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Resumo

Neste trabalho, estudamos existência de soluções ground state e soluções nodais de

energia mínima para quatro classes de problemas envolvendo o operador Laplaciano

fracionário com não linearidades que podem possuir crescimento exponencial crítico

no sentido da desigualdade de Trudinguer-Moser. Provamos que as soluções ground

state possuem sinal de�nido e mostramos que o nível nodal de energia mínima é maior

que o dobro da energia ground state. O primeiro problema é de�nido num intervalo

aberto e limitado de R e o segundo é de�nido em toda a reta real, ambos envol-

vendo o operador 1/2−Laplaciano. O terceiro problema, também com o operador

1/2−Laplaciano e de�nido em um intervalo limitado da reta real, é do tipo Kirchho�-

fracionário com função de Kirchho� da forma mb(t) = a+ bt, com a, b > 0. Mostramos

a existência de uma solução nodal de energia mínima, uma solução não negativa e uma

solução não positiva, cada uma dessas possuindo energia mínima entre as soluções com

sinal de�nido. Ainda neste caso, estudamos o comportamento assintótico das soluções

nodais, quando b→ 0+. O último problema abordado é de�nido em um domínio limi-

tado Ω ⊂ RN , N ≥ 2, com fronteira Lipschitz ∂Ω e envolve o operador N/s−Laplaciano

fracionário, s ∈ (0, 1). Nesse caso, também encontramos uma solução nodal de energia

mínima e soluções não triviais não negativa e não positiva ambas de menor energia

entre as soluções com sinal de�nido. As principais ferramentas usadas nesse trabalho

são: desigualdades do tipo Trudiguer-Moser, métodos variacionais, lema da deformação

e teoria do grau.

Palavras-chave: Laplaciano fracionário, Problemas de Kirchho� fracionário, Soluções

nodais, Soluções de energia mínima, Desigualdade de Trudinger-Moser.
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Abstract

In this work, we study the existence of ground state and least energy nodal solutions

for four classes of problems involving the fractional Laplacian operator with nonlinear-

ities that may have critical exponential growth in the sense of the Trudinguer-Moser

inequality. We prove that ground state solutions have a de�ned signal and we show

that the least energy nodal level is greater than twice the ground state level. The �rst

problem is de�ned in an open bounded interval of R and the second one is de�ned

in the whole real line, both involving the 1/2−Laplacian operator. The third prob-

lem, also with the 1/2−Laplacian operator and de�ned in an open bounded interval,

is of Kirchho�-fractional type with Kirchho� function of the form mb(t) = a + bt,

with a, b > 0. We show the existence of a least energy nodal solution, a nonnegative

solution and a nonpositive solution, each of which has minimum energy between the

solutions with de�ned signal. In this case, we also study the asymptotic behavior of

nodal solutions, when b → 0+. The last problem addressed is de�ned in a bounded

domain Ω ⊂ RN , N ≥ 2, with Lipschitz boundary ∂Ω and involves the fractional

N/s−Laplacian operator, s ∈ (0, 1). In this case, we also found a least energy nodal

solution and nontrivial nonnegative and nonpositive solutions, which have minimum

energy between the solutions with de�ned signal. The main tools used in this study

are: Trundiguer-Moser type inequalities, variational methods, deformation lemma and

degree theory.

Keywords: Fractional Laplacian, Fractional Kirchho� problems, Nodal solutions,

Ground state solutions, Trudinger-Moser inequality.

v



Agradecimentos

Em primeiro lugar, quero agradecer a Deus por toda a força que Ele me deu durante

minha jornada até aqui. Olhando para a minha vida, noto muitos momentos em que

caminhei por vales tortuosos e as muitas vezes em que pensei em desistir dos meus

estudos. Contudo, o poder de Deus e a atuação do Espírito Santo me guiaram durante

toda essa caminhada, me dando força e coragem para continuar estudando, trabalhando

e buscando ser �el aos princípios ensinados por Jesus.

Agradeço a minha esposa, Adeline, que esteve comigo, me apoiando durante minha

graduação, mestrado e doutorado. A compreensão e suporte que ela me deu �zeram

toda a diferença. Foram muitos os sacrifícios que �zemos em conjunto. Muitas e muitas

as horas de distância física e psicológica que enfrentamos. Não foi fácil! Sou muito

grato por toda a dedicação, esforço e coragem que minha esposa teve durante esses

anos, enquanto eu dava continuidade aos meus estudos e trabalhava. Em especial, sou

grato pelo cuidado que ela sempre ofertou aos nossos �lhos.

Agradeço aos meus �lhos, Davi Luiz, de sete anos, e Ana Liz, de cinco. Só quem é

pai ou mãe sabe que ter �lhos é realmente ter "um coração fora do peito". Tenho

dois �lhos maravilhosos e, por isso, tanto as a�ições quanto as alegrias sempre vêm em

dobro. Alguns veem os �lhos apenas pelos obstáculos que a criação deles demanda mas,

para mim, meus �lhos sempre serviram como uma das principais forças motivadoras

pelas quais eu busco melhorar em cada aspecto da minha vida.

Agradeço ao meu orientador, Prof. Manassés Xavier, por todo o seu apoio, dedicação,

incentivo e participação ativa durante todo o meu doutorado. Tive a graça de conhecer

o Prof. Manassés durante a minha graduação e notei que as suas qualidades iam muito

além de seu grande conhecimento na área da Matemática. Quando obtive a vaga para

ingresso no doutorado, passei por um período de terrível indecisão e insegurança acerca

de em que área estudar e sob orientação de quem. Mas, como que por intervenção div-

ina, o Prof. Manassés conversou comigo, me transmitiu segurança e me mostrou várias

vi



direções de estudo e pesquisa em EDP. Isso foi muito marcante para mim. Encontrar

seres humanos que tenham compromisso, ética e responsabilidade com o que fazem

é, infelizmente, algo raro atualmente. Mas, felizmente, tive a sorte de encontrar um

orientador e também um coorientador que possuem todas essas qualidades e muitas

outras. Não é nenhum exagero dizer que, se não fosse pelo incentivo do Prof. Man-

assés e do meu coorientador, o Prof. Uberlandio, eu teria desistido dos meus estudos

no programa de doutorado. Muito obrigado pelo apoio, Prof. Manassés. Desejo que o

Espírito Santo sempre guie os seus passos e proteja a sua família.

Agradeço ao meu coorientador, Prof. Uberlandio Batista, por todo o compromisso, in-

centivo e auxílio que me prestou como meu coorientador e também como professor das

várias disciplinas que cursei sob sua supervisão. Tive a oportunidade de estudar com

o Prof. Uberlandio em cinco disciplinas diferentes durante o meu período como aluno

de matemática da UFPB (o professor com quem eu tive mais contato em disciplinas ao

longo dos meus estudos!) e em cada uma delas fui enriquecido pela clareza e profundi-

dade dos conteúdos apresentados. Quero agradecer em especial pelo período de um ano

que trabalhei sob orientação direta do Prof. Uberlandio enquanto o Prof. Manassés

estava em seu pós-doutorado. Agradeço por tudo, professor! Que Deus continue a

abençoá-lo.

Agradeço aos professores do Departamento de Matemática da UFPB. De modo muito

especial, quero agradecer ao Prof. Everaldo Solto, que foi meu professor de Cálculo

I e cujos ensinamentos, tanto em Matemática quanto em questão de vida e postura,

foram marcantes em minha formação. Agradeço-lhe, em especial, pela con�ança que

depositou em mim logo no início da minha graduação.

Agradeço aos amigos que �z e que contribuíram de diferentes maneiras durante meus

anos como aluno da UFPB. Em especial, agradeço a Antônio de Pádua, Edjane Oliveira,

Leon Tarquino, Lucas Araújo, Victor Carvalho, Suelena Rocha. Todos vocês con-

tribuíram de muitas formas em meus estudos e em minha vida e estão gravados de

modo muito especial no meu coração.

Agradeço aos professores Edcarlos Domingos, Everaldo Souto, Gaetano Siciliano, Jef-

ferson Abrantes, José Carlos e Marcelo Fernandes, por aceitarem compor a banca

julgadora deste trabalho e pelas sugestões dadas.

vii



"É preciso entregar-se de todo coração para que a

verdade se entregue. A verdade só está a serviço de

seus escravos".

A. D. Sertillanges.

viii



Dedicatória

Para minha esposa, Adeline Gomes, e

meus �lhos, Davi Luiz e Ana Liz.

ix



Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Notation and terminology . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1 Ground state and nodal solutions for a class of fractional equations

involving exponential growth in a bounded domain 15

1.1 Introduction and main results . . . . . . . . . . . . . . . . . . . . . . . 15

1.2 Variational formulation and preliminary results . . . . . . . . . . . . . 22

1.3 Constrained minimization problem . . . . . . . . . . . . . . . . . . . . 25

1.4 Proof of Theorem 1.1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.5 Proof of Theorem 1.1.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2 Ground state and nodal solutions for a class of fractional equations

involving exponential growth in a unbounded domain 44

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.2 Assumptions and main results . . . . . . . . . . . . . . . . . . . . . . . 46

2.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2.4 Some properties of the Nehari manifold and nodal set . . . . . . . . . . 55

2.5 Proof of Theorem 2.2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.6 Proof of Theorem 2.2.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3 Nodal and constant sign solutions for a class of fractional Kirchho�-

type problems involving exponential growth 68

3.1 Introduction and main results . . . . . . . . . . . . . . . . . . . . . . . 69

3.2 Preliminary results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.3 Constrained minimization problem . . . . . . . . . . . . . . . . . . . . 76



3.3.1 Proof of Theorem 3.1.2 . . . . . . . . . . . . . . . . . . . . . . . 89

3.4 Nonpositive solution and nonnegative solution of (Pa,b) . . . . . . . . . 91

3.4.1 Proof of Theorem 3.1.3 . . . . . . . . . . . . . . . . . . . . . . . 94

3.5 The asymptotic behavior of the nodal solutions . . . . . . . . . . . . . 95

3.5.1 Proof of Theorem 3.1.4 . . . . . . . . . . . . . . . . . . . . . . . 96

4 Ground state and nodal solutions for a class of fractional N/s-Laplacian

equations involving exponential growth 101

4.1 Introduction and main results . . . . . . . . . . . . . . . . . . . . . . . 102

4.2 Assumptions and main results . . . . . . . . . . . . . . . . . . . . . . . 104

4.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

4.4 Constrained minimization problem . . . . . . . . . . . . . . . . . . . . 117

4.4.1 Proof of Theorem 4.2.2 . . . . . . . . . . . . . . . . . . . . . . . 132

4.5 Nonnegative solution and nonpositive solution of problem (Pλ) . . . . . 134

4.5.1 Proof of Theorem 4.2.3 . . . . . . . . . . . . . . . . . . . . . . . 137

Appendix

A Auxiliary results 139

A.1 General auxiliary results . . . . . . . . . . . . . . . . . . . . . . . . . . 139

B Auxiliary results of chapters 144

B.1 Appendix of Chapter 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

B.2 Appendix of Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

B.3 Appendix of Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

B.4 Appendix of Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

Bibliography 153

xi



Introduction

In this thesis, our main purpose is to study the existence of nodal (sing-changing)

solutions and ground state solutions with de�ned signal for four classes of problems

involving the fractional Laplacian operator and the nonlinear terms may have critical

or subcritical exponential growth in the Trudinger-Moser sense.

In recent years, we have seen an increasing interest in studying fractional Sobolev

space and problems involving fractional type operators. The motivation to study frac-

tional Sobolev space arises naturally when we deal with the characterization ofHk(RN),

for k = 1, 2, . . ., by means of the Fourier transform. Using Fourier transform, the frac-

tional Sobolev space Hs(RN), for s ∈ (0, 1), can be described as

Hs(RN) =

{
u ∈ L2(RN) :

∫
RN

(1 + |ξ|2s)|Fu(ξ)|2dξ <∞
}
.

The fractional s-Laplacian operator (−∆)s is closely related to the space Hs(RN),

which for a function u ∈ C∞0 (RN), it is de�ned by

(−∆)su(x) = −1

2
C(N, s)

∫
RN

u(x+ y) + u(x− y)− 2u(x)

|y|N+2s
dy, for all x ∈ RN

where C(N, s)−1 =
∫
RN

1−cos(ζ1)
|ζ|N+2s dζ is a positive normalization constant. With respect

to the Fourier transform, (−∆)s can be describe as

(−∆)su = F−1(|ξ|2sFu)

and the following relation holds

‖(−∆)s/2u‖2
L2(RN ) =

1

2
C(N, s)[u]2Hs(RN ) =

1

2
C(N, s)

∫
R2N

|u(x)− u(y)|2

|x− y|N+2s
dxdy,



where [u]2Hs(RN ) is the so called Gagliardo seminorm of u in Hs(RN). The space

Hs(RN) ⊂ L2(RN) is a Hilbert space with the norm ‖u‖Hs(RN ) de�ned by

‖u‖2
Hs(RN ) = ‖u‖2

2 + [u]2Hs(RN ).

An interesting fact about the fractional s-Laplacian operator is that, for any function

u ∈ C∞0 (RN), the classical Laplacian operator −∆ can be recovered by (−∆)s in the

sense that

lim
s→0+

(−∆)su(x) = u(x) and lim
s→1−

(−∆)su(x) = −∆u(x).

The general fractional Sobolev space W s,p(Ω) ⊂ Lp(Ω), for s ∈ (0, 1) and p ∈ [1,∞),

where Ω is an open set in RN , is de�ned by

W s,p(Ω) =
{
u ∈ Lp(Ω) : [u]W s,p(Ω) <∞

}
and when we consider the norm ‖u‖pW s,p(Ω) := ‖u‖pLp(Ω) + [u]pW s,p(Ω) in W

s,p(Ω), it is a

Banach space, where [u]W s,p(Ω) is the Gagliardo seminorm of u given by

[u]W s,p(Ω) =

(∫
Ω×Ω

|u(x)− u(y)|p

|x− y|N+sp
dxdy

) 1
p

.

This space has been extensively studied by several researchers. For an introduction to

the basic theory of fractional Sobolev space, we suggest the survey of Di Nezza et al.

in [32]. If Ω ⊂ RN is a bounded domain with Lipschitz boundary ∂Ω, W s,p(Ω) is an

intermediary Banach space between Lp(Ω) and the classical Sobolev spaceW 1,p(Ω) (see

[32, Proposition 2.2]). Related to the fractional Sobolev spaceW s,p(RN), the fractional

p-Laplacian operator, denoted by (−∆)sp, is a natural generalization of the fractional

s-Laplacian operator, which is de�ned by

(−∆)spu(x) := 2 lim
ε→0+

∫
RN\Bε(x)

|u(x)− u(y)|p−2(u(x)− u(y))

|x− y|N+sp
dy, x ∈ RN ,

for u ∈ C∞0 (RN).

The fractional s-Laplacian operator also plays an important role in di�erent areas

of sciences. For example, fractional Schrödinger equations of the form

i
∂ψ

∂t
= (−∆)sψ + (V (x) + ω)ψ − f(x, ψ), (x, t) ∈ RN × R

2



where ω ∈ R, s ∈ (0, 1), V : RN → R is an external potential function and f : RN×R→

R is a continuous function, are of interest in quantum mechanics. In fact, fractional

operators are involved in many areas of sciences such as Biology, Chemistry, Finance

or Physics (for more physical motivation, see [32] and [54, 55] and their references).

Motivated by physical or purely mathematical aspects, recently problems involv-

ing the fractional Laplacian have attracted the attention of many researchers and topics

like existence, regularity, symmetry, uniqueness and stability were studied, see for ex-

ample [33, 38, 39].

In [19], Ca�arelli and Silvestre developed a method, called s-harmonic extension

method, which expressed the nonlocal operator (−∆)s as a Dirichlet-Neumann operator

in the domain RN+1
+ = {(x, t) ∈ RN+1 : t > 0}. The techniques developed in [19] were

widely used in several studies of equations involving fractional Laplacian operators, see

for example [2, 8, 15, 35, 49].

As we said, our main goal in this work is to study the existence of nodal and

ground state solutions for four classes of equations involving the fractional Laplacian

operator in di�erent contexts. More explicitly, for each of the problems addressed,

we prove the existence of at least one nodal solution. We also show the existence of

ground state solutions and that these solutions have de�ned signal. In each of the

situations, we relate the least energy nodal level and the ground state level. Moreover,

we are interested in looking for solutions when the nonlinearity involved has exponential

growth, which is the maximal growth that allows us to treat the problems by variational

methods. We emphasize that, in this thesis, we do not use the extension method in

[19] and we prefer to analyze directly the problem by exploring the properties of the

fractional Laplacian operator.

This thesis is divided into four chapters and one appendix. In what follows, we

describe each of the chapters.

In Chapter 1, we study the existence of a least energy nodal solution and ground

state solution for the following class of problems: (−∆)
1
2u+ V (x)u = f(u) in Ω

u = 0 in R \ Ω,
(1)

where Ω = (a, b) is a bounded open interval, V : [a, b] → [0,∞) is a continuous

function, the nonlinear term f : R → R is of class C1 and behaves like exp(t2) as

3



t→∞. In fact, exponential growth like exp(t2) is the maximal growth that allows us

to apply variational methods to treat problem (1). Next, we recall some known facts

involving the limiting Sobolev embedding theorem in one-dimension. If s ∈ (0, 1/2)

then the Sobolev embedding states that Hs(R) ↪→ L2∗s(R), where 2∗s := 2/(1 − 2s)

is the fractional critical Sobolev exponent. Moreover, this same result ensures that

H1/2(R) ↪→ Lq(R) for any q ∈ [2,∞), but H1/2(R) is not continuously embedded in

L∞(R) (for more details see [32, 61]). Thus, if s ∈ (0, 1/2) then the maximal growth

on the nonlinearity f(t), which lets us to work with (1) by considering a variational

approach in Hs(R), is given by |t|2∗s−1 as |t| → ∞. On the other hand, in the limiting

case s = 1/2, the maximal growth on f(t), which allows us to study (1) by applying a

variational framework involving the space H1/2(R), it is motivated by the Trudinger-

Moser inequality proved by Ozawa [61] and improved by Kozono et al. in [53] and

Takahashi in [69]. Precisely, by combining some of the results contained in [53, 61, 69],

it was established that

sup
{u∈H1/2(R) : ‖u‖1/2,2≤1}

∫
R
(eαu

2 − 1)dx <∞, (2)

for any 0 ≤ α ≤ π, where

‖u‖1/2,2 :=

(
1

2π

∫
R2

|u(x)− u(y)|2

|x− y|2
dxdy + ‖u‖2

2

)1/2

,

is the so-called full Sobolev norm on H1/2(R). Motivated by (2), we say that f(t) has

exponential critical growth if there exists α0 > 0 such that

lim
|t|→∞

f(t)e−α|t|
2

=

0, for all α > α0,

∞, for all α < α0,

(3)

and we say that f(t) has exponential subcritical growth if

lim
|t|→∞

f(t)e−α|t|
2

= 0, for all α > 0. (4)

Based on this notion of criticality, many papers have been developed in order to

study issues related to the existence of solutions for problems involving the fractional

Laplacian operator and nonlinearities with exponential growth. For example, existence

and multiplicity of solutions for similar problems to (1) were treated by di�erent meth-

ods in [49, 50, 63]. By exploiting (2) and the Mountain-Pass Theorem, Iannizzotto

4



and Squassina [50] proved the existence and multiplicity of solutions for the class of

one-dimensional nonlocal equations (−∆)
1
2u = f(u) in (a, b),

u = 0 in R \ (a, b),

when f(t) is o(|t|) at the origin and behaves like eαt
2
as |t| → +∞, for some α > 0.

Giacomoni et al. [49] studied the problem
(−∆)

1
2u = λg(x)|u|q−2u+ upeu

β
in (a, b),

u > 0 in (a, b)

u = 0 in R \ (a, b),

where 1 < q < 2, p > 1, 0 ≤ β ≤ 2, λ > 0 and the function g ∈ L
p+q+β
p+q+β−1 (a, b).

The authors showed the existence of mountain-pass solution when the nonlinearity

is concave near at origin and has exponential growth at in�nity. Furthermore, they

showed the existence of multiple solutions for a suitable range of λ, by analyzing the

�bering maps and the corresponding Nehari manifold.

We point out that none of the previous papers treated the existence of sign-

changing solution (nodal solution). After a bibliographic review, we did not �nd works

that study nodal solutions for similar problems to (1), even in the case that the nonlin-

earity has exponential subcritical growth. Motivated by this fact, our goal is to prove

the existence of least energy nodal solutions for problem (1) when the nonlinearity has

exponential growth in the Trudinger-Moser sense.

In order to �nd nodal solutions and ground state solutions for problem (1), we

assume the following assumptions on the nonlinearity f :

(H1) f ∈ C1(R) and there exists C0 > 0 such that

|f(t)| ≤ C0e
πt2 , for all t ∈ R;

(H2) lim
t→0

f(t)

t
= 0;

(H3) there exists θ > 2 such that

0 < θF (t) := θ

∫ t

0

f(s)ds ≤ tf(t), for all t ∈ R \ {0};

5



(H4) the function
f(t)

|t|
is strictly increasing for t 6= 0;

(H5) there exist constants p > 2 and Cp > 0 such that

sgn(t)f(t) ≥ Cp|t|p−1, for all t ∈ R.

We observe that the hypothesis (H1) allows us to consider nonlinearities with

subcritical or critical growth in the sense de�ned in (3) and (4).

In this context, due to the critical growth on the nonlinearity f , a well-known

di�culty to study the class of problems (1) is the loss of compactness of the energy

functional associated. By analyzing an auxiliary polynomial problem involving the

function |t|p−2t, we will consider an estimate from below for the constant Cp > 0 in

(f5). Thus, we will obtain a suitable estimate for minimum energy of nodal solutions

of (1) in way to overcome the lack of compactness. Under the hypotheses (H1)− (H5),

we will prove that the problem possesses a least energy nodal solution and a ground

state solution. We also will show that the ground state solution is a nonpositive or a

nonnegative function. Moreover, the energy of any sign-changing solution is strictly

larger than twice the ground state energy (see Theorem 1.1.2 and Theorem 1.1.3). This

property is the so-called energy doubling by Weth [71]. We emphasize that the results

of this chapter were published in the article [29].

In Chapter 2, we deal with the following class of problems:

(−∆)
1
2u+ V (x)u = K(x)f(u) in R, (5)

where V,K : R→ R+ are continuous potentials and f : R→ R has exponential growth

in the sense of the Trudinger-Moser as in (3) and (4). Our goal in this chapter is to

show that, under appropriate conditions in f , V and K, problem (5) has a least energy

nodal solution and a nodal solution, which are distinct.

By exploiting the Trudinger-Moser embedding due to Ozawa [61] and the Mountain-

Pass Theorem, do Ó et al. in [36] proved the existence of ground state solutions for

the following class of nonlinear scalar �eld equations: (−∆)
1
2u+ u = f(u) in R,

u(x)→ 0, as |x| → ∞,
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when f(t) = o(|t|) at the origin and behaves like eαt
2
as |t| → +∞, for some α > 0. In

[27], Souza and Araújo considered a perturbation of this problem by a general potential

V (x), namely,  (−∆)
1
2u+ V (x)u = f(u) in R,

u(x)→ 0, as |x| → ∞,

where V (x) is a nonnegative function which is asymptotically periodic at in�nity. See

also [2, 23, 28, 34, 35, 48] for others investigations.

We would like to point out that recently Miyagaki and Pucci [60] have considered

a nonlocal Kirchho� problem of the form

−M(‖u‖)((−∆)
1
2u+ V (x)u) = K(x)f(u) in R, (6)

where M : R+ → R+ is a continuous Kirchho� function, V and K are continuous

positive potentials satisfying the conditions introduced in [34] and f is a nonlinearity

with exponential critical growth with respect to the Trudinger-Moser inequality estab-

lished by Ozawa [61]. In this work, by applying suitable variational methods, in order

to overcome the lack of compactness due to the unboundedness of the domain and

the Trudinger-Moser inequality, the authors have obtained the existence of nontrivial

solutions for (6).

Again, we point out that none of the previous works treated the existence of

sign-changing solution (nodal solution).

In this chapter, we assume the following assumptions on the functions V and K:

(V1) V,K : R→ [0,∞) are continuous and K ∈ L∞(R);

(V2) there exist b0, R0 > 0 such that

V (x) ≥ b0, for |x| ≥ R0;

We emphasize that, assumptions (V1) − (V2) allow that the potential V can be

zero in a bounded interval. Since problem (5) is set on the whole real line, we face

loss of compactness. Here, motivated by do Ó et al. in [35], in order to overcome this

di�culty, we assume the following assumption on K:

(K1) if {An} is a sequence of Borel sets of R with sup
n∈N
|An| ≤ R, for some R > 0, then

lim
r→∞

∫
An∩Bcr(0)

K(x) dx = 0,

7



uniformly with respect to n ∈ N.

With respect to the nonlinearity f , we suppose that f satis�es conditions (H2)−

(H5) and the hypothesis

(H ′1) f ∈ C1(R) and there exist C0, t0 > 0 such that

|f(t)| ≤ C0

(
eπt

2 − 1
)
, for all |t| ≥ t0;

By exploring the hypotheses (K1) and (H5), we handle with the lack of compact-

ness due the unboundedness of the domain and the critical behavior of the nonlinearity.

In fact, under theses hypotheses, we will show similar results to Chapter 1. Our goal is

to show that problem (5) has a least energy nodal solution and a ground state, which

are distinct. Moreover, we also show that the energy of any nodal solution is strictly

larger than twice the ground state energy (see Theorem 2.2.3 and Theorem 2.2.4).

In Chapter 3, we study the existence of least energy nodal solution and ground

state solutions for the following class of fractional Kirchho�-type problems (a+ b‖u‖2)
[
(−∆)1/2u+ V (x)u

]
= f(u) in Ω,

u = 0 in R \ Ω,
(7)

where a > 0, b ≥ 0, Ω ⊂ R is a bounded open interval, V : Ω→ [0,∞) is a continuous

potential, f ∈ C1(R) is a function that may have the exponential subcritical or critical

growth in the Trudinger-Moser sense as in (3) and (4). Here, the function u belongs

to an appropriate functional space and the norm ‖u‖ is de�ned by

‖u‖ =

(
1

2π

∫
R2

|u(x)− u(y)|2

|x− y|2
dxdy +

∫
Ω

V (x)|u|2dx

)1/2

.

The motivation to study problem (7) comes from Kirchho� equations of the type

−(a+ b‖∇u‖2
2) ∆u = g(x, u) in Θ, (8)

where Θ ⊂ RN is a bounded domain, N ≥ 2, u satis�es some boundary conditions

and g(x, u) satis�es some suitable assumptions. This class of problems is related to

the stationary problem of a model introduced by Kirchho� (see [52]) in the study on

transverse vibrations of elastic strings proposed by the hyperbolic equation

ρ
∂2u

∂t2
−

(
τ0

h
+
E

2L

∫ L

0

∣∣∣∣∂u∂x
∣∣∣∣2 dx

)
∂2u

∂x2
= 0, (x, t) ∈ [0, L]× [0,+∞), (9)
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where the parameters in the equation have the following meanings: L is the length of

the string, h is the area of cross-section, E is the Young modulus of the material, ρ is

the mass density and τ0 is the initial tension. Eq. (9) is a generalization of the classical

d'Alembert's wave equation, by considering the e�ects of the changes in the length of

the strings during the vibrations. See [14, 58, 64] for classical studies of Kirchho�-type

problems.

Recently, Fiscella and Valdinoci [43] proposed a stationary Kirchho� model driven

by the fractional Laplacian by taking into account the nonlocal aspect of the tension,

see [43, Appendix A] for more details. The Problem (7) is a version of (8) for the

fractional Laplacian operator.

Similar problems to (7) have attracted a lot of attention of many researchers and

some existence and multiplicity results have been obtained. Using variational methods

in higher dimensions, the Kirchho� problem for the fractional operator involving non-

linearities of the type subcritical or critical power, in the sense of Sobolev, have been

investigated, for example, by [7, 20, 41, 42, 43] and references therein. For fractional

Kirchho� problems in unbounded domains, Cheng and Gao [21] studied the existence

of least energy nodal solution for the following equation:

(a+ b[u]N,s) (−∆)su+ V (x)u = f(x, u) in RN

where N > 2s, f is a Carathéodory function, f(x, s) = o(|s|3) as |s| → 0, f(x, s) =

o(|s|p−1) as |s| → ∞ and f(x, s)/|s|3 is nondeacreasing on R \ {0}.

A Kirchho� type problem involving exponential growth was treated by Giacomoni

et al. in [47], by using the Nehari method. Mingqi et al. in [59] proved the existence

and multiplicity of solutions for a class of fractional Kirchho�-type problems for the

p-fractional Laplace operator. None of the previous papers treated the existence of

sign-changing solution (nodal solution) for problem (7) when the nonlinearity has ex-

ponential growth. For the our knowledge, one of the �rst results in this direction is

due to [29] (which was treated in our �rst chapter), where the authors have considered

problem (7) with a > 0 and b = 0.

In Chapter 3, we will assume that f satis�es (H1)− (H2) and the conditions

(H ′3) there exists θ > 4 such that

0 < θF (t) := θ

∫ t

0

f(τ)dτ ≤ tf(t), for all t ∈ R \ {0};

9



(H ′4) the function
f(t)

|t|3
is strictly increasing, for t 6= 0.

(H ′5) there exist p > 4 and Cp > 0 such that

sgn(t)f(t) ≥ Cp|t|p−1, for all t ∈ R.

Due to the critical exponential growth on f , we need to overcome the loss of

compactness of the energy functional associated to (7). As in Problem (1) of Chapter

1, the key to overcome this di�cult is to exploit suitably the constant Cp > 0 in (H5).

However, the Kirchho� term in (7) produces many additional di�culties in this study.

By using an auxiliary Kirchho� problem involving the polynomial function |t|p−2t/2,

we will �nd an estimate from below for Cp and therefore, under theses hypotheses, we

prove the existence of at least three nontrivial solutions: a least energy nodal solution,

one nonpositive and one nonnegative ground state solution. We will also study the

asymptotic behavior of the nodal solutions as b → 0+. Explicitly, we will show that

if (bn) ⊂ R is a sequence such that bn > 0 and bn → 0+, then problem (Pa,bn) has a

least nodal solution ubn and, up to a subsequence, this sequence converge strongly (in

an appropriated subspace of H1/2(R)) to u0, where u0 is a least energy nodal solution

of problem (Pa,0) (see Theorem 3.1.2, Theorem 3.1.3 and Theorem 3.1.4).

Finally, in Chapter 4, we study the existence and multiplicity solutions for the

following class of problems involving the fractional N/s-Laplacian operator: (−∆)sN/su+ V (x)|u|Ns −2u = λf(x, u) in Ω,

u = 0 in RN \ Ω,
(10)

where λ > 0, s ∈ (0, 1), Ω ⊂ RN is a bonded domain with Lipschitz boundary ∂Ω,

N ≥ 2, V : Ω → R is a continuous and nonnegative potential, and the nonlinearity f

can have the maximal exponential growth, which allows us to study (10) by means of

variational methods. We assume that the nonlinearity f satis�es the conditions

(H̃1) f(x, t) is continuous and continuously di�erentiable in the variable t, and there

exist C0, α0 > 0 such that

|f(x, t)| ≤ C0e
α0|t|

N
N−s

, for all (x, t) ∈ Ω× R;

(H̃2) lim
t→0

f(x, t)

|t|Ns −2t
= 0 uniformly in x ∈ Ω;

10



(H̃3) there exists θ > N
s
such that

0 < θF (x, t) := θ

∫ t

0

f(x, τ) dτ ≤ tf(x, t), uniformly in Ω, for all t 6= 0;

(H̃4) the function t 7→ f(x, t)/|t|Ns −2t is strictly increasing on (0,∞) and strictly de-

creasing on (−∞, 0), uniformly in x ∈ Ω;

(H̃5) there exist p > N
s
and C > 0 such that

sgn(t)f(x, t) ≥ C|t|p−1, for all t ∈ R, uniformly in x ∈ Ω.

Recently, Parini and Ruf in [62] proved a Trudinger-Moser inequality type for the

fractional Sobolev space W̃ s,N/s
0 (Ω) ⊂ W s,N/s(Ω), de�ned as the closure of C∞0 (U) with

respect to the norm

u 7→
(

[u]
N/s
s,N/s + ‖u‖N/s

LN/s(Ω)

) s
N
.

In our context, the space W̃ s,N/s
0 (Ω) can be described by

W̃
s,N/s
0 (Ω) = {u ∈ LN/s(Ω) : u ≡ 0 in RN \ Ω and [u]s,N/s <∞},

which is the appropriate functional space to treat problem (10) (for more details, see

Section 4.3). In fact, they proved that there exists α∗ > 0 such that

sup
{u∈W̃ s,N/s

0 (Ω) : [u]s,N/s≤1}

∫
Ω

eα|u|
N/(N−s)

dx <∞ (11)

for all α ∈ [0, α∗) and there exists α∗s,N such that the supremum in (11) is in�nity for

all α > α∗s,N (see also [16, 17]).

In [63], Perera and Squassina, by using a suitable topological argument based on

cohomological linking and by exploiting the Trudinger-Moser inequality, have studied

the existence of multiple solutions for the following problem: (−∆)sN/su = λ|u|(N−2s)/s exp(|u|N/(N−s)) in Ω,

u = 0 in R \ Ω,

where λ > 0 is a parameter. Mingqi et al. in [59] investigated the existence of solutions

for folloowing class of fractional Kirchho�-type problems: M

(∫
R2N

|u(x)− u(y)|N/s

|x− y|2N
dxdy

)
(−∆)sN/su = f(x, u) in Ω,

u = 0 in R \ Ω,
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where N ≥ 1, Ω ⊂ RN is a bounded domaim with Lipschitz boundary ∂Ω, M :

[0,∞) → [0,∞) and f : Ω × R → R are continuous functions with f that behaves

like exp(α|t|
N
N−s ) as t → ∞. They proved the existence of a ground state solution

with positive energy and the existence of nonnegative solutions with negative energy.

By exploting a suitable Trudinger-Moser inequality for fractional Sobolev spaces in

unbounded domains and a �xed point theorem, M. de Souza in [26] proved the existence

of solution for the following fractional p-Laplacian equation:

(−∆)spu+ V (x)|u|p−2u = f(x, u) + λh in RN ,

where the nonlinear term f has exponential growth.

Ghosh at al. in [46] proved the existence of least energy nodal solution for the

following fractional p-Laplacian problem: (−∆)spu = λg(u) + f(x, u) in Ω,

u = 0 in RN \ Ω,

where g(s) is singular at the origin and f is a power nonlinearity. For others similar

problems, in the context of fractional Kirchho� operators dealing with nodal solutions,

see also [21, 45].

As we know, condition (H̃1) is the maximal growth which allows us to treat

(10) variationally. Under assumptions (H̃1) − (H̃5), we show that (10) has one least

energy nodal solution, one nonnegative and one nonpositive ground state solutions (see

Theorem 4.2.2 and Theorem 4.2.3). We point out that our results complete the study

presented in [21, 45, 46, 59, 63], since we work with nonlinearities that have maximal

exponential growth and because we are interested in looking for nodal solutions.

In what follows, we will present a fundamental di�erence between problems in-

volving local and nonlocal operators. In the special case of the stationary Schrödinger

equation

−∆u+ V (x)u = f(u) in RN , (12)

there are several ways in the literature to obtain sign-changing solutions (see [3, 4, 9,

12, 44, 72]). However, the methods used in these works heavily rely on the following

two decompositions:

J(u) = J(u+) + J(u−), (13)

12



J ′(u)u+ = J ′(u+)u+ and J ′(u)u− = J ′(u−)u−, (14)

where J is the energy functional associated to (12) given by

J(u) =
1

2

∫
RN

(|∇u|2 + V (x)u2)dx−
∫
RN
F (u)dx.

However, due to the Gagliardo seminorm [u]s,q, the energy functional does not satisfy

the decompositions as in (13) and (14). For example, if I is the energy functional

associated to problem (1) and u± 6= 0, then

I(u) > I(u+) + I(u−),

I ′(u)u+ > I ′(u+)u+ and I ′(u)u− > I ′(u−)u−.

(see Lemma 1.2.3 and Lemma 4.3.6). This fact shows a great di�erence with the

local operators case. Thus, the methods used to �nd nodal solutions for the local

problems (such as problems involving the Laplacian operator) usually rely on these

decompositions. Therefore, these methods seem not be applicable for our problem.

Furthermore, since the nonlinear term f has exponential critical growth, we have the

di�culty of the loss of compactness of the energy functional.

Finalizing this introduction, we emphysize that the main tools used in this work

are the following: Trudinger-Moser inequality, constraint variation methods, quantita-

tive deformation lemma, Montain-Pass Theorem and results of the degree theory.

In order to we do not resort to the Introduction and for the sake of independence

of the chapters, we will present again, in each chapter, the main results and the related

assumptions.
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Notation and terminology

� C, Ci, i = 1, 2, ..., denote positive (possibly di�erent) constants;

� C(ε) denotes positive constant which depends on the parameter ε;

� BR(x) denotes the ball centered at x ∈ RN and radius R and BR = BR(0);

� for a subset Ω ⊂ RN , we denote by ∂Ω, Ω, |Ω| and Ωc, the boundary, the closure,

the Lebesgue measure and the complement of Ω in RN , respectively;

� χΩ denotes the characteristic function of a set Ω ⊂ RN , that is, χΩ(x) = 1 if

x ∈ Ω and χΩ(x) = 0 if x ∈ Ωc;

� u+(x) = max{u(x), 0} and u−(x) = min{u(x), 0};

� on(1) denotes a sequence that converges to zero;

� for 1 ≤ p ≤ ∞, the standard norm in Lp(RN) is denoted by ‖ · ‖p;

� un ⇀ u and un → u denote weak and strong convergence, respectively, in a

normed space;

� C∞0 (Ω) denotes the space of in�nitely di�erentiable real functions whose support

is compact in Ω ⊂ RN .



Chapter 1

Ground state and nodal solutions for

a class of fractional equations

involving exponential growth in a

bounded domain

In the present chapter we study the existence of least energy nodal solution and

ground state solution for a Dirichlet problem in an open bounded interval Ω = (a, b)

driven by the 1
2
−Laplacian operator with the nonlinearity that grows like exp(t2) as

t → ∞. By using the constraint variational method and quantitative deformation

lemma, we obtain a least energy nodal solution u for the given problem. Moreover, we

show that the energy of u is strictly larger than twice the ground state energy. The

results of this chapter were published in the article [29].

1.1 Introduction and main results

In this section, we consider the existence and multiplicity of weak solutions for

the following class of equations: (−∆)
1
2u+ V (x)u = f(u) in Ω

u = 0 in R \ Ω,
(1.1)



where Ω = (a, b) is a bounded open interval, V : [a, b] → [0,∞) is a continuous and

nonnegative function, the nonlinear term f : R→ R is a C1 function that may have a

subcritical or critical exponential growth in the Trudinger-Moser sense due to Ozawa

[61] (see (1.4) and (1.5)), (−∆)
1
2 is the 1/2-Laplacian operator which, for u ∈ C∞0 (R),

is de�ned as

(−∆)
1
2u(x) = − 1

2π

∫
R

u(x+ y) + u(x− y)− 2u(x)

|y|2
dy. (1.2)

In order to study variationally the problem (1.1), we consider a suitable subspace

of the fractional Sobolev space H1/2(R). The fractional Sobolev space H1/2(R) is

de�ned as the space

H1/2(R) =

{
u ∈ L2(R) :

∫
R2

(u(x)− u(y))2

|x− y|2
dxdy <∞

}
and it is equipped with the norm

‖u‖H1/2(R) :=
(
[u]21/2 + ‖u‖2

2

)1/2
,

where

[u]21/2 =

∫
R2

|u(x)− u(y)|2

|x− y|2
dxdy

is the Gagliardo seminorm of u.

We are interested in study the problem (1.1) in the case that the nonlinearity

f(t) has the maximal growth which allows us to treat problem (1.1) variationally in

H1/2(R). In order to improve the presentation of the hypotheses on f , we recall some

well-known facts involving the limiting Sobolev embedding theorem in one-dimension.

If s ∈ (0, 1/2), the Sobolev embedding states that Hs(R) ↪→ L2∗s(R), where 2∗s :=

2/(1 − 2s) (the critical Sobolev exponent). Moreover, this same result ensures that

H1/2(R) ↪→ Lq(R) for any q ∈ [2,∞) but H1/2(R) is not continuously embedded in

L∞(R) (for more details see [32, 61]). Thus, if s ∈ (0, 1/2), the maximal growth on

the nonlinearity f(t), which lets us to work with (1.1) by considering a variational

approach in Hs(R), is given by |t|2∗s−1 as |t| → ∞. On the other hand, in the limiting

case s = 1/2, the maximal growth on f(t), which allows us to study (1.1) by applying

a variational framework involving the space H1/2(R), it is motivated by the Trudinger-

Moser inequality proved by Ozawa [61] and improved by Kozono et al. in [53] and
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Takahashi in [69]. Precisely, by combining some of the results contained in [53, 61, 69],

it is established that

sup
{u∈H1/2(R) : ‖u‖1/2,2≤1}

∫
R
(eαu

2 − 1)dx <∞, (1.3)

for any 0 ≤ α ≤ π, where

‖u‖1/2,2 :=

(
1

2π

∫
R2

|u(x)− u(y)|2

|x− y|2
dxdy + ‖u‖2

2

)1/2

.

Motivated by (1.3), we say that f(t) has exponential critical growth if there exists

α0 > 0 such that

lim
|t|→∞

f(t)e−α|t|
2

=

0, for all α > α0,

∞, for all α < α0,

(1.4)

and we say that f(t) has exponential subcritical growth if

lim
|t|→∞

f(t)e−α|t|
2

= 0, for all α > 0. (1.5)

Based on this notion of criticality, many papers have been developed in order to

study issues related to the existence of solutions for problems involving the fractional

Laplacian operator and nonlinearities with exponential growth. For example, existence

and multiplicity of solutions of the problems similar to (1.1) were treated by di�erent

methods in [49, 50, 63]. We also mention [27, 28, 34, 36, 48] for others investigations

in the one dimensional case on the whole space R. However, we point out that none

of the previous papers treated the existence of nodal solution (sign-changing solution).

Motivated by this fact, our goal in this chapter is proving the existence nodal solutions

for problem (1.1) when the nonlinearity has exponential critical or subcritical growth

in the Trudinger-Moser sense as (1.5) and (1.4).

In order to reach this goal, we assume the following assumption on the potential

V :

(V1) V : Ω → R is continuous and nonnegative, where Ω = (a, b) is a bounded open

interval.

On the nonlinearity f , we assume the following assumptions:
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(f1) f ∈ C1(R) and there exists C0 > 0 such that

|f(t)| ≤ C0e
πt2 , for all t ∈ R;

(f2) lim
t→0

f(t)

t
= 0;

(f3) there exists θ > 2 such that

0 < θF (t) := θ

∫ t

0

f(s)ds ≤ tf(t), for all t ∈ R \ {0};

(f4) the function
f(t)

|t|
is strictly increasing for t 6= 0;

(f5) there exist constants p > 2 and Cp > 0 such that

sgn(t)f(t) ≥ Cp|t|p−1, for all t ∈ R.

Example 1.1.1 If p > 2, the nonlinearity

f(t) = Cp|t|p−2t+ |t|p−2tet
2

satis�es the assumptions (f1)− (f5).

In order to study variationally the problem (1.1), we consider a suitable subspace

of the fractional Sobolev space H1/2(R) de�ned as follows

X := {u ∈ H1/2(R) : u = 0 in R \ Ω}, (1.6)

equipped with inner product

〈u, v〉 =
1

2π

∫
R2

(u(x)− u(y))(v(x)− v(y))

|x− y|2
dxdy +

∫
Ω

V (x)uv dx (1.7)

and the corresponding norm

‖u‖ =

(
1

2π

∫
R2

|u(x)− u(y)|2

|x− y|2
dxdy +

∫
Ω

V (x)|u|2dx

)1/2

By (V1), Proposition 2.2 and Proposition 2.3 of [50], X is a Hilbert space and X is

continuous and compactly embedded in Lq(R), see Lemma 1.2.1.

In this context, we say u ∈ X is a weak solution of (1.1) (or simply solution) if

1

2π

∫
R2

(u(x)− u(y))(v(x)− v(y))

|x− y|2
dxdy +

∫
Ω

V (x)uv dx−
∫

Ω

f(u)vdx = 0,
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for all v ∈ X. If u is a weak solution of (1.1) such that u± 6= 0, we say that u is a

nodal solution, where u+(x) = max{u(x), 0} and u−(x) = min{u(x), 0}.

As we shall see in Section 2, the space X has nice properties. In particular, I

given by

I(u) =
1

2
‖u‖2 −

∫
Ω

F (u)dx (1.8)

is well de�ned in X, where F (t) :=
∫ t

0
f(τ)dτ . Moreover, I ∈ C1(X,R) and its critical

points are weak solutions of (1.1).

Now, we de�ne the Nehari sets associated to I and their respective minimums

energy level by:

� The Nehari set and the ground state level

N = {u ∈ X \ {0} : I ′(u)u = 0} and cN := inf
u∈N

I(u); (1.9)

� The nodal Nehari set and the nodal level

M := {u ∈ X : u± 6= 0 and I ′(u)u± = 0} and cM := inf
u∈M

I(u). (1.10)

We say that a nonzero critical point w ∈ X of I is a least energy solution (ground

state solution) if w achieves the minimum cN . Note that, if u is a solution of (1.1),

taking u+ and u− as test functions, we get

I ′(u)u+ = 0 and I ′(u)u− = 0.

Then, any sing-changing solution to (1.1) belongs to M. If w ∈ M is a solution of

(1.1) such that I(w) = cM we say that w is a least energy nodal solution (1.1).

Our main result of this chapter is the following:

Theorem 1.1.2 Suppose that (V1) and (f1) − (f5) are satis�ed. Then problem (1.1)

possesses a least energy nodal solution, provided that

Cp >

[
2θcMp

θ − 2

](p−2)/2

,

where

cMp = inf
u∈Mp

Ip(u), Mp = {u ∈ X : u± 6= 0, I ′p(u)u± = 0}

and

Ip(u) =
1

2
‖u‖2 − 1

p

∫
Ω

|u|pdx.
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Another goal of this paper is to prove that the energy of any sign-changing solution

of (1.1) is strictly larger than twice the ground state energy. This property is the so

called energy doubling by Weth [71].

Theorem 1.1.3 Suppose that (V1) and (f1) − (f5) are satis�ed. Then cN > 0 is

achieved for a solution of (1.1) and

I(w) > 2cN , (1.11)

where w is the least energy nodal solution obtained in Theorem 1.1.2. In particular, cN
is achieved either by a nonnegative or a nonpositive function.

It is interesting to note that in the last decades the existence and multiplicity of

positive and nodal solutions of classical elliptic problems have been widely investigated,

see [3, 4, 9, 10, 11, 12, 44, 72] and references therein. Specially, some results on nodal

solutions of nonlinear elliptic equations involving di�erent operators have been obtained

by combining minimax method with invariant sets of descending �ow, such as Laplacian

operator [9, 11, 12], p−Laplacian operator [10] and Schrödinger operator [3, 4, 44].

In the special case of the stationary equation of Schrödinger

−∆u+ V (x)u = f(u) in RN , (1.12)

there are several ways in the literature to obtain sign-changing solution (see [3, 4, 9,

12, 44, 72]). However, the methods used in these works heavily rely on the following

two decompositions:

J(u) = J(u+) + J(u−), (1.13)

J ′(u)u+ = J ′(u+)u+ and J ′(u)u− = J ′(u−)u−, (1.14)

where J is the energy functional of (1.12) given by

J(u) =
1

2

∫
RN

(|∇u|2 + V (x)u2)dx−
∫
RN
F (u)dx.

In the case of problem (1.1), the functional associated does not possess the same

decompositions as (1.13) and (1.14). Indeed, since 〈u+, u−〉 > 0 when u± 6= 0, a

straightforward computation yields that (see Lemma 1.2.3)

I(u) > I(u+) + I(u−),
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I ′(u)u+ > I ′(u+)u+ and I ′(u)u− > I ′(u−)u−,

where I is de�ned in (1.8). Therefore, the methods used to obtain sign-changing

solutions for the local problem (1.12) seem not be applicable to problem (1.1). Note

thatM⊂ N . If u ∈M, then

u+ /∈ N and u− /∈ N .

This a big di�erence between nonlocal and local problems.

Furthermore, a second well-known di�culty for the class of problems (1.1) is the

loss of compactness due to the critical growth on the nonlinearity f .

In order to overcome these di�culties, we de�ne the following constrained set

M = {u ∈ X : u± 6= 0 and I ′(u)u± = 0}

and consider a minimization problem of I onM. Borrowing ideas from [21], we prove

M 6= ∅ via modi�ed Miranda's theorem (see Lemma 1.3.5 and Lemma 1.3.6). Combin-

ing the ideas developed in [3, 4, 11, 21], we prove that the minimizer of the constrained

problem is also a sign-changing solution via the quantitative deformation lemma and

degree theory (see Section 1.3 and Section 1.4).

Remark 1.1.4 Using the regularity results due to Servadei and Valdinoci [68], we have

that the weak solutions of problem (1.1) obtained in Theorems 1.1.2 and 1.1.3 belong

to C(R).

Remark 1.1.5 In the hypothesis (f1) we assume that |f(t)| ≤ C0e
πt2. This growth

condition allows us to consider nonlinearities with critical growth in the sense de�ned

in (1.4) with an exponent α0 = π and with subcritical growth in the sense de�ned in

(1.5). More generally, we can consider an exponent α0 di�erent from π. In this more

general case, this new constant would imply a normalization of the constant Cp de�ned

in Theorem 1.1.2.

Remark 1.1.6 We point out that the results of this chapter were published in [29] and

complement the works [48, 49, 50, 63] in the sense that we prove the existence of sign-

change solutions and the work [21] in the sense that we consider exponential growth on

the nonlinearity. Furthermore, our results extend for the fractional Laplacian some of

the results contained in [3, 4, 72].

The outline of this chapter is as follows: Section 1.2 contains some notations and

it is established a version of the Trudinger-Moser inequality for the class of problem
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(1.1). In addition, the variational framework is presented. Section 1.3 is dedicated to

the study of the nodal set and the nodal level, the main goal is to prove that the nodal

level is attained. In Section 1.4, we complete the proof of Theorem 1.1.2 and Section

1.5 is proved Theorem 1.1.3.

1.2 Variational formulation and preliminary results

Next we shall prove the �rst lemma of this work.

Lemma 1.2.1 Under the assumption (V1), the embedding X ↪→ Lq(R) is continuous

and compact for all q ∈ [1,∞).

Proof . From [50, Proposition 2.2], we obtain that the embedding X ↪→ H1/2(Ω) is

continuous, and from [32, Theorem 6.9], [32, Theorem 6.10] and [32, Theorem 7.1],

the embedding H1/2(Ω) ↪→ Lq(Ω) is continuous and compact for all q ∈ [1,∞). This

completes the proof.

The main tool to study problems involving exponential growth in the fractional

Sobolev space is the fractional Trudinger-Moser inequality due to Ozawa [61]. In this

work, combining the results due to [61] and [69] we prove a version of this inequality

for the space X in the next lemma.

Lemma 1.2.2 If 0 ≤ α ≤ π, it holds

sup
{u∈X : ‖u‖≤1}

∫
Ω

eαu
2

dx <∞. (1.15)

Moreover, for any α > 0 and u ∈ X, we have∫
Ω

eαu
2

dx <∞. (1.16)

Proof . The �rst statement of the result follows from [32, Proposition 3.3] and [69,

Proposition 1]. For the second part, let u ∈ X. By density, (see [32, Theorem 2.4])

given ε > 0, there exists ϕ ∈ C∞0 (Ω) such that ‖u− ϕ‖ < ε. Using Young's inequality

we have

eαu
2 ≤ e2α((u−ϕ)2+ϕ2) ≤ 1

2
e4α(u−ϕ)2 +

1

2
e4αϕ2

.

Then ∫
Ω

eαu
2

dx ≤ 1

2

∫
Ω

e4α‖u−ϕ‖2( u−ϕ
‖u−ϕ‖ )2dx+

1

2

∫
Ω

e4αϕ2

dx.
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Choosing ε > 0 such that 4αε2 ≤ π, by (1.15) we have∫
Ω

eαu
2

dx ≤ C +
1

2

∫
supp(ϕ)

e4αϕ2

dx <∞

and this completes the proof of the lemma.

As a consequence of Lemma 1.2.2 and (f1) the energy functional I : X −→ R

given by

I(u) =
1

2
‖u‖2 −

∫
Ω

F (u)dx (1.17)

is well de�ned. Moreover, by Lemma 1.2.2, it is standard to show that I ∈ C1(X,R)

and, for every u, v ∈ X,

I ′(u)v =
1

2π

∫
R2

(u(x)− u(y))(v(x)− v(y))

|x− y|2
dxdy +

∫
Ω

V (x)uvdx−
∫

Ω

f(u)vdx.

Therefore, a critical point of I is a weak solution of (1.1) and reciprocally.

Our goal in this paper is to show that problem (1.1) has a nodal solution. As we

saw in the Introduction one of the di�culties is the fact that the functional I does not

possess the decompositions (1.13) and (1.14). In fact, inspired by [21], we have:

Lemma 1.2.3 Let u ∈ X. Then,

(i) 〈u, u±〉 = 〈u±, u±〉+
1

π

∫
R2

u+(x)(−u−(y))

|x− y|2
dxdy,

(ii) if u± 6= 0, 〈u+, u−〉 > 0,

(iii) I(u) > I(u+) + I(u−),

(iv) I ′(u)u+ > I ′(u+)u+ and I ′(u)u− > I ′(u−)u−.

Proof . By density (see [32, Theorem 2.4]) we can assume that u is continuous. We

de�ne

Ω+ = {x ∈ Ω : u(x) ≥ 0},Ω− = {x ∈ Ω : u(x) ≤ 0}

U(x, y) =
u(x)− u(y)

|x− y|2
and U(x+, y+) =

u+(x)− u+(y)

|x− y|2
.

Using the above notation, we have∫
R2

(u(x)− u(y))(u+(x)− u+(x))

|x− y|2
dxdy =

∫
R2

U(x, y)(u+(x)− u+(x))dxdy.
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Now, since u = 0 in Ωc, we get∫
R2

U(x, y)(u+(x)− u+(x))dxdy =

∫
Ω×Ωc

U(x, y)(u+(x)− u+(x))dxdy

+

∫
Ω×Ω

U(x, y)(u+(x)− u+(x))dxdy

+

∫
Ωc×Ω

U(x, y)(u+(x)− u+(x))dxdy.

Moreover, since Ω×Ωc = (Ω+×Ωc)∪ (Ω−×Ωc) and Ωc×Ω = (Ωc×Ω+)∪ (Ωc×Ω−),

we can deduce that∫
R2

U(x, y)(u+(x)− u+(x))dxdy =

∫
Ω×Ω

U(x, y)(u+(x)− u+(x))dxdy

+2

∫
Ω+×Ωc

U(x, y)(u+(x)− u+(x))dxdy.
(1.18)

Similarly, we can show that∫
R2

U(x+, y+)(u+(x)− u+(x))dxdy =

∫
Ω×Ω

U(x+, y+)(u+(x)− u+(x))dxdy

+2

∫
Ω+×Ωc

U(x+, y+)(u+(x)− u+(x))dxdy.

(1.19)

By the expression of U(x, y) and U(x+, y+), we can easily check that U(x, y)|Ω+×Ωc =

U(x+, y+) and so

Du+ =

∫
Ω+×Ωc

U(x, y)(u+(x)− u+(x))dxdy =

∫
Ω+×Ωc

U(x+, y+)(u+(x)− u+(x))dxdy.

(1.20)

Therefore, by (1.18), (1.19) and (1.20), we have∫
R2

U(x, y)(u+(x)− u+(x))dxdy =

∫
R2

U(x+, y+)(u+(x)− u+(x))dxdy

+

∫
Ω×Ω

(U(x, y)− U(x+, y+))(u+(x)− u+(x))dxdy

(1.21)

Now, since Ω × Ω = (Ω+ × Ω+) ∪ (Ω+ × Ω−) ∪ (Ω− × Ω+) ∪ (Ω− × Ω−) and again by

the expression of U , we get∫
Ω×Ω

(U(x, y)− U(x+, y+))(u+(x)− u+(x))dxdy =

2

∫
Ω+×Ω−

(U(x, y)−U(x+, y+))(u+(x)−u+(x))dxdy = 2

∫
Ω+×Ω−

u+(x)(−u−(y))

|x− y|2
dxdy.

(1.22)
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Thus, by (1.7), (1.21) and (1.22), we obtain that

〈u, u+〉 =
1

2π

∫
R2

U(x, y)(u+(x)− u+(x))dxdy +

∫
Ω

V (x)|u+|2dx

= 〈u+, u+〉+
1

π

∫
Ω+×Ω−

u+(x)(−u−(y))

|x− y|2
dxdy,

and (i) is proved.

Now, since 〈u+, u−〉 = 〈u, u+〉 − 〈u+, u+〉, the item (ii) follows from (i).

Moreover, since I(u) = 〈u+, u−〉+ I(u+) + I(u−), I ′(u)u+ = 〈u+, u−〉+ I ′(u+)u+

and I ′(u)u− = 〈u+, u−〉+ I ′(u−)u− , the proof of (iii) and (iv) follows from (ii).

Corollary 1.2.4 If u ∈ X then

‖u‖2 ≥ ‖u+‖2 + ‖u−‖2.

Proof . By Lemma 1.2.3, we have

‖u‖2 = ‖u+‖2 + 2〈u+, u−〉+ ‖u−‖2 ≥ ‖u+‖2 + ‖u−‖2

which implies the desired inequality.

1.3 Constrained minimization problem

In order to obtain nodal solutions for (1.1), we de�ne the Nehari manifold and

nodal set associated to functional I by

N = {u ∈ X \ {0} : I ′(u)u = 0} (1.23)

and

M = {u ∈ X : u± 6= 0 and I ′(u)u± = 0}. (1.24)

The ground state level is de�ned by

cN := inf
u∈N

I(u) (1.25)

and the nodal level by

cM := inf
u∈M

I(u). (1.26)

Note that sinceM⊂ N we have cN ≤ cM.
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In the following, we shall study some properties of N andM. First, we observe

that by (f1)− (f2), given ε > 0 and q > 2, there exists a positive constant Cε such that

|f(t)| ≤ ε|t|+ Cε|t|q−1eπt
2

, for all t ∈ R (1.27)

and, by (f3), we have

|F (t)| ≤ ε|t|2 + Cε|t|qeπt
2

, for all t ∈ R. (1.28)

Moreover, by (f3), we can �nd positive constants C1 and C2 such that

F (t) ≥ C1|t|θ − C2, for all t ∈ R. (1.29)

Lemma 1.3.1 Assume that (V1) and (f1)−(f4) are satis�ed. Then, given u ∈ X \{0},
there exists a unique t = t(u) > 0 such that tu ∈ N . In addition, the number t satis�es

I(tu) = max
s≥0

I(su). (1.30)

Proof . Given u ∈ X \ {0}, we de�ne h(s) := I(su) for s ≥ 0. By (1.28), we get

h(s) ≥ s2

2
‖u‖2 − εs2

∫
Ω

|u|2dx− Cεsq
∫

Ω

|u|qeπs2u2dx. (1.31)

If s ∈ [0, 1], we have eπs
2u2 ≤ eπu

2
. Using Hölder's inequality, Lemma 1.2.1 and Lemma

1.2.2, we have ∫
Ω

|u|qeπs2u2dx ≤
(∫

Ω

|u|2qdx
) 1

2
(∫

Ω

e2πu2dx

) 1
2

<∞

whenever s ∈ [0, 1]. This together with (1.31) and Lemma 1.2.1 implies that there exist

positive constants C1 and C2 = C2(u), which do not depend on s, such that

h(s) ≥ s2

(
1

2
− εC1

)
‖u‖2 − C2s

q (1.32)

for all s ∈ [0, 1]. Now, choosing ε > 0 such that 1
2
− εC1 > 0, it follows from (1.32)

that

h(s) > 0 for s > 0 small enough. (1.33)

On the other hand, using (1.29) we get

h(s) ≤ s2

2
‖u‖2 − C1s

θ

∫
Ω

|u|θdx+ C2(b− a).
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Hence, since θ > 2

h(s)→ −∞, as s→∞. (1.34)

Therefore, from (1.33) and (1.34), there exists t = t(u) > 0 such that

I(tu) = max
s≥0

I(su),

and, consequently, tu ∈ N .

Now, if s > 0 is such that su ∈ N , we have

s2‖u‖2 =

∫
Ω

f(su)su dx

and since it also holds t2‖u‖2 =
∫

Ω
f(tu)tu dx, it follows that∫

Ω

(
f(tu)

tu
− f(su)

su

)
u2dx = 0. (1.35)

By (f4) and since u 6= 0, it follows from (1.35) that t = s. Thus, we �nish the proof.

Lemma 1.3.2 Assume that (V1) and (f1)−(f2) are satis�ed. Then there exists m0 > 0

such that ‖u‖2 ≥ m0, for all u ∈ N .

Proof . In order to obtain a contradiction, suppose that there exists (un) ⊂ N such

that ‖un‖ → 0 as n→∞. By de�nition we know that

‖un‖2 =

∫
Ω

f(un)undx. (1.36)

On the other hand, using (1.27), Hölder's inequality and Lemma 1.2.1, we get∫
Ω

f(un)undx ≤ ε

∫
Ω

|un|2dx+ Cε

∫
Ω

|un|qeπu
2
ndx

≤ ε‖un‖2
2 + Cε

(∫
Ω

|un|2qdx
) 1

2
(∫

Ω

e2πu2ndx

) 1
2

≤ ε‖un‖2
2 + Cε‖un‖q2q

(∫
Ω

e2π‖un‖2( un
‖un‖)

2

dx

) 1
2

≤ εC‖un‖2 + C‖un‖q
(∫

Ω

e2π‖un‖2( un
‖un‖)

2

dx

) 1
2

.

(1.37)

Since ‖un‖ → 0 as n→∞, we can �nd n0 ∈ N such that 2π‖un‖2 ≤ π for all n ≥ n0.

Hence, it follows from Lemma 1.2.2 that∫
Ω

e2π‖un‖2( un
‖un‖)

2

dx ≤ C. (1.38)
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From (1.36)-(1.38) we can �nd positive constants C1 and C2 such that

‖un‖2 ≤ εC1‖un‖2 + C2‖un‖q.

Choosing ε > 0 such that 1− εC1 > 0 and since (un) ⊂ N , we get

0 <

(
1− εC1

C2

)
≤ ‖un‖q−2.

But as q > 2 this contradicts the fact that ‖un‖ → 0. This completes the proof of the

lemma.

Corollary 1.3.3 Assume that (V1) and (f1) − (f3) are satis�ed. Then there exists

δ0 > 0 such that I(u) ≥ δ0, for all u ∈ N . In particular,

0 < δ0 ≤ cN ≤ cM.

Proof . Since I ′(u)u = 0, by Lemma 1.3.2 and (f3), we have

I(u) = I(u)− 1

θ
I ′(u)u

=

(
1

2
− 1

θ

)
‖u‖2 +

1

θ

∫
Ω

(f(u)u− θF (u)) dx

≥
(

1

2
− 1

θ

)
‖u‖2 ≥

(
1

2
− 1

θ

)
m0 := δ0,

which is the desired inequality.

Lemma 1.3.4 Assume that (V1) and (f1)−(f2) are satis�ed. Then there exists m′0 > 0

such that ‖u±‖2 ≥ m′0, for all u ∈M.

Proof . The proof is similar to that of Lemma 1.3.2, so it is su�cient to prove an

estimating similar to (1.37) for u+ and u−. Since u ∈M we have u+ 6= 0 and 〈u, u+〉 =∫
Ω
f(u+)u+dx. Now, by Lemma 1.2.3, we have ‖u+‖2 ≤ 〈u+, u+〉+ 〈u−, u+〉 = 〈u, u+〉.

Thus, using (1.27) we obtain

‖u+‖2 ≤
∫

Ω

f(u+)u+dx ≤ ε

∫
Ω

|u+|2dx+ Cε

∫
Ω

|u+|qeπ|u+|2dx.

Similarly, we have

‖u−‖2 ≤
∫

Ω

f(u−)u−dx ≤ ε

∫
Ω

|u−|2dx+ Cε

∫
Ω

|u−|qeπ|u−|2dx

and the proof of the lemma is done.

Using Lemma 1.2.3, we observe that Lemma 1.3.1 can not be applied to show

that M 6= ∅. In order to obtain some results on the nodal set M, we shall use the

so-called Poincaré-Miranda Theorem (see [70]).
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Lemma 1.3.5 Let h : P ⊂ RN −→ RN be a continuous function, where P =∏N
i=1[ai, bi] is a N-dimensional block in RN , with ai 6= bi, for i = 1, . . . , N . Let

P−i = {x ∈ P : xi = ai} and P+
i = {x ∈ P : xi = bi}. Assume that the coordinates

functions of h satisfy:

(i) hi(x) ≥ 0, for all x ∈ P−i ,

(ii) hi(x) ≤ 0, for all x ∈ P+
i .

Then there exists x0 ∈ P such that h(x0) = 0.

As application of Lemma 1.3.5, we shall show thatM 6= ∅.

Lemma 1.3.6 Assume that (V1) and (f1) − (f4) are satis�ed. Given u ∈ X with

u± 6= 0, there exists a unique pair (t, s) of positive numbers such that tu+ + su− ∈M.

Proof . Let u ∈ X with u± 6= 0, we de�ne the continuous vector �eld g : (0,∞) ×

(0,∞) −→ R2 by

g(t, s) =
(
I ′(tu+ + su−)tu+, I ′(tu+ + su−)su−

)
.

Initially we want to �nd (t, s) ∈ (0,∞) × (0,∞) such that g(t, s) = (0, 0). The �rst

step is to show that for t and s su�ciently small the coordinates functions are positive.

Note that by (1.27) we have

|f(ξ)ξ| ≤ ε|ξ|2 + Cε|ξ|qeπξ
2

, for all ξ ∈ R.

Hence,

I ′(tu+ + su−)tu+ = t2‖u+‖2 + ts〈u+, u−〉 −
∫

Ω

f(tu+)tu+dx

≥ t2‖u+‖2 + ts〈u+, u−〉 − εt2
∫

Ω

|u+|2dx− Cεtq
∫

Ω

|u+|qeπt2|u+|2dx.

Lemma 1.2.1 implies

I ′(tu+ + su−)tu+ ≥ t2‖u+‖2 + ts〈u+, u−〉 − εCt2‖u+‖2 − Cεtq
∫

Ω

|u+|qeπt2|u+|2dx.

Now, if t ∈ [0, 1], using Hölder's inequality, Lemma 1.2.2 and Lemma 1.2.1, we have∫
Ω

|u+|qeαt2|u+|2dx ≤
(∫

Ω

|u+|2qdx
) 1

2
(∫

Ω

e2α|u+|2dx

) 1
2

≤ C ′‖u+‖q,
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Thus, we can �nd C = C(u) > 0 such that

I ′(tu+ + su−)tu+ ≥ t2‖u+‖2 + ts〈u+, u−〉 − εt2‖u+‖2
2 − Ctq‖u+‖q.

By Lemma 1.2.3 we have 〈u+, u−〉 > 0. Then there exists r > 0 small enough such

that

I ′(ru+ + su−)ru+ > 0, for all s > 0.

Analogously, there exists r > 0 small enough such that

I ′(tu+ + ru−)ru− > 0, for all t > 0.

Now, we shall show that for t and s large enough the coordinates functions are negative.

In fact, using (1.29), we can �nd positive constants C1 and C2 such that∫
Ω

f(tu+)tu+dx ≥ θ

∫
Ω

F (tu+)dx ≥ C1‖u+‖θθ − C2.

Thus

I ′(tu+ + su−)tu+ = t2‖u+‖2 + ts〈u+, u−〉 −
∫

Ω

f(tu+)tu+dx

≤ t2‖u+‖2 + ts〈u+, u−〉 − C1t
θ‖u+‖θθ + C2.

Since θ > 2, there exists R > r large enough such that

I ′(Ru+ + su−)Ru+ < 0, for all 0 ≤ s ≤ R.

Analogously, there exists R > r small enough such that

I ′(tu+ +Ru−)Ru− < 0, for all 0 ≤ t ≤ R.

Hence, from Lemma 1.3.5, there exists (t, s) ∈ [r, R]× [r, R] such that g(t, s) = (0, 0).

Therefore, tu+ + su− ∈M.

Finally we shall prove the uniqueness of the pair (t, s). First, we assume that

u = u+ + u− ∈ M and (t, s) ∈ (0,∞) × (0,∞) is such that tu+ + su− ∈ M. In this

case we need to show that (t, s) = (1, 1). Note that

‖u+‖2 + 〈u+, u−〉 =

∫
Ω

f(u+)u+dx, (1.39)

‖u−‖2 + 〈u+, u−〉 =

∫
Ω

f(u−)u−dx, (1.40)
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t2‖u+‖2 + ts〈u+, u−〉 =

∫
Ω

f(tu+)tu+dx, (1.41)

and

s2‖u−‖2 + ts〈u+, u−〉 =

∫
Ω

f(su−)su−dx. (1.42)

We can assume, without loss of generality, that t ≤ s. Then, using 〈u+, u−〉 > 0 we

have

‖u+‖2 + 〈u+, u−〉 ≤
∫

Ω

f(tu+)

t
u+dx.

Thus, it follows from (1.39) that∫
Ω

(
f(tu+)

tu+
− f(u+)

u+

)
(u+)2dx ≥ 0.

Hence, by (f4) and since u+ 6= 0 we obtain t ≥ 1.

On the other hand, since t/s ≤ 1 and 〈u+, u−〉 > 0, we get

‖u−‖2 + 〈u+, u−〉 ≥
∫

Ω

f(su+)

s
u−dx.

This together with (1.40) implies∫
Ω

(
f(su−)

su−
− f(u−)

u−

)
(u−)2dx ≤ 0

and consequently s ≤ 1. Thus we conclude the proof of the uniqueness of the pair

(1, 1).

For the general case, we suppose that u does not necessarily belong to M. Let

(t, s), (t′, s′) ∈ (0,∞)× (0,∞) are such that tu+ + su− and t′u+ + s′u− belongs toM.

We de�ne v = v+ + v−, where v+ = tu+ and v− = su−. Then, we have that v ∈ M

and
t′

t
v+ +

s′

s
v− = t′u+ + s′u− ∈M.

Hence, using the �rst case we have t′/t = 1 and s′/s = 1, which completes the proof.

The following two lemmas will be used in the proof of Theorem 1.1.2 in the next

section.

Lemma 1.3.7 Assume that (V1) and (f1)− (f4) are satis�ed. Let u ∈ X be a function

such that u± 6= 0, I ′(u)u+ ≤ 0 and I ′(u)u− ≤ 0. Then the unique pair (t, s) given in

Lemma 1.3.6 satis�es 0 < t, s ≤ 1.
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Proof . We can assume, without loss of generality, that s ≥ t > 0 and tu+ +su− ∈M.

Now, since I ′(u)u− ≤ 0 and I ′(tu+ + su−)su− = 0, we have

‖u−‖2 + 〈u+, u−〉 ≤
∫

Ω

f(u−)u−dx

and

‖u−‖2 +
t

s
〈u+, u−〉 =

∫
Ω

f(su−)

s
u−dx.

Thus by Lemma 1.2.3 we get∫
Ω

(
f(u−)

u−
− f(su−)

su−

)
(u−)2dx =

∫
Ω

f(u−)u−dx− ‖u−‖2 − t

s
〈u+, u−〉

≥ ‖u−‖2 + 〈u+, u−〉 − ‖u−‖2 − t

s
〈u+, u−〉

≥
(

1− t

s

)
〈u+, u−〉 ≥ 0.

Using this inequality, (f4) and the fact that u− 6= 0, we obtain s ≤ 1 and so t ≤ s ≤ 1.

The case t ≥ s > 0 is analogous and we �nish the proof of the lemma.

Lemma 1.3.8 Assume that (V1) and (f1)− (f4) are satis�ed. Let u ∈ X be a function

such that u± 6= 0 and (t, s) be the unique pair of positive numbers given in Lemma

1.3.6. Then (t, s) is the unique maximum point of the function φ : R+ × R+ −→ R
de�ned by φ(α, β) = I(αu+ + βu−).

Proof . In the demonstration of Lemma 1.3.6, we saw that (t, s) is the unique critical

point of φ in (0,∞)× (0,∞). Note that, using (1.29), we get

φ(α, β) =
1

2

∥∥αu+ + βu−
∥∥2 −

∫
Ω

F (αu+ + βu−)dx

≤ 1

2

∥∥αu+ + βu−
∥∥2 −

∫
Ω

(
C1|αu+ + βu−|θ − C2

)
dx

≤ (α + β)2

2

∥∥∥∥( α

α + β

)
u+ +

(
β

α + β

)
u−
∥∥∥∥2

− C1 (α + β)θ
∥∥∥∥( α

α + β

)
u+ +

(
β

α + β

)
u−
∥∥∥∥θ
θ

− C2(b− a).

Hence φ(α, β) → −∞ as |(α, β)| → ∞. In particular, there exists R > 0 such that

φ(α, β) < φ(t, s) for all (α, β) ∈ (0,∞) × (0,∞) \ BR(0), where BR(0) is a closure of

the ball of radius R in R2.

In order to �nalize the proof, we shall show that the maximum of φ does not occur

in the boundary of R+×R+. Suppose, by contradiction, that (0, β) is a maximum point
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of φ. Given α ≥ 0, it is easy to see that

φ(α, β) =
α2

2
‖u+‖2 + αβ〈u+, u−〉 −

∫
Ω

F (αu+)dx+ φ(0, β).

Using similar arguments to the proof of Lemma 1.3.1, we obtain that

α2

2
‖u+‖2 + αβ〈u+, u−〉 −

∫
Ω

F (αu+)dx > 0

for α > 0 small enough. But this contradicts the assumption that (0, β) is a maximum

point of φ. The case (α, 0) is similar and we complete the proof.

Remark 1.3.9 Note that the point (t, s) given in Lemma 1.3.6 satis�es φ(t, s) =

I(tu+ + su−) > 0 since φ(α, β) > 0 for α, β > 0 small enough.

Now, we shall prove an upper bound for the nodal level cM de�ned in (1.26).

Lemma 1.3.10 Assume that (V1) and (f1) − (f5) are satis�ed. If θ is the constant

given by (f3), then

cM <
θ − 2

2θ
. (1.43)

Proof . By Theorem B.1.9 (see Appendix) there exists w ∈Mp such that Ip(w) = cMp

and I ′p(w)w± = 0. Consequently, we have

1

2
‖w‖2 − 1

p
‖w‖pp = cMp , (1.44)

‖w±‖2 = ‖w±‖pp − 〈w+, w−〉 (1.45)

and

‖w‖2 = ‖w‖pp. (1.46)

Hence, by (1.46) and (1.44), we get(
1

2
− 1

p

)
‖w‖pp = cMp . (1.47)

Since w± 6= 0, by Lemma 1.3.6, there exist t, s > 0 such that tw+ + sw− ∈ M.

Consequently, we obtain

cM ≤ I(tw+ + sw−) =
t2

2
‖w+‖2 + ts〈w+, w−〉+

s2

2
‖w−‖2

−
∫

Ω

F (tw+)dx−
∫

Ω

F (sw−)dx.
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This together with (f5) implies

cM ≤
t2

2
‖w+‖2 + ts〈w+, w−〉+

s2

2
‖w−‖2 − Cpt

p

p

∫
Ω

|w+|dx− Cps
p

p

∫
Ω

|w−|dx.

Using (1.45) and Lemma 1.2.3, we have

cM ≤
t2

2
‖w+‖pp −

t2

2
〈w+, w−〉+ ts〈w+, w−〉+

s2

2
‖w−‖pp

− s2

2
〈w+, w−〉 − Cpt

p

p
‖w+‖pp −

Cps
p

p
‖w−‖pp

=

(
t2

2
− Cpt

p

p

)
‖w+‖pp +

(
s2

2
− Cps

p

p

)
‖w−‖pp −

1

2
(t− s)2 〈w+, w−〉

≤ max
ξ≥0

(
ξ2

2
− Cpξ

p

p

)
‖w‖pp.

By elementary calculus, it is easy to see that

max
ξ≥0

(
ξ2

2
− Cpξ

p

p

)
= C

2
2−p
p

(
1

2
− 1

p

)
.

Hence, by (1.47) it follows that

cM ≤ C
2

2−p
p

(
1

2
− 1

p

)
‖w‖pp = C

2
2−p
p cMp .

Therefore, by the de�nition of Cp given in Theorem 1.1.2, we obtain (1.43).

Remark 1.3.11 By Corollary 1.3.3 and Lemma 1.3.10, we have

0 < δ0 ≤ cN ≤ cM <
θ − 2

2θ
.

The next step is to obtain a minimizing sequence for the nodal level cM with a

special behavior. For this, we start by de�ning the set

S̃λ = {u ∈M : I(u) < cM + λ} for λ > 0.

Lemma 1.3.12 Assume that (V1) and (f1)−(f5) are satis�ed. For λ > 0 small enough,

there exists mλ ∈ (0, 1) such that

0 < m′0 ≤ ‖u±‖2 < ‖u‖2 ≤ mλ,

for any u ∈ S̃λ.
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Proof . Let u ∈ S̃λ. By Lemma 1.3.4 and using 〈u+, u−〉 > 0, we have m′0 ≤ ‖u±‖2 <

‖u‖2. On the other hand, by (f3) and since I ′(u)u = 0, we obtain

cM + λ > I(u) = I(u)− 1

θ
I ′(u)u

=

(
1

2
− 1

θ

)
‖u‖2 −

∫
Ω

(
F (u)− 1

θ
f(u)u

)
dx

≥
(

1

2
− 1

θ

)
‖u‖2.

By Lemma 1.3.10, we can take λ > 0 such that cM + λ <

(
θ − 2

2θ

)
. Consequently, it

follows that

‖u‖2 ≤ 2θ

θ − 2
(cM + λ) =: mλ < 1,

for all u ∈ S̃λ. This completes the proof of the lemma.

Lemma 1.3.13 Assume that (V1), (f1) and (f5) are satis�ed. Let (un) be a sequence

in X such that un ⇀ u weakly in X, b := supn∈N ‖un‖2 < 1. Then, up to a subsequence,

for all v ∈ X, we have

lim
n→∞

∫
Ω

f(un)undx =

∫
Ω

f(u)udx; (1.48)

lim
n→∞

∫
Ω

f(un)u±ndx =

∫
Ω

f(u)u±dx; (1.49)

lim
n→∞

∫
Ω

f(un)vdx =

∫
Ω

f(u)vdx (1.50)

and

lim
n→∞

∫
Ω

F (un)dx =

∫
Ω

F (u)dx. (1.51)

Proof . Since b < 1 and by using (f1) and (f3), Hölder's inequality and Lemma 1.2.1,

it is easy to see that the integrals∫
Ω

|f(un)un||un|dx,
∫

Ω

|f(un)u±n ||un|dx,
∫

Ω

|f(un)v||un|dx and
∫

Ω

|F (un)|un|dx

are uniformly bounded. Thus the convergences (1.48)-(1.51) follow from Lemma 2.1 of

[25].

From now on, we will write S̃λ with λ > 0 given in Lemma 1.3.12.

Lemma 1.3.14 Assume that (V1) and (f1) − (f5) are satis�ed. For any q > 2, there

exists δq > 0 such that

0 < δq ≤
∫

Ω

|u±|qdx <
∫

Ω

|u|qdx,

for each u ∈ S̃λ.
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Proof . If u ∈ S̃λ and q > 2, then

‖u±‖2 + 〈u+, u−〉 =

∫
Ω

f(u±)u±dx.

By Lemma 1.2.3 we know that 〈u+, u−〉 > 0. Thus by Lemma 1.3.4 we get

0 < m′0 ≤ ‖u±‖2 <

∫
Ω

f(u±)u±dx.

Hence, using (f1) and Hölder's inequality, we have

m′0 ≤ C0

∫
Ω

|u±|eπ|u±|2dx ≤ C0

(∫
Ω

|u±|tdx
)1/t(∫

Ω

eπt
′|u±|2dx

)1/t′

where t, t′ > 1 and satisfy 1/t + 1/t′ = 1. By Lemma 1.3.12, we know that ‖u±‖2 <

‖u‖2 ≤ mλ with mλ ∈ (0, 1). Now, we can take t′ > 1 su�ciently close to 1, t > q and

such that πt′‖u±‖2 ≤ πt′mλ ≤ π. Consequently, by Lemma 1.2.2 we get

m′0 ≤ C0‖u±‖t

(∫
Ω

e
πt′‖u±‖2

(
|u±|
‖u±‖

)2

dx

)1/t′

≤ C1‖u±‖t.

Hence

0 <
m′0
C1

≤ ‖u±‖t, for all u ∈ S̃λ. (1.52)

We suppose, by contradiction, that there exists (un) ⊂ S̃λ such that ‖u±n ‖q → 0 as

n → ∞. From Lemma 1.3.12 and Lemma 1.2.1 we obtain that (u±n ) is bounded in

L2t(Ω). Consequently, since q < t < 2t, by the interpolation inequality we �nd that

‖u±n ‖t → 0 as n→∞, which is impossible in view of (1.52).

The next technical result will be used in the proof of Lemma 1.3.16.

Lemma 1.3.15 Assume (f1)− (f4). Then the function H(t) := f(t)t− 2F (t) satis�es

(i) H(0) = 0 and H(t) > 0, for all t 6= 0;

(ii) H(t0) ≤ H(t1) if 0 < t0 ≤ t1;

(iii) H(t0) ≥ H(t1) if t0 ≤ t1 < 0.

Proof . Item (i) is immediate from (f2) and (f3). For item (ii), if 0 < t0 ≤ t1 then

by (f4)

H(t0) =
f(t0)

t0
t20 − 2F (t1) + 2

∫ t1

t0

f(τ)dτ

≤ f(t1)

t1
t20 − 2F (t1) + 2

f(t1)

t1

∫ t1

t0

τdτ

≤ f(t1)

t1
t20 − 2F (t1) +

f(t1)

t1
(t21 − t20) = H(t1),
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which implies the item (ii). The proof of the item (iii) is similar.

Now we have all the results that will allow us to prove that the nodal level cM is

attained in a function with u ∈M.

Lemma 1.3.16 Assume that (V1) and (f1) − (f5) are satis�ed. Then there exists

ũ ∈M such that I(ũ) = cM.

Proof . Let (un) ⊂ M be such that I(un) → cM as n → ∞. We can assume that

un ∈ S̃λ, for all n ∈ N. Then, by (f3) we have

cM + on(1) = I(un) = I(un)− 1

θ
I ′(un)un

=

(
1

2
− 1

θ

)
‖un‖2 +

1

θ

∫
Ω

(f(un)un − θF (un)) dx

≥
(

1

2
− 1

θ

)
‖un‖2.

Hence, (un) is bounded in X and consequently (u+
n ) and (u−n ) are also bounded in X.

Since X is a Hilbert space, up to a subsequence, there exists u ∈ X such that u±n ⇀ u±

and un ⇀ u in X. Utilizing Lemma 1.2.1, up to a subsequence, we can assume that

u±n → u± in Lq(R), for all q ∈ [1,∞), and u±n (x)→ u±(x) a.e. in R (see Lemma A.1.8).

Now, by using Lemma 1.3.14, we obtain u± 6= 0 in X. Now, from Lemma 1.3.6 there

exist t, s ∈ (0,∞) such that ũ = tu+ + su− ∈ M. We claim that I ′(u)u± ≤ 0. In fact,

by the convergence (1.49) in Lemma 1.3.13, by (i) of Lemma 1.2.3 and by the Fatou's

Lemma, it follows that

〈u, u+〉 = 〈u+, u+〉+ 〈u+, u−〉

≤ lim inf
n→∞

‖u+
n ‖2 +

1

π
lim inf
n→∞

∫
R2

u+
n (x)(−u−n (y))

|x− y|2
dxdy

≤ lim inf
n→∞

(
‖u+

n ‖2 + 〈u+
n , u

−
n 〉
)

= lim inf
n→∞

∫
Ω

f(un)u+
ndx

=

∫
Ω

f(u)u+dx.

Hence, I ′(u)u+ ≤ 0. Similarly, we get I ′(u)u− ≤ 0. Then, by Lemma 1.3.7 we obtain

0 < t, s ≤ 1. In particular, ‖ũ‖2 ≤ ‖u‖2.
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Now, in order to conclude the proof, note that using the convergences in Lemma

1.3.13 and Lemma 1.3.15, it holds

cM ≤ I(ũ) = I(ũ)− 1

2
I ′(ũ)ũ

=
1

2

∫
Ω

(f(ũ)ũ− 2F (ũ)) dx

=
1

2

∫
Ω

H(tu+)dx+
1

2

∫
Ω

H(su−)dx

≤ 1

2

∫
Ω

H(u+)dx+
1

2

∫
Ω

H(u−)dx

=
1

2

∫
Ω

(f(u)u− 2F (u)) dx = I(un)− 1

2
I ′(un)un + on(1) = cM

and this concludes the proof.

1.4 Proof of Theorem 1.1.2

First, we shall prove an auxiliary result and present some notations that will be

used in the proof of Theorem 1.1.2. We consider D = (1
2
, 3

2
) × (1

2
, 3

2
) and g : D → X

given by g(α, β) = αũ+ + βũ−, where ũ was obtained in Lemma 1.3.16.

Lemma 1.4.1 Let P = {u ∈ X : u(x) ≥ 0 a.e. x ∈ Ω} and −P = {u ∈ X : u(x) ≤
0 a.e. x ∈ Ω}. Then d′0 = dist(g(D),Λ) > 0, where Λ := P ∪ (−P ).

Proof . We suppose, by contradiction, that d′0 = dist(g(D),Λ) = 0. Then we can �nd

(vn) ⊂ g(D) and (wn) ⊂ Λ such that ‖vn − wn‖ → 0 as n → ∞. We can assume,

without loss of generality, that wn ≥ 0 a.e. in Ω. Now, since vn ∈ g(D), there exist

αn, βn ∈ [1
2
, 3

2
] such that vn = αnũ

+ + βnũ
−. Utilizing that (vn) is bounded in X and

Lemma 1.2.1, up to a subsequence, we �nd (a0, b0) ∈ D such that

vn(x)→ a0ũ
+(x) + b0ũ

−(x) a.e. x ∈ Ω.

On the other hand, by the convergence ‖vn − wn‖ → 0 and Lemma 1.2.1, up to a

subsequence, we obtain that

wn(x)→ a0ũ
+(x) + b0ũ

−(x) a.e. x ∈ Ω.

Since ũ− 6= 0, the convergence above produces a contradiction with the assumption

that wn ≥ 0 a.e. in Ω, which completes the proof.
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We are now able to complete the proof of Theorem 1.1.2.

By Lemma 1.3.16, we have found ũ ∈ M such that I(ũ) = cM. It remains to

prove that ũ is a critical point of the functional I. Suppose, by contradiction, that

I ′(ũ) 6= 0. Thus, by the continuity of I ′, there exist λ, δ > 0 with δ ≤ d′0
2
, where d′0 is

given in Lemma 1.4.1, such that

‖I ′(v)‖ ≥ λ, for all v ∈ B3δ(ũ). (1.53)

By Lemma 1.3.8 we have that the function (I ◦ g)(α, β), for (α, β) ∈ D, has a strict

maximum point (1, 1). In particular, we have that

m∗ = max
(α,β)∈∂D

(I ◦ g)(α, β) < cM.

Let ε > 0 be such that ε < min{(cM − m∗)/2, λδ/8} and we de�ne S = Bδ(ũ). By

the choice of ε and by condition (1.53), if v ∈ S2δ = B3δ(ū) we have ‖I ′(v)‖ ≥ 8ε
δ
. In

particular,

∀ v ∈ I−1([cM − 2ε, cM + 2ε]) ∩ S2δ, it has to satisfy ‖I ′(v)‖ ≥ 8ε

δ
.

By the quantitative deformation lemma in [72, Lemma 2.3], there exists η ∈ C([0, 1]×

X,X) such that

(i) η(t, u) = u, if t = 0 or u /∈ I−1([cM − 2ε, cM + 2ε]) ∩ S2δ;

(ii) η(1, IcM+ε ∩ S) ⊂ IcM−ε;

(iii) η(t, ·) is an homeomorphism of X, ∀ t ∈ [0, 1];

(iv) ‖η(t, u)− u‖ ≤ δ, ∀u ∈ X, ∀ t ∈ [0, 1];

(v) I(η(·, u)) is non increasing, ∀u ∈ X;

(vi) I(η(t, u)) < cM, ∀u ∈ IcM ∩ Sδ, ∀ t ∈ (0, 1].

As an application, we get

max
(α,β)∈D

I(η(1, g(α, β))) < cM. (1.54)
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In fact, if (α, β) ∈ D with (α, β) 6= (1, 1), using Lemma 1.3.8 we have I(g(α, β)) < cM.

Hence

I(η(1, g(α, β))) ≤ I(η(0, g(α, β))) = I(g(α, β)) < cM.

If (α, β) = (1, 1) then g(1, 1) = ũ ∈ IcM+ε∩S. Thus I(η(1, g(1, 1))) < cM− ε, showing

(1.54).

Now, let us de�ne h(α, β) = η(1, g(α, β)). We claim that

h(α, β) = g(α, β) in ∂D. (1.55)

In fact, given (α, β) ∈ ∂D, by the de�nition of m∗ and by the choice of ε, we have

I(g(α, β)) ≤ m∗ = cM − 2
(cM −m∗)

2
< cM − 2ε.

Hence g(α, β) /∈ I−1([cM − 2ε, cM + 2ε]). So using the property (i) of the function η

we get (1.55).

Claim 1.4.2 We claim that h(α, β)± 6= 0, for all (α, β) ∈ D.

In fact, let v ∈ Λ. By using the choice of δ > 0 and Lemma 1.4.1, we have that

‖h(α, β)− v‖ ≥ ‖g(α, β)− v‖ − ‖h(α, β)− g(α, β)‖

≥ ‖g(α, β)− v‖ − δ

≥ d′0 −
d′0
2

=
d′0
2
.

Consequently, h±(α, β) 6= 0 for all (α, β) ∈ D, concluding the statement.

Now, we consider the vector �elds

F(α, β) = (I ′(g(α, β))ũ+, I ′(g(α, β))ũ−)

and

G(α, β) = (
1

α
I ′(h(α, β))h(α, β)+,

1

β
I ′(h(α, β))h(α, β)−).

From (1.55), we have F = G in ∂D. Hence, by the degree theory (see Lemma A.1.14),

we have

deg(F , D, (0, 0)) = deg(G, D, (0, 0)). (1.56)

Claim 1.4.3 deg(F , D, (0, 0)) = 1.
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In fact, we consider

F1(α, β) = I ′(αũ+ + βũ−)ũ+ and F2(α, β) = I ′(αũ+ + βũ−)ũ−

the coordinates functions of the vector �eld F . Calculating the partial derivatives of

F1 and F2, we get 

∂F1

∂α
(α, β) = ‖ũ+‖2 −

∫
Ω

f ′(αũ+)(ũ+)2dx,

∂F1

∂β
(α, β) =

∂F2

∂α
(α, β) = 〈ũ+, ũ−〉,

∂F2

∂β
(α, β) = ‖ũ−‖2 −

∫
Ω

f ′(βũ−)(ũ−)2dx.

Now, for (α, β) = (1, 1) in the above equations and using the condition I ′(ũ)ũ± = 0,

we reach 

∂F1

∂α
(1, 1) = −〈ũ+, ũ−〉+

∫
Ω

G(ũ+)ũ+dx,

∂F1

∂β
(1, 1) =

∂F2

∂α
(1, 1) = 〈ũ+, ũ−〉,

∂F2

∂β
(1, 1) = −〈ũ+, ũ−〉+

∫
Ω

G(ũ−)ũ−dx,

where G(t) = f(t)− f ′(t)t, for t ∈ R. Using (f4) and ũ± 6= 0, it is easy to see that∫
Ω

G(ũ+)ũ+dx < 0 and
∫

Ω

G(ũ−)ũ−dx < 0. (1.57)

Hence, using (1.57) and 〈ũ+, ũ−〉 > 0, it follows that

det


∂F1

∂α
(1, 1)

∂F1

∂β
(1, 1)

∂F2

∂α
(1, 1)

∂F2

∂β
(1, 1)

 > 0.

Thus, since (1, 1) is the unique solution of F(α, β) = (0, 0) in D, by the de�nition of

topological degree (see Lemma A.1.15), we have deg(F , D, (0, 0)) = 1, showing (1.4.3).

Utilizing the Claim 1.4.3 and (1.56) we obtain deg(G, D, (0, 0)) = deg(F , D, (0, 0)) =

1 and therefore there exists (α0, β0) ∈ D such that G(α0, β0) = (0, 0) (see Lemma A.1.13

and Lemma A.1.14), that is, I ′(η(1, g(α0, β0)))η(1, g(α0, β0))+ = 0,

I ′(η(1, g(α0, β0)))η(1, g(α0, β0))− = 0.
(1.58)

By Claim 1.4.2 we have that h(α0, β0)± 6= 0. Hence, system (1.58) implies that h(α0, β0)

belongs to η(1, g(D)) ∩M. Thus, by the de�nition of cM,

I(h(α0, β0)) = I(η(1, g(α0, β0)) ≥ cM,
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which is a contradiction in view of (1.54). Therefore, I ′(ũ) = 0 and this completes the

proof of Theorem 1.1.2.

1.5 Proof of Theorem 1.1.3

De�ning the set

Sλ = {u ∈ N : I(u) < cN + λ},

where cN is the ground state level de�ned in (1.25) and λ is given in Lemma 1.3.12.

By Remark 1.3.11 and (f3), we get

cM + λ ≥ cN + λ > I(u) ≥
(

1

2
− 1

θ

)
‖u‖2, for all u ∈ Sλ.

Hence, by Lemma 1.3.2 and Lemma 1.3.12, we have

0 < m0 ≤ ‖u‖2 < mλ for all u ∈ Sλ (1.59)

where mλ ∈ (0, 1) is given in Lemma 1.3.12. Similar to Lemma 1.3.14, using (1.59), we

can to show that for any q > 2 there exists δq > 0 such that

0 < δq ≤
∫

Ω

|u|qdx, for all u ∈ Sλ. (1.60)

Let (vn) ⊂ Sλ be a sequence such that I(vn) → cN . By (1.59), (vn) is bounded

sequence and X is a Hilbert space, up to a subsequence, there exists v ∈ X such that

vn ⇀ v. Utilizing Lemma 1.2.1, up to a subsequence, we can assume that vn → v in

Lq(R), for all q ∈ [1,∞), and vn(x)→ v(x) a.e. in R. Using (1.60), we infer that v 6= 0

in X. By Lemma 1.3.1, there exists t > 0 such that ṽ = tv ∈ N . Considering (1.59),

we can assume, without loss of generality, that the convergences in Lemma 1.3.13 hold

for the sequence (vn). Now, since I ′(vn)vn = 0 for all n ∈ N, by lower semicontinuity

and using Lemma 1.3.13, we have

‖v‖2 ≤ lim inf
n→∞

‖vn‖2 = lim inf
n→∞

∫
Ω

f(vn)vndx =

∫
Ω

f(v)vdx (1.61)

and so I ′(v)v ≤ 0. Analogously to Lemma 1.3.7, we can deduce that t ≤ 1. Following

similar ideas from of the proof of Lemma 1.3.16, we can show that I(ṽ) = cN . Moreover,

utilizing the same steps of the proof of Theorema 1.1.2, we show that the function ṽ

satis�es that I ′(ṽ) = 0. Thus, ṽ is a ground state solution of problem (1.1). Now, in
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order to prove (1.11), we consider the function ũ obtained in Theorem 1.1.2. Since

ũ± 6= 0, by Lemma 1.3.1, there exists a unique pair (t1, t2) such that t1ũ+ ∈ N and

t2ũ
− ∈ N . By Corollary 1.3.3, we have cN > 0. Now, by using the de�nition of cN ,

Lemma 1.2.3, Lemma 1.3.7 and Lemma 1.3.8, we have that

0 < 2cN ≤ I(t1ũ
+) + I(t2ũ

−) < I(t1ũ
+ + t2ũ

−) ≤ I(ũ+ + ũ−) = cM,

showing (1.11). In particular, the inequality above shows that can not exist a nodal

ground state solution of problem (1.1). Thus, the ground state solution ṽ is nonpositive

or nonnegative.
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Chapter 2

Ground state and nodal solutions for

a class of fractional equations

involving exponential growth in a

unbounded domain

In this chapter we consider the following fractional Schrödinger equation:

(−∆)
1
2u+ V (x)u = K(x)f(u) in R, (2.1)

where (−∆)
1
2 is the 1/2-Laplacian operator de�ned in (1.2), V,K : R → R+ are

functions satisfying appropriate conditions which will be introduced later and f : R→

R is a C1 function that may have a subcritical or critical exponential growth in the

Trudinger-Moser embedding sense. Since the problem is set on the whole real line

one has to tackle compactness issues, which can be overcome by considering suitable

assumptions of K at in�nity. Similar to Chapter 1, our goal is to show that under

appropriate conditions problem (2.1) has a ground state and a nodal solution u, which

are distinct. Moreover, we show that the energy of u is strictly larger than twice the

ground state energy. The results of this chapter were submitted for publication in

article [31].



2.1 Introduction

As in Chapter 1, we are interested in looking for solutions of (2.1) when the

nonlinearity f(t) has exponential growth. The fractional Sobolev space H1/2(R) is

continuously embedded into Lq(R) for any q ∈ [1,+∞) and compactly embedded into

Lq(Ω) for any q ∈ [1,+∞), for all Ω ⊂ R bounded interval. But H1/2(R) is not

continuously embedded in L∞(R) (see [32, 61]). However, S. Iula, A. Maalaou and L.

Martinazzi in [51] proved a Trudinger-Moser type inequality on H1/2(R) as:

sup
{u∈H1/2(R) : ‖u‖1/2,2≤1}

∫
R
(eαu

2 − 1)dx <∞, (2.2)

for any 0 ≤ α ≤ π, where

‖u‖1/2,2 :=
(
‖(−∆)

1
4u‖2

2 + ‖u‖2
2

)1/2

and ‖(−∆)
1
4u‖2

2 =
1

2π
[u]21/2.

(see also [53, 61, 69]).

Thus the maximal growth on f(t), which allows us to study (2.1) by applying a

variational framework involving the space H1/2(R), is given by eαu
2
as |u| → +∞, for

some α > 0. Motivated by result, we say that f(t) has exponential critical growth if

there exists α0 > 0 such that

lim
|t|→+∞

f(t)e−α|t|
2

=

0, for all α > α0,

+∞, for all α < α0,

(2.3)

and we say that f(t) has exponential subcritical growth if

lim
|t|→+∞

f(t)e−α|t|
2

= 0, for all α > 0. (2.4)

Motivated by Trudinger-Moser inequality, many papers have been developed in

order to study issues related to the existence of solutions for problems involving the

fractional Laplacian operator and nonlinearities with exponential growth. For example,

by exploiting the Trudinger-Moser embedding due to Ozawa [61] and the Mountain Pass

Theorem, J. M. do Ó, Miyagaki and Squassina [36] proved the existence of ground state

solutions for the following class of nonlinear scalar �eld equations: (−∆)
1
2u+ u = f(u) in R,

u(x)→ 0, as |x| → ∞,
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when f(t) is o(|t|) at the origin and behaves like eαt
2
as |t| → +∞, for some α > 0. In

[27], Souza and Araújo considered a perturbation of this problem by a general potential

V (x), namely,  (−∆)
1
2u+ V (x)u = f(u) in R,

u(x)→ 0, as |x| → ∞,

where V (x) is a nonnegative function which is asymptotically periodic at in�nity. See

also [2, 23, 28, 34, 48, 60] for others investigations.

However, none of the previous works treated the existence of sign-changing solu-

tion (nodal solution).

2.2 Assumptions and main results

In order to reach our goals, we assume the following assumptions on the functions

V and K:

(V1) V,K : R→ R+ are continuous and K ∈ L∞(R);

(V2) there exist b0, R0 > 0 such that

V (x) ≥ b0, for |x| ≥ R0;

Since problem (2.1) is set on the whole real line, we face loss of compactness.

Here, motivated by [35], in order to overcome this di�culty, we assume the following

assumption on K:

(K1) if {An} is a sequence of Borel sets of R with sup
n∈N
|An| ≤ R, for some R > 0, then

lim
r→∞

∫
An∩Bcr(0)

K(x) dx = 0,

uniformly with respect to n ∈ N.

On the nonlinearity f , we assume the following assumptions:

(f1) f ∈ C1(R) and there exist C0, t0 > 0 such that

|f(t)| ≤ C0

(
eπt

2 − 1
)
, for all |t| ≥ t0;
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(f2) lim
t→0

f(t)

t
= 0;

(f3) there exists θ > 2 such that

0 < θF (t) := θ

∫ t

0

f(s)ds ≤ tf(t), for all t ∈ R \ {0};

(f4) the function
f(t)

|t|
is strictly increasing for t 6= 0;

(f5) there exist constants p > 2 and Cp > 0 such that

sgn(t)f(t) ≥ Cp|t|p−1, for all t ∈ R.

We point out that from (f1) we can consider nonlinearities with exponential

critical growth in the sense of (2.3) and with exponential subcritical growth in the

sense of (2.4). Furthermore, by (V2) the potential V (x) may be zero on a bounded

interval. For example, we may consider the potential

V (x) =


0, if |x| < 1

x2 − 1, if 1 ≤ |x| ≤ 2

3, if |x| ≥ 2.

Example 2.2.1 A function K satisfying (V1) and (K1) is K(x) = e−x
2
.

Example 2.2.2 If p > 2, the nonlinearity

f(t) = Cp|t|p−2t+ |t|p−2t
(
et

2 − 1
)

satis�es the assumptions (f1)− (f5).

In order to apply variational methods to study (2.1) in H1/2(R), it is natural to

work in the subspace of H1/2(R) de�ned as

X :=

{
u ∈ H1/2(R) :

∫
R
V (x)u2dx <∞

}
. (2.5)

From (V1)− (V2) (see Lemma 2.3.1 and Proposition 2.3.2), we show that X is a

Hilbert space when endowed with the inner product

〈u, v〉 :=
1

2π

∫
R2

(u(x)− u(y))(v(x)− v(y))

|x− y|2
dxdy +

∫
R
V (x)uvdx (2.6)
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and the corresponding norm

‖u‖ :=

(
1

2π

∫
R2

|u(x)− u(y)|2

|x− y|2
dxdy +

∫
R
V (x)|u|2dx

)1/2

. (2.7)

Throughout this chapter, we say u ∈ X is a weak solution of (2.1) if

1

2π

∫
R2

(u(x)− u(y))(v(x)− v(y))

|x− y|2
dxdy +

∫
R
V (x)uv dx−

∫
R
K(x)f(u)vdx = 0,

for all v ∈ X.

In Section 2.3, we will show that the energy functional

I(u) =
1

2
‖u‖2 −

∫
R
K(x)F (u)dx, (2.8)

belongs to C1(X,R) and its critical points are weak solutions of (2.1).

In order to �nd nodal solutions for problem (2.1) by applying an appropriate

minimization argument, we introduce:

� the Nehari manifold

N = {u ∈ X \ {0} : I ′(u)u = 0}; (2.9)

� the nodal set

M = {u ∈ X : u± 6= 0 and I ′(u)u± = 0}; (2.10)

� the ground state level

cN := inf
u∈N

I(u); (2.11)

� the nodal level

cM := inf
u∈M

I(u). (2.12)

Since M ⊂ N we have cN ≤ cM. We say that a nonzero critical point w ∈ X

of I is a least energy solution (or ground state solution) if w achieves the in�mum cN .

One of our goals will be to show that the minimum cM is reached by a critical point

of I. If w± 6= 0 is a critical point of I such that I(w) = cM we say that w is a least

energy nodal solution of (2.1).

Now we can state our main results.
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Theorem 2.2.3 Suppose that (V1) − (V2), (K1) and (f1) − (f5) are satis�ed. Then

problem (2.1) possesses a least energy nodal solution, provided that

Cp >

[
2θκcMp

θ − 2

](p−2)/2

, (2.13)

where

cMp := inf
u∈Mp

Ip(u), Mp := {u ∈ X : u± 6= 0, I ′p(u)u± = 0} (2.14)

and

Ip(u) :=
1

2
‖u‖2 − 1

p

∫
R
K(x)|u|pdx, (2.15)

and κ > 0 is the constant given in (2.22).

Another goal is to prove that the energy of any sign-changing solution of (2.1)

is strictly larger than twice the ground state energy. This property is so-called energy

doubling by Weth [71].

Theorem 2.2.4 Suppose that (V1) − (V2), (K1), (f1) − (f5) and (2.13) are satis�ed.

Then problem (2.1) has a least energy solution and

I(w) > 2cN , (2.16)

where w is the least energy sign-changing solution obtained in Theorem 2.2.3. In par-

ticular, cN is achieved either by a nonnegative or a nonpositive function.

Remark 2.2.5 Note that if we assume that the function f is odd, then, using Theorem

2.2.4, it follows that problem (2.1) has at least one negative solution, one positive

solution, and one nodal solution.

Remark 2.2.6 Using the regularity results due to Servadei and Valdinoci [68], we have

that weak solutions of problem (2.1) belong to C(R).

As in Chapter 1, if u± 6= 0 then 〈u+, u−〉 > 0. Thus, if u± 6= 0, the energy

functional I in (2.8) satis�es

I(u) > I(u+) + I(u−),

I ′(u)u+ > I ′(u+)u+ and I ′(u)u− > I ′(u−)u−.

(see Lemma 2.3.7.)

Therefore, the methods used to obtain sign-changing solutions for the local prob-

lems can not be applicable to problem (2.1). Moreover, since the problem (2.1) is set on
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the whole real line one has to tackle compactness issues. Furthermore, an other well-

known di�culty is the loss of compactness due to the critical growth on the nonlinearity

f .

The outline of this chapter is as follows: Section 2.3 contains some preliminary

results related to functional I and the space X. In particular, we obtain a suitable

compact injections for X in a weighted Banach space. Section 2.4 is dedicated to the

study of the nodal set and the nodal level. Using adequate estimates at the nodal level,

suitable compact immersions and tools like the Straus's compactness lemma, we prove

that the nodal level is attained. In Section 2.5, we complete the proof of Theorem 1.1.2

and Section 2.6 is proved Theorem 1.1.3.

2.3 Preliminaries

First, we recall that

‖(−∆)
1
4u‖2

2 =
1

2π
[u]21/2 =

1

2π

∫
R2

|u(x)− u(y)|2

|x− y|2
dxdy, for all u ∈ H1/2(R). (2.17)

(see [32, Proposition 3.6]).

With this in mind, we prove the following result:

Lemma 2.3.1 Assume that (V1)− (V2) are satis�ed. Then,

λ1 := inf
u∈X
‖u‖2=1

(
1

2π

∫
R2

|u(x)− u(y)|2

|x− y|2
dxdy +

∫
R
V (x)u2dx

)
> 0.

Proof . Suppose, by contradiction, that λ1 = 0. Hence, there exists (un) ⊂ X such

that

‖un‖2
2 = 1 and

1

2π

∫
R2

|un(x)− un(y)|2

|x− y|2
dxdy +

∫
R
V (x)u2

ndx→ 0, as n→∞.

(2.18)

From [61], for any 1 < q <∞, there exists a constant M > 0 such that

‖v‖q ≤Mq1/2‖(−∆)1/4v‖1−2/q
2 ‖v‖2/q

2 , for all v ∈ H1/2(R). (2.19)

Combining (2.17), (2.18) and (2.19), for each q > 2, we obtain

‖un‖q ≤Mq1/2‖(−∆)1/4un‖1−2/q
2 → 0, as n→∞.
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Now, note that choosing t > 1 such that 2t = q and by using the Hölder inequality, we

get

‖un‖2
L2(BR0

) ≤ |BR0|
1
t′ ‖un‖2

Lq(BR0
) → 0, as n→∞. (2.20)

On the other hand, by (V2) and (2.18), we have∫
BcR0

u2
ndx ≤ 1

b0

∫
BcR0

V (x)u2
ndx→ 0, as n→∞. (2.21)

But, (2.20) and (2.21) imply that

1 = ‖un‖2
L2(BR0

) + ‖un‖2
L2(BcR0

) → 0,

as n→∞, which is absurd. Thus, we complete the proof.

From Lemma 2.3.1, we reach the following result:

Corollary 2.3.2 Assume that (V1) − (V2) are satis�ed. Then the embedding X ↪→
H1/2(R) is continuous and there exists κ > 0 such that

1

κ
:= inf

u∈X
u6=0

‖u‖2

‖u‖2
1/2,2

. (2.22)

In particular, X is a Hilbert space with the inner product (2.6) and the embedding

X ↪→ Lq(R) is continuous and locally compact for all q ∈ [2,+∞).

Now, given r ≥ 1, we de�ne weighted Banach space

LrK :=

{
u : R→ R : u is measurable and

∫
R
K(x)|u|rdx <∞

}
endowed with the norm

‖u‖LrK :=

(∫
R
K(x)|u|rdx

) 1
r

.

Note that, since K ∈ L∞(R), the embedding H1/2(R) ↪→ LqK is continuous for all

q ≥ 2. Inspired by [35], we have the following result:

Lemma 2.3.3 H1/2(R) is compactly embedded into LqK for all q ∈ (2,+∞).

Proof . Given q > 2, s > q and ε > 0. Since K(x) ≤ C, there exist 0 < t0(ε) < t1(ε)

such that

K(x)|t|q ≤ εC(|t|2 + |t|s) +K(x)χ[t0(ε),t1(ε)](|t|)|t|q, for all t, x ∈ R.
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Hence, for any v ∈ H1/2(R), we have

K(x)|v|q ≤ εC(|v|2 + |v|s) +K(x)χ[t0(ε),t1(ε)](|v|)|v|q, for all x ∈ R.

Fixing R > 0, we reach∫
BcR(0)

K(x)|v|qdx ≤ εQ(v) +

∫
Aε∩BcR(0)

K(x)|v|qdx, (2.23)

where

Q(v) := C(‖v‖2
2 + ‖v‖ss) and Aε := {x ∈ R : t0(ε) ≤ |v| ≤ t1(ε)}.R

Let (un) ⊂ H1/2(R) such that un ⇀ u weakly in H1/2(R). Then, up to a subsequence,

there exists M > 0 such that

‖un − u‖2
2 ≤M and ‖un − u‖ss ≤M.

In particular,

Q(un − u) ≤ 2CM, for all n ∈ N. (2.24)

Now, if Aεn = {x ∈ R : t0(ε) ≤ |un − u| ≤ t1(ε)}, we get

t0(ε)2|Aεn| =
∫
Aεn

t0(ε)2dx ≤
∫
R
|un − u|2dx ≤M, for all n ∈ N.

Then by (K1), there exists R(ε) > 0 such that∫
Aεn∩BcR(ε)

(0)

K(x)|un − u|qdx < ε, for all n ∈ N. (2.25)

Utilizing the estimates (2.24) and (2.25) in (2.23), we obtain∫
Bc
R(ε)

(0)

K(x)|un − u|qdx ≤ ε(2MC + 1), for all n ∈ N. (2.26)

On the other hand, by using the compact embedding H1/2(R) ↪→ Lq(BR(ε)(0)), up to

a subsequence, we get

lim
n→+∞

∫
BR(ε)(0)

K(x)|un − u|qdx = 0. (2.27)

Therefore, from (2.26) and (2.27), we complete the proof.

As a consequence of Corollary 2.3.2 and Lemma 2.3.3, we obtain the following

result:
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Corollary 2.3.4 Assume that (V1) − (V2) are satis�ed. The space X is continuous

embedded in L2
K and compactly embedded into LqK for all q ∈ (2,+∞).

One of the main tools to study problems involving exponential growth in the

fractional Sobolev spaces is the so-called fractional Trudinger-Moser inequality due

to Ozawa [61]. Combining the results in [27, 51, 53, 61, 69], the Trudinger-Moser

inequality due to Ozawa has been re�ned and can be stated as follows.

Lemma 2.3.5 For any u ∈ H1/2(R) and α ≥ 0, we have∫
R

(
eαu

2 − 1
)

dx <∞. (2.28)

Furthermore, if 0 ≤ α ≤ π, it holds

sup
{u∈H1/2(R) : ‖u‖1/2,2≤1}

∫
R

(
eαu

2 − 1
)

dx <∞ (2.29)

and if 0 ≤ α < π, there exists Cα > 0 such that∫
R

(
eαu

2 − 1
)

dx ≤ Cα‖u‖2
2, (2.30)

whenever u ∈ H1/2(R) and ‖(−∆)
1
4u‖2 ≤ 1.

As an application of this inequality, we get the following convergence result:

Lemma 2.3.6 Let α > 0 and (un) ⊂ H1/2(R) be such that un → u strongly in H1/2(R).

Then

lim
n→+∞

∫
R

(
eαu

2
n − 1

)
dx =

∫
R

(
eαu

2 − 1
)

dx.

Proof . By the Mean Value Theorem, for each x ∈ R, there exists an(x) between

un(x) and u(x) such that

|(eαu2n(x) − 1)− (eαu
2(x) − 1)| = 2α|an(x)|eαa2n(x)||un(x)− u(x)|.

Now, since that

|an(x)| ≤ |un(x)−u(x)|+|u(x)| and (|un(x)−u(x)|+|u(x)|)2 ≤ 2|un(x)−u(x)|2+2|u(x)|2,

we have

|(eαu2n − 1)− (eαu
2 − 1)| ≤ 2α(|un − u|+ |u|)e2α|un−u|2e2α|u|2|un − u|.
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Adding and subtracting 1 one each of the factors eα|un−u|
2
and eα|u|

2
in the right-hand

of inequality above we obtain four terms one of which is

2α(|un − u|+ |u|)(e2α|un−u|2 − 1)(e2α|u|2 − 1)|un − u|.

Applying the Hölder inequality with exponents r1, r2 ≥ 2 and r3, r4 > 1, such that

1/r1 + 1/r2 + 1/r3 + 1/r4 = 1, and using Lemma A.1.1, we get

(‖un − u‖r1 + ‖u‖r1)‖un − u‖r2
(∫

R
(e2αr3|un−u|2 − 1)dx

) 1
r3

(∫
R
(e2αr4|u|2 − 1)dx

) 1
r4

.

(2.31)

Now, using that ‖un − u‖H1/2(R) → 0 and the Lemma 2.3.5, there exists C > 0 such

that (∫
R
(e2αr3|un−u|2 − 1)dx

) 1
r3

≤ C and

(∫
R
(e2αr4|u|2 − 1)dx

) 1
r4

≤ C.

Again by using the convergence ‖un − u‖H1/2(R) → 0 and the continuous embedding

of H1/2(R) in Lr2(R), we have that ‖un − u‖r2 → 0, as n → +∞. In this way, the

quantity in (2.31) goes to zero as n→ +∞. The other terms can be handled in similar

fashion.

Now, note that by Lemma 2.3.5, Lemma 2.3.6 and the hypotheses on f and V ,

we obtain that the energy functional I : X → R associated to problem (2.1) given by

I(u) =
1

2
‖u‖2 −

∫
R
K(x)F (u)dx

is well de�ned and belongs to C1(X,R) with

I ′(u)v = 〈u, v〉 −
∫
R
K(x)f(u)vdx, for u, v ∈ X

and consequently critical points of I are precisely the weak solutions of (2.1).

As in Lemma 1.2.3 and Corollary 1.2.4, we have the following results:

Lemma 2.3.7 Assume that (V1)− (V2) are satis�ed. Let u ∈ X. Then,

(i) 〈u, u±〉 = 〈u±, u±〉+
1

π

∫
R2

u+(x)(−u−(y))

|x− y|2
dxdy

(ii) if u± 6= 0, 〈u+, u−〉 > 0,

54



(iii) I(u) > I(u+) + I(u−),

(iv) I ′(u)u+ > I ′(u+)u+ and I ′(u)u− > I ′(u−)u−.

Corollary 2.3.8 If u ∈ X then

‖u‖2 ≥ ‖u+‖2 + ‖u−‖2.

2.4 Some properties of the Nehari manifold and nodal

set

In order to prove some properties ofM and N , we observe that by (f1) − (f2),

given ε > 0 and q ≥ 1, there is a positive constant Cε such that

|f(t)| ≤ ε|t|+ Cε|t|q−1(eπt
2 − 1), for all t ∈ R (2.32)

and, by virtue of (f3),

|F (t)| ≤ ε|t|2 + Cε|t|q(eπt
2 − 1), for all t ∈ R. (2.33)

Moreover, by (f5), we have

|f(t)| ≥ Cp|t|p−1, for all t ∈ R (2.34)

and

F (t) ≥ Cp
p
|t|p, for all t ∈ R. (2.35)

Lemma 2.4.1 Assume that (V1) − (V2) and (f1) − (f5) are satis�ed. Then, given

u ∈ X \ {0}, there is a unique t = t(u) > 0 such that tu ∈ N . In addition, the number

t satis�es

I(tu) = max
s≥0

I(su). (2.36)

Proof . Given u ∈ X \ {0}, we de�ne h(s) := I(su) for s ≥ 0. By (2.35) and since

p > 2, we obtain

h(s) ≤ s2

2
‖u‖2 − Cps

p

p

∫
R
K(x)|u|pdx→ −∞, as s→∞. (2.37)

On the other hand, choosing q > 2, by using (2.33) and that K(x) ≤ C, we get

h(s) ≥ s2

2
‖u‖2 − C

∫
R
(εs2|u|2 + Cεs

q|u|q(eπs2u2 − 1))dx. (2.38)
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If s ∈ [0, 1], we have (eπs
2u2 − 1) ≤ (eπu

2 − 1). Hence, by Proposition 2.3.2, we get

h(s) ≥ s2

(
1

2
− C1ε

)
‖u‖2 − C2,εs

q

∫
R
|u|q(eπu2 − 1)dx > 0 (2.39)

for s > 0 small enough. Thus, from (2.37) and (2.39), there exists t = t(u) > 0 such

that I(tu) = max
s≥0

I(su) and, consequently, tu ∈ N . Now, if s > 0 is such that su ∈ N ,

we have

s2‖u‖2 =

∫
R
f(su)su dx

and since it also holds

t2‖u‖2 =

∫
R
f(tu)tu dx,

it follows that ∫
R

(
f(tu)

tu
− f(su)

su

)
u2dx = 0. (2.40)

By (f4) and since u 6= 0, it follows from (2.40) that t = s. Thus, we �nish the proof.

Lemma 2.4.2 Assume that (V1)−(V2) and (f1)−(f2) are satis�ed. Then, there exists

m0 > 0 such that ‖u‖2 ≥ m0 for all u ∈ N .

Proof . In order to obtain a contradiction, suppose that there exists (un) ⊂ N such

that ‖un‖ → 0 as n→∞. By de�nition, we know that

‖un‖2 =

∫
R
K(x)f(un)undx. (2.41)

Since K(x) ≤ C, utilizing (2.32) with q > 2, we get

‖un‖2 ≤
∫
R
K(x)|f(un)un|dx ≤ εC

∫
R
|un|2dx+ Cε

∫
R
|un|q(eπu

2
n − 1)dx. (2.42)

Now, from Lemma 2.3.5, by using the Hölder inequality and the assumptions ‖un‖ → 0,

we obtain that∫
R
|un|q(eπu

2
n − 1)dx ≤ C‖un‖q2q

(∫
R
(e2π‖un‖2( un

‖un‖)
2

− 1)dx

) 1
2

≤ Cπ‖un‖q2q (2.43)

for n ∈ N su�ciently large. From Proposition 2.3.2, there exist C1, C2 > 0 such that

‖un‖q2q ≤ C1‖un‖q and ‖un‖2
2 ≤ C2‖un‖2. Hence, choosing ε > 0 and utilizing (2.41),

(2.42) and (2.43), we have 0 < C0 ≤ ‖un‖q−2, for n ∈ N su�ciently large. But, as q > 2,

this contradicts the assumption ‖un‖ → 0 and the proof of the lemma is complete.
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Corollary 2.4.3 Assume that (V1) − (V2), (f1) and (f3) are satis�ed. Then, there

exists δ0 > 0 such that I(u) ≥ δ0 for all u ∈ N . In particular,

0 < δ0 ≤ cN ≤ cM.

Proof . Since I ′(u)u = 0, by Lemma 2.4.2 and (f3), we have

I(u) = I(u)− 1

θ
I ′(u)u =

(
1

2
− 1

θ

)
‖u‖2 +

1

θ

∫
R
K(x) [f(u)u− θF (u)] dx

≥
(

1

2
− 1

θ

)
‖u‖2 ≥

(
1

2
− 1

θ

)
m0 := δ0,

which is the desired inequality.

Lemma 2.4.4 Assume that (V1)−(V2) and (f1)−(f2) are satis�ed. Then, there exists

m′0 > 0 such that ‖u±‖2 ≥ m′0 for all u ∈M.

Proof . The proof is similar to Lemma 2.4.2. Hence, it is su�cient to prove a similar

estimate to (2.42) for u+ and u−. Since u ∈ M we have u+ 6= 0 and 〈u, u+〉 =∫
RK(x)f(u+)u+dx. Now, by Lemma 2.3.7, we have 〈u+, u+〉 < 〈u, u+〉. Thus, by

using (2.32) we obtain

‖u+‖2 ≤
∫
R
K(x)f(u+)u+dx ≤ εC

∫
R
|u+|2dx+ Cε

∫
R
|u+|q(eπ|u+|2 − 1)dx.

Similarly,

‖u−‖2 ≤
∫
R
K(x)f(u−)u−dx ≤ εC

∫
R
|u−|2dx+ Cε

∫
R
|u−|q(eπ|u−|2 − 1)dx,

and the proof of lemma is done.

Now, using Lemma 1.3.5, we shall show thatM 6= ∅.

Lemma 2.4.5 Assume that (V1)− (V2), (f1)− (f2) and (f4)− (f5) are satis�ed. Then,

given u ∈ X with u± 6= 0, there exists a unique pair (t, s) of positive numbers such that

tu+ + su− ∈M.

Proof . Let u ∈ X be such that u± 6= 0. We de�ne the continuous vector �eld

g : (0,∞)× (0,∞)→ R2 by

g(t, s) =
(
I ′(tu+ + su−)tu+, I ′(tu+ + su−)su−

)
.
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Firstly, we want to �nd (t, s) ∈ (0,∞) × (0,∞) such that g(t, s) = (0, 0). The �rst

step is to show that for t and s su�ciently small the coordinates functions are positive.

Given ε > 0 and q > 2, by (2.32) and K(x) ≤ C, we get

I ′(tu+ + su−)tu+ = t2‖u+‖2 + ts〈u+, u−〉 −
∫
R
K(x)f(tu+)tu+dx

≥ t2‖u+‖2 + ts〈u+, u−〉 − εCt2
∫
R
|u+|2dx

− CεCtq
∫
R
|u+|q(eπt2|u+|2 − 1)dx.

Hence, if t ∈ [0, 1], by using Proposition 2.3.2, there exists C1 > 0 such that

I ′(tu+ + su−)tu+ ≥ t2‖u+‖2 + ts〈u+, u−〉 − εC1Ct
2‖u+‖2

− CεCtq
∫
R
|u+|q(eπ|u+|2 − 1)dx.

By Lemma 2.3.7 we have 〈u+, u−〉 > 0. Then there exists r > 0 small enough such

that

I ′(ru+ + su−)ru+ > 0, for all s > 0.

Analogously, there exists r > 0 large enough such that

I ′(tu+ + ru−)ru− > 0, for all t > 0.

Now, we shall show that, for t and s large enough, the coordinates functions are

negative. In fact, by (f3) and (2.35), we have∫
R
K(x)f(tu+)tu+dx ≥ θ

∫
R
K(x)F (tu+)dx ≥ θCpt

p

p

∫
R
K(x)|u+|pdx.

Thus,

I ′(tu+ + su−)tu+ = t2‖u+‖2 + ts〈u+, u−〉 −
∫
R
K(x)f(tu+)tu+dx

≤ t2‖u+‖2 + ts〈u+, u−〉 − θCpt
p

p
‖u+‖p

LpK
.

Since p > 2, there exists R > r large enough such that

I ′(Ru+ + su−)Ru+ < 0, for all 0 ≤ s ≤ R.

Analogously, there exists R > r small enough such that

I ′(tu+ +Ru−)Ru− < 0, for all 0 ≤ t ≤ R.
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Hence, considering the block P = [r, R]× [r, R] and applying Lemma 1.3.5, there exists

(t, s) ∈ [r, R]×[r, R] such that g(t, s) = (0, 0) and consequently, we have tu++su− ∈M.

Finally, we shall prove the uniqueness of the pair (t, s). First, we assume that

u = u+ + u− ∈ M and (t, s) ∈ (0,∞) × (0,∞) is such that tu+ + su− ∈ M. In this

case, we need to show that (t, s) = (1, 1). Note that

‖u+‖2 + 〈u+, u−〉 =

∫
R
K(x)f(u+)u+dx (2.44)

‖u−‖2 + 〈u+, u−〉 =

∫
R
K(x)f(u−)u−dx (2.45)

t2‖u+‖2 + ts〈u+, u−〉 =

∫
R
K(x)f(tu+)tu+dx (2.46)

s2‖u−‖2 + ts〈u+, u−〉 =

∫
R
K(x)f(su−)su−dx. (2.47)

We can assume, without loss of generality, that t ≤ s. Then, by using 〈u+, u−〉 > 0

and (2.46), we have

‖u+‖2 + 〈u+, u−〉 ≤
∫
R
K(x)

f(tu+)

t
u+dx.

It follows from (2.44) that∫
R
K(x)

(
f(tu+)

tu+
− f(u+)

u+

)
(u+)2dx ≥ 0.

Hence, by (f4) and since u+ 6= 0 we obtain t ≥ 1. On the other hand, since t/s ≤ 1

and 〈u+, u−〉 > 0, we get

‖u−‖2 + 〈u+, u−〉 ≥
∫
R
K(x)

f(su+)

s
u−dx.

This, together with (2.45), implies∫
R
K(x)

(
f(su−)

su−
− f(u−)

u−

)
(u−)2dx ≤ 0

and consequently s ≤ 1. Thus we conclude that t = s = 1.

For the general case, we suppose that u does not necessarily belong to M. Let

(t, s), (t′, s′) ∈ (0,∞)× (0,∞) be such that tu+ + su− and t′u+ + s′u− belongs toM.
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We de�ne v = v+ + v−, where v+ = tu+ and v− = su−. Then, we have that v ∈ M

and
t′

t
v+ +

s′

s
v− = t′u+ + s′u− ∈M.

Hence, by the �rst case, we reach t′/t = 1 and s′/s = 1, which completes the proof.

Now, we shall present two technical lemmas that will be used in the next section.

Lemma 2.4.6 Assume that (V1) − (V2), (f1) − (f2) and (f4) − (f5) are satis�ed. Let

u ∈ X be a function such that u± 6= 0, I ′(u)u+ ≤ 0 and I ′(u)u− ≤ 0. Then the unique

pair (t, s) given in Lemma 2.4.5 satis�es 0 < t, s ≤ 1.

Proof . We can assume, without loss of generality, that s ≥ t > 0 and tu+ +su− ∈M.

Now, since I ′(u)u− ≤ 0 and I ′(tu+ + su−)su− = 0, we have

‖u−‖2 + 〈u+, u−〉 ≤
∫
R
K(x)f(u−)u−dx

and

‖u−‖2 +
t

s
〈u+, u−〉 =

∫
R
K(x)

f(su−)

s
u−dx.

By Lemma 2.3.7 we get∫
R
K(x)

(
f(u−)

u−
− f(su−)

su−

)
(u−)2dx =

∫
R
K(x)f(u−)u−dx− ‖u−‖2 − t

s
〈u+, u−〉

≥ ‖u−‖2 + 〈u+, u−〉 − ‖u−‖2 − t

s
〈u+, u−〉

≥
(

1− t

s

)
〈u+, u−〉 ≥ 0.

By using this inequality, (f4) and the fact that u− 6= 0, we obtain s ≤ 1 and we �nish

the proof.

Lemma 2.4.7 Assume that (V1) − (V2), (f1) − (f2) and (f4) − (f5) are satis�ed. Let

u ∈ X be a function such that u± 6= 0 and (t, s) be the unique pair of positive numbers

given in Lemma 2.4.5. Then (t, s) is the unique maximum point of the function φ :

R+ × R+ → R de�ned by φ(α, β) = I(αu+ + βu−).

Proof . In the demonstration of Lemma 2.4.5, we saw that (t, s) is the unique critical

point of φ in (0,∞)× (0,∞). Note that, by using (2.35), we get

φ(α, β) ≤ 1

2

∥∥αu+ + βu−
∥∥2 − Cp

p

∫
R
K(x)|αu+ + βu−|pdx

=
(α + β)2

2

∥∥∥∥(
α

α + β
)u+ + (

β

α + β
)u−
∥∥∥∥2

− Cp
p

(α + β)p
∥∥∥∥(

α

α + β
)u+ + (

β

α + β
)u−
∥∥∥∥p
LpK

.
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Hence, since p > 2, φ(α, β) → −∞ as |(α, β)| → ∞. In particular, there exists R > 0

such that φ(α, β) < φ(t, s) for all (α, β) ∈ (0,∞)× (0,∞)\BR, where BR is the closure

of the ball of radius R in R2. In order to �nalize the proof, we shall show that the

maximum of φ does not occur in the boundary of R+×R+. Suppose, by contradiction,

that (0, β) is a maximum point of φ, given α ≥ 0, we have that

φ(α, β) =
α2

2
‖u+‖2 + αβ〈u+, u−〉 −

∫
R
K(x)F (αu+)dx+ φ(0, β).

Arguing similarly to Lemma 2.4.1, we get

α2

2
‖u+‖2 + αβ〈u+, u−〉 −

∫
R
K(x)F (αu+)dx > 0

for α > 0 small enough. But this contradicts the assumption that (0, β) is a maximum

point of φ. The case (α, 0) is similar and we omit it. The proof is complete.

Now, we shall prove an upper bound for the nodal level cM de�ned in (2.12).

Lemma 2.4.8 Assume that (V1)−(V2), (f1)−(f2) and (f4)−(f5) hold and Cp satis�es

(2.13). If θ is the constant given by (f3) and κ is given in (2.22), then

cM <
θ − 2

2θκ
. (2.48)

Proof . From Theorem B.2.8 (see Appendix), there exists w ∈Mp such that Ip(w) =

cMp and I ′p(w)w± = 0, where cMp and Mp was de�ned in (2.14) and 2.15. Conse-

quently,
1

2
‖w‖2 − 1

p
‖w‖p

LpK
= cMp , (2.49)

‖w±‖2 = ‖w±‖p
LpK
− 〈w+, w−〉 (2.50)

‖w‖2 = ‖w‖p
LpK
. (2.51)

Hence, by (2.49) and (2.51), we get(
1

2
− 1

p

)
‖w‖p

LpK
= cMp . (2.52)

Since w± 6= 0, by Lemma 2.4.5, there exist t, s > 0 such that tw+ + sw− ∈ M.

Consequently, we obtain

cM ≤ I(tw+ + sw−) =
t2

2
‖w+‖2 + ts〈w+, w−〉+

s2

2
‖w−‖2

−
∫
R
K(x)F (tw+)dx−

∫
R
K(x)F (sw−)dx.
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This together with (2.35) implies

cM ≤
t2

2
‖w+‖2 + ts〈w+, w−〉+

s2

2
‖w−‖2 − Cpt

p

p
‖w+‖p

LpK
− Cps

p

p
‖w−‖p

LpK
.

By (2.50) and Lemma 2.3.7, we have

cM ≤
t2

2
(‖w+‖p

LpK
− 〈w+, w−〉) + ts〈w+, w−〉+

s2

2
(‖w−‖p

LpK
− 〈w+, w−〉)

− Cpt
p

p
‖w+‖p

LpK
− Cps

p

p
‖w−‖p

LpK

=

(
t2

2
− Cpt

p

p

)
‖w+‖p

LpK
+

(
s2

2
− Cps

p

p

)
‖w−‖p

LpK
− 1

2
(t− s)2 〈w+, w−〉

≤ max
ξ≥0

(
ξ2

2
− Cpξ

p

p

)
‖w‖p

LpK
.

On the other hand, it is easy to see that

max
ξ≥0

(
ξ2

2
− Cpξ

p

p

)
= C

2
2−p
p

(
1

2
− 1

p

)
.

Hence, by (2.52) it follows that

cM ≤ C
2

2−p
p

(
1

2
− 1

p

)
‖w‖p

LpK
= C

2
2−p
p cMp .

Therefore, by the de�nition of Cp given in (2.13), we obtain (2.48).

The next step is to obtain a minimizing sequence for the nodal level cM with a

special behavior. For this, for λ > 0, we start by de�ning the set

S̃λ = {u ∈M : I(u) < cM + λ}.

Lemma 2.4.9 Assume that (V1) − (V2) and (f1) − (f5) hold and Cp satis�es (2.13).

For λ > 0 small enough, there exists mλ ∈ (0, 1
κ
) such that

0 < m′0 ≤ ‖u±‖2 < ‖u‖2 ≤ mλ,

for any u ∈ S̃λ.

Proof . Let u ∈ S̃λ. By Lemma 2.4.4 and by using 〈u+, u−〉 > 0, we have m′0 ≤

‖u±‖2 < ‖u‖2. On the other hand, by (f3) and since I ′(u)u = 0, we obtain

cM + λ > I(u) = I(u)− 1

θ
I ′(u)u

=

(
1

2
− 1

θ

)
‖u‖2 +

1

θ

∫
R
K(x) [f(u)u− θF (u)] dx ≥

(
1

2
− 1

θ

)
‖u‖2.
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By Lemma 2.4.8, we can take λ > 0 such that cM + λ <

(
θ − 2

2θκ

)
. Consequently, it

follows that

‖u‖2 ≤ 2θ

θ − 2
(cM + λ) =: mλ <

1

κ
,

for all u ∈ S̃λ and this concludes the proof of the lemma.

Lemma 2.4.10 Assume that (K1) and (f1) − (f3) are satis�ed. Let (un) ⊂ H1/2(R)

be such that un ⇀ u weakly in H1/2(R) and b := supn∈N ‖un‖2
1/2,2 < 1. Then, up to a

subsequence, one has

lim
n→+∞

∫
R
K(x)f(un)undx =

∫
R
K(x)f(u)udx; (2.53)

lim
n→+∞

∫
R
K(x)f(u±n )u±ndx =

∫
R
K(x)f(u±)u±dx; (2.54)

lim
n→+∞

∫
R
K(x)F (un)dx =

∫
R
K(x)F (u)dx; (2.55)

lim
n→+∞

∫
R
K(x)f(un)vdx =

∫
R
K(x)f(u)vdx, for all v ∈ H1/2(R). (2.56)

Proof . We will prove only (2.53), since the proofs of (2.54)-(2.56) are similar and we

will omit them. Let π < α < π/b2. Then, by using (f1) and (f2), we have

lim
|t|→∞

f(t)t

eαt2 − 1
= 0 and lim

|t|→0

f(t)t

t2
= 0. (2.57)

Hence, given q > 2 and ε > 0, there exists 0 < t0(ε) < t1(ε) and Cε > 0 such that

K(x)|f(t)t| ≤ εC(|t|2+eαt
2−1)+CεK(x)χ[t0(ε),t1(ε)](|t|)|t|q, for all t, x ∈ R. (2.58)

Now, from the continuous embedding H1/2(R) ↪→ Ls(R), for s ≥ 2, and Lemma 2.3.5,

we can �nd M > 0 such that∫
R
|un|2dx ≤M,

∫
R
|un|qdx ≤M and

∫
R
(eαu

2
n − 1)dx ≤M, for all n ∈ N.

(2.59)

Denoting Aεn = {x ∈ R : t0(ε) ≤ |un(x)| ≤ t1(ε)}, we get

t0(ε)2|Aεn| =
∫
Aεn

t0(ε)2dx ≤
∫
R
|un|2dx ≤M, for all n ∈ N.

Thus, utilizing (K1), there exists r(ε) > 0 such that∫
Aεn∩Bcr(ε)(0)

K(x)dx <
ε

Cεt1(ε)q
, for all n ∈ N (2.60)
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and by using (2.59) and (2.60) in (2.58), we reach∫
Bc
r(ε)

(0)

K(x)|f(un)un|dx ≤ (2CM + 1)ε, for all n ∈ N. (2.61)

On the other hand, using that un ⇀ u weakly in H1/2(R) and the locally compact

embedding H1/2(R) ↪→ L2(R), up to a subsequence, we have un(x) → u(x) a.e. in R.

Thus, K(x)f(un(x))un(x)→ K(x)f(u(x))u(x) a.e. in R and according to (2.57), (2.59)

and Strauss Lemma ( Lemma A.1.10 applied with P (t) = f(t)t and Q(t) = eαt
2 − 1),

one has

lim
n→+∞

∫
Br(ε)

K(x)f(un)undx =

∫
Br(ε)

K(x)f(u)udx. (2.62)

Combining (2.61) and (2.62),the proof of (2.53) follows.

From now on, we will write S̃λ with λ > 0 given in Lemma 2.4.9.

Lemma 2.4.11 Assume that (V1)− (V2) and (f1)− (f5) hold and Cp satis�es (2.13).

Then for any q > 2, there exists δq > 0 such that

0 < δq ≤
∫
R
K(x)|u±|qdx <

∫
R
K(x)|u|qdx,

for each u ∈ S̃λ.

Proof . Let u ∈ S̃λ and q > 2. We know that

‖u±‖2 + 〈u+, u−〉 =

∫
R
K(x)f(u±)u±dx.

By using Lemma 2.3.7 and Lemma 2.4.4, it follows that

0 < m′0 ≤ ‖u±‖2 <

∫
R
K(x)f(u±)u±dx

and from (2.32), we have

m′0 ≤ ε

∫
R
K(x)|u±|2dx+ Cε

∫
R
K(x)|u±|(eπ|u±|2 − 1)dx.

Now, Corollary 2.3.4 and the fact that u ∈ S̃λ imply that there exists C1 > 0, inde-

pendent of u, such that ∫
R
K(x)|u|2dx ≤ C1.

Choosing ε > 0 such that m′0 − εC1 > 0, we obtain

0 <
m′0 − εC1

Cε
≤
∫
R
K(x)|u±|(eπ|u±|2 − 1)dx. (2.63)
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Let t′ > 0 su�ciently close to 1 such that πt′mλκ ≤ π, with 1/t + 1/t′ = 1 and t > q.

Utilizing the Hölder inequality, Lemma 2.4.9, K(x) ≤ C and Lemma 2.3.5, we reach∫
R
K(x)|u±|(eπ|u±|2 − 1)dx =

∫
R
K(x)

1
t |u±|K(x)

1
t′ (eπ|u

±|2 − 1)dx

≤
(∫

R
K(x)|u±|tdx

) 1
t

·

·

(∫
R
K(x)(e

πt′‖u±‖2
1/2,2

(
|u±|
‖u‖1/2,2

)2

− 1)dx

) 1
t′

≤ C
1
t′

(∫
R
K(x)|u±|tdx

) 1
t

(∫
R
(e
πt′mλκ

(
|u±|

‖u±‖1/2,2

)2

− 1)dx

) 1
t′

≤ C‖u±‖LtK .

This last inequality and (2.63) implies that

0 <
m′0 − εC1

Cε
≤ C‖u±‖LtK . (2.64)

Now, we suppose, by contradiction, that there exists (un) ⊂ S̃λ such that ‖u±n ‖LqK → 0

as n→∞. From Lemma 2.4.9 we obtain that (u±n ) is bounded in L2t(R). Consequently,

since q < t < 2t, by the interpolation inequality we get that ‖u±n ‖LtK → 0 as n → ∞,

which is impossible in view of (2.64), concluding the proof.

The next technical result will be used in the proof of Lemma 2.4.13.

Lemma 2.4.12 Assume (f1) and (f3)− (f4) are satis�ed. Then the function H(t) :=

f(t)t− 2F (t) satis�es

(i) H(0) = 0 and H(t) > 0, for all t 6= 0;

(ii) H(t0) ≤ H(t1) if 0 < t0 ≤ t1;

(iii) H(t0) ≥ H(t1) if t0 ≤ t1 < 0.

Proof . Let us show (iii). First we note that H ∈ C1(R) and H ′(t) = f ′(t)t − f(t),

for all t ∈ R. From (f4), we have

d

dt

(
f(t)

|t|

)
≥ 0, for all t ∈ R \ {0}.

If t < 0 then f(t) − f ′(t)t ≥ 0 and therefore H ′(t) ≤ 0 for all t < 0. Thus, H(t) is

decreasing for t ≤ 0, which implies the item (iii). The proof of the item (ii) is similar.
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Next, we have all the results that will allow us to prove that the nodal level cM

is attained in a function u ∈ X with u± 6= 0.

Lemma 2.4.13 Assume that (V1) − (V2), (K1) and (f1) − (f5) hold and Cp satis�es

(2.13). Then there exists ũ ∈M such that I(ũ) = cM.

Proof . Let (un) ⊂ M be such that I(un) → cM as n → +∞. We can assume that

un ∈ S̃λ, for all n ∈ N. In particular, by Lemma 2.4.9, we have

m′0 ≤ ‖u±n ‖2 < ‖un‖2 ≤ mλ, for all n ∈ N, with mλ ∈
(

0,
1

κ

)
.

Thus, (un), (u+
n ) and (u−n ) are bounded in X. Since X is a Hilbert space, up to a

subsequence, there exists u ∈ X such that u±n ⇀ u± and un ⇀ u in X. Let q > 2.

From Corollary 2.3.4, up to a subsequence, we have u±n → u± in LqK and utilizing

Lemma 2.4.11, there exists δq > 0 such that

0 < δq ≤
∫
R
K(x)|u±n |qdx <

∫
R
K(x)|un|qdx, for all n ∈ N.

Hence u± 6= 0 in X. Now, from Lemma 2.4.5 there exist t, s ∈ (0,∞) such that

ũ = tu+ + su− ∈ M. We claim that I ′(u)u± ≤ 0. Since supn∈N ‖un‖2 ≤ mλ and

‖un‖2
1/2,2 ≤ κ‖un‖2, we have supn∈N ‖un‖1/2,2 ∈ (0, 1). Moreover, since the embedding

X ↪→ L2
loc(R) is compact, up to a subsequence, we can assume that u±n (x) → u±(x)

a.e. in R. By the convergence (2.54) in Lemma 2.4.10 and by the Fatou Lemma, it

follows that

‖u+‖2 + 〈u+, u−〉 ≤ lim inf
n→+∞

(
‖u+

n ‖2 + 〈u+
n , u

−
n 〉
)

= lim inf
n→+∞

∫
R
K(x)f(u+

n )u+
ndx =

∫
R
K(x)f(u+)u+dx.

Hence, I ′(u)u+ ≤ 0. Similarly, we get I ′(u)u− ≤ 0. Then, by Lemma 2.4.6, we obtain

0 < t, s ≤ 1. In particular, ‖ũ‖2 ≤ ‖u‖2. Now, in order to conclude the proof, note

that using the convergence in Lemma 2.4.10 and Lemma 2.4.12, it holds

cM ≤ I(ũ) = I(ũ)− 1

2
I ′(ũ)ũ =

1

2

∫
R
K(x) (f(ũ)ũ− 2F (ũ)) dx

=
1

2

∫
R
K(x)H(tu+)dx+

1

2

∫
R
K(x)H(su−)dx
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and therefore

cM ≤
1

2

∫
R
K(x)H(u+)dx+

1

2

∫
R
K(x)H(u−)dx =

1

2

∫
R
K(x) (f(u)u− 2F (u)) dx

= I(un)− 1

2
I ′(un)un + on(1),

= I(un) + on(1) = cM

which concludes the proof.

Next, we consider D = (1
2
, 3

2
) × (1

2
, 3

2
) and g : D → X given by g(α, β) =

αũ+ +βũ−, where ũ was obtained in Lemma 2.4.13. We shall prove an auxiliary result

and present some notations that will be used in the proof of Theorem 2.2.3.

Lemma 2.4.14 Let P = {u ∈ X : u(x) ≥ 0 a.e. x ∈ R} and −P = {u ∈ X : u(x) ≤
0 a.e. x ∈ R}. Then d′0 = dist(g(D),Λ) > 0, where Λ := P ∪ (−P ).

Proof . We suppose, by contradiction, that d′0 = dist(g(D),Λ) = 0. Hence, we

can �nd (vn) ⊂ g(D) and (wn) ⊂ Λ such that ‖vn − wn‖ → 0 as n → ∞. We can

assume, without loss of generality, that wn ≥ 0 a.e. in R. Since vn ∈ g(D), there

exist αn, βn ∈ [1
2
, 3

2
] such that vn = αnũ

+ + βnũ
−. By compactness of [1

2
, 3

2
], up to a

subsequence, we have αn → a0 and βn → b0 as n→∞. Hence

vn → a0ũ
+ + b0ũ

− in X.

Thus, we obtain wn → a0ũ
+ + b0ũ

− in X. Now, by Proposition 2.3.2, we have

wn(x)→ a0ũ
+(x) + b0ũ

−(x) a.e. in R.

Since ũ− 6= 0, the convergence above produces a contradiction with the assumption

that wn ≥ 0 a.e. in R, which completes the proof.

2.5 Proof of Theorem 2.2.3

The proof of this theorem is done in the same way as the Theorem 1.1.2 and we

omit it.

2.6 Proof of Theorem 2.2.4

The proof of this theorem is done in the same way as the Theorem 1.1.3 and we

omit it.
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Chapter 3

Nodal and constant sign solutions for

a class of fractional Kirchho�-type

problems involving exponential growth

In this chapter, we study the existence of nonnegative, nonpositive and nodal

solutions of smaller energy for a fractional Kirchho� problem with a nonlinear term

that may have a exponential critical growth in the Trudinger-Moser sense. By using

the constrained minimization in Nehari set, the quantitative deformation lemma and

degree theory results, we obtain a least energy nodal solution. Then, by exploring

estimates obtained in the �rst result and by using the Mountain Pass Theorem,we get

one nonpositive and one nonnegative ground state solution. Moreover, we show that

the energy of the nodal solution is strictly larger than twice the ground state level.

When we regard b as a positive parameter, we study the asymptotic behavior of the

nodal solutions as bn → 0+. The results of this chapter were submitted for publication

in article [30].



3.1 Introduction and main results

This chapter is devoted to study the existence of ground state and nodal solutions

for the following class of fractional Kirchho�-type problems: (a+ b‖u‖2)
[
(−∆)1/2u+ V (x)u

]
= f(u) in Ω,

u = 0 in R \ Ω,
(Pa,b)

where a > 0, b ≥ 0, Ω ⊂ R is a bounded open interval, V : Ω → [0,∞) is a con-

tinuous potential, f ∈ C1(R) may have exponential subcritical or critical growth in

the Trudinger-Moser sense (see (1.4) and (1.5)). Here, (−∆)1/2 is the 1/2−Laplacian

operator de�ned in (1.2) and the function u belongs to an appropriate subspace of

H1/2(R) endowed with the norm

‖u‖ =

(
1

2π

∫
R2

|u(x)− u(y)|2

|x− y|2
dxdy +

∫
Ω

V (x)|u|2dx

)1/2

. (3.1)

Motivated by physical or mathematical aspects, classes of problems like (Pa,b)

have attracted a lot of attention of many researchers and some existence and mul-

tiplicity results have been obtained. A Kirchho� type problem involving exponential

growth was treated by J. Giacomoni et al. [47], by using the Nehari method. X. Mingqi

et al. [59] proved the existence and multiplicity of solutions for a class of fractional

Kirchho�-type problems for the p-fractional Laplace operator.

None of the previous papers treated the existence of nodal solution for the problem

(Pa,b) when the nonlinearity has exponential growth. In Chapter 1, we deal with the

problem (Pa,b) when a > 0 and b = 0. Motivated by this fact, our goal in the present

chapter is to study the existence of nodal solutions for the problem (Pa,b) when the

nonlinearity has exponential growth as in (1.4) and (1.5).

Throughout this chapter we will assume the following hypotheses:

(V1) V : Ω→ [0,∞) is a continuous function, where Ω ⊂ R is a bounded open interval.

For the nonlinearity f we assume that:

(f1) f ∈ C1(R) and there exists C0 > 0 such that

|f(t)| ≤ C0e
πt2 , for all t ∈ R;
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(f2) lim
t→0

f(t)

t
= 0;

(f3) there exists θ > 4 such that

0 < θF (t) := θ

∫ t

0

f(τ)dτ ≤ tf(t), for all t ∈ R \ {0};

(f4) the function
f(t)

|t|3
is strictly increasing, for any t 6= 0;

(f5) there exist p > 4 and Cp > 0 such that

sgn(t)f(t) ≥ Cp|t|p−1, for all t ∈ R.

Example 3.1.1 If p > 4, the nonlinearity

f(t) = Cp|t|p−2t+ |t|p−2tet
2

satis�es the assumptions (f1)− (f5).

As in Chapter 1, to obtain weak solutions of (Pa,b), we consider the subspace X

of H1/2(R) de�ned by

X := {u ∈ H1/2(R) : u = 0 in R \ Ω},

which will be equipped with inner product

〈u, v〉 :=
1

2π

∫
R2

(u(x)− u(y))(v(x)− v(y))

|x− y|2
dxdy +

∫
Ω

V (x)uv dx (3.2)

and the corresponding norm given in (3.1). X is a Hilbert space and the embedding

X ↪→ H1/2(R) is continuous. Moreover, X is continuous and compactly embedded in

Lq(R) (see [50] and Lemma 1.2.1).

To simplify the notation, we consider the function mb(t) = a+ bt, and we rewrite

(Pa,b) as  mb(‖u‖2)
[
(−∆)1/2u+ V (x)u

]
= f(u) in Ω,

u = 0 in R \ Ω.

In this context, we say that u ∈ X is a weak solution of (Pa,b), if

mb(‖u‖2)〈u, v〉 −
∫

Ω

f(u)v dx = 0, for all v ∈ X. (3.3)
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Considering the functional Ib : X → R given by

Ib(u) =
1

2
Mb(‖u‖2)−

∫
Ω

F (u) dx, (3.4)

where Mb(t) :=
∫ t

0
mb(τ)dτ = at + bt2/2, for t ∈ R. Using the assumptions on f , by

standard arguments, we can see that Ib is C1(X,R) and

I ′b(u)v = mb(‖u‖2)〈u, v〉 −
∫

Ω

f(u)v dx, for all u, v ∈ X.

Thus, critical points of the functional Ib are weak solutions of (Pa,b) and recipro-

cally (see details in Section 3.2).

In order to present the main results of this chapter, we de�ne the Nehari sets

associated to Ib and their respective minimums energy level by:

� The Nehari set and the ground state level

Nb = {u ∈ X \ {0} : I ′b(u)u = 0} and cNb := inf
u∈Nb

Ib(u); (3.5)

� The set of nonnegative functions on the Nehari set

N+
b = {u ∈ Nb : u− = 0} and cN+

b
:= inf

u∈N+
b

Ib(u); (3.6)

� The set of nonpositive functions on the Nehari set

N−b = {u ∈ Nb : u+ = 0} and cN−b
:= inf

u∈N−b
Ib(u); (3.7)

� The nodal Nehari set and the nodal level

Mb = {u ∈ X : u+ 6= 0, u− 6= 0, I ′b(u)u+ = 0 and I ′b(u)u− = 0} (3.8)

and

cMb
:= inf

u∈Mb

Ib(u).

Our �rst objective is to guarantee that the minimum cMb
is achieved by a weak

solution w ∈ Mb and, in this case, w will be called of least energy nodal solution (see

also Remark 3.3.5). Notice that the setMb is a subset of the nodal functions in Nb.

Now we can state our �rst result.
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Theorem 3.1.2 Suppose that (V1) and (f1) − (f5) are satis�ed. Furthermore, we as-

sume

Cp > max

1

2
,

[
4θd∗b(2

2
2−p p− 2

p
2−p 4)

a(θ − 2)(p− 4)

](p−2)/2
 , (3.9)

where

d∗b := inf
u∈Mp

b

Jb(u), (3.10)

Mp
b = {u ∈ X : u+ 6= 0, u− 6= 0, J ′b(u)u+ = 0 and J ′b(u)u− = 0} (3.11)

and

Jb(u) =
1

2
Mb(‖u‖2)− 1

2p

∫
Ω

|u|pdx. (3.12)

Then, the problem (Pa,b) has a least energy nodal solution ub.

Our second result provides one nonegative solution and one nonpositive solution

of (Pa,b), which the energy is minimal between the solutions that have the signal de�ned.

Moreover, we also show that the energy of any sign-changing solution of (Pa,b) is strictly

larger than twice the ground state energy. This property is so-called energy doubling

by Weth [71].

Theorem 3.1.3 Suppose that (V1), (f1) − (f5) and (3.9) are satis�ed. Then, there

exist u+ ∈ N+
b with Ib(u+) = cN+

b
and u− ∈ N−b with Ib(u−) = cN−b

, weak solutions of

(Pa,b). Moreover, we have

cMb
= Ib(ub) > cN+

b
+ cN−b

≥ 2cNb , (3.13)

where ub is the least energy nodal solution obtained in Theorem 3.1.2.

The third result is to study the asymptotic behavior of the least nodal solutions

ub as b→ 0+. Precisely, we prove that:

Theorem 3.1.4 Suppose that (V1), (f1) − (f5) and (3.9) are satis�ed. Let (bn) ⊂ R
be a sequence such that 0 ≤ bn ≤ b and bn → 0+, as n → ∞. Then, for any n ∈ N,
the problem (Pa,bn) has a least energy nodal solution ubn and, up to a subsequence, ubn
converges strongly to u0 in X, where u0 is a least energy nodal solution to the problem{

a (−∆)1/2u+ a V (x)u = f(u) in Ω,

u = 0 in R \ Ω.
(Pa,0)
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As in Chapter 1, the functional Ib associated to (Pa,b) does not possess the same

decompositions as (1.13) and (1.14). Indeed, since 〈u+, u−〉 > 0 whenever u+ 6= 0 and

u− 6= 0, a straightforward computation yields that (see Lemma 3.2.3 and Corollary

3.2.4)

Ib(u) > Ib(u
+) + Ib(u

−),

I ′b(u)u+ > I ′b(u
+)u+ and I ′b(u)u− > I ′b(u

−)u−,

where Ib is de�ned in (3.4). Therefore, the methods used to obtain sign-changing

solutions for the local problem like (1.12) seem not be applicable to the problem (Pa,b).

Additionally, we have di�culties due to the presence of the non-local Kirchho� term and

the loss of the Palais Smale compactness condition due to the exponential growth on the

nonlinearity. In order to overcome these di�culties, we de�ne the constrained setMb

(see (3.8)) and consider a minimization problem of Ib onMb. Borrowing ideas from [45],

we prove Mb 6= ∅ via geometric properties of the functional of Ib (see Lemma 3.3.4).

Combining the ideas developed in [3, 4, 11, 21], we prove that the minimizer of the

constrained problem is also a sign-changing solution via the quantitative deformation

lemma and degree theory (see Section 3.3).

Remark 3.1.5 The hypothesis (f1) allows us to consider nonlinearities with critical

growth in the sense de�ned in (1.4) with an exponent α0 = π and with subcritical growth

as in (1.5). More generally, we can consider an exponent α0 di�erent from π. In this

more general case, this new constant would imply a normalization of the constant Cp
de�ned in (3.9).

Remark 3.1.6 We point out that the results of this chapter complement the works

[48, 49, 50, 63] in the sense that we prove the existence of sign-changing solutions and

the work [21] in the sense that we consider exponential growth on the nonlinearity. Fur-

thermore, our results extend for the fractional Laplacian some of the results contained

in [3, 4, 72].

The outline of this chapter is as follows: Section 3.2 contains some auxiliaries

results and the variational framework. Section 3.3 is dedicated to the study of the nodal

set and the nodal level, the main goal is to prove that the nodal level is attained by a

sign-changing weak solution of (Pa,b). In Section 3.4 is devoted to prove the existence

of solutions that have signal de�ned and Section 3.5 we study the convergence of the

nodal solutions as b→ 0+.
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3.2 Preliminary results

As in Lemma 1.2.1 and Lemma 1.2.2, we have the following results:

Lemma 3.2.1 Under the assumption (V1), the embedding X ↪→ Lq(R) is continuous

and compact for all q ∈ [1,+∞).

Lemma 3.2.2 If 0 ≤ α ≤ π, it holds

sup
{u∈X : ‖u‖≤1}

∫
Ω

eαu
2

dx <∞. (3.14)

Moreover, for any α > 0 and u ∈ X, we have∫
Ω

eαu
2

dx <∞. (3.15)

As a consequence of Lemma 3.2.1, Lemma 3.2.2 and (f1), the energy functional

Ib : X −→ R given by

Ib(u) =
1

2
Mb(‖u‖2)−

∫
Ω

F (u) dx

is well de�ned and belongs to C1(X,R). Moreover, by straightforward calculation, we

have

I ′b(u)v = mb(‖u‖2)〈u, v〉 −
∫

Ω

f(u)v dx, for all u, v ∈ X.

As in Lemma 1.2.3:

Lemma 3.2.3 Let u ∈ X. It holds that

(i) 〈u, u±〉 = 〈u±, u±〉+
1

π

∫
R2

u+(x)(−u−(y))

|x− y|2
dxdy

(i) 〈u+, u−〉 ≥ 0,

(ii) ‖u‖2 ≥ ‖u+‖2 + ‖u−‖2.

Moreover, if u+ 6= 0 and u− 6= 0, these inequalities are strict.

We now collect some estimates for the functions f and mb. By the de�nition of

mb we have

mb(t)/t is strictly decreansing, for all t > 0; (3.16)

m′b(t)t < mb(t), for all t > 0; (3.17)

74



1

2
Mb(t)−

1

4
mb(t)t is positive and increasing, for all t > 0; (3.18)

Mb(t+ s) ≥Mb(t) +Mb(s), for all t, s ≥ 0; (3.19)

and this inequality is strict, if t and s are positive.

By (f1)− (f2), given ε > 0 and q ≥ 1, there exists C = C(ε, q) > 0 such that

|f(t)| ≤ ε|t|+ C|t|q−1eπt
2

, for all t ∈ R, (3.20)

and by (f3), we have

|F (t)| ≤ ε|t|2 + C|t|qeπt2 , for all t ∈ R. (3.21)

Moreover, by (f3), we can �nd positive constants C1 and C2 such that

F (t) ≥ C1|t|θ − C2, for all t ∈ R. (3.22)

By (f5), it follows that

|f(t)| ≥ Cp|t|p−1, for all t ∈ R, (3.23)

and consequently

F (t) ≥ Cp
p
|t|p, for all t ∈ R. (3.24)

We �nish this section with the following consequence of Lemma 3.2.3 and (3.19).

Corollary 3.2.4 Let u ∈ X. It holds that

(i) Ib(u) ≥ Ib(u
+) + Ib(u

−),

(ii) I ′b(u)u+ ≥ I ′b(u
+)u+ and I ′b(u)u− ≥ I ′b(u

−)u−.

Moreover, if u+ 6= 0 and u− 6= 0, these inequalities are strict.

Proof . By Lemma 3.2.3, we have

‖u‖2 = ‖u+‖2 + 2〈u+, u−〉+ ‖u−‖2 ≥ ‖u+‖2 + ‖u−‖2.

Thus, by using (3.19), we get the desired inequalities.
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3.3 Constrained minimization problem

We begin this section by introducing some notations. Given u ∈ X, we de�ne

ϕu : [0,∞)→ R by

ϕu(t) = Ib(tu) =
1

2
Mb(‖tu‖2)−

∫
Ω

F (tu) dx, (3.25)

and ψu : [0,∞)× [0,+∞)→ R by

ψu(t, s) = Ib(tu
+ + su−), (3.26)

and the vector �eld Ψu : [0,∞)× [0,∞)→ R2 by

Ψu(t, s) =
(
I ′b(tu

+ + su−)tu+, I ′b(tu
+ + su−)su−

)
. (3.27)

Next we will show that the Nehari sets Nb,N+
b e N−b are not empty.

Lemma 3.3.1 Assume that (V1) and (f1)−(f4) are satis�ed. Then, given u ∈ X \{0},
there exists a unique t = t(u) > 0 such that

Ib(tu) = max
s≥0

Ib(su). (3.28)

As a consequence, the Nehari sets Nb,N+
b and N−b are not empty.

Proof . Let u ∈ X \ {0}. Since Mb(s) = as+ bs2/2, we have

ϕu(s) =
as2

2
‖u‖2 +

bs4

4
‖u‖4 −

∫
Ω

F (su) dx.

By (3.22), we get

ϕu(s) ≤
as2

2
‖u‖2 +

bs4

4
‖u‖4 − C1s

θ‖u‖θθ + C2|Ω|.

Hence, since θ > 4, we obtain

ϕu(s)→ −∞, as s→∞. (3.29)

On the other hand, given ε > 0 and q > 2, by using (3.21) we have

ϕu(s) ≥
as2

2
‖u‖2 +

bs4

4
‖u‖4 − εs2‖u‖2

2 − Csq
∫

Ω

|u|qeπs2u2dx.

If s ∈ [0, 1], we have eπs
2u2 ≤ eπu

2
. Then, by Lemma 3.2.1 and Lemma 3.2.2, we can

�nd C1, C2 > 0 such that

ϕu(s) ≥ s2
(a

2
− εC1

)
‖u‖2 +

bs4

4
‖u‖4 − C(u)sq. (3.30)
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Thus, choosing ε > 0 such that a
2
− εC1 > 0, by using (3.30), we obtain

ϕu(s) > 0, for s > 0 small enough. (3.31)

From (3.29) and (3.31), there exists t = t(u) > 0 satisfying (3.28).

Next we will show the uniqueness of t = t(u). Suppose, by contradiction, that

there exists s > t such that I ′b(su)su = 0. By the de�nition of mb, we have

at2‖u‖2 + bt4‖u‖4 =

∫
Ω

f(tu)tu dx

and

as2‖u‖2 + bs4‖u‖4 =

∫
Ω

f(su)su dx.

From these, it follows that∫
Ω

(
f(tu)

(tu)3
− f(su)

(su)3

)
u4dx = a

(
1

t2
− 1

s2

)
‖u‖2.

Since s > t, this equality implies that∫
Ω

(
f(tu+)

(tu+)3
− f(su+)

(su+)3

)
(u+)4dx+

∫
Ω

(
f(tu−)

(tu−)3
− f(su−)

(su−)3

)
(u−)4dx > 0. (3.32)

But, by using the assumption (f4) and (3.32), we get a contradiction. The case 0 <

s < t is similar and we omit it. Therefore, we obtain that t = s. This completes the

proof.

The next result shows some geometric properties of functional Ib, which will be

use to study the Nehari nodal setMb.

Lemma 3.3.2 Assume that (V1) and (f1)− (f3) are satis�ed. Then, the functional Ib
satis�es the following geometric conditions:

(i) given u ∈ X \ {0}, we have

Ib(tu
+ + su−)→ −∞, as |(t, s)| → ∞;

(ii) there exists r > 0 such that

Ib(u) ≥ b

4
‖u‖4, for all ‖u‖ ≤ r.
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Proof . By using (3.22) and (x+ y)q ≤ 2q−1(xq + yq), for all x, y ≥ 0, we obtain

Ib(tu
+ + su−) ≤a

2
‖tu+ + su−‖2 +

b

4
‖tu+ + su−‖4 − C1‖tu+ + su−‖θθ + C2|Ω|

≤at2‖u+‖+ as2‖u−‖2 + 2bt4‖u+‖+ 2bs4‖u−‖4 − C1|t|θ‖u+‖θθ

+C1|s|θ‖u−‖θθ + C2|Ω|.

Thus, since θ > 4 and u 6= 0, we get (i).

Now, given ε > 0, q > 2 and using (3.21), we obtain that

Ib(u) ≥ a

2
‖u‖2 +

b

4
‖u‖4 − ε‖u‖2

2 − C
∫

Ω

|u|qeπu2dx.

If ‖u‖2 ≤ 1
2
, by using the Hölder inequality, Lemma 3.2.1 and Lemma 3.2.2, we can

�nd C1, C > 0 such that

Ib(u) ≥
(a

2
− εC1

)
‖u‖2 +

b

4
‖u‖4 − C‖u‖q. (3.33)

Chosing ε > 0 such that a
2
− εC1 > 0 and since q > 2, for ‖u‖ small enough, we obtain

that (a
2
− εC1

)
‖u‖2 − C‖u‖q > 0. (3.34)

Therefore, from (3.33) and (3.34), there exists 0 < r ≤ 1
2
, such that (ii) holds.

Remark 3.3.3 The energy functional associated to the problem (Pa,0), de�ned by

I0(u) = a
2
‖u‖2 −

∫
Ω
F (u) dx, it has similar geometric properties like to the previous

lemma.

Lemma 3.3.4 Assume that (V1) and (f1) − (f4) are satis�ed. Then, given u ∈ X,

with u+ 6= 0 and u− 6= 0, there exists a unique pair of positive numbers (tu, su) such

that tuu+ + suu
− ∈Mb. Moreover, if (t, s) 6= (tu, su), with t, s ≥ 0, we have

Ib(tu
+ + su−) < Ib(tuu

+ + suu
−).

Proof . By Lemma 3.3.2, there exists (tu, su) ∈ [0,+∞)× [0,∞) such that

Ib(tuu
+ + suu

−) = max
[0,+∞)×[0,∞)

Ib(tu
+ + su−).

Next, we will show that (tu, su) ∈ (0,∞)× (0,∞). Using (ii) of Lemma 3.3.2, we have

Ib(tu
+) > 0 and Ib(su

−) > 0 for t, s > 0 small enough.
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Thus, by using (i) of Corollary 3.2.4, for t, s > 0 small enough, we obtain

Ib(tu
+) < Ib(tu

+) + Ib(su
−) < Ib(tu

+ + su−).

Hence, the pair (tu, su) ∈ (0,∞)×(0,∞). In particular, we get that tuu+ +suu
− ∈Mb.

To show the uniqueness of the pair (tu, su), it is su�cient to consider the case

where u ∈ Mb and tu+ + su− ∈ Mb, with t, s > 0, and to prove that implies in

(t, s) = (1, 1). In order to prove this claim notice that

mb(‖u‖2)〈u, u+〉 =

∫
Ω

f(u+)u+dx

and

mb(‖tu+ + su−‖2)〈tu+ + su−, tu+〉 =

∫
Ω

f(tu+)tu+dx.

We will suppose that t ≥ s (the case s ≥ t is similar and we will omit it), then

〈tu+ + su−, tu+〉 = t2〈u+, u+〉+ st〈u+, u−〉 ≤ t2〈u, u+〉 (3.35)

and

‖tu+ + su−‖2 = t2‖u+‖2 + 2ts〈u+, u−〉+ s2‖u−‖2 ≤ t2‖u‖2. (3.36)

Hence, by using Lemma 3.2.3 and thatmb is a increasing function, by (3.35) and (3.36),

we obtain that

1

t4
mb(t

2‖u‖2)t2〈u, u+〉 ≥ 1

t4
mb(‖tu+ + su−‖2)〈tu+ + su−, u+〉 =

∫
Ω

f(tu+)

t3
u+dx.

Thus, we get that(
mb(‖tu‖2)

‖tu‖2
− mb(‖u‖2)

‖u‖2

)
‖u‖2〈u, u+〉 ≥

∫
Ω

(
f(tu+)

(tu+)3
− f(u+)

(u+)3

)
(u+)4dx. (3.37)

If t > 1, by (3.16) and Lemma 3.2.3, (3.37) implies that∫
Ω

(
f(tu+)

(tu+)3
− f(u+)

(u+)3

)
(u+)4dx < 0,

and so, by (f4), we obtain a contradiction. Then, we obtain that 0 < s ≤ t ≤ 1.

Arguing similarly by using the equations I ′b(tu
+ + su−)su− = 0 and I ′b(u)u− = 0, we

obtain that 1 ≤ s ≤ t, which implies t = s = 1 and the proof is complete.

Remark 3.3.5 Clearly, any nodal solution to (Pa,b) belongs to Mb. Similarly, any

nonnegative solution and nonpositive solution to (Pa,b) belongs to N+
b and N−b , respec-

tively. Now, let u ∈Mb. By Lemma 3.3.1, there exist t, s > 0 such that tu+ ∈ N+
b and
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su− ∈ N−b . Now, by Lemma 3.3.4, we have Ib(tu+ + su−) ≤ Ib(u). Thus, by Corollary

3.2.4, we reach that

2cNb ≤ cN+
b

+ cN−b
≤ Ib(tu

+) + Ib(su
−) < Ib(tu

+ + su−) ≤ Ib(u).

Hence, taking the in�mum in u ∈Mb, we obtain that

2cN b ≤ cN+
b

+ cN−b
≤ cMb

.

In particular, if cMb
is achieved for some function inMb, then, we get 2cN b ≤ cN+

b
+

cN−b
< cMb

, as in (3.13), and cN b = cN+
b
or cN b = cN−b

.

Lemma 3.3.6 Assume that (V1) and (f1) − (f4) are satis�ed. Let u ∈ X such that

u+ 6= 0, u− 6= 0, I ′b(u)u+ ≤ 0 and I ′b(u)u− ≤ 0. Then the unique pair (t, s) given in

Lemma 3.3.4 satis�es 0 < t, s ≤ 1.

Proof . Without loss of generality, we can assume 0 < s ≤ t and, by contradiction,

that t > 1. Note that (3.35) and (3.36) remain valid. Thus, since I ′b(tu
+ +su−)tu+ = 0

and I ′b(u)u+ ≤ 0, arguing as in Lemma 3.3.4, we have∫
Ω

f(tu+)

(tu+)3
(u+)4dx =

1

t4
mb(‖tu+ + su−‖2)〈tu+ + su−, tu+〉

≤ 1

t4
mb(‖tu‖2)t2〈u, u+〉 =

mb(‖tu‖2)

‖tu‖2
‖u‖2〈u, u+〉

<
mb(‖u‖2)

‖u‖2
‖u‖2〈u, u+〉 ≤

∫
Ω

f(u+)u+dx,

and so ∫
Ω

(
f(tu+)

(tu+)3
− f(u+)

(u+)3

)
(u+)4dx < 0.

But, by (f4), we obtain a contradiction. Therefore, we reach t ≤ 1, and the proof is

complete.

Lemma 3.3.7 Assume that (V1) and (f1)− (f4) are satis�ed. Then, there exists m0 >

0, independent of b, such that for any u ∈ Nb and for any v ∈Mb, we have

m0 ≤ ‖u‖2 and m0 ≤ ‖v+‖2, ‖v−‖2.

Proof . We will show the estimates only for v ∈Mb. Suppose, by contradiction, that

(vn) ∈ Mb and ‖v+
n ‖ → 0 as n → ∞. By using I ′b(vn)v+

n = 0 and Lemma 3.2.3, we

have

a‖v+
n ‖2 < mb(‖vn‖2)〈vn, v+

n 〉 =

∫
Ω

f(v+
n )v+

n dx, for all n ∈ N.
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Thus, given ε > 0 and q > 2, by using (3.20), we get

a‖v+
n ‖2 < ε‖v+

n ‖2
2 + C

∫
Ω

|v+
n |qeπ|v

+
n |2dx. (3.38)

Now, from the Hölder inequality, Lemma 3.2.2 and that since ‖v+
n ‖ → 0, for n ∈ N

large enough, we obtain that

∫
Ω

|v+
n |qeπ|v

+
n |2dx ≤

(∫
Ω

|v+
n |2qdx

) 1
2

(∫
Ω

e
2‖v+n ‖2π

(
v+n

‖v+n ‖

)2

dx

) 1
2

≤ C ′‖v+
n ‖

q
2q.

By using this inequality and Lemma 3.2.1 in (3.38), we have

a‖v+
n ‖2 < εC1‖v+

n ‖2 + C2‖v+
n ‖q, (3.39)

for all n ∈ N large enough. We can choose ε > 0 such that a − εC1 > 0. Thus, from

(3.39), we have

0 <
a− εC1

C2

< ‖v+
n ‖q−2 for all n ∈ N,

contrary to the assumption. Therefore, there exists m0 > 0 with the desired property.

Corollary 3.3.8 Assume that (V1) and (f1) − (f3) are satis�ed. Then, there exists

δ0 > 0, independent of b, such that Ib(u) ≥ δ0, for all u ∈ Nb. In particular

δ0 ≤ cNb , δ0 ≤ cN+
b
, δ0 ≤ cN−b

and δ0 ≤ cMb
.

Proof . Let u ∈ N b. Since I ′b(u)u = 0, from Lemma 3.3.7 and (f3), we have

Ib(u) = Ib(u)− 1

θ
I ′b(u)u

=
1

2
Mb(‖u‖2)− 1

θ
mb(‖u‖2)‖u‖2 +

1

θ

∫
Ω

(f(u)u− θF (u)) dx

≥ 1

2
Mb(‖u‖2)− 1

θ
mb(‖u‖2)‖u‖2

= a

(
1

2
− 1

θ

)
‖u‖2 + b

(
1

4
− 1

θ

)
‖u‖4

≥ a

(
1

2
− 1

θ

)
‖u‖2 ≥ a

(
1

2
− 1

θ

)
m0 := δ0,

which is the desired conclusion.

In the next result, we will obtain an important estimate for the nodal level cMb
.

That will be a powerful tool in order to obtain an appropriate bound of the norm of a

minimizing sequence for cMb
inMb.
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Lemma 3.3.9 Assume that (V1), (f1)− (f5) and (3.9) are satis�ed. It holds that

cMb
<
a(θ − 2)

2θ
. (3.40)

Proof . From Theorem B.3.1 in the Appendix, there exists w ∈Mp
b such that Jb(w) =

d∗b and J
′
b(w) = 0. Consequently, we get

Mb(‖w‖2)− 1

p
‖w‖pp = 2d∗b (3.41)

and

mb(‖w‖2)〈w,w+〉 =
1

2
‖w+‖pp and mb(‖w‖2)〈w,w−〉 =

1

2
‖w−‖pp. (3.42)

By Lemma 3.3.4, there exist t, s > 0 such that tw+ + sw− ∈ Mb. By using (3.23) and

that Cp > 1/2, we have

mb(‖w‖2)〈w,w±〉 =
1

2
‖w‖pp =

1

2Cp
Cp‖w±‖pp ≤

∫
Ω

f(w±)w±dx.

Thus, I ′b(w)w+ ≤ 0 and I ′b(w)w− ≤ 0. Then, we can apply Lemma 3.3.6, in order to

get that 0 < t, s ≤ 1. By the de�nition of cMb
and (3.24), we get

cMb
≤ 1

2
Mb(‖tw+ + sw−‖2)− Cpt

p

p
‖w+‖pp −

Cps
p

p
‖w−‖pp. (3.43)

Now, from (3.42) and by the de�nition of Mb and mb, we obtain

1

2
Mb(‖tw+ + sw−‖2) =

at2

2
‖w+‖2 + ats〈w+, w−〉+

as2

2
‖w−‖2 +

b

4
‖tw+ + sw−‖4,

and

a‖w±‖2 =
1

2
‖w±‖pp − a〈w+, w−〉 − b‖w‖2〈w,w±〉.

These estimates together with (3.43), imply that

cMb
≤ at

2

2
‖w+‖2 + ats〈w+, w−〉+

as2

2
‖w−‖2 +

b

4
‖tw+ + sw−‖4

− Cpt
p

p
‖w+‖pp −

Cps
p

p
‖w−‖pp

=
t2

4
‖w+‖pp −

at2

2
〈w+, w−〉 − bt2

2
‖w‖2〈w,w+〉+ ats〈w+, w−〉

+
s2

4
‖w−‖pp −

as2

2
〈w+, w−〉 − bs2

2
‖w‖2〈w,w−〉+

b

4
‖tw+ + sw−‖4

− Cpt
p

p
‖w+‖pp −

Cps
p

p
‖w−‖pp.
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This implies that

cMb
≤
(
t2

4
− Cpt

p

p

)
‖w+‖pp +

(
s2

4
− Cps

p

p

)
‖w−‖pp −

a

2
(t− s)2〈w+, w−〉

− bt2

2
‖w‖2〈w,w+〉 − bs2

2
‖w‖2〈w,w−〉+

b

4
‖tw+ + sw−‖4.

By Lemma 3.2.3, we have a
2
(t− s)2〈w+, w−〉 ≥ 0 and so we deduce that

cMb
≤
(
t2

4
− Cpt

p

p

)
‖w+‖pp +

(
s2

4
− Cps

p

p

)
‖w−‖pp + A(t, s, w, b), (3.44)

where

A(t, s, w, b) := −bt
2

2
‖w‖2〈w,w+〉 − bs2

2
‖w‖2〈w,w−〉+

b

4
‖tw+ + sw−‖4.

We claim that A(t, s, w, b) ≤ 0.

Indeed, notice that

1

2
‖tw+ + sw−‖4 =

t4

2
‖w+‖4 + 2t3s‖w+‖2〈w+, w−〉+ t2s2‖w+‖2‖w−‖2

+ 2t2s2〈w+, w−〉2 + 2ts3‖w−‖2〈w+, w−〉+
s4

2
‖w−‖4

and

−t2‖w‖2〈w,w+〉 − s2‖w‖2〈w,w−〉 =− t2‖w+‖4 − (3t2 + s2)‖w+‖〈w+, w−〉

− (t2 + s2)‖w+‖2‖w−‖2 − 2(t2 + s2)〈w+, w−〉2

− (3s2 + t2)‖w−‖2〈w+, w−〉 − s2‖w−‖4.

Hence, we obtain

2

b
A(t, s, w, b) =

(
t4

2
− t2

)
‖w+‖4 + (2t3s− 3t2 − s2)‖w+‖2〈w+, w−〉

+ (t2s2 − t2 − s2)‖w+‖2‖w−‖2 + 2(t2s2 − t2 − s2)〈w+, w−〉2

+ (2ts3 − 3s2 − t2)‖w−‖2〈w+, w−〉+

(
s4

2
− s2

)
‖w−‖4.

Now, since 0 < t, s ≤ 1, from Lemma 3.2.3, it is easy to see that A(t, s, w, b) ≤ 0.

By using that A(t, s, w, b) ≤ 0 and (3.44), we get

cMb
< max

ξ≥0

(
ξ2

4
− Cpξ

p

p

)
‖w‖pp. (3.45)

It is simple to check that

max
ξ≥0

(
ξ2

4
− Cpξ

p

p

)
= C

2
2−p
p

(
2

2
2−p p− 2

p
2−p 4

p− 4

)(
1

4
− 1

p

)
. (3.46)
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Note that by using (3.42), we get mb(‖w‖2)‖w‖2 =
1

2
‖w‖pp and consequently, we have

1

4
‖w‖pp =

1

2
mb(‖w‖2)‖w‖2 =

a

2
‖w‖2 +

b

2
‖w‖4.

This together with (3.41), implies that(
1

4
− 1

p

)
‖w‖pp =

1

4
‖w‖pp −

1

p
‖w‖pp =

a

2
‖w‖2 +

b

2
‖w‖4 − 1

p
‖w‖pp

<a‖w‖2 +
b

2
‖w‖4 − 1

p
‖w‖pp = Mb(‖w‖2)− 1

p
‖w‖pp = 2d∗b .

(3.47)

Thus, by combining (3.45), (3.46) and (3.47), we obtain

cMb
< C

2
2−p
p

(
2

2
2−p p− 2

p
2−p 4

p− 4

)
2d∗b . (3.48)

Therefore, by (3.9) and (3.48), we obtain that (3.40) holds.

For the next result, consider the set S̃bλ = {u ∈Mb : Ib(u) < cMb
+λ} for λ > 0.

As a consequence of Lemma 3.3.9, we will prove that:

Lemma 3.3.10 Assume that (V1), (f1)− (f5) and (3.9) are satis�ed. For λ > 0 small

enough, there exists κ = κ(λ) ∈ (0, 1) such that

0 < m0 ≤ ‖u±‖2 < ‖u‖2 ≤ κ,

for any u ∈ S̃bλ.

Proof . From Lemma 3.3.9, we can choose λ > 0 such that cMb
+ λ < a(θ−2)

2θ
. Given

u ∈ S̃bλ, by Lemma 3.3.7 and by using 〈u+, u−〉 > 0, we have m0 ≤ ‖u±‖2 < ‖u‖2. On

the other hand, by (f3) and since I ′b(u)u = 0, we obtain

cMb
+ λ > Ib(u) = Ib(u)− 1

θ
I ′b(u)u

=
1

2
Mb(‖u‖2)− 1

θ
mb(‖u‖2)‖u‖2 +

1

θ

∫
Ω

(f(u)u− θF (u)) dx

≥ 1

2
Mb(‖u‖2)− 1

θ
mb(‖u‖2)‖u‖2

= a

(
1

2
− 1

θ

)
‖u‖2 + b

(
1

4
− 1

θ

)
‖u‖4

≥ a

(
1

2
− 1

θ

)
‖u‖2.

Consequently, it follows that

‖u‖2 ≤ 2θ

a(θ − 2)
(cMb

+ λ) =: κ < 1,

for all u ∈ S̃bλ, as desired.

From now on, we will write S̃bλ with λ given in Lemma 3.3.10.
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Lemma 3.3.11 Assume that (V1), (f1)− (f5) and (3.9) are satis�ed. For any q ≥ 1,

there exists δq > 0 such that

0 < δq ≤
∫

Ω

|u±|qdx <
∫

Ω

|u|qdx,

for any u ∈ S̃bλ.

Proof . By Lemma 3.3.7 and (f1), for any u ∈ S̃bλ, we have

0 < am0 ≤ a‖u±‖2 < mb(‖u‖2)〈u, u±〉 =

∫
Ω

f(u±)u±dx ≤ C0

∫
Ω

|u±|eπ|u±|2dx.

Since κ < 1, we can choose t′ > 1, with κt′ < 1 and t > q such that 1/t′ + 1/t = 1.

Now, by using the Hölder inequality, Lemma 3.3.10 and Lemma 3.2.2, we obtain that∫
Ω

|u±|eπ|u±|2dx ≤
(∫

Ω

|u±|tdx
) 1

t
(∫

Ω

e
κt′π

(
u±
‖u±‖

)2
dx

) 1
t′

≤ C ′‖u±‖t.

Hence, for all u ∈ S̃bλ, we get

0 < C ≤ ‖u±‖t. (3.49)

We suppose, by contradiction, that there exists (un) ⊂ S̃bλ such that ‖u±n ‖q → 0 as

n → ∞. From Lemma 3.2.1 and Lemma 3.3.10, we obtain that (u±n ) is bounded in

L2t(Ω). Consequently, since q < t < 2t, by the interpolation inequality, we �nd that

‖u±n ‖t → 0 as n→∞, which is impossible in view of (3.49).

Lemma 3.3.12 Assume that (V1) and (f1)− (f5) are satis�ed. Let (un) be a sequence

in X such that un ⇀ u weakly in X and B := supn∈N ‖un‖2 < 1. Then, for all v ∈ X,

up to a subsequence, we have

lim
n→∞

∫
Ω

f(un)undx =

∫
Ω

f(u)udx; (3.50)

lim
n→∞

∫
Ω

f(un)u±ndx =

∫
Ω

f(u)u±dx; (3.51)

lim
n→∞

∫
Ω

f(un)vdx =

∫
Ω

f(u)vdx (3.52)

and

lim
n→∞

∫
Ω

F (un)dx =

∫
Ω

F (u)dx. (3.53)

85



Proof . Since B < 1, by using (f1), the Hölder inequality and Lemma 3.2.1, it is easy

to see that the integrals∫
Ω

|f(un)un||un|dx,
∫

Ω

|f(un)u±n ||un|dx,
∫

Ω

|f(un)v||un|dx and
∫

Ω

|F (un)|un|dx

are uniformly bounded. Thus, by Lemma 3.2.1, the convergences (3.50)-(3.53) follow

from Lemma 2.1 in [25].

Lemma 3.3.13 Assume that (f1), (f3) and (f4) are satis�ed. Then the function H(t) =

f(t)t− 4F (t) satis�es

(i) H(0) = 0 and H(t) > 0, for all t 6= 0;

(ii) H(t) is increasing for t > 0 and decreasing for t < 0.

Proof . It is clear that the hypothesis (f1) and (f3) imply (i). To get (ii), it is enough

to analyze the derivative of H together with the assumptions (f1) and (f4).

Next we will present a technical lemma that will be crucial in the proof of Theorem

3.1.2.

Lemma 3.3.14 Assume that (V1), (f1), (f3) and (f4) are satis�ed. Then, for any u ∈
Mb, we have

det J(1,1)Ψu > 0,

where J(1,1)Ψu is the Jacobian matrix of Ψu at the point (1, 1).

Proof . Let Ψ1
u(t, s) = I ′b(tu

+ + su−)tu+ and Ψ2
u(t, s) = I ′b(tu

+ + su−)su− the co-

ordinates functions of Ψu(t, s), where Ψu is de�ned in (3.27). Calculating the partial

derivatives of Ψ1
u and Ψ2

u at the point (1, 1) and by using Lemma 3.2.3, we get

∂Ψ1
u

∂t
(1, 1) =2m′b(‖u‖2)〈u, u+〉2 +mb(‖u‖2)(2‖u+‖2 + 〈u+, u−〉)

−
∫

Ω

f ′(u+)(u+)2 + f(u+)u+dx;

∂Ψ1
u

∂s
(1, 1) =

∂Ψ2
u

∂t
(1, 1) = 2mb(‖u‖2)〈u, u+〉〈u, u−〉+mb(‖u‖2)〈u+, u−〉 > 0;

∂Ψ2
u

∂s
(1, 1) =2m′b(‖u‖2)〈u, u−〉2 +mb(‖u‖2)(2‖u−‖2 + 〈u+, u−〉)

−
∫

Ω

f ′(u−)(u−)2 + f(u−)u−dx.
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Note that we can rewrite

∂Ψ1
u

∂t
(1, 1) = 2m′b(‖u‖2)‖u‖2〈u, u+〉 − 2m′b(‖u‖2)〈u, u+〉〈u, u−〉

+ 2mb(‖u‖2)〈u, u+〉 −mb(‖u‖2)〈u+, u−〉 −
∫

Ω

f ′(u+)(u+)2 + f(u+)u+dx.

Thus, by using (3.17), we have

∂Ψ1
u

∂t
(1, 1) < 4mb(‖u‖2)〈u, u+〉 − 2m′b(‖u‖2)〈u, u+〉〈u, u−〉

−mb(‖u‖2)〈u+, u−〉 −
∫

Ω

f ′(u+)(u+)2 + f(u+)u+dx.
(3.54)

On the other hand, since I ′b(u)u+ = 0, we have

mb(‖u‖2)〈u, u+〉 =

∫
Ω

f(u+)u+dx. (3.55)

Combining (3.54) and (3.55), we get

∂Ψ1
u

∂t
(1, 1) < −2m′b(‖u‖2)〈u, u+〉〈u, u−〉 −mb(‖u‖2)〈u+, u−〉)−

∫
Ω

H ′(u+)u+dx.

By the item (ii) of Lemma 3.3.13, we have
∫

Ω
H ′(u+)u+dx ≥ 0. Hence, we deduce that

∂Ψ1
u

∂t
(1, 1) < −2m′b(‖u‖2)〈u, u+〉〈u, u−〉−mb(‖u‖2)〈u+, u−〉 = −∂Ψ1

u

∂s
(1, 1) < 0. (3.56)

Similarly, we can show that

∂Ψ2
u

∂s
(1, 1) < −∂Ψ1

u

∂s
(1, 1) < 0. (3.57)

Hence, by (3.56) and (3.57), we have

det J(1,1)Ψu =
∂Ψ1

u

∂t
(1, 1)

∂Ψ2
u

∂s
(1, 1)− ∂Ψ1

u

∂s
(1, 1)

∂Ψ2
u

∂t
(1, 1)

=
∂Ψ1

u

∂t
(1, 1)

∂Ψ2
u

∂s
(1, 1)−

(
∂Ψ1

u

∂s
(1, 1)

)2

>

(
∂Ψ1

u

∂s
(1, 1)

)2

−
(
∂Ψ1

u

∂s
(1, 1)

)2

= 0,

as desired.

Now, we have all the results that will allow us to prove that the nodal level cMb

is attained in a function with u ∈Mb.

Lemma 3.3.15 Assume that (V1), (f1) − (f5) and (3.9) are satis�ed. Then, there

exists ub ∈Mb such that Ib(ub) = cMb
.
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Proof . Let (un) ⊂ S̃bλ be a sequence such that Ib(un)→ cMb
as n→∞. By Lemma

3.3.10, we have that

0 < m0 ≤ ‖u±n ‖2 < ‖un‖2 ≤ κ < 1, for all n ∈ N.

Then, we can assume, without loss of generality, that the convergences in Lemma 3.3.12

hold for the sequence (un). Since X is a Hilbert space, there exists u ∈ X such that

u±n ⇀ u± as n → +∞. By Lemma 3.2.1, up to a subsequence, we have u±n → u± in

Lq(R) and u±n (x)→ u(x)± a.e. in R, with q ≥ 1 (see Lemma A.1.8). Now from Lemma

3.3.11, we can deduce that u+ 6= 0 and u− 6= 0 in X. Note that by Lemma 3.3.4, there

exist t, s > 0 such that ub := tu+ + su− ∈Mb. We claim that 0 < t, s ≤ 1. In order to

prove this, by Lemma 3.3.6, it is su�cient to show that I ′b(u)u+ ≤ 0 and I ′b(u)u− ≤ 0.

Indeed, by using Lemma 3.2.3, the Fatou's Lemma and by lower semicontinuity of the

norm, we get

0 < 〈u, u+〉 ≤ lim inf
n→∞

〈un, u+
n 〉 and 0 < ‖u‖2 ≤ lim inf

n→∞
‖un‖2.

Thus, by using the properties of lim inf, we get

mb(‖u‖2)〈u, u+〉 ≤ lim inf
n→∞

a〈un, u+
n 〉+ lim inf

n→∞
b‖un‖2〈un, u+

n 〉

≤ lim inf
n→∞

(
a〈un, u+

n 〉+ b‖un‖2〈un, u+
n 〉
)

= lim inf
n→∞

mb(‖un‖2)〈un, u+
n 〉.

(3.58)

On the other hand, by using I ′b(un)u+
n = 0 and (3.51), we have

lim
n→∞

mb(‖un‖2)〈un, u+
n 〉 = lim

n→∞

∫
Ω

f(u+
n )u+

ndx =

∫
Ω

f(u+)u+dx. (3.59)

From (3.58) and (3.59) we deduce that I ′b(u)u+ ≤ 0, and similarly we can prove

I ′b(u)u− ≤ 0. Therefore, 0 < t, s ≤ 1 and hence the claim is proved. Now, by us-

ing that ‖ub‖2 ≤ ‖u‖2 and again to lower semicontinuity of the norm, we have

1

2
Mb(‖ub‖2)− 1

4
mb(‖ub‖2)‖ub‖2 = a

(
1

2
− 1

4

)
‖u‖2 ≤ lim inf

n→∞
a

(
1

2
− 1

4

)
‖un‖2. (3.60)

On the other hand, by using Lemma 3.3.13 and Lemma 3.3.12, we have

1

4

∫
Ω

H(ub) dx =
1

4

∫
Ω

H(tu+) dx+
1

4

∫
Ω

H(su−) dx

≤1

4

∫
Ω

H(u+) dx+
1

4

∫
Ω

H(u−) dx

=
1

4

∫
Ω

H(u) dx = lim
n→∞

1

4

∫
Ω

f(un)un − 4F (un) dx

=
1

4

∫
Ω

f(u)u− 4F (u) dx.

(3.61)
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Thus, by (3.60) and (3.61), we deduce that

cMb
≤ Ib(ub) = Ib(ub)−

1

4
I ′b(ub)ub

=
1

2
Mb(‖ub‖2)− 1

4
mb(‖ub‖2)‖ub‖2 +

1

4

∫
Ω

H(ub) dx

≤ lim inf
n→∞

a

(
1

2
− 1

4

)
‖un‖2 + lim inf

n→∞

1

4

∫
Ω

f(un)un − 4F (un) dx

≤ lim inf
n→∞

(
1

2
Mb(‖un‖2)− 1

4
mb(‖un‖2)‖un‖2 +

1

4

∫
Ω

f(un)un − 4F (un) dx

)
= lim inf

n→∞

(
Ib(un)− 1

4
I ′b(un)un

)
= cMb

.

Therefore, we get that Ib(ub) = cMb
, which is the desired conclusion.

Next we will introduce some notations and a technical result that will be apply

in the proof of Theorem 3.1.2.

Let D =
(

1
2
, 3

2

)
×
(

1
2
, 3

2

)
and g : D → X, given by g(t, s) = tu+

b + su−b , where ub

is given in Lemma 3.3.15. Then, as in Lemma 1.4.1, following basic result:

Lemma 3.3.16 Let P = {u ∈ X : u(x) ≥ 0 a.e. x ∈ R} and −P = {u ∈ X : u(x) ≤
0 a.e. x ∈ R}. Then d′ = dist(g(D),Λ) > 0, where Λ := P ∪ (−P ).

3.3.1 Proof of Theorem 3.1.2

From Lemma 3.3.15, it remains to show that ub is a critical point of Ib. Suppose,

by contradiction, that I ′b(ub) 6= 0. Thus, by the continuity of I ′b, there exist γ, δ > 0

with δ ≤ d′

2
, such that

‖I ′b(v)‖ ≥ γ, for all v ∈ B3δ(ub), (3.62)

where d′ is given in Lemma 3.3.16. Since ub ∈Mb, by using Lemma 3.3.4, the function

(Ib ◦ g)(t, s), for (t, s) ∈ D, has a strict maximum point (1, 1). Thus, we get

n∗b = max
(t,s)∈∂D

(Ib ◦ g)(t, s) < cMb
.

Let ε > 0 be such that ε < min{(cMb
− n∗b)/2, γδ/8} and we de�ne S = Bδ(ub). From

this choice, for (t, s) ∈ ∂D, we have

(Ib ◦ g)(t, s) ≤ n∗b = cMb
− 2(cMb

− n∗b)/2 < cMb
− 2ε.

Hence, we deduce that

g(∂D) ∩ I−1
b ([cMb

− 2ε, cMb
+ 2ε]) = ∅ (3.63)
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and, by estimates in (3.62),

‖I ′b(v)‖ ≥ 8ε

δ
; ∀v ∈ I−1

b ([cMb
− 2ε, cMb

+ 2ε]) ∩ S2δ.

Thus, by the quantitative deformation lemma in [72, Lemma 2.3], there exists η ∈

C([0, 1]×X,X) such that

(i) η(t, u) = u, if t = 0 or u /∈ I−1
b ([cMb

− 2ε, cMb
+ 2ε]) ∩ S2δ;

(ii) η(1, I
cMb

+ε

b ∩ S) ⊂ I
cMb
−ε

b ;

(iii) η(t, ·) is a homeomorphism of X, ∀ t ∈ [0, 1];

(iv) ‖η(t, u)− u‖ ≤ δ, ∀u ∈ X, ∀ t ∈ [0, 1];

(v) Ib(η(·, u)) is non increasing, ∀u ∈ X;

(vi) Ib(η(t, u)) < cMb
, ∀u ∈ IcMb

b ∩ Sδ, ∀ t ∈ (0, 1].

We claim that

max
(t,s)∈D

Ib(η(1, g(t, s))) < cMb
. (3.64)

Indeed, if (t, s) ∈ D with (t, s) 6= (1, 1), by using Lemma 3.3.4 we have Ib(g(t, s)) < cMb
.

Hence

Ib(η(1, g(t, s))) ≤ I(η(0, g(t, s))) = I(g(t, s)) < cMb
.

If (t, s) = (1, 1) then g(1, 1) = ub ∈ I
cMb
b ∩ Sδ and so Ib(η(1, g(1, 1))) < cMb

, showing

(3.64).

Now, by the de�nition of cMb
and (3.64), we get

η(1, g(D)) ∩Mb = ∅. (3.65)

Let us consider h : D → X, given by h(t, s) = η(1, g(t, s)). Using (3.63) and the

properties of η, we get

h(t, s) = g(t, s) in ∂D. (3.66)

Claim 3.3.17 We claim that h(t, s)+ 6= 0 and h(t, s)− 6= 0, for all (t, s) ∈ D.
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Indeed, let v ∈ Λ. By the choice of δ > 0 and Lemma 3.3.16, we have that

‖h(t, s)− v‖ ≥ ‖g(t, s)− v‖ − ‖h(t, s)− g(t, s)‖

≥ ‖g(t, s)− v‖ − δ

≥ d′ − d′

2
=
d′

2
.

Thus, h(t, s)+ 6= 0 and h(t, s)− 6= 0 for all (t, s) ∈ D, concluding the statement.

Now, let us consider the vector �elds Ψub ,F : D → R2, where Ψub is given in

(3.27) and

F(t, s) = (I ′b(h(t, s))h(t, s)+, I ′b(h(t, s))h(t, s)−).

From (3.66), we have Ψub = F in ∂D. Hence, by the degree theory (see Lemma A.1.14),

we get

deg(Ψub , D, (0, 0)) = deg(F , D, (0, 0)). (3.67)

But, by using again Lemma 3.3.4, we have that the point (1, 1) is a unique point in

D such that Ψub(t, s) = (0, 0). Consequently, again by the degree theory (see Lemma

A.1.15) and Lemma 3.3.14, we can deduce that

deg(Ψub , D, (0, 0)) = sgn(J(1,1)Ψub) = 1. (3.68)

Then, by (3.67), we get

deg(F , D, (0, 0)) = 1.

Thus, by degree theory (see Lemma A.1.13), there exists a point (t0, s0) ∈ D such that

I ′b(h(t0, s0))h(t0, s0)+ = 0 and I ′b(h(t0, s0))h(t0, s0)− = 0. (3.69)

By Claim 3.3.17 we have that h(t0, s0)+ 6= 0 and h(t0, s0)+ 6= 0. Hence, (3.69) implies

that h(t0, s0) belongs to η(1, g(D)) ∩Mb, which is a contradiction in view of (3.65),

and the proof is complete.

3.4 Nonpositive solution and nonnegative solution of

(Pa,b)

First, we de�ne the functionals I+
b : X → R and I−b : X → R by

I±b (u) =
1

2
Mb(‖u‖2)−

∫
Ω

F (u±) dx. (3.70)
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By using the assumptions on f , we have that I±b ∈ C1(X,R) and, for any u, v ∈ X,

one has

(I±b )′(u)v = mb(‖u‖2)〈u, v〉 −
∫

Ω

f(u±)v dx. (3.71)

Note that considering functions such that u = u+ and v = v−, we have

I+
b (u) = Ib(u), I−b (v) = Ib(v), (I+

b )′(u) = I ′b(u) and (I−b )′(v) = I ′b(v),

that is, the functionals I±b , and their derivatives, coincide with Ib, and their derivatives,

in P and −P , respectively, where P is de�ned in Lemma 3.3.16. If u ∈ X \ {0} is a

critical point of I+
b then, taking u− as a test function in (3.71), we deduce that

0 = (I+
b )′(u)u− = mb(‖u‖2)〈u, u−〉.

This implies 〈u, u−〉 = 0 and from Lemma 3.2.3 we obtain that u− = 0. Therefore,

nontrivial critical points u of I+
b are nonnegative solutions of (Pa,b) and, in particular,

u = u+ ∈ N+
b . Analogously, nontrivial critical points u of I−b are nonpositive solutions

of (Pa,b).

The �rst result in this section proves that the functionals I±b have the mountain

pass geometry.

Lemma 3.4.1 Assume that (V1) and (f1) − (f3) are satis�ed. Then, the functionals

I±b have the following geometric properties:

(i) there exist r > 0 and τ > 0 such that I±b (u) ≥ τ , for ‖u‖ = r;

(ii) there exists e ∈ X, with ‖e‖ > r, I±b (e) < 0.

Proof . It is similar to Lemma 3.3.2 and we will omit it.

Let us consider the sets

Γb := {γ ∈ C([0, 1], X) : γ(0) = 0 and Ib(γ(1)) < 0},

Γ±b := {γ ∈ C([0, 1], X) : γ(0) = 0 and I±b (γ(1)) < 0}

and the respective minimax levels

cb = inf
γ∈Γb

max
t∈[0,1]

Ib(γ(t)) and c±b = inf
γ∈Γ±b

max
t∈[0,1]

I±b (γ(t)).

As an application of Lemma 3.3.2, Lemma 3.4.1 and by the Mountain Pass The-

orem, we obtain the following corollary:
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Corollary 3.4.2 Assume that (V1) and (f1)− (f3) are satis�ed. There exist sequences

(un), (un,±) ⊂ X such that (un) is a (PS)cb sequence for Ib and (un,±) are (PS)c±b
sequences for I±b .

The next lemma we will show that the minimax levels de�ned above cb and c
±
b are

less or equal to the respective Nehari level in (3.6), (3.7) and (3.8) of functional Ib. This

will be our main tool to show that the functionals Ib and I
±
b satisfy the Palais-Smale

condition at the levels cb and c
±
b , respectively.

Lemma 3.4.3 Assume that (V1) and (f1)−(f4) are satis�ed. The following inequalties

hold

cb ≤ cNb , c
+
b ≤ cN+

b
and c−b ≤ cN−b

.

Proof . We will only show the inequality c+
b ≤ cN+

b
(the proof of the other ones are

similar). First, by using Lemma 3.3.1, we get that

cN+
b

= inf
u=u+ 6=0

max
t≥0

Ib(tu
+).

Let u = u+ 6= 0. By Lemma 3.3.2, we have Ib(su+) → −∞ as s → ∞. Thus there

exists Cu+ > 0 large enough such that Ib(su+) < 0, for all s ≥ Cu+ . Now we consider

the family of curves γsu+ : [0, 1] → X, given by γsu+(t) = stu+, for s ≥ Cu+ . For any

u ∈ P \ {0}, the family of curves so de�ned is such that {γsu+}s≥Cu+ ⊂ Γ+
b . Thus, we

have that

c+
b = inf

γ∈Γ+
b

max
t∈[0,1]

I+
b (γ(t)) ≤ inf

{γsu+}s≥Cu+
u = u+ 6= 0

max
t∈[0,1]

I+
b (γsu+(t))

≤ inf
u=u+ 6=0

max
t≥0

Ib(tu
+) = cN+

b

and so we �nish the proof of the Lemma.

Remark 3.4.4 From Remark 3.3.5, Theorem 3.1.2 and Lemma 3.4.3, it follows that

c+
b + c−b ≤ cN+

b
+ cN−b

< cMb
. (3.72)

Moreover, if u is a critical point of I+
b such that I+

b (u) = c+
b , then u ∈ N+

b is a

nonnegative solution of (Pa,b). Thus, we have cN+
b
≤ Ib(u) = I+

b (u) = c+
b . Therefore,

we deduce that

c+
b = cN+

b
. (3.73)

Similarly, we have that cb = cNb and c
−
b = cN−b

.
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3.4.1 Proof of Theorem 3.1.3

We will only show the existence of one nonnegative and nonzero solution (the

case of one nonpositive and nonzero solution is similar and we will omit it). From

Corollary 3.4.2, there exists (un) ⊂ X such that I+
b (un) → c+

b and (I+
b )′(un) → 0 as

n→ +∞. Now, by (f3), we have

c+
b + on(1)‖un‖ =I+

b (un)− 1

θ
(I+
b )′(un)un

=
1

2
Mb(‖un‖2)− 1

θ
mb(‖un‖2)‖un‖+

1

θ

∫
Ω

[f(u+
n )u+

n − θF (u+
n )] dx

≥a
(

1

2
− 1

θ

)
‖un‖2

and so, it follows that (un) is bounded in X. Let C > 0 such that ‖un‖ ≤ C, for all

n ∈ N. Let n0 ∈ N such that ‖(I+
b )′(un)‖∗‖un‖ ≤ on(1)C < λ, for all n ≥ n0, where

λ > 0 is given in Lemma 3.3.10. Thus, by the estimates above and (3.72), we get

‖un‖2 <
2θ

a(θ − 2)
(cMb

+ λ) = κ < 1, for all n ≥ n0.

Without loss of generality, we can assume that ‖un‖2 ≤ κ < 1, for all n ∈ N.

Since X is a Hilbert space, there exists u+ ∈ X such that un ⇀ u+ in X as n→∞. By

Lemma 3.2.1, up to a subsequence, we have un → u+ in Lq(R), for all q ≥ 1, un(x)→

u+(x) a.e. in R as n → ∞. Moreover, we can also assume that the convergences in

Lemma 3.3.12 hold for the sequence (un).

Now, since Mb(t) = at+ bt2/2 is a increasing function and by the lower semicon-

tinuity of the norm, we have

1

2
Mb(‖u+‖2) ≤ lim inf

n→∞

1

2
Mb(‖un‖2). (3.74)

On the other hand, we have Mb is a convex function and so, by using properties of

derivative of convex functions (see Lemma A.1.2), for any n ∈ N, we get

1

2

(
Mb(‖u+‖2)−Mb(‖un‖2)

)
≥ 1

2
M ′

b(‖un‖2)(u+ − un).

By using (3.51), (3.52) and by inequality above, we have

1

2

(
Mb(‖u+‖2)−Mb(‖un‖2)

)
≥mb(‖un‖2)〈un, u+ − un〉

=(I+
b )′(un)(u+ − un) +

∫
Ω

f(u+
n )(u+ − un) dx = on(1),
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and so on(1) +Mb(‖un‖2) ≤Mb(‖u+‖2), and consequently, we get

lim inf
n→∞

1

2
Mb(‖un‖2) ≤ 1

2
Mb(‖u+‖2). (3.75)

Hence, by (3.74) and (3.75), up to a subsequence, we have Mb(‖un‖2)→Mb(‖u+‖2) as

n → ∞. Since Mb is a increasing function, we deduce that ‖un‖ → ‖u+‖ as n → ∞.

Thus, as X is a Hilbert space, we have un → u+ strongly in X as n→∞. Therefore,

u+ is a critical point of I+
b and I+

b (u+) = c+
b > 0. Consequently, by Remark 3.4.4, we

have u+ ∈ N+
b and c+

b = cN+
b
, and the proof is complete.

3.5 The asymptotic behavior of the nodal solutions

We started this section by proving some facts related to functional Jb and the

nodal level d∗b , which are de�ned in (3.10) and (3.12). Given b′ ≥ 0, we consider

Mb′(t) = at+ b′t2/2 and Jb′ : X → R de�ned by

Jb′(u) =
1

2
Mb′(‖u‖2)− 1

2p

∫
Ω

|u|pdx and d∗b′ = inf
u∈Mp

b′

Jb′(u),

where

Mp
b′ = {u ∈ X : u+ 6= 0, u− 6= 0 (Jb′)

′(u)u+ = 0 and (Jb′)
′(u)u− = 0}.

Note that Jb′ is the energy functional of the problem mb′(‖u‖2)
[
(−∆)1/2u+ V (x)u

]
=

1

2
|u|p−2u in Ω,

u = 0 in R \ Ω,
(P̃a,b′)

wheremb′(t) = (Mb′)
′(t). Note that g(t) = |t|p−2t/2 satis�es the assumptions (f1)−(f5).

Thus, the results from the previous sections are also valid for the functional Jb′ .

First, we will show that the nodal levels associated to (P̃a,b′) are strictly increasing

with relation to the constant b′.

Lemma 3.5.1 If 0 ≤ b1 < b2, then d∗b1 < d∗b2.

Proof . Since b2 > b1, we haveMb2(t) > Mb1(t), for all t 6= 0. Thus, for any u ∈ X\{0},

we get

Jb2(u) > Jb1(u). (3.76)
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Let u ∈ Mp
b2

such that Jb2(u) = d∗b2 (the existence of u is established in Theorem

B.3.1, in the Appendix, see also Remark B.3.3). By Lemma 3.3.4, there exists (t1, s1) ∈

(0,∞) × (0,∞) such that t1u+ + s1u
− ∈ Mp

b1
. By applying again Lemma 3.3.4 and

(3.76), we get

d∗b2 = Jb2(u) = Jb2(1 · u+ + 1 · u−) ≥ Jb2(t1u
+ + s1u

−) > Jb1(t1u
+ + s1u

−) ≥ d∗b1 ,

as desired.

Remark 3.5.2 Note that by (3.9) and Lemma 3.5.1, for 0 ≤ b′ ≤ b, we have d∗b′ ≤ d∗b
and, consequently

Cp > max

1

2
,

[
4θd∗b′(2

2
2−p p− 2

p
2−p 4)

a(θ − 2)(p− 4)

](p−2)/2
 .

Then, by applying Theorem 3.1.2, the problem{
mb′(‖u‖2)

[
(−∆)1/2u+ V (x)u

]
= f(u) in Ω,

u = 0 in R \ Ω,

has a least energy nodal solution, which we will denote by ub′. Similar to Lemma 3.5.1,

we can prove that the nodal level of the functional

Ib′(u) =
1

2
Mb′(‖u‖2)−

∫
Ω

F (u)dx

satis�es cMb1
≤ cMb2

, whenever b1 < b2.

3.5.1 Proof of Theorem 3.1.4

Let (bn) ⊂ [0, b] be a sequence such that bn → 0+ as n → ∞. Let ubn ∈ Mbn be

the respective least energy nodal solution of the problem (Pa,bn). By Remark 3.5.2, for

all n ∈ N, we have Ibn(ubn) = cMbn
≤ cMb

.

Claim 3.5.3 The sequence (ubn) ⊂ X satis�es

0 < m0 ≤ ‖u±bn‖
2 < ‖ubn‖2 ≤ κ < 1. (3.77)

Indeed, the lower estimate is similar to Lemma 3.3.7. To obtain the upper bound,

by considering λ > 0 as in Lemma 3.3.10 and by (f3), we have

a(θ − 2)

2θ
> cMb

+ λ > cMbn
= Ibn(ubn)− 1

θ
I ′bn(ubn)ubn

≥ 1

2
Mbn(‖ubn‖2)− 1

θ
mbn(‖ubn‖2)‖ubn‖2

≥ a

(
1

2
− 1

θ

)
‖ubn‖2.

96



This implies that ‖ubn‖2 ≤ κ < 1, as desired.

Therefore, since X is a Hilbert space, up to a subsequence, there exists u0 ∈ X

such that ubn ⇀ u0 in X, as n → ∞. By Lemma 3.2.1, without loss of generality, we

can assume that u+
bn
→ u+

0 and u−bn → u−0 in Lq(R), for all q > 1, and u+
bn

(x)→ u+
0 (x)

and u−bn(x)→ u−0 (x) a.e. in R, as n→∞. By (3.77) and Lemma 3.3.11, we can deduce

that u+
0 6= 0 and u−0 6= 0 in X. Moreover, using (3.77), we can also assume that the

convergences in Lemma 3.3.12 hold for the sequence (ubn).

We claim that u0 is a nodal solution of the problem (Pa,0). Indeed, given v ∈ X,

we must prove that

a〈u0, v〉 =

∫
Ω

f(u0)v dx. (3.78)

Since ubn is a weak solution of (Pa,bn), we have

mbn(‖ubn‖2)〈ubn , v〉 =

∫
Ω

f(ubn)v dx, for all n ∈ N.

By using (ubn) is bounded, ubn ⇀ u0 in X and bn → 0+, we get mbn(‖ubn‖2)→ a and

〈ubn , v〉 → 〈u0, v〉 as n→∞. Thus, by (3.52), we have

a〈u0, v〉 = lim
n→∞

mbn(‖ubn‖2)〈ubn , v〉 = lim
n→∞

∫
Ω

f(ubn)v dx =

∫
Ω

f(u0)v dx,

showing (3.78) and so u0 ∈M0 is a nodal solution of (Pa,0).

Next we will show that (ubn) converge strongly to u0 in X. First, we have that

I ′bn(u0)(ubn − u0)→ 0 as n→∞. (3.79)

Indeed, since bn → 0+ and ubn ⇀ u0 in X, we have mbn(‖u0‖2)〈u0, ubn − u0〉 → 0 as

n→∞. From (f1), the Hölder inequality, Lemma 3.2.1 and Lemma 3.2.2, we get∣∣∣∣∫
Ω

f(u0)(ubn − u0) dx

∣∣∣∣ ≤ C0‖ubn − u0‖q
(∫

Ω

eπq
′u20dx

) 1
q′

→ 0 as n→∞,

and so we obtain the convergence in (3.79).

Arguing similarly to the previous convergence, and by using (3.77), we can deduce

that ∫
Ω

(f(ubn)− f(u0))(ubn − u0) dx→ 0 as n→∞. (3.80)

Thus, since I ′bn(ubn) = 0, by using (3.79), it easy to see that

(I ′bn(ubn)− I ′bn(u0))(ubn − u0) = on(1), (3.81)
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where on(1)→ 0 as n→∞. Hence, by (3.80) and (3.81), we get

〈mbn(‖ubn‖2)ubn −mbn(‖u0‖2)u0, ubn − u0〉 = on(1). (3.82)

Now, by using that ‖ubn − u0‖ ≤ C, mbn(‖ubn‖2),mbn(‖u0‖2)→ a as n→∞, and the

Cauchy-Schwartz inequality, we get

|〈mbn(‖ubn‖2)ubn −mbn(‖u0‖2)u0, ubn − u0〉 − a‖ubn − u0‖2| =

|〈(mbn(‖ubn‖2)− a)ubn − (mbn(‖u0‖2)− a)u0, ubn − u0〉|

≤ ‖(mbn(‖ubn‖2)− a)ubn − (mbn(‖u0‖2)− a)u0‖ · ‖ubn − u0‖

≤
(
|mbn(‖ubn‖2)− a|‖ubn‖+ |mbn(‖u0‖2)− a|‖u0‖

)
· C → 0, (3.83)

as n→∞. From (3.82) and (3.83), we obtain that

a‖ubn − u0‖2 → 0 as n→∞,

that is, ubn → u0 strongly in X.

To �nish it remains to show that u0 ∈ M0 is a least energy nodal solution of

(Pa,0). Let v0 ∈ M0 be a least energy nodal solution of (Pa,0). Since v+
0 6= 0 and

v−0 6= 0, by Lemma 3.3.4, for each n ∈ N, there exists (tn, sn) ∈ (0,∞) × (0,∞) such

that tnv
+
0 + snv

−
0 ∈Mbn .

Claim 3.5.4 There exists t0, s0 > 0 such that, up to a subsequence, (tn, sn)→ (t0, s0)

as n→ +∞.

Indeed, by using I ′bn(tnv
+
0 + snv

−
0 )tnv

+
0 = 0, I ′bn(tnv

+
0 + snv

−
0 )snv

−
0 = 0 and (f5),

we get

Cpt
p
n‖v+

0 ‖pp ≤
∫

Ω

f(tnv
+
0 )tnv

+
0 dx = mbn(‖tnv+

0 + snv
−
0 ‖2)〈tnv+

0 + snv
−
0 , tnv

+
0 〉 (3.84)

and

Cps
p
n‖v−0 ‖pp ≤

∫
Ω

f(snv
−
0 )snv

−
0 dx = mbn(‖tnv+

0 + snv
−
0 ‖2)〈tnv+

0 + snv
−
0 , snv

−
0 〉. (3.85)

Summing (3.85) and (3.84), and by the de�nition of mbn , we have

Cp(t
p
n‖v+

0 ‖pp + spn‖v−0 ‖pp) ≤(a+ bn‖tnv+
0 + snv

−
0 ‖2)‖tnv+

0 + snv
−
0 ‖2

≤(a+ 2bnt
2
n‖v+

0 ‖2 + 2bns
2
n‖v−0 ‖2)(2t2n‖v+

0 ‖2 + 2s2
n‖v−0 ‖2).
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Thus, since p > 4, we deduce that the sequence ((tn, sn)) is bounded. Let M > 0 such

that 0 < tn, sn ≤ M , for all n ∈ N. Now, up to a subsequence, we have (tn, sn) →

(t0, s0) as n → ∞, with t0, s0 ≥ 0. On the other hand, given q > 2 and using (3.20),

we have

mbn(‖tnv+
0 + snv

−
0 ‖2)〈tnv+

0 + snv
−
0 , tnv

+
0 〉 =

∫
Ω

f(tnv
+
0 )tnv

+
0 dx

≤ εt2n‖v+
0 ‖2

2 + Ctqn

∫
Ω

|v+
0 |qeπM

2|v+0 |2dx.

(3.86)

Moreover, by Lemma 3.2.3 and by de�ntion of mbn , we have

at2n‖v+
0 ‖2 ≤ mbn(‖tnv+

0 + snv
−
0 ‖2)〈tnv+

0 + snv
−
0 , tnv

+
0 〉. (3.87)

Choosing ε > 0 such that a‖v+
0 ‖2 − ε‖v+

0 ‖2
2 > 0, since the integral that involves v+

0 is

positive, (3.86) and (3.87) imply that

(a‖v+
0 ‖2 − ε‖v+

0 ‖2
2) ≤ Ctq−2

n , for all n ∈ N.

This inequality implies that t0 > 0. Analogously, we can show that s0 > 0 and so the

Claim 3.5.4 is established.

From Claim 3.5.4, we have tnv
+
0 → t0v

+
0 and snv

−
0 → s0v

−
0 strongly in X and so

we obtain that

mbn(‖tnv+
0 + snv

−
0 ‖2)〈tnv+

0 + snv
−
0 , tnv

+
0 〉 → a〈t0v+

0 + s0v
−
0 , t0v

+
0 〉;

mbn(‖tnv+
0 + snv

−
0 ‖2)〈tnv+

0 + snv
−
0 , snv

−
0 〉 → a〈t0v+

0 + s0v
−
0 , s0v

−
0 〉;∫

Ω

f(tnv
+
0 )tnv

+
0 dx→

∫
Ω

f(t0v
+
0 )t0v

+
0 dx;∫

Ω

f(snv
−
0 )snv

−
0 dx→

∫
Ω

f(s0v
−
0 )s0v

−
0 dx

On the other hand, since I ′bn(tnv
+
0 + snv

−
0 )tnv

+
0 = 0 and I ′bn(tnv

+
0 + snv

−
0 )snv

−
0 = 0, the

convergences above imply that I ′0(t0v
+
0 + s0v

−
0 )t0v

+
0 = 0 and I ′0(t0v

+
0 + s0v

−
0 )s0v

−
0 = 0.

Thus, since v0 ∈ M0 and by using the uniqueness of the pair given in Lemma 3.3.4,

we deduce that (t0, s0) = (1, 1). As a consequence, we have

I0(v0) = lim
n→∞

Ibn(tnv
+
0 + snv

−
0 ). (3.88)

Now, since bn → 0+ and ubn → u0 strongly in X as n→∞, it is easy to see that

I0(u0) = lim
n→∞

Ibn(ubn). (3.89)
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Using (3.88) and (3.89), we conclude that

cM0 =I0(v0) ≤ I0(u0)

= lim
n→∞

Ibn(ubn) = lim
n→∞

cMbn

≤ lim
n→∞

Ibn(tnv
+
0 + snv

−
0 ) = I0(v0) = cM0 .

Therefore, u0 is a least energy nodal solution of the problem (Pa,0) and furthermore we

obtain the convergence lim
n→∞

cMbn
= cM0 , which proves Theorem 3.1.4.
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Chapter 4

Ground state and nodal solutions for

a class of fractional N/s-Laplacian

equations involving exponential

growth

In this chapter, we prove the existence of at least three nontrivial solutions for a

class of problems with fractional N/s-Laplacian operator: (−∆)sN/su+ V (x)|u|Ns −2u = λf(x, u) in Ω,

u = 0 in R \ Ω,

where λ > 0, s ∈ (0, 1), Ω ⊂ RN is a bonded domain with Lipschitz boundary ∂Ω,

N ≥ 2, V (x) is a continuous and nonnegative potential, the nonlinearity f can have a

subcritical and critical exponential growth in the Trudinger-Moser sense and satis�es

appropriate conditions. AsN/s > 2, the respective functional space to deal the problem

with variational methods is not a Hilbert space and, because of that, the techniques

applied to estimate the nodal level in the Chapter 1 seem not be applicable to this

problem. By the study of asymptotic behavior of the nodal level, we will overcome

this di�culties. We will show the existence of a least energy nodal solution and by

means of the Mountain Pass Theorem, we get nonpositive and nonnegative ground

state solution. Moreover, we show that the energy of the nodal solution is strictly

larger than twice the ground state level. The results of this chapter are in the �nal



stages of preparation for submission for publication.

4.1 Introduction and main results

In this chapter we consider the existence and multiplicity of solutions to the

fractional N/s-Laplacian problem (−∆)sN/su+ V (x)|u|Ns −2u = λf(x, u) in Ω,

u = 0 in RN \ Ω,
(Pλ)

where λ is a positive parameter, N ≥ 2, s ∈ (0, 1), Ω ⊂ RN is a bounded domain

with Lipschitz boundary ∂Ω, V : Ω −→ R is continuous and nonnegative potential,

f : Ω × R → R is continuous and C1 in the second coordinate, and may have a

subcritical or critical exponential growth in the Trudinger-Moser sense (see De�nition

4.1.2), (−∆)sN/s is the fractional N/s−Laplacian operator, which, for any ϕ ∈ C∞0 (RN)

and x ∈ RN , is de�ned as

(−∆)sN/sϕ(x) := 2 lim
ε→0+

∫
RN\Bε(x)

|ϕ(x)− ϕ(y)|Ns −2(ϕ(x)− ϕ(y))

|x− y|2N
dy.

The appropriate space to deal with the problem (Pλ), by using variational meth-

ods, is the space X de�ned as

X :=
{
u ∈ LN/s(RN) : u ≡ 0 in RN \ Ω and [u]s,N/s <∞

}
,

which will be endowed with the norm

‖u‖ :=

(
[u]

N/s
s,N/s +

∫
Ω

V (x)|u|N/sdx
) s

N

,

where [u]s,N/s is the Gagliardo seminorm given by

[u]s,N/s :=

(∫
R2N

|u(x)− u(y)|N/s

|x− y|2N
dxdy

) s
N

.

It is well-known that X is a re�exive Banach space and is compactly embedded

into Lq(RN), for all q ∈ [1,∞), see Section 4.3 for more details.

We are interested in looking for solutions when the nonlinearity f has the maximal

growth which allows us to treat the problem (Pλ) variationally in X. In order to

better understanding of the critical growth on f , let us to recall some well-known facts
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involving the limiting Sobolev embedding. If U ⊂ RN is a bounded extension domain

(for example, if ∂U is Lipschitz) and sq < N , then the embeddingW s,q(U) ↪→ Lν(U) is

continuous and compact, for any ν ∈ [1, q∗], where q∗ = q∗(s,N) = Nq/(N − sq) is the

fractional critical Sobolev exponent. If qs = N then the embedding W s,q(U) ↪→ Lν(U)

is continuous and compact, for any ν ∈ [1,∞). However, W s,q(U) is not continuously

embedded in L∞(U) (see [61] and [32, Theorems 6.7, 6.9 and 7.1]). Then, a natural

question is what is the maximum growth that we can consider on nonlinearity in order

to apply a variational method to �nd solutions for the problem (Pλ).

In order to answer this question let W̃ s,N/s
0 (Ω) be the space de�ned as the closure

of C∞0 (U) with respect to the norm

u 7→
(

[u]
N/s
s,N/s + ‖u‖N/s

LN/s(Ω)

) s
N
.

This space has been extensively studied by many authors, in particular, see [16,

17, 62, 69]. For this space, Parini and Ruf [62] proved a fractional Trudinger-Moser

type inequality. Precisely:

Lemma 4.1.1 There exist α∗ = α∗(s,N,Ω) > 0 such that

`(α,N, s,Ω) := sup

{∫
Ω

eα|u|
N
N−s

dx : u ∈ W̃ s,N/s
0 (Ω) and [u]s,N/s ≤ 1

}
<∞,

for all α ∈ [0, α∗). Moreover, `(α,N, s,Ω) =∞ for α ∈ (α∗s,N ,∞), where

α∗s,N := N

(
2(NωN)2Γ(N

s
+ 1)

N !

∞∑
k=0

(N + k − 1)!

k!

1

(N + 2k)N/s

) s
N−s

and ωN is the volume of N-dimensional unit ball.

As a consequence of this result, the maximum growth we can assume in order

to apply a variational method in space X is of the exponential type given by Lemma

4.1.1. Motivated by this, we established the following de�nition:

De�nition 4.1.2 Let g : Ω × R → R be a continuous function. We say that g(x, t)

has subcritical exponential growth, in the Trudinger-Moser sense, if

lim
|t|→∞

g(x, t)

eγ|t|
N
N−s

= 0 uniformily in x ∈ Ω,
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for every γ > 0, and has critical exponential growth, in the Trudinger-Moser sense, if

there exist γ0 > 0 such that

lim
|t|→∞

|g(x, t)|

eγ|t|
N
N−s

=

0, for all γ > γ0,

∞, for all γ < γ0,

uniformly in x ∈ Ω.

Our main goal is to prove existence and multiplicity of weak solutions to the

problem (Pλ). We show that (Pλ) has a nodal solution, a nonnegative and a nonpositive

solutions when the nonlinearity f(x, t) has subcritical or critical exponential growth.

In the following, we will present our hypotheses and main results.

4.2 Assumptions and main results

Throughout this chapter we will consider the following hypotheses on Ω, V and

f :

(V1) Ω ⊂ RN is a bounded domain with Lipschitz boundary ∂Ω and V : Ω → R is a

continuous and nonnegative function.

(f1) f(x, t) is continuous and continuously di�erentiable on the variable t, and there

exist C0, α0 > 0 such that

|f(x, t)| ≤ C0e
α0|t|

N
N−s

, for all (x, t) ∈ Ω× R;

(f2) lim
t→0

f(x, t)

|t|Ns −2t
= 0 uniformly in x ∈ Ω;

(f3) there exists θ > N
s
such that

0 < θF (x, t) := θ

∫ t

0

f(x, τ) dτ ≤ tf(x, t), uniformly in Ω, for all |t| 6= 0;

(f4) the function t 7→ f(x, t)/|t|Ns −2t is strictly increasing on (0,∞) and strictly de-

creasing on (−∞, 0), uniformly x ∈ Ω;

(f5) there exist p > N
s
and C > 0 such that

sgn(t)f(x, t) ≥ C|t|p−1, for all t ∈ R, uniformly in x ∈ Ω.

104



Example 4.2.1 If p > N
s
, the nonlinearity

f(x, t) = C|t|p−2t+ |t|p−2te|t|
N
N−s

satis�es the assumptions (f1)− (f5).

We note that the assumption (f1) allows to treat nonlinearities f(x, t) which may

have subcritical or critical exponential growth. In this way, f can have the maximum

growth that allows us to treat problem (Pλ) in the variational way. In this context, we

say that u ∈ X is a weak solution (or simply, solution) to the problem (Pλ), if

∫
R2N

|u(x)− u(y)|Ns −2(u(x)− u(y))(v(x)− v(y))

|x− y|2N
dxdy +

∫
Ω

V (x)|u|
N
s
−2uv dx

= λ

∫
Ω

f(x, u)v dx, for all v ∈ X.

If u is a solution of (Pλ), with u+ 6= 0 and u− 6= 0, we say that u is a nodal

(sing-changing) solution of (Pλ).

Associated to the problem (Pλ), we have the energy functional Iλ : X → R given

by

Iλ(u) =
s

N
‖u‖N/s − λ

∫
Ω

F (x, u) dx. (4.1)

Using the assumptions on f , by standard arguments, we have Iλ ∈ C1(X,R) and its

derivative is given by

I ′λ(u)v =

∫
R2N

|u(x)− u(y)|Ns −2(u(x)− u(y))(v(x)− v(y))

|x− y|2N
dxdy +

∫
Ω

V (x)|u|
N
s
−2uv dx

−λ
∫

Ω

f(x, u)v dx,

(4.2)

for all u, v ∈ X. Thus, solutions of the problem (Pλ) are precisely the critical points

of Iλ and reciprocally.

In order to present the main results of this work, we de�ne the Nehari sets asso-

ciated to Iλ and their respective minimums energy level:

� the Nehari manifold and the ground state level

Nλ = {u ∈ X \ {0} : I ′λ(u)u = 0} and cNλ := inf
u∈Nλ

Iλ(u); (4.3)
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� the set of nonnegative functions on Nehari manifold

N+
λ = {u ∈ Nλ : u− = 0} and cN+

λ
:= inf

u∈N+
λ

Iλ(u); (4.4)

� the set of nonpositive functions on Nehari manifold

N−λ = {u ∈ Nλ : u+ = 0} and cN−λ
:= inf

u∈N−λ
Iλ(u); (4.5)

� the nodal Nehari set and the nodal level

Mλ = {u ∈ X : u+ 6= 0, u− 6= 0, I ′λ(u)u+ = 0 and I ′λ(u)u− = 0} (4.6)

and

cMλ
:= inf

u∈Mλ

Iλ(u). (4.7)

Since we are looking for nodal solutions, one of our goals will be to show that

cMλ
is a minimum of Iλ and the minimum point is a critical point of Iλ. If u ∈Mλ is

a solution of (Pλ) such that Iλ(u) = cMλ
we say that u is a least energy nodal solution

of (Pλ) (see Remark 4.4.5).

The �rst result of this chapter is:

Theorem 4.2.2 Suppose that (V1) and (f1) − (f5) are satis�ed. Then, there exists

λ∗ > 0 such that, for any λ ≥ λ∗, the problem (Pλ) possesses a least energy nodal

solution. Explicitly, for every λ ≥ λ∗, there exists ū ∈ Mλ such that I ′λ(ū) = 0 and

Iλ(ū) = cMλ
.

In the second result we will prove that the problem (Pλ) have one nonnegative and

one nonpositive solution, both nonzero, whose energy is minimal between the solutions

that have a de�ned signal. Moreover, we also show that the energy of any nodal

solution of (Pλ) is strictly larger than twice the ground state energy, see Remark 4.4.2

for details (in particular, this implies that cNλ = cN+
λ
or cNλ = cN+

λ
). This property is

so-called energy doubling by Weth [71].

Theorem 4.2.3 Suppose that (V1) and (f1)− (f5) are satis�ed and let λ ≥ λ∗, where

λ∗ given in Theorem 4.2.2. Then, there exist u+ ∈ N+
λ , with Iλ(u+) = cN+

λ
, and

u− ∈ N−λ , with Iλ(u−) = cN−λ
, solutions of (Pλ). Moreover, we have

cMλ
= Iλ(ū) > cN+

λ
+ cN−λ

≥ 2cNλ , (4.8)

where ū is the least energy nodal solution obtained in Theorem 4.2.2.

106



In order to understand the main di�culties in studying the existence of nodal

solutions to the problem (Pλ), consider the Dirichlet value problem involving the q −

Laplacian operator: −∆qu+ V (x)|u|q−2u = λf(x, u) in Ω,

u = 0 on ∂Ω.
(4.9)

The energy functional J : W 1,q
0 (Ω)→ R associated to (4.9) is given by

J(u) =
1

q

∫
Ω

(|∇u|q + V (x)|u|q) dx− λ
∫

Ω

F (x, u)dx,

which satis�es the following decompositions

J(u) = J(u+) + J(u−) and J ′(u)u± = J ′(u±)u±. (4.10)

Due to the Gagliardo seminorm of u ∈ X, the functional Iλ in (4.1) does not

possess theses the same decompositions as (4.10). This fact implies that the standard

methods to �nd nodal solutions for the local problem (4.9) can not be applicable to

the problem (Pλ). In fact, when u+ 6= 0 and u− 6= 0, the functional Iλ satis�es

Iλ(u) > Iλ(u
+) + Iλ(u

−),

I ′λ(u)u+ > I ′λ(u
+)u+ and I ′λ(u)u− > I ′λ(u

−)u−,

see Lemma 4.3.7. In the problems involving a nonlocal operators many additional

di�culties arise due to the fact that the decomposition (4.10) does not occur. Note

that N±λ ⊂ Nλ andMλ ⊂ Nλ. If u ∈Mλ, then

u+ /∈ N+
λ and u− /∈ N−λ (4.11)

see Corollary 4.3.7 and Remark 4.4.2. As we observer in the other chapters, this

a big di�erence between nonlocal and local problems. Moreover, another well-known

di�culty for the class of the problems (Pλ) is the loss of compactness due to the critical

growth on the nonlinearity f .

We ended this section by mentioning that for problems involving fractional equa-

tions, critical nonlinearities and domains Ω of RN , with N > 2s, there is a large

literature and we refer to [42, 65, 66, 67, 68], and to the references therein.
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The outline of this chapter is as follows: Section 4.3 contains results about the

space X and we make some important observations regarding the behavior of the norm

in this space (in especial, see Lemma 4.3.6). Section 4.4 is dedicated to the study of

the nodal set and the nodal level, the main goal is to prove that, for λ larger enough,

the nodal level is attained by a sign-changing weak solution of (Pλ). In Section 4.5 is

devoted to prove the existence of solutions that have signal de�ned.

4.3 Preliminaries

We will start this section by presenting some basic facts about the fractional

Sobolev space W̃ s,N/s
0 (Ω), endowed with a suitable norm, this is a adequate space to

deal with the problem (Pλ). For a more complete discussion of this space, we cite

mainly [16, 17, 32, 62].

Let U be an open subset of RN . Given s ∈ (0, 1) and q ∈ [1,∞), the fractional

Sobolev space W s,q(U) is de�ned by

W s,q(U) =
{
u ∈ Lp(U) : [u]W s,q(U) <∞

}
,

where [u]W s,q(U) is the Gagliardo seminorm of u given by

[u]W s,q(U) :=

(∫
U×U

|u(x)− u(y)|q

|x− y|N+sq
dxdy

) 1
q

.

The space W s,q(U) endowed with the norm

‖u‖W s,q(U) :=
(
‖u‖qLq(U) + [u]qW s,q(U)

) 1
q

is a Banach space. For u ∈ W s,q(RN), we denote by [u]s,q the Gagliardo seminorm and

the correspondent norm by ‖u‖s,q =
(
‖u‖qq + [u]qs,q

)1/q
. Let U be a bounded domain.

We consider the spaces W s,q
0 (U) and W̃ s,q

0 (U) as the completions of the space C∞0 (U)

with the norms

ϕ 7→ ‖ϕ‖qW s,q(U) := ‖ϕ‖qLq(U) + [ϕ]qW s,q(U) and ϕ 7→ ‖ϕ‖qs,q := ‖ϕ‖qLq(U) + [ϕ]qs,q

respectively. Since C∞0 (U) ⊂ W s,q(U) and ‖ · ‖W s,q(U) ≤ ‖ · ‖s,q we have the following

continuous embeddings

W̃ s,q
0 (U) ↪→ W s,q

0 (U) ↪→ W s,q(U). (4.12)
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By [16, Remark 2.5], the space W̃ s,q
0 (U) can be equivalently de�ned by completion

of C∞0 (U) with respect to the Gagliardo seminorm [·]s,q and so the natural norm of

u ∈ W̃ s,q
0 (U) is given by

‖u‖W̃ s,q
0 (U) := [u]s,q.

If ∂U is Lipschitz, by [17, Proposition B.1], the space W̃ s,q
0 (U) can be described

as

W̃ s,q
0 (U) :=

{
u ∈ Lq(RN) : u ≡ 0 in RN \ U and [u]s,q <∞

}
,

Moreover, in the case that sq 6= 1, we have

W s,q
0 (U) = W̃ s,q

0 (U),

see [16, Proposition B.1]. In the above condition, the norm in W s,q
0 (U) also is given by

the Gagliardo seminorm. The next result shows that W s,q
0 (U) is a re�exive space.

Lemma 4.3.1 Let U ⊂ RN a bounded domain with Lipschitz boundary ∂U . Let q > 1,

s ∈ (0, 1) such that sq 6= 1 . Then W s,q
0 (U) is uniformly convex and, hence, a re�exive

Banach space.

Proof . Let us consider T : W s,q
0 (U)→ Lq(R2N), by T (u) = ũ, the linear transforma-

tion given by

ũ(x, y) =
u(x)− u(y)

|x− y|
N
q

+s
, (x, y) ∈ R2N , with x 6= y.

We have

‖T (u)‖Lq(R2N ) =

(∫
R2N

|u(x)− u(y)|q

|x− y|N+sq
dxdy

) 1
q

= ‖u‖W s,q
0 (U)

and so T is a linear isometric embedding. Therefore, the uniform convexity and, hence

the re�exivity, W s,q
0 (U) follow of the uniform convexity of Lq(R2N) (see Lemma A.1.9).

Next, we will present a Brézis-Lieb lemma in W s,q
0 (U).

Lemma 4.3.2 Let U ⊂ RN a bounded domain with Lipschitz boundary ∂U . Let q > 1,

s ∈ (0, 1) such that sq 6= 1 . Let (un) is a bounded sequence in W s,q
0 (U) such that

un(x)→ u(x) a.e in U . Then

lim
n→∞

(
‖un‖qW s,q

0 (U)
− ‖un − u‖qW s,q

0 (U)

)
= ‖u‖q

W s,q
0 (U)

.
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Proof . Let ũn = T (un) and ũ = T (u), where T was de�ned in Lemma 4.3.1. Now,

since T is isometric and ũn(x, y) → ũ(x, y) a.e. in R2N , we can apply the Brézis-Lieb

lemma for the Lq(R2N) space. Thus we �nished the proof.

From now on, we will consider the spaceW s,N/s
0 (Ω), where Ω satis�es the assump-

tions in (V1).

Lemma 4.3.3 The embedding W s,N/s
0 (Ω) ↪→ Lq(RN) is continuous and compact, for

all q ∈ [1,∞).

Proof . By (4.12) and using [32, Theorem 7.1], we have that the embeddingW s,N/s
0 (Ω) ↪→

Lq(Ω) is compact for any q ∈ [1, N/s]. Now, let q > N/s. We can choose s′ ∈ (0, s)

such that
N(N/s)

N − s′(N/s)
> q. (4.13)

Since s′ < s, by [32, Proposition 2.1], we have the continuous embedding

W s,N/s(Ω) ↪→ W s′,N/s(Ω). (4.14)

Now, since s′(N/s) < N , by [32, Corollary 7.2], we obtain the following compact

embedding

W s′,N/s(Ω) ↪→ Lν(Ω), for any 1 ≤ ν <
N(N/s)

N − s′(N/s)
.

Thus, by (4.13), (4.14) and (4.12), we deduce that W s,N/s
0 (Ω) ↪→ Lq(Ω) is compact and

the proof is complete.

As a consequence of Lemma 4.1.1, we obtain the following corollary:

Corollary 4.3.4 Let u ∈ W s,N/s
0 (Ω). Then, for every α > 0, we have∫

Ω

eα|u|
N
N−s

dx <∞.

Proof . By density, let us choose v ∈ C∞0 (Ω) such that [u− v]s,N/s ≤ 1
2

(
α∗
2α

)N−s
N . Let

w = u − v. Using the triangle inequality and that (a + b)q ≤ 2q−1(aq + bq), for all

a, b ≥ 0, by the convexity, we have

eα|u|
N
N−s ≤ eα(|v|+|w|)

N
N−s

≤ e2
N
N−s−1

α(|v|
N
N−s+|w|

N
N−s )

≤ 1

2
e2

N
N−s α|v|

N
N−s

+
1

2
e2

N
N−s α|w|

N
N−s

.
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Since v ∈ C∞0 (Ω), then e2
N
N−s α|v|

N
N−s ∈ L1(Ω). Moreover, using Lemma 4.1.1 and the

estimate in the norm of w, we get

e2
N
N−s α|w|

N
N−s

= e2
N
N−s α[w]

N
N−s
s,N/s

(|w|/[w]s,N/s)
N
N−s

≤ e
α∗
2

(|w|/[w]s,N/s)
N
N−s ∈ L1(Ω).

This concludes the proof.

We denote by X the space W s,N/s
0 (Ω) endowed with the norm

‖u‖ :=

(
[u]

N/s
s,N/s +

∫
Ω

V (x)|u|N/sdx
) s

N

. (4.15)

Clearly, by (V1) and again by [16, Remark 2.5], ‖·‖ is a norm equivalent to norm [·]s,N/s
and [u]s,N/s ≤ ‖u‖ for every u ∈ X. In particular, by Lemma 4.3.1, X is a re�exive

Banach space. Moreover, the result of Lemma 4.3.2 is true for X and, by Lemma 4.3.3,

we obtain the following result:

Lemma 4.3.5 The embedding X ↪→ Lq(RN) is continuous and compact, for all q ∈
[1,∞).

Using Lemma 4.3.5, Corollary 4.3.4 and by the Hölder inequality, given α > 0

and u ∈ X, the following integral is �nite∫
Ω

|u|qeα|u|
N
N−s

dx <∞. (4.16)

Let us consider the operator (−∆)sN/s : W
s,N/s
0 (Ω)→ (W

s,N/s
0 (Ω))′ de�ned by

〈(−∆)sN/su, v〉 :=

∫
R2N

|u(x)− u(y)|Ns −2(u(x)− u(y))(v(x)− v(y))

|x− y|2N
dxdy, (4.17)

for u, v ∈ W s,N/s
0 (Ω).

This operator is weak-to-weak continuous and the function

u 7→ 〈(−∆)sN/su, u〉 = [u]
N/s
s,N/s

is convex and C1, see [21, 26] for more details.

By Lemma 4.1.1, Corollary 4.3.4 and by Lemma 4.3.5, we can see that the func-

tional Iλ : X → R, in (4.1), is well-de�ned and is C1. Moreover, according to the

notation in (4.17), its derivative can be write by

I ′λ(u)v = 〈(−∆)sN/su, v〉+

∫
Ω

V (x)|u|
N
s
−2uv dx− λ

∫
Ω

f(x, u)v dx (4.18)
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for every u, v ∈ X. Hence, weak solutions of the problem (Pλ) are the critical point of

Iλ and reciprocally.

As we said in the Introduction, many di�culties arise due to the fact that, in

general, Iλ does not satisfy (4.10). In fact, this di�culty arises because if u± 6= 0, then

‖u‖N/s 6= ‖u+‖N/s + ‖u−‖N/s.

Next, inspired by [21, 29, 45, 46] we will present a lemma that deal more precise

with the behavior of norm u, u+ and u− in X and, consequently, we will obtain some

estimates for the functional Iλ. In fact, considering the methods applied, this lemma

is one of the main tools to obtain nodal solution for the problem (Pλ).

Lemma 4.3.6 Let u ∈ X and Ω+ = {x ∈ Ω : u(x) ≥ 0} and Ω− = {x ∈ Ω : u(x) ≤
0}. Then

(i) 〈(−∆)sN/su, u
+〉 = A+(u) +B+(u), 〈(−∆)sN/su, u

−〉 = A−(u) +B−(u) and

〈(−∆)sN/su, u〉 = A(u) +B(u),

where

A+(u) :=

∫
Ωc

−×Ωc
−

|u+(x)− u+(y)|N/s

|x− y|2N
dxdy,A−(u) :=

∫
Ωc

+×Ωc
+

|u−(x)− u−(y)|N/s

|x− y|2N
dxdy,

B±(u) := 2

∫
Ω+×Ω−

|u+(x)− u−(y)|Ns −1(u±(x)− u±(y))

|x− y|2N
dxdy

and

A(u) = A+(u) + A−(u) and B(u) = B+(u) +B−(u).

(ii) if α, β ∈ (0,∞), we have

0 ≤ A+(αu+ + βu−) = αN/sA+(u+) and 0 ≤ A−(αu+ + βu−) = βN/sA−(u−).

(iii) if 0 < β ≤ α, then

0 ≤ B+(αu+ + βu−) ≤ αN/sB+(u), 0 ≤ B−(αu+ + βu−) ≤ αN/sB−(u),

0 ≤ βN/sB+(u) ≤ B+(αu+ + βu−) and 0 ≤ βN/sB−(u) ≤ B−(αu+ + βu−).

Similar inequalities holds if 0 < α ≤ β.

112



(iv) 〈(−∆)sN/su, u
±〉 = 〈(−∆)sN/su

±, u±〉+ 2C±(u), with C±(u) ≥ 0, where

C+(u) =

∫
Ω+×Ω−

|u+(x)− u−(y)|Ns −1u+(x)− |u+(x)|Ns
|x− y|2N

dxdy

and

C−(u) =

∫
Ω+×Ω−

|u+(x)− u−(y)|Ns −1(−u−(y))− | − u−(y)|Ns
|x− y|2N

dxdy.

Moreover, if u± 6= 0, then C±(u) > 0.

(v) 0 ≤ 〈(−∆)sN/su
±, u±〉 ≤ 〈(−∆)sN/su, u

±〉 ≤ 〈(−∆)sN/su, u〉. In particular, ‖u±‖ ≤
‖u‖ for all u ∈ X, where ‖ · ‖ is de�ned in (4.15). Moreover, if u± 6= 0, this

inequalities are strict.

Proof . To show (i), we de�ne

U(x, y) =
|u(x)− u(y)|Ns −2(u(x)− u(y))

|x− y|2N
, U(x+, y) =

|u+(x)− u(y)|Ns −2(u+(x)− u(y))

|x− y|2N
,

U(x, y+) =
|u(x)− u+(y)|Ns −2(u(x)− u+(y))

|x− y|2N
, U(x+, y+) =

|u+(x)− u+(y)|Ns −2(u+(x)− u+(y))

|x− y|2N
,

and, in an analogous way, we consider U(x−, y), U(x, y−), U(x−, y−), U(x+, y−) and

U(x−, y+). Considering this notation and (4.17), we can write

〈(−∆)sN/su, u
+〉 =

∫
R2N

U(x, y)(u+(x)− u+(y))dxdy.

Since R2N = (Ωc
− × Ωc

−) ∪ (Ωc
− × Ω−) ∪ (Ω− × Ωc

−) ∪ (Ω− × Ω−), we have

〈(−∆)sN/su, u
+〉 =

∫
Ωc

−×Ωc
−

U(x, y)(u+(x)− u+(y))dxdy + 2

∫
Ωc

−×Ω−

U(x, y)(u+(x)− u+(y))dxdy

+

∫
Ω−×Ω−

U(x, y)(u+(x)− u+(y))dxdy.

Thus

〈(−∆)sN/su, u
+〉 =

∫
Ωc−×Ωc−

U(x, y)(u+(x)− u+(y))dxdy

+2

∫
Ωc−×Ω−

U(x, y)(u+(x)− u+(y))dxdy.

(4.19)

We observe that, if (x, y) ∈ Ωc
− × Ωc

−, then u(x) = u+(x) and u(y) = u+(y). Thus

U(x, y) = U(x+, y+) =
|u+(x)− u+(y)|Ns −2(u+(x)− u+(y))

|x− y|2N

and so, by (4.19),

〈(−∆)sN/su, u
+〉 = A+(u) + 2

∫
Ωc−×Ω−

U(x, y)(u+(x)− u+(y))dxdy. (4.20)
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Now, since Ωc
−×Ω− = (Ωc×Ω−)∪ (Ω+×Ω−) and U(x, y)|Ω+×Ω− = U(x+, y−), we get∫

Ωc
−×Ω−

U(x, y)(u+(x)− u+(y))dxdy =

∫
Ωc×Ω−

U(x, y)(u+(x)− u+(y))dxdy

+

∫
Ω+×Ω−

U(x, y)(u+(x)− u+(y))dxdy

=

∫
Ω+×Ω−

U(x+, y−)(u+(x)− u+(y))dxdy

=

∫
Ω+×Ω−

|u+(x)− u−(y)|Ns −1(u+(x)− u+(y))

|x− y|2N
dxdy.

Hence, by (4.20), we deduce that

〈(−∆)sN/su, u
+〉 = A+(u) +B+(u).

Similarly, we deduce that 〈(−∆)sN/su, u
−〉 = A−(u) +B−(u), showing the item (i).

The proof of (ii) follows from the expressions of A+(u) and A−(u).

Let 0 < β ≤ α. Note that 0 ≤ −βu−(y) ≤ −αu−(y), for all y ∈ RN . Hence, if

(x, y) ∈ Ω+ × Ω−, we have

0 ≤ 2
|αu+(x)− βu−(y)|Ns −1αu+(x)

|x− y|2N
= 2
|αu+(x)− βu−(y)|Ns −1(αu+(x)− αu+(y))

|x− y|2N

= 2αN/s
|u+(x)− β

α
u−(y)|Ns −1(u+(x)− u+(y))

|x− y|2N

≤ 2αN/s
|u+(x)− u−(y)|Ns −1(u+(x)− u+(y))

|x− y|2N

and so, integrating over Ω+ × Ω−, we obtain

0 ≤ B+(αu+ + βu−) ≤ αN/sB+(u).

Analogously, if 0 < β ≤ α and (x, y) ∈ Ω+ × Ω−,

0 ≤ 2
|αu+(x)− βu−(y)|Ns −1(−βu−(y))

|x− y|2N
= 2
|αu+(x)− βu−(y)|Ns −1(βu−(x)− βu−(y))

|x− y|2N

≤ 2
|αu+(x)− αu−(y)|Ns −1(αu−(x)− αu−(y))

|x− y|2N

= 2αN/s
|u+(x)− u−(y)|Ns −1(u−(x)− u−(y))

|x− y|2N
.

Again, integrating over Ω+ × Ω−, we deduce that

0 ≤ B−(αu+ + βu−) ≤ αN/sB−(u).
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In a similar way we can obtain the other inequalities of the item (iii), which completes

the proof of (iii).

To show (iv), we observe that, since u = 0 in Ωc = RN \ Ω, the integration in

(4.17) is calculated only on the set Q = R2N \ (Ωc×Ωc). However, Q can be written as

Q = (Ω× Ωc) ∪ (Ω× Ω) ∪ (Ωc × Ω).

By using this decomposition and (4.17), we get

〈(−∆)sN/su, u
+〉 =

∫
Ω×Ωc

U(x, y)(u+(x)− u+(y))dxdy +

∫
Ω×Ω

U(x, y)(u+(x)− u+(y))dxdy

+

∫
Ωc×Ω

U(x, y)(u+(x)− u+(y))dxdy.

Now, since

Ω× Ωc = (Ω+ × Ωc) ∪ (Ω− × Ωc) and Ωc × Ω = (Ωc × Ω+) ∪ (Ωc × Ω−)

we can deduce that

〈(−∆)sN/su, u
+〉 =

∫
Ω+×Ωc

U(x+, y)(u+(x))dxdy +

∫
Ω×Ω

U(x, y)(u+(x)− u+(y))dxdy

+

∫
Ωc×Ω+

U(x, y+)(−u+(y))dxdy.

(4.21)
Reasoning in a similar way, one can see that

〈(−∆)sN/su
+, u+〉 =

∫
Ω+×Ωc

U(x+, y+)(u+(x))dxdy +

∫
Ω×Ω

U(x+, y+)(u+(x)− u+(y))dxdy

+

∫
Ωc×Ω+

U(x+, y+)(−u+(y))dxdy.

(4.22)

A straightforward computation shows that∫
Ω+×Ωc

U(x+, y)(u+(x))dxdy =

∫
Ω+×Ωc

U(x+, y+)(u+(x))dxdy (4.23)

and ∫
Ωc×Ω+

U(x, y+)(−u+(y))dxdy =

∫
Ωc×Ω+

U(x+, y+)(−u+(y))dxdy. (4.24)

Using (4.21), (4.22), (4.23) and (4.24), we �nd

〈(−∆)sN/su, u
+〉 =〈(−∆)sN/su

+, u+〉

+

∫
Ω×Ω

(
U(x, y)− U(x+, y+)

)
(u+(x)− u+(y))dxdy.

(4.25)
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Since Ω× Ω = (Ω+ × Ω+) ∪ (Ω+ × Ω−) ∪ (Ω− × Ω+) ∪ (Ω− × Ω−), by expression of U

and by the Fubini's Theorem, we deduce that∫
Ω×Ω

(
U(x, y)− U(x+, y+)

)
(u+(x)− u+(y))dxdy

= 2

∫
Ω+×Ω−

(
U(x, y)− U(x+, y+)

)
(u+(x)− u+(y))dxdy.

Again by expression of U and since u+(y) = 0 for all y ∈ Ω−, we deduce that∫
Ω×Ω

(
U(x, y)− U(x+, y+)

)
(u+(x)− u+(y))dxdy =

2

∫
Ω+×Ω−

|u+(x)− u−(y)|Ns −1u+(x)− |u+(x)|Ns
|x− y|2N

dxdy. (4.26)

Then, by (4.25) and (4.26), we have

〈(−∆)sN/su, u
+〉 = 〈(−∆)sN/su

+, u+〉+ 2C+(u).

Similarly, we can show that

〈(−∆)sN/su, u
−〉 = 〈(−∆)sN/su

−, u−〉+ 2C−(u),

and (iv) is proved.

The proof of (v) follows from (iv).

Using Lemma 4.3.6, we obtain the following corollary:

Corollary 4.3.7 Let u ∈ X. Then, the following inequalities are satis�ed

(i) Iλ(u
+) + Iλ(u

−) ≤ Iλ(u),

(ii) I ′λ(u
+)u+ ≤ I ′λ(u)u+ and I ′λ(u

−)u− ≤ I ′λ(u)u−.

Moreover, if u± 6= 0, the above inequalities are strict.

We end this section with some estimates that follow of the assumptions about f .

By (f1) − (f2), given ε > 0 and q ≥ 1, there exists a constant C = C(ε, q) > 0 such

that

|f(x, t)| ≤ ε|t|
N
s
−1 + C|t|q−1eα0|t|

N
N−s

, for all (x, t) ∈ Ω× R, (4.27)

and so, by (f3), we have

F (x, t) ≤ ε|t|
N
s + C|t|qeα0|t|

N
N−s

, for all (x, t) ∈ Ω× R. (4.28)
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By (f3), we can �nd positive constants C1 and C2 such that

F (x, t) ≥ C1|t|θ − C2, for all (x, t) ∈ Ω× R. (4.29)

From (f5), we have

f(x, t)t ≥ C|t|p, for all (x, t) ∈ Ω× R. (4.30)

Moreover, by (f4), we have(
N

s
− 1

)
f(x, t)t− f ′(x, t)t2 < 0, for all x ∈ Ω with |t| 6= 0, (4.31)

where, for simplicity, f ′(x, t) denotes ∂tf(x, t).

4.4 Constrained minimization problem

In this section, we will study the Nehari sets associated to the functional Iλ.

We will obtain estimates for each energy level and for the functions in these sets.

Moreover, taking into account that the nonlinearity f may have a critical exponential

growth, another goal in this section is to obtain estimates in the nodal level of Iλ and,

this way, we may overcome the di�culties that appears from this behavior. This will

be done by study of asymptotic properties of the nodal level cMλ
.

First, let us introduce some notations. We de�ne ϕλu : [0,∞)→ R, for u ∈ X\{0},

by

ϕλu(t) := Iλ(tu) =
s

N
‖tu‖N/s − λ

∫
Ω

F (x, tu) dx. (4.32)

Let u ∈ X, with u± 6= 0, we de�ne ψλu : [0,∞)× [0,∞)→ R, given by

ψλu(α, β) := Iλ(αu
+ + βu−). (4.33)

We also de�ne the vector �eld Ψλ
u : [0,∞)× [0,∞)→ R2 by

Ψλ
u(α, β) :=

(
I ′λ(αu

+ + βu−)αu+, I ′λ(αu
+ + βu−)βu−

)
. (4.34)

The next lemma shows that the Nehari sets Nλ,N+
λ and N−λ are not empty.

Lemma 4.4.1 Assume that (V1) and (f1)−(f4) are satis�ed. Then, given u ∈ X \{0},
there exists a unique t = t(u) > 0 such that

Iλ(tu) = max
s≥0

Iλ(su). (4.35)

As a consequence, the Nehari sets Nλ,N+
λ and N−λ are not empty.
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Proof . Let u ∈ X \ {0}. By (4.29), we have

ϕλu(t) ≤
s

N
‖tu‖N/s − λC1t

θ‖u‖θθ + λC2|Ω|.

Since θ > N
s
, we have

ϕλu(t)→ −∞ as t→∞. (4.36)

On the other hand, given ε > 0 and q > N
s
, by (4.28), we have

ϕλu(t) ≥
s

N
t
N
s ‖u‖N/s − λεt

N
s ‖u‖N/sN/s − λCt

q

∫
Ω

|u|qeα0|tu|
N
N−s

dx.

Using Lemma 4.3.5, we get

ϕλu(t) ≥
( s
N
− λC1ε

)
t
N
s ‖u‖N/s − λCtq

∫
Ω

|u|qeα0|tu|
N
N−s

dx.

Now, given 0 ≤ t ≤ 1 and by (4.16), we deduce that

0 <

∫
Ω

|u|qeα0|tu|
N
N−s

dx ≤
∫

Ω

|u|qeα0|u|
N
N−s

dx <∞.

Hence, we obtain that

ϕλu(t) ≥
( s
N
− λC1ε

)
t
N
s ‖u‖N/s − λC2t

q.

Choosing ε > 0 such that s
N
− λC1ε > 0, since q > N

s
, the previous estimates implies

that

ϕλu(t) > 0 for t > 0 small enough. (4.37)

From (4.36) and (4.37), there exists t = t(u) > 0 satisfying (4.35).

It remains now to show the uniqueness of t > 0 with this property. Suppose, by

contradiction, that s > t is such that I ′λ(su)su = 0. Thus, we have

‖tu‖N/s = λ

∫
Ω

f(x, tu)tu dx and ‖su‖N/s = λ

∫
Ω

f(x, su)su dx.

Then, we obtain that∫
Ω

(
f(x, tu)

|tu|Ns −2tu
− f(x, su)

|su|Ns −2su

)
|u|N/sdx = D+ +D− = 0 (4.38)

where

D± =

∫
Ω

(
f(x, tu±)

|tu±|Ns −2tu±
− f(x, su±)

|su±|Ns −2su±

)
|u±|N/sdx.
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Now, since u ∈ X \ {0}, we have u+ 6= 0 or u− 6= 0. If u− 6= 0, since s > t, we have

that su− < tu− < 0 a.e in Ω−. Hence, by (f4), we deduce

D− =

∫
Ω

(
f(x, tu−)

|tu−|Ns −2tu−
− f(x, su−)

|su−|Ns −2su−

)
|u−|N/sdx < 0.

Similarly, if u+ 6= 0, we can deduce that D+ < 0. But, in view of (4.38), the previous

estimates leads to a contradiction. This completes the proof.

Remark 4.4.2 Note that, if u± 6= 0, by Lemma 4.4.1, there exist t, s > 0 such that

tu+ ∈ N+
λ and su− ∈ N−λ . Now, using Corollary 4.3.7, we deduce

0 = I ′λ(tu
+)tu+ < I ′λ(tu

+ + su−)tu+ and 0 = I ′λ(su
−)su− < I ′λ(tu

+ + su−)su−

and so v = tu+ + su− /∈ Mλ. Thus, the previous lemma cannot be used to show that

Mλ 6= ∅ (but this reasoning can be applied for the cases of local operators, as in (4.9)).

The next lemma deals with some geometric properties of the functional Iλ and,

in particular, this result will be applied for show that the Nehari nodal setMλ is no

empty.

Lemma 4.4.3 Assume that (V1) and (f1)− (f3) are satis�ed. Then, the functional Iλ
satis�es the following geometric conditions:

(i) given u ∈ X \ {0}, we have

ψλu(α, β) = Iλ(αu
+ + βu−)→ −∞, as |(α, β)| → ∞;

(ii) there exist r > 0 and C > 0 such that

Iλ(u) ≥ C‖u‖N/s, for all ‖u‖ ≤ r.

Proof . By (4.29), we get

Iλ(αu
+ + βu−) ≤ s

N
‖αu+ + βu−‖N/s − λC1‖αu+ + βu−‖θθ + λC2|Ω|.

Now, using the triangle inequality and that (a+ b)q ≤ 2q−1(aq + bq), for all a, b ≥ 0, we

have

Iλ(αu
+ + βu−) ≤ s

N
2
N
s
−1(|α|N/s‖u+‖N/s + |β|N/s‖u−‖N/s)

− λC1(|α|θ‖u+‖θθ + |β|θ‖u−‖θθ) + λC2|Ω|.
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Since θ > N
s
, the above inequality implies that

Iλ(αu
+ + βu−)→ −∞, as |(α, β)| → ∞, (4.39)

showing (i).

Given ε > 0 and q > N
s
, by (4.28), we have

Iλ(u) ≥ s

N
‖u‖N/s − λε‖u‖N/sN/s − λC

∫
Ω

|u|qeα0|u|
N
N−s

dx.

By Lemma 4.3.3, we have

Iλ(u) ≥
( s
N
− λC1ε

)
‖u‖N/s − λC

∫
Ω

|u|qeα0|u|
N
N−s

dx.

We can choose ε > 0 such that C2 = s
N
− λC1ε > 0. Now, if ‖u‖

N
N−s < α∗

4α0
, then, by

the Hölder inequality and by Lemma 4.1.1, we obtain that∫
Ω

|u|qeα0|u|
N
N−s

dx ≤
(∫

Ω

|u|2qdx
) 1

2
(∫

Ω

e2α0|u|
N
N−s

dx

) 1
2

= ‖u‖q2q
(∫

Ω

e2α0‖u‖
N
N−s (|u|/‖u‖)

N
N−s

dx

) 1
2

≤ ‖u‖q2q
(∫

Ω

e
α∗
2

(|u|/‖u‖)
N
N−s

dx

) 1
2

≤ C3‖u‖q2q.

(4.40)

Hence, for ‖u‖
N
N−s < α∗

4α0
, by (4.40), we have

Iλ(u) ≥ C2‖u‖N/s − C4‖u‖q2q.

Then, using again Lemma 4.3.3, we �nd

Iλ(u) ≥ C2‖u‖N/s − C5‖u‖q, for all ‖u‖
N
N−s <

α∗
4α0

. (4.41)

Thus, since q > N
s
, we can choosing 0 < r < α∗

4α0
small enough, such that

‖u‖q ≤ C2

2C5

‖u‖N/s, for all ‖u‖ ≤ r.

Hence, by (4.41) and the inequality above we get

Iλ(u) ≥ C‖u‖N/s, for all ‖u‖ ≤ r,

proving (ii).

As an application of Lemma 4.4.3, we will show thatMλ 6= ∅. Moreover, we will

obtain an important geometric property of ψλu, with u ∈Mλ.
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Lemma 4.4.4 Assume that (V1) and (f1)− (f4) are satis�ed. Let u ∈ X with u± 6= 0.

Then, there exists a unique pair of positive number (αu, βu) such that αuu+ + βuu
− ∈

Mλ. Moreover, if (α, β) 6= (αu, βu), with α, β ≥ 0, then

Iλ(αu
+ + βu−) < Iλ(αuu

+ + βuu
−).

Proof . By Lemma 4.4.3, there exists (αu, βu) ∈ [0,∞)× [0,∞) such that

Iλ(αuu
+ + βuu

−) = max
[0,∞)×[0,∞)

ψλu(α, β).

Next we will show that (αu, βu) ∈ (0,∞)× (0,∞). Since u± 6= 0, using (ii) of Lemma

4.4.3, we have

Iλ(αu
+) > 0 and Iλ(βu

−) > 0, for α, s > 0 small enough.

Thus, for α, β > 0 small enough and by Corollary 4.3.7, we get

ψλu(α, 0) = Iλ(αu
+) < Iλ(αu

+) + Iλ(βu
−) < Iλ(αu

+ + βu−) = ψλu(α, β).

Thus, we deduce that αu, βu > 0. Hence ∂αψλu(αu, βu) = 0 and ∂βψλu(αu, βu) = 0. In

particular, we have αuu+ + βuu
− ∈Mλ.

We will show that (αu, βu) is the unique in (0,∞)× (0,∞) with this property. It

is su�cient to consider the case where u ∈ Mλ and αu+ + βu− ∈ Mλ, with α, β > 0,

and to prove that it implies in (α, β) = (1, 1). As I ′λ(u)u± = 0, I ′λ(αu
+ + βu−)αu+ = 0

and I ′λ(αu
+ + βu−)βu− = 0, we can write

〈(−∆)sN/su, u
±〉+

∫
Ω

V (x)|u±|N/sdx =

∫
Ω

f(x, u±)u±dx, (4.42)

〈(−∆)sN/s(αu
+ + βu−), αu+〉+ αN/s

∫
Ω

V (x)|u+|N/sdx =

∫
Ω

f(x, αu+)αu+dx (4.43)

and

〈(−∆)sN/s(αu
+ + βu−), βu−〉+ βN/s

∫
Ω

V (x)|u−|N/sdx =

∫
Ω

f(x, βu−)βu−dx. (4.44)

Without loss of generality, we can assume that 0 < β ≤ α. Now, using (i), (ii) and

(iii) of Lemma 4.3.6, we get

〈(−∆)sN/s(αu
+ + βu−), αu+〉 = A+(αu+ + βu−) +B+(αu+ + βu−)

= αN/sA+(u) +B+(αu+ + βu−)

≤ αN/sA+(u) + αN/sB+(u)

= αN/s〈(−∆)sN/su, u
+〉.

(4.45)
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Thus, by (4.43), (4.45) and (4.42), we get∫
Ω

f(x, αu+)αu+dx ≤ αN/s〈(−∆)sN/su, u
+〉+ αN/s

∫
Ω

V (x)|u+|N/sdx

= αN/s
∫

Ω

f(x, u+)u+dx.

Then, we obtain that∫
Ω

(
f(x, αu+)

|αu+|Ns −2αu+
− f(x, u)

|u+|Ns −2u+

)
|u+|N/sdx ≤ 0.

Hence, by (f4), we have α ≤ 1 and so 0 < β ≤ α ≤ 1. Using again (i), (ii) and (iii)

of Lemma 4.3.6, we have

〈(−∆)sN/s(αu
+ + βu−), βu−〉 ≥ βN/s〈(−∆)sN/su, u

−〉. (4.46)

Thus, by (4.44), (4.46) and (4.42), we deduce that∫
Ω

(
f(x, βu−)

|βu−|Ns −2βu−
− f(x, u)

|u−|Ns −2u−

)
|u−|N/sdx ≥ 0.

Hence, again by (f4), we obtain that β ≥ 1 and so α = β = 1. This concludes the

proof of the lemma.

Remark 4.4.5 Note that, any nodal solution to (Pλ) belongs to Mλ. Similarly, any

nonnegative solution and nonpositive solution to (Pa,b) belongs to N+
λ and N−λ , respec-

tively. Let u ∈ Mλ. By Lemma 4.4.1, there exist α, β > 0 such that αu+ ∈ N+
λ and

βu− ∈ N−λ . Now, using Lemma 4.4.4, we have Iλ(αu+ + βu−) ≤ Iλ(u). Thus, by

de�nition of the levels in Nehari sets and by using Corollary 4.3.7, we infer that

2cNλ ≤ cN+
λ

+ cN−λ
≤ Iλ(αu

+) + Iλ(βu
−) < Iλ(tu

+ + su−) ≤ Iλ(u).

Hence, taking the in�mum in u ∈Mλ, we obtain that

2cNλ ≤ cN+
λ

+ cN−λ
≤ cMλ

.

In particular, if cMλ
is achieved for some function inMλ, then, we get cMλ

> cN+
λ

+

cN−λ
≥ 2cNλ, as in (4.8), and, in this case, cNλ = cN+

λ
and cNλ = cN−λ

.

Lemma 4.4.6 Assume that (V1) and (f1) − (f4) are satis�ed. Let u ∈ X such that

u± 6= 0 and I ′λ(u)u± ≤ 0. Then, the unique pair (α, β) given in Lemma 4.4.4 satis�es

0 < α, β ≤ 1.
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Proof . We can suppose, without loss of generality, that 0 < β ≤ α. Now, we have

〈(−∆)sN/su, u
+〉+

∫
Ω

V (x)|u+|N/sdx ≤
∫

Ω

f(x, u+)u+dx

and

〈(−∆)sN/s(αu
+ + βu−), αu+〉+ αN/s

∫
Ω

V (x)|u+|N/sdx =

∫
Ω

f(x, αu+)αu+dx.

Using (i), (ii) and (iii) of Lemma 4.3.6, as in (4.45), we get∫
Ω

f(x, αu+)αu+dx ≤ αN/s〈(−∆)sN/su, u
+〉+ αN/s

∫
Ω

V (x)|u+|N/sdx

= αN/s
∫

Ω

f(x, u+)u+dx.

Thus, we have ∫
Ω

(
f(x, αu+)

|αu+|Ns −2αu+
− f(x, u+)

|u+|Ns −2u+

)
|u+|N/sdx ≤ 0.

Thus, by (f4), we obtain that α ≤ 1. Hence, we have 0 < β, α ≤ 1. This completes the

proof.

Lemma 4.4.7 Assume that (V1) and (f1) are satis�ed. There exists mλ > 0 such that

(i) ‖u‖N/s ≥ mλ for all u ∈ Nλ.

(ii) ‖u±‖N/s ≥ mλ for all u ∈Mλ.

Proof . We will show only the item (ii). Suppose, by contradiction, that (un) is a

sequence inMλ such that ‖u+
n ‖N/s → 0 as n→∞. Now I ′λ(un)u+

n = 0 and u±n 6= 0 for

all n ∈ N, by (v) of Lemma 4.3.6, and so

0 < ‖u+
n ‖N/s < 〈(−∆)sN/sun, u

+
n 〉+

∫
Ω

V (x)|u+
n |N/sdx = λ

∫
Ω

f(x, u+
n )u+

ndx,

for all n ∈ N. Since ‖u+
n ‖N/s → 0 as n→∞, given q > N

s
, using (4.27), by the Hölder

inequality and Lemma 4.1.1, as in (4.40), we get

‖u+
n ‖N/s < λC‖u+

n ‖
q
2q, for all n large enough.
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Thus, by Lemma 4.3.3, there exists n0 ∈ N such that

‖u+
n ‖N/s < λC1‖u+

n ‖q, for all n ≥ n0.

Since u+
n 6= 0 for all n ∈ N, we obtain that

1

λC1

≤ ‖u+
n ‖q−

N
s for all n ≥ n0,

which is a contradiction with our assumption, and the proof is complete.

Corollary 4.4.8 Assume that (V1), (f1) and (f3) are satis�ed. Then, there exists

δλ > 0 such that Iλ(u) ≥ δλ for all u ∈ Nλ. In particular

δλ ≤ cNλ , δλ ≤ cN±λ
and δλ ≤ cMλ

.

Proof . Let u ∈ Nλ. By Lemma 4.4.7 and by (f3), we have

Iλ(u) = Iλ(u)− 1

θ
I ′λ(u)u

=

(
s

N
− 1

θ

)
‖u‖N/s +

λ

θ

∫
Ω

f(x, u)u− θF (x, u) dx

≥
(
s

N
− 1

θ

)
mλ := δλ > 0.

This is the desired conclusion.

Lemma 4.4.9 Assume that (V1), (f1) and (f4) are satis�ed. Let u ∈ Mλ. Then

det J(1,1)Ψ
λ
u > 0, where Ψλ

u is de�ned in (4.34) and J(1,1)Ψ
λ
u is the Jacobian matrix of

Ψλ
u at the point (1, 1) .

Proof . Let u ∈Mλ. Let us denote by

Ψλ,1
u (α, β) = I ′λ(αu

+ + βu−)αu+ and Ψλ,2
u (α, β) = I ′λ(αu

+ + βu−)βu−

the components functions of the vector �eld Ψλ
u. Explicitly, by (i) and (ii) of Lemma

4.3.6, we have

Ψλ,1
u (α, β) = αN/sA+(u)+B+(αu+ +βu−)+αN/s

∫
Ω

V (x)|u+|dx−λ
∫

Ω

f(x, αu+)αu+dx

and

Ψλ,2
u (α, β) = βN/sA−(u)+B−(αu++βu−)+βN/s

∫
Ω

V (x)|u−|dx−λ
∫

Ω

f(x, βu−)βu−dx.
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By a straightforward computation, we get

∂αΨλ,1
u (1, 1) =

N

s
A+(u) +B+(u) +

N

s

∫
Ω

V (x)|u+|N/sdx

+2

(
N

s
− 1

)∫
Ω+×Ω−

(u+(x)− u−(y))
N
s
−2u+(x)(u+(x)− u+(y))

|x− y|2N
dxdy

−λ
∫

Ω

f ′(x, u+)(u+)2 + f(x, u+)u+dx;

∂βΨλ,1
u (1, 1) =∂αΨλ,2

u (1, 1)

=2

(
N

s
− 1

)∫
Ω+×Ω−

(u+(x)− u−(y))
N
s
−2u+(x)(−u−(y))

|x− y|2N
dxdy > 0

(4.47)

and

∂βΨλ,2
u (1, 1) =

N

s
A−(u) +B−(u) +

N

s

∫
Ω

V (x)|u−|N/sdx

+2

(
N

s
− 1

)∫
Ω+×Ω−

(u+(x)− u−(y))
N
s
−2(−u−(y))(u−(x)− u−(y))

|x− y|2N
dxdy

−λ
∫

Ω

f ′(x, u−)(u−)2 + f(x, u−)u−dx.

As I ′λ(u)u+ = 0, using again (i) and (ii) of Lemma 4.3.6, we have

N

s
A+(u) +

N

s
B+(u) +

N

s

∫
Ω

V (x)|u+|N/sdx =
N

s
λ

∫
Ω

f(x, u+)u+dx.

Thus, we get

∂αΨλ,1
u (1, 1) =

N

s
λ

∫
Ω

f(x, u+)u+dx−
(
N

s
− 1

)
B+(u)

+2

(
N

s
− 1

)∫
Ω+×Ω−

(u+(x)− u−(y))
N
s
−2u+(x)(u+(x)− u+(y))

|x− y|2N
dxdy

−λ
∫

Ω

f ′(x, u+)(u+)2 + f(x, u+)u+dx.

Hence, we have

∂αΨλ,1
u (1, 1) =λ

∫
Ω

(
N

s
− 1

)
f(x, u+)u+ − f ′(x, u+)(u+)2dx−

(
N

s
− 1

)
B+(u)

+2

(
N

s
− 1

)∫
Ω+×Ω−

(u+(x)− u−(y))
N
s
−2u+(x)(u+(x)− u+(y))

|x− y|2N
dxdy.
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Then, since u+ 6= 0, by (4.31) and by expression of B+(u), we deduce that

∂αΨλ,1
u (1, 1) <−

(
N

s
− 1

)
B+(u)

+2

(
N

s
− 1

)∫
Ω+×Ω−

(u+(x)− u−(y))
N
s
−2u+(x)(u+(x)− u+(y))

|x− y|2N
dxdy

=− ∂βΨλ,1
u (1, 1) < 0.

(4.48)

Similarly, we can deduce that

∂βΨλ,2
u (1, 1) < −∂αΨλ,2

u (1, 1) < 0. (4.49)

Hence, by (4.47), (4.48) and (4.49), we have

det J(1,1)Ψ
λ
u =∂αΨλ,1

u (1, 1)∂βΨλ,2
u (1, 1)− ∂βΨλ,1

u (1, 1)∂αΨλ,2
u (1, 1)

=∂αΨλ,1
u (1, 1)∂βΨλ,2

u (1, 1)−
(
∂βΨλ,1

u (1, 1)
)2

>
(
∂βΨλ,1

u (1, 1)
)2 −

(
∂βΨλ,1

u (1, 1)
)2

= 0.

As it was stated at the Introduction, the exponential critical growth in the non-

linearity f produces a lack of compactness in the operator Iλ. The next lemma will be

a powerful tool to overcome this di�culty for a minimizing sequence associated to cMλ

inMλ.

Lemma 4.4.10 Assume that (V1) and (f1)− (f5) are satis�ed. Then

(i) cMλ
is nonincreasing in λ > 0;

(ii) lim
λ→∞

cMλ
= 0.

Proof . Let 0 < λ1 < λ2 and u ∈ Mλ1 . By Lemma 4.4.4, there exist α2, β2 > 0

such that α2u
+ + β2u

− ∈ Mλ2 . Now, using again Lemma 4.4.4, we have ψλ1u (1, 1) ≥

ψλ1u (α2, β2). Thus, by (f3), we get

Iλ1(u) ≥Iλ1(α2u
+ + β2u

−)

=Iλ2(α2u
+ + β2u

−) + (λ2 − λ1)

∫
Ω

F (x, α2u
+ + β2u

−) dx

>Iλ2(α2u
+ + β2u

−) ≥ cMλ2
.
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Hence, taking the in�mum in u ∈ Mλ1 , we obtain that cMλ1
≥ cMλ2

, this completes

the proof of (i).

Let u ∈ X with u± 6= 0. By Lemma 4.4.4, for each λ > 0, there exist αλ, βλ > 0

such that αλu+ + βλu
− ∈Mλ. Using again Remark 4.4.5, Corollary 4.4.8 and by (f3),

we have

0 < cMλ
≤ Iλ(αλu

+ + βλu
−) ≤ s

N
‖αλu+ + βλu

−‖N/s.

Thus, to show (ii), it is enough to prove that (αλ, βλ) → (0, 0) as λ → ∞. Now, by

(4.30) and since I ′λ(αλu
+ + βαu

−)(αλu
+ + βαu

−) = 0, we have

λC‖αλu+ + βλu
−‖pp ≤ λ

∫
Ω

f(x, αλu
+ + βλu

−)(αλu
+ + βλu

−) dx

= ‖αλu+ + βλu
−‖N/s.

Hence, since p > N
s
, this inequality implies that {(αλ, βλ)}λ≥1 is bounded. Without

loss of generality, we can assume that

(αn, βn)→ (α′, β′), as λn →∞,

where αn = αλnand βn = βλn . In particular, we have αnu+ + βnu
− → α′u+ + β′u−

strongly in X, as n→∞. We claim that α′ = β′ = 0. Indeed, if α′ > 0, then, by (f3),

we have∫
Ω

f(x, αnu
+ + βnu

−)(αnu
+ + βnu

−) dx→
∫

Ω

f(x, α′u+ + β′u−)(α′u+ + β′u−) dx > 0

(4.50)

as n→∞. But, for all n ∈ N, we have

‖αnu+ + βnu
−‖N/s = λn

∫
Ω

f(x, αnu
+ + βnu

−)(αnu
+ + βnu

−) dx. (4.51)

Since λn →∞ and (‖αnu+ + βnu
−‖) is a bounded sequence, by (4.50) and (4.51), we

obtain a contradiction. Therefore α′ = β′ = 0, and the prove is complete.

Remark 4.4.11 The same results of Lemma 4.4.10 holds for cNλ , c
+
Nλ and cN−λ .

As a consequence of Lemma 4.4.10 we obtain the following corollary:

Corollary 4.4.12 Assume that (V1) and (f1) − (f5) are satis�ed. Then, there exists

λ∗ > 0 such that

cMλ
<

(
θs−N
Nθ

)(
α∗
2α0

)N−s
s

, for all λ ≥ λ∗.

In particular, the same inequalities apply to for cNλ , cN+
λ
and c−Nλ.
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From now on, we will consider that λ ≥ λ∗, where λ∗ is given in Corollary 4.4.12.

As a consequence of Corollary 4.4.12, we will obtain appropriate behavior for

a minimizing sequence in Mλ. In order to make this more precise, we consider the

following subset ofMλ:

S̃ρ = {u ∈Mλ : Iλ(u) < cMλ
+ ρ} for ρ > 0.

Lemma 4.4.13 Assume that (V1) and (f1)−(f5) are satis�ed. For ρ > 0 small enough,

there exists mρ ∈
(

0, α
∗

2α0

)
such that

0 < m
s

N−s
λ ≤ ‖u±‖

N
N−s < ‖u‖

N
N−s ≤ mρ for all u ∈ S̃ρ.

Proof . By Corollary 4.4.12, we can choose ρ > 0 small enough such that

cMλ
+ ρ <

(
θs−N
Nθ

)(
α∗
2α0

)N−s
s

.

Let u ∈ S̃ρ. Then, by (f3), we have

cMλ
+ ρ > Iλ(u) = Iλ(u)− 1

θ
I ′λ(u)u

=

(
s

N
− 1

θ

)
‖u‖N/s +

λ

θ

∫
Ω

f(x, u)u− θF (x, u) dx

≥
(
s

N
− 1

θ

)
‖u‖N/s.

Hence, we get

‖u‖
N
N−s ≤

[(
Nθ

θs−N

)
(cMλ

+ ρ)

] s
N−s

:= mρ <
α∗
2α0

.

Therefore, by Lemma 4.4.7, we get 0 < m
s

N−s
λ ≤ ‖u±‖

N
N−s < ‖u‖

N
N−s ≤ mρ for all

u ∈ S̃ρ.

From now on, we will write S̃ρ, where ρ is given in Lemma 4.4.13.

The next lemma will be used to show that does no exist a sequence (un) in S̃ρ

convergent in Lq(Ω) to a nonnodal function, for q ≥ 1.

Lemma 4.4.14 Assume that (V1) and (f1) − (f5) are satis�ed. For any q ≥ 1, there

exists δq > 0 such that

0 < δq ≤
∫

Ω

|u±|qdx <
∫

Ω

|u|qdx,

for any u ∈ S̃ρ.
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Proof . Fix q ≥ 1. Let u ∈ S̃ρ. Since I ′λ(u)u± = 0, by Lemma 4.4.7 and by (v) of

Lemma 4.3.6, we have

0 < mλ ≤ ‖u±‖N/s ≤ λ

∫
Ω

f(x, u±)u±dx.

Thus, by (f1), we deduce that

0 <
mλ

λC0

≤
∫

Ω

|u±|eα0|u±|
N
N−s

dx. (4.52)

Let r > q and r′ < 2 such that 1/r + 1/r′ = 1. By the Hölder inequality, by Lemma

4.4.13 and by Lemma 4.1.1, we have∫
Ω

|u±|eα0|u±|
N
N−s

dx ≤
(∫

Ω

|u±|rdx
) 1

r
(∫

Ω

er
′α0‖u±‖

N
N−s (|u±|/‖u±‖)

N
N−s

dx

) 1
r′

≤ ‖u±‖rr
(∫

Ω

e(r′α∗/2)(|u±|/‖u±‖)
N
N−s

dx

) 1
r′

≤ C1‖u±‖rr.

Thus, by (4.52), we have

0 < C ≤ ‖u±‖rr for all u ∈ S̃ρ. (4.53)

We suppose, by contradiction, that there exists (un) in S̃ρ such that ‖u±n ‖q → 0 as

n → ∞. From Lemma 4.4.13 and Lemma 4.3.5 we obtain that (u±n ) is bounded in

L2r(Ω). Now, since q < r < 2r, using the interpolation inequality, we obtain that

‖u±n ‖r ≤ ‖u±n ‖ξq · ‖u±n ‖
1−ξ
2r → 0, as n→∞,

where ξ ∈ (0, 1), but, in view of (4.53), the convergence above is impossible. This

completes the proof of the lemma.

Lemma 4.4.15 Assume that (V1), (f1) and (f3) are satis�ed. Let (un) be a sequence

in X such that un ⇀ u weakly in X and b := supn∈N ‖un‖
N
N−s ≤ α∗

2α0
. Then, for all

v ∈ X, up to a subsequence, we have

lim
n→∞

∫
Ω

f(x, un)un dx =

∫
Ω

f(x, u)u dx; (4.54)

lim
n→∞

∫
Ω

f(x, u±n )u±n dx =

∫
Ω

f(x, u±)u± dx; (4.55)

lim
n→∞

∫
Ω

f(x, u±n )v dx =

∫
Ω

f(x, u±)v dx (4.56)

and

lim
n→∞

∫
Ω

F (x, u±n ) dx =

∫
Ω

F (x, u±) dx. (4.57)
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Proof . Since b ≤ α∗
2α0

, using (f1), (f3) and by the Hölder's inequality and Lemma

4.3.5, it is easy to see that the integrals∫
Ω

|f(x, un)un||un|dx,
∫

Ω

|f(x, un)u±n ||un|dx,
∫

Ω

|f(x, un)v||un|dx

and ∫
Ω

|F (x, un)||un|dx

are uniformly bounded. Thus, using again Lemma 4.3.5, up to a subsequence, the

convergences (4.54)-(4.57) follow from Lemma 2.1 of [25].

Lemma 4.4.16 Assume that and (f1), (f3) and (f4) are satis�ed. Let H(x, t) =

f(x, t)t− N
s
F (x, t). Then

(i) H(x, ·) is a C2 function, H(x, 0) = 0 and H(x, t) > 0, for all t 6= 0 and for all

x ∈ Ω;

(ii) H(x, ·) is strictly increasing in (0,∞) and is strictly decreasing in (−∞, 0), for all

x ∈ Ω.

Proof . The proof of this lemma follows directly from (4.31) and (f3).

Lemma 4.4.17 Assume that (V1) and (f1) − (f5) are satis�ed. Then, there exists

ū ∈Mλ such that Iλ(ū) = cMλ
.

Proof . Let (un) a sequence in S̃ρ such that Iλ(un) → cMλ
as n → ∞. By Lemma

4.4.13, (u±n ) are bounded sequences in X. Thus, by using Lemma B.4.1 and by Lemma

4.3.1, there exists u ∈ X such that u±n ⇀ u± as n → ∞. Using Lemma 4.3.5, we can

assume that u±n → u± in LN/s(RN) and u±n (x)→ u±(x) a.e. in RN , as n→∞. Hence,

by Lemma 4.4.14, we have u± 6= 0 in Lq(Ω) and so u± 6= 0 in X. By Lemma 4.4.4,

there exist α, β > 0 such that ū = αu+ + βu− ∈ Mλ. Using again Lemma 4.4.13,

without of loss generality, we can assume that the convergences in Lemma 4.4.15 holds

to sequence (un). Since u±(x)→ u±(x) a.e. in RN as n→∞, we get

0 ≤ |u
+
n (x)− u−n (y)|Ns −1u+

n (x)− |u+
n (x)|Ns

|x− y|2N
→ |u

+(x)− u−(y)|Ns −1u+(x)− |u+(x)|Ns
|x− y|2N
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as n → ∞, for a.e. (x, y) ∈ R2N . Thus, from (iv) of Lemma 4.3.6, by semicontinuity

of the seminorm and using Fatou's Lemma, we can deduce that

〈(−∆)sN/su, u
+〉 = 〈(−∆)sN/su

+, u+〉+ 2C+(u)

≤ lim inf
n→∞

〈(−∆)sN/su
+
n , u

+
n 〉+ lim inf

n→∞
2C+(un).

≤ lim inf
n→∞

(
〈(−∆)sN/su

+
n , u

+
n 〉+ 2C+(un)

)
≤ lim inf

n→∞
〈(−∆)sN/sun, u

+
n 〉.

Thus, since I ′λ(un)u+
n = 0 for all n ∈ N, and by (4.55), we get

〈(−∆)sN/su, u
+〉+

∫
Ω

V (x)|u+|N/sdx ≤ lim inf
n→∞

〈(−∆)sN/sun, u
+
n 〉

+ lim inf
n→∞

∫
Ω

V (x)|u+
n |dx

≤ lim inf
n→∞

(
〈(−∆)sN/sun, u

+
n 〉+

∫
Ω

V (x)|u+
n |dx

)
= lim inf

n→∞
λ

∫
Ω

f(x, u+
n )u+

ndx

= λ

∫
Ω

f(x, u+)u+dx.

Then I ′λ(u)u+ ≤ 0. Similarly, we can deduce that I ′λ(u)u− ≤ 0. Thus, by Lemma 4.4.6,

we have 0 < α, β ≤ 1. By Lemma 4.4.16 and again using Lemma 4.4.15, we have

cMλ
≤ Iλ(ū) = Iλ(αu

+ + βu−)− s

N
I ′λ(αu

+ + βu−)(αu+ + βu−)

=
s

N
λ

∫
Ω

f(x, αu+ + βu−)(αu+ + βu−)− N

s
F (x, αu+ + βu−) dx

=
s

N
λ

(∫
Ω

H(x, αu+) dx+

∫
Ω

H(x, βu−) dx

)
≤ s

N
λ

∫
Ω

H(x, u) dx = lim
n→∞

s

N
λ

∫
Ω

H(x, un) dx

= lim
n→∞

(
Iλ(un)− s

N
I ′λ(un)un

)
= lim

n→∞
Iλ(un) = cMλ

.

Therefore Iλ(ū) = cλ, which is the desired conclusion.

Next we will introduce some notations and a technical result that will be apply

in the proof of Theorem 4.2.2.

Let D =
(

1
2
, 3

2

)
×
(

1
2
, 3

2

)
and g : D → X, given by g(α, β) = αū+ + βū−, where ū

is given in Lemma 4.4.17.

Lemma 4.4.18 Let P = {u ∈ X : u(x) ≥ 0 a.e. x ∈ RN} and −P = {u ∈ X : u(x) ≤
0 a.e. x ∈ RN}. Then d′ = dist(g(D),Λ) > 0, where Λ := P ∪ (−P ).
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Proof . We suppose, by contradiction, that d′ = dist(g(D),Λ) = 0. Then, we can �nd

(vn) ⊂ g(D) and (wn) ⊂ Λ such that ‖vn − wn‖ → 0 as n → ∞. We can assume,

without loss of generality, that wn(x) ≥ 0 a.e. in RN . Now, since vn ∈ g(D), there

exist αn, βn ∈ [1
2
, 3

2
] such that vn = αnū

+ + βū−. By compactness of [1
2
, 3

2
], up to a

subsequence, we have αn → α′ and βn → β′ as n→∞. Hence

vn → α′ū+ + β′ū− in X as n→∞.

Now, by Lemma 4.3.5, we have vn(x) → α′ū+(x) + β′ū−(x) a.e. in RN as n → ∞.

Again by Lemma 4.3.5 and by uniqueness of limit, we have wn(x)→ α′ū+(x)+β′ū−(x)

a.e. in RN as n → ∞. Since ū− 6= 0, the convergence above produces a contradiction

with the assumption that wn(x) ≥ 0 a.e. in RN as n→∞, which completes the proof.

4.4.1 Proof of Theorem 4.2.2

By Lemma 4.4.17, we have ū ∈ Mλ and Iλ(ū) = cMλ
. Thus, it remains to show

that I ′λ(ū) = 0. Suppose, by contradiction, that I ′λ(ū) 6= 0. By the continuity of I ′λ,

there exist γ, δ > 0 with δ ≤ d′

2
, such that

‖I ′λ(v)‖ ≥ γ, for all v ∈ B3δ(ū), (4.58)

where d′ is given in Lemma 4.4.18. Since ū ∈ Mλ, using Lemma 4.4.4, the function

(Iλ ◦ g)(α, β), for (α, β) ∈ D, has a strict maximum point (1, 1). Hence

m∗ = max
(α,β)∈∂D

(Iλ ◦ g)(α, β) < cMλ
.

Let ε > 0 be such that ε < min{(cMλ
−m∗)/2, γδ/8} and let S = Bδ(ū). From this

choice, for all (α, β) ∈ ∂D, we have

(Iλ ◦ g)(α, β) ≤ m∗ = cMλ
− 2(cMλ

−m∗)/2 < cMλ
− 2ε.

Hence, we deduce that

g(∂D) ∩ I−1
λ ([cMλ

− 2ε, cMλ
+ 2ε]) = ∅. (4.59)

Moreover, by estimates in (4.58), we have

‖I ′b(v)‖ ≥ 8ε

δ
; ∀v ∈ I−1

λ ([cMλ
− 2ε, cMλ

+ 2ε]) ∩ S2δ.
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Thus, by the quantitative deformation lemma in [72, Lemma 2.3], there exists η ∈

C([0, 1]×X,X) such that

(i) η(t, u) = u, if t = 0 or u /∈ I−1
λ ([cMλ

− 2ε, cMλ
+ 2ε]) ∩ S2δ;

(ii) η(1, I
cMλ

+ε

λ ∩ S) ⊂ I
cMλ

−ε
λ ;

(iii) η(t, ·) is an homeomorphism of X, ∀ t ∈ [0, 1];

(iv) ‖η(t, u)− u‖ ≤ δ, ∀u ∈ X, ∀ t ∈ [0, 1];

(v) Iλ(η(·, u)) is non increasing, ∀u ∈ X;

(vi) Iλ(η(t, u)) < cMλ
, ∀u ∈ IcMλ

λ ∩ Sδ, ∀ t ∈ (0, 1].

Let h : D → X de�ned by h(α, β) = η(1, g(α, β)). We claim that

max
(α,β)∈D

Iλ(h(α, β)) < cMλ
. (4.60)

Indeed, if (α, β) ∈ D with (α, β) 6= (1, 1), using Lemma 4.4.4, we have Iλ(g(t, s)) <

cMλ
. Hence

Iλ(h(α, β)) ≤ I(η(0, g(α, β))) = I(g(α, β)) < cMλ
.

If (α, β) = (1, 1) then g(1, 1) = ū ∈ IcMλ
λ ∩Sδ and so Iλ(h(1, 1)) < cMλ

, showing (4.60).

By using the de�nition of cMλ
and (4.60), we deduce that

h(D) ∩Mλ = ∅. (4.61)

Using (4.59) and the property (i) of η, we get

h(α, β) = g(α, β) in ∂D. (4.62)

Claim 4.4.19 We claim that h(α, β)± 6= 0 for all (α, β) ∈ D.

In fact, let v ∈ Λ. By using the choice of δ > 0 and Lemma 4.4.18, we have that

‖h(α, β)− v‖ ≥ ‖g(α, β)− v‖ − ‖h(α, β)− g(α, β)‖

≥ ‖g(α, β)− v‖ − δ

≥ d′ − d′

2
=
d′

2
.
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Hence, h±(α, β) 6= 0 for all (α, β) ∈ D, concluding the statement.

Now, let us consider the vector �elds Ψλ
ū,F : D → R2, where Ψλ

ū is given in (4.34)

and

F(α, β) = (I ′λ(h(α, β))h(t, s)+, I ′λ(h(α, β))h(t, s)−).

From (4.62), we have Ψλ
ū = F in ∂D. Hence, by the degree theory (see Lemma A.1.14),

we have

deg(Ψū, D, (0, 0)) = deg(F , D, (0, 0)). (4.63)

Moreover, by using again Lemma 4.4.4, we have that the point (1, 1) is a unique point

in D such that Ψλ
ū(α, β) = (0, 0). Consequently, by Lemma 4.4.9, we can deduce that

deg(Ψλ
ū, D, (0, 0)) = sgn(J(1,1)Ψ

λ
ū) = 1.

(see Lemma A.1.15). Thus, by (4.63), we get

deg(F , D, (0, 0)) = 1.

Then, by degree theory (see Lemma A.1.13), there exists a point (α′, β′) ∈ D such that

I ′λ(h(α′, β′))h(α′, β′)+ = 0 and I ′λ(h(α′, β′))h(α′, β′)− = 0. (4.64)

By Claim 4.4.19 and by (4.64), we obtain that h(α′, β′) ∈ Mλ, which is impossible in

view of (4.61), which proves the theorem.

4.5 Nonnegative solution and nonpositive solution of

problem (Pλ)

Our goal in this section is to prove that, if λ ≥ λ∗, where λ∗ is given in Corollary

4.4.12, the problem (Pλ) has a nonnegative and a nonpositive solutions, both nonzero

and of lowest energy in their respective classes. The main tool to prove this is to get a

appropriate estimates to the minimax levels associate to the truncation of the problem

(Pλ). We will apply the Mountain Pass together with estimates in the Nehari levels

cN+
b
and cN−b given in Remark 4.4.5. The techniques that we apply are motivated by

the work in [45].
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We de�ne the functionals I±λ : X → R by

I±λ (u) =
s

N
‖u‖N/s − λ

∫
Ω

F (x, u±) dx. (4.65)

From the assumptions in f and by considering Lemma B.4.1 in the Appendix, we have

that I±λ ∈ C1(X,R) and

(I±λ )′(u)v = 〈(−∆)sN/su, v〉+

∫
Ω

V (x)|u|
N
s
−2uv dx− λ

∫
Ω

f(x, u±)v dx, (4.66)

for any u, v ∈ X. Note that, if u = u+ and v = v−, then

I+
λ (u) = Iλ(u), I−λ (v) = Iλ(v), (I+

λ )′(u) = I ′λ(u) and (I−λ )′(v) = I ′λ(v). (4.67)

Thus, the functional I+
λ and its derivative (I+

λ )′ coincides witch Iλ and I ′λ in nonnegative

functions, respectively. Let u ∈ X \ {0} a critical point of I+
λ . Then, taking u− as a

test function in (4.66), we deduce that

0 = (I+
λ )′(u)u− = 〈(−∆)sN/su, u

−〉+

∫
Ω

V (x)|u−|
N
s dx

and so, by (v) Lemma 4.3.6, we have u = u+. In particular, by (4.67), u ∈ N+
λ is a

solution of the problem (Pλ). Similarly to I−λ .

As a consequence of Lemma 4.4.3 we obtain that the functionals I±λ have the

montain pass geometry. Explicitly, we have following result:

Lemma 4.5.1 Assume that (V1) and (f1) − (f3) are satis�ed. Then, the functionals

I±λ has the following geometric properties:

(i) there exist r > 0 and τ > 0 such that I±λ (u) ≥ τ , for ‖u‖ = r;

(ii) there exists e ∈ X, with ‖e‖ > r, such that I±λ (e) < 0.

Let us consider the sets

Γλ := {γ ∈ C([0, 1], X) : γ(0) = 0 and Iλ(γ(1)) < 0},

Γ±λ := {γ ∈ C([0, 1], X) : γ(0) = 0 and I±λ (γ(1)) < 0}

and the respective minimax levels

cλ = inf
γ∈Γλ

max
t∈[0,1]

Iλ(γ(t)) and c±λ = inf
γ∈Γ±λ

max
t∈[0,1]

I±λ (γ(t)).

By Lemma 4.4.3 and Lemma 4.5.1, by apply the Mountain Pass Theorem, we obtain

the following corollary.
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Corollary 4.5.2 Assume that (V1) and (f1)− (f3) are satis�ed. There exist sequences

(un), (un,±) ⊂ X such that (un) is a (PS)cλ sequence for Iλ and (un,±) are (PS)c±λ
sequences for I±λ , respectively.

The next Lemma we will show that the minimax levels de�ned above are less or

equal, respectively, to the Nehari levels cNλ , cN+
λ
and cN−λ . In fact, this will be our main

tool to show that the functionals Iλ and I±λ satisfy the Palais-Smale condition at the

levels cλ and c±λ , respectively.

Lemma 4.5.3 Assume that (V1) and (f1)− (f4) are satis�ed. The following equalities

holds

cλ ≤ cNλ , c
+
λ ≤ cN+

λ
and c−b ≤ cN−λ

.

Proof . We will only show the inequality c−λ ≤ cN−λ
. Note that, by Lemma 4.4.1 and

(4.67), we get that

cN−λ
= inf

u=u− 6=0
max
α≥0

I−λ (αu).

Let u = u− 6= 0. Now, by Lemma 4.4.3, we have I−λ (αu) → −∞ as α → ∞. Thus,

there exists Cu > 0 larger enough such that I−λ (αu) < 0 for all α ≥ Cu. Let us

consider the family of the curves γαu : [0, 1]→ X, given by γαu (β) = β(αu−) for α ≥ Cu,

where u = u− 6= 0. The family of curves so de�ned is such that {γαu}α≥Cu ⊂ Γ−λ , for

u ∈ −P \ {0}. Then, we have that

c−λ = inf
γ∈Γ−λ

max
β∈[0,1]

I−λ (γ(t)) ≤ inf
{γαu}α≥Cu
u = u− 6= 0

max
β∈[0,1]

I−λ (γαu (β))

≤ inf
u=u− 6=0

max
α≥0

I−λ (αu+) = cN−λ
.

and so we �nish the proof of the lemma.

Remark 4.5.4 Using Lemma 4.5.3 and by Remark 4.4.5, we get

c+
λ + c−λ ≤ cN+

λ
+ cN−λ

< cMλ
. (4.68)

Moreover, if u is a critical point of I−λ such that I−λ (u) = c−λ , then u ∈ N−λ is a

nonpositive solution of (Pλ). Thus, we have cN−λ ≤ Iλ(u) = I−λ (u) = c−λ . Therefore,

we deduce that

c−λ = cN−λ
. (4.69)

Similarly to cλ and c+
λ .
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4.5.1 Proof of Theorem 4.2.3

We will only show the existence of a nonpositive lest energy solution u− of prob-

lem (Pλ). From Corollary 4.5.2, there exists (un) ⊂ X such that I−λ (un) → c−λ and

(I−λ )′(un)→ 0 as n→∞. By (f3), we have

c−λ + on(1) + on‖un‖ =I−λ (un)− 1

θ
(I−λ )′(un)un

=

(
s

N
− 1

θ

)
‖un‖N/s +

λ

θ

∫
Ω

f(x, u−n )u−n − θF (x, u−n ) dx

≥
(
s

N
− 1

θ

)
‖un‖N/s

(4.70)

and so (un) is bounded in X. Let C > 0 such that ‖un‖ ≤ C for all n ∈ N. Using

(4.68), there exists n0 ∈ N such that on(1)‖un‖ ≤ on(1)C < ρ and c−λ + on(1) < cMλ

for all n ≥ n0, where ρ > 0 is given in Lemma 4.4.13. Thus, by (4.70), we get

‖un‖N/s <
(

Nθ

sθ −N

)
(cMλ

+ ρ), for all n ≥ n0.

Hence, as in Lemma 4.4.13, we have

‖un‖
N
N−s ≤ mρ <

α∗
2α0

, for all n ≥ n0. (4.71)

Without loss of generality, we can assume that (4.71) holds for all n ∈ N. Since X is

a re�exive space, there exists u− ∈ X such that un ⇀ u− in X as n→∞. By Lemma

4.3.5, up to a subsequence, we have un → u− in Lq(RN), for q ≥ 1, and un(x)→ u−(x)

a.e. in RN as n → ∞. Using Lemma 4.3.5 and (4.71), up to a subsequence, we can

also assume that the convergences in Lemma 4.4.15 holds for the sequence (un). By

(4.55) and (4.56), we have

λ

∫
Ω

f(x, u−n )(un − u−) dx = on(1). (4.72)

Now, by the lower semicontinuity of the norm, we have

‖u−‖N/s ≤ lim inf
n→∞

‖un‖N/s. (4.73)

On the other hand, since the function ‖ · ‖N/s is convex, by using properties of the

derivative of convex function (see Lemma A.1.2), we have that

s

N

(
‖u−‖N/s − ‖un‖N/s

)
≥ 〈(−∆)sN/sun, u− − un〉+

∫
Ω

V (x)|un|
N
s
−2un(u− − un) dx.
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Thus, since I ′λ(un) = on(1) and by (4.72), we deduce that

s

N

(
‖u−‖N/s − ‖un‖N/s

)
≥ (I−λ )′(un)(un − u−) + λ

∫
Ω

f(x, u−n )(un − u−) dx = on(1).

Hence, taking the lim inf, we have

lim inf
n→∞

‖un‖N/s ≤ ‖u−‖N/s. (4.74)

Thus, by (4.73) and (4.74), we have

lim inf
n→∞

‖un‖N/s = ‖u−‖N/s.

Thus, by Lemma 4.3.2, up to a subsequence, we have un → u− strongly inX as n→∞.

Therefore, u− is a critical point of I−λ and I−λ (u−) = c−λ > 0. Consequently, by Remark

4.5.4, we have u− ∈ N−λ is a nonpositive solution of (Pλ) and c
−
λ = cN−λ

, and the proof

is complete.
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Appendix A

Auxiliary results

A.1 General auxiliary results

Lemma A.1.1 Let α > 0 and r > 1. Then, for each β ≥ r, we have(
eα|s|

2 − 1
)r
≤
(
eβα|s|

2 − 1
)

for all s ∈ R.

Proof . It is enough to prove that

(
et − 1

)r ≤ ert − 1 for all t ≥ 0.

Let γ = et − 1, then, the above inequality is equivalent to

γr + 1 ≤ (γ + 1)r for all γ ≥ 0.

Let h(γ) = (γ + 1)r − γr − 1. Then h(0) = 0 and h′(γ) = r(γ + 1)r−1 − rγr−1 ≥ 0, for

all γ ≥ 0. Thus h(γ) ≥ 0, for all γ ≥ 0. Therefore, we get γr + 1 ≤ (γ + 1)r, for all

γ ≥ 0, which completes the proof.

Lemma A.1.2 Let X a normed vector space and f : X → R a di�erentiable function.

Then, the following condition are equivalent:

(a) f is convex in X;

(b) f(y)− f(x) ≥ f ′(x)(y − x), for all x, y ∈ X;

(b) (f ′(y)− f ′(x))(y − x) ≥ 0, for all x, y ∈ X.

(see [22, Theorem 7.4].)



Lemma A.1.3 (Fatou's Lemma) Let (fn) be a sequence of functions in L1 that

satisfy

(a) for all n, fn ≥ 0 a.e.

(b) supn
∫
fn <∞.

For almost all x ∈ Ω we set f(x) = lim infn→∞ fn(x) ≤ ∞. Then f ∈ L1 and∫
f ≤ lim inf

n→∞

∫
fn.

(see [18, Lemma 4.1])

Lemma A.1.4 (dominated convergence theorem, Lebesgue) Let (fn) be a se-

quence of functions in L1 that satisfy

(a) fn(x)→ f(x) a.e. on Ω,

(b) there is a function g ∈ L1 such that for all n, |fn(x)| ≤ g(x) a.e. on Ω.

Then f ∈ L1 and ‖fn − f‖1 → 0.

(see [18, Theorem 4.2])

Lemma A.1.5 (Hölder's inequality) Assuma that f ∈ Lp and g ∈ Lp′ with 1/p +

1/p′ = 1, 1 ≤ p ≤ ∞. Then fg ∈ L1 and∫
|fg| ≤ ‖f‖p‖g‖p′ .

(see [18, Theorem 4.6])

Lemma A.1.6 If f ∈ Lp ∩Lq with 1 ≤ p ≤ q ≤ ∞, then f ∈ Lr for all p ≤ r ≤ q and

‖f‖r ≤ ‖f‖αp‖f‖1−α
p , where

1

r
=
α

p
+

1− α
p

, 0 ≤ α ≤ 1.

(see [18])

Lemma A.1.7 Let (fn) be a sequence in Lp and f ∈ Lp such that ‖fn − f‖p → 0.

Then, there exist a subsequence (fnk) and a function h ∈ Lp such that

(a) fnk(x)→ f(x) a.e. on Ω,

(b) |fnk(x)| ≤ h(x), ∀ k a.e. on Ω.

(see [18, Theorem 4.9])
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Lemma A.1.8 Let (un) be a sequence in Lq(Ω), with q ≥ 1, such that un → u in

Lq(Ω). Then u+
n → u+ and u−n → u− in Lq(Ω).

Proof . Since un → u in Lq(Ω), there exists h ∈ Lq(Ω) and a subsequence (unk) of

(un) such that unk(x)→ u(x) a.e. x ∈ Ω and |unk(x)| ≤ h(x) a.e. in Ω. Let us de�ne

A0 = {x ∈ Ω : u(x) = 0}, A+ = {x ∈ Ω : u(x) > 0} and A− = {x ∈ Ω : u(x) < 0}.

Let x ∈ A+ such that unk(x) → u(x) = u+(x) > 0 as k → ∞. Then, there exists

k0, such that unk(x) = u+
nk

(x) for all k ≥ k0 and so u+
nk

(x) → u+(x) as k → ∞.

Similarly, if x ∈ A− and unk(x) → u(x) = u−(x) as k → ∞, we have u+
nk

(x) = 0 for

all k larger enough. Thus u+
nk

(x) → u+(x) = 0 as k → ∞. Finally, if x ∈ A0 and

unk(x) → u(x) = 0 as k → ∞, since |u+
n | ≤ |un|, we have u+

nk
(x) → u+(x) = 0 as

k → ∞. Therefore, by the Dominated Convergence Theorem, we have u+
nk
→ u+ in

Lq(Ω).

Now, if (u+
n ) does not converge to u+ in Lq(Ω), then there exists a subsequence

(unk) of (un) such that ‖u+
nk
− u+‖q ≥ ε > 0 for all k ∈ N. Then, applying the above

argument to the sequence (unk) we obtain a contradiction, which completes the proof.

Lemma A.1.9 Lp is uniformly convex, and thus re�exive for any p, 1 < p <∞.

(see [18, Theorem 4.10])

Lemma A.1.10 (Straus's lemma) Let P,Q : R → R be two continuous functions

satisfying
P (s)

Q(s)
→ 0 as |s| → ∞.

Let un : RN → R be a sequence of measurable functions such that

sup
n

∫
RN
|Q(un(x))|dx <∞

and

P (un(x))→ v(x) a.e. in RN , as n→∞.

Then for any bounded Borel set B one has∫
B

|P (un(x))− v(x)|dx→ 0 as n→∞.
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If one further assumes that

P (s)

Q(s)
→ 0 as s→ 0

and

un(x)→ 0 as |x| → ∞, uniformly with respect to n,

then P (un) converges to v in L1(RN) as n→∞.

(see [13, Theorem A.I])

Lemma A.1.11 (quantitative deformation lemma) Let X be a Banach space,

ϕ ∈ C1(X,R), S ⊂ X, c ∈ R, ε, δ > such that

∀u ∈ ϕ−1([c− 2ε, c+ 2ε] ∩ S2δ) : ‖ϕ′(u)‖ ≥ 8ε/δ.

Then there exits η ∈ C([0, 1]×X,X) such that

(i) η(t, u) = u, if t = 0 or if u /∈ ϕ−1([c− 2ε, c+ 2ε]) ∩ S2δ;

(ii) η(1, ϕc+ε ∩ S) ⊂ ϕc−ε;

(iii) η(t, ·) is an homeomorphism of X, ∀ t ∈ [0, 1];

(iv) ‖η(t, u)− u‖ ≤ δ, ∀u ∈ X, ∀ t ∈ [0, 1];

(v) ϕ(η(·, u)) is non increasing, ∀u ∈ X;

(vi) ϕ(η(t, u)) < c, ∀u ∈ ϕc ∩ Sδ, ∀ t ∈ (0, 1].

(see [72, Lemma 2.3])

Lemma A.1.12 (Mountain pass theorem ) Let X be a Banach space, ϕ ∈ C1(X,R), e ∈
X and r > 0 be such that ‖e‖ > r and

b := inf
‖u‖=r

ϕ(u) > ϕ(0) ≥ ϕ(e).

Then, there exists a sequence (un) in X (a (PS)c sequence) such that ϕ(un) → c and

ϕ′(un)→ 0 where

c := inf
γ∈Γ

max
t∈[0,1]

ϕ(γ(t))

Γ := {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = e}.

(see [72, Theorem 2.10])

142



Lemma A.1.13 Let Ω a open bounded set in RN , with boundary ∂Ω. Let f : Ω→ RN

a continuous function and p ∈ RN such that p /∈ f(∂Ω). If deg(f,Ω, p) 6= 0 then there

exists z ∈ Ω such that f(z) = p.

(see [5, Section 3.1])

Lemma A.1.14 Let Ω a open bounded set in RN , with boundary ∂Ω. Let f, g ∈
C(Ω,RN) be such that f(x) = g(x) for all x ∈ Ω and let p /∈ f(∂Ω) = g(∂Ω). Then

deg(f,Ω, p) = deg(g,Ω, p).

(see [5, Theorem 3.2])

Lemma A.1.15 Let Ω a open bounded set in RN , with boundary ∂Ω. Let f ∈ C(Ω,RN)∩
C1(Ω,RN) and let p /∈ f(∂Ω) a regular value of f . Then

deg(f,Ω, p) =
∑

x∈f−1(p)

sgn[Jf (x)].

(see [5, Corollary 3.15])
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Appendix B

Auxiliary results of chapters

B.1 Appendix of Chapter 1

In this section we prove some auxiliary results that we used in Chapter 1.

We consider the problem (−∆)1/2u+ V (x)u = |u|p−2u in Ω

u = 0 in R \ Ω,
(B.1)

where Ω = (a, b), p > 2 and V satis�es the condition (V1). The functional Ip : X → R

associated to (B.1) is given by

Ip(u) =
1

2
‖u‖2 − 1

p
‖u‖pp.

We de�ne the Nehari manifolds and nodal set associated to Ip and the respective ground

state and nodal level by

N p = {u ∈ X \ {0} : I ′p(u)u = 0}, (B.2)

Mp = {u ∈ X : u± 6= 0 and I ′p(u)u± = 0}, (B.3)

cN p = inf
u∈N p

Ip(u), (B.4)

and

cMp = inf
u∈Mp

Ip(u). (B.5)



We will show in this section that problem (B.1) has a nodal solution of least

energy. The arguments used in this section are similar to those developed in Sections

1.3 and 1.4, so many will be omitted in order to avoid repetition.

Lemma B.1.1 Given u ∈ X \ {0}, there exists a unique t = t(u) > 0 such that

tu ∈ N p. In addition, t satis�es

Ip(tu) = max
s≥0

Ip(su). (B.6)

Proof . The proof of this result follows the same ideas of Lemma 1.3.1.

Corollary B.1.2 Let u ∈ X \ {0}. Then u ∈M if only if Ip(u) = max
s≥0

Ip(su).

Lemma B.1.3 There exist β0 > 0 and k0 > 0 such that Ip(u) ≥ β0 and ‖u‖2 ≥ k0,

for all u ∈ N p, and ‖u±‖2 ≥ k0, for all u ∈Mp.

Proof . The proof of this result follows the same ideas of Lemma 1.3.2.

The lemma above shows that the levels cN p and cMp are well de�ned and cp ≥

c∗p ≥ β0, sinceMp ⊂ N p.

Lemma B.1.4 Given u ∈ X with u± 6= 0, there exists a unique pair (t, s) of positive

numbers such that tu+ + su− ∈Mp.

Proof . The proof of this result follows the same ideas of Lemma 1.3.6.

Lemma B.1.5 Let u ∈ X, with u± 6= 0, such that I ′p(u)u+ ≤ 0 and I ′p(u)u− ≤ 0.

Then the unique pair (t, s) given in Lemma B.1.4 satis�es that 0 < t, s ≤ 1.

Proof . The proof of this result follows the same ideas of Lemma 1.3.7.

Lemma B.1.6 Let u ∈ X, with u± 6= 0, and (t, s) the unique pair of positive numbers

given in Lemma B.1.4. Then (t, s) is the unique maximum point of the function φp :

R+ × R+ −→ R de�ned by φp(α, β) = Ip(αu
+ + βu−).

Proof . The proof of this result follows the same ideas of Lemma 1.3.8.

Now, we shall show that the nodal level cMp is attained.

Lemma B.1.7 There exists ū ∈Mp such that Ip(ū) = cMp .
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Proof . Let (un) ⊂ Mp be such that Ip(un) → cMp . Now, since un ∈ Mp, for all

n ∈ N, we have

cMp + on(1) = Ip(un) =
1

2
‖un‖2 − 1

p
‖un‖pp =

(
1

2
− 1

p

)
‖un‖2.

Hence, (un) is bounded in X. Therefore, (u+
n ) and (u−n ) are also bounded in X. Since

X is a Hilbert space, up to a subsequence, there exists u ∈ X such that u±n ⇀ u± in

X. Utilizing Lemma 1.2.1, passing to a subsequence, we can assume that u±n → u± in

Lq(R), for all q ∈ [1,∞), and u±n (x)→ u±(x) a.e. in R.

We claim that u± 6= 0. We suppose, by contradiction, that u+ = 0 (similarly u−).

Since un ∈Mnod, we have I ′p(un)u+
n = 0. Thus

〈un, u+
n 〉 =

∫
Ω

|u+
n |pdx→

∫
Ω

|u+|pdx = 0.

However, by Lemma 1.2.3 we have 〈un, u+
n 〉 ≥ ‖u+

n ‖2. This implies that ‖u+
n ‖2 → 0,

which is a contradiction in view of Lemma B.1.3.

Utilizing Lemma B.1.4, there exists a pair of positive numbers (t, s) such that

tu+ + su− ∈ Mp. Let ū = tu+ + su−. We will show that I ′p(u)u± ≤ 0. In fact, by

Fatou's lemma, we have

‖u+‖2 + 〈u+, u−〉 =
1

2π

∫
R2

|u+(x)− u+(y)|2

|x− y|2
dxdy +

∫
Ω

V (x)|u+|2dx

+
1

π

∫
R2

u+(x)(−u−(y))

|x− y|2
dxdy

≤ lim inf
n→+∞

(
‖u+

n ‖2 + 〈u+
n , u

−
n 〉
)

= lim inf
n→+∞

∫
Ω

|u+
n |pdx =

∫
Ω

|u+|pdx = ‖u+‖pp.

Analogously, I ′p(u)u− ≤ 0. Hence, using Lemma B.1.5, we have that 0 < t, s ≤ 1. In

this way, we have that ‖ū‖2 ≤ ‖u‖2. Now, by using that ū ∈ Mp and the Fatou's

lemma, we reach

cMp ≤ Ip(ū) = Ip(ū)− 1

p
I ′p(ū)ū

=

(
1

2
− 1

p

)
‖ū‖2

≤
(

1

2
− 1

p

)
‖u‖2

≤ lim inf
n→+∞

(
1

2
− 1

p

)
‖un‖2 = lim inf

n→+∞

(
1

2
‖un‖2 − 1

p
‖un‖pp

)
= cMp
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and this completes the proof.

We de�ne D = (1
2
, 3

2
)× (1

2
, 3

2
) and g : D → X by g(α, β) = αū+ + βū−, where ū

was found in Lemma B.1.7. Before presenting the main result of this section, we will

present the following lemma:

Lemma B.1.8 Let P = {u ∈ X : u(x) ≥ 0 a.e. x ∈ Ω} and −P = {u ∈ X : u(x) ≤
0 a.e. x ∈ Ω}. Then d0 = dist(g(D),Λ) > 0, where Λ = P ∪ −P .

Proof . The proof of this result follows the same ideas of Lemma 1.4.1.

Now, we will now present the main result of this section.

Theorem B.1.9 The function ū ∈ Mp found in Lemma B.1.7 is a nodal solution of

least energy of problem (B.1).

Proof . The proof of this result follows the same ideas used in Theorem 1.1.2 and we

omit it.

B.2 Appendix of Chapter 2

In this section we prove some auxiliary results that used in Chapter 2.

We consider the problem

(−∆)1/2u+ V (x)u = K(x)|u|p−2u in R, (B.7)

where p > 2, V and K are such that (V1)− (V2) and (K1) hold. The energy functional

Ip : X → R associated to (B.7) is given by

Ip(u) =
1

2
‖u‖2 − 1

p
‖u‖p

LpK
.

We de�ne the Nehari manifold and nodal set associated to Ip and the respective ground

state and nodal levels by

N p = {u ∈ X \ {0} : I ′p(u)u = 0}, (B.8)

Mp = {u ∈ X : u± 6= 0, I ′p(u)u± = 0}, (B.9)

cN p = inf
u∈N p

Ip(u), (B.10)
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cMp = inf
u∈Mp

Ip(u). (B.11)

We will show that problem (B.7) has a nodal solution of least energy. The steps

to show this are the same of the Sections 2.3, 2.4 and 2.5. Thus, many computations

will be omitted in order to avoid repetitions.

Lemma B.2.1 Given u ∈ X \ {0}, there exists a unique t = t(u) > 0 such that

tu ∈ N p. In addition, t satis�es

Ip(tu) = max
s≥0

Ip(su). (B.12)

Proof . Let h(s) := Ip(su) = s2‖u‖2/2− sp‖u‖p
LpK
/p, for s ≥ 0. Since p > 2, we have

h(s) > 0 for s > 0 small enough and h(s) → −∞ as s → ∞. Hence, there exists a

t > 0 satisfying (B.12). In particular, tu ∈ N p. Moreover, h′(t) = 0 if and only if

t = (‖u‖2/‖u‖p
LpK

)1/(p−2).

Corollary B.2.2 Let u ∈ X \ {0}. Then u ∈ N p if only if Ip(u) = max
s≥0

Ip(su).

Lemma B.2.3 There exist β0 > 0 and `0 > 0 such that ‖u‖2 ≥ `0, for all u ∈ N p,

‖u±‖2 ≥ `0, for all u ∈Mp and Ip(u) ≥ β0.

Proof . The proof of this result follows by Corollary 2.3.4 and using the same ideas

of Lemmas 2.4.2 and 2.4.4.

The lemma above shows that the levels cN p and cMp are well de�ned and cMp ≥

cN p ≥ β0, sinceMp ⊂ N p. The proofs of the next three result follow the same ideas

of Lemmas 2.4.5, 2.4.6 and 2.4.7, and we omit them.

Lemma B.2.4 Given u ∈ X with u± 6= 0, there exists a unique pair (t, s) of positive

numbers such that tu+ + su− ∈Mp.

Lemma B.2.5 Let u ∈ X, with u± 6= 0, such that I ′p(u)u+ ≤ 0 and I ′p(u)u− ≤ 0.

Then the unique pair (t, s) given in Lemma B.2.4 satis�es that 0 < t, s ≤ 1.

Lemma B.2.6 Let u ∈ X, with u± 6= 0, and (t, s) the unique pair of positive numbers

given in Lemma B.2.4. Then (t, s) is the unique maximum point of the function φp :

R+ × R+ −→ R de�ned by φp(α, β) = Ip(αu
+ + βu−).

Now, we shall show that the nodal level cMp is attained.
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Lemma B.2.7 There exists ū ∈Mp such that Ip(ū) = cMp .

Proof . Let (un) ⊂ Mp be such that Ip(un) → cMp . Now, since un ∈ Mp, for all

n ∈ N, we have

cMp + on(1) = Ip(un) =
1

2
‖un‖2 − 1

p
‖un‖pLpK =

(
1

2
− 1

p

)
‖un‖2.

Hence, (un) is bounded in X. Therefore, (u+
n ) and (u−n ) are also bounded in X. Since

X is a Hilbert space, up to a subsequence, there exists u ∈ X such that u±n ⇀ u± in X.

Since p > 2, utilizing Proposition 2.3.2 and Corollary 2.3.4, passing to a subsequence,

we can assume that u±n → u± in LpK and u±n (x)→ u±(x) a.e. in R.

We claim that u± 6= 0. We suppose, by contradiction, that u+ = 0 (similarly

u− = 0). Since un ∈Mnod, we have I ′p(un)u+
n = 0. Thus,

〈un, u+
n 〉 =

∫
R
K(x)|u+

n |pdx→
∫
R
K(x)|u+|pdx = 0.

However, by Lemma 2.3.7 we have 〈un, u+
n 〉 ≥ ‖u+

n ‖2. This implies that ‖u+
n ‖2 → 0,

which is a contradiction in view of Lemma B.2.3. Utilizing Lemma B.2.4, there exists

a pair of positive numbers (t, s) such that tu+ + su− ∈ Mp. Let ū = tu+ + su−. We

will show that I ′p(u)u± ≤ 0. In fact, by Fatou's lemma, we have

‖u+‖2 + 〈u+, u−〉 ≤ lim inf
n→+∞

(
‖u+

n ‖2 + 〈u+
n , u

−
n 〉
)

= lim inf
n→+∞

∫
R
K(x)|u+

n |pdx =

∫
R
K(x)|u+|pdx = ‖u+‖p

LpK
.

Analogously, I ′p(u)u− ≤ 0. Hence, using Lemma B.2.5, we have 0 < t, s ≤ 1. In

particular, ‖ū‖2 ≤ ‖u‖2. Now, by using that ū ∈ Mp and by lower semicontinuity of

norm, we reach

cMp ≤ Ip(ū) = Ip(ū)− 1

p
I ′p(ū)ū

=

(
1

2
− 1

p

)
‖ū‖2 ≤

(
1

2
− 1

p

)
‖u‖2

≤ lim inf
n→+∞

(
1

2
− 1

p

)
‖un‖2 = lim inf

n→+∞

(
1

2
‖un‖2 − 1

p
‖un‖pLpK

)
= cMp

and this completes the proof.

Now, we will present the main result of this section.
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Theorem B.2.8 The function ū ∈ Mnod found in Lemma B.2.7 is a nodal solution

of least energy of problem (B.7).

Proof . It follows by applying the same ideas used in the proof of Theorem 2.2.3 and

we omit it.

B.3 Appendix of Chapter 3

In this section we prove some auxiliary results that we used in Chapter 3. The

�rst result is established as follows.

Theorem B.3.1 Assume that (V1) holds. Then, there exists w ∈ Mp
b such that

Jb(w) = d∗b , where d
∗
b := inf

u∈Mp
b

Jb(u).

Proof . The proof of this theorem is obtained by the following steps:

(1) For u ∈ X, with u+ 6= 0 and u− 6= 0, there exists a unique pair of positive

numbers (tu, su) such that tuu+ + suu
− ∈ Mp

b and Jb(tuu
+ + suu

−) > 0. Moreover, if

(t, s) 6= (tu, su), with t, s ≥ 0, similar to Lemma 3.3.4, we have

Jb(tu
+ + su−) < Jb(tuu

+ + suu
−).

(2) There exists κ0 > 0 such that ‖u±‖2 ≥ κ0, for all u ∈ Mp
b . This is similar to

Lemma 3.3.7.

(3) If u ∈ X, with u+ 6= 0 and u− 6= 0, it is such that J ′b(u)u± ≤ 0. Then, simliar to

Lemma 3.3.6, the unique pair (tu, su) in Step (1) satis�es 0 < tu, su ≤ 1.

(4) Now, let (un) ⊂ Mp
b be a sequence such that Jb(un) → d∗b . Similar to Lemma

3.3.15, we can to show that, up to a subsequence, un ⇀ w̃ in X. From Step (2), we

show that w̃+ 6= 0 and w̃− 6= 0. Using the Steps (1), (3) and again similar to Lemma

3.3.15, we can �nd w ∈Mp
b such that Jb(w) = d∗b , as desired.

Theorem B.3.2 Assume that (V1) holds. The function w given in Theorem B.3.1 is

a least energy nodal solution of the problem mb(‖u‖2)
[
(−∆)1/2u+ V (x)u

]
=

1

2
|u|p−2u in Ω,

u = 0 in R \ Ω.
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Proof . It is easy to check that the same result of Lemma 3.3.14 holds to

Φu(t, s) =
(
J ′b(tu

+ + su−)tu+, J ′b(tu
+ + su−)su−

)
for u ∈Mp

b .

The rest of the proof follows the same ideas used in the proof of Theorem 3.1.2 and we

omit it.

Remark B.3.3 Note that, for any b′ ≥ 0, there exists a least energy nodal solution

for the problem mb′(‖u‖2)
[
(−∆)1/2u+ V (x)u

]
=

1

2
|u|p−2u in Ω,

u = 0 in R \ Ω.

Explicitly, there exists wb′ ∈ X, with w±b′ 6= 0, such that wb′ is a critical point of the

functional

Jb′(u) =
1

2
Mb′(‖u‖2)− 1

2p

∫
Ω

|u|pdx and Jb′(wb′) = d∗b′

where

d∗b′ = inf
u∈Mp

b′

Jb′(u) and Mp
b′ = {u ∈ X : u+ 6= 0, u− 6= 0, (Jb′)

′(u)u+ = 0 and (Jb′)
′(u)u− = 0}.

B.4 Appendix of Chapter 4

In this section, the space X is de�ned as in Chapter 4. However, this space is

a natural generalization for larger dimensions of the spaces de�ned in chapters 1 and

3. Hence, we emphasize that the following result can be applied to the contexts of the

other chapters.

Lemma B.4.1 Let P± : X → X the operators given by P±(u) = u±. Then:

(i) if un ⇀ u in X as n → ∞ then, up to a subsequence, P±(un) ⇀ P±(u) in X as

n→∞;

(ii) P± are strongly continuous.

Proof . By (v) of Lemma 4.3.6, we have ‖u±‖ ≤ ‖u‖ and so the operators P± are

well de�ned. Let (un) ⊂ X such that un ⇀ u in X as n → ∞. Since (u±n ) is bonded,

by Lemma 4.3.1, there exist v1, v2 ∈ X such that, up to a subsequence, u+
n ⇀ v1 and

u−n ⇀ v2 in X as n→∞. Using Lemma 4.3.3, up to a subsequence, we have un → u,

u+
n → v1 and u−n → v2 in Lq(Ω), for q ≥ 1, as n → ∞. However, by Lemma A.1.8,
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up to a subsequence, u+
n → u+ and u−n → u− in Lq(Ω). Thus v1 = u+ and v2 = u−,

showing the item (i).

Let (un) ⊂ X such that un → u in X as n→∞. Using again Lemma 4.3.3 and

Lemma A.1.8, we have un → u and u±n → u± in LN/s(RN) as n → ∞. In particular,

we have that u±n (x)→ u±(x) a.e. in RN as n→∞. Now, for (x, y) ∈ R2N with x 6= y,

we de�ne

vn(x, y) =
|un(x)− un(y)|N/s

|x− y|2N
and v(x, y) =

|u(x)− u(y)|N/s

|x− y|2N
. (B.13)

By the strongly convergence, we get vn → v in L1(R2N) as n→∞. Thus, there exists

h ∈ L1(R2N) such that 0 ≤ vn(x, y) ≤ h(x, y) a.e. in R2N . Similar to (B.13), we

consider

vn,±(x, y) =
|u±n (x)− u±n (y)|N/s

|x− y|2N
and v±(x, y) =

|u±(x)− u±(y)|N/s

|x− y|2N
. (B.14)

Thus we get vn,±(x, y) → v±(x, y) a.e in R2N . Now, let us consider the following

decomposition

R2N = (Ωc
n,− × Ωc

n,−) ∪ (Ωc
n,− × Ωn,−) ∪ (Ωn,− × Ωc

n,−) ∪ (Ωn,− × Ωn,−) (B.15)

where

Ωn,− = {x ∈ Ω : un(x) ≤ 0}.

Using the decomposition (B.15), by a straightforward calculation, we can see that

0 ≤ vn,−(x, y) ≤ vn(x, y) ≤ h(x, y).

Analogously, we can show that 0 ≤ vn,+(x, y) ≤ vn(x, y) ≤ h(x, y). Hence, by the

dominated convergence theorem, we obtain that

vn,± → v± in L1(R2N), as n→∞. (B.16)

Moreover, as in Lemma A.1.8, it is easy to check that∫
Ω

V (x)|u±n |N/sdx→
∫

Ω

V (x)|u±|N/sdx, as n→∞. (B.17)

Hence, by (B.16) and (B.17), we deduce that ‖u±n ‖ → ‖u±‖ as n → ∞. Therefore,

using Lemma 4.3.2, we have P±(un) → P (u±) as n → ∞, which concludes the proof

of (ii).
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