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Abstract

This work was divided into two moments: at first, we set out to study spacelike sub-
manifolds " immersed in Lorentz spacetimes M So, we introduce the notion
of r-trapped submanifolds as a generalization of the trapped submanifolds introduced
by Penrose. In the case where the ambient space is a GRW —I x, M consider-
ing some properties such as parabolicity and stochastic completeness we prove rigidity
and nonexistence results for r-trapped in some configurations of GRW spacetimes and,
lastly, we provide examples of r-trapped submanifolds, some of them are also simul-
taneously trapped, but we provided examples proving that the notion of r-trapped
submanifolds are different accordingly to the number r. On the other hand, in the
case where the ambient space is an standard static spacetime (SSST) M x, Ry, we
calculate the differential operators L, and L, , applied to the height function h = mg o
of the immersion ¢ : ¥ — M" x,R; and we consider some properties on £" such
as parabolicity and maximum principles. In this setting, we prove rigidity and nonex-
istence results for r-trapped spacelike submanifolds. After, we obtain some De Lellis-
Topping type inequalities for general tensors under constraints in the Bakry-Emery
Ricci tensor. In particular, we provide new results on manifolds with convex bound-
ary, improving some known results given on manifolds with totally geodesic boundary.

Furthemore, we apply our results in a class of locally conserved tensors.

Keywords: Rigidity, r-trapped submanifolds, GRW spacetime, SSST, De Lellis-Topping
Inequality, weighted manifolds, Bakry-Emery-Ricci tensor, drifting Laplacian.



Resumo

Este trabalho foi dividido em dois momentos: no primeiro, nos dedicamos ao estudo de
subvariedades tipo-espaco X" imersas em espacos-tempo Lorentzianos M Assim,
introduzimos a nog¢ao de subvariedades r-trapped como generalizagao das subvariedades
trapped introduzidas por Penrose. No caso em que o espago ambiente ¢ um GRW
—I x, M"™P considerando algumas propriedades como parabolicidade e completude
estocastica, fornecemos resultados de rigidez e de nao existéncia para subvariedades r-
trapped em algumas configuragoes de espacos-tempo GRW e, por tltimo, fornecemos
exemplos de subvariedades r-trapped, onde algumas delas sao trapped e outras nao,
comprovando que a noc¢ao de subvariedades r-trapped sao diferentes de acordo com o
ntimero r. Por outro lado, no caso em que o espaco ambiente ¢ um standard static
spacetime (SSST) M"*P x ,R;, calculamos os operadores diferenciais L, e L, 4 aplicados
a funcao altura h = mg o ¢ da imersdo ¢ : X" — M"*? x,R; e consideramos algu-
mas propriedades em X" como parabolicidade e principios de méximo. Neste cenéario,
fornecemos resultados de rigidez e de nao existéncia para subvariedades r-trapped. De-
pois, obtemos algumas desigualdades do tipo De Lellis-Topping para tensores gerais
sob restricdes no tensor Bakry-Emery Ricci. Em particular, fornecemos novos resulta-
dos em variedades com bordo convexo, melhorando alguns resultados conhecidos em
variedades com bordo totalmente geodésico. Além disso, aplicamos nossos resultados

em uma classe de tensores localmente conservativos.

Palavras-chave: Rigidez, subvariedades r-trapped, espaco-tempo GRW, SSST, De-
sigualdade De Lellis-Topping, variedades ponderadas, tensor Bakry-Emery-Ricci, Lapla-

ciano ponderado.
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Introduction

The objective here is to give an overview of the results that motivated our work.
At first, we dedicate to the study of the r-th mean curvature of spacelike submanifolds
immersed in spactimes (which, in this case, were the generalized Robertson-Walker
spacetime and the standard static spacetime). After that, we turn our attention to De
Lellis - Topping type inequalities for general tensors under constraints in the Bakry-
Emery Ricci tensor on weighted Riemannian manifolds with convex boundary.

As a starting point, we dedicate ourselves to the study of the spacelike submani-
folds immersed in Lorentz spacetimes. In this context, de Lima, Santos and Velasquez
[43] obtained rigidity for trapped submanifolds in Lorentzian spaces forms, they con-
sidered assumptions such as parallel mean curvature and pseudo-umbilicity. Later,
Alias, Canovas and Colares [I], considered codimension two trapped submanifolds "
immersed in generalized Robertson-Walker spacetimes —I x ,M"*! and obtained nonex-
istence and rigidity results. In this work, they used the Laplace-Beltrami operator of

3" and obtained the following equation
Aa(h) = n(—§(h) + p(h)(H.9,)).

where h is the height function of X" in —I x, M and o is a primitive of p. It is im-
portant to note that a causal orientation of the mean curvature vector field H plays an
important role in the study of Laplacian of o(h) and, therefore, constitutes a valuable
tool for the work in question. On the other hand, working in a similar context, Alias,
Impera and Rigoli [4], analyzed the problem of uniqueness for spacelike hypersurfaces
3™ with constant mean order curvature immersed in generalized Robertson-Walker

spacetimes —/ x, M". However, in this case, they turned their attention to the differ-



ential operator L, and obtained the following equation
Lyo(h) = —k(r) (¢'(h)Hy + p(h)H11(N, Or))

where k(r) = (n —r)(") is a constant and N is the unique unitary timelike normal
vector field globally defined on X" with the same orientation as d;. Following the same

line, but in a different ambient space, Freitas et al [22] obtained
1 =
Ah = =2(VInp, Vh) + —(H,0)
p

and, with this, studied trapped submanifolds immersed in standard static spacetimes
and established sufficient conditions to guarantee that such a spacelike submanifold
must be a hypersurface of the Riemannian base of the ambient spacetime, particu-
larly, they showed that there do not exist n-dimensional compact (without boundary)
trapped submanifolds immersed in an (n + 2)-dimensional standard static spacetime
which is a classical result due to Mars and Senovilla [31] (see also [45]).

For the r-th mean curvature of spacelike submanifolds immersed in Lorentz space-
times, which will be generalized Robertson-Walker spacetime and standard static space-
time (see chapters [3| and , respectively), we introduce the concept of r-trapped sub-
manifolds which generalizes the definition of trapped submanifold in the sense that
O-trapped coincides with trapped submanifold (see section . Then, studying the
behavior of spacelike submanifolds >" immersed in a generalized Robertson-Walker
—I x, M"*P (respec., standard static spacetimes M"*? x ,Ry) using the causal orien-
tation of their (r 4+ 1)-th mean curvature H,.1 wih 0 < r < n even, we calculate the
differential operator L, applied to the height function h of X" in —I x, M™*? (respec.,
M™? x,Ry) and we got

Lo(h) = =(p' (1) /() k(r)H, = (o' (h)/ p(h)) T, (Vh, VR) + k() (Hrs1,00),

and

—

Leo(h) = k(r) (=¢/ (W) H, + p(h) {11, 00))

Therefore, with these tools, we obtain rigidity and nonnexistence results. Since L, is a
differential operator, the above equations allow an analysis of the spacelike submanifold
3™ through the causal orientation of the vector field ﬁrﬂ, when 0 < r < n is even.

For example, when X" is closed, we get results like:

2



Theorem A Let —I x, M"? be a GRW spacetime and 0 < r < n even.

(i) If H(t) > 0, there exist no closed weakly past r—trapped submanifold in —I X,
M™P such that T, > 0 and H, > 0.

(1t) If H(t) <0, there exist no closed weakly future r—trapped submanifold in —1I %,
M™P such that T, > 0 and H, > 0.

However, when ¥" is noncompact, we can evoke the concepts of parabolicity,

stochastic completeness and maximum principles. For instance, we have the following

Theorem B Let —I x, M"™*? be a GRW spacetime and 0 < r < n even.

(i) Let t* € I and assume that H(t) > 0 for t < t*. Then there exist no weakly
past r-trapped complete, non-compact spacelike submanifold bounded away from
the future infinity at height t* immersed into —I x , M™ P satisfying the condition
(3.5) and such that T, > 0, supy, trT, < 400 and H, > a > 0, for some constant

a.

(it) Let t, € I and assume that H(t) < 0 for t > t.. Then there exist no weakly
future r-trapped complete, non-compact spacelike submanifold bounded away from
the past infinity at height t, immersed into —I x, M"™P satisfying the condition
(13.5) and such that T, > 0, supy, trT, < 400 and H, > a > 0, for some constant

a.

On the other hand, when the ambient space is a standard static spacetime, we
get

Ly () = =2T,(V In(p). VA) + —k(r) {10, ).

Moreover, using the divergent operator L, 4(-) := divg (TT (V())) with ¢ = —2Inp,
we obtain

Lyy(h) = §k<r><ﬁm, K).

By the concepts of the principles of maximum and parabolicity for operators L, and
L, 4, we obtain nonexistence and some rigidity results. In this context we emphasize
the following results:

Theorem C Let mﬂyﬂ = M"? x, Ry be a standard static spacetime with constant

sectional curvature ¢, 0 < r < n even and consider ¢ = —21In p. Then



(i) There do not exist n-dimensional spacelike, L, s-parabolic, future (or past) r-
trapped and bounded away from the future (or past) infinity submanifolds im-
_——ntptl
mersed in M, ;
(ii) There do not exist n-dimensional spacelike, L, s-parabolic, marginally future (or
past) r-trapped and bounded away from the future (or past) infinity submanifolds

. . =—n+p+1
immersed in M, .

(iii) The n-dimensional spacelike L, s-parabolic, weakly future (or past) r-trapped and
bounded away from the future (or past) infinity submanifolds immersed in MZ“’“

are r-minimal.

and,

Theorem D Let M"7"H = pr+e X, Ry be a standard static spacetime such that p

and Vp are bounded and let ¢ : X" — M e a complete, non-compact spacelike
submanifold with bounded second fundamental form and whose radial sectional curva-
ture satisfies the condition . Moreover assume that X" is bounded away from
the future infinity and, for some 0 < r < n — 1 even, suppose that supy, tr1,. < 400,
T, >0 and H, > 0. Then X" cannot be past r-trapped nor marginally past r-trapped.

Particularly, if X" is weakly past r-trapped then 3" must be r-minimal.

It is important to highlight that, in this more general context, we encompass
many of the results cited above (as well as some works that were opportunely cited in

the course of chapters |3 and , considering that

( — —
H, 1 coincides with the mean curvature H of the submanifold when r = 0;

The concept of r-trapped coincides with that of trapped submanifolds when r = 0;

L, coincides with the Laplace-Beltrami operator when r = 0;

\ The codimension of the submanifold is given by p 4+ 1 with p a non-negative integer.

In addition, to emphasize the importance of this new concept of r-trapped submanifold,
we provide examples that demonstrate its independence from the definition of trapped
submanifold that already exists in the literature (see example .

In a second part, we study almost-Schur type results on weighted manifold.
Schur’s lemma states that every Einstein manifold of dimension n > 3 has constant
scalar curvature. With that in mind, De Lellis and Peter Topping [20] asked to what
extent the scalar curvature is constant if the traceless Ricci tensor is assumed to be
small rather than identically zero and, with this, they obtained the following result in

the context of closed Riemannian manifolds:



“Let (X", g) be a closed Riemannian manifold of dimension n > 3, with nonneg-

ative Ricci curvature. Then

/(R—E)deg < dn(n —1)

(n —2)?

fz Rdv, is the average value of R over X". Furthermore, the equality

/2 |Ric — (R/n)g|2 dvy,

where R = #@)
occurs if and only if (X", g) is an FEinstein manifold.”

For closed Riemannian manifolds, Cheng generalized the work of De Lellis and
Topping in two ways: first replacing the hypothesis of non-negativity of the Ricci
curvature with the more general condition Ric > —(n — 1)K (see [16]), for some
positive constant K, and then she obtained a De Lellis-Topping type inequality for
a symmetric tensor T that satisfies condition div1 = ¢V B, where ¢ is a constant
and B = trT (see [15]). Turning her attention to compact Riemannian manifolds with
totally geodesic boundary (i.e., a Riemannian manifold M with umbilical boundary M
and whose mean curvature H of the immersion dM < M is zero), Ho [28] obtained
the same inequality as De Lellis and Topping under the hypothesis of non-negative
Ricci curvature. Finally, in a more general context, we can mention the works of Chen
[14], Huang and Zeng [29], Meng and Zhang [32] and Wu [49] that address De Lellis-
Topping type inequalities for weighted manifolds under a new condition of limitation
for the Bakry-Emery Ricci tensor.

With this in mind, we set out to study De Lellis - Topping type inequalities for
symmetric tensors 1" that satisfy second Bianchi’s type identity on weighted manifolds
(M, g,e~/dv) with convex boundary.

Theorem E Let (X", g,e/dv) be a compact n-dimensional weighted manifold with
n > 3, convex boundary 0% and f : 3" — R a smooth function such that (0f /0v) =0
on 0%, where v is the exterior unit normal vector field along 0X. Let T be a symmetric
(0,2)-tensor field such that T(v,-) > 0 along the boundary and divT = ¢V B, where

c € R is a constant and B = tr,T" denotes the trace of T with respect to g. If Ricy >
—(n —1)Kyg, where K1 > 0 is a constant, and Ky := max,epy Af(z), then

— —1)K; + K. -1 °
(nc—l)Q/(B—B)2e_fdv§n2 ((n JKy1 + 24z >/|T|2e_fdv,
2 2

)\1 n

where B = (fz Be’fdv) / (fz e’fdv) is the weighted average value of the B over X", A\q
is the first nonzero eigenvalue for weighted Laplacian with Neumann boundary condition

and joﬂ: T— (trgT/n>g denotes traceless part of the tensor field T'. Moreover, assuming

positivity of Ricci curvature, the equality holds if and only if f is constant and IO”: 0.

5



On the other hand we obtain a De Lellis-Topping type inequality with weighted
objects, that is, we have:
Theorem F Let (X", g, e /dv) be a compact smooth metric measure space with n > 3,
convex boundary 0% and f : X" — R smooth and such that (0f/0v) =0 on 0X. Let
T be a symmetric (0,2)-tensor field such that divT = ¢VB and T(v,-) > 0 along of
the boundary, where ¢ > 0 is a constant and B = tr,T. If Ricy > (Af — (n—1)K)g,

where K > 0 1s a constant, then
2
— \ 2 _ n (’rl, — 1)K n — 1 / o 2,12 —
By — B Tdy < v fd
/E(f e tdy < (nc_m( ot ) 1Ty =V e

+ / (Af)*edv,

where Ty =T + V2 f and By = tr,Ty. Moreover, the equality holds if and only if f is

constant and 10’: 0.

With this in mind, we divided this work into 5 chapters. In chapter [T, we provide
some concepts and some important results for the development of our research. In
addition to the differential operators, Schur’s Lemma and the extension of Reilly’s
formula to weighted manifolds, we approach concepts of the maximum principles and
parabolicity in the classic versions for more general operators such as L,. In chapter [2
we provide the definition of r-th mean curvature of spacelike submanifold X" immersed
in spacetime M of the Newton transformations T, and of the differential operator
L,. With this, we introduce the new concepts of r-trapped submanifolds according
to the causal orientation of the vector field FITH for 0 < r < n even. In chapter
B, we explored the n-dimensional r-trapped submanifolds contained in slices from the
ambient space —I x, M"™"'. With this, we provide a condition for whether or not
such a submanifold is r-trapped (see equation . Right after that, we will calculate
the action of the operator L, in the height function h = 7; o ¢ and in a primitive
function o of the warping function p in the search for a tool to help our results.
With this tool in mind, we address some results of non-existence and rigidity. Finally,
we provide examples of r-trapped submanifolds. It is important to note that the
concepts of trapped and r-trapped submanifolds are independent and that the second
generalizes the first, since O-trapped submanifolds coincides with the trapped in the
classic sense (see example . For chapter , the idea is to study the spacelike

submanifolds immersed in a standard static spacetime. In this way, we restrict ourselves

6



to the spacelike submanifolds ¢ : ¥ — M"*? x, Ry and obtain results of rigidity
and nonexistence under the hypothesis of causal orientation for the (r + 1)-th mean
curvature ﬁrﬂ, with 0 < r < n even. At first, we calculate L,(h) and, in addition,
we provide a result that guarantees, under some hypotheses, the Omori-Yau maximum
principle for the Laplacian (see Lemma . In section [4.2] we discuss some results
of nonexistence and rigidity for r-trapped, as well marginally and weakly r-trapped,
submanifolds immersed in a standard static spacetime M" P x ,R;. In the next section,
we explore the definition of weighted divergence (or, more preciselly, of ¢-divergent
for some smooth function ¢ on ") and, under the hypothesis of constant sectional
curvature of the ambient space M" P x, Ry, we use the differential operator L, 4 (see
equation and continue to obtain results of non-existence and rigidity. In section
[4.4] we follow the same idea as in the previous section, but this time making use of the
principle of maximum for both Laplacian and differential operator L,. We dedicate
the section to study the particular case of some of the results in chapters [3] and
when the warping function satisfies p = 1, i.e., we turn our attention to spacelike
submanifolds immersed in the product manifold —7 x M™? (which, in turn, is both
a GRW and an SSST). And, likewise, we end the chapter by providing examples of
r-trapped submanifolds. Lastly, in chapter |5| we propose study these type inequalities
on weighted manifolds with constraints in the Bakry-Emery Ricci tensor. In section
5.1 we enunciate and demonstrate the main results of this chapter (see Theorems [5.1.1]
and and, in addition, we obtain direct corollaries. Finally, in section , we

provide some applications of the main results.



Summary of Basic Notation

1. Let (M, g) be an n-dimensional Riemannian manifold with metric g, u, f : M — R are
smooth functions, X, Y, Z and W vector fields on M and T a tensor field on M.

V: Levi-Civita connection of M R(X,Y)Z: curvature endomorphism
VT: covariant derivative of T R(X,Y,Z,W): curvature tensor

B = tryT: trace with respect metric g of [X,Y]: Lie brackets of X and Y

T
Ric: Ricci curvature

B: overage value of B over M
R: scalar curvature

o
T traceless part of T R: average value of R over M

OM: boundary of M dvg: volume element of M

X(M): space of vector fields on M dyig: volume element of OM

C°(M): space of C* functions Aju: weighted laplacian of u

Vu: gradient of u Lx: Lie derivative with respect to X
du: differential of u divy X: f-divergence of X

V2u: hessian of u divyT: f-divergence of T

Aw: laplacian of u Ricy: Bakry-Emery Ricci tensor

div X: divergence of X Kﬁd: radial sectional curvature of M

2. Looking at M as a submanifold immersed in a (n + m)-dimensional semi-Riemannian
manifold M, we have

V: Levi-Civita connection of M H,: r-th mean curvature of M
a(X,Y): second fundamental form of M K: Gauss-Kronecker curvature of M

H: mean curvature of M T,: r-th Newton transformation of a



Chapter 1

Fundamentals of Geometric Analysis

The purpose of this chapter is to establish notations and provide some tools that,
in large part, will be focused on our results in chapter [f] The section because
it deals with differential operators in Riemannian manifolds, will also support some
of our results from chapters 5 and 6, since they are focused on the study of spacelike
submanifolds immersed in spacetimes. In what follows, section provides Bianchi’s
identities. The results contained in chapter [5| are, in a way, a generalization of Schur’s
Lemma and, for this reason, such identities are necessary. Sections and are
linked, since the first serves as a supposition for the second. More precisely, we in-
troduced in section 4 the concept of weighted manifolds and extended the formulas
of Béchner and Reilly in the section for this ambient. It is worth mentioning that
such formulas are essential tools in the demonstration of Theorems . 1.1l and B.1.4l In
addition, we have introduced some weighted differential operators that will be used in
chapters [3] [] and [5]

In order to provide support for results in chapters [3| and [4] that address non-
compact manifolds, we introduce the concepts of Omori-Yau maximum principle and
parabolicity. In addition, we provide a version of the maximum principle for the op-
erator L defined in . In a natural way, we approach results that, under certain
hypotheses, imply these principles. Then, in the next section, we define the concept
of parabolicity. Thus, taking advantage of the definition of weighted divergent in-
troduced in chapter 1| (see section , we define the operator L, and, with it, the



concept of Lg-parabolicity. Finally, we present conditions for which a given manifold

to be Lg-parabolic.

1.1 Differential Operators

Let ™ be a smooth manifold equipped with a Riemannian metric g : X(X) x
X(X) — C°°(X) (which we will sometimes denote by (-, -)) and Riemannian connection
V. In addition, to fix the notations, denote by {ey, e, ..., €, } a local orthonormal frame
on ¥". Given a smooth function u : 3" — R, we define the gradient of u as the vector

field Vu given by
(Vu, X) = X(u), VX € X(X).

However, note that

and, with this,
(Vu, X) = du(X), VX € X(X).

Therefore, using musical isomorphism (-)* : X(X) — X(X)*, we can identify the field

Vu with the (0, 1)-tensor du as follows

(Vu)b = du.

Remark 1.1.1 It is natural to omit musical isomorphism “ * " and use Vf to denote
both the vector field Vu and the differential du.

According to the definition, if u,v : X" — R and £ : R — R are smooth functions,

then

V(u:i:v) = Vu £ Vu;
V(uv) = uVv + vVu; (1.1)
V(§ o u) = f’(u)Vu.
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Given a vector field X(X), we can use the connection and define an operator

VX : X(2) — X(X) given by
Y € (%) s Vy X.

In this context, we define the hessian of a smooth function u : ¥ — R as being the
(0,2)-tensor V?u : () x X(X) — C*°(X) whose metrically associated (1, 1)-tensor is

precisely the operator Vu, that is,
(X,Y) e X(2) x X(2) — (VxVu,Y).
Since, for all X and Y in X(X),

(VxVu,Y) = X(Vu,Y)— (Vu,VxY)

(Vu,Y

= X(Y(uv) — (Vu, Vy X + [X,Y])

= Y(X(u) +[X —(Vu, Vy X + [X,Y])
Y(X(u) — (Vu, Vy X)

= (VyVu,X),

we have that V2u is a symmetric tensor.
From the definition of Hessian given above, we define the laplacian of a smooth

function u : ¥" — R as the function Au € C*°(X) given by
Au = tr (VQU).
So, for smooth functions u,v : ¥ — R and £ : R — R, it follows that

A(uv) = uAv + vAu+ 2(Vu, Vu);
A(¢ou) = (& (w)|Vul* + (&' (u) Au.

The next differential operator to be defined is the divergent of a vector field and,

(1.2)

for this, we will make use of the musical isomorphism (-)* : X(X) — X(X)* (which,
as already mentioned, will be omitted). Thus, given a field of vectors X € X(X), we
define its divergent as the function div (X) € C*(X) given by

div(X) = tr(VX())

n

= Z(VeiX7 €i>~

1=1

12



Immediately, from the previous definition, it follows that
Ay = div (Vu)
Moreover, if u : 3" — R is a smooth function and X,Y € X(X), then
div (X £Y) =div (X) £ div (Y); 13
div (uX) = udiv (X) + (Vu, X).

Inspired by the previous definition, consider a symmetric (0, 2)-tensor 7" : X(X) x

X(X) — C*°(X) and, also denoting by 7' its associated (1, 1)-tensor, note that

n

div (T(X)) = ) (V. T(X),e;)

i=1

_ zn: <<V6iT> (X), ei> + anT(VeiX), ei)

= tr(VI(-, X)) + i(veix, T(e;))
= tr(VI(-, X)) + EVIX, T).
So, we define the divergent of T as being the (0, 1)-tensor given by
X € X(2) — div (T)(X) = tr(T(-, X)).

In coordinates, we have

div (T), = > ¢*WiT

7
k=1
n
Jj=1

where V,T;; = (VekT) (€i,e5).
With this definition, we will say that a symmetric (0, 2)-tensor T is locally con-

served if it is divergence free, i.e., div (T) = 0.

1.2 Bianchi Identities and the Schur’s Lemma

With the definitions of curvature endomorphism R : X(X) x X(X) x X(X) — X(X)
and curvature tensor R : X(X) x X(X) x X(X) x X(X) — C>(X) (which we already

admit to be known to the reader), we can highlight the following properties
Rijk + Rjki + Ryij =0

13



and

ViR + VR + Vi Rij = 0,
where R, = R(e;, ej)er and VR = (V.,R)(e;, ek, €;). Such properties are known as
Bianchi’s first and second identity, respectively.
Remember that, from the curvature tensor R : X(X)* — C°°(%), we can introduce
the it Ricci curvature tensor by

(X,X) € X(%)* — Ric(X,X) = tr(R(-,X,X,"))

n

= Y R(e, X, X,¢;)

=1
n

= ) (R(e, X)X e5) .

=1

From there, we define the scalar curvature as being the following function
peX"+— R(p) = tr(Ric(-,"))
= Z Ric(ej, €5).
j=1

In view of the punctual character of the tensors, we can ask that the referential

{e1, €9, ...,e,} be geodesic at a point p € X" and, at this point, obtain

VR(ey) = er(R)

= e (Z Ric(ei,ei)>

= > en(Riirey)

ij=1
n

= > (ViR e;).

,j=1

Using the anti-symmetry property of the curvature tensor and Bianchi’s second identity,

14



it follows that

VR(ey) = —Z (ViRiji, ej)

1,j=1
n

= > (ViRjiej) + ) (ViR ;)
i,j=1 (2]

,5=1 ,J

On the other hand, still at point p,

n

div (Ric)(ey) = Z((ViRiC)ek,€i>

= Y (ViRjui€;).

4,j=1

Therefore, we obtain the second contracted Bianchi identity given by
VR = 2div (Ric). (1.4)

With these tools, we are already in a position to glimpse Schur’s Lemma. How-
ever, before that, we need to introduce the concept of Einstein manifold. In this
context, we will say that the Riemannian manifold (X", g) is Finstein if it is Ricci
tensor satisfies

R
Ric = —g. (1.5)
n
So, for Einstein manifolds, we have

Ric = Eg = div (Ric) = lVR
n n

= %VR = lVR

n

With this, we have the following

Lemma 1.2.1 (Schur’s Lemma) If (X", g) is FEintein with n > 3, then M" has
constant scalar curvature.

15



1.3 Bochner Formula and Reilly Formula

This section is justified by the fact that, in the next section, we use the classi-
cal case to obtain extended versions of the Béchner and Reilly formulas for weighted

manifold.

Lemma 1.3.1 (B6chner formula) Let (¥",¢) be a Riemannian manifold and con-
sider u € C*(X). Then

1
§A|Vu|2 = Ric(Vu, Vu) + (Vu, V(Au)) + |[Vul?.

Proof. Take a point p € X" and consider a local orthonormal frame {ey, ..., e,} that
is geodetic in p. So, in p, we have to

%A|Vu|2 = %Z(V2|Vu|2)(ei,ei)
i=1

= Z ei(e; (Vu, Vu) )

=1

= Z e; (Ve,Vu, Vu)
=1

— Z (Ve,Ve.Vu, Vu) + i ViVul?
i=1 i=1

= ) (Ve V., Vu,Vu) + [VZul”.
i=1
Now, for X € X(X), we have to
Ric(X,Vu) = Z (R(ei, X)Vu,e;)

i=1
n

= Y (Ve VxVu—VxV.Vu— Vi, xVfe).

=1

However, at point p,

n

> (VxVeVu,e) = En:X (V. Vu, e;)
= ZX<VVu(ei),el->
= ;E(Au)
= (X, V(Au))

16



and, in addition,

(Ve,VxVu—Vi, xVu,e;) = ¢ (VxVu,e;) — (VVu(le;, X]), e:)
= e (VVu(X), &) — (VVu(e;), [e;, X])
= e (VVf(e:), X) = (VVf(e), e, X])

€ (Ve,Vu, X) — (V,,Vu, Vo, X — Vxe;)

= (V. V. Vu,X).

Therefore,

n

Ric(X,Vu) = Y (Ve Ve, Vu, X) — (X, V(Au))

i=1

and the result follows in the case where X = Vu. =

Remember that, under the assumption that 3" is a compact Riemannian manifold
with boundary, the boundary of ¥" is a (n — 1)-dimensional Riemannian manifold
0¥ 1. Looking at the inclusion map i : X" ' < X", we denote by v the unitary
normal outside X" along 0X" !, Ags, the second fundamental form of immersion i and
H the mean curvature of 9¥"~! with respect to v. With that in mind, we can integrate

on X" both sides of the Bochner formula and get the following

Lemma 1.3.2 (Reilly’s formula) In the notations above, if u € C*(%), then
/Z (Ric(Vu, Vu) — (Au)2 + ]V2u|2>dv9
=— /az (—2u, Au+ nHul + Aps(Vu, Vu)) dug,

where u, = (Vu,v).

1.4 Smooth Metric Measure Space

A smooth metric measure space (or weighted manifold) is a triple (X", g,e ' dv),
where " is a n-dimensional Riemannian manifold with metric g, dv is volume element
of 3™ with respect the metric g and f : ¥ — R is a smooth function. Weighted man-

ifolds arise naturally in the study of self-shrinkers, Ricci solitons, harmonic heat flows,

17



warped products and many other subjects. Its natural relevance in modern mathe-
matics can be viewed, for example, because the Ricci solitons play a very important
tool in the theory of Ricci low and warped product Einstein metrics have considerable
interest in the General Relativity (see [34]).

Given (X", g,e /dv) a compact weighted manifold, we can take classical differ-
ential operators in the same weighted sense. For example, we define the weighted

Laplacian (or “drift" Laplacian) of a smooth function u : ¥" — R by
Apu = Au— (Vf,Vu).

Furthermore, we introduce the (0, 2)-tensor

Vi®@Vu+Vux Vf

2, _ 72, _
Viu = V-u 5

With this, we have
tfrg(§2u) =Asu and e/ Lxg= 2V2u,

where £xg denotes the Lie derivative of the vector field X = e~/ Vu.
On the other hand, the f—divergence of a vector field X € X(X) is defined by

divy X = e/ div(e 7 X) = div X — (V [, X).
So, it’s easy to see that
Ayu = divy (Vu), Yu e C(%).

From a tensor point of view, we have the f—divergence of a (0,2)-tensor T' given by

the following (0, 1)-tensor
div; T = el div(e™/T) = divT — T(Vf, ),

where div is the usual divergence for tensors.
Using the properties of the classical differential operators introduced in section

and applying the divergence theorem, we obtain

/uAfvefdvg: —/ (Vu, Vu) efdvg—l—/ u@e’fdug,
b b o OV

where u, v : ¥ — R are smooth functions.

18



Moreover, we know that for every (0, 2)-tensor field 7', every function u € C*(X)

and every vector field X € (¥),
div (T(uX)) = u(divT, X) + u (VX,T) + T(Vu, X).
Thus,
(divT, X)e ' = —(T,VX) e/ + T(Vf,X)e +div (T(e7' X))
and, consequently,

/E (divT, X)e Tdv, = — /E (T,VX)e Tdv, + /E T(Vf,X)e dv,

—|—/ T(X,v)e Tdu,.
ox
Let {e',...,e"} be the coframe of {ey,...,e,} on X" and note that
(T,XQY) = T;{¢0ed,X®Y)
T X) (0Y)
= T(X,)Y),

for every X,Y € X(X), where the second equality follows of the universal property of
tensor product. Hence, making X = Vh, we get

Vf@Vu+Vu®Vf>

T(Vf,Vu) = <T, 5

and, with this,
/ (div T, Vu) e ' dv, = —/ <T, @2h> e ldo, +/ T(Vu,v)e ' dpu,. (1.6)
o o ox

As with operators, it is natural to extend some “objects” already existing in
Riemannian manifolds to the weighted context. Thus, we define the Bakry-Emery

Ricci tensor Ricy by
Ricy := Ric + V2 f.

Or, more generally, we define the f-tensor T} of a given (0, 2)-tensor 1" by the following

tensor
Ty =T+ V°f.
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With these new differential operators and by analogy to classic cases, there are
Bochner and Reilly type formulas to such manifolds. For example, using weighted
Laplacian A, we obtain the following generalization of Bochner’s formula for a function
ue C™(X)

%Af|Vu|2 = |V2u|® + Ricy(Vu, Vu) + (Vu, VA u). (1.7)

To see this, initially consider an arbitrary vector field X € X(X) and note that

%(X,V|Vu|2) = (VxVu, Vu)
= (VeuX + [X, V], Vu)
= Vu(X,Vu) — (X, Vv, Vu) + (X, Vu], Vu)
= [Vu, X]u + XVu(u) — (X, Ve, Vu) + (X, V], Vu)
= (X,V|Vu*) — (X, Vg, Vu).

Consequently,
1 2
§V|Vu| = Vv.Vu
and, with this
V2 f(Vu,Vu) = (Vy,Vf,Vu)

= Vu((Vf,Vu) = (Vf, Vv, Vu)
— (VU VIV, Vu)) — %Nf, V| Vul2).

Therefore, using the weighted Laplacian definition, it follows that

AV = JATuP — (V)
= Ric(Vu, Vu) + (Vu, V(Au)) + |[V*f|?
+V2f(Vu, Vu) — (Vu, V(V f, Vu))
= |V2ul* + Ricy(Vu, Vu) + (Vu, VA u).
Now, in possession of the Béchner type formula given above, we obtain the fol-
lowing

Lemma 1.4.1 (Reilly’s formula for weighted manifolds, [30]) Let (M",g,e /dv)
be a compact weighted manifold, possibly with nonempty boundary OM, and v € C® a
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function. Then
/ (Ricy(Vu, Vu) — (Apu)? + |V2ul?) e/ dv (1.8)
M

ou\ Ou ou
= — —_— —_— [ES— 7f
/aM [(Afu+Hfay) 5 <Vu,VaV>+AaM(Vu,Vu) e Tdu,

where Hy = H — (V f,v) and Appn are the f-mean curvature and second fundamental

form of OM in M with respect to v, the exterior unit normal vector, respectively.

1.5 Omori-Yau maximum principle

We started this section by evoking the Omori-Yau maximum principle for the
Laplacian. More precisely, the Omori-Yau mazimum principle is said to hold on a
Riemannian manifold (X", g) (not necessarily complete) if for any function u € C?(X)

with ©* = supy, u < 400, there exists a sequence {pj}jeN C X" with the properties
. N S 1 1
() ups) > " = = (i) [Vulpy)| < - and (i) Au(p,) < -,

for every j € N. Equivalently, for any function v € C*(X) with u, = infy, > —oco, there

exists a sequence {pj}jeN C X" with the properties
. r . 1 1
() ulp) <.+ = ) [Vulpy)| < = and (i) Au(p;) > .
for every j € N. In the case where the stronger statement
(ili)" Vu(p;) < Eg

concerning the Hessian is satisfied, we say that the Omori-Yau maximum principle for
the Hessian holds on ™.

With this terminology, the results given by Omori [33] and Yau [50] can be stated
as the following.
Lemma 1.5.1 (Omori [33] and Yau [50]) (i) The Omori-Yau mazimum princi-

ple for the Hessian holds on every complete Riemannian manifold with sectional
curvature bounded from below.

(i) The Omori-Yau mazimum principle for the Laplacian holds on every complete
Riemannian manifold with Ricci curvature bounded from below.
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There is a weaker version of the Omori-Yau maximum principle. Similarly, the
Omori- Yau maximum principle holds for the Laplacian A on X" if for any function
u € C%*(X) with u* = supgu < +00, there exists a sequence {pj}jey € X" with the
properties

i *—1 and (i1) Au(p; 1
(i) u(p;) > u ; d()A(pj)<j,

for every j € N. Equivalently, for any function v € C*(X) with u, = infy, > —oco, there

exists a sequence {pj}jeN C X" with the properties
. 1 . 1
(1) u(p;) < us + 7 and (ii) Au(p;) > T

for every j € N.
According to [6], a Riemannian manifold X" is said to be stochastically complete
if for some (and hence, for any) (z,t) € ¥ x (0, +00), the heat kernel p(x,y,t) of the

Laplace-Beltrami operator A satisfies the conservation property

/Ep(x,y,t)dy =1. (1.9)

From the probabilistic viewpoint, stochastic completeness is the property for a stochas-
tic process to have infinite (intrinsic) lifetime. For the Brownian motion on a manifold,
the conservation property means that the total probability of the particle being
found in the state space is constantly equal to 1.

Pigola, Rigoli and Setti [36] showed that X" is stochastically complete if, and
only if, the weak maximum principle holds for the Laplacian A on .

As the reader can see in our results from chapters 4 and 5, we also explore an
operator which, in a way, generalizes the Laplace-Beltrami operator. More precisely,
for an Riemannian manifold (X", g) and a positive semi-definite symmetric tensor 7" :

X(X") x X(X") — R, consider the operator
L(-) = try(T o V*(-)) = g(T, V?(")). (1.10)

Note that L is elliptic if, and only if, T is positive definite and, in the particular case
where T' = g, L is the Laplace-Beltrami operator A on (X", g).
With this, following the notation in [5], given a positive semi-definite symmetric

tensor T" in X" satisfying supy, tr,7" < +o00, the Omori-Yau mazimum principle is said
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to hold on X" for the operator L(-) = tr(T o V?(+)) if, for any function u € C*(X) with

u* = supy, < 400, there exists a sequence {pj}jeN C X" with the properties
- R 1 1
(i) u(p;) > " — = (ii) [Vu(p;)| < 7 and  (ili) Lu(p;) < =

for every j € N. Equivalently, for any function v € C*(X) with u, = infy, > —oco, there

exists a sequence {pj}jeN C X" with the properties
. . 1 1
() u(p) < e+, ) [Valpy) < and (i) Lu(p) > ——.

for every j € N.

We define the radial sectional curvature K¢ of " as being the infimum of the
sectional curvature of the 2-planes containing Vd, where d := d(o, -) : ¥ — R denotes
the distance function from a fixed reference point o € ¥". We notice this definition
is given only away from the cut locus of ¥" \ {o}. Furthermore, let G be a smooth
function on [0, 400) even at the origin, i.e., G#**1(0) = 0 for each k = 0,1, ..., and

satisfying the following conditions
(i) G(0) > 0;
(it) G(t)"'/* ¢ L' (+o00);

(iii) G'(t) >0 on [0, +o0);

N /
(iv) limsup,_, % < +00.

An example of this type of functions is given by

N
) 2
Gty =1]] (logm(t)> >,
j=1
where log!?) stands for the j-th iterated logarithm (see Remark 1.12 in [37]).

In this context, Alias, Impera and Rigoli showed the following:

Lemma 1.5.2 (Alias, Impera and Rigoli [5]) Let (X", g) be a complete, non-compact

Riemannian manifold whose radial sectional curvature satisfies
K4 > —G(d). (1.11)

Then the Omori- Yau maximum principle holds on X" for any semi-elliptic operator
L(-) = try(T o V*()) = g(T, V*(-)) with supy, tryT < +o0.
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1.6 Parabolicity

We also studied the case where X" is complete and non-compact. Thus, for some
results, we explored the concept of parabolicity. A Riemannian manifold 3" is said
to be parabolic if every subharmonic function on ¥" which is bounded from above is
constant, that is, Au > 0 and u* = supyu < +00 on X" implies that u = const., for
every u € C*(%).

Following the notation in [3], we can make use of ¢-divergence of vector fields

and consider on 3" the following operator
Lo(u) = divy <|Vu|_1g0(x, IVu)T(V, -)ﬁ), (1.12)

where # denotes the musical isomorphism, ¢ € C*°(X), T is a positive definite symmet-
ric (0, 2)-tensor field on ¥" and ¢ : ¥ x Ry — R satisfies ¢(+,t) € C°(X), for every
t € Ry, and p(p,-) € CO(RY) NCHRT), for every p € ¥". Similarly to the definition
of parabolicity already existing in the literature, we say that the ¥" is Lg4-parabolic if
the only solutions u : ¥™ — R of the inequality L4(u) > 0 which are bounded from
above are constant.

In [3], Alias, Lira and Rigoli studied conditions that guarantee the L4-parabolicity
for the operator Ly defined in . More precisely, they assumed that, for some
continuous functions £ and &, defined on Rj = [0, +0c0), the tensor T is positive

definite and satisfies the following bounds
0 < & (d) < T(X, X) < & (d), (1.13)

for every X € T, with |X| = 1, and for every p € 0Bg, where d = dists(p, 0) is the
geodesic distance in X" from some fixed origin o € X" and Br = Bg(0) is the geodesic
ball centered at o with radius R. In addition, they also assumed that ¢ satisfies the

following structure conditions:
(i) ¢(p,0) =0 for every p e X"
(ii) ¢(p,t) >0 on I x R¥; (1.14)
(iii) @(p,t) < A(p)t’ on X x RY,

for some § > 0 and A(p) € C°(X), with A(p) > 0. Furthermore, we must also have

infg—(d(p)) 1 _ 1
2 & (d(p) Alp)Ve

(1.15)
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for some Cy > 0.

Remark 1.6.1 Note that condition (ii) in (1.14) is just an ellipticity condition for the
operator L.

Now we highlight the result below which will be used to prove our next results.

Lemma 1.6.2 (Alias, Lira and Rigoli [3]) Let " a complete manifold, o € X" a
fized origin and d(p) = dists(p, 0). Let Ly be the operator defined in (1.12) with T and

¢ satisfying the assumptions (1.13)), (1.14) and (1.15]) above. Let £.(d) be defined in
i) 1

1
(faBt f+(d)€7‘p>

75 & L' (+00),

then X" is Lg-parabolic.
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Chapter 2

Spacelike submanifolds immersed in

spacetimes

The behavior of spacelike submanifolds immersed in Lorentzian manifolds is an
important object of study which has aroused a lot of interest in recent years, from
both the physical and mathematical points of view. Into this branch, the trapped
submanifolds appear as an important particular case. The concept of trapped sub-
manifolds, originally formulated by Penrose [35], is related to the causal orientation of
the mean curvature vector field of the submanifold, that is, a spacelike submanifold
of a spacetime is said to be trapped if its mean curvature vector field is timelike. On
the other hand, according to [39], it is possible to define a notion of r-mean curvature
for submanifolds immersed in spacetimes. In this sense, we generalized the concept of
trapped submanifolds to a wider class, considering the r-th mean curvature, since ﬁrﬂ
is a vector field when r is even. This new generalization justifies for many reasons, but
we emphasize two: we can obtain interesting mathematical uniqueness, generalizing
the already existing results for trapped submanifolds and, on the other hand we recall
Penrose’s paper on trapped surfaces [35] and its importance in Physics describing the
region around a singularity in spacetime, indeed his concept has been generalized for
higher dimensions of the ambient and the submanifold such as in the aforementioned
works. This is crucial since there are models for the universe with more dimensions,

moreover there are spacetimes modeling many other problems with multi-variables (di-



mensions) in Chemistry, Quantum Physics, Biology, Economics, populations behavior
and others. Motivated by this, we introduced the different concepts of r-trapped sub-
manifolds immersed in spacetimes. To do this, we begin section by exploring the
concept of causal orientation of a vector field in a Lorentzian manifold to define a
spacetime and, in view of the ambients studied in chapters [3] and [4] we provide two
important examples. In section [2.2] we define the r-th mean curvatures of spacelike
submanifolds immersed in spacetimes and, with this in mind, we introduce the concept

of r-trapped submanifolds. In addition, we define the differential operator L.

2.1 Spacetimes

In General Relativity, a model for the events space is given by a Lorentzian
manifold, which is a smooth manifold M™ equipped with a metric (-,-) of index 1
and dimension m > 2. As an example of the Lorentz manifold we can mention the

Minkowski space R]* given by the Euclidean space R™ equipped with the metric

m
(v, W)rm = —viw; + E VW,
=2

for all vectors v = {vy, ..., v, } and w = {wy, ..., w,, } tangent to RY". It is important to
note that for each point p in an arbitrary Lorentz manifold (M™, (-,-)), we can consider

an orthonormal basis {e;l,, ..., en|,} for T,M and obtain
(z,y) = —1y1 + Z%‘yi,
i=2

for every © = > xie; and y = > ye; in T,M. Thus, each tangent space of
a Lorentzian manifold is isometric to Minkowski space. Hence, one may say that
Lorentzian manifolds are locally modeled by Minkowski space, just as Riemannian
manifolds are locally modeled by Euclidean space.

Let (M™,(-,-)) be a Lorentz manifold and consider a vector field X in X(M). We
will say that X is

timelike if (X, X) <0
lightlike (or null) if (X,X) =0 with X(p) #0Vpe M™;
spacelike if (X,X) >0,
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where (X, X) is taken at each point p € M™. Now, for each p € M™, consider the set
TpM of all timelike vectors T,,M. For u € T,M,

TC(u) ={v e T,M; (u,v) <0}

is the timecone of T, M containing u. On the other hand, consider a function 7 : M —
X(M) that assigns to each point p € M™ a timecone 7(p) in T, M. If this function is
smooth, i.e., for each p € M™ there is a (smooth) vector field X on some neighborhood
U of p such that X (q) € 7(q) for each ¢ € U, then 7 is called a time-orientation of M.
With that in mind, we will say that a Lorentz manifold (M, (, )) is time-orientable if
there is a timelike vector field X € X(M). In this way, a spacetime is a time-oriented
Lorentz manifold.

With the definition of spacetimes and taking into account the results of chapter

4, we will highlight two examples of spacetimes:

Example 2.1.1 (Generalized Robertson-Walker - GRW) The generalized Rober-
tson- Walker GRW spacetime given by —I x, M"? as a Lorentzian manifold, that is,
the product manifold time-oriented I X, M™*?, where n > 2 is a natural number, p is a
non-negative integer, I is an open interval of R, endowed with the Lorentzian warped

metric
() =—m (d®) + (pomr)my ({5 ),

where 7, and 7; denote the canonical projections from I x M onto each factor, (, ),,
is the induced Riemannian metric on the fiber M™P and the positive smooth warping
function p : I — (0,400). Furthermore, we will choose on —I x, M"™P the time-

orientation given by the globally defined timelike unit vector field

9, = (8/dt),, ., (t,x) € —I x, M"™,

I(t,z)’

For every t € I, the slice M; = {t} x M C —I x, M"*? is an embedded spacelike
hypersurface, in the sense that the metric induced on M, is Riemannian. The restriction
of 0; to M, gives its future-directed Gauss map. So, it is easy to see that M, is a totally
umbilical hypersurface in —I x, M"*? with shape operator (with respect to the future-

directed Gauss map 0;) given by

p(t)
p(t

At/U = vvat == (%

for every tangent vector v € T{;,)M;, where V denote the Levi-Civita connection of
—1I x, M"P,
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Therefore, t € I — M, C —1I x, M"*? determines a foliation of —I x, M"*P by

totally umbilical spacelike hypersurfaces with future constant mean curvature given by

H(t) = —— g () = -0 (2.1)

Example 2.1.2 (Standard Static Spacetime - SSST) Let M be an (n+p+

1)-dimensional Lorentzian manifold endowed with a timelike Killing vector field K,
where n > 2 is a natural number and p is a non-negative integer. Suppose that the

distribution orthogonal to K, D, is of constant rank and integrable. We denote by

U M T — M the flow generated by K, where M"*! is an arbitrarily fixed

spacelike integral leaf of D labeled as t = 0, which we will assume to be connected,
and [ is the maximal interval of definition. In what follows, we will consider I = R.
In this setting, M can be regard as a standard static spacetime M x , R,

that is, the product manifold M"*? x R endowed with the warping metric
(o) =ma () = (pomu)ms (dt?) (2.2)

where 7, and 7r denote the canonical projections from M X R onto each factor, (-, )
is the induced Riemannian metric on the base M"*?, R; is the manifold R endowed

with the metric —dt? and the warping function p € C* given by

p=IK[= V- (K K),

where | - | denotes the norm of a timelike vector field on M™*P.

2.2 The r-trapped submanifolds

Let ¥ : X" — ™ be a connected and oriented spacelike submanifold im-
mersed in a spacetime Mmm, that is, the metric induced on " via v is a Riemannian
metric. As usual, we also denote by (-, -) the metric on X" induced via ¢. In this con-
text, let V and V denote the Levi-Civita connections in M and 3" respectively.

The Gauss formula of 3% in M " is given by
VxY =VxY —a(X,Y)

for every tangent vector fields X, Y € X(X). Here a : X(2) x X(X) — X(2)+, given
by a(X,Y) := —(VxY)*, denotes the vector valued second fundamental form of X"
With this, the mean curvature vector field H of the ¥" is defined by

L1
H=—t .
~tr(a)
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On the other hand, the Weingarten formula is given by
AcX = Vi€ —Vyé, VX € X(8) and € € XH(X),

where A, : X(X) — X(X) denotes the shape operator, with respect to the normal vector
field £ € X(X), defined by

(AcX,Y) = (a(X,Y),€), XY € X(%).

Furthermore, let {ey,...,e,} be a local orthonormal frame on X" r € {1,...,n}
and denoting a(e;, e;) by «y;, we define the r-th mean curvature by

-1

I 1.0 . L.
H?" - 7”' E 531 Jr a21]1> a12]2 e <air—1]r—l7 a/lr]r> )
r 7417 71/’7‘
]17"'7]'r
for r even, and
-1
= n i
P r . . . . . .
HT - 7”' E 5]1 Jr au]u am]z) e <Oé17‘72.77‘72’ al'rfl]7‘71> Qs
r 7/17 727“
]17"'7]'r

for r odd, where

giveir 0, if i =14 forsome k#1 orif {iy,...i} # {j1,...,Jr} as sets;

T sign of the permutation (iy,...,%.) — (J1, vy Jr)-

By convention, we put Hy = 1. Moreover, it is easy to show that
1 n
Hy, = n Z Qi
=1
- H
and, consequently, the definition of the r-th mean curvature generalizes the definition
of mean curvature vector field.

Remark 2.2.1 We have that 5;1:::;: are also known as generalized Kronecker symbols

and given by

) S

e 2 I
i ir (e

5j1 5j2 5jr
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If the codimension of ¥ is 1, is convenient to work with the real valued second
fundamental form b given by b(X,Y) = —(a(X,Y), N) and, consequently, the r-th
mean curvatures of odd order can be defined as a real valued (we replace the vector
field H, by the scalar —(H,, N)). In this case, choosing orthonormal frame {ey, ..., e, }

such that b(e;, e;) = k;d;;, we will have

H, = (-1) > ki ki,

r i1 <...<dr
for every r € {1,...,n}.
Let {e',...,e"} be the dual coframe of {ei,...,e,}, we define the r-th Newton
transformation T, of a by

E E (AR ) S . ( J
T 7”' 53]1 Jr a21j1>a1232> <alr'71]r717a17‘]r>6 ®€7

i,J ll) 7747‘
Jl)"‘?.]T

for r even, and

E E ti1..ir . S o o i J
7" 7" 6]]1 Jr all]wa%zh) <Oé7f7'72]7'727alr71]7'71>a7fr.7r e ®e )

,J 7’17 ﬂr
Jl?"'7]”‘

for r odd. By convention Ty = (-, -).
Lemma 2.2.2 For 0 < r < n even, we get that:

(1) tr(Ty) = k(r)H,;

(1) 35 Trlei ej)ales ¢5) = k(r)Hry,

n

where k(r) = (n —r) ( .

) 18 a constant.

Proof. It follows easily from the definitions of 7T} and H,., so we will omit it. m
Some of our results are on the case where the ambient space has constant sectional

curvature. Thus, the following Lemma is necessary.

Lemma 2.2.3 If M has constant sectional curvature, then div(7,) = 0.

Proof. For the proof of this result, we will follow reasoning analogous to proof of the
Lemma 2.1 in [26]. Since the ambient space has constant sectional curvature, it follows

from Codazzi’s equation and some straighforward calculation that
div(7T,) = — div(T}).
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Therefore div(7,) =0. =

With these mathematical objects, T, and H,., we define the different types of r-
trapped submanifolds. Given 0 < r < n even, we will say that a spacelike submanifold
Y X" — M s future (past) r-trapped submanifold if ﬁr—l—l is timelike and it is
future (past) pointing. If H,., is lightlike and it is future (past) pointing everywhere
on ¥ then the submanifold is said to be marginally future (past) r-trapped. If H,, is
causal or zero, such that it is future (past) pointing when it is causal, the submanifold
is said to be weakly future (past) r-trapped. Finally, the submanifold is said to be
r-minimal when I;TTH is identically zero.

We are interested in working with an operator which, in a way, generalizes the
Laplace-Beltrami operator. More precisely, for an arbitrary Riemannian manifold
(N", gn) and a positive semi-definite symmetric tensor 7" in N™, consider the oper-
ator L(+) = try, (T'o D*(-)) = gn (T, D*(+)), where D? denotes the Hessian in (N™, gy ).
Note that L is elliptic if and only if 7" is positive definite and, in the particular case
where T' = gy, L is the Laplace-Beltrami operator A, on (N", gy). In this sense,
turning our attention to the spacelike submanifold ", associated to each globally de-
fined Newton tensor 7, : X(¥) — X(X) with 0 < r < n even, we may consider the

second order differential operator L, : C*(X) — C*(X) given by

Lou = (Vu,T,)
= div(T,(Vu)) — (div T}, Vu).

Thus, L, generalizes the Laplace-Beltrame operator A on (X", (-,-)) in the sense that

Lo(-) = A(+), since Ty = (-,-). If, in addition, we assume that M"*! has constant
sectional curvature, lemma [2.2.3] provides
Lyu=div(T,(Vu)), forevery ue C*(%). (2.3)

Remark 2.2.4 [f the codimension of ¥ is 1, it is not necessary for 0 < r < n to be

even in the definition of the operator L, given above.
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Chapter 3

The Generalized Robertson-Walker

case

Recently, de Lima, Santos and Velasquez [43] obtained rigidity for trapped sub-
manifolds in Lorentzian spaces forms, they considered assumptions such as parallel
mean curvature and pseudo-umbilicity. Later, Alias, Canovas and Colares [I], consid-
ered codimension two trapped submanifolds immersed in generalized Robertson-Walker
spacetimes and obtained results of nonexistence and rigidity. Moreover, working in a
similar context, Alias, Impera and Rigoli [4], analyzed the problem of uniqueness for
space-like hypersurfaces with constant mean order curvature in generalized Robertson-
Walker spacetimes. Motivated by these works, we dedicate this chapter to the study of
spacelike submanifolds immersed in generalized Robertson-Walker (GRW) spacetimes.
More precisely, we obtained results of rigidity and non-existence for spacelike subman-
ifolds ¢ : ¥ — —I x, M"™P based on a causal orientation of the (r 4+ 1)-th mean
curvature ﬁr+17 with 0 < r < n even. We started by exploring the n-dimensional
r-trapped submanifolds contained in slices from the ambient space —I x, M"*1. With
this, we provide a condition for whether or not such a submanifold is r-trapped (see
equation [3.3). Right after that, we will calculate the action of the operator L, in the
function height h = w70 and in a primitive function o of the warping function p in the
search for a tool to help our results. With this tool in mind, we address some results

of non-existence and rigidity. Finally, we provide examples of r-trapped submanifolds.



It is important to note that the concepts of trapped and r-trapped submanifolds are
independent and that the second generalizes the first, since 0-trapped submanifolds

coincides with the trapped in the classic sense (see example |3.5.1))

3.1 The r-trapped spacelike submanifolds contained

in the slices

Following the notation in [I], let (M™*!,(-,),,;) be a Riemannian manifold and

consider a hypersurface ¢ : ¥* — M"™*! with induced metric
<.’ '>E = Qﬁ*( <.’ >M)
Now, for ¢y € I fixed, consider the immersion ¢y, : " — —1 x, M"™! given by

1o (p) = (to, 0(p)), p € 2.

Note that ¢y, is a spacelike immersion of X" into —I x; M™*! which is contained in

the slice My, = {to} x M™"! and induced metric

(odig = 0°(() (3.1)

= plto)* (-, )s s

where (-, -) is the Lorentzian metric of —I x, M™!.

Conversely, let us consider ¢ : 3" — —I x, M"! a spacelike immersion which
is contained in a slice M;, = {to} x M™"!. Then, it is not difficult to see that the
projection ¢ : 3" — M"™! given by the relation 1(p) = (to, ¢(p)) = ¢4, (p) yields an
immersed hypersurface, for every p € ¥".

Let N denote a (locally defined) unit normal vector field of the hypersurface
¢ : X" — M™ and note that

<N7N> = p<t0)2<N7N>E

then
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define a local orthonormal frame of vector fields normal along the immersion ¢,,, with

<77t0777t0> = 17 <nt07£t0> =0 and <£t0>€to> =-1

So, it is easy to see that the second fundamental form o, of the immersion ¢, can be

written as

(X, Y) = P(t(J)

where A : X(X) — X(X) is the shape operator of ¢ : ¥ —»

For a local orthonormal frame {E}, Es, ...,

A, ie.,

we define the r-mean curvature of the immersion ¢ : 3"

for r € {1,2,...,

{e1, €9, ...,

(Env <'7

Qg (6i7 ej)

(AX,Y), N —

Y), &0 VXY €X(D),

M™! with respect to N.

E,} on (X", (-, -)y) that diagonalizes

AEl = k’LEZ; for i = ]_,2, Ny

— M"*! by

-1

n}, and Hy = 1. Furthermore, by the relation (3.1]), we have that
en}, with e; = (1/p(t0))Ei fori=1,2,...,
4, ) and, with this,

n, is a local orthonormal frame on

ﬁ (Aeiej), N =L ((f(?)) (eir €3y, Eto

f(lT) (4B e5), N = f,<<:)>5”&

g Vo) N = 3t >
- (tlo) kb N — pé >) i,

Consequently, the mean curvature vector field FItO of the immersion ¢, is given

by

"oy ' (to)

M= 5t alto)

gto )

where H = H; is the mean curvature of the immersion ¢. Further,

HZ _ p/(tO)Q

- =
<Ht0’ Ht0> = p(t0>2

(3.3)
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and, for 0 < r <n odd,

r

H, = c(n,r, 8)p' (to) " *H,vs,
p(to)" “=

where ¢(n,, s) is a constant that depends only on n, r and s, and

M, if s 1s even;

&ty if s is odd.

Vg =

3.2 Key Lemma

Let M7 = T x » M be a generalized Robertson-Walker spacetime and

consider a spacelike submanifold ¢ : 3" — M7 We define the height function and

the angle functions of X" in M by h:=mro? : X" — R and 6, := (N}, 0;), where

N, 1 =1,...,p+ 1 denotes unit normal vector fields on ¥" with N; = N timelike. On

the other hand, from a simple calculation, we obtain

VWR = —(77@,&)&
- —3,5.

So, from the decomposition 0; = ((915)T + Zf;l €O, N;, where ¢, = —1 and ¢ = 1 in

other cases, it is easy to see that
Vh=—(8)".

Consequently, we have the following

Lemma 3.2.1 Let X" be a spacelike submanifold immersed in a GRW spacetime —I X,
M™P If0 <r <n is even, then

—

(1) Le(h) = =(p/(h)/p(h)k(r)Hy = (p'(h)/ p(h)) T (Vh, Vh) + k(r)(Hys1, 01);

(i1) Lyo(h) = k(r) (—p’(h)Hr + p(h)(ﬁr+1,8t)>, where o is a primitive of p.
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Proof. We already know that Vh = —(9;)" and d; = (9,)" + Zf’:ll €,0;N;. So,

Vzh(ei,ej) = <Veth,ej>
= <vei(_at—r)’6j>

p+l
= - <vei <3t - ZQ@M) ,€j>
=1

p+1
= - <7ei8t, 6j> + <vei (Z 6[@1Nl> ,6j>
=1
= — <V€i8t, 6j> + Z <Vei (el@lNl> ,6j>
=1
= — <V€i8t, 6j> + Z €l@l <V6iNl, 6j>
=1
= —(Ve,0,¢;) — 26191 (N, Ve,€5)
=1
p+1

= — (V0 e5) + Z (aleis e;), aOINI) .
=1

Since

oo ey =P oy P oy
<V€iat’63> - p(h) < (& J> + p(h) < Z:at>< ]?at>7
it follows that
e Nh(ene) — — ere) () e e+ EP o e
STV hene) = = D ene) (400 i) + 20 00 ()

—

—l—k(r) <Hr+1> at)
_ AW,y P e e S (es 0) e,
= ) k(r)H, () T, (Z( i, Op) uz< ey J)

i J

(
_ Py PR
= k(r)H, D T, (Vh, Vh)

+h(r)(Hys1, 0r).
Finally, to show item (ii), note that

VE(f o h)(X,Y) = f"(h)(Vh, X)(Vh,Y) + f'(h)V*h(X,Y),
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for any smooth function f: R — R, where X is a vector field along ™. Therefore,

Li(foh) = (VX(foh),T,)
= ZTr(eu e;) " (h)(Vh, e} (Vh,e;) + Z f/()V2h(ei, ¢;)T:(ei, €5)

= [U(WT,(Vh.Vh) + [ ()L, (h)

The result appears replacing L.h found in item (i) in the above equation and making

f=0. nm

3.3 Some nonexistence results

This section is devoted to establish nonexistence results concerning spacelike sub-

manifolds in a GRW spacetime.

Closed Case

Initially, take a GRW spacetime M = X, M™*P with constant sectional

curvature and consider a closed spacelike submanifold ¢ : ¥* — —I x, M. Note

that, for item (i) in Lemma [3.2.1]
div(T,(Vo(h)) = Lyo(h) = k(r) (—p'(mm + p(R)(H, 41, at>) .

Integrating both sides of the previous equation on X" and applying Stokes theorem,
we obtain the following integral identity
/ p'(h)H,d% = / p(h)(H, 1, 0,)dS, (3.4)
b b

where dX is the volume element of ¥". With this we are able to enunciate and prove

our first nonexistence result as it follows.

Proposition 3.3.1 For 0 < r < n even, there exist no closed submanifold r-minimal
immersed in a GRW spacetime with constant seccional curvature such that p'(h) > 0
and H, > 0.

Lemma is a key part of our results. We will use items (i) and (ii) of it to

obtain auxiliary Lemmas that will be used in the proof of our main results.
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Lemma 3.3.2 Let —I x, M"*? be a GRW spacetime and let ¢ : X" — —I x, M"*P
be a closed spacelike submanifold such that T, > 0 and H, > 0, for some 0 < r <mn

even. Then

H
(i) m21n< ];H : (9t> < —H(h") where h* = maxy h;

T

T

i
(1) mzax< I;+1’at> > —H(h.) where h, = miny, h.

Proof. Since ¢’ = p > 0, the function o(h) is increasing and attains the maximum at

the same point of h. So, the item (ii) of Lemma and the fact that 7, > 0 provide

)

0> (T, V2o(h")) = k(r) (= (") H, + p(h") (Frs1, 0)

at the maximum point. Since H, > 0, it follows that

: ﬁT-i-l ﬁr+1
<
m21n< q ,3t>_< 7 78t>

The proof of (ii) is similar, working at the minimum point. =

Py ags
< 20 = M),

h*

By items (i) and (ii) of Lemma [3.3.2| above, we have that the sign of (ﬁ;:l ,0p) 1s

related to the sign of —H in h*, h, € I and, within our proposal, this can be translated

into the results below.

Theorem 3.3.3 Let —1 x, M"™? be a GRW spacetime and 0 < r < n even.

(1) If H(t) > 0, there exist no closed weakly past r—trapped submanifold in —1I x,
M™P such that T, > 0 and H, > 0.

(1t) If H(t) <0, there exist no closed weakly future r—trapped submanifold in —1I %,
M™P such that T, > 0 and H, > 0.

Proof. For item (i), just note that for any weakly past r-trapped submanifold 3 in
—1I x, M™*? such that 7, > 0 and H, > 0

i,
H(h") < —min <T“,at> < 0.

Item (ii) follows similarly. m
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Noncompact case

A spacelike submanifold ¢ : ¥ — —I x, M™*? is called bounded away from the

future infinity at height t* € I if
Y(X) C {(t,x) € =1 x, M™*P; t <t}

Similarly, we say that a spacelike submanifold ) : ¥ — —I x, M"*? is bounded away

from the past infinity at height t, € I if
W(E) C {(t,x) € =1 x, M"*P; t > t,}.

In this sense, X" is said to be bounded away from the infinity of —I x, M™*P if it is
bounded away from the past and future infinity.

Lemma 3.3.4 Let —I x, M"*? be a GRW spacetime and let 1 : " — —1 X, M"™*? be

a stochastically complete spacelike submanifold bounded away from the future infinity.
Moreover, for some 0 < r < n even, suppose that L, < A and H,. > a > 0, where
and a are positive constants. Then

1r21f< H+1,(9t> < —H(h")

T

where h* = supy, h.

Proof. Applying the weak maximum principle to the function u = o (h), which satisfies
u* = supyu = o(h*). By hypothesis, we have that u* < +o0c0 because ¥" is bounded
away from the future infinity. So, there exists a sequence of points {p; }j oy 10 X" such
that

. L, 1 .. 1

(i) u(p;) > u ~3 and (i) Au(p;) < G

By Lemma item (ii), follows that

B B
oM
> ﬁ[’ru(p])

= =0 (h(p;)) Hy(py) + p(h(p;)) (Hry1, 0) (p))-

Therefore,

n21f< Hjl,at> < <Tj,at><pj>

1 R A
< ) (p (hles)) + HT<pj>k:<r>j) '
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Making 7 — +o00, we have get

inf <H’““,at> < —H(h").

H,
Here, we use the fact that lim; . h(p;) = h* because ¢ is strictly increasing. m

We recall that a GRW spacetime M = —1 X, M"*? is called spatially expanding
if p/(t) > 0. Analogously, M = —1I x, M"™'? is called spatially contracting if p'(t) < 0.
Analogously to the case of closed submanifolds, we have the following nonexistence

result for stochastically complete submanifolds.

Theorem 3.3.5 Let M = —1I X, M™P be a spatially expanding GRW spacetime and
0 < r < n even. Then there exist no stochastically complete weakly past r—trapped
submanifold in —I x, M"™P bounded away from future infinity such that L, < BA and

H,. > a >0, where 8 and a are positive constants.

Proof. Just note that for any weakly past r-trapped submanifold X" in —1 x, M"P
such that H, > 0

171
H(h*) < —inf< ;1,@> <0.

x r

In view of Lemma [1.5.2) we have that the condition ([1.11)) implies the principle
of maximum for the operator L(-) = try(T'o V*(:)) = g(T, V*(+)), where T is a positive

semi-definite symmetric tensor with supy, tr,7" < +o0.

Lemma 3.3.6 Let —Ix,M"*? be a GRW spacetime and let : ¥ — —Ix,M"*? be a

complete, non-compact spacelike submanifold whose radial sectional curvature satisfies
K4 > —G(d). (3.5)

Moreover, for some 0 < r < n even, suppose that supy trT, < +oo, T, > 0 and

H, > a >0, for some constant a.

(i) Assume that X" is bounded away from the future infinity. Then

1121f< H“,at> < —H(h")

T

where h* = supy, h;
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(11) Assume that X" is bounded away from the past infinity. Then

sup <HI;+1 ) at> Z _H(h*>

b T

where h, = infx h.

Proof. Initially, by the Corollary 3.3 in [5], we have that the Omori-Yau maximum
principle holds on X" for positive semi-definite operator L,(-) = (T, V*(+)). We start
by applying the maximum principle to the function u = o(h), which satisfies u* =
supy, u = o(h*) and u, = infy, u = o(h.), since 0’ = p > 0 (i.e., o is strictly increasing).
For item (i), we have that u* < +oo. So, there exists a sequence of points {p;}, .y in

>" such that
. . 1 1 .. 1
(i) ulp;) > u* — 7 (ii) [Vu(p;)| < i’ (iii) Lyu(py) < 7

By Lemma item (ii), it follows

1 1
R R )

= —p'(h(p;)) Hy(p;) + p(h(p;) (Hyo11,05) (p;).

Therefore,

1%f< H—:lvat> < < H;Llaat>(pj>
1

/ ) 1 r)i
< m(wpﬂm K >j).

Making j — +o00, we have

x r

1nf<7+1,8t> < —H(h").

Here, we use the fact that lim; . h(p;) = h* because ¢ is strictly increasing.

The proof of (ii) is similar. m

Using Lemma |3.3.6| above, we obtain the nonexistence of weakly future r-trapped
complete bounded away from the infinity past in a spatially expanding GRW spacetime

whenever the radial curvature has a control from below.
Theorem 3.3.7 Let —I x, M"™*? be a GRW spacetime and 0 < r < n even.
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(i) Let t* € I and assume that H(t) > 0 for t < t*. Then there exist no weakly
past r-trapped complete, non-compact spacelike submanifold bounded away from
the future infinity at height t* immersed into —I x , M"™*? satisfying the condition
(13.5) and such that T, > 0, supy, trT, < 400 and H, > a > 0, for some constant
a.

(11) Let t, € I and assume that H(t) < 0 for t > t.. Then there exist no weakly
future r-trapped complete, non-compact spacelike submanifold bounded away from
the past infinity at height t. immersed into —I x, M"™P satisfying the condition
(13.5) and such that T, > 0, supy, trT, < 400 and H, > a > 0, for some constant
a.

Proof. Just note that, for any weakly past r-trapped submanifold ",

—

inf(H,1,0,) > 0

and, consequently, the item (i) of Lemma provides

r

./ H,
H(h) < —inf <T“,at> <0.

3.4 Some Rigidity Results

In this section we impose conditions for a spacelike submanifold to be contained

in a tg-slice of GRW spacetime.

Closed case

Theorem 3.4.1 Let —1 x, M™*? be a GRW spacetime such that (log p)” <0, and let
Y X" — —I x, M"P be a closed spacelike submanifold. If for some 0 < r < n even,
T, >0 and H, > 0, then
: ﬁrﬂ * ﬁrﬂ
— < — < — < —_—
m21n< A ,8t> < —H(h*) < —H(h,) < mzax< A ,8t>. (3.6)
Consequently, if (ﬁgl,fm is constant and T, > 0, then (X)) is contained in a slice
{to} x M"* P for some tq € I.

Proof. From Lemma [3.3.2
m1n<T+178t> < —H(h)

b r
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and

H,
_H<h*) S m§X< H+1 , at> .

T

The inequality (3.6)) follows, since —H(h*) < —H(h.) because (log p)” < 0.

HT'+1
H:

/i i i
%P<7f*@>:<7£%@>:“%X<7fa@>

i, * i,
() < oy = (o).

Thus, —H(h) = p'(h)/p(h) is constant and

p0) [ Ho
MM‘<Hu@>

Now, assuming that ( ,0y) is constant, we have

and, with this,

Consequently,
Lyo(h) = k(r)(—p/(R)H, + p(h)(H,1,,)) = 0 on "

Since T, is positive defined we have that L, is an elliptic operator defined in
the closed Riemannian X", hence o(h) is constant on X", and since ¢ is an increasing
function this means that h is itself constant on 3. Hence, ¢)(X) is contained in a slice
{to} x M, for some to € I. m

We point out that the above result is an extension of Theorem 5.1 of [2] for
submanifolds, when r is even.

Paying our attention to the component of the vector field ﬁﬂrl which is orthogonal

to 0;, we obtain the following version of Theorem [3.4.1]

Theorem 3.4.2 Let —I x, M"*? be a GRW spacetime such that (log p)” < 0 and, for
some 0 <1 <n even, let ¢ : X" — —1 X, M™ P be a closed marginally future r-trapped
submanifold. If T, > 0 and H, > 0, then

. |ﬁ7(‘]+1‘ * |ﬁ7(‘]+1‘
— < < < R
min A H(he) < H(RT) < max A (3.7)

where FISH stands for the spacelike component of the lightlike vector field FITH which 1s

70
orthogonal to 0;. Consequently, if% is constant and T, > 0, then (%) is contained

in a slice {to} x M"*P.

44



Proof. By hypothesis, we can decompose ﬁrﬂ as
H, = H7[~)+1 - <Hr+1>8t>8t

and, with this, we get

I——_ir—f—l ﬁr-i—l 2 L= 2
< o H > H2| 10| E?(Hrﬂaaﬁ :
FIT+1 | +1’
0> o, ) =

because »" is marginally future r-trapped. So, it follows from Lemma that

. ’ +1| ﬁr—i—l
— <
min —=— 8 max { — ,0p ) < H(hy),

T

Consequently,

* . ﬁ?"+1 | +1|
< - -
H(h") < mzm< A ,8t> max

Inequality (3.7)) follows from the fact that (logp)” < 0, that is, H(t) is non-decreasing
and H(h,) < H(h*).

| r+1|

Now, suppose that is constant. Thus, since H(t) is non-decreasing, H(t) =

‘HI’%I’ = const. on [hy, h*], i.e.,
Pl(h) | +1‘ ﬁ'f—i—l
— =H(h —( ——,0 ",
p(h> H( ) Hr Hr ) Ut on
Therefore,

Lyo(h) = k(r)(=p'(h)H, + p(h)(H,+1,0:)) = 0 on X"
The result follows since L, is an elliptic operator and ¢ is an increasing function because
T.>0and o' =p>0. m
We emphasize the previous result generalizes Theorem 5.5 of [I] for r-mean cur-
vature and that p > 1.
Corollary 3.4.3 Let —I x, M"*? be a GRW spacetime such that (log p)” <0, and let

P X" — —I X, M™? be a closed marginally r-trapped spacelike submanifold, for some
0 <r <n even. Moreover, suppose that T, > 0 and H, > 0.

(i) If H(t) > 0, then X" is marginally future r-trapped and

| 7(“)+1| * |H79+1
min < H(hs) < H(R") < max 7



(11) If H(t) <0, then X" is marginally past r-trapped and

|HY | |H, +1|
L ) < — <
min — < H(h) < —H(hs) < max :

Proof. Assuming #H(¢) > 0 and using Theorem we obtain that then X" is
necessarily marginally future r-trapped. To conclude the demonstration of item (i),

just apply the Theorem and obtain

I_jo
min | Hrp < H(hy) < H(R") < max | }}H

Noncompact case

We will need the warping function of the ambient space to satisfy some additional
restriction. More precisely, let us suppose that —1 x ,M"™*? is a proper GRW spacetime,
which is when the warping function p satisfies p/(¢) = 0 only at isolated points of I.
Theorem 3.4.4 Let —1 x, M"™*? be a GRW spacetime with (logp)” < 0 and let
Y X" — —1I x, M"™P be a complete, non-compact spacelike submanifold whose ra-
dial sectional curvature satisfies the condition (3.5)). Moreover, for some 0 < r < n

even, suppose that X" is marginally future r-trapped, bounded away from the infinity,
supy, tr'l,. < +o00, T, > 0 and H, > a > 0, for some constant a. Then

inf <H;1,at> < —H(h*) < —H(h,) < sup <HI_}“,at> . (3.8)

x T by T

Consequently, if (= Hr i ,0y) is constant and (logp)” = 0 only at isolated points, then
(X)) is contained in a slice {to} x M™*P, for some ty € I.

Proof. The inequality (3.8) follows from Lemma“because (log p)” <0, that is, H

is non-decreasing. Now, assuming that (=7+ A ,0) is constant, we have

H(he) =H(Rh") = <H£I+1,8t> = const.

Since that (logp)”(t) = 0 holds only at isolated points of [ it implies that H(t) is

strictly increasing on I, henceforth we have h, = h* and h is constant on >". m

Remark 3.4.5 We can also obtain an analogous of the above theorem for the marginally
past r-trapped case. On the other hand, since ](HTH,&)\ = |H +1| for the marginally
r-trapped case, this theorem holds if we replace <Hr+1, Oy) for length of spacelike com-

ponent —|H0,,.
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As in Corollary [3.4.3] we can use the Theorem and previous remark to get

the following result.

Corollary 3.4.6 Let —I x, M"™ be a GRW spacetime with (logp)” < 0 and let
Y X" — —1 X, M"™P be a complete, non-compact spacelike submanifold whose radial
sectional curvature satisfies the condition . Moreover, for some 0 < r < n even,
suppose that X" is marginally r-trapped, bounded away from the infinity, sups, trl, <
400, T, > 0 and H, > a > 0, for some constant a.

(i) If H(t) > 0, then X" is marginally future r-trapped and

| +1| * ‘ 7"+1|
<H <H <
H (h.) (") SUP H

T T

(i1) If H(t) <0, then X" is marginally past r-trapped and

| +1| H(h*) < H(h ) < sup |ﬁ79+1
E Hr by Hr

Now, we recall that a Riemannian manifold " is said to be parabolic if every
subharmonic function on ¥" which is bounded from above is constant, that is, Au > 0
and u* = supy, u < 400 on X" implies that u = constant.

Theorem 3.4.7 Let —Ix,M" P be a GRW spacetime and let 1) : X" — —I x ,M"™ P be
a complete parabolic spacelike submanifold which bounded away from the future infinity.

Suppose that, for some 0 < r < n even, X" is weakly past r-trapped, H, > 0 and
L, < BA, for some positive constant 3. If

¢ (h)
2 H, <|H, 3.9
where | | = +/[(, )|, then ¥(X) is contained in the slice {to} x M™, for some ty € I.

Proof. Initially, note that for any weakly past r-trapped submanifold >" one has
(H,.1,0;) > 0 on ¥". On the other hand, the Lemma item (ii) provides

Ao(h) > Lel@h) - km)o(h) (_ a0

5 6 p(h)
> k(r)o(h) (—’; ffj)) i+ |ﬁm|)

> 0.

Therefore the function o(h) is subharmonic and, since the X" is parabolic and
o(h) is bounded from above, it should be constant, that is, ¢)(X) is contained in a slice.
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Remark 3.4.8 From equation (2.1), we have that the condition (3.9)) above establishes
a comparison between the mean curvature of the slice at height h and the mean curva-
tures of high order H, and FITH.

In the following, we enunciate an auxiliary Lemma due to Caminha [I1].

Lemma 3.4.9 (Caminha, A. [11]) Let X be a vector field on X", such that div X
does not change sign on X", If | X| € LY(X), then div X wvanishes identically on ¥

Theorem 3.4.10 Let —I x, M™? be a proper GRW spacetime warped product and
constant sectional curvature. Let ¢ : X" — —I x, M™7P be a spacelike submanifold
bounded away from the infinity and, for some 0 < r < n even, suppose that X" is weakly
past r-trapped, the second fundamental form a is bounded. Suppose that |Vh| € L1(X)

and

¢/ (h) ﬂ
H, < |H, .4,
p(h) — | +1‘
where | | =+/|(, )|. Then either (%) is contained in a slice {to} x M™*P, for some

toe I, or H. =0 and X" is r-minimal.

Proof. First note that if %HT < ]ﬁr+1|, we have

p'(h)
p(h)
)

(

div(T.Vo(h)) = L,o(h)
Hr + <ﬁr+1a at>)

= ko) (-
p'(h

> k(r)p(h) (_p—h)H’“ + !FITHI)

> 0.

On the other hand, since £" is bounded away from the infinity of —1 x, M"*?

and « is bounded, there exists a positive constant C' such that
T:.(Va(h))| < C|VA]|.

Consequently, the hypothesis |VA| € £1(X) implies that |T,.(Va(h))| € L1(X).
So, we can apply Lemma to assure that L,o(h) = div(7,Vo(h)) = 0 on X"
With this,
/ h R / h . . .
p< )Hr = <Hr+1aat>7 %Hr = |H7‘+1| and HT+1 = _|H7‘+1|8t‘

Therefore, if Ij]r+1 is nonzero, it follows that

= P
H’r—}—l - p(h) Hrat
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and 0; is orthogonal to X".

However, if H,, is identically zero, we have that (p'(h)/p(h))H, = 0. Thus, if
p'(h) = 0, we have that the height function h is constant, because —I x, M"*? is a
proper GRW spacetime. In both cases above, the submanifold ¥" is contained in a
slice {to} x M™P. On the other hand, if p’(h) # 0, then H, =0. =
Remark 3.4.11 Since |(H,,1,0,)| > |H +1| for the weakly r-trapped case, that is, the

timelike component of H,,1 is not less than the spacelike component in that case. We
have that Theorems |3 4. 7| and|3 4. 10| hold if we replace |H,,| for |H +1|

3.5 Examples of r-trapped submanifolds

Example 3.5.1 Let X2 be an immersed hypersurface into a Riemannian manifold M*
and, for each ¢ € I fixed, consider the inclusion ¢, : ¥* — —I x, M*. It follows from

equation (3.2)) that

- 3
Hs = ( 3 ) Z 5;322 Qy 6117611) at<6i27€j2)> at(ei37€j3>

! i1,i9,i3
J1,J2,J3

= 32, ((at(el, e1), ai(ea, e2)) as(es, e3) + {ay(er, e1), ay(es, e3)) ay(es, es)

+ (o (ea, €3), au(es, €3)) au(eq, 61)>
i PN 1 @)
- 3<[p<t>2‘“’” p<t>)](p<t>2k3N p<t>&)

: G~ %)

:W p(t)) _
| et (5 ) G = 50%) >
= é <%k1k2k3]\7 — ';/8)) (k1ko + k1ks + koks) &
_<5;g)2>2(k3+k2+k1)N+3 ; )
< (2w ()’
= e~ s o (5
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5
Note that we can rewrite Hs as

Consequently,

5 - Hs — p()*HN®  (p(OH2 = (1)
S R
t p(t) p(t)
Now, assuming that X3 = §? x R and M* = R* endowed with standard metric,
we obtain that k; = ks = 1 and k3 = 0. Therefore

s oa (200 (1P SR
s, Hs)e = (_§2f(7)3) - <§f(7)3 N f(T)B)
_ gpp%ﬁ (—9r(t)" + 100 1)? ~ 1),

because

1 2
H?,:O, ngg and leg

Here, we have that ¢, : 3% — —I x,R* is 2-trapped if and only if 0 < p/(¢)* < 1/9
or p/(t)* > 1. On the other hand, by the equation (3.3)), we have that ¢; is trapped if,
and only if, |p/(¢)| > 2/3. More precisely,

if 0<|p'(t) <1/3, ¢ is 2-trapped but not trapped;

if 1/3 < |p'(t)| < 2/3, ¢ is neither 2-trapped nor trapped;
if 2/3 < |p'(t)| <1, ¢ is trapped but not 2-trapped;

if |p/(t)| > 1, ¢, is 2-trapped and trapped.

With an analogous analysis when |p/(t)| € {0,1/3,2/3,1} we can also observe
that the concepts of marginally 2-trapped and marginally trapped are distinct.

Example 3.5.2 Let M™! be a Riemannian manifold and consider a totally geodesic
hypersurface X" — M"™*1. With this, for each ¢ € R fixed, we have that 3; = {t} x
Y is a spacelike submanifold of codimension two immersed into the GRW spacetime

—R x, M™*. Then, we have that the second fundamental form a; of ¥; is given by

an(X,v) = 20 Y), 0. (3.10)

Therefore, for 0 < r < n even,




where C' is a positive constant. Immediately, we have that X" is r-trapped whenever
p'(t) # 0.

As a particular case of the general situation described above, we will consider the
de Sitter spacetime given by —R X o S™. Let 3 be the totally geodesic equator of S™
and ¥; = {t} x X. From , the shape operator of ¥; is given by

Then ¥; is r-trapped for any ¢ # 0 and 0 < r < n even.

Example 3.5.3 In this work we introduce the notion of r-trapped submanifolds. How-
ever, we only deal with cases in which the ambient space is a GRW spacetime. In this
sense, let us provide an example that use this concept to other ambient spaces.

In the same way as in [34], consider the Schwarzschild-Tangherlini spacetime, see
[47], the space R x Ry x S" with the metric

—((s)dt* + ((s)tds* + s%gsn,

where ((s) = (1 — u/s"") is the Schwarzschild-Tangherlini function, u is a positive

constant given by

167 M
n= )
nw,

where w,, = |S"| is the measure of the unit n-sphere. In this case M is representing
the mass of the model and s is the coordinate of R,. This metric degenerates when
s"1 = p. However, we separate the cases s"~! < p as inside the Black Hole and
s"~1 > 11 as outside the Black Hole or the outer Schwarzschild-Tangherlini space which
is asymptotic to the Lorentz-Minkowski L"*2.

The spheres with t = ¢y and s = cte appear in two types: the inner spheres

n—1 n—1

if s < p and outer spheres if s > p. They are compact submanifolds with
codimension two and they are also totally umbilical with the second fundamental form

given by
-1
a(VﬂLV)::-—ﬁﬁzgﬁ——2<¥CVV>8&

This fact comes from a direct computation considering Proposition 7.35 of [34]. Since
the vector 0y is timelike inside the black hole, the inner spheres are past r-trapped for

any 0 <r < n even.
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Chapter 4

The Standard Static Spacetime case

In [22] the authors studied trapped spacelike submanifolds immersed in standard
static spacetimes and established sufficient conditions to guarantee that such a spacelike
submanifold must be a hypersurface of the Riemannian base of the ambient spacetime
and, particularly, they showed that there do not exist n-dimensional compact (without
boundary) trapped submanifolds immersed in an (n + 2)-dimensional standard static
spacetime which is a classical result due to Mars and Senovilla [31] (see also [45]). In this
context, the idea here is to study the spacelike submanifolds immersed in a standard
static spacetime. In this way, we restrict ourselves to the spacelike submanifolds ) :
¥ — M x,R; and obtain results of rigidity and nonexistence under the hypothesis
of causal orientation for the (r + 1)-th mean curvature H,.,, with 0 < r < n even.
At first, we calculate L,(h) and, in addition, we provide a result that guarantees,
under some hypotheses, the Omori-Yau maximum principle for the Laplacian (see
Lemma [1.1.2). In section [4.2] we discuss some results of nonexistence and rigidity
for r-trapped, as well marginally and weakly r-trapped, submanifolds immersed in a
standard static spacetime M"P x ,R;. In the next section, we explore the definition of
weighted divergence (or, more preciselly, of ¢-divergence for some smooth function ¢
on ¥") and, under the hypothesis of constant sectional curvature of the ambient space
M™P %, Ry, we use the differential operator L, , (see equation (4.4 and continue to
obtain results of non-existence and rigidity. In section we follow the same idea as

in the previous section, but this time making use of the principle of maximum for both



Laplacian and differential operator L,. And, likewise, we end the chapter by providing

examples of r-trapped submanifolds.

4.1 Key Lemmas

Along this chapter, we will consider a connected and oriented spacelike sub-
manifold ¢ : X" — M7 immersed in a standard static spacetime M =
M™*P %, Ry, that is, the metric induced on X" via ¢ is a Riemannian metric. As
usual, we also denote by (-,-) the metric on X" induced via 1. Since K is a globally
defined timelike vector field on Mmrpﬂ, it follows that there exists a unitary timelike
normal vector field N globally defined on ™ which is in the same time-orientation of
K (one can define N as the unitary direction of K minus its projection on ¥"). We will
also consider smooth functions on 9 : X" — M’Hpﬂ, namely, the (vertical) height
function h = 7g 0 ¢ and the angle functions ©;, = (N;, K), where N;, [ =1,...,p+1
denotes unit normal vector fields on X" with N; = N.

From the decomposition K = KT + Zf;l €0y, it is easy to see that

p+1 2 2
=1 €697 —p

Vh = —%KT and |Vh|* = pr : (4.1)
where €¢; = —1 and ¢, = 1 in other cases.
Lemma 4.1.1 Let " be a spacelike submanifold immersed in a manifold M =
R x, M™P_ If0 <r <n is even, then
Lo(R) = —2T,(V In(p), VR) + —k(r) {1, K). (4.2

2
Proof. Once p = y/— (K, K), we have that Vp? = 2 (vKK)T. Next, for a local

ortonormal frame {ey,...,e,} on X"

VZh(ei,ej) = <7€th, €j>

- (5. (b))

= e (H) e} - (5) (TukT 6.

p p
On the other hand,



and

p+1
<veiKT,ej> = <vei (K - 26191N1> ,6j>

=1
p+1
= <veiK7 €j> - <7ei (Z El@lNl> ,6j>
=1
= <VeiK, €j> — Z <V€i (El@lNl) 7€j>
=1
= <VeiK, ej> — Z €0, <V€iNl, ej>
=1
p+1

= <veiK, €j> + Z €0, <Nl>v€i€j>
=1
p+1

- <VeiK, €j> - Z (alei, ef), 101Ny .

Since
ZTr(ei, e;) <VKK, ei> (K,ej) = T, (Z <VKK, ei> €, Z (K, ej) e]-)

i 7 7

= T, (VkK)",K")
1

= —éTr(Vp2, ,02Vh>

= —p’T.(Vp,Vh),

we get
92 1 p+1
S Ty(en e)VPhiese)) = —;Tr(Vp, Vh) 3 (Z k(r) (HT+1,@IN1)>
ij =1

= —2T.(Vn(p), Vh) + %k(r) (Hy1, K)

Here we use the fact that
ZTT(ei, e;) <VeiK, ej> =0,
ij
since 7). is a symmetric tensor and K is Killing vector field. m
Now, taking into account the local orthonormal frame { Ny, Na, ..., N,41} for the
X+(X) with N,y = N, we will denote by A and, for i = 1,2, ..., p, A® the components

of the second fundamental form a of " with respect to N and N;, respectively. Thus,
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we can rewrite the second fundamental form « as the following

a(X,Y) = i(A“)X, Y)N; + (AX,Y)N (4.3)

and obtain the decomposition below for the mean curvature vector field

p
H=Y HYN;— H"N,

i=1
where H® = (H,N;) and HY = (H, N). With this we can generalize lemma 2 in [22]

for higher codimension, as we see in the following

Lemma 4.1.2 Let WH)H

mannian base M"™P has nonnegative curvature Ky; and convex warping function p.
- ;nt+pt+l
Let v : X" — M

= M"™? x,Ry be a standard static spacetime whose Rie-

be a spacelike submanifold. Then

nHN H(k) 2 2H2
Rie(X, X) > ‘AX+TX BT x| el | |

2 p

-2

k=1

AR x —

X%,

where € stands for the sign of (H, H).
Proof. For every vector field Y tangent to Mﬂﬂ)H, we can write
Y =Y"+Y",

where Y* and Y+ are the orthogonal projection of Y onto TM and TR;, respectively.

Consequently,
VK)o (V)

(K,EK)"
Thus, we can take vector fields U,V and W tangent to M

Y+ = K.

it and, with a straight-

forward computation, we get

R{UVW = R (U* 0 K>K V*— MK) (W* <W;K> K)

- F(U*,V*)Wp*— m;f()ﬁ(z]p* VK — (vme(U K)W*
B om0k - C R v
+ G KLQW’ K>E(K, VHK

= Ry (U VYW* — <WP’QK>T%(U*,V*)K— <V’p2K>}_%(U*,K)W*
_ <U;2K YR VW + <V[24K> WV, KYR(U*, K)K
— <Wp’4K ) (U, K\R(V*, K)K



By Proposition 7.42 and Lemma 7.34 of [34], follows that

RU*, VK =0,

— _ D2 * *
B VW* = —R(K, Uyw* = — 2P0

_ ‘D2p(‘/'>;<7 W*)
1%

K,

_ (K K)

VU*VPa

_ KK)— — K, K
R(V*,K)K:< ’ >VV*V(po7rM):< I’O >VV*V,0

and

_ V. K
RUVIW = RM(U*,V*)W*+< ’ >D2,0(U*,W*)K

PE

WK)

p2pv WK + By ey Ky9vy
U K> ’

p°
— Ru(US VW
({0, K)

(U, KMK, K)Vy-Vp

<W K)

A ID?p(VE WK — 7

<V K)VU Vp

<WK>
p3

_|_

<U K>VV*Vp,

where D? denotes the Hessian on M"™*P. In particular, for a local orthonormal frame
{e1,...,e,} on X" and X a vector field tangent to X", we can take U = W = X and

V =e;, with 2 = 1,...,n, in the last equation to obtain

R(X,e)X = Ry(X* e)X*+ <6“K> LD (X XK
X, K X, K
S >D2p( XK — < ,;3 >(e,~,K>VX*Vp
X, K
+< 73 > V@fvp

and, consequently,
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RXe)X,ed = (Ru(X",e)X"er) + 98 g e )

SE e e ) - B e ) (xeVpe)
9 Ve

= (R x )+ D X
S e e ) - B e D2 e
+<X—K>D2p( e;)

KX )X, XY e ) — (X7, e?)
+<e“pK> D? (X*,X*)—2<Xp’3K> (es, K)D?p(X*, ;)
D)

Thus, for X} = <e"l’0K>X* and & = EEKler we have

<E<X7€i)X7€i> = KM(X*7€;K)(<X*7X*>< €is z> <X* *>)
D7 X) = 2D0(ét, X2)
DRl )
= KM(X*7€;<)(<X*7X*><61761> <X*76:>2>

1 - - -
+=D?p(XF — €}, Xi — ).
p

Hence, we obtain that

n n

Z<E<X’ ei)Xv 62') - ZKM<X*7€:)(<X*’X*><61’6z> <X*76;‘k>2)

i=1 =1

n 1 R B
+2_ DX - Xy - &),

The Gauss equation allows to rewrite Ricci curvature of X" as the following

n

Rie(X,X) = Y (R(X,e)X,eq) + Y _(a(X, X), afes,e:))

1=1

—Z (X, e),a(X,e)),
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for every X € X(X™). On the other hand, remembering the decomposition (4.3)), we

have
n p n n
D (a(X, X),alene)) = > (APX, X)) (AWe; e;) — (AX, X)) “(Aey, ;)
i=1 k=1 =1 =1
p
= ) (SKX, X)tr(Sk) — (Sn X, X)tr(Sy)
k=1
p
= n{) (AWX, X)H® + (AX, X)H"}
and
—Z X €Z X €Z)> = —ZZ k)X 61 Z<AX76Z'>2
k=1 i=1 i=1
p
= =) |APXP +|AX].
k=1
Therefore,
RZC(XaX) = Z<Q(X7X)7a(eiaei>>_Z<Q(X7€i)7a/(X’ 61)>
=1 i=1
no N 2 P (k) |2
= SR )X e + ‘AX+ MEX] - Jawx - M
1=1 k=1
2 H2

Since Kjr > 0 and p is convex (i.e, D?p > 0), we have > (R(X,e;)X,e;) > 0
and, with this,

H(k) 2 2| /|2
_n X +€M|X|2

Ric(X,X) > ’

Z

k=

4.2 Main Results

We dedicate this section to some results of nonexistence and rigidity for r-trapped,
as well marginally and weakly r-trapped, submanifolds immersed in a standard static
spacetime M"*? x, Ry.

Proposition 4.2.1 Let M =

0<r<mn even. Then

M™? x, Ry be a standard static spacetime and
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(i) There do not exist n-dimensional spacelike future (or past) r-trapped submanifolds

. . . —n+p+1
contained in a slice of M ;

(ii) There do not exist n-dimensional spacelike marginally future (or past) r-trapped

. . . . —n+p+1
submanifolds contained in a slice of M .

Proof. Just note that, for every submanifold X" contained in a slice of Mn+p+1, we

have that
h=const. = Vh=0

and, consequently,

Accordingly to the definition of weakly r-trapped submanifold, we have that ﬁrﬂ
is causal (timelike or lightlike) or zero and, with this, we get the following

Proposition 4.2.2 Let MU — X, Ry be a standard static spacetime and, for

0<r<n-—1even, lety : 3" —>M”+p+1

If 3" is contained in a slice of Mt

be a spacelike weakly r-trapped submanifold.

, then Y™ 1s r-minimal.

Proof. Similarly to the demonstration of Proposition 1 above, we have (FL.H, K)y=0
because, by hypothesis, 3" is contained in a slice of M Since ﬁr+1 is causal or
zero, it must be zero and, consequently, X" is r-minimal. =
We also studied the case where ¥ is complete and non-compact. Our goal now
is to study the behavior of the height function A in the case where the submanifold "
is parabolic and, for this, the following definition is necessary: A spacelike submanifold
v Y — M = e » Ry is called bounded away from the future infinity at
height t* € I if
»() C {(t,x) e M 1< t*}.

—n+p+1

Similarly, we say that a spacelike submanifold ¢ : ¥ — M is bounded away from

the past infinity at height t, € I if
(2 C {(t,x) e M > t*}.

Lastly, X" is said to be bounded away from the infinity of M it is bounded away

from the past and future infinity.

29



Considering r = 0 in equation (|4.2)), follows that

1.
Ab = =2(VIn(p), Vi) + —n(H, K).

So, we can consider the conformal change (-,-), = p*™=2(. .) and obtain
Ah =np /" (H K),

where Ah denotes the Laplacian of h with respect the conformal metric (-, -),. Thus, the
conformal metric change (-,-), = p¥ =2 (...} is made with the intention of cancelling
(Vp,Vh). In this context, Aledo, Rubio and Salamanca (see Theorems 15 and 16 in [§])
obtained results of non-existence and rigidity of spacelike submanifold in standard static
spacetime such that (H, K) > 0 (or < 0). However, the general case in which r > 0
presents greater difficulties even under a conformal metric change. Firstly, because
the parabolicity of the submanifold in question must be transferred to the conformal
metric, which is possible under some conditions on r due to a characterization result
made by Troyanov (see Proposition 4.1 in [48| with p = 2). Secondly, because it is the
L, operator, we should ask for some estimate involving the Laplace-Beltrami operator
A, that is,
L, < BA.

But, we should obtain, from there, an equivalent estimate involving the operators in the
conformal metric. In this case, the difficulty is due to the presence of T,.(V In(p), Vh)
in the equation (4.2]).

On the other hand, he particular case in which the warping function p is constant
deserves special mention, since in this case

Ly () = k() 0. ).

Consequently, by asking for the estimate L, < SA, we obtain the following

Proposition 4.2.3 Let VA

0<r<n even.

= M"P x R, be a product spacetime and consider

(i) There does not exist an n-dimensional parabolic spacelike past r-trapped subman-
ifold immersed in M bounded away from the future infinity and such that

L, < BA, for some positive constant (3;
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(1) There does not exist an n-dimensional parabolic spacelike marginally past r-

trapped submanifold immersed in M bounded away from the future infinity

and such that L, < A, for some positive constant (3;

(111) Every n-dimensional parabolic spacelike weakly past r-trapped submanifold im-

mersed in M7 bounded away from the future infinity and such that L, < BA,

for some positive constant 5, must be r-minimal.

As the reader can see in example[4.6.4)in section [4.6], the hypothesis of parabolicity
in the Proposition above cannot be removed.

4.3 Results in Standard Static Spaceforms

For a smooth function ¢ : ¥ — R, remember that the ¢-divergent of a vector

field X € X(X) is defined by
divy X = e?div (e ?X) = div X — (V¢, X).
With this, take 0 < r < n even and consider the operator L, : C®(X) — C®(X)
given by
Liolw) = div, (T(Va)
= div (T.(Vu)) — T,.(Ve, Vu)
= L.(u) +(divT,,Vu) — T,(Ve, Vu).
Thus, if M has constant sectional curvature, it follows that
Lys(u) = Ly(u) — T,(V, Vu), ¥ u € C=(3).
Consequently, from (4.2,
Lyg(h) = < k(r)(Hyia, K, (4.4)

where ¢ = —21n p.
Using the definition of Lg-parabolicity introduced in section [I.6) of the chapter [T}
we say that the X" is L, »-parabolic if it is Ls-parabolic for p(p,t) =t and T' = T, with

T, > 0 and 0 < r <n even, because in this case
L¢(U) = d1V¢(TT<VU)) = LT7¢(U),
for every u € C*(%).
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Theorem 4.3.1 Let M:erﬂ = M"P x, Ry be a standard static spacetime with con-

stant sectional curvature ¢, 0 < r <n even and consider ¢ = —2Inp. Then

(i) There do not exist n-dimensional spacelike, L, s-parabolic, future (or past) r-

trapped and bounded away from the future (or past) infinity submanifolds im-
——ntp+l

mersed in M, ;

(i) There do not exist n-dimensional spacelike, L, 4-parabolic, marginally future (or
past) r-trapped and bounded away from the future (or past) infinity submanifolds

—n+p+1

immersed in M

(iii) The n-dimensional spacelike L, s-parabolic, weakly future (or past) r-trapped and
bounded away from the future (or past) infinity submanifolds immersed in M;Hp“

are r-minimal.

Proof. Firstly we prove item (i) and item (ii) follows in an analogous way. Suppose,
by contradiction, that 3" is such a submanifold. Once X" is future (or past) r-trapped,
it follows from equation (4.4) that

Loy(h) = %k(m (Hyir, K) < 0 (o1 > 0).

Thus, by the definition of L, 4-parabolicity given above, we obtain that the height

—n+p+1
M

function h of 3" in must be constant. For (iii) we have that

1
Leg(h) = k() {H, 1, K) <0 or > 0).
p
As previously we get the desired result using L, s-parabolicity.

As a consequence of Lemma [1.6.2] we replaced the L, s-parabolicity hypothesis
and obtained the following

Theorem 4.3.2 Let M:erﬂ = M"™? xRy a standard static spacetimes with constant

sectional curvature ¢ and consider a complete spacelike submanifold " immersed in
WZHJH bounded away from the future (or past) infinity and such that, for 1 <r <n

even, <ﬁr+1;K> > 0 (or < 0). Moreover, assuming that T, is positive definite and
satisfying the assumptions (1.13|) and (L1.15)) above. Let £, (d) be defined in (L.13]). If

1 o
<f83t £+(d)€_t> 1/6 ¢ L' (+00),

where d = d(x,0) is the geodesic distance in X" from some fizved origin o € X" and

Br = Bg(0) is the geodesic ball centered at o with radius R. Then X" is contained in
a slice {to} x M™P for some ty € R.
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Proof. The idea is to use the L, 4-parabolicity defined above and, for this, we have to
@(t,p) = t. Consequently, condition ([1.14)) is naturally satisfied. On the other hand,
considering the hypotheses on X", the equation (4.4) provides

Lyg(h) = 0 (or <0).

Accordingly to Lemma [1.6.2] we have X" is L, 4,-parabolic and, with this, the height

——n+p+1

function h of X" in M, must be constant. m

Remark 4.3.3 Under the assumptions of Theorem[4.3.9, the spacelike submanifold X"

mmmersed in MZHPH = M"P x,Ry can be neither r-trapped nor marginally r-trapped.

If, in addition, we assume that the respective submanifold is weakly r-trapped, we obtain

that X" is r-minimal.

Now, since the operator L, 4 is divergent, it is natural to consider the closed case

and apply the divergence theorem. More precisely, we have to
X" closed = X" L, 4-parabolic.

Therefore, since equation (4.4) holds when the ambient space has constant sectional
curvature, we obtain the following

w;n+p+l
M,

Corollary 4.3.4 Let

stant sectional curvature and 0 < r < n even.

= M"P x,R; be a standard static spacetime with con-

(i) There do not exist n-dimensional closed spacelike future (or past) r-trapped sub-
manifolds immersed in _ZH)H;

(1) There do not exist n-dimensional closed spacelike marginally future (or past) r-
trapped submanifolds immersed in _:+p+1;

(111) Every n-dimensional closed spacelike weakly future (or past) r-trapped submani-

+p+1

fold immersed in M, 18 T-minimal.

4.4 An Omori-Yau Approach for the non-parabolic

case

With a combination of Lemmas [I.5.1] and [4.1.2] we obtain the following
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Theorem 4.4.1-A Let M7 = pre X, Ry be a standard static spacetime whose

Riemannian base M"™P has nonnegative sectional curvature and, for 0 < r < n even,
consider a complete weakly past r-trapped submanifold 3" — M"™*? x ,R; with p convex
and away from zero with Vp and p bounded, such that L. < BA for some a positive
constant 3, the second fundamental form is bounded and that X" is bounded away from
the future infinity. Then |I—jfr+1| cannot be away from zero. Particularly, if ﬁr+1 18

parallel then X is r-minimal.

Proof. Let us suppose initially FITH is timelike. By Lemma we have that
1 .
BAK> Li(h) = —2T,(V (o), Vh) + k() 10, ) (4.5)

2C k(r), =
> ——I[Vpl|Vh] + —=|H, 4],
p p
Here, we use the fact that the limitation of the second fundamental form implies

T.(Vp,Vh) < C|Vp||Vh| for some constant C' > 0. Therefore multiplying (4.5 by p

we obtain
pBAR > 20|V p||[Vh| + k(r)| Hy i1 .

From Lemma [4.1.2| we can use Omori-Yau Maximum principle and, therefore, on
an Omori-Yau sequence we obtain |H, 1] — 0.

Note that, if ﬁr,»_i_l is lightlike, we have that

4 4 HO
Hr—i—l = H7‘+1 - | T+1|K7
P

where ﬁf 1 is spacelike and orthogonal to K.

Therefore
pBAL > L (h) > —2C|Vp||Vh| + k(r)| A, |

and on an Omori-Yau sequence we obtain |H,,| — 0. That means that |H,1| is not
away from zero. m

In view of lemma [2.2.3 we can impose a condition on the operator 7, with

0 < r < n even and obtain, under the hypothesis of the theorem above, a
result of rigidity for a submanifold immersed in a standard static spacetime MZH)H

with constant sectional curvature.
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Corollary 4.4.2 Let MU = e X, Ry be a standard static spacetime with sec-

tional curvature constant ¢ and whose Riemannian base M™P has nonnegative sec-
tional curvature and, for 0 < r < n even, consider a weakly past r-trapped submanifold
X" — M™P xRy with p convex and away from zero with Vp and p bounded, such that
L, < BA, for some a positive constant 3, with the second fundamental form is bounded
and that X" is bounded away from the future infinity. If T, = wﬁrﬂl, then 3"

n
15 T-minimal.
Proof. Note that the traceless part 7,1 of T}, is such that

n—(r+1) -

Tri1=Trp1 — H,( I=0

n

and, from the lemma [2.2.3] div (7}.41) = 0. Therefore,

0 = div (fm)

n—(r+1)g =
= (Tl )VHrJrl

and, with this, the result follows from theorem [ ]

Another important application of theorem is in the particular case in
which the ambient space is an m-dimensional vacuum spacetime with cosmological
constant A, that is, a Lorentzian manifold (N™, g) satisfying the Einstein equation
Ric = Ag. Within our configuration, we will have N = M"*? x ,R; with g = —p?dt* +
gnr, where (M™P_gy/) is an (n + p)-dimensional connected Riemannian manifold, that
we will take to be orientable. On the other hand, a complete and connected Riemannian
manifold (M™? g,,) with boundary OM (possibly empty) is said to be static if it

admits a non-trivial solution p € C*°(M) to the equation

— (A, p) 90 + V2 p— pRic,,, =0 in int(M). (4.6)

am

It is important to note that a solution of (4.6) in a manifold allows us to construct a

spacetime satisfying the vacuum Einstein equations with a cosmological constant.

Corollary 4.4.3 Let Mt

with zero cosmological constant, nonnegative Ricci curvature, whose Riemannian base

= M"P x,Ry be an Einstein standard static spacetime

M"™P has nonnegative sectional curvature and such that the warping function p is
subharmonic in M™P. For 0 < r < n even, consider a complete weakly past r-trapped
submanifold X" — M"™P x, Ry such that L, < BA, for some a positive constant [3,
and the second fundamental form is bounded. If X" is bounded away from the future
infinity and Vp and p are bounded, then \ﬁrﬂl cannot be away from zero. Particularly,

if ﬁr—i—l 15 parallel then ™ 1s r-minimal.
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Under some mild hypotheses for the tensor 7., condition ((1.11]) above guarantees
that the maximum principle is valid for the operator L,, we prove the result of non-
existence that follows.

Theorem 4.4.1-B Let M7 = pmte X, Ry be a standard static spacetime such

that p and Vp are bounded and let ¢ : X" — M be q complete, non-compact
spacelike submanifold with bounded second fundamental form and whose radial sectional
curvature satisfies the condition . Moreover assume that X" is bounded away from
the future infinity and, for some 0 < r < n — 1 even, suppose that supy, tr1,. < 400,
T. >0 and H. > 0. Then X" cannot be past r-trapped nor marginally past r-trapped.

Particularly, if X" is weakly past r-trapped then X" must be r-minimal.

Proof. Since the second fundamental form is limited, it follows that

L(h) = —2Tr<v1n<p>,w>+p—ik<r><ﬁm,f<>
202

> ==
P

1 .
IVpl[Vh]+ ;k(rﬂHrﬂ, K).

On the other hand, by lemma [1.5.2] we have that the Omori-Yau maximum
principle holds on " for positive semi-definite operator L,. So, on an Omori-Yau

sequence {p;}jen we obtain

— —

i%f<H7~+1,K> S <H7'+17K>(p])

- fj’.k(gjf‘; + 2620(p)) |V 00| V(05

Consequently, taking the limit with j — oo and noting that p and Vp are bounded, it
follows that il’lf2<ﬁ7»+1, K)<0. =m

4.5 The Product Spacetime Case

We dedicate this section to study the particular case of some of the results in
chapters [3] and [f] when the warping function satisfies p = 1, i.e., we turn our attention
to spacelike submanifolds immersed in the product manifold —7 x M"™*? (which, in
turn, is both a GRW and an SSST).

Note that the hypothesis about the sectional curvature of the ambient space in

the Theorem provides the use of equation (4.4). However, when the ambient
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space is a product spacetime M"™*? x R; (i.e, when p = 1), we have that equation (4.2))
provides

—

Lr(h) = k(r><H7‘+1aK>7 (47)

regardless of whether the sectional curvature of the ambient space is constant or not.
On the other hand, we have that the ¢-divergent coincides with the divergent when ¢
is constant (consequently, L, , = L,). Thus, in the case where p = 1, we can dispense
with the hypothesis about the sectional curvature of the ambient space and obtain the
next two corollaries.

Corollary 4.5.1 Let MU = e Ry a product spacetime and consider a com-

plete spacelike submanifold X" immersed in M bounded away from the future (or
past) infinity and such that, for 1 <r < n even, <ﬁr+1,8t> >0 (or <0). Moreover,
assuming that T, is positive definite and satisfying the assumptions and
above. Let &, (d) be defined in (1.13)). If

1
(faBs §+(d)€_s)

where d = d(z,0) is the geodesic distance in X" from some fized origin o € X" and

75 & L' (+00),

Br = Bg(0) is the geodesic ball centered at o with radius R. Then ¥™ is contained in
{to} x R™™P_ for some ty € R.

Particularly in the closed case we have the following

Corollary 4.5.2 Let M =y Ry be a product spacetime and 0 < r < n

even. Then it holds the following:

(i) There do not exist n-dimensional closed spacelike future (or past) r-trapped sub-

. . . =—n+p+1
manifolds immersed in M ;

(1) There do not exist n-dimensional closed spacelike marginally future (or past) r-

trapped submanifolds immersed in M H;

(111) Every n-dimensional closed spacelike weakly future (or past) r-trapped submani-

. . =—n+p+1 . ..
fold immersed in M 1S r-minimal.

Using the equation (4.7]), we get the following

Corollary 4.5.3 Let M = e Ry be a product spacetime whose Riemannian

base M"™P has nonnegative sectional curvature and, for 0 < r < n even, consider a

complete weakly future (or past) r-trapped submanifold ¥ — M bounded away

67



from the past (or future) infinity and such that L. < BA for some a positive constant
B. Then |ﬁT+1] cannot be away from zero. Particularly, if f[rﬂ is parallel then X" is

r-minimal.

For the product case we can simplify the Theorem and get the corollary

below.

Corollary 4.5.4 Let J KR VEE e Ry be a product spacetime and let ¢ : X" —>

M pe complete, non-compact spacelike submanifold whose radial sectional cur-

vature satisfies the condition . Moreover assume that X" is bounded away from
the future (or past) infinity and, for some 0 < r < n—1 even, suppose that supy, trT, <
+oo, T, > 0 and H,. > 0. Then ¥" cannot be past (or future) r-trapped nor marginally
past (or future) r-trapped. In particular, if X" is weakly past r-trapped then ¥ must
be r-minimal.

4.6 Examples

Example 4.6.1 Let ¥*"*! be an immersed spacelike hypersurface into a Lorentzian
manifold M. For each t € I fized, the inclusion ¢, : ¥2"1 — I x M2 is such
that

H2n+1 — H2n+1N7

where Hoy,yy stands for the (2n+ 1)-th mean curvature of S21 in M2 with respect
to its timelike Gauss map N.

Now, assuming that ¥ = R x H? and M = L* endowed with standard metric, we
obtain that ky = ke = —1 and ks = 0. Let N(t,p) = (0,p) be the timelike Gauss map
of ¥3 C IL* C I x IL* where p is the position vector in H?. This way we have

This submanifold is trapped but it is not 2-trapped, in fact it is 2-minimal.

Example 4.6.2 Considering the surface I' = {(t,z,y) € M;(t,z,y) = (alny,z,y)},
for some a # 0, in the space M = —R x H?. Let us consider the smooth function

U, : H? — R given by u.(z,y) = alny. Henceforth,
N =

with a straightforward computation we obtain that

- 1 a

Hr = ———+=N
. 241 —a?
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Now consider a(X,Y) = MX,Y)N, where \(X,Y) = (AX,Y) is the shape op-

erator associated to N. Therefore

A= Lel ® eq.

Vi@

Where ey is a unit vector associated to the mnon zero eigenvalue of A and e' its dual,
according to Example 4.4 in [21)]. Consider the submanifold ¥ = T'xS* C —RxH? xR3.
Notice that the lifting to the product of the vector fields N and p, where p is the position
vector in S®. They constitue an orthonormal frame for X*+(X). In this case the second

fundamental form is given by

a
V1 —a?

where m is the projection onto the direction of e; which is a unit vector associated to

a(X,Y) = (m(X), m (YN + (m(X), (V) 7,

the non zero eigenvalue of A, we notice it is well defined despite the choice of ey and

7 is the projection m : ¥ — S%. Therefore

- 1 a - 1 a
Hy =—- | ———N +2p d Hys = — | ——N + 27| .
p) 4{\/@ + p} an .3 19 [\/1—7(12 + p}

Then this submanifold is simultaneously O-trapped and 2-trapped for any a € (\%, 1).

Remark 4.6.3 Following the same reasoning, but considering ¥ as I' x R instead of
I x S%, it follows that

Hy = -~ | ——=N d Hys3=0.
R {m } e

Example 4.6.4 Let I'? — M3} be a spacelike surface in a Lorentzian manifold M3 and
Y2 < P3 a surface in a Riemannian manifold P*. Let Ar = (u;) and Bs = ()\;) be
the diagonalized second fundamental forms of I'? and Y2 respectively. Now consider the
product T? x X% — M3 x P3. In this case, taking into account the definition of r-th

mean curvature, for 0 < r < 4, and the fact that H, = ]—7, we have to

- 1
H = §[HFN+H2V],

where Hr = —% and Hy, = Al;’\% and
- 1
Hy = E[KéHFN + KGHsvl,
where Kg = —l1pg and Kg = My, K¢ is the Gauss-Kronecker curvature given by

Kg = edet A where e = (n,n) for n the Gauss map of the Surface T? or 2. Therefore

(H,H) = - (—H} + H)

|
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and
Lo 1
(Hy, Tly) =~ (KEPHE — (KEPH3)

If the mean curvartures are equal, that is, |Hp| = |Hs| the submanifold I' x ¥ is
marginally 0-trapped or minimal and with a small pertubation it can be trapped or not.
If they are such that (K&)* # (K§5)? # 0. We have

(s, Hy) =~ [(KE)? — (K2 #0.

Then for the different choices we can make of the Gauss-Kronecker curvatures, we have
that T' x 3 is O-trapped and 2-trapped, only O-trapped but not 2-trapped, vice-versa or
none of them. Particularly, if X2 is a Clifford hypersurface in the sphere S® given by

¥? = S! (sinf) x S' (cos ) — S?,

where 0 € (0,7/2) is a positive angle, we have that Ay = cotgh, Ay = —tgh and,
consequently,
Hy = cotg20 and K& = —1.

On the other hand, if I'? is the hyperbolic space

1
I? = H? (_g) — L3,

then py = po = 1/S and, with this,

1 1
Hy = -5 and K = ~

So, turning our attention to I'> x ¥? «— S3 x I3, we have that

1 o1
) = 1 (cotg 20 — @)

T

(.

and

S 1 1 [cotg*20
H.. H.) = — —1].
(Ha, Hy) 14452( 52 )

Therefore, for S # 1, we have
if |cotg20] < 1/S? T? x 2 is O-trapped but not 2—trapped,
if |cotg20] < S, T? x 2 is 2-trapped but not 0—trapped,
Moreover, if S # 1 and |cotg20| < S, then

Hy,N)= ——KZHp = ———

and, with this, T? x X2 is past 2-trapped.
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Chapter 5

De Lellis-Topping inequalities on
weighted manifolds with boundary

A well-known result in Riemannian geometry is given by Schur’s Lemma (see
Lemma . By studying the stability of this result, De Lellis and Topping [20]
approached the case where the metric is close to be Einstein and relation with its
scalar curvature. In this setting, they demonstrated that

Lemma 5.0.5 (De Lellis-Topping [20]) Let (£",9g) be a closed Riemannian mani-

fold of dimension n > 3, with nonnegative Ricci curvature. Then

/E(R — R)*dv, <

w ic — ) al? do
(n—2)2 /2|R (R/n)g|” dv,, (5.1)

where R = #(2) fz Rdv, is the average value of R over X". Furthermore, the equality

occurs if and only if (X", g) is an Einstein manifold.

In a strict sense, the authors showed that if a manifold, in the conditions of the above
theorem, is close to be Einstein, in the L?-norm sense, its scalar curvature is close to be
constant in the respective norm. Furthermore, De Lellis and Topping also demonstrated
in [20] that the coefficient of the right hand in is optimal and the hypothesis of
nonnegative Ricci curvature is crucial for attains the result in dimensions greater or
equal than five (in fact, for dimensions 3 and 4, the same result occurs for a weaker
hypothesis of nonnegative scalar curvature, see [23] and [24]). A thorough analysis of
the demonstration of theorem [5.0.5 shows that a crucial step is the integral identity
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2n

n —

- / (VR,, Vu)dv = / (Ric,, V2u)dv,
M 2 M

o

where u is the solution of a PDE and Ric, is the traceless Ricci tensor. For this
identity, in turn, a use of integration by parts and the second Bianchi’s identity is
required. In fact, it is understood as a special case of a famous Pohozaev-type identity,
demonstrated by R. Shoen ([44]).

In this scenario, for example, Cheng showed these type inequalities for symmet-
ric (0, 2)-tensors satisfying a second Bianchi type identity and the Ricci curvature is
bounded from below by a negative constant, where the inequality has to be mod-
ified by taking into account the first nonzero eigenvalue of the Laplacian (for more
details, see Theorem 1.7 in [I5], and [16]). On the other hand, this results has been
studied in manifolds with a nonempty boundary. Still within this scope, Ho [28] got a
similar De Lellis-Topping type inequality for manifolds with a totally geodesic bound-
ary.

In this chapter we propose study these type inequalities on weighted manifolds

with constraints in the Bakry-Emery Ricci tensor. In section we enunciate and

demonstrate the main results of this chapter (see Theorems [5.1.1] and [5.1.4)) and, in

addition, we obtain direct corollaries. Finally, in section [5.2] we provide some appli-
cations of the main results. More generally, we extend the results obtained by Cheng
in [15] to weighted manifolds with convex boundary. As particular cases of these re-
sults, we obtain versions that extend, for example, the Ho [28] result for the of convex

boundary case.

5.1 Main Results

Throughout this section, we will work with a weighted manifold (3", g, e /dv).
In addition, it is worth mentioning that we deal with weighted manifolds with a convex
boundary (i.e., Ags > 0, where Ay, is the second fundamental form of the immersion
0¥ < ) and with Bakry-Emery Ricci tensor bounded from below by a negative
constant and obtain some De Lellis-Topping type inequalities for symmetric (0, 2)-

tensors. The main result of this chapter is the following:
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Theorem 5.1.1 Let (X", g,e~/dv) be a compact n-dimensional weighted manifold with
n > 3, convex boundary 0% and f : X" — R a smooth function such that (0f /Ov) =0
on 0%, where v is the exterior unit normal vector field along 0. Let T be a symmetric
(0,2)-tensor field such that T(v,-) > 0 along the boundary and divT = ¢V B, where
c € R is a constant and B = tr,/T" denotes the trace of T' with respect to g. If Ricy >
—(n—1)Kyg, where Ky > 0 is a constant, and Ky := maxgey Af(z), then

— - 1)K, + K. -1 °
(nc — 1)2/ (B - B)Ze_fdv < n? ((n JKy + K 4+ ) / | T [P dv, (5.2)
b A1 n X

where B = (fz Be‘fdv) / (fE e_fdv) is the weighted average value of the B over X", Ay
is the first nonzero eigenvalue for weighted Laplacian with Neumann boundary condition

and 70“: T— (trgT/n>g denotes traceless part of the tensor field T'. Moreover, assuming

positivity of Ricci curvature, the equality holds if and only if f is constant and ]O”: 0.

Proof. Initially, note that if ¢ = 1/n, then

0= (nc— 1)/2 (B —E)Qe_fdv

and inequality (5.2]) follows trivially. So, suppose that ¢ # 1/n.
Now, let u : ¥ — R be the only solution of following PDE with Neumann

boundary condition

Ay = B—-B in X

ou (5.3)
— =0 on 0X.

v

Moreover, note that the condition divT = ¢V B provides

0 1
divT = ¢VB--VB
n

—1
- Ty

n

Since (Ou/dv) = 0 and T'(v,-) > 0 on 0%, we can use the equation (1.6) and

obtain

_ /E <div joﬂj Vu> e tdv = /2 <107, €2u> e fdv — /az ]O’ (v, Vu)e ldu

< /Z<Zg,€2u>efdv.

Here we use the fact that T (v,Vu) =T(v,Vu) > 0 on 0X. Thus,
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= nc—l

(nc— 1)/ (B —E)ze_fdv = (nc—1) / (B—B)Ajuedv
> o
< ou

(VB,Vu)e fdv+/ (B— B)—efdu)
o% d

I
|
3
—
S

diV(T), Vu> e ldv

5 1/2
efdv> .

By Reilly formula 1} the hypothesis Agy, > 0 and (8u / (9V) = 0 on 0% provides

~ A
V2u — _fug
n

VAN
3
P
™
~
T
m‘
~
QU
<
=
[\&]
7N
o

/ |V2u|?e ™ dv < / (— Ricy(Vu, Vu) + (Agu)®)e 7 dv, (5.4)
2 >
and so
/ V2 — |2 v
— / <|V2u|2 — M) e fdv
) n
2 2 2 2
_ / <|v2u|2 vt )+ PV £ (VA Ve’ (A ) s
> 2 n
2 12 2 2 2 (Afu)2 —f
< (V2ul> = (Vf,V|Vu|*) + |V |V ) dv
2
1
< / ((1 — E)(Afu)z — Ricy(Vu, Vu) — (Vf,V|Vul*) + \Vf]Q\VuF) e fdv,
2

where the first inequality follows from the fact that (V f, Vu) < |V f||Vu| and the last
of (5.4). We also used the fact that 2V2u(Vu, Vf) = (Vf, V|Vu|?). Now, since

—(Vf,VIVu*) = |Vul’Af —div(|Vu’Vf),

follows that
/—(Vf,V|Vu|2>e_fdv = /|Vu|2Afe_fdv—/div(|Vu|2Vf)e_fdv
x % ¥
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/]Vu]zAfe_fdv—/\VuﬂVfFe‘fdv
> s
—/div(ef|Vu|2Vf)dv
5
= /|Vu|2Afe_fdv—/|Vu|2|Vf|2€_fdv
s
IVUI2 ‘fdu

ox

/]Vu] Afe_fdv—/\Vu\QIVfFe_fdv.
> 2

Furthermore, since the first nonzero eigenvalue for weighted Laplacian with Neumann

boundary condition A\; on X" is characterized by
J5 IVolPefdu
Js e fdv

0
A1 = min { ; ¢ is nontrivial and %2 _0on 82} (5.5)

ov

we have that

/ \Vul*ePdv =
2

ul pue” fdv—l—/ u%e‘fd,u

/2 ox OV
= /uAfue T dv

>
= /u(B B) ! dv

>

IN

( ue fdv) 2(/2 (B—E)ze_fdv)1/2
< ( Jy[Vule fd”)m ( /E (B—F)Qefdv)m.

1 —
/ |Vul*e ™ dv < —/ (B - B)Qe_fdv
> A Js

~ A
/ V2 — —fug|2e_fdv
= n
—Ricy(Vu, Vu) + - (Aju)® | e’ dv
s

—/Z ((Vf,V|Vu|2> . |Vf]2\Vu\2>e’fdv

= /E(—Ricf(Vu, Vu) + (”T_1> (Afu)2) e ldv

—I—/ \Vul?Afedv
2

Consequently

Therefore,

IA
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< / ( n— 1)K, |Vul® + (n — 1) (Afu)? —|—K2|Vu|2> e ldv
5 n

= ((n—1K1+K2 /]Vu]Q fdv—i——/Afu v
- 1)K + K. — —1 —
< (” Lt 2)/(3—3) ey + " - /(B—B) e fdv
b b

_ n—l)K1+K2 n—1 /(B_E)Zefdv
)\1 n N ’

Then, after a straightforward calculation, we get the desired inequality.

For the second part of the theorem, suppose that the equality in holds.
Hence, we must have to Af = K,. Thus, from classical divergence theorem and by
the fact of (0f/0v) = 0 on 0%, we have that Ky = 0 and consequently f is constant.
Therefore, Ricy = Ric and Reilly’s formula becomes

/|V2u|2e_fdv = /(Afu)Qe_fdv
s s

- (/ Ricy(Vu, Vu)e dv +
s

and equality in (5.2)) only occurs when

Aon(Vu, Vu)efdu>
ox

Ric(Vu,Vu) =0 and Apx(Vu, Vu) = 0.

But this is only possible when Vu = 0, since Ric > 0. Then u is constant and joﬂ: 0.
[ |

Equivalently, we have the following

Corollary 5.1.2 With he same assumptions as for Theorem |5.1.1, we have that

(”C“l)zjé 2e‘fdv
e (BB )]

Moreover, assuming positivity of Ricci curvature, the equality holds if and only iof f is

B
T'——yg
n

2
e dv.

B
T'——g
n

constant and T= 0.

Proof. Just note that inequality (5.2)) is equivalent to inequality (5.6). In fact, from
(5.3) in the above demonstration, we have B = B — Aju. Consequently,

T —(B/n)gl* = |T—(B/n)g+ (Apu/n)gl*
= |T—(B/n)g|* + (1/n)(Asu)?
= |T—(B/n)g|* + (1/n)(B - B)*.
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Therefore,

n(nc —1)2 /2 T — (B/n)g|*eTdv = n(nc—1)> /z T — (B/n)g|*e™dv
+(nc — 1)2/(B — B)?’edv

and the equivalence between their respective inequalities follows. m
A slight change on the proof of Theorem m (that would evoke a solution to
a analogous Dirichlet’s problem to , in addition to the weighted Bochner identity)

could give us an approach for closed manifolds.

Corollary 5.1.3 Let (X", g,e/dv) be a closed n-dimensional weighted manifold with
n > 3. Let T be a symmetric (0,2)-tensor field such that divT = ¢V B, wherec € R is a
constant and B = tr,T" denotes the trace of T with respect to g. If Ricy > —(n—1)K,g,

where K1 > 0 is a constant, and Ky := max,ex Af(x), then

— - 1)K, + K -1 °
(nc—l)Q/(B—B)ze_fdv < n2((n JKy 2.z >/|T|26_fdv,
N A1 n b

where B = (fz Be_fdv) / (fz e_fdv) 15 the weighted average value of the B over X",
A1 is the first nonzero eigenvalue for weighted Laplacian with Dirichlet condition and

JO“: T— <t7“gT/n)g denotes traceless part of the tensor field T'. Moreover, assuming

positivity of Ricci curvature, the equality holds if and only if f is constant and %: 0.

As mentioned in the chapter I (see section[1.4), we can take a (0, 2)-tensor 7" and,

from there, consider the weighted tensor Ty = T + V2 f. Moreover, remember that

Vi®Vu+VuxVf

SR 2
Veu = Vu 5

In this context, we obtain a De Lellis-Topping type inequality with weighted objects.

More precisely, we have:

Theorem 5.1.4 Let (X", g,e~/dv) be a compact smooth metric measure space with
n > 3, convex boundary 0% and f : X" — R smooth and such that (0f/0v) =0 on
0%. Let T be a symmetric (0,2)-tensor field such that divT = ¢V B and T(v,-) along
of the boundary, where ¢ > 0 is a constant and B = tr,/T. If Ricy > (Af —(n—1)K)g,

where K > 0 1s a constant, then

2

— \2 _ n (n—1>K n—l / o 2,12 —
B;— B fdv < — Td
/E ( f f) € v > (’rLC— 1)2 ( )\1 + n ) . | Tf V f| (& v

+ / (Af)2e~" d, (5.6)
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where Ty =T + V2f and By = tr,Ty, By = ([, Bye fdv) / ([ e/ dv) is the weighted
average value of the By over X", A\i is the first nonzero eigenvalue for weighted Lapla-
cian with Neumann boundary condition and 10’: T — <trgT/ n) g denotes traceless part
of the tensor field T'. Moreover, assuming positivity of Ricci curvature, the equality
holds if and only if f is constant and joﬂ: 0.

Proof. Note that
By =tryTy = VB = VB; — VAY.

Thus,

o B
div ( Ty ) = div (Tf — ng)

_ g . (DBs
= div (Tf) div (79)
1

= div (T) + div(V*f) — ~VBy

1
= VB +div(VZf) — ~VB,

1

= VB — cVASf +div(V3f) — EVBf

—1
_ ”Cn VB; — cVAS + div(V2f).

Let u : M™ — R be the smooth function given by

Afu = Bf—B_f n Z;
% =0 on 0%,
we have
/(Bf—Ef)ZG_de
b
:/ (Bf—Ef)Afue_fdv
o
~f 730U g
=— | (VB Vu)e 'dv+ (Bf_Bf)a_e du
by o% v
=L /<div(%f)+cVAf—div<v2f),vu>efdv.
nc—1 Js
However,

/E<div(%f),Vu>e_fdv = -



/(VAf,Vu)e_fdv = —/ AfAfue_de—i—/ Af%e‘fd,u
X M % v
= —/AfAfue_fdv
b
and
/<diV(V2f),Vu>efdv = —/<V2f,@2u> eddv+ [ Vf(Vu,v)e ldpu.
) 2 ox
Therefore
/(Bf_gf)Q dv
_ 2 ¢ &2
N nc—l </< -V > dv>
-f
nc—l (/82 Ty (Vu,v) = V2 f(Vu,v))e d,u)

</Z A fApue v)
(/,

nc—l

)
" (ne—1) (

nc—l

/Z< V2,V > dv>

T(Vu,v) fdp)

( cAfAjue” dv).

nc—l

By hypothesis, we have that 7'(Vu,v) > 0 implies

_ﬁ (/82 T(Va, V)e_fdu> <.

A 1
<v2f, ng> = ~AfAgu.

Thus, of the fact of

follows that
/ (B — By)’e ' dv
s
n ° 2, 2 _Afu _f
(ne—1) (/E<Tf ViRV, g>e d”)

" tgp— [ L -1
+(nc—1) (/EcAfAfue dv /EnAfAfue dv)
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- ( <%f —V2f,V?u Afug>e_fdv>
(nc—1) n
(nc—1) (/E e AfAfue_fdv)
o Asu
— L2 F U2y, 2 ~f
e 1 (/2<Tf V9= S )
—i—/AfAfue_fdv
)
. 1/2 ) 1/2
_n T, —V2fPe ™ dv Vu — %g 2e~dv
(nc—1) \Js ! M n
1/2 1/2
+ (/(Af)ze_fdv) (/(Afu)ze_fdv> :
2 2

By Rielly formula, we have that

IN

/ IV2ul?e ™l dv < / (= Ricy(Vu, Vu) + (Apu)?)e dv, (5.7)
> >

and so

/ [VPu — gl2 “dv

— / |v2u‘2 — iu)effdv
) n
2 2 2 A 2
= / <|VQU|2 — 2V%u(Vu, Vf) + VTVl ;—(Vf, Vu) _{ ;;u) )e_fdv
by

212 2 2 2 (Afu)2 —f
< |V=ul —<Vf,V|Vu| >—|—|Vf| |Vl i e ' dv
x
n

< / ((1 — l>(Afu)2 — Ricy(Vu,Vu) — (Vf,V|Vul|*) + \Vf]Q\VuF) e fdv,
>

where the first inequality follows from the fact that (V f, Vu) < |V f||Vu| and the last
of (5.7). Now, since

—(Vf,V|Vu]*) = |Vul*div(Vf) — div(|Vu]*V[)
= |Vul*'Af = div(|[Vul*V f),

we have that
div(|Vu|?V fle™ = div(e ™ |Vul|*V f) + |Vul*|V f|?e™!

and, then
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/—<Vf,V|Vu\2>efdv = /\Vu|2Afefdv—/ div(|Vu*V f)e f dv
5 > M
= /\Vu|2Af€_fdv—/ V|V f|?e~ dv
> M
—/div(e‘f|Vu|2Vf)dv
>
= /\Vu|2Afefdv—/ \Vul|?|V f2e™ dv
> M
of _
22 —f
E|Vu\ 5 ° dv
= /\Vu|2Af€_fdv—/ \Vul?|V f*e™ dv.
= M

Now, using the characterization of the first nonzero Neumann eigenvalue \; given by

and proceeding as in the proof of Theorem , it follows that

1 —_
/ |Vul?e ™/ dv < —/ (By — Bf)2e_fdv.
> At Js
Hence

\2 ~dv

IN

[

/ ( Ricy(Vu, Vu) + (”T_l) (Afu)2> e ldv

— [ (V1. 919) + [V 1PVl

/ (—Ricf(Vu,Vu) + (” - 1) (Afu)2> et du

—- EquPAfe’fdv

/E (—(Af — (n—1)K)|Vul* + (”T_l) (Aju)? + \WMf) e ldv
= (n— 1)K/E|Vu|2e_fdv+ nT_l/E(Afu)2e_fdv

< DK ;ll)K /E (B, - B))e
_ (<” e +”;1) [ (5=

Therefore,

b

IN

(Bf — Ef)Qeide
M
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/E (B, — B))’edv
) </|T VPP fdv>1/2(((n_)\11>K+n;1>/E(Bf_Ff)Qe_fdv)l/Z
+ ( /E (Af)?e! dv) - ( / (Afu)Qe_fdv> "
= o) < R fdv) /Q(((”‘Al”K +”;1) i (Bf—Ef)Qe_fdv)l/Q
+ ( /E <Af)26—fdv) - ( /E (B, _Efye—fdv) v

and, with this,

2
— \2 _ n (n—1)K n—1 / o 2,2 —
By —B Tdv < + Tr—V !d
/2( f f)e v (nc—l)z( N - ) 2| f flre dv

+ / (Af)*edv.

In the closed case, we have the following

Corollary 5.1.5 Let (X", g,e/dv) be a closed n-dimensional weighted manifold with
n > 3. Let T be a symmetric (0,2)-tensor field such that divT = ¢V B, where ¢ € R
is a constant and B = tr,T" denotes the trace of T with respect to g. If Ricy >
(Af —(n—1)K)g, where K > 0 is a constant, then

2
— 2 _ n (n—1)K n-—1 / ° 9,12 —
B;—-B Tdv < — ’d
/2( o By el < (nc—l)z( N ) z|Tf Vifledy

+/(Af)26fdv,
>
where Ty =T + V2 f and By = trTy, By = ([, Bre fdv) / ([ e/ dv) is the weighted

average value of the By over X", A\i is the first nonzero eigenvalue for weighted Lapla-

cian with Dirichlet condition and f: T — (trgT/n)g denotes traceless part of the
tensor field T. Moreover, assuming positivity of Ricci curvature, the equality holds if

and only if [ is constant and T= 0.

5.2 Applications

In this section we will provide some applications of the main results contained in

the previous section.
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5.2.1 Locally Conservative Tensors

In view of the definition of locally conservative tensor, we can reinterpret the

condition divT = ¢V B, since that

c= 0= T is locally conserved;

c# 0= T — cBg is locally conserved.

Therefore, provided that the boundary conditions are valid, the inequalities and
follows for locally conservative symmetric (0, 2)-tensor fields. For a better un-
derstanding of the definition, the motivation in conservation laws, as well as a source
of examples of locally conservative tensors, the reader can consult [25]. However, we

highlight the following examples:

Example 5.2.1 The second Bianchi’s identity provides that the Einstein tensor
R
E, = Ric, — g
2
is locally conserved. Notice that Eg chg

Example 5.2.2 In a more general context, we can look at a spacelike hypersurface
immersed in a semi-Riemannian manifold of index 1 (in this case, a Lorentz manifold)
or 0 (that is, a Riemannian manifold). For a more attentive reader, it can be perceived
that there is an abuse of language in the case where the hypersurface is immersed in a
Riemannian ambiente, since the induced metric is already, in itself, Riemannian. With
this in mind, take a Einstein semi-Riemannian manifold (WH,E, v), consider a hy-
persurface ¢ : (2”, g, V) — (Hnﬂ,g, v) and, to fix the notations, let {ey, ..., €, €n11}
be a local orthonormal frame on M with ent1 = v the exterior unit normal vector

field along ™. In this setting, we have

If the index of § is 1, then g(v,v) = —1;
If the index of § is 0, then g(v,v) = 1.

From Codazzi’s equations, we obtain that

(Rywr, X) = (VyII) (W, X) = (VwlII) (V,X), VX,V,W € X(%),

( ) for

every X and Y in X(X). Now, remember that the Ricci tensor R_ M is given
by

where R is the curvature endomorphism of M and I I(X,Y)
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Ric(X,Y) = tr(R(X,-Y,")) (5.8)
n+1

= Z glkE(Xa €, Y7 ek:)
i=1
n+1

= Z €i§<X7 €i, Y7 ei)u
i=1
where €; = (e;,¢;). In this way, making V' = ¢ (with 1 < k < n), W = X = ¢; and
taking the sum with 1 <7 <n + 1, we get that

n+1

R_ick(n+1) = ZQE(@k,ei,enH,@i) (5.9)
=1

= Z eiﬁ(ek, €iy Enils €i)

=1

n
- E R(6k7 €i) Cnt1, ei)
=1
n

-y ((vekn) (e ei) — (Vo IT) (e, ei)>.
i=1
Considering the equation 1' above and assuming that the ambient space M
is Einstein, it follows that Ricy+1) = (E/n)?k(n +1) = 0, where R denotes the scalar
curvature of WH, and so

n n

> (Ve dD) (eie0) =D (Ve ID) (ers ).

i=1 =1

Therefore, considering that the mean curvature of X" is given by H = tr(I1), it
follows that

(VH), = VH(ey)
= V. H
= Vtr(lI)
= tr(Vg,B)

n

= Z(Vekn) (ei,ei)

= Z (Vei[[) (ekv ei)

i=1

provides
divlil =VH, (5.10)
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Since

(divIl), = (divI[) (ex)

n

= UV (@) )

i=1
n

= S (V1D (e @)

=1

= (VH),.
Therefore, in this case, the tensor T'= I — Hg is locally conserved.

Example 5.2.3 Le ¥" be a spacelike submanifold immersed in a semi-Riemannian
manifold M of index 1 or 0. Thus, in view of Lemma m, if "™ has constant

sectional curvature and 0 < r < n is even, then
divT, =0,
and therefore the symmetric (0, 2)-tensor 7, is locally conserved.

Remark 5.2.4 Since Lemma deals with the case where the ambient space is
Lorentz, for the case where the ambient space is Riemannian, see Lemma 2.1 in [26].

As the reader can see in the section of the chapter [2) the hypothesis that r €
{1,2,...,n} is even above can be replaced by m = 1, that is, for every 0 < r < n holds
div T, = 0 for a hypersurface X" immersed in a space form M™*1.

5.2.2 Weighted Almost Schur

Taking in account the example [5.2.1], we can obtain a weighted versions of The-

orem [5.0.5} In fact, applying Theorem [5.1.1} we get the following

Corollary 5.2.5 Let (X", g,e /dv) be a compact weighted manifold n-dimensional
with n > 3, convex boundary 0% and f : ¥" — R smooth such that (0f/0v) = 0
on 0X. If Ricy(v,-) > 0 along of the boundary and Ricy > —(n—1)Kyg, where K; >0
is a constant, and Ky := max,cx Af(z), then

2
5\2 —f 4n (n—l)K1+K2 n—1 o 2 —f
/2 (Ry—Ry) e ldv < (=22 ( " +— 2‘ Ric, "™ dv,

where A1 is the first nonzero eigenvalue for weighted laplacian with Neumann boundary.
Moreover, assuming positivity of Ricci curvature, the equality holds if and only iof f is

constant and M™ is Einstein.

And, applying Theorem [5.1.4] we get the corollary below.
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Corollary 5.2.6 Let (X", g,e dv) be a compact weighted manifold n-dimensional
with n > 3, convex boundary 0¥ and f : X" — R smooth such that (0f/0v) = 0
on 0X. If Ricy(v,-) > 0 along of the boundary and Ricy > (Af — (n — 1)K)g, where
Ky >0 is a constant, and Ky := maxex, Af(z), then

2

_B) e dy < n (n—1DK n-1 / i U2 f(20 ]
/E<Rf Rf) e ldv < (nc—1)2< N + - E|chf Vaflfe  dv

+ /E(Af)2e_fdv,

where Ry = tr (Rz'cf). Moreover, the equality holds if and only if f is constant and M"

1s Einstein.

5.2.3 Hypersurfaces immersed in Einstein manifolds

In [I7], the authors deal with “nearly” umbilical hypersurfaces, obtaining De
Lellis-Topping inequalities in this setting. We observe that, taking in account the Ex-
ample[5.2.2] we can obtain a improvent of that results on hypersurfaces with boundary
and constraints in the Bakry-Emery Ricci tensor. In fact, applying Theorem we
get the following stability result

Corollary 5.2.7 Let (M"*!, g,e~/dv) be a Einstein manifold. Let X" be a compact
hypersurface immersed in (M"* g e~/dv) with n > 3, convex boundary 0% and
(Of Jov) = 0 on 0%. If If A(v,-) > 0 along of the boundary of X" and Rz'c? >
—(n —1)K1g, where K1 >0 is a constant, and Ky := max,ep Af(x), then

2
—2 _ n (n—l)K1+K2 n—1 / ° _
H-H)eldv < 2e=1d
/Z( )e v (n—1)2( A + n ) E‘Ale v,

where Ay is the first nonzero eigenvalue for weighted Laplacian with Neumann boundary.
Moreover, assuming positivity of Ricci curvature, the equality holds if and only iof f is

constant and X" is totally umbilical.

5.2.4 Submanifolds immersed in Space Forms

In view of example [5.2.3, we have the following result for submanifolds immersed

in spatial forms:

Corollary 5.2.8 Let (M™,g,e~/dv) be a Einstein manifold. Let X" be a compact
hypersurface immersed in (M™, g, e~/dv) with m > n > 3, convex boundary 0%,
(0f /Ov) =0 on 0% and

1. 2<r <n ie even or
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2. m=n-+1, e, X" is a hypersurface.

If T.(v,-) > 0 along of the boundary of X" and Rz’c? > —(n—1)Kyg, where K1 >0 is

a constant, and Ky := max,ep Af(x), then

— - 1)K, + K.
(n—r)2/ (HT—HT)ze_fdvgrf((n ))\ Lt 2,0 )/|T - |2 ~dv,
s 1

where H, = (fz Hre’fdv) / (fz e’fdv) s the weighted average value of the H +r over
3", A1 s the first nonzero eigenvalue for weighted Laplacian with Neumann boundary
condition. Moreover, assuming positivity of Ricci curvature, the equality holds if and
only if f is constant and T, — &= 7A)H’“g =0.

Remark 5.2.9 [t is worth mentioning that, given the explanation of the examples
mentioned in [25], the same inequalities, with different motivations, can be thought
in other locally conserved tensors, such as those involving Newton transformations,

FEinstein Lovelock tensors, QQ-curvature and many others.

87



Bibliography

1]

2|

3]

4]

[5]

(6]

7]

8]

Alias, L. J., Canovas, V. L. and Colares,A. G., Marginally trapped submanifolds in
generalized Robertson-Walker spacetimes, Gen. Relativ. Gravit. 23 (2017), 1-23.

[T B3, B4, 45

Alias, L. J. and Colares, A. G., Uniqueness of spacelike hypersurfaces with constant
higher order mean curvature in generalized Robertson-Walker spacetimes, Math.

Proc. Cambridge Philos. Soc. 143 (2007), 703-729.

Alias, L. J., de Lira, J. H. S. and Rigoli, M., Geometric elliptic functionals and
mean curvature, Ann. Sc. Norm. Super. Pisa Cl. Sci. 15 (2015), 1-47. ,

Alias, L. J., Impera, D. and Rigoli, M., Spacelike hypersurfaces of constant higher
order mean curvature in generalized Robertson-Walker spacetimes, Math. Proc.

Cambridge Philos. Soc. 152 (2012), no. 2, 365-383. [1]

, Hypersurfaces of constant higher order mean curvature in

warped products, Trans. Amer. Math. Soc. 365 (2012), 365-383. 22 23]

Alias, L. J., Mastrolia, P. and Rigolli, M., Maximum Principles and Geometric
Applications, Springer Monogr. Math., New York, (2016).

Aledo, J. A., Romero, A. and Rubio, R., The existence and uniqueness of standard

static splitting, Classical Quantum Gravity 32, 105004 (2015), 9 pp.

Aledo, J. A., Rubio, R. M. and Salamanca, J. J., Rigidity and non-existence of
spacelike submanifolds with causal mean curvature vector field in spacetimes and

the Cauchy problem in General Relativity. (2019). arXiv:1911.03928v1.



19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Beem,J., Ehlich, P. and Easley, K. L., Global Lorentzian Geometry, Second Edi-
tion, Pure and Applied Mathematics 202 (1996) Marcel Dekker, New York.

Besse, L. A., Einstein Manifolds, Springer-Verlag, Berlin, 2008, Reprint of the
1987 edition.

Caminha, A., The geometry of closed conformal vector fields on Riemannian

spaces, Bull. Braz. Math. Soc. 42 (2011), 277-300

Cao, L. F. and Li H., r-Minimal submanifolds in space forms, Ann. Glob. Anal.

Geom. 32 (2007), 311-341.

Case, J., Shu, Y.-J. and Wei, G., Rigidity of quasi-Einstein metrics, Differential.
Geom. Appl. 29 (2011), no. 1, 93-100.

Chen, J., A note on the almost-Schur lemma on smooth metric measure spaces,

J. Inequal. Appl. 194 (2018).

Cheng, X., A generalization of almost-Schur lemma for closed Riemannian mani-

folds, Ann. Global Anal. Geom. 43 (2013), 153-160. ,

, An almost-Schur type lemma for symmetric (2,0)-tensors

and applications, Pacific J. Math 43 (2014), 153-160. [5

Cheng, X. and Zhou, D., Rigidity for nearly umbilical hypersurfaces in space forms,
J. Geom. Anal (2012).

Cruz Jr, F.C., Lima Jr, E. A. and Santos, M. S., Rigidity and nonexistence results
for r-trapped submanifold in GRW spacetimes, to appear in J. Geom. Anal.

Cunha, A. W., de Lima, H. F., Lima Jr, E. A. and Santos, M. S., Weakly trapped
submanifolds immersed in generalized Robertson-Walker spacetimes, J. Math.

Anal. Appl., 484, 123734, (2020).

De Lellis, C. and Topping, P., Almost-Schur lemma, Calc. Var. Partial Differential
Equations 43 (2012), 347-354. [4]

89



21

22]

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

de Lima, H.F. and Lima Jr, E.A., Generalized maximum principles and the unicity

of complete spacelike hypersurfaces immersed in a Lorentzian product space, Beitr.

Algebra Geom. 55 (2014), 59-75.

Freitas, A. G., de Lima, H. F., Lima Jr, E. A. and Santos, M. S., Weakly trapped
submanifolds in standard static spacetimes, Ark. Mat. 57 (2019), 317-332. 2| b2}
5%

Ge, Y. and Wang, G., An almost Schur theorem on 4-dimensional manifolds, Proc.

Amer. Math. Soc. 140 (2012), 1041-1044.

, A new conformal invariant on 3-dimensional manifolds,

Adv. Math 249 (2013), 131-160.

Gover, A. R. and Orsted, B., Universal principles for Kazdan-Warner and
Pohozaev-Schoen type identities, Commun. Contemp. Math. 15 (2013), no. 4,

1350002, 27 pp. [83] [87]

Grosjean, Jean-Francois., Upper bounds for the first eigenvalue of the Laplacian

on compact submanifolds, Pacific J. Math. 206 (2002), 93-112. [31]

Hawking, S. and Ellis, G., The large scale structure of spacetime, Cambridge
University Press (1973).

Ho, P. T., Almost Schur lemma for manifolds with boundary, Differential Geom.
Appl. 32 (2014), 97-112. [f],

Huang, G. and Zeng, F., De Lellis-Topping type inequalities for f-Laplacians,
Studia Math. 232 (2016), 189-199.

Ma, L. and Du, S-H., Extension of Reilly formula with applications to eigenvalue
estimates for drifting Laplacians, C. R. Math. Acad. Sci. Paris 348, (2010), 21-22.
20

Mars, M. and Senovilla, J. M. M., Trapped surfaces and symmetries, Classical

Quantum Gravity 20 (2003), 293-300. 2|

90



[32] Meng, M., Zhang, S., De Lellis-Topping type inequalities on smooth metric mea-
sure spaces, Front. Math. China 13 (2018), 147-160.

[33] Omori, H., Isometric immersions of Riemannian manifolds, J. Math. Soc. Japan

19 (1983), 205-214.

[34] O’Neill, B., Semi-Riemannian Geometry with Applications to Relativity, Academic

Press, London, (1983). [18]

[35] Penrose, R., Gravitational collapse and space-time singularities, Phys. Rev. Lett.

14 (1965), 14-57.

[36] Pigola, S., Rigoli, M. and Setti, A.G., A remark on the maximum principle and
stochastic completeness, Proc. Amer. Math. Soc. 131 (2003), 1283-1288

[37] , Maximum principles on Riemannian manifolds and appli-

cations. Mem. Amer. Math. Soc. 174 (2005), no. 822, x-+99.

[38] Reilly, R. C., Variational properties of functions of the mean curvatures for hy-
persurfaces in space forms, J. Differential Geom. 8 (1973), 465-477. MR 49 6102
Zbl 0277.53030

[39] Reilly, R. C., On the first eigenvalue of the Laplacian for compact submanifolds
of Euclidean space, Comment. Math. Helvetici. 52 (1977), 525-533.

[40] Sanchez, M., Geodesics in static spacetimes and t-periodic trajectories, Nonlinear

Anal. 35 (1999), 677-686.

[41] , On the geometry of static spacetimes, Nonlinear Anal. 63
(2005), 455—46.

[42] , On causality and closed geodesics of compact Lorentzian

manifolds and static spacetimes, Differential Geom. Appl. 24 (2006), 21-32.

[43| Santos, F. R., de Lima, H. F. and Velasquez, M. A. L., On the geometry of trapped

and marginally trapped submanifolds in Lorentzian space forms, Commun. Con-

temp. Math. 18 (2016). [1]

91



[44] Schoen, R. M., The existence of weak solutions with prescribed singular behavior
for a conformally invariant scalar equation, Comm. Pure Appl. Math. 41 (1988),
no. 3, 317-392. [72]

[45] Senovilla, J. M. M., Trapped submanifolds in Lorentzian geometry. Preprint
(2005). arXivimath/0412256v2. [2]

[46] Simons, J., Minimal varieties in Riemmannian manifolds, Ann. of Math. (2) 88(1)
(1968), 62-105.

[47] Tangherlini, F. R., Schwarzschild field in n dimensions and the dimensionality of
space problem, Nuovo Cim. 27 (1963), 636-651

[48] Troyanov, M., Parabolicity of Manifolds, Siberian Adv. Math. 9 (1999) 125-150.
00

[49] Wu, J., De Lellis-Topping inequalities for smooth metric measure spaces, Geom.

Dedicata 169 (2014), 273-281.

[50] Yau, S. T., Harmonic functions on complete Riemannian manifolds, Comm. Pure

Appl. Math., 28 (1975), 201-228.

92



	Introduction
	Summary of Basic Notation
	Fundamentals of Geometric Analysis
	Differential Operators
	Bianchi Identities and the Schur's Lemma
	Böchner Formula and Reilly Formula
	Smooth Metric Measure Space
	Omori-Yau maximum principle
	Parabolicity

	Spacelike submanifolds immersed in spacetimes
	Spacetimes
	The r-trapped submanifolds

	The Generalized Robertson-Walker case
	The r-trapped spacelike submanifolds contained in the slices
	Key Lemma
	Some nonexistence results
	Some Rigidity Results
	Examples of r-trapped submanifolds

	The Standard Static Spacetime case
	Key Lemmas
	Main Results 
	Results in Standard Static Spaceforms
	An Omori-Yau Approach for the non-parabolic case
	The Product Spacetime Case
	Examples

	De Lellis-Topping inequalities on weighted manifolds with boundary
	Main Results
	Applications
	Locally Conservative Tensors
	Weighted Almost Schur
	Hypersurfaces immersed in Einstein manifolds
	Submanifolds immersed in Space Forms


	References

