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RESUMO 

 

 

MELO, W.I.G. Contribuições à análise dinâmica da ação do vento em pilares de pontes via técnica 

do meio contínuo e método dos elementos finitos. 2019. Tese (Doutorado em Engenharia Civil – 

Estruturas), Universidade Federal da Paraíba, João Pessoa, 2019. 

 

O aprimoramento da análise estrutural vem se acelerando nas duas últimas décadas, 

primordialmente sob modelagem pelo Método dos Elementos Finitos. No caso especial de 

pontes, mediante tal modelagem, os efeitos dinâmicos são computados com maior rigor e 

confiabilidade e devido à grande agilidade de processamento imposta pelo mercado, a utilização 

de softwares comerciais tornou-se corriqueira. Em face da utilização de tais programas de 

análise e dimensionamento, o engenheiro estrutural ganha a praticidade de simular diversos 

estados de carga, porém deve sempre possuir mecanismos de validação e verificação de tais 

resultados. Daí, nessa tese, a Técnica do Meio Contínuo (TMC) será abordada, resgatada e 

aplicada na análise dinâmica de pilares de pontes. objetivando-se fomentar ferramenta de 

corroboração das simulações em softwares comerciais (geralmente via MEF). Os efeitos 

dinâmicos considerados nos mencionados pilares através da TMC foram obtidos com precisão 

excelente, o que permitiu a validação quanto aos seguintes aspectos: fenômeno da flexo-torção, 

teoria dos painéis-paredes, vibrações em núcleos estruturais contraventados por lintéis e 

estabilidade elástica. Além da exposição da TMC na análise dinâmica, evidencia-se a 

postulação de fluxogramas e marchas de cálculo sob a ótica de processamentos matriciais de 

equações diferenciais, bem como procedida a Generalização da Teoria dos Painéis – Parede 

(GTPP) para ocorrência de paredes não ortogonais. A inovação ocorre no seguinte: 

desacoplamento dinâmico da vibração de painéis-paredes metálicos e de concreto armado, 

amortecimento proporcional para rigidez estrutural particionada no núcleo e nos lintéis de 

contraventamento, equações de Maney no equilíbrio dos lintéis e na condensação matricial. Por 

fim, para seções de paredes finas de concreto armado, submetidas ao bimomento, é postulada a 

marcha de cálculo e apresentadas tabelas adimensionais para obtenção da armadura resistente. 

Palavras – chave: Pilares de pontes; Flexo-torção; Generalização da Teoria dos Painéis-parede 

(GTPP); Análise dinâmica; Estabilidade e ação do vento; MEF; Armadura ao bimomento. 



viii 
 

ABSTRACT 

 

 

MELO, W.I.G. Contributions to analysis of wind action on bridge columns via the continuous 

medium technique and the finite element method. 2019. Thesis (PhD in Structures), Federal 

University of Paraíba, João Pessoa, 2019. 

 

The improvement of structural analysis has been accelerating in the last two decades, primarily 

under Finite Element Method (FEM) modeling. Particularly with bridges, through such 

modeling, the dynamic effects are computed with greater rigor and reliability and due to the 

great agility of processing imposed by the market, the use of commercial software has become 

commonplace. In view of the use of such analysis and sizing programs, the structural engineer 

gains the practicality of simulating several load states, but must always have mechanisms for 

validation and verification of such results. Hence, in this thesis, the continuous medium 

technique (CMT) will be approached, restored and applied to the dynamic analysis of bridge 

columns, aiming at fostering a corroboration tool for simulations in commercial software 

(usually via FEM). The dynamic effects considered in the aforementioned columns through 

CMT were obtained with excellent precision, which allowed the validation of the following 

aspects: torsional bending phenomenon, wall panel theory, vibrations in structural cores braced 

by lintels, and elastic stability. In addition to the CMT exposure in the dynamic analysis, the 

postulation of flowcharts and calculation margins are evidenced from the point of view of 

matrix processing of differential equations, as well as the realization of the Wall Panel Theory 

Generalization (WPTG) procedures for the occurrence of non-orthogonal walls. Innovation 

takes place in the following: dynamic decoupling of the vibration of metal wall panels and 

reinforced concrete, proportional damping for structural rigidity partitioned in the core and in 

the bracing lintels, Maney equations in the balance of the lintels, and in the matrix condensation. 

Finally, for sections of reinforced concrete thin walls, subject to the bimoment, the calculation 

march and dimensionless tables are postulated to obtain the resistant steel area. 

Keywords: Bridge columns; Torsional bending; Wall Panel Theory Generalization (WPTG); 

Dynamic analysis; Stability and wind action; FEM; Bimoment steel area. 
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RÉSUMÉ 

 

 

MELO, W.I.G . Contributions à l’analyse dynamique de l’action du vent sur les piliers des 

ponts par la téchnique du moyen continu et méthode des élements finis. 2019. Thèse 

(Doctorat en Structures), Université Fédéral de la Paraíba, João Pessoa, 2019. 

 

L’amélioration de l’analyse structurelle a accéléré au cours des deux dernières décennies, 

principalment sur la modélisation par la Méthode des Élements Finis. Dans le cas particulier de 

ponts, par la modélisation, les effets dynamiques sont calculés avec plus de rigueur et de fiabilité 

en raison de la grande agilité de traitement imposée par le marché, l'utilisation de logiciels 

commerciaux est devenue habituelle. Face à l’utilisation de tels programmes d’analyse et de 

dimensionnement, l’ingénieur en structure peut simuler plusieurs états de charge, mais il doit 

toujours disposer de mécanismes de validation et de vérification de ces résultats. Donc, dans cette 

thèse, la téchnique du moyen continu (TMC) sera abordée, sauvée et appliquée à l'analyse 

dynamique des piliers de ponts. Visant à fomenter un outil de corroboration des simulations dans 

des logiciels commerciaux (en général par le MEF). Les effets dynamiques considérés dans les 

piliers mentionnés par le biais TMC ont été obtenus avec une excellente précision, ce qui a permis 

la validation des aspectes suivants: phénomène de la flexion-torsion, théorie des panneaux-parois  

vibrations dans les noyaux structurels renforcé par linteaux et stabilité élastique. Au-delà de 

l’exposition de l'exposition à la TMC dans l'analyse dynamique, il est évident que la postulation des 

organigrammes et des marches de calcul du point de vue du traitement matriciel d'équations 

différentielles, ainsi que la généralisation de la théorie des panneaux-parois (GTPP) pour la 

survenue de murs non orthogonaux. L'innovation est la suivante: découplage dynamique des 

vibrations provenant des panneaux-parois métalliques et en béton armé, amortissement 

proportionnel pour la rigidité structurelle cloisonnée dans les linteaux centraux et de 

contreventement, équations de Maney dans l'équilibre des linteaux et la condensation de la 

matriciale En guise de conclusion, pour les sections de béton armé à parois minces soumises au 

bimomento, les tables de marche et de calcul sans dimension sont postulées pour obtenir le 

renforcement résistant. 

Mots – clés: Piliers de ponts; flexion-torsion; Généralisation de la théorie des Panneaux-parois 

GTPP); Analyse dynamique; Stabilité et action du vent; MEF; Armure du bimoment. 
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“Afirmo muitas vezes que, se você mediar aquilo 

de que está falando e expressar em números, você 

conhece alguma coisa sobre o assunto; mas, 

quando você não o pode exprimir em números, seu 

conhecimento é pobre e insatisfatório”.        
 

 Lord William Kelvin 
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CONSIDERAÇÕES INICIAIS 

 

 

 

1.1. RELEVÂNCIA DA TESE 

 

 

A modelagem de pontes é processada, em sua maioria, por simulação em softwares 

baseados em elementos finitos. Quanto aos estudos acadêmicos das solicitações dinâmicas em 

pontes, eles ficam restritos a analisar e modelar rigorosamente o tabuleiro e considera-se o 

desacoplamento da superestrutura e mesoestrutura, servindo os pilares de meros apoios. Isto é 

notadamente observado em Kermani e Waldron (1993), Chen et al. (2013), Buljac et al. (2017) 

e Ying et al. (2017). 

Com base nessa lacuna será então abordado nesta tese o fenômeno da flexo-torção nos 

pilares altos (com seção em paredes finas) de pontes em decorrência da ação do vento, 

explicitando a ocorrência de momento de torção sob variação linear na altura do referido pilar 

e associado a flexão. As análises estática e dinâmica dos painéis-parede que formam o 

mencionado pilar, os efeitos de 2ª ordem sob ação conjunta do vento e da reação do tabuleiro 

(problema de estabilidade elástica), também são considerados. Por fim é postulada a rotina de 

dimensionamento estrutural para seção transversal composta por paredes finas (com abas e 

paredes simétricas) e submetida ao bimomento, bem como apresentadas tabelas adimensionais. 

Desta forma, a pesquisa foi desenvolvida conforme quatro eixos temáticos, sendo 

estes: flexo-torção e análise estática dos painéis-parede, análise dinâmica dos painéis-parede, 

estabilidade elástica dos pilares (efeitos de 2ª ordem) e dimensionamento da seção de paredes 

finas submetida ao bimomento.  

 

Capítulo 
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a) Contribuições da tese 

 

a.1) 1ª Contribuição: MATRIZ DE RIGIDEZ PARA SEÇÃO RETANGULAR 

LINEARMENTE VARIÁVEL VIA INTEGRAÇÃO DIRETA. 

 Nas páginas 125 a 131 (ver capítulo 2) da tese é apresentada a obtenção da matriz de 

rigidez do elemento de barra, com seção retangular maciça e linearmente variável, através da 

integração direta para a determinação dos termos da matriz de flexibilidade da referida barra. 

A aplicação de tal formulação e a conseguinte verificação via simulação em ANSYS são 

apresentadas nas páginas 136 – 139. Na literatura consta apenas tal matriz via integração 

numérica ou por meio de soluções aproximadas, caracterizando nesta tese a obtenção 

direta da matriz de rigidez do EF com barra de seção retangular linearmente variável. 

 

a.2) 2ª Contribuição: SISTEMA DINÂMICO PARA ELEMENTO FINITO APLICADO 

AOS PILARES SOB CARGAS LATERAIS. 

 Nas páginas 147 a 159 (capítulo 3) da tese é apresentada a formulação do elemento finito 

de barra via equações de Maney, contendo para o problema fundamental a aplicação de cargas 

laterais para compor os esforços desequilibrantes. Não há na literatura a formulação de tal 

elemento finito para o caso de pilares de pontes sob ação do vento. 

 

a.3) 3ª Contribuição: ELEMENTO FINITO DE BARRA PARA O PILAR EM NÚCLEO 

ESTRUTURAL (C OU DUPLO T) CONSIDERANDO A DEFORMAÇÃO POR CORTE. 

 Nas páginas 159 a 186 (capítulo 3) da tese é apresentada a formulação do elemento finito 

de barra, para seções de paredes finas, via análise matricial com a união das teorias de flexão 

no núcleo estrutural (método dos deslocamentos) e da flexo – torção, computando-se o efeito 

do empenamento e a ação do bimomento, tanto para seção em C ou em duplo T.  

Em Heidebrecht e Swift (1971), Barbosa (1980) e Smith e Coull (1991) a definição do 

elemento finito em questão é procedida com a desconsideração da deformação por corte na 

obtenção da matrize de rigidez dos elementos estruturais (núcleo estrutural e lintéis). Não há 

na literatura a formulação de tal elemento finito com a consideração da deformação por 

corte no núcleo estrutural e nos lintéis, daí a contribuição. 
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a.4) 4ª Contribuição: APRESENTAR A EDO DO PROBLEMA DE ESTABILIDADE 

ELÁSTICA DE PILARES, COM SEÇÃO TRANSVERSAL LINEARMENTE VARIÁVEL E 

CONSTANTE. 

 No capítulo 4 desta tese é equacionado o problema de estabilidade elástica para pilares 

de pontes, sob a ação conjunta do vento e da reação do tabuleiro. Configurando assim, a ação 

de cargas laterais (considerando a ação do vento no tabuleiro, o tráfego e o peso-próprio), bem 

como a reação do tabuleiro e o peso próprio do pilar. Procede-se ainda a análise de seções 

transversais maciças e vazadas com paredes fechadas e com carga crítica determinada em 

função da espessura das paredes. Não existe na literatura o equacionamento da carga crítica 

para pilares de pontes (na ação conjunta de cargas do vento e o tráfego no tabuleiro). 

 

a.5) 5ª Contribuição: GENERALIZAÇÃO DA TEORIA DOS PAINÉIS – PAREDE (GTPP) 

VIA TMC. 

 Consiste no equacionamento do núcleo estrutural em formato de C ou em duplo T com 

paredes não ortogonais, sendo apresentada no capítulo 5 (ver páginas 222 – 237). Daí, via 

técnica do meio contínuo procede-se: a determinação do centro de torção, traçado do diagrama 

de ordenadas setoriais principal 𝜔𝑝𝑐 (com polo de varredura no centro de torção da seção de 

paredes finas) e o correspondente  momento de inercia setorial 𝐼𝜔. Isto também não é 

encontrado na literatura. 

 

a.6) 6ª Contribuição: RESOLUÇÃO DA TEORIA DA FLEXO-TORÇÃO PARA A AÇÃO 

DO VENTO NO PILAR, VIA TMC. 

 Nas páginas 238 a 240 (capítulo 5) da tese é apresentada a solução da Equação 

Diferencial Ordinária (EDO): 𝜙′′ − 𝑟2. 𝜙′′′ =
𝑚

𝐺.𝐼𝑡
, sendo utilizado momento de torção sob 

distribuição linear: 𝑚(𝑥) = 𝐴. 𝑥 + 𝐵. Na literatura a solução dessa EDO é executada sob 

momento de torção constante, ver Mori e Munaiar Neto (2017, p. 140 – 145), mesmo quando 

da análise de núcleos estruturais em edifícios altos. Conforme observa-se em Smith e Coull 

(1991, p. 323 – 326), os carregamentos laterais são aproximados sob distribuição uniforme na 

altura, o que conduz a momento de torção constante. Assim, com a análise procedida nesta 

tese computa-se a ação do vento via teoria da flexo – torção (TFT), o que não consta na 

literatura. 
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a.7) 7ª Contribuição: ANÁLISE DINÂMICA DOS PAINÉIS-PAREDE METÁLICOS 

ATRAVÉS DA TMC. 

 Nas páginas 249 a 253 (capítulo 5) desta tese é apresentada a análise dinâmica de 

núcleos estruturais metálicos, os também denominados painéis – parede e definidos em Barbosa 

(1980, p. II – 55). Admite-se para tais elementos a rigidez particionada em duas matrizes, sendo: 

[𝐽] a matriz de rigidez do núcleo estrutural e [𝑆] a matriz de rigidez dos lintéis que promovem 

o contraventamento. A equação diferencial é então expressa por: −[𝐽]. {𝑣′′′′} + [𝑆]. {𝑣′′} +

[𝑀]. {𝑣̈} = {𝑉𝑓
′}. Apresenta-se no apêndice A as soluções das EDO’s desacopladas mediante 

sistema generalizado de coordenadas, ver páginas 105 e 106. Nesta tese há a contribuição da 

análise dinâmica de pilares de pontes em formato de núcleos estruturais, onde o tabuleiro 

conduz a momento fletor (𝔐𝑧𝐻 , 𝔐𝑦𝐻
) e bimomento (𝐵𝐻) não nulos no topo.  

Na literatura encontra-se a análise da vibração livre, em Laier (1978, p. 11 – 18), e da 

vibração forçada, ver Laier (1984, p.75 – 88) para paredes de edifícios, considerando-se assim, 

seções com rigidez em única matriz. Bem como, no modelo contínuo para paredes via “Teoria 

de vigas de Navier – Bernoulli” que é apresentado em Laredo (1977, p. 273 – 283). Tal 

formulação é postulada para seções clássicas (maciças ou vazadas), sem ser de paredes finas 

abertas. Portanto, a formulação proposta nesta tese é inédita. 

 

a.8) 8ª Contribuição: ANÁLISE DINÂMICA DOS PAINÉIS-PAREDE DE CONCRETO 

ARMADO PELA TMC. 

 Nas páginas 254 a 265 (capítulo 5) desta tese apresenta-se a análise dinâmica de núcleos 

estruturais de concreto armado. Caracterizando a não coincidência do centro de massa com o 

centro de gravidade da seção transversal, e a equação diferencial de tal problema é expressa 

por: −[𝐽]. {𝑣𝐶𝐺
′′′′} + [𝑆]. {𝑣𝐶𝐺

′′ } + +[𝑀̅]. {𝑣̈𝐶𝐺} = {𝑉𝑓
′}. Isto tem caracter inédito. 

 

a.9) 9ª Contribuição: AMORTECIMENTO PROPORCIONAL PARA RIGIDEZ 

PARTICIONADA EM DUAS MATRIZES. 

 Nas páginas 266 a 267 (capítulo 5) desta tese é apresentada a composição da matriz de 

amortecimento [𝐶] para o sistema estrutural com rigidez particionada em duas matrizes, a 

exemplo: as matrizes de rigidez do núcleo [𝐽] e dos lintéis [𝑆]. Para tal, quantificam-se as 

parcelas das matrizes de rigidez [𝐽], [𝑆] e, de massa [𝑀] (seção de aço) ou [𝑀̅] (seção de 
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concreto), que através das frequências 𝜔𝑗
∗, compõem a matriz de amortecimento [C]. Não existe 

na literatura, tal formulação com a rigidez da estrutura particionada em duas matrizes. 

 

a.10) 10ª Contribuição: DIMENSIONAMENTO DA SEÇÃO DE PAREDES FINAS EM 

CONCRETO ARMADO E SUBMETIDA AO BIMOMENTO. 

 No capítulo 6 desta tese é formulado o processo de obtenção da armadura resistente ao 

bimomento atuando em seções transversais de paredes finas em concreto. Procede-se tal 

equacionamento para núcleos estruturais em formato de C e de duplo T, adotando-se por 

hipótese paredes e abas simétricas, quanto as dimensões. Não há na literatura o 

equacionamento de seção de paredes finas em concreto armado e sob ação do bimomento. 

 

1.2. ESTADO DA ARTE 

 

A Técnica do Meio Contínuo (TMC) foi bastante utilizada até os anos 1990, sobretudo 

com aplicação em edifícios altos. Porém, com a disseminação dos computadores surgiram 

inúmeros programas computacionais de análise estrutural fazendo uso do método dos elementos 

finitos, de maior praticidade. Assim a TMC foi relativamente esquecida, daí a ausência de 

publicações recentes no tema. Neste estado da arte apresentam-se tópicos relacionados ao 

projeto de pilares de paredes finas, indicando-se literatura na qual grande parte dos trabalhos 

fizeram uso da TMC, e por fim correlaciona-se tal técnica com o projeto de pilares de pontes. 

 

a) Flexo-torção e análise estática dos painéis-parede 

 

 

A análise da flexo-torção em estruturas de paredes finas foi inicialmente postulada por 

Bazile Zakharovitch Vlassov, que em 1936 publica “La statique des enveloppes”, sua tese de 

doutorado. Continuando nos anos seguintes a estudar mais aprofundadamente as estruturas de 

paredes finas, no francês: “membres en voiles minces”. Rematando tais avanços na teoria geral 

dos elementos esbeltos de paredes finas através do livro publicado em 1940, reeditado em 1958 

e transcrito para o francês em 1962, sob o título: “pièces longues en voiles minces” 

(VLASSOV, 1962).  
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Na década de 70 do século XX ocorreu maciça contribuição ao tema flexo-torção em 

seções de paredes finas, através da Técnica do Meio Contínuo. As paredes acopladas foram 

analisadas em Gluck (1970) e discutida tal análise por Wynhoven et al. (1970). Em seguida, 

por Smith e Taranath (1972) analisam o problema da coluna com seção em U, reforçadas por 

de abas, e submetidas à torção uniforme, sendo estudados o bimomento e a rotação em torno 

do eixo axial sob o centro de torção e proposto o contraventamento por lintéis com formação 

de rótula plástica no meio do vão. Em Wakabayashi e Yagui (1973) as análises do núcleo 

estrutural são processadas mediante teoria da flexo-torção associada a análise matricial de 

estruturas, buscando-se assim, implementar em subsequentes estudos de edifícios altos. 

No estudo de duas paredes finas acopladas mediante lintéis pode-se ressaltar Gluck e 

Gellert (1972), Tso e Biswas (1973a, 1973b) e Danay et al. (1974). Na contribuição de único 

núcleo formado por seção de paredes finas e contraventado por lintéis (para edifícios altos), 

tem-se como indispensável citar Wakabayashi e Yagui (1973) em conjunto com Heidebrecht e 

Smith (1973). Este último com a utilização de funções adimensionais para expressar o 

empenamento 𝜙 e suas conseguintes derivadas até a terceira ordem. Nestes trabalhos sempre 

foi desprezada a parcela da deformação por corte. A consideração de tal deformação, devido ao 

corte, é proposta em Serra e Yagui (1995) e o efeito de carga axial aplicado no centro de 

cisalhamento em Yagui e Serra (1995). Porém ambos consideram cargas laterais constantes, 

não procedendo a análise da ação do vento, cuja atuação gera momento de torção variável na 

altura da estrutura.  

O efeito da deformação por corte em seções de núcleos estruturais é analisado em Smith 

e Abate (1984), porém detém-se na formulação pela teoria da flexo – torção, não analisando o 

problema sob a ótica da teoria dos painéis – parede. Nesta mesma linha de raciocínio cita-se 

Khan e Smith (1975) que apresenta a solução analítica para seções abertas com distribuição de 

lintéis idênticos e repetidos ao longo da altura do pilar. O equacionamento do lintel, em ambos 

os artigos, não considera o lintel como viga e computa seu efeito no núcleo estrutural através 

da formação de rótula plástica no centro do vão. Assim é que nesta tese, procede-se o 

equacionamento do referido lintel mediante equações de Maney. Evitando-se a imposição 

(consideração) da ocorrência obrigatória da rotulação plástica no centro do vão do lintel (ver 

item 2.8.1 b). Já em âmbito da produção de dissertações e teses nacionais ressalta-se: Rachid 

(1975) que apresenta a formulação da teoria de flexo – torção via método energético e focado 

em determinar a carga crítica para flambagem lateral, das aqui mencionadas paredes finas de 

seção transversal aberta, já em Carvalho (1980) incrementa-se o estudo da carga de flambagem.  
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Já, em Barbosa (1980) tal contraventamento é analisado mediante imposição de cargas 

laterais constantes ao longo da altura. Para Marques (1983) o núcleo estrutural é constituído por 

duas paredes em formato de U e acopladas mediante lintéis unindo as abas das paredes, ficando 

submetido a momento de torção 𝑀𝑡 no centro de gravidade do sistema. Por fim, em Costa 

(1984) incrementa-se nos núcleos a fundação flexível mediante vinculação elástica. A análise 

dos efeitos de segunda ordem nos núcleos estruturais é realizada em Xavier (1987) com cargas 

verticais distribuídas ao longo da altura, tanto para núcleos isolados contraventados ou não por 

lintéis, bem como de paredes em formato de U e acopladas mediante lintéis, sendo publicado 

com novo detalhamento em Xavier e Melo (2018). Anos mais tarde, Basttistelle (1991) acresce 

na análise de 2ª ordem, o efeito das deformações axiais dos pilares, porém não aplica tal 

conceito aos núcleos estruturais (nos subsequentes painéis-parede).  

Em Ribeiro (1987) estudam-se os núcleos mediante análise matricial do método dos 

deslocamentos e sua conseguinte associação tridimensional à pórticos, em seguida Yoshida 

(1988) integra os núcleos estruturais aos pilares ou aos pendurais de aço. E a análise dinâmica 

da associação tridimensional de pórticos, núcleos e paredes via TMC é abordado em Laier 

(1984). Já para o devido desacoplamento do sistema de equações recorre-se a Rosman (1972), 

realizando tal procedimento mediante translado do sistema de referências para um sistema 

generalizado. No âmbito de livros é fundamental mencionar Smith e Coull (1991), que no 

capítulo 13 dedica-se ao estudo de pilares de seções com paredes finas abertas e contraventadas 

por lintéis ou lajes. Nesta última publicação o problema é resolvido mediante a técnica do meio 

contínuo, a teoria da flexo-torção e o elemento finito via análise matricial com acoplamento da 

flexão e do empenamento, porém desprezando a deformação por corte. Por fim, Nemir (1985) 

faz um apanhado detalhado de todas as hipóteses e equações envolvidas no fenômeno da flexo-

torção, bem como resultados experimentais de cargas e momentos críticos. As referidas análises 

são procedidas para vigas contínuas e pórticos, em qual linha de raciocínio cita-se Kolbrunner 

(1969). 

 

b) Análise dinâmica dos painéis-parede 

 

A mensuração dos efeitos dinâmicos em pontes é realizada, primordialmente em 1890, 

por coeficientes de impacto, porém as publicações técnicas mais relevantes ocorreram na 

década de 30 do século XX. Na década de 60 do mencionado século, ressaltam-se três 
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publicações dos efeitos dinâmicos, sendo: o primeiro de autoria de Fleming e Romualdi (1961), 

onde a análise dinâmica é processada por integração numérica da equação do movimento e 

modelagem por massas concentradas (para pontes com tabuleiro em vigas biapoiadas e 

contínuas). A segunda publicação é o estudo da estabilidade dinâmica de colunas e procedido 

por Bailey (1963), sendo enunciada a deflexão harmônica para pequenas e grandes 

deformações. E por último, a ação do vento em pilares de edifícios altos é analisado por Ferraz 

(1966) com a modelagem das ações oriundas do vento em formato de cargas laterais 

concentradas por nível de travamento (nas lajes para o caso de edifícios altos). 

Na década seguinte, as análises foram procedidas em dois eixos, sendo estes: por 

primeira temática tem-se a modelagem estocástica das forças e rajadas provenientes do vento, 

mencionando-se Hart (1970), Vaicaitis (1975), O’Rourke et al. (1975), Peterka e Cermak 

(1976a, 1976b) e Saul et al. (1976). No segundo eixo temático, procede-se a simulação dinâmica 

dos núcleos estruturais, ressaltando Reinhorn et al. (1977) para a análise de edifícios com um 

eixo de simetria, removendo o acoplamento da torção com a flexão (o mesmo princípio é 

aplicável a pilares de pontes em formato de núcleo estrutural). A análise dinâmica dos painéis-

parede pela TMC é processada em Laier (1978), com ênfase nos modos de vibração livre. Anos 

mais tarde, é que Laier (1984) postula a análise modal para os painéis (sem considerar rigidez 

particionada em duas matrizes) sob vibração forçada e aplicando-na em edifícios altos. Nesse 

sentido, é que nesta tese procede-se a extensão de tal análise para os pilares de pontes com seção 

transversal de paredes finas metálicas e aplica-se tal conceito de forma inédita em seções de 

concreto armado. 

Em Ribeiro (1991) analisa-se a auto-correção e a correlação cruzada das pressões 

oriundas da ação do vento em faces retangulares e ensaiados em túnel de vento, o qual torna-se 

relevante na determinação da rajada de vento padrão. Não obstante, em Yin e Fang (2011) é 

ressaltada a importância da vibração lateral em pontes com pilares altos, isso devido a perda da 

rigidez lateral à flexão, principalmente ao lançar seções transversais em paredes finas para 

agregar viabilidade econômica ao projeto. Daí, a proposição nesta tese de proceder análise dos 

efeitos dinâmicos em pilares altos compostos por painéis-parede, analisando-no quanto: a 

estabilidade elástica sob imposição de carga lateral, a flexo – torção , os modos de vibração e o 

dimensionamento ao bimomento. 
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c) Estabilidade elástica de pilares 

 

A estabilidade elástica de pilares é algo a muito estudado. No âmbito de artigos técnicos 

podemos mencionar: Massonnet (1959), o qual retoma o cálculo da carga crítica desde a coluna 

ideal, analisa a coluna de paredes finas sob formato de C e em cruz, e também verifica os 

cenários de excentricidade da aplicação da carga compressiva no topo e na base (equacionando 

o momento crítico e validando-o por ensaio mecânico). Em Gl𝑢̈ck e Gellert (1972) é analisada 

a estabilidade lateral de pilares em paredes finas contraventadas por lintéis espaçados ao longo 

da altura e presentes na face aberta do pilar. Já em Lau e Hancock (1987) é analisada a seção 

de paredes finas com uma das faces aberta e reforçada por abas, tomando por vinculações os 

apoios elásticos. 

Os painéis em formato de paredes de corte são analisados quanto à estabilidade em 

Rutenberg et al. (1988), porém o único estado de carga analisado é a atuação do peso próprio, 

distoando das análises processadas em Timoshenko e Gere (2009), isso por proceder análise de 

1ª ordem com carregamento lateral sob formato equivalente para computar o diagrama de 

momento fletor para a configuração deformada. Tempos depois, Paulay e Priestley (1993) 

analisam a ductilidade (quanto ao fenômeno de estabilidade) de paredes estruturais em concreto 

armado, via parametrização de ensaios experimentais. Para a ótica de núcleos estruturais com 

duas paredes opostas parcialmente contraventadas por lintéis e apoiados sob base elástica, cita-

se Nadjai e Johnson (1996). No âmbito de aplicações e replicações da deduções de Timoshenko 

e Gere (2009) em problemas mais paupáveis, cita-se o estudo da estabilidade em gasodutos por 

decorrência da pressão interna e procedido por Craveiro e Gay Neto (2016). Em Sepahi et al. 

(2010) é procedida a análise da posição deformada e carga crítica para colunas com não 

linearidade geométrica, porém é apenas considerado carga concentrada no topo e peso próprio 

do pilar de seção maciça. 

Após tal apanhado, verificou-se a ausência da análise da carga crítica para pilares com 

estado de carga composto pela ação do vento (carga lateral sob variação linear) e pelas cargas 

verticais. Nesta tese propõe-se a contribuir em tal lacuna e procede-se no capítulo quatro à 

verificação da estabilidade elástica de pilares maciços e vazados para atuação conjunta do vento 

(cargas laterais), reação do tabuleiro da ponte (carga vertical 𝑃 no topo do pilar) e do peso 

próprio 𝑝 do referido pilar. 
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d) Dimensionamento de seções de concreto armado 

 

O equacionamento da armadura resistente ao momento de torção e da flexão em pilares 

(quando da atuação em seções maciças ou vazadas com paredes fechadas) é amplamente 

estudado na literatura. Fazendo-se relevante mencionar Sussekind (1991), Amaral (1971) e 

Saliger (1963), bem como Araújo (2014). Em todos os textos referenciados observa-se que a 

análise das tensões oriundas da torção é processada mediante analogia da treliça de M𝑜̈rsch 

(treliça espacial com bielas de compressão a 45º).  

O estudo da flexão oblíqua em seções de concreto armado é criteriosamente detalhado 

em Langendonck (1959), sendo explicitado o funcionamento estrutural sob ótica de zonas 

tracionadas e comprimidas através do posicionamento e inclinação da linha neutra. Para pilares 

de grande altura e seção variável, faz-se relevante mencionar a análise da estabilidade e da 

flexo-torção, procedidas em Fuentes (1987). 

Em Ichinose e Takiguchi (1987) é analisada a ocorrência das formas de deformação por 

esforço cortante para barras em concreto armado, procedendo a análise por uma malha de 

tensores ortogonais ao invés da tradicional treliça de M𝑜̈rsch. Já, em Branson (1966) a flexão é 

analisada em elementos sob flexão simples. Em Stasio e Buren (1960) as colunas são analisadas 

sob a ótica da flexão composta (sempre em cenário desassociado da torção). Anos mais tarde, 

em Rahal e Collins (1995) é procedida a análise conjunta da torção e do efeito de corte, via 

treliça de M𝑜̈rsch. A análise experimental de lintéis, sob a forma de paredes de corte, é realizada 

por Tassios et al. (1996), onde verifica-se a redução dos momentos fletores e a dissipação de 

energia, estas promovidas pela imposição dos referidos lintéis. 

Diante de tais contribuições na literatura para pilares de seção maciça, sempre sob a 

ótica da ação da flexão em separação da torção. Propõe-se então nesta tese a formalização da 

rotina de dimensionamento de seções transversais de concreto armado, composta por paredes 

finas, e submetidas ao bimomento. Em outros termos, equaciona-se a armadura resistente a 

solicitação conjunta do momento fletor e da torção em termos do esforço solicitante decorrente, 

no caso o bimomento.  
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e) Evolução construtiva 

 

A ponte Angered localizada em G𝑜̈teberg (na Suécia) é apresentada por Estrutura em 

Revista (1980, p.7), sendo característicos os pilares com altura máxima de 50 metros e seções 

transversais vazadas com dimensões externas entre 4 a 9 metros. As referidas paredes finas são 

de espessura de 40 a 45 cm, e resistência à compressão do concreto (𝑓𝑐𝑘), normalmente, de 45 

MPa e com algumas seções em concreto de resistência C – 50. Ver figura 1.1. 

Figura 1.1: Ponte Argered sob vãos centrais de 129 metros 

 

Fonte: (Estrutura em Revista, 1980) 

Em Recordes Mundiais (1985, p.24), Gottemoeller (1998, p.53) e Rossiter (2008) 

apresenta-se a ponte de Ganter, cuja relevância para esta tese é a altura máxima dos pilares de 

150 metros por sobre vale profundo. A ponte localiza-se na Suíça, ao longo da estrada Simplon 

Pass (no “Canton of Valais”, a 10 km de Brig). Nesta ponte, os pilares extremos são maciços e 

de seção retangular, enquanto os demais são de seção retangular vazada e variável na altura. 

Daí a motivação para a análise procedida no capítulo quatro desta tese. Vide figura 1.2. 

Figura 1.2: Ponte Ganter, com pilares maciços e vazados, localizada na Suíça 

 

Fonte: (Gottemoeller, 1998) 
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Cita-se ainda a ponte sobre o vale dos diabos, apresentada em Pfeil (1960), localizada 

na BR – 14 ao sair da cidade de Santa Maria – RS. Os pilares extremos possuem seção 

retangular maciça de (3 x 0,8) m, já os pilares centrais são compostos por seção transversal 

retangular vazada de (3 x 1,2) a (3 x 1,6) m. A altura do pilar mais alto é de 43 metros. Vide 

figura 1.3. 

Figura 1.3: Ponte sobre o vale dos diabos 

 

Fonte: (Pfeil, 1960) 

Em Beyer e Thul (1969) são apresentados comentários sobre pontes com relevante 

lançamento estrutural. A exemplificar cita-se a ponte Siegtal (localizada no vale Sieg na 

Alemanha, sendo uma das inspirações para o projeto da ponte Rio – Niterói), com pilares de 

100 metros de altura. Vide figura 1.4. 

Figura 1.4: Pilar da ponte Siegtal, com 100 metros de altura 

 

Fonte: (Beyer e Thul, 1969) 

Por fim, referencia-se DNER (1984), onde são apresentados detalhes de projeto e 

execução da ponte presidente Costa e Silva (mais conhecida como ponte Rio – Niterói). Os 

pilares são de formato retangular vazado e variável linearmente na altura, com topo maciço para 

emprego dos aparelhos de apoios do tipo Neoprene. A termo de informação, as placas de 

Neoprene tem base de (70 x 70) cm e fretagem de (1 a 2) mm, de acordo com o projeto. Os 

pilares possuem altura na ordem de 70 metros. Na figura 1.5 apresenta-se o pilar de um dos 

vãos centrais durante a fase de contrução do tabuleiro da referida ponte. 
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Figura 1.5: Pilar da ponte presidente Costa e Silva, durante execução do tabuleiro 

 

Fonte: (DNER, 1984) 

1.3. OBJETIVOS 

 
 

1.3.1. Objetivo Geral 
 

 

Desenvolver um método de análise de pilares altos de pontes pela Técnica do Meio 

Contínuo (TMC), levando em conta as cargas permanentes e a ação dinâmica do vento, 

fornecendo assim ferramentas de verificação para modelagens em softwares comerciais. 

1.3.2. Objetivos Específicos 
 

 

São objetivos específicos desta tese os seguintes: 

 

➢ Explicar a técnica do meio contínuo aplicada à análise estrutural de painéis de 

contraventamento e promover a correspondente aplicação aos pilares de pontes; 

➢ Abordar a teoria da flexo-torção e aplicá-la aos pilares de pontes, em formato de 

núcleo estrutural “C” e em duplo T; 

➢ Estender a teoria dos painéis-parede dos núcleos estruturais C em edifícios altos 

para os pilares altos de pontes, e generalizá-la para seções C e duplo T; 

➢ Avaliar a estabilidade elástica do pilar submetido à ação conjunta do vento, da 

reação do tabuleiro e do peso próprio; 
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➢ Deduzir os modos de vibração do pilar através da TMC com a utilização da teoria 

dos painéis-parede (TPP); 

➢ Postular o dimensionamento de seções (em “C” e em duplo T) de paredes finas 

em concreto armado, com paredes e abas simétricas em dimensões, e submetida 

ao bimomento e 

➢ Validar a modelagem do pilar em núcleo pela TMC através do método dos 

elementos finitos, utilizando elementos de barra baseados no acoplamento do 

método dos deslocamentos com a teoria da flexo-torção. 

 

1.4. ORGANIZAÇÃO DA TESE E METODOLOGIA 

 

 

A metodologia empregada nesta tese para atingir os objetivos postulados no item 1.3, 

foram: 

➢ Revisão Bibliográfica: Foi realizada revisão bibliográfica das análises estática e 

dinâmica em pilares de pontes, do ano 1950 ao corrente ano (onde constatou-se a maciça 

contribuição nos anos 70), verificando-se a lacuna em vibrações de pilares altos 

formados por seções de paredes finas abertas e parcialmente contraventadas por lintéis; 

➢ Processamento Teórico: Para tal análise dinâmica dos pilares de pontes em paredes 

finas, retoma-se (no sentido de resgate) a técnica do meio contínuo, por se tratar de 

técnica com pouco custo de processamento. Mesmo assim, é empregada também a 

análise discreta via método dos elementos finitos (utilizada na flexo-torção) e do método 

das diferenças finitas (para resolver a EDO do problema de estabilidade elástica) e 

➢ Simulação Numérica: A fim de validar a formulação dinâmica dos painéis-parede, 

procede-se a modelagem dos modos de vibração do referido pilar com seção transversal 

de paredes finas via software ANSYS Release 11. 

A organização desta tese é realizada mediante sete capítulos, dos quais, este primeiro 

destina-se a explicitar a relevância, os objetivos, e estado da arte e a metodologia empregada. 

O capítulo 2 é intitulado “Fundamentação teórica” e foi redigido para resgatar a técnica 

do meio contínuo aplicada as análises estática e dinâmica da ação do vento, bem como enunciar 

conceitos básicos (necessários para esta tese) sobre: dinâmica das estruturas, teoria da flexo-
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torção (TFT), teoria dos painéis-parede (TPP), distribuição do fluxo do vento e o 

posicionamento do centro de torção (também denominado de centro de corte ou de centro de 

cisalhamento). Já no final deste capítulo é apresentada matriz de rigidez do elemento finito de 

barra, com seção transversal retangular linearmente variável ao longo do eixo longitudinal, 

sendo modelado o comportamento dinâmico do respectivo pilar sob a ótica dos modos de 

vibração, através da TMC e do MEF com a utilização do software ANSYS Release 11. 

O capítulo 3 é destinado a formulação do elemento finito de barra sob flexo – torção e 

composto por seção de paredes finas. Procede-se a formulação do acoplamento da flexão e da 

torção através da análise matricial do pilar em núcleo estrutural, tanto em formato de C e de 

duplo T.  

O capítulo 4 destina-se a verificação da estabilidade elástica dos pilares de pontes, com 

seção transversal constante ou variável, bem como para configuração maciça ou vazada. É 

empregado o método das diferenças finitas para resolver a equação diferencial do problema de 

estabilidade. Ao término deste capítulo, exemplificam-se as análises com pilares de seção: 

retangular, circular, tubular e anelar.  

No capítulo 5 é desenvolvida a formulação dinâmica da ação do vento em painéis-parede 

(pilares com seção de paredes finas em formato de C e em duplo T) via técnica do meio 

contínuo. São analisados pilares metálicos e de concreto armado, e realizada a validação dos 

modos de vibração mediante simulação no software ANSYS Release 11.  

No capítulo 6 procede-se o equacionamento da seção de paredes finas, com paredes e 

abas simétricas quanto as dimensões, em concreto armado e submetida ao bimomento. Sendo 

também postulada a decorrente rotina de cálculo e geradas as tabelas adimensionais para o 

dimensionamento das armaduras. 

Finalmente, no capítulo 7 são realizadas as considerações finais e elencadas cinco 

sugestões para contribuições em futuras teses. Ao final desta tese constam cinco apêndices, 

onde: no apêndice A é apresentada a solução da equação diferencial da TPP no sistema 

generalizado de coordenadas (ver capítulo 2), o apêndice B destina-se a modelar o pilar com 

seção variável (ver capítulo 2), o apêndice C contém a programação do capítulo 4, o apêndice 

D é atribuído ao capítulo 5 e no apêndice E consta um tutorial da simulação dos modos de 

vibração no software ANSYS. 
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“Toda a nossa ciência, comparada com a realidade, 

é primitiva e infantil e, no entanto, é a coisa mais 

preciosa que temos”.        

Albert Einstein 
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FUNDAMENTAÇÃO TEÓRICA  

 

 

 

2.1. TÉCNICA DO MEIO CONTÍNUO APLICADA A PILARES ALTOS 

 

 

 Conforme é apresentado em Chitty (1947), Laredo (1977) e em Laier (1984) a 

modelagem dinânica de estruturas é convenientemente processada via Técnica do Meio 

Contínuo, ao considerar a rigidez dos elementos de conexão horizontais (lajes e vigas) como 

propriedades e solicitações distribuídas ao longo da edificação. Para os pilares distribuem-se 

tais propriedades e solicitações ao longo da altura. Processa-se em Laier (1984) a análise da 

vibração de paredes, preconizando no Brasil, o início das contribuições da técnica do meio 

contínuo (TMC) aplicada a problemas dinâmicos. Nesta tese será empregada a formulação 

dinâmica da TMC em pilares de pontes com seção de paredes finas, especificamente no capítulo 

5, modela-se o pilar metálico e de concreto armado em formato de núcleo estrutural 

contraventado por linteís. Como se vê na Figura 2.1, a configuração de pilares em paredes finas 

foi utilizada na ponte ferroviária cujos vãos centrais foram levados pela onda de rejeitos de 

mineração, quando da ruptura da barragem de Brumadinho, em Minas Gerais. 

Figura 2.1: Ponte Férrea em Brumadinho com pilares em duplo C contraventados por lintéis 

 

Fonte: (Brumadinho, 2019) 

Capítulo 

2 
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Outro exemplo de ponte férrea com pilares de seção de paredes finas é a ponte sobre o 

rio Olifants, sendo localizada na província Western Cape no sul da África (SA), com pilares em 

formato de duplo T e com abas variáveis na altura. Vide figura 2.2. 

Figura 2.2: Ponte Férrea no SA com pilares em duplo T: (a) visão panorâmica e (b) detalhe no 

pilar 

     

Fonte: (BUSSATA; MOYO, 2015) 

Já a ponte de la Pyle fica situada sobre o lago Vouglans na França, compreendida a oeste 

pela cidade de La Tour-du-Meix e a leste pela cidade Coyron e possui 65 metros de altura. Essa 

ponte é apresentada cientificamente em Courbon (1968) e torna-se relevante mencionar nesta 

tese por possuir pilares em duplo T com seção transversal constante. Ver Figura 2.3. 

Figura 2.3: Ponte de la Pyle na fase de construção, da qual observa-se o pilar em duplo T com 

abas de dimensões constantes ao longo da altura do pilar 

 

Fonte: (Pilar da ponte de la Pyle, 2019) 
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O arranjo estrutural apresentado na figura 2.1, pilar em duplo C e contraventados em 

conjunto por lintéis, é estudado em Marques (1983). Desta forma, propõe-se nesta tese a análise 

do pilar em duplo C com os lintéis contraventando cada Núcleo que compõe o pilar, mantendo-

se a simetria do conjunto e fornecendo assim uma diretriz detalhada para projeto de tal elemento 

estrutural. Tal arranjo é apresentado na Figura 2.4 e ressalta-se que o pilar em C será analisado 

no capítulo 5, quanto a variação das inclinações das paredes laterais em detrimento da 

minimização do bimomento. 

Figura 2.4: Ponte com pilares em duplo C contraventados individualmente por lintéis 

  

Fonte: O Autor (2019) 

 

2.1.1. Partição da carga do vento nos pilares de pontes 

 

A ação do vento no conjunto tabuleiro – vigas da ponte é caracterizada pelo efeito de 

elevação de tal conjunto estrutural, sendo ilustrado esse fenômeno na figura 2.5. Já a partição 

da carga lateral do vento será abordada conforme duas teorias, a primeira configuração é 

baseada meramente na distribuição pela rigidez dos pilares (em conjunto com o apoio por 

Neoprene). A segunda configuração é embasada no conceito de centro elástico, sendo derivada 

do equacionamento procedido em Stamato (1978) para núcleos de edifícios altos, onde 

consideram-se as rigidezas nos pilares em decorrência da flexão nos eixos principais de inércia 

e dos esforços axiais. 
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Figura 2.5: Ação do vento em pontes: (a) carga lateral atuante no conjunto tabuleiro – vigas e 

(b) efeito de elevação do tabuleiro em decorrência da ação do vento lateral 

   

Fonte: Adaptado de (LEBET; HIRT, 2013) 

 

a) Primeira configuração de partição da ação do vento nos pilares de pontes 

 

Nesta primeira configuração adota-se a distribuição da ação do vento via rigidez dos 

conjuntos pilares – apoio Neoprene, e para tal equacionamento cita-se Pfeil (1979, p. 209 – 

226) e adota-se uma ponte com um única linha de pilares (conforme apresentado na figura 2.2). 

Vide na Figura 2.6 a atiavação das cargas longitudinal e transversal ao tabuleiro da ponte e em 

decorrência da ação do vento sob rajada de carga 𝑞. A rajada de vento é adotada sob inclinação 

𝛼 em relação ao eixo longitudinal da ponte reta apresentada em tal figura. 

Figura 2.6: Rajada de vento atuante no tabuleiro de uma ponte com única linha de pilares e as 

forças solicitantes 

   

Fonte: O Autor (2019) 
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Na figura 2.7 é analisada a aplicação da carga longitudinal 𝑞𝑙𝑜𝑛𝑔, sendo adotado o 

processo de separação dos deslocamentos apresentado em Campanari (1985, v. 1, p. 326 – 348). 

Figura 2.7: Linha de pilares sob divisão da carga longitudinal 

   

Fonte: O Autor (2019) 

Ficando as cargas longitudinais nos pilares sob a seguinte distribuição: 

𝑞𝑙𝑜𝑛𝑔1
= 𝑞𝑙𝑜𝑛𝑔.

𝑘𝐶1𝑧

∑ 𝑘𝑖𝑧𝑖
                                                                                                                     (2.1 𝑎) 

𝑞𝑙𝑜𝑛𝑔𝑛
= 𝑞𝑙𝑜𝑛𝑔.

𝑘𝐶𝑛𝑧

∑ 𝑘𝑖𝑧𝑖
                                                                                                                     (2.1 𝑏) 

onde: 𝑘𝐶𝑛𝑧
 é a rigidez do conjunto Pilar – Neoprene, ver página 304 do volume 1 de Campanari 

(1985); 𝑘𝑖 é a rigidez do fuste do pilar; 𝑘𝑛𝑝 é a rigidez do Neoprene e obtida via distorção por 

carga lateral. E para a seção constante e pilar engastado na base e livre no topo, tem-se rigidez 

do fuste do pilar definida por: 𝑘𝑖 = 3. 𝐸.
𝐼𝑖

𝐻𝑖
3⁄ , com 𝐼𝑖 sendo a inércia do pilar na direção 

perpendicular ao movimento e 𝐻𝑖 a altura do pilar analisado. Já para o apoio Neoprene, tem-se 

por rigidez: 𝑘𝑛𝑝 = 𝐺𝑛.
𝐴𝑛

ℎ𝑛
⁄ , sendo: 𝐺𝑛 o módulo de elasticidade transversal do material; ℎ𝑛 

é a altura útil do Neoprene (entre as fretagens); e 𝐴𝑛 = (𝑎 − 2. 𝑐). (𝑏 − 2. 𝑐) é a área da seção 

de corte paralela ao topo do pilar. Ver na figura 2.8 para as dimensões do apoio Neoprene. 

Figura 2.8: Dimensões características do apoio Neoprene 

   

Fonte: (MARCHETTI, 2008) 
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 Quanto a carga lateral 𝑞𝑙𝑎𝑡 observa-se que a divisão mediante a rigidez dos referidos 

pilares, é realizada através da inércia ativada (eixo perpendicular a linha de ação da carga lateral 

do vento), conforme é apresentado na figura 2.9.  

Figura 2.9: Linha de pilares sob divisão da carga lateral 

   

Fonte: O Autor (2019) 

Para o equilíbrio lateral, analogamente ao procedido na equação (2.1), tem-se a 

distribuição das cargas laterais, expressa por: 

𝑞𝑙𝑎𝑡𝑛 = 𝑞𝑙𝑎𝑡.
𝑘𝐶𝑛𝑦

∑ 𝑘𝑖𝑦𝑖
                                                                                                                              (2.2) 

com: 𝑘𝐶𝑛𝑦
=

𝑘𝑛𝑝. 𝑘1𝑦

𝑘𝑛𝑝 + 𝑘1𝑦

 a rigidez do conjunto Pilar - Neoprene para a direção y. 

 

b) Segunda configuração de partição da ação do vento nos pilares de pontes 

 

Na primeira configuração de partição da carga do vento, apresentada na letra (a) desse 

item, a distribuição da carga lateral foi realizada mediante ponderação pela rigidez dos pilares. 

Tal formulação foi amplamente aceita nos anos 70 e início da década 80 do século passado. 

Porém com a publicação de Stamato (1978), a qual remonta do ano 1966 e que mesmo após a 

morte do autor Miguel Carlos Stamato continuou a ser reimpressa pelo setor de cópias do 

departamento de estruturas da EESC – USP, devido a seu valor científico, a ação do vento 

passou a ser analisada através do conceito de centro elástico (CE) e o conseguinte 

posicionamento relativo entre o centro de carga (CC) e o CE.   
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Nesse sentido, ressalta-se o EUROCODE 01 (pr FR 1991 – 1 – 4: 2005) quando da 

quantificação da ação do vento no tabuleiro da ponte. Apresentam-se na figura 2.10 as 

configurações das pontes e o decorrente coeficiente de força na direção lateral do tabuleiro. Já 

na figura 2.11 é apresentado o coeficiente da força aplicada no tabuleiro sob a direção vertical. 

Figura 2.10: Coeficiente da força aplicada lateralmente no tabuleiro devido a ação do vento 

   

Fonte: (EUROCODE 01, 2005) 

Figura 2.11: Coeficiente da força vertical oriunda da ação do vento e aplicada no tabuleiro 

 

Fonte: (EUROCODE 01, 2005) 
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Na figura 2.12 é apresentada a configuração deformada de uma ponte em vigas sob ação 

lateral do vento, e a partir de tal conclui-se que a forma de desconsiderar a hipótese da laje 

(tabuleiro da ponte) funcionar como diafragma, é impor no equacionamento o levantamento do 

tabuleiro em decorrência da carga do vento. 

Figura 2.12: Vibração lateral de ponte em viga 

 

Fonte: (Vibração lateral e torção, 2019) 

Baseado nos conceitos apresentados nas figuras 2.10 e 2.11 postula-se na figura 2.13, e 

em consonância com a figura 2.12, que a ação do vento no tabuleiro da ponte é representada 

através da carga 𝑞 com inclinação 𝛽1. Mediante a rajada de vento sob inclinação 𝛽1 computa-

se o efeito de elevação do tabuleiro da ponte, conforme apresentado na figura 2.5 (b). 

Figura 2.13: Ação lateral do vento no tabuleiro: (a) configuração deformada e carga inclinada 

do vento, (b) procedimento de cálculo da rigidez do conjunto Pilar – Neoprene e (c) 

carregamentos concentrados no topo do pilar e devidos ao tráfego e à ação do vento no tabuleiro  

 

Fonte: O Autor (2019) 
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Na figura 2.14 é apresentada a segunda configuração de distribuição de pilares de 

pontes, sendo esta com duas linhas de pilares e com repartição das cargas do vento através do 

conceito do centro elástico (ver também a figura 2.30). 

Figura 2.14: Ponte com duas linhas de pilares com a aplicação do conceito de centro elástico  

 

Fonte: O Autor (2019) 

sendo: 𝑞𝐻𝑦

∗ = 𝑞. 𝐿𝑦 . sen 𝛼 . cos 𝛽1                                                                                                 (2.3 𝑎) 

𝑞𝐻𝑧

∗ = 𝑞. 𝐿𝑧. cos 𝛼 . cos 𝛽1                                                                                                   (2.3 𝑏) 

𝑞𝑉
∗ = 𝑞. sen 𝛽1 . (𝐿𝑧. cos 𝛼 + 𝐿𝑦. sen 𝛼)                                                                          (2.3 𝑐) 

Agora, mediante Stamato (1978) deve-se transformar a carga 𝑞𝑉
∗  aplicada em forma de 

reação de apoio no centro de carga (do conjunto de todos os pilares da ponte), para o formato 

de cargas concentradas em cada um dos pilares. Bem como, deve-se realizar a distribuição das 

cargas longitudinal 𝑞𝐻𝑦

∗  e lateral 𝑞𝐻𝑧

∗  para cada um dos pilares que constituem a mesoestrutura 

da ponte apresentada na figura 2.14. 

 

c) Rotação no centro elástico e deslocamentos de corpo rígido 

 

Define-se o centro elástico como o ponto no qual ao serem aplicadas forças surgem 

apenas translações, não ocorrendo assim rotação do conjunto de elementos estruturais. Assim, 

na figura 2.15 adota-se um conjunto de molas nas direções 𝑦 e 𝑧 principais de inércia, 

objetivando-se assim obter as forças em cada pilar devido ao deslocamento de corpo rígido. 
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Figura 2.15: Posicionamento do centro elástico mediante rigidez à flexão dos pilares  

 

Fonte: O Autor (2019) 

Através do equilíbrio de forças nas direções principais de inércia e do balanço de  

momentos, exprimem-se as coordenadas do centro elástico (CE), baseadas nos eixos auxiliares 

𝑦̅ e 𝑧̅, como: 

𝑧0̅ =
∑ 𝑘𝑖𝑧

. 𝑧𝑖̅𝑖

∑ 𝑘𝑖𝑧𝑖
                                                                                                                                   (2.4 𝑎) 

𝑦̅0 =
∑ 𝑘𝑖𝑦 . 𝑦̅𝑖𝑖

∑ 𝑘𝑖𝑦𝑖
                                                                                                                                  (2.4 𝑏) 

E de forma proporcional, tem-se as forças em cada mola (pilar) por translações de corpo 

rígido, expressas por: 

𝐹𝑖𝑦 =
𝑘𝑖𝑧

∑ 𝑘𝑖𝑧𝑖
. 𝐹𝑦                                                                                                                                 (2.5 𝑎) 

𝐹𝑖𝑧 =
𝑘𝑖𝑦

∑ 𝑘𝑖𝑦𝑖
. 𝐹𝑧                                                                                                                                 (2.5 𝑏) 

Na figura 2.16 aplicam-se os eixos coordenados 𝑦 e 𝑧  no centro elástico e em seguida 

promove-se a rotação 𝜃𝑥, a fim de determinar as forças ativadas em cada pilar e o momento 𝑀𝑥 

no CE que promove tal rotação. 
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Figura 2.16: Momento no centro elástico e decorrentes forças reativas no i-ésimo pilar   

 

Fonte: O Autor (2019) 

Mediante operações trigonométricas na translação do ponto i apresentado na figura 2.16, 

escreve-se: 

𝛿𝑖𝑦
′ = 𝑑𝑖 . 𝜃𝑥. sen 𝜑𝑖                                                                                                                           (2.6 𝑎) 

𝛿𝑖𝑧
′ = 𝑑𝑖. 𝜃𝑥. cos 𝜑𝑖                                                                                                                           (2.6 𝑏) 

analisando as forças 𝐹𝑖𝑦
′  e 𝐹𝑖𝑧

′ , via coeficientes de rigidez, exprimem-se tais forças reativas 

como: 

 𝐹𝑖𝑦
′ = 𝑘𝑖𝑧 . 𝑧𝑖. 𝜃𝑥                                                                                                                                (2.7 𝑎) 

𝐹𝑖𝑧
′ = 𝑘𝑖𝑦 . 𝑦𝑖. 𝜃𝑥                                                                                                                                 (2.7 𝑎) 

Realizando o equilíbrio de momento no centro elástico, ver figura 2.16, exprime-se o 

momento gerador da rotação 𝜃𝑥, como: 

𝑀𝑥 = ∑𝐹𝑖𝑧
′ . 𝑦𝑖

𝑛

𝑖=1

+ ∑𝐹𝑖𝑦
′ . 𝑧𝑖

𝑛

𝑖=1

                                                                                                             (2.8) 

Aplicam-se as equações (2.7) na eq. (2.8), expressa-se a rotação 𝜃𝑥 no centro elástico 

após aplicação do momento 𝑀𝑥, como: 

𝜃𝑥 =
𝑀𝑥

∑ 𝑘𝑖𝑦 . (𝑦𝑖)2𝑖 + ∑ 𝑘𝑖𝑧 . (𝑧𝑖)2𝑖
                                                                                                     (2.9) 
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Para atuação da carga 𝐹 no centro elástico, com inclinação 𝜑̅ em relação ao eixo 𝑦, 

braço de alavanca 𝑑, e decorrente momento 𝑀𝑥 = 𝐹. 𝑑, apresentam-se na figura 2.17 as forças 

transladadas do centro de carga para o centro elástico e as decorrentes forças reativas no i-ésimo 

pilar. 

Figura 2.17: Momento no centro elástico, Translade de forças do CC para CE e decorrentes 

forças reativas no i-ésimo pilar   

 

Fonte: O Autor (2019) 

Considerando as equações (2.5); (2.7) e (2.9) em conjunto como momento 𝑀𝑥 = 𝐹. 𝑑 

sobre o centro elástico, exprimem-se as forças reativas no i-ésimo pilar, como: 

𝐹𝑖𝑦
′ =

𝑘𝑖𝑧

∑ 𝑘𝑖𝑧𝑖
. 𝐹𝑦 + 𝑘𝑖𝑧 . 𝑧𝑖.

𝐹. 𝑑 

∑ 𝑘𝑖𝑦 . (𝑦𝑖)2𝑖 + ∑ 𝑘𝑖𝑧 . (𝑧𝑖)2𝑖
                                                           (2.10 𝑎) 

𝐹𝑖𝑧
′ =

𝑘𝑖𝑦

∑ 𝑘𝑖𝑦𝑖
. 𝐹𝑧 + 𝑘𝑖𝑦 . 𝑦𝑖 .

𝐹. 𝑑 

∑ 𝑘𝑖𝑦 . (𝑦𝑖)2𝑖 + ∑ 𝑘𝑖𝑧 . (𝑧𝑖)2𝑖
                                                          (2.10 𝑏) 

 

d) Partição das cargas 𝒒𝑯𝒚

∗ , 𝒒𝑯𝒛

∗  e 𝒒𝑽
∗  para os pilares 

 

Por fim, aplicando-se as definições apresentadas no letra (c) desse item, representa-se 

na figura 2.18 a partição das cargas no plano do tabuleiro da ponte com base no centro elástico. 

Observa-se ainda que a carga longitudinal 𝑞𝐻𝑦

∗  será repartida igualmente entre os painéis 𝑘𝐶𝑃1𝑧
 

e 𝑘𝐶𝑃2𝑧
 de contraventamento (formados pelos pilares na direção 𝑦), isso devido a simetria da 

estrutura. 
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Figura 2.18: Partição das cargas no plano do tabuleiro da ponte com duas linhas de pilares   

 

Fonte: O Autor (2019) 

Caso a simetria do eixo 𝑦 seja quebrada, exprime-se a partição da carga na direção 

longitudinal mediante a eq. (2.5), por: 

𝑞𝐻𝑦

𝐶𝑃1𝑧 =
𝑘𝐶𝑃1𝑧

𝑘𝐶𝑃1𝑧
+ 𝑘𝐶𝑃2𝑧

. 𝑞𝐻𝑦

∗                                                                                                           (2.11 𝑎) 

𝑞𝐻𝑦

𝐶𝑃2𝑧 =
𝑘𝐶𝑃2𝑧

𝑘𝐶𝑃1𝑧
+ 𝑘𝐶𝑃2𝑧

. 𝑞𝐻𝑦

∗                                                                                                           (2.11 𝑏) 

Na subdivisão da carga na direção 𝑧 aplicam-se as equações (2.10), valendo-se do 

momento gerado pelo translade da carga 𝑞𝐻𝑧

∗  do centro de carga para o centro elástico (ver 

figura 2.17). Ficando a carga no i-ésimo painel de rigidez 𝑘𝐶𝑃𝑖𝑦
 expressa por: 

𝑞𝐻𝑧

𝐶𝑃𝑖𝑦 =
𝑘𝐶𝑃𝑖𝑦

∑ 𝑘𝐶𝑃𝑖𝑦𝑖
. 𝑞𝐻𝑧

∗ + 𝑘𝐶𝑃𝑖𝑦
. (𝑦̅𝑖 − 𝑦̅0).

𝑞𝐻𝑧

∗ . (𝑦̅0 −
𝐿𝑧
2 )

∑ 𝑘𝐶𝑃𝑖𝑦
. (𝑦̅𝑖 − 𝑦̅0)2𝑖 + ∑ 𝑘𝐶𝑃𝑖𝑧

. (𝑧𝑖̅ − 𝑧0̅)2𝑖
      (2.12) 

Resta agora computar a subdivisão da carga vertical 𝑞𝑉
∗ , a qual é transladada para o 

centro elástico e gera momento 𝔐 em torno do eixo 𝑧𝐶𝐸, conforme é apresentado de forma 

esquemática na figura 2.19. 
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Figura 2.19: Partição das cargas no plano do tabuleiro da ponte, esforços axiais nos pilares 

 

Fonte: O Autor (2019) 

Baseado no conceito de flexão composta associado a definição de centro elástico, 

exprime-se a partição da carga vertical 𝑞𝑉
∗ , no i-ésimo painel de contraventamento, como: 

𝑞𝑉𝑖

∗ =
𝑘𝐶𝑃𝑖

𝐴𝑋

∑ 𝑘𝐶𝑃𝑖

𝐴𝑋
𝑖

. 𝑞𝑉
∗ + (𝑦̅0 − 𝑦̅𝑖).

𝑞𝑉
∗ . (𝑦̅0 −

𝐿𝑧
2 )

∑ 𝑘𝐶𝑃𝑖

𝐴𝑋 . (𝑦̅0 − 𝑦̅𝑖)2𝑖

                                                                   (2.13) 

 

2.1.2. Definições e aspectos históricos da TMC 

 

A utilização da técnica contínua em detrimento de modelos discretos, a exemplo do 

método dos elementos finitos (BREBRIA; FERRANTE, 1975), método das diferenças finitas 

(GUELFOND, 1963), método dos elementos de contornos e dentre outros, é motivada pela 

simplificação de processamento (consequência da redução do número de parâmetros 

envolvidos). O número de parâmetros via análise discreta, por elementos finitos, será função da 

malha de discretização. E quanto mais refinada a malha, mais os resultados se aproximam da 

realidade. Para a análise discreta via elementos finitos são apresentados diversos tipos de 

elementos em Dhatt et al. (2005) com continuidade 𝐶0; 𝐶1 e 𝐶2, isso para problemas estruturais 

unidimensionais (1D), bidimensionais (2D) e tridimensionais (3D). 

 Na modelagem dinâmica dos painéis verticais via técnica do meio contínuo é que Laier 

(1984) reitera que o travamento ocorre de forma horizontal ao longo da altura. Empregando as 
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lajes (os travamentos horizontais nas paredes) como elementos de rigidez infinita em seus 

planos e despreza a rigidez transversal. Os mesmos conceitos da TMC são debatidos com mais 

detalhes em Stamato (1980) para a formulação estática. A análise dos efeitos provenientes de 

forças verticais  nos pilares com travamentos horizontais será abordada no item 2.1.3 desta tese, 

desconsiderando as movimentações nas demais direções, além da horizontal. A fim de justificar 

tal simplificação vem Laier (1984) reforçando que as magnitudes das movimentações 

horizontais são bem maiores do que as verificadas na direção vertical e por tanto desprezadas 

estas últimas. 

 Os elementos que compõem os painéis de contraventamento são apresentados e 

analisados em Stamato (1980), tornando-se relevantes para esta tese, os seguintes: 

➢ Parede: São painéis planos com rigidez elevada ao corte e deformáveis ao efeito da 

flexão. Vide figura 2.20 (b). 

➢ Pórtico: São painéis planos com rigidez elevada à flexão e deformáveis ao esforço 

cortante. Conforme figura 2.20 (c). 

➢ Associação em série de Parede e Pórtico: De acordo com o exposto nas figuras 2.20 

(a) e conseguinte deformação apresentada na figura 2.20 (d). É caracterizada pela 

ligação, distribuída ao longo da altura, através de barras biarticuladas (denominadas de 

lintéis).  

Figura 2.20: Painéis planos de contraventamento: (a) Associação em série, (b) Parede, (c) Pórtico 

e (d) deslocamentos horizontais 

 

Fonte: (STAMATO, 1980) 
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Onde as barras biarticuladas são barras de ligação e representam as lajes ou as vigas dos 

andares (para ocorrência de lajes, são supostas de rigidez transversal desprezível e infinitamente 

rígida no plano, de modo a transmitir integralmente as deformações sofridas ao pórtico, isso 

para edifícios altos). Para o caso de pontes procede-se a desconsideração de tal hipótese, ver 

item 2.1.1, mais especificamente nas figuras 2.5; 2.12 e 2.13. 

Em Mancini (1972) é aplicado o painel em forma de parede sobre engastamento elástico 

e processada a análise estática mediante a técnica do meio contínuo, sendo inclusive associado 

em série com o pórtico. Nos quais, o momento de engastamento elástico 𝑀0 é modelado 

mediante a rotação do apoio 𝜙 e a rigidez 𝑔 do engastamento elástico. Vide figura 2.21 e item 

2.1.4 (a). 

Figura 2.21: Painéis planos de contraventamento: (a) Parede com base engastada elasticamente, 

(b) Associação de Parede com base elástica e Pórtico 

 

Fonte: (MANCINI, 1972) 

Os estudos dos painéis – parede associados por lintéis são aprofundados em Mancini 

(1973). Os lintéis, nada mais são que vigas engastadas em ambas as extremidades e com a 

capacidade de resistir a momento fletor e ao esforço cortante, são então barras que ligam as 

paredes e/ou pórticos. Conforme observa-se na figura 2.22  a associação em série de paredes 

(Fig. 2.22 a) e de pórticos com paredes (ver figura 2.22 b) ocorre por meio de lintéis distribuídos 

na altura da estrutura. Além do mais, é importante notar que nos lintéis não aparecem esforços 

normais, devido ao comportamento das lajes (ou travamentos horizontais, simplesmente) como 

diafragmas. Esta última consideração é válida para o caso de edifícios altos, no caso de pontes 

ver a eq. (2.13) com a quantificação de tais esforços axiais nos pilares. 
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Figura 2.22: Painéis associados em séries com lintéis: (a) Parede, (b) Parede e Pórtico 

 

Fonte: (MANCINI, 1973) 

Em Xavier (1987) são analisados os painéis com os carregamentos: horizontal 𝑞𝑤 

(uniformemente distribuído na altura H e como simplificação da ação do vento) e vertical 𝑝𝑤 

(distribuído no eixo dos elementos verticais e passando pelo centro de gravidade). A exemplo, 

apresentam-se três configurações de painéis de contraventamento analisados quanto a 

estabilidade, ver figuras 2.23 a 2.25. 

Figura 2.23: Efeitos de 2ª ordem via TMC para painéis – parede 

 

Fonte: (XAVIER, 1987) 
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Figura 2.24: Efeitos de 2ª ordem via TMC para Pórtico plano 

 

Fonte: (XAVIER, 1987) 

Figura 2.25: Efeitos de 2ª ordem via TMC para a associação de paredes por lintéis 

 

Fonte: (XAVIER, 1987) 

A solução das equações diferenciais oriundas do processamento via técnica do meio 

contínuo é realizada pelo método das diferenças finitas, tanto em Xavier (1987) quanto em 

Mancini (1973). A resolução das referidas EDO’s é realizada via diferenças finitas por se tratar 

de um método numérico de boa convergência e apresentar boas soluções. Neste sentido, a fim 

de validar os resultados obtidos via diferenças finitas é que Xavier (1987) procede a resolução 

das EDO’s também via Método de Stodola-Vianello. 
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2.1.3. Distribuição das forças do vento nos painéis de contraventamento 

 

a) Painéis contraventados por único travamento horizontal 

  

 A rigidez 𝑘𝑠 do painel é definido como a força necessária para provocar um 

deslocamento unitário na direção da força aplicada. Vide figura 2.26 (b) e eq. (2.14): 

Figura 2.26: Técnica do Meio Contínuo (a) conjunto de pilares com único travamento na 

horizontal e (b) deslocamento proporcionado pela força F 

 

Fonte: (STAMATO, 1978) 

𝑘𝑠 =
𝐹

𝑑
                                                                                                                                                 (2.14) 

 Neste sentido, uma força resultante qualquer proveniente da atuação conjunta das cargas 

externas no nível do travamento horizontal, pode ser representada em três componentes 

(𝑝𝑥𝑖 , 𝑝𝑦𝑖  𝑒 𝑝𝑐𝑖). Conforme apresentado na figura 2.27. 

Figura 2.27: Componentes do vetor unitário na mola i 

 

Fonte: (STAMATO, 1978) 
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 As componentes do vetor unitário nas direções x e y e o momento 𝑝𝑐𝑖 gerado no ponto 

de referência, adotando-se como positivo o giro no sentido anti-horário, são definidas por: 

𝑝𝑥𝑖 = 𝑝𝑖⃑⃑  ⃑. cos(𝛼𝑖)                                                                                                                           (2.15 𝑎) 

𝑝𝑦𝑖 = 𝑝𝑖⃑⃑  ⃑. sen(𝛼𝑖)                                                                                                                          (2.15 𝑏) 

𝑝𝑐𝑖 = 𝑝𝑦𝑖 . 𝑥𝑖 − 𝑝𝑥𝑖 . 𝑦𝑖 = 𝑥𝑖 . 𝑠𝑒𝑛(𝛼𝑖) − 𝑦𝑖 . cos(𝛼𝑖)                                                                (2.15 𝑐) 

onde: 𝑝𝑥𝑖 − Componente na direção 𝑥, do vetor unitário 𝑝𝑖⃑⃑  ⃑; 

          𝑝𝑦𝑖 − Componente na direção 𝑦, do vetor unitário 𝑝𝑖⃑⃑  ⃑; 

          𝑝𝑖⃑⃑  ⃑ − Vetor unitário na direção da mola "𝑖"; 

          𝛼𝑖 − Ângulo formado entre a direção x e a mola "𝑖" e 

          𝑝𝑐𝑖 − Momento em relação ao ponto de referência "𝑂" gerado por 𝑝𝑖⃑⃑  ⃑.  

 De forma geral, a atuação das cargas advindas do vento geram deslocamentos 

horizontais diferenciais, em relação aos bordos da estrutura. Neste tocante, o vetor 

deslocamento é regido pelo ângulo de rotação 𝑣𝑐 definido entre o travamento horizontal e as 

componentes da nova posição do ponto de referência (𝑂′), conforme apresentado na fig. 2.28. 

Figura 2.28: Deslocamentos no centro elástico 

 

Fonte: Adaptado de (STAMATO, 1978) 

 Os deslocamentos que ocorrem nos diversos elementos constituintes dos painéis 

contraventados 𝑢𝑖̇⃑⃑  ⃑, possuem como componentes 𝑢𝑥𝑖 e 𝑢𝑦𝑖, resultando definidos por: 

𝑢𝑥𝑖 = 𝑣𝑥 − 𝑦𝑖 . 𝑣𝑐                                                                                                                            (2.16 𝑎) 

𝑢𝑦𝑖 = 𝑣𝑦 + 𝑥𝑖 . 𝑣𝑐                                                                                                                             (2.16 𝑏) 

 O encurtamento da mola "𝑖" é definido através da projeção do deslocamento 𝑢𝑖⃑⃑  ⃑ do painel 

contraventado na direção da mola representada pelo vetor unitário 𝑝𝑖⃑⃑  ⃑, sendo definido por: 



37 
Fundamentação Teórica                                                                                                                             

 

 
 

𝑑𝑖 = 𝑢𝑥𝑖 . 𝑝𝑥𝑖 + 𝑢𝑦𝑖 . 𝑝𝑦𝑖                                                                                                                     (2.17)  

 Aplicando as equações (2.15) e (2.16) na eq. (2.17), chega-se ao deslocamento 𝑑𝑖 do 

painel 𝑖 expresso por: 

𝑑𝑖 = 𝑝𝑥𝑖 . 𝑣𝑥 + 𝑝𝑦𝑖 . 𝑣𝑦 + 𝑝𝑐𝑖 . 𝑣𝑐                                                                                                       (2.18) 

 Emprega-se o conceito de rigidez definido na eq. (2.14) e unindo-o a eq. (2.18), conclui-

se que a força 𝐹𝑖 necessária para ocasionar o deslocamento 𝑑𝑖, será: 

𝐹𝑖 = 𝑘𝑠𝑖 . (𝑝𝑥𝑖 . 𝑣𝑥 + 𝑝𝑦𝑖 . 𝑣𝑦 + 𝑝𝑐𝑖 . 𝑣𝑐)                                                                                            (2.19) 

 A carga resultante 𝑅⃑  decorrente da aplicação conjunta das várias forças 𝐹𝑖⃑⃑  nos painéis, 

é definida vetorialmente, por: 

𝑅⃑ = ∑𝐹𝑖 .

𝑖

𝑝𝑖⃑⃑  ⃑                                                                                                                                      (2.20) 

 Aplica-se a eq. (2.19) na eq. (2.20) e ressalta-se que as projeções 𝑣𝑥 e 𝑣𝑦 do 

deslocamento 𝑂𝑂′é o mesmo para ambos os i-ésimos painéis. A resultante 𝑅⃑  fica na notação 

vetorial para as direções 𝑥 e 𝑦, relativas ao momento em relação ao ponto de referência O, 

escrita por: 

𝑅⃑ = 𝑣𝑥 ∑𝑘𝑠𝑖. 𝑝𝑥𝑖 . 𝑝𝑖⃑⃑  ⃑

𝑖

+ 𝑣𝑦 ∑𝑘𝑠𝑖 . 𝑝𝑦𝑖 . 𝑝𝑖⃑⃑  ⃑

𝑖

+ 𝑣𝑐 ∑𝑘𝑠𝑖. 𝑝𝑐𝑖. 𝑝𝑖⃑⃑  ⃑

𝑖

                                             (2.21 𝑎) 

𝑅𝑥 = 𝑣𝑥 ∑𝑘𝑠𝑖 . 𝑝𝑥𝑖
2

𝑖

+ 𝑣𝑦 ∑𝑘𝑠𝑖 . 𝑝𝑦𝑖 . 𝑝𝑥𝑖

𝑖

+ 𝑣𝑐 ∑𝑘𝑠𝑖. 𝑝𝑐𝑖 . 𝑝𝑥𝑖

𝑖

                                          (2.21 𝑏) 

𝑅𝑦 = 𝑣𝑥 ∑𝑘𝑠𝑖. 𝑝𝑥𝑖 . 𝑝𝑦𝑖

𝑖

+ 𝑣𝑦 ∑𝑘𝑠𝑖 . 𝑝𝑦𝑖
2

𝑖

+ 𝑣𝑐 ∑𝑘𝑠𝑖 . 𝑝𝑐𝑖 . 𝑝𝑦𝑖

𝑖

                                          (2.21 𝑐) 

𝑅𝑐 = 𝑣𝑥 ∑𝑘𝑠𝑖. 𝑝𝑥𝑖 . 𝑝𝑐𝑖

𝑖

+ 𝑣𝑦 ∑𝑘𝑠𝑖. 𝑝𝑦𝑖 . 𝑝𝑐𝑖

𝑖

+ 𝑣𝑐 ∑𝑘𝑠𝑖 . 𝑝𝑐𝑖
2

𝑖

                                          (2.21 𝑑) 

 Para facilitar a notação, pode-se reescrever as eq.’s (2.21), como: 

𝑅𝑥 = 𝑆𝑥𝑥. 𝑣𝑥 + 𝑆𝑥𝑦 . 𝑣𝑦 + 𝑆𝑥𝑐. 𝑣𝑐                                                                                                 (2.22 𝑎) 

𝑅𝑦 = 𝑆𝑦𝑥. 𝑣𝑥 + 𝑆𝑦𝑦. 𝑣𝑦 + 𝑆𝑦𝑐. 𝑣𝑐                                                                                                 (2.22 𝑏) 

𝑅𝑐 = 𝑆𝑐𝑥. 𝑣𝑥 + 𝑆𝑐𝑦. 𝑣𝑦 + 𝑆𝑐𝑐. 𝑣𝑐                                                                                                  (2.22 𝑐) 

onde: 𝑆𝑎𝑏 = ∑𝑘𝑠𝑖. 𝑝𝑎𝑖. 𝑝𝑏𝑖 = 𝑆𝑏𝑎 
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 Observa-se que o sistema formado pelas equações (2.22) é acoplado e para tanto é 

conveniente lançar mão de técnicas para proceder o desacoplamento. Mediante generalização 

da componente 𝑅𝑥, via transformação do deslocamento 𝑣𝑥 em 𝑣̅𝑥, define-se o novo referencial. 

Isto também se aplica a componente 𝑅𝑦 em função da coordenada generalizada 𝑣̅𝑦. Para 

concluir o desacoplamento do sistema, expressa-se o momento 𝑅𝑐 em termos da rotação 𝑣̅𝑐. 

Ficando: 

𝑅̅𝑥 = 𝑆𝑥̅𝑥. 𝑣̅𝑥                                                                                                                                    (2.23 𝑎) 

𝑅̅𝑦 = 𝑆𝑦̅𝑦. 𝑣̅𝑦                                                                                                                                    (2.23 𝑏) 

𝑅̅𝑐 = 𝑆𝑐̅𝑐. 𝑣̅𝑐                                                                                                                                     (2.23 𝑐) 

 O referencial generalizado é obtido via translações 𝑎 e 𝑏 dos eixos, além de uma rotação 

com inclinação 𝜃 (positiva no sentido de giro da direção 𝑥 para a direção 𝑥̅). A origem do novo 

referencial 𝑥̅𝑦̅ é definida nas coordenadas (𝑎, 𝑏) em relação ao plano cartesiano 𝑥𝑦 e 

denominada de centro elástico (STAMATO; MANCINI, 1973). Conforme ilustrado na figura 

2.29 e nas equações (2.14): 

Figura 2.29: Coordenadas do Centro Elástico 

 

Fonte: O Autor (2019) 

𝑡𝑔(2𝜃) =
2. 𝑆𝑥𝑦

𝑆𝑥𝑥 − 𝑆𝑦𝑦
                                                                                                                     (2.24 𝑎) 

𝑎 =
𝑆𝑦𝑐. 𝑆𝑥𝑥 − 𝑆𝑐𝑥. 𝑆𝑥𝑦

𝑆𝑥𝑥. 𝑆𝑦𝑦 − 𝑆𝑥𝑦
2

                                                                                                                (2.24 𝑏) 

𝑏 =
−𝑆𝑥𝑐 . 𝑆𝑦𝑦 + 𝑆𝑐𝑦. 𝑆𝑥𝑦

𝑆𝑥𝑥. 𝑆𝑦𝑦 − 𝑆𝑥𝑦
2

                                                                                                             (2.24 𝑐) 
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b) Painéis em direções ortogonais e único travamento horizontal 

 

 Conforme apresentado em Stamato (1978), define-se o painel com molas na direção 𝑥 

(denominado simplesmente de molas 𝑥) e outro na direção 𝑦 (as molas 𝑦). A rigidez na direção 

𝑥 é representada por 𝑘𝑠𝑗 e na direção ortogonal de 𝑘𝑠𝑘. Vide figura 2.30. 

Figura 2.30: Painéis ortogonais com molas x e y 

 

Fonte: (STAMATO, 1978) 

 As componentes nas três dimensões, por molas, são expressas por: 

𝑝𝑥𝑗 = 𝑝𝑦𝑘 = 1                                                                                                                                (2.25 𝑎) 

𝑝𝑥𝑘 = 𝑝𝑦𝑗 = 0                                                                                                                                (2.25 𝑏) 

𝑝𝑐𝑗 = −𝑝𝑥𝑗 . 𝑦𝑗 = 𝑝𝑦𝑘 . 𝑥𝑘                                                                                                               (2.25 𝑐) 

 Uma vez que o produto da rigidez (𝑘𝑠𝑗) nas molas 𝑥 pelas coordenadas na direção 𝑦 (𝑦𝑗) 

é nulo, verifica-se o mesmo para o produto da rigidez (𝑘𝑠𝑘) nas molas 𝑦 pelas coordenadas na 

direção 𝑥 (𝑥𝑘). Assim, pela definição ilustrada na figura 2.26 e expressa na equação (2.14), tem-

se os coeficientes de rigidez, expressos por: 

𝑆𝑎𝑏 = ∑𝑘𝑠𝑖 . 𝑝𝑎𝑖 . 𝑝𝑏𝑖                                                                                                                    (2.26 𝑎) 

𝑆𝑥𝑦 = 𝑆𝑥𝑐 = 𝑆𝑦𝑐 = 0                                                                                                                    (2.26 𝑏) 

𝑆𝑥𝑥 = ∑𝑘𝑠𝑗

𝑗

                                                                                                                                  (2.26 𝑐) 

𝑆𝑦𝑦 = ∑𝑘𝑠𝑘

𝑘

                                                                                                                                 (2.26 𝑑) 
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𝑆𝑐𝑐 = ∑𝑘𝑠𝑗. 𝑦𝑗
2

𝑗

+ ∑𝑘𝑠𝑘. 𝑥𝑘
2

𝑘

                                                                                                (2.26 𝑒) 

 Aplicam-se agora as eq.’s (2.26) nas eq.’s (2.22) e chega-se, a: 

𝑣𝑥 =
𝑅𝑥

𝑆𝑥𝑥
                                                                                                                                          (2.27 𝑎) 

𝑣𝑦 =
𝑅𝑦

𝑆𝑦𝑦
                                                                                                                                          (2.27 𝑏) 

 𝑣𝑐 =
𝑅𝑐

𝑆𝑐𝑐
                                                                                                                                          (2.27 𝑐) 

 Valendo-se da eq. (2.19) e das eq.’s (2.25) e (2.27), concluem-se como forças nas molas 

𝑥 e 𝑦, as seguintes: 

𝐹𝑗

𝑘𝑠𝑗
=

𝑅𝑥

𝑆𝑥𝑥
−

𝑅𝑐𝑐

𝑆𝑐𝑐
. 𝑦𝑗                                                                                                                       (2.28 𝑎) 

𝐹𝑘

𝑘𝑠𝑘
=

𝑅𝑦

𝑆𝑦𝑦
−

𝑅𝑐𝑐

𝑆𝑐𝑐
. 𝑥𝑘                                                                                                                       (2.28 𝑏) 

 

2.1.4. Análise dos painéis pela técnica do meio contínuo 

 

 A Solução via Técnica do Meio Contínuo é procedida analiticamente, sendo 

caracterizada pela redução do número de parâmetros elásticos e geométricos, descrevendo o 

comportamento macroscópico da estrutura. A solução discreta consiste em analisar a estrutura 

via métodos numéricos, tais como: Método das Diferenças Finitas, Método dos Elementos 

Finitos, Método dos Elementos de Contorno e dentre outros mais. Permitindo assim a resolução 

de estruturas com maior diversidade geométrica. Esta última forma de solução é caracterizada 

pela possibilidade de discretização da estrutura em diferentes formas, seja unidimensional, 

bidimensional ou tridimensional e por diversas funções interpoladoras. 

 A Parede, do inglês “Wall”, é um elemento estrutural rígido ao esforço cortante e 

deformável apenas ao momento fletor. Vide figura 2.31. 
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Figura 2.31: Carregamentos, deformada e elemento diferencial da Parede Isolada 

         

FONTE: (STAMATO, 1980) 

 Os parâmetros envolvidos são: 𝑢𝑤 – Deslocamento na Parede em função da altura Z; 

𝑞𝑤 – Força horizontal distribuída em forma de trapézio na altura total 𝑙 e 𝐹𝑤 – Força horizontal 

aplicada no topo da parede. Equilibra-se o elemento diferencial da parede apresentada na figura 

2.31, em termos do momento no ponto central da face superior do elemento diferencial, bem 

como procede-se o equilíbrio de forças horizontais, chegando-se a: 

𝑑𝑀𝑤

𝑑𝑍
= −𝑄𝑤                                                                                                                                   (2.29 𝑎) 

𝑑𝑄𝑤

𝑑𝑍
= −𝑞𝑤                                                                                                                                    (2.29 𝑏) 

onde: 𝑄𝑤 – Esforço cortante da parede em função da altura e do carregamento lateral e  

          𝑀𝑤 –  Momento fletor da parede em função da altura e do carregamento lateral. 

 Deriva-se a equação (2.29 a) e após aplicação na equação (2.29 b), tem-se a relação 

diferencial entre o momento fletor e carga distribuída 𝑞𝑤, expressa por: 

𝑑2𝑀𝑤

𝑑𝑍2
= 𝑞𝑤                                                                                                                                        (2.30) 

 A função do carregamento horizontal 𝑞𝑤 é adotada como trapezoidal (para computar a 

ação do vento) e fica escrita como: 

𝑞𝑤(𝑍) = (
𝑞1 − 𝑞0

𝑙
) . 𝑍 + 𝑞0                                                                                                            (2.31) 
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onde: 𝑞1  é o valor da carga horizontal distribuída, no topo da parede (𝑍 =  𝑙) e 

          𝑞0  é o valor da carga horizontal distribuída, para a base da parede (𝑍 = 0). 

 Baseado na equação diferencial (2.30) que rege a relação do momento fletor e do 

carregamento, basta proceder a integração dupla a fim de explicitar a equação do momento 

fletor 𝑀𝑤, ficando: 

𝑀𝑤(𝑍) = (
𝑞1 − 𝑞0

𝑙
) .

𝑍6

6
+ 𝑞0.

𝑍2

2
+ 𝐶1. 𝑍 + 𝐶2                                                                         (2.32) 

 A fim de determinar as constantes de integração, utiliza-se duas condições de contorno 

em esforços. A primeira é o momento fletor nulo no topo da parede [𝑀𝑤(𝑍 = 𝑙) = 0] e a 

segunda condição é o esforço cortante nulo [𝑄𝑤(𝑍 = 𝑙) = 0], também no topo da raferida 

parede. Resultando assim, como equação do momento fletor: 

𝑀𝑤(𝑍) = (
𝑞1 − 𝑞0

𝑙
) .

𝑍6

6
+ 𝑞0.

𝑍2

2
− [𝐹𝑤 + (𝑞𝑜 + 𝑞1).

𝑙

2
] . 𝑍 + 𝐹𝑤. 𝑙 + (𝑞𝑜 + 2. 𝑞1).

𝑙2

6
 

(2.33) 

 Por fim, para obter a equação da deformada 𝑢𝑤(𝑍), utiliza-se a equação diferencial da 

linha elástica, expressa por: 

(𝐸𝑤. 𝐼𝑤).
𝑑2𝑢𝑤(𝑍)

𝑑𝑍2
= 𝑀𝑤(𝑍)                                                                                                          (2.34) 

 Aplicando a equação (2.33) na eq. (2.34) e realizando-se a integração por duas vezes, 

tem-se: 

(𝐸𝑤 . 𝐼𝑤). 𝑢𝑤(𝑍) = (𝑞1 − 𝑞0).
𝑍5

120. 𝑙
+ 𝑞0.

𝑍4

24
− 𝐶1.

𝑍3

6
+ 𝐶2.

𝑍2

2
+ 𝐶3. 𝑍 + 𝐶4                    (2.35) 

onde: 𝐶1 = [𝐹𝑤 + (𝑞𝑜 + 𝑞1).
𝑙

2
]     e    𝐶2 = [𝐹𝑤. 𝑙 + (𝑞𝑜 + 2. 𝑞1).

𝑙2

6
]. 

 Aplicam-se agora, duas as condições de contorno: uma em deslocamento e a outra em 

rotação (na base do pilar e tidas como nulas), concluindo-se que as constantes de integração 𝐶3 

e 𝐶4 são nulas. Isto para o apoio conferido pelo engaste, conforme ilustrado na figura 2.31. 

Ficando expressa a equação da deflexão lateral do pilar, em termos do carregamento distribuído 

e da carga concentrada no topo, expressa por: 
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𝑢𝑤(𝑍) =
1

(𝐸𝑤 . 𝐼𝑤)
. {(𝑞1 − 𝑞0).

𝑍5

120. 𝑙
+ 𝑞0.

𝑍4

24
− 𝐶1.

𝑍3

6
+ 𝐶2.

𝑍2

2
}                                      (2.36) 

 A equação (2.36) pode ser simplificada para o caso particular onde não se aplique a 

carga concentrada no topo (𝐹𝑤 = 0) e com a carga lateral distribuída constantemente na altura 

e de valor 𝑞𝑤, ficando expressa por: 

𝑢𝑤(𝑍) =
𝑞𝑤 . 𝑙4

24. (𝐸𝑤. 𝐼𝑤)
. [(1 −

𝑍

𝑙
)
4

+ 4.
𝑍

𝑙
− 1]                                                                           (2.37) 

 

a) Parede sobre base elástica 

 

 O procedimento realizado neste item 2.1.4 das equações (2.29) a (2.35) permanecem 

inalterados, modificando apenas as condições de contorno para a obtenção das constantes de 

integração 𝐶3 e 𝐶4. Vide figura 2.32 onde o apoio na base é elástico e de constante 𝑔. Assim a 

rotação não será mais nula e sim a razão entre o momento fletor na base 𝑀𝑤(𝑍 = 0) pelo 

coeficiente de rigidez 𝑔 do referido apoio elástico. 

Figura 2.32: Parede com base engastada elasticamente e sua deformada 

 

Fonte: (MANCINI, 1972) 
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Baseado na equação do momento fletor (2.33), conclui-se momento na base da parede 

para o caso particular de 𝐹𝑤 = 0 e 𝑞𝑤 constante, expresso por: 

𝑀𝑤(𝑍 = 0) =
𝑞𝑤 . 𝑙2

2
                                                                                                                    (2.38 𝑎) 

𝑑𝑢𝑤(𝑍)

𝑑𝑍
|
𝑍=0

=
𝑀𝑤(𝑍 = 0)

𝑔
=

𝑞𝑤. 𝑙2

2. 𝑔
                                                                                        (2.38 𝑏) 

Por fim, aplicando-se a condição de contorno expressa na eq. (2.38 b) sobre a eq. (2.35), 

obtém-se a equação da deformada 𝑢𝑤(𝑍) para base elástica, definida por: 

𝑢𝑤(𝑍) =
𝑞𝑤. 𝑙4

24. (𝐸𝑤. 𝐼𝑤)
. [(1 −

𝑍

𝑙
)
4

+ 4.
𝑍

𝑙
− 1] + 

𝑞𝑤. 𝑙2

2. 𝑔
                                                          (2.39) 

com: 𝐶3 = (𝐸𝑤 . 𝐼𝑤).
𝑞𝑤 . 𝑙2

2. 𝑔
. 
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2.2. DINÂMICA DAS ESTRUTURAS 

 

2.2.1. Definições iniciais 

 

A característica fundamental para um movimento ser harmônico é a periodicidade do 

mesmo. Em outros termos é o movimento que se repete em certo intervalo de tempo, 

denominado de período (𝜏). Para exemplificar o movimento harmônico é apresentada a função 

do deslocamento no tempo 𝑢(𝑡) na eq. (2.40) e representação gráfica na figura 2.33. 

Figura 2.33: Movimento harmônico 𝒖(𝒕) 

 

Fonte: (THOMSON, 1978) 

 

𝑢(𝑡) = 𝑢(𝑡 + 𝜏) = 𝐴. sen 𝜃                                                                                                           (2.40) 

 

 

2.2.2. Sistema massa-mola 

 

 

Equivale a movimentação de um grau de liberdade e para tanto admite-se uma massa 𝑚 

solicitada a movimentar-se ou por uma força excitatriz ou devido a condições iniciais de 

deslocamento e velocidade. Sendo então admitido o sistema massa-mola submetido a força 

𝐹(𝑡) e com rigidez 𝑘, apresenta-se na figura 2.34 o deslocamento 𝑢(𝑡) em modulação 

harmônica. 
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Figura 2.34: Deslocamento 𝒖(𝒕) de um sistema massa-mola 

 

Fonte: (FONSECA, 1964) 

 Ao analisar o sistema massa – mola e desconsiderar a dissipação de energia, diz-se que 

o sistema analisado é não amortecido. Neste sentido, as forças reativas no referido sistema são: 

a pseudo-força inercial (𝑚. 𝑢̈) e a força de reação da mobilização da mola (𝑘. 𝑢). Onde a parcela 

inercial (𝑚. 𝑢̈) na realidade é uma pseudo-força, pelo fato de não ser aplicada na estrutura e sim 

representante da resistência a movimentação (inércia). Tais forças reativas são oriundas da 

atuação da força 𝐹(𝑡), conforme apresentado na figura 2.35. 

Figura 2.35: Forças reativas no sistema massa-mola não amortecido 

 

Fonte: O Autor (2019) 

 A partir do equilíbrio das forças atuantes no diagrama de corpo livre na massa "𝑚" e em 

conformidade do conceitos discutidos em Paz (1992), a equação diferencial para o problema 

massa-mola pode ser obtida aplicando-se o Princípio de D’Alembert. Para tal, o sistema está 

em equilíbrio dinâmico mediante inserção de forças externas reativas, dentre estas a pseudo-

força que compute a parcela inercial do movimento em questão. Neste sentido, ao realizar o 

equilíbrio de forças, conclui-se a equação diferencial que caracteriza o problema em questão, 

como: 

𝐹(𝑡) = 𝑚. 𝑢̈(𝑡) + 𝑘. 𝑢(𝑡)                                                                                                                (2.41) 

Já, no sistema massa-mola amortecido é característico a atuação de forças reativas 

devido a rigidez, outra oriunda da pseudo-força decorrente da inércia do sistema e ainda a força 

dissipativa devido ao amortecimento (𝑐. 𝑢̇). Com tais forças dissipativas e reativas, configura-
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se um sistema não conservativo onde a energia introduzida ao sistema (∆𝐸) é dissipada por 

diversas fontes, a exemplo do atrito entre os materiais constituintes da estrutura (computada 

como ∆𝑢𝐷). Com a quantificação da força dissipativa de amortecimento caracteriza-se o estado 

de equilíbrio de forças. Conforme é apresentado nas figuras 2.36 e 2.43. 

Figura 2.36: Forças reativas no sistema massa-mola amortecido 

 

Fonte: O Autor (2019) 

 Aplicando-se o Princípio de D’Alembert no sistema massa-mola amortecido 

apresentado na figura 2.36, chega-se a equação diferencial que rege o problema: 

𝑚. 𝑢̈ + 𝑐. 𝑢̇ + 𝑘. 𝑢 = 𝐹(𝑡)                                                                                                                (2.42) 

 

2.2.3. Vibração não amortecida 

 

a) Análise Harmônica 

 

Estruturas contínuas são caracterizadas por possuir massa e rigidez distribuídas ao logo 

do comprimento, ou seja, no domínio. Desta forma, a vibração numa determinada estrutura 

ocorre como combinação dos diversos modos de vibração. Vide figura 2.37.  

Figura 2.37: Frequências harmônicas: (a) viga biapoiada e (b) viga Biengastada 

 

Fonte: (KISELIOV, 1983) 
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Para uma estrutura com determinado conjunto de frequências harmônicas 

{𝑓1, 𝑓2, 𝑓3, … , 𝑓𝑛}, conforme mostrada na figura 2.38, pode-se expressar 𝑣(𝑥) como combinação 

das frequência. Tem-se a vibração caracterizada ao longo dos vários modos de vibração desde 

uma semi-onda (no 1º modo de vibração, com frequência fundamental 𝑓1) até a n-ésima semi-

onda, {𝑓1, 2. 𝑓1, 3. 𝑓1, … , 𝑛. 𝑓1}. 

Figura 2.38: Superposição modal de frequências 

 

Fonte: (CLOUGH; PENZIEN, 1993) 

Na análise harmônica é definida como frequência fundamental 𝑓1, aquela que  necessite 

de menor quantidade de energia para ativação do modo de vibração. Sendo caracterizada por 

uma única semi-onda e sendo responsável pelo maior deslocamento da estrutura. No caso 

apresentado nas figuras 2.37 e 2.38 o modo mais comprometedor da integridade estrutural será 

o primeiro, isto tomando como base a ocorrência do estado limite último por flexão (ELU-F).  

Em geral, para um sistema contínuo, onde a vibração ocorre (por definição) pela 

combinação dos modos fundamentais, compreendendo infinitas frequências. Neste sentido, é 

possível organizar as frequências em ordem crescente e realizar a combinação para as primeiras 
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frequências e desprezar as demais, isto sem grandes prejuízos. Tal modelagem é viável devido 

ocorrência das maiores amplitudes de deslocamento, com as menores frequências. 

 Utilizando a série de Fourier, demonstrada e com aplicabilidade descrita em Kreider 

(1966), para expressar o deslocamento 𝑢(𝑡). Considera-se também que o comprimento 𝑥 está 

para o período 2𝐿, assim como o ângulo 𝜃 está para 2𝜋. E valendo-se também da definição do 

ângulo 𝜃 como o produto da frequência angular fundamental 𝜔1 pelo tempo 𝑡. Escreve-se o 

deslocamento 𝑢(𝑡), em termos da série de Fourier, como: 

𝑢(𝑡) =
𝑢0

2
+ ∑𝑎𝑗 . cos(𝑗. 𝜔1. 𝑡)

∞

𝑗=1

+ ∑𝑏𝑗 . sen(𝑗. 𝜔1. 𝑡)

∞

𝑗=1

                                                           (2.43) 

onde: 𝜏1 é o período fundamental e apresentado na figura 2.39, e: 𝜔1 =
2𝜋

𝜏1
. 

Figura 2.39: Função com período 2𝝅 

 

Fonte: (KAPLAN, 1963) 

 Podendo ainda, a série apresentada na eq. (2.43) ser reescrita para o agrupamento das 

funções trigonométricas, como: 

𝑢(𝑡) =
𝑢0

2
+ ∑𝑐𝑗. cos(𝑗. 𝜔1. 𝑡 − 𝜙𝑗)

∞

𝑗=1

                                                                                       (2.44) 

onde: 𝑐𝑗 = √(𝑎𝑗)
2
+ (𝑏𝑗)

2
. 

 Graficamente, os espectros de frequências são caracterizados por valores pontuais, uma 

vez que não existem valores de frequências intermediárias. Conforme é apresentado na figura 

2.40, e ainda observa-se que a primeira frequência de vibração não possui defasagem, por este 

motivo que o gráfico das defasagens 𝜙𝑗 em termos das frequências 𝜔𝑗 inicia na origem. 
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Figura 2.40: Espectro de frequências 𝝎𝒋 

 

Fonte: O Autor (2019) 

Na análise estrutural, determinam-se as frequências de vibração da estrutura e 

enquadram-nas no espectro de frequências naturais. Caso ocorra a coincidência de alguma 

destas frequências de vibração estrutural com qualquer uma das frequências naturais da mesma, 

configura-se o fenômeno de ressonância. Em caso contrário, diz-se que a estrutura não corre 

risco de colapso por ressonância.   

   

b) Vibração Forçada Harmonicamente 

 

Admite-se para a figura 2.35 a excitação harmônica em termos da combinação de 

funções trigonométricas da frequência excitatriz 𝜔̅, ficando a equação diferencial ordinária do 

problema, eq. (2.41), reescrita como: 

𝑚. 𝑢̈ + 𝑘. 𝑢 = 𝐹1. cos(𝜔̅. 𝑡) + 𝐹2. sen(𝜔̅. 𝑡)                                                                                (2.45) 

 A solução homogênea, oriunda da vibração livre, será: 

𝑢𝐻(𝑡) = 𝐴. cos(𝜔. 𝑡) + 𝐵. sen(𝜔. 𝑡)                                                                                            (2.46) 

 A solução particular (quanto ao deslocamento, velocidade e aceleração) será: 

𝑢𝑃(𝑡) = 𝐶. cos(𝜔̅. 𝑡) + 𝐷. sen(𝜔̅. 𝑡)                                                                                        (2.47 𝑎) 

𝑢̇𝑃(𝑡) = 𝐶. 𝜔̅. cos(𝜔̅. 𝑡) + 𝐷. 𝜔̅. sen(𝜔̅. 𝑡)                                                                              (2.47 𝑏) 

𝑢̈𝑃(𝑡) = 𝐶. 𝜔̅2. cos(𝜔̅. 𝑡) + 𝐷. 𝜔̅2. sen(𝜔̅. 𝑡)                                                                           (2.47 𝑐) 
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 Aplica-se a solução particular constante nas eq.’s (2.47) na eq. (2.45), determinando-se 

as constantes 𝐶 e 𝐷 da referida solução. Em seguida a solução geral será a união das soluções 

homogênea (eq. 2.46) e particular (eq. 2.47 a), e os coeficientes 𝐴 e 𝐵 são determinados via 

imposição das condições iniciais de deslocamento 𝑢0 e de velocidade 𝑢̇0. Resultando: 

𝑢(𝑡) = 𝐴. cos(𝜔. 𝑡) + 𝐵. sen(𝜔. 𝑡) + 𝐶. cos(𝜔̅. 𝑡) + 𝐷. sen(𝜔̅. 𝑡)                                       (2.48) 

onde: 𝐴 = 𝑢0 − 𝐶 ;      𝐵 =
𝑢̇0

𝜔
− 𝐷.

𝜔̅

𝜔
 ;      𝐶 =

𝐹1

𝑚. (𝜔2 − 𝜔̅2)
      e     𝐷 =

𝐹2

𝑚. (𝜔2 − 𝜔̅2)
. 

 Define-se a deformação estática 𝛿𝑠 como a razão entre a força e a rigidez, e evidencia-

se ainda o fator de amplificação 𝑗, a função do deslocamento ao longo do tempo fica reescrita 

como: 

𝑢(𝑡) = 𝑢0. cos(𝜔. 𝑡) +
𝑢̇0

𝜔
. sen(𝜔. 𝑡) + 𝛿𝑠

𝐹1 . 𝑗. [cos(𝜔̅. 𝑡) − cos(𝜔. 𝑡)]

+ 𝛿𝑠
𝐹2 . 𝑗. [sen(𝜔̅. 𝑡) − 𝛽. sen(𝜔. 𝑡)]                                                                    (2.49) 

onde: 𝑗 =
1

1 − 𝛽2
    ;     𝛽 =

𝜔̅

𝜔
     ;       𝛿𝑠

𝐹1 =
𝐹1

𝑘
        e       𝛿𝑠

𝐹2 =
𝐹2

𝑘
. 

 A solução geral pode ser dividida em duas parcelas, a primeira será a parcela transiente 

𝑢𝑇(𝑡) e a segunda será a parcela permanente 𝑢𝑃𝑒𝑟(𝑡), conforme segue: 

𝑢𝑇(𝑡) = 𝐸0. cos(𝜔. 𝑡 − 𝜙0) − 𝛿𝑠
𝐹1 . 𝑗. cos(𝜔. 𝑡) − 𝛿𝑠

𝐹2 . 𝑗. 𝛽. sen(𝜔. 𝑡)                               (2.50 𝑎) 

𝑢𝑃𝑒𝑟(𝑡) = 𝛿𝑠
𝐹1 . 𝑗. cos(𝜔̅. 𝑡) + 𝛿𝑠

𝐹2 . 𝑗. sen(𝜔̅. 𝑡)                                                                        (2.50 𝑏) 

onde: 𝐸0 = 𝑢0. √1 + tg2 ∅0       e      𝜙0 = tg−1 (
𝑢̇0

𝜔. 𝑢0
). 

Graficamente, o fator de amplificação dinâmica 𝑗, é representado na figura 2.41 em 

função da razão 𝛽 das frequências da solicitação 𝜔̅ e do sistema 𝜔. 
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Figura 2.41: Fator de amplificação dinâmica 𝒋 por razão 𝜷 de frequências 

 

Fonte: Adaptado de (FONSECA, 1964) 

 Observa-se que a solução apresentada na eq. (2.49) é válida para a razão de frequências 

𝛽 diferente da unidade. No caso de (𝛽 = 1), ocorre o fenômeno de Ressonância, uma vez que 

os deslocamentos tendem a infinito. A ocorrência de ressonância é devida ao sistema estudado 

nessa seção ser considerado conservativo, por não ser amortecido (não havendo dissipação da 

energia fornecida ao sistema pela força excitatriz). É conveniente subdividir o funcionamento 

do sistema massa-mola em três casos: o caso 1 onde a razão (𝛽 < 1) é inferior a unidade, o 

caso 2 quando (𝛽 > 1) é superior a unidade e o Caso 3, no qual, a razão 𝛽 assume a unidade. 

No caso da razão 𝛽 unitária, a resposta do deslocamento do sistema 𝑢(𝑡) apresentado 

na eq. (2.49) é conduzido a uma indeterminação matemática do tipo divisão de zero por zero. 

E a fim de eliminar tal indeterminação matemática, procede-se a multiplicar da solução 

particular 𝑢𝑃(𝑡), eq. (2.47 a), pela variável independente “𝑡”. Consistindo em empregar a teoria 

das equações lineares com coeficientes constantes, conforme apresentado por Fonseca (1964). 

Resultando a solução particular e a solução geral para o caso de 𝛽 unitário, definida por: 

𝑢𝑃(𝑡) = [𝐶. cos(𝜔. 𝑡) + 𝐷. sen(𝜔. 𝑡)]. 𝑡                                                                                  (2.51 𝑎) 

𝑢(𝑡) = 𝐸0. cos(𝜔. 𝑡 − ∅0) + [
𝛿𝑠

𝐹1

2
.𝜔. 𝑡 +

𝛿𝑠
𝐹2

2
] . sen(𝜔. 𝑡) +

𝛿𝑠
𝐹2

2
.𝜔. 𝑡. cos(𝜔. 𝑡)           (2.51 𝑏) 
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onde; 𝐸0 e 𝜙0 são definidos na eq. (2.50 a). 

 O deslocamento para o caso da razão 𝛽 unitária é apresentada na figura 2.42. Nesta 

configuração do sistema massa – mola não amortecido e com razão de frequência unitária, 

configurando assim a coincidência da frequência de excitação "𝜔̅" e da frequência natural de 

vibração da estrutura "𝜔". Para tal, observa-se que o deslocamento 𝑢(𝑡) é crescente e tende a 

infinito, isto devido a desconsideração da dissipação de energia por amortecimento. 

Figura 2.42: Deslocamento para a razão 𝜷 unitária 

 

Fonte: Adaptado de (FONSECA, 1964) 

 

2.2.4. Vibração amortecida 

 

De acordo com as vibrações cíclicas define-se a energia dissipada no sistema. E ainda 

em decorrência do tipo de amortecimento é observada a variabilidade da relação força – 

deslocamento e daí a relevância do estudo da dissipação energética via amortecimento. 

 

a) Ciclo de Energia  

 

 Os sistemas amortecidos são (por definição) não conservativos, pois ocorre o consumo 

de energia através dos mecanismos de amortecimento. Sendo característico o ponto de 
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equilíbrio, no qual a energia introduzida no sistema Δ𝐸 é igual a energia interna dissipada Δ𝑢𝐷. 

Ao passo que a energia introduzida é superior a energia dissipada, tem-se o regime instável. Já 

o regime estável é quando a energia introduzida é inferior a energia dissipada. Vide figura 2.43. 

Figura 2.43: Ciclo de energia introduzida e dissipada no sistema 

 

Fonte: O Autor (2019) 

Quando a energia fornecida ao sistema Δ𝐸 é superior a energia dissipada por 

amortecimento Δ𝑢𝐷, configura-se o aumento gradual das amplitudes dos deslocamentos e o 

sistema tende a  romper por não suportar tais deformações. Já na ocorrência da energia dissipada 

Δ𝑢𝐷 superar a introduzida Δ𝐸, verifica-se o decréscimo dos deslocamentos, o que configura a 

estabilidade da movimentação. Tais condições de equilíbrio são representadas na figura 2.44. 

Figura 2.44: Ciclo de energia: (a) estaticamente estável e dinamicamente instável com ∆𝑬 > ∆𝒖𝑫 

e (b) estática e dinamicamente estável com ∆𝑬 < ∆𝒖𝑫 

 

(a)                                                                  (b) 

Fonte: Adaptado de (DEN HARTOG, 1972) 

Enquanto na vibração não amortecida verifica-se o deslocamento tendendo a infinito 

(com o efeito da ressonância), na vibração amortecida constata-se apenas a amplificação dos 

deslocamentos quando da coincidência das frequência de solicitação (𝜔̅) e de vibração natural 

(𝜔) da estrutura. Fato este que é evidenciado na figura 2.45. 
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Figura 2.45: Amplificação do deslocamento na condição de ressonância em comparação com o 

sistema amortecido 

 

Fonte: O Autor (2019) 

Devido a dissipação de energia ocasionada pelo amortecimento, justifica-se a não 

ocorrência do fenômeno de ressonância para o caso da razão de frequências ser unitária, uma 

vez que os deslocamentos são amplificados na ocorrência de 𝛽 unitário. Porém mesmo sem que 

os deslocamentos chegem a infinito, a estrutura rompe por não apresentar capacidade de suporte 

aos enormes deslocamentos acarretados neste estado de solicitação. Vide na figura 2.46 que o 

deslocamento máximo 𝑢𝑚á𝑥 supera o deslocamento suportável 𝑢∗ pela estrutura. 

Figura 2.46: Deslocamento máximo quando da condição de ressonância 

 

Fonte: O Autor (2019) 

Mesmo que o deslocamento não seja infinito se tornaria muito dispendioso o 

dimensionamento estrutural para suportar tais deformações amplificadas, apresentadas 

esquematicamente na figura 2.46. Bem como tornaria muito desagradável a utilização da 

estruturas, quanto ao conforto sensorial dos usuários. Assim, a solução é impedir que ocorra 
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este cenário de coincidência de frequências, alterando a massa ou a rigidez estrutural de forma 

que os modos naturais de vibração ocorram com frequências distintas da excitatriz. 

No ponto de equilíbrio (Δ𝐸 = Δ𝑢𝐷), indicado na figura 2.43, é possível ocorrer a 

condição de instabilidade, isso em decorrência da estrutura não suportar as elevadas 

deformações. Em estruturas de aço, verifica-se a instabilidade plástica após o fenômeno de 

estricção. Já, em estruturas de concreto ocorre o esmagamento das bielas. 

 

 

b) Vibração Amortecida Livre  

 

Na solução homogênea da equação diferencial do sistema massa – mola amortecido que 

consta na figura 2.36 e cuja EDO é apresentada na equação (2.42), será desconsiderada a força 

excitatriz 𝐹(𝑡). E para tal, propõe-se como solução homogênea a função exponencial: 

𝑢 = 𝐴. 𝑒 𝜆̅.𝑡                                                                                                                                       (2.52 𝑎) 

𝑢̇ = 𝐴. 𝜆̅. 𝑒 𝜆̅.𝑡                                                                                                                                   (2.52 𝑏) 

𝑢̈ = 𝐴. 𝜆̅2. 𝑒 𝜆̅.𝑡                                                                                                                                  (2.52 𝑐) 

 Aplica-se a solução proposta nas equações (2.52) na eq. (2.42) com a imposição da força 

excitatriz nula, ou não atuante, 𝐹(𝑡) = 0. Chegando-se a equação característica: 

𝜆̅2 +
𝑐

𝑚
. 𝜆̅ +

𝑘

𝑚
= 0                                                                                                                           (2.53) 

 A equação característica do problema homogêneo, eq.  (2.53), é uma equação de 2º grau 

e para tanto as raízes 𝜆̅, são expressas por: 

𝜆̅ = −
𝑐

2𝑚
± √(

𝑐

2𝑚
)
2

− 𝜔2                                                                                                           (2.54) 

onde: 𝑘 = 𝑚.𝜔2 
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 A partir das raízes apresentadas na equação (2.54), pode-se dividir o estudo do problema 

homogêneo em três casos, estes em função do sinal da raiz quadrada das raízes 𝜆̅. O Caso 1 é 

aplicável aos automóveis e caracterizado pelo amortecimento supercrítico, já o Caso 3 é 

aplicável as estruturas usuais da engenharia civil, a exemplo de edifícios e pontes. No Caso 2 é 

caracterizado o amortecimento crítico, onde o termo da raiz da quadrada das raízes 𝜆̅ é nulo, 

ver eq. (2.54). Ficando os casos, delineados no seguinte formato: 

➢ Caso 1: Amortecimento supercrítico 

√(
𝑐

2𝑚
)
2

− 𝜔2 > 0 ∴ 𝑐 > ±2.𝑚.𝜔 

➢ Caso 2: Amortecimento crítico  

𝑐𝐶𝑅 = ±2.𝑚.𝜔 

➢ Caso 3: Amortecimento subcrítico 

𝑐 < ±2.𝑚.𝜔 

   Utilizando a definição de razão de amortecimento 𝜉 como a divisão entre o 

amortecimento 𝑐 e o amortecimento crítico 𝑐𝐶𝑅, reescreve-se as raízes apresentadas na eq. 

(2.54), como: 

𝜆̅ = (−𝜉 ± √𝜉2 − 1) .𝜔                                                                                                                 (2.55) 

onde: 𝜉. 𝑐𝐶𝑅 = 𝑐      e      𝜉𝐶𝑅 = 1. 

 Nas soluções homogêneas para os três casos de gradação de amortecimento, procede-se 

a imposição das condições iniciais de deslocamento 𝑢𝑜 e de velocidade 𝑢̇0, ilustrados na figura 

2.47.  

Figura 2.47: Condições iniciais de deslocamento e velocidade 

 

Fonte: Adaptado de (CLOUGH; PENZIEN, 1993) 
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Os três casos de amortecimento, quanto a intensidade, são expressos em termos da razão 

de amortecimento 𝜉. Possuindo as seguintes funções como respostas para o deslocamento 𝑢(𝑡): 

➢ Caso 1: Amortecimento supercrítico  (𝜉 > 1) 

𝑢(𝑡) = 𝑒−𝜉.𝜔.𝑡. [𝐴̅. cosh (√𝜉2 − 1.𝜔. 𝑡) + 𝐵̅. senh (√𝜉2 − 1.𝜔. 𝑡)]                                  (2.56) 

onde: 𝐴̅ = 𝑢0     e      𝐵̅ =
𝑢̇0 + 𝑢0. 𝜉. 𝜔

𝜔.√𝜉2 − 1
. 

Graficamente, na figura 2.48, observa-se que em decorrência do amortecimento ser 

supercrítico é notório que o consumo energético via dissipação por amortecimento é maior do 

que a energia fornecida ao sistema. Caracterizando, assim, a não ocorrência de oscilação. 

Figura 2.48: Movimento não periódico com 𝝃 > 𝟏 

 

Fonte: Adaptado de (THOMSON, 1978) 

➢ Caso 2: Amortecimento crítico  (𝜉 = 1) 

𝑢(𝑡) = (𝐴̅. 𝑡 + 𝐵̅). 𝑒−𝜔.𝑡                                                                                                                  (2.57) 

onde: 𝐴̅ = 𝑢̇0 + 𝜔. 𝑢0      e       𝐵̅ = 𝑢0 

 Na figura 2.49 são apresentadas três possibilidades de movimento amortecido crítico 

para o deslocamento inicial 𝑢0 e em função do sinal da velocidade 𝑢̇0. 
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Figura 2.49: Movimento criticamente amortecido 

 

Fonte: Adaptado de (THOMSON, 1978) 

➢ Caso 3: Amortecimento subcrítico (𝜉 < 1)  

𝑢(𝑡) = 𝑒−𝜉.𝜔.𝑡. [𝐴̅. cos(𝜔𝑑. 𝑡) + 𝐵̅. sen(𝜔𝑑. 𝑡)]                                                                         (2.58) 

onde: 𝜔𝑑 = 𝜔.√1 − 𝜉2       ;       𝐴̅ = 𝑢0        e        𝜔𝑑. 𝐵̅ = 𝑢̇0 + 𝜉. 𝜔. 𝑢0. 

Neste caso, observa-se através da figura 2.50 que o movimento amortecido 

subcriticamente é harmônico e logo caracterizado como oscilatório, porém vai diminuindo 

rapidamente pela envoltória da função exponencial. 

Figura 2.50: Movimento amortecido com 𝝃 < 𝟏 

 

Fonte: Adaptado de (THOMSON, 1978) 

 Observa-se na figura 2.50, que o deslocamento máximo pode ser maior do que o 

deslocamento inicial 𝑢0, isto dependendo da velocidade inicial 𝑢̇0. Também é possível 

reescrever a função resposta de deslocamento para o Caso 3, equação (2.58), em termo de seno, 

como: 

𝑢(𝑡) = 𝑒−𝜉.𝜔.𝑡 . 𝐶0. sen(𝜔𝑑. 𝑡 + 𝛽0)                                                                                              (2.59) 
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onde: 𝜔𝑑 = 𝜔.√1 − 𝜉2    ;    𝐶0 = √𝑢0
2 +

(𝑢̇0 + 𝜉.𝜔. 𝑢0)
2

𝜔𝑑
2     e     𝛽0 = tg−1 (

𝑢0. 𝜔𝑑

𝑢̇0 + 𝜉. 𝜔. 𝑢0
). 

 

c) Vibração forçada harmonicamente 

 

 Admite-se a excitação harmônica para o sistema massa – mola apresentado na figura 

2.36 sob formato de combinação linear de funções trigonométricas e com frequência 𝜔̅. 

Procede-se analogamente a Silva (2000), obtendo-se a equação diferencial ordinária do 

problema (a partir da eq. 2.42) expressa por: 

𝑚. 𝑢̈ + 𝑐. 𝑢̇ + 𝑘. 𝑢 = 𝐹1. cos(𝜔̅. 𝑡) + 𝐹2. sen(𝜔̅. 𝑡)                                                                    (2.60) 

 A solução homogênea, com os coeficientes a determinar, será: 

𝑢𝐻(𝑡) = 𝐴̅. cos(𝜔. 𝑡) + 𝐵̅. sen(𝜔. 𝑡)                                                                                        (2.61 𝑎) 

 A solução particular com os respectivos coeficientes a determinar em termos de 

deslocamento, velocidade e aceleração, será: 

𝑢𝑃(𝑡) = 𝐶̅. cos(𝜔̅. 𝑡) + 𝐷̅. sen(𝜔̅. 𝑡)                                                                                        (2.62 𝑎) 

𝑢̇𝑃(𝑡) = 𝐶̅. 𝜔̅. cos(𝜔̅. 𝑡) + 𝐷̅. 𝜔̅. sen(𝜔̅. 𝑡)                                                                              (2.62 𝑏) 

𝑢̈𝑃(𝑡) = 𝐶̅. 𝜔̅2. cos(𝜔̅. 𝑡) + 𝐷̅. 𝜔̅2. sen(𝜔̅. 𝑡)                                                                           (2.62 𝑐) 

 Aplicando-se a solução particular constante nas eq.’s (2.62) na eq. (2.60), determinam-

se as constantes 𝐶̅ e 𝐷̅ da referida solução. Em seguida a solução geral será a união das soluções 

homogênea e particular, e com os coeficientes 𝐴̅ e 𝐵̅ determinados via imposição das condições 

iniciais de deslocamento 𝑢0 e de velocidade 𝑢̇0. Assim expressa por: 

𝑢(𝑡) = 𝐴̅. cos(𝜔. 𝑡) + 𝐵̅. sen(𝜔. 𝑡) + 𝐶̅. cos(𝜔̅. 𝑡) + 𝐷̅. sen(𝜔̅. 𝑡)                                       (2.63) 

onde: 𝐴̅ = 𝑢0 − 𝐶̅        ;        𝐵̅ =
𝑢̇0

𝜔𝑑
+ 𝜉.

𝜔

𝜔𝑑
. 𝐴̅ − 𝐷.

𝜔̅

𝜔𝑑
 ; 
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          𝐶̅ =
(1 − 𝛽2). 𝐹1 − 2. 𝜉. 𝛽. 𝐹2

𝑘. [(1 − 𝛽2)2 + (2. 𝜉. 𝛽)2]
      e       𝐷̅ =

(1 − 𝛽2). 𝐹2 + 2. 𝜉. 𝛽. 𝐹1

𝑘. [(1 − 𝛽2)2 + (2. 𝜉. 𝛽)2]
. 

 Realizando operações matemáticas, tem-se a função do deslocamento ao longo do 

tempo, reescrita como: 

𝑢(𝑡) = 𝑒−𝜉.𝜔.𝑡. [𝐴̅. cos(𝜔𝑑. 𝑡) + 𝐵̅. sen(𝜔𝑑. 𝑡)] + 𝐶̅. cos(𝜔̅. 𝑡) + 𝐷̅. sen(𝜔̅. 𝑡)                  (2.64) 

 A solução geral é dividida em duas parcelas, a primeira é a parcela transiente e a segunda 

é a parcela permanente. A parcela permanente está ligada a frequência da solicitação 𝜔̅, 

resultando em: 

𝑢𝑇(𝑡) = 𝑒−𝜉.𝜔.𝑡. [𝐴̅. cos(𝜔𝑑. 𝑡) + 𝐵̅. sen(𝜔𝑑. 𝑡)]                                                                   (2.65 𝑎) 

𝑢𝑃𝑒𝑟(𝑡) = 𝐶̅. cos(𝜔̅. 𝑡) + 𝐷̅. sen(𝜔̅. 𝑡)                                                                                     (2.65 𝑏) 

 A parcela transiente expressa na equação (2.65 a) equivale a uma perturbação da parcela 

permanente. Conforme pode-se observar na figura 2.51. 

 Figura 2.51: Deslocamento permanente em face do transiente 

 

Fonte: Adaptado de (FONSECA, 1964) 

A amplitude do movimento permanente, apresentado na equação (2.65 b), expressa em 

única função de cosseno, fica reescrita como: 

𝑢𝑃𝑒𝑟(𝑡) =
𝑗

𝑘
.√𝐹1

2 + 𝐹2
2. cos(𝜔̅. 𝑡 − 𝜙𝑚)                                                                                    (2.66) 
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onde: 𝜙𝑚 = tg−1 [
2. 𝜉. 𝛽. 𝐹1 + (1 − 𝛽2). 𝐹2

(1 − 𝛽2). 𝐹1 − 2. 𝜉. 𝛽. 𝐹2
]   ;   𝑗 = √

1

(1 − 𝛽2)2 + 4. 𝜉2. 𝛽2
    e    𝛽 =

𝜔̅

𝜔
. 

 Ao analisar as condições de ressonância e do Fator de Amplificação Dinâmica 

(𝐹𝐴𝐷 ≡ "𝑗") para o sistema amortecido, verifica-se que não é possível ocorrer valor infinito do 

FAD, isso devido à dissipação de energia pelo amortecimento. A fim de determinar o máximo 

valor do FAD, calcula-se a derivada desse em relação a razão de frequências 𝛽 e extremiza-se 

ao impor nulidade na referida derivação. Com: 𝛽 = √1 − 2. 𝜉2, escreve-se: 

𝑑

𝑑𝛽
(𝑗) = 𝛽. [2. (1 − 𝛽2) − 4. 𝜉2] = 0                                                                                          (2.67) 

Debruçando-se ainda mais na definição da razão de frequências 𝛽 = √1 − 2. 𝜉2, 

equação (2.66), conclui-se a ocorrência de vibração apenas para as estruturas com razão de 

amortecimento 𝜉 menor que a unidade, por apresentar raíz quadrada de número real. 

Constatando-se também esta informação pela figura 2.52. 

Figura 2.52: Amplificação do movimento via FAD 

 

Fonte: Adaptado de (FONSECA, 1964) 
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Ainda, analisando a equação da razão de frequências 𝛽 (razão entre as frequências da 

solicitação e da vibração da estrutura) em detrimento da razão de amortecimento 𝜉, vide 

equação (2.67), e constata-se que não ocorre ressonância para 𝜉 ≥ 2−1/2. Também observa-se 

que os valores máximos do FAD, na condição de ressonância (𝛽 = 1), ocorrem para razões 𝛽 

menores que a unidade. Onde os picos de deslocamentos são menos recuados, quanto menor 

for a razão de amortecimento 𝜉. 

O ângulo de fase incial 𝜙𝑚 é expresso, por: 

𝑡𝑔(𝜙𝑚) =
𝐷̅

𝐶̅
=

(2. 𝜉. 𝛽). 𝐹1 + (1 − 𝛽2). 𝐹2

(1 − 𝛽2). 𝐹1 − (2. 𝜉. 𝛽). 𝐹2
                                                                                (2.68) 

No caso particular, da força excitatriz ser função apenas do cosseno, tem-se o ângulo de 

fase inicial expresso na equação (2.68), reescito como: 

𝑡𝑔(𝜙𝑚) =
2. 𝜉. 𝛽

(1 − 𝛽2)
                                                                                                                         (2.69) 

sendo apresentado graficamente na figura 2.53. 

Figura 2.53: Ângulo de fase inicial 

Fonte: Adaptado de (SORIANO, 2014) 
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d) Espaço de estados 

 

Utiliza-se espaço de estados, quando a análise é procedida em vetores contendo 

variáveis distintas. No caso da análise estrutural é exemplificável com o vetor que contenha, ao 

mesmo tempo, esforços nodais, rotações e deslocamentos. Geralmente para representar tal vetor 

utiliza-se a letra 𝑋, ficando o vetor de estado escrito como: 

{𝑋} = {
𝔑
𝜙
𝑑

}                                                                                                                                           (2.70) 

onde: 𝔑 –  Esforço Normal, 𝜙 – Rotações e 𝑑 – deslocamentos. 

Uma aplicação clássica dos espaços de estado ocorre na análise matricial de estruturas, 

onde o vetor de variáveis englobam os esforços solicitantes e os graus de liberdade. 

Correlacionando tais vetores de estados para os nós inicial e final da barra, via matriz de 

transferência [𝑇]. Tal equacionamento é observado na figura 2.54; na equação (2.71) e na eq. 

(3.44 a). 

Figura 2.54: Vetor de estados para barra genérica 

 

Fonte: O Autor (2019) 

{
  
 

  
 

𝒖𝒇

𝒗𝒇

𝜽𝒇

𝑵𝒇

𝑽𝒇

𝑴𝒇}
  
 

  
 

= [𝑇].

{
 
 

 
 

𝒖𝒊

𝒗𝒊

𝜽𝒊

𝑵𝒊

𝑽𝒊

𝑴𝒊}
 
 

 
 

                                                                                                                           (2.71) 

sendo: 𝒖𝒊, 𝒗𝒊, 𝜽𝒊 – Graus de liberdade para o nó inicial, quanto a incidência da barra; 

              𝒖𝒇, 𝒗𝒇, 𝜽𝒇 – Graus de liberdade para o nó final, quanto a incidência da barra e 

             [𝑇] – Matriz de transferência da barra. 
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A equação do movimento, vide equação 2.42, é representada em termos matriciais, pelas 

parcelas de rigidez, massa e amortecimento, por: 

[𝑀]. {𝑢̈} + [𝐶]. {𝑢̇} + [𝐾]. {𝑢} = {𝐹}                                                                                            (2.72) 

onde: [𝑀] – é a matriz de massa da estrutura; 

           [𝐶] – é a matriz de amortecimento estrutural; 

           [𝐾] – é a matriz de rigidez da estrutura e  

           {𝑢̈}, {𝑢̇}, {𝑢} – sãos os vetores de acelerações, velocidades e deslocamentos, definidos nos 

graus de liberdade. 

 Na resolução da equação (2.72) almeja-se então, a diagonalização das três matrizes que 

compõem o sistema de equações diferenciais, a fim de gerar um conjunto com "𝑛" equações 

diferenciais desacopladas, ou seja, independentes entre si. Para facilitar tal diagonalização 

utiliza a matriz de amortecimento [𝐶] proporcional as matrizes de rigidez [𝐾] e de massa [𝑀] 

da estrutura. Com este artificio, procede-se a diagonalização das matrizes [𝐾] e  [𝑀], uma vez 

que a matriz [𝐶] já estará automaticamente diagonalizada. 

 A diagonalização consiste em realizar a solução do problema de autovetores e 

autovalores associados a análise processada. E, para tal resolução pode-se citar os seguintes 

métodos de processamento: 

➢ Sequências de Sturm; 

➢ Método de Lanczos; 

➢ Método de Jacobi (Ver item 2.6); 

➢ Método de Given; 

➢ Método de Househoulder; 

➢ Método da Bisseção; 

➢ Métodos LR, QR, QL e 

➢ Método de Moler & Sterwart. 
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e) Excitação aperiódica 

 

Admitem-se fontes excitatrizes não periódicas, a exemplo de rajadas de vento. E a fim 

de proceder a integração (resolução) da equação diferencial ordinária, vale-se da subdivisão da 

função 𝐹(𝑡) ao longo do tempo (CHOPRA, 2001, p. 126 – 129). Vide figura 2.55. 

Figura 2.55: Excitação aperiódica 

 

Fonte: O Autor (2019) 

Relembra-se a série de Fourier: 

𝐹(𝑡) =
𝑎0

2
+ ∑𝑎𝑗 . cos(𝑗. 𝜔̅. 𝑡)

𝑗=1

+ ∑𝑏𝑗 . sen(𝑗. 𝜔̅. 𝑡)

𝑗=1

                                                              (2.73) 

onde: 𝑎𝑗 =
2

𝜏̅
. ∫ 𝐹(𝑡). cos(𝑗. 𝜔̅. 𝑡)

𝜏̅

0

 𝑑𝑡;    𝑏𝑗 =
2

𝜏̅
. ∫ 𝐹(𝑡). sen(𝑗. 𝜔̅. 𝑡)

𝜏̅

0

 𝑑𝑡;   
𝑎0

2
=

1

𝜏̅
. ∫ 𝐹(𝑡)

𝜏̅

0

 𝑑𝑡. 

E baseado na EDO da vibração amortecida, eq. (2.42), e após aplicar a força excitatriz 

𝐹(𝑡) expressa na equação (2.73), conclui-se por soluções parciais: 

𝑚. 𝑢̈ + 𝑐. 𝑢̇ + 𝑘. 𝑢 =
𝑎0

2
                                                                                                               (2.74 𝑎) 

𝑚. 𝑢̈ + 𝑐. 𝑢̇ + 𝑘. 𝑢 = 𝑎𝑗 . cos(𝑗. 𝜔̅. 𝑡)                                                                                          (2.74 𝑏) 

𝑚. 𝑢̈ + 𝑐. 𝑢̇ + 𝑘. 𝑢 = 𝑏𝑗 . sen(𝑗. 𝜔̅. 𝑡)                                                                                          (2.74 𝑐) 
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Resultando na solução completa 𝑢(𝑡) com a divisão em duas parcelas: a primeira é o 

deslocamento permanente 𝑢𝑃(𝑡) e a segunda parcela é a transiente 𝑢𝑇(𝑡). Onde 𝑗 equivale ao 

número de equações, ficando os deslocamentos expressos por: 

𝑢𝑃(𝑡) =
𝑎0

2. 𝑘
+ ∑

𝑎𝑗

𝛾
. cos(𝑗. 𝜔̅. 𝑡 − 𝜙𝑗)

𝑗=1

+ ∑
𝑏𝑗

𝛾
. sen(𝑗. 𝜔̅. 𝑡 − 𝜙𝑗)

𝑗=1

                                (2.75 𝑎) 

𝑢𝑇(𝑡) = 𝐴. cos(𝜔. 𝑡) + 𝐵. sen(𝜔. 𝑡)                                                                                         (2.75 𝑏) 

onde:  𝛾 = 𝑘. √(1 − 𝛽2)2 + (2. 𝛽. 𝜉)2 

             
𝑎0

2
=

1

𝜏̅
. (

𝐹0 + 𝐹1

2
+

𝐹1 + 𝐹2

2
+

𝐹3 + 𝐹4

2
+ ⋯) . Δ𝑡 =

1

𝑁
.(

𝐹0 + 𝐹𝑁

2
+ ∑ 𝐹𝑗

𝑁−1

𝑗=1

) 

              𝑎𝑗 =
2

𝑁
. [𝐹𝑁. sen (𝑗.

2. 𝜋

𝜏̅
. 𝑡𝑁) + ∑ 𝐹𝑖 . sen (𝑗.

2. 𝜋

𝜏̅
. 𝑡𝑖)

𝑁−1

𝑖=1

] 

              𝑏𝑗 =
2

𝑁
. [𝐹𝑁. sen (𝑗.

2. 𝜋

𝜏̅
. 𝑡𝑁) + ∑ 𝐹𝑖 . cos (𝑗.

2. 𝜋

𝜏̅
. 𝑡𝑖)

𝑁−1

𝑖=1

] 

Por fim, ressalta-se que o tratamento matemático de uma força regida por função 

aperiódica pode ocorrer mediante: 

➢ Integral de Fourier; 

➢ Integral de Duhamel (Convolução); 

➢ Transformação de Laplace; 

➢ Função interpoladora e 

➢ Integração numérica. 
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2.3. AÇÃO DO VENTO NO PILAR DE PONTE 

 

 

2.3.1. Atuação das correntes do vento 

 

Em Standerski (2012) são apresentados como efeitos dinâmicos do vento em tabuleiros 

de pontes, os seguintes: 

➢ Galope; 

➢ Drapejamento; 

➢ Excitação por vórtices e 

➢ Rajadas e Martelamento (devido a turbulência). 

Conforme definido em Blessmann (2011, p. 87), os vórtices de Kármán ocorrem quando 

o número de Reynolds atinge certo valor, surgindo disprendimento aleatório de turbilhões de 

ambos os lados do objeto, surgindo assim duas filas de turbilhões, os então vórtices de Kármán. 

Os vórtices são classificados da seguinte forma: 

➢ Vórtices de base: Quando o vento incide perpendicularmente a uma fachada, 

surge na proximidade do solo, um vórtice de eixo aproximadamente horizontal. 

Vide figura 2.56. 

Figura 2.56: Vórtice de Base 

 

FONTE: (BLESSMANN, 2011) 
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➢ Vórtices confinados: Quando o caso anterior ocorre um edifício alto a sota-

vento, em relação a um edifício mais baixo, formando-se assim o vórtice 

confinado. Conforme é apresentado na figura 2.57. 

Figura 2.57: Vórtice Confinado entre edificações 

 

FONTE: (BLESSMANN, 2011) 

 

 

2.3.2. Variação da velocidade do vento com a altura 

 

A variação da velocidade do vento com a altura também é denominada de velocidade 

de perfil. A velocidade do vento na superfície é bem inferior do que a velocidade nas elevadas 

alturas, isto devido ao arrasto no fluxo do vento ocasionado pelo atrito da rugosidade da 

superfície terrestre. Segundo Taranath (2011) o formato do perfil para ventos fortes depende, 

principalmente, de: 

➢ Grau de rugosidade da superfície; 

➢ Efeitos globais de arrasto de edifícios e 

➢ Árvores e qualquer outra saliência que dificulte e/ou impeça o fluxo do vento. 

Ainda segundo Taranath (2011) a altura em que a influência da rugosidade da superfície 

torna-se nula, ocorre a 360 metros acima do solo. Sendo o movimento regido apenas pelos 

efeitos dos ventos locais e sazonais. O limite de nulidade da influência da rugosidade da 

superfície é denominado de Camada Limite Atmosférica. 
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O equacionamento do perfil do vento no interior da camada limite atmosférica, é 

definido por: 

𝑉(𝑧) = 𝑉𝑔. (
𝑧

𝑧𝑔
)

1
𝛼

                                                                                                                              (2.76) 

onde: 𝑉(𝑧) – é a velocidade média do vento na altura 𝑧; 

          𝑉𝑔 – é a velocidade do vento gradiente; 𝑧 – altura acima do solo; 

          𝑧𝑔 – é a altura nominal da camada limite, ou altura gradiente e 

          𝛼 – é o coeficiente. A variação de 
1

𝛼
 ocorre de 0,087 para zonas abertas até 0,20 em áreas 

urbanas construídas.  

Observa-se na figura 2.58 o formato do perfil do vento por zona de atuação, bem como 

o coeficiente 𝛼. A zona de exposição B (centros de grandes cidades) é característica por 

coeficiente 𝛼 no valor de 7 e 
1

𝛼
= 0,143. Para a zona C, de campos arborizados ou arredores de 

cidades ou ainda terrenos abertos, tem-se: 𝛼 = 4,5 e 
1

𝛼
= 0,222. Por fim, para a zona D, que 

consiste em: campos planos abertos, zonas costeiras e superfície de água não sujeitas a furacões, 

é atribuído 𝛼 = 11,5 e 
1

𝛼
= 0,087. 

Figura 2.58: Perfis de velocidade do vento, segundo ASCE 7-05  

 

FONTE: (TARANATH, 2011) 

 

 



71 
Fundamentação Teórica                                                                                                                             

 

 
 

2.3.3. Simplificação bidimensional do fluxo do vento 

 

O fluxo do vento para obras de construção civil é considerado bidimensional (2D), pois 

a força e o momento relativos ao eixo vertical é considerado insignificante (Elevação e 

Momento de Guinada). A consideração bidimensional é expressa na figura 2.59, com as forças 

ao longo do fluxo e na direção transversal do vento. 

Figura 2.59: Simplificação bidimensional do fluxo do vento 

 

FONTE: (TARANATH, 2011) 

 

2.3.4. Equacionamento da turbulência  

 

O estudo da turbulência foi primordialmente realizado de forma empírica, isto devido a 

dificuldade de descrever matematicamente o fenômeno. Porém, solucionada com o passar do 

tempo e através da aplicação dos conceitos estatísticos para computar a aleatoridade. Aos 

fenômenos aleatórios com irregulares flutuações, pode-se aplicar um estudo pela teoria das 

probabilidades e  médias estatísticas, conforme apresentado em Blessmann (2011) e na figura 

2.60. 
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Figura 2.60: Amostras para tratamento estatístico das flutuações  

 

FONTE: (BLESSMANN, 2011) 

Na ocorrência de um padrão estatístico (média, variância e demais variáveis) para todas 

as amostras possíveis e sendo invariável para qualquer origem do tempo, o processo será 

definido como aleatório e estacionário. Conforme observa-se na figura 2.61. 

Figura 2.61: Padrão Estatístico no Processo Estacionário 

 

FONTE: (BLESSMANN, 2011) 

Observa-se ainda que o Processo Aleatório é Estacionário e também Ergódico. Define-

se processo ergódico quando qualquer parâmetro estatístico obtido para um conjunto de registro 

representativo do processo é igual ao correspondente parâmetro calculado sobre um conjunto 

representativo. 
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 O desvio 𝜎 é uma medida de dispersão relativo à média. Assim quanto maior o valor do 

desvio, mais afastado da média estarão os valores. Vide figura 2.62. Já, na figura 2.63 é 

apresentada a distribuição por rajadas de vento. 

Figura 2.62: Influência do Desvio – Padrão na Distribuição Gaussiana 

 

FONTE: (THOMSON, 1978) 

Figura 2.63: Distribuição por correntes de rajadas de vento  

 

FONTE: (BLESMANN, 1998) 

 

a) Correlação 

 

A Correlação entre dois registros, 𝑥1(𝑡) e 𝑥2(𝑡), equivale a multiplicação das ordenadas 

dos registros para cada tempo 𝑡 e determinado o valor médio. Conforme Thomson (1978) e 

Laier (1989) a Correlação é uma medida de similaridade entre quantidades. Vide figura 2.64. 
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Figura 2.64: Correlação entre os registros 𝒙𝟏(𝒕) 𝒆 𝒙𝟐(𝒕)  

 

FONTE: (LAIER, 1989) 

Para as normatizações vigentes, a exemplo do EUROCODE 01 (pr FR 1991-1-4:2005) 

e da NBR 6123 (ABNT, 1988), o perfil das velocidades de incidência da rajada de vento na 

face do pilar ou da edificação como um todo é apresentada na figura 2.65. 

Figura 2.65: Perfil de velocidade do vento  

 

FONTE: (GHIOCEL; LUNGU, 1975) 
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2.3.5. Formato do carregamento do vento 

 

A vibração lateral é potencializada pela ação do vento e para tal carregamento adota-se 

a atuação combinada de carga constante na altura 𝑞1, da carga distribuída linearmente na 

edificação e com valor máximo de 𝑞2 no topo do pilar e a carga 𝑄 concentrada no topo da 

estrutura em análise. Essa última carga tem a finalidade de representar a atuação do vento no 

tabuleiro da ponte (no caso da análise dos pilares). Esta representação das cargas é embasada 

em Solnes e Sigbjornsson (1973) com o perfil de velocidade do vento crescente ao longo da 

altura, bem como no fato do carregamento lateral ser preenchido do topo em direção à base do 

pilar, à medida que a corrente de ar se aproxima do obstáculo. No caso, o pilar é apresentado 

em Koten (1967) e na figura 2.66. A mencionada aplicação de três carregamentos laterais 𝑞1, 

𝑞2 e 𝑄 torna-se então evidente, e ilustrada na figura 2.67. 

Figura 2.66: Carregamentos laterais no pilar de ponte devido à ação do vento: distribuição com 

a aproximação da corrente do ar  

 

Fonte: O Autor (2019) 

Figura 2.67: Carregamentos laterais no pilar de ponte devido à ação do vento: idealização de 

carregamentos 

 

Fonte: O Autor (2019) 
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2.4. DESACOPLAMENTO DO SISTEMA DINÂMICO NÃO AMORTECIDO 

 

 

Para um sistema dinâmico contínuo, logo com "𝑛" graus de liberdade, pode-se gerar as 

equação do movimento em os diversos sistemas de coordenadas. Porém, para que se possa 

resolver tal sistema dinâmico será necessário reescrever as "𝑛" equações diferenciais num 

sistema coordenado que promova o total desacoplamento do sistema e gere equações 

independentes entre si. Este sistema é denominado de Sistema de Coordenadas Generalizadas, 

determinado a partir de sucessivas translades/rotações de sistemas de referências, um dos 

métodos que propicia tal desacoplamento é o Método de Jacobi (ver item 2.6. Além de tal 

processo de diagonalização, pode-se recorrer a condensação matricial que é apresentada no item 

2.10 (c) desta tese e por referência pode-se citar Argyris e Mlejnek (1991, p. 210). 

Define-se o Sistema de Coordenadas Generalizadas, como sendo as coordenadas 

independentes entre si, que descrevem o funcionamento de determinado Sistema Dinâmico. 

Bem como, promovem o desacoplamento do sistema de equações diferenciais. Utiliza-se, em 

geral, a letra "𝑞" para representar tais coordenadas generalizadas.  

Estende-se a notação da equação diferencial, apresentada na equação (2.41), expressão 

da vibração forçada não amortecia, para estruturas de “𝑛” graus de liberdade (Sistemas 

Contínuos), e reescreve-se: 

[𝑀]. {𝑢̈} + [𝐾]. {𝑢} = {𝐹}                                                                                                                (2.77) 

onde: [𝑀] é a  matriz de massa; 

          [𝐾] é a matriz de rigidez;  

           {𝑢}, {𝑢̇} são os vetores deslocamento e velocidade e {𝐹} é o vetor de forças. 

 

a) Primeira transformação de referencial 

 

 Baseado em He e Fu (2001, p. 97), a primeira transformação de referencial consiste em 

passar do deslocamento 𝑢 (no referencial inicial) para um novo referencial e representa-lo por 

𝑥, isso através da matriz de autoversores [𝜑] da matriz de massa. Nesta transformação de 

referencial verifica-se a diagonalização da matriz de massa [𝑀], daí a utilização do problema 

de autovetores  [𝑚∗]. Ficando o sistema de equações diferencias, eq. (2.77), reescrito como: 



77 
Fundamentação Teórica                                                                                                                             

 

 
 

[𝑚∗]. {𝑥̈} + [𝜑]𝑇. [𝐾]. [𝜑]. {𝑥} = [𝜑]𝑇. {𝐹}                                                                                  (2.78) 

onde: [𝑚∗] é a matriz de massa [𝑀] diagonalizada; [𝑚∗] = [𝜑]𝑇. [𝑀]. [𝜑]  e  {𝑢} = [𝜑]. {𝑥}. 

 

b) Segunda transformação de referencial 

 

 A segunda transformação de referencial será de 𝑥 para 𝑦 e procedida via imposição da 

raiz quadrada inversa da matriz de massa diagonalizada, isso a fim de manter a simetria do 

sistema. Objetivando-se nesta 2ª transformação, a mudança da matriz diagonal [𝑚∗] pela matriz 

identidade. 

Após tal transformação, surge a matriz dinâmica inversa [𝐷], reescrevendo-se o ainda 

sistema de equações diferenciais apresentado, eq. (2.78), como: 

[𝐼]. {𝑦̈} + [𝐷]. {𝑦} = [𝑚∗]−
1
2. [𝜑]𝑇. {𝐹}                                                                                         (2.79) 

onde: [𝐷] = [𝑚∗]−
1

2. [𝜑]𝑇. [𝐾]. [𝜑]. [𝑚∗]−
1

2     ;     {𝑥} = [𝑚∗]−
1

2. {𝑦}    e    {𝑥̈} = [𝑚∗]−
1

2. {𝑦̈}.  

 

c) Terceira transformação de referencial 

 

 Constata-se na eq. (2.79) que resta apenas diagonalizar a matriz [𝐷], daí procede-se a 

resolução do problema de autoversores [𝜓] e Autovetores [𝜔2]. Nesta terceira e última 

transformação de referencial do sistema de equações diferenciais, eq. (2.79), é do referencial 𝑦 

para 𝑞. Transforma-se então, o sistema num conjunto de equações diferenciais desacopladas, e 

expresso por: 

{𝑞̈} + [𝜔2]. {𝑞} = {𝐹0}                                                                                                                     (2.80) 

onde: [𝜔2] = [𝜓]𝑇. [𝐷]. [𝜓]     ;    {𝐹0} = [Φ]𝑇. [𝜑]𝑇. {𝐹}      ;      [Φ]𝑇 = [𝜓]𝑇. [𝑚∗]−
1

2;  

{𝑦} = [𝜓]. {𝑞}     ;     {𝑦̈} = [𝜓]. {𝑞̈}    e ainda:    [Φ] = [𝑚∗]−
1
2. [𝜓]. 

 Após as três transformações de referencial, o sistema de equações diferenciais 

apresentado na eq. (2.77) é reescrito no conjunto de equações diferenciais ordinárias por grau 

de liberdade. Tal conjunto de equações é referenciado no sistema generalizado, e expresso por: 
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𝑞̈𝑗 + 𝜔𝑗
2. 𝑞𝑗 = 𝐹𝑗

0                                                                                                                               (2.81) 

onde: 𝜔𝑗 – frequência da EDO do grau 𝑗 de liberdade, no sistema generalizado de coordenadas. 

 Após resolver as EDO’s por grau de liberdade, apresentadas na eq. (2.81) em termos de 

𝑞, utiliza-se a transformação reversa de referencial até retornar ao referencial inicial 𝑢, 

expressando: 

{𝑢} = [𝜑]. [Φ]. {𝑞}                                                                                                                            (2.82) 

 A partir da equação (2.82) escrevem-se as condições iniciais, no referencial 

generalizado 𝑞, por: 

{𝑞0} = [Φ]−1. [𝜑]−1. {𝑢0}                                                                                                            (2.83 𝑎) 

{𝑞̈0} = [Φ]−1. [𝜑]−1. {𝑢̈0}                                                                                                            (2.83 𝑏) 

 

d) Marcha de Cálculo Nº 1 

 

 A sequência de cálculo das respostas do sistema dinâmico não amortecido é organizado 

em forma de marcha de cálculo, conforme demonstrado nos itens 2.4 (a) até 2.4 (c). Assim, fica 

postulada a seguinte marcha de cálculo: 

➢ 1ª Etapa: Caracterizar o sistema dinâmico não amortecido, pelo sistema de EDO’s. 

[𝑀]. {𝑢̈} + [𝐾]. {𝑢} = {𝐹} 

➢ 2ª Etapa: Proceder a diagonalização da matriz de massa. 

[𝑚∗] = [𝜑]𝑇. [𝑀]. [𝜑] 

onde; [𝜑] é a matriz de autoversores, podendo ser obtida via método do polinômio 

característico, ou pelo método de Jacobi.  

➢ 3ª Etapa: Obter a matriz dinâmica inversa. 

[𝐷] = [𝑚∗]−
1
2. [𝜑]𝑇. [𝐾]. [𝜑]. [𝑚∗]−

1
2 

➢ 4ª Etapa: Realizar a diagonalização da matriz dinâmica inversa. 

[𝜔2] = [𝜓]𝑇. [𝐷]. [𝜓] 

onde; [𝜔2] é a matriz de autovalores, obtida via análise modal do sistema. 
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➢ 5ª Etapa: Determinar a matriz modal ponderada. 

[Φ] = [𝑚∗]−
1
2. [𝜓] 

➢ 6ª Etapa: Obter o vetor de forças no referencial do desacoplamento do sistema. 

{𝐹0} = [Φ]𝑇. [𝜑]𝑇. {𝐹} 

➢ 7ª Etapa: Apresentar o conjunto de EDO’s no referencial generalizado. 

𝑞̈𝑗 + 𝜔𝑗
2. 𝑞𝑗 = 𝐹𝑗

0 

➢ 8ª Etapa: Considerar as condições iniciais {𝑢0} e {𝑢̇0} no referencial generalizado {𝑞0} 

e {𝑞̇0} e resolver o conjunto de EDO’s desacopladas (ver letra c deste item). 

{𝑞0} = [Φ]−1. [𝜑]−1. {𝑢0} 

{𝑞̇0} = [Φ]−1. [𝜑]−1. {𝑢̇0} 

➢ 9ª Etapa: Determinar as funções de deslocamento por grau de liberdade, isso para o 

sistema inicial de referência. 

{𝑢(𝑡)} = [𝜑]. [Φ]. {𝑞0(𝑡)} 

➢ 10ª Etapa: Determinar as formas modais da estrutura [Φ0], sendo: 

{Φ0}𝑗 é o j-ésimo vetor coluna normalizado de [Φ̅] = [𝜑]. [Φ], ou seja: 

𝜂𝑗
0 = √∑Φ̅𝑖𝑗

2

𝑖=1

;    Φ𝑖𝑗
0 =

Φ̅𝑖𝑗

𝜂𝑗
0 ;     𝑞𝑗 = 𝜂𝑗

0. 𝑞̅𝑗  

➢ 11ª Etapa: Determinar a massa e a rigidez modais. 

𝑀𝑗 = {Φ0}𝑗
𝑇. [𝑀]. {Φ0}𝑗;     𝐾𝑗 = {Φ0}𝑗

𝑇. [𝐾]. {Φ0}𝑗  

 

 

e) Solução da equação diferencial no referencial generealizado 

 

 

A equação diferencial desacoplada é expressa por: 

𝑞̈ + 𝜔2. 𝑞 = 𝐹. 𝑠𝑒𝑛(𝜔̅. 𝑡)                                                                                                                 (2.84) 

e como solução apresenta-se: 
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𝑞(𝑡) = 𝑞0. cos(𝜔. 𝑡) +
𝐹

𝜔2. (1 − 𝛽2)
. [𝑠𝑒𝑛(𝜔̅. 𝑡) + 𝐷. 𝑠𝑒𝑛(𝜔. 𝑡)]                                         (2.85) 

onde: 𝐷 =
𝑞̇0. 𝜔. (1 − 𝛽2)

𝐹
− 𝛽. 

 

2.5. DESACOPLAMENTO DO SISTEMA DINÂMICO AMORTECIDO 

 

 

 A sequência de cálculo das respostas do sistema dinâmico amortecido é organizada em 

forma de marcha de cálculo, como: 

 

a) Marcha de Cálculo Nº 2 

 

➢ 1ª Etapa: Caracterizar o sistema dinâmico amortecido, pelo sistema de EDO’s. 

[𝑀]. {𝑢̈} + [𝐶]. {𝑢̇} + [𝐾]. {𝑢} = {𝐹} 

onde: [𝐶] = 𝛼𝑚. [𝑀] + 𝛼𝑘 . [𝐾] 

➢ 2ª Etapa: Proceder a diagonalização da matriz de massa. 

[𝑚∗] = [𝜑]𝑇. [𝑀]. [𝜑] 

onde; [𝜑] é a matriz de autoversores.  

➢ 3ª Etapa: Obter a matriz dinâmica inversa. 

[𝐷] = [𝑚∗]−
1
2. [𝜑]𝑇. [𝐾]. [𝜑]. [𝑚∗]−

1
2 

➢ 4ª Etapa: Realizar a diagonalização da matriz dinâmica inversa. 

[𝜔2] = [𝜓]𝑇. [𝐷]. [𝜓] 

onde; [𝜔2] é a matriz de autovalores, obtida via análise modal do sistema. 

➢ 5ª Etapa: Determinar a matriz modal ponderada. 

[Φ] = [𝑚∗]−
1
2. [𝜓] 
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➢ 6ª Etapa: Obter o vetor de forças no referencial do desacoplamento do sistema. 

{𝐹0} = [Φ]𝑇. [𝜑]𝑇. {𝐹} 

➢ 7ª Etapa: Apresentar o conjunto de EDO’s no referencial generalizado. 

𝑞̈𝑗 + (2. 𝜉𝑗 . 𝜔𝑗). 𝑞̇𝑗 + 𝜔𝑗
2. 𝑞𝑗 = 𝐹𝑗

0 

a solução da EDO, com excitação harmônica 𝐹𝑗
0 = 𝐹1. 𝑠𝑒𝑛(𝜔̅𝑗. 𝑡) + 𝐹2. 𝑐𝑜𝑠(𝜔̅𝑗. 𝑡), fica 

expressa por: 

𝑞(𝑡) = 𝐴. 𝑐𝑜𝑠(𝜔𝑑. 𝑡) + 𝐵. 𝑠𝑒𝑛(𝜔𝑑. 𝑡) + 𝐶. 𝑠𝑒𝑛(𝜔̅. 𝑡) + 𝐷. cos (𝜔̅. 𝑡) 

com: 𝜔𝑑 = 𝜔.√1 − 𝜉2 para amortecimento subcrítico (𝜉 < 1); 

          𝐴 = 𝑞0 − 𝐷     ;      𝐵 =
𝑞̇0 + 𝜉.𝜔. 𝐴 − 𝜔̅. 𝐷

𝜔𝑑
; 

          𝐶 =
𝐹1

(𝜔2 − 𝜔̅2)
+

2.𝜔. 𝜉. 𝜔̅

(𝜔2 − 𝜔̅2)
. 𝐷       e      𝐷 =

(1 − 𝛽2). 𝐹2 − 2. 𝛽. 𝜉. 𝐹1

𝜔2. [(1 − 𝛽2)2 + (2. 𝛽. 𝜉)2]
. 

➢ 8ª Etapa: Considerar as condições iniciais {𝑢0} e {𝑢̇0} no referencial generalizado, sob 

a forma: {𝑞0} e {𝑞̇0} e resolver o conjunto de EDO’s. 

{𝑞0} = [Φ]−1. [𝜑]−1. {𝑢0}      e       {𝑞̇0} = [Φ]−1. [𝜑]−1. {𝑢̇0} 

➢ 9ª Etapa: Determinar as funções de deslocamento por grau de liberdade no sistema 

inicial de referência. 

{𝑢(𝑡)} = [𝜑]. [Φ]. {𝑞0(𝑡)} 

➢ 10ª e 11ª Etapas: idem a marcha de cálculo Nº 1. 

 

 

2.6. DIAGONALIZAÇÃO VIA MÉTODO DE JACOBI 

 

 

 Conforme apresentado em Silva (2007) e Quarteroni et al. (2007) o método proposto 

por Jacobi, para diagonalizar matrizes simétricas, consiste em realizar rotações sucessivas até 

que todos os termos não pertencentes a diagonal principal sejam nulos (ou tão pequenos que 

para certa tolerância seja admitido zero). Assim, torna-se expresso por: 
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[𝐴𝑘] = [𝐺𝑝𝑞]
𝑇
. [𝐴𝑘−1]. [𝐺𝑝𝑞]                                                                                                           (2.86) 

onde; [𝐴𝑘] é a matriz simétrica diagonalizada; 

           [𝐴𝑘] = [
𝑎𝑝𝑝

𝑘 𝑎𝑝𝑞
𝑘

𝑎𝑞𝑝
𝑘 𝑎𝑞𝑞

𝑘 ]   ;    [𝐴𝑘−1] = [
𝑎𝑝𝑝

𝑘−1 𝑎𝑝𝑞
𝑘−1

𝑎𝑞𝑝
𝑘−1 𝑎𝑞𝑞

𝑘−1]   ;    [𝐺𝑝𝑞] = [
    cos 𝜃 sin 𝜃
− sin 𝜃 cos 𝜃

]   e 

           [𝐺𝑝𝑞] é a matriz de rotação. 

 Após realizar a multiplicação das matrizes na eq. (2.86), tem-se os elementos da matriz 

diagonalizada [𝐴𝑘], expressos por: 

 𝑎𝑝𝑝
𝑘 = 𝑎𝑝𝑝

𝑘−1. cos2 𝜃 − 𝑎𝑞𝑝
𝑘−1. sen 𝜃 . cos 𝜃 − 𝑎𝑝𝑞

𝑘−1. sen 𝜃 . cos 𝜃 + 𝑎𝑞𝑞
𝑘−1. sen2 𝜃             (2.87 𝑎) 

𝑎𝑞𝑝
𝑘 = 𝑎𝑝𝑞

𝑘 = 𝑎𝑝𝑝
𝑘−1. sen 𝜃 . cos 𝜃 − 𝑎𝑞𝑝

𝑘−1. sen2 𝜃 + 𝑎𝑝𝑞
𝑘−1. cos2 𝜃 − 𝑎𝑞𝑞

𝑘−1. sen 𝜃 . cos 𝜃  (2.87 𝑏) 

𝑎𝑞𝑞
𝑘 = 𝑎𝑝𝑝

𝑘−1. sen2 𝜃 + 𝑎𝑞𝑝
𝑘−1. sen 𝜃 . cos 𝜃 + 𝑎𝑝𝑞

𝑘−1. sen 𝜃 . cos 𝜃 + 𝑎𝑞𝑞
𝑘−1. cos2 𝜃              (2.87 𝑐) 

 A partir da eq. (2.87 a), conclui-se que a matriz é simétrica. Para tanto, pode-se 

reescrever os termos da matriz diagonalizada, como: 

𝑎𝑝𝑝
𝑘 = 𝑎𝑝𝑝

𝑘−1. cos2 𝜃 − 2. 𝑎𝑞𝑝
𝑘−1. sen 𝜃 . cos 𝜃 + 𝑎𝑞𝑞

𝑘−1. sen2 𝜃                                                 (2.88 𝑎) 

𝑎𝑞𝑝
𝑘 = 𝑎𝑝𝑞

𝑘 = 𝑎𝑝𝑝
𝑘−1. sen 𝜃 . cos 𝜃 + 𝑎𝑝𝑞

𝑘−1. (cos2 𝜃 − sen2 𝜃) − 𝑎𝑞𝑞
𝑘−1. sen 𝜃 . cos 𝜃        (2.88 𝑏) 

𝑎𝑞𝑞
𝑘 = 𝑎𝑝𝑝

𝑘−1. sen2 𝜃 + 2. 𝑎𝑞𝑝
𝑘−1. sen 𝜃 . cos 𝜃 + 𝑎𝑞𝑞

𝑘−1. cos2 𝜃                                                (2.88 𝑐) 

 Agora, é necessário impor nulidade ao termo fora da diagonal principal, apresentado na 

eq. (2.88 b). Para tal, utilizam-se relações trigonométricas do arco duplo e conclui-se o ângulo 

de rotação (para a nulidade dos termos não pertencentes a diagonal principal) escrito como: 

tg 2𝜃 =
2. 𝑎𝑝𝑞

𝑘−1

(𝑎𝑞𝑞
𝑘−1 − 𝑎𝑝𝑝

𝑘−1)
                                                                                                                   (2.89) 

 Em conformidade com Antar Neto et al. (1979), a atuação do arco duplo (2𝜃) e simples 

(𝜃) é apresentado na figura 2.68. 
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Figura 2.68: Ciclo de variação da tangente do arco −
𝝅

𝟐
< 𝟐𝜽 <

𝝅

𝟐
 e −

𝝅

𝟒
< 𝜽 <

𝝅

𝟒
  

 

Fonte: (ANTAR NETO et al., 1979) 

 Em função do posicionamento do elemento da matriz [𝐴], a ser diagonalizada, expressa-

se o ângulo 𝜃, como: 

➢ Elemento 𝑨𝒊𝒋 pertencente a diagonal principal: Desta forma, 𝑎𝑝𝑝 = 𝑎𝑞𝑞, e tem-se: 

𝜃 =
𝜋

4
 

➢ Elemento 𝑨𝒊𝒋 fora da diagonal principal: Desta forma, 𝑎𝑝𝑝 ≠ 𝑎𝑞𝑞, utilizando-se: 

𝜃 =
1

2
. 𝑡𝑔−1 (

2. 𝑎𝑝𝑞
𝑘−1

(𝑎𝑞𝑞
𝑘−1 − 𝑎𝑝𝑝

𝑘−1)
) 

 

 

2.7. TEORIA DA FLEXO – TORÇÃO (TFT)  

 

 

2.7.1. Equação diferencial da flexo – torção 

 

O empenamento é definido como o deslocamento relativo entre os pontos alinhados de 

uma seção transversal. Assim, são deslocamentos longitudinais gerados pela rotação elástica 𝜙 

(em torno do centro de torção D), vide figura 2.69. 
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Figura 2.69: Rotação 𝝓 em seção circular após deformação gerada pelo momento de torção 𝑴𝒕 

 

Fonte: (SCHIEL, 1983) 

 Para tal fenômeno, a primeira parcela da equação diferencial será a torção de Saint – 

Venant, conforme observa-se na figura 2.70, e expressa por: 

𝑀𝑓𝑡 = 𝑀𝜔 = −𝐸. 𝐶𝜔.
𝑑3𝜙

𝑑𝑥
3                                                                                                               (2.90) 

onde: 𝑀𝑓𝑡 – momento de flexo-torção; 𝐶𝜔 – constante torsional por empenamento; 

           𝐸 – módulo de elasticidade longitudinal e 𝜙 – rotação elástica em torno de D. 

Figura 2.70: Torção de Saint – Venant: (a) rotação 𝝓 em torno do centro de torção ou 

cisalhamento D e (b) deslocamento 𝝎𝒇 na direção z 

 

Fonte: Adaptado de (SALMON et al., 2009) 

A segunda parcela da equação diferencial é oriunda do momento de torção livre e 

baseado em Langendonck (1960, p. 208), ficando expressa, por: 

𝑀𝑠 = 𝐺. 𝐽.
𝑑𝜙

𝑑𝑥
                                                                                                                                     (2.91) 

onde: 𝑀𝑠 – momento da torção livre; 𝐽 = 𝐼𝑡 – momento de inércia torsional e 

           𝐺 – módulo de elasticidade transversal. 
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Enfim, somam-se as equações (2.90) e (2.91), e escreve-se a equação diferencial da 

torção 𝑀𝑥 (em torno do centro de torção D), como: 

𝑑3𝜙

𝑑𝑥
3 −

𝐺. 𝐽

𝐸. 𝐶𝜔
.
𝑑𝜙

𝑑𝑥
= −

𝑀𝑥

𝐸. 𝐶𝜔
                                                                                                          (2.92) 

onde; 𝑀𝑥 = 𝑀𝑡 é o momento de torção  

No processo de giro da seção transversal (através do ângulo 𝜙) observa-se que o ponto 

Q, vide figura 2.71 (a), passa para a posição 𝑄′ e será adotada a teoria das pequenas 

deformações. Resultando no arco: 𝑄𝑄′ = 𝑟.𝜙 e em conseguinte, o deslocamento 𝑣. Donde, a 

semelhança de triângulos entre o deslocamento 𝑣 e o raio 𝑛, vale: 

𝑣

𝑟. 𝜙
=

𝑛

𝑟
                                                                                                                                           (2.93 𝑎) 

sendo expresso o deslocamento 𝑣, por: 

𝑣 = 𝑛. 𝜙                                                                                                                                           (2.93 𝑏) 

e a conseguinte derivada fica expressa por: 

𝑣′ = 𝑛. 𝜙′                                                                                                                                         (2.93 𝑐)  

onde: 𝑣 – deslocamento na direção da ordenada do eixo esqueleto 𝑠 e 

           𝑛 – distância perpendicular entre a tangente ao ponto Q e o centro de torção D. 

Figura 2.71: Teoria de flexo – torção: (a) esquema do giro da seção e (b) binário de forças 

equivalente ao bimomento 

 

Fonte: (MORI; MUNAIAR NETO, 2017) 
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Analisando o ângulo de distorção 𝛾 do elemento diferencial e considerando-no nulo, 

faz-se a imposição de tal consideração sobre a equação (2.93 b), ressaltando nos deslocamentos 

longitudinais 𝑢 dependendo unicamente do eixo esqueleto 𝓈. Daí, conclui-se: 

𝑛. 𝜙′ +
𝜕𝑢

𝜕𝑠
= 0                                                                                                                               (2.94 𝑎) 

como os deslocamentos longitudinais 𝑢 dependem unicamente do eixo esqueleto 𝓈, reescreve-

se a eq. (2.94 a), como: 

𝑛. 𝜙′ +
𝑑𝑢

𝑑𝑠
= 0                                                                                                                               (2.94 𝑏) 

ao realizar a integração da equação (2.94 b) ao longo do eixo esqueleto, escreve-se: 

∫
𝑑𝑢

𝑑𝑠

𝑄

𝑂𝑠

 𝑑𝑠 = − ∫(𝑛. 𝜙′)

𝑄

𝑂𝑠

 𝑑𝑠                                                                                                        (2.94 𝑐) 

onde: 𝑂𝑠 é a origem do eixo esqueleto 𝓈 e 𝜔 é a área setorial, sendo definida por Vlassov (1962), 

como: 𝜔 = ∫ 𝑛
𝑄

𝑂𝑠
 𝑑𝑠. Ficando a eq. (2.94 c) reescrita, como: 

𝑢 = −𝜔. 𝜙′                                                                                                                                     (2.94 𝑑) 

considerando o sentido positivo de convenções de sinais e já definido o posicionamento do 

centro de torção (𝐶. 𝑇.= 𝐷), chega-se a: 

𝑢 = 𝜔𝑝𝑐. 𝜙
′                                                                                                                                     (2.94 𝑒) 

Da equação (2.94 e) tem-se a definição de 𝜔𝑝𝑐 como a área setorial principal. Ressalta-

se ainda, o conceito de bimomento 𝐵 introduzido por Vlassov (1962), vide figura 2.71 (b). 

Assim, o bimomento é semelhante ao binário de forças, sendo auto – equilibrantes, e sem 

repercutir esforços internos do tipo normal ou cisalhante (PROENÇA, 2009, p. 305). Sendo 

expresso por: 

𝐵 = ∫ 𝜎𝑥. 𝜔𝑝𝑐. 𝑑𝑆

𝑆

                                                                                                                            (2.95) 
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Adota-se como simplificação para a lei de Hooke, o coeficiente de Poisson 𝜐 

desprezível, expressando: 

𝜎𝑥 = 𝐸. 𝜀𝑥                                                                                                                                        (2.96 𝑎) 

o deslocamento axial 𝑢 é apresentado na equação (2.94 e), de qual expressa-se a deformação 

específica 𝜀𝑥, como: 

𝜀𝑥 =
𝜕𝑢

𝜕𝑥
=

𝜕(𝜔.𝜙′)

𝜕𝑥
= 𝜔𝑝𝑐. 𝜙

′′                                                                                                  (2.96 𝑏) 

aplicando-se as equações (2.96 a) e (2.96 b) na definição do bimomento (equação 2.95), donde 

obtém-se: 

𝐵 = 𝐸. 𝐼𝜔. 𝜙′′                                                                                                                                  (2.96 𝑐) 

sendo: 𝐼𝜔 = 𝐶𝜔 = ∫ 𝜔𝑝𝑐
2 . 𝑑𝑆

𝑆
 – o momento de inércia setorial; 𝐸 o módulo de elasticidade 

longitudinal e 𝜙 a rotação em  relação ao eixo axial 𝑥. 

Combinam-se as equações (2.90) e (2.96 c), a fim de estabelecer a relação entre o 

bimomento 𝐵 e o momento de flexo – torção 𝑀𝑓𝑡, e exprime-se: 

𝑀𝑓𝑡 = −𝐵′                                                                                                                                          (2.97) 

A equação diferencial do fenômeno da flexo – torção, em termos da rotação 𝜙 da seção, 

expressa na eq. (2.92), pode ser reescrita com a notação simplificada nas derivadas, como: 

𝐺. 𝐼𝑡 . 𝜙
′ − 𝐸. 𝐼𝜔. 𝜙′′′ = 𝑀𝑡                                                                                                               (2.98) 

Aplica-se a combinação das equações (2.90) e (2.97) na equação (2.98), e em seguida 

procede-se a derivação em relação ao eixo longitudinal 𝑥. Por fim, a equação diferencial da 

flexo – torção, em termos do bimomento 𝐵, fica expressa por:  

(
𝐺. 𝐼𝑡
𝐸. 𝐼𝜔

) . 𝐵 − 𝐵′′ = 𝑀𝑡
′ = 𝑚                                                                                                            (2.99) 

sendo; 𝑚 o momento de torção distribuído ao longo do eixo axial 𝑥.  

A convenção positiva dos esforços estudados neste item é apresentada figura 2.72. 
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Figura 2.72: Notação positiva para as variáveis 𝑴𝒕, 𝒎,𝝓 e 𝑩 

 

Fonte: Adaptado de (MORI; MUNAIAR NETO, 2017) 

 

2.7.2. Solução via teoria da flexo – torção para o pilar em núcleo estrutural 

 

Mediante solução de equações diferenciais, cujos procedimentos constam em Boyce e 

Diprima (2006), procede-se a solução da EDO do problema de flexo – torção em termos das 

rotações (equação 2.98). Ficando a solução expressa por: 

𝜙(𝑥) = 𝐶1 + 𝐶2. 𝑥 + 𝐶3. 𝑠𝑖𝑛ℎ (
𝑥

𝑟
) + 𝐶4. 𝑐𝑜𝑠ℎ (

𝑥

𝑟
) +

𝑚

2. 𝐺. 𝐼𝑡
. 𝑥2                                         (2.100) 

com: 𝑟 = √
𝐸.𝐼𝜔

𝐺.𝐼𝑡
= √2. (1 + 𝜈).

𝐼𝜔

𝐼𝑡
. 

Alterando-se a equação diferencial para termos do bimomento, ver eq. (2.99), expressa-

se por solução: 

𝐵 = 𝐴1. 𝑠𝑖𝑛ℎ (
𝑥

𝑟
) + 𝐴2. 𝑐𝑜𝑠ℎ (

𝑥

𝑟
) + 𝑟2.𝑚                                                                                (2.101) 

Para a análise do pilar de ponte tem-se como estado de carga: submissão a carga vertical 

𝑃 concentrada no topo e decorrente da reação do tabuleiro, a atuação da carga uniformemente 

distribuída 𝑝 na altura e oriunda do peso-próprio, além da carga lateral 𝑞1 uniforme e aplicada 

no centro de carga CC. Resultando então, em momento de torção 𝑚 distribuído e gerado pela 
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carga 𝑞1, sendo decorrência da encentricidade (𝑒𝑧) do CC até o centro de torção D. Vide a 

indicação do momento de torção 𝑚 na figura 2.73.  

Figura 2.73: Pilar de ponte: (a) com contraventamento por lintéis, (b) sem lintéis, (c) deformado 

e (d) condições de contorno  

 

Fonte: Adaptado de (SMITH; COULL, 1991) 

A análise procedida nesse subtópico é avanço do estudo procedido por Barbosa (1980) 

em núcleos estruturais em edifícios altos. Ampliando-se nesta tese aos pilares de pontes, nos 

quais são modificadas algumas condições de contorno, mais especificamente no topo do pilar. 

Tem-se como discrepância mais relevante, a ação concentrada de bimomento no topo (ao invés 

de distribuído na altura como se verifica nos edifícios altos). 

A solução da EDO expressa na eq. (2.98) para o pilar apresentado na figura 2.73, em 

termos da rotações 𝜙, fica expressa por: 

𝜙(𝑥) = 𝐴1 + 𝐴2. 𝑥 + 𝐴3. 𝑐𝑜𝑠ℎ(𝛼. 𝑥) + 𝐴4. 𝑠𝑖𝑛ℎ(𝛼. 𝑥) +
𝑚

𝛼2. 𝐸. 𝐼𝜔
. 𝑥2                              (2.102) 

sendo: 𝑙, 𝐼𝐿 – comprimento e momento de inércia à flexão do lintel; 

             ℎ − distância relativa entre dois lintéis; 𝐴𝑖 − área interna ao eixo esqueleto 𝓈; 

             𝛼 = 𝛼1 − quando do caso de seções de paredes finas aberta (sem lintéis); 

             𝛼 = 𝛼2 − para seções de paredes finas contraventada por lintéis; 

              𝛼1 = √
𝐺. 𝐼𝑡
𝐸. 𝐼𝜔

     ;      𝛼2 = √
𝐺. 𝐼𝑡. ℎ + 𝑘∗

ℎ. 𝐸. 𝐼𝜔
      ;        𝑘∗ =

48. 𝐸. 𝐼𝐿. 𝐴𝑖
2

𝑙3
      e      𝐼𝐿 =

𝑒𝐿. ℎ𝐿
3

12
. 
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Aplica-se na eq. (2.102) as condições de contorno presentes na figura 2.73 e escreve-se 

a rotação 𝜙 em termos de funções adimensionais 𝛽, sob a seguinte fórmula: 

𝜙 = −
𝑚.𝐻4

𝐸. 𝐼𝜔 . (𝛼. 𝐻)4
. 𝛽1 +

𝐵𝐻 . 𝐻2

𝐸. 𝐼𝜔. (𝛼. 𝐻)2
. 𝛽2 −

𝑀𝑡𝐻 . 𝐻3

𝐸. 𝐼𝜔. (𝛼. 𝐻)3
. 𝛽3                                      (2.103) 

sendo: 𝐵𝐻 , 𝑀𝑡𝐻 − bimomento e momento de torção no topo do pilar da ponte; 

             𝐻 − altura total do pilar da ponte; 𝜉 =
𝑥

𝐻
;   𝛽 = 𝑓(𝜉); 

             𝛽1 = −{
1 − cosh(𝛼.𝐻. 𝜉)

cosh(𝛼.𝐻)
+ (𝛼.𝐻). tanh(𝛼.𝐻) . [1 − cosh(𝛼. 𝐻. 𝜉)]

+ (𝛼.𝐻)2. [
𝜉2

2
− 𝜉 +

sinh(𝛼.𝐻. 𝜉)

(𝛼.𝐻)
]} ; 

             𝛽2 =
1

cosh (𝛼.𝐻)
. [−1 + cosh (𝛼. 𝐻. 𝜉)]     e 

             𝛽3 = −[sinh(𝛼.𝐻. 𝜉) − cosh(𝛼.𝐻. 𝜉) . tanh(𝛼.𝐻) − (𝛼.𝐻). 𝜉]. 

nas figuras 2.74 até 2.76 são apresentadas graficamente as funções adimensionais 𝛽1, 𝛽2 e 𝛽3, 

respectivamente. As curvas são geradas em decorrência da variação do adimensional 𝛼𝐻. 

Figura 2.74: Representação gráfica de 𝜷𝟏 por variação de 𝜶𝑯 em detrimento de 𝝃  

 

Fonte: O Autor (2019) 
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Figura 2.75: Representação gráfica de 𝜷𝟐 por variação de 𝜶𝑯 em detrimento de 𝝃  

 

Fonte: O Autor (2019) 

Figura 2.76: Representação gráfica de 𝜷𝟑 por variação de 𝜶𝑯 em detrimento de 𝝃  

 

Fonte: O Autor (2019) 

 

2.7.3. Solução da teoria da flexo – torção em pilar de seção transversal em duplo T 

 

Neste subtópico procede-se a utilização da geometria típica de pilares de pontes, em 

formato de duplo T, bem como são modificadas algumas condições de contorno, mais 

especificamente no topo do pilar. Observando-se na figura 2.77 (a) o estado de carga para a 

ação do vento, e na fig. 2.77 (b) expõe-se a notação para o traçado do diagrama de ordenadas 

setoriais da seção transversal em duplo T. 
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Figura 2.77: Pilar de ponte com seção transversal em duplo T: (a) carregamento do vento e (b) 

ordenadas setoriais nos pontos de rotulação dos lintéis (meio do vão)  

 

Fonte: O Autor (2019) 

A solução da EDO expressa na eq. (2.98) para o pilar apresentado na figura 2.77, em 

termos da rotações 𝜙, será a mesma apresentada na equação (2.102), quando aproximada a ação 

do vento unicamente pela carga lateral 𝑞1. A única diferença é o cálculo da área interna, que 

consiste agora, na área de cada um dos dois núcleos em C que compõe o duplo T. Na figura 

2.78 é apresentado o diagrama de deformação dos lintéis após a rotulação plástica da seção do 

meio do vão, bem como explicitando-se o cálculo da área interna 𝐴𝑖. Em tais lintéis será 

utilizado o Princípio dos Trabalhos Virtuais (PTV) para a determinação dos deslocamentos 

relativos 𝛿𝐸′𝐸′′ e 𝛿𝐹′𝐹′′. 

Figura 2.78: Deformação dos lintéis após rotulação plástica no meio do vão  

 

Fonte: O Autor (2019) 
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2.8. TEORIA DOS PAINÉIS – PAREDE  (TPP) 

 

2.8.1. Pilar em núcleo estrutural 

 

Formula-se a teoria dos painéis – parede, partindo de um pilar de seção transversal 

aberta e de paredes finas, sendo contraventado parcialmente por lintéis (com comprimento 𝐿𝐿 

e espaçados de eixo a eixo de ℎ). Com o formato de núcleo estrutural e composto por cinco 

paredes numeradas de (1) a (5), configurando quatro interseções, conforme apresentado na 

figura 2.79.   

Figura 2.79: Pilar em núcleo: (a) em planta, (b) contraventado, (c) sem lintéis 

 

Fonte: Adaptado de (SMITH; COULL, 1991) 

A formulação dos painéis – parede é apresentada inicialmente em Mancini (1972) com 

único elemento estrutural (vide figura 2.21). Em Barbosa (1980), Tso (1983) e em Smith e 

Taranath (1972) os painéis – parede são resolvidos via teoria da flexo – torção e subdivididos. 

Baseado nos conceitos desenvolvidos pelos mencionados autores, procede-se o equilíbrio de 

forças verticais e de momento no ponto 𝑂 para os elementos diferenciais ilustrados nas figuras 

2.80 e 2.81.  
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Figura 2.80: Elementos diferenciais dos painéis – parede: (a) 1, (b) 2 e (c) 3 

 

Fonte: O Autor (2019) 

 

Figura 2.81: Elementos diferenciais do: (a) painel – parede 4 e (b) painel – parede 5 

 

Fonte: O Autor (2019) 

A definição dos painéis – parede é proposta por Barbosa (1980, p. II-55), sendo também 

denominados simplesmente de paredes. O painel – parede é, então, um painel plano com 

deformabilidade ao momento fletor e com rigidez elevada ao corte. E caracterizado por seção 

transversal constante ao longo do eixo axial e com vinculação por engaste na base. 
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a) Equações de equilíbrio dos elementos diferenciais 

 

Procedendo o equilíbrio dos elementos diferenciais apresentados nas figuras 2.80 e 2.81, 

chega-se: 

𝑑𝑀1

𝑑𝑥
= −V1 + (𝑞2 + 𝑞3).

𝐿1

2
                                                                                                     (2.104 𝑎) 

𝑑𝑁1

𝑑𝑥
= 𝑝1 + 𝑞3 − 𝑞2                                                                                                                   (2.104 𝑏) 

𝑑𝑀2

𝑑𝑥
= −V2 + (𝑞1 + 𝑞2).

𝐿2

2
                                                                                                     (2.104 𝑐) 

𝑑𝑁2

𝑑𝑥
= 𝑝2 + 𝑞1 − 𝑞2                                                                                                                   (2.104 𝑑) 

𝑑𝑀3

𝑑𝑥
= −V3 + (𝑞3 − 𝑞4).

𝐿3

2
                                                                                                     (2.104 𝑒) 

𝑑𝑁3

𝑑𝑥
= 𝑝3 + 𝑞3 + 𝑞4                                                                                                                   (2.104 𝑓) 

𝑑𝑀4

𝑑𝑥
= −𝑉4 − 𝑞1.

𝐿4

2
− 𝑀̅𝑖                                                                                                        (2.104 𝑔) 

𝑑𝑁4

𝑑𝑥
= 𝑝4 − 𝑞1 − 𝑉̅𝑖                                                                                                                    (2.104 ℎ) 

𝑑𝑀5

𝑑𝑥
= −𝑉5 + 𝑞4.

𝐿5

2
− 𝑀̅𝑓                                                                                                         (2.104 𝑖) 

𝑑𝑁5

𝑑𝑥
= 𝑝5 − 𝑞4 − 𝑉̅𝑓                                                                                                                    (2.104 𝑗) 

onde: 𝑀̅𝑖, 𝑉̅𝑖, 𝑀̅𝑓 e 𝑉̅𝑓 são as reações elásticas nos lintéis e apresentados nas equações (2.110).  
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b) Equações de equilíbrio nos lintéis 

 

Na figura 2.82 são apresentadas as reações elásticas do lintel (𝑉𝑖
𝐿, 𝑉𝑓

𝐿, 𝑀𝑖
𝐿 , 𝑀𝑓

𝐿) e o 

decorrente translade para os painéis – parede de apoio (𝑉̅𝑖, 𝑉̅𝑓, 𝑀̅𝑖 , 𝑀̅𝑓). Ressaltando que os 

trechos em superposição com os painéis (A-B e C-D) são de rigidez à flexão tidas como infinitas 

(𝐸𝐼 → ∞). Os referidos trechos são compreendidos entre o eixo dos painéis – parede e a 

extremidade do lintel. Ver Szerémi (1977, p. 209). 

Figura 2.82: Reações elásticas do lintel via equações de Maney 

 

Fonte: O Autor (2019) 

Transladam-se as reações elásticas do lintel para o eixo dos painéis – parede, mediante 

equilíbrio dos nós inicial e final (𝑂𝑖, 𝑂𝑓), obtendo: 

∑𝑀(𝑂𝑖) = 0    ∴      𝑀𝑖 = 𝑀𝑖
𝐿 − 𝑉𝑖

𝐿. 𝑑𝑖                                                                              (2.105 𝑎) 

∑𝑀(𝑂𝑓) = 0    ∴      𝑀𝑓 = 𝑀𝑓
𝐿 + 𝑉𝑓

𝐿. 𝑑𝑓                                                                             (2.105 𝑏) 
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∑𝐹𝑂𝑖
(𝑦𝐿) = 0   ∴     𝑉𝑖 = 𝑉𝑖

𝐿                                                                                                 (2.105 𝑐) 

∑𝐹𝑂𝑓
(𝑦𝐿) = 0   ∴     𝑉𝑓 = 𝑉𝑓

𝐿                                                                                               (2.105 𝑑) 

Matricialmente: 

{𝑀} = [𝑅𝐿]. {𝑀𝐿}                                                                                                                            (2.106) 

onde: {𝑀}𝑇 = {𝑀𝑖 𝑀𝑓 𝑉𝑖 𝑉𝑓} é o vetor de reações elásticas no CG dos painéis – parede; 

{𝑀𝐿}
𝑇 = {𝑀𝑖

𝐿 𝑀𝑓
𝐿 𝑉𝑖

𝐿 𝑉𝑓
𝐿} é o vetor de reações elásticas nas extremidades do lintel e 

[𝑅𝐿] = [

1
0
0
0

0
1
0
0

−𝑑𝑖

  0
  1
  0

0
𝑑𝑓

0
1

] é a matriz de correlação. 

Utilizam-se as equações de Maney sob a formulação matricial em consonância com o 

método dos deslocamentos por superposição de sistemas principal e derivados, ver Parcel e 

Maney (1944, p. 147 – 172). As reações elásticas do lintel ficam expressas no seguinte sistema: 

{𝑀𝐿} = [𝑘𝐿]. {𝑑
𝐿}    ∴      

{
 
 

 
 
𝑀𝑖

𝐿

𝑀𝑓
𝐿

𝑉𝑖
𝐿

𝑉𝑓
𝐿
}
 
 

 
 

=

[
 
 
 
    𝑘𝑖

𝐿

   𝑎𝐿

−𝑏𝑖
𝐿

   𝑏𝑖
𝐿

   𝑎𝐿

   𝑘𝑓
𝐿

−𝑏𝑓
𝐿

   𝑏𝑓
𝐿

−𝑏𝑖
𝐿

−𝑏𝑓
𝐿

   𝑡𝐿

−𝑡𝐿

   𝑏𝑖
𝐿

   𝑏𝑓
𝐿

−𝑡𝐿

   𝑡𝐿 ]
 
 
 
 

.

{
 
 

 
 
𝜙𝑖

𝐿

𝜙𝑓
𝐿

𝑣𝑖
𝐿

𝑣𝑓
𝐿
}
 
 

 
 

                             (2.107) 

com: 𝜑𝑐𝐿
=

3. 𝐸. 𝐼𝐿

𝐺. 𝐴𝐿. 𝐿𝐿
2 . 𝑘𝑐𝐿

;    𝑡𝐿 =
2. 𝑏𝐿

𝐿𝐿
;    𝐺 =

𝐸

2(1 + 𝜈)
;   𝐴𝐿 = 𝑒𝐿. ℎ𝐿;   𝐼𝐿 =

𝑒𝐿. ℎ𝐿
3

12
; 

𝑘𝐿 = 𝑘𝑖
𝐿 = 𝑘𝑓

𝐿 =
4. 𝐸. 𝐼𝐿

𝐿𝐿
.

1 + 𝜑𝑐𝐿

1 + 4. 𝜑𝑐𝐿

;   𝑎𝐿 =
2. 𝐸. 𝐼𝐿

𝐿𝐿
.
1 − 2. 𝜑𝑐𝐿

1 + 4.𝜑𝑐𝐿

;     𝑏𝐿 = 𝑏𝑖
𝐿 = 𝑏𝑓

𝐿 =
𝑘𝐿 + 𝑎𝐿

𝐿𝐿
; 

𝑘𝑐𝐿
, 𝑒𝐿, ℎ𝐿 e 𝐼𝐿 é o fator de forma, a base, a altura e o momento de inércia (respectivamente) 

para a seção transversal do lintel. 

Será admitido que a rigidez à flexão (tida por infinita) dos painéis – parede, conduz a 

manutenção dos deslocamentos na extremidade do lintel {𝑑𝐿} sobre os deslocamentos no CG 

das paredes {𝑑}. Resultando em: 

{𝑑} = [𝐼]. {𝑑𝐿}                                                                                                                                 (2.108) 

onde: {𝑑}𝑇 = {𝜃𝑖 𝜃𝑓 𝑣𝑖 𝑣𝑓};   {𝑑𝐿}𝑇 = {𝜙𝑖
𝐿 𝜙𝑓

𝐿 𝑣𝑖
𝐿 𝑣𝑓

𝐿} e [𝐼] é a matriz identidade. 
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Por fim, quanto à análise dos lintéis, aplica-se a equação (2.108) na eq. (2.107), 

resultando em: 

{𝑀𝐿} = [𝑘𝐿]. [𝐼]. {𝑑} ≡ [𝑘𝐿]. {𝑑}                                                                                              (2.109 𝑎) 

para compor {𝑀} em termos de {𝑀𝐿}, basta proceder a transformação de referencial (mediante 

pré-multiplicação ao vetor de forças por [𝑅𝐿] e transformação para tensores de 2ª ordem na 

matriz [𝑘𝐿]), obtendo: 

{𝑀} = [𝐾]. {𝑑}                                                                                                                             (2.109 𝑏) 

onde: {𝑀} = [𝑅𝐿]. {𝑀𝐿};   [𝐾] = [𝑅𝐿]. [𝑘𝐿]. [𝑘𝐿]
𝑇;   {𝑀}𝑇 = {𝑀𝑖 𝑀𝑓 𝑉𝑖 𝑉𝑓};   𝑡 = 𝑡𝐿; 

𝑏𝑖 = 𝑏𝑖
𝐿 + 𝑑𝑖 . 𝑡

𝐿;     𝑏𝑓 = 𝑏𝑓
𝐿 + 𝑑𝑓 . 𝑡

𝐿;     𝑏𝑓
∗ = 𝑏𝑓

𝐿 − 𝑑𝑓 . 𝑡
𝐿;     𝑎𝑖 = 𝑎𝐿 + 𝑑𝑓 . 𝑏𝑖 − 𝑏𝑓

𝐿. 𝑑𝑖;   

𝑎𝑓 = 𝑎𝐿 + 𝑑𝑖 . 𝑏𝑓 − 𝑏𝑖
𝐿. 𝑑𝑓;     𝑘𝑖 = 𝑘𝑖

𝐿 + 𝑑𝑖 . 𝑏𝑖 + 𝑏𝑖
𝐿. 𝑑𝑖;     𝑘𝑓 = 𝑘𝑓

𝐿 + 𝑑𝑓. 𝑏𝑓 + 𝑏𝑓
𝐿. 𝑑𝑓     e 

[𝐾] =

[
 
 
 
 
  𝑘𝑖     𝑎𝑖

  𝑎𝑓     𝑘𝑓

−𝑏𝑖 𝑏𝑖

−𝑏𝑓 𝑏𝑓

−𝑏𝑖    𝑏𝑓
∗

   𝑏𝑖   𝑏𝑓

   𝑡 −𝑡
−𝑡    𝑡 ]

 
 
 
 

 . 

resultando nas reações elásticas no CG dos painéis – parede, transformadas pela técnica do meio 

contínuo, nas reações elásticas distribuídas (𝑀̅𝑖, 𝑉̅𝑖, 𝑀̅𝑓 e 𝑉̅𝑓), ao longo da distância ℎ entre os 

lintéis, como: 

𝑀̅𝑖 =
𝑀𝑖

ℎ
=

𝑘𝑖 . 𝜃𝑖 + 𝑎𝑖 . 𝜃𝑓 − 𝑏𝑖 . 𝑣𝑖 + 𝑏𝑖 . 𝑣𝑓

ℎ
                                                                           (2.110 𝑎) 

𝑉̅𝑖 =
𝑉𝑖

ℎ
=

−𝑏𝑖 . 𝜃𝑖 + 𝑏𝑓
∗. 𝜃𝑓 + 𝑡. 𝑣𝑖 − 𝑡. 𝑣𝑓

ℎ
                                                                            (2.110 𝑏) 

𝑀̅𝑓 =
𝑀𝑓

ℎ
=

𝑎𝑓 . 𝜃𝑖 + 𝑘𝑓 . 𝜃𝑓 − 𝑏𝑓 . 𝑣𝑖 + 𝑏𝑓 . 𝑣𝑓

ℎ
                                                                         (2.110 𝑐) 

𝑉̅𝑓 =
𝑉𝑓

ℎ
=

𝑏𝑖 . 𝜃𝑖 + 𝑏𝑓 . 𝜃𝑓 − 𝑡. 𝑣𝑖 + 𝑡. 𝑣𝑓

ℎ
                                                                                 (2.110 𝑑) 

com: 𝑣𝑖 = 𝜔𝑖. 𝜙
′ e 𝑣𝑓 = 𝜔𝑓. 𝜙

′ (ver definição da equação 2.94 e); bem como através de 

geometria. Conclui-se: 𝜃𝑖 =
𝑣𝑖

𝑑4
⁄ = 2.𝜔𝑖. 𝜙

′. (𝐿4)
−1 e 𝜃𝑓 =

𝑣𝑓

𝑑5
⁄ = 2. 𝜔𝑓. 𝜙

′. (𝐿5)
−1. Sendo 
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𝜔𝑖 a ordenada setorial (do diagrama 𝜔𝑝𝑐 apresentado nas figuras 2.101 e 5.9) no ponto 𝑖 (ver 

figura 2.82) e 𝜔𝑓 a ordenada setorial (do diagrama 𝜔𝑝𝑐) no ponto 𝑓 (ver figura 2.82). 

 

c) Equações diferenciais dos painéis – parede  

 

Mediante deformação específica axial dos painéis – paredes em termos dos esforços 

normais de cada um dos referidos painéis, expressa-se as derivadas segundas dos deslocamentos 

𝛿𝑖, por: 

(𝐸. 𝐴1). 𝛿1
′′ = 𝑝1 + 𝑞2 − 𝑞3                                                                                                       (2.111 𝑎) 

(𝐸. 𝐴2). 𝛿2
′′ = 𝑝2 + 𝑞1 − 𝑞2                                                                                                       (2.111 𝑏) 

(𝐸. 𝐴3). 𝛿3
′′ = 𝑝3 + 𝑞3 + 𝑞4                                                                                                       (2.111 𝑐) 

(𝐸. 𝐴4). 𝛿4
′′ = 𝑝4 − 𝑞1 − 𝑉̅𝑖                                                                                                       (2.111 𝑑) 

(𝐸. 𝐴5). 𝛿5
′′ = 𝑝5 − 𝑞4 − 𝑉̅𝑓                                                                                                        (2.111 𝑒) 

A compatibilidade de deslocamentos verticais nos pontos de interseção é analisada para 

adoção de rotações 𝑣𝑖
′ em torno do eixo axial no CG do painel – parede. Vide na figura 2.83 a 

notação positiva do deslocamento e da rotação.  

Figura 2.83: Convenção dos deslocamentos nas interseções dos painéis – parede 

 

Fonte: O Autor (2019) 

Expressam-se, a compatibilização de deslocamentos nas interseções das paredes do 

núcleo estrutural apresentado na figura 2.79, como: 
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𝛿2 +
𝐿2

2
. 𝑣2

′ = 𝛿4 +
𝐿4

2
. 𝑣4

′                                                                                                         (2.112 𝑎) 

𝛿2 −
𝐿2

2
. 𝑣2

′ = 𝛿1 +
𝐿1

2
. 𝑣1

′                                                                                                          (2.112 𝑏) 

𝛿1 −
𝐿1

2
. 𝑣1

′ = 𝛿3 −
𝐿3

2
. 𝑣3

′                                                                                                          (2.112 𝑐) 

𝛿3 +
𝐿3

2
. 𝑣3

′ = 𝛿5 −
𝐿5

2
. 𝑣5

′                                                                                                         (2.112 𝑑) 

Derivam-se as equações (2.112) em relação ao eixo axial 𝑥, reescrevendo-nas como: 

𝛿2
′′ +

𝐿2

2
. 𝑣2

′′′ = 𝛿4
′′ +

𝐿4

2
. 𝑣4

′′′                                                                                                   (2.113 𝑎) 

𝛿2
′′ −

𝐿2

2
. 𝑣2

′′′ = 𝛿1
′′ +

𝐿1

2
. 𝑣1

′′′                                                                                                   (2.113 𝑏) 

𝛿1
′′ −

𝐿1

2
. 𝑣1

′′′ = 𝛿3
′′ −

𝐿3

2
. 𝑣3

′′′                                                                                                    (2.113 𝑐) 

𝛿3
′′ +

𝐿3

2
. 𝑣3

′′′ = 𝛿5
′′ −

𝐿5

2
. 𝑣5

′′′                                                                                                   (2.113 𝑑) 

com; 𝛿𝑖 sendo o deslocamento axial no CG do painel – parede 𝑖.  

Matricialmente reescreve-se a junção das equações (2.111) a (2.113), como: 

{𝑞} = [𝑀1]
−1. [𝑀3]. {𝑣

′} + [𝑀1]
−1. [𝑀4]. {𝑣𝜔

′′′} + [𝑀1]
−1. [𝑀10]. {𝑝}                                (2.114) 

onde: {𝑣𝜔}𝑇 = {𝑣𝜔 𝜔𝜔 𝜙𝜔} é o vetor de deslocamentos no sistema local dos painéis – 

parede (o índice 𝜔 expressa que as grandezas estão no sistema de local de referência); {𝑣}𝑇 =

{𝑣 𝜔 𝜙} é o  vetor dos deslocamentos no CG para o sistema global de referências; {𝑝} é o 

vetor do peso – próprio dos painéis – parede; {𝑞} é o vetor de carga distribuída verticalmente 

nas interseções dos painéis; 𝐴𝑖 , 𝐿𝑖 são a área da seção transversal e comprimento do painel – 

parede i (respectivamente); 𝑏𝑖 , 𝑡, 𝑏𝑓 são os coeficientes de rigidez das equações de Maney e 

𝜔𝑖, 𝜔𝑓 são as coordenadas do diagrama de ordenadas setoriais nos extremos inicial e final dos 

lintéis. 
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e:  [𝑀1] = [

𝐴2 + 𝐴4

−𝐴1

0

0

−𝐴4

𝐴1 + 𝐴2

−𝐴3

0

0

−𝐴2

𝐴1 + 𝐴3

𝐴5

0

0
𝐴1

𝐴3 + 𝐴5

] ;  [𝑀10] = [

0

−𝐴2

   𝐴3

0

−𝐴4

  𝐴1

−𝐴1

0

0

0
0

−𝐴5

𝐴2

0
0

0

0

0
0

𝐴3

] ; 

[𝑀4] =
𝐸

2
. [

0
−𝐿1. 𝐴1. 𝐴2

−𝐿1. 𝐴1. 𝐴3

0

−𝐿2. 𝐴2. 𝐴4

−𝐿2. 𝐴1. 𝐴2

0
0

0
0

   𝐿3. 𝐴1. 𝐴3

−𝐿3. 𝐴3. 𝐴5

𝐿4. 𝐴2. 𝐴4

0
0
0

0
0
0

−𝐿5. 𝐴3. 𝐴5

] ; [𝑀3] = [

0 0 𝑑1

0 0 0
0
0

0
0

0
𝑑2

] ; 

[𝑀3]. {𝑣
′} = {𝑀2} = {

−𝐴2. 𝑉̅𝑖

0
0

−𝐴3. 𝑉̅𝑓

} = {

𝑑1. 𝜙
′

0
0

𝑑2. 𝜙
′

} = [

0 0 𝑑1

0 0 0
0
0

0
0

0
𝑑2

] . {
𝑣′

𝜔′

𝜙′
} ;  {𝑞} = {

𝑞1

𝑞2
𝑞3

𝑞4

} ;   {𝑝} =

{
 
 

 
 
𝑝1
𝑝2
𝑝3
𝑝4
𝑝5}

 
 

 
 

; 

𝑑1 = −
𝐴2

ℎ
. [(−2.

𝑏𝑖

𝐿4
+ 𝑡) .𝜔𝑖 + (2.

𝑏𝑓

𝐿5
− 𝑡) .𝜔𝑓]   e  𝑑2 = −

𝐴3

ℎ
. [(2.

𝑏𝑖

𝐿4
− 𝑡) .𝜔𝑖 + (2.

𝑏𝑓

𝐿5
+ 𝑡) .𝜔𝑓]. 

 

 

d) Equações de equilíbrio em termo dos esforços cortantes  

 

Após promover o equilíbrio do núcleo estrutural em relação aos esforços cortantes, 

aplica-se a equação diferencial da linha elástica de vigas. E ressalta-se que nos painéis – parede 

(4) e (5), vide figura 2.81, são utilizadas as equações de G. A. Maney (formuladas em 1915). 

Por fim, para cada i-ésima parede que compõe o núcleo estrutural são apresentados os esforços 

cortantes V𝑖, como: 

V1 = −𝐽1. 𝑣1
′′′ + (𝑞2 + 𝑞3).

𝐿1

2
                                                                                                (2.115 𝑎) 

V2 = −𝐽2. 𝑣2
′′′ + (𝑞1 + 𝑞2).

𝐿2

2
                                                                                                (2.115 𝑏) 

V3 = −𝐽3. 𝑣3
′′′ + (𝑞4 − 𝑞3).

𝐿3

2
                                                                                                 (2.115 𝑐) 

V4 = −𝐽4. 𝑣4
′′′ − 𝑞1.

𝐿4

2
− 𝑀̅𝑖                                                                                                    (2.115 𝑑) 

V5 = −𝐽5. 𝑣5
′′′ + 𝑞4.

𝐿5

2
− 𝑀̅𝑓                                                                                                    (2.115 𝑒) 
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sendo: 𝑞𝑖 ,V𝑖 , 𝐿𝑖 a carga vertical distribuída na interseção 𝑖, o esforço cortante na parede 𝑖 e o 

comprimento do painel – parede 𝑖. E 𝑣𝑖 é o deslocamento no CG do painel – parede 𝑖, sob a 

direção do eixo local 𝑦. 

Analisando os esforços cortantes, das equações (2.115), obtidos via equações de 

equilíbrio das paredes e ordenando-os matricialmente, escreve-se: 

{V𝜔} = [𝑀5]. {𝑣𝜔
′′′} + [𝑀6]. {𝑣

′} + [𝑀7]. {𝑞}                                                                         (2.116) 

sendo: {V𝜔} o vetor de esforços cortantes no sistema local de referências; 𝐽𝑖 = 𝐸. 𝐼𝑧𝑖
; 

𝑑3 = −
1

ℎ
. [(−2.

𝑘𝑖

𝐿4
− 𝑏𝑖) . 𝜔𝑖 + (2.

𝑎

𝐿5
+ 𝑏𝑖) . 𝜔𝑓] ; 𝑑4 = −

1

ℎ
. [(2.

𝑎

𝐿4
− 𝑏𝑓) . 𝜔𝑖 + (2.

𝑘𝑓

𝐿5
+ 𝑏𝑓) .𝜔𝑓] ; 

[𝑀5] =

[
 
 
 
 
−𝐽1
0
0
0
0

0
−𝐽2
0
0
0

0
0

−𝐽3
0
0

0
0
0

−𝐽4
0

0
0
0
0

−𝐽5]
 
 
 
 

;  [𝑀7] =
1

2
.

[
 
 
 
 

0
 𝐿2

0
−𝐿4

0

𝐿1

𝐿2

0
0
0

  𝐿1

0
−𝐿3

0
0

0
0
𝐿3

0
𝐿5]

 
 
 
 

    e    [𝑀6] =

[
 
 
 
 
0
0
0
0
0

0
0
0
0
0

0
0
0
𝑑3

𝑑4]
 
 
 
 

. 

Expressa-se o vetor {V𝜔} em termos de {𝑣′}, isto mediante a substituição da equação 

(2.114) na eq. (2.116). Além do mais, transladando o vetor de deslocamentos locais {𝑣𝜔} para 

o sistema global de referências (via transformação {𝑣𝜔} = [𝑀8]. {𝑣}), vide figuras 2.84 e 2.85 

(a), daí escreve-se:  

{V𝜔} = ([𝑀8] + [𝑀7]. [𝑀1]
−1. [𝑀3]). {𝑣

′} + [𝑀7]. [𝑀1]
−1. [𝑀10]. {𝑝}

+ ([𝑀5] + [𝑀7]. [𝑀1]
−1. [𝑀4]). [𝑀8]. {𝑣

′}                                                     (2.117) 

Figura 2.84: Transformação de coordenadas locais para global 

 

Fonte: O Autor (2019) 
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com: [𝑀8] =

[
 
 
 
 
𝑎1

𝑎2
𝑎3

𝑎4

𝑎5

𝑏1

𝑏2

𝑏3

𝑏4

𝑏5

𝑐1

𝑐2
𝑐3

𝑐4

𝑐5]
 
 
 
 

=

[
 
 
 
 
 −1
   0
   0
−1
−1

   0
−1
−1
   0
   0

−𝑏𝐶𝐺𝑧

   𝑏𝐶𝐺𝑦

−(𝑏𝑦 − 𝑏𝐶𝐺𝑦
)

   (𝑏𝑧 − 𝑏𝐶𝐺𝑧
)

   (𝑏𝑧 − 𝑏𝐶𝐺𝑧
) ]
 
 
 
 
 

. 

Figura 2.85: Painéis – parede: (a) transformação de coordenadas locais para global; (b) 

carregamento atuante no pilar e conseguinte esforço cortante externo V𝒆𝒙𝒕 gerado 

 

Fonte: O Autor (2019) 

Realizando o equilíbrio de esforços cortantes V𝑒𝑥𝑡 gerados pelo carregamento externo, 

vide figura 2.85 (b), obtém-se:  

V𝑒𝑥𝑡 . {𝐴
∗} = [𝑀8]

𝑇. {V𝜔} + [𝑀9]. {𝑣
′}                                                                                      (2.118) 

com: 𝐼𝑡𝑖 − o momento de inércia torsional do painel – parede genérico i; 

          𝜃𝐺 − o ângulo formado entre o eixo global 𝑦𝐺 e o local 𝑦, ver fig. 2.85 (b) e 

          𝑒𝑧 − a distância entre o centro de carga (CC) e o centro de gravidade (CG). 

           [𝑀9] =

[
 
 
 
 
0 0 0
0 0 0

0 0 𝐺.∑𝐼𝑡𝑖

𝑛

𝑖 ]
 
 
 
 

 ;     {𝐴∗} = {

cos(𝜃𝐺)

sin(𝜃𝐺)

𝑒𝑧. cos(𝜃𝐺)
} ; 

           V𝑒𝑥𝑡 = 𝐷1. 𝑥
2 + 𝐷2. 𝑥 + 𝐷3;   

             𝐷1 = −𝑞2. (2. 𝐻)−1;   

             𝐷2 = −𝑞1  e   

             𝐷3 = 𝑄 + (𝑞1. 𝐻).  
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e) Sistema de equações diferenciais do pilar em núcleo 

 

Aplica-se a equação (2.118) na eq. (2.117) e resulta como equação diferencial (expressa 

no centro de gravidade), para o pilar em formato de núcleo estrutural apresentado na figura 2.64 

(b), a seguinte: 

−[𝐽]. {𝑣′′′} + [𝑆]. {𝑣′} = {V𝑓}                                                                                                     (2.119) 

sendo: [𝐽] = −[𝑀8]
𝑇. ([𝑀5] + [𝑀7]. [𝑀1]

−1. [𝑀4]). [𝑀8] ;  

             [𝑆] = [𝑀8]
𝑇. ([𝑀6] + [𝑀7]. [𝑀1]

−1. [𝑀3]) + [𝑀9]   e 

             {V𝑓} = V𝑒𝑥𝑡. {𝐴
∗} − [𝑀8]

𝑇. ([𝑀7]. [𝑀1]
−1. [𝑀10]). {𝑝}. 

Por fim, realiza-se o translade das coordenadas do centro de gravidade para o centro de 

torção, mediante matriz de transformação [𝑇]. Ficando o sistema de EDO’s expresso por: 

−[𝑇]𝑇. [𝐽]. [𝑇]. {𝑣𝐷
′′′} + [𝑇]𝑇. [𝑆]. [𝑇]. {𝑣𝐷

′ } = [𝑇]𝑇. {V𝑓}                                                       (2.120) 

sendo: {𝑣} ≡ {𝑣𝐶𝐺} = [𝑇]. {𝑣𝐷} ; 

             {𝑣𝐶𝐺}, {𝑣𝐷} − deslocamentos no centro de gravidade e no centro de torção e 

              [𝑇] = [
1 0 −𝑧𝐶𝐺

0 1    𝑦𝐶𝐺

0 0    1

]. 

onde: {𝑣𝐷} é o vetor de deslocamentos no centro de torção; [𝑇] é a matriz de translado de 

coordenadas do CG para o centro de torção e 𝑦𝐶𝐺 , 𝑧𝐶𝐺 são as coordenadas do centro de 

gravidade em relação à origem adotada. Na figura 2.86 é apresentada graficamente a 

transformação de coordenadas do CG para o centro de torção (D). 

Figura 2.86: Transformação de coordenadas do CG para D: (a) translações e (b) rotação 

 

Fonte: O Autor (2019) 
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f) Desacoplamento do sistema de EDO’s do pilar em núcleo 

 
 

O sistema de EDO’s apresentado na equação (2.119) é acoplado, uma vez que os vetores 

{𝑣′′′}𝑇 = {𝑣′′′ 𝜔′′′ 𝜙′′′} e {𝑣′}𝑇 = {𝑣′ 𝜔′ 𝜙′} são pré-multiplicados por matrizes não 

diagonais. Ressaltando-se ainda que o deslocamento 𝑣 ocorre na direção do eixo 𝑦𝐷 definido 

com origem no centro de torção, bem como o deslocamento 𝜔 para o eixo 𝑧𝐷 e a rotação 𝜙 

ocorre em torno do eixo axial 𝑥𝐷 (vide figura 2.87). 

Figura 2.87: Eixos coordenados sobre o CG e o centro de torção D 

 

Fonte: O Autor (2019) 

A diagonalização do sistema apresentado na equação (2.119) é realizado mediante três 

transformações de referencial, sendo estas: 

➢ 1ª Transformação de referencial: Mediante matriz de translade e rotação [𝑅𝑒] 

do sistema de coordenadas (𝑦𝐷, 𝑧𝐷), no centro de torção, para os eixos principais 

de inércia (𝑦𝑅, 𝑧𝑅). 

{𝑣} = [𝑅𝑒]. {𝑣̅}                                                                                                  (2.121 𝑎) 

onde a matriz [𝑅𝑒] é definida mediante figura 2.29 e eq.’s (2.24). Ficando o 

sistema reescrito como: 

−[𝐽]̅. {𝑣̅′′′} + [𝑆̅]. {𝑣̅′} = {V̅𝑓}                                                                       (2.121 𝑏) 

sendo: [𝐽]̅ = [𝑅𝑒]
𝑇. [𝐽]. [𝑅𝑒]   ;   [𝑆̅] = [𝑅𝑒]

𝑇. [𝑆]. [𝑅𝑒]    𝑒    {V̅𝑓} = [𝑅𝑒]
𝑇. {V𝑓}.  

com: [𝑅𝑒] = [
cos 𝜃 − 𝑠𝑒𝑛 𝜃 𝑏
𝑠𝑒𝑛 𝜃 cos 𝜃 𝑎

0 0 1
]. 
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➢ 2ª Transformação de referencial: Converter a matriz de rigidez [𝐽] em matriz 

identidade, via transformação quadrática por [𝐽]̅−1/2 . Tem-se: 

−{𝑣̅′′′}∗ + [𝑆]∗. {𝑣′}∗ = {V𝑓}
∗
                                                                       (2.121 𝑐) 

sendo: {𝑣̅} = [𝐽]̅−
1

2. {𝑣}∗;   [𝑆]∗ = [𝐽]̅−1/2. [𝑆̅]. [𝐽]̅−1/2 e {V𝑓}
∗
= [𝐽]̅−1/2. {V̅𝑓}. 

➢ 3ª Transformação de referencial: Diagonalização da matriz [𝑆]∗ através da 

análise modal do sistema (ver método de Jacobi no item 2.6). 

−{𝑣̅′′′}∗∗ + [𝜆2]. {𝑣′}∗∗ = {V𝑓}
∗∗
                                                                 (2.121 𝑑) 

onde: [𝜆2] = [𝐴𝑉]
𝑇. [𝑆]∗. [𝐴𝑉] é a matriz de autovalores da matriz [𝑆]∗; [𝐴𝑉] é a 

matriz de autoversores; e {𝑣}∗ = [𝐴𝑉]. {𝑣}∗∗; {V𝑓}
∗∗

= [𝐴𝑉]
𝑇. {V𝑓}

∗
. 

Após a diagonalização do sistema expresso na eq. (2.119), aplicam-se as condições de 

contorno (já adequadas ao referencial generalizado). Sendo as condições de contorno no sistema 

generalizado, as seguintes: 

{𝑣0}
∗∗ = [Φ]−1. [𝑅𝑒]

−1. {𝑣𝑜}                                                                                                     (2.121 𝑒) 

{𝑣̇0}
∗∗ = [Φ]−1. [𝑅𝑒]

−1. {𝑣̇𝑜}                                                                                                     (2.121 𝑓) 

com: [Φ] = [𝐽]̅−1/2. [𝐴𝑉] e {𝑣𝑜}, {𝑣̇𝑜} as condições iniciais no sistema inicial de referências. Por 

fim, o vetor de esforços cortantes {V𝑓}, mediante matriz modal ponderada [Φ], é expresso no 

referencial generalizado sob a forma de {V𝑓}
∗∗

, sob a forma: 

{V𝑓}
∗∗

= [Φ]𝑇. [𝑅𝑒]
𝑇. {V𝑓}                                                                                                       (2.121 𝑔) 

Desta feita, segue o processo de desacoplamento semelhante a marcha de cálculo Nº 1 

(apresentada na letra d, do item 2.4). E a solução da eq. (2.121 d) é apresentada no apêndice A. 

 

2.8.2. Pilar com seção transversal em duplo T 

 

Formula-se a teoria dos painéis – parede, partindo de um pilar de seção transversal 

aberta e de paredes finas, sendo contraventado parcialmente por lintéis (com comprimento 𝐿𝐿 

e espaçados de eixo a eixo de ℎ). Com o formato de núcleo estrutural e composto por sete 

paredes e seis interseções, conforme apresentado na figura 2.88.   
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Figura 2.88: Pilar em seção de duplo T: (a) painéis – parede e (b) ação do vento e frenagem 

 

Fonte: O Autor (2019) 

Ressaltando que em Mancini (1972), Barbosa (1980), Tso (1983) e em Smith e Taranath 

(1972) os painéis – parede são analisados núcleos estruturais em formato de C e destinados a 

edifícios altos, já nesta tese procede-se a formulação da teoria dos painéis – parede para pilares 

de pontes, adotando-se assim seções simétricas para caracterização da seção transversal típica 

dos referidos elementos estruturais. Porém, a fim de tornar o equacionamento genérico, faz-se 

a demonstração com dimensões independentes da imposição de condições de simetria. Nas 

figuras 2.89 e 2.90 são apresentados os elementos diferenciais das paredes que compõem a 

seção em duplo T, bem como os fluxos de cisalhamento nas interseções.  

Figura 2.89: Elementos diferenciais dos painéis – parede: (a) 1, (b) 7 e (c) 4 

 

Fonte: O Autor (2019) 



108 
Weslley Imperiano Gomes de Melo                                                                                                                             

 

Figura 2.90: Elementos diferenciais do: (a) painel – parede 2 e 3; e (b) painel – parede 5 e 6 

 

Fonte: O Autor (2019) 

 

a) Equações de equilíbrio dos elementos diferenciais 

 

Equilibrando os elementos diferenciais das paredes, conforme apresentado nas figuras 

2.89 e 2.90, conclui-se por variação dos momento fletores e do esforços normais, os seguintes: 
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𝑑𝔐1

𝑑𝑥
= −V1 + (𝑞1 + 𝑞2).

𝑏1

2
− 𝑞6.

(𝑏1𝑎 − 𝑏1𝑏)

2
                                                                 (2.122 𝑎) 

𝑑𝔑1

𝑑𝑥
= 𝑝1 + 𝑞1 − 𝑞2 + 𝑞6                                                                                                         (2.122 𝑏) 

𝑑𝔐2

𝑑𝑥
= −V2 + 𝑞3.

𝑏2

2
− 𝑀̅𝑓

(1)
                                                                                                 (2.122 𝑐) 

𝑑𝔑2

𝑑𝑥
= 𝑝2 − 𝑞3 − 𝑉̅𝑓

(1)
                                                                                                              (2.122 𝑑) 

𝑑𝔐3

𝑑𝑥
= −V3 − 𝑞1.

𝑏3

2
− 𝑀̅𝑖

(1)
                                                                                                  (2.122 𝑒) 

𝑑𝔑3

𝑑𝑥
= 𝑝3 − 𝑞1 − 𝑉̅𝑖

(1)
                                                                                                              (2.122 𝑓) 

𝑑𝔐4

𝑑𝑥
= −V4 + (𝑞5 + 𝑞6).

𝑏4

2
                                                                                                  (2.122 𝑔) 

𝑑𝔑4

𝑑𝑥
= 𝑝4 + 𝑞5 − 𝑞6                                                                                                                   (2.122 ℎ) 

𝑑𝔐5

𝑑𝑥
= −V5 − 𝑞4.

𝑏5

2
− 𝑀̅𝑖

(2)
                                                                                                  (2.122 𝑖) 

𝑑𝔑5

𝑑𝑥
= 𝑝5 − 𝑞4 − 𝑉̅𝑖

(2)
                                                                                                               (2.122 𝑗) 

𝑑𝔐6

𝑑𝑥
= −V6 + 𝑞2.

𝑏6

2
− 𝑀̅𝑓

(2)
                                                                                                 (2.122 𝑘) 

𝑑𝔑6

𝑑𝑥
= 𝑝6 − 𝑞2 − 𝑉̅𝑓

(2)
                                                                                                               (2.122 𝑙) 

𝑑𝔐7

𝑑𝑥
= −V7 + (𝑞3 − 𝑞4).

𝑏7

2
+ 𝑞5.

(𝑏7𝑎 − 𝑏7𝑏)

2
                                                               (2.122 𝑚) 

𝑑𝔑7

𝑑𝑥
= 𝑝7 + 𝑞3 + 𝑞4 − 𝑞5                                                                                                         (2.122 𝑛) 

onde as reções elásticas por lintel são representadas nas equações (2.109 b) e (2.110), resultando 

após aplicação dos coeficientes em cada lintel, por: 

{𝑀̅(1)} = [𝐾(1)]. {𝑑̅(1)}                                                                                                               (2.123 𝑎) 

{𝑀̅(2)} = [𝐾(2)]. {𝑑̅(2)}                                                                                                               (2.123 𝑏) 

sendo: {𝑀̅(1)}
𝑇

= {𝑀̅𝑖
(1)

𝑀̅𝑓
(1)

𝑉̅𝑖
(1)

𝑉̅𝑓
(1)};      {𝑀̅(2)}

𝑇
= {𝑀̅𝑖

(2)
𝑀̅𝑓

(2)
𝑉̅𝑖

(2)
𝑉̅𝑓

(2)};  
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             {𝑑̅(1)}
𝑇

= {𝜃𝑖
(1) 𝜃𝑓

(1) 𝑣𝑖
(1) 𝑣𝑓

(1)};     {𝑑̅(2)}
𝑇

= {𝜃𝑖
(2) 𝜃𝑓

(2) 𝑣𝑖
(2) 𝑣𝑓

(2)}; 

              𝜃𝑖
(1) = 2.

𝜔𝑖
(1)

𝑏3
. 𝜙′;    𝜃𝑓

(1) = 2.
𝜔𝑓

(1)

𝑏2
. 𝜙′;      𝑣𝑖

(1) = 𝜔𝑖
(1). 𝜙′;     𝑣𝑓

(1) = 𝜔𝑓
(1). 𝜙′; 

              𝜃𝑖
(2) = 2.

𝜔𝑖
(2)

𝑏5
. 𝜙′;    𝜃𝑓

(2) = 2.
𝜔𝑓

(1)

𝑏6
. 𝜙′;      𝑣𝑖

(2) = 𝜔𝑖
(2). 𝜙′    e    𝑣𝑓

(2) = 𝜔𝑓
(2). 𝜙′. 

 

b) Equações diferenciais dos painéis – parede e equilíbrio em cortantes 

 

Compatibilizando os deslocamentos nas interseções das paredes e adotando-se a 

convenção de deslocamentos e rotações apresentada na figura 2.83, exprimem-se as equações 

de compatibilidade em deslocamentos nas mencionadas interseções, como: 

𝛿3 −
𝑏3

2
. 𝑣3

′ = 𝛿1 +
𝑏1

2
. 𝑣1

′                                                                                                          (2.124 𝑎) 

𝛿1 −
𝑏1

2
. 𝑣1

′ = 𝛿6 −
𝑏6

2
. 𝑣6

′                                                                                                          (2.124 𝑏) 

𝛿2 +
𝑏2

2
. 𝑣2

′ = 𝛿7 +
𝑏7

2
. 𝑣7

′                                                                                                          (2.124 𝑐) 

𝛿5 +
𝑏5

2
. 𝑣5

′ = 𝛿7 −
𝑏7

2
. 𝑣7

′                                                                                                         (2.124 𝑑) 

𝛿7 = 𝛿4 +
𝑏4

2
. 𝑣4

′                                                                                                                          (2.124 𝑒) 

𝛿1 = 𝛿4 −
𝑏4

2
. 𝑣4

′                                                                                                                           (2.124 𝑓) 

Derivam-se as equações (2.124) em relação ao eixo axial 𝑥, e com as equações (2.122) 

em conjunto com a deformação específica por esforço normal, organiza-se matricialmente o 

sistema de equilíbrio dos painéis – parede, como: 

{𝑞} = [𝑀1]
−1. [𝑀3]. {𝑣

′} + [𝑀1]
−1. [𝑀4]. {𝑣𝜔

′′′} + [𝑀1]
−1. [𝑀10]. {𝑝}                                (2.125) 

sendo:  Δ1 = 𝑏1𝑎 − 𝑏1𝑏    ;    Δ7 = 𝑏7𝑎 − 𝑏7𝑏     ;      [𝑀4] = 𝐸
2⁄ . [𝑀4

∗]    ; 
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[𝑀1] =

[
 
 
 
 
 
𝐴1 + 𝐴3

𝐴6

0
0
0
𝐴4

−𝐴3

𝐴1 − 𝐴6

0
0
0

−𝐴4

0
0

𝐴2 + 𝐴7

𝐴5

−𝐴4

0

0
0
𝐴2

𝐴5 + 𝐴7

−𝐴4

0

0
0

−𝐴2

−𝐴5

𝐴4 + 𝐴7

−𝐴1

𝐴3

𝐴6

0
0

−𝐴7

𝐴1 + 𝐴4]
 
 
 
 
 

; {𝑞} =

{
 
 

 
 
𝑞1

𝑞2

𝑞3
𝑞4

𝑞5

𝑞6}
 
 

 
 

; {𝑝} =

{
  
 

  
 
𝑝1

𝑝2

𝑝3
𝑝4

𝑝5
𝑝6

𝑝7}
  
 

  
 

; 

[𝑀4
∗] =

[
 
 
 
 
 
−𝑏1. 𝐴1. 𝐴3

   𝑏1. 𝐴1. 𝐴6

0
0
0

2. Δ1. 𝐴1. 𝐴4

0
0

 𝑏2. 𝐴2. 𝐴7

0
0
0

−𝑏3. 𝐴1. 𝐴3

0
0
0
0
0

0
0
0
0

−𝑏4. 𝐴4. 𝐴7

−𝑏4. 𝐴1. 𝐴4

0
0
0

𝑏5. 𝐴5. 𝐴7

0
0

0
−𝑏6. 𝐴1. 𝐴6

0
0
0
0

0
0

−b7. 𝐴2. 𝐴7

   𝑏7. 𝐴5. 𝐴7

−2.Δ7. 𝐴4. 𝐴7

0 ]
 
 
 
 
 

; 

[𝑀3] =

[
 
 
 
 
 
0
0
0
0
0
0

0
0
0
0
0
0

𝑑1

𝑑2

𝑑3

𝑑4

0
0 ]

 
 
 
 
 

≡

[
 
 
 
 
 
 
 
 
 
 
 
 0 0 −

𝑉̅𝑖
(1)

. 𝐴1

𝜙′

0 0 −
𝑉̅𝑓

(2)
. 𝐴1

𝜙′

0 0 −
𝑉̅𝑓

(1)
. 𝐴7

𝜙′

0 0 −
𝑉̅𝑖

(2)
. 𝐴7

𝜙′

0 0           0
0 0           0

        ]
 
 
 
 
 
 
 
 
 
 
 
 

   e    [𝑀10] =

[
 
 
 
 
 
−𝐴3

−𝐴6

0
0
0

−𝐴4

0
0
𝐴7

0
0
0

𝐴1

0
0
0
0
0

0
0
0
0

−𝐴7

𝐴1

0
0
0
𝐴7

0
0

0
𝐴1

0
0
0
0

0
0
𝐴2

−𝐴5

𝐴4

0 ]
 
 
 
 
 

. 

Após promover o equilíbrio do núcleo estrutural (em duplo T) com relação aos esforços 

cortantes, escreve-se para cada i-ésima parede a equação de equilíbrio no i-ésimo esforço 

cortante V𝑖. E mediante notação matricial, tem-se: 

{V𝜔} = [𝑀5]. {𝑣𝜔
′′′} + [𝑀6]. {𝑣

′} + [𝑀7]. {𝑞}                                                                           (2.126) 

sendo: [𝑀6] =

[
 
 
 
 
 
 0
0
0
0
0
0
0

0
0
0
0
0
0
0

0
𝑑5

𝑑6

0
𝑑7

0
𝑑8]

 
 
 
 
 
 

;  𝑑5 = −
𝑀̅𝑖

(1)

𝜙′  ;  𝑑6 = −
𝑀̅𝑖

(2)

𝜙′  ;   𝑑7 = −
𝑀̅𝑓

(1)

𝜙′  ;  𝑑8 = −
𝑀̅𝑓

(2)

𝜙′  ;  𝐽𝑖 = 𝐸. 𝐼𝑧𝑖
  ; 

[𝑀5] =

[
 
 
 
 
 
 
−𝐽1
0
0
0
0
0
0

0
−𝐽2
0
0
0
0
0

0
0

−𝐽3
0
0
0
0

0
0
0

−𝐽4
0
0
0

0
0
0
0

−𝐽5
0
0

0
0
0
0
0

−𝐽6
0

0
0
0
0
0
0

−𝐽7]
 
 
 
 
 
 

   e   [𝑀7] =
1

2
.

[
 
 
 
 
 
 
   𝑏1

0
−𝑏3

0
0
0
0

𝑏1

0
0
0
0
𝑏6

0

0
𝑏2

0
0
0
0
𝑏7

0
0
0
0

−𝑏5

0
−𝑏7

0
0
0

   𝑏4

0
0

2. Δ7

−2.Δ1

0
0

   𝑏4

0
0
0 ]

 
 
 
 
 
 

. 

Na Fig. 2.91 é apresentado o procedimento de transformação  do vetor de deslocamentos 

{𝑣𝜔} no sistema local para o sistema global de referências, via transformação {𝑣𝜔} = [𝑀8]. {𝑣}. 
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Figura 2.91: Procedimento de transformação das coordenadas locais para o sistema global 

 

Fonte: O Autor (2019) 

com: [𝑀8] =

[
 
 
 
 
 
 
𝑎1

𝑎2

𝑎3
𝑎4

𝑎5

𝑎6
𝑎7

𝑏1

𝑏2

𝑏3

𝑏4

𝑏5

𝑏6

𝑏7

𝑐1
𝑐2

𝑐3
𝑐4

𝑐5

𝑐6
𝑐7]

 
 
 
 
 
 

=

[
 
 
 
 
 
 
    0
−1
−1
−1
−1
−1
   0

1
0
0
0
0
0
1

−𝑏4
∗

−𝑏1
∗

−𝑏1
∗

 0
   𝑏1

∗

   𝑏1
∗

   𝑏4
∗]
 
 
 
 
 
 
 

  ;    sendo:  𝑏𝑖
∗ =

𝑏𝑖

2
. 

O sistema de equações diferenciais será o mesmo expresso na eq. (2.119), porém para o 

caso do pilar com seção transversal em duplo T e simetria nos dois eixos principais de inércia 

(𝑦 e 𝑧), verifica-se a dispensa da transformação de coordenadas do centro de gravidade (CG) 

para o centro de torção (D), isso devido a coincidência de posicionamento de tais centros 

geométricos. Para os demais casos, a EDO transladada para o centro de torção consta na 

equação (2.120), sendo apresentada na figura 2.86 a notação de tal translade. 

 

2.9. POSICIONAMENTO DO CENTRO DE TORÇÃO 

 

 

O centro de torção 𝐷 é definido como a posição arbitrária onde, ao serem aplicadas 

forças transversais, são ativados apenas esforços de flexão (logo ocorre nulidade de esforços de 

torção ao longo da seção transversal). Para posicionar o centro de torção, parte-se da nulidade 

do momento gerado pela tensão de cisalhamento 𝜏(𝓈) em relação ao centro de torção (𝐷) via 

distância 𝜂 (distância perpendicular entre a linha de ação da tensão cisalhante resultante 𝜏𝑅𝑒𝑠). 

Esta configuração é apresentada na figura 2.92. 
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Figura 2.92: Representação gráfica da resultante 𝝉𝑹𝒆𝒔 e posicionamento relativo à 𝑫 

 

Fonte: O Autor (2019) 

Ao realizar a integração ao longo do eixo esqueleto 𝓈 do ponto 𝓈1 até 𝓈2 e considerando 

constante a espessura das paredes (espessura 𝑡), realiza-se o equilíbrio de momento em torno 

do centro de torção 𝐷, conforme figura 2.92, resultando em: 

∫[𝜏(𝓈). 𝜂. 𝑡]

𝑆

 𝑑𝑆 = 0                                                                                                                     (2.127) 

Modifica-se a eq. (2.127) para termos do comprimento infinitesimal 𝑑𝓈, e a espessura 𝑡 

é adotada constante, assim ao substituir a tensão cisalhante 𝜏(𝓈), chega-se a: 

𝑡. ∫ (
𝑄𝑦. 𝑀𝑠

𝑡. 𝐼𝑧
. 𝜂)

𝓈2

𝓈1

𝑑𝓈 = 0                                                                                                               (2.128) 

Sabendo que 𝑄𝑦 é a carga aplicada na direção 𝑦 e posicionada no centro de torção, 

realiza-se a integração por partes da eq. (2.128), concluindo como primeira condição de 

posicionamento do centro de torção, a seguinte: 

∫(𝜔. 𝑦)

𝓈2

𝓈1

𝑑𝑆 = 0                                                                                                                             (2.129) 

onde: 𝜔 = ∫ 𝜂
𝓈2

𝓈1
 𝑑𝓈 é a área setorial, sendo uma propriedade geométrica definida por Vlassov 

(1962). Ressalta-se que a condição na equação (2.129) advêm da aplicação de cargas 𝑄𝑦 no 

centro de torção. Assim ao aplicar a carga 𝑄𝑧 na direção principal de inércia 𝑧, postula-se como 

segunda condição de posicionamento do centro de torção (𝐶𝑇 ≡ 𝐷), a seguinte: 



114 
Weslley Imperiano Gomes de Melo                                                                                                                             

 

∫(𝜔. 𝑧)𝑑𝑆

𝑆

= 0                                                                                                                                (2.130) 

 Devido a não ser viável aplicar as condições de posicionamento do centro de torção D, 

expressas nas equações (2.129) e (2.130), de forma direta (por sua inerente complexidade 

algébrica), procede-se então uma interpretação geométrica, ver Mori e Munaiar Neto (2017, p. 

33 – 44).  Parte-se de um ponto genérico 𝑃 denominado de polo arbitrário com coordenadas 𝑦𝑝 

e 𝑧𝑝 em relação ao centro de gravidade da seção transversal, conforme é ilustrado na figura 

2.93. Faz-se o cálculo da ordenada setorial  𝜔𝑝 (com polo no ponto arbitrário P) ao longo do 

segmento 𝑂𝑠𝑄 da parede fina a ser analisado. 

Figura 2.93: Determinação geométrica do centro de torção 𝑫 mediante polo arbitrário 𝑷 

 

Fonte: O Autor (2019) 

 Realiza-se a varredura 𝐷𝑂𝑠𝑄, que é igual à metade da área setorial 𝜔𝑝𝑄
 (uma vez que a 

varredura 𝑃𝑂𝑠𝑄 equivale a metade da área setorial arbitrária 𝜔𝑝 do ponto 𝑄, conforme teoria 

apresentada em Vlassov). Assim, via cálculo das áreas 𝐴, 𝐵, 𝐴′′ e 𝐵′′, conclui-se que: 

𝜔 = 𝐴 − 𝐵                                                                                                                                    (2.131 𝑎) 

𝜔𝑝 = 𝐴′ − 𝐵′                                                                                                                               (2.131 𝑏) 

𝜔 = 𝜔𝑝 + (𝑦 − 𝑦0). (𝑧𝐷 − 𝑧𝑝) − (𝑧 − 𝑧0). (𝑦𝐷 − 𝑦𝑝)                                                       (2.131 𝑐) 

onde: 𝑂𝑠 é a origem do eixo esqueleto; 𝑦0, 𝑧0 são as coordenadas da origem; 𝑦𝐷, 𝑧𝐷 são as 

coordenadas do centro de torção e 𝑦𝑝, 𝑧𝑝 são as coordenadas do polo arbitrário 𝑃. 
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Por não ser conhecido o posicionamento do centro de torção 𝐷 e esta ser a motivação 

de tal análise é que se aplicam as equações (2.131) nas equações (2.129) e (2.130). Após adotar 

a nulidade dos momentos estáticos 𝑀𝑠 e do produto de inércia 𝑦. 𝑧 (por se tratar de eixos 

principais de inércia), chegam-se as coordenadas do centro de torção, como: 

𝑧𝐷 = 𝑧𝑝 + 𝑑𝑧                                                                                                                                (2.132 𝑎) 

𝑦𝐷 = 𝑦𝑝 + 𝑑𝑦                                                                                                                               (2.132 𝑏) 

sendo:  𝑑𝑧 = −
1

𝐼𝑧
. ∫(𝜔𝑝. 𝑦)

𝑆

𝑑𝑆    e     𝑑𝑦 =
1

𝐼𝑦
. ∫(𝜔𝑝. 𝑧)

𝑆

𝑑𝑆. 

onde: 𝑑𝑧 e 𝑑𝑦 são as distâncias paralelas aos eixos centroidais 𝑧𝐶𝐺 e 𝑦𝐶𝐺, respectivamente. As 

distâncias são compreendidas entre o centro de torção 𝐷 𝑒 o polo arbitrário 𝑃. 

 

a) Pilar em núcleo estrutural 

 

 Na figura 2.94 é apresentado o posicionamento do centro de torção 𝐷 em detrimento do 

polo arbitrário 𝑃 e do centro de gravidade da seção transversal. E na figura 2.95 são indicados 

os graus de liberdade (𝜔𝐶𝐸, 𝑣𝐶𝐸 e 𝜙𝐶𝐸) no centro de torção, bem como as conseguintes cotas e 

carregamentos transversais 𝑞(𝑧). 

Figura 2.94: Posicionamento do centro de torção 𝑫 para a seção de paredes finas 

 

Fonte: O Autor (2019) 
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Figura 2.95: Graus de liberdade no centro de torção 𝑫 

 

Fonte: O Autor (2019) 

Na figura 2.96 são apresentadas duas possibilidades de funcionamento estrutural do 

pilar em núcleo, sendo ativado o funcionamento de viga coluna quando da atuação do 

carregamento no eixo simétrico de inércia principal. A segunda possibilidade é a ativação da 

flexo – torção devido a excentricidade entre o centro de carga (CC) e o centro elástico (CE), 

este último também denominado de centro de torção (D). 

Figura 2.96: Funcionamento estrutural do pilar de acordo com o eixo de solicitação 

 

Fonte: O Autor (2019) 
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Para a seção transversal em formato de C (com abas de reforço de tamanhos 𝑎1𝑦 e 𝑎2𝑦), 

os diagramas de coordenadas 𝑦 e 𝑧 são apresentados na figura 2.97.  

Figura 2.97: Diagramas de: (a) coordenadas 𝒚 e (b) coordenadas 𝒛 

 

Fonte: O Autor (2019) 

O diagrama de ordenadas setoriais provisórias 𝜔𝑝 é apresentado na figura 2.98, para o 

qual o polo 𝑃 é arbitrário e posicionado na interseção de duas paredes finas, a fim de facilitar o 

processamento. 

Figura 2.98: Diagrama de ordenadas de área setorial com polo arbitrário P 

 

Fonte: O Autor (2019) 

Postula-se o procedimento de posicionamento do centro de torção e a conseguinte 

determinação da inércia setorial 𝐼𝜔, através da marcha de cálculo Nº 3. 
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a.1)  Marcha de Cálculo Nº 3 

 

➢ 1ª Etapa: Verificar se há eixo(s) de simetria(s), e impor o polo arbitrário 𝑃 nos referidos 

eixos. Caso não haja eixo de simetria, aplica-se 𝑃 em qualquer ponto ao longo do eixo 

esqueleto 𝓈. 

Observação: Nas barras que contenham o ponto 𝑃, tem-se 𝜔𝑝 nulo. Isso por não existir 

área definida entre o ponto arbitrário 𝑃 e os nós inicial e final do segmento de barra em 

análise. 

➢ 2ª Etapa: Traçar o diagrama de área setorial provisório 𝜔𝑝, mediante polo arbitrário 𝑃. 

➢ 3ª Etapa: Traçar o diagrama de coordenadas 𝑦 e 𝑧 para a seção transversal. Vide o 

modelo apresentado na figura 2.97. 

➢ 4ª Etapa: Calcular as propriedades geométricas das seções transversais, posicionar o 

centro de gravidade e determinar os momentos de inércia 𝐼𝑧 e 𝐼𝑦. 

➢ 5ª Etapa: Calcular via tabelas de Kurt – Beyer, ver Campanari (1985, v.3, p. 899), o 

cruzamentro das áreas nas integrais ao longo do esqueleto 𝓈. Lembrar de usar a 

convenção apresentada nas figuras 2.93 e 2.94. 

𝒅𝒛 = −
𝟏

𝑰𝒛
. ∫(𝝎𝒑. 𝒚)

𝑺

𝒅𝑺;    𝒅𝒚 =
𝟏

𝑰𝒚
. ∫(𝝎𝒑. 𝒛)

𝑺

𝒅𝑺 

➢  6ª Etapa: Calcular as coordenadas do centro de torção 𝐷 (também denominada de 

centro elástico – 𝐶𝐸), via: 

𝒛𝑫 = 𝒛𝒑 + 𝒅𝒛;      𝒚𝑫 = 𝒚𝒑 + 𝒅𝒚 

➢ 7ª Etapa: Definir 𝑂𝑠 como a origem do eixo esqueleto 𝓈. No caso de eixo de simetria, 

posiciona-se 𝑂𝑠 sobre tal eixo. Em caso contrário, 𝑂𝑠 é adotado em alguma das bordas 

(quinas) da seção transversal. 

➢ 8ª Etapa: Utilizar o centro de torção (D) como polo de varredura e procede-se o traçado 

do diagrama de ordenadas setoriais 𝜔𝑝𝑐. 
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➢ 9ª Etapa: Calcular a Inércia setorial através da integração quadrática do diagrama 𝜔𝑝𝑐 

pela espessura 𝑡, ficando expressa por: 

𝑰𝝎 = ∫(𝝎𝒑𝒄)
𝟐

𝑺

𝒅𝑺 = 𝒕. ∫(𝝎𝒑𝒄)
𝟐

𝓼

𝒅𝓼                                (2.133) 

com: 𝑑𝑆 = 𝑡. 𝑑𝓈. Observação: Adota-se o centro de torção como polo de varredura ao 

longo do trecho, no intervalo do nó inicial (𝑖) ao final (𝑗) do segmento (parede). Efetua-

se assim, o cálculo da área compreendida entre os vetores 𝑢⃑  e 𝑣 , e via o cálculo vetorial 

apresentado na figura 2.99.  

Figura 2.99: Cálculo vetorial da área delimitada pelo centro de torção e os extremos do painel 

 

Fonte: O Autor (2019) 

                        𝑢⃑  ×  𝑣 = [(𝑥𝑗
∗ − 𝑥𝐷

∗). (𝑦𝑖
∗ − 𝑦𝐷

∗) − (𝑥𝑖
∗ − 𝑥𝐷

∗). (𝑦𝑗
∗ − 𝑦𝐷

∗)]. 𝑘⃑  

adota-se o módulo do produto vetorial ‖𝑢⃑  ×  𝑣 ‖ igual ao dobro da área 

compreendida entre os pontos 𝐷, 𝑖 e 𝑗. Resultando como determinate equivalente 

o seguinte: 

2𝐴 = |

1 𝑥𝑖
∗ 𝑦𝑖

∗

1 𝑥𝐷
∗ 𝑦𝐷

∗

1 𝑥𝑗
∗ 𝑦𝑗

∗
|                                       (2.134) 

onde: 𝑖 é o nó inicial do trecho da seção transversal a ser integrada, 𝑗 é o nó final 

e 𝐷 o centro de torção. E 𝑥∗ e 𝑦∗ são os eixos de referência adotados para a 

varredura; 𝑥𝑔
∗, 𝑦𝑔

∗ são as coordenadas do ponto genérico 𝑔 e o sinal positivo da 

varredura durante a integração é o apresentado na figura 2.100. 
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Figura 2.100: Convenção positiva da varredura na integração para determinar a área setorial 

𝝎𝒑𝒄 

 

Fonte: O Autor (2019) 

Aplicando a marcha de cálculo Nº 3 (ver item 2.9 a.1) no pilar com seção apresentada 

na figura 2.95. Conclui-se como diagrama de área setorial 𝜔𝑝𝑐 o apresentado na figura 2.101. 

Sendo também denominado de diagrama de ordenadas setoriais absolutas. 

Figura 2.101: Diagrama de ordenadas setoriais absolutas 𝝎𝒑𝒄 para o pilar em C 

 

Fonte: O Autor (2019) 
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b) Pilar com seção transversal em duplo T 

 

 Na figura 2.102 é apresentado o diagrama de ordenadas setoriais 𝜔𝑝𝑐, cujo polo de 

varredura é o centro de torção D, para a seção transversal em duplo T com simetria nos dois 

eixos principais de inércia. Daí, observa-se que o centro de torção coincide com o centro de 

gravidade e pela propriedade da área setorial compreendida entre as extremidades da parede e 

o centro geométrico D, conclui-se que as ordenadas setoriais no painel central são nulos. 

Figura 2.102: Diagrama de ordenadas setoriais 𝝎𝒑𝒄 para seção de duplo T com dupla simetria 

 

Fonte: O Autor (2019) 

baseado nas dimensões dos painéis – parede apresentadas na figura 2.88, exprimem-se as 

ordenadas setoriais nas extremidades dos referidos painéis, como: 

𝜔𝑓1𝑏
≡ 𝜔𝑖6 =

𝑏1. 𝑏4

4
;    𝜔𝑓6 =

𝑏1

2
. (

𝑏4

2
+ 𝑏6) ;   𝜔𝑖1𝑎

≡ 𝜔𝑓3 =
−𝑏1. 𝑏4

4
 ;      𝜔𝑖3 = −𝜔𝑓6; 

𝜔𝑖7𝑎
= −𝜔𝑓7𝑏

=
𝑏4. 𝑏7

4
;     𝜔𝑖2 ≡ 𝜔𝑖7𝑎

;      𝜔𝑖5 ≡ 𝜔𝑓7𝑏
       e       𝜔𝑓2 = −𝜔𝑓5 =

𝑏7

2
. (

𝑏4

2
+ 𝑏2). 

 As propriedades geométricas da seção transversal apresentada na figura 2.88 com a 

consideração de dimensões distintas entre as paredes e sem qualquer eixo de simetria, são 

expressas por: 
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𝑏𝐶𝐺𝑧
=

∑ 𝑥𝐶𝐺𝑖

∗ . 𝐴𝑖𝑖

∑ 𝐴𝑖𝑖
                                                                                                                       (2.135 𝑎) 

𝑏𝐶𝐺𝑦
=

∑ 𝑦𝐶𝐺𝑖

∗ . 𝐴𝑖𝑖

∑ 𝐴𝑖𝑖
                                                                                                                       (2.135 𝑏) 

𝐼𝑧 = ∑{𝐼𝑧𝑖
+ 𝐴𝑖 . 𝑑𝑦𝑖

2}

7

𝑖=1

                                                                                                              (2.135 𝑐) 

𝐼𝑦 = ∑{𝐼𝑦𝑖
+ 𝐴𝑖 . 𝑑𝑧𝑖

2}

7

𝑖=1

                                                                                                            (2.135 𝑑) 

sendo: 𝐴𝑖 a área do i-ésimo painel – parede; 𝑏𝐶𝐺𝑧
 e 𝑏𝐶𝐺𝑦

 são as coordenadas do centro de 

gravidade ao admitir dois eixos auxiliares 𝑥∗ e 𝑦∗com origem na interseção dos eixos esqueleto 

dos painéis – parede (2) e (7); 𝑑𝑦𝑖
 e 𝑑𝑧𝑖

 são as distâncias de translade dos momentos de inércia 

centroidais via Teorema de Steiner; 𝐼𝑧𝑖
 e 𝐼𝑦𝑖

 são os momentos de inércia centroidais do i-ésimo 

painel – parede; já 𝐼𝑧 e 𝐼𝑦 são os momentos de inércia da seção transversal em duplo T. 

Na figura 2.103 é apresentado o diagrama de ordenadas setoriais provisórias 𝜔𝑝, com 

polo de varredura arbitrado na interseção entre as paredes (4) e (7), cumprindo assim a 2ª etapa 

da marcha de cálculo Nº 3 e buscando-se assim localizar o centro de torção D e traçar o 

diagrama 𝜔𝑝𝑐 para a seção sem qualquer eixo de simetria. 

Figura 2.103: Diagrama de ordenadas setoriais 𝝎𝒑 para seção de duplo T sem qualquer simetria 

 

Fonte: O Autor (2019) 
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Em seguida procede-se o traçado dos diagramas de coordenadas 𝑦 e 𝑧 (3ª etapa da 

marcha de cálculo Nº 3) em relação ao centro de gravidade da seção transversal em duplo T, os 

quais são apresentados nas figuras 2.104 e 2.105, respectivamente. 

Figura 2.104: Diagrama de coordenadas 𝒚 para a seção em duplo T, com origem no CG 

 

Fonte: O Autor (2019) 

Figura 2.105: Diagrama de coordenadas 𝒛 para a seção em duplo T, com origem no CG 

 

Fonte: O Autor (2019) 

O diagrama de ordenadas setoriais principais 𝜔𝑝𝑐 para a seção sem qualquer simetria é 

calculada mediante procedimento geométrico apresentado nas figuras 2.93 e 2.99, bem como 
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na determinação dos incrementos de ordenada setorial Δ𝜔(𝑖) no painel – parede genérico i, via 

equação (2.134). Resultando no diagrama apresentado na figura 2.106, mediante realização das 

5ª, 6ª e 8ª etapas da marcha de cálculo Nº 3. 

Figura 2.106: Diagrama de ordenadas setoriais 𝝎𝒑𝒄 para seção assimétrica em duplo T  

 

Fonte: O Autor (2019) 

por ordenadas setoriais principais, postulam-se: 

𝜔𝑝1
= 𝑑𝑧. (𝑑𝑦 − 𝑏4) − 𝑏1𝑎. (𝑏4 − 𝑑𝑦)                                                                                   (2.136 𝑎) 

𝜔𝑝2
= −𝑑𝑧. (𝑏4 − 𝑑𝑦) + 𝑏1𝑏. (𝑏4 − 𝑑𝑦)                                                                               (2.136 𝑏) 

𝜔𝑝3
= 𝑑𝑦 . (𝑏7𝑎 + 𝑑𝑧)                                                                                                                 (2.136 𝑐) 

𝜔𝑝4
= 𝑑𝑦. (𝑑𝑧 − 𝑏7𝑏)                                                                                                                 (2.136 𝑑) 

𝜔𝑝5
= 𝑑𝑦. 𝑑𝑧                                                                                                                                 (2.136 𝑒) 

𝜔𝑝6
= −𝑑𝑧. (𝑏4 − 𝑑𝑦)                                                                                                               (2.136 𝑓) 

𝜔𝑝
𝑖(1)

= 𝑑𝑧. (𝑑𝑦 + 𝑏3 − 𝑏4) − 𝑏1𝑎. (𝑏3 + 𝑏4 − 𝑑𝑦)                                                           (2.136 𝑔) 

𝜔𝑝
𝑓(1)

= 𝑑𝑧. (𝑑𝑦 − 𝑏2) + 𝑏7𝑎. (𝑏2 + 𝑑𝑦)                                                                              (2.136 ℎ) 

𝜔𝑝
𝑖(2)

= 𝑑𝑧. (𝑑𝑦 − 𝑏5) − 𝑏7𝑏. (𝑏5 + 𝑑𝑦)                                                                                (2.136 𝑖) 

𝜔𝑝
𝑓(2)

= −𝑑𝑧. (𝑏4 − 𝑏6 − 𝑑𝑦) + 𝑏1𝑏. (𝑏4 − 𝑑𝑦)                                                                  (2.136 𝑗) 
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2.10. MATRIZ DE RIGIDEZ DE BARRA COM SEÇÃO TRANSVERSAL 

RETANGULAR LINEARMENTE VARIÁVEL 

 

 

a) Introdução 

 

 

Na análise estrutural é relevante o Método dos Deslocamentos, o qual consiste em 

resolver a estrutura através da obtenção das deformações iniciais na estrutura (SUSSEKIND, 

1978). Conforme ilustrado em Kassimali (2015), a vantagem da utilização do Método dos 

Deslocamentos em detrimento do Método da Forças baseia-se no fato de não haver dificuldade 

em escolher as incógnitas, uma vez que o problema fundamental é um só por estrutura. Para um 

pilar de ponte de elevado comprimento, é economicamente relevante que se adote seção 

transversal variável, com base mais robusta do que o topo. Assim, ao agregar tal afunilamento 

no fuste do pilar é construtivamente mais viável que tal variação seja linear, daí a motivação 

deste item da fundamentação teórica com a obtenção exata da matriz de rigidez de um elemento 

de barra com seção transversal retangular, e linearmente variável ao longo do eixo axial 𝑥. No 

campo das soluções aproximadas em tal determinação, cita-se Luo et al. (2007) e Brown (1984). 

Na análise dos problemas estáticos ou dinâmicos faz-se relevante conhecer a definição 

de graus de liberdade. Pois em um ponto qualquer num plano, os deslocamentos podem ocorrer 

por “n” direções (onde apenas três destes são linearmente independentes), a depender do 

sistema de referência, sendo denominados graus de liberdade. Ver figura 2.107. 

Figura 2.107: Deslocamentos num plano qualquer: (a) Genéricos e (b) Graus de Liberdade 

 

Fonte: O Autor (2019) 

Conforme apresentado em Krasnov et al. (1990) no Curso de Matemática Superior – 

Volume 1: 

“Um sistema ordenado de vectores 𝑒 1, 𝑒 2, 𝑒 3, ..., 𝑒 𝑛 de um espaço linear V se denomina 

base deste espaço linear se os vetores 𝑒 1, 𝑒 2, 𝑒 3, ..., 𝑒 𝑛 são linearmente independentes e 

todo vetor de V pode ser representado como Combinação Linear desta Base. ” 

(KRASNOV et al., 1990, vol 1, p. 190). 
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Para o pilar de uma ponte com tabuleiro elevado a 100 metros, exemplo aqui 

desenvolvido, torna-se relevante subdividí-los em diversas barras, isso para a devida análise 

estrutural. E nestas barras é característica a modelagem matemática dos deslocamentos lineares 

e angulares nos nós. A rigidez da barra é, por definição, o momento necessário a ser aplicado 

no extremo da barra para que este, suposto livre ao giro, sofra uma rotação unitária 

(SUSSEKIND, 1978).  A compatibilização dos deslocamentos, estes em decorrência das 

vinculações extraídas via definição do método das forças, será adotada a partir da convenção 

positiva dos eixos coordenados. Dessa forma, mediante formulação presente em Kiseliov 

(1976), escreve-se o sistema de equações de compatibilidade de deslocamentos, em notação 

matricial, como: 

{𝑑} = [𝐹]. {𝑋} + {𝛿} + {𝛿𝑇}                                                                                                        (2.137) 

com: {𝑑}  o vetor de deslocamentos nas vinculações hiperestáticas extraídas da estrutura; 

          {𝑋}  o vetor de incógnitas, logo as forças ou esforços nas vinculações extraídas; 

          {𝛿}  o vetor de deslocamentos no problema fundamental, conforme postula Maney (1915); 

          {𝛿𝑇}  o vetor de deslocamentos no problema térmico, nas vinculações extraídas e 

          [𝐹]  a matriz de flexibilidade, sendo montada via deslocamentos no sistemas derivados. 

Para a montagem da matriz de flexibilidade [𝐹] basta apenas considerar apenas os 

sistemas derivados. Além disso, o vetor {𝛿} é desprezado nesta análise, pois almeja-se apenas 

obter a matriz de flexibilidade. Tais sistemas derivados de uma barra biengastada são 

apresentados na figura 2.108, tanto quanto o sistema principal.  

Figura 2.108: Método das forças: (a) sistema principal, (b) 1º sistema derivado, (c) 2º 

sistema derivado, (d) 3º sistema derivado 

 

Fonte: O Autor (2019) 
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Ao nó inicial tem-se o grau de liberdade em rotação, como 𝜃𝑖. O nó final caracteriza-se 

pelo grau de liberdade também em rotação 𝜃𝑓. E por fim, 𝛿𝑓 em deslocamento linear para o nó 

final. Assim o sistema de equações fica expresso por:  

{

𝜃𝑖

𝜃𝑓

𝛿𝑓

} = [

𝛼𝑖 𝜀 0
𝜀 𝛼𝑓 0

0 0 𝛽𝑓

] . {

𝑀𝑖

𝑀𝑓

𝑁𝑓

}                                                                                                    (2.138) 

A fim de aplicar o princípio dos trabalhos virtuais (PTV), ressalta-se que no 

deslocamento virtual não é possível ocorrer deslocamento real, isso quando o ponto material 

está em equilíbrio. E para que uma partícula esteja em equilíbrio, deve-se satisfazer a condição 

de nulidade ao trabalho de todas as forças externas (STAMATO, 1983). Em termo dos esforços 

solicitantes dos casos de estados de carga apresentados nas figuras 2.108 e 2.109.  

Figura 2.109: Diagramas de esforços solicitantes: (a) 𝑴𝒊 ≡ 𝑴̅𝒊, (b) 𝑴𝒇 ≡ 𝑴̅𝒇, (c) 𝑽𝒊 ≡

𝑽𝒇 ≡ 𝑽̅𝒇 ≡ 𝑽̅𝒊, (d) 𝑵𝒇 ≡ 𝑵̅𝒇 

 

Fonte: O Autor (2019) 

escrevem-se os deslocamentos linear 𝛽𝑓 e angulares 𝛼𝑖, 𝛼𝑓 e 𝜀, como: 

𝛼𝑖 = ∫
(𝑀𝑖 . 𝑀̅𝑖)

𝐸. 𝐼𝑧(𝑥)

𝐿

0

 𝑑𝑥 + ∫𝑘𝑐.
(𝑉𝑖. 𝑉̅𝑖)

𝐺. 𝐴(𝑥)

𝐿

0

 𝑑𝑥                                                                               (2.139 𝑎) 
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𝛼𝑓 = ∫
(𝑀𝑓 . 𝑀̅𝑓)

𝐸. 𝐼𝑧(𝑥)

𝐿

0

 𝑑𝑥 + ∫𝑘𝑐 .
(𝑉𝑓. 𝑉̅𝑓)

𝐺. 𝐴(𝑥)

𝐿

0

 𝑑𝑥                                                                             (2.139 𝑏) 

𝜀 = ∫
(𝑀𝑖 . 𝑀𝑓)

𝐸. 𝐼𝑧(𝑥)

𝐿

0

 𝑑𝑥 + ∫𝑘𝑐.
(𝑉𝑖. 𝑉𝑓)

𝐺. 𝐴(𝑥)

𝐿

0

 𝑑𝑥                                                                                (2.139 𝑐) 

𝛽𝑓 = ∫
(𝑁𝑓 . 𝑁𝑓)

𝐸. 𝐴(𝑥)

𝐿

0

 𝑑𝑥                                                                                                                   (2.139 𝑑) 

onde; 𝑘𝑐 é o fator de forma da seção transversal. 

Na figura 2.110 é apresentado o elemento de barra com comprimento 𝐿 e dimensões na 

seção transversal 𝐻𝑦(𝑥) e 𝐻𝑧(𝑥). 

Figura 2.110: Elemento de barra com dimensões na seção transversal variável 

linearmente ao longo do eixo axial 𝒙 

 

Fonte: O Autor (2019) 

escreve-se a área da seção transversal 𝐴(𝑥) e o momento de inércia 𝐼𝑧(𝑥) em torno do eixo 𝑧, 

como: 

𝐼𝑧(𝑥) = 𝑘1. 𝑥
4 + 𝑘2. 𝑥

3 + 𝑘3. 𝑥
2 + 𝑘4. 𝑥 + 𝑘5                                                                     (2.140 𝑎) 

𝐴(𝑥) = 𝑘6. 𝑥
2 + 𝑘7. 𝑥 + 𝑘8                                                                                                       (2.140 𝑏) 

com: 𝑘1 = 𝐴. 𝐶3;   𝑘2 = 𝐶2. (3. 𝐴. 𝐷 + 𝐵. 𝐶);   𝑘3 = 3. 𝐶. 𝐷. (𝐴. 𝐷 + 𝐵. 𝐶); 

𝑘4 = 𝐷2. (𝐴. 𝐷 + 3. 𝐵. 𝐶. 𝐷);   𝑘5 = 𝐵.𝐷3;     𝑘6 = 𝐴. 𝐶;    𝑘7 = 𝐴.𝐷 + 𝐵. 𝐶;     𝑘8 = 𝐵.𝐷; 

𝐴 =
ℎ𝑧 − 𝑏𝑧

𝐿
;    𝐵 = 𝑏𝑧;     𝐶 =

ℎ𝑦 − 𝑏𝑦

𝐿
      e       𝐷 = 𝑏𝑦 . 

Na figura 2.111 é caracterizada a análise do momento estático de área 𝑄(𝑥), para uma 

seção retangular de dimensões 𝐻𝑦(𝑥) e 𝐻𝑧(𝑥).  
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Figura 2.111: Momento Estático de Área para seção retangular linearmente variável no 

eixo axial 𝒙 

 

Fonte: O Autor (2019) 

chega-se a: 

𝐴′(𝑥) = [
𝐻𝑧(𝑥)

2
− 𝑧(𝑥)] . 𝐻𝑦(𝑥)                                                                                             (2.141 𝑎) 

𝐼𝑧(𝑥) =
𝐻𝑧(𝑥). 𝐻𝑦

3(𝑥)

12
                                                                                                                (2.141 𝑏) 

𝑧̅′(𝑥) =
𝐴′(𝑥)

2.𝐻𝑦(𝑥)
+ 𝑧(𝑥)                                                                                                           (2.141 𝑐) 

𝑄(𝑥) = 𝐴′(𝑥). 𝑧̅′(𝑥) =
𝐻𝑦(𝑥)

2
. [

𝐻𝑧
2(𝑥)

4
− 𝑧2(𝑥)]                                                               (2.141 𝑑) 

Procede-se o cálculo do fator de forma 𝑘𝑐, após transformar a integração na área 𝐴 para 

termos do comprimento, obtendo-se: 

𝑘𝑐 =
𝐴(𝑥)

𝐼𝑧2(𝑥)
. ∫

𝑄2(𝑥)

𝐻𝑦
2(𝑥)

 𝑑𝐴

𝐴

=
𝐴(𝑥)

𝐼𝑧2(𝑥)
. ∫ [

𝑄2(𝑥)

𝐻𝑦
2(𝑥)

. 𝐻𝑦(𝑥)]  𝑑𝑧

𝐻𝑧(𝑥)
2

−
𝐻𝑧(𝑥)

2

                                          (2.142) 

Ao aplicar as equações (2.141) na equação (2.142), e realizar a integração em 𝑧 e 

consequentes simplificações, conclui-se que o fator de forma 𝑘𝑐 permanece inalterado ao longo 

do eixo 𝑥 e vale: 

𝑘𝑐 =
6

5
                                                                                                                                           (2.142 𝑎) 
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Por fim, ao aplicar as equações (2.140), (2.141) e (2.142 a) nas equações (2.139), obtém-

se os coeficientes de flexibilidade (𝛼𝑖, 𝛼𝑓, 𝜀 e 𝛽𝑓), expressos por: 

𝛼𝑖 =
12

𝐸. 𝜂3
. [𝜂1 − 𝜂2. ln (

𝐵 + 𝐴. 𝐿

𝐴
) + 𝜂2. ln (

𝐵

𝐴
) + 𝜂2. ln (

𝐷 + 𝐶. 𝐿

𝐶
) − 𝜂2. ln (

𝐷

𝐶
)]

+
𝑘𝑐

𝐺. 𝜂4
. [ln (

𝐵 + 𝐴. 𝐿

𝐷 + 𝐶. 𝐿
) − ln (

𝐵

𝐷
)]                              𝑖𝑓 𝐴. 𝐷 ≠ 𝐵. 𝐶      (2.143 𝑎) 

𝛼𝑓 =
12

𝐸. 𝜂7
. [𝜂5 + 𝜂6. ln (

𝐵 + 𝐴. 𝐿

𝐴
) − 𝜂6. ln (

𝐵

𝐴
) − 𝜂6. ln (

𝐷 + 𝐶. 𝐿

𝐶
) + 𝜂6. ln (

𝐷

𝐶
)]

+
𝑘𝑐

𝐺. 𝜂4
. [ln (

𝐵 + 𝐴. 𝐿

𝐷 + 𝐶. 𝐿
) − ln (

𝐵

𝐷
)]                              𝑖𝑓 𝐴. 𝐷 ≠ 𝐵. 𝐶      (2.143 𝑏) 

𝜀 =
12

𝐸. 𝜂10
. [𝜂8 + 𝜂9. ln (

𝐵 + 𝐴. 𝐿

𝐴
) − 𝜂9. ln (

𝐵

𝐴
) − 𝜂9. ln (

𝐷 + 𝐶. 𝐿

𝐶
) + 𝜂9. ln (

𝐷

𝐶
)]

+
𝑘𝑐

𝐺. 𝜂4
. [ln (

𝐵 + 𝐴. 𝐿

𝐷 + 𝐶. 𝐿
) − ln (

𝐵

𝐷
)]                             𝑖𝑓 𝐴. 𝐷 ≠ 𝐵. 𝐶        (2.143 𝑐) 

𝛽𝑓 =
1

𝐸
. [

ln (
𝐵 + 𝐴. 𝐿
𝐷 + 𝐶. 𝐿

) − ln (
𝐵
𝐷
)

(𝐴. 𝐷 − 𝐵. 𝐶)
]                                                        𝑖𝑓 𝐴. 𝐷 ≠ 𝐵. 𝐶       (2.143 𝑑) 

𝛼𝑖 = 𝛼𝑓 =
4. 𝐿

𝐸. 𝐵. 𝐷3
+

𝑘𝑐

𝐺. 𝐵. 𝐷. 𝐿
                                                           𝑖𝑓   𝐴. 𝐷 = 𝐵. 𝐶       (2.143 𝑒) 

𝜀 =
−2. 𝐿

𝐸. 𝐵. 𝐷3
+

𝑘𝑐

𝐺. 𝐵. 𝐷. 𝐿
                                                                       𝑖𝑓   𝐴. 𝐷 = 𝐵. 𝐶       (2.143 𝑓) 

𝛽𝑓 =
𝐿

𝐸. 𝐵. 𝐷
                                                                                             𝑖𝑓   𝐴. 𝐷 = 𝐵. 𝐶       (2.143 𝑔) 

com: 𝜂1 = 𝐿. (𝐴. 𝐷 + 𝐵. 𝐶). (2. 𝐵. 𝐷 + 3. 𝐴. 𝐷. 𝐿 − 𝐵. 𝐶. 𝐿); 𝜂2 = 2. 𝐷2. (𝐴. 𝐿 + 𝐵)2; 

𝜂3 = −2.𝐷2. 𝐿2. (𝐴. 𝐷 + 𝐵. 𝐶)3;   𝜂4 = 𝐿2. (𝐴. 𝐷 + 𝐵. 𝐶);  

𝜂5 = −𝐿. (𝐴. 𝐷 − 𝐵. 𝐶). (2. 𝐵. 𝐷 − 𝐴.𝐷. 𝐿 + 3. 𝐵. 𝐶. 𝐿);   𝜂6 = 2.𝐵2. (𝐶. 𝐿 + 𝐷)2; 

𝜂7 = 2. 𝐿2. (𝐶. 𝐿 + 𝐷)2. (𝐴. 𝐷 − 𝐵. 𝐶)3; 𝜂8 = −
𝐿

2
. (𝐴. 𝐷 − 𝐵. 𝐶). (2. 𝐵. 𝐷 + 𝐴.𝐷. 𝐿 + 𝐵. 𝐶. 𝐿); 

𝜂9 = 𝐵.𝐷. (𝐴. 𝐿 + 𝐵). (𝐶. 𝐿 + 𝐷)      e      𝜂10 = 𝐷. 𝐿2. (𝐶. 𝐿 + 𝐷). (𝐴. 𝐷 + 𝐵. 𝐶)3. 

No método dos deslocamentos, promove-se o travamento dos nós vinculados da 

estrutura, isso a fim de configurar as ligações das barras mediante engastes. Em notação 

matricial, o sistema de equações de equilíbrio dos esforços desequilibrantes por nó é expresso 

da seguinte forma: 
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{𝑀} = [𝐾]. {𝐷} + {𝛾} + {𝛾𝑇}                                                                                                       (2.144) 

com: {𝑀}  o vetor de esforços aplicados na estrutura hiperestática, nas vinculações impostas; 

          {𝐷}  o vetor de incógnitas, logo os deslocamentos nas vinculações inseridas (impostas); 

          {𝛾}  o vetor de esforços desequilibrantes no problema fundamental; 

          {𝛾𝑇}  o vetor de esforços desequilibrantes no problema térmico e 

          [𝐾]  a matriz de rigidez, sendo montada via deslocamentos no sistemas derivados. 

Valendo-se das definições presentes em Kassimali (2015) e Kiseliov (1976), a matriz 

de rigidez [𝐾] será a inversa da matriz de flexibilidade [𝐹]. Concluem-se os termos de rigidez, 

como: 

[𝐾] = [𝐹]−1 = [

𝛼𝑖 𝜀 0
𝜀 𝛼𝑓 0

0 0 𝛽𝑓

]

−1

= [

𝑘𝑖 𝑎 0
𝑎 𝑘𝑓 0

0 0 𝑟𝑓

]                                                              (2.145 𝑎) 

𝑘𝑖 =
𝛼𝑓

𝛼𝑖 . 𝛼𝑓 − 𝜀2
                                                                                                                          (2.145 𝑏) 

𝑘𝑓 =
𝛼𝑖

𝛼𝑖 . 𝛼𝑓 − 𝜀2
                                                                                                                          (2.145 𝑐) 

𝑎 =
−𝜀

𝛼𝑖 . 𝛼𝑓 − 𝜀2
                                                                                                                           (2.145 𝑑) 

𝑟𝑓 =
1

𝛽𝑓
                                                                                                                                          (2.145 𝑒) 

a presente formulação foi proposta por George Alfred Maney no ano de 1915, ver Maney 

(1915); e Parcel e Maney (1944), e também denominado de método da rotação – flecha. 

 

b) Modelagem do pilar de ponte via massas concentradas 

 

Na análise dinâmica do pilar subdividido em quatro barras (por exemplo), com massas 

concentradas no centro dos segmentos de barra e em consonância com o procedido em Crede 

(1972). Bem como proceder a extensão de tal subdivisão em “n” barras, seguindo com massas 

concentradas nas n-ésimas barras com massa total “m” dividida por “n” elementos. Vide figura 

2.112. 
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Figura 2.112: Grupamento dos parâmetros para uma barra em balanço 

 

FONTE: (CREDE, 1972) 

Na figura 2.112 é estendido o conceito de massas concentradas para cinco massa 𝑚𝑖 e 

com molas de rigidez 𝑘𝑖, com excitação do movimento pela força dinâmica 𝐹5(𝑡) aplicada na 

quinta massa. Vide configuração apresentada na figura 2.113. 

Figura 2.113: Sistema de massa – mola com cinco graus de liberdade 

 

FONTE: Adaptado de (PAVLOU, 2015) 

O conjunto de equações de equilíbrio (conforme princípio de D’Alembert), para o 

conjunto apresentado na figura 2.113, será: 

𝑚1. 𝑢̈1 + 𝑘1. 𝑢1 − 𝑘2. (𝑢2 − 𝑢1) = 0                                                                                      (2.146 𝑎) 

𝑚2. 𝑢̈2 + 𝑘2. (𝑢2 − 𝑢1) − 𝑘3. (𝑢3 − 𝑢2) = 0                                                                       (2.146 𝑏) 

𝑚3. 𝑢̈3 + 𝑘3. (𝑢3 − 𝑢2) − 𝑘4. (𝑢4 − 𝑢3) = 0                                                                        (2.146 𝑐) 

𝑚4. 𝑢̈4 + 𝑘4. (𝑢4 − 𝑢3) − 𝑘5. (𝑢5 − 𝑢4) = 0                                                                        (2.146 𝑑) 

𝑚5. 𝑢̈5 + 𝑘5. (𝑢5 − 𝑢4) = 0                                                                                                      (2.146 𝑒) 

As equações (2.146) são reescritas, em termos dos deslocamentos 𝑢𝑖, como: 

𝑚1. 𝑢̈1 + (𝑘1 + 𝑘2). 𝑢1 − 𝑘2. 𝑢2 = 0                                                                                      (2.147 𝑎) 

𝑚2. 𝑢̈2 − 𝑘2. 𝑢1 + (𝑘2 + 𝑘3). 𝑢2 − 𝑘3. 𝑢3 = 0                                                                      (2.147 𝑏) 

𝑚3. 𝑢̈3 − 𝑘3. 𝑢2 + (𝑘3 + 𝑘4). 𝑢3 − 𝑘4. 𝑢4 = 0                                                                      (2.147 𝑐) 

𝑚4. 𝑢̈4 − 𝑘4. 𝑢3 + (𝑘4 + 𝑘5). 𝑢4 − 𝑘5. 𝑢5 = 0                                                                     (2.147 𝑑) 

𝑚5. 𝑢̈5 − 𝑘5. 𝑢4 + 𝑘5. 𝑢5 = 𝐹5(𝑡)                                                                                            (2.147 𝑒) 

 Em Warburton (1976) é verificada a equação geral para massas 𝑚𝑖 sobre vibração 

forçada não amortecida, conforme é apresentado na figura 2.114. 
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Figura 2.114: Pórtico Plano com “n” graus de liberdade 

 

FONTE: (WARBURTON, 1976) 

E: 

𝑚𝑗 . 𝑥̈𝑗 = 𝑃𝑗(𝑡) − 𝑘𝑗 . (𝑥𝑗 − 𝑥𝑗−1) + 𝑘𝑗+1. (𝑥𝑗+1 − 𝑥𝑗)                                                          (2.148 𝑎) 

𝑚𝑗 . 𝑥̈𝑗 + (𝑘𝑗 + 𝑘𝑗+1). 𝑥𝑗 − 𝑘𝑗 . 𝑥𝑗−1 − 𝑘𝑗+1. 𝑥𝑗+1 = 𝑃𝑗(𝑡)                                                    (2.148 𝑏) 

Em termos matriciais, tem-se reescrita as equações (2.147), por: 

[𝑀]. {𝑢̈} + [𝐾]. {𝑢} = {𝐹(𝑡)}                                                                                                       (2.149) 

onde: [𝑀] =

[
 
 
 
 
𝑚1 0

0 𝑚2

0 0

0 0   0

0 0   0

𝑚3 0   0

0    0   0 𝑚4 0

0    0     0   0 𝑚5]
 
 
 
 

 ;  [𝐾] =

[
 
 
 
 
𝑘1 + 𝑘2

−𝑘2

0

0

0

−𝑘2

𝑘2 + 𝑘3

−𝑘3

0

0

0

−𝑘3

𝑘3 + 𝑘4

−𝑘4

0

0

0
−𝑘4

𝑘4 + 𝑘5

−𝑘5

0

0
0

−𝑘5

𝑘5 ]
 
 
 
 

; 

              {𝑢} =

{
 
 

 
 
𝑢1

𝑢2
𝑢3

𝑢4

𝑢5}
 
 

 
 

  ;    {𝑢̈} =

{
 
 

 
 
𝑢̈1

𝑢̈2

𝑢̈3

𝑢̈4

𝑢̈5}
 
 

 
 

    ;       {𝐹(𝑡)} =

{
 
 

 
 

0
0
0
0

𝐹5(𝑡)}
 
 

 
 

     e      𝐹5(𝑡) = 𝐹5. sin(𝜔̅. 𝑡). 

Na formulação até agora apresentada neste item e no capítulo 3 (MEF), as barras 

analisadas são consideradas com seção transversal constante, isso quanto as dimensões e as 

demais propriedades. Porém, no estudo de pilares de pontes em vigas torna-se importante a 

execução dos pilares com seção transversal variável ao longo da altura, isto a fim de conferir 

racionalidade e economia aos custos finais de execução do elemento estrutural. Neste tocante é 

que Cook et al. (2002) traz a modelação estrutural de um pilar sobre carga compressiva no topo. 

Modelando também como seções constantes e escalonadas ao longo da altura, conforme é 

apresentado na figura 2.115. 
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Figura 2.115: Modelagem do pilar com seção variável 

         

FONTE: (COOK et al., 2002) 

 

c) Condensação matricial 

 

 

Baseado em Paz (1992) e na aplicação no cálculo de frequências naturais em Alves Filho 

(2009, p. 200), a condensação matricial consiste em reescrever o sistema de equações em termo 

de algumas de suas variáveis. Na figura 2.116 é apresentado um pilar com 𝑛 subdivisões e (𝑛 +

1) nós, bem como os decorrentes graus de liberdade (𝛿 e 𝜃) e as forças nodais, isso a fim de 

exemplificar tal procedimento de condensação. 

Figura 2.116: Pilar subdividido em elementos finitos 

 

Fonte: O Autor (2019) 
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Ficando o sistema de EDO’s, para a vibração não amortecida, expresso por: 

[
[𝑀𝜃𝜃] [𝑀𝜃𝛿]

[𝑀𝛿𝜃] [𝑀𝛿𝛿]
] . {

{𝜃̈}

{𝛿̈}
} + [

[𝐾𝜃𝜃] [𝐾𝜃𝛿]

[𝐾𝛿𝜃] [𝐾𝛿𝛿]
] . {

{𝜃}

{𝛿}
} = {

{𝑀}

{𝐹}
}                                                 (2.150) 

onde: {𝜃}𝑇 = {𝜃1 𝜃2 𝜃3 … 𝜃𝑛−1 𝜃𝑛};  {𝛿}𝑇 = {𝛿1 𝛿2 𝛿3 … 𝛿𝑛−1 𝛿𝑛}; 

           {𝑀}𝑇 = {𝑀1 𝑀2 𝑀3 … 𝑀𝑛−1 𝑀𝑛};  {𝐹}𝑇 = {𝐹1 𝐹2 𝐹3 … 𝐹𝑛−1 𝐹𝑛}; 

           [𝑀𝜃𝜃], [𝑀𝜃𝛿], [𝑀𝛿𝜃], [𝑀𝛿𝛿] – ver no capítulo 3 (MEF via Maney e ver eq.’s 3.36) e 

           [𝐾𝜃𝜃], [𝐾𝜃𝛿], [𝐾𝛿𝜃], [𝐾𝛿𝛿] – ver no capítulo 3 (MEF via Maney e ver eq.’s 3.36). 

A submatriz [𝑀𝜃𝜃] apresenta os termos de massas rotacionais, verificando-se a pouca 

representatividade (em magnitude) em relação as massas translacionais (inclusas na submatriz 

[𝑀𝛿𝛿]). Desta afirmação, desprezam-se também as submatrizes [𝑀𝜃𝛿] e [𝑀𝛿𝜃], e reescreve-se 

a eq. (2.150) como: 

[
[0] [0]
[0] [𝑀𝛿𝛿]

] . {
{𝜃̈}

{𝛿̈}
} + [

[𝐾𝜃𝜃] [𝐾𝜃𝛿]

[𝐾𝛿𝜃] [𝐾𝛿𝛿]
] . {

{𝜃}

{𝛿}
} = {

{𝑀}

{𝐹}
}                                                       (2.151) 

Expressando a equação (2.151) em formato de sistema de equações matriciais, tem-se: 

[𝐾𝜃𝜃]. {𝜃} + [𝐾𝜃𝛿]. {𝛿} = {𝑀}                                                                                                  (2.152 𝑎) 

[𝑀𝛿𝛿]. {𝛿̈} + [𝐾𝛿𝜃]. {𝜃} + [𝐾𝛿𝛿]. {𝛿} = {𝐹}                                                                           (2.152 𝑏) 

A fim de expressar os deslocamentos {𝛿}, procede-se o isolamento do vetor de rotações 

{𝜃} na equação (2.152 a) e ao aplicar na eq. (2.152 b), concluindo: 

[𝑀𝛿𝛿]. {𝛿̈} + [𝐾𝛿𝜃]. ([𝐾𝜃𝜃]
−1. {𝑀} − [𝐾𝜃𝜃]

−1. [𝐾𝜃𝛿]. {𝛿}) + [𝐾𝛿𝛿]. {𝛿} = {𝐹}                 (2.153) 

reorganizando, tem-se: 

[𝑀𝛿𝛿]. {𝛿̈} + [𝐾∗]. {𝛿} = {𝐹∗}                                                                                                  (2.153 𝑎) 

com: [𝐾∗] = [𝐾𝛿𝛿] − ([𝐾𝛿𝜃]. [𝐾𝜃𝜃]
−1. [𝐾𝜃𝛿]);   {𝐹

∗} = {𝐹} − ([𝐾𝛿𝜃]. [𝐾𝜃𝜃]
−1. {𝑀}); 

sendo: [𝐾∗] a matriz de rigidez condensada e {𝐹∗} o vetor condensado das forças transversais. 

A EDO condensada para a vibração amortecida de maneira proporcional ([𝐶∗] =

𝛼𝑚. [𝑀𝛿𝛿] + 𝛼𝑘 . [𝐾
∗]) fica expressa por: 

[𝑀𝛿𝛿]. {𝛿̈} + [𝐶∗]. {𝛿̇} + [𝐾∗]. {𝛿} = {𝐹∗}                                                                                 (2.154) 
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d) Modelagem por cinco elementos finitos de barra para seção retangular 

linearmente variável 

 

Para exemplificar a utilização da matriz de rigidez de seção retangular linearmente 

variável em pilares de pontes, adotam-se como dimensões da seção transversal na base 𝑏𝑦 =

12,5 𝑚 e 𝑏𝑧 = 25 𝑚. Já no topo utilizam-se: ℎ𝑦 = 5 𝑚 e ℎ𝑧 = 10 𝑚. E obtêm-se os modos de 

vibração mediante análise modal (YANG et al., 2004), modelando o pilar em cinco elementos 

finitos (CREDE, 1972) e cuja formulação geral para 𝑛 massa apresentada em Warburton (1964). 

Por fim, utiliza-se a condensação matricial (McGUIRE e GALLAGHER, 1979; RUBINSTEIN, 

1966). O material empregado na ponte é concreto armado de classe de resistência C – 90, ver 

NBR 6118 (ABNT, 2014). Para o módulo de elasticidade longitudinal é utilizado 𝐸 =

4,67 𝑥 1010 𝑀𝑃𝑎 e coeficiente de Poisson 𝜈 = 0,20, vide figura 2.117. A fim de validar a 

exemplificação, realiza-se a modelagem no software ANSYS Release 11. Ressalta-se que para 

os modos de vibração, as dimensões adotadas para a seção transversal torna-se irrelevante.  

Figura 2.117: Ponte com pilares de seção linearmente variável 

 

Fonte: O Autor (2019) 

De tal análise, obtêm-se na tabela 2.1 os coeficientes para gerar a matriz de rigidez do 

pilar, as frequências de vibração 𝜔𝑖 e os Autoversores 𝜆𝑖
2 (via a nulidade do determinante 

|[𝐾] − 𝜆. [𝑀]|), assim exprimem-se para os três primeiros modos de vibração: 

𝜔1 = 7,85434 
𝑟𝑎𝑑

𝑠
;       𝜔2 = 8,45070 

𝑟𝑎𝑑

𝑠
;        𝜔3 = 8,85416 

𝑟𝑎𝑑

𝑠
               (2.155 𝑎 − 𝑐) 
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Tabela 2.1: Parâmetros para gerar a matriz de rigidez do pilar de seção linearmente variável 

Elemento 1 2 3 4 5 

𝑨 (𝑨𝑫𝑴) - 0,015 - 0,015 - 0,015 - 0,015 - 0,015 

𝑩 (𝒎) 25,000 22,000 19,000 16,000 13,000 

𝑪 (𝑨𝑫𝑴) - 0,075 - 0,075 - 0,075 - 0,075 - 0,075 

𝑫 (𝒎) 12,500 11,000 9,500 8,000 6,500 

𝜶𝒊 ≡ 𝜶𝒇 (𝒙 𝟏𝟎𝟓) 6,540 4,430 2,890 1,799 1,050 

𝒌𝒊 (𝒙 𝟏𝟎𝟏𝟑) [N.m] 2,274 1,364 0,759 0,382 0,166 

𝒌𝒇 (𝒙 𝟏𝟎𝟏𝟑) [N.m] 2,261 1,356 0,754 0,379 0,165 

𝒂 (𝒙 𝟏𝟎𝟏𝟑) [N.m] 1,134 0,680 0,378 0,190 0,083 

Fonte: O Autor (2019) 

Conforme processamento exposto no Apêndice (B.1), a matriz de rigidez [𝐾] e de massa 

[𝑀], para o pilar ao considerar os cinco elementos finitos (já na forma condensada), valem: 
 

[𝐾] =

[
 
 
 
 
1,701 𝑥 1013

7,634 𝑥 1011

3,178 𝑥 1010

1,196 𝑥 109  

3,891 𝑥 107  

7,634 𝑥 1011

1,019 𝑥 1013

4,241 𝑥 1011

1,596 𝑥 1010

5,193 𝑥 108 

3,178 𝑥 1010

4,241 𝑥 1011

5,666 𝑥 1012

2,132 𝑥 1011

6,939 𝑥 109  

1,196 𝑥 109  

1,596 𝑥 1010

2,132 𝑥 1011

2,848 𝑥 1012

9,270 𝑥 1010

3,891 𝑥 107  

5,193 𝑥 108  

6,939 𝑥 109  

9,270 𝑥 1010

1,238 𝑥 1012]
 
 
 
 

   
𝑁

𝑚
 

[𝑀] =

[
 
 
 
 
1,955 𝑥 107

9,995 𝑥 105

0
0
0

9,995 𝑥 105

1,227 𝑥 107

6,761 𝑥 105

0
0

0
6,761 𝑥 105

7,281 𝑥 106

4,374 𝑥 105

0

0
0

4,374 𝑥 105

4,030 𝑥 106

2,685 𝑥 105

0
0
0

2,685 𝑥 105

1,984 𝑥 106]
 
 
 
 

   𝑘𝑔 

Na figura 2.118 é apresentado um grupo de modos de vibração, para o pilar maciço da 

ponte apresentada na figura 2.117, modelando no software ANSYS Release 11. Foram 

utilizados 62.468 nós e 13.635 elementos finitos, produzindo uma malha com 93,99 %. 

Figura 2.118: Modos de vibração: (a) 1º modo, (b) 2º modo e (c) 3º modo do pilar maciço 

 

Fonte: O Autor (2019) 

A validação da primeira frequência de vibração 𝑓1 (mediante equação 2.155 a) é 

processada e resulta em: 



138 
Weslley Imperiano Gomes de Melo                                                                                                                             

 

𝑓1 =
𝜔1

2. 𝜋
=

7,85434 
𝑟𝑎𝑑
𝑠

2. 𝜋
= 1,25005 𝐻𝑧                                                                                (2.156) 

Comparando-se a primeira frequência de vibração mediante modelagem no ANSYS, 

ver figura 2.118, com o valor apresentado na equação (2.156), conclui-se uma aproximação de: 

Δ(%) =
(1,25005 − 1,23300) 𝐻𝑧

1,25005 𝐻𝑧
. 100% = 1,36 %                                                           (2.157) 

A discrepância de 1,36 % entre a primeira frequência de vibração, via cálculo manual 

por elementos finitos de barra e pela modelagem no software ANSYS, é decorrente do pequeno 

número de elementos de barra utilizados na modelagem manual (exemplo da letra d desse item 

e no item B.1 do Apêndice B). Porém, a formulação aqui presente é bastante satisfatória para 

verificar a ordem de grandeza dos resultados obtidos via modelagem em softwares comerciais. 

 

e) Verificação da modelagem do MEF via TMC 

 

Baseado na Teoria dos Painéis – Parede (TPP), exprime-se a equação diferencial da 

solicitação dinâmica do pilar maciço apresentado na figura 2.117, mediante eq. (2.119), como: 

−[𝐽]. {𝑞′′′′(𝑥, 𝑡)} + [𝑆]. {𝑞′′(𝑥, 𝑡)} + [𝑀]. {𝑞̈(𝑥, 𝑡)} = {V𝑓
   ′

(𝑥, 𝑡)}                                    (2.158)  

onde:  [𝐽] é a matriz de rigidez do pilar; [𝑆] é a matriz de rigidez dos lintéis (e para o pilar 

maciço, modelado neste item da tese, será nula); [𝑀] é a matriz de massa do referido pilar e 

𝑞(𝑥, 𝑡) é a função dos deslocamentos dependentes do espaço e do tempo. Mediante a análise 

harmônica da eq. (2.158) e impondo-lhe o procedimento de separação de variáveis, escreve-se: 

−𝑗. 𝑢′′′′(𝑥)

𝑢(𝑥)
=

−𝑚. 𝑔̈(𝑡)

𝑔(𝑡)
= −𝜆𝑎

2                                                                                                (2.159) 

onde: 𝑞(𝑥, 𝑡) = 𝑢(𝑥). 𝑔(𝑡). Exprime-se a equação característica da EDO escrita no espaço, via 

eq. (2.159), como: 

𝑗. 𝜔4 − 𝜆𝑎
2 = 0                                                                                                                               (2.160) 

e por solução da eq. (2.160), exprime-se:                                       𝜔 =
√𝜆𝑎

√√𝑗

                        (2.161) 
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Mediante o cálculo da rigidez 𝑗 expresso na eq. (2.116), onde 𝑗 = 𝐸. 𝐼, em conjunto com 

Pfeil (1979, p. 211), conclui-se por rigidez do pilar apresentado na figura 2.117, a seguinte: 

𝑗 = 𝐸. 𝐼 = 𝐸. 𝛽. 𝐼𝑧𝑡𝑜𝑝𝑜
= 4,67 𝑥 104 𝑃𝑎 . 1,2793 .

10 𝑚 . (5 𝑚)3

12
= 6,22326 𝑥 1012

𝑁

𝑚
               (2.162) 

conforme apresentado em Dziewolski (1964) segue-se o ajuste da rigidez do pilar mediante o 

coeficiente 𝛼 = 1
1,5⁄  (para estruturas simples) e exprime-se via eq. (5.20 d): 

√√𝑗 = √√
𝑗

𝐻2
. 𝛼 =

√√
6,22326 𝑥 1012 𝑁

𝑚
(100 𝑚)2

.
1

1,5
= 105,29633                                          (2.163) 

Aplicando-se a eq. (2.163) na eq. (2.161) escreve-se as primeiras frequências de 

vibração do pilar de ponte, apresentado na figura 2.117, como: 

𝜔 =
√𝜆𝑎

105,29633
                                                                                                                             (2.164) 

utilizando a primeira raiz do polinômio apresentado no Apêndice B, mais especificamente na 

página B.6, exprime-se a primeira frequência de vibração do referido pilar (via TMC) como: 

𝜔1 =
√6,16906 𝑥 105 𝑟𝑎𝑑/𝑠

105,29633
= 7,45927  

𝑟𝑎𝑑

𝑠
                                                                 (2.165 𝑎) 

e em frequência fundamental, tem-se:                           𝑓1 =
𝜔1

2. 𝜋
= 1,18718 𝐻𝑧            (2.165 𝑏) 

concluindo por divergência em relação a modelagem procedida no ANSYS Release 11, ver 

figura 2.118, a seguinte: 

Δ(%) =
|𝑓𝑇𝑀𝐶 − 𝑓𝐴𝑁𝑆𝑌𝑆|

𝑓𝑇𝑀𝐶
. 100% =

|1,18718 − 1,233| 𝐻𝑧

1,18718 𝐻𝑧
. 100% = 3,87 %            (2.165 𝑐) 

Observa-se que a diferença percentual pela TMC foi maior do que pelo MEF de barra, 

isso devido à interpolação realizada no coeficiente 𝛽 da eq. (2.162). Bem como, constata-se a 

utilização do coeficiente de ajuste 𝛼 na eq. (2.163). Enquanto no Apêndice B a análise é 

processada pelo método dos elementos finitos, dispensando-se a imposição de tal coeficiente. 

Mesmo assim, consegue-se validar de forma satisfatória a análise modal do pilar apresentado 

na figura 2.117, tanto pela MEF como pela TMC. 
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PARTE II 

 

CONTRIBUIÇÕES DA TESE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“Uma vez que você tenha provado o vôo, você 

andará pela terra com os olhos voltados para o 

céu, pois lá esteve e lá você desejará voltar”.        

Leonardo da Vinci 
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FORMULAÇÃO PELO MÉTODO DOS ELEMENTOS FINITOS DE 

PILARES EM SEÇÕES C E DUPLO T 

 

 

 

3.1. INTRODUÇÃO 

 

 

Baseado em Absi (1969), Dhatt et. al (2005), Zienkiewicz (1964); (1965) e (1966), bem 

como Vaz (2011) e Bathe (2019), considera-se uma equação diferencial, 𝐹(𝑣) = 𝑏, válida no 

domínio Ω, onde 𝐹 é definido por operador e representa a derivação da função 𝑣. A fim de 

extrair 𝑣 como solução da equação diferencial, faz-se necessária a integração por partes. Sendo 

importante definir a integração do produto interno entre o operador 𝐹(𝑣) pela função 

ponderadora 𝒲, tais integrações por partes necessitam das condições de contorno. Na figura 

3.1 são apresentadas as condições de contorno, divididas nas superfícies: 𝑆(𝑢) que é 

indeslocada (condições essenciais) e 𝐺(𝑢) a superfície sob condições naturais (𝔚 = 0 e/ou 

V = 0 e/ou 𝔑 = 0). Sendo 𝔚 o momento fletor, V o esforço cortante e 𝔑 é o esforço normal. 

Figura 3.1: Condições de contorno do elemento finito 

 

Fonte: O Autor (2019) 

Capítulo 

3 
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A solução exata para a equação diferencial 𝐹(𝑢0) = 𝑏 será 𝑢0, sendo de difícil ou 

impossível obtenção mediante integrações. Assim, pode-se aproximar a solução através de 

diversas funções 𝑢, surgindo as famílias de interpolação. Ficando a solução aproximadora 𝑢, 

expressa por: 

𝑢 = 𝛼0 +∑𝛼𝑗 . 𝜓𝑗

𝑛

𝑗=1

≅ 𝑢0                                                                                                                   (3.1) 

onde: 𝛼0 é o coeficiente para atender as condições de contorno; 𝛼𝑗 são os coeficientes a 

determinar e 𝜓𝑗 são funções interpoladoras (linearmente independentes). 

As funções 𝜓𝑗 são escolhidas de acordo com as condições de contorno e/ou de 

continuidade. Admite-se que o conjunto de funções 𝜓𝑗 está completo, quando o erro quadrático 

total for inferior a certa tolerância 𝜀 (vide figura 3.2). 

Figura 3.2: Representação gráfica das funções 𝒖 e 𝒖𝟎 

 

Fonte: O Autor (2019) 

∫(𝑢0 − 𝑢)
2𝑑𝑥

Ω

≤ 𝜀2                                                                                                                           (3.2) 

Ao aplicar a solução aproximadora 𝑢 na equação diferencial 𝐹(𝑢0) = 𝑏, percebe-se a 

ocorrência do resíduo 𝑅, ficando a função residual expressa por: 

𝑅 = 𝐹(𝑢) − 𝑏 ≠ 0                                                                                                                               (3.3) 

Tal função residual (eq. 3.3) é forçada a nulidade para valores médios em todo o 

domínio. Resultando por objetivo minimizar o erro da aproximação da função exata 𝑢0 pela 

função 𝑢, caracterizando-se diversos métodos de acordo com o procedimento utilizado para tal 

minimização, dentre eles o método dos elementos finitos.  
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a) Método dos resíduos ponderados  

 

Conforme é apresentado em Reddy (1984, p. 102 – 113), o método dos resíduos 

ponderados consiste em distribuir o resíduo 𝑅 (eq. 3.3), de foma que o valor médio seja nulo. 

Para tal imposição, define-se a função ponderadora 𝒲 como a combinação linear da funções 

interpoladoras 𝜓𝑗, ficando expressa por: 

𝒲 =∑𝛽𝑗 . 𝜓𝑗

𝑛

𝑗=1

                                                                                                                                    (3.4) 

com: 𝛽𝑗 os coeficientes da combinação linear. 

Distribui-se o erro (resíduo) através da função ponderadora 𝒲, ao longo do domínio Ω, 

mediante o produto interno: 

〈𝑅,𝒲〉 = ∫(𝑅.𝒲)

Ω

𝑑Ω = 0                                                                                                              (3.5) 

Aplica-se a eq. (3.4) na eq. (3.5), e os coeficientes 𝛽𝑗 são admitidos arbitrários, 

chegando-se a: 

∫(𝑅.𝜓𝑗)

Ω

𝑑Ω = 0                                                                                                                                 (3.6) 

conclui-se que o resíduo 𝑅 é ortogonal a cada função interpoladora 𝜓𝑗, e que a equação (3.6) 

representa um conjunto de equações por variação de 𝑗 = {1,2,3, … , 𝑛}. 

 

b) Equação integral do pilar via MEF 

 

A fim de expor o fundamento do método dos elementos finitos (MEF), aplica-se o 

método dos resíduos ponderados no pilar apresentado na figura 3.3. E, em seguida realiza-se a 

integração por partes. 
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Figura 3.3: Pilar engastado na base 

 

Fonte: O Autor (2019) 

A função residual apresentada na eq. (3.3) fica reescrita, para o pilar ilustrado na figura 

7.3, como: 

𝑅 =
𝑑2𝑣(𝑥)

𝑑𝑥2
− 𝑏                                                                                                                                   (3.7) 

com: 𝑏 = −
𝔐(𝑥)

𝐸. 𝐼
. 

A integração expressa na eq. (3.6) em termos dos contornos Γ1 e Γ2, mediante duas 

integrações por partes, fica reescrita como: 

∫(𝑅.𝒲)

Ω

𝑑Ω = − ∫ (𝑅1.
𝜕𝒲

𝜕𝜂
)

Γ1

𝑑Γ + ∫(𝑅2.𝒲)

Γ2

𝑑Γ                                                                  (3.8) 

com: 𝑅 = ∇2𝑢 − 𝑏; 𝑅1 = 𝑢 − 𝑢̅; 𝑅2 = 𝑞 − 𝑞̅; 𝑞 = 𝜕𝑢 𝜕𝜂⁄  é a derivada direcional de 𝑢; 𝑢̅ 

equivale a 𝑢0 na superfície Γ1; 𝑞̅ equivale a 𝑞0 em Γ2; 𝑞0 =
𝜕𝑢0

𝜕𝜂⁄ ; 𝑢0 e 𝑞0 são soluções exatas. 

Ficando a eq. (3.8) adaptada para o pilar (ver figura 3.3) em análise, como: 

∫ {[
𝑑2𝑣(𝑥)

𝑑𝑥2
− 𝑏] .𝒲}

𝐻

0

𝑑𝑥 + [(𝑢 − 𝑢̅).
𝑑𝒲

𝑑𝑥
]
0

𝐻

= 0                                                                      (3.9) 

Integra-se por partes, a eq. (3.9), a equação integral obtida via resíduos ponderados. 

Obtendo-se a equação integral fundamental para o MEF, e expressa por: 
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∫ {
𝑑𝑣(𝑥)

𝑑𝑥
.
𝑑𝒲

𝑑𝑥
}

𝐻

0

𝑑𝑥 − [𝒲.
𝑑𝑣(𝑥)

𝑑𝑥
]
0

𝐻

− [(𝑢 − 𝑢̅).
𝑑𝒲

𝑑𝑥
]
0

𝐻

+∫{𝑏.𝒲}

𝐻

0

𝑑𝑥 = 0                     (3.10) 

 

c) Sistema algébrico via MEF 

 

A primordial diferença entre o MEF e os demais métodos numéricos oriundos do 

método dos resíduos ponderados, é a subdivisão do domínio Ω em vários trechos (subdomínios). 

A estes subdomínios denominam-se elementos de dimensões finitas, ou simplesmente de 

elementos finitos. Por fim, para cada trecho é definida uma função aproximadora 𝑢(𝑖)(𝑥), 

conforme é ilustrado na figura 3.4. 

Figura 3.4: Subdivisão do pilar em elementos finitos 

 

Fonte: O Autor (2019) 

No i – ésimo elemento finito, a função aproximadora 𝑢𝑖 (ver a equação 3.1) é expressa 

por: 

𝑢(𝑖) =∑𝛼𝑗
(𝑖). 𝜓𝑗

(𝑖)

𝑛

𝑗=1

                                                                                                                        (3.11) 

O MEF é decorrente do método de Rayleigh – Ritz, formulado por Ritz  em 1909. E 

como tal, baseia-se no método da energia potencial estacionária. E o funcional de energia 
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potencial Π𝑝 para toda a estrutura, será a soma das parcelas em cada elemento finito Π𝑝
(𝑖), 

assim: 

Π𝑝 =∑Π𝑝
(𝑖)

𝑁

𝑖=1

                                                                                                                                   (3.12) 

onde: 𝑁 é o número de elementos finitos na discretização proposta. 

Aplica-se a variação a energia Π𝑝, expressando em termo dos elementos finitos (por 

subdomínios), e escreve-se: 

𝛿Π𝑝 =∑{
𝜕Π𝑝

(𝑖)

𝜕𝛼1
. 𝛿𝛼1 +

𝜕Π𝑝
(𝑖)

𝜕𝛼2
. 𝛿𝛼2 +⋯+

𝜕Π𝑝
(𝑖)

𝜕𝛼𝑁
. 𝛿𝛼𝑁}

𝑁

𝑖=1

                                               (3.13) 

com: (𝛼1, 𝛼2, … , 𝛼𝑁) os coeficientes da combinação linear das funções 𝜓𝑗 para compor a função 

aproximadora 𝑢.  

Reescreve-se a equação (3.13), em duplo somatório, como: 

𝛿Π𝑝 =∑∑{
𝜕Π𝑝

(𝑖)

𝜕𝛼𝑗
. 𝛿𝛼𝑗}

𝑁

𝑗=1

𝑁

𝑖=1

                                                                                                         (3.14) 

Promove-se a minimização do funcional Π𝑝 mediante a imposição de nulidade em sua 

primeira variação (𝛿Π𝑝 = 0). Assim, via eq. (3.14) surge o sistema de equações algébricas do 

MEF: 

𝜕Π𝑝
(𝑖)

𝜕𝛼𝑗
= 0                                                                                                                                          (3.15) 

com; os parâmetros 𝛼𝑗 a determinar. As funções aproximadoras nos subdomínios 𝑢(𝑖)(𝑥), nos 

elementos finitos, devem atender as condições de contorno dos extremos do elemento 𝑖. No 

caso do pilar apresentado na figura 3.4, tem-se 𝑣2 e 𝑣3 como deslocamentos e 𝑣2
′ e 𝑣3

′ as 

rotações (ambos denominados de graus de liberdade). 
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3.2. EQUAÇÕES DE MANEY PARA ELEMENTO FINITO  

 

 

Neste item o elemento finito analisado é aquele cujo sistema local de coordenadas (SLC) 

coincida com o sistema global de coordenadas (SGC), em outro termos, é o elemento não 

inclinada e com elementos de barra sequenciados. Esse elemento finito foi apresentado por 

George Alfred Maney como um método geral para resolução de estruturas hiperestáticas, sendo 

inclusive eficaz para estruturas com elevado grau hiperestático. O método foi apresentado em 

1915 no boletim de estudos de engenharia da Universidade de Minnesota, objetivando 

solucionar o problema da ação do vento em edifícios de múltiplos andares, porém pode-se 

aplicar eficazmente nos esforços secundários (solicitantes) de pontes. O método postulado por 

Maney é especialmente útil para estruturas de nós rígidos, daí a utilização via método dos 

deslocamentos. 

O referido método postulado por G. A. Maney baseia-se em trabalhos alemães sob 

esforços secundários em pontes, os quais ao ver de Maney não estavam generalizados, nem 

aplicados a outras ocorrências, daí a proposição de tal método geral. Em posterior este método 

postulado por G. A. Maney ficou conhecido como “Slope – Deflection Method” o método da 

rotação – flecha, citam-se como referências para tais afirmações Maney (1915) e Megson 

(2005). Na determinação dos esforços secundários em pontes “secondary stresses in bridges 

trusses” cita-se Grimm (1908), onde encontra-se a ideia inicial do “slope – deflection method” 

postulado anos mais tarde por G. A. Maney. Em tal análise dos esforços secundários observa-

se a obtenção dos esforços internos para superestruturas de pontes com as vigas sobre o formato 

de arcos treliçados. A formulação do método da rotação – flecha é procedida considerando que 

a barra reta é submetida aos carregamentos externos: 𝑃 (concentrado) e 𝑞 (distribuído) e sob 

reações elásticas em momentos 𝑀𝐴
∗ e 𝑀𝐵

∗  e em cortantes 𝑉𝐴
∗ e 𝑉𝐵

∗. Vide Figura 3.5. 

Figura 3.5: Barra engastada nas extremidades: (a) carregamentos e (b) reações elásticas 

associadas as reações de engastamento perfeito, nos extremos da barra 

 

Fonte: O Autor (2019) 
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Partindo da equação diferencial da linha elástica,  equacionada por Navier, e baseada na 

hipótese de Bernoulli: “As seções transversais permanecem planas depois da deformação do 

prisma”. Ainda conforme Lacerda (1964), ressalta-se a definição de linha elástica do prisma, o 

que postula-se: “no prisma deformado, cada seção transversal é normal ao eixo médio 

deformado”. Assim, escreve-se: 

(𝐸. 𝐼).
𝑑2𝑣(𝑥)

𝑑𝑥2
= 𝔐(𝑥) ≡ 𝑀𝐴

∗ + 𝑉𝐴
∗. 𝑥                                                                                          (3.16) 

Integram-se duas vezes a equação (3.16), obtem-se: 

(𝐸. 𝐼). 𝑣(𝑥) = 𝑀𝐴
∗.
𝑥2

2
+ 𝑉𝐴

∗.
𝑥3

6
+ 𝐶1. 𝑥 + 𝐶2                                                                               (3.17) 

As duas constantes de integração (𝐶1 e 𝐶2), apresentadas na equação (3.17), são 

determinadas mediante condições de contorno no ponto A, ficando expressas por: 

𝐶1 = 𝐸. 𝐼. 𝜃𝐴                                                                                                                                    (3.18 𝑎) 

𝐶2 = 𝐸. 𝐼. 𝑣𝐴                                                                                                                                    (3.18 𝑎) 

para 
𝑑𝑣(𝑥)

𝑑𝑥
|
𝑥=0

= 𝜃𝐴  e  𝑣(𝑥 = 0) = 𝑣𝐴, respectivamente. 

Por fim, aplicam-se as equações (3.18) na eq. (3.17) e escreve-se a equação da deflexão 

como: 

(𝐸. 𝐼). 𝑣(𝑥) = 𝑀𝐴
∗.
𝑥2

2
+ 𝑉𝐴

∗.
𝑥3

6
+ 𝐸. 𝐼. 𝜃𝐴. 𝑥 + 𝐸. 𝐼. 𝑣𝐴                                                           (3.19 𝑎) 

e sua derivada, a equação da rotação, fica expressa por: 

(𝐸. 𝐼). 𝜃(𝑥) = 𝑀𝐴
∗. 𝑥 + 𝑉𝐴

∗.
𝑥2

2
+ 𝐸. 𝐼. 𝜃𝐴                                                                                    (3.19 𝑏) 

Aplica-se agora as equações (3.19) no extremo final da viga (𝑥 = 𝐿) e exprime-se: 

𝐸. 𝐼. 𝑣𝐵 = 𝑀𝐴
∗.
𝐿2

2
+ 𝑉𝐴

∗.
𝐿3

6
+ 𝐸. 𝐼. 𝜃𝐴. 𝐿 + 𝐸. 𝐼. 𝑣𝐴                                                                    (3.20 𝑎) 

(𝐸. 𝐼). 𝜃𝐵 = 𝑀𝐴
∗. 𝐿 + 𝑉𝐴

∗.
𝐿2

2
+ 𝐸. 𝐼. 𝜃𝐴                                                                                        (3.20 𝑏) 

Exprimem-se as equações (3.20) sob formato matricial, como: 
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[
 
 
 
𝐿2

2

𝐿3

6

𝐿
𝐿2

2 ]
 
 
 

. {
𝑀𝐴
∗

𝑉𝐴
∗ } = 𝐸. 𝐼. {

(𝑣𝐵 − 𝑣𝐴) − 𝜃𝐴. 𝐿
𝜃𝐵 − 𝜃𝐴

}                                                                             (3.21 𝑎) 

ficando: {
𝑀𝐴
∗

𝑉𝐴
∗ } =

12

𝐿4
.

[
 
 
 
𝐿2

2

−𝐿3

6

−𝐿
𝐿2

2 ]
 
 
 

. 𝐸. 𝐼. {
(𝑣𝐵 − 𝑣𝐴) − 𝜃𝐴. 𝐿

𝜃𝐵 − 𝜃𝐴
}                                               (3.21 𝑏) 

resultando em 𝑀𝐴
∗ e 𝑉𝐴

∗ expressas por: 

𝑀𝐴
∗ = −

6. 𝐸. 𝐼

𝐿2
. 𝑣𝐴 +

6. 𝐸. 𝐼

𝐿2
. 𝑣𝐵 −

4. 𝐸. 𝐼

𝐿
. 𝜃𝐴 −

2. 𝐸. 𝐼

𝐿
. 𝜃𝐵                                                    (3.21 𝑐) 

𝑉𝐴
∗ =

12. 𝐸. 𝐼

𝐿3
. 𝑣𝐴 −

12. 𝐸. 𝐼

𝐿3
. 𝑣𝐵 +

6. 𝐸. 𝐼

𝐿2
. 𝜃𝐴 +

6. 𝐸. 𝐼

𝐿2
. 𝜃𝐵                                                   (3.21 𝑑) 

Observa-se que nas equações (3.21 c) e (3.21 d) tem-se as reações elásticas do extremo 

inicial da barra, em função dos graus de liberdade (𝜃𝐴, 𝜃𝐵 , 𝑣𝐴 e 𝑣𝐵). Daí, para obter as reações 

elásticas do extremo final (Nó B) utilizam-se as equações de equilíbrio em momento e em forças 

verticais (cortantes). Na figura 3.5 (b) é apresentado o diagrama de corpo rígido, basta aplicar 

o equilíbrio e obtem-se: 

𝑀𝐴
∗ +𝑀𝐵

∗ + 𝑉𝐴
∗. 𝐿 = 0                                                                                                                   (3.21 𝑒) 

𝑉𝐴
∗ = −𝑉𝐵

∗                                                                                                                                        (3.21 𝑓) 

aplicam-se as equações (3.21 c) e (3.21 d) nas equações (3.21 e) e (3.21 f), concluindo-se: 

𝑀𝐵
∗ = −

6. 𝐸. 𝐼

𝐿2
. 𝑣𝐴 +

6. 𝐸. 𝐼

𝐿2
. 𝑣𝐵 −

2. 𝐸. 𝐼

𝐿
. 𝜃𝐴 −

4. 𝐸. 𝐼

𝐿
. 𝜃𝐵                                                   (3.21 𝑔) 

𝑉𝐵
∗ = −

12. 𝐸. 𝐼

𝐿3
. 𝑣𝐴 +

12. 𝐸. 𝐼

𝐿3
. 𝑣𝐵 −

6. 𝐸. 𝐼

𝐿2
. 𝜃𝐴 −

6. 𝐸. 𝐼

𝐿2
. 𝜃𝐵                                               (3.21 ℎ) 

Na figura 3.6 é inserido o conceito de reações de engastamento perfeito. 

Figura 3.6: Detalhamento de reações: (a) reações de engastamento perfeito e (b) reações elásticas 

 

Fonte: O Autor (2019) 
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Analisando em conjunto as figuras 3.5 (b) e 3.6, conclui-se: 

𝑀𝐴
∗ = −𝑀𝐴 +𝑀𝐴

𝐹                                                                                                                            (3.22 𝑎) 

𝑀𝐵
∗ = −𝑀𝐵 +𝑀𝐵

𝐹                                                                                                                           (3.22 𝑏) 

𝑉𝐴
∗ = −𝑉𝐴 + 𝑉𝐴

𝐹                                                                                                                              (3.22 𝑐) 

𝑉𝐵
∗ = −𝑉𝐵 + 𝑉𝐵

𝐹                                                                                                                             (3.22 𝑑) 

Para compatibilizar as reações elásticas 𝑀𝑖 e 𝑀𝑓 com os graus de liberdade 𝜃𝑖 e 𝜃𝑓, 

conforme ilustrado na figura 3.7, procede-se a troca de sinal dos termos dos referidos graus de 

liberdade (nas equações 3.21 c, d, g, h). 

Figura 3.7: Compatibilização entre os graus de liberdade e as reações elásticas  

 

Fonte: O Autor (2019) 

Aplicando a compatibilização da figura 3.7 e cruzando as equações (3.21 c), (3.21 d), 

(3.21 g) e (3.21 h) com as eq.’s (3.22), escreve-se: 

−𝑀𝐴 +𝑀𝐴
𝐹 =

4. 𝐸. 𝐼

𝐿
. 𝜃𝐴 +

2. 𝐸. 𝐼

𝐿
. 𝜃𝐵 −

6. 𝐸. 𝐼

𝐿2
. 𝑣𝐴 +

6. 𝐸. 𝐼

𝐿2
. 𝑣𝐵                                         (3.23 𝑎) 

−𝑀𝐵 +𝑀𝐵
𝐹 =

2. 𝐸. 𝐼

𝐿
. 𝜃𝐴 +

4. 𝐸. 𝐼

𝐿
. 𝜃𝐵 −

6. 𝐸. 𝐼

𝐿2
. 𝑣𝐴 +

6. 𝐸. 𝐼

𝐿2
. 𝑣𝐵                                         (3.23 𝑏) 

−𝑉𝐴 + 𝑉𝐴
𝐹 = −

6. 𝐸. 𝐼

𝐿2
. 𝜃𝐴 −

6. 𝐸. 𝐼

𝐿2
. 𝜃𝐵 +

12. 𝐸. 𝐼

𝐿3
. 𝑣𝐴 −

12. 𝐸. 𝐼

𝐿3
. 𝑣𝐵                                  (3.23 𝑐) 

−𝑉𝐵 + 𝑉𝐵
𝐹 =

6. 𝐸. 𝐼

𝐿2
. 𝜃𝐴 +

6. 𝐸. 𝐼

𝐿2
. 𝜃𝐵 −

12. 𝐸. 𝐼

𝐿3
. 𝑣𝐴 +

12. 𝐸. 𝐼

𝐿3
. 𝑣𝐵                                     (3.23 𝑑) 

Utiliza-se a notação matricial exposta na figura 3.8, buscando fornecer tratamento 

generalizado para 𝑛 barras. 
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Figura 3.8: Nomenclatura matricial para 𝒏 barras  

 

Fonte: O Autor (2019) 

organizam-se as equações (3.23) em formato matricial, como: 

{

𝑀𝐴
𝑀𝐵
𝑉𝐴
𝑉𝐵

} =

[
 
 
 
 
 
 
 
    

4. 𝐸. 𝐼

𝐿
2. 𝐸. 𝐼

𝐿

−
6. 𝐸. 𝐼

𝐿2

    
6. 𝐸. 𝐼

𝐿2

    

2. 𝐸. 𝐼

𝐿
4. 𝐸. 𝐼

𝐿

−
6. 𝐸. 𝐼

𝐿2

    
6. 𝐸. 𝐼

𝐿2

−
6. 𝐸. 𝐼

𝐿2

−
6. 𝐸. 𝐼

𝐿2

    
12. 𝐸. 𝐼

𝐿3

−
12. 𝐸. 𝐼

𝐿3

      

6. 𝐸. 𝐼

𝐿2

6. 𝐸. 𝐼

𝐿2

−
12. 𝐸. 𝐼

𝐿3

   
12. 𝐸. 𝐼

𝐿3 ]
 
 
 
 
 
 
 

. {

𝜃𝐴
𝜃𝐵
𝑣𝐴
𝑣𝐵

} +

{
 
 

 
 𝑀𝐴

𝐹

𝑀𝐵
𝐹

𝑉𝐴
𝐹

𝑉𝐵
𝐹
}
 
 

 
 

                            (3.24) 

Por fim, utiliza-se a notação da figura 3.8 na equação (3.24) e reescreve-se a equação de 

equilíbrio para o método geral proposto por G. A. Maney em 1915, com nomenclatura 

apresentada em Falconi (2004, p. 403 – 405), como: 

{
 

 
𝑀𝑖
𝑀𝑓
𝑉𝑖
𝑉𝑓 }
 

 
=

[
 
 
    
𝑘𝑖
𝑎

−𝑏𝑖
   𝑏𝑖

   
𝑎
𝑘𝑓
−𝑏𝑓
   𝑏𝑓

−𝑏𝑖
−𝑏𝑓
   𝑡
−𝑡

   
𝑏𝑖
𝑏𝑓
−𝑡
   𝑡 ]
 
 
 
. {

𝜃𝑖
𝜃𝑓
𝑣𝑖
𝑣𝑓

} +

{
 
 

 
 
𝑀𝑖
𝐹

𝑀𝑓
𝐹

𝑉𝑖
𝐹

𝑉𝑓
𝐹
}
 
 

 
 

                                                               (3.25) 

onde: 𝑘𝑖, 𝑘𝑓 são os coeficientes de rigidez para o sistema derivado com rotação unitária via 

método dos deslocamentos; 𝑎 é a rigidez cruzada de tal sistema derivado; 𝑏𝑖, 𝑏𝑓 são as rigidezas 

quando dos sistemas derivados de deslocamentos unitários e 𝑡 é a rigidez ao corte nos dois 

últimos sistemas derivados citados. Vide na figura 3.9 a notação utilizada. 
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Figura 3.9: Sistemas derivados, pelo método dos deslocamentos, para a barra engastada nas 

duas extremidades: (a) 𝜽𝒊 = 𝟏, (b) 𝜽𝒇 = 𝟏, (c) 𝒗𝒊 = 𝟏 e (d) 𝒗𝒇 = 𝟏 

 

Fonte: O Autor (2019) 

 

 

3.3. EQUAÇÕES DE EQUILÍBRIO DO ELEMENTO FINITO 

 

 

 Faz-se relevante mencionar que a abordagem primordial por elementos finitos consiste 

em discretizar a estrutura em pequenos elementos e proceder o refinamento da decorrente 

malha. Assim procede Meshkat-Dini e Tehranizadh (2009) através de elementos finitos 

quadriláteros. Daí que nesta tese opta-se pela formulação matricial do MEF embasada no 

método dos deslocamentos (como solução distinta da maioria das pesquisas constantes na 

literatura). Postula-se o MEF mediante utilização do princípio da superposição de efeitos e na 

conseguinte subdivisão do sistema hipergeométrico (gera o vetor de reações elásticas {𝑅𝑒}) em: 

problema fundamental (caracterizado pela atuação dos carregamentos e condições ambientais, 

gera o vetor de reações de engaste {𝑅𝑒
𝐹}) e em n sistemas derivados (geram a matriz de rigidez 

[𝐾𝑒]). Vide figura 3.10. Por fim, observa-se a utilização do elemento finito de barra associado 

a análise matricial de estruturas. 
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Figura 3.10: Princípio da superposição de efeitos no pilar com 𝑵 elementos finitos 

 

Fonte: O Autor (2019) 

 Estendendo-se as equações equilíbrio baseadas no método dos deslocamentos, estas 

apresentadas em Parcel e Maney (1944), Parcel e Moorman (1955, p. 128 – 129 e p. 206 – 214) 

e Charlton (1982, p. 157 – 163). Adequando tais equações para excitação dinâmica, tem-se o 

sistema de equilíbrio expresso por: 

{𝑅𝑒} = [𝑀𝑒]. {𝑑̈} + [𝐾𝑒]. {𝑑} + {𝑅𝑒
𝐹}                                                                                          (3.26) 

onde: {𝑅𝑒} é o vetor de reações elásticas (reações nodais de extremo do elemento finito); {𝑑} é 

o vetor de deslocamentos (incógnitas, logo deslocamentos lineares e angulares); {𝑑̈} é o vetor 

de aceleração nodal; {𝑅𝑒
𝐹} é o vetor de reações de extremo fixo; [𝑀𝑒] e [𝐾𝑒] são as matrizes de 

massa e de rigidez do elemento finito, respectivamente. 

 A equação (3.26) representa o sistema de equações de equilíbrio dos elementos finitos 

no sistema local de coordenadas (SLC), sendo necessário reescrevê-lo no sistema global de 

coordenadas (SGC), mediante transformação de coordenadas: {𝑑𝑔} = [𝑇𝑐]. {𝑑}, resultando em: 

{𝑅} = [𝑀𝑔]. {𝑑̈𝑔} + [𝐾𝑔]. {𝑑𝑔} + {𝑅
𝐹}                                                                                         (3.27) 

onde: {𝑅} = [𝑇𝑐]. {𝑅𝑒};  

           {𝑅𝐹} = [𝑇𝑐]. {𝑅𝑒
𝐹};  

           [𝑀𝑔] = [𝑇𝑐]. [𝑀𝑒]. [𝑇𝑐]
𝑇;  

           [𝐾𝑔] = [𝑇𝑐]. [𝐾𝑒]. [𝑇𝑐]
𝑇 e  

           [𝑇𝑐] é a matriz de transformação de coordenadas. 
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3.4. ELEMENTO FINITO SOB FLEXÃO 

 

 

Mediante análise do pilar apresentado na figura 3.3, e conforme preconizações dispostas 

em Timoshenko (1953, p. 73 – 75) onde relata a contribuição de Navier para equação diferencial 

que rege a linha elástica. Bem como nas definições apresentadas em Petyt (1998) para cálculo 

via elementos finitos, considera-se o carregamento no sentido positivo da direção 𝑦, 

expressando-se a equação diferencial da flexão, por: 

𝐸. 𝐼. 𝑣′′′′(𝑥) = 𝑞(𝑥)                                                                                                                          (3.28) 

sendo válido o campo das pequenas deformações e 𝑞(𝑥) é o carregamento lateral na direção 𝑦. 

Na equação residual (ver equação 3.7) procede-se a minimização do erro via equação 

(3.5), concluindo-se para EF sob flexão: 

∫{[𝐸. 𝐼. 𝑣′′′′(𝑥) − 𝑞(𝑥)].𝒲(𝑥)}

ℎ

0

𝑑𝑥 = 0                                                                                 (3.29 𝑎) 

integra-se duas vezes por partes a eq. (3.29 a), chegando-se a: 

∫[𝐸. 𝐼. 𝑣′′(𝑥).𝒲′′(𝑥)]

ℎ

0

𝑑𝑥 − ∫[𝑞(𝑥).𝒲(𝑥)]

ℎ

0

𝑑𝑥

= −[𝐸. 𝐼. 𝑣0
′′′(𝑥).𝒲(𝑥)]0

ℎ + [𝐸. 𝐼. 𝑣0
′′(𝑥).𝒲′(𝑥)]0

ℎ                                (3.29 𝑏) 

onde: 𝑣0
′′′(𝑥) é a derivada terceira da deflexão 𝑣(𝑥) em relação ao eixo axial 𝑥, sendo aplicada 

na origem (𝑥 = 0) e 𝑣0
′′(𝑥) idem para a derivada segunda. 

adimensionalisando a equação (3.29 b), via (𝜉 = ℎ−1. 𝑥), e utilizando a função ponderadora 

𝒲(𝜉) como a primeira variação da função aproximadora 𝑣(𝜉), reescreve-se: 

∫{𝛿𝛼}𝑇. {𝜓′′}. 𝐸. 𝐼. {𝜓′′}𝑇. {𝛼}. 𝐻

1

0

𝑑𝜉 − ∫{𝛿𝛼}𝑇. {𝜓}. 𝑞. 𝐻

1

0

𝑑𝜉

= −[{𝛿𝛼}𝑇. 𝐸. 𝐼. 𝑣0
′′′. {𝜓}]0

1 + [{𝛿𝛼}𝑇. 𝐸. 𝐼. 𝑣0
′′. {𝜓′}]0

1                             (3.29 𝑐) 
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com:    𝑣(𝜉) =∑𝛼𝑗 . 𝜓𝑗 = {𝜓}𝑇. {𝛼};  

            𝒲(𝜉) = {𝜓}𝑇. {𝛿𝛼} = {𝛿𝛼}𝑇. {𝜓};  

            𝒲′′(𝜉) = {𝛿𝛼}𝑇. {𝜓′′} e  

            𝑣(𝜉)  a função da interpolação. 

Reescreve-se a equação (3.29 c), com a utilização da matriz de rigidez [𝐾𝑒] e dos vetores 

{𝑅𝑒} e {𝑅𝑒
𝐹} e considerando 𝐸𝐼 constante, como: 

{𝛿𝛼}𝑇. [𝐾𝑒]. {𝛼} + {𝛿𝛼}
𝑇. {𝑅𝑒

𝐹} = {𝛿𝛼}𝑇. {𝑅𝑒}                                                                          (3.30) 

e:  

 [𝐾𝑒] = 𝐸. 𝐼. 𝐻.∫{𝜓
′′}. {𝜓′′}𝑇

1

0

𝑑𝜉; {𝑅𝑒
𝐹} = −𝐻.∫{𝜓}. 𝑞(𝑥)

1

0

𝑑𝜉; {𝑅𝑒} =

{
 
 

 
    V (0)

    𝔚(0)

−V (H)

−𝔚(𝐻)}
 
 

 
 

= {

𝑉1
𝑀1
𝑉2
𝑀2

} 

𝑉1, 𝑀1, 𝑉2 e 𝑀2 são as reações elásticas. Por fim, a equação (3.30) equivale a equação (3.26), 

sem a parcela dinâmica. E V (0), V (H) são os esforços cortantes na base e no topo do pilar 

(respectivamente), sendo 𝔚(0),𝔚(𝐻) os momentos fletores na base e no topo do pilar 

(respectivamente). 

Após a análise estática do elemento finito sob flexão, faz-se necessário definir a matriz 

de massa translacional [𝑀𝑡], a matriz de massa rotacional [𝑀𝑟] e a matriz de rigidez geométrica 

[𝐾𝑒𝑔], como: 

[𝑀𝑡] = ∫[𝑁]𝑇. 𝜌. [𝑁]

𝕍

 𝑑𝕍 = ∫𝜌. 𝐻. 𝐴(𝜉). {𝜓(𝜉)}. {𝜓(𝜉)}𝑇
1

0

𝑑𝜉                                          (3.31 𝑎) 

[𝑀𝑟] = ∫𝜌. 𝐻. 𝐼𝑧(𝜉). {𝜓
′(𝜉)}. {𝜓′(𝜉)}𝑇

1

0

𝑑𝜉                                                                             (3.31 𝑏) 

[𝐾𝑒𝑔] = ∫𝐻.𝔑(𝜉). {𝜓′(𝜉)}. {𝜓′(𝜉)}𝑇
1

0

𝑑𝜉                                                                                (3.31 𝑐) 
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sendo: 𝕍 o volume da estrutura analisada e [𝑀𝑒] = [𝑀𝑡] + [𝑀𝑟]. Ficando os elementos de 

posição (𝑖, 𝑗) das matrizes [𝐾𝑒], [𝐾𝑒𝑔] e [𝑀𝑒], expressos por: 

𝐾𝑒𝑖,𝑗 = 𝐸.𝐻.∫ 𝐼𝑧(𝜉). 𝜓𝑖
′′(𝜉). 𝜓𝑗

′′(𝜉)

1

0

𝑑𝜉                                                                                    (3.32 𝑎) 

𝐾𝑒𝑔𝑖,𝑗 = 𝐻.∫𝔑
(𝜉). 𝜓𝑖

′(𝜉). 𝜓𝑗
′(𝜉)

1

0

𝑑𝜉                                                                                         (3.32 𝑏) 

𝑀𝑒𝑖,𝑗 = 𝜌. 𝐻.∫𝐴(𝜉). 𝜓𝑖(𝜉). 𝜓𝑗(𝜉)

1

0

𝑑𝜉 + 𝜌.𝐻.∫ 𝐼𝑧(𝜉). 𝜓𝑖
′(𝜉). 𝜓𝑗

′(𝜉)

1

0

𝑑𝜉                           (3.32 𝑐) 

sendo: 𝜓1(𝜉) = 1 − 3. 𝜉2 + 2. 𝜉3;  𝜓1
′ (𝜉) = 6. ℎ−1. (−𝜉 + 𝜉2); 𝜓1

′′(𝜉) = 6. ℎ−2. (−1 + 2. 𝜉); 

𝜓2(𝜉) = (−𝜉 + 2. 𝜉2 − 𝜉3). ℎ;  𝜓2
′ (𝜉) = (−1 + 4. 𝜉 − 3. 𝜉2);   𝜓2

′′(𝜉) = 2. ℎ−1. (2 − 3. 𝜉); 

𝜓3(𝜉) = 3. 𝜉2 − 2. 𝜉3;   𝜓3
′ (𝜉) = 6. ℎ−1. (𝜉 − 𝜉2);   𝜓3

′′(𝜉) = 6. ℎ−2. (1 − 2. 𝜉); 

e 𝜓4(𝜉) = (𝜉2 − 𝜉3). ℎ;  𝜓4
′ (𝜉) = (2. 𝜉 − 3. 𝜉2)     e     𝜓4

′′(𝜉) = 2. ℎ−1. (1 − 3. 𝜉). 

Resultando o sistema (ver equação 3.26) de equilíbrio dinâmico, expresso como: 

{
 

 
𝑀𝑖

𝑀𝑓
𝑉𝑖
𝑉𝑓}
 

 
= [

   𝛼𝑖 −𝛾𝑖
−𝛾𝑖   𝛽𝑖

  𝜎    𝜏𝑖
−𝜏𝑓   𝜆

  𝜎 −𝜏𝑓
  𝜏𝑖   𝜆

   𝛼𝑓   𝛾𝑓
   𝛾𝑓   𝛽𝑓

] .

{
 
 

 
 𝜃̈𝑖
𝜃̈𝑓
𝑣̈𝑖
𝑣̈𝑓}
 
 

 
 

+

[
 
 
 
 
  𝑡 −𝑏𝑖
−𝑏𝑖   𝑘𝑖

−𝑡 −𝑏𝑓
  𝑏𝑖    𝑎

−𝑡    𝑏𝑖 
−𝑏𝑓  𝑎

 
𝑡    𝑏𝑓
 𝑏𝑓    𝑘𝑓]

 
 
 
 

. {

𝜃𝑖
𝜃𝑓
𝑣𝑖
𝑣𝑓

} +

{
 
 

 
 
𝑀𝑖

𝐹

𝑀𝑓
𝐹

𝑉𝑖
𝐹

𝑉𝑓
𝐹
}
 
 

 
 

             (3.33) 

onde: 𝛼𝑖 = 𝑀𝑒1,1;  𝛾𝑖 = −𝑀𝑒1,2;  𝛽𝑖 =𝑀𝑒2,2;  𝛼𝑓 = 𝑀𝑒3,3;   𝛾𝑓 = −𝑀𝑒3,4;   𝛽𝑓 = 𝑀𝑒4,4;  

𝜎 =𝑀𝑒1,3;   𝜏𝑖 = 𝑀𝑒1,4;   𝜏𝑓 = −𝑀𝑒2,3;     𝜆 =𝑀𝑒2,4;     𝑡 = 𝐾𝑒1,1;    𝑏𝑖 = 𝐾𝑒2,3;   𝑏𝑓 = 𝐾𝑒3,4; 

𝑎 = 𝐾𝑒2,4;   𝑘𝑖 = 𝐾𝑒2,2     e     𝑘𝑓 = 𝐾𝑒4,4. 

Baseado no método da distribuição de momentos, conforme Rizwan (2003, p. 258 – 

261), apresenta-se na Fig. 3.11 o elemento finito; as reações elásticas e os graus de liberdade. 

Figura 3.11: Elemento finito: (a) reações elásticas e (b) graus de liberdade 

 

Fonte: O Autor (2019) 
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3.5. SISTEMA DE EQUILÍBRIO DINÂMICO PARA N ELEMENTOS FINITOS 

 

 

Admite-se o pilar apresentado na figura 3.10 com 𝑁 elementos finitos, e procede-se 

análogo ao postulado em Gallagher (1975, p. 20 – 89) e Fuchs (2016, p. 314 – 325). Para tal, 

baseia-se na nomenclatura genérica de nós variando de zero (na base) até 𝑗 = 𝑛 (no topo do 

pilar). Além disso, utiliza-se a numeração dos elementos finitos de 𝑘 = 1 (primeiro elemento 

finito) até 𝑘 = 𝑁. Vide figura 3.12. 

Figura 3.12: Numeração dos elementos finitos: (a) nós, (b) barras, (c) equilíbrio dos nós ao longo 

do pilar e (d) equilíbrio do topo do pilar 

 

Fonte: O Autor (2019) 

Realiza-se o equilíbrio de momentos e de forças transversais nos pontos (nós) ao longo 

do pilar, ver fig. 3.12 (a). Desta forma, utilizam-se as reações elásticas apresentadas na figura 

3.11 (a), concluindo: 

𝑀𝑓
(𝑗) +𝑀𝑖

(𝑗+1) = 0   ∴ 

−𝛾𝑖
(𝑗). 𝜃̈𝑗−1 + [𝛽𝑖

(𝑗) + 𝛼𝑖
(𝑗+1)]. 𝜃̈𝑗 − 𝛾𝑖

(𝑗+1). 𝜃̈𝑗+1 − 𝜏𝑓
(𝑗). 𝑣̈𝑗−1 + [𝜆

(𝑗) + 𝜎(𝑗+1)]. 𝑣̈𝑗

+ 𝜏𝑖
(𝑗+1). 𝑣̈𝑗+1 − 𝑏𝑖

(𝑗). 𝜃𝑗−1 + [𝑘𝑖
(𝑗) + 𝑡(𝑗+1)]. 𝜃𝑗 − 𝑏𝑖

(𝑗+1). 𝜃𝑗+1 + 𝑏𝑖
(𝑗). 𝑣𝑗−1

+ [𝑎(𝑗) − 𝑡(𝑗+1)]. 𝑣𝑗 − 𝑏𝑓
(𝑗+1). 𝑣𝑗+1 = −𝑀𝑓

𝐹(𝑗)
−𝑀𝑖

𝐹(𝑗+1)
                       (3.34 𝑎) 
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𝑉𝑓
(𝑗) + 𝑉𝑖

(𝑗+1) = 0   ∴ 

−𝜏𝑖
(𝑗). 𝜃̈𝑗−1 + [𝜆

(𝑗) + 𝜎(𝑗+1)]. 𝜃̈𝑗 − 𝜏𝑓
(𝑗+1). 𝜃̈𝑗+1 + 𝛾𝑓

(𝑗). 𝑣̈𝑗−1 + [𝛽𝑓
(𝑗) + 𝛼𝑓

(𝑗+1)]. 𝑣̈𝑗

+ 𝛾𝑓
(𝑗+1). 𝑣̈𝑗+1 − 𝑏𝑓

(𝑗). 𝜃𝑗−1 + [𝑎
(𝑗) − 𝑡(𝑗+1)]. 𝜃𝑗 + 𝑏𝑖

(𝑗+1). 𝜃𝑗+1 + 𝑏𝑓
(𝑗). 𝑣𝑗−1

+ [𝑘𝑓
(𝑗) + 𝑡(𝑗+1)]. 𝑣𝑗 + 𝑏𝑓

(𝑗+1). 𝑣𝑗+1 = −𝑉𝑓
𝐹(𝑗)

− 𝑉𝑖
𝐹(𝑗+1)

                        (3.34 𝑏) 

Para o equilíbrio do topo do pilar, utiliza-se a fig. (3.12 d), chegando-se a: 

𝑀𝑓
(𝑗=𝑛) = 0   ∴ 

−𝛾𝑖
(𝑗). 𝜃̈𝑗−1 + 𝛽𝑖

(𝑗). 𝜃̈𝑗 − 𝜏𝑓
(𝑗). 𝑣̈𝑗−1 + 𝜆

(𝑗). 𝑣̈𝑗 − 𝑏𝑖
(𝑗). 𝜃𝑗−1 + 𝑘𝑖

(𝑗). 𝜃𝑗 + 𝑏𝑖
(𝑗). 𝑣𝑗−1 + 𝑎

(𝑗). 𝑣𝑗

= −𝑀𝑓
𝐹(𝑗)

                                                                                                              (3.34 𝑐) 

𝑉𝑓
(𝑗=𝑛) = 0   ∴ 

𝜏𝑖
(𝑗). 𝜃̈𝑗−1 + 𝜆

(𝑗). 𝜃̈𝑗 + 𝛾𝑓
(𝑗). 𝑣̈𝑗−1 + 𝛽𝑓

(𝑗). 𝑣̈𝑗 − 𝑏𝑓
(𝑗). 𝜃𝑗−1 + 𝑎

(𝑗). 𝜃𝑗 + 𝑏𝑓
(𝑗). 𝑣𝑗−1 + 𝑘𝑓

(𝑗). 𝑣𝑗

= −𝑉𝑓
𝐹(𝑗)

                                                                                                              (3.34 𝑑) 

A fim de exemplificar a montagem das matrizes [𝐾𝑒] e [𝑀𝑒] apresentadas na eq. (3.26), 

adota-se o pilar subdividido em cinco elementos finitos (𝑁 = 5) e escreve-se:  

[
[𝑀𝑒]𝜃𝜃 [𝑀𝑒]𝜃𝛿
[𝑀𝑒]𝛿𝜃 [𝑀𝑒]𝛿𝛿

] . {
{𝜃̈}

{𝛿̈}
} + [

[𝐾𝑒]𝜃𝜃 [𝐾𝑒]𝜃𝛿
[𝐾𝑒]𝛿𝜃 [𝐾𝑒]𝛿𝛿

] . {
{𝜃}

{𝛿}
} = {

{𝑀}

{𝐹}
}                                         (3.35) 

Com a finalidade de interligar a equação (3.35) do pilar com cinco elementos finitos, 

com a condensação matricial apresentada na letra c do item (2.10), bem como valendo-se da 

nomenclatura matricial da equação (2.150), escreve-se: 

[𝑀𝑒]𝜃θ =

[
 
 
 
 
 𝛽𝑖

(1) + 𝛼𝑖
(2)

−𝛾𝑖
(2)

0
0
0

−𝛾𝑖
(2)

𝛽𝑖
(2) + 𝛼𝑖

(3)

−𝛾𝑖
(3)

0
0

0
−𝛾𝑖

(3)

𝛽𝑖
(3) + 𝛼𝑖

(4)

−𝛾𝑖
(4)

0

0
0

−𝛾𝑖
(4)

𝛽𝑖
(4) + 𝛼𝑖

(5)

−𝛾𝑖
(5)

0
0
0

−𝛾𝑖
(5)

𝛽𝑖
(5)

]
 
 
 
 
 

                        (3.36 𝑎) 

[𝑀𝑒]𝜃𝛿 = [𝑀𝑒]𝛿θ
𝑇
=

[
 
 
 
 𝜆
(1) + 𝜎(2)

−𝜏𝑓
(2)

0
0
0

𝜏𝑖
(2)

𝜆(2) + 𝜎(3)

−𝜏𝑓
(3)

0
0

0
𝜏𝑖
(3)

𝜆(3) + 𝜎(4)

−𝜏𝑓
(4)

0

0
0
𝜏𝑖
(4)

𝜆(4) + 𝜎(5)

−𝜏𝑓
(5)

0
0
0
𝜏𝑖
(5)

𝜆(5) ]
 
 
 
 

                  (3.36 𝑏) 
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[𝑀𝑒]𝛿𝛿 =

[
 
 
 
 
 𝛽𝑓

(1) + 𝛼𝑓
(2)

𝛾𝑓
(2)

0
0
0

𝛾𝑓
(2)

𝛽𝑓
(2) + 𝛼𝑓

(3)

𝛾𝑓
(3)

0
0

0
𝛾𝑓
(3)

𝛽𝑓
(3) + 𝛼𝑓

(4)

𝛾𝑓
(4)

0

0
0

𝛾𝑓
(4)

𝛽𝑓
(4) + 𝛼𝑓

(5)

𝛾𝑓
(5)

0
0
0

𝛾𝑓
(5)

𝛽𝑓
(5)
]
 
 
 
 
 

                       (3.36 𝑐) 

[𝐾𝑒]𝜃θ =

[
 
 
 
 
 𝑘𝑖

(1) + 𝑡(2)

−𝑏𝑖
(2)

0
0
0

−𝑏𝑖
(2)

𝑘𝑖
(2) + 𝑡(3)

−𝑏𝑖
(3)

0
0

0

−𝑏𝑖
(3)

𝑘𝑖
(3) + 𝑡(4)

−𝑏𝑖
(4)

0

0
0

−𝑏𝑖
(4)

𝑘𝑖
(4) + 𝑡(5)

−𝑏𝑖
(5)

0
0
0

−𝑏𝑖
(5)

𝑘𝑖
(5)

]
 
 
 
 
 

                                 (3.36 𝑑) 

[𝐾𝑒]𝜃𝛿 = [𝐾𝑒]𝛿θ
𝑇
=

[
 
 
 
 
 𝑎
(1) − 𝑡(2)

𝑏𝑖
(2)

0
0
0

−𝑏𝑓
(2)

𝑎(2) − 𝑡(3)

𝑏𝑖
(3)

0
0

0

−𝑏𝑓
(3)

𝑎(3) − 𝑡(4)

𝑏𝑖
(4)

0

0
0

−𝑏𝑓
(4)

𝑎(4) − 𝑡(5)

𝑏𝑖
(5)

0
0
0

−𝑏𝑓
(5)

𝑎(5) ]
 
 
 
 
 

                 (3.36 𝑒) 

[𝐾𝑒]𝛿𝛿 =

[
 
 
 
 
 𝑘𝑓

(1) + 𝑡(2)

𝑏𝑓
(2)

0
0
0

𝑏𝑓
(2)

𝑘𝑓
(2) + 𝑡(3)

𝑏𝑓
(3)

0
0

0

𝑏𝑓
(3)

𝑘𝑓
(3) + 𝑡(4)

𝑏𝑓
(4)

0

0
0

𝑏𝑓
(4)

𝑘𝑓
(4) + 𝑡(5)

𝑏𝑓
(5)

0
0
0

𝑏𝑓
(5)

𝑘𝑓
(5)

]
 
 
 
 
 

                                  (3.36 𝑓) 

{𝜃̈}
𝑇
= {𝜃̈1 𝜃̈2 𝜃̈3 𝜃̈4 𝜃̈5}                                                                                                                (3.36 𝑔) 

{𝛿̈}
𝑇
= {𝛿̈1 𝛿̈2 𝛿̈3 𝛿̈4 𝛿̈5}                                                                                                                 (3.36 ℎ) 

{𝜃}𝑇 = {𝜃1 𝜃2 𝜃3 𝜃4 𝜃5}                                                                                                                  (3.36 𝑖) 

{𝛿}𝑇 = {𝛿1 𝛿2 𝛿3 𝛿4 𝛿5}                                                                                                                  (3.36 𝑗) 

{𝑀}𝑇 = {𝑀1 𝑀2 𝑀3 𝑀4 𝑀5}                                                                                                         (3.36 𝑘) 

{𝐹}𝑇 = {𝐹1 𝐹2 𝐹3 𝐹4 𝐹5}                                                                                                                  (3.36 𝑙) 

 

 

3.6. ELEMENTO FINITO DE BARRA COM SEÇÃO DE PAREDES FINAS E 

EM FORMATO DE NÚCLEO C 

 

 

Baseado em Smith e Coull (1991), Heidebrecht e Swift (1971) e em Barbosa (1980) 

procede-se a análise matricial do pilar em núcleo, via método dos deslocamentos. Os 

carregamentos externos são aplicados mediante imposição de cargas concentradas nos níveis 

dos lintéis. Cria-se assim, o elemento finito de barra sob flexo-torção em formato de núcleo C. 
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Os painéis – parede que compõem o núcleo estrutural são analisados como elementos 

finitos lineares com sete graus de liberdade (seis da análise matricial espacial e o empenamento 

oriundo da teoria da flexo – torção). A inserção do empenamento ocorre através da matriz de 

rigidez via teoria da flexo – torção, sendo inserido o bimomento 𝐵 no vetor de forças e o 

empenamento 𝜙′ no vetor de deslocamentos. Já, os lintéis são modelados com a capacidade de 

reação aos esforços normais, cortantes, momentos fletores e torsores. 

A análise matricial, do conjunto painéis – parede contraventado por lintéis, foi 

implementada em Mathcad Prime 5.0 (versão estudantil), a fim de processar convenientemente 

os dados. A utilização do software Mathcad é motivada pelas inúmeras incógnitas geradas pelo 

sistema de equações de equilíbrio. 

 

a) Matriz de rigidez à flexão dos painéis – parede com seção aberta  

 

O trecho dos painéis – parede será o comprimento ℎ e compreendido entre dois linteís 

consecutivos, sendo denominados de elemento de painel – parede ou simplemente de elemento 

de pilar. Vide figuras 3.13 e 3.19. 

Figura 3.13: Convenção no elemento: (a) dos graus de liberdade, (b) dos esforços solicitantes e 

(c) sequência de numeração dos graus de liberdade 

 

Fonte: O Autor (2019) 
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Na figura 3.13 observa-se que os eixos coordenados locais, do elemento do pilar, são 

impostos com origem no centro de torção. Por eixo longitudinal tem-se o eixo 𝑥, enquanto os 

demais eixos (𝑦 e 𝑧) são traçados na seção transversal.  

Da teoria do método dos deslocamentos, utiliza-se a matriz de rigidez do elemento de 

barra (pilar) com seção prismática. Observando-se que o centro de torção não coincide com o 

centro de gravidade da seção transversal, sendo utilizado o translade do sistema coordenado 

(ver letra d, deste item). Assim, no centro de gravidade exprime-se a matriz de rigidez do pilar 

com seção de paredes finas, como: 

[𝐾𝐹]𝐶𝐺 = [
[𝐾𝐹11]𝐶𝐺

[𝐾𝐹12]𝐶𝐺
[𝐾𝐹21]𝐶𝐺

[𝐾𝐹22]𝐶𝐺

]                                                                                                  (3.37) 

onde: [𝐾𝐹]𝐶𝐺 é a matriz de rigidez (do pilar com seção aberta de paredes finas) devido à flexão 

e referenciada no centro de gravidade da seção transversal. Desta forma, as equações de Maney 

organizadas em formato matricial, e aplicadas ao pilar de seção de paredes finas, ficam 

expressas por: 

{
 
 
 
 
 

 
 
 
 
 
𝐹𝑧𝑖
𝐹𝑦𝑖
𝐹𝑥𝑖
𝑀𝑧𝑖
𝑀𝑦𝑖

𝐹𝑧𝑓
𝐹𝑦𝑓
𝐹𝑥𝑓
𝑀𝑧𝑓

𝑀𝑦𝑓}
 
 
 
 
 

 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 
     

𝑡𝑧   0    0
0   𝑡𝑦    0

0   0     𝑟

  
0 −𝑏𝑦 −𝑡𝑧
𝑏𝑧 0 0
0 0 0

 
  0  0 0
−𝑡𝑦  0  𝑏𝑧
  0 −𝑟 0

−𝑏𝑦
  0
  0

  

0 𝑏𝑧     0
−𝑏𝑦 0     0

−𝑡𝑧 0     0
 

𝑘𝑧  0   0
0   𝑘𝑦    𝑏𝑦
0    𝑏𝑦    𝑡𝑧

−𝑏𝑧  0   𝑎𝑧 
0 0 0
0 0 0

 0
𝑎𝑦
𝑏𝑦

      

0 −𝑡𝑦    0

0   0 −𝑟
0    𝑏𝑧    0

   − 𝑏𝑦   0     0

−𝑏𝑧   0       0
0  0       0

  𝑎𝑧  0       0
   

   0    𝑎𝑦    𝑏𝑦

  

𝑡𝑦  0 −𝑏𝑧
0  𝑟   0
−𝑏𝑧  0    𝑘𝑧

  0
  0
  0

   0   0    0   𝑘𝑦]
 
 
 
 
 
 
 
 
 
 

.

{
 
 
 
 
 

 
 
 
 
 
𝜔𝑖
𝑣𝑖
𝑢𝑖
𝜃𝑧𝑖
𝜃𝑦𝑖
𝜔𝑓
𝑣𝑓
𝑢𝑓
𝜃𝑧𝑓
𝜃𝑦𝑓}

 
 
 
 
 

 
 
 
 
 

   (3.38) 

com: 

      𝑟 =
𝐸. 𝐴

ℎ
;   𝑘𝑦 =

4. 𝐸. 𝐼𝑦

ℎ
.
1 + 𝜑𝑐𝑦
1 + 4.𝜑𝑐𝑦

;     𝑎𝑦 =
2. 𝐸. 𝐼𝑦

ℎ
.
1 − 2. 𝜑𝑐𝑦
1 + 4. 𝜑𝑐𝑦

;    𝑏𝑦 =
𝑘𝑦 + 𝑎𝑦

ℎ
; 

      𝑘𝑧 =
4. 𝐸. 𝐼𝑧
ℎ

.
1 + 𝜑𝑐𝑧
1 + 4. 𝜑𝑐𝑧

;     𝑎𝑧 =
2. 𝐸. 𝐼𝑧
ℎ

.
1 − 2. 𝜑𝑐𝑧
1 + 4.𝜑𝑐𝑧

;    𝑏𝑧 =
𝑘𝑧 + 𝑎𝑧
ℎ

;    𝜑𝑐 =
3. 𝐸. 𝐼

𝐺. 𝐴. ℎ3
. 𝑘𝑐; 

       𝑡𝑧 =
2. 𝑏𝑧
ℎ

      e     𝑡𝑦 =
2. 𝑏𝑦

ℎ
. 
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o fator de forma da seção transversal 𝑘𝑐 é apresentado de maneira simplificada em Timoshenko 

e Gere (1984, v. 2, p. 349), como a razão entre a área da seção transversal pela área da alma na 

direção analisada. Ficando expresso por: 

𝑘𝑐 =
𝐴

𝐴𝑎𝑙𝑚𝑎
                                                                                                                                     (3.38 𝑎) 

 

 

b) Transformação de coordenadas do CG para o centro de torção D  

 

A transferência do referencial dos graus de liberdade, do centro de gravidade para o 

centro de torção, é procedida conforme o ilustrado na figura 3.14.  

Figura 3.14: Transformação de referencial do CG para D: (a) translades e (b) rotações 𝜽𝒛 e 𝜽𝒚 

no centro de torção D 

 

Fonte: O Autor (2019) 

Mediante correlação entre os deslocamentos lineares e angulares em 𝐷 com a 

repercussão no 𝐶𝐺, escreve-se: 

𝜔𝐶𝐺 = 𝜔𝐷                                                                                                                                        (3.39 𝑎) 

𝑣𝐶𝐺 = 𝑣𝐷                                                                                                                                          (3.39 𝑏) 

𝑢𝐶𝐺 = 𝑢𝐷 − 𝑦𝐶𝐺 . 𝜃𝑧𝐷 + 𝑧𝐶𝐺 . 𝜃𝑦𝐷                                                                                                  (3.39 𝑐) 

𝜃𝑧𝐶𝐺 = 𝜃𝑧𝐷                                                                                                                                       (3.39 𝑑) 
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𝜃𝑦𝐶𝐺 = 𝜃𝑦𝐷                                                                                                                                       (3.39 𝑒) 

matricialmente, tem-se: 

{𝐷}𝐶𝐺 = [𝑇]. {𝐷}𝐷                                                                                                                         (3.39 𝑓) 

{
{𝐷𝐶𝐺}𝑖
{𝐷𝐶𝐺}𝑓

} = [
[𝑇̅] [0]

[0] [𝑇̅]
] . {

{𝐷𝐷}𝑖
{𝐷𝐷}𝑓

}                                                                                               (3.39 𝑔) 

e: {𝐷𝐶𝐺}𝑖
𝑇
= {𝜔𝐶𝐺𝑖 𝑣𝐶𝐺𝑖 𝑢𝐶𝐺𝑖 𝜃𝑧𝐶𝐺𝑖

𝜃𝑦𝐶𝐺𝑖};  {𝐷𝐷}𝑖 = {𝜔𝐷𝑖 𝑣𝐷𝑖
𝑢𝐷𝑖 𝜃𝑧𝐷 𝑖 𝜃𝑦𝐷 𝑖}; 

{𝐷𝐶𝐺}𝑓
𝑇
= {𝜔𝐶𝐺𝑓 𝑣𝐶𝐺𝑓 𝑢𝐶𝐺𝑓 𝜃𝑧𝐶𝐺𝑓

𝜃𝑦𝐶𝐺𝑓}; {𝐷𝐷}𝑓 = {𝜔𝐷𝑓 𝑣𝐷𝑓
𝑢𝐷𝑓 𝜃𝑧𝐷𝑓 𝜃𝑦𝐷𝑓}; 

[𝑇̅] =

[
 
 
 
 
1 0 0
0 1 0
0 0 1

0 0
0 0

−𝑦𝐶𝐺 𝑧𝐶𝐺
0 0 0
0 0 0

   
1     0  
0     1  ]

 
 
 
 

. 

A matriz de rigidez (eq. 3.37) fica expressa, com o referencial no centro de torção, por: 

[𝐾𝐹]𝐷 = [𝑇]𝑇. [𝐾𝐹]𝐶𝐺 . [𝑇]                                                                                                                (3.40) 

sendo: [𝐾𝐹11]𝐷 =
[𝑇̅]𝑇. [𝐾𝐹11]𝐶𝐺 .

[𝑇̅];  [𝐾𝐹12]𝐷 =
[𝑇̅]𝑇. [𝐾𝐹12]𝐶𝐺 .

[𝑇̅];    [𝐾𝐹21]𝐷 =
[𝐾𝐹12]𝐷

𝑇
; 

[𝐾𝐹22]𝐷 =
[𝑇̅]𝑇. [𝐾𝐹22]𝐶𝐺 .

[𝑇̅]. 

 

c) Matriz de rigidez dos painéis – parede via teoria da flexo – torção  

 

Na figura 3.15 são apresentados os esforços solicitantes do pilar em núcleo, sob a 

pespectiva da teoria da flexo – torção (ver item 2.7). 
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Figura 3.15: Convenção dos esforços solicitantes via teoria da flexo – torção  

 

Fonte: O Autor (2019) 

Mediante resolução da equação diferencial da flexo – torção, ver equações (2.98) e 

(2.102), e aplicação das condições de contorno para o pilar apresentado na figura 3.3. Tem-se 

a rotação 𝜙(𝑥) e o empenamento 𝜙′(𝑥), expressos por: 

𝜙(𝑥) = 𝜙1 +
𝜙′

1

𝛼
. 𝑠𝑒𝑛ℎ(𝛼. 𝑥) +

𝐵1
𝐺. 𝐼𝑡

. [cosh(𝛼. 𝑥) − 1] +
𝑀𝑡1
𝛼. 𝐺. 𝐼𝑡

. [𝛼. 𝑥 − 𝑠𝑒𝑛ℎ(𝛼. 𝑥)] 

(3.41 𝑎) 

𝜙′(𝑥) = 𝜙′
1
. 𝑐𝑜𝑠ℎ(𝛼. 𝑥) +

𝐵1
𝐺. 𝐼𝑡

. 𝛼. 𝑠𝑒𝑛ℎ(𝛼. 𝑥) +
𝑀𝑡1

𝐺. 𝐼𝑡
. [1 − 𝑐𝑜𝑠ℎ(𝛼. 𝑥)]                      (3.41 𝑏) 

sendo as condições de contorno: 𝜙1 e 𝜙′
1
 a rotação e o empenamento no ponto 1 do elemento 

finito apresentado na figura 3.15; 𝐵1 e 𝑀𝑡1 o bimomento e o momento de torção (também para 

o ponto 1); 𝐵1 = 𝐸. 𝐼𝜔. 𝜙
′′
0
;  e  𝑀𝑡1 = 𝐺. 𝐼𝑡 . 𝜙

′
0
− 𝐸. 𝐼𝜔. 𝜙

′′′
0
. 

Aplica-se a equação (3.41 b), derivada em relação ao eixo axial 𝑥, na equação (2.96 c). 

Daí, exprime-se o bimomento 𝐵𝑥(𝑥) como: 

𝐵𝑥(𝑥) =
𝐺. 𝐼𝑡 . 𝜙

′
1

𝛼
. 𝑠𝑒𝑛ℎ(𝛼. 𝑥) + 𝐵1. 𝑐𝑜𝑠ℎ(𝛼. 𝑥) −

𝑀𝑡1
𝛼
. 𝑠𝑒𝑛ℎ(𝛼. 𝑥)                                    (3.42) 
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Procede-se a substituição da equação (3.41 a) na eq. (2.98), exprimindo-se a lei de 

variação do momento de torção 𝑀𝑡𝑥(𝑥) (ao longo do eixo axial do elemento finito), como: 

𝑀𝑡𝑥(𝑥) = 𝑀𝑡1                                                                                                                                      (3.43) 

Organiza-se matricialmente, as equações (3.41), (3.42) e (3.43), semelhante ao 

procedido em Henin (1978, p. 14 – 15), escreve-se: 

{
 

 
𝜙𝑥(𝑥)

𝜙′
𝑥
(𝑥)

𝐵𝑥(𝑥)
𝑀𝑡𝑥(𝑥)}

 

 

=

[
 
 
 
 
 
 
 1

𝑠𝑒𝑛ℎ(𝛼. 𝑥)

𝛼

𝑐𝑜𝑠ℎ(𝛼. 𝑥) − 1

𝐺. 𝐼𝑡

0 𝑐𝑜𝑠ℎ(𝛼. 𝑥)
𝛼. 𝑠𝑒𝑛ℎ(𝛼. 𝑥)

𝐺. 𝐼𝑡

0
𝐺. 𝐼𝑡. 𝑠𝑒𝑛ℎ(𝛼. 𝑥)

𝛼
𝑐𝑜𝑠ℎ(𝛼. 𝑥)

𝛼. 𝑥 − 𝑠𝑒𝑛ℎ(𝛼. 𝑥)

𝛼. 𝐺. 𝐼𝑡
1 − 𝑐𝑜𝑠ℎ(𝛼. 𝑥)

𝐺. 𝐼𝑡

−
𝑠𝑒𝑛ℎ(𝛼. 𝑥)

𝛼
0              0                         0              1 ]

 
 
 
 
 
 
 

.

{
 

 
𝜙1
𝜙′

1

𝐵1
𝑀𝑡1}

 

 

       (3.44) 

sendo a correlação, mediante compatibilização de sinais entre a teoria da flexo – torção e a 

análise matricial canônica via método dos deslocamentos, apresentada na eq. (3.44 a) e 

direcionada aos graus de liberdade (𝜙, 𝜙′, 𝐵 e 𝑀𝑡). Os pontos correlacionados são os extremos 

do elemento finito (apresentados na figura 3.15), e por notação dos espaço de estados (ver letra 

“d” do item 2.2.4 e, mais especificamente na eq. 2.71), tem-se: 

{𝐸2} = [𝑇]. {𝐸1}                                                                                                                             (3.44 𝑎) 

com: {𝐸1} e {𝐸2} os vetores de estado nos pontos 1 e 2 do elemento finito, respectivamente e 

[𝑇] é a matriz de transferência. Sob as seguintes expressões: 

{𝐸1} =

{
 

 
−𝜙1
−𝜙′1
𝐵1
𝑀𝑡1 }

 

 
; {𝐸2} =

{
 

 
−𝜙2
−𝜙′2
−𝐵2
−𝑀𝑡2}

 

 
 e  [𝑇] =

[
 
 
 
 
 
 
 1

𝑠𝑒𝑛ℎ(𝛼. ℎ)

𝛼

𝑐𝑜𝑠ℎ(𝛼. ℎ) − 1

𝐺. 𝐼𝑡

0 𝑐𝑜𝑠ℎ(𝛼. ℎ)
𝛼. 𝑠𝑒𝑛ℎ(𝛼. ℎ)

𝐺. 𝐼𝑡

0
𝐺. 𝐼𝑡 . 𝑠𝑒𝑛ℎ(𝛼. ℎ)

𝛼
𝑐𝑜𝑠ℎ(𝛼. ℎ)

𝛼. ℎ − 𝑠𝑒𝑛ℎ(𝛼. ℎ)

𝛼. 𝐺. 𝐼𝑡
1 − 𝑐𝑜𝑠ℎ(𝛼. ℎ)

𝐺. 𝐼𝑡

−
𝑠𝑒𝑛ℎ(𝛼. ℎ)

𝛼
0              0                         0              1 ]

 
 
 
 
 
 
 

. 

Baseando-se na definição de coeficientes de rigidez, onde os deslocamentos e/ou 

rotações unitárias definem-se os sistemas derivados. Obtem-se a matriz de rigidez via teoria da 

flexo – torção (já referenciada no centro de torção), como: 

[𝐾𝑇] = [
[𝐾𝑇11] [𝐾𝑇12]

[𝐾𝑇21] [𝐾𝑇22]
]                                                                                                           (3.45 𝑎) 
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[𝐾𝑇] = 𝛾.

[
 
 
 
 
 
𝛼. 𝑠𝑒𝑛ℎ(𝛼. ℎ) 𝑐𝑜𝑠ℎ(𝛼. ℎ) − 1

𝑐𝑜𝑠ℎ(𝛼. ℎ) − 1 ℎ. 𝑐𝑜𝑠ℎ(𝛼. ℎ) −
𝑠𝑒𝑛ℎ(𝛼. ℎ)

𝛼

−𝛼. 𝑠𝑒𝑛ℎ(𝛼. ℎ)             𝑐𝑜𝑠ℎ(𝛼. ℎ) − 1         

−{𝑐𝑜𝑠ℎ(𝛼. ℎ) − 1}          
𝑠𝑒𝑛ℎ(𝛼. ℎ)

𝛼
− ℎ         

−𝛼. 𝑠𝑒𝑛ℎ(𝛼. ℎ)        −{𝑐𝑜𝑠ℎ(𝛼. ℎ) − 1}      

𝑐𝑜𝑠ℎ(𝛼. ℎ) − 1       
𝑠𝑒𝑛ℎ(𝛼. ℎ)

𝛼
− ℎ   

𝛼. 𝑠𝑒𝑛ℎ(𝛼. ℎ) −{𝑐𝑜𝑠ℎ(𝛼. ℎ) − 1}

−{𝑐𝑜𝑠ℎ(𝛼. ℎ) − 1} ℎ. 𝑐𝑜𝑠ℎ(𝛼. ℎ) −
𝑠𝑒𝑛ℎ(𝛼. ℎ)

𝛼 ]
 
 
 
 
 

 

(3.45 𝑏) 

sendo:   𝛾 =
𝐺. 𝐼𝑡

2 − 2. 𝑐𝑜𝑠ℎ(𝛼. ℎ) + 𝛼. ℎ. 𝑠𝑒𝑛ℎ(𝛼. ℎ)
. 

 

 

d) Matriz de rigidez do pilar em núcleo no SLC  

 

A montagem da matriz de rigidez do pilar em núcleo C no sistema local de coordenadas 

(SLC), é realizada mediante união das matrizes expressas nas equações (3.40) e (3.45). 

[𝐾𝐹𝑇]14𝑥14 = [
[𝐾𝐹𝑇11]7𝑥7

[𝐾𝐹𝑇12]7𝑥7
[𝐾𝐹𝑇21]7𝑥7

[𝐾𝐹𝑇22]7𝑥7

]                                                                                       (3.46) 

donde; as submatrizes de [𝐾𝐹𝑇] são compostas via parcela da flexão [𝐾𝐹]𝐷 e pela flexo – torção 

[𝐾𝑇], sob a seguinte configuração: 

[𝐾𝐹𝑇11]7𝑥7 = [
[𝐾𝐹11]𝐷5𝑥5

[0]5𝑥2

[0]2𝑥5 [𝐾𝑇]2𝑥2
] ;   [𝐾𝐹𝑇12]7𝑥7 = [

[𝐾𝐹12]𝐷5𝑥5
[0]5𝑥2

[0]2𝑥5 [𝐾𝑇]2𝑥2
] ;   

[𝐾𝐹𝑇21]7𝑥7 = [
[𝐾𝐹21]𝐷5𝑥5

[0]5𝑥2

[0]2𝑥5 [𝐾𝑇]2𝑥2
]       e      [𝐾𝐹𝑇22]7𝑥7 = [

[𝐾𝐹22]𝐷5𝑥5
[0]5𝑥2

[0]2𝑥5 [𝐾𝑇]2𝑥2
]. 

 

e) Transformação do SLC para o SGC  

 

Na figura 3.16 é apresentada a projeção das coordenadas do centro de torção (𝑧𝐷𝐿, 𝑦𝐷𝐿 

e 𝑥𝐷𝐿) para o referencial global (𝑧𝑔, 𝑦𝑔 e 𝑥𝑔) da estrutura. 
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Figura 3.16: Projeção das coordenadas do centro de torção no sistema global  

 

Fonte: O Autor (2019) 

A lei de transformação entre os referenciais, ver figura 3.16, vale: 

{𝐷}𝑔 = [𝑇̅𝑆1]. {𝐷}𝐷𝐿                                                                                                                      (3.47 𝑎) 

{

𝑧𝑔
𝑦𝑔
𝑥𝑔
} = [

cos 𝛽 − sin 𝛽 0

sin 𝛽    cos 𝛽 0

0 0 1

] . {

𝑧𝐷𝐿
𝑦𝐷𝐿
𝑥𝐷𝐿

}                                                                                           (3.47 𝑏) 

A matriz de rigidez após a transformação de coordenadas do SLC para o SGC é 

representa por [𝐾𝑆], ficando expressa (em termos da eq. 3.46) por: 

[𝐾𝑆]14𝑥14 = [𝑇𝑆]
𝑇. [𝐾𝐹𝑇]14𝑥14. [𝑇𝑆]                                                                                                (3.48) 

com: [𝑇𝑆] = [
[𝑇̅𝑆]7𝑥7 [0]7𝑥7
[0]7𝑥7 [𝑇̅𝑆]7𝑥7

] ;    [𝑇̅𝑆] = [
[𝑇̅𝑆1]3𝑥3

[0]3𝑥4

[0]4𝑥3 [𝑇̅𝑆2]4𝑥4

] ;    [𝑇̅𝑆2] = [
[𝑇̅𝑆1]3𝑥3

[0]3𝑥1

[0]1𝑥3 1
]. 

Após implantar a rotação do sistema de coordenadas locais para o sistema global de 

coordenadas, mediante ângulo 𝛽 apresentado na figura 3.16. O sistema de equações com a 

matriz de rigidez para o problema da flexão associada à torção, fica expresso por: 

{𝐹} = [𝑇𝑆]
𝑇. [𝐾𝐹𝑇]. [𝑇𝑆]. {𝐷}                                                                                                            (3.49) 

sendo: [𝐾𝑆] = [𝑇𝑆]
𝑇. [𝐾𝐹𝑇]. [𝑇𝑆]; 

{𝐷}𝑇 = {𝜔𝑖 𝑣𝑖 𝑢𝑖 𝜃𝑧𝑖 𝜃𝑦𝑖 𝜙𝑖 𝜙𝑖
′ 𝜔𝑓 𝑣𝑓 𝑢𝑓 𝜃𝑧𝑓 𝜃𝑦𝑓 𝜙𝑓 𝜙𝑓

′
} e  

{𝐹}𝑇 = {𝐹𝑧𝑖 𝐹𝑦𝑖 𝐹𝑥𝑖 𝑀𝑧𝑖 𝑀𝑦𝑖 𝑀𝑡𝑖 𝐵𝑖 𝐹𝑧𝑓 𝐹𝑦𝑓 𝐹𝑥𝑓 𝑀𝑧𝑓 𝑀𝑦𝑓
𝑀𝑡𝑓 𝐵𝑓}. 
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f) Matriz de rigidez dos lintéis 

 

Na figura 3.17 é apresentado o sistema coordenado dos lintéis, com os conseguintes 

esforços solicitantes nas extremidades. 

Figura 3.17: Convenção positiva dos: (a) Esforços solicitantes no sistema dos lintéis, (b) Graus de 

liberdade e (c) sequência de numeração dos graus de liberdade  

 

Fonte: O Autor (2019) 

Matricialmente, escreve-se a matriz de rigidez dos lintéis, como: 

{𝐹𝐿} = [𝐾𝐿]. {𝐷𝐿}                                                                                                                               (3.50) 

com:  {𝐷𝐿}
𝑇 = {𝑣𝐿𝑖 𝑢𝐿𝑖 𝜔𝐿𝑖 𝜃𝑦𝐿𝑖 𝜃𝑥𝐿𝑖 𝜃𝑧𝐿𝑖 𝑣𝐿𝑓 𝑢𝐿𝑓 𝜔𝐿𝑓 𝜃𝑦𝐿𝑓 𝜃𝑥𝐿𝑓 𝜃𝑧𝐿𝑓}; 

{𝐹𝐿}
𝑇 = {𝐹𝑦𝐿𝑖 𝐹𝑥𝐿𝑖 𝐹𝑧𝐿𝑖 𝑀𝑦𝐿𝑖 𝑀𝑥𝐿𝑖 𝑀𝑧𝐿𝑖

𝐹𝑦𝐿𝑓 𝐹𝑥𝐿𝑓 𝐹𝑧𝐿𝑓 𝑀𝑦𝐿𝑓 𝑀𝑥𝐿𝑓 𝑀𝑧𝐿𝑓}; 

[𝐾𝐿11] =

[
 
 
 
 
 
𝑡𝑦𝐿
0
0
0
0
𝑏𝑧𝐿

0
𝑟𝐿
0
0
0
0

0
0
𝑡𝑧𝐿
−𝑏𝑦𝐿
0
0

0
0

−𝑏𝑦𝐿
𝑘𝑦𝐿
0
0

0
0
0
0
𝑠̂𝐿
0

𝑏𝑧𝐿
0
0
0
0
𝑘𝑧𝐿]
 
 
 
 
 

;  [𝐾𝐿12] =

[
 
 
 
 
 
−𝑡𝑦𝐿
0
0
0
0

−𝑏𝑧𝐿

0
−𝑟𝐿
0
0
0
0

0
0
−𝑡𝑧𝐿
𝑏𝑦𝐿
0
0

0
0

−𝑏𝑦𝐿
𝑎𝑦𝐿
0
0

0
0
0
0
−𝑠̂𝐿
0

𝑏𝑧𝐿
0
0
0
0
𝑎𝑧𝐿]
 
 
 
 
 

; 
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[𝐾𝐿21] =

[
 
 
 
 
 
−𝑡𝑦𝐿
0
0
0
0
𝑏𝑧𝐿

0
−𝑟𝐿
0
0
0
0

0
0
−𝑡𝑧𝐿
−𝑏𝑦𝐿
0
0

0
0
𝑏𝑦𝐿
𝑎𝑦𝐿
0
0

0
0
0
0
−𝑠̂𝐿
0

−𝑏𝑧𝐿
0
0
0
0
𝑎𝑧𝐿 ]

 
 
 
 
 

;  [𝐾𝐿22] =

[
 
 
 
 
 
𝑡𝑦𝐿
0
0
0
0

−𝑏𝑧𝐿

0
𝑟𝐿
0
0
0
0

0
0
𝑡𝑧𝐿
𝑏𝑦𝐿
0
0

0
0
𝑏𝑦𝐿
𝑘𝑦𝐿
0
0

0
0
0
0
𝑠̂𝐿
0

−𝑏𝑧𝐿
0
0
0
0
𝑘𝑧𝐿 ]

 
 
 
 
 

; 

[𝐾𝐿] = [
[𝐾𝐿11] [𝐾𝐿12]

[𝐾𝐿21] [𝐾𝐿22]
] ; 

𝐼𝑦𝐿 =
𝑒𝐿. ℎ𝐿

3

12
       ;        𝐼𝑧𝐿 =

ℎ𝐿 . 𝑒𝐿
3

12
; 

e os coefientes 𝑟𝐿, 𝑏𝑧𝐿, 𝑏𝑦𝐿, 𝑘𝑧𝐿, 𝑘𝑦𝐿, 𝑎𝑧𝐿, 𝑎𝑦𝐿, 𝑡𝑧𝐿 e 𝑡𝑦𝐿 possuem as mesmas expressões apresentadas 

na equação (3.38), porém com os dados da seção transversal e comprimento dos lintéis. E por  fim, 

𝑠̂𝐿 é o termo correspondente a torção no lintel e expresso por: 𝑠̂𝐿 =
𝐺.𝐼𝑡𝐿

𝐿𝐿
.  

 

g) Transformação de coordenadas para os lintéis  

 

A transformação de coordenadas do sistema de referência local do lintel (índice L) para 

o centro de torção (índice DL) é realizada mediante transformação quadrática na matriz de 

rigidez [𝐾𝐿] para [𝐾𝐿𝐷]. Admitindo que os lintéis possuem eixos paralelos ao pilar em núcleo, 

logo aplicar-se adicionalmente a mesma transformação apresentada na equação (3.48), resulta 

na matriz de rigidez no sistema global de coordenadas, expressa por: 

[𝐾𝐿𝐷] = [𝑇𝑆]
𝑇. [𝑇𝐿]

𝑇. [𝐾𝐿]. [𝑇𝐿]. [𝑇𝑆]                                                                                              (3.51) 

sendo: [𝑇𝐿] = [𝐼]12𝑥12. 

 

h) Correlação dos deslocamentos nos lintéis com o centro de torção D 

 

Considerando os deslocamentos lineares e angulares apresentado na figura 3.18, 

correlacionam-se os deslocamentos nas extremidades do lintel (índice L) com os deslocamentos 

no centro de torção D (índice D), isso de forma semelhante ao procedido nas equações (3.39). 



170 
Weslley Imperiano Gomes de Melo                                                                                                                             

 

Figura 3.18: Correlação entre os deslocamentos dos extremos do lintel, já no SGC, com o centro 

de torção  

 

Fonte: O Autor (2019) 

 A lei de correlação entre as extremidades do lintel {𝐷𝐿1} e {𝐷𝐿2}, com os deslocamentos 

no centro de torção sob o formato {𝐷𝑖} e {𝐷𝑓}, é realizada mediante as matrizes de 

transformação [𝑅𝐿1] para os deslocamentos {𝐷𝐿1} no extremo inicial do lintel, bem como [𝑅𝐿2] 

para o extremo final do lintel. Escreve-se assim: 

{𝐹} = [𝐾𝐿𝐷
∗ ]. {

{𝐷∗}

{𝐷∗}
}                                                                                                                         (3.52) 

sendo: [𝐾𝐿𝐷
∗ ] = [𝑅𝐿]

𝑇. [𝐾𝐿𝐷]. [𝑅𝐿];  {𝐷𝐿1} = [𝑅𝐿1]. {𝐷
∗}; {𝐷𝐿2} = [𝑅𝐿2]. {𝐷

∗};  

[𝑅𝐿] = [
[𝑅𝐿1] [0]

[0] [𝑅𝐿2]
] ; [𝑅𝐿1] =

[
 
 
 
 
 
0
0
1
0
0
0

1
0
0
0
0
0

0
1
0
0
0
0

0
𝑦𝐷 − 𝑦𝐿1

0
0
0
1

0
−(𝑧𝐷 − 𝑧𝐿1)

0
1
0
0

𝑧𝐷 − 𝑧𝐿1
0

−(𝑦𝐷 − 𝑦𝐿1)

0
1
0

0
−𝜔1
0

𝑦𝐷 − 𝑦𝐿1
0

𝑧𝐷 − 𝑧𝐿1 ]
 
 
 
 
 

; 

e: (𝑦𝐷, 𝑧𝐷); (𝑦𝐿1 , 𝑧𝐿1) e (𝑦𝐿2 , 𝑧𝐿2) − coordenadas do centro de torção e dos extremos inicial e 

final do lintel, em relação a origem adotada; 𝜔1, 𝜔2 são as ordenadas setoriais do diagrama 𝜔𝑝𝑐 

para os nós inicial e final do lintel (respectivamente). A forma desordenada da matriz [𝑅𝐿] sem 

termos unitários apenas na diagonal é devida a mudança na sequência de numeração dos graus 

de liberdade em detrimento dos eixos coordenados, como consta nas figuras 3.13 (c) e 3.17 (c).  

Para montar a matriz [𝑅𝐿2] basta substituir o índice 𝐿1 por 𝐿2 e a ordenada 𝜔1 por 𝜔2 

na matriz [𝑅𝐿1]. Por fim, na equação (3.49) tem-se definida a matriz de rigidez do pilar no 
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sistema global [𝐾𝑆] e na eq. (3.52) expressa-se a matriz de rigidez dos lintéis que procedem o 

travamento. 

 

i) Matriz de rigidez unificada do pilar e dos lintéis  

 

Desta feita, unifica-se a matriz [𝐾𝐷] como a matriz de rigidez do elemento de pilar em 

conjunto com o lintel na extremidade (2) do elemento finito (ver figura 3.19). Para tal 

composição, faz-se a superposição dos termos do empenamento 𝜙′ dos lintéis. No caso, são 

superpostos os elementos de posição (7,7); (7,14); (14,7) e (14,14) de matriz [𝐾𝐿𝐷
∗ ]. O 

procedimento de superposição é válido pois os lintéis fazem o travamento/ligação de duas 

paredes do mesmo pilar em núcleo estrutural. Assim, expressando-se [𝐾𝐷] como: 

[𝐾𝐷] = [𝐾𝑆] + [𝐾𝐿𝐷]𝑒𝑚𝑝𝑒𝑛𝑎𝑚𝑒𝑛𝑡𝑜                                                                                                  (3.53) 

sendo: [𝐾𝐿𝐷]𝑒𝑚𝑝𝑒𝑛𝑎𝑚𝑒𝑛𝑡𝑜 a matriz [𝐾𝐿𝐷
∗ ] (ver eq. 3.52) anulando-se todos os termos de posição 

distinta de: 𝐾𝐿𝐷
∗
7,7

; 𝐾𝐿𝐷
∗
7,14

; 𝐾𝐿𝐷
∗
14,7

 e 𝐾𝐿𝐷
∗
14,14

. A matriz de rigidez do núcleo [𝐾𝑆] no SGC é 

apresentada na equação (3.49). 

 

j) Representação do elemento finito  

 

Conforme apresentado em Heidebrecht e Swift (1971, p. 1409) e ressaltado em Yoshida 

(1988, p. II – 7), o elemento finito de barra para o pilar em formato de núcleo estrutural 

contraventado por lintéis é o exposto na figura 3.19.  
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Figura 3.19: Elemento finito de barra para o pilar em núcleo estrutural e contraventado  

 

Fonte: Adaptado de (Yoshida, 1988) 

 

3.7. ELEMENTO FINITO DE BARRA COM SEÇÃO DE PAREDES FINAS E 

EM FORMATO DE DUPLO T 

 

 

Neste item procede-se a análise matricial do elemento finito de pilar de ponte em 

formato de duplo T, porém considerando assimetria nos eixos principais de inércia e paredes 

ortogonais entre si. A nomenclatura das dimensões e numeração das paredes é indicada na 

figura 3.20 (a) e a convenção positiva dos esforços solicitantes é apresentada na figura 3.20 (b). 

Figura 3.20: Elemento finito (E.F.) do pilar em duplo T: (a) dimensões em planta e numeração 

das paredes e (b) convenção positiva dos esforços solicitantes nos extremos do EF 

 

Fonte: O Autor (2019) 
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a) Matriz de rigidez à flexão do pilar em duplo T com seção aberta  

 

A matriz de rigidez do pilar sem a consideração dos lintéis é procedida mediante método 

dos deslocamentos, obtendo-se a matriz exposta nas equações (3.37) e (3.38). Porém ressalta-

se apenas que os momentos de inércia 𝐼𝑦 e 𝐼𝑧 são apresentados nas equações (2.135), e que o 

fator de forma 𝑘𝑐 será obtido mediante razão entre a área da seção transversal pela área da alma 

(por direção analisada), ver eq. (3.38 a). Por último, na figura 3.21 apresentam-se os graus de 

liberdade para o pilar em análise. 

Figura 3.21: Graus de liberdade do pilar em duplo T sem qualquer simetria 

 

Fonte: O Autor (2019) 

 

b) Matriz de rigidez do pilar em duplo T no SGC  

 

A matriz de rigidez do pilar em duplo T assimétrico no sistema global de coordenadas 

(SGC), sem considerar o contraventamento dos lintéis, é representada pela matriz [𝐾𝐹𝑇
∗ ] 
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apresentada na eq. (3.49). Em tal matriz consta a parcela devido a rigidez à flexão (ver letra “a” 

desse item), bem como a rigidez por flexo – torção (semelhante ao procedido na letra c do item 

3.6). Ficando expressa por: 

[𝐾𝐹𝑇] = [
[𝐾𝐹𝑇11] [𝐾𝐹𝑇12]

[𝐾𝐹𝑇21] [𝐾𝐹𝑇22]
]                                                                                                        (3.54 𝑎) 

[𝐾𝐹𝑇
∗ ] = [𝑇𝑆]

𝑇. [𝐾𝐹𝑇]. [𝑇𝑆] ≡ [𝐾𝑆]                                                                                               (3.54 𝑏) 

com: 

[𝐾𝐹𝑇11] =

[
 
 
 
 
 
 
 𝑡𝑧
0
0
0
𝑏𝑦
0
0

  
0
𝑡𝑦
0

−𝑏𝑧
  0
  0
  0

0
0
𝑟

   𝑟. 𝑦𝐶𝐺
−𝑟. 𝑧𝐶𝐺
0
0

0
𝑏𝑦

𝑟. 𝑦𝐶𝐺
𝑟. 𝑦𝐶𝐺

2 − 𝑘𝑧
−𝑟. 𝑦𝐶𝐺. 𝑧𝐶𝐺

0
0

−𝑏𝑧
0

−𝑟. 𝑧𝐶𝐺
−𝑟. 𝑦𝐶𝐺 . 𝑧𝐶𝐺
𝑟. 𝑧𝐶𝐺

2 − 𝑘𝑦
0
0

0
0
0
0
0

𝛾. 𝛼. 𝑠𝑒𝑛ℎ(𝛼. ℎ)

𝛾. {𝑐𝑜𝑠ℎ(𝛼. ℎ) − 1}

0
0
0
0
0

𝛾. {𝑐𝑜𝑠ℎ(𝛼. ℎ) − 1}

𝛾. {ℎ. 𝑐𝑜𝑠ℎ(𝛼. ℎ) −
𝑠𝑒𝑛ℎ(𝛼. ℎ)

𝛼
}
]
 
 
 
 
 
 
 

; 

[𝐾𝐹𝑇12] =

[
 
 
 
 
 
 
 −𝑡𝑧
0
0
0
−𝑏𝑦
0
0

−
0
𝑡𝑦
0

−𝑏𝑧
  0
  0
  0

0
0
−𝑟

−𝑟. 𝑦𝐶𝐺
   𝑟. 𝑧𝐶𝐺
0
0

0
𝑏𝑦

−𝑟. 𝑦𝐶𝐺
−𝑟. 𝑦𝐶𝐺

2 − 𝑎𝑧
  𝑟. 𝑦𝐶𝐺 . 𝑧𝐶𝐺

0
0

−𝑏𝑧
0

𝑟. 𝑧𝐶𝐺
𝑟. 𝑦𝐶𝐺 . 𝑧𝐶𝐺
−𝑟. 𝑧𝐶𝐺

2 − 𝑎𝑦
0
0

0
0
0
0
0

−𝛾. 𝛼. 𝑠𝑒𝑛ℎ(𝛼. ℎ)

−𝛾. {𝑐𝑜𝑠ℎ(𝛼. ℎ) − 1}

0
0
0
0
0

𝛾. {𝑐𝑜𝑠ℎ(𝛼. ℎ) − 1}

𝛾. {
𝑠𝑒𝑛ℎ(𝛼. ℎ)

𝛼
− ℎ}

]
 
 
 
 
 
 
 

; 

[𝐾𝐹𝑇21] =

[
 
 
 
 
 
 
 −𝑡𝑧
0
0
0
  𝑏𝑦
0
0

−
0
𝑡𝑦
0

−𝑏𝑧
  0
  0
  0

0
0
−𝑟

−𝑟. 𝑦𝐶𝐺
   𝑟. 𝑧𝐶𝐺
0
0

0
𝑏𝑦

−𝑟. 𝑦𝐶𝐺
−𝑟. 𝑦𝐶𝐺

2 − 𝑎𝑧
  𝑟. 𝑦𝐶𝐺. 𝑧𝐶𝐺

0
0

𝑏𝑧
0

𝑟. 𝑧𝐶𝐺
𝑟. 𝑦𝐶𝐺 . 𝑧𝐶𝐺
−𝑟. 𝑧𝐶𝐺

2 − 𝑎𝑦
0
0

0
0
0
0
0

−𝛾. 𝛼. 𝑠𝑒𝑛ℎ(𝛼. ℎ)

𝛾. {𝑐𝑜𝑠ℎ(𝛼. ℎ) − 1}

0
0
0
0
0

−𝛾. {𝑐𝑜𝑠ℎ(𝛼. ℎ) − 1}

𝛾. {
𝑠𝑒𝑛ℎ(𝛼. ℎ)

𝛼
− ℎ}

]
 
 
 
 
 
 
 

; 

[𝐾𝐹𝑇22] =

[
 
 
 
 
 
 
 𝑡𝑧
0
0
0
−𝑏𝑦
0
0

  
0
𝑡𝑦
0

−𝑏𝑧
  0
  0
  0

0
0
𝑟

   𝑟. 𝑦𝐶𝐺
−𝑟. 𝑧𝐶𝐺
0
0

0
−𝑏𝑦
𝑟. 𝑦𝐶𝐺

𝑟. 𝑦𝐶𝐺
2 − 𝑘𝑧

−𝑟. 𝑦𝐶𝐺 . 𝑧𝐶𝐺
0
0

𝑏𝑧
0

−𝑟. 𝑧𝐶𝐺
−𝑟. 𝑦𝐶𝐺. 𝑧𝐶𝐺
𝑟. 𝑧𝐶𝐺

2 − 𝑘𝑦
0
0

0
0
0
0
0

𝛾. 𝛼. 𝑠𝑒𝑛ℎ(𝛼. ℎ)

−𝛾. {𝑐𝑜𝑠ℎ(𝛼. ℎ) − 1}

0
0
0
0
0

−𝛾. {𝑐𝑜𝑠ℎ(𝛼. ℎ) − 1}

𝛾. {ℎ. 𝑐𝑜𝑠ℎ(𝛼. ℎ) −
𝑠𝑒𝑛ℎ(𝛼. ℎ)

𝛼
}
]
 
 
 
 
 
 
 

    e 

[𝑇𝑆] =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
cos 𝛽
sin 𝛽
0
0
0
0
0
0
0
0
0
0
0
0

− sin𝛽
    cos𝛽
0
0
0
0
0
0
0
0
0
0
0
0

0
0
1
0
0
0
0
0
0
0
0
0
0
0

0
0
0

cos 𝛽
sin𝛽
0
0
0
0
0
0
0
0
0

0
0
0

− sin𝛽
    cos𝛽
0
0
0
0
0
0
0
0
0

0
0
0
0
0
1
0
0
0
0
0
0
0
0

0
0
0
0
0
0
1
0
0
0
0
0
0
0

0
0
0
0
0
0
0

cos𝛽
sin𝛽
0
0
0
0
0

0
0
0
0
0
0
0

− sin 𝛽
    cos𝛽
0
0
0
0
0

0
0
0
0
0
0
0
0
0
1
0
0
0
0

0
0
0
0
0
0
0
0
0
0

cos𝛽
sin𝛽
0
0

0
0
0
0
0
0
0
0
0
0

− sin 𝛽
    cos𝛽
0
0

0
0
0
0
0
0
0
0
0
0
0
0
1
0

0
0
0
0
0
0
0
0
0
0
0
0
0
1]
 
 
 
 
 
 
 
 
 
 
 
 
 

. 
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sendo válidas as transformações das coordenadas do centro de gravidade (CG) da seção em 

duplo T para o centro de torção (D), ver figura 3.14. Bem como, a transformação do SLC (𝑧𝐷, 

𝑦𝐷 e 𝑥𝐷) para o SGC (𝑥𝑔, 𝑦𝑔 e 𝑧𝑔). Tais transformações de coordenadas são apresentadas na 

figura 3.22. 

Figura 3.22: Transformação do sistema de coordenadas do centro de gravidade para o SGC em 

𝑶𝑺, passando pelo centro de torção D 

 

Fonte: O Autor (2019) 

A inércia setorial 𝐼𝜔 é obtida mediante aplicação da equação (2.133) no diagrama de 

ordenadas setoriais 𝜔𝑝𝑐 para a seção em análise e apresentado na figura 2.106. Já a inércia 

torsional 𝐼𝑡 será calculada mediante um terço do somatório do cubo da espessura 𝑡 pelo 

comprimento 𝑏𝑖 do i-ésimo painel – parede que compõe o núcleo em questão (pilar em formato 

de duplo T). Ficando 𝐼𝑡 expressa por: 

𝐼𝑡 =
1

3
∑𝑥𝑖

3. 𝑦𝑖

𝑛=7

𝑖=1

≡
1

3
∑𝑏𝑖 . 𝑡

3

7

𝑖=1

                                                                                                      (3.55) 

 

c) Matriz de rigidez dos lintéis no SGC  

 

A matriz de rigidez de cada um dos dois lintéis que promovem o contraventamento do 

pilar em duplo T (por nível), no sistema local de coordenadas, será obtida conforme notação 

apresentada na figura 3.23. 
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Figura 3.23: Reações elásticas nos lintéis para o SLC 

 

Fonte: O Autor (2019) 

Resultando na matriz [𝐾𝐿
(𝑗)] no SLC dos lintéis, expressa por: 

[𝐾𝐿
(𝑗)] =

[
 
 
 
 
 
 
 
 
 
 
 
 
 𝑡𝑦𝐿

(𝑗)

0
0
0
0

𝑏𝑧𝐿
(𝑗)

−𝑡𝑦𝐿
(𝑗)

0
0
0
0

𝑏𝑧𝐿
(𝑗)

0

𝑟𝐿
(𝑗)

0
0
0
0
0

−𝑟𝐿
(𝑗)

0
0
0
0

0
0

𝑡𝑧𝐿
(𝑗)

−𝑏𝑦𝐿
(𝑗)

0
0
0
0

−𝑡𝑧𝐿
(𝑗)

−𝑏𝑦𝐿
(𝑗)

0
0

0
0

−𝑏𝑦𝐿
(𝑗)

𝑘𝑦𝐿
(𝑗)

0
0
0
0

𝑏𝑦𝐿
(𝑗)

𝑎𝑦𝐿
(𝑗)

0
0

0
0
0
0

𝑠̂𝐿
(𝑗)

0
0
0
0
0

−𝑠̂𝐿
(𝑗)

0

𝑏𝑧𝐿
(𝑗)

0
0
0
0

𝑘𝑧𝐿
(𝑗)

−𝑏𝑧𝐿
(𝑗)

0
0
0
0

𝑎𝑦𝐿
(𝑗)

−𝑡𝑦𝐿
(𝑗)

0
0
0
0

−𝑏𝑧𝐿
(𝑗)

𝑡𝑦𝐿
(𝑗)

0
0
0
0

−𝑏𝑧𝐿
(𝑗)

0

−𝑟𝐿
(𝑗)

0
0
0
0
0

𝑟𝐿
(𝑗)

0
0
0
0

0
0

−𝑡𝑧𝐿
(𝑗)

𝑏𝑦𝐿
(𝑗)

0
0
0
0

𝑡𝑧𝐿
(𝑗)

𝑏𝑦𝐿
(𝑗)

0
0

0
0

−𝑏𝑦𝐿
(𝑗)

𝑎𝑦𝐿
(𝑗)

0
0
0
0

𝑏𝑦𝐿
(𝑗)

𝑘𝑦𝐿
(𝑗)

0
0

0
0
0
0

−𝑠̂𝐿
(𝑗)

0
0
0
0
0

𝑠̂𝐿
(𝑗)

0

𝑏𝑧𝐿
(𝑗)

0
0
0
0

𝑎𝑦𝐿
(𝑗)

−𝑏𝑧𝐿
(𝑗)

0
0
0
0

𝑘𝑧𝐿
(𝑗)
]
 
 
 
 
 
 
 
 
 
 
 
 
 

 

(3.56) 

com: 𝑟𝐿
(𝑗)
=
𝐸. 𝐴𝑗

ℎ𝐿𝑗
;    𝐴𝑗 = 𝑒𝐿𝑗 . ℎ𝐿𝑗;     𝐼𝑦𝑗 =

𝑒𝐿𝑗 . ℎ𝐿𝑗
3

12
;     𝐼𝑧𝑗 =

ℎ𝐿𝑗 . 𝑒𝐿𝑗
3

12
;    𝐼𝑡𝑗 = 𝐼𝑦𝑗 + 𝐼𝑧𝑗; 

𝑘𝑦𝐿
(𝑗)
=
4. 𝐸. 𝐼𝑦𝑗

ℎ𝐿𝑗
.
1 + 𝜑𝑐𝑦𝑗

1 + 4.𝜑𝑐𝑦𝑗
;      𝑘𝑧𝐿

(𝑗)
=
4. 𝐸. 𝐼𝑧𝑗

ℎ𝐿𝑗
.
1 + 𝜑𝑐𝑧𝑗

1 + 4.𝜑𝑐𝑧𝑗
;      𝑎𝑦𝐿

(𝑗)
=
2. 𝐸. 𝐼𝑦𝑗

ℎ𝐿𝑗
.
1 − 2. 𝜑𝑐𝑦𝑗

1 + 4. 𝜑𝑐𝑦𝑗
; 

𝑎𝑧𝐿
(𝑗)
=
2. 𝐸. 𝐼𝑧𝑗

ℎ𝐿𝑗
.
1 − 2.𝜑𝑐𝑧𝑗

1 + 4.𝜑𝑐𝑧𝑗
;       𝑏𝑦𝐿

(𝑗)
=
𝑘𝑦𝐿
(𝑗)
+ 𝑎𝑦𝐿

(𝑗)

ℎ𝐿𝑗
;        𝑏𝑧𝐿

(𝑗)
=
𝑘𝑧𝐿
(𝑗)
+ 𝑎𝑧𝐿

(𝑗)

ℎ𝐿𝑗
;      𝑡𝑦𝐿

(𝑗)
=
2. 𝑏𝑦𝐿

(𝑗)

ℎ𝐿𝑗
; 

𝑡𝑧𝐿
(𝑗)
=
2. 𝑏𝑧𝐿

(𝑗)

ℎ𝐿𝑗
;       𝜑𝑐𝑦𝑗

=
3. 𝐸. 𝐼𝑦𝑗

𝐺. 𝐴𝑗. ℎ𝐿𝑗
3 . 𝑘𝑐𝐿;       𝜑𝑐𝑧𝑗

=
3. 𝐸. 𝐼𝑧𝑗

𝐺. 𝐴𝑗. ℎ𝐿𝑗
3 . 𝑘𝑐𝐿;        𝑘𝑐𝐿 =

5

6
       e       𝑠̂𝐿

(𝑗)
=
𝐺. 𝐼𝑡𝑗

𝐿𝑗
. 
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A transformação do sistema local de coordenadas dos lintéis (𝑥𝐿, 𝑦𝐿 e 𝑧𝐿) para o sistema 

de coordenadas no centro de torção D será procedida conforme ilustrado na figura 3.24. 

Figura 3.24: Referencial dos lintéis: (a) Posicionamento no pilar em duplo T, (b) Transformação 

do SLC do lintel j para as coordenadas do centro de torção e (c) Ângulo de inclinação do lintel j 

em relação aos eixos do centro de torção 

 

Fonte: O Autor (2019) 

Através da correlação entre os deslocamentos lineares no lintel j em detrimento do 

centro de torção, escreve-se a lei de transformação de coordenadas, como: 

{𝐷}𝐷𝐿 = [𝑇̅𝐿]. {𝐷}𝐿                                                                                                                            (3.57) 

e: {𝐷}𝐷𝐿
𝑇
= {𝑧𝐷𝐿 𝑦𝐷𝐿 𝑥𝐷𝐿}; {𝐷}𝐿

𝑇
= {𝑦𝐿

(𝑗)
𝑥𝐿
(𝑗)

𝑧𝐿
(𝑗)};   [𝑇̅𝐿] = [

cos 𝛼𝐿 −sen 𝛼𝐿 0
sen 𝛼𝐿     cos 𝛼𝐿 0
0 0 1

] 
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Mediante transformação quadrática, na matriz de rigidez do lintel j, tem-se: 

[𝐾𝐿𝐷
(𝑗)] = [𝑇𝐿]

𝑇. [𝐾𝐿
(𝑗)]. [𝑇𝐿]                                                                                                         (3.58) 

onde: [𝑇𝐿]12𝑥12 = [
[𝑇𝐿

∗]6𝑥6 [0]6𝑥6
[0]6𝑥6 [𝑇𝐿

∗]6𝑥6
]        e       [𝑇𝐿

∗]6𝑥6 = [
[𝑇̅𝐿]3𝑥3 [0]3𝑥3
[0]3𝑥3 [𝑇̅𝐿]3𝑥3

]. 

Por último, rotacionam-se os deslocamentos lineares nos extremos do lintéis para o 

sistema global, isso mediante a letra b desse item, resultando na matriz de rigidez do lintel no 

SGC expressa por: 

[𝐾𝐿𝐷
∗(𝑗)] = [𝑇𝑆

𝐿]𝑇. [𝑇𝐿]
𝑇. [𝐾𝐿

(𝑗)]. [𝑇𝐿]. [𝑇𝑆
𝐿]                                                                                     (3.59) 

com: [𝑇𝑆
𝐿] = [

[𝑇𝑆
∗]6𝑥6 [0]6𝑥6

[0]7𝑥7 [𝑇𝑆
∗]6𝑥6

] ; [𝑇𝑆
∗] = [

[𝑇̅𝑆1]3𝑥3
[0]3𝑥3

[0]3𝑥3 [𝑇̅𝑆1]3𝑥3

]  e [𝑇̅𝑆1] apresentado na eq. (3.47 a). 

e nos graus de liberdade no sistema global de coordenadas, por extremidade dos lintéis, 

conforme apresentado na figura 3.25. 

Figura 3.25: Graus de liberdade nos extremos dos lintéis (1) e (2): (a) no SLC dos lintéis e (b) no 

sistema global de coordenadas {𝑫∗}𝒈 
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Fonte: O Autor (2019) 

 

d) Correlação dos deslocamentos nos lintéis com o centro de torção, no SGC 

 

Na figura 3.26 são apresentados os graus de liberdade no centro de torção D e nos 

extremos dos lintéis, já no sistema global de coordenadas (SGC). 
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Figura 3.26: Correlação dos graus de liberdade nas extremidades dos lintéis e do centro de 

torção para o SGC 

 

Fonte: O Autor (2019) 

Na figura 3.27 são apresentadas as rotações 𝜙𝐷
∗ , 𝜃𝑦𝐷

∗  e 𝜃𝑧𝐷
∗  e suas repercussões nas 

extremidades iniciais dos lintéis. Bem como as rotações em 𝑦𝑔 e 𝑧𝑔, nas extremidades iniciais 

dos lintéis (𝜃𝑦𝐿𝑖
(1)
, 𝜃𝑧𝐿𝑖

(1)
  e   𝜃𝑦𝐿𝑖

(2)
, 𝜃𝑧𝐿𝑖

(2)
). por deslocamentos nos extremos iniciais dos lintéis, tem-

se: 

𝑣𝐿𝑖
∗(1)

= 𝑣𝐷
∗ − 𝜙𝐷

∗ . [𝑧𝐿𝑖
(1)
− 𝑧𝐷]                                                                                                          (3.60) 

𝑢𝐿𝑖
∗(1)

= 𝑢𝐷
∗ + 𝜃𝑦𝐷

∗ . [𝑧𝐿𝑖
(1) − 𝑧𝐷] − 𝜃𝑧𝐷

∗ . [𝑦𝐿𝑖
(1) − 𝑦𝐷] − 𝜔𝑖

(1). 𝜙𝐷
∗ ′                                                (3.61) 

𝜔𝐿𝑖
∗(1)

= 𝜔𝐷
∗ + 𝜙𝐷

∗ . [𝑦𝐿𝑖
(1) − 𝑦𝐷]                                                                                                       (3.62) 

𝑣𝐿𝑖
∗(2)

= 𝑣𝐷
∗ − 𝜙𝐷

∗ . [𝑧𝐿𝑖
(2) − 𝑧𝐷]                                                                                                          (3.63) 

𝑢𝐿𝑖
∗(2)

= 𝑢𝐷
∗ + 𝜃𝑦𝐷

∗ . [𝑧𝐿𝑖
(2) − 𝑧𝐷] + 𝜃𝑧𝐷

∗ . [𝑦𝐷 − 𝑦𝐿𝑖
(2)] − 𝜔𝑖

(2). 𝜙𝐷
∗ ′                                                (3.64) 
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𝜔𝐿𝑖
∗(2)

= 𝜔𝐷
∗ − 𝜙𝐷

∗ . [𝑦𝐷 − 𝑦𝐿𝑖
(2)]                                                                                                       (3.65) 

Figura 3.27: Correlação dos graus de liberdade para a rotação: (a) 𝝓𝑫
∗  com as distâncias no eixo 

𝒚𝒈, (b) 𝝓𝑫
∗  com as distâncias no eixo 𝒛𝒈, (c) 𝜽𝒚𝑫

∗ , (d) 𝜽𝒛𝑫
∗ , (e) 𝜽𝒛𝑳𝒊

∗(𝟏)
 e (f) 𝜽𝒚𝑳𝒊

∗(𝟏)
 

 

Fonte: O Autor (2019) 
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Procede-se a derivação das funções 𝑣𝐿𝑖
∗(1)

 e 𝜔𝐿𝑖
∗(1)

 em relação ao eixo 𝑥𝑔, ver equações 

(3.60) e (3.62) e obtêm-se os valores das rotações 𝜃𝑧𝐿𝑖
∗(1)

 e 𝜃𝑦𝐿𝑖
∗(1)

. Analisando as figuras 3.27 (e) 

e (f), conclui-se: 

𝜽𝒛𝑳𝒊
∗(𝟏)

≡
𝑑𝑣𝐿𝑖

∗(1)

𝑑𝑥𝑔
= −𝝓𝑫

∗ . [𝒛𝑳𝒊
(𝟏) − 𝒛𝑫]                                                                                           (3.66 𝑎) 

−𝜽𝒚𝑳𝒊
∗(𝟏)

≡
𝑑𝜔𝐿𝑖

∗(1)

𝑑𝑥𝑔
= 𝝓𝑫

∗ . [𝒚𝑳𝒊
(𝟏) − 𝒚𝑫]                                                                                         (3.66 𝑏) 

Para a extremidade inicial do lintel (2) procede-se de forma análoga, derivando-se as 

eq.’s (3.63) e (3.65), concluindo-se por análise as figuras 3.27 (e) e (f): 

𝜽𝒛𝑳𝒊
∗(𝟐)

≡
𝑑𝑣𝐿𝑖

∗(2)

𝑑𝑥𝑔
= −𝝓𝑫

∗ . [𝒛𝑳𝒊
(𝟐) − 𝒛𝑫]                                                                                           (3.66 𝑐) 

−𝜽𝒚𝑳𝒊
∗(𝟐)

≡
𝑑𝜔𝐿𝑖

∗(2)

𝑑𝑥𝑔
= −𝝓𝑫

∗ . [𝒚𝑫 − 𝒚𝑳𝒊
(𝟐)]                                                                                      (3.66 𝑑) 

por rotações nos extremos iniciais dos lintéis, conclui-se: 

𝜃𝑦𝐿𝑖
∗(1)

= 𝜃𝑦𝐷
∗ − 𝜙𝐷

∗ ′. [𝑦𝐿𝑖
(1) − 𝑦𝐷]                                                                                                      (3.67) 

𝜙𝐿𝑖
∗(1)

= 𝜙𝐷
∗                                                                                                                                           (3.68) 

𝜃𝑧𝐿𝑖
∗(1)

= 𝜃𝑧𝐷
∗ − 𝜙𝐷

∗ ′. [𝑧𝐿𝑖
(1) − 𝑦𝐷]                                                                                                       (3.69) 

𝜃𝑦𝐿𝑖
∗(2)

= 𝜃𝑦𝐷
∗ + 𝜙𝐷

∗ ′. [𝑦𝐷 − 𝑦𝐿𝑖
(2)]                                                                                                      (3.70) 

𝜙𝐿𝑖
∗(2)

= 𝜙𝐷
∗                                                                                                                                           (3.71) 

𝜃𝑧𝐿𝑖
∗(2)

= 𝜃𝑧𝐷
∗ − 𝜙𝐷

∗ ′. [𝑧𝐿𝑖
(2) − 𝑦𝐷]                                                                                                       (3.72) 

Na figura 3.28 são apresentadas as coordenadas dos extremos dos lintéis e do centro de 

torção, sendo ilustradas duas possibilidades de posicionamento do eixos globais (𝑥𝑔, 𝑦𝑔  e  𝑧𝑔). 
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Figura 3.28: Coordenadas do centro de torção e dos extremos dos lintéis: (a) com o SGC no 

centro de gravidade da seção e (b) como o SGC contendo toda a seção no 1º quadrante 

 

Fonte: O Autor (2019) 

Organizando em formato matricial a relação dos deslocamentos do nó inicial do lintel 

(1), eq.’s (3.60) a (3.62) e eq.’s (3.67) a (3.69), escreve-se: 

{𝐷𝐿𝑖
∗(1)} = [𝑅𝐿𝑖

(1)]. {𝐷∗}                                                                                                                      (3.73) 
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sendo: {𝐷𝐿𝑖
∗(1)

} = {𝑣𝐿𝑖
∗(1)

𝑢𝐿𝑖
∗(1)

𝜔𝐿𝑖
∗(1) 𝜃𝑦𝐿𝑖

∗(1)
𝜙𝐿𝑖
∗(1)

𝜃𝑧𝐿𝑖
∗(1)

} ;  

                  {𝐷∗} = {𝜔𝐷
∗ 𝑣𝐷

∗ 𝑢𝐷
∗ 𝜃𝑧𝐷

∗ 𝜃𝑦𝐷
∗ 𝜙𝐷

∗ 𝜙𝐷
∗ ′}       e 

               [𝑅𝐿𝑖
(1)
] =

[
 
 
 
 
 
 0
0
1
0
0
0

1
0
0
0
0
0

0
1
0
0
0
0

0

− {𝑦𝐿𝑖
(1)
− 𝑦𝐷}

0
0
0
1

0

{𝑧𝐿𝑖
(1)
− 𝑧𝐷}

0
1
0
0

− {𝑧𝐿𝑖
(1)
− 𝑧𝐷}

0

{𝑦𝐿𝑖
(1)
− 𝑦𝐷}

0
1
0

0

−𝜔𝑖
(1)

0

− {𝑦𝐿𝑖
(1)
− 𝑦𝐷}

0

− {𝑧𝐿𝑖
(1)
− 𝑧𝐷}]

 
 
 
 
 
 

. 

Já, a correlação dos deslocamentos na extremidade inicial do lintel (2), eq.’s (3.63) a 

(3.65) e eq.’s (3.70) a (3.72), fica expressa por: 

{𝐷𝐿𝑖
∗(2)} = [𝑅𝐿𝑖

(2)]. {𝐷∗}                                                                                                                      (3.74) 

sendo: {𝐷𝐿𝑖
∗(2)

} = {𝑣𝐿𝑖
∗(2)

𝑢𝐿𝑖
∗(2)

𝜔𝐿𝑖
∗(2) 𝜃𝑦𝐿𝑖

∗(2)
𝜙𝐿𝑖
∗(2)

𝜃𝑧𝐿𝑖
∗(2)

}        e  

               [𝑅𝐿𝑖
(2)
] =

[
 
 
 
 
 
 0
0
1
0
0
0

1
0
0
0
0
0

0
1
0
0
0
0

0

{𝑦𝐷 − 𝑦𝐿𝑖
(2)
}

0
0
0
1

0

{𝑧𝐿𝑖
(2)
− 𝑧𝐷}

0
1
0
0

− {𝑧𝐿𝑖
(2)
− 𝑧𝐷}

0

− {𝑦𝐷 − 𝑦𝐿𝑖
(2)
}

0
1
0

0

−𝜔𝑖
(2)

0

{𝑦𝐷 − 𝑦𝐿𝑖
(2)
}

0

− {𝑧𝐿𝑖
(2)
− 𝑧𝐷}]

 
 
 
 
 
 

. 

Por fim, estende-se as correlações para os extremos finais dos lintéis (1) e (2), sob a 

forma: 

{𝐷𝐿𝑓
∗(1)} = [𝑅𝐿𝑓

(1)] . {𝐷∗}                                                                                                                      (3.75) 

{𝐷𝐿𝑓
∗(2)} = [𝑅𝐿𝑓

(2)] . {𝐷∗}                                                                                                                      (3.76) 

com [𝑅𝐿𝑓
(1)] formulada mediante troca dos subíndices 𝑖 por 𝑓 da matriz [𝑅𝐿𝑖

(1)]. O mesmo 

procede-se com a matriz [𝑅𝐿𝑓
(2)] em relação a [𝑅𝐿𝑖

(2)]. Conclui-se a correlação dos lintéis com o 

centro de torção, mediante transformação quadrática da matriz [𝐾𝐿𝐷
∗(𝑗)] por [𝑅𝐿

(𝑗)], ficando: 

[𝑲𝑳𝑫
∗∗(𝟏)] = [𝑅𝐿

(1)]
𝑇

. [𝐾𝐿𝐷
∗(1)]. [𝑅𝐿

(1)] ≡ [𝑹𝑳
(𝟏)]

𝑻

. [𝑻𝒔]
𝑻. [𝑻𝑳]

𝑻. [𝑲𝑳
(𝟏)]. [𝑻𝑳]. [𝑻𝑺]. [𝑹𝑳

(𝟏)]         (3.77) 

[𝑲𝑳𝑫
∗∗(𝟐)] = [𝑅𝐿

(2)]
𝑇

. [𝐾𝐿𝐷
∗(2)]. [𝑅𝐿

(2)] ≡ [𝑹𝑳
(𝟐)]

𝑻

. [𝑻𝒔]
𝑻. [𝑻𝑳]

𝑻. [𝑲𝑳
(𝟐)]. [𝑻𝑳]. [𝑻𝑺]. [𝑹𝑳

(𝟐)]         (3.78) 
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com: [𝑅𝐿
(1)] = [

[𝑅𝐿𝑖
(1)]

6𝑥7
[0]6𝑥7

[0]6𝑥7 [𝑅𝐿𝑓
(1)]

6𝑥7

]

12𝑥14

     e        [𝑅𝐿
(2)] = [

[𝑅𝐿𝑖
(2)]

6𝑥7
[0]6𝑥7

[0]6𝑥7 [𝑅𝐿𝑓
(2)]

6𝑥7

]

12𝑥14

. 

 

e) Matriz de rigidez unificada do pilar e dos lintéis (1) e (2) 

 

De acordo com o exposto por Heidebrecht e Swift (1971), quando os lintéis unem dois 

pontos do mesmo pilar (o que se verifica na figura 3.20 para os lintéis 1 e 2), apenas os termos 

devido ao empenamento 𝜙′ contribuirão para a montagem da matriz de rigidez [𝐾𝐷] do núcleo 

em duplo T e contraventado. Ficando expressa por: 

[𝐾𝐷] = [𝐾𝑆] + [𝐾𝐿𝐷
∗∗∗(1)] + [𝐾𝐿𝐷

∗∗∗(2)]                                                                                             (3.79) 

sendo: [𝐾𝑆] a matriz de rigidez do pilar em dupla T no SGC sem computar o contraventamento 

dos lintéis, ver equação (3.54 b); [𝐾𝐿𝐷
∗∗∗(1)] é a matriz [𝐾𝐿𝐷

∗∗(1)], ver eq. (3.77), anulando-se todos 

os termos das posições distintas de (7,7); (7,14); (14,7) e (14,14), faz-se isso para computar o 

empenamento no lintel (1). Por último, [𝐾𝐿𝐷
∗∗∗(2)] é a matriz de ordem (14𝑥14) com termos 

nulos com exceção dos termos (7,7); (7,14); (14,7) e (14,14), os quais são obtidos da matriz 

[𝐾𝐿𝐷
∗∗(2)], ver eq. (3.78).    

 

f) Representação do elemento finito  

 

Analogamente ao procedido em Heidebrecht e Swift (1971) para o pilar em núcleo 

estrutural sob formato de C, apresenta-se na figura 3.29 o elemento finito para o pilar em duplo 

T e contraventamento nos extremos por lintéis. 
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Figura 3.29: Elemento finito de barra para o pilar em duplo T e contraventado por lintéis nas 

faces abertas 

 

Fonte: O Autor (2019) 
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ESTABILIDADE ELÁSTICA DE PILARES DE PONTES COM INÉRCIA 

VARIÁVEL AO LONGO DO COMPRIMENTO 

 

 

 

 

4.1. INTRODUÇÃO  

 

 

O estudo da estabilidade elástica de elementos estruturais é apresentado inicialmente em 

Massonnet (1959), Chajes (1974), Del Nero (1970) e em Timoshenko e Gere (2009) para 

diversas configurações de apoios, porém sempre com estados de carga compostos por apenas 

um carregamento, por vez. Em particular, na estabilidade elástica do pilar para atuação do peso 

próprio, resolve-se a EDO via funções de Bessel. Neste sentido, neste capítulo será procedida 

a análise da estabilidade elástica do referido pilar com estado de carga apresentada na fig.4.1, 

logo sob a atuação conjunta dos carregamentos laterais (𝑞1, 𝑞2 e 𝑄) e longitudinais (𝑃, 𝑝). As 

cargas concentradas no topo do pilar são obtidas mediante item 2.1.1, mais especificamente nas 

figuras 2.13, 2.14 e 2.18, bem como nas eq.’s (2.11), (2.12) e (2.13). 

Figura 4.1: Estado de carga do pilar de ponte 

 

Fonte: O Autor (2019) 

Capítulo 

4 
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A resolução da equação diferencial oriunda da ação conjunta dos carregamentos é 

bastante laboriosa se conduzida via funções de Bessel, sendo mais eficaz e prática a utilização 

de métodos aproximados: a exemplo, citam-se o método das diferenças finitas (SOARE, 1962),  

(GUTKOWSKI, 1981) e (ALFUTOV, 2000). A obtenção da carga crítica será procedida 

através da EDO não homogênea, caracterizando assim um problema de ponto limite (resolvido 

mediante incremento sucessivo da carga 𝑃 até que o deslocamento lateral no topo do pilar tenda 

a infinito). A verificação de tal resultado será realizada mediante valores exatos apresentados 

em Timoshenko e Gere (2009) para subcasos de aplicação de carregamento. 

 

a) Carga crítica via critério energético 

 

Considere-se o pilar de ponte com rigidez axial (𝐸. 𝐴 → ∞) e rigidez à flexão 

(𝐸. 𝐼 → ∞) tidas inifinitas e com base engastada através de mola rotacional de constante 𝑘 de 

rigidez (fig 4.2 a). A configuração deformada do referido pilar é apresentada na fig. 4.2 (b). 

Figura 4.2: Equilíbrio elástico do pilar: (a) configuração indeformada e (b) condição de 

equilíbrio 

 

Fonte: O Autor (2019) 

A energia potencial de deformação 𝑈 é computada mediante a rotação 𝜙 da seção 

transversal localizada na base do pilar e em termos da constante elástica 𝑘 da mola, como: 

𝑈 =
𝑘.𝜙2

2
                                                                                                                                              (4.1) 
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Já, o trabalho 𝑊 oriundo da atuação da carga 𝑃 no topo do pilar é expresso por: 

𝑊 = 𝑃. 𝛿                                                                                                                                                (4.2) 

Na condição de equilíbrio indiferente (𝑊 = 𝑈) fica caracterizada, por definição, a 

atuação da carga crítica 𝑃𝐶𝑅 e essa estabelecida por: 

𝑃𝐶𝑅 =
𝑘.𝜙2

2. 𝛿
                                                                                                                                          (4.3) 

o deslocamento vertical 𝛿 do topo do pilar é expresso, por geometria, como: 

𝛿 = 𝐻. (1 − cos𝜙)                                                                                                                          (4.3 𝑎) 

numa solução aproximada impõe-se a eq. (4.3 a) apenas dois termos da séria de potências de 

Taylor para o cosseno, e daí tem-se: 

𝛿 ≅ 𝐻. [1 − (1 −
𝜙2

2!
)] =

𝐻.𝜙2

2
                                                                                                 (4.3 𝑏) 

resultando a carga crítica 𝑃𝐶𝑅, via substituição da eq. (4.3 b) na eq. (4.3), como: 

𝑃𝐶𝑅 =
𝑘

𝐻
                                                                                                                                             (4.3 𝑐) 

A fim de obter a carga crítica com os efeitos de 2ª ordem, vide Fig. 4.2 (b), basta 

proceder o equilíbrio de momento na base do pilar, resultando: 

𝑃𝐶𝑅. Δ = 𝑘. 𝜙                                                                                                                                         (4.4) 

o deslocamento horizontal Δ no topo do pilar é definido, de acordo com a geometria e a 

configuração deformada do pilar, por: 

Δ = H. sen𝜙                                                                                                                                     (4.4 𝑎) 

aplicando-se a eq. (4.4. a) na eq. (4.4) exprime-se a carga crítica, via solução aproximada de 2ª 

ordem e representada sob traçado elíptico na Fig. 4.3, como: 

𝑃𝐶𝑅 =
𝑘

𝐻
.
𝜙

𝑠𝑒𝑛 𝜙
                                                                                                                               (4.4 𝑏) 
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Figura 4.3: Carga crítica mediante solução aproximada de 1ª e 2ª ordens 

 

Fonte: O Autor (2019) 

Por fim, em termos energéticos, configura-se a carga crítica na condição de equilíbrio 

indiferente (𝑊 = 𝑈) e sob configuração instável. Configurando-se ainda a estabilidade na 

condição de equilíbrio (𝑊 < 𝑈), onde a carga 𝑃 atuante no topo do pilar é inferior a carga 

crítica. Ainda é relevante mencionar a instabilidade ocorrida na condição de equilíbrio 

(𝑊 > 𝑈), quando o trabalho 𝑊 realizado pelas cargas supera o potencial 𝑈 de deformação do 

pilar. Nesta última, conduzindo a deformações elevadas e em tal ordem de grandeza que a 

estrutura não possua capacidade resistente suficiente aos esforços solicitantes ativados, 

entrando em regime de colapso. Tais condições de equilíbrio são apresentadas na fig. 4.4 (a), 

com a posição deformada do pilar e em termos da carga atuante. Na fig. 4.4 (b) apresenta-se 

em forma de analogia, a movimentação de uma esfera em diversas configurações da base de 

apoio.   

Figura 4.4: Condições de equilíbrio: (a) em termos da carga atuante 𝑷 e da deformada do pilar e 

(b) via analogia com uma esfera 

 

Fonte: Adaptado de (BELLUZI, V. 1,  1971) 
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4.2. EQUAÇÃO DIFERENCIAL VIA TÉCNICA DO MEIO CONTÍNUO 

 

 Ao considerar o pilar projetado para pontes e destinados a transpor grandes vales, 

ressalta-se a necessidade em computar o incremento de deflexões em decorrência do peso 

próprio 𝑝 do pilar e das cargas laterais (essas últimas são oriundas preponderantemente das 

rajadas de vento). Ao analisar os efeitos de 1ª ordem (com a estrutura indeformada) verifica-se 

momento fletor gerado unicamente pelas cargas laterais 𝑞1, 𝑞2 e 𝑄. Porém computando os 

esforços na configuração deformada do pilar (efeitos de 2ª ordem), obtém-se a equação do 

momento fletor 𝔐(𝑥) em termos tanto das cargas laterais quanto das cargas verticais 𝑝 e 𝑃. Na 

fig. 4.5 (a) é apresentada tendência de deformação do pilar sob a imposição do estado de carga 

mencionado anteriormente, já na fig. 4.5 (b) evidencia-se elemento infinitesimal (𝑑𝑝) do peso 

próprio 𝑝 e conseguinte deflexão 𝑣(𝑥̅) do pilar para a cota 𝑥̅. 

Figura 4.5: Pilar de ponte: (a) configuração deformada, (b) elemento infinitesimal 𝒅𝒑 do peso 

próprio 

 

Fonte: O Autor (2019) 

Na fig. 4.6 é apresentado o diagrama de corpo livre do pilar, tal ilustração destina-se a 

realizar o equilíbrio de momento numa seção genérica 𝑆. A localização da seção analisada é a 

cota 𝑥 em relação a base do pilar.  
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Figura 4.6: Diagrama de corpo livre com a convenção positiva para o momento fletor 

 

Fonte: O Autor (2019) 

Resultando como equação para o momento fletor 𝔐(𝑥), a seguinte: 

𝔐(𝑥) = −∫[𝑣(𝑥̅) − 𝑣(𝑥)]. 𝑑𝑝

𝐻

𝑥

− [𝑣(𝐻) − 𝑣(𝑥)]. 𝑃 + 𝑄1.
(𝐻 − 𝑥)

2
+ 𝑄2𝑎.

2

3
. (𝐻 − 𝑥)

+ 𝑄2𝑏.
(𝐻 − 𝑥)

2
+ 𝑄. (𝐻 − 𝑥)                                                                                (4.5) 

Após aplicar na eq. (4.5) as forças resultantes 𝑄1, 𝑄2𝑎 e 𝑄2𝑏 decorrentes dos 

carregamentos laterais 𝑞1 e 𝑞2, bem como impor o elemento infinitesimal 𝑑𝑝 = 𝑝(𝑥). 𝑑𝑥̅ 

(advindo da variação do peso próprio ao longo do comprimento do pilar). Tal consideração da 

variação de 𝑝(𝑥) é em decorrência do lançamento estrutural otimizado economicamente por 

uso de material nas seções mais solicitadas. Destes procedimentos realizados, reescreve-se: 

𝔐(𝑥) = −∫[𝑣(𝑥̅) − 𝑣(𝑥)]. 𝑝(𝑥). 𝑑𝑥̅

𝐻

𝑥

− [𝑣(𝐻) − 𝑣(𝑥)]. 𝑃

+ (𝐻 − 𝑥). {
𝑞1
2
. (𝐻 − 𝑥) + 𝑞2. [(

𝑥

2
−
𝑥2

2. 𝐻
) + (

𝐻

3
−
2

3
. 𝑥 +

𝑥2

3. 𝐻
)] + 𝑄} (4.6) 

 

a) Equação diferencial via teoria da linha elástica no campo das pequenas 

deformações 

 

Utilizando a equação diferencial da flexão, sob hipótese do campo das pequenas 

deformações, proposta por Navier e baseada na hipótese de Bernoulli. Em decorrência desta 
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teoria torna-se desprezível a deformação pelo esforço cortante, ficando a equação de equilíbrio 

em momento expressa por: 

𝔐(𝑥) = − 𝐸. 𝐼(𝑥). 𝑣′′(𝑥)                                                                                                                  (4.7) 

Na figura 4.7 é apresentada a mudança do referencial 𝑥̅ para 𝑥 e do intervalo de 

integração, isso a fim de unificar as parcelas inclusas na integral da eq. (4.6). 

Figura 4.7: Transformação do referencial 𝒙 para 𝒙 e de intervalo de integração 

 

Fonte: O Autor (2019) 

resulta desta transformação as integrais: 

∫ 𝑣(𝑥̅)

𝐻

𝑥

𝑑𝑥̅ = ∫ 𝑣(𝑥)

𝐻

0

𝑑𝑥 − ∫𝑣(𝑥)

𝑥

0

𝑑𝑥                                                                                        (4.8 𝑎) 

∫ 𝑣(𝑥)

𝐻

𝑥

𝑑𝑥̅ = 𝑣(𝑥).∫ 𝑑𝑥̅

𝐻

𝑥

= (𝐻 − 𝑥). 𝑣(𝑥)                                                                                (4.8 𝑏) 

 Substituindo as eq.’s (4.8 a) e (4.8 b) na combinação das eq.’s (4.6) e (4.7), exprime-se: 

𝐸. 𝐼(𝑥). 𝑣′′(𝑥) = ∫ 𝑝(𝑥). 𝑣(𝑥)𝑑𝑥

𝐻

0

−∫𝑝(𝑥). 𝑣(𝑥) 𝑑𝑥

𝑥

0

− 𝑝(𝑥). 𝑣(𝑥).∫ 𝑑𝑥̅

𝐻

𝑥

+ [𝑣(𝐻) − 𝑣(𝑥)]. 𝑃

+ 𝐴. 𝑥3 + 𝐵. 𝑥2 + 𝐶. 𝑥 + 𝐷                                                                                    (4.9) 

sendo:   𝐴 =
𝑞2
6. 𝐻

;   𝐵 = −
𝑞1
2
;   𝐶 = (𝑞1 −

𝑞2
2
) . 𝐻 + 𝑄;   𝐷 = −(

3. 𝑞1 − 2. 𝑞2
6

) . 𝐻2 − 𝑄.𝐻. 

procede-se a derivação da eq. (4.9) como intuito de remover as integrais, reescrevendo-se: 

−𝐸.
𝑑

𝑑𝑥
[𝐼(𝑥). 𝑣′′(𝑥)] = 𝑝(𝑥). 𝑣(𝑥) +

𝑑

𝑑𝑥
[𝑝(𝑥). 𝑣(𝑥). (𝐻 − 𝑥)] +

𝑑

𝑑𝑥
[𝑃. 𝑣(𝑥)] + 𝑄(𝑥) 

(4.10) 
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onde: 𝑄(𝑥) = 𝐴1. 𝑥
2 + 𝐵1. 𝑥 + 𝐶; 

            𝐴1 = −3. 𝐴 = −
𝑞2
2.𝐻

;  𝐵1 = −2. 𝐵 = 𝑞1;  
𝑑

𝑑𝑥
[𝑃. 𝑣(𝐻)] = 𝑃.

𝑑

𝑑𝑥
[𝑣(𝐻)] = 0; 

            ∫ 𝑝(𝑥). 𝑣(𝑥)

𝐻

0

𝑑𝑥 = 𝑐𝑡𝑒 ↔
𝑑

𝑑𝑥
[∫ 𝑝(𝑥). 𝑣(𝑥)

𝐻

0

𝑑𝑥] = 0   e 

            
𝑑

𝑑𝑥
[𝑝(𝑥). 𝑣(𝑥). (𝐻 − 𝑥)] = [𝑝′(𝑥). 𝑣(𝑥) + 𝑝(𝑥). 𝑣′(𝑥)]. (𝐻 − 𝑥) − 𝑝(𝑥). 𝑣(𝑥). 

após realizar a derivação da eq. (4.10) expressa-se a equação diferencial ordinária (EDO) que 

rege a estabilidade elástica do pilar analisado. Sendo adotada a variação da seção transversal do 

pilar (conforme ilustração na fig. 4.8 a), bem como o estado de carga e condições de contorno 

apresentados na figura 4.5. Resultando assim a EDO: 

𝐸. [𝐼′(𝑥). 𝑣′′(𝑥) + 𝐼(𝑥). 𝑣′′′(𝑥)] + [𝑝′(𝑥). 𝑣(𝑥) + 𝑝(𝑥). 𝑣′(𝑥)]. (𝐻 − 𝑥) + 𝑃. 𝑣′(𝑥)

= 𝐴1. 𝑥
2 + 𝐵1. 𝑥 + 𝐶                                                                                             (4.11) 

Figura 4.8: Pilar engastado na base: (a) com seção transversal linearmente variável e (b) com 

seção constante 

 

Fonte: O Autor (2019) 

Por caso particular cita-se a seção transversal constante, e para tal consideram-se 𝑝′(𝑥) 

e 𝐼′(𝑥) como nulos na eq. (4.11). Assim, reescreve-se a EDO como: 

𝐸. 𝐼. 𝑣′′′(𝑥) + [𝑝. (𝐻 − 𝑥) + 𝑃]. 𝑣′(𝑥) = 𝐴1. 𝑥
2 + 𝐵1. 𝑥 + 𝐶                                                  (4.12) 
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b) Equação diferencial via derivação prévia do momento fletor 𝕸(𝒙) 

 

Derivando inicialmente a eq. (4.6) em relação ao eixo axial 𝑥, tem-se: 

𝑑

𝑑𝑥
𝔐(𝑥) = −

𝑑

𝑑𝑥
{∫ 𝑝(𝑥). [𝑣(𝑥̅) − 𝑣(𝑥)]

𝐻

𝑥

 𝑑𝑥̅} − 𝑃.
𝑑

𝑑𝑥
[𝑣(𝐻) − 𝑣(𝑥)]

+
𝑑

𝑑𝑥
(𝐴. 𝑥3 + 𝐵. 𝑥2 + 𝐶. 𝑥 + 𝐷)                                                                        (4.13) 

Procedendo a análise das integrais, via fig. 4.7, e define-se: 

∫ 𝑣(𝑥̅)

𝐻

𝑥

𝑑𝑥̅ = ∫ 𝑣(𝑥)

𝐻

0

𝑑𝑥 − ∫𝑣(𝑥)

𝑥

0

𝑑𝑥                                                                                     (4.14 𝑎) 

𝑑

𝑑𝑥
[∫ 𝑣(𝑥)

𝐻

𝑥

𝑑𝑥̅] =
𝑑

𝑑𝑥
[∫ 𝑣(𝑥)

𝐻

0

𝑑𝑥 − ∫𝑣(𝑥)

𝑥

0

𝑑𝑥]                                                                 (4.14 𝑏) 

𝑑

𝑑𝑥
[∫ 𝑝(𝑥). 𝑣(𝑥)

𝐻

0

𝑑𝑥] =
𝑑

𝑑𝑥
(𝑐𝑡𝑒) = 0                                                                                      (4.14 𝑐) 

𝑑

𝑑𝑥
[∫𝑝(𝑥). 𝑣(𝑥)

𝑥

0

𝑑𝑥] =
𝑑

𝑑𝑥
[𝑃𝑝(𝑥). 𝑉𝑣(𝑥) − 𝑃𝑝(0). 𝑉𝑣(0)] = 𝑝(𝑥). 𝑣(𝑥)                         (4.14 𝑑) 

𝑑

𝑑𝑥
[∫ 𝑝(𝑥). 𝑣(𝑥)

𝐻

𝑥

𝑑𝑥̅] =
𝑑

𝑑𝑥
[𝑝(𝑥). 𝑣(𝑥).∫ 𝑑𝑥̅

𝐻

𝑥

] =
𝑑

𝑑𝑥
[𝑝(𝑥). 𝑣(𝑥). (𝐻 − 𝑥)]

= [𝑝′(𝑥). 𝑣(𝑥) + 𝑝(𝑥). 𝑣′(𝑥)]. (𝐻 − 𝑥) − 𝑝(𝑥). 𝑣(𝑥)                               (4.14 𝑒) 

𝑃.
𝑑

𝑑𝑥
[𝑣(𝐻) − 𝑣(𝑥)] = 𝑃. {

𝑑

𝑑𝑥
[𝑣(𝐻)] −

𝑑

𝑑𝑥
[𝑣(𝑥)]} = −𝑃. 𝑣′(𝑥)                                     (4.14 𝑓) 

onde: 𝑃𝑝(𝑥), 𝑉𝑣(𝑥) são as funções primitivas de 𝑝(𝑥) e 𝑣(𝑥), respectivamente. 

Valendo-se dos termos desenvolvidos da eq. (4.14 a) até a eq. (4.14 f) e impondo-lhes 

na eq. (4.13), conclui-se: 



196 
Weslley Imperiano Gomes de Melo                                                                                                                             

 

𝑑

𝑑𝑥
𝔐(𝑥) = [𝑝′(𝑥). 𝑣(𝑥) + 𝑝(𝑥). 𝑣′(𝑥)]. (𝐻 − 𝑥) + 𝑃. 𝑣′(𝑥) + 𝐴1. 𝑥

2 + 𝐵1. 𝑥 + 𝐶         (4.15) 

Por fim, aplicando a teoria de Navier para a linha elástica (adotando o campo das 

pequenas deformações), tem-se a equação de equilíbrio expressa por: 

𝐸. 𝐼(𝑥). 𝑣′′(𝑥) = −𝔐(𝑥)    ∴    𝐸. [𝐼′(𝑥). 𝑣′′(𝑥) + 𝐼(𝑥). 𝑣′′′(𝑥)] = −
𝑑

𝑑𝑥
𝔐(𝑥)                (4.16) 

E ao igualar as eq.’s (4.15) e (4.16), além de impor as configurações da seção transversal 

ao longo do eixo longitudinal do pilar, chega-se as mesmas equações diferenciais expressas nas 

eq.’s (4.11) e (4.12) que foram obtidas na letra (a) deste item. 

 

4.3. INAPLICABILIDADE DA EQUAÇÃO CLÁSSICA DE BESSEL  

 

A fim de analisar a aplicabilidade da equação canônica de Bessel na resolução do 

problema de estabilidade elástica para o pilar com seção transversal constante ao longo do eixo 

longitudinal, que é expressa na eq. (4.12). Procede-se a adimensionalização do eixo longitudinal 

do pilar através de (𝜉 = 𝐻−1. 𝑥) e definem-se as transformações de referencial 𝑥 para 𝜉 nas 

derivadas, como: 

𝑣′(𝑥) =
𝑑𝑣(𝜉)

𝑑𝜉
.
𝑑𝜉

𝑑𝑥
= 𝑣𝐼(𝜉).

1

𝐻
                                                                                                  (4.17 𝑎) 

𝑣′′(𝑥) =
𝑑

𝑑𝑥
[
1

𝐻
.
𝑑𝑣(𝜉)

𝑑𝜉
] =

1

𝐻
.
𝑑2𝑣(𝜉)

𝑑𝜉2
.
𝑑𝜉

𝑑𝑥
=
1

𝐻2
. 𝑣𝐼𝐼(𝜉)                                                     (4.17 𝑏) 

𝑣′′(𝑥) =
1

𝐻3
. 𝑣𝐼𝐼𝐼(𝜉)                                                                                                                     (4.17 𝑐) 

Resultando como EDO adimensionalizada: 

𝐸𝐼

𝐻3
. 𝑣𝐼𝐼𝐼(𝜉) +

[𝑝. (𝐻 − 𝑥) + 𝑃]

𝐻
. 𝑣𝐼(𝜉)

= −
𝑞2
2.𝐻

. (𝜉. 𝐻)2 + 𝑞1. 𝜉. 𝐻 + (−𝑞1 +
𝑞2
2
) .𝐻 − 𝑄                                       (4.18) 
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Multiplicando a Eq. (4.18) por (𝐸𝐼)−1. 𝐻3, isto a fim de tornar unitário o coeficiente do 

termo de maior em derivação. Aliado a tal artifício matemático, procede-se a mudança de 

variável 𝑦 = 𝑣𝐼 (o super-índice 𝐼 indica que a derivação é realizada em relação a 𝜉) para que a 

EDO enquadre-se na equação clássica de Bessel, tem-se: 

𝑦𝐼𝐼(𝜉) + [𝑝. (1 − 𝜉) + 𝑃].
𝐻3

𝐸𝐼
. 𝑦(𝜉) =

𝐻4

𝐸𝐼
. [−

𝑞2
2
. 𝜉2 + 𝑞1. 𝜉 + (−𝑞1 +

𝑞2
2
)] − 𝑄.

𝐻3

𝐸𝐼
   (4.19) 

Ao basear-se nas condições de contorno para o pilar engastado na base, vide fig. 4.9, e 

na mudança de variável 𝑥1 = (1 − 𝜉), reescreve-se a eq. (4.19) na forma de EDO homogênea, 

como: 

𝑦𝐼𝐼(𝜉) + [𝑝. 𝑥1 +
𝑃

𝐻
] .
𝐻3

𝐸𝐼
. 𝑦(𝜉) = 0                                                                                             (4.20) 

Figura 4.9: Condições de contorno na direção y 

 

Fonte: O Autor (2019) 

Ressaltando que a função clássica de Bessel, ver Spiegel (1974, p. 101), é expressa por: 

𝑥1
2. 𝑦𝐼𝐼 + (2. 𝑘 + 1). 𝑥1. 𝑦

𝐼 + (𝛼2. 𝑥1
2.𝑟 + 𝛽2). 𝑦 = 0                                                                 (4.21) 

Ao multiplicar a eq. (4.20) por 𝑥1
2, exprime-se a EDO em termos semelhantes a equação 

clássica de Bessel, como: 

𝑥1
2. 𝑦𝐼𝐼(𝜉) + [

𝑝.𝐻3

𝐸𝐼
. 𝑥1
3 +

𝑃.𝐻2

𝐸𝐼
. 𝑥1
2] . 𝑦(𝜉) = 0                                                                         (4.22) 

Ao comparar a eq. (4.22) com a equação canônica de Bessel, eq. (4.21), verifica-se que 

a solução é aplicável apenas para a nulidade de carga vertical concentrada (𝑃 = 0 𝑘𝑁) no topo 

do pilar. Tal imposição é para que o coeficiente 𝛽 seja definível, obtendo-se solução para esse 
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caso bem particular (onde não há atuação de carregamentos na superestrutura da ponte). A 

solução definida em séries por: 

𝑦 = 𝑥1
−𝑘∗ . [𝐶1. 𝐽𝑘∗

𝑟

. (
𝛼. 𝑥1

𝑟

𝑟
) + 𝐶2. 𝐽

−
𝑘∗

𝑟

. (
𝛼. 𝑥1

𝑟

𝑟
)]                                                                         (4.23) 

com as seguintes correlações:    2. 𝑘 + 1 = 0 ;   𝑘 = −
1

2
;   𝛼 = 𝐻.√

𝑝.𝐻

𝐸𝐼
;    𝑟 =

3

2
;    𝛽 = 0; 

sendo: 𝑘∗ = √𝑘2 − 𝛽2 = 1 2⁄   ;     𝑘
∗

𝑟⁄ = 1
3⁄      e 

             𝑦 =
2

3
. 𝑥1
−1/2

. [𝐶1. 𝐽1/3. (√
𝑝.𝐻3

𝐸𝐼
. 𝑥3/2) + 𝐶2. 𝐽−1/3. (√

𝑝.𝐻3

𝐸𝐼
. 𝑥3/2)]. 

Após a aplicação da solução de Bessel, eq. (4.20), verifica-se que tal função 𝑦 é de 

obtenção bastante custosa matematicamente e defínivel unicamente para o pilar sem carga 

vertical concentrada no topo do pilar. Implicando na inexistência de carregamento vertical na 

superestrutura da ponte (oriundo do tráfego no tabuleiro). Tal condição, resulta em solução 

incompleta para todos os estados de carga possíveis, isso a fim de dimensionar o pilar em 

análise. 

 

4.4. RESOLUÇÃO VIA MÉTODO DAS DIFERENÇAS FINITAS 

 

Com o intuito de transformar a equação diferencial que rege o problema da estabilidade 

elástica do pilar apresentado na fig. 4.5, num sistema de equações algébricas com a incógnita 𝑣 

por ponto de discretização do meio contínuo; utiliza-se a equação de interpolação. As funções  

𝜑 são caracterizadas através de aplicação unitária por ponto discretizado, baseando-se em Soare 

(1962) e Guelfond (1963), define-se a interpolação polinomial de grau 𝑛 (Função de Lagrange). 

𝑦 = ∑ 𝑦𝑘.
(𝑥 − 𝑥1). (𝑥 − 𝑥2). … . (𝑥 − 𝑥𝑘−1). (𝑥 − 𝑥𝑘+1). … . (𝑥 − 𝑥𝑛+1) 

(𝑥𝑘 − 𝑥1). (𝑥𝑘 − 𝑥2). … . (𝑥𝑘 − 𝑥𝑘−1). (𝑥𝑘 − 𝑥𝑘+1). … . (𝑥𝑘 − 𝑥𝑛+1)

𝑘=𝑛+1

𝑘=1

       (4.24) 

a representação gráfica do polinômio de interpolação é apresentada na figura 4.10. 
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Figura 4.10: Interpolação polinomial para 𝒏 graus de liberdade 

 

Fonte: O Autor (2019) 

Para o método das diferenças finitas, procede-se a aplicação de curvas de interpolação 

de ordem igual ou superior a maior derivação presente na EDO. No caso em questão, utiliza-se 

curva de interpolação quártica com o ponto 𝑗 (ponto de aplicação) e os quatro adjacentes. 

Configurando-se dois tipos, basicamente, de diferenças finitas: centrais e assimétrica à direita. 

A formulação clássica do método das diferenças finitas é postulada com polinômio de 

interpolação parabólica e para tal referencia-se Quarteroni et al. (2007). 

 

a) Operadores centrais 

 

O método das diferenças finitas centrais equivale a um caso particular do método da 

colocação, no qual considera-se pontos no entorno de 𝑗. Vide na figura 4.11 o polinômio de 

interpolação 𝓋(𝑥) de ordem quatro. 

Figura 4.11: Polinômio de interpolação quártica para operadores de diferenças finitas centrais 

 

Fonte: O Autor (2019) 
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A função de interpolação 𝓋(𝑥) apresentada na figura 4.11 é determinada mediante regra 

de Simpson, de formulação admitida em 1750 e citada em O’Hara e Ramming (2015), e 

expressa por: 

𝓋(𝑥) = 𝛼𝑎. 𝑥
4 + 𝛼𝑏. 𝑥

3 + 𝛼𝑐. 𝑥
2 + 𝛼𝑑. 𝑥 + 𝛼𝑒                                                                       (4.25 𝑎) 

com os coeficientes 𝛼𝑎 até 𝛼𝑒 obtidos através da aplicação do polinômio 𝓋(𝑥) nos pontos com 

abscissas: 𝑥𝑒𝑒 , 𝑥𝑒 , 𝑥𝑖 , 𝑥𝑑  e 𝑥𝑑𝑑 , ficando expressos por: 

𝛼𝑎 =
1

24. 𝛿4
{𝑣𝑒𝑒 − 4. 𝑣𝑒 + 6. 𝑣𝑖 − 4. 𝑣𝑑 + 𝑣𝑑𝑑}                                                                     (4.25 𝑏) 

𝛼𝑏 =
1

12. 𝛿3
{−𝑣𝑒𝑒 + 2. 𝑣𝑒 − 2. 𝑣𝑑 + 𝑣𝑑𝑑}                                                                               (4.25 𝑐) 

𝛼𝑐 =
1

24. 𝛿2
{−𝑣𝑒𝑒 + 16. 𝑣𝑒 − 30. 𝑣𝑖 + 16. 𝑣𝑑 − 𝑣𝑑𝑑}                                                          (4.25 𝑑) 

𝛼𝑑 =
1

12. 𝛿
{𝑣𝑒𝑒 − 8. 𝑣𝑒 + 𝑣𝑑 − 𝑣𝑑𝑑}                                                                                         (4.25 𝑒) 

𝛼𝑒 = 𝑣𝑖                                                                                                                                             (4.25 𝑓) 

Após obter o polinômio 𝓋(𝑥) expresso na equação (4.25 a), procedem-se as derivações 

até terceira ordem e caracteriza-se o ponto de aplicação centrado (𝑗 = 0). Para tal aplicação, 

apresenta-se na figura 4.12 o ponto 𝑗 e os vizinhos a distância relativa ℎ. 

Figura 4.12: Ponto de aplicação para operadores de diferenças finitas centrais 

 

Fonte: O Autor (2019) 

Os operadores das derivadas, até ordem 3 para as diferenças finitas centradas, ficam 

expressos em termos dos pontos de vizinhaça à esquerda (𝑗 − 2) e (𝑗 − 1), bem como à direita 

(𝑗 + 1) e (𝑗 + 2) e definidos por: 

𝓋𝑗
′ =

1

12. ℎ
{𝓋𝑗−2 − 8.𝓋𝑗−1 + 8.𝓋𝑗+1 −𝓋𝑗+2}                                                                       (4.26 𝑎) 
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𝓋𝑗
′′ =

1

12. ℎ2
{−𝓋𝑗−2 + 12.𝓋𝑗−1 − 30.𝓋𝑗 + 16. 𝓋𝑗+1 −𝓋𝑗+2}                                           (4.26 𝑏) 

𝓋𝑗
′′′ =

1

2. ℎ3
{−𝓋𝑗−2 + 2.𝓋𝑗−1 − 2. 𝓋𝑗+1 +𝓋𝑗+2}                                                                  (4.26 𝑐) 

Ao aplicar os operadores de diferenças finitas centrais, apresentados nas eq.’s (4.26), na 

EDO não homogênea (Eq. 4.12). Escreve-se a lei de formação das equações algébricas 

decorrentes das aplicações no domínio (2 ≤ 𝑗 ≤ 𝑛 + 1) do pilar, como: 

{−𝑇1 + 𝑇2𝑗} . 𝑣𝑗−2 + {2. 𝑇1 − 8. 𝑇2𝑗} . 𝑣𝑗−1 + {−2. 𝑇1 + 8. 𝑇2𝑗} . 𝑣𝑗+1 + {𝑇1 − 𝑇2𝑗} . 𝑣𝑗+2

= 𝑄𝑗                                                                                                                          (4.27) 

E, para o problema de ponto limite do pilar com seção transversal variável, eq. (4.11), 

tem-se a lei de colocação expressa por: 

(𝑇1𝑎 + 𝑇2𝑗) . 𝑣𝑗−2 + (𝑇1𝑏 − 8. 𝑇2𝑗) . 𝑣𝑗−1 + (𝑇1𝑐 + 𝑝𝑎). 𝑣𝑗 + (𝑇1𝑑 + 8. 𝑇2𝑗) . 𝑣𝑗+1

+ (𝑇1𝑒 − 𝑇2𝑗) . 𝑣𝑗+2 = 𝑄𝑗                                                                                     (4.28) 

com: 𝑇1𝑎 = −
𝐸. 𝐼𝑗−2

144. ℎ3
+ 8.

𝐸. 𝐼𝑗−1

144. ℎ3
−
𝐸. 𝐼𝑗

2. ℎ3
− 8.

𝐸. 𝐼𝑗+1

144. ℎ3
+
𝐸. 𝐼𝑗+2

144. ℎ3
;  𝑇2𝑗 =

[𝑝. (𝐻 − 𝑥𝑗) + 𝑃]

12. ℎ
; 

           𝑇1𝑏 = 16.
𝐸. 𝐼𝑗−2

144. ℎ3
− 128.

𝐸. 𝐼𝑗−1

144. ℎ3
+ 2.

𝐸. 𝐼𝑗

2. ℎ3
+ 128.

𝐸. 𝐼𝑗+1

144. ℎ3
− 16.

𝐸. 𝐼𝑗+2

144. ℎ3
;  𝑇1 =

𝐸. 𝐼

2. ℎ3
; 

           𝑇1𝑐 = −30.
𝐸. 𝐼𝑗−2

144. ℎ3
+ 240.

𝐸. 𝐼𝑗−1

144. ℎ3
− 240.

𝐸. 𝐼𝑗+1

144. ℎ3
+ 30.

𝐸. 𝐼𝑗+2

144. ℎ3
; 

           𝑇1𝑑 = 16.
𝐸. 𝐼𝑗−2

144. ℎ3
− 128.

𝐸. 𝐼𝑗−1

144. ℎ3
− 2.

𝐸. 𝐼𝑗

2. ℎ3
+ 128.

𝐸. 𝐼𝑗+1

144. ℎ3
− 16.

𝐸. 𝐼𝑗+2

144. ℎ3
; 

           𝑇1𝑒 = −
𝐸. 𝐼𝑗−2

144. ℎ3
+ 8.

𝐸. 𝐼𝑗−1

144. ℎ3
+
𝐸. 𝐼𝑗

2. ℎ3
− 8.

𝐸. 𝐼𝑗+1

144. ℎ3
+
𝐸. 𝐼𝑗+2

144. ℎ3
 𝑒 

           𝑝𝑎 =
𝐻 − 𝑥𝑗

12. ℎ
{𝑝𝑗−2 − 8. 𝑝𝑗−1 + 8. 𝑝𝑗+1 − 𝑝𝑗+2}. 

onde: 𝐼𝑗 , 𝐼𝑗−1, 𝐼𝑗+1 são os momentos de inércia nos pontos de colocação 𝑗, 𝑗 − 1, 𝑗 + 1 

(respecticamente); ℎ é o intervalo de interpolação; 𝑣𝑗−2, 𝑣𝑗−1, 𝑣𝑗 , 𝑣𝑗+1, 𝑣𝑗+2 são as deflexões na 

direção 𝑦 nos pontos de aplicação de 𝑗; 𝑄𝑗 é a carga horizontal no ponto de aplicação, sendo: 

𝑄𝑗 = 𝑄(𝑥 = 𝑥𝑗) = 𝐴1. 𝑥𝑗
2 + 𝐵1. 𝑥𝑗 + 𝐶 e 𝑥𝑗 é a coordenada 𝑥 do ponto de colocação 𝑗. 
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b) Operadores assimétricos à direita 

 

Na figura 4.13 é apresentada a função interpoladora para a utilização do método das 

diferenças finitas com equacionamento assimétrico à direita. Assim, o ponto de aplicação 𝑗 é 

posicionado a distância ℎ da origem da abscissa. Ficam, então, um pontos a frente da aplicação. 

Figura 4.13: Ponto de aplicação da diferença finita assimétrica à direita, com abscissa 𝒙 = 𝜹 ≡ 𝒉 

 

Fonte: O Autor (2019) 

Baseado no exposto em Mancini (1973), a determinação dos operadores de diferenças 

finitas assimétricas à direita ficam expressos por: 

𝓋𝑗
′ =

1

12. ℎ
{−𝓋𝑗−3 + 6.𝓋𝑗−2 − 18.𝓋𝑗−1 + 10.𝓋𝑗 + 3.𝓋𝑗+1}                                            (4.29 𝑎) 

𝓋𝑗
′′ =

1

12. ℎ2
{−𝓋𝑗−3 + 4. 𝓋𝑗−2 + 6. 𝓋𝑗−1 − 20. 𝓋𝑗 + 11.𝓋𝑗+1}                                         (4.29 𝑏) 

𝑣𝑗
′′′ =

1

2. ℎ3
{𝓋𝑗−3 − 6. 𝓋𝑗−2 + 12. 𝓋𝑗−1 − 10.𝓋𝑗 + 3.𝓋𝑗+1}                                               (4.29 𝑐) 

Analogamente ao procedido no item (a) desta subseção, expressam-se as leis de 

formação das equações algébricas (aplicável ao topo do pilar, no ponto 𝑗 = 𝑛 + 2 apresentado 

na figura 4.14) para seção transversal constante e variável, respectivamente, tais como: 

{𝑇1 − 𝑇2𝑗} . 𝑣𝑗−3 + 6. {−𝑇1 + 𝑇2𝑗} . 𝑣𝑗−2 + {12. 𝑇1 − 18. 𝑇2𝑗} . 𝑣𝑗−1 + 10. {−𝑇1 + 𝑇2𝑗} . 𝑣𝑗

+ 3. {𝑇1 + 𝑇2𝑗} . 𝑣𝑗+1 = 𝑄𝑗                                                                               (4.30 𝑎) 

e 
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(𝑇1𝑎𝑎 − 𝑇2𝑗) . 𝑣𝑗−3 + (𝑇1𝑏𝑏 + 6. 𝑇2𝑗) . 𝑣𝑗−2 + (𝑇1𝑐𝑐 − 18. 𝑇2𝑗) . 𝑣𝑗−1

+ (𝑇1𝑑𝑑 + 𝑝𝑎𝑎 + 10. 𝑇2𝑗) . 𝑣𝑗 + (𝑇1𝑒 + 3. 𝑇2𝑗) . 𝑣𝑗+1 = 𝑄𝑗                      (4.30 𝑏) 

com:  𝑇1𝑎𝑎 =
𝐸. 𝐼𝑗−3

144. ℎ3
− 6.

𝐸. 𝐼𝑗−2

144. ℎ3
+ 18.

𝐸. 𝐼𝑗−1

2. ℎ3
+ 62.

𝐸. 𝐼𝑗

144. ℎ3
− 3.

𝐸. 𝐼𝑗+1

144. ℎ3
;  

           𝑇1𝑏𝑏 = −4.
𝐸. 𝐼𝑗−3

144. ℎ3
+ 24.

𝐸. 𝐼𝑗−2

144. ℎ3
− 72.

𝐸. 𝐼𝑗−1

144. ℎ3
− 392.

𝐸. 𝐼𝑗

144. ℎ3
+ 12.

𝐸. 𝐼𝑗+1

144. ℎ3
; 

           𝑇1𝑐𝑐 = −6.
𝐸. 𝐼𝑗−3

144. ℎ3
+ 36.

𝐸. 𝐼𝑗−2

144. ℎ3
− 108.

𝐸. 𝐼𝑗−1

144. ℎ3
+ 924.

𝐸. 𝐼𝑗

144. ℎ3
+ 18.

𝐸. 𝐼𝑗+1

144. ℎ3
; 

           𝑇1𝑑𝑑 = 20.
𝐸. 𝐼𝑗−3

144. ℎ3
− 120.

𝐸. 𝐼𝑗−2

144. ℎ3
+ 360.

𝐸. 𝐼𝑗−1

2. ℎ3
− 920.

𝐸. 𝐼𝑗

144. ℎ3
− 60.

𝐸. 𝐼𝑗+1

144. ℎ3
; 

           𝑇1𝑒𝑒 = −11.
𝐸. 𝐼𝑗−3

144. ℎ3
+ 66.

𝐸. 𝐼𝑗−2

144. ℎ3
− 198.

𝐸. 𝐼𝑗−1

144. ℎ3
+ 326.

𝐸. 𝐼𝑗

144. ℎ3
+ 33.

𝐸. 𝐼𝑗+1

144. ℎ3
 𝑒 

           𝑝𝑎𝑎 =
𝐻 − 𝑥𝑗

12. ℎ
{−𝑝𝑗−3 + 6. 𝑝𝑗−2 − 18. 𝑝𝑗−1 + 10. 𝑝𝑗 + 3. 𝑝𝑗+1}. 

 

 

c) Discretização 

 

O problema da estabilidade do pilar de ponte, modelado via técnica do meio contínuo e 

representado pela equação diferencial ordinária apresentada na equação (4.11), será 

discretizado em 𝑛 pontos. Serão aplicados os operadores de diferenças finitas centrais, desde o 

ponto (𝑗 = 2) na base e coordenada (𝑥 = 0) até o penúltimo ponto da malha discretizada (𝑥 =

𝐻 − ℎ). Sendo ℎ a distância entre os pontos da malha, aplicam-se os operadores assimétricos à 

direita no topo do pilar (𝑥 = 𝐻). Verificando-se a necessidade de dois pontos abaixo da 

aplicação, isso para a diferença finita centrada (surgindo dois pontos fictícios abaixo da base 

do pilar e numerados de 𝑗 = 0 e 𝑗 = 1). Ao longo do pilar tem-se os pontos da numeração 𝑗 =

2 até 𝑗 = 𝑛 + 1. No topo do pilar (𝑗 = 𝑛 + 2) aplica-se a diferença finita assimétrica à direita e 

para tal impõe-se um ponto fictício (𝑗 = 𝑛 + 3) acima do topo. Vide Fig. 4.14. 
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Figura 4.14: Discretização do pilar via diferenças finitas 

 

Fonte: O Autor (2019) 

Para completar as equações do sistema de equações algébricos (em função da imposição 

dos três pontos fictícios), adicionam-se três equações extras e são provenientes das condições 

de contorno, quais são: 

𝓋(𝑥 = 0) = 0   ∴    𝓋(𝑗=2) = 0                                                                                                 (4.31 𝑎) 

𝓋′(𝑥 = 0) = 0   ∴    𝓋′
(𝑗=2) = 0                                                                                              (4.31 𝑏) 

𝔐(𝑥 = 𝐻) = 0   ∴    𝓋′′
(𝑗=2) = 0                                                                                             (4.31 𝑐) 

As condições de contorno, via operadores de diferenças finitas, ficam expressas por: 

𝑀0,2. 𝓋2 = 𝑞0                                                                                                                                  (4.32 𝑎)  

𝑀1,0. 𝓋0 +𝑀1,1. 𝓋1 +𝑀1,3. 𝓋3 +𝑀1,4. 𝓋4 = 𝑞1                                                                     (4.32 𝑏) 

𝑀𝑛+3,𝑛−1. 𝓋𝑛−1 +𝑀𝑛+3,𝑛. 𝓋𝑛 +𝑀𝑛+3,𝑛+1. 𝓋𝑛+1 +𝑀𝑛+3,𝑛+2. 𝓋𝑛+2 +𝑀𝑛+3,𝑛+3. 𝓋𝑛+3

= 𝑞𝑛+3                                                                                                                   (4.32 𝑐) 

onde: 𝑀0,2 = 𝑀1,0 = 1; 𝑀1,1 = −8; 𝑀1,3 = 8; 𝑀1,4 = −1; 𝑀𝑛+3,𝑛−1 = −1; 𝑀𝑛+3,𝑛 = 4;  
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𝑀𝑛+3,𝑛+1 = 6; 𝑀𝑛+3,𝑛+2 = −20; 𝑀𝑛+3,𝑛+3 = 11 e 𝑞0 = 𝑞1 = 𝑞𝑛+3 = 0. 

Resultando, por fim, a aplicação das equações (4.27), (4.28) e (4.30) na malha de 

discretização apresentada na figura 4.14, no seguinte sistema de equações algébricas: 

[𝑀]. {𝓋} = {𝑞}                                                                                                                               (4.33 𝑎) 

[
 
 
 
 
 
0
1
𝑀2,0

   0
−8
𝑀2,1

1
0
0

  0    0
   8 −1
𝑀2,3 𝑀2,4

⋯

⋮ ⋱ ⋮

⋯
𝑀𝑛+2,𝑛−1 𝑀𝑛+2,𝑛 𝑀𝑛+2,𝑛+1 𝑀𝑛+2,𝑛+2 𝑀𝑛+2,𝑛+3

𝑀𝑛+3,𝑛−1 𝑀𝑛+3,𝑛 𝑀𝑛+3,𝑛+1 𝑀𝑛+3,𝑛+2 𝑀𝑛+3,𝑛+3]
 
 
 
 
 

.

{
 
 

 
 
𝓋0
𝓋1
𝓋2
⋮

𝓋𝑛+2
𝓋𝑛+3}

 
 

 
 

=

{
 
 

 
 
𝑞0
𝑞1
𝑞2
⋮

𝑞𝑛+2
𝑞𝑛+3}

 
 

 
 

 

(4.33 𝑏) 

sendo: {𝓋} o vetor de incógnitas (deslocamentos transversais na direção y); [𝑀] a matriz de 

coeficientes e {𝑞} o vetor independente. 

 

d) Determinação da carga crítica 

 

A obtenção da carga crítica pode ser realizada via dois procedimentos: o primeiro com 

a EDO, eq. (4.11) ou eq. (4.12), não homogênea e em decorrência de problema de ponto limite 

(Curva 1 apresentada na fig. 4.15), sendo incrementada a carga 𝑃 até a convergência. Para o 

segundo método referencia-se Chajes (1974, p. 110 – 115) e consiste em adotar a EDO 

homogênea (Curva 2 da fig. 4.15), logo com o termo particularizante (𝑄𝑗 = 0) nulo. Após a 

devida transformação de equação diferencial em sistema algébrico, mediante imposição dos 

operadores de diferenças finitas, obtém-se a carga crítica 𝑃𝐶𝑅 via solução não trivial. 

Figura 4.15: Obtenção da carga crítica via método das diferenças finitas 

 

Fonte: O Autor (2019) 
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4.5. ESTABILIDADE DINÂMICA 

 

Considerando os conceitos de estabilidade dinâmica apresentados em Bazant e Cedolin 

(2010) para pilares, apresenta-se na figura 4.16 (a) o estado de carga de um pilar típico de ponte, 

bem como na fig. 4.16 (b) é exposta a configuração deformada e a movimentação na direção 𝑧. 

Figura 4.16: Pilar: (a) estado de carga e (b) configuração deformada 

 

Fonte: O Autor (2019) 

A energia cinética 𝜀 e a quantidade de movimento 𝑄𝜀 são expressas por: 

𝜀 =
𝐼. (𝜙̇)

2

2
                                                                                                                                     (4.34 𝑎) 

𝑄𝜀 =
𝑑𝜀

𝑑𝜙̇
= 2. 𝐼.

𝜙̇

2
.
𝑑(𝜙̇)

𝑑𝜙̇
= 𝐼. 𝜙̇                                                                                                 (4.34 𝑏) 

com: 𝐼 – Momento de inércia à flexão, e expresso por: 

          𝐼 = ∫𝑟2 𝑑𝑚 

A pseudo - força inercial 𝐹𝑚 é determinada mediante derivação da quantidade de 

movimento 𝑄𝜀 em relação ao tempo, ficando expressa por: 

𝐹𝑚 =
𝑑(𝑄𝜀)

𝑑𝑡
= 𝐼.

𝑑(𝜙̇)

𝑑𝑡
= 𝐼. 𝜙̈                                                                                                        (4.35) 
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O momento fletor na base 𝔐𝐵𝐴𝑆𝐸 do pilar é determinado para a posição deformada que 

é indicada na fig. 4.16 (a), ao adotar o estado de carga (𝑄, 𝑞1, 𝑞2, 𝑝, 𝑃), tem-se 𝔐𝐵𝐴𝑆𝐸 expresso 

por: 

𝔐𝐵𝐴𝑆𝐸 = 𝑃. Δ +
𝑞1
2
.𝐻2 +

𝑞2
3
. 𝐻2 + 𝑄.𝐻 +∫ 𝑝(𝑥). Δ(𝑥) 𝑑𝑥

𝐻

0

                                               (4.36) 

sendo:  Δ = 𝐻. 𝑠𝑒𝑛 𝜙 ;    𝛿 = 𝐻. (1 − cos𝜙)     e     Δ(𝑥) =
Δ

𝐻
. 𝑥. 

Aplicando-se o princípio de D’Alembert, no pilar apresentado na fig. 4.16, será obtida 

a equação diferencial que rege a estabilidade dinâmica, como: 

𝐼. 𝜙̈ + 𝑘. 𝜙 = 𝔐𝐵𝐴𝑆𝐸                                                                                                                        (4.37) 

onde: 𝑘 é a rigidez à flexão. 

Ao agrupar os termos semelhantes da eq. (4.37), bem como admitindo o pilar de seção 

transversal constante [𝑝(𝑥) = 𝑝], reescreve-se a EDO da estabilidade dinâmica como: 

𝐼. 𝜙̈ + 𝑘. 𝜙 = (𝑃. 𝑠𝑒𝑛 𝜙 + 𝑄).𝐻 + [(
3. 𝑞1 + 2. 𝑞2

6
) +

𝑝. 𝑠𝑒𝑛 𝜙

2
] . 𝐻2                                   (4.38) 

 

4.5.1. ESTADO DE CARGA 1 

 

No primeiro estado de carga será admitida a ausência da atuação do vento (𝑞1 = 𝑞2 =

0 𝑘𝑁/𝑚, 𝑄 = 0 𝑘𝑁) e desprezada a relevância do peso próprio 𝑝 em detrimento da carga 

vertical 𝑃 atuante no topo do pilar. Resultando como EDO, a seguinte: 

𝐼. 𝜙̈ + 𝑘. 𝜙 = 𝑃.𝐻. 𝑠𝑒𝑛 𝜙                                                                                                                (4.39) 

a solução homogênea 𝜙𝐻(𝑡) da equação diferencial, eq. (4.39), é expressa por: 

𝜙𝐻(𝑡) = 𝐵1. 𝑠𝑒𝑛 (𝜔𝑏. 𝑡) + 𝐵2. 𝑐𝑜𝑠(𝜔𝑏. 𝑡)                                                                               (4.39 𝑎) 

com: 𝜔𝑏 = √
𝑘

𝐼
. 
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baseado na teoria das pequenas deformações (TPD) aplica-se na eq. (4.39) a condição de 

equivalência entre o seno e o próprio argumento (𝑠𝑒𝑛 𝜙 ≈  𝜙), concluindo-se: 

𝐼. 𝜙̈ + (𝑘 − 𝑃.𝐻). 𝜙 = 0                                                                                                              (4.39 𝑏) 

ao substituir a carga crítica obtida via análise estática, ver eq. (4.3 c), reescreve-se a EDO como: 

𝐼. 𝜙̈ + (1 −
𝑃

𝑃𝐶𝑅
) . 𝑘. 𝜙 = 0                                                                                                          (4.39 𝑐) 

observa-se que a eq. (4.39 c) foi obtida para o campo das pequenas deformações. Já para as 

grandes deformações, basta que seja aplicada a carga crítica da eq. (4.4 b) na EDO apresentada 

na eq. (4.39). E após o devido equacionamento chega-se novamente na equação (4.39 c), que 

ao ser dividida pela inércia 𝐼 passa a ser expressa por: 

𝜙̈ + 𝜔𝑏
2. (1 −

𝑃

𝑃𝐶𝑅
) . 𝜙 = 0                                                                                                        (4.39 𝑑) 

Em função do sinal do termo que pré-multiplica a rotação 𝜙 é possível definir três 

condições de equilíbrio, sendo estas: o equilíbrio indiferente (𝑃 = 𝑃𝐶𝑅), o equilíbrio instável 

(𝑃 > 𝑃𝐶𝑅) e o equilíbrio estável (𝑃 < 𝑃𝐶𝑅).  

 

a) Equilíbrio indiferente (𝑷 = 𝑷𝑪𝑹) 

 

Esta condição de equilíbrio equivale na análise estática (procedida no item 4.1) a 

igualdade do trabalho 𝑊 e da energia potencial de deformação 𝑈. E para tal condição de 

equilíbrio, reescreve-se a EDO apresentada na eq. (4.39 d) como: 

𝜙̈ = 0                                                                                                                                                   (4.40) 

para as condições iniciais, em rotação 𝜙0 e em velocidade 𝜙̇0, escreve-se a resposta da EDO 

através da seguinte função linear, como: 

𝜙(𝑡) = 𝜙̇0. 𝑡 + 𝜙0                                                                                                                         (4.40 𝑎) 
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Na figura 4.17 é apresentada graficamente a função 𝜙(𝑡), expressa na eq. (4.40 a), e 

conclui-se que a solução é instável por crescer infinitamente segundo função linear. 

Figura 4.17: Representação gráfica de 𝝓(𝒕) para condição de equilíbrio indiferente 

 

Fonte: O Autor (2019) 

 

 b) Equilíbrio instável (𝑷 > 𝑷𝑪𝑹) 

 

Esta condição de equilíbrio equivale ao trabalho 𝑊 realizado pelas cargas ser superior, 

em magnitude, a energia potencial de deformação 𝑈. E para tanto, reescreve-se a eq. (4.39 d) 

como: 

𝜙̈ − 𝜔𝑏
2. (

𝑃

𝑃𝐶𝑅
− 1) . 𝜙 = 0                                                                                                            (4.41) 

ao proceder a resolução desta EDO e considerar as condições iniciais em rotação, escreve-se a 

função resposta 𝜙(𝑡) como: 

𝜙(𝑡) =
𝜙̇0
𝜆
. 𝑠𝑒𝑛ℎ(𝜆. 𝑡) + 𝜙0. cosh(𝜆. 𝑡)                                                                                  (4.41 𝑎) 

com:  𝜆 = ±√𝜔𝑏2. (
𝑃

𝑃𝐶𝑅
− 1). 

 Percebe-se que a resposta 𝜙(𝑡) apresentada na eq. (4.41 a) é instável, pois a rotação 𝜙 

cresce infinitamente mediante modulação hiperbólica, ocasionando assim o colapso estrutural. 
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 c) Equilíbrio estável (𝑷 < 𝑷𝑪𝑹) 

  

 Nesta condição de equilíbrio, o trabalho 𝑊 realizado pelas cargas é menor do que a 

energia potencial de deformação 𝑈, ficando válida a eq. (4.39 d). E para qual apresenta-se a 

solução: 

𝜙(𝑡) =
𝜙̇0
𝜔̅
. 𝑠𝑒𝑛(𝜔̅. 𝑡) + 𝜙0. cos(𝜔̅. 𝑡)                                                                                         (4.42) 

com:  𝜆 = ± 𝑖. 𝜔̅      e      𝜔̅2 = 𝜔𝑏
2. (1 −

𝑃

𝑃𝐶𝑅
). 

 Na figura 4.18 representa-se graficamente a solução 𝜙(𝑡) expressa na eq. (4.42). De 

qual conclui-se que a solução é estável. Tal conclusão é enunciada pelo comportamento 

harmônico ao longo do tempo, configurando rotações numa determinada faixa de amplitude 

máxima. 

Figura 4.18: Representação gráfica de 𝝓(𝒕) para condição de equilíbrio estável 

 

Fonte: O Autor (2019) 
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4.5.2. ESTADO DE CARGA 2 

 

Neste estado de carga será adotada a atuação conjunta dos carregamentos apresentados 

na figura 4.16 (a). Ficando a EDO expressa na eq. (4.38), após aplicação da teoria das pequenas 

deformações (𝑠𝑒𝑛 𝜙 ≈  𝜙), reescrita como: 

𝐼. 𝜙̈ + 𝑘. 𝜙 = (𝑃. 𝜙 + 𝑄).𝐻 + [(
3. 𝑞1 + 2. 𝑞2

6
) +

𝑝.𝜙

2
] . 𝐻2                                                   (4.43) 

Ao realizar a análise estática do pilar, vide fig. 4.16, na condição de equilíbrio 

indiferente (𝑊 = 𝑈), conclui-se a expressão da carga crítica 𝑃𝐶𝑅 em detrimentos dos demais 

carregamentos e da geometria de deformação: 

𝑃𝐶𝑅 =
𝑘

𝐻
−
2

𝜙
. {𝑄 + [(

3. 𝑞1 + 2. 𝑞2
6

) +
𝑝.𝜙

2
] . 𝐻}                                                                      (4.44) 

Ao agrupar as equações (4.43) e (4.44), expressa-se a equação diferencial que rege a 

estabilidade dinâmica do pilar submetido ao estado de carga 2, como: 

𝜙̈ + 𝜔𝑏
2. (1 −

𝑃

𝑃𝐶𝑅
) . 𝜙 + 𝑏 = 0                                                                                                    (4.45) 

com:  𝜔𝑏 = √
𝑘

𝐼
      e       𝑏 =

𝑄. 𝐻

𝐼
+ [
𝑝. 𝜙

2
+
(3. 𝑞1 + 2. 𝑞2)

6
] .
𝐻2

𝐼
. 

Ao realizar a resolução da EDO, ver eq. (4.45), e considerando as condições de 

equilíbrio (a), (b) e (c) do subitem (4.5.1), exprime-se as soluções para a rotação 𝜙(𝑡) como: 

𝜙(𝑡) =

{
  
 

  
 −

𝑏. 𝑡2

2
+ 𝜙̇0. 𝑡 + 𝜙0     𝑝𝑎𝑟𝑎 𝑃 = 𝑃𝐶𝑅                                     

𝜙̇0
𝜆
. 𝑠𝑒𝑛(𝜔̅. 𝑡) + (𝜙0 − 𝑑). cos(𝜔̅. 𝑡) + 𝑑     𝑝𝑎𝑟𝑎 𝑃 > 𝑃𝐶𝑅

(𝜙0 − 𝑑). 𝑠𝑒𝑛(𝜔̅. 𝑡) +
𝜙̇0
𝜔̅
. cos(𝜔̅. 𝑡) + 𝑑     𝑝𝑎𝑟𝑎 𝑃 < 𝑃𝐶𝑅

                                  (4.46) 

com:  𝜆 = ±√𝜔𝑏2. (
𝑃

𝑃𝐶𝑅
− 1) ;   𝑑 =

𝑏

𝜔𝑏2
.

𝑃𝐶𝑅
(𝑃 − 𝑃𝐶𝑅)

 ;   𝜔̅2 = 𝜔𝑏
2. (1 −

𝑃

𝑃𝐶𝑅
) ;  𝛼 = ±𝑖. 𝜔̅. 
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4.6. EXEMPLOS DE APLICAÇÃO 

 

EXEMPLO 4.1: Nesta primeira aplicação será adotado o pilar metálico engastado na base e 

com extremidade livre no topo. Procedendo-se a análise da carga crítica para o pilar de ponte, 

sob configurações de seções transversais maciça e vazadas de formato retangular. O estado de 

carga será: 𝑞1 = 𝑞2 = 0 𝑘𝑁/𝑚 e 𝑄 = 290 𝑘𝑁 como cargas laterais. Já o módulo de 

elasticidade vale 𝐸 = 210 𝑥 106 𝑘𝑁/𝑚² e a altura do pilar é de 100 metros. Na figura 4.19 

apresentam-se as configurações analisadas. 
 

Figura 4.19: Configurações do pilar: (a) estado de carga, (b) seção retangular maciça e (c) seção 

retangular vazada em termos da espessura relativa via 𝜼 

 

Fonte: O Autor (2019) 

 Varia-se o valor do peso próprio 𝑝 sob unidade “kN/m” e mantem-se inalterada a seção 

transversal, determinando-se a carga crítica via convergência do deslocamento no topo (vide 

figura 4.15). O processamento da EDO é apresentado no apêndice C e realizado via método das 

diferenças finitas. Na tabela 4.1 são apresentadas as deflexões para a seção maciça (fig. 4.19 b). 
 

Tabela 4.1 – Deflexões em y, no topo do pilar retangular, por incremento em 𝒑 até convergência 

Diferenças Finitas com 100 pontos (𝒉 = 𝟏 𝒎) 

𝒑 (𝒌𝑵/𝒎) 𝓋 (𝑚) 𝒑 (𝒌𝑵/𝒎) 𝓋 (𝑚) 

0 0,00067 𝟏𝟏𝟐, 𝟑𝟐 𝒙 𝟏𝟎𝟒 6,22664 

10 0,00067 𝟏𝟏𝟐, 𝟑𝟑 𝒙 𝟏𝟎𝟒 39,08649 

𝟏𝟎𝟎 𝒙 𝟏𝟎𝟒 0,00060 𝟏𝟏𝟐, 𝟑𝟑𝟏 𝒙 𝟏𝟎𝟒 82,76339 

𝟏𝟏𝟎 𝒙 𝟏𝟎𝟒 0,03178 𝟏𝟏𝟐, 𝟑𝟑𝟏𝟕 𝒙 𝟏𝟎𝟒 308,01060 

𝟏𝟏𝟐 𝒙 𝟏𝟎𝟒 0,22317 𝟏𝟏𝟐, 𝟑𝟑𝟏𝟖𝟖 𝒙 𝟏𝟎𝟒 4.970,34480 

𝟏𝟏𝟐, 𝟐 𝒙 𝟏𝟎𝟒 0,56156 𝟏𝟏𝟐, 𝟑𝟑𝟏𝟖𝟗 𝒙 𝟏𝟎𝟒 15.111,65985 

𝟏𝟏𝟐, 𝟐𝟕 𝒙 𝟏𝟎𝟒 1,19664 𝟏𝟏𝟐, 𝟑𝟑𝟏𝟖𝟗𝟒𝟓 𝒙 𝟏𝟎𝟒 184.024,58580 

Fonte: O Autor (2019) 
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 Na Figura 4.20 é apresentada a curva de convergência da carga crítica para a seção 

maciça. 

Figura 4.20: Curva de convergência de 𝒑𝑪𝑹 para pilar engastado na base e seção retangular 

maciça 

 

Fonte: O Autor (2019) 

 A carga crítica obtida através da convergência na curva apresentada na figura 4.20 é 

𝑝𝐶𝑅 = 112, 3318945 𝑥 10
4 𝑘𝑁/𝑚. Mediante solução analítica apresentada em Timoshenko e 

Gere (2009) tem-se 𝑝𝐶𝑅 = 112, 35123 𝑥 104 𝑘𝑁/𝑚, caracterizando uma aproximação de 

0,017 % a favor da segurança. 

 Nas tabelas 4.2 e 4.3 são apresentados os deslocamentos no topo do pilar com seção 

retangular vazada (ver figura 4.19 c), porém são simuladas quatro espessuras 𝑡 relativas das 

paredes, via coeficiente  𝜂 = {5, 10, 15, 20}. Na referida tabela apresentam-se também a carga 

crítica via Timoshenko e Gere (2009) e conseguinte percentual de aproximação. 
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Tabela 4.2 – Deflexões em y, no topo do pilar, para seção retangular vazada para 𝜼 = 𝟓 e 𝜼 = 𝟏𝟎 

Diferenças Finitas com 100 pontos (𝒉 = 𝟏 𝒎) 

𝜼 = 𝟓 𝜼 = 𝟏𝟎 

[𝟏𝟎𝟓] 𝒑(
𝒌𝑵

𝒎
) 𝓋 (𝑚) [105] 𝑝(

𝑘𝑁

𝑚
) 𝓋 (𝑚) 

11,16 0,38437 9,29 3,53645 

11,1757 2,07456 9,292 78,50342 

11,1790 27,41317 9,29205 167,01516 

11,1792 105,53502 9,29207 304,21481 

11,17927 40.995,52293 9,292094 21.390,73143 

11,17927015 241.907,21360 9,2920943 160.345,53260 

11,17927018 11.585.627,62397 9,29209434 1.197.181,06281 

𝒑𝑪𝑹 = 𝟏𝟏, 𝟏𝟖𝟏𝟏𝟗 𝒙 𝟏𝟎
𝟓  
𝒌𝑵

𝒎
 

Via Timoshenko e Gere (2009) 

𝒑𝑪𝑹 = 𝟗, 𝟐𝟗𝟑𝟔𝟗 𝑥 10
5  
𝒌𝑵

𝒎
 

Via Timoshenko e Gere (2009) 

0,017 % (a favor da segurança) 0,017 % (a favor da segurança) 

 

Fonte: O Autor (2019) 

Tabela 4.3 – Deflexões em y no topo do pilar, com seção retangular vazada sob  𝜼 = 𝟏𝟓 e 𝜼 = 𝟐𝟎 

Diferenças Finitas com 100 pontos (𝒉 = 𝟏 𝒎) 

𝜼 = 𝟓 𝜼 = 𝟏𝟎 

[𝟏𝟎𝟓] 𝒑(
𝒌𝑵

𝒎
) 𝓋 (𝑚) [105] 𝑝(

𝑘𝑁

𝑚
) 𝓋 (𝑚) 

7,392 4,06060 6,05 1,06790 

7,3937 59,72808 6,0545 3,04075 

7,39375 100,08278 6,0568 54,55065 

7,39379 217,81425 6,05688 132,79715 

7,39382 1.849,20169 6,056932 1.962,98015 

7,393824 1.936.108,10456 6,0569355 27.118,06388 

7,3938240035 25.369.692,40570 6,05693577 2.398.156,48192 

𝒑𝑪𝑹 = 𝟕, 𝟑𝟗𝟓𝟎𝟗 𝒙 𝟏𝟎𝟓  
𝒌𝑵

𝒎
 

Via Timoshenko e Gere (2009) 

𝒑𝑪𝑹 = 𝟔, 𝟎𝟓𝟕𝟗𝟖 𝑥 10
5  
𝒌𝑵

𝒎
 

Via Timoshenko e Gere (2009) 

0,017 % (a favor da segurança) 0,017 % (a favor da segurança) 

 

Fonte: O Autor (2019) 
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com:  𝐼𝑧(𝑥) =
𝑏𝑧. 𝑏𝑦

3

12
. {1 − [(1 − 2. 𝜂3𝑧). (1 − 2. 𝜂3𝑦)

3

]} ; 𝑏𝑧 = 2. 𝑏𝑦; 𝜂3𝑧 =
𝑡

𝑏𝑧
;   𝜂3𝑦 =

𝑡

𝑏𝑦
. 

 Na figura 4.21 apresentam-se as curvas de convergência da carga crítica em forma 

comparativa, para os quatro cenários de espessura relativa das paredes. 

Figura 4.21: Curvas de convergência de 𝒑𝑪𝑹 para pilar engastado na base e seção retangular 

vazada com espessura relativa das paredes 

 

Fonte: O Autor (2019) 

 

EXEMPLO 4.2: Nesta segunda análise admite-se o pilar com seção transversal circular vazada 

e contida na equivalência do retângulo do exemplo 4.1, vide figura 4.22. Sendo o estado de 

carga: 𝑞1 = 2 𝑘𝑁/𝑚, 𝑞2 = 3 𝑘𝑁/𝑚, 𝑄 = 10 𝑘𝑁 e 𝑃 = 0 𝑘𝑁.  O material utilizado será o aço, 

assim tem-se como módulo de elasticidade longitudinal:  𝐸 = 210 𝑥 106 𝑘𝑁/𝑚². Adota-se a 

altura do pilar de 100 metros. Ver processamento no apêndice C. Busca-se neste exemplo a 

mera aplicação das equações (4.11) e (4.12) resolvidas mediante diferenças finitas (ver item 

4.4), daí a não verificação do índice de esbeltez inferior a 90, sendo esse o critério para a 

estrutura funcionar no campo das pequenas deformações, isso segundo a NBR 6118 (ABNT, 

2014). 
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Figura 4.22: Geometria do pilar de seção circular vazada e constante na altura: (a) estado de 

carga, (b) seção transversal maciça e (c) seção anelar  

 

Fonte: O Autor (2019) 

 Na tabela 4.4 são apresentados os deslocamentos no topo do pilar para quatro espessuras 

relativas das paredes, bem como carga crítica por convergência e pelo cálculo analítico presente 

em Timoshenko e Gere (2009) e análise da aproximação. Ver Figura 4.22 (c). 

Tabela 4.4 – Deflexões em y, no topo do pilar, para seção circular vazada (anelar) 

Diferenças Finitas com 100 pontos (𝒉 = 𝟏 𝒎) 

𝜼 = 𝟓 𝜼 = 𝟏𝟎 𝜼 = 𝟏𝟓 𝜼 = 𝟐𝟎 

𝒑(
𝒌𝑵

𝒎
) 𝓋 (𝑚) 𝒑(

𝑘𝑁

𝑚
) 𝓋 (𝑚) 𝒑(

𝑘𝑁

𝑚
) 𝓋 (𝑚) 𝒑(

𝑘𝑁

𝑚
) 𝓋 (𝑚) 

5.500 0,03553 3.500 0,01898 2.800 0,13454 2.220 0,23094 

5.600 0,07316 3.800 0,11038 2.840 0,60447 2.230 0,34657 

5.660 0,19994 3.860 2,522919 2.845 1,07189 2.245 1,38812 

5.690 1,48634 3.862 9,35073 2.850,500 7,16265 2.249 6,97158 

5.692 2,60183 3.862,50 28,70482 2.850,800 10,37901 2.249,60 17,57173 

5.693 4,16447 3.862,55 36,19672 2.851,400 101,82416 2.249,80 35,62892 

5.694 10,42619 3.862,70 166,79780 2.851,450 383,08885 2.249,95 155,38855 

5.694,66 1.363,99757 3.862,74 4.407,26714 2.851,465 2.236,58360 2.249,99 1.499,04343 

𝒑𝑪𝑹 = 𝟓.𝟔𝟗𝟒,𝟔𝟔 𝒌𝑵/𝒎 

Via convergência 

𝒑𝑪𝑹 = 𝟑.𝟖𝟔𝟐, 𝟕𝟒 𝒌𝑵/𝒎 

Via convergência 

𝒑𝑪𝑹 = 𝟐.𝟖𝟓𝟏, 𝟒𝟔 𝒌𝑵/𝒎 

Via convergência 

𝒑𝑪𝑹 = 𝟐.𝟐𝟒𝟗, 𝟗𝟗 𝒌𝑵/𝒎 

Via convergência 

𝒑𝑪𝑹 = 𝟓.𝟔𝟗𝟓, 𝟔𝟒 
𝒌𝑵

𝒎
 

Timoshenko e Gere (2009) 

𝒑𝑪𝑹 = 𝟑.𝟖𝟔𝟑,𝟒𝟏 
𝒌𝑵

𝒎
 

Timoshenko e Gere (2009) 

𝒑𝑪𝑹 = 𝟐.𝟖𝟓𝟏,𝟗𝟔 
𝒌𝑵

𝒎
 

Timoshenko e Gere (2009) 

𝒑𝑪𝑹 = 𝟐.𝟐𝟓𝟎, 𝟑𝟖 
𝒌𝑵

𝒎
 

Timoshenko e Gere (2009) 

𝑰𝒛 = 𝟑,𝟒𝟔𝟏 𝒎
𝟒 𝐼𝑧 = 𝟐,𝟑𝟒𝟕 𝑚

4 𝐼𝑧 = 𝟏,𝟕𝟑𝟑 𝑚
4 𝐼𝑧 = 𝟏,𝟑𝟔𝟕 𝑚

4 

0,017 % (a favor da 

segurança) 

0,017 % (a favor da 

segurança) 

0,018 % (a favor da 

segurança) 

0,017 % (a favor da 

segurança) 

 

Fonte: O Autor (2019) 
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 Na tabela 4.5 apresenta-se a convergência dos deslocamentos no topo do pilar para seção 

transversal circular maciça. Para tal, a inércia vale: 𝐼𝑧 = 3,976 𝑚
4. Ver Figura 4.22 (b). 

Tabela 4.5 – Deflexões em y, no topo do pilar circular, por incremento em 𝒑 até convergência 

Diferenças Finitas com 100 pontos (𝒉 = 𝟏 𝒎) 

𝒑 (𝒌𝑵/𝒎) 𝓋 (𝑚) 𝑝 (𝑘𝑁/𝑚) 𝓋 (𝑚) 𝒑𝑪𝑹 = 𝟔.𝟓𝟒𝟐, 𝟓𝟖 𝒌𝑵/𝒎 

Via convergência 6.000 0,01270 6.500 0,16276 

6.200 0,20160 6.520 0,3069 
𝒑𝑪𝑹 = 𝟔.𝟓𝟒𝟑, 𝟕𝟏 

𝒌𝑵

𝒎
 

Via Timoshenko e Gere (2009) 6.300 0,02850 6.542,580 1.748,54162 

6.400 0,04855 6.542,582 3.527,44185 0,017 % (a favor da segurança) 

 

Fonte: O Autor (2019) 

Na figura 4.23 é apresentada a plotagem comparativa das curvas (carga x deformação), 

isso em detrimento da espessura relativa da seção circular vazada. 

Figura 4.23: Curvas de convergência de 𝒑𝑪𝑹 para pilar engastado na base e seção circular 

maciça e vazada com espessura relativa das paredes 

 

Fonte: O Autor (2019) 
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EXEMPLO 4.3: Admite-se o pilar analisado no exemplo 4.1 e sob mesmo estado de carga, 

material e altura. A única exceção é considera-lo de seção retangular variável linearmente na 

altura, sendo as dimensões na base: 𝑏𝑦 = 10 𝑚 e 𝑏𝑧 = 30 𝑚. Já, para o topo adota-se: ℎ𝑦 =

4 𝑚 e ℎ𝑧 = 12 𝑚. Vide figura 4.24 e apêndice C, no item C.3. Procede-se neste último exemplo 

a mera aplicação das equações de obtenção da carga crítica, sem almenjar verificações quanto 

ao índice de esbeltez. 

Figura 4.24: Pilar retangular maciço: (a) estado de carga e (b) perspectiva 

 

Fonte: O Autor (2019) 

 Na tabela 4.6 apresentam-se os deslocamentos no topo do pilar, isso mediante 

incremento no peso específico 𝛾 do material em 𝑘𝑁/𝑚3. 

Tabela 4.6 – Deflexão y, para a seção retangular maciça e variável linearmente  

Diferenças Finitas com 100 pontos (𝒉 = 𝟏 𝒎) 

𝜸 [𝟏𝟎𝟒] 

 

𝒑𝒃𝒂𝒔𝒆  [𝟏𝟎
𝟔] 

(𝒌𝑵/𝒎) 

𝓋 (𝑚) 𝛾 [104] 

 

𝒑𝒃𝒂𝒔𝒆  [𝟏𝟎
𝟔] 

(𝒌𝑵/𝒎) 

𝓋 (𝑚) 

𝒑𝑪𝑹 = 𝟒,𝟑𝟕𝟕𝒙 𝟏𝟎
𝟔  
𝒌𝑵

𝒎
 

Via convergência 
0 0 0,01732 1,458 4,374 21,08928 

1,3 3,9 0,15462 1,459 4,377 150,33863 

1,4 4,2 0,41511 1,4591 4,377 388,35275 

𝒑𝑪𝑹 = 𝟑, 𝟗𝟕𝟕 𝒙 𝟏𝟎
𝟔  
𝒌𝑵

𝒎
 

Timoshenko e Gere (2009) 

1,45 4,35 2,67749 1,45915 4,37745 1.863,45913 

1,451 4,353 3,00543 1,45916 4,37748 7.753,89744 

1,454 4,362 4,75141 1,459162 4,377486 21.082,09253 10,06 % (contra a 

segurança) 1,457 4,371 11,34023 1,4591625 4,3774875 36.968,35366 

 

Fonte: O Autor (2019) 

 A carga crítica por convergência é 𝑝𝐶𝑅 = 4,37749 𝑥 106 𝑘𝑁/𝑚, já via Timoshenko e 

Gere (2009, pag. 128) e sob interpolação no programa Cálculo Numérico V5 (versão livre), 

tem-se: 𝑝𝐶𝑅 = 3,977 𝑥 106 𝑘𝑁/𝑚. verifica-se aproximação de 10,06 % contra a segurança.  
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VIBRAÇÃO DE PILARES COM SEÇÃO DE PAREDES FINAS VIA 

TÉCNICA DO MEIO CONTÍNUO APLICADA A GTPP 

 

 

 

 

5.1. INTRODUÇÃO 

 

 

As seções transversais dos pilares altos de pontes tornam-se viáveis economicamente se 

adotados com seção vazada e de paredes finas. Em casos de seções assimétricas ativa-se o efeito 

combinado da flexão e da torção, devido a não coincidência dos centros de gravidade (𝐶𝐺) e 

de torção (𝐷). Vide na figura 5.1 alguns estados de carga e a ativação do fenômeno da flexo – 

torção. 

Figura 5.1: Seção de paredes finas submetida à: (a) flexão simples, (b) torção pura, (c) flexo – 

torção, (d) deformação decorrente flexo – torção 

 

Fonte: O Autor (2019) 

Capítulo 

5 



220 
Weslley Imperiano Gomes de Melo                                                                                                                             

 

O estudo das seções de paredes finas postulado em Vlassov (1962) é baseado nas 

seguintes hipóteses: 

a) Considera-se barra de seção delgada aberta, quando a espessura 𝑡 for muito menor 

do que a dimensão característica 𝑑 (na seção transversal), sendo aceitável quanto 

esta relação for no máximo um décimo (𝑡 𝑑⁄ ≤ 0,1). Vide fig. 5.2 (a). 

b) Após a deformação no pilar por flexo – torção, a seção transversal projeta-se 

indeformada. Logo, sem distorção do formato da referida seção transversal (seção 

rígida). Conforme é indicado na figura 5.2 (c). 

Figura 5.2: Seção de paredes finas: (a) dimensões relevantes do pilar em paredes finas, (b) 

elemento diferencial e (c) deformação de corpo rígido no plano 𝒚𝒛 

 

Fonte: O Autor (2019) 

c) Definido o eixo esqueleto 𝓈 no eixo das paredes finas que compõem a seção 

transversal, admite-se distribuição constante da tensão de cisalhamento 𝜏 ao longo 

do comprimento 𝓈. Quanto mais finas forem as paredes, mais realística tal hipótese. 

Na figura 5.3 é apresentada a distribuição uniforme  da tensão cisalhante, bem como 

o posicionamento do centro de torção (D) e o estado plano de tensões que atua na 

parede fina. 
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Figura 5.3: Distribuição de tensão cisalhante nas paredes do pilar sob flexo – torção  

 

Fonte: O Autor (2019) 

A utilização das equações de Maney na modelagem de vigas no sistema aporticado em 

construções submetidas a ação do vento foi introduzida por Goldberg (1934), cuja aplicação 

será estendida nesta tese para a abordagem dos pilares contraventados por lintéis procedida via 

TMC, mantendo consonância com Szerémi (1977), conforme consta na letra “b” do subitem 

2.8.1. A utilização das equações de Maney na simulação de pilares de torres é observado em 

Kouloušek (1947), procedendo-se a análise dinâmica via TMC.  Nesse raciocínio, vem Chitty 

(1947) e analisa duas vigas paralelas entre si e engastadas em mesma base, as ligações entre as 

vigas são promovidas por barras secundárias (transversais ao eixo das vigas principais), 

denominadas de lintéis (ver fig. 5.4 a). Na figura 5.4 (b) promove-se o equacionamento através 

do modelo contínuo, sendo adotada a massa da estrutura e as cargas aplicadas pelos lintéis, sob 

distribuição uniforme no elemento contínuo. Esta ideia do meio contínuo formado pela 

distribuição da massa e do contraventamento por lintéis é empregada nos pilares de pontes altas, 

nos itens 5.3 e 5.4 desta tese. 

Figura 5.4: Vigas contraventadas por lintéis: (a) modelo mecânico e (b) modelo contínuo  

 

Fonte: (CHITTY, 1947) 

Ressalta-se ainda, a análise dinâmica em estruturas elástica procedida por Vickers 

(1953), cujo equacionamento dos elementos estruturais é realizado via conceito de centro 
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elástico. Culminando por embasar Stamato (1978), isso quando da análise da distribuição das 

cargas oriundas da rajadas de vento incidentes nos painéis de contraventamento. Em seguida, 

listam-se Kouloušek (1959) e Dziewolski (1964), onde no primeiro trabalho encontra-se a 

modelagem dinâmica do tabuleiro (viga contínua) de pontes através da TMC, e decorrente 

resolução da equação diferencial parcial via método da separação de variáveis. Obtem-se no 

processo de resolução da EDP a equação transcendental que conjuga os modos de vibração da 

estrutura, como observa-se em Volterra e Zachmanoglou (1965, p. 348 – 373). Por último, 

verifica-se em Dziewolski (1964) a comparação entre a análise teórica e experimental nas 

solicitações em perfis metálicos de paredes finas, de qual ressalta-se a constatação de majoração 

na ordem de 1,3 a 1,5 entre os valores obtidos por modelagem da TMC em detrimento de 

ensaios experimentais, sendo procedidos tais ensaios para cargas laterais (o que pode-se 

mensurar na ação do vento em pilares). De tal constatação apresentada em Diziewolski (1964) 

é que se propõe o coeficiente 𝛼 (= 1
1,5⁄ ≡ 2

3⁄ ) de ajuste para as frequências de vibração, em 

estruturas simples, através da TMC, vide figuras 5.26 e 5.27 e tabela 5.4. Já, para as estruturas 

complexas, a exemplo da aplicação 5.9, utiliza-se como coeficiente de ajuste 𝛼 = 1
1,3⁄ . 

 

5.2. GENERALIZAÇÃO DA TEORIA DOS PAINÉIS – PAREDE (GTPP) 

 

 

a) Aplicação aos pilares em formato de  núcleo C com reforço por abas  
 

 

A determinação das propriedades da seção transversal em paredes finas, a exemplo do 

posicionamento do centro de torção, e quantificação da inércia setorial 𝐼𝜔, é objeto de 

formulação em Vlassov (1962). Porém, na determinação do diagrama de ordenadas setoriais 

absoluta 𝜔𝑝𝑐 e decorrente inércia setorial, apesar de Vlassov apresentar a formulação integral, 

constam apenas aplicações em seções com paredes curvas ou ortogonais entre si. Ainda no 

trabalho supracitado verifica-se exemplificação das paredes com inclinação distinta da 

ortogonalidade entre os painéis, porém em exercícios numéricos e sem a devida formulação 

trigonométrica generalizada. Em suma, para Vlassov (1962, p. 194 e 200) a análise de paredes 

inclinadas é realizada mediante exercício numérico. Daí, nesta seção da tese será formulada a 
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teoria dos painéis – parede constante em Barbosa (1980), com a notação de Vlassov, e sob 

equacionamento trigonométrico generalizado. Anos mais tarde, em Murray (1986, p. 54 – 192), 

em Kollbrunner e Basler (1969) e em Campanari (1985, v. 2, p. 723 – 749) são resgatadas as 

teorias postuladas em Vlassov (1962) e aplicadas em novos exemplos. Porém na ocorrência de 

paredes inclinadas a abordagem é sempre a mesma, por meio de dados de entrada (sem postular 

a formulação trigonométrica generalizada). Ainda, ressalta-se Zalka (2000, p. 121 – 153 e 238 

– 277) onde a análise da estabilidade global de núcleos estruturais é procedida unicamente para 

paredes ortogonais entre si. 

A prova de tal análise das propriedades geométricas das seções abertas de paredes finas 

puramente ortogonais entre si é vista em Blodgett (1966, p. 2.2-8 e 2.2-10), Pfeil (1986, v. 2, p. 

323 – 331) e nas tabelas para estruturas metálicas apresentadas em Pfeil (1986, v. 3, p. 665 – 

669). Em ambas as publicações, a inércia setorial 𝐼𝜔 e as demais propriedades geométricas das 

seções de paredes finas são listadas unicamente para paredes com eixo esqueleto 𝓈 ortogonais 

entre si. Assim, a generalização da teoria dos painéis – parede (GTPP) é processada neste item 

da tese por imposição de inclinação genérica para todas as paredes que compõem o núcleo 

estrutural. Ver a notação e o posicionamento dos eixos (centroidais e auxiliares) na figura 5.5. 

Figura 5.5: Posicionamento generalizado das paredes no núcleo estrutural em C 

 

Fonte: O Autor (2019) 
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A partir do ponto provisório P localizado na interseção dos painéis – parede (1) e (3) 

procede-se o traçado do diagrama de ordenadas setoriais 𝜔𝑝, com polo arbitrário 𝑃. Para tal 

utiliza-se a convenção definida na figura 2.100 e cálculo vetorial de área entre dois vetores 

(definido na observação da 9ª etapa da marcha de cálculo Nº 3 – ver item 2.9 a), concluindo por 

diagrama 𝜔𝑝 o apresentado na figura 5.6.  

Figura 5.6: Diagrama de ordenadas setoriais 𝝎𝒑 com polo provisório P 

 

Fonte: O Autor (2019) 

d’onde: Δ𝜔1 =  Δ𝜔3 = 0                                                                                                                (5.1 𝑎) 

Δ𝜔2 = 𝑏1. 𝑏2. sin(𝜃1 − 𝜃2)                                                                                                           (5.1 𝑏) 

Δ𝜔4 = −𝑏1. 𝑏4. sin(𝜃4 − 𝜃1) − 𝑏2. 𝑏4. sin(𝜃4 − 𝜃2)                                                               (5.1 𝑐) 

Δ𝜔5 = 𝑏3. 𝑏5. sin(𝜃3 + 𝜃5)                                                                                                           (5.1 𝑑) 

sendo: 𝑏𝑖 o comprimento, em planta, do painel – parede 𝑖 e 𝜃𝑖 o ângulo de incidência da parede 

𝑖 em relação ao eixo auxiliar 𝑥∗ (com origem sob o polo provisório P). 

Mediante cálculo das coordenadas do centro de gravidade (CG) da seção transversal 

apresentada na figura 5.5, define-se o posicionamento do CG em detrimento do polo provisório 

P e dos eixos auxiliares 𝑥∗ e 𝑦∗, como: 
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𝑏𝐶𝐺𝑧
=

𝑏1
∗. cos 𝜃1 + 𝑏2

∗. cos 𝜃2 + 𝑏3
∗. cos 𝜃3 + 𝑏4

2. cos 𝜃4 + 𝑏5
2. cos 𝜃5

2. (𝑏1 + 𝑏2 + 𝑏3 + 𝑏4 + 𝑏5)
                              (5.2 𝑎) 

𝑏𝐶𝐺𝑦
=

𝑏1
∗. sin 𝜃1 + 𝑏2

∗. sin 𝜃2 + 𝑏3
∗. sin 𝜃3 + 𝑏4

2. sin 𝜃4 + 𝑏5
2. sin 𝜃5

2. (𝑏1 + 𝑏2 + 𝑏3 + 𝑏4 + 𝑏5)
                                (5.2 𝑏) 

com: 𝑏1
∗ = 𝑏1

2 + 2. 𝑏1. 𝑏2 + 2. 𝑏1. 𝑏4; 𝑏2
∗ = 𝑏1

2 + 2. 𝑏2. 𝑏4;  𝑏3
∗ = 𝑏3

2 + 2. 𝑏3. 𝑏5. 

Na figura 5.7 são apresentados os momentos de inércia nos eixos centroidais 𝑥∗∗ e 𝑦∗∗ 

de cada painel – parede; conseguinte rotação de inércia para os eixos auxiliares 𝑥∗ e 𝑦∗ e 

translade via teorema de Steiner. Compõe-se assim as inércias 𝐼𝑦 e 𝐼𝑧 em relação aos eixos 

centroidais da seção transversal do núcleo estrutural C generalizado. 

Figura 5.7: Eixos locais 𝒙∗∗ e 𝒚∗∗ e correlação com os eixos auxiliares 𝒙∗ e 𝒚∗    

 

Fonte: O Autor (2019) 

resultando por momentos de inércia para o núcleo estrutural, os seguintes: 

𝐼𝑧 = ∑{𝐼𝑧𝑖
+ 𝐴𝑖 . Δ𝑦𝑖

2}

5

𝑖=1

                                                                                                                  (5.3 𝑎) 

𝐼𝑦 = ∑{𝐼𝑦𝑖
+ 𝐴𝑖 . Δ𝑧𝑖

2}

5

𝑖=1

                                                                                                                 (5.3 𝑏) 

com: Δy𝑖 = |𝑦𝐶𝐺𝑖

∗ − 𝑏𝐶𝐺𝑦
| ;  Δy𝑖 = |𝑥𝐶𝐺𝑖

∗ − 𝑏𝐶𝐺𝑧
|; 𝐼𝑧𝑖

=
𝐼𝑥𝑖

∗∗ + 𝐼𝑦𝑖
∗∗

2
+

𝐼𝑥𝑖
∗∗ − 𝐼𝑦𝑖

∗∗

2
. cos(2. 𝜃𝑖) ; 

𝐼𝑦𝑖
= 𝐼𝑥𝑖

∗∗ + 𝐼𝑦𝑖
∗∗ − 𝐼𝑧𝑖

;  𝐼𝑥𝑖
∗∗ =

𝑏𝑖 . 𝑡
3

12
; 𝐼𝑦𝑖

∗∗ =
𝑡. 𝑏𝑖

3

12
. Sendo: 𝑡 a espessura das paredes. 

Os diagramas de coordenadas 𝑦 e 𝑧 do núcleo estrutural são apresentados na figura 5.8. 



226 
Weslley Imperiano Gomes de Melo                                                                                                                             

 

Figura 5.8: Diagrama de coordenadas: (a) 𝒚 e (b) 𝒛, para as paredes inclinadas que compõem o 

núcleo estrutural  

 

Fonte: O Autor (2019) 
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as coordenadas 𝑦𝑖 e 𝑧𝑖 das extremidades finais dos painéis – parede 𝑖, ficam expressas por: 

𝑧1 = 𝑧𝑝 + 𝑏1. cos 𝜃1                                                                                                                         (5.4 𝑎) 

𝑧2 = 𝑧1 + 𝑏2. cos 𝜃2                                                                                                                         (5.4 𝑏) 

𝑧3 = 𝑧𝑝 + 𝑏3. cos 𝜃3                                                                                                                         (5.4 𝑐) 

𝑧4 = 𝑧2 + 𝑏4. cos 𝜃4                                                                                                                         (5.4 𝑑) 

𝑧5 = 𝑧3 + 𝑏5. cos 𝜃5                                                                                                                         (5.4 𝑒) 

𝑦1 = 𝑦𝑝 − 𝑏1. sin 𝜃1                                                                                                                         (5.4 𝑓) 

𝑦2 = 𝑦1 − 𝑏2. sin 𝜃2                                                                                                                         (5.4 𝑔) 

𝑦3 = 𝑦𝑝 − 𝑏3. sin 𝜃3                                                                                                                         (5.4 ℎ) 

𝑦4 = 𝑦2 − 𝑏4. sin 𝜃4                                                                                                                          (5.4 𝑖) 

𝑦5 = 𝑦3 − 𝑏5. sin 𝜃5                                                                                                                          (5.4 𝑗) 

com: 𝑧𝑝 = −𝑏𝐶𝐺𝑧
 e  𝑦𝑝 = 𝑏𝐶𝐺𝑦

. 

Agora, mediante a quinta (5ª) etapa da marcha de cálculo Nº 3 aplicada a figura 5.5, e 

decorrente utilização do diagrama 𝜔𝑝 (apresentado na figura 5.6) e das coordenadas 𝑦 (ver 

figura 5.8 a) e 𝑧 (ver figura 5.8 b). Conclui-se o posicionamento do centro de torção D, por 

interpretação geométrica, definido pelas distâncias 𝑑𝑦 e 𝑑𝑧 em relação aos polo provisório P 

(imposto na figura 5.5). Assim, escreve-se: 

𝑑𝑦 =
𝑡

6. 𝐼𝑦
. {Δ𝜔2𝑎. [−𝑑2. 𝑧1 + (𝑏2 − 𝑑2). 𝑧2] + Δ𝜔2. [𝑧2. (3. 𝑏4 + 2. 𝑏2 − 2. 𝑑2) + 3. 𝑏4. 𝑧4]

+ Δ𝜔4. (𝑏4. 𝑧2 + 2. 𝑏4. 𝑧4) − Δ𝜔5. (𝑏5. 𝑧3 + 2. 𝑏5. 𝑧5)}                                (5.5 𝑎) 

𝑑𝑧 =
𝑡

6. 𝐼𝑧
. {Δ𝜔2. [𝑏2. 𝑦1 + 𝑦2. (2. 𝑏2 + 3. 𝑏4) + 3. 𝑏4. 𝑧4] + Δ𝜔4. (𝑏4. 𝑦2 + 2. 𝑏4. 𝑦4)

+ Δ𝜔5. (𝑏5. 𝑦3 + 2. 𝑏5. 𝑦5)}                                                                                (5.5 𝑏) 

com: Δ𝜔2𝑎 =
𝑑2

𝑏2
. Δ𝜔2     e     𝑑2 =

|𝑧1|. 𝑏2

|𝑧1| + |𝑧2|
. 

Por fim, ao proceder o traçado do diagrama de ordenadas setoriais absoluto 𝜔𝑝𝑐, como 

polo de varredura no centro de torção D, exprime-se 𝜔𝑝𝑐 na figura 5.9. 
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Figura 5.9: Diagrama de ordenadas absolutas 𝝎𝒑𝒄, com polo de varredura no centro de torção     

 

Fonte: O Autor (2019) 

resultando por ordenadas 𝜔𝑝𝑐𝑓𝑖
, nos extremos finais dos painéis – parede, os seguintes: 

𝜔𝑝𝑐𝑓1
= 𝜔𝑝𝑐𝑃

+ Δ𝜔𝑝𝑐𝑓1
                                                                                                                  (5.6 𝑎) 

𝜔𝑝𝑐𝑓2
= 𝜔𝑝𝑐𝑓1

+ Δ𝜔𝑝𝑐𝑓2
                                                                                                                (5.6 𝑏) 

𝜔𝑝𝑐𝑓3
= 𝜔𝑝𝑐𝑃

+ Δ𝜔𝑝𝑐𝑓3
                                                                                                                  (5.6 𝑐) 

𝜔𝑝𝑐𝑓4
= 𝜔𝑝𝑐𝑓2

+ Δ𝜔𝑝𝑐𝑓4
                                                                                                                (5.6 𝑑) 

𝜔𝑝𝑐𝑓5
= 𝜔𝑝𝑐𝑓3

+ Δ𝜔𝑝𝑐𝑓5
                                                                                                                (5.6 𝑒) 

com: 𝜔𝑝𝑐𝑃
= 𝑑𝑦 . 𝑑𝑧;  Δ𝜔𝑝𝑐𝑓2

= −𝑏2. (𝑑𝑦. cos 𝜃2 − 𝑑𝑧. sin 𝜃2) + 𝑏1. 𝑏2. sin(𝜃1 − 𝜃2) ; 

Δ𝜔𝑝𝑐𝑓1
= 𝑏1. (𝑑𝑦. cos 𝜃1 − 𝑑𝑧. sin 𝜃1);  Δ𝜔𝑝𝑐𝑓3

= −𝑏3. (𝑑𝑦. cos 𝜃3 − 𝑑𝑧. sin 𝜃3); 

Δ𝜔𝑝𝑐𝑓4
= 𝑏4. (𝑑𝑦. cos 𝜃4 − 𝑑𝑧. sin 𝜃4) + 𝑏1. 𝑏4. sin(𝜃1 − 𝜃4) + 𝑏2. 𝑏4. sin(𝜃2 − 𝜃4)  e 

Δ𝜔𝑝𝑐𝑓5
= 𝑏5. (𝑑𝑦. cos 𝜃5 − 𝑑𝑧. sin 𝜃5) + 𝑏3. 𝑏5. sin(𝜃3 − 𝜃5). 
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A inércia setorial 𝐼𝜔 é obtida mediante aplicação da nona (9ª) etapa da marcha de cálculo 

Nº 3 na figura 5.9, ficando expressa por: 

𝐼𝜔 = 𝑡. {
𝑏1

6
.𝜔𝑝𝑐𝑃

. (2. 𝜔𝑝𝑐𝑃
+ 𝜔𝑝𝑐𝑓1

) +
𝑏1

6
. 𝜔𝑝𝑐𝑓1

. (𝜔𝑝𝑐𝑃
+ 2.𝜔𝑝𝑐𝑓1

)

+
𝑏2

6
.𝜔𝑝𝑐𝑓1

. (2. 𝜔𝑝𝑐𝑓1
+ 𝜔𝑝𝑐𝑓2

) +
𝑏2

6
.𝜔𝑝𝑐𝑓2

. (𝜔𝑝𝑐𝑓1
+ 2.𝜔𝑝𝑐𝑓2

)

+
𝑏3

6
.𝜔𝑝𝑐𝑃

. (2. 𝜔𝑝𝑐𝑃
+ 𝜔𝑝𝑐𝑓3

) +
𝑏3

6
.𝜔𝑝𝑐𝑓3

. (𝜔𝑝𝑐𝑃
+ 2.𝜔𝑝𝑐𝑓3

)

+
𝑏4

6
.𝜔𝑝𝑐𝑓2

. (2. 𝜔𝑝𝑐𝑓2
+ 𝜔𝑝𝑐𝑓4

) +
𝑏4

6
.𝜔𝑝𝑐𝑓4

. (𝜔𝑝𝑐𝑓2
+ 2.𝜔𝑝𝑐𝑓4

)

+
𝑏5

6
.𝜔𝑝𝑐𝑓3

. (2. 𝜔𝑝𝑐𝑓3
+ 𝜔𝑝𝑐𝑓5

) +
𝑏5

6
.𝜔𝑝𝑐𝑓5

. (𝜔𝑝𝑐𝑓3
+ 2.𝜔𝑝𝑐𝑓5

)}             (5.7) 

 

EXEMPLO 5.1 (a): A fim de exemplificar a generalização procedida no item 5.2 desta tese, é 

analisada a variação da inércia setorial 𝐼𝜔 em detrimento das inclinações dos painéis – parede 

(2) e (3). Na tabela 5.1 são apresentados valores de inércia setorial 𝐼𝜔 em detrimento da variação 

das inclinações 𝜃2 e 𝜃3. Ver as inclinações adotadas na figura 5.10 (a). 

Tabela 5.1 – Valores de 𝑰𝝎 (𝒙 𝟏𝟎𝟕) 𝒎𝟔 para modificação das inclinações das paredes (2) e (3) 

𝜽𝟐 
𝜽𝟑 =

𝟏𝟗.𝝅

𝟏𝟐
(𝟐𝟖𝟓º) 𝜽𝟑 =

𝟏𝟎, 𝟕𝟓.𝝅

𝟔
(𝟑𝟐𝟐, 𝟓º) 𝜽𝟑 = 𝟐. 𝝅 (𝟑𝟔𝟎º) 

curva 1 curva 2 curva 3 curva 1 curva 2 curva 3 curva 1 curva 2 curva 3 

𝝅

𝟏𝟐
(𝟏𝟓º) 0,639 0,361 53,103 1,482 0,907 118,798 1,093 0,720 88,025 

𝝅

𝟔
(𝟑𝟎º) 0,602 0,349 49,580 1,542 0,931 123,598 1,309 0,827 104,988 

𝝅

𝟒
(𝟒𝟓º) 0,509 0,298 41,449 1,401 0,827 112,565 1,304 0,787 104,769 

𝝅

𝟑
(𝟔𝟎º) 0,387 0,226 31,219 0,934 0,539 75,494 0,913 0,532 73,671 

𝟓. 𝝅

𝟏𝟐
(𝟕𝟓º) 0,222 0,127 17,886 0,296 0,174 23,988 0,306 0,181 24,667 

Fonte: O Autor (2019) 

Tal análise é objetivada para que projetistas de pontes retas possam identificar qual a 

melhor inclinação das referidas paredes, isso a fim de gerar menor bimomento (uma vez que 𝐼𝜔 

é relacionada ao bimomento mediante equação 2.96 c) e daí agrega-se economia ao projeto com 

a mera inclinação de duas das paredes que compõem o núcleo estrutural C. 
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Na figura 5.10 apresentam-se a configuração do núcleo estrutural analisado e os gráficos 

da variação da inércia setorial 𝐼𝜔 com a modificação da inclinação das paredes (2) e (3). 

Ressalta-se que foi mantida uma inclinação mínima de 15º entre as paredes (1) e (2), bem como 

entre os painéis – parede (1) e (3). Mantendo-se assim, a configuração de núcleo estrutural, ao 

invés de tender a “shear walls”. Por fim, esclarece-se que os gráficos são traçados com valores 

de inércia setorial adimensionalizadas via divisão por 𝐼𝜔 para 𝜃2 = 15º. 

Figura 5.10: Núcleo estrutural: (a) geometria analisada, (b) gráfico de variação de 𝑰𝝎 para 𝜽𝟑 de 

285º, (c) gráfico de variação de 𝑰𝝎 para 𝜽𝟑 de 322,5º e (d) gráfico de variação de 𝑰𝝎 para 𝜽𝟑 de 

360º    

 

Fonte: O Autor (2019) 

Nesta análise: a curva 1 equivale as razões 𝜂3 = 1
40⁄  e 𝜂4 = 4, a curva 2 as razões valem 𝜂3 =

1
30⁄  e 𝜂4 = 10, e por fim na curva 3 utiliza-se 𝜂3 = 1

100⁄  e 𝜂4 = 5. Em ambos os cenários 

de análise, adotam-se para as paredes: 𝑏1 = 𝑏2 = 𝑏3, 𝑏4 = 𝑏5, 𝑡 = 𝑏1. 𝜂3 e 𝑏4 = 𝜂4. 𝑡.     
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b) Aplicação aos pilares com seção transversal em formato de duplo T 

 

 

Na figura 5.11 é apresentada a configuração da seção transversal em duplo T com 

posicionamento generalizado dos painéis – parede que a compõe. Indica-se ainda as inclinações 

𝜃𝑗 do j-ésimo painel. 

Figura 5.11: Posicionamento dos painéis no pilar em duplo T    

 

Fonte: O Autor (2019) 

Objetivando-se o posicionamento do centro de torção 𝐷 são traçados os diagramas de 

ordenadas setoriais provisórias 𝜔𝑝 (ver figura 5.12 a), de coordenadas 𝑦 do j-ésimo painel – 

painel (vide figura 5.12 b) e o de coordenadas 𝑧 (na figura 5.12 c). As coordenadas 𝑦 e 𝑧 dos 

painéis – parede são mensuradas com origem no centro de gravidade da seção transversal. 
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Figura 5.12: Pilar em duplo T generalizado: (a) diagrama 𝝎𝒑, (b) diagrama 𝒚 e (c) diagrama 𝒛    

 

Fonte: O Autor (2019) 
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as ordenadas setoriais 𝜔𝑝, valem: 

Δ𝜔1 = Δ𝜔3 = Δ𝜔7 = 0                                                                                                                 (5.8 𝑎) 

Δ𝜔2 = 𝑏1. 𝑏2. sin(𝜃1 − 𝜃2)                                                                                                           (5.8 𝑏) 

Δ𝜔4 = −𝑏1. 𝑏4. sin(𝜃4 − 𝜃1) − 𝑏2. 𝑏4. sin(𝜃4 − 𝜃2)                                                               (5.8 𝑐) 

Δ𝜔5 = 𝑏3. 𝑏5. sin(𝜃3 + 𝜃5)                                                                                                           (5.8 𝑑) 

Δ𝜔6 = 𝑏1. 𝑏6. sin(𝜃1 − 𝜃6)                                                                                                           (5.8 𝑒) 

Δ𝜔8 = 𝑏1. 𝑏8. sin(𝜃1 − 𝜃8) + 𝑏6. 𝑏8. sin(𝜃6 − 𝜃8)                                                                  (5.8 𝑓) 

Δ𝜔9 = 𝑏7. 𝑏9. sin(𝜃7 − 𝜃9)                                                                                                           (5.8 𝑔) 

as coordenadas 𝑦 e 𝑧 dos extremos finais dos painéis – parede, são expressas por: 

𝑧1 = 𝑧𝑝 + 𝑏1. cos 𝜃1                                                                                                                         (5.9 𝑎) 

𝑧2 = 𝑧1 + 𝑏2. cos 𝜃2                                                                                                                         (5.9 𝑏) 

𝑧3 = 𝑧𝑝 + 𝑏3. cos 𝜃3                                                                                                                         (5.9 𝑐) 

𝑧4 = 𝑧2 + 𝑏4. cos 𝜃4                                                                                                                         (5.9 𝑑) 

𝑧5 = 𝑧3 + 𝑏5. cos 𝜃5                                                                                                                         (5.9 𝑒) 

𝑧6 = 𝑧1 + 𝑏6. cos 𝜃6                                                                                                                         (5.9 𝑓) 

𝑧7 = 𝑧𝑝 + 𝑏7. cos 𝜃7                                                                                                                        (5.9 𝑔) 

𝑧8 = 𝑧6 + 𝑏8. cos 𝜃8                                                                                                                         (5.9 ℎ) 

𝑧9 = 𝑧7 + 𝑏9. cos 𝜃9                                                                                                                          (5.9 𝑖) 

𝑦1 = 𝑦𝑝 − 𝑏1. sin 𝜃1                                                                                                                          (5.9 𝑗) 

𝑦2 = 𝑦1 − 𝑏2. sin 𝜃2                                                                                                                         (5.9 𝑘) 

𝑦3 = 𝑦𝑝 − 𝑏3. sin 𝜃3                                                                                                                          (5.9 𝑙) 

𝑦4 = 𝑦2 − 𝑏4. sin 𝜃4                                                                                                                        (5.9 𝑚) 

𝑦5 = 𝑦3 − 𝑏5. sin 𝜃5                                                                                                                         (5.9 𝑛) 

𝑦6 = 𝑦1 − 𝑏6. sin 𝜃6                                                                                                                         (5.9 𝑜) 

𝑦7 = 𝑦𝑝 − 𝑏7. sin 𝜃7                                                                                                                         (5.9 𝑝) 

𝑦8 = 𝑦6 − 𝑏8. sin 𝜃8                                                                                                                         (5.9 𝑞) 

𝑦9 = 𝑦7 − 𝑏9. sin 𝜃9                                                                                                                         (5.9 𝑟) 

com: 𝑧𝑝 = −𝑏𝐶𝐺𝑧
 e  𝑦𝑝 = 𝑏𝐶𝐺𝑦

. 
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Agora, utilizando os diagramas de coordenadas 𝑦 (ver figura 5.12 b), 𝑧 (Fig. 5.12 c) e 

de ordenadas setoriais provisórias 𝜔𝑝 (Fig. 5.12 a), conclui-se que as distâncias 𝑑𝑦 e 𝑑𝑧 são 

expressas por: 

𝑑𝑧 =
−𝑡

𝐼𝑧
. ∫ 𝜔𝑝. 𝑦

𝓈

 𝑑𝓈 

        =
−𝑡

𝐼𝑧
. {−

𝑏2

6
. Δ𝜔2. (𝑦1 + 2. 𝑦2) −

𝑏4

6
. Δ𝜔2. (2. 𝑦2 + 𝑦4) −

𝑏4

6
. (Δ𝜔2 + Δ𝜔4). (𝑦2 + 2. 𝑦4)

−
𝑏5

6
. Δ𝜔5. (𝑦3 + 2. 𝑦5) +

𝑏6

6
. Δ𝜔6. (𝑦1 + 2. 𝑦6) +

𝑏8

6
. Δ𝜔6. (2. 𝑦6 + 𝑦8)

+
𝑏8

6
. (Δ𝜔6 + Δ𝜔8). (𝑦6 + 2. 𝑦8) +

𝑏9

6
. Δ𝜔9. (𝑦7 + 2. 𝑦9)}                                                     (5.9 𝑠) 

𝑑𝑦 =
𝑡

𝐼𝑦
. ∫ 𝜔𝑝. 𝑧

𝓈

 𝑑𝓈 = 

         =
𝑡

𝐼𝑧
. {−

𝑑2

6
. Δ𝜔2𝑎. 𝑧1 +

(𝑏2 − 𝑑2)

6
. 𝑧2. (Δ𝜔2𝑎 + 2. Δ𝜔2) +

𝑏4

6
. Δ𝜔2. (2. 𝑧2 + 𝑧4)

+
𝑏4

6
. (Δ𝜔2 + Δ𝜔4). (𝑧2 + 2. 𝑧4) −

𝑏5

6
. Δ𝜔5. (𝑧3 + 2. 𝑧5) +

𝑏6

6
. Δ𝜔6. (𝑧1 + 2. 𝑧6)

+
𝑏8

6
. Δ𝜔6. (2. 𝑧6 + 𝑧8) +

𝑏8

6
. (Δ𝜔6 + Δ𝜔8). (𝑧6 + 2. 𝑧8)

−
𝑏9

6
. Δ𝜔9. (𝑧7 + 2. 𝑧9)}                                                                                          𝑖𝑓 𝑏𝐶𝐺𝑧

≥ 0  

(5.9 𝑡) 

       =
𝑡

𝐼𝑧
. {

𝑏2

6
. Δ𝜔2. (𝑧1 + 2. 𝑧2) +

𝑏4

6
. Δ𝜔2. (2. 𝑧2 + 𝑧4) +

𝑏4

6
. (Δ𝜔2 + Δ𝜔4). (𝑧2 + 2. 𝑧4)

−
𝑏5

6
. Δ𝜔5. (𝑧3 + 2. 𝑧5) +

𝑑6

6
. 𝑧6. (Δ𝜔6𝑎 + 2. Δ𝜔6) −

(𝑏6 − 𝑑6)

6
. Δ𝜔6𝑎. 𝑧1

+
𝑏8

6
. Δ𝜔6. (2. 𝑧6 + 𝑧8) +

𝑏8

6
. (Δ𝜔6 + Δ𝜔8). (𝑧6 + 2. 𝑧8)

−
𝑏9

6
. Δ𝜔9. (𝑧7 + 2. 𝑧9)}                                                                                          𝑖𝑓 𝑏𝐶𝐺𝑧

< 0  

(5.9 𝑢) 

com: 𝑑2 =
|𝑧1|. 𝑏2

|𝑧1| + |𝑧2|
;   𝑑6 =

|𝑧6|. 𝑏6

|𝑧1| + |𝑧6|
;    Δ𝜔2𝑎 =

𝑑2

𝑏2
. Δ𝜔2     e     Δ𝜔6𝑎 = (1 −

𝑑6

𝑏6
) . Δ𝜔6. 

Na figura 5.13 (a) é apresentado o sentido de varredura no núcleo C a direita que compõe 

o pilar em duplo T. E na figura 5.13 (b) observa-se a varredura no núcleo à esquerda. E por fim, 

na figura 5.13 (c) verifica-se a configuração do diagrama de ordenadas setoriais absolutas 𝜔𝑝𝑐. 
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Figura 5.13: Duplo T: varredura no núcleo (a) à direita, (b) à esquerda e (c) diagrama 𝝎𝒑𝒄    

 

Fonte: O Autor (2019) 

As ordenadas setoriais principais 𝜔𝑝𝑐 são expressas por:  

𝜔𝑝𝑐𝑃
= 𝑑𝑦 . 𝑑𝑧                                                                                                                                 (5.10 𝑎) 

𝜔𝑝𝑐𝑓1
= 𝜔𝑝𝑐𝑃

+ Δ𝜔𝑝𝑐𝑓1
                                                                                                               (5.10 𝑏) 

𝜔𝑝𝑐𝑓2
= 𝜔𝑝𝑐𝑓1

+ Δ𝜔𝑝𝑐𝑓2
                                                                                                              (5.10 𝑐) 

𝜔𝑝𝑐𝑓3
= 𝜔𝑝𝑐𝑃

+ Δ𝜔𝑝𝑐𝑓3
                                                                                                               (5.10 𝑑) 

𝜔𝑝𝑐𝑓4
= 𝜔𝑝𝑐𝑓2

+ Δ𝜔𝑝𝑐𝑓4
                                                                                                              (5.10 𝑒) 

𝜔𝑝𝑐𝑓5
= 𝜔𝑝𝑐𝑓3

+ Δ𝜔𝑝𝑐𝑓5
                                                                                                              (5.10 𝑓) 

𝜔𝑝𝑐𝑓6
= 𝜔𝑝𝑐𝑓1

+ Δ𝜔𝑝𝑐𝑓6
                                                                                                              (5.10 𝑔) 

𝜔𝑝𝑐𝑓7
= 𝜔𝑝𝑐𝑃

+ Δ𝜔𝑝𝑐𝑓7
                                                                                                               (5.10 ℎ) 

𝜔𝑝𝑐𝑓8
= 𝜔𝑝𝑐𝑓6

+ Δ𝜔𝑝𝑐𝑓8
                                                                                                              (5.10 𝑖) 

𝜔𝑝𝑐𝑓9
= 𝜔𝑝𝑐𝑓7

+ Δ𝜔𝑝𝑐𝑓9
                                                                                                              (5.10 𝑗) 

com: Δ𝜔𝑝𝑐𝑓1
= −𝑏1. (𝑑𝑦 . cos 𝜃1 + 𝑑𝑧. sin 𝜃1);  Δ𝜔𝑝𝑐𝑓3

= −𝑏3. (𝑑𝑦. cos 𝜃3 + 𝑑𝑧. sin 𝜃3); 

Δ𝜔𝑝𝑐𝑓2
= −𝑏2. (𝑑𝑦. cos 𝜃2 + 𝑑𝑧 . sin 𝜃2) + 𝑏1. 𝑏2. sin(𝜃1 − 𝜃2) ; 
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Δ𝜔𝑝𝑐𝑓4
= −𝑏4. (𝑑𝑦. cos 𝜃4 + 𝑑𝑧. sin 𝜃4) + 𝑏1. 𝑏4. sin(𝜃1 − 𝜃4) + 𝑏2. 𝑏4. sin(𝜃2 − 𝜃4) ; 

Δ𝜔𝑝𝑐𝑓5
= −𝑏5. (𝑑𝑦. cos 𝜃5 + 𝑑𝑧 . sin 𝜃5) + 𝑏3. 𝑏5. sin(𝜃3 − 𝜃5) ; 

Δ𝜔𝑝𝑐𝑓6
= −𝑏6. (𝑑𝑦. cos 𝜃6 + 𝑑𝑧 . sin 𝜃6) + 𝑏1. 𝑏6. sin(𝜃1 − 𝜃6) ;  

Δ𝜔𝑝𝑐𝑓7
= −𝑏7. (𝑑𝑦. cos 𝜃7 + 𝑑𝑧 . sin 𝜃7);  

Δ𝜔𝑝𝑐𝑓8
= −𝑏8. (𝑑𝑦. cos 𝜃8 + 𝑑𝑧 . sin 𝜃8) + 𝑏1. 𝑏8. sin(𝜃1 − 𝜃8) + 𝑏6. 𝑏8. sin(𝜃6 − 𝜃8)       e 

Δ𝜔𝑝𝑐𝑓9
= −𝑏9. (𝑑𝑦. cos 𝜃9 + 𝑑𝑧 . sin 𝜃9) + 𝑏7. 𝑏9. sin(𝜃7 − 𝜃9) ; 

A inércia setorial 𝐼𝜔 é calculada pela aplicação da equação (2.133) no diagrama de 

ordenadas setoriais 𝜔𝑝𝑐 (ver figura 5.13 c), e expressa por: 

𝐼𝜔 = 𝑡. ∫ 𝜔𝑝𝑐
2

𝓈

 𝑑𝓈 

      = 𝑡. {
𝑏1

6
.𝜔𝑝𝑐𝑃

. (2. 𝜔𝑝𝑐𝑃
− 𝜔𝑝𝑐𝑓1

) −
𝑏1

6
.𝜔𝑝𝑐𝑓1

. (𝜔𝑝𝑐𝑃
− 2.𝜔𝑝𝑐𝑓1

)

−
𝑏2

6
.𝜔𝑝𝑐𝑓1

. (−2.𝜔𝑝𝑐𝑓1
+ 𝜔𝑝𝑐𝑓2

) +
𝑏2

6
. 𝜔𝑝𝑐𝑓2

. (−𝜔𝑝𝑐𝑓1
+ 2. 𝜔𝑝𝑐𝑓2

)

+
𝑏3

6
.𝜔𝑝𝑐𝑃

. (2. 𝜔𝑝𝑐𝑃
− 𝜔𝑝𝑐𝑓3

) −
𝑏3

6
.𝜔𝑝𝑐𝑓3

. (𝜔𝑝𝑐𝑃
− 2.𝜔𝑝𝑐𝑓3

)

+
𝑏4

6
.𝜔𝑝𝑐𝑓2

. (2. 𝜔𝑝𝑐𝑓2
+ 𝜔𝑝𝑐𝑓4

) +
𝑏4

6
.𝜔𝑝𝑐𝑓4

. (𝜔𝑝𝑐𝑓2
+ 2.𝜔𝑝𝑐𝑓4

)

+
𝑏5

6
.𝜔𝑝𝑐𝑓3

. (2. 𝜔𝑝𝑐𝑓3
+ 𝜔𝑝𝑐𝑓5

) +
𝑏5

6
.𝜔𝑝𝑐𝑓5

. (𝜔𝑝𝑐𝑓3
+ 2.𝜔𝑝𝑐𝑓5

)

+
𝑏6

6
.𝜔𝑝𝑐𝑓1

. (2. 𝜔𝑝𝑐𝑓1
+ 𝜔𝑝𝑐𝑓6

) +
𝑏6

6
.𝜔𝑝𝑐𝑓6

. (𝜔𝑝𝑐𝑓1
+ 2.𝜔𝑝𝑐𝑓6

)

+
𝑏7

6
.𝜔𝑝𝑐𝑃

. (2. 𝜔𝑝𝑐𝑃
+ 𝜔𝑝𝑐𝑓7

) +
𝑏7

6
.𝜔𝑝𝑐𝑓7

. (𝜔𝑝𝑐𝑃
+ 2.𝜔𝑝𝑐𝑓7

)

+
𝑏8

6
.𝜔𝑝𝑐𝑓6

. (2. 𝜔𝑝𝑐𝑓6
+ 𝜔𝑝𝑐𝑓8

) +
𝑏8

6
.𝜔𝑝𝑐𝑓8

. (𝜔𝑝𝑐𝑓6
+ 2.𝜔𝑝𝑐𝑓7

)

+
𝑏9

6
.𝜔𝑝𝑐𝑓7

. (2. 𝜔𝑝𝑐𝑓7
+ 𝜔𝑝𝑐𝑓9

)

+
𝑏9

6
.𝜔𝑝𝑐𝑓9

. (𝜔𝑝𝑐𝑓7
+ 2.𝜔𝑝𝑐𝑓9

)}                                                                   (5.10 𝑘) 
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EXEMPLO 5.1 (b): Semelhante ao procedido no exemplo 5.1 (a) procede-se a análise da 

variação da inércia setorial 𝐼𝜔 para o pilar em duplo T. Na figura 5.14 (a) é apresentada a 

geometria da seção simétrica em duplo T, com as indicações das inclinações dos painéis -

parede. Na tabela 5.2 são apresentados valores de inércia setorial 𝐼𝜔 em detrimento da variação 

das inclinações das paredes laterais (2) e (6). 

Tabela 5.2 – Valores de 𝑰𝝎 (𝒙 𝟏𝟎𝟖) 𝒎𝟔 para as inclinações das paredes (2), (3), (6) e (7) 

𝜽𝟐 𝜽𝟔 
𝜽𝟑 =

𝟏𝟗. 𝝅

𝟏𝟐
;  𝜽𝟕 =

𝟏𝟑. 𝝅

𝟏𝟐
 𝜽𝟑 =

𝟏𝟗. 𝝅

𝟏𝟐
;  𝜽𝟕 =

𝟏𝟑. 𝝅

𝟏𝟐
 𝜽𝟑 =

𝟏𝟗. 𝝅

𝟏𝟐
;  𝜽𝟕 =

𝟏𝟑. 𝝅

𝟏𝟐
 

curva 1 curva 2 curva 3 curva 1 curva 2 curva 3 curva 1 curva 2 curva 3 

𝝅
𝟏𝟐⁄  𝟏𝟏𝝅

𝟏𝟐⁄  1,221 0,502 104,968 1,967 0,821 168,500 1,744 0,753 148,573 

𝝅
𝟔⁄  𝟓𝝅

𝟔⁄  1,017 0,424 87,208 1,645 0,696 140,643 1,443 0,636 122,467 

𝝅
𝟒⁄  𝟑𝝅

𝟒⁄  0,697 0,295 59,561 1,136 0,486 96,917 0,977 0,440 82,704 

𝝅
𝟑⁄  𝟐𝝅

𝟑⁄  0,359 0,156 30,615 0,580 0,251 49,378 0,493 0,228 41,629 

𝟓𝝅
𝟏𝟐⁄  𝟕𝝅

𝟏𝟐⁄  0,102 0,046 8,662 0,151 0,068 12,849 0,133 0,065 11,197 

Fonte: O Autor (2019) 

Figura 5.14: Pilar em duplo T: (a) geometria analisada; gráfico de variação de 𝑰𝝎 para (b) 𝜽𝟑 =

𝟐𝟖𝟓𝒐 e  𝜽𝟕 = 𝟏𝟗𝟓𝒐; (c) 𝜽𝟑 = 𝟑𝟐𝟐, 𝟓𝒐 e  𝜽𝟕 = 𝟐𝟏𝟕, 𝟓𝒐; e (d) 𝜽𝟑 = 𝟑𝟔𝟎𝒐 e  𝜽𝟕 = 𝟏𝟖𝟎𝒐 

 

Fonte: O Autor (2019) 
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Já nas figuras 5.14 (b), (c) e (d) plotam-se os gráficos da variação de 𝐼𝜔 em detrimento 

das inclinações dos painéis – parede (2), (6), (3) e (7). Adota-se ainda, três valores de inclinação 

espelhada para os painéis (3) e (7), sendo: 𝜃3 = {285𝑜; 322,5𝑜;  360𝑜} e  𝜃7 =

{195𝑜; 217,5𝑜;  180𝑜}. As curva 1, 2 e 3 são montadas de forma análoga ao exemplo 5.1 (a), e   

para as paredes, tem-se: 𝑏1 = 𝑏2 = 𝑏3 = 𝑏6 = 𝑏7, 𝑏4 = 𝑏5 = 𝑏8 = 𝑏9, 𝑡 = 𝑏1. 𝜂3 e 𝑏4 = 𝜂4. 𝑡.  

 

 

5.3. FLEXO – TORÇÃO EM PILARES METÁLICOS  

 

 

O empenamento é proveniente da rotação 𝜙 em torno do centro de torção 𝐷, e sua 

derivada 𝑑𝜙, vide figura 5.15 (a). Enquanto que na figura 5.15 (b) é apresentado o elemento 

diferencial da seção de paredes finas, com o momento de torção 𝑀𝑡 e giro relativo 𝑑𝜙. 

Figura 5.15: Elemento submetido a flexo – torção: (a) empenamento, (b) elemento diferencial 

 

Fonte: O Autor (2019) 

d’onde, o giro relativo 𝑑𝜙 é expresso por:  

𝑑𝜙 =
𝑀𝑡

𝐺. 𝐼𝑡
𝑑𝑥                                                                                                                                     (5.11) 

Mediante análise da tensão cisalhante 𝜏 ao longo do eixo esqueleto, relaciona-se o giro 

da seção transversal 𝜙 em relação ao centro de torção, e expressam-se os deslocamentos 

longitudinais 𝑢 em termos apenas do eixo esqueleto 𝓈, por: 

𝑢 = 𝜔𝑝𝑐. 𝜙
′                                                                                                                                         (5.12) 

Cruzando-se as eq.’s (2.95) e (2.96 c), expressa-se a parcela da tensão axial 𝜎𝑥, como: 

𝜎𝑥 =
𝐵

𝐼𝜔
. 𝜔𝑝𝑐                                                                                                                                       (5.13) 
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A equação diferencial que rege a flexo – torção é advinda da união das parcelas do 

momento de torção livre 𝑀𝑙 e da torção de Saint – Venant, ficando expressa por: 

𝜙′′ − 𝑟2. 𝜙′′′′ =
𝑚(𝑥)

𝐺. 𝐼𝑡
                                                                                                                     (5.14) 

Será admitida a possibilidade de carga transversal constante na altura 𝑞1 e de carga sob 

variação linear na altura do pilar 𝑞2(𝑥) = (
𝑞2

𝐻⁄ ). 𝑥; bem como carga concentrada 𝑄 no topo 

do referido pilar. Conduz-se assim, o momento de torção 𝑚(𝑥) = 𝐴. 𝑥 + 𝐵 sob variação linear 

em relação ao centro de torção. As cargas são aplicadas no centro de carga (𝐶𝐶) e em 

decorrência da excentricidade 𝑒 quantifica-se o momento de torção, ver figura 5.16. 

Figura 5.16: Pilar de ponte: (a) carregamentos, (b) centros geométricos (𝑪𝑬 ≡ 𝑫), 𝑪𝑪 𝒆 𝑪𝑮 

 

Fonte: O Autor (2019) 

A solução geral para a equação diferencial expressa na eq. (5.14), é: 

𝜙(𝑥) = 𝐶3. [𝑐𝑜𝑠ℎ(𝛼. 𝑥) − 1] + 𝐶2. [𝑥 −
sinh (𝛼. 𝑥)

𝛼
] +

(𝐴. 𝑥3 + 3.𝐵. 𝑥2)

6. 𝛼2. 𝐸. 𝐼𝜔
                         (5.15) 

onde: 𝐶2 =
𝐴. [2 − (𝛼. 𝐻)2]

2. 𝛼4. 𝐸. 𝐼𝜔
− 2. 𝛼2. (𝑀𝑡𝐻 + 𝐵. 𝐻)     ;      𝑞1𝑦 = 𝑞1. 𝑐𝑜𝑠(𝜃𝐺)      ;     𝑞2𝑦 = 𝑞2. 𝑐𝑜𝑠(𝜃𝐺); 

           𝐶3 =
𝛼2. [𝛼. 𝐵𝐻 − 𝑀𝑡𝐻. sinh(𝛼.𝐻)] + 𝐴. 𝑘1 + 𝐵. 𝛼. [1 + (𝛼. 𝐻). sinh(𝛼. 𝐻)]

𝛼5. 𝐸. 𝐼𝜔. cosh(𝛼.𝐻)
;  

           𝐴 = −(
𝑞2𝑦

𝐻⁄ ) . 𝑒𝑧         ;         𝐵 = −𝑞1𝑦. 𝑒𝑧         ;         𝑘1 = {1 −
(𝛼. 𝐻)2

2
. sinh(𝛼.𝐻)}      e  

          𝑒𝑧 é a distância no eixo 𝑧𝐷𝐿 entre o centro de carga (𝐶𝐶) e o centro de torção (𝐷). 

 Procede-se assim, a extensão da teoria da flexo – torção (TFT) apresentada em Mori e 

Munaiar Neto (2017, p. 140 – 145) para momento de torção 𝑚(𝑥) sob função linear. Tal 

extensão é realizada para computar a ação do vento na referida teoria, uma vez que o 

carregamento oriundo do vento é expresso nas figuras 2.67 e 5.17. 
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Figura 5.17: Convenção positiva do momento de torção 𝑴𝒕 e do braço de alavanca 𝒆𝒛 

 

Fonte: O Autor (2019) 

Conforme apresentado em Laredo (1969), na modelagem do pilar contraventado por 

lintéis é adotado como principal hipótese o enrijecimento propiciado pelos lintéis. Já na análise 

de pilares de pontes, a laje (tabuleiro) é adotada flexível e conforme apresentado na figura 2.19 

fornece cargas verticais no pilar. Tornando-se aplicável a Técnica do Meio Contínuo para tal 

modelagem, mais precisamente com o emprego da Teoria dos Painéis – Parede (ver item 2.8 

desta tese). A abordagem procedida é consonante com Kouloušek (1947), quando do emprego 

das equações de Maney na modelagem dos lintéis de contraventamento. Além disso, a 

formulação dinâmica será baseada em Kouloušek (1959) e na resolução do problema dinâmico 

de pilares de pontes, pela TMC, será utilizado o método da separação de variáveis na resolução 

da EDP que rege o problema dinâmico. As replicações são devidamente empregadas nos pilares 

de pontes com seção de paredes finas em C ou em duplo T (ver subitem 5.3.1), sendo 

postulados: o diagrama de desacoplamento do sistema de EDP’s que rege a solicitação dinâmica 

do vento, a obtenção dos primeiros modos de vibração via TMC e a decorrente comparação 

com a modelagem no software ANSYS Release 11. 

 

5.3.1 Análise dinâmica via TMC 

 

Para os pilares em núcleo formados por painéis – parede constituídos de chapas 

metálicas, tem-se a coincidência em posicionamento do centro de gravidade (𝐶𝐺) com o centro 

de massa (𝐶𝑀), fato este decorrente da homogeneidade de propriedades mecânicas e oriundas 

do processo de usinagem do aço. Vide tal posicionamento na figura 5.18. Para o caso do pilar 

em duplo T observa-se que, quando da dupla simetria, o centro de torção coincide com o centro 

de gravidade. Porém para o caso do pilar em duplo T assimétrico basta utilizar na equação 



241 
Vibração de Pilares com Seção de Paredes Finas via TMC                                                                                                                             

 

(5.16) as matrizes de rigidez [𝐽] e [𝑆], apresentado no item 2.8.2, mais especificamente com as 

matrizes [𝑀1] a [𝑀10] das páginas 111 e 112 desta tese.  

E por último, para a seção do pilar em núcleo C, basta utilizar as matrizes presentes no 

item 2.8.1 (ver páginas 93 a 104 desta tese) para abastecer a equação (5.16). 

Figura 5.18: Posicionamento dos centros geométricos (CC, CG, CM e CT) na seção C

 

Fonte: O Autor (2019) 

Na equação (2.119) é apresentada a análise estática do problema dos painéis – parede, 

sob referencial no centro de gravidade. Assim para a inclusão da parcela dinâmica no centro de 

massa (o que coincide com o centro de gravidade, basta que se proceda a integração da pseudo 

– força inercial (𝑚. 𝑧̈) ao longo do eixo longitudinal 𝑥 do pilar de ponte. Assim, a equação 

diferencial, da análise dinâmica não amortecida dos painéis – parede, fica expressa por: 

−[𝐽]. {𝑣′′′′} + [𝑆]. {𝑣′′} + [𝑀]. {𝑣̈} = {𝑉𝑓
′}                                                                                 (5.16) 

com: [𝑀] = [

𝑚 0 0
0 𝑚 0
0 0 𝐼𝑝

]. 

onde: 𝐼𝑝 é o momento de inércia polar; 𝑚 = 𝑀
𝐻⁄   é a massa distribuída na altura 𝐻 e {𝑣̈} é o 

vetor de aceleração. 

A equação diferencial, eq. (5.16), expressa a análise dinâmica dos painéis – parede 

metálicos, sendo escrita no centro de gravidade. Desse ponto, faz-se o desacoplamento do 

sistema mediante três transformações de coordenadas. A primeira transformação é realizada 

mediante matriz de translação e rotação [𝑅𝑒] do sistema de coordenadas {𝑣} com eixos 

centroidais 𝑦𝐶𝐺 e 𝑧𝐶𝐺 para o sistema de coordenadas {𝑥} com eixos 𝑦𝑅 e 𝑧𝑅. Nesta primeira 

transformação, o sistema fica escrito no referencial de rigidez principal [𝐽∗]. Enquanto na 

segunda transformação translada-se o sistema de coordenadas {𝑥} para o sistema {𝑦}, 

implicando no desacoplamento da matriz de rigidez [𝐽], e reescrita no formato da matriz 

identidade de ordem 3.  
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Por fim, para que o sistema fique desacoplado faz-se necessário aplicar um processo 

iterativo para diagonalizar, até certa tolerância 𝜀 (de magnitude), as matrizes [𝑀∗∗] e [𝑆∗∗]. 

Conforme é apresentado no fluxograma de desacoplamento, ver figura 5.19. 

Figura 5.19: Fluxograma 1 de desacoplamento do sistema de equações diferenciais para a análise 

dinâmica dos painéis – parede metálicos 

 

Fonte: O Autor (2019) 
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Após o processo de diagonalização do sistema de equações diferenciais, eq. (5.16), via 

fluxograma 1 apresentado na figura 5.19, consegue-se escrever as respostas para as referidas 

equações diferenciais. Em tal resolução, utiliza-se um conjunto de equações diferenciais 

desacopladas no referencial generalizado, resultando em: 

−
𝜕4𝑞𝑗(𝑥, 𝑡)

𝜕𝑥4
+ 𝑠𝑗.

𝜕2𝑞𝑗(𝑥, 𝑡)

𝜕𝑥2
+ 𝑚𝑗 .

𝜕2𝑞𝑗(𝑥, 𝑡)

𝜕𝑡2
= 𝑉̅𝑓𝑗

(𝑥, 𝑡)                                                      (5.17) 

 

a) Modos de Vibração 

 

A equação diferencial parcial (EDP) apresentada na equação (5.17) é função do espaço 𝑥 

e do tempo 𝑡. Para tal resolução, adota-se o Método da Superposição Modal, no qual a função 

de duas variáveis 𝑞(𝑥, 𝑡) será expressa pelo produto de duas funções parciais 𝑢(𝑥) e 𝑔(𝑡) 

definidas em cada um dos campos, espaço (𝑥) e temporal (𝑡). A função espacial adimensional 

𝑢 (
𝑥

𝐻
) para consequente análise dos modos de vibração, valendo-se da condição de apoio do 

pilar como engastado na base e livre na extremidade superior, é expressa por: 

𝑢 (
𝑥

𝐻
) = 𝐵1. 𝑐𝑜𝑠ℎ (𝜆1.

𝑥

𝐻
) + 𝐵2. 𝑠𝑖𝑛ℎ (𝜆1.

𝑥

𝐻
) + 𝐵3. 𝑐𝑜𝑠 (𝜆2.

𝑥

𝐻
) + 𝐵4. 𝑠𝑖𝑛 (𝜆2.

𝑥

𝐻
)         (5.18) 

onde: 𝐵2 = −𝐵1. 𝑘𝑢; 𝐵3 = −𝐵1;  𝐵4 = 𝜆1. (𝜆2)
−1. 𝐵1. 𝑘𝑢; 𝜆1, 𝜆2 são as raízes da equação característica 

da EDO homogênea no espaço 𝑥; 𝜔2 é a constante de separação de variáveis e 𝑘𝑢 =

[𝜆1
2. sinh(𝜆1) + 𝜆1. 𝜆2. sin(𝜆2)]

−1. [𝜆1
3. cosh(𝜆1) + 𝜆2

2 . cos(𝜆2)]. 

  A equação transcendental, cujas raízes exprimem os modos de vibração da estrutura, é: 

2. 𝜆1
3. 𝜆2

3

𝜆1. 𝜆2
5 + 𝜆1

5. 𝜆2

. 𝑐𝑜𝑠ℎ(𝜆1). 𝑐𝑜𝑠(𝜆2) +
𝜆1

2. 𝜆2
4 − 𝜆1

4. 𝜆2
2

𝜆1. 𝜆2
5 + 𝜆1

5. 𝜆2

. 𝑠𝑖𝑛ℎ(𝜆1). 𝑠𝑖𝑛(𝜆2) = −1     (5.19) 

Cuja frequência do modo de vibração 𝑖 é 𝜔𝑖
∗ e o período 𝑇𝑖

∗, são: 

𝜔𝑖 =
𝜔𝑖

∗

𝐻2
=

𝜆1. 𝜆2

𝐻2
  [

𝑟𝑎𝑑

𝑠
]                                                                                                                    (5.20 𝑎) 

𝑓𝑖
∗ =

𝜔𝑖
∗

2𝜋
  [𝐻𝑧]                                                                                                                                       (5.20 𝑏) 

𝑇𝑖 = 𝑇𝑖
∗. 𝐻2 =

2𝜋

𝜆1. 𝜆2

. 𝐻2                                                                                                                      (5.20 𝑐) 

𝜆 = 𝐻. √𝑠𝑗                                                                                                                                              (5.20 𝑑) 
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Com a transformação das funções trigonométricas contidas na equação (5.19), por série 

de potência com 11 termos, é possível obter os sete primeiros modos de vibração do pilar em 

núcleo estrutural. Admite-se o pilar com base engastada e topo livre e na tabela 5.3 apresentam-

se parâmetros para determinação dos modos de vibração. 

Tabela 5.3 – Frequência e período em função do modo de vibração e 𝝀 

𝝀 Modo 𝒊 = 𝟏 𝒊 = 𝟐 𝒊 = 𝟑 𝒊 = 𝟒 𝒊 = 𝟓 𝒊 = 𝟔 𝒊 = 𝟕 

0,0 

𝜆1 1,87510 4,69409 7,85483 9,08911 10,02092 11,68901 14,62618 

𝜆2 1,87510 4,69409 7,85483 9,08911 10,02092 11,68901 14,62618 

𝜔𝑖
∗ 3,51600 22,03448 61,69835 84,61192 105,97714 136,63295 213,92514 

𝑇𝑖
∗ 1,78703 0,28515 0,10184 0,07606 0,05929 0,04599 0,02937 

𝑓𝑖
∗ 0,55959 3,50690 9,81960 13,46640 16,86790 21,74580 34,04724 

𝜆𝑖
(𝑎)

 1,87510 4,69410 7,85550 10,99600 ------------- ------------- ------------- 

% Δλ 0,00000% 0,00021% 0,00853% 17,3417% ------------- ------------- ------------- 

0,5 

𝜆1 1,92738 4,73666 7,92626 9,11768 10,04144 11,69751 14,62569 

𝜆2 1,79298 4,68358 7,89466 9,09022 10,01651 11,67612 14,60859 

𝜔𝑖
∗ 3,45576 22,18454 62,57510 82,88171 100,58021 136,58151 213,66066 

𝑇𝑖
∗ 1,81818 0,28322 0,10041 0,07581 0,06247 0,04600 0,02941 

𝑓𝑖
∗ 0,55000 3,53082 9,95917 13,19087 16,00768 21,73913 34,00204 

1,0 

𝜆1 1,98334 4,67319 7,89001 9,14477 10,06085 11,73094 15,10577 

𝜆2 1,71279 4,56494 7,82638 9,08993 10,01103 11,68824 15,07263 

𝜔𝑖
∗ 3,39704 21,33285 61,75023 83,12531 100,71946 137,11404 227,68374 

𝑇𝑖
∗ 1,84961 0,29453 0,10175 0,07559 0,06238 0,04582 0,02760 

𝑓𝑖
∗ 0,54065 3,39524 9,82801 13,22926 16,03078 21,82453 36,23188 

5,0 

𝜆1 2,52714 5,10929 8,16649 9,37042 10,22620 11,77672 14,62109 

𝜆2 1,17747 4,59400 7,85440 9,09971 9,97874 11,56249 14,56249 

𝜔𝑖
∗ 2,97563 23,47208 64,14286 85,26813 102,04455 136,16819 211,26148 

𝑇𝑖
∗ 2,11155 0,26769 0,09796 0,07369 0,06157 0,04614 0,02974 

𝑓𝑖
∗ 0,47359 3,73566 10,20825 13,57036 16,24168 21,67317 33,62475 

10,0 

𝜆1 3,25746 5,50391 8,42839 9,64266 10,43138 11,87014 14,61565 

𝜆2 0,78169 4,50478 7,81267 9,10938 9,94051 11,44116 14,26945 

𝜔𝑖
∗ 2,54634 24,79389 65,84820 87,83870 103,69321 135,80821 208,55730 

𝑇𝑖
∗ 2,46754 0,25342 0,09542 0,07153 0,06059 0,04627 0,03013 

𝑓𝑖
∗ 0,40526 3,94602 10,47998 13,98015 16,50437 21,61228 33,18951 

20,0 

𝜆1 6,10829 8,61531 9,29340 10,43048 11,65087 12,06984 14,60359 

𝜆2 4,16067 7,36367 8,14661 9,42311 10,75838 11,21076 13,90197 

𝜔𝑖
∗ 25,41460 63,44026 75,70972 98,28751 125,34450 135,31202 203,01871 

𝑇𝑖
∗ 0,24723 0,09904 0,08299 0,06393 0,05013 0,04643 0,03095 

𝑓𝑖
∗ 4,04482 10,09693 12,04964 15,64211 19,94813 21,53780 32,31018 

Onde: 𝝀𝒊
(𝒂)

 é a raiz apresentada em Kiseliov (1983, p. 172), isso no capítulo destinado a ações dinâmicas em 

vigas de seção constante. Assim tais valores podem validar a formulação desta tese para 𝒔𝒋 = 𝟎 (sem lintéis).  

Fonte: O Autor (2019) 

Na figura 5.20 é apresentado, para 𝑠𝑗 = 0, a mudança da linha elástica nos três primeiros 

modos de vibração. Na figura 5.21 (a) observa-se o primeiro modo de vibração em termos de 

𝜆, já na fig. 5.21 (b) é apresentado o segundo modo e por fim, na figura 5.21 (c) consta o terceiro 

modo de vibração. Observa-se, ainda na Tab. 5.3, aproximações de 0,0002 % e de 0,008 % nos 

2º e 3º modos (respectivamente). Tal constatação é procedida com base em Kiseliov (1983, p. 

172). 
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Figura 5.20: Três primeiros modos de vibração do pilar em núcleo com base engastada 

 

Fonte: O Autor (2019) 

 

Figura 5.21: Modos de vibração: (a) primeiro, (b) segundo, (c) terceiro 

 

Fonte: O Autor (2019) 
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EXEMPLO 5.2: A fim de exemplificar e verificar a formulação procedida para vibração de 

pilares com paredes finas (item 5.3.1 desta tese) modelou-se um pilar metálico no software 

ANSYS Release 11. Para tal, empregou-se 100 metros de altura e painéis – parede com 

dimensões: 𝑏1 = 𝑏2 = 𝑏3 = 3,45 𝑚, 𝑏4 = 𝑏5 = 1,00 𝑚, espessura 𝑡 = 0,15 𝑚 e paredes 

ortogonais entre si. Notação adotada baseia-se na figura 5.5, vide também na fig. 5.22. As 

dimensões em planta são baseadas na chapa metálica grossa fabricada pela Gerdau e com 

espessura máxima de 15 centímetros e comprimento de 3,6 metros. Na modelagem em ANSYS 

foram utilizados 395.954 nós e 56.028 elementos finitos para o pilar sem lintéis, e 407.514 nós 

e 54.428 EF no pilar contraventado. As malhas de EF possuem 99,81 % de qualidade. 

Figura 5.22: Pilar metálico em núcleo estrutural: (a) seção de paredes finas e (b) frequências de 

vibração via modelagem no software ANSYS Release 11 

 

Fonte: O Autor (2019) 

 Na tabela 5.4 é apresentada a comparação entre os dois primeiros modos de vibração à 

flexão, quanto à mobilização dos lintéis. Analisando o cálculo manual, via tabela 5.3, em 

detrimento da simulação computacional no ANSYS Release 11, ver figura 5.23 (b), (e) e (f). 

Ressalta-se que o cálculo manual é procedido para pilar metálico sem lintéis, logo 𝑠𝑗 = 0. A 

ponderação por 𝛼 = 2
3⁄  para as frequências via TMC é explicada na página 222, desta tese. 

Tabela 5.4 – Comparação dos três primeiros modos de vibração à flexão, via ANSYS 

Frequência à flexão cálculo manual – via tabela 5.3 Simulação via ANSYS  𝚫 (%) 

1ª 𝟐
𝟑⁄ . 𝟎, 𝟓𝟔 = 𝟎, 𝟑𝟕 𝑯𝒁 0,39 𝑯𝒁 5,41 

2ª 𝟐
𝟑⁄ . 𝟑, 𝟓𝟏 = 𝟐, 𝟑𝟒 𝑯𝒁 2,39 𝑯𝒁 2,14 

Fonte: O Autor (2019) 

tais aproximações são devidas a resolução da eq. (5.19) com 11 termos da série de potência. 

Porém ao aumentar o número de termos da série, a trabalhabilidade do Mathcad versão 

estudantil é ultrapassada. Mesmo com a limitação do software na resolução da equação 

transcendental, eq. (5.19), verificam-se excelentes resultados nos dois primeiros modos de 

vibração. Observa-se ainda, que para pilares de seção maciça (𝑠𝑗 = 0) a convergência é total no 

primeiro modo de vibração.  
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Figura 5.23: Modos de vibração via modelagem no software ANSYS Release 11, para pilar 

metálico com seção aberta de paredes finas 

 

Fonte: O Autor (2019) 

Na figura 5.24 são apresentados os vinte primeiros modos de vibração para o pilar 

metálico da figura 5.22. 

Figura 5.24: Vinte primeiros modos de vibração via modelagem no software ANSYS 2019 R1 

versão acadêmica, para pilar metálico com seção contraventada por lintéis 

 

Fonte: O Autor (2019) 
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Na Figura 5.25 são expostos os primeiros modos de vibração nas duas direções 

centroidais, sendo a frequência de ativação dos lintéis à flexão (𝑓1) de valor 0.42 Hz. Via 

processamento manual, operacionalizado pela solução da equação transcendental (5.19), 

obtém-se 𝑓1 no valor de 0.47 Hz (ver Tabela 5.3 para 𝜆𝑗 = 8,55), conforme figura 5.25 (c).  

Figura 5.25: 1º modo de vibração para pilar metálico contraventado por lintéis: (a) via ANSYS 

sem mobilizar os lintéis, (b) via ANSYS com mobilização à flexão dos lintéis e (c) via eq. (5.19) 

 

Fonte: O Autor (2019) 

O valor de 𝜆𝑗 é obtido mediante cruzamento do apêndice D.2 (ver páginas D42 a D45), 

no processo de desacoplamento do sistema de EDP’s, com a equação (5.20 d). Para este 

exemplo em questão, na página D45 constata-se 𝑠1 = −7,31315 𝑥 10−3 para o primeiro modo 

de vibração. Por fim, para a altura de 100 metros do pilar, tem-se: 𝜆1 = 8,55. Conhecido 𝜆 =

𝜆1 = 8,55 procede-se a interpolação dos valores de frequência para os quatro primeiros modos 

de vibração, isso através da tabela 5.3.  

Baseado em tal procedimento, na figura 5.25 (c) observa-se convergência de 0,79 % 

para o 1º modo de vibração do pilar de paredes finas em formato de C. Já, nas figuras 5.26 (c), 

5.27 (c) e 5.28 (c) observam-se aproximações da TMC com a modelagem no ANSYS Release 

11, sob as ordens de grandeza: 7,79 %; 6,03 % e 11,30 % (respectivamente para os 2º, 3º e 4º 

modos de vibração). Apesar da divergência média 8 % nos 2º, 3º e 4º modos de vibração, 

pode-se afirmar que a modelagem do pilar via TMC é satisfatória por dois motivos. O 

primeiro motivo é que o dimensionamento estrutural do pilar é procedido mediante estado de 

maiores deformações, o 1º modo, e neste verifica-se convergência com ordem de exatidão em 

menos de 1 %. A segunda justificativa de eficácia da modelagem dinâmica via TMC é que 

através desta ferramenta pode-se conferir a ordem de grandeza dos resultados obtidos via 

modelagem em softwares comerciais. 
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Figura 5.26: 2º modo de vibração para pilar metálico contraventado por lintéis: (a) via ANSYS 

sem mobilizar os lintéis, (b) via ANSYS com mobilização à flexão dos lintéis e (c) via eq. (5.19) 

 

Figura 5.27: 3º modo de vibração para pilar metálico contraventado por lintéis: (a) via ANSYS 

sem mobilizar os lintéis, (b) via ANSYS com mobilização à flexão dos lintéis e (c) via eq. (5.19) 

 

Figura 5.28: 4º modo de vibração para pilar metálico contraventado por lintéis: (a) via ANSYS 

sem mobilizar os lintéis, (b) via ANSYS com mobilização à flexão dos lintéis e (c) via eq. (5.19) 

 

Fonte: O Autor (2019) 
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EXEMPLO 5.3: Procede-se a modelagem no software ANSYS, Release 11, do pilar exposto 

no exemplo 5.2, adaptando a seção transversal para a ocorrência do duplo T com dupla simetria. 

Apresentando-se na figura 5.29 a geometria de tal pilar metálico. E nas figuras 5.30 e 5.31 são 

apresentados os primeiros modos de vibração. A qualidade da malha de EF empregada no 

ANSYS foi de 99,66 %, com 470.738 nós e 66.700 EF para o pilar em duplo T sem lintéis. Bem 

como, foram utilizados 69.500 EF e 493.853 nós na modelagem do pilar contraventado. 

Figura 5.29: Pilar metálico em duplo T: (a) geometria da seção transversal e (b) frequências de 

vibração via modelagem no ANSYS Release 11, para pilar metálico sem lintéis 

 

Figura 5.30: Modos de vibração do pilar metálico em duplo T sem lintéis via modelagem no 

ANSYS: 1º modo em (a) x, (b) y; 2º modo em (c) x, (d) y e (e) 3º modo em y 

 

Fonte: O Autor (2019) 
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Figura 5.31: Modos de vibração do pilar metálico em duplo T contraventamento por lintéis via 

modelagem no ANSYS: 1ª modo em (a) x, (b) y, 2º modo em (c) x, (d) y, 3º modo em (e) x e (f) y 

 

Fonte: O Autor (2019) 

o pilar modelado no ANSYS possui lintéis com espessura 𝑒𝐿 de 25 cm, altura ℎ𝐿 = 1,00 metro. 

O espeçamento dos referidos lintéis é de 5,00 metros (de eixo a eixo). 
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b)  Vibração forçada não amortecida 

 

Para a vibração forçada, ver equação (5.17), expressa-se o esforço cortante externo 

V𝑓(𝑥, 𝑡) dependente do espaço 𝑥 e do tempo 𝑡 como o produto de duas sub – funções Vℎ(𝑥) e 

V𝑔(𝑡). E após aplicar 𝑞(𝑥, 𝑡) = 𝑢(𝑥). 𝑔(𝑡), em conjunto com as condições de ortogonalidade 

e a devida integração ao longo do comprimento do pilar de 𝑥 = 0 até 𝑥 = 𝐻, escreve-se a 

equação diferencial temporal, como: 

𝑔̈𝑗(𝑡) + 𝑘𝑔. 𝑔𝑗(𝑡) =
1

𝑀𝑘
∗ . ∫[𝑢𝑗(𝑥).Vℎ(𝑥).V𝑔(𝑡)]

𝐻

0

𝑑𝑥                                                               (5.21) 

onde: 𝑘𝑔 = 𝛾𝑗
2. (𝑠 − 𝜔𝑗

2);  

           𝛾𝑗
2 = 𝑚−1. 𝜔𝑗

2 e  

           𝑀𝑘
∗ é a massa modal.  

Adotando-se a variação do esforço cortante ao longo do tempo V𝑔(𝑡) mediante função 

harmônica senoidal, obtém-se como solução 𝑔𝑘(𝑡), a seguinte: 

𝑔𝑘(𝑡) =
𝑄𝑘

(𝑘𝑔
2 − 𝜔̅2).𝑀𝑘

∗
. 𝑠𝑖𝑛(𝜔̅. 𝑡)                                                                                                (5.22) 

sendo; 𝜔̅ a frequência harmônica do esforço cortante ao longo do tempo V𝑔(𝑡). 

Ao utilizar as condições iniciais 𝑞0 e 𝑞̇0 para o espaço 𝑥 e no tempo inicial (𝑡 = 0), bem 

como considerando-se as condições de ortogonalidade modal, determina-se a solução geral da 

EDP apresentada na equação (5.17), como: 

𝑞(𝑥, 𝑡) = ∑ {𝑢𝑗(𝑥). [𝐺1𝑗
. sin(𝛾𝑗 . 𝑡) + 𝐺2𝑗

. cos(𝛾𝑗 . 𝑡) + 𝐺3𝑗
. 𝑠𝑖𝑛(𝜔̅. 𝑡)]}

∞

𝑗=1

                           (5.23) 

onde: 𝑞0 = 𝑞(𝑥, 𝑡 = 0)     ;     𝑞̇0 = 𝑞̇(𝑥, 𝑡 = 0)       ;       𝐺3𝑗
= [(𝑘𝑔

2 − 𝜔̅2).𝑀𝑘
∗]

−1
𝑄𝑗;  

𝐺1𝑗
=

1

𝑀𝑘
∗ . ∫[𝑢𝑗(𝑥).𝑚. 𝑞0]

𝐻

0

𝑑𝑥    e  

𝐺2𝑗
=

1

𝛾𝑗 . 𝑀𝑘
∗ . {∫[𝑢𝑗(𝑥).𝑚. 𝑞̇0]

𝐻

0

𝑑𝑥 −
𝜔̅. 𝑄𝑗

(𝑘𝑔
2 − 𝜔̅2)

}. 
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c)  Vibração forçada amortecida 

 

Baseado em Awruch e González (1993), o equacionamento da vibração amortecida de 

vigas, considerando o ângulo de distorção 𝛾𝑥𝑦, é procedido conforme apresentado em Schapery 

(1969), Silva (2004, p. 65 – 70) e Meneses (2015, p.13). E para tal, aplica-se o modelo de Kelvin 

[𝜎𝑥 = 𝐸. (𝜀𝑥 + 𝑐. 𝜀𝑥̇)] para tensões e deformações, e ao utilizar a definição do momento fletor, 

chega-se a EDP para o problema da viga de Euler sob vibração, expressa por: 

(𝐸. 𝐼).
𝜕4𝑣

𝜕𝑥4
+ 𝑐. (𝐸. 𝐼).

𝜕5𝑣

𝜕𝑡. 𝜕𝑥4
+ 𝑚.

𝜕2𝑞

𝜕𝑡2
= Vℎ(𝑥).V𝑔(𝑡)                                                        (5.24) 

Agora, procede-se a analogia do problema de viga de Euler, ver equação (5.24), adaptada 

corretamente para a teoria dos painéis – parede apresentada na equação (5.17). Observando-se 

que a parcela do amortecimento 𝑐 é proporcional a 
𝜕4𝑞𝑗(𝑥,𝑡)

𝜕𝑥4 , ficando assim expressa, por: 

−
𝜕4𝑞𝑗(𝑥, 𝑡)

𝜕𝑥4
+ 𝑠𝑗.

𝜕2𝑞𝑗(𝑥, 𝑡)

𝜕𝑥2
+ 𝑐𝑗.

𝜕5𝑞𝑗(𝑥, 𝑡)

𝜕𝑥4𝜕𝑡
+ 𝑚𝑗 .

𝜕2𝑞𝑗(𝑥, 𝑡)

𝜕𝑡2
= Vℎ(𝑥).V𝑔(𝑡)               (5.25) 

E mediante processo de resolução da eq. (5.17), escreve-se a solução geral para a EDP da 

vibração amortecida dos painéis – parede, expressa na equação (5.25), como: 

𝑞(𝑥, 𝑡) = ∑{𝑢𝑗(𝑥). [𝐺1𝑗

𝑐 . sin(𝛾𝑗 . 𝑡) + 𝐺2𝑗

𝑐 . cos(𝛾𝑗 . 𝑡) + 𝐺3𝑗

𝑐 . 𝑠𝑖𝑛(𝜔̅. 𝑡)]}

∞

𝑗=1

                           (5.26) 

onde: 𝐺1𝑗

𝑐 =
1

𝑀𝑘
∗ . ∫ [𝑢𝑗(𝑥).𝑚. 𝑞0]

𝐻

0
𝑑𝑥    ;     𝐺3𝑗

𝑐 = [(𝑘3
2 − 𝑐. 𝑘1

2. 𝜔̅ − 𝜔̅2).𝑀𝑘
∗]−1𝑄𝑗; 

𝐺2𝑗

𝑐 =
1

𝛾𝑗 . 𝑀𝑘
∗ . {∫[𝑢𝑗(𝑥).𝑚. 𝑞̇0]

𝐻

0

𝑑𝑥 −
𝜔̅. 𝑄𝑗

(𝑘3
2 − 𝑐. 𝑘1

2. 𝜔̅ − 𝜔̅2)
} ;   V𝑔(𝑡) = 𝑠𝑒𝑛(𝜔̅. 𝑡); 

𝑘1
2 =

(𝜔2 − 𝑐.𝜔4)

𝑚
;  𝑘2

2 =
𝛾2. 𝑚 − 𝑐. 𝜔4

𝑚
;  𝛾2 =

𝜔2 − 𝑐.𝜔2

𝑚
;  𝑘3

2 = 𝑠. 𝑘2
2 − 𝑘1

2;   

𝜔̅ é a frequência da solicitação do esforço cortante V𝑔(𝑡), e no tempo Vℎ(𝑥) equivale a função 

do esforço cortante, onde V𝑒𝑥𝑡 consta na eq. (2.118), após passar pelo processo de 

diagonalização do sistema (ver fluxograma 1, figura 5.19). 
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5.4. FLEXO – TORÇÃO EM PILARES DE CONCRETO ARMADO 

 

 

5.4.1 Formulação dinâmica 

 

 

A análise dinâmica dos pilares de concreto armado é procedida nesse item da tese via 

Técnica do Meio Contínuo, cuja hipótese principal é considerar a massa da estrutura de forma 

distribuída ao longo da altura (ver figura 5.4). Conforme observa-se em Laredo (1977, p.273 – 

283), a modelagem de elementos estruturais através da TMC conduz a valores satisfatórios para 

o primeiro modo de vibração. Como almeja-se dimensionar a estrutura, ao obter bons resultados 

para o 1º modo de vibração é possível caracterizar o cenário de maiores deformações e os 

conseguintes esforços solicitantes. 

A precisão dos valores no primeiro modo de vibração, conforme postulado por Laredo 

(1977), é observada na simulação do pilar metálico (ver tabela 5.3). Daí, nesse subitem 

destinado a análise de pilares de concreto armado, adota-se a TMC e toma-se a massa do 

concreto e a massa das armaduras (longitudinal e transversal) como distribuídas no meio 

contínuo (altura do pilar). Utilizando-se assim, a seção transversal homogeneizada para o 

posicionamento do centro de massa (ver item 5.4.4). 

A análise estática dos Painéis – Parede, apresentada na equação (2.119), é expressa com 

referencial no centro de gravidade (𝐶𝐺). Porém, na análise dinâmica, a parcela da pseudo – 

força inercial é função da massa distribuída 𝑚 e referenciada no centro de massa. Vide fig. 5.32 

com a massa sob aceleração 𝑧̈. 

Figura 5.32: Massa distribuída submetida à aceleração 𝒛̈ 

 

Fonte: O Autor (2019) 

A mencionada pseudo – força 𝐹, é: 
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𝐹 = ∫(𝑚. 𝑧̈) 𝑑𝑥

𝐻

𝑥

                                                                                                                                (5.27) 

onde: 𝑚 – massa distribuída, 𝑀 – massa total do pilar, 𝐻 – altura do pilar e 𝑚 = 𝑀
𝐻⁄ . 

Para a estrutura tridimensional, tem-se: 

{𝑑𝐹} = [𝑀]. {𝑣̈} = [

𝑚 0 0
0 𝑚 0
0 0 𝐼𝑝

] . {
𝑣̈
𝜔̈
𝜙̈

}                                                                                         (5.28) 

onde: 𝐼𝑝 – momento de inércia polar e [𝑀] – matriz de massa no 𝐶𝑀. 

Devido ao fato da parcela dinâmica expressa na equação (5.28) estar referenciada no 

centro de massa (𝐶𝑀) e a parcela estática no centro de gravidade (𝐶𝐺) da seção bruta de 

concreto armado, faz-se necessária a transformação de coordenadas do (𝐶𝑀) para o (𝐶𝐺). Vide 

fig. 5.33. 

Figura 5.33: Centros de massa e de gravidade: (a) posicionamento, (b) transformação de 

referencial do 𝑪𝑴 ao 𝑪𝑮 

 

Fonte: O Autor (2019) 

A relação dos deslocamentos no centro de massa em detrimento do centro de gravidade, 

vale: 

𝑣𝐶𝑀 = 𝑣𝐶𝐺 − 𝑑𝑧𝐶𝑀𝐶𝐺
. 𝜙𝐶𝐺                                                                                                            (5.29 𝑎) 

𝜔𝐶𝑀 = 𝜔𝐶𝐺 + 𝑑𝑦𝐶𝑀𝐶𝐺
. 𝜙𝐶𝐺                                                                                                          (5.29 𝑏) 

𝜙𝐶𝑀 = 𝜙𝐶𝐺                                                                                                                                      (5.29 𝑐) 

Matricialmente as equações (5.29), constituem a lei de transformação de coordenadas 

do centro de massa para o centro de gravidade, ficam expressas assim: 
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{𝑣𝐶𝑀} = [𝑇̅𝑀]. {𝑣𝐶𝐺}  ∴   {

𝑣𝐶𝑀

𝜔𝐶𝑀

𝜙𝐶𝑀

} = [

1 0 −𝑑𝑧𝐶𝑀𝐶𝐺

0 1 𝑑𝑦𝐶𝑀𝐶𝐺

0 0 1

] . {

𝑣𝐶𝐺

𝜔𝐶𝐺

𝜙𝐶𝐺

}                                               (5.30) 

sendo: {𝑣𝐶𝑀} – vetor de deslocamentos no centro de massa, {𝑣𝐶𝐺} – vetor de deslocamentos no 

𝐶𝐺 e [𝑇̅𝑀] – matriz de transformação linear do 𝐶𝑀 para o 𝐶𝐺. 

Em decorrência da lei de transformação expressa na equação (5.30), reescreve-se a 

parcela da movimentação dos painéis – parede, equação (5.28), da seguinte forma: 

{𝑑𝐹𝐶𝑀} = [𝑀]. {𝑣̈𝐶𝑀} = [𝑇̅𝑀]𝑇. [𝑀]. [𝑇̅𝑀]. {𝑣̈𝐶𝐺}                                                                        (5.31) 

Derivando-se a equação (2.119) e somando-se a equação (5.31), tem-se o sistema de 

equações diferenciais, que rege o problema dinâmico dos painéis – parede, expresso por: 

−[𝐽]. {𝑣𝐶𝐺
′′′′} + [𝑆]. {𝑣𝐶𝐺

′′ } + [𝑀̅]. {𝑣̈𝐶𝐺} = {𝑉𝑓
′}                                                                            (5.32) 

sendo: [𝑀̅] = [𝑇̅𝑀]𝑇. [𝑀]. [𝑇̅𝑀], e [𝑀̅] é a Matriz de massa referenciada no 𝐶𝐺. 

 

 

a) Desacoplamento dinâmico 

 
 

 

a.1) Procedimento 1 
 

 

O primeiro procedimento apresentado consiste em reescrever o sistema de equações 

diferenciais (ver equação 5.32) no referencial principal da rigidez do pilar à flexão [𝐽∗], 

mediante transformação linear por matriz de rotação e translação [𝑅𝑒]. Em seguida, transforma-

se [𝐽∗] em [𝐽∗∗] que equivale à matriz Identidade [𝐼], via pré-multiplicação e multiplicação por 

[𝐽∗]−1/2 a fim de manter a simetria das demais matrizes, e garantir conseguinte ortogonalidade 

modal e poder usar matrizes transpostas no lugar de matrizes inversas. Por fim, diagonaliza-se 

[𝑀∗∗] e [𝑆∗∗] através de processo iterativo até que todos os termos fora das diagonais principais 

das matrizes sejam de módulo inferior a determinada tolerância 𝜀, conforme é apresentado no 

fluxograma 2, ver figura 5.34. 

Faz-se relevante explicitar a nomenclatura usada na matriz [𝐽∗] diagonalizada e a 

decorrente matriz [𝐽∗]−1/2 elevada a −1/2. Escrevendo-se: 
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[𝐽∗] = [

𝐽11
∗ 0 0
0 𝐽22

∗ 0
0 0 𝐽33

∗
]                                                                                                                 (5.33 𝑎) 

[𝐽∗]−1/2 =

[
 
 
 
 
 
 
 

1

√𝐽11
∗

0 0

0
1

√𝐽22
∗

0

0 0
1

√𝐽33
∗ ]

 
 
 
 
 
 
 

                                                                                                (5.33 𝑏) 

 

Figura 5.34: Fluxograma 2 do desacoplamento dinâmico via Procedimento 1 

 

Fonte: O Autor (2019) 

Ressalta-se que em tal procedimento, com base em Anastassiadis (1987, p. 16 – 20) e em 

Stamato (1978), a primeira transformação ocorre dos eixos centroidais (𝑦𝐶𝐺 e 𝑧𝐶𝐺) para os eixos 

principais de inércia à flexão do pilar em formato de núcleo estrutural (𝑦𝑅 e 𝑧𝑅), vide fig. 5.35. 
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Figura 5.35: Referencial principal de inércia à flexão do pilar 

 

Fonte: O Autor (2019) 

e expressa por: 

𝑡𝑔(2. 𝜙𝑅) =
2. 𝐽1,2

𝐽1,1 − 𝐽2,2
                                                                                                                                (5.34 𝑎) 

𝑦𝑅 =
−𝐽1,3. 𝐽1,2 + 𝐽2,3. 𝐽1,1

𝐽1,1. 𝐽2,2 − (𝐽1,2)
2                                                                                                                            (5.34 𝑏) 

 𝑧𝑅 =
−𝐽1,3. 𝐽2,2 + 𝐽2,3. 𝐽1,2

𝐽1,1. 𝐽2,2 − (𝐽1,2)
2                                                                                                                           (5.34 𝑐) 

[𝑅𝑒] = [
cos(𝜙𝑅) − sin(𝜙𝑅) 𝑧𝑅

sin(𝜙𝑅)     cos(𝜙𝑅) 𝑦𝑅

0 0 1

]                                                                                                       (5.34 𝑑) 

O conjunto de EDP’s desacopladas no referencial generalizado, para a vibração não 

amortecida dos painéis – parede, é: 

−
𝜕4𝑞𝑗(𝑥, 𝑡)

𝜕𝑥4
+ 𝑠𝑗.

𝜕2𝑞𝑗(𝑥, 𝑡)

𝜕𝑥2
+ 𝑚𝑗 .

𝜕2𝑞𝑗(𝑥, 𝑡)

𝜕𝑡2
= 𝑉𝑓𝑗

0(𝑥, 𝑡)                                                      (5.35) 

onde: 𝑠𝑗 é o j – ésimo elemento da diagonal principal da matriz de rigidez à flexão dos lintéis 

[𝑠], já diagonalizada; 𝑚𝑗 é o j – ésimo elemento para a matriz de massa [𝑚], já diagonalizada; 

e 𝑗 é o j – ésimo modo de vibração da estrutura. 

 

 

a.2) Procedimento 2 
 

 

Acrescenta-se o termo do amortecimento, [𝐶]. {𝑣̇′′′′}, através da matriz de amortecimento 

[𝐶] constituída em termos proporcionais às demais matrizes. Assim, o sistema de EDP’s para a 

vibração amortecida (viscosamente) dos painéis – parede é expresso por: 

[𝑀̅]. {𝑣̈𝐶𝐺} + [𝐶]. {𝑣̇𝐶𝐺
′′′′} + [𝑆]. {𝑣𝐶𝐺

′′ } − [𝐽]. {𝑣𝐶𝐺
′′′′} = {𝑉𝑓

′}                                                       (5.36) 
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sendo: [𝐶] = 𝛼𝑀. [𝑀̅] + 𝛼𝑆 . [𝑆] − 𝛼𝐽. [𝐽], e [𝐶] é a matriz de amortecimento viscoso. 

No presente desacoplamento, procedem-se três transformações de referencial, onde: a 

primeira transformação consiste em diagonalizar a matriz de massa [𝑀̅] que é referenciada no 

𝐶𝐺. Para tal diagonalização utiliza-se a rotina de diagonalização apresentada no item 2.6, o 

método de Jacobi. Já, na segunda transformação,[𝑚∗] vira a matriz identidade [𝐼] mediante 

transformação quadrática por [𝑚∗]−1/2. Por fim, na terceira transformação, aplica-se processo 

em “loop” para a diagonalização conjunta de [𝑆∗∗] e [𝐽∗∗] até certa tolerância adotada, 𝜀𝑆 para 

a rigidez dos lintéis e 𝜀𝐽 para a rigidez do núcleo. Na figura 5.36 é apresentado o fluxograma 

Nº 3, e o conjunto de EDP’s desacopladas, fica expresso por: 

𝜕2𝑞𝑗(𝑥, 𝑡)

𝜕𝑡2
+ 𝑐𝑗.

𝜕5𝑞𝑗(𝑥, 𝑡)

𝜕𝑥4𝜕𝑡
+ 𝑠𝑗.

𝜕2𝑞𝑗(𝑥, 𝑡)

𝜕𝑥2
− 𝑗𝑗 .

𝜕4𝑞𝑗(𝑥, 𝑡)

𝜕𝑥4
= 𝑉𝑓𝑗

0(𝑥, 𝑡)                           (5.36 𝑎) 

onde; a matriz [𝑚∗]−1/2  é quadrada e de ordem 3, sendo formada por elementos não nulos 

apenas na diagonal principal, sob a seguintes lei de formação: 𝑚𝑖,𝑗
∗ = 1

√𝑚𝑖𝑖
∗⁄  para 𝑖 = 𝑗. 

Figura 5.36: Fluxograma 3 do desacoplamento dinâmico via Procedimento 2 

 

Fonte: O Autor (2019) 
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5.4.2 Análise modal 

 

Mediante resolução de EDP’s pelo método da superposição modal, escrevem-se as 

EDO’s no espaço 𝑥 e no tempo 𝑡, para a vibração não amortecida, como: 

𝑗𝑗. 𝑢
′′′′(𝑥) − 𝑠𝑗. 𝑢

′′(𝑥) − 𝜔𝑗
2. 𝑢(𝑥) = 0                                                                                     (5.37 𝑎) 

𝑔̈(𝑡) − 𝜔𝑗
2. 𝑔(𝑡) = 0                                                                                                                     (5.37 𝑏) 

onde: 𝑞(𝑥, 𝑡) = 𝑢(𝑥). 𝑔(𝑡), e 𝜔𝑗 é o j – ésima frequência de vibração da estrutura. 

A análise da equação (5.37 a) é realizada a fim de determinar os modos de vibração e 

correlacionar 𝑠𝑗 e 𝑗𝑗. Daí, aplica-se 𝑢(𝑥) = 𝑒𝛼.𝑥 e exprime-se a equação característica, por: 

𝑗𝑗 . 𝛼
4 − 𝑠𝑗. 𝛼

2 − 𝜔𝑗
2 = 0                                                                                                                 (5.38) 

As raízes (𝛼1 e 𝛼2) da equação característica, equação (5.38), em relação a 𝑗𝑗 e 𝑠𝑗, são 

expressas, em termo da j – ésima frequência de vibração da estrutura, por: 

𝛼1 = √√(
𝑠𝑗

2. 𝑗𝑗
)

2

+
𝜔𝑗

2

𝑗𝑗
+

𝑠𝑗

2. 𝑗𝑗
                                                                                                   (5.39 𝑎) 

 𝛼2 = √𝑠𝑗2 − 𝛼1
2       ;       𝑗𝑗 = (𝑠𝑗. 𝛼

2 + 𝜔𝑗
2). 𝛼−4                                                         (5.39 𝑏 − 𝑐) 

A solução dos deslocamentos 𝑢(𝑥), fica expressa como: 

𝑢(𝑥) = 𝐶1. 𝑠𝑖𝑛ℎ(𝛼1. 𝑥) + 𝐶2. 𝑐𝑜𝑠ℎ(𝛼1. 𝑥) + 𝐶3. 𝑠𝑖𝑛(𝛼2. 𝑥) + 𝐶4. 𝑐𝑜𝑠(𝛼2. 𝑥)                     (5.40) 

Adotando-se a adimensionalização das raízes 𝛼 para 𝜆, via 𝜆1 = 𝛼1. 𝐻 e 𝜆2 = 𝛼2. 𝐻, 

correlaciona-se as raízes 𝜆1 e 𝜆2, por: 

𝜆1
2 − 𝜆2

2 = 𝜆2                                                                                                                                   (5.41 𝑎) 

𝜆 = 𝐻.√
𝑠𝑗

𝑗𝑗
                                                                                                                                      (5.41 𝑏) 

Realiza-se, agora, o produto entre as raízes adimensionais (𝜆1 e 𝜆2), exprimindo as 

frequências da estrutura por: 

𝜔𝑗 = 𝜔𝑗
∗.

√𝑗𝑗

𝐻2
                                                                                                                                      (5.42) 
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O pilar analisado possui base engastada, logo com deslocamento 𝑢(𝑥 = 0) = 0 nulo e 

rotação 𝑢′(𝑥 = 0) = 0 também nula. No topo, a extremidade é livre e, em conseguinte o 

momento fletor e o esforço cortante são nulos, aplicando-se assim: 𝑢′′(𝑥 = 𝐻) =

𝑢′′′(𝑥 = 𝐻) = 0. Ao utilizar tais condições de contorno na equação (5.40), após devida 

adimensionalização, conclui-se o sistema de equações lineares: 

[
 
 
 

1
0

𝜆1
2. 𝑐𝑜𝑠ℎ(𝜆1)

𝜆1
3. 𝑠𝑖𝑛ℎ(𝜆1)

0
𝜆1

𝜆1
2. 𝑠𝑖𝑛ℎ(𝜆1)

𝜆1
3. 𝑐𝑜𝑠ℎ(𝜆1)

1
0

−𝜆2
2. 𝑐𝑜𝑠(𝜆2)

𝜆2
3. 𝑠𝑖𝑛(𝜆2)

0
𝜆2

−𝜆2
2. 𝑠𝑖𝑛(𝜆2)

−𝜆2
3. 𝑐𝑜𝑠(𝜆2)]

 
 
 

. {

𝐶1

𝐶2

𝐶3

𝐶4

} = {0}                      (5.43) 

A solução não trivial do sistema apresentado na equação (5.43), conduz a equação 

transcendental, vide eq. (5.19). Ressaltando, que o período e a frequência são expressos por: 

𝑇𝑗 =
2. 𝜋

𝜔𝑗
= 𝑇𝑗

∗.
𝐻2

√𝑗𝑗
                                                                                                                       (5.44 𝑎) 

𝜔𝑗
∗ =

1

𝑇𝑗
∗                                                                                                                                            (5.44 𝑏) 

EXEMPLO 5.4: Procede-se semelhante ao exemplo 5.2, com exceção apenas do pilar ser de 

concreto armado com classe de resistência C – 90, ver NBR 6118 (ABNT, 2014). Nas figuras 

5.37, 5.38 e 5.39 são apresentados os resultados da análise modal, realizada no pilar em núcleo 

estrutural C e de concreto armado, sendo processada via software ANSYS Release 11. 

Adotando-se por espessura das paredes finas 𝑡 = 0,25 𝑚. E no caso do núcleo contraventado 

por lintéis, procede-se também a modelagem com concreto C – 40, vide figura 5.40. A malha 

de EF no ANSYS foi implementada com qualidade de 99,80 %, isso para 145.058 nós e 20.400 

EF no pilar não contraventado. Já, no pilar com lintéis utilizou-se 149.478 nós e 20.880 EF. 

Figura 5.37: Frequências de vibração via modelagem no software ANSYS Release 11, para pilar 

C em concreto armado (C – 90) com seção aberta de paredes finas 

 

Fonte: O Autor (2019) 
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Figura 5.38: Primeiros modos de vibração via modelagem no software ANSYS Release 11, para 

pilar em C e concreto armado (C – 90) sem contraventamento por lintéis 

 

Fonte: O Autor (2019) 
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Figura 5.39: Pilar C contraventado por lintéis e em concreto C – 90: 1º modo de vibração (a) em 

torno de y, (b) ativando os lintéis quanto à flexão, 2º modo (c) em y, (d) ativando os lintéis e (e) 3º 

modo em x 

 

Fonte: O Autor (2019) 

Figura 5.40: Pilar C em de concreto C – 40, modos de vibração ativando os lintéis quanto a 

flexão: (a) 1º modo (𝝎𝟏 = 𝟏, 𝟗𝟏𝟒𝟗𝟑 𝒓𝒂𝒅/𝒔), (b) 2º modo e (c) 3º modo via modelagem no ANSYS 

 

Fonte: O Autor (2019) 
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EXEMPLO 5.5: Procede-se a modelagem do pilar exposto no exemplo 5.2 através do software 

ANSYS Release 11, adaptando a seção transversal para a ocorrência do duplo T com dupla 

simetria. Bem como, utilizando-se como material o concreto armado de classe de resistência C 

– 90. Apresenta-se assim, na figura 5.29 (a) a geometria de tal pilar, onde os lintéis são impostos 

com espessura 𝑒𝐿 de 25 cm, altura ℎ𝐿 de 1,00 metro e ficam espaçados (de eixo a eixo) da 

distância ℎ de 5,00 metros. Já, nas figuras 5.41 e 5.42 são apresentados os primeiros modos de 

vibração do pilar sem o contraventamento e com os travamentos promovidos pelos lintéis, 

respectivamente. No pilar sem lintéis foram utilizados 167.498 nós e 23.600 EF para a 

modelagem no ANSYS, obtendo-se qualidade de 99,65 % para a malha de EF. Já, para o pilar 

contraventado verificou-se 99,67 % de qualidade da malha, com a utilização de 162.313 nós e 

22.560 elementos finitos. 

Figura 5.41: Modos de vibração do pilar de concreto armado em duplo T sem lintéis via 

modelagem no ANSYS: (a) 1º modo à flexão em torno do eixo x, (b) 1º modo com deformação à 

flexão em torno do eixo y, (c) 2º modo à flexão em torno do eixo x, (d) 2º modo à flexão em torno 

do eixo y e (e) 3º modo à flexão em torno do eixo y 

 

Fonte: O Autor (2019) 



265 
Vibração de Pilares com Seção de Paredes Finas via TMC                                                                                                                             

 

Figura 5.42: Modos de vibração do pilar de concreto armado em duplo T contraventamento por 

lintéis via modelagem no ANSYS: (a) 1º modo com deformação à flexão em torno do eixo y, (b) 

1º modo com deformação à flexão em torno do eixo x, (c) 2º modo à flexão em torno do eixo y, (d) 

2º modo à flexão em torno do eixo x e (e) 3º modo à flexão no eixo x  

 

Fonte: O Autor (2019) 
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5.4.3 Amortecimento proporcional 

 

 

Na análise dinâmica das estruturas usuais é conveniente modelar a rigidez dos elementos 

que as compõem e agrupá-los em única matriz de rigidez [𝐾] da estrutura, esta no referencial 

global de coordenadas. Já à pseudo-força inercial que a estrutura apresenta ao se deslocar, 

quando da solicitação dinâmica, é computada pelo produto da matriz de massa [𝑀] com o vetor 

de acelerações {𝐷̈} dos deslocamentos lineares e angulares. Por fim, modela-se o 

amortecimento viscoso da estrutura por uma matriz de amortecimento [𝐶] proporcional às 

demais, onde tal proporcionalidade é determinada mediante análise modal e os decorrentes dois 

primeiros modos de vibração. Assim, procede a exemplo de Blume (1968) e em Fleming e 

Romualdi (1961).  

Por outro lado, na análise dos pilares com seção transversal composta de paredes finas, 

verificam-se duas matrizes de rigidez. A primeira matriz [𝐽], refere-se à parcela da rigidez à 

flexão do referido pilar em si, e a segunda matriz [𝑆], é relativa à rigidez na flexão dos lintéis 

que promovem o contraventamento do pilar ao longo da altura (e distribuídos na extremidade 

aberta da seção transversal). Ao ressaltar o equacionamento dos referidos painéis – parede 

menciona-se Smith e Taranath (1972) e também Stamato e Mancini (1973), em tais análises 

faz-se a imposição estática do carregamento. Porém, na análise dinâmica, que aqui será 

procedida, soma-se a parcela da pseudo – força  inercial da movimentação e, assim, o sistema 

de equações diferenciais parciais (EDP’s) fica constituído por três matrizes. Para tanto, propõe-

se o procedimento de proporcionalidade para montagem da matriz de amortecimento [𝐶] dos 

pilares de paredes finas. Para tal proposição, vale-se do desacoplamento do sistema de EDP’s 

baseado em Rosman (1972) e as necessárias transformações de referencial via Gl𝑢̈ck (1970).  

Mediante o procedimento 2 de diagonalização do sistema de EDP’s, apresentado na 

equação (5.36 a), chega-se a: 

𝑐𝑗 = 𝛼𝑀. 1 + 𝛼𝑆. 𝑠𝑗 − 𝛼𝐽. 𝑗𝑗                                                                                                              (5.45) 

Via análise da EDP apresentada na equação (5.36 a) e conseguinte aplicação de 𝑢(𝑥) =

𝑒𝛼𝑥 e 𝑔(𝑡) = 𝑒𝜔𝑡, encontra-se como equação característica da vibração livre amortecida: 

𝜔2 + (𝑐𝑗. 𝛼
4). 𝜔 + (𝑠𝑗. 𝛼

2 − 𝑗𝑗 . 𝛼
4) = 0                                                                                      (5.46) 
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A resolução da equação característica, equação (5.46), com a imposição de 

amortecimento crítico e conseguinte utilização da razão de amortecimento 𝜉𝑗, implica em 𝑐𝑗
0 

igual a: 

𝑐𝑗
0 = 2. 𝜉𝑗 . 𝜔𝑗                                                                                                                                      (5.47) 

onde; 𝜉𝑗 é a razão de amortecimento do j-ésimo modo de vibração. E a partir das equações (5.39 

c) e (5.41 b) com a devida adimensionalização das raízes (𝜆1 = 𝛼1. 𝐻 e 𝜆2 = 𝛼2. 𝐻), concluem-

se 𝑠𝑗 e 𝑗𝑗, em termos da frequência 𝜔𝑗, como: 

𝑗𝑗 =
𝜔𝑗

2

(𝜆1
4 − 𝜆1

2. 𝜆2)
                                                                                                                          (5.48 𝑎) 

𝑠𝑗 = 𝜆2. 𝑗𝑗                                                                                                                                         (5.48 𝑏) 

Por fim, aplicando-se as equações (5.47) e (5.48) na condição expressa na equação 

(5.45) e valendo-se da frequência 𝜔𝑗
∗ ao invés de 𝜔𝑗, pois almeja-se apenas estabelecer 

proporções das matrizes [𝑀̅], [𝐽] e [𝑆] que formam a matriz de amortecimento [𝐶], conclui-se: 

𝜉𝑗 =
𝛼𝑀

2.𝜔𝑗
∗ +

𝛼𝑆. 𝑠𝑗

2. 𝜔𝑗
∗ −

𝛼𝐽. 𝑗𝑗

2.𝜔𝑗
∗                                                                                                             (5.49)  

Impondo os três primeiros modos de vibração 𝑗 = {1, 2 e 3} na equação (5.49), monta-

se um sistema de equações algébricas, cuja solução é: 

𝛼𝑀 =
2. [𝜔1

∗. 𝜉1(𝑗2. 𝑠3 − 𝑗3. 𝑠2) + 𝜔2
∗ . 𝜉2(𝑗3. 𝑠1 − 𝑗1. 𝑠3) + 𝜔3

∗ . 𝜉3(𝑗1. 𝑠2 − 𝑗2. 𝑠1)]

𝑗1. (𝑠2 − 𝑠3) + 𝑗2. (𝑠3 − 𝑠1) + 𝑗3. (𝑠1 − 𝑠2)
         (5.50 𝑎) 

𝛼𝑆 =
2. [𝜔1

∗ . 𝜉1(𝑗3 − 𝑗2) + 𝜔2
∗ . 𝜉2(𝑗1 − 𝑗3) + 𝜔3

∗ . 𝜉3(𝑗2 − 𝑗1)]

𝑗1. (𝑠2 − 𝑠3) + 𝑗2. (𝑠3 − 𝑠1) + 𝑗3. (𝑠1 − 𝑠2)
                                            (5.50 𝑏) 

𝛼𝐽 =
2. [𝜔1

∗ . 𝜉1(𝑠3 − 𝑠2) + 𝜔2
∗ . 𝜉2(𝑠1 − 𝑠3) + 𝜔3

∗ . 𝜉3(𝑠2 − 𝑠1)]

𝑗1. (𝑠2 − 𝑠3) + 𝑗2. (𝑠3 − 𝑠1) + 𝑗3. (𝑠1 − 𝑠2)
                                          (5.50 𝑐) 

A proporcionalidade na montagem da matriz [𝐶] fica expressa por: 

𝜇𝑀 =
𝛼𝑀

𝛼𝑀 + 𝛼𝑆 + 𝛼𝐽
                                                                                                                   (5.51 𝑎) 

𝜇𝑆 =
𝛼𝑆

𝛼𝑀 + 𝛼𝑆 + 𝛼𝐽
                                                                                                                    (5.51 𝑏) 

𝜇𝐽 =
𝛼𝐽

𝛼𝑀 + 𝛼𝑆 + 𝛼𝐽
                                                                                                                     (5.51 𝑐) 

[𝐶] = 𝜇𝑀. [𝑀̅] + 𝜇𝑆. [𝑆] + 𝜇𝐽. [𝐽]                                                                                               (5.51 𝑑) 
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5.4.4 Posicionamento do centro de massa 

 

Para a seção transversal de paredes finas, aberta e em concreto armado, faz-se necessária 

a determinação das coordenadas do centro de massa (𝐶𝑀), para tanto recorre-se à definição: 

𝑥𝐶𝑀
∗ =

∑ 𝑥𝐶𝑀𝑖

∗ . 𝑚𝑖
𝑛
𝑖=1

∑ 𝑚𝑖
𝑛
𝑖=1

                                                                                                                    (5.52 𝑎) 

𝑦𝐶𝑀
∗ =

∑ 𝑦𝐶𝑀𝑖

∗ . 𝑚𝑖
𝑛
𝑖=1

∑ 𝑚𝑖
𝑛
𝑖=1

                                                                                                                    (5.52 𝑏) 

sendo: 𝑥𝐶𝑀𝑖

∗  e 𝑦𝐶𝑀𝑖

∗ – as coordenadas do centro de massa canônico 𝑖 em relação a um referencial 

genérico 𝑥∗ e 𝑦∗; 𝑚𝑖 – a massa do elemento canônico 𝑖; 𝑛 – o número de massas canônicas que 

formam o núcleo estrutural; e 𝑥𝐶𝑀
∗  e 𝑦𝐶𝑀

∗  – as coordenadas do centro de massa da seção 

transversal em paredes finas (em relação ao referencial 𝑥∗ e 𝑦∗). Vide figura 5.43. 

Figura 5.43: Geometria da seção transversal e decomposição em massas de formato canônico 

 

Fonte: O Autor (2019) 

Adotando-se a subdivisão apresentada na figura 5.43, a massa específica do concreto 

como 𝜌𝐶𝑆 = 2400 𝑘𝑔/𝑚³ e a massa específica do aço como 𝜌𝑆 = 7860 𝑘𝑔/𝑚³, conclui-se: 
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𝑥𝐶𝑀
∗ =

𝑥𝐶𝑀1

∗ . 𝑚1 − 𝑥𝐶𝑀2

∗ . 𝑚2 − 𝑥𝐶𝑀3

∗ .𝑚3 − 𝑥𝐶𝑀4

∗ . 𝑀4 + 𝑥𝐶𝑀5

∗ . 𝑀5

𝑚1 − 𝑚2 − 𝑚3 − 𝑀4 + 𝑀5
                                      (5.53 𝑎) 

𝑦𝐶𝑀
∗ =

𝑦𝐶𝑀1

∗ . 𝑚1 − 𝑦𝐶𝑀2

∗ . 𝑚2 − 𝑦𝐶𝑀3

∗ . 𝑚3 − 𝑦𝐶𝑀4

∗ .𝑀4 + 𝑦𝐶𝑀5

∗ . 𝑀5

𝑚1 − 𝑚2 − 𝑚3 − 𝑀4 + 𝑀5
                                      (5.53 𝑏) 

Por fim, as distâncias entre os centros de massa (𝐶𝑀) e o de gravidade (𝐶𝐺), são 

apresentadas na figura 5.44. 

Figura 5.44: Posicionamento do 𝑪𝑮 e 𝑪𝑴 na seção transversal 

 

Fonte: O Autor (2019) 

e valem: 

𝑑𝑦𝐶𝑀𝐶𝐺
= 𝑦𝐶𝑀

∗ − 𝑦𝐶𝐺
∗                                                                                                                      (5.54 𝑎) 

𝑑𝑧𝐶𝑀𝐶𝐺
= 𝑥𝐶𝑀

∗ − 𝑥𝐶𝐺
∗                                                                                                                      (5.54 𝑏) 

 

 

5.4.5 Transformação de referenciais 

 

 

a) Transladar do centro de gravidade 𝑪𝑮 para o centro de torção 𝑫 
 

 

Na figura 2.86 observa-se a compatibilização das rotações 𝜙𝐷 (no centro de torção) e 

𝜙𝐶𝐺 (no centro de gravidade) e dos deslocamentos 𝜔𝐷 via 𝜔𝐶𝐺, projetando-se as distância 𝑑𝑦𝐶𝐺𝐷
 

e 𝑑𝑧𝐶𝐺𝐷
 paralelamente ao eixo 𝑧 e ao eixo 𝑧, respectivamente. Do equilíbrio de deslocamentos, 

já em formato matricial, tem-se: 
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{𝑣𝐶𝐺} = [𝑇̅𝐷]. {𝑣𝐷}                                                                                                                         (5.55 𝑎) 

{

𝑣𝐶𝐺

𝜔𝐶𝐺

𝜙𝐶𝐺

} = [

1 0 −𝑑𝑧𝐶𝐺𝐷

0 1 𝑑𝑦𝐶𝐺𝐷

0 0 1

] . {

𝑣𝐷

𝜔𝐷

𝜙𝐷

}                                                                                              (5.55 𝑏) 

 

 

b) Transladar do centro de torção 𝑫 para a origem das coordenadas 𝑶𝒔 
 

 

Analogamente ao procedido na letra “a” deste item e, considera-se a rotação 𝛽 entre o 

referencial (𝑦𝐷𝐿, 𝑧𝐷𝐿, 𝑥𝐷𝐿) no centro de torção e o referencial global (𝑦𝑔, 𝑧𝑔, 𝑥𝑔), conforme 

observa-se na figura 5.45. 

Figura 5.45: Transformação do referencial no centro de torção 𝑫 para a origem 𝑶𝒔 

 

Fonte: O Autor (2019) 

chegando-se a: 

𝑣𝐷. 𝑐𝑜𝑠𝛽 + 𝜔𝐷. 𝑠𝑖𝑛𝛽 = 𝑣𝑔 − 𝑑𝑧𝐷𝑂𝑠
. 𝜙𝑔                                                                                    (5.56 𝑎) 

−𝑣𝐷. 𝑠𝑖𝑛𝛽 + 𝜔𝐷. 𝑐𝑜𝑠𝛽 = 𝜔𝑔 + 𝑑𝑦𝐷𝑂𝑠
. 𝜙𝑔                                                                                (5.56 𝑏) 

𝜙𝐷 = 𝜙𝑔                                                                                                                                           (5.56 𝑐) 

O equilíbrio apresentado na eq. (5.56), fica matricialmente expresso por: 

{𝑣𝐷} = [𝑇̅𝑆]
−1. [𝑇̅𝐺]. {𝑣𝑔}                                                                                                              (5.57 𝑎) 

{

𝑣𝐷

𝜔𝐷

𝜙𝐷

} = [
   𝑐𝑜𝑠𝛽 𝑠𝑖𝑛𝛽 0
−𝑠𝑖𝑛𝛽 𝑐𝑜𝑠𝛽 0

0 0 1

]

−1

. [

1 0 −𝑑𝑧𝐷𝑂𝑠

0 1 𝑑𝑦𝐷𝑂𝑠

0 0 1

] . {

𝑣𝑔

𝜔𝑔

𝜙𝑔

}                                                    (5.57 𝑏) 

Combinam-se as eq.’s (5.55) e (5.57), translada-se diretamente do 𝐶𝐺 para 𝑂𝑠, assim: 

{𝑣𝑔} = [𝑇̅𝑆]
−1. [𝑇̅𝐺]. [𝑇̅𝐷]−1. {𝑣𝐶𝐺}                                                                                                  (5.58) 
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5.5. EXEMPLOS DE APLICAÇÃO 

 

 

EXEMPLO 5.6: Nesta sexta aplicação será analisado um pilar de ponte com altura total 𝐻 =

90 𝑚  e com seção transversal aberta formada por paredes finas e contraventado parcialmente 

na altura por lintéis (espaçados de eixo a eixo por ℎ = 3 𝑚). Na figura 5.46 apresenta-se a 

configuração do pilar, para o qual procede-se a validação numérica das propriedades 

geométricas, vide tabela 5.5, mediante a dissertação de Xavier (1987) e o artigo de Smith e 

Taranath (1972). Utilizam-se as seguintes dimensões na seção transversal: 𝑏𝑦 = 𝑏𝑧 = 5 𝑚, 

𝑎1𝑦 = 𝑎2𝑦 = 1 𝑚 e 𝑡 = 0,25 𝑚. 

Tabela 5.5 – Validação numérica mediante Xavier (1987) e Smith e Taranath (1972) 

Seção do 

Pilar em 

Núcleo 

Resultados Diagrama 

de Área 

Setorial 

Resultados 

O autor 

(2019) 

Xavier 

(1987) 

O autor 

(2019) 

Xavier 

(1987) 

Smith e 

Taranath 

𝒙𝑪𝑮 (𝒎) 2,5 2,5 ‖𝜔1‖ (𝑚²) 6,638 6,625 ------ 

𝒚𝑪𝑮 (𝒎) 2,941 2,94 ‖𝜔2‖ (𝑚²) 5,862 5,875 ------ 

𝑰𝒛(𝒎
𝟒) 20,284 20,28 ‖𝜔5‖ (𝑚²) 13,517 13,525 ------ 

𝑰𝒚(𝒎
𝟒) 15,328 15,34 𝐼𝜔(𝑚6) 100,674 100,67 100,674 

𝑰𝒕(𝒎
𝟒) 

(𝒙 𝟏𝟎−𝟐) 

8,854 8,85 𝑑𝑧  (𝑚) 2,655 2,65 2,655 

𝑑𝑦 (𝑚) 2,499 2,5 ------ 

Fonte: O Autor (2019) 

Figura 5.46: Pilar em núcleo (a) seção transversal e (b) diagrama de área setorial 

 

Fonte: O Autor (2019) 
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O módulo de elasticidade longitudinal utilizado foi de 𝐸 = 20 𝑥 106 𝑘𝑁/𝑚², o 

coeficiente de poisson 𝜈 = 0,25 e a carga é uniformemente distribuída na altura (𝑞1 =

9,418 𝑘𝑁/𝑚). O braço de alavanca 𝑒𝑧 = 𝑧𝐷 = 4,714 𝑚 gera o momento de torção distribuído, 

também uniformemente, valendo 𝑚 = 44,393 𝑘𝑁. 𝑚/𝑚. Vide na tabela 5.6 a validação dos 

valores de rotação 𝜙 no topo do pilar. 
 

Tabela 5.6 – Validação numérica da rotação no topo do pilar  

𝒒𝟏
∗ = 𝒒𝟏 + 𝒑 

(𝒌𝑵/𝒎) 

Rotação 𝝓 (rad) 

O autor (2019) Xavier (1987) 

Teoria de 

flexo – torção 

Teoria dos painéis 

– parede 

Método de Stodola – 

Vianello 

Método das 

Diferenças Finitas 

𝒑 = 𝟎 𝒌𝑵/𝒎 - 0,087  

(≈ 0,09) 

- 0,137 

(≈ 0,1) 

- 0,097 

(≈ 0,1) 

- 0,097 

(≈ 0,1) 
Fonte: O Autor (2019) 

EXEMPLO 5.7: Nesta sétima análise, adota-se a dissertação de Barbosa (1980) em dois 

cenários de carregamento: Cenário 1 – momento de torção distribuído 𝑚 = 24922,5 𝑙𝑏. 𝑓𝑡/𝑓𝑡  

e Cenário 2 – momento de torção concentrado no topo 𝑀𝑡𝐻 = 155765 𝑙𝑏. 𝑓𝑡. O pilar em 

questão será modelado com 187,5 ft de altura e com travamentos por lintéis a cada ℎ = 12,5 𝑓𝑡. 

Vide tabelas 5.7 e 5.8 constam os valores de rotação 𝜙 (𝑟𝑎𝑑) e bimomento 𝐵 (𝑙𝑏. 𝑓𝑡2), 

aplicando-se além da técnica do meio contínuo, o método dos elementos finitos (ver item 3.6). 

A geometria adotada é a apresentada na figura 5.46. 

Tabela 5.7 – Validação numérica do cenário 1, quanto a rotação e o Bimomento, mediante 

Barbosa (1980) 

 𝝓 (𝒙𝟏𝟎−𝟐 𝒓𝒂𝒅) 𝑩 (𝒙𝟏𝟎𝟖 𝒍𝒃. 𝒇𝒕𝟐) 

O Autor 

(2019) 

Barbosa 

(1987) 

MEF O Autor 

(2019) 

Barbosa 

(1987) 

MEF 

Base (0 ft) 0,00000 0,000 0,000 -3,65416 -3,664 -3,653 

4º Andar (50 ft) -0,16920 -0,172 -0,169 -1,72242 -1,709 -1,721 

9º Andar (112,5 ft) -0,65105 -0,650 -0,651 -0,33290 -0,360 -0,352 

Topo (187,5 ft) -1,31907 -1,319 -1,320 0,00000 0,000 0,000 
Fonte: O Autor (2019) 

Tabela 5.8 – Validação numérica do cenário 2, quanto a rotação e o bimomento, mediante 

Barbosa (1980) 

 𝑩 (𝒙𝟏𝟎𝟕 𝒍𝒃. 𝒇𝒕𝟐) 

O Autor (2019) Barbosa (1987) MEF 

Base (0 ft) -2,28068 -2,281 -2,281 

4º Andar (50 ft) -1,56620 -1,563 -1,566 

9º Andar (112,5 ft) -0,80862 -0,809 -0,809 

Topo (187,5 ft) 0,00000 0,000 0,000 
Fonte: O Autor (2019) 
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E para tal exemplo utilizou-se: 𝑏𝑦 = 𝑏𝑧 = 19 𝑓𝑡;  𝑎1𝑦 = 𝑎2𝑦 = 4,5 𝑓𝑡; 𝑡 = 1 𝑓𝑡;  𝛼 =

0,944; 𝐼𝑧 = 4492,5 𝑓𝑡4;  𝑑𝑧 = 10,43 𝑓𝑡;  𝐼𝜔 = 3,77629𝑥105 𝑓𝑡6;  𝐼𝑡 = 22 𝑓𝑡4;  𝜈 =

0,15; 𝐸 = 5,76𝑥108 𝑙𝑏

𝑓𝑡2    e    𝐺 = 2,504𝑥108 𝑙𝑏

𝑓𝑡2. 

EXEMPLO 5.8: Nesta oitava aplicação, procede-se a análise do pilar de ponte em núcleo, 

formado por painéis – parede em formato de C, e com reforço nas extremidades livres mediante 

abas de comprimento unitário. Na figura 5.47 (a), apresentam-se as dimensões em planta do 

referido pilar, enquanto na figura 5.47 (b) são apresentadas as condições de contorno. 

Figura 5.47: Pilar metálico: (a) geometria, (b) carregamentos e condições de contorno 

 

Fonte: O Autor (2019) 

As propriedades mecânicas das chapas metálicas, ver NBR 8800 (ABNT, 2008), 

empregadas na construção do referido pilar são: 𝐸 = 210 𝑥 106 𝑘𝑁/𝑚2, 𝐺 =

8,07692 𝑥 107 𝑘𝑁/𝑚2 e 𝜈 = 0.3. Durante a análise definem-se três cenários de 

carregamentos, sendo estes: o Cenário 1 - para carregamento uniformemente 𝑞1 = 50 𝑘𝑁/𝑚 

distribuído ao longo da altura (𝐻 = 100 𝑚) do pilar e nulidade nos demais carregamentos (𝑞2 

e 𝑄), bem como no momento de torção no topo 𝑀𝑡𝐻 e bimomento 𝐵𝐻. No Cenário 2 é adotado 

apenas para atuação da carga concentrada no topo (𝑄 = 40 𝑘𝑁) e momento de torção no topo 

sob valor  𝑀𝑡𝐻 = 𝑄. 𝑒𝑧 = 148.08592 𝑘𝑁.𝑚.  

Enquanto no Cenário 3 aplica-se o carregamento do cenário 1 com a atuação dos lintéis, 

promovendo o contraventamento ao longo da altura do pilar. Em suma, nos Cenários 1 e 2 o 

pilar é analisado como seção aberta de paredes finas e no Cenário 3 o pilar é contraventado 

parcialmente por lintéis (Ver figura 5.48).  
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Figura 5.48: Cenários de carregamento: (a) Cenário 1, (b) Cenário 2, (c) Cenário 3 

 

Fonte: Adaptado de (SMITH; COULL, 1991) 

E para decorrente validação numérica, vale-se do artigo de Smith e Taranath (1972) e 

da comparação entre as teorias apresentadas nos itens (2.7) e (2.8). Tanto quanto, o método dos 

elementos finitos, com elementos de tamanho ℎ𝑀𝐸𝐹 = 5 𝑚 (ver figura 3.19), e devidamente 

formulados através das equações constitutivas da flexão e da flexo – torção. O MEF aqui 

empregado é apresentado na figura 5.49 e postulado em Smith e Coull (1991), Heidebrecht e 

Swift (1971), e em Barbosa (1980), considerando nos lintéis a deformação por corte. 

Figura 5.49: Convenção dos esforços solicitantes dos elementos finitos na flexo – torção 

 

Fonte: O Autor (2019) 

Na tabela 5.9 são apresentadas as propriedades da seção transversal e do diagrama de 

ordenadas setoriais, e nas tabelas 5.10 e 5.11 são listados os valores de rotação 𝜙 e do 

bimomento 𝐵 para a base, meia altura e o topo do pilar (por cenário de carregamento). 
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Tabela 5.9. Validação numérica na seção transversal e no diagrama de ordenadas setoriais 

Seção do Pilar 

em Núcleo 

O autor 

(2019) 

Smith e 

Taranath (1972) 

Ordenadas 

Setoriais 

O autor 

(2019) 

Smith e 

Taranath (1972) 

𝒙𝑪𝑮 (𝒎) 1,52247 --------- ‖𝜔1‖ (𝑚²) 3,41058 --------- 

𝒚𝑪𝑮 (𝒎) 1,72500 --------- ‖𝜔2‖ (𝑚²) 2,54067 --------- 

𝑰𝒛(𝒎
𝟒) 4,07020 4,07020 ‖𝜔5‖ (𝑚²) 7,96782 --------- 

𝑰𝒚(𝒎
𝟒) 3,38471 --------- 𝐼𝜔(𝑚6) 14,27556 14,27556 

𝑰𝒕(𝒎
𝟒) 0,01389 --------- 𝑑𝑧  (𝑚) 1,97715 1,97715 

𝑑𝑦 (𝑚) 1,72422 1,72500 

Fonte: O Autor (2019) 

Tabela 5.10. Validação numérica da rotação 𝝓 e do bimomento 𝑩 para o cenário 1 

𝒙 

(𝒎) 

Rotação𝝓(𝒙 𝟏𝟎−𝟐 𝒓𝒂𝒅) Bimomento𝑩(𝒙 𝟏𝟎𝟓 𝒌𝑵.𝒎𝟐) 

O Autor (2019) Smith e 

Taranath 

(1972) 

O Autor (2019) Smith e 

Taranath 

(1972) 
flexo – 

torção 

painéis – 

parede 

flexo – 

torção 

painéis – 

parede 

MEF 

0 0 ------- 0 -5,63078 ------- -5,24329  -5,63078 

50 -13,54697 ------- -13,54697 -0,20948 ------- ------- -0,20948 

100 -32,29933 -34,46433 -32,29933 0 0 0 0 

Fonte: O Autor (2019) 

Tabela 5.11. Validação numérica da rotação 𝝓 e do bimomento 𝑩 para os cenários de 

carregamentos 2 e 3 

𝒙 

(𝒎) 

bimomento

𝑩(𝒙 𝟏𝟎𝟑 𝒌𝑵.𝒎𝟐) 

Rotação 𝝓(𝒙 𝟏𝟎−𝟑 𝒓𝒂𝒅) bimomento 𝑩(𝒙 𝟏𝟎𝟒 𝒌𝑵.𝒎𝟐) 

O Autor (2019) O Autor (2019) Smith e 

Taranath 

(1972) 

O Autor (2019) Smith e 

Taranath 

(1972) 
flexo – torção flexo – torção flexo – torção MEF 

0 -7,34105 0 0 -7,96886 -8,58469 -7,96886 

50 -2,43798 -4,14029 -4,14029 0,37608 ------- 0,37608 

100 0 -5,73446 -5,73446 0 0 0 

Fonte: O Autor (2019) 

Valendo ressaltar que a validação numérica do Cenário 1, mediante a teoria dos painéis 

– parede, é realizada por imposição da distância ℎ de eixo a eixo dos lintéis igual a altura total 

do pilar. Quanto às discrepâncias de sinal no bimomento, obtido via artigo de Smith e Taranath 

(1972), percebe-se que é mera discordância de convenção de sinais nas respectivas formulações. 

No mais, observa-se a coerência da rotação nula na base (𝑥 = 0), para todas as teorias e 

cenários utilizados, tanto quanto bimomento nulo no topo do pilar (𝑥 = 𝐻 = 100 𝑚). 

No presente exemplo são abordadas duas teorias de análise estrutural para os pilares de 

pontes, sendo elas: a teoria da flexo – torção (TFT) e a dos painéis – parede (TPP). Procede-se 

também a aplicação numérica num pilar de ponte submetido a três cenários de carregamento, 
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com a possibilidade ou não de contraventamento por lintéis ao longo da altura (esses espaçados 

relativamente da altura ℎ). Na aplicação numérica é empregado o MEF com elementos finitos 

de barra (grandes e de altura ℎ) e formulados pelas equações constitutivas à flexão e à flexo – 

torção. O que valida de forma satisfatória os resultados obtidos via correspondência de rotação 

𝜙 e de bimomento 𝐵 por entre as teorias abordadas, bem como pela proximidade com o 

elemento finito na ordem de 1%0 (bimomento na base do pilar e Cenário 1 de carregamento, 

ver página D34). 

EXEMPLOS 5.9 e 5.10: 

Nesta seção será analisada uma ponte com tabuleiro apoiado sobre três pilares, cada um 

com seção transversal composta por paredes finas, vide Fig. 5.50. Tudo em conformidade com 

as normas NBR 7188 (ABNT, 2013) e DIN 1055 (pr FR 2005-03). Nestes exemplos serão 

adotados pilares rotacionados entre si, isso a fim de exercitar a formulação desenvolvida, 

mesmo que o comum em pontes seja o arranjo simétrico e repetido por blocos. 

Figura 5.50: Ponte apoiada sobre três pilares de paredes finas: (a) vista lateral, (b) configuração 

em planta dos pilares 

 

Fonte: O Autor (2019) 
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o material empregado é concreto armado de classe de resistência C – 40, de acordo com a NBR 

6118 (ABNT, 2014). Portanto, o módulo de elasticidade longitudinal vale 𝐸 =

3,54175 𝑥 107 𝑘𝑁/𝑚² e módulo transversal 𝐺 = 1,47573 𝑥 107 𝑘𝑁/𝑚², bem como 

coeficiente de Poisson 𝜈 = 0.20. Em função dos estados de carregamento da ponte, faz-se a 

análise de dois cenários: no primeiro cenário a atuação unicamente do vento na estrutura (Ver 

ex. 5.9) e no segundo cenário a atuação do tráfego com enfoque na frenagem (ver ex. 5.10).  

EXEMPLO 5.9: Nesta nona análise, a ponte é submetida à ação unicamente do vento lateral 

sob o formato de três carregamentos ao longo da altura do pilar, sendo esses: 𝑞1 = 20 𝑘𝑁/𝑚, 

𝑞2 = 30 𝑘𝑁/𝑚 e 𝑄 = 10 𝑘𝑁. Vide figura 5.51 e apêndice D no item D.2.  

Figura 5.51: Ângulos entre os esforços cortantes externos V𝒆𝒙𝒕𝑷𝟏
,V𝒆𝒙𝒕𝑷𝟐

,V𝒆𝒙𝒕𝑷𝟑
 e os eixos 𝒚𝑫𝑳 

definidos nos centros de torção de cada um dos três pilares 

 

Fonte: O Autor (2019) 

V𝑒𝑥𝑡𝑦
= −

𝑞2𝑦

2. 𝐻
. 𝑥2 − 𝑞1𝑦. 𝑥 + (𝑄𝑦 + 𝑞1𝑦. 𝐻);  V𝑒𝑥𝑡𝑧

= −
𝑞2𝑧

2.𝐻
. 𝑥2 − 𝑞1𝑧. 𝑥 + (𝑄𝑧 + 𝑞1𝑧. 𝐻); 

𝑞1𝑦 = 𝑞1. cos(𝜃𝐷) ;  𝑞2𝑦 = 𝑞2. cos(𝜃𝐷) ;   𝑄𝑦 = 𝑄. cos(𝜃𝐷) ; 

𝑞1𝑧 = 𝑞1. sin(𝜃𝐷) ;  𝑞2𝑧 = 𝑞2. sin(𝜃𝐷)   e   𝑄𝑧 = 𝑄. sin(𝜃𝐷). 

O Esforço cortante ao longo do tempo será regido por uma função harmônica de senos 

V𝑔(𝑡) = 𝑠𝑖𝑛(𝜔̅. 𝑡), com frequência 𝜔̅ = 3 𝑟𝑎𝑑/𝑠. Além disso, o sistema de EDP’s da equação 

(5.36) fica expresso para os pilares e referenciado no centro de gravidade, como: 

[
7870,65 0   387,78

0 7870,65 1506,08
  387,78 1506,08   319,73

] . {
𝑣̈
𝜔̈
𝜙̈

} + [
 120073 0 −18909

0 99853       5459
−22378 0  174899

] . {
𝑣̇′′′′

𝜔̇′′′′

𝜙̇′′′′
}

+ [
0 0      6939
0 0    10919
0 0 −12427

] . {
𝑣′′

𝜔′′

𝜙′′
} − [

 240146 0 −44757
0 199706 0

−44757 0 336224
] . {

𝑣′′′′

𝜔′′′′

𝜙′′′′
} = {V𝑓} 

(5.59) 
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Os coeficientes de proporcionalidade das matrizes [𝑀̅], [𝐽] e [𝑆], para compor a matriz 

de amortecimento [𝐶] viscoso, são expressos por: 

𝛼𝑀 =  0;  𝛼𝑆 = −3,80 𝑥 1016;   𝛼𝐽 = −3,80 𝑥 1016; 𝜇𝑀 =  0;  𝜇𝑆 =   0,5;   𝜇𝐽 =  0,5. 

E o conjunto de EDP’s desacopladas é apresentado na equação (5.36), como: 

−𝑞1
′′′′(𝑥, 𝑡) + 0,03385. 𝑞̈1(𝑥, 𝑡) + 0,49519. 𝑞̇1

′′′′(𝑥, 𝑡) − 0,00962. 𝑞1
′′(𝑥, 𝑡) = V 𝑓1

0 (𝑥, 𝑡)           (5.60 𝑎) 

−𝑞2
′′′′(𝑥, 𝑡) + 0,04038. 𝑞̈2(𝑥, 𝑡) − 0,13363. 𝑞̇2

′′′′(𝑥, 𝑡) − 1,26726. 𝑞2
′′(𝑥, 𝑡) = V 𝑓2

0 (𝑥, 𝑡)           (5.60 𝑏) 

−𝑞3
′′′′(𝑥, 𝑡) + 0,00003. 𝑞̈3(𝑥, 𝑡) + 0,50243. 𝑞̇3

′′′′(𝑥, 𝑡) + 0,00498. 𝑞3
′′(𝑥, 𝑡) = V 𝑓3

0 (𝑥, 𝑡)            (5.60 𝑐) 

No conjunto de EDP’s apresentado nas equações (5.60), procede-se a verificação do 

primeiro modo de vibração (mobilizando os lintéis) através do cruzamento da equação (5.41 b) 

e da figura (5.40 a). Assim, com os parâmetros 𝑠𝑗 = −0,00962 e 𝑗𝑗 = −1 e mediante eq. (5.41 

b) determina-se o parâmetro 𝜆 = 𝐻.√
𝑠𝑗

𝑗𝑗
⁄ = 100 [𝑚].√−0,00962

−1⁄ = 9,81, utilizando a 

tabela 5.3 com o valor imediatamente superior de 𝜆, logo: 𝜔1
∗ = 2,54634 𝑟𝑎𝑑/𝑠 (para 𝜆 =

10). Por fim, na figura (5.40 a) é apresentado o 1º modo de vibração de um único pilar em 

formato de C e contraventado com lintéis sob a mesma distribuição desse exemplo, daí a 

motivação de comparação, constatando-se uma aproximação de 2,24 %. Utiliza-se o ajuste da 

frequência determinada via TMC pelo coeficiente 𝛼 = 1
1,3⁄ , cuja funcionalidade é explicada 

na página 222 desta tese e baseada em Diziewolski (1964). 

Δ(%) =
|𝜔𝐴𝑁𝑆𝑌𝑆

∗ − 𝜔𝑇𝑀𝐶
∗ |

𝜔𝑇𝑀𝐶
∗ . 100 % =

|1,91493 − 1,95872|
𝑟𝑎𝑑
𝑠

1,95872
𝑟𝑎𝑑
𝑠

. 100 % = 2,24 % 

Na tabela 5.12 são apresentadas as funções do esforço cortante Vf no referencial inicial 

e V f
0
 no referencial generalizado e ambas para os pilares 𝑃1, 𝑃2 e 𝑃3. 

Tabela 5.12 – Funções do esforço cortante por pilar 

 Pilar 𝑷𝟏 Pilar 𝑷𝟐 Pilar 𝑷𝟑 

𝑽𝒇𝟏
 89,77 . 𝑥2 + 11969,20 . 𝑥 − 1196926.12 −48,87  . 𝑥2 − 6515,63 . 𝑥 + 651565,87 −147,66 . 𝑥2 − 19687,64 . 𝑥 + 1968773,75 

𝑽𝒇𝟐
 120,17 . 𝑥2 + 16023,05 . 𝑥 − 1602313.28 −141,82 . 𝑥2 − 18908,90 . 𝑥 + 1809899,76 26,41 . 𝑥2 + 3520,92 . 𝑥 − 352093,65 

𝑽𝒇𝟑
 332,19 . 𝑥2 + 44291,71 . 𝑥 − 4429193.40 −180,83 . 𝑥2 − 24110,90 . 𝑥 + 2411102,23 −546,40 . 𝑥2 − 72853,59 . 𝑥 + 7285395,07 

𝑽𝒇𝟏

𝟎  0,18 . 𝑥2 + 24,43 . 𝑥 − 2442.55 −0,10 . 𝑥2 − 13,30 . 𝑥 + 1329,69 −0,30 . 𝑥2 − 40,17 . 𝑥 + 401750,64 

𝑽𝒇𝟐

𝟎  0,27 . 𝑥2 + 35,85 . 𝑥 − 3585.47 −0,32 . 𝑥2 − 42,31 . 𝑥 + 4231,26 0,06 . 𝑥2 + 7,88 . 𝑥 − 787,97 

𝑽𝒇𝟑

𝟎  0,59 . 𝑥2 + 78,21 . 𝑥 − 7820.51 −0,32 . 𝑥2 − 42,57 . 𝑥 + 4257,22 −0,96 . 𝑥2 − 128,64 . 𝑥 + 12863,63 

Fonte: O Autor (2019) 



279 
Vibração de Pilares com Seção de Paredes Finas via TMC                                                                                                                             

 

Para o primeiro modo de vibração, a função de deslocamento 𝑢(𝑥) e 𝑔(𝑡) no referencial 

generalizado e no inicial, respectivamente, são expressas por: 

𝑢1(𝑥) = 0,36275 . {𝑐𝑜𝑠ℎ(0,01983 . 𝑥) − 𝑐𝑜𝑠(0,01713 . 𝑥)

+ 0,92535. [− sinh(0,01983 . 𝑥) + 2,41421. 𝑠𝑖𝑛(0,01713 . 𝑥)]} 

𝑔1(𝑡) = 4,543 . 1010. 𝑠𝑖𝑛(3,476 . 10−3. 𝑡) − 8,928 . 108. 𝑠𝑖𝑛(3. 𝑡) 

𝑢1(𝑥) = 6,098 . 10−4 . {𝑐𝑜𝑠ℎ(1,847 . 10−3 . 𝑥) − 𝑐𝑜𝑠(7,65 . 10−4 . 𝑥)

+ 1,556 . 10−3. [− sinh(1,847 . 10−3 . 𝑥)

+ 4,048 . 10−3. 𝑠𝑖𝑛(7,65 . 10−4 . 𝑥)]} 

𝑔1(𝑡) = 7,637 . 107. 𝑠𝑖𝑛(5,843 . 10−6. 𝑡) − 1,501 . 106. 𝑠𝑖𝑛(3. 𝑡) 

Em seguida, mediante retorno ao referencial inicial, escreve-se o vetor de deslocamentos 

{𝑣𝐶𝐺} para o modo de maiores deformações, como: 

{𝑣𝐶𝐺}1 = [Φ𝑅]. {𝑞} = [Φ𝑅]. {𝑢1(𝑥). 𝑔1(𝑡)} 

onde: [Φ𝑅] = [𝑅𝑒]. [𝐽∗]−
1

2. [𝜑1]. [𝜑2]. [𝜑3]. (… ). [𝜑𝑛−1]. [𝜑𝑛]; 

E por fim, exprime-se a função da rotação 𝜙𝐶𝐺(𝑥) como: 

𝜙𝐶𝐺(𝑥) = 𝑢1(𝑥). 𝑔1(𝑡) + 𝑢2(𝑥). 𝑔2(𝑡) + 𝑢3(𝑥). 𝑔3(𝑡) 

Devido à relação entre a rotação 𝜙𝐶𝐺(𝑥) e o bimomento 𝐵(𝑥), oriunda da teoria de flexo 

– torção (ver eq. 2.96 c), escreve-se: 

𝐵(𝑥) = 𝐸. 𝐼𝜔. 𝜙𝐶𝐺
′′ (𝑥) = 𝐸. 𝐼𝜔.

𝑑2[𝜙𝐶𝐺(𝑥)]

𝑑𝑥2
 

Após aplicar as transformações de referencial, tem-se o bimomento (na base e no topo) 

para o 𝐶𝐺, 𝐷 e 𝑂𝑠. Ver tabela 5.13, bem como a rotação na tabela 5.14. 

Tabela 5.13 – Valores de bimomento por pilar no 𝑪𝑮 e 𝑫, e do conjunto de pilares em 𝑶𝒔 

(𝒙 𝟏𝟎𝟕) 

𝒌𝑵.𝒎𝟐 

No Centro de Gravidade No Centro de Torção 𝑶𝒔 

𝐶𝐺1 𝐶𝐺2 𝐶𝐺3 𝐷1 𝐷2 𝐷3 

  𝑩(𝒙 = 𝟎) -3,99422 2,17432 6,56993 -3,99422 2,17432 6,56993 Idem 

por 

Pilar. 
𝑩(𝒙 = 𝟓𝟎𝒎) - 4,00790 2,18176 6,59242 - 4,00790 2,18176 6,59242 

 𝑩(𝒙 = 𝑯) - 4,04993 2,20464 6,66156 - 4,04993 2,20464 6,66156 

Fonte: O Autor (2019) 
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Tabela 5.14 – Valores de rotação por pilar no 𝑪𝑮 e do conjunto de pilares em 𝑶𝒔 

𝒓𝒂𝒅 No Centro de Gravidade 𝑶𝒔 

𝐶𝐺1 𝐶𝐺2 𝐶𝐺3 

𝝓(𝒙 = 𝟎) 0 0 0 Idem por Pilar. 

𝝓(𝒙 = 𝟓𝟎𝒎) - 57,42669 31,26114 94,45877 

𝝓(𝒙 = 𝑯) - 233,82458 127,28615 384,60827 

Fonte: O Autor (2019) 

 

EXEMPLO 5.10: Nesta décima análise, tem-se o esforço de frenagem do tráfego e conseguinte 

carga lateral no topo. Assim, o esforço cortante é expresso sob a configuração mostrada na 

figura 5.52 apresenta-se assim: 

Figura 5.52: Ângulos formados entre os esforços cortantes externos ativados pela frenagem em 

cada pilar e os eixos 𝒚𝑫𝑳em cada um dos três pilares 

 

Fonte: O Autor (2019) 

Adotando-se a mesma frequência 𝜔̅ = 3 𝑟𝑎𝑑/𝑠 para o esforço cortante, exprime-se na 

tabela 5.15 os valores de bimomento no topo e na base. 

Tabela 5.15 – Valores de bimomento para a atuação do esforço de frenagem dos veículos 

(𝒙 𝟏𝟎𝟓) 

𝒌𝑵.𝒎𝟐 

No Centro de Gravidade No Centro de Torção 

𝐶𝐺1 𝐶𝐺2 𝐶𝐺3 𝐷1 𝐷2 𝐷3 

 𝑩(𝒙 = 𝟎) - 4,96373 2,70209 8,16464 - 4,96373 2,70209 8,16464 

𝑩(𝒙 = 𝟓𝟎 𝒎) - 4,98075 2,71135 8,19264 - 4,98075 2,71135 8,19264 

 𝑩(𝒙 = 𝑯) - 5,03302 2,73980 8,27860 - 5,03302 2,73980 8,27860 

Fonte: O Autor (2019) 

Sendo os carregamentos: 𝑞1 = 𝑞2 = 0 𝑘𝑁/𝑚, 𝑄 = 10 𝑘𝑁, o bimomento no topo 𝐵𝐻 =

10 𝑘𝑁.𝑚² e o momento de torção nulo (𝑀𝑡𝐻 = 0 𝑘𝑁.𝑚) no topo. 
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DIMENSIONAMENTO DE SEÇÕES DE PAREDES FINAS DE 

CONCRETO ARMADO SUBMETIDAS AO BIMOMENTO  

 

 

 

6.1. INTRODUÇÃO 

 

 Na análise estrutural e no dimensionamento de seções de paredes finas citam-se Pilarski 

(1952) e Rekach (1978), porém limitando-se a abóbodas finas. Assim, para o dimensionamento 

de seções em formato de painéis – parede (ver figura 6.1) não se observa registro na literatura,  

mediante equilíbrio em bimomentos.  
 

Figura 6.1: Resultantes 𝑹𝒄𝒅𝟏
, 𝑹𝒄𝒅𝟐

 e 𝑹𝒔𝒅 para seção com simetria nas abas e paredes 

 

Fonte: O Autor (2019) 

Capítulo 

6 
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Procedendo-se neste capítulo, o dimensionamento mediante substituição do bimomento 

por duas linhas neutras, paralelas entre si e com inclinação de 45º. Adota-se também, núcleo 

com abas e paredes simétricas quanto as dimensões. O balanço de esforços solicitantes para a 

seção transversal de paredes finas submetida ao bimomento é procedido via equilíbrio entre 

bimomentos resistentes no concreto comprimido (𝐵𝑐𝑑), o bimomento na zona tracionada 

(𝐵𝑠𝑑
∗) e o bimomento solicitante de cálculo. Tal equilíbrio é processado através da convenção 

de sinais indicado na figura 6.2, sob consonância ao apresentado na figura 6.1. A inclinação das 

resultantes de compressão (𝑅𝑐𝑑1
 e 𝑅𝑐𝑑2

), bem como da resultante de tração 𝑅𝑠𝑑 e os decorrentes 

bimomentos gerados no centro de torção (C.T. ou simplesmente D) são calculados mediante o 

diagrama de ordenadas setoriais.  

Figura 6.2: Bimomentos resistentes de cálculo e solicitante de cálculo sob a convenção do 

parafuso direito com observador direcionado ao infinito positivo do eixo axial do pilar 

 

Fonte: O Autor (2019) 

O dimensionamento de painéis-parede é comumente procedido por treliças espaciais de 

Mörsch, conforme observa-se em Wight e MacGregor (2009, p. 300 – 327) e em Sánchez Filho 

(1988). Ainda podendo-se dimensionar o núcleo estrutural via tensão admissível (que em 

seperado do MEF vigorou até os anos 60 do século XX), porém segue vigente ao associar-se 

com a análise de tensões por modelagem em elementos finitos. De quais procedimentos citam-

se os autores: Orler e Donini (2011, p. 89 – 91), Belluzzi (1973, v. 1, p. 217 – 220 e 244 – 246), 

Belluzzi (1971, v. 2, p. 641 – 643) e Andrade e Vellasco (2016). Nesse capítulo propõe-se o 

método de projeto a solicitação pelo bimomento em seção de painéis-parede com paredes e abas 

simétricas (quanto as dimensões), bem como gerar tabelas adimensionais. O equacionamento 

da seção transversal foi procedido com base em duas linhas neutras e mediante equilíbrio das 
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resultantes de tração e de compressão. Além do mais, serão analisadas duas configurações de 

distribuição das armaduras: a primeira com As concentrado nas quinas tracionadas (ver figura 

6.3 a) e a segunda com armadura distribuída ao longo da seção transversal (com reforço nas 

quinas com feixes de quatro bitolas distantes de ∆ do CG da armadura em relação as interseções 

das paredes), ver figura 6.3 b. Na Figura 6.4 é apresentado o posicionamento das duas linhas 

neutras sob visão tridimensional da seção em núcleo estrutural C, isso em função do diagrama 

de ordenadas setoriais principais 𝜔𝑝𝑐. 

Figura 6.3: Modelagem da armadura ao bimomento: (a) com armadura concentrada nas quinas 

tracionadas e (b) armadura distribuída e reforço nas interseções das paredes 

 

Fonte: O Autor (2019) 

Figura 6.4: Posicionamento das linhas neutras na seção de paredes finas 

 

Fonte: O Autor (2019) 
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Na figura 6.5 é apresentado o diagrama de ordenadas setoriais principais 𝜔𝑝𝑐 para a 

seção em formato de duplo T, indicando assim o posicionamento das linhas neutras 𝐿𝑁1 e 𝐿𝑁2. 

Devido a dupla simetria, inerente a seção em duplo T, verifica-se compressão e tração por pares 

opostos entre as abas de reforço. Lembrando que tal condição é válida para paredes e abas com 

comprimentos simétricos. 

Figura 6.5: Posicionamento das linhas neutras na seção em duplo T 

 

Fonte: O Autor (2019) 

A distribuição das armaduras para a configuração de seção em duplo T será a 

apresentada na figura 6.6, sendo indicada apenas o posicionamento da armadura calculada. 

Porém, além desta armadura deve-se impor também as armaduras construtivas, ou seja, colocar 

armaduras longitudinais no trecho de diagrama 𝜔𝑝𝑐 nulo (painel – parede central). 

Figura 6.6: Distribuição da armadura calculada para a seção em duplo T 

 

Fonte: O Autor (2019) 
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A consideração de pilares com seção transversal de paredes finas é realizada mediante 

imposição da carga compressiva 𝑃 no topo e o carregamento distribuído 𝑝 devido ao peso – 

próprio. Desta forma, mediante definições apresentada em Vlassov (1962, p. 159 e p. 181) 

acrescenta-se o efeito de bimomento produzido pelas cargas compressivas através das 

ordenadas setoriais nos respectivos pontos de contato. Quanto ao peso – próprio do pilar pode-

se promover sua concentração na base e computar tal efeito em bimomento, mediante diagrama 

𝜔𝑝𝑐. A carga reativa do tabuleiro da ponte é transmitida ao centro de carga da seção transversal 

do pilar, via aparelho de apoio (Neoprene para pequenas pontes e esféricos ou cilíndricos para 

pontes de grande porte), sobre laje de transição quando do lançamento de pilares de paredes 

delgadas. Tal configuração é apresentada na figura 6.7. 

Figura 6.7: Aplicação da carga reativa 𝑷 no topo do pilar: (a) corte, (b) configuração dos centros 

geométricos para seção em núcleo C e (c) posicionamento da carga 𝑷 na seção em duplo T 

 

Fonte: O Autor (2019) 

A fim de computar o efeito em bimomento da carga reativa 𝑃 no topo do pilar em 

formato de núcleo C, ver figura 6.7 b, procede-se o translade de tal carregamento do centro de 

carga (CC) para o centro de gravidade (CG) da seção transversal em questão. Bem como, 

procede-se a transformação em sistema equivalente com cargas verticais aplicadas ao longo da 

paredes finas. Vide figura 6.8. 
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Figura 6.8: Aplicação da carga 𝑷 no topo do núcleo C: (a) translade do CC para o CG e (b) 

sistema equivalente de cargas verticais ao longo das paredes delgadas 

 

Fonte: O Autor (2019) 

A quantificação das cargas 𝑝𝐻
(1)

 e 𝑝𝐻
(4;5)

 é realizada mediante balanço de forças verticais 

e de momento de flexão em torno do eixo centroidal 𝑦𝐶𝐺, assim: 

𝑝𝐻
(1)

. 𝑏 + 𝑝𝐻
(4;5)

. 2. 𝑎 + 2. [
𝑝𝐻

(1)
+ 𝑝𝐻

(4;5)

2
. 𝑏] = 𝑃                                                                            (6.1) 

−[𝑝𝐻
(1)

. 𝑏]. 𝑑𝑧 + [𝑝𝐻
(4;5)

. 2. 𝑎]. (𝑏 − 𝑑𝑧)

+ 2. {[𝑝𝐻
(4;5)

. 𝑏]. (
𝑏

2
− 𝑑𝑧) + [

𝑝𝐻
(1)

− 𝑝𝐻
(4;5)

2
. 𝑏] . (

𝑏

3
− 𝑑𝑧)} = 𝑃. (

𝑏

2
− 𝑑𝑧)  

(6.2) 

em formato matricial, agrupam-se as eq.’s (6.1) e (6.2), como: 

[
2. 𝑏 2. 𝑎 + 𝑏

−𝑏. 𝑑𝑧 + 𝑏. (
𝑏

3
− 𝑑𝑧) 2. 𝑎. (𝑏 − 𝑑𝑧) + 2. 𝑏. (

𝑏

2
− 𝑑𝑧) − 𝑏. (

𝑏

3
− 𝑑𝑧)

] . {
𝑝𝐻

(1)

𝑝𝐻
(4;5)} = {

𝑃

𝑃. (
𝑏

2
− 𝑑𝑧)

} 

(6.3 𝑎) 

ao resolver o sistema apresentado na eq. (6.3 a), conlcui-se: 

𝑝𝐻
(1)

=
𝑃

2. 𝑏
.

(6. 𝑎 + 𝑏)

(10. 𝑎 + 3. 𝑏)
                                                                                                                     (6.3 𝑏) 

𝑝𝐻
(4;5)

=
2. 𝑃

(10. 𝑎 + 3. 𝑏)
                                                                                                                            (6.3 𝑐) 
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A contribuição em bimomento para a carga 𝑃 do topo do pilar é quantificada via 

cruzamento das figuras 2.101 e 6.8 (b), obtendo-se: 

𝐵𝐻 = −𝑃. 𝜔𝑝𝑐 ≡ −𝑝𝐻
(1)

. [
(−𝜔1 + 𝜔3)

2
. 𝑏] − 𝑝𝐻

(4;5)
. [

(𝜔2 + 𝜔5) + (−𝜔4 − 𝜔6)

2
. 𝑎]

−
𝑝𝐻

(1)

6
. [(−2. 𝜔1 + 𝜔2) + (2. 𝜔3 − 𝜔4)] −

𝑝𝐻
(4;5)

6
. [(−𝜔1 + 2. 𝜔2) + (𝜔3 − 2. 𝜔4)] 

(6.4) 

onde: 𝐵𝐻 é o bimomento no topo do pilar em núcleo C; 

           𝑝𝐻
(1)

 é a carga vertical distribuída na parede (1); 

           𝑝𝐻
(4;5)

 é a carga vertical distribuída nas paredes (4) e (5) e 

             𝑑𝑧 =
−𝑏. (8. 𝑎3 − 6. 𝑎. 𝑏2 − 3. 𝑏3)

8. 𝑎3 − 12. 𝑎2. 𝑏 + 6. 𝑎. 𝑏2 + 7. 𝑏3 + 2. 𝑏. 𝑡2. 

Por fim, para o pilar em formato de duplo T (figura 6.7 c) verifica-se bimomento nulo 

no topo (𝐵𝐻 = 0), isso devido ao diagrama 𝜔𝑝𝑐 (ver figura 6.5) para a respectiva seção ter 

ordenada nula no ponto de aplicação da carga 𝑃. Já, para o caso da carga distribuída 𝑝, computa-

se o incremento de bimomento na base Δ𝐵0, semelhante ao procedido na figura 6.8 (b), porém 

com nulidade do momento de translade 𝑀𝑦. Esse último sistema é apresentado na figura 6.9. 

Figura 6.9: Sistema equivalente de cargas verticais nas paredes finas para a atuação do peso – 

próprio do pilar na seção da base 

 

Fonte: O Autor (2019) 

o equilíbrio da seção apresentada na figura 6.9 é expresso sob a forma matricial como: 

[
2. 𝑏 2. 𝑎 + 𝑏

−𝑏. 𝑑𝑧 + 𝑏. (
𝑏

3
− 𝑑𝑧) 2. 𝑎. (𝑏 − 𝑑𝑧) + 2. 𝑏. (

𝑏

2
− 𝑑𝑧) − 𝑏. (

𝑏

3
− 𝑑𝑧)

] . {
𝑝𝐻

∗(1)

𝑝𝐻
∗(4;5)} = {

𝑝. 𝐻
0

} 

(6.5 𝑎) 
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resolvendo a eq. (6.5 a) tem-se as cargas verticais, por parede delgada, definidas por: 

𝑝𝐻
∗(1)

= 𝑝. 𝐻.
[2. 𝑏2 + 6. 𝑎. 𝑏 − 3. 𝑑𝑧. (2. 𝑎 + 𝑏)]

𝑏2. (10. 𝑎 + 3. 𝑏)
                                                                              (6.5 𝑏) 

𝑝𝐻
∗(4;5)

= −𝑝. 𝐻
(𝑏 − 6. 𝑑𝑧)

𝑏. (10. 𝑎 + 3. 𝑏)
                                                                                                          (6.5 𝑐) 

e por último, o incremento de bimomento na base, em decorrência do peso-próprio do pilar, é 

expresso por: 

Δ𝐵0 = −𝑃∗. 𝜔𝑝𝑐

≡ −𝑝𝐻
∗(1)

. [
(−𝜔1 + 𝜔3)

2
. 𝑏] − 𝑝𝐻

∗(4;5)
. [

(𝜔2 + 𝜔5) + (−𝜔4 − 𝜔6)

2
. 𝑎]

−
𝑝𝐻

∗(1)

6
. [(−2. 𝜔1 + 𝜔2) + (2. 𝜔3 − 𝜔4)] −

𝑝𝐻
∗(4;5)

6
. [(−𝜔1 + 2. 𝜔2) + (𝜔3 − 2. 𝜔4)] 

(6.6) 

A configuração das cargas atuantes no pilar de ponte com seção transversal em paredes 

finas é apresentada na figura 6.10, explicitando-se os bimomentos no topo 𝐵𝐻 e na base 𝐵0. Por 

último, as cargas laterais 𝑞1, 𝑞2 e 𝑄 são oriundas da ação do vento e as cargas verticais 𝑃 e 𝑝 

são devidas a reação do tabuleiro (já considerada a ação do vento sobre tal) e do peso – próprio, 

respectivamente. 

Figura 6.10: Cargas atuantes no pilar de ponte em paredes finas com ações verticais e ação 

lateral do vento 

 

Fonte: O Autor (2019) 
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6.2. PILAR EM FORMATO DE C COM REFORÇO DE ABAS 

 

6.2.1. Equacionamento ao bimomento utilizando a armadura concentrada nas 

quinas tracionadas 

 

a)  Posicionamento das linhas neutras 

 

 Procede-se a correlação entre as distâncias (𝑑𝐴𝐹, 𝑑𝐵𝐹, 𝑑𝐶𝐸 e 𝑑𝐷𝐸) com as profundidades 

𝑥1 e 𝑥2 das linhas neutras 𝐿𝑁1 e 𝐿𝑁2 (respectivamente), em consonância com as figuras 6.1 e 

6.4. Na figura 6.11 é apresentado o diagrama de área setorial principal 𝜔𝑝𝑐, evidenciando-se 

nulidade nas ordenadas dos pontos 𝐴, 𝐵, 𝐶 e 𝐷 (posicionamento das linhas neutras). Na figura 

6.11 (b) é apresentado o traçado positivo de 𝜔𝑝𝑐, a fim de facilitar o equacionamento 

matemático. 

Figura 6.11: Ordenadas e cotas no diagrama de área setorial principal: (a) notação da flexo -

torção e (b) definidas para o dimensionamento ao bimomento 

 

Fonte: O Autor (2019) 
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 Mediante imposição da dupla simetria no cálculo do diagrama 𝜔𝑝𝑐 (ver figura 2.101), 

exprimem-se as ordenadas setoriais como: 

𝜔1 = 𝜔3 = −
𝑏2. (8. 𝑎3 − 6. 𝑎. 𝑏2 − 3. 𝑏3)

2. (8. 𝑎3 − 12. 𝑎2. 𝑏 + 6. 𝑎. 𝑏2 + 7. 𝑏3 + 2. 𝑏. 𝑡2)
                                          (6.7 𝑎) 

𝜔2 = 𝜔4 =
𝑏2. (8. 𝑎3 − 6. 𝑎. 𝑏2 + 2. 𝑏3 + 𝑏. 𝑡2)

8. 𝑎3 − 12. 𝑎2. 𝑏 + 6. 𝑎. 𝑏2 + 7. 𝑏3 + 2. 𝑏. 𝑡2
                                                      (6.7 𝑏) 

𝜔5 = 𝜔6 = −
𝑏2. (4. 𝑎3 − 6. 𝑎. 𝑏2 − 10. 𝑎. 𝑏3 − 2. 𝑎. 𝑡2 − 2. 𝑏3 − 𝑏. 𝑡2)

8. 𝑎3 − 12. 𝑎2. 𝑏 + 6. 𝑎. 𝑏2 + 7. 𝑏3 + 2. 𝑏. 𝑡2
                          (6.7 𝑐) 

 As ordenadas setoriais nos pontos 𝐴, 𝐵, 𝐶 e 𝐷 do diagrama 𝜔𝑝𝑐 (vide figura 6.11 b) são 

expressas, em termos das equações (6.7), como: 

𝜔𝑝𝑐𝐴
= (2. √2.

𝜔1

𝑏
) . 𝑥1 − 𝜔1                                                                                                        (6.8 𝑎) 

𝜔𝑝𝑐𝐵
= [√2.

(𝜔1 + 𝜔2)

𝑏
] . 𝑥1 − 𝜔1                                                                                               (6.8 𝑏) 

𝜔𝑝𝑐𝐶
= [√2.

(𝜔2 − 𝜔5)

𝑎
] . 𝑥2 − [𝜔2 +

(𝜔2 − 𝜔5)

𝑎
. 𝜂𝐶𝐸]                                                         (6.8 𝑐) 

𝜔𝑝𝑐𝐷
= [√2.

(𝜔1 + 𝜔2)

𝑏
] . 𝑥2 − 𝜔2                                                                                              (6.8 𝑑) 

𝑐𝑜𝑚:  𝜂𝐶𝐸 = {
      0        ; 𝑠𝑒 𝑑𝐶𝐸 ≤ 𝑎
𝑑𝐶𝐸 − 𝑎  ;  𝑠𝑒 𝑑𝐶𝐸 > 𝑎

 

 As áreas comprimidas no diagrama 𝜔𝑝𝑐 (𝐴𝜔𝐴
, 𝐴𝜔𝐵

, 𝐴𝜔𝐶
 e 𝐴𝜔𝐷

), ilustradas na figura 

6.11 (b), são expressas por: 

𝐴𝜔𝐴
=

(−𝜔1 + 𝜔𝑝𝑐𝐴
)

2
. 𝑑𝐴𝐹                                                                                                            (6.9 𝑎) 

𝐴𝜔𝐵
=

(−𝜔1 + 𝜔𝑝𝑐𝐵
)

2
. 𝑑𝐵𝐹                                                                                                            (6.9 𝑏) 

𝐴𝜔𝐶
=

(−𝜔2 + 𝜔𝑝𝑐𝐶
)

2
. 𝑑𝐶𝐸                                                                                                            (6.9 𝑐) 

𝐴𝜔𝐷
=

(−𝜔2 + 𝜔𝑝𝑐𝐷
)

2
. 𝑑𝐷𝐸                                                                                                           (6.9 𝑑) 

 Aplicam-se as equações (6.8) em (6.9), ressaltando que na área 𝐴𝜔𝐶
 será admitido como 

máximo valor de 𝑑𝐶𝐸 o comprimento 𝑎 da aba. Resulta então as áreas 𝐴𝜔, expressas por: 
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𝐴𝜔𝐴
= (−𝜔1. √2). 𝑥 +

2. 𝜔1

𝑏
. 𝑥2                                                                                               (6.10 𝑎) 

𝐴𝜔𝐵
= (−𝜔1. √2). 𝑥 +

(𝜔1 + 𝜔2)

𝑏
. 𝑥2                                                                                     (6.10 𝑏) 

𝐴𝜔𝐶
= −

(𝜔2 + 𝜔5)

2
. 𝑎                                                                                                                 (6.10 𝑐) 

𝐴𝜔𝐷
= (−𝜔2. √2). 𝑥 +

(𝜔1 + 𝜔2)

𝑏
. 𝑥2                                                                                     (6.10 𝑑) 

 Conforme definição de bimomento, via carregamento distribuído, apresentado por 

Vlassov (1962), escreve-se a resultante de compressão para toda a seção transversal (vide figura 

6.1), como: 

𝐵𝑐𝑑 = 𝐵𝑐𝑑2
− 𝐵𝑐𝑑1

= 𝜎𝑐𝑑. 𝑡. 𝐴𝜔
∗                                                                                                      (6.11) 

onde: 𝜎𝑐𝑑 é a tensão de compressão no concreto; 𝐴𝜔 é a área do diagrama 𝜔𝑝𝑐 em contato com 

a tensão de compressão (𝐴𝜔 = −𝐴𝜔𝐴
− 𝐴𝜔𝐵

+ 𝐴𝜔𝐶
+ 𝐴𝜔𝐷

); 𝐴𝜔
∗  é a área diminuída de 𝐴𝜔; 

𝐴𝜔
∗ = 𝜆. 𝐴𝜔; 𝑦1 = 𝜆. 𝑥1 = 𝑦2 = 𝜆. 𝑥2 ≡ 𝜆. 𝑥;   e   𝜎𝑐𝑑 = 𝛾. 𝜆. 𝛼𝑐 . 𝑓𝑐𝑑. 

 Por fim, a profundidade da linha neutra 𝑥 é obtida via equilíbrio de bimomento na seção 

transversal, ficando a eq. (6.11) reescrita como: 

𝑘𝐵1
. 𝑥2 + 𝑘𝐵2

. 𝑥 + 𝑘𝐵3
= 0                                                                                                              (6.12) 

sendo: 𝑘𝐵1
= −𝛾. 𝜆. 𝛼𝑐. 𝑡. 𝑏−1. 𝑓𝑐𝑑. (2. 𝜔1); 𝑘𝐵2

= 𝛾. 𝜆. 𝛼𝑐. 𝑡. 𝑓𝑐𝑑. [√2. (2. 𝜔1 − 𝜔2)] e  

             𝑘𝐵3
= 𝐵𝑠𝑑 − 𝛾. 𝜆. 𝛼𝑐. 𝑡. 𝑓𝑐𝑑. [

(𝜔2 + 𝜔5)

2
. 𝑎]. 

 A solução da equação de 2º grau (eq. 6.12) expressa a profundidade da linha neutra 𝑥, e 

para tal, exprime-se: 

𝑥 =
−𝑘𝐵2

− √(𝑘𝐵2
)

2
− 4. 𝑘𝐵1

. 𝑘𝐵3

2. 𝑘𝐵1

                                                                                           (6.12 𝑎) 

 Procede-se também a adimensionalização da equação (6.12) através do divisor comum 

(𝜔1. 𝑡2. 𝑓𝑐𝑑), de forma análoga a adimensionalização realizada na resolução clássica da flexão 

simples, ficando reescrita como: 

𝑘𝛽1
. 𝜉̅2 + 𝑘𝛽2

. 𝜉̅ + 𝑘𝛽3
= 0                                                                                                               (6.13) 
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onde: 𝜉 ̅é a profundidade relativa da linha neutra; 𝛽𝑠𝑑 é o bimomento adimensional solicitante 

de cálculo; 𝑑 é o braço de alavanca entre as resultantes 𝑅𝑐𝑑1
 e 𝑅𝑠𝑑 (idem para 𝑅𝑐𝑑2

 e 𝑅𝑠𝑑). com: 

𝜉̅ =
𝑥

𝑡
; 𝑘𝛽1

=
𝑘𝐵1

𝜔1. 𝑓𝑐𝑑
 ;   𝑘𝛽2

=
𝑘𝐵2

𝜔1. 𝑡. 𝑓𝑐𝑑
 ;    𝑘𝛽3

=
𝑘𝐵3

𝜔1. 𝑡2. 𝑓𝑐𝑑
  𝑒   𝛽𝑠𝑑 =

𝐵𝑠𝑑

𝜔1. 𝑡2. 𝑓𝑐𝑑
. 

e por solução da eq. (6.13), expressa-se: 𝜉̅ =
−𝑘𝛽2

− √(𝑘𝛽2
)

2
− 4. 𝑘𝛽1

. 𝑘𝛽3

2. 𝑘𝛽1

                (6.13 𝑎) 

 

b) Armadura resistente ao bimomento 

 

 Considerando a armadura 𝐴𝑠 aplicada de forma equidistante nas quinas mais 

tracionadas, na figura 6.12 é posicionado o centro de gravidade da armadura 𝐶𝐺∗. Isso mediante 

cálculo de centroide de área bruta de concreto compreendida entre as linhas neutras. 

Figura 6.12: Posicionamento da resultante de tração 𝑹𝒔𝒅 

 

Fonte: O Autor (2019) 

 Resultando nas coordenadas (𝑥𝐶𝐺
∗ , 𝑦𝐶𝐺

∗ ) do 𝐶𝐺∗, para a armadura tracionada, sob as 

seguintes expressões: 

𝑥𝐶𝐺
∗ = ∑

𝑥𝐶𝐺𝑖

∗ . 𝐴𝑖

𝐴𝑖

7

𝑖=1

                                                                                                                         (6.14 𝑎) 
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𝑦𝐶𝐺
∗ = ∑

𝑦𝐶𝐺𝑗

∗ . 𝐴𝑗

𝐴𝑗

7

𝑗=1

                                                                                                                         (6.14 𝑏) 

e:  𝑥𝐶𝐺1

∗ = 𝑦𝐶𝐺2

∗ =
2

3
. 𝑡; 𝑦𝐶𝐺1

∗ = (𝑏 − √2. 𝑥) +
𝑡

3
; 𝑥𝐶𝐺2

∗ = (𝑏 − √2. 𝑥) +
4

3
. 𝑡; 𝑥𝐶𝐺3

∗ = 𝑦𝐶𝐺4

∗ =
𝑡

2
; 

   𝑦𝐶𝐺3

∗ =
𝑏 + 𝑡 − √2. 𝑥

2
;  𝑥𝐶𝐺4

∗ =
(𝑏 − √2. 𝑥)

2
+ 𝑡;  𝑥𝐶𝐺5

∗ = √2. 𝑥 −
𝑡

3
;  𝑦𝐶𝐺5

∗ = 𝑏 +
𝑡

3
; 

  𝑥𝐶𝐺6

∗ =
𝑏 + 𝑡 + √2. 𝑥

2
; 𝑦𝐶𝐺6

∗ = 𝑥𝐶𝐺7

∗ = 𝑏 +
𝑡

2
; 𝑦𝐶𝐺7

∗ = 𝑏 −
1

2
. (𝑎 −

𝑡

2
) ; 𝐴1 = 𝐴2 = 𝐴5 =

𝑡2

2
; 

  𝐴3 = 𝐴6 = (𝑏 + 𝑡 − √2. 𝑥). 𝑡;    𝐴4 = (𝑏 − √2. 𝑥). 𝑡;    𝐴7 = 𝑡. (𝑎 −
𝑡

2
). 

 Na figura 6.13 são destacadas as projeções da resultante 𝑅𝑠𝑑 nos eixos 𝑧 e 𝑦, bem como 

as ordenadas setoriais 𝜔𝓈1
 e 𝜔𝓈2

 no diagrama principal 𝜔𝑝𝑐. 

Figura 6.13: Ordenadas setoriais do diagrama 𝝎𝒑𝒄 sob atuação da resultante 𝑹𝒔𝒅 

 

Fonte: O Autor (2019) 

 O bimomento 𝐵𝑠𝑑 gerado pela tração 𝑅𝑠𝑑 é definido mediante definição de Vlassov 

(1962), por: 

𝐵𝑠𝑑
∗ = 𝑅𝑠𝑑. [cos(𝛼3) . 𝜔𝓈1

+ sen(𝛼3) . 𝜔𝓈2
]                                                                                 (6.15) 
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sendo: cos(𝛼3) = sen(𝛼3) =
√2

2
; 

            𝜔𝓈1
= −

2. 𝜔1

𝑏
. (𝑦𝐶𝐺

∗ −
𝑡

2
)      e     𝜔𝓈2

= −
(𝜔1 + 𝜔2)

𝑏
. (𝑥𝐶𝐺

∗ −
𝑡

2
) + 𝜔1. 

 Através do equilíbrio em bimomento (ver figura 6.2) associado a equação (6.15), 

exprime-se o balanço de tal esforço solicitante, como: 

𝐵𝑠𝑑
∗ − 𝐵𝑐𝑑 = 𝐵𝑠𝑑     ∴      𝑅𝑠𝑑. 𝑘∗ − 𝐵𝑐𝑑 = 𝐵𝑠𝑑                                                                             (6.16) 

com: 𝑘∗ =
√2

2
. (𝜔𝓈1

+ 𝜔𝓈2
) e 𝐵𝑐𝑑 apresentado na eq. (6.11).  

 A área de aço 𝐴𝑠 é determinada via imposição da tensão de escoamento do aço 𝑓𝑦𝑑, 

ficando expressa por: 

𝐴𝑠 =
𝐵𝑠𝑑

𝑘∗∗. 𝑓𝑦𝑑
                                                                                                                                      (6.17) 

com: 𝑘∗∗ = −
𝜔1. √2

𝑏
. (𝑦𝐶𝐺

∗ −
𝑡

2
− 𝑏) − [

(𝜔1 + 𝜔2)

2. 𝑏
. √2. (𝑥𝐶𝐺

∗ −
𝑡

2
)] 

 Por fim, por questões de ductilidade, limita-se a profundidade relativa da linha neutra 𝜉 ̅

para o limite entre os domínios de deformação 3 e 4. Resultando em 𝜉𝑙𝑖𝑚 expressa por: 

𝜉𝑙𝑖𝑚 =
𝜀𝑐𝑢

𝜀𝑦𝑑 + 𝜀𝑐𝑢
                                                                                                                           (6.18 𝑎) 

e o bimomento adimensional limite 𝛽𝑠𝑑𝑙𝑖𝑚
 será obtida mediante 𝑘𝛽3𝑙𝑖𝑚

 (ver eq.’s 6.12 e 6.13), 

valendo: 

𝑘𝛽3𝑙𝑖𝑚
= −𝑘𝛽1

. (𝜉𝑙𝑖𝑚)2 − 𝑘𝛽2
. 𝜉𝑙𝑖𝑚                                                                                             (6.18 𝑏) 

𝛽𝑠𝑑𝑙𝑖𝑚
= 𝑘𝛽3𝑙𝑖𝑚

+
𝛾. 𝜆. 𝛼𝑐. 𝑡

𝑡2
. [

(𝜔2 + 𝜔5)

2. 𝜔1
. 𝑎]                                                                           (6.18 𝑐) 

onde: 𝜀𝑦𝑑 vale 2,07 %0 para aço CA – 50 e 𝜀𝑐𝑢 vale 3,5 %0 para concretos do grupo I de 

resistência, conforme observa-se nas normas: NBR 8953 (ABNT, 2015) e NBR 6118 (ABNT, 

2014). 
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c) Marcha de cálculo Nº 4 

 

 Para a seção transversal aberta em formato de C e composta por paredes finas, sob a 

distribuição das armaduras apresentada na figura 6.3 (a), postula-se a seguinte marcha de 

cálculo: 

1ª Etapa: Dados de entrada 

𝑏(𝑚);   𝑎(𝑚);   𝑡(𝑚);  𝐵𝑠𝑑(𝑘𝑁. 𝑚2);   𝜔1(𝑚2);  𝜔2(𝑚2);  𝜔5(𝑚2);  𝑓𝑐𝑑(𝑘𝑁/𝑐𝑚2);   𝜀𝑐𝑢(%0); 

𝑓𝑐𝑑(𝑘𝑁/𝑐𝑚2);    𝑓𝑦𝑑(𝑘𝑁/𝑐𝑚2);   𝜀𝑦𝑑(%0);     𝛾 = 0,9;     𝜆;     𝛼𝑐;    admitir o braço "𝑑 (𝑚)"; 

sugestão:  𝑑 ≅
0,707. 𝑏

2
. 

2ª Etapa: Parâmetros 

𝛽𝑠𝑑(𝐴𝐷𝑀) =
𝐵𝑠𝑑(𝑘𝑁. 𝑚2)

𝜔1(𝑚2). 𝑡2(𝑐𝑚)2. 𝑓𝑐𝑑(𝑘𝑁/𝑐𝑚2)
;          𝜉𝑙𝑖𝑚(𝐴𝐷𝑀) =

𝜀𝑐𝑢(%0)

𝜀𝑦𝑑(%0) + 𝜀𝑐𝑢(%0)
 

    𝑘𝐵1
(

𝑘𝑁. 𝑚2

𝑐𝑚2
) = −𝛾. 𝜆. 𝛼𝑐 . 𝑡 (𝑚). 𝑓𝑐𝑑(𝑘𝑁/𝑐𝑚2).

(2. 𝜔1(𝑚2))

𝑏 (𝑚)
 

    𝑘𝐵2
(

𝑘𝑁. 𝑚3

𝑐𝑚2
) = 𝛾. 𝜆. 𝛼𝑐 . 𝑡 (𝑚). 𝑓𝑐𝑑(𝑘𝑁/𝑐𝑚2). [√2. (2. 𝜔1 − 𝜔2)(𝑚2)] 

    𝑘𝐵3
(

𝑘𝑁. 𝑚4

𝑐𝑚2
) = 𝐵𝑠𝑑 − 𝛾. 𝜆. 𝛼𝑐. 𝑡 (𝑚). 𝑓𝑐𝑑(𝑘𝑁/𝑐𝑚2). [

(𝜔2 + 𝜔5)(𝑚2)

2
. 𝑎(𝑚)] 

    𝑘𝛽1
(𝐴𝐷𝑀) =

𝑘𝐵1
(𝑘𝑁. 𝑚2

𝑐𝑚2⁄ )

𝜔1(𝑚2). 𝑓𝑐𝑑 (
𝑘𝑁
𝑐𝑚2)

;   𝑘𝛽2
(𝐴𝐷𝑀) =

𝑘𝐵2
(𝑘𝑁. 𝑚3

𝑐𝑚2⁄ )

𝜔1(𝑚2). 𝑡 (𝑚). 𝑓𝑐𝑑 (
𝑘𝑁
𝑐𝑚2)

; 

    𝑘𝛽3
(𝐴𝐷𝑀) =

𝑘𝐵3
(𝑘𝑁. 𝑚4

𝑐𝑚2⁄ )

𝜔1(𝑚2). 𝑡2(𝑚)2. 𝑓𝑐𝑑(𝑘𝑁/𝑐𝑚2)
; 

     𝛽𝑠𝑑𝑙𝑖𝑚
(𝐴𝐷𝑀) = 𝑘𝛽3𝑙𝑖𝑚

(𝐴𝐷𝑀) +
𝛾. 𝜆. 𝛼𝑐

𝑡(𝑚)
. [

(𝜔2 + 𝜔5)(𝑚2)

2. 𝜔1(𝑚2)
. 𝑎(𝑚)] 

3ª Etapa: Dimensionamento 

a) Se 𝜷𝒔𝒅 > 𝜷𝒔𝒅𝒍𝒊𝒎
: aumentar a dimensão 𝑏 do pilar em núcleo C. 
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b) Se 𝜷𝒔𝒅 ≤ 𝜷𝒔𝒅𝒍𝒊𝒎
: 

𝑥(𝑚) =
−𝑘𝐵2

(𝑘𝑁. 𝑚3

𝑐𝑚2⁄ ) − √(𝑘𝐵2
)

2
(𝑘𝑁. 𝑚3

𝑐𝑚2⁄ )
2

− 4. 𝑘𝐵1
(𝑘𝑁. 𝑚2

𝑐𝑚2⁄ ) . 𝑘𝐵3
(𝑘𝑁. 𝑚4

𝑐𝑚2⁄ )

2. 𝑘𝐵1
(𝑘𝑁. 𝑚2

𝑐𝑚2⁄ )
 

ou então:   𝑥𝐶𝐺
∗ ;   𝑦𝐶𝐺

∗  ver equação (6.14) 

         𝑘∗∗(𝑚2) = −
𝜔1(𝑚2). √2

𝑏(𝑚)
. (𝑦𝐶𝐺

∗ −
𝑡

2
− 𝑏) (𝑚) − [

(𝜔1 + 𝜔2)(𝑚2)

2. 𝑏(𝑚)
. √2. (𝑥𝐶𝐺

∗ −
𝑡

2
) (𝑚)] 

          𝐴𝑠(𝑐𝑚2) =
𝐵𝑠𝑑 (𝑘𝑁. 𝑚2)

𝑘∗∗(𝑚2). 𝑓𝑦𝑑 (𝑘𝑁/𝑐𝑚2)
 

Observação: para a notação adimensional, utiliza-se: 

        𝜉(̅𝐴𝐷𝑀) =
−𝑘𝛽2

− √(𝑘𝛽2
)

2
− 4. 𝑘𝛽1

. 𝑘𝛽3

2. 𝑘𝛽1

;      𝑥(𝑚) = 𝜉(̅𝐴𝐷𝑀). 𝑡(𝑚) 

 

6.2.2. Equacionamento ao bimomento com armadura distribuída 

 

a)  Posicionamento das linhas neutras 

 

 Através do diagrama de ordenadas principal 𝜔𝑝𝑐, apresentado nas figuras 6.4 e 6.11, 

pode-se determinar o bimomento gerado por cada uma das fontes de tensão, sendo elas: as 

resultantes da área de concreto comprimido (𝑅𝑐𝑑1
 e 𝑅𝑐𝑑2

), as resultantes nas armaduras 

comprimidas (𝑅𝑐1
 e 𝑅𝑐2

), e as resultantes nas armaduras tracionadas (𝑅𝑠1
, 𝑅𝑠2

 e 𝑅𝑠3
). Ver na 

figura 6.1 a obtenção das resultantes da área comprimida do concreto e processada pela 

transformação do diagrama parábola – retângulo de tensão x deformação do concreto pelo 

diagrama triangular, ver item 17.2.2 (e) da NBR 6118 (ABNT, 2014). Já na figura 6.14 é 

exposto o posicionamento das resultantes supracitadas com a configuração apresentada na 

figura 6.3 (b). 
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Figura 6.14: Resultantes para a seção de paredes finas com armadura distribuída 

 

Fonte: O Autor (2019) 

 Na equação (6.11) já é apresentada a formulação do bimomento de compressão 𝐵𝑐𝑑, o 

qual já engloba a ação das resultantes de compressão no concreto (expressas por 𝐵𝑐𝑑1
 e 𝐵𝑐𝑑2

). 

Daí, somando-se a atuação das ordenadas setoriais do conjunto de resultantes nas armaduras 

comprimidas (ver figura 6.15), computa-se o efeito total de bimomento de compressão para 

toda a seção transversal.   
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Figura 6.15: Ordenadas setoriais sob a ação das resultantes nas armaduras comprimidas 

 

Fonte: O Autor (2019) 

resultando no bimomento 𝐵𝑐𝑑, com a contribuição da eq. (6.11) e dos bimomento oriundos da 

figura 6.15, expresso por: 

𝐵𝑐𝑑 = 𝛾. 𝜆. 𝛼𝑐. 𝑡. 𝑓𝑐𝑑. (𝐴𝜔𝐶
+ 𝐴𝜔𝐷

− 𝐴𝜔𝐴
− 𝐴𝜔𝐵

) + 𝑅𝑐1
.
√2

2
. (𝜔𝐶1

+ 𝜔𝐷1
− 𝜔𝐴1

− 𝜔𝐵1
)

+ 𝑅𝑐2
.
√2

2
. (𝜔𝐶2

+ 𝜔𝐷2
− 𝜔𝐴2

− 𝜔𝐵2
)                                                              (6.19) 

onde: 𝜔𝐴1
= (2. √2.

𝜔1

𝑏
) . Δ1 − 𝜔1                                                                                            (6.19 𝑎) 
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𝜔𝐵1
= [√2.

(𝜔1 + 𝜔2)

𝑏
] . Δ1 − 𝜔1                                                                                              (6.19 𝑏) 

𝜔𝐶1
= [√2.

(𝜔2 − 𝜔5)

𝑎
] . Δ1 − 𝜔2                                                                                              (6.19 𝑐) 

𝜔𝐷1
= [√2.

(𝜔1 + 𝜔2)

𝑏
] . Δ1 − 𝜔2                                                                                              (6.19 𝑑) 

𝜔𝐴2
= (2. √2.

𝜔1

𝑏
) .

Δ

2
− 𝜔1                                                                                                         (6.19 𝑒) 

𝜔𝐵2
= [√2.

(𝜔1 + 𝜔2)

𝑏
] .

Δ

2
− 𝜔1                                                                                                (6.19 𝑓) 

𝜔𝐶2
= [√2.

(𝜔2 − 𝜔5)

𝑎
] .

Δ

2
− 𝜔2                                                                                                (6.19 𝑔) 

𝜔𝐷2
= [√2.

(𝜔1 + 𝜔2)

𝑏
] .

Δ

2
− 𝜔2                                                                                                (6.19 ℎ) 

com: Δ =
𝑏

4
                                                                                                                                     (6.19 𝑖) 

semelhante as substituições realizadas na equação (6.11) e empregando-se as eq.’s (6.19 a) a 

(6.19 i) na equação (6.19), reescreve-se o bimomento de compressão 𝐵𝑐𝑑 como: 

𝐵𝑐𝑑 = 𝑘𝑐 + 𝑘𝑐1
. 𝑅𝑐1

+ 𝑘𝑐2
. 𝑅𝑐2

                                                                                                       (6.20) 

onde: 𝑘𝑐 = 𝛾. 𝜆. 𝛼𝑐. 𝑡. 𝑓𝑐𝑑. (𝐴𝜔𝐶
+ 𝐴𝜔𝐷

− 𝐴𝜔𝐴
− 𝐴𝜔𝐵

) ≡ 𝑘𝐵1
. 𝑥2 + 𝑘𝐵2

. 𝑥 + 𝑘𝐵3

∗           (6.20 𝑎) 

𝑘𝐵1
= −𝛾. 𝜆. 𝛼𝑐. 𝑡. 𝑓𝑐𝑑.

(2. 𝜔1)

𝑏
                                                                                                    (6.20 𝑏) 

𝑘𝐵2
= 𝛾. 𝜆. 𝛼𝑐 . 𝑡. 𝑓𝑐𝑑. [√2. (2. 𝜔1 − 𝜔2)]                                                                                   (6.20 𝑐)  

𝑘𝐵3

∗ = −𝛾. 𝜆. 𝛼𝑐. 𝑡. 𝑓𝑐𝑑. [
(𝜔2 + 𝜔5)

2
. 𝑎]                                                                                      (6.20 𝑑) 

𝑘𝑐1
=

√2

2
. (𝜔𝐶1

+ 𝜔𝐷1
− 𝜔𝐴1

− 𝜔𝐵1
)                                                                                       (6.20 𝑒) 

𝑘𝑐2
=

√2

2
. (𝜔𝐶2

+ 𝜔𝐷2
− 𝜔𝐴2

− 𝜔𝐵2
)                                                                                       (6.20 𝑓) 
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b) Armadura resistente ao bimomento 

 

Na figura 6.16 é apresentada a atuação das resultantes nas armaduras tracionadas, bem 

como ilustradas as correspondentes ordenadas setoriais no diagrama 𝜔𝑝𝑐.  

Figura 6.16: Ordenadas setoriais sob a ação das resultantes nas armaduras tracionadas 

 

Fonte: O Autor (2019) 

Escreve-se as ordenadas setoriais, nos pontos destacados na figura 6.16, como: 

𝜔𝐴𝑠1
= (2. √2.

𝜔1

𝑏
) .

𝑏

4
− 𝜔1                                                                                                        (6.21 𝑎) 
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𝜔𝐴𝑠2
= (2. √2.

𝜔1

𝑏
) .

(𝑏 − Δ)

2
− 𝜔1                                                                                            (6.21 𝑏) 

𝜔𝐴𝑠3
= (2. √2.

𝜔1

𝑏
) .

𝑏

2
− 𝜔1                                                                                                        (6.21 𝑐) 

𝜔𝐴𝑠2

∗ = (2. √2.
𝜔1

𝑏
) .

(𝑏 + Δ)

2
− 𝜔1                                                                                            (6.21 𝑑) 

𝜔𝐴𝑠1

∗ = (2. √2.
𝜔1

𝑏
) .

3

4
𝑏 − 𝜔1                                                                                                     (6.21 𝑒) 

𝜔𝐷𝑠1
= [√2.

(𝜔1 + 𝜔2)

𝑏
] .

3

4
𝑏 − 𝜔2                                                                                           (6.21 𝑓) 

𝜔𝐷𝑠2
= [√2.

(𝜔1 + 𝜔2)

𝑏
] .

(𝑏 + Δ)

2
− 𝜔2                                                                                  (6.21 𝑔) 

𝜔𝐷𝑠3
= [√2.

(𝜔1 + 𝜔2)

𝑏
] .

𝑏

2
− 𝜔2                                                                                               (6.21 ℎ) 

𝜔𝐷𝑠2

∗ = [√2.
(𝜔1 + 𝜔2)

𝑏
] .

(𝑏 − Δ)

2
− 𝜔2                                                                                    (6.21 𝑖) 

𝜔𝐷𝑠1

∗ = [√2.
(𝜔1 + 𝜔2)

𝑏
] .

𝑏

4
− 𝜔2                                                                                               (6.21 𝑗) 

Por fim, o bimomento gerado pelas resultantes nas armaduras tracionadas 𝐵𝑠𝑑
∗  fica 

expresso por: 

𝐵𝑠𝑑
∗ = 𝑘𝑠1

. 𝑅𝑠1
+ 𝑘𝑠2

. 𝑅𝑠2
+ 𝑘𝑠3

. 𝑅𝑠3
                                                                                              (6.22) 

onde: 𝑘𝑠1
=

√2

2
. [(𝜔𝐴𝑠1

+ 𝜔𝐷𝑠1
) +

1

2
. (𝜔𝐴𝑠1

∗ + 𝜔𝐷𝑠1

∗ )]                                                        (6.22 𝑎) 

𝑘𝑠2
=

√2

2
. [(𝜔𝐴𝑠2

+ 𝜔𝐷𝑠2
) + (𝜔𝐴𝑠2

∗ + 𝜔𝐷𝑠2

∗ )]                                                                        (6.22 𝑏) 

𝑘𝑠3
=

√2

2
. (𝜔𝐴𝑠3

+ 𝜔𝐷𝑠3
)                                                                                                            (6.22 𝑐) 

Mediante equilíbrio em bimomentos, baseado na figura 6.2 e sob notação do parafuso 

direito, escreve-se: 
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𝐵𝑐𝑑 = 𝐵𝑠𝑑
∗ − 𝐵𝑠𝑑                                                                                                                               (6.23) 

Ao aplicar as equações (6.20) e (6.22) na equação (6.23), escreve-se a equação iterativa 

entre a profundidade 𝑥 das linhas neutras e a área 𝐴𝜙 por bitola utilizada nos feixes, como: 

−
2. 𝛾. 𝜆. 𝛼𝑐. 𝑓𝑐𝑑. 𝜔1

𝑏
. 𝑥2 + √2. 𝛾. 𝜆. 𝛼𝑐 . 𝑓𝑐𝑑. 𝑡. (2. 𝜔1 − 𝜔2). 𝑥 −

𝛾. 𝜆. 𝛼𝑐. 𝑓𝑐𝑑. 𝑡. 𝑎

2
. (𝜔2 + 𝜔5)

+ 𝐵𝑠𝑑

= 𝐴𝜙. 𝑓𝑦𝑑. [𝜔1. (55 − 30. √2) + 𝜔2. (19 − 6. √2) +
(𝑏 + 2. 𝑡)

𝑎
. (𝜔5 − 𝜔2)

+
4. 𝑡

𝑏
. 𝜔1]                                                                                                               (6.24) 

A adimensionalização da equação (6.24) é realizada através do divisor comum  

(𝜔1. 𝑡2. 𝑓𝑐𝑑), ficando a equação iterativa e adimensional, expressa por: 

−(2. 𝛾. 𝜆. 𝛼𝑐. 𝜂3). 𝜉̅2 + [√2. 𝛾. 𝜆. 𝛼𝑐. (2 − 𝜂1)]. 𝜉̅ −
𝛾. 𝜆. 𝛼𝑐

2
. 𝜂4. (𝜂1 + 𝜂2) + 𝛽𝑠𝑑

= 𝜔𝜙. [(55 − 30. √2) + 𝜂1. (19 − 6. √2) +
(1 + 2. 𝜂3)

𝜂3. 𝜂4
. (𝜂2 − 𝜂1) + 4. 𝜂3] 

(6.25) 

com: 𝜂1 =
𝜔2

𝜔1
;   𝜂2 =

𝜔5

𝜔1
;   𝜂3 =

𝑡

𝑏
;   𝜂4 =

𝑎

𝑡
    e   𝐴𝜙 =

𝜔𝜙

(103)
.
𝑓𝑐𝑑

𝑓𝑦𝑑
. 𝑡2. 

observa-se que as razões 𝜂1 e 𝜂2 podem ser expressas em termos das razões 𝜂3 e 𝜂4, assim 

mediante as equações (6.7), escreve-se: 

𝜂1 =
2 − 2. 𝜂3

2

8. 𝜂3
3. 𝜂4

3 − 6. 𝜂3. 𝜂4 + 3
− 2                                                                                          (6.26 𝑎) 

𝜂2 = −
(4. 𝜂4 − 8. 𝜂4

3). 𝜂3
3 + 2. 𝜂3

2 + 12. 𝜂3. 𝜂4 + 20. 𝜂4. 𝑡 + 4

8. 𝜂3
3. 𝜂4

3 − 6. 𝜂3. 𝜂4 + 3
                                     (6.26 𝑏) 
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6.2.3. Tabelas adimensionais para armadura concentrada  

 

 A adimensionalização da equação em bimomento (eq. 6.12) é procedida via divisão por 

(𝜔1. 𝑡2. 𝑓𝑐𝑑), conduzindo a equação (6.13). Além disso, faz-se necessário adimensionalisar as 

equações (6.14) e (6.17), partindo do pressuposto das razões 𝜂3 e 𝜂4 entre as dimensões da 

seção transversal. Na figura 6.17 são apresentadas duas configurações de relação entre as 

dimensões (𝑏, 𝑎 e 𝑡) para a seção transversal em paredes finas. 

Figura 6.17: Razões entre as dimensões 𝒂, 𝒃 e 𝒕 da seção: (a) configuração 1 e (b) configuração 2  

 

Fonte: O Autor (2019) 

 Expressam-se as equações (6.12), (6.14) e (6.17), após adimensionalização, por: 

𝑘𝛽1
. 𝜉̅2 + 𝑘𝛽2

. 𝜉̅ + 𝑘𝛽3
= 0                                                                                                           (6.27 𝑎) 

𝑋𝐶𝐺
∗ =

𝑥𝐶𝐺
∗

𝑡
=

12. 𝑏2 + 19. 𝑡2 + 6. 𝑎. (2. 𝑏 + 𝑡) + 30. 𝑏. 𝑡 − √2. 𝜉̅. (18. 𝑡2 + 12. 𝑏. 𝑡)

12. 𝑡. (𝑎 + 3. 𝑏 + 3. 𝑡 − 3. √2. 𝜉̅. 𝑡)
                                         (6.27 b) 

𝑌𝐶𝐺
∗ =

𝑦𝐶𝐺
∗

𝑡
=

12. 𝑎. (2. 𝑏 − 𝑎) + 12. 𝑡. (𝑎 + 7. 𝑏) + 36. 𝑏2 + 37. 𝑡2 + 24. 𝜉̅2. 𝑡2 + √2. 𝜉̅. 𝑡. (60. 𝑡 − 48. 𝑏)

24. 𝑡. (𝑎 + 3. 𝑏 + 3. 𝑡 − 3. √2. 𝜉̅. 𝑡)
        (6.27 c) 

𝜑 = 𝑘∗∗∗. 𝑏. 𝑡 ≡
𝑘∗∗

𝜔1. 𝑡2
. 𝑏. 𝑡 ≡ − {√2. (𝑌𝐶𝐺

∗ −
1

2
−

1

𝜂3
) + [(1 + 𝜂1). (𝑋𝐶𝐺

∗ −
1

2
)]}         (6.27 𝑑) 

𝐴𝑠 =
𝛽𝑠𝑑

𝑓𝑦𝑑

𝑓𝑐𝑑
.

𝜑
𝑏. 𝑡

≡
𝑓𝑐𝑑

𝑓𝑦𝑑
.

𝛽𝑠𝑑. 𝑡2

𝜑. (𝜂3. 𝛼𝑎)
≡

𝑓𝑐𝑑

𝑓𝑦𝑑
.

𝛽𝑠𝑑. 𝑡2

𝜑. (103)
                                                                 (6.27 𝑒) 

onde: 𝛼𝑎 é o coeficiente de ajuste de ordem de grandeza e 𝜑 é o fator adimensional para impor 

a profundidade relativa 𝜉 ̅na área de aço 𝐴𝑠.  

sendo:  𝜂1 =
𝜔2

𝜔1
;    𝜂2 =

𝜔5

𝜔1
;    𝜂3 =

𝑡

𝑏
;   𝜂4 =

𝑎

𝑡
;   𝑘𝛽1

= −2. 𝛾. 𝜆. 𝛼𝑐. 𝜂3;    𝛽𝑠𝑑 =
𝐵𝑠𝑑

𝜔1. 𝑡2. 𝑓𝑐𝑑
; 

              𝑘𝛽2
= 𝛾. 𝜆. 𝛼𝑐 . [√2. (2 + 𝜂1)];     𝑘𝛽3

= 𝛽𝑠𝑑 − 𝑘𝛽3𝑎
   e   𝑘𝛽3𝑎

= 𝛾. 𝜆. 𝛼𝑐 . 𝜂4. [
(𝜂1 + 𝜂2)

2
]. 
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 Na tabela 6.1 é apresentada a variação do parâmetro 𝜑 em termos do bimomento 

adimensional 𝛽𝑠𝑑, isto para o grupo I de resistência do concreto.  

Tabela 6.1: Tabela para obtenção da armadura na seção de paredes finas sob configuração 1 

(ver figura 6.17 a) e grupo I de resistência do concreto via NBR 8953 (ABNT, 2015)  

𝛽𝑠𝑑 
𝑪 ≤  𝑪 −  𝟓𝟎  

 

𝒌𝜷𝟑
 𝝃̅ 𝑿𝑪𝑮

∗  𝒀𝑪𝑮
∗  𝝋 

5000,00 4996,59 450,06472 13,77344 -85,69242 150,7881639 

15000,00 14996,59 745,04679 13,79815 -155,19743 249,0315805 

25000,00 24996,59 948,49583 13,80594 -203,14360 316,8214483 

35000,00 34996,59 1113,94723 13,81012 -242,13698 371,957708 

45000,00 44996,59 1257,04495 13,81283 -275,86293 419,647752 

55000,00 54996,59 1384,96246 13,81476 -306,01158 462,2803451 

65000,00 64996,59 1501,70055 13,81624 -333,52564 501,1880382 

75000,00 74996,59 1609,76114 13,81741 -358,99468 537,2042595 

85000,00 84996,59 1710,83238 13,81836 -382,81651 570,8914186 

95000,00 94996,59 1806,11711 13,81917 -405,27459 602,6502676 

105000,00 104996,59 1896,50827 0,53332 -426,57935 660,4804797 

115000,00 114996,59 1982,69033 0,49999 -446,89211 689,2765503 

125000,00 124996,59 2065,20167 13,82097 -466,33973 689,0056626 

135000,00 134996,59 2144,47486 0,53332 -485,02417 743,1339344 

145000,00 144996,59 2220,86362 0,49999 -503,02879 768,6658085 

155000,00 154996,59 2294,66162 13,82222 -520,42280 765,4880564 

165000,00 164996,59 2366,11585 13,82256 -537,26441 789,3049756 

175000,00 174996,59 2435,43636 13,82287 -553,60312 812,4107576 

185000,00 184996,59 2502,80360 13,82316 -569,48147 834,865537 

195000,00 194996,59 2568,37394 13,82342 -584,93630 856,7214229 

205000,00 204996,59 2632,28392 13,82366 -599,99980 878,0239226 

215000,00 214996,59 2694,65362 13,82389 -614,70027 898,8130567 

225000,00 224996,59 2755,58933 13,82410 -629,06276 919,1242423 

235000,00 234996,59 2815,18563 13,82430 -643,10956 938,9890027 

245000,00 244996,59 2873,52713 13,82448 -656,86061 958,4355408 

255000,00 254996,59 2930,68992 13,82466 -670,33385 977,4892097 

265000,00 264996,59 2986,74266 13,82482 -683,54545 996,1728998 

275000,00 274996,59 3041,74763 13,82498 -696,51010 1014,507361 

285000,00 284996,59 3095,76147 13,82513 -709,24115 1032,511475 

295000,00 294996,59 3148,83591 13,82527 -721,75079 1050,202478 

305000,00 304996,59 3201,01831 13,82540 -734,05017 1067,596161 

315000,00 314996,59 3252,35219 13,82553 -746,14957 1084,707027 

Fonte: O Autor (2019) 

Na tabela 6.2 consta o parâmetro 𝜑 para o grupo II do concreto e na configuração 1 da 

seção transversal (ver fig. 6.17). 
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 Por fim, nas tabelas 6.3 e 6.4 são apresentadas a variação de 𝜑 para a configuração 2 

apresentada na figura 6.17 (b). 

Tabela 6.3: Tabela para obtenção da armadura na seção de paredes finas sob configuração 2 

(ver figura 6.17 b) e grupo I de resistência do concreto via NBR 8953 (ABNT, 2015) 

𝛽𝑠𝑑 

GRUPO I 

 

C ≤ C - 50  

𝒌𝜷𝟑
 𝝃̅ 𝑿𝑪𝑮

∗  𝒀𝑪𝑮
∗  𝝋 

5000,00 4990,26 379,46146 10,36722 -74,43174 131,6868693 

15000,00 14990,26 635,38271 10,42283 -134,70985 216,8388351 

25000,00 24990,26 811,71678 10,44011 -176,25879 275,5686505 

35000,00 34990,26 955,07756 10,44933 -210,04210 323,3298432 

45000,00 44990,26 1079,05261 10,45529 -239,25869 364,6382483 

55000,00 54990,26 1189,86722 10,45954 -265,37465 401,5645941 

65000,00 64990,26 1290,99180 10,46277 -289,20743 435,2637768 

75000,00 74990,26 1384,59596 10,46533 -311,26816 466,4580168 

85000,00 84990,26 1472,14336 10,46743 -331,90165 495,6346344 

95000,00 94990,26 1554,67671 10,46918 -351,35359 523,140852 

105000,00 104990,26 1632,97000 0,61110 -369,80633 565,9305137 

115000,00 114990,26 1707,61647 0,49999 -387,39967 590,9993986 

125000,00 124990,26 1779,08272 10,47313 -404,24354 597,9318601 

135000,00 134990,26 1847,74357 0,61110 -420,42627 637,5179159 

145000,00 144990,26 1913,90557 0,49999 -436,02010 659,7590763 

155000,00 154990,26 1977,82318 10,47586 -451,08500 664,1710545 

165000,00 164990,26 2039,71040 10,47660 -465,67138 684,7980601 

175000,00 174990,26 2099,74925 10,47728 -479,82215 704,8091204 

185000,00 184990,26 2158,09606 10,47790 -493,57414 724,2563248 

195000,00 194990,26 2214,88631 10,47847 -506,95929 743,1848104 

205000,00 204990,26 2270,23831 10,47900 -520,00547 761,6339952 

215000,00 214990,26 2324,25608 10,47950 -532,73720 779,6385444 

225000,00 224990,26 2377,03170 10,47996 -545,17617 797,2291357 

235000,00 234990,26 2428,64712 10,48039 -557,34171 814,4330734 

245000,00 244990,26 2479,17564 10,48079 -569,25108 831,274786 

255000,00 254990,26 2528,68315 10,48117 -580,91982 847,7762333 

265000,00 264990,26 2577,22918 10,48153 -592,36195 863,9572417 

275000,00 274990,26 2624,86764 10,48187 -603,59018 879,8357842 

285000,00 284990,26 2671,64761 10,48219 -614,61608 895,428214 

295000,00 294990,26 2717,61389 10,48249 -625,45020 910,7494614 

305000,00 304990,26 2762,80753 10,48278 -636,10222 925,8132019 

315000,00 314990,26 2807,26623 10,48305 -646,58102 940,631999 

Fonte: O Autor (2019) 
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6.2.4. Inviabilidade das tabelas adimensionais para armadura distribuída 

 

 Devido a impossibilidade em adimensionaizar a razão 𝜂2 apresentada na equação (6.26 

b), fica dependente da espessura 𝑡 da parede fina do núcleo estrutural, não será possível gerar 

tabelas adimensionais para esta distribuição da armadura 𝐴𝑠. Resta então, a obtenção da 

armadura 𝐴𝑠 via resolução da equação iterativa (eq. 6.25). Nesta tese, tal resolução da equação 

iterativa (para o exemplo 6.3) foi processada via método de Newton e utilizado o software 

Cálculo Numérico V5 (versão livre). 

 

6.2.5. Exemplos de aplicação 

 

EXEMPLO 6.1: A fim de exemplificar a marcha de cálculo Nº 4 (proposta para o 

dimensionamento de seções em formato de C com abas), adota-se a seção transversal 

apresentada na figura 6.18. Escolhe-se para este exemplo a armadura concentrada nas quinas 

mais tracionadas, sendo utilizados: concreto 𝐶 − 90 (𝑓𝑐𝑑 = 6,42857 𝑘𝑁
𝑐𝑚2⁄ ; 𝛾 = 0,9; 𝜆 =

0,7; 𝛼𝑐 = 0,68; 𝜀𝑐𝑢 = 2,6%0) e aço 𝐶𝐴 − 50 (𝑓𝑦𝑑 = 43,47826 𝑘𝑁
𝑐𝑚2⁄ ;  𝜀𝑦𝑑 = 2,07%0). 

Figura 6.18: Dimensões, em planta, da seção transversal aberta e composta por paredes finas  

 

Fonte: O Autor (2019) 

 Nas tabelas 6.5 e 6.6 são apresentadas as propriedades geométricas, posicionamento das 

linhas neutras e a área de aço (𝐴𝑠) via dimensionamento ao bimomento para o pilar de concreto 

armado.  
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Tabela 6.5 – Valores de dimensionamento para a seção apresentada na figura 6.18 e bimomento 

no módulo de 1500 𝒌𝑵. 𝒎𝟐 (valor característico) 

Seção do pilar em Núcleo Resultados Diagrama de Área Setorial Resultados 

‖𝝎𝟏‖ (𝒎²) 119,15960 𝒌𝑩𝟏
  (𝒌𝑵) - 49,22483 

‖𝝎𝟐‖ (𝒎²) 80,84040 𝒌𝑩𝟐
 (𝒌𝑵. 𝒎)  𝒙 𝟏𝟎𝟑 0,92001 

‖𝝎𝟓‖ (𝒎²) 304,25212 𝒌𝑩𝟑
 (𝒌𝑵. 𝒎𝟐)  𝒙 𝟏𝟎𝟑 - 3,46786 

𝒅 (𝒎) 7,07000 𝒙 (𝒎) 13,45339 

𝒙𝑪𝑮
∗  (𝒎) 9,59354 𝒌∗∗ (𝒎𝟐) 22,42293 

𝒚𝑪𝑮
∗  (𝒎) 10,66720 𝑨𝒔 (𝒄𝒎𝟐) 2,15405 

Fonte: O Autor (2019) 

Tabela 6.6 – Áreas de aço 𝑨𝒔, seção da fig. 6.18, em detrimento da variação do bimomento 

Bimomento  (𝒌𝑵. 𝒎𝟐) 𝑨𝒔 (𝒄𝒎𝟐) Bimomento  (𝒌𝑵. 𝒎𝟐) 𝑨𝒔 (𝒄𝒎𝟐) 

2500 2,15 7500 42,53 

5000 10,98 7750 54,69 

7000 28,98 8000 75,77 

Fonte: O Autor (2019) 

EXEMPLO 6.2: A fim de validar e exemplificar a utilização das tabelas adimensionais (item 

6.2.3), resolve-se a seção de paredes finas submetida a 𝐵𝑘 = 1,45608 𝑥 106 𝑘𝑁. 𝑚2. Para tal 

seção transversal adota-se a relação apresentada na figura 6.17 (a). Por dimensões, utilizam-se: 

𝑡 = 0,75 𝑚; 𝑎 = 3,00 𝑚 e  𝑏 = 30,00 𝑚. Na tabela 6.7 são apresentados parâmetros de 

dimensionamento e a armadura 𝐴𝑠 concentrada nas quinas mais tracionadas, via marcha de 

cálculo Nº 4 (letra c do item 6.2.1). Foram utilizados aço CA – 50 e concreto C – 50. 

Tabela 6.7 – Valores de dimensionamento para a seção de paredes finas, no ex. 6.2, via marcha 

de cálculo Nº 4 

Seção do pilar em Núcleo Resultados Diagrama de Área Setorial Resultados 

‖𝝎𝟏‖ (𝒎²) 215,82936 𝒌𝑩𝟏
  (𝒌𝑵) - 23,58706 

‖𝝎𝟐‖ (𝒎²) 234,17064 𝒌𝑩𝟐
 (𝒌𝑵. 𝒎) 457,83660 

‖𝝎𝟓‖ (𝒎²) 367,33652 𝒌𝑩𝟑
 (𝒌𝑵. 𝒎𝟐)  𝒙 𝟏𝟎𝟔 2,03700 

𝜼𝟏;  𝜼𝟐 1,08;  1,70 𝒙 (𝒎) 151,87004 

𝒙𝑪𝑮
∗  (𝒎) 10,26564 𝒌∗∗ (𝒎𝟐) 413,36526 

𝒚𝑪𝑮
∗  (𝒎) - 20,56430 𝑨𝒔 (𝒄𝒎𝟐) 113,42500 

Fonte: O Autor (2019) 

 Utilizando a tabela 6.1 com bimomento adimensional 𝛽𝑠𝑑 = 2,0351 𝑥 105, define-se o 

parâmetro (𝜑 = 939,18549), chegando-se na área de aço: 

𝐴𝑠 =
𝑓𝑐𝑑

𝑓𝑦𝑑
.

𝛽𝑠𝑑. 𝑡2

𝜑. (103)
≡

3,57143 (
kN

cm2)

43,47826 (
kN

cm2)
.
(2,0351 x 105) (ADM).(75)2 (cm2)

939,1854 x 103
= 115,663 𝑐𝑚2         (6.28) 
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 Por fim, ao comparar as áreas de aço 𝐴𝑠 obtidas via tabela 6.7 e pela equação (6.28), 

verifica-se a aproximação de 1,97% a favor da segurança.  

EXEMPLO 6.3: Utilizando os dados do exemplo 6.1 com o equacionamento procedido para 

armadura distribuída ao longo da seção transversal, ver figura 6.3 (b), tem-se a equação iterativa 

(6.25) escrita para o problema em questão, como: 

𝜔𝜙 = −2,45573 𝑥 10−3. 𝜉̅2 + 0,0306. 𝜉̅ + 1,2184 𝑥 104                                                      (6.29) 

com: 𝜂3 =
𝑡

𝑏
= 0.075;   𝜂4 =

14

3
;    𝜂1 =

𝜔2

𝜔1
= 0,67842;    𝜂2 =

𝜔5

𝜔1
= 2,55332; 

          𝐵𝑘 = 1500 𝑘𝑁. 𝑚2;    𝐵𝑠𝑑 = 2100 𝑘𝑁. 𝑚2    e     𝛽𝑠𝑑 =
𝐵𝑠𝑑

𝜔1. 𝑡2. 𝑓𝑐𝑑
= 1,21841 𝑥 104. 

Usando o software Cálculo Numérico V5, versão livre, via aplicação do método de 

Newton para determinação de raízes na equação (6.29), conclui-se: 

𝜉̅ = −697,080926 𝑚                                                                                                                   (6.29 𝑎) 

aplicando a equação (6.29 a) na eq. (6.29), tem-se como taxa de armadura da bitola, a seguinte: 

𝜔𝜙 = 3,774                                                                                                                                    (6.29 𝑏) 

 Por fim, a área de aço 𝐴𝜙 da bitola do feixe, vale: 

𝐴𝜙 =
𝜔𝜙

(103)
.
𝑓𝑐𝑑

𝑓𝑦𝑑
. 𝑡2 ≡

3,774

103
.

6,43 𝑘𝑁
𝑐𝑚2⁄

43,48 𝑘𝑁
𝑐𝑚2⁄

. (150 𝑐𝑚)2 = 12,556 𝑐𝑚2                      (6.30) 

 Resultando em bitola de 40.0 mm para atender tal área 𝐴𝜙, ver distribuição na Fig. 6.19. 

Figura 6.19: Distribuição da armadura 𝑨𝒔 ao longo das paredes finas, no exemplo 6.3 

 

Fonte: O Autor (2019) 
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6.2.6. Programação em visual basic para armadura nas quinas 

 

 Na figura 6.20 é apresentado o formulário do programa de cálculo da armadura 

resistente ao bimomento em seções de núcleo C, e conforme marcha de cálculo Nº 4 (postulada 

na letra c do item 6.2.1). A programação foi realizada em Visual Studio 2019 – versão 

Community. Os resultados das simulações numéricas constam nos exemplos 6.1 e 6.2. 

Figura 6.20: Formulário de programa em Visual Basic para dimensionamento ao bimomento, 

sob armadura concentrada nas quinas tracionadas  

 

Fonte: O Autor (2019) 

 



312 
Weslley Imperiano Gomes de Melo                                                                                                                             

 

6.3. PILAR EM FORMATO DE DUPLO T 

 

a)  Posicionamento das linhas neutras 

 

O diagrama de ordenadas setoriais com notação adaptada para o equacionamento das 

armaduras resistentes ao bimomento é apresentado na figura 6.21, sendo essa notação embasada 

no que foi procedido para a seção em C e apresentado na figura 6.11. 

Figura 6.21: Diagrama de ordenadas setoriais principais 𝝎𝒑𝒄, sob notação adaptada, no duplo T   

 

Fonte: O Autor (2019) 

O bimomento resistido pelas duas áreas comprimidas do concreto, vale: 

𝐵𝑐𝑑 = 𝛾. 𝜆. 𝛼𝑐. 𝑡. 𝑓𝑐𝑑. (𝐴𝜔𝐶
+ 𝐴𝜔𝐷

− 𝐴𝜔𝐴
− 𝐴𝜔𝐵

)                                                                     (6.31) 

onde: 𝐴𝜔𝐴
=

(−𝜔7 − 𝜔9)

2
. 𝑎;    𝐴𝜔𝐵

= −
𝜔7. 𝑐

2
;    𝐴𝜔𝐶

=
(−𝜔4 − 𝜔6)

2
. 𝑎;     𝐴𝜔𝐷

= −
𝜔4. 𝑐

2
; 

𝜔1 = 𝜔3 = 0;   𝜔2 = 𝜔8 = −𝜔4 = −𝜔7 =
𝑏. 𝑐

2
   e    𝜔5 = 𝜔10 = −𝜔6 = −𝜔9 = 𝑐. (

𝑏

2
+ 𝑎). 

Na figura 6.22 são apresentadas as resultantes nas armaduras comprimidas, sob notação 

𝑅𝑐𝑖
 para a resultante na i-ésima armadura distribuída em quatro bitolas. Bem como as 

resultantes 𝑅𝑠𝑖
 sob a i-ésima armadura tracionada, além da consideração das linhas de ação de 

tais resultantes a 45º e paralelas as linhas neutras.  
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Figura 6.22: Resultantes nas armaduras, comprimidas e tracionadas, distribuídas no duplo T   

 

Fonte: O Autor (2019) 

Resultando no bimomento resistido pelas áreas comprimidas do concreto em conjunto 

com as armaduras sob compressão, expresso por: 

𝐵𝑐𝑑 = 𝛾. 𝜆. 𝛼𝑐 . 𝑡. 𝑓𝑐𝑑. (𝐴𝜔𝐶
+ 𝐴𝜔𝐷

− 𝐴𝜔𝐴
− 𝐴𝜔𝐵

) + 𝐵1                                                           (6.32) 

e: 𝐵1 =
√2

2
. ∑ 𝑅𝑐𝑖

. (𝜔𝐶𝑖
+ 𝜔𝐷𝑖

− 𝜔𝐴𝑖
− 𝜔𝐵𝑖

)

4

𝑖=1

;     𝜔𝐴𝑖
=

(−𝜔7 − 𝜔9)

𝑎
. 𝑥𝑖 − 𝜔7;       Δ1 =

𝑡

2
; 

𝜔𝐵𝑖
=

𝜔7

𝑐
. 𝑥𝑖 − 𝜔7;      𝜔𝐶𝑖

=
(−𝜔4 − 𝜔6)

𝑎
. 𝑥𝑖 − 𝜔4;      𝜔𝐷𝑖

=
𝜔4

𝑐
. 𝑥𝑖 − 𝜔4;        Δ =

b

4
;  

𝑥1 = Δ1;      𝑥2 =
Δ

2
;      𝑥3 =

𝑐

4
        e        𝑥4 =

(𝑐 − Δ)

2
. 

 

b) Armadura resistente ao bimomento 

 

A atuação das resultantes nas armaduras são evidenciadas na figura 6.23. Porém, quanto 

as armaduras tracionadas verifica-se que as componentes horizontais não interagem com o 

diagrama 𝜔𝑝𝑐 (apresentado na figura 6.21). 



314 
Weslley Imperiano Gomes de Melo                                                                                                                             

 

Figura 6.23: Interação das resultantes nas armaduras com o diagrama 𝝎𝒑𝒄 adaptado   

 

Fonte: O Autor (2019) 

Assim, o bimomento resistido pelas armaduras tracionadas é computado por: 

𝐵𝑠𝑑
∗ =

√2

2
. ∑ 𝑅𝑠𝑖

. (𝜔𝐷𝑠𝑖
+ 𝜔𝐷𝑠𝑖

∗ )

3

𝑗=1

                                                                                                 (6.33) 

e: 𝜔𝐷𝑠𝑖
=

−𝜔8

𝑐
. 𝑥𝑖 + 𝜔8;     𝜔𝐷𝑠𝑖

∗ =
𝜔4

𝑐
. 𝑥𝑖 − 𝜔8;   𝑥1 =

(𝑐 + Δ)

2
;    𝑥2 =

3. 𝑐

4
    ;    𝑥3 = 𝑐 −

Δ

2
. 
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Agora, procede-se a ponderação das resultantes 𝑅𝑐𝑖
 e 𝑅𝑠𝑖

, por número de bitolas com 

áreas de aço 𝐴𝜙, mediante as seguintes equações por tensão normal: 

𝑅𝑐1
= 𝑅𝑐3

= 𝑅𝑐4
= 4. 𝑓𝑦𝑑. 𝐴𝜙                                                                                                     (6.34 𝑎) 

𝑅𝑐2
= 8. 𝑓𝑦𝑑. 𝐴𝜙                                                                                                                             (6.34 𝑏) 

𝑅𝑠1
= 𝑅𝑠2

= 4. 𝑓𝑦𝑑. 𝐴𝜙                                                                                                                  (6.34 𝑐) 

𝑅𝑠3
= 𝑅𝑠4

= 8. 𝑓𝑦𝑑. 𝐴𝜙                                                                                                                 (6.34 𝑑) 

Aplicam-se as equações (6.34) nas equações (6.32) e (6.33), bem como é adotada a 

convenção do equilíbrio em bimomentos (ver figura 6.2). Rescreve-se a equação (6.23) com as 

devidas substituições dos bimomentos resistidos pelo concreto e pelas armaduras comprimidas 

𝐵𝑐𝑑 e tracionadas 𝐵𝑠𝑑
∗ , como: 

𝛾. 𝜆. 𝛼𝑐 . 𝑡. 𝑓𝑐𝑑. (𝐴𝜔𝐶
+ 𝐴𝜔𝐷

− 𝐴𝜔𝐴
− 𝐴𝜔𝐵

) + 𝐵𝑠𝑑 = 𝐴𝜙. 𝑓𝑦𝑑. 2. √2. 𝜔𝐶𝑆                              (6.35) 

com: 𝜔𝐶𝑆 = 𝜔𝐶𝑆1
+ 𝜔𝐶𝑆2

+ 𝜔𝐶𝑆3
+ 𝜔𝐶𝑆4

;       𝜔𝐶𝑆4
= (𝜔𝐶4

+ 𝜔𝐷4
− 𝜔𝐴4

− 𝜔𝐵4
); 

𝜔𝐶𝑆1
= (𝜔𝐷𝑠1

+ 𝜔𝐷𝑠1

∗ ) − (𝜔𝐶1
+ 𝜔𝐷1

− 𝜔𝐴1
− 𝜔𝐵1

); 

𝜔𝐶𝑆2
= (𝜔𝐷𝑠2

+ 𝜔𝐷𝑠2

∗ ) − 2. (𝜔𝐶2
+ 𝜔𝐷2

− 𝜔𝐴2
− 𝜔𝐵2

)      e 

𝜔𝐶𝑆3
= 2. (𝜔𝐷𝑠3

+ 𝜔𝐷𝑠3

∗ ) − (𝜔𝐶3
+ 𝜔𝐷3

− 𝜔𝐴3
− 𝜔𝐵3

). 

Isolando a área de aço 𝐴𝜙 da equação (6.35), pode-se quantificar facilmente a área de 

cada bitola a ser empregada na distribuição apresentada na figura 6.6, como: 

𝐴𝜙 =
𝑘𝑐 + 𝐵𝑠𝑑

𝑘𝑠
                                                                                                                                  (6.36) 

onde: 𝑘𝑐 = 𝛾. 𝜆. 𝛼𝑐. 𝑡. 𝑓𝑐𝑑. (𝐴𝜔𝐶
+ 𝐴𝜔𝐷

− 𝐴𝜔𝐴
− 𝐴𝜔𝐵

)       e        𝑘𝑠 = 2. √2. 𝑓𝑦𝑑. 𝜔𝐶𝑆. 

EXEMPLO 6.4: Para exemplificar a aplicação do pilar em formato de duplo T, ver item 6.3 

(a) e (b), utilizam-se as dimensões indicadas na figura 6.24. Já, o bimomento característico 𝐵𝑘 

será de 1.500 𝑘𝑁. 𝑚² (analogamente ao procedido no exemplo 6.2), sendo utilizados: concreto 

𝐶 − 50 (𝑓𝑐𝑑 = 3,57143 𝑘𝑁
𝑐𝑚2⁄ ; 𝛾 = 0,9; 𝜆 = 0,8; 𝛼𝑐 = 0,85; 𝜀𝑐𝑢 = 3,5%0) e aço 𝐶𝐴 − 50 

(𝑓𝑦𝑑 = 43,47826 𝑘𝑁
𝑐𝑚2⁄ ;  𝜀𝑦𝑑 = 2,07%0). 
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Figura 6.24: Dimensões da seção transversal em duplo T e submetida ao bimomento do ex. 6.2  

 

Fonte: O Autor (2019) 

 Ficando as ordenadas setoriais indicadas na figura 6.23 e as áreas do referido diagrama 

𝜔𝑝𝑐, ambas destacadas na equação (6.31), expressas por: 

𝜔1 = 𝜔3 = 0;    𝜔2 = 𝜔8 = −𝜔4 = −𝜔7 = 100 𝑚2;     𝜔5 = 𝜔10 = −𝜔6 = −𝜔9 = 170𝑚2; 

𝐴𝜔𝐴
= 𝐴𝜔𝐶

= 945 𝑚3      e      𝐴𝜔𝐵
= 𝐴𝜔𝐷

= 500 𝑚3. 

 As ordenadas setoriais em contato com as resultantes nas armaduras, tracionadas e 

comprimidas, assumem nesse problema, os seguintes valores: 

𝜔𝐴1
= 𝜔𝐶1

= 107,5 𝑚2;     𝜔𝐵1
= 𝜔𝐵1

= 92,5 𝑚2;      𝜔𝐴𝑖
= 𝜔𝐶𝑖

= 125 𝑚2 com 𝑖 = 2, 3 e 4; 

𝜔𝐵𝑖
= 𝜔𝐷𝑖

= 75 𝑚2 com 𝑖 = 2, 3 e 4        e       𝜔𝐷𝑠𝑖
= 𝜔𝐷𝑠𝑖

∗ = 25 𝑚2 com 𝑖 = 1, 2, 3 e 4. 

A contante 𝑘𝑐 é nula, isso devido a dupla simetria inerente a seção, em decorrência das 

áreas comprimidas do concreto estarem opostas e acarretarem bimomento de mesmo módulo, 

porém com sinais opostos. Já a constante 𝑘𝑠 vale 2,45 𝑥 104, acarretando assim em área de 

bitola de: 𝐴𝜙 = 0,085 𝑐𝑚². Equivalendo a utilização de diâmetro de aço: 𝜙 5.0 mm. Ficando 

22 feixes com 4. 𝐴𝜙 de 𝜙 5.0 𝑚𝑚, totalizando assim 88 𝜙 5.0 𝑚𝑚. 

De tal dimensionamento, exemplo 6.4, verifica-se que a armadura resistente ao 

bimomento é irrelevante para seções em duplo T. Já, no exemplo 6.3 fica evidente a relevância 

de tal estado de carga. Neste capítulo da tese foi procedido apenas o equacionamento da 

armadura resistente ao bimomento, fazendo-se necessário superpor os dimensionamentos ao 

momento fletor e esforço cortante.  
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CONSIDERAÇÕES FINAIS E SUGESTÕES  

 

 

 

7.1. CONSIDERAÇÕES FINAIS 

 

 

Nesta tese foi resgatada a utilização da Técnica do Meio Contínuo (TMC) no cálculo 

dos esforços e deslocamentos em estruturas submetidas à ação do vento, conforme observa-se 

no capítulo 2 (item 2.1.2) e no capítulo 5. Em tal resgate foram estendidas a teoria da flexo-

torção e dos painéis-parede, e aplicadas inicialmente em núcleos estruturais de edifícios altos, 

para pilares altos de pontes com separação de vinculação entre o tabuleiro e a mesoestrutura. 

Na abordagem dos pilares de pontes são analisadas seções em formato de núcleo estrutural “C” 

e sob geometria em duplo T. No capítulo 2, a matriz de rigidez do elemento de barra com seção 

transversal linearmente variável (e de formato retangular) é obtida mediante inversão da matriz 

de flexibilidade. No caso da montagem da matriz de flexibilidade são utilizados os sistemas 

derivados, sendo também analisadas as variações do momento de inércia, da área da seção 

transversal e do fator de forma. Ressalta-se nesta contribuição a obtenção da matriz de rigidez 

exata para tal configuração de seção transversal, e procede-se a aplicação de tal matriz no 

cálculo das frequências de vibração dos pilares de uma ponte com tabuleiro posicionado à 100 

metros, isso relativo à base dos mencionados pilares. Para a primeira frequência de vibração, 

com a subdivisão do pilar em cinco elementos finitos de barra, conclui-se aproximação de 5,20 

% (ver pág. 139). Tal aproximação é excelente, isso devido ao número de elementos finitos 

utilizados na discretização do pilar com 100 metros de altura, sendo a validação decorrente de 

modelagem em ANSYS Release 11, conforme é apresentado na letra “d” do item 2.10. 

Capítulo 

7 
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Em continuidade, verificou-se a estabilidade elástica dos pilares (capítulo 4), com o 

estado de carga para atuação conjunta da ação do vento, da reação do tabuleiro e do peso 

próprio. Ainda no capítulo 2, mais especificamente nas páginas 22 a 30, calcula-se a 

distribuição das cargas laterais (𝑞1, 𝑞2 e 𝑄) e da reação do tabuleiro (𝑃) considerando-se a 

contribuição da ação do vento no tabuleiro da ponte. Para tal, o problema da distribuição das 

cargas do vento é  modelado via TMC com a desconsideração da hipótese das lajes (tabuleiro) 

funcionando conforme diafragmas. Na determinação da carga crítica são analisados pilares de 

pontes com altura já mencionada e com seção transversal sob as seguintes configurações: 

retangular, circular (maciças), tubular e anelar com paredes de espessura 𝑡 relativa as demais 

dimensões. Além das seções transversais constantes ao longo do eixo axial do pilar (as seções 

anteriormente listadas), procede-se a determinação da carga crítica para seção transversal em 

formato retangular e linearmente variável na altura.  A curva de convergência da carga crítica 

é obtida mediante discretização da EDO do problema de estabilidade, utilizando-se o método 

das diferenças finitas (MDF) com polinômio de interpolação quártica. A validação de tal 

equacionamento é processada via solução exata presente em Timoshenko e Gere (2009), isso 

para estado de carga particular (com atuação exclusiva da carga 𝑄 concentrada no topo do pilar). 

No capítulo 5 foi generalizada a teoria dos painéis – parede apresentada em Barbosa 

(1980) e fundamentada em Vlassov (1962). Em tal generalização procede-se ao 

equacionamento das paredes que compõem o núcleo estrutural em formato de “C” via 

formulação trigonométricas com ângulos genéricos na incidência dos referidos painéis – 

parede. A motivação de tal análise é fornecer uma ferramenta de projeto de pontes com modelo 

estrutural em vigas e que o engenheiro estrutural possa agregar economia ao projeto com a mera 

inclinação das paredes que formam o pilar em formato de núcleo estrutural. Baseado na 

premissa de impor simetria ao pilar de pontes, buscando-se solicitações simétricas, com a 

mudança de direção do tráfego e/ou da atuação das rajadas de vento. Procede-se (também no 

capítulo 5) a formulação generalizada da teoria dos painéis – parede (GTPP) aplicada a seções 

transversais em formato de duplo T. Tal formulação é validada mediante a teoria da flexo-torção 

(TFT) apresentada entre as páginas 121 a 124, para a seção em questão. 

A análise do pilar com seção transversal de paredes finas foi procedida, no caso 

estático, com momento de torção sob variação linear ao longo do eixo longitudinal do referido 

pilar. Já, em face da análise dinâmica dos painéis-parede postulou-se os fluxogramas de 

desacoplamento do sistema de equações diferenciais para o pilar metálico e de concreto armado. 

Ao pilar metálico, sob carreagamento lateral, verificou-se coincidência do centro de massa 
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(CM) e do centro de gravidade (CG) e para tal obteve-se a equação transcendental e decorrentes 

modos de vibração, bem como modelagem no software ANSYS Release 11. No caso do pilar 

de concreto armado procede-se a transformação de coordenadas da pseudo-força inercial do 

(CM) para o (CG). Em seguida postulou-se a rotina de desacoplamento do sistema de EDO’s, 

bem como fez-se a postulação do amortecimento proporcional em relação as duas matrizes de 

rigidez ([J] para a flexão do pilar e [S] para rigidez à flexão dos lintéis) e a matriz de massa 

([M] ou [M̅]). Em ambas as formulações são modelados pilares com seção transversal sob 

formato de núcleo estrutural C e em duplo T. 

As verificações da modelagem estática dos painéis-parede foram procedidas por 

artigos técnicos, dissertações e teses, bem como por simulação em elementos finitos (MEF) 

propostos via método dos deslocamentos acoplado com a teoria da flexo-torção. Quanto à 

análise dinâmica, as verificações foram conduzidas via modelagem dos modos de vibração no 

software ANSYS Release 11. 

Por fim, foi equacionada a seção de paredes finas (com paredes e abas simétricas, bem 

como em formato de núcleo estrutural C e em duplo T) em concreto armado e submetida ao 

bimomento. De tal equacionamento, resultou para a seção C, a marcha de cálculo da armadura 

resistente e geração de tabelas adimensionais para concretos dos grupos I e II de resistência, e 

com espessura 𝑡 relativa às dimensões das paredes do pilar (isso para o pilar em formato de 

núcleo estrutural). Já, para o pilar com seção transversal em formato de duplo T verifica-se a 

equação determinante da área de aço 𝐴𝜙 por bitola (ver equação 6.25), isso devido a fixação 

das linhas neutras ocorrer pelo diagrama de ordenadas setoriais 𝜔𝑝𝑐 e não ficar flutuando na 

seção transversal.  

Nas diversas análises, processadas nesta tese, foram implementados exemplos de 

validação e conseguintes constatações mencionadas. Por tais resultados obtidos e validados 

com base na literatura específica e simulações via MEF, chega-se a conclusão que os 

procedimentos de análise estática e dinâmica dos pilares de pontes, aqui sistematizados, são 

adequados e forneceram bons e práticos produtos de soluções estruturais.  
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7.2. SUGESTÕES PARA TESES FUTURAS 

 

 

Após as análises decorridas nos pilares altos, de pontes em vigas, com seção de paredes 

finas e sob formato de núcleo estrutural C e em duplo T, sugerem-se os seguintes temas para 

teses futuras: 

➢ Generalizar a análise dinâmica dos painéis-parede para a ocorrência da não 

linearidade física e geométrica; 

➢ Estender a generalização do núcleo estrutural via teoria dos painéis – parede para 

diversas configurações (distintas do duplo T) e com número de núcleos associados 

superior a dois; 

➢ Estender o dimensionamento da seção de paredes finas, em concreto armado, para 

a configuração assimétrica (quanto às dimensões das abas e paredes); 

➢ Aperfeiçoar a análise da estabilidade elástica, dos pilares altos, englobando a não 

linearidade física e geométrica e 

➢ Apreciar a estabilidade elástica e dinâmica dos pilares em paredes finas, sob a 

ótica da não linearidade física e geométrica. 
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SOLUÇÃO DA EDO NO SISTEMA GENERALIZADO  

 

 

 

Este apêndice é dedicado a solução da equação diferencial ordinária, ver eq. (2.121 d). 

E para tal, a fim de facilitar a notação oculta-se os superíndices em asteriscos, ficando a EDO 

expressa como: 

−𝓋′′′ + 𝜆2. 𝓋′ = 𝐷1. 𝑥
2 + 𝐷2. 𝑥 + 𝐷3                                                                                           (𝐴. 1) 

 

A.1. Solução homogênea 

 

A equação característica para a EDO expressa em eq. (A.1) é obtida mediante imposição 

de função exponencial como solução da equação diferencial ordinária homogênea. A solução 

homogênea e sua derivada terceira, ficam expressas por: 

𝓋𝐻(𝑥) = 𝑒
𝑚.𝑥                                                                                                                                  (𝐴. 2 𝑎) 

𝓋𝐻
′′′(𝑥) = 𝑚3. 𝑒𝑚.𝑥                                                                                                                       (𝐴. 2 𝑏) 

Ao aplicar as equações (A.2) na eq. (A.1), exprime-se a equação característica por: 

−𝑚3. 𝑒𝑚.𝑥 + 𝜆2. 𝑚. 𝑒𝑚.𝑥 = 0                                                                                                           (𝐴. 3) 

Conclui-se que a solução homogênea será a combinação linear das três raízes da eq. 

(A.3), ficando expressa por: 

𝓋𝐻(𝑥) = 𝐴1. 𝑒
𝜆.𝑥 + 𝐴2. 𝑒

−𝜆.𝑥 + 𝐴3                                                                                                (𝐴. 4)  
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A.2. Solução particular 

 

A solução particularizante da eq. (A.1) é composta por quatro termos, isto para que a 

solução geral (soma das soluções homogênea e particular) possua seis termos. A quantidade de 

termos da solução geral é verificada no grau parabólico da função em coeficientes D 

apresentado na equação (A.1), função essa que integrada por três vezes (grau da EDO) conduz 

a solução de grau quíntuplo. Ressaltando que o coeficiente 𝐴3 apresentado na eq. (A.4) será 

englobado no coeficiente independente da solução particular, resultando por solução 

particularizante: 

𝓋𝑃(𝑥) = 𝐴3. 𝑥
3 + 𝐴4. 𝑥

2 + 𝐴5. 𝑥 + 𝐴6                                                                                          (𝐴. 5) 

Aplicando a equação (A.5) na EDO expressa na eq. (A.1). Conclui-se como coeficientes 

(𝐴3, 𝐴4 e 𝐴5), com exceção do termo independente 𝐴6, os seguintes: 

𝐴3 =
𝐷1
3. 𝜆2

                                                                                                                                        (𝐴. 6 𝑎) 

𝐴4 =
𝐷2
2. 𝜆2

                                                                                                                                         (𝐴. 6 𝑏) 

𝐴5 =
𝜆2. 𝐷3 + 2.𝐷1

𝜆4
                                                                                                                        (𝐴. 6 𝑐) 

As demais constantes da solução da EDO serão obtidas com a aplicação das condições 

de contorno. 

 

A.3. Solução geral e condições de contorno 

 

A solução geral  𝓋(𝑥) será formada pela soma das soluções homogênea, ver eq. (A.4), 

e particular, conforme eq. (A.5). Sendo expressa por: 

𝓋(𝑥) = 𝐴1. 𝑒
𝜆.𝑥 + 𝐴2. 𝑒

−𝜆.𝑥 + 𝐴3. 𝑥
3 + 𝐴4. 𝑥

2 + 𝐴5. 𝑥 + 𝐴6                                                   (𝐴. 7) 

Na figura A.1 é apresentada a configuração deformada do pilar de ponte e indicadas as 

correspondentes condições de contorno para o problema de flexo-torção. 
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Figura A.1: Deformada do pilar de pontes e condições de contorno para a flexo-torção  

 

Fonte: O Autor (2019) 

Ao aplicar as condições de contorno listadas na figura A.1 na solução 𝓋(𝑥) apresentada 

na equação (A.7), determinam-se os coeficientes 𝐴1, 𝐴2 e 𝐴6 como: 

𝐴2 =
𝑑𝐻. 𝜆

4 − 2. (𝜆2. 𝐻 − 1). 𝐷1 − 𝜆
2. (𝐷2 − 𝐷3)

𝜆6. (𝑒𝜆.𝐻 + 𝑒−𝜆.𝐻)
                                                                  (𝐴. 8 𝑎) 

𝐴1 =
𝑑𝐻 . 𝜆

4 − 2. [𝜆2. 𝐻 − 1 + 𝑑𝑒]. 𝐷1 − 𝜆
2. 𝐷2 + 𝜆

2. [1 − 𝑑𝑒]

𝜆6. (𝑒𝜆.𝐻 + 𝑒−𝜆.𝐻)
                                            (𝐴. 8 𝑏) 

𝐴6 = −(𝐴1 + 𝐴2)                                                                                                                            (𝐴. 8 𝑐) 

onde: 𝑑𝐻 =

{
  
 

  
 
𝔐𝑧𝐻

𝐸. 𝐼𝑧
; para deslocamento 𝓋 no vetor {𝓋}

𝔐𝑦𝐻

𝐸. 𝐼𝑦
; para deslocamento 𝜔 no vetor {𝓋}

𝐵𝐻
𝐸. 𝐼𝜔

; para rotação 𝜙 no vetor {𝓋}             

;   {𝓋} = {

𝓋
𝜔
𝜙
}  vetor da eq. (2.114); 

onde: 𝔐𝑧𝐻,𝔐𝑦𝐻 são os momentos fletores no topo do pilar e em torno das direções 𝑧 e 𝑦 

(respectivamente); 𝐵𝐻 é o bimomento no topo do pilar e 𝑑𝑒 = 𝜆2. (𝑒𝜆.𝐻 + 𝑒−𝜆.𝐻). 
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CÓDIGO COMPUTACIONAL: Análise dinâmica via elementos finitos de 

barra e condensação matricial 

 

 

 

B.1. Pilar com seção retangular linearmente variável (Concreto C – 90) 
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As cinco primeiras frequências, valem: 
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CÓDIGO COMPUTACIONAL: Estabilidade Elástica via Diferenças Finitas  

 

 

C.1. Seção maciça constante na altura do pilar 

 

a) Seção retangular  

    

 

Apêndice 

C 



C2 
Weslley Imperiano Gomes de Melo                                                                                                                             

 

 

 



C3 
Apêndice C                                                                                                                             

 

 
 

 
 

b) Seção circular 

  

Nesta modelagem; a única mudança, em relação ao item anterior, é a fórmula de cálculo 

do momento de inércia (na 1ª etapa), ficando: 
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C.2. Seção vazada invariável na altura do pilar 

 

a) Tubo retangular  
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b) Anel circular 

 

Nesta modelagem; a única mudança, em relação ao item anterior, é a fórmula de cálculo 

do momento de inércia (na 1ª etapa), ficando: 

 

C.3. Seção maciça variável linearmente no eixo longitudinal do pilar 
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E por fim, a ferramenta de “Solver” do Mathcad: v := lsolve (M,q) , conforme item anterior. 
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CÓDIGO COMPUTACIONAL: Flexo – Torção  

 

 

D.1. Rotação e bimomento na análise estática do pilar em núcleo estrutural 

 

a) Via Teoria da Flexo – Torção  
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b) Via Teoria dos Painéis – Parede 
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c) Via Método dos Elementos Finitos 
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(ver Rotina de Jacobi no apêndice B, na página B6, e aplicar n = 20) 
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D.2. Análise dinâmica dos painéis – parede 

 

Ao procedido no item D.1, na análise estática, segue-se: 
 

 

 

 



D39 
Apêndice D                                                                                                                             

 

 
 

 

 

 

 

  



D40 
Weslley Imperiano Gomes de Melo                                                                                                                             

 

 

 

 

 

 

 

 



D41 
Apêndice D                                                                                                                             

 

 
 

 

 

 

 



D42 
Weslley Imperiano Gomes de Melo                                                                                                                             

 

 

 

 

 



D43 
Apêndice D                                                                                                                             

 

 
 

 

 

 



D44 
Weslley Imperiano Gomes de Melo                                                                                                                             

 

 

 

 

 



D45 
Apêndice D                                                                                                                             

 

 
 

  

 

 

 

 

 

 



D46 
Weslley Imperiano Gomes de Melo                                                                                                                             

 

 



D47 
Apêndice D                                                                                                                             

 

 
 

 

 

 



D48 
Weslley Imperiano Gomes de Melo                                                                                                                             

 

 

 

 



D49 
Apêndice D                                                                                                                             

 

 
 

 

 

 

 

 

 

 

 

 



D50 
Weslley Imperiano Gomes de Melo                                                                                                                             

 

 

 

 

 



D51 
Apêndice D                                                                                                                             

 

 
 

 

 

 

 



D52 
Weslley Imperiano Gomes de Melo                                                                                                                             

 

 

 

 

 

 

 

 

 

 



D53 
Apêndice D                                                                                                                             

 

 
 

 

 

 

 

 

 

 

 

 



A1 
 

   

 

 

TUTORIAL DE SIMULAÇÃO DOS MODOS DE VIBRAÇÃO NO ANSYS 

 

 

 

Este apêndice é destinado a apresentar as decisões implementadas na similação dos 

modos de vibração através do software ANSYS. Sendo estas listadas como: 

1ª ETAPA: Desenhar a geometria do pilar de ponte destinado a ser procedida a análise modal, 

no AutoCAD 3D e salvar o arquivo da geometria na extensão “sat”. 

2ª ETAPA: Modelar no ANSYS o pilar com geometria desenhado no AutoCAD, através da 

calculadora “MODAL”. 

a) Ativar a função MODAL com clique duplo 

Fig. E.1 

             obtendo-se: 

Apêndice 

E 

A 
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Fig. E.2 

b) Clicar duplamente na opção “Engineering Data” apresentado na figura E.2. Abrindo-se 

a tela de definição dos materiais. 

 

Fig. E.3 
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c) Clicar na opção “Geometry” apresentado na figura E.4: 

Fig. E.4 

            1ª opção de criar geometria: selecionar agora a opção “New DesignModeler 

Geometry...” na figura E.5. 

Fig. E.5 

            será aberta uma janela de desenho no próprio ANSYS, ver figura E.6. 
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Fig. E.6 

            2ª opção de criar geometria: será gerar a geometria do pilar no AutoCAD (1ª etapa 

deste tutorial), processando isso através do comando: “File” → “Import External Geometry 

File...” na janela apresentada na figura E.6, conforme observa-se na figura E.7. 

Fig. E.7 

            navega-se no computador a fim de importar o arquivo da geometria do pilar (1ª etapa) 

em “sat”, conforme é apresentado na figura E.8. 
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Fig. E.8 

              clicar no comando “Generate” e em seguida “Import2” e em seguida o arquivo já foi 

gerado, e daí pode-se fechar a janela “Design Modeler”. Por fim, observa-se na figura E.9 que 

o item “Geometry” está atendida. 

Fig. E.9 

            proceder com clique duplo no item “Model” apresentado na figura E.10. 

Fig. E.10 
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             será aberta a janela “Model”, conforme consta na figura E.11. 

 

Fig. E.11 

            selecionar na aba “Outline” → “Mesh” e em “Details of Mesh” vai-se até a opção de 

definição da malha de elementos finitos “Element Size” e preenche-se por decrementos até que 

o número total de nós da modelagem caiba dentro da licença do ANSYS que se possua. 

 Fig. E.12 

             a quantidade de nós é observada ao clicar em “Mesh” com o botão direito e clicar em 

“Generate Mesh”, e em seguida na aba “Details of Mesh” observa-se “Statistics” a 

quantificação dos Nós (Nodes) e dos elementos finitos (Elements). 

 


