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- UFPB, como requisito parcial para obtenção do t́ıtulo de Doutor em Matemática.
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Resumo

Neste trabalho estudamos equações de evolução lineares de terceira ordem no tempo

sob a perspectiva da teoria de semigrupos fortemente cont́ınuos. Consideramos suas

aproximações de ordem fracionária via teoria das potências fracionárias de operadores

fechados e densamente definidos por fórmulas do tipo Balakrishnan. Sobre aplicações,

analisamos equações do tipo Moore-Gibson-Thompson com amortecimentos fracionários.

Palavras-chave: aproximações fracionárias; equações de evolução lineares de terceira

ordem no tempo; equações do tipo Moore-Gibson-Thompson; potências fracionárias.
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Abstract

In this work we study third order linear evolution equations in time, in the sense

of theory of strongly continuous one-parameter semigroups, and approximations them

of fractional order via theory of the fractional powers of closed and densely defined

operator tand ype Balakrishnan formula. As applications, we present approximations

of the Moore-Gibson-Thompson type equations with fractional damped.

Mathematics Subject Classification 2010: 34A08, 47D06, 47D03.

Keywords: fractional approximations; third order linear evolution equations in time;

Moore-Gibson-Thompson type equations; fractional powers.
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Introduction

In this work we consider the following abstract linear evolution equation of third

order in time

B3
t u� Au � 0 (1)

with initial conditions given by

up0q � u0 P X 2
3 , Btup0q � u1 P X 1

3 , B2
t up0q � u2 P X, (2)

where X is a separable Hilbert space and A : DpAq � X Ñ X is a linear, closed,

densely defined, self-adjoint and positive definite unbounded operator with compact

resolvent. We wish to study the fractional powers of Λ, the matricial operator obtained

by rewriting (1)-(2) as a first order abstract system as follows:

We will consider the phase space

Y � X
2
3 �X

1
3 �X

which is a Banach space equipped with the norm given by

} � }2
Y � } � }2

X
2
3
� } � }2

X
1
3
� } � }2

X

and we write the problem (1)-(2) as a Cauchy problem on Y , letting v � Btu, w � B2
t u

and u �
�
u
v
w

�
and the initial value problem

$'&
'%
du

dt
� Λu � 0, t ¡ 0

up0q � u0,

(3)

where the unbounded linear operator Λ : DpΛq � Y Ñ Y is defined by

DpΛq � DpAq �DpA 2
3 q �DpA 1

3 q, (4)



and

Λu �
�

0 �I 0
0 0 �I
A 0 0

� �
u
v
w

�
:�

�
�v
�w
Au

�
, @u �

�
u
v
w

�
P DpΛq. (5)

As we will see in Lemma 2.1.3, the problem (1)-(2) is ill-posed in the sense that

the unbounded linear operator �Λ is not the infinitesimal generator of a strongly con-

tinuous semigroup. Commonly, fractional powers theory is applied for densely closed

operators whose negative generates a semigroup. According to Balakrishnan [4] “Frac-

tional powers of closed linear operators were first constructed by Bochner [8] and sub-

sequently Feller [22], for the Laplacian operator. These constructions depend in an

essential way on the fact that Laplacian generates a semigroup...” (p. 419).

As far as we know, Balakrishnan, in [4], was the first to obtain a new construction

for fractional powers in which it is not required that the base operator generate a

semigroup. His ideas evolved into the current definition of fractional powers of closed

operators widely used in the literature. It is well know from the semigroup theory

that if B is a linear operator which is possible to calculate its fractional powers and

�B generates a strongly continuous semigroup of contractions, then �Bα generates

an analytic semigroup for α P p0, 1q, see Lemma 1.5.12 . However, what can one say

about �Bα if �B does not generate a strongly continuous semigroup? In general �Bα

generates a strongly continuous analytic semigroup for 0   α ¤ 1
2
, see Remark 1.5.11.

One of the main results of this work is to give a complete answer to the above

question for the operator �Λ in (4)-(5). First, we prove that though the negative of

Λ is not an infinitesimal generator of a strongly continuous semigroup, it is possible to

define its fractional powers Λα, for 0   α   1. After calculating by an explicit formula

the fractional powers of order α P p0, 1q of Λ, motivated by what was discussed in the

last paragraph, we conclude that �Λα generates a strongly continuous semigroup on

Y if and only if 0   α ¤ 3
4

and it generates strongly continuous analytic semigroup on

the open interval 0   α   3
4
.

As an application, we present parabolic approximations governed by the frac-

tional powers of the Moore-Gibson-Thompson equations in a smooth bounded domain

of Euclidean spaces. subject to Dirichlet boundary condition continuing the mathemat-

ical analysis of these models developed in Abadias, Lizama and Murillo [1], Caixeta,

Lasiecka, and Cavalcanti [9], Conejero, Lizama and Rodenas [16], Dell‘Oro, Lasiecka

2



and Pata [19], Kaltenbacher, Lasiecka and Marchand [26], Kaltenbacher, Lasiecka and

Pospieszalska [27], Knapp [30], Lasiecka and Wang [32], Marchand, McDevitt and Trig-

giani [33], Pellicer and Said-Houari [37], Pellicera and Solà-Morales [38] and references

therein.

As a consequence of the fractional equation obtained by the calculation of �Λα,

for 0   α   1, we also study the problem:

B3
t u� 3A

1
3B2
t u� 3A

2
3Btu� Au � 0 (6)

with the initial conditions given by

up0q � ϕ P X 2
3 , Btup0q � ψ P X 1

3 , B2
t up0q � ξ P X, (7)

We show that the term 3A
1
3B2
t u� 3A

2
3Btu is strong enough not only to make the

problem (1)-(2) well-posed but also to ensure that the operator associated with this

new problem is sectorial. Thus, the term 3A
1
3B2
t u � 3A

2
3Btu behaves like the damping

term 2A
1
2Btu for the strongly damped wave equation which has been extensively studied

for many authors, see for instance Carvalho and Cholewa [10] and Chen and Triggiani

[12, 13].

Fractional powers approach of operators for the dissipativity of evolution equa-

tions has been divulged in the literature in the last years, in Bezerra, Carvalho,

Cholewa, and Nascimento [5] the authors study parabolic approximations governed

by the fractional powers of order α P p0, 1q of the wave operator; in Bezerra, Carvalho,

D lotko, and Nascimento [6] the authors study a fractional Schrödinger equation of order

α P p0, 1q and the problem of solvability, asymptotic behaviour and connection with

classical Schrödinger equation, Carvalho and Piskarev [11], where the authors study

asymptotic dynamics of abstract parabolic problems in the sense of attractors, see also

Cholewa and D lotko [15], Hale [23], and references therein. To our best knowledge,

there is no fractional powers approach for operators of third order in time evolution

equations.

The thesis is organized as follows. In Chapter 1 entitled ‘Preliminaries’ we have

compiled some basic facts on the semigroups of bounded linear operators theory.

In Chapter 2 entitled ‘Third order differential equation on a time scale’ our main

results are stated and proved: we study the spectral properties of Λ and Λα, for 0  

3



α   1, we determine for which value of α P p0, 1q does the negative of the operator Λα

generate a strongly continuous semigroup. We obtain a fractional differential equation

from Λα and we state an approximation result as α Õ 3
4
. Finally, we consider the

strongly damped third order problem (6)-(7).

The results in the first four sections of the Chapter 2 constitute an article entitled

‘Fractional powers approach of operators for abstract evolution equations of third order

in time’ by myself and Flank D. M. Bezerra accepted for publication by the Journal

of Differential Equations on 6 April, 2020. Its online version is already available in the

link https://doi.org/10.1016/j.jde.2020.04.020.

The Chapter 3 entitled ‘Future research directions’ provides future research di-

rections. We present partial results and some conjectures for nth order problem that

generalizes the problem (1)-(2). Currently, this section is contained in a preprint by

myself and Flank D. M. Bezerra and this manuscript will be submitted for publication

soon. We use the calculation of the fractional powers of operators to give an alternative

way to obtain the Euler-Rodrigues formula for three-dimensional rotations. Currently,

this section is contained in a paper entitled ’Fractional powers of operators approach

to Euler-Rodrigues formula for three-dimensional rotation’ by myself and Flank D. M.

Bezerra and this manuscript is submitted for publication.

Finally, in Appendix A entitled ‘Chebyshev polynomials of the second kind’ we

give a very brief exposition of the Chebyshev polynomials of the second kind.

4



Notation and terminology

• Throughout this work, X denotes a Banach space over the field K P tR,Cu.

• We will denoted by LpXq the space of linear operators defined from the whole

space X to itself endowed with the norm

}S}LpXq :� sup
xPX, x�0

}Sx}X
}x}X , @S P LpXq.

• The domain of a linear operator A will be denoted by DpAq and the image of A

will be denoted by RpAq.

• The closure of a set B � X will be denoted by B.

• The Banach dual space of X will be denoted by X� and the Banach adjoint

operator of an operator A will be denoted by A�.

• If A : DpAq � X Ñ X is a linear operator, then the resolvent set of the operator

A, denoted by the ρpAq, is given by

ρpAq � tλ P C : RpλI � Aq � X, pλI�Aq�1exists and is bounded on RpλI�Aqu

• The set σpAq � CzρpAq is called the spectrum of the operator A. It consists of

the point spectrum

σppAq � tλ P C : pλI � Aq�1 does not existu,

the residual spectrum

σrpAq � tλ P C : pλI � Aq�1 exists, RpλI � Aq � Xu



and the continuous spectrum

σcA � tλ P C : pλI �Aq�1 exists, RpλI � Aq � X, pλI �Aq�1 is not boundedu.

6



Chapter 1

Preliminaries

In this chapter we review some of standard facts on semigroups of bounded linear

operators theory. The chapter is intended to make the work as self-contained as pos-

sible. We summarize without proofs the relevant material on semigroups of bounded

linear operators theory for the reader who is not familiar with this theory. There is

no intention whatsoever to rewrite or bring new results to this theory. For a deeper

discussion of semigroups of bounded linear operators we refer the reader to Amann [3],

Balakrishnan [4], Czaja [17] and Pazy [36].

1.1 Semigroups of bounded operators

For the proofs in this section we refer the reader to Pazy [36, Chapter 1].

Definition 1.1.1. A one-parameter family tT ptq : t P r0,8qu � LpXq of bounded

operators is a semigroup of bounded operators on X if

(i) T p0q � IX

(ii) T pt� sq � T ptqT psq for all t, s P r0,8q.

Definition 1.1.2. A semigroup tT ptq : t P r0,8qu � LpXq of bounded operators on X

is a uniformly continuous semigroup if

lim
tÑ0�

}T ptq � IX} � 0.



Definition 1.1.3. A semigroup tT ptq : t P r0,8qu � LpXq of bounded operators on X

is a strongly continuous semigroup (or C0-semigroup for short) if

lim
tÑ0�

T ptqx � x for all x P X.

Definition 1.1.4. The linear operator A : DpAq � X Ñ X defined by

DpAq �
"
x P X : lim

tÑ0�

T ptqx� x

t
exists

*

and

Ax � lim
tÑ0�

T ptqx� x

t
for all x P DpAq

is the infinitesimal generator of the semigroup tT ptq : t P r0,8qu on X.

Theorem 1.1.5. Let tT ptq : t P r0,8qu be a C0-semigroup on X. Then there exist

constants ω ¥ 0 and M ¥ 1 such that

}T ptq} ¤Meωt for all t P r0,8q.

Corollary 1.1.6. If tT ptq : t P r0,8qu is a C0-semigroup on X, then the function

r0,8q �X Q pt, xq ÞÝÑ T ptqx P X

is continuous.

Theorem 1.1.7. Assume that tT ptq : t P r0,8qu is a C0-semigroup on X and let

A : DpAq � X Ñ X be its infinitesimal generator. Then

(a) T ptqx P DpAq for x P DpAq and t P r0,8q. Moreover, for x P DpAq the function

r0,8q Q t ÞÝÑ T ptqx P X is differentiable and

d

dt
T ptqx � AT ptqx � T ptqAx. (1.1)

In particular, T p�qx P Cpr0,8q, X1q X C1pr0,8q, Xq for all x P DpAq

(b) For x P DpAq and 0 ¤ s ¤ t   8,

T ptqx� T psqx �
» s

t

T pτqAxdτ �
» t

s

AT pτqxdτ

(c)
�
n¥1DpAnq is dense on X.

(d) If }T ptq} ¤Meωt, t P r0,8q, for some M ¥ 1 and ω P R, then for all x P X and

λ P C with Re λ ¡ ω we have

pλIX � Aq�1x �
» 8

0

e�λtT ptqxdt.

8



Definition 1.1.8. A C0-semigroup tT ptq : t P r0,8qu of bounded operators is called a

semigroup of contractions if

}T ptq} ¤ 1 for all t P r0,8q.

Theorem 1.1.9. Let A : DpAq � X Ñ X be the infinitesimal generator of two C0-

semigroups tT ptq : t P r0,8qu and tSptq : t P r0,8qu. Then

T ptq � Sptq for all t P r0,8q

Theorem 1.1.10. A linear operator A : DpAq � X Ñ X is the infinitesimal generator

of a uniformly continuous semigroup if and only if A is bounded on X. Moreover, if

A P LpXq, then A is the generator of the uniformly continuous semigroup tT ptq : t P
r0,8qu given by

T ptq �
8̧

n�0

ptAqn
n!

for all t P r0,8q,

where the series is convergent in the operator norm.

1.2 Existence of semigroups

In this section we present classic results on generation of semigroups of bounded

linear operators. For the proofs in this section we refer the reader to Pazy [36, Chapter

1].

Theorem 1.2.1. (Hille-Yosida) If A : DpAq � X Ñ X is a linear operator, then

the following conditions are equivalent:

(a) A is the infinitesimal generator of a C0-semigroup of contractions,

(b) (i) A is closed and DpAq � X,

(ii) The resolvent set ρpAq of A contains p0,8q and for every λ ¡ 0

}pλ� Aq�1}LpXq ¤ 1

λ
(1.2)

(c) (i) A is closed and DpAq � X,

(ii) The resolvent set ρpAq of A contains the half plane tλ P C : Re λ ¡ 0u and

for such λ

}pλ� Aq�1}LpXq ¤ 1

Re λ
(1.3)

Theorem 1.2.2. (Feller-Miyadera-Phillips) If A : DpAq � X Ñ X is a linear

operator and M ¥ 1, ω P R are constants, then the following conditions are equivalent:

9



(a) A is the infinitesimal generator of a C0-semigroup tT ptq : t P r0,8qu such that

}T ptq} ¤Meωt for all t P r0,8q

(b) (i) A is closed and DpAq � X,

(ii) The resolvent set ρpAq of A contains pω,8q and for every λ ¡ ω and n P N

}pλ� Aq�n}LpXq ¤ M

pλ� ωqn (1.4)

(c) (i) A is closed and DpAq � X,

(ii) The resolvent set ρpAq of A contains the half plane tλ P C : Re λ ¡ ωu and

for such λ and n P N

}pλ� Aq�n}LpXq ¤ M

pRe λ� ωqn (1.5)

Let X be a Banach space and let X 1 be its dual. For every x P X we define the

duality set Jpxq � X 1 by

Jpxq � tϕ : ϕ P X 1 and ϕpxq � }x}2 � }ϕ}2u.

It follows from Hahn-Banach theorem that Jpxq is a nonempty set for every x P X.

Definition 1.2.3. A linear operator A : DpAq � X Ñ X is dissipative if for every

x P DpAq there exists a ϕ P Jpxq such that Re ϕpAxq ¤ 0.

Theorem 1.2.4. A linear operator A : DpAq � X Ñ X is dissipative if and only if

}pλIX � Aqx} ¥ λ}x}

for all x P DpAq and λ ¡ 0.

Theorem 1.2.5. (Lumer-Phillips) Let A : DpAq � X Ñ X be a linear operator

with DpAq � X.

(i) If A is dissipative and there exists a λ0 ¡ 0 such that

Rpλ0IX � Aq � X,

then A is the infinitesimal generator of a C0-semigroup of contractions on X.

(ii) If A is the infinitesimal generator of a C0-semigroup of contraction on X then A

is dissipative and

RpλIX � Aq � X

for all λ ¡ 0. Moreover, for every x P DpAq and every ϕ P Jpxq

Re ϕpAxq ¤ 0.

10



Remark 1.2.6. If X is a Hilbert space with scalar product 〈�, �〉X , from the Riesz’

representation theorem we have

Jpxq � t〈�, x〉Xu

for x P X. In this case a linear operator A : DpAq � X Ñ X is dissipative if and only

if

Re 〈Ax, x〉X ¤ 0, for every x P X. (1.6)

1.3 Analytic semigroups

For the proofs in this section we refer the reader to Pazy [36, Chapter 1].

Definition 1.3.1. A C0-semigroup tT ptq : t P r0,8qu is called an analytic (strongly

continuous) semigroup if there exist a sector on the complex plane

∆φ � tz P C : |argz|   φu with 0   φ ¤ π

2

and a family of bounded operators tT pzq : z P ∆φu which coincide with T ptq for t P
r0,8q, such that

(i) the mapping z ÞÝÑ T pzq is analytic in ∆φzt0u,

(ii) lim
zÑ0, zP∆φ

T pzqx � x for all x P X.

(iii) T pz1 � z2q � T pz1qT pz2q for all z1, z2 P ∆φ.

Definition 1.3.2. Let 0   φ   π
2
, M ¥ 1 and a P R. We say that an operator

A : DpAq � X Ñ X is sectorial if

(i) A is a densely defined closed operator.

(ii) the resolvent set ρpAq contains the sector

Sa,φ � tλ P C : φ ¤ |argpλ� aq| ¤ π, λ � au

and the estimate

}pλIX � Aq�1} ¤ M

|λ� a|
holds for all λ P Sa,φ.

Theorem 1.3.3. Let A : DpAq � X Ñ X be a linear operator. Then the following

conditions are equivalent:

(i) A is the infinitesimal generator of an analytic semigroup.

(ii) �A is a sectorial operator in X.
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1.4 Homogeneous abstract equations

Let X be a Banach space and let A : DpAq � X Ñ X be a linear operator. The

abstract Cauchy problem for A with initial data x P X consists of finding a solution

uptq to the initial value problem

$'&
'%
duptq
dt

� Au, t ¡ 0

up0q � x,

(1.7)

where what we mean by a solution is described by the following definition

Definition 1.4.1. A function u : r0,8q Ñ X is called a solution of the problem (1.7)

if

u P Cpr0,8q, Xq X C1pp0,8q, Xq,
uptq P DpAq for all t ¡ 0 and u satisfies (1.7) in X.

For the proofs of the following theorems see Pazy [36, Chapter 4].

Theorem 1.4.2. Let A be a densely defined linear operator with a nonempty resolvent

set ρpAq. The initial value problem (1.7) has a unique solution uptq, which is continu-

ously differentiable on r0,8q, for every initial value x P DpAq if and only if A is the

infinitesimal generator of a C0-semigroup T ptq

Theorem 1.4.3. If A is the infinitesimal generator of a differentiable semigroup then

for every x P X the initial value problem (1.7) has a unique solution.

Remark 1.4.4. The solution mentioned in the above theorems is uptq � T ptqx. If

tT ptq : t P r0,8qu is a semigroup which is not differentiable and x R DpAq then the

initial value problem (1.7) does not have a solution. However uptq � T ptqx is the unique

weak solution of (1.7), that is, u P Cpr0,8q, Xq, up0q � x and for all ϕ P DpA�q,
the function t ÞÝÑ ϕpuptqq P K is differentiable and

d

dt
ϕpuptqq � A�ϕpuptqq, t ¥ 0.

1.5 Fractional powers of positive operators

For the results in this section we refer the reader to Pazy [36, Section 2.2.6] and

Amann [3, Section 3.4.6].
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Definition 1.5.1. A linear operator A : DpAq � X Ñ X is of positive type K ¥ 1

if it is closed, densely defined, r0,8q � ρp�Aq and

}pλI � Aq�1}LpXq ¤ K

1� λ
, for all λ ¥ 0. (1.8)

We call an operator A of positive type if it is of positive type K for some K ¥ 1.

These are the operators that one can define the fractional power.

Lemma 1.5.2. If A : DpAq � X Ñ X is a positive operator of type K ¥ 1, then

SpKq :�
"
λ P C : |arg λ| ¤ arcsin

1

2K

*
Y
"
|λ| ¤ 1

2K

*
� ρp�Aq (1.9)

and

p1� |λ|q}pλI � Aq�1} ¤ 2K � 1, for all λ P SpKq. (1.10)

For an operator A of positive type and α ¡ 0 we define

A�α � 1

2πi

»
C

λ�αpA� λIq�1dλ (1.11)

where the path C runs in the resolvent set of A from 8e�iθ to 8eiθ, ω   θ   π,

avoiding the negative real axis and the origin and λ�α is taken to be positive for real

positive values of λ.

Lemma 1.5.3. The formula (1.11) defines a bounded linear operator A�α. Moreover

for α � n the definition (1.11) coincides with the classical definition of pA�1qn.

Lemma 1.5.4. If A of positive type, then

(i)

A�α � sinαπ

2π

» 8

0

λ�αpλI � Aq�1dλ 0   α   1. (1.12)

(ii) For α, β ¥ 0

A�pα�βq � A�αA�β (1.13)

(iii) There exists a constant C such that

}A�α} ¤ C for all 0 ¤ α ¤ 1.

(iv) A�α is one-to-one.

(v) The family tA�t; t ¥ 0u is a strongly continuous semigroup on X.

We denote its infinitesimal generator by

� logA

which defines the logarithm of A. Then the intuitive formula A�t � e�t logA,

t ¥ 0, is valid.
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Definition 1.5.5. For every α ¡ 0 we define

Aα � pA�αq�1 (1.14)

For α � 0, Aα � I

Lemma 1.5.6. If α, β are real then

Aα�β � AαAβ (1.15)

Lemma 1.5.7 (Balakrishnan formula). Let 0   α   1. If x P DpAq then

Aαx � sinαπ

π

» 8

0

λα�1ApλI � Aq�1xdλ (1.16)

Lemma 1.5.8. If 0   α   1 and β is real then Aα is of positive type and

pAαqβ � Aαβ (1.17)

Lemma 1.5.9. Assume that A : DpAq � X Ñ X is a linear operator of positive type

and α P p0, 1q. Then Aα : DpAαq � X Ñ X is of positive type. In fact, if there exists

θ P p0, πq such (1.8) is satisfied for λ P C with |arg λ| ¤ θ then

tλ P C : |arg z|   π � pπ � θqαu Y t0u � ρp�Aαq

and, given θ1 P p0, θq,

p1� |λ|q}pλIX � Aαq�1} ¤ K, |arg λ| ¤ π � pπ � θ1qα. (1.18)

Corollary 1.5.10. Suppose that A : DpAq � X Ñ X is a linear operator of positive

type and there exists θ P p0, πq such that (1.8) is satisfied for λ P C with |arg λ| ¤ θ. If

α P p0, 1q satisfies α   π{2pπ � θq then �Aα generates a strongly continuous analytic

semigroup on X.

Remark 1.5.11. Note that (1.9) ensures the existence of such θ P p0, 1q above. But

0   θ   1 implies that
π

2pπ � θq ¡
1

2
.

This implies that �Aα generates a strongly continuous analytic semigroup on X when-

ever A is of positive type and 0   α ¤ 1{2.

We will make a proof of the next lemma because we will present a proof using

our arguments.

Lemma 1.5.12. Assume that A : DpAq � X Ñ X is a linear operator of positive type

K ¥ 1 and �A generates a C0-semigroup of contractions on X. Then �Aα generates

a strongly continuous analytic semigroup on X for 0   α   1.
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Proof: Fix α P R with 0   α   1 and choose θ P p0, πq such that

π � π

2α
  θ   π

2
.

For such θ we have

α   π

2pπ � θq   1.

Thus, from Corollary 1.5.10, it is sufficient to show that (1.8) is satisfied for λ P Sθ :�
tλ P C : |arg λ| ¤ θu. By Lemma 1.5.2, we only need to consider the case λ P SθzSpKq.
It follows from Hille-Yosida Theorem 1.2.1 that

p1� |λ|q}pλ� Aq�1} ¤ 1� |λ|
Re λ

¤ 1

Re λ
� 1

cos θ
¤ cos2 θ � 2K

2K cos θ

for λ P SθzSpKq.
If A : DpAq � X Ñ X is a linear operator of positive type, then we will denote

by Xα, for α P r0,8q (taking A0 :� I on X0 :� X when α � 0), the space DpAαq with

the norm

} � }Xα :� }Aα � }X

It is easily seen that the fractional power space Xα is a Banach space.

Lemma 1.5.13. If 0 ¤ α ¤ β, then Xβ is a dense subset of Xα and the identity map

Xβ Q x ÞÝÑ x P Xα is continuous.

Theorem 1.5.14. (Moment Inequality) Let A : DpAq � X Ñ X be a linear operator

of positive type. If α P r0,8q, then there exists a constant K ¡ 0 such that

}x}Xα ¤ K

2
pρα}x} � ρα�1}x}X1q, (1.19)

}x}Xα ¤ K}x}1�α
X }x}αX1 (1.20)

Theorem 1.5.15. If A : DpAq � H Ñ H is a positive definite self-adjoint operator

in a Hilbert space H, then the operator Aα : DpAαq � H Ñ H is positive definite

self-adjoint for each α ¡ 0.
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Chapter 2

Third order differential equation on

a time scale

As mentioned earlier, this chapter contains the main results of the thesis. The

results in the first four sections constitute an article entitled ‘Fractional powers ap-

proach of operators for abstract evolution equations of third order in time’ by my-

self and Flank D. M. Bezerra accepted for publication by the Journal of Differen-

tial Equations on 6 April, 2020. Its online version is already available in the link

https://doi.org/10.1016/j.jde.2020.04.020.

We consider, abusing notation, the following abstract linear evolution equation

of third order in time

B3
t u� Au � 0 (2.1)

with initial conditions given by

up0q � u0 P X 2
3 , Btup0q � u1 P X 1

3 , B2
t up0q � u2 P X, (2.2)

where X is a separable Hilbert space and A : DpAq � X Ñ X is a linear, closed,

densely defined, self-adjoint and positive definite operator. We wish to study the

fractional powers of Λ, the matricial operator obtained by rewriting (2.1)-(2.2) as a

first order abstract system. For this purpose we will consider the phase space

Y � X
2
3 �X

1
3 �X



which is a Banach space equipped with the norm given by

} � }2
Y � } � }2

X
2
3
� } � }2

X
1
3
� } � }2

X .

We can write the problem (2.1)-(2.2) as a Cauchy problem on Y , letting v � Btu,

w � B2
t u and u �

�
u
v
w

�
and the initial value problem

$'&
'%
du

dt
� Λu � 0, t ¡ 0

up0q � u0,

(2.3)

where the unbounded linear operator Λ : DpΛq � Y Ñ Y is defined by

DpΛq � DpAq �DpA 2
3 q �DpA 1

3 q, (2.4)

and

Λu �
�

0 �I 0
0 0 �I
A 0 0

� �
u
v
w

�
:�

�
�v
�w
Au

�
, @u �

�
u
v
w

�
P DpΛq. (2.5)

From now on, we denote

Y 1 � X1 �X
2
3 �X

1
3 ,

equipped with the norm

} � }2
Y 1 � } � }2

X1 � } � }2

X
2
3
� } � }2

X
1
3
.

In Section 2.1 we study the spectral properties of the operator Λ proving that

though the negative of Λ is not an infinitesimal generator of a strongly continuous

semigroup (see Lemma 2.1.3), it is possible to define its fractional powers Λα (Lemma

2.1.6). In Section 2.2 we study the spectral properties of the fractional powers Λα, for

0   α   1, what lead us to the main result of this chapter: �Λα generates a strongly

continuous semigroup on Y if and only if 0   α ¤ 3
4

and it generates strongly continuous

analytic semigroup on the open interval 0   α   3
4

(see Theorem 2.2.2). Section 2.3

is devoted to the study of the fractional differential equation obtained by the explicit

representation of Λα. In Section 2.4 we will be concerned with an approximation result

for the semigroups generated by �Λα on parameter 0   α ¤ 3
4

as α Õ 3
4
. Finally,

Section 2.5 provides, as an application, the well posedness of a strogly damped third

order equation in time.
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2.1 Spectral properties of the operator Λ

In this section we study the unbounded linear operator Λ, in the sense of the

theory of closed and densely defined operators.

Lemma 2.1.1. The linear operator Λ : DpΛq � Y Ñ Y is closed and densely defined.

Proof: Consider un �
�
un
vn
wn

�
P DpΛq with un Ñ u �

�
u
v
w

�
in Y as n Ñ 8, and

Λun Ñ ϕ in Y as nÑ 8, where ϕ �
�
ϕ1
ϕ2
ϕ3

�
, then

vn Ñ �ϕ1 in X
2
3 ãÑ X

1
3 as nÑ 8

and consequently, v � �ϕ1 P DpA 2
3 q. As well as, we have

wn Ñ �ϕ2 in X
1
3 ãÑ X as nÑ 8

and consequently, w � �ϕ2 P DpA 1
3 q. Finally, since A is a closed operator, we have

u P DpAq and Au � ϕ3; that is, u P DpΛq and Λu � ϕ.

Secondly, DpΛq � DpAq�DpA 2
3 q�DpA 1

3 q is dense in Y � X
2
3 �X 1

3 �X because

the inclusions Xα � Xβ are dense for α ¥ β ¥ 0, by Lemma 1.5.13.

In this subsection, we study spectral properties of the operator Λ.

Lemma 2.1.2. The resolvent set of �Λ is given by

ρp�Λq � tλ P C : λ3 P ρp�Aqu. (2.6)

Proof: Suppose that λ P C is such that λ3 P ρp�Aq. We claim that λ P ρp�Λq.
Indeed, since �Λ is a closed operator, we only need to show that

λIY � Λ : DpΛq � Y Ñ Y

is bijective. For injectivity consider u �
�
u
v
w

�
P DpΛq and pλIY � Λqu � 0, then�

����
λIX �IX 0

0 λIX �IX
A 0 λIX

�
����
�
����
u

v

w

�
���� �

�
����

0

0

0

�
���� .

It follows that

$'''''&
'''''%

λu� v � 0

λv � w � 0

Au� λw � 0.

(2.7)
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From (2.7) we have

pλ3IX � Aqu � 0. (2.8)

Since λ3 P ρp�Aq, we conclude that u � 0 and consequently u � 0. For surjectivity

given ϕ �
�
ϕ1
ϕ2
ϕ3

�
P Y we take u �

�
u
v
w

�
with

u � pλ3I � Aq�1pλ2ϕ1 � λϕ2 � ϕ3q
v � pλ3I � Aq�1pλ3ϕ1 � λ2ϕ2 � λϕ3q � ϕ1

w � pλ3I � Aq�1pλ4ϕ1 � λ3ϕ2 � λ2ϕ3q � λϕ1 � ϕ2

(2.9)

Note that u,v and w are well defined since λ3 P ρp�Aq. Moreover, u P DpAq, v P DpA 2
3 q

because ϕ1 P X 2
3 , w P DpA 1

3 q because ϕ2 P X 1
3 . Then we have u P DpΛq and

pλIY � Λqu � ϕ.

Now suppose that λ P ρp�Λq. If u P DpAq is such that pλ3IX � Aqu � 0, taking

u �
�

u
λu
λ2u

�
P DpΛq we have

pλIY � Λqu � 0. (2.10)

Since λ P ρp�Λq, it follows that u � 0 and consequently u � 0, which proves the

injectivity of λ3IX � A. Given f P X, consider ϕ �
�

0
0
f

�
P Y . By the surjectivity of

λIY � Λ there exists u �
�
u
v
w

�
P DpΛq such that

pλIY � Λqu � ϕ (2.11)

which gives pλ3IX � Aqu � f , and the proof is complete.

We shall show that it is possible to calculate explicitly the fractional power Λα

of the operator Λ for 0   α   1, and with this, we will consider the fractional approx-

imations of (2.3) given by$'&
'%
duα

dt
� Λαuα � 0, t ¡ 0, 0   α   1,

uαp0q � uα0 .

(2.12)

Here, Λα : DpΛαq � Y Ñ Y denotes the fractional power operator of Λ to be defined

by Λα � pΛ�αq�1, where Λ�α is given by the formula in (1.12) with domain DpΛαq
characterized by complex interpolation methods, see e.g. Amann [3] and Cholewa and

D lotko [15].

19



Lemma 2.1.3. The unbounded linear operator �Λ with Λ : DpΛq � Y Ñ Y defined in

(2.4)-(2.5) is not the infinitesimal generator of a strongly continuous semigroup on Y .

Proof: If �Λ generates a strongly continuous semigroup te�Λt : t ¥ 0u on Y , it follows

from Theorem 1.1.5 that there exist constants ω ¥ 0 and M ¥ 1 such that

}e�Λt}LpY q ¤Meωt for all 0 ¤ t   8. (2.13)

Moreover, from Theorem 1.2.2 we have

tλ P C : Reλ ¡ ωu � ρp�Λq (2.14)

where ρp�Λq denotes the resolvent set of the operator �Λ.

Let u �
�
u
v
w

�
be a nontrivial element of DpΛq. We shall consider the eigenvalue

problem for the operator �Λ
�Λu � λu.

A straightforward calculation implies

σpp�Λq � tλ P C : λ3 P σpp�Aqu.

Where σpp�Λq and σpp�Aq denote the point spectrum set of �Λ and �A, respectively.

Since σpp�Aq � t�µn : n P Nu with µn P σppAq for each n P N and µn Ñ 8 as nÑ 8,

we conclude that

σpp�Λq X tλ P C : Reλ ¡ ωu � H

This contradicts the equation (3.13) and therefore �Λ can not be the infinitesimal

generator of a strongly continuous semigroup on Y .

Remark 2.1.4. We note that �Λ is not a dissipative operator on Y , according to

(1.6). Indeed, if u is a non-trivial element in X1 and u �
�
u
0
�u

�
, then

〈�Λu,u〉Y �
〈�

0
�u
�Au

�
,
�
u
0
�u

�〉
Y
� xAu, uyX � }u}2

X
1
2
¡ 0.

Explicitly, this means that �Λ is not an infinitesimal generator of a strongly continuous

semigroup of contractions on Y . Nevertheless, the statement in lemma 2.1.3 is more

precise because it says that �Λ cannot be the infinitesimal generator of a strongly

continuous semigroup of any type on Y .
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Lemma 2.1.5. Let B : DpBq � E Ñ E be a linear operator of positive type. If

α P r0, 1s and λ ¥ 0, then BαpλIX �Bq�1 P LpXq and

}BαpλIX �Bq�1}LpEq ¤ K

p1� λq1�α (2.15)

for some K ¥ 1.

Proof: Here, K will denote a positive constant, not necessarily the same one. We

first observe that

BpλIE �Bq�1 � IE � λpλIE �Bq�1.

This and the fact that B is of positive type give

}BpλIE �Bq�1}LpEq ¤ 1� λ}pλIE �Bq�1}LpEq ¤ 1�K. (2.16)

Now, for x P E, from the inequality (1.20) we have

}BαpλIX �Bq�1x}E ¤ K}pλIE �Bq�1x}1�α
E }BpλIE �Bq�1x}αE

¤ K

p1� λq1�α

for some K ¥ 1. In the last inequality we use the fact that B is of positive type and

that }BpλIE �Bq�1x}αE is bounded by (2.16).

Lemma 2.1.6. The unbounded linear operator Λ defined in (2.4)-(2.5) is of positive

type K ¥ 1.

Proof: We have already seen in Lemma 2.1.1 that Λ is a closed and densely defined

operator. That r0,8q � ρp�Λq follows from (3.6). Finally, for λ ¥ 0 we have

pλI � Λq�1u � ϕ

If and only if

ϕ1 � pλ3I � Aq�1pλ2u� λv � wq
ϕ2 � pλ3I � Aq�1pλ3u� λ2v � λwq � u

ϕ3 � pλ3I � Aq�1pλ4u� λ3v � λ2wq � λu� v

(2.17)

In order to verify the equation (1.5.1) for Λ it is sufficient to show that for }u}Y ¤ 1

there exists a constant KΛ ¥ 1 such that

}ϕ1}X 2
3
� }ϕ2}X 1

3
� }ϕ3}X ¤ KΛ

1� λ
(2.18)
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Note that

}ϕ1}X 2
3

¤ λ2}pλ3I � Aq�1u}
X

2
3
� λ}A 1

3 pλ3I � Aq�1v}
X

1
3
� }A 2

3 pλ3I � Aq�1w}X
}ϕ2}X 1

3
¤ }A 2

3 pλ3I � Aq�1u}
X

2
3
� λ2}pλ3I � Aq�1v}

X
1
3
� λ}A 1

3 pλ3I � Aq�1w}X
}ϕ3}X ¤ λ}A 1

3 pλ3I � Aq�1u}
X

2
3
� }A 2

3 pλ3I � Aq�1v}
X

1
3
� λ2}pλ3I � Aq�1w}X .

Applying Lemma 2.1.5 we obtain a constant K ¥ 1 such that

}ϕ1}X 2
3
� }ϕ2}X 1

3
� }ϕ3}X ¤ λ2K

1� λ3
� λK

p1� λ3q 2
3

� K

p1� λ3q 1
3

¤ KΛ

1� λ
,

whereas KΛ ¥ 1 is sufficiently large.

Remark 2.1.7. Let S : DpSq � E Ñ E be a linear operator of positive type on some

Banach space E, if �S generates a strongly continuous semigroup of contractions on E,

then �Sα generates an analytic semigroup for α P p0, 1q, see Lemma 1.5.12 . However,

what can one say about �Sα if �S does not generate a strongly continuous semigroup?

In general if S is of positive type on E (see Definition 1.5.1) then �Sα generates a

strongly continuous analytic semigroup on E for 0   α ¤ 1
2
, see Remark 1.5.11.

2.2 Spectral properties of the fractional powers Λα

In this section we study spectral properties of the fractional powers operators Λα

for α P p0, 1q.

Theorem 2.2.1. If A and Λ are as in (2.4)-(2.5), respectively, then we have all the

following.

iq 0 P ρpΛq and

Λ�1 �
�

0 0 A�1

�I 0 0
0 �I 0

�
.

iiq Fractional powers Λα can be defined for α P p0, 1q through

Λα � sinαπ

π

» 8

0

λα�1ΛpλI � Λq�1dλ. (2.19)

iiiq Given any α P p0, 1q we have Λα : DpΛαq � Y Ñ Y is given by

Λα �

�
�� kα,0A

α
3 �kα,2Aα�1

3 kα,1A
α�2
3

�kα,1Aα�1
3 kα,0A

α
3 �kα,2Aα�1

3

kα,2A
α�2
3 �kα,1Aα�1

3 kα,0A
α
3

�
�� (2.20)
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where

DpΛαq � DpAα�2
3 q �DpAα�1

3 q �DpAα
3 q,

and

kα,j � 1

3

�
2 cos 2πpα�jq

3
� 1

	
, for j P t0, 1, 2u. (2.21)

Moreover, these coefficients satisfy the following properties

det

�
�� kα,0 �kα,2 kα,1

�kα,1 kα,0 �kα,2
kα,2 �kα,1 kα,0

�
�� � k3

α,0 � k3
α,1 � k3

α,2 � 3kα,0kα,1kα,2 � 1, (2.22)

kα,0 � kα,1 � kα,2 � 1, (2.23)

and $'''&
'''%
k2
α,0 � kα,1kα,2 � kα,0

k2
α,1 � kα,0kα,2 � kα,1

k2
α,2 � kα,0kα,1 � kα,2.

(2.24)

ivq Let α P p0, 1s. Then 0 P ρpΛαq and Λα has compact resolvent.

vq For each α P p0, 1s the spectrum of �Λα is such that the point spectrum consisting

of eigenvalues pµnqα3 eiπ : n P N
(Y !

pµnqα3 ei
πp3�2αq

3 : n P N
)
Y
!
pµnqα3 ei

πp3�2αq
3 : n P N

)
(2.25)

where tµnunPN denotes the ordered sequence of eigenvalues of A including their

multiplicity.

Proof: Part piq immediately follows from the definition of Λ.

Part piiq is a consequence of the fact that Λ is of positive type operator, see

Lemma 1.5.7.

For part piiiq note that given λ P C we have

λI � Λ �
�
λI �I 0
0 λI �I
A 0 λI

�
and

pλI � Λq�1 �
�

λ2pλ3I�Aq�1 λpλ3I�Aq�1 pλ3I�Aq�1

�Apλ3I�Aq�1 λ2pλ3I�Aq�1 λpλ3I�Aq�1

�λApλ3I�Aq�1 �Apλ3I�Aq�1 λ2pλ3I�Aq�1

�
, for all λ P ρp�Λq.

Consequently,

ΛpλI � Λq�1 �
�

Apλ3I�Aq�1 �λ2pλ3I�Aq�1 �λpλ3I�Aq�1

λApλ3I�Aq�1 Apλ3I�Aq�1 �λ2pλ3I�Aq�1

λ2Apλ3I�Aq�1 λApλ3I�Aq�1 Apλ3I�Aq�1

�
, for all λ P ρp�Λq.
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Now using (2.19), applying in each entry of the above matrix the fractional formula for

A

Aα � sinpαπq
π

» 8

0

λα�1ApλI � Aq�1dλ,

and after the change of variable µ � λ3 we obtain

sinpαπq
π

» 8

0

λα�1λjApλ3I � Aq�1dλ � p�1qj
3

�
2 cos 2pα�jqπ

3
� 1

	
A

α�j
3 (2.26)

where j P t0, 1, 2u. Hence

Λα �

�
����

kα,0A
α
3 �kα,2Aα�1

3 kα,1A
α�2
3

�kα,1Aα�1
3 kα,0A

α
3 �kα,2Aα�1

3

kα,2A
α�2
3 �kα,1Aα�1

3 kα,0A
α
3

�
���� (2.27)

where

kα,j � 1

3

�
2 cos 2πpα�jq

3
� 1

	
, for j P t0, 1, 2u (2.28)

Part pivq follows from the existence of bounded inverse operator Λ�α : Y Ñ Y

Λ�α �

�
����

kα,0A
�α

3 �kα,1A�α�1
3 kα,2A

�α�2
3

�kα,2A�α�1
3 kα,0A

�α
3 �kα,1A�α�1

3

kα,1A
�α�2

3 �kα,2A�α�1
3 kα,0A

�α
3 ,

�
����

which takes bounded subsets of Y � X
2
3 � X

1
3 � X into bounded subsets of Y α :�

X
α�2
3 �X α�1

3 �X α
3 , the latter space is compactly embedded in Y because the inclusions

Xβ � Xγ, β ¡ γ ¥ 0

are compact provided that A has compact resolvent.

Concerning part pvq observe that λ P C is an eigenvalue of �Λα if and only if

there exists a nontrivial solution of$'''''&
'''''%

�kα,0Aα
3 u� kα,2A

α�1
3 v � kα,1A

α�2
3 w � λu

kα,1A
α�1
3 u� kα,0A

α
3 v � kα,2A

α�1
3 w � λv

�kα,2Aα�2
3 u� kα,1A

α�2
3 v � kα,0A

α
3w � λw

which in turn holds, using (2.22) and (2.24), if and only if

λ3I�3λ2kα,0A
α
3 �3λkα,0A

2α
3 �Aα � �

λI � A
α
3

� �
λI � ei

πp3�2αq
3 A

α
3

	�
λI � ei

πp3�2αq
3 A

α
3
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is not injective, however it happens if and only if

λ P  pµnqα3 eiπ : n P N
(Y !

pµnqα3 ei
πp3�2αq

3 : n P N
)
Y
!
pµnqα3 ei

πp3�2αq
3 : n P N

)
.

where tµnunPN denotes the ordered sequence of eigenvalues of A including their multi-

plicity.

We include three figures that illustrate the position of the spectrum of �Λα in

the complex plane.

Repλq

Impλq

Semi-line containing the eigenvalues of Λ

µ
1
3
n e

iπ

µ
1
3
n e

i π
3

µ
1
3
n e

i 5π
3

Figure 2.1: Location of the eigenvalues for n � 3 and α � 1

Observe that for 3{4   α ¤ 1 the Figure 2.1 reflects, in particular, the ill-

posedness of the Cauchy problem (2.12) in the sense that �Λα does not generate a

strongly continuous semigroup on the state space Y . See Lemma 2.1.3.
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Repλq

Impλq

Semi-line containing the eigenvalues of Λ
3
4

µ
1
4
n e

iπ

µ
1
4
n e

i π
2

µ
1
4
n e

i 3π
2

Figure 2.2: Location of the eigenvalues for n � 3 and α � 3
4

For α � 3{4, the spectrum begins to reach a region where the generation of a

strongly continuous semigroup is possible.

Repλq

Impλq

Semi-line containing the eigenvalues of Λ
1
2

µ
1
6
n e

i 2π
3

µ
1
6
n e

iπ

µ
1
6
n e

i 4π
3

Figure 2.3: Location of the eigenvalues for n � 3 and α � 1
2

Finally, Figure 2.3 suggests the gain of the sectoriality property for Λα when

0   α   3{4. We are thus led to the following theorem, one of the main results in this

paper.

Theorem 2.2.2. The negative of the operator Λα in (2.12) is the generator of a strongly

continuous semigroup on Y if and only if α P �0, 3
4

�
. Moreover �Λα generates a strongly

continuous analytic semigroup on Y for α P �0, 3
4

�
.
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Proof:

Case I: α P p3
4
, 1q.

By the computation of the spectrum of �Λα in item (v) of Theorem 2.2.1, it

follows that

σpp�Λαq X tλ P C : Reλ ¡ ωu � H

for any ω ¥ 0. Thus, the necessary condition for the generation of a strongly continuous

semigroup is violated as in Lemma 2.1.3.

Case II: α � 3
4
.

In this case we show that �Λ 3
4 is dissipative and there is λ0 ¡ 0 such that the

range, Rpλ0I � Λ
3
4 q, of λ0I � Λ

3
4 is Y . Then the result follows from Lumer-Phillips

Theorem 1.2.5. Indeed for u �
�
u
v
w

�
P DpΛ 3

4 q � DpA 11
12 q �DpA 7

12 q �DpA 3
12 q we have

Re
〈
Λ

3
4 u,u

〉
Y

� Re

�〈
1

3
A

3
12u� 1

3
p1�

?
3qA� 1

12v � 1

3
p1�

?
3qA� 5

12w, u

〉
X

2
3

�
〈
�1

3
p1�

?
3qA 7

12u� 1

3
A

3
12v � 1

3
p1�

?
3qA� 1

12w, v

〉
X

1
3

�
〈

1

3
p1�

?
3qA 11

12u� 1

3
p1�

?
3qA 7

12v � 1

3
A

3
12w,w

〉
X




� 1

3

�
}A 19

24u}2
X � }A 11

24v}2
X � }A 3

24w}2
X

	
� 2

3
Re

�〈
A

11
24v,A

19
24u
〉
X
�
〈
A

19
24u,A

3
24w
〉
X
�
〈
A

11
24v,A

3
24w
〉
X

	
� 1

3
}A 19

24u� A
11
24v � A

3
24w}2

X ¥ 0.

Which gives the dissipativity of �Λ 3
4 . Now if we choose λ0 ¡ 0 such that }Λ� 3

4 }LpY q  
λ0, then λ0 P ρp�Λ� 3

4 q and

λ0Λ
� 3

4 pλ0I � Λ�
3
4 q�1pλ�1

0 I � Λ
3
4 q � I

This implies that pλ�1
0 I�Λ 3

4 q�1 � λ0Λ
� 3

4 pλ0I�Λ� 3
4 q�1, λ�1

0 P ρp�Λ 3
4 q and consequently

Rpλ�1
0 I � Λ

3
4 q � Y .

Case III: α P p0, 3
4
q.

Finally, by Lemma 1.5.8, Λ
3
4 is also of positive type and we can study Λα, for

0   α   3
4
, considering the fractional powers pΛ 3

4 qβ � Λ
3β
4 for 0   β   1. Since

�Λ 3
4 is the infinitesimal generator of a strongly continuous semigroup of contractions,

it follows from Lemma 1.5.12 that �Λ 3β
4 is the infinitesimal generator of an analytic
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semigroup for 0   β   1 or, in other words, �Λα is the infinitesimal generator of an

analytic semigroup for 0   α   3
4
.

Remark 2.2.3. Note that Λα having compact resolvent (see item (iv) of Theorem

2.2.1) implies the semigroups te�Λαt : 0   α ¤ 3{4u are compact.

2.3 Fractional partial differential equation

Using the results of Section 2.2, we can consider a fractional formulation of the

initial value problem in (2.1) and (2.2) as well as Bezerra, Carvalho, Cholewa, and

Nascimento [5] proposed for damped wave equations, and Bezerra, Carvalho, D lotko

and Nascimento [6] proposed for Schrödinger equations. This fractional formulation

and its well-posedness are established by our next theorem.

Theorem 2.3.1. Let 0   α   3{4. Then for every
� ϕ
ψ
ξ

�
P X 2

3 � X
2�α
3 � X

2�2α
3 the

problem

B3
t u� 3kα,0A

α
3 B2

t u� 3kα,0A
2α
3 Btu� Aαu � 0 (2.29)

with the initial conditions given by

up0q � ϕ, Btup0q � ψ, B2
t up0q � ξ, (2.30)

where kα,0 is given as in (2.21), has a unique solution in the class

Cpr0,8q, X 2
3 q X C1pp0,8q, X 2

3 q X Cpr0,8q, DpA 2�α
3 qq

Proof: This problem is equivalent to the first order system:

d

dt

�
u
v
w

�
� Λα

�
u
v
w

�
� 0, t ¡ 0, 0   α   3{4, (2.31)

subject to the initial conditions$''''''&
''''''%

up0q � ϕ P X 2
3

vp0q � 1

k3
α,1 � k3

α,0

�
kα,1pkα,2 � kα,0qA 1

3ϕ� pkα,2 � 3kα,0kα,1qA 1�α
3 ψ � kα,1A

1�2α
3 ξ

�
P X 1

3

wp0q � 1

k3
α,2 � k3

α,1

�
kα,2pkα,0 � kα,1qA 2

3ϕ� pkα,1 � 3kα,0kα,2qA 2�α
3 ψ � kα,2A

2�2α
3 ξ

�
P X
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Here, Λα : DpΛαq � Y Ñ Y is the fractional power operator of Λ given in (2.20). In

fact, we can see that (2.31) is equivalent to the system

$'''''&
'''''%

Btu� kα,0A
α
3 u� kα,2A

α�1
3 v � kα,1A

α�2
3 w � 0,

Btv � kα,1A
α�1
3 u� kα,0A

α
3 v � kα,2A

α�1
3 w � 0,

Btw � kα,2A
α�2
3 u� kα,1A

α�1
3 v � kα,0A

α
3w � 0,

(2.32)

and after some manipulations, we can obtain the partial differential equation (2.29)

with initial conditions given in (2.30). The result follows from the fact that �Λα

generates a strongly continuous analytic semigroup on Y for α P p0, 3
4
q, see Theorem

2.2.2.

Remark 2.3.2. As �Λα generates a strongly continuous analytic semigroup on Y for

α P p0, 3
4
q we have�

uptq
vptq
wptq

�
P DpΛαq � DpAα�2

3 q �DpAα�1
3 q �DpAα

3 q, for t ¡ 0 and 0   α   3
4
,

and consequently by system (2.32)

uptq P DpAα�2
3 q, Btuptq P DpA 2

3 q, B2
t uptq P DpA

2�α
3 q, for t ¡ 0 and 0   α   3

4
(2.33)

Remark 2.3.3 (Energy functional associated with perturbed problems). It is well

known from the theory of sectorial operators that the negative of a positive sectorial

operator generates an analytic semigroup of bounded linear operators that decays ex-

ponentially. Nevertheless, we would like to present an explicit formula for the energy

functional associated with perturbed problems. If we multiply (2.29) by A
2�α
3 Btu in the

sense of X, we get

d

dt

�
pB2
t u,A

2�α
3 BtuqX � 3kα,0

2
}A 1

3Btu}2
X �

1

2
}Aα�1

3 u}2
X

�
� }A 2�α

6 B2
t u}2� 3kα,0}Aα�2

6 Btu}2
X .

Multiplying (2.29) by A
2�2α

3 B2
t u in the sense of X, we obtain

d

dt

�
pAαu,A 2�2α

3 BtuqX�3kα,0
2

}A 1
3Btu}2

X�
1

2
}A 1�α

3 B2
t u}2

X

�
� }Aα�2

6 Btu}2�3kα,0}A 2�α
6 B2

t u}2
X .

Combining these equations we deduce that

d

dt

�
pB2
t u,A

2�α
3 BtuqX � pAαu,A 2�2α

3 BtuqX � 3kα,0}A 1
3Btu}2

X � 1

2
}A 1�α

3 B2
t u}2

X � 1

2
}Aα�1

3 u}2
X

�
� p1� 3kα,0q

�
}Aα�2

6 Btu}2
X � }A 2�α

6 B2
t u}2

X

	
.
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If we define the function Lα
�� u

Btu
B2t u

�	
by

Lα
�� u

Btu
B2t u

�	
� pB2

t u,A
2�α
3 BtuqX � pAαu,A 2�2α

3 BtuqX � 3kα,0}A 1
3Btu}2

X � 1

2
}A 1�α

3 B2
t u}2

X

� 1

2
}Aα�1

3 u}2
X

then the following differential equation is satisfied

d

dt
Lα

�� u
Btu
B2t u

�	
� p1� 3kα,0q

�
}Aα�2

6 Btu}2
X � }A 2�α

6 B2
t u}2

X

	
  0.

The last inequality follows from

1   2 cos 2πα
3
� 1 � 3kα,0, for any 0   α   3

4
.

thanks to (2.21).

What was said above leads to the consideration of Lα as an energy functional

associated with (2.29) defined on the domain

DpLαq � DpAα�2
3 q �DpA 2

3 q, �DpA 2�α
3 q, 0   α   3

4
(2.34)

2.4 Parabolic approximations

As we see in Theorem 2.2.2, �Λα generates a strongly continuous analytic semi-

group for 0   α   3
4

whereas �Λ 3
4 generates only a strongly continuous semigroup (Λ

3
4

can not be a sectorial operator due to the position of its spectrum on imaginary axis,

see Figure 2.2 and (2.25)). In this section we study, roughly speaking, the continuous

dependence of the semigroup generated by �Λα on parameter 0   α ¤ 3
4
.

Theorem 2.4.1. If A and Λ are as in (2.4)-(2.5), respectively, then we have all the

following.

iq For every u P Y we have

Λ�αu converges to Λ�
3
4 u in Y as αÕ 3

4
.

iiq For every u P DpΛ 3
4 q we have

Λαu converges to Λ
3
4 u in Y as αÕ 3

4
.
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Proof: For part iq note that

}Λ�αu� Λ�
3
4 u}Y � }Λ�αpI � Λα�

3
4 qu}Y ¤ }Λ�α}LpY q}pI � Λα�

3
4 qu}Y

The result follows from the uniform boundedness of }Λ�α}LpY q for 0 ¤ α ¤ 1, and the

convergence of Λ�βu to u in Y for 0 ¤ β ¤ 1 as β × 0, Lemma 1.5.4 items (iii) and (v),

respectively. Part iiq follows from the same argument above, since for each u P DpΛ 3
4 q

}Λαu� Λ
3
4 u}Y � }pΛα� 3

4 � IqΛ 3
4 u}Y .

Proposition 2.4.2. Let λ P C with Reλ ¥ 0 and α P p0, 3
4
q. For each u P Y we have

pλI � Λαq�1u converges to pλI � Λ
3
4 q�1u in Y, as α tends to 3{4.

Proof: Note first that for λ P C with Reλ ¥ 0 the following identity hold

pλI � Λαq�1 � pλI � Λ
3
4 q�1 � ΛαpλI � Λαq�1rΛ�α � Λ�

3
4 sΛ 3

4 pλI � Λ
3
4 q�1. (2.35)

Now, observe that the equality

ΛαpλI � Λαq�1 � I � λpλI � Λαq�1

with the fact that Λα is of positive type KΛ implies that

}ΛαpλI � Λαq�1}LpY q ¤ 1� |λ|}pλI � Λαq�1}LpY q ¤ 1�KΛ, for all α P p0, 1q. (2.36)

The result follows from the equations (2.35), (2.36) and the pointwise convergence of

Λ�α to Λ�
3
4 as α tends to 3{4 given in item iq of Theorem (2.4.1).

Theorem 2.4.3. Let te�Λαt : t ¥ 0u be the semigroups generated by �Λα, for 0   α ¤
3
4
. Then for every u P Y and t ¥ 0, e�Λ

αtu Ñ e�Λ
3
4 tu in Y as α Õ 3

4
. Moreover, the

convergence is uniform on bounded t-intervals.

Proof: The result is consequence of Proposition (2.4.2) and Pazy [36, Theorem 3.4.2].

Remark 2.4.4. If we consider α � 3
4

in equation (2.29) we obtain the initial value

problem

B3
t u� A

1
4B2
t u� A

1
2Btu� A

3
4u � 0, (2.37)
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with initial conditions given by

up0q � ϕ P X 2
3 , Btup0q � ψ P X 5

12 , B2
t up0q � ξ P X 1

6 . (2.38)

Then theorem 2.4.3 says that the problem (2.29) for 0   α   3
4

can be seen as parabolic

approximation of the problem (2.37) and if we denote A � A
3
4 then

B3
t u� A

1
3B2
t u� A

2
3Btu� Au � 0,

and by this we understand that the fractional term A 1
3B2
t u � A 2

3Btu provides a good

framework to equation

B3
t u� Au � 0,

in the sense of the existence and uniqueness of global solution.

Moreover, note that by (2.34) with α � 3
4
p3k 3

4
,0 � 1q an energy functional asso-

ciated with (2.37)-(2.38) is given by

L 3
4

�� u
Btu
B2t u

�	
� pB2

t u,A
5
12BtuqX � pA 3

4u,A
1
6BtuqX � }A 1

3Btu}2
X � 1

2
}A 1

12B2
t u}2

X

� 1

2
}A 7

12u}2
X

then the following differential equation is satisfied

d

dt
L 3

4

�� u
Btu
B2t u

�	
� p1� 3k 3

4
,0q
�
}A 11

24Btu}2
X � }A 5

24B2
t u}2

X

	
� 0. (2.39)

defined on the domain

D
�
L 3

4

	
� X

3
4 �X

11
24 �X

5
24 .

So (2.39) implies that for α � 3
4

the energy is conserved.

Remark 2.4.5. One of our motivations to consider the class of problems in (2.1)-

(2.2) are the initial-boundary value problems associated with Moore-Gibson-Thompson

equations, these equations arise from modeling high-frequency ultrasound wave, for de-

tails see Moore and Gibson [35] and Thompson [41]. More precisely, let Ω � RN be a

bounded domain with smooth (at least C2,α) boundary BΩ, the Moore-Gibson-Thompson

equations are evolution equations of third order in time of the type

τB3
t u� αB2

t u�∆u� β∆Btu � 0,

where τ ¥ 0 and α, β P R.

If we consider τ � 1 and α � β � 0, then thanks to results of the previous

sections we can set the “fractional Moore-Gibson-Thompson equations” associated with

the third order linear evolution equation on the time

B3
t u�∆u � 0, (2.40)
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subject to zero Dirichlet boundary condition and initial conditions$&
%upx, tq � 0, x P BΩ, t ¥ 0,

upx, 0q � u0pxq, Btupx, 0q � u1pxq, B2
t upx, 0q � u2pxq, x P BΩ.

(2.41)

If we consider X � L2pΩq and the negative Laplacian operator

ADu � �∆u,

with domain

DpADq � H2pΩq XH1
0 pΩq,

then AD is a linear, closed, densely defined, self-adjoint and positive definite operator.

There exists ζ ¡ 0 such that ReσpADq ¡ ζ, that is, Reλ ¡ ζ for all λ P σpAq, and

therefore, AD is a sectorial operator in the sense of Henry [25, Definition 1.3.1], with

the eigenvalues tνnunPN:

0   ν1 ¤ ν2 ¤ � � � ¤ νn ¤ . . . , νn Ñ �8 pas nÑ �8q.

This allows us to define the fractional power A�α
D of order α P p0, 1q according to

Amann [3, Formula 4.6.9] and Henry [25, Theorem 1.4.2], as a closed linear operator

on its domain DpA�α
D q with inverse AαD. Denote by Xα � DpAαDq for α P r0, 1q. The

fractional power space Xα endowed with graphic norm

} � }Xα :� }AαD � }X

is a Banach space; namely,

X1 � H2pΩq XH1
0 pΩq, X

1
2 � H1

0 pΩq, X0 � X � L2pΩq.

With this notation, we have X�α � pXαq1 for all α ¡ 0, see Amann [3] and

Triebel [42] for the characterization of the negative scale. In particular,

X 1 � pL2pΩqq1 � L2pΩq � X, X� 1
2 � pH1

0 pΩqq1 � H�1pΩq.

The scale of fractional power spaces tXαuαPR associated with AD safisty

Xα � H2αpΩq, α ¥ 0,

where H2αpΩq are the potential Bessel spaces, see Cholewa and D lotko [15]. From

Sobolev embedding theorem, we obtain

Xα � LrpΩq, for r ¤ 2N

N � 4α
, 0 ¤ α   N

4
,

X � L2pΩq,
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LspΩq � Xα, for s ¥ 2N

N � 4α
, �N

4
  α ¤ 0,

with continuous embeddings.

It is not difficult to show that AαD is the generator of a strongly continuous analytic

semigroup on X, that we will denote by te�tAαD : t ¥ 0u, see Krěın [31] and Tanabe

[40] for any α P r0, 1s.
We recall that the fractional powers of the negative Laplacian operator can to be

calculated through the spectral decomposition: since X � L2pΩq is a Hilbert space and

AD � �∆ with zero Dirichlet boundary condition in Ω is a self-adjoint operator and is

the infinitesimal generator of a C0-semigroup of contractions on X, it follows that there

exists an orthonormal basis composed by eigenfunctions tϕn, n ¥ 1u of AD. Let νn be

the eigenvalues of AD � �∆, then pναn , ϕnq are the eigenvalues and eigenfunctions of

AαD � p�∆qα, also with zero Dirichlet boundary condition, respectively.

It is well know that the fractional Laplacian AαD : DpAαDq � X Ñ X is well

defined in the space

DpAαDq � Xα �
!
u �

8̧

n�1

anϕn P L2pΩq :
8̧

n�1

a2
nν

2α
n   8

)
,

where

AαDu �
8̧

n�1

ναnanϕn, u P DpAαDq � Xα.

Finally, we apply all our results from previous sections to boundary value problem

(2.40)-(2.41) to obtain a track in α in which we can present a result of solubility and

passage to the limit at αÕ 3
4

for fractional problems associated with (2.40)-(2.41).

2.5 Strongly damped third order equation

In Section 2.3 we considered, for 0   α   3
4
, the problem

B3
t u� 3kα,0A

α
3 B2

t u� 3kα,0A
2α
3 Btu� Aαu � 0 (2.42)

and we obtained the well-posedness of this problem from the fact that �Λα generates

a strongly continuous analytic semigroup on Y for 0   α   3
4
. If we denote A � Aα,

then the equation (2.42) becomes

B3
t u� 3kα,0A

1
3B2
t u� 3kα,0A

2
3Btu� Au � 0 (2.43)

what led us to consider the following problem:

B3
t u� 3A

1
3B2
t u� 3A

2
3Btu� Au � 0 (2.44)
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with the initial conditions given by

up0q � ϕ P X 2
3 , Btup0q � ψ P X 1

3 , B2
t up0q � ξ P X, (2.45)

We understand that the fractional term A
1
3B2
t u�A

2
3Btu provides a good framework to

the equation

B3
t u� Au � 0,

in the sense of the gain not only of the existence and uniqueness of global solution but

also the sectorial property for the operator which represents this problem as we will

see in Theorem 2.5.2.

We would like to establish an important analogy that brings us to the case of the

wave equation. The second order differential equation in the space X
1
2 �X

Btu� 2ηAθBtu� Au � 0, for η ¡ 0 and θ P r1{2, 1s (2.46)

has been extensively studied by many authors, see for instance Carvalho and Cholewa

[10], Chen and Triggiani [12, 13]. In [12, 13] the authors prove the sectoriality of the

operators associated with (2.46), Λθ : DpΛθq � X
1
2 � X Ñ X

1
2 � X, for θ P r1{2, 1s,

where

Λθ �
�
�0 �I
A 2ηAθ

�
� . (2.47)

We believe that the study of the equation (2.44) can be seen as the first step to obtaining

for the third order equation a series of analogous results to the second-order case as in

[10, 12, 13]. To our best knowledge, there is no linear analysis, in the sense of geometric

theory of linear parabolic equation as in Henry [25], of Moore-Gibson-Thompson type

equations with fractional damping.

We consider the same phase space

Y � X
2
3 �X

1
3 �X

which is a Banach space equipped with the norm given by

} � }2
Y � } � }2

X
2
3
� } � }2

X
1
3
� } � }2

X .
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We can write the problem (2.44)-(2.45) as a Cauchy problem on Y , letting v � Btu,

w � B2
t u and u �

�
u
v
w

�
and the initial value problem

$'&
'%
du

dt
� Λu � 0, t ¡ 0

up0q � u0,

(2.48)

where u0 � pϕ, ψ, ξq and the unbounded linear operator Λ : DpΛq � Y Ñ Y is defined

by

DpΛq � DpAq �DpA 2
3 q �DpA 1

3 q, (2.49)

and

Λu �
�

0 �I 0
0 0 �I

A 3A
2
3 3A

1
3

� �
u
v
w

�
:�

�
�v
�w

Au�3A
2
3 v�3A

1
3w

�
, @u �

�
u
v
w

�
P DpΛq. (2.50)

In this section we study the resolution of the problem (2.44)-(2.45) and the spectral

properties of the linear operator Λ. As the main result, we show that Λ is a sectorial

operator. In this section, we denote

Y 1 � X1 �X
2
3 �X

1
3 .

Proposition 2.5.1. Let Λ be the unbounded linear operator defined in (2.49)-(2.50).

Then the following assumptions hold.

iq Λ is closed and densely defined;

iiq 0 P ρpΛq and

Λ�1 �
�

3A�
1
3 3A�

2
3 A�1

�I 0 0
0 �I 0

�

moreover, if A has compact resolvent, then Λ�1 is a compact operator on Y .

Proof: For piq note that the inclusion X1 �X
2
3 �X

1
3 � X

2
3 �X

1
3 �X is dense (the

inclusions Xα � Xβ are dense for α ¥ β ¥ 0). Secondly, we show that the operator

Λ is closed. Indeed, if un �
�
un
vn
wn

�
P DpΛq with un Ñ u �

�
u
v
w

�
in Y as n Ñ 8, and

Λun Ñ ϕ �
�
ϕ1
ϕ2
ϕ3

�
in Y as nÑ 8, then

vn Ñ �ϕ1 in X
2
3 as nÑ 8

and consequently, v � �ϕ1 P X 2
3 . As well as, we have

wn Ñ �ϕ2 in X
1
3 as nÑ 8
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and consequently, w � �ϕ2 P X 1
3 .

Next, we have

Apun � 3A� 1
3vn � 3A� 2

3wnq � Aun � 3A
2
3vn � 3A

1
3wn Ñ ϕ3 in X as nÑ 8,

and

X1 Q un � 3A� 1
3vn � 3A� 2

3wn Ñ u� 3A� 1
3v � 3A� 2

3w P X in X as nÑ 8,

and consequently, since A is a closed operator, we conclude u� 3A� 1
3v � 3A� 2

3w P X1

and Apu� 3A� 1
3v � 3A� 2

3wq � ϕ3. Therefore,
�
u
v
w

�
P DpΛq and Λ

�
u
v
w

�
�
�
ϕ1
ϕ2
ϕ3

�
.

Item piiq follows immediately from the definition of Λ�1 which takes bounded

subsets of Y into bounded subsets of Y 1, the latter space being compactly embedded

in Y .

Theorem 2.5.2. The unbounded linear operator Λ defined in (2.49)-(2.50) is a sectorial

operator.

Proof: In this proof, K will denote a positive constant, not necessarily the same one.

First, we note that the operator A
1
3 : DpA 1

3 q � X Ñ X is a positive sectorial operator;

that is, there exist φ P p0, π
2
q and M ¡ 0 such that the resolvent set ρpA 1

3 q contains the

sector

Σφ � tλ P C;φ ¤ |argpλq| ¤ πu

and for any λ P Σφ

}pλI � A
1
3 q�1}LpXq ¤ M

|λ| .

It follows that, for each n � 1, 2, 3, . . . , pλI � A
1
3 q�n is a bounded linear operator on

X and

}pλI � A
1
3 q�n}LpXq ¤ Mn

|λ|n , (2.51)

for any λ P Σφ. Moreover, for each λ P Σφ, we have the following identities

A
1
3 pλI � A

1
3 q�3 � �pλI � A

1
3 q�2 � λpλI � A

1
3 q�3,

and

A
2
3 pλI � A

1
3 q�3 � pλI � A

1
3 q�1 � 2λpλI � A

1
3 q�2 � λ2pλI � A

1
3 q�3.

Thus A
1
3 pλI � A

1
3 q�3 and A

2
3 pλI � A

1
3 q�3 are bounded linear operators on X, and

}A 1
3 pλI � A

1
3 q�3}LpXq ¤ M2

|λ|2 �
λM3

|λ|3 ¤ K

|λ|2 , (2.52)
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and

}A 2
3 pλI � A

1
3 q�3}LpXq ¤ M

|λ| �
2λM2

|λ|2 � λ2M3

|λ|3 ¤ K

|λ| . (2.53)

Now, we observe that Σφ � ρpΛq and for λ P ρpΛq, pλI � Λq�1 is given by

pλI � Λq�1 �
�
pλ2�3λA

1
3�3A

2
3 qpλI�A

1
3 q�3 p�λI�3A

1
3 qpλI�A

1
3 q�3 pλI�A

1
3 q�3

�ApλI�A
1
3 q�3 pλ2�3λA

1
3 qpλI�A

1
3 q�3 �λpλI�A

1
3 q�3

λApλI�A
1
3 q�3 p3λA

2
3�AqpλI�A

1
3 q�3 λ2pλI�A

1
3 q�3

�
.

Finally, we will prove that Λ is a sectorial operator using the same sector from the

sectoriality of the operator A
1
3 . If λ P Σφ and u �

�
u
v
w

�
P Y with }u}Y ¤ 1, then

writing

pλI � Λq�1u �
�
ϕ1
ϕ2
ϕ3

�
where

ϕ1 � pλ2 � 3λA
1
3 � 3A

2
3 qpλI � A

1
3 q�3u� p�λI � 3A

1
3 qpλI � A

1
3 q�3v � pλI � A

1
3 q�3w,

ϕ2 � �ApλI � A
1
3 q�3u� pλ2 � 3λA

1
3 qpλI � A

1
3 q�3v � λpλI � A

1
3 q�3w,

ϕ3 � λApλI � A
1
3 q�3u� p3λA 2

3 � AqpλI � A
1
3 q�3v � λ2pλI � A

1
3 q�3w.

In order to conclude the proof it is sufficient to show that

���� ϕ1
ϕ2
ϕ3

����
Y
¤ K

|λ| .

for some K ¡ 0. Note that

}ϕ1}X 2
3
¤ }λ2pλI � A

1
3 q�3u}

X
2
3
� }3λA 1

3 pλI � A
1
3 q�3u}

X
2
3
� }3A 2

3 pλI � A
1
3 q�3u}

X
2
3

� }λA 1
3 pλI � A

1
3 q�3v}

X
1
3
� }3A 2

3 pλI � A
1
3 q�3v}

X
1
3
� }A 2

3 pλI � A
1
3 q�3w}X ,

this with (2.51), (2.52) and (2.53) implies that

}ϕ1}X 2
3
¤ K

|λ| .

Note that

}ϕ2}X 1
3
¤ }A 2

3 pλI � A
1
3 q�3u}

X
2
3
� }λ2pλI � A

1
3 q�3v}

X
1
3

� }3λA 1
3 pλI � A

1
3 q�3v}

X
1
3
� }λA 1

3 pλI � A
1
3 q�3w}X ,

and

}ϕ3}X ¤ }λA 1
3 pλI � A

1
3 q�3u}

X
2
3
� }3λA 1

3 pλI � A
1
3 q�3v}

X
1
3

� }A 2
3 pλI � A

1
3 q�3v}

X
1
3
� }λ2pλI � A

1
3 q�3w}X ,
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From (2.51), (2.52) and (2.53) again we have

}ϕ2}X 1
3
¤ K

|λ| .

and

}ϕ3}X ¤ K

|λ| .

Therefore,

}ϕ1}X 2
3
� }ϕ2}X 1

3
� }ϕ3}X ¤ K

|λ| .

As a consequence of this last result, we have

Corollary 2.5.3. The unbounded linear operator Λ defined in (2.49)-(2.50) is such

that �Λ is the infinitesimal generator of an analytic semigroup on Y .

Proof: Follows immediately from Theorem 1.3.3.
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Chapter 3

Future research directions

The aim of this chapter is to stablish partial results and indicate future research

directions based on the study of the previous chapter.

3.1 Nth order differential equation on a time scale

It is natural to try to generalize the problem (2.1)-(2.2) considering for n ¥ 2 the

following abstract evolution equation of n-th order in time, abusing notation

Bnt u� Au � 0 (3.1)

with initial conditions given by

up0q � u0 P X n�1
n , Btup0q � u1 P X n�2

n , B2
t up0q � u2 P X n�3

n , . . . , Bn�1
t up0q � un�1 P X,

that is,

Bitup0q � ui P X
n�pi�1q

n , i P t0, 1, . . . , n� 1u, (3.2)

where A : DpAq � X Ñ X is the linear operator as in Chapter 2.

The idea is to consider analogous results obtained to the case of third order.

When considering this problem, we are faced with several difficulties produced by the

order of the equation. We managed to get some partial results: We prove that the

operator associated with the equation (3.1) is of positive type and we compute its

fractional powers. For n ¥ 3, we show that the problem given by (3.1) and (3.2) is



ill-posed. Finally, we conjecture one result of generation of semigroup for the negative

of the fractional power of the operator associated with (3.1) and (3.2).

We will rewrite (3.1)-(3.2) as a first order abstract system. Consider the phase

space

Y � X
n�1
n �X

n�2
n �X

n�3
n � � � � �X

which is a Banach space equipped with the norm given by

} � }2
Y � } � }2

X
n�1
n
� } � }2

X
n�2
n
� } � }2

X
n�3
n
� � � � � } � }2

X .

We can write the problem (3.1)-(3.2) as a Cauchy problem on Y , letting v1 � u,

v2 � Btu, v3 � B2
t u, . . . , vn � Bn�1

t u and

u �
�
� v1

v2
v3
...
vn

�
�

and the initial value problem $'&
'%
du

dt
� Λu � 0, t ¡ 0

up0q � u0,

(3.3)

where the unbounded linear operator Λ : DpΛq � Y Ñ Y is defined by

DpΛq � DpAq �DpAn�1
n q �DpAn�2

n q � � � � �DpA 1
n q, (3.4)

equipped with the norm given by

} � }2 � } � }2
X1 � } � }2

X
n�1
n
� } � }2

X
n�2
n
� � � � � } � }2

X
1
n
.

and

Λu �

�
��

0 �I 0 ��� 0 0
0 0 �I ��� 0 0
0 0 0 ��� 0 0
...

...
...
. . .

...
...

0 0 0 ��� 0 �I
A 0 0 ��� 0 0

�
��
�
�

v1
v2
v3
...

vn�1
vn

�
� :�

�
��

�v2
�v3
�v4
...

�vn
Av1

�
��, @u �

�
� v1

v2
v3
...
vn

�
� P DpΛq. (3.5)

From now on, we denote

Y 1 � DpΛq � X1 �X
n�1
n �X

n�2
n � � � � �X

1
n ,

equipped with the norm

} � }2
Y 1 � } � }2

X1 � } � }2

X
n�1
n
� } � }2

X
n�2
n
� � � � � } � }2

X
1
n
.
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In the following we prove that though the negative of Λ is not an infinitesimal

generator of a strongly continuous semigroup for n ¥ 3, it is possible to define its

fractional powers Λα, for 0   α   1, and one can ask what is the maximum subinterval

of p0, 1q where α is taken such that the negative of Λα is a generator. We conjecture that

�Λα generates a strongly continuous semigroup on Y if and only if 0   α ¤ n
2pn�1q

and it

generates strongly continuous analytic semigroup on the open interval 0   α   n
2pn�1q

.

Note that this agrees with the case of the wave operator, n � 2, and the case n � 3

studied in the last chapter.

Currently, this section is contained in a preprint by myself and Flank D. M.

Bezerra and this manuscript will be submitted for publication soon.

3.1.1 Spectral properties of the operator Λ for nth order equa-

tion

In this section, we study spectral properties of the operator Λ.

Lemma 3.1.1. The resolvent set of �Λ is given by

ρp�Λq � tλ P C : λn P ρp�Aqu. (3.6)

Proof: Suppose that λ P C is such that λn P ρp�Aq. We claim that λ P ρp�Λq.
Indeed, since �Λ is a closed operator, we only need to show that

λIY � Λ : DpΛq � Y Ñ Y

is bijective. For injectivity consider u �
�
u1
u2
...
un

�
P DpΛq and pλIY � Λqu � 0, then

$'&
'%
λui � ui�1 � 0, for 1 ¤ i ¤ n� 1

Au1 � λun � 0.

(3.7)

From (3.7) we have

pλnIX � Aqu1 � 0. (3.8)

Since λn P ρp�Aq, we conclude that u1 � 0 and consequently u � 0. For surjectivity

given ϕ �
� ϕ1
ϕ2

...
ϕn

�
P Y we take u �

�
u1
u2
...
un

�
with

ui � pλnIX � Aq�1

�
ņ

j�1

λn�i�j�1ϕj

�
�

i�1̧

j�1

λi�j�1ϕj (3.9)
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for 1 ¤ i ¤ n. Note that, for 1 ¤ i ¤ n, ui is well defined since λn P ρp�Aq. Moreover,

ui P DpAn�i�1
n q. Then we have u P DpΛq and

pλIY � Λqu � ϕ.

Now suppose that λ P ρp�Λq. If u1 P DpAq is such that pλnIX � Aqu1 � 0, taking

u �
� u

λu1
...

λn�1u1

�
P DpΛq we have

pλIY � Λqu � 0. (3.10)

Since λ P ρp�Λq, it follows that u � 0 and consequently u1 � 0, which proves the

injectivity of λnIX � A. Given f P X, consider ϕ �
�

0
0
f

�
P Y . By the surjectivity of

λIY � Λ there exists u �
�
u1
u2
...
un

�
P DpΛq such that

pλIY � Λqu � ϕ (3.11)

which gives

pλnIX � Aqu1 � f

and the proof is complete.

Lemma 3.1.2. If n ¥ 3, then the unbounded linear operator �Λ with Λ : DpΛq �
Y Ñ Y defined in (3.4)-(3.5) is not the infinitesimal generator of a strongly continuous

semigroup on Y .

Proof: If �Λ generates a strongly continuous semigroup te�Λt : t ¥ 0u on Y , it follows

from Theorem 1.1.5 that there exist constants ω ¥ 0 and M ¥ 1 such that

}e�Λt}LpY q ¤Meωt for all 0 ¤ t   8. (3.12)

Moreover, from Theorem 1.2.2 we have

tλ P C : Reλ ¡ ωu � ρp�Λq (3.13)

where ρp�Λq denotes the resolvent set of the operator �Λ.

Let u be a nontrivial element of DpΛq. We shall consider the eigenvalue problem

for the operator �Λ
�Λu � λu.
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A straightforward calculation implies

σpp�Λq � tλ P C : λn P σpp�Aqu.

Where σpp�Λq and σpp�Aq denote the point spectrum set of �Λ and �A, respectively.

Since σpp�Aq � t�µj : j P Nu with µj P σppAq for each j P N and µj Ñ 8 as j Ñ 8,

we conclude that

σpp�Λq X tλ P C : Reλ ¡ ωu � H

This contradicts the equation (3.13) and therefore �Λ can not be the infinitesimal

generator of a strongly continuous semigroup on Y .

Remark 3.1.3. We note that if n ¥ 3, then �Λ is not a dissipative operator on Y .

Indeed, if u is a non-trivial element in X1 and

u �
�
�

u
0
0
...
0
�u

�
�

then

〈�Λu,u〉Y �
〈���

0
0
0
...
�u
�Au

�
�� ,

�
�

u
0
0
...
0
�u

�
�〉

Y

� xAu, uyX � }u}2

X
1
2
¡ 0.

Explicitly, this means that �Λ is not an infinitesimal generator of a strongly continuous

semigroup of contractions on Y . Nevertheless, the statement in Lemma 3.1.2 is more

precise because it says that �Λ cannot be the infinitesimal generator of a strongly

continuous semigroup of any type on Y .

Lemma 3.1.4. The unbounded linear operator Λ defined in (3.4)-(3.5) is of positive

type K ¥ 1.

Proof: Firstly, we show that the operator Λ is closed. Indeed, if uj �
�
�

u1,j
u2,j
u3,j
...

un,j

�
� P DpΛq

with uj Ñ u �
�
� u1

u2
u3
...
un

�
� in Y as j Ñ 8, and Λuj Ñ ϕ in Y as j Ñ 8, where ϕ �

�
� ϕ1

ϕ2
ϕ3

...
ϕn

�
�,

then $'&
'%
ui,j Ñ �ϕi�1 in X

n�i�1
n ãÑ X

n�i
n as j Ñ 8, for 2 ¤ i ¤ n

Au1,j Ñ ϕn in X as j Ñ 8

and consequently, ui � �ϕi�1 P X n�i�1
n , for 2 ¤ i ¤ n. Finally, using the fact that A

is a closed operator, we have u1 P DpAq and Au1 � ϕn; that is, u P DpΛq and Λu � ϕ.
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Secondly, DpΛq � DpAq � DpAn�1
n q � DpAn�2

n q � � � � � DpA 1
n q is dense in Y �

X
n�1
n �X n�2

n �X n�3
n � � � � �X since the inclusions Xα � Xβ are dense for α ¡ β ¥ 0.

Finally, since the operator Λ is closed, λ P ρp�Λq if and only if the operator λI�Λ

is bijective. From Lemma 3.1.1 it follows easily that r0,8q � ρp�Λq. For u �
�
� u1

u2
u3
...
un

�
�,

ϕ �
�
� ϕ1

ϕ2
ϕ3

...
ϕn

�
� in Y and any λ ¥ 0 we have

pλI � Λq�1u � ϕ.

If and only if

ϕi � pλnIX � Aq�1

�
ņ

j�1

λn�i�j�1uj

�
�

i�1̧

j�1

λi�j�1uj (3.14)

for 1 ¤ i ¤ n. Note that, for 1 ¤ i ¤ n, ϕi is well defined since λn P ρp�Aq. Moreover,

ϕi P DpAn�i�1
n q. In order to verify the equation (1.8) for Λ, it is sufficient to show that

for }u}Y ¤ 1 there exists a constant KΛ ¥ 1 such that

}ϕ1}
X
n�1
n
� }ϕ2}

X
n�2
n
� }ϕ3}

X
n�3
n
� � � � � }ϕn}X ¤ KΛ

1� λ
(3.15)

Note that, for 1 ¤ i ¤ n, we have

}ϕi}
X
n�i
n
¤

i̧

j�1

λi�j}A j
n pλnI � Aq�1uj}

X
n�j
n
�

ņ

j�i

λn�j�i�1}A j�i
n pλnI � Aq�1uj}

X
n�j
n

(3.16)

Applying Lemma 2.1.5 we obtain a constant K ¥ 1 such that

ņ

i�1

}ϕi}
X
n�i
n
¤

ņ

i�1

λn�iK

p1� λnqn�i�1
n

¤ KΛ

1� λ
,

whereas KΛ ¥ 1 is sufficiently large.

3.1.2 Spectral properties of the fractional power operators Λα

for nth order equation

In this subsection we study spectral properties of the fractional power operators

Λα for α P p0, 1q.

Theorem 3.1.5. If A and Λ are as in (3.4)-(3.5), respectively, then we have all the

following.
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iq 0 P ρpΛq and

Λ�1 �

�
��

0 0 0 ��� 0 A�1

�I 0 0 ��� 0 0
0 �I 0 ��� 0 0
...

...
...
. . .

...
...

0 0 0 ��� 0 0
0 0 0 ��� �I 0

�
�� .

iiq Fractional powers Λα can be defined for α P p0, 1q by

Λα � sinpαπq
π

» 8

0

λα�1ΛpλI � Λq�1dλ, (3.17)

iiiq Given any α P p0, 1q we have that Λα : DpΛαq � Y Ñ Y , where

DpΛαq � DpAα�n�1
n q �DpAα�n�2

n q �DpAα�n�3
n q � � � � �DpAα

n q,

is given by

Λα �
�p�1qi�j

n
Un�1

�
cos

�pα � i� jqπ
n




A

α�i�j
n

�
ij

(3.18)

where Unpxq is the n-th Chebyshev polynomial of second kind, see Appendix A.

Proof: Part piq immediately follows from the definition of Λ. Part piiq is a consequence

of the fact that Λ is of positive type operator, see Lemma 1.5.7. Concerning part piiiq
note that

ΛpλI � Λq�1 �

$'&
'%
rApλnI � Aq�1λi�jIsij , if i ¥ j

r�ApλnI � Aq�1λn�i�jA�1sij , if i   j

. (3.19)

Now we apply in each entry the fractional formula for A

Aα � sinpαπq
π

» 8

0

λα�1ApλI � Aq�1dλ,

and after the change of variable µ � λn and using the property (A.1), we obtain for

i ¥ j

ApλnI � Aq�1λi�jI � p�1qi�j
n

Un�1

�
cos

�pα � i� jqπ
n




A

α�i�j
n (3.20)

and for i   j, we have

�ApλnI � Aq�1λn�i�jA�1 � p�1qn�i�j�1

n
Un�1

�
cos

�pα � n� i� jqπ
n




A

α�n�i�j
n

�1.

(3.21)

In the last equation we use the property (A.3), which leads to (3.18).

46



Remark 3.1.6. Analyzing what occurred in the case n � 3 in Theorem 3.1.5 pvq, one

may conjecture that for each α P p0, 1s the spectrum of �Λα is such that the point

spectrum consists of eigenvalues

tn�1
2

u¤
k�0

�!
pµjqαn ei

πpn�pn�2k�1qαq
n : j P N

)
Y
!
pµjqαn ei

πpn�pn�2k�1qαq
n : j P N

)	
(3.22)

where tµjujPN denotes the ordered sequence of eigenvalues of A including their multi-

plicity and txu :� maxtz P Z | z ¤ xu.

We include four figures that illustrate the position of the spectrum of �Λα in the

complex plane.

Repλq

Impλq

Semi-line containing the eigenvalues of Λ

µ
1
4
j e

i 3π
4 µ

1
4
j e

i π
4

µ
1
4
j e

i 5π
4 µ

1
4
j e

i 7π
4

Figure 3.1: Location of the eigenvalues for n � 4 and α � 1

Repλq

Impλq

Semi-line containing the eigenvalues of Λ
2
3

µ
1
6
j e

i 5π
6

µ
1
6
j e

i π
2

µ
1
6
j e

i 7π
6

µ
1
6
j e

i 3π
2

Figure 3.2: Location of the eigenvalues for n � 4 and α � 2
3
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Repλq

Impλq

Semi-line containing the eigenvalues of Λ

µ
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5
j e
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j e
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5
j e
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j e
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5
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j e

i 9π
5

Figure 3.3: Location of the eigenvalues for n � 5 and α � 1
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j e
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µ
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j e

iπ

µ
1
8
j e
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4 µ

1
8
j e
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2

Figure 3.4: Location of the eigenvalues for n � 5 and α � 5
8

Observe that for α � 1 Figure 3.1 and Figure 3.3 reflect, in particular, the ill-

posedness of the Cauchy problem (3.1) in the sense that �Λα does not generate a

strongly continuous semigroup on the state space Y . See Lemma 3.1.2. For n � 4;α �
2{3 and n � 5;α � 5{8, Figure 3.2 and Figure 3.4 show that the spectrum of �Λα

begins to reach a region where the generation of a strongly continuous semigroup is

possible. We are thus led to the following conjecture

Conjectura 3.1.7. The negative of the operator Λα in (2.12) is the generator of a

strongly continuous semigroup on Y if and only if α P
�

0, n
2pn�1q

�
. Moreover �Λα

generates a strongly continuous analytic semigroup on Y for α P
�

0, n
2pn�1q

	
.
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For α P
�

n
2pn�1q

, 1
	

, the computation of the spectrum of �Λα in remark 3.1.6

gives

σpp�Λαq X tλ P C : Reλ ¡ ωu � H

for any ω ¥ 0. Thus, the necessary condition for the generation of a strongly continuous

semigroup is violated as in Lemma 3.1.2.

when α � n
2pn�1q

our idea is to show that �Λ n
2pn�1q is dissipative and there is

λ0 ¡ 0 such that the range, Rpλ0I � Λ
n

2pn�1q q, of λ0I � Λ
n

2pn�1q is Y . Then the result

would follow from Lumer-Phillips Theorem 1.2.5.

For α P
�

0, n
2pn�1q

	
we can obtain the sectorial property of �Λα by the same

argument as in the case n � 3. Indeed, Λ
n

2pn�1q is also of positive type K ¥ 1 and we

can consider their fractional powers. Therefore we can study Λα, for 0   α   n
2pn�1q

,

considering the fractional powers pΛ n
2pn�1q qβ � Λ

βn
2pn�1q for 0   β   1. Since �Λ n

2pn�1q is

the infinitesimal generator of a strongly continuous contraction semigroup, it follows

from Lemma 1.5.12 that �Λ βn
2pn�1q is the infinitesimal generator of an analytic semigroup

for 0   β   1 or, in other words, �Λα is the infinitesimal generator of an analytic

semigroup for 0   α   n
2pn�1q

.

3.2 Fractional powers of operators approach to Euler-

Rodrigues formula for three-dimensional rota-

tion

In this section, we review the Euler-Rodrigues formula for three-dimensional ro-

tation with fractional powers of operators approach. The Euler-Rodrigues formula

describes the rotation of a vector in three dimensions, it was first discovered by Euler

[20] and later rediscovered independently by Rodrigues [39] and it is related a number

of interesting problems in computer graphics, dynamics, kinematics, mathematics, and

robotics, see Cheng and Gupta [14] and references therein.

Reviews of the Euler-Rodrigues formula in different mathematical forms can be

found in the literature, see e.g., Dai [18], Kahvećı, Yayli and Gök [29] and Mebius

[34]. Here, we explored the geometric aspect of the classical Balakrishnan formula in

[4] to obtain a new algorithm for the generation of three-dimensional rotation matrix.
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The idea of exploring the geometry of the spectral behavior of the fractional powers

of operators has been explored in recent years in the infinite-dimensional dynamical

systems, see e.g., Bezerra et al. [7, 5, 6] and Cholewa and Carvalho [10].

Currently, this section is contained in a paper entitled ‘Fractional powers of op-

erators approach to Euler-Rodrigues formula for three-dimensional rotation’ by myself

and Flank D. M. Bezerra and this manuscript is submitted for publication.

Here, the matricial representations of linear operators on R3 are considered using

the standard basis of R3, and n̂ � pn1, n2, n3q denotes a vector in R3 with n2
1�n2

2�n2
3 �

1.

Lemma 3.2.1. The matrix which represents the rotation by an angle π{2 about the

axis n̂ � pn1, n2, n3q is given by

Apn̂, π{2q �

�
�� n2

1 n1n2 � n3 n1n3 � n2

n1n2 � n3 n2
2 n2n3 � n1

n1n3 � n2 n2n3 � n1 n2
3

�
�� . (3.23)

Proof: Choose two vectors, l̂ and m̂, such that t̂l, m̂, n̂u is a right-handed orthonormal

basis. Let u � âl � bm̂ � cn̂, with a, b, c P R, be any vector to be rotated by an angle

π{2 counterclockwise about the axis n̂. The resulting vector u1 is the vector u with its

component in the l̂, m̂ plane rotated by π{2

u1 � �b̂l� am̂� cn̂

� n̂� u� xu, n̂yn̂.

Consider the standard basis tê1, ê2, ê3u of R3. If u is written as

u � u1ê1 � u2ê2 � u3ê3,

then

u1 � n̂� u� xu, n̂yn̂
� pn2u3 � n3u2 � u1n

2
1 � u2n1n2 � u3n1n3qê1 �

pn3u1 � n1u3 � u1n1n2 � u2n
2
2 � u3n2n3qê2 �

pn1u2 � n2u1 � u1n1n3 � u2n2n3 � u3n
2
3qê3.
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Therefore, the matrix representation of this rotation is

Apn̂, π{2q �

�
����

n2
1 n1n2 � n3 n1n3 � n2

n1n2 � n3 n2
2 n2n3 � n1

n1n3 � n2 n2n3 � n1 n2
3

�
���� .�

Remark 3.2.2. Thanks to the characterization (3.23) of the matrix which represents

the rotation by an angle π{2 about the axis n̂ � pn1, n2, n3q we can obtain a matrix

characterization of the linear semigroup generated by Apn̂, π{2q, namely the uniformly

continuous semigroup of bounded linear operators generated by Apn̂, π{2q, denoted by

T ptq, has the following explicit representation

T ptq � etApn̂,π{2q �
8̧

n�0

ptApn̂, π{2qqn
n!

�

�

�
�� n2

1pet � cos tq � cos t n1n2pet � cos tq � n3 sin t n1n3pet � cos tq � n2 sin t

n1n2pet � cos tq � n3 sin t n2
2pet � cos tq � cos t n2n3pet � cos tq � n1 sin t

n1n3pet � cos tq � n2 sin t n2n3pet � cos tq � n1 sin t n2
3pet � cos tq � cos t

�
��

for any t ¥ 0.

Remark 3.2.3. An explicit formula for the matrix elements of a general 3�3 rotation

matrix can be find in Rodrigues [39]; namely, if Rpn̂, θq denotes the a rotation by an

angle θ about an axis n̂ � pn1, n2, n3q pn2
1 � n2

2 � n2
3 � 1q, whose elements are denoted

by Rijpn̂, θq, then we have the Rodrigues formula

Rijpn̂, θq � cospθqδij � p1� cospθqqninj � sinpθqεijknk, (3.24)

where δij denotes the Kronecker delta, i.e.,

δij �
$&
%1, if i � j,

0, if i � j,

and εijk denotes the Levi-Civita tensor, i.e.,

εijk �

$'''&
'''%

1, if pi, j, kq P tp1, 2, 3q, p2, 3, 1q, p3, 1, 2qu,
�1, if pi, j, kq P tp3, 2, 1q, p1, 3, 2q, p2, 1, 3qu,
0, if i � j, or j � k, or k � i,

which is called the angle-and-axis parameterization of the three-dimensional rotation

matrix.

We wish to derive all the rotations by any angle θ P R through the rotation by π{2
and its fractional powers. In order to get this result we first explicit, in the following

theorem, the fractional power, for 0 ¤ α ¤ 1, of the rotation Apn̂, π{2q in Lemma 3.2.1.

It is one of the main results of this section.
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Theorem 3.2.4. For 0 ¤ α ¤ 1, the fractional power of the rotation Apn̂, π{2q in

Lemma 3.2.1 is given by

Aαpn̂, π{2q ��
�� n2

1p1� cos απ
2
q � cos απ

2
n1n2p1� cos απ

2
q � n3 sin απ

2
n1n3p1� cos απ

2
qq � n2 sin απ

2

n1n2p1� cos απ
2
q � n3 sin απ

2
n2

2p1� cosαπ
2
q � cosαπ

2
n2n3p1� cosαπ

2
q � n1 sin απ

2

n1n3p1� cosαπ
2
q � n2 sin απ

2
n2n3p1� cos απ

2
q � n1 sin απ

2
n2

3p1� cosαπ
2
q � cos απ

2

�
�� .

Proof: The proof consists in the explicit calculation of the fractional power of the

operator Apn̂, π{2q through the formula (1.16) for 0   α   1.

Apn̂, π{2qα � sinαπ

π

» 8

0

λα�1Apn̂, π{2qpλI � Apn̂, π{2qq�1dλ, 0   α   1. (3.25)

Simple computations give

pλI � Apn̂, π{2qq�1 �

� 1

pλ� 1qpλ2 � 1q

�
����
a2p1� λq � λp1� λq abp1� λq � cp1� λq acp1� λq � bp1� λq
abp1� λq � cp1� λq b2p1� λq � λp1� λq bcp1� λq � ap1� λq
acp1� λq � bp1� λq bcp1� λq � ap1� λq c2p1� λq � λp1� λq

�
����

and

Apn̂, π{2qpλI � Apn̂, π{2qq�1 �

1

pλ� 1qpλ2 � 1q

�
����

a2λpλ� 1q � 1� λ abλpλ� 1q � cλp1� λq acλpλ� 1q � bλp1� λq
abλpλ� 1q � cλp1� λq b2λpλ� 1q � 1� λ bcλpλ� 1q � aλp1� λq
acλpλ� 1q � bλp1� λq bcλpλ� 1q � aλp1� λq c2λpλ� 1q � 1� λ

�
���� .

Since

λpλ� 1q
pλ� 1qpλ2 � 1q � 1

λ� 1
� 1

λ2 � 1

λ� 1

pλ� 1qpλ2 � 1q � 1

λ2 � 1

λpλ� 1q
pλ� 1qpλ2 � 1q � λ

λ2 � 1

computing the formula in the right-hand side of the equation (3.25) for each entry of
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the matrix Apn̂, π{2qpλI�Apn̂, π{2qq�1 and applying (1.16) for real numbers we obtain

Aαpn̂, π{2q ��
����

n2
1p1� cos απ

2
q � cos απ

2
n1n2p1� cos απ

2
q � n3 sin απ

2
n1n3p1� cos απ

2
qq � n2 sin απ

2

n1n2p1� cos απ
2
q � n3 sin απ

2
n2

2p1� cosαπ
2
q � cosαπ

2
n2n3p1� cosαπ

2
q � n1 sin απ

2

n1n3p1� cosαπ
2
q � n2 sin απ

2
n2n3p1� cos απ

2
q � n1 sin απ

2
n2

3p1� cosαπ
2
q � cos απ

2

�
���� .

Finally, the cases α � 0 and α � 1 are immediate, and the proof is complete. �

Corollary 3.2.5. The fractional power Aαpn̂, π{2q coincides with the matrix Rpn̂, απ
2
q �

rRijpn̂, απ2 qs, where Rijpn̂, απ2 q is given by (3.24), for 0 ¤ α ¤ 1.

We are now in a position to give our definition for the rotation matrix by an angle

θ through fractional powers of the rotation by π{2.

Definition 3.2.6. The rotation by θ P R, denoted by Apn̂, θq, is defined to be

Apn̂, θq :� A
2θ
π pn̂, π{2q. (3.26)

Note that Apn̂, π{2q being of positive type K implies that the fractional power

Aαpn̂, π{2q is well defined by (1.11) and (1.14) for α P R.

Theorem 3.2.4 states that the definition in (3.26) agrees with the classical one

given by Rodrigues formula in (3.24) for 0 ¤ θ ¤ π{2. The following theorem extends

this result for θ P R.

Theorem 3.2.7. Let Apn̂, θq be the rotation defined in (3.26). Then

Apn̂, θq � Rpn̂, θq (3.27)

for any θ P R.

Proof: Firstly for θ ¥ 0, it is sufficient to show that (3.27) is satisfied for

pn� 1qπ
2

¤ θ ¤ nπ

2
,

for n P N. We proceed by induction. The case n � 1 follows from Teorema 3.2.4.

Assuming (3.27) to hold for n, we will prove it for n� 1. Consider

nπ

2
¤ θ ¤ pn� 1qπ

2

we have
pn� 1qπ

2
¤ θ � π

2
¤ nπ

2
.
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Note that

Apn̂, θq � A
2θ
π pn̂, π{2q � A

2θ
π
�1pn̂, π{2qApn̂, π{2q � Apn̂, θ � π{2qApn̂, π{2q (3.28)

and by induction hypothesis

Apn̂, θ � π{2q � Rpn̂, θ � π{2q (3.29)

combining (3.28) with (3.29) we obtain

Apn̂, θq � Rpn̂, θ � π{2qApn̂, π{2q
� Rpn̂, θqRpn̂,�π{2qRpn̂, π{2q
� Rpn̂, θq

above we use some basic properties of the Euler-Rodrigues formula.

Secondly, for �π{2 ¤ θ ¤ 0, thanks to (1.11) and proceeding analogously to the

proof of Theorem (3.2.4) we can obtain the expression

A�αpn̂, π{2q ��
����

n2
1p1� cos απ

2
q � cos απ

2
n1n2p1� cos απ

2
q � n3 sin απ

2
n1n3p1� cos απ

2
qq � n2 sin απ

2

n1n2p1� cos απ
2
q � n3 sin απ

2
n2

2p1� cos απ
2
q � cos απ

2
n2n3p1� cos απ

2
q � n1 sin απ

2

n1n3p1� cos απ
2
q � n2 sin απ

2
n2n3p1� cos απ

2
q � n1 sin απ

2
n2

3p1� cos απ
2
q � cos απ

2

�
����

and so the definition in (3.26) agrees with the classical one given by Euler-Rodrigues

formula in (3.24) for �π{2 ¤ θ ¤ 0. Finally, an analogous argument of induction as in

the first part of this proof shows that (3.26) agrees with the Euler-Rodrigues formula

in (3.24) for θ ¤ 0. �

Corollary 3.2.8. The family tApn̂, θq; θ P Ru, where

Apn̂, θq ��
�� n2

1p1� cospθqq � cospθq n1n2p1� cospθqq � n3 sinpθq n1n3p1� cospθqq � n2 sinpθq
n1n2p1� cospθqq � n3 sinpθq n2

2p1� cospθqq � cospθq n2n3p1� cospθqq � n1 sinpθq
n1n3p1� cospθqq � n2 sinpθq n2n3p1� cospθqq � n1 sinpθq n2

3p1� cospθqq � cospθq

�
��

is a uniformly continuous group on R3 with infinitesimal generator G : R3 Ñ R3 given

by

G �

�
�� 0 �n3 n2

n3 0 �n1

�n2 n1 0

�
�� .

54



Proof: That the family tApn̂, θq; θ P Ru is a group is a immediate consequence of the

definition of Apn̂, θq in (3.26) and Lemma 1.5.6. We obtain G easily from the definition

of infinitesimal generator of a group

DpGq �
"
u P R3; lim

θÑ0

Apn̂, θqu� u

θ
exists

*

and

Gu � lim
θÑ0

Apn̂, θqu� u

θ
for u P DpGq.

Since G is a bounded linear operator, we conclude that tApn̂, θq; θ P Ru is a uniformly

continuous group on R3. �

Remark 3.2.9. In particular, we can obtain the explicit expression of the logarithm of

rotations Apn̂, θq thanks to the fact that the logarithm is the infinitesimal generator of

the uniformly continuous group tAαpn̂, θq;α P Ru on R3; namely, we have

logApn̂, θq �

�
�� 0 �θn3 θn2

θn3 0 �θn1

�θn2 θn1 0

�
�� .
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Apêndices



Appendix A

Chebyshev polynomials of the

second kind

In this appendix we give a very brief exposition of the Chebyshev polynomials of

the second kind. We introduce only the definition of these polynomials and state the

two properties used in Chapter 3. See Abramowitz and Stegun [2] for the complete

bibliography. The Chebyshev polynomials of the second kind, Un : C Ñ C for n �
0, 1, 2, . . . , are defined by the recurrence relation

U0pxq � 1

U1pxq � 2x

Un�1pxq � 2xUnpxq � Un�1pxq.

They arise in the development of four-dimensional spherical harmonics in angular

momentum theory. However, our interest in them is due to their connection with

trigonometric multiple-angle formulas. Namely, the polynomials of the second kind

satisfy:

Un�1pcos θq sin θ � sinnθ (A.1)

or

Unpcos θq � sin ppn� 1qθq
sin θ

(A.2)

They also satisfy the following symmetry property:

Unp�xq � p�1qnUnpxq. (A.3)
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