
assume without loss of generality that ‖u‖E ≤ 1, from (3.24), we get

Iλ(u) ≥ 1

2n
‖u‖rE +

1

r
‖u‖rLr(Rn+,h) − C3‖u‖r+1

Er

≥ min

{
1

2n
,
1

r

}
1

2
r
n

‖u‖rEr − C3‖u‖r+1
Er ,

where in the last inequality we used that ‖u‖rEr ≤ 2
r
n (‖u‖rE + ‖u‖rLr(Rn+,h)), and the item (i) is

proved. Now we prove item (ii). By (f2) for each M > 0 there exists s0 > 0 such that

F (x, s) ≥Msµ, ∀ (x, s) ∈ Rn
+ × (s0,∞). (3.25)

Assume ϕ 6= 0 is supported in a bounded domain Ω ⊂ Rn
+. Using that F is continuous, we

conclude that F is bounded in the compact Ω × [0, s0]. This together with (3.25) imply that
there exist c1, c2 > 0 such that

F (x, s) ≥ c1s
µ − c2, ∀ (x, s) ∈ Rn

+ × R+.

It follows that

Iλ(tϕ) =
1

n
‖tϕ‖nE +

1

r

∫
Ω

h|tϕ|rdx− λ
∫

Ω

aF (x, tϕ)dx

≤ tn

n
‖ϕ‖nE +

tr

r

∫
Ω

h|ϕ|rdx− c1λt
µ

∫
Ω

a|ϕ|µdx+ c2|Ω|.

Since µ > r, Iλ verifies (ii) by choosing v0 = t0ϕ with t sufficiently large.

In view of Lemma 3.3.1, it is well defined the minimax level

cλ = inf
γ∈Γ

max
t∈[0,1]

Iλ(γ(t)) > 0, ∀λ > 0,

where Γ := {γ ∈ C([0, 1], Er) : γ(0) = 0 and γ(1) = v0}. Applying the mountain pass theorem
without the (PS) condition (see [44, Theorem 1.15])) we find a sequence (uk) ⊂ Er at the
minimax level cλ, that is

Iλ(uk)→ cλ and I ′λ(uk)→ 0.

The next result prove that Iλ satisfies the Palais-Smale condition.

Lemma 3.3.2. Assume n < r <∞ and (H1). Then the functional Iλ satisfies (PS)-condition.
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Proof. Let (uk) ⊂ Er be a (PS)-sequence associated to Iλ, i.e.,

Iλ(uk)→ c and I ′λ(uk)→ 0.

By assumption (f2) we have

Iλ(uk)−
1

µ
〈I ′λ(uk), uk〉 =

(
1

n
− 1

µ

)
‖uk‖nE +

(
1

r
− 1

µ

)∫
Rn+
h|uk|rdx

+ λ

∫
Rn+
a

(
1

µ
f(x, u)u− F (x, u)

)
dx

≥
(

1

n
− 1

µ

)
‖uk‖nE +

(
1

r
− 1

µ

)∫
Rn+
h|uk|rdx.

Thus, we get(
1

n
− 1

µ

)
‖uk‖nE +

(
1

r
− 1

µ

)∫
Rn+
h|uk|rdx ≤ c+ ok(‖uk‖Er), ∀ k ∈ N. (3.26)

We claim that (uk) is bounded. Indeed, suppose by contradiction that ‖uk‖Er →∞ as k →∞.
Since n ≤ r < µ, in view of (3.26) we get

‖uk‖nE
‖uk‖Er

→ 0 and
‖uk‖rLr(Rn+,h)

‖uk‖Er
→ 0, as k →∞. (3.27)

This combined with the fact that

‖uk‖nE
‖uk‖Er

+
‖uk‖nLr(Rn+,h)

‖uk‖Er
= ‖uk‖n−1

Er →∞, as k →∞,

imply that
‖uk‖nLr(Rn+,h)

‖uk‖Er
→∞, as k →∞.

Consequently,
‖uk‖nLr(Rn+,h) →∞, as k →∞.

This together with (3.27) and the fact that n < r imply

‖uk‖nLr(Rn+,h)

‖uk‖Er
= ‖uk‖n−rLr(Rn+,h)

‖uk‖rLr(Rn+,h)

‖uk‖Er
→ 0, as k →∞,

which is a contradiction and hence (uk) is bounded. Hence, we can use Lemma 3.2.6 to assume
that 

uk ⇀ u in Er

uk(x)→ u(x) a.e. in Rn
+

uk → u in Lq(Rn
+, a)
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and 〈I ′λ(uk)− I ′λ(u), uk − u〉 = ok(1). Now we observe that

ok(1) = 〈I ′λ(uk)− I ′λ(u), uk − u〉 = A(k)− λB(k), (3.28)

where

A(k) =

∫
Rn+

(
|∇uk|n−2∇uk − |∇u|n−2∇u

)
(∇uk −∇u) dx

+

∫
Rn−1

(
|uk|n−2uk − |u|n−2u

)
(uk − u) dx′ +

∫
Rn+
h
(
|uk|r−2uk − |u|r−2u

)
(uk − u) dx

and
B(k) =

∫
Rn+
a (f(x, uk)− f(x, u)) (uk − u) dx.

We claim that B(k) = ok(1). In fact, we have

|B(k)| ≤
∫
Rn+
a (|f(x, uk)|+ |f(x, u)|) |uk − u|dx ≤ B1(k) +B2(k),

where

B1(k) :=

∫
Rn+
a|f(x, uk)||uk − u|dx and B2(k) :=

∫
Rn+
a|f(x, u)||uk − u|dx.

On the other hand, it follows from (3.1) and (f1) that there are constants C1, C2 > 0 and α > 0

to be chosen later such that

|f(x, s)| ≤ C1|s|n−1 + C2Ψα(s), ∀ (x, s) ∈ Rn
+ × R.

Thus,

B1(k) ≤ C1

∫
Rn+
a|uk|n−1|uk − u|dx+ C2

∫
Rn+
aΨα(uk)|uk − u|dx.

Now we observe that using the Hölder inequality with conjugate exponents 1/n+ 1/n′ = 1 and
the fact that (Ψα(s))n

′ ≤ Ψn′α(s) (see [45, Lemma 2.1]) we get

B1(k) ≤ C1‖uk‖n−1
Ln(Rn+,a(x))‖uk − u‖

n
Ln(Rn+,a(x)) + C2

(∫
Rn+
aΨn′α(uk)dx

)1/n′

‖uk − u‖Ln(Rn+,a(x))

Since uk → u in Ln(Rn
+, a(x)) we get

B1(k) ≤ ok(1) +

(∫
Rn+
aΨn′α(uk)dx

)1/n′

ok(1).

Using that (uk) is bounded in E, by choosing α > 0 such that n′α‖uk‖n
′
E ≤ α0, and applying the
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Corollary 3.2.8 we obtain C > 0 that does not depend on k such that∫
Rn+
aΨn′α(uk)dx ≤

∫
Rn+
aΨn′α‖uk‖n

′
E

(
uk
‖uk‖E

)
dx ≤ C

Hence B1(k) = ok(1), and similarly B2(k) = ok(1). Thus, from (3.28) we concluded that
A(k) = ok(1). For all ξ, ζ ∈ Rn, we know that there exists a constant C1 = C1(n) > 0 (see
inequality (2.2) in [40]) such that

C1|ξ − ζ|n ≤ (|ξ|n−2ξ − |ζ|n−2ζ)(ξ − ζ), if n ≥ 2. (3.29)

This inequality together with the facts that A(k) = ok(1) and h ≥ 0 imply that

C(k) :=

∫
Rn+

(
|∇uk|n−2∇uk − |∇u0|n−2∇u0

)
(∇uk −∇u0) dx = ok(1)

D(k) :=

∫
Rn−1

(
|uk|n−2uk − |u0|n−2u0

)
(uk − u0) dx′ = ok(1)

E(k) :=

∫
Rn+
h
(
|uk|r−2uk − |u0|r−2u0

)
(uk − u0) dx = ok(1).

Using once again inequality (3.29), we get C1 = C1(n) > 0 such that

‖uk − u0‖nEr = ‖uk − u0‖nE + ‖uk − u0‖nLr(Rn+,h) ≤ C1

(
C(k) +D(k) + (E(k))

n
r

)
= ok(1),

which implies that uk → u0 in Er and this completes the proof.

Finalizing the proof of Theorem 3.1.1. Taking ϕ = u in (3.22), we have that any weak solution
u of problem (Pλ) satisfies the equality

‖u‖nE + ‖u‖rLr(Rn+,h) = λ‖u‖qLr(Rn+,a)

so that problem (Pλ) does not have any nontrivial solution whenever λ ≤ 0 and hence the item
(i) in Theorem 3.1.1 is provided. Finally the item (ii) in Theorem 3.1.1 follows by Lemmas 3.3.1
and 3.3.2 and the Mountain Pass theorem.

In order to prove our multiplicity result we shall use the following version of the symmetric
mountain pass theorem (see [8]).

Theorem 3.3.3. Let E be a real infinite-dimensional Banach space and I ∈ C1(E,R) an even
functional satisfying the PS condition and the following hypotheses:

(I1) I(0) = 0 and there are constants ρ, α > 0 such that I|∂Bρ(0) ≥ α;

(I2) for any finite dimensional Ẽ ⊂ E, Ẽ ∩ {u ∈ E : I(u) ≥ 0} is bounded.

Then I has an unbounded sequence of critical values.
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Finalizing the proof of Theorem 3.1.2. The proof of item (I1) follows as in the proof of Lemma 3.3.1.
Now we prove item (I2). Suppose by contradiction that (I2) does not hold. Then, there exists a
finite dimensional Ẽ ⊂ Er and a sequence (uk) ⊂ Ẽ satisfying

Iλ(uk) > 0, k ∈ N and ‖uk‖Er →∞ as k →∞. (3.30)

By using the local condition (f4) and (f3) we can obtain ν > 0 such that

F (x, s) ≥ ν|s|γ0 , uniformly with respect to x ∈ Rn
+, ∀ s ∈ R.

This inequality together with the fact that all the norms in Ẽ are equivalent, there exist b̃ > 0

such that
0 < Iλ(uk) =

1

n
‖uk‖nE +

1

r
‖uk‖rLr(Rn+,h) − λ

∫
Rn+
aF (x, uk)dx

≤ 1

n
‖uk‖nE +

1

r
‖uk‖rLr(Rn+,h) − λν‖uk‖

γ0
Lγ0 (Rn+,a)

≤ 1

n
‖uk‖nEr +

c

r
‖uk‖rEr − λνb̃‖u‖

γ0
Er , ∀ k ∈ N.

Thus,

λνb̃‖u‖γ0Er <
1

p
‖uk‖nEr +

1

r
‖uk‖rEr , ∀ k ∈ N,

which contradicts (3.30), since n < r < γ0, and item (I2) is proved. In view of Lemma 3.3.2,
for each λ > 0 we can apply Theorem 3.3.3 to obtain an unbounded sequence of critical values
of Iλ to which we can associate at least two critical points because the functional Iλ is even.
Therefore, the proof of Theorem 3.1.1 is complete.
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A Hardy-Sobolev type inequality without
the trace and its applications
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Chapter 4

A Hardy-Sobolev type inequality and its
applications

In this chapter we present a new Hardy-Sobolev type inequality without the the trace and
as an application we prove existence, nonexistence and multiplicity of solutions for an indefi-
nite quasilinear elliptic equation with Neumann boundary condition and weights in anisotropic
spaces. This results is part of the submitted paper [22].

This chapter is organized as follows. Section 4.1 contains the necessary preliminary results
on the weighted Sobolev embeddings needed in the sequel. Section 4.2 presents the indefinite
quasilinear elliptic problem which will be studied in this chapter. In Section 4.3, we present the
proof of Theorem 4.2.2. Finally, in Section 4.4, we discuss the proof of Theorem 4.2.3.

4.1 A Hardy-Sobolev type inequality and its consequences

In order to study quasilinear elliptic problems in the upper half-space with Neumann bound-
ary conditions we will establish another Hardy-Sobolev type inequality. The next weighed Hardy-
Sobolev inequality will be fundamental in our approach.

Proposition 4.1.1. Let 1 < p < n and α > 1. Then there is C = C(n, α, p) > 0 such that(∫
Rn+

|u|p∗
(1 + xn)α

)p/p∗

dx ≤ C

∫
Rn+
|∇u|pdx, ∀u ∈ C1

0(Rn), where p∗ :=
p(n− 1)

n− p
.

Proof. Let v ∈ C1
0(Rn) and σ ∈ R with σ 6= −1. Using integration by parts, we obtain

(σ + 1)

∫
Rn+

(1 + xn)σ|v|dx =

∫
Rn+
∂xn((1 + xn)σ+1)|v|dx

= −
∫
Rn+

(1 + xn)σ+1(|v|)xndx−
∫
Rn−1

|v|dx′,
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where we are using that the normal unit vector pointing out of Rn−1 is η = (0′,−1). Thus,

|σ + 1|
∫
Rn+

(1 + xn)σ|v|dx ≤
∫
Rn+

(1 + xn)σ+1|∇v|dx+

∫
Rn−1

|v|dx′.

Applying this inequality with v = |u|q, q > 1, and σ + 1 < 0 we get

|σ + 1|
∫
Rn+

(1 + xn)σ|u|qdx ≤
∫
Rn+

(1 + xn)σ+1q|u|q−1|∇u|dx+

∫
Rn−1

|u|qdx′

≤ q

∫
Rn+

(1 + xn)σ+1|u|q−1|∇u|dx+

∫
Rn−1

|u|qdx′.
(4.1)

From the trace inequality, for u ∈ C1
0(Rn) and q = p∗, there exists C1 = C1(n) > 0 such that

∫
Rn−1

|u|p∗dx′ ≤ C1

(∫
Rn+
|∇u|pdx

)(n−1)/(n−p)

. (4.2)

On the other hand, by the Hölder inequality and the embedding D1,p(Rn
+) ↪→ Lp

∗
(Rn

+) we see
that

p∗

∫
Rn+

(1 + xn)σ+1|u|p∗−1|∇u|dx ≤ p∗

(∫
Rn+
|u|p∗dx

)(p−1)/p(∫
Rn+
|∇u|pdx

)1/p

≤ p∗C2

(∫
Rn+
|∇u|pdx

)(n−1)/(n−p)

.

(4.3)

Combining inequalities (4.1), (4.2) and (4.3) we get

|σ + 1|
∫
Rn+

|u|p∗
(1 + xn)−σ

dx ≤ p∗C2

(∫
Rn+
|∇u|pdx

)(n−1)/(n−p)

+ C1

(∫
Rn+
|∇u|pdx

)(n−1)/(n−p)

= (p∗C2 + C1)

(∫
Rn+
|∇u|pdx

)(n−1)/(n−p)

.

Thus, considering α = −σ, we obtain(∫
Rn+

|u|p∗
(1 + xn)α

dx

)p/p∗

≤
(
p∗C2 + C1

| − α + 1|

)p/p∗ ∫
Rn+
|∇u|pdx,

which is the desired result.

As a consequence of Proposition 4.1.1 we have the following inequality.

Lemma 4.1.2. Let 1 < p < n and α > 1. Then there is C = C(n, α, p, q) > 0 such that(∫
Rn+

|u|q

(1 + xn)α

)p/q

dx ≤ C

∫
Rn+
|∇u|pdx, ∀u ∈ C∞0 (Rn), ∀ p∗ ≤ q ≤ p∗ :=

np

n− p
. (4.4)
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Furthermore, the condition q ≥ p∗ is necessary.

Proof. The proof follows of Proposition 4.1.1 and an interpolation argument. To see that the
condition q ≥ p∗ is necessary, we will argue as in [11, Proposition 3.5]. Let φ ∈ C∞0 (Rn) such
that φ(x) = 1 for |x| ≤ 1 and φ(x) = 0 for |x| ≥ 2. We define, for any t > 0, φt(x) = φ(x/t) for
x ∈ Rn. A straightforward calculation shows that there exist C1, C2 > 0 independent of t such
that ∫

Rn+
|∇φt|pdx = C1t

n−p (4.5)

and ∫
Rn+

|φt(x)|q

(1 + xn)α
dx ≥

∫ t/
√

2

0

∫
|x′|≤t/

√
2

1

(1 + xn)α
dx′dxn

=

[
1

(α− 1)
− 1

(α− 1)(1 + t/
√

2)α−1

]
C2t

n−1.

Assume by contradiction that there exists a constant C3 > 0 such that for all u ∈ C∞0 (Rn) we
have

0 < C3 ≤

∫
Rn+
|∇u|pdx(∫

Rn+

|u|q

(1 + xn)α
dx

)p/q
≤

∫
Rn+
|∇φt|pdx(∫

Rn+

|φt|q

(1 + xn)α
dx

)p/q
≤ C4t

n−p− p(n−1)
q (4.6)

for some C4 > 0 and t large. If q < p∗ we obtain a contradiction letting t→∞ and this finishes
the proof.

In order to perform a variational approach we introduce our functional space and its embed-
dings into weighted Lebesgue spaces. To this, denote by C∞δ (Rn

+) the space of C∞0 (Rn)−functions
restricted to Rn

+. We define the weighted Sobolev space E as the completion of C∞δ (Rn
+) with

respect to the norm

‖u‖E :=

(∫
Rn+
|∇u|pdx

)1/p

.

As a consequence of Lemma 4.1.2, we have the following embedding result.

Lemma 4.1.3. Assume 1 < p < n and α > 1. Then the weighted Sobolev embedding

E ↪→ Lq
(
Rn

+,
1

(1 + xn)α

)
, ∀ p∗ ≤ q ≤ p∗, (4.7)

is continuous.

4.2 Applications

In this section, we present the indefinite quasilinear elliptic problem which will be studied
existence, nonexistence and multiplicity of nontrivial solutions, as a consequence of Hardy-
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Sobolev inequality obtained in Proposition (4.1.1), to namely:{
−div(|∇u|p−2∇u) = λa(x)|u|q−2u− b(x)|u|r−2u in Rn

+,

|∇u|p−2∇u · ν = 0 on Rn−1,
(Pλ)

where 1 < p < n, ν denotes the unit outward normal on the boundary, λ is a real parameter and
the weighted functions a(x) and b(x) satisfy some suitable conditions that we will describe later
on. Our interest is to analyze the interplay between the powers q and r. Thus, we will consider
two cases:

(I) r > q and p∗ ≤ q ≤ p∗;

(II) 1 < p ≤ r < q and p∗ ≤ q ≤ p∗.

Motivated by the works of Alama-Tarrantelo [7], Filippucci-Pucci-Radulescu [25], Lyberopou-
los [27], Perera [31] and Pflüger [34], our main purpose in the present paper is to use variational
techniques to investigate the existence, nonexistence and multiplicity of nontrivial weak solu-
tions for the problem (Pλ). We want to remark that the main features of this class of problems
is that we are facing an indefinite nonlinearity and the weight function a(x) is allowed to be in
anisotropic Lebesgue spaces.

We begin by considering the case r > q. To this end, we shall assume the following assump-
tions:

(H1) a : Rn
+ → R is a nontrivial measurable function and there are constants α > 1 and c1 > 0

such that
0 ≤ a(x) ≤ c1

(1 + xn)α
, a.e. in Rn

+;

(H2) b : Rn
+ → R is a positive continuous function satisfying

∫
Rn+

a
r
r−q

b
q
r−q

dx <∞.

It is worthwhile mentioning that the hypothesis (H2) appears in the paper [7].

Remark 4.2.1. Note that if a(x) satisfies (H1) then the function b(x) = (1 + |x|)θ/(1 + xn)
αr
q

with θ > n(r − q)/q satisfies the assumption (H2). In fact, if θ > n(r − q)/q we have∫
Rn+

a
r
r−q

b
q
r−q

dx ≤
∫
Rn+

1

(1 + xn)
αr
r−q

(1 + xn)
αr
r−q

(1 + |x|)
θq
r−q

dx =

∫
Rn+

1

(1 + |x|)
θq
r−q

dx <∞.

Under this hypotheses, our main result can be stated as follows.

Theorem 4.2.2. Let r > q and assume the hypotheses (H1)− (H2).

(i) If p∗ ≤ q ≤ p∗, there exists λ∗ > 0 such that problem (Pλ) has only the trivial solution for
all λ ∈ (−∞, λ∗);
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(ii) If p∗ ≤ q < p∗, there exists λ̃ > 0 such that problem (Pλ) has at least a nontrivial weak
solution for all λ ∈ [λ̃,∞);

(iii) If p∗ ≤ q < p∗, there exists Λ ≥ λ̃ such that problem (Pλ) has at least two nontrivial weak
solutions uλ ≥ ũλ for all λ ∈ (Λ,∞);

(iv) If p∗ ≤ q < p∗, for any m ∈ N there exists Λm > 0 such that problem (Pλ) has at least m
pairs of nontrivial weak solutions for all λ > Λm.

The proof of the existence in Theorem 4.2.2 is based on minimization techniques. To obtain
the second solution we will follow a truncation argument. The multiplicity result is obtained by
applying the symmetric mountain pass theorem.

Next we deal with the case r < q. In order to prove the existence of solutions for problem
(Pλ), instead of hypotheses (H1)− (H2), we will assume:

(H̃1) a : Rn
+ → R is a nontrivial measurable function and there are c2 > 0 and α > 1 such that

0 ≤ a(x) ≤ c2

(1 + |x|)α
, a.e. in Rn

+.

(H̃2) b : Rn
+ → R is a measurable positive function.

In this case, our main result is stated as follows.

Theorem 4.2.3. Let p∗ ≤ r < q < p∗ and assume the hypotheses (H̃1)− (H̃2). Then

(i) the problem (Pλ) has no nontrivial weak solution for every λ ∈ (−∞, 0];

(ii) the problem (Pλ) has an infinite number of nontrivial weak solutions for every λ ∈ (0,∞).

The proof of Theorem 4.2.3 is obtained by performing a variational approach based on the
symmetric mountain pass theorem.

Hereafter in this chapter, BR denotes the ball of center zero and radius R > 0 in Rn,
B+
R := BR∩Rn

+, (BR)c denotes Rn \BR, the complement of the set BR ⊂ Rn, and (B+
R)c denotes

Rn
+ \B+

R the complement of the set B+
R ⊂ Rn

+.

4.3 Proof of Theorem 4.2.2

In this section, we present the proof of Theorem 4.2.2. We will split the proof into three
subsections.

First, we will define our variational approach. Since the weighted function b(x) does not
belongs to any Lebesgue space we need consider the subspace of E defined by

Er,p =

{
u ∈ E :

∫
Rn+
b|u|rdx <∞

}
,
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equipped with the norm

‖u‖Er,p :=
(
‖u‖pE + ‖u‖pLr(Rn+,b(x))

)1/p

.

Remark 4.3.1. Suppose that the weight function a(x) satisfies hypotheses (H1) or (H̃1). By
Lemma 4.1.3, the weighted Sobolev embeddings

E ↪→ Lq
(
Rn

+, a(x)
)

(4.8)

and
Er,p ↪→ Lq

(
Rn

+, a(x)
)

(4.9)

are continuous if p∗ ≤ q ≤ p∗.

The next two compactness results play a crucial role in the proof of Theorem 4.2.2 and
Theorem 4.2.3, respectively.

Lemma 4.3.2. Assume 1 < p < n and (H1)− (H2). Then the weighted Sobolev embedding (4.9)
is compact if p∗ ≤ q < p∗.

Proof. We will show that uk → 0 in Lq(Rn
+, a(x)) whenever uk ⇀ 0 in Er,p. Indeed, let C > 0 be

such that ‖uk‖Er,p ≤ C and R > 0 to be chosen during the proof independently of u. We have∫
Rn+
a|uk|qdx =

∫
B+
R

a|uk|qdx+

∫
Rn+\B

+
R

a|uk|qdx. (4.10)

Since the restriction operator u 7→ u|
B+
R

is continuous fromEr,p intoEr,p(B+
R) :=

{
v|
B+
R

: v ∈ Er,p

}
and the embedding Er,p(B+

R) ↪→ Lq(B+
R , a(x)) is compact, there exists k1 ∈ N such that∫

B+
R

a|uk|qdx <
ε

2
, ∀ k ≥ k1, (4.11)

for any p∗ ≤ q < p∗. On the other hand, by assumption (H2), the Hölder inequality and choosing
R > 0 sufficiently large, we get

∫
Rn+\B

+
R

a|uk|qdx ≤

(∫
Rn+\B

+
R

a
r
r−q

b
q
r−q

dx

)(r−q)/r(∫
Rn+\B

+
R

b|uk|rdx

)q/r

≤ C

(∫
Rn+\B

+
R

a
r
r−q

b
q
r−q

dx

)(r−q)/r

≤ ε

2
.

This combined with (4.10) and (4.11) imply the desired result.

Lemma 4.3.3. Assume 1 < p < n and (H̃1). If α > n then the weighted Sobolev embedding
(4.8) is compact if p∗ ≤ q < p∗.

Proof. Since E ↪→ Lq
(
Rn

+, (1 + |x|)−α
)
↪→ Lq

(
Rn

+, a(x)
)
, is sufficient to show that uk → 0 in

Lq(Rn
+, (1 + |x|)−α) whenever uk ⇀ 0 in E. To this end, let C > 0 be such that ‖uk‖E ≤ C and
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R > 0 to be chosen during the proof independently of u. We have∫
Rn+

|uk|q

(1 + |x|)α
dx =

∫
B+
R

|uk|q

(1 + |x|)α
dx+

∫
Rn+\B

+
R

|uk|q

(1 + |x|)α
dx.

Arguing as in the proof of Lemma 4.3.2, we obtain k1 ∈ N such that∫
B+
R

|uk|q

(1 + |x|)α
dx <

ε

2
, ∀ k ≥ k1,

for any p∗ ≤ q < p∗. On the other hand, choosing 1 < β < α we see that (1+xn)β/(1+ |x|)α → 0

as |x| → ∞. Thus, we can choose R > 0, large enough, such that (1 + xn)β/(1 + |x|)α ≤ ε/2C.
Hence, there exists k2 ∈ N such that∫

Rn+\B
+
R

|uk|q

(1 + |x|)α
dx =

∫
Rn+\B

+
R

|uk|q

(1 + xn)β
(1 + xn)β

(1 + |x|)α
dx <

ε

2
, ∀ k ≥ k2,

which implies the desired result.

Here, by a weak solution of problem (Pλ), we mean a nontrivial function u ∈ Er,p verifying∫
Rn+
|∇u|p−2∇u∇ϕdx = λ

∫
Rn+
a|u|q−2uϕdx−

∫
Rn+
b|u|r−2uϕdx, ∀ϕ ∈ Er,p. (4.12)

In view of assumption (H1), Lemma 4.1.3 the energy functional associated to problem (Pλ)
Iλ : Er,p → R defined by

Iλ(u) =
1

p

∫
Rn+
|∇u|pdx+

1

r

∫
Rn+
b|u|rdx− λ

q

∫
Rn+
a|u|qdx,

is well defined. Furthermore, standard arguments show that u ∈ Er,p is a critical point of Iλ if
and only if is a weak solution of problem (Pλ).

4.3.1 Nonexistence

In this section we present the proof of item (i) in Theorem 4.2.2. Suppose that u ∈ Er,p is a
nontrivial weak solution of (Pλ). If λ ≤ 0 the result is immediate. Thus, we assume that λ > 0

and taking ϕ = u as a test function in (4.12) we obtain∫
Rn+
|∇u|pdx = λ

∫
Rn+
a|u|qdx−

∫
Rn+
b|u|rdx. (4.13)

Using the Young inequality we get

λ

∫
Rn+
a|u|qdx =

∫
Rn+

λa

b
q
r

(
b
q
r |u|q

)
dx ≤ r − q

r
λ

r
r−q

∫
Rn+

a
r
r−q

b
q
r−q

dx+
q

r

∫
Rn+
b|u|rdx.
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This together with (4.13) and the fact that q < r imply

‖u‖pE ≤
r − q
r

λ
r
r−q

∫
Rn+

a
r
r−q

b
q
r−q

dx+
q − r
r

∫
Rn+
b|u|rdx ≤ r − q

r
λ

r
r−q

∫
Rn+

a
r
r−q

b
q
r−q

dx. (4.14)

Since p < p∗ ≤ q, combining (4.13) with Lemma 4.1.3 and the fact that b > 0 we get

C̄

(∫
Rn+
a|u|qdx

)p/q

≤ ‖u‖pE ≤ λ

∫
Rn+
a|u|qdx (4.15)

for some constant C̄ > 0. Thus,

(
C̄λ−1

) q
q−p ≤

∫
Rn+
a|u|qdx.

Using the first inequality in (4.15) we obtain C̄
(
C̄λ−1

) p
q−p ≤ ‖u‖pE. This together with (4.14)

imply that

λ ≥ λ̄ :=

C̄ q
q−p

r

r − q

(∫
Rn+

a
r
r−q

b
q
r−q

dx

)−1
(r−q)(q−p)/q(r−p)

.

To conclude, we define

λ∗ = sup {λ > 0 : (Pµ) does not admits any nontivial weak solution for all µ < λ} .

Therefore, λ∗ ≥ λ̄ > 0 and Theorem 4.2.2 holds true for all λ < λ∗.

4.3.2 The first solution

In this subsection, by using minimization argument we will prove item (ii) in Theorem 4.1.3.
We first recall a basic estimate (see [7]).

Remark 4.3.4. Let 0 ≤ β < γ and k, l ∈ (0,∞). Then there exists a constant C = C(β, γ) > 0

such that

k|s|β − l|s|γ ≤ C(β, γ)k

(
k

l

) β
γ−β

, ∀ s ∈ R.

In order to use the direct methods of the calculus of variations we need the following result.

Lemma 4.3.5. Let p∗ ≤ q < p∗, r > q and assume (H1) − (H2). Then, for all λ > 0, the
functional Jλ : Er,p → R defined by

Jλ(u) :=

∫
Rn+
F (x, u),

where Fλ(x, s) := λa(x)|s|q/q− b(x)|s|r/r is weakly lower semicontinuous. As a consequence the
functional Iλ is lower semicontinuous in Er,p.
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Proof. Assume that uk ⇀ u0 in Er,p. Taking into account that

Fs(x, s) = a(x)|s|q−2s−b(x)|s|r−2s, Fss(x, s) = (q−1)a(x)|s|q−2−(r−1)b(x)|s|r−2 s ∈ R\{0},

we get

F (x, uk)− F (x, u0) =

∫ 1

0

Fs(x, u0 + t(uk − u0))(uk − u0)dt

and

Fs(x, u0 + t(uk − u0))− Fs(x, u0) =

∫ t

0

Fss(x, u0 + s(uk − u0))(uk − u0)ds.

Consequently,

F (x, uk)− F (x, u0) =

∫ 1

0

[∫ t

0

Fuu(x, u0 + s(uk − u0))(uk − u0)ds+ Fu(x, u0)

]
(uk − u0)dt

=

∫ 1

0

∫ t

0

Fuu(x, u0 + s(uk − u0))(uk − u0)2dsdt+ Fu(x, u0)(uk − u0).

Thus, using Remark 4.3.4 we get

|F (x, uk)− F (x, u0)| ≤ C2
a
r−2
r−q

b
q−2
r−q

(uk − u0)2 + |Fu(x, u0)(uk − u0)|,

where C2 = C1(q, r)λ
r−2
r−q . Applying the Hölder inequality and using Lemma 4.3.2 we obtain

∫
Rn+

(uk − u0)2a
r−2
r−q

b
q−2
r−q
≤

(∫
Rn+

a
r
r−q

b
q
r−q

dx

)(q−2)/q(∫
Rn+
a|uk − u0|qdx

)2/q

→ 0.

On the other hand, considering the linear functional Φ0 : Er,p → R defined by

Φ0(v) =

∫
Rn+
Fu(x, u0)vdx,

we see that

|Φ0(v)| ≤ λ

∫
Rn+
a|u0|q−1|v|dx+

∫
Rn+
b|u0|r−1|v|dx

≤ ‖u0‖q−1
Lq(Rn+,a(x))‖v‖Lq(Rn+,a(x)) + ‖u0‖r−1

Lr(Rn+,b(x))‖v‖Lr(Rn+,b(x)) ≤ C‖u‖Er,p ,

and hence Φ0 is continuous. Therefore, if uk ⇀ u0 in Er,p we have

lim
k→∞

∫
Rn+
Fu(x, u0)(uk − u0)dx = 0,

which implies the desired result.

Now we establish some geometric properties of the energy functional Iλ.
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Lemma 4.3.6. Let p∗ ≤ q < p∗, r > q and assume (H1)− (H2). For all λ > 0 the functional Iλ
is coercive.

Proof. Since λ, a, b > 0 and q < r, by Remark 4.3.4 we obtain

∫
Rn+

(
λa

q
|u|q − b

2r
|u|r
)
≤ Cr,q

1

qr
q
r−q

∫
Rn+
λa

(
λa

b

) q
r−q

= Cr,qλ
r
r−q

∫
Rn+

(
a

r
r−q

b
q
r−q

)
<∞.

Thus, we get

Iλ(u) =
1

p

∫
Rn+
|∇u|pdx+

1

2r

∫
Rn+
b|u|rdx−

∫
Rn+

(
λa

q
|u|q − b

2r
|u|r
)
dx

≥ 1

p
‖u‖pE +

1

2r

∫
Rn+
b|u|rdx− C1,

which implies that Iλ is coercive and the proof is completed.

Lemma 4.3.7. Let p∗ ≤ q < p∗, r > q and assume (H1)− (H2). Then there exists Λ > 0 such
that

−∞ < inf
u∈Er,p

Iλ(u) < 0, ∀λ > Λ. (4.16)

Proof. Let

Λ := inf
u∈Er,p

{
q

p
‖u‖pE +

q

r

∫
Rn+
b|u|rdx :

∫
Rn+
a|u|q = 1

}
.

We claim that Λ > 0. Otherwise, there exists a sequence (uk) ⊂ Er,p such that

q

p
‖uk‖pE +

q

r

∫
Rn+
b|uk|rdx = ok(1) and

∫
Rn+
a|uk|q = 1.

Thus, by using the Hölder inequality we have

1 =

∫
Rn+
a|uk|q ≤

(∫
Rn+

a
r
r−q

b
q
r−q

dx

)(r−q)/r(∫
Rn+
b|uk|rdx

)r/q

→ 0, (4.17)

which is a contradiction. Now if λ > Λ, by the definition of Λ there exists uλ ∈ Er,p with∫
Rn+
a|uλ|q = 1 such that

λ >
q

p
‖uλ‖pE +

q

r

∫
Rn+
b|uλ|rdx.

Consequently,

Iλ(uλ) =
1

p
‖uλ‖pE +

1

r

∫
Rn+
b|uλ|rdx−

λ

q

∫
Rn+
a|uλ|q < 0.

Therefore, (4.16) holds.

Lemma 4.3.8. Let p∗ ≤ q < p∗, r > q and assume (H1) − (H2). For all λ > Λ problem (Pλ)
has a nontrivial weak solution.
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Proof. Using the direct method of the calculus of variations, from Lemmas 4.3.5, 4.3.6 and 4.3.7,
for all λ > Λ there exists uλ ∈ Er,p \ {0} such that

−∞ < inf
u∈Er,p

Iλ(u) = Iλ(uλ) < 0.

Therefore, problem (Pλ) has a nontrivial weak solution uλ with Iλ(uλ) < 0 for all λ > Λ. Since
Iλ(uλ) = Iλ(|uλ|) we may assume that uλ ≥ 0.

Setting

λ̃ := inf{λ > 0 : (Pµ) has a nontrivial weak solution for all µ > λ},

we clearly have that λ∗ ≤ λ̃ ≤ Λ.
Next we will prove that problem (Pλ̃) has a nontrivial weak solution when p < q. To this

end, we need the following result.

Lemma 4.3.9. Let p∗ ≤ q < p∗, r > q and assume (H1) − (H2). If λ > 0 and u ∈ Er,p is a
nontrivial weak solution of problem (Pλ) then

‖u‖pE +
r − q
r

∫
Rn+
b|u|rdx ≤ r − q

r
λ

r
r−q

∫
Rn+

a
r
r−q

b
q
r−q

dx. (4.18)

Furthermore, there exists a constant K > 0 independent of u such that

‖u‖E ≥ Kλ
−1
q−p . (4.19)

Proof. If u ∈ E is a weak solution of problem (Pλ), proceeding as in (4.17), we get

‖u‖pE +

∫
Rn+
b|u|rdx = λ

∫
Rn+
a|u|qdx ≤ r − q

r
λ

r
r−q

∫
Rn+

a
r
r−q

b
q
r−q

dx+
q

r

∫
Rn+
b|u|rdx

which gives estimate (4.18). Now we will prove (4.19). Using again that u is a weak solution of
problem (Pλ) we see that

1

λ
‖u‖pE ≤ ‖u‖

q
Lq(Rn+,a(x)).

This combined with Lemma 4.1.3 show that

Cq‖u‖qE ≥ ‖u‖
q
Lq(Rn+,a(x)) ≥

1

λ
‖u‖pE, ∀u ∈ E,

for some constant Cq > 0. Thus, using that p < q and u 6= 0 we get

‖u‖E ≥ C
−1
q−p
q λ

−1
q−p ,

which implies that (4.19) holds by choosing K = C
−1
q−p
q .

Lemma 4.3.10. The problem (Pλ̃) has a nontrivial weak solution.
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Proof. Consider a sequence λk → λ̃ with λk > λ̃. By the definition of λ̃, for each k the problem
(Pλk) has a nontrivial weak solution uk. Furthermore, the sequence (uk) is bounded in E in view
of Lemma 4.3.9. Thus, we may assume that uk ⇀ uλ̃ in E and, by Lemma 4.3.3, uk → uλ̃ in
Lq(Rn

+, a(x)). Consequently, uλ̃ is a nontrivial weak solution of (Pλ̃). We claim that uλ̃ is not
trivial. Indeed, since uk and uλ̃ are weak solutions of (Pλk) and (Pλ̃), respectively, we have

ok(1) = 〈I ′λk(uk)− I
′
λ̃
(uλ̃), uk − uλ̃〉 =

∫
Rn+

(
|∇uk|p−2∇uk − |∇uλ̃|

p−2∇uλ̃
)

(∇uk −∇uλ̃) dx

+

∫
Rn+
b
(
|uk|r−2uk − |uλ̃|

r−2uλ̃
)

(uk − uλ̃) dx− (J1,k + J2,k),

where
J1,k = λk

∫
Rn+
a
(
|uk|q−2uk − |uλ̃|

q−2uλ̃
)

(uk − uλ̃) dx

and
J2,k = (λk − λ̃)

∫
Rn+
a|uλ̃|

q−2uλ̃ (uk − uλ̃) dx.

Using the Höder inequality together with the fact that (λk) is bounded we get

|J1,k| ≤ C

(∫
Rn+
a|uk|qdx

)(q−1)/q

+

(∫
Rn+
a|uλ̃|

qdx

)(q−1)/q
(∫

Rn+
a|uk − uλ̃|

qdx

)1/q

.

Consequently, by Lemma 4.3.3 we obtain J1,k = ok(1). Similarly, we have J2,k = ok(1). Therefore,
we conclude that (∫

Rn+

(
|∇uk|p−2∇uk − |∇uλ̃|

p−2∇uλ̃
)

(∇uk −∇uλ̃) dx

+

∫
Rn+
b
(
|uk|r−2uk − |uλ̃|

r−2uλ̃
)

(uk − uλ̃) dx

)
= ok(1).

(4.20)

Now we recall that for all ξ, ζ ∈ Rn, we know that there exists a constant C = C(p) > 0 (see
inequality (2.2) in [40]) such that

(|ξ|p−2ξ − |ζ|p−2ζ)(ξ − ζ) ≥ C

{
|ξ − ζ|p, if p ≥ 2,

|ξ − ζ|2(|ξ|+ |ζ|)p−2, if 1 < p ≤ 2.
(4.21)

If p ≥ 2, using the fact that b > 0 together with (4.20) we obtain

‖uk − uλ̃‖
p
E ≤ C

(∫
Rn+

(
|∇uk|p−2∇uk − |∇uλ̃|

p−2∇uλ̃
)

(∇uk −∇uλ̃) dx

)
= ok(1).

85



4. A Hardy-Sobolev type inequality and its applications

On the other hand, if 1 < p < 2 we can use the inequality (4.21) again to obtain∫
Rn+

(|∇uk −∇uλ̃|
2)

p
2dx

≤
∫
Rn+

[(
|∇uk|p−2∇uk − |∇uλ̃|

p−2∇uλ̃
)

(∇uk −∇uλ̃)
] p

2 ((|∇uk|+ |∇uλ̃|)
p)

2−p
2 dx.

This together with the Höder inequality, (4.20) and the fact that (uk) is bounded imply that

C̃p

∫
Rn+
|∇uk −∇uλ̃|

pdx ≤

(∫
Rn+

(
|∇uk|p−2∇uk − |∇uλ̃|

p−2∇uλ̃
)

(∇uk −∇uλ̃) dx

)p/2

×

(∫
Rn+

(|∇uk|p + |∇uλ̃|
p)dx

)(2−p)/2

= ok(1).

Hence, uk → uλ̃ in E. Since uk is a nontrivial weak solution of problem (Pλk), by Lemma 4.3.9
there exists K = K(p, q) such that

‖uk‖E ≥ Kλ
− 1
q−p

k , ∀ k ∈ N.

Since ‖uk‖E → ‖uλ̃‖E and λk → λ̃ > 0 we get

‖uλ̃‖E ≥ K(λ̃)−
1
q−p > 0,

and hence uλ̃ is nontrivial. Since Iλ̃(uλ̃) = Iλ̃(|uλ̃|) we may assume that uλ̃ ≥ 0 a.e. in Rn
+.

4.3.3 The second solution

In what follows we will prove item (iii) in Theorem 4.1.3. This will be done by using a
truncation argument. Let λ > Λ be fixed and consider the truncated Carathéodory function
defined by

gλ(x, t) =


0, if t < 0,

λa(x)tq−1 − b(x)tr−1, if 0 ≤ t ≤ uλ(x),

λa(x)uq−1
λ − b(x)ur−1

λ , if t > uλ(x),

where uλ ∈ Er,p is the weak solution of problem (Pλ) with Iλ(uλ) < 0 obtained in Lemma 4.3.8.
Setting Gλ(x, t) =

∫ t
0
gλ(x, s)ds, we define the functional Ĩλ : E → R by

Ĩλ(u) =
1

p
‖u‖pE −

∫
Rn+
Gλ(x, u)dx.

Notice that for all v, ϕ ∈ E it holds

Ĩ ′λ(v)ϕ =

∫
Rn+
|∇v|p−2∇v∇ϕdx−

∫
{0≤v≤uλ}

[λavq−1 − bvr−1]ϕdx−
∫
{v>uλ}

[λauq−1
λ − bur−1

λ ]ϕdx.
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Furthermore, by choosing ϕ = v− := −min{v, 0} we see that critical points of Ĩλ are nonnegative.
Next, to prove that critical point of Ĩλ is a critical point of Iλ, inspired in [31, Lemma 2.1]

(see also [35]) we have the following a priori estimate.

Lemma 4.3.11. Let p∗ ≤ q < p∗, r > q and assume (H1)− (H2). If uλ is the solution obtained
in item (ii) of Theorem 4.1.3 and ũλ is a critical point of Ĩλ then 0 ≤ ũλ ≤ uλ in Rn

+.

Proof. For any v ∈ E let us denote by v+(x) = max{v(x), 0}. If ũλ is a critical point of Ĩλ we
get

0 = 〈Ĩ ′λ(ũλ)− I ′λ(uλ), (ũλ − uλ)+〉 =

∫
{u>uλ}

(
|∇ũλ|p−2∇ũλ − |∇uλ|p−2∇uλ

)
(∇ũλ −∇uλ) dx.

This combined with inequality (4.21) imply that |{x ∈ Rn
+ : ũλ(x) > uλ(x)}| = 0. Thus,

(ũλ − uλ)+ = 0 a.e. in Rn
+. Therefore, ũλ ≤ uλ and the proof is complete.

Lemma 4.3.12. Let p∗ ≤ q < p∗, r > q and assume (H1) − (H2). Then there exist ρ ∈
(0, ‖uλ‖Er,p) and α > 0 such that Ĩλ(v) ≥ α > 0 if ‖v‖E = ρ.

Proof. Notice that for all v ∈ E we can write∫
Rn+
Gλ(x, v)dx =

∫
{0≤v≤uλ}

Gλ(x, v)dx+

∫
{v>uλ}

Gλ(x, v)dx.

Now observing that∫
{0≤v≤uλ}

Gλ(x, v)dx =

∫
{0≤v≤uλ}

[
λa

q
vq − b

r
vr
]
dx ≤ λ

q

∫
{0≤v≤uλ}

avqdx

and ∫
{v>uλ}

Gλ(x, v)dx =

∫
{v>uλ}

[∫ uλ

0

gλ(x, t)dt+

∫ v

uλ

gλ(x, t)dt

]
dx

=

∫
{v>uλ}

[
λauqλ
q
− burλ

r
+
(
λauq−1

λ − bur−1
λ

)
(v − uλ)

]
dx

≤
∫
{v>uλ}

[
λauqλ
q

+ λauq−1
λ v

]
,

we get

Ĩλ(v) ≥ 1

p
‖v‖pE −

λ

q

∫
{0≤v≤uλ}

avqdx− λ
∫
{v>uλ}

a

[
uqλ
q

+ uq−1
λ v

]
. (4.22)

This combined with Remark 4.3.1 imply that there exists C1 > 0 such that

Ĩλ(v) ≥ 1

p
‖v‖pE −

λ

q
C1‖v‖qE =

(
1

p
− λC1‖v‖q−pE

)
‖v‖pE.

Since q > p we obtain the desired result and the proof is completed.

By Lemma 4.3.12 we have that

inf
‖v‖E=ρ

Ĩλ(v) > 0 ≥ Ĩλ(uλ), ∀λ > Λ.
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Thus, the minimax level
cλ = inf

γ∈Γ
max
t∈[0,1]

Ĩλ(γ(t)) > 0, ∀λ > Λ,

where Γ := {γ ∈ C([0, 1], E) : γ(0) = 0 and γ(1) = uλ}. Applying the mountain pass theorem
without the (PS) (see [44, Theorem 1.15])) we find a sequence (uk) ⊂ E at the minimax level
cλ, that is

Ĩλ(uk)→ cλ and Ĩ ′λ(uk)→ 0. (4.23)

Lemma 4.3.13. Let p∗ ≤ q < p∗, r > q and assume (H1) − (H2). Then, the sequence (uk) in
(4.23) has a convergent subsequence.

Proof. From estimate (4.22), there exists C1 > 0 such that

Ĩλ(u) ≥ 1

p
‖u‖pE −

λ

q

∫
Rn+
auqλdx− λC1‖uλ‖q−1

Lq(Rn+,a(x))‖u‖E,

from where we obtain that Ĩλ is coercive and consequently (uk) is bounded in E. By Lemma 4.3.3,
up to a subsequence, we can assume that

uk ⇀ ũλ in E
uk(x)→ ũλ(x) a.e. in Rn

+

uk → ũλ in Lq(Rn
+, a(x)).

Arguing as in proof of Lemma 4.3.5 we can see that Ĩ ′λ(ũλ) = 0 and hence 0 ≤ ũλ ≤ uλ in Rn
+

by Lemma 4.3.11. Thus, we get

ok(1) = 〈Ĩ ′λ(uk)− Ĩ ′λ(ũλ), uk − ũλ〉 = Ak −Bk + Ck, (4.24)

where ok(1) denotes a quantity that goes to zero as k → +∞ and

Ak =

∫
Rn+

(
|∇uk|p−2∇uk − |∇ũλ|p−2∇ũλ

)
(∇uk −∇ũλ) dx

Bk =

∫
{0≤uk≤uλ}

[λauq−1
k − bur−1

k ] (uk − ũλ) dx+

∫
{uk>uλ}

[λauq−1
λ − bur−1

λ ] (uk − ũλ) dx

Ck =

∫
{0≤ũλ≤uλ}

[λaũq−1
λ − bũr−1

λ ] (uk − ũλ) dx+

∫
{ũλ>uλ}

[λaũq−1
λ − bũr−1

λ ] (uk − ũλ) dx.

Therefore,

Ak = ok(1) +

∫
{0≤uk≤uλ}

[λauq−1
k − bur−1

k ] (uk − ũλ) dx−
∫
{0≤ũλ≤uλ}

[λaũq−1
λ − bũr−1

λ ] (uk − ũλ) dx.

Now, proceeding as in the proof of Lemma 4.3.5 we see that∫
{0≤uk≤uλ}

[λauq−1
k − bur−1

k ] (uk − ũλ) dx = ok(1)
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and ∫
{0≤ũλ≤uλ}

[λaũq−1
λ − bũr−1

λ ] (uk − ũλ) dx = ok(1).

Thus, we conclude that Ak = ok(1). If 2 ≤ p ≤ q < r, using inequality (4.21), we get
‖uk − ũλ‖pE = ok(1). Furthermore, if 1 < p < 2, arguing as in the proof of Lemma 4.3.10 we
obtain ‖uk − ũλ‖pE = ok(1). This completes the proof of Lemma 4.3.13.

Finalizing the proof of item (iii) in Theorem 4.2.2. By Lemma 4.3.13, and standard arguments
we conclude that ũλ is a critical point of Iλ. To conclude, by Lemma 4.3.11, we have 0 ≤ ũλ ≤ uλ.
Thus,

g(x, ũλ) = λa(x)ũq−1
λ − b(x)ũr−1

λ and G(x, ũλ) =
λa(x)ũqλ

q
− b(x)ũrλ

r

so that
Ĩλ(ũλ) = Iλ(ũλ) and Ĩ ′λ(ũλ) = I ′λ(ũλ).

More precisely, we find
Iλ(ũλ) > 0 ≥ Iλ(uλ) and I ′λ(ũλ) = 0.

Therefore, ũλ is a nontrivial weak solution of problem (Pλ) such that 0 ≤ ũλ ≤ uλ, ũλ 6= 0 and
ũλ 6= uλ.

4.3.4 Multiplicity

Finally, in this subsection we will complete the proof of Theorem 4.1.3 by proving state-
ment (iv). It consists in applying the symmetric mountain pass theorem due to Ambrosetti-
Rabinowitz [8] and Clark [17]. To this, we need to recall some notations. Let E be a Banach
space and denotes by E the class of all subsets of E \ {0} closed and symmetric with respect to
the origin :

E := {A ⊂ E \ {0} : A is closed and A = −A}.

For A ∈ E \ {∅} the genus γ(A) is define by

γ(A) := min{m ∈ N : ∃ϕ ∈ C(A,Rm \ {0}) such that ϕ(x) = −ϕ(−x)}.

If the minimum does not exist, we define γ(A) = ∞ and γ(∅) = 0. Let Em = {A ∈ E : γ(A) ≥
m}. The main properties of the genus can be found in [38,41].

Now, we recall the following classical multiplicity result (see for instance [8, 17]).

Theorem 4.3.14. Let E be an infinite dimensional Banach space and I ∈ C1(E,R) satisfying

(A1) I(u) is even, bounded from below, I(0) = 0 and I(u) satisfies the Palais-Smale condition
(PS);

(A2) For each m ∈ N, there exists an Am ∈ Em such that supu∈Am I(u) < 0.
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Defining
cm = inf

A∈Em
sup
u∈A

Iλ(u),

then each ck is a critical value of I(u), cm ≤ cm+1 < 0 for m ∈ N and (cm) converges to zero.
Moreover, if c = cm = cm+1 = · · · = cm+j <∞, then γ(Kc) ≥ j + 1. Here, Kc is defined by

Kc = {u ∈ Er,p : Iλ(u) = c and I ′λ(u) = 0}.

To prove item (iv) in Theorem 4.1.3, it is sufficient to show that Iλ satisfies the conditions
(A1) and (A2) above. Arguing as in the proof of Lemma 4.3.13 one can see that Iλ satisfies
condition (A1). In order to verify condition (A2), we consider Ω0 = {x ∈ Rn

+ : a(x) = 0} and
Ωc

0 = Rn
+ \ Ω0. Denote

E0 = {u ∈ Er,p : u(x) = 0 a.e. x ∈ Ω0}.

If Ω0 = ∅, i.e., a(x) > 0 in Rn
+ then we let E0 = Er,p. Obviously, E0 is an infinitely dimensional

linear subspace of Er,p. A seminorm [·]q on Er,p is defined by

[u]q =

(∫
Rn+
a(x)|u|qdx

)1/q

.

Lemma 4.3.15. The seminorm [·]q is a norm in E0.

Proof. It is sufficient to show that u ∈ E0, [u]q = 0 implies that u = 0, a.e. in Rn
+. Indeed,

0 = [u]qq =

∫
Rn+
a(x)|u|qdx =

∫
Ωc0

a(x)|u|qdx.

This together with fact a(x) > 0 in Ωc
0 imply that u(x) = 0, a.e. in Ωc

0. Since u ∈ E0, u(x) = 0,
a.e. in Ω0. Therefore, u(x) = 0, a.e. in Rn

+ and this completes the proof.

Lemma 4.3.16. Let 1 < p ≤ q < p∗, r > q and assume (H1). Then for each m ∈ N, there exist
an Am ∈ Em and λm such that

sup
u∈Am

Iλ(u) < 0, ∀λ > λm.

Proof. Let Em be a m-dimensional subspace of E0. Since all norms on the finite dimension space
Em are equivalent, there exists bm > 0 such that

Iλ(u) ≤ 1

p
‖u‖pEr,p +

1

r
‖u‖rEr,p −

λbm
q
‖u‖qEr,p ≤

2

p
− λbm

q

for all u ∈ Em with ‖u‖Er,p = 1. Thus, for λm = 4q/pbm, Iλ(u) < −2/p if ‖u‖Er,p = 1, for all
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λ > λm. Let Am = Sm(1) be a sphere with radius 1 in Em. Then

sup
u∈Am

Iλ(u) < 0, ∀λ > λm

and by properties of genus Am ∈ Em.

Finalizing the proof of item (iv) in Theorem 4.1.3. It follows directly from Theorem 4.3.14.

4.4 Proof of Theorem 4.2.3

This section is devoted to the proof of Theorem 4.2.3. In order to prove our multiplicity
result we recall the original statement of the symmetric mountain pass theorem (see [8]).

Theorem 4.4.1. Let E be a real infinite-dimensional Banach space and I ∈ C1(E,R) an even
functional satisfying the (PS) condition and the following hypotheses:

(I1) I(0) = 0 and there are constants ρ, α > 0 such that I|∂Bρ(0) ≥ α;

(I2) for any finite dimensional Ẽ ⊂ E, Ẽ ∩ {u ∈ E : I(u) ≥ 0} is bounded.

Then I has an unbounded sequence of critical values.

Now, we establish some properties of the energy functional Iλ.

Lemma 4.4.2. Let 1 < p ≤ r < q < p∗ and assume (H̃1) − (H̃2). Then for each λ > 0 there
exist ρ, α0 > 0 such that Iλ(u) ≥ α0 > 0 if ‖u‖Er,p = ρ.

Proof. First we observe that

‖u‖rEr,p ≤
(
‖u‖pE + ‖u‖pLr(Rn+,b(x))

)r/p
≤ 2

r
p

(
‖u‖rE + ‖u‖rLr(Rn+,b(x))

)
. (4.25)

Without loss of generality we may assume that ‖u‖pE + ‖u‖pLr(Rn+,b(x)) = ‖u‖pEr,p = ρp ≤ 1 and
using that p ≤ r we see that ‖u‖pE ≥ ‖u‖rE. Thus, we conclude that

Iλ(u) ≥ 1

p
‖u‖rE +

1

r
‖u‖rLr(Rn+,b(x)) −

λ

q
‖u‖qLq(Rn+,a(x)).

This together with (4.25), Lemmas 4.1.3 and the fact that r < q imply

Iλ(u) ≥ 1

r2
r
p

‖u‖rEr,p −
λ

q
C1‖u‖qEr,p =

(
1

r2
r
p

− λ

q
C1ρ

q−r
)
ρr,

which implies (I1) by choosing ρ sufficiently small.

Next, let us ensure that any (PS) sequence associated to Iλ has a convergent subsequence.
This is done in the next lemma.
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Lemma 4.4.3. Let 1 < p ≤ r < q < p∗ and assume (H̃1)−(H̃2). Then any sequence (uk) ⊂ Er,p

such that
Iλ(uk)→ c and ‖I ′λ(uk)‖(Er,p)∗ → 0, as k →∞, (4.26)

has a convergent subsequence.

Proof. First, we observe that(
1

p
− 1

q

)
‖uk‖pE +

(
1

r
− 1

q

)∫
Rn+
b|uk|rdx = Iλ(uk)−

1

q
〈I ′λ(uk), uk〉 ≤ cλ + ok(‖uk‖Er,p). (4.27)

We claim that (uk) ⊂ Er,p is bounded. Arguing by contradiction, let us suppose that ‖uk‖Er,p →
∞. Since 1 < p ≤ r < q, in view of (4.27) we get

‖uk‖pE
‖uk‖Er,p

= ok(1) and
‖uk‖rLr(Rn+,b(x))

‖uk‖Er,p
= ok(1). (4.28)

This in combination with the fact that

‖uk‖pE
‖uk‖Er,p

+
‖uk‖pLr(Rn+,b(x))

‖uk‖Er,p
= ‖uk‖p−1

Er,p →∞, as k →∞

imply that
‖uk‖pLr(Rn+,b(x))

‖uk‖Er,p
→∞, as k →∞. (4.29)

If p = r, combining (4.28) and (4.29) we obtain a contradiction. In case that p < r, using again
(4.29) we conclude that ‖uk‖pLr(Rn+,b(x)) → ∞ as k → ∞ and hence ‖uk‖p−rLr(Rn+,b(x)) ≤ C. On the
other hand,

‖uk‖pLr(Rn+,b(x))

‖uk‖Er,p
= ‖uk‖p−rLr(Rn+,b(x))

‖uk‖rLr(Rn+,b(x))

‖uk‖Er,p
→ 0, as k →∞,

which contradicts (4.29) and hence (uk) is bounded in Er,p. By Lemma 4.3.2 we may assume
that 

uk ⇀ u0 in Er,p

uk(x)→ u0(x) a.e. in Rn
+

uk → u0 in Lq(Rn
+, a(x))

as k →∞. From (4.26), it follows that

ok(1) = 〈I ′λ(uk)− I ′λ(u0), uk − u0〉 = Ak −
∫
Rn+
λa
(
|uk|q−2uk − |u0|q−2u0

)
(uk − u0) dx, (4.30)
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where
Ak =

∫
Rn+

(
|∇uk|p−2∇uk − |∇u0|p−2∇u0

)
(∇uk −∇u0) dx

+

∫
Rn+
b
(
|uk|r−2uk − |u0|r−2u0

)
(uk − u0) dx.

By the Hölder inequality and Lemma 4.3.3, we obtain∫
Rn+
λa
(
|uk|q−2uk − |u0|q−2u0

)
(uk − u0) dx = ok(1).

Thus, from (4.30) we conclude that Ak = ok(1). If 2 ≤ p ≤ r < q, we can use the inequality
(4.21) and the fact that b ≥ 0 to get∫

Rn+

(
|∇uk|p−2∇uk − |∇u0|p−2∇u0

)
(∇uk −∇u0) dx = ok(1)∫

Rn+
b
(
|uk|r−2uk − |u0|r−2u0

)
(uk − u0) dx = ok(1).

(4.31)

Using once again inequality (4.21), we get

‖uk − u0‖pEr,p = ‖uk − u0‖pE + ‖uk − u0‖pLr(Rn+,b(x)) = ok(1),

which implies that uk → u0 in Er,p. Now, if 1 < p < 2 we have two cases to consider, r ≥ 2 and
p ≤ r < 2. If r ≥ 2, by inequality (4.21) and (4.31) we obtain

‖uk − u0‖rLr(Rn+,b(x)) ≤
∫
Rn+
b
(
|uk|r−2uk − |u0|r−2u0

)
(uk − u0) dx = ok(1). (4.32)

Now, if p ≤ r < 2, by inequality (4.21) and the Höder inequality we get

‖uk−u0‖rLr(Rn+,b(x)) ≤
∫
Rn+
b
((
|uk|r−2uk − |u0|r−2u0

)
(uk − u0)

) r
2 ((|uk|+ |u0|)r)

(2−r)
2 dx

≤

(∫
Rn+
b
(
|uk|r−2uk − |u0|r−2u0

)
(uk − u0) dx

)r/2(∫
Rn+
b (|uk|+ |u0|)r dx

)(2−r)/2

.

This combined with (4.31), (4.32) and the fact (uk) is bounded imply that ‖uk−u0‖rLr(Rn+,b(x)) =

ok(1). Now, if 1 < p < 2, arguing as in the proof of Lemma 4.3.10 we obtain ‖uk−u0‖pE = ok(1).
Therefore, ‖uk − u0‖pEr,p = ‖uk − u0‖pE + ‖uk − u0‖pLr(Rn+,b(x)) = ok(1), and this completes the
proof.

Finalizing the proof of Theorem 4.2.3. If u is a weak solution of problem (Pλ), choosing ϕ = u

in (4.12) we get ‖u‖pE + ‖u‖rLr(Rn+,b(x)) = λ‖u‖qLr(Rn+,a(x)), which implies that u = 0 if λ ≤ 0

and item (i) in Theorem 4.2.3 is proved. Now we will use Theorem 4.4.1 to prove item (ii)
in Theorem 4.2.3. By Lemma 4.4.2, for any λ > 0 the functional Iλ satisfies condition (I1).
Now we prove item (I2). Suppose by contradiction that (I2) is false. Then, there exist a finite
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dimensional Ẽ ⊂ Er,p and a sequence (uk) ⊂ Ẽ satisfying

Iλ(uk) > 0, k ∈ N and ‖uk‖Er,p →∞ as k →∞. (4.33)

Using the fact that all the norms in Ẽ are equivalent, there exists c̃ > 0 such that

0 < Iλ(uk) ≤
1

p
‖uk‖pEr,p +

1

r
‖uk‖rEr,p −

λc̃

q
‖uk‖qEr,p , ∀ k ∈ N.

Thus,
λc̃

q
‖uk‖qEr,p <

1

p
‖uk‖pEr,p +

1

r
‖uk‖rEr,p , ∀ k ∈ N,

which contradicts (4.33), since p ≤ r < q, and item (I2) is proved. In view of Lemma 4.4.3, for
each λ > 0 we can apply Theorem 4.4.1 to obtain an unbounded sequence of critical values of
Iλ to which we can associate at least two critical points because the functional Iλ is even. This
completes the proof.
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