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RESUMO

MELO, W.1.G. Contribuicdes a anélise dindmica da acédo do vento em pilares de pontes via técnica
do meio continuo e método dos elementos finitos. 2019. Tese (Doutorado em Engenharia Civil —

Estruturas), Universidade Federal da Paraiba, Jodo Pessoa, 2019.

O aprimoramento da analise estrutural vem se acelerando nas duas Ultimas décadas,
primordialmente sob modelagem pelo Método dos Elementos Finitos. No caso especial de
pontes, mediante tal modelagem, os efeitos dindmicos sdo computados com maior rigor e
confiabilidade e devido a grande agilidade de processamento imposta pelo mercado, a utilizagdo
de softwares comerciais tornou-se corriqueira. Em face da utilizacdo de tais programas de
analise e dimensionamento, o engenheiro estrutural ganha a praticidade de simular diversos
estados de carga, porém deve sempre possuir mecanismos de validacdo e verificacdo de tais
resultados. Dai, nessa tese, a Técnica do Meio Continuo (TMC) sera abordada, resgatada e
aplicada na analise dindmica de pilares de pontes. objetivando-se fomentar ferramenta de
corroboracdo das simulacdes em softwares comerciais (geralmente via MEF). Os efeitos
dindmicos considerados nos mencionados pilares através da TMC foram obtidos com preciséo
excelente, o que permitiu a validagdo quanto aos seguintes aspectos: fenémeno da flexo-torcéo,
teoria dos painéis-paredes, vibracdes em nicleos estruturais contraventados por lintéis e
estabilidade elastica. Além da exposicdo da TMC na andlise dindmica, evidencia-se a
postulacdo de fluxogramas e marchas de célculo sob a 6tica de processamentos matriciais de
equacdes diferenciais, bem como procedida a Generaliza¢do da Teoria dos Painéis — Parede
(GTPP) para ocorréncia de paredes nao ortogonais. A inovacdo ocorre no seguinte:
desacoplamento dinamico da vibracdo de painéis-paredes metalicos e de concreto armado,
amortecimento proporcional para rigidez estrutural particionada no nucleo e nos linteis de
contraventamento, equacdes de Maney no equilibrio dos lintéis e na condensacdo matricial. Por
fim, para secdes de paredes finas de concreto armado, submetidas ao bimomento, € postulada a

marcha de célculo e apresentadas tabelas adimensionais para obtencdo da armadura resistente.

Palavras — chave: Pilares de pontes; Flexo-torcdo; Generalizacdo da Teoria dos Painéis-parede

(GTPP); Analise dindmica; Estabilidade e acdo do vento; MEF; Armadura ao bimomento.
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ABSTRACT

MELO, W.1.G. Contributions to analysis of wind action on bridge columns via the continuous
medium technique and the finite element method. 2019. Thesis (PhD in Structures), Federal

University of Paraiba, Jodo Pessoa, 2019.

The improvement of structural analysis has been accelerating in the last two decades, primarily
under Finite Element Method (FEM) modeling. Particularly with bridges, through such
modeling, the dynamic effects are computed with greater rigor and reliability and due to the
great agility of processing imposed by the market, the use of commercial software has become
commonplace. In view of the use of such analysis and sizing programs, the structural engineer
gains the practicality of simulating several load states, but must always have mechanisms for
validation and verification of such results. Hence, in this thesis, the continuous medium
technique (CMT) will be approached, restored and applied to the dynamic analysis of bridge
columns, aiming at fostering a corroboration tool for simulations in commercial software
(usually via FEM). The dynamic effects considered in the aforementioned columns through
CMT were obtained with excellent precision, which allowed the validation of the following
aspects: torsional bending phenomenon, wall panel theory, vibrations in structural cores braced
by lintels, and elastic stability. In addition to the CMT exposure in the dynamic analysis, the
postulation of flowcharts and calculation margins are evidenced from the point of view of
matrix processing of differential equations, as well as the realization of the Wall Panel Theory
Generalization (WPTG) procedures for the occurrence of non-orthogonal walls. Innovation
takes place in the following: dynamic decoupling of the vibration of metal wall panels and
reinforced concrete, proportional damping for structural rigidity partitioned in the core and in
the bracing lintels, Maney equations in the balance of the lintels, and in the matrix condensation.
Finally, for sections of reinforced concrete thin walls, subject to the bimoment, the calculation

march and dimensionless tables are postulated to obtain the resistant steel area.

Keywords: Bridge columns; Torsional bending; Wall Panel Theory Generalization (WPTG);
Dynamic analysis; Stability and wind action; FEM; Bimoment steel area.



RESUME

MELO, W.1.G . Contributions a I’analyse dynamique de I’action du vent sur les piliers des
ponts par la téchnique du moyen continu et méthode des élements finis. 2019. Thése

(Doctorat en Structures), Université Fédéral de la Paraiba, Jodo Pessoa, 2019.

L’amélioration de I’analyse structurelle a accéléré au cours des deux dernieéres décennies,
principalment sur la modélisation par la Méthode des Elements Finis. Dans le cas particulier de
ponts, par la modélisation, les effets dynamiques sont calculés avec plus de rigueur et de fiabilité
en raison de la grande agilite de traitement imposée par le marché, l'utilisation de logiciels
commerciaux est devenue habituelle. Face a I'utilisation de tels programmes d’analyse et de
dimensionnement, 1’ingénieur en structure peut simuler plusieurs etats de charge, mais il doit
toujours disposer de mécanismes de validation et de vérification de ces résultats. Donc, dans cette
these, la téchnique du moyen continu (TMC) sera abordée, sauvée et appliquée a l'analyse
dynamique des piliers de ponts. Visant a fomenter un outil de corroboration des simulations dans
des logiciels commerciaux (en genéral par le MEF). Les effets dynamiques considerés dans les
piliers mentionnés par le biais TMC ont été obtenus avec une excellente précision, ce qui a permis
la validation des aspectes suivants: phénomene de la flexion-torsion, théorie des panneaux-parois
vibrations dans les noyaux structurels renforcé par linteaux et stabilité élastique. Au-dela de
I’exposition de 1'exposition a la TMC dans I'analyse dynamique, il est évident que la postulation des
organigrammes et des marches de calcul du point de vue du traitement matriciel d'équations
différentielles, ainsi que la généralisation de la théorie des panneaux-parois (GTPP) pour la
survenue de murs non orthogonaux. L'innovation est la suivante: découplage dynamique des
vibrations provenant des panneaux-parois métalliques et en béton arme, amortissement
proportionnel pour la rigidité structurelle cloisonnée dans les linteaux centraux et de
contreventement, équations de Maney dans I'équilibre des linteaux et la condensation de la
matriciale En guise de conclusion, pour les sections de béton armé a parois minces soumises au
bimomento, les tables de marche et de calcul sans dimension sont postulées pour obtenir le

renforcement résistant.

Mots — clés: Piliers de ponts; flexion-torsion; Généralisation de la théorie des Panneaux-parois

GTPP); Analyse dynamique; Stabilité et action du vent; MEF; Armure du bimoment.
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XXVii

CONSIDERACOES INIAIS

“Afirmo muitas vezes que, se vocé mediar aquilo
de que estd falando e expressar em niimeros, vocé
conhece alguma coisa sobre o assunto; mas,
quando vocé ndo o pode exprimir em niimeros, seu
conhecimento ¢ pobre e insatisfatorio”.

Lord William Kelvin



Capitulo

1

CONSIDERACOES INICIAIS

1.1. RELEVANCIA DA TESE

A modelagem de pontes é processada, em sua maioria, por simulacdo em softwares
baseados em elementos finitos. Quanto aos estudos académicos das solicitacdes dindmicas em
pontes, eles ficam restritos a analisar e modelar rigorosamente o tabuleiro e considera-se o
desacoplamento da superestrutura e mesoestrutura, servindo os pilares de meros apoios. Isto é
notadamente observado em Kermani e Waldron (1993), Chen et al. (2013), Buljac et al. (2017)
e Ying etal. (2017).

Com base nessa lacuna seré entdo abordado nesta tese o fenémeno da flexo-tor¢éo nos
pilares altos (com secdo em paredes finas) de pontes em decorréncia da agdo do vento,
explicitando a ocorréncia de momento de tor¢do sob variacédo linear na altura do referido pilar
e associado a flexdo. As andlises estatica e dindmica dos painéis-parede que formam o
mencionado pilar, os efeitos de 22 ordem sob ag¢do conjunta do vento e da reacdo do tabuleiro
(problema de estabilidade elastica), também séo considerados. Por fim é postulada a rotina de
dimensionamento estrutural para secdo transversal composta por paredes finas (com abas e

paredes simétricas) e submetida ao bimomento, bem como apresentadas tabelas adimensionais.

Desta forma, a pesquisa foi desenvolvida conforme quatro eixos tematicos, sendo
estes: flexo-torcao e analise estatica dos painéis-parede, analise dindmica dos painéis-parede,
estabilidade elastica dos pilares (efeitos de 22 ordem) e dimensionamento da secdo de paredes

finas submetida ao bimomento.
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a) Contribuictes da tese

a.l) 12 Contribuicdo: MATRIZ DE RIGIDEZ PARA SECAO RETANGULAR
LINEARMENTE VARIAVEL VIA INTEGRACAO DIRETA.

Nas paginas 125 a 131 (ver capitulo 2) da tese € apresentada a obtencdo da matriz de
rigidez do elemento de barra, com secéo retangular maciga e linearmente variavel, através da
integracao direta para a determinacao dos termos da matriz de flexibilidade da referida barra.
A aplicagéo de tal formulagdo e a conseguinte verificagdo via simulacdo em ANSYS s&o
apresentadas nas paginas 136 — 139. Na literatura consta apenas tal matriz via integragéo
numeérica ou por meio de solugdes aproximadas, caracterizando nesta tese a obtencéo

direta da matriz de rigidez do EF com barra de secéo retangular linearmente variavel.

a.2) 22 Contribuicdo: SISTEMA DINAMICO PARA ELEMENTO FINITO APLICADO
AOS PILARES SOB CARGAS LATERAIS.

Nas péaginas 147 a 159 (capitulo 3) da tese é apresentada a formulacdo do elemento finito
de barra via equacdes de Maney, contendo para o problema fundamental a aplicagéo de cargas
laterais para compor os esforcos desequilibrantes. Ndo ha na literatura a formulacéo de tal

elemento finito para o caso de pilares de pontes sob ac¢éo do vento.

a.3) 3?2 Contribuicdo: ELEMENTO FINITO DE BARRA PARA O PILAR EM NUCLEO
ESTRUTURAL (C OU DUPLO T) CONSIDERANDO A DEFORMAGCAOQO POR CORTE.

Nas paginas 159 a 186 (capitulo 3) da tese é apresentada a formulagdo do elemento finito
de barra, para secGes de paredes finas, via analise matricial com a unido das teorias de flexdo
no nucleo estrutural (método dos deslocamentos) e da flexo — tor¢do, computando-se o efeito

do empenamento e a a¢do do bimomento, tanto para segdo em C ou em duplo T.

Em Heidebrecht e Swift (1971), Barbosa (1980) e Smith e Coull (1991) a defini¢éo do
elemento finito em questdo é procedida com a desconsideracdo da deformacédo por corte na
obtencdo da matrize de rigidez dos elementos estruturais (nucleo estrutural e lintéis). Ndo ha
na literatura a formulacéo de tal elemento finito com a considerac¢édo da deformacao por

corte no nacleo estrutural e nos lintéis, dai a contribuicao.
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a.4) 42 Contribuicdo: APRESENTAR A EDO DO PROBLEMA DE ESTABILIDADE
ELASTICA DE PILARES, COM SECAO TRANSVERSAL LINEARMENTE VARIAVEL E
CONSTANTE.

No capitulo 4 desta tese é equacionado o problema de estabilidade elastica para pilares
de pontes, sob a a¢do conjunta do vento e da reagéo do tabuleiro. Configurando assim, a agéo
de cargas laterais (considerando a acdo do vento no tabuleiro, o trafego e o peso-proprio), bem
como a reacdo do tabuleiro e o peso proprio do pilar. Procede-se ainda a analise de secGes
transversais macicas e vazadas com paredes fechadas e com carga critica determinada em
funcdo da espessura das paredes. Nao existe na literatura o equacionamento da carga critica
para pilares de pontes (na acdo conjunta de cargas do vento e o trafego no tabuleiro).

a.5) 52 Contribuicdo: GENERALIZACAO DA TEORIA DOS PAINEIS — PAREDE (GTPP)
VIA TMC.

Consiste no equacionamento do nucleo estrutural em formato de C ou em duplo T com
paredes ndo ortogonais, sendo apresentada no capitulo 5 (ver paginas 222 — 237). Dai, via
técnica do meio continuo procede-se: a determinacao do centro de torcéo, tragado do diagrama

de ordenadas setoriais principal w,. (com polo de varredura no centro de torgéo da secdo de

paredes finas) e o correspondente momento de inercia setorial I,. Isto também néo é

encontrado na literatura.

a.6) 62 Contribuicdo: RESOLUCAO DA TEORIA DA FLEXO-TORGAO PARA A ACAO
DO VENTO NO PILAR, VIA TMC.

Nas péaginas 238 a 240 (capitulo 5) da tese € apresentada a solucdo da Equacdo

Diferencial Ordinaria (EDO): ¢"" —r2.¢"" = % sendo utilizado momento de tor¢do sob
At

distribuicdo linear: m(x) = A.x + B. Na literatura a solu¢do dessa EDO é executada sob
momento de tor¢do constante, ver Mori e Munaiar Neto (2017, p. 140 — 145), mesmo quando
da andlise de nucleos estruturais em edificios altos. Conforme observa-se em Smith e Coull
(1991, p. 323 — 326), os carregamentos laterais sdo aproximados sob distribuicdo uniforme na
altura, o que conduz a momento de torgdo constante. Assim, com a andlise procedida nesta
tese computa-se a a¢do do vento via teoria da flexo — torgcéo (TFT), o que nédo consta na

literatura.
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a.7) 7% Contribuicdo: ANALISE DINAMICA DOS PAINEIS-PAREDE METALICOS
ATRAVES DA TMC.

Nas paginas 249 a 253 (capitulo 5) desta tese € apresentada a analise dinamica de
nacleos estruturais metélicos, os também denominados painéis — parede e definidos em Barbosa
(1980, p. Il —55). Admite-se para tais elementos a rigidez particionada em duas matrizes, sendo:
[/] a matriz de rigidez do nlcleo estrutural e [S] a matriz de rigidez dos lintéis que promovem
0 contraventamento. A equacdo diferencial é entdo expressa por: —[J].{v""'} + [S]. {v"'} +
[M].{v} = {Vf’}. Apresenta-se no apéndice A as solugdes das EDO’s desacopladas mediante
sistema generalizado de coordenadas, ver paginas 105 e 106. Nesta tese ha a contribui¢do da
anélise dindmica de pilares de pontes em formato de nucleos estruturais, onde o tabuleiro

conduz a momento fletor (iIJt SIJtyH) e bimomento (By) ndo nulos no topo.

zy’

Na literatura encontra-se a analise da vibracéo livre, em Laier (1978, p. 11 — 18), e da
vibracdo forcada, ver Laier (1984, p.75 — 88) para paredes de edificios, considerando-se assim,
secOes com rigidez em Unica matriz. Bem como, no modelo continuo para paredes via “Teoria
de vigas de Navier — Bernoulli” que é apresentado em Laredo (1977, p. 273 — 283). Tal
formulacdo é postulada para sec¢des classicas (macicas ou vazadas), sem ser de paredes finas

abertas. Portanto, a formulacéo proposta nesta tese € inédita.

a.8) 82 Contribuicdo: ANALISE DINAMICA DOS PAINEIS-PAREDE DE CONCRETO
ARMADO PELA TMC.

Nas paginas 254 a 265 (capitulo 5) desta tese apresenta-se a analise dindmica de nucleos
estruturais de concreto armado. Caracterizando a ndo coincidéncia do centro de massa com o
centro de gravidade da secdo transversal, e a equacdo diferencial de tal problema é expressa

por: —[J1.{v¢d} + [S1. {vis} + +[M].{iscc} = {V;'}. Isto tem caracter inédito.

a.9) 9 Contribuicdo: AMORTECIMENTO PROPORCIONAL PARA RIGIDEZ
PARTICIONADA EM DUAS MATRIZES.

Nas paginas 266 a 267 (capitulo 5) desta tese € apresentada a composi¢do da matriz de
amortecimento [C] para o sistema estrutural com rigidez particionada em duas matrizes, a
exemplo: as matrizes de rigidez do ntcleo [J] e dos lintéis [S]. Para tal, quantificam-se as

parcelas das matrizes de rigidez [/], [S] e, de massa [M] (secdo de aco) ou [M] (secédo de
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concreto), que atraves das frequéncias w;, compdem a matriz de amortecimento [C]. N&o existe

na literatura, tal formulagdo com a rigidez da estrutura particionada em duas matrizes.

a.10) 102 Contribuicdo: DIMENSIONAMENTO DA SECAO DE PAREDES FINAS EM
CONCRETO ARMADO E SUBMETIDA AO BIMOMENTO.

No capitulo 6 desta tese é formulado o processo de obtencdo da armadura resistente ao
bimomento atuando em secdes transversais de paredes finas em concreto. Procede-se tal
equacionamento para nucleos estruturais em formato de C e de duplo T, adotando-se por
hipotese paredes e abas simétricas, quanto as dimensdes. N&o ha na literatura o
equacionamento de secéo de paredes finas em concreto armado e sob acdo do bimomento.

1.2. ESTADO DA ARTE

A Técnica do Meio Continuo (TMC) foi bastante utilizada até os anos 1990, sobretudo
com aplicacdo em edificios altos. Porém, com a disseminacdo dos computadores surgiram
inlmeros programas computacionais de analise estrutural fazendo uso do método dos elementos
finitos, de maior praticidade. Assim a TMC foi relativamente esquecida, dai a auséncia de
publicacdes recentes no tema. Neste estado da arte apresentam-se topicos relacionados ao
projeto de pilares de paredes finas, indicando-se literatura na qual grande parte dos trabalhos
fizeram uso da TMC, e por fim correlaciona-se tal técnica com o projeto de pilares de pontes.

a) Flexo-torcdo e andlise estatica dos painéis-parede

A analise da flexo-torcdo em estruturas de paredes finas foi inicialmente postulada por
Bazile Zakharovitch Vlassov, que em 1936 publica “La statique des enveloppes”, sua tese de
doutorado. Continuando nos anos seguintes a estudar mais aprofundadamente as estruturas de
paredes finas, no francés: “membres en voiles minces”’. Rematando tais avangos na teoria geral
dos elementos esbeltos de paredes finas através do livro publicado em 1940, reeditado em 1958
e transcrito para o francés em 1962, sob o titulo: “pieces longues en voiles minces”
(VLASSOV, 1962).
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Na década de 70 do século XX ocorreu macica contribuicdo ao tema flexo-tor¢do em
secdes de paredes finas, atraves da Técnica do Meio Continuo. As paredes acopladas foram
analisadas em Gluck (1970) e discutida tal analise por Wynhoven et al. (1970). Em seguida,
por Smith e Taranath (1972) analisam o problema da coluna com sec¢do em U, reforgcadas por
de abas, e submetidas a tor¢do uniforme, sendo estudados o bimomento e a rotacdo em torno
do eixo axial sob o centro de torcdo e proposto o contraventamento por lintéis com formacao
de rotula plastica no meio do vdo. Em Wakabayashi e Yagui (1973) as analises do nucleo
estrutural sdo processadas mediante teoria da flexo-tor¢do associada a analise matricial de

estruturas, buscando-se assim, implementar em subsequentes estudos de edificios altos.

No estudo de duas paredes finas acopladas mediante lintéis pode-se ressaltar Gluck e
Gellert (1972), Tso e Biswas (1973a, 1973b) e Danay et al. (1974). Na contribui¢cdo de Unico
nucleo formado por secdo de paredes finas e contraventado por lintéis (para edificios altos),
tem-se como indispensavel citar Wakabayashi e Yagui (1973) em conjunto com Heidebrecht e
Smith (1973). Este ultimo com a utilizacdo de funcbes adimensionais para expressar 0
empenamento ¢ e suas conseguintes derivadas até a terceira ordem. Nestes trabalhos sempre
foi desprezada a parcela da deformacao por corte. A consideracdo de tal deformacéo, devido ao
corte, é proposta em Serra e Yagui (1995) e o efeito de carga axial aplicado no centro de
cisalhamento em Yagui e Serra (1995). Porém ambos consideram cargas laterais constantes,
ndo procedendo a analise da acdo do vento, cuja atuacdo gera momento de torcdo variavel na

altura da estrutura.

O efeito da deformacéo por corte em se¢des de nucleos estruturais é analisado em Smith
e Abate (1984), porém detém-se na formulagéo pela teoria da flexo — tor¢éo, ndo analisando o
problema sob a otica da teoria dos painéis — parede. Nesta mesma linha de raciocinio cita-se
Khan e Smith (1975) que apresenta a solucao analitica para secdes abertas com distribuicdo de
lintéis idénticos e repetidos ao longo da altura do pilar. O equacionamento do lintel, em ambos
0s artigos, ndo considera o lintel como viga e computa seu efeito no nucleo estrutural através
da formacdo de rotula plastica no centro do vdo. Assim € que nesta tese, procede-se O
equacionamento do referido lintel mediante equacGes de Maney. Evitando-se a imposicédo
(consideragdo) da ocorréncia obrigatdria da rotulacdo plastica no centro do vao do lintel (ver
item 2.8.1 b). JA em ambito da producdo de dissertacdes e teses nacionais ressalta-se: Rachid
(1975) que apresenta a formulacdo da teoria de flexo — torgdo via método energético e focado
em determinar a carga critica para flambagem lateral, das aqui mencionadas paredes finas de

secdo transversal aberta, ja em Carvalho (1980) incrementa-se o estudo da carga de flambagem.
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J&, em Barbosa (1980) tal contraventamento é analisado mediante imposicao de cargas
laterais constantes ao longo da altura. Para Marques (1983) o nucleo estrutural é constituido por
duas paredes em formato de U e acopladas mediante lintéis unindo as abas das paredes, ficando
submetido a momento de tor¢do M; no centro de gravidade do sistema. Por fim, em Costa
(1984) incrementa-se nos nucleos a fundagédo flexivel mediante vinculagdo elastica. A analise
dos efeitos de segunda ordem nos nucleos estruturais é realizada em Xavier (1987) com cargas
verticais distribuidas ao longo da altura, tanto para nucleos isolados contraventados ou nao por
lintéis, bem como de paredes em formato de U e acopladas mediante lintéis, sendo publicado
com novo detalhamento em Xavier e Melo (2018). Anos mais tarde, Basttistelle (1991) acresce
na analise de 22 ordem, o efeito das deformacdes axiais dos pilares, porém ndo aplica tal

conceito aos nucleos estruturais (nos subsequentes painéis-parede).

Em Ribeiro (1987) estudam-se os nucleos mediante analise matricial do método dos
deslocamentos e sua conseguinte associacdo tridimensional a pérticos, em seguida Yoshida
(1988) integra os nucleos estruturais aos pilares ou aos pendurais de aco. E a anélise dindmica
da associacao tridimensional de porticos, nucleos e paredes via TMC é abordado em Laier
(1984). Ja para o devido desacoplamento do sistema de equacdes recorre-se a Rosman (1972),
realizando tal procedimento mediante translado do sistema de referéncias para um sistema
generalizado. No ambito de livros é fundamental mencionar Smith e Coull (1991), que no
capitulo 13 dedica-se ao estudo de pilares de se¢cGes com paredes finas abertas e contraventadas
por lintéis ou lajes. Nesta tltima publicacéo o problema € resolvido mediante a técnica do meio
continuo, a teoria da flexo-tor¢éo e o elemento finito via analise matricial com acoplamento da
flexdo e do empenamento, porém desprezando a deformac&o por corte. Por fim, Nemir (1985)
faz um apanhado detalhado de todas as hipoteses e equacgdes envolvidas no fendmeno da flexo-
torcdo, bem como resultados experimentais de cargas e momentos criticos. As referidas analises
sdo procedidas para vigas continuas e porticos, em qual linha de raciocinio cita-se Kolbrunner
(1969).

b) Analise dindmica dos painéis-parede

A mensuracgdo dos efeitos dinamicos em pontes é realizada, primordialmente em 1890,
por coeficientes de impacto, porém as publicacdes técnicas mais relevantes ocorreram na

década de 30 do século XX. Na década de 60 do mencionado século, ressaltam-se trés
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publicagdes dos efeitos dindmicos, sendo: o primeiro de autoria de Fleming e Romualdi (1961),
onde a anélise dindmica é processada por integracdo numérica da equagdo do movimento e
modelagem por massas concentradas (para pontes com tabuleiro em vigas biapoiadas e
continuas). A segunda publicacdo é o estudo da estabilidade dindmica de colunas e procedido
por Bailey (1963), sendo enunciada a deflexdo harmonica para pequenas e grandes
deformacGes. E por Gltimo, a agdo do vento em pilares de edificios altos é analisado por Ferraz
(1966) com a modelagem das agOes oriundas do vento em formato de cargas laterais

concentradas por nivel de travamento (nas lajes para o caso de edificios altos).

Na década seguinte, as analises foram procedidas em dois eixos, sendo estes: por
primeira tematica tem-se a modelagem estocéstica das forcas e rajadas provenientes do vento,
mencionando-se Hart (1970), Vaicaitis (1975), O’Rourke et al. (1975), Peterka e Cermak
(19764, 1976b) e Saul et al. (1976). No segundo eixo tematico, procede-se a simulacao dindmica
dos nucleos estruturais, ressaltando Reinhorn et al. (1977) para a analise de edificios com um
eixo de simetria, removendo o acoplamento da tor¢do com a flexdo (0 mesmo principio é
aplicavel a pilares de pontes em formato de ndcleo estrutural). A analise dindmica dos painéis-
parede pela TMC é processada em Laier (1978), com énfase nos modos de vibracao livre. Anos
mais tarde, é que Laier (1984) postula a andlise modal para os painéis (sem considerar rigidez
particionada em duas matrizes) sob vibracdo forcada e aplicando-na em edificios altos. Nesse
sentido, € que nesta tese procede-se a extensdo de tal analise para os pilares de pontes com secdo
transversal de paredes finas metalicas e aplica-se tal conceito de forma inédita em secdes de

concreto armado.

Em Ribeiro (1991) analisa-se a auto-correcdo e a correlagédo cruzada das pressoes
oriundas da acao do vento em faces retangulares e ensaiados em tunel de vento, o qual torna-se
relevante na determinacdo da rajada de vento padrdo. Nao obstante, em Yin e Fang (2011) é
ressaltada a importancia da vibracéo lateral em pontes com pilares altos, isso devido a perda da
rigidez lateral a flex&o, principalmente ao lancar se¢des transversais em paredes finas para
agregar viabilidade econémica ao projeto. Dai, a proposicéo nesta tese de proceder analise dos
efeitos dindmicos em pilares altos compostos por painéis-parede, analisando-no quanto: a
estabilidade eléstica sob imposicdo de carga lateral, a flexo — torgdo , os modos de vibragéo e o

dimensionamento ao bimomento.
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c) Estabilidade eléstica de pilares

A estabilidade elastica de pilares é algo a muito estudado. No ambito de artigos técnicos
podemos mencionar: Massonnet (1959), o qual retoma o célculo da carga critica desde a coluna
ideal, analisa a coluna de paredes finas sob formato de C e em cruz, e também verifica 0s
cenarios de excentricidade da aplicacdo da carga compressiva no topo e na base (equacionando
0 momento critico e validando-o por ensaio mecanico). Em Gliick e Gellert (1972) é analisada
a estabilidade lateral de pilares em paredes finas contraventadas por lintéis espacados ao longo
da altura e presentes na face aberta do pilar. Ja em Lau e Hancock (1987) é analisada a se¢éo
de paredes finas com uma das faces aberta e refor¢ada por abas, tomando por vinculagbes 0s

apoios elasticos.

Os painéis em formato de paredes de corte sdo analisados quanto a estabilidade em
Rutenberg et al. (1988), porém o unico estado de carga analisado é a atuacao do peso proprio,
distoando das andlises processadas em Timoshenko e Gere (2009), isso por proceder analise de
1% ordem com carregamento lateral sob formato equivalente para computar o diagrama de
momento fletor para a configuracdo deformada. Tempos depois, Paulay e Priestley (1993)
analisam a ductilidade (quanto ao fendmeno de estabilidade) de paredes estruturais em concreto
armado, via parametrizacdo de ensaios experimentais. Para a Gtica de nucleos estruturais com
duas paredes opostas parcialmente contraventadas por lintéis e apoiados sob base elastica, cita-
se Nadjai e Johnson (1996). No ambito de aplica¢des e replicacdes da dedugdes de Timoshenko
e Gere (2009) em problemas mais paupaveis, cita-se o estudo da estabilidade em gasodutos por
decorréncia da pressao interna e procedido por Craveiro e Gay Neto (2016). Em Sepahi et al.
(2010) é procedida a andlise da posicdo deformada e carga critica para colunas com néo
linearidade geométrica, porém é apenas considerado carga concentrada no topo e peso préprio

do pilar de se¢do macica.

Apos tal apanhado, verificou-se a auséncia da analise da carga critica para pilares com
estado de carga composto pela agdo do vento (carga lateral sob variacédo linear) e pelas cargas
verticais. Nesta tese propde-se a contribuir em tal lacuna e procede-se no capitulo quatro a
verificacdo da estabilidade elastica de pilares macicos e vazados para atuacao conjunta do vento
(cargas laterais), reacdo do tabuleiro da ponte (carga vertical P no topo do pilar) e do peso

proprio p do referido pilar.
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d) Dimensionamento de sec¢Ges de concreto armado

O equacionamento da armadura resistente ao momento de torcéo e da flexdo em pilares
(quando da atuagdo em secBes macicas ou vazadas com paredes fechadas) é amplamente
estudado na literatura. Fazendo-se relevante mencionar Sussekind (1991), Amaral (1971) e
Saliger (1963), bem como Araujo (2014). Em todos os textos referenciados observa-se que a
andlise das tensGes oriundas da torcdo € processada mediante analogia da trelica de Marsch

(trelica espacial com bielas de compressao a 45°).

O estudo da flexao obliqua em se¢des de concreto armado € criteriosamente detalhado
em Langendonck (1959), sendo explicitado o funcionamento estrutural sob Otica de zonas
tracionadas e comprimidas através do posicionamento e inclinagdo da linha neutra. Para pilares
de grande altura e secdo variavel, faz-se relevante mencionar a analise da estabilidade e da

flexo-torcéo, procedidas em Fuentes (1987).

Em Ichinose e Takiguchi (1987) é analisada a ocorréncia das formas de deformacao por
esforco cortante para barras em concreto armado, procedendo a analise por uma malha de
tensores ortogonais ao invés da tradicional trelica de Morsch. Ja, em Branson (1966) a flexao é
analisada em elementos sob flexao simples. Em Stasio e Buren (1960) as colunas séo analisadas
sob a otica da flexdo composta (sempre em cenario desassociado da tor¢do). Anos mais tarde,
em Rahal e Collins (1995) é procedida a anélise conjunta da torcdo e do efeito de corte, via
trelica de Morsch. A analise experimental de lintéis, sob a forma de paredes de corte, € realizada
por Tassios et al. (1996), onde verifica-se a reducdo dos momentos fletores e a dissipacdo de

energia, estas promovidas pela imposi¢do dos referidos lintéis.

Diante de tais contribuicGes na literatura para pilares de se¢cdo macica, sempre sob a
Otica da acdo da flexdo em separacdo da torcdo. Propde-se entdo nesta tese a formalizacdo da
rotina de dimensionamento de se¢des transversais de concreto armado, composta por paredes
finas, e submetidas ao bimomento. Em outros termos, equaciona-se a armadura resistente a
solicitacdo conjunta do momento fletor e da tor¢do em termos do esforco solicitante decorrente,

no caso 0 himomento.
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e) Evolucéo construtiva

A ponte Angered localizada em Gaoteberg (na Suécia) € apresentada por Estrutura em
Revista (1980, p.7), sendo caracteristicos os pilares com altura maxima de 50 metros e secOes
transversais vazadas com dimensdes externas entre 4 a 9 metros. As referidas paredes finas sao
de espessura de 40 a 45 cm, e resisténcia a compressdo do concreto (f,,), normalmente, de 45

MPa e com algumas se¢des em concreto de resisténcia C — 50. Ver figura 1.1.

Figura 1.1: Ponte Argered sob vaos centrais de 129 metros

Fonte: (Estrutura em Revista, 1980)

Em Recordes Mundiais (1985, p.24), Gottemoeller (1998, p.53) e Rossiter (2008)
apresenta-se a ponte de Ganter, cuja relevancia para esta tese € a altura méxima dos pilares de
150 metros por sobre vale profundo. A ponte localiza-se na Suica, ao longo da estrada Simplon
Pass (no “Canton of Valais”, a 10 km de Brig). Nesta ponte, os pilares extremos sdo macigos e
de sec¢do retangular, enquanto os demais sdo de secdo retangular vazada e variavel na altura.
Dai a motivacdo para a analise procedida no capitulo quatro desta tese. Vide figura 1.2.

Fonte: (Gottemoeller, 1998)
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Cita-se ainda a ponte sobre o vale dos diabos, apresentada em Pfeil (1960), localizada
na BR — 14 ao sair da cidade de Santa Maria — RS. Os pilares extremos possuem secao
retangular macica de (3 x 0,8) m, ja os pilares centrais s&o compostos por se¢do transversal
retangular vazada de (3 x 1,2) a (3 x 1,6) m. A altura do pilar mais alto é de 43 metros. Vide

figura 1.3.
Figura 1.3: Ponte sobre o vale dos diabos
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Fonte: (Pfeil, 1960)

Em Beyer e Thul (1969) sdo apresentados comentarios sobre pontes com relevante
langcamento estrutural. A exemplificar cita-se a ponte Siegtal (localizada no vale Sieg na
Alemanha, sendo uma das inspiracdes para o projeto da ponte Rio — Niterdi), com pilares de

100 metros de altura. Vide figura 1.4.

Figura 1.4: Pilar da ponte Siegtal, com 100 metros de altura

Fonte: (Beyer e Thul, 1969)

Por fim, referencia-se DNER (1984), onde sdo apresentados detalhes de projeto e
execucdo da ponte presidente Costa e Silva (mais conhecida como ponte Rio — Niter6i). Os
pilares sdo de formato retangular vazado e variavel linearmente na altura, com topo macic¢o para
emprego dos aparelhos de apoios do tipo Neoprene. A termo de informacdo, as placas de
Neoprene tem base de (70 x 70) cm e fretagem de (1 a 2) mm, de acordo com o projeto. Os
pilares possuem altura na ordem de 70 metros. Na figura 1.5 apresenta-se o pilar de um dos
vaos centrais durante a fase de contrugdo do tabuleiro da referida ponte.
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Figura 1.5: Pilar da ponte presidente Costa e Silva, durante execugdo do tabuleiro

- -
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Fonte: (DNER, 1984)

1.3. OBJETIVOS

1.3.1. Objetivo Geral

Desenvolver um método de anélise de pilares altos de pontes pela Técnica do Meio
Continuo (TMC), levando em conta as cargas permanentes e a acdo dindmica do vento,

fornecendo assim ferramentas de verificacdo para modelagens em softwares comerciais.

1.3.2. Objetivos Especificos

Sdo objetivos especificos desta tese os seguintes:

> Explicar a técnica do meio continuo aplicada a analise estrutural de painéis de
contraventamento e promover a correspondente aplicacao aos pilares de pontes;

» Abordar a teoria da flexo-torcdo e aplica-la aos pilares de pontes, em formato de
ndcleo estrutural “C” e em duplo T;

» Estender a teoria dos paineis-parede dos nucleos estruturais C em edificios altos
para os pilares altos de pontes, e generaliza-la para se¢des C e duplo T;

» Avaliar a estabilidade eléstica do pilar submetido a acdo conjunta do vento, da

reacao do tabuleiro e do peso préprio;
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» Deduzir os modos de vibragdo do pilar através da TMC com a utilizacdo da teoria
dos painéis-parede (TPP);

» Postular o dimensionamento de se¢des (em “C” e em duplo T) de paredes finas
em concreto armado, com paredes e abas simétricas em dimensoes, e submetida
ao bimomento e

» Validar a modelagem do pilar em nucleo pela TMC através do método dos
elementos finitos, utilizando elementos de barra baseados no acoplamento do

método dos deslocamentos com a teoria da flexo-torcao.

1.4. ORGANIZACAO DA TESE E METODOLOGIA

foram:

>

A metodologia empregada nesta tese para atingir os objetivos postulados no item 1.3,

Revisdo Bibliografica: Foi realizada revisdo bibliogréfica das analises estatica e
dindmica em pilares de pontes, do ano 1950 ao corrente ano (onde constatou-se a macica
contribuicdo nos anos 70), verificando-se a lacuna em vibragbes de pilares altos
formados por sec¢des de paredes finas abertas e parcialmente contraventadas por lintéis;
Processamento Teoérico: Para tal andlise dindmica dos pilares de pontes em paredes
finas, retoma-se (no sentido de resgate) a técnica do meio continuo, por se tratar de
técnica com pouco custo de processamento. Mesmo assim, € empregada também a
analise discreta via método dos elementos finitos (utilizada na flexo-tor¢do) e do metodo
das diferengas finitas (para resolver a EDO do problema de estabilidade eléstica) e

Simulacdo Numérica: A fim de validar a formulagdo dindmica dos painéis-parede,
procede-se a modelagem dos modos de vibracdo do referido pilar com secéo transversal

de paredes finas via software ANSYS Release 11.

A organizagdo desta tese é realizada mediante sete capitulos, dos quais, este primeiro

destina-se a explicitar a relevancia, os objetivos, e estado da arte e a metodologia empregada.

O capitulo 2 é intitulado “Fundamentagéo teodrica” ¢ foi redigido para resgatar a técnica

do meio continuo aplicada as analises estatica e dindmica da acdo do vento, bem como enunciar

conceitos basicos (necessarios para esta tese) sobre: dinamica das estruturas, teoria da flexo-
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torcdo (TFT), teoria dos painéis-parede (TPP), distribuicdo do fluxo do vento e o
posicionamento do centro de torcdo (também denominado de centro de corte ou de centro de
cisalhamento). Ja no final deste capitulo é apresentada matriz de rigidez do elemento finito de
barra, com secdo transversal retangular linearmente variavel ao longo do eixo longitudinal,
sendo modelado o comportamento dindmico do respectivo pilar sob a ética dos modos de
vibragdo, através da TMC e do MEF com a utilizacdo do software ANSYS Release 11.

O capitulo 3 é destinado a formulagéo do elemento finito de barra sob flexo — torcdo e
composto por se¢do de paredes finas. Procede-se a formulacdo do acoplamento da flex&o e da
torcéo atraves da andlise matricial do pilar em nicleo estrutural, tanto em formato de C e de
duplo T.

O capitulo 4 destina-se a verificacdo da estabilidade elastica dos pilares de pontes, com
secdo transversal constante ou variavel, bem como para configuragio macica ou vazada. E
empregado o método das diferencas finitas para resolver a equacdo diferencial do problema de
estabilidade. Ao término deste capitulo, exemplificam-se as analises com pilares de secdo:

retangular, circular, tubular e anelar.

No capitulo 5 é desenvolvida a formulagdo dindmica da acdo do vento em painéis-parede
(pilares com secdo de paredes finas em formato de C e em duplo T) via técnica do meio
continuo. Séo analisados pilares metalicos e de concreto armado, e realizada a validacdo dos

modos de vibragdo mediante simulacdo no software ANSYS Release 11.

No capitulo 6 procede-se o equacionamento da secdo de paredes finas, com paredes e
abas simétricas quanto as dimensdes, em concreto armado e submetida ao bimomento. Sendo
também postulada a decorrente rotina de célculo e geradas as tabelas adimensionais para o

dimensionamento das armaduras.

Finalmente, no capitulo 7 sdo realizadas as consideracGes finais e elencadas cinco
sugestOes para contribuicdes em futuras teses. Ao final desta tese constam cinco apéndices,
onde: no apéndice A é apresentada a solucdo da equacgdo diferencial da TPP no sistema
generalizado de coordenadas (ver capitulo 2), o apéndice B destina-se a modelar o pilar com
secdo variavel (ver capitulo 2), o apéndice C contém a programacao do capitulo 4, o apéndice
D é atribuido ao capitulo 5 e no apéndice E consta um tutorial da simulacdo dos modos de
vibragdo no software ANSYS.
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PARTE |

FUNDAMENTAGCAO TEORICA

“Toda a nossa ciéncia, comparada com a realidade,
¢ primitiva e infantil e, no entanto, ¢ a coisa mais
preciosa que temos’”.

Albert Einstein



Capitulo

2

FUNDAMENTACAO TEORICA

2.1. TECNICA DO MEIO CONTINUO APLICADA A PILARES ALTOS

Conforme é apresentado em Chitty (1947), Laredo (1977) e em Laier (1984) a
modelagem dinanica de estruturas € convenientemente processada via Técnica do Meio
Continuo, ao considerar a rigidez dos elementos de conexao horizontais (lajes e vigas) como
propriedades e solicitagbes distribuidas ao longo da edificacdo. Para os pilares distribuem-se
tais propriedades e solicitacBes ao longo da altura. Processa-se em Laier (1984) a analise da
vibracdo de paredes, preconizando no Brasil, o inicio das contribui¢des da técnica do meio
continuo (TMC) aplicada a problemas dindmicos. Nesta tese serd empregada a formulagdo
dindmica da TMC em pilares de pontes com se¢édo de paredes finas, especificamente no capitulo
5, modela-se o pilar metalico e de concreto armado em formato de nudcleo estrutural
contraventado por linteis. Como se vé na Figura 2.1, a configuracdo de pilares em paredes finas
foi utilizada na ponte ferroviaria cujos vaos centrais foram levados pela onda de rejeitos de

mineracdo, quando da ruptura da barragem de Brumadinho, em Minas Gerais.

Figura 2.1: Ponte Férrea em Brumadinho com pilares em duplo C contraventados por lintéis

f!‘

Fonte: (Brumadinho, 2019)
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Outro exemplo de ponte férrea com pilares de secéo de paredes finas € a ponte sobre o
rio Olifants, sendo localizada na provincia Western Cape no sul da Africa (SA), com pilares em

formato de duplo T e com abas variaveis na altura. Vide figura 2.2.

Figura 2.2: Ponte Férrea no SA com pilares em duplo T: (a) visdo panoramica e (b) detalhe no

pilar

Fonte: (BUSSATA; MOYO, 2015)

J& a ponte de la Pyle fica situada sobre o lago Vouglans na Franca, compreendida a oeste
pela cidade de La Tour-du-Meix e a leste pela cidade Coyron e possui 65 metros de altura. Essa
ponte é apresentada cientificamente em Courbon (1968) e torna-se relevante mencionar nesta

tese por possuir pilares em duplo T com secdo transversal constante. Ver Figura 2.3.

Figura 2.3: Ponte de la Pyle na fase de construcéo, da qual observa-se o pilar em duplo T com

abas de dimensdes constantes ao longo da altura do pilar

==

Fonte: (Pilar da ponte de la Pyle, 2019)
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O arranjo estrutural apresentado na figura 2.1, pilar em duplo C e contraventados em
conjunto por lintéis, é estudado em Marques (1983). Desta forma, propde-se nesta tese a analise
do pilar em duplo C com os lintéis contraventando cada Nucleo que compde o pilar, mantendo-
se a simetria do conjunto e fornecendo assim uma diretriz detalhada para projeto de tal elemento
estrutural. Tal arranjo € apresentado na Figura 2.4 e ressalta-se que o pilar em C sera analisado
no capitulo 5, quanto a variacdo das inclinacdes das paredes laterais em detrimento da

minimizagao do bimomento.

Figura 2.4: Ponte com pilares em duplo C contraventados individualmente por lintéis

Fonte: O Autor (2019)

2.1.1. Particdo da carga do vento nos pilares de pontes

A acédo do vento no conjunto tabuleiro — vigas da ponte é caracterizada pelo efeito de
elevacdo de tal conjunto estrutural, sendo ilustrado esse fenémeno na figura 2.5. Ja a particdo
da carga lateral do vento serd abordada conforme duas teorias, a primeira configuracdo €
baseada meramente na distribuicdo pela rigidez dos pilares (em conjunto com o apoio por
Neoprene). A segunda configuracdo é embasada no conceito de centro elastico, sendo derivada
do equacionamento procedido em Stamato (1978) para nlcleos de edificios altos, onde
consideram-se as rigidezas nos pilares em decorréncia da flex&o nos eixos principais de inércia

e dos esforcos axiais.
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Figura 2.5: Acéo do vento em pontes: (a) carga lateral atuante no conjunto tabuleiro — vigas e
(b) efeito de elevacéo do tabuleiro em decorréncia da acdo do vento lateral

Vento

~ Trafego

(]
(a)

| I )

(b)
Fonte: Adaptado de (LEBET; HIRT, 2013)

a) Primeira configuragdo de parti¢cdo da acédo do vento nos pilares de pontes

Nesta primeira configuracdo adota-se a distribuicdo da acdo do vento via rigidez dos
conjuntos pilares — apoio Neoprene, e para tal equacionamento cita-se Pfeil (1979, p. 209 —
226) e adota-se uma ponte com um Unica linha de pilares (conforme apresentado na figura 2.2).
Vide na Figura 2.6 a atiavacdo das cargas longitudinal e transversal ao tabuleiro da ponte e em
decorréncia da acdo do vento sob rajada de carga q. A rajada de vento é adotada sob inclinacédo

a em relacdo ao eixo longitudinal da ponte reta apresentada em tal figura.

Figura 2.6: Rajada de vento atuante no tabuleiro de uma ponte com Unica linha de pilares e as

forgas solicitantes

Qiong = q-S€N

Qiat = q.-COS

Fonte: O Autor (2019)
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Na figura 2.7 € analisada a aplicagéo da carga longitudinal q;,,4, sendo adotado o

processo de separacdo dos deslocamentos apresentado em Campanari (1985, v. 1, p. 326 — 348).

Figura 2.7: Linha de pilares sob divisio da carga longitudinal

—— P o «— iong, = <«— Yiong, = <«— qiong,
qmng

()

AN A2 AN AN AN AN

Fonte: O Autor (2019)

Ficando as cargas longitudinais nos pilares sob a seguinte distribuic&o:

ke,
Qiong, = Qlong-m (2-1 a)
Ken, (2.1b)

Qiong, = Qiong- Yk,
iri,

onde: k¢, € arigidez do conjunto Pilar — Neoprene, ver pagina 304 do volume 1 de Campanari
(1985); k; € arigidez do fuste do pilar; k), € a rigidez do Neoprene e obtida via distor¢do por

carga lateral. E para a se¢do constante e pilar engastado na base e livre no topo, tem-se rigidez

do fuste do pilar definida por: k; = 3.E.Ii/H3, com [; sendo a inércia do pilar na direcdo
i

perpendicular ao movimento e H; a altura do pilar analisado. J& para o apoio Neoprene, tem-se

por rigidez: k), = Gn.A"/hn, sendo: G, 0 mddulo de elasticidade transversal do material; h,,

é a altura util do Neoprene (entre as fretagens); e A, = (a — 2.¢). (b — 2.¢) é a area da secdo

de corte paralela ao topo do pilar. Ver na figura 2.8 para as dimensdes do apoio Neoprene.

Figura 2.8: Dimensdes caracteristicas do apoio Neoprene

Revestimento externo de elastomero

Camadas de elastémero P
‘ P

Chapasdeaco "~

v

\(pipiad

Fonte: (MARCHETT]I, 2008)
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Quanto a carga lateral q;,; observa-se que a divisdéo mediante a rigidez dos referidos
pilares, é realizada através da inércia ativada (eixo perpendicular a linha de acdo da carga lateral

do vento), conforme ¢ apresentado na figura 2.9.

Figura 2.9: Linha de pilares sob divisdo da carga lateral

X A
>
/ 2 y
/,./ v § ,///
iat, Qiat, Qiat,
= : Qiat
TR
TR

Fonte: O Autor (2019)

Para o equilibrio lateral, analogamente ao procedido na equacdo (2.1), tem-se a

distribuicdo das cargas laterais, expressa por:

. kCny
CIlatn - CIlat-z_ k: (2.2)
L ly
knp'kly .. . . .
com: kcny =T Tk a rigidez do conjunto Pilar - Neoprene para a diregdo y.
np 1,

b) Segunda configuracao de particdo da acéo do vento nos pilares de pontes

Na primeira configuracdo de particdo da carga do vento, apresentada na letra (a) desse
item, a distribuicdo da carga lateral foi realizada mediante ponderacdo pela rigidez dos pilares.
Tal formulagéo foi amplamente aceita nos anos 70 e inicio da década 80 do século passado.
Porém com a publicacdo de Stamato (1978), a qual remonta do ano 1966 e que mesmo apos a
morte do autor Miguel Carlos Stamato continuou a ser reimpressa pelo setor de cépias do
departamento de estruturas da EESC — USP, devido a seu valor cientifico, a agdo do vento
passou a ser analisada através do conceito de centro elastico (CE) e o conseguinte

posicionamento relativo entre o centro de carga (CC) e o CE.
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Nesse sentido, ressalta-se 0 EUROCODE 01 (pr FR 1991 — 1 — 4: 2005) quando da
quantificacdo da acdo do vento no tabuleiro da ponte. Apresentam-se na figura 2.10 as
configuracdes das pontes e o decorrente coeficiente de forca na direcdo lateral do tabuleiro. Ja

na figura 2.11 é apresentado o coeficiente da forca aplicada no tabuleiro sob a direcéo vertical.

Figura 2.10: Coeficiente da forca aplicada lateralmente no tabuleiro devido a acao do vento

I II m
A T Tt TT Tl T T
+—>b—4 4——b —+ +—b—+

dg
i

Treli¢as a considerar separadamente

a) Fase de construgiao ou Guarda-corpo a céu aberto
(aberturas superiores a 50 %)

b) com Guarda-corpo, barreiras acisticas ou trafego

»

6 7 8 9 10 11 12 bld,,

G
P10

Fonte: (EUROCODE 01, 2005)

Figura 2.11: Coeficiente da forca vertical oriunda da acao do vento e aplicada no tabuleiro

| Ag=bL|  F ﬁe
o f&//‘ b -/¢

B = Angulo da inclinagio transversal
Z @ = Angulo do vento em relagio a horizontal

10+ O=a+p

0.8 +10°

______________ 0

——t—t——t—+—+—1— bld,,
10_12_14 16 18 20 22

N
e N R LTy AP

(=]

[e-]

Fonte: (EUROCODE 01, 2005)
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Na figura 2.12 é apresentada a configuracdo deformada de uma ponte em vigas sob acéo
lateral do vento, e a partir de tal conclui-se que a forma de desconsiderar a hipdtese da laje
(tabuleiro da ponte) funcionar como diafragma, € impor no equacionamento o levantamento do

tabuleiro em decorréncia da carga do vento.

Figura 2.12: Vibracao lateral de ponte em viga

Fonte: (Vibracéo lateral e torcéo, 2019)

Baseado nos conceitos apresentados nas figuras 2.10 e 2.11 postula-se na figura 2.13, e
em consonancia com a figura 2.12, que a a¢do do vento no tabuleiro da ponte é representada
através da carga g com inclinacdo ;. Mediante a rajada de vento sob inclinagdo ; computa-
se o efeito de elevacdo do tabuleiro da ponte, conforme apresentado na figura 2.5 (b).

Figura 2.13: Acdo lateral do vento no tabuleiro: (a) configuragdo deformada e carga inclinada
do vento, (b) procedimento de célculo da rigidez do conjunto Pilar — Neoprene e (c)
carregamentos concentrados no topo do pilar e devidos ao trafego e a acdo do vento no tabuleiro

Tabuleiro

P= PPTab-vig t
l =+ PTraf — Qv

Pilar
deformado

Fonte: O Autor (2019)
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Na figura 2.14 é apresentada a segunda configuracdo de distribuicdo de pilares de
pontes, sendo esta com duas linhas de pilares e com reparticdo das cargas do vento através do

conceito do centro elastico (ver também a figura 2.30).

Figura 2.14: Ponte com duas linhas de pilares com a aplicacédo do conceito de centro elastico

Z_ > 4
| ;
[ kCPIy kCPZy ' ey , /(szz [ kCPny
. =] =] il 1 l J
*/ [1?1 I Bl
| () I <
0 (S | A— N SN I Z
| kep,, i N
: : y
Ayo
== Ty Ay ”
Yo = LZ/Z
Fonte: O Autor (2019)
sendo: q,*,y =q.Ly.sena.cosp, (23 a)
qn, = q-L,.cosa.cos fy (2.3 b)
qy = q.sen By .(L,.cos a + Ly.sen a) (2.30)

Agora, mediante Stamato (1978) deve-se transformar a carga g, aplicada em forma de
reacdo de apoio no centro de carga (do conjunto de todos os pilares da ponte), para o formato
de cargas concentradas em cada um dos pilares. Bem como, deve-se realizar a distribuicao das

cargas longitudinal q}';y e lateral g5 para cada um dos pilares que constituem a mesoestrutura

da ponte apresentada na figura 2.14.

¢) Rotacdo no centro elastico e deslocamentos de corpo rigido

Define-se o centro elastico como o ponto no qual ao serem aplicadas forgcas surgem
apenas translacdes, ndo ocorrendo assim rotagdo do conjunto de elementos estruturais. Assim,
na figura 2.15 adota-se um conjunto de molas nas direcGes y e z principais de inércia,

objetivando-se assim obter as forgas em cada pilar devido ao deslocamento de corpo rigido.
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Figura 2.15: Posicionamento do centro eldstico mediante rigidez a flexdo dos pilares

2
ky, CE
Fp, | N O
Z, Onz] I—’y knz /‘v«s.
kny
F,
1% Yo- _© F;lzl
Yn

Fonte: O Autor (2019)

Através do equilibrio de forcas nas dire¢cdes principais de inércia e do balanco de

momentos, exprimem-se as coordenadas do centro elastico (CE), baseadas nos eixos auxiliares

y e z, como
7=t o
i,
Zikiy'}_/l (2 4 b)
Yo Yiki, '

E de forma proporcional, tem-se as forcas em cada mola (pilar) por translag6es de corpo

rigido, expressas por:

ki,

Foy=si (2.5 a)

F, = “y F, (2.5 b)
2 Dik,

Na figura 2.16 aplicam-se os eixos coordenados y e z no centro elastico e em seguida
promove-se a rotacao 6,, a fim de determinar as forgas ativadas em cada pilar e o momento M,

no CE que promove tal rotacéo.
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Figura 2.16: Momento no centro elastico e decorrentes forcas reativas no i-ésimo pilar
Z A

15

Fonte: O Autor (2019)

Mediante operac@es trigonométricas na translacdo do ponto i apresentado na figura 2.16,

escreve-se:
S{y = d;.0,.sen @; (2.6 a)
§; = d;.6y.cos @, (2.6 b)

analisando as forgas Fi’y e F; , via coeficientes de rigidez, exprimem-se tais forcas reativas

como:
Fl!y = kiz' Zi. Qx (27 a)
Fi’z = kiy' Vi Hx (27 a)

Realizando o equilibrio de momento no centro elastico, ver figura 2.16, exprime-se 0
momento gerador da rotacédo 6,., como:

n

n
Mx = ZFl’Zyl +ZFin.Zi (28)
i=1

=1
Aplicam-se as equacdes (2.7) na eg. (2.8), expressa-se a rotacdo 6, no centro elastico

apos aplicacdo do momento M,.,, como:

— Mx
ik, )2 + Xk, (2)?

0, (2.9)
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Para atuacdo da carga F no centro elastico, com inclinacdo ¢ em relagdo ao eixo y,
braco de alavanca d, e decorrente momento M, = F.d, apresentam-se na figura 2.17 as forcas
transladadas do centro de carga para o centro elastico e as decorrentes forgas reativas no i-ésimo

pilar.

Figura 2.17: Momento no centro elastico, Translade de forcas do CC para CE e decorrentes

forcas reativas no i-ésimo pilar

Fonte: O Autor (2019)

Considerando as equacgdes (2.5); (2.7) e (2.9) em conjunto como momento M, = F.d

sobre o centro el&stico, exprimem-se as forcas reativas no i-ésimo pilar, como:

k; F.d
F, =—=.F, +k; .z. 210a
o ik, T T Bk, ()% + ik, (2))? ( )
. kg F.d

N ik, Yiki, (i)? + Xiki,. (z))?

d) Particdo das cargas Qh, dn, € qv Para os pilares

Por fim, aplicando-se as defini¢Ges apresentadas no letra (c) desse item, representa-se
na figura 2.18 a particdo das cargas no plano do tabuleiro da ponte com base no centro elastico.

Observa-se ainda que a carga longitudinal qj:,y sera repartida igualmente entre os painéis kep,,
e kcp,, de contraventamento (formados pelos pilares na direcao y), isso devido a simetria da

estrutura.
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Figura 2.18: Particéo das cargas no plano do tabuleiro da ponte com duas linhas de pilares

- kCPLy kCsz %e%% kCPZz kCP”y
" T: ) w:I myyye @:j
F] 553 | \?
| g o LD 4
1 1 L kep, b
(T[] Bl ‘ [L [T
0 4 A A
T ha r Ay 1’ s
| | Ty
Yo I

Fonte: O Autor (2019)

Caso a simetria do eixo y seja quebrada, exprime-se a particdo da carga na dire¢do

longitudinal mediante a eq. (2.5), por:

k
CPl CPI *
. 211a
Hy kCPlz + kep, Ty ( )
k
cP, CP, "
. _ 211b
Hy kcplz + kcpzz iy ( )

Na subdivisdo da carga na direcdo z aplicam-se as equacdes (2.10), valendo-se do

momento gerado pelo translade da carga g, do centro de carga para o centro elastico (ver

figura 2.17). Ficando a carga no i-ésimo painel de rigidez kcpiy expressa por:

s [ = L
CPiy kcpiy T T — 70) qu,- (3’0 —72)
U, = Yikcp T, T Fepy, Wi ™ Yo .ZikCPiy- i = ¥0)* + Likep, - (2 — 2p)?

. (2.12)
ly

Resta agora computar a subdivisdo da carga vertical qy,, a qual é transladada para o
centro eléstico e gera momento 9t em torno do eixo z.g, conforme é apresentado de forma

esquematica na figura 2.19.
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Figura 2.19: Particéo das cargas no plano do tabuleiro da ponte, esforgos axiais nos pilares

- % 0
s V[T ey
i\
Y2
Yo
3771

Fonte: O Autor (2019)

Baseado no conceito de flexdo composta associado a definicdo de centro elastico,
exprime-se a particdo da carga vertical gy, no i-ésimo painel de contraventamento, como:

K ai- (70— %)

*

= gy + (g — V). ——
O W7 S S W7 AT

(2.13)

2.1.2. Definicdes e aspectos historicos da TMC

A utilizacéo da técnica continua em detrimento de modelos discretos, a exemplo do
método dos elementos finitos (BREBRIA; FERRANTE, 1975), método das diferencas finitas
(GUELFOND, 1963), método dos elementos de contornos e dentre outros, € motivada pela
simplificacdo de processamento (consequéncia da reducdo do nOmero de pardmetros
envolvidos). O nimero de parametros via anélise discreta, por elementos finitos, sera funcéo da
malha de discretizacdo. E quanto mais refinada a malha, mais os resultados se aproximam da
realidade. Para a analise discreta via elementos finitos sdo apresentados diversos tipos de
elementos em Dhatt et al. (2005) com continuidade C°%; C* e C?, isso para problemas estruturais

unidimensionais (1D), bidimensionais (2D) e tridimensionais (3D).

Na modelagem dinamica dos painéis verticais via técnica do meio continuo é que Laier

(1984) reitera que o travamento ocorre de forma horizontal ao longo da altura. Empregando as
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lajes (os travamentos horizontais nas paredes) como elementos de rigidez infinita em seus
planos e despreza a rigidez transversal. Os mesmos conceitos da TMC sé&o debatidos com mais
detalhes em Stamato (1980) para a formulacgéo estatica. A analise dos efeitos provenientes de
forcas verticais nos pilares com travamentos horizontais serd abordada no item 2.1.3 desta tese,
desconsiderando as movimentacdes nas demais direcdes, além da horizontal. A fim de justificar
tal simplificacdo vem Laier (1984) reforcando que as magnitudes das movimentacoes

horizontais sdo bem maiores do que as verificadas na direcdo vertical e por tanto desprezadas
estas ultimas.

Os elementos que compdem os painéis de contraventamento sdo apresentados e
analisados em Stamato (1980), tornando-se relevantes para esta tese, 0s seguintes:

> Parede: Sdo painéis planos com rigidez elevada ao corte e deforméveis ao efeito da
flexdo. Vide figura 2.20 (b).

» Portico: Sao painéis planos com rigidez elevada a flexdo e deforméaveis ao esforco
cortante. Conforme figura 2.20 (c).

» Associacdo em série de Parede e Pdrtico: De acordo com o0 exposto nas figuras 2.20
(a) e conseguinte deformacio apresentada na figura 2.20 (d). E caracterizada pela
ligacdo, distribuida ao longo da altura, através de barras biarticuladas (denominadas de
lintéis).

Figura 2.20: Painéis planos de contraventamento: (a) Associacdo em série, (b) Parede, (c) Pdrtico

e (d) deslocamentos horizontais
- (w) (f)
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Fonte: (STAMATO, 1980)
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Onde as barras biarticuladas sao barras de ligacao e representam as lajes ou as vigas dos
andares (para ocorréncia de lajes, sdo supostas de rigidez transversal desprezivel e infinitamente
rigida no plano, de modo a transmitir integralmente as deformacg6es sofridas ao pértico, isso
para edificios altos). Para o caso de pontes procede-se a desconsideracdo de tal hipotese, ver

item 2.1.1, mais especificamente nas figuras 2.5; 2.12 e 2.13.

Em Mancini (1972) é aplicado o painel em forma de parede sobre engastamento elastico
e processada a andlise estatica mediante a técnica do meio continuo, sendo inclusive associado
em série com o poértico. Nos quais, 0 momento de engastamento elastico M, ¢ modelado
mediante a rotacdo do apoio ¢ e a rigidez g do engastamento elastico. Vide figura 2.21 e item
2.1.4 (a).

Figura 2.21: Painéis planos de contraventamento: (a) Parede com base engastada elasticamente,

(b) Associagdo de Parede com base elastica e Portico
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Fonte: (MANCINI, 1972)

Os estudos dos painéis — parede associados por lintéis sdo aprofundados em Mancini
(1973). Os lintéis, nada mais sdo que vigas engastadas em ambas as extremidades e com a
capacidade de resistir a momento fletor e ao esfor¢o cortante, sdo entdo barras que ligam as
paredes e/ou porticos. Conforme observa-se na figura 2.22 a associacdo em série de paredes
(Fig. 2.22 a) e de poérticos com paredes (ver figura 2.22 b) ocorre por meio de lintéis distribuidos
na altura da estrutura. Além do mais, é importante notar que nos lintéis ndo aparecem esforcos
normais, devido ao comportamento das lajes (ou travamentos horizontais, simplesmente) como
diafragmas. Esta Ultima consideracgdo é valida para o caso de edificios altos, no caso de pontes
ver a eq. (2.13) com a quantificacdo de tais esforgos axiais nos pilares.



33
Fundamentacdo Teorica

Figura 2.22: Painéis associados em séries com lintéis: (a) Parede, (b) Parede e Portico
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Fonte: (MANCINI, 1973)

Em Xavier (1987) sdo analisados os painéis com os carregamentos: horizontal gq,,
(uniformemente distribuido na altura H e como simplificacdo da acdo do vento) e vertical p,,
(distribuido no eixo dos elementos verticais e passando pelo centro de gravidade). A exemplo,
apresentam-se trés configuracGes de painéis de contraventamento analisados quanto a
estabilidade, ver figuras 2.23 a 2.25.

Figura 2.23: Efeitos de 22 ordem via TMC para painéis — parede
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Fonte: (XAVIER, 1987)
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Figura 2.24: Efeitos de 22 ordem via TMC para Pdrtico plano
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Fonte: (XAVIER, 1987)

Figura 2.25: Efeitos de 22 ordem via TMC para a associacdo de paredes por lintéis
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Fonte: (XAVIER, 1987)

A solucdo das equacGes diferenciais oriundas do processamento via técnica do meio
continuo é realizada pelo método das diferencas finitas, tanto em Xavier (1987) quanto em
Mancini (1973). A resolucdo das referidas EDO’s é realizada via diferencas finitas por se tratar
de um método numérico de boa convergéncia e apresentar boas solugdes. Neste sentido, a fim
de validar os resultados obtidos via diferengas finitas é que Xavier (1987) procede a resolucao
das EDO’s também via Método de Stodola-Vianello.
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2.1.3. Distribuicgdo das forcas do vento nos paineis de contraventamento

a) Paineéis contraventados por unico travamento horizontal

A rigidez k, do painel é definido como a forca necessdria para provocar um

deslocamento unitério na direcdo da forca aplicada. Vide figura 2.26 (b) e eq. (2.14):

Figura 2.26: Técnica do Meio Continuo (a) conjunto de pilares com Unico travamento na

horizontal e (b) deslocamento proporcionado pela forca F

-

Fonte: (STAMATO, 1978)

F
ks =~ (2.14)

Neste sentido, uma forca resultante qualquer proveniente da atuacao conjunta das cargas
externas no nivel do travamento horizontal, pode ser representada em trés componentes
(Dxi» Dyi € Pei)- Conforme apresentado na figura 2.27.

Figura 2.27: Componentes do vetor unitario na mola i

X,
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Fonte: (STAMATO, 1978)



36
Weslley Imperiano Gomes de Melo

As componentes do vetor unitario nas dire¢fes X e y e 0 momento p.; gerado no ponto

de referéncia, adotando-se como positivo o giro no sentido anti-horario, séo definidas por:

Pxi = P.-cos(a;) (2.15 a)
Pyi = p,-sen(a;) (2.15b)
Dei = Pyi-Xi — Dxi-Yi = ;. sen(a;) — y;. cos(a;) (2.15¢)

onde: p,; — Componente na dire¢do x, do vetor unitario p,;
pyi — Componente na diregdo y, do vetor unitario p;;
p, — Vetor unitario na dire¢do da mola "i";
a; — Angulo formado entre a direcdo x ¢ a mola "i" e

Pei — Momento em relagdo ao ponto de referéncia "0" gerado por p,.

De forma geral, a atuacdo das cargas advindas do vento geram deslocamentos
horizontais diferenciais, em relacdo aos bordos da estrutura. Neste tocante, o vetor
deslocamento é regido pelo angulo de rotacdo v, definido entre o travamento horizontal e as

componentes da nova posi¢do do ponto de referéncia (0"), conforme apresentado na fig. 2.28.

Figura 2.28: Deslocamentos no centro elastico
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Fonte: Adaptado de (STAMATO, 1978)
Os deslocamentos que ocorrem nos diversos elementos constituintes dos painéis
contraventados u;, possuem como componentes u,; e uy;, resultando definidos por:
Uyi = Uy — Y- Vg (216 a)
Uy; = Vy + X V¢ (2.16 b)

O encurtamento da mola "i" é definido através da projecédo do deslocamento u, do painel

contraventado na direcdo da mola representada pelo vetor unitario p,, sendo definido por:
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di = Uy Pxi + Uyi-Dyi (2.17)

Aplicando as equagfes (2.15) e (2.16) na eq. (2.17), chega-se ao deslocamento d; do

painel i expresso por:
di = Pxi-Vx + Pyi-Vy + Dei- V¢ (2.18)

Emprega-se o conceito de rigidez definido na eq. (2.14) e unindo-o a eg. (2.18), conclui-

se que a forca F; necessaria para ocasionar o deslocamento d;, seré:
F; = kg;. (pxl-.vx + Dyi- Uy + D vc) (2.19)

A carga resultante R decorrente da aplicacdo conjunta das varias forcas E nos painéis,

é definida vetorialmente, por:
R= Z F.p, (2.20)
i

Aplica-se a eq. (2.19) na eq. (2.20) e ressalta-se que as projecoes v, e v, do

deslocamento 00'é o mesmo para ambos o0s i-ésimos paineéis. A resultante R fica na notagédo

vetorial para as diregdes x e y, relativas ao momento em relacdo ao ponto de referéncia O,

escrita por:
E = Uy z ksi-pxi-ﬁ + v, 2 ksi-pyi-ﬁ + v Z ksi-pci-ﬁ (2.21a)
i i i

Ry = vy Z ksi-pxi2 + v, Z ksi-pyi- Pxi + Ucz ks Dei- Dxi (2.21b)
i i i

Ry = vy z ksi-pxi-pyi + vy 2 ksi-pyiz + vcz ksi-pci-pyi (2.21¢)
i i i

R, = vxz ki Dxi-Dei + Uy, Z ksi-pyi-pci + v z ksi-pciz (2214d)
i i i

Para facilitar a notacdo, pode-se reescrever as eq.’s (2.21), como:

Ry = Syx-Ux + Sxy- Uy + Sy Uc (2.22 a)
Ry =8, Vx + 5yy. 1y + 5yc. 0 (2.22 b)
Re = Scx- Uy + Sey- Vy + See- U (2.22¢)

onde: Sap = Z ks Dai-Poi = Sba
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Observa-se que o sistema formado pelas equacgdes (2.22) é acoplado e para tanto é
conveniente lancar méo de técnicas para proceder o desacoplamento. Mediante generalizacdo
da componente R, via transformacéo do deslocamento v, em v,., define-se 0 novo referencial.

Isto também se aplica a componente R, em funcdo da coordenada generalizada v),. Para

concluir o desacoplamento do sistema, expressa-se 0 momento R, em termos da rotagao v,.

Ficando:

Ry = Sy Uy (2.23 a)
R,=S$,,.79, (2.23 b)
R.=S..7, (2.23 ¢)

O referencial generalizado é obtido via translacdes a e b dos eixos, além de uma rotacao
com inclinagdo 6 (positiva no sentido de giro da direcdo x para a dire¢do x). A origem do novo
referencial xy € definida nas coordenadas (a,b) em relacdo ao plano cartesiano xy e
denominada de centro eléstico (STAMATO; MANCINI, 1973). Conforme ilustrado na figura
2.29 e nas equagdes (2.14):

Figura 2.29: Coordenadas do Centro Elastico
yh

Ry

0 a
Fonte: O Autor (2019)

2.5
tg(20) =< "; (2.24 a)
xx — Pyy
SyceSxx — Scx- Sxy
a= 2.24 b
Sxx-Syy — S,gy ( )
—Syc-Syy + S5 S
p=—2 "R (2.24¢)

Sxx-Syy — SZy
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b) Painéis em direcdes ortogonais e Unico travamento horizontal

Conforme apresentado em Stamato (1978), define-se o painel com molas na dire¢éo x
(denominado simplesmente de molas x) e outro na direcdo y (as molas y). A rigidez na diregdo

x € representada por k,; e na direcdo ortogonal de k. Vide figura 2.30.

Figura 2.30: Painéis ortogonais com molas x e y
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Fonte: (STAMATO, 1978)

As componentes nas trés dimensdes, por molas, sdo expressas por:

Dxj =Dyr =1 (2.25a)
Dxk = Pyj =0 (2.25 b)
Dcj = —Pxj-Yj = Pyk-Xk (2.25¢)

Uma vez que o produto da rigidez (k) nas molas x pelas coordenadas na diregdo y (y;)
é nulo, verifica-se 0 mesmo para o produto da rigidez (k) nas molas y pelas coordenadas na
direcdo x (x;). Assim, pela definicdo ilustrada na figura 2.26 e expressa na equacao (2.14), tem-

se 0s coeficientes de rigidez, expressos por:

Sap = ) Ksi-Pai- Do (226 0)

Sxy = Sxc = Syc =0 (2.26 b)

Sxx = Z ksj (2.26 ¢)
J

Syy = Z sk (2.26 d)
k
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S,. = Z ke v} + z Ko % (2.26 ¢)
k

J

Aplicam-se agora as eq.’s (2.26) nas eq.’s (2.22) e chega-se, a:

Ry

VU, = S_ (227 a)
XX
Ry

vy ==L (2.27 b)
Syy
R,

Ve = — (227 C)
SCC

Valendo-se da eq. (2.19) e das eq.’s (2.25) e (2.27), concluem-se como forgas nas molas

X €y, as seguintes:

F; R R

J X cc
A N (2.28 a)
ksj Sxx Scc g
Fk Ry Rcc
— =X Xy (2.28 b)
ksk Syy Scc k

2.1.4. Anédlise dos painéis pela técnica do meio continuo

A Solugdo via Técnica do Meio Continuo é procedida analiticamente, sendo
caracterizada pela reducdo do nimero de pardmetros elésticos e geométricos, descrevendo o
comportamento macroscépico da estrutura. A solucdo discreta consiste em analisar a estrutura
via métodos numeéricos, tais como: Método das Diferencas Finitas, Método dos Elementos
Finitos, Método dos Elementos de Contorno e dentre outros mais. Permitindo assim a resolucao
de estruturas com maior diversidade geométrica. Esta ultima forma de solucdo é caracterizada
pela possibilidade de discretizacdo da estrutura em diferentes formas, seja unidimensional,

bidimensional ou tridimensional e por diversas fungdes interpoladoras.

A Parede, do inglés “Wall”, ¢ um elemento estrutural rigido ao esfor¢o cortante e

deformavel apenas ao momento fletor. Vide figura 2.31.
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Figura 2.31: Carregamentos, deformada e elemento diferencial da Parede Isolada

FW e F_ —.—.——ar

{w}

QE !

GO0, RN} N\ i

FONTE: (STAMATO, 1980)

Os parametros envolvidos sdo: u,, — Deslocamento na Parede em fungéo da altura Z;
q,, — Forca horizontal distribuida em forma de trapézio na altura total [ e F,, — Forca horizontal
aplicada no topo da parede. Equilibra-se o elemento diferencial da parede apresentada na figura
2.31, em termos do momento no ponto central da face superior do elemento diferencial, bem

como procede-se o equilibrio de forgas horizontais, chegando-se a:

dM,,
d—Z = —QW (229 a)
dQw _

d—Z = —(qw (229 b)

onde: Q,, — Esforc¢o cortante da parede em funcéo da altura e do carregamento lateral e

M,, — Momento fletor da parede em funcéo da altura e do carregamento lateral.

Deriva-se a equacdo (2.29 a) e apos aplicagdo na equacao (2.29 b), tem-se a relagdo

diferencial entre 0 momento fletor e carga distribuida q,,, expressa por:

d2M,,

W =qw (230)

A funcéo do carregamento horizontal g,, € adotada como trapezoidal (para computar a
acao do vento) e fica escrita como:

aw(@ = (112).2 + g (231)
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onde: q; € o valor da carga horizontal distribuida, no topo da parede (Z = 1) e

qo € o valor da carga horizontal distribuida, para a base da parede (Z = 0).

Baseado na equacdo diferencial (2.30) que rege a relacdo do momento fletor e do
carregamento, basta proceder a integracdo dupla a fim de explicitar a equacdo do momento

fletor M,,, ficando:

—qo\ 28 72
i l qo) TGS+ CLZ G (2.32)

MW(Z) = ( 6

A fim de determinar as constantes de integracéo, utiliza-se duas condic¢des de contorno
em esforcos. A primeira € o momento fletor nulo no topo da parede [M,,(Z=1)=0] e a
segunda condicdo é o esforgo cortante nulo [Q,,(Z = 1) = 0], também no topo da raferida
parede. Resultando assim, como equac¢do do momento fletor:
41— qo) z° z? ?

l l
MW(Z)Z(f .?-i-qo.?— FW+(qo+q1).§ .Z+Fw.l+(%+2.q1).g

(2.33)

Por fim, para obter a equacgdo da deformada u,,(Z), utiliza-se a equacdo diferencial da

linha eldstica, expressa por:

d*uy, (Z)

(Bw- 1)

= M, (2) (2.34)

Aplicando a equacédo (2.33) na eq. (2.34) e realizando-se a integracdo por duas vezes,
tem-se:
Z5 z* Z3 Z?

l 12
onde: C; = [FW + (q, + ql).z] e C,=|F,.l+(q, + 2. Ch)-g .

Aplicam-se agora, duas as condi¢des de contorno: uma em deslocamento e a outra em
rotacdo (na base do pilar e tidas como nulas), concluindo-se que as constantes de integracéo Cs
e C, sdo nulas. Isto para o apoio conferido pelo engaste, conforme ilustrado na figura 2.31.
Ficando expressa a equacédo da deflexdo lateral do pilar, em termos do carregamento distribuido

e da carga concentrada no topo, expressa por:
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- C1_+ Cz._

L g 2.
120.1 "0 6 2 (2.36)

(7)) = {<q1 .

VA z* Z3 Z?
(Ew-1Iy)" }

A equacdo (2.36) pode ser simplificada para o caso particular onde ndo se aplique a
carga concentrada no topo (F, = 0) e com a carga lateral distribuida constantemente na altura

e de valor gq,,, ficando expressa por:

gyl AN
uW(Z) = m l(l - T) + 47 - 1] (2.37)

a) Parede sobre base elastica

O procedimento realizado neste item 2.1.4 das equacdes (2.29) a (2.35) permanecem
inalterados, modificando apenas as condi¢des de contorno para a obtencdo das constantes de
integracdo C; e C,. Vide figura 2.32 onde o0 apoio na base ¢ elastico e de constante g. Assim a
rotacdo ndo sera mais nula e sim a razdo entre 0 momento fletor na base M,,(Z = 0) pelo

coeficiente de rigidez g do referido apoio elastico.

Figura 2.32: Parede com base engastada elasticamente e sua deformada
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Fonte: (MANCINI, 1972)
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Baseado na equacdo do momento fletor (2.33), conclui-se momento na base da parede

para o caso particular de F,, = 0 e g,, constante, expresso por:

Q- 12
M,z =0) =1~ (2.38 @)
du, (Z M, (Z =0 12
—CVZVZ( )| _Mw@Z=0) q;” (2.38 b)
7=0 9 -9

Por fim, aplicando-se a condigdo de contorno expressa na eg. (2.38 b) sobre a eq. (2.35),

obtém-se a equacdo da deformada u,, (Z) para base elastica, definida por:

gt ( 2)4 Z qw- 1?
uW(Z)_24-(EW-Iw)'I1 R (2.39)

G- 17

com: C; = (E,,.1,). 2.9
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2.2. DINAMICA DAS ESTRUTURAS

2.2.1. Definigdes iniciais

A caracteristica fundamental para um movimento ser harmonico € a periodicidade do
mesmo. Em outros termos é o movimento que se repete em certo intervalo de tempo,
denominado de periodo (). Para exemplificar o movimento harménico é apresentada a fungao

do deslocamento no tempo u(t) na eq. (2.40) e representacdo grafica na figura 2.33.

Figura 2.33: Movimento harmdnico u(t)

Im/f\/\ ,
VL\JV

Fonte: (THOMSON, 1978)

u() =u(t+71) =A.senb (2.40)

2.2.2. Sistema massa-mola

Equivale a movimentacdo de um grau de liberdade e para tanto admite-se uma massa m
solicitada a movimentar-se ou por uma forga excitatriz ou devido a condicdes iniciais de
deslocamento e velocidade. Sendo entdo admitido o sistema massa-mola submetido a forga
F(t) e com rigidez k, apresenta-se na figura 2.34 o deslocamento u(t) em modulacdo

harmonica.
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Figura 2.34: Deslocamento u(t) de um sistema massa-mola

[N/
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Fonte: (FONSECA, 1964)

Ao analisar o sistema massa — mola e desconsiderar a dissipacéo de energia, diz-se que
o sistema analisado é ndo amortecido. Neste sentido, as forcas reativas no referido sistema sao:
a pseudo-forca inercial (m. ii) e a forca de reacdo da mobilizacdo da mola (k. u). Onde a parcela
inercial (m. it) na realidade é uma pseudo-forca, pelo fato de ndo ser aplicada na estrutura e sim
representante da resisténcia a movimentacdo (inércia). Tais forcas reativas sdo oriundas da

atuacdo da forca F(t), conforme apresentado na figura 2.35.

Figura 2.35: Forcas reativas no sistema massa-mola ndo amortecido

u((t)
/ —
‘ F(t) Jew F(t)
m — m —
—
0 0 mi 0 0

Fonte: O Autor (2019)

A partir do equilibrio das forcas atuantes no diagrama de corpo livre na massa "m" e em
conformidade do conceitos discutidos em Paz (1992), a equacdo diferencial para o problema
massa-mola pode ser obtida aplicando-se o Principio de D’Alembert. Para tal, o sistema esta
em equilibrio dindmico mediante insercdo de forcas externas reativas, dentre estas a pseudo-
forga que compute a parcela inercial do movimento em questdo. Neste sentido, ao realizar o

equilibrio de forgas, conclui-se a equacdo diferencial que caracteriza o problema em quest&o,

como:

F(t) = m.ii(t) + k.u(t) (2.41)

J4, no sistema massa-mola amortecido é caracteristico a atuacdo de forcas reativas
devido a rigidez, outra oriunda da pseudo-forca decorrente da inércia do sistema e ainda a forca

dissipativa devido ao amortecimento (c.u). Com tais forgas dissipativas e reativas, configura-
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se um sistema ndo conservativo onde a energia introduzida ao sistema (AE) é dissipada por
diversas fontes, a exemplo do atrito entre os materiais constituintes da estrutura (computada
como Au?). Com a quantificacédo da forca dissipativa de amortecimento caracteriza-se o estado

de equilibrio de forcas. Conforme é apresentado nas figuras 2.36 e 2.43.

Figura 2.36: Forgas reativas no sistema massa-mola amortecido

u(t)
— k.u
F(b) — F(t)
m —_— .U ——— m >
— R ]
C O O m.i O O

Fonte: O Autor (2019)

Aplicando-se o Principio de D’Alembert no sistema massa-mola amortecido

apresentado na figura 2.36, chega-se a equacéo diferencial que rege o problema:

mi+cu+ku=F() (2.42)
2.2.3. Vibracdo ndo amortecida

a) Analise Harmonica

Estruturas continuas sdo caracterizadas por possuir massa e rigidez distribuidas ao logo
do comprimento, ou seja, no dominio. Desta forma, a vibracdo numa determinada estrutura

ocorre como combinacao dos diversos modos de vibracdo. Vide figura 2.37.

Figura 2.37: Frequéncias harménicas: (a) viga biapoiada e (b) viga Biengastada
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2 n.wdo::le l ___l - o~ Ao T 2° modo de
vibracio Y F4 - vibracao
3° modo de | A . I l_..._ (b)
vibraciao z
(4
o JWZ
g (a)

Fonte: (KISELIOV, 1983)
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Para uma estrutura com determinado conjunto de frequéncias harmonicas
{f1, f2, f3, -, fn}, conforme mostrada na figura 2.38, pode-se expressar v(x) como combinagédo
das frequéncia. Tem-se a vibracdo caracterizada ao longo dos varios modos de vibragdo desde

uma semi-onda (no 1° modo de vibracdo, com frequéncia fundamental f;) até a n-ésima semi-

onda, {f;, 2.f1, 3.f1, .., n.f1}.

Figura 2.38: Superposicdo modal de frequéncias

> T
v(z) = Z b, sin ! T

n=1

Fonte: (CLOUGH; PENZIEN, 1993)

Na andlise harmdnica é definida como frequéncia fundamental f;, aquela que necessite
de menor quantidade de energia para ativagdo do modo de vibragdo. Sendo caracterizada por
uma unica semi-onda e sendo responsavel pelo maior deslocamento da estrutura. No caso
apresentado nas figuras 2.37 e 2.38 0 modo mais comprometedor da integridade estrutural sera

0 primeiro, isto tomando como base a ocorréncia do estado limite ultimo por flexdo (ELU-F).

Em geral, para um sistema continuo, onde a vibracdo ocorre (por definicdo) pela
combinacdo dos modos fundamentais, compreendendo infinitas frequéncias. Neste sentido, é

possivel organizar as frequéncias em ordem crescente e realizar a combinagdo para as primeiras
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frequéncias e desprezar as demais, isto sem grandes prejuizos. Tal modelagem é viavel devido

ocorréncia das maiores amplitudes de deslocamento, com as menores frequéncias.

Utilizando a série de Fourier, demonstrada e com aplicabilidade descrita em Kreider
(1966), para expressar o deslocamento u(t). Considera-se também que 0 comprimento x esta
para o periodo 2L, assim como o angulo 8 esta para 2. E valendo-se também da definic¢do do
angulo 8 como o produto da frequéncia angular fundamental w; pelo tempo t. Escreve-se o

deslocamento u(t), em termos da série de Fourier, como:

o)

u(t) = % + z a;.cos(j. wy.t) + z bj.sen(j. w;.t) (2.43)

j=1 j=1

21
onde: 7, € o periodo fundamental e apresentado na figura 2.39, e: w; = .
1

Figura 2.39: Fungéo com periodo 2@

V(\V o \V/8

Fonte: (KAPLAN, 1963)

Podendo ainda, a série apresentada na eg. (2.43) ser reescrita para o agrupamento das

funcBes trigonométricas, como:

o)

u(t) = Z .cos(j.wy.t — gbj) (2.44)

onde: Cj = (aj)z + (b])z

Graficamente, os espectros de frequéncias sao caracterizados por valores pontuais, uma
vez que ndo existem valores de frequéncias intermediarias. Conforme €é apresentado na figura
2.40, e ainda observa-se que a primeira frequéncia de vibracdo ndo possui defasagem, por este

motivo que o grafico das defasagens ¢; em termos das frequéncias w; inicia na origem.
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Figura 2.40: Espectro de frequéncias w;

c]. 4 ¢1 A

Valores Pontuais Valores Pontuais

0 1.w, 2.0, 3.w, w; 0 1w, 2.w, 3.w, w

Fonte: O Autor (2019)

Na analise estrutural, determinam-se as frequéncias de vibracdo da estrutura e
enquadram-nas no espectro de frequéncias naturais. Caso ocorra a coincidéncia de alguma
destas frequéncias de vibracéo estrutural com qualquer uma das frequéncias naturais da mesma,
configura-se o fendbmeno de ressonédncia. Em caso contrério, diz-se que a estrutura ndo corre

risco de colapso por ressonancia.

b) Vibracdo Forcada Harmonicamente

Admite-se para a figura 2.35 a excitagdo harmoénica em termos da combinagdo de
funcBes trigonométricas da frequéncia excitatriz w, ficando a equacao diferencial ordinaria do

problema, eq. (2.41), reescrita como:

m.il + k.u = F;.cos(w.t) + F,.sen(w.t) (2.45)
A solucdo homogénea, oriunda da vibracdo livre, sera:

uy(t) = A.cos(w.t) + B.sen(w.t) (2.46)
A solugdo particular (quanto ao deslocamento, velocidade e aceleracdo) sera:

up(t) = C.cos(w.t) + D.sen(w.t) (247 a)

up(t) = C.@.cos(@.t) + D.w.sen(@.t) (2.47 b)

iip(t) = C.@%. cos(w.t) + D.w?. sen(@.t) (2.47 ¢)
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Aplica-se a solugdo particular constante nas eq.’s (2.47) na eq. (2.45), determinando-se
as constantes C e D da referida solugdo. Em seguida a solugédo geral serd a unido das solucdes
homogénea (eq. 2.46) e particular (eq. 2.47 a), e os coeficientes A e B sdo determinados via

imposicédo das condices iniciais de deslocamento u, e de velocidade 1,. Resultando:

u(t) = A.cos(w.t) + B.sen(w.t) + C.cos(@.t) + D.sen(@.t) (2.48)
de: A = c. p=2_p?, = A D= f
onde: 4=t ’ T ‘W’ T m.(w? - @2) © " m.(w? - @2)

Define-se a deformacdo estatica 6, como a razdo entre a forca e a rigidez, e evidencia-
se ainda o fator de amplificacéo j, a fun¢do do deslocamento ao longo do tempo fica reescrita

como:

u(t) = uy.cos(w. t) + %.sen(a). t) + 6:1.j. [cos(@.t) — cos(w.t)]

+ 6872 ). [sen(@.t) — B.sen(w. t)] (2.49)
Ci = 1 . _w . F1_F1 Fz_FZ
onde.]—l_ﬁ2 ; ﬂ—z ;o O =% ¢ O =

A solucdo geral pode ser dividida em duas parcelas, a primeira seré a parcela transiente

ur(t) e asegunda sera a parcela permanente up,,.(t), conforme segue:
ur(t) = Ep. cos(w.t — ¢g) — 6.2, j. cos(w. t) — 6:2.j. B.sen(w. t) (2.50 a)

Uper(t) = 5:1.j. cos(w.t) + 6_52.j. sen(w.t) (2.50 b)

u
onde: Eg = ug.4/1+tg2@, e ¢o=tg_1< 0)_

. Ug

Graficamente, o fator de amplificacdo dindmica j, é representado na figura 2.41 em

funcéo da razéo B das frequéncias da solicitacdo w e do sistema w.
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Figura 2.41: Fator de amplificacdo dindmica j por razdo B de frequéncias
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Fonte: Adaptado de (FONSECA, 1964)

Observa-se que a solucdo apresentada na eq. (2.49) é valida para a razdo de frequéncias
B diferente da unidade. No caso de (8 = 1), ocorre o fendmeno de Ressonancia, uma vez que
os deslocamentos tendem a infinito. A ocorréncia de ressonancia é devida ao sistema estudado
nessa secdo ser considerado conservativo, por nao ser amortecido (ndo havendo dissipacdo da
energia fornecida ao sistema pela forca excitatriz). E conveniente subdividir o funcionamento
do sistema massa-mola em trés casos: o caso 1 onde a razdo (8 < 1) € inferior a unidade, o

caso 2 quando (B > 1) é superior a unidade e o Caso 3, no qual, a razdo 8 assume a unidade.

No caso da razdo £ unitaria, a resposta do deslocamento do sistema u(t) apresentado
na eg. (2.49) é conduzido a uma indeterminacdo matematica do tipo divisdo de zero por zero.
E a fim de eliminar tal indeterminacdo matematica, procede-se a multiplicar da solugédo
particular up(t), eq. (2.47 a), pela variavel independente “t”. Consistindo em empregar a teoria
das equacdes lineares com coeficientes constantes, conforme apresentado por Fonseca (1964).

Resultando a solucéo particular e a solucdo geral para o caso de § unitario, definida por:

up(t) = [C.cos(w.t) + D.sen(w.t)].t (2.51 a)

F

s 5k 5
u(t) = Ey.cos(w.t — @) + l% w.t+ %l .sen(w. t) + %.w. t.cos(w.t) (2.51b)
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onde; E, e ¢, sdo definidos na eq. (2.50 a).

O deslocamento para o caso da razdo £ unitaria é apresentada na figura 2.42. Nesta
configuragdo do sistema massa — mola ndo amortecido e com razdo de frequéncia unitéria,
configurando assim a coincidéncia da frequéncia de excitacdo "@" e da frequéncia natural de
vibragdo da estrutura "w". Para tal, observa-se que o deslocamento u(t) € crescente e tende a

infinito, isto devido a desconsideracdo da dissipacdo de energia por amortecimento.

Figura 2.42: Deslocamento para a razao f unitaria

85
A =TT St
-~
A7\ ——— u(®

Fonte: Adaptado de (FONSECA, 1964)

2.2.4. Vibracgéo amortecida

De acordo com as vibragdes ciclicas define-se a energia dissipada no sistema. E ainda
em decorréncia do tipo de amortecimento € observada a variabilidade da relagcdo forga —

deslocamento e dai a relevancia do estudo da dissipacao energética via amortecimento.

a) Ciclo de Energia

Os sistemas amortecidos s@o (por defini¢cdo) ndo conservativos, pois ocorre 0 CONSUMo

de energia através dos mecanismos de amortecimento. Sendo caracteristico o ponto de
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equilibrio, no qual a energia introduzida no sistema AE € igual a energia interna dissipada AuP.
A0 passo que a energia introduzida € superior a energia dissipada, tem-se o regime instavel. Ja

o0 regime estavel é quando a energia introduzida é inferior a energia dissipada. Vide figura 2.43.

Figura 2.43: Ciclo de energia introduzida e dissipada no sistema

AuP
Energia 4 AE
Ciclo
Ponto de Equilibrio
© | (aw? = 2E)
0 A, Az Amplitude (SDF)
Instavel «—1—3» FEstavel

Fonte: O Autor (2019)

Quando a energia fornecida ao sistema AE € superior a energia dissipada por
amortecimento AuP, configura-se o aumento gradual das amplitudes dos deslocamentos e o
sistema tende a romper por nao suportar tais deformacdes. Ja na ocorréncia da energia dissipada
AuP superar a introduzida AE, verifica-se o decréscimo dos deslocamentos, o que configura a

estabilidade da movimentacdo. Tais condi¢des de equilibrio séo representadas na figura 2.44.

Figura 2.44: Ciclo de energia: (a) estaticamente estavel e dinamicamente instavel com AE > Au”

e (b) estatica e dinamicamente estavel com AE < AuP

(@) (b)
Fonte: Adaptado de (DEN HARTOG, 1972)

Enquanto na vibracdo ndo amortecida verifica-se o deslocamento tendendo a infinito
(com o efeito da ressonancia), na vibracdo amortecida constata-se apenas a amplificacdo dos
deslocamentos quando da coincidéncia das frequéncia de solicitacdo (w) e de vibragdo natural

(w) da estrutura. Fato este que € evidenciado na figura 2.45.
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Figura 2.45: Amplificacdo do deslocamento na condicéo de ressonéncia em comparagdo com o

sistema amortecido

r
U SISTEMA NAO AMORTECIDO
w — frequéncia da solicitagio
Umidx |55 =52 w, — frequéncia natural

SISTEMA AMORTECIDO

Fonte: O Autor (2019)

Devido a dissipacdo de energia ocasionada pelo amortecimento, justifica-se a ndo
ocorréncia do fenbmeno de ressonancia para o caso da razdo de frequéncias ser unitaria, uma
vez que os deslocamentos sdo amplificados na ocorréncia de S unitario. Porém mesmo sem que
os deslocamentos chegem a infinito, a estrutura rompe por ndo apresentar capacidade de suporte
aos enormes deslocamentos acarretados neste estado de solicitacdo. Vide na figura 2.46 que o

deslocamento maximo u,,4, supera o deslocamento suportavel u* pela estrutura.

Figura 2.46: Deslocamento maximo quando da condicéo de ressonancia

u J}
Const.

max / /\
u*

u

/
/
/
/ » 1
0
o\ \/

const.

Fonte: O Autor (2019)

Mesmo que o deslocamento ndo seja infinito se tornaria muito dispendioso o
dimensionamento estrutural para suportar tais deformacbes amplificadas, apresentadas
esquematicamente na figura 2.46. Bem como tornaria muito desagradavel a utilizacdo da

estruturas, quanto ao conforto sensorial dos usuarios. Assim, a solucdo é impedir que ocorra



56
Weslley Imperiano Gomes de Melo

este cenario de coincidéncia de frequéncias, alterando a massa ou a rigidez estrutural de forma

que os modos naturais de vibragdo ocorram com frequéncias distintas da excitatriz.

No ponto de equilibrio (AE = AuP), indicado na figura 2.43, é possivel ocorrer a
condicdo de instabilidade, isso em decorréncia da estrutura ndo suportar as elevadas
deformacBes. Em estruturas de aco, verifica-se a instabilidade plastica ap6s o fenémeno de

estriccdo. Ja, em estruturas de concreto ocorre 0 esmagamento das bielas.

b) Vibracdo Amortecida Livre

Na solu¢do homogénea da equacéo diferencial do sistema massa — mola amortecido que
consta na figura 2.36 e cuja EDO é apresentada na equacdo (2.42), serd desconsiderada a forca

excitatriz F(t). E para tal, propde-se como solu¢do homogénea a fungdo exponencial:

u=Aert (2.52 a)
i =AXert (2.52 b)
il = A 22 et (2.52¢)

Aplica-se a solucdo proposta nas equacdes (2.52) na eq. (2.42) com a imposicéo da forca

excitatriz nula, ou ndo atuante, F(t) = 0. Chegando-se a equacdo caracteristica:

- c - k

AP+—14+4—=0 (2.53)
m m

A equacdo caracteristica do problema homogéneo, eq. (2.53), € uma equacdo de 2° grau

e para tanto as raizes A, S30 expressas por:

T=——+t (i) — w2 (2.54)
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A partir das raizes apresentadas na equacao (2.54), pode-se dividir o estudo do problema
homogéneo em trés casos, estes em funcéo do sinal da raiz quadrada das raizes 2. O Caso 1 é
aplicavel aos automoveis e caracterizado pelo amortecimento supercritico, j& o Caso 3 é
aplicavel as estruturas usuais da engenharia civil, a exemplo de edificios e pontes. No Caso 2 é
caracterizado o amortecimento critico, onde o termo da raiz da quadrada das raizes A € nulo,

ver eg. (2.54). Ficando os casos, delineados no seguinte formato:

» Caso 1: Amortecimento supercritico

(%)2 —w2>0 ~c>+2.mw

» Caso 2: Amortecimento critico

Ccr = ime
» Caso 3: Amortecimento subcritico
c<t+2.muw
Utilizando a definicdo de razdo de amortecimento ¢ como a divisdo entre o

amortecimento ¢ e 0 amortecimento critico ccg, reescreve-se as raizes apresentadas na eq.
(2.54), como:

I=(-¢£J8-1).0 (2.55)

Onde {:'CCR =cC (S SCR = 1.

Nas solu¢des homogéneas para os trés casos de gradacao de amortecimento, procede-se
a imposicao das condigdes iniciais de deslocamento u,, e de velocidade 1, ilustrados na figura
247,

Figura 2.47: Condicdes iniciais de deslocamento e velocidade

u(t)

“ ]| ey
AOONS

Fonte: Adaptado de (CLOUGH; PENZIEN, 1993)
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Os trés casos de amortecimento, quanto a intensidade, s&o expressos em termos da razao

de amortecimento &. Possuindo as seguintes funcGes como respostas para o deslocamento u(t):

» Caso 1: Amortecimento supercritico (& > 1)

u(t) = e 5@t [/T. cosh (w/fz - l.w. t) + B.senh (\/52 - l.w. t)] (2.56)

Uy +up.§.w

wAJEE—1

Graficamente, na figura 2.48, observa-se que em decorréncia do amortecimento ser

onde:A=u, e B=

supercritico € notorio que o0 consumo energético via dissipacdo por amortecimento € maior do

que a energia fornecida ao sistema. Caracterizando, assim, a ndo ocorréncia de oscilacéo.

Figura 2.48: Movimento ndo periddico com & > 1

u(t)

Fonte: Adaptado de (THOMSON, 1978)

» Caso 2: Amortecimento critico (£ = 1)
u(t) = (A.t+ B).e @t (2.57)
onde:A=1y+w.u, e B=u

Na figura 2.49 sdo apresentadas trés possibilidades de movimento amortecido critico

para o deslocamento inicial u, e em funcédo do sinal da velocidade 1.
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Figura 2.49: Movimento criticamente amortecido
u(t)

iy >0
Uy =0
P

/U0<0

Ug

Fonte: Adaptado de (THOMSON, 1978)

» Caso 3: Amortecimento subcritico (¢ < 1)

u(t) = e 4t [A.cos(wgy.t) + B.sen(wy. t)] (2.58)
onde: wy =w.\/1—¢2 ; A=u; e wgzB=1+¢ w.u,.

Neste caso, observa-se através da figura 2.50 que o movimento amortecido
subcriticamente € harmonico e logo caracterizado como oscilatorio, porém vai diminuindo

rapidamente pela envoltdria da fungdo exponencial.

Figura 2.50: Movimento amortecido com § < 1
u(t)

Fonte: Adaptado de (THOMSON, 1978)

Observa-se na figura 2.50, que o deslocamento maximo pode ser maior do que o
deslocamento inicial u,, isto dependendo da velocidade inicial u,. Também é possivel

reescrever a funcéo resposta de deslocamento para o Caso 3, equacdo (2.58), em termo de seno,
como:

u(t) = e~ 59t Cy.sen(wgy. t + By) (2.59)
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Uy + & w.ugy)? Ug. W
onde: wy = w.4/1—&2 ; Co=\/ug+(0 62 ) e ﬁoztg_1<0—d)'

¢) Vibracéo forgcada harmonicamente

Admite-se a excitagdo harmoénica para o sistema massa — mola apresentado na figura
2.36 sob formato de combinacdo linear de funcdes trigonométricas e com frequéncia .
Procede-se analogamente a Silva (2000), obtendo-se a equacdo diferencial ordinaria do
problema (a partir da eq. 2.42) expressa por:

m.ii + c.u+ k.u = F;.cos(@.t) + F,.sen(@.t) (2.60)
A solugdo homogénea, com os coeficientes a determinar, sera:
uy(t) = A.cos(w.t) + B.sen(w. t) (2.61 a)

A solugdo particular com os respectivos coeficientes a determinar em termos de

deslocamento, velocidade e aceleracdo, sera:

up(t) = C.cos(w.t) + D.sen(@.t) (2.62 a)
Uup(t) = C.w.cos(w.t) + D.w.sen(@.t) (2.62 b)
iip(t) = C.@%. cos(@.t) + D.w?.sen(@.t) (2.62 ¢)

Aplicando-se a solugdo particular constante nas eq.’s (2.62) na ed. (2.60), determinam-
se as constantes C e D da referida solugdo. Em seguida a solucéo geral sera a uniéo das solucoes
homogénea e particular, e com os coeficientes A e B determinados via imposicdo das condicdes

iniciais de deslocamento u, e de velocidade 1t,. Assim expressa por:
u(t) = A.cos(w.t) + B.sen(w.t) + C.cos(@.t) + D.sen(@.t) (2.63)

_ _ - U w - )
onde: A =uy—C ; B=—+&—A—-D.—;
Wq Wq Wq
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po U=P)F-288F o (A-p)FR+284F
k(-2 + (2.6.8)7] k(@ -BD2+ (2.6.8)72T

Realizando operacGes matematicas, tem-se a funcdo do deslocamento ao longo do

tempo, reescrita como:
u(t) = e 59t [A.cos(wy.t) + B.sen(wy.t)] + C.cos(@.t) + D.sen(@. t) (2.64)

A solucdo geral é dividida em duas parcelas, a primeira € a parcela transiente e a segunda
é a parcela permanente. A parcela permanente esta ligada a frequéncia da solicitacdo w,

resultando em:
ur(t) = e 59t [A. cos(wgy.t) + B.sen(wy. t)] (2.65a)
Uper(t) = C.cos(w.t) + D.sen(@.t) (2.65b)

A parcela transiente expressa na equacao (2.65 a) equivale a uma perturbacao da parcela

permanente. Conforme pode-se observar na figura 2.51.

Figura 2.51: Deslocamento permanente em face do transiente

u(t)! Up, (t) = C.cos(w.t) + D.sen(@.t)

SN N
wn\/ \/ \/

u(t) = ur(t) + upe, (t)
(8) ’F&ii /f\/_ tt +
vmﬂs YAV

Fonte: Adaptado de (FONSECA, 1964)

A amplitude do movimento permanente, apresentado na equacgéo (2.65 b), expressa em

Unica funcdo de cosseno, fica reescrita como:

Uper () = k /Fz + F2.cos(@.t — ¢pp,) (2.66)
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e f=

_ P2
onde: . — tg-t 2.6.8.F +(1—p ).le | jzj 1

(1—B2).F, — 2.£.5.F, (1— B2)2 + 4.82.52

glel

Ao analisar as condi¢bes de ressondncia e do Fator de Amplificacdo Dindmica
(FAD = "j") para o sistema amortecido, verifica-se que ndo €é possivel ocorrer valor infinito do
FAD, isso devido a dissipacao de energia pelo amortecimento. A fim de determinar o méximo

valor do FAD, calcula-se a derivada desse em relacdo a razdo de frequéncias 8 e extremiza-se
ao impor nulidade na referida derivagcdo. Com: g = /1 — 2. &2, escreve-se:

d

a5 () =p.12.1-p*)-4.8]=0 (2.67)

Debrucando-se ainda mais na definicdo da razdo de frequéncias g = /1 — 2.¢2,
equacado (2.66), conclui-se a ocorréncia de vibracdo apenas para as estruturas com razao de
amortecimento ¢ menor que a unidade, por apresentar raiz quadrada de ndmero real.

Constatando-se também esta informacdo pela figura 2.52.

Figura 2.52: Amplificacdo do movimento via FAD

'
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i 5:\\\
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0 L5 = i
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Fonte: Adaptado de (FONSECA, 1964)
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Ainda, analisando a equacédo da razdo de frequéncias S (razdo entre as frequéncias da
solicitacdo e da vibracdo da estrutura) em detrimento da razdo de amortecimento &, vide
equacio (2.67), e constata-se que nio ocorre ressonancia para & > 2-/2, Também observa-se
que os valores maximos do FAD, na condigdo de ressonancia (8 = 1), ocorrem para raz6es 3
menores que a unidade. Onde os picos de deslocamentos sdo menos recuados, quanto menor

for a raz&o de amortecimento ¢.

O angulo de fase incial ¢,, € expresso, por:

D QEP.F+1—FD).F,
9 bm) = G =T gD F, = 225, (2.68)

No caso particular, da forca excitatriz ser fungdo apenas do cosseno, tem-se o angulo de

fase inicial expresso na equagéao (2.68), reescito como:

2.8
tg(dm) = (I_L[fz) (2.69)

sendo apresentado graficamente na figura 2.53.

Figura 2.53: Angulo de fase inicial

180°

150°

120°

920°

60°

30°

0 1,0 2,0 3,0
Razio de frequéncias f = w/w,,

Fonte: Adaptado de (SORIANO, 2014)
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d) Espaco de estados

Utiliza-se espaco de estados, quando a analise é procedida em vetores contendo
variaveis distintas. No caso da analise estrutural é exemplificavel com o vetor que contenha, ao
mesmo tempo, esforgos nodais, rotagdes e deslocamentos. Geralmente para representar tal vetor

utiliza-se a letra X, ficando o vetor de estado escrito como:

T

¢
d

X} = (2.70)

onde: 9t — Esforco Normal, ¢ — Rotag0es e d — deslocamentos.

Uma aplicacdo classica dos espacos de estado ocorre na analise matricial de estruturas,
onde o vetor de varidveis englobam os esforcos solicitantes e os graus de liberdade.
Correlacionando tais vetores de estados para os nos inicial e final da barra, via matriz de
transferéncia [T]. Tal equacionamento é observado na figura 2.54; na equacéo (2.71) e na eq.
(3.44 a).

Figura 2.54: Vetor de estados para barra genérica
U,
v

0; Graus de Liberdade T4

AN n%

—)>

o—) o) Uy
N; %y
Y, Esforgos Solicitantes 7f
M; M
Fonte: O Autor (2019)
(UF) u
Vs (v:]
Of 0;
TARIURY? (2.71)
Vs Vi
\My) M;

sendo: u;, v;, 8; — Graus de liberdade para o né inicial, quanto a incidéncia da barra;

uy, vy, 05 — Graus de liberdade para o no final, quanto a incidéncia da barra e

[T] — Matriz de transferéncia da barra.
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A equacdo do movimento, vide equacdo 2.42, é representada em termos matriciais, pelas

parcelas de rigidez, massa e amortecimento, por:
[M].{ii} + [C].{&} + [K].{u} = {F} (2.72)
onde: [M] — é a matriz de massa da estrutura;

[C] — é a matriz de amortecimento estrutural;

[K] — é a matriz de rigidez da estrutura e

{it}, {11}, {u} — sdos os vetores de aceleracdes, velocidades e deslocamentos, definidos nos

graus de liberdade.

Na resolucdo da equacdo (2.72) almeja-se entdo, a diagonalizacdo das trés matrizes que
compdem o sistema de equacdes diferenciais, a fim de gerar um conjunto com "n" equacoes
diferenciais desacopladas, ou seja, independentes entre si. Para facilitar tal diagonalizacéo
utiliza a matriz de amortecimento [C] proporcional as matrizes de rigidez [K] e de massa [M]
da estrutura. Com este artificio, procede-se a diagonalizacdo das matrizes [K] e [M], uma vez

que a matriz [C] ja estara automaticamente diagonalizada.

A diagonalizagdo consiste em realizar a solugdo do problema de autovetores e
autovalores associados a anélise processada. E, para tal resolugdo pode-se citar os seguintes

métodos de processamento:

Sequéncias de Sturm;

Meétodo de Lanczos;

Método de Jacobi (Ver item 2.6);
Método de Given;

Método de Househoulder;
Método da Bissec¢ao;

Métodos LR, QR, QL e

Método de Moler & Sterwart.

YV V. V V V V V V
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e) Excitacdo aperiddica

Admitem-se fontes excitatrizes ndo periddicas, a exemplo de rajadas de vento. E a fim
de proceder a integracéo (resolucao) da equacéo diferencial ordinaria, vale-se da subdivisdo da

fungéo F(t) ao longo do tempo (CHOPRA, 2001, p. 126 — 129). Vide figura 2.55

Figura 2.55: Excitagdo aperiddica
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Fonte: O Autor (2019)
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Relembra-se a série de Fourier:

a
F(t) = 70 + Z a;.cos(j. w.t) + Z bj.sen(j. @.t) (2.73)
j=1 j=1
T z T
2 . 2 o a, 1
onde: a; =:.fF(t).cos(].w.t) dt; b; = :.fF(t).sen(].w.t) dt; — = :.fF(t) dt.
T T 2 T
0 0

0
E baseado na EDO da vibracdo amortecida, eq. (2.42), e ap6s aplicar a forca excitatriz

F(t) expressa na equacgdo (2.73), conclui-se por solucdes parciais:

a
m.il+c.u+k.u=70 (2.74 a)
m.ii + c. i+ k.u = aj.cos(j. @.t) (2.74 b)
(2.74 ¢)

m.ii + c.u + k.u = b;.sen(j.
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Resultando na solugdo completa u(t) com a divisdo em duas parcelas: a primeira é o
deslocamento permanente up(t) e a segunda parcela é a transiente u;(t). Onde j equivale ao

numero de equagdes, ficando 0s deslocamentos expressos por:
) a; - b; A

up(t) = o + 27 cos(j.@.t — ¢;) + Z?.sen(]. @.t—¢)) (2.75 a)
' j=1 j=1

ur(t) = A.cos(w.t) + B.sen(w. t) (2.75 b)

onde: y = k./(1— B2 + (2.5.£)2

N-1
a 1<F0+F1 F,+F, F;+F, ) 1 [Fy+Fy
—_—=—. s )AL = —. F;
2 7\ 2 T2 Tz 7 N\T 2 T4
j=1
_ N-1
2 2.m 2.
a; =N' FN.sen<].?.tN)+Z F;.sen (].?.ti)
L i=1
r N-1
2 2.m 2.m
bj =N' FN.sen(].?.tN>+ Z F;. cos (].?.ti)
N i=

Por fim, ressalta-se que o tratamento matematico de uma forca regida por funcéo

aperiddica pode ocorrer mediante:

Integral de Fourier;
Integral de Duhamel (Convolucéo);
Transformagéo de Laplace;

Funcéo interpoladora e

YV V. V V V

Integracdo numérica.
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2.3. ACAO DO VENTO NO PILAR DE PONTE

2.3.1. Atuacéo das correntes do vento

Em Standerski (2012) sdo apresentados como efeitos dindmicos do vento em tabuleiros

de pontes, 0s seguintes:

» Galope;
» Drapejamento;
» Excitacdo por vortices e

» Rajadas e Martelamento (devido a turbuléncia).

Conforme definido em Blessmann (2011, p. 87), os vortices de Karman ocorrem quando
0 numero de Reynolds atinge certo valor, surgindo disprendimento aleatorio de turbilhdes de
ambos os lados do objeto, surgindo assim duas filas de turbilhdes, os entdo vortices de Karman.

Os vortices séo classificados da seguinte forma:

» Vortices de base: Quando o vento incide perpendicularmente a uma fachada,
surge na proximidade do solo, um vortice de eixo aproximadamente horizontal.
Vide figura 2.56.

Figura 2.56: Vortice de Base

FONTE: (BLESSMANN, 2011)
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» Vortices confinados: Quando o caso anterior ocorre um edificio alto a sota-
vento, em relagdo a um edificio mais baixo, formando-se assim o vortice

confinado. Conforme é apresentado na figura 2.57.

Figura 2.57: Vortice Confinado entre edificacGes
/
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FONTE: (BLESSMANN, 2011)

§ -

I
l l fluxo de alta velocidade
0,4H a 1,2H escapa pelos lados

(Cpe entre -1,6 e -2,0)

2.3.2. Variagao da velocidade do vento com a altura

A variacdo da velocidade do vento com a altura também é denominada de velocidade
de perfil. A velocidade do vento na superficie € bem inferior do que a velocidade nas elevadas
alturas, isto devido ao arrasto no fluxo do vento ocasionado pelo atrito da rugosidade da
superficie terrestre. Segundo Taranath (2011) o formato do perfil para ventos fortes depende,

principalmente, de:

» Grau de rugosidade da superficie;
> Efeitos globais de arrasto de edificios e
> Arvores e qualquer outra saliéncia que dificulte e/ou impeca o fluxo do vento.

Ainda segundo Taranath (2011) a altura em que a influéncia da rugosidade da superficie
torna-se nula, ocorre a 360 metros acima do solo. Sendo 0 movimento regido apenas pelos
efeitos dos ventos locais e sazonais. O limite de nulidade da influéncia da rugosidade da

superficie é denominado de Camada Limite Atmosférica.
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O equacionamento do perfil do vento no interior da camada limite atmosférica, é

definido por:
1

V() =V, <3>a (2.76)

Zg

onde: V(z) — é a velocidade média do vento na altura z;

V, — e a velocidade do vento gradiente; z — altura acima do solo;
z, — € a altura nominal da camada limite, ou altura gradiente e
, .. . 1 . ,
a — € o coeficiente. A variagédo de —ocorre de 0,087 para zonas abertas até 0,20 em areas

urbanas construidas.

Observa-se na figura 2.58 o formato do perfil do vento por zona de atuagdo, bem como

o coeficiente @. A zona de exposicdo B (centros de grandes cidades) é caracteristica por

. . 1 .
coeficiente « no valorde 7 e - = 0,143. Para a zona C, de campos arborizados ou arredores de

cidades ou ainda terrenos abertos, tem-se: a = 4,5 e i = 0,222. Por fim, para a zona D, que
consiste em: campos planos abertos, zonas costeiras e superficie de &gua ndo sujeitas a furacdes,
é atribuido & = 11,5 e ~ = 0,087.

Figura 2.58: Perfis de velocidade do vento, segundo ASCE 7-05
1800

1600 |-

1400
2,=1200 ft

1200 ———

1000 -

800 2,=700 ft

600 [~

Ve ZI.-'11.5

400 -

Soocooocoooo
ECEEEEEEEE]

200 — oo

cooo

cooo

oooo
==}
=)

Exposure B : Exposure C | Exposure D

FONTE: (TARANATH, 2011)



71
Fundamentacdo Teorica

2.3.3. Simplificagéo bidimensional do fluxo do vento

O fluxo do vento para obras de construcao civil € considerado bidimensional (2D), pois
a forca e o momento relativos ao eixo vertical é considerado insignificante (Elevacdo e
Momento de Guinada). A consideracdo bidimensional € expressa na figura 2.59, com as forcas

ao longo do fluxo e na direcéo transversal do vento.

Figura 2.59: Simplificagdo bidimensional do fluxo do vento

/ Vento

Longitudinal

Vento

@ Transversal

Vento

FONTE: (TARANATH, 2011)
2.3.4. Equacionamento da turbuléncia

O estudo da turbuléncia foi primordialmente realizado de forma empirica, isto devido a
dificuldade de descrever matematicamente o fendmeno. Porém, solucionada com o passar do
tempo e através da aplicacdo dos conceitos estatisticos para computar a aleatoridade. Aos
fendmenos aleatdrios com irregulares flutuacGes, pode-se aplicar um estudo pela teoria das
probabilidades e médias estatisticas, conforme apresentado em Blessmann (2011) e na figura
2.60.
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Figura 2.60: Amostras para tratamento estatistico das flutuacgdes
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FONTE: (BLESSMANN, 2011)

Na ocorréncia de um padréo estatistico (média, variancia e demais variaveis) para todas
as amostras possiveis e sendo invariavel para qualquer origem do tempo, 0 processo sera

definido como aleatorio e estacionario. Conforme observa-se na figura 2.61.

Figura 2.61: Padrao Estatistico no Processo Estacionario

/ g x(t) — X : flutuacio
—\ ~_ ] i - ﬂt : desvio padrdo
— M N\F _\/
%

FONTE: (BLESSMANN, 2011)

Observa-se ainda que o Processo Aleatorio € Estacionario e também Ergaddico. Define-
se processo ergdédico quando qualquer parametro estatistico obtido para um conjunto de registro
representativo do processo € igual ao correspondente parametro calculado sobre um conjunto

representativo.
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O desvio ¢ € uma medida de dispersao relativo a média. Assim quanto maior o valor do
desvio, mais afastado da média estardo os valores. Vide figura 2.62. Ja, na figura 2.63 é

apresentada a distribuicdo por rajadas de vento.

Figura 2.62: Influéncia do Desvio — Padr&o na Distribui¢do Gaussiana

p(x)
1,0

0,393

FONTE: (THOMSON, 1978)

Figura 2.63: Distribuicdo por correntes de rajadas de vento
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FONTE: (BLESMANN, 1998)

a) Correlacao

A Correlacgéo entre dois registros, x, (t) e x,(t), equivale a multiplicacdo das ordenadas
dos registros para cada tempo t e determinado o valor médio. Conforme Thomson (1978) e

Laier (1989) a Correlacdo é uma medida de similaridade entre quantidades. Vide figura 2.64.
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Figura 2.64: Correlacdo entre os registros x4 (t) e x5 (t)
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FONTE: (LAIER, 1989)

Para as normatizacdes vigentes, a exemplo do EUROCODE 01 (pr FR 1991-1-4:2005)
e da NBR 6123 (ABNT, 1988), o perfil das velocidades de incidéncia da rajada de vento na

face do pilar ou da edificacdo como um todo é apresentada na figura 2.65.

Figura 2.65: Perfil de velocidade do vento
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FONTE: (GHIOCEL; LUNGU, 1975)
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2.3.5. Formato do carregamento do vento

A vibracdo lateral é potencializada pela a¢do do vento e para tal carregamento adota-se
a atuacdo combinada de carga constante na altura g,, da carga distribuida linearmente na
edificacdo e com valor maximo de g, no topo do pilar e a carga Q concentrada no topo da
estrutura em andlise. Essa ultima carga tem a finalidade de representar a atuacdo do vento no
tabuleiro da ponte (no caso da analise dos pilares). Esta representacéo das cargas € embasada
em Solnes e Sigbjornsson (1973) com o perfil de velocidade do vento crescente ao longo da
altura, bem como no fato do carregamento lateral ser preenchido do topo em direcdo a base do
pilar, a medida que a corrente de ar se aproxima do obstaculo. No caso, o pilar é apresentado
em Koten (1967) e na figura 2.66. A mencionada aplicacdo de trés carregamentos laterais g4,

q, € Q torna-se entdo evidente, e ilustrada na figura 2.67.

Figura 2.66: Carregamentos laterais no pilar de ponte devido a acdo do vento: distribuicdo com

a aproximacao da corrente do ar
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Fonte: O Autor (2019)

Figura 2.67: Carregamentos laterais no pilar de ponte devido a acéo do vento: idealizacéo de

carregamentos
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Fonte: O Autor (2019)
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2.4. DESACOPLAMENTO DO SISTEMA DINAMICO NAO AMORTECIDO

Para um sistema dindmico continuo, logo com "n" graus de liberdade, pode-se gerar as
equacdo do movimento em os diversos sistemas de coordenadas. Porém, para que se possa
resolver tal sistema dindmico sera necessario reescrever as "n" equagOes diferenciais num
sistema coordenado que promova o total desacoplamento do sistema e gere equagoes
independentes entre si. Este sistema ¢ denominado de Sistema de Coordenadas Generalizadas,
determinado a partir de sucessivas translades/rotagdes de sistemas de referéncias, um dos
métodos que propicia tal desacoplamento é o Método de Jacobi (ver item 2.6. Além de tal
processo de diagonalizacdo, pode-se recorrer a condensacdo matricial que é apresentada no item

2.10 (c) desta tese e por referéncia pode-se citar Argyris e Mlejnek (1991, p. 210).

Define-se o Sistema de Coordenadas Generalizadas, como sendo as coordenadas
independentes entre si, que descrevem o funcionamento de determinado Sistema Dinamico.
Bem como, promovem o desacoplamento do sistema de equagdes diferenciais. Utiliza-se, em

geral, a letra "q" para representar tais coordenadas generalizadas.

Estende-se a notagdo da equacdo diferencial, apresentada na equacéo (2.41), expressao
da vibracdo forcada ndo amortecia, para estruturas de “n” graus de liberdade (Sistemas

Continuos), e reescreve-se:
[M].{ii} + [K].{u} = {F} (2.77)

onde: [M] é a matriz de massa;
[K] é a matriz de rigidez;

{u}, {} séo os vetores deslocamento e velocidade e {F} é o vetor de forcas.

a) Primeira transformacao de referencial

Baseado em He e Fu (2001, p. 97), a primeira transformacéo de referencial consiste em
passar do deslocamento u (no referencial inicial) para um novo referencial e representa-lo por
x, isso através da matriz de autoversores [¢] da matriz de massa. Nesta transformacdo de
referencial verifica-se a diagonalizacdo da matriz de massa [M], daf a utilizacdo do problema

de autovetores [m*]. Ficando o sistema de equac@es diferencias, eq. (2.77), reescrito como:
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[m]. {5} + [p]". [K]. [@]. {x} = [@]".{F} (2.78)

onde: [m*] é a matriz de massa [M] diagonalizada; [m*] = [¢]. [M].[¢] e {u} = [¢]. {x}.
b) Segunda transformacao de referencial

A segunda transformacdo de referencial seré de x para y e procedida via imposicao da
raiz quadrada inversa da matriz de massa diagonalizada, isso a fim de manter a simetria do
sistema. Objetivando-se nesta 22 transformacdo, a mudanca da matriz diagonal [m*] pela matriz

identidade.

Apos tal transformacéo, surge a matriz dindmica inversa [D], reescrevendo-se 0 ainda

sistema de equacdes diferenciais apresentado, eg. (2.78), como:

1.5} + [D). 1y} = [m*]72. [0]". {F) (2.79)

onde: [D] = [m'] 72 [p]". [K]. [p).[m 12 ; O} =[m 120} e &) =m0

¢) Terceira transformacéo de referencial

Constata-se na eq. (2.79) que resta apenas diagonalizar a matriz [D], dai procede-se a
resolucdo do problema de autoversores [y] e Autovetores [w?]. Nesta terceira e Ultima
transformacéo de referencial do sistema de equacdes diferenciais, eq. (2.79), é do referencial y
para q. Transforma-se entdo, o sistema num conjunto de equacges diferenciais desacopladas, e

€Xpresso por:

{G} + [w?].{q} = {F®} (2.80)

onde: [w2] = [I™.[DL.[W] ;5 (F) = [@]".[@]".(F} ; [®] = [p]".[m"] 5
Wi=Wlig ; U} =[]{g} eainda: [P]= ] 2. [].

Apos as trés transformacdes de referencial, o sistema de equacdes diferenciais
apresentado na eq. (2.77) é reescrito no conjunto de equacges diferenciais ordinarias por grau

de liberdade. Tal conjunto de equacdes é referenciado no sistema generalizado, e expresso por:
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4j +wi.q; = F (2.81)
onde: w; — frequéncia da EDO do grau j de liberdade, no sistema generalizado de coordenadas.

Apds resolver as EDQO’s por grau de liberdade, apresentadas na eg. (2.81) em termos de
q, utiliza-se a transformacdo reversa de referencial até retornar ao referencial inicial u,

expressando:

{u} = [o]. [®].{q} (2.82)

A partir da equacdo (2.82) escrevem-se as condi¢des iniciais, no referencial

generalizado q, por:
{qo} = [®]7". [0] " {uo} (2.83 a)

{Go} = [@] . [p] ™" {iio} (2.83 b)

d) Marcha de Céalculo N° 1

A sequéncia de calculo das respostas do sistema dindmico ndo amortecido é organizado
em forma de marcha de calculo, conforme demonstrado nos itens 2.4 (a) até 2.4 (c). Assim, fica

postulada a seguinte marcha de calculo:
» 12 Etapa: Caracterizar o sistema dinamico ndao amortecido, pelo sistema de EDQO’s.
[M].{ii} + [K].{u} = {F}
» 22 Etapa: Proceder a diagonaliza¢do da matriz de massa.
[m*] = [o]".[M]. [¢]

onde; [@] é a matriz de autoversores, podendo ser obtida via método do polindbmio

caracteristico, ou pelo método de Jacobi.

> 32 Etapa: Obter a matriz dindmica inversa.

1

D] = [m*12 [o]". [K]. [p]. [m'] 2

» 42 Etapa: Realizar a diagonalizacdo da matriz dinamica inversa.

[w?] = [$]".[D].[¥]

onde; [w?] é a matriz de autovalores, obtida via analise modal do sistema.
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>

52 Etapa: Determinar a matriz modal ponderada.

[@] = [m]2.[y]
62 Etapa: Obter o vetor de forcas no referencial do desacoplamento do sistema.
{F°} = [@]".[p]".{F}
72 Etapa: Apresentar o conjunto de EDO’s no referencial generalizado.
ij + wj.q; = F}

82 Etapa: Considerar as condic0es iniciais {uy} e {1y} no referencial generalizado {q,}

e {goJ e resolver o conjunto de EDO’s desacopladas (ver letra ¢ deste item).
{q0} = [®]7". [@] 7. {uo}
{go} = [®]7 . [e] ™. {io}

92 Etapa: Determinar as fungdes de deslocamento por grau de liberdade, isso para o

sistema inicial de referéncia.

{u®)} = lol. [@]. {qo (D)}
102 Etapa: Determinar as formas modais da estrutura [®°], sendo:

{®°}; € 0 j-ésimo vetor coluna normalizado de [P] = [¢]. [®@], ou seja:

4’ J

112 Etapa: Determinar a massa e a rigidez modais.

My = (007 [M].{0%);; K = (@) [K].{0°);

Solugéo da equacéo diferencial no referencial generealizado

A equacdo diferencial desacoplada é expressa por:

G+ w?.q=F.sen(®.t) (2.84)

e como solucédo apresenta-se:
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q(t) = qo.cos(w.t) + ﬁ [sen(@.t) + D.sen(w.t)] (2.85)
onde: D = Go-© (; —F) _ .

2.5. DESACOPLAMENTO DO SISTEMA DINAMICO AMORTECIDO

A sequéncia de célculo das respostas do sistema dindmico amortecido é organizada em
forma de marcha de célculo, como:

a) Marcha de Célculo N° 2

» 12 Etapa: Caracterizar o sistema dindmico amortecido, pelo sistema de EDO’s.
[M].{ii} + [C]. (i} + [K].{u} = {F}
onde: [C] = a,,,. [M] + . [K]
> 22 Etapa: Proceder a diagonalizacdo da matriz de massa.
[m*] = [p]". [M].[¢]
onde; [¢] é a matriz de autoversores.

> 32 Etapa: Obter a matriz dindmica inversa.

1

[D] = [m] 2. [p]". [K1. [g). [m] 2
» 42 Etapa: Realizar a diagonalizagdo da matriz dindmica inversa.
[w?] = [y]".[D]. []
onde; [w?] é a matriz de autovalores, obtida via analise modal do sistema.

» 52 Etapa: Determinar a matriz modal ponderada.
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» 62 Etapa: Obter o vetor de forcas no referencial do desacoplamento do sistema.
{F°} = [@]".[p]".{F}
» T2 Etapa: Apresentar o conjunto de EDO’s no referencial generalizado.
G+ (2.85.05)-4; + wf.q; = F
a solugdo da EDO, com excitagdo harmdnica F = Fy.sen(@;.t) + F,.cos(@;.t), fica
expressa por:
q(t) = A.cos(wgy.t) + B.sen(wy.t) + C.sen(@.t) + D. cos (@.t)

com: wy = cu.\/l—if2 para amortecimento subcritico (¢ < 1);

_Got§wA-wD

)

A=q,-D ; B "y
F1 2.(4).5.5 _ (1_ﬁ2).F2 _Z.ﬁ.g.Fl

¢= (w? —w?) * (w? — 62)'D ¢ b= w?.[(1—-B2)?+ (2.8.8)?]

» 8% Etapa: Considerar as condic0es iniciais {uy} e {1} no referencial generalizado, sob

a forma: {q,} e {go} € resolver o conjunto de EDO’s.

{qo} = [@] 1 [@] " {ug} e {go} = [®]7 . [e] ™t {uo}

» 92 Etapa: Determinar as fungdes de deslocamento por grau de liberdade no sistema

inicial de referéncia.

{u(®} = lol. [@].{q0 ()}

» 10%e 112 Etapas: idem a marcha de céalculo N° 1.

2.6. DIAGONALIZACAO VIA METODO DE JACOBI

Conforme apresentado em Silva (2007) e Quarteroni et al. (2007) o método proposto
por Jacobi, para diagonalizar matrizes simétricas, consiste em realizar rotacdes sucessivas até
gue todos os termos ndo pertencentes a diagonal principal sejam nulos (ou tdo pequenos que

para certa tolerancia seja admitido zero). Assim, torna-se expresso por:
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[4] = [Gpq]' - [4% 1. [Gy] (2.86)

onde; [A¥] é a matriz simétrica diagonalizada;

k k k=1 k-1 .
[AK] = App  Apq| [AK-1] = Qpp~  Apq | (G,.] = cos@ siné@
- ) - — _ ) - .
ak —ak ak-1 gk-1 rq —sinf cos@
ap  %qq qp aq

[G,q] é a matriz de rotagio.

Apos realizar a multiplicacdo das matrizes na eq. (2.86), tem-se os elementos da matriz

diagonalizada [A*], expressos por:

ayy, = appt.cos* 0 —ak;l.senB.cos 6 — aj . sen6.cos 6 + al . sen? 6 (2.87 a)
aky, = af, = afyt.sen@.cos 6 — af;t.sen? 6 + afi;t.cos? 0 — ak t.sen6.cos 6 (2.87 b)
al, = afpyt.sen? 6 + af,t.sen 6 .cos6 + aj;t.sen6.cos 6 + af;t. cos? 6 (2.87 ¢)

A partir da eq. (2.87 a), conclui-se que a matriz é simétrica. Para tanto, pode-se

reescrever os termos da matriz diagonalizada, como:

k _ k- k— k—
ag, = appt.cos?* 0 —2.af;t.sen 6 .cos O + af . sen 6 (2.88 a)
aky, = af, = afyt.sen.cos 6 + ap,t. (cos? 0 —sen?§) —ak;'.senf.cos§  (2.88D)
kK _ k- 2 k— k=1 o2
agq = agyt.sen 6 + 2.af; . senf.cos 6 + al;t. cos? 6 (2.88¢)

Agora, é necessario impor nulidade ao termo fora da diagonal principal, apresentado na
eq. (2.88 b). Para tal, utilizam-se rela¢fes trigonométricas do arco duplo e conclui-se o angulo

de rotacdo (para a nulidade dos termos nédo pertencentes a diagonal principal) escrito como:

20 2.apq" (2.89)
t = .
SR CPFERTE

Em conformidade com Antar Neto et al. (1979), a atuacdo do arco duplo (26) e simples

(6) é apresentado na figura 2.68.
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Figura 2.68: Ciclo de variacdo da tangente do arco —g <20< ’Z—t e —% <0< %
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Fonte: (ANTAR NETO et al., 1979)

Em funcéo do posicionamento do elemento da matriz [A], a ser diagonalizada, expressa-
se 0 angulo 6, como:
> Elemento A;; pertencente a diagonal principal: Desta forma, a,, = a4, € tem-se:

9_1‘[
4

> Elemento 4;; fora da diagonal principal: Desta forma, a,, # a,q, utilizando-se:

0 1 . _1( 2.a5.t >
=59 - -
2 (afs" —agp")

2.7. TEORIA DA FLEXO — TORCAO (TFT)

2.7.1. Equacao diferencial da flexo — torgéo

O empenamento é definido como o deslocamento relativo entre os pontos alinhados de
uma secdo transversal. Assim, sdo deslocamentos longitudinais gerados pela rotacédo elastica ¢

(em torno do centro de tor¢do D), vide figura 2.69.
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Figura 2.69: Rotagdo ¢ em se¢do circular ap6s deformacéo gerada pelo momento de tor¢do M,

| M{\\J—J

Fonte: (SCHIEL, 1983)

Para tal fenémeno, a primeira parcela da equacdo diferencial sera a tor¢do de Saint —
Venant, conforme observa-se na figura 2.70, e expressa por:
d3¢

d3

My, = M, = —E.C,,. (2.90)

onde: My, —momento de flexo-tor¢ao; C,, — constante torsional por empenamento;

E —modulo de elasticidade longitudinal e ¢p — rotagdo elastica em torno de D.

Figura 2.70: Torcéo de Saint — Venant: (a) rotacédo ¢p em torno do centro de tor¢ao ou

cisalhamento D e (b) deslocamento w na diregdo z

Section A-A

Fonte: Adaptado de (SALMON et al., 2009)

A segunda parcela da equacdo diferencial é oriunda do momento de torcdo livre e

baseado em Langendonck (1960, p. 208), ficando expressa, por:

do
M, = G.].E (2.91)

onde: M; — momento da torcao livre; ] = I, — momento de inércia torsional e

G —moddulo de elasticidade transversal.
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Enfim, somam-se as equacOes (2.90) e (2.91), e escreve-se a equacdo diferencial da

torcdo M, (em torno do centro de tor¢do D), como:

B¢ GJ dp M,

d® E.C, dx E.C,

(2.92)

onde; M, = M, é 0 momento de tor¢do

No processo de giro da secdo transversal (através do angulo ¢) observa-se que o ponto
Q, vide figura 2.71 (a), passa para a posicdo Q' e serd adotada a teoria das pequenas
deformacd@es. Resultando no arco: QQ' = r.¢ e em conseguinte, o deslocamento v. Donde, a

semelhanca de triangulos entre o deslocamento v e o raio n, vale:

LA (2.93 @)
r.g r

sendo expresso o deslocamento v, por:

v=n.¢ (2.93b)
e a conseguinte derivada fica expressa por:

vi=n.¢' (293 ¢)

onde: v — deslocamento na dire¢do da ordenada do eixo esqueleto s e

n — distancia perpendicular entre a tangente ao ponto Q e o centro de torcdo D.

Figura 2.71: Teoria de flexo — torc¢éo: (a) esquema do giro da secéo e (b) binario de forcas

equivalente ao bimomento

tangente ao esqueleto

_——no ponto Q
(@
Fonte: (MORI; MUNAIAR NETO, 2017)
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Analisando o angulo de distor¢do y do elemento diferencial e considerando-no nulo,
faz-se a imposicao de tal consideracao sobre a equacdo (2.93 b), ressaltando nos deslocamentos

longitudinais u dependendo unicamente do eixo esqueleto s. Dai, conclui-se:

L 2.94
n.¢ P (294 a)

como os deslocamentos longitudinais u dependem unicamente do eixo esqueleto .8, reescreve-

se a eq. (2.94 a), como:

’+du—0 294 b
n.¢ ds (2. )

ao realizar a integragéo da equacéo (2.94 b) ao longo do eixo esqueleto, escreve-se:

Q Q
fi—: ds = — f(n.q,’)’) ds (294 ¢)
Os Os

onde: O, é a origem do eixo esqueleto s e w € a area setorial, sendo definida por Vlassov (1962),

como: w = fC? n ds. Ficando a eq. (2.94 c) reescrita, como:

Uu=—-w.¢' (2.94 d)

considerando o sentido positivo de convencdes de sinais e ja definido o posicionamento do

centro de torcdo (C.T.= D), chega-se a:
U= wpe. ¢’ (2.94 e)

Da equacdo (2.94 e) tem-se a definicdo de w,. como a area setorial principal. Ressalta-

se ainda, o conceito de bimomento B introduzido por Vlassov (1962), vide figura 2.71 (b).
Assim, o bimomento é semelhante ao binario de forcas, sendo auto — equilibrantes, e sem
repercutir esforcos internos do tipo normal ou cisalhante (PROENCA, 2009, p. 305). Sendo

eXpresso por:

B =Jax.a)pc.d5' (2.95)
s
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Adota-se como simplificacdo para a lei de Hooke, o coeficiente de Poisson v

desprezivel, expressando:
oy =E.&, (2.96 a)

0 deslocamento axial u é apresentado na equacédo (2.94 e), de qual expressa-se a deformacao

especifica ,, como:

a_u B 0(w.¢p") B

& = o o Wpe- P (2.96 b)

aplicando-se as equacdes (2.96 a) e (2.96 b) na definicdo do bimomento (equacédo 2.95), donde

obtém-se:

B=E.I,¢" (2.96 ¢)
sendo: I,, = C,, = [, wjc.dS — 0 momento de inércia setorial; E 0 mddulo de elasticidade
longitudinal e ¢ a rotacdo em relacéo ao eixo axial x.

Combinam-se as equac@es (2.90) e (2.96 c), a fim de estabelecer a relacdo entre o

bimomento B e 0 momento de flexo — tor¢do Mg, e exprime-se:

A equacéo diferencial do fendmeno da flexo — tor¢céo, em termos da rotacéo ¢ da secao,

expressa na eg. (2.92), pode ser reescrita com a notagdo simplificada nas derivadas, como:
G.l;.¢' —E.l1,.¢"" = M, (2.98)

Aplica-se a combinacdo das equacdes (2.90) e (2.97) na equacdo (2.98), e em seguida
procede-se a derivacdo em relacdo ao eixo longitudinal x. Por fim, a equacdo diferencial da

flexo — torcéo, em termos do bimomento B, fica expressa por:

G.1
( ).B—B”=M{=m (2.99)

sendo; m 0 momento de tor¢édo distribuido ao longo do eixo axial x.

A convencao positiva dos esforcos estudados neste item é apresentada figura 2.72.
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Figura 2.72: Notagdo positiva para as variaveis M;, m,¢ e B

Fonte: Adaptado de (MORI; MUNAIAR NETO, 2017)
2.7.2. Solucdo via teoria da flexo — tor¢do para o pilar em nucleo estrutural

Mediante solucdo de equacgOes diferenciais, cujos procedimentos constam em Boyce e
Diprima (2006), procede-se a solugdo da EDO do problema de flexo — tor¢do em termos das
rotacOes (equacdo 2.98). Ficando a solucéo expressa por:

p(x)=C,+Cr.x+C sinh(f)+C cosh(£)+ m x? (2.100)
Lo 3 T + r) 2.G.1° '

com:r = \/% = \/2. 1+ v).'lﬁ.
t

G.I

Alterando-se a equacdo diferencial para termos do bimomento, ver eq. (2.99), expressa-
se por solugéo:

B = A;.sinh G) + A,.cosh G) +7r2m (2.101)

Para a analise do pilar de ponte tem-se como estado de carga: submissdo a carga vertical
P concentrada no topo e decorrente da reagdo do tabuleiro, a atua¢do da carga uniformemente
distribuida p na altura e oriunda do peso-préprio, além da carga lateral g, uniforme e aplicada

no centro de carga CC. Resultando entdo, em momento de tor¢do m distribuido e gerado pela
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carga q4, sendo decorréncia da encentricidade (e,) do CC até o centro de tor¢do D. Vide a

indicacdo do momento de tor¢do m na figura 2.73.

Figura 2.73: Pilar de ponte: (a) com contraventamento por lintéis, (b) sem lintéis, (c) deformado

e (d) condicGes de contorno

<t F—!/) C) Miy(x = H) = My
Q Zp — /'1""_ e ¢ " BH
Er;h 4 e ' i =g
N Tl £ | =
N i N ES 124
N | ! <1 Sag.e, |
% ! 5 >
N JI> ! By =0

N b~ '_ === '~ 0

W WL %  Tenssion (@ %o
(b)
@) Compression

(c)
Fonte: Adaptado de (SMITH; COULL, 1991)

A analise procedida nesse subtopico é avango do estudo procedido por Barbosa (1980)
em nucleos estruturais em edificios altos. Ampliando-se nesta tese aos pilares de pontes, nos
quais séo modificadas algumas condic¢des de contorno, mais especificamente no topo do pilar.
Tem-se como discrepancia mais relevante, a agdo concentrada de bimomento no topo (ao inves

de distribuido na altura como se verifica nos edificios altos).

A solucdo da EDO expressa na eq. (2.98) para o pilar apresentado na figura 2.73, em
termos da rotacdes ¢, fica expressa por:

m
¢p(x) =A; + A,.x + Az.cosh(a.x) + A,. sinh(a.x) + m.xz (2.102)
.E.I,

sendo: [, I, — comprimento e momento de inércia a flexao do lintel;
h — distancia relativa entre dois lintéis; A; — area interna ao eixo esqueleto s;
a = a; — quando do caso de secBes de paredes finas aberta (sem lintéis);

a = a, — para se¢des de paredes finas contraventada por lintéis;

g |Gt |Gleht ko k*_48.E.IL.A§ . I_eL.hf
rt—E1, ' * | hE., ’ B 13 L= 12~
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Aplica-se na eq. (2.102) as condigdes de contorno presentes na figura 2.73 e escreve-se

a rotacdo ¢ em termos de funcBes adimensionais 8, sob a seguinte formula:

_ m.H* N By H? M,y H3
¢= E.Ia,.(a.H)‘*'ﬁl E.Iw.(a.H)Z'ﬁz E.Ia,.(a.H)?"ﬁS

(2.103)

sendo: By, My — bimomento e momento de tor¢cdo no topo do pilar da ponte;

H — altura total do pilar da ponte; & = %; B = f(&);

By = — {1 — cosh(a.H.{) + (a.H).tanh(a.H).[1 — cosh(a. H.§)]

cosh(a.H)

) .
+ (@ 12, I% . sinh(a. H. f)l}

(a.H) ’
_ 1
Sy = cosh (@ )’ [-1+ cosh (a.H.§)] e
B; = —[sinh(a.H.§) — cosh(a.H.§) .tanh(a.H) — (a.H).&].

nas figuras 2.74 até 2.76 sdo apresentadas graficamente as fungfes adimensionais S, S, € fs,

respectivamente. As curvas sdo geradas em decorréncia da variacdo do adimensional aH.

Figura 2.74: Representacéo gréafica de 1 por variagdo de aH em detrimento de &

104 e o

Fonte: O Autor (2019)
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Figura 2.75: Representacdo grafica de B, por variacdo de aH em detrimento de &

aH = 6,0 02

0.11

0

Fonte: O Autor (2019)

Figura 2.76: Representacdo grafica de B3 por variacdo de aH em detrimento de &

6.2

aH = 0,0
aH = 0,5 558
aH :TD
e 4.96
aH =§ 434
aH = 2,5
it ='§ 372
aH :?5
aH :E
al =45 244
aH :ﬂ
atf =55 1.86
aH :ﬂ

31

1.24

0.62

0

Fonte: O Autor (2019)

2.7.3. Solugéo da teoria da flexo — torcdo em pilar de se¢éo transversal em duplo T

Neste subtopico procede-se a utilizacdo da geometria tipica de pilares de pontes, em
formato de duplo T, bem como sdo modificadas algumas condi¢bes de contorno, mais
especificamente no topo do pilar. Observando-se na figura 2.77 (a) o estado de carga para a
acdo do vento, e na fig. 2.77 (b) expde-se a notacdo para o tragado do diagrama de ordenadas

setoriais da se¢do transversal em duplo T.
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Figura 2.77: Pilar de ponte com secdo transversal em duplo T: (a) carregamento do vento e (b)

ordenadas setoriais nos pontos de rotulagédo dos lintéis (meio do vao)
bla

a1

92 Wpr Z ) 2
2 (1) :

$

(a)

Fonte: O Autor (2019)

A solucdo da EDO expressa na eg. (2.98) para o pilar apresentado na figura 2.77, em
termos da rotacOes ¢, sera a mesma apresentada na equacéo (2.102), quando aproximada a acdo
do vento unicamente pela carga lateral g,. A Unica diferenca é o calculo da area interna, que
consiste agora, na area de cada um dos dois nicleos em C que compde o duplo T. Na figura
2.78 é apresentado o diagrama de deformacéo dos lintéis apos a rotulacéo plastica da secéo do
meio do vdo, bem como explicitando-se o calculo da area interna A;. Em tais lintéis sera
utilizado o Principio dos Trabalhos Virtuais (PTV) para a determinacdo dos deslocamentos

relativos 81 € 8prprr.

Figura 2.78: Deformacao dos lintéis apds rotulacdo plastica no meio do vao

A

N\

5EIE//

Fonte: O Autor (2019)
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2.8. TEORIA DOS PAINEIS - PAREDE (TPP)

2.8.1. Pilar em nucleo estrutural

Formula-se a teoria dos painéis — parede, partindo de um pilar de se¢do transversal
aberta e de paredes finas, sendo contraventado parcialmente por lintéis (com comprimento L;
e espacados de eixo a eixo de h). Com o formato de nucleo estrutural e composto por cinco
paredes numeradas de (1) a (5), configurando quatro interse¢des, conforme apresentado na
figura 2.79.

Figura 2.79: Pilar em nucleo: (a) em planta, (b) contraventado, (c) sem lintéis

(’b
©)
T(-’J)
@

(@) (b)
Fonte: Adaptado de (SMITH; COULL, 1991)

Y

S

|
KNI

L

A formulacédo dos painéis — parede € apresentada inicialmente em Mancini (1972) com
Unico elemento estrutural (vide figura 2.21). Em Barbosa (1980), Tso (1983) e em Smith e
Taranath (1972) os painéis — parede sao resolvidos via teoria da flexo — tor¢do e subdivididos.
Baseado nos conceitos desenvolvidos pelos mencionados autores, procede-se o equilibrio de
forcas verticais e de momento no ponto O para os elementos diferenciais ilustrados nas figuras
2.80 e 2.81.
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Figura 2.80: Elementos diferenciais dos painéis — parede: (a) 1, (b) 2 e (c) 3

Ny + dN,

/T\vmi +dM,

—_— V, +dV,

N, +dN,

/)%\\M2+sz

Ny + dN;

/T\'Mg + dM,

— Vy +dl; — I+ dVy
T 9 4 1 0] 1 7 0] |
dx ‘?zi ipl ;qs dx qii ipz ;;;2 dx qai im iq,,
_::___iy l IT () ___lv. l lT (b) _LV l ll {c)
SN N A\
LN L ] ft | L. ’ ) | L
4 ld ldi=5 |, F gy lde=3 | | ds==
st J ) SRR N

Fonte: O Autor (2019)

Figura 2.81: Elementos diferenciais do: (a) painel — parede 4 e (b) painel — parede 5

N, + dN, Ns + dNs
AMA} +dM, AMS + dMs
— >V, +dV, — Vs +dls
—— —— - O O —_— e m —
; pz@ﬂz" p ¥ Mf%
dx qlT @V @ Tch dx
i Vf
_V___I W /u?‘ j__:_
A V, — | . Ve — | 4
| | | (a) (b) |5 w |
x | Il Ma | _ | Il Ms|
I N I _L4 LSI N. I
| N 5 1
| d4_ | d4_ I_ 2 | d5 | d5 I_

Fonte: O Autor (2019)

A definicdo dos painéis — parede € proposta por Barbosa (1980, p. 11-55), sendo também
denominados simplesmente de paredes. O painel — parede &, entdo, um painel plano com
deformabilidade ao momento fletor e com rigidez elevada ao corte. E caracterizado por se¢édo

transversal constante ao longo do eixo axial e com vinculagdo por engaste na base.
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a) Equacbes de equilibrio dos elementos diferenciais

Procedendo o equilibrio dos elementos diferenciais apresentados nas figuras 2.80 e 2.81,

chega-se:
aM L
d—xl = -V, + (q, + q3).71 (2.104 a)
dN,
I P +43 —q> (2.104 b)
aM L
d—xz =V, +(qy + qz).72 (2.104 ¢)
dN,
dx P2 +q1—q> (2.104 d)
dM, L,
I Vs + (q3 — CI4)-7 (2.104 ¢)
dN;
E:m"‘%"‘% (2.104 f)
dM, L, -

=V a5 = M, (2.104 g)
dN, )
dx =ps—q1—V; (2.104 h)
dMs Le  — ,
W =—-Vs+ CI4.? — Mf (2.1040)
dNs _ .
T "~ PsTda- Ve (2.104 ))

onde: M;, V;, My e V; séo as reagGes elasticas nos lintéis e apresentados nas equagdes (2.110).
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b) Equacbes de equilibrio nos lintéis

Na figura 2.82 sdo apresentadas as reacGes elésticas do lintel (V*,V/, M}, Mf) e o
decorrente translade para os painéis — parede de apoio (V;, Vy, M;, M¢). Ressaltando que os
trechos em superposi¢do com os painéis (A-B e C-D) sdo de rigidez a flexao tidas como infinitas

(EI - o). Os referidos trechos sdo compreendidos entre o eixo dos painéis — parede e a
extremidade do lintel. Ver Szerémi (1977, p. 209).

Figura 2.82: Reag0es elésticas do lintel via equacbes de Maney

\A
| B
A B - C D
fUN f@
- M
m > ) ;
fﬁﬂi fﬂ\
fﬂ\ @
olhl; . ('#of —\>
A L D ]
P4
M e ] ds = dy = =25 H‘
Mlm dl v &8
gi V; L L
i M! M: d My
] M M ik
i Tt} vf

ML U ViL U VfL

Fonte: O Autor (2019)

Transladam-se as reac@es elasticas do lintel para o eixo dos painéis — parede, mediante

equilibrio dos nos inicial e final (0;, Of), obtendo:

z M©O) =0 - M, =M —Vtd (2.105 a)

D MOY=0 & My =M+ (2.105 b)
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z Foy)=0 =« V=V (2.105 ¢)

Z Fo,(y,)=0 =~ Vp=V} (2.105 d)
Matricialmente:
{M} = [R.].{M_} (2.106)

onde: {M}T ={M; M; V; V;}é o vetor de reacdes elasticas no CG dos painéis — parede;

MY ={Mf Mp V& VH}éovetor de reages elasticas nas extremidades do lintel e

1 0 —-d; O
. 0 1 0 df , . ~
[R,] = 0 0 1 0 é a matriz de correlagdo.
00 o0 1

Utilizam-se as equacBes de Maney sob a formulacdo matricial em consonancia com o
método dos deslocamentos por superposicao de sistemas principal e derivados, ver Parcel e

Maney (1944, p. 147 — 172). As reagdes elasticas do lintel ficam expressas no seguinte sistema:

(ME Kedb _pt gt (6

Mk L kf L L| |pk
M} = [k, ].{d"} - v AR (2.107)
vk) Lobe bp -t o] (wf)
y o BEL 2B B ek’
com: (ch_G.AL.LLZ' w CET T T @y AT LT T
— L L
kszisz]%=4'E'IL. 1+, ; aLZZ'E'IL_l 2.<ch; bLzbiLzbfzk +a ;
L, 1+4.¢, L, 1+4.¢, Ly

ke, e, hy, € I, € o fator de forma, a base, a altura e o momento de inércia (respectivamente)

para a secao transversal do lintel.

Sera admitido que a rigidez a flexao (tida por infinita) dos painéis — parede, conduz a
manutencédo dos deslocamentos na extremidade do lintel {d’} sobre os deslocamentos no CG

das paredes {d}. Resultando em:
{d} = [1].{d*} (2.108)

onde: {d}T ={0; 6 vi Vr}; {dL}T = {(,‘b{“ (;b]é vk v}} e [I] é a matriz identidade.
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Por fim, quanto a andlise dos lintéis, aplica-se a equacdo (2.108) na eq. (2.107),

resultando em:

M.} = [k.]. [1].{d} = [k, ]. {d} (2.109 a)

para compor {M} em termos de {M, }, basta proceder a transformacao de referencial (mediante
pré-multiplicacdo ao vetor de forcas por [R,] e transformacgdo para tensores de 2% ordem na

matriz [k, ]), obtendo:

{M} = [K].{d} (2.109 b)
onde: {M} = [R.].{M,}; [K]=[R.].[k].[Kk,])"; {M}" ={M; My Vi Vi} t=th

b = bl +d;.tl; by =bf+ds.th; b =bf—d;.th; a; =ab +ds.b; —bf.dy;

af = a* +d;.by —bt.ds; k; = kb +d;.b+bE.d;; ke =kF +dpby +bEdp e

ki a; _bi bi
ar  kp —bf bf‘

—b; bt —t
| by b -t t]

resultando nas reacdes elasticas no CG dos painéis — parede, transformadas pela técnica do meio

continuo, nas reag@es elasticas distribuidas (M;, V;, My e V;), ao longo da distancia h entre os

lintéis, como:

_ M. k;.0;+a;.0—Db;.v; +b;.v

M=ttty e Ty (2110 @)
h h

_ Vi _bi' 9i + bf*Gf + t. Ul' — t. Uf

= = 2.110b

_ M ar.0; + ke.0f — bs.V; + be. v

Mp=—t-L 21 77 T2 7T (2110 ¢)
h h

_ V b;.0; + bs.0, —t.v; + t.v

vo=Ll-212" 17 Shiihe (2.110 d)

h h
com: v; = w;. 9" e vr = wp. @’ (ver definicdo da equagdo 2.94 e); bem como atraves de

H H . V; 2 - v ! -
geometria. Conclui-se: ; = l/d4 =2.w.¢" . (L) e, = f/d5 =2.ws.¢".(Ls)~". Sendo
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w; a ordenada setorial (do diagrama w, apresentado nas figuras 2.101 e 5.9) no ponto i (ver

figura 2.82) e w, a ordenada setorial (do diagrama w,.) no ponto f (ver figura 2.82).

c) Equacdes diferenciais dos painéis — parede

Mediante deformac&o especifica axial dos painéis — paredes em termos dos esfor¢os

normais de cada um dos referidos painéis, expressa-se as derivadas segundas dos deslocamentos

é;, por:

(E.A1).0{ =p1+q2— 3 (2111 a)
(E.A43).65 =p2+q1—q2 (2.111 b)
(E.A3).85 =p3+q3+q, (2111 ¢)
(E.A,).8Y =py—q, -V (2111 d)
(E.As).85 =ps — qa — V¢ (2.111e)

A compatibilidade de deslocamentos verticais nos pontos de intersecdo ¢é analisada para
adocdo de rotagdes v; em torno do eixo axial no CG do painel — parede. Vide na figura 2.83 a

notacdo positiva do deslocamento e da rotacéo.

Figura 2.83: Convencéo dos deslocamentos nas interse¢des dos painéis — parede

(+)

(D)

L __ %5 _ |

Fonte: O Autor (2019)

Expressam-se, a compatibilizacdo de deslocamentos nas interse¢es das paredes do
nucleo estrutural apresentado na figura 2.79, como:
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L, Ly
6, +?.v2=54+?.v4 (2112 a)
L, Ly
62__.172 =61 +_.U1 (2112 b)
2 2
Ll / L3 !
6 ——=.v3 =03 ——.V; (2112 ¢)
2 2
Ly Ls
53 +_.v3 =65__.v5 (2112 d)
2 2
Derivam-se as equac0es (2.112) em relacdo ao eixo axial x, reescrevendo-nas como:
" LZ " 7 L4 "
52 +?.U2 = 64_ +?.174_ (2.113 a)
124 L2 nr n Ll nr
52 __.172 = 61 +_.v1 (2113 b)
2 2
" Ll " " L3 "
61 ——.171 :53 __.v3 (2.113 C)
2 2
7 L3 " " L5 7
63 +7.v3 =65 _?.vs (2113 d)

com; §; sendo o deslocamento axial no CG do painel — parede i.
Matricialmente reescreve-se a juncao das equacdes (2.111) a (2.113), como:
{q} = [M]7" [M3].{v'} + [My]71 M) {vg '} + [M] 7 [My,]. {p} (2.114)

onde: {v,}' ={vy, ws, ¢} é o vetor de deslocamentos no sistema local dos painéis —
parede (o indice w expressa que as grandezas estdo no sistema de local de referéncia); {v}’ =
fv.w ¢}éo vetor dos deslocamentos no CG para o sistema global de referéncias; {p} é 0
vetor do peso — préprio dos painéis — parede; {q} é o vetor de carga distribuida verticalmente
nas intersecBes dos painéis; A;, L; sdo a area da secdo transversal e comprimento do painel —
parede i (respectivamente); b;, t, by sdo os coeficientes de rigidez das equagOes de Maney e
w;, wy S80 as coordenadas do diagrama de ordenadas setoriais nos extremos inicial e final dos

lintéis.
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A, +A, —Ay 0 0 0 -4 0 4, O
. _ —A1 A1 + Az _AZ 0 . _ _A2 A1 0 0 0 i
c: [Ml] - 0 _A3 A1+A3 Al ) [MIO] - A3 _Al 0 0 01’
0 0 As Az + Ag 0 0 —45 0 Az
0 —L,.A,. A, 0 Ly. Ay A, 0 0 0 d,
E (-1,.A1.4, —L,.A;.4, 0 0 0 0 0 0
= —. M - )
[Ma] 2| —Li. A A 0 L3.A1. A3 0 0 Msl=15 o o
0 0 —L3.A3. A5 0 —Ls. A3. A5 0 0 d;
_ , Py
—A,. 7, dy. ¢ 0 0 di] a1 p
, 0 0 o0 ofl” a 2
Ms]. v} =M} ={ o t= = oot @ =42 ®=1{Ps;
B 0 0 0 &' a3 p
—A3.Vy d,. ¢’ 0 0 d, da p4
5

d, = -2 <2bi+t) i, d, = -3 (zbi t) c(2k 4,
1= h .L4 Wi .LS (l.)f € a, = h .L4 . Wi .LS (,Uf
d) Equacdes de equilibrio em termo dos esforgos cortantes

Apos promover o equilibrio do ndcleo estrutural em relagdo aos esforgos cortantes,
aplica-se a equacao diferencial da linha eléstica de vigas. E ressalta-se que nos painéis — parede
(4) e (5), vide figura 2.81, s&o utilizadas as equagdes de G. A. Maney (formuladas em 1915).
Por fim, para cada i-ésima parede que compde o nucleo estrutural s&o apresentados os esforgos

cortantes #;, como:

N=~v+(q+ qg)-% (2.115 a)

Vo =—Jv3 +(q1 + qz).Lz—2 (2.115 b)

Vs =—J3.v5" +(qu — qs)-% (2.115¢)

Vo= —Jsvy" — Ch-% - M; (2.115 d)
Ls _

Ve = —Js. v + q. M; (2.115 )

2
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sendo: q;, 7, L; a carga vertical distribuida na intersecdo i, o esforco cortante na parede i e 0
comprimento do painel — parede i. E v; é o deslocamento no CG do painel — parede i, sob a

direcdo do eixo local y.

Analisando os esforcos cortantes, das equacdes (2.115), obtidos via equacdes de

equilibrio das paredes e ordenando-os matricialmente, escreve-se:
{70} = Ms].{vy'} + [Mg]. {v'} + [M;].{q} (2.116)

sendo: {7} o vetor de esforgos cortantes no sistema local de referéncias; J; = E.1,,;

1 ki a 1 a kf
d3=—E.I:<—2.Z—bi>.a)i+<2.L—5+bi).a)f];d4=—E. (Z.Z—bf).wi+ 2Z+bf .a)f ;

-, O 0 0 0 0 L, L, O 0o O
0o —-J; 0 0 O 1 [ L, L, 0 0] 00 O
Ms]=10 o0 —J3 0 O|;[M]==.l0 o0 —L3 L3| e [Mg]=|0 0 Of
0 0 0 —J O 211, 0o 0 0 0 0 ds
lo o o o0 —Js 0o o0 0 Ls 0 0 dyl

Expressa-se o vetor { 7,,} em termos de {v'}, isto mediante a substituicdo da equagdo
(2.114) na eq. (2.116). Além do mais, transladando o vetor de deslocamentos locais {v,,} para
o sistema global de referéncias (via transformacéo {v,} = [Mg]. {v}), vide figuras 2.84 e 2.85

(a), dai escreve-se:

{70} = (IMg] + [M;]. [My]7%. [M3]). {v'} + [M;]. [M;]71. [My,]. {p}
+ ([Ms] + [M;]. [M]7. [M,]). [Mg]. {v'} (2.117)

Figura 2.84: Transformacao de coordenadas locais para global

©)
@ || bes, UJ@)
CG
: ¢ A Z>
\ bec, CG
| @
Ci >0
Yee } @ (+)

Fonte: O Autor (2019)
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a, b ¢ -1 0 ~bes,

a, by ¢ 0 -1 bCGy
com: [Mg] = (@3 b3 C3|=| 0 —1 —(by—bc,)|

G by Cf =10 (h,—beg)

e R

Figura 2.85: Painéis — parede: (a) transformacao de coordenadas locais para global; (b)

carregamento atuante no pilar e conseguinte esforgo cortante externo ‘%,,, gerado

X [ Zpr ’
’ ’ P b AIéxt
Zg o . . \l, )
2 o Vo e,
|
W I )
¢ I\ H !
I L ““ \l/ D YpL
/&lj bi ‘I‘ep !
J |
¢ (,\ a; . | \l/
e v Yo ENAVAN >

/ ®)

y
Fonte: O Autor (2019)

()

Realizando o equilibrio de esforcos cortantes 7,,; gerados pelo carregamento externo,

vide figura 2.85 (b), obtém-se:
Vexe- 1A'} = [Mg]".{V,} + [Ms]. {v'} (2.118)

com: I, — 0 momento de inércia torsional do painel — parede geneérico i;

6, — o angulo formado entre o eixo global y; e o local y, ver fig. 2.85 (b) e

e, — a distancia entre o centro de carga (CC) e o centro de gravidade (CG).

0 O 0

0 0 0 cos(6)
[My] = - ; {A'} = sin(6;) ;

[O 0 G. Z ItiJ e,.cos(8;)

%xt = D1.x2 + Dz.x + D3,

Dy =—q,.2.H)™
Dy =-q, ¢
D; =Q + (q,. H).
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e) Sistema de equac6es diferenciais do pilar em nuacleo

Aplica-se a equacdo (2.118) na eq. (2.117) e resulta como equacao diferencial (expressa
no centro de gravidade), para o pilar em formato de nucleo estrutural apresentado na figura 2.64

(b), a seguinte:
—U1L. "} + (81w} = { %} (2.119)

sendo: [J] = —[Mg]. ([Ms] + [M,]. [M1]~1. [M,]). [Mg] ;
[S] = [Mg]™. (IMg] + [M,]. [M,]7. [M]) + [Mo] e
(W} = Ve 1A} = [Mg] ™. (IM]. [M] ™. [My]). (D).

Por fim, realiza-se o translade das coordenadas do centro de gravidade para o centro de

torcdo, mediante matriz de transformacéo [T]. Ficando o sistema de EDO’s expresso por:
—[T1". U).[T). {wp'} + [T17.[S). [T]. {wp} = [T17.{ %} (2.120)

sendo: {v} = {v¢e} = [T]{vp};
{vce}, {vp} — deslocamentos no centro de gravidade e no centro de torgdo e

1 0 —Zcg
[T]=]0 1 vee |-
0 0 1

onde: {vp} é o vetor de deslocamentos no centro de torcdo; [T] é a matriz de translado de
coordenadas do CG para o centro de tor¢do e y.¢,Zce Sa0 as coordenadas do centro de
gravidade em relacdo a origem adotada. Na figura 2.86 €& apresentada graficamente a

transformacéo de coordenadas do CG para o centro de torcao (D).

Figura 2.86: Transformacao de coordenadas do CG para D: (a) translacdes e (b) rotacéo

Xp

A
dzt.r;n dzr;f.u' Q)D
P >~ -
< w
,”/ _Dp Dp d.V{.‘(;IJ' QD
= *> Zp -—— e > —» Zp

-~

g e d
Zeo /
pr @p
(a) Vo (b)

Fonte: O Autor (2019)
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f) Desacoplamento do sistema de EDO’s do pilar em nucleo

O sistema de EDQO’s apresentado na equagéo (2.119) é acoplado, uma vez que 0s vetores
"t =" 0" ¢"Ie W} =" o' ¢'}sdo pré-multiplicados por matrizes néo
diagonais. Ressaltando-se ainda que o deslocamento v ocorre na dire¢do do eixo y, definido
com origem no centro de tor¢cdo, bem como o deslocamento w para o €ixo z, € a rotagdo ¢

ocorre em torno do eixo axial xp (vide figura 2.87).

Figura 2.87: Eixos coordenados sobre o CG e o centro de torgdo D

~ 3
Xp Xce

Fonte: O Autor (2019)

A diagonalizagdo do sistema apresentado na equacdo (2.119) é realizado mediante trés

transformac0es de referencial, sendo estas:

> 12 Transformacao de referencial: Mediante matriz de translade e rotacéo [R,]
do sistema de coordenadas (yp, zp), N0o centro de torcao, para 0s eixos principais
de inércia (yg, zg).

{v} = [R.].{v} (2121 a)
onde a matriz [R,] é definida mediante figura 2.29 ¢ eq.’s (2.24). Ficando o

sistema reescrito como:
5"y + 8149} = {%) (2.121 b)

sendo: [J] = [R]™. /1. [Re] ; [S]=[Re]".[SI.[R.] e {V;}=I[RI".{V/}.

cosd —senf b
com: [R,] = |sen® cos@® al
0 0 1
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> 22 Transformacédo de referencial: Converter a matriz de rigidez [J/] em matriz

identidade, via transformagao quadratica por [J]~1/2 . Tem-se:
—{&"} +[SI". v} ={ f} (2.121¢)
sendo: {7} = [J]7z (v}; = 1728112 e (%) = 172 {%}.

» 32 Transformacdo de referencial: Diagonalizacdo da matriz [S]* através da

andalise modal do sistema (ver método de Jacobi no item 2.6).
—{" Y + (2L 'y = {7} (2.121d)
onde: [A2] = [Ay]7.[S]*. [Ay] € a matriz de autovalores da matriz [S]*; [Ay] é a

matriz de autoversores; e {(v}* = [A,]. (w}™; { %} = [4,17.{%} "

Ap0s a diagonalizacdo do sistema expresso na eq. (2.119), aplicam-se as condicdes de
contorno (ja adequadas ao referencial generalizado). Sendo as condic¢des de contorno no sistema

generalizado, as seguintes:
{vo}™ = [®]71. [R] 7% {wo} (2.121¢)
{vo}™ = [@]71 [Re] W} (2121 f)

com: [®] = [J1"V2.[Ay] e {v,}, {v,} as condicbes iniciais no sistema inicial de referéncias. Por
fim, o vetor de esforgos cortantes {”ﬁf} mediante matriz modal ponderada [®], é expresso no

referencial generalizado sob a forma de {”ﬂf} sob a forma:

{7} =[] [R"-{ %} (2.121 9)

Desta feita, segue o processo de desacoplamento semelhante a marcha de céalculo N° 1

(apresentada na letra d, do item 2.4). E a solucdo da eq. (2.121 d) é apresentada no apéndice A.

2.8.2. Pilar com secdo transversal em duplo T

Formula-se a teoria dos painéis — parede, partindo de um pilar de secdo transversal
aberta e de paredes finas, sendo contraventado parcialmente por lintéis (com comprimento L,
e espacgados de eixo a eixo de h). Com o formato de nucleo estrutural e composto por sete

paredes e seis interse¢cOes, conforme apresentado na figura 2.88.
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Figura 2.88: Pilar em se¢do de duplo T: (a) painéis — parede e (b) acao do vento e frenagem

by

T A A i |l@® NG N P,
(M@I_l = — "“‘d 1@ |
i A 'y ,",/
. Cé by T 3 L‘;ﬁ;i-'iﬂ ;
T @]| 4 =1 ]®I Zce Vento
lintel (1)!_! s ’ )
i®: ] @ lintel (2) 11
& Yce P 7
f 1 1
. b, ® b -
@ \©|—| L | |_|©T(,)
®® —(7a)— ® —(71h)—» 2@
i ——® 1 3
i a i D t !
—epe— . ) (b)
+ . ¥

Fonte: O Autor (2019)

Ressaltando que em Mancini (1972), Barbosa (1980), Tso (1983) e em Smith e Taranath
(1972) os painéis — parede sdo analisados nucleos estruturais em formato de C e destinados a
edificios altos, ja nesta tese procede-se a formulacdo da teoria dos painéis — parede para pilares
de pontes, adotando-se assim secGes simétricas para caracterizagao da secéo transversal tipica
dos referidos elementos estruturais. Porém, a fim de tornar o equacionamento genérico, faz-se
a demonstracdo com dimensdes independentes da imposicdo de condi¢cbes de simetria. Nas
figuras 2.89 e 2.90 sdo apresentados os elementos diferenciais das paredes que compdem a

secdo em duplo T, bem como os fluxos de cisalhamento nas intersecgdes.

Figura 2.89: Elementos diferenciais dos painéis — parede: (a) 1, (b) 7 e (c) 4
SR] + d‘.]?l qt'/ + dSR7 ‘R,; + d(]t4

dx

=

Parede (1) Parede (7) Parede (4)
_ _— e

Fonte: O Autor (2019)
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Figura 2.90: Elementos diferenciais do: (a) painel — parede 2 e 3; e (b) painel — parede 5 e 6

N3 +dN;

mﬁng i d‘]ﬁj
Y+ dY;

|
I
ar| 1] AN
1
|

Parede (3)
‘—

N5 + dNs
Ms + dMs
, Vs +d Y

dx H
I An
x . :
| K| P
i El’IS, b 5
y % L
7 7 2 A

Parede (5)
_—

Fonte: O Autor (2019)

N, +dN,

AL/

: !
AN e

!

]

§ v M, |
Ty by
/ll/ /IV 7 4\/
Parede (2)
N + dNg

I
!
T dx
!
!

Parede (6)
—

a) Equacdes de equilibrio dos elementos diferenciais

Equilibrando os elementos diferenciais das paredes, conforme apresentado nas figuras

2.89 e 2.90, conclui-se por variagdo dos momento fletores e do esfor¢os normais, 0s seguintes:
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am,
dx

an,
W=P1+Q1_QZ+%

dm, b
dx _%+q3'?_Mf

dmz _(1)
ax P2 — Vs

dMs bs
==Y .
dx
a9,
dx

dIMm b
==Y+ @5+ 40

an,
dx =Pst+qs — Qe

dMs bs _
dr 5—Q4-7—Mi()
dds _ 2
W=p5_Q4_Vi()

dwt6 b6 — (2)
& = let g
din6 _(2)
sze—CIz—Vf

dM, b,
dx =_%+(Q3_Q4)-?+Q-
N,

dx =p7;+q43+q4s—(s

b (b1, — byp)
—%+(CI1+QZ)-?1—Q LA

2.122
. (2122 a)

(2.122 b)

(2.122 ¢)

(2.122 d)

(2.122 €)

(2.122 )

(2.122 g)

(2.122 h)

(2.122 1)

(2.122 )

(2.122 k)

(2.122 1)

(b7a - b7b)

- (2.122 m)

(2.122 n)

onde as recdes elasticas por lintel sdo representadas nas equacdes (2.109 b) e (2.110), resultando

apos aplicacdo dos coeficientes em cada lintel, por:

{1\7[(1)} = [1?(1)]_ {j(l)}

{1\71(2)} = [1?(2)]_ {5(2)}

(2.123 a)

(2.123 b)

sendo: {M(l)}T:{Ml’(l) Mf(l) 7, Vf(l)}i {M(z)}T:{IVIi(Z) Mf(Z) 7@ Vf(z)};
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(@) ={s® 6D p® O} (GO} =(g,® 9@ v® @}

(D) (1)
w w
Hi(l) =2 .(p!; gf(l) = 2. e A _¢’; vi(l) — 5)i(1)'¢’; Uf(l) — 5)f(1)'¢,;

bs b,
(2) w;® (2) wf(l) 2 2 2 2
0; _2.?(1), 6r 2. = —¢'; ;P =w,®.¢" e v,D =wP. 9"
6

b) Equacdes diferenciais dos painéis — parede e equilibrio em cortantes

Compatibilizando os deslocamentos nas intersecbes das paredes e adotando-se a
convencéo de deslocamentos e rotagdes apresentada na figura 2.83, exprimem-se as equagoes

de compatibilidade em deslocamentos nas mencionadas interse¢des, como:

b b
83 ——.vh =6, +—.v] (2.124 a)
2 2
b b
8 ——=. v =8 — =.v} (2.124 b)
2 2
b b
52+72.vg=57+77.v; (2.124 ¢)
b b
Ss + ?5 vt =6, ?7 vl (2.124 d)
b
67 - 64, + ?4174 (2124‘ e)
b
8, =68, — 7‘*.14 (2.124 f)

Derivam-se as equacdes (2.124) em relacdo ao eixo axial x, e com as equacdes (2.122)
em conjunto com a deformacdo especifica por esforco normal, organiza-se matricialmente o

sistema de equilibrio dos painéis — parede, como:
{q} = M 17" [M3].{v'} + [My]71 M) {vg '} + [My] 7. [My,]. {p} (2.125)

sendo: Ay =big—byy 5 A7 =bya—Dby 5 [My]= E/Z [My7]
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[Ar+4;  —As 0 0 0 A3 @ P1
| 4s  A—4Ag O 0 0 As | % 52
Ml=| g 0 A Agta,  —As 0 U= aa =l
0 0 —A, —A, A t4A, 4 qu s
A4_ —A4 0 0 —A1 Al + A4_ q6 p7
_bl'Al'A3 0 _bg.Al.A3 0 0 O 0 ]
| by. Ay Ag 0 0 0 0 —bg. Ay Ag 0
[M *] — 0 bz.Az.A7 0 0 0 O _b7.A2.A7
4 0 0 0 0 bs.As. A, 0 b,.As. A, |
0 0 0 —by. Ay A7 0 0 —2.0,.4,.4,
2.A1.A1.A4 0 0 _b4.A1.A4 0 O 0
= (1) ]
Vi Ay
0 0 ——
¢I
7. A
[0 0 di] [ o - A -4; 0 4, 0 o0 0 O
0 0 d ¢’ [—AG 0 0o 0 0 4 0]
— 0 O d3 — _(1) _| O A7 0 O 0 0 Az |
[M;3] = 00 4| ({0 o _Vf—;A'] e [Myo] = 0 0o 0 0 4, 0 —A
lo 0 OJ ¢ 0 0o 0 -4 0 0 4,
00 ol | 7?4, 4, 0 0 A 0 0 0
¢)I
0 0 0
0 0 0

Apbs promover o equilibrio do ndcleo estrutural (em duplo T) com relacéo aos esforcos
cortantes, escreve-se para cada i-ésima parede a equacgdo de equilibrio no i-ésimo esforco

cortante %;. E mediante notacdo matricial, tem-se:

{70} = Ms]. {vy'} + [M¢]. {v'} + [M;].{q} (2.126)
0 0 O]
0 0 ds
sendo'[M]—g 8 %6'd——Mi_(1).d—_Mi_(Z)-d———Mf(l)'d———Mf(Z)']—El
: 6l = ; s = 7 UYe — ;o Y7 — r M8 ro 0 Ji zi ?
0 0 d ¢ ¢ ¢
00 0
0 0 d
—J, 0 o0 0 0 0 07 by by 0 O 0 2.4y
o -, 0 0 0 o0 O 0 0 b, 0 0 0
o o —-J5 0 0 o0 O 1|-b; 0 0 0 0 0
[Ms]=lo0 o 0 —J,» 0 0 O0]e [M7]_E o 0 0 O b, b,
0 0 0 o —Js 0 0 o 0 0 —bs 0 0
0 0o 0 o0 0 —Jo O o bg 0 0 0 0
Lo 0o O o0 o0 0 —J Lo o b, —b; 2.A, 0

Na Fig. 2.91 é apresentado o procedimento de transformacao do vetor de deslocamentos

{v,} no sistema local para o sistema global de referéncias, via transformacéo {v,} = [Mg]. {v}.
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Figura 2.91: Procedimento de transformacédo das coordenadas locais para o sistema global

Xp (L 7 A
r > Zp

C
Ci A ;
\ \ ; bi Zi | CcG L éXt-b
a; / . =
/Zext-a 06 ﬂext
___________ 7%___
{ a = cosf;
a; = cos 6; )/ b= 0
v %l Sy sen b
b; = sen 6,
Yp
Fonte: O Autor (2019)
-al bl Cl- i 0 1 _b4:
a; b, C2 -1 0 —b,
as bz c; -1 0 —b .
com: [Mg] = (@4 by Caf=i—-1 0 0 |; sendo: bi*=?
a5 b5 C5 _1 0 bl*
s b Co -1 0 p°
47 p, 7 [0 1 b,

O sistema de equag0es diferenciais sera 0 mesmo expresso na eq. (2.119), porém para o
caso do pilar com sec¢do transversal em duplo T e simetria nos dois eixos principais de inércia
(v e z), verifica-se a dispensa da transformacéo de coordenadas do centro de gravidade (CG)
para o centro de tor¢do (D), isso devido a coincidéncia de posicionamento de tais centros
geométricos. Para 0s demais casos, a EDO transladada para o centro de torcdo consta na
equacao (2.120), sendo apresentada na figura 2.86 a notacdo de tal translade.

2.9. POSICIONAMENTO DO CENTRO DE TORCAO

O centro de torcdo D é definido como a posicdo arbitraria onde, ao serem aplicadas
forcas transversais, séo ativados apenas esforgos de flex&o (logo ocorre nulidade de esforcos de
torcdo ao longo da secdo transversal). Para posicionar o centro de torcdo, parte-se da nulidade
do momento gerado pela tensdo de cisalhamento 7(.8) em relagdo ao centro de tor¢do (D) via
distancia n (distancia perpendicular entre a linha de agdo da tensdo cisalhante resultante ty,s).

Esta configuracéo é apresentada na figura 2.92.
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Figura 2.92: Representacdo grafica da resultante g, € posicionamento relativo a D

81 Esqueleto A

Fonte: O Autor (2019)

Ao realizar a integracéo ao longo do eixo esqueleto 8 do ponto .8, até .8, e considerando

constante a espessura das paredes (espessura t), realiza-se o equilibrio de momento em torno

do centro de tor¢do D, conforme figura 2.92, resultando em:

f [r(s).n.t] dS = 0 (2127)

S

Modifica-se a eq. (2.127) para termos do comprimento infinitesimal d.s, e a espessura t
é adotada constante, assim ao substituir a tensdo cisalhante 7(s), chega-se a:

82

t. f (Q:"I]:IS -77) ds =0 (2.128)

81

Sabendo que Q, € a carga aplicada na direcdo y e posicionada no centro de torgéo,
realiza-se a integracdo por partes da eq. (2.128), concluindo como primeira condi¢do de

posicionamento do centro de torcdo, a seguinte:

82

f (w.y)dS =0 (2.129)
81

onde: w = sz n ds é a area setorial, sendo uma propriedade geométrica definida por Vlassov
1

(1962). Ressalta-se que a condigdo na equacdo (2.129) advém da aplicacdo de cargas @, no

centro de tor¢do. Assim ao aplicar a carga Q, na diregdo principal de inércia z, postula-se como

segunda condicéo de posicionamento do centro de tor¢cdo (CT = D), a seguinte:
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J(w.z)dS =0 (2.130)
S

Devido a ndo ser viavel aplicar as condi¢Ges de posicionamento do centro de torcdo D,
expressas nas equacdes (2.129) e (2.130), de forma direta (por sua inerente complexidade
algébrica), procede-se entdo uma interpretagdo geometrica, ver Mori e Munaiar Neto (2017, p.
33 —44). Parte-se de um ponto genérico P denominado de polo arbitrario com coordenadas y,,
e z, em relagdo ao centro de gravidade da secdo transversal, conforme € ilustrado na figura
2.93. Faz-se o calculo da ordenada setorial w,, (com polo no ponto arbitrario P) ao longo do

segmento O,Q da parede fina a ser analisado.

Figura 2.93: Determinacdo geométrica do centro de torcdo D mediante polo arbitrario P

% v ) Z Z0 X
/ Vi i ;
| \
o Yo ; k' I/: (Z ) Zo) \ MI . P
1 A" MUy D &)
k |
A LA ‘
sy N'
V7 e
/jj}m ’: S Bu =
//;;//’3/ B >
ap ot H J_J;,,,y
Q Lﬂb (202)) 2
/W\/ Zo L
vy

Fonte: O Autor (2019)

Realiza-se a varredura D 0,Q, que é igual a metade da area setorial w,, 0 (uma vez que a

varredura PO,Q equivale a metade da area setorial arbitraria w, do ponto @, conforme teoria

apresentada em Vlassov). Assim, via calculo das areas A, B,A"" e B"', conclui-se que:

w=A-B (2131 a)
w,=A'—B' (2.131 b)
w = w, + ¥y — yo). (zp — Zp) —(z—20).(yp — yp) (2.131¢)

onde: O, é a origem do eixo esqueleto; y,, z, S80 as coordenadas da origem; yp, zp S40 as

coordenadas do centro de torcdo e y,, z,, sdo as coordenadas do polo arbitrario P.
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Por nédo ser conhecido o posicionamento do centro de torgédo D e esta ser a motivagao
de tal analise é que se aplicam as equacdes (2.131) nas equacdes (2.129) e (2.130). Apds adotar
a nulidade dos momentos estaticos My e do produto de inérciay.z (por se tratar de eixos
principais de inércia), chegam-se as coordenadas do centro de tor¢do, como:

Zp =z, + dz (2132 a)
Yp =Yp +dy (2.132b)

1 1
sendo: d, = ——.J(wp.y) s e d, =—.J(wp.z) ds.
Iz 5 ly 5

onde: dz e dy sdo as distancias paralelas aos eixos centroidais z.; € y¢q, respectivamente. As

distancias sdo compreendidas entre o centro de tor¢do D e o polo arbitrario P.

a) Pilar em nucleo estrutural

Na figura 2.94 é apresentado o posicionamento do centro de torcdo D em detrimento do
polo arbitrario P e do centro de gravidade da se¢éo transversal. E na figura 2.95 sdo indicados
os graus de liberdade (w¢g, vce € ¢dcg) NO centro de torgdo, bem como as conseguintes cotas e

carregamentos transversais q(z).

Figura 2.94: Posicionamento do centro de tor¢do D para a secdo de paredes finas

¢82
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: >,
Yr \Lt

ye L Ple=—4=—=5-—3s;
d""‘ d: | 2
D .y

Fonte: O Autor (2019)
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Figura 2.95: Graus de liberdade no centro de tor¢éo D

>
= N
— N
= T
S| I
: Sz AT
@ 10
. SRt — 5> 7
|
yF | | S1 >
| | QTO
¢CE D WCE: : S - 8
ct=ce) M : 1
erzof) L] o
| bz
!, d: \.VdEGE Ca |, 2 =
“ a1 1
|
|
Vce y:
I
T e

Fonte: O Autor (2019)

Na figura 2.96 séo apresentadas duas possibilidades de funcionamento estrutural do

pilar em ndcleo, sendo ativado o funcionamento de viga coluna quando da atuacdo do

carregamento no eixo simétrico de inércia principal. A segunda possibilidade é a ativacdo da

flexo — torcao devido a excentricidade entre o centro de carga (CC) e o centro elastico (CE),

este Ultimo também denominado de centro de torcéo (D).

Figura 2.96: Funcionamento estrutural do pilar de acordo com o eixo de solicita¢éo
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Fonte: O Autor (2019)
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Para a secdo transversal em formato de C (com abas de reforco de tamanhos ay,, € a,, ),

os diagramas de coordenadas y e z sdo apresentados na figura 2.97.

Figura 2.97: Diagramas de: (a) coordenadas y e (b) coordenadas z

by-becy .A,m/ﬂ' be-bocz

b‘.'-b 3y __?’ l-]) \"'i Doz “J}U"V —(+)
- T ¢ =by-beey-asy
CC - = CG .
’,_bZGy-azy e
¢ | J E = | —

bz ¥
bCGy (*!‘) bCGy ‘\kLU\LL bz-beez

Fonte: O Autor (2019)

O diagrama de ordenadas setoriais provisorias w,, € apresentado na figura 2.98, para o

qual o polo P é arbitrario e posicionado na intersecao de duas paredes finas, a fim de facilitar o
processamento.

Figura 2.98: Diagrama de ordenadas de area setorial com polo arbitrario P

by.b:
M by.bz
—_(+)

bz-(by*‘“aW)

Fonte: O Autor (2019)

Postula-se o procedimento de posicionamento do centro de torcdo e a conseguinte

determinacdo da inércia setorial I, através da marcha de célculo N° 3.
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a.1l) Marcha de Célculo N° 3

> 12 Etapa: Verificar se ha eixo(s) de simetria(s), € impor o polo arbitrario P nos referidos
eixos. Caso ndo haja eixo de simetria, aplica-se P em qualquer ponto ao longo do eixo
esqueleto .
Observacao: Nas barras que contenham o ponto P, tem-se w,, nulo. Isso por nao existir
area definida entre o ponto arbitrario P e os nos inicial e final do segmento de barra em

analise.

> 2% Etapa: Tragar o diagrama de area setorial provisorio w,,, mediante polo arbitrario P.

> 32 Etapa: Tracar o diagrama de coordenadas y e z para a secdo transversal. Vide o

modelo apresentado na figura 2.97.

» 42 Etapa: Calcular as propriedades geométricas das se¢des transversais, posicionar o

centro de gravidade e determinar os momentos de inércia I, € I,,.

> 5% Etapa: Calcular via tabelas de Kurt — Beyer, ver Campanari (1985, v.3, p. 899), o
cruzamentro das areas nas integrais ao longo do esqueleto s. Lembrar de usar a

convencéo apresentada nas figuras 2.93 e 2.94.

1 1
dzz——.f(wp.y)dS; dy=—.f(wp.z)d5
. 5 Y5
» 62 Etapa: Calcular as coordenadas do centro de tor¢do D (também denominada de

centro elastico — CE), via:
ZD:Zp-I—dZ; yD:yp+dy

» T2 Etapa: Definir O, como a origem do eixo esqueleto 8. No caso de eixo de simetria,
posiciona-se O, sobre tal eixo. Em caso contrario, O, é adotado em alguma das bordas
(quinas) da secéo transversal.

» 82 Etapa: Utilizar o centro de tor¢do (D) como polo de varredura e procede-se o tracado

do diagrama de ordenadas setoriais w..
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> 9?2 Etapa: Calcular a Inércia setorial através da integracdo quadratica do diagrama wy,

pela espessura t, ficando expressa por:

I, = | (wye) ds =t | (w,) ds (2.133)
f(ontas e[ o

8

com: dS = t.d.s. Observacdo: Adota-se o centro de tor¢cdo como polo de varredura ao
longo do trecho, no intervalo do nd inicial (i) ao final (j) do segmento (parede). Efetua-
se assim, o calculo da area compreendida entre os vetores i e ¥, e via o calculo vetorial

apresentado na figura 2.99.

Figura 2.99: Célculo vetorial da area delimitada pelo centro de tor¢ado e os extremos do painel

Fonte: O Autor (2019)

i x 5=[(x" —x"). 0" =) — O = xp). (v = 7)) k

adota-se 0 modulo do produto vetorial ||i x || igual ao dobro da érea

compreendida entre os pontos D, i e j. Resultando como determinate equivalente

0 seguinte:
1 xi* yl*
2A=|1 xp" yp© (2.134)

onde: i € o no inicial do trecho da secéo transversal a ser integrada, j € o no final
e D o centro de torcdo. E x* e y* sdo os eixos de referéncia adotados para a

varredura; x,", y," sao as coordenadas do ponto genérico g e o sinal positivo da

varredura durante a integracao € o apresentado na figura 2.100.
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Figura 2.100: Convencao positiva da varredura na integragdo para determinar a area setorial

Fonte: O Autor (2019)

Aplicando a marcha de calculo N° 3 (ver item 2.9 a.1) no pilar com secdo apresentada

na figura 2.95. Conclui-se como diagrama de area setorial w,. 0 apresentado na figura 2.101.

Sendo também denominado de diagrama de ordenadas setoriais absolutas.

Figura 2.101: Diagrama de ordenadas setoriais absolutas w,,. para o pilar em C
w, = (b — dy). (by = bch)
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i~ By
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bcey

2 g X
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Fonte: O Autor (2019)



121
Fundamentacdo Teorica

b) Pilar com secéo transversal em duplo T

Na figura 2.102 é apresentado o diagrama de ordenadas setoriais Wy, CUjo polo de
varredura € o centro de torcdo D, para a se¢do transversal em duplo T com simetria nos dois
eixos principais de inércia. Dai, observa-se que o centro de tor¢do coincide com o centro de
gravidade e pela propriedade da area setorial compreendida entre as extremidades da parede e

0 centro geométrico D, conclui-se que as ordenadas setoriais no painel central séo nulos.

Figura 2.102: Diagrama de ordenadas setoriais w,. para se¢do de duplo T com dupla simetria

b | 4
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w
f:
8 ~ {“"b
=) (+)
wj, of| (+) +) wr,
(1),“, ‘N\ / )xl
CG = D W
¥ o —
Zcg Zp A
0 (‘)/‘ﬂ)
(ufz (‘)/h i
+) @) i
= w;
(+)

Yece l
Yp l

Fonte: O Autor (2019)

Wi,
7a

baseado nas dimensfes dos painéis — parede apresentadas na figura 2.88, exprimem-se as

ordenadas setoriais nas extremidades dos referidos paineis, como:

_ _ bl.b4 . _ b1 b4 b . _ _ _bl.b4 . _ .
Wfp Wi =55 W= o5 F b ) Wiy, SR =TT Wi T g
by. by _ _ b; (b,
Wi,y = W = 4 y Wiy = Wi, Wig = Wy, € Wp = W= 2 (?-l_ b2>'

As propriedades geométricas da secdo transversal apresentada na figura 2.88 com a
consideracdo de dimensOes distintas entre as paredes e sem qualquer eixo de simetria, sdo

expressas por:
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iXcg; A
beg, = 2ioCer i 2.135a
S Vi A
beg, = % (2.135 b)
7
Z L, + Ady?) (2135 ¢)
i=1
7
Z (L, + Ay.dj, (2.135 d)
i=1

sendo: A; a area do i-ésimo painel — parede; b¢g, € bCGy sao as coordenadas do centro de
gravidade ao admitir dois eixos auxiliares x* e y*com origem na intersecdo dos eixos esqueleto
dos painéis — parede (2) e (7); d,, e d,, sdo as distancias de translade dos momentos de inércia
centroidais via Teorema de Steiner; I, e I,,, sd0 os momentos de inércia centroidais do i-ésimo

painel — parede; ja I, e I,, sdo os momentos de inércia da se¢do transversal em duplo T.

Na figura 2.103 ¢ apresentado o diagrama de ordenadas setoriais provisorias w,, com

polo de varredura arbitrado na intersecao entre as paredes (4) e (7), cumprindo assim a 22 etapa
da marcha de célculo N° 3 e buscando-se assim localizar o centro de tor¢cdo D e tracar o

diagrama w,, para a se¢do sem qualquer eixo de simetria.

Figura 2.103: Diagrama de ordenadas setoriais w,, para se¢do de duplo T sem qualquer simetria

bla- b4
by.byp

EX | +  \
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Fonte: O Autor (2019)
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Em seguida procede-se o tracado dos diagramas de coordenadas y e z (3? etapa da
marcha de calculo N° 3) em relacdo ao centro de gravidade da secdo transversal em duplo T, os

quais sdo apresentados nas figuras 2.104 e 2.105, respectivamente.

Figura 2.104: Diagrama de coordenadas y para a se¢cdo em duplo T, com origem no CG

(bCGy B b4) (bCGy B b4)

e {2
(bcs, — ba + bs) G & \ (bcs, — ba + bs)

cG ‘
( ) Zcg
beg, — bs
’ (bCGy B b5)
) Yeo v |\ besy )
bcg, (+) beg,

Fonte: O Autor (2019)

Figura 2.105: Diagrama de coordenadas z para a se¢cdo em duplo T, com origem no CG

(bm — beg, + 1—71/7)

bCGZ == (bTL{ e bl(l) E/ | ( | )
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bea, g (b7a = beg, + b7b)
YVee &

Fonte: O Autor (2019)

O diagrama de ordenadas setoriais principais wy. para a se¢do sem qualquer simetria e

calculada mediante procedimento geométrico apresentado nas figuras 2.93 e 2.99, bem como
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na determinagao dos incrementos de ordenada setorial Aw ;) no painel — parede genérico i, via

equacao (2.134). Resultando no diagrama apresentado na figura 2.106, mediante realizagdo das

5?8 6% e 82 etapas da marcha de calculo N° 3.

Figura 2.106: Diagrama de ordenadas setoriais w,,. para se¢do assimétrica em duplo T

)
wp1 D2
wpi(l) 5 ! N\
wpf(z)
Y ©p,@)
® ©\ Y
(+) (,Up4
“p; w | B
wps
yD v
Fonte: O Autor (2019)

por ordenadas setoriais principais, postulam-se:
wp, = dy.(dy — by) — byg. (by — d) (2.136 a)
wp, = —dy. (by — dy) + byp. (by — d) (2.136 b)
wp, = dy.(bsq +d;) (2.136 ¢)
wp, = dy.(d; — byp) (2.1364d)
wp, =dy.d, (2.136¢)
wp, = —dy.(by — dy) (2.136 )
Wp 1y = dz- (dy + b3 — by) = by (b3 + by — dy) (2.136 g9)
Wp 1) = - (dy = by) + bra. (by + d,) (2.136 h)
Wpyy d;. (dy - bS) — byp. (bs + dy) (2.136 1)

Wp oy = ~dz- (ba = b6 = dy) + bp. (bs — d,) (2.136 ))
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2.10. MATRIZ DE RIGIDEZ DE BARRA COM SECAO TRANSVERSAL
RETANGULAR LINEARMENTE VARIAVEL

a) Introducéo

Na analise estrutural é relevante o Método dos Deslocamentos, o qual consiste em
resolver a estrutura atraves da obtencdo das deformagdes iniciais na estrutura (SUSSEKIND,
1978). Conforme ilustrado em Kassimali (2015), a vantagem da utilizacdo do Método dos
Deslocamentos em detrimento do Método da Forgas baseia-se no fato de ndo haver dificuldade
em escolher as incognitas, uma vez que o problema fundamental é um sé por estrutura. Para um
pilar de ponte de elevado comprimento, é economicamente relevante que se adote secéo
transversal variavel, com base mais robusta do que o topo. Assim, ao agregar tal afunilamento
no fuste do pilar é construtivamente mais viavel que tal variacdo seja linear, dai a motivacédo
deste item da fundamentacdo tedrica com a obtencéo exata da matriz de rigidez de um elemento
de barra com secdo transversal retangular, e linearmente variavel ao longo do eixo axial x. No
campo das solugdes aproximadas em tal determinagéo, cita-se Luo et al. (2007) e Brown (1984).

Na anélise dos problemas estéticos ou dindmicos faz-se relevante conhecer a definigdo
de graus de liberdade. Pois em um ponto qualquer num plano, os deslocamentos podem ocorrer
por “n” dire¢cdes (onde apenas trés destes sdo linearmente independentes), a depender do

sistema de referéncia, sendo denominados graus de liberdade. Ver figura 2.107.

Figura 2.107: Deslocamentos num plano qualquer: (a) Genéricos e (b) Graus de Liberdade

5
€z

Fonte: O Autor (2019)

Conforme apresentado em Krasnov et al. (1990) no Curso de Matematica Superior —
Volume 1:

“Um sistema ordenado de vectores é;, &,, €3, ..., 8, de um espaco linear V se denomina
base deste espaco linear se os vetores €, €,, €, ..., €, sdo linearmente independentes e

todo vetor de V pode ser representado como Combinacdo Linear desta Base.

(KRASNOQV et al., 1990, vol 1, p. 190).



126
Weslley Imperiano Gomes de Melo

Para o pilar de uma ponte com tabuleiro elevado a 100 metros, exemplo aqui
desenvolvido, torna-se relevante subdividi-los em diversas barras, isso para a devida analise
estrutural. E nestas barras é caracteristica a modelagem matematica dos deslocamentos lineares
e angulares nos nos. A rigidez da barra é, por definicdo, 0 momento necessario a ser aplicado
no extremo da barra para que este, suposto livre ao giro, sofra uma rotacdo unitaria
(SUSSEKIND, 1978). A compatibilizacdo dos deslocamentos, estes em decorréncia das
vinculag@es extraidas via definicdo do método das forcas, sera adotada a partir da convencao
positiva dos eixos coordenados. Dessa forma, mediante formulacdo presente em Kiseliov
(1976), escreve-se o sistema de equacdes de compatibilidade de deslocamentos, em notacédo

matricial, como:
{d} = [F1.{X} + {63 + {6} (2.137)

com: {d} o vetor de deslocamentos nas vincula¢des hiperestaticas extraidas da estrutura;
{X} o vetor de incOgnitas, logo as forgas ou esfor¢os nas vinculagdes extraidas;
{6} o vetor de deslocamentos no problema fundamental, conforme postula Maney (1915);
{67} o vetor de deslocamentos no problema térmico, nas vincula¢des extraidas e

[F] amatriz de flexibilidade, sendo montada via deslocamentos no sistemas derivados.

Para a montagem da matriz de flexibilidade [F] basta apenas considerar apenas o0s
sistemas derivados. Além disso, o vetor {6} é desprezado nesta analise, pois almeja-se apenas
obter a matriz de flexibilidade. Tais sistemas derivados de uma barra biengastada séo

apresentados na figura 2.108, tanto quanto o sistema principal.

Figura 2.108: Método das forcas: (a) sistema principal, (b) 1° sistema derivado, (c) 2°

sistema derivado, (d) 3° sistema derivado

M;=1 My =1 1
N N N=1 N
A A — Ja; £l
(a) m ®)
e “~~ é
A A A A A
() (d) L‘

Fonte: O Autor (2019)
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Ao no inicial tem-se o grau de liberdade em rotacdo, como 6;. O no final caracteriza-se

pelo grau de liberdade também em rotacédo 6. E por fim, 5 em deslocamento linear para o no

final. Assim o sistema de equacGes fica expresso por:

91' a; & 0 Mi
Gf =€ @ar 0 . Mf
5) 10 0 Bl (N

(2.138)

A fim de aplicar o principio dos trabalhos virtuais (PTV), ressalta-se que no
deslocamento virtual ndo é possivel ocorrer deslocamento real, isso quando o ponto material
esta em equilibrio. E para que uma particula esteja em equilibrio, deve-se satisfazer a condi¢ao
de nulidade ao trabalho de todas as forcas externas (STAMATO, 1983). Em termo dos esforcos

solicitantes dos casos de estados de carga apresentados nas figuras 2.108 e 2.109.

Figura 2.109: Diagramas de esforcos solicitantes: (a) M; = M;, (b) My = IVIf, V=
Vf = Vf = Vi’ (d)Nf = Nf

h 1
7N
A A A A
) M; = M; Mp=-+
(a) (b)
1
A A A AT
! = et o =N
‘ V(:Vf:_% Ny = -1
© ()

Fonte: O Autor (2019)

escrevem-se os deslocamentos linear ¢ e angulares a;, ay € &, como:

L _
o = (Mi-Mi)
: E.Iz(x)
0

j k

(VV)
“G.A

(2139 a)



128
Weslley Imperiano Gomes de Melo

F (M. 1) AN

My My ) fYr

f E.I,(x) d“f ke At & (2139 b)

€= f E.Iz(x) fkc G. A( ) (2.139 ¢)
(Nf Nf)

Bf—fEA(x) (2.139 d)

onde; k. € o fator de forma da secéo transversal.

Na figura 2.110 é apresentado o elemento de barra com comprimento L e dimensdes na

secdo transversal Hy,(x) e H,(x).

Figura 2.110: Elemento de barra com dimens@es na se¢do transversal variavel

linearmente ao longo do eixo axial x

) ) NE— "

y pad

b, = Hy(x = 0)
b, = H,(x = 0)

Hy(x =L)
Hy(x=1)

Fonte: O Autor (2019)

escreve-se a area da secdo transversal A(x) e o momento de inércia I,(x) em torno do eixo z,

como:
L(x) =ky.x*+ ky.x3+ kg x? + kyx + ks (2.140 a)

com: k; = A.C% ky = C%(3.A.D +B.C); ks =3.C.D.(A.D + B.C);
k,=D?(A.D +3.B.C.D); ks =B.D3, k¢=A.C; k,=A.D+B.C; kg=B.D;

h,—b hy —b
5 B=b; C==7— ¢ D=b,

Na figura 2.111 é caracterizada a analise do momento estatico de area Q(x), para uma

secédo retangular de dimensbes H,, (x) e H,(x).
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Figura 2.111: Momento Estatico de Area para secio retangular linearmente variavel no

eixo axial x

A'(x)

H,(x) T / 7%
2 — Z(X) A

Zy
|«— H,(x) —|

Fonte: O Autor (2019)

chega-se a:

A(x) = IH 2(x) —Z(x)l.Hy(x)
3

1(x) = Hz(x)l-;ly(x)

Loy A

Z'(x) = Ty(x) + z(x)

06) = 4(0.7() = 22, [szzfx)

— Zz(x)l

(2.141 a)

(2.141 b)

(2.141 ¢)

(2.141 d)

Procede-se o célculo do fator de forma k., apds transformar a integracao na area A para

termos do comprimento, obtendo-se:

Hy(xX)
2
AW (P A0 [ [
‘TR B YT B fo) 0y 1909 @

2

(2.142)

Ao aplicar as equagdes (2.141) na equacdo (2.142), e realizar a integracdo em z e

consequentes simplificagdes, conclui-se que o fator de forma k. permanece inalterado ao longo

do eixo x e vale:

6
kc=§

(2.142 a)
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Por fim, ao aplicar as equacdes (2.140), (2.141) e (2.142 a) nas equacgdes (2.139), obtém-

se os coeficientes de flexibilidade (a;, ay, € € B), expressos por:

12 B+ A.L B D+C.L D
a; Ny — n2.1n< y >+n2.ln(z>+n2.ln( C )—n2.1n<6)]

-
+ ke [1 <B+AL> (B>] ifA.D # B.C (2.143
G L'\D+C.L D i 4 0 (2143a)
B+A.L B D+C.L D
o = 1( y) ) (z) ’76‘“< )*’k-“‘(z)]
+ ke [1 <B+AL> ] (B>] ifA.D # B.C (2.143b
G L"\D+c.t)” "D i 4 ¢ (2143D)
B+A.L B D+C.L D
= #0910 (F57) = o In () = 70.1n (<) + 70 (3|
+ ke [1 (B+A'L> ] (B)] if A.D #B.C 2.143
. I"\D+c.z)” "D i 4. 0 (@1430)
B+A.L B
1 [n(p5zT) () .

Br=— T if AD £B.C (2143 d)
—q =L + ke if AD=B.C (2.143
=Y T E B DTG B.D.L if AD=B.C (2143¢)
_ 2L,k if A.D=B.C (2143
*“EBD3TGBDL if AD=B.C (2143f)
__L if AD=B.C (2143
Bf_E.B.D I’f . - . (' g)

com:n, =L.(A.D +B.C).(2.B.D +3.A.D.L — B.C.L); n, = 2.D%.(A.L + B)%;
ns = —2.D%.12.(A.D + B.C)3; n, = [2.(A.D + B.C);
s = —L.(A.D — B.C).(2.B.D — A.D.L + 3.B.C.L); n¢ = 2.B2.(C.L + D)?;

L
ny = 2.12.(C.L + D)%.(A.D — B.C)3; ng = —E.(A.D —B.C).(2.B.D+A.D.L+B.C.L);
N9 =B.D.(A.L+B).(C.L+D) e 1ny9=D.I?(C.L+D).(A.D+ B.C)3.
No método dos deslocamentos, promove-se o travamento dos nds vinculados da
estrutura, isso a fim de configurar as ligacGes das barras mediante engastes. Em notagéo

matricial, o sistema de equac@es de equilibrio dos esfor¢os desequilibrantes por né é expresso

da seguinte forma:
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{M} = [K1{D}+ {y} + {¥y"} (2.144)

com: {M} o vetor de esfor¢os aplicados na estrutura hiperestatica, nas vinculagdes impostas;
{D} o vetor de incOgnitas, logo os deslocamentos nas vinculagdes inseridas (impostas);
{r} o vetor de esforcos desequilibrantes no problema fundamental;
{yT} o vetor de esforgos desequilibrantes no problema térmico e

[K] a matriz de rigidez, sendo montada via deslocamentos no sistemas derivados.

Valendo-se das defini¢cdes presentes em Kassimali (2015) e Kiseliov (1976), a matriz

de rigidez [K] sera a inversa da matriz de flexibilidade [F]. Concluem-se os termos de rigidez,

como:.
-1
ai ¢ 0 ki a O
[K]=[F]t=]|¢ a O =|a ks O (2.145 a)
a
k= —2— (2.145 b)
a.ap — &
Qi
= — 2.14
ks a;.ap — &2 ( >¢)
—&
= — 2.14
¢ a;.ap — * ( >d)
1
T = ﬁ_ (2.145 e)
f

a presente formulacdo foi proposta por George Alfred Maney no ano de 1915, ver Maney
(1915); e Parcel e Maney (1944), e também denominado de método da rotacdo — flecha.

b) Modelagem do pilar de ponte via massas concentradas

Na analise dindmica do pilar subdividido em quatro barras (por exemplo), com massas
concentradas no centro dos segmentos de barra e em consonancia com o procedido em Crede
(1972). Bem como proceder a extensao de tal subdivisdo em “n” barras, seguindo com massas
concentradas nas n-ésimas barras com massa total “m” dividida por “n” elementos. Vide figura
2.112.
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Figura 2.112: Grupamento dos parametros para uma barra em balanco

s

L
-]

FONTE: (CREDE, 1972)

| F

Na figura 2.112 é estendido o conceito de massas concentradas para cinco massa m; e

com molas de rigidez k;, com excitacdo do movimento pela forca dindmica Fs(t) aplicada na

quinta massa. Vide configuracgdo apresentada na figura 2.113.

Figura 2.113: Sistema de massa — mola com cinco graus de liberdade

ks

FONTE: Adaptado de (PAVLOU, 2015)

O conjunto de equacdes de equilibrio (conforme principio de D’Alembert), para 0

conjunto apresentado na figura 2.113, sera:

my.iy +kouy —ky(up —uy) =0

Mmy. iy + ko (Uy —uq) — kg (ug —uy) =0
mg. s + k3. (ug — uy) — kg (uy —u3) =0
My iy + Ky (Ug —uz) —ks. (us —uy) =0

m5.il5 + k5. (us — u4_) =0

(2.146 )
(2.146 b)
(2.146 ¢)
(2.146 d)
(2.146 e)

As equac0es (2.146) sdo reescritas, em termos dos deslocamentos u;, como:

my.iiy + (ky + ky).ug — ky.uy; =0

My iy — kg ug + (ky + k3).uy — ks uz3 =0
Mgty — k3. uy + (ks + ky).uzs —kyuy =0
My iy — kgt + (ky + ks).uy — ks us =0

ms.ﬁs - k5.U4 + k5.U5 = Fs(t)

(2.147 a)
(2.147 b)
(2.147 ¢)
(2.147 d)
(2.147 e)

Em Warburton (1976) é verificada a equacdo geral para massas m; sobre vibracdo

forcada ndo amortecida, conforme € apresentado na figura 2.114.
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Figura 2.114: Portico Plano com “n” graus de liberdade

= Xn
Mp
L
1
X4l
M4
kr*i-l
C —X,
m, D
Kr
A B—-——x,_,
My
| .
r l); J

FONTE: (WARBURTON, 1976)

E:
m]x] = P](t) - k] (x] - x]'_l) + kj+1. (x]'+1 - xj) (2148 a)
Em termos matriciais, tem-se reescrita as equacdes (2.147), por:
[M]. {it} + [K]. {u} = {F(t)} (2.149)
m; 0 0 0 0 ki+ky, —k, 0 0 0
0 m, 0 0 0 —k2 k2 + k3 —k3 0 0
onde:[M]=]0 o0 mz3 0 O0];[K]l=]| o0 —ks  ks+k, —ha 0 |
0 0 0 my O 0 0 —ky, katks —ks
lo o o 0 m5J 0 0 0 —ks ks
ul ul 0
u2‘ ﬁz ( 0 \
fu}=<us; ; {i}=<iz;p ; {F)}=1 O e F5(t) = Fs.sin(@. t).
Uy ily 0
Us iis Fs(t)

Na formulacdo até agora apresentada neste item e no capitulo 3 (MEF), as barras
analisadas sdo consideradas com secdo transversal constante, isso quanto as dimensdes e as
demais propriedades. Porém, no estudo de pilares de pontes em vigas torna-se importante a
execucdo dos pilares com secdo transversal variavel ao longo da altura, isto a fim de conferir
racionalidade e economia aos custos finais de execucdo do elemento estrutural. Neste tocante é
que Cook et al. (2002) traz a modelagéo estrutural de um pilar sobre carga compressiva no topo.
Modelando também como se¢des constantes e escalonadas ao longo da altura, conforme é

apresentado na figura 2.115.
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Figura 2.115: Modelagem do pilar com secéao variavel

Structure Model Discretized models

P
g, aA,

AI

Post | A,

NSZN N L i TS
Ground 7 Physical Finite element
Y support representation  representation

FONTE: (COOK et al., 2002)

c) Condensacédo matricial

Baseado em Paz (1992) e na aplicacdo no célculo de frequéncias naturais em Alves Filho
(2009, p. 200), a condensacao matricial consiste em reescrever o sistema de equagdes em termo
de algumas de suas variaveis. Na figura 2.116 é apresentado um pilar com n subdivisbes e (n +
1) nos, bem como os decorrentes graus de liberdade (6 e 8) e as forcas nodais, isso a fim de

exemplificar tal procedimento de condensacéo.

Figura 2.116: Pilar subdividido em elementos finitos

)

Fn, — mMn
(n-1)

F, |:> l M,
3)

F, —> I M,
It

"=

I

(1)
|

Fonte: O Autor (2019)
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Ficando o sistema de EDO’s, para a vibragdo ndo amortecida, expresso por:

[Mgg] {‘9}} (Kool [Kosl] ({601 _ (M}

[Mso] ]{{5} o el o) =) (2.130)

onde: (Y = {0, 6, 63 .. 6., 6, {6 ={8, 6, 85 .. Op_i Oy}
{M}TZ{Ml M, Mz .. My, Mn}; {F}TZ{F1 Fy, F3 .. Fyq Fn};

[Mgg]l, [Mgs], [Msg], [Mss] — ver no capitulo 3 (MEF via Maney e ver eq.’s 3.36) e
[Kool, [Kos], [Ksel, [Kss] — ver no capitulo 3 (MEF via Maney e ver eq.’s 3.36).

A submatriz [Mgg] apresenta os termos de massas rotacionais, verificando-se a pouca
representatividade (em magnitude) em relacdo as massas translacionais (inclusas na submatriz
[Mss]). Desta afirmacédo, desprezam-se também as submatrizes [Mgs] e [Msg], € reescreve-se

a eq. (2.150) como:

ERtR 1 i o R R e

Expressando a equagio (2.151) em formato de sistema de equacGes matriciais, tem-se:
(Kool {63 + [Kps]. {63 = {M} (2152 a)
[M55]. {8} + [Kse]. {6} + [K56]. {6} = {F} (2.152 b)

A fim de expressar os deslocamentos {8}, procede-se o isolamento do vetor de rotacoes

{6} na equagéo (2.152 a) e ao aplicar na eq. (2.152 b), concluindo:

[Mss].{8} + [Ks6]. ([Kgol 1AM} — [Koo] 2. [Kos]. {6}) + [K55].{6} = {F} (2.153)
reorganizando, tem-se:

[Mss]. {6} + [K*1.{6} = {F"} (2.153 a)

com: [K*] = [Kss] — ([Ksel. [Kaal ™. [Kos]); {F*} = {F} — ([Ksel. [Kge]~*. {M});
sendo: [K*] a matriz de rigidez condensada e {F*} o vetor condensado das forcas transversais.

A EDO condensada para a vibracdo amortecida de maneira proporcional ([C*] =

Am- [Mss] + ay.. [K*]) fica expressa por:

[Mss]. {6} + [C*].{8} + [K"].{6} = {F"} (2.154)
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d) Modelagem por cinco elementos finitos de barra para se¢do retangular

linearmente variavel

Para exemplificar a utilizacdo da matriz de rigidez de secdo retangular linearmente
variavel em pilares de pontes, adotam-se como dimensGes da secdo transversal na base b, =
12,5me b, = 25 m. Ja no topo utilizam-se: h, = 5m e h, = 10 m. E obtém-se os modos de
vibracdo mediante analise modal (YANG et al., 2004), modelando o pilar em cinco elementos
finitos (CREDE, 1972) e cuja formulagéo geral para n massa apresentada em Warburton (1964).
Por fim, utiliza-se a condensac¢ao matricial (McGUIRE e GALLAGHER, 1979; RUBINSTEIN,
1966). O material empregado na ponte é concreto armado de classe de resisténcia C — 90, ver
NBR 6118 (ABNT, 2014). Para o0 modulo de elasticidade longitudinal é utilizado E =
4,67 x 101° MPa e coeficiente de Poisson v = 0,20, vide figura 2.117. A fim de validar a
exemplificacéo, realiza-se a modelagem no software ANSYS Release 11. Ressalta-se que para

0s modos de vibracéo, as dimens6es adotadas para a se¢do transversal torna-se irrelevante.

Figura 2.117: Ponte com pilares de secdo linearmente variavel

‘ H\ylz,s m "”" ] 30,0 m [ '1 30,0 m "' 30,0 m [ iz m”‘/ﬁ_
[ | ‘ 1 [ ‘ ‘ ;
[ ] \l | ||
| [ o | | |
| | - |
|| 5 | }
| i | |
\ . | | 3| | |
-3 o s =
H E T2 12|/
‘—‘l ‘2’ £ |8 il
— | [
‘\ N | ;f ‘ [ [ “
[\ ’ ‘ A
| ‘ _\\ | | //i |
‘ / |
N ’ | | 7 |
| ‘ e \ 2 | |
| N | L |

Fonte: O Autor (2019)

De tal andlise, obtém-se na tabela 2.1 os coeficientes para gerar a matriz de rigidez do
pilar, as frequéncias de vibracio w; e os Autoversores A? (via a nulidade do determinante

|[K] — A.[M]]), assim exprimem-se para o0s trés primeiros modos de vibracao:

rad rad rad
w, = 7,85434 T; w, = 8,45070 T; w3 = 8,85416 T (2.155a—10)
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Tabela 2.1: Par@metros para gerar a matriz de rigidez do pilar de se¢do linearmente variavel

Elemento 1 2 3 4 5
A (ADM) - 0,015 - 0,015 - 0,015 - 0,015 - 0,015
B (m) 25,000 22,000 19,000 16,000 13,000
C (ADM) - 0,075 - 0,075 - 0,075 - 0,075 - 0,075
D (m) 12,500 11,000 9,500 8,000 6,500
a; = as (x 10%) 6,540 4,430 2,890 1,799 1,050
k; (x 1013) [N.m] 2,274 1,364 0,759 0,382 0,166
kf (x 1013) [N.m] 2,261 1,356 0,754 0,379 0,165
a (x 1013) [N.m] 1,134 0,680 0,378 0,190 0,083

Fonte: O Autor (2019)

Conforme processamento exposto no Apéndice (B.1), a matriz de rigidez [K] e de massa

[M], para o pilar ao considerar os cinco elementos finitos (ja na forma condensada), valem:

1,701 x 10" 7,634 x 10'* 3,178 x10° 1,196x10° 3,891 x 107
7,634 x 10" 1,019x 10 4,241x10* 1,596x 101 5,193 x 108 ] N
[K]=3,178 x 101 4241x 10! 5666x 102 2,132x10'' 6,939x10° | —
1,196 x10° 1,596 x 101 2,132x10'* 2,848x102 9270 x 10| ™
3,891x107 57193x10% 6,939x10° 9,270x10° 1,238 x 102
1,955 x 107 9,995 x 10° 0 0 0
9,995 x 105 1,227 x 107 6,761 x 10° 0 0
[M] = 0 6,761 x105 7,281x10° 4,374x10° 0 kg
0 0 4374 x105 4,030x10° 2,685x10°
0 0 0 2,685 x 105 1,984 x10°

Na figura 2.118 é apresentado um grupo de modos de vibracdo, para o pilar maci¢o da
ponte apresentada na figura 2.117, modelando no software ANSYS Release 11. Foram

utilizados 62.468 nos e 13.635 elementos finitos, produzindo uma malha com 93,99 %.

Figura 2.118: Modos de vibracéo: (a) 1° modo, (b) 2° modo e (c) 3° modo do pilar macico

0,00057471 Max
0,00051085
0,00044600

0,00048451 Max
0,00043068

0,00059576 Max
0,00052956
0,00046337
0,00039717
0,00033098
0,00026478
0,00019859
0,00013239
6,6195e-5

0 Min

0,00038314
0,00031928
0,00025542
0,00019157
0,00012771
6,3856e-5
0 Min

—| 0,00021534
0,0001615
0,00010767
5,383%-5
0 Min

0,00 45,00

90,00 (m)
67,50 (a)

(b) ©)

Fonte: O Autor (2019)

22,50

A validagdo da primeira frequéncia de vibracdo f; (mediante equacdo 2.155 a) é

processada e resulta em:
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rad
w, 785434 ==

f1:2

= = 1,25005 H 2.156
.TT 2.7 z ( )

Comparando-se a primeira frequéncia de vibracdo mediante modelagem no ANSYS,

ver figura 2.118, com o valor apresentado na equacgéo (2.156), conclui-se uma aproximacao de:

(1,25005 — 1,23300) Hz
A(%) = T3T00% iz .100% = 1,36 % (2.157)

A discrepancia de 1,36 % entre a primeira frequéncia de vibracdo, via calculo manual
por elementos finitos de barra e pela modelagem no software ANSYS, é decorrente do pequeno
numero de elementos de barra utilizados na modelagem manual (exemplo da letra d desse item
e no item B.1 do Apéndice B). Porém, a formulacdo aqui presente é bastante satisfatoria para

verificar a ordem de grandeza dos resultados obtidos via modelagem em softwares comerciais.

e) Verificacdo da modelagem do MEF via TMC

Baseado na Teoria dos Painéis — Parede (TPP), exprime-se a equacdo diferencial da

solicitacdo dindmica do pilar macico apresentado na figura 2.117, mediante eq. (2.119), como:
—U14q"" G, )} + [8).4q" e, 00} + [M]. {G G, 0} = { % (.0 (2.158)

onde: [J] é a matriz de rigidez do pilar; [S] é a matriz de rigidez dos lintéis (e para o pilar
macico, modelado neste item da tese, serd nula); [M] é a matriz de massa do referido pilar e
q(x,t) é a funcdo dos deslocamentos dependentes do espaco e do tempo. Mediante a analise
harmonica da eq. (2.158) e impondo-lhe o procedimento de separacéo de variaveis, escreve-se:

") mmge)
O I (2.159)

onde: q(x, t) = u(x). g(t). Exprime-se a equagdo caracteristica da EDO escrita no espago, via
eq. (2.159), como:

jwtr—=2,2=0 (2.160)

e por solugdo da eq. (2.160), exprime-se: w = (2.161)
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Mediante o calculo da rigidez j expresso na eq. (2.116), onde j = E. I, em conjunto com

Pfeil (1979, p. 211), conclui-se por rigidez do pilar apresentado na figura 2.117, a seguinte:

B . 10m.(5m)° LN
= 4,67 x 10* Pa .1,2793 .——— = 6,22326 x 10 o (2.162)

topo 12

j=E.I=E.p.I,

conforme apresentado em Dziewolski (1964) segue-se o0 ajuste da rigidez do pilar mediante o

coeficiente a = 1/1 5 (para estruturas simples) e exprime-se via eq. (5.20 d):

: j 6,22326 x 1012% 1
’\/j = 7 %= (100 m)? 15 = 105,29633 (2.163)

Aplicando-se a eg. (2.163) na eq. (2.161) escreve-se as primeiras frequéncias de

vibracdo do pilar de ponte, apresentado na figura 2.117, como:

w = L (2.164)
~105,29633 '

utilizando a primeira raiz do polindmio apresentado no Apéndice B, mais especificamente na

pagina B.6, exprime-se a primeira frequéncia de vibracao do referido pilar (via TMC) como:

_ \6,16906 x 10° rad /s R L 2165
@17 105,29633 - s (2.165 a)
)
e em frequéncia fundamental, tem-se: fi= ﬁ =1,18718 Hz (2.165 b)

concluindo por divergéncia em relacdo a modelagem procedida no ANSYS Release 11, ver
figura 2.118, a seguinte:
|frmc — fansysl |1,18718 — 1,233| Hz

A(%) = .100% = .100% = 3,87 2.165
(%) Frme % 1,18718 Hz o o ( )

Observa-se que a diferenca percentual pela TMC foi maior do que pelo MEF de barra,
isso devido a interpolacdo realizada no coeficiente 8 da eq. (2.162). Bem como, constata-se a
utilizacdo do coeficiente de ajuste a na eq. (2.163). Enquanto no Apéndice B a andlise é
processada pelo método dos elementos finitos, dispensando-se a imposicdo de tal coeficiente.
Mesmo assim, consegue-se validar de forma satisfatoria a analise modal do pilar apresentado

na figura 2.117, tanto pela MEF como pela TMC.
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PARTE Il

CONTRIBUICOES DA TESE

“Uma vez que vocé tenha provado o vdo, vocé

andard pela terra com os olhos voltados para o

céu, pois ld esteve e [d vocé desejard voltar”.
Leonardo da Vinci



Capitulo

3

FORMULACAO PELO METODO DOS ELEMENTOS FINITOS DE
PILARESEM SECOESCEDUPLO T

3.1. INTRODUCAO

Baseado em Absi (1969), Dhatt et. al (2005), Zienkiewicz (1964); (1965) e (1966), bem
como Vaz (2011) e Bathe (2019), considera-se uma equacdo diferencial, F(v) = b, valida no
dominio Q, onde F é definido por operador e representa a derivacdo da funcdo v. A fim de
extrair v como solucdo da equacéo diferencial, faz-se necessaria a integracao por partes. Sendo
importante definir a integracdo do produto interno entre o operador F(v) pela funcdo
ponderadora W, tais integracGes por partes necessitam das condi¢cdes de contorno. Na figura
3.1 sdo apresentadas as condi¢cBes de contorno, divididas nas superficies: S(u) que é

indeslocada (condigdes essenciais) e G(u) a superficie sob condi¢fes naturais (28 = 0 e/ou

Y= 0elou M = 0). Sendo W o momento fletor, # o esforgo cortante e 9 é o esforco normal.

Figura 3.1: CondigOes de contorno do elemento finito

Posicao
deformada

r=n,+0,

| | I |Ap0i0

Fonte: O Autor (2019)
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A solucdo exata para a equacdo diferencial F(uy) = b sera u,, sendo de dificil ou
impossivel obtencdo mediante integracGes. Assim, pode-se aproximar a solucdo através de
diversas funcbes u, surgindo as familias de interpolacdo. Ficando a solug¢do aproximadora u,

expressa por:
n

U =a +Zcx]~.¢j = u, (3.1
j=1

onde: a, € o coeficiente para atender as condi¢Ges de contorno; «; sdo os coeficientes a

determinar e 1; sdo funcdes interpoladoras (linearmente independentes).

As fungbes 1; sdo escolhidas de acordo com as condi¢bes de contorno e/ou de
continuidade. Admite-se que o conjunto de fungdes 1; esta completo, quando o erro quadratico

total for inferior a certa tolerancia ¢ (vide figura 3.2).

Figura 3.2: Representacdo grafica das funcdes u e u,

Ug

Fonte: O Autor (2019)
f(uo —u)?dx < €2 (3.2)
Q

Ao aplicar a solucdo aproximadora u na equacdo diferencial F(u,) = b, percebe-se a

ocorréncia do residuo R, ficando a funcéo residual expressa por:
R=Fw-b+0 (3-3)

Tal funcdo residual (eq. 3.3) é forcada a nulidade para valores médios em todo o
dominio. Resultando por objetivo minimizar o erro da aproximacgéo da funcéo exata u, pela
funcdo u, caracterizando-se diversos métodos de acordo com o procedimento utilizado para tal

minimizacg&o, dentre eles 0 método dos elementos finitos.
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a) Metodo dos residuos ponderados

Conforme é apresentado em Reddy (1984, p. 102 — 113), o método dos residuos
ponderados consiste em distribuir o residuo R (eq. 3.3), de foma que o valor médio seja nulo.
Para tal imposicdo, define-se a fungdo ponderadora W como a combinagdo linear da fungdes

interpoladoras v;, ficando expressa por:

n
j=1
com: B; os coeficientes da combinagdo linear.

Distribui-se o erro (residuo) através da fungdo ponderadora W, ao longo do dominio €,

mediante o produto interno:
(R, W) = f(R.W) d0 = 0 (3.5)
Q

Aplica-se a eq. (3.4) na eq. (3.5), e os coeficientes B; sdo admitidos arbitrarios,

chegando-se a:

f(R.lpj) dQ =0 (3.6)
Q

conclui-se que o residuo R € ortogonal a cada funcéo interpoladora v;, e que a equagao (3.6)

representa um conjunto de equacdes por variagdo de j = {1,2,3, ..., n}.
b) Equacdo integral do pilar via MEF

A fim de expor o fundamento do método dos elementos finitos (MEF), aplica-se o
método dos residuos ponderados no pilar apresentado na figura 3.3. E, em seguida realiza-se a

integragéo por partes.
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Figura 3.3: Pilar engastado na base

|

|
q)=q[— |
> I

|

|

'

L

Fonte: O Autor (2019)

A funcéo residual apresentada na eq. (3.3) fica reescrita, para o pilar ilustrado na figura

7.3, como:
d?v(x)
=0z b (3.7)
b= M(x)
com. = £l .

A integracdo expressa na eg. (3.6) em termos dos contornos I} e I, mediante duas

integracdes por partes, fica reescrita como:

J(R.W) a0 = — [ (Rl.a%]) dr + [(RZ.W) dr (3.8)

com: R=V?u—b,Ri=u—1u,R,=q—Gq, q= au/an é a derivada direcional de u; u

. . _ . du x ~
equivale a u, na superficie I} ; g equivalea gy emIy; go = 0/an; Ug € qo Séo solugdes exatas.

Ficando a eq. (3.8) adaptada para o pilar (ver figura 3.3) em andlise, como:

H
j {ldzdt;(zx) l }dx + [(u - u) awy® =0 (3.9)
0

0

Integra-se por partes, a eq. (3.9), a equacdo integral obtida via residuos ponderados.

Obtendo-se a equacdo integral fundamental para o MEF, e expressa por:
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H H H H
dv(x) dw dv(x) __dw B
(,)[ { dx W} dx — IW dx IO - [(u — u).a]o + Of{bW} dx =0 (3.10)

c) Sistema algébrico via MEF

A primordial diferenca entre 0 MEF e os demais métodos numéricos oriundos do
método dos residuos ponderados, é a subdivisdo do dominio . em vérios trechos (subdominios).
A estes subdominios denominam-se elementos de dimensdes finitas, ou simplesmente de
elementos finitos. Por fim, para cada trecho é definida uma funcio aproximadora u® (x),

conforme € ilustrado na figura 3.4.
Figura 3.4: Subdivisdo do pilar em elementos finitos

A A
X &
“ 2

Y / hi . /
v o
R [/72 |

V1
% —» Y, V(x) i vy =

H — dominio ()
h — subdominio ();

Fonte: O Autor (2019)

No i — ésimo elemento finito, a funcio aproximadora u® (ver a equacio 3.1) é expressa

por:

n

u = z a;®. 1p,® (3.11)

j=1

O MEF é decorrente do método de Rayleigh — Ritz, formulado por Ritz em 1909. E

como tal, baseia-se no método da energia potencial estacionaria. E o funcional de energia
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potencial I1,, para toda a estrutura, sera a soma das parcelas em cada elemento finito Hp(i),

assim:

N
I, = Z 1, ® (3.12)
i=1

onde: N é o nimero de elementos finitos na discretizacdo proposta.

Aplica-se a variacao a energia I1,,, expressando em termo dos elementos finitos (por

subdominios), e escreve-se:

Y, (am,® o, ® o, ®
6HP=Z{ b Sy + L Sy e+ .5aN} (3.13)

Jda
=1 1

com: (ay, @, ..., ay) 0s coeficientes da combinagcdo linear das funces 1p; para compor a fungéo

aproximadora u.

Reescreve-se a equacdo (3.13), em duplo somatério, como:

N N a]'[p(l)
511, = ZZ 705 (3.14)

Promove-se a minimizacdo do funcional I1,, mediante a imposicao de nulidade em sua

primeira variagéo (611, = 0). Assim, via eq. (3.14) surge o sistema de equacdes algébricas do

MEF:

an,,(i)
=0 (3.15)

aaj

com; os parametros a; a determinar. As funces aproximadoras nos subdominios u®(x), nos
elementos finitos, devem atender as condic¢des de contorno dos extremos do elemento i. No

caso do pilar apresentado na figura 3.4, tem-se v, e v como deslocamentos e v,’ e v3' as

rotacdes (ambos denominados de graus de liberdade).



147
Formulagdo pelo Método dos Elementos Finitos

3.2. EQUACOES DE MANEY PARA ELEMENTO FINITO

Neste item o elemento finito analisado é aquele cujo sistema local de coordenadas (SLC)
coincida com o sistema global de coordenadas (SGC), em outro termos, € 0 elemento nao
inclinada e com elementos de barra sequenciados. Esse elemento finito foi apresentado por
George Alfred Maney como um método geral para resolucéo de estruturas hiperestaticas, sendo
inclusive eficaz para estruturas com elevado grau hiperestatico. O método foi apresentado em
1915 no boletim de estudos de engenharia da Universidade de Minnesota, objetivando
solucionar o problema da acdo do vento em edificios de multiplos andares, porém pode-se
aplicar eficazmente nos esforcos secundarios (solicitantes) de pontes. O método postulado por
Maney é especialmente Gtil para estruturas de nos rigidos, dai a utilizacdo via método dos

deslocamentos.

O referido método postulado por G. A. Maney baseia-se em trabalhos alemaes sob
esforcos secundarios em pontes, 0s quais ao ver de Maney ndo estavam generalizados, nem
aplicados a outras ocorréncias, dai a proposicao de tal método geral. Em posterior este metodo
postulado por G. A. Maney ficou conhecido como “Slope — Deflection Method” o método da
rotagdo — flecha, citam-se como referéncias para tais afirmacfes Maney (1915) e Megson
(2005). Na determinacdo dos esforcos secundarios em pontes “secondary stresses in bridges
trusses” cita-se Grimm (1908), onde encontra-se a ideia inicial do “slope — deflection method”
postulado anos mais tarde por G. A. Maney. Em tal analise dos esfor¢os secundarios observa-
se a obtencdo dos esfor¢os internos para superestruturas de pontes com as vigas sobre o formato
de arcos trelicados. A formulacdo do método da rotacdo — flecha é procedida considerando que
a barra reta é submetida aos carregamentos externos: P (concentrado) e g (distribuido) e sob

reacOes elasticas em momentos M, e Mg e em cortantes V, e V. Vide Figura 3.5.

Figura 3.5: Barra engastada nas extremidades: (a) carregamentos e (b) reaces elésticas

associadas as reacdes de engastamento perfeito, nos extremos da barra

LATLle ALY

A B
(a)

% I\M
H v; (b) Uvg

Fonte: O Autor (2019)
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Partindo da equacéo diferencial da linha eléstica, equacionada por Navier, e baseada na
hipotese de Bernoulli: “As se¢des transversais permanecem planas depois da deformacgéo do
prisma”. Ainda conforme Lacerda (1964), ressalta-se a definicdo de linha elastica do prisma, o
que postula-se: “no prisma deformado, cada se¢do transversal ¢ normal ao eixo médio
deformado”. Assim, escreve-Se:

d?v(x)

(E.D). Tz Mx) =M; +V).x (3.16)

Integram-se duas vezes a equacao (3.16), obtem-se:

x? x3

As duas constantes de integracdo (C; e C,), apresentadas na equagdo (3.17), séo

determinadas mediante condic¢Ges de contorno no ponto A, ficando expressas por:

C,=E.1.6, (3.18 a)
Cz =E.I.UA (318 Cl)
dv(x) .

para =6, ¢ v(x = 0) = v,, respectivamente.

dx lx=o

Por fim, aplicam-se as equacdes (3.18) na eq. (3.17) e escreve-se a equacdo da deflexdo
como:

x? x3

(E.D.v(x) = Mj.7 + V‘:'E +E.1.6,x+E.l.vy (3.19a)

e sua derivada, a equacao da rotacdo, fica expressa por:

x2
(B.D.6(x) = Mj.x +V;. - +E.1.6, (3.19 b)

Aplica-se agora as equagdes (3.19) no extremo final da viga (x = L) e exprime-se:

L? L3
Elvg =M —+ Vi +E16,L+E.Lv, (3.20 @)
LZ
(E.1).0p = M;.L+V;. =+ E.1.6, (3.20 b)

Exprimem-se as equac0es (3.20) sob formato matricial, como:
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L L3
2 6 MZ}_ {(UB_VA)—HA-L}
[ LJ.{V; =ELP (321a)
1L 5]
LZ _L3
My 12|35 (vp — 1) — O, L
ficando: {Vﬁ}zﬁ.[z ;}El{ B HBA—QA A } (3.21b)

2 |

resultando em My e V,; expressas por:

6.E.1 6.E.1 4.E.1 2.E.1
A= — 12 LUy + 12 Vg — L .QA—T.QB (321C)
. 12.E.1 12.E.1 6.E.1 6.E.1
Vy = 3 .UA—L—3.UB +L—2.9A+L—2.93 (3.214d)

Observa-se que nas equacdes (3.21 c¢) e (3.21 d) tem-se as reacdes elasticas do extremo
inicial da barra, em funcdo dos graus de liberdade (8,, 85, v4 € vg). Dai, para obter as reacoes
elasticas do extremo final (N6 B) utilizam-se as equacdes de equilibrio em momento e em forgas
verticais (cortantes). Na figura 3.5 (b) é apresentado o diagrama de corpo rigido, basta aplicar

o0 equilibrio e obtem-se:

M+ M, +ViL=0 (3.21¢€)
Vi=-V; (3.21 1)

aplicam-se as equacoes (3.21 c) e (3.21 d) nas equacdes (3.21 e) e (3.21 f), concluindo-se:

. 6.E.1 6.E.1 2.E.1 4.E.1
MB=_ 12 Uy + 12 .UB—T.QA—T.QB (321g)
12.E.1 12.E.1 6.E.1 6.E.1
B — — I3 Uy + I3 .UVgp — 1z A~ 1z B (321 h)

Na figura 3.6 é inserido o conceito de reacdes de engastamento perfeito.

Figura 3.6: Detalhamento de reacdes: (a) reacfes de engastamento perfeito e (b) reacdes elasticas
M P R
N |/

M T g 7Y o

A B

@) H Va (b) U Vi

Fonte: O Autor (2019)
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Analisando em conjunto as figuras 3.5 (b) e 3.6, conclui-se:

M; = —M, + ME
M}, = —Mg + M§
Vi=-V,+Vf
Vi =V +VF

(3.22 @)
(3.22 b)
(3.22¢)
(3.22d)

Para compatibilizar as reacGes elasticas M; e My com os graus de liberdade 6; e 6,

conforme ilustrado na figura 3.7, procede-se a troca de sinal dos termos dos referidos graus de

liberdade (nas equagdes 3.21 c, d, g, h).

Figura 3.7: Compatibilizacao entre os graus de liberdade e as reagdes elasticas

N

Fonte: O Autor (2019)

i,

Aplicando a compatibilizacdo da figura 3.7 e cruzando as equacdes (3.21 c), (3.21 d),

(3.21 g) e (3.21 h) com as eq.’s (3.22), escreve-Se:

F 4.E.1 2.E.1 6.E.1 6.E.1
_MA+MA= L 9A+ L .QB_T.vA-I-L_Z.vB

F 2.E.1 4.E.1 6.E.1 6.E.1
_MB+MB: L 9A+ L .QB_T.UA'i‘T.vB

F 6.E.1 6.E.1 12.E.1 12.E.1
—VA+VA Z—T. A—L—2.93+L—3.UA— B .Up

F 6.E.1 6.E.1 12.E.1 12.E.1
_VB+VB = L2 -0A+ LZ .QB—L—B.UA+L—3.UB

(3.23 @)
(3.23 b)
(3.23¢)

(3.23 d)

Utiliza-se a notacdo matricial exposta na figura 3.8, buscando fornecer tratamento

generalizado para n barras.
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Figura 3.8: Nomenclatura matricial para n barras
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Fonte: O Autor (2019)

organizam-se as equacdes (3.23) em formato matricial, como:

4.E.1 2.EI  6.EI 6.E.1
L L 12 12 .
M, 2.E.1 4EI1  6.EI 6.E.1| (6, My
Mg ( _ L L 12 2 | )es Mg
u(~| 6E1  6EI 12E1  12.E1|)va( T vF (3.24)
Vs 22 3 L3 ve) | vf
6.E.1 6.E.I 12.E.1 12.E.I
12 I3 I3

Por fim, utiliza-se a notagdo da figura 3.8 na equacao (3.24) e reescreve-se a equacao de
equilibrio para o método geral proposto por G. A. Maney em 1915, com nomenclatura
apresentada em Falconi (2004, p. 403 — 405), como:

F
Mi ki : _bi bi 91' MlF
Me\ _| a ro—be bl )6l Mg
Vi —b; —bf ¢
b

_ R EASE (3.25)
ka) | b by —t ¢l Uy v

onde: k;, kr sdo os coeficientes de rigidez para o sistema derivado com rotagdo unitaria via
método dos deslocamentos; a € a rigidez cruzada de tal sistema derivado; b;, by sdo as rigidezas

quando dos sistemas derivados de deslocamentos unitarios e t € a rigidez ao corte nos dois

Gltimos sistemas derivados citados. Vide na figura 3.9 a notacao utilizada.
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Figura 3.9: Sistemas derivados, pelo método dos deslocamentos, para a barra engastada nas
duas extremidades: (@) 8; =1, (b) 0y =1, (c)v; =1e(d) vy =1

o= o=t
ki T . a a F—
N 0 S o oy

/ 5 / E

2 / ) /

[ (a) U [-5 (b) [ by

7N — b mbf
v=1 0 SN vy =1

T t © —t U U— t @ H t

Fonte: O Autor (2019)

3.3. EQUACOES DE EQUILIBRIO DO ELEMENTO FINITO

Faz-se relevante mencionar que a abordagem primordial por elementos finitos consiste
em discretizar a estrutura em pequenos elementos e proceder o refinamento da decorrente
malha. Assim procede Meshkat-Dini e Tehranizadh (2009) através de elementos finitos
quadrilateros. Dai que nesta tese opta-se pela formulacdo matricial do MEF embasada no
método dos deslocamentos (como solugdo distinta da maioria das pesquisas constantes na
literatura). Postula-se 0 MEF mediante utilizacdo do principio da superposicdo de efeitos e na
conseguinte subdivisdo do sistema hipergeométrico (gera o vetor de reacdes elasticas {R,}) em:
problema fundamental (caracterizado pela atuagdo dos carregamentos e condigdes ambientais,

gera o vetor de reagdes de engaste {ReF}) e em n sistemas derivados (geram a matriz de rigidez

[K.]). Vide figura 3.10. Por fim, observa-se a utilizagdo do elemento finito de barra associado

a analise matricial de estruturas.
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Figura 3.10: Principio da superposicéo de efeitos no pilar com N elementos finitos
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Fonte: O Autor (2019)

Estendendo-se as equacOes equilibrio baseadas no método dos deslocamentos, estas
apresentadas em Parcel e Maney (1944), Parcel e Moorman (1955, p. 128 — 129 e p. 206 — 214)
e Charlton (1982, p. 157 — 163). Adequando tais equagfes para excitacdo dinamica, tem-se o

sistema de equilibrio expresso por:
{Re} = [M.].{d} + [K]. {d} + {R."} (3.26)

onde: {R,} é o vetor de reacGes elasticas (reacdes nodais de extremo do elemento finito); {d} é
o vetor de deslocamentos (incdgnitas, logo deslocamentos lineares e angulares); {d} é 0 vetor
de aceleragdo nodal; {R,"} é o vetor de reagGes de extremo fixo; [M,] e [K,] sdo as matrizes de

massa e de rigidez do elemento finito, respectivamente.

A equacdo (3.26) representa o sistema de equacdes de equilibrio dos elementos finitos
no sistema local de coordenadas (SLC), sendo necessario reescrevé-lo no sistema global de

coordenadas (SGC), mediante transformacao de coordenadas: { g} .. {d}, resultando em:

{R} = [M,).{d,} + [K,]-{d,} + {RT} (3.27)

onde: {R} = [T.].{R.};
(R™} = [T {R."};
[M,] = [T.]. [M,].[T.]";
[Ky] = [T [K). [T] e

[T.] é a matriz de transformac&o de coordenadas.
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3.4. ELEMENTO FINITO SOB FLEXAO

Mediante anélise do pilar apresentado na figura 3.3, e conforme preconizagdes dispostas
em Timoshenko (1953, p. 73— 75) onde relata a contribuicdo de Navier para equacéo diferencial
que rege a linha elastica. Bem como nas defini¢fes apresentadas em Petyt (1998) para célculo
via elementos finitos, considera-se o carregamento no sentido positivo da dire¢do vy,

expressando-se a equacéo diferencial da flexdo, por:
E.1.v""(x) = q(x) (3.28)
sendo valido o campo das pequenas deformacGes e g(x) é o carregamento lateral na direcdo .

Na equacdo residual (ver equacdo 3.7) procede-se a minimizagdo do erro via equacgéo

(3.5), concluindo-se para EF sob flex&o:

h

f{[E. Lv"(x) —q(x)]. W(x)}dx =0 (329 a)
0

integra-se duas vezes por partes a eg. (3.29 a), chegando-se a:

h h
j [E.1.v" (). W" ()] dx — j (0G0 W] dx
0 0

= —[E.Lvy"" (x). W) + [E. L.vy" (x). W' ()]} (3.29 b)

nr

onde: v, (x) € a derivada terceira da deflexdo v(x) em relagéo ao eixo axial x, sendo aplicada

na origem (x = 0) e v, (x) idem para a derivada segunda.

adimensionalisando a equacgéo (3.29 b), via (¢ = h™1.x), e utilizando a funcdo ponderadora

W (&) como a primeira variacdo da funcao aproximadora v(§), reescreve-se:

1

1
j (6alT. b} E. 10" e} H dé — j (6a)T. (). q. H dé
0

0
= —[{6a}T.E.1.vy"" {3} + [{6a}.E.L.vy,". {4'}]} (3.29¢)
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com: v(§) = z a;. ;= W3’ {a};

W) =Y} {6a} = {8a}". {y};
w" () ={6a}".{y"}e

v(§) afuncéo da interpolacao.

Reescreve-se a equacao (3.29 ¢), com a utilizacdo da matriz de rigidez [K,] e dos vetores

{R.} e {R,"} e considerando EI constante, como:

{6a}T. [K.].{a} + {6a}".{R."} = {6a}" . {R.} (3.30)
e:
1 1 7(0) Vi
_ " 1\ T . Fl _ _ . — QB(O) — Ml
[K.] = B.LH. j W) " dg; (RS} = ~H. f WhaCod; (k3 =1 )t =11

\-wH)) M

Vi, My, V, e M, sdo as reaces elasticas. Por fim, a equacdo (3.30) equivale a equacdo (3.26),
sem a parcela dinamica. E 7/(0), ¥/ (H) séo os esforcos cortantes na base e no topo do pilar

(respectivamente), sendo W(0), W(H) os momentos fletores na base e no topo do pilar

(respectivamente).

Ap0s a andlise estatica do elemento finito sob flexdo, faz-se necessario definir a matriz

de massa translacional [M,], a matriz de massa rotacional [M,.] e a matriz de rigidez geométrica

[K.g4], como:
M,] = j [NI”. p.[N] dV = f p.H.AE). Lp (O (O} dE (331a)
A\ 0
1
[M,] = j p. H.1L,(E). (' ()} ' () dé (331b)
0

1

(Koo = [ 1.9, 00O 00O ag (3310)

0
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sendo: V o volume da estrutura analisada e [M,] = [M,] + [M,]. Ficando os elementos de

posicao (i, j) das matrizes [K,], [K.,] e [M.], expressos por:

1

Koy = E-H. | 1O )47 €) df (3320)
0
1
Kegy, = H. | RO WO/ d (332)
0
1 1
Moy = oo [ AW, d + puH. [ 10166 g (3320)
0 0

sendo: 1(§) =1—3.82 4+ 2.8% ¥1(§) = 6. A1 (=§ +&2); Y1 (§) = 6.h72. (=1 + 2.9);
W2 (D) = (=§+2.82 =) b P39 = (-1 +4.§ - 3.8%); Y53(§) =2.h7".(2-3.9);
¥s(§) =3.82-2.8% Y3 =6.R71.(§—§%); Y5(©) =6.h72.(1-2.8);

e, () = (§2 - &by o) =(2.§-3.8%) e P (O =2.""(1-3.9).

Resultando o sistema (ver equacdo 3.26) de equilibrio dindmico, expresso como:
. F
(M a —-y; o T (HL-] t —b —t —bs] (g, (MiFN
Mg _ | B -t A oy 4 =b; ki by a6 4 My (3.33)
Vi o T % Vi) -t b ot be ") vi v,F '
Ve O B U I S I A A BN A U
onde: a; = Mel'l; Vi = _Mel,z; Bi = Mez,z; ay = M93,3; Yr= _M93,4; Br = Me4l4;

0=Mey3 Ti=Mey g Tp=—Meygs A=Mey,s t=Keyys bi=Kepz br=Kegys

a=Key,s ki=Key, © kp=Key,.

Baseado no método da distribuicdo de momentos, conforme Rizwan (2003, p. 258 —

261), apresenta-se na Fig. 3.11 o elemento finito; as reacdes elasticas e os graus de liberdade.

Figura 3.11: Elemento finito: (a) reaces elasticas e (b) graus de liberdade

M.

i Mr N O 0
n AN R Y

(@) I 1 (b)
Fonte: O Autor (2019)
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3.5. SISTEMA DE EQUILIBRIO DINAMICO PARA N ELEMENTOS FINITOS

Admite-se o pilar apresentado na figura 3.10 com N elementos finitos, e procede-se
analogo ao postulado em Gallagher (1975, p. 20 — 89) e Fuchs (2016, p. 314 — 325). Para tal,
baseia-se na nomenclatura genérica de nds variando de zero (na base) até j = n (no topo do
pilar). Além disso, utiliza-se a numeragdo dos elementos finitos de k = 1 (primeiro elemento

finito) até k = N. Vide figura 3.12.

Figura 3.12: Numeracao dos elementos finitos: (a) nos, (b) barras, (c) equilibrio dos nés ao longo

do pilar e (d) equilibrio do topo do pilar

--j=nEN[]k=N

p/=n-1 T j+1 j
=N-1 | .
B k=j+1 k=
H 13 . 4+ j—1
2 =3 k=j
' il =j -
) k=2 - (J=n)
k=1 -/ ()
— 1<j<n-1)
(a) (b) (©

Fonte: O Autor (2019)

Realiza-se o equilibrio de momentos e de forcas transversais nos pontos (nés) ao longo
do pilar, ver fig. 3.12 (a). Desta forma, utilizam-se as reacGes elasticas apresentadas na figura

3.11 (a), concluindo:

Mf(j) + Ml-(j+1) =0
1 9D.6_y + [B9 + @, U] 6, — 0.6,y — 1,05 + [20) + 0UD]. 3
+ 7,050 — 5,0,y + [P+ t0D).0; — b,UV. 0,0 + b, vy,

, i i+1 F(j F(j+1
+[a® — 0]y, — b, U+ p | = —M; ) _ yFU+D (3.34 a)

l
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Vf(j) + Vi(j+1) =0
1,6,y + [29) + 6U].G; — 1,045, + v, Doy + [ﬁf(f) +a U]
+y 0 5, — b6,y + [aD) - t(f+1>]. 6; + b;9*. 60,1 + b vy

n [kf(j) n t(jﬂ)]'vj n bf(j+1)-vj+1 _ —VfF(j) _yFU+D (3.34 b)

L

Para o equilibrio do topo do pilar, utiliza-se a fig. (3.12 d), chegando-se a:

G=n) —
MUY =0

v D g+ 8D b~ Db+ 1D b —b Do+ kD g +bD oy 4 aD
Vi 04+ B0 — 1 0 .U i 01 7.0 i Vo +avy;

YAC (3.34 ¢)

U=n) _
VU= = g
Tl(])ej A(]) 9 + )/f(]) + .Bf(]) i — b ) 0'_1 + a(J) 9] + bf(])-vj—l + kf(]).v]

= -y¥ (3.34d)

A fim de exemplificar a montagem das matrizes [K,] e [M,] apresentadas na eq. (3.26),

adota-se o pilar subdividido em cinco elementos finitos (N = 5) e escreve-se:

[Melgy [Melgs {}} [Kelgs [Kelos] ({01 _ ({M}
[[M€]59 Me]&g] {{6} Ke](SG [Ke]66]{{6}}_{{F}} (335)

Com a finalidade de interligar a equacao (3.35) do pilar com cinco elementos finitos,
com a condensacdo matricial apresentada na letra ¢ do item (2.10), bem como valendo-se da

nomenclatura matricial da equacédo (2.150), escreve-se:

8D + ;@ —y; @ 0 0 0
@) @4 a0  1® 0 0
Vi l l
n P v g @ -7 ® 0
[Me]go = 0 —y® B + a;® @ © (3.36 a)
0 0 @ B a®
L o 0 0 -® B
10 4 5@ ;@ 0 0 0
T ORI OFPIORRA (()4) X
[Me]gs = [Me]sg™ = 0 —;® 2B 4™ Ti 0 (3.36 b)
O O _Tf(4) 1(4) + 0'(5) Ti(S)

Lo 0 0 —® 0]
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5D 40, 7 % 0
@ KO rg® Y v ®
0 g p@ B
0 0 0 vr®
Dy b 0 @ 8 0
L@ k@D b 0
b i 3 —p® 0
[Kelgo = 0 _p® k3 +t@® i ©
0 6 —p® k@™ +t®  —b
L
0 0 b b® kO]
a®—t@  —b® 0 0
) @) _+®3 —bf( ) 0
T by a? —t _p,@
[Kelos = [Kelse = 0 e a® — @ f
0 0 p@®  a® —t®
L
0 0 0 b;®
OGS Q) 0 0 0
ke 4+t (Z)f e 0 0
b ke +t® @ )f @ b ™ 0
[Kelss = 3 ket 5
0 bfo pw @ ae® b
s 5 (5)
0 0 0 b k]

T . . . . .
{9} ={6; 6, 03 0, 95}
{5} ={6, 6, 63 64 65}
{9}T = {91 0, 03 0, 95}
{5}T = {51 52 53 54 55}
My ={M;, M, M; M, Ms}

{F}' ={F, F, F; F, Fs}

(3.36 ¢)

(3.36 d)

(3.36 €)

(3.36 f)

(3.36 )

(336 h)
(336 0)
(3.36 ))

(336 k)

(336 1)

3.6. ELEMENTO FINITO DE BARRA COM SECAO DE PAREDES FINAS E

EM FORMATO DE NUCLEO C

Baseado em Smith e Coull (1991), Heidebrecht e Swift (1971) e em Barbosa (1980)

procede-se a analise matricial do pilar em nuacleo, via método dos deslocamentos. Os

carregamentos externos sao aplicados mediante imposi¢do de cargas concentradas nos niveis

dos lintéis. Cria-se assim, o elemento finito de barra sob flexo-tor¢do em formato de nucleo C.
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Os painéis — parede que compdem o nucleo estrutural sdo analisados como elementos
finitos lineares com sete graus de liberdade (seis da analise matricial espacial e 0 empenamento
oriundo da teoria da flexo — tor¢do). A insercdo do empenamento ocorre através da matriz de
rigidez via teoria da flexo — torg¢do, sendo inserido o bimomento B no vetor de forgas e o
empenamento ¢’ no vetor de deslocamentos. J4, os lintéis sdo modelados com a capacidade de

reacdo aos esfor¢cos normais, cortantes, momentos fletores e torsores.

A andlise matricial, do conjunto painéis — parede contraventado por lintéis, foi
implementada em Mathcad Prime 5.0 (versdo estudantil), a fim de processar convenientemente
os dados. A utilizacdo do software Mathcad € motivada pelas inimeras incdgnitas geradas pelo

sistema de equacdes de equilibrio.

a) Matriz de rigidez a flex@o dos painéis — parede com secao aberta

O trecho dos painéis — parede serd o comprimento h e compreendido entre dois linteis
consecutivos, sendo denominados de elemento de painel — parede ou simplemente de elemento
de pilar. Vide figuras 3.13 e 3.19.

Figura 3.13: Convencdo no elemento: (a) dos graus de liberdade, (b) dos esforc¢os solicitantes e

(c) sequéncia de numeracao dos graus de liberdade

X
sz ‘,1”‘,-'7. T
u n
92 2\ 2..»*”" "X 22
w }V’"’ v lwz2 “\l Dt ™
2/' \ z 0 Fzz/' il .\FJ/2
\ Y2 M %
Y2 T
6, 1
(1)1 }" Z E M21 ] 5
B | B e
. vl e " L =)
9351 \ 0 i \J’1 \ (C)
u t yl ] M (2)
1 \ . \ \yl (5\
N R 2 y
(2) (b) J

Fonte: O Autor (2019)
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Na figura 3.13 observa-se que os eixos coordenados locais, do elemento do pilar, séo
impostos com origem no centro de torcdo. Por eixo longitudinal tem-se o eixo x, enquanto 0s

demais eixos (y e z) sdo tragados na secao transversal.

Da teoria do método dos deslocamentos, utiliza-se a matriz de rigidez do elemento de
barra (pilar) com secdo prismatica. Observando-se que o centro de tor¢do ndo coincide com o
centro de gravidade da secdo transversal, sendo utilizado o translade do sistema coordenado
(ver letra d, deste item). Assim, no centro de gravidade exprime-se a matriz de rigidez do pilar
com secdo de paredes finas, como:

[KFII]CG [KFIZ]CG

[Krlce =
e [KF21]CG [KFzz]CG

(3.37)

onde: [Kr].; é a matriz de rigidez (do pilar com secéo aberta de paredes finas) devido a flexao
e referenciada no centro de gravidade da secdo transversal. Desta forma, as equacGes de Maney

organizadas em formato matricial, e aplicadas ao pilar de se¢do de paredes finas, ficam
expressas por:

( Fz) ;
P t, 0 0 0 —-b, -—t, 0 0 0 —=by] Wiy
Fyi 0 t, 0 b, 0 0 -t, 0 b, 0 Vi
Xi 0 0 r 0 0 0 0 —r 0 0 U
M, 0 b, 0 Kk, O 0 —p, 0 a O 0
My, —b, 0 0 0 k. b, 0 0 0 ay 0y,
) E, = £ 0 0 0 b, 0 0 0 b, 1 wr ¢ (3.38)
R, 0 —t, 0 —b, 0 0 t 0 =b, of |7
Fy, 0 0 —r 0 0 0 0 r 0 0 ef
M, 0 b, 0 a O 0 —b, 0 k, O I
f 6
-b, 0 O 0 a, b 0 0 0 kyl G
M, ) y y y y f
com
_EA _4EL 1+ ¢, _2.E.0, 1-2.¢, , _kytay
TR YT TR Ttae, YT TR 1tde, YT R
_4Ed, 149 _2E0 =20, _kita, _3EIL
TR 144, TR i44e, 2T R YTeaAne
2.b 2.b
t,=—2 e t,=—2

h Y h
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o fator de forma da secdo transversal k. € apresentado de maneira simplificada em Timoshenko
e Gere (1984, v. 2, p. 349), como a razdo entre a area da secdo transversal pela area da alma na

direcdo analisada. Ficando expresso por:

k, = (3.38 )

b) Transformacéao de coordenadas do CG para o centro de tor¢ao D

A transferéncia do referencial dos graus de liberdade, do centro de gravidade para o

centro de torcao, é procedida conforme o ilustrado na figura 3.14.

Figura 3.14: Transformagéo de referencial do CG para D: (a) translades e (b) rotagdes 6, € 6,,

no centro de tor¢do D
XD ‘r

XD
(DDT XcG d = 2

ZcGp
Dce 4} e~
D T

VZD

* Zce

Yce

Fonte: O Autor (2019)

Mediante correlacdo entre os deslocamentos lineares e angulares em D com a

repercussao no CG, escreve-se:

Wcg = Wp (3.39a)
Vee = Vp (3.39b)
Uce = Up — Ve 0z + Zce- 0y, (3.39¢)
Ozcc = 0, (3.394d)
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=0, (3.39 ¢)

7]
Yce

matricialmente, tem-se:

{D}cc = [T1.{D}p (3.39 f)

{{Dca}i} _ [[T] [0]] {{Du}i} (339 9)

{Dcele) — L[o] [T1) UDp}s

T
e: {Dccti ={‘UCGi Veg; Uce; chgl- QyCGl.}; {DD}iz{le. vp; Up; 9le. HyDl-};

{DCG}fT = {wCGf Ver  Ucar GZCGf Hyccf}; {Dp}s = {wa vp, Ups QZDf Bny};
1 0 O 0 0
o1 0 0 0
[T1=10 0 1 —Yec zcc
0 0 O 1 0
0 0 O 0 1
A matriz de rigidez (eq. 3.37) fica expressa, com o referencial no centro de tor¢éo, por:
[KF]D = [T]T- [KF]CG- [T] (3.40)

sendo: [KFll]D = [T]T [KFll]CG' [T]’ [KFIZ]D = [T]T [KFIZ]CG' [T]’ [KF21]D = [KF12]DT;

[KFzz]D = [T]". [KFZZ]CG' [T1.

¢) Matriz de rigidez dos painéis — parede via teoria da flexo — torcéo

Na figura 3.15 sdo apresentados os esforgos solicitantes do pilar em ndcleo, sob a

pespectiva da teoria da flexo — torgdo (ver item 2.7).
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Figura 3.15: Convencéao dos esforgos solicitantes via teoria da flexo — torcéo

. Al RE

)
My, {2
FZZ/' ﬂZI\Fszy
2
.7
il 1, Mo
M, : \ijl 7\(
/ Y\I\wyl Bl

Fonte: O Autor (2019)

Mediante resolucdo da equacdo diferencial da flexo — torcéo, ver equagGes (2.98) e
(2.102), e aplicacédo das condic¢des de contorno para o pilar apresentado na figura 3.3. Tem-se

a rotacdo ¢(x) e 0 empenamento ¢’ (x), expressos por:

() = b1+ 20 senh(a.x) + 21 [eosh(@.x) — 1]+~ [a.x — senh(a. )]
Pp(x) = ¢, - -Senhla.x L cosh(a.x 2 Gl a.x — senh(a. x)
(341 a)
'(x) = ¢’ .. cosh 5 h M 1 h 3.41b
¢'(x) = ¢’ .cos (a.x)+G.—It.a.sen (a.x)+G.It.[ — cosh(a.x)] (3. )

sendo as condigOes de contorno: ¢, e ¢’, a rotagdo e 0 empenamento no ponto 1 do elemento
finito apresentado na figura 3.15; B; e M,, o bimomento e 0 momento de torgéo (também para

, e Mtl = G.It.¢’0 _E.Iw.¢,’,0.

oponto 1); By = E.1,.¢";

Aplica-se a equacdo (3.41 b), derivada em relagdo ao eixo axial x, na equacao (2.96 c).
Dai, exprime-se 0 bimomento B, (x) como:

. M
B, (x) = T.senh(a. x) + B;.cosh(a.x) — %.senh(a. x) (3.42)
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Procede-se a substituicdo da equacdo (3.41 a) na eq. (2.98), exprimindo-se a lei de

variagdo do momento de tor¢ao M, (x) (ao longo do eixo axial do elemento finito), como:
Mtx(x) = Mtl (3.43)

Organiza-se matricialmente, as equacbes (3.41), (3.42) e (3.43), semelhante ao

procedido em Henin (1978, p. 14 — 15), escreve-se:

senh(a.x) cosh(a.x) —1 a.x —senh(a.x)]
$x(x) @ G. 1y a.G. 1,
¢’ () 0  cosh(a.x) asenhla.x) 1= cosh(a.x) i)'l
B() [~ ' G.1I, G.1, 5[ (349
kMtx(x)) G.I,. se;lh(a. x) cosh(a. x) _ senhéaf. x) M,,
L0 0 0 1

sendo a correlacdo, mediante compatibilizacdo de sinais entre a teoria da flexo — torcdo e a
analise matricial candnica via método dos deslocamentos, apresentada na eq. (3.44 a) e
direcionada aos graus de liberdade (¢, ¢', B e M;). Os pontos correlacionados sdo 0s extremos
do elemento finito (apresentados na figura 3.15), e por notacao dos espaco de estados (ver letra
“d” do item 2.2.4 e, mais especificamente na eq. 2.71), tem-se:

{E;} = [T].{E1} (3.44 a)

com: {E;} e {E,} os vetores de estado nos pontos 1 e 2 do elemento finito, respectivamente e

[T] é a matriz de transferéncia. Sob as seguintes expressoes:

senh(a.h) cosh(a.h) —1 a.h —senh(a.h)

_ _ a G.1; a.G. 1,

_:;),1 _(Z),Z 0 ha ) a.senh(a. h) 1 — cosh(a.h)
{El} = B11 4 {EZ} = —B22 € [T] = coshia. Glt Glt

M -M G.1;.senh(a.h) senh(a. h)

t1 tz ——————~=  cosh(a.h) -
a a
L0 0 0 1

Baseando-se na definigdo de coeficientes de rigidez, onde os deslocamentos e/ou

rotagdes unitarias definem-se os sistemas derivados. Obtem-se a matriz de rigidez via teoria da

flexo — torcdo (ja referenciada no centro de tor¢do), como:

[KT11] [Kle]l (3.45 a)

[KT] B [[KT21] [KTzz]
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a.senh(a. h) cosh(a.h) — 1 —a.senh(a.h) cosh(a.h) — 1
cosh(a.h) —1 h.cosh(a.h) — L‘(f'h) —{cosh(a.h) — 1} senh;a. h) o
(K7l =v. —a.senh(a. h) —{cosh(a.h) — 1} a.senh(a.h) —{cosh(a.h) — 1}
cosh(a.h) —1 w —h —{cosh(a.h) — 1} h.cosh(a.h) — senh(a.h)
(3.45b)
G.1;

sendo: y = 2 —2.cosh(a.h) + a.h.senh(a.h)’

d) Matriz de rigidez do pilar em nucleo no SLC

A montagem da matriz de rigidez do pilar em nucleo C no sistema local de coordenadas

(SLC), é realizada mediante unido das matrizes expressas nas equacdes (3.40) e (3.45).

(3.46)

[KFT]14 14 = [KFT11]7x7 [KFT12]7x7]
X

[KF7'21]7X7 [KFT22]7x7

donde; as submatrizes de [ Kzy] sdo compostas via parcela da flexdo [Kz], e pela flexo — torcéo

[K+], sob a seguinte configuracéo:

-[KF11] [O]sz ] [KFlz] [O]sz l
K = Dsx ;K = Psx ’
Hersho = o™ trtad” Kb = o1 i1

([Kr ) [0]5x2 | I[KFzz] [0sx2 l
K = Dsxs K = D5xs :
S I B T

e) Transformacdo do SLC parao SGC

Na figura 3.16 é apresentada a projecdo das coordenadas do centro de tor¢édo (zp;, Vpr

e xp,,) para o referencial global (z4, y, € x,) da estrutura.
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Figura 3.16: Projecdo das coordenadas do centro de tor¢do no sistema global

dZ CGD 1
qb%
—— >*< \
d

Zpos" d)‘(j O dyDOS Ug
S

Fonte: O Autor (2019)

A lei de transformagéo entre os referenciais, ver figura 3.16, vale:

{D}, = [Tsl] {D}pL, (347 a)
Zg cosp —sinf 0] (4pL

{J’g} = |sinf cosp 0 .{yDL} (3.47 b)
Xg 0 0 11 xpg

A matriz de rigidez apo6s a transformacdo de coordenadas do SLC para o SGC é

representa por [K], ficando expressa (em termos da eq. 3.46) por:

[Ksliaxia = [Ts]". [Kprliax1a- [T5] (3.48)
. _ [Ts]7x7 [0]7x7 [ 51 3x3 [0]3x4 [[ 51] . [0]3x1]
com: [TS] B [0]7x7 [TS]7x7 , [TS 0]4x3 T52 4x4] [ SZ] - [0]1133 1 .

Apdbs implantar a rotacdo do sistema de coordenadas locais para o sistema global de
coordenadas, mediante angulo B apresentado na figura 3.16. O sistema de equag¢des com a

matriz de rigidez para o problema da flexao associada a tor¢&o, fica expresso por:
{F} = [T5]". [Kpr]. [Ts].{D} (3.49)

sendo: [Ks] = [T5]". [Kerl. [Ts;
{D}T = {(Ui vy U HZL- Gyi ¢i ¢){ Wr Vr Us Hzf ny ¢f (p]"} €

{F}T:{in B, F;, Mz My, My B FZf 8

Y By Mg My My By}

f zf
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f) Matriz de rigidez dos lintéis

Na figura 3.17 é apresentado o sistema coordenado dos lintéis, com 0s conseguintes
esforcos solicitantes nas extremidades.

Figura 3.17: Convencéo positiva dos: (a) Esforcos solicitantes no sistema dos lintéis, (b) Graus de

liberdade e (c) sequéncia de numeracao dos graus de liberdade

Fonte: O Autor (2019)

Matricialmente, escreve-se a matriz de rigidez dos lintéis, como:
{F.} =K ].{D,} (3.50)

com: {DL}T:{vLi Up; Wy Gyu exu qu- Vg Uyr Wiy QYLf Hfo esz};

{FL}T = {FJ’Li FxLi FZLi MJ/Li MxLi MZLi F3’Lf Ffo FZLf Mny Mfo MZLf};
ty, 0 0 0 0 sz ty, 0 0 0 0 bZL‘

0 r, O 0O 0 0 0 -, O 0 o0 0

_{0 0o ty ~by 0 0] o o -t -b, 0o o0

(K.l =| o 0 _ZL 0 ol [K..l=| o 0 b T 0 ol
YL YL N YL YL .

0 o 0 o S O 0 0 0 o =5 O

_bZL 0 0 0 0 kzL_ bZL 0 0 0 0 az, |
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—ty, 0 0 0 0 —by] 'y, 0 0 0 o —by
0 -1 0 0 0 0 0 7 0 bO 0 0
1o 0 tz, b 0 0 | 1 o ot 0 0 |
[KL21] - 0 0 _bZL aJ/L 0 0 ’ [KLzz] - 0 0 “L kYL 0 0 )
YL yL . YL yL o,
0 O 0 o -5 O 0 0 o o & O
| by, 0o 0 0 al =b;, 0 o o 0 Ky
e =[] ]
[KL21 KLzz]
B e,.h,’ _ _hpe?

by, = 12 oz 12 "’

e oscoefientesry, b,,, by, k;,  k

z1 Py t,, €t,, possuemas mesmas expressoes apresentadas

yL’ ZL’ YL’
na equacao (3.38), porém com os dados da sec¢do transversal e comprimento dos lintéis. E por fim,

Az ~ . . G.I
$, € 0 termo correspondente a torgdo no lintel e expresso por: §, = L—tL
L

g) Transformacdo de coordenadas para os lintéis

A transformacéo de coordenadas do sistema de referéncia local do lintel (indice L) para
0 centro de torcdo (indice DL) é realizada mediante transformacdo quadratica na matriz de
rigidez [K;] para [K,]. Admitindo que os lintéis possuem eixos paralelos ao pilar em nicleo,
logo aplicar-se adicionalmente a mesma transformacao apresentada na equacéo (3.48), resulta
na matriz de rigidez no sistema global de coordenadas, expressa por:

[Kp] = [Ts]". [T, )7 [K,]. [T, ). [Ts] (3.51)

sendo: [T,] = [I]12x12-

h) Correlacdo dos deslocamentos nos lintéis com o centro de tor¢do D

Considerando os deslocamentos lineares e angulares apresentado na figura 3.18,
correlacionam-se 0s deslocamentos nas extremidades do lintel (indice L) com os deslocamentos

no centro de tor¢do D (indice D), isso de forma semelhante ao procedido nas equacdes (3.39).
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Figura 3.18: Correlacdo entre os deslocamentos dos extremos do lintel, jA no SGC, com o centro

de torgdo

6,

] |
w*
Lq

N

Yg

Fonte: O Autor (2019)

A lei de correlagdo entre as extremidades do lintel {D, _} e {D,}, com os deslocamentos
no centro de torcdo sob o formato {D;} e {Df}, é realizada mediante as matrizes de

transformacéo [R,, | para os deslocamentos {D;_ } no extremo inicial do lintel, bem como [Ry,, ]

para o extremo final do lintel. Escreve-se assim:

GETAR (352)
sendo: [K;p] = [R.IT. [Kypl- [R.]; {D,} = [R. ] {D*}; {DL,} = [R.,]- {D"};

010 0 0 Zp ~ 71, 0

0 01 ¥Yp—Ui, _(ZD_ZLl) 0 Wy
[R,] = [[RL1] [0] ][R | = 1 0 0 0 0 —(o _J’Ll) 0 .

t o] [r,])""™ [0 0 0 0 1 0 Yo = Yi, |’
00 0 0 0 1 0
0 00 1 0 0 Zp — 7y, ]

e: (yp,2p); (yLl,le) e (yLZ,zLZ) — coordenadas do centro de tor¢céo e dos extremos inicial e
final do lintel, em relagdo a origem adotada; w,, w, sd0 as ordenadas setoriais do diagrama wy,

para os nos inicial e final do lintel (respectivamente). A forma desordenada da matriz [R, ] sem
termos unitarios apenas na diagonal é devida a mudanca na sequéncia de numeracao dos graus

de liberdade em detrimento dos eixos coordenados, como consta nas figuras 3.13 (c) e 3.17 (c).

Para montar a matriz [RLZ] basta substituir o indice L, por L, e a ordenada w, por w-

na matriz [Ry,]. Por fim, na equacio (3.49) tem-se definida a matriz de rigidez do pilar no
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sistema global [Ks] e na eq. (3.52) expressa-se a matriz de rigidez dos lintéis que procedem o

travamento.

i) Matriz de rigidez unificada do pilar e dos linteis

Desta feita, unifica-se a matriz [K,] como a matriz de rigidez do elemento de pilar em
conjunto com o lintel na extremidade (2) do elemento finito (ver figura 3.19). Para tal
composicdo, faz-se a superposicdo dos termos do empenamento ¢’ dos lintéis. No caso, sdo
superpostos os elementos de posicdo (7,7); (7,14); (14,7) e (14,14) de matriz [K[p]. O
procedimento de superposicdo é valido pois os lintéis fazem o travamento/ligacdo de duas

paredes do mesmo pilar em nucleo estrutural. Assim, expressando-se [Kj] como:
[KD] = [KS] + [KLD]empenamento (3.53)

sendo: [K;plempenamento @ Matriz [K;p] (ver eq. 3.52) anulando-se todos os termos de posi¢ao
distinta de: K}, .; Kip, 14+ Kipy4- € Kipy, 14- A Matriz de rigidez do nicleo [Ks] no SGC €

apresentada na equacéo (3.49).

J) Representacdo do elemento finito

Conforme apresentado em Heidebrecht e Swift (1971, p. 1409) e ressaltado em Yoshida
(1988, p. Il — 7), o elemento finito de barra para o pilar em formato de ndcleo estrutural

contraventado por lintéis é o exposto na figura 3.19.
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Figura 3.19: Elemento finito de barra para o pilar em nucleo estrutural e contraventado

Xp,

Fonte: Adaptado de (Yoshida, 1988)

3.7. ELEMENTO FINITO DE BARRA COM SECAO DE PAREDES FINAS E
EM FORMATO DE DUPLO T

Neste item procede-se a analise matricial do elemento finito de pilar de ponte em
formato de duplo T, porém considerando assimetria nos eixos principais de inércia e paredes
ortogonais entre si. A nomenclatura das dimensdes e numeragdo das paredes é indicada na

figura 3.20 (a) e a convencéo positiva dos esforcos solicitantes é apresentada na figura 3.20 (b).

Figura 3.20: Elemento finito (E.F.) do pilar em duplo T: (a) dimensdes em planta e numeracao

das paredes e (b) convencao positiva dos esforg¢os solicitantes nos extremos do EF

(1H— £

by, |[ bsp

Fonte: O Autor (2019)
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a) Matriz de rigidez a flexdo do pilar em duplo T com secdo aberta

A matriz de rigidez do pilar sem a consideracao dos lintéis é procedida mediante método
dos deslocamentos, obtendo-se a matriz exposta nas equagdes (3.37) e (3.38). Porém ressalta-
se apenas que os momentos de inércia I, e I, sdo apresentados nas equagdes (2.135), e que 0
fator de forma k. seré obtido mediante razdo entre a area da se¢do transversal pela area da alma
(por direcdo analisada), ver eq. (3.38 a). Por ultimo, na figura 3.21 apresentam-se os graus de

liberdade para o pilar em analise.

Figura 3.21: Graus de liberdade do pilar em duplo T sem qualquer simetria

Fonte: O Autor (2019)

b) Matriz de rigidez do pilar em duplo T no SGC

A matriz de rigidez do pilar em duplo T assimétrico no sistema global de coordenadas

(SGC), sem considerar o contraventamento dos lintéis, é representada pela matriz [Kjr]
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apresentada na eq. (3.49). Em tal matriz consta a parcela devido a rigidez a flexao (ver letra “a”
desse item), bem como a rigidez por flexo — tor¢éo (semelhante ao procedido na letra ¢ do item

3.6). Ficando expressa por:

[K ] _ [KFTn] [KFTu] 354
7 e [k, ) oo
FTyq FTy,
— T —
[Kir] = [Ts]". [Kprl. [Ts] = [K] (3.54 b)
com:
[ 0
t, 0 0 0 —b, 0 0
0 ty 0 b, 0 0 0
0 0 r r.Yce —T.Zcg 0 0
[Ker, ] =|0 —b, T-Yeo r.yé; —k, ~T-Yce-Zea 0 0 ;
by 0 “TZe —r.ypezee T-Zéc —ky 0 y.{cosh(a.h) — 1}
0 0 0 0 y.a.senh(a. h) senh(a. h)
0 0 0 0 0 y.{cosh(a.h) — 1} . {h.cosh(a. h) — T}
0
0 -t 0 b, 0 0 0
0 0 -r —T-Yce T.Zc 0 0
[KFT12] =10 —p, TV —r yé. —a, T-Yce-Zce 0 0 ;
by 0 TZc6  T.yeg.zeg  —T-Zéc — Gy 0 y.{cosh(a.h) — 1}
0 0 0 0 0 —y.a.senh(a. h) senh(a. h)
0 0 0 0 0 —y.{cosh(a.h) — 1} . {7 - h}
0
—t, 0 0 0 b, 0 0
0 -t 0 b, 0 0 0
0 0 —r —T-Yce T.Zcg 0 0
[KFT21] =10 —p, TV —r i, —a, TYca-Zce 0 0 ;
by 0 T Zcg r.Yee-Zce  —T-Zéc — Qy 0 —y.{cosh(a.h) — 1}
0 0 0 0 0 —y.a.senh(a. h) senh(a. h)
0 0 0 0 0 y.{cosh(a.h) — 1} . {— - h}
[ 0
t, 0 0 0 b, 0 0
0 ty 0 —b, 0 0 0
0 0 r r.Yce —T.Zcg 0 0
[KFTZZ] =0 -p, TV r.yé; —k, ~T-Yce-Zca 0 0 e
by 0 Tz —ryee.zeg TeZEc—ky 0 —y.{cosh(a.h) — 1}
0 0 0 0 0 y.a.senh(a.h) senh(a. h)
0 0 0 0 0 —y.{cosh(a.h) — 1} . {h. cosh(a.h) — T}
rcosf —sinf 0 0 0 0 0 0 0 0 0 0 0 07
sin 8 cosf O 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 cosf —sinff 0 O 0 0 0 0 0 0 0
0 0 0 sinf cosp 0 0 0 0 0 0 0 00
0 0 0 0 0 1 0 0 0 0 0 0 0 0
[Ts] = 0 0 0 0 0 0 1 0 0 0 0 0 0 0
S 0 0 0 0 0 0 0 cosffp —sinf 0 0 0 0 of
0 0 0 0 0 0 0 sinf cosf 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 cosp —sinff 0 O
0 0 0 0 0 0 0 0 0 0 sinf cosf 0 O
0 0 0 0 0 0 0 0 0 0 0 0 1 0
L 0 0 0 0 0 0 0 0 0 0 0 0 0 1
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sendo validas as transformacdes das coordenadas do centro de gravidade (CG) da se¢do em
duplo T para o centro de tor¢éo (D), ver figura 3.14. Bem como, a transformacao do SLC (zp,

Yp € xp) para o0 SGC (xg4, y, € z4). Tais transformagOes de coordenadas sdo apresentadas na

figura 3.22.

Figura 3.22: Transformacéo do sistema de coordenadas do centro de gravidade para o SGC em

Og, passando pelo centro de tor¢do D

Fonte: O Autor (2019)

A inércia setorial I, é obtida mediante aplicacdo da equacgéo (2.133) no diagrama de
ordenadas setoriais w,. para a se¢cdo em analise e apresentado na figura 2.106. Ja a inércia
torsional I, sera calculada mediante um ter¢co do somatério do cubo da espessura t pelo
comprimento b; do i-ésimo painel — parede que compde o nucleo em questdo (pilar em formato

de duplo T). Ficando I, expressa por:

1n=7 1 7
I, :§Z %3 y; = §Z by 3 (3.55)
i=1 =1

c) Matriz de rigidez dos lintéis no SGC

A matriz de rigidez de cada um dos dois lintéis que promovem o contraventamento do
pilar em duplo T (por nivel), no sistema local de coordenadas, sera obtida conforme notagdo

apresentada na figura 3.23.
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Figura 3.23: Reac0es elasticas nos lintéis para o SLC

i(2) Zy,
()
My,
) 0))
B e,
6)) % 1) 2,()
MxLi '\I : FyLi MyLi
\cA-{—>——>
340 i VL
ZL I‘*‘ o2
[ f /
f\\/ h ' F(]I) I /:://M(j)
L] ZLf, :_,_4; ny
v AL 1p0)
* . ‘ | ny L
4 F(]) > ]
/. fo eLj /
Xy M(J) 1
XL
f
Fonte: O Autor (2019)
Resultando na matriz [K;,“’] no SLC dos lintéis, expressa por:
o) 0 0 0) @) 0 0 R
tJ’L 0 0 bZL _tJ’L 0 0 bZL
. 0 0 0 0
S ) W 0 0 0 O o _,o» 0 0
R 0 0 T Thh 0
0 B ) 0 0 X0 B 0) B 0
0 YL YL . 0 YL YL :
0 2 0 0 _a 0
pyo 000t e 0 00 gy
K9] =| = 0 0 0 0 2 2z 0 0 0 0 %y
L 0 0 0 0 _p0 W 0 0 0 0 _p0
0r 0 0 0 o o P o0 0 0 0
Lo o 0 L 0 0 0
o 0 T hwoog 0 0 0 by g0
0 RO R0 N0 0 0 9) , 0
0 byL ay, _s» 0 byL kyL N0))
0 0 0 Lo 00 o o ¢ 0
' 0 0 9 h 0 0 '
| by, 0 0 ay, by 0o 0 ey |
(3.56)
3 3
. E.A; ey, L;: hL..eL.
LU J T D | jt oL _ .
com: 1,7’ = T Aj e hL], Iy} T Izj =—17 It]. = Iy} +IZ]
J
1 1+ 1-2.
) _ 4.E.1Iy, Pe, D _ 4.E.1,; Py, 0 _ 2.E. I, Py,
YL h,, 1+4.¢. ' h,, 14+4.¢, ° h,, 1+4.¢. °
j y zj Yj
1-2. OIG) OI0) 9)
G0 EE Voo oo Rt o o _ka e g _Zby
ZL hL 1+4 Q. ’ YL th ’ 2L hL]' ’ YL th ’
6))
) _ 2.b, o 3.E.I, o - 3.E.1y, . 5 L G.It]..
oo hy T GRS T GALRTY L6 L L
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A transformacéo do sistema local de coordenadas dos lintéis (x;, y, e z;) para o sistema

de coordenadas no centro de torcdo D sera procedida conforme ilustrado na figura 3.24.

Figura 3.24: Referencial dos lintéis: (a) Posicionamento no pilar em duplo T, (b) Transformacao
do SLC do lintel j para as coordenadas do centro de tor¢éo e (c) Angulo de inclinac&o do lintel j

em relacdo aos eixos do centro de torcao

ZD = ZDL
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, /
(1)
(a) !
ZDLA (
P2
26T <<
{ Ly
senay . & e e
:)I/L }I’f }’l;L

Fonte: O Autor (2019)

Através da correlacdo entre os deslocamentos lineares no lintel j em detrimento do

centro de torcdo, escreve-se a lei de transformacéo de coordenadas, como:

{D}DL = [TL]- {D}L (3-57)

, . . . . _ cosa, —sena;, 0
e:{D}p, ={2p. Yo xpr}; {D}, = {yf’) ij) Z,S])}; [T.] =|sena; cosa; 0
0 0 1
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Mediante transformagao quadratica, na matriz de rigidez do lintel j, tem-se:

[KLD(j)] = [1,.]". [KL(j)]- [T,] (3.58)

[TE]6x6 [0] 6x6 ] [TL*]6x6 —

[TL]3x3 [0] 3x3 ]
[0] 6x6 [TL*]6x6

onde: [Ty l12x12 = [ [0]sx5s  [Tilsxs

Por Gltimo, rotacionam-se os deslocamentos lineares nos extremos do lintéis para o
sistema global, isso mediante a letra b desse item, resultando na matriz de rigidez do lintel no

SGC expressa por:

(1] = (T (1) [, D] 7). (1] (3.59)

x T.
com: [Té] _ [Ts]6xe 6x6] (T] = [[ 51]3x3

3x3
T apresentado na eq. (3.47 a
[0]77  [Tslexe [0]553 T51 3x3] [ S P a-( )

e nos graus de liberdade no sistema global de coordenadas, por extremidade dos lintéis,

conforme apresentado na figura 3.25.

Figura 3.25: Graus de liberdade nos extremos dos lintéis (1) e (2): (a) no SLC dos lintéis e (b) no

sistema global de coordenadas {D*},
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D}, = [Ts].{D}p, (b)

Fonte: O Autor (2019)

d) Correlacéo dos deslocamentos nos lintéis com o centro de tor¢do, no SGC

Na figura 3.26 sdo apresentados os graus de liberdade no centro de tor¢do D e nos

extremos dos lintéis, ja no sistema global de coordenadas (SGC).
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Figura 3.26: Correlacao dos graus de liberdade nas extremidades dos lintéis e do centro de
torcéo para 0 SGC

(722

(2) *
X g il BZL(EZ) )
*(2)
e U )
/\ i @) %P \
9 PR
YL

©) T >
D \ : ZpL,
vp
+
Oy,

bi )

@ (@2 : i '
(yllf 'Zl'f ) ST e i e NS e e e D) / _'_va
v*(z)\ ; *(1)
LA
) ! 2 (1) .
XL 7] YpL XL

Fonte: O Autor (2019)

Na figura 3.27 sdo apresentadas as rotagdes ¢p, 6, € 6, e suas repercussoes nas

extremidades iniciais dos lintéis. Bem como as rotacdes em y, e z,, nas extremidades iniciais

dos lintéis (9)(,? o) e 0 92(2)). por deslocamentos nos extremos iniciais dos lintéis, tem-
l L

yL;’ L;
Se:

vL*i(l) = v}, — . ZS) _ ZD] (3.60)
*(1) _ o ox 0 n _ —9F v _ PN Ry 361
uLi =Up + vp- |%L; Zp zp* |VL; Yp w; -$p (3.61)

*(1 * *
0, M = wp + . [y =y (3.62)
v, @ = v = pp.[27 - 2] (3.63)

uLE ) = up + 0, . [zii) - ZD] +6;,. [yD — yL(i )] — “)i( ).¢>D' (3.64)
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(3.65)

*(2 * * 2
a’Li( )= wp — ¢p. [YD - yL(i)]
Figura 3.27: Correlacao dos graus de liberdade para a rotacdo: (a) ¢p;, com as distancias no eixo
* * *(1) *(1)
(d) 6z, (6) 8,,," € () 6y,

zZp!

¥4, (b) ¢ com as distancias no eixo zg4, (C) 5,

Xg A

« &
D

Zp*

*

defl) — _g'®
dx yl,,-
o~
()

Fonte: O Autor (2019)
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€Y

Procede-se a derivacéo das fungdes v:i +(1)

ew, ’ em relagdo ao eixo x,4, ver equagoes
(3.60) e (3.62) e obtém-se os valores das rotacdes H;L(il) e Hygll) Analisando as figuras 3.27 (e)

e (f), conclui-se:

(1)

dv
*(1) _ L ¥ (1)
BZLi = W = _¢D' [ZLi — ZD] (366 Cl)
oy, €)
_g* = i 1 _
6, = o = ¢ [y — ¥ (3.66 b)

Para a extremidade inicial do lintel (2) procede-se de forma analoga, derivando-se as
eq.’s (3.63) e (3.65), concluindo-se por andlise as figuras 3.27 (e) e (f):

*(2)

v

%(2) _ 7L X (2)
0, =——=—-¢p.lz,” —2p (3.66 ¢)
ZL dxg [ L; ]
*(2)
dw
*(2) — Li (2)

por rotagdes nos extremos iniciais dos lintéis, conclui-se:

0, = 65, — 05" |y’ — o] (3.67)
o, = o (3.68)
0, = 6;,— 0|24} = v (3.69)
0,2 = 65, [ — )] (3.70)
6,2 = o} (3.71)
0,7 = 0;, — 5" |2 = o] (3.72)

Na figura 3.28 sdo apresentadas as coordenadas dos extremos dos lintéis e do centro de

torgéo, sendo ilustradas duas possibilidades de posicionamento do eixos globais (xg, Vg € zg).
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Figura 3.28: Coordenadas do centro de torcao e dos extremos dos lintéis: (a) com o0 SGC no

centro de gravidade da secdo e (b) como 0 SGC contendo toda a se¢do no 1° quadrante

7 beg, B ’;(bm ¥ bcc,)
U i@
i@ :
i x,
| ©
: 0 —
' D dal ™ =
5 e >
5 : b
! : e)) cG
| d, ‘; f y
Ui | |
r‘ ............................... e —— D W
P(yg 2g)
yg = Jeg D (bccy = dy 3 b7a = bCGZ & dz)

i (bca.,, +bg — by brq —byp — bccz) i (bccy —bs; by — bccz)

i@ (bCGy + by — by ; byg —byg— bcgz) f(z) (bCGy —b,; _bCGz)

oo Zg
§ ! : :
O | z Lo
! i
i@ é
D d, i
A P
f(l)
pa s
( i
r ————————————————————————————————— s (b)
y P(yy,24)
g

i (bg; bg +b1p)  fD (by —bs; byg + byp)
i® (bs; by —b1a) [P (by—by; 0)

Fonte: O Autor (2019)

Organizando em formato matricial a relacdo dos deslocamentos do no inicial do lintel
(1), eq.’s (3.60) a (3.62) e eq.’s (3.67) a (3.69), escreve-se:

{D;®} = [rR(]. ") (3.73)



184

Weslley Imperiano Gomes de Melo

) _ @ () + (1) gD (1) (D],
sendo: {DLL, }—{VLL, u, w0 L, 0 },

yLi ZLi

0Yy={wp vi up 6, 6, ¢p ¢} e

-

i _[,m_ 0

0 0 1 {yL(f? ¥o) {zii)o_zp} {ZLiO g _a(),f”
000 9 0 i ow) ooy
00 0 0 0 (1) 0

0 0 0 1 0 : (e = 2

Ja, a correlagdo dos deslocamentos na extremidade inicial do lintel (2), eq.’s (3.63) a
(3.65) e eq.’s (3.70) a (3.72), fica expressa por:

-

{0;} = [r?]. 07 (3.74)
sendo: {Dzi(z)}={vzi(2) uz(z) szZ) Q;S) zi(Z) H;L(LZ)} ¢

0 1 0 0 0 {21 — 2} e

0 0 1 {yw-¥2} {#? -2} 0 0

)

I T A S b R )

00 0 0 0 1 0

0 0 0 1 0 0 — {22 - 2]

Por fim, estende-se as correlagBes para os extremos finais dos lintéis (1) e (2), sob a

com [RSF)_

R(]. (D) (3.75)
_Rf?] AD*} (3.76)

formulada mediante troca dos subindices i por f da matriz [RS)]. O mesmo

procede-se com a matriz [Rg)] em relacdo a [Rg)]. Conclui-se a correlacdo dos lintéis com o

centro de torcao, mediante transformacdo quadratica da matriz [K . L(,j )] por [RED], ficando:

[r5”] =
[157] =

[R(l)] [K*gl)]. [Rl(,l)] [Rgl)]'r. [TS]T' [TL]T- [Kgl)]. [TL]- [TS]- [Rgl)] (3.77)

[R2] - [<57) [R67)

[R(Z)] " [KP] T 1) [RP]  378)
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[REY]  0le [r <f)] [0]6x7

(2)
oo 1] | B o e

6x7112x14

com: [R £1)] =

6x7112x14

e) Matriz de rigidez unificada do pilar e dos lintéis (1) e (2)

De acordo com o exposto por Heidebrecht e Swift (1971), quando os lintéis unem dois
pontos do mesmo pilar (o que se verifica na figura 3.20 para os lintéis 1 e 2), apenas 0s termos
devido ao empenamento ¢’ contribuirdo para a montagem da matriz de rigidez [Kj] do nlcleo

em duplo T e contraventado. Ficando expressa por:
[Kp] = [Ks] + [y @ + K@ (3.79)

sendo: [Ks] a matriz de rigidez do pilar em dupla T no SGC sem computar o contraventamento
dos lintéis, ver equacéo (3.54 b); [Kz;*(l)] é a matriz [KL"‘;(D], ver eq. (3.77), anulando-se todos
0s termos das posigdes distintas de (7,7); (7,14); (14,7) e (14,14), faz-se isso para computar o
empenamento no lintel (1). Por dltimo, [KL*;*(Z)] é a matriz de ordem (14x14) com termos
nulos com excec¢éo dos termos (7,7); (7,14); (14,7) e (14,14), os quais sdo obtidos da matriz

[KL*;(Z)], ver eq. (3.78).

f) Representacéo do elemento finito

Analogamente ao procedido em Heidebrecht e Swift (1971) para o pilar em nucleo
estrutural sob formato de C, apresenta-se na figura 3.29 o elemento finito para o pilar em duplo

T e contraventamento nos extremos por lintéis.
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Figura 3.29: Elemento finito de barra para o pilar em duplo T e contraventado por lintéis nas

faces abertas

Fonte: O Autor (2019)



Capitulo

4

ESTABILIDADE ELASTICA DE PILARES DE PONTES COM INERCIA
VARIAVEL AO LONGO DO COMPRIMENTO

4.1. INTRODUCAO

O estudo da estabilidade elastica de elementos estruturais é apresentado inicialmente em
Massonnet (1959), Chajes (1974), Del Nero (1970) e em Timoshenko e Gere (2009) para
diversas configuracdes de apoios, porém sempre com estados de carga compostos por apenas
um carregamento, por vez. Em particular, na estabilidade elastica do pilar para atuacdo do peso
proprio, resolve-se a EDO via fungbes de Bessel. Neste sentido, neste capitulo sera procedida
a analise da estabilidade elastica do referido pilar com estado de carga apresentada na fig.4.1,
logo sob a atuacgdo conjunta dos carregamentos laterais (g4, g, € Q) e longitudinais (P, p). As
cargas concentradas no topo do pilar sdo obtidas mediante item 2.1.1, mais especificamente nas
figuras 2.13, 2.14 e 2.18, bem como nas eq.’s (2.11), (2.12) e (2.13).

Figura 4.1: Estado de carga do pilar de ponte

xr=0

Fonte: O Autor (2019)
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A resolucdo da equacdo diferencial oriunda da acdo conjunta dos carregamentos é
bastante laboriosa se conduzida via fungdes de Bessel, sendo mais eficaz e préatica a utilizacdo
de métodos aproximados: a exemplo, citam-se o método das diferencas finitas (SOARE, 1962),
(GUTKOWSKI, 1981) e (ALFUTOV, 2000). A obtencdo da carga critica sera procedida
através da EDO ndo homogénea, caracterizando assim um problema de ponto limite (resolvido
mediante incremento sucessivo da carga P até que o deslocamento lateral no topo do pilar tenda
a infinito). A verificacdo de tal resultado sera realizada mediante valores exatos apresentados

em Timoshenko e Gere (2009) para subcasos de aplicacdo de carregamento.

a) Carga critica via critério energético

Considere-se o pilar de ponte com rigidez axial (E.A — o) e rigidez a flexdo
(E.1 - oo) tidas inifinitas e com base engastada através de mola rotacional de constante k de

rigidez (fig 4.2 a). A configuracdo deformada do referido pilar é apresentada na fig. 4.2 (b).

Figura 4.2: Equilibrio elastico do pilar: (a) configuracéo indeformada e (b) condicao de

equilibrio

P
| p
o A:H.send)l

"1 § =H.(1—cos¢)

E.l -
E.A -

—71%’\(
T
(a) (b)
Fonte: O Autor (2019)

A energia potencial de deformacdo U é computada mediante a rotacdo ¢ da secéo

transversal localizada na base do pilar e em termos da constante elastica k da mola, como:

U=— (4.1)
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J&, o trabalho W oriundo da atuacdo da carga P no topo do pilar é expresso por:
W=P.5$6§ (4.2)

Na condigcdo de equilibrio indiferente (W = U) fica caracterizada, por defini¢do, a

atuacdo da carga critica P. e essa estabelecida por:

b _ k. p? 4.3
CR — 2 8 ( ' )
o deslocamento vertical § do topo do pilar € expresso, por geometria, como:

6 =H.(1—cos¢) (4.3 a)

numa solucdo aproximada impde-se a eq. (4.3 a) apenas dois termos da séria de poténcias de

Taylor para o cosseno, e dai tem-se:

5 =H. [1 — <1 — ‘Z—?)l = H'quz (4.3 b)

resultando a carga critica Pcg, via substituicdo da eq. (4.3 b) na eq. (4.3), como:

PCR == (4‘3 C)

H
A fim de obter a carga critica com os efeitos de 22 ordem, vide Fig. 4.2 (b), basta

proceder o equilibrio de momento na base do pilar, resultando:

o deslocamento horizontal A no topo do pilar é definido, de acordo com a geometria e a

configuragdo deformada do pilar, por:
A=H.sen¢ (4.4 a)

aplicando-se a eq. (4.4. a) na eq. (4.4) exprime-se a carga critica, via solucdo aproximada de 22

ordem e representada sob tragado eliptico na Fig. 4.3, como:

¢

‘sen ¢

Pcr = (4.4 b)

T| =
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Figura 4.3: Carga critica mediante solugdo aproximada de 12 e 22 ordens

P =k ¢
CR = 77-
Elipse P - sen¢
P _k
R =g
¢

Fonte: O Autor (2019)

Por fim, em termos energéticos, configura-se a carga critica na condicdo de equilibrio
indiferente (W = U) e sob configuracdo instavel. Configurando-se ainda a estabilidade na
condicdo de equilibrio (W < U), onde a carga P atuante no topo do pilar é inferior a carga
critica. Ainda é relevante mencionar a instabilidade ocorrida na condicdo de equilibrio
(W > U), quando o trabalho W realizado pelas cargas supera o potencial U de deformacéo do
pilar. Nesta ultima, conduzindo a deformacdes elevadas e em tal ordem de grandeza que a
estrutura ndo possua capacidade resistente suficiente aos esforcos solicitantes ativados,
entrando em regime de colapso. Tais condi¢cbes de equilibrio sdo apresentadas na fig. 4.4 (a),
com a posicdo deformada do pilar e em termos da carga atuante. Na fig. 4.4 (b) apresenta-se
em forma de analogia, a movimentacdo de uma esfera em diversas configuragdes da base de

apoio.

Figura 4.4: CondicOes de equilibrio: (a) em termos da carga atuante P e da deformada do pilar e

(b) via analogia com uma esfera

P
F i By 1“ P> P
@ .
@ P>pPy p Equilibrio
CR Instavel
©) .
Equilibrio o,
P < Pcg Indiferente ® "
Equilibrio
Estavel
@
x=0
@
() (b)

Fonte: Adaptado de (BELLUZI, V. 1, 1971)
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4.2. EQUACAO DIFERENCIAL VIA TECNICA DO MEIO CONTINUO

Ao considerar o pilar projetado para pontes e destinados a transpor grandes vales,
ressalta-se a necessidade em computar o incremento de deflexdes em decorréncia do peso
préprio p do pilar e das cargas laterais (essas Ultimas sdo oriundas preponderantemente das
rajadas de vento). Ao analisar os efeitos de 12 ordem (com a estrutura indeformada) verifica-se
momento fletor gerado unicamente pelas cargas laterais q;,q, € Q. Porém computando 0s
esforcos na configuragdo deformada do pilar (efeitos de 22 ordem), obtém-se a equacdo do
momento fletor W (x) em termos tanto das cargas laterais quanto das cargas verticais p e P. Na
fig. 4.5 (a) é apresentada tendéncia de deformacéo do pilar sob a imposicao do estado de carga
mencionado anteriormente, j& na fig. 4.5 (b) evidencia-se elemento infinitesimal (dp) do peso

proprio p e conseguinte deflexdo v(x) do pilar para a cota x.

Figura 4.5: Pilar de ponte: (a) configuracédo deformada, (b) elemento infinitesimal dp do peso

proprio
P
q q AT
B, 2 = - 4
1 a(i) R
—> A [ >
Ll dp= p.dx
xN
oﬁF B 3 wle) [ =ufc)
= ] H - “'—>
o " €x /
| /
—p 1‘/“
X /
—p N > — >
z y y
(a) (b)

Fonte: O Autor (2019)

Na fig. 4.6 é apresentado o diagrama de corpo livre do pilar, tal ilustracdo destina-se a
realizar o equilibrio de momento numa secdo genérica S. A localizacdo da secdo analisada é a

cota x em relacéo a base do pilar.
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Figura 4.6: Diagrama de corpo livre com a convencao positiva para o momento fletor

P ¥(x) + dv(x)
q (1_§) &Z 4 mﬂ]\(:)+dﬂli(x)
Q 2 H 9 | e (x=H) v ||:|
e —¥ I = - > :
—»| — x= H U“"(")
Q e
2a L s L, I a(x_;} d . x)
I 7 7
Qup [ Q _; dp: pdﬂ? H-%x Q1 =q-(H—x)
— s
=% X\ y-
2 (H-1) | . Qo=5-(1-5).(H =%
|| >
- Qo = 2.x.(H = x)
I = - (%)
L, BN . W

&> =
wlr) e (- ®) 7 %

Fonte: O Autor (2019)
Resultando como equacdo para 0 momento fletor 9t(x), a seguinte:
H
_ (H-x)
M) = = [ (@) - vG)l.dp = WD) ~ )P+ 01

X

2
+ Q2a§(H _x)

(H—x)
2

+ Qzp- +Q.(H —x) (4.5)

Apos aplicar na eq. (4.5) as forcas resultantes Qq,Q,, € Q,, decorrentes dos
carregamentos laterais g, e g,, bem como impor o elemento infinitesimal dp = p(x).dx
(advindo da variacdo do peso proprio ao longo do comprimento do pilar). Tal consideracao da
variacdo de p(x) é em decorréncia do lancamento estrutural otimizado economicamente por

uso de material nas se¢fes mais solicitadas. Destes procedimentos realizados, reescreve-se:
H

M) = — f [v(®) — v(@)]. pR). d% — [v(H) — v(x)].P

2 2
+ (H —x).{%.(H - x) +q2.[<§—;—H> + <§—§x+3x—H>l + Q} (4.6)

a) Equacédo diferencial via teoria da linha eldstica no campo das pequenas
deformacoes

Utilizando a equacao diferencial da flexdo, sob hipdtese do campo das pequenas
deformacdes, proposta por Navier e baseada na hipotese de Bernoulli. Em decorréncia desta
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teoria torna-se desprezivel a deformacéo pelo esfor¢o cortante, ficando a equacéo de equilibrio

€m momento expressa por:

Mx)=—E.I(x).v"(x) (4.7)

Na figura 4.7 é apresentada a mudanca do referencial X para x e do intervalo de

integracao, isso a fim de unificar as parcelas inclusas na integral da eq. (4.6).

Figura 4.7: Transformacao do referencial x para x e de intervalo de integracdo

rrr

B H— LE |
-] o ]
0L od 4o

Fonte: O Autor (2019)

resulta desta transformacéo as integrais:

H H X
v(x)dx = | v(x)dx — | v(x)dx (4.8 a)
o= v
H H
f v(x) d% = v(x). f d% = (H — x). v(x) (4.8 b)

Substituindo as eq.’s (4.8 a) e (4.8 b) na combinacéo das eq.’s (4.6) e (4.7), exprime-se:

H X H
E.1(x).v" () = f p(x). v () dx — f (). v(x) dx — (). v(x). f d% + [v(H) — v(x)]. P
0 0 X
+A.x*+B.x*+C.x+D (4.9)
sendo: A =6C.1_2H; B = —%; C = (Ch —%).H+Q; D= _(M)_Hz —Q.H.

procede-se a derivacdo da eg. (4.9) como intuito de remover as integrais, reescrevendo-se:

d d d
—E.——[10).v" (0] = p(0). v(x) + — [p(0). v(x). (H = 0] + —[P.v()] + (%)

(4.10)
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onde: Q(x) = A;.x*> + B;.x + C;

A a0 el — ] —o
A =-3.A= 7L B, =-2.B=gq; dx[P.v(H)]—P.dx[v(H)]—O,
H d H
jp(x).v(x)dx=cte<—>$ Jp(x).v(x)dx =0 e
0 0

L [p(). 9GO (H — ] = [/ (). vG) + p().v' (L. (H — ) — p(). v,

apos realizar a derivacdo da eq. (4.10) expressa-se a equacao diferencial ordinaria (EDO) que
rege a estabilidade elastica do pilar analisado. Sendo adotada a variacdo da secdo transversal do

pilar (conforme ilustracéo na fig. 4.8 a), bem como o estado de carga e condicdes de contorno
apresentados na figura 4.5. Resultando assim a EDO:

E.[I'(x).v"(x) + I(x).v"" ()] + [p' (). v(x) + p(x).v'(x)].(H—x) + P.v'(x)
=A.x*+B1.x+C (4.11)

Figura 4.8: Pilar engastado na base: (a) com secdo transversal linearmente variavel e (b) com

secao constante

I
Topo [ (H) Topo
ruste | 1), AK) E,I,A=cte
Base I (0) Base
I; L:
(a) (b)

Fonte: O Autor (2019)

Por caso particular cita-se a se¢éo transversal constante, e para tal consideram-se p’(x)

e I'(x) como nulos na eq. (4.11). Assim, reescreve-se a EDO como:

EILv'"(x)+[p.(H-—x)+Pl.v'(x) =A4;.x>+B;.x+C (4.12)
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b) Equacdao diferencial via derivacdo prévia do momento fletor 9t(x)
Derivando inicialmente a eg. (4.6) em relacdo ao eixo axial x, tem-se:

dx

X

H
L) = —dd—x{ [ PG - v df} — P [o(H) ~ v()

d
+a(A.x3 +B.x2+ C.x + D) (4.13)

Procedendo a analise das integrais, via fig. 4.7, e define-se:

H H x

fv(f) dx = j v(x) dx—]v(x) dx (4.14 a)

0 0

IJ v(x) dx‘ lj v(x) dx — Jxv(x) dx] (4.14 b)

0

% Jp(x).v(x) dx| = a(cte) =0 (4.14¢)
| 0 -

alr | 4

= Jp(x).v(x) dx| = o [P, (x).V,(x) — B,(0).V,(0)] = p(x). v(x) (4.14 4d)

-0

[ H

T fp(x).v(x) dx == lp(x) v(x). J.dx

| X

[p(x) v(x).(H — x)]

= [p'(x).v(x) + p(x).v'(x)].(H — x) — p(x).v(x) (414 e)
d d d
P [v(H) = ()] = P.{ [v(D] - — [p(@)]} = =P.v' () (414 )
onde: B, (x),V,(x) séo as fungBes primitivas de p(x) e v(x), respectivamente.

Valendo-se dos termos desenvolvidos da eq. (4.14 a) até a eq. (4.14 f) e impondo-lhes

na eq. (4.13), conclui-se:
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;—XEUE(x) = [p'(x).v(x) + p(x).v'(x)].(H —x) + P.v'(x) + A;. x> + B;.x + C (4.15)

Por fim, aplicando a teoria de Navier para a linha elastica (adotando o campo das

pequenas deformacdes), tem-se a equacao de equilibrio expressa por:

EI(x).v"(x) = -M(x) « E.[I'x).v"(x)+I1(x).v"(x)] = —dd—xilﬁ(x) (4.16)

E aoigualaraseq.’s (4.15) e (4.16), além de impor as configuragdes da se¢do transversal
ao longo do eixo longitudinal do pilar, chega-se as mesmas equac6es diferenciais expressas nas

eq.’s (4.11) e (4.12) que foram obtidas na letra (a) deste item.

4.3. INAPLICABILIDADE DA EQUACAO CLASSICA DE BESSEL

A fim de analisar a aplicabilidade da equacdo candnica de Bessel na resolucdo do
problema de estabilidade elastica para o pilar com sec¢éo transversal constante ao longo do eixo
longitudinal, que € expressa na eq. (4.12). Procede-se a adimensionalizagdo do eixo longitudinal
do pilar através de (¢ = H™1.x) e definem-se as transformacdes de referencial x para & nas

derivadas, como:

d d
v'(x) = l;(;) % = v’(f).% (4.17 a)
drl d 1 d? d 1
v”(x) Za[ﬁ 1;({5) :ﬁ dvf(j)ézﬁv"(g) (417 b)
1
U”(X) — F_vlll(g) (4.17 C)
Resultando como EDO adimensionalizada:
EI .(H - P
P g + BUZDER i
=—%.(E.H)Z+q1.€.H+(—q1+%).H—Q (4.18)
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Multiplicando a Eq. (4.18) por (EI)~1. H3, isto a fim de tornar unitario o coeficiente do
termo de maior em derivacdo. Aliado a tal artificio matematico, procede-se a mudanga de
variavel y = v! (o super-indice I indica que a derivacéo é realizada em relagdo a &) para que a
EDO enquadre-se na equacao classica de Bessel, tem-se:

H3 H* H3

YO+ A=+ Pl y@® = —%-52 + 1§+ (-m +qz—2)] = Q. (419

Ao basear-se nas condic¢des de contorno para o pilar engastado na base, vide fig. 4.9, e
na mudanga de variavel x; = (1 — &), reescreve-se a eq. (4.19) na forma de EDO homogénea,

como:

P H3
y"E) + [p-x1 +ﬁ]-ﬁ-y(€) =0 (4.20)

Figura 4.9: Condic¢des de contorno na direcdo y
[)

> —

] yE=0)=0
v y@E=0=0

Fonte: O Autor (2019)

Ressaltando que a funcéo cléssica de Bessel, ver Spiegel (1974, p. 101), é expressa por:
2y + Qk+D.x. 9"+ (@®.x3"+2).y=0 (4.21)

Ao multiplicar a eq. (4.20) por x2, exprime-se a EDO em termos semelhantes a equagdo

classica de Bessel, como:

p.H3 P.H?

3 2 —
T A B (4.22)

xi. y"(E) +

Ao comparar a eq. (4.22) com a equacgdo candnica de Bessel, eq. (4.21), verifica-se que
a solucdo ¢ aplicavel apenas para a nulidade de carga vertical concentrada (P = 0 kN) no topo

do pilar. Tal imposicéao é para que o coeficiente S seja definivel, obtendo-se solugdo para esse
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caso bem particular (onde ndo ha atuacdo de carregamentos na superestrutura da ponte). A
solucéo definida em séries por:

it a.xy a.xy
y=x . Cl']k*- + C2] K*- (423)
T r - T
. N 1 p.H 3
com as seguintes correlagdes: 2.k+1=0; k= —5; a= H. =5 B =0
Sendo:k*:ka_ﬁzzl/z ; k/r:1/3 e
2 -1 p.H3 p.H3
y:§'x1 ' Cl']1/3' 7-353/2 +Cz.]_1/3. T.xs/z

Ap0s a aplicacdo da solucdo de Bessel, eq. (4.20), verifica-se que tal funcdo y é de
obtengdo bastante custosa matematicamente e definivel unicamente para o pilar sem carga
vertical concentrada no topo do pilar. Implicando na inexisténcia de carregamento vertical na
superestrutura da ponte (oriundo do trafego no tabuleiro). Tal condicdo, resulta em solugédo
incompleta para todos os estados de carga possiveis, isso a fim de dimensionar o pilar em

analise.

4.4. RESOLUCAO VIA METODO DAS DIFERENCAS FINITAS

Com o intuito de transformar a equacao diferencial que rege o problema da estabilidade
elastica do pilar apresentado na fig. 4.5, num sistema de equacgdes algébricas com a incognita v
por ponto de discretizacdo do meio continuo; utiliza-se a equagéo de interpolacdo. As fungdes
@ sao caracterizadas através de aplicacdo unitaria por ponto discretizado, baseando-se em Soare

(1962) e Guelfond (1963), define-se a interpolacdo polinomial de grau n (Funcédo de Lagrange).

k=n+1
_ (x—x1). (x —x5)e e . (X — xp21)- (0 — X1 ooe - (X — X0 1)
y= ; Yk- (e — x0). O — %) oo O — Xp—1). (g = X1 oon - (6 — Xp21) (4.24)

a representacdo grafica do polinémio de interpolacdo € apresentada na figura 4.10.
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Figura 4.10: Interpolacéo polinomial para n graus de liberdade
v F 3 2 n

x x
1 y(x)=a0+a1.x+a2.?+(...)+an.g

Fonte: O Autor (2019)

Para o método das diferencas finitas, procede-se a aplicacdo de curvas de interpolacéo
de ordem igual ou superior a maior derivacdo presente na EDO. No caso em questéo, utiliza-se
curva de interpolacdo quartica com o ponto j (ponto de aplicagdo) e os quatro adjacentes.
Configurando-se dois tipos, basicamente, de diferencas finitas: centrais e assimétrica a direita.
A formulacdo classica do método das diferencas finitas € postulada com polinémio de
interpolacéo parabolica e para tal referencia-se Quarteroni et al. (2007).

a) Operadores centrais

O método das diferencas finitas centrais equivale a um caso particular do método da
colocacdo, no qual considera-se pontos no entorno de j. Vide na figura 4.11 o polindmio de

interpolacdo v (x) de ordem quatro.

Figura 4.11: Polindmio de interpolacao quartica para operadores de diferencas finitas centrais

e U, Vi Ua Yad

» X
Xee Xe xil Xd Xdd

v

2.6

\ 4

Fonte: O Autor (2019)



200
Weslley Imperiano Gomes de Melo

A fungdo de interpolacdo v (x) apresentada na figura 4.11 é determinada mediante regra
de Simpson, de formulacdo admitida em 1750 e citada em O’Hara e Ramming (2015), e

expressa por:
v(x) = ag.x*+ap.x3+a.x?+ag.x + a, (4.25 a)

com os coeficientes a,, até a, obtidos através da aplicacdo do polindmio v (x) nos pontos com

abscissas: x,., X., X;, X4 € X44, ficando expressos por:

1

A, = m{vee — 4.V, + 6.V, — 4.4 + Vy44} (4.25 b)
a, = W{—vee +2.v, — 2.v4 + Vgq} (4.25¢)
a. = m{—vee +16.v, —30.v; + 16.v4 — 44} (4.25d)
ag = m{vee — 8.V, + Vg — Vgq} (4.25¢€)
A, = V; (4.25f)

Apos obter o polindmio v (x) expresso na equacao (4.25 a), procedem-se as derivagoes
até terceira ordem e caracteriza-se o ponto de aplicacdo centrado (j = 0). Para tal aplicacdo,

apresenta-se na figura 4.12 o ponto j e os vizinhos a distancia relativa h.

Figura 4.12: Ponto de aplicacio para operadores de diferencas finitas centrais

v
/\/I\My

h

U, Ui Vd Uda

s

j—2 j-1  jl j+1 j+2
Fonte: O Autor (2019)

Os operadores das derivadas, até ordem 3 para as diferencas finitas centradas, ficam
expressos em termos dos pontos de vizinhaga a esquerda (j — 2) e (j — 1), bem como a direita
(j+ 1) e (j + 2) e definidos por:

, 1
’U}' = m{/(fj_z - 8.’U'j_1 + 8.’Ulj+l - /U’j_+_2} (4‘26 a)
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1

vf' = V-2 + 12,050 = 30,05 + 16,0541 — 0542 (4.26 b)
nr 1
0" = o5 {2 + 2050 = 20540 + 0540 (4.26¢)

Ao aplicar os operadores de diferengas finitas centrais, apresentados nas eq.’s (4.26), na
EDO ndo homogénea (Eq. 4.12). Escreve-se a lei de formacdo das equacOes algébricas

decorrentes das aplicagfes no dominio (2 < j < n + 1) do pilar, como:

(-ro+n )y +{zn-sn vy {2 48T v + {1 - Ty v,

E, para o problema de ponto limite do pilar com secéo transversal variavel, eq. (4.11),

tem-se a lei de colocacdo expressa por:

(Tla + sz) v+ (le ~8. sz) iy + (Tye +pa). vy + (Tld +8. sz) i

+ (Tle = Ty,) Va2 = Q (4.28)
com 7 = Bz g Elier Bl Bl Edyp [p.(H—x) +P]
"ila 144.h3 ° T 144.h3 2.h3 T 144.h3 ' 144.h3° ? 12.h ’
E.l._, E.l_, E.I E.l, E.l, E.l
T,, = 16—~ — 128, —~ 2.—L 4128, — 1 16— L*=. T, = :
1 144 13 14403 T o TS T e 14403 1T
E.l._, E.l_, E.l, E.l,
T,.= —30.—2 240, —1—= — 240.—1 30, —2=.
Le TYWER 144. h3 12403 T2 T e
I E.l_, E.I E.l, E.lL,,
Typ =16 —22 —128.—2=L _p T 4 qpg — It _q1¢ —J*2.
1d 144 13 14473 “2pe TS T e 14413
E.l_, E.l_, E.I E.l,, E.l,,
T o= g —J J _g J
le 14472 TS Tqa s T2 14413 " 14413 ¢
H — Xj
Py = {Pj—a —8.pj—1 + 8.Dj41 — Djsa)-

12.
onde: Ij,1j_4,I;11; sd0 0s momentos de inércia nos pontos de colocagdo j,j—1,j+1
(respecticamente); h € o intervalo de interpolacdo; v;_,, vj_1, Vj, V41, Vj4, S30 as deflexdes na
direcdo y nos pontos de aplicagdo de j; Q; € a carga horizontal no ponto de aplicagdo, sendo:

Q;j = Q(x = x;) = Ay.x? + By.x; + C e x; é a coordenada x do ponto de colocago j.
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b) Operadores assimétricos a direita

Na figura 4.13 é apresentada a funcdo interpoladora para a utilizacdo do método das
diferencas finitas com equacionamento assimétrico a direita. Assim, o ponto de aplicacdo j é

posicionado a distancia h da origem da abscissa. Ficam, entdo, um pontos a frente da aplicacéo.

Figura 4.13: Ponto de aplicacdo da diferenca finita assimétrica a direita, com abscissax =8 = h
v

v (x)

L v, Ui Ua Uda

. - . > X
j-3 j-2 j-1 J j+1

Fonte: O Autor (2019)

Baseado no exposto em Mancini (1973), a determinacdo dos operadores de diferencgas

finitas assimétricas a direita ficam expressos por:

1
v/ = m{—vj_g +6.05_5 — 18.v_; + 10.0j + 3.0j44} (4.29 @)
n 1
v = m{_’lf]‘_g +4.vj_5 + 6.0 — 20.v; + 11044} (4.29 b)
nr 1
vj = _2h3 {4)’]'_3 - 6.’U'j_2 + 12.’0’]’_1 - 10’0’] + 3.’U’j+1} (429 C)

Analogamente ao procedido no item (a) desta subsecdo, expressam-se as leis de
formacdo das equaces algébricas (aplicavel ao topo do pilar, no ponto j = n + 2 apresentado
na figura 4.14) para secao transversal constante e variavel, respectivamente, tais como:
rn-n}vate{-ri+1} v+ {12 -18.1 v, +10. (-1 + 13 ).y

+3.{T + Ty} 001 = Q) (430 @)
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(Tma - sz) Vs + (le,, + 6. TZ.) vy + (Tlcc —18.T, ) v

+ (Tyaq + Paa + 10.Ty,) vy + (Toe +3.T3,) . vjy = Q (4.30 b)
E.l_; E.l_, E.l_, E.I E.l4,
T =—d g 18.—2 62. L _ 3 =
com: Naa =10 3 T T e T e T T e T
E.l_4 E.l_, E.l_, E.L E.ly,
Ty = —4 —2 24— 172 72 J7° _ 39, J 12— %=,
1bb 14403 4% Taa 144. h3 14402 T Taa
E.li_s E.l_, E.l_, E.L E.l,
Ty = —6.—2 36.—2= — 108.—2— + 924, 18, —1*—.
Lee 144102 2% 1208 WE VYN VYV E
s e E.l,
T 20.—2== — 120. . — .
ldd 144 h3 144 h3 " 2. h "144.h3 " 144.h3
T 11E113+66E1 198EI]1+326 +33E1
lee = 144, h3 144. h3 144, h3 144, h3 14413 ¢

H —
Paa = 2 h { —pj_3 + 6. Dj-2 18.p]-_1 + 10.pj + 3.pj+1}.

c) Discretizacdo

O problema da estabilidade do pilar de ponte, modelado via técnica do meio continuo e

representado pela equacdo diferencial ordinaria apresentada na equacdo (4.11), sera

discretizado em n pontos. Serdo aplicados os operadores de diferencas finitas centrais, desde o

ponto (j = 2) na base e coordenada (x = 0) até o pendltimo ponto da malha discretizada (x =

H — h). Sendo h a distancia entre os pontos da malha, aplicam-se 0s operadores assimétricos a

direita no topo do pilar (x = H). Verificando-se a necessidade de dois pontos abaixo da

aplicacdo, isso para a diferenca finita centrada (surgindo dois pontos ficticios abaixo da base

do pilar e numerados de j = 0 e j = 1). Ao longo do pilar tem-se 0s pontos da numeragéo j =

2 atée j = n + 1. No topo do pilar (j = n + 2) aplica-se a diferenca finita assimetrica a direita e

para tal impde-se um ponto ficticio (j = n + 3) acima do topo. Vide Fig. 4.14.
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Figura 4.14: Discretizacdo do pilar via diferencas finitas

%T l[’
j=n+3+

j=n+2

j=n41+

j=n-

Fonte: O Autor (2019)
Para completar as equagdes do sistema de equacges algébricos (em fungdo da imposicao

dos trés pontos ficticios), adicionam-se trés equacdes extras e sao provenientes das condicdes

de contorno, quais s&o:

v(x=0)=0 =~ ;= =0 (431 a)
’U”(X = O) =0 - /U’I(j=2) =0 (431 b)
ﬂﬁ(x = H) =0 - ’U’”(j=2) =0 (431 C)

As condigdes de contorno, via operadores de diferencas finitas, ficam expressas por:
Mo'z.’v’z = qo (4‘32 a)

Myysn_1.-Vn-1+ MpizntUn + Mpysne1-Vne1 + Mgz iz Unge + My g3 Ungs

= Qnss (4.32¢)

Onde MO,Z = Ml,O = 1, Ml,l = _8, M1‘3 = 8, M1‘4. = _11 Mn+3,n—1 = _11 M‘I’l+3,1’l = 47
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Mn+3,n+1 = 6, Mn+3,n+2 = —20; Mn+3,n+3 =11leqo =q1 = qn+3 = 0.

Resultando, por fim, a aplicacdo das equacdes (4.27), (4.28) e (4.30) na malha de

discretizacdo apresentada na figura 4.14, no seguinte sistema de equacdes algébricas:

[M].{v} = {q} (433 a)
0 0 1 0 0 v,
1 6 0 8 -1 oy (o)
le,o My; 0 Myz My, !! v, L { 9, }
[ Muszn-1 Mupian Mniznea My s2n42 Mn+2,n+3j LUTH'ZJ q"+2)
Mn+3,n—1 Mn+3,n Mn+3,n+1 Mn+3,n+2 Mn+3,n+3 Un+3 qn+3
(433 b)

sendo: {vr} o vetor de incognitas (deslocamentos transversais na direcdo y); [M] a matriz de

coeficientes e {g} o vetor independente.

d) Determinacdo da carga critica

A obtencéo da carga critica pode ser realizada via dois procedimentos: o primeiro com
a EDO, eq. (4.11) ou eq. (4.12), ndo homogénea e em decorréncia de problema de ponto limite
(Curva 1 apresentada na fig. 4.15), sendo incrementada a carga P até a convergéncia. Para o
segundo método referencia-se Chajes (1974, p. 110 — 115) e consiste em adotar a EDO
homogénea (Curva 2 da fig. 4.15), logo com o termo particularizante (Q; = 0) nulo. Apos a
devida transformacdo de equacdo diferencial em sistema algébrico, mediante imposicdo dos

operadores de diferencas finitas, obtém-se a carga critica Pcg Via solucdo ndo trivial.

Figura 4.15: Obtencdo da carga critica via método das diferencas finitas

P A
E.l;.v'(x)=0 Pcr Curva 2

E. I;.v"(x) = M(x)

Curva 1

Fonte: O Autor (2019)
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4.5. ESTABILIDADE DINAMICA

Considerando os conceitos de estabilidade dindmica apresentados em Bazant e Cedolin
(2010) para pilares, apresenta-se na figura 4.16 (a) o estado de carga de um pilar tipico de ponte,

bem como na fig. 4.16 (b) é exposta a configuracdo deformada e a movimentacdo na dire¢éo z.

Figura 4.16: Pilar: (a) estado de carga e (b) configuracdo deformada

e

=

o]

=)

> —
i—u

®

&

Mpask

HENEEENN

Ny

(a) (b)
Fonte: O Autor (2019)

A energia cinética € e a quantidade de movimento Q, sdo expressas por:

0N\ 2
. (;f)) (434 a)
_de_,,9d0)_
Qg—dd.)—z.l.z. d(f) =1.¢ (4.34 b)

com: I — Momento de inércia a flexdo, e expresso por:

szrzdm

A pseudo - forca inercial E, é determinada mediante derivacdo da quantidade de

movimento Q. em relacdo ao tempo, ficando expressa por:

_d@) _ d(9) _

Fn=—3=1—>=1¢ (4.35)
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O momento fletor na base Mty 455 do pilar é determinado para a posicdo deformada que
é indicada na fig. 4.16 (a), ao adotar o estado de carga (Q, q1, g3, p, P), tem-se Mg 45 EXPresso

por:

H

H?+Q.H + j p(x).A(x) dx (4.36)
0

Mpasg = P.A+%.H2 +%.

. X.

| >

sendo: A=H.sen¢p; 6=H.(1—cos¢p) e Alx)=

Aplicando-se o principio de D’ Alembert, no pilar apresentado na fig. 4.16, sera obtida

a equacdo diferencial que rege a estabilidade dinamica, como:

Lo +kdp=Mpysp (4.37)
onde: k é arigidez a flexao.

Ao agrupar os termos semelhantes da eq. (4.37), bem como admitindo o pilar de se¢éo

transversal constante [p(x) = p], reescreve-se a EDO da estabilidade dinamica como:

3.q1 + Z.qz) + p.sen q,')] e

- > (4.38)

I.é+k¢= (P.sen¢+Q)_H+[<

45.1. ESTADO DE CARGA 1

No primeiro estado de carga serd admitida a auséncia da atuacéo do vento (q; = q, =
0kN/m, Q =0 kN) e desprezada a relevancia do peso proprio p em detrimento da carga

vertical P atuante no topo do pilar. Resultando como EDO, a seguinte:

I.g+k.¢p =P.H.sen¢ (4.39)
a solucdo homogénea ¢ (t) da equacéo diferencial, eq. (4.39), é expressa por:

¢y (t) = B;.sen (wy.t) + By.cos(wp. t) (439 a)

k
com: wp = |-
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baseado na teoria das pequenas deformacgdes (TPD) aplica-se na eq. (4.39) a condicdo de

equivaléncia entre o seno e o proprio argumento (sen ¢ = ¢), concluindo-se:
1. +(k—P.H).¢p=0 (4.39 b)

ao substituir a carga critica obtida via analise estatica, ver eq. (4.3 c), reescreve-se a EDO como:

1.<;5+<1—Pi).k.¢=0 (439 ¢)

CR

observa-se que a eq. (4.39 c) foi obtida para o campo das pequenas deformacdes. Ja para as
grandes deformacdes, basta que seja aplicada a carga critica da eq. (4.4 b) na EDO apresentada
na eq. (4.39). E apds o devido equacionamento chega-se novamente na equacéo (4.39 c), que

ao ser dividida pela inércia I passa a ser expressa por:

d5+wb2-(1—PL>-¢=0 (4.39d)

CR

Em funcdo do sinal do termo que pré-multiplica a rotacdo ¢ é possivel definir trés
condigdes de equilibrio, sendo estas: o equilibrio indiferente (P = Pg), 0 equilibrio instavel
(P > Pcg) e o equilibrio estavel (P < Pgg).

a) Equilibrio indiferente (P = Pcg)

Esta condicdo de equilibrio equivale na analise estética (procedida no item 4.1) a
igualdade do trabalho W e da energia potencial de deformacdo U. E para tal condi¢do de

equilibrio, reescreve-se a EDO apresentada na eq. (4.39 d) como:
=0 (4.40)

para as condicBes iniciais, em rotacdo ¢, e em velocidade ¢,, escreve-se a resposta da EDO

através da seguinte funcéo linear, como:

P(t) = go.t + o (4.40 a)
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Na figura 4.17 é apresentada graficamente a funcdo ¢(t), expressa na eq. (4.40 a), e

conclui-se que a solucdo € instavel por crescer infinitamente segundo funcéo linear.

Figura 4.17: Representacao grafica de ¢(t) para condicdo de equilibrio indiferente

(ee]

e
¢ 4
¢(t)

Po

v

Fonte: O Autor (2019)

b) Equilibrio instavel (P > Pcg)

Esta condicdo de equilibrio equivale ao trabalho W realizado pelas cargas ser superior,
em magnitude, a energia potencial de deformacéo U. E para tanto, reescreve-se a eq. (4.39 d)

como:

¢ — wbz-(i— 1)-¢> =0 (4.41)

PCR

ao proceder a resolucédo desta EDO e considerar as condi¢des iniciais em rotacdo, escreve-se a

funcéo resposta ¢ (t) como:

o(t) = %.senh(l. t) + ¢o.cosh(A.t) (441 a)

Percebe-se que a resposta ¢ (t) apresentada na eq. (4.41 a) é instavel, pois a rotacdo ¢

cresce infinitamente mediante modulacéo hiperbolica, ocasionando assim o colapso estrutural.
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c) Equilibrio estavel (P < Pg)

Nesta condicdo de equilibrio, o trabalho W realizado pelas cargas é menor do que a
energia potencial de deformacdo U, ficando vélida a eq. (4.39 d). E para qual apresenta-se a

solucéo:
o(t) = %.sen(@. t) + ¢g.cos(@.t) (4.42)

P
com: A=+iw e 52=wb2.<1——).
Pcr

Na figura 4.18 representa-se graficamente a solucdo ¢(t) expressa na eq. (4.42). De
qual conclui-se que a solucdo é estavel. Tal conclusdo é enunciada pelo comportamento
harmdnico ao longo do tempo, configurando rotacdes numa determinada faixa de amplitude

maxima.

Figura 4.18: Representacgéo grafica de ¢(t) para condicdo de equilibrio estavel

¢u

boj

¢ (1)

L

Fonte: O Autor (2019)
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45.2. ESTADO DE CARGA 2

Neste estado de carga serd adotada a atuacdo conjunta dos carregamentos apresentados
na figura 4.16 (a). Ficando a EDO expressa na eq. (4.38), ap0s aplicacdo da teoria das pequenas

deformacdes (sen ¢ =~ ¢), reescrita como:

3.q, + 2. .
q1 qz>+p ¢]_H2

Lé+ko=(P.p+Q.H+|(1 2

(4.43)

Ao realizar a analise estatica do pilar, vide fig. 4.16, na condicdo de equilibrio
indiferente (W = U), conclui-se a expressdo da carga critica Pz em detrimentos dos demais

carregamentos e da geometria de deformacéo:

Pex =% % {Q [(3 TE2 qz) P (p] } (4.44)

Ao agrupar as equaces (4.43) e (4.44), expressa-se a equacao diferencial que rege a
estabilidade dindmica do pilar submetido ao estado de carga 2, como:

. P
¢>+a)b2.<1—P—CR).¢+b=0 (4.45)

k Q.H [p.¢ (3.qq+2.q,)
com: W, = |7 € b= ] +[2+ G T
Ao realizar a resolucdo da EDO, ver eq. (4.45), e considerando as condigdes de

equilibrio (a), (b) e (c) do subitem (4.5.1), exprime-se as solugdes para a rotacdo ¢(t) como:

( b.t?> .
_T+¢O't+¢0 para P = Pcg
d(t) = 1 @.sen(a. t) + (g —d).cos(@.t) +d para P > Py (4.46)

A

L((jbo —d).sen(@.t) + %. cos(w.t) +d paraP < Pgg
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4.6. EXEMPLOS DE APLICACAO

EXEMPLO 4.1: Nesta primeira aplicacdo sera adotado o pilar metélico engastado na base e

com extremidade livre no topo. Procedendo-se a analise da carga critica para o pilar de ponte,

sob configuracdes de secOes transversais macica e vazadas de formato retangular. O estado de

carga sera: ¢4 =q, =0kN/m e Q =290 kN como cargas laterais. J& o moddulo de
elasticidade vale E = 210 x 10® kN/m? e a altura do pilar é de 100 metros. Na figura 4.19

apresentam-se as configuracdes analisadas.

Figura 4.19: Configuracdes do pilar: (a) estado de carga, (b) secdo retangular macica e (c) secéo

retangular vazada em termos da espessura relativa via n

gz
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t
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v 4 v
b, =16m - b, -
by =8m by 2-7732 = N3,
(b) © n=b/=1,
indice de esbeltez:
~ (a) Az#z2.\/1_.%:2.\/5.12(::!:86,6<90

Fonte: O Autor (2019)

Varia-se o valor do peso proprio p sob unidade “kN/m” e mantem-se inalterada a se¢éo

transversal, determinando-se a carga critica via convergéncia do deslocamento no topo (vide

figura 4.15). O processamento da EDO ¢é apresentado no apéndice C e realizado via método das

diferengas finitas. Na tabela 4.1 sdo apresentadas as deflexdes para a se¢do macica (fig. 4.19 b).

Tabela 4.1 — Deflex6es em y, no topo do pilar retangular, por incremento em p até convergéncia

Diferencas Finitas com 100 pontos (h = 1 m)

p (kN/m) v(m)  p(kN/m) v (m)
0 0,00067 112,32 x 10* 6,22664
10 0,00067 112,33 x 10* 39,08649
100 x 10* 0,00060 112,331 x 10* 82,76339
110 x 10* 003178 112,3317 x 10* 308,01060
112 x 10* 022317 112,33188 x 10* 4.970,34480
112,2 x 10* 056156 112,33189 x 10* 15.111,65985
112,27 x 10* 1,19664 112,3318945x 10* 184.024,58580

Fonte: O Autor (2019)
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Na Figura 4.20 é apresentada a curva de convergéncia da carga critica para a secéo
macica.

Figura 4.20: Curva de convergéncia de pcg para pilar engastado na base e secdo retangular

macica
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Fonte: O Autor (2019)

A carga critica obtida através da convergéncia na curva apresentada na figura 4.20 é
pcr = 112,3318945 x 10* kN /m. Mediante solugdo analitica apresentada em Timoshenko e
Gere (2009) tem-se pcgr = 112,35123 x 10* kN /m, caracterizando uma aproximagdo de

0,017 % a favor da seguranca.

Nas tabelas 4.2 e 4.3 sdo apresentados os deslocamentos no topo do pilar com segdo
retangular vazada (ver figura 4.19 c), porém sdo simuladas quatro espessuras t relativas das
paredes, via coeficiente n = {5, 10, 15,20}. Na referida tabela apresentam-se também a carga

critica via Timoshenko e Gere (2009) e conseguinte percentual de aproximacéo.
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Tabela 4.2 — Deflex8es em y, no topo do pilar, para se¢do retangular vazada paran =5en = 10

Diferencgas Finitas com 100 pontos (h = 1 m)

n=>5 n =10
kN kN
[10°] p(—5) v (m) [10°] () v (m)
11,16 0,38437 9,29 3,53645
11,1757 2,07456 9,292 78,50342
11,1790 27,41317 9,29205 167,01516
11,1792 105,53502 9,29207 304,21481
11,17927 40.995,52293 9,292094 21.390,73143
11,17927015 241.907,21360 9,2920943 160.345,53260
11,17927018 11.585.627,62397 9,29209434 1.197.181,06281
Pcr = 11,18119 x 10° kN Pcr = 9,29369 x 10° kN
m m
Via Timoshenko e Gere (2009) Via Timoshenko e Gere (2009)
0,017 % (a favor da seguranca) 0,017 % (a favor da seguranca)

Fonte: O Autor (2019)

Tabela 4.3 — Deflexdes em y no topo do pilar, com se¢do retangular vazada sob n = 15en = 20

Diferencas Finitas com 100 pontos (h = 1 m)

n=>5 n =10
(10 p() v (m) Molptoy v m
7,392 4,06060 6,05 1,06790
7,3937 59,72808 6,0545 3,04075
7,39375 100,08278 6,0568 54,55065
7,39379 217,81425 6,05688 132,79715
7,39382 1.849,20169 6,056932 1.962,98015
7,393824 1.936.108,10456 6,0569355 27.118,06388
7,3938240035 25.369.692,40570 6,05693577 2.398.156,48192
Pcr = 7,39509 x 10° kN Pcr = 6,05798 x 10° kN
m m
Via Timoshenko e Gere (2009) Via Timoshenko e Gere (2009)
0,017 % (a favor da seguranca) 0,017 9% (a favor da seguranga)

Fonte: O Autor (2019)
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b,.b,’ t

3 t
T .{1 — [(1 - 2-7732).(1 - 2.773y) ]}, b, =2.by; n3, = b_z; N3, = E

com: I,(x) =

Na figura 4.21 apresentam-se as curvas de convergéncia da carga critica em forma

comparativa, para 0s quatro cenarios de espessura relativa das paredes.

Figura 4.21: Curvas de convergéncia de p¢g para pilar engastado na base e se¢do retangular

v ()

12

vazada com espessura relativa das paredes

10

0 —_—r
0 5000000 10000000 15000000 20000000 25000000 30000000 v(rn]

Fonte: O Autor (2019)

EXEMPLO 4.2: Nesta segunda analise admite-se o pilar com sec¢do transversal circular vazada
e contida na equivaléncia do retangulo do exemplo 4.1, vide figura 4.22. Sendo o estado de
carga.q; = 2kN/m,q, =3kN/m,Q = 10 kN e P = 0 kN. O material utilizado sera o aco,
assim tem-se como madulo de elasticidade longitudinal: E = 210 x 10° kN /m?. Adota-se a
altura do pilar de 100 metros. Ver processamento no apéndice C. Busca-se neste exemplo a
mera aplicacdo das equacdes (4.11) e (4.12) resolvidas mediante diferencas finitas (ver item
4.4), dai a ndo verificacdo do indice de esbeltez inferior a 90, sendo esse o critério para a
estrutura funcionar no campo das pequenas deformacdes, isso segundo a NBR 6118 (ABNT,
2014).
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Figura 4.22: Geometria do pilar de secéo circular vazada e constante na altura: (a) estado de

carga, (b) secéo transversal macica e (c) secdo anelar

a @ a VF $!
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v
i)
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N3 = t/D

D=3m D=3 .4
—-—am n3 = =

(b) () n

e
©

=" 1= (1-2.09)"]

(a)

Fonte: O Autor (2019)

Na tabela 4.4 s&o apresentados os deslocamentos no topo do pilar para quatro espessuras
relativas das paredes, bem como carga critica por convergéncia e pelo calculo analitico presente

em Timoshenko e Gere (2009) e analise da aproximacéo. Ver Figura 4.22 (c).

Tabela 4.4 — Deflexes em y, no topo do pilar, para sec¢éo circular vazada (anelar)

Diferencas Finitas com 100 pontos (h = 1 m)

n=>5 n=10 n =15 n =20

pC e oy ey ey e

5.500 0,03553 3.500 0,01898 2.800 0,13454 2.220 0,23094
5.600 0,07316 3.800 0,11038 2.840 0,60447 2.230 0,34657
5.660 0,19994 3.860 2,522919 2.845 1,07189 2.245 1,38812
5.690 1,48634 3.862 9,35073 2.850,500 7,16265 2.249 6,97158
5.692 2,60183 3.862,50 28,70482 2.850,800 10,37901 2.249,60 17,57173
5.693 4,16447 3.862,55 36,19672 2.851,400 101,82416 2.249,80 35,62892
5.694 10,42619 3.862,70 166,79780 2.851,450 383,08885 2.249,95 155,38855

5.694,66 1.363,99757 3.862,74  4.407,26714 2.851,465  2.236,58360 2.249,99 1.499,04343

Pcr = 5.694,66 KN/m  pcg=3.862,74kN/m  pcgp=2.851,46 KkN/m  pcg = 2.249,99 kN/m

Via convergéncia Via convergéncia Via convergéncia Via convergéncia
—569564kN = 3.863,41 kN =2 85196kN —225038kN
Pcr = o- i m Pcr = 9- ’ m Pcr = 4- ) m Pcr = 4- ’ m
Timoshenko e Gere (2009) Timoshenko e Gere (2009) Timoshenko e Gere (2009) Timoshenko e Gere (2009)
I,=3,461m* I, =2,347 m* I,=1,733m* I,=1,367m*
0,017 % (a favor da 0,017 % (a favor da 0,018 % (a favor da 0,017 % (a favor da
seguranga) seguranca) seguranca) seguranca)

Fonte: O Autor (2019)



217
Estabilidade Elastica de Pilares de Pontes

Na tabela 4.5 apresenta-se a convergéncia dos deslocamentos no topo do pilar para secéo

transversal circular macica. Para tal, a inércia vale: I, = 3,976 m*. Ver Figura 4.22 (b).

Tabela 4.5 — Deflexdes em y, no topo do pilar circular, por incremento em p até convergéncia

Diferencas Finitas com 100 pontos (h = 1 m)

p (kN/m) v (m) p (kN/m) v (m) Pcr = 6.542,58 kN/m
6.000 0,01270  6.500 0,16276 Via convergéncia

kN
6.200 0,20160 6.520 0,3069 Pen = 6.543,71 2
6.300 0,02850 6.542,580  1.748,54162 Via Timoshenko & Gere (2009)
6.400 0,04855 6.542,582 3.527,44185 0,017 % (a favor da seguranca)

Fonte: O Autor (2019)

Na figura 4.23 é apresentada a plotagem comparativa das curvas (carga x deformacao),

isso em detrimento da espessura relativa da sec¢éo circular vazada.

Figura 4.23: Curvas de convergéncia de pcg para pilar engastado na base e se¢do circular

» ()
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7.000 - )

! . . secao Macica
6:000
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4:000 n =10
3.000
2.000 | ‘ N = 20
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Fonte: O Autor (2019)



218
Weslley Imperiano Gomes de Melo

EXEMPLO 4.3: Admite-se o pilar analisado no exemplo 4.1 e sob mesmo estado de carga,

material e altura. A Unica exce¢do € considera-lo de se¢do retangular variavel linearmente na
altura, sendo as dimensdes na base: b, = 10 m e b, = 30 m. Ja, para o topo adota-se: h, =

4meh, = 12 m. Vide figura 4.24 e apéndice C, no item C.3. Procede-se neste Ultimo exemplo
a mera aplicacdo das equacOes de obtencdo da carga critica, sem almenjar verificacGes quanto

ao indice de esheltez.

Figura 4.24: Pilar retangular macico: (a) estado de carga e (b) perspectiva

Q qz i ‘l/

1L (@ (b)

AN

Fonte: O Autor (2019)

Na tabela 4.6 apresentam-se os deslocamentos no topo do pilar, isso mediante

incremento no peso especifico y do material em kN /m3.

Tabela 4.6 — Deflexdo y, para a se¢do retangular macica e variavel linearmente

Diferencas Finitas com 100 pontos (h = 1 m)
)4 [104] Pbase [106] v (m) Y [104] Pbase [106] v (m)

kN
(kN/m) (kN/m) Pcr = 4,377x 10°¢ e
0 0 0,01732 1,458 4,374 21,08928 . L
Via convergencia
1,3 3,9 0,15462 1,459 4,377 150,33863
1,4 4,2 0,41511 1,4591 4,377 388,35275 KN
=3,977 x 10° —
1,45 4,35 267749 1,45915  4,37745 1.863,45013  Per == m
1,451 4,353 3,00543 1,45916  4,37748 7.753,89744 Timoshenko e Gere (2009)
1,454 4,362 475141 1459162 4,377486  21.082,09253 10,06 % (contra a
1,457 4,371 11,34023 1,4591625 4,3774875  36.968,35366 seguranca)

Fonte: O Autor (2019)

A carga critica por convergéncia € pcgr = 4,37749 x 10 kN /m, ja via Timoshenko e
Gere (2009, pag. 128) e sob interpolacdo no programa Céalculo Numeérico V5 (versao livre),

tem-se: pcg = 3,977 x 10° kN /m. verifica-se aproximacéo de 10,06 % contra a seguranca.



Capitulo

5

VIBRACAO DE PILARES COM SECAO DE PAREDES FINAS VIA
TECNICA DO MEIO CONTINUO APLICADA A GTPP

5.1. INTRODUCAO

As secOes transversais dos pilares altos de pontes tornam-se viaveis economicamente se
adotados com secdo vazada e de paredes finas. Em casos de se¢des assimétricas ativa-se o efeito
combinado da flex&o e da tor¢éo, devido a ndo coincidéncia dos centros de gravidade (CG) e
de torcdo (D). Vide na figura 5.1 alguns estados de carga e a ativagdo do fendmeno da flexo —
torcéo.

Figura 5.1: Secdo de paredes finas submetida a: (a) flex&o simples, (b) torcao pura, (c) flexo —

torcédo, (d) deformacéo decorrente flexo — torcéo

(@)

|Fo
Sl

Fonte: O Autor (2019)
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O estudo das secOes de paredes finas postulado em Vlassov (1962) é baseado nas

seguintes hipoteses:

a) Considera-se barra de secdo delgada aberta, quando a espessura t for muito menor

do que a dimensdo caracteristica d (na secdo transversal), sendo aceitavel quanto

esta relacdo for no méximo um décimo (t/d < 0,1). Vide fig. 5.2 (a).

b) Apods a deformacdo no pilar por flexo — torcdo, a secdo transversal projeta-se
indeformada. Logo, sem distor¢do do formato da referida secdo transversal (secédo

rigida). Conforme é indicado na figura 5.2 (c).

Figura 5.2: Secéo de paredes finas: (a) dimensdes relevantes do pilar em paredes finas, (b)

elemento diferencial e (c) deformacao de corpo rigido no plano yz

4 38
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ds’], = t(s)
z
« d1 4
\
ds = t(s). ds
érqh:edleeto A (a) (b)
y Y
Y i "X X
o D
j © |
y

Fonte: O Autor (2019)
c) Definido o eixo esqueleto s no eixo das paredes finas que compdem a secdo
transversal, admite-se distribui¢do constante da tenséo de cisalhamento t ao longo
do comprimento .8. Quanto mais finas forem as paredes, mais realistica tal hipdtese.

Na figura 5.3 é apresentada a distribuigao uniforme da tenséo cisalhante, bem como
0 posicionamento do centro de tor¢do (D) e o estado plano de tensdes que atua na

parede fina.
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Figura 5.3: Distribuicio de tenséo cisalhante nas paredes do pilar sob flexo — tor¢cdo

x —> eixo longitudinal
y.Z — eixos principais
de inércia

£ & g 5 ,"//V /)
centro de torg&o (D) t] / TRes . F—=—1

Trago do plano
de for¢as no
[=——=- 7
T

Fonte: O Autor (2019)

A utilizacdo das equacdes de Maney na modelagem de vigas no sistema aporticado em
construcdes submetidas a acdo do vento foi introduzida por Goldberg (1934), cuja aplicacédo
sera estendida nesta tese para a abordagem dos pilares contraventados por lintéis procedida via
TMC, mantendo consonancia com Szerémi (1977), conforme consta na letra “b” do subitem
2.8.1. A utilizagdo das equacdes de Maney na simulacdo de pilares de torres é observado em
Koulousek (1947), procedendo-se a anélise dindmica via TMC. Nesse raciocinio, vem Chitty
(1947) e analisa duas vigas paralelas entre si e engastadas em mesma base, as ligacGes entre as
vigas sdo promovidas por barras secundarias (transversais ao eixo das vigas principais),
denominadas de lintéis (ver fig. 5.4 a). Na figura 5.4 (b) promove-se 0 equacionamento através
do modelo continuo, sendo adotada a massa da estrutura e as cargas aplicadas pelos lintéis, sob
distribuicdo uniforme no elemento continuo. Esta ideia do meio continuo formado pela
distribuicdo da massa e do contraventamento por lintéis € empregada nos pilares de pontes altas,

nos itens 5.3 e 5.4 desta tese.

Figura 5.4: Vigas contraventadas por lintéis: (a) modelo mecénico e (b) modelo continuo

by wix hF;
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7 TR o ”J o
e - 5 i
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Fonte: (CHITTY, 1947)

Ressalta-se ainda, a andlise dindmica em estruturas elastica procedida por Vickers

(1953), cujo equacionamento dos elementos estruturais é realizado via conceito de centro
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elastico. Culminando por embasar Stamato (1978), isso quando da analise da distribuicdo das
cargas oriundas da rajadas de vento incidentes nos painéis de contraventamento. Em seguida,
listam-se Koulousek (1959) e Dziewolski (1964), onde no primeiro trabalho encontra-se a
modelagem dindmica do tabuleiro (viga continua) de pontes através da TMC, e decorrente
resolucdo da equacdo diferencial parcial via método da separacdo de variaveis. Obtem-se no
processo de resolucdo da EDP a equacéo transcendental que conjuga os modos de vibracdo da
estrutura, como observa-se em Volterra e Zachmanoglou (1965, p. 348 — 373). Por ultimo,
verifica-se em Dziewolski (1964) a comparacdo entre a analise tedrica e experimental nas
solicitagcdes em perfis metalicos de paredes finas, de qual ressalta-se a constatacdo de majoragéo
na ordem de 1,3 a 1,5 entre os valores obtidos por modelagem da TMC em detrimento de
ensaios experimentais, sendo procedidos tais ensaios para cargas laterais (0 que pode-se

mensurar na acdo do vento em pilares). De tal constatagdo apresentada em Diziewolski (1964)
é que se propde o coeficiente a (: 1/1 5 = 2/3) de ajuste para as frequéncias de vibracdo, em
estruturas simples, através da TMC, vide figuras 5.26 e 5.27 e tabela 5.4. Ja, para as estruturas

complexas, a exemplo da aplicacdo 5.9, utiliza-se como coeficiente de ajuste a = 1/1 3-

5.2. GENERALIZACAO DA TEORIA DOS PAINEIS - PAREDE (GTPP)

a) Aplicacdo aos pilares em formato de nucleo C com reforco por abas

A determinacdo das propriedades da secéo transversal em paredes finas, a exemplo do
posicionamento do centro de torcdo, e quantificacdo da inércia setorial I,, € objeto de
formulacdo em Vlassov (1962). Porém, na determinacdo do diagrama de ordenadas setoriais

absoluta w,,. e decorrente inércia setorial, apesar de Vlassov apresentar a formulagéo integral,

constam apenas aplicacdes em secBes com paredes curvas ou ortogonais entre si. Ainda no
trabalho supracitado verifica-se exemplificacdo das paredes com inclinagcdo distinta da
ortogonalidade entre os painéis, porém em exercicios numéricos e sem a devida formulagao
trigonométrica generalizada. Em suma, para Vlassov (1962, p. 194 e 200) a analise de paredes

inclinadas é realizada mediante exercicio numérico. Dai, nesta se¢do da tese sera formulada a
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teoria dos painéis — parede constante em Barbosa (1980), com a notacdo de Vlassov, e sob
equacionamento trigonométrico generalizado. Anos mais tarde, em Murray (1986, p. 54 — 192),
em Kollbrunner e Basler (1969) e em Campanari (1985, v. 2, p. 723 — 749) sdo resgatadas as
teorias postuladas em Vlassov (1962) e aplicadas em novos exemplos. Porém na ocorréncia de
paredes inclinadas a abordagem é sempre a mesma, por meio de dados de entrada (sem postular
a formulacdo trigonométrica generalizada). Ainda, ressalta-se Zalka (2000, p. 121 — 153 e 238
— 277) onde a anélise da estabilidade global de nucleos estruturais é procedida unicamente para

paredes ortogonais entre si.

A prova de tal analise das propriedades geométricas das secdes abertas de paredes finas
puramente ortogonais entre si é vista em Blodgett (1966, p. 2.2-8 e 2.2-10), Pfeil (1986, v. 2, p.
323 — 331) e nas tabelas para estruturas metalicas apresentadas em Pfeil (1986, v. 3, p. 665 —
669). Em ambas as publica¢es, a inércia setorial I, e as demais propriedades geométricas das
secOes de paredes finas sdo listadas unicamente para paredes com eixo esqueleto .s ortogonais
entre si. Assim, a generalizacdo da teoria dos painéis — parede (GTPP) é processada neste item
da tese por imposicdo de inclinacdo genérica para todas as paredes que compdem 0 nucleo
estrutural. Ver a notacdo e o posicionamento dos eixos (centroidais e auxiliares) na figura 5.5.

Figura 5.5: Posicionamento generalizado das paredes no nucleo estrutural em C

y

CT=D @

Y = Yce !

Fonte: O Autor (2019)
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A partir do ponto provisério P localizado na intersecao dos painéis — parede (1) e (3)

procede-se o tracado do diagrama de ordenadas setoriais w,,, com polo arbitrario P. Para tal

utiliza-se a convencédo definida na figura 2.100 e célculo vetorial de area entre dois vetores

(definido na observacdo da 92 etapa da marcha de célculo N° 3 —ver item 2.9 a), concluindo por

diagrama w,, 0 apresentado na figura 5.6.

Figura 5.6: Diagrama de ordenadas setoriais w, com polo provisorio P

Fonte: O Autor (2019)
d’onde: Aw; = Aw; =0
Aw, = by.b,.sin(6; — 6,)
Aw, = —by.by,.sin(0, — 6,) — b,. b,.sin(6, — 6,)

A(A)s = b3. b5. Sin(93 + 95)

(5.1a)
(5.1b)
(5.1¢)

(5.1d)

sendo: b; 0 comprimento, em planta, do painel — parede i e 8; 0 angulo de incidéncia da parede

i em relacdo ao eixo auxiliar x* (com origem sob o polo provisério P).

Mediante calculo das coordenadas do centro de gravidade (CG) da secdo transversal

apresentada na figura 5.5, define-se o posicionamento do CG em detrimento do polo provisério

P e dos eixos auxiliares x* e y*, como:
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bi.cos 6, + b;.cos 0, + b3.cos 05 + b,?.cos 8, + bs”. cos s

bes, = 2.(by + by + by + by + bg) 2a)
o b;.sin 64 + b;.sin 0, + b3.sin 05 + b,?.sin 6, + bs>.sin 05 59 b
ey — 2.(by + by + bs + by + bs) (5:2b)

com: bf = b2 + 2.by.by + 2.by.by; bi = by? + 2.by.by; bi = bs® + 2.bs. bs.

Na figura 5.7 sdo apresentados 0os momentos de inércia nos eixos centroidais x** e y**
de cada painel — parede; conseguinte rotacdo de inércia para os eixos auxiliares x* e y* e
translade via teorema de Steiner. Comp@e-se assim as inércias I, e I, em relagdo aos eixos

centroidais da se¢do transversal do nucleo estrutural C generalizado.

Figura 5.7: Eixos locais x™ e y** e correlacdo com os eixos auxiliares x* e y*

X
®
A |
X
Fonte: O Autor (2019)
resultando por momentos de inércia para o nucleo estrutural, os seguintes:
5
I, = Z{Izi + A Ay2) (5.3 a)
i=1
5
I, = Z{Iyi + A Az?) (53 b)
i=1

L + Ly L = Ly

com: Ay; = |y26i - bcgy|; Ay; = |xéGi - bcazli I, = 5 3 .cos(2.9,);
b;. t3 t.b;
Ly, = L + 1y — L5 I = ETR Iy = 7 Sendo: t a espessura das paredes.

Os diagramas de coordenadas y e z do nucleo estrutural sdo apresentados na figura 5.8.
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Figura 5.8: Diagrama de coordenadas: (a) y e (b) z, para as paredes inclinadas que compdem o

nucleo estrutural
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Fonte: O Autor (2019)
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as coordenadas y; e z; das extremidades finais dos painéis — parede i, ficam expressas por:

Zy = Zp + by.cos 6, (5.4 a)
Z, = 7Z1 + by.cos 6, (5.4 b)
Z3 = Z, + b3.cos 03 (5.4 0¢)
Zy = Zy + by.cos 6, (5.4 d)
Zs = Z3 + bs.cos 05 (5.4¢e)
Y1 =Yp — by.sinb; (54 1)
Y2 =y1—b,.sin0, (549)
Y3 = Yp — b3.sin 6 (54 h)
Y4 =Y, — by.Sin G, (5.410)
Y5 = ¥3 — bs.sin 6 (5.4))
com: z, = —beg, € Yp = bccy-

Agora, mediante a quinta (5%) etapa da marcha de calculo N° 3 aplicada a figura 5.5, e
decorrente utilizagdo do diagrama w,, (apresentado na figura 5.6) e das coordenadas y (ver
figura 5.8 a) e z (ver figura 5.8 b). Conclui-se o posicionamento do centro de tor¢do D, por
interpretacdo geometrica, definido pelas distancias d,, e d, em relagdo aos polo provisorio P
(imposto na figura 5.5). Assim, escreve-se:

t
dy = U {AwZa. [_d2.21 + (bz - dz).Zz] + sz. [Zz. (3 b4_ + 2 bz - 2 dz) + 3 b4.Z4]
Yy

+ Awy. (by. 25 + 2.by. 2,) — Aws. (bs. z5 + 2. bs. z5)} (5.5a)
d, = 6.tIZ'{Aw2' [by. V1 + V5. (2.by + 3.by) + 3.b4. 24] + Awy. (by.y, + 2.by. v,)

+ Aws. (bs.y3 + 2.bs.ys)} (5.5b)

d, _ |21]. by

com: Aw,, = —.Aw e d,=—"—"—".
2a b, 2 2 |z, | + |2,|

Por fim, ao proceder o tracado do diagrama de ordenadas setoriais absoluto w,., como

polo de varredura no centro de torgéo D, exprime-se w,, na figura 5.9.
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Figura 5.9: Diagrama de ordenadas absolutas w,,, com polo de varredura no centro de tor¢ao

(L)pcfZ

(upCf4

DIAGRAMA w,. [m?]

f3

Fonte: O Autor (2019)

resultando por ordenadas wy,. £+ NOS extremos finais dos painéis — parede, 0s seguintes:
l

Wpcp, = Wpcp T Aoupcf1 (5.6 a)
Wpcp, = Wpcp, T Aa)pcfz (5.6 b)
Wpcs, = Wpcp T+ Aa)pcf3 (5.6 ¢)
Wpcs, = Wpcp, T Aa)pcf4 (5.64d)
Wpcs, = Wpcp, + Awpcfs (5.6 e)

com: Wy, = dy.dz; Dwpc, = —by. (dy. cos @, — d,.sin@;) + by. by.sin(6; — 6);
Aa)][,cf1 = b;. (dy. cos 8; — d,.sin 91); Awp% = —bs. (dy. cos 03 — d,.sin 93);
Aprf4_ = b4_. (dy COS 94 - dZ' sin 94) + bl' b4. Sin(91 - 94) + bz. b4. Sin(92 - 04) (§]

Awpc,. = bs. (dy.cos @5 — d,.sinfs) + bs. bs.sin(83 — 65).
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A inércia setorial I, é obtida mediante aplicacdo da nona (9?) etapa da marcha de célculo

N° 3 na figura 5.9, ficando expressa por:

by by
I, =t. {Z'wm”' (2. Wpep T wpch) + e Wpcp, - (a)pcp + Z.wpcfl)
b, b,
+ E'wpch' (Z.a)pcf1 + wPsz) +€.wpcf2. (a)pcf1 + Z.a)pcfz)
bs bs
+ g.wpcp. (Z.wpcp + wpcf3) + Z'wpcfs' (wpcp + Z.wpcf3)
by b,
+ Z'wpcfz' (Z.a)pcf2 + wpcf4) +€.wpcf4. (wPsz + Z.wpcf4)
s 2 s 2 5
+€.a)pcf3.( - Wpcp, T a)pcfs) +Z.wpcf5.(a)pcf3 + .a)pcfs)} (5.7)

EXEMPLO 5.1 (a): A fim de exemplificar a generalizacdo procedida no item 5.2 desta tese, é
analisada a variagdo da inércia setorial 1,, em detrimento das inclinagdes dos painéis — parede
(2) e (3). Na tabela 5.1 sdo apresentados valores de inércia setorial I, em detrimento da variagcdo

das inclinacgdes 6, e 5. Ver as inclinagdes adotadas na figura 5.10 (a).

Tabela 5.1 - Valoresde I, (x 107) m® para modificacdo das inclinacdes das paredes (2) e (3)

19.m . 10,75.m
03 =7(285) 03=T

curva l curva 2 curva 3 curval curva2 curva3 curval curva2 curva3

0 (322,5%) 05 = 2.7 (3609)
2

n o
E(IS') 0,639 0,361 53,103 1,482 0,907 118,798 1,093 0,720 88,025

s o
3(30’) 0,602 0,349 49,580 1,542 0,931 123,598 1,309 0,827 104,988

n o
1(45') 0,509 0,298 41,449 1,401 0,827 112,565 1,304 0,787 104,769

n o
§(60’) 0,387 0,226 31,219 0,934 0,539 75,494 0,913 0,532 73,671

F;—: (75%) 0,222 0,127 17,886 0,296 0,174 23,988 0,306 0,181 24,667

Fonte: O Autor (2019)

Tal analise é objetivada para que projetistas de pontes retas possam identificar qual a
melhor inclinacdo das referidas paredes, isso a fim de gerar menor bimomento (uma vez que I,
é relacionada ao bimomento mediante equacdo 2.96 c) e dai agrega-se economia ao projeto com

a mera inclinacdo de duas das paredes que compdem o nucleo estrutural C.
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Na figura 5.10 apresentam-se a configuracao do nucleo estrutural analisado e os gréaficos
da variacdo da inércia setorial I, com a modificacdo da inclinacdo das paredes (2) e (3).
Ressalta-se que foi mantida uma inclinacdo minima de 15° entre as paredes (1) e (2), bem como
entre os painéis — parede (1) e (3). Mantendo-se assim, a configuracdo de nucleo estrutural, ao
invés de tender a “shear walls”. Por fim, esclarece-se que os gréaficos sdo tracados com valores

de inércia setorial adimensionalizadas via divisao por I, para 8, = 15°.

Figura 5.10: Nucleo estrutural: (a) geometria analisada, (b) gréafico de variacédo de I,, para 83 de

285°, (c) gréfico de variacdo de I, para 85 de 322,5° e (d) grafico de variacao de I, para 63 de

360°
0 i) g 1| T T T
17 4= T
08, <—— @) 2 L,
36 S  p—y
= (6,=159)
% 0z
0.8 E
a
( ) 0.6 1
i <B,<2 5
e g T = e
o= i d=g
63 C/ in I 0.4 e
" — 95 —
e 2 eee curva 1 para 285°
| ‘1/ ) e+ curva 2 para 285°
g v Baa (3) m=® curva 3 para 285° ()
et 0 1 I 1 1
12 “o 20 0 g 60 80
2
T T T T T T T T
1 4
1= i
L osf 1
I, - Lo
I — @(6;=15%9)
0.4 4 % ]
0.2|[#®® curva 1 para 322,5° e## curva 1 para 360°
o+ curva 2 para 322,5° e+ curva 2 para 360°
mm® curva 3 para 322,5° m&# curva 3 para 360°
1 1 1 1 1 1 1 1

0 20 40 9 60 80 0 20 40 9 60 80
2 2

© ()
Fonte: O Autor (2019)

Nesta andlise: a curva 1 equivale as razdes n; = 1/40 en, = 4,acurva 2 asrazdes valemn; =

1/30 e n, = 10, e por fim na curva 3 utiliza-se n; = 1/100 e n, = 5. Em ambos os cenérios

de analise, adotam-se para as paredes: by = b, = b3, by = bs, t = b;.n3 € by = n,4.t.
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b) Aplicacéo aos pilares com segéo transversal em formato de duplo T

Na figura 5.11 é apresentada a configuracdo da secdo transversal em duplo T com
posicionamento generalizado dos painéis — parede que a compde. Indica-se ainda as inclinacbes

6; do j-ésimo painel.

Figura 5.11: Posicionamento dos painéis no pilar em duplo T

F=Yes

Fonte: O Autor (2019)
Objetivando-se o posicionamento do centro de tor¢do D sdo tracados os diagramas de
ordenadas setoriais provisorias w,, (ver figura 5.12 a), de coordenadas y do j-ésimo painel —

painel (vide figura 5.12 b) e o de coordenadas z (na figura 5.12 c). As coordenadas y e z dos

painéis — parede sao mensuradas com origem no centro de gravidade da se¢do transversal.
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Figura 5.12: Pilar em duplo T generalizado: (a) diagrama w,, (b) diagrama y e (c) diagrama z

'Y

Paine) d2)
Aws ,&“\ (6) % -
(5, pw2e

2% ‘d/' *)

x
i “ |
' “painel ) ﬁ'?,,} -
! 3 < ON
: Ny // o ¥, P
po° i ,f 5 o
X | AN '
Do cG e / h
g & <
(bee, <0) o //

<
wo
g 2 7 (bes, 2 0)
~ .
>_</ 196/ P

= .

=

Pa'\“c\ (7)
G
Uy 7 et
% ) (a)
\(\e\ ©

(b)

Zy

Z =Zgg

\—/’ 3Z
Y =Yce i

Z3

Fonte: O Autor (2019)
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as ordenadas setoriais w,,, valem:

Aw; = Aw;z = Aw; =0

Aw, = by.b,.sin(6; — 6,)

Aw, = —by.b,.sin(6, — 6;) — b,.b,.sin(6, — 6,)
Aws = bs.bs.sin(65 + 65)

Awg = by.bg.sin(0; — 0¢)

Awg = by. bg.sin(6; — Og) + bg. bg. sin(Bg — Og)

A(l)g = b7. bg. Sin(97 - 99)
as coordenadas y e z dos extremos finais dos painéis — parede, sdo expressas por:

Z1 = Zp + by.cos 0,
Z, = 71+ by.cos 6,
Z3 = Z, + b3.cos 03
Zy = Zy + by.cos O,
Zs = Z3 + bs. cos 05
Zg = Z1 + bg. cos B¢
Z; = Zp + by.cos 6;
Zg = Z¢ + bg. cos Og
Zg = Z7 + bg. cos B4
Y1 =Yp — by.sinb,
Y2 = Y1 — by.sin6,
Y3 = Yp — b3.sinf;
Vi =Yz — by.sinb,
Y5 = y3 — bs.sin 05
V¢ = Y1 — bg.sin g
Y7 = Yp — b;.sin08;
Yg = V¢ — bg.sin Og
Yo = Y7 — bg.sin O

com: z, = —beg, € Yp = bcgy.

(5.8 a)
(5.8 b)
(5.8 ¢)
(5.8 d)

(5.8 ¢)

(5.81)

(5.89)

(5.9 a)
(5.9 b)
(5.9 ¢)
(5.9 d)
(5.9 )
(5.9 /)
(599)
(5.9 h)
(5.90)
(5.9))
(5.9 k)
(5.91)

(5.9 m)
(5.9 n)
(5.9 0)
(59p)

(599
(597r)
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Agora, utilizando os diagramas de coordenadas y (ver figura 5.12 b), z (Fig. 5.12c) e
de ordenadas setoriais provisorias w,, (Fig. 5.12 a), conclui-se que as distancias d,, e d, sdo
expressas por:

—t

d, =—.J wy.y ds
I,

3

—t

b b b
= I_.{_ZZ.A(Dz.(yl + 2.y2) - f.sz.(Z.yz + y4_) _f. (A(Dz + A(l)4_). (yz + 2.y4)
z

b b b

b b
+ EB' (Awg + Awg). (Vg + 2.y5) + gg.Awg. (y; + 2.y9)} (5.95)
t
dy, = I wp.Z ds =
y 8
t d b, —d b
= I_. {_ZZ'A(’UZQ'ZI + %.22. (sza + Z.A(Dz) + f.A(l)z. (Z.ZZ + Z4,)
z

b b b
+ f.(sz + Awy). (25 + 2.24) — ES.Aws. (z3+ 2.25) + f.AwB. (z1 + 2.2¢)

b b
+ ZSA(UB (2'26 + Z8) + ZS (A(A)e + A(,l)g) (Zﬁ + 2'28)
by .
— EA(A)Q (Z7 + 2.Z9) lf bCGZ > 0
(591
t (b b b
= 1— {ZZA(‘)Z (Zl + 2.Z2) + waZ (2.Z2 + Z4) + é (A(l)z + A(JJ4) (Zz + 2.Z4)
Z
b d b —d
- zs.Aws. (z3 +2.25) + f.ZG. (Awgg + 2. Awg) — %.Awéa.zl
bg bg
+ E.Awﬁ. (2.z6+ zg) + r (Awg + Awg). (2 + 2.23)
by .
- E.A(l)g. (z7 + 2.24) if beg, <0
(59u)
|z1]. b, |z¢|. bg d, de
com: d, = s dg =————; Awy,y =—.Aw, e Aw =<1——).Aa).
2 |z1| + |z, 6 |z1| + |26l 2a b, 2 oa be °

Na figura 5.13 (a) € apresentado o sentido de varredura no ndcleo C a direita que compde
o pilar em duplo T. E na figura 5.13 (b) observa-se a varredura no nucleo a esquerda. E por fim,

na figura 5.13 (c) verifica-se a configuracdo do diagrama de ordenadas setoriais absolutas w,..
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Figura 5.13: Duplo T: varredura no nucleo (a) a direita, (b) a esquerda e (c) diagrama wp,

A

f2

A

fe

As ordenadas setoriais principais w,. S40 expressas por:

Wpep, = dy.d,

Wpcp, = Wpcp + Awpcfl

Wpcr, = Wpcy, + Awpcfz
Wpcp, = Wpcp + Awpcf3

@pes, = Wpcy, T Apey,
Wpey, = Opcp, + Blpes,
wpcfe - wpcfl + Awpcfs
Wpcy, = Wpcp T AWpc,,

Wpcry = Wpcyg + Awpcfs

wpcf9 = wpcf7 + Awpcff)

com: Aa)pcf1 = —b;. (dy. cos 64 + d,.sin 61); Awpcfs = —bs3. (dy. cos 03 + d,.sin 93);

Awpcfz = —b,. (dy. cos 8, + d,.sin 92) + by.by.sin(6, — 6,);

Fonte: O Autor (2019)

(5.10 a)
(5.10 b)

(5.10¢)
(5.10a)
(5.10¢)

(5.10 f)

(5.10 9)
(5.10 )

(5.10 i)
(5.10 )
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Awye,, = —b,. (d .cos 0, + d,.sin 94) + by.by.sin(0; — 04) + by. by.sin(6, — 6,) ;
Awpc, = —bs. (dy.cos 05 + d,.sin 05) + bs.bs.sin(03 — 0s) ;

Awpc, = —be. (d .€0s 0 + d.sin 0g) + by. b.sin(0; — 65) ;

Acupcf —bs. (d .cos 8, + d,.sin 97);

Awpc, = —bs. (d .cos 0g + d.sin 0g) + by. bg.sin(f; — Og) + be. bg.sin(0s — 0g) €

Awpc, = —bo. (dy.cos 0y + d,.sin0y) + by. bg.sin(8; — 69) ;

A inércia setorial I, é calculada pela aplicacdo da equacdo (2.133) no diagrama de

ordenadas setoriais w,, (ver figura 5.13 c), e expressa por:

I, =t.f whe ds

8

-k {b61 - Wpep- (2 Wpep ~ “)PCfl) B %'wpcf{ (wpcl’ B z'wpcfl)
B %-wpcf1' (_2' Wpeg, + wPsz) + %2 Wpcg,: (_wpch 2. wpcfz)
+ %'wpcp' (2' Wpcp — wv%) B % Dpers- (wPCP — & wpcf3)
+ %-wPsz' (2. Wpc, wp%) + %-“)pcf4- (“’mfz + 2"“?’%)
+ %S_wpcfg. (2. Wpcy, + (Upcfs) + %-wpcfs' (prfg +2. wpcfs)
+ %G_wpcfl. (Z.a)pcf1 + a)p%) + %.wp%. (a)pcfl + Z.wp%>
b, by

+ Z'wm’" (Z.a)pcp + wpcf7) + Z'wpcff (a)pcp + Z.wpcf7)

bg
+Z'wpcfe' (Z'wl’% + Wpey, ) +— wpcf (wPCf6 + 2.wpcf7)
by
+€.wpcf7. (Z.a)pcf7 + Wpe;, )
by
2 @pep, - (@pey, +2-wpey )} (5.10 k)
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EXEMPLO 5.1 (b): Semelhante ao procedido no exemplo 5.1 (a) procede-se a analise da
variacdo da inércia setorial I, para o pilar em duplo T. Na figura 5.14 (a) é apresentada a
geometria da secdo simeétrica em duplo T, com as indicagcdes das inclinagdes dos painéis -
parede. Na tabela 5.2 sdo apresentados valores de inércia setorial I,, em detrimento da variacdo
das inclinacdes das paredes laterais (2) e (6).

Tabela 5.2 — Valoresde I, (x 108) m® para as inclinagdes das paredes (2), (3), (6) e (7)

0 _19.1t_ 0 _13.11' 0 _19.11_ 0 _13.11' 0 _19.1r. 0 _13.1r
0, 06 3712 T 12 3712 T T 12 3T 12 T T 12

curval curva2 curva3d curval curva2 curva3 curval curva2 curva3

/12 11”/12 1,221 0,502 104,968 1,967 0,821 168,500 1,744 0,753 148,573

/o 5”/6 1,017 0,424 87,208 1,645 0,696 140,643 1,443 0,636 122,467

Ty 3T/, 0697 0295 59561 1,136 0486 96917 0977 0440 82,704

/3 2”/3 0,359 0,156 30,615 0,580 0,251 49,378 0,493 0,228 41,629

57’/12 7”/12 0,102 0,046 8,662 0,151 0,068 12,849 0,133 0,065 11,197
Fonte: O Autor (2019)
Figura 5.14: Pilar em duplo T: (a) geometria analisada; grafico de variagéo de I, para (b) 6; =
285%¢e 6, = 195°; (c) O3 = 322,5%¢ 6, =217,5°; e (d) 3 = 360° e 6, = 180°

® (s) Bs @/I 0 1 T

® @)

9 eee curva 1
3 e+ curva 2
D (3,
9) L & ®) m=s curva 3 (b)

0.5 h

ees curva l
s+ curva 2
ma® curva 3

97 (C) 0 20 40 62 60 80 (d)

Fonte: O Autor (2019)
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Ja nas figuras 5.14 (b), (c) e (d) plotam-se os graficos da variagdo de I, em detrimento
das inclinacdes dos painéis — parede (2), (6), (3) e (7). Adota-se ainda, trés valores de inclinacédo
espelhada para os painéis (3) e (7), sendo: 65 ={285°;322,5% 360°} e 6, =
{1959;217,5%; 180°}. As curva 1, 2 e 3 sdo montadas de forma analoga ao exemplo 5.1 (a), e

pal’a as pal’edes, tem-se: bl = bz = b3 = b6 = b7, b4 = b5 = b8 = bg, t = bl.rl3 e b4_ = N4. t.

5.3. FLEXO — TORCAO EM PILARES METALICOS

O empenamento é proveniente da rotacdo ¢ em torno do centro de tor¢do D, e sua
derivada d¢, vide figura 5.15 (a). Enquanto que na figura 5.15 (b) é apresentado o elemento

diferencial da secdo de paredes finas, com 0 momento de tor¢do M; e giro relativo d¢.

Figura 5.15: Elemento submetido a flexo — tor¢do: (a) empenamento, (b) elemento diferencial

Fonte: O Autor (2019)

d’onde, o giro relativo d¢ é expresso por:

d —Mtd 5.11
d)_G.Itx (' )

Mediante analise da tenséo cisalhante T ao longo do eixo esqueleto, relaciona-se o giro
da secdo transversal ¢ em relacdo ao centro de torcdo, e expressam-se os deslocamentos

longitudinais u em termos apenas do eixo esqueleto .8, por:
U= wpe. ¢’ (5.12)

Cruzando-se as eq.’s (2.95) e (2.96 c), expressa-se a parcela da tenséo axial a,,, como:

Ox = 7. Wy (5.13)
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A equacdo diferencial que rege a flexo — torcéo € advinda da unido das parcelas do
momento de torcdo livre M; e da torcao de Saint — Venant, ficando expressa por:

m(x)

T (5.14)

¢II _ T2.¢”” —

Sera admitida a possibilidade de carga transversal constante na altura g, e de carga sob
variagdo linear na altura do pilar g,(x) = (qZ/H).x; bem como carga concentrada Q no topo

do referido pilar. Conduz-se assim, 0 momento de torcdo m(x) = A.x + B sob variacdo linear
em relagdo ao centro de torgdo. As cargas sdo aplicadas no centro de carga (CC) e em

decorréncia da excentricidade e quantifica-se 0 momento de torcéo, ver figura 5.16.

Figura 5.16: Pilar de ponte: (a) carregamentos, (b) centros geométricos (CE = D),CC e CG

Fonte: O Autor (2019)

A solucdo geral para a equacdo diferencial expressa na eq. (5.14), é:

sinh (a.x) N (A.x3+3.B.x?)

¢(x) = Cs.[cosh(a.x) — 1] + C,. [x — . 6 a2 EL (5.15)
A= (@m?
onde: C, = S atEl 2.a®>.(Miy+ B.H) 5  qiy =q1.c0s(8g) ; Qzy = qz.cos(0;);
c a?.[a.By — Myy.sinh(a.H)] + A.k; + B.a.[1 + (a. H).sinh(a. H)]
3~ )

a®.E.1,.cosh(a.H)

A=- (qu/H) €7 ) B =—-qiy.e; ) ki = {1 -

e, € a distancia no eixo zp,; entre o centro de carga (CC) e o centro de tor¢do (D).

2
(a.zH) .sinh(a. H)} e

Procede-se assim, a extensdo da teoria da flexo — tor¢do (TFT) apresentada em Mori e
Munaiar Neto (2017, p. 140 — 145) para momento de tor¢cdo m(x) sob funcdo linear. Tal
extensdo é realizada para computar a acdo do vento na referida teoria, uma vez que o

carregamento oriundo do vento é expresso nas figuras 2.67 e 5.17.
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Figura 5.17: Convencé&o positiva do momento de tor¢do M, e do braco de alavanca e,

1 qz}.-

Xpi 1y / » P
'/, | o )
Mt i__) o | - q
H '/ 1 \gt;
:/ | I qy
—Do/ .EG <
Vpi / CC ZpL
} e,

Fonte: O Autor (2019)

Conforme apresentado em Laredo (1969), na modelagem do pilar contraventado por
lintéis é adotado como principal hip6tese o enrijecimento propiciado pelos lintéis. Ja na analise
de pilares de pontes, a laje (tabuleiro) é adotada flexivel e conforme apresentado na figura 2.19
fornece cargas verticais no pilar. Tornando-se aplicavel a Técnica do Meio Continuo para tal
modelagem, mais precisamente com o emprego da Teoria dos Painéis — Parede (ver item 2.8
desta tese). A abordagem procedida é consonante com Koulousek (1947), quando do emprego
das equacGes de Maney na modelagem dos lintéis de contraventamento. Além disso, a
formulacdo dindmica sera baseada em Koulousek (1959) e na resolugdo do problema dindmico
de pilares de pontes, pela TMC, sera utilizado o método da separagdo de variaveis na resolucao
da EDP que rege o problema dinamico. As replicacdes sao devidamente empregadas nos pilares
de pontes com secdo de paredes finas em C ou em duplo T (ver subitem 5.3.1), sendo
postulados: o diagrama de desacoplamento do sistema de EDP’s que rege a solicitagdo dinamica
do vento, a obtencdo dos primeiros modos de vibracdo via TMC e a decorrente comparagao

com a modelagem no software ANSYS Release 11.

5.3.1 Analise dinamica via TMC

Para os pilares em nucleo formados por painéis — parede constituidos de chapas
metalicas, tem-se a coincidéncia em posicionamento do centro de gravidade (CG) com o centro
de massa (CM), fato este decorrente da homogeneidade de propriedades mecanicas e oriundas
do processo de usinagem do aco. Vide tal posicionamento na figura 5.18. Para o caso do pilar
em duplo T observa-se que, quando da dupla simetria, o centro de tor¢do coincide com o centro

de gravidade. Porém para o caso do pilar em duplo T assimétrico basta utilizar na equacéo
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(5.16) as matrizes de rigidez [J] e [S], apresentado no item 2.8.2, mais especificamente com as
matrizes [M, ] a [M,,] das paginas 111 e 112 desta tese.
E por ultimo, para a se¢do do pilar em ndcleo C, basta utilizar as matrizes presentes no

item 2.8.1 (ver paginas 93 a 104 desta tese) para abastecer a equacdo (5.16).

Figura 5.18: Posicionamento dos centros geométricos (CC, CG, CM e CT) na se¢ao C

CG=CM |_J
\

N
A

ZpL = Ze = Zcc

]

YpL Yce Yce

L

Fonte: O Autor (2019)

Na equacdo (2.119) é apresentada a analise estatica do problema dos painéis — parede,
sob referencial no centro de gravidade. Assim para a inclusdo da parcela dindmica no centro de
massa (0 que coincide com o centro de gravidade, basta que se proceda a integracéo da pseudo
— forca inercial (m.Z) ao longo do eixo longitudinal x do pilar de ponte. Assim, a equagdo
diferencial, da analise dindmica ndo amortecida dos painéis — parede, fica expressa por:

—[J1. 0" + [S1. (0"} + [M]. (B} = {V}'} (5.16)
m 0 O

com: [M]=|0 m O]
0 0 I,

onde: I, € 0 momento de inércia polar; m = M/H ¢ a massa distribuida na altura H e {##} é o

vetor de aceleracéo.

A equacdo diferencial, eq. (5.16), expressa a analise dindmica dos painéis — parede
metéalicos, sendo escrita no centro de gravidade. Desse ponto, faz-se o desacoplamento do
sistema mediante trés transformacdes de coordenadas. A primeira transformacéo é realizada
mediante matriz de translacdo e rotacdo [Re] do sistema de coordenadas {v} com eixos
centroidais y.; e z¢; para o sistema de coordenadas {x} com eixos yx e zg. Nesta primeira
transformacéo, o sistema fica escrito no referencial de rigidez principal [J*]. Enquanto na
segunda transformacdo translada-se o sistema de coordenadas {x} para o sistema {y},
implicando no desacoplamento da matriz de rigidez [/], e reescrita no formato da matriz

identidade de ordem 3.
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Por fim, para que o sistema fique desacoplado faz-se necessario aplicar um processo
iterativo para diagonalizar, até certa tolerancia & (de magnitude), as matrizes [M**] e [S**].
Conforme é apresentado no fluxograma de desacoplamento, ver figura 5.19.

Figura 5.19: Fluxograma 1 de desacoplamento do sistema de equacdes diferenciais para a analise

dindmica dos painéis — parede metalicos

Inserir [/1, [S], [M), {V7}, (v}, {v5""} e {0} Fluxograma 1

A 4

1* Transformacio: @g,dr,yr,z, [Re] — Ver equagio (5.34 d)
[M*] = [Re]". [M]. [Re]; [J*] = [Re]". [J].[Re]
[5*] = [Re]™. [S]. [Re; {V;} = [Re]™.{V/}

{90} = [Re]". {vg'}: {q5"} = [Rel"- {vs"}; {Go} = [Rel”.{i}

A4

2* Transformagio: [J*] /*~ Ver equagio (5.33 b)
M) = P12 ML 0125 0 = P12 000 0012 = [
[5%] = P12 0870 ' 17V2; (v} = V2. {vp)
{90} = U172 {ve'}; {a0"} = U172 {ws™} {4} = "172. {3}

l
J

Fori =
m/—M“, sI—S,,
qﬂl' q;)ll"’ q(’l

3" Transformacao:

Diagonalize [M**]: Usar o método de Jacobi e gerar [(pmk] autoversores
1 =[] -1 [0, ] 1571 = [0, ] 151 [ ]
V7Y = [on] 0% (i} = o] ek lio} = [on] - (i)

'

Diagonalize [S*™*]: Usar o método de Jacobi e gerar [@s,] autoversores
1= [o,] .41 [0, s 1571 = [o,] 15[, ]
V7Y =[o,] 7 G = o] e} G =[o.] a0

k=k+1

Fonte: O Autor (2019)
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Apobs o processo de diagonalizagdo do sistema de equacdes diferenciais, eq. (5.16), via
fluxograma 1 apresentado na figura 5.19, consegue-se escrever as respostas para as referidas
equacBes diferenciais. Em tal resolucdo, utiliza-se um conjunto de equac@es diferenciais
desacopladas no referencial generalizado, resultando em:

0%q:(x,t 0%q;:(x,t 0%q:(x,t
_0%q,( )+s,-. q;( )+m,-. q;(x,t)
Ox* 0x?2 ot2

=V, (x,t) (5.17)
a) Modos de Vibracao

A equacdo diferencial parcial (EDP) apresentada na equacdo (5.17) é funcéo do espago x
e do tempo t. Para tal resolucdo, adota-se 0 Método da Superposi¢cdo Modal, no qual a funcéo
de duas variaveis q(x,t) serd expressa pelo produto de duas fungdes parciais u(x) e g(t)

definidas em cada um dos campos, espaco (x) e temporal (t). A funcao espacial adimensional
u (%) para consequente analise dos modos de vibragédo, valendo-se da condi¢do de apoio do

pilar como engastado na base e livre na extremidade superior, é expressa por:

X X ) X X ) X

u (ﬁ) = By.cosh (Al.ﬁ) + B,.sinh (Al.ﬁ) + B3.cos (Az.ﬁ) + B,.sin ()lz.ﬁ) (5.18)
onde: B, = —B;.ky; B; = —By; B, = 1;.(1,)"Y. By.ky,; A1, A, sA0 as raizes da equagéo caracteristica
da EDO homogénea no espago x; w?é a constante de separacido de variaveis e k, =
[43.sinh(1;) + A;.A,.5in(1,)] 7. [A3. cosh(A,) + 23.cos(4,)].

A equacdo transcendental, cujas raizes exprimem os modos de vibracéo da estrutura, é:

2.2,%.2,° Mgt =2t 2
2. cosh(1y).cos(1y) + —2——2
Al-AZ + Al '/12 Al'ﬂ'z +Al -AZ

.sinh(4,).sin(1,) = -1 (5.19)

Cuja frequéncia do modo de vibragdo i é w; e o periodo T;', sdo:

w; Aq.A, [rad
wp = o =2 [T] (5.20 a)
C 29y 5.20 b
fr =5t Tz (5.20 b)
T, =7 H? =2 2 (5.20 ¢)
L '

A=H.[s; (5.20 d)
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Com a transformacdo das fungdes trigonométricas contidas na equacao (5.19), por série
de poténcia com 11 termos, € possivel obter os sete primeiros modos de vibragao do pilar em
nucleo estrutural. Admite-se o pilar com base engastada e topo livre e na tabela 5.3 apresentam-

se parametros para determinacdo dos modos de vibracéo.

Tabela 5.3 — Frequéncia e periodo em funcdo do modo de vibracdo e 4

A Modo i=1 i=2 i=3 i=4 i=5 i=6 i=17
A 1,87510 4,69409 7,85483 9,08911 10,02092 11,68901 14,62618
A, 1,87510 4,69409 7,85483 9,08911 10,02092 11,68901 14,62618
w; 3,51600 22,03448 61,69835 84,61192 10597714  136,63295 213,92514
0,0 T} 1,78703 0,28515 0,10184 0,07606 0,05929 0,04599 0,02937
fi 0,55959 3,50690 9,81960 13,46640 16,86790 21,74580 34,04724
,11.(“) 1,87510 4,69410 7,85550  10,99600
% AA 0,00000% 0,00021% 0,00853% 17,3417%
A 1,92738 4,73666 7,92626 9,11768 10,04144 11,69751 14,62569
A, 1,79298 4,68358 7,89466 9,09022 10,01651 11,67612 14,60859
0,5 w; 345576  22,18454 62,57510 82,88171 100,58021  136,58151  213,66066
T; 1,81818 0,28322 0,10041 0,07581 0,06247 0,04600 0,02941
fi' 0,55000 3,563082 9,95917  13,19087 16,00768 21,73913 34,00204
A 1,98334 4,67319 7,89001 9,14477 10,06085 11,73094 15,10577
Ay 1,71279 4,56494 7,82638 9,08993 10,01103 11,68824 15,07263
1,0 w; 3,39704  21,33285 61,75023 83,12531  100,71946  137,11404  227,68374
T 1,84961 0,29453 0,10175 0,07559 0,06238 0,04582 0,02760
fi 0,54065 3,39524 9,82801  13,22926 16,03078 21,82453 36,23188
Ay 2,52714 5,10929 8,16649 9,37042 10,22620 11,77672 14,62109
A, 1,17747 4,59400 7,85440 9,09971 9,97874 11,56249 14,56249
5,0 w; 2,97563 23,47208 64,14286  85,26813  102,04455  136,16819  211,26148
T 2,11155 0,26769 0,09796 0,07369 0,06157 0,04614 0,02974
fi 0,47359 3,73566  10,20825 13,57036 16,24168 21,67317 33,62475
A 3,25746 5,50391 8,42839 9,64266 10,43138 11,87014 14,61565
A, 0,78169 4,50478 7,81267 9,10938 9,94051 11,44116 14,26945
10,0 w; 2,54634  24,79389 65,84820 87,83870 103,69321  135,80821  208,55730
T* 2,46754 0,25342 0,09542 0,07153 0,06059 0,04627 0,03013
fir 0,40526 3,94602 10,47998  13,98015 16,50437 21,61228 33,18951
A 6,10829 8,61531 9,29340  10,43048 11,65087 12,06984 14,60359
1, 4,16067 7,36367 8,14661 9,42311 10,75838 11,21076 13,90197
20,0 w; 25,41460 63,44026  75,70972  98,28751  125,34450  135,31202 203,01871
T; 0,24723 0,09904 0,08299 0,06393 0,05013 0,04643 0,03095
fi 4,04482 10,09693 12,04964  15,64211 19,94813 21,53780 32,31018
Onde: A,-(“) é a raiz apresentada em Kiseliov (1983, p. 172), isso no capitulo destinado a acdes dindmicas em
vigas de segdo constante. Assim tais valores podem validar a formulaggo desta tese para s; = 0 (sem lintgis).
Fonte: O Autor (2019)

Na figura 5.20 € apresentado, para s; = 0, a mudanca da linha elastica nos trés primeiros
modos de vibracdo. Na figura 5.21 (a) observa-se o primeiro modo de vibracdo em termos de
A, janafig. 5.21 (b) é apresentado o segundo modo e por fim, na figura 5.21 (c) consta o terceiro
modo de vibracdo. Observa-se, ainda na Tab. 5.3, aproximacdes de 0,0002 % e de 0,008 % nos
2° e 3° modos (respectivamente). Tal constatacdo é procedida com base em Kiseliov (1983, p.
172).



Vibracdo de Pilares com Sec¢éo de Paredes Finas via TMC

245

Figura 5.20: Trés primeiros modos de vibracao do pilar em nucleo com base engastada

1

08

0.6

04

1

- //’
- -7 /
-
e !/ Jos
- /
/
/
/
/ Hos
/
/
— /”
JARE 4 04
-
/ )
/ /
/ 7
/ - 4 02

0
u($)
Fonte: O Autor (2019)
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Figura 5.21: Modos de vibracao: (a) primeiro, (b) segundo, (c) terceiro
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EXEMPLO 5.2: A fim de exemplificar e verificar a formulagdo procedida para vibracao de
pilares com paredes finas (item 5.3.1 desta tese) modelou-se um pilar metalico no software

ANSYS Release 11. Para tal, empregou-se 100 metros de altura e painéis — parede com
dimensbes: b, = b, = b3 =3,45m, b, = bs = 1,00 m, espessura t = 0,15m e paredes
ortogonais entre si. Notagdo adotada baseia-se na figura 5.5, vide também na fig. 5.22. As
dimensbes em planta sdo baseadas na chapa metélica grossa fabricada pela Gerdau e com
espessura maxima de 15 centimetros e comprimento de 3,6 metros. Na modelagem em ANSY'S
foram utilizados 395.954 nds e 56.028 elementos finitos para o pilar sem lintéis, e 407.514 nés

e 54.428 EF no pilar contraventado. As malhas de EF possuem 99,81 % de qualidade.

Figura 5.22: Pilar metalico em nucleo estrutural: (a) se¢do de paredes finas e (b) frequéncias de

vibracéo via modelagem no software ANSYS Release 11

Tabular Data

n Mode |Jv Frequency [Hz] Mode [|v Frequency [Hz] Mode [Jv Frequency [Hz] Mode [|v Frequency [Hz]
2 -~ < il 0,2542 6 |6 3,2246 |11 |11, 57935 16 | 16, 9,3402
— o 2 |2, 0,39071 7 |7 4,5322 12 |12, 5,7943 17 17, 10,513
a « |l cG 33 1005 8 |8 46923 13113, 69841 1818, 10,658
K<) T L3 4 |4, 1,2674 9 |9 4,8443 14 |14, 7,2805 19 |19, 10,844
> z 5 |5, 2,3868 10 110, 5,5328 15 (15, 8,3748 20 |20, 11,203
o - v
O v
< o 2 _s' Graph
I T [ I L 19,997
5 ibegd @ Lo I |
= zly
L9z Y () S SRR VO G ) Y T [ 11 I I I I b
D b ' (b)
. z : 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Fonte: O Autor (2019)

Na tabela 5.4 é apresentada a comparacao entre os dois primeiros modos de vibracdo a
flexdo, quanto a mobilizacdo dos linteis. Analisando o célculo manual, via tabela 5.3, em
detrimento da simulagdo computacional no ANSYS Release 11, ver figura 5.23 (b), (e) e (f).

Ressalta-se que o calculo manual é procedido para pilar metalico sem linteis, logo s; = 0. A

ponderacao por a = 2/3 para as frequéncias via TMC é explicada na pagina 222, desta tese.

Tabela 5.4 — Comparacéo dos trés primeiros modos de vibragao a flexdo, via ANSYS

Frequéncia a flexdo calculo manual - via tabela 5.3 Simulacéo via ANSYS A (%)
18 2/5.0,56 = 0,37 H, 0,39 H, 5,41
28 2/5.3,51=2,34H, 2,39 H, 2,14

Fonte: O Autor (2019)

tais aproximacdes sdo devidas a resolucdo da eq. (5.19) com 11 termos da série de poténcia.
Porém ao aumentar o nimero de termos da série, a trabalhabilidade do Mathcad versdo
estudantil é ultrapassada. Mesmo com a limitagdo do software na resolugdo da equacdo
transcendental, eq. (5.19), verificam-se excelentes resultados nos dois primeiros modos de

vibragdo. Observa-se ainda, que para pilares de se¢do macica (s; = 0) a convergéncia é total no

primeiro modo de vibracao.
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Figura 5.23: Modos de vibracdo via modelagem no software ANSYS Release 11, para pilar
metalico com secdo aberta de paredes finas
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Fonte: O Autor (2019)

Na figura 5.24 sdo apresentados os vinte primeiros modos de vibracdo para o pilar

metalico da figura 5.22.

Figura 5.24: Vinte primeiros modos de vibragao via modelagem no software ANSYS 2019 R1

versdo académica, para pilar metalico com se¢édo contraventada por lintéis

Tabular Data

| [Mode [[v Frequency [Hz] Mode |[V Frequency [Hz]] |Mode [[¥ Frequency [Hz] Mode [[v Frequency [Hz]
i (1, 038671 6 (6, 6065 [11[11, 1270 1616, 17,94
2 041785 7 7. 516 [12]12, (15472 [17]17, 19,296
3, 23863 s |5, 1053 [13]13, 16083 1218, 1955
4 238 9 ]9, 1227 [14[14, 16,266 [19]19, 120419
5 |15 4,0282 10 (10, 12,2_25 15115, 16,656 20120 21996
Graph
20,
2,
pa I TAL L] I U I J
B B e
2 3 4 5 6 i 8 9 10 13 12 13 14 15 16 17 18 19 20

Fonte: O Autor (2019)
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Na Figura 5.25 s8o expostos os primeiros modos de vibracdo nas duas direcdes
centroidais, sendo a frequéncia de ativagdo dos lintéis a flexdo (f;) de valor 0.42 Hz. Via
processamento manual, operacionalizado pela solucdo da equacdo transcendental (5.19),

obtém-se f; no valor de 0.47 Hz (ver Tabela 5.3 para 4; = 8,55), conforme figura 5.25 (c).

Figura 5.25: 1° modo de vibracao para pilar metalico contraventado por lintéis: (a) via ANSYS

sem mobilizar os lintéis, (b) via ANSYS com mobilizacao a flexdo dos lintéis e (c) via eq. (5.19)
@ T N . ‘ T T

=

Total De
Type: Total Deformation
Frequency: 0,38671 Hz
Unit: m

04/12/2019 20:37

ul(€)

Type: Total Deformation
Frequency: 0,41785 Hz
Unit: m

04/12/201920:37 f1=0,41458H, {108

A, =0,79%
0,0016364 Max

0,0014546
0,0012727
0,0010909
0,0009091
0,00072728
0,00054546
0,00036364
0,00018182
0 Min

0,0016423 Max
0,0014598
0,0012774
0,0010949
0,0009124
0,00072992
0,00054744
0,00036496
0,00018248

0 Min

1 0.6

v
1
==

1 04

1 02

(a) (b) =1 = ojs 0 ol.s

Fonte: O Autor (2019)

O valor de A; € obtido mediante cruzamento do apéndice D.2 (ver paginas D42 a D45),
no processo de desacoplamento do sistema de EDP’s, com a equagdo (5.20 d). Para este
exemplo em questdo, na pagina D45 constata-se s; = —7,31315 x 1073 para o primeiro modo
de vibragdo. Por fim, para a altura de 100 metros do pilar, tem-se: 4, = 8,55. Conhecido 4 =
A, = 8,55 procede-se a interpolacdo dos valores de frequéncia para os quatro primeiros modos
de vibracdo, isso através da tabela 5.3.

Baseado em tal procedimento, na figura 5.25 (c) observa-se convergéncia de 0,79 %
para 0 1° modo de vibragdo do pilar de paredes finas em formato de C. J4, nas figuras 5.26 (c),
5.27 (c) e 5.28 (c) observam-se aproximac6es da TMC com a modelagem no ANSYS Release
11, sob as ordens de grandeza: 7,79 %; 6,03 % e 11,30 % (respectivamente para os 2°, 3° e 4°
modos de vibracdo). Apesar da divergéncia média 8 % nos 2°, 3° e 4° modos de vibracéo,
pode-se afirmar que a modelagem do pilar via TMC ¢ satisfatéria por dois motivos. O
primeiro motivo é que o dimensionamento estrutural do pilar é procedido mediante estado de
maiores deformacdes, 0 1° modo, e neste verifica-se convergéncia com ordem de exatiddo em
menos de 1 %. A segunda justificativa de eficacia da modelagem dinamica via TMC € que
através desta ferramenta pode-se conferir a ordem de grandeza dos resultados obtidos via
modelagem em softwares comerciais.
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Figura 5.26: 2° modo de vibragdo para pilar metalico contraventado por lintéis: (a) via ANSYS
sem mobilizar os lintéis, (b) via ANSYS com mobilizacéo a flexdo dos lintéis e (c) via eq. (5.19)
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Figura 5.27: 3° modo de vibragéo para pilar metalico contraventado por lintéis: (a) via ANSYS
sem mobilizar os lintéis, (b) via ANSYS com mobilizacéo a flexao dos lintéis e (c) via eq. (5.19)
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Figura 5.28: 4° modo de vibragdo para pilar metélico contraventado por lintéis: (a) via ANSYS

sem mobilizar os lintéis, (b) via ANSYS com mobilizacéo a flexao dos lintéis e (c) via eq. (5.19)
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Fonte: O Autor (2019)
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EXEMPLO 5.3: Procede-se a modelagem no software ANSYS, Release 11, do pilar exposto
no exemplo 5.2, adaptando a secéo transversal para a ocorréncia do duplo T com dupla simetria.
Apresentando-se na figura 5.29 a geometria de tal pilar metalico. E nas figuras 5.30 e 5.31 séo
apresentados os primeiros modos de vibragcdo. A qualidade da malha de EF empregada no
ANSY'S foi de 99,66 %, com 470.738 n6s e 66.700 EF para o pilar em duplo T sem lintéis. Bem
como, foram utilizados 69.500 EF e 493.853 n6s na modelagem do pilar contraventado.

Figura 5.29: Pilar metalico em duplo T: (a) geometria da secado transversal e (b) frequéncias de

vibracéo via modelagem no ANSYS Release 11, para pilar metalico sem lintéis

H T o 0*’ Tabular Data
E I_E- il Mode ”7 Frequency [Hz] MOMP Frequency [Hz] Mode F Frequency [Hz] MOMF Frequency [Hz]
S (1 [1, 03244 6 |6, 2,5897 10|10, |7,8207 16 (16, 11,298
2 |2 04079 [7 7. 51756 1)1, 8a7er 1717, 11,718
[3 (3. 059831 8 |8 6,3048 12|12, 18,5275 18 (18, 12,624
t=025m 4 |4, 1,9953 9 |9, 6,4449 1313, 19,4109 19119, 112,973
= 5 |5, 24394 1010, 1 7.8207 14114 95626 20120, 13,571
b=345m
Graph
Lo 8. L % | . 0 s PR L] |—|—|J—
— ¢= 3 i ) (a) £ 2 B A4 6 7 8 9 10 N

Figura 5.30: Modos de vibracao do pilar metalico em duplo T sem lintéis via modelagem no

ANSYS: 1° modo em (@) x, (b) y; 2° modo em (¢) X, (d) y e () 3° modo em y

0,00017133
0 Min

0,00 35,00 70,00(m) v‘/? X
e Cee—
17,50 52,50
(@) (b)

0,00052214
{ 0,00034800
0,00017405
0 Min

0,0001738
0 Min

© @ (e
Fonte: O Autor (2019)
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Figura 5.31: Modos de vibragéo do pilar metélico em duplo T contraventamento por lintéis via
modelagem no ANSYS: 12 modo em (a) X, (b) y, 2° modo em (c) x, (d) y, 3° modo em (e) x e (f) y

| 0,00050329
0,00033553
0,00016776
0 Min

0,00 35,00 70,00 (m) Y
L~ Saaaa— SSS—
17,50 52,50

@

0,00016723
0 Min

0,00016304
0 Min

(e)
Fonte: O Autor (2019)

o pilar modelado no ANSY'S possui lintéis com espessura e; de 25 cm, altura h;, = 1,00 metro.
O especamento dos referidos lintéis é de 5,00 metros (de eixo a eixo).
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b) Vibragéo forcada ndo amortecida

Para a vibracdo forcada, ver equacdo (5.17), expressa-se o esforco cortante externo

V¢ (x, t) dependente do espaco x e do tempo t como o produto de duas sub — fungdes 7 (x) e
Y,(t). E apos aplicar q(x, t) = u(x).g(t), em conjunto com as condigdes de ortogonalidade
e a devida integracdo ao longo do comprimento do pilar de x = 0 até x = H, escreve-se a

equacao diferencial temporal, como:
1 H
(0 + kg () = W.f[uj(x). Y0, V()] dx (5.21)
k
0

onde: k, = y7. (s — w?);

v/ =mtwie

M;, € a massa modal.

Adotando-se a variagdo do esforgo cortante ao longo do tempo ¥, (t) mediante funcéo
harménica senoidal, obtém-se como solucdo g, (t), a seguinte:

(kj _(i)—kz)_ - sin(@.t) (5.22)

k() =

sendo; w a frequéncia harmonica do esforgo cortante ao longo do tempo 7 (t).

Ao utilizar as condic@es iniciais g, € ¢, para 0 espago x e no tempo inicial (¢t = 0), bem
como considerando-se as condic¢des de ortogonalidade modal, determina-se a solugéo geral da

EDP apresentada na equacéo (5.17), como:

q(x,t) = z {uj(x). [Glj. sin(yj. t) + G- cos(yj. t) + G3J..sin(a—). t)]} (5.23)
j=1
onde:qo = qlx,t =0) ; Go=qlt=0) ; G3 =][(ki- _2)-M7€]_1Qj?
H
Gy, = A;;.![uj(x).m. Qo] dx e
H
Gy, = L <. j[uj(x).m.qo]dx—(l{;'_—Q;)_.z) :

j M
Vi- My o
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c) Vibragéo forcada amortecida

Baseado em Awruch e Gonzalez (1993), o equacionamento da vibracdo amortecida de
vigas, considerando o angulo de distorgéo y,.,,, € procedido conforme apresentado em Schapery
(1969), Silva (2004, p. 65 —70) e Meneses (2015, p.13). E para tal, aplica-se o modelo de Kelvin
lo, = E. (g, + c.&,)] para tensdes e deformac0es, e ao utilizar a definicdo do momento fletor,
chega-se a EDP para o problema da viga de Euler sob vibragdo, expressa por:

0*v 05v 62
(BD.5+ e (D5t m S = 7,60 7,(0) (5.24)

Agora, procede-se a analogia do problema de viga de Euler, ver equacgéo (5.24), adaptada

corretamente para a teoria dos painéis — parede apresentada na equacao (5.17). Observando-se

. . : xt .. .
que a parcela do amortecimento ¢ € proporcional a —— ficando assim expressa, por:

_a4qj(x, t) L aij(x, t) i asqj(x, t) m E)qu(x, t)
ox* It ox? I gx4ot N I

= (). 75 (5.25)

E mediante processo de resolucéo da eq. (5.17), escreve-se a solucdo geral para a EDP da

vibragdo amortecida dos painéis — parede, expressa na equacdo (5.25), como:
qlx,t) = Z u](x) 61 sm()/] t) + 62 cos(yj t) + G3 sin(w. t)]} (5.26)

onde: ij = Mii.fOH[uj(x).m. qo] dx ; G3Cj =[(k2—-ckiw— 62).M,’§]"1Qj;

1 . G.Qj _
GZCf:yj.M,ﬁ' J[uj(x)'m'qo]dx_(k§—c.kf.@—az) ; Y(t) = sen(w. t);
0
(w? —c.w?) , yim-—cw* w? — c.w?
k= k= ———; Y =————; k¥ =5k — k5
1 m 2 m 4 m 375K 1

¢ a frequéncia da solicitacéo do esforgo cortante 7, (t), e no tempo ¥, (x) equivale a funcéo

do esforco cortante, onde ¥,,. consta na eq. (2.118), apés passar pelo processo de

diagonalizacdo do sistema (ver fluxograma 1, figura 5.19).
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5.4. FLEXO —- TORCAO EM PILARES DE CONCRETO ARMADO

5.4.1 Formulag&o dinamica

A analise dindmica dos pilares de concreto armado é procedida nesse item da tese via
Técnica do Meio Continuo, cuja hipétese principal é considerar a massa da estrutura de forma
distribuida ao longo da altura (ver figura 5.4). Conforme observa-se em Laredo (1977, p.273 —
283), a modelagem de elementos estruturais através da TMC conduz a valores satisfatorios para
o primeiro modo de vibracdo. Como almeja-se dimensionar a estrutura, ao obter bons resultados
para 0 1° modo de vibragdo é possivel caracterizar o cenario de maiores deformacdes e 0s
conseguintes esforcos solicitantes.

A preciséo dos valores no primeiro modo de vibragao, conforme postulado por Laredo
(1977), é observada na simulacdo do pilar metalico (ver tabela 5.3). Dai, nesse subitem
destinado a analise de pilares de concreto armado, adota-se a TMC e toma-se a massa do
concreto e a massa das armaduras (longitudinal e transversal) como distribuidas no meio
continuo (altura do pilar). Utilizando-se assim, a secdo transversal homogeneizada para o
posicionamento do centro de massa (ver item 5.4.4).

A analise estatica dos Painéis — Parede, apresentada na equacao (2.119), é expressa com
referencial no centro de gravidade (CG). Porém, na andlise dindmica, a parcela da pseudo —
forca inercial é funcdo da massa distribuida m e referenciada no centro de massa. Vide fig. 5.32

com a massa sob aceleracéo Z.

Figura 5.32: Massa distribuida submetida a aceleragéo z

.*:T

dx: sm |— 2

X 4+ —+ F
Fonte: O Autor (2019)

A mencionada pseudo — forca F, é:
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H
F= J.(m.é) dx (5.27)

X

onde: m — massa distribuida, M — massa total do pilar, H — altura do pilare m = M/H.
Para a estrutura tridimensional, tem-se:
m 0 071 (v
{dF} = [M].{p} = [0 m 0] {w} (5.28)
0 0 Il ¢
onde: I, — momento de inércia polar e [M] — matriz de massa no CM.

Devido ao fato da parcela dindmica expressa na equacéo (5.28) estar referenciada no
centro de massa (CM) e a parcela estatica no centro de gravidade (CG) da secdo bruta de
concreto armado, faz-se necessaria a transformacao de coordenadas do (CM) parao (CG). Vide

fig. 5.33.

Figura 5.33: Centros de massa e de gravidade: (a) posicionamento, (b) transformacao de

referencial do CM ao CG

; |.r o , Zce
@ bcci ® —(l}x LY
- CcG
| cc d
cG CM YeMcG
21 .—l—l — > B G’CM Wey Zeu CMCG
Zem = Zog = Zec = Zpy, vc@l +
Xcm
H_I@ UCMl
@ (a) y Yem
CcG v od
Yea | ] Yem ZcMeG ‘ (b)
Yo
Yce
Fonte: O Autor (2019)
A relacdo dos deslocamentos no centro de massa em detrimento do centro de gravidade,

vale:
Vem = Ve — Aagpee- Pea (529 a)
wCM == (,UCG + dyCMCG' ¢CG (529 b)
bcm = P (5.29 ¢)

Matricialmente as equages (5.29), constituem a lei de transformagdo de coordenadas

do centro de massa para o centro de gravidade, ficam expressas assim:
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_ Yem 10 Azemec | (Vee

{vem} = [Tl {vee} = {@emp=10 1 dy,00 |-19c6 (5.30)
bcem 0 0 1 bce

sendo: {v.),} — vetor de deslocamentos no centro de massa, {v.;} — vetor de deslocamentos no

CG e [Ty] — matriz de transformacéo linear do CM para o CG.

Em decorréncia da lei de transformacdo expressa na equacédo (5.30), reescreve-se a

parcela da movimentacdo dos painéis — parede, equacao (5.28), da seguinte forma:

{dFey} = M)y} = [Tyl™. IM]. [Tyl {Vce} (5.31)

Derivando-se a equacdo (2.119) e somando-se a equacdo (5.31), tem-se o sistema de

equac0es diferenciais, que rege o problema dindmico dos painéis — parede, expresso por:

~U1-{veg} + IS {vgg} + [M]. {iee} = {vy} (5.32)

sendo: [M] = [Ty]". [M]. [Ty], e [M] é a Matriz de massa referenciada no CG.

a) Desacoplamento dindmico

a.1l) Procedimento 1

O primeiro procedimento apresentado consiste em reescrever o sistema de equacdes
diferenciais (ver equacdo 5.32) no referencial principal da rigidez do pilar a flexdo [J*],
mediante transformacao linear por matriz de rotacdo e translacdo [Re]. Em seguida, transforma-
se [/*] em [J**] que equivale a matriz Identidade [I], via pré-multiplicacdo e multiplicagdo por
[J*]~%/2 a fim de manter a simetria das demais matrizes, e garantir conseguinte ortogonalidade
modal e poder usar matrizes transpostas no lugar de matrizes inversas. Por fim, diagonaliza-se
[M**] e [S**] através de processo iterativo até que todos os termos fora das diagonais principais
das matrizes sejam de modulo inferior a determinada tolerancia &, conforme € apresentado no

fluxograma 2, ver figura 5.34.

Faz-se relevante explicitar a nomenclatura usada na matriz [/*] diagonalizada e a

decorrente matriz [J*]~1/? elevada a —1/2. Escrevendo-se:
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Jii 0 0
Ul=({0 Jz O (5.33 a)
0 0 Js3
-1
— 0 0
J11
1
U172 =[ 0 = 0 (5.33 b)
22
1
0 0 :
/33!

Figura 5.34: Fluxograma 2 do desacoplamento dinamico via Procedimento 1

inserie 1,151, 1C1, M1, [Ty (7} (0§} 0% "} ()

\ 4

12 Transformagdo: ¢z, dr, Y, Zg,[Re] — Ver eq. (5.34 @) ; [M] = [T),]". [M]. [Ty]

[M*] = [Re]".[M].[Re]; [J'] = [Rel.[]]. [Re]; [C*]= [Re].[C].[Re]
[$*] = [Re]".[S].[Re]; {V;'} = [Rel”.{V}}
{qo} = [Rel".{vy'}; {q0"'} = [Rel.{vg"'}; {Go} = [Rel™.{w}
!
22 Transformagio: []*]_1/2— Ver eq. (5.33b); [C“] = []*]_1/2 .[C*]. U*]—l/z
M) = [P IM L T2 1] = [P0 LT Y2 =115
[s*1 = 172 08*). U172 2; (v} = Ur )20 )
{ag} = U1 dqo'} {q0"}= U172 {qq"'} {Go} = U172 .{Go}

IDEM

Fluxograma 1
(ver figura 5.19)

Fonte: O Autor (2019)

Ressalta-se que em tal procedimento, com base em Anastassiadis (1987, p. 16 — 20) e em
Stamato (1978), a primeira transformacéo ocorre dos eixos centroidais (v¢¢ € z¢¢) para 0s eixos

principais de inércia a flex&o do pilar em formato de nucleo estrutural (yy € zg), vide fig. 5.35.
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Figura 5.35: Referencial principal de inércia a flexdo do pilar

A

Zce

»

YR YcG
Fonte: O Autor (2019)

€ expressa por.

2.1,

S oy 2N 5.34
) e
Ve = —J13-J1,2 +]2,3-];,1 (5.34 b)

JiaJ22 = (J12)
Zp = —J13-J2,2 +]2,3-];,2 (5.34 ¢)
Jia-J22 = (J1.2)
cos(pr) —sin(pr) zg
[Rel = |sin(@r)  cos(@r) s (634

0 0 1

O conjunto de EDP’s desacopladas no referencial generalizado, para a vibragdo nao

amortecida dos painéis — parede, é:

_a4qj(x, t) . 0%q;(x,t) . 9%q;(x, t)

o B mj—— = Vf‘;(x, t) (5.35)

onde: s; € 0 j — ésimo elemento da diagonal principal da matriz de rigidez a flexdo dos lintéis
[s], ja diagonalizada; m; € o j — ésimo elemento para a matriz de massa [m], ja diagonalizada;

e j € 0 j—ésimo modo de vibracao da estrutura.

a.2) Procedimento 2

Acrescenta-se o termo do amortecimento, [C]. {»"""'}, através da matriz de amortecimento
[C] constituida em termos proporcionais as demais matrizes. Assim, o sistema de EDP’s para a

vibracdo amortecida (viscosamente) dos painéis — parede € expresso por:

[M]. {vce} + [Cl-{veg} + [S]-{vea} — Ul {veg'} = {vf) (5-36)
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sendo: [C] = ay. [M] + as.[S] — a;. [J], e [C] é a matriz de amortecimento viscoso.

No presente desacoplamento, procedem-se trés transformacdes de referencial, onde: a
primeira transformacéo consiste em diagonalizar a matriz de massa [M] que é referenciada no
CG. Para tal diagonalizagdo utiliza-se a rotina de diagonalizacdo apresentada no item 2.6, o
método de Jacobi. J4, na segunda transformacdo,[m*] vira a matriz identidade [/] mediante
transformac&o quadratica por [m*]~1/2. Por fim, na terceira transformagcéo, aplica-se processo
em “loop” para a diagonalizacdo conjunta de [S**] e [J**] até certa tolerancia adotada, &g para
a rigidez dos linteis e ¢; para a rigidez do ndcleo. Na figura 5.36 é apresentado o fluxograma

N° 3, e o conjunto de EDP’s desacopladas, fica expresso por:

anj(x, t) c. asqj(x, t) s aij(x, t) . a4qj(x, t)
at? I Taxtar T axz T gxt

= Vf‘}(x, t) (5.36 a)

onde; a matriz [m*]~'/? é quadrada e de ordem 3, sendo formada por elementos n3o nulos

apenas na diagonal principal, sob a seguintes lei de formagéo: m; ; = 1 \/— parai =j.
' m;;

Figura 5.36: Fluxograma 3 do desacoplamento dindmico via Procedimento 2

Inserir [J1, [S], [C], [M], [Ty,] ,{lgc’], {vy'}, {vg""Ye {ip}

v

12 Transformagéo: {v} = [¢].{x}; com: [¢] — autoversores de [M]; [M] = [Ty,]7.[M].[T,]
m'] = [o]". [M].[0]; U"] = []". U [0]; [C*]= [o]".[C]. [o]
(51 = []". [S]. [0]; {Vf}=[]".{V}}
{05} = [Re]". {vg'}; (95"} = [Re]"-{vg"'}; {do} = [Re]"-{io}
22 Transformagéo: [m*]~1/2 -Ver equagio (£-36 a), [C™] =Im'1"¥2.[C"].Im*]~1/2
[M*] = [m']7V2.[M°]. [m*]72 = [1]5; ] = [m' T2 ") [m*] 7172
[$7] = [m* ]2 [$*]. [ ]2 {7} = [m ]2 {Vf'}
{ag} = M T {ag}: (g5} =[m'172.{qg"}; {Go} = [m"T.{do}

.

k=

|

IDEM
Fluxograma 1
(ver figura 5.19)

Fonte: O Autor (2019)
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5.4.2 Analise modal

Mediante resolugdo de EDP’s pelo metodo da superposicdo modal, escrevem-se as

EDO’s no espago x e no tempo t, para a vibragdo ndo amortecida, como:

Jju"" (x) = sp.u" (x) — wfoulx) =0 (5.37 a)
GO —wf.g) =0 (5.37 b)
onde: q(x,t) = u(x).g(t), e w; € 0 j — ésima frequéncia de vibracéo da estrutura.

A analise da equacédo (5.37 a) é realizada a fim de determinar os modos de vibracgao e

correlacionar s; e j;. Dai, aplica-se u(x) = e** e exprime-se a equagéo caracteristica, por:

jj.a*=sp.a? —wf =0 (5.38)

As raizes (a; € ay) da equagdo caracteristica, equacéo (5.38), em relagéo a j; e s;, séo

expressas, em termo da j — ésima frequéncia de vibracéo da estrutura, por:

5\ L 9,
a; = )+ L4+ 2 (5.39 a)

a=|s?P—a? ;  ji=(s.a®+w}).a™ (5.39b — ¢)
A solucdo dos deslocamentos u(x), fica expressa como:
u(x) = C;.sinh(ay.x) + C,. cosh(ay.x) + C5.sin(ay,. x) + C,. cos(a,. x) (5.40)

Adotando-se a adimensionalizacdo das raizes a para A, via 1, = a;.H e A, = a,.H,

correlaciona-se as raizes 4, e 4,, por:

22— )2 = 2 (5.41 a)

Sj
A=H. " (5.41b)
j

Realiza-se, agora, o produto entre as raizes adimensionais (4; e 4,), exprimindo as
frequéncias da estrutura por:

U] (5.42)

wj=a)j.ﬁ
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O pilar analisado possui base engastada, logo com deslocamento u(x = 0) = 0 nulo e
rotacdo u'(x = 0) = 0 também nula. No topo, a extremidade é livre e, em conseguinte o
momento fletor e o esforco cortante sdo nulos, aplicando-se assim: u”(x = H) =
u""(x = H) = 0. Ao utilizar tais condi¢cdes de contorno na equacdo (5.40), apds devida
adimensionalizacéo, conclui-se o sistema de equagdes lineares:

1 0 1 0 C1
0 A 0 Az C,

Aj.cosh(d)  23.sinh(1;) —A3.cos(A) —23.sin(A,) | ) Cs =0
[/ﬁ.sinh(/ll) 2B3.cosh(d))  A3.sin(4,) —lg-COS(AZ)J Cy

(5.43)

A solucdo ndo trivial do sistema apresentado na equacdo (5.43), conduz a equacdo

transcendental, vide eq. (5.19). Ressaltando, que o periodo e a frequéncia Sa0 expressos por:

L (5.44 )
= =T, . a
e T

1
a)j = F (544 b)

EXEMPLO 5.4: Procede-se semelhante ao exemplo 5.2, com excegéo apenas do pilar ser de
concreto armado com classe de resisténcia C — 90, ver NBR 6118 (ABNT, 2014). Nas figuras
5.37, 5.38 e 5.39 séo apresentados os resultados da analise modal, realizada no pilar em ndcleo
estrutural C e de concreto armado, sendo processada via software ANSYS Release 11.
Adotando-se por espessura das paredes finas t = 0,25 m. E no caso do nucleo contraventado
por lintéis, procede-se também a modelagem com concreto C — 40, vide figura 5.40. A malha
de EF no ANSYS foi implementada com qualidade de 99,80 %, isso para 145.058 nos e 20.400

EF no pilar ndo contraventado. Ja, no pilar com lintéis utilizou-se 149.478 nos e 20.880 EF.

Figura 5.37: Frequéncias de vibracao via modelagem no software ANSYS Release 11, para pilar

C em concreto armado (C —90) com secdo aberta de paredes finas

Tabular Data

Mode “7 Frequency [Hz] Mode ”7 Frequency [Hz] Mode H7 Frequency [Hz] Mode ![7 Frequency [Hz]
il 0,27562 6 |6, 3,0517 11|11, 6,7551 16 | 16, 10,625
12 |2, 0,34518 7 |Z 50778 12 |12, 73724 17 |17, 11,404
13 13 0,98284 8 |8, 5,5764 13 |13, 7,6748 18 | 18, 11,611
4 |4, 1,3088 9 (9 5,59 14 |14, 8,5662 19 |19, 11,65
5 |5, 2,1262 10 (10, 65,5318 15 (15, 8,8873 20 | 20, 12,652

Graph

20,

18

19 20

12,652

Fonte: O Autor (2019)
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Figura 5.38: Primeiros modos de vibragdo via modelagem no software ANSYS Release 11, para

pilar em C e concreto armado (C — 90) sem contraventamento por lintéis

0,00 25,00 50,00 (m) ®
[ Eaaa—— ES—
12,50 37,50

0,00039349
0 Min

@ )

(€3 )

Fonte: O Autor (2019)
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Figura 5.39: Pilar C contraventado por lintéis e em concreto C — 90: 1° modo de vibracado (a) em
torno dey, (b) ativando os lintéis quanto a flexdo, 2° modo (c) emy, (d) ativando os lintéis e (e) 3°
modo em X

0,00 35,00 70,00 (m) XA -
[ ee—— )|

17,50 52,50 (a)

Fonte: O Autor (2019)

Figura 5.40: Pilar C em de concreto C — 40, modos de vibragdo ativando os lintéis quanto a
flex@o: (a) 1° modo (w4 = 1,91493 rad/s), (b) 2° modo e (c) 3° modo via modelagem no ANSYS

0,00 35,00 70,00(rm)
17,50 52,50

Fonte: O Autor (2019)
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EXEMPLO 5.5: Procede-se a modelagem do pilar exposto no exemplo 5.2 através do software
ANSYS Release 11, adaptando a segéo transversal para a ocorréncia do duplo T com dupla
simetria. Bem como, utilizando-se como material o concreto armado de classe de resisténcia C
—90. Apresenta-se assim, na figura 5.29 (a) a geometria de tal pilar, onde os lintéis sdo impostos
com espessura e; de 25 cm, altura h; de 1,00 metro e ficam espagados (de eixo a eixo) da
distancia h de 5,00 metros. J4, nas figuras 5.41 e 5.42 sdo apresentados os primeiros modos de
vibragdo do pilar sem o contraventamento e com os travamentos promovidos pelos lintéis,
respectivamente. No pilar sem lintéis foram utilizados 167.498 nés e 23.600 EF para a
modelagem no ANSYS, obtendo-se qualidade de 99,65 % para a malha de EF. Ja, para o pilar
contraventado verificou-se 99,67 % de qualidade da malha, com a utilizacdo de 162.313 nés e

22.560 elementos finitos.

Figura 5.41: Modos de vibracéo do pilar de concreto armado em duplo T sem lintéis via
modelagem no ANSYS: (a) 1° modo a flexdo em torno do eixo X, (b) 1° modo com deformacéo a
flexdo em torno do eixo y, (c) 2° modo a flexdo em torno do eixo X, (d) 2° modo a flexdo em torno

do eixo y e (e) 3° modo a flexdo em torno do eixo y

| 0,00040056

0,00026704
0,00013352
0 Min

0,00013318
0 Min

6000
0,00 30,00 (m) V/b 5

15,00 45,00 @ (a) ®)

—{ 000030382

= 000026255 )

000013127 ' 0,0001309
0 Min 0Min

o 0,00026745
0,00013372
0 Min

@

Fonte: O Autor (2019)
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Figura 5.42: Modos de vibracdo do pilar de concreto armado em duplo T contraventamento por
lintéis via modelagem no ANSYS: (a) 1° modo com deformacao a flexdo em torno do eixo y, (b)
1° modo com deformacao a flexdo em torno do eixo x, (c) 2° modo a flexdo em torno do eixo y, (d)

2° modo a flex@o em torno do eixo x e (e) 3° modo a flexao no eixo x

X
0,00 35,00 70,00(m)
[ —EEEaaaa——  E—
17.50 52,50

Fonte: O Autor (2019)
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5.4.3 Amortecimento proporcional

Na anélise dindmica das estruturas usuais é conveniente modelar a rigidez dos elementos
que as compdem e agrupa-los em Unica matriz de rigidez [K] da estrutura, esta no referencial
global de coordenadas. Ja a pseudo-forca inercial que a estrutura apresenta ao se deslocar,
quando da solicitagdo dindmica, € computada pelo produto da matriz de massa [M] com o vetor
de aceleragbes {D} dos deslocamentos lineares e angulares. Por fim, modela-se o
amortecimento viscoso da estrutura por uma matriz de amortecimento [C] proporcional as
demais, onde tal proporcionalidade é determinada mediante analise modal e os decorrentes dois
primeiros modos de vibragdo. Assim, procede a exemplo de Blume (1968) e em Fleming e
Romualdi (1961).

Por outro lado, na anélise dos pilares com secédo transversal composta de paredes finas,
verificam-se duas matrizes de rigidez. A primeira matriz [J], refere-se a parcela da rigidez a
flexdo do referido pilar em si, e a segunda matriz [S], é relativa a rigidez na flex&o dos lintéis
que promovem o contraventamento do pilar ao longo da altura (e distribuidos na extremidade
aberta da secdo transversal). Ao ressaltar o equacionamento dos referidos painéis — parede
menciona-se Smith e Taranath (1972) e também Stamato e Mancini (1973), em tais analises
faz-se a imposicdo estdtica do carregamento. Porém, na andlise dindmica, que aqui sera
procedida, soma-se a parcela da pseudo — forca inercial da movimentacao e, assim, o sistema
de equacdes diferenciais parciais (EDP’s) fica constituido por trés matrizes. Para tanto, propde-
se o procedimento de proporcionalidade para montagem da matriz de amortecimento [C] dos
pilares de paredes finas. Para tal proposicéo, vale-se do desacoplamento do sistema de EDP’s

baseado em Rosman (1972) e as necessarias transformacdes de referencial via Gliick (1970).

Mediante o procedimento 2 de diagonalizagdo do sistema de EDP’s, apresentado na

equacdo (5.36 a), chega-se a:
¢i=ay.1+ass;—ay.j; (5.45)

Via analise da EDP apresentada na equacgdo (5.36 a) e conseguinte aplicacdo de u(x) =

e e g(t) = e®*, encontra-se como equagcao caracteristica da vibragéo livre amortecida:

w?+ (¢.a*).w+ (sj.a? —jj.a*) =0 (5.46)
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A resolucdo da equacdo caracteristica, equacdo (5.46), com a imposicao de
amortecimento critico e conseguinte utilizacdo da razdo de amortecimento ¢;, implica em cj0

igual a:

¢f = 2.¢j.w; (5.47)

onde; ¢; € arazdo de amortecimento do j-ésimo modo de vibragao. E a partir das equacoes (5.39
c) e (5.41 b) com a devida adimensionalizacdo das raizes (1; = a;.H e A, = a,. H), concluem-

se s; € jj, em termos da frequéncia w;, como:

2
W;j

=2

(5.48 a)

Por fim, aplicando-se as equacdes (5.47) e (5.48) na condigcdo expressa na equacdo

(5.45) e valendo-se da frequéncia w; ao invés de w;, pois almeja-se apenas estabelecer

proporgdes das matrizes [M], [/] e [S] que formam a matriz de amortecimento [C], conclui-se:

_ (241 OfS.Sj a].jj
- * PR *
Z.wj Z.wj Z.wj

S (5.49)

Impondo os trés primeiros modos de vibragdo j = {1, 2 e 3} na equagéo (5.49), monta-

se um sistema de equacdes algébricas, cuja solucao é:

_ 2. [w3.&1(2- 55— j3.52) + 03.6,(j3. 51 — j1.53) + 03.&5(j1. 52 — jp.51)]

ay = - - - 550a
M J1- (82 = 83) + jo. (53 — 51) + j3. (51 — 53) ( )
2.lw1. 613 —j2) + w5. &1 — j3) + w3.&3(, — )
s = [0)1.51(13 J2) ‘f)z 01— ja) . w3.§3(2 — j1)l (5.50 b)
J1- (52 = 83) + jo. (53 — 51) +j3. (51 — 53)
o = 2. [w]. &1 (55— 55) + 3.8, (51 — 53) + w3.&5(s, — 51)] (550 ¢)
/ J1- (52 = $3) + jo. (53— 51) +j3. (51 — 53) .
A proporcionalidade na montagem da matriz [C] fica expressa por:
ay
— 51
Hum ay +as + q (G-51a)
= 5.51b
‘us_aM+a5+a] (5:51b)
%
Uy = (5.51¢)

_0{M+a5+a]

[C] = p- [M] + pis. [ST + ). []] (5.51d)
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5.4.4 Posicionamento do centro de massa

Para a se¢do transversal de paredes finas, aberta e em concreto armado, faz-se necessaria

a determinacdo das coordenadas do centro de massa (CM), para tanto recorre-se a definicao:

n *
_ Dic1 Xem- My

Xeyy = —————— 5.52a
CM Z?=1mi ( )
n *
. i=1YcMm;- M
Yeu = el o ! (5.52b)
i=1 l

sendo: x¢y, € youm,— as coordenadas do centro de massa candnico i em relagao a um referencial

genérico x* e y*; m; —a massa do elemento canénico i; n — 0 nUmero de massas candnicas que
formam o ndcleo estrutural; e x/y, € v~y — as coordenadas do centro de massa da secdo
cMm € Yem

transversal em paredes finas (em relagéo ao referencial x* e y*). Vide figura 5.43.

Figura 5.43: Geometria da se¢do transversal e decomposi¢cao em massas de formato canénico

Y‘T y‘T vt
t

Xe =
. = | | oM, CMy ( )B}. b

.
Yem,

[Fessssussssssanes] tlz
(L e i MM
wel | Gy

Fonte: O Autor (2019)

Adotando-se a subdivisdo apresentada na figura 5.43, a massa especifica do concreto

como pcs = 2400 kg/m? e a massa especifica do aco como pg = 7860 kg/m?3, conclui-se:
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* * * * *
_ XCMl.ml - xCMZ.mz - XCM3.TI'L3 - XCM4'M4 + xCMS.MS

o = 5.53
Xem ml—mz_mg_M4+M5 ( a)

. )’EMl-ml - )’EMz-mz - )’EM3-m3 - )’2M4-M4 + YZ‘MS-MS
my —my, —ms — M, + Ms

Por fim, as distancias entre os centros de massa (CM) e o de gravidade (CG), séo
apresentadas na figura 5.44.

Figura 5.44: Posicionamento do CG e CM na segéo transversal

ARy N
Arcrce = Xem — Xce

Fonte: O Autor (2019)

e valem:
dyCM(;G = yéM - yZ'G (554 Cl)
Azemce = Xem — Xca (5.54b)

5.4.5 Transformacéao de referenciais

a) Transladar do centro de gravidade CG para o centro de torcdo D

Na figura 2.86 observa-se a compatibilizacdo das rotagdes ¢, (no centro de torcao) e

é¢¢ (no centro de gravidade) e dos deslocamentos wp, via w¢g, projetando-se as distancia d,, ..,

e d,.., paralelamente ao eixo z e ao eixo z, respectivamente. Do equilibrio de deslocamentos,

ja em formato matricial, tem-se:
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{vee} = [Tpl-{vp} (5.55 a)
Vce 1 0 _dZCGD Up

{wCG} =10 1 dy., .{wD} (5.55b)
bce 0 0 1 (03

b) Transladar do centro de tor¢éo D para a origem das coordenadas O

Analogamente ao procedido na letra “a” deste item e, considera-se a rotacao f entre o
referencial (yp,,zp., xp,) NO centro de torcdo e o referencial global (yg,zg,xg), conforme

observa-se na figura 5.45.

Figura 5.45: Transformacao do referencial no centro de tor¢do D para a origem O

Fonte: O Autor (2019)

chegando-se a:

Vp.cosP + wp.sinf = v; — dzDos'¢g (5.56 a)

—Vp.Sinf + wp.cosf = wg + dyDOS.q,')g (5.56b)

¢p = ¢q4 (5.56 ¢)

O equilibrio apresentado na eq. (5.56), fica matricialmente expresso por:

{vp} = [Ts]71. [T¢] . {v,} (5.57 a)
Up cosp sinp 01 [T 0 —dzp | (Y

{(DD} = |—sinf cosp O] .10 Ypos _{wg} (5.57 b)
¢p 0 0 1 0 0 1 ¢g

Combinam-se as eq.’s (5.55) e (5.57), translada-se diretamente do CG para O, assim:

{Ug} = [Ts]7 . [T [Tp] 7t {veed (5.58)
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5.5. EXEMPLOS DE APLICACAO

EXEMPLO 5.6: Nesta sexta aplicacdo sera analisado um pilar de ponte com altura total H =
90 m e com secdo transversal aberta formada por paredes finas e contraventado parcialmente
na altura por lintéis (espacados de eixo a eixo por h = 3 m). Na figura 5.46 apresenta-se a
configuracdo do pilar, para o qual procede-se a validacdo numérica das propriedades
geométricas, vide tabela 5.5, mediante a dissertacdo de Xavier (1987) e o artigo de Smith e

Taranath (1972). Utilizam-se as seguintes dimensdes na se¢do transversal: b, = b, = 5m,

a1y = Az, =1met=025m.

Tabela 5.5 — Validacdo numérica mediante Xavier (1987) e Smith e Taranath (1972)

Secdo do Resultados Diagrama Resultados

Pilar em O autor Xavier de Area O autor Xavier Smith e
Nucleo (2019) (1987) Setorial (2019) (1987) Taranath
Xcg (M) 25 25  |lwqll (Mm?® 6,638 6,625 -
Yee (M) 2,941 2,94  |lw,|l (m? 5,862 5875 -
I,(m%) 20,284 20,28 |lws|l (m?) 13,517 13525 -
I,(m*% 15,328 1534  I,(m®) 100,674 100,67 100,674
1,(m*) 8,854 8,85 d, (m) 2,655 2,65 2,655
(x107%) d, (m) 2,499 25 -

Fonte: O Autor (2019)

Figura 5.46: Pilar em nucleo (a) se¢cdo transversal e (b) diagrama de area setorial

Wy =

(by = ;). (by = begy)

bz w0 = d,. (by - bcgy) _J
BARRA (2 s 1 d:
(2) M2 oy (+)
— e ———m——————— ) — o 14
! < > | =/ i bz - d;
= : 51 % g > ‘// (a .(”)i .,y =(+)
=y g o \ Y AW
§ : L o b Gy = (b, +d,).a
o) o o) (-), D5 = Wy + \Dz z)- Q1y
ol XxACG 1 1 D
3 @ = z
: i N, we =wy— (b, +dy).ay,
8 | 2 R
Ko} : o \.\-. > % (+) d
| X \ PR . 5
9 T T d,‘* 1Y
3 dz . _ (+) fo—2—af)
UI._,Q.; y s w3 = dy. bCQY wy = (d; — bz)~b(‘gY
D ] b Y ¥
— /%7 (a)
1/ (b)

Fonte: O Autor (2019)
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O moédulo de elasticidade longitudinal utilizado foi de E = 20 x 10° kN/m?, o
coeficiente de poisson v = 0,25 e a carga € uniformemente distribuida na altura (q; =
9,418 kN /m). O braco de alavanca e, = z, = 4,714 m gera 0 momento de torcdo distribuido,
também uniformemente, valendo m = 44,393 kN.m/m. Vide na tabela 5.6 a validacdo dos

valores de rotacéo ¢ no topo do pilar.

Tabela 5.6 — Validacdo numérica da rotacéo no topo do pilar

q1=q1+p Rotacédo ¢ (rad)
(kN /m) O autor (2019) Xavier (1987)
Teoria de Teoria dos painéis Método de Stodola — Método das
flexo — torgéo — parede Vianello Diferencas Finitas
p=0KkN/m - 0,087 -0,137 - 0,097 - 0,097
(= 0,09) (= 0,1) (= 0,1) (= 0,1)

Fonte: O Autor (2019)

EXEMPLO 5.7: Nesta sétima andlise, adota-se a dissertagdo de Barbosa (1980) em dois
cenarios de carregamento: Cenario 1 — momento de torcédo distribuido m = 24922,5 b. ft/ft
e Cenario 2 — momento de tor¢cdo concentrado no topo M,y = 155765 Lb. ft. O pilar em
questdo serd modelado com 187,5 ft de altura e com travamentos por lintéisacada h = 12,5 ft.
Vide tabelas 5.7 e 5.8 constam os valores de rotacdo ¢ (rad) e bimomento B (Ib. ft?),
aplicando-se além da técnica do meio continuo, o0 método dos elementos finitos (ver item 3.6).

A geometria adotada é a apresentada na figura 5.46.

Tabela 5.7 — Validacdo numérica do cenario 1, quanto a rotacéo e o Bimomento, mediante

Barbosa (1980)
¢ (x1072 rad) B (x108 Ib. ft?)
O Autor Barbosa MEF O Autor Barbosa MEF
(2019) (1987) (2019) (1987)
Base (0 ft) 0,00000 0,000 0,000 -3,65416 -3,664 -3,653
4° Andar (50 ft) -0,16920 -0,172 -0,169  -1,72242 -1,709 -1,721
9° Andar (1125 ft) -0,65105 -0,650 -0,651  -0,33290 -0,360 -0,352
Topo (187,5 ft) -1,31907 -1,319 -1,320 0,00000 0,000 0,000

Fonte: O Autor (2019)

Tabela 5.8 — Validacao numérica do cenario 2, quanto a rotacéo e o bimomento, mediante

Barbosa (1980)
B (x107 Ib. ft?)
O Autor (2019) Barbosa (1987) MEF
Base (0 ft) -2,28068 -2,281 -2,281
4° Andar (50 ft) -1,56620 -1,563 -1,566
9° Andar (112,5 ft) -0,80862 -0,809 -0,809
Topo (187,5 ft) 0,00000 0,000 0,000

Fonte: O Autor (2019)
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E para tal exemplo utilizou-se: b, =b, =19 ft; a1y, = a, =45 ft;t =1ft; a =
0,944; I, = 4492,5 ft*; d, = 10,43 ft; 1, = 3,77629x10° ft®; I, = 22 ft*; v =

T g lb _ g b
0,15; E = 5,76x10 o e G =2504x10 o

EXEMPLO 5.8: Nesta oitava aplicacdo, procede-se a analise do pilar de ponte em nucleo,
formado por painéis — parede em formato de C, e com reforco nas extremidades livres mediante
abas de comprimento unitario. Na figura 5.47 (a), apresentam-se as dimensdes em planta do

referido pilar, enquanto na figura 5.47 (b) sdo apresentadas as condi¢des de contorno.

Figura 5.47: Pilar metalico: (a) geometria, (b) carregamentos e condi¢des de contorno

Parede (2 *
- arede (2) o BH 1P Bix=H)= Ry
el I
-g : c:'_.-) Mr,[r[-"f =H)= Myy
E i o™ 1‘ o By
o : i = l‘ = Ed
E _ I 1 ‘.‘-”:) l [{E]
. | z m
| ) o l,p
4 | ’ + |
H! b — 3.4 o
b emme=———=d] by b, =3.45m : 2 \l, @y=0
5 |—bez | parede(3) @y, = dgy = 1m @ =0
DI,,,_<= o ',-'-b' i t=0.15m c=0.725m !
, : : beg, = 1.52247 m ®
(@) begy = 1.725m

Fonte: O Autor (2019)

As propriedades mecénicas das chapas metalicas, ver NBR 8800 (ABNT, 2008),
empregadas na construgdo do referido pilar sdo: E =210x 10°kN/m?, G =
8,07692 x 10” kN/m? e v =0.3. Durante a analise definem-se trés cenarios de
carregamentos, sendo estes: o Cenario 1 - para carregamento uniformemente g; = 50 kN/m
distribuido ao longo da altura (H = 100 m) do pilar e nulidade nos demais carregamentos (g,
e @), bem como no momento de tor¢do no topo M, e bimomento By. No Cenario 2 é adotado
apenas para atuacdo da carga concentrada no topo (Q = 40 kN) e momento de tor¢ao no topo

sob valor M,y = Q.e, = 148.08592 kN.m.

Enquanto no Cenério 3 aplica-se o carregamento do cenario 1 com a atuagéo dos linteis,
promovendo o contraventamento ao longo da altura do pilar. Em suma, nos Cenarios 1 e 2 0
pilar € analisado como secdo aberta de paredes finas e no Cenario 3 o pilar é contraventado

parcialmente por lintéis (Ver figura 5.48).
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Figura 5.48: Cenarios de carregamento: (a) Cenario 1, (b) Cenério 2, (c) Cenéario 3
x [ x [ My q x [ % ;
Q1 Q ! !
— + — ﬁ) 7 ] [ T Q
| —> |
f‘ [ — |‘J %
| H . H —{ | H %
f — |
| L1 | > | / %
4 N .f —l | J\k/
, NP — |
| 2 |
II L | 1 S - 7¢
PN 7 NN 7 PIIIIAND z
/ b /
Y (b) y (©)

y/ (a)
Fonte: Adaptado de (SMITH; COULL, 1991)

E para decorrente validacdo numeérica, vale-se do artigo de Smith e Taranath (1972) e
da comparacdo entre as teorias apresentadas nos itens (2.7) e (2.8). Tanto quanto, o método dos
elementos finitos, com elementos de tamanho hyzr = 5 m (ver figura 3.19), e devidamente
formulados através das equagOes constitutivas da flexdo e da flexo — torcdo. O MEF aqui
empregado é apresentado na figura 5.49 e postulado em Smith e Coull (1991), Heidebrecht e

Swift (1971), e em Barbosa (1980), considerando nos lintéis a deformacao por corte.

Figura 5.49: Convencéao dos esforgos solicitantes dos elementos finitos na flexo — torcéo
tXx

MYz
. o=
‘Mtl le MZ/l"
e

Fonte: O Autor (2019)

Na tabela 5.9 sdo apresentadas as propriedades da secdo transversal e do diagrama de
ordenadas setoriais, e nas tabelas 5.10 e 5.11 sdo listados os valores de rotagédo ¢ e do

bimomento B para a base, meia altura e o topo do pilar (por cenario de carregamento).
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Tabela 5.9. Valida¢do numérica na se¢do transversal e no diagrama de ordenadas setoriais

Sec¢do do Pilar O autor Smith e Ordenadas O autor Smith e
em Ndcleo (2019) Taranath (1972) Setoriais (2019) Taranath (1972)
Xcg (M) 1,52247 --emee- lw || (M) 3,41058 e
Y (M) 1,72500  —-----e- llw, |l (m?) 254067  —eeeee-
I,(m*) 4,07020 4,07020 |lws|l (m?) 7,96782 -
Iy(m4) 3,38471 - 1,(m®) 14,27556 14,27556
I,(m*) 0,01389  -m-m--e- d, (m) 1,97715 1,97715
d, (m) 1,72422 1,72500

Fonte: O Autor (2019)

Tabela 5.10. Validacao numérica da rotacao ¢ e do bimomento B para o cenério 1

Rotacdog(x 1072 rad)

BimomentoB(x 10° kN.m?)

x O Autor (2019) Smith e O Autor (2019) Smith e
(m) flexo — paingéis —  Taranath flexo — painéis — MEF Taranath
torgéo parede (21972) torcdo parede (1972)
0 0 - 0 -5,63078 - -5,24329 -5,63078
50 -13,54697 @ ------ -13,54697 -0,20948 e e -0,20948
100 -32,29933  -34,46433  -32,29933 0 0 0 0

Fonte: O Autor (2019)

Tabela 5.11. Validacdo numérica da rotacéo ¢ e do bimomento B para os cenarios de

carregamentos 2 e 3

bimomento Rotacdo ¢(x 1073 rad) bimomento B(x 10* kN.m?)
B(x 103 kN.m?)

(m) O Autor (2019) O Autor (2019) Smith e O Autor (2019) Smith e

flexo — torcéo flexo — torcéo Taranath flexo — torgo MEF Taranath

(1972) (1972)
0 -7,34105 0 0 -7,96886  -8,58469 -7,96886
50 -2,43798 -4,14029 -4,14029 0,37608 ------- 0,37608
100 0 -5,73446 -5,73446 0 0 0

Fonte: O Autor (2019)

Valendo ressaltar que a validagdo numérica do Cenéario 1, mediante a teoria dos painéis
— parede, € realizada por imposicéo da distancia h de eixo a eixo dos lintéis igual a altura total
do pilar. Quanto as discrepancias de sinal no bimomento, obtido via artigo de Smith e Taranath
(1972), percebe-se que € mera discordancia de convencéo de sinais nas respectivas formulagdes.
No mais, observa-se a coeréncia da rotacdo nula na base (x = 0), para todas as teorias e

cenarios utilizados, tanto quanto bimomento nulo no topo do pilar (x = H = 100 m).

No presente exemplo sdo abordadas duas teorias de analise estrutural para os pilares de
pontes, sendo elas: a teoria da flexo — tor¢do (TFT) e a dos painéis — parede (TPP). Procede-se

também a aplicacdo numérica num pilar de ponte submetido a trés cenarios de carregamento,
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com a possibilidade ou ndo de contraventamento por lintéis ao longo da altura (esses espacados
relativamente da altura h). Na aplicacdo numérica é empregado o MEF com elementos finitos
de barra (grandes e de altura h) e formulados pelas equacdes constitutivas a flexdo e a flexo —
torcdo. O que valida de forma satisfatdria os resultados obtidos via correspondéncia de rotacao
¢ e de bimomento B por entre as teorias abordadas, bem como pela proximidade com o
elemento finito na ordem de 1%, (bimomento na base do pilar e Cenério 1 de carregamento,

ver pagina D34).

EXEMPLOS 5.9 e 5.10:

Nesta secdo serd analisada uma ponte com tabuleiro apoiado sobre trés pilares, cada um
com secéo transversal composta por paredes finas, vide Fig. 5.50. Tudo em conformidade com
as normas NBR 7188 (ABNT, 2013) e DIN 1055 (pr FR 2005-03). Nestes exemplos serdo
adotados pilares rotacionados entre si, isso a fim de exercitar a formulagdo desenvolvida,

mesmo que 0 comum em pontes seja 0 arranjo simétrico e repetido por blocos.

Figura 5.50: Ponte apoiada sobre trés pilares de paredes finas: (a) vista lateral, (b) configuracéo

em planta dos pilares

hy=1m

-

d; =4m

(a) H=100m

You, b,=b,=345m
Qyy = Az, = 1M t=025m

Fonte: O Autor (2019)
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0 material empregado é concreto armado de classe de resisténcia C — 40, de acordo com a NBR
6118 (ABNT, 2014). Portanto, o mddulo de elasticidade longitudinal vale E =
3,54175 x 107 kN/m?* e modulo transversal G = 1,47573 x 107 kN/m?, bem como
coeficiente de Poisson v = 0.20. Em funcéo dos estados de carregamento da ponte, faz-se a
analise de dois cenarios: no primeiro cenario a atuacdo unicamente do vento na estrutura (Ver

ex. 5.9) e no segundo cenério a atuacdo do trafego com enfoque na frenagem (ver ex. 5.10).

EXEMPLO 5.9: Nesta nona andlise, a ponte é submetida a acdo unicamente do vento lateral
sob o formato de trés carregamentos ao longo da altura do pilar, sendo esses: qg; = 20 kN /m,
q, =30kN/me Q = 10 kN. Vide figura 5.51 e apéndice D no item D.2.

Figura 5.51: Angulos entre os esforcos cortantes externos %’“Pl’ %ﬂpz’ %’“Ps € 0S eiX0s ypy,

definidos nos centros de torcao de cada um dos trés pilares

Vluc[ T
~

Zg

vou, § 0o, =180

Fonte: O Autor (2019)

_ 92z
2.H

qiy = q1.cos(6p) ; q2y = q2.cos(fp); Qy = Q.cos(6p);

q>
ﬂexty = _ﬁ-xz —q1y- X+ (Qy + ‘hy'H); Wextz =

x? — qiz-X + (Qz + ‘hz-H);

q1z = q1-5in(fp); Gz = q2.sin(fp) e Q, = Q.sin(fp).

O Esforgo cortante ao longo do tempo seré regido por uma fungéo harmonica de senos
Y, (t) = sin(@.t), com frequéncia & = 3 rad/s. Além disso, o sistema de EDP’s da equagdo

(5.36) fica expresso para os pilares e referenciado no centro de gravidade, como:

[ 0  7870,65 1506,08] {w} +| 0 99853 5459] {w}
387,78 1506,08 319,731 (¢ —22378 0 1748991 (p""'

0 0 693971 (v" 240146 0 —447571 (v'""
+{0 0 10919|.{w"{—| 0 199706 0 [ Jo"t={%}

0 0 —124271 (@” —44757 0 3362241 (@

(5.59)
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Os coeficientes de proporcionalidade das matrizes [M], [/] e [S], para compor a matriz

de amortecimento [C] visC0S0, SA0 expressos por:
ay = 0; ag = —3,80x10'% a; = —3,80x 10'%; py = 0; us = 0,5 p; = 0,5.

E o conjunto de EDP’s desacopladas é apresentado na equacao (5.36), como:

—qy"" (x,t) +0,03385. G (x, t) + 0,49519.41" (x, t) — 0,00962. ' (x, t) = 7}, (x,t) (5.60 a)
—q5" (x,t) + 0,04038.4,(x, ¢) — 0,13363. 45" (x, t) — 1,26726.q5 (x,t) = 7¢,(x,t)  (5.60 b)
—q4" (x,t) + 0,00003. G5 (x, t) + 0,50243. 45" (x, ) + 0,00498. g5 (x,t) = 72 (x, 1) (5.60 ¢)

No conjunto de EDP’s apresentado nas equagdes (5.60), procede-se a verificagdo do
primeiro modo de vibracdo (mobilizando os lintéis) através do cruzamento da equacao (5.41 b)

e da figura (5.40 a). Assim, com os parametros s; = —0,00962 e j; = —1 e mediante eq. (5.41

b) determina-se o parametro A = H. /Sj/j, =100 [m].\/_O'OO%Z/_1 = 9,81, utilizando a
j

tabela 5.3 com o valor imediatamente superior de A, logo: w;* = 2,54634 rad/s (para 1 =
10). Por fim, na figura (5.40 a) é apresentado o 1° modo de vibragdo de um Unico pilar em
formato de C e contraventado com lintéis sob a mesma distribuicdo desse exemplo, dai a

motivacdo de comparacdo, constatando-se uma aproximacao de 2,24 %. Utiliza-se o ajuste da
frequéncia determinada via TMC pelo coeficiente a = 1/1 3, cuja funcionalidade € explicada

na pagina 222 desta tese e baseada em Diziewolski (1964).

rad
O — 11,91493 — 1,95872| 2&
A(%) = | ANSYS. el 40 % = — 5100 % = 2,24 %
TMC 1,95872 —

Na tabela 5.12 séo apresentadas as funcoes do esforco cortante % no referencial inicial

0 . . .
e V¢ no referencial generalizado e ambas para os pilares P;, P, e P;.

Tabela 5.12 — Fungdes do esforgo cortante por pilar

Pilar P4 Pilar P, Pilar P5
Vf1 89,77 .x?% +11969,20 . x — 1196926.12 —48,87 .x% — 6515,63 .x + 651565,87 —147,66 .x%* — 19687,64 .x + 1968773,75
sz 120,17 .x2 4+ 16023,05 . x — 1602313.28 —141,82 .x% — 18908,90 . x + 1809899,76 26,41 .x% 4+ 3520,92 . x — 352093,65
st 332,19 .x2 + 44291,71 .x — 4429193.40 —180,83 .x2 — 24110,90 . x + 2411102,23 —546,40 .x? — 72853,59 . x + 7285395,07
V})l 0,18 .x2% + 24,43 .x — 2442.55 —0,10 .x2 — 13,30 .x + 1329,69 —0,30.x%2 — 40,17 .x + 401750,64
V(f)z 0,27 .x?% + 35,85 .x — 3585.47 —0,32.x% — 42,31 .x + 4231,26 0,06 .x? + 7,88 .x — 787,97
V?s 0,59 .x2 +78,21.x — 7820.51 —0,32.x% — 42,57 .x + 4257,22 —0,96 .x% — 128,64 .x + 12863,63

Fonte: O Autor (2019)
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Para o primeiro modo de vibragéo, a funcdo de deslocamento u(x) e g(t) no referencial

generalizado e no inicial, respectivamente, sdo expressas por:

u; (x) = 0,36275 .{cosh(0,01983 .x) — cos(0,01713 .x)
+ 0,92535.[—sinh(0,01983 .x) + 2,41421.sin(0,01713 .x)]}
g1(t) = 4,543 .10%°.5in(3,476 .1073.t) — 8,928 .108. sin(3.t)
u;(x) = 6,098.107* . {cosh(1,847 .1073 .x) — cos(7,65.107* .x)
+ 1,556 .1073. [—sinh(1,847 .1073 . x)
+ 4,048.1073.5in(7,65.107*.x)[}
g1(t) = 7,637 .107.5in(5,843.1076.t) — 1,501.10°. sin(3.t)

Em seguida, mediante retorno ao referencial inicial, escreve-se o vetor de deslocamentos

{vce} para 0o modo de maiores deformagdes, como:

{veeh = [Prl{q} = [Pr]. {u; (x). g, (1)}

onde: [@] = [Re]. [J"]72. [@4]. [2]. [@s]. (.). [@n-1] - [@n];
E por fim, exprime-se a funcgdo da rotacdo ¢ (x) como:
bec(x) = ug(x). g1(t) + uz (x). g2 (t) + uz(x). g3(t)

Devido a relacdo entre a rotagdo ¢ (x) e 0 bimomento B(x), oriunda da teoria de flexo

—torgéo (ver eq. 2.96 c), escreve-se:

d*[¢pce ()]

B(x) = E.l,.¢;;(x) = E.1,,. 17

Apos aplicar as transformacoes de referencial, tem-se o bimomento (na base e no topo)

parao CG, D e O,. Ver tabela 5.13, bem como a rotagdo na tabela 5.14.

Tabela 5.13 — Valores de bimomento por pilar no CG e D, e do conjunto de pilares em O

(x107) No Centro de Gravidade No Centro de Torcéao O
kN.m? Gy CG, CG3 Dy D, Ds
B(x = 0) -3,99422 217432 656993  -3,99422 217432 656993 Idem
B(x =50m)  -4,00790 218176 659242  -4,00790 2,18176 6,59242 PF_’I‘”
B(x = H) -4,04993 220464 666156 - 4,04993 220464 6,66156 -

Fonte: O Autor (2019)
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Tabela 5.14 — Valores de rotacdo por pilar no CG e do conjunto de pilares em Oy

rad No Centro de Gravidade O
CG, CG, CG3
Pd(x=0) 0 0 0 Idem por Pilar.
¢$(x =50m) - 57,42669 31,26114 94,45877
¢$(x =H) - 233,82458 127,28615 384,60827

Fonte: O Autor (2019)

EXEMPLO 5.10: Nesta décima andlise, tem-se o esforco de frenagem do trafego e conseguinte

carga lateral no topo. Assim, o esforco cortante € expresso sob a configuracdo mostrada na
figura 5.52 apresenta-se assim:

Figura 5.52: Angulos formados entre os esforgos cortantes externos ativados pela frenagem em

cada pilar e os eixos yp em cada um dos trés pilares

Yor, b, =b,=345m

G, =0y, =1m t=025m

ZpL,

Fonte: O Autor (2019)

Adotando-se a mesma frequéncia w = 3 rad/s para o esforco cortante, exprime-se na
tabela 5.15 os valores de bimomento no topo e na base.

Tabela 5.15 — Valores de bimomento para a atuagéo do esforco de frenagem dos veiculos

(x10%) No Centro de Gravidade No Centro de Torcéo

kN. mz CGl CGZ CG3 D]_ DZ D3
B(x =0) - 4,96373 2,70209 8,16464 -4,96373 2,70209 8,16464
B(x =50m) - 4,98075 2,71135 8,19264 - 4,98075 2,71135 8,19264
B(x = H) - 5,03302 2,73980 8,27860 - 5,03302 2,73980 8,27860

Fonte: O Autor (2019)

Sendo os carregamentos: q; = g, = 0 kN/m, Q = 10 kN, o bimomento no topo By =

10 kN.m? e 0 momento de torgdo nulo (M, = 0 kN.m) no topo.



Capitulo
6

DIMENSIONAMENTO DE SECOES DE PAREDES FINAS DE
CONCRETO ARMADO SUBMETIDAS AO BIMOMENTO

6.1. INTRODUCAO

Na analise estrutural e no dimensionamento de se¢des de paredes finas citam-se Pilarski

(1952) e Rekach (1978), porém limitando-se a abdbodas finas. Assim, para o dimensionamento

de secdes em formato de painéis — parede (ver figura 6.1) ndo se observa registro na literatura,

mediante equilibrio em bimomentos.

Figura 6.1: Resultantes R.q4,, Rcq, € Rsq para se¢ao com simetria nas abas e paredes

-

v .4

/ dAF
7N

P

Bcdl

M
CT.

Bcdz

o

:\’1 /;\

< X]
( c f(’) vl\ X \
/., .; ) b N

b7

o

Fonte: O Autor (2019)
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Procedendo-se neste capitulo, o dimensionamento mediante substituicdo do bimomento
por duas linhas neutras, paralelas entre si e com inclinagdo de 45°. Adota-se também, ndcleo
com abas e paredes simétricas quanto as dimensdes. O balan¢o de esforcos solicitantes para a
secdo transversal de paredes finas submetida ao bimomento é procedido via equilibrio entre
bimomentos resistentes no concreto comprimido (B.;), 0 bimomento na zona tracionada
(Bsgq™) e 0 bimomento solicitante de célculo. Tal equilibrio é processado através da convencéo
de sinais indicado na figura 6.2, sob consonancia ao apresentado na figura 6.1. A inclinagéo das
resultantes de compressao (R.q, € Rcq,), bem como da resultante de tracao R4 € 0s decorrentes
bimomentos gerados no centro de tor¢do (C.T. ou simplesmente D) sdo calculados mediante o

diagrama de ordenadas setoriais.

Figura 6.2: Bimomentos resistentes de calculo e solicitante de calculo sob a convencéo do

parafuso direito com observador direcionado ao infinito positivo do eixo axial do pilar

o~ comprimida

ST | T z
",Zf:: =< i Area
Fird \i\\ CG lw

Fonte: O Autor (2019)

O dimensionamento de painéis-parede € comumente procedido por trelicas espaciais de
Maorsch, conforme observa-se em Wight e MacGregor (2009, p. 300 — 327) e em Sanchez Filho
(1988). Ainda podendo-se dimensionar o nucleo estrutural via tensdo admissivel (que em
seperado do MEF vigorou até os anos 60 do século XX), porém segue vigente ao associar-se
com a andlise de tensbes por modelagem em elementos finitos. De quais procedimentos citam-
se os autores: Orler e Donini (2011, p. 89 — 91), Belluzzi (1973, v. 1, p. 217 — 220 e 244 — 246),
Belluzzi (1971, v. 2, p. 641 — 643) e Andrade e Vellasco (2016). Nesse capitulo propde-se o
método de projeto a solicitacdo pelo bimomento em secdo de painéis-parede com paredes e abas
simétricas (quanto as dimensdes), bem como gerar tabelas adimensionais. O equacionamento

da secdo transversal foi procedido com base em duas linhas neutras e mediante equilibrio das
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resultantes de tracdo e de compressdo. Além do mais, serdo analisadas duas configuracdes de
distribuicdo das armaduras: a primeira com As concentrado nas quinas tracionadas (ver figura
6.3 a) e a segunda com armadura distribuida ao longo da secdo transversal (com reforco nas
quinas com feixes de quatro bitolas distantes de A do CG da armadura em relagéo as interse¢des
das paredes), ver figura 6.3 b. Na Figura 6.4 € apresentado o posicionamento das duas linhas
neutras sob visdo tridimensional da se¢do em nucleo estrutural C, isso em funcéo do diagrama

de ordenadas setoriais principais wy..

Figura 6.3: Modelagem da armadura ao bimomento: (a) com armadura concentrada nas quinas

tracionadas e (b) armadura distribuida e reforco nas intersecoes das paredes

(L] o0 (1) [ 1] o0 (L]
O 0 L1 ) (1] [ 1] Ll ] o9
(1] 9

Y] L L

A, s A,
A L X
Uil 82 s e -
(@) A (b)

Fonte: O Autor (2019)

Figura 6.4: Posicionamento das linhas neutras na se¢do de paredes finas

A “s

Fonte: O Autor (2019)
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Na figura 6.5 é apresentado o diagrama de ordenadas setoriais principais w,. para a
secdo em formato de duplo T, indicando assim o posicionamento das linhas neutras LN; e LN,.
Devido a dupla simetria, inerente a se¢cdo em duplo T, verifica-se compresséo e tracdo por pares
opostos entre as abas de reforco. Lembrando que tal condicéo é valida para paredes e abas com

comprimentos simétricos.

Figura 6.5: Posicionamento das linhas neutras na secdo em duplo T

Wy @s

Compressao

Tragao
w7 ,r"

W10

A

\Wg Aol Wy
7‘-“ ! 1o w6>

w3 =0 Compressao

Fonte: O Autor (2019)

A distribuicdo das armaduras para a configuracdo de secdo em duplo T serd a
apresentada na figura 6.6, sendo indicada apenas o posicionamento da armadura calculada.
Porém, além desta armadura deve-se impor também as armaduras construtivas, ou seja, colocar

armaduras longitudinais no trecho de diagrama w,. nulo (painel — parede central).

Figura 6.6: Distribuicdo da armadura calculada para a se¢cdo em duplo T

t- c—
ST

C
‘/2ﬁ

‘ oo
| | Py

Fonte: O Autor (2019)



285
Dimensionamento em Concreto Armado de Paredes Finas ao Bimomento

A consideracdo de pilares com secdo transversal de paredes finas € realizada mediante
imposicdo da carga compressiva P no topo e o carregamento distribuido p devido ao peso —
proprio. Desta forma, mediante definicbes apresentada em Vlassov (1962, p. 159 e p. 181)
acrescenta-se o efeito de bimomento produzido pelas cargas compressivas atraves das
ordenadas setoriais nos respectivos pontos de contato. Quanto ao peso — préprio do pilar pode-
se promover sua concentracdo na base e computar tal efeito em bimomento, mediante diagrama
wyp.. A carga reativa do tabuleiro da ponte € transmitida ao centro de carga da se¢éo transversal
do pilar, via aparelho de apoio (Neoprene para pequenas pontes e esféricos ou cilindricos para
pontes de grande porte), sobre laje de transicdo quando do lancamento de pilares de paredes

delgadas. Tal configuracéo € apresentada na figura 6.7.

Figura 6.7: Aplicacdo da carga reativa P no topo do pilar: (a) corte, (b) configuragdo dos centros

geomeétricos para se¢cdo em nucleo C e (c) posicionamento da carga P na se¢cdo em duplo T
I

Tabuleiro

Aparelho de
apoio cilindrico
| Laje de Transicao l
CG CC CC =G
o— = b o
Pilar com P Zcc EC

paredes delgadas |-| |_| |—|

Yec w (b) YecV ©
(@)

Fonte: O Autor (2019)

A fim de computar o efeito em bimomento da carga reativa P no topo do pilar em
formato de nucleo C, ver figura 6.7 b, procede-se o translade de tal carregamento do centro de
carga (CC) para o centro de gravidade (CG) da sec¢éo transversal em questdo. Bem como,
procede-se a transformacédo em sistema equivalente com cargas verticais aplicadas ao longo da

paredes finas. Vide figura 6.8.
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Figura 6.8: Aplicacdo da carga P no topo do nucleo C: (a) translade do CC para o CG e (b)
sistema equivalente de cargas verticais ao longo das paredes delgadas
b

1)/2
“ p :
M, ¢ /(1
ICG / »
b b ‘d,,/ cc Zcc = Zcg
Yeg” Ycc /0
dz.» b — dx > (b)

(a) /

yee
Fonte: O Autor (2019)

A quantificagdo das cargas p,(f) e p,(;“s) é realizada mediante balanco de forcas verticais

e de momento de flexdo em torno do eixo centroidal y, assim:

| MOBNCD
pP.b+pt 2.0+ 2, S —b| =P (6.1)

—|pP-b|.d, + |p$. 2.0 b - )

+2. {[p,(f‘s). b]. (g - dz) +

&y (4;5)
— b b
%-b]-(“dz)}: P.(3- )

em formato matricial, agrupam-se as eq.’s (6.1) e (6.2), como:

2.b 2.a+b &) P
[ b.d +b<b 4,) 2.a d)+2b<b d) b(b d)]-{%-s)}:{p (b d)}
dz+b.(3—d; .a. , b.(5-d; 37 4)] by 5~z

(6.3a)
ao resolver o sistema apresentado na eg. (6.3 a), conlcui-se:
P (6.a+b)
w_
Pu = 2b (10.a+3.b) (6.3b)
2.P
(6.3¢)

(&5 _
Pu (10.a + 3.b)
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A contribuicdo em bimomento para a carga P do topo do pilar é quantificada via

cruzamento das figuras 2.101 e 6.8 (b), obtendo-se:

(w1 + w3) 5 [(w2 + ws) + (—ws — we)
B = . = P [CTED 5 i : y

(€Y) 134;5)
——— . [(—2.01 + wy) + 2. w3 —wy)] —

J(—wg + 2. wy) + (w3 — 2. w,4)]

(6.4)
onde: By é o bimomento no topo do pilar em nicleo C;

p,(f) é a carga vertical distribuida na parede (1);

p,(f‘s) é a carga vertical distribuida nas paredes (4) e (5) e

—b.(8.a® — 6.a.b?> — 3.b3)
8.a3—12.a%2.b+6.a.b2+7.b3 4+ 2.b. t%

d, =

Por fim, para o pilar em formato de duplo T (figura 6.7 c) verifica-se bimomento nulo
no topo (By = 0), isso devido ao diagrama w,. (ver figura 6.5) para a respectiva segdo ter
ordenada nula no ponto de aplicacéo da carga P. J4, para o caso da carga distribuida p, computa-
se 0 incremento de bimomento na base AB,, semelhante ao procedido na figura 6.8 (b), porém

com nulidade do momento de translade M,,. Esse ultimo sistema € apresentado na figura 6.9.

Figura 6.9: Sistema equivalente de cargas verticais nas paredes finas para a atuacao do peso —

préprio do pilar na secédo da base

g

Fonte: O Autor (2019)

o0 equilibrio da secdo apresentada na figura 6.9 é expresso sob a forma matricial como:

2.b 2.a+b *(1) H
[bd b(P_a) 2am—arrzn(P—a)-b(_q '{%-5)}:{1)' J
—b. z+ (5— Z) .a.( - Z)+ . (E— z>_ (5— Z) pH, 0

(6.5 a)
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resolvendo a eq. (6.5 a) tem-se as cargas verticais, por parede delgada, definidas por:

o _ 202 +6.ab-3.d,(2.atDb)] .
Pu =P 1 b2 (10.a + 3.b) (6.5 D)
*(4;5) __ _ (b - 6'dZ)

P = "P-H 0.0+ 3.b) (6:5¢)

e por ultimo, o incremento de bimomento na base, em decorréncia do peso-préprio do pilar, é

EXpresso por:

ABy = —P*. wy,
_ s (w1 + ws3) «5) (@2 + ws) + (—wy — we)
=—py . |——=——b|—py; . .a
2 2
() «(4:5)
_Pu__ H

J(=2 .01 + wy) + (2. w3 — wy)] — J(—wy + 2.0,) + (w3 — 2.w,)]

6

(6.6)

A configuracéo das cargas atuantes no pilar de ponte com se¢éo transversal em paredes
finas é apresentada na figura 6.10, explicitando-se 0os bimomentos no topo By e na base B,,. Por
ultimo, as cargas laterais q4, g, € Q séo oriundas da ac¢do do vento e as cargas verticais P e p
sdo devidas a reacdo do tabuleiro (ja considerada a acdo do vento sobre tal) e do peso — préprio,

respectivamente.

Figura 6.10: Cargas atuantes no pilar de ponte em paredes finas com acGes verticais e acdo

lateral do vento
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=
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35
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Fonte: O Autor (2019)
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6.2. PILAR EM FORMATO DE C COM REFORCO DE ABAS

6.2.1. Equacionamento ao bimomento utilizando a armadura concentrada nas

guinas tracionadas

a) Posicionamento das linhas neutras

Procede-se a correlacdo entre as distancias (d4r, dgr, dcg € dpg) com as profundidades
X, € x, das linhas neutras LN; e LN, (respectivamente), em consonancia com as figuras 6.1 e
6.4. Na figura 6.11 é apresentado o diagrama de area setorial principal w,, evidenciando-se
nulidade nas ordenadas dos pontos A, B, C e D (posicionamento das linhas neutras). Na figura

6.11 (b) é apresentado o tracado positivo de w,., a fim de facilitar o equacionamento
matematico.

Figura 6.11: Ordenadas e cotas no diagrama de &rea setorial principal: (a) notagédo da flexo -

torcéo e (b) definidas para o dimensionamento ao bimomento

d 1z
- w G|
pcg .
2 W K
o 773 AL/
~\\\ = i/ ’ /
1%
4 /B \
f ./ LN, ) Y
Zlpa Ph
dAF ?'// \
(/AwA Ws
’{/// £ c M
\\ (l)p( f = A _(1)() N
/ y
" | V7 4
(+) ) / " Amc .
"L’i D
| » - ‘( \
I \ ’ ’ ‘
™ (+) "L"\w / A - N\
4 w3 (+) : wp” _—
_/’-
(a) a)pCD (b)
i dDE I

Fonte: O Autor (2019)
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Mediante imposicédo da dupla simetria no calculo do diagrama w,,. (ver figura 2.101),

exprimem-se as ordenadas setoriais como:

b%.(8.a% — 6.a.b? — 3.b3)

— . = — 6.7
1= s = T 8 a® —12.a%.b+ 6.a.b% + 7.b% + 2.b.t2) (6.7 a)
o b%.(8.a%® —6.a.b?* + 2.b3 + b.t?) 67 h
2= O T g s _12.a2.b+6.a.b% + 7.b% + 2.b. 2 (6.7b)
b%.(4.a® —6.a.b*> —10.a.b® — 2.a.t? — 2.b3 — b.t?)
Ws = Wg = — (6.7 ¢)

8.a3 —12.a%2.b+6.a.b%>+ 7.b3 + 2.b.t2

As ordenadas setoriais nos pontos A, B, C e D do diagrama w,, (vide figura 6.11 b) sdo

expressas, em termos das equacgdes (6.7), como:

Wpe, = (Z\Eﬂ) X1 — Wq (6.8a)

Wpey = l\/_ (0, + wZ)l Xy — (6.8 D)

Wpe, = l\/i %%S)l Xy — lwz + %%S).UCE (6.8¢)

Wpep = l\/i (w%wz)l Xy — Wy (6.84d)
0 ;sedep < a

com: Nce = {dCE —a;sedcg>a

As areas comprimidas no diagrama wp. (4w s Awg: Awe € Awy), ilustradas na figura

6.11 (b), séo expressas por:

(_wl + prA)

Ay, =542 (6.9 @)
oy = 20 4, (6:9b)
Ay, = (_wzz—w’“‘f) dep (6.9 ¢)
Ay = (o, ; “ep), DE (6.9 d)

Aplicam-se as equacdes (6.8) em (6.9), ressaltando que na area 4, sera admitido como

méaximo valor de d.; 0 comprimento a da aba. Resulta entdo as areas A,,, expressas por:
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2.
Ay, = (—w1.V2).x + :1.x2 (6.10 a)
+
Ao, = (—01.VZ).x + G"lT“’Z).xZ (6.10 b)
+
Ay, = —w. (6.10 ¢)
((1)1 + (1)2) 2
Ay, = (0, V2).x + — ¥ (6.10 d)

Conforme definicdo de bimomento, via carregamento distribuido, apresentado por
Vlassov (1962), escreve-se a resultante de compressao para toda a secdo transversal (vide figura

6.1), como:
BCd = Bcdz - BCd1 = O-Cd't'AZ) (611)

onde: a4 € a tensdo de compresséo no concreto; A, € a area do diagrama w,,. em contato com
a tensdo de compressdo (A, = —Ay,, — Awy T Aw. T+ Awp) A, € a area diminuida de A,,;

A=A A, y1=Ax1 =y, =Ax =Ax; € O.q =V A feq-

Por fim, a profundidade da linha neutra x é obtida via equilibrio de bimomento na se¢éo

transversal, ficando a eq. (6.11) reescrita como:
kBl.x2+sz.x+kB3 =O (612)

sendo: kg, = —y. A ac. t.b7 . fog. (2.01); kg, = V. A ac.t. frq. [V2. (2. 01 — w5)] €

(wy + ws)
kg, = Bsqg —v. A ac.t. feq [ZT.CL .

A solucdo da equacéo de 2° grau (eq. 6.12) expressa a profundidade da linha neutra x, e

para tal, exprime-se:

2
—kg, — \/(sz) — 4.kp, . kp,
a 2.kp,

X (6.12 a)

Procede-se também a adimensionalizacdo da equacdo (6.12) através do divisor comum
(wq.t2. f.4), de forma analoga a adimensionalizagdo realizada na resolucdo classica da flexdo

simples, ficando reescrita como:

kﬁl.f_z + k‘325_+ kﬁ3 =0 (613)
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onde: £ é a profundidade relativa da linha neutra; B4 € 0 bimomento adimensional solicitante

de calculo; d € o brago de alavanca entre as resultantes R4, € R, (idem para R4, € Rgg). COM:

kBl kBZ k33 ﬁd — BSd
$ wl.tz.fcd

; =——— kg, =—7 e
wl-fcd & wl-t-fcd & wl-tz-fcd

- X
g:z; kg, =

2
_ whg, - \/(kﬁz) — 4 kp, - kg,
e por solucdo da eq. (6.13), expressa-se: & = o
By

(6.13 @)

b) Armadura resistente ao bimomento

Considerando a armadura A aplicada de forma equidistante nas quinas mais
tracionadas, na figura 6.12 é posicionado o centro de gravidade da armadura CG*. 1sso mediante

calculo de centroide de area bruta de concreto compreendida entre as linhas neutras.

Figura 6.12: Posicionamento da resultante de tracdo Ryq4

-\!' 1 / Q’l = 452 A
i3 T s / 5

B A o|® -
768 7| |
LN, / @
/_/ﬁik 5, M= 450

//
A / c6*
/ 7 R LN,

Ay, =0, = Qa3

D

Fonte: O Autor (2019)

Resultando nas coordenadas (x;s, Yog) do CG*, para a armadura tracionada, sob as

seguintes expressoes:

. ’ xZiGl..AL-
xCG = z A (614‘ a)
i=1 !
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7k
\ Yee;-Aj
Yee :Z 7y (6.14 b)
=1
e Xig, = Vig, = 3-6i¥ie, = (b= V2.x) +3ixiq, = (b= V2.x) + 3.6 xe6, = Yo, = 5
. _b+t—v2x _  (b—+V2.x) . t
Yoo, =5 xca4:#+t; xCGSZ‘/E-X—g; y665:b+§;
. b+t+V2.x | . t 1 " .2
X'C66 :—2 ;yCGG :xCG7 :b+§; yCG7 :b_E_(a_E); Al :AZ :AS :7;

Az=As=(b+t—V2x)t; Ay=(b—V2.x).t; 4, =t.<a—%).

Na figura 6.13 séo destacadas as proje¢des da resultante R, nos eixos z e y, bem como

as ordenadas setoriais w,, € w,, No diagrama principal w;.

Figura 6.13: Ordenadas setoriais do diagrama w,,. S0b atuagéo da resultante R,

* A
b 2 ‘T‘ y
_(L)l R S
B, /‘f :
_@ [ 4¥| 2
dy’
y __I____(ul RSdZ.CG*
| ! d
18 Rgq de\
2 I'd v
| X
I S Be— —
w3 B
: | w‘Sz
| g, e =] —g
I Si= |
| &
I d.r |
Al Al
N N

Fonte: O Autor (2019)

O bimomento By, gerado pela tracdo Ry, € definido mediante definicdo de Vlassov
(1962), por:

s = Rsa- [cos(a3).a)‘<51 + sen(a3) .wéz] (6.15)
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V2
sendo: cos(az) = sen(az) = -
2.0 (, (wytwy) ¢,
0, == (Ve —3) o o=~ (e ) o

Através do equilibrio em bimomento (ver figura 6.2) associado a equacdo (6.15),
exprime-se o balanco de tal esforgo solicitante, como:

;d —Bcg =Bsqa ~  Rsq-k™ — Bcq = Bgg (6.16)
V2
com: k* = - (a)51 + a)éz) e B4 apresentado na eq. (6.11).

A area de aco A, € determinada via imposicdo da tensdo de escoamento do aco f,4,

ficando expressa por:

Bsd
A. = 6.17
S k**'fyd ( )
w,. V2 t W, + w t
com: k" =~ =} -(yfc‘z‘b)‘[(lz.—zaﬁ-ﬁ-(xéc‘z>l

Por fim, por questdes de ductilidade, limita-se a profundidade relativa da linha neutra &

para o limite entre os dominios de deformacéo 3 e 4. Resultando em &;;,,, expressa por:

g
Elim = ———— (6.18 a)
Eyd + &cu

e 0 bimomento adimensional limite B, sera obtida mediante kg, (vereq.’s6.12 ¢ 6.13),

valendo:

K821 = ~ Ky G1im)* = ke, Stim (6.18 b)

At [(wy+
r-daet | wS).al (6.18 ¢)

ﬁSdlim = kﬁ3lim + t2 2.w,

onde: &4 vale 2,07 %, para aco CA — 50 e &, vale 3,5 %, para concretos do grupo | de

resisténcia, conforme observa-se nas normas: NBR 8953 (ABNT, 2015) e NBR 6118 (ABNT,
2014).
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c) Marcha de célculo N° 4

Para a secdo transversal aberta em formato de C e composta por paredes finas, sob a
distribuicdo das armaduras apresentada na figura 6.3 (a), postula-se a seguinte marcha de

calculo:
12 Etapa: Dados de entrada
b(m); a(m); t(m); Byy(kN.m?); w;(m?); w,(m?); ws(m?); f.q(kN/cm?); &q,(%0);

fea(kN/cm?); foa(kN/cm?); €,4(%o); ¥ =09; A ag; admitir o brago "d (m)";

0,707.b
>

sugestdo: d =

2% Etapa: Pardmetros

Bsd(kN.mZ) . _ gcu(%O)
o1 (). 2 (cm)? fogUeNjemz)’ S AP = e e e (%0)

Bsa(ADM) =

(2.w,(m?))
b (m)

kN.m? )
k31< = ) = —y.d.a.t (m). feq(kN/cm?).

cm?

3
sz <kNm ) —v. 1 a,.t (m)de(kN/sz) [\/E (2 wq — wz)(mz)]

2
ks, <kN'm4) = Boy — y. A . t (). fog(KN /cm?). [(wz * “;5)(7” ).a(m)l

cm?
kBl (kN. mz/cmz) sz (kN. m3/cm2)

kg, (ADM) = i kg, (ADM) = ;
w1 (M?). feq (Ck%) w1 (m?).t (m). fea (Ck%)
k33 (kN m4/cm2)
kﬁ3 (ADM) = w1 (m?). t2(m)2. de(kN/sz) ;

ﬁsdlim(ADM) = kﬁ3llm(ADM) +

v Ada, [(wy + ws)(m?) )
ttm) | 2.w,(m?)

3% Etapa: Dimensionamento

a) Se Bsq > Psay,: aUmentar a dimensdo b do pilar em nucleo C.
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b) Se Bsd = ﬁsdlim:

kg, (RN J (k,)? (N-? /sz)z — kg, (RN ) e (RNomYy )
2.kg, (kN. mZ/CmZ)

x(m) =

ou entdo: x;g; Yeg Ver equacdo (6.14)

2 \/E 2
ey = =22 (3 5= ) () - [ 5D VE (xtg — ) o)

B Bgg (kN.m?)
As(T) = T2 o e o)

Observacéo: para a notagdo adimensional, utiliza-se:

2
—kﬁz—\/(kﬁz) — dudeg ey,

§(4DM) = 2.k,

; x(m) = E(ADM). t(m)

6.2.2. Equacionamento ao bimomento com armadura distribuida

a) Posicionamento das linhas neutras

Através do diagrama de ordenadas principal w,., apresentado nas figuras 6.4 e 6.11,
pode-se determinar 0 bimomento gerado por cada uma das fontes de tensdo, sendo elas: as
resultantes da area de concreto comprimido (R4, € Rcq,), as resultantes nas armaduras
comprimidas (R., € R.,), € as resultantes nas armaduras tracionadas (R;,, R, € Ry,). Ver na
figura 6.1 a obtencdo das resultantes da area comprimida do concreto e processada pela
transformacdo do diagrama parébola — retdngulo de tensdo x deformagdo do concreto pelo
diagrama triangular, ver item 17.2.2 (e) da NBR 6118 (ABNT, 2014). Ja na figura 6.14 €
exposto o posicionamento das resultantes supracitadas com a configuracdo apresentada na
figura 6.3 (b).
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Figura 6.14: Resultantes para a se¢é@o de paredes finas com armadura distribuida

t
o=
xV2 -2

N | o+

A

o

Fonte: O Autor (2019)

Na equacado (6.11) ja é apresentada a formulacdo do bimomento de compresséo B.4, O
qual ja engloba a acdo das resultantes de compressao no concreto (expressas por By, € Bcg,).
Dai, somando-se a atuacdo das ordenadas setoriais do conjunto de resultantes nas armaduras
comprimidas (ver figura 6.15), computa-se o efeito total de bimomento de compresséo para

toda a secéo transversal.
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Figura 6.15: Ordenadas setoriais sob a acdo das resultantes nas armaduras comprimidas

B
2
_>
':‘A_LP//—
5 ] K
E v 5 (Uz
FIRPE
b?n _(‘)l | ’Sﬂ ' éﬁ R, .cos(a)
o T
. B
\ 2 oo, o0 oo © o Go
~ Wy ( X J 20 o0 (| X J [ X J
< 1 Ol v
——————— 5
<N (UAZ viga R, .cos(a)
oo~ -~ 33
&o o0
Ws

([ X J
e
RCz.sen(a)
.\
ew
3
A
2

')
o0
'Y
o0
o0
o0
b.\
(X
L X X
O AT
A S
N
S
b A,
——»

w3

T T
= : : R.,.cos(a)
g ol g -
8 g1 3 4 )
T
W3 A«
A
2

Fonte: O Autor (2019)

resultando no bimomento B.4, com a contribui¢do da eq. (6.11) e dos bimomento oriundos da
figura 6.15, expresso por:

V2
Boa = V- A0t fea- (Awg + Aup = Awy = Awy) + Rep = (e, + wp, — wy, — wp,)
2
+ RCZ'?' ((l)cz + (l)Dz - O)Az - (UBZ) (619)

onde: wy, = (2.\/5. %) A —wy (6.19 a)
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1 \/E (wq _li; w3)]

we = \/ELZ(‘)’S)

'Al _(1)1
.Al_wZ
A — w,

12

A

.__(1)1
A
27
A

wp, = \/E (wl + ‘Uz)'
L | b ]
_ w1y A
CUAZ —_ (2\/57) E - 0)1
_ + i
wg, = \/E (wg + wy)
z | b
we, = vz @2 Z@s))
| a |
] n }
wp, = NG (wq - w3)
. A J— b
com: = 4

(6.19 b)

(6.19 ¢)

(6.19 d)

(6.19 )

(6.19 f)

(6.19 9)

(6.19 h)

(6.1910)

semelhante as substituicdes realizadas na equacgdo (6.11) e empregando-se as eq.’s (6.19 a) a

(6.19 1) na equacéo (6.19), reescreve-se 0 bimomento de compresséo B.; COMO:

Beq = k¢ + ke, Re, + ke, Re,

onde: k. = y. A ac.t. feq. (ch +A,, —Aw, — AwB) = kBl.x2 + kp,.x + kg,

(2. 001)

kg, = —y.Ad.ac.t. feq-

b

kg, = y.Aac.t. feq. [V2. (2.0, — w))]

k§3 = —VA dc. t'de'

(w, + ws)
—a

V2

kcl == 7'(('06'1 + le - wAl - (L)Bl)
V2

ke, = - (wc2 + wp, —wyu, — sz)

(6.20)

(6.20 @)

(6.20 b)

(6.20 ¢)

(6.20 d)

(6.20 )

(6.20 f)
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b) Armadura resistente ao bimomento

Na figura 6.16 ¢ apresentada a atuacdo das resultantes nas armaduras tracionadas, bem

como ilustradas as correspondentes ordenadas setoriais no diagrama w,..

Figura 6.16: Ordenadas setoriais sob a a¢ao das resultantes nas armaduras tracionadas

W,
? X )
L 20 X J
. ( X
Kol N\ ) ) pd
it 3 & 5 Ws
™ | < . 5 3 y
v ? _________ \é : Rga.ms(a‘///// ,/" /
v = e ¥ i B,y cos(a) / ¢
’ 3 78 — We
{ 2 ’ ,/E ;Rs; cos(a)
y + |~ 3 2
“T|lee 57 X -
< o0 g e
*9 06 o5/ e o0
W, e (X oe V o0 20
ol g: [ : ‘5\‘: Q; : —w
P SIT R T e
W3 b
M et
-8
2 |
> b
ke 2
(b +4)
2
3
< —b
4
Fonte: O Autor (2019)
Escreve-se as ordenadas setoriais, nos pontos destacados na figura 6.16, como:
wq\ b
Was, = (2"5' 7) e (6.21 a)
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wa,, = (2.V2 %) s ; B _ W, (6.21b)
_ N wq\ b
Ay = (2- 2-7)-5— w1 (6.21¢)
NECEY
A, =(2-\/§-%) ( er o, (6.21 d)
3
q = (Z.ﬁ.%).zb—wl (6.21¢)
3
Wp,, = [ﬁ@] 'Zb - W, (6.21 )

wp, = [\/i (@, Z wZ)] . (b : A) — W, (6.21 g)
b

wp,, = [\/E. ((‘)1:—(‘)2)] TR (6.21 h)

1 2 b _A .

b, =[x/§.(w Z‘”)].( . ) _ o, (6.210)

wp, = [\/E.(““Z—w”].%— w, (6.21 )

Por fim, o bimomento gerado pelas resultantes nas armaduras tracionadas B;, fica

eXpresso por:

vq = ko, Rs, + ks, Rs, + k. Rg, (6.22)
ondes ki, = L [(n, + w0, ) +3- (wh, + 5, (6220)
o =2 (@, + 0,,) + (0, +05,)] (6225)
ks, = ? (wa,, + @) (6.2 ¢)

Mediante equilibrio em bimomentos, baseado na figura 6.2 e sob nota¢do do parafuso

direito, escreve-se:
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Bca = Bsqg — Bsa (6.23)

Ao aplicar as equagdes (6.20) e (6.22) na equacgéo (6.23), escreve-se a equacao iterativa

entre a profundidade x das linhas neutras e a area A por bitola utilizada nos feixes, como:

_2yA ag'de' D1 2y V2.y. e fogt. (2.0 — wy). X — r-A aC'Zde' La (wy + ws)
+ Bgq
= Ay- fya- lwl. (55 —30.v2) + w,. (19 — 6.v/2) + @. (w5 — wy)
+%.wll (6.24)

A adimensionalizacdo da equacdo (6.24) é realizada através do divisor comum

(w,.t2. f,4), ficando a equacdo iterativa e adimensional, expressa por:

_ - v.Ada
~Q2y.hacny). & + V2. dae. 2 =n)].-§ = =14 (11 + 12) + Boa
1+ 2.
= wy. [(55 = 30.v2) + 5. (19 — 6.V2) +ﬂ_(n2 — 1) + 4.5
(6.25)
com: =ﬂ. =$. =£. =E e A =_w¢ @ 2
‘T W, » 12 W, y M3 b’ Na t (o) (103) .fyd L

observa-se que as razdes n, e n, podem ser expressas em termos das razoes ns e 714, assim
mediante as equacdes (6.7), escreve-se:
2 —2.n52

N = -2 (6.26 a)
1 8.133.m,3 — 6.13.14 + 3

4.1, —8.143).133 + 2.2 +12.12.1m4 + 20.1,. t + 4
ny = _“4my —8.m47).15 - M3- M4 4 (6.26 b)
8.7]3 .7’4 _6773T’4+3
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6.2.3. Tabelas adimensionais para armadura concentrada

A adimensionaliza¢do da equagdo em bimomento (eq. 6.12) é procedida via divisao por
(wq.t2. f.4), conduzindo a equacdo (6.13). Além disso, faz-se necessario adimensionalisar as
equacOes (6.14) e (6.17), partindo do pressuposto das razBes n; e n, entre as dimensdes da
secdo transversal. Na figura 6.17 sdo apresentadas duas configuracfes de relacdo entre as

dimensoes (b, a e t) para a se¢do transversal em paredes finas.

Figura 6.17: Raz0es entre as dimensfes a, b e t da se¢do: (a) configuracdo 1 e (b) configuracéo 2

b b
a a=4.t L a=10.t
b=10.a =40.t b=3.a=30.t
N3:= 7 =& =—=—
; b 40 . 4 N3 b~ 30
# a n =g=4 a

8= n4=?‘=‘10

t @ t o

Fonte: O Autor (2019)

Expressam-se as equacoes (6.12), (6.14) e (6.17), ap6s adimensionalizacéo, por:

kﬁ1'gz+kﬁ2'g+ kﬁs =0 (627 a)
5 _x_gG_12.b2+19.t2+6.a.(2.b+t)+3o.b.t—\/§.$.(18.t2+12.b.t) (6.271b)
“r 12.t.(a+3.b +3.t —3.V2.&.t) '
Ve _y_ga_12.a.(2.b—a)+12.t.(a+7.b)+36.b2+37.t2+24.€2.t2+ﬁ.$.t.(6o.t—48.b) 6270
“T e T 24.t.(a+3.b+3.t —3.V2.8.t) '
=k**.b.t = - b.t = {\/E(Y* ! 1)+[(1+ )(X* 1)]} (6.27 d)
Y= =Lt T \fee =370, MN1)-\4ca > .
t? t?
Aszfﬁsd S _Poal” _Jea Bsal” - (6.27 €)
fya @ = fya ©-mz.aq)  fya @.(103)
fea ' b.t

onde: a, € o coeficiente de ajuste de ordem de grandeza e ¢ € o fator adimensional para impor

a profundidade relativa & na area de ago A,.

03y Ws t a Bsd
sendo: 1y = —2; 1, = —; 77325; n4:?; kﬁlz—z.)/.l.ac.rlgi ,Bsdz—w1 tzfd;
A

w1 w1 ’
(1 +12)
kﬁz _ ]//1 a,. [\/E (2 + 771)]; kﬁ3 = ,Bsd — kﬁ3a c kﬁsa = ]//1 ANy [% .
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Na tabela 6.1 é apresentada a variagdo do pardmetro ¢ em termos do bimomento

adimensional S, isto para o grupo | de resisténcia do concreto.

Tabela 6.1: Tabela para obtencédo da armadura na secéo de paredes finas sob configuracdo 1
(ver figura 6.17 a) e grupo | de resisténcia do concreto via NBR 8953 (ABNT, 2015)

C<C-50

Bsd kg, g Xig Y ¢

5000,00 499659  450,06472 13,77344  -85,69242 150,7881639

15000,00  14996,59 74504679 13,79815 -15519743 249,0315805

25000,00 2499659  948,49583 13,80594  -203,14360 316,8214483 _— N’g &
35000,00 3499659 1113,94723 13,81012 -242,13698  371,957708 35 TS
45000,00  44996,59 1257,04495 13,81283 -275,86293  419,647752 < \E g §
55000,00 5499659 1384,96246 13,81476 -306,01158 462,2803451 ] N N
65000,00 6499659 1501,70055 13,81624 -333,52564 501,1880382 % % f.ﬁ
75000,00  74996,59 1609,76114 13,81741 -358,99468 537,2042595 = & H:

g SI2
85000,00 8499659 1710,83238 13,81836 -382,81651 570,8914186 s EF
95000,00  94996,59 1806,11711 13,81917 -405,27459 602,6502676 " J| &
105000,00  104996,59 1896,50827  0,53332  -426,57935 660,4804797 = i
115000,00  114996,59 1982,69033  0,49999  -446,89211 689,2765503 Sv ¥
125000,00 12499659 206520167 13,82097 -466,33973 689,0056626 = <
135000,00  134996,59 2144,47486  0,53332  -485,02417 743,1339344 2
<

145000,00  144996,59 2220,86362  0,49999  -503,02879 768,6658085 I —|2 <
155000,00 15499659 2294,66162 13,82222 -520,42280 765,4880564 % ; ol o
165000,00  164996,59 2366,11585 13,82256 -537,26441 789,3049756 T
175000,00  174996,59 243543636 13,82287 -553,60312 812,4107576 Z =5 5
185000,00  184996,59 2502,80360 13,82316  -569,48147  834,865537 =
195000,00  194996,59 2568,37394 13,82342 -584,93630 856,7214229
205000,00  204996,59 2632,28392 13,82366 -599,99980 878,0239226
215000,00  214996,59 2694,65362 13,82389 -614,70027 898,8130567
225000,00  224996,59 275558933 13,82410 -629,06276 919,1242423 p|<
235000,00  234996,59 2815,18563 13,82430 -643,10956 9389890027 = !
245000,00 24499659 2873,52713 13,82448  -656,86061 958,4355408 P -
255000,00 254996,59 2930,68992 13,82466 -670,33385 977,4892097 A |} L1
265000,00 26499659 2986,74266 13,82482  -683,54545 996,1728998 :‘: ]
275000,00  274996,59 3041,74763 13,82498 -696,51010 1014,507361
285000,00 28499659 309576147 13,82513  -709,24115 1032,511475
295000,00  294996,59 3148,83591 13,82527 -721,75079 1050,202478
305000,00  304996,59 3201,01831 13,82540 -734,05017 1067,596161
315000,00  314996,59 3252,35219 13,82553  -746,14957 1084,707027

Fonte: O Autor (2019)

Na tabela 6.2 consta o parametro ¢ para o grupo Il do concreto e na configuragéo 1 da

secéo transversal (ver fig. 6.17).
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Por fim, nas tabelas 6.3 e 6.4 sdo apresentadas a variagdo de ¢ para a configuragao 2

apresentada na figura 6.17 (b).

Tabela 6.3: Tabela para obtencédo da armadura na se¢édo de paredes finas sob configuracéo 2
(ver figura 6.17 b) e grupo | de resisténcia do concreto via NBR 8953 (ABNT, 2015)

GRUPO |
Bsd C<C-50
kg, ¢ Xce Yee P

5000,00 4990,26 379,46146 10,36722 -74,43174  131,6868693

15000,00 14990,26 635,38271 10,42283  -134,70985 216,8388351

25000,00 24990,26 811,71678 10,44011 -176,25879  275,5686505 e “’JE“ ~
35000,00 34990,26 955,07756 10,44933  -210,04210  323,3298432 = N§ % \%
45000,00 44990,26  1079,05261 10,45529  -239,25869 364,6382483 ((,; E: g g
55000,00 54990,26  1189,86722 10,45954  -265,37465  401,5645941 é N’; f-f; ‘g’
65000,00 64990,26  1290,99180 10,46277 -289,20743  435,2637768 :\; Rg’ i‘m o
75000,00 74990,26  1384,59596 10,46533  -311,26816  466,4580168 = g EE
85000,00 84990,26  1472,14336 10,46743  -331,90165  495,6346344 E é g
95000,00 94990,26  1554,67671 10,46918  -351,35359 523,140852 ,Ié “\E”‘E‘
105000,00 104990,26  1632,97000 0,61110 -369,80633  565,9305137 % <
115000,00 114990,26  1707,61647  0,49999 -387,39967  590,9993986 < %
125000,00 124990,26  1779,08272 10,47313  -404,24354  597,9318601 A
135000,00 134990,26  1847,74357 0,61110 -420,42627 637,5179159 S
145000,00 144990,26  1913,90557 0,49999  -436,02010  659,7590763 - E H”lg ﬁ
155000,00 154990,26  1977,82318 10,47586  -451,08500  664,1710545 ﬁ ‘l*l’ “|'|'° slll“
165000,00 164990,26  2039,71040 10,47660  -465,67138 684,7980601 S = L &
175000,00 174990,26  2099,74925 10,47728  -479,82215 704,8091204 -,fi;}c ﬂi*
185000,00 184990,26  2158,09606 10,47790 -493,57414  724,2563248 B |
195000,00 194990,26  2214,88631 10,47847 -506,95929 743,1848104 o ] o
205000,00 204990,26  2270,23831 10,47900 -520,00547  761,6339952
215000,00 214990,26  2324,25608 10,47950 -532,73720  779,6385444
225000,00 224990,26  2377,03170 10,47996  -545,17617  797,2291357
235000,00 234990,26  2428,64712 10,48039 -557,34171 814,4330734
245000,00 244990,26  2479,17564 10,48079 -569,25108 831,274786
255000,00 254990,26  2528,68315 10,48117 -580,91982 847,7762333
265000,00 264990,26 2577,22918 10,48153 -592,36195 863,9572417
275000,00 274990,26  2624,86764 10,48187 -603,59018 879,8357842
285000,00 284990,26 2671,64761 10,48219 -614,61608 895,428214
295000,00 294990,26  2717,61389 10,48249 -625,45020  910,7494614
305000,00 304990,26  2762,80753 10,48278 -636,10222  925,8132019
315000,00 314990,26  2807,26623 10,48305 -646,58102 940,631999

Fonte: O Autor (2019)
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6.2.4. Inviabilidade das tabelas adimensionais para armadura distribuida

Devido a impossibilidade em adimensionaizar a razdo n, apresentada na equacéo (6.26
b), fica dependente da espessura t da parede fina do ndcleo estrutural, ndo sera possivel gerar
tabelas adimensionais para esta distribuicdo da armadura A,. Resta entdo, a obtencdo da
armadura A, via resolucdo da equacao iterativa (eg. 6.25). Nesta tese, tal resolucdo da equacao
iterativa (para o exemplo 6.3) foi processada via método de Newton e utilizado o software

Calculo Numérico V5 (verséo livre).

6.2.5. Exemplos de aplicacdo

EXEMPLO 6.1: A fim de exemplificar a marcha de calculo N° 4 (proposta para o
dimensionamento de se¢cdes em formato de C com abas), adota-se a secdo transversal

apresentada na figura 6.18. Escolhe-se para este exemplo a armadura concentrada nas quinas

mais tracionadas, sendo utilizados: concreto C — 90 (f.q = 6,42857 kN/sz; y=09; 1=

0,7; ctc = 0,68; £y, = 2,6%0) € 360 CA — 50 (f,q = 4347826 KN/ 5+ &, = 2,07%).

mz;

Figura 6.18: Dimenses, em planta, da se¢do transversal aberta e composta por paredes finas

3
a=7m

I=1,5m
* a=7m

?

Fonte: O Autor (2019)

b:by:ZOm

Nas tabelas 6.5 e 6.6 sdo apresentadas as propriedades geométricas, posicionamento das
linhas neutras e a area de aco (A;) via dimensionamento ao bimomento para o pilar de concreto

armado.
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Tabela 6.5 — Valores de dimensionamento para a se¢do apresentada na figura 6.18 e bimomento

no médulo de 1500 kN.m? (valor caracteristico)

Secdo do pilar em Nucleo  Resultados — Diagrama de Area Setorial  Resultados
lwq]] (Mm?) 119,15960 kg, (kN) - 49,22483

lw, || (Mm?) 80,84040 kg, (kN.m) x 103 0,92001

lws|l (m?) 304,25212 kg, (kN.m?) x 103 - 3,46786

d (m) 7,07000 x (m) 13,45339

X (M) 9,59354 k** (m?) 22,42293

Yee (M) 10,66720 A (cm?) 2,15405

Fonte: O Autor (2019)

Tabela 6.6 — Areas de ago Ay, secdo da fig. 6.18, em detrimento da variacdo do bimomento

Bimomento (kN.m?)  A;(cm?)  Bimomento (kN.m2?) A, (cm?)
2500 2,15 7500 42,53
5000 10,98 7750 54,69
7000 28,98 8000 75,77

Fonte: O Autor (2019)

EXEMPLO 6.2: A fim de validar e exemplificar a utilizacdo das tabelas adimensionais (item

6.2.3), resolve-se a sec¢éo de paredes finas submetida a B, = 1,45608 x 10° kN.m?. Para tal

sec¢do transversal adota-se a relacdo apresentada na figura 6.17 (a). Por dimensoes, utilizam-se:

t=0,75m; a=3,00me b=3000m. Na tabela 6.7 sdo apresentados parametros de

dimensionamento e a armadura A; concentrada nas quinas mais tracionadas, via marcha de

calculo N° 4 (letra ¢ do item 6.2.1). Foram utilizados aco CA — 50 e concreto C — 50.

Tabela 6.7 — Valores de dimensionamento para a se¢ao de paredes finas, no ex. 6.2, via marcha

de calculo N° 4

Sec¢do do pilar em Nucleo Resultados  Diagrama de Area Setorial ~ Resultados
lwq]] (Mm?) 215,82936 kg, (kN) - 23,58706
lw]] (m?) 234,17064 kg, (kN.m) 457,83660
llws || (m?) 367,33652 kg, (kN.m?) x 106 2,03700
M1 M2 1,08; 1,70 x (m) 151,87004
X (M) 10,26564 k** (m?) 413,36526
Yee (M) - 20,56430 A, (cm?) 113,42500

Fonte: O Autor (2019)

Utilizando a tabela 6.1 com bimomento adimensional B4 = 2,0351 x 10°, define-se o

parametro (¢ = 939,18549), chegando-se na area de aco:

kN
 fea Bsat? _ 357143 (W) (2,0351 x 10%) (ADM).(75)? (cm?)

s = 7 - 3N =
fya ®-(10%) 43 47826 (

kN)'

cm?

939,1854 x 103

= 115,663 cm®>  (6.28)
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Por fim, ao comparar as areas de aco A, obtidas via tabela 6.7 e pela equagéo (6.28),

verifica-se a aproximacao de 1,97% a favor da seguranca.

EXEMPLO 6.3: Utilizando os dados do exemplo 6.1 com o equacionamento procedido para
armadura distribuida ao longo da sec¢do transversal, ver figura 6.3 (b), tem-se a equacéo iterativa

(6.25) escrita para o problema em questdo, como:

wp = —2,45573 x 1073.£2 + 0,0306.¢ + 1,2184 x 10* (6.29)

t 14 w w
com: 713 = E =0.075 ny=—; M= 2 0,67842; n, = — = 2,55332;

3 w1 w1
B
By = 1500 kN.m?; By = 2100 kN.m? ¢ foq = ——— =1,21841 x 10%
wyg.t -fcd

Usando o software Calculo Numeérico V5, versdo livre, via aplicacdo do método de
Newton para determinacao de raizes na equacéo (6.29), conclui-se:
§ = —697,080926 m (6.29 a)
aplicando a equacéo (6.29 a) na eq. (6.29), tem-se como taxa de armadura da bitola, a seguinte:

wy = 3,774 (6.29 b)

Por fim, a area de ago A4 da bitola do feixe, vale:

Op _fea ,_3774 683 kN/cmZ

= . - .
3 3
(103" fya 10° "4348 KN/,

Ay .(150 cm)? = 12,556 cm? (6.30)

Resultando em bitola de 40.0 mm para atender tal area A, ver distribuicdo na Fig. 6.19.

Figura 6.19: Distribuicdo da armadura A ao longo das paredes finas, no exemplo 6.3

15 feixes com 4. A¢
logo: 60 ¢ 40.0 mm

Fonte: O Autor (2019)
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6.2.6. Programacédo em visual basic para armadura nas quinas

Na figura 6.20 é apresentado o formulario do programa de célculo da armadura
resistente ao bimomento em se¢@es de nucleo C, e conforme marcha de calculo N° 4 (postulada
na letra ¢ do item 6.2.1). A programacédo foi realizada em Visual Studio 2019 — versdo

Community. Os resultados das simulagfes numéricas constam nos exemplos 6.1 e 6.2.

Figura 6.20: Formulario de programa em Visual Basic para dimensionamento ao bimomento,
sob armadura concentrada nas quinas tracionadas
a3’ Bimomento == O X

- Caracteristicas do pilar

T — .
b (m) — 4(’)%7 »V[v:‘ — /1U'B / ! ‘177“ )
L — J & L /

X L
T — 7 /
Dy, f A
(+)
G

— Classificagdo do concreto - Ago CA-50

C-20 C-25 C-30 C-35

D
y ——

C-40 C-45 C-50 C-55 i A, — W,
3 /'_____.4
C-60 Cc-70 Cc-80 C-90 e,
- Diagrama de Area Setorial ——
. b=b, .,
o’ —at- Kb1 (KN)
] |
B _T' Kb2 (KN.m)
‘ ! a
|_ Kb3 (KN.m?)
i, i=dy = "
= b.‘. 1— "2~ k* (m?)
t As (cm?)
v [][a
* 1= — "‘""

Calcular

Fonte: O Autor (2019)



312
Weslley Imperiano Gomes de Melo

6.3. PILAR EM FORMATO DE DUPLO T

a) Posicionamento das linhas neutras

O diagrama de ordenadas setoriais com notacdo adaptada para o equacionamento das
armaduras resistentes ao bimomento € apresentado na figura 6.21, sendo essa notacdo embasada

no que foi procedido para a segdo em C e apresentado na figura 6.11.

Figura 6.21: Diagrama de ordenadas setoriais principais w,,, sob notagdo adaptada, no duplo T

_U)7 = _wi’/(l AU)B \ »w‘l = O o (,4)2 — wflll
Y, bl bl
A(uA Lb3 > > b: 5>
— W9 = —Wi, Ws = wfo
= | ba
Wy = wfz " == r— wa
b b ‘ b be| ¥
i ( S
wg = W; + 7 Wa=0 X A(uD I o
7a 3 i 1 _w4 = _a)f”]
b3 = b6
bs = bz

Fonte: O Autor (2019)

O bimomento resistido pelas duas areas comprimidas do concreto, vale:

Bea = V. A et fog. (Aw, + Awy — Aw, — Awy) (6.31)
(—w7 — wy) w7.C (—wy — we) Wy.C
Onde:AwA:T' ;o Awp = — 5 ch:T ;o Awp =~ >
b.c b
w; = w3 =0; W2 = Wg = —Wy = —W7 =77 € W5 = W10 = ~We = 0)9—C.<E+a)

Na figura 6.22 sdo apresentadas as resultantes nas armaduras comprimidas, sob notagéo

R, para a resultante na i-ésima armadura distribuida em quatro bitolas. Bem como as
resultantes R, sob a i-esima armadura tracionada, além da consideragao das linhas de acdo de

tais resultantes a 45° e paralelas as linhas neutras.
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Figura 6.22: Resultantes nas armaduras, comprimidas e tracionadas, distribuidas no duplo T

NI T R R A

, , R
S M ‘ S 'y——c/z—l;l g8
i oA P OB O H 2 R &
:
Qo w8
R Rt
Qo> _ . _ _ 52
L . ' : o8
'd s ®
Qo . ) [
5L . Tl ee A8 %y 56
e 4 T
RQex
Qo %51 ?sgx Qen Q\C‘» ?\\‘,L Qs
hipotese: {Z ; ,;21/:

Fonte: O Autor (2019)

Resultando no bimomento resistido pelas areas comprimidas do concreto em conjunto
com as armaduras sob compressao, expresso por:

Bea = v. A act. feg. (Aw, + Awy — Aw, — Awy) + By (6.32)
VZ X ( ) t
—Wy7 — Wy
c. B1 = T.ZRCL ((A)Cl + Wp G)Ai U)Bl) ) wAl = a Xi w7, Al = E,
i=1

w (—wy — wg) Wy b

wp, = - X — Wy We = a Xi — W4 Wp, = T'xl Wy; A= 7
A c (c—n)

X1 —Al, Xy E, X3 _Z € Xg = > .

b) Armadura resistente ao bimomento

A atuacdo das resultantes nas armaduras séo evidenciadas na figura 6.23. Porém, quanto
as armaduras tracionadas verifica-se que as componentes horizontais ndo interagem com o
diagrama w,, (apresentado na figura 6.21).
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Figura 6.23: Interagao das resultantes nas armaduras com o diagrama w,,. adaptado

(c—1n)

w3
' Ws
.sena :
R, .sena i
v y
RSZ. sena :
v f
R, .sena |
v i
W1o v i =
[y
Rc4 e,
We.
e |
w
* R C,
st3 wDSs /C2 (L)C1
w3z =0 Wp \k — Wy
(1)8 Ds Z) = 4 (UDJ
Wp " 2 S th Rcl
(‘)D?
(c+4) © Wp,
2 .
3
» —.C
Y 2.c-n)
i 2
Fonte: O Autor (2019)
Assim, o bimomento resistido pelas armaduras tracionadas é computado por:
* \/i *
= R, by, + “’Dsi) (633)
j=1
—wg Wy (c+4) 3.c A

e:(UDSi=T.xl‘+(U8; (L)Bsi=7.xi—(l)8; X1 =——F7—"; X = s X3 =C——.



315
Dimensionamento em Concreto Armado de Paredes Finas ao Bimomento

Agora, procede-se a ponderagdo das resultantes R., € R, por numero de bitolas com

areas de ago A4, mediante as seguintes equagdes por tensdo normal:

R., = R, = Re, = 4. fya- A (6.34 a)
R., = 8.fya- Ay (6.34 b)
R, = Ry, = 4.f,q. A (6.34 ¢)
Rs, = Ry, = 8.fya. Ag (634 d)

Aplicam-se as equacdes (6.34) nas equagdes (6.32) e (6.33), bem como é adotada a
convencao do equilibrio em bimomentos (ver figura 6.2). Rescreve-se a equacgéo (6.23) com as
devidas substituicdes dos bimomentos resistidos pelo concreto e pelas armaduras comprimidas

B4 € tracionadas B;,;, cOmo:
Y daet feg. (Aw, + Awp — Aw, — Awy) + Bsa = Ap- fya- 2.V2. wes (6.35)

com: Wes = wcsl + (UCSZ + wCS3 + a)CS4; wCS4_ = ((A)C‘l_ + (,UD4 — (,l)A4 - (1)34);
Wcs, = \Wpg, T Wpg, Wc, T Wp, — Wy, — Wp, );
wcs, = |wp.. + wr —Z(w +wp, —wy, —w ) e
CSZ DSZ DSZ * Cz DZ A2 BZ
— * — — —
wcs, = 2. (a)DS3 + “)D53) (CU03 + wp, — wy, 0)33)-

Isolando a area de aco Ay da equacdo (6.35), pode-se quantificar facilmente a area de

cada bitola a ser empregada na distribuicédo apresentada na figura 6.6, como:

ke + By

# ks (6.36)

onde: ke = y. A ac.t. fra-(Awe + Awp — Awy — Awg) € ks =2V2.fpq. wes.

EXEMPLO 6.4: Para exemplificar a aplicacdo do pilar em formato de duplo T, ver item 6.3
(@) e (b), utilizam-se as dimens@es indicadas na figura 6.24. J4, 0 bimomento caracteristico By,

sera de 1.500 kN.m? (analogamente ao procedido no exemplo 6.2), sendo utilizados: concreto
€~ 50 (fog = 357143 KN/ 51y =0,9; 1= 0,8 a = 085; ecy, = 3,5%) € ag0 CA — 50

(fya = 4347826 KN/ 50 &4 = 2,07%).
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Figura 6.24: Dimenses da secdo transversal em duplo T e submetida ao bimomento do ex. 6.2

| bt etk oo bbbt st ¥ G mess s bt et e S b bk o 1 \}
H ! 10
| | i|la=7m
: AR
1 (=8
i t=15m
! h=20m
e c=10m—t—c=10m —k

Fonte: O Autor (2019)

Ficando as ordenadas setoriais indicadas na figura 6.23 e as areas do referido diagrama

wyc, ambas destacadas na equacéo (6.31), expressas por:

W =w3=0; wy,=wg=—-ws=—w;=100m?;, ws=w;90=—wg=—we=170m?;

Ap, =Ap, =945m> ¢ A, =A,, =500m3.

As ordenadas setoriais em contato com as resultantes nas armaduras, tracionadas e

comprimidas, assumem nesse problema, os seguintes valores:

wa, = e, = 107,5m?  wp = wp, =92,5m% wy, = we, =125m? comi = 2,3 e 4;

1

wp,

=wp, =75m?comi=2,3¢e4 e wp =wp =25m’comi=1,23¢c4

A contante k. € nula, isso devido a dupla simetria inerente a se¢cdo, em decorréncia das
areas comprimidas do concreto estarem opostas e acarretarem bimomento de mesmo mddulo,
porém com sinais opostos. Ja a constante k, vale 2,45 x 10*, acarretando assim em area de

bitola de: A4 = 0,085 cm?. Equivalendo a utilizagdo de didametro de aco: ¢ 5.0 mm. Ficando

22 feixes com 4. Ay de ¢ 5.0 mm, totalizando assim 88 ¢ 5.0 mm.

De tal dimensionamento, exemplo 6.4, verifica-se que a armadura resistente ao
bimomento é irrelevante para se¢des em duplo T. J&, no exemplo 6.3 fica evidente a relevancia
de tal estado de carga. Neste capitulo da tese foi procedido apenas o equacionamento da
armadura resistente ao bimomento, fazendo-se necessario superpor os dimensionamentos ao

momento fletor e esforgo cortante.



Capitulo

7

CONSIDERACOES FINAIS E SUGESTOES

7.1. CONSIDERACOES FINAIS

Nesta tese foi resgatada a utilizagdo da Técnica do Meio Continuo (TMC) no calculo
dos esforcos e deslocamentos em estruturas submetidas a acdo do vento, conforme observa-se
no capitulo 2 (item 2.1.2) e no capitulo 5. Em tal resgate foram estendidas a teoria da flexo-
torcdo e dos painéis-parede, e aplicadas inicialmente em nucleos estruturais de edificios altos,
para pilares altos de pontes com separagdo de vinculagéo entre o tabuleiro e a mesoestrutura.
Na abordagem dos pilares de pontes sdo analisadas se¢cdes em formato de nucleo estrutural “C”
e sob geometria em duplo T. No capitulo 2, a matriz de rigidez do elemento de barra com secao
transversal linearmente variavel (e de formato retangular) € obtida mediante inversao da matriz
de flexibilidade. No caso da montagem da matriz de flexibilidade s&o utilizados os sistemas
derivados, sendo também analisadas as variagdes do momento de inércia, da &rea da secdo
transversal e do fator de forma. Ressalta-se nesta contribui¢do a obtencdo da matriz de rigidez
exata para tal configuracdo de secdo transversal, e procede-se a aplicacdo de tal matriz no
calculo das frequéncias de vibracao dos pilares de uma ponte com tabuleiro posicionado a 100
metros, isso relativo a base dos mencionados pilares. Para a primeira frequéncia de vibracao,
com a subdiviséo do pilar em cinco elementos finitos de barra, conclui-se aproximacéo de 5,20
% (ver pag. 139). Tal aproximacdo é excelente, isso devido ao numero de elementos finitos
utilizados na discretizacao do pilar com 100 metros de altura, sendo a validagdo decorrente de

modelagem em ANSYS Release 11, conforme é apresentado na letra “d”” do item 2.10.
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Em continuidade, verificou-se a estabilidade elastica dos pilares (capitulo 4), com o
estado de carga para atuagdo conjunta da acdo do vento, da reacdo do tabuleiro e do peso
préprio. Ainda no capitulo 2, mais especificamente nas paginas 22 a 30, calcula-se a
distribuicdo das cargas laterais (q;, g, € Q) e da reagdo do tabuleiro (P) considerando-se a
contribuicdo da acdo do vento no tabuleiro da ponte. Para tal, o problema da distribuicdo das
cargas do vento é modelado via TMC com a desconsideragdo da hipotese das lajes (tabuleiro)
funcionando conforme diafragmas. Na determinacdo da carga critica sdo analisados pilares de
pontes com altura j& mencionada e com se¢do transversal sob as seguintes configuracdes:
retangular, circular (macicas), tubular e anelar com paredes de espessura t relativa as demais
dimensGes. Além das se¢des transversais constantes ao longo do eixo axial do pilar (as se¢des
anteriormente listadas), procede-se a determinacdo da carga critica para secdo transversal em
formato retangular e linearmente variavel na altura. A curva de convergéncia da carga critica
é obtida mediante discretizacdo da EDO do problema de estabilidade, utilizando-se o método
das diferencas finitas (MDF) com polinémio de interpolacdo quértica. A validacdo de tal
equacionamento é processada via solucdo exata presente em Timoshenko e Gere (2009), isso

para estado de carga particular (com atuacgéo exclusiva da carga Q concentrada no topo do pilar).

No capitulo 5 foi generalizada a teoria dos painéis — parede apresentada em Barbosa
(1980) e fundamentada em Vlassov (1962). Em tal generalizacdo procede-se ao
equacionamento das paredes que compdem o ndcleo estrutural em formato de “C” via
formulacdo trigonométricas com angulos genéricos na incidéncia dos referidos painéis —
parede. A motivacdo de tal analise é fornecer uma ferramenta de projeto de pontes com modelo
estrutural em vigas e que o engenheiro estrutural possa agregar economia ao projeto com a mera
inclinacdo das paredes que formam o pilar em formato de ndcleo estrutural. Baseado na
premissa de impor simetria ao pilar de pontes, buscando-se solicitagdes simétricas, com a
mudanca de direcdo do trafego e/ou da atuacdo das rajadas de vento. Procede-se (também no
capitulo 5) a formulagdo generalizada da teoria dos painéis — parede (GTPP) aplicada a se¢bes
transversais em formato de duplo T. Tal formulacéo é validada mediante a teoria da flexo-torgéo

(TFT) apresentada entre as paginas 121 a 124, para a se¢do em questao.

A analise do pilar com secdo transversal de paredes finas foi procedida, no caso
estatico, com momento de torcdo sob variacdo linear ao longo do eixo longitudinal do referido
pilar. J4, em face da andlise dindmica dos painéis-parede postulou-se os fluxogramas de
desacoplamento do sistema de equacdes diferenciais para o pilar metalico e de concreto armado.

Ao pilar metélico, sob carreagamento lateral, verificou-se coincidéncia do centro de massa
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(CM) e do centro de gravidade (CG) e para tal obteve-se a equagao transcendental e decorrentes
modos de vibragdo, bem como modelagem no software ANSYS Release 11. No caso do pilar
de concreto armado procede-se a transformacdo de coordenadas da pseudo-forca inercial do
(CM) para o (CG). Em seguida postulou-se a rotina de desacoplamento do sistema de EDO’s,
bem como fez-se a postulagdo do amortecimento proporcional em relacdo as duas matrizes de
rigidez ([J] para a flexo do pilar e [S] para rigidez a flexdo dos lintéis) e a matriz de massa
(IM] ou [M]). Em ambas as formulagdes sdo modelados pilares com secdo transversal sob

formato de nucleo estrutural C e em duplo T.

As verificagdes da modelagem estatica dos painéis-parede foram procedidas por
artigos técnicos, dissertacdes e teses, bem como por simulacdo em elementos finitos (MEF)
propostos via método dos deslocamentos acoplado com a teoria da flexo-tor¢cdo. Quanto a
analise dinamica, as verificacdes foram conduzidas via modelagem dos modos de vibracdo no
software ANSY'S Release 11.

Por fim, foi equacionada a se¢do de paredes finas (com paredes e abas simétricas, bem
como em formato de nucleo estrutural C e em duplo T) em concreto armado e submetida ao
bimomento. De tal equacionamento, resultou para a se¢do C, a marcha de calculo da armadura
resistente e geracéo de tabelas adimensionais para concretos dos grupos | e Il de resisténcia, e
com espessura t relativa as dimens@es das paredes do pilar (isso para o pilar em formato de
nucleo estrutural). J&, para o pilar com secdo transversal em formato de duplo T verifica-se a

equacdo determinante da area de ago Ay por bitola (ver equacdo 6.25), isso devido a fixagdo
das linhas neutras ocorrer pelo diagrama de ordenadas setoriais w,,. € ndo ficar flutuando na

secéo transversal.

Nas diversas andlises, processadas nesta tese, foram implementados exemplos de
validacdo e conseguintes constatagdes mencionadas. Por tais resultados obtidos e validados
com base na literatura especifica e simulacBes via MEF, chega-se a conclusdo que o0s
procedimentos de andlise estatica e dinamica dos pilares de pontes, aqui sistematizados, sdo

adequados e forneceram bons e praticos produtos de solu¢des estruturais.
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7.2. SUGESTOES PARA TESES FUTURAS

Ap0s as andlises decorridas nos pilares altos, de pontes em vigas, com secdo de paredes
finas e sob formato de nucleo estrutural C e em duplo T, sugerem-se 0s seguintes temas para

teses futuras:

» Generalizar a analise dinamica dos painéis-parede para a ocorréncia da nao
linearidade fisica e geométrica;

» Estender a generalizacdo do nucleo estrutural via teoria dos painéis — parede para
diversas configuracgdes (distintas do duplo T) e com ndmero de ndcleos associados
superior a dois;

» Estender o dimensionamento da secdo de paredes finas, em concreto armado, para
a configuracdo assimétrica (quanto as dimensdes das abas e paredes);

> Aperfeicoar a analise da estabilidade eléstica, dos pilares altos, englobando a ndo
linearidade fisica e geométrica e

» Apreciar a estabilidade elastica e dinamica dos pilares em paredes finas, sob a

Gtica da ndo linearidade fisica e geométrica.
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Apéndice

A

SOLUCAO DA EDO NO SISTEMA GENERALIZADO

Este apéndice é dedicado a solucdo da equacdo diferencial ordinaria, ver eq. (2.121 d).
E para tal, a fim de facilitar a notacdo oculta-se os superindices em asteriscos, ficando a EDO

expressa como:

—v"" + 2. 0" = D;.x%? + Dy.x + Dy (A4.1)

A.l. Solucédo homogénea

A equacdo caracteristica para a EDO expressa em eq. (A.1) é obtida mediante imposicao
de funcéo exponencial como solucdo da equacdo diferencial ordinaria homogénea. A solucéo

homogénea e sua derivada terceira, ficam expressas por:

vy(x) =e™* (A.2a)

vy (x) = m3.e™* (A.2 b)
Ao aplicar as equacdes (A.2) na eq. (A.1), exprime-se a equacao caracteristica por:

—m3.em¥ + 12 m.em* =0 (A.3)

Conclui-se que a solu¢cdo homogénea sera a combinacdo linear das trés raizes da eq.
(A.3), ficando expressa por:

vy (x) = Aj.e?* + Ay e ¥ + A (A.4)



A2
Weslley Imperiano Gomes de Melo

A.2. Solugéo particular

A solucdo particularizante da eq. (A.1) é composta por quatro termos, isto para que a
solucéo geral (soma das solu¢des homogénea e particular) possua seis termos. A quantidade de
termos da solucdo geral é verificada no grau parabolico da funcdo em coeficientes D
apresentado na equacgéo (A.1), funcédo essa que integrada por trés vezes (grau da EDO) conduz
a solucdo de grau quintuplo. Ressaltando que o coeficiente A5 apresentado na eq. (A.4) serad
englobado no coeficiente independente da solucdo particular, resultando por solucéo

particularizante:
vp(x) = A3.x3 + Ay x? + As.x + Ag (A.5)

Aplicando a equacéo (A.5) na EDO expressa na eq. (A.1). Conclui-se como coeficientes

(A5, A, e Ag), com excecdo do termo independente Ag, 0S Seguintes:

D,
A3 = 312 (A6 Cl)
D,
A%.Ds + 2.D;
As=—F7— (A.6¢)

As demais constantes da solucdo da EDO seréo obtidas com a aplicagédo das condigdes

de contorno.

A.3. Solucéao geral e condicbes de contorno

A solucdo geral v (x) serd formada pela soma das solu¢cdes homogénea, ver eq. (A.4),

e particular, conforme eq. (A.5). Sendo expressa por:
v(x) =A.e?r + A6 + A3 x3 + Ay x? + As.x + Ag (A.7)

Na figura A.1 € apresentada a configuragdo deformada do pilar de ponte e indicadas as

correspondentes condic¢des de contorno para o problema de flexo-torgéo.
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Figura A.1: Deformada do pilar de pontes e condigbes de contorno para a flexo-torcao

N——> ELv"(x=H)=Myy

,,,,,,,,,,,,,,,,,

E.L.w"(x=H) =My
E.l,.¢"(x=H) = By

r(x=0)=0
v'(x=0)=0

Fonte: O Autor (2019)

Ao aplicar as condi¢des de contorno listadas na figura A.1 na solucdo +(x) apresentada

na equacédo (A.7), determinam-se os coeficientes A, A, e Ag cOMoO:

_ dH.A4 - 2 (AZH - 1)D1 - AZ. (DZ - D3)

4 = 26 (eMH + o-AH) (A.8a)
dyA*—2.[22H-14+4d,).D;— 22D, + A2 [1—-d
g o dut =2l del.Dy = 7Dy + 7 [1 = ] P
28, (erH + e~AH)
Ag=—(A; +4y) (A.8¢)
m
( E ZIH ; para deslocamento 1 no vetor {v}
m,, v
onde: dy =< E—j;H; para deslocamento w no vetor {v} ; {v} = {a)} vetor da eq. (2.114);
Ay
\ﬁ ; para rota¢do ¢ no vetor {v}

onde: M,y, M,y sdo os momentos fletores no topo do pilar e em torno das diregdes z e y

(respectivamente); By, é 0 bimomento no topo do pilar e d, = A2. (e* + e=*H).
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B

CODIGO COMPUTACIONAL : Analise dinamica via elementos finitos de
barra e condensacdo matricial

B.1. Pilar com secéo retangular linearmente variavel (Concreto C — 90)

bb=—=20 m by =125 m hy =3 m
b} —
bz=25 m hz=10m P=100m
oE =1 (Granite como agragado gratdao)
fck =90 MPa byl = =Y b1l m
1 ; 5-1bb ;
- hz—b
s [k \3 bzl = = 20+bz=22 m
Eei = 215-1070E{ —— +125|  MPa 31bb
J
4 _ by -—by s
ol =1 (para concreto C90) by2 = 5.1bb W+by=23 m
Ecs = ol-Ed
hz—b
5 bl = — M +bz=19 m
E = Ecs-10 v =02 31bb
hy — by
6 3= 0y =
k=2  E=467x10 Pa byi = —pp Ntby=f m
3
E hz—b
GG = —— bzd = 60+bz=16 m
2(1+ 1) 3-1bb
hy — by
GG=1946x 100 Pa byd =22 80+ by =65 m
5-1bb
p o= 2300 E concreto armado bed = hz - bz B0+ bz = 13 m

m* J-bb
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Al = bzl — bz
Ibb
Bl =bz
c1— byl — by
kb
D1 = by
Al=-015
Bl=123
Cl=-0073
D1=123
(ALY
Ad =1 A3
Ad

2 — - 2 4 — - .
e bz2 - bzl A3 bz3i — bz2 Al bzd — bzi 45— hz — bzd
Ibb Ibb Ibb Ibb
B2 = bzl E3 = bz2 B4 = bz3 Bl = bzd
L - A — =7 il — ¥ F — 11
1= byv2 — byl 03— byv3 — byl c4 byd — byl €5 = hy — byd
Ibb Ibb Ibb Ibb
D2 = byl D3 = by2 D4 = by3 D3 = byd
A2=-013 Ai=-013 Ad=-013 AS=-013
B2=22 Bi=19 Bi= 14 Bi=13
C2= 0075 C3i= 0075 C4=-0075 Ci= 0075
D2=11 Di=103 D4 = D3i=463
) ) ) AlDI-BICl=10
Bl fclh D1
| | | | | | A2D2-B2C2=10
B2 C2 D2
BE = B3 CC = C3 DD = | D3 AIDI-B3G5 =0
B4 4 D4 A4 —B4-C4=10
;xBi,J i‘{:jf' L Di,J- ASDS-B3-Ci=10
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| = |foris0.4

k3i<—3-

k1, < Aa{cc)
1 1 1

s
K2« |cc.'r-[3-|_a_a..nn.':. - BB.-CC]
1 1 1 1 1 1

CC.-DD-| AA-DD. + BB.-CC.':.
171 1701 11

.-‘ "
t ke |DD.:|‘-[_-\A.-DD. + 3-|BB.-cc.-DD.:]
1 1 1 1 1 1 1

k3, < BB.{DD.|”
1 1 1

a k6. « AA-CC.
i i1

c'di<—p-

P, = p-

Bf; < p

i

"I'fi —p

o p
;=P

1

c»cf'iqz—p-

Ti. + p-l

k7. « AA_-DD. + EB.-CC.
i i i1

k8. « BBE.-DD.
i 1T

F

f 2 A
| 234—-1bb‘-k8i + iJ—-lbb-kT-‘i + 15‘-1;:6i |

{ 2 ]
\ 630-1bb J

{ 2 A
| '_Jfl--ll:ﬂ:b‘-ly:Si + Q-Ib}:l-lz.cf-‘i + J—-kﬁi |

+ p-

/ . 2 3 !
| S-l--lbb4-kii + -l-l-lbbj-k-l-i + l—l—-lbb‘-kﬁi + lj-lbb-k_j.i + ll}-kli |

i 7066° )

: 3 2 3
| 5581bb "5, + 37816b7 k4, + 30016673, + 240-1bb 12, + 2121, |
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I 4 Y f y 2 5 Y
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1 I
\ 630-1bb™
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Iy ¥ ~ 4 \
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Il'. 2 \
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P

| 2 \l - Il’. 3 2 ‘1
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- = S 0201b )
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t.«— E-3-
1 | _ S ]
L 33-Ibb J
4. 3 2 \
| 210465k, + T01bb k4, + 4916673, + 421bb2, + 38k, |
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i | 7 |
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4 3 2 . \
| 2106745, + 1401067 k4, + 1196673, + 105-Ibb-k2, + 9451, |
bf. & E.
i | 7 |
35.1bb )
4. 3 2 \
| 2104665, + 105-1bb” K4, + 911bb I3, + 84-1bb k2, + T8I, |
a.«— E-
1 { _ 6 ]
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4. .3 2 \
| 4206645, + 1051067 k4, + S6-1bb73, + 42-1bb K2, + 361, |
ko« E-
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| 420-bb 75, + 315-1bb7 KA, + 266D 43, + 231Ibb-k2, + 20441, |
.« E-
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BB
cc
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od
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r
’kiu+ t, -bi, 0 0 0 a,—t, -bf, 0 0
by Ryt by, 00D by gy -ty by 0
Khf = 0 —bi, k,+t, -bi 0 KO8 = 0 bi, a,-t, -bf, 0
i i i 0 0 bi a,—t, —bf
0 o iy B+t biy 3 33—ty M,
1 i 1] 0 0 bi a
o0 0 0 bi, K, \ . A
r '
Y by 0 0 0 o+t bf 0 0 0
ofy 3y -h By 00 bf, K+t bE, 0 0
0 0 b, a-t, bi 0 0 b, K+t bf
- ° T S L ? 0 0 bfy My

A matriz de rigidez modificada de 10x10 "para 5x5 mediante condensacdo matricial &:
Ke = K&é — [Kaa-{lcaa_ I.F-Kaa]
i 13 11 10 9 7

1701« 1077 76834« 10 3178« 10 1196« 10° 3801 10

1634 = l'III11 1019 = 1013 4241 = l'[l11 1.3%6 = ml{l 5193 = l'IIIS

Ke=13178« l'I]m 4241 = 1011 5.666 = l'[l12 2132 = l'[l11 6939 = l'l].:;|I

1.1%6 =« 1{!9 1.506 =« I{Im 2132« l{lu 2848 « I{Iu 927« I{Im

, 3.801 w« I'EI]I 5193 = l'[IS 6030 « l'IZIIEII 927« l{Im 1238 = mu.

A matriz de massa:

(B, +of,  Af, 0 0 0
N, B +of,  Af 0 0
M= 0 ’*,'fl Eﬁf1 + :::rf3 ’~|'f3 0
0 0 NEy  Bfg+of, of,
L0 0 0 vy Py
rl.ﬂ'ﬁﬁ * l'IZI-J| 20035 l'IZIj 1] 1] 0
00035 « l'IZIj 1227 = 10? 6.761 = l'IZIj 1] 0
M= 0 6.761 = l'IZIj T281 = lll]ﬁ 4374« l'[Ij 0
1] 0 4374 = l'IZIj 403 = 106 2638 x lﬂj
\ 1] 0 1] 26358 « l-[lj 1984 « 1{!6_

B =
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Analise Modal
/ 77 i 7 3 3
{ 1.701 = 1013 T.634 = 1011 3178 = 10'1D 1.196 = 109 3801« 10 | 11933« 107 9993 x ll]j 0 0 0 |
7.634 x ll]11 1.019 = 10'13 4241 = ID'11 1.596 = IDlD 3193 « IDS 0095 « ID) 1227 = 107 6761 ID) 0 0
. - -
3178 < ll]wI 4241 = 1011 3666 x 101‘ 2132 1011 6.930 x 109 - A 0 6.761 x ll]j 7281 = 10'ti 4374 x ll]3 0
5 - .
1.196 = 109 1.596 = IDID 2132 = ID'11 2.848 = IDL 027 = IDID 0 0 4374 x ID) 403 = 106 2638 = ID'j
| T . 3 g 10 12 | | - 3 6|
L3801« 10 3193« 107 6930k 107 927x 10 1.238 < 1077 ) \ 0 0 0 2638 107 1.984 = 107 )

4.66329?‘5229358333333&11-)\6 — 1.3622087677450890068¢34-X" + i.2051233'.-‘5ﬁ-S--LSI.'DiS‘EH—-I—e:I-D-}\;1 — T928027088352775%67edh- X

-
+ 6.0153080003110848287e52- X" — 2.2732067272683220733e38- A + 3.4222615194245788484e63

Achando as raizes via MathCAD

{ 34222615194245788484e63 |
—22732067272683220733e58
6.0153030003 11084828752

ha = —7.928027088552775967Ted6
3.2032238756848030044 40
—1.362208767743088006834
| 4.6632075220858333333el1

o vetor: termo independente

maior ordem de A

Agora a rotina
ra = polyroots(ha)
- 30
6.169039921 = 107 |
7.141433012 x 107

.
783060548 10° | |24 )
’= Los )

8 345015057 x 10°
8716531296 x 10°

{ 77
V2021127724 =< 107 )

ra

ra R rad

whamal = | — 7g5ame3n 24 wharrad = — = 9135105887 :
2 - Hp
a

4 rad

1 d . 5. |7 _ 136552 rad

whatra? : = 8450609978 —— wharral - 5 = 933623635 :

2 - Hp

rad procede-se a divisdo da raiz "ra" pelo quadrado

S = 8834134663 — da altura do pilar [le}, conforme é observado
pela TMC na anélise dindmica de pilares, ver
equacio (5.20 a).

whatra3 :

As cinco primeiras frequéncias, valem:

wharral
_ 125 whanat )
fl=—_— =106 £ = 2 _ 4530 Hz
2o
wharra? _
7 = RS 34407 wharra3 )
B=— — =139 H £5= 2 _jagso1 H:
2o
5= P os H:

2
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C

CODIGO COMPUTACIONAL : Estabilidade Elastica via Diferencas Finitas

C.1. Secdo macica constante na altura do pilar

a) Secédo retangular
1% ETAPA: DADOS DE ENTRADA

KN
gl=0 — Q=200 kN P=10 EM
m
KN -4 KN n = 100 guantidade de pontos
-J = _— = -J 33 - _— . . P
2 =0 m p = 1123318943-10 m na discretizacdo
HH=100 m
KN
E = lll}-ll}ﬁ=2.1x 1|:I'S — HH
m= h=—"
1
1615°) : -
I= ——— = 632667 m h=1 'm
_ Q-HH _4 valido para P =0,
1= = 6.74203 -
SR 3.E-I 6.74295 x 10 ™ apenas atuagéo de Q

2* ETAPA: Rotina de Diferengas Finitas

criando a matriz M nula de ordem (n+3), sendo uma equagdo com indice "1j"; a segunda de

indice "2,j"; (n) equagdes e a ultima de indice "n+3 k". TOTALIZANDO n+3 equagides

lsso sera realizado via subtragdo da

M = identity(n + 3) - identity(n + 3) matriz identidade por ela mesma

Zerar o vetor g Atribuir valor inicial ao deslocamentos v
g= |for kk=0.(n+3) v=|for kk=0.(n+3)
Gy & 0 Vi © 1
q Vv
: : : : = -g2
Coeficientes inalterados com a discretizacdor  A1.= & Bl =gl
2.
= E-I
Tl =
(q2 3

3
1]
[ |'-':'
|
N
- '.._..._o-"
|
o
b
=
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Equacdes Dif Finitas abaixo do engaste:

— — a8 ar-1
My,=1 gy=10 (1® condic8o de contorno)
— —_ — —_— — &
My p=1 M, ;=-8 M .,=8 M ,=-1 gq,=0 (2% cond. de
contorno)
Equacdes Dif Finitas do engaste (] = 2) até um ponto antes do topo (| = n+1):
j=2.n+1
xj = —-2rh
p-|'HH— x.} +P
T2 = I: : ] :I
] 12-h
M. ,=-TI+ T2 M. . . =2T1-3T2 M. . . =-2T1+3T2
132 ] 1.3-1 ] 1.3+l ]
.
M. ,=T1-T2 c=Al{x|" +Blx + CC
i.j+2 j 3 %) b

Equagdes Dif Finitas no topo do pilar (j = n+2):

X =HH
n+2

e [p(HH - 5] + 7]
“a+l T 13-h

= -T2 = —f- -T2 = 12- — 18-T2
:"'in+l_n—1' T1 T‘n+l Z‘-.riﬂ_'_l_ﬂ. I5T1+I5Tdﬂ+l :ﬂn+l_n+1' 12-T1 13T‘n+l

= —10- -T2 = 3 -T2
:ﬂn+l_n+l' 10-T1 + 10 T‘ﬂ+l :ﬂn+l_n+3' 3T1+3Tdﬂ+l

) -
Q.0 = "'!Ll'l_xn+1:' + Bl-xn_'_l + CC

3* Condigdo de contorno: momento nulo no topo via operador de 2* derivada via Dif finitas
assimeétrica a direita

Mﬂ+3_n—1 =1 Mﬂ+3_n =4 Mﬂ+3_n+1 =6 Mﬂ+3_n+l =-20 Mﬂ+3_n+3 =11

Q3 =0
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Rotina de solugdo de sistema de equagdes algeébricas no Mathcad:

v = lsolve{M,q)

2107 —T
0
00| 1.5331382392-105 1.5x<10°F -
01| 1.5586040474°105 .
¥j 1x10°F i

02| 1.5842620032°105| —

< ol
03| 1.6008400029-105 3%107 -
04| 1.6354261426°105 N

95 1.6610187179-105

v =06 1.686616225°105 i
97| 1.7122173601-105 2107 ——
98| 1.7378210198-105 < .S
15107 1
00| 1.7634263014°105 )
100| 1.7890325025-105 y =107 1
101|  1.8146391217-105 s5e10%k i
102|  1.8402458579:105 o
103 % 1 21 3

b) Secéo circular

A

Nesta modelagem; a unica mudanca, em relacdo ao item anterior, é a formula de célculo

do momento de inércia (na 12 etapa), ficando:

12 ETAPA DADOS DE ENTRADA P=0 W D=3 m
o = guantidade de pontos
ql=2 LS Q=200 N ___ na discretizac8o
m HH = 100
KN 4 KN HH
g2=3 —_ p = 33.054—!-?395-104 —_ h=—
m m 1n
KN =
E = lll}-ll}ﬁ=2.1x 1I:IIS — h=1
m?
11:-[}4 p via pag: 103 do livro "Theory of Elastic Stability”, sobre a carga
I= Tl 201062 m critica via Bessel. O Autor é Timoshenko e Gere (2009).
Por = HSI;E—a - 330000602 =
HH o

foi divido pela altura para sair na unidade correta, e computar a
carga critica pelo incremento na carga distribuida p
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C.2. Secdo vazada invariavel na altura do pilar

a) Tubo retangular

KN - ; -
gl=0 — Q=290 N =0 M n=3
m
KN 5y BE 100 quantidade de pontos na discretizacio
g2=0 — p=10117927018-100" — 1
m HH=100 m Mdz=—=02
KN L
E = 210- lll}ﬁ =21x IIEIIS — HH
mi h = —_— 2
{ 3} n My =— =04
16-187) : = n
b = — 682667 m h=1'm
: via pag: 103 carga critica via Bessel
I= 161 [(1 = 20301 = 2039)° ]| = 67930 Pad E
7837 EI1 KN
Per = —— —— = 1118119461 —
HH HHE m

Diferenca entre os métodos:

A= ETTP 400 - g0t % a favor da seguranca
Per

criando a matriz M nula de ordem (n+3), sendo uma equacgdo com indice "1,J"; a segunda de
indice "2,]"; (n) equagdes e a ultima de indice "n+3,k". TOTALIZANDO n+3 equacdes

lsso serd realizado via subtragdo da

M = identity(n + 3) — identity(n + 3) matriz identidade por ela mesma
Zerar o vetor g Atribuir valor inicial ao deslocamentos v:
g= |for kk=0.(n+3) v=|for kel .(n+3)
Q. < 1] Vi © 1
q v
Coeficientes inalterados com a discretizacdo: Al = %}‘; Bl = ql
: El
Tl = —3
2
CE—:q——ql]-HH—Q Zh
L2
Equagdes Dif Finitas abaixo do engaste:
— — a a1
My =1 gy=0 (1# condig8o de contorno)
— — - - _ - H
Ml.ll} =1 Ml.l =-8 MI.S' 3 Ml.:l' 1 g 1] (2% cond. de

contorno)
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Equagdes Dif Finitas do engaste (j = 2) até um ponto antes do topo (j = n+1):

j=2.n+1
:{j ={-2rh
p(HH-x|+P
T2 = [ )+ 7]
] 12-h
M . ,=-T1+T2 M. . =2T1-38T M. . =-2T1+ 8T
1.]-2 ] 13-t ] 1.3+l ]
-
M. . .=T1-T2 o= Al{x|"+Blx + CC
j.i+2 i 4 %) b
Equacdes Dif Finitas no topo do pilar {j = n+2):
LN HH
[p-|HH —x o)+ P:I
T2ﬂ+] = 12-h
Mn+]_n—1 =Tl- Tln_'_: Mﬂ_'_:_n =-6T1+ E--Tlﬂ_'_: Mn+]_n+1 =12-T1 - IS-TEIH_:
Mﬂ_'_:_ﬂ_'_: =-10-T1 + ID-Tln_'_: Mﬂ.,.]_ﬂ+3 =3Tl+ 3-T2ﬂ+:

V2
9.0 = .—"5.1-|xﬂ+::| + Bl-xﬂ_'_: + CC

3* Condigdo de contorno: momento nulo no topo via operador de 2% derivada via Dif finitas
assimétrica a direita

:dn+3.n—1 =-1 :"{n+3.n =4 :dn+3.n+1 = :dn+3.n+2 =-20 :dn+:n P 1
U3 =0
Rotina de solugdo de sistema de equacdes algébricas no Mathcad: v = lsolve(M.q)
0

05 1.045726811998-107
96 1.061842223095°107
o7 1.077959918252-107
08 1.09407920285°107
99 1.110199508509-107
100 1.126320393132-107
101 1.142441540921°107
102 1.158562762397-107
103

L]
I
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b) Anel circular

Nesta modelagem; a Unica mudanca, em relacdo ao item anterior, € a férmula de célculo
do momento de inércia (na 12 etapa), ficando:

h‘q = . = = 5
gl=2 = Q=10 KN P=10 EN D=3 m m=73
m
N ) . n = 100 quantidade de pontos na discretizacdo
g2 =3 — p = 360466 — 1
m m HH=10 m m3=—=02
KN n
E =210 11}6 =21x IDS — HH
m: h = —
4 n
b=22_39%6 m h=1 m
I= l‘b-[l -(1- 2,-1]3}4] —3461 m"
via pag: 103 do livro "Theory of Elastic Stability”, scbre a carga Pcr = 1857 ET
critica via Bessel. O Autor é Timoshenko e Gere (20039). 100 (n2
. WM
(dividido por 100 para fornecer o valor correta) Por = 56935645 —
m

C.3. Se¢do macica variavel linearmente no eixo longitudinal do pilar

1* ETAPA: DADOS DE ENTRADA bz=30 m  by=10 m

hz=12 m hy =4 m

1N .
gl=1>0 ; Q=T000 kN P—0p &
1N n= 100 quantidade de pontos na discretizacdo
g2=0 —
m HH =100 m
EN HH
E = 214}.14}6= 21= lll]'S — h=—
m= 1
3 h=1 m
Ibase = bz by =23 11}3 1'n_l
12 N variar o "p" para pode
3 ] a . ..4 — achar acarga critica,
Itopo = hehy o m' teoncreto = 1.4591623-10 - através do incremento
Itopo
kflambagen = Tbase 0.026 via livro do Timoshenko bazem — 07577 nterpolado
& Gere (2009): gem =010 yia Lagrange
via pag: 128 carga critica via Bessel - Livro: Stability do Timoshenko e Gere (2009)
mflamba E-Iba EN
Per = BN T _soTies  —

10 H]-Iz m
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criando a matriz M nula de ordem (n+3), sendo uma equagdo com indice "1,j"; a segunda de
indice "2.j"; (n) equagdes e a ultima de indice "n+3 k". TOTALIZANDO n+3 equagdes

|sso sera realizado via subtragdo da

M = identity(n + 3) - identity(n + 3) matriz identidade por ela mesma

Zerar o vetor g Atribuir valor inicial ao deslocamentos v
gq= |for kk=e0.(n+3) vi=|for kkel.(n+3)
g <0 Vg € 1
q v
: . : : == —g2
Coeficientes inalterados com a discretizagdo: 41 .= —— El =ql
2-HH

{q2 Y
(% _lm-q
2 Y

Equagdes Dif. Finitas para as duas primeiras condigdes de contorno:

— — & a1
M, =1 gy=0 (1* condigdo de contorna)
= = - = = - = .
My ,=1 M ,=-8 M .=8 M ,=-1 q,=0 (2* cond. de contorno)

Equacdes Dif Finitas Centrais:

i=2.n+1 k=0.n+3 imputar inércia e peso - proprio em todos os

% = G-2rh g =(k-2)0h pontos, mesmo que estejam fora do pilar

3
1 [ (hz—bz) {hy — by) )
Izk = E[—Xk + bz:|-|:—-xk + b}-:|

[%& + bz}[%xk + b}-':|-“rcnncretn

Py

Aplicagdo do engaste (j = 2) até um ponto antes do topo (j = n+1):

—E Iz, §-E-Iz. Elz B8El Elz
-2 -1 +1 +2
Tlaj = ey = _ ) _ =y !
M--t-h3 M--t-h3 2-h3 1:1--1--113 1:1--1--113
16-E-Iz. 128-E-Iz, 2EIz. 128Elz 16-E-Lz,
Tib, = 132 - 13 L, 31 + J;l - J;z
144-h 144-h 2h 144-h 144-h
—31}-E-Izj_2 M-E-Izj_l M-E-Isz 31}-E-Izj+2
Tle. = + - +
] 3 3 3 3

144-h 144-h 144-h 144-h
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15-E-Iz. 128-E-Iz. 2-E-Iz 128-E-Iz. 16-E-Iz.
T1d. = -2 -1 I 3+l j+2
; ;
lal--l--h3 lal--l--h3 l-h3 lal--l--h3 lal--l--h3
EIr. ., 3-E-Iz. E I= 3-E-Iz. E-I=.
-2 -1 +1 +2
Tlej = g = & ) _ = !
144h°  144h°  2h°  M44R0 144k
[p;-(HE - x) + F] o |FH - x| ” Sp e 8p o)
T2. = - P . L B T | Fir1 7 Fie2
i h ] 12-h ] ] ] ]
M . ,=Tla + T2 M. . , =Tlb - 8T2. M . =Tle. + pa.
112 1 1 1.3-1 1 ] 1] 1 ]
.
M. . ,=T1d. + 8T M. . . =Tle — T2. = Al x|+ Blw + CC
i+l i i i.j+2 i % %) i
Equacdes Dif Finitas no topo do pilar {j = n+2):
X9 = HH
E-Izﬂ_1 IEi-E-Izﬂ IS-E-Izﬂ_'_1 B;I--E-Izﬂ_l_: 3-E-I.tﬂ_|_3
Tlaa = 3 - 3 + 3 + 3 - 3
1440  144h 144-h 144-h 144-h
14.E. T.E. 1.E. 1E.
—-I-Elzﬂ_l M4-E Izﬂ 72-E Izﬂ+1 BELEIzIH_: 12-E Izﬂ_l_3
Tibb = + — - +
3 3 3 3 3
144-h 144-h 144-h 144-h 144-h
—5.E. E.- E.- 14.E.- E.-
6-E Izﬂ_1 36Elzn ll}SElzIH_l Q_AEIzn+: ISEIEIH_3
Tlee = + - + +
3 3 3 3 3
144-h 144-h 144-h 144-h 144-h
0.E. 20-E- E. 20-E- E.
20-E Izn—l LI}EIzn 360-E Izn+1 LI}EIEIH_: 60-E Izﬂ_'_3
Tldd = - + - _
3 3 3 3 3
144-h 144-h 144-h 144-h 144-h
11-E.- E.- E. 16.E - E.
11EIzﬂ_1 6I5EIzn 193E12n+1 LﬁEIzIH_: 33Elzﬂ+3
Tlee = + - + +
3 3 3 3 3
144-h 144-h 144-h 144-h 144-h
o = [pn+1'|.HH ~ )t P:I
“n+l T 12-h
(HH-x,,,) |
Pana= 12-h 'l._pn—l + Ijpﬂ - 15'I:'ﬂ+1 + 1|:ILI:'ﬂ+2 + 3'I:'n+3:I
Mn+1_n—1 = Tlaa - I'Eﬂ+: Mn+1_n = Tlbb + 6-I'2n+: Mn+1_n+1 = Tlec — IS-I'ErH_:
Mn+1_n+2 =Tldd + P2 5 + ID-TEIH_: Mn+1_n+3 = Tlee + 3-T2n+:

) -
9.0 = il'l_xn+1:' + Bl-xn_'_: + CC

E por fim, a ferramenta de “Solver” do Mathcad: v := Isolve (M,q) , conforme item anterior.
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CODIGO COMPUTACIONAL: Flexo — Torgéo

D.1. Rotagédo e bimomento na anélise estatica do pilar em nucleo estrutural

a) Via Teoria da Flexo — Torcéo

Verificagdo mediante

Centroide SMITH / TARANATH (1972)
by =345 m aly=1 m t=015 m
bz=343 m aly =1

posicdo Xcg

b b
0-(by-£) + Tz-[bz-t} + Tz-[bz-t} + bz-(aly-f) + bz-(ady-f)

(by-t) + (bz-t) + {bz-t) + {aly-t) + {aly-t)

-~

bz -t + aly-bz-t + a2yv-bz-t o bz-(aly + aly + bz)
- aly + aly + by + 2-bz

simplificando, tem-se:
aly-t + a2yt + byt + 2-bz-t

bz-(aly + aly + bz)
aly + aly + by + 2-bz

Xeg =
Heg = 1.52246%9%6 m

posicdo Ycg

5] 5] 5

- Zalyby — alv” + alv” + bv™ + 2-bz-by
cg =
- 2-(aly + aly + by + 2-bz)

Yeg = 1.725 m
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Momentos de Inércia

begZ = Heg begY = Yeg
Inércia em £:
. 2 (.3 3 31
3  alw kY il gL b
Iza = bz-beg¥  + aly = by + beg¥ | + | ) ML By
L2 ) JoL 12 12 12 )
) _"I"I ) i
2 { ~ v { o by T
Izb = bz-(by — beg¥) + alyv| begY - % | + by beg¥ — T}
Il._ L _.'l I‘-_ = .l'l
b
Iz =?Zt + (Iza + Izb)
4
Iz = 4.070195 m
Inércia em Y-
3 bz \2

1 . . {
Iya = by-begZ” + % + aly-(bz — begZ)” + aly-(bz — begZ)” + 2br| begZ — — |
2)

i Ly 2y by A
Iy = | et A A 3't3 + (Iya)-t
Tl 12 12) )

Iy = 3.38471 m

Distancia dz:

b
dzl = Tz-[b}r-bz}-[b}-' — begY)
aly
dr2 = T‘-al}-'- (by-bz)

— 1 - 1 -
dz2a = [[ ajf' ‘bz-aly-(by — bcg“f}] + [%-bz-ﬂy-[aly}} + [~aly-(by-bz)-(by — beg¥)] + dﬂ:|

com retangulos e triangulos

—aly . .
dz3 = = -bz-a2y-[2-{bcgY — aly) + begY]

gy o St(dzl + dada + d23)
- Iz

dz = 1977 m
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i VALIDAGAO: Mediante dissertaco Xavier (1987) i
X 4 X
=  J— r— gl = 4 7
% M =ty — aly — aly Iz=407 m %
X - X
" M=145 m "
x bzl 2 302 %
X dyma = by bz + 2byT - W (3-by — 1) X
X = X
X X
X dyma= 1977 m tera gque se o meu dz X
x .
X
Distancia dy:
-b
dyl = .;gz (by-begZ)-begZ
bz - b
dy2 = [z—ﬁ“gz}-[hz ~ begZ)-[(by-begZ) + 2-(by-bz)]
aly
dy3 = T‘-[bz — begZ)-[[bz-(by + aly)] + (by-bz)]
_a;l‘r'
dyd = n —-{bz-a2v)-(bz — begZ)
4 t-{dyl + dy2 + dy3 + dvd)
y =

Iy
i dy e dz sdo distdncia, logo &

positivo, basta posicionar

dy = 1722188 m adequadamente.

beg¥ = 1725 se anulam devido a simetria
Inércia Setorial lw:
wl = dz-{by — beg¥)

wl = (bz — dz)-{by — begX)

w3

dz-beg¥

=
I

—[{dz — bz} -beg¥]

Wi = w2 + (dz + bz)-aly

wh = —[dz-(beg¥ — alv) + bz-{—beg¥ — alv)]

F. £
o o
I I
[ %]
= =
= =
[} [} [}
Bk
I I
a [
[F] i
& B
oo =
[} [}

£
(¥R
I
a2
.
[y
[
£
L=
I
:-.I
=
oy
oo
H
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Twa

Iwb =

Twe -

Twod -

Twe :

2 =t

How oM oM oM oM oM M OMOH oM oM MM OH M MM MMM MM

bz

= ?[-m-[—z-m + wl) + w(—wl + 2-wd)]

[—m[ Wl + w3) + wi-(—wl + 2u3)]
=%-[-m[ - + w3) + w(—wh + 2-wd)]
- 2 [ (2 + ) + w502+ 2]
=%-[mﬁ[3mﬁ+m¢}+m¢[mﬁ+ ey

(Twa + Iwb + Twe + Twd + Lwe)

T2 = 1427556 m

VERIFICACAD X x000000000000000o0o0n0ooto0aaootoooonoonntonoooaooo

pelo artigo de SMITH e TARANATH (1972)

bb =345 m tt=015 m
dd =345 m ce =1 Iz = 4070195
1 bb retdde  flLc
5 ey )
et = — | bbett-dd” + e — =
Iz 4

ee= 197713 m

._1_

(3-dd — I_L}:|

«{bb — ee) + 2-cc-{bb + EE}:|

dd d
Iwwa = - (bb — ee)- |: «{bb — ee) + cc-(bb + EE}:|
dd 3-dd
Iwwb = |:T (bb — ee) + cc-(bb + EE}:| |:
i 2 2 3
dd” -ee dd-ee dd (bb — EE}
Tww = 2t + +
M4 12 12

T = 1427556 mﬁ

LL = by — aly — aly

IL=145 m

? (Twwa + IuJuJb}:|

How oM oM oM oM oM M OMOH oM oM MM OH M MM MMM MM
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CALCULO DA FLEXO-TORGCAO: paredes finas aberta

' L
1 . =
It = E-l.l-*r:tz-t3 + b}-‘-t3 + alj,-'-t3 + al}=-t3:' = 001389 m4 E = 210- 106 2 w=103
m
Gl = E HHE=1M m
Al + 1)
- L
Gl = 8.07602 = 10° 2
m
G1-It
o=
E-Tw
o= 0.01933
oHH = 193476 adimensional
e L
Cenario 1 BH=10 ENm MH=0 kNm g2=0 —
m
Ea=E—bch Q=0 K of = o HH
< 1= 50 L -
- gl = —
ea= 020253 m =0,—.1
- “= % 1w
ez =begZ + dz+ ea
= mx = gl-ez
= 370215
=370 m mr= 1851074 KN-Z
m
&, simnGEg |
218 s g
k1l = | — — £+
(© = (@) > -g+ == =
1 — cosh{nH-
BLE) = ~|:[ (aHE)) + (oH)-tanh{od)-(1 — cosh({aH-£)) + kl[ﬁ}:|
coshi{nd)
BAE) = -1+ coshi{nH-£)
A3(£) = ~[sinh(aH-£) — cosh(aH£) tanh(H) — (o) €]
4 Bl
—mx-HH BH-HH I‘-.dtI—I-I—]]—l3
BE) = = BUY + ——— BAY ~ ————— PY(D)
E-Twl-oH E-lwl-ol E-Twl-
cosh{aH- .
BE) = cosh(oll ) + (oH)-tanh{od)-cosh(oH-£) — 1 — {of)-sinh{oEH-£)
cosh{od)
as(e) = SosheHE) Xx = 0,5. 100
cosh{od)

[A9(£) = cosh(aH-£)-tanh(aH) — sinh{cH-£)
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B(£) = ﬂ.;n[g} + BEp(E) - MEHH S0
ol ol
£= Xx= BLE) = PpE) = BNE) = B(g) =
0 0 0 0 1.139 -5.63077947-105
0.05 5 0.005 -2.2225688516°10-3 0.961 -4,75332229-105
0.1 10 0.019 -8.41536697118°10°3 0.802 -3.96660538105
0.15 15 0.041 -1.79218938231-10-2 0.66 -3.26353157-105
0.2 20 0.068 -3.01553052344-10-2 0.533 -2.63724537-105
0.25 25 0.101 -4.4502017296210-2 0.421 -2.08197128-105
0.3 30 0.138 -6.07713111592-10-2 0.322 -1.58250888-105
0.35 35 0.178 -7.82819928772-10-2 0.235 -1.16427409-105
0.4 40 0.22 -0.67675676501°10-2 0.16 -7.9325628-104
0.45 45 0.263 -0.11591839264 0.096 -4,75980675-10%
0.5 50 0.307 -0.13546967699 0.042 -2.09475825-10%
0.35 55 0.352 -0.15519900196 -0.002 875.42269118
0.6 60 0.397 -0.17492423782 -0.037 1.80753317-104
0.65 65 0.441 -0.19450183812 -0.062 3.08132304-10%
0.7 70 0.485 -0.21382540532 -0.079 3.92084161-10%
0.75 75 0.528 -0.23282514515 -0.088 4.33395137-10%
0.8 80 0.571 -0.25146631043 -0.087 4.32452133-10%
0.8 85 0.612 -0.26074077818 -0.079 3.80246317-104
0.9 ag 0.653 -0.28771160695 0,061 3.03373044°104
0.95 a5 0.693 -0.30542346459 -0.035 1.74028065°10%
! 00| L2733 -0.32299320042 0 0
Cenario 2: BH2 =10 EN-m Q2 =40 KN
MtH2 = Q2-ez = 14808592 KN-m
mi2 =0 -2
m
4 2 3
0 = =2HE o1 + ZEEE g - MEEE e
E-lu2oH E-lul-aH E-lwl-aH
B(E) = ﬂ-;a?(g} + BH2-BS(£) — }"Hj‘ﬂ-;ag[g}

oH
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£= B3(g) = $h2(E) = BYE) = BYE) =
0 0.959 -6.54173640544-10-3 0.959 -7.34105-103
0.05 0.963 -6.57134018638°10-3 0.867 -6.63385°103
0.1 0.976 -6.6563085060610-3 0.782 -5.98877-103
0.15 0.996 -6.79125768334+10°3 0.705 -5.39978:103
0.2 1.022 -6.97127213364-10-3 0.635 -4.86136-103
0.25 1.054 -7.19185833189-10-3 0.571 -4,36847-103
0.3 1.002 -7 44890272839-10-3 0.512 -3.91640-103
0.35 1.135 -7.738633223258-10-3 0.457 -3.50119-103
0.4 1.181 -§.05758383888-10-3 0.407 -3.11868-103
0.45 1.232 -8.40256225902+10-3 0.361 -2, 76538103
0.5 1.286 -8.77061993134-10°3 0.319 -2.43798-103
0.55 1.343 -0.15002445261-10°3 0.279 -2.13342°103
0.6 1.402 -9.56523397831°10-3 0.242 -1.84883°103
0.65 1.464 -0,086873417°10-3 0.207 -1.58156-103
0.7 1.528 -0.01042171219 0.174 -1.3291-103
0.75 1.593 -0.01086764332 0.142 -1.08909-103
0.8 1.66 -0.01132266375 0.112 -859.27825
0.85 1.728 -0.01178485551 0.083 -637.51448
0.9 1.796 -0.01225236782 0.055 -421.72135
0.95 1.865 -0.01272339972 0.027 -200.87787
1 1.935 -0.01319618321 0 0
Cendrio 3: BHI =0 EM-m do lintel
M3 = 0 Nem h=3 m eL =013 m
mi = mx = 1851074 KN-2 H=14 m  BL=030 m
mn
Aii = by-bz I - eL-hL”
12
A8(E-IL)- A
EE = ( ﬂ}
L
L=1565%10 " m"
Aji = 11.9023 -
KK = 731902 x 10° EN-m”
n3H = nd-HH
n3H = 2218164 adimensional
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analisando as rétulas sendo formadas no meio do vo

{2 i
. a2 | & sinh(a3H£) |
K3(E) = (odH) -\ — - £+ - f
L2 o3H J
1 — cosh{adH-
B13E) = ( ( &) + (o5H)-tanh{oSH)-(1 — cosh{cSH-£)) + E3(£)
cosh{odH)
F23(g) = -1 + cosh{odH-E)
F33(g) = —[sinh{c3H-£) — cosh{oSH-{)-tanh{o3H) — (o3H)-£]
—mx3 HH;1 EH3 HH] MtH3 H]—I3
o i o 2 ™ ¥ 2 L)
h3(E) = J RO + ————— B - ———— B3O
E-Iw2-o3H E-Luw2-odH E-Iul2-ol3H
cosh({o3H- .
B73(g) = A + (odH)-tanh(oSH)-cosh({odH-£) — 1 — (os8H)-sinh{o3H-£)
cosh{olH)
. cosh{nSH-£)
FE3(g) = P —
cosh{olH)
F03(£) = cosh{oiH-£)-tanh({c3H) — sinh{ndH-£)
—mx3 HH'2
(3 MtH3-HH
B3(g) = —ﬁ-|3?'3[ﬁ} + BH3-P83(g) - f-ﬂm[ﬁ}
oldH
£= B13(g) = p3(E) = pIE) = Bi(g) =
0 0 0 1.139 -7.96886 104
0.05 9.121 -2.32649-10-4 0.961 -2.3765 104
0.1 26.974 -6.87998-10-4 0.802 -5318.01307
0.15 46.883 -1.19578-10-3 0.66 766.95475
0.2 66.645 -1.60984-10-3 0.533 2774.15227
0.25 85.535 -2.18164-10-3 0.421 3436.24964
0.3 103.313 -2.63508-10-3 0.322 3654.64976
0.35 119.9 -3.05813-10-3 0.235 3726.60036
0.4 135.27 -3.45014-10-3 0.16 3750.45006
0.45 149,413 -3.81088-10-3 0.096 3758.27617
0.5 162.328 -4,14029-10-3 0.042 3760.82344
0.55 174.014 -4,43833-10-3 -0.002 3761.5598
0.6 184.469 -4,70501-10-3 -0.037 3761.48776
0.65 193.695 -4,04032-10-3 -0.062 3760.50923
0.7 201.691 -5.14427-10°3 -0.079 3757.29202
0.75 208.459 -5.31680-10-3 -0.088 3747.4561
0.8 214.002 -5.45827-10°3 -0.087 3717.61064
0.85 218.332 -5.56869-10-3 -0.079 3627.12323
0.9 221.48 -5.64899-10-3 -0.061 3352.79923
0.95 223.546 -5.70169-10°3 -0.035 2521.15984
1 224,831 -5.73446-10-3 0 0
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GERANDO OS BIMOMENTOS ABAIXO E ACIMA DOS LINTEIS
_ sinh{edH-£) .

B4 - (03H) tanh(edH)-sinh(e3H-£) — (03H) (£ — 1 + cosh(a3H-£))
cosh{nsH)
B3(g) = sinh(a3HE) BE(E) = sinh{cdH-£)-tanh{ol3H) — cosh{oldH-£) + 1
cosh{nsH)
P R S
a3(e) = e+ PO TR gy - MEBEE g
E-Lw2-o3H ElwrasE E-Tu2-03H-
RL(g) = =AY g3 BL(g) = KK-dp3(E)
L’
Bacima(£) = B3(£) — % Babaixo(£) = B3(£) + @
BabatoTopo = BL{f « 1) usar todos menos o do topo
EBabamoTopo = —4.141 = 1|]I3

£ = M(E) = RL(g) = Babamo(£) = Bacima(g) =
0 0 0 -7.96886°104 -7.96886°104
0.05 13.756 -2.30275-103 -5.22448-104 4.71467-103
0.1 17.55 -3.05274°103 -4.16533-104 3.10173-104
0.15 18.058 -3.14117°103 -3.66208°104 3.81547-104
0.2 17.483 -3.04105°103 -3.3422°10% 3.80703-10%
0.25 16.55 -2.87874°103 -3.0828-10% 3.77005°104
0.3 15.499 -2.69592°103 -2.84335-104 3.57428-104
0.35 14.409 -2.50633-103 -2.61049-104 3.35583-104
0.4 13.306 -2.31451°103 -2.3798-10% 3.12089-104
0.45 12.199 -2.12195-°103 -2.14982-104 2.90148-10%
0.5 11.00 -1.92015103 -1.92009-10% 2.67225'10%
0.53 9.982 -1.73628°103 -1.69045°10% 2.44276°10%
0.6 8.873 -1.54338-103 -1.46086-104 2.21316-104
0.65 7.764 -1.35052-103 -1.2314-10% 1.0835-10%
0.7 6.656 -1.15775-103 -1.00228-104 1.75374-104
0.75 5.549 ~065.28273 7.74182-103 1.52367-10%
0.8 4.448 -773.74226 -5.49186°103 1.29271-104
0.85 3.363 -585.00545 -3.3359-103 1.05902-104
0.9 2.327 -404.7684 -1.46406°103 8.17056°103
D'gi 1.439 -250.299 -458.02307 5.50034°103
1 -173.94633 -2.0704-103 2.0704°103

despreza o ultimo
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VERIFICACAD: X X X 3000000000000o0o0oao0noatoootoooeooaoonoaoaontoooaooaoooaomood
rodar rotagdo e bimomento do SMITH /TARANATH - cenario 3

a3 2

-cosh{aH-£) + %'Sﬂﬂl[m'[l -8

thaaalf) = "

(oH)”
—mx3 [—HH: N HHE

. 2 E\'I
ST3E) - - -sinth ‘HH -{1- = |-cosh
PpSTIE) GL Tt cosh(odD) - e (oH) + £ Y cosh{oH) + thaaa(f)

BST3(£) - [cosh(odH) — cosh(a3H-£) — o3H-sinh[03H-(1 — £)]]

cGHJ cosh{clH)

rodar rotacio e bimomento do SMITH /TARAMNATH - cenario 1

G1It mx3 = 135107
E-Tu2

|' GlIe
kk = HH- Els odH = oo BH ooy = 0.01%

kk = 1.935 odH = 1.935 adimensional

a3 Bl

5 Y
-cosh{oH-£) + mﬁr-smh[cﬂ-l-[l - E)]+EHH -1 1- % {-cosh{odH)
' /

~
', Fa

(odH)™ '

p5T1laa(g) =

{ .l . b
HSTI(E) = ~m3 |2 mr-smh[am} + ST1aa(f) |
Glitcosh(adH) | .20 odH |

2 3

HH { ¥k \ HH kk
p5T11aa(Hx) = —— -cosh| — -Xx | + ——-sinh| —-(HH - Xx)
L:kl \HH ) Kk HH

T gl
—mx3 -HH~ HH X\
BHSTI1(3E) = : - sinh(kk) + Xx| HH - = |-cosh(kk) + $pST1laa(Xx)
Glltcosh(kk) | 2  kk 2 )

BSTI(E) = _f”ﬁ—'m{u-[msh[cﬂ} — cosh(aH-£) — oH-sinh[eH(1 - £)]]

odl -cosh(aH)
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pST3(E) = BST3(g) = B3(g) = $h3(E) =

0 7.96886°10% -7.969-10% 0
-0.002222568851602 2.3765-10% -2.377°10% -2.326°10°%
-0.008415366971184 5.31801-103 -5.318-103 -6.88-104
-0.017921893823101 -766.95475 766.955 -1.196-10-3
-0.030155305234374 -2.77415°103 2.774°103 -1.7-10°3
-0.044592917296157 -3.43625°103 3.436°103 -2.182-10°3
-0.060771311159205 -3.65465°103 3.655°103 -2.635°10-3
-0.078281992877196 -3.72669°103 3.727-103 -3.058-10-3
-0.096767567650125 -3.75045-103 3.75-103 -3.45°10°3
-0.115918392637558 -3.75828°103 3.758°103 -3.811-10-3
-0.135469676993649 -3.76082°103 3.761-103 -4.14-10°3
-0.155199001964213 -3.76156°103 3.762-103 -4.438-10-3
-0.17492423782032 -3.76149-103 3.761°103 -4.705°10-3
-0.194501838119391 -3.76051°103 3.761-103 -4.94-10°3
-0.213825495318686 -3.75729-103 3.757°103 -5.144-10-3
-0.232825145150306 -3.74746°103 3.747-103 -5.317-10-3
-0.251466310433169 -3.71761-103 3.718-103 -5.458°10-3
-0.269749778176413 -3.62712°103 3.627°103 -5.569°10-3
-0.287711606950148 -3.3528-103 3.353-103 -5.649°10°3
-0.305423464592567 -2.52116°103 2.521-103 -5.702-10-3
-0.322993299416243 0 0 -5.734-10-3
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£ = BGSTI1(Xx) = $STI(E) = BSTI(£) =

0 0 0 563077.947
0.05 -2.22310°3 -2.222568851602'10-3 475332.229
0.1 -8.415°10°3 -8.415366971184°10-3 396669.538
0.15 -0.018 -0.017921893823 326353.157
0.2 -0.03 -0.030155305234 263724.537
0.25 -0.045 -0.044592917296 208197.128
0.3 -0.061 -0.060771311159 159250.888
0.35 -0.078 -0.078281992877 116427.409
0.4 -0.097 -0.09676756765 79325.628
0.45 -0.116 -0.115918392638 47598.068
0.5 -0.135 -0.135469676994 20947.582
0.55 -0.155 -0.155199001964 -875.423
0.6 -0.175 -0.17492423782 -18075.332
0.65 -0.195 -0.194501838119 -30813.23
0.7 -0.214 -0.213825495319 -39208.416
0.75 -0.233 -0.23282514515 -43339.514
0.8 -0.251 -0.251466310433 -43245.213
0.85 -0.27 -0.269749778176 -38924.632
0.9 -0.288 -0.28771160695 -30337.304
0.95 -0.305 -0.305423464593 -17402.807
1 -0.323 -0.322093299416 0

b) Via Teoria dos Painéis — Parede

ESFORCOS SOLICITANTES NO PILAR EM NUCLEO - VIA TEORIA DOS PAINEIS - PAREDE

m: 343 m al;-' =1 m L= 015 m
bz = 345 v =1 8 kN
= " A= o E=21x10 o
do lintel das Paredes
h=100 m el=015 m LPL=by LPd=aly
LP2 = bz LP3 = aly
Ll = 143 m hL =030 m
el oty LP3 =hz s
LP4 LP3
3 di=—r o=
L-hL 2 2
k=
i AL=TIPLT g 1pa
1 = LP2.
AZ=IRIT s 1psi

AT =1P3t
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constantes da eq de MAMNEY

Al =el-HL ko = —6 para secdo retangulares no lintéis
2
3-E-IL
o = ke
G1-AL-I1
. — . .
i:=3.g.ﬂ 1,‘-]_:=4_.E.ﬂ
1 14+ 4-pe L1 1+ 4pc
BL = KL + al
11
a=22 al = 2.68883 x 10°
11
5
KL = 721469 x 10
bL = 6.83001 x 10°
5
fl= 94207 = 10
{ 4
];.‘1=H_+LP-I--:}JL E |+ bI_E
2L 2 J 2
S/ s A
I = LJ_+£ B+ ijﬂ_: L2
2 2 J 2
a.1=a.T_+£ bI_ g —bI_E
2 2 ,J 2
af:=aL+§-?bL+E-tL _p B
2 L 2 ) 2
bi=bL + %-ﬂ_
bf =bL + %-i
bfast = bL — %-ﬂ_
A2+ A4 -A4 0 0N
-Al  Al+ A2 -A2 0

Ml =
-A3 Al + A3 Al

L0 0 A5 A3+ AS)
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= [dz-{bcg¥ — aly) + bz-{—bcz¥ — alvy)]

wf = {bz — dz)-{by — beg¥) + {dz + bz)-aly

wi = —7.06782 Al = 05175 Ad =015
f = 7.96782 A2 = 0517 A5 =015
A3 = 0517
—Aa[f , bfast
ddl = = —2—+tLtun as—tT_}qu
h |\ LP4 5
—A3 [ bf
ad2 = 2. z——tL} 4| z—+tL}u;f
h |\ LP4 LPS
-1 ki
ads = — ! z——mtuu 2—+b1}-.af
h |\~ LP4 LP3
-1 of i
dds = . 2——hf}-.u1+ 2—+bf‘tu;|f
h |\~ LP4 LP5
4 .3
ddl = —3.49603 x 10 dd3 = —2.03005 x 10
dd2 = —7.76896 = 10° ddd = —3.64866 x 107
) { _A: A
(00 da) [0 -A4 0 A2 0
A2 A1 0 0 0
Y L MO=1 3 a1 0 0 o
T oo 0 | &~
-U}'I} dd2 ) L0 0 -A3 0 A3)
[ 0 _IP2-AZ-A4 0 LP4-A2- A4 0 \
\gs o E [ IPI-ALAY IP2-ALAD 0 0 0
T 2| AP1AL-A3 0 LP3-Al-A3 0 0
Lo 0 _LP3-A3-AS 0 _LP5-A3-AS )
. ) wl =03
(00 0) {0 IPL LP1 0 ) o E
00 0 IP2Z IPF2 0 0 T 21+ v)
1
Mé= 00 0 MI=-| 0 0 -LP3 LP3 .
2 o o0
00 dds P4 0 0 0 i
| _ MO=l00 O
L0 0 dat) Lo o0 o LPS)

L0 0 GILIt)
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r
3
t1P1
- 0 0 0
12
3
t1LP2
- 0 0
12
tLPT
Mi=E 0 _ 0 0
12
3
0 0 _tLP4
12
3
t1P5
0 0 0 0 -
' 12
-1 0 —bcgZ |
-1 beg¥
M8 = -1 —(by — beg¥)
-1 0 (bz-begZ) -1 0 -152247
-1 0 (bz - begZ) | 0 -1 1725 -
M8=|0 -1 -1725
_loo
-1 0 192753 ME =
-1 0 192753 00 l.uzzmoﬁ_
calculando a matriz J
Z4CG = dz + begZ
TtCG = —dy + beg¥
1 0 -ZtCG
10 -35
TT=|0 1 YtCG
00 1 TT=|9 1 7812% 107 °
00 1

1 =~ (s + v L) v T

g 3

834333 =« 10 506046 10 © —3.14006 x 10

g ]

Ja=1_372520% 107" 7.10467 x 10 55501 x 10°

9

—3.14906 = 10 53501 % 1070 128664 x 10 )

acoplado o sistema
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calculando a matriz S

Sa = TTL- M8 -6 + M7M1™ LA TT + TTE-Mo-TT

{ ) 30
l0 0 26665010
Sa=|g 0 419587 = 10°

L0 0 —324688 % 107 )

Calculando o Vetor Vf CENARIO 1
KN
EH =0 ¥Nm gl =30 —
m : E
_ . Q=0 N
G = 0 MtH =0 kN-m N
2=0 —
bz m
fa= S ~besZ
ea = 0203 m .
i { ql-cos(8G)
= bogZ + deca c=0 2 2
ez=3T702 m —g1-sin(0G)
2
—q2
Dlgg = —— 1-gin(0G
2HH mm = gl-ea gH = —qu(}
D2qg = —gl mm= 10127 &N-— ql-cos(B0)
" 4
D3gq = Q + ql-HH | ql-cos(bG)
L 4
Dlgg=10
Dlgq = -50 . [ -1 0 0 -1 -1
D3gq = 5000 MBET = ME™ = 0 -1 -1 0 0

| -1.522 1.725 -1.725 1.928 1.928)

M1t = MsL Az Lol

{0 0355 —0355 -1225 1225 (" cos(8G)
Mll=| 1522 —0964 0559 -1928 —1928 Aast = | sin(0G)
L0 —0634 0684 2361 -2361) | ez-cos(#G)
Efeito de 7850-9.81 KN
P ~acg = ————— = 77008 —

m
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kN
pl = ~yace-(LP1-t) = 30.832 — N
m pd = ~aco-(LP4-t) = 11.351 —
m
kN
p2 = ~yace-(LP2-tf) = 30832 —
m kN
p3 = ~yace-{LP4-tf) = 11.551 —
m
kN
p3 = ~yace-(LP3-t) = 30.832 —
m
(pl) : .\
p2 | Algq X + Blqq-Xx + Claq/
T, - - [ l -
Pp = p3 VEF(Xx) = | | A29q Xs* + B2qq Xx + {:zqq:'
p4 |' .2 . |
{ \Al3gg-XEx + Bigg-Xx + C3gg
p3)

Alg = Dlgg-cos{8G)
Elg = D2qqg-cos{8({)

Clq = D3qq-cos(8G) — (Mil, Ppy+ Mily -Pp, + Mily ,-Pp, + Ml . Pp. + M1, Pp,)

Alg=10
Blg = -30
Clg=35= 103

Alg = Dlgg-sin{8G)
EBlq = D2gqg-sin{0G)

C2q = D3qq-sin(8G) — (M11) -Pp, + MI1, Pp + Ml ,Pp,+MIl .Pp;+Mil ,Pp)

Alg=10
Bilg=10

Clq= 3553 107

Alg = Dlgg-(ez-cos{BG))
EB3gq = D2qqg-{ez-cos{8())

c3qa = M1, -Pp, + Mil, | -Pp, + Mil, ,Pp, + Mil, ;-Pp, + Mll, ,-Pp,

C3gq = D3gg-{ez-cos{80)) — {c3ga)

A3g=0 Big= -185107  C3q= 1851 x 10°
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Algg = TTﬂ_ﬂ-Alq + 'ITID_I-A.Zq + 'ITID_Z-ABq

Blgg = Trq}_q}'qu + TTq}_l'qu + 'IT'D_Z-B3q

Clgg = Trq}_q}'clq + 'ITID_I-GZq + 'IT'D_Z-EEq

Algg = 'ITI_ID-A.lq + 'ITI_I-A_Eq + 'ITLE-;Uq

B2qq =TT, Blg+ TT; -Blq+ TT, ,-Biqg

1,2

C2qq =TT, Clg+ TT; |-C2q+ TT; ,-C3q

1,2

Algg = 'ITIJ}-Alq + 'ITZ_I-A_Eq + 'ITZ_E-;Uq

B3gg = TI'E_ID-qu + 'ITE_I-BEq + 'ITZ_I-BEq
C3gqg = 'ITE_ID-Elq + 'ITE_I-CEq + TI'Z_I-CEq

ROTIMA DE DESACOPLAMENTO DD SISTEMA,

1? Passo: Montar o Sistema -Ja*dddu + Sa *du=Vf

8343 = ll[lIS 506 « l'[I'_S —3.149 = 11}9

Ta=1 3725« 11}_9 T.103 = l'I:IIS 535 % 107

Lo—3.140 l'l}g 555% 100 1287 x l'I:I'll[II

[0 0 2667x10
Sa=|0 0 419 x 10°

Lo 0 —3247x 10°

{A.qu-}fxz + Blgg-¥x + Equ}
VI 3x)

{A_qu-sz + Blgg-Xx + czqq]'

{qu-}{xz + Bigg-3x + Cqu}

Algg=0  Blqq = 597.80511 Clqq = —5.97805 x 107
A2qq=0  Blqq=—0.1446 Clqq = 14.4604
A3gq=0  B3qq=-185.1074 C3qq = 185107 x 107
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2° Passo: Diagonalizar Ja

) -
dr = Jal}_l}'hl.l - |.Ja|}_ 1:.

—JaD_:-JaD_ i + Jal_J-JaD_ 0

YR

i = atan

(cos(dpr) —sin(dpr) ZR
Ber = sin{du) cos(de) YR

L0 0

JaBARRA = Rer.-Ja-Rer

JaBAREA =

3® Passo: Calcular a matriz Sa asterisco

( L

I aB_'—‘LRE_'—‘LD_ 0

JaBarrahleio =

(3421107 °

JaBarrahleio = 0

L 0

-1220 < 10 °

3.752% 10 0

SaAst = JaB a.tral—Ieiu-RerT- 3a-Fer-JaBatrahdeio

—Ja_ .-Ja + Ja, .-Ia
0,27%1.1 1,271
R =
dr
17
dr = 607 = 10
pr =10
(10 3686
Rer=|g 1 —7812x10 °
L0 o0 1 J
8543 % 10° 596 107 ° 0
7105 % 10° 2334 % 10
0 1695 1070 1259 % 100
)
0 0 |
1
0
1.1
1
0
JaB_-—‘s_R_R_-—‘il_H-
!
|} ]
5
3752 10 °)
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4" Passo: Diagonalizar a matriz Sa Asterisco

f -4
(00 342310 4

Sadst=|g 0 5006x 10

LD 0 926« 10‘4;'

Como a matriz de massa (3aAst) sera diagonalizagdo via Calculo numeérico Vb

(10 006845
Av=|0 1 —011812
Lo 0 1)

e a matriz de autovalores sera a propria matnz [ Saist

L0 0 5 10_3,5
5° Passo: Calcular a matriz modal ponderada

dra = JaBarralleio-Av

’;3.431 x10° 0 23425107 ° |
da= 0 3752 % 1070 4432 %1070
| 0 0 3752 % 1077 )
6° Passo: Calcular o vetor de forga no novo referencial
(301x 107 0 0 )
PEerT = ﬁ:*aT-RerT = 0 3752w 1[,_5 0

| 1.406 = 107 1461108 3792 w ")
primeira fungdo

DDlv = @'REITD D-_;‘quq =0
DD2v = @REII‘D 0 (Blgg) = 0.02

DD3v = $RerT, Clgg) = —2.043

0.0
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segunda fungao

DDlw = @RerTl 1-[3‘5qu} =0

DD2w = @RerTl I-Bqu =545 10 5
= s —4

DD3w = @RerTl l-Equ = 3425 = 10

terceira funcdo

DDl = @RerTD_:-(;—‘quq} + @*REII':_ 1-[3‘5qu_} + @*REIT:_:-[_'—"Jqq} =0
DD2dy = @Rerrﬁ_:-(quq} + ﬁJRerT:_ 1-[quq_} + @RerT:_:-(B3qq} = 6044 « 1|]'_3

DD3¢ = ®RerT ,-(Clqq) + $RerT, (C2qq) + PRerT, ,-(C3qq) = 0694

7° Passo: reescrever as condigtes iniciais da EDO no referencial generalizado

: — 57
[ aese 10t 2422107 —1086% 10° )
-1 -1 _ .
$a Rer =| 2209410 11 2665x 107  3.169x 10°
] _ 4 ]
0 0 2665 % 107 )
oy oY
IR A I
$fa Rer -0 |=|0
o) o)

8° Passo: resolver as EDO no referencial generalizado

SOLUCAD DE ¢+

Ay = Ilhl.., =007

22, ,=j><1u_3

ey

2 —3
xafy =3 = 10

2-DD1

AATD = :b =10
Mad Aad = 25% 107"

- ~ DD2d 3
Addd = S = —-1389 |'::\3,| ,I':.: =25x10 ’

Aady ST

-
= 2.
AASH = da-DD3dgy + 2-DD1dp _ 138.881

}\ad}q
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| nap>-DD3¢ + 2DD16)
AAgp = 02t b+ 2DDId] _ ;061w 10°

had}j

AATH = (—2-DD1cp-rad-HE — DD2dp-Aady) + | had):-DDﬁ) + l-DDld}:'-si.tﬂl[}xad}-H]-I}

cosh{xadg-HH)- had}j

AATh = 1963 = 1|}3

AMGD = AATD = 1.063 = 1|}3

9° Passo: Solugdo da EDO em ¢ no referencial inicial

_5 4
3421 107" 0 14065 107" |
Ed = Rerda= 0 3752 % 107" —4461 % 107 °
L 0 0 3752 %1077 )

Afuncio ¢ (x)

AA3 =Rd, -AA3p=10 AA6i = Rd, -AA6¢ = 0.0737

AAL =R&, ,AAld=-521038 x 107" AATi = Rd, ,-AATd = 0.0737

- - - —3
AAS = AASH =52
AAN Rq}l.] AAS] = 321038 = 10 AASi = RD, -AASH = —0.07360

aux¥x) = AAN-sinh(had-3x)

AAS] ( AAdi
ddes(Xs) = = x4 | 22

7 3
2+ AAS I + AAG+ AATicosh(had-3x) + a3 |
| /

LY

g g
Bdes(Xs) = E-Tw2- | AA3iXx + AAS + AATi had-cosh(had-Xx) + AASH hadi™-sinh(hadyXx))
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Hx = ipdes{3x) =
147.40699°10-3
150.86419-10-3

10 159.55649°10-3
15 171.53803-10-3
20 185.44293-10°3
25 200.31279-10-3
30 215.47559-10-3
35 230.46088°10-3
40 244,94027-10-3
45 258.68604°10-3
50 271.54231°10°3
55 283.40538°10-3
&0 204.21064+10°3
65 303.92439-10°3
70 312.53950-10-3
75 320.07498-10°3
80 326.57743-10°3
85 332.12787-10°3
aQ 336.85153-10°3
95 340.93372-10°3
100 344.64325-10°3

¢) Via Método dos Elementos Finitos

Andlise Matricial - MEF com flex8o e torgdo da secdo aberta contraventada por Lintéis

do lintel

h=

(=]
H
1]
=
Wi
=
=
[

-

L=1562x%x10 "

das Paredes

m

LPl = by LP4 = aly
ILP2 = bz LP3 = aly
LIP3 =tz
LP4
di =— df:
2

Al=LPILt A4 = [Pit
AZ=IEIT a5 o s
A3 =LP5t

Bdes{Xx) =

9.4856615°10°

6.1964921°103

3.8872789°10°

2.2663509-10°

1.1289728°10°

3.3148518-10%

-2.2684071-10%

-6.1652561-10%

-8.8678964 104

-1.0717692°10°

-1.1948286°10°

-1.2715111-105

-1.3115023+10°

-1.3198535°105

-1.2976194-10°

-1.2419918-10°

-1.1459443-105

-0.9734554-104

-7.7742634-10%

-4,5840924-104

-8.3207528°108
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Matriz de rigidez da parede de segdo aberta no centro de gravidade

pezpar = 0.114
wpeypar = 0.134
ez = aI--E-Iz_ 1 + \pezpar ar = E-E-Iz_ 1 - 2-przpar
h 1+ 4-pezpar h 1+ 4-pezpar
oy = -'I-.E.I}.-. 1 + poypar S g.E.I}.-. 1 — 2-peypar
) h 1+ 4 peypar ) h 1+ 4 peypar
kv + ay kz +
bby = % bbz = —— Aa= Al+ A2+ A3+ Ad+ AS
2-bbz 2-bby E-Aa
ty = tz = : =
) h h h
([ tz 0 0 0 -bby) (—tz 0 0 0 -bby)
0 ty O0bbz O 0 -ty 0 bbz 0
KFcgll = 0 0 r 0 0 EKFcgl2=| 0 0 - 0 1]
0 bbbz 0 k= o 0 —bbz 0 az o
\-bby 0 0 0 ky | \bby 0 0 0 ay J
-z 0 0 0 bby) {1z 0 0 0 ©bby)
0 -ty 0 bbz 0 0 tv 0 —bby 0
EFegll = 0 0 - 0 0 EFeg22=| 0 0 r 0 0
0 bbbz 0 az O 0 —bbz 0 k= 0
\-bby 0 0 0 ay ) \bby 0 0 0 ky )
(KFegll))
EFegl2
EFcg?l | = |Hil « KFegll
KFeg22 Hij + KFegl2

\ KFeg | |Hji « KFeg2l
Hjj « KFcg22
H1 « augment{Hii, Hij)
H2 « augment{Hji, Hjj)
EFcg « stack(H1.H2)
(KFegll)

KFecgl2

KFcz21

EFeg22

L EFeg ,.'
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12 TRANSFORMACAQ: matriz de transformacdo do CG para

eg = Xeg
veg = Yeg
f1too o 0} (000
010 0 0 000
Thatra = |0 0 1 —yeg zeg b= 000
.I} 00 0 _ 000
woo o 1) Lo 0 o
{ Thama |
Tb = |Hi « Tharra
\TegD | |Hij« Tb
Hji « Tb
Hjj « Tharra
HI1 « augment(Hi. Hij)
H? « augment|{Hj. Hjj)
TegD « stack(H1.H2)
{ Tharra |
Tb
\ TegD
Matriz de rigidez da parede de secdo aberta no centro de torcio
KFdD = TezD' -KFeg TegD
(KFTIL
kFT12
KFT21
kFT22
\KFTdD

Matriz de rigidez devido a Flexdo e torgdo em conjunto
h=3

oh = ovh
oh = 0,087

G1-It
— 2-coshioh) + oh-sinh{oh)

o =

2

~ = 1537 x 10

= =2 = = 2

o centro de torgdo D

Hii + KFT11
Hij + KFT12
Hii «— KFT21
Hj + KFT22
H1 « augment{Hi Hi)
H? « augment|Hji. Hjj)
EFTdD « stack(H1.H2)
g’IKfcgll “.

EFecgl2

EFcgll

KFcg22

\KFTdD |
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tz

kFT11 =

0
EFTI2 =

bby

0
KFT21 =

kFT22 =
bby
0

0

0

ty
0

r

0
bby
r-ycg

—bby
0
—r-zcg

bbz r-ycg r-ycgz+kz —r-ycg-zcg

0 -r-zcg -r-ycg-zcg r~zcgz+ky

0

0

0

r-Icg
0

—

0

=

I-VCg-ICg
o

o

1]
bhz

—-yCg

-

bbz —r-veg az—r-yeg

0
0

0

r-zeg

0

0

0
r

r-yog-Icg
0

0

0
—bby
r-ycg

0

bl

r-icg

r-yog-Icg

ay — r-1cg

0

0

bbz
0

—r-z2¢g

0 -—bbz r-ycg r-ycgz+kz —r-ycg-zcg

-r-zcg -r-ycg-zcg r'zcg2+ky

0

0

0

0

0

0

0 0
0 0
y.a~Sinh (ah) Y -(COSh ((Xh) _ 1)
inh (a-h
Y-(COSh ((lh) — 1) y.(h.cosh (ah) _ sin ((X )J
(04
0 0 T
0 0
0 0
0 0
0 0
—y-eesinh(och)  ~y-(coshach) - 1)
{ =i . b
—-(cosh(ech) — 1)~ SRR )
'.__ P _,-'_
1] 0 N
0 0
0 0
0 0
0 0
{ s . Y
~-(cosh(ach) — 1)~ SERED L)
|__. o l,.'_
0 0
0 0
0 0
0 0
y.O(,-Sinh (Oth) —'Y'(COSh (O(.h) _ 1)

—y -(cosh (a-h) — 1) y~(h~cosh (o-h) -

sinh (a-h) )
o
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2* TRANSFORMAGAD: matriz de transformacéo de D para o sistema global

neste primeira exemplo o sistema local em D coincide com o sistema local, logo:

p=0
(cos(®) —sin{3) 0) {000 0} (000
Tsharrall :=_ sin{ ¥} cos{F) 0 Ts12 :=_ 0000 Ts21 = E E E
L0 0 1) 0000/ |
Vo000
(cos(3) —sm{3) 0 0
Tebaad) = sitl{[3) cos(@ 0 0
0 0 10
(G 0 01
( Tsbarrall
Tsl2
Ts21 = |Hii « Tsharrall
Tsbarra22 Hij « Tsl2
| TsSbama |  |Hji « Ts21
Hjj « Tsbarrall
Hl « augment|{Hii, Hij)
H2 « augment|{Hji, Hjj)
TsSbarra < stack({H1 HY)
_I"stanall\'l
Tsl2
Ts2l
Tsbarral2
| TsSbarra |
fLo0o0O0O0O0 f000CO0ODOO
0100000 Co00O0O00
0010000 Co00O0O00
TsSbatra= 00 0 1000 TsSb=0 000000
0000100 Co00O00O0
0000010 Co00O0O00
l0ooo0o0o01 \ooooo0o0o0
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(TsSbama |
TsSb = |Hii « Ts3barra
. Tss | |Hij< TsSb
Hji « TsSb
Hjj = Ts3barra

H1 «— augment|{Hii, Hij)
H? « augment{Hji Hyj)
Ts8 <« stack(H1,H2)
(TsSbara |

Ts5b
L Tss )

Matriz de rigidez devido a Flexdo e torgdo em conjunto no sistema global

KFTdDg = TsS! KFTdD-TsS

Matriz de rigidez dos Lintéis no CG

constantes da eq kel = E para secio retangulares, e aplicadas nos lintéis
de MANEY ]
hL- I_3 I_-h.T_3
AL = eL-hL L= — L = =
12 . 12
JEIL FE-IyL
ezl = S § oyl = T kel
g 3
G1-ALI17 G1-ALI1T
ElzZL 1+ ezl ELL 1+ /L
ol =4 ——F oyl = 4= T
Ll 14+ 4-pel L1 1+ 4peyl
ElzZL 1-2-pedd EIyL 1- 2-peyLl
azl = 2- - ki ayL = 2- b R
Ll 1+ 4-peid - Ll 1+ 4oyl
kzl + azl L L
bl = L tan bl = oL+ ayL
I ) n
byL bzl
til = 22— tyl = 2 —
I . I
E-AL o
il =—— L =1L + IvL por se tratar de secdo retangular
| .
G1-Itl
sL = ——
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(L 0 0 0 0 bad) (4L 0 0 0 0 bad)
0 L 0 0 0 0 0 L 0 0 0 0
Klcall = 0 0 tL —byL 0 0 KLcai2 = 0 0 —tL —byl 0 0
0 0 byl L 0 0 0 byL ayl 0 0
0 0 0 o0 sL 0 0o 0 0 0 -sL 0
\bzZL 0 0 0 0 kL) \-bZL 0 0 0 0 ad)
(yL 0 0 0 0 —bid) (WL 0 0 0 0 —bd)
0 L 0 0 0 0 0o L 0 0 0 0
KLceal = 0 0 —tL byL 0 0 KLce22 - 0 0 &L byl 0 0
0 0 -byl ayL 0 0 0 0 byl kL 0 0
0 0 0 0 -sL o0 0 0 0 0 sL o0
Wbk 0 0 0 0 oal ) \-bZL 0 0 0 0 kL )
g"K_T_cgllﬁ'l_
Elegl2
Eleg?l | = |Hi <« Klcgll
Elcg22 Hij « KLegl2

\ Kleg | |Hji « Kleg2l
Hjj « KLcg22
Hl « augment{Hi. Hij)
H? « augment{Hji, Hij)
Elecg «— stack({H1 . H2)
g"K_T_cgll“I_

Elegl2

KLcg21

Klcg22

;\._ Elecg ,.'

1# TRANSFORMACAQ: do sistema de coordenadas centro de gravidade CG no Lintel para o
centro de torgdo D do Pilar em Micleo

(10 0) (00 0)
Tlbatta = 0 1 0 TIb=|0 0 0
o1/ loo0o0)
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{ Tlbarmra |

TLb = |Hi «— TLbarra
\TLbarra2 |  |Hij < TLb
Hji «+ TLb
Hjj « Tlbarra
H1 « augment{Hi Hi)
H? « augment{Hji. Hjj)
TLbarra? « stack({H1_H2)
{ TLbama |

TLb
\ TLbarra2 |

000 0)
0000

TLb2

= 2 @ 2 =D
= =2 =2
L R
_
L= =]

= 2 2 = 2 =2

= e 2 2 2 92

== e = N = == R =]

== e = N = == R =]

== = = = = =]
(=]

TLb2 | = |Hi « TLbaral
L TL ) |Hje TLB2
Hji « TLb2
Hjj « TLbatral
H1 « augment|{Hii, Hij)
H2 « augment{Hji, Hjj)
TL « stack({HI1 HY)
( TLbarral |
TLh2
N A

KLdD = TL! -Klcg TL

2¢ TRANSFORMACAQ: do sistema de eixos locais em D para os Globais

como temas um dnico pilar, assim o sistema de eixos pricipais globais coincidira
com o eixo local no centro de torgdo D). Assim:

para o ponto 1 do Lintel para o ponto 2 do Lintel
yD =10 yL1 = —{by — bcgY - aly) yL2 = begY — aly

=0 7Ll = bz + dz 72 =bz + dz
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As matrizes de rotagio de sistemas de referéncias
wll = {bz — dz)-(by — becgY) + {dz + bz)-aly
010 0 0 (zD - zL1) 0
001 (yD-vyLl) ~zD- 1) 0 —ul1
100 0 0 (yD — yL1) 0
Fll = B B
000 0 1 0 (yD — yL1)
000 0 0 1 0
000 1 0 0 (D - L1) |
wl? = [dz-{beg¥ — a2v) + bz-(—beg¥ — aly)]
wll = 79468
wL2 = —7.968
010 0 0 (zD - 2L2) 0
001 (yvD-vyL2) ~zD- 22 0 —ul2
100 0 0 (yD - yL2) 0
FI? = B B
000 0 1 0 (vD — ¥L2)
000 0 0 1 0
000 1 0 0 (D - 7L2)
(000000 0)
0000000
0000000
Rlzero =
0 0O0O0O0DO0OOD
0 0O0OO0O0O0OOD
\ 0000000/
(R
RI12
= |Hi« EL1
Rl zero
{ | Hij « Flzero
‘ RL -
Hji «— Flzero
Hjj « RL2

H1 « augment|{Hii, Hij)
H2 « augment|{Hji, Hjj)
RL « stack(H1,H2)
( RLL
. oy |

Blzero
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MATRIZ DE RIGIDEZ UMIFICADA Pilar e Lintel {termos de empenamento para os lintéis)

|r.KdeDE"'
| Aresesananinl — | for 1= 013
. ED
for j =0..13
ED. . « EFTdDg. .
i.] 5
(KFTaDg)
L. KD ,-'
MATRIZ DE RIGIDEZ DO ANDAR
EMN =KD

separar as submatrizes KMN11, KMN12, KN21 e KMN22 para superpor na formacio
da matriz K* (da estrutura), como o segmento tem mesmas propriedades, logo
as submetrizes por trecho sdo igual, isto em cada posicio adequada.

i EN i EN
| l=|foris0.6 | l=|foris0.6
LEN11 ) . LENI2 ) )
for j 0.8 for j 0.8
EN1L. . «— KN . ENIZ. . «— KN, _ .
i.] 1.] i.] +7.]
(KN (KN
\KN11) \KN12 )
i EN i EN
| l=|foris0.6 | l=|foris0.6
LEN21 ) . LEM22 ) )
for j 0.8 for j 0.8
2 22
IDLli_j — IDIi.j+?' IDL”i.j — Kwi+?'.j+?'
() ()
\KN21 ) \KN22 )

Montagem do Sistema de equacdes, com os graus prescritos ja eliminados
via condensacdo matricial, para empenamentos ¢

(KN, . KN ..

6.6 613
FEMNilinha =
\EN13 6 KNz 43
{ Y
(3091 % 10° 1199 % 10° |
EMNiplinha =

L 1.199 « 10° 2399 x 1ng
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Matrizes de Incidéncia:
" f 1000000000 O0CO0O0O0 0o 0y
Bl =
Vo1 000000000000 000/
33“}1 Q00000 0CODO0OO0DO0 0o 0y
|:=: 1
V0 0 Q0000 0O0DO0O0DO0 000/
- o0 Q00000 0CODO0OO0DO0 0o 0y
A3 =
V0 0 10000000000 000/
10 fOOO0O0O0O0OO0DO0DODODODD0DD0DD 10 0%
| =1 |
Vo000 00CO0O0DOD0O0DD0 0 10)
fOOO0O0O0O0OO0DO0DODODODD0DD0DD 01 0}
[0 = |
Vo000 00CO0O0DOD0O0DD0 001

Analisando os empenamentos §' :

matrizes de rigidez para a rotagdo:

ENglinhal = |31T-K_‘-Id)]j.ﬂha- Bl

ENgplinha? = |3|2T- ENdlinha- (32

ENgplinhal = |33T-K_‘-Id)]j.tﬂ1a- 23

T

ENlinhad = 347 -ENdlinha-34

ENglinhal = |35T-K_‘-Id)]jnha- 33

T

ENplinhat = 36 -ENdlinha- 36

T

ENglinha? = 37" -ENdlinha-37

T

ENgplinhal = 387 -ENdlinha-38

T

ENplinha® = 38" -ENdlinha- 3%

ENglinhalld = 3107 -ENdlinha- 210

ENdlinhaast = KNdlinhal + KNdlinha? + ENdlinhas + KN¢linhad + ENeplinha3
ENdplinhat + ENdglinha7 + ENeplinhal + ENeplinha® + ENeplinhal0

T

ENgplinhall + ENgplinhal2 + ENdglinhald + ENdglinhald + ENdlinhal3
ENdplinhals + ENdglinhal7 + ENglinhal8 + ENdlinhal® + EMNeplinha2(

T

ENplinhall = 3117 -ENdlinha- 311

T

ENglinhal? = 3127 -ENdlinha- 312

T

ENiplinhal3 = 3137 -EKNdlinha- 313

T

ENglinhald = 147 -ENdlinha- 214

ENglinhall = |315T-I-L“~Id>].inha- 213

T

ENglinhals = 16 -ENdlinha- 2156

T

ENiplinhalT = 317" -ENdlinha- 317

T

ENplinhals = 318" -ENdlinha- 3183

T

ENgplinhal® = 319" -ENdlinha- 19

ENgplinhal = |32EI'T-I-L“~I|:I>].1'nha- 320
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o bimomento é adotado nulo ae longo da barra, assim concentra-se metade em

cada nd, ficando:

dwl = dz-{by — bcg¥)

dwl = (bz — dz)-(by — bcg¥)

dwl = dz-besY

dud = —[(dz — bz)-bezY]
dwd = d2 + (dz + bz)-aly

dwb = —[dz-{bcg¥ — aly) + bz-{-bcz¥ — alv)] m*

Ao :
2 2 2

A = —0.00000000000000039 m?

T850-9.81
1000

~aco =
kN
~aco = 7008 —
-

Bnodal = [2-(bz-t) + (by-t) + {aly-t) + {aly-t}]-~aco-Aw

13

(-dol + de2) (—dol + dw3) (—do4 + dw3) (do2 + dws)
= bz + by + ‘bz + 5 caly +

(—do4 — dob)
w0

Bnodal = 1267 x 10 KN-m
Bimomento ao longo da altura
" n
A
HH
PR
ez = |for 1=0.20
A
Enodal th « ih
| PESEARARANS |
| BnodalVet 1 1
venodaivet/ BrodalVet, « — 3.3 (xh _ HH)-ez + Bnodal
i begZ 2
bz
1.86230
f h h .
Para o caso de elementos estruturais com carregamento
HH transversal (a exemplo da carga g1) e com secdo de pare-
ez des finas, percebe-se em Mori & Munaiar Meto (2017; p.
243 - 253) a presenca de calculo iterativo, dai o coeficiente
Enodal . o
, | |de ajuste (fcorrecio). |
\BnodalVet / feomregio = — 60837
begZ
1.86230

plinhaNODAL = IC\_EI}HI]hE{aSt_ I-Bnndal"n'et

y
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]
0 -5.63072+103
1 -5.34918-10°
2 -5.06764-105
3 -4.78611-103
4 -4,50457°10°
3 -4,22304+103
5 3.0415-105 Voo o 203078 - 563072
7 -3,65997-105 5.63078
8 -3.37843105 Yoerro = 1.066 x 10 -
BnodalVet = | ° ~3.09689-10 Aproximadamente 1%ao
10 -2.81536-103 } o
S ases| [ Saeacheonenen:
12 ~2.25229°10° na base do pilar e valores das
13 -1.97075+109 paginas D6 e D34
14 -1.68921-103
15 -1.40768-10°
16 -1.12614+103
17 -8.44607-10%
18 -5.63072-104
19 -2.81536-104
20 -1.26706°10°13

Analisando as rotagdes:

matrizes de rigidez para a rotagdo:

KNI = B15-KNg-B1

KNg2 = p20 KN 32

KNo3 = 330 -KNg- 33

T

ENdd = 347 KN P4

KNS = 350 -KNgp- 33

KN6 = 361 -KNop- 36

T

ENdT = 377 -KNd-B7

KNS = 38T -KNg- 08

KNo9 = p9L-KNgp- 9

T

ENgp10 = 3107 -ENd- 210

T

ENgp11 = B117 -ENg-B11

T

ENgp12 = B127 -ENg-B12

T

ENgp13 = 3137 -ENdg-B13

T

ENgp14 = B147-ENg-B14

Y

ENgp13 = 3157 -ENdg-313

T

ENgp16 = P16 -ENdg-216

T

EN1T = 317" -ENdg-B17

T

ENgp18 = B187 -ENdg- 318

T

ENgp19 = 3197 -ENg- 219

T

ENp20 = 3207 -ENd- 220
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Eliminando o grau prescrito, faz-se:

f EMdast )
| = |for 1=0.19
| ENojphlodificadafst )
for j =0.19
K\d)h-ind:ﬂcada_—‘i.sti_j — KN d3a5ti+1.j+1
( KNpast \
\ KNdModificadaAst |

solugdo do sistema para rotagdes, via diagonalizagdo de Jacobi

D = ENdModificadaAst

(ver Rotina de Jacobi no apéndice B, na pagina B6, e aplicar n = 20)

zerando os termos fora da diagonal principal para d

(D)

| = |for1=0.19
D)

for j = 0.19
DI .« 0 if i=j
1.]
DI. .« D . if i=j
1.] 1.]
DY
\D1)/

o momento de torgdo & adotado distribuido uniformemente ao longo da barra, assim
concetra-se metade em cada nd, ficando:

Mnodal = "“;'h
Mnodal = 462768 N-m
{ Mnodal
| et L= I for 12010
| MnodalVet |
MnodalVet, < Mnodal
( Mnodal
| MnodalVet |

MnodalGEN = ) -MMnodalVet
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(Dbt )
MnodalGEN | = | for 1= 0..19
_M"\"\."\"\."\"\W_
. (hRefGen Z'-.-itmdalGEZ{i
pRefGen. «—
1 Di. .
i.d
(D)
MhMnodalGEM
5&_ pRefGen J

retormando ao sistema inicial

como a matriz de transformacgdo do sistema de coordenadas generalizado para o inicial
€ a propria matriz diagonalizada. Logo, teremos equivaléncia, sem a necessidade do
retorno ao referencial inicial, guando se faz a analise dindmica.

fpReflnicial = pEefGen

0 0
0 -2.08-10-4 0 -2.08°10-%
1 -3.94-107 1 -3.94-10°7
2 | 8.00510°7 2 | 8.005107
3| 3.288°107 3| 3.288107
4| -5.336°106 4| -5.336'106
5|  3.141-107 s | 3.141-107
6| 1.769-10°8 6| 1.769-10°8
7| 8.542-10°8 7| 8.54210°8
8 | -2.031-10°5 8 | -2.031-10°5
pRefGen = | g -4.42-10°7 (pRefInicial = | g -4.42-10°7
10| 5.316°10°7 10| 5.316°10°7
11| 1.205'106 11| 1.205°106
12| -3.563'10°6 12| -3.563-106
13|  3.056°10°7 13| 3.056°1077
14| -8.533-10°7 14| -8.533-107
15| -1.55'10® 15| -1.55-10%
16| 7.028-10°7 16| 7.028-1077
17| 1.167-10°6 17| 1.167-10%
18| -2.733-10°8 18| -2.733-108
19| 1.667-10°6 19| 1.667-106
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D.2. Andlise dindmica dos painéis — parede

Ao procedido no item D.1, na anélise estética, segue-se:

calculando a matriz J no CG

; —}-,-IST-l.Mi MM 1-1'-.-14:'-}-.-19 a constante 1000 transforma de kN.m*4
a =

para M.m"4
1000
{ 3 s 49
{ 240146 =« 10 ] —4 47565 = 10 | 4
_ N-m
la= 0 1.90706 = 1IZI':l 298023 x 10 =
11

| —4.47565 = 10% 596046 % 107 362224 < 107 ) acoplado o sistema

calculando a matriz S no CG

_ Mel M6 + M7M1 ) + Mo a constante 1000 transforma de kMN.m?
°T 1000 para N.m?

i ; 30
(0 0 693923« 10
4

S2a=10 0 109189 10 Nom?
L0 0 —124264 < 10°)
CENARIO ’gﬂ: 10000 N
Calculando o Vetor W J
. N
Para o pilar P BEH =0 kNm gl =120000 —
m
0G =180 (Equivalea o) MH =0 KN-m N
b gl =30000 —
—_ _I — bee? m
s~ bee
g = begd + dz + ea -
AR = 3
£E=0.—_1
ez= 3700473 m 100
Efeito de p: 3 N
~CA = 25-10 3
m

pd = ~CA-(LP4-) = 625 x 10°

4 N
pl = ~CA-(LP1-f) = 2.136 x 0 2
. ) .3 N
) 4N p3 = NCA-(LP4f) = 625x 100 =
p2 = NCA-(LP2f) = 2.156 x 100 — m
m p
e (pl)
p3 = ~CA-(LP3-6) = 2.156 % 100 — p2
m
p=|p3
pd
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Matriz W11

4 0 0 -1 -
MST=M8 = 0 -1 -1 0 0

—1522 1725 —-1.725 1928 1928

ait = Ml a7 Laanol

0 0355 0355 1225 1225
Mil= 1522 0964 0339 1028 1928
0 0684 0684 2361 -2361

AT g 1pae ea=2510 S e = o8 F
_ ) = - — s
A2 = 1Pt A5 = LP5-t m*
A%EW; LP3-t
_(ALT A2+ AT+ ALH A HEACA o0l 5 L Massa total do pilar

grav
mMm = = 7.87065 x 10° kg massa distribuida do pilar

o = Tv+ Tz = 12435 4 A soma dos momentos de inércia da secdo transversal
p =y lz=1s o apds a devida utilizacdo do teorema de Steiner.

mMm 0 0
M=| 0 mMm 0
0 0 Ip
3 )
7.871 = 10 0 0 kg
M= 0 1871100 0 ke
0 0 12435 m
Pasicionamento do CM: k k
pCA = 2400 -2 pACO = 7360  —=
esp=1 m m}l ﬂ:L2
t
bz + t bz +t Hem3 =bz + —
Keml = 12 Hem? = 3 2
by + aly —aly + t
+t i +t Yem3 =
Yeml = by Yem2 = oy 2
5 2
pCA pCA pCa
ml = [(bz + )-(by + £)]-—— m2 = (bzby)——  m3 = [(by — aly - aly)1]-
grav grav sy

cobr =003 m espx =002 m
h=00125 m espy =002 m
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al = by + t — 2-cobr + espy ady + o cobr s espy
i + espy nd = 2
i + espy
0 = bz — t+ espx
+ { t
b+ espx aly + 3~ 2-cobr + espy
ni =nl nj = =
i + espy
NN =nl+n2+n3+nd+nd nl = 112613
2=00077 cce = by — aly — aly
_ 21205 t
nd = 33383 £=L 4 ay+ e
n5 = 33383 2
p a8
semt = —— |t cobr + )+ 1-(t— cobr) + 2 t+ ke(d + espx) + 2| +
cmd = — | nl- co — i+ nl{t—co 2 (i + espx) + —
NN | 2 ) ) PR TS
k=10
i 1
2-nd-{ | bz + cobr + ?:+ (bz + t — cobr)
\ <)
{ 111 q 32 q
h h
Yemd = E Z |:|:nbr + k- + espy) + E:| + Z |:|:an + k-{dp + espy) + E:| +
k=10 E=0
32 q q
b b
|:f + cobr + k-{d + espy) + E:| + n2-|:[cnbr + 5) +(t- cobr}i| + n3-|:[b§,r + cobr + %) +i{by +t— cubr}:|
k=0
.
-~ pCA
md = TP 2 ¥emS = Hemd
4 grav
pl
. mip pACO Yem3 = Yemd
mi = —_—
4 srav
MM = md-NN
MMS = m5-NN
% Heml-ml — Xem2-m2 — Xem3-m3 — Xemd-MML + Xem3 WM
cm =
ml — m2 — m3 — MM4 + MMS
- Yeml-ml — Yem2-m2 — Yem3-m3 — Yomd-MM4 + Yem3-MM3
cm =

ml — m2 — m3 — MM4 + MMS5

Hem = 1473 m
Yem = 1.916 m
Adistdncia entre 0 CM e 0 CG:
dyCmCg = Yem — Yeg = 0191 m
dzCmCg = Xem — Heg = 0049 m
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1 0 —dzCmCg
TWM= 0 1 dyCmCg
00 1
Ma = TM - M-TM 3
T871 = 10 0 387784
Ma = 0 7871 = 103 1.506 = l'III3
3

387784 1506« 10 319.754

Realizar a composigdo da Matriz de Amortecimento C

usando a rigidez proporcional

as trés primeiras frequéncias de vibragdo da estrutura para A diferente de zero: A*2 =1

1\11 = 198334 TM2 = 4467319 1\13 = T.88001
1\21 = 171279 k22 = 456494 1\23 = T.82638
wl=33974  rad w2 = 2133283 rad w3 = 61.73023 rad
) l.ul2
it= 4 2
(My)" = (A7
5 sl = hz-jl
) ()
2= 4 2
(My)" = (A" 5
s2 =& 2
) Lu32
8= 4 2
AL = (AL T-A
(5"~ (3 ot
il = 1.0000012
s1 = 1.000001
i2 = 10000003638
s2 = 1.00000:04
i3 = 0999000883

si=1

usar a razdo de amortecimento de:

£61=008 ££2=008 ££3 =008

os coeficientes de proporcionalidade de J, 5 e M:
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g o ZISTEEL(2:53 - 3.52) + WD-EE2(33-s1 - j1-53) + WHEEI(L-s2-2sD)] _
B il-(s2— 53) + j2-(s3 — sI) + j3-(s1 — 52) -

VIWL-EEL(3 — i2) + W2-EE2(1 — i3) + W3-EE3-(G2 — il
§1-(s2— 53) + 2-(s3 — s1) + 3 (sl — 52)
o o HIWIEEL(s3— 52) + WDEE2(s1 = $3) + WBEE(2—sD)] _ o o 16
§1-(s2— 53) + 2-(s3 — s1) + 3 (sl - 52)
adl = .. R 88 = o5 oMM = oM
ol + ol + obd ol + a8 + obd (o + o8 + obd)
oMM = 0
Ca = of)-Ja + 0S8-Sa + oMM-Ma
aSS = 0.5
1201 x 10° 0 ~1.891 % 107 odl =03
Ca= 0 9985 x 107 5459 % 10°
2238 % 107 208x 107 17404 107

Rotina de Diagonalizagéo na Analise Dinamica
1? Passo: Montar o Sistema -Ja * ddddu + Ca * ddddtu + Sa * ddu + Ma * ttu = dVf

4

240146 x 107 0 147565 x 10°
Ja= 0 199706 x 100 2.98023 x 107 ! o
| —4 47565 x 10* 506086 10711 362224 10° _
i 3 kg 3
787063 % 10 0 387.78445 00 693023 10
Ma = 3 3| ke Sa= 1| N
0 7.87065 x 107 150608 x 10 Z 0 0 1.09189x 10 .
4 )
| 38778445 150608 x 100 319.73412 J m 0 0 —124264 x m‘_
5 4
1.20073 x 10 0 —1.89086 x 10 .
Ca= 0 908531 x 107 545043 x 10° o
4 —11 3
223782 % 10° 2.98023 = 10 174899 x 107
- 4
(a1gg %2+ BlggXs+ Clgal|  Algq=so76001  Blaa= 1196920138 x 10
\ 4
VI (Xx) = { Aqu-}(xl + Blqq-Xx + ngq} Al2qq = 1201729 B2qq = 1.602305271 = 10
' Al3gg = 332.187%4 _ 4
( qu_:ﬁz + BiqqXx+ Cqu_p aq Biqg = 4420171252 = 10
Condigtes de contorno: Clqq = —1.20290473881 x lﬂﬁ
0 0 0
Clqq = -1.61031679782 x 10
ddvd = | 0 ddddv0 = | 0 dedtv = | 0

]
0 0 1] C3gq = —4.45131710783 = 10
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2° Passo: Diagonalizar Ja - 1° Transformacao

) -
dr = Jal}.l}'hl.l - |_JaD_ 1:.

-Ja, .-Ja + Jal_l"]al}_l}

.
YR = 0.2" 0.1 7R =
dr dr
{ 7. Y
4 L atan] o1 | 10
i = —-atan ———
7 - _ | dr = 4.796 3 10
2 'EJEI}.I} Jal_l,.'
. ] =10
{cos(dr) —sin(dr) ZR
Rer = sin{dw) cos{dr) -YE 1 0 0186
Lo 0 1) Rer= 01 0
wo 1 )
JABARRA = Rer! -Ja-Rer
SaBARRA = Rerl-Sa-Rer
CaBARRA = Rer.-Ca-Rer
MaBARRA = Rer! -Ma-Rer
/ 5 —12% f 30
2401 x 10 0 —T2T6x 107 | L0 0 693010
JaBARRA = 0 1.007 = 10° 0 SaBARRA =g o 1002 10"
\—1.601 = 10 0 5esw107 ™ 3530%10° ) L0 0 —1.113 % 104,5

obs: os termos fora da diagonal de Ja principal sdo consideros nulos.

' = l"l
1201 x 10° 0 34T % 10° |
CaBARRA = 0 0085 x 107 5450 10°
| —8.004 x 10~ M sew 107 ™ 1714 10 )
\
2871 % 10° 0 1855 % 10° |
MaBAFRRA = 0 7871 % 100 1.506 % 10°
] __ 3 _ 3 ]
L1855 % 1070 1506 100 737662
As condigdes de contorno:
0 00 0
ddq0 = Rer!-ddv0 = | 0 ddddqD = Rer'-ddddv0 = | 0 dtdtq0 = Rer -dtdtvd = | 0
Lo/ o)

o)
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3° Passo: 2° Transformacgao, transformando Ja em matriz identidade

i 1 i
I} I} [ ]
JaB_'—‘s_R_R_'—‘LD_D
1] ! ]
JaBarrahleio = JaB_%_E_E_'—‘Ll 1
1
] 0
| JaBARFA .
{ -3 Y
{ 2041 = 10 0 0
JaBarraMeio = 0 2238 % 1077 0
| -3
L 0 0 1.681 « 10 )}
JaAst = JaBa.tra}»-IEin-REIT-Ja-Rer-JaB arraideio
SaAst = JaB a.tra}-.-Iein-RerT- Sa-Fer-JaBarrahdeio
CaAst = JaB a.tra}s-Iein-REIT-Ea-REI-JaBma\-iein
MaAst = JaBanal—iein-REIT-Ma-REI-J aBarrahdeio
5" 1 0 III"‘I_ 5" 05 0 I}.I}IE“I_
JaAst= 0 10 CaAst= 0 03 0021
0o 1) L0 0 o0484)
'l |r. _ "'I
(00 0024 | 0033 0 6362 % 10" |
SaAst= 0 0 0041 _
. | Madst = 0 0.039 5.665 % 107~
Vo 0 —0.031)
| 6.362 x 1077 5665 10 ° 2.084 10_3,5
As condigdes de contorno:
oY o
ddgl = JaBa.traJn.—Ieiu-RerT- ddvd =0 ddddgl = JaBa.traJ-.-iEin-RerT- dddd+v0 = 0
Lo/ \0)
o0
dtdtql = JaBa.traJn.—Ieiu-RerT- dtdtvd = 0
Lo/

4° Passo: Reescrever a matriz SaAst como tridiagonal simétrica via Método de Lanczos

apds tal transformacio, pode-se aplicar o Método de Jacobi para
diagonalizacdo de 5
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2 .1 2
modU = J[UD:. +(Uy)) + ()

modU = 4.583
uo = U
modlJ
(0218)
U0 = | 0436
L0873/

ol = U[I'T-Sa_;‘ist-U[I' = 3780 x 1III'_3

T 2
[{2 = JUI} -S5aAst-SaAst- Ul — el =001

1 1
Ul = — (SaAstUl) — — .10 £ a1
Ul=| 3.663
\-2359)

a2 = Ul -SaAst-Ul = —0.648

T 2 2 2
[F3a = JUI -SaAst-3aAst Ul — o2 = 0633 33 =0 + 0.633

1 2
U2 = —(SaAstUl) - —-U1
33 A3

usando o mddulo do
ndmero imaginario

{2073
U2= 3599
\—2200 )
a3 = U2 -SaAst U2 = —0.62
(ol B2 0 )

SaT = | B2 a2 [ [ 3780% 1070 001
L0 3 a3) Sal = 0.01 —0.648 0633
) 0 0633 —062)

5° Passo: Calculo lterativo para diagonalizar ao mesmo tempo Cafst e SaAst

Md = MaAst
5d = 8aT
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[ Md, )
Sd
M
s
RRM
ERS = |ne 3
oM M < identity(n)
as 1S« identity(n)
ddq Koo 1
ddddq0 while K = 0
| dtdtq0 ) for is0.n—1

mm.. «— Md.. ..
un n.u

g5« Sd.. .
un .
£m ¢ min(mm)-10 °

€s « min(ss)-10 "
e« 0
for is0.(n-2)
for je(i+ 1.(n-1)
if |Mdi_j

>em) A | |Sdi_j| > €3]
REM < identity(n)

RES « identity(n)

e ke + 1

M« = f Md .=Md.
4 i I

05— = if Sd, .= Sd. .
4 LiT 7

L[ Me )

OM« - atan — 3 | i Md, .= Md.
2 Md,  —Md. | iiT

T )

2.8d,

05— Latan| — | i sq <84
2 5q, —sa | LiT 7
T )

]."\‘_R_\rii_i « cos(BM)
R'Rsi.i « cos(88)
RR_\JJ. i «— cos( M)
RRSJ. i «— cos(H8)
RR_\ii_j « —sin( M)
R‘Rsi.j «— —sin(B8)
RR_\JJ. € sin(8M)
RRSJ. & sin(8S)
M« 1pM-EREM
a8 « 1p3-RRS

Md « R_R_\riT-)rid -ERM

Sd « RRST-Sd-RRS

ddq0 < RRM!-ddg0

ddddq0 « RRM'-ddddq0

dtdtqD « RRM'-dtdtqd
[ Md
sd
WM
s
RRM
RRS
oM
oS
ddg0
ddddqd
| dtdeq0
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_s —11
. L83 10-3 0 0.03385 0 7.71806 x 10
RRM=| o317 1 p| Md= 0 004038 139938 x 107
0 0 1 771806 % 107 1 140047 x 107 332003 x 1077
5 _ -
1 —2091x10 © 0 96152 % 10 ° 0 662003 x 107 10
RRS=| 2001 %1077 1 0| sd= 0 “126726 138644 x 10
0 0 1 _ Y _
' 662093 % 107 10 130325 % 107 * 408107 x 1070
Autovetores Autovalores
100
=010
001

Cd = oJI-Ji + o85-5d + alM-Md

0.49519 0 331407 10 10
Cd = 0 —0.13363 693218 x 10
— 10 —13
331497 x 10 6.96627 « 10 0.50249
6° Passo: Calcular a matriz modal ponderada
dra = JaBarrahleio-BES
{ _ _
{2041 = 10 3 —4267 = 10 : 0
Da=| 46701070 2238x 10 ° 0
\ 0 0 1681 % 10~
7° Passo: Calcular o vetor de forga no novo referencial Vfzero
Iy _ -
{ 2041 = 10 3 4679 x 10 . 0
S A -8 -3
PRerl =®a -Rer =| 426710 ° 2238x 10 0
3133 x w? 0 1681x 107 °

primeira fungdo
DDLv = $RerT) -(Alqq) + PRerT  -(A2qq) + PRerT -(A3qqg) = 0.18319
DD2v = $RerT) -(Blqg) + $RerT,  -(B2qq) + PRerT, ,-(B3gqg) = 24.42536

DD3v = ®RerT -(Clqq) + PRerT, |-(C2qq) + PRerT, ,-(C3qq) = —243474913 x 10’
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segunda fungdo

DDIw = ®RerT; -(Alqq) + $RerT, |-(A2qq) + PRerT, ,-(A3qq) = 0.26891
DD2w = @RerT, -(Blqq) + $RerT, ,-(B2qq) + PRerT, ,(B3qq) = 3585447
DD3w = @RerT, -(Clqq) + $RerT; ,-(C2qq) + PRerT; ,-(C3qq) = —3.60337431 x 10°

terceira fungdo

DDI1¢ = @RerT, ,-(Alqq) + $RerT, -(A2qq) + PRerT, ,-(A3qq) = 0.58634
DD2¢ = @RerT, -(Blqq) + $RerT, ,-(B2qq) + PRerT, ,-(B3qq) = 7820473

DD3¢ = @RerT, -(Clqq) + $RerT, ,-(C2qq) + PRerT, ,-(C3qq) = —783937512 x 10°

2.0
8° Passo: reescrever as condigtes iniciais da EDO no referencial generalizado

| 490.047 9343 x 1IZI'_3 —01331
-1

-1
$a -Rer = 00 4465 885 191 = 1|}_3
Lo 0 50488 )
,"'I}l"l |':|}-"'
-1_ =1 | ||
da -Rer -\ 0|=|0

9° Passo: Escrever as fungdes u1(x) e g1{t), logo o primeiro modo de vibragao

Wla = 198334 Wb = 467319 Wlc = 7.89001
ML 1 32b = 4.56404 Nc = 7.82638

1 Alb 1

ada = 2= = 0.01983 alb = 22 = 0.04673 ale = 25 = 00789
HH HH HH
n2 2b "2

a2a = 222 2 001713 a2b = =2 _ 004565 a2e = 25 = 007826
HH HH HH

%7 . . s

wit = MM or0ase1e % 107 a - 1° MODO de vibragdo

T
HH b - 2° MODO de vibragéo
Alb-22b _3
s - ~ 2133285196 x 10 ¢ - 3* MODO de vibragdo

2w _
W33 = MM 195021646 x 10

-

3
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5 = 2 2
2 2 M 2
alla = Jﬁ N ‘]ﬂ + wil® = 100868 allb = J— + ‘]— + W22° = 1.09869
2

3 A T T
B A 2 o . .
olla = j—— + \jT + wil™ = 043500 a2 = J_ﬂ + ‘]ﬁ + wg;: = 045500

2 2 2 2
ad g 2 2
~ e F
alle= [2 + JT + 33" = 10087 a2l = J_ﬁ N ‘]& - w33t = 045512
2 2 2 2
lla3

o
BSa :=| olla-a22a+
a22a

J-cosh (ala-HH)-sin(o2a-HH) — (otlla2 + ot22a2)-s'mh(otla-HH)-cos(otZa-HH) =13.22662

a11b3

B3b:= | allb-a22b +

o J-cosh (a1b-HH)-sin (o2b-HH) — (ou 162 + 02207 siah (1b-HH)-cos (a2b-HH) = —169.64033
.

3
allc
B5c:=| allcu22c+

2 2
- J-cosh (alc-HH)-sin(o2c¢-HH) — (otllc' + a22c')-sinh (olc-HH)-cos(o2c-HH) = 4.50486x 103
o22¢

N
Bla = oella -sinh{oda-HH) + ol la-o22a-sin{ola-HH) 036273 alla 241401
Bia odla
-
“ i : -a22b-sinf{odb-
Blb = allb -sinh{adb-HH) + allb-o22b-sino2b-HH) 037788 allb TS
Eib o2k
adic’-sinh(ode-HH) + ol le-o22¢-sin(o2e-HEH) alle 5 41408
Blc = = 033579 adde

Bic

|\al1a®-cosh(adaHH) + a22a>-cos(a2aHE))
\xlla -coshioda-HH) + o223 -cos{oda-HH) 092535

kua = -
;
|.c*<11a‘-51'.ﬂh[c*<1a-H]-I} + exlla-e22a S:i.tlI:CQ,E-H]'I}:I

3 3
b = - |.ctllb‘-u:nsh[ctlb-H]-I} + ce.lb‘-cus[cﬂb-HH}:' 100742

-
|l 162 sinh(alb-HH) + ol 1b-a22b-sin(c2b-HE)

| 1_ ) 79 :. T :I
\oxlle -coshiode-HH) + o22c -cos{ode-HH) = (.90950

kuc = -
;
|.c*<11n:‘-51'.ﬂh[c*<1n:-H]-I} + culle-o22e S:i.tl[cﬂt‘,-H]'I}:l

{ -13
| 0095 = 10 13

Milla = Mll-p = 0

12

L7276 100 )

integrando Qk
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~HH )
o -g2 2 . alla | i
Q31 = % = qlx+ {Q+ ql-HH) [-{ez-cos({08G)) - I\{lla,, -Bla- cosh{oda-x) — cos{ola-x) + kua-i —sinh{oda-x) + -sinf{oda-x) ||| dx
2-HH < , olla J
]
Q31 = 9.043255204 x 106
~HH )
- -2 2 ' edlb
032 = % — qlu+ (@ + ql-HH) [-(ez-cos(8G)) — Mlla, [-Blb| cosh{albx) — cos{olb-x) + kub-i —sinh{odb-x) + -sinf{edbex) || dx
2HH < L od2b pi
]

032 = 1306673392 = IDS

~HH

g2 2 |"
Q33 = J HI EH-x“— glu+ (Q+ ql-HH}j|-[ez-cos[BG}} - ?\-Illaa]-Blc-[cosh[culc-x} - cos(c2ex) + bue ~sinh(odes) + &«
. .

11 i
c sit{ele-x) ||| dx
o2le J

Q33 = —6.131436193 = 10°

3

mll = Md, = 0.03385 s11=8d; o= —9.6152x 10 cll = Cd, o= 0.49519
m22 = Md, | = 0.04038 s22 = 8d, | = -126726 €22 = Cd, , = ~0.13363
m33 = Md, , = 3.32003 = 107 s33= Sd., = 4.98197 x 107> £33 = Cd, , = 0.50242
i.n..'l].lj o33 m114 3
M3lm —————————— = 347585 10
m33
W22 — £33 LU_,2,4
~32 = = 0.13707
m33
33— 33033
§33 = 2 T O 14849
m33
117 - ~31-m33 31-m33 — 33-wil”
K1, = Wil Zelmd o oinn < 107 20 K21, = 2 mad e Wl rsssx 1070
c33-m33 m33
2% — ~32-m33 312-m33 — 33-w22"
k12, = Wer T RS 62381 x 107 K22, = 2 SO T O 013707
c33-m33 m33
337 — ~33-m33 5 33-m33 — c33-w33"
k13, = B2 A 437038 10 K23, = P O 114847
c33-m33 m33
-3
[ = J2 -k = 1732
K315 = 533421, - ki1, = 1.732% 10
K32, = 533422, — k12, = 6.823 x 0 *
(33, = $33423, — k13, = 5678 % 10~
3 3 3
calculando as massas generalizadas:
~HH
. 2
f . olla | Y
Mk13 = m33-| Bla-| cosh{oda-x) — cos{cda-x) + kua- | —sinh{oda-x) + -sineda-x) | dx
L ola J

Mk13 = 12374 % 10 °
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~HH
. y)
(. adlb \
M3 = m33- Blb-| cosh{odb-x) — cos{o2b-x) + kub-| —sinh{odb-x) + -sine?b-x) | dx
o22b J
0
MK23 = 150491 x 107 °
~HH
. p)
. alle | 4
MK33 = m33-| Ble-| coshi{ode-x) — cos{ode-x) + kue-| —sinh{ade-x) + -sityede-x) | dx
L odle J
0
21 _ 1 4% —3 rad
Mk33 = 1.4532 % 10 wh=3 B4
5
31
@31, = - Q = — —8.92843 x 10°
:L-313 — €33kl wh - wb” | M3
32
G32, = - Q = — 010374 x 10°
K325 - e33-k12,-ub - wh’ | Mi3
33
G33; = - Q - — 4691 x 10°
K335 - e33-k13,ub - wh’ | Mi33
wh
Gl = ~G31, ——— = 4543 x 10'°
s 31
612, = —632,—2 = 7377 x 10'°
3 3 .-3')
|' Fa
wh
613, = ~G33,-——— = ~1313 x 10'°
33
10° Passo: resolver as EDO no referencial generalizado
Bla = 036275 Bib = —0.37788 Bic = 03579 GI1, = 4343 x ii?
kua = 0.92535 kub = 1.00742 kuc = 0.99969
ua 7 - e @31, = ~8.928 10°
olla = 1.09868 ollb = 1.09869 adle = 1.0987
G12, = 7377 x 10'°
n2la= 045509  a22b= 045509 o22c = 045512 3= 20
9
odla _osr 2B o odle _ 5 41408 G32; = 0104 x 10
o2la o22b od2c 10
G13;=-1313x 10
G33; = 4691 x 10°

{ 11 )
ul{x) = Bla| cosh{nla-x}) — cos{oda-x) + kua- —sinh{ola-x) + o a-sin[cwla-x} |
L L odla J

allb

i
-sity{ o?bex) |
ol2b /

u{x) = Blb-| cosh{alb-x) — cos{odb-x) + fub-| —sinh{cdb-x) +

{ 11 )
u3{x) = Ble| coshindc-x) — cos{ode-x) + kue-) —sinh{ode-x) + o E-sin[e:lu:-x} |
L L oo J
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montando g3(x.t) pois sera apenas este necessario na composicdo de §(x) no CG

q3(x.t) = ul(x)-{Gll-sin(31-6) + G31 -sin(wh-1)] + ul(x)-{G12;-sin(32-4) + G32

E-Sm[mb-t}} +

u3(x)- [G133-5in[“,-33-t} + G333- sm[mb-t}':.

10° Passo: Solugao da EDP em ¢{x,t) no referencial inicial

|". — — — = '\'

(20415 107° —4267 10" % 333107 %)
RP =Rer-da=| 1670 107° 2238x 10 ° 0

A 0 0 1681 10‘3,5

funcées u(x)

El1REFa = R®, ,-Bla
kuREFa = B, -kua

ollREFa = Rd, -oulla

od?REFa = Rd, -022a

olla

RazREFa = R, .-
2.2 o222

Afuncio ¢ (x)

BIREFb = R®, ,-Blb
kuREFb := R, .-kub
od1REFb = Rd., ,-allb

aQIREFb = R&, ,-02b

11b
RazREFb = R$., - ——
2.2 ok

E1REFc = R®, ,-Blc
uREFe = B, -kuec

allREFe = Rd, -odlc

od?REFe = Rd, -022c

11
RazREFc = R, , ——
2.2 noc

ulREF(x} = BI1REFa-[cosh{cl1REFa-x} — cos{c22REFa-x} + kuREFa-{—sinh{cl1REFa-x} + RarREFa-sin(c22REFa-x))]

W2REF(x) = BIREFb-[cosh(od IREFb-x) — cos(c22REFb-x) + kuREFb-{—sinh{cd IREFb-%) + RazREFb-sin(c22REFb-5))]

WIREF(x) = BIREFc-[cosh{cl1BEFc-x) — cos(o22BEFe-x) + buREFc-(—sinh{od1BEEFc-x} + BarREFc-sin{c22BEFe-x}}]

fungdes gt}

'Glll'-t_‘E.l:'3 = l:~'di>2_2-'[}ll3
G31R£.F3 = Bbibz_z-ml3
G12R£.F3 = Rli:'z_z-l[}lz3

G32RE.F3 = R@E_Z-G323

(pdes(Xx, Tt) = ulREF(Xx)-(G11REF

G13R£F3 = R!i:*z_l-'GIB3

G33REF

3:=Rli>

-(33

2,273

~REF31 = R&, ,-y31

~REF32 = R, 32

~REF33 = RE, ,-y33

3

-sin{~REF31-Tt) + G31REF

3-sin(ub-T)) +

+ u2REF(Xx)-( G12REF -sin(~REF32-Tt) + G32REF-sin(wb-Tt)| +

+ uIREF(Xx)- G13REF,-sin(REF33-Tt) + G33REF,-sin(wb-Tt))

T T
Bdes{Xx, Tt) = E-I2- BlR.EFa-I:c‘cIlE.EFa*-I:nsh[ccllREFa-Xx} + o22REFa -cos{o22REFa-Xx) +
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| ! }
+ kuRFFa |~ 1REFa"-sinh(c 1REFa-Xx) + allREFa-022REFa-sin{a22REFa-Xx) ]]
{ GUREF -sin(vREF31-Tt) + G31REF ;-sin(ub- Tt} +
T 3
|+ [BlREFb-[crllREFb‘-u:nsh[mllREPb-Xx} + a22REFb”-cos(a22REFb-Xx) +
| 2 |
+ kuREFb-|—al IREFb " sinh(al IREFb-Xx) + ol IREFb-022REFb-sin(o22REFb-Xx) ]]-|
Y A
{ GL2REF - sin(~vREF32-Tt) + G32REF ;-sin(ub Tt) | + [B 1R£f.:-[a1 1IREFc"-cosh(rnd 1REFc-Xx) -
gl gl
+ o22REFc -cos{o22REFc-Xx) + LUREFE-'.—QIIREFE‘-SM[QIIEEPE-X:{} +
+ al IREFc-a22REFc- sm[eezEErc-Xx}m-
( G13REF ;-sin(~REF33-Tt) + G33REF,-sin(wb-Tt) :]
Tt=30 s E-Iu2 = 8427 x 10°
Xx= ddes(Xx.Tt) = Bdes(Xx,Tt) =
0| -3.9942202-107
-407.03045'10-3 ||  -3.9943171-107
10 -1.09907 ||  -3.9946961-107
15 -4.77624 ||  -3.9953573-107 o
20 -8.73873 || -3.9963009-107
25 -13.88681 -3.9975267107 _ 100k
30 -20.22084 || -3.9990351°107 | 4ok 50y
35 -37.74128 -4.000826-107 _ 200k
47 -36.44864 -4,0028997-107
45 -46.34355|| -4.0052563°107 -300—L—L L |
0 20 40 60 80 100
50 -57.42669 -4.007896° 107 -
55 _60.50885 -4.0108191+107
60 -83.1609|| -4.0140259-107
55 -97.81377 -4.0175166°107
70 -113.65851 -4,0212915-107
75 -130.69623 || -4.0253509-107
80 -148.92814 || ~4.0296953-107
85 -168.35551 -4,0343249-107
ap -188.97972 -4.0392403-107
g5 -210.80223 -4 0444417107
100 -233.82458 ||__~4-0499298107
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E

TUTORIAL DE SIMULACAO DOS MODOS DE VIBRACAO NO ANSYS

Este apéndice é destinado a apresentar as decisdes implementadas na similacdo dos

modos de vibracéo através do software ANSYS. Sendo estas listadas como:

12 ETAPA: Desenhar a geometria do pilar de ponte destinado a ser procedida a analise modal,
no AutoCAD 3D e salvar o arquivo da geometria na extensao “sat”.

22 ETAPA: Modelar no ANSYS o pilar com geometria desenhado no AutoCAD, através da
calculadora “MODAL”.

a) Ativar a fungdo MODAL com clique duplo

|E| Analysis Systems

{4 DesignAssessment
Bl Eigenvalue Buckling
Electric

iy Explicit Dynamiz
{5 Fluid Flow (CFX)
{4 Fluid Flow (Fluent)
[z HarmonicAcoustics
g9 HarmonicResponse
ﬁ IC Engine {Fluent)
ﬁ IC Engine (Forte)
[od] Magnetostatic

u Modal Acoustics
fily RandomVibration
[ Response Spectrum

=7} Rigid Dynamics Fig_ E.1l

obtendo-se:
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Project Schematic

5 @ setup

B Salution
7 9 Results

Andlise Modal do Filar metdlico,em Duplo T e com lintéis

EICIEICIR

[

F]

F]

Fig. E.2

b) Clicar duplamente na opgao “Engineering Data” apresentado na figura E.2. Abrindo-se
a tela de definicdo dos materiais.

Outline of Schematic AZ: Engineering Data

A

Contents of Engineering Data

Structural Steel

Il

[l

Fatigue Data at zero mean
stress comes from 1998 ASME
BPV Code, Section 8, Div 2,
Table 5-110.1

Click here to add a new
material

Properties of Outline Row 3: Structural Steel * o X
A B C D |E
Property Value Unit (5
T8 Material Field Variables 4 Table
%] Density 7850 kam~3 x| |
- H-E‘ ;I'ioeT;pailcESExp?nnsEu?EFﬁdent of F
6 |E TA Isotropic Elasticty E
7 Derive from Young'... ;I
g Young's Modulus 2E+11 P | =
] Poisson's Ratio 0,3 [E
10 Bulk Modulus 1,6667E+11 | Pa =
11 Shear Modulus 76923E+10 | Pa [

Fig. E.3
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¢) Clicar na op¢ao “Geometry” apresentado na figura E.4:

- A

8 T Modal

2 @ Engineering Data  +"
3 |@ Geometry ?
4 @ Model 2,
3 ﬁ. Setup G d
] Solution =
7 @ Results =

Andlise Madal do Pilar metalica, em Duplo Te com lintéis

Fig. E.4

12 opcéo de criar geometria: selecionar agora a opgao “New DesignModeler
Geometry...” na figura E.5.

- A
S8 T Modal
2 @ Engineering Data +"
3 ‘ Geometry = |
4@ model |8l Wew SpaceClaim Geometry...
5 ﬁ Setup |ﬂi} Mew DesignModeler Geometry...
& Solution Import Geometry »
7 | @ Results |53 Duplicate
andlise Modal do Pilar metdli Transfer Data From New 3
Transfer Data To Mew »
F  Update
Update Upstream Components
_1 Refresh
Reset
Blfl Rename
Properties
Quick Help
Add Mote

Fig. E.5

sera aberta uma janela de desenho no proprio ANSY'S, ver figura E.6.
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& A: Andlise Modal do Pilar metilico, em Duplo T e com lintéis - DesignModeler - 8 x
| File Create Concept Tools Units View Help

OB @ Dt Gredo [ty i BRE@ - W8 [|S+QQAQAQAQE |+ @ /2 || B W g~ A~ A~ A~ fm A7

| xipiane » 3| none > &

| 2fGenerate W@ Shzre Topology [EE]Parameters

| WEsxtrude gloRevolve Qg Sweep 4§ Skin/Loft

| WThin/Surface WpBlend ~ & Chamfer WwSiice || @Point &) Conversion

| Bladetditor: fflimport BGD {Bfload BGD [p|Load NDF | SEFlowPath ¢f Blade of Splitter JVistaTFExport ‘- ExportPoints WMStageFluidZone uf SectorCut i ThroatArea f¥F CAD Import v | (b Preferences

| E e = (k| i - @

Tree Outline 2 Graphics 7

=@ A: Anilise Modal do Pilar metalico, em Duplo T e cor
LB XYPlane

g3 ZXPlane
Ly YZPlene
L./ 0Parts, 0 Bodies

< >

Sketching Modeling
Details View 2
Y
0.00 2 4000 (m) z)\x
10,00 3000
Model View | Print Preview
Q9 Ready |No Selection [Meter Degree o o J

Fig. E.6

22 opcdo de criar geometria: sera gerar a geometria do pilar no AutoCAD (12 etapa
deste tutorial), processando isso através do comando: “File” — “Import External Geometry
File...” na janela apresentada na figura E.6, conforme observa-se na figura E.7.

i) A: Anélise Modal do Pilar metélice, em Duplo T e com lintéis - DesignModeler

File Create Concept Tools Units Wiew Help
Refresh Input % tgv | @ @
] Start Over (Ctrl+ N)

E; Load DesignModeler Database... (Ctrl+ O}
E Save Project (Ctrl+ 5)

E Export...

. J @ Point 50 Conwe
@ Attach to Active CAD Geornetry
@ Import External Geometry File... L | : Tl
& Import Shaft Geometry... 1

| 5 1 el el el Il el el Dl

o Graphics

E Cor

R, Write Script: Sketch(es) of Active Plane
‘ii" Run Script...

& Print

H Auto-save Mow
Restore Auto-save File L

Close DesigniModeler

Fig. E.7

navega-se no computador a fim de importar o arquivo da geometria do pilar (1?2 etapa)
em “sat”, conforme ¢ apresentado na figura E.8.
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5 Abrir X

Examinar: | | SIMULAGAD ANSYS - e &k

" Nome Data de modificagdo po
Geometria do pilar em Duplo T com lintéis 02/11/2019 20:43 Standard ACIS Text

=

Acesso rapido

frea de
Trabalho

™
Bibliotecas

3

Este Comi::utador
Rede <

>
MNome: IGeometn'a do pilar em Duplo T com lintéis j Abrir I

Tipo: IP«II Geometry Files (" .zat;".sab;" pmdb;" dwg;".dxf;" model;" exp;" sessiol + Cancelar |

~Fig. E.8

clicar no comando “Generate” e em seguida “Import2” e em seguida o arquivo ja foi
gerado, e dai pode-se fechar a janela “Design Modeler”. Por fim, observa-se na figura E.9 que
o item “Geometry” estd atendida.

A

T Modal

-
1
2 @ Engineering Data
3
4

v 4

i) Geometry v o
@ Model N

5 ﬁ Setup =
& Solution F 4
7 @ Results =

Andlise Modal do Pilar metalico,em Duplo T e com lintéis

Fig. E.9

proceder com clique duplo no item “Model” apresentado na figura E.10.

i:’

Engineering Data
Geometry

Model

Setup

Solution y

ERVRRIN- R, [ S ¥ T P
orf] | ol | ogll JRR| S| S
h

O Bee S

Results 4

Andlise Madal do Pilar metalica, em Duplo Te com lintéis Fig E.10
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sera aberta a janela “Model”, conforme consta na figura E.11.

@ A: Anilise Modal do Pilar metalico, em Duplo T e com lintéis - Mechanical [ANSYS Academic Teaching Introductory] - =} X
File Edit View Units Tools Help |J (] @ =i | /Soive v (@ NewAnalysis v ?/ShowErmors Wl A @~ W Worksheet Iy

IRAYKM-ARRBREEE (& S+QQ(QEAQAAR NGE & | O
5 Show Vertices S Close Vertices  1,6.004 (Auto Scale)  ~ @@Wireframe | "z Showesh & Bl Random @ Preferences | [, 1, [. 1, [, || ¢Size v @ Location v [@Convert v <Miscellaneous v (@ Tolerances

5 Clipboard v [Empty]

#i [(eReset ExplodeFactor  f———————— Accembly Center - || MEdgecoloring > £~ Jiv £ A~ A A Pl M Thicken

Model | &l Part Transform | & Construction Geometry | @i Virtual Topology | (@] Symmetry | @, Remote Point | @ Fracture | @ MeshEdit @ Mesh Numbering | @ Condensed Geometry | #©Named Selection |
Ouine d

| Filter: Name -

| .EJ 2> e 8l

8-

o

o} mmnn@%
i
it

_ eBi
§
i

Details of “Model (A4)" 2
= Filter Options 7 A
| 1 T 0 0015 003 (m) b X
— — ]

| Control [Enabled

=) Lighting 00075 0022
Ambient 0,1 v
Details of "Model (A4)" | Manage Views | |\ Geometry {Print Preview, Preview,
[ [ 1.0 No Messages [No Selection [Metric (m, kg, N,5,V, A) Degrees rad/s Celsius Z

selecionar na aba “Outline” — “Mesh” e em “Details of Mesh” vai-se até a opcdo de
definigdo da malha de elementos finitos “Element Size” e preenche-se por decrementos até que
0 numero total de nés da modelagem caiba dentro da licenca do ANSYS que se possua.

= Display Py
Display Style |U5e Geometry Setting
[=l| Defaults

Physics Preference | Mechanical

Element Crder Program Controlled

03

Sizing

Quality

Inflation

Advanced

Statistics W
Details of “Mesh" | Manage Views |

F F H O F

Fig. E.12

a quantidade de nos ¢ observada ao clicar em “Mesh” com o botdo direito e clicar em
“Generate Mesh”, e em seguida na aba “Details of Mesh” observa-se “Statistics” a
quantificacdo dos Nds (Nodes) e dos elementos finitos (Elements).



