Universidade Federal da Paraiba
Programa de Pés-Graduagao em Matematica

Doutorado em Matemaéatica

Ground state and nodal solutions for
some elliptic equations involving the
fractional Laplacian operator and
Trudinger-Moser nonlinearity

por

Thiago Luiz de Oliveira do Régo

Joao Pessoa - PB

Julho,/2020



Ground state and nodal solutions for
some elliptic equations involving the
fractional Laplacian operator and
Trudinger-Moser nonlinearity

por

Thiago Luiz de Oliveira do Régo '
sob orientacao

Orientador: Prof. Dr. Manassés Xavier de Souza

Coorientador: Prof. Dr. Uberlandio Batista Severo

Tese apresentada ao Corpo Docente do Programa de
Pos-Graduacao em Matematica - UFPB, como req-
uisito parcial para obtencao do titulo de Doutor em

Matematica.

Joao Pessoa - PB

Julho,/2020

tEste trabalho contou com apoio financeiro da Capes

i



Cat al ogacdo na publicacéo
Secdo de Catal ogacdo e C assificacéo

R343g Régo, Thiago Luiz de diveira do.

G ound state and nodal solutions for some elliptic
equations involving the fractional Laplacian operator
and Trudi nger-Mser nonlinearity / Thiago Luiz de
Aiveira do Régo. - Jodo Pessoa, 2020.

169 f. : il.

Orientacdo: Manassés Xavi er de Souza.
Coori ent agdo: Uberl andi o Batista Severo.
Tese (Doutorado) - UFPB/ CCEN.

1. Matematica. 2. Laplaciano fracionario. 3. Probl enas
de Kirchhoff fracionario. 4. Solug¢des nodais. 5.
Sol ucdes de energia ninima. 6. Desigual dade de

Trudi nger-Moser. |. Souza, Manassés Xavier de. II.
Severo, UWberlandio Batista. Ill. Titulo.
UFPB/ BC CDU 51(043)

El aborado por RUSTON SAMVEVI LLE ALEXANDRE MARQUES DA SILVA - CRB-

0386




Universidade Federal da Paraiba
Programa de Pés-Graduacao em Matemaéatica

Doutorado em Matemaéatica

Area de Concentracio: Analise

Aprovada em: 30/07,/2020

Eole. L Yo e

Prof. Dr. Edcarlos Domingos da Silva

ew;,%/ S feldes-

Prof. Dr. Everaldo Souto de Medeiros

Celbns &.'“';é«,\r

Prof. Dr. Gaetano Siciliano

Maneds B b 81,

Prof. Dr. Marcelo Fernandes Furtado

OShfoiz B oo

Prof. Dr. Uberlandio Batista Severo

Coorientador

%WC{/WC’/ X;'{Lﬂ VA4l J( 59(/%/1.

Prof. Dr. Manassés Xavier de Souza

Orientador

Tese apresentada ao Corpo Docente do Programa de Pés-Graduacao em Matematica

- UFPB, como requisito parcial para obtencao do titulo de Doutor em Matematica.

iii



Resumo

Neste trabalho, estudamos existéncia de solugoes ground state e solucoes nodais de
energia minima para quatro classes de problemas envolvendo o operador Laplaciano
fracionario com nao linearidades que podem possuir crescimento exponencial critico
no sentido da desigualdade de Trudinguer-Moser. Provamos que as solucoes ground
state possuem sinal definido e mostramos que o nivel nodal de energia minima é maior
que o dobro da energia ground state. O primeiro problema é definido num intervalo
aberto e limitado de R e o segundo ¢ definido em toda a reta real, ambos envol-
vendo o operador 1/2—Laplaciano. O terceiro problema, também com o operador
1/2—TLaplaciano e definido em um intervalo limitado da reta real, é do tipo Kirchhoff-
fracionario com fungao de Kirchhoff da forma my(t) = a+ bt, com a,b > 0. Mostramos
a existéncia de uma solucao nodal de energia minima, uma solucao nao negativa e uma
solucao nao positiva, cada uma dessas possuindo energia minima entre as solu¢oes com
sinal definido. Ainda neste caso, estudamos o comportamento assintotico das solugoes
nodais, quando b — 0%. O ultimo problema abordado é definido em um dominio limi-
tado Q C RY, N > 2, com fronteira Lipschitz 9 e envolve o operador N/s—Laplaciano
fracionario, s € (0, 1). Nesse caso, também encontramos uma solu¢ao nodal de energia
minima e solugoes nao triviais nao negativa e nao positiva ambas de menor energia
entre as solucdes com sinal definido. As principais ferramentas usadas nesse trabalho
sao: desigualdades do tipo Trudiguer-Moser, métodos variacionais, lema da deformacao

e teoria do grau.

Palavras-chave: Laplaciano fracionério, Problemas de Kirchhoff fracionario, Solugoes

nodais, Solugoes de energia minima, Desigualdade de Trudinger-Moser.
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Abstract

In this work, we study the existence of ground state and least energy nodal solutions
for four classes of problems involving the fractional Laplacian operator with nonlinear-
ities that may have critical exponential growth in the sense of the Trudinguer-Moser
inequality. We prove that ground state solutions have a defined signal and we show
that the least energy nodal level is greater than twice the ground state level. The first
problem is defined in an open bounded interval of R and the second one is defined
in the whole real line, both involving the 1/2—Laplacian operator. The third prob-
lem, also with the 1/2—Laplacian operator and defined in an open bounded interval,
is of Kirchhoff-fractional type with Kirchhoff function of the form my(t) = a + bt,
with a,b > 0. We show the existence of a least energy nodal solution, a nonnegative
solution and a nonpositive solution, each of which has minimum energy between the
solutions with defined signal. In this case, we also study the asymptotic behavior of
nodal solutions, when b — 07. The last problem addressed is defined in a bounded
domain Q c RN, N > 2, with Lipschitz boundary 02 and involves the fractional
N/s—Laplacian operator, s € (0,1). In this case, we also found a least energy nodal
solution and nontrivial nonnegative and nonpositive solutions, which have minimum
energy between the solutions with defined signal. The main tools used in this study
are: Trundiguer-Moser type inequalities, variational methods, deformation lemma and

degree theory.

Keywords: Fractional Laplacian, Fractional Kirchhoff problems, Nodal solutions,

Ground state solutions, Trudinger-Moser inequality.
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Introduction

In this thesis, our main purpose is to study the existence of nodal (sing-changing)
solutions and ground state solutions with defined signal for four classes of problems
involving the fractional Laplacian operator and the nonlinear terms may have critical
or subcritical exponential growth in the Trudinger-Moser sense.

In recent years, we have seen an increasing interest in studying fractional Sobolev
space and problems involving fractional type operators. The motivation to study frac-
tional Sobolev space arises naturally when we deal with the characterization of H*(R"),
for k =1,2,..., by means of the Fourier transform. Using Fourier transform, the frac-

tional Sobolev space H*(RY), for s € (0,1), can be described as

R = fue PE: [ 1+ EPIFu P <o

The fractional s-Laplacian operator (—A)® is closely related to the space H*(RY),
which for a function u € C§°(RY), it is defined by

s 1 u(z +y) +u(z —y) — 2u(z) N
(—A)°u(z) = —§C(N, s) /RN I dy, forall ze€R
where C(N,s)™" = [ 1‘ Cf};igg d¢ is a positive normalization constant. With respect

to the Fourier transform, (—A)® can be describe as
(=A)u = F(|g]*Fu)
and the following relation holds

s 1 1 u(z) — u(y)|?
-2 ulf ) = 5OVl = 3¢ V,) [ =gy,

R2N ‘SU - y‘NHS



where [u] is the so called Gagliardo seminorm of u in H*(RY). The space

He(RY)
H5(RY) C L*(R") is a Hilbert space with the norm ||u| g~y defined by

12LIS(RN) = |lull3 + [u]?qs(]RN)'

[l

An interesting fact about the fractional s-Laplacian operator is that, for any function
u € C°(RY), the classical Laplacian operator —A can be recovered by (—A)® in the

sense that

lim (—A)*u(z) = u(z) and lim (—A)*u(z) = —Au(z).

s—07t s—1—

The general fractional Sobolev space W*P(Q) C LP(Q2), for s € (0,1) and p € [1, o0),

where 2 is an open set in R”Y is defined by
WP(Q) = {u € LP(Q) : [ulwsn) < 0}

and when we consider the norm |[u[7c(q) = [ullzsq) + Wypenq) 0 WHP(Q), it is a

Banach space, where [u]ysr() is the Gagliardo seminorm of u given by

This space has been extensively studied by several researchers. For an introduction to

D=

the basic theory of fractional Sobolev space, we suggest the survey of Di Nezza et al.
in [32]. If @ C RY is a bounded domain with Lipschitz boundary 9Q, W*P() is an
intermediary Banach space between L?(Q)) and the classical Sobolev space WP(Q) (see

|32, Proposition 2.2]). Related to the fractional Sobolev space W*P(RY), the fractional

s

;> is a natural generalization of the fractional

p-Laplacian operator, denoted by (—A)

s-Laplacian operator, which is defined by

(—A)SU(JZ) -— 9 lim ”LL(%) — u(y)|”_2(u(x) — u(y))

dy, z € RY,
b e=0F JRN\ B, (z) |z — y|Ntep Y

for u € Cg°(RY).
The fractional s-Laplacian operator also plays an important role in different areas
of sciences. For example, fractional Schrodinger equations of the form

o)

5y = (=AY + (V(z) +whp — f(z,2), (z,t) € RN x R



wherew € R, s € (0,1), V : RY — R is an external potential function and f : RV xR —
R is a continuous function, are of interest in quantum mechanics. In fact, fractional
operators are involved in many areas of sciences such as Biology, Chemistry, Finance
or Physics (for more physical motivation, see [32] and [54, 55] and their references).

Motivated by physical or purely mathematical aspects, recently problems involv-
ing the fractional Laplacian have attracted the attention of many researchers and topics
like existence, regularity, symmetry, uniqueness and stability were studied, see for ex-
ample [33, 38, 39].

In [19], Caffarelli and Silvestre developed a method, called s-harmonic extension
method, which expressed the nonlocal operator (—A)?® as a Dirichlet-Neumann operator
in the domain RY™ = {(z,#) € R¥*! : ¢ > 0}. The techniques developed in [19] were
widely used in several studies of equations involving fractional Laplacian operators, see
for example [2, 8, 15, 35, 49].

As we said, our main goal in this work is to study the existence of nodal and
ground state solutions for four classes of equations involving the fractional Laplacian
operator in different contexts. More explicitly, for each of the problems addressed,
we prove the existence of at least one nodal solution. We also show the existence of
ground state solutions and that these solutions have defined signal. In each of the
situations, we relate the least energy nodal level and the ground state level. Moreover,
we are interested in looking for solutions when the nonlinearity involved has exponential
growth, which is the maximal growth that allows us to treat the problems by variational
methods. We emphasize that, in this thesis, we do not use the extension method in
[19] and we prefer to analyze directly the problem by exploring the properties of the
fractional Laplacian operator.

This thesis is divided into four chapters and one appendix. In what follows, we
describe each of the chapters.

In Chapter 1, we study the existence of a least energy nodal solution and ground
state solution for the following class of problems:

(=A)zu+ V(z)u= f(u) in
u=0 in R\Q,

(1)

where 2 = (a,b) is a bounded open interval, V' : [a,b] — [0,00) is a continuous

function, the nonlinear term f : R — R is of class C' and behaves like exp(t?) as

3



t — oo. In fact, exponential growth like exp(#?) is the maximal growth that allows us
to apply variational methods to treat problem (1). Next, we recall some known facts
involving the limiting Sobolev embedding theorem in one-dimension. If s € (0,1/2)
then the Sobolev embedding states that H*(R) < L% (R), where 2* := 2/(1 — 2s)
is the fractional critical Sobolev exponent. Moreover, this same result ensures that
HY2(R) — Li(R) for any q € [2,00), but H/2(R) is not continuously embedded in
L>°(R) (for more details see [32, 61]). Thus, if s € (0,1/2) then the maximal growth
on the nonlinearity f(¢), which lets us to work with (1) by considering a variational

%=1 as [t| — oco. On the other hand, in the limiting

approach in H*(R), is given by |t
case s = 1/2, the maximal growth on f(¢), which allows us to study (1) by applying a
variational framework involving the space H'/2(R), it is motivated by the Trudinger-
Moser inequality proved by Ozawa [61] and improved by Kozono et al. in [53] and
Takahashi in [69]. Precisely, by combining some of the results contained in [53, 61, 69],
it was established that

sup /(eo‘“2 — 1)dz < oo, (2)

{u€HV2(R): |lully 2,251} /R
for any 0 < a < 7, where
2 1/2
ez = (5 [ M=y i)

is the so-called full Sobolev norm on H'2?(R). Motivated by (2), we say that f(t) has

exponential critical growth if there exists ag > 0 such that

) 0, for all a > ay,
lim f(t)e ol = (3)

t|—o0
i oo, forall a < «ap,

and we say that f(t) has exponential subcritical growth if

lim f(t)e " =0, for all a > 0. (4)

|t|—o00
Based on this notion of criticality, many papers have been developed in order to
study issues related to the existence of solutions for problems involving the fractional
Laplacian operator and nonlinearities with exponential growth. For example, existence
and multiplicity of solutions for similar problems to (1) were treated by different meth-

ods in [19, 50, 63]. By exploiting (2) and the Mountain-Pass Theorem, lannizzotto
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and Squassina [50] proved the existence and multiplicity of solutions for the class of

one-dimensional nonlocal equations

(=A)zu = f(u) in (a,b),
u=0 in R\ (a,b),

when f(t) is o(|t|) at the origin and behaves like e as [t| — +o0, for some a > 0.

Giacomoni et al. [19] studied the problem

(=A)2u = Ag(a)[ul"*u +ue’” in (a,b),
u>0 in (a,b)
u=0 in R\ (a,b),

where 1 < g <2, p>1,0<p <2, XA> 0 and the function g € L%(a,b).
The authors showed the existence of mountain-pass solution when the nonlinearity
is concave near at origin and has exponential growth at infinity. Furthermore, they
showed the existence of multiple solutions for a suitable range of A\, by analyzing the
fibering maps and the corresponding Nehari manifold.

We point out that none of the previous papers treated the existence of sign-
changing solution (nodal solution). After a bibliographic review, we did not find works
that study nodal solutions for similar problems to (1), even in the case that the nonlin-
earity has exponential subcritical growth. Motivated by this fact, our goal is to prove
the existence of least energy nodal solutions for problem (1) when the nonlinearity has
exponential growth in the Trudinger-Moser sense.

In order to find nodal solutions and ground state solutions for problem (1), we

assume the following assumptions on the nonlinearity f:
(Hy) f € CYR) and there exists Cy > 0 such that
|F(t)] < Coe™, for all ¢ € R:
)
(o) fim == =0;
(Hj3) there exists # > 2 such that

0 < 0F(0):=0 [ f(s)ds < 1f(0), forall 1€ B\ {0}



t
(H,) the function M is strictly increasing for ¢ # 0;

1

(Hs) there exist constants p > 2 and C), > 0 such that

sgn(t)f(t) > C,|t|P~, for all t € R.

We observe that the hypothesis (H;) allows us to consider nonlinearities with
subcritical or critical growth in the sense defined in (3) and (4).

In this context, due to the critical growth on the nonlinearity f, a well-known
difficulty to study the class of problems (1) is the loss of compactness of the energy
functional associated. By analyzing an auxiliary polynomial problem involving the
function |¢|P~2¢, we will consider an estimate from below for the constant C, > 0 in
(f5). Thus, we will obtain a suitable estimate for minimum energy of nodal solutions
of (1) in way to overcome the lack of compactness. Under the hypotheses (H;) — (H;),
we will prove that the problem possesses a least energy nodal solution and a ground
state solution. We also will show that the ground state solution is a nonpositive or a
nonnegative function. Moreover, the energy of any sign-changing solution is strictly
larger than twice the ground state energy (see Theorem 1.1.2 and Theorem 1.1.3). This
property is the so-called energy doubling by Weth [71]. We emphasize that the results
of this chapter were published in the article [29].

In Chapter 2, we deal with the following class of problems:
(—A)%u +V(z)u=K(z)f(u) in R, (5)

where V, K : R — R, are continuous potentials and f : R — R has exponential growth
in the sense of the Trudinger-Moser as in (3) and (4). Our goal in this chapter is to
show that, under appropriate conditions in f, V and K, problem (5) has a least energy
nodal solution and a nodal solution, which are distinct.

By exploiting the Trudinger-Moser embedding due to Ozawa [61] and the Mountain-

Pass Theorem, do O et al. in [36] proved the existence of ground state solutions for

the following class of nonlinear scalar field equations:

(=A)zu+u=f(u) in R,

u(z) =0, as |z]— oo,



when f(t) = o(|t|) at the origin and behaves like e as |t| — +o0, for some o > 0. In
[27], Souza and Aratjo considered a perturbation of this problem by a general potential
V(z), namely,

(—A)iu+V(zu=f(u) in R,

u(r) =0, as |z] — oo,
where V(x) is a nonnegative function which is asymptotically periodic at infinity. See
also |2, 23, 28, 34, 35, 48| for others investigations.

We would like to point out that recently Miyagaki and Pucci [60] have considered

a nonlocal Kirchhoff problem of the form
1 .
—M([lul)(=8)2u+ V(z)u) = K(z)f(u) in R, (6)

where M : R, — R, is a continuous Kirchhoff function, V and K are continuous
positive potentials satisfying the conditions introduced in [34] and f is a nonlinearity
with exponential critical growth with respect to the Trudinger-Moser inequality estab-
lished by Ozawa [G1]. In this work, by applying suitable variational methods, in order
to overcome the lack of compactness due to the unboundedness of the domain and
the Trudinger-Moser inequality, the authors have obtained the existence of nontrivial
solutions for (6).

Again, we point out that none of the previous works treated the existence of
sign-changing solution (nodal solution).

In this chapter, we assume the following assumptions on the functions V' and K:

(Vi) V,K : R — [0,00) are continuous and K € L**°(R);
(V) there exist by, Ry > 0 such that

V(z) > by, for |x| > Ro;

We emphasize that, assumptions (V1) — (V2) allow that the potential V' can be
zero in a bounded interval. Since problem (5) is set on the whole real line, we face
loss of compactness. Here, motivated by do O et al. in [35], in order to overcome this

difficulty, we assume the following assumption on K:

(K,) if {A,} is a sequence of Borel sets of R with sup |A4,| < R, for some R > 0, then
neN

lim K(z)dz =0,

70 J 4,NB&(0)
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uniformly with respect to n € N.

With respect to the nonlinearity f, we suppose that f satisfies conditions (Hs) —
(Hs) and the hypothesis

(H}) f € CYR) and there exist Cp,ty > 0 such that

If(t)] < Cy (W - 1) . forall [t > to;

By exploring the hypotheses (K7) and (Hs), we handle with the lack of compact-
ness due the unboundedness of the domain and the critical behavior of the nonlinearity.
In fact, under theses hypotheses, we will show similar results to Chapter 1. Our goal is
to show that problem (5) has a least energy nodal solution and a ground state, which
are distinct. Moreover, we also show that the energy of any nodal solution is strictly
larger than twice the ground state energy (see Theorem 2.2.3 and Theorem 2.2.4).

In Chapter 3, we study the existence of least energy nodal solution and ground

state solutions for the following class of fractional Kirchhoff-type problems

(a+blul?) [(=A)2u+V(z)u] = fu) in Q

u =0 in R\Q, g

where a > 0, b > 0, Q C R is a bounded open interval, V : Q — [0, 00) is a continuous
potential, f € C*(R) is a function that may have the exponential subcritical or critical

growth in the Trudinger-Moser sense as in (3) and (4). Here, the function u belongs

to an appropriate functional space and the norm |[|ul| is defined by

]| = (% /R %dxdynL/QV(x)]uFdx)m.

The motivation to study problem (7) comes from Kirchhoff equations of the type

—(a +b||Vul]3) Au = g(z,u) in O, (8)
where © C R” is a bounded domain, N > 2, u satisfies some boundary conditions
and g(x,u) satisfies some suitable assumptions. This class of problems is related to
the stationary problem of a model introduced by Kirchhoff (see |52]) in the study on
transverse vibrations of elastic strings proposed by the hyperbolic equation

0%u n  E [Tlou
Pam — | 7t 57

D da?

2dx> Ou_, (z,t) €[0,L] x [0,+00),  (9)



where the parameters in the equation have the following meanings: L is the length of
the string, h is the area of cross-section, F is the Young modulus of the material, p is
the mass density and 79 is the initial tension. Eq. (9) is a generalization of the classical
d’Alembert’s wave equation, by considering the effects of the changes in the length of
the strings during the vibrations. See [14, 58, 64] for classical studies of Kirchhoff-type
problems.

Recently, Fiscella and Valdinoci [13] proposed a stationary Kirchhoff model driven
by the fractional Laplacian by taking into account the nonlocal aspect of the tension,
see |13, Appendix A| for more details. The Problem (7) is a version of (8) for the
fractional Laplacian operator.

Similar problems to (7) have attracted a lot of attention of many researchers and
some existence and multiplicity results have been obtained. Using variational methods
in higher dimensions, the Kirchhoff problem for the fractional operator involving non-
linearities of the type subcritical or critical power, in the sense of Sobolev, have been
investigated, for example, by |7, 20, 41, 42, 43| and references therein. For fractional
Kirchhoff problems in unbounded domains, Cheng and Gao [21] studied the existence

of least energy nodal solution for the following equation:
(a+blulns) (A u+V(r)u = f(z,u) in RY

where N > 2s, f is a Carathéodory function, f(x,s) = o(|s]®) as |s| — 0, f(x,s) =
o(|s|P7!) as |s] — oo and f(x,s)/|s|® is nondeacreasing on R\ {0}.

A Kirchhoff type problem involving exponential growth was treated by Giacomoni
et al. in [47], by using the Nehari method. Mingqi et al. in [59] proved the existence
and multiplicity of solutions for a class of fractional Kirchhoff-type problems for the
p-fractional Laplace operator. None of the previous papers treated the existence of
sign-changing solution (nodal solution) for problem (7) when the nonlinearity has ex-
ponential growth. For the our knowledge, one of the first results in this direction is
due to [29] (which was treated in our first chapter), where the authors have considered
problem (7) with a > 0 and b = 0.

In Chapter 3, we will assume that f satisfies (H;) — (Hs) and the conditions

(H%) there exists 6 > 4 such that

0<0R(0) =0 [ firiar < 170, forall £ € RN (0]
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t
(H}) the function % is strictly increasing, for ¢ # 0.

(H!) there exist p > 4 and C), > 0 such that

sgn(t)f(t) > C,|t|P~", for all t € R.

Due to the critical exponential growth on f, we need to overcome the loss of
compactness of the energy functional associated to (7). As in Problem (1) of Chapter
1, the key to overcome this difficult is to exploit suitably the constant C}, > 0 in (H5).
However, the Kirchhoff term in (7) produces many additional difficulties in this study.
By using an auxiliary Kirchhoff problem involving the polynomial function [¢t|P~2t/2,
we will find an estimate from below for C), and therefore, under theses hypotheses, we
prove the existence of at least three nontrivial solutions: a least energy nodal solution,
one nonpositive and one nonnegative ground state solution. We will also study the
asymptotic behavior of the nodal solutions as b — 07. Explicitly, we will show that
if (b,) C R is a sequence such that b, > 0 and b, — 0T, then problem (FP,;, ) has a
least nodal solution up, and, up to a subsequence, this sequence converge strongly (in
an appropriated subspace of HI/Z(R)) to ug, where ug is a least energy nodal solution
of problem (P, ) (see Theorem 3.1.2, Theorem 3.1.3 and Theorem 3.1.1).

Finally, in Chapter 4, we study the existence and multiplicity solutions for the

following class of problems involving the fractional N/s-Laplacian operator:

T2 = Mf(z,u)  in €,
u = 0 in RV\Q,

(=A)Nsu + V(w)|u

(10)

where A > 0, s € (0,1), Q C R is a bonded domain with Lipschitz boundary 9,
N >2.V:Q — Ris a continuous and nonnegative potential, and the nonlinearity f
can have the maximal exponential growth, which allows us to study (10) by means of

variational methods. We assume that the nonlinearity f satisfies the conditions

(Hy) f(z,t) is continuous and continuously differentiable in the variable ¢, and there

exist Cy, ag > 0 such that

N

|f(z,1)] < Coe®™™ = forall (z,t) € QxR;

(Ha) g |5 2t

= 0 uniformly in z € Q;
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(H;) there exists § > X such that
t
0 <OF(x,t):= 9/ flz,7)dr <tf(z,t), uniformly in ©, for all t#0;
0

N
s

(ﬁ4) the function t — f(xz,t)/|t

~2t is strictly increasing on (0,00) and strictly de-

creasing on (—oo,0), uniformly in = € ;
(Hs) there exist p > A and C > 0 such that

sgn(t)f(x,t) > Ct|P~!,  for all ¢+ € R, uniformly in x € Q.

Recently, Parini and Ruf in [62] proved a Trudinger-Moser inequality type for the
fractional Sobolev space W™'*(Q) ¢ W*N/5(1)), defined as the closure of C3°(U) with
respect to the norm ‘

wr ([, + Nl q) ™

In our context, the space W™™*(Q) can be described by
WeN Q) ={u e IN*(Q) :u=0 in R¥\Q and [u],n/. < oo},

which is the appropriate functional space to treat problem (10) (for more details, see
Section 4.3). In fact, they proved that there exists o, > 0 such that
sup / 2N 40 < o (11)
{ueWy ™ (@) [ul, /s <1} €
for all a € [0, a.) and there exists o} y such that the supremum in (11) is infinity for
all a > o y (see also [16, 17]).
In [63], Perera and Squassina, by using a suitable topological argument based on
cohomological linking and by exploiting the Trudinger-Moser inequality, have studied

the existence of multiple solutions for the following problem:
(=)= Alu| N2 exp(|ulVN"9) in Q,
u= 0 in R\ Q,
where A > 0 is a parameter. Mingqi et al. in [59] investigated the existence of solutions

for folloowing class of fractional Kirchhoff-type problems:

M(/RzN IU(x)—U(y)IN/sdxdy) (~A)yu = fle,u) i Q,

|z — y2N

u =0 in R\Q,
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where N > 1, Q@ C RY is a bounded domaim with Lipschitz boundary 9Q, M :
[0,00) — [0,00) and f : 2 x R — R are continuous functions with f that behaves
like exp(a|t|%) as t — oo. They proved the existence of a ground state solution
with positive energy and the existence of nonnegative solutions with negative energy.
By exploting a suitable Trudinger-Moser inequality for fractional Sobolev spaces in
unbounded domains and a fixed point theorem, M. de Souza in [26] proved the existence

of solution for the following fractional p-Laplacian equation:
(A u+V(z)|uf?u= f(z,u) + A\h in RY,

where the nonlinear term f has exponential growth.
Ghosh at al. in [16] proved the existence of least energy nodal solution for the

following fractional p-Laplacian problem:

(=A)ju= Ag(u) + f(z,u) in Q,
u= 0 in RM\Q,

where ¢(s) is singular at the origin and f is a power nonlinearity. For others similar
problems, in the context of fractional Kirchhoff operators dealing with nodal solutions,
see also [21, 15].

As we know, condition (H;) is the maximal growth which allows us to treat
(10) variationally. Under assumptions (I?l) - (fz,), we show that (10) has one least
energy nodal solution, one nonnegative and one nonpositive ground state solutions (see
Theorem 4.2.2 and Theorem 4.2.3). We point out that our results complete the study
presented in [21, 45, 46, 59, 63], since we work with nonlinearities that have maximal
exponential growth and because we are interested in looking for nodal solutions.

In what follows, we will present a fundamental difference between problems in-
volving local and nonlocal operators. In the special case of the stationary Schrodinger
equation

~Au+V(r)u= f(u) in RY (12)

there are several ways in the literature to obtain sign-changing solutions (see [3, 4, 9,
12, 44, 72]). However, the methods used in these works heavily rely on the following
two decompositions:

J(u)=Ju")+ J(u"), (13)

12



J(wut =JwhHut and J'(w)um = J(u)u, (14)
where J is the energy functional associated to (12) given by

1

J(u) = 5 /RN(]VUF + V(z)u?)dr — /RN F(u)dz.

However, due to the Gagliardo seminorm [u]s,, the energy functional does not satisfy
the decompositions as in (13) and (14). For example, if I is the energy functional

associated to problem (1) and u* # 0, then
I(w) > I(u®) + I(u™),

I'(w)ut > I'(ut)u® and I'(w)u™ > I'(u”)u.

(see Lemma 1.2.3 and Lemma 1.3.6). This fact shows a great difference with the
local operators case. Thus, the methods used to find nodal solutions for the local
problems (such as problems involving the Laplacian operator) usually rely on these
decompositions. Therefore, these methods seem not be applicable for our problem.
Furthermore, since the nonlinear term f has exponential critical growth, we have the
difficulty of the loss of compactness of the energy functional.

Finalizing this introduction, we emphysize that the main tools used in this work
are the following: Trudinger-Moser inequality, constraint variation methods, quantita-
tive deformation lemma, Montain-Pass Theorem and results of the degree theory.

In order to we do not resort to the Introduction and for the sake of independence
of the chapters, we will present again, in each chapter, the main results and the related

assumptions.
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Notation and terminology

e C, C;,i=1,2,..., denote positive (possibly different) constants;
e ('(e) denotes positive constant which depends on the parameter &;
e Bp(r) denotes the ball centered at € RY and radius R and B = Br(0);

e for a subset Q C RY, we denote by 992, Q, || and Q°, the boundary, the closure,

the Lebesgue measure and the complement of Q in RY, respectively;

e Yo denotes the characteristic function of a set @ C R¥Y, that is, yo(z) = 1 if

z € Qand yo(r) =0if x € Q%
e ut(z) = max{u(z),0} and v~ (z) = min{u(z),0};
e 0,(1) denotes a sequence that converges to zero;
e for 1 < p < oo, the standard norm in LP(R”) is denoted by || - ||

e u, — u and u, — u denote weak and strong convergence, respectively, in a

normed space;

e C5°(£2) denotes the space of infinitely differentiable real functions whose support

is compact in Q c RV.



Chapter 1

Ground state and nodal solutions for
a class of fractional equations
involving exponential growth in a

bounded domain

In the present chapter we study the existence of least energy nodal solution and
ground state solution for a Dirichlet problem in an open bounded interval Q = (a,b)
driven by the %—Laplacian operator with the nonlinearity that grows like exp(t?) as
t — oo. By using the constraint variational method and quantitative deformation
lemma, we obtain a least energy nodal solution u for the given problem. Moreover, we
show that the energy of w is strictly larger than twice the ground state energy. The
results of this chapter were published in the article [29].

1.1 Introduction and main results

In this section, we consider the existence and multiplicity of weak solutions for

the following class of equations:

(1.1)



where ) = (a,b) is a bounded open interval, V : [a,b] — [0,00) is a continuous and
nonnegative function, the nonlinear term f : R — R is a C'!' function that may have a
subcritical or critical exponential growth in the Trudinger-Moser sense due to Ozawa
[61] (see (1.4) and (1.5)), (—A)z is the 1/2-Laplacian operator which, for u € C°(R),

is defined as

(—A)u(z) = —% i uw ty)+ “g"; v = 2ulx) g, (1.2)

In order to study variationally the problem (1.1), we consider a suitable subspace
of the fractional Sobolev space HY2(R). The fractional Sobolev space H'/2(R) is
defined as the space

H'Y(R) = {u e [*(R) : /RQ (w(z) = u(®) 4, < oo}

[z —y|?

and it is equipped with the norm

1/2
[ll oy = ([ulij + llull3)

where

s [ ) el
[U’]l/Q = /R2 Iz — y? dzdy

is the Gagliardo seminorm of w.

We are interested in study the problem (1.1) in the case that the nonlinearity
f(t) has the maximal growth which allows us to treat problem (1.1) variationally in
H'2(R). In order to improve the presentation of the hypotheses on f, we recall some
well-known facts involving the limiting Sobolev embedding theorem in one-dimension.
If s € (0,1/2), the Sobolev embedding states that H*(R) < L?(R), where 2% :=
2/(1 — 2s) (the critical Sobolev exponent). Moreover, this same result ensures that
HY2(R) — L(R) for any ¢ € [2,00) but H'/?(R) is not continuously embedded in
L>(R) (for more details see [32, 61]). Thus, if s € (0,1/2), the maximal growth on
the nonlinearity f(¢), which lets us to work with (1.1) by considering a variational

approach in H*(R), is given by |t|*~1 as |t| = co. On the other hand, in the limiting

case s = 1/2, the maximal growth on f(¢), which allows us to study (1.1) by applying
a variational framework involving the space H'/2(R), it is motivated by the Trudinger-

Moser inequality proved by Ozawa [61] and improved by Kozono et al. in [53] and
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Takahashi in [69]. Precisely, by combining some of the results contained in [53, 61, 69],
it is established that

sup /(eo‘“2 —1)dz < oo, (1.3)
R

{ueHY/2(R): [|ull1 /2,2 <1}
for any 0 < a < 7, where
L[ Ju() = uy)? 2\
= (= [ MBI 40 .
fulhea = (5= [ =20 oy + ulg
Motivated by (1.3), we say that f(¢) has exponential critical growth if there exists

g > 0 such that

' atf? 0, forall o > ay,
lim f(t)e = (1.4)

t|—o0
| oo, forall a < ay,

and we say that f(t) has exponential subcritical growth if

lim f(t)e " =0, for all & > 0. (1.5)

[t]| =00

Based on this notion of criticality, many papers have been developed in order to
study issues related to the existence of solutions for problems involving the fractional
Laplacian operator and nonlinearities with exponential growth. For example, existence
and multiplicity of solutions of the problems similar to (1.1) were treated by different
methods in [19, 50, 63]. We also mention [27, 28, 34, 36, 48] for others investigations
in the one dimensional case on the whole space R. However, we point out that none
of the previous papers treated the existence of nodal solution (sign-changing solution).
Motivated by this fact, our goal in this chapter is proving the existence nodal solutions
for problem (1.1) when the nonlinearity has exponential critical or subcritical growth

in the Trudinger-Moser sense as (1.5) and (1.4).

In order to reach this goal, we assume the following assumption on the potential

V:

(V1) V : Q — R is continuous and nonnegative, where Q = (a,b) is a bounded open

interval.

On the nonlinearity f, we assume the following assumptions:

17



(f1) f € CYR) and there exists Cy > 0 such that
|F(t)] < Coe™ , for all t € R;

(f2) lim@ = 0;

t—0 ¢

(f3) there exists 6 > 2 such that

0 <or() =0 [ F(s)ds < £7(t), forall £ € R\ {0

t
(f1) the function & is strictly increasing for ¢ # 0;

1
(f5) there exist constants p > 2 and C,, > 0 such that
sgn(t)f(t) > C,|t|P~", for all t € R.
Example 1.1.1 If p > 2, the nonlinearity
F(t) = Colt 2t + [t~ 2te”

satisfies the assumptions (f1) — (fs).

In order to study variationally the problem (1.1), we consider a suitable subspace

of the fractional Sobolev space H'/?(R) defined as follows
X:={uc HZR):u=0in R\ Q}, (1.6)

equipped with inner product

(u,v) ! /R2 (u@) — uly)(v(z) = U(y))d$dy + /Q V(z)uvdz (1.7)

L |z —y|?

and the corresponding norm
2 1/2
lull = (% 3 —|“(”|’;:;‘|(j/)| dxdy+/SZV(x)|u|2dx)
By (V4), Proposition 2.2 and Proposition 2.3 of [50], X is a Hilbert space and X is
continuous and compactly embedded in LY(R), see Lemma 1.2.1.
In this context, we say u € X is a weak solution of (1.1) (or simply solution) if

L[ (u(z) = uy)(v(z) = v(y))

% R2 |35—?J|2

dxdy+/ V(z)uvdr — / f(u)vdx =0,
Q Q
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for all v € X. If u is a weak solution of (1.1) such that u* # 0, we say that u is a
nodal solution, where u*(z) = max{u(z),0} and v~ (z) = min{u(z), 0}.

As we shall see in Section 2, the space X has nice properties. In particular, [
given by

Im—gmwiémwm (18)

is well defined in X, where F(t) := fot f(r)dr. Moreover, I € C*(X,R) and its critical
points are weak solutions of (1.1).
Now, we define the Nehari sets associated to I and their respective minimums

energy level by:

e The Nehari set and the ground state level

N={ueX\{0}: '(u)u=0} and cy:= Jgj{/l(u), (1.9)

e The nodal Nehari set and the nodal level

M:={ue X :uF#0and I'(v)u™ =0} and cp = 1€n/£l I(u). (1.10)

We say that a nonzero critical point w € X of I is a least energy solution (ground
state solution) if w achieves the minimum cy. Note that, if u is a solution of (1.1),

taking u™ and u~ as test functions, we get
I'(wyut =0 and I'(u)u” =0.
Then, any sing-changing solution to (1.1) belongs to M. If w € M is a solution of
(1.1) such that I(w) = cyq we say that w is a least energy nodal solution (1.1).
Our main result of this chapter is the following:

Theorem 1.1.2 Suppose that (V1) and (f1) — (f5) are satisfied. Then problem (1.1)

possesses a least energy nodal solution, provided that

2W0cnp] P2/
Cp > M :
0 —2
where
v = 11/1\5 L(u), MP={ue X :u*#0,I(u)u" =0}
ueMpr
and

1 1
1w = 5l = [ Julra.
9
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Another goal of this paper is to prove that the energy of any sign-changing solution
of (1.1) is strictly larger than twice the ground state energy. This property is the so
called energy doubling by Weth [71].

Theorem 1.1.3 Suppose that (Vi) and (f1) — (fs) are satisfied. Then cy > 0 is

achieved for a solution of (1.1) and
I(w) > 2y, (1.11)

where w is the least energy nodal solution obtained in Theorem 1.1.2. In particular, cyx

18 achieved either by a nonnegative or a nonpositive function.

It is interesting to note that in the last decades the existence and multiplicity of
positive and nodal solutions of classical elliptic problems have been widely investigated,
see [3, 4,9, 10, 11, 12, 44, 72] and references therein. Specially, some results on nodal
solutions of nonlinear elliptic equations involving different operators have been obtained
by combining minimax method with invariant sets of descending flow, such as Laplacian
operator [9, 11, 12], p—Laplacian operator [10] and Schrédinger operator |3, 4, 44].

In the special case of the stationary equation of Schrodinger
—Au+V(z)u = f(u) in RY, (1.12)

there are several ways in the literature to obtain sign-changing solution (see [3, 4, 9,
12, 44, 72]). However, the methods used in these works heavily rely on the following
two decompositions:

J(u) = Ju) + J(u), (1.13)

J(wut = J(uM)ut and J'(u)um = J (v )u", (1.14)

where J is the energy functional of (1.12) given by

J<u):1AN(yvU|2+V(x)u2)dx—/ F(u)dz.

2 RN
In the case of problem (1.1), the functional associated does not possess the same
decompositions as (1.13) and (1.14). Indeed, since (u*,u~) > 0 when u® # 0, a
straightforward computation yields that (see Lemma 1.2.3)

I(u) > I(u®) + I(u"),
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I'(w)u™ > I'(uh)ut and I'(w)u™ > I'(u")u™,
where [ is defined in (1.8). Therefore, the methods used to obtain sign-changing

solutions for the local problem (1.12) seem not be applicable to problem (1.1). Note
that M C N. If u € M, then

u" ¢ N and u €N,

This a big difference between nonlocal and local problems.
Furthermore, a second well-known difficulty for the class of problems (1.1) is the
loss of compactness due to the critical growth on the nonlinearity f.

In order to overcome these difficulties, we define the following constrained set
M={u€ X :u*#0and I'(u)u* = 0}

and consider a minimization problem of I on M. Borrowing ideas from [21], we prove
M # () via modified Miranda’s theorem (see Lemma 1.3.5 and Lemma 1.3.6). Combin-
ing the ideas developed in [3, 4, 11, 21], we prove that the minimizer of the constrained
problem is also a sign-changing solution via the quantitative deformation lemma and

degree theory (see Section 1.3 and Section 1.1).

Remark 1.1.4 Using the reqularity results due to Servadei and Valdinoci [68], we have
that the weak solutions of problem (1.1) obtained in Theorems 1.1.2 and 1.1.3 belong

to C(R).

Remark 1.1.5 In the hypothesis (f1) we assume that |f(t)] < Coe™ . This growth
condition allows us to consider nonlinearities with critical growth in the sense defined
in (1.4) with an exponent oy = 7 and with subcritical growth in the sense defined in
(1.5). More generally, we can consider an exponent aq different from w. In this more

general case, this new constant would imply a normalization of the constant C, defined
i Theorem 1.1.2.

Remark 1.1.6 We point out that the results of this chapter were published in [29] and
complement the works [/8, /9, 50, 63] in the sense that we prove the existence of sign-
change solutions and the work [21] in the sense that we consider exponential growth on

the nonlinearity. Furthermore, our results extend for the fractional Laplacian some of
the results contained in [3, /, 72].

The outline of this chapter is as follows: Section 1.2 contains some notations and

it is established a version of the Trudinger-Moser inequality for the class of problem
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(1.1). In addition, the variational framework is presented. Section 1.3 is dedicated to
the study of the nodal set and the nodal level, the main goal is to prove that the nodal
level is attained. In Section 1.4, we complete the proof of Theorem 1.1.2 and Section

1.5 is proved Theorem 1.1.3.

1.2 Variational formulation and preliminary results

Next we shall prove the first lemma of this work.

Lemma 1.2.1 Under the assumption (V1), the embedding X — L(R) is continuous
and compact for all q € [1,00).

Proof . From [50, Proposition 2.2], we obtain that the embedding X — H'/2(Q) is
continuous, and from [32, Theorem 6.9], [32, Theorem 6.10] and [32, Theorem 7.1],
the embedding H'/?(Q) — L9() is continuous and compact for all ¢ € [1,00). This
completes the proof. m

The main tool to study problems involving exponential growth in the fractional
Sobolev space is the fractional Trudinger-Moser inequality due to Ozawa [61]. In this
work, combining the results due to [61] and [69] we prove a version of this inequality

for the space X in the next lemma.

Lemma 1.2.2 If0 < a <, it holds

sup / e dx < oo. (1.15)
0

{ueX:|jul|<1}

Moreover, for any o > 0 and u € X, we have

/ e dz < c. (1.16)
Q

Proof . The first statement of the result follows from [32, Proposition 3.3] and [69,
Proposition 1]. For the second part, let u € X. By density, (see [32, Theorem 2.4])
given € > 0, there exists ¢ € C5°(Q2) such that ||u — ¢|| < e. Using Young’s inequality

we have

eOLu2 < 620{(('“7@)24,@2) < 1640‘(“*80)2 + 164Q<P2.
-2

2

/eauzdxﬁ 1/(3404'"“0|2(Zil)de—i—1/640‘%’2dx.
Q 2 Ja 2 Ja
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Choosing € > 0 such that 4ac? < 7, by (1.15) we have
au? 1 4ap?
eder <C+ = e dr < 0o
Q 2 supp()

and this completes the proof of the lemma. m

As a consequence of Lemma 1.2.2 and (f;) the energy functional 7 : X — R
given by

I(u) = %||u||2—/QF(u)d:z: (1.17)

is well defined. Moreover, by Lemma 1.2.2, it is standard to show that [ € C*(X,R)

and, for every u,v € X,

o= L [ (o) = 0)0t) = o)

"o |z —y|?

dzdy +/ V(z)uvdr — / f(u)vdz.
Q Q
Therefore, a critical point of I is a weak solution of (1.1) and reciprocally.

Our goal in this paper is to show that problem (1.1) has a nodal solution. As we
saw in the Introduction one of the difficulties is the fact that the functional I does not

possess the decompositions (1.13) and (1.14). In fact, inspired by [21], we have:

Lemma 1.2.3 Let u € X. Then,

(1) (u,u®) = (u*,u*) + 1 /R2 u+(x)(—u_(y))d$dy7

T
(ii) if ut #0, (ut,u”) >0,
(i) I(w) > I(u®)+ I(u"),
(iv) I'(w)ut > I'(u)ut and I'(w)u™ > I'(u")u™.

Proof . By density (see [32, Theorem 2.4]|) we can assume that u is continuous. We

define
Qp={xeQ:ulx) >0}, ={reQ:ux) <0}

L@y o uta) -ty
e e 4 U6y jz—yl2

Using the above notation, we have

I () = )0 (@) =t (@) [ Ut @) =t (@)dsdy

lz —y|?
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Now, since u = 0 in 2, we get

/R2 Uz, y)(ut(z) — ut(z))dady :/

Uz, y) (' () — u” (z))dzdy
QxQe

+ /QXQ Uz, y)(u™(2) —u'(x))dzdy

—i—/QC . Uz, y)(ut(x) —u't(z))dzdy.

Moreover, since €2 x Q¢

(e xQ)VU(Q_x Q% and Q°x Q= (2°x Q) U(2°%xQ_),
we can deduce that

Uz, y)(u”(z) — u'(z))dedy =
J. J

QxQ

U, y)(u* (2) — u* (2))dady

(1.18)
2 [ U)t(e) - o e)dody.
Q4 x0e€

Similarly, we can show that

/R2 U,y (ut(z) — u* (2))dedy :/

OQxQ

Ux",y ") (u'(x) — u' (2))dedy

+2/Q o Uzt yt)(u®(z) — ut(x))dady.

(1.19)
By the expression of U(xz,y) and U(z",y"), we can easily check that U(xz,y)|q, xae
U(x™,y") and so

D+ = /Q N Uz, y)(ut(z) — v (z))dady = /Q Uz, y)(u™(z) — vt (2))dady.

(1.20)

4+ xQe

Therefore, by (1.18), (1.19) and (1.20), we have

/R2 Uz, y)(ut(z) — ut(z))dady :/

RQ

U(x™,y")(u" () — u™(2))ddy

n / (Ul = Ul ") (@) =" (o)l

(1.21)
Now, since 2 x Q = (24 x Q1)U (24 x Q) U (Q- x Q1)U (Q- x Q_) and again by
the expression of U, we get

/Q Q(U(x’ y) = Uz, y")(u* () — u™ (v))dzdy =

2 / (UG =Vl ) (@)= () dady = 2 /

+><97 |SE - y|2

(1.22)
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Thus, by (1.7), (1.21) and (1.22), we obtain that

2

(u,u®) = S /R2 Uz,y)(u(z) — u'(x))dzdy + /Q V(z)lut*dz

_ <u+,u+> +%/ﬂ ) qu(x)(_lf(y))dxdy7

and (i) is proved.

Now, since (u™,u~) = (u,u™) — (u,u™), the item (ii) follows from (i).

Moreover, since I(u) = (ut,u™) + I(u™) + I(u™), I'(w)ut = (ut u™) + I'(ut)u®

and I'(u)u™ = (ut,u”) + I'(u”)u~ , the proof of (iii) and (iv) follows from (ii). m

Corollary 1.2.4 If u € X then

luall* > fla* |1 4 |12

Proof . By Lemma 1.2.3, we have

lul® = flu™ 1% + 2™, u”) + o™ 1 = o + o ]®

which implies the desired inequality. =

1.3 Constrained minimization problem

In order to obtain nodal solutions for (1.1), we define the Nehari manifold and

nodal set associated to functional I by

N ={ue X\{0}: I'(u)u =0}

and

M={uc X :u*r#0and I'(u)u*

The ground state level is defined by

o= ulgj{[](u)

and the nodal level by

cm = inf I(u).

ueM

Note that since M C N we have cy < cupq.
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In the following, we shall study some properties of A" and M. First, we observe

that by (f1) — (f2), given € > 0 and g > 2, there exists a positive constant C. such that

1F(0)] < elt] + CL|t|* ™, forall t € R (1.27)

and, by (f3), we have
|F(t)] < elt]> + C.]t|%™, for all t € R. (1.28)
Moreover, by (f3), we can find positive constants C; and Cy such that

F(t) > Cy|t| — Oy, for all t € R. (1.29)

Lemma 1.3.1 Assume that (V1) and (f1)—(f1) are satisfied. Then, given u € X\ {0},
there exists a unique t = t(u) > 0 such that tu € N. In addition, the number t satisfies

I(tu) = max I (su). (1.30)

s>0

Proof . Given u € X \ {0}, we define h(s) := I(su) for s > 0. By (1.28), we get
2
h(s) > %HUHQ - 532/ lu|*de — Cgsq/ |u|?e™ " dz. (1.31)
Q Q

If s € [0,1], we have e™"** < ¢™” Using Holder’s inequality, Lemma 1.2.1 and Lemma

1.2.2, we have

1 1
/ ‘u’qeﬂ'52u2dx S (/ ’u‘qux> (/ 6277“2(:1,%') < 00
Q Q Q

whenever s € [0, 1]. This together with (1.31) and Lemma 1.2.1 implies that there exist

positive constants C; and Cy = Cy(u), which do not depend on s, such that

1
h(s) > s2 (5 - sol) ul|2 — Cys® (1.32)

for all s € [0,1]. Now, choosing ¢ > 0 such that ; — eC; > 0, it follows from (1.32)
that
h(s) > 0 for s > 0 small enough. (1.33)

On the other hand, using (1.29) we get
2
h(s) < §||u||2 — 0189/ lu|’dx + Cy(b — a).
Q
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Hence, since 6 > 2

h(s) — —o0, as s — oo. (1.34)

Therefore, from (1.33) and (1.341), there exists ¢ = ¢(u) > 0 such that

I(tu) = max I (su),

s>0

and, consequently, tu € N.

Now, if s > 0 is such that su € N, we have

2 2: d
|l / f(su)sudz

and since it also holds #*||u||* = [, f(tu)tudz, it follows that

/Q (f(t“) - f(su)) w*dz = 0. (1.35)

tu Su

By (f41) and since u # 0, it follows from (1.35) that ¢ = s. Thus, we finish the proof. m

Lemma 1.3.2 Assume that (V1) and (f1)—(f2) are satisfied. Then there exists mg > 0
such that ||ul]®> > myg, for all u € N.

Proof . In order to obtain a contradiction, suppose that there exists (u,) C N such

that ||u,|| — 0 as n — co. By definition we know that

a2 = / F () ndlr. (1.36)

On the other hand, using (1.27), Holder’s inequality and Lemma 1.2.1, we get

/f(un)undx ga/ \un\Qd:c—l—Ce/ || %™ da
Q 0 Q
1

1
3 ) 3
< ellun|3 + C- (/ |un|2qu> (/ 62”“"dx)
Q Q

2 q 27r||un||2(uin)2
< ellunllz + Ccllualls, Qe TunT) dz

1
wn \2 .\ 2
< <ClfualP + Clalr ([ PR az)
Q

Since ||u,| — 0 as n — oo, we can find ng € N such that 27||u,||* < 7 for all n > n,.

(1.37)

[SIE

Hence, it follows from Lemma 1.2.2 that

n

/ 2l (72)" 4 < (1.38)
Q
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From (1.36)-(1.38) we can find positive constants C and C5 such that
lnll® < eCllun]* + Col .
Choosing ¢ > 0 such that 1 — eC; > 0 and since (u,) C N, we get

1—801 _
0 < N, ||772.
<(F) <l

But as ¢ > 2 this contradicts the fact that ||u,| — 0. This completes the proof of the

lemma. =

Corollary 1.3.3 Assume that (V1) and (f1) — (fs) are satisfied. Then there exists
8o > 0 such that I(u) > o, for all u € N. In particular,

0<50§CNSCM-

Proof . Since I'(u)u = 0, by Lemma 1.3.2 and (f3), we have

which is the desired inequality. m

Lemma 1.3.4 Assume that (V1) and (f1)—(f2) are satisfied. Then there exists mf > 0
such that ||u®||* > m}, for all u € M.

Proof . The proof is similar to that of Lemma 1.3.2, so it is sufficient to prove an
estimating similar to (1.37) for u* and u~. Since u € M we have u™ # 0 and (u,ut) =
Jo f(wh)utdz. Now, by Lemma 1.2.3, we have [[ut]]* < (u,u®) + (u™,ut) = (u,u').

Thus, using (1.27) we obtain

||UJFH2 < / f(u+)u+d:v < g/ |u+|2dx_¢_C€/ ]uﬂqe”‘“ﬂz}daz.
Q Q Q

Similarly, we have

”u H2 /f u d:z;<5/\u |dg;+(j/|u ‘q€7T|u ‘dx

and the proof of the lemma is done.
Using Lemma 1.2.3, we observe that Lemma 1.3.1 can not be applied to show
that M # (. In order to obtain some results on the nodal set M, we shall use the

so-called Poincaré-Miranda Theorem (see |70]).
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Lemma 1.3.5 Let h : P C RY — RN be a continuous function, where P =
Hf\il[ai,bi] is a N-dimensional block in RN, with a; # b;, for i = 1,...,N. Let
P ={rx€eP:x,=a} and P ={x € P:x; =b}. Assume that the coordinates
functions of h satisfy:

(i) hi(z) >0, for allx € P,
(ii) hi(z) <0, for allx € P .

Then there exists xo € P such that h(zg) = 0.
As application of Lemma 1.3.5, we shall show that M # 0.

Lemma 1.3.6 Assume that (V1) and (f1) — (fs) are satisfied. Given u € X with

u® # 0, there exists a unique pair (t,s) of positive numbers such that tu™ + su™ € M.

Proof . Let u € X with u® # 0, we define the continuous vector field g : (0,00) X
(0,00) — R? by

g(t,s) = (I'(tu” + su”)tu®, I'(tu’ + su™)su™) .

Initially we want to find (¢,s) € (0,00) x (0,00) such that g(¢,s) = (0,0). The first
step is to show that for ¢ and s sufficiently small the coordinates functions are positive.

Note that by (1.27) we have
[F(E)8] < <l¢f + Celg]?e™, for all € € R.
Hence,
I'(tu® + su™)tu™ = ?||ut|]® + ts(u™,u”) — / f(tuN)tutdz
Q
> |lut])? +ts(utuT) — 5752/ lut Pde — Cstq/ lut|2em™ 1 P g,
Q Q
Lemma 1.2.1 implies
I'(tu® + su™)tut > 2ut|]? + ts(ut,u™) — eC|ut|? — c;tq/ lut|2e™ 1 P g,
Q

Now, if ¢ € [0, 1], using Holder’s inequality, Lemma 1.2.2 and Lemma 1.2.1, we have

1 1
2 2
/ |u+|q€at2|u+|2dx < (/ |u+|2¢Idx) (/ e2a|u+|2dx> < C«/HU-FH‘I7
Q Q Q
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Thus, we can find C' = C(u) > 0 such that
I'(tut + su™)tut > 2{jut || +ts(u®,u™) — et?||ut||3 — CtI||ut||?

By Lemma 1.2.3 we have (u™,u~) > 0. Then there exists » > 0 small enough such
that

I'(ru™ + su”)rut > 0, for all s > 0.

Analogously, there exists r > 0 small enough such that
I'(tu™ +ru”)ru” >0, for all t > 0.

Now, we shall show that for ¢ and s large enough the coordinates functions are negative.

In fact, using (1.29), we can find positive constants C; and Cy such that
/Qf(tuJ“)tqudx > H/QF(tuJ’)dx > Cy|lut||f — Cs.
Thus
I'(tu® + su”)tut = 2||lut|]? +ts{u™,u”) — /Qf(tqu)tzﬁdx
< |ut|)? + ts(ut,um) — Ot |lut)|f 4 Co.
Since 6 > 2, there exists R > r large enough such that
I'(Ru™ + su”)Rut < 0, for all 0 < s < R.
Analogously, there exists R > r small enough such that
I'(tut + Ru")Ru~ <0, forall 0 <t < R.

Hence, from Lemma 1.3.5, there exists (¢, s) € [r, R|] x [r, R] such that ¢(t,s) = (0,0).
Therefore, tut + su™ € M.

Finally we shall prove the uniqueness of the pair (¢,s). First, we assume that
u=ut4+u" € Mand (t,s) € (0,00) x (0,00) is such that tu™ + su~ € M. In this
case we need to show that (¢,s) = (1,1). Note that

u+2 utuT) = uHutde .
H |\+<,>/Qf<>d, (1.39)

a2 + (u*u~) = /Qf(u)udx, (1.40)
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lut |+ tsut,u") = / f(tu)tutde, (1.41)
0
and
S*u”|)? + ts{ut,u") = / f(su™)su"dz. (1.42)
Q

We can assume, without loss of generality, that ¢ < s. Then, using (u™,u~) > 0 we
have

J’_
a2 + (a0 < / @ud
Q

Thus, it follows from (1.39) that

[ (K80 1Y o

tut ut

Hence, by (f4) and since u™ # 0 we obtain ¢ > 1.

On the other hand, since t/s < 1 and (u™,u™) > 0, we get

|+ (utu) > / S0 =g,
Q

S

This together with (1.40) implies

J(CERTE ey

and consequently s < 1. Thus we conclude the proof of the uniqueness of the pair
(1,1).

For the general case, we suppose that u does not necessarily belong to M. Let

(t,s), (t',s") € (0,00) x (0,00) are such that tu™ + su™ and t'u™ + s'u~ belongs to M.

We define v = v + v~, where vt = tu™ and v~ = su~. Then, we have that v € M
and
t s
;v* +—v" =tut +5u” e M.
s

Hence, using the first case we have t'/t = 1 and s'/s = 1, which completes the proof.
|
The following two lemmas will be used in the proof of Theorem 1.1.2 in the next

section.

Lemma 1.3.7 Assume that (V1) and (f1) — (f1) are satisfied. Let uw € X be a function
such that u* # 0, I'(u)u™ < 0 and I'(u)u” < 0. Then the unique pair (t,s) given in
Lemma 1.3.6 satisfies 0 < t,s < 1.
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Proof . We can assume, without loss of generality, that s >t > 0 and tut +su™ € M.

Now, since I'(u)u~™ < 0 and I'(tut + su™)su™ = 0, we have
|+ (au) < [ Fa ) da
0
and
; _
R
S Q S
Thus by Lemma 1.2.3 we get
fu?)  flsum)\ o _/ - I P
J (R I yae = [ gy = e = St
t

> IP + ™ u”) = | = e

> <1 — f) (ut,u™) > 0.

S

Using this inequality, (f4) and the fact that u~ # 0, we obtain s < 1l andsot <s < 1.

The case t > s > 0 is analogous and we finish the proof of the lemma. =

Lemma 1.3.8 Assume that (V1) and (f1) — (fa) are satisfied. Let u € X be a function
such that u* # 0 and (t,s) be the unique pair of positive numbers given in Lemma
1.3.6. Then (t,s) is the unique mazimum point of the function ¢ : R x Ry — R
defined by ¢(c, B) = I(aut + fu™).

Proof . In the demonstration of Lemma 1.3.6, we saw that (¢, s) is the unique critical

point of ¢ in (0,00) x (0,00). Note that, using (1.29), we get

d(a, B) = % |ou™t + Bu‘”2 — / F(ou® + fu”)dx
Q

IN

ot + B0l — [ (Gl + 50 )
Q

< la+p) <aiﬁ) ut + (afﬁ) u”

- 2
o 15} _
(a+ﬂ)u++<a+ﬁ)u

Hence ¢(a, ) — —oo as |[(«, 5)] — oo. In particular, there exists R > 0 such that

0 - Cg(b - CL).

0

—Cl (Oé—i‘ﬂ)e

o(a, B) < é(t, s) for all (o, B) € (0,00) x (0,00) \ Bgr(0), where Br(0) is a closure of
the ball of radius R in R2.
In order to finalize the proof, we shall show that the maximum of ¢ does not occur

in the boundary of R, xR,. Suppose, by contradiction, that (0, 3) is a maximum point

32



of ¢. Given a > 0, it is easy to see that
o?
o0.8) = Sl + aplut.u) — [ Flawt)de+6(0.5).
Q
Using similar arguments to the proof of Lemma 1.3.1, we obtain that
o?
7Hu+|]2 +aB{ut,u”) — / F(au™)dz >0
Q
for a > 0 small enough. But this contradicts the assumption that (0, 5) is a maximum

point of ¢. The case (a,0) is similar and we complete the proof. m

Remark 1.3.9 Note that the point (t,s) given in Lemma 1.5.06 satisfies ¢(t,s) =
I(tu™ 4 su™) > 0 since ¢(a, B) > 0 for o, B > 0 small enough.

Now, we shall prove an upper bound for the nodal level ¢y defined in (1.26).

Lemma 1.3.10 Assume that (Vy) and (f1) — (fs) are satisfied. If 0 is the constant
given by (f3), then
6—2

) 1.4
M < 55 (1.43)

Proof . By Theorem B.1.9 (see Appendix) there exists w € MP such that I,,(w) = cpw

and I} (w)w* = 0. Consequently, we have

—|lwl|]* = =||w]|” = e, 1.44
Sl pH I (1.44)
lw=[* = [l — (W, w™) (1.45)
and
lw]l* = Jlwl[}- (1.46)

Hence, by (1.16) and (1.11), we get

1 1
(5 - 5) Hwﬂg = CMp- (147)
Since w* # 0, by Lemma 1.3.6, there exist ¢,s > 0 such that tw* + sw™ € M.

Consequently, we obtain

12 52
e < I(twt + sw™) :§||w+||2 +ts(wt,w”) + §||w_||2

_ /Q Fltw*)de — / F(sw)dz.

Q
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This together with (f5) implies

12 2 C P C,sP
em < =J|lwt|? + ts(w,wT) + S—Hw’HQ i / |wt|dz — p® / lw™ |d.
2 2 p 0 p 9

Using (1.45) and Lemma 1.2.3, we have

t2 +||p t2 + - + - 82 —||P
em < Sty - St ) + st w) + Sl
s2 B C,tP C,sP
- 5<w+,w ) = ——[lwth — w7

2 Cutr N s C,s? _ 1 0, 4 _
— (5= g+ (5 - ) bl - - o )

& G
< max (E - p7> [|wl[b.

By elementary calculus, it is easy to see that

Hence, by (1.47) it follows that

o5 (11 p_ 7
cm < Gy 271 [wll} = Cp™" came.

Therefore, by the definition of C), given in Theorem 1.1.2, we obtain (1.43). =

Remark 1.3.11 By Corollary 1.5.5 and Lemma 1.5.10, we have

0<dg < < < —
C C .
0 >CN = CM 20

The next step is to obtain a minimizing sequence for the nodal level ¢y, with a
special behavior. For this, we start by defining the set
Sy={ueM:I(u) <cp+ A} for A>0.

Lemma 1.3.12 Assume that (V1) and (f1)—(f5) are satisfied. For A > 0 small enough,
there exists my € (0,1) such that

0 <mp < o[ < [lulf® < m,

for any u € §,\.

34



Proof . Let u € Sy. By Lemma 1.3.4 and using (u™, u™) > 0, we have m}, < ||u|? <

|lu||*>. On the other hand, by (f3) and since I'(u)u = 0, we obtain

ri N> I(u) = I(u) — %I’(u)u

0—2
By Lemma 1.3.10, we can take A > 0 such that cyq + A < (7) Consequently, it

follows that

20

Jull? < 57 ea+ ) = ma < 1

for all u € §,\. This completes the proof of the lemma. m

Lemma 1.3.13 Assume that (V1), (f1) and (fs) are satisfied. Let (u,) be a sequence
in X such that u, — u weakly in X, b := sup,cy ||ual|> < 1. Then, up to a subsequence,
for all v € X, we have

lim [ f(up)u,de = / f(uw)udx; (1.48)
lim f Up ) U jEdx—/f Yutdz; (1.49)
n—oo
lim f Uy, vdx—/f Jodz (1.50)
n— o0
and
lim F(un)dx:/F(u)dx. (1.51)

Proof . Since b < 1 and by using (f1) and (f3), Holder’s inequality and Lemma 1.2.1,

it is easy to see that the integrals

| ruuliwde, [ (i, [ flujde and [ [Pl

are uniformly bounded. Thus the convergences (1.48)-(1.51) follow from Lemma 2.1 of
[25]. =
From now on, we will write Sy with A >0 given in Lemma 1.3.12.

Lemma 1.3.14 Assume that (V1) and (f1) — (fs) are satisfied. For any q > 2, there

exists 6, > 0 such that
0<d, < / ||z < / |u|?de,
Q Q
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Proof . If u € g,\ and g > 2, then
o2+ (o) = [ )t

By Lemma 1.2.3 we know that (u*,u~) > 0. Thus by Lemma 1.3.1 we get
0 <mf < |lu|? < /Qf(ui)uidx.

Hence, using (f1) and Holder’s inequality, we have

i 1/t o 1/t
mi) < CO/ |ui|e7r|u | dx < O (/ |ui|tdx) (/ em/\u | d:l?)
Q Q Q

where t,#' > 1 and satisfy 1/t + 1/t = 1. By Lemma 1.3.12, we know that ||u®|? <
|u|* < my with my € (0,1). Now, we can take ¢ > 1 sufficiently close to 1, ¢t > ¢ and
such that 7t'||u*||*> < wt'my < m. Consequently, by Lemma 1.2.2 we get

[

2 1/t
, . w1 (15 .
my < Collu™ || e dz < CifJu]fe.
Q

Hence
!

0< Z_f < [lu|s, for all u € Sy. (1.52)
We suppose, by contradiction, that there exists (u,) C Sy such that |ul], — 0 as
n — oo. From Lemma 1.3.12 and Lemma 1.2.1 we obtain that (uF) is bounded in
L*(Q). Consequently, since ¢ < t < 2t, by the interpolation inequality we find that
|uZ||; — 0 as n — oo, which is impossible in view of (1.52). m

The next technical result will be used in the proof of Lemma 1.3.16.

Lemma 1.3.15 Assume (f1) — (f1). Then the function H(t) := f(t)t —2F(t) satisfies
(i) H(0) =0 and H(t) > 0, for all t # 0;
(i) H(to) < H(t1) if 0 <tp <ty;
(iii) H(to) > H(t1) if to < t, <O0.

Proof . Item (i) is immediate from (f5) and (fs;). For item (ii), if 0 < tg < ¢; then

by (f1)
H(ty) = f(ZO)tg —2F(t1) + 2 /: f(r)dr
< f(il)tg —2F(t,) + 2%?) /t:l rdr
<MW opy+ {0 gy~ ma),

1 1
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which implies the item (ii). The proof of the item (iii) is similar. m

Now we have all the results that will allow us to prove that the nodal level cy, is

attained in a function with u € M.

Lemma 1.3.16 Assume that (Vi) and (f1) — (fs) are satisfied. Then there exists
u € M such that I(u) = cpm.

Proof . Let (u,) C M be such that I(u,) — cyp as n — oo. We can assume that

u, € Sy, for all n € N. Then, by (f3) we have

Hence, (u,,) is bounded in X and consequently (u;") and (u,,) are also bounded in X.
Since X is a Hilbert space, up to a subsequence, there exists « € X such that uF — u*
and u, — w in X. Utilizing Lemma 1.2.1, up to a subsequence, we can assume that
utr — u* in LI(R), for all ¢ € [1,00), and uF(z) — u*(z) a.e. in R (see Lemma A.1.8).
Now, by using Lemma 1.3.14, we obtain u # 0 in X. Now, from Lemma 1.3.6 there
exist ¢, 5 € (0,00) such that & = tu™ + su~ € M. We claim that I’(u)u* < 0. In fact,
by the convergence (1.19) in Lemma 1.3.13, by (i) of Lemma 1.2.3 and by the Fatou’s

Lemma, it follows that

(u,uty = (wh,u™) + (u™,u”)

1 (@) (—u;
§liminf\|u:]|2+—liminf/ () (= (y ))dxdy
n—oo R2

e =y

< 111rnmf(||u+||2 (u) uy))

n»-n

n—oo

_ /Qf(u)wdx.

Hence, I'(u)u™ < 0. Similarly, we get I'(u)u~ < 0. Then, by Lemma 1.3.7 we obtain

—hmmf/fun Ju,tdx

0 < t,s < 1. In particular, ||u]|*> < ||ul*.
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Now, in order to conclude the proof, note that using the convergences in Lemma

1.3.13 and Lemma 1.3.15, it holds

e < I(70) = I(@) — %1’@)”@

—1/(f( Yu —2F(u))dx

/Htu Ydo + = /Hsu
/H Ydo + = /H

- /Q (Flu)u — 2F(w)) dz = I(u,) — %I’(un)un +on(1) = eu

and this concludes the proof. m

1.4 Proof of Theorem 1.1.2

First, we shall prove an auxiliary result and present some notations that will be

used in the proof of Theorem 1.1.2. We consider D = (3,3) x (3,3) and g: D — X

given by g(«, 8) = aut + fu~, where u was obtained in Lemma 1.3.16.

Lemma 1.4.1 Let P ={u € X :u(z) > 0a.e. x € Q} and —P ={u € X : u(zr) <
Oa.e. v € Q}. Then dy = dist(g(D),A) > 0, where A := P U (—P).

Proof . We suppose, by contradiction, that dj, = dist(g(D),A) = 0. Then we can find
(v,) C g(D) and (w,) C A such that |lv, — w,|| — 0 as n — co. We can assume,
without loss of generality, that w, > 0 a.e. in €. Now, since v, € g(D), there exist
O, By €[5, 3] such that v, = a,,u™ + B,u". Utilizing that (v,) is bounded in X and

Lemma 1.2.1, up to a subsequence, we find (ag,by) € D such that
vn(2) = aput (x) + bou (z) a.e. z € Q.

On the other hand, by the convergence ||v, — w,|| — 0 and Lemma 1.2.1, up to a

subsequence, we obtain that
wy(z) = agut (z) + bou () a.e. z € Q.

Since u~ # 0, the convergence above produces a contradiction with the assumption

that w, > 0 a.e. in ), which completes the proof. =
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We are now able to complete the proof of Theorem 1.1.2.

By Lemma 1.3.16, we have found w € M such that I(u) = cy. It remains to

prove that u is a critical point of the functional I. Suppose, by contradiction, that

dy

I'(w) # 0. Thus, by the continuity of I’, there exist A\,§ > 0 with 0 < 32,

where d; is

given in Lemma 1.4.1, such that
| I'(v)]] > A, for all v € Bss(u). (1.53)

By Lemma 1.3.8 we have that the function (I o g)(a, 3), for (a, 3) € D, has a strict

maximum point (1,1). In particular, we have that

Y= I ,B) < cum.
m (a{g%l)( o g)(a, B) < em

Let € > 0 be such that ¢ < min{(cps — m™)/2,Ad/8} and we define S = B;(u). By
the choice of € and by condition (1.53), if v € Sys = Bss(@) we have ||I'(v)|| > 5. In

particular,

Vo e I (Jepm — 26, eaq + 2€]) N Sos, it has to satisfy [[1'(v)]| > 5

By the quantitative deformation lemma in |72, Lemma 2.3|, there exists n € C([0, 1] x

X, X) such that

(i) n(t,u) =u,if t =0o0r u & I ([cp — 2¢,cpq + 2€]) N Sas;
(i) n(1,ImMtenS) C [em;

(iii) n(t,-) is an homeomorphism of X, V¢ € [0, 1];

(iv) |In(t,u) —ul| <6,Vue X, Vte[0,1];

(v) I(n(-,u)) is non increasing, Vu € X;

(vi) I(n(t,u)) < cp, Vu € I'M N Ss, Vi € (0, 1].

As an application, we get

max_1(n(1,g(a, B))) < cm. (1.54)
(a,8)€D
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In fact, if (o, 8) € D with («, 5) # (1, 1), using Lemma 1.3.8 we have I(g(«, ) < cum-

Hence

I(n(1, 9(v, B))) < 1(n(0, g(ev, B))) = I(g(e, B)) < p-
If (o, B) = (1,1) then g(1,1) =u € I***NS. Thus I(n(1,g(1,1))) < cp — ¢, showing
(1.54).

Now, let us define h(a, 5) = (1, g(e, B)). We claim that
h(a, B) = g(a, ) in OD. (1.55)

In fact, given («, 8) € 0D, by the definition of m* and by the choice of £, we have

(cpm —m”)

I(g(a, B)) <m* =cp — 2 5

<cpm — 2e.

Hence g(a, 8) & I ([cam — 2¢, caq + 2¢]). So using the property (i) of the function 7
we get (1.55).

Claim 1.4.2 We claim that h(co, B)* # 0, for all (o, B) € D.

In fact, let v € A. By using the choice of 6 > 0 and Lemma 1.4.1, we have that

[h(a, B) = vl = [lg(ev, B) = vll = [[A(e, B) = g(ev, B
> |lg(a, B) = vl =0
dy _ dq

“hm5 =

Consequently, h*(a, 3) # 0 for all (o, ) € D, concluding the statement.

Now, we consider the vector fields

Fla, B) = (I'(g(ev, B))u™, I'(g(ax, B))u")

and

(01 3) = (- I'(h(ex B))h(as B) " 3T (h(ax B)h(ax )
From (1.55), we have F = G in 0D. Hence, by the degree theory (see Lemma A.1.141),
we have

deg(F, D, (0,0)) = deg(G, D, (0,0)). (1.56)
Claim 1.4.3 deg(F, D, (0,0)) = 1.
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In fact, we consider
Fila,B) = I'(at™ + pua )t and Fola, B) = I'(cu™ + Bu )u~

the coordinates functions of the vector field F. Calculating the partial derivatives of

F1 and F;, we get

(0
A 0,8) =l - / ' (ai*
a];(a,ﬁ) = P20, ) = i),
OF: ~

| Sr8) =l - /fﬁu W

Now, for (a, 3) = (1,1) in the above equations and using the condition I’(u)u* = 0,

we reach ¢ oF, . o
g%(LD a;ézt>+4;%u)udm

—88]@2(1,1) aOi(lNl) (u ,u~>_, -
| 5 —=(1,1) :—<u+,u‘>+/QG(u Ju~dz,

where G(t) = f(t) — f'(t)t, for t € R. Using (f4) and u* # 0, it is easy to see that
/qumKOmg/mammKo (1.57)
Q Q

Hence, using (1.57) and (u*,u~) > 0, it follows that

0F; 0F;
S LY

Do 06

Thus, since (1,1) is the unique solution of F(«, 5) = (0,0) in D, by the definition of
topological degree (see Lemma A.1.15), we have deg(F, D, (0,0)) = 1, showing (1.4.3).

Utilizing the Claim 1.4.3 and (1.56) we obtain deg(G, D, (0,0)) = deg(F, D, (0,0)) =
1 and therefore there exists (o, 8y) € D such that G(a, By) = (0,0) (see Lemma A.1.13
and Lemma A.1.14), that is,

I'(n(1, g(aw, Bo)))n(1L, g(aw, Bo)) ™ =0,
I'(n(1, g(ao, Bo)))n(1, g(aw, Bo))~ = 0.

By Claim 1.4.2 we have that h(ag, 89)* # 0. Hence, system (1.58) implies that h(ay, (o)

(1.58)

belongs to 1(1,g(D)) N M. Thus, by the definition of ¢y,

I(h(aw, Bo)) = I(n(1, g(ao, o)) > cu,
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which is a contradiction in view of (1.54). Therefore, I'(w) = 0 and this completes the

proof of Theorem 1.1.2.

1.5 Proof of Theorem 1.1.3

Defining the set
Sy={ueN :I(u) <cy+A},

where ¢y is the ground state level defined in (1.25) and A is given in Lemma 1.3.12.

By Remark 1.3.11 and (f3), we get

1 1 —
cmFAAZ e+ A>I(u) > (5—5) |ul|?>, forall w € S),.

Hence, by Lemma 1.3.2 and Lemma 1.3.12, we have
0<mp<|ull*<my forall ueS, (1.59)

where my € (0,1) is given in Lemma 1.3.12. Similar to Lemma 1.3.14, using (1.59), we

can to show that for any g > 2 there exists 6, > 0 such that
0<d, < / lu|%dz, forall wueS,. (1.60)
Q

Let (v,) C Sy be a sequence such that I(v,) — cy. By (1.59), (v,) is bounded
sequence and X is a Hilbert space, up to a subsequence, there exists v € X such that
v, — v. Utilizing Lemma 1.2.1, up to a subsequence, we can assume that v, — v in
Li(R), for all ¢ € [1,00), and v,(z) — v(z) a.e. in R. Using (1.60), we infer that v # 0
in X. By Lemma 1.3.1, there exists ¢ > 0 such that v = tv € N'. Considering (1.59),
we can assume, without loss of generality, that the convergences in Lemma 1.3.13 hold
for the sequence (v,). Now, since I'(v,)v, = 0 for all n € N, by lower semicontinuity

and using Lemma 1.3.13, we have

|v]]* < lirrl)inf |vn|]? = linginf/ f(op)vpde = / f(v)vdz (1.61)

and so I'(v)v < 0. Analogously to Lemma 1.3.7, we can deduce that ¢t < 1. Following
similar ideas from of the proof of Lemma 1.3.16, we can show that [(v) = cy. Moreover,
utilizing the same steps of the proof of Theorema 1.1.2, we show that the function v

satisfies that I'(v) = 0. Thus, v is a ground state solution of problem (1.1). Now, in
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order to prove (1.11), we consider the function u obtained in Theorem 1.1.2. Since
ut # 0, by Lemma 1.3.1, there exists a unique pair (t;,t,) such that t;u" € N and
tou~ € N. By Corollary 1.3.3, we have cyr > 0. Now, by using the definition of cy,

Lemma 1.2.3, Lemma 1.3.7 and Lemma 1.3.8, we have that
0<2cn <I(tu") +I(tu) < I(tyu" +tu ) <I{U" +u ) =cm,

showing (1.11). In particular, the inequality above shows that can not exist a nodal
ground state solution of problem (1.1). Thus, the ground state solution ¥ is nonpositive

or nonnegative.
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Chapter 2

Ground state and nodal solutions for
a class of fractional equations
involving exponential growth in a

unbounded domain

In this chapter we consider the following fractional Schrodinger equation:
(=A)2u+ V(z)u= K(z)f(u) in R, (2.1)

where (—A)z is the 1/2-Laplacian operator defined in (1.2), V,K : R — R, are
functions satisfying appropriate conditions which will be introduced later and f : R —
R is a C! function that may have a subcritical or critical exponential growth in the
Trudinger-Moser embedding sense. Since the problem is set on the whole real line
one has to tackle compactness issues, which can be overcome by considering suitable
assumptions of K at infinity. Similar to Chapter 1, our goal is to show that under
appropriate conditions problem (2.1) has a ground state and a nodal solution u, which
are distinct. Moreover, we show that the energy of u is strictly larger than twice the
ground state energy. The results of this chapter were submitted for publication in

article |31].



2.1 Introduction

As in Chapter 1, we are interested in looking for solutions of (2.1) when the
nonlinearity f(¢) has exponential growth. The fractional Sobolev space H'/?(R) is
continuously embedded into L4(R) for any ¢ € [1,4+00) and compactly embedded into
L1(Q) for any ¢ € [1,+00), for all @ C R bounded interval. But H'Y?(R) is not
continuously embedded in L*(R) (see [32, 61]). However, S. Tula, A. Maalaou and L.
Martinazzi in [51] proved a Trudinger-Moser type inequality on H'/?(R) as:

sup /(eo‘“2 —1)dz < oo, (2.2)
{u€HY2(R) : |lully 2,251} /R
for any 0 < a < 7, where

Lo

12 2\ /2 T2
lelhyzz = (=20l + ulg)  and [(—A) ull} = o[ul? s

(see also [53, 61, 69]).

Thus the maximal growth on f(t), which allows us to study (2.1) by applying a
variational framework involving the space H'/2(R), is given by e®* as |u| — +oo, for
some « > 0. Motivated by result, we say that f(¢) has exponential critical growth if

there exists ap > 0 such that

. altf? 0, for all a > ag,
lim f(t)e = (2.3)

tl—+
e +o0, forall a< ag,

and we say that f(t) has exponential subcritical growth if

ml_i}rJrrloof(t)e_o‘lt'Q =0, forall a>0. (2.4)

Motivated by Trudinger-Moser inequality, many papers have been developed in
order to study issues related to the existence of solutions for problems involving the
fractional Laplacian operator and nonlinearities with exponential growth. For example,
by exploiting the Trudinger-Moser embedding due to Ozawa [61] and the Mountain Pass
Theorem, J. M. do O, Miyagaki and Squassina [36] proved the existence of ground state

solutions for the following class of nonlinear scalar field equations:

(=A)2u+u=f(u) in R,

u(z) =0, as |z]— oo,
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when f(t) is o(|t|) at the origin and behaves like e as |t| — +o0, for some o > 0. In
[27], Souza and Aratjo considered a perturbation of this problem by a general potential
V(z), namely,

(—A)iu+V(zu=f(u) in R,

u(r) =0, as |z] — oo,
where V (x) is a nonnegative function which is asymptotically periodic at infinity. See
also |2, 23, 28, 34, 48, 60| for others investigations.

However, none of the previous works treated the existence of sign-changing solu-

tion (nodal solution).

2.2 Assumptions and main results

In order to reach our goals, we assume the following assumptions on the functions

V and K:
(V1) V,K : R — Ry are continuous and K € L*(R);
(V) there exist by, Ry > 0 such that

V(x) > by, for |z| > Ro;

Since problem (2.1) is set on the whole real line, we face loss of compactness.
Here, motivated by [35], in order to overcome this difficulty, we assume the following

assumption on K:

(K,) if {A,} is a sequence of Borel sets of R with sup |A,| < R, for some R > 0, then
neN

lim K(z)dz =0,
r=%° J A,NBE(0)
uniformly with respect to n € N.
On the nonlinearity f, we assume the following assumptions:

(f1) f € CHR) and there exist Cp,ty > 0 such that

lf(t)] < Cy <e”2 — 1> , forall |t| > to;

46



(f2) lim& = 0;

t—0 ¢

(f3) there exists 6 > 2 such that

0<0F(t) ::9/tf(s)ds§tf(t), forall te R\ {0};

ft)

(f1) the function —= is strictly increasing for ¢ # 0;

g

(f5) there exist constants p > 2 and C,, > 0 such that

sgn(t)f(t) > C,|t|P~!, forall teR.

We point out that from (f;) we can consider nonlinearities with exponential
critical growth in the sense of (2.3) and with exponential subcritical growth in the
sense of (2.4). Furthermore, by (V3) the potential V' (x) may be zero on a bounded

interval. For example, we may consider the potential

(

0, if Jz] <1

Vieg) =422 -1, if 1<|z|<2

3, it |z| > 2.
\
Example 2.2.1 A function K satisfying (V1) and (K,) is K(z) = e .
Example 2.2.2 If p > 2, the nonlinearity
F(t) = Coltl=22+ 122 (e — 1)

satisfies the assumptions (f1) — (f5).

In order to apply variational methods to study (2.1) in H'/?(R), it is natural to
work in the subspace of H'/2(R) defined as

X = {u € H'?(R) : /RV(:,:)de < oo} . (2.5)

From (V}) — (V3) (see Lemma 2.3.1 and Proposition 2.3.2), we show that X is a

Hilbert space when endowed with the inner product

(u,v) : ! /RQ (u(z) = uly)(vlw) = U<y))dxdy + /R\/(x)uvdx (2.6)

T2 lz —y|?
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and the corresponding norm

Hw:(%Agﬂ%3%KM@+Avmw%Qm. (2.7)

Throughout this chapter, we say u € X is a weak solution of (2.1) if

L[ (u(z) = u(y)(v(z) = v(y))

% R2 |33—ZU|2

MW+AV@MM—AK@NMM:Q

for all v € X.

In Section 2.3, we will show that the energy functional

() = Sl - / K (2)F(u)de, (2.8)

belongs to C''(X,R) and its critical points are weak solutions of (2.1).
In order to find nodal solutions for problem (2.1) by applying an appropriate

minimization argument, we introduce:

e the Nehari manifold

N ={ue X\ {0}: I'(u)u=0}; (2.9)
e the nodal set
M={uec X :u*+#0and I'(u)u* =0}; (2.10)
e the ground state level
e = Jg{/l(u), (2.11)
e the nodal level
cm = Je% I(u). (2.12)

Since M C N we have ¢y < cpq. We say that a nonzero critical point w € X
of I is a least energy solution (or ground state solution) if w achieves the infimum cy.
One of our goals will be to show that the minimum cy, is reached by a critical point
of I. If w* # 0 is a critical point of I such that I(w) = cy we say that w is a least

energy nodal solution of (2.1).

Now we can state our main results.
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Theorem 2.2.3 Suppose that (V1) — (Va), (K1) and (f1) — (fs) are satisfied. Then

problem (2.1) possesses a least energy nodal solution, provided that

20KCp P=2)/2
2.13
6> | (2.13)
where

cpp 1= inf L(u), MPi={ueX: u® # 0,1 (u)u* = 0} (2.14)

and . .
1) = = Jul -+ / K (2)[ulPde, (2.15)

2 b Jr

and k > 0 is the constant given in (2.22).

Another goal is to prove that the energy of any sign-changing solution of (2.1)
is strictly larger than twice the ground state energy. This property is so-called energy

doubling by Weth [71].

Theorem 2.2.4 Suppose that (V1) — (Va), (K1), (f1) — (f5) and (2.13) are satisfied.

Then problem (2.1) has a least energy solution and
I(w) > 2cy, (2.16)

where w is the least energy sign-changing solution obtained in Theorem 2.2.3. In par-

ticular, cn is achieved either by a nonnegative or a nonpositive function.

Remark 2.2.5 Note that if we assume that the function f is odd, then, using Theorem
2.2.4, it follows that problem (2.1) has at least one negative solution, one positive

solution, and one nodal solution.

Remark 2.2.6 Using the regularity results due to Servadei and Valdinoci [68], we have
that weak solutions of problem (2.1) belong to C(R).

As in Chapter 1, if u* # 0 then (u*,u~) > 0. Thus, if u* # 0, the energy

functional [ in (2.8) satisfies
I(u) > I(u") + I(u),
I'(w)ut > I'(u)u® and I'(w)u™ > I'(u”)u.

(see Lemma 2.3.7.)
Therefore, the methods used to obtain sign-changing solutions for the local prob-

lems can not be applicable to problem (2.1). Moreover, since the problem (2.1) is set on
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the whole real line one has to tackle compactness issues. Furthermore, an other well-

known difficulty is the loss of compactness due to the critical growth on the nonlinearity
f.

The outline of this chapter is as follows: Section 2.3 contains some preliminary
results related to functional I and the space X. In particular, we obtain a suitable
compact injections for X in a weighted Banach space. Section 2.4 is dedicated to the
study of the nodal set and the nodal level. Using adequate estimates at the nodal level,
suitable compact immersions and tools like the Straus’s compactness lemma, we prove
that the nodal level is attained. In Section 2.5, we complete the proof of Theorem 1.1.2

and Section 2.6 is proved Theorem 1.1.3.

2.3 Preliminaries
First, we recall that

oo Lo 1 |u(z) —u(y)|” 1/2
||(—A)4U,H2 = %[U]I/Z = % /R2 Wdl’dy, forall u € H / (R) (217)

(see |32, Proposition 3.6]).

With this in mind, we prove the following result:

Lemma 2.3.1 Assume that (V1) — (Va) are satisfied. Then,
1 _ 2
A= inf —/ dedy—l—/V(w)qux > 0.
i \2T S |yl R

Proof . Suppose, by contradiction, that \; = 0. Hence, there exists (u,) C X such
that

1 n - Un 2
lua2=1 and / [un(®) = un@)F g 4 / Vipdde 0, as n s oo
R2 R

27 |z — y|?
(2.18)
From [61], for any 1 < ¢ < oo, there exists a constant M > 0 such that
lolly < Mg (=2) ol ||o])y?, forall ve HV(R).  (2.19)

Combining (2.17), (2.18) and (2.19), for each ¢ > 2, we obtain
unlly < Mg ?|[(=A) 4, |37 >0, as n— oco.

20



Now, note that choosing ¢t > 1 such that 2¢ = ¢ and by using the Holder inequality, we
get
[nlF2(5y) < 1Brol ?ltnllfosy,) = 0, as n— oo, (2.20)
On the other hand, by (V3) and (2.18), we have
/ uZdr < l/ V(z)uldr =0, as n — oo. (2.21)
Bfy, bo Bf,,

But, (2.20) and (2.21) imply that
L= [lunlZ2(spy) + lunllz2ess, ) = 0,

as n — 0o, which is absurd. Thus, we complete the proof. m

From Lemma 2.3.1, we reach the following result:

Corollary 2.3.2 Assume that (Vi) — (V) are satisfied. Then the embedding X —

H'Y2(R) is continuous and there exists k > 0 such that

Kl

— = . (2.22)
K ] ||u||%/272

In particular, X is a Hilbert space with the inner product (2.6) and the embedding
X < LYR) is continuous and locally compact for all q € [2,+00).

Now, given r > 1, we define weighted Banach space
Ly = {u :R — R : u is measurable and / K(z)|u|"dz < oo}
R

endowed with the norm

lu

Iy = (/R zr((g;)yurdgg)i .

Note that, since K € L>(R), the embedding H/?(R) < L% is continuous for all

q > 2. Inspired by [35], we have the following result:

Lemma 2.3.3 HY2(R) is compactly embedded into LY, for all g € (2, +00).

Proof . Given ¢ > 2,5 > g and € > 0. Since K(z) < C, there exist 0 < tg(e) < t1(¢)
such that

K(@)|t}? < <O(tP + [t) + K@Xppon@ (DI, forall tzeR
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Hence, for any v € H'/2(R), we have
K@)lolt < cC(uf? +1of) + K@)xpuoneoDlelt, forall o e R
Fixing R > 0, we reach

K(z)v|'dx < eQ(v) +/ K(x)|v|?dz, (2.23)

B, (0) A= B, (0)

where

Q(v) = C([[v]}3 + Ilo]l2) and A° := {z € R : to(e) < o] < t1(e)} R

Let (u,) C HY?(R) such that u, — u weakly in HY?(R). Then, up to a subsequence,
there exists M > 0 such that

lu —ull3 <M and Ju, —ull3 < M.

In particular,

Q(u, —u) <2CM, forall neN. (2.24)

Now, if A° = {x € R:ty(e) < |u,, —u| < t1(e)}, we get
to(2)2] AC | :/ to(e)2dz < / luy — u2dz < M, forall neN.
Ag, R
Then by (K7), there exists R(¢) > 0 such that

/ K(z)|u, —ul?dz < ¢, for all n € N. (2.25)
AsNBS,  (0)

R(e)

Utilizing the estimates (2.24) and (2.25) in (2.23), we obtain

/ K(x)|u, — ulfdz <e(2MC + 1), for all n € N. (2.26)
B;'%(E)(O)

On the other hand, by using the compact embedding H'/?(R) < L%(Bpg)(0)), up to

a subsequence, we get

lim K(z)|u, — ul?dz = 0. (2.27)
oo Br(<)(0)

Therefore, from (2.26) and (2.27), we complete the proof. =
As a consequence of Corollary 2.3.2 and Lemma 2.3.3, we obtain the following

result:
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Corollary 2.3.4 Assume that (V1) — (Va) are satisfied. The space X is continuous
embedded in L3, and compactly embedded into LY. for all g € (2,+00).

One of the main tools to study problems involving exponential growth in the
fractional Sobolev spaces is the so-called fractional Trudinger-Moser inequality due
to Ozawa [61]. Combining the results in [27, 51, 53, 61, 69], the Trudinger-Moser

inequality due to Ozawa has been refined and can be stated as follows.

Lemma 2.3.5 For any u € HY?(R) and a > 0, we have
/ (eW - 1) dz < 0. (2.28)
R
Furthermore, if 0 < a < m, it holds
sup / (ea“2 — 1) dr < o0 (2.29)
{u€H2(R): [lullyj2,2<1} /R

and if 0 < o <, there exists C, > 0 such that
/ (eW - 1) de < Cullull?, (2.30)
R
whenever u € HY2(R) and ||(—A)iul|s < 1.

As an application of this inequality, we get the following convergence result:

Lemma 2.3.6 Leta > 0 and (u,) C HY?(R) be such that u,, — u strongly in H/*(R).

Then
lim <eo‘“i — 1) dx = / (eo‘“2 — 1) dzx.
n—-+4oo R R

Proof . By the Mean Value Theorem, for each x € R, there exists a,(x) between

wn(x) and u(z) such that
(€A — 1) = () — 1)] = 2a]ay (@) [y (@) ~ u(@)]

Now, since that

an(@)] < Jua ()= () -+ fu(w)] and (jun (o) —u(@)+u())? < 2un () —u(o)*+2fulo)

we have

|(6au% . 1) . (eau2 . 1)‘ < 2a(|u” . U,| + |u|)62a|un—u\262a\UI2|un — ul.
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Adding and subtracting 1 one each of the factors e~ and e®“/” in the right-hand

of inequality above we obtain four terms one of which is

2a(|up, — ul + Jul) (> — 1) — 1), — ul.

Applying the Holder inequality with exponents r,7y > 2 and r3,74 > 1, such that
1/ri+1/ra+1/r3+1/ry = 1, and using Lemma A.1.1, we get

1
T

’ (/(ezfmw2 — 1)d:17) .
R

(2.31)

ars|un —ul?
w%—umfwmmomn—wm(A@QJ '—DMQ

Now, using that ||u, — ul|g1/2@) — 0 and the Lemma 2.3.5, there exists C' > 0 such

(/ (620”3\un—u|2 B l)dx) T3 <C and (/(620”4“2 B 1)dx) T4 <c
R R

Again by using the convergence ||u, — ul|g1/2x) — 0 and the continuous embedding

that

of H'/2(R) in L™(R), we have that |u, — u||,, — 0, as n — +oo. In this way, the
quantity in (2.31) goes to zero as n — +oo. The other terms can be handled in similar

fashion. m

Now, note that by Lemma 2.3.5, Lemma 2.3.6 and the hypotheses on f and V,
we obtain that the energy functional I : X — R associated to problem (2.1) given by

1
1) = 3l = [ K(o) s
R
is well defined and belongs to C*(X,R) with
I'(uw)v = (u,v) — / K(z)f(u)vde, for w,veX
R

and consequently critical points of I are precisely the weak solutions of (2.1).
As in Lemma 1.2.3 and Corollary 1.2.4, we have the following results:

Lemma 2.3.7 Assume that (V1) — (V) are satisfied. Let uw € X. Then,

(1) (u,u®) = (u*,u*) + ! /]R? u+($)<_U7<y)>dxdy

™ |z — yl?

(ii) if ut #0, (uF,u™) >0,
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(i) I(u) > I(ut)+I(u™),
iv) I'(w)ut > I'(uM)ut and I'(w)u™ > I'(u")u™.
Corollary 2.3.8 If u € X then

lull® = Jlu* + [lu= %,
2.4 Some properties of the Nehari manifold and nodal

set

In order to prove some properties of M and N, we observe that by (f1) — (f2),

given € > 0 and ¢ > 1, there is a positive constant C. such that

1F(8)| < elt| + CLlt|* (e™ — 1), forall teR (2.32)
and, by virtue of (f3),

IF(t)| <elt] + C.lt|9(e™ — 1), forall teR. (2.33)

Moreover, by (fs), we have

)] > Colt[P~!, forall teR (2.34)
and
Cp
F(t) > —=2|t|P, forall teR. (2.35)
p

Lemma 2.4.1 Assume that (V1) — (Va) and (f1) — (f5) are satisfied. Then, given
u € X \ {0}, there is a unique t = t(u) > 0 such that tu € N. In addition, the number

t satisfies
I(tu) = max I(su). (2.36)

s>0

Proof . Given u € X \ {0}, we define h(s) := I(su) for s > 0. By (2.35) and since

p > 2, we obtain

2 D
h(s) < %HUHQ _ G /K(x)]u|pdx — —00, as s — 0o (2.37)
R

P
On the other hand, choosing ¢ > 2, by using (2.33) and that K(z) < C, we get
2
h(s) 2 Gl = € [ sl + Costul1 (™ ~ D) (2.39)
R
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If s € [0, 1], we have (6“2“2 —1) < (e™ —1). Hence, by Proposition 2.3.2, we get

1 2
h(s) > s* (5 — Cle) Jul|® — CZESq/ lul(e™ —1)dz >0 (2.39)
R

for s > 0 small enough. Thus, from (2.37) and (2.39), there exists ¢ = t(u) > 0 such
that I(tu) = max I(su) and, consequently, tu € N'. Now, if s > 0 is such that su € N,

we have
s2|ul|* = / f(su)sudx
R
and since it also holds

t%WzAﬂmwm

/]R (ﬂt“) - f(su)> w?dz = 0. (2.40)

it follows that

tu su

By (f1) and since u # 0, it follows from (2.40) that ¢ = s. Thus, we finish the proof. =

Lemma 2.4.2 Assume that (V1) — (V) and (f1) — (f2) are satisfied. Then, there exists
mg > 0 such that ||ul]* > mq for all u € N.

Proof . In order to obtain a contradiction, suppose that there exists (u,) C N such

that ||u,|| — 0 as n — oo. By definition, we know that
2 = / K () f () unda. (2.41)
Since K(x) < C, utilizing (2.32) with ¢ > 2, we get
| ||* < / K(x)|f(up)uy|de < 50/ |, |2da + C’a/ |un |9 (™ — 1)dz. (2.42)
R R R

Now, from Lemma 2.3.5, by using the Hélder inequality and the assumptions ||u,| — 0,

we obtain that

[ nltter = e < ol ([ @G i) < Gl (24

for n € N sufficiently large. From Proposition 2.3.2, there exist C,Cs > 0 such that

unll3, < Cillunl|? and [Ju, |5 < Collu,||*. Hence, choosing e > 0 and utilizing (2.41),

(2.42) and (2.43), we have 0 < Cy < ||u,||972, for n € N sufficiently large. But, as ¢ > 2,

this contradicts the assumption ||u,|| — 0 and the proof of the lemma is complete. =
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Corollary 2.4.3 Assume that (V1) — (Va), (f1) and (fs) are satisfied. Then, there
exists 0g > 0 such that 1(u) > 0¢ for all u € N. In particular,

0<dy<cy<cpm.
Proof . Since I'(u)u = 0, by Lemma 2.1.2 and (f5;), we have

1w = 1) = = (5 = 5 )l + [ K@ - 6P )] ds

> (5-7) P 2 (——g)mo o

which is the desired inequality. m

Lemma 2.4.4 Assume that (V1) — (V) and (f1) — (f2) are satisfied. Then, there exists
mp > 0 such that |[u®||> > m{ for all u € M.

Proof . The proof is similar to Lemma 2.4.2. Hence, it is sufficient to prove a similar
estimate to (2.412) for u™ and u~. Since u € M we have ut # 0 and (u,u™) =
Je K(z)f(ut)utdz. Now, by Lemma 2.3.7, we have (u*,u") < (u,u™). Thus, by

using (2.32) we obtain

a2 < /K +dx<50/|u+| de + C. /|u+| (P _ 1)da.
Similarly,

lu=|? < /K Ju dm<5C/|u 2dz + C. /|u 2™ — 1)du,

and the proof of lemma is done. m

Now, using Lemma 1.3.5, we shall show that M # 0.

Lemma 2.4.5 Assume that (V1) —(Va), (f1) — (f2) and (f1) — (fs) are satisfied. Then,
given u € X with u* # 0, there exists a unique pair (t,s) of positive numbers such that

tut 4+ su” € M.

Proof . Let u € X be such that u™ # 0. We define the continuous vector field
g:(0,00) x (0,00) — R? by

g(t,s) = (I'(tu” + su”)tu™, I'(tu + su”)su”).
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Firstly, we want to find (¢,s) € (0,00) x (0,00) such that g(t,s) = (0,0). The first
step is to show that for ¢ and s sufficiently small the coordinates functions are positive.

Given € > 0 and ¢ > 2, by (2.32) and K(z) < C, we get
I'(tut + su™)tut = t3||ut|]? +ts{u®,u” /K Dtutda
> 2 |lut]]? +ts(ut,uT) — 56’152/ lutPda
R
_ oo / (e 1)y
R
Hence, if ¢t € [0, 1], by using Proposition 2.3.2, there exists C; > 0 such that
I'(tu + su”)tut > 2 {ju’|)® + tsut,u™) — eCLCE||u'?
— C.Ct1 / lut|9(e™ P — 1)da.
R

By Lemma 2.3.7 we have (u™,u~) > 0. Then there exists r > 0 small enough such
that

I'(ru™ +su”)rut >0, forall s> 0.

Analogously, there exists r > 0 large enough such that
I'(tut +ru”)ru” >0, forall t>0.

Now, we shall show that, for ¢ and s large enough, the coordinates functions are

negative. In fact, by (f3) and (2.35), we have

0C,tP
/K fltu)tutdz > 0/K VE(tu™)dx > C—p/K(x)|u+|pdx.
p R

Thus,
I'(tut + su™)tut = t3||ut|]? +ts{u®,u” /K Dtutda
o0C,t?
20, +||2 + - Pl +
< EllT I+ st um) = — = llu Iz -

Since p > 2, there exists R > r large enough such that

I'(Ru™ + su”)Ru™ <0, forall 0 < s < R.
Analogously, there exists R > r small enough such that

I'(tu™ + Ru”)Ru~ <0, forall 0 <t < R.

28



Hence, considering the block P = [r, R] X [r, R] and applying Lemma 1.3.5, there exists
(t,s) € [r, R]x[r, R] such that g(t, s) = (0,0) and consequently, we have tu*+su™ € M.

Finally, we shall prove the uniqueness of the pair (¢,s). First, we assume that
u=ut4+u" € Mand (t,s) € (0,00) x (0,00) is such that tu™ + su~ € M. In this
case, we need to show that (¢,s) = (1,1). Note that

lu[* + /K Jutda (2.44)
- |? + /K Ju-dz (2.45)
|ut | + ts{ut,u” /K tutde (2.46)
SP|lu|)* + ts{ut,u” /K T)su”dx. (2.47)

We can assume, without loss of generality, that ¢ < s. Then, by using (u™,u~) > 0

and (2.16), we have
t +
a2 + / K@) )

It follows from (2.44) that

/K ( G f(u+>>(u+)2dx20.

tut ut

Hence, by (f4) and since ut # 0 we obtain ¢ > 1. On the other hand, since t/s < 1

and (ut,u”) > 0, we get

oI+ ) 2 [ K@) (su)

This, together with (2.45), implies

/Rz((x) (fi“_> - fi“_)) (u™)?dz < 0

and consequently s < 1. Thus we conclude that t = s = 1.

For the general case, we suppose that u does not necessarily belong to M. Let

(t,s),(t',s") € (0,00) x (0,00) be such that tut + su~ and t'ut + s'u~ belongs to M.
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We define v = v + v~, where vt = tu™ and v~ = su~. Then, we have that v € M
and
t s
?UJF + —v” =tut +5u” € M.
s
Hence, by the first case, we reach ¢/t = 1 and s’/s = 1, which completes the proof. m

Now, we shall present two technical lemmas that will be used in the next section.

Lemma 2.4.6 Assume that (V1) — (Va), (f1) — (f2) and (f4) — (fs) are satisfied. Let
u € X be a function such that u* # 0, I'(u)u™ < 0 and I'(u)u™ < 0. Then the unique
pair (t,s) given in Lemma 2.1.5 satisfies 0 < t,s < 1.

Proof . We can assume, without loss of generality, that s >t > 0 and tut +su™ € M.
Now, since I'(u)u~ < 0 and I'(tut + su™)su~ = 0, we have
|+ () < [ K fuds
R

and

¢ _

u™||* 4+ = (ut,u™) = / K(x)Mu_dx.

S R S

By Lemma 2.3.7 we get

K@) (L9 LSO 2y = [ R e — eI - Lt )
[ (% R :

Su

- - - l -
> [l + (" u) = fJum | = S ™7

> (1 — f) (ut,u™) > 0.

S

By using this inequality, (f;) and the fact that = # 0, we obtain s < 1 and we finish
the proof. m

Lemma 2.4.7 Assume that (V1) — (Va), (f1) — (f2) and (f1) — (fs) are satisfied. Let
u € X be a function such that u* # 0 and (t,s) be the unique pair of positive numbers
given in Lemma 2.4.5. Then (t,s) is the unique mazimum point of the function ¢ :
R, x Ry — R defined by ¢(a, B) = I(au™ + fu™).

Proof . In the demonstration of Lemma 2.4.5, we saw that (¢, s) is the unique critical

point of ¢ in (0,00) x (0,00). Note that, by using (2.35), we get

1 _iz2 C .
dla, B) < §Hau++ﬂu I —?p/RK(xﬂau*%—Bu Pda

(a+ Bl « 8.
- 2 (a+ﬁ>u++(a+ﬁ)u

2 pll—2 v o Byl
—?(OHrﬁ) (a+6)u +(a+5)u Lp
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Hence, since p > 2, ¢(«, f) — —o0 as |(a, f)| — oo. In particular, there exists R > 0
such that ¢(a, 8) < é(t, s) for all (o, B) € (0,00) x (0,00) \ Br, where By, is the closure
of the ball of radius R in R2. In order to finalize the proof, we shall show that the
maximum of ¢ does not occur in the boundary of R, x R,. Suppose, by contradiction,

that (0, ) is a maximum point of ¢, given a > 0, we have that

o
¢(a,5):—|\u+|]2+a6 (ut,u” /K dz + ¢(0, B).
Arguing similarly to Lemma 2.4.1, we get
o2
?HUJFH2 aB(ut,u” /K )z >0
for a > 0 small enough. But this contradicts the assumption that (0, 5) is a maximum
point of ¢. The case (a,0) is similar and we omit it. The proof is complete. m

Now, we shall prove an upper bound for the nodal level ¢y defined in (2.12).

Lemma 2.4.8 Assume that (V1) —(V2), (f1)—(f2) and (f1)—(f5) hold and C, satisfies
(2.13). If 0 is the constant given by (f3) and K is given in (2.22), then

<= 2.48
CM < ( )

Proof . From Theorem B.2.8 (see Appendix), there exists w € MP such that [,(w) =

cye and I'(w)w* = 0, where cyp and MP was defined in (2.14) and 2.15. Conse-
p

quently,
L2 = Lwlp, = (2.49)
Slwl Z—jllwlly;( = Cmp, :
lw* | = w7, — {w*,w”) (2.50)
lwl* = flwllZ, - (2.51)

Hence, by (2.19) and (2.51), we get

1 1
Since w* # 0, by Lemma 2.4.5, there exist ¢,s > 0 such that tw* + sw™ € M.

Consequently, we obtain

t2 2
cm < I(tw" +sw™) = §||w+||2 + ts{w™, w™ —||w 2

—/RK(J:) (tw* dx—/K
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This together with (2.35) implies
t2 s Ct? Cps?

em < Sl P+ ts(w™, w) + - lw” P = == [lw L, -

Uf”ig{

By (2.50) and Lemma 2.3.7, we have

2 2

t _ _ S _ _
cm < 5(Hw+||§z;( — (wh,w7)) +ts(wt,wT) + 5(”“} Hig} — (W™, w™))
CtP CpsP | _
= il = == eIl
2 Cpt? N s Cps? _ 1 2, 4
= (351t + (5= 57 )l 5 =9 )

2 D
< max &Gt |wl?, .
0 \ 2 P L

On the other hand, it is easy to see that

e e\ 2 (11
?33{(2 v )= \a7)

Hence, by (2.52) it follows that

(11 P F=
cm < Gy 275 [wllze = Cp " em

Therefore, by the definition of C, given in (2.13), we obtain (2.48). =

The next step is to obtain a minimizing sequence for the nodal level cy, with a

special behavior. For this, for A > 0, we start by defining the set

Sy={ueM: I(u) <cum+ A}

Lemma 2.4.9 Assume that (Vi) — (V2) and (f1) — (f5) hold and C, satisfies (2.13).
For A\ > 0 small enough, there exists my € (0, %) such that

0.< mj < [P < lulf* < my,

for any u € §,\.

Proof . Let u € Sy. By Lemma 2.1.1 and by using (u™,u~) > 0, we have m{ <
|u®]|? < ||ul|®>. On the other hand, by (f3) and since I'(u)u = 0, we obtain

N> I(w) = I(u )-%

_ (_ EEA NN /K W — OF (u)] dz > G = %) [
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0—2
By Lemma 2.1.8, we can take A > 0 such that cyy + A < ( ) Consequently, it

20k
follows that

2
<
Jul* < 5=

forallu € S \ and this concludes the proof of the lemma. m

1
(CM—{-)\) =:my < E,

Lemma 2.4.10 Assume that (K,) and (f1) — (f3) are satisfied. Let (u,) C HY?(R)
be such that u, — u weakly in HY*(R) and b := sup,,y ||un\|%/2,2 < 1. Then, up to a

subsequence, one has

lim K( f(up)u,dz = / K(z)f(u)udz; (2.53)
n—+o0o
lim [ K(x)f( jEdgzt—/K Jutda; (2.54)
n—+00 Jp
lim K F(u,)dz = / K(x (2.55)
n—+oo
hrf K(z)f(up)vde = / K(x)f(u)vdz, for all v e HY?(R). (2.56)
n—-—+0o0

Proof . We will prove only (2.53), since the proofs of (2.54)-(2.56) are similar and we

will omit them. Let m < o < 7/b?. Then, by using (f;) and (f,), we have

M =0 and lim f)t

It oo €® — 1 ltl—0 12

= 0. (2.57)
Hence, given g > 2 and € > 0, there exists 0 < t(¢) < t1(¢) and C. > 0 such that
K(z)|f(t)t] < 5C(|t|2+e°‘t2—1)—|—C,5K(x)x[to(5),t1(5)](|t|)|t|‘1, for all ¢,z € R. (2.58)

Now, from the continuous embedding H'/?(R) < L*(R), for s > 2, and Lemma 2.3.5,

we can find M > 0 such that

/ |u, [Pdz < M,/ lup|%dz < M and /(ea“% —1)dz < M, forall neN.
R R R

(2.59)

Denoting A5 = {z € R : ty(e) < |un(z)| < t1(e)}, we get

to(e)?| A2 :/ to(e)?dz < / |u,[*de < M, forall neN.
n R
Thus, utilizing (K), there exists () > 0 such that
£

K(x)dx < , forall neN 2.60
/A SNBE (0) ( Cety(e)e (2:60)
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and by using (2.59) and (2.60) in (2.58), we reach

/ K(@)|f(un)unlde < 2CM +1)e, forall n e . (2.61)

On the other hand, using that u, — u weakly in HI/Z(R) and the locally compact
embedding H'/?(R) — L?(R), up to a subsequence, we have u,(r) — u(x) a.e. in R,
Thus, K(x)f(un(z))un(x) = K(z)f(u(z))u(z) a.e. in R and according to (2.57), (2.59)
and Strauss Lemma ( Lemma A.1.10 applied with P(t) = f(¢)t and Q(t) = e**" — 1),

one has

lim K(z)f(up)up,de = / K(x)f(u)udz. (2.62)
Bi(¢)

n—-+00 Br(s)
Combining (2.61) and (2.62),the proof of (2.53) follows. m

From now on, we will write Sy with A > 0 given in Lemma 2.4.9.

Lemma 2.4.11 Assume that (Vi) — (V2) and (f1) — (f5) hold and C, satisfies (2.13).
Then for any q > 2, there exists 6, > 0 such that

0< 9, < /K(:E)|ui]qu < /K(x)]u\qu,
R R

for each u € §>\‘
Proof . Let u € §A and ¢ > 2. We know that

w4+ (ut,u) = /RK(x)f(ui)uidm.
By using Lemma 2.3.7 and Lemma 2.4.4, it follows that

0<my < ||u*|? < /RK(x)f(ui)uidx
and from (2.32), we have

mggaéK@wﬁﬁm+caéK@wﬁmﬂfﬁ—nmx

Now, Corollary 2.3.4 and the fact that u € g,\ imply that there exists C; > 0, inde-

pendent of u, such that
/mmwmgq
R

Choosing € > 0 such that mgy —eC} > 0, we obtain

0< ﬁ@i%fgé-St/iKXxﬂui]&f“iF——l)dx. (2.63)
€ R
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Let ¢ > 0 sufficiently close to 1 such that nt'myx < m, with 1/t +1/t' =1 and t > q.
Utilizing the Holder inequality, Lemma 2.4.9, K(z) < C' and Lemma 2.3.5, we reach

1
T

K(@)u®|(e™ " = D)dz = | K(2)7[u*[K(z):
I JET
< (/RK(:E)\Uide)t-
- ( / Ky e () 1)dx>
<cv ( RK(x)wivde (/R(eﬂm<%> _ 1)dx>

:|:|2

(™l 1)dx

Y=

1
7

&

This last inequality and (2.63) implies that

mgy — eC'

0< =7 = < COluF| g, (2.64)

Now, we suppose, by contradiction, that there exists (u,) C Sy such that JuyllLs — 0
asn — oo. From Lemma 2.4.9 we obtain that (u}) is bounded in L*(R). Consequently,
since q < t < 2t, by the interpolation inequality we get that ||u,f||L§< — 0 as n — oo,

which is impossible in view of (2.64), concluding the proof. m
The next technical result will be used in the proof of Lemma 2.4.13.

Lemma 2.4.12 Assume (f1) and (f3) — (fs4) are satisfied. Then the function H(t) :=
f(t)t — 2F(t) satisfies

(i) H(0) =0 and H(t) > 0, for all t # 0;
(i) H(to) < H(t1) if 0 <ty <ty;
(iii) H(to) > H(t1) if to <t1 < 0.

Proof . Let us show (ii4). First we note that H € C*(R) and H'(t) = f'(t)t — f(¢),
for all t € R. From (f4), we have

%(%)20, forall te R\ {0}.

If t <0 then f(¢t) — f'(t)t > 0 and therefore H'(t) < 0 for all t < 0. Thus, H(t) is
decreasing for ¢t < 0, which implies the item (¢ii). The proof of the item (4) is similar.
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Next, we have all the results that will allow us to prove that the nodal level cyy

is attained in a function v € X with u* # 0.

Lemma 2.4.13 Assume that (V1) — (Va), (K1) and (f1) — (fs) hold and C, satisfies
(2.13). Then there exists u € M such that 1(u) = cp.

Proof . Let (u,) C M be such that I(u,) — cyp as n — +oo. We can assume that

Uy € g)\, for all n € N. In particular, by Lemma 2.4.9, we have
/ 42 2 . 1
my < |lugz||® < ||unl|® <my, forall neN, with mye (0,— ).
K

Thus, (uy), (u,) and (u,,) are bounded in X. Since X is a Hilbert space, up to a
subsequence, there exists u € X such that uX — «* and u,, — u in X. Let ¢ > 2.

+

From Corollary 2.3.4, up to a subsequence, we have u, +

— u* in L} and utilizing

Lemma 2.4.11, there exists d, > 0 such that
0<6, < / K(2)|uf|dx < / K(z)|u,|%z, for all neN.
R R

Hence u* # 0 in X. Now, from Lemma 2.1.5 there exist t,s € (0,00) such that
= tut + su” € M. We claim that I'(u)u® < 0. Since sup,,cy |[un|> < my and
HunHl/22 < Klju,||?, we have sup,cy [[unll1/22 € (0,1). Moreover, since the embedding

X — L2

2 (R) is compact, up to a subsequence, we can assume that ur(z) — u*(z)

a.e. in R. By the convergence (2.51) in Lemma 2.4.10 and by the Fatou Lemma, it
follows that

w4 (ut,u) < hmmf (Hu+H2 (ul u ))

n»-'n

—hmlnf/K +dx—/K +dx
n—-+00

Hence, I'(u)ut < 0. Similarly, we get I’(u)u~ < 0. Then, by Lemma 2.4.6, we obtain
0 < t,s < 1. In particular, ||[a]|* < |lul|>. Now, in order to conclude the proof, note

that using the convergence in Lemma 2.4.10 and Lemma 2.4.12, it holds

CMSI(EZ):]()——I’ /K w)u — 2F(u)) dz

:§/RK($)H(tu+)dx+%/RK(:B>H(SU_)dx
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and therefore

< %AK@)H(H)@%AK(@H( /K wyu — 2F(u)) dz

= I(u,) — 5[’(un)un + 0,(1),
= I(up) + 0,(1) = cpm
which concludes the proof. m

Next, we consider D = (1,3) x (3,3) and g : D — X given by g(a, ) =
aut + fu~, where u was obtained in Lemma 2.4.13. We shall prove an auxiliary result

and present some notations that will be used in the proof of Theorem 2.2.3.

Lemma 2.4.14 Let P={u € X :u(x) > 0a.e. x € R} and —P = {u € X :u(z) <
0a.e. z € R}. Then dj) = dist(g(D),A) > 0, where A := PU (—P).

Proof . We suppose, by contradiction, that d) = dist(g(D),A) = 0. Hence, we
can find (v,) C ¢g(D) and (w,) C A such that |Jv, — w,|| — 0 as n — oco. We can
assume, without loss of generality, that w, > 0 a.e. in R. Since v, € g(D), there

exist o, B, € [%,3] such that v, = a,,u™ + B,u". By compactness of [3,3], up to a

subsequence, we have «,, — ag and [3,, — by as n — oo. Hence
Up — agu +bou~  in X,
Thus, we obtain w, — apu™ + bpu~ in X. Now, by Proposition 2.3.2, we have
wp(z) = agut (z) + bot (z) a.e. in R,

Since u~ # 0, the convergence above produces a contradiction with the assumption

that w,, > 0 a.e. in R, which completes the proof. m

2.5 Proof of Theorem 2.2.3

The proof of this theorem is done in the same way as the Theorem 1.1.2 and we

omit it.

2.6 Proof of Theorem 2.2.4

The proof of this theorem is done in the same way as the Theorem 1.1.3 and we

omit it.
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Chapter 3

Nodal and constant sign solutions for
a class of fractional Kirchhofi-type

problems involving exponential growth

In this chapter, we study the existence of nonnegative, nonpositive and nodal
solutions of smaller energy for a fractional Kirchhoff problem with a nonlinear term
that may have a exponential critical growth in the Trudinger-Moser sense. By using
the constrained minimization in Nehari set, the quantitative deformation lemma and
degree theory results, we obtain a least energy nodal solution. Then, by exploring
estimates obtained in the first result and by using the Mountain Pass Theorem,we get
one nonpositive and one nonnegative ground state solution. Moreover, we show that
the energy of the nodal solution is strictly larger than twice the ground state level.
When we regard b as a positive parameter, we study the asymptotic behavior of the
nodal solutions as b, — 0%. The results of this chapter were submitted for publication

in article [30].



3.1 Introduction and main results

This chapter is devoted to study the existence of ground state and nodal solutions

for the following class of fractional Kirchhoff-type problems:

a+bllul®) [(=A)2u+V(z)u| = f(u) in 9,
R "

in R\Q,

u =

where a > 0, b > 0, Q C R is a bounded open interval, V : Q — [0,00) is a con-
tinuous potential, f € C'(R) may have exponential subcritical or critical growth in
the Trudinger-Moser sense (see (1.4) and (1.5)). Here, (—A)'/? is the 1/2—Laplacian
operator defined in (1.2) and the function u belongs to an appropriate subspace of
H'2(R) endowed with the norm
2 1/2
ul) = (% /R —|“(T;:;(f)‘ dxdy+/QV(x)]u]2dx) . (3.1)

Motivated by physical or mathematical aspects, classes of problems like (7, ;)
have attracted a lot of attention of many researchers and some existence and mul-
tiplicity results have been obtained. A Kirchhoff type problem involving exponential
growth was treated by J. Giacomoni et al. [17], by using the Nehari method. X. Mingqi
et al. [59] proved the existence and multiplicity of solutions for a class of fractional
Kirchhoff-type problems for the p-fractional Laplace operator.

None of the previous papers treated the existence of nodal solution for the problem
(F,,) when the nonlinearity has exponential growth. In Chapter 1, we deal with the
problem (7, ,) when a > 0 and b = 0. Motivated by this fact, our goal in the present
chapter is to study the existence of nodal solutions for the problem (7, ,) when the

nonlinearity has exponential growth as in (1.4) and (1.5).

Throughout this chapter we will assume the following hypotheses:

(V1) V : Q — [0,00) is a continuous function, where 2 C R is a bounded open interval.
For the nonlinearity f we assume that:

(f1) f € CYR) and there exists Cy > 0 such that

|F(t)] < Coe™, for all t € R;
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(f2) hmm = 0;

t—0 ¢

(f3) there exists 6 > 4 such that

0<OF(t) = e/tf(T)dT < tf(t), for all t € R\ {0};

t
(f1) the function % is strictly increasing, for any ¢ # 0;

(f5) there exist p > 4 and C, > 0 such that
sgn(t)f(t) > C,lt|P~", for all t € R.
Example 3.1.1 If p > 4, the nonlinearity
F(t) = Gyl 2t + [t~ 2te”

satisfies the assumptions (f1) — (f5).

As in Chapter 1, to obtain weak solutions of (7, ), we consider the subspace X

of H'/?(R) defined by
X:={ue H”?R):u=0 in R\Q},

which will be equipped with inner product

(u,v) : L /}R2 (uz) — uly)(v(z) = U(y))dxdy—i—/g‘/(x)uv dx (3.2)

T or |z — yl?

and the corresponding norm given in (3.1). X is a Hilbert space and the embedding
X — H'Y?(R) is continuous. Moreover, X is continuous and compactly embedded in
Li(R) (see [50] and Lemma 1.2.1).
To simplify the notation, we consider the function m,(t) = a+ bt, and we rewrite
() as
my([ul?) [(=A)Pu+ V(z)u] = f(u) inQ,
u = 0 in R\ Q.

In this context, we say that u € X is a weak solution of (7, ), if

(|| u)?) (u, v) — /Q f(u)vdx =0, for all v € X. (3.3)
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Considering the functional I, : X — R given by
1 2
Iy(u) = SMp(J[ull”) — QF(U) da, (3.4)

where M,(t) := f(f my(7)dT = at + bt?/2, for t € R. Using the assumptions on f, by

standard arguments, we can see that [, is C'(X,R) and
I (w)v = my(||u|®) (u, v) — / f(uw)vde, for all u,v € X.
Q

Thus, critical points of the functional [, are weak solutions of (7, ;) and recipro-
cally (see details in Section 3.2).
In order to present the main results of this chapter, we define the Nehari sets

associated to I, and their respective minimums energy level by:

e The Nehari set and the ground state level

No={ue X\ {0}: I[(w)u=0} and cp; := inf Iy(u); (3.5)

uENb

e The set of nonnegative functions on the Nehari set

Ny ={ueNy:u” =0} and ¢y = inf I(w); (3.6)

ue/\/,f

e The set of nonpositive functions on the Nehari set

Ny ={ueN,:u" =0} and O = irflvf Iy(u); (3.7)
ueN,”

e The nodal Nehari set and the nodal level
My={ue X :u"#0, u= #0, I;(u)u" =0 and I}(u)u~ = 0} (3.8)

and

Cpm, = uler/l\gb Iy(u).

Our first objective is to guarantee that the minimum cp4, is achieved by a weak
solution w € M, and, in this case, w will be called of least energy nodal solution (see

also Remark 3.3.5). Notice that the set M, is a subset of the nodal functions in N.

Now we can state our first result.
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Theorem 3.1.2 Suppose that (V1) and (f1) — (fs) are satisfied. Furthermore, we as-
sume

1 [40d:275 p— 2755 )] "7
1 b pp— 22-p
C, > max 5 W02 —1) : (3.9)
where
dy = inf Jy(u), 3.10
b= o, b(u) (3.10)
M={ue X :ut#£0, u” #£0, Ji(uwu" =0 and Jy(u)u" =0} (3.11)
and ) )
Jp(u) = §Mb(HuH2) ~ 3 /Q |ulPd. (3.12)

Then, the problem (P, ;) has a least energy nodal solution w.

Our second result provides one nonegative solution and one nonpositive solution
of (P, ), which the energy is minimal between the solutions that have the signal defined.
Moreover, we also show that the energy of any sign-changing solution of (7, ;) is strictly
larger than twice the ground state energy. This property is so-called energy doubling
by Weth [71].

Theorem 3.1.3 Suppose that (V1), (f1) — (fs) and (3.9) are satisfied. Then, there
exist uy € N~ with I(uy) = v and u_ € N, with Iy(u_) = Cy-» weak solutions of

(P.1). Moreover, we have
CM, = Ib(ub) > CNbJr + CNI: > QCN‘b, (313)
where uy, is the least energy nodal solution obtained in Theorem 3.1.2.

The third result is to study the asymptotic behavior of the least nodal solutions

up as b — 0T. Precisely, we prove that:

Theorem 3.1.4 Suppose that (V1), (f1) — (fs) and (3.9) are satisfied. Let (b,) C R
be a sequence such that 0 < b, < b and b, — 07, as n — oco. Then, for any n € N,
the problem (P,p,) has a least energy nodal solution w,, and, up to a subsequence, uy,

converges strongly to ug in X, where ug s a least energy nodal solution to the problem

{a(—A)1/2u+aV(I)u = f(u) in Q, (Puo)

u = 0 in R\ Q.
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As in Chapter 1, the functional [, associated to (7, ;) does not possess the same
decompositions as (1.13) and (1.14). Indeed, since (u™,u~) > 0 whenever u™ # 0 and
u~ # 0, a straightforward computation yields that (see Lemma 3.2.3 and Corollary
3.2.4)

I(u) > L(u®) + L(u™),

L(wu® > Lwhut and  (u)u™ > I(u)u”,

where I, is defined in (3.4). Therefore, the methods used to obtain sign-changing
solutions for the local problem like (1.12) seem not be applicable to the problem (7, ;).
Additionally, we have difficulties due to the presence of the non-local Kirchhoff term and
the loss of the Palais Smale compactness condition due to the exponential growth on the
nonlinearity. In order to overcome these difficulties, we define the constrained set M,
(see (3.8)) and consider a minimization problem of I, on M,,. Borrowing ideas from [15],
we prove M, # () via geometric properties of the functional of I, (see Lemma 3.3.4).
Combining the ideas developed in [3, 4, 11, 21], we prove that the minimizer of the
constrained problem is also a sign-changing solution via the quantitative deformation

lemma and degree theory (see Section 3.3).

Remark 3.1.5 The hypothesis (f1) allows us to consider nonlinearities with critical
growth in the sense defined in (1.1) with an exponent ag = 7 and with subcritical growth
as in (1.5). More generally, we can consider an exponent «q different from w. In this

more general case, this new constant would imply a normalization of the constant C,
defined in (3.9).

Remark 3.1.6 We point out that the results of this chapter complement the works
[48, 49, 50, 63] in the sense that we prove the existence of sign-changing solutions and
the work [21] in the sense that we consider exponential growth on the nonlinearity. Fur-

thermore, our results extend for the fractional Laplacian some of the results contained

in [, 4, 72].

The outline of this chapter is as follows: Section 3.2 contains some auxiliaries
results and the variational framework. Section 3.3 is dedicated to the study of the nodal
set and the nodal level, the main goal is to prove that the nodal level is attained by a
sign-changing weak solution of (7, ;). In Section 3.4 is devoted to prove the existence
of solutions that have signal defined and Section 3.5 we study the convergence of the

nodal solutions as b — 0.
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3.2 Preliminary results

Asin Lemma 1.2.1 and Lemma 1.2.2, we have the following results:

Lemma 3.2.1 Under the assumption (Vy), the embedding X — L(R) is continuous
and compact for all q € [1,400).

Lemma 3.2.2 If0 < a <, it holds

sup / e dr < oo. (3.14)
0

{ueX:|jul|<1}

Moreover, for any o > 0 and u € X, we have

/ e dr < 0. (3.15)
Q

As a consequence of Lemma 3.2.1, Lemma 3.2.2 and (f;), the energy functional
I, - X — R given by

1

) = 3M(Jul?) = [ Plado

is well defined and belongs to C'(X,R). Moreover, by straightforward calculation, we

have

I (w)v = my(||u|®) (u, v) — / fwvdez, for all u,v € X.
Q
As in Lemma 1.2.3:
Lemma 3.2.3 Let u e X. It holds that

() <u,ui> _ (ui,ui> 4 l /R2 u+(£)(_u_(y>)da:dy

™ [z — yl?

(i) (w,u7) =0,
(i) Jlull® = [t + flu (.

Moreover, if ut # 0 and u~ # 0, these inequalities are strict.

We now collect some estimates for the functions f and my. By the definition of

my, we have

my(t)/t is strictly decreansing, for all ¢ > 0; (3.16)

my(t)t < my(t), for all ¢ > 0; (3.17)
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1 1
§Mb(t) - Zmb(t)t is positive and increasing, for all ¢ > 0; (3.18)

My(t + s) > My(t) + My(s), forall t,s > 0; (3.19)

and this inequality is strict, if £ and s are positive.

By (f1) — (f2), given € > 0 and ¢ > 1, there exists C' = C(e, ¢) > 0 such that
1F(8)] < elt| + C|t]9 " e™ | for all ¢ € R, (3.20)
and by (f3), we have
|F(t)] < elt]? + C|t|%e™, for all ¢ € R. (3.21)
Moreover, by (f3), we can find positive constants C; and Cy such that
F(t) > Ci|t|” — Oy, for all t € R. (3.22)
By (fs), it follows that
|f()] > Clt[P~!, for all t € R, (3.23)

and consequently

C
F(t) > =Z|tP, for all t € R. (3.24)
p
We finish this section with the following consequence of Lemma 3.2.3 and (3.19).

Corollary 3.2.4 Let uw € X. It holds that
(1) Io(u) = Ip(u™) + Ip(u™),
(i) Ij(u)ut > L(ut)u® and Ij(u)u™ > Ij(u")u".

Moreover, if ut # 0 and u~ # 0, these inequalities are strict.
Proof . By Lemma 3.2.3, we have
lull® = fla*|? + 2(u*, u) + [lu |2 = [Jut]* + o]

Thus, by using (3.19), we get the desired inequalities. =
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3.3 Constrained minimization problem

We begin this section by introducing some notations. Given u € X, we define

¢y [0,00) = R by
0u(t) = L(tu) = %Mb(HtuH2) — /QF(tu) dz, (3.25)
and 1, : [0,00) x [0,+00) = R by
Yu(t, s) = L(tu™ + su™), (3.26)
and the vector field ¥, : [0, 00) x [0,00) — R? by
U, (t,s) = (L(tut + su)tut, I(tu® + su”)su™) . (3.27)
Next we will show that the Nehari sets Aj, V" e A, are not empty.

Lemma 3.3.1 Assume that (V1) and (f1)—(f1) are satisfied. Then, given u € X\ {0},
there ezists a unique t = t(u) > 0 such that

Iy(tu) = max Iy(su). (3.28)

As a consequence, the Nehari sets Ny, Nit and N, are not empty.

Proof . Let u € X \ {0}. Since M,(s) = as + bs*/2, we have

as?

2 bs* 4
ou() = “llull? + “-ul — | Flsu)da.
Q

By (3.22), we get

as? bs?

Pu(s) < Sl + 2wl = G el + ol

Hence, since 6 > 4, we obtain
Yu(s) = —o0, as s — oo. (3.29)

On the other hand, given € > 0 and ¢ > 2, by using (3.21) we have

as? bs?
uls) 2 Sl + 2l = el - 057 [ fufre*

If s € [0,1], we have e™"** < ¢™* Then, by Lemma 3.2.1 and Lemma 3.2.2, we can

find C;, Cy > 0 such that

4

a bs
ouls) > s (5 - 501) Jull? + ==l = C(u)s. (3.30)
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Thus, choosing € > 0 such that § —eC; > 0, by using (3.30), we obtain

©u(s) >0, for s >0 small enough. (3.31)

From (3.29) and (3.31), there exists ¢t = ¢t(u) > 0 satisfying (3.28).
Next we will show the uniqueness of t = t(u). Suppose, by contradiction, that

there exists s > ¢ such that Ij(su)su = 0. By the definition of m,, we have
a?|[u + bt [u* = / Fltu)tu da
Q

and

as®||ul|* + bs*||ul|* = / f(su)sudx.
Q

From these, it follows that

[ (L 0 g (L - L) o

Since s > t, this equality implies that

[ (B8] I ey [ (O SO s

But, by using the assumption (f4) and (3.32), we get a contradiction. The case 0 <

s < t is similar and we omit it. Therefore, we obtain that ¢ = s. This completes the

proof. =

The next result shows some geometric properties of functional I, which will be

use to study the Nehari nodal set M,,.

Lemma 3.3.2 Assume that (V1) and (f1) — (f3) are satisfied. Then, the functional I,

satisfies the following geometric conditions:

(1) gwen u e X \ {0}, we have

L(tut +su”) = —oo, as |(t,s)| = oo;
(ii) there exists r > 0 such that

b
I(u) = lull®,  for all ull <.

77



Proof . By using (3.22) and (x + y)? < 2971 (29 4 y?), for all z,y > 0, we obtain

b
I(tu™ + su™) gg”m* + su”||? + ZHtuJr +su”||* — Oy |[tut + su”||§ + Co|Q
<at?[|ut|| + as®|Ju”[|* + 20t Ju || + 2bs* a7 ||* = Cuft]” u Il
+C1s)’[lu” |l + ColQ.

Thus, since 6 > 4 and u # 0, we get (i).

Now, given ¢ > 0, ¢ > 2 and using (3.21), we obtain that
a 2 b 4 2 q . mu?
Ly(w) 2 Sllull” + Jllull® = ellull; =€ i |ul?e™ da.

If ||lul|* < 3, by using the Hélder inequality, Lemma 3.2.1 and Lemma 3.2.2, we can

find C4,C > 0 such that
a b
I(w) = (5 = <Cr) [ull? + 7 lull* = Cllu” (3.33)

Chosing € > 0 such that § —eC} > 0 and since ¢ > 2, for ||u|| small enough, we obtain
that
a
(5 . gol) ul2 — Cjull? > 0. (3.34)

Therefore, from (3.33) and (3.31), there exists 0 < r < 1, such that (ii) holds. m

Remark 3.3.3 The energy functional associated to the problem (P,o), defined by
Io(u) = &|ull®* = [, F(u)da, it has similar geometric properties like to the previous

lemma.

Lemma 3.3.4 Assume that (V1) and (f1) — (f4) are satisfied. Then, given u € X,
with ut # 0 and u™ # 0, there exists a unique pair of positive numbers (t,, s,) such
that t,u™ + s,u™ € My. Moreover, if (t,8) # (tu, su), with t,s > 0, we have

L(tu™ 4+ su™) < L(t,u® + s,u”).
Proof . By Lemma 3.3.2, there exists (., $,) € [0, +00) x [0,00) such that
L(t,ut +s,u”)= max L(tu™ +su”).
[0,400) x[0,00)

Next, we will show that (., s,) € (0,00) x (0,00). Using (ii) of Lemma 3.3.2, we have

L(tu") >0 and [(su”)>0 for ts>0 small enough.
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Thus, by using (i) of Corollary 3.2.4, for t, s > 0 small enough, we obtain
L(tu™) < L(tut) + L(su™) < L(tu™ + su™).

Hence, the pair (t,, s,) € (0,00) X (0,00). In particular, we get that t,u™ +s,u™ € M.
To show the uniqueness of the pair (t,,s,), it is sufficient to consider the case
where u € M, and tut + su™ € M,, with ¢,s > 0, and to prove that implies in

(t,s) = (1,1). In order to prove this claim notice that

s (lul]?) , u*) = / Yt da

and

my(||tu™ + su”||?) (tuT + su”, tuT) = / f(tu)tutda.
0
We will suppose that ¢t > s (the case s > t is similar and we will omit it), then
(tu® + su tut) = 2 (ut ut) + st(utuT) < B u,ut) (3.35)

and

[tu® + su™||? = t3||ut||* + 2ts(ut, u”) + 3 {u||* < 3l (3.36)

Hence, by using Lemma 3.2.3 and that my, is a increasing function, by (3.35) and (3.36),

we obtain that

1 1 tu™
(Pl ) = ot 4+ su” )+ su,ut) :/f(tg‘ ) utdz.
Q

Thus, we get that

<mb<||tu||2> _mb<||u||2>> el > / (ﬂtu*) _f<U*>><u+>4dx. (3.37)

[ [ (tut)®  (ut)?

If t > 1, by (3.16) and Lemma 3.2.3, (3.37) implies that

/Q ({t(ﬁ;? - {fﬁ;) ) (uh)dz < 0,

and so, by (fi1), we obtain a contradiction. Then, we obtain that 0 < s < t < 1.

Arguing similarly by using the equations Ij(tu™ + su™)su™ = 0 and I}(u)u™ = 0, we

obtain that 1 < s <t, which implies t = s = 1 and the proof is complete. m

Remark 3.3.5 Clearly, any nodal solution to (F,;) belongs to M,. Similarly, any
nonnegative solution and nonpositive solution to (I, ;) belongs to Nyt and N, respec-
tively. Now, let u € My. By Lemma 5.3.1, there exist t, s > 0 such that tu™ € N;" and
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su~ € Ny . Now, by Lemma 3.5./, we have I(tut 4+ su™) < I(u). Thus, by Corollary
3.2./, we reach that

2en, S Cyr oy < L(tu™) + L(su™) < L(tu™ + su™) < Iy(u).
Hence, taking the infimum in u € My, we obtain that
2epa < Cnt + Ny < cm,-

In particular, if cpq, 15 achieved for some function in My, then, we get 2cye < b T

Cnm < Cmy, 05 0N (3.13), and cpo = Cnrt O Carp = Cy

Lemma 3.3.6 Assume that (V1) and (f1) — (f1) are satisfied. Let uw € X such that
ut £ 0, u” #0, I[(wut <0 and Ij(u)u” < 0. Then the unique pair (t,s) given in
Lemma 3.3.4 satisfies 0 < t,s < 1.

Proof . Without loss of generality, we can assume 0 < s < ¢t and, by contradiction,
that ¢ > 1. Note that (3.35) and (3.36) remain valid. Thus, since [} (tu™ + su™)tu™ =0

and Ij(u)u™ <0, arguing as in Lemma 3.3.4, we have

[ R e = e + s 4+ su )

m ([[Eu]|*)

Htu||2 HU”2<U,U+>

1
< Somy(ltalP)E(u, ') =

< D ety < [ utas

[ (10 ey o

But, by (f1), we obtain a contradiction. Therefore, we reach ¢ < 1, and the proof is

and so

complete. m
Lemma 3.3.7 Assume that (V1) and (f1) — (f4) are satisfied. Then, there exists mg >
0, independent of b, such that for any u € Ny, and for any v € M, we have

mo < Jlull* and mo < ot [Jo~ %
Proof . We will show the estimates only for v € M,. Suppose, by contradiction, that
(vn) € My and [Jv)]| — 0 as n — oo. By using I}(v,)v;, = 0 and Lemma 3.2.3, we
have

allo P < mo([[on 1) (om, o) = / Foyotde, forall neN.
Q
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Thus, given € > 0 and ¢ > 2, by using (3.20), we get
alur I? < ellot |2 + c/ o 7 d, (3.38)
Q

Now, from the Holder inequality, Lemma 3.2.2 and that since ||v}]] — 0, for n € N

large enough, we obtain that

1
1 2 3
+1g ,7vit|? +12q : QHv;H|27T( UTJ—i{ ) ’ a1
lor|%e™n  de < lo, |*dx e /S dz | < Oy 15,
Q Q Q

By using this inequality and Lemma 3.2.1 in (3.38), we have

allox|* < eCillogI” + Calloy |17, (3.39)

for all n € N large enough. We can choose £ > 0 such that a —eCy > 0. Thus, from

(3.39), we have
a — 801
Cs

contrary to the assumption. Therefore, there exists my > 0 with the desired property.

0< < |lvf |92 for all n € N,

Corollary 3.3.8 Assume that (V1) and (f1) — (fs) are satisfied. Then, there exists
do > 0, independent of b, such that I(u) > dg, for all u € Ny,. In particular

00 < Cnpy 00 < Cppts G0 < Cppeand Gy < Cag

Proof . Let u € N°. Since I}(u)u = 0, from Lemma 3.3.7 and (f3), we have

To{u) = Tyw) — 5w
1 2 1 2 2 1
= SMl) = gl el + 5 [ (Flayu = 0P () da
> M (ul) — gl

2 A TS T DN
a5 g) s (55 )l

1 1 1 1
>al = —= 2>l —= =
_a(2 9) ||| _a(2 e)mo. o,

which is the desired conclusion. m
In the next result, we will obtain an important estimate for the nodal level cy,.
That will be a powerful tool in order to obtain an appropriate bound of the norm of a

minimizing sequence for cp, in M.
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Lemma 3.3.9 Assume that (V1), (fi) — (f5) and (3.9) are satisfied. It holds that

a(f —2)

T (3.40)

Cm, <

Proof . From Theorem B.3.1 in the Appendix, there exists w € M} such that J,(w) =

d; and J{(w) = 0. Consequently, we get
T .
My(([[wl]”) — ]gllep = 2d, (3.41)
and
1 _ L, _
my([|w*){w, w) = Sllwrllf and - my(flwl*)(w, wT) = Sl (3.42)

By Lemma 3.3.4, there exist ¢, s > 0 such that tw™ + sw™ € M. By using (3.23) and
that C, > 1/2, we have

1 1
molol) . %) = ll} = 55-Collw*lp < [ flu)utan
p

Thus, Ij(w)w™ < 0 and I}(w)w™ < 0. Then, we can apply Lemma 3.3.6, in order to
get that 0 < ¢,s < 1. By the definition of ¢y, and (3.24), we get
Cpt?

p
Cps

1 _ _
ey < 5Mp([[tw™ + sw™|[*) = =—[lw|[} - [ I} (3.43)

Now, from (3.42) and by the definition of M, and my, we obtain
1 N Loy At oL Lo a8t s by o
S+ s [) = st |2 4 ats(urt o) + 2 | G s

and

1 _
allw[* = S lwf} — alw?, w”) = bllw|*(w, w*).

These estimates together with (3.43), imply that

at? as? b
cm, < 7\|w+“2 + ats(w™, w”) + THw_HQ + ZHtUﬁ + sw”|*

Cpt? C,sP

— ——|wp = [l |}

t2 at? . b? -

= ZHw*HZ -5 TwT) - 7‘|wH2<w7w+> +ats(w™, w)

2 2 b 2 b

+ Szuw*ug - %W,m = %waw,m + 4t + w1
C,t? C,sP

— ——|lwp = w5,
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This implies that

2 O s2 O sP 3 a _
e, < (—— : )||w+uz+(—— v )nw 12— 2t - )t w)

1 1) 2
) = 2 ol ) + it + s

By Lemma 3.2.3, we have (¢t — s)*(w*,w™) > 0 and so we deduce that

2 O s> C,sP B
My < (Z - %) w12 + (Z - ; ) Jw™ [P+ A(t, s, w,b), (3.44)
where
bt? bs? b
Altys,w,b) 1= == [[w]2w, w*) = Z—wl?(w,w7) + Zltwt + sw "

We claim that A(t, s, w,b) < 0.

Indeed, notice that
Lo R S 3 it 112/t o 22000 A (12— (]2
Sltw™ + sw||" = w7 + 27w |[Fw™, w™) + 77| 7] w |

4
26252 (w7 + 25w Pt w) + )

and
—tflw|*(w, w") = [Jw][*(w, w) = = 2w = (37 + 5*)[Jw[[(w, w)
= (t + st Pl ]* = 2(¢ + %) (w*, w™)?
= (35" + ) Jw [ {w*, w”) — s*flw |
Hence, we obtain

2 ¢4
PG s 0) = (G = ) Bt 265 = 3 - ) o P, o)

+ (5" — 7 — &%) [lw " Pl ||* + 2(8%5% — 7 — ) (wh wT)?

4
+ (2ts® — 3s* — tH) |w |2 {wt, w™) + <% - 82) l|w™||*.

Now, since 0 < t,s < 1, from Lemma 3.2.3, it is easy to see that A(t, s, w,b) < 0.
By using that A(t,s,w,b) <0 and (3.11), we get

& G »
can, < ma (5 = S5 uiy (3.45)

It is simple to check that

€GN o (2p=2a) (11
r?>ag(<4 p =G p—4 4 p)’ (3.46)




1
Note that by using (3.42), we get my(||w|*)||w]|* = §Hw\|§ and consequently, we have

1 1
Zhells = Sl = 5wl + 5 ol

This together with (3.41), implies that

11 1 1 a, o, b o 1
(5 3) voll =gl = S oll = GllP + Gl = >

o 1 ) X X (3.47)
2 4 _ 2 _ 9
<afjwl”+Slwl” = Zlwly = M(llwl) = Zlwlly = 2d.
Thus, by combining (3.45), (3.46) and (3.47), we obtain
2 Qﬁ — Qﬁ 4
ca, < CF7 ( b . ) 2. (3.48)
p —

Therefore, by (3.9) and (3.48), we obtain that (3.40) holds. m

For the next result, consider the set 52 = {u € M, : I(u) < cap,+A} for A > 0.
As a consequence of Lemma 3.3.9, we will prove that:
Lemma 3.3.10 Assume that (V1), (f1) — (f5) and (3.9) are satisfied. For A > 0 small
enough, there exists k = k(\) € (0,1) such that

0 <mo < [Jut|* < JJul* <&,
for any u € gf’\

Proof . From Lemma 3.3.9, we can choose A > 0 such that cy, + A < %. Given

w e St by Lemma 3.3.7 and by using (u*,u~) > 0, we have my < ||u®||? < |lu]|?. On
the other hand, by (f3) and since [}(u)u = 0, we obtain
1

cm, + A > Iy(u) = L(u) — gfé(u)u
= My () — gl > + / (f(u)u — OF (u)) da
1 2 1 2 2
> M () — gl

2T A WS T AN
—a (G- )+ (55 )l

Consequently, it follows that

20
a(d — 2)(

Jul|? < cm, +A) =k <1,

for all u € gf’\, as desired. m

From now on, we will write §§ with A given in Lemma 3.3.10.
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Lemma 3.3.11 Assume that (V1), (fi) — (f5) and (3.9) are satisfied. For any q > 1,
there exists 0, > 0 such that

0<d, < / ||z < / |u|?de,
0 0

for any u € §f’\
Proof . By Lemma 3.3.7 and (f;), for any u € §§’\, we have
0 < amo < alju*|2 < my(ull? / flut)utde < Co [ e da.
Q

Since k < 1, we can choose t' > 1, with kt’ < 1 and ¢ > ¢ such that 1/t' + 1/t = 1.

Now, by using the Hélder inequality, Lemma 3.3.10 and Lemma 3.2.2, we obtain that

1 1
T i uE \? I
/’uj:|67rui|2dx < (/ |ui|tdx) (/ el‘itﬂ(m) d:L’) < C/HUi”t-
Q Q Q

Hence, for all u € §§’\, we get

0<C < |lut. (3.49)

We suppose, by contradiction, that there exists (u,) C S% such that [|uX], — 0 as
n — oo. From Lemma 3.2.1 and Lemma 3.3.10, we obtain that (uf) is bounded in
L*(€)). Consequently, since ¢ < t < 2t, by the interpolation inequality, we find that

|uZ]|; — 0 as n — oo, which is impossible in view of (3.49). =

Lemma 3.3.12 Assume that (V1) and (f1) — (fs) are satisfied. Let (u,) be a sequence
in X such that u, — u weakly in X and B := sup,,cy ||u,||*> < 1. Then, for allv € X,

up to a subsequence, we have

lim [ f(u, undx—/f Judx; (3.50)
n—oo Q
lim f(un)ufdx:/f(u)uidx; (3.51)
lim f U, vdx—/f Judx (3.52)
n—oo
and
lim [ F(uy)de / F(u)dz. (3.53)
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Proof . Since B < 1, by using (f1), the Holder inequality and Lemma 3.2.1, it is easy
to see that the integrals

Up ) Uy ||y, |d, Uy, uf u,|dz, U, )U||u,|dr  and U ) (U, |dz
/Q|f( Yot 1] /Q|f( Yo ) /Q\f( Jolluldz /Qw )t

are uniformly bounded. Thus, by Lemma 3.2.1, the convergences (3.50)-(3.53) follow

from Lemma 2.1 in [25]. =

Lemma 3.3.13 Assume that (f1),(f3) and (fy) are satisfied. Then the function H(t) =
f(t)t —AF(t) satisfies

(i) H(0) =0 and H(t) > 0, for all t # 0;

(ii) H(t) is increasing for t > 0 and decreasing for t < 0.

Proof . It is clear that the hypothesis (f;) and (f3) imply (i). To get (ii), it is enough
to analyze the derivative of H together with the assumptions (f;) and (fy). =
Next we will present a technical lemma that will be crucial in the proof of Theorem

3.1.2.

Lemma 3.3.14 Assume that (V1),(f1), (fs) and (fs) are satisfied. Then, for any u €
My, we have
det J(l,l)\Iju > 0,

where Jo 1y, is the Jacobian matriz of ¥, at the point (1,1).

Proof . Let Wl(t,s) = I[(tu™ + su™)tu™ and W2(¢,s) = Ij(tu’ + su™)su~ the co-
ordinates functions of W, (¢, s), where W, is defined in (3.27). Calculating the partial

derivatives of U! and W2 at the point (1,1) and by using Lemma 3.2.3, we get

(85‘91; (1, 1) =2my (Jull*) {w, w")* + my (Jul*) 2w + (u",u))

/f P+ flut)utde;

P (1,1) =20 (1.1) = 2yl () () + () () > 0
o

5 (1 1) =2mi([lul?) s ™)+ my([[ul ) 2flu” [P + (uhyu))

\ / F(u T f(u)uda.
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Note that we can rewrite

a\lfi / 2 2 +
S (1,1) = 2l w7 — 2l o, o) )
- 2my (), ) — () / Pt + f (et da.
Thus, by using (3.17), we have
ov, ut / 2 + -
S (0, 1) < (), ) = 2 ) ) ()
(3.54)
— my(lul?)( / P )Wty + f(utyutda.
On the other hand, since Ij(u)ut = 0, we have
m(Jlul?) / f(wtyutde. (3.55)
Combining (3.54) and (3.55), we get
8 1
2 01) < 2l ) = ol w) = [

By the item (ii) of Lemma 3.3.13, we have [, H'(u")u"dz > 0. Hence, we deduce that

8\11111 / 2 + - 2 + .\ 0\111
gp (L 1) < =2my(([ull) {w, u™)(u, w7) =my([Jul ) (u, w7) = ——-5(1,1) < 0. (3.56)

Similarly, we can show that

2 1
?i?(L1)<-_ifuun 0. (3.57)

Hence, by (3.56) and (3.57), we have

owl - 9u2 oL U2
det Ji, W = (L 1) 52 (1 1) = (L 1) =4 (1, 1)

oWl A% vl ?
=—"4(1.1 4(1,1) — 41,1
iy - (Fa)

><%?QJO2—(%?@JDQ:Q

Now, we have all the results that will allow us to prove that the nodal level cy,,

as desired. m

is attained in a function with u € M,,.

Lemma 3.3.15 Assume that (V1), (f1) — (fs) and (3.9) are satisfied. Then, there
exists u, € My, such that Iy(up) = cp, -
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Proof . Let (u,) C S% be a sequence such that I(u,) — cpq, as n — co. By Lemma
3.3.10, we have that
iHZ

0<mo < |us|® < |jua)® <k <1, forall n € N.

Then, we can assume, without loss of generality, that the convergences in Lemma 3.3.12
hold for the sequence (u,). Since X is a Hilbert space, there exists u € X such that

uf — u* as n — +oo. By Lemma 3.2.1, up to a subsequence, we have uX — u* in
LY(R) and uX(z) — u(z)* a.e. in R, with ¢ > 1 (see Lemma A.1.8). Now from Lemma
3.3.11, we can deduce that u* # 0 and v~ # 0 in X. Note that by Lemma 3.3.4, there
exist t, s > 0 such that u, := tut + su™ € M,;. We claim that 0 < ¢, s < 1. In order to
prove this, by Lemma 3.3.6, it is sufficient to show that I;(u)u®™ < 0 and I;(u)u~ < 0.
Indeed, by using Lemma 3.2.3, the Fatou’s Lemma and by lower semicontinuity of the

norm, we get

0 < (u,u™) <liminf(u,,u) and 0 < ||Jul®* < liminf ||u, |
n—oo

n—oo n
Thus, by using the properties of liminf, we get

")

o[ o o) < Tmint g, ) + Y inf bl | . o

<liminf (a{u,, w}) + bl|wn||*(un, b)) = Lminf my(||u,||*) (wn, ).

(3.58)
On the other hand, by using I} (u,)u,” = 0 and (3.51), we have

lim (|| ||?) (un, uf) = lim/f(uf{)uf{dxz/f(u*)u*dx. (3.59)
From (3.58) and (3.59) we deduce that Ij(u)u™ < 0, and similarly we can prove
Il(u)u= < 0. Therefore, 0 < ¢,s < 1 and hence the claim is proved. Now, by us-

ing that ||up||* < |Ju/|* and again to lower semicontinuity of the norm, we have
1 1 1 1 1 1
M)~ gl )l = (5 = ) lolP < minta (5 = 5 ) ool (.00

On the other hand, by using Lemma 3.3.13 and Lemma 3.3.12, we have

i/QH(ub) d zl/H(tu+)dx+1/H(su)dx
_4/1{ )z + - /H

/H Yz = tim ~ [ flun)un — 4F(u,) da

n—o0 Q

=7 /Q fu)u —4F (u) dz.

(3.61)
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Thus, by (3.60) and (3.61), we deduce that
1

CMb S ]b(ub) = Ib(ub) — Zlé(ub)ub
1 1 1
= —Mb(HubH2)——mb(|lub|!2)|\ub\|2+—/H(ub) dz
2 4 14 Jq
< fiminfa(E— 1) ][2+1"f1/f() AP (u) d
< lergggl a 5 1 Up, 1YILI_1>10IOI 1 5 Up, )Up, Up, i

IN

L. 1 1 1
i int (5Mb<|runu2> = gl + 3 [ Faen — 4 ) d:v)

1
= liminf (Ib(un) — ZI{)(un)un) = Cpm,-

n—00
Therefore, we get that I,(u) = caq,, which is the desired conclusion. m

Next we will introduce some notations and a technical result that will be apply
in the proof of Theorem 3.1.2.

Let D= (1,3) x (3,2) and g: D — X, given by g(t,s) = tu; + su; , where u,
is given in Lemma 3.3.15. Then, as in Lemma 1.4.1, following basic result:

Lemma 3.3.16 Let P={uec X :u(x) >0 ae. 2 € R} and —P={u e X : u(z) <
0 a.e. x € R}. Then d' = dist(g(D),A) > 0, where A := P U (-P).

3.3.1 Proof of Theorem 3.1.2

From Lemma 3.3.15, it remains to show that w, is a critical point of I,. Suppose,
by contradiction, that If(us) # 0. Thus, by the continuity of I}, there exist 7,6 > 0
with 6 < %/, such that

| I, (v)|| >, for all v € Bss(uy), (3.62)

where d' is given in Lemma 3.3.16. Since u, € My, by using Lemma 3.3.4, the function
(I, 0 g)(t, ), for (t,5) € D, has a strict maximum point (1,1). Thus, we get
= I t,s) < .
ny = max (o g)(t,s) < cm,
Let € > 0 be such that ¢ < min{(cap, — n;)/2,70/8} and we define S = Bs(up). From
this choice, for (¢,s) € 9D, we have

(Iyog)(t,s) <np =cm, —2(cm, —np)/2 < cpmy, — 26.
Hence, we deduce that
g(OD) N I M (Jea, — 28, e, +2¢]) =0 (3.63)
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and, by estimates in (3.62),
, 8e 1
| I;(v)|| > 5 Vo € I, ([em, — 2¢, can, + 2€]) N Sas.

Thus, by the quantitative deformation lemma in |72, Lemma 2.3|, there exists n €

C(]0,1] x X, X)) such that

(i) n(t,u) =u,if t =0o0ru ¢ I, "([cm, — 28, cam, + 2€]) M Sas;
(i) n(1, " N S) c L

(7ii) n(t,-) is a homeomorphism of X, Vt € [0, 1];

() |In(t,u) —ul| <6, Vue X, Vte|0,1];

(v) Ipy(n(-,w)) is non increasing, Vu € X;

(i) L(n(t,u)) < cam,, Yu € L, N Ss, Vi € (0,1].

We claim that
ma)i[b(n<17 g(t7 S))) < CM,,- (364)

(t,s)eD
Indeed, if (¢, s) € D with (¢, s) # (1, 1), by using Lemma 3.3.4 we have I(g(t, s)) < cm,-
Hence
L(n(1,g(t, 5))) < I(n(0, g(t, 5))) = I(g(t, 5)) < camy-
If (t,s) = (1,1) then g(1,1) = u, € I," N S5 and so I,(n(1,¢(1,1))) < ca,, showing
(3.64).
Now, by the definition of ¢y, and (3.64), we get

n(1,9(D)) N M, = 0. (3.65)

Let us consider h : D — X, given by h(t,s) = n(1, g(t,s)). Using (3.63) and the
properties of 7, we get

h(t,s) =g(t,s) in OD. (3.66)

Claim 3.3.17 We claim that h(t,s)* # 0 and h(t,s)~ #0, for all (t,s) € D.
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Indeed, let v € A. By the choice of 6 > 0 and Lemma 3.3.16, we have that
[h(t, s) = vll = lg(t, s) — vl = [|n(t, s) — g(t, s)|
> |lg(t, s) —vl| =9
d d
>d - —=—.
- 2 2
Thus, h(t,s)* # 0 and h(t,s)” # 0 for all (t,s) € D, concluding the statement.

Now, let us consider the vector fields ¥, , F : D — R?, where v, is given in
(3.27) and
F(t,s) = (Iy(h(t, s))h(t, )", I(h(t, ))h(t, s)7).

From (3.66), we have ¥,, = F in 0D. Hence, by the degree theory (see Lemma A.1.11),
we get

deg(¥,,, D, (0,0)) = deg(F, D, (0,0)). (3.67)

But, by using again Lemma 3.3.4, we have that the point (1,1) is a unique point in

D such that ¥, (¢,s) = (0,0). Consequently, again by the degree theory (see Lemma

A.1.15) and Lemma 3.3.14, we can deduce that
deg(¥,,, D, (0,0)) = sgn(Ja1)Vy,) = 1. (3.68)

Then, by (3.67), we get
deg(F, D, (0,0)) = 1.

Thus, by degree theory (see Lemma A.1.13), there exists a point (to, so) € D such that

Ill)(h(t(), So))h(to, 80)+ =0 and Ill)(h(t(), So))h(to, 80)_ =0. (369)

By Claim 3.3.17 we have that h(to, so)™ # 0 and h(tg, so)* # 0. Hence, (3.69) implies

that h(to, so) belongs to n(1, g(D)) N M,, which is a contradiction in view of (3.65),

and the proof is complete.

3.4 Nonpositive solution and nonnegative solution of
(Pu‘b)

First, we define the functionals I, : X — R and I, : X — R by
1
I (u) = 5Mb(||u\|2) — /QF(ui)dx. (3.70)

91



By using the assumptions on f, we have that I, € C'(X,R) and, for any u,v € X,

one has
(LY (v = my([jul]?) os,v) — / £ (u*)o d. (3.71)

Note that considering functions such that u = u* and v = v~, we have
L (u) = Iy(u), I, (v) = Iy(v), (1)) (u) = I(u) and (I,)(v) = L(v),

that is, the functionals bi, and their derivatives, coincide with [, and their derivatives,
in P and —P, respectively, where P is defined in Lemma 3.3.16. If u € X \ {0} is a

critical point of I," then, taking u~ as a test function in (3.71), we deduce that
0= (L") (w)u™ = my(||ul*) (u, u”).

This implies (u,u~) = 0 and from Lemma 3.2.3 we obtain that v~ = 0. Therefore,
nontrivial critical points u of ;" are nonnegative solutions of (7, ,) and, in particular,

u=u" €N, . Analogously, nontrivial critical points u of I, are nonpositive solutions

Of ( )(zf))-
The first result in this section proves that the functionals I,f[ have the mountain

pass geometry.

Lemma 3.4.1 Assume that (V1) and (f1) — (f3) are satisfied. Then, the functionals

];E have the following geometric properties:
(i) there ewist r > 0 and 7 > 0 such that I;"(u) > 7, for |ju| =r;
(ii) there exists e € X, with |le]| > r, I;(e) < 0.

Proof . It is similar to Lemma 3.3.2 and we will omit it. =

Let us consider the sets
[y :={y € C([0,1], X) : v(0) =0 and Iy(v(1)) < 0},

Ty = {7y € C([0,1],X) :7(0) =0 and [(v(1)) <0}
and the respective minimax levels

cpy = inf max [,(y(t)) and ¢ = inf max I;=(y(t)).

y€Ty t€[0,1] yerf te[0,1]
As an application of Lemma 3.3.2, Lemma 3.4.1 and by the Mountain Pass The-

orem, we obtain the following corollary:
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Corollary 3.4.2 Assume that (V1) and (f1) — (f3) are satisfied. There exist sequences
(un), (Uns) C X such that (u,) is a (PS).

sequences for Ibi.

» sequence for Iy and (unx) are (PS):

The next lemma we will show that the minimax levels defined above ¢, and ¢ are
less or equal to the respective Nehari level in (3.6), (3.7) and (3.8) of functional [,. This
will be our main tool to show that the functionals I, and ];E satisfy the Palais-Smale

condition at the levels ¢, and c;}t, respectively.

Lemma 3.4.3 Assume that (V1) and (f1)—(f41) are satisfied. The following inequalties
hold

+ —
c <cn,, ¢ < Cn and ¢, < N

Proof . We will only show the inequality ¢; < Cr (the proof of the other ones are
similar). First, by using Lemma 3.3.1, we get that
— +
eyt = u:qulJrf;éO max Iy(tu™).
Let u = u®™ # 0. By Lemma 3.3.2, we have [,(su™) — —oo0 as s — oco. Thus there
exists Cy+ > 0 large enough such that I(su™) < 0, for all s > C,+. Now we consider
the family of curves 7%, : [0,1] — X, given by v5,(t) = stu™, for s > C,+. For any
u € P\ {0}, the family of curves so defined is such that {75, }s>c . C I'j. Thus, we
have that
¢ = inf max I,"(y(t)) < inf max I, (75, (1))

~very t€[0,1] B {75+}s20u+ t€[0,1]
u=u"#0

< inf max (tu") = ¢
T u=ut#0 t>0 b( ) Nb+

and so we finish the proof of the Lemma. m
Remark 3.4.4 From Remark 5.5.5, Theorem 5.1.2 and Lemma 5./.5, it follows that
Jr —
Gy +Cp <Ot T O < Oy (3.72)

Moreover, if u is a critical point of I7 such that I,/ (u) = ¢, then u € N, is a
nonnegative solution of (F,,). Thus, we have ey < I(u) = I} (u) = ¢ . Therefore,
we deduce that

o = Cpt (3.73)

Similarly, we have that ¢, = cn, and ¢, = Cne
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3.4.1 Proof of Theorem 3.1.3

We will only show the existence of one nonnegative and nonzero solution (the
case of one nonpositive and nonzero solution is similar and we will omit it). From
Corollary 3.4.2, there exists (u,) C X such that I,/ (u,) — ¢ and (I,") (u,) — 0 as

n — +oo. Now, by (f3), we have

Loy
¢y + on(Dlfunll =1y (un) = 5(£) (un)un
1

=5 Mllnl) = Gl el + [ [ = 0P )] do

1 1
> (2 _2 2
>a(3-7) ul

and so, it follows that (u,) is bounded in X. Let C' > 0 such that ||u,|| < C, for all
n € N. Let ng € N such that ||(I5) (u,)||«||unl] < 0n(1)C < A, for all n > ng, where

A > 0 is given in Lemma 3.3.10. Thus, by the estimates above and (3.72), we get

| || < (em, +A) =k < 1, for all n > n.

20
a(f —2)
Without loss of generality, we can assume that ||u,||* < k < 1, for all n € N.
Since X is a Hilbert space, there exists uy € X such that u, — u, in X as n — co. By
Lemma 3.2.1, up to a subsequence, we have u, — u; in LY(R), for all ¢ > 1, u,(z) —
uy(r) a.e. in R as n — oo. Moreover, we can also assume that the convergences in
Lemma 3.3.12 hold for the sequence (u,,).

Now, since My(t) = at + bt?/2 is a increasing function and by the lower semicon-

On the other hand, we have M, is a convex function and so, by using properties of

derivative of convex functions (see Lemma A.1.2), for any n € N, we get

My(J[ual*) (g = un).

| —

1
5 (Mo([[us ") = My(Jlunll)) =
By using (3.51), (3.52) and by inequality above, we have

. (My (e l*) = Mo([[un ) Zmp(lJeen|) (n, s — un)

2
(1Y (1) (g — 1) + / £ )ty — ) dz = 0,(1),

Q
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and so 0, (1) + My(|lun|?) < My(|lus||?*), and consequently, we get
liminf SV |2) < 5 Mo ) (5.75)
lggol 5 b Un =35 || U+ . .

Hence, by (3.74) and (3.75), up to a subsequence, we have M;(||u,||*) — Mp(|lur|?) as
n — oo. Since M, is a increasing function, we deduce that |ju,| — |jus| as n — .
Thus, as X is a Hilbert space, we have u,, — u, strongly in X as n — oo. Therefore,
uy is a critical point of I} and I,"(uy) = ¢ > 0. Consequently, by Remark 3.4.4, we

have u; € NV;F and ¢ = ¢yt and the proof is complete.

3.5 The asymptotic behavior of the nodal solutions

We started this section by proving some facts related to functional J, and the
nodal level d;, which are defined in (3.10) and (3.12). Given 0" > 0, we consider

My (t) = at + V't*/2 and Jy : X — R defined by

1 1 .
o) = 5My(ul®) = oo [ fuPde anddi = int (),

uEMi’,

where
b—f{ue X :ut 40, u£0 (Jy) (wut =0 and (Jy) (w)u” =0}
Note that Jy is the energy functional of the problem

1
my (Jul]?) [(=A)Y?u + V(z)u] = S|ul?u in Q, ~
2 (Pa,b’>
u=0 in R\ Q,
where my (t) = (My)'(t). Note that g(t) = |t|P72t/2 satisfies the assumptions (f;)—(fs).
Thus, the results from the previous sections are also valid for the functional Jj .

First, we will show that the nodal levels associated to (7, ) are strictly increasing

with relation to the constant ¥'.

Lemma 3.5.1 If 0 < by < by, then dy, < d,.

Proof . Since by > by, we have My, (t) > M,, (t), for all t # 0. Thus, for any u € X\ {0},
we get

o () > Ty, (1) (3.76)
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Let u € Mj, such that Jy,(u) = dj, (the existence of u is established in Theorem
B.3.1, in the Appendix, see also Remark B.3.3). By Lemma 3.3.4, there exists ({1, $1) €
(0,00) x (0,00) such that t,u* + s;u™ € Mj . By applying again Lemma 3.3.4 and
(3.76), we get

dZQ = Jp,(u) = Jp, (1 - ut+1- u”) > Jb2(t1u+ + s1u”) > Jy, (tluJr + su”) > dzl,

as desired. =

Remark 3.5.2 Note that by (3.9) and Lemma 3.5.1, for 0 < b < b, we have dj, < d;

and, consequently

(p—2)/2

2 P
1 140d5(22—» p —22-p 4
C, > max [ y(270p )

27| ad—2)(p—4)
Then, by applying Theorem 5.1.2, the problem

{ my ([ul|?) [(=2)2u + V(z)u] = flu) inQ,
u=20 in R\ Q,

has a least energy nodal solution, which we will denote by wy. Similar to Lemma 3.5.1,

we can prove that the nodal level of the functional

Iy (u) = £ My () / F(u)dz

satisfies My, < Cm,,, whenever by < bs.

3.5.1 Proof of Theorem 3.1.4

Let (b,) C [0, 0] be a sequence such that b, — 0% as n — oo. Let u,, € M, be
the respective least energy nodal solution of the problem (F,;,). By Remark 3.5.2, for
all n € N, we have Iy, (us,) = cp,, < cum,-

Claim 3.5.3 The sequence (up,) C X satisfies

0<mo < |Juy I < [Jus, |I” < v < 1. (3.77)

Indeed, the lower estimate is similar to Lemma 3.3.7. To obtain the upper bound,

by considering A > 0 as in Lemma 3.3.10 and by (f3), we have

0—2 1
a( 2 ) >cpm, A > CM,, = Iy, (up,) — 5],§n(ubn)ubn
1 1
2 §Mbn(Huan2) - gmbn(Huanz)Huanz

1 1
>a(5-)
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This implies that |Jup, ||* < k < 1, as desired.

Therefore, since X is a Hilbert space, up to a subsequence, there exists ug € X
such that u,, — up in X, as n — oo. By Lemma 3.2.1, without loss of generality, we
can assume that u; — ug and u; — ug in LY(R), for all ¢ > 1, and u (z) = ug ()
and u, () — ug (z) a.e. in R, as n — oo. By (3.77) and Lemma 3.3.11, we can deduce
that ug # 0 and uy; # 0 in X. Moreover, using (3.77), we can also assume that the
convergences in Lemma 3.3.12 hold for the sequence (uy, ).

We claim that wg is a nodal solution of the problem (7, ). Indeed, given v € X,

we must prove that
alug,v) = / f(up)vde. (3.78)
Q

Since up, is a weak solution of (P,p, ), we have

nmﬂmmmwmw:/jw%wm,ﬂﬂwneN
0

By using (up, ) is bounded, u, — up in X and b, — 0T, we get my, (||ug, ||*) — @ and

(up,, vy = (ug,v) as n — oo. Thus, by (3.52), we have

oo, 0) = T m, (o ) ) = T [ fanJode = [ flaoda,

showing (3.78) and so ug € M, is a nodal solution of (7, ).

Next we will show that (uy,) converge strongly to ug in X. First, we have that
I, (uo)(up, —ug) =0 as n— oo. (3.79)

Indeed, since b, — 07 and w,, — up in X, we have my, (||uol|?){uo, up, — ug) — 0 as

n — oo. From (f), the Holder inequality, Lemma 3.2.1 and Lemma 3.2.2, we get

L

< Col|up, — wollq </ e”q/“gdx> Y S 0asn— 00,
Q

waww%—uwm:

and so we obtain the convergence in (3.79).
Arguing similarly to the previous convergence, and by using (3.77), we can deduce

that
/Q(f(ubn) — f(uo))(up, —up)dz — 0 as n — oo. (3.80)

Thus, since I; (uy,) = 0, by using (3.79), it easy to see that
(1, (uv,,) = Iy, (uo)) (us, —uo) = on(1), (3.81)
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where 0,(1) — 0 as n — oo. Hence, by (3.80) and (3.81), we get

U,()HQ)U,O,U[)TL - U0> = On(l) (382)

Q)U'bn - mbn(

(m, (|| us,,

3, my, (|[uo]|?) — a as m — oo, and the

Now, by using that [[us, — uol| < C, my, (|lup,

Cauchy-Schwartz inequality, we get

’<mbn(Huan2)Ubn - mbn(HUOHQ)anubn — ug) — al|up, — UOHQI =

uo||*) — a)uo, up, — uo)|

[{(m, (s, 1) = @)us,, — (ma,,(

?) = ayuy, — (o, ([[uol|*) — a)uo]| - [|up, — o

< [I(me, ([lus,

< (Im, (lus, %) = alllus, | + [ms, (luol1*) — allluoll) - € =0, (3.83)
as n — o0o. From (3.82) and (3.83), we obtain that
allup, —upl|* =0 as n — oo,

that is, u,, — ug strongly in X.

To finish it remains to show that ug € M is a least energy nodal solution of
(P.0). Let vy € Mg be a least energy nodal solution of (7,). Since vy # 0 and
vy # 0, by Lemma 3.3.4, for each n € N, there exists (¢,,s,) € (0,00) x (0,00) such
that t,vg + s,v5 € M,,.

Claim 3.5.4 There exists ty, so > 0 such that, up to a subsequence, (t,,s,) — (to, So)

as n — +oo.

Indeed, by using I} (t,vf + spvy )tyvg = 0, I (tavg + snvy )snvy = 0 and (fs5),

we get

Cotal I < [ iy it = o, (s + 30 ) + s o) (3.54)
and

Cpshllvg |15 < /Qf(snvo)snvodx =, ([[tavg + spvy ) {Eavd + 5005, snvg ). (3.85)
Summing (3.85) and (3.84), and by the definition of my,,, we have

Cp(tﬁHUJHg + SfLHUO_Hg) <(a+ antnU(T + Snvo_HQ)thUg_ + Snvo_||2

<(a+2buty [log [I* + 2bnsy|lvg 1) 25 llog [I° + 257 ]lwg [1%).
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Thus, since p > 4, we deduce that the sequence ((t,, s,)) is bounded. Let M > 0 such
that 0 < t,,s, < M, for all n € N. Now, up to a subsequence, we have (t,s,) —
(to, So) as n — oo, with ¢y, s9 > 0. On the other hand, given ¢ > 2 and using (3.20),

we have
iy, (et + 500s |2) (bt + s tad) = / Fltwd Yt da
Q
< et 18-+t [ o lre™ P,
(3.86)

Moreover, by Lemma 3.2.3 and by defintion of m,;,,, we have

aty|log II* < m, (ltavg + suvg 1) {tavy + savg s tnv)- (3.87)

Choosing & > 0 such that allvg||? — ¢||vg ||3 > 0, since the integral that involves vg is

positive, (3.86) and (3.87) imply that
(alle | — el B) < G472, forall neN.

This inequality implies that ¢, > 0. Analogously, we can show that sy > 0 and so the
Claim 3.5.1 is established.
From Claim 3.5.4, we have t,v; — tovg and s,v; — sov, strongly in X and so

we obtain that
my, ([[tavg + st |I°) (tnvg + snvg s tavg ) — altovg + sovg , tovg );

My, (||[tavg + sy [|2) (Eavgd + 8005 5 SuUy ) — altovg + sovg s Sovg );
/ft v )t Uoda:—>/ftovo tovg dx

/f@%ﬁwmw»/ﬂw%m%m

Q Q

On the other hand, since I (t,v5 + s,v5 )tavg = 0 and I; (t,v5 + s,vg )snvy = 0, the
convergences above imply that I} (tovg + sovy )tovg = 0 and I} (tovg + sovy )sovy = O.
Thus, since vy € My and by using the uniqueness of the pair given in Lemma 3.3.1,

we deduce that (o, sg) = (1,1). As a consequence, we have

Io(vo) = lim I, (t,vg + snvy ) (3.88)

n—oo

Now, since b, — 0% and uy, — ug strongly in X as n — oo, it is easy to see that

In(ug) = lim I, (up,). (3.89)

n—oo
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Using (3.88) and (3.89), we conclude that

cmy =lo(vo) < Io(uo)

= lim Iy, (up,) = lim cpy,,
n—oo n—oo

< lim Iy, (t,vg + snvg ) = Lo(vo) = cagy-

n—oo

Therefore, g is a least energy nodal solution of the problem (7, ;) and furthermore we

obtain the convergence lim cyq, = caq,, which proves Theorem 3.1.4.
n—00 n
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Chapter 4

Ground state and nodal solutions for
a class of fractional N/s-Laplacian
equations involving exponential

growth

In this chapter, we prove the existence of at least three nontrivial solutions for a

class of problems with fractional N/s-Laplacian operator:

T2 = Af(z,u)  in Q,
u = 0 in R\Q,

(=A)Nysu + V(@)|u

where A > 0, s € (0,1), Q C R is a bonded domain with Lipschitz boundary 99,
N > 2, V(z) is a continuous and nonnegative potential, the nonlinearity f can have a
subcritical and critical exponential growth in the Trudinger-Moser sense and satisfies
appropriate conditions. As N/s > 2, the respective functional space to deal the problem
with variational methods is not a Hilbert space and, because of that, the techniques
applied to estimate the nodal level in the Chapter 1 seem not be applicable to this
problem. By the study of asymptotic behavior of the nodal level, we will overcome
this difficulties. We will show the existence of a least energy nodal solution and by
means of the Mountain Pass Theorem, we get nonpositive and nonnegative ground
state solution. Moreover, we show that the energy of the nodal solution is strictly

larger than twice the ground state level. The results of this chapter are in the final



stages of preparation for submission for publication.

4.1 Introduction and main results

In this chapter we consider the existence and multiplicity of solutions to the

fractional N/s-Laplacian problem

T2 = Mf(z,u)  in €,
u =0 in RY\Q,

(=A)Nysu + V(x)|u

(P)

where ) is a positive parameter, N > 2, s € (0,1), 2 C RY is a bounded domain
with Lipschitz boundary 09, V : @ — R is continuous and nonnegative potential,
f: QxR — R is continuous and C' in the second coordinate, and may have a
subcritical or critical exponential growth in the Trudinger-Moser sense (see Definition
1.1.2), (—A)?V/S is the fractional N/s—Laplacian operator, which, for any ¢ € C5°(RY)

and x € RY, is defined as

AV () = T o(z) = e 2(0(x) — 9(y)

y.
e=0% JRN\B.(z) |z — y[2N

The appropriate space to deal with the problem (7,), by using variational meth-
ods, is the space X defined as

Xe={ue ™ R"):u=0 in RV\Q and [u]sn/s < oo},

which will be endowed with the norm

%
mwz@ﬂm+4vmwwm),

where [u], n/s is the Gagliardo seminorm given by

S

= ([ 0 )

|z —y|>N

It is well-known that X is a reflexive Banach space and is compactly embedded

into L(RY), for all ¢ € [1,00), see Section 4.3 for more details.

We are interested in looking for solutions when the nonlinearity f has the maximal
growth which allows us to treat the problem (/°,) variationally in X. In order to

better understanding of the critical growth on f, let us to recall some well-known facts
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involving the limiting Sobolev embedding. If U C R¥ is a bounded extension domain
(for example, if OU is Lipschitz) and sq¢ < N, then the embedding W*4(U) — L(U) is
continuous and compact, for any v € [1, ¢*], where ¢* = ¢*(s, N) = Nq/(N — sq) is the
fractional critical Sobolev exponent. If gs = N then the embedding W*4(U) — L*(U)
is continuous and compact, for any v € [1,00). However, W*9(U) is not continuously
embedded in L>(U) (see [61] and [32, Theorems 6.7, 6.9 and 7.1|). Then, a natural
question is what is the maximum growth that we can consider on nonlinearity in order
to apply a variational method to find solutions for the problem (/).

In order to answer this question let T/VS N/S(Q) be the space defined as the closure

of C§°(U) with respect to the norm

N/s N/s %

This space has been extensively studied by many authors, in particular, see |16,
17, 62, 69]. For this space, Parini and Ruf [62] proved a fractional Trudinger-Moser
type inequality. Precisely:

Lemma 4.1.1 There exist o, = (s, N,Q) > 0 such that
{(a, N, s,9) 1= sup {/ |2 Cdriue WNHQ) and  [ulangs < 1} < 00,
Q

for all a € [0, o). Moreover, ((a, N, s,2) = oo for a € (o y, 00), where

s

. 2(Nw) (N +k—1)! 1 Mo
Ay =N < . Z K (N + 2k)N/s>

k=0

and wy s the volume of N-dimensional unit ball.

As a consequence of this result, the maximum growth we can assume in order
to apply a variational method in space X is of the exponential type given by Lemma

4.1.1. Motivated by this, we established the following definition:

Definition 4.1.2 Let g : 2 x R — R be a continuous function. We say that g(x,t)

has subcritical exponential growth, in the Trudinger-Moser sense, if

t

N
[t| =00 et N=s

=0 wuniformily in x €€,
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for every v > 0, and has critical exponential growth, in the Trudinger-Moser sense, if
there exist 9 > 0 such that

lg(x,t)| 0, for all ~ > v,

lim —— =

ltl=00 y|t| N =s 00, for all ~ < 7,

uniformly in x € €.

Our main goal is to prove existence and multiplicity of weak solutions to the
problem (/). We show that (/°,) has a nodal solution, a nonnegative and a nonpositive

solutions when the nonlinearity f(z,t) has subcritical or critical exponential growth.

In the following, we will present our hypotheses and main results.

4.2 Assumptions and main results

Throughout this chapter we will consider the following hypotheses on 2, V' and
f:

(V1) © c RY is a bounded domain with Lipschitz boundary 9 and V : Q — R is a

continuous and nonnegative function.

(f1) f(x,t) is continuous and continuously differentiable on the variable ¢, and there
exist Cy, ag > 0 such that

N

|f(x,1)] < Coe®™™ " forall (z,t) € QxR;

= 0 uniformly in z € Q;

(1) tim L0

t—0 |t|%—2t

(f3) there exists 6 > % such that
¢
0 <OF(x,t):= 9/ flz,7)dr < tf(x,t), uniformlyin €, forall |t|#0;
0

N
s

(f1) the function t — f(x,t)/|t|> %t is strictly increasing on (0,00) and strictly de-

creasing on (—oo,0), uniformly = € €;
(f5) there exist p > & and C' > 0 such that
sgn(t)f(z,t) > Clt|P~, for all ¢ € R, uniformly in z € Q.
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Example 4.2.1 Ifp > %, the nonlinearity

N

f(x,t) = CItP~2t + |t|P~2tel ™

satisfies the assumptions (f1) — (fs).

We note that the assumption (f;) allows to treat nonlinearities f(z,t) which may
have subcritical or critical exponential growth. In this way, f can have the maximum
growth that allows us to treat problem (7°,) in the variational way. In this context, we

say that u € X is a weak solution (or simply, solution) to the problem (F,), if

|U(IIJ) — u(y) %—2(11(1‘) — u(y))(v(l*) — U(y))
/RQN ‘I _ y‘QN dzdy + /Q V(w)lu

:)\/f(x,u)vdx, for all ve X.
Q

N_
s 2uvdr

If u is a solution of (P,), with ut # 0 and u~ # 0, we say that u is a nodal
(sing-changing) solution of (7).
Associated to the problem (F,), we have the energy functional I : X — R given
by
L) = - Jul V" - )\/QF(x,u) da. (4.1)
Using the assumptions on f, by standard arguments, we have Iy € C'(X,R) and its

derivative is given by

];\(U)U :/RQN ]u(x) — u(y)

—A /Q flz,u)vde,

52 (u(z) — uly) (v(z) — v(y)) S 2upde
|z — y|?N dxdy+/gv(x)|uy !

(4.2)

for all u,v € X. Thus, solutions of the problem (/) are precisely the critical points

of I, and reciprocally.

In order to present the main results of this work, we define the Nehari sets asso-

ciated to I, and their respective minimums energy level:

e the Nehari manifold and the ground state level

Ny ={ue X\{0}: [(w)u=0} and cp, := ulel}\% I(u); (4.3)
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e the set of nonnegative functions on Nehari manifold

Ny ={ueN,:u =0} and ey = inf I(u); (4.4)

uej\/>\+
e the set of nonpositive functions on Nehari manifold
Ny ={ueNyiu" =0} and ¢ = 161/1\? Iy (u); (4.5)
USN N

e the nodal Nehari set and the nodal level
My={ueX u"#0, v #0, [L(uwu" =0 and L(u)u” =0}  (4.6)

and

M, = ug/l\fb\ I\(u). (4.7)

Since we are looking for nodal solutions, one of our goals will be to show that
cMm, 1s a minimum of /, and the minimum point is a critical point of I). If u € M, is
a solution of (/) such that I(u) = cp, we say that u is a least energy nodal solution

of (P,) (see Remark 4.1.5).
The first result of this chapter is:

Theorem 4.2.2 Suppose that (V1) and (f1) — (fs) are satisfied. Then, there ezists
A* > 0 such that, for any X\ > X*, the problem (P,) possesses a least energy nodal
solution. Ezplicitly, for every X > X*, there exists u € My such that I5(u) = 0 and

]k(a) = CM, -

In the second result we will prove that the problem (/) have one nonnegative and
one nonpositive solution, both nonzero, whose energy is minimal between the solutions
that have a defined signal. Moreover, we also show that the energy of any nodal
solution of () is strictly larger than twice the ground state energy, see Remark 4.4.2
for details (in particular, this implies that cy, = Cnrr OF Cny = CN;—). This property is
so-called energy doubling by Weth [71].

Theorem 4.2.3 Suppose that (V1) and (f1) — (f5) are satisfied and let X > \*, where
N given in Theorem 1.2.2. Then, there exist uy € Ny, with I(uy) = Cnrt s and
u_ € Ny, with Iy(u_-) = Cno» solutions of (P\). Moreover, we have

cm, = () > Cnt F Oy > 2¢pn, (4.8)

where 4 is the least energy nodal solution obtained in Theorem 1.2.2.
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In order to understand the main difficulties in studying the existence of nodal
solutions to the problem (7,), consider the Dirichlet value problem involving the ¢ —

Laplacian operator:

—Aju+V(@)|uu = Af(z,u) in Q,

(4.9)
u = 0 on 0.
The energy functional J : Wy %(Q) — R associated to (4.9) is given by

1

J(u) = - /(|Vu|q + V(x)|u|?) dx — )\/ F(z,u)dx,
qJo Q

which satisfies the following decompositions
Jw)=Ju")+J(u ) and J(wu* = J(uF)uF. (4.10)

Due to the Gagliardo seminorm of u € X, the functional I, in (4.1) does not
possess theses the same decompositions as (41.10). This fact implies that the standard
methods to find nodal solutions for the local problem (4.9) can not be applicable to

the problem (P,). In fact, when u™ # 0 and u~ # 0, the functional I, satisfies
Iy(u) > Ly(u™) + Li(u),

Lwut > LwHut and L(uw)u > L(u )u,

see Lemma 4.3.7. In the problems involving a nonlocal operators many additional
difficulties arise due to the fact that the decomposition (4.10) does not occur. Note

that 5= C Ny and My C N,. If u € M,, then
ut ¢ Ny and uT ¢ Ny (4.11)

see Corollary 4.3.7 and Remark 4.4.2. As we observer in the other chapters, this
a big difference between nonlocal and local problems. Moreover, another well-known
difficulty for the class of the problems (/7)) is the loss of compactness due to the critical
growth on the nonlinearity f.

We ended this section by mentioning that for problems involving fractional equa-
tions, critical nonlinearities and domains € of RY, with N > 2s, there is a large

literature and we refer to [12, 65, 66, 67, 68], and to the references therein.
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The outline of this chapter is as follows: Section 4.3 contains results about the
space X and we make some important observations regarding the behavior of the norm
in this space (in especial, see Lemma 1.3.6). Section 4.1 is dedicated to the study of
the nodal set and the nodal level, the main goal is to prove that, for A larger enough,
the nodal level is attained by a sign-changing weak solution of (7). In Section 4.5 is

devoted to prove the existence of solutions that have signal defined.

4.3 Preliminaries

We will start this section by presenting some basic facts about the fractional
Sobolev space WS’N/S(Q), endowed with a suitable norm, this is a adequate space to
deal with the problem (/). For a more complete discussion of this space, we cite

mainly [16, 17, 32, 62].

Let U be an open subset of RY. Given s € (0,1) and ¢ € [1,00), the fractional
Sobolev space W*4(U) is defined by

W4(U) = {u € LP(U) : [ulwsawy < C>C>}7

where [u]ysqy is the Gagliardo seminorm of u given by

The space W*4(U) endowed with the norm

S

1
el = (Il + (e )

is a Banach space. For u € W*4(R"), we denote by [u]s, the Gagliardo seminorm and
the correspondent norm by [Jullsq = ([|ull? 4 [4]2,) Y4 Let U be a bounded domain.
We consider the spaces We9(U) and W3(U) as the completions of the space C5°(U)

with the norms

o 1elmay = 101 Luen + [P may and o> 0l12, = oll20 + [P12,

respectively. Since Cg°(U) C W*4(U) and || - [|wsa@) < || - ||s,¢ We have the following

continuous embeddings
WU — WU — W(U). (4.12)
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By [16, Remark 2.5|, the space WOS"](U) can be equivalently defined by completion
of C§°(U) with respect to the Gagliardo seminorm [-];, and so the natural norm of
u € W(U) is given by

el = s
If QU is Lipschitz, by [17, Proposition B.1], the space WS’Q(U) can be described

as

/Wvds7q(U) = {u e L{RY):u=0in RY\U and [u]s.q < OO} ’

Moreover, in the case that sq # 1, we have
Wot(U) = W (U),

see [16, Proposition B.1]. In the above condition, the norm in W (U) also is given by
the Gagliardo seminorm. The next result shows that W;?(U) is a reflexive space.

Lemma 4.3.1 Let U C RY a bounded domain with Lipschitz boundary OU. Let ¢ > 1,
s € (0,1) such that sq # 1 . Then W5(U) is uniformly convex and, hence, a reflexive

Banach space.

Proof . Let us consider T : Wy (U) — L%(R?M), by T(u) = , the linear transforma-
tion given by

u(z,y) = M (z,y) € R*N | with x # y.

o —y|at
We have 1
[u(z) — u(y)|? a
il = ([ 4O 0y)" = g

and so T is a linear isometric embedding. Therefore, the uniform convexity and, hence
the reflexivity, W;"4(U) follow of the uniform convexity of LI(R*Y) (see Lemma A.1.9).

Next, we will present a Brézis-Lieb lemma in W(U).

Lemma 4.3.2 Let U C RY a bounded domain with Lipschitz boundary OU. Let q¢ > 1,
s € (0,1) such that sq # 1 . Let (uy,) is a bounded sequence in W5 *(U) such that
up(x) = u(x) a.e in U. Then

7§&Owﬂkwwfﬁwn_mmﬂwo:HM%WWY
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Proof . Let u,, = T'(u,) and u = T'(u), where T was defined in Lemma 4.3.1. Now,
since T is isometric and @, (z,y) — u(z,y) a.e. in R*"_ we can apply the Brézis-Lieb
lemma for the L9(R*Y) space. Thus we finished the proof. =

From now on, we will consider the space W, N2 (), where Q satisfies the assump-
tions in (V1).
Lemma 4.3.3 The embedding W™'*(Q) < LI(RY) is continuous and compact, for
all g € [1,00).
Proof . By (1.12) and using [32, Theorem 7.1], we have that the embedding W/ (Q) <
L4(Q) is compact for any ¢ € [1, N/s]. Now, let ¢ > N/s. We can choose s’ € (0, s)

such that
N(N/s)
N — s'(N/s)

Since s’ < s, by [32, Proposition 2.1], we have the continuous embedding

> q. (4.13)

W5 (Q) — W N5(Q). (4.14)

Now, since s'(N/s) < N, by [32, Corollary 7.2|, we obtain the following compact

embedding
N(N/s)
N —s'(N/s)

Thus, by (4.13), (4.14) and (1.12), we deduce that W™/*(Q) < L9() is compact and

WNE(Q) < LY(Q), forany 1<wv<

the proof is complete. m

As a consequence of Lemma 4.1.1, we obtain the following corollary:

Corollary 4.3.4 Let u € WOS’N/S(Q). Then, for every o > 0, we have

N
N —:
/ea“ “dx < oo.
Q
N

Proof . By density, let us choose v € C5°(€2) such that [u — v]s /s < 3 (g—a)T_ Let

w = u —v. Using the triangle inequality and that (a + 0)? < 2971 (a? + b7), for all
a,b > 0, by the convexity, we have

NN NN
eolul M5 < gallol+w) N5

N ! Nl\le N]\ls
< 27 (o M | V)

N N 1 N
2N75a|v|N75 + _€2N75a|w|N75

g
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N

N
Since v € C3°(2), then 2" 2" ¢ L1(Q). Moreover, using Lemma 4.1.1 and the

estimate in the norm of w, we get

N N N - N
2N saw|N=s _ 2N=s afw] "y 7 (ol /[wls vys) N =2

N

S e%('wV[w]s,N/s)Nis c LI(Q)

This concludes the proof. m

We denote by X the space W™/*(Q) endowed with the norm

Jull := ([u]iffv‘?s T / V<x>\urN/de);. (4.15)

Clearly, by (V1) and again by |16, Remark 2.5], |- || is a norm equivalent to norm [-|5 n/s
and [uls n/s < ||| for every u € X. In particular, by Lemma 4.3.1, X is a reflexive
Banach space. Moreover, the result of Lemma 4.3.2 is true for X and, by Lemma 41.3.3,

we obtain the following result:

Lemma 4.3.5 The embedding X — LY(RY) is continuous and compact, for all q €
[1,00).

Using Lemma 4.3.5, Corollary 4.3.4 and by the Hoélder inequality, given o« > 0

and u € X, the following integral is finite
N
/ |7V Az < oo (4.16)
Q
Let us consider the operator (—A)y, : WoNE Q) — (WN*(Q)) defined by

(=AY, 0) = / Ju(x) — uly)| =~ (u(x) —u(y)(v(z) - W) 4y, (4.17)

R2N ’1’ - ?JPN

for u,v € W (Q).

This operator is weak-to-weak continuous and the function

N/s

u = ((—A)ysu, u) = [U]S,N/s

is convex and C, see [21, 26| for more details.
By Lemma 4.1.1, Corollary 4.3.4 and by Lemma 4.3.5, we can see that the func-
tional Iy : X — R, in (4.1), is well-defined and is C'. Moreover, according to the

notation in (4.17), its derivative can be write by

L(w)v = ((=A)§/5u,v) + /Q V(z)|u S 2ude — )\/Qf(x,u)v dx (4.18)
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for every u,v € X. Hence, weak solutions of the problem (/) are the critical point of
I and reciprocally.
As we said in the Introduction, many difficulties arise due to the fact that, in

general, I, does not satisfy (4.10). In fact, this difficulty arises because if u* # 0, then
[l ¥ # [t (1M 4 ||V

Next, inspired by [21, 29, 45, 46] we will present a lemma that deal more precise
with the behavior of norm w,u" and v~ in X and, consequently, we will obtain some
estimates for the functional I. In fact, considering the methods applied, this lemma

is one of the main tools to obtain nodal solution for the problem (7).

Lemma 4.3.6 Letu € X and Q. ={x € Q:u(x) >0} and Q_={recQ:u(x) <
0}. Then

() (=A)x/5u,ut) = AT(u) + BT (u), (=A)yu,u™) = A™(u) + B~ (u) and

(=A)5u,u) = Alu) + B(u),

where
N lut(z) — ut(y) |+ - __/ lu™(z) —u= (y)|N/*
AT (u) = /QCXQC Py dady, A~ (u) == S PR——EIy dzdy,
+ - Ny, + o+
QyxQ_ [z =yl
and

A(u) = A*(u) + A (v) and B(u) = Bt(u) + B~ (u).
(i) if o, B € (0,00), we have
0< At (au® + Bu”) = VA (uh) and 0< A (aut + fu”) = VA (u7).
(iii) if 0 < B < a, then
0 < BT (aut + fu™) < o™*BF(u),0 < B~ (au™ + fu”) < o™*B~(u),

0< /BN/SB+(U) < B (o™ + fu”) and 0< 5N/sB’(u) < B (au™ + Bu7).

Similar inequalities holds if 0 < a < 3.
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(iv) ((—A)‘;’V/su,ui) = <(—A)fv/sui,ui) + 2C%(u), with C*(u) > 0, where

- [ E Ol e

|z —y|2N

N

- dzdy

and

C(u) = /Q Q (@) —u @) N @) [ —w @l

|z —y?¥
Moreover, if u* # 0, then C*(u) > 0.

(v) 0 < {(=A)30u™u™) < (A)yuu™) < ((=A)yu,u). In particular, |u*|| <
|ul|| for all w € X, where || - || is defined in (1.15). Moreover, if u* # 0, this

mequalities are strict.

Proof . To show (i), we define

Ju) — u(y)] ¥~ (u(z) - uly)) Ulat,y) = Jut (@) — uly)|* 2 (ut (2) — u(y))

U(I,y) = |.’L’—y|2N )

w(z) — ut (y)| 5 2(u(z) — ut
(2) (?J|3C|y|§N( ) (y))7 U

|t (@) —ut )] F Pt (@) — ut(y)

Ulw,y*) = |

(", ")

and, in an analogous way, we consider U(z~,y),U(x,y”),U(z",y™),U(z",y~) and
U(z~,y"). Considering this notation and (1.17), we can write

(= Aot ) = / Uz, y)(ut () — 't (y))dzdy.

R2N

Since R?Y = (Q° x Q) U (Q° x Q) U (Q_ x Q) U (Q_ x Q_), we have

U)o (@) =t )dady +2 [ U)o (o) = () dady

() = |

Q° xQ°
+ / Uz, y)(ut (z) — u* (y))dady.
Q_xQ_

Thus
(N / U, y)(u* () — ut(y))dzdy

Q° xQ°¢

(4.19)
2 / UGyt (@)~ ()dody

We observe that, if (z,y) € Q¢ x Q¢ then u(x) = u*(z) and u(y) = u™(y). Thus

U(ay) = Ul ) = P L) — e )

and so, by (4.19),

(~A)igu) =A@ +2 [ Ulep) @) =t @)dady. (420)
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Now, since Q¢ x Q_ = (Q°x Q_)U(Qy x Q_) and U(z,y)|a+xa- = U(zT,y7), we get
/ Uz, y)(ut (z) — u* (y))dady = / U, y)(ut (@) — u (y))dady
Q¢ xQ_ QexQ_
+ / Uz, y)(ut (@) — u* (y))dady
QypxQ_
= [ UEh @) - et )dady
Q4 xQ_

B (@) — w () [P ot ) — ot )
= /QQ v 9PN dedy.

Hence, by (41.20), we deduce that
((=A)xysu,u™) = AT (u) + BT (u).

Similarly, we deduce that ((—A)} u,u™) = A™(u) + B~ (u), showing the item (i).
The proof of (ii) follows from the expressions of A™(u) and A~ (u).
Let 0 < 8 < a. Note that 0 < —Bu~(y) < —au~(y), for all y € RY. Hence, if

(x,y) € Q4 x Q_, we have

ot (2) — Bu(y)| = ot (x) _ ot (2) — Bu(y)| >~ out (x) — aut(y))
|z —y|*N |z —y|*N

wyslut (@) = Su(y)| =~

0<2

=2

_ N_
el (@) = )
- =y

and so, integrating over {2, x {2_, we obtain

0 < Bt (au™ + fu”) < a™*BF (u).
Analogously, if 0 < 8 < a and (z,y) € Qy x Q_,
PN (=Bu ()

|ou™ (z) — Bu”(y) S (Bu (@) — Bu(y))

ou™(x) = Bu”(y)

0<2 =2

o =y o — g2V
L plout(@) —au <gT> fl|<5vu— (z) — au”(y))
r—Yy
sl @) —u @) (@) — um(y)
|z —yPN '

Again, integrating over 2, x 2_, we deduce that

0 < B~ (au® + fu”) < a™*B~(u).
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In a similar way we can obtain the other inequalities of the item (iii), which completes
the proof of (iii).
To show (iv), we observe that, since u = 0 in Q¢ = RY \ , the integration in

(4.17) is calculated only on the set Q = R*V\ (Q° x Q¢). However, Q can be written as

Q = (2 x Q) U (Q x Q) U (Q° x Q).
By using this decomposition and (4.17), we get

Ul )t (z) — u* (y))dady + / Ula) (" () = () dody

(-a)at) = [

QxQe

+ / U, y)(ut(z) — u* (y))dady.
QexQ

Now, since
Ox Q=2 xQ)VU(Q_-xQ% and Q°xQ=(Q°xQ)U(QxQ_)

we can deduce that

(-8t = [

U™ y)(u* (2))dady + / Uz, y)(ut(z) — u* (y))dady
Q4 xQ°

QxQ

[ Ul ey
: (4.21)

Reasoning in a similar way, one can see that

(-8t at) = [

U, y*)(ut (2)dady + / U, y*)(ut (z) - vt (y))dady
Q4 xQe

e (4.22)

+ / U,y (—ut () dady.
QexQy

A straightforward computation shows that

AXQCU<x+,y><u+<$>>dxdy— / Uty (@)dedy  (4.23)

Q+ x Qe

and

| vl ey = [ Ut @)y (@20

Using (4.21), (1.22), (1.23) and (41.24), we find

(= A)ysu u™) =((=A)ju’,u’)

(4.25)
+/ (U(ac7 y) — U(x+,y+)) (u(2) — u' (y))dady.
QAxQ
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Since @ x Q= (2L x Q) U (Qy x Q) U(Q- x Q) U (2= x Q_), by expression of U
and by the Fubini’'s Theorem, we deduce that

| W) = U6 ) (@) = () dady
2 [ (V) - UGt y) () — () dody.
Q+><Q_
Again by expression of U and since ut(y) = 0 for all y € Q_, we deduce that
| W) - U6t y) (@) () dady -

0 (@) = ()| @) — o )]
2/Q+XQ_ = — g2~ dzdy. (4.26)

Then, by (1.25) and (4.26), we have

(=25t u™) = (=A)jy5u", u') + 207 (u).
Similarly, we can show that

(=8)Nysuu™) = ((=A)Nysu™,u™) +2C7 (u),

and (iv) is proved.
The proof of (v) follows from (iv). m

Using Lemma 4.3.6, we obtain the following corollary:
Corollary 4.3.7 Let u € X. Then, the following inequalities are satisfied
(1) L") + I(u”) < Ix(w),
(1) LuwhHut < L(w)ut and (v )u™ < L(uw)u.

Moreover, if u™ # 0, the above inequalities are strict.

We end this section with some estimates that follow of the assumptions about f.

By (f1) — (f2), given € > 0 and ¢ > 1, there exists a constant C' = C(g,q) > 0 such

that
N
1f(z,t)] < elt]* "+ CltT e ™ forall (z,t) € Q xR, (4.27)
and so, by (fs), we have
N
Flx,t) < elt|~ + CJt]%e* ™7 forall (2,t) € Q xR, (4.28)
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By (f3), we can find positive constants C; and Cy such that
F(x,t) > C1Jt|” — Cy, forall (z,t) € QxR. (4.29)
From (f5), we have
flz,t)t > C|t]P, forall (z,t) € QxR. (4.30)

Moreover, by (fy), we have

N
(— — 1) flz,t)t — f'(z,t)t* <0, forall € Q with [t|#0, (4.31)
S

where, for simplicity, f’(x,t) denotes 0, f(x,t).

4.4 Constrained minimization problem

In this section, we will study the Nehari sets associated to the functional 1.
We will obtain estimates for each energy level and for the functions in these sets.
Moreover, taking into account that the nonlinearity f may have a critical exponential
growth, another goal in this section is to obtain estimates in the nodal level of I and,
this way, we may overcome the difficulties that appears from this behavior. This will

be done by study of asymptotic properties of the nodal level c, .
First, let us introduce some notations. We define ¢;\ : [0,00) — R, for u € X\ {0},
by
A1) = L(tu) = %HtuHN/s - )\/QF(x,tu) da. (4.32)
Let u € X, with u® # 0, we define 1) : [0,00) x [0,00) — R, given by
Vo (a, B) = In(au™ + pu™). (4.33)

We also define the vector field ¥ : [0, 00) x [0, 00) — R? by

U (e, B) i= (Ii(aut + Bu)au™, Ii(au™ + Bu™)Bu™). (4.34)

The next lemma shows that the Nehari sets Ny, Ny~ and N, are not empty.

Lemma 4.4.1 Assume that (V1) and (f1)—(f1) are satisfied. Then, given u € X\ {0},
there exists a unique t = t(u) > 0 such that

I\(tu) = max I\(su). (4.35)
As a consequence, the Nehari sets Ny, Ny and N are not empty.

117



Proof . Let u € X \ {0}. By (4.29), we have
s
u(t) < Il = AC |lullg + AC2|€.

Since 6 > %, we have

() — —o0 as t — 0. (4.36)

On the other hand, given € > 0 and ¢ > %, by (4.28), we have

A S N N/s N N/s q q oa0|tu|NL—S
A0 2 S e et full s - ace [ Juprers ™ g,
Q

Using Lemma 4.3.5, we get

N
O (t) > (i - )\C’ls> ¢y ul|[ Ve — )\th/ |u|Zeco ™ d g,
N o
Now, given 0 <t < 1 and by (4.16), we deduce that
NL NL
0< / |2t ™ dg < / |ule "™ dg < 0.
Q Q
Hence, we obtain that

A S N N/S q
> — ts _ .

Choosing € > 0 such that 5 — ACie > 0, since ¢ > %, the previous estimates implies

that

@) (t) > 0 for t > 0 small enough. (4.37)

From (4.36) and (4.37), there exists t = ¢(u) > 0 satisfying (1.35).
It remains now to show the uniqueness of ¢ > 0 with this property. Suppose, by

contradiction, that s > t is such that I} (su)su = 0. Thus, we have
|||V = /\/ fz, tu)tudr  and ||sul|M* = )\/ f(z, su)sudx.
Q Q

Then, we obtain that

/ ( f(z, tu) f(x, su) ) lu[N*dz = D, + D_ =0 (4.38)
Q

tu|s ~2tu |suls 2su

_ f(x,tui) f('ra Sui> +|N/s
L= Sy 7 |u™ | de.
o \ [tut|s Ptut  |sut|s Psut
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Now, since u € X \ {0}, we have u™ # 0 or u= # 0. If u~ # 0, since s > t, we have

that su™ < tu~ < 0 a.e in Q_. Hence, by (f4), we deduce

- _
D_ :/ flotu”) S suT) ) o visde < o)
o \|tu=|s2tu=  |su~|5 "Zsu~

Similarly, if u* # 0, we can deduce that D, < 0. But, in view of (4.38), the previous

estimates leads to a contradiction. This completes the proof. m

Remark 4.4.2 Note that, if u*™ # 0, by Lemma /./.1, there exist t,s > 0 such that
tu™ € Ny and su= € Ny . Now, using Corollary /.3.7, we deduce

0=L(tuN)tu™ < L(tu™ +su)tu™ and 0= IL(su”)su~ < I)(tu™ + su~)su~

and so v = tut 4+ su” & M. Thus, the previous lemma cannot be used to show that

My # O (but this reasoning can be applied for the cases of local operators, as in (41.9)).

The next lemma deals with some geometric properties of the functional I, and,
in particular, this result will be applied for show that the Nehari nodal set M is no
empty.

Lemma 4.4.3 Assume that (V1) and (f1) — (f3) are satisfied. Then, the functional I,

satisfies the following geometric conditions:

(1) gwen u e X \ {0}, we have

Yo, B) = L(au™ + Bu™) = —o00, as |(a,B)| = oo;
(ii) there exist r > 0 and C' > 0 such that
Lu(u) > Cllu||N5,  for all |ul| < r.
Proof . By (1.29), we get
L(au®™ + fu™) < %Hmﬁ + Bu” |V = ACh|lau™ + Bu||§ + ACo| Q.

Now, using the triangle inequality and that (a4 0)? < 2971 (a?+ b9), for all a,b > 0, we

have

_ S N _ S S S — S
Li(ou® + Bu™) < 2= Mo Mo flut IV 151 u M)

= AC1(|of"[[u Iy + [B°llw~[lp) + AC:|Q.
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Since 6 > %, the above inequality implies that
L(au™ +pu™) = —oo, as |(a,8)] = oo, (4.39)

showing (i).
Given € > 0 and ¢ > %, by (1.28), we have

N
Bu) 2 3l = AeljalYs = 3C [ fufrees ™ a.
Q

By Lemma 4.3.3, we have

s N/s 4 colul 53
I(u) > (ﬁ - )\Clg) lul ™5 = 2O [ Julte dz.
Q

We can choose ¢ > 0 such that C5 = § — AC1e > 0. Now, if ||u|]NLf < 2= then, by

dag?

the Holder inequality and by Lemma 4.1.1, we obtain that

N 3 N 3

AV 2 N 2

/ |u|qeao|UIN7s dz < (/ |u|2qu> (/ e200lul ¥ =2 dl’)
Q Q Q

s i)™ 1 ) 2
= JJullg, (/Q o200 [ull ¥ (ful/Jul] sdx) (4.40)

1
Qx J\_]S 2
<l ([ 500 a) < ol

Hence, for Hu||NLf < 4=, by (14.10), we have
Iy(u) = Collul|™* = Culful]5,.
Then, using again Lemma 4.3.3, we find

Li(u) > Collul|™* — Cs||ul|?, for all |juf| ¥ < —

. 4.41
o (4.41)

Thus, since q > %, we can choosing 0 < r < 4‘?7*0 small enough, such that
02 N
ul|! < —||u||V*, forall |ul <.
lll” < S ™ Jull <
Hence, by (4.41) and the inequality above we get

Li(u) > Cllu||Ms, forall |ul| <r,

proving (ii). =

As an application of Lemma 4.4.3, we will show that M, # 0. Moreover, we will

obtain an important geometric property of 1), with u € M.
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Lemma 4.4.4 Assume that (V1) and (f1) — (f1) are satisfied. Let u € X with u* # 0.
Then, there exists a unique pair of positive number (ay,, B,) such that a,ut + Bu~ €
M. Moreover, if (o, B) # (aw, Bu), with a, B > 0, then

Ly(aut + Bu™) < Ly(auut + Buu™).
Proof . By Lemma 4.4.3, there exists (ay, 3.) € [0,00) x [0,00) such that

L(out +Bu”) = max ) (a, B).
A( Buu”) [07OO)X[O7OO)?/J( B3)

Next we will show that (., 3,) € (0,00) x (0,00). Since u* # 0, using (ii) of Lemma

4.4.3, we have
L(au™) >0 and I,(Bu™) >0, for «,s>0 small enough.
Thus, for «, f > 0 small enough and by Corollary 4.3.7, we get
Yo (,0) = Ly(au™) < Iy(au™) + I(Bu™) < Ix(au™ + fu™) = ) (a, B).

Thus, we deduce that oy, 3, > 0. Hence 9,9} (v, Bu) = 0 and 959 (v, B,) = 0. In
particular, we have o, u™ + S, u~ € M,.

We will show that (cv,, 8,) is the unique in (0, 00) x (0, 00) with this property. It
is sufficient to consider the case where u € M, and au™ + fu~ € M,, with o, 8 > 0,

and to prove that it implies in (o, 8) = (1,1). As I} (u)u® = 0, I} (cu™ + fu~)aut = 0

and I{(au™ 4+ fu™)pfu” = 0, we can write
(-8 + [ Voo = [ flat)utde, (1.42)
0 Q

((—A)fv/s(au++ﬁu_),au+>+0zN/5/V(z)|u+|N/de:/f(x,ozuﬂonﬁdx (4.43)
Q

Q
and
((—A)f\,/s(cmfr + pu”), fu”) —I—BN/S/ V(x)|u~|Mde = / f(z, fu™)pu"dz. (4.44)
Q Q

Without loss of generality, we can assume that 0 < § < a. Now, using (i), (ii) and

(iii) of Lemma 4.3.6, we get
(=A)ays(au™ + fu™), au™) = AT (au™ + fu”) + B¥ (au™ + fu”)
= o™ AT (u) + BT (au™ + pu”)
(4.45)
< oAt (u) + o™ B (u)

= oM {(=A)3eu, u").
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Thus, by (4.43), (4.45) and (4.42), we get
/ fl@ aut)outde < oNH(= D)5 guut) + ozN/s/ V(x)|ut |V de
0 Q
:aN/s/f(x7u+)u+dx.
Q
Then, we obtain that
[z, ou”) fx, u) s
/ iy — ) lu|Medx < 0.
o\ |Jaut|s Paut  |ut|s Put

Hence, by (f1), we have o < 1 and so 0 < f# < a < 1. Using again (i), (ii) and (iii)

of Lemma 4.3.6, we have

(=) (aut + Bu™), Bu) = BY*((=A) 3 0u,u). (4.46)

Thus, by (1.441), (4.16) and (4.12), we deduce that

/ ( f(x,ﬁu_) . f(x,u)_) \u*|N/Sd:c20

BT 2u a2

Hence, again by (f;), we obtain that § > 1 and so @« = § = 1. This concludes the

proof of the lemma. m

Remark 4.4.5 Note that, any nodal solution to (P,) belongs to M. Similarly, any

nonnegative solution and nonpositive solution to (P, ;) belongs to Ny and Ny, respec-

tively. Let uw € My. By Lemma /.J.1, there exist o, 8 > 0 such that au™ € Ny and
pu~ € Ny. Now, using Lemma /././, we have I\(aut + pu~) < I\(u). Thus, by
definition of the levels in Nehari sets and by using Corollary /.3.7, we infer that

2en, S oy F ey < L(au®) + I(Bu™) < Ly(tut + su™) < Iy(u).
Hence, taking the infimum in u € My, we obtain that
2cn, < Cnf + % < Cmy -

In particular, if cam, is achieved for some function in My, then, we get cpq, > Crp T

Cyo = 20n,, as in (4.8), and, in this case, cy, = vt and Cyy = Cye

Lemma 4.4.6 Assume that (V1) and (f1) — (fs4) are satisfied. Let u € X such that
ut # 0 and I} (u)u® < 0. Then, the unique pair (o, B) given in Lemma 4.1.4 satisfies
0<a,f< 1.
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Proof . We can suppose, without loss of generality, that 0 < 8 < a. Now, we have

(-8t + [

V(x)\uﬂN/deg/f(:v,u*)u*dx
0 Q

and
(=A)slou® + Bu), aut) + a7 /Q Viz)|ut )N de = [)f(x,au*)au*dx.
Using (i), (ii) and (iii) of Lemma 4.3.6, as in (1.45), we get
/Qf(x,aqu)oqu’dx < ozN/s<(—A)fV/Su,u+> + OzN/S/ V(x)|ut |V de

Q
:aN/S/f(ar,u+)u+dx.
Q

Thus, we have

/ ( flaont) __fla) )W,N/SMO
Q s

laut|s 2aut  |ut]s 2ut

Thus, by (f4), we obtain that o < 1. Hence, we have 0 < 5, < 1. This completes the

proof. m

Lemma 4.4.7 Assume that (V1) and (f1) are satisfied. There exists my > 0 such that
(i) |Jul|M* > my for all u € Ny.

(ii) ||u®||N* > my for all u € M.

Proof . We will show only the item (ii). Suppose, by contradiction, that (u,) is a

sequence in M such that |Ju}||V/* — 0 as n — oo. Now I} (u,)u; = 0 and ut # 0 for

all n € N, by (v) of Lemma 4.3.6, and so

0 < % < (-8t} + [

Vi ¥de = A [ flout)ulds,
Q Q

for all n € N. Since [Ju;;||[V/* — 0 as n — oo, given ¢ > &, using (1.27), by the Hélder

inequality and Lemma 4.1.1, as in (1.10), we get

uf [IY* < AC||w! |13, forall n large enough.
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Thus, by Lemma 4.3.3, there exists ny € N such that
|V < ACy ||l |9,  for all n > ny.
Since u,} # 0 for all n € N, we obtain that

3 <Jluf||e 5 forall n > n,

which is a contradiction with our assumption, and the proof is complete. m

Corollary 4.4.8 Assume that (V1), (f1) and (f3) are satisfied. Then, there exists
Oy > 0 such that I\(u) > 6y for all u € Ny. In particular

I < cn,, 0x < Cn and 0y < cpm,-

Proof . Let u € N,. By Lemma 4.4.7 and by (f3), we have

L) = Iy(u) — %zg(u)u

= (% — %) ||V —|—%/Qf(x,u)u —0F (z,u)dx

S 1
Z(N_E)mA::5A>O'

This is the desired conclusion. m

Lemma 4.4.9 Assume that (V1),(f1) and (fy) are satisfied. Let u € M,. Then
det J1)¥) > 0, where ) is defined in (1.31) and Jq1)¥} is the Jacobian matriz of
U at the point (1,1) .

Proof . Let u € M. Let us denote by
UM (a, B) = I(au™ + pu”)aut and U2 (o, B) = I} (cu’ + fu)pu”

the components functions of the vector field ¥?. Explicitly, by (i) and (ii) of Lemma

4.3.6, we have

M (a, B) = aN/8A+(u)+B+(au++ﬁu_)+aN/S/

V(:E)]u+|d:1:—)\/ flz,au™)au™dx
Q Q

and

\11272(0576) = 6N/SA(U)+B(05u+—|—ﬂu)+ﬁN/S/
Q

V(:U)|u]dx—)\/ f(z, fu™)Pu"dx.
Q
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By a straightforward computation, we get
N N
0 (1,1) = A% (u) + B () + / V(@) [V/oda
S S Jo

- (g B 1) / (u* (&) - u—<y>>|?2u+<w><u+<x> W)

x —yN

—)\/fa:u 2+ flo,uMutda;

DU (1,1) =0, ¥2(1,1)
(N _ (u () — () "t () (~u(y) |
_2( 1) /Sl+><Q_ Py dxdy >0

S

(4.47)
and
g W2 (1,1) :gA_(u) + B~ (u) + g /Q Vi(z)|u= |V dx
19 (ZY __1> /Q ) (u+($)—-U_(y))SL;sz&ggﬁ(u_(x)—-U_(y))dxdy

—/\/fxu )2+ flo,u)u da.
As I{ (u)u™ = 0, using again (i) and (ii) of Lemma 41.3.6, we have
g/ﬁ( )+ — B+ N/ )t |V de = —/\/ f(z,u)utde.
Thus, we get
O, UM (1,1) :gx\/ﬂf(x,zﬁ)lﬁdx - (g - 1) BT (u)
a(X) [ s ) ) @) — W)
Q4 xQ_

|z — y[2N

—)\/fxu 2+ f(z,uM)utda.

Hence, we have

UM (1,1) :/\/Q (ﬂ - 1) flx,uHu™ — f(z,u)(ut)*de — (ﬁ — 1) B (u)

S S

- <g_1> / (1 (@) o ()t (@)t ) (@)

s |z — y[2N
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Then, since u™ # 0, by (4.31) and by expression of B*(u), we deduce that

0, UM (1,1) < — <ﬂ — 1) Bt (u)

s
() — o~ T2, + +(r) — ot
(N[ W) e —w),,,,
S Q4 xQ- ’x - y’
=—03U)(1,1) < 0.
(4.48)
Similarly, we can deduce that
05032 (1,1) < =0, W3*(1,1) < 0. (4.49)

Hence, by (4.47), (4.48) and (4.49), we have

det Ju 1) =0, V0" (1,1)05¥0%(1,1) — 95¥ ' (1,1)0, Vo2 (1, 1)
—0, UM (1, 105 0N2(1,1) — (951 (1, 1))

> (95021 (1,1))7 = (9591(1,1))* = 0.

As it was stated at the Introduction, the exponential critical growth in the non-
linearity f produces a lack of compactness in the operator I,. The next lemma will be

a powerful tool to overcome this difficulty for a minimizing sequence associated to cpy,
in MA.
Lemma 4.4.10 Assume that (V1) and (f1) — (f5s) are satisfied. Then
(i) cm, is nonincreasing in A > 0;
(ii) lim cp, = 0.
A—00
Proof . Let 0 < A\ < A and v € M,,. By Lemma 4.1.4, there exist as, 2 > 0
such that asut + fou™ € M,,. Now, using again Lemma 4.4.4, we have w;)l(l, 1) >
YN (g, B2). Thus, by (f3), we get
]>\1 (u) Z])\l (a2u+ + BQU_)
:[/\2 (a2u+ + BQU_) + ()\2 — )\1) / F(QZ, Oé2U+ + ,BQU_) dx

Q

>]/\2 ((]{21,1,+ + BQU_) Z C/\/l/\2 .
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Hence, taking the infimum in v € M,,, we obtain that CM,, = Cm,,, this completes

the proof of (i).

Let v € X with u™ # 0. By Lemma 4.4.4, for each A > 0, there exist ay, 3y > 0
such that ayu™ + Syu~ € M. Using again Remark 4.4.5, Corollary 4.4.8 and by (f3),

we have
S
0 < cm, < D(au®+pau™) < NH%“JF + B V5

Thus, to show (ii), it is enough to prove that (ay,3y) — (0,0) as A — oco. Now, by
(4.30) and since I§(ayu™ + Bou™)(arut + fou~) = 0, we have

AC|ayu™ + Bru~||h < )\/ [z, canu™ + Byu™)(apu® + fau~) dz
Q

= [Jaxut + ﬁ,\u’HN/S.

Hence, since p > %, this inequality implies that {(c,, 5\)}a>1 is bounded. Without

loss of generality, we can assume that
(n, Ba) = (@, 8), as Ay = o0,

where a,, = ay,and 3, = B,,. In particular, we have a,u™ + B,u~ — ’ut + fu~
strongly in X, as n — oco. We claim that o/ = ' = 0. Indeed, if o/ > 0, then, by (f3),

we have

/ flx, apu® + Bou™)(apu™ + Bou”)de — / flx,a'ut + Bu)(u" + fu)de >0
Q Q
(4.50)

as n — oo. But, for all n € N, we have
ot + B [ V5 = A, / (@, ant® + B ) amu + Bou) da. (4.51)
Q
Since A\, — oo and (||a,u™ + B,u"||) is a bounded sequence, by (4.50) and (4.51), we
obtain a contradiction. Therefore o/ = 3 = 0, and the prove is complete. m

Remark 4.4.11 The same results of Lemma /./.10 holds for cy;,, cj(/A and Cnree

As a consequence of Lemma 4.4.10 we obtain the following corollary:

Corollary 4.4.12 Assume that (V1) and (f1) — (f5) are satisfied. Then, there ezists
A* > 0 such that

N—
s — N Oy s

> A\

CMA<( NG )(2a0> , forall N>\

In particular, the same inequalities apply to for cy,, Nt and Cy, -
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From now on, we will consider that A > A\*, where \* is given in Corollary 4.4.12.

As a consequence of Corollary 4.4.12, we will obtain appropriate behavior for
a minimizing sequence in M. In order to make this more precise, we consider the

following subset of M:

gp:{uEM,\ : Iv(u) <emy +p} for p>0.

Lemma 4.4.13 Assume that (V1) and (f1)—(f5) are satisfied. For p > 0 small enough,

there exists m, € (O, % such that
Nos 42 N ~
0<my ™ <|u |7 < |lul|¥= <m, foral ues,.

Proof . By Corollary 4.4.12, we can choose p > 0 small enough such that

s

L e Os — N Qy a
My P N6 20[0

Let u € §p. Then, by (f3), we have

1
exty +p > L(w) = L(w) = 214 (w)u

0
— (N 9) w7 + 7 Qf(x,u)u OF (z,u)dx

S 1
> = N/S‘
> (N 9) Jlul

Hence, we get

s

N
—s

N—s
ll ¥ < () (ean +0)| =y < 22
0s — N A 20

Therefore, by Lemma 1.4.7, we get 0 < m} * < [[uf||¥= < [ju| ¥ < m, for all

ue§p. |

From now on, we will write g'p, where p is given in Lemma 4.4.13.

The next lemma will be used to show that does no exist a sequence (u,) in S,

convergent in L%({2) to a nonnodal function, for ¢ > 1.

Lemma 4.4.14 Assume that (V1) and (f1) — (f5) are satisfied. For any q > 1, there
exists 04 > 0 such that

0<d, < / ||z < / |u|?dz,
0 Q

for any u € S,,.
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Proof . Fix ¢ > 1. Let u € S,. Since I}(u)u® = 0, by Lemma 4.4.7 and by (v) of

Lemma 4.3.6, we have
0<nm§WﬁW”§A/f@wﬂﬁ®;
Q
Thus, by (f1), we deduce that

N
0< A—CO < /Q ut e 1V qg (4.52)

Let r > g and v’ < 2 such that 1/r + 1/r’ = 1. By the Hélder inequality, by Lemma
4.4.13 and by Lemma 4.1.1, we have

1
-

1
N B N N =
/|ui|eao|ui|N—s dr < (/ |ui|’“d:g> (/ er'aonuﬂN—s(uivuuiu)N—sdx)
Q Q Q

1
7

< |lut|” (/ o /2) (U] /[ ) N5 dx)
Q

< Cy|lu*ly.

Thus, by (4.52), we have
0<C<|lu®| forall ues,. (4.53)

We suppose, by contradiction, that there exists (u,) in §p such that ||uf|, — 0 as
n — oo. From Lemma 4.1.13 and Lemma 1.3.5 we obtain that (ul) is bounded in

L*"(Q). Now, since ¢ < r < 2r, using the interpolation inequality, we obtain that

e < Nzl - lumlla,® =0, as n— oo,

where £ € (0,1), but, in view of (4.53), the convergence above is impossible. This

completes the proof of the lemma. m

Lemma 4.4.15 Assume that (V1), (f1) and (f3) are satisfied. Let (u,) be a sequence

in X such that u, — u weakly in X and b := sup,,cy ||un||NL— < 5=. Then, for all

v e X, up to a subsequence, we have

lim [ f(x,u,)u,dx = / flz,u)udx; (4.54)
n—oo 0
lim f( uS ut do = / f(z, u®)u* da; (4.55)
lim [ f(z, v )vde = / f(z,u®)vde (4.56)
and
lim [ F(z,uf)de = / F(x,u®)ds. (4.57)
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Proof . Since b < 2= using (f1), (f3) and by the Holder’s inequality and Lemma

2007

4.3.5, it is easy to see that the integrals

T, Up ) Up||uy,|de, X, Uy uif Uy, |dz, x, Uy )v||uy,|de
/Q|f<, Vit 1] /Q|f( Yo /Q|f( Yol ]

and
/ |F(x, up)||u,|dz
Q

are uniformly bounded. Thus, using again Lemma 4.3.5, up to a subsequence, the

convergences (1.54)-(4.57) follow from Lemma 2.1 of [25]. =

Lemma 4.4.16 Assume that and (f1),(fs) and (fi) are satisfied. Let H(x,t) =
f(z, t)t — X F(x,t). Then

(i) H(z,-) is a C? function, H(z,0) = 0 and H(z,t) > 0, for all t # 0 and for all
x €

(ii) H(x,-) is strictly increasing in (0,00) and is strictly decreasing in (—o0,0), for all
x € ().

Proof . The proof of this lemma follows directly from (4.31) and (f;). =

Lemma 4.4.17 Assume that (V1) and (f1) — (fs) are satisfied. Then, there exists
u € My such that I \(a) = cp, -

Proof . Let (u,) a sequence in §p such that I)(u,) — cpm, as n — co. By Lemma
4.4.13, (uF) are bounded sequences in X. Thus, by using Lemma B.4.1 and by Lemma
4.3.1, there exists u € X such that v — u* as n — oco. Using Lemma 4.3.5, we can
assume that vt — u* in LY*(RY) and ut(2) — u*(z) a.e. in RY, as n — co. Hence,
by Lemma 4.4.14, we have v # 0 in L(Q) and so u* # 0 in X. By Lemma 4.4.4,
there exist «, 8 > 0 such that @ = aut + fu~ € M,. Using again Lemma 4.4.13
without of loss generality, we can assume that the convergences in Lemma 4.4.15 holds
to sequence (u,). Since u*(x) — u*(z) a.e. in RY as n — oo, we get

it () = (9| Mz (2) — Jut ()| = | Jut(@) —u(y)

|z —y|*N |z — y|?N

s

(@) = fut (@)

0<
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as n — oo, for a.e. (z,y) € R?M. Thus, from (iv) of Lemma 4.3.6, by semicontinuity

of the seminorm and using Fatou’s Lemma, we can deduce that
(=A)N/su,u™) = ((=A) N’ u’) +2C7 (u)
< liminf((=A)y)ut, vy ) + lim inf 207 (uy,).
n—oo

n—oo

< Timinf ({(=A)y g, uh) + 207 (u,))

n—oo

< lim inf((—A)fV/SUmUD-

n—o0

Thus, since I} (u,)u,t =0 for all n € N, and by (1.55), we get

(=85 + [ Vi)l |¥ede <limin((=8)5g,00,07)

n—o0

+liminf/V(a:)|u:|dx
Q

n—oo

< lim inf <<(—A)§V/sun,uz> "’/

n—oo QO

v<x>|u:|dx)
= lim inf)\/ flx,uHutde

n—oo
:)\/f(x,u+)u+da:.
Q

Then I{(u)u™ < 0. Similarly, we can deduce that 5 (u)u™ < 0. Thus, by Lemma 1.4.6,

we have 0 < , f < 1. By Lemma 4.4.16 and again using Lemma 4.4.15, we have

o < I(@) = Iy(au™ + fu~) — %fg(om + Bu~)(aut + Bu)
— 2 flx,aut + Bu”)(au™ + Pu”) — EF(x, au’ + fu”) dx
N Jq S

- %A (/Q H(x,au+)da:+/H(x,5u—)dx)

S%)\ H(z,u)dz = lim —)\/Hx up) dz

o) TL—)OO

= lim (I,\(un) — %If\(un)un> = lim I\(u,) = cpm, -

n—oo n—0o0

Therefore I)(u) = ¢y, which is the desired conclusion. m

Next we will introduce some notations and a technical result that will be apply
in the proof of Theorem 4.2.2.
Let D = (2, 5) X (%, %) and g: D — X, given by g(«a, ) = au™ + fu~, where @

is given in Lemma 4.4.17.

Lemma 4.4.18 Let P={u € X :u(z) >0 a.e. t € RV} and —P = {u € X : u(z) <
0 a.e. x € RN}, Then d' = dist(g(D),A) > 0, where A :== P U (—P).
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Proof . We suppose, by contradiction, that d' = dist(g(D),A) = 0. Then, we can find

(v,) C g(D) and (w,) C A such that ||v, — w,| — 0 as n — oco. We can assume,

without loss of generality, that w,(z) > 0 a.e. in RY. Now, since v, € g(D), there

1
29

3] such that v, = o, u™ + fu~. By compactness of [3,3], up to a

exist ay, B, € | 5

subsequence, we have «,, — o/ and 3, — 3’ as n — oco. Hence
vy —wdut + 40 in X as n — oo.

Now, by Lemma 4.3.5, we have v,(z) — o't (z) + f'u"(z) a.e. in RY as n — oo.
Again by Lemma 4.3.5 and by uniqueness of limit, we have w,(x) — o/u™(z)+ f'u"(z)
a.e. in RY as n — oo. Since 4~ # 0, the convergence above produces a contradiction
with the assumption that w,(x) > 0 a.e. in R as n — oo, which completes the proof.

4.4.1 Proof of Theorem 4.2.2

By Lemma 4.4.17, we have u € M, and I(u) = cpq,. Thus, it remains to show
that I} (u) = 0. Suppose, by contradiction, that Ii(u) # 0. By the continuity of I},
there exist v,0 > 0 with § < %/, such that

1L ()] >, forall v € Bay(a), (4.58)

where d’' is given in Lemma 4.4.18. Since u € M, using Lemma 4.4.4, the function

(I 0 g)(a, B), for (a, B) € D, has a strict maximum point (1,1). Hence

* = I < .
m (a{g)aegD( rog)(a, B) < em,

Let ¢ > 0 be such that ¢ < min{(cp, — m*)/2,70/8} and let S = Bs(u). From this

choice, for all (o, 5) € 0D, we have
(Ixog)(a,B) <m" =cm, —2(cmy, —m")/2 < cpm, — 2e.
Hence, we deduce that
g(@D) N I (Jem, — 2¢, cum, + 2¢]) = 0. (4.59)

Moreover, by estimates in (1.58), we have

8e
Hp(v)l] = = Vo € I (Jeamy, — 26, ey + 2€]) N Sas.
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Thus, by the quantitative deformation lemma in |72, Lemma 2.3|, there exists n €

C(]0,1] x X, X)) such that

1) n(t,u) =u,ift=0o0ru ¢ I/\_l([cMA — 2¢, cpmy + 2¢]) N Sas;
(ii) n(1, ;""" N S) c I

(iii) n(t,-) is an homeomorphism of X, V¢ € [0, 1];
(iv) |In(t,u) —ul| <6,Vue X, Vt e [0,1];

(v) In(n(-,u)) is non increasing, Vu € X;

(vi) Li(n(t,u)) < cp,, Yu € 1,V N S5, Vit € (0,1].

Let h: D — X defined by h(a, 8) = n(1, g(a, 3)). We claim that

max I(h(a, B)) < cum,- (4.60)
(e, 8)ED

Indeed, if (a, 8) € D with (a, 8) # (1,1), using Lemma 4.4.4, we have I,(g(t,s)) <

cm,- Hence
[)\(h(()é,ﬁ)) < [<77(ng<a75))) = [(Q(Oé,ﬁ)) < Cmy,, -

If (a, B) = (1,1) then g(1,1) = @ € I, NS5 and so Iy (h(1,1)) < cu,, showing (4.60).
By using the definition of cpq, and (4.60), we deduce that

h(D) N My = 0. (4.61)
Using (4.59) and the property (i) of n, we get

h(a, B) = g(a, B) in OD. (4.62)

Claim 4.4.19 We claim that h(c, 8)* # 0 for all (a, B) € D.

In fact, let v € A. By using the choice of 6 > 0 and Lemma 4.1.18, we have that

1h(a, B) = vl = [lg(ev, B) = vl| = [[A(e, B) = g(ev, B
> [lg(e, B) — o] =0
d d

>d - ==
=479
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Hence, h*(a, 3) # 0 for all (a, ) € D, concluding the statement.
Now, let us consider the vector fields ¥, F : D — R2, where U7 is given in (4.34)

and
Fla, B) = (Iy(h(e, B)h(t, s)", I (h(a, B))h(t, ) 7).

From (4.62), we have W2 = F in dD. Hence, by the degree theory (see Lemma A.1.14),
we have

deg(Vg, D, (0,0)) = deg(F, D, (0,0)). (4.63)

Moreover, by using again Lemma 4.4.4, we have that the point (1, 1) is a unique point

in D such that U2(a, ) = (0,0). Consequently, by Lemma 4.4.9, we can deduce that
deg(¥3, D, (0,0)) = sgn(Ja,y¥3) = 1.
(see Lemma A.1.15). Thus, by (1.63), we get
deg(F, D, (0,0)) = 1.

Then, by degree theory (see Lemma A.1.13), there exists a point (¢/, 8') € D such that

L(h(, )R, 8)t =0 and I} (h(d,8"))h(,5)” = 0. (4.64)

By Claim 4.4.19 and by (4.64), we obtain that h(c/, ') € M, which is impossible in

view of (4.61), which proves the theorem.

4.5 Nonnegative solution and nonpositive solution of

problem (P,)

Our goal in this section is to prove that, if A > A\*, where \* is given in Corollary
4.4.12, the problem (7)) has a nonnegative and a nonpositive solutions, both nonzero
and of lowest energy in their respective classes. The main tool to prove this is to get a
appropriate estimates to the minimax levels associate to the truncation of the problem
(). We will apply the Mountain Pass together with estimates in the Nehari levels
Cn and N given in Remark 4.4.5. The techniques that we apply are motivated by
the work in [45].
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We define the functionals I3 : X — R by
() = S fuf ¥ — A / Flz,u*) du. (4.65)
N Q

From the assumptions in f and by considering Lemma B.4.1 in the Appendix, we have

that I; € C*(X,R) and

(1Y (o = (D)) + [ Vil

Q

S 2uwde — )\/ f(z,u*)vdz, (4.66)
Q
for any u,v € X. Note that, if v = u™ and v = v~, then
I (u) = In(u), Iy (v) = I\(v), (I{)(v) = Ii(v) and (I7)'(v) =Ii(v).  (4.67)

Thus, the functional I} and its derivative (I;)’ coincides witch I, and I} in nonnegative
functions, respectively. Let u € X \ {0} a critical point of ;. Then, taking v~ as a
test function in (41.66), we deduce that

0 = (I (w)u™ = ((—A)euu”) + / V(o)) Fde

and so, by (v) Lemma 4.3.6, we have v = u™. In particular, by (4.67), u € N is a

solution of the problem (/7). Similarly to I, .

As a consequence of Lemma 4.4.3 we obtain that the functionals If have the

montain pass geometry. Explicitly, we have following result:

Lemma 4.5.1 Assume that (V1) and (f1) — (fs) are satisfied. Then, the functionals

If has the following geometric properties:

(i) there exist r > 0 and 7 > 0 such that I3 (u) > 7, for |ju| =r;
(ii) there exists e € X, with ||e|| > r, such that I (e) < 0.
Let us consider the sets
Ixi={y€C([0,1],X) :7(0) =0 and  I\(7(1)) <0},
[f = {7 € C(0,1,X) 7(0) =0 and [E(+(1)) < 0}
and the respective minimax levels
er = Inf mex L(y(®) and o = 'yier;ff max I (y()).

By Lemma 4.4.3 and Lemma 4.5.1, by apply the Mountain Pass Theorem, we obtain

the following corollary.
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Corollary 4.5.2 Assume that (V1) and (f1) — (f3) are satisfied. There exist sequences
(un), (Uns) C X such that (u,) is a (PS)

sequences for ];\—L, respectively.

o Sequence for Iy and (u,.y) are (PS%}

The next Lemma we will show that the minimax levels defined above are less or
equal, respectively, to the Nehari levels cyy,, Cn and Crro - In fact, this will be our main
tool to show that the functionals I, and I/\jE satisfy the Palais-Smale condition at the

levels ¢y, and cf\[, respectively.

Lemma 4.5.3 Assume that (V1) and (f1) — (f4) are satisfied. The following equalities
holds

ey < CNA,CS\’— < N and ¢, < Ny

Proof . We will only show the inequality ¢, < Ch Note that, by Lemma 4.4.1 and
(1.67), we get that

chv- = Inf maxl/, (au).
N, i £0 a0 /\( )

Let u = v~ # 0. Now, by Lemma 4.4.3, we have I, (au) - —oo0 as @ — oo. Thus,
there exists C, > 0 larger enough such that I, (au) < 0 for all « > C,. Let us
consider the family of the curves 4¢ : [0,1] — X, given by 7%(8) = B(au™) for a > C,,
where u = u~ # 0. The family of curves so defined is such that {y%}.>c, C I'y, for
u € —P\ {0}. Then, we have that

¢y = inf max I, (v(t)) < inf max I, (7
A ~very B€[0,1] A (’Y( >) - {Vg}azcu Be[0.1] A (Pyu (B))
u=u"#0

< inf maxI(au’) =c, .
_u:u—;éO a>0 )\( ) NA

and so we finish the proof of the lemma. m
Remark 4.5.4 Using Lemma /.5.5 and by Remark /./.5, we get
ooy S oy oy <oy (4.68)

Moreover, if w is a critical point of I, such that I, (u) = ¢, then u € N is a
nonpositive solution of (P.). Thus, we have v < I\(u) = I, (u) = ¢, . Therefore,
we deduce that

Cy = Cnp (4.69)

Similarly to ¢y and ci .
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4.5.1 Proof of Theorem 4.2.3

We will only show the existence of a nonpositive lest energy solution u_ of prob-
lem (7). From Corollary 1.5.2, there exists (u,) C X such that I, (u,) — ¢, and

(1) (un) — 0 as n — oco. By (f3), we have

‘T)

1
7h
(— - —) a5+ 5 [ Foi ), — 0P ) ds (470

Q
> _ N/S

and so (u,) is bounded in X. Let C' > 0 such that ||u,|| < C for all n € N. Using

ex F0n(1) + onllun|| =1y (un) —

(1.68), there exists ng € N such that o0,(1)||u,|| < 0,(1)C < p and ¢, + 0,(1) < cpm,

for all n > ng, where p > 0 is given in Lemma 4.4.13. Thus, by (4.70), we get

NGO
ol < (20 ) oo ). forall
Hence, as in Lemma 4.4.13, we have
N Oy
lun||¥= <m, < —, forall n > n,. (4.71)
2&0

Without loss of generality, we can assume that (1.71) holds for all n € N. Since X is
a reflexive space, there exists u_ € X such that u,, — u_ in X as n — co. By Lemma
4.3.5, up to a subsequence, we have u, — u_ in LY(RY), for ¢ > 1, and u,(z) — u_(x)
a.e. in RY as n — oo. Using Lemma 4.3.5 and (4.71), up to a subsequence, we can
also assume that the convergences in Lemma 4.4.15 holds for the sequence (u,). By

(4.55) and (4.56), we have
)\/Qf(a:, =)t — 1) da = on(1). (4.72)
Now, by the lower semicontinuity of the norm, we have
o ¥/* < tim inf s | ¥ (4.73)

||N/s

On the other hand, since the function || - is convex, by using properties of the

derivative of convex function (see Lemma A.1.2), we have that

ﬂ*2un(u_ — uy,) dz.

N (I = Nunl¥%) = (= A) 3 sty v = un) + /Q V(z)
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Thus, since I} (u,) = 0,(1) and by (4.72), we deduce that

S

7 (17 = Tl 1Y) = (I5) (un) (= ) + A/Qf(ffc,un)(un —u)dz = 0,(1).

Hence, taking the liminf, we have

i inf [/ < [l |V~ (4.74)
Thus, by (4.73) and (1.71), we have

lim inf [|u, ||V = [Ju_||N.

n—o00

Thus, by Lemma 1.3.2, up to a subsequence, we have u,, — u_ strongly in X as n — oc.
Therefore, u_ is a critical point of I, and I, (u_) = ¢, > 0. Consequently, by Remark
4.5.4, we have u_ € N is a nonpositive solution of (/) and ¢, = Cn and the proof

is complete.
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Appendix A

Auxiliary results

A.1 General auxiliary results
Lemma A.1.1 Let o > 0 and r > 1. Then, for each 5 > r, we have
(eo"S'Q — 1)T < <e’3a‘3‘2 — 1) for all s eR.
Proof . It is enough to prove that
(et — 1)r <et—1 forall t>0.
Let v = e' — 1, then, the above inequality is equivalent to
Y +1<(y+1)" forall ~>0.

Let h(y) = (y+1)" — 4" — 1. Then h(0) =0 and W/(y) =r(y+ 1) —ry""! >0, for
all v > 0. Thus h(y) > 0, for all ¥ > 0. Therefore, we get 7" +1 < (y+1)", for all
~v > 0, which completes the proof. m

Lemma A.1.2 Let X a normed vector space and f : X — R a differentiable function.

Then, the following condition are equivalent:

(a) f is conver in X;
(b) fly) = f(z) = f'(2)(y — ), for all z,y € X;

(b) (f'(y) — f/(2))(y —2) = 0, for all z,y € X.

(see |22, Theorem 7.4].)



Lemma A.1.3 (Fatou’s Lemma) Let (f,) be a sequence of functions in L' that
satisfy

(a) for alln, f, >0 a.e.

(b) sup, [ fn < .

For almost all x € Q we set f(x) = liminf, ,o fn(z) < co. Then f € L' and

(see [18, Lemma 4.1])

Lemma A.1.4 (dominated convergence theorem, Lebesgue) Let (f,) be a se-

quence of functions in L' that satisfy

(@) fu(z) = f(x) a.e. on Q,

(b) there is a function g € L' such that for all n, |f.(x)| < g(z) a.e. on Q.
Then f € L' and || f. — f|1 — 0.

(see [18, Theorem 4.2])

Lemma A.1.5 (Hélder’s inequality) Assuma that f € LP and g € LP with 1/p +
1/p=1,1<p<oo. Then fg € L' and

/ Fal < 171l
(see [18, Theorem 4.6])

Lemma A.1.6 If f € LPNLY with1 <p < q < oo, then f € L" forallp <r <q and

a 11—«
p p

,0< a< 1.

_ 1
171l < WFUGIAIe,  where - =

(see [18])

Lemma A.1.7 Let (f,) be a sequence in LP and f € LP such that || f, — f|l, — O.

Then, there ezist a subsequence (fy,) and a function h € LP such that

(a) fo,(x) = f(x) a.e. onQ,

(B) |fu.(@)| < h(x), VE a.e. on Q.

(see [18, Theorem 4.9])
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Lemma A.1.8 Let (u,) be a sequence in L), with ¢ > 1, such that u, — u in
L1UQ). Then uw! — ut and u, — v~ in L1(N).

Proof . Since u,, — w in L(Q2), there exists h € L9(Q2) and a subsequence (u,, ) of

(uy) such that u,, () — u(z) a.e. x € Q and |uy,, (x)] < h(x) a.e. in Q. Let us define
Ay={z€Q:ulx)=0},A" ={reQ:ulx) >0} and A" ={reQ:u(z) <0}

Let x € AT such that u,, (z) — u(z) = ut(z) > 0 as k — oo. Then, there exists
ko, such that u,, (z) = u, (z) for all & > ko and so u} () — u*(x) as k — ooc.
Similarly, if z € A~ and uy, (z) — u(r) = u™(z) as k — oo, we have v (x) = 0 for
all k larger enough. Thus v () — u*(r) = 0 as k — oco. Finally, if z € Ay and
Up, (r) — u(z) = 0 as k — oo, since |uf| < |uy,|, we have u) (v) — ut(z) = 0 as
k — oo. Therefore, by the Dominated Convergence Theorem, we have u} — ut in
L(9).

Now, if (u;}) does not converge to u™ in L((2), then there exists a subsequence
(tn,,) of (un) such that [[u} —u*|; > e >0 forall k € N. Then, applying the above

argument to the sequence (u,, ) we obtain a contradiction, which completes the proof.

Lemma A.1.9 L? is uniformly convez, and thus reflexive for any p, 1 < p < oo.

(see [18, Theorem 4.10])

Lemma A.1.10 (Straus’s lemma) Let P,Q : R — R be two continuous functions

satisfying
P(s)

Q(s)

Let u, : RN — R be a sequence of measurable functions such that

—0 as |s| = oc.

sup /]RN |Q(un(x))|dz < 00

n

and

P(uy(z)) = v(z) ae in RY, as n— oo

Then for any bounded Borel set B one has

/B |P(un(x)) —v(z)|[de -0 as n — oco.
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If one further assumes that

P(s)
QGs)

and

up(z) = 0 as |z| = oo, wuniformly with respect to n,

then P(u,) converges to v in L*(RY) as n — oo.

(see [13, Theorem A.I|)

Lemma A.1.11 (quantitative deformation lemma) Let X be a Banach space,
e CHX,R),SC X,ceR,e,d > such that

Vu € o H[e — 26, ¢4 2] N Sas) : || (w)|| > 8e/6.
Then there exits n € C([0,1] x X, X)) such that
(1) n(t,u) =u, if t =0 orif u & o ([c — 2&,c+ 2¢]) N Sas;
(1) (1, 9= NS) C =
(1ii) n(t,-) is an homeomorphism of X, ¥Vt € [0,1];
(iv) |In(t,u) —u|| <9d,Vue X, Vt €[0,1];
(v) e(n(-,u)) is non increasing, Vu € X;

(vi) e(n(t,u)) <c, Yue p°NSs, ¥Vt e (0,1].

(see |72, Lemma 2.3])

Lemma A.1.12 (Mountain pass theorem ) Let X be a Banach space, ¢ € C*(X,R), e €
X and r >0 be such that |le|| > r and

b= inf p(u)>p(0) = p(e).

lull=r

Then, there exists a sequence (uy) in X (a (PS). sequence) such that p(u,) — ¢ and
' (un) — 0 where

= inf t
¢:= inf max (7(t))

D= {y € C(0,1], X) : 7(0) = 0,7(1) = e}.

(see [72, Theorem 2.10])
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Lemma A.1.13 Let Q a open bounded set in RN, with boundary 0. Let f : Q — RY
a continuous function and p € RY such that p ¢ f(09Q). If deg(f,Q,p) # 0 then there
exists z € ) such that f(z) = p.

(see [5, Section 3.1|)

Lemma A.1.14 Let Q a open bounded set in RY, with boundary 0). Let f,g €
C(Q,RYN) be such that f(x) = g(x) for all x € Q and let p ¢ f(OQ) = g(9%). Then
deg(f,©,p) = deg(g, 2, p).

(see |5, Theorem 3.2|)

Lemma A.1.15 Let Q a open bounded set in RY, with boundary 0. Let f € C(Q,RV)N
CHQ,RY) and let p ¢ f(00) a regular value of f. Then

deg(f,2p)= Y sgn[J;(@)].

zef~1(p)

(see |5, Corollary 3.15])
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Appendix B

Auxiliary results of chapters

B.1 Appendix of Chapter 1

In this section we prove some auxiliary results that we used in Chapter 1.

We consider the problem

(—=A)Y2u+ V(z)u = |[ufP~2u in Q
u=0 in R\ Q,

(B.1)

where 2 = (a,b), p > 2 and V satisfies the condition (V}). The functional [, : X — R
associated to (B.1) is given by

1 1
I(u) = S lull* = 5HUIIZ-

We define the Nehari manifolds and nodal set associated to I, and the respective ground

state and nodal level by

NP ={ue X\ {0} : I)(u)u = 0}, (B.2)
MP ={ue X :u"#0and I(u)u* =0}, (B.3)
CAr = ulerjl\% I,(u), (B.4)
and
Cmp = 1er/1\£p I, (u) (B.5)



We will show in this section that problem (B.1) has a nodal solution of least
energy. The arguments used in this section are similar to those developed in Sections

1.3 and 1.4, so many will be omitted in order to avoid repetition.

Lemma B.1.1 Given u € X \ {0}, there exists a unique t = t(u) > 0 such that
tu € NP. In addition, t satisfies

I, (tu) = max I,(su). (B.6)

s>0

Proof . The proof of this result follows the same ideas of Lemma 1.3.1. m

Corollary B.1.2 Let u € X \ {0}. Then ue M if only if I,(u) = max I,(su).

Lemma B.1.3 There exist By > 0 and ko > 0 such that I,(u) > By and ||u||* > ko,
for all w € NP, and ||u*||? > ko, for all u € MP.

Proof . The proof of this result follows the same ideas of Lemma 1.3.2. m
The lemma above shows that the levels cy» and cyp are well defined and ¢, >

¢y > P, since MP C NP,

Lemma B.1.4 Given u € X with u* # 0, there exists a unique pair (t,s) of positive
numbers such that tu™ + su™ € MP,

Proof . The proof of this result follows the same ideas of Lemma 1.3.6. m

Lemma B.1.5 Let u € X, with u™ # 0, such that I)(u)ut < 0 and I)(u)u~ < 0.
Then the unique pair (t,s) given in Lemma B.1.4 satisfies that 0 < t,s < 1.

Proof . The proof of this result follows the same ideas of Lemma 1.3.7. m

Lemma B.1.6 Let u € X, with u™ # 0, and (t, s) the unique pair of positive numbers
given in Lemma B.1.4. Then (t,s) is the unique mazimum point of the function ¢, :
R; x Ry — R defined by ¢p(a, 8) = L(au™ + fu™).

Proof . The proof of this result follows the same ideas of Lemma 1.3.8. m

Now, we shall show that the nodal level cp is attained.

Lemma B.1.7 There exists u € MP such that 1,(1) = cpp.

145



Proof . Let (u,) C MP be such that [,(u,) — cupe. Now, since u,, € MP, for all

n € N, we have

1 1 1 1
carr + 0n(1) = L) =l = Sl = (5 = )l

Hence, (u,,) is bounded in X. Therefore, (u;) and (u,,) are also bounded in X. Since
X is a Hilbert space, up to a subsequence, there exists v € X such that uX — u* in
X. Utilizing Lemma 1.2.1, passing to a subsequence, we can assume that uf — ut

Li(R), for all ¢ € [1,00), and uX(z) — u*(z) a.e. in R.

We claim that u* # 0. We suppose, by contradiction, that u™ = 0 (similarly u™).

Since u, € My,oq, we have I} (uy)u,, = 0. Thus

(U, ul) :/ lut|Pde — / |ut|Pdx = 0.
Q 0

However, by Lemma 1.2.3 we have (u,,u) > |Ju||>. This implies that [Ju}||? — 0,
which is a contradiction in view of Lemma B.1.3.

Utilizing Lemma B.1.4, there exists a pair of positive numbers (¢, s) such that
tut + sum € MP. Let & = tu™ + su”. We will show that I)(u)u® < 0. In fact, by
Fatou’s lemma, we have

|ut]]? + (u u™) = i/ [t (@) —u” ()l d:z:dy—l—/QV(:L’)\uﬂde

2m [ —y|?
1 [ ut(z)(—u-
L PO,
T Jee T =yl
<hmlnf(||u+||2 (uth uy))

n»-'n

—llmlnf/ |u+|”dx—/ jut[Pdz = [lu™||P.

n——+0o

Analogously, I/(u)u~ < 0. Hence, using Lemma I3.1.5, we have that 0 < ¢,s < 1. In
this way, we have that ||uz|* < ||u||*>. Now, by using that « € MP? and the Fatou’s

lemma, we reach



and this completes the proof. m

We define D = (3,2) x (3,3) and g : D — X by g(o, 8) = o™ + S, where @
was found in Lemma B.1.7. Before presenting the main result of this section, we will

present the following lemma:

Lemma B.1.8 Let P ={u € X :u(x) > 0a.e. x € Q} and —P = {u € X : u(x) <

Oa.e. z € Q}. Then dy = dist(g(D),A) >0, where A= PU—P.

Proof . The proof of this result follows the same ideas of Lemma 1.4.1. m

Now, we will now present the main result of this section.

Theorem B.1.9 The function u € MP found in Lemma B.1.7 is a nodal solution of
least energy of problem (B.1).

Proof . The proof of this result follows the same ideas used in Theorem 1.1.2 and we

omit it. m

B.2 Appendix of Chapter 2

In this section we prove some auxiliary results that used in Chapter 2.

We consider the problem
(=AY 2u+ V(z)u = K(z)|uPu in R, (B.7)
where p > 2, V and K are such that (V;) — (V2) and (K7) hold. The energy functional

I, : X — R associated to (13.7) is given by

1 1
Iy(w) = 5llul® - ];HUH’&;{-

We define the Nehari manifold and nodal set associated to I, and the respective ground

state and nodal levels by

NP ={ue X\ {0}: I(u)u =0}, (B.8)
MP ={ue X :ut # O,IZ[’)(u)ujE =0}, (B.9)
Car = uler.l/\% I,(u), (B.10)
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Cmp = uler}\ftp I, (u). (B.11)

We will show that problem (13.7) has a nodal solution of least energy. The steps
to show this are the same of the Sections 2.3, 2.4 and 2.5. Thus, many computations

will be omitted in order to avoid repetitions.

Lemma B.2.1 Given u € X \ {0}, there exists a unique t = t(u) > 0 such that
tu € NP. In addition, t satisfies

I,(tu) = max L,(su). (B.12)

Proof . Let h(s) := I,(su) = s*||ul|*/2 — s”||ul|?, /p, for s > 0. Since p > 2, we have
K

h(s) > 0 for s > 0 small enough and h(s) - —oo as s — oo. Hence, there exists a

t > 0 satisfying (B.12). In particular, tu € NP. Moreover, h'(t) = 0 if and only if

t= (fulP?/l[ull}, )/, -

Corollary B.2.2 Let u € X \ {0}. Then u € N? if only if I,(u) = max [,(su).

s>0

Lemma B.2.3 There exist 3y > 0 and o > 0 such that ||u|* > {o, for all u € NP,
|u®||* > €o, for all u € MP and L,(u) > Bo.

Proof . The proof of this result follows by Corollary 2.3.4 and using the same ideas
of Lemmas 2.4.2 and 2.4.4. m

The lemma above shows that the levels cy» and cype are well defined and cpp >
cne > o, since MP C NP. The proofs of the next three result follow the same ideas

of Lemmas 2.4.5, 2.4.6 and 2.4.7, and we omit them.

Lemma B.2.4 Given u € X with u* # 0, there exists a unique pair (t,s) of positive
numbers such that tu™ + su™ € MP,

Lemma B.2.5 Let u € X, with u®™ # 0, such that I)(u)u®t < 0 and I)(u)u” < 0.
Then the unique pair (t,s) given in Lemma B.2.4 satisfies that 0 < t,s < 1.

Lemma B.2.6 Let u € X, with u® # 0, and (t, s) the unique pair of positive numbers
given in Lemma B.2.J. Then (t,s) is the unique mazimum point of the function ¢, :
R; x Ry — R defined by ¢,(a, B) = L(cu™ + fu™).

Now, we shall show that the nodal level cp is attained.
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Lemma B.2.7 There exists u € MP such that 1,(1) = cpp.

Proof . Let (u,) C MP be such that [,(u,) — cupe. Now, since u,, € MP, for all

n € N, we have

1 1 1
cxer +0u(1) = ) = 3l = Sl = (5= 3 )

Hence, (uy,,) is bounded in X. Therefore, (u,) and (u,,) are also bounded in X. Since

n
X is a Hilbert space, up to a subsequence, there exists u € X such that uX — u* in X.
Since p > 2, utilizing Proposition 2.3.2 and Corollary 2.3.4, passing to a subsequence,

we can assume that u= — u* in LII} and uF(z) — v*(2) a.e. in R.

We claim that u® # 0. We suppose, by contradiction, that ut = 0 (similarly

~ =0). Since u,, € Mg, we have I (u,)u,, = 0. Thus,

(11, ) :/RK(x)lumpdx% /Rmx)yuﬂpdm:o.

However, by Lemma 2.3.7 we have (u,,u) > |Ju||>. This implies that [Ju}||* — 0,
which is a contradiction in view of Lemma B.2.3. Utilizing Lemma B.2.4, there exists
a pair of positive numbers (¢, s) such that tu™ + su™ € MP. Let u = tu™ + su~. We

will show that II’D(u)ujE < 0. In fact, by Fatou’s lemma, we have

|ut]]? + (uh u™) < hmmf (HquH2 + (ut,u ))

n)»-n

—hmmf/K Yok |pd3:—/K e Pda = [ 7,

n—-4o0o

Analogously, I)(u)u” < 0. Hence, using Lemma B.2.5, we have 0 < t,s < 1. In
particular, ||@||*> < |lul|*>. Now, by using that @ € MP and by lower semicontinuity of

norm, we reach

eve < I(u) = Iy(u) — %Izg(u)u

~(3-2) e < (3-3) e

1 1 1 1
<timint (5 = 1) ol = tmint (Gl = Dol ) = cxo
2 p n—+oo \ 2 D K

n—-+00

and this completes the proof. m

Now, we will present the main result of this section.
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Theorem B.2.8 The function u € M, found in Lemma B.2.7 is a nodal solution
of least energy of problem (B.7).

Proof . It follows by applying the same ideas used in the proof of Theorem 2.2.3 and

we omit it. m

B.3 Appendix of Chapter 3

In this section we prove some auxiliary results that we used in Chapter 3. The

first result is established as follows.

Theorem B.3.1 Assume that (V1) holds. Then, there exists w € MY such that
Jp(w) = df, where dj ;== inf J,(u).

p
ueMy

Proof . The proof of this theorem is obtained by the following steps:

(1) For v € X, with ut # 0 and u~ # 0, there exists a unique pair of positive
numbers (t,, s,) such that t,u®™ + s,u™ € M} and J,(t,u™ + s,u™) > 0. Moreover, if

(t,s) # (ty, Su), with t, s > 0, similar to Lemma 3.3.4, we have
Jp(tu + su”) < Jp(tut + s,u7).

(2) There exists o > 0 such that ||u®||? > ko, for all uw € MY, This is similar to
Lemma 3.3.7.

(3) If u € X, with u™ # 0 and u~ # 0, it is such that J)(u)u* < 0. Then, simliar to
Lemma 3.3.6, the unique pair (t,, s,) in Step (1) satisfies 0 < t,, s, < 1.

(4) Now, let (u,) C Mj be a sequence such that J,(u,) — d;. Similar to Lemma

3.15, we can to show that, up to a subsequence, u, — w in X. From Step (2), we

w

show that wt # 0 and w~ # 0. Using the Steps (1), (3) and again similar to Lemma

o

:3.15, we can find w € M} such that J,(w) = d}, as desired. m

Theorem B.3.2 Assume that (V1) holds. The function w given in Theorem B.3.1 is

a least energy nodal solution of the problem

() [(~2)2u -+ V()] = Jul2uin ©,
u=0 in R\ Q.
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Proof . It is easy to check that the same result of Lemma 3.3.14 holds to
D, (t, s) = (Jy(tu® + su7)tut, Jj(tut + su”)su”)  for ue M.

The rest of the proof follows the same ideas used in the proof of Theorem 3.1.2 and we

omit it. m

Remark B.3.3 Note that, for any V' > 0, there exists a least energy nodal solution
for the problem

1
my ([[ull?) [(=2)Pu+ V(@] = Slufr=u in Q,
u=0 in R\ Q.

Ezxplicitly, there exists wy € X, with wbi, # 0, such that wy is a critical point of the

functional

1 1
Jy(u) = EMb/(HuHQ) ~ 3 /Q lulPdx  and  Jy(wy) = dj,

where

dy = inf Jy(u) and M) ={ue X :u"#0, u #0, (Jy)(w)u" =0 and (Jy)'(u)u” =0}.

uEMZ,
B.4 Appendix of Chapter 4

In this section, the space X is defined as in Chapter 4. However, this space is
a natural generalization for larger dimensions of the spaces defined in chapters 1 and
3. Hence, we emphasize that the following result can be applied to the contexts of the

other chapters.

Lemma B.4.1 Let P*: X — X the operators given by P*(u) = u*. Then:

(i) if u, — u in X as n — oo then, up to a subsequence, P*(u,) — P*(u) in X as

n — 00;

(ii) P* are strongly continuous.

Proof . By (v) of Lemma 4.3.6, we have ||[u*|| < ||u| and so the operators P* are

well defined. Let (u,) C X such that u, — u in X as n — oo. Since (u) is bonded,

n
by Lemma 4.3.1, there exist vy, v2 € X such that, up to a subsequence, u,” — v; and
u. — vy in X as n — oco. Using Lemma 4.3.3, up to a subsequence, we have u,, — u,

n

ut — vy and u, — vy in L4(Q), for ¢ > 1, as n — oo. However, by Lemma A.1.8,
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up to a subsequence, u;f — ut and u; — v~ in L9(Q). Thus v; = u™ and vo = u™,
showing the item (i).

Let (u,) C X such that u, — v in X as n — oco. Using again Lemma 4.3.3 and
Lemma A.1.8, we have u,, — v and uX — u® in LV/*(RV) as n — oo. In particular,
we have that uF(z) — u*(x) a.e. in RY as n — oo. Now, for (z,y) € R?N with z # v,

we define

|t () — un(y)|V/* |/
on(2,y) = - y|2(N and  v(z,y) =

ju(z) = u(y)
|z —yPN

(B.13)

By the strongly convergence, we get v, — v in L'(R*¥) as n — oo. Thus, there exists
h € LYR?M) such that 0 < v,(2,y) < h(z,y) a.e. in R, Similar to (B.13), we

consider

Jug () — ug (y)[V/* |u* () — u*(y)|V*
Un,:l:(‘r7y) = |l'—y|2N and U:t<x7y) = |ZE-y|2N . (B14)

Thus we get v, +(7,y) — ve(z,y) a.e in R*. Now, let us consider the following

decomposition

RV = (5 x Q% YU Q5 % Q) U(Qu x Q5 YU (- x Q) (B.15)

n, n,

where

Q, - ={reQ:u,(x) <0}
Using the decomposition (B.15), by a straightforward calculation, we can see that
0 < vn(2,9) < valz,y) < h(z,y).

Analogously, we can show that 0 < v, (z,y) < v,(x,y) < h(z,y). Hence, by the

dominated convergence theorem, we obtain that
Vps —ve in LYRY™), as n— oo (B.16)
Moreover, as in Lemma A.1.8, it is easy to check that
/ V() |uE) N dz — / V(x)ut|Nedz, as n — oco. (B.17)
Q Q

Hence, by (B.16) and (B.17), we deduce that ||uF| — ||u®| as n — co. Therefore,
using Lemma 4.3.2, we have P*(u,) — P(u*) as n — oo, which concludes the proof

of (ii). m
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