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Abstract

This work was divided into two moments: at first, we set out to study spacelike sub-

manifolds Σn immersed in Lorentz spacetimes Mn+p+1. So, we introduce the notion

of r-trapped submanifolds as a generalization of the trapped submanifolds introduced

by Penrose. In the case where the ambient space is a GRW −I ×ρ Mn+p, consider-

ing some properties such as parabolicity and stochastic completeness we prove rigidity

and nonexistence results for r-trapped in some configurations of GRW spacetimes and,

lastly, we provide examples of r-trapped submanifolds, some of them are also simul-

taneously trapped, but we provided examples proving that the notion of r-trapped

submanifolds are different accordingly to the number r. On the other hand, in the

case where the ambient space is an standard static spacetime (SSST) Mn+p ×ρ R1, we

calculate the differential operators Lr and Lr,φ applied to the height function h = πR◦ψ

of the immersion ψ : Σn → Mn+p ×ρ R1 and we consider some properties on Σn such

as parabolicity and maximum principles. In this setting, we prove rigidity and nonex-

istence results for r-trapped spacelike submanifolds. After, we obtain some De Lellis-

Topping type inequalities for general tensors under constraints in the Bakry-Émery

Ricci tensor. In particular, we provide new results on manifolds with convex bound-

ary, improving some known results given on manifolds with totally geodesic boundary.

Furthemore, we apply our results in a class of locally conserved tensors.

Keywords: Rigidity, r-trapped submanifolds, GRW spacetime, SSST, De Lellis-Topping

Inequality, weighted manifolds, Bakry-Émery-Ricci tensor, drifting Laplacian.
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Resumo

Este trabalho foi dividido em dois momentos: no primeiro, nos dedicamos ao estudo de

subvariedades tipo-espaço Σn imersas em espaços-tempo LorentzianosMn+p+1. Assim,

introduzimos a noção de subvariedades r-trapped como generalização das subvariedades

trapped introduzidas por Penrose. No caso em que o espaço ambiente é um GRW

−I ×ρ Mn+p, considerando algumas propriedades como parabolicidade e completude

estocástica, fornecemos resultados de rigidez e de não existência para subvariedades r-

trapped em algumas configurações de espaços-tempo GRW e, por último, fornecemos

exemplos de subvariedades r-trapped, onde algumas delas são trapped e outras não,

comprovando que a noção de subvariedades r-trapped são diferentes de acordo com o

número r. Por outro lado, no caso em que o espaço ambiente é um standard static

spacetime (SSST)Mn+p×ρR1, calculamos os operadores diferenciais Lr e Lr,φ aplicados

à função altura h = πR ◦ ψ da imersão ψ : Σn → Mn+p ×ρ R1 e consideramos algu-

mas propriedades em Σn como parabolicidade e princípios de máximo. Neste cenário,

fornecemos resultados de rigidez e de não existência para subvariedades r-trapped. De-

pois, obtemos algumas desigualdades do tipo De Lellis-Topping para tensores gerais

sob restrições no tensor Bakry-Émery Ricci. Em particular, fornecemos novos resulta-

dos em variedades com bordo convexo, melhorando alguns resultados conhecidos em

variedades com bordo totalmente geodésico. Além disso, aplicamos nossos resultados

em uma classe de tensores localmente conservativos.

Palavras-chave: Rigidez, subvariedades r-trapped, espaço-tempo GRW, SSST, De-

sigualdade De Lellis-Topping, variedades ponderadas, tensor Bakry-Émery-Ricci, Lapla-

ciano ponderado.
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Introduction

The objective here is to give an overview of the results that motivated our work.

At first, we dedicate to the study of the r-th mean curvature of spacelike submanifolds

immersed in spactimes (which, in this case, were the generalized Robertson-Walker

spacetime and the standard static spacetime). After that, we turn our attention to De

Lellis - Topping type inequalities for general tensors under constraints in the Bakry-

Émery Ricci tensor on weighted Riemannian manifolds with convex boundary.

As a starting point, we dedicate ourselves to the study of the spacelike submani-

folds immersed in Lorentz spacetimes. In this context, de Lima, Santos and Velásquez

[43] obtained rigidity for trapped submanifolds in Lorentzian spaces forms, they con-

sidered assumptions such as parallel mean curvature and pseudo-umbilicity. Later,

Alías, Cánovas and Colares [1], considered codimension two trapped submanifolds Σn

immersed in generalized Robertson-Walker spacetimes−I×ρMn+1 and obtained nonex-

istence and rigidity results. In this work, they used the Laplace-Beltrami operator of

Σn and obtained the following equation

∆σ(h) = n
(
− ρ′(h) + ρ(h)〈 ~H, ∂t〉

)
,

where h is the height function of Σn in −I ×ρMn+1 and σ is a primitive of ρ. It is im-

portant to note that a causal orientation of the mean curvature vector field ~H plays an

important role in the study of Laplacian of σ(h) and, therefore, constitutes a valuable

tool for the work in question. On the other hand, working in a similar context, Alías,

Impera and Rigoli [4], analyzed the problem of uniqueness for spacelike hypersurfaces

Σn with constant mean order curvature immersed in generalized Robertson-Walker

spacetimes −I ×ρMn. However, in this case, they turned their attention to the differ-



ential operator Lr and obtained the following equation

Lrσ(h) = −k(r) (ρ′(h)Hr + ρ(h)Hr+1〈N, ∂t〉) ,

where k(r) = (n − r)
(
n
r

)
is a constant and N is the unique unitary timelike normal

vector field globally defined on Σn with the same orientation as ∂t. Following the same

line, but in a different ambient space, Freitas et al [22] obtained

∆h = −2〈∇ ln ρ,∇h〉+
1

ρ2
〈 ~H, ∂t〉

and, with this, studied trapped submanifolds immersed in standard static spacetimes

and established sufficient conditions to guarantee that such a spacelike submanifold

must be a hypersurface of the Riemannian base of the ambient spacetime, particu-

larly, they showed that there do not exist n-dimensional compact (without boundary)

trapped submanifolds immersed in an (n + 2)-dimensional standard static spacetime

which is a classical result due to Mars and Senovilla [31] (see also [45]).

For the r-th mean curvature of spacelike submanifolds immersed in Lorentz space-

times, which will be generalized Robertson-Walker spacetime and standard static space-

time (see chapters 3 and 4, respectively), we introduce the concept of r-trapped sub-

manifolds which generalizes the definition of trapped submanifold in the sense that

0-trapped coincides with trapped submanifold (see section 2.2). Then, studying the

behavior of spacelike submanifolds Σn immersed in a generalized Robertson-Walker

−I ×ρMn+p (respec., standard static spacetimes Mn+p ×ρ R1) using the causal orien-

tation of their (r + 1)-th mean curvature ~Hr+1 wih 0 ≤ r < n even, we calculate the

differential operator Lr applied to the height function h of Σn in −I ×ρMn+p (respec.,

Mn+p ×ρ R1) and we got

Lr(h) = −(ρ′(h)/ρ(h))k(r)Hr − (ρ′(h)/ρ(h))Tr (∇h,∇h) + k(r)〈 ~Hr+1, ∂t〉,

and

Lrσ(h) = k(r)
(
−ρ′(h)Hr + ρ(h)〈 ~Hr+1, ∂t〉

)
.

Therefore, with these tools, we obtain rigidity and nonnexistence results. Since Lr is a

differential operator, the above equations allow an analysis of the spacelike submanifold

Σn through the causal orientation of the vector field ~Hr+1, when 0 ≤ r < n is even.

For example, when Σn is closed, we get results like:

2



Theorem A Let −I ×ρMn+p be a GRW spacetime and 0 ≤ r < n even.

(i) If H(t) ≥ 0, there exist no closed weakly past r−trapped submanifold in −I ×ρ
Mn+p such that Tr ≥ 0 and Hr > 0.

(ii) If H(t) ≤ 0, there exist no closed weakly future r−trapped submanifold in −I ×ρ
Mn+p such that Tr ≥ 0 and Hr > 0.

However, when Σn is noncompact, we can evoke the concepts of parabolicity,

stochastic completeness and maximum principles. For instance, we have the following

Theorem B Let −I ×ρMn+p be a GRW spacetime and 0 ≤ r < n even.

(i) Let t∗ ∈ I and assume that H(t) > 0 for t ≤ t∗. Then there exist no weakly
past r-trapped complete, non-compact spacelike submanifold bounded away from
the future infinity at height t∗ immersed into −I×ρMn+p satisfying the condition
(3.5) and such that Tr ≥ 0, supΣ trTr < +∞ and Hr > a > 0, for some constant
a.

(ii) Let t∗ ∈ I and assume that H(t) < 0 for t ≥ t∗. Then there exist no weakly
future r-trapped complete, non-compact spacelike submanifold bounded away from
the past infinity at height t∗ immersed into −I ×ρMn+p satisfying the condition
(3.5) and such that Tr ≥ 0, supΣ trTr < +∞ and Hr > a > 0, for some constant
a.

On the other hand, when the ambient space is a standard static spacetime, we

get

Lr(h) = −2Tr(∇ ln(ρ),∇h) +
1

ρ2
k(r)〈 ~Hr+1, K〉.

Moreover, using the divergent operator Lr,φ(·) := divφ

(
Tr
(
∇(·)

))
with φ = −2 ln ρ,

we obtain

Lr,φ(h) =
1

ρ2
k(r)〈 ~Hr+1, K〉.

By the concepts of the principles of maximum and parabolicity for operators Lr and

Lr,φ, we obtain nonexistence and some rigidity results. In this context we emphasize

the following results:

Theorem C Let Mn+p+1

c = Mn+p ×ρ R1 be a standard static spacetime with constant
sectional curvature c, 0 ≤ r < n even and consider φ = −2 ln ρ. Then

3



(i) There do not exist n-dimensional spacelike, Lr,φ-parabolic, future (or past) r-
trapped and bounded away from the future (or past) infinity submanifolds im-
mersed in Mn+p+1

c ;

(ii) There do not exist n-dimensional spacelike, Lr,φ-parabolic, marginally future (or
past) r-trapped and bounded away from the future (or past) infinity submanifolds
immersed in Mn+p+1

c .

(iii) The n-dimensional spacelike Lr,φ-parabolic, weakly future (or past) r-trapped and
bounded away from the future (or past) infinity submanifolds immersed inMn+p+1

c

are r-minimal.

and,

Theorem D Let Mn+p+1
= Mn+p ×ρ R1 be a standard static spacetime such that ρ

and ∇ρ are bounded and let ψ : Σn −→ M
n+p+1 be a complete, non-compact spacelike

submanifold with bounded second fundamental form and whose radial sectional curva-
ture satisfies the condition (1.11). Moreover assume that Σn is bounded away from
the future infinity and, for some 0 ≤ r ≤ n − 1 even, suppose that supΣ trTr < +∞,
Tr ≥ 0 and Hr > 0. Then Σn cannot be past r-trapped nor marginally past r-trapped.
Particularly, if Σn is weakly past r-trapped then Σn must be r-minimal.

It is important to highlight that, in this more general context, we encompass

many of the results cited above (as well as some works that were opportunely cited in

the course of chapters 3 and 4), considering that

~Hr+1 coincides with the mean curvature ~H of the submanifold when r = 0;

The concept of r-trapped coincides with that of trapped submanifolds when r = 0;

Lr coincides with the Laplace-Beltrami operator when r = 0;

The codimension of the submanifold is given by p+ 1 with p a non-negative integer.

In addition, to emphasize the importance of this new concept of r-trapped submanifold,

we provide examples that demonstrate its independence from the definition of trapped

submanifold that already exists in the literature (see example 3.5.1).

In a second part, we study almost-Schur type results on weighted manifold.

Schur’s lemma states that every Einstein manifold of dimension n ≥ 3 has constant

scalar curvature. With that in mind, De Lellis and Peter Topping [20] asked to what

extent the scalar curvature is constant if the traceless Ricci tensor is assumed to be

small rather than identically zero and, with this, they obtained the following result in

the context of closed Riemannian manifolds:

4



“Let (Σn, g) be a closed Riemannian manifold of dimension n ≥ 3, with nonneg-
ative Ricci curvature. Then∫

Σ

(R−R)2dvg ≤
4n(n− 1)

(n− 2)2

∫
Σ

|Ric− (R/n)g|2 dvg,

where R = 1
V ol(Σ)

∫
Σ
Rdvg is the average value of R over Σn. Furthermore, the equality

occurs if and only if (Σn, g) is an Einstein manifold.”

For closed Riemannian manifolds, Cheng generalized the work of De Lellis and

Topping in two ways: first replacing the hypothesis of non-negativity of the Ricci

curvature with the more general condition Ric ≥ −(n − 1)K (see [16]), for some

positive constant K, and then she obtained a De Lellis-Topping type inequality for

a symmetric tensor T that satisfies condition div T = c∇B, where c is a constant

and B = trT (see [15]). Turning her attention to compact Riemannian manifolds with

totally geodesic boundary (i.e., a Riemannian manifoldM with umbilical boundary ∂M

and whose mean curvature H of the immersion ∂M ↪→ M is zero), Ho [28] obtained

the same inequality as De Lellis and Topping under the hypothesis of non-negative

Ricci curvature. Finally, in a more general context, we can mention the works of Chen

[14], Huang and Zeng [29], Meng and Zhang [32] and Wu [49] that address De Lellis-

Topping type inequalities for weighted manifolds under a new condition of limitation

for the Bakry-Émery Ricci tensor.

With this in mind, we set out to study De Lellis - Topping type inequalities for

symmetric tensors T that satisfy second Bianchi’s type identity on weighted manifolds

(M, g, e−fdv) with convex boundary.

Theorem E Let (Σn, g, e−fdv) be a compact n-dimensional weighted manifold with
n ≥ 3, convex boundary ∂Σ and f : Σn −→ R a smooth function such that (∂f/∂ν) ≡ 0

on ∂Σ, where ν is the exterior unit normal vector field along ∂Σ. Let T be a symmetric
(0, 2)-tensor field such that T (ν, ·) ≥ 0 along the boundary and div T = c∇B, where
c ∈ R is a constant and B = trgT denotes the trace of T with respect to g. If Ricf ≥
−(n− 1)K1g, where K1 ≥ 0 is a constant, and K2 := maxx∈M ∆f(x), then

(nc− 1)2

∫
Σ

(
B −B

)2
e−fdv ≤ n2

(
(n− 1)K1 +K2

λ1

+
n− 1

n

)∫
Σ

|
◦
T |2e−fdv,

where B =
(∫

Σ
Be−fdv

)
/
(∫

Σ
e−fdv

)
is the weighted average value of the B over Σn, λ1

is the first nonzero eigenvalue for weighted Laplacian with Neumann boundary condition
and

◦
T= T−

(
trgT/n

)
g denotes traceless part of the tensor field T . Moreover, assuming

positivity of Ricci curvature, the equality holds if and only if f is constant and
◦
T= 0.

5



On the other hand we obtain a De Lellis-Topping type inequality with weighted

objects, that is, we have:

Theorem F Let (Σn, g, e−fdv) be a compact smooth metric measure space with n ≥ 3,
convex boundary ∂Σ and f : Σn −→ R smooth and such that (∂f/∂ν) ≡ 0 on ∂Σ. Let
T be a symmetric (0, 2)-tensor field such that div T = c∇B and T (ν, ·) ≥ 0 along of
the boundary, where c ≥ 0 is a constant and B = trgT . If Ricf ≥ (∆f − (n− 1)K)g,
where K ≥ 0 is a constant, then∫

Σ

(
Bf −Bf

)2
e−fdv ≤ n2

(nc− 1)2

(
(n− 1)K

λ1

+
n− 1

n

)∫
Σ

|
◦
T f −∇2f |2e−fdv

+

∫
Σ

(∆f)2e−fdv,

where Tf = T +∇2f and Bf = trgTf . Moreover, the equality holds if and only if f is
constant and

◦
T= 0.

With this in mind, we divided this work into 5 chapters. In chapter 1, we provide

some concepts and some important results for the development of our research. In

addition to the differential operators, Schur’s Lemma and the extension of Reilly’s

formula to weighted manifolds, we approach concepts of the maximum principles and

parabolicity in the classic versions for more general operators such as Lr. In chapter 2,

we provide the definition of r-th mean curvature of spacelike submanifold Σn immersed

in spacetime Mn+m of the Newton transformations Tr and of the differential operator

Lr. With this, we introduce the new concepts of r-trapped submanifolds according

to the causal orientation of the vector field ~Hr+1 for 0 ≤ r < n even. In chapter

3, we explored the n-dimensional r-trapped submanifolds contained in slices from the

ambient space −I ×ρ Mn+1. With this, we provide a condition for whether or not

such a submanifold is r-trapped (see equation 3.3). Right after that, we will calculate

the action of the operator Lr in the height function h = πI ◦ ψ and in a primitive

function σ of the warping function ρ in the search for a tool to help our results.

With this tool in mind, we address some results of non-existence and rigidity. Finally,

we provide examples of r-trapped submanifolds. It is important to note that the

concepts of trapped and r-trapped submanifolds are independent and that the second

generalizes the first, since 0-trapped submanifolds coincides with the trapped in the

classic sense (see example 3.5.1). For chapter 4, the idea is to study the spacelike

submanifolds immersed in a standard static spacetime. In this way, we restrict ourselves
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to the spacelike submanifolds ψ : Σ → Mn+p ×ρ R1 and obtain results of rigidity

and nonexistence under the hypothesis of causal orientation for the (r + 1)-th mean

curvature ~Hr+1, with 0 ≤ r < n even. At first, we calculate Lr(h) and, in addition,

we provide a result that guarantees, under some hypotheses, the Omori-Yau maximum

principle for the Laplacian (see Lemma 4.1.2). In section 4.2, we discuss some results

of nonexistence and rigidity for r-trapped, as well marginally and weakly r-trapped,

submanifolds immersed in a standard static spacetimeMn+p×ρR1. In the next section,

we explore the definition of weighted divergence (or, more preciselly, of φ-divergent

for some smooth function φ on Σn) and, under the hypothesis of constant sectional

curvature of the ambient space Mn+p ×ρ R1, we use the differential operator Lr,φ (see

equation (4.4) and continue to obtain results of non-existence and rigidity. In section

4.4, we follow the same idea as in the previous section, but this time making use of the

principle of maximum for both Laplacian and differential operator Lr. We dedicate

the section 4.5 to study the particular case of some of the results in chapters 3 and

4 when the warping function satisfies ρ ≡ 1, i.e., we turn our attention to spacelike

submanifolds immersed in the product manifold −I ×Mn+p (which, in turn, is both

a GRW and an SSST). And, likewise, we end the chapter by providing examples of

r-trapped submanifolds. Lastly, in chapter 5 we propose study these type inequalities

on weighted manifolds with constraints in the Bakry-Émery Ricci tensor. In section

5.1 we enunciate and demonstrate the main results of this chapter (see Theorems 5.1.1

and 5.1.4) and, in addition, we obtain direct corollaries. Finally, in section 5.2, we

provide some applications of the main results.



Summary of Basic Notation

1. Let (M, g) be an n-dimensional Riemannian manifold with metric g, u, f : M → R are
smooth functions, X, Y, Z and W vector fields on M and T a tensor field on M .

∇: Levi-Civita connection of M

∇T : covariant derivative of T

B = trgT : trace with respect metric g of
T

B: overage value of B over M

◦
T : traceless part of T

∂M : boundary of M

X(M): space of vector fields on M

C∞(M): space of C∞ functions

∇u: gradient of u

du: differential of u

∇2u: hessian of u

∆u: laplacian of u

divX: divergence of X

R(X,Y )Z: curvature endomorphism

R(X,Y, Z,W ): curvature tensor

[X,Y ]: Lie brackets of X and Y

Ric: Ricci curvature

R: scalar curvature

R: average value of R over M

dvg: volume element of M

dµg: volume element of ∂M

∆fu: weighted laplacian of u

LX : Lie derivative with respect to X

divf X: f -divergence of X

divf T : f -divergence of T

Ricf : Bakry-Émery Ricci tensor

Krad
M : radial sectional curvature of M

2. Looking at M as a submanifold immersed in a (n + m)-dimensional semi-Riemannian
manifold M , we have

∇: Levi-Civita connection of M

α(X,Y ): second fundamental form of M

H: mean curvature of M

Hr: r-th mean curvature of M

KM
G : Gauss-Kronecker curvature of M

Tr: r-th Newton transformation of α



Chapter 1

Fundamentals of Geometric Analysis

The purpose of this chapter is to establish notations and provide some tools that,

in large part, will be focused on our results in chapter 5. The section 1.1, because

it deals with differential operators in Riemannian manifolds, will also support some

of our results from chapters 5 and 6, since they are focused on the study of spacelike

submanifolds immersed in spacetimes. In what follows, section 1.2 provides Bianchi’s

identities. The results contained in chapter 5 are, in a way, a generalization of Schur’s

Lemma and, for this reason, such identities are necessary. Sections 1.3 and 1.4 are

linked, since the first serves as a supposition for the second. More precisely, we in-

troduced in section 4 the concept of weighted manifolds and extended the formulas

of Böchner and Reilly in the section for this ambient. It is worth mentioning that

such formulas are essential tools in the demonstration of Theorems 5.1.1 and 5.1.4. In

addition, we have introduced some weighted differential operators that will be used in

chapters 3, 4 and 5.

In order to provide support for results in chapters 3 and 4 that address non-

compact manifolds, we introduce the concepts of Omori-Yau maximum principle and

parabolicity. In addition, we provide a version of the maximum principle for the op-

erator L defined in (1.10). In a natural way, we approach results that, under certain

hypotheses, imply these principles. Then, in the next section, we define the concept

of parabolicity. Thus, taking advantage of the definition of weighted divergent in-

troduced in chapter 1 (see section 1.4), we define the operator Lφ and, with it, the



concept of Lφ-parabolicity. Finally, we present conditions for which a given manifold

to be Lφ-parabolic.

1.1 Differential Operators

Let Σn be a smooth manifold equipped with a Riemannian metric g : X(Σ) ×

X(Σ)→ C∞(Σ) (which we will sometimes denote by 〈·, ·〉) and Riemannian connection

∇. In addition, to fix the notations, denote by {e1, e2, ..., en} a local orthonormal frame

on Σn. Given a smooth function u : Σn → R, we define the gradient of u as the vector

field ∇u given by

〈∇u,X〉 = X(u), ∀X ∈ X(Σ).

However, note that

X(u) = du(X) : M → R

p 7→
(
du(X)

)
(p) := dup

(
X|p
)

and, with this,

〈∇u,X〉 = du(X), ∀X ∈ X(Σ).

Therefore, using musical isomorphism (·)[ : X(Σ) → X(Σ)∗, we can identify the field

∇u with the (0, 1)-tensor du as follows

(
∇u)[ = du.

Remark 1.1.1 It is natural to omit musical isomorphism “ [ " and use ∇f to denote
both the vector field ∇u and the differential du.

According to the definition, if u, v : Σn → R and ξ : R→ R are smooth functions,

then 
∇
(
u± v

)
= ∇u±∇v;

∇
(
uv) = u∇v + v∇u;

∇
(
ξ ◦ u

)
= ξ′

(
u
)
∇u.

(1.1)
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Given a vector field X(Σ), we can use the connection and define an operator

∇X : X(Σ)→ X(Σ) given by

Y ∈ X(Σ) 7→ ∇YX.

In this context, we define the hessian of a smooth function u : Σn → R as being the

(0, 2)-tensor ∇2u : X(Σ)× X(Σ)→ C∞(Σ) whose metrically associated (1, 1)-tensor is

precisely the operator ∇u, that is,

(X, Y ) ∈ X(Σ)× X(Σ) 7→ 〈∇X∇u, Y 〉.

Since, for all X and Y in X(Σ),

〈∇X∇u, Y 〉 = X〈∇u, Y 〉 − 〈∇u,∇XY 〉

= X
(
Y (u)

)
− 〈∇u,∇YX + [X, Y ]〉

= Y
(
X(u)

)
+ [X, Y ](u)− 〈∇u,∇YX + [X, Y ]〉

= Y
(
X(u)

)
− 〈∇u,∇YX〉

= 〈∇Y∇u,X〉,

we have that ∇2u is a symmetric tensor.

From the definition of Hessian given above, we define the laplacian of a smooth

function u : Σn → R as the function ∆u ∈ C∞(Σ) given by

∆u := tr
(
∇2u

)
.

So, for smooth functions u, v : Σn → R and ξ : R→ R, it follows that ∆
(
uv
)

= u∆v + v∆u+ 2〈∇u,∇v〉;

∆
(
ξ ◦ u

)
=
(
ξ′′(u)

)
|∇u|2 +

(
ξ′(u)

)
∆u.

(1.2)

The next differential operator to be defined is the divergent of a vector field and,

for this, we will make use of the musical isomorphism (·)[ : X(Σ) → X(Σ)∗ (which,

as already mentioned, will be omitted). Thus, given a field of vectors X ∈ X(Σ), we

define its divergent as the function div
(
X
)
∈ C∞(Σ) given by

div
(
X
)

= tr
(
∇X(·)

)
=

n∑
i=1

〈∇eiX, ei〉.

12



Immediately, from the previous definition, it follows that

∆u = div
(
∇u
)
.

Moreover, if u : Σn → R is a smooth function and X, Y ∈ X(Σ), then div
(
X ± Y

)
= div

(
X
)
± div

(
Y
)
;

div
(
uX
)

= u div
(
X
)

+ 〈∇u,X〉.
(1.3)

Inspired by the previous definition, consider a symmetric (0, 2)-tensor T : X(Σ)×

X(Σ)→ C∞(Σ) and, also denoting by T its associated (1, 1)-tensor, note that

div
(
T (X)

)
=

n∑
i=1

〈∇eiT (X), ei〉

=
n∑
i=1

〈(
∇eiT

)
(X), ei

〉
+

n∑
i=1

〈T (∇eiX), ei〉

= tr
(
∇T (·, X)

)
+

n∑
i=1

〈∇eiX,T (ei)〉

= tr
(
∇T (·, X)

)
+ 〈∇X,T 〉.

So, we define the divergent of T as being the (0, 1)-tensor given by

X ∈ X(Σ) 7→ div
(
T
)
(X) = tr

(
T (·, X)

)
.

In coordinates, we have

div
(
T
)
i

=
n∑

j,k=1

gjk∇kTij

=
n∑
j=1

∇jTij,

where ∇kTij =
(
∇ekT

)
(ei, ej).

With this definition, we will say that a symmetric (0, 2)-tensor T is locally con-

served if it is divergence free, i.e., div
(
T
)

= 0.

1.2 Bianchi Identities and the Schur’s Lemma

With the definitions of curvature endomorphism R : X(Σ)×X(Σ)×X(Σ)→ X(Σ)

and curvature tensor R : X(Σ) × X(Σ) × X(Σ) × X(Σ) → C∞(Σ) (which we already

admit to be known to the reader), we can highlight the following properties

Rijk +Rjki +Rkij = 0
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and

∇iRjkl +∇jRkil +∇kRijl = 0,

where Rijk = R(ei, ej)ek and ∇iRjkl = (∇eiR)(ej, ek, el). Such properties are known as

Bianchi’s first and second identity, respectively.

Remember that, from the curvature tensor R : X(Σ)4 → C∞(Σ), we can introduce

the it Ricci curvature tensor by

(X,X) ∈ X(Σ)2 7−→ Ric(X,X) = tr
(
R(·, X,X, ·)

)
=

n∑
i=1

R(ei, X,X, ei)

=
n∑
i=1

〈R(ei, X)X, ei〉 .

From there, we define the scalar curvature as being the following function

p ∈ Σn 7−→ R(p) = tr
(
Ric(·, ·)

)
=

n∑
j=1

Ric(ej, ej).

In view of the punctual character of the tensors, we can ask that the referential

{e1, e2, ..., en} be geodesic at a point p ∈ Σn and, at this point, obtain

∇R(ek) := ek(R)

= ek

(
n∑
i=1

Ric(ei, ei)

)

=
n∑

i,j=1

ek 〈Rjii, ej〉

=
n∑

i,j=1

〈∇kRjii, ej〉 .

Using the anti-symmetry property of the curvature tensor and Bianchi’s second identity,
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it follows that

∇R(ek) = −
n∑

i,j=1

〈∇kRiji, ej〉

=
n∑

i,j=1

〈∇iRjki, ej〉+
∑
i,j

〈∇jRkii, ej〉

=
n∑

i,j=1

〈∇iRjki, ej〉+
∑
i,j

〈∇jRikj, ei〉 .

On the other hand, still at point p,

div
(
Ric
)
(ek) =

n∑
i=1

〈(∇iRic) ek, ei〉

=
n∑

i,j=1

〈∇iRjki, ej〉 .

Therefore, we obtain the second contracted Bianchi identity given by

∇R = 2 div
(
Ric
)
. (1.4)

With these tools, we are already in a position to glimpse Schur’s Lemma. How-

ever, before that, we need to introduce the concept of Einstein manifold. In this

context, we will say that the Riemannian manifold (Σn, g) is Einstein if it is Ricci

tensor satisfies

Ric =
R

n
g. (1.5)

So, for Einstein manifolds, we have

Ric =
R

n
g ⇒ div

(
Ric
)

=
1

n
∇R

⇒ 1

2
∇R =

1

n
∇R.

With this, we have the following

Lemma 1.2.1 (Schur’s Lemma) If (Σn, g) is Eintein with n ≥ 3, then Mn has
constant scalar curvature.
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1.3 Böchner Formula and Reilly Formula

This section is justified by the fact that, in the next section, we use the classi-

cal case to obtain extended versions of the Böchner and Reilly formulas for weighted

manifold.

Lemma 1.3.1 (Böchner formula) Let (Σn, g) be a Riemannian manifold and con-
sider u ∈ C∞(Σ). Then

1

2
∆|∇u|2 = Ric(∇u,∇u) + 〈∇u,∇(∆u)〉+ |∇2u|2.

Proof. Take a point p ∈ Σn and consider a local orthonormal frame {e1, ..., en} that

is geodetic in p. So, in p, we have to

1

2
∆|∇u|2 =

1

2

n∑
i=1

(
∇2|∇u|2

)
(ei, ei)

=
n∑
i=1

ei
(
ei 〈∇u,∇u〉

)
=

n∑
i=1

ei 〈∇ei∇u,∇u〉

=
n∑
i=1

〈∇ei∇ei∇u,∇u〉+
n∑
i=1

|∇i∇u|2

=
n∑
i=1

〈∇ei∇ei∇u,∇u〉+ |∇2u|2.

Now, for X ∈ X(Σ), we have to

Ric(X,∇u) =
n∑
i=1

〈R(ei, X)∇u, ei〉

=
n∑
i=1

〈
∇ei∇X∇u−∇X∇ei∇u−∇[ei,X]∇f, ei

〉
.

However, at point p,
n∑
i=1

〈∇X∇ei∇u, ei〉 =
n∑
i=1

X 〈∇ei∇u, ei〉

=
n∑
i=1

X 〈∇∇u(ei), ei〉

= X(∆u)

= 〈X,∇(∆u)〉
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and, in addition,

〈
∇ei∇X∇u−∇[ei,X]∇u, ei

〉
= ei 〈∇X∇u, ei〉 − 〈∇∇u([ei, X]), ei〉

= ei 〈∇∇u(X), ei〉 − 〈∇∇u(ei), [ei, X]〉

= ei 〈∇∇f(ei), X〉 − 〈∇∇f(ei), [ei, X]〉

= ei 〈∇ei∇u,X〉 − 〈∇ei∇u,∇eiX −∇Xei〉

= 〈∇ei∇ei∇u,X〉 .

Therefore,

Ric(X,∇u) =
n∑
i=1

〈∇ei∇ei∇u,X〉 − 〈X,∇(∆u)〉

and the result follows in the case where X = ∇u.

Remember that, under the assumption that Σn is a compact Riemannian manifold

with boundary, the boundary of Σn is a (n − 1)-dimensional Riemannian manifold

∂Σn−1. Looking at the inclusion map i : ∂Σn−1 ↪→ Σn, we denote by ν the unitary

normal outside Σn along ∂Σn−1, A∂Σ the second fundamental form of immersion i and

H the mean curvature of ∂Σn−1 with respect to ν. With that in mind, we can integrate

on Σn both sides of the Böchner formula and get the following

Lemma 1.3.2 (Reilly’s formula) In the notations above, if u ∈ C∞(Σ), then∫
Σ

(
Ric(∇u,∇u)−

(
∆u
)2

+ |∇2u|2
)
dvg

= −
∫
∂Σ

(
−2uν∆u+ nHu2

ν + A∂Σ(∇u,∇u)
)
dµg,

where uν = 〈∇u, ν〉.

1.4 Smooth Metric Measure Space

A smooth metric measure space (or weighted manifold) is a triple (Σn, g, e−fdv),

where Σn is a n-dimensional Riemannian manifold with metric g, dv is volume element

of Σn with respect the metric g and f : Σn −→ R is a smooth function. Weighted man-

ifolds arise naturally in the study of self-shrinkers, Ricci solitons, harmonic heat flows,
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warped products and many other subjects. Its natural relevance in modern mathe-

matics can be viewed, for example, because the Ricci solitons play a very important

tool in the theory of Ricci flow and warped product Einstein metrics have considerable

interest in the General Relativity (see [34]).

Given (Σn, g, e−fdv) a compact weighted manifold, we can take classical differ-

ential operators in the same weighted sense. For example, we define the weighted

Laplacian (or “drift" Laplacian) of a smooth function u : Σn → R by

∆fu = ∆u− 〈∇f,∇u〉.

Furthermore, we introduce the (0, 2)-tensor

∇̃2u = ∇2u− ∇f ⊗∇u+∇u⊗∇f
2

.

With this, we have

trg(∇̃2u) = ∆fu and efLXg = 2∇̃2u,

where LXg denotes the Lie derivative of the vector field X = e−f∇u.

On the other hand, the f−divergence of a vector field X ∈ X(Σ) is defined by

divf X = ef div(e−fX) = divX − 〈∇f,X〉.

So, it’s easy to see that

∆fu = divf
(
∇u
)
, ∀u ∈ C∞(Σ).

From a tensor point of view, we have the f−divergence of a (0, 2)-tensor T given by

the following (0, 1)-tensor

divf T = ef div(e−fT ) = div T − T (∇f, ·),

where div is the usual divergence for tensors.

Using the properties of the classical differential operators introduced in section

1.1 and applying the divergence theorem, we obtain∫
Σ

u∆fve
−fdvg = −

∫
Σ

〈∇u,∇v〉 e−fdvg +

∫
∂Σ

u
∂v

∂ν
e−fdµg,

where u, v : Σn → R are smooth functions.
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Moreover, we know that for every (0, 2)-tensor field T , every function u ∈ C∞(Σ)

and every vector field X ∈ (Σ),

div
(
T (uX)

)
= u 〈div T,X〉+ u 〈∇X,T 〉+ T (∇u,X).

Thus,

〈div T,X〉 e−f = −〈T,∇X〉 e−f + T
(
∇f,X

)
e−f + div

(
T (e−fX)

)
and, consequently,∫

Σ

〈div T,X〉 e−fdvg = −
∫

Σ

〈T,∇X〉 e−fdvg +

∫
Σ

T
(
∇f,X

)
e−fdvg

+

∫
∂Σ

T (X, ν)e−fdµg.

Let {e1, ..., en} be the coframe of {e1, ..., en} on Σn and note that

〈T,X ⊗ Y 〉 = Tij
〈
ei ⊗ ej, X ⊗ Y

〉
= Tij

〈
ei, X

〉 〈
ej, Y

〉
= T (X, Y ),

for every X, Y ∈ X(Σ), where the second equality follows of the universal property of

tensor product. Hence, making X = ∇h, we get

T (∇f,∇u) =

〈
T,
∇f ⊗∇u+∇u⊗∇f

2

〉
and, with this,∫

Σ

〈div T,∇u〉 e−fdvg = −
∫

Σ

〈
T, ∇̃2h

〉
e−fdvg +

∫
∂Σ

T (∇u, ν)e−fdµg. (1.6)

As with operators, it is natural to extend some “objects” already existing in

Riemannian manifolds to the weighted context. Thus, we define the Bakry-Émery

Ricci tensor Ricf by

Ricf := Ric+∇2f.

Or, more generally, we define the f -tensor Tf of a given (0, 2)-tensor T by the following

tensor

Tf := T +∇2f.
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With these new differential operators and by analogy to classic cases, there are

Böchner and Reilly type formulas to such manifolds. For example, using weighted

Laplacian ∆f , we obtain the following generalization of Bochner’s formula for a function

u ∈ C∞(Σ)
1

2
∆f |∇u|2 = |∇2u|2 +Ricf (∇u,∇u) + 〈∇u,∇∆fu〉. (1.7)

To see this, initially consider an arbitrary vector field X ∈ X(Σ) and note that

1

2
〈X,∇|∇u|2〉 = 〈∇X∇u,∇u〉

= 〈∇∇uX + [X,∇u],∇u〉

= ∇u〈X,∇u〉 − 〈X,∇∇u∇u〉+ 〈[X,∇u],∇u〉

= [∇u,X]u+X∇u(u)− 〈X,∇∇u∇u〉+ 〈[X,∇u],∇u〉

= 〈X,∇|∇u|2〉 − 〈X,∇∇u∇u〉.

Consequently,

1

2
∇|∇u|2 = ∇∇u∇u

and, with this

∇2f(∇u,∇u) = 〈∇∇u∇f,∇u〉

= ∇u
(
〈∇f,∇u〉

)
− 〈∇f,∇∇u∇u〉

= 〈∇u,∇〈∇f,∇u〉〉 − 1

2
〈∇f,∇|∇u|2〉.

Therefore, using the weighted Laplacian definition, it follows that

1

2
∆f |∇u|2 =

1

2
∆|∇u|2 − 1

2
〈∇f, |∇u|2〉

= Ric(∇u,∇u) + 〈∇u,∇(∆u)〉+ |∇2f |2

+∇2f(∇u,∇u)− 〈∇u,∇〈∇f,∇u〉〉

= |∇2u|2 +Ricf (∇u,∇u) + 〈∇u,∇∆fu〉.

Now, in possession of the Böchner type formula given above, we obtain the fol-

lowing

Lemma 1.4.1 (Reilly’s formula for weighted manifolds, [30]) Let (Mn, g, e−fdv)

be a compact weighted manifold, possibly with nonempty boundary ∂M , and u ∈ C3 a
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function. Then∫
M

(
Ricf (∇u,∇u)− (∆fu)2 + |∇2u|2

)
e−fdv (1.8)

= −
∫
∂M

[(
∆fu+Hf

∂u

∂ν

)
∂u

∂ν
−
〈
∇u,∇∂u

∂ν

〉
+ A∂M(∇u,∇u)

]
e−fdµ,

where Hf = H − 〈∇f, ν〉 and A∂M are the f -mean curvature and second fundamental
form of ∂M in M with respect to ν, the exterior unit normal vector, respectively.

1.5 Omori-Yau maximum principle

We started this section by evoking the Omori-Yau maximum principle for the

Laplacian. More precisely, the Omori-Yau maximum principle is said to hold on a

Riemannian manifold (Σn, g) (not necessarily complete) if for any function u ∈ C2(Σ)

with u∗ = supΣ u < +∞, there exists a sequence {pj}j∈N ⊂ Σn with the properties

(i) u(pj) > u∗ − 1

j
, (ii) |∇u(pj)| <

1

j
and (iii) ∆u(pj) <

1

j
,

for every j ∈ N. Equivalently, for any function u ∈ C2(Σ) with u∗ = infΣ > −∞, there

exists a sequence {pj}j∈N ⊂ Σn with the properties

(i) u(pj) < u∗ +
1

j
, (ii) |∇u(pj)| <

1

j
and (iii) ∆u(pj) > −

1

j
,

for every j ∈ N. In the case where the stronger statement

(iii)′ ∇2u(pj) <
1

j
g

concerning the Hessian is satisfied, we say that the Omori-Yau maximum principle for

the Hessian holds on Σn.

With this terminology, the results given by Omori [33] and Yau [50] can be stated

as the following.

Lemma 1.5.1 (Omori [33] and Yau [50]) (i) The Omori-Yau maximum princi-
ple for the Hessian holds on every complete Riemannian manifold with sectional
curvature bounded from below.

(ii) The Omori-Yau maximum principle for the Laplacian holds on every complete
Riemannian manifold with Ricci curvature bounded from below.
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There is a weaker version of the Omori-Yau maximum principle. Similarly, the

Omori-Yau maximum principle holds for the Laplacian ∆ on Σn if for any function

u ∈ C2(Σ) with u∗ = supΣ u < +∞, there exists a sequence {pj}j∈N ⊂ Σn with the

properties

(i) u(pj) > u∗ − 1

j
and (ii) ∆u(pj) <

1

j
,

for every j ∈ N. Equivalently, for any function u ∈ C2(Σ) with u∗ = infΣ > −∞, there

exists a sequence {pj}j∈N ⊂ Σn with the properties

(i) u(pj) < u∗ +
1

j
and (ii) ∆u(pj) > −

1

j
,

for every j ∈ N.

According to [6], a Riemannian manifold Σn is said to be stochastically complete

if for some (and hence, for any) (x, t) ∈ Σ × (0,+∞), the heat kernel p(x, y, t) of the

Laplace-Beltrami operator ∆ satisfies the conservation property∫
Σ

p(x, y, t)dy = 1. (1.9)

From the probabilistic viewpoint, stochastic completeness is the property for a stochas-

tic process to have infinite (intrinsic) lifetime. For the Brownian motion on a manifold,

the conservation property (1.9) means that the total probability of the particle being

found in the state space is constantly equal to 1.

Pigola, Rigoli and Setti [36] showed that Σn is stochastically complete if, and

only if, the weak maximum principle holds for the Laplacian ∆ on Σn.

As the reader can see in our results from chapters 4 and 5, we also explore an

operator which, in a way, generalizes the Laplace-Beltrami operator. More precisely,

for an Riemannian manifold (Σn, g) and a positive semi-definite symmetric tensor T :

X(Σn)× X(Σn)→ R, consider the operator

L(·) = trg(T ◦ ∇2(·)) = g
(
T,∇2(·)

)
. (1.10)

Note that L is elliptic if, and only if, T is positive definite and, in the particular case

where T = g, L is the Laplace-Beltrami operator ∆ on (Σn, g).

With this, following the notation in [5], given a positive semi-definite symmetric

tensor T in Σn satisfying supΣ trgT < +∞, the Omori-Yau maximum principle is said
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to hold on Σn for the operator L(·) = tr(T ◦∇2(·)) if, for any function u ∈ C2(Σ) with

u∗ = supΣ < +∞, there exists a sequence {pj}j∈N ⊂ Σn with the properties

(i) u(pj) > u∗ − 1

j
, (ii) |∇u(pj)| <

1

j
and (iii) Lu(pj) <

1

j
,

for every j ∈ N. Equivalently, for any function u ∈ C2(Σ) with u∗ = infΣ > −∞, there

exists a sequence {pj}j∈N ⊂ Σn with the properties

(i) u(pj) < u∗ +
1

j
, (ii) |∇u(pj)| <

1

j
and (iii) Lu(pj) > −

1

j
,

for every j ∈ N.

We define the radial sectional curvature Krad
Σ of Σn as being the infimum of the

sectional curvature of the 2-planes containing∇d, where d := d(o, ·) : Σn −→ R denotes

the distance function from a fixed reference point o ∈ Σn. We notice this definition

is given only away from the cut locus of Σn \ {o}. Furthermore, let G be a smooth

function on [0,+∞) even at the origin, i.e., G(2k+1)(0) = 0 for each k = 0, 1, ..., and

satisfying the following conditions

(i) G(0) > 0;

(ii) G(t)−1/2 /∈ L1(+∞);

(iii) G′(t) ≥ 0 on [0,+∞);

(iv) lim supt→∞
tG(t1/2)
G(t)

< +∞.

An example of this type of functions is given by

G(t) = t2
N∏
j=1

(
log(j)(t)

)2

, t� 1,

where log(j) stands for the j-th iterated logarithm (see Remark 1.12 in [37]).

In this context, Alías, Impera and Rigoli showed the following:

Lemma 1.5.2 (Alías, Impera and Rigoli [5]) Let (Σn, g) be a complete, non-compact
Riemannian manifold whose radial sectional curvature satisfies

Krad
Σ ≥ −G(d). (1.11)

Then the Omori-Yau maximum principle holds on Σn for any semi-elliptic operator
L(·) = trg(T ◦ ∇2(·)) = g

(
T,∇2(·)

)
with supΣ trgT < +∞.
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1.6 Parabolicity

We also studied the case where Σn is complete and non-compact. Thus, for some

results, we explored the concept of parabolicity. A Riemannian manifold Σn is said

to be parabolic if every subharmonic function on Σn which is bounded from above is

constant, that is, ∆u ≥ 0 and u∗ = supΣ u < +∞ on Σn implies that u ≡ const., for

every u ∈ C2(Σ).

Following the notation in [3], we can make use of φ-divergence of vector fields

and consider on Σn the following operator

Lφ(u) := divφ

(
|∇u|−1ϕ(x, |∇u|)T (∇u, ·)]

)
, (1.12)

where ] denotes the musical isomorphism, φ ∈ C∞(Σ), T is a positive definite symmet-

ric (0, 2)-tensor field on Σn and ϕ : Σ× R+
0 −→ R+

0 satisfies ϕ(·, t) ∈ C0(Σ), for every

t ∈ R+
0 , and ϕ(p, ·) ∈ C0(R+

0 ) ∩ C1(R+), for every p ∈ Σn. Similarly to the definition

of parabolicity already existing in the literature, we say that the Σn is Lφ-parabolic if

the only solutions u : Σn → R of the inequality Lφ(u) ≥ 0 which are bounded from

above are constant.

In [3], Alías, Lira and Rigoli studied conditions that guarantee the Lφ-parabolicity

for the operator Lφ defined in (1.12). More precisely, they assumed that, for some

continuous functions ξ− and ξ+ defined on R+
0 = [0,+∞), the tensor T is positive

definite and satisfies the following bounds

0 < ξ−(d) ≤ T (X,X) ≤ ξ+(d), (1.13)

for every X ∈ TpΣ, with |X| = 1, and for every p ∈ ∂BR, where d = distΣ(p, o) is the

geodesic distance in Σn from some fixed origin o ∈ Σn and BR = BR(o) is the geodesic

ball centered at o with radius R. In addition, they also assumed that ϕ satisfies the

following structure conditions:

(i) ϕ(p, 0) = 0 for every p ∈ Σn;

(ii) ϕ(p, t) > 0 on Σ× R+; (1.14)

(iii) ϕ(p, t) ≤ A(p)tδ on Σ× R+,

for some δ > 0 and A(p) ∈ C0(Σ), with A(p) > 0. Furthermore, we must also have

inf
Σ

ξ−(d(p))

ξ+(d(p))

1

A(p)1/δ
=

1

C
1/δ
0

, (1.15)
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for some C0 > 0.

Remark 1.6.1 Note that condition (ii) in (1.14) is just an ellipticity condition for the
operator L.

Now we highlight the result below which will be used to prove our next results.

Lemma 1.6.2 (Alías, Lira and Rigoli [3]) Let Σn a complete manifold, o ∈ Σn a
fixed origin and d(p) = distΣ(p, o). Let Lφ be the operator defined in (1.12) with T and
ϕ satisfying the assumptions (1.13), (1.14) and (1.15) above. Let ξ+(d) be defined in
(1.13). If

1(∫
∂Bt

ξ+(d)e−ϕ
)1/δ

/∈ L1(+∞),

then Σn is Lφ-parabolic.
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Chapter 2

Spacelike submanifolds immersed in
spacetimes

The behavior of spacelike submanifolds immersed in Lorentzian manifolds is an

important object of study which has aroused a lot of interest in recent years, from

both the physical and mathematical points of view. Into this branch, the trapped

submanifolds appear as an important particular case. The concept of trapped sub-

manifolds, originally formulated by Penrose [35], is related to the causal orientation of

the mean curvature vector field of the submanifold, that is, a spacelike submanifold

of a spacetime is said to be trapped if its mean curvature vector field is timelike. On

the other hand, according to [39], it is possible to define a notion of r-mean curvature

for submanifolds immersed in spacetimes. In this sense, we generalized the concept of

trapped submanifolds to a wider class, considering the r-th mean curvature, since ~Hr+1

is a vector field when r is even. This new generalization justifies for many reasons, but

we emphasize two: we can obtain interesting mathematical uniqueness, generalizing

the already existing results for trapped submanifolds and, on the other hand we recall

Penrose’s paper on trapped surfaces [35] and its importance in Physics describing the

region around a singularity in spacetime, indeed his concept has been generalized for

higher dimensions of the ambient and the submanifold such as in the aforementioned

works. This is crucial since there are models for the universe with more dimensions,

moreover there are spacetimes modeling many other problems with multi-variables (di-



mensions) in Chemistry, Quantum Physics, Biology, Economics, populations behavior

and others. Motivated by this, we introduced the different concepts of r-trapped sub-

manifolds immersed in spacetimes. To do this, we begin section 2.1 by exploring the

concept of causal orientation of a vector field in a Lorentzian manifold to define a

spacetime and, in view of the ambients studied in chapters 3 and 4, we provide two

important examples. In section 2.2, we define the r-th mean curvatures of spacelike

submanifolds immersed in spacetimes and, with this in mind, we introduce the concept

of r-trapped submanifolds. In addition, we define the differential operator L.

2.1 Spacetimes

In General Relativity, a model for the events space is given by a Lorentzian

manifold, which is a smooth manifold Mm equipped with a metric 〈·, ·〉 of index 1

and dimension m ≥ 2. As an example of the Lorentz manifold we can mention the

Minkowski space Rm
1 given by the Euclidean space Rm equipped with the metric

〈v, w〉Rm1 = −v1w1 +
m∑
i=2

viwi,

for all vectors v = {v1, ..., vm} and w = {w1, ..., wm} tangent to Rm
1 . It is important to

note that for each point p in an arbitrary Lorentz manifold (Mm, 〈·, ·〉), we can consider

an orthonormal basis {ei|p, ..., em|p} for TpM and obtain

〈x, y〉 = −x1y1 +
m∑
i=2

xiyi,

for every x =
∑m

i=1 xiei and y =
∑m

i=1 yiei in TpM . Thus, each tangent space of

a Lorentzian manifold is isometric to Minkowski space. Hence, one may say that

Lorentzian manifolds are locally modeled by Minkowski space, just as Riemannian

manifolds are locally modeled by Euclidean space.

Let (Mm, 〈·, ·〉) be a Lorentz manifold and consider a vector field X in X(M). We

will say that X is
timelike if 〈X,X〉 < 0;

lightlike (or null) if 〈X,X〉 = 0 with X(p) 6= 0 ∀p ∈Mm;

spacelike if 〈X,X〉 > 0,
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where 〈X,X〉 is taken at each point p ∈Mm. Now, for each p ∈Mm, consider the set

TpM of all timelike vectors TpM . For u ∈ TpM ,

T C(u) = {v ∈ TpM ; 〈u, v〉 < 0}

is the timecone of TpM containing u. On the other hand, consider a function τ : M →

X(M) that assigns to each point p ∈ Mm a timecone τ(p) in TpM . If this function is

smooth, i.e., for each p ∈Mm there is a (smooth) vector field X on some neighborhood

U of p such that X(q) ∈ τ(q) for each q ∈ U , then τ is called a time-orientation of M .

With that in mind, we will say that a Lorentz manifold (M, 〈 , 〉) is time-orientable if

there is a timelike vector field X ∈ X(M). In this way, a spacetime is a time-oriented

Lorentz manifold.

With the definition of spacetimes and taking into account the results of chapter

4, we will highlight two examples of spacetimes:

Example 2.1.1 (Generalized Robertson-Walker - GRW) The generalized Rober-
tson-Walker GRW spacetime given by −I ×ρ Mn+p as a Lorentzian manifold, that is,
the product manifold time-oriented I×ρMn+p, where n ≥ 2 is a natural number, p is a
non-negative integer, I is an open interval of R, endowed with the Lorentzian warped
metric

〈 , 〉 = −π∗I
(
dt2
)

+ (ρ ◦ πI)2π∗M (〈 , 〉M) ,

where πM and πI denote the canonical projections from I×M onto each factor, 〈 , 〉M
is the induced Riemannian metric on the fiber Mn+p and the positive smooth warping
function ρ : I −→ (0,+∞). Furthermore, we will choose on −I ×ρ Mn+p the time-
orientation given by the globally defined timelike unit vector field

∂t = (∂/∂t)|(t,x) , (t, x) ∈ −I ×ρMn+p.

For every t ∈ I, the slice Mt = {t}×M ⊂ −I ×ρMn+p is an embedded spacelike
hypersurface, in the sense that the metric induced onMt is Riemannian. The restriction
of ∂t toMt gives its future-directed Gauss map. So, it is easy to see thatMt is a totally
umbilical hypersurface in −I×ρMn+p with shape operator (with respect to the future-
directed Gauss map ∂t) given by

Atv = ∇v∂t =
ρ′(t)

ρ(t)
v

for every tangent vector v ∈ T(t,x)Mt, where ∇ denote the Levi-Civita connection of
−I ×ρMn+p.
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Therefore, t ∈ I −→Mt ⊂ −I ×ρMn+p determines a foliation of −I ×ρMn+p by
totally umbilical spacelike hypersurfaces with future constant mean curvature given by

H(t) := − 1

n+ p
tr (At) = −ρ

′(t)

ρ(t)
. (2.1)

Example 2.1.2 (Standard Static Spacetime - SSST) LetMn+p+1 be an (n+p+

1)-dimensional Lorentzian manifold endowed with a timelike Killing vector field K,
where n ≥ 2 is a natural number and p is a non-negative integer. Suppose that the
distribution orthogonal to K, D, is of constant rank and integrable. We denote by
Ψ : Mn+1× I −→M

n+p+1 the flow generated by K, where Mn+1 is an arbitrarily fixed
spacelike integral leaf of D labeled as t = 0, which we will assume to be connected,
and I is the maximal interval of definition. In what follows, we will consider I = R.

In this setting, Mn+p+1 can be regard as a standard static spacetimeMn+p×ρR1,
that is, the product manifold Mn+p × R endowed with the warping metric

〈·, ·〉 = π∗M (〈·, ·〉M)− (ρ ◦ πM)2π∗R
(
dt2
)
, (2.2)

where πM and πR denote the canonical projections fromM×R onto each factor, 〈·, ·〉M
is the induced Riemannian metric on the base Mn+p, R1 is the manifold R endowed
with the metric −dt2 and the warping function ρ ∈ C∞ given by

ρ = |K| =
√
−〈K,K〉,

where | · | denotes the norm of a timelike vector field on Mn+p.

2.2 The r-trapped submanifolds

Let ψ : Σn −→ M
n+m be a connected and oriented spacelike submanifold im-

mersed in a spacetime Mn+m, that is, the metric induced on Σn via ψ is a Riemannian

metric. As usual, we also denote by 〈·, ·〉 the metric on Σn induced via ψ. In this con-

text, let ∇ and ∇ denote the Levi-Civita connections in Mn+m and Σn, respectively.

The Gauss formula of Σn in Mn+m is given by

∇XY = ∇XY − α(X, Y )

for every tangent vector fields X, Y ∈ X(Σ). Here α : X(Σ)× X(Σ) −→ X(Σ)⊥, given

by α(X, Y ) := −(∇XY )⊥, denotes the vector valued second fundamental form of Σn.

With this, the mean curvature vector field ~H of the Σn is defined by

~H =
1

n
tr(α).
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On the other hand, the Weingarten formula is given by

AξX = ∇⊥Xξ −∇Xξ, ∀X ∈ X(Σ) and ξ ∈ X⊥(Σ),

where Aξ : X(Σ)→ X(Σ) denotes the shape operator, with respect to the normal vector

field ξ ∈ X(Σ), defined by

〈AξX, Y 〉 = 〈α(X, Y ), ξ〉 , X, Y ∈ X(Σ).

Furthermore, let {e1, ..., en} be a local orthonormal frame on Σn, r ∈ {1, ..., n}

and denoting α(ei, ej) by αij, we define the r-th mean curvature by

Hr =

 n

r

−1

1

r!

∑
i1,...,ir
j1,...,jr

δi1...irj1...jr
〈αi1j1 , αi2j2〉 · · ·

〈
αir−1jr−1 , αirjr

〉
,

for r even, and

~Hr =

 n

r

−1

1

r!

∑
i1,...,ir
j1,...,jr

δi1...irj1...jr
〈αi1j1 , αi2j2〉 · · ·

〈
αir−2jr−2 , αir−1jr−1

〉
αirjr ,

for r odd, where

δi1...irj1...jr
=

 0, if ik = il for some k 6= l or if {i1, ..., ir} 6= {j1, ..., jr} as sets;

sign of the permutation (i1, ..., ir) 7−→ (j1, ..., jr).

By convention, we put H0 = 1. Moreover, it is easy to show that

~H1 =
1

n

n∑
i=1

αii

= ~H

and, consequently, the definition of the r-th mean curvature generalizes the definition

of mean curvature vector field.

Remark 2.2.1 We have that δi1...irj1...jr
are also known as generalized Kronecker symbols

and given by

δi1...irj1...jr
= det


δi1j1 δi1j2 · · · δi1jr
δi2j1 δi2j2 · · · δi2jr
...

... . . . ...
δirj1 δirj2 · · · δirjr

 .
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If the codimension of Σn is 1, is convenient to work with the real valued second

fundamental form b given by b(X, Y ) = −〈α(X, Y ), N〉 and, consequently, the r-th

mean curvatures of odd order can be defined as a real valued (we replace the vector

field ~Hr by the scalar −〈 ~Hr, N〉). In this case, choosing orthonormal frame {e1, ..., en}

such that b(ei, ej) = kiδij, we will have

Hr = (−1)r

 n

r

−1 ∑
i1<...<ir

ki1 · · · kir ,

for every r ∈ {1, ..., n}.

Let {e1, ..., en} be the dual coframe of {e1, ..., en}, we define the r-th Newton

transformation Tr of α by

Tr =
1

r!

∑
i,j

∑
i1,...,ir
j1,...,jr

δii1...irjj1...jr
〈αi1j1 , αi2j2〉 · · ·

〈
αir−1jr−1 , αirjr

〉
ei ⊗ ej,

for r even, and

Tr =
1

r!

∑
i,j

∑
i1,...,ir
j1,...,jr

δii1...irjj1...jr
〈αi1j1 , αi2j2〉 · · ·

〈
αir−2jr−2 , αir−1jr−1

〉
αirjr ⊗ ei ⊗ ej,

for r odd. By convention T0 = 〈·, ·〉.

Lemma 2.2.2 For 0 ≤ r < n even, we get that:

(i) tr(Tr) = k(r)Hr;

(ii)
∑

ij Tr(ei, ej)α(ei, ej) = k(r) ~Hr+1,

where k(r) = (n− r)

(
n

r

)
is a constant.

Proof. It follows easily from the definitions of Tr and Hr, so we will omit it.

Some of our results are on the case where the ambient space has constant sectional

curvature. Thus, the following Lemma is necessary.

Lemma 2.2.3 If Mn+m has constant sectional curvature, then div(Tr) = 0.

Proof. For the proof of this result, we will follow reasoning analogous to proof of the

Lemma 2.1 in [26]. Since the ambient space has constant sectional curvature, it follows

from Codazzi’s equation and some straighforward calculation that

div(Tr) = − div(Tr).
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Therefore div(Tr) = 0.

With these mathematical objects, Tr and Hr, we define the different types of r-

trapped submanifolds. Given 0 ≤ r < n even, we will say that a spacelike submanifold

ψ : Σn −→ M
n+m is future (past) r-trapped submanifold if ~Hr+1 is timelike and it is

future (past) pointing. If ~Hr+1 is lightlike and it is future (past) pointing everywhere

on Σn then the submanifold is said to be marginally future (past) r-trapped. If ~Hr+1 is

causal or zero, such that it is future (past) pointing when it is causal, the submanifold

is said to be weakly future (past) r-trapped. Finally, the submanifold is said to be

r-minimal when ~Hr+1 is identically zero.

We are interested in working with an operator which, in a way, generalizes the

Laplace-Beltrami operator. More precisely, for an arbitrary Riemannian manifold

(Nn, gN) and a positive semi-definite symmetric tensor T in Nn, consider the oper-

ator L(·) = trgN (T ◦D2(·)) = gN
(
T,D2(·)

)
, where D2 denotes the Hessian in (Nn, gN).

Note that L is elliptic if and only if T is positive definite and, in the particular case

where T = gN , L is the Laplace-Beltrami operator ∆gN on (Nn, gN). In this sense,

turning our attention to the spacelike submanifold Σn, associated to each globally de-

fined Newton tensor Tr : X(Σ) → X(Σ) with 0 ≤ r ≤ n even, we may consider the

second order differential operator Lr : C∞(Σ) −→ C∞(Σ) given by

Lru := 〈∇2u, Tr〉

= div(Tr(∇u))− 〈div Tr,∇u〉.

Thus, Lr generalizes the Laplace-Beltrame operator ∆ on (Σn, 〈·, ·〉) in the sense that

L0(·) = ∆(·), since T0 = 〈·, ·〉. If, in addition, we assume that Mn+p+1 has constant

sectional curvature, lemma 2.2.3 provides

Lru = div(Tr(∇u)), for every u ∈ C∞(Σ). (2.3)

Remark 2.2.4 If the codimension of Σn is 1, it is not necessary for 0 ≤ r ≤ n to be
even in the definition of the operator Lr given above.
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Chapter 3

The Generalized Robertson-Walker
case

Recently, de Lima, Santos and Velásquez [43] obtained rigidity for trapped sub-

manifolds in Lorentzian spaces forms, they considered assumptions such as parallel

mean curvature and pseudo-umbilicity. Later, Alías, Cánovas and Colares [1], consid-

ered codimension two trapped submanifolds immersed in generalized Robertson-Walker

spacetimes and obtained results of nonexistence and rigidity. Moreover, working in a

similar context, Alías, Impera and Rigoli [4], analyzed the problem of uniqueness for

space-like hypersurfaces with constant mean order curvature in generalized Robertson-

Walker spacetimes. Motivated by these works, we dedicate this chapter to the study of

spacelike submanifolds immersed in generalized Robertson-Walker (GRW) spacetimes.

More precisely, we obtained results of rigidity and non-existence for spacelike subman-

ifolds ψ : Σn → −I ×ρ Mn+p based on a causal orientation of the (r + 1)-th mean

curvature ~Hr+1, with 0 ≤ r < n even. We started by exploring the n-dimensional

r-trapped submanifolds contained in slices from the ambient space −I ×ρMn+1. With

this, we provide a condition for whether or not such a submanifold is r-trapped (see

equation 3.3). Right after that, we will calculate the action of the operator Lr in the

function height h = πI ◦ψ and in a primitive function σ of the warping function ρ in the

search for a tool to help our results. With this tool in mind, we address some results

of non-existence and rigidity. Finally, we provide examples of r-trapped submanifolds.



It is important to note that the concepts of trapped and r-trapped submanifolds are

independent and that the second generalizes the first, since 0-trapped submanifolds

coincides with the trapped in the classic sense (see example 3.5.1)

3.1 The r-trapped spacelike submanifolds contained
in the slices

Following the notation in [1], let (Mn+1, 〈·, ·〉M) be a Riemannian manifold and

consider a hypersurface φ : Σn −→Mn+1 with induced metric

〈·, ·〉Σ = φ∗
(
〈·, ·〉M

)
.

Now, for t0 ∈ I fixed, consider the immersion φt0 : Σn −→ −I ×ρMn+1 given by

φt0(p) =
(
t0, φ(p)

)
, p ∈ Σn.

Note that φt0 is a spacelike immersion of Σn into −I ×f Mn+1 which is contained in

the slice Mt0 = {t0} ×Mn+1 and induced metric

〈·, ·〉t0 = φ∗
(
〈·, ·〉

)
(3.1)

= ρ(t0)2 〈·, ·〉Σ ,

where 〈·, ·〉 is the Lorentzian metric of −I ×ρMn+1.

Conversely, let us consider ψ : Σn → −I ×ρ Mn+1 a spacelike immersion which

is contained in a slice Mt0 = {t0} ×Mn+1. Then, it is not difficult to see that the

projection φ : Σn → Mn+1 given by the relation ψ(p) = (t0, φ(p)) = φt0(p) yields an

immersed hypersurface, for every p ∈ Σn.

Let N denote a (locally defined) unit normal vector field of the hypersurface

φ : Σn −→Mn+1 and note that

〈N,N〉 = ρ(t0)2 〈N,N〉Σ

= ρ(t0)2.

then

ηt0(p) =
1

ρ(t0)
N(p) and ξt0(p) = ∂t|(t0,φ(p)) , p ∈ Σn,
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define a local orthonormal frame of vector fields normal along the immersion φt0 , with

〈ηt0 , ηt0〉 = 1, 〈ηt0 , ξt0〉 = 0 and 〈ξt0 , ξt0〉 = −1.

So, it is easy to see that the second fundamental form αt0 of the immersion φt0 can be

written as

αt0(X, Y ) =
1

ρ(t0)2
〈AX, Y 〉t0 N −

ρ′(t0)

ρ(t0)
〈X, Y 〉t0 ξt0 , ∀ X, Y ∈ X(Σ),

where A : X(Σ) −→ X(Σ) is the shape operator of φ : Σn −→Mn+1 with respect to N .

For a local orthonormal frame {E1, E2, ..., En} on (Σn, 〈·, ·〉Σ) that diagonalizes

A, i.e.,

AEi = kiEi, for i = 1, 2, ..., n,

we define the r-mean curvature of the immersion φ : Σn →Mn+1 by

Hr =

 n

r

−1 ∑
i1<···<ir

ki1 · · · kir ,

for r ∈ {1, 2, ..., n}, and H0 = 1. Furthermore, by the relation (3.1), we have that

{e1, e2, ..., en}, with ei =
(
1/ρ(t0)

)
Ei for i = 1, 2, ..., n, is a local orthonormal frame on

(Σn, 〈·, ·〉t0) and, with this,

αt0(ei, ej) =
1

ρ(t0)2
〈Aei, ej〉t0 N −

ρ′(t0)

ρ(t0)
〈ei, ej〉t0 ξt0

=
1

f(τ)3
〈AEi, ej〉τ N −

f ′(τ)

f(τ)
δijξτ

=
1

f(τ)3
〈kiEi, ej〉τ N −

f ′(τ)

f(τ)
δijξτ (3.2)

=
1

ρ(t0)2
kiδijN −

ρ′(t0)

ρ(t0)
δijξt0 .

Consequently, the mean curvature vector field ~Ht0 of the immersion φt0 is given

by
→
Ht0=

H
ρ(t0)2

N − ρ′(t0)

ρ(t0)
ξt0 ,

where H = H1 is the mean curvature of the immersion φ. Further,

〈
→
Ht0 ,

→
Ht0〉 =

H2 − ρ′(t0)2

ρ(t0)2
(3.3)
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and, for 0 < r ≤ n odd,

~Hr =
1

ρ(t0)r

r∑
s=0

c(n, r, s)ρ′(t0)r−sHrυs,

where c(n, r, s) is a constant that depends only on n, r and s, and

υs =

 ηt0 , if s is even;

ξt0 , if s is odd.

3.2 Key Lemma

Let Mn+p+1
= −I ×ρ Mn+p be a generalized Robertson-Walker spacetime and

consider a spacelike submanifold ψ : Σn →M
n+p+1. We define the height function and

the angle functions of Σn in Mn+p+1 by h := πR ◦ψ : Σn → R and θl := 〈Nl, ∂t〉, where

Nl, l = 1, . . . , p+ 1 denotes unit normal vector fields on Σn with N1 = N timelike. On

the other hand, from a simple calculation, we obtain

∇πR = −〈∇πR, ∂t〉∂t

= −∂t.

So, from the decomposition ∂t = (∂t)
> +

∑p+1
l=1 εlΘlNl, where ε1 = −1 and εl = 1 in

other cases, it is easy to see that

∇h = − (∂t)
> .

Consequently, we have the following

Lemma 3.2.1 Let Σn be a spacelike submanifold immersed in a GRW spacetime −I×ρ
Mn+p. If 0 ≤ r < n is even, then

(i) Lr(h) = −(ρ′(h)/ρ(h))k(r)Hr − (ρ′(h)/ρ(h))Tr (∇h,∇h) + k(r)〈 ~Hr+1, ∂t〉;

(ii) Lrσ(h) = k(r)
(
−ρ′(h)Hr + ρ(h)〈 ~Hr+1, ∂t〉

)
, where σ is a primitive of ρ.
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Proof. We already know that ∇h = −(∂t)
> and ∂t = (∂t)

> +
∑p+1

l=1 εlΘlNl. So,

∇2h(ei, ej) =
〈
∇ei∇h, ej

〉
=

〈
∇ei(−∂>t ), ej

〉
= −

〈
∇ei

(
∂t −

p+1∑
l=1

εlΘlNl

)
, ej

〉

= −
〈
∇ei∂t, ej

〉
+

〈
∇ei

(
p+1∑
l=1

εlΘlNl

)
, ej

〉

= −
〈
∇ei∂t, ej

〉
+

p+1∑
l=1

〈
∇ei (εlΘlNl) , ej

〉
= −

〈
∇ei∂t, ej

〉
+

p+1∑
l=1

εlΘl

〈
∇eiNl, ej

〉
= −

〈
∇ei∂t, ej

〉
−

p+1∑
l=1

εlΘl

〈
Nl,∇eiej

〉
= −

〈
∇ei∂t, ej

〉
+

p+1∑
l=1

〈α(ei, ej), εlΘlNl〉 .

Since

〈
∇ei∂t, ej

〉
=
ρ′(h)

ρ(h)
〈ei, ej〉+

ρ′(h)

ρ(h)
〈ei, ∂t〉 〈ej, ∂t〉 ,

it follows that∑
ij

Tr(ei, ej)∇2h(ei, ej) = −
∑
ij

Tr(ei, ej)

(
ρ′(h) 〈ei, ej〉+

ρ′(h)

ρ(h)
〈ei, ∂t〉 〈ej, ∂t〉

)
+k(r)〈 ~Hr+1, ∂t〉

= −ρ
′(h)

ρ(h)
k(r)Hr −

ρ′(h)

ρ(h)
Tr

(∑
i

〈ei, ∂t〉 ei,
∑
j

〈ej, ∂t〉 ej

)
+k(r)〈 ~Hr+1, ∂t〉

= −ρ
′(h)

ρ(h)
k(r)Hr −

ρ′(h)

ρ(h)
Tr (∇h,∇h)

+k(r)〈 ~Hr+1, ∂t〉.

Finally, to show item (ii), note that

∇2(f ◦ h)(X, Y ) = f ′′(h)〈∇h,X〉〈∇h, Y 〉+ f ′(h)∇2h(X, Y ),
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for any smooth function f : R −→ R, where X is a vector field along Σn. Therefore,

Lr(f ◦ h) = 〈∇2(f ◦ h), Tr〉

=
∑
ij

Tr(ei, ej)f
′′(h)〈∇h, ei〉〈∇h, ej〉+

∑
ij

f ′(h)∇2h(ei, ej)Tr(ei, ej)

= f ′′(h)Tr(∇h,∇h) + f ′(h)Lr(h)

The result appears replacing Lrh found in item (i) in the above equation and making

f = σ.

3.3 Some nonexistence results

This section is devoted to establish nonexistence results concerning spacelike sub-

manifolds in a GRW spacetime.

Closed Case

Initially, take a GRW spacetime Mn+p+1
= −I ×ρMn+p with constant sectional

curvature and consider a closed spacelike submanifold ψ : Σn → −I ×ρ Mn+p. Note

that, for item (ii) in Lemma 3.2.1,

div(Tr(∇σ(h)) = Lrσ(h) = k(r)
(
−ρ′(h)Hr + ρ(h)〈 ~Hr+1, ∂t〉

)
.

Integrating both sides of the previous equation on Σn and applying Stokes theorem,

we obtain the following integral identity∫
Σ

ρ′(h)HrdΣ =

∫
Σ

ρ(h)〈 ~Hr+1, ∂t〉dΣ, (3.4)

where dΣ is the volume element of Σn. With this we are able to enunciate and prove

our first nonexistence result as it follows.

Proposition 3.3.1 For 0 ≤ r < n even, there exist no closed submanifold r-minimal
immersed in a GRW spacetime with constant seccional curvature such that ρ′(h) > 0

and Hr > 0.

Lemma 3.2.1 is a key part of our results. We will use items (i) and (ii) of it to

obtain auxiliary Lemmas that will be used in the proof of our main results.
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Lemma 3.3.2 Let −I ×ρ Mn+p be a GRW spacetime and let ψ : Σn → −I ×ρ Mn+p

be a closed spacelike submanifold such that Tr ≥ 0 and Hr > 0, for some 0 ≤ r < n

even. Then

(i) min
Σ

〈
~Hr+1

Hr

, ∂t

〉
≤ −H(h∗) where h∗ = maxΣ h;

(ii) max
Σ

〈
~Hr+1

Hr

, ∂t

〉
≥ −H(h∗) where h∗ = minΣ h.

Proof. Since σ′ = ρ > 0, the function σ(h) is increasing and attains the maximum at

the same point of h. So, the item (ii) of Lemma 3.2.1 and the fact that Tr ≥ 0 provide

0 ≥
〈
Tr,∇2σ(h∗)

〉
= k(r)

(
−ρ′(h∗)Hr + ρ(h∗)〈 ~Hr+1, ∂t〉|h∗

)
at the maximum point. Since Hr > 0, it follows that

min
Σ

〈
~Hr+1

Hr

, ∂t

〉
≤

〈
~Hr+1

Hr

, ∂t

〉∣∣∣
h∗
≤ ρ′

ρ
(h∗) = −H(h∗).

The proof of (ii) is similar, working at the minimum point.

By items (i) and (ii) of Lemma 3.3.2 above, we have that the sign of 〈 ~Hr+1

Hr
, ∂t〉 is

related to the sign of −H in h∗, h∗ ∈ I and, within our proposal, this can be translated

into the results below.

Theorem 3.3.3 Let −I ×ρMn+p be a GRW spacetime and 0 ≤ r < n even.

(i) If H(t) ≥ 0, there exist no closed weakly past r−trapped submanifold in −I ×ρ
Mn+p such that Tr ≥ 0 and Hr > 0.

(ii) If H(t) ≤ 0, there exist no closed weakly future r−trapped submanifold in −I ×ρ
Mn+p such that Tr ≥ 0 and Hr > 0.

Proof. For item (i), just note that for any weakly past r-trapped submanifold Σ in

−I ×ρMn+p such that Tr ≥ 0 and Hr > 0

H(h∗) ≤ −min
Σ

〈
~Hr+1

Hr

, ∂t

〉
< 0.

Item (ii) follows similarly.
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Noncompact case

A spacelike submanifold ψ : Σ −→ −I ×ρMn+p is called bounded away from the

future infinity at height t∗ ∈ I if

ψ(Σ) ⊂
{

(t, x) ∈ −I ×ρMn+p; t ≤ t∗
}
.

Similarly, we say that a spacelike submanifold ψ : Σ −→ −I ×ρMn+p is bounded away

from the past infinity at height t∗ ∈ I if

ψ(Σ) ⊂
{

(t, x) ∈ −I ×ρMn+p; t ≥ t∗
}
.

In this sense, Σn is said to be bounded away from the infinity of −I ×ρ Mn+p if it is

bounded away from the past and future infinity.

Lemma 3.3.4 Let −I×ρMn+p be a GRW spacetime and let ψ : Σn → −I×ρMn+p be
a stochastically complete spacelike submanifold bounded away from the future infinity.
Moreover, for some 0 ≤ r < n even, suppose that Lr ≤ β∆ and Hr > a > 0, where β
and a are positive constants. Then

inf
Σ

〈
~Hr+1

Hr

, ∂t

〉
≤ −H(h∗)

where h∗ = supΣ h.

Proof. Applying the weak maximum principle to the function u = σ(h), which satisfies

u∗ = supΣ u = σ(h∗). By hypothesis, we have that u∗ < +∞ because Σn is bounded

away from the future infinity. So, there exists a sequence of points {pj}j∈N in Σn such

that

(i) u(pj) > u∗ − 1

j
and (ii) ∆u(pj) <

1

j
.

By Lemma 3.2.1 item (ii), follows that

β

k(r)j
>

β

k(r)
∆u(pj)

≥ 1

k(r)
Lru(pj)

= −ρ′(h(pj))Hr(pj) + ρ(h(pj))〈 ~Hr+1, ∂t〉(pj).

Therefore,

inf
Σ

〈
~Hr+1

Hr

, ∂t

〉
≤

〈
~Hr+1

Hr

, ∂t

〉
(pj)

<
1

ρ(h(pj))

(
ρ′(h(pj)) +

β

Hr(pj)k(r)j

)
.

40



Making j → +∞, we have get

inf
Σ

〈
~Hr+1

Hr

, ∂t

〉
≤ −H(h∗).

Here, we use the fact that limj→+∞ h(pj) = h∗ because σ is strictly increasing.

We recall that a GRW spacetime M = −I ×ρMn+p is called spatially expanding

if ρ′(t) > 0. Analogously, M = −I ×ρMn+p is called spatially contracting if ρ′(t) < 0.

Analogously to the case of closed submanifolds, we have the following nonexistence

result for stochastically complete submanifolds.

Theorem 3.3.5 Let M = −I ×ρ Mn+p be a spatially expanding GRW spacetime and
0 ≤ r < n even. Then there exist no stochastically complete weakly past r−trapped
submanifold in −I ×ρMn+p bounded away from future infinity such that Lr ≤ β∆ and
Hr > a > 0, where β and a are positive constants.

Proof. Just note that for any weakly past r-trapped submanifold Σn in −I ×ρMn+p

such that Hr > 0

H(h∗) ≤ − inf
Σ

〈
~Hr+1

Hr

, ∂t

〉
≤ 0.

In view of Lemma 1.5.2, we have that the condition (1.11) implies the principle

of maximum for the operator L(·) = trg(T ◦∇2(·)) = g
(
T,∇2(·)

)
, where T is a positive

semi-definite symmetric tensor with supΣ trgT < +∞.

Lemma 3.3.6 Let −I×ρMn+p be a GRW spacetime and let ψ : Σn → −I×ρMn+p be a
complete, non-compact spacelike submanifold whose radial sectional curvature satisfies

Krad
Σ ≥ −G(d). (3.5)

Moreover, for some 0 ≤ r < n even, suppose that supΣ trTr < +∞, Tr ≥ 0 and
Hr > a > 0, for some constant a.

(i) Assume that Σn is bounded away from the future infinity. Then

inf
Σ

〈
~Hr+1

Hr

, ∂t

〉
≤ −H(h∗)

where h∗ = supΣ h;

41



(ii) Assume that Σn is bounded away from the past infinity. Then

sup
Σ

〈
~Hr+1

Hr

, ∂t

〉
≥ −H(h∗)

where h∗ = infΣ h.

Proof. Initially, by the Corollary 3.3 in [5], we have that the Omori-Yau maximum

principle holds on Σn for positive semi-definite operator Lr(·) = 〈Tr,∇2(·)〉. We start

by applying the maximum principle to the function u = σ(h), which satisfies u∗ =

supΣ u = σ(h∗) and u∗ = infΣ u = σ(h∗), since σ′ = ρ > 0 (i.e., σ is strictly increasing).

For item (i), we have that u∗ < +∞. So, there exists a sequence of points {pj}j∈N in

Σn such that

(i) u(pj) > u∗ − 1

j
, (ii) |∇u(pj)| <

1

j
, (iii) Lru(pj) <

1

j
.

By Lemma 3.2.1 item (ii), it follows

1

k(r)j
>

1

k(r)
Lru(pj)

= −ρ′(h(pj))Hr(pj) + ρ(h(pj))〈 ~Hr+1, ∂t〉(pj).

Therefore,

inf
Σ

〈
~Hr+1

Hr

, ∂t

〉
≤

〈
~Hr+1

Hr

, ∂t

〉
(pj)

<
1

ρ(h(pj))

(
ρ′(h(pj)) +

1

Hr(pj)
k(r)j

)
.

Making j → +∞, we have

inf
Σ

〈
~Hr+1

Hr

, ∂t

〉
≤ −H(h∗).

Here, we use the fact that limj→+∞ h(pj) = h∗ because σ is strictly increasing.

The proof of (ii) is similar.

Using Lemma 3.3.6 above, we obtain the nonexistence of weakly future r-trapped

complete bounded away from the infinity past in a spatially expanding GRW spacetime

whenever the radial curvature has a control from below.

Theorem 3.3.7 Let −I ×ρMn+p be a GRW spacetime and 0 ≤ r < n even.
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(i) Let t∗ ∈ I and assume that H(t) > 0 for t ≤ t∗. Then there exist no weakly
past r-trapped complete, non-compact spacelike submanifold bounded away from
the future infinity at height t∗ immersed into −I×ρMn+p satisfying the condition
(3.5) and such that Tr ≥ 0, supΣ trTr < +∞ and Hr > a > 0, for some constant
a.

(ii) Let t∗ ∈ I and assume that H(t) < 0 for t ≥ t∗. Then there exist no weakly
future r-trapped complete, non-compact spacelike submanifold bounded away from
the past infinity at height t∗ immersed into −I ×ρMn+p satisfying the condition
(3.5) and such that Tr ≥ 0, supΣ trTr < +∞ and Hr > a > 0, for some constant
a.

Proof. Just note that, for any weakly past r-trapped submanifold Σn,

inf
Σ
〈 ~Hr+1, ∂t〉 ≥ 0

and, consequently, the item (i) of Lemma 3.3.6 provides

H(h∗) ≤ − inf
Σ

〈
~Hr+1

Hr

, ∂t

〉
≤ 0.

3.4 Some Rigidity Results

In this section we impose conditions for a spacelike submanifold to be contained

in a t0-slice of GRW spacetime.

Closed case

Theorem 3.4.1 Let −I ×ρMn+p be a GRW spacetime such that (log ρ)′′ ≤ 0, and let
ψ : Σn → −I ×ρMn+p be a closed spacelike submanifold. If for some 0 ≤ r < n even,
Tr ≥ 0 and Hr > 0, then

min
Σ

〈
~Hr+1

Hr

, ∂t

〉
≤ −H(h∗) ≤ −H(h∗) ≤ max

Σ

〈
~Hr+1

Hr

, ∂t

〉
. (3.6)

Consequently, if 〈 ~Hr+1

Hr
, ∂t〉 is constant and Tr > 0, then ψ(Σ) is contained in a slice

{t0} ×Mn+p, for some t0 ∈ I.

Proof. From Lemma 3.3.2

min
Σ

〈
~Hr+1

Hr

, ∂t

〉
≤ −H(h∗)
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and

−H(h∗) ≤ max
Σ

〈
~Hr+1

Hr

, ∂t

〉
.

The inequality (3.6) follows, since −H(h∗) ≤ −H(h∗) because (log ρ)′′ ≤ 0.

Now, assuming that 〈 ~Hr+1

Hr
, ∂t〉 is constant, we have

min
Σ

〈
~Hr+1

Hr

, ∂t

〉
=

〈
~Hr+1

Hr

, ∂t

〉
= max

Σ

〈
~Hr+1

Hr

, ∂t

〉
and, with this, 〈

~Hr+1

Hr

, ∂t

〉
≤ −H(h∗) ≤ −H(h∗) ≤

〈
~Hr+1

Hr

, ∂t

〉
.

Thus, −H(h) = ρ′(h)/ρ(h) is constant and

ρ′(h)

ρ(h)
=

〈
~Hr+1

Hr

, ∂t

〉
.

Consequently,

Lrσ(h) = k(r)(−ρ′(h)Hr + ρ(h)〈 ~Hr+1, ∂t〉) = 0 on Σn.

Since Tr is positive defined we have that Lr is an elliptic operator defined in

the closed Riemannian Σn, hence σ(h) is constant on Σn, and since σ is an increasing

function this means that h is itself constant on Σn. Hence, ψ(Σ) is contained in a slice

{t0} ×M , for some t0 ∈ I.

We point out that the above result is an extension of Theorem 5.1 of [2] for

submanifolds, when r is even.

Paying our attention to the component of the vector field ~Hr+1 which is orthogonal

to ∂t, we obtain the following version of Theorem 3.4.1.

Theorem 3.4.2 Let −I ×ρMn+p be a GRW spacetime such that (log ρ)′′ ≤ 0 and, for
some 0 ≤ r < n even, let φ : Σn → −I×ρMn+p be a closed marginally future r-trapped
submanifold. If Tr ≥ 0 and Hr > 0, then

min
Σ

| ~H0
r+1|
Hr

≤ H(h∗) ≤ H(h∗) ≤ max
Σ

| ~H0
r+1|
Hr

(3.7)

where ~H0
r+1 stands for the spacelike component of the lightlike vector field ~Hr+1 which is

orthogonal to ∂t. Consequently, if
| ~H0

r+1|
Hr

is constant and Tr > 0, then ψ(Σ) is contained
in a slice {t0} ×Mn+p.
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Proof. By hypothesis, we can decompose ~Hr+1 as

~Hr+1 = ~H0
r+1 − 〈 ~Hr+1, ∂t〉∂t

and, with this, we get〈
~Hr+1

Hr

,
~Hr+1

Hr

〉
=

1

H2
r

| ~H0
r+1|2 −

1

H2
r

〈 ~Hr+1, ∂t〉2.

Consequently,

0 >

〈
~Hr+1

Hr

, ∂t

〉
= −
| ~H0

r+1|
Hr

because Σn is marginally future r-trapped. So, it follows from Lemma 3.3.2 that

min
Σ

| ~H0
r+1|
Hr

= −max
Σ

〈
~Hr+1

Hr

, ∂t

〉
≤ H(h∗),

and

H(h∗) ≤ −min
Σ

〈
~Hr+1

Hr

, ∂t

〉
= max

Σ

| ~H0
r+1|
Hr

.

Inequality (3.7) follows from the fact that (log ρ)′′ ≤ 0, that is, H(t) is non-decreasing

and H(h∗) ≤ H(h∗).

Now, suppose that |
~H0
r+1|
Hr

is constant. Thus, since H(t) is non-decreasing, H(t) =

| ~H0
r+1|
Hr

= const. on [h∗, h
∗], i.e.,

−ρ
′(h)

ρ(h)
= H(h) =

| ~H0
r+1|
Hr

= −

〈
~Hr+1

Hr

, ∂t

〉
on Σn.

Therefore,

Lrσ(h) = k(r)(−ρ′(h)Hr + ρ(h)〈 ~Hr+1, ∂t〉) = 0 on Σn.

The result follows since Lr is an elliptic operator and σ is an increasing function because

Tr > 0 and σ′ = ρ > 0.

We emphasize the previous result generalizes Theorem 5.5 of [1] for r-mean cur-

vature and that p ≥ 1.

Corollary 3.4.3 Let −I ×ρMn+p be a GRW spacetime such that (log ρ)′′ ≤ 0, and let
ψ : Σn → −I×ρMn+p be a closed marginally r-trapped spacelike submanifold, for some
0 ≤ r < n even. Moreover, suppose that Tr ≥ 0 and Hr > 0.

(i) If H(t) ≥ 0, then Σn is marginally future r-trapped and

min
Σ

| ~H0
r+1|
Hr

≤ H(h∗) ≤ H(h∗) ≤ max
Σ

| ~H0
r+1|
Hr

.
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(ii) If H(t) ≤ 0, then Σn is marginally past r-trapped and

min
Σ

| ~H0
r+1|
Hr

≤ −H(h∗) ≤ −H(h∗) ≤ max
Σ

| ~H0
r+1|
Hr

.

Proof. Assuming H(t) ≥ 0 and using Theorem 3.3.3 we obtain that then Σn is

necessarily marginally future r-trapped. To conclude the demonstration of item (i),

just apply the Theorem 3.4.2 and obtain

min
Σ

| ~H0
r+1|
Hr

≤ H(h∗) ≤ H(h∗) ≤ max
Σ

| ~H0
r+1|
Hr

.

Noncompact case

We will need the warping function of the ambient space to satisfy some additional

restriction. More precisely, let us suppose that −I×ρMn+p is a proper GRW spacetime,

which is when the warping function ρ satisfies ρ′(t) = 0 only at isolated points of I.

Theorem 3.4.4 Let −I ×ρ Mn+p be a GRW spacetime with (log ρ)′′ ≤ 0 and let
ψ : Σn → −I ×ρ Mn+p be a complete, non-compact spacelike submanifold whose ra-
dial sectional curvature satisfies the condition (3.5). Moreover, for some 0 ≤ r < n

even, suppose that Σn is marginally future r-trapped, bounded away from the infinity,
supΣ trTr < +∞, Tr ≥ 0 and Hr > a > 0, for some constant a. Then

inf
Σ

〈
~Hr+1

Hr

, ∂t

〉
≤ −H(h∗) ≤ −H(h∗) ≤ sup

Σ

〈
~Hr+1

Hr

, ∂t

〉
. (3.8)

Consequently, if 〈 ~Hr+1

Hr
, ∂t〉 is constant and (log ρ)′′ = 0 only at isolated points, then

ψ(Σ) is contained in a slice {t0} ×Mn+p, for some t0 ∈ I.

Proof. The inequality (3.8) follows from Lemma 3.3.6 because (log ρ)′′ ≤ 0, that is, H

is non-decreasing. Now, assuming that 〈 ~Hr+1

Hr
, ∂t〉 is constant, we have

H(h∗) = H(h∗) =

〈
~Hr+1

Hr

, ∂t

〉
= const.

Since that (log ρ)′′(t) = 0 holds only at isolated points of I it implies that H(t) is

strictly increasing on I, henceforth we have h∗ = h∗ and h is constant on Σn.

Remark 3.4.5 We can also obtain an analogous of the above theorem for the marginally
past r-trapped case. On the other hand, since |〈 ~Hr+1, ∂t〉| = | ~H0

r+1| for the marginally
r-trapped case, this theorem holds if we replace 〈 ~Hr+1, ∂t〉 for length of spacelike com-
ponent −| ~H0

r+1|.
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As in Corollary 3.4.3, we can use the Theorem 3.3.7 and previous remark to get

the following result.

Corollary 3.4.6 Let −I ×ρ Mn+p be a GRW spacetime with (log ρ)′′ ≤ 0 and let
ψ : Σn → −I ×ρMn+p be a complete, non-compact spacelike submanifold whose radial
sectional curvature satisfies the condition (3.5). Moreover, for some 0 ≤ r < n even,
suppose that Σn is marginally r-trapped, bounded away from the infinity, supΣ trTr <

+∞, Tr ≥ 0 and Hr > a > 0, for some constant a.

(i) If H(t) > 0, then Σn is marginally future r-trapped and

inf
Σ

| ~H0
r+1|
Hr

≤ H(h∗) ≤ H(h∗) ≤ sup
Σ

| ~H0
r+1|
Hr

.

(ii) If H(t) < 0, then Σn is marginally past r-trapped and

inf
Σ

| ~H0
r+1|
Hr

≤ −H(h∗) ≤ −H(h∗) ≤ sup
Σ

| ~H0
r+1|
Hr

.

Now, we recall that a Riemannian manifold Σn is said to be parabolic if every

subharmonic function on Σn which is bounded from above is constant, that is, ∆u ≥ 0

and u∗ = supΣ u < +∞ on Σn implies that u ≡ constant.

Theorem 3.4.7 Let −I×ρMn+p be a GRW spacetime and let ψ : Σn → −I×ρMn+p be
a complete parabolic spacelike submanifold which bounded away from the future infinity.
Suppose that, for some 0 ≤ r < n even, Σn is weakly past r-trapped, Hr > 0 and
Lr ≤ β∆, for some positive constant β. If

ρ′(h)

ρ(h)
Hr ≤ | ~Hr+1|, (3.9)

where | | =
√
|〈 , 〉|, then ψ(Σ) is contained in the slice {t0} ×Mn, for some t0 ∈ I.

Proof. Initially, note that for any weakly past r-trapped submanifold Σn one has

〈 ~Hr+1, ∂t〉 > 0 on Σn. On the other hand, the Lemma 3.2.1 item (ii) provides

∆σ(h) ≥ Lr(σ(h))

β
=

k(r)ρ(h)

β

(
−ρ
′(h)

ρ(h)
Hr + 〈 ~Hr+1, ∂t〉

)
≥ k(r)ρ(h)

(
−ρ
′(h)

ρ(h)
Hr + | ~Hr+1|

)
≥ 0.

Therefore the function σ(h) is subharmonic and, since the Σn is parabolic and

σ(h) is bounded from above, it should be constant, that is, ψ(Σ) is contained in a slice.

47



Remark 3.4.8 From equation (2.1), we have that the condition (3.9) above establishes
a comparison between the mean curvature of the slice at height h and the mean curva-
tures of high order Hr and ~Hr+1.

In the following, we enunciate an auxiliary Lemma due to Caminha [11].

Lemma 3.4.9 (Caminha, A. [11]) Let X be a vector field on Σn, such that divX

does not change sign on Σn. If |X| ∈ L1(Σ), then divX vanishes identically on Σn.

Theorem 3.4.10 Let −I ×ρ Mn+p be a proper GRW spacetime warped product and
constant sectional curvature. Let ψ : Σn → −I ×ρ Mn+p be a spacelike submanifold
bounded away from the infinity and, for some 0 ≤ r < n even, suppose that Σn is weakly
past r-trapped, the second fundamental form α is bounded. Suppose that |∇h| ∈ L1(Σ)

and
ρ′(h)

ρ(h)
Hr ≤ | ~Hr+1|,

where | | =
√
|〈 , 〉|. Then either ψ(Σ) is contained in a slice {t0} ×Mn+p, for some

t0 ∈ I, or Hr = 0 and Σn is r-minimal.

Proof. First note that if ρ′(h)
ρ(h)

Hr ≤ | ~Hr+1|, we have

div(Tr∇σ(h)) = Lrσ(h)

= k(r)ρ(h)

(
−ρ
′(h)

ρ(h)
Hr + 〈 ~Hr+1, ∂t〉

)
≥ k(r)ρ(h)

(
−ρ
′(h)

ρ(h)
Hr + | ~Hr+1|

)
≥ 0.

On the other hand, since Σn is bounded away from the infinity of −I ×ρ Mn+p

and α is bounded, there exists a positive constant C such that

|Tr(∇σ(h))| ≤ C|∇h|.

Consequently, the hypothesis |∇h| ∈ L1(Σ) implies that |Tr(∇σ(h))| ∈ L1(Σ).

So, we can apply Lemma 3.4.9 to assure that Lrσ(h) = div(Tr∇σ(h)) = 0 on Σn.

With this,

ρ′(h)

ρ(h)
Hr = 〈 ~Hr+1, ∂t〉,

ρ′(h)

ρ(h)
Hr = | ~Hr+1| and ~Hr+1 = −| ~Hr+1|∂t.

Therefore, if ~Hr+1 is nonzero, it follows that

~Hr+1 = −ρ
′(h)

ρ(h)
Hr∂t
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and ∂t is orthogonal to Σn.

However, if ~Hr+1 is identically zero, we have that
(
ρ′(h)/ρ(h)

)
Hr = 0. Thus, if

ρ′(h) = 0, we have that the height function h is constant, because −I ×ρ Mn+p is a

proper GRW spacetime. In both cases above, the submanifold Σn is contained in a

slice {t0} ×Mn+p. On the other hand, if ρ′(h) 6= 0, then Hr = 0.

Remark 3.4.11 Since |〈 ~Hr+1, ∂t〉| ≥ | ~H0
r+1| for the weakly r-trapped case, that is, the

timelike component of Hr+1 is not less than the spacelike component in that case. We
have that Theorems 3.4.7 and 3.4.10 hold if we replace | ~Hr+1| for | ~H0

r+1|.

3.5 Examples of r-trapped submanifolds

Example 3.5.1 Let Σ3 be an immersed hypersurface into a Riemannian manifold M4

and, for each t ∈ I fixed, consider the inclusion φt : Σ3 → −I ×ρ M4. It follows from
equation (3.2) that

→
H3 =

(
3

3

)−1
1

3!

∑
i1,i2,i3
j1,j2,j3

δi1i2i3j1j2j3
〈αt(ei1 , ej1), αt(ei2 , ej2)〉αt(ei3 , ej3)

=
2

3!

(
〈αt(e1, e1), αt(e2, e2)〉αt(e3, e3) + 〈αt(e1, e1), αt(e3, e3)〉αt(e2, e2)

+ 〈αt(e2, e2), αt(e3, e3)〉αt(e1, e1)

)

=
1

3

([
1

ρ(t)2
k1k2 −

(
ρ′(t)

ρ(t)

)2
](

1

ρ(t)2
k3N −

ρ′(t)

ρ(t)
ξt

)

+

[
1

ρ(t)2
k1k3 −

(
ρ′(t)

ρ(t)

)2
](

1

ρ(t)2
k2N −

ρ′(t)

ρ(t)
ξt

)

+

[
1

ρ(t)2
k2k3 −

(
ρ′(t)

ρ(t)

)2
](

1

ρ(t)2
k1N −

ρ′(t)

ρ(t)
ξt

))

=
1

3

(
3

ρ(t)4
k1k2k3N −

ρ′(t)

ρ(t)
(k1k2 + k1k3 + k2k3) ξt

−
(
ρ′(t)

ρ(t)2

)2

(k3 + k2 + k1)N + 3

(
ρ′(t)

ρ(t)

)3

ξt

)

=
1

ρ(t)4
H3N −

ρ′(t)

ρ(t)3
H2ξt −

(
ρ′(t)

ρ(t)2

)2

H1N +

(
ρ′(t)

ρ(t)

)3

ξt

=
1

ρ(t)3
H3ηt −

ρ′(t)

ρ(t)3
H2ξt −

ρ′(t)2

ρ(t)3
Hηt +

(
ρ′(t)

ρ(t)

)3

ξt.
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Note that we can rewrite
→
H3 as

→
H3=

(
H3 − ρ′(t)2H

ρ(t)3

)
ηt −

(
ρ′(t)H2 − ρ′(t)3

ρ(t)3

)
ξt.

Consequently, 〈→
H3,

→
H3

〉
t

=

(
H3 − ρ′(t)2H

ρ(t)3

)2

−
(
ρ′(t)H2 − ρ′(t)3

ρ(t)3

)2

Now, assuming that Σ3 = S2 × R and M4 = R4 endowed with standard metric,
we obtain that k1 = k2 = 1 and k3 = 0. Therefore

〈 ~H3, ~H3〉t =

(
−2

3

f ′(τ)2

f(τ)3

)2

−
(

1

3

f ′(τ)

f(τ)3
− f ′(τ)3

f(τ)3

)2

=
ρ′(t)2

9ρ(t)6

(
− 9ρ′(t)4 + 10ρ′(t)2 − 1

)
,

because

H3 = 0, H2 =
1

3
and H1 =

2

3
.

Here, we have that φt : Σ3 → −I×ρR4 is 2-trapped if and only if 0 < ρ′(t)2 < 1/9

or ρ′(t)2 > 1. On the other hand, by the equation (3.3), we have that φt is trapped if,
and only if, |ρ′(t)| > 2/3. More precisely,

if 0 < |ρ′(t)| < 1/3, φt is 2-trapped but not trapped;

if 1/3 < |ρ′(t)| < 2/3, φt is neither 2-trapped nor trapped;

if 2/3 < |ρ′(t)| < 1, φt is trapped but not 2-trapped;

if |ρ′(t)| > 1, φt is 2-trapped and trapped.

With an analogous analysis when |ρ′(t)| ∈ {0, 1/3, 2/3, 1} we can also observe
that the concepts of marginally 2-trapped and marginally trapped are distinct.

Example 3.5.2 Let Mn+1 be a Riemannian manifold and consider a totally geodesic
hypersurface Σn −→ Mn+1. With this, for each t ∈ R fixed, we have that Σt = {t} ×
Σ is a spacelike submanifold of codimension two immersed into the GRW spacetime
−R×ρMn+1. Then, we have that the second fundamental form αt of Σt is given by

αt(X, Y ) = −ρ
′(t)

ρ(t)
〈X, Y 〉t ∂t. (3.10)

Therefore, for 0 ≤ r < n even,

~Hr+1 = −C
(
ρ′(t)

ρ(t)

)r+1

∂t,
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where C is a positive constant. Immediately, we have that Σn is r-trapped whenever
ρ′(t) 6= 0.

As a particular case of the general situation described above, we will consider the
de Sitter spacetime given by −R×cosh t Sn. Let Σ be the totally geodesic equator of Sn

and Σt = {t} × Σ. From (3.10), the shape operator of Σt is given by

α(X, Y ) = −tgh t〈X, Y 〉t∂t.

Then Σt is r-trapped for any t 6= 0 and 0 ≤ r < n even.

Example 3.5.3 In this work we introduce the notion of r-trapped submanifolds. How-
ever, we only deal with cases in which the ambient space is a GRW spacetime. In this
sense, let us provide an example that use this concept to other ambient spaces.

In the same way as in [34], consider the Schwarzschild-Tangherlini spacetime, see
[47], the space R× R+ × Sn with the metric

−ζ(s)dt2 + ζ(s)−1ds2 + s2gSn ,

where ζ(s) = (1− µ/sn−1) is the Schwarzschild-Tangherlini function, µ is a positive
constant given by

µ =
16πM

nωn
,

where ωn = |Sn| is the measure of the unit n-sphere. In this case M is representing
the mass of the model and s is the coordinate of R+. This metric degenerates when
sn−1 = µ. However, we separate the cases sn−1 < µ as inside the Black Hole and
sn−1 > µ as outside the Black Hole or the outer Schwarzschild-Tangherlini space which
is asymptotic to the Lorentz-Minkowski Ln+2.

The spheres with t ≡ t0 and s ≡ cte appear in two types: the inner spheres
if sn−1 < µ and outer spheres if sn−1 > µ. They are compact submanifolds with
codimension two and they are also totally umbilical with the second fundamental form
given by

α(V,W ) = −µ(n− 1)

sn
〈V,W 〉∂s.

This fact comes from a direct computation considering Proposition 7.35 of [34]. Since
the vector ∂s is timelike inside the black hole, the inner spheres are past r-trapped for
any 0 ≤ r < n even.
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Chapter 4

The Standard Static Spacetime case

In [22] the authors studied trapped spacelike submanifolds immersed in standard

static spacetimes and established sufficient conditions to guarantee that such a spacelike

submanifold must be a hypersurface of the Riemannian base of the ambient spacetime

and, particularly, they showed that there do not exist n-dimensional compact (without

boundary) trapped submanifolds immersed in an (n + 2)-dimensional standard static

spacetime which is a classical result due to Mars and Senovilla [31] (see also [45]). In this

context, the idea here is to study the spacelike submanifolds immersed in a standard

static spacetime. In this way, we restrict ourselves to the spacelike submanifolds ψ :

Σ→Mn+p×ρ R1 and obtain results of rigidity and nonexistence under the hypothesis

of causal orientation for the (r + 1)-th mean curvature ~Hr+1, with 0 ≤ r < n even.

At first, we calculate Lr(h) and, in addition, we provide a result that guarantees,

under some hypotheses, the Omori-Yau maximum principle for the Laplacian (see

Lemma 4.1.2). In section 4.2, we discuss some results of nonexistence and rigidity

for r-trapped, as well marginally and weakly r-trapped, submanifolds immersed in a

standard static spacetimeMn+p×ρR1. In the next section, we explore the definition of

weighted divergence (or, more preciselly, of φ-divergence for some smooth function φ

on Σn) and, under the hypothesis of constant sectional curvature of the ambient space

Mn+p ×ρ R1, we use the differential operator Lr,φ (see equation (4.4) and continue to

obtain results of non-existence and rigidity. In section 4.4, we follow the same idea as

in the previous section, but this time making use of the principle of maximum for both



Laplacian and differential operator Lr. And, likewise, we end the chapter by providing

examples of r-trapped submanifolds.

4.1 Key Lemmas

Along this chapter, we will consider a connected and oriented spacelike sub-

manifold ψ : Σn −→ M
n+p+1 immersed in a standard static spacetime Mn+p+1

=

Mn+p ×ρ R1, that is, the metric induced on Σn via ψ is a Riemannian metric. As

usual, we also denote by 〈·, ·〉 the metric on Σn induced via ψ. Since K is a globally

defined timelike vector field on Mn+p+1, it follows that there exists a unitary timelike

normal vector field N globally defined on Σn which is in the same time-orientation of

K (one can define N as the unitary direction of K minus its projection on Σn). We will

also consider smooth functions on ψ : Σn −→ M
n+p+1, namely, the (vertical) height

function h = πR ◦ ψ and the angle functions Θl = 〈Nl, K〉, where Nl, l = 1, . . . , p + 1

denotes unit normal vector fields on Σn with N1 = N .

From the decomposition K = K> +
∑p+1

l=1 εlΘlNl, it is easy to see that

∇h = − 1

ρ2
K> and |∇h|2 =

∑p+1
l=1 εlΘ

2
l − ρ2

ρ4
, (4.1)

where ε1 = −1 and εl = 1 in other cases.

Lemma 4.1.1 Let Σn be a spacelike submanifold immersed in a manifold Mn+p+1
=

R×ρMn+p. If 0 ≤ r < n is even, then

Lr(h) = −2Tr(∇ ln(ρ),∇h) +
1

ρ2
k(r)〈 ~Hr+1, K〉. (4.2)

Proof. Once ρ =
√
−〈K,K〉, we have that ∇ρ2 = 2

(
∇KK

)>. Next, for a local

ortonormal frame {e1, ..., en} on Σn,

∇2h(ei, ej) =
〈
∇ei∇h, ej

〉
=

〈
∇ei

(
− 1

ρ2
K>
)
, ej

〉
= −ei

(
1

ρ2

)〈
K>, ej

〉
−
(

1

ρ2

)〈
∇eiK

>, ej
〉
.

On the other hand,

ei

(
1

ρ2

)
= − 1

ρ4

〈
∇KK, ei

〉
,
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and

〈
∇eiK

>, ej
〉

=

〈
∇ei

(
K −

p+1∑
l=1

εlΘlNl

)
, ej

〉

=
〈
∇eiK, ej

〉
−

〈
∇ei

(
p+1∑
l=1

εlΘlNl

)
, ej

〉

=
〈
∇eiK, ej

〉
−

p+1∑
l=1

〈
∇ei (εlΘlNl) , ej

〉
=

〈
∇eiK, ej

〉
−

p+1∑
l=1

εlΘl

〈
∇eiNl, ej

〉
=

〈
∇eiK, ej

〉
+

p+1∑
l=1

εlΘl

〈
Nl,∇eiej

〉
=

〈
∇eiK, ej

〉
−

p+1∑
l=1

〈α(ei, ej), εlΘlNl〉 .

Since ∑
ij

Tr(ei, ej)
〈
∇KK, ei

〉
〈K, ej〉 = Tr

(∑
i

〈
∇KK, ei

〉
ei,
∑
j

〈K, ej〉 ej

)
= Tr

(
(∇KK)>, K>

)
= −1

2
Tr(∇ρ2, ρ2∇h)

= −ρ3Tr(∇ρ,∇h),

we get

∑
ij

Tr(ei, ej)∇2h(ei, ej) = −2

ρ
Tr(∇ρ,∇h) +

1

ρ

(
p+1∑
l=1

k(r) 〈Hr+1,ΘlNl〉

)

= −2Tr(∇ ln(ρ),∇h) +
1

ρ2
k(r) 〈Hr+1, K〉 .

Here we use the fact that ∑
ij

Tr(ei, ej)
〈
∇eiK, ej

〉
= 0,

since Tr is a symmetric tensor and K is Killing vector field.

Now, taking into account the local orthonormal frame {N1, N2, ..., Np+1} for the

X⊥(Σ) with Np+1 = N , we will denote by A and, for i = 1, 2, ..., p, A(i) the components

of the second fundamental form α of Σn with respect to N and Ni, respectively. Thus,
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we can rewrite the second fundamental form α as the following

α(X, Y ) =

p∑
i=1

〈A(i)X, Y 〉Ni + 〈AX, Y 〉N (4.3)

and obtain the decomposition below for the mean curvature vector field

~H =

p∑
i=1

H(i)Ni −HNN,

where H(i) = 〈 ~H,Ni〉 and HN = 〈 ~H,N〉. With this we can generalize lemma 2 in [22]

for higher codimension, as we see in the following

Lemma 4.1.2 Let Mn+p+1
= Mn+p ×ρ R1 be a standard static spacetime whose Rie-

mannian base Mn+p has nonnegative curvature KM and convex warping function ρ.
Let ψ : Σn →M

n+p+1 be a spacelike submanifold. Then

Ric(X,X) ≥
∣∣∣∣AX +

nHN

2
X

∣∣∣∣2 − p∑
k=1

∣∣∣∣A(k)X − nH(k)

2
X

∣∣∣∣2 + ε
n2| ~H|2

4
|X|2,

where ε stands for the sign of 〈 ~H, ~H〉.

Proof. For every vector field Y tangent to Mn+p+1, we can write

Y = Y ∗ + Y ⊥,

where Y ∗ and Y ⊥ are the orthogonal projection of Y onto TM and TR1, respectively.

Consequently,

Y ⊥ =
〈Y,K〉
〈K,K〉

K = −〈Y,K〉
ρ2

K.

Thus, we can take vector fields U, V and W tangent to Mn+p+1 and, with a straight-

forward computation, we get

R(U, V )W = R

(
U∗ − 〈U,K〉

ρ2
K,V ∗ − 〈V,K〉

ρ2
K

)(
W ∗ − 〈W,K〉

ρ2
K

)
= R(U∗, V ∗)W ∗ − 〈W,K〉

ρ2
R(U∗, V ∗)K − 〈V,K〉

ρ2
R(U∗, K)W ∗

+
〈V,K〉
ρ2
〈W,K〉R(U∗, K)K − 〈U,K〉

ρ2
R(K,V ∗)W∗

+
〈U,K〉〈W,K〉

ρ2
R(K,V ∗)K

= RM(U∗, V ∗)W ∗ − 〈W,K〉
ρ2

R(U∗, V ∗)K − 〈V,K〉
ρ2

R(U∗, K)W ∗

−〈U,K〉
ρ2

R(K,V ∗)W ∗ +
〈W,K〉
ρ4

〈V,K〉R(U∗, K)K

−〈W,K〉
ρ4

〈U,K〉R(V ∗, K)K.
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By Proposition 7.42 and Lemma 7.34 of [34], follows that

R(U∗, V ∗)K = 0,

R(U∗, V ∗)W ∗ = −R(K,U∗)W ∗ = −D
2ρ(U∗,W ∗)

ρ
K,

R(K,V ∗)W ∗ =
D2ρ(V ∗,W ∗)

ρ
K,

R(U∗, K)K =
〈K,K〉
ρ
∇U∗∇(ρ ◦ πM) =

〈K,K〉
ρ
∇U∗∇ρ,

R(V ∗, K)K =
〈K,K〉
ρ
∇V ∗∇(ρ ◦ πM) =

〈K,K〉
ρ
∇V ∗∇ρ

and

R(U, V )W = RM(U∗, V ∗)W ∗ +
〈V,K〉
ρ3

D2ρ(U∗,W ∗)K

−〈U,K〉
ρ3

D2ρ(V ∗,W ∗)K +
〈W,K〉
ρ5

〈V,K〉〈K,K〉∇U∗∇ρ

−〈W,K〉
ρ5

〈U,K〉〈K,K〉∇V ∗∇ρ

= RM(U∗, V ∗)W ∗ +
〈V,K〉
ρ3

D2ρ(U∗,W ∗)K

−〈U,K〉
ρ3

D2ρ(V ∗,W ∗)K − 〈W,K〉
ρ3

〈V,K〉∇U∗∇ρ

+
〈W,K〉
ρ3

〈U,K〉∇V ∗∇ρ,

where D2 denotes the Hessian on Mn+p. In particular, for a local orthonormal frame

{e1, ..., en} on Σn and X a vector field tangent to Σn, we can take U = W = X and

V = ei, with i = 1, ..., n, in the last equation to obtain

R(X, ei)X = RM(X∗, e∗i )X
∗ +
〈ei, K〉
ρ3

D2ρ(X∗, X∗)K

−〈X,K〉
ρ3

D2ρ(e∗i , X
∗)K − 〈X,K〉

ρ3
〈ei, K〉∇X∗∇ρ

+
〈X,K〉2

ρ3
∇e∗i
∇ρ

and, consequently,
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〈R(X, ei)X, ei〉 = 〈RM(X∗, e∗i )X
∗, e∗i 〉+

〈ei, K〉2

ρ3
D2ρ(X∗, X∗)

−〈X,K〉
ρ3

〈ei, K〉D2ρ(E∗i , X
∗)− 〈X,K〉

ρ3
〈ei, K〉〈∇X∗∇ρ, ei〉

+
〈X,K〉2

ρ3
〈∇e∗i
∇ρ, e∗i 〉

= 〈RM(X∗, e∗i )X
∗, e∗i 〉+

〈ei, K〉2

ρ3
D2ρ(X∗, X∗)

−〈X,K〉
ρ3

〈ei, K〉D2ρ(e∗i , X
∗)− 〈X,K〉

ρ3
〈ei, K〉D2ρ(X∗, ei)

+
〈X,K〉2

ρ3
D2ρ(e∗i , e

∗
i )

= KM(X∗, e∗i )(〈X∗, X∗〉〈e∗i , e∗i 〉 − 〈X∗, e∗i 〉2)

+
〈ei, K〉2

ρ3
D2ρ(X∗, X∗)− 2

〈X,K〉
ρ3

〈ei, K〉D2ρ(X∗, ei)

+
〈X,K〉2

ρ3
D2ρ(e∗i , e

∗
i ).

Thus, for X̃∗i = 〈ei,K〉
ρ

X∗ and ẽ∗i = 〈X,K〉
ρ

e∗i , we have

〈R(X, ei)X, ei〉 = KM(X∗, e∗i )(〈X∗, X∗〉〈e∗i , e∗i 〉 − 〈X∗, e∗i 〉2)

+
1

ρ
D2ρ(X̃∗i , X̃

∗
i )− 2

ρ
D2ρ(ẽ∗i , X̃

∗
i )

+
1

ρ
D2ρ(ẽ∗i , ẽ

∗
i )

= KM(X∗, e∗i )(〈X∗, X∗〉〈e∗i , e∗i 〉 − 〈X∗, e∗i 〉2)

+
1

ρ
D2ρ(X̃∗i − ẽ∗i , X̃∗i − ẽ∗i ).

Hence, we obtain that

n∑
i=1

〈R(X, ei)X, ei〉 =
n∑
i=1

KM(X∗, e∗i )(〈X∗, X∗〉〈e∗i , e∗i 〉 − 〈X∗, e∗i 〉2)

+
n∑
i=1

1

ρ
D2ρ(X̃∗i − ẽ∗i , X̃∗i − ẽ∗i ).

The Gauss equation allows to rewrite Ricci curvature of Σn as the following

Ric(X,X) =
n∑
i=1

〈R(X, ei)X, ei〉+
n∑
i=1

〈α(X,X), α(ei, ei)〉

−
n∑
i=1

〈α(X, ei), α(X, ei)〉,
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for every X ∈ X(Σn). On the other hand, remembering the decomposition (4.3), we

have
n∑
i=1

〈α(X,X), α(ei, ei)〉 =

p∑
k=1

〈A(k)X,X〉
n∑
i=1

〈A(k)ei, ei〉 − 〈AX,X〉
n∑
i=1

〈Aei, ei〉

=

p∑
k=1

〈SkX,X〉tr(Sk)− 〈SNX,X〉tr(SN)

= n{
p∑

k=1

〈A(k)X,X〉H(k) + 〈AX,X〉HN}

and

−
n∑
i=1

〈α(X, ei), α(X, ei)〉 = −
p∑

k=1

n∑
i=1

〈A(k)X, ei〉2 +
n∑
i=1

〈AX, ei〉2

= −
p∑

k=1

|A(k)X|2 + |AX|2.

Therefore,

Ric(X,X) =
n∑
i=1

〈α(X,X), α(ei, ei)〉 −
n∑
i=1

〈α(X, ei), α(X, ei)〉

=
n∑
i=1

〈R(X, ei)X, ei〉+

∣∣∣∣AX +
nHN

2
X

∣∣∣∣2 − p∑
k=1

∣∣∣∣A(k)X − nH(k)

2
X

∣∣∣∣2
+ε

n2| ~H|2

4
|X|2.

Since KM ≥ 0 and ρ is convex (i.e, D2ρ ≥ 0), we have
∑n

i=1〈R(X, ei)X, ei〉 ≥ 0

and, with this,

Ric(X,X) ≥
∣∣∣∣AX +

nHN

2
X

∣∣∣∣2 − p∑
k=1

∣∣∣∣A(k)X − nH(k)

2
X

∣∣∣∣2 + ε
n2| ~H|2

4
|X|2

4.2 Main Results

We dedicate this section to some results of nonexistence and rigidity for r-trapped,

as well marginally and weakly r-trapped, submanifolds immersed in a standard static

spacetime Mn+p ×ρ R1.

Proposition 4.2.1 Let Mn+p+1
= Mn+p ×ρ R1 be a standard static spacetime and

0 ≤ r < n even. Then
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(i) There do not exist n-dimensional spacelike future (or past) r-trapped submanifolds
contained in a slice of Mn+p+1;

(ii) There do not exist n-dimensional spacelike marginally future (or past) r-trapped
submanifolds contained in a slice of Mn+p+1.

Proof. Just note that, for every submanifold Σn contained in a slice of Mn+p+1, we

have that

h = const.⇒ ∇h = 0

and, consequently,

0 = Lr(h) =
1

ρ2
k(r)〈 ~Hr+1, K〉 ⇒ 〈 ~Hr+1, K〉 = 0.

Accordingly to the definition of weakly r-trapped submanifold, we have that ~Hr+1

is causal (timelike or lightlike) or zero and, with this, we get the following

Proposition 4.2.2 Let Mn+p+1
= Mn+p×ρR1 be a standard static spacetime and, for

0 ≤ r ≤ n−1 even, let ψ : Σn −→M
n+p+1 be a spacelike weakly r-trapped submanifold.

If Σn is contained in a slice of Mn+p+1, then Σn is r-minimal.

Proof. Similarly to the demonstration of Proposition 1 above, we have 〈 ~Hr+1, K〉 = 0

because, by hypothesis, Σn is contained in a slice of Mn+p+1. Since ~Hr+1 is causal or

zero, it must be zero and, consequently, Σn is r-minimal.

We also studied the case where Σn is complete and non-compact. Our goal now

is to study the behavior of the height function h in the case where the submanifold Σn

is parabolic and, for this, the following definition is necessary: A spacelike submanifold

ψ : Σ −→ M
n+p+1

= Mn+p ×ρ R1 is called bounded away from the future infinity at

height t∗ ∈ I if

ψ(Σ) ⊂
{

(t, x) ∈Mn+p+1
; t ≤ t∗

}
.

Similarly, we say that a spacelike submanifold ψ : Σ −→M
n+p+1 is bounded away from

the past infinity at height t∗ ∈ I if

ψ(Σ) ⊂
{

(t, x) ∈Mn+p+1
; t ≥ t∗

}
.

Lastly, Σn is said to be bounded away from the infinity of Mn+p+1 if it is bounded away

from the past and future infinity.
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Considering r = 0 in equation (4.2), follows that

∆h = −2〈∇ ln(ρ),∇h〉+
1

ρ2
n〈 ~H,K〉.

So, we can consider the conformal change 〈·, ·〉ρ = ρ4/(n−2)〈·, ·〉 and obtain

∆̂h = nρ−2n/(n−2)〈 ~H,K〉,

where ∆̂h denotes the Laplacian of h with respect the conformal metric 〈·, ·〉ρ. Thus, the

conformal metric change 〈·, ·〉ρ = ρ4/(n−2)〈·, ·〉 is made with the intention of cancelling

〈∇ρ,∇h〉. In this context, Aledo, Rubio and Salamanca (see Theorems 15 and 16 in [8])

obtained results of non-existence and rigidity of spacelike submanifold in standard static

spacetime such that 〈 ~H,K〉 ≥ 0 (or ≤ 0). However, the general case in which r ≥ 0

presents greater difficulties even under a conformal metric change. Firstly, because

the parabolicity of the submanifold in question must be transferred to the conformal

metric, which is possible under some conditions on r due to a characterization result

made by Troyanov (see Proposition 4.1 in [48] with p = 2). Secondly, because it is the

Lr operator, we should ask for some estimate involving the Laplace-Beltrami operator

∆, that is,

Lr ≤ β∆.

But, we should obtain, from there, an equivalent estimate involving the operators in the

conformal metric. In this case, the difficulty is due to the presence of Tr(∇ ln(ρ),∇h)

in the equation (4.2).

On the other hand, he particular case in which the warping function ρ is constant

deserves special mention, since in this case

Lr(h) =
1

ρ2
k(r)〈 ~Hr+1, K〉.

Consequently, by asking for the estimate Lr ≤ β∆, we obtain the following

Proposition 4.2.3 Let Mn+p+1
= Mn+p × R1 be a product spacetime and consider

0 ≤ r < n even.

(i) There does not exist an n-dimensional parabolic spacelike past r-trapped subman-
ifold immersed in M

n+p+1 bounded away from the future infinity and such that
Lr ≤ β∆, for some positive constant β;
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(ii) There does not exist an n-dimensional parabolic spacelike marginally past r-
trapped submanifold immersed in Mn+p+1 bounded away from the future infinity
and such that Lr ≤ β∆, for some positive constant β;

(iii) Every n-dimensional parabolic spacelike weakly past r-trapped submanifold im-
mersed in Mn+p+1 bounded away from the future infinity and such that Lr ≤ β∆,
for some positive constant β, must be r-minimal.

As the reader can see in example 4.6.4 in section 4.6, the hypothesis of parabolicity

in the Proposition 4.2.3 above cannot be removed.

4.3 Results in Standard Static Spaceforms

For a smooth function φ : Σn → R, remember that the φ-divergent of a vector

field X ∈ X(Σ) is defined by

divφX = eφ div
(
e−φX) = divX − 〈∇φ,X〉 .

With this, take 0 ≤ r ≤ n even and consider the operator Lr,φ : C∞(Σ) → C∞(Σ)

given by

Lr,φ(u) = divφ
(
Tr(∇u)

)
= div

(
Tr(∇u)

)
− Tr(∇φ,∇u)

= Lr(u) + 〈div Tr,∇u〉 − Tr(∇φ,∇u).

Thus, if Mn+p+1 has constant sectional curvature, it follows that

Lr,φ(u) = Lr(u)− Tr(∇φ,∇u), ∀ u ∈ C∞(Σ).

Consequently, from (4.2),

Lr,φ(h) =
1

ρ2
k(r)〈 ~Hr+1, K〉, (4.4)

where φ = −2 ln ρ.

Using the definition of Lφ-parabolicity introduced in section 1.6 of the chapter 1,

we say that the Σn is Lr,φ-parabolic if it is Lφ-parabolic for ϕ(p, t) = t and T = Tr with

Tr ≥ 0 and 0 ≤ r ≤ n even, because in this case

Lφ(u) = divφ(Tr(∇u)) = Lr,φ(u),

for every u ∈ C∞(Σ).
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Theorem 4.3.1 Let Mn+p+1

c = Mn+p ×ρ R1 be a standard static spacetime with con-
stant sectional curvature c, 0 ≤ r < n even and consider φ = −2 ln ρ. Then

(i) There do not exist n-dimensional spacelike, Lr,φ-parabolic, future (or past) r-
trapped and bounded away from the future (or past) infinity submanifolds im-
mersed in Mn+p+1

c ;

(ii) There do not exist n-dimensional spacelike, Lr,φ-parabolic, marginally future (or
past) r-trapped and bounded away from the future (or past) infinity submanifolds
immersed in Mn+p+1

c .

(iii) The n-dimensional spacelike Lr,φ-parabolic, weakly future (or past) r-trapped and
bounded away from the future (or past) infinity submanifolds immersed inMn+p+1

c

are r-minimal.

Proof. Firstly we prove item (i) and item (ii) follows in an analogous way. Suppose,

by contradiction, that Σn is such a submanifold. Once Σn is future (or past) r-trapped,

it follows from equation (4.4) that

Lr,φ(h) =
1

ρ2
k(r) 〈Hr+1, K〉 < 0 (or > 0).

Thus, by the definition of Lr,φ-parabolicity given above, we obtain that the height

function h of Σn in Mn+p+1 must be constant. For (iii) we have that

Lr,φ(h) =
1

ρ2
k(r) 〈Hr+1, K〉 ≤ 0 (or ≥ 0).

As previously we get the desired result using Lr,φ-parabolicity.

As a consequence of Lemma 1.6.2, we replaced the Lr,φ-parabolicity hypothesis

and obtained the following

Theorem 4.3.2 Let Mn+p+1

c = Mn+p×ρR1 a standard static spacetimes with constant
sectional curvature c and consider a complete spacelike submanifold Σn immersed in
M

n+p+1

c bounded away from the future (or past) infinity and such that, for 1 ≤ r < n

even, 〈 ~Hr+1, K〉 ≥ 0 (or ≤ 0). Moreover, assuming that Tr is positive definite and
satisfying the assumptions (1.13) and (1.15) above. Let ξ+(d) be defined in (1.13). If

1(∫
∂Bt

ξ+(d)e−t
)1/δ

/∈ L1(+∞),

where d = d(x, o) is the geodesic distance in Σn from some fixed origin o ∈ Σn and
BR = BR(o) is the geodesic ball centered at o with radius R. Then Σn is contained in
a slice {t0} ×Mn+p, for some t0 ∈ R.
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Proof. The idea is to use the Lr,φ-parabolicity defined above and, for this, we have to

ϕ(t, p) = t. Consequently, condition (1.14) is naturally satisfied. On the other hand,

considering the hypotheses on Σn, the equation (4.4) provides

Lr,φ(h) ≥ 0 (or ≤ 0).

Accordingly to Lemma 1.6.2, we have Σn is Lr,φ-parabolic and, with this, the height

function h of Σn in Mn+p+1

c must be constant.

Remark 4.3.3 Under the assumptions of Theorem 4.3.2, the spacelike submanifold Σn

immersed in Mn+p+1

c = Mn+p×ρR1 can be neither r-trapped nor marginally r-trapped.
If, in addition, we assume that the respective submanifold is weakly r-trapped, we obtain
that Σn is r-minimal.

Now, since the operator Lr,φ is divergent, it is natural to consider the closed case

and apply the divergence theorem. More precisely, we have to

Σn closed ⇒ Σn Lr,φ-parabolic.

Therefore, since equation (4.4) holds when the ambient space has constant sectional

curvature, we obtain the following

Corollary 4.3.4 Let Mn+p+1

c = Mn+p ×ρ R1 be a standard static spacetime with con-
stant sectional curvature and 0 ≤ r < n even.

(i) There do not exist n-dimensional closed spacelike future (or past) r-trapped sub-
manifolds immersed in Mn+p+1

c ;

(ii) There do not exist n-dimensional closed spacelike marginally future (or past) r-
trapped submanifolds immersed in Mn+p+1

c ;

(iii) Every n-dimensional closed spacelike weakly future (or past) r-trapped submani-
fold immersed in Mn+p+1

c is r-minimal.

4.4 An Omori-Yau Approach for the non-parabolic
case

With a combination of Lemmas 1.5.1 and 4.1.2, we obtain the following
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Theorem 4.4.1-A Let Mn+p+1
= Mn+p ×ρ R1 be a standard static spacetime whose

Riemannian base Mn+p has nonnegative sectional curvature and, for 0 ≤ r < n even,
consider a complete weakly past r-trapped submanifold Σn →Mn+p×ρR1 with ρ convex
and away from zero with ∇ρ and ρ bounded, such that Lr ≤ β∆ for some a positive
constant β, the second fundamental form is bounded and that Σn is bounded away from
the future infinity. Then | ~Hr+1| cannot be away from zero. Particularly, if ~Hr+1 is
parallel then Σn is r-minimal.

Proof. Let us suppose initially ~Hr+1 is timelike. By Lemma 4.1.1 we have that

β∆h ≥ Lr(h) = −2Tr(∇ ln(ρ),∇h) +
1

ρ2
k(r)〈 ~Hr+1, K〉 (4.5)

≥ −2C

ρ
|∇ρ||∇h|+ k(r)

ρ
| ~Hr+1|,

Here, we use the fact that the limitation of the second fundamental form implies

Tr(∇ρ,∇h) ≤ C|∇ρ||∇h| for some constant C > 0. Therefore multiplying (4.5) by ρ

we obtain

ρβ∆h ≥ −2C|∇ρ||∇h|+ k(r)| ~Hr+1|.

From Lemma 4.1.2 we can use Omori-Yau Maximum principle and, therefore, on

an Omori-Yau sequence we obtain | ~Hr+1| → 0.

Note that, if ~Hr+1 is lightlike, we have that

~Hr+1 = ~H0
r+1 −

| ~H0
r+1|
ρ

K,

where ~H0
r+1 is spacelike and orthogonal to K.

Therefore

ρβ∆h ≥ Lr(h) ≥ −2C|∇ρ||∇h|+ k(r)| ~H0
r+1|

and on an Omori-Yau sequence we obtain | ~H0
r+1| → 0. That means that | ~Hr+1| is not

away from zero.

In view of lemma 2.2.3, we can impose a condition on the operator Tr with

0 ≤ r < n even and obtain, under the hypothesis of the theorem 4.4.1-A above, a

result of rigidity for a submanifold immersed in a standard static spacetime Mn+p+1

c

with constant sectional curvature.
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Corollary 4.4.2 Let Mn+p+1
= Mn+p ×ρ R1 be a standard static spacetime with sec-

tional curvature constant c and whose Riemannian base Mn+p has nonnegative sec-
tional curvature and, for 0 ≤ r < n even, consider a weakly past r-trapped submanifold
Σn →Mn+p×ρR1 with ρ convex and away from zero with ∇ρ and ρ bounded, such that
Lr ≤ β∆, for some a positive constant β, with the second fundamental form is bounded
and that Σn is bounded away from the future infinity. If Tr+1 = n−(r+1)

n
~Hr+1I, then Σn

is r-minimal.

Proof. Note that the traceless part
◦
T r+1 of Tr+1 is such that

◦
T r+1= Tr+1 −

n− (r + 1)

n
~Hr+1I = 0

and, from the lemma 2.2.3, div (Tr+1) = 0. Therefore,

0 = div
( ◦
T r+1

)
= −n− (r + 1)

n
∇ ~Hr+1

and, with this, the result follows from theorem 4.4.1-A.

Another important application of theorem 4.4.1-A is in the particular case in

which the ambient space is an m-dimensional vacuum spacetime with cosmological

constant Λ, that is, a Lorentzian manifold (Nm, g) satisfying the Einstein equation

Ric = Λg. Within our configuration, we will have N = Mn+p×ρR1 with g = −ρ2dt2 +

gM , where (Mn+p, gM) is an (n+ p)-dimensional connected Riemannian manifold, that

we will take to be orientable. On the other hand, a complete and connected Riemannian

manifold (Mn+p, gM) with boundary ∂M (possibly empty) is said to be static if it

admits a non-trivial solution ρ ∈ C∞(M) to the equation

− (∆gMρ)gM +∇2
gM
ρ− ρRicgM = 0 in int(M). (4.6)

It is important to note that a solution of (4.6) in a manifold allows us to construct a

spacetime satisfying the vacuum Einstein equations with a cosmological constant.

Corollary 4.4.3 Let Mn+p+1
= Mn+p ×ρ R1 be an Einstein standard static spacetime

with zero cosmological constant, nonnegative Ricci curvature, whose Riemannian base
Mn+p has nonnegative sectional curvature and such that the warping function ρ is
subharmonic in Mn+p. For 0 ≤ r < n even, consider a complete weakly past r-trapped
submanifold Σn → Mn+p ×ρ R1 such that Lr ≤ β∆, for some a positive constant β,
and the second fundamental form is bounded. If Σn is bounded away from the future
infinity and ∇ρ and ρ are bounded, then | ~Hr+1| cannot be away from zero. Particularly,
if ~Hr+1 is parallel then Σn is r-minimal.
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Under some mild hypotheses for the tensor Tr, condition (1.11) above guarantees

that the maximum principle is valid for the operator Lr, we prove the result of non-

existence that follows.

Theorem 4.4.1-B Let Mn+p+1
= Mn+p ×ρ R1 be a standard static spacetime such

that ρ and ∇ρ are bounded and let ψ : Σn −→ M
n+p+1 be a complete, non-compact

spacelike submanifold with bounded second fundamental form and whose radial sectional
curvature satisfies the condition (1.11). Moreover assume that Σn is bounded away from
the future infinity and, for some 0 ≤ r ≤ n − 1 even, suppose that supΣ trTr < +∞,
Tr ≥ 0 and Hr > 0. Then Σn cannot be past r-trapped nor marginally past r-trapped.
Particularly, if Σn is weakly past r-trapped then Σn must be r-minimal.

Proof. Since the second fundamental form is limited, it follows that

Lr(h) = −2Tr(∇ ln(ρ),∇h) +
1

ρ2
k(r)〈 ~Hr+1, K〉

≥ −2c2

ρ
|∇ρ||∇h|+ 1

ρ2
k(r)〈 ~Hr+1, K〉.

On the other hand, by lemma 1.5.2, we have that the Omori-Yau maximum

principle holds on Σn for positive semi-definite operator Lr. So, on an Omori-Yau

sequence {pj}j∈N we obtain

inf
Σ
〈 ~Hr+1, K〉 ≤ 〈 ~Hr+1, K〉(pj)

<
ρ2(pj)

jk(r)
+ 2c2ρ(pj)|∇ρ(pj)||∇h(pj)|

Consequently, taking the limit with j →∞ and noting that ρ and ∇ρ are bounded, it

follows that infΣ〈 ~Hr+1, K〉 ≤ 0.

4.5 The Product Spacetime Case

We dedicate this section to study the particular case of some of the results in

chapters 3 and 4 when the warping function satisfies ρ ≡ 1, i.e., we turn our attention

to spacelike submanifolds immersed in the product manifold −I × Mn+p (which, in

turn, is both a GRW and an SSST).

Note that the hypothesis about the sectional curvature of the ambient space in

the Theorem 4.3.4 provides the use of equation (4.4). However, when the ambient
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space is a product spacetime Mn+p×R1 (i.e, when ρ ≡ 1), we have that equation (4.2)

provides

Lr(h) = k(r)〈 ~Hr+1, K〉, (4.7)

regardless of whether the sectional curvature of the ambient space is constant or not.

On the other hand, we have that the φ-divergent coincides with the divergent when φ

is constant (consequently, Lr,φ = Lr). Thus, in the case where ρ ≡ 1, we can dispense

with the hypothesis about the sectional curvature of the ambient space and obtain the

next two corollaries.

Corollary 4.5.1 Let Mn+p+1
= Mn+p × R1 a product spacetime and consider a com-

plete spacelike submanifold Σn immersed in Mn+p+1 bounded away from the future (or
past) infinity and such that, for 1 ≤ r < n even, 〈 ~Hr+1, ∂t〉 ≥ 0 (or ≤ 0). Moreover,
assuming that Tr is positive definite and satisfying the assumptions (1.13) and (1.15)
above. Let ξ+(d) be defined in (1.13). If

1(∫
∂Bs

ξ+(d)e−s
)1/δ

/∈ L1(+∞),

where d = d(x, o) is the geodesic distance in Σn from some fixed origin o ∈ Σn and
BR = BR(o) is the geodesic ball centered at o with radius R. Then Σn is contained in
{t0} × Rn+p, for some t0 ∈ R.

Particularly in the closed case we have the following

Corollary 4.5.2 Let Mn+p+1
= Mn+p × R1 be a product spacetime and 0 ≤ r < n

even. Then it holds the following:

(i) There do not exist n-dimensional closed spacelike future (or past) r-trapped sub-
manifolds immersed in Mn+p+1;

(ii) There do not exist n-dimensional closed spacelike marginally future (or past) r-
trapped submanifolds immersed in Mn+p+1;

(iii) Every n-dimensional closed spacelike weakly future (or past) r-trapped submani-
fold immersed in Mn+p+1 is r-minimal.

Using the equation (4.7), we get the following

Corollary 4.5.3 Let Mn+p+1
= Mn+p×R1 be a product spacetime whose Riemannian

base Mn+p has nonnegative sectional curvature and, for 0 ≤ r < n even, consider a
complete weakly future (or past) r-trapped submanifold Σn → M

n+p+1 bounded away
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from the past (or future) infinity and such that Lr ≤ β∆ for some a positive constant
β. Then | ~Hr+1| cannot be away from zero. Particularly, if ~Hr+1 is parallel then Σn is
r-minimal.

For the product case we can simplify the Theorem 4.4.1-B and get the corollary

below.

Corollary 4.5.4 Let Mn+p+1
= Mn+p×R1 be a product spacetime and let ψ : Σn −→

M
n+p+1 be a complete, non-compact spacelike submanifold whose radial sectional cur-

vature satisfies the condition (1.11). Moreover assume that Σn is bounded away from
the future (or past) infinity and, for some 0 ≤ r ≤ n−1 even, suppose that supΣ trTr <

+∞, Tr ≥ 0 and Hr > 0. Then Σn cannot be past (or future) r-trapped nor marginally
past (or future) r-trapped. In particular, if Σn is weakly past r-trapped then Σn must
be r-minimal.

4.6 Examples

Example 4.6.1 Let Σ2n+1 be an immersed spacelike hypersurface into a Lorentzian
manifold M2n+2

1 . For each t ∈ I fixed, the inclusion φt : Σ2n+1 → I ×M2n+2
1 is such

that

~H2n+1 = H2n+1N,

where ~H2n+1 stands for the (2n+ 1)-th mean curvature of Σ2n+1 in M2n+2
1 with respect

to its timelike Gauss map N .
Now, assuming that Σ3 = R×H2 and M = L4 endowed with standard metric, we

obtain that k1 = k2 = −1 and k3 = 0. Let N(t, p) = (0, p) be the timelike Gauss map
of Σ3 ⊂ L4 ⊂ I × L4 where p is the position vector in H2. This way we have

~H3 = 0, H2 =
1

3
and ~H1 = −2

3
N.

This submanifold is trapped but it is not 2-trapped, in fact it is 2-minimal.

Example 4.6.2 Considering the surface Γ = {(t, x, y) ∈ M ; (t, x, y) = (a ln y, x, y)},
for some a 6= 0, in the space M = −R × H2. Let us consider the smooth function
ua : H2 → R given by ua(x, y) = a ln y. Henceforth,

N =
∂t +Dua√

1− a2
,

with a straightforward computation we obtain that

~HΓ =
1

2

a√
1− a2

N.
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Now consider α(X, Y ) = λ(X, Y )N , where λ(X, Y ) = 〈AX, Y 〉 is the shape op-
erator associated to N . Therefore

A =
a√

1− a2
e1 ⊗ e1.

Where e1 is a unit vector associated to the non zero eigenvalue of A and e1 its dual,
according to Example 4.4 in [21]. Consider the submanifold Σ = Γ×S2 ⊂ −R×H2×R3.
Notice that the lifting to the product of the vector fields N and p, where p is the position
vector in S2. They constitue an orthonormal frame for X⊥(Σ). In this case the second
fundamental form is given by

α(X, Y ) =
a√

1− a2
〈π1(X), π1(Y )〉N + 〈π∗(X), π∗(Y )〉~p,

where π1 is the projection onto the direction of e1 which is a unit vector associated to
the non zero eigenvalue of A, we notice it is well defined despite the choice of e1 and
π is the projection π : Σ→ S2. Therefore

~HΣ =
1

4

[
a√

1− a2
N + 2~p

]
and ~HΣ,3 =

1

12

[
a√

1− a2
N + 2~p

]
.

Then this submanifold is simultaneously 0-trapped and 2-trapped for any a ∈
(

2√
5
, 1
)
.

Remark 4.6.3 Following the same reasoning, but considering Σ as Γ × R instead of
Γ× S2, it follows that

~HΣ =
1

3

[
a√

1− a2
N

]
and ~HΣ,3 = 0.

Example 4.6.4 Let Γ2 ↪→M3
1 be a spacelike surface in a Lorentzian manifold M3

1 and
Σ2 ↪→ P 3 a surface in a Riemannian manifold P 3. Let AΓ = (µi) and BΣ = (λj) be
the diagonalized second fundamental forms of Γ2 and Σ2 respectively. Now consider the
product Γ2 × Σ2 ↪→ M3

1 × P 3. In this case, taking into account the definition of r-th
mean curvature, for 0 ≤ r ≤ 4, and the fact that ~H1 = ~H, we have to

~H =
1

2
[HΓN +HΣν],

where HΓ = −µ1+µ2
2

and HΣ = λ1+λ2
2

, and

~H3 =
1

12
[KΣ

GHΓN +KΓ
GHΣν],

where KΓ
G = −µ1µ2 and KΣ

G = λ1λ2, KG is the Gauss-Kronecker curvature given by
KG = ε detA where ε = 〈η, η〉 for η the Gauss map of the Surface Γ2 or Σ2. Therefore

〈 ~H, ~H〉 =
1

4

(
−H2

Γ +H2
Σ

)
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and

〈 ~H3, ~H3〉 =
1

144
[(KΓ

G)2H2
Σ − (KΣ

G)2H2
Γ].

If the mean curvartures are equal, that is, |HΓ| = |HΣ| the submanifold Γ × Σ is
marginally 0-trapped or minimal and with a small pertubation it can be trapped or not.
If they are such that (KΣ

G)2 6= (KΓ
G)2 6= 0. We have

〈 ~H3, ~H3〉 =
1

144
[(KΓ

G)2 − (KΣ
G)2] 6= 0.

Then for the different choices we can make of the Gauss-Kronecker curvatures, we have
that Γ × Σ is 0-trapped and 2-trapped, only 0-trapped but not 2-trapped, vice-versa or
none of them. Particularly, if Σ2 is a Clifford hypersurface in the sphere S3 given by

Σ2 = S1 (sin θ)× S1 (cos θ) ↪→ S3,

where θ ∈ (0, π/2) is a positive angle, we have that λ1 = cotgθ, λ2 = −tgθ and,
consequently,

HΣ = cotg2θ and KΣ
G = −1.

On the other hand, if Γ2 is the hyperbolic space

Γ2 = H2

(
− 1

S

)
↪→ L3,

then µ1 = µ2 = 1/S and, with this,

HΓ = − 1

S
and KΓ

G = − 1

S2
.

So, turning our attention to Γ2 × Σ2 ↪→ S3 × L3, we have that

〈 ~H, ~H〉 =
1

4

(
cotg22θ − 1

S4

)
and

〈 ~H3, ~H3〉 =
1

144

1

S2

(
cotg22θ

S2
− 1

)
.

Therefore, for S 6= 1, we have{
if |cotg2θ| < 1/S2, Γ2 × Σ2 is 0-trapped but not 2−trapped;

if |cotg2θ| < S, Γ2 × Σ2 is 2-trapped but not 0−trapped;

Moreover, if S 6= 1 and |cotg2θ| < S, then

〈 ~H3, N〉 = − 1

12
KΣ
GHΓ = − 1

12

1

S

and, with this, Γ2 × Σ2 is past 2-trapped.
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Chapter 5

De Lellis-Topping inequalities on
weighted manifolds with boundary

A well-known result in Riemannian geometry is given by Schur’s Lemma (see

Lemma 1.2.1). By studying the stability of this result, De Lellis and Topping [20]

approached the case where the metric is close to be Einstein and relation with its

scalar curvature. In this setting, they demonstrated that

Lemma 5.0.5 (De Lellis-Topping [20]) Let (Σn, g) be a closed Riemannian mani-
fold of dimension n ≥ 3, with nonnegative Ricci curvature. Then∫

Σ

(R−R)2dvg ≤
4n(n− 1)

(n− 2)2

∫
Σ

|Ric− (R/n)g|2 dvg, (5.1)

where R = 1
V ol(Σ)

∫
Σ
Rdvg is the average value of R over Σn. Furthermore, the equality

occurs if and only if (Σn, g) is an Einstein manifold.

In a strict sense, the authors showed that if a manifold, in the conditions of the above

theorem, is close to be Einstein, in the L2-norm sense, its scalar curvature is close to be

constant in the respective norm. Furthermore, De Lellis and Topping also demonstrated

in [20] that the coefficient of the right hand in (5.1) is optimal and the hypothesis of

nonnegative Ricci curvature is crucial for attains the result in dimensions greater or

equal than five (in fact, for dimensions 3 and 4, the same result occurs for a weaker

hypothesis of nonnegative scalar curvature, see [23] and [24]). A thorough analysis of

the demonstration of theorem 5.0.5, shows that a crucial step is the integral identity
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−
∫
M

〈∇Rg,∇u〉dv =
2n

n− 2

∫
M

〈
◦
Ricg,∇2u〉dv,

where u is the solution of a PDE and
◦
Ricg is the traceless Ricci tensor. For this

identity, in turn, a use of integration by parts and the second Bianchi’s identity is

required. In fact, it is understood as a special case of a famous Pohozaev-type identity,

demonstrated by R. Shoen ([44]).

In this scenario, for example, Cheng showed these type inequalities for symmet-

ric (0, 2)-tensors satisfying a second Bianchi type identity and the Ricci curvature is

bounded from below by a negative constant, where the inequality (5.1) has to be mod-

ified by taking into account the first nonzero eigenvalue of the Laplacian (for more

details, see Theorem 1.7 in [15], and [16]). On the other hand, this results has been

studied in manifolds with a nonempty boundary. Still within this scope, Ho [28] got a

similar De Lellis-Topping type inequality for manifolds with a totally geodesic bound-

ary.

In this chapter we propose study these type inequalities on weighted manifolds

with constraints in the Bakry-Émery Ricci tensor. In section 5.1 we enunciate and

demonstrate the main results of this chapter (see Theorems 5.1.1 and 5.1.4) and, in

addition, we obtain direct corollaries. Finally, in section 5.2, we provide some appli-

cations of the main results. More generally, we extend the results obtained by Cheng

in [15] to weighted manifolds with convex boundary. As particular cases of these re-

sults, we obtain versions that extend, for example, the Ho [28] result for the of convex

boundary case.

5.1 Main Results

Throughout this section, we will work with a weighted manifold (Σn, g, e−fdv).

In addition, it is worth mentioning that we deal with weighted manifolds with a convex

boundary (i.e., A∂Σ ≥ 0, where A∂Σ is the second fundamental form of the immersion

∂Σ ↪→ Σ) and with Bakry-Émery Ricci tensor bounded from below by a negative

constant and obtain some De Lellis-Topping type inequalities for symmetric (0, 2)-

tensors. The main result of this chapter is the following:
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Theorem 5.1.1 Let (Σn, g, e−fdv) be a compact n-dimensional weighted manifold with
n ≥ 3, convex boundary ∂Σ and f : Σn −→ R a smooth function such that (∂f/∂ν) ≡ 0

on ∂Σ, where ν is the exterior unit normal vector field along ∂Σ. Let T be a symmetric
(0, 2)-tensor field such that T (ν, ·) ≥ 0 along the boundary and div T = c∇B, where
c ∈ R is a constant and B = trgT denotes the trace of T with respect to g. If Ricf ≥
−(n− 1)K1g, where K1 ≥ 0 is a constant, and K2 := maxx∈M ∆f(x), then

(nc− 1)2

∫
Σ

(
B −B

)2
e−fdv ≤ n2

(
(n− 1)K1 +K2

λ1

+
n− 1

n

)∫
Σ

|
◦
T |2e−fdv, (5.2)

where B =
(∫

Σ
Be−fdv

)
/
(∫

Σ
e−fdv

)
is the weighted average value of the B over Σn, λ1

is the first nonzero eigenvalue for weighted Laplacian with Neumann boundary condition
and

◦
T= T−

(
trgT/n

)
g denotes traceless part of the tensor field T . Moreover, assuming

positivity of Ricci curvature, the equality holds if and only if f is constant and
◦
T= 0.

Proof. Initially, note that if c = 1/n, then

0 = (nc− 1)

∫
Σ

(
B −B

)2
e−fdv

and inequality (5.2) follows trivially. So, suppose that c 6= 1/n.

Now, let u : Σn −→ R be the only solution of following PDE with Neumann

boundary condition  ∆fu = B −B in Σ;
∂u

∂ν
= 0 on ∂Σ.

(5.3)

Moreover, note that the condition div T = c∇B provides

div
◦
T = c∇B − 1

n
∇B

=
nc− 1

n
∇B.

Since (∂u/∂ν) = 0 and T (ν, ·) ≥ 0 on ∂Σ, we can use the equation (1.6) and

obtain

−
∫

Σ

〈
div

◦
T ,∇u

〉
e−fdv =

∫
Σ

〈 ◦
T , ∇̃2u

〉
e−fdv −

∫
∂Σ

◦
T (ν,∇u)e−fdµ

≤
∫

Σ

〈 ◦
T , ∇̃2u

〉
e−fdv.

Here we use the fact that
◦
T (ν,∇u) = T (ν,∇u) ≥ 0 on ∂Σ. Thus,
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(nc− 1)

∫
Σ

(
B −B

)2
e−fdv = (nc− 1)

∫
Σ

(
B −B

)
∆fue

−fdv

= (nc− 1)

(
−
∫

Σ

〈∇B,∇u〉 e−fdv +

∫
∂Σ

(
B −B

)∂u
∂ν
e−fdµ

)
= −n

∫
Σ

〈
div(

◦
T ),∇u

〉
e−fdv

≤ n

∫
Σ

〈 ◦
T , ∇̃2u

〉
e−fdv

= n

∫
Σ

〈
◦
T , ∇̃2u− ∆fu

n
g

〉
e−fdv

≤ n

(∫
Σ

|
◦
T |2e−fdv

)1/2
(∫

Σ

∣∣∣∣∇̃2u− ∆fu

n
g

∣∣∣∣2 e−fdv
)1/2

.

By Reilly formula (1.8), the hypothesis A∂Σ ≥ 0 and
(
∂u/∂ν

)
= 0 on ∂Σ provides∫

Σ

|∇2u|2e−fdv ≤
∫

Σ

(
−Ricf (∇u,∇u) + (∆fu)2

)
e−fdv, (5.4)

and so ∫
Σ

|∇̃2u− ∆fu

n
g|2e−fdv

=

∫
Σ

(
|∇̃2u|2 − (∆fu)2

n

)
e−fdv

=

∫
Σ

(
|∇2u|2 − 2∇2u(∇u,∇f) +

|∇f |2|∇u|2 + 〈∇f,∇u〉2

2
− (∆fu)2

n

)
e−fdv

≤
∫

Σ

(
|∇2u|2 −

〈
∇f,∇|∇u|2

〉
+ |∇f |2|∇u|2 − (∆fu)2

n

)
e−fdv

≤
∫

Σ

((
1− 1

n

)
(∆fu)2 −Ricf (∇u,∇u)−

〈
∇f,∇|∇u|2

〉
+ |∇f |2|∇u|2

)
e−fdv,

where the first inequality follows from the fact that 〈∇f,∇u〉 ≤ |∇f ||∇u| and the last

of (5.4). We also used the fact that 2∇2u(∇u,∇f) = 〈∇f,∇|∇u|2〉. Now, since

−
〈
∇f,∇|∇u|2

〉
= |∇u|2∆f − div(|∇u|2∇f),

follows that

∫
Σ

−
〈
∇f,∇|∇u|2

〉
e−fdv =

∫
Σ

|∇u|2∆fe−fdv −
∫

Σ

div(|∇u|2∇f)e−fdv
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=

∫
Σ

|∇u|2∆fe−fdv −
∫

Σ

|∇u|2|∇f |2e−fdv

−
∫

Σ

div(e−f |∇u|2∇f)dv

=

∫
Σ

|∇u|2∆fe−fdv −
∫

Σ

|∇u|2|∇f |2e−fdv

−
∫
∂Σ

|∇u|2∂f
∂ν
e−fdµ

=

∫
Σ

|∇u|2∆fe−fdv −
∫

Σ

|∇u|2|∇f |2e−fdv.

Furthermore, since the first nonzero eigenvalue for weighted Laplacian with Neumann

boundary condition λ1 on Σn is characterized by

λ1 = min

{∫
Σ
|∇ϕ|2e−fdv∫
Σ
ϕ2e−fdv

;ϕ is nontrivial and
∂ϕ

∂ν
= 0 on ∂Σ

}
, (5.5)

we have that∫
Σ

|∇u|2e−fdv = −
∫

Σ

u∆fue
−fdv +

∫
∂Σ

u
∂u

∂ν
e−fdµ

= −
∫

Σ

u∆fue
−fdv

= −
∫

Σ

u
(
B −B

)
e−fdv

≤
(∫

Σ

u2e−fdv

)1/2(∫
Σ

(
B −B

)2
e−fdv

)1/2

≤
(∫

Σ
|∇u|2e−fdv

λ1

)1/2(∫
Σ

(
B −B

)2
e−fdv

)1/2

.

Consequently ∫
Σ

|∇u|2e−fdv ≤ 1

λ1

∫
Σ

(
B −B

)2
e−fdv.

Therefore, ∫
Σ

|∇̃2u− ∆fu

n
g|2e−fdv

≤
∫

Σ

(
−Ricf (∇u,∇u) +

(
n− 1

n

)
(∆fu)2

)
e−fdv

−
∫

Σ

( 〈
∇f,∇|∇u|2

〉
− |∇f |2|∇u|2

)
e−fdv

=

∫
Σ

(
−Ricf (∇u,∇u) +

(
n− 1

n

)
(∆fu)2

)
e−fdv

+

∫
Σ

|∇u|2∆fe−fdv
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≤
∫

Σ

(
(n− 1)K1|∇u|2 +

(
n− 1

n

)
(∆fu)2 +K2|∇u|2

)
e−fdv

=
(

(n− 1)K1 +K2

)∫
Σ

|∇u|2e−fdv +
n− 1

n

∫
Σ

(∆fu)2e−fdv

≤
(

(n− 1)K1 +K2

λ1

)∫
Σ

(
B −B

)2
e−fdv +

n− 1

n

∫
Σ

(
B −B

)2
e−fdv

=

(
(n− 1)K1 +K2

λ1

+
n− 1

n

)∫
Σ

(
B −B

)2
e−fdv.

Then, after a straightforward calculation, we get the desired inequality.

For the second part of the theorem, suppose that the equality in (5.2) holds.

Hence, we must have to ∆f = K2. Thus, from classical divergence theorem and by

the fact of (∂f/∂ν) = 0 on ∂Σ, we have that K2 = 0 and consequently f is constant.

Therefore, Ricf = Ric and Reilly’s formula (1.8) becomes∫
Σ

|∇2u|2e−fdv =

∫
Σ

(∆fu)2e−fdv

−
(∫

Σ

Ricg(∇u,∇u)e−fdv +

∫
∂Σ

A∂M(∇u,∇u)e−fdµ

)
and equality in (5.2) only occurs when

Ric(∇u,∇u) = 0 and A∂Σ(∇u,∇u) = 0.

But this is only possible when ∇u = 0, since Ric > 0. Then u is constant and
◦
T= 0.

Equivalently, we have the following

Corollary 5.1.2 With he same assumptions as for Theorem 5.1.1, we have that

(nc− 1)2

∫
Σ

∣∣∣∣T − B

n
g

∣∣∣∣2 e−fdv
≤
[
n(nc− 1)2 + n2

(
(n− 1)K1 +K2

λ1

+
n− 1

n

)]∫
Σ

∣∣∣∣T − B

n
g

∣∣∣∣2 e−fdv.
Moreover, assuming positivity of Ricci curvature, the equality holds if and only if f is
constant and

◦
T= 0.

Proof. Just note that inequality (5.2) is equivalent to inequality (5.6). In fact, from

(5.3) in the above demonstration, we have B = B −∆fu. Consequently,

|T − (B/n)g|2 = |T − (B/n)g + (∆fu/n)g|2

= |T − (B/n)g|2 + (1/n)(∆fu)2

= |T − (B/n)g|2 + (1/n)(B −B)2.
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Therefore,

n(nc− 1)2

∫
Σ

|T − (B/n)g|2e−fdv = n(nc− 1)2

∫
Σ

|T − (B/n)g|2e−fdv

+(nc− 1)2

∫
Σ

(B −B)2e−fdv

and the equivalence between their respective inequalities follows.

A slight change on the proof of Theorem 5.1.1 (that would evoke a solution to

a analogous Dirichlet’s problem to 5.3, in addition to the weighted Bochner identity)

could give us an approach for closed manifolds.

Corollary 5.1.3 Let (Σn, g, e−fdv) be a closed n-dimensional weighted manifold with
n ≥ 3. Let T be a symmetric (0, 2)-tensor field such that div T = c∇B, where c ∈ R is a
constant and B = trgT denotes the trace of T with respect to g. If Ricf ≥ −(n−1)K1g,
where K1 ≥ 0 is a constant, and K2 := maxx∈Σ ∆f(x), then

(nc− 1)2

∫
Σ

(
B −B

)2
e−fdv ≤ n2

(
(n− 1)K1 +K2

λ1

+
n− 1

n

)∫
Σ

|
◦
T |2e−fdv,

where B =
(∫

Σ
Be−fdv

)
/
(∫

Σ
e−fdv

)
is the weighted average value of the B over Σn,

λ1 is the first nonzero eigenvalue for weighted Laplacian with Dirichlet condition and
◦
T= T −

(
trgT/n

)
g denotes traceless part of the tensor field T . Moreover, assuming

positivity of Ricci curvature, the equality holds if and only if f is constant and
◦
T= 0.

As mentioned in the chapter 1 (see section 1.4), we can take a (0, 2)-tensor T and,

from there, consider the weighted tensor Tf = T +∇2f . Moreover, remember that

∇̃2u = ∇2u− ∇f ⊗∇u+∇u⊗∇f
2

.

In this context, we obtain a De Lellis-Topping type inequality with weighted objects.

More precisely, we have:

Theorem 5.1.4 Let (Σn, g, e−fdv) be a compact smooth metric measure space with
n ≥ 3, convex boundary ∂Σ and f : Σn −→ R smooth and such that (∂f/∂ν) ≡ 0 on
∂Σ. Let T be a symmetric (0, 2)-tensor field such that div T = c∇B and T (ν, ·) along
of the boundary, where c ≥ 0 is a constant and B = trgT . If Ricf ≥ (∆f− (n−1)K)g,
where K ≥ 0 is a constant, then∫

Σ

(
Bf −Bf

)2
e−fdv ≤ n2

(nc− 1)2

(
(n− 1)K

λ1

+
n− 1

n

)∫
Σ

|
◦
T f −∇2f |2e−fdv

+

∫
Σ

(∆f)2e−fdv, (5.6)
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where Tf = T +∇2f and Bf = trgTf , Bf =
(∫

Σ
Bfe

−fdv
)
/
(∫

Σ
e−fdv

)
is the weighted

average value of the Bf over Σn, λ1 is the first nonzero eigenvalue for weighted Lapla-
cian with Neumann boundary condition and

◦
T= T −

(
trgT/n

)
g denotes traceless part

of the tensor field T . Moreover, assuming positivity of Ricci curvature, the equality
holds if and only if f is constant and

◦
T= 0.

Proof. Note that

Bf = trgTf =⇒ ∇B = ∇Bf −∇∆f.

Thus,

div
( ◦
T f
)

= div
(
Tf −

Bf

n
g
)

= div
(
Tf
)
− div

(Bf

n
g
)

= div
(
T ) + div(∇2f)− 1

n
∇Bf

= c∇B + div(∇2f)− 1

n
∇Bf

= c∇Bf − c∇∆f + div(∇2f)− 1

n
∇Bf

=
nc− 1

n
∇Bf − c∇∆f + div(∇2f).

Let u : Mn −→ R be the smooth function given by ∆fu = Bf −Bf in Σ;
∂u

∂ν
= 0 on ∂Σ,

we have ∫
Σ

(
Bf −Bf

)2
e−fdv

=

∫
Σ

(
Bf −Bf

)
∆fue

−fdv

= −
∫

Σ

〈∇Bf ,∇u〉 e−fdv +

∫
∂Σ

(
Bf −Bf

)∂u
∂ν
e−fdµ

= − n

nc− 1

∫
Σ

〈
div
( ◦
T f
)

+ c∇∆f − div(∇2f),∇u
〉
e−fdv.

However,∫
Σ

〈
div
( ◦
T f
)
,∇u

〉
e−fdv = −

∫
Σ

〈 ◦
T f , ∇̃2u

〉
e−fdv +

∫
∂Σ

◦
T f (∇u, ν)e−fdµ

= −
∫

Σ

〈 ◦
T f , ∇̃2u

〉
e−fdv +

∫
∂Σ

Tf (∇u, ν)e−fdµ,
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∫
Σ

〈∇∆f,∇u〉 e−fdv = −
∫
M

∆f∆fue
−fdv +

∫
∂Σ

∆f
∂u

∂ν
e−fdµ

= −
∫

Σ

∆f∆fue
−fdv

and∫
Σ

〈
div(∇2f),∇u

〉
e−fdv = −

∫
Σ

〈
∇2f, ∇̃2u

〉
e−fdv +

∫
∂Σ

∇2f(∇u, ν)e−fdµ.

Therefore ∫
Σ

(
Bf −Bf

)2
e−fdv

=
n

(nc− 1)

(∫
Σ

〈 ◦
T f −∇2f, ∇̃2u

〉
e−fdv

)
− n

(nc− 1)

(∫
∂Σ

(
Tf (∇u, ν)−∇2f(∇u, ν)

)
e−fdµ

)
+

n

(nc− 1)

(∫
Σ

c∆f∆fue
−fdv

)
=

n

(nc− 1)

(∫
Σ

〈 ◦
T f −∇2f, ∇̃2u

〉
e−fdv

)
− n

(nc− 1)

(∫
∂Σ

T (∇u, ν)e−fdµ

)
+

n

(nc− 1)

(∫
Σ

c∆f∆fue
−fdv

)
.

By hypothesis, we have that T (∇u, ν) ≥ 0 implies

− n

(nc− 1)

(∫
∂Σ

T (∇u, ν)e−fdµ

)
≤ 0.

Thus, of the fact of 〈
∇2f,

∆fu

n
g

〉
=

1

n
∆f∆fu,

follows that ∫
Σ

(
Bf −Bf

)2
e−fdv

≤ n

(nc− 1)

(∫
Σ

〈
◦
T f −∇2f, ∇̃2u− ∆fu

n
g

〉
e−fdv

)
+

n

(nc− 1)

(∫
Σ

c∆f∆fue
−fdv −

∫
Σ

1

n
∆f∆fue

−fdv

)
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=
n

(nc− 1)

(∫
Σ

〈
◦
T f −∇2f, ∇̃2u− ∆fu

n
g

〉
e−fdv

)
+

n

(nc− 1)

(∫
Σ

(nc− 1)

n
∆f∆fue

−fdv

)
=

n

(nc− 1)

(∫
Σ

〈
◦
T f −∇2f, ∇̃2u− ∆fu

n
g

〉
e−fdv

)
+

∫
Σ

∆f∆fue
−fdv

≤ n

(nc− 1)

(∫
Σ

|
◦
T f −∇2f |2e−fdv

)1/2(∫
M

|∇̃2u− ∆fu

n
g|2e−fdv

)1/2

+

(∫
Σ

(∆f)2e−fdv

)1/2(∫
Σ

(∆fu)2e−fdv

)1/2

.

By Rielly formula, we have that∫
Σ

|∇2u|2e−fdv ≤
∫

Σ

(
−Ricf (∇u,∇u) + (∆fu)2

)
e−fdv, (5.7)

and so ∫
Σ

|∇̃2u− ∆fu

n
g|2e−fdv

=

∫
Σ

|∇̃2u|2 − (∆fu)2

n
e−fdv

=

∫
Σ

(
|∇2u|2 − 2∇2u(∇u,∇f) +

|∇f |2|∇u|2 + 〈∇f,∇u〉2

2
− (∆fu)2

n

)
e−fdv

≤
∫

Σ

(
|∇2u|2 −

〈
∇f,∇|∇u|2

〉
+ |∇f |2|∇u|2 − (∆fu)2

n

)
e−fdv

≤
∫

Σ

((
1− 1

n

)
(∆fu)2 −Ricf (∇u,∇u)−

〈
∇f,∇|∇u|2

〉
+ |∇f |2|∇u|2

)
e−fdv,

where the first inequality follows from the fact that 〈∇f,∇u〉 ≤ |∇f ||∇u| and the last

of (5.7). Now, since

−
〈
∇f,∇|∇u|2

〉
= |∇u|2 div(∇f)− div(|∇u|2∇f)

= |∇u|2∆f − div(|∇u|2∇f),

we have that

div(|∇u|2∇f)e−f = div(e−f |∇u|2∇f) + |∇u|2|∇f |2e−f

and, then
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∫
Σ

−
〈
∇f,∇|∇u|2

〉
e−fdv =

∫
Σ

|∇u|2∆fe−fdv −
∫
M

div(|∇u|2∇f)e−fdv

=

∫
Σ

|∇u|2∆fe−fdv −
∫
M

|∇u|2|∇f |2e−fdv

−
∫

Σ

div(e−f |∇u|2∇f)dv

=

∫
Σ

|∇u|2∆fe−fdv −
∫
M

|∇u|2|∇f |2e−fdv

−
∫
∂Σ

|∇u|2∂f
∂ν
e−fdv

=

∫
Σ

|∇u|2∆fe−fdv −
∫
M

|∇u|2|∇f |2e−fdv.

Now, using the characterization of the first nonzero Neumann eigenvalue λ1 given by

(5.5) and proceeding as in the proof of Theorem 5.1.1, it follows that∫
Σ

|∇u|2e−fdv ≤ 1

λ1

∫
Σ

(
Bf −Bf

)2
e−fdv.

Hence ∫
Σ

|∇̃2u− ∆fu

n
g|2e−fdv

≤
∫

Σ

(
−Ricf (∇u,∇u) +

(
n− 1

n

)
(∆fu)2

)
e−fdv

−
∫

Σ

( 〈
∇f,∇|∇u|2

〉
+ |∇f |2|∇u|2

)
e−fdv

=

∫
Σ

(
−Ricf (∇u,∇u) +

(
n− 1

n

)
(∆fu)2

)
e−fdv

+

∫
Σ

|∇u|2∆fe−fdv

≤
∫

Σ

(
−
(
∆f − (n− 1)K

)
|∇u|2 +

(
n− 1

n

)
(∆fu)2 + |∇u|2∆f

)
e−fdv

= (n− 1)K

∫
Σ

|∇u|2e−fdv +
n− 1

n

∫
Σ

(∆fu)2e−fdv

≤ (n− 1)K

λ1

∫
Σ

(
Bf −Bf

)2
e−fdv +

n− 1

n

∫
M

(
Bf −Bf

)2
e−fdv

=

(
(n− 1)K

λ1

+
n− 1

n

)∫
Σ

(
Bf −Bf

)2
e−fdv.

Therefore,
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∫
Σ

(
Bf −Bf

)2
e−fdv

≤ n

(nc− 1)

(∫
Σ

|
◦
T f −∇2f |2e−fdv

)1/2((
(n− 1)K

λ1

+
n− 1

n

)∫
Σ

(
Bf −Bf

)2
e−fdv

)1/2

+

(∫
Σ

(∆f)2e−fdv

)1/2(∫
Σ

(∆fu)2e−fdv

)1/2

=
n

(nc− 1)

(∫
Σ

|
◦
T f −∇2f |2e−fdv

)1/2((
(n− 1)K

λ1

+
n− 1

n

)∫
Σ

(
Bf −Bf

)2
e−fdv

)1/2

+

(∫
Σ

(∆f)2e−fdv

)1/2(∫
Σ

(
Bf −Bf

)2
e−fdv

)1/2

and, with this,∫
Σ

(
Bf −Bf

)2
e−fdv ≤ n2

(nc− 1)2

(
(n− 1)K

λ1

+
n− 1

n

)∫
Σ

|
◦
T f −∇2f |2e−fdv

+

∫
Σ

(∆f)2e−fdv.

In the closed case, we have the following

Corollary 5.1.5 Let (Σn, g, e−fdv) be a closed n-dimensional weighted manifold with
n ≥ 3. Let T be a symmetric (0, 2)-tensor field such that div T = c∇B, where c ∈ R
is a constant and B = trgT denotes the trace of T with respect to g. If Ricf ≥
(∆f − (n− 1)K)g, where K ≥ 0 is a constant, then∫

Σ

(
Bf −Bf

)2
e−fdv ≤ n2

(nc− 1)2

(
(n− 1)K

λ1

+
n− 1

n

)∫
Σ

|
◦
T f −∇2f |2e−fdv

+

∫
Σ

(∆f)2e−fdv,

where Tf = T +∇2f and Bf = trgTf , Bf =
(∫

Σ
Bfe

−fdv
)
/
(∫

Σ
e−fdv

)
is the weighted

average value of the Bf over Σn, λ1 is the first nonzero eigenvalue for weighted Lapla-
cian with Dirichlet condition and

◦
T= T −

(
trgT/n

)
g denotes traceless part of the

tensor field T . Moreover, assuming positivity of Ricci curvature, the equality holds if
and only if f is constant and

◦
T= 0.

5.2 Applications

In this section we will provide some applications of the main results contained in

the previous section.
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5.2.1 Locally Conservative Tensors

In view of the definition of locally conservative tensor, we can reinterpret the

condition div T = c∇B, since that c = 0⇒ T is locally conserved;

c 6= 0⇒ T − cBg is locally conserved.

Therefore, provided that the boundary conditions are valid, the inequalities (5.2) and

(5.6) follows for locally conservative symmetric (0, 2)-tensor fields. For a better un-

derstanding of the definition, the motivation in conservation laws, as well as a source

of examples of locally conservative tensors, the reader can consult [25]. However, we

highlight the following examples:

Example 5.2.1 The second Bianchi’s identity provides that the Einstein tensor

Eg = Ricg −
Rg

2
g

is locally conserved. Notice that
◦
Eg =

◦
Ricg.

Example 5.2.2 In a more general context, we can look at a spacelike hypersurface
immersed in a semi-Riemannian manifold of index 1 (in this case, a Lorentz manifold)
or 0 (that is, a Riemannian manifold). For a more attentive reader, it can be perceived
that there is an abuse of language in the case where the hypersurface is immersed in a
Riemannian ambiente, since the induced metric is already, in itself, Riemannian. With
this in mind, take a Einstein semi-Riemannian manifold

(
M

n+1
, g,∇

)
, consider a hy-

persurface ϕ :
(
Σn, g,∇

)
→
(
M

n+1
, g,∇

)
and, to fix the notations, let {e1, ..., en, en+1}

be a local orthonormal frame on Mn+1 with en+1 = ν the exterior unit normal vector
field along Σn. In this setting, we have{

If the index of g is 1, then g(ν, ν) = −1;

If the index of g is 0, then g(ν, ν) = 1.

From Codazzi’s equations, we obtain that〈
RVWν,X

〉
= (∇V II) (W,X)− (∇W II) (V,X), ∀X, V,W ∈ X(Σ),

where R is the curvature endomorphism of Mn+1 and II(X, Y ) = g
(
α(X, Y ), ν

)
for

every X and Y in X(Σ). Now, remember that the Ricci tensor Ric in Mn+1 is given
by
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Ric(X, Y ) = tr
(
R(X, ·, Y, ·)

)
(5.8)

=
n+1∑
i=1

gikR(X, ei, Y, ek)

=
n+1∑
i=1

εiR(X, ei, Y, ei),

where εi = 〈ei, ei〉. In this way, making V = ek (with 1 ≤ k ≤ n), W = X = ei and
taking the sum with 1 ≤ i ≤ n+ 1, we get that

Rick(n+1) =
n+1∑
i=1

εiR(ek, ei, en+1, ei) (5.9)

=
n∑
i=1

εiR(ek, ei, en+1, ei)

=
n∑
i=1

R(ek, ei, en+1, ei)

=
n∑
i=1

(
(∇ekII) (ei, ei)− (∇eiII) (ek, ei)

)
.

Considering the equation (5.9) above and assuming that the ambient spaceMn+1

is Einstein, it follows that Rick(n+1) = (R/n)gk(n+1) = 0, where R denotes the scalar
curvature of Mn+1, and so

n∑
i=1

(∇ekII) (ei, ei) =
n∑
i=1

(∇eiII) (ek, ei).

Therefore, considering that the mean curvature of Σn is given by H = tr(II), it
follows that

(∇H)k = ∇H(ek)

= ∇ekH

= ∇ektr(II)

= tr (∇EkB)

=
n∑
i=1

(∇ekII) (ei, ei)

=
n∑
i=1

(∇eiII) (ek, ei)

provides

div II = ∇H, (5.10)
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Since

(div II)k = (div II) (ek)

=
n∑
i=1

〈(∇eiII) (ek), ei〉

=
n∑
i=1

(∇eiII) (ek, ei)

= (∇H)k .

Therefore, in this case, the tensor T = II −Hg is locally conserved.

Example 5.2.3 Le Σn be a spacelike submanifold immersed in a semi-Riemannian
manifold Mn+m of index 1 or 0. Thus, in view of Lemma 2.2.3, if Mn+m has constant
sectional curvature and 0 ≤ r ≤ n is even, then

div Tr = 0,

and therefore the symmetric (0, 2)-tensor Tr is locally conserved.

Remark 5.2.4 Since Lemma 2.2.3 deals with the case where the ambient space is
Lorentz, for the case where the ambient space is Riemannian, see Lemma 2.1 in [26].

As the reader can see in the section 2.2 of the chapter 2, the hypothesis that r ∈
{1, 2, ..., n} is even above can be replaced by m = 1, that is, for every 0 ≤ r ≤ n holds
div Tr = 0 for a hypersurface Σn immersed in a space form Mn+1.

5.2.2 Weighted Almost Schur

Taking in account the example 5.2.1, we can obtain a weighted versions of The-

orem 5.0.5. In fact, applying Theorem 5.1.1, we get the following

Corollary 5.2.5 Let (Σn, g, e−fdv) be a compact weighted manifold n-dimensional
with n ≥ 3, convex boundary ∂Σ and f : Σn −→ R smooth such that (∂f/∂ν) ≡ 0

on ∂Σ. If Ricg(ν, ·) ≥ 0 along of the boundary and Ricf ≥ −(n−1)K1g, where K1 ≥ 0

is a constant, and K2 := maxx∈Σ ∆f(x), then∫
Σ

(
Rg −Rg

)2
e−fdv ≤ 4n2

(n− 2)2

(
(n− 1)K1 +K2

λ1

+
n− 1

n

)∫
Σ

|
◦
Ricg |2e−fdv,

where λ1 is the first nonzero eigenvalue for weighted laplacian with Neumann boundary.
Moreover, assuming positivity of Ricci curvature, the equality holds if and only if f is
constant and Mn is Einstein.

And, applying Theorem 5.1.4, we get the corollary below.
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Corollary 5.2.6 Let (Σn, g, e−fdv) be a compact weighted manifold n-dimensional
with n ≥ 3, convex boundary ∂Σ and f : Σn −→ R smooth such that (∂f/∂ν) ≡ 0

on ∂Σ. If Ricg(ν, ·) ≥ 0 along of the boundary and Ricf ≥ (∆f − (n − 1)K)g, where
K1 ≥ 0 is a constant, and K2 := maxx∈Σ ∆f(x), then∫

Σ

(
Rf −Rf

)2
e−fdv ≤ n2

(nc− 1)2

(
(n− 1)K

λ1

+
n− 1

n

)∫
Σ

|
◦
Ricf −∇2f |2e−fdv

+

∫
Σ

(∆f)2e−fdv,

where Rf = tr
(
Ricf

)
. Moreover, the equality holds if and only if f is constant and Mn

is Einstein.

5.2.3 Hypersurfaces immersed in Einstein manifolds

In [17], the authors deal with “nearly” umbilical hypersurfaces, obtaining De

Lellis-Topping inequalities in this setting. We observe that, taking in account the Ex-

ample 5.2.2, we can obtain a improvent of that results on hypersurfaces with boundary

and constraints in the Bakry-Émery Ricci tensor. In fact, applying Theorem 5.1.1, we

get the following stability result

Corollary 5.2.7 Let (Mn+1, g, e−fdv) be a Einstein manifold. Let Σn be a compact
hypersurface immersed in (Mn+1, g, e−fdv) with n ≥ 3, convex boundary ∂Σ and
(∂f/∂ν) = 0 on ∂Σ. If If A(ν, ·) ≥ 0 along of the boundary of Σn and RicΣ

f ≥
−(n− 1)K1g, where K1 ≥ 0 is a constant, and K2 := maxx∈M ∆f(x), then∫

Σ

(
H −H

)2
e−fdv ≤ n2

(n− 1)2

(
(n− 1)K1 +K2

λ1

+
n− 1

n

)∫
Σ

|
◦
A |2e−fdv,

where λ1 is the first nonzero eigenvalue for weighted Laplacian with Neumann boundary.
Moreover, assuming positivity of Ricci curvature, the equality holds if and only if f is
constant and Σn is totally umbilical.

5.2.4 Submanifolds immersed in Space Forms

In view of example 5.2.3, we have the following result for submanifolds immersed

in spatial forms:

Corollary 5.2.8 Let (Mm, g, e−fdv) be a Einstein manifold. Let Σn be a compact
hypersurface immersed in (Mm, g, e−fdv) with m > n ≥ 3, convex boundary ∂Σ,
(∂f/∂ν) = 0 on ∂Σ and

1. 2 ≤ r ≤ n ie even or
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2. m = n+ 1, i.e., Σn is a hypersurface.

If Tr(ν, ·) ≥ 0 along of the boundary of Σn and RicΣ
f ≥ −(n− 1)K1g, where K1 ≥ 0 is

a constant, and K2 := maxx∈M ∆f(x), then

(n− r)2

∫
Σ

(
Hr −Hr

)2
e−fdv ≤ n2

(
(n− 1)K1 +K2

λ1

+
n− 1

n

)∫
Σ

|Tr −
(n− r)Hr

n
g|2e−fdv,

where Hr =
(∫

Σ
Hre

−fdv
)
/
(∫

Σ
e−fdv

)
is the weighted average value of the H + r over

Σn, λ1 is the first nonzero eigenvalue for weighted Laplacian with Neumann boundary
condition. Moreover, assuming positivity of Ricci curvature, the equality holds if and
only if f is constant and Tr − (n−r)Hr

n
g = 0.

Remark 5.2.9 It is worth mentioning that, given the explanation of the examples
mentioned in [25], the same inequalities, with different motivations, can be thought
in other locally conserved tensors, such as those involving Newton transformations,
Einstein Lovelock tensors, Q-curvature and many others.
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