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Resumo

Neste trabalho estudamos equacoes de evolucao lineares de terceira ordem no tempo
sob a perspectiva da teoria de semigrupos fortemente continuos. Consideramos suas
aproximacoes de ordem fracionaria via teoria das poténcias fraciondrias de operadores
fechados e densamente definidos por férmulas do tipo Balakrishnan. Sobre aplicacoes,

analisamos equagoes do tipo Moore-Gibson-Thompson com amortecimentos fracionarios.

Palavras-chave: aproximagoes fracionarias; equagoes de evolucgao lineares de terceira

ordem no tempo; equacgoes do tipo Moore-Gibson-Thompson; poténcias fracionarias.



Abstract

In this work we study third order linear evolution equations in time, in the sense
of theory of strongly continuous one-parameter semigroups, and approximations them
of fractional order via theory of the fractional powers of closed and densely defined
operator tand ype Balakrishnan formula. As applications, we present approximations

of the Moore-Gibson-Thompson type equations with fractional damped.

Mathematics Subject Classification 2010 34A08, 47D06, 47D03.

Keywords: fractional approximations; third order linear evolution equations in time;

Moore-Gibson-Thompson type equations; fractional powers.
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Introduction

In this work we consider the following abstract linear evolution equation of third

order in time

OPu+ Au =0 (1)
with initial conditions given by
w(0) = ug € X%, 0u(0) = u € X3, 0%u(0) = up € X, @)

where X is a separable Hilbert space and A : D(A) ¢ X — X is a linear, closed,
densely defined, self-adjoint and positive definite unbounded operator with compact
resolvent. We wish to study the fractional powers of A, the matricial operator obtained
by rewriting (I)-(2)) as a first order abstract system as follows:

We will consider the phase space
Y = X5 x X5 x X
which is a Banach space equipped with the norm given by
-5 =1

and we write the problem (I)-(2)) as a Cauchy problem on Y, letting v = dyu, w = dfu

[P P

and u = [Ez] and the initial value problem

d
M Au=0,t>0
dt (3)

u(0) = uy,

where the unbounded linear operator A : D(A) € Y — Y is defined by

D(A) = D(A) x D(A3) x D(A3), (4)



and
w9 [ e[ o

As we will see in Lemma , the problem — is ill-posed in the sense that
the unbounded linear operator —A is not the infinitesimal generator of a strongly con-
tinuous semigroup. Commonly, fractional powers theory is applied for densely closed
operators whose negative generates a semigroup. According to Balakrishnan [4] “Frac-
tional powers of closed linear operators were first constructed by Bochner [8] and sub-
sequently Feller [22], for the Laplacian operator. These constructions depend in an
essential way on the fact that Laplacian generates a semigroup...” (p. 419).

As far as we know, Balakrishnan, in [4], was the first to obtain a new construction
for fractional powers in which it is not required that the base operator generate a
semigroup. His ideas evolved into the current definition of fractional powers of closed
operators widely used in the literature. It is well know from the semigroup theory
that if B is a linear operator which is possible to calculate its fractional powers and
— B generates a strongly continuous semigroup of contractions, then —B® generates
an analytic semigroup for a € (0,1), see Lemma . However, what can one say
about —B* if —B does not generate a strongly continuous semigroup? In general —B“
generates a strongly continuous analytic semigroup for 0 < o < %, see Remark .

One of the main results of this work is to give a complete answer to the above
question for the operator —/A in —. First, we prove that though the negative of
/A is not an infinitesimal generator of a strongly continuous semigroup, it is possible to
define its fractional powers A%, for 0 < a < 1. After calculating by an explicit formula
the fractional powers of order v € (0, 1) of A, motivated by what was discussed in the
last paragraph, we conclude that —A® generates a strongly continuous semigroup on
Y if and only if 0 < a < % and it generates strongly continuous analytic semigroup on
the open interval 0 < o < 2.

As an application, we present parabolic approximations governed by the frac-
tional powers of the Moore-Gibson-Thompson equations in a smooth bounded domain
of Euclidean spaces. subject to Dirichlet boundary condition continuing the mathemat-
ical analysis of these models developed in Abadias, Lizama and Murillo [I], Caixeta,

Lasiecka, and Cavalcanti [9], Conejero, Lizama and Rodenas [16], Dell‘Oro, Lasiecka



and Pata [19], Kaltenbacher, Lasiecka and Marchand [26], Kaltenbacher, Lasiecka and
Pospieszalska [27], Knapp [30], Lasiecka and Wang [32], Marchand, McDevitt and Trig-
giani [33], Pellicer and Said-Houari [37], Pellicera and Sola-Morales [38] and references
therein.

As a consequence of the fractional equation obtained by the calculation of —A®,

for 0 < a < 1, we also study the problem:

O3 + 3A30%u + 3A30,u + Au = 0 (6)
with the initial conditions given by
u(0) = pe X5, du(0) = e X3, u(0) = e X, (7)

We show that the term 3A§8t2u + 3430, is strong enough not only to make the
problem — well-posed but also to ensure that the operator associated with this
new problem is sectorial. Thus, the term SA%Efu + 3A50,u behaves like the damping
term 242 0,u for the strongly damped wave equation which has been extensively studied
for many authors, see for instance Carvalho and Cholewa [10] and Chen and Triggiani
[12, 13].

Fractional powers approach of operators for the dissipativity of evolution equa-
tions has been divulged in the literature in the last years, in Bezerra, Carvalho,
Cholewa, and Nascimento [5] the authors study parabolic approximations governed
by the fractional powers of order v € (0, 1) of the wave operator; in Bezerra, Carvalho,
Dlotko, and Nascimento [6] the authors study a fractional Schrédinger equation of order
a € (0,1) and the problem of solvability, asymptotic behaviour and connection with
classical Schrodinger equation, Carvalho and Piskarev [11], where the authors study
asymptotic dynamics of abstract parabolic problems in the sense of attractors, see also
Cholewa and Dlotko [15], Hale [23], and references therein. To our best knowledge,
there is no fractional powers approach for operators of third order in time evolution
equations.

The thesis is organized as follows. In Chapter [1] entitled ‘Preliminaries” we have
compiled some basic facts on the semigroups of bounded linear operators theory.

In Chapter [2| entitled ‘Third order differential equation on a time scale’ our main

results are stated and proved: we study the spectral properties of A and A%, for 0 <

3



a < 1, we determine for which value of « € (0, 1) does the negative of the operator A*
generate a strongly continuous semigroup. We obtain a fractional differential equation
from A® and we state an approximation result as o %. Finally, we consider the
strongly damped third order problem (])-(7).

The results in the first four sections of the Chapter [2] constitute an article entitled
‘Fractional powers approach of operators for abstract evolution equations of third order
in time’ by myself and Flank D. M. Bezerra accepted for publication by the Journal
of Differential Equations on 6 April, 2020. Its online version is already available in the
link https://doi.org/10.1016/j.j5de.2020.04.020.

The Chapter |3| entitled ‘Future research directions’ provides future research di-
rections. We present partial results and some conjectures for nth order problem that
generalizes the problem —. Currently, this section is contained in a preprint by
myself and Flank D. M. Bezerra and this manuscript will be submitted for publication
soon. We use the calculation of the fractional powers of operators to give an alternative
way to obtain the Euler-Rodrigues formula for three-dimensional rotations. Currently,
this section is contained in a paper entitled 'Fractional powers of operators approach
to Euler-Rodrigues formula for three-dimensional rotation” by myself and Flank D. M.
Bezerra and this manuscript is submitted for publication.

Finally, in Appendix [A] entitled ‘Chebyshev polynomials of the second kind’ we

give a very brief exposition of the Chebyshev polynomials of the second kind.



Notation and terminology

e Throughout this work, X denotes a Banach space over the field K € {R, C}.

e We will denoted by £(X) the space of linear operators defined from the whole

space X to itself endowed with the norm

Sllexy :=  sup M, VS e L(X).
(X)

zeX, xz#0 ”x”X

e The domain of a linear operator A will be denoted by D(A) and the image of A
will be denoted by R(A).

e The closure of a set B — X will be denoted by B.

e The Banach dual space of X will be denoted by X* and the Banach adjoint

operator of an operator A will be denoted by A*.

o If A: D(A) € X — X is a linear operator, then the resolvent set of the operator
A, denoted by the p(A), is given by

p(A)={AeC: R\ — A) = X, (M —A) 'exists and is bounded on R(A]—A)}

e The set 0(A) = C\p(A) is called the spectrum of the operator A. It consists of

the point spectrum
o,(A) = {Ae C: (M — A)~" does not exist},
the residual spectrum

0.(A) ={ e C: (M — A)~ ! exists, RN — A) # X}



and the continuous spectrum

o A={\eC: (A —A) ' exists, RN — A) = X, (A — A)"! is not bounded}.



Chapter 1

Preliminaries

In this chapter we review some of standard facts on semigroups of bounded linear
operators theory. The chapter is intended to make the work as self-contained as pos-
sible. We summarize without proofs the relevant material on semigroups of bounded
linear operators theory for the reader who is not familiar with this theory. There is
no intention whatsoever to rewrite or bring new results to this theory. For a deeper
discussion of semigroups of bounded linear operators we refer the reader to Amann [3],

Balakrishnan [4], Czaja [17] and Pazy [30].

1.1 Semigroups of bounded operators

For the proofs in this section we refer the reader to Pazy [30, Chapter 1].

Definition 1.1.1. A one-parameter family {T'(t) : t € [0,00)} < L(X) of bounded

operators is a semigroup of bounded operators on X if
(1) T(0) = Ix
(i) T(t+s)=T(t)T(s) for allt,s e [0,0).

Definition 1.1.2. A semigroup {T'(t) : t € [0,00)} < L(X) of bounded operators on X

1$ a uniformly continuous semigroup if

T |7(0) = x| = 0.



Definition 1.1.3. A semigroup {T'(t) : t € [0,00)} < L(X) of bounded operators on X

is a strongly continuous semigroup (or C°-semigroup for short) if

lim T(t)x = x for all x € X.

t—0t

Definition 1.1.4. The linear operator A : D(A) € X — X defined by

D(A) = {x € X : lim M em’sts}

t—0t

and T
w for all x € D(A)

Az = lim
t—0+
is the infinitesimal generator of the semigroup {T(t):t € [0,0)} on X.

Theorem 1.1.5. Let {T'(t) : t € [0,90)} be a Cy-semigroup on X. Then there exist
constants w = 0 and M =1 such that

IT(#)| < Me“* for all t € |0, 0).

Corollary 1.1.6. If{T(t) : t € [0,00)} is a Cy-semigroup on X, then the function
[0,00) x X 5 (t,z) —> T'(t)x e X

18 continuous.

Theorem 1.1.7. Assume that {T(t) : t € [0,00)} is a Cy-semigroup on X and let
A:D(A) c X — X be its infinitesimal generator. Then

(a) T(t)x € D(A) for x € D(A) and t € [0,00). Moreover, for x € D(A) the function
[0,00) 5t — T'(t)x € X is differentiable and

d
ET(t)x = AT(t)x = T(t)Ax. (1.1)
In particular, T(-)x € C([0,0), X1) n C([0,0), X) for all x € D(A)

(b) Forxze D(A) and 0 < s <t < oo,

(c) =1 D(A™) is dense on X.

(d) If |T(t)| < Me“*, t € [0,00), for some M =1 and w € R, then for all x € X and
A e C with Re A\ > w we have

My — A) "z — f e NT()dt.
0



Definition 1.1.8. A Cy-semigroup {T'(t) : t € [0,00)} of bounded operators is called a
semigroup of contractions if

IT()] <1 for all t € [0, ).

Theorem 1.1.9. Let A : D(A) € X — X be the infinitesimal generator of two Cy-
semigroups {T(t) : t € [0,00)} and {S(t) : t € [0,00)}. Then

T(t) = S(t) for all t € [0, 0)

Theorem 1.1.10. A linear operator A : D(A) € X — X is the infinitesimal generator
of a uniformly continuous semigroup if and only if A is bounded on X. Moreover, if
A e L(X), then A is the generator of the uniformly continuous semigroup {T(t) : t €
[0,00)} given by

T(t) = i (t:')n for all t € [0, 00),
n=0 :

where the series is convergent in the operator norm.

1.2 Existence of semigroups

In this section we present classic results on generation of semigroups of bounded
linear operators. For the proofs in this section we refer the reader to Pazy [36, Chapter

1].

Theorem 1.2.1. (Hille-Yosida) If A : D(A) ¢ X — X is a linear operator, then

the following conditions are equivalent:

(a) A is the infinitesimal generator of a Cy-semigroup of contractions,

(b) (i) A is closed and D(A) = X,
(i) The resolvent set p(A) of A contains (0,00) and for every A > 0

IA = A) Mlzx) < (1.2)

> =

(¢c) (i) A is closed and D(A) = X,

(i) The resolvent set p(A) of A contains the half plane {\ € C: Re A > 0} and

for such A
1

Re A
Theorem 1.2.2. (Feller-Miyadera-Phillips) If A : D(A) ¢ X — X is a linear

operator and M > 1, w € R are constants, then the following conditions are equivalent:

[ =4) e <

(1.3)

9



(a) A is the infinitesimal generator of a Cy-semigroup {T'(t) : t € [0,00)} such that

IT(t)| < Me“* for all t € 0, 0)

(b) (i) A is closed and D(A) = X,
(11) The resolvent set p(A) of A contains (w,o0) and for every A > w and n € N

M

= (1.4)

A=A o) <

(¢c) (i) A is closed and D(A) = X,

(11) The resolvent set p(A) of A contains the half plane {A\ € C : Re A\ > w} and
for such A and n e N

M

A—A)" <——
IO =4 "o < gy oy

(1.5)

Let X be a Banach space and let X’ be its dual. For every x € X we define the
duality set J(z) < X' by

J(z) = {p:pe X and p(x) = |2]* = |o]*}.
It follows from Hahn-Banach theorem that J(z) is a nonempty set for every x € X.

Definition 1.2.3. A linear operator A : D(A) ¢ X — X is dissipative if for every
x € D(A) there exists a ¢ € J(x) such that Re ¢(Ax) < 0.

Theorem 1.2.4. A linear operator A : D(A) € X — X is dissipative if and only if
|(AMx — Az = All|
for all x € D(A) and A > 0.

Theorem 1.2.5. (Lumer-Phillips) Let A : D(A) ¢ X — X be a linear operator

with D(A) = X.
(i) If A is dissipative and there exists a N\g > 0 such that
R(M\Ix — A) = X,
then A is the infinitesimal generator of a Cy-semigroup of contractions on X.

(i) If A is the infinitesimal generator of a Cy-semigroup of contraction on X then A

18 dissipative and
R\ x —A)=X

for all A > 0. Moreover, for every x € D(A) and every p € J(x)

Re ¢(Ax) < 0.

10



Remark 1.2.6. If X is a Hilbert space with scalar product (-,-)y, from the Riesz’

representation theorem we have

for x € X. In this case a linear operator A : D(A) € X — X s dissipative if and only
if
Re (Az,z), <0, for every x € X. (1.6)

1.3 Analytic semigroups

For the proofs in this section we refer the reader to Pazy [30, Chapter 1].

Definition 1.3.1. A Cy-semigroup {T'(t) : t € [0,0)} is called an analytic (strongly

continuous) semigroup if there exist a sector on the complex plane
7
Ay, ={2€C: |argz| < ¢} with0<¢<§

and a family of bounded operators {T'(z) : z € Ay} which coincide with T(t) for t €
[0,00), such that

(i) the mapping z —> T(z) is analytic in Ay\{0},

(i) lim T(2)x=x forallxe X.

2—0, zeA4
(iii) T(z1 + 22) = T(21)T (22) for all z1, 20 € Ay.

Definition 1.3.2. Let 0 < ¢ < 5, M > 1 and a € R. We say that an operator

A:D(A) c X - X is sectorial if
(i) A is a densely defined closed operator.
(i1) the resolvent set p(A) contains the sector
S ={AeC: ¢ <Jarg(A\—a)| <m, \#a}

and the estimate

M

Iy — A7 <
”()‘X ) H |)\—CL|

holds for all X € S, 4.

Theorem 1.3.3. Let A : D(A) € X — X be a linear operator. Then the following

conditions are equivalent:

(i) A is the infinitesimal generator of an analytic semigroup.

(i) —A is a sectorial operator in X.

11



1.4 Homogeneous abstract equations

Let X be a Banach space and let A: D(A) € X — X be a linear operator. The
abstract Cauchy problem for A with initial data x € X consists of finding a solution

u(t) to the initial value problem

dul?) = Au, t >0
dt (1.7)

u(0) = =,

where what we mean by a solution is described by the following definition

Definition 1.4.1. A function u : [0,00) — X is called a solution of the problem (1.7
if

u e C([0,0), X) n C*((0,0), X),
u(t) € D(A) for allt > 0 and u satisfies (1.7)) in X.

For the proofs of the following theorems see Pazy [306, Chapter 4].

Theorem 1.4.2. Let A be a densely defined linear operator with a nonempty resolvent
set p(A). The initial value problem (L1.7) has a unique solution u(t), which is continu-
ously differentiable on [0,00), for every initial value x € D(A) if and only if A is the

infinitesimal generator of a Cy-semigroup T'(t)

Theorem 1.4.3. If A is the infinitesimal generator of a differentiable semigroup then
for every x € X the initial value problem (1.7)) has a unique solution.

Remark 1.4.4. The solution mentioned in the above theorems is u(t) = T(t)x. If
{T(t) : t € [0,00)} is a semigroup which is not differentiable and x ¢ D(A) then the
initial value problem does not have a solution. However u(t) = T(t)x is the unique
weak solution of (L.7), that is, u € C(]0,0),X), u(0) = x and for all ¢ € D(A*),
the function t — p(u(t)) € K is differentiable and

Selu(t) = A%p(u(t). ¢ 0.

1.5 Fractional powers of positive operators

For the results in this section we refer the reader to Pazy [36], Section 2.2.6] and

Amann [3], Section 3.4.6].

12



Definition 1.5.1. A linear operator A : D(A) ¢ X — X is of positive type K > 1
if it is closed, densely defined, [0,00) < p(—A) and

K
I+ A ex) < T for all X = 0. (1.8)

We call an operator A of positive type if it is of positive type K for some K > 1.

These are the operators that one can define the fractional power.

Lemma 1.5.2. If A: D(A) € X — X s a positive operator of type K > 1, then

.1 1
S(K) := {)\ eC:larg A\ < arcsmﬁ} v {|/\| < ﬁ} c p(—A) (1.9)
and
(1+ MDA + A7 < 2K + 1, for all X e S(K). (1.10)

For an operator A of positive type and a > 0 we define

1
A= — | XYA-=\XD"td) 1.11
3 ) A A =AD (L.11)

where the path C' runs in the resolvent set of A from ooe ™ to e, w < 0 < ,
avoiding the negative real axis and the origin and A= is taken to be positive for real

positive values of .

Lemma 1.5.3. The formula (1.11)) defines a bounded linear operator A=*. Moreover
for a = n the definition (1.11)) coincides with the classical definition of (A~)™.

Lemma 1.5.4. If A of positive type, then

(i |
sin o
2

A =

f AT+ A) A 0<a<l. (1.12)
0

(i) For a,f =0
AP — AepP (1.13)

(1ii) There exists a constant C' such that

A= < C forall0<a<1.
(iv) A= is one-to-one.
(v) The family {A"*;t = 0} is a strongly continuous semigroup on X.
We denote its infinitesimal generator by
—log A

which defines the logarithm of A. Then the intuitive formula A~ =
t =0, is valid.

—tlog A
)

®
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Definition 1.5.5. For every a > 0 we define

AY = (A=)~ (1.14)
Fora=0,A“=1
Lemma 1.5.6. If a, B are real then

AHP = A AP (1.15)

Lemma 1.5.7 (Balakrishnan formula). Let 0 < a < 1. If x € D(A) then

Aoy = AT J NTLAN + A)lzd) (1.16)

™ 0

Lemma 1.5.8. If 0 < o < 1 and B is real then A% is of positive type and
(A)P = AP (1.17)

Lemma 1.5.9. Assume that A : D(A) ¢ X — X s a linear operator of positive type
and c € (0,1). Then A* : D(A%) ¢ X — X is of positive type. In fact, if there exists
0 € (0,m) such (1.8)) is satisfied for X € C with |arg A\ < 0 then

{INeC:larg z| <7 — (7 —0)a} u {0} < p(—A%)
and, given 0' € (0,0),
1+ MM x + A < K, |arg N <7 — (7 —0)a. (1.18)

Corollary 1.5.10. Suppose that A : D(A) € X — X is a linear operator of positive
type and there exists 0 € (0,7) such that (1.8)) is satisfied for A € C with |arg \| < 0. If
a € (0,1) satisfies o« < m/2(m — @) then —A* generates a strongly continuous analytic

semigroup on X.

Remark 1.5.11. Note that (1.9)) ensures the ezistence of such 6 € (0,1) above. But
0 < @ < 1 implies that
T 1

2(m —0) ~ Y

This implies that —A® generates a strongly continuous analytic semigroup on X when-

ever A is of positive type and 0 < o < 1/2.
We will make a proof of the next lemma because we will present a proof using
our arguments.

Lemma 1.5.12. Assume that A : D(A) € X — X is a linear operator of positive type
K =1 and —A generates a Cy-semigroup of contractions on X. Then —A® generates

a strongly continuous analytic semigroup on X for 0 < a < 1.

14



Proof: Fix a € R with 0 < a < 1 and choose 6 € (0, 7) such that

T <9<7T
T™—— —.
2a 2

For such 6 we have

Thus, from Corollary [1.5.10} it is sufficient to show that (1.8) is satisfied for A € Sp :=
{Ae C: |arg A\ < 6}. By Lemma we only need to consider the case A € Sp\S(K).
It follows from Hille-Yosida Theorem [[.2.3] that

1+|)\|< 1 1 <00820+2K

1+ DI+ A7 < < <
(L+ AP+ A~ Re x S TRex s 9K cos

for X € Sp\S(K). O

If A: D(A) € X — X is a linear operator of positive type, then we will denote
by X<, for a € [0,0) (taking A° := I on X? := X when a = 0), the space D(A%) with
the norm

|- llxe =A% -

It is easily seen that the fractional power space X* is a Banach space.

Lemma 1.5.13. If 0 < o < 3, then Xp is a dense subset of X, and the identity map

Xg 3 x> x € X, is continuous.

Theorem 1.5.14. (Moment Inequality) Let A : D(A) € X — X be a linear operator
of positive type. If a € |0,00), then there exists a constant K > 0 such that

K (e o—
[elxe < 5 (2] + o lzlx), (1.19)

|2xe < Klzlx 2% (1.20)

Theorem 1.5.15. If A: D(A) ¢ H — H is a positive definite self-adjoint operator
in a Hilbert space H, then the operator A* : D(A®) ¢ H — H is positive definite
self-adjoint for each o > 0.

15



Chapter 2

Third order differential equation on

a time scale

As mentioned earlier, this chapter contains the main results of the thesis. The
results in the first four sections constitute an article entitled ‘Fractional powers ap-
proach of operators for abstract evolution equations of third order in time’ by my-
self and Flank D. M. Bezerra accepted for publication by the Journal of Differen-
tial Equations on 6 April, 2020. Its online version is already available in the link
https://doi.org/10.1016/7.5de.2020.04.020.

We consider, abusing notation, the following abstract linear evolution equation

of third order in time

OPu+ Au =0 (2.1)
with initial conditions given by
u(0) = up € X3, ou(0) = uy € X3, 2u(0) = up € X, (2.2)

where X is a separable Hilbert space and A : D(A) ¢ X — X is a linear, closed,
densely defined, self-adjoint and positive definite operator. We wish to study the
fractional powers of A, the matricial operator obtained by rewriting (2.1))-(2.2)) as a

first order abstract system. For this purpose we will consider the phase space

Y = X5 x X5 xX



which is a Banach space equipped with the norm given by

-0 =1 + 115 1 1%

2
P

We can write the problem (2.1))-(2.2)) as a Cauchy problem on Y, letting v = d;u,

w = d?u and u = [Efi] and the initial value problem

d—u—i—/lu:O, t>0
dt (2.3)
u(0) = uy,

where the unbounded linear operator A : D(A) € Y — Y is defined by

D(A) = D(A) x D(A3) x D(A3), (2.4)
and
=[S [E] =[] e []eo e

From now on, we denote
Y= X'x X3 x X3,
equipped with the norm
5 =1 e+ 1 s 1 1y

In Section [2.1] we study the spectral properties of the operator A proving that
though the negative of A is not an infinitesimal generator of a strongly continuous
semigroup (see Lemma , it is possible to define its fractional powers A* (Lemma
. In Section we study the spectral properties of the fractional powers A%, for
0 < a < 1, what lead us to the main result of this chapter: —A® generates a strongly
continuous semigroup on Y if and only if 0 < o < % and it generates strongly continuous
analytic semigroup on the open interval 0 < a < % (see Theorem . Section
is devoted to the study of the fractional differential equation obtained by the explicit
representation of A%. In Section [2.4] we will be concerned with an approximation result
for the semigroups generated by —A® on parameter 0 < a < % as a %. Finally,
Section provides, as an application, the well posedness of a strogly damped third

order equation in time.
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2.1 Spectral properties of the operator A

In this section we study the unbounded linear operator A, in the sense of the
theory of closed and densely defined operators.

Lemma 2.1.1. The linear operator A : D(A) €Y — Y is closed and densely defined.

n u

Proof: Consider u,, = [E):n} € D(A) with u,, » u = [5}] inY as n — o0, and
Au, - ¢ in Y as n — oo, where ¢ = [g%], then
Up — — 1 in X3 <> X3 asn — o0
and consequently, v = —p; € D(A%). As well as, we have
Wy, — —Po in X35 < X asn — o0
and consequently, w = —py € D(A%). Finally, since A is a closed operator, we have
u € D(A) and Au = ¢3; that is, u € D(A) and Au = .
Secondly, D(A) = D(A) x D(A3) x D(A3) is dense in Y = X3 x X3 x X because
the inclusions X® < X*# are dense for a > 3 = 0, by Lemma [1.5.13
In this subsection, we study spectral properties of the operator A.

Lemma 2.1.2. The resolvent set of —A is given by
p(=A) ={reC:\ep(—A)}. (2.6)

Proof: Suppose that A € C is such that \*> € p(—A). We claim that A\ € p(—A).

Indeed, since —A is a closed operator, we only need to show that

My +A:D(A)cY >Y

is bijective. For injectivity consider u = [z] € D(A) and (Aly + A)u = 0, then

My —Ix 0 u 0
0 MNx —Ix v| =10
A 0 My w 0
It follows that

AMt—v=0
1A v —w=0 (2.7)
Au+ dw = 0.

18



From ([2.7)) we have
(NIx + A)u = 0. (2.8)

Since \* € p(—A), we conclude that u = 0 and consequently u = 0. For surjectivity

given p = [éﬂ e Y we take u = [z] with

u= (N1 + A)" (Vo1 + Apy + ¢3)
v=(NT+ A) 1 (N1 + N2y + Ap3) — @1 (2.9)
w = ()‘3[ + A)_l()‘4<P1 + Mo + )\2803) — A1 — 2

Note that u,v and w are well defined since A* € p(—A). Moreover, u € D(A), v € D(A3)

because ¢ € X3, w e D(A3) because ¢, € X3. Then we have u € D(A) and
()\Iy + A)u = Q.

Now suppose that A € p(—A). If u € D(A) is such that (\*Ix + A)u = 0, taking
u= [/\/\ZUJ € D(A) we have

(My + A)u = 0. (2.10)
Since A € p(—A), it follows that u = 0 and consequently u = 0, which proves the
injectivity of A>Ix + A. Given f € X, consider ¢ = [Jgf] € Y. By the surjectivity of
Ay + A there exists u = [EZ] € D(A) such that

My + Hu = (2.11)

which gives (A*Ix + A)u = f, and the proof is complete.
m
We shall show that it is possible to calculate explicitly the fractional power A*

of the operator A for 0 < o < 1, and with this, we will consider the fractional approx-

imations of (2.3 given by

d «

u +A*=0,t>0, 0<a<l,

dt (2.12)
u®(0) = ug

Here, A% : D(A%) ¢ Y — Y denotes the fractional power operator of A to be defined
by A* = (A *)"!, where A~ is given by the formula in (1.12) with domain D(A%)
characterized by complex interpolation methods, see e.g. Amann [3] and Cholewa and

Diotko [15].
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Lemma 2.1.3. The unbounded linear operator —A with A : D(A) ¢ Y — Y defined in
(2.4)-(2.5) is not the infinitesimal generator of a strongly continuous semigroup on Y .

Proof: If —/ generates a strongly continuous semigroup {e=4* : ¢ > 0} on Y, it follows

from Theorem that there exist constants w = 0 and M > 1 such that

le™ | vy < Me*' for all 0 <t < o0. (2.13)

Moreover, from Theorem we have

{Ae C: Re\ > w} < p(—4) (2.14)

where p(—A) denotes the resolvent set of the operator —A.
Let u = [E}] be a nontrivial element of D(A). We shall consider the eigenvalue
problem for the operator —A
—Au = A\u.

A straightforward calculation implies
o,(—A) = {AeC: N eog,(—A)}.

Where 0,(—A) and 0,(—A) denote the point spectrum set of —/A and —A, respectively.
Since 0,(—A) = {—u, : n € N} with p, € 0,(A) for each n € N and y,, — o0 as n — 0,
we conclude that

op(—A) n{AeC: Rel > w} #

This contradicts the equation (3.13)) and therefore —A can not be the infinitesimal

generator of a strongly continuous semigroup on Y. O

Remark 2.1.4. We note that —A is not a dissipative operator on Y, according to
(1.6). Indeed, if u is a non-trivial element in X' and u = [ﬁu}, then

0 u
(—tu), = (| ][5 ]), = Aw = uly > 0.
Explicitly, this means that — A is not an infinitesimal generator of a strongly continuous
semigroup of contractions on'Y . Nevertheless, the statement in lemma [2.1.3 is more
precise because it says that —A cannot be the infinitesimal generator of a strongly

continuous semigroup of any type on Y .
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Lemma 2.1.5. Let B : D(B) < E — E be a linear operator of positive type. If
a€[0,1] and X = 0, then B*(Mx + B)™' € L(X) and

K

B*(\Ix + B) Y em) € m——
IB*Ax + B) lew < giyys

(2.15)
for some K > 1.

Proof: Here, K will denote a positive constant, not necessarily the same one. We

first observe that

B(Mg+ B)™' =1Ip—AXMg+ B)™.

This and the fact that B is of positive type give
IBO g+ B) Mew <1+ AMp+ B) ew <1+ K. (2.16)
Now, for z € E, from the inequality ((1.20]) we have

|B*(Mx + B)'zlp < K|(Mg+ B) 2|z |B(Mg + B) ™2l
K

< —
(1+ M)t

for some K > 1. In the last inequality we use the fact that B is of positive type and
that [|[B(A\Ig + B)™'z|% is bounded by (2.16)).

Lemma 2.1.6. The unbounded linear operator A defined in (2.4)-(2.5)) is of positive
type K > 1.

Proof: We have already seen in Lemma that A is a closed and densely defined
operator. That [0,00) < p(—A) follows from (3.6). Finally, for A > 0 we have

M+ A) Tu=¢p

If and only if
o1 = (N1 + A)7H(\%u + M+ w)
0o = (N1 + A)7H(N3u + Mo + \w) —u (2.17)
03 = (N1 + A) T (A + Xo + \2w) — du— v
In order to verify the equation for A it is sufficient to show that for ||uly <1
there exists a constant K4 = 1 such that

K\
1+

leall 2 + el 3 + lleslx < (2.18)

>
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Note that

leil g < AT+ A)7 M| g+ AJASNT + A) o]y + A5 + A) 7w x
lgall i < JATOPT+ A) Ml g + MO + A) o]y + AJAT(T + A) " wx

loslx < AIASOCT + A) Ml g3 + [ASPT + A) "ol g + VIO + 4) w)x.

Applying Lemma we obtain a constant K > 1 such that

ol + el + lals < 2oy ¢ 2y K
Pilixs T 1920y THPslX S 7733 (14 /\3)§ (1+ )\3)%
K,
T4
whereas K4 > 1 is sufficiently large. O]

Remark 2.1.7. Let S : D(S) € E — E be a linear operator of positive type on some
Banach space E, if —S generates a strongly continuous semigroup of contractions on E,
then —S® generates an analytic semigroup for € (0,1), see Lemma . However,
what can one say about —S if —S does not generate a strongly continuous semigroup?
In general if S is of positive type on E (see Definition then —S® generates a

strongly continuous analytic semigroup on E for 0 < a < %, see Remark|1.5.11)

2.2 Spectral properties of the fractional powers A

In this section we study spectral properties of the fractional powers operators A%
for a € (0,1).

Theorem 2.2.1. If A and A are as in (2.4)-(2.5)), respectively, then we have all the
following.

i) 0€ p(A) and
A’lz[fl 5 ]

0 —I O

i1) Fractional powers A“ can be defined for € (0,1) through

Ao = 2ROT j A* LA + A) LdA (2.19)

d 0
iii) Given any a € (0,1) we have AY: D(A*) <Y — Y is given by

ka,OA% _ka,2AaT71 14:04,114&T72
Aa = —ka’lAaT-H ka’oA% —ka,QAaT_l (220)

at2 a+l

ka,QAT —k’a’lAT ka,OA%
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where
a+2 a+1

D(A%) = D(A™ ) x D(A™5 ) x D(A%),

and

1 .
ka,j = 5 (2COSM + 1) 5 fOrj € {07 172} (221)

Moreover, these coefficients satisfy the following properties

ka,O _ka,2 ka,l
det | —ka1 koo —kap | = ko + kD1 + kDo — Bkaokatkaz =1,  (2:22)
ka,2 _ka,l ka,O

koz,() + ka,l + ka,? = 1; (223)

and

ki,o - ka,lka,Q = ka70
k2, — ka,Oka,Q = ka,l (224)

a,l

kiyg - ka,(]ka,l = ka,Q-
iv) Let a€ (0,1]. Then 0 € p(A%) and A* has compact resolvent.

v) For each o € (0, 1] the spectrum of —A® is such that the point spectrum consisting
of eigenvalues

{(un)%ei7T :ne N} U {(un)%eiﬁ(?)gh) :ne N} U {(un)%eﬂ(agh) i ne N}
(2.25)

where {fi,}nen denotes the ordered sequence of eigenvalues of A including their

multiplicity.

Proof: Part (i) immediately follows from the definition of A.
Part (i) is a consequence of the fact that A is of positive type operator, see
Lemma [[L5.7

For part (iii) note that given A € C we have

M+ A= [%I M 91]
A 0 A
and
A2(A3T+A)"1 AN T+A)T (A3T+4)!
M+ A) 1= [ —AMBTHA)L NZ(A3T4+A)"L AA3T+A)"! ] , for all A e p(—A).
“AAMNTHA) T —ANTHA) T X231+ A) T
Consequently,

AT+ A)™1 —X2(\3T+A)"1 —A(A3I4+4)~1
AN+ A)7h = [

AANT+A)=T A3 T+A)~1 —)\2(>\3I+A)—1] , for all A e p(—A).
NZANPI+A)"1 AANPI+A)1 AN I+A)~!
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Now using (2.19)), applying in each entry of the above matrix the fractional formula for
A

4e = Sinlom) f ATTTAA + A) 7NN,
0

A

and after the change of variable © = A\* we obtain

i *© ) — 1\ )
MJ AN AT + A)HdA = % (2 cos Aetdm 1) A (2.26)
T 0
where j € {0,1,2}. Hence
ka OA% —]CQQAQT_I ]{ZaylAaT_g
A% = | —ho 1 A kaoAS —kapAS (2.27)
ka 2Aa+2 —]fa 1AQ+1 ka,OA%
where
1
ko = 3 (2 cos 2rlati) (oHrJ) + 1) for j € {0,1,2} (2.28)

Part (iv) follows from the existence of bounded inverse operator A= : Y — Y

atl a+2

k?oqui% —k’a 1A77 k?a QAii

a+l

A_a = _ka,QAiaTil koz,OAAi§ _ka 1A77
kot A5 —kapA™F kapATS,

which takes bounded subsets of ¥ = X3 x X3 x X into bounded subsets of Y :=

X5 x X% x X5 , the latter space is compactly embedded in Y because the inclusions

XPc X', B>y=0

are compact provided that A has compact resolvent.
Concerning part (v) observe that A € C is an eigenvalue of —A% if and only if

there exists a nontrivial solution of

i
—ka,oA%u + k‘a,gAaT_lv — ka’lAaT_Qw = \u

a+1

$ kot AT U — koo ASU 4 ke AT w = Av

a+2

ka2 AT U+ ka1 A5 0 — kagASw = dw

which in turn holds, using (2.22)) and (2.24)), if and only if
3 ) a 2a a a 7r(3 2a) 7'r(3+2a) o
N4 3Xko g AT + BNk 0 A + A% = (AL + AF) (AL — ™57 4F) (A1 — 57 43)
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is not injective, however it happens if and only if
= {(Mn)%em - ne N} U {(Mn)%eiﬂ(%m) Cne N} U {(Mn)%eiﬂ(3§2a) e N} '
where {11, }nen denotes the ordered sequence of eigenvalues of A including their multi-
plicity. O]
We include three figures that illustrate the position of the spectrum of —A% in

the complex plane.

Im(\)

Seol=
(]

Semi-line containing the eigenvalues of A

é im Re(X)

St
o
wff

Figure 2.1: Location of the eigenvalues for n = 3 and a = 1

Observe that for 3/4 < a < 1 the Figure reflects, in particular, the ill-
posedness of the Cauchy problem (2.12)) in the sense that —A% does not generate a

strongly continuous semigroup on the state space Y. See Lemma [2.1.3]
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Im(\)

3
Semi-line containing the eigenvalues of A4

% i Re())

EINS
L[
l""ﬂ

3

Figure 2.2: Location of the eigenvalues for n = 3 and a = 4

For o = 3/4, the spectrum begins to reach a region where the generation of a

strongly continuous semigroup is possible.

Im(\)

Sok
WM
8

§in B Re())

Figure 2.3: Location of the eigenvalues for n = 3 and o = 1

[\

Finally, Figure suggests the gain of the sectoriality property for A¢ when
0 < a < 3/4. We are thus led to the following theorem, one of the main results in this
paper.
Theorem 2.2.2. The negative of the operator A* in (2.12)) is the generator of a strongly

continuous semigroup on'Y if and only if a € (0, %] Moreover —A“ generates a strongly

continuous analytic semigroup on'Y for a € (O, %)
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Proof:
Case I: € (2,1).
By the computation of the spectrum of —A% in item (v) of Theorem it
follows that
(=A%) " {AeC: Red>w} #

for any w > 0. Thus, the necessary condition for the generation of a strongly continuous
semigroup is violated as in Lemma [2.1.3

Case II: a = %.

In this case we show that —A1 is dissipative and there is Aqg > 0 such that the
range, R(\oI + A1), of A\oI + A1 is Y. Then the result follows from Lumer-Phillips
Theorem [1.2.5/ Indeed for u = [Z] € D(A1) = D(A12) x D(A12) x D(A12) we have

Re <A%u, u>Y = Re (<%A132u — %(1 +4/3)A 1y + %(1 — \/g)Alzw,u>

2
X3

1 7 1 s 1 1
+ (=1 —=V3)ATru+ —A2v — (1 + V3)A 2w, v
3 3 3 o
11 1 7 1 3
+ < (1+v3)Aru — 5(1 —V3)Azy + §A12w,w> )
X

AN W=

ARl + A3l + A%} )

Re (<A%U,A%u> — <A£u,A%w> + <A%U,A237w> )
X X X

| =Wl W =

= 3 HA%U — Azip + A%wH?X = 0.

Which gives the dissipativity of —A%. Now if we choose Ag > 0 such that |A~1| Ly <
Ao, then Ao € p(—A~1) and

MATT (Al + AT + AT) =1

This implies that (A\; ' /+A7) "2 = A\A~T (A J+A71)"1, A5 € p(—A7) and consequently
RO\ + A7) =Y.

Case III: a € (0, 2).

Finally, by Lemma , A is also of positive type and we can study A¢, for
0 < a < 2, considering the fractional powers (A7)P = A% for 0 < B < 1. Since
— A1 is the infinitesimal generator of a strongly continuous semigroup of contractions,

it follows from Lemma |1.5.12 that —A% is the infinitesimal generator of an analytic
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semigroup for 0 < 4 < 1 or, in other words, —A“ is the infinitesimal generator of an
analytic semigroup for 0 < a < %.

Remark 2.2.3. Note that A“ having compact resolvent (see item (iv) of Theorem
implies the semigroups {e="t 1 0 < a < 3/4} are compact.

2.3 Fractional partial differential equation

Using the results of Section 2.2 we can consider a fractional formulation of the
initial value problem in and as well as Bezerra, Carvalho, Cholewa, and
Nascimento [5] proposed for damped wave equations, and Bezerra, Carvalho, Dlotko
and Nascimento [6] proposed for Schrodinger equations. This fractional formulation

and its well-posedness are established by our next theorem.

2—2a

¥ 2 —a
Theorem 2.3.1. Let 0 < o < 3/4. Then for every [?] € X3 x X3° x X3 the

problem

03U + Bkan A5 02U + BkaoAT u + A% = 0 (2.29)
with the initial conditions given by
u(0) = ¢, du(0) =, Gu(0) =¢, (2.30)

where ke is given as in (2.21), has a unique solution in the class

2+«

C([0,20), X5) 0 C'((0,0), X3) n C([0,0), D(A™5"))
Proof: This problem is equivalent to the first order system:

%[§]+Aa[§]=o, £>0,0<a<3/4, (2.31)

subject to the initial conditions

-

u(0) = p e X3
1 11—« 1—-2a
$00) = [kml(ka; — Ka0) A3 — (ko + kaokat) A5 — ko A g} e X3
7 1 , 2 —a —2«
w(0) = WL, [/faz(ka,o — ko) AT Q + (K + 3kaokas) A5 ) — kyg A™S 5] €eX
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Here, A% : D(A*) € Y — Y is the fractional power operator of A given in (2.20). In
fact, we can see that (2.31)) is equivalent to the system

-

5tu + ]{?a’()A%U - ka’QAaT_lU + /{ZmlAaT_Qw = 0,

a+l

A 5tv - a 1A U + koa,OA%'U - k’OQQAaTilU) = 0, (232)

a+2

| O — ko2 A 0 — ka1 A5 0 4 kapASw = 0,

and after some man1pulat1ons, we can obtain the partial differential equation (2.29))
with initial conditions given in (2.30). The result follows from the fact that —A®

3

generates a strongly continuous analytic semigroup on Y for a € (0, ;), see Theorem

2.2.2)

Remark 2.3.2. As —A® generates a strongly continuous analytic semigroup on'Y for

ae (0,3) we have

u(t) a+2 a+1 o
[u@)] € D(A%) = D(A™") x D(A™) x D(A3), fort>0and0<a <3
w(t

and consequently by system (12.32))

u(t) € D(AS), du(t) € D(A3), Qu(t) € D(A™SY), fort>0and0<a <32 (2.33)

Remark 2.3.3 (Energy functional associated with perturbed problems). It is well
known from the theory of sectorial operators that the negative of a positive sectorial
operator generates an analytic semigroup of bounded linear operators that decays ex-
ponentially. Nevertheless, we would like to present an explicit formula for the energy
functional associated with perturbed problems. If we multiply by A% diu in the
sense of X, we get

4
dt

3ka0

| (@3u, A% 3) HA““UH?X] | A 02u)]? — Bkao|AF" du] %

Multiplying (2.29)) by A%ﬁfu in the sense of X, we obtain

jt[(A u,

Combining these equations we deduce that

3a0

)x+ ||A35tuHx+—||A*52uHx] | A% Oyl =Bkao| A5 SFull

4
dt
— (1= 3ka) (A5 Gl + 1A% 02l ).

—a —2a 1 ]_ —a [e
[ (BFu, A% ) + (A%, A% ) x + kool ATl + 5145 Ful + —HA Tl |
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If we define the function L, ([2%]) by

u 2—a 2—2« 1 ]_ l—a
LQQ}wD::@hwrvamx+@M%Afr@mx+3hwww@w§+§wr7@m@

2
o;u

a+1

1, an
b oA ul
then the follounng differential equation is satisfied

d u «@ —
Lo ([ 20]) = (0= 8kao) (14l + 1A% 3ul ) <.
The last inequality follows from

3
1<2COSQ7FT°‘+1=3ICQ,O, forany0<a<1.

thanks to (2.21)).

What was said above leads to the consideration of L, as an energy functional
associated with (2.29) defined on the domain

a+2

D(L,) = D(A"3°) x D(A3), xD(AF), 0<a<? (2.34)

2.4 Parabolic approximations

As we see in Theorem [2.2.2] —A* generates a strongly continuous analytic semi-
group for 0 < a < g whereas — A1 generates only a strongly continuous semigroup (A%
can not be a sectorial operator due to the position of its spectrum on imaginary axis,

see Figure 2.2 and (2.25))). In this section we study, roughly speaking, the continuous

3

dependence of the semigroup generated by —A% on parameter 0 < o < .

Theorem 2.4.1. If A and A are as in (2.4)-(2.5), respectively, then we have all the
following.

i) For every ueY we have

3
A% converges to A tuinY asa / T
ii) For every u € D(A1) we have

A%u converges to Atuin Y as Ve T
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Proof: For part i) note that
—Q _3 o— 6% a,;
[A u = A Sy = A7 = A 5 ully < [ A oo (= 4% )uly

The result follows from the uniform boundedness of |A™%| vy for 0 < a < 1, and the
convergence of A PutouinY for0 < 3 < 1as B\, 0, Lemma items (iii) and (v),

respectively. Part ii) follows from the same argument above, since for each u € D(A%)

470 = ATy = |(4°7F = DAtuly.
[
Proposition 2.4.2. Let A € C with ReX = 0 and o€ (0,2). For each u €Y we have

(M + A" 'u converges to (A + /14) u inY, as a tends to 3/4.

Proof: Note first that for A € C with Re\ = 0 the following identity hold
AT+ A% = (A + AT = A9 + A9 A= — A5 AT + AL (2.35)
Now, observe that the equality
A+ A% =T = X + A9)7!
with the fact that A“ is of positive type K, implies that
AN + A% Yoy < T4+ MO + A%) Yoy < 1+ Ky, for all e (0,1). (2.36)

The result follows from the equations (2.35)), (2.36) and the pointwise convergence of
A~ to A7 as « tends to 3/4 given in item i) of Theorem (2.4.1).

Theorem 2.4.3. Let {e=4"" 1t = 0} be the sengmups generated by —A%, for 0 < a <

3. Then for everyueY andt >0, e "'u — e~ At

convergence is uniform on bounded t-intervals.

umyY as « /' . Moreover, the

Proof: The result is consequence of Proposition (2.4.2)) and Pazy [36, Theorem 3.4.2].

Remark 2.4.4. If we consider o = % in equation (2.29) we obtain the initial value

problem

Bu+ AidPu+ A2du + Aiu =0, (2.37)
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with initial conditions given by
u(0) = p € X5, du(0) =¥ e X1, Pu(0) =€ e X5, (2.38)

Then theorem says that the problem (2.29)) for 0 < a < % can be seen as parabolic
approzimation of the problem (2.37) and if we denote A = At then

OPu+ A30%u + Ao + Au = 0,

and by this we understand that the fractional term Aéﬁtzu + A3 provides a good
framework to equation
OPu + Au = 0,

in the sense of the existence and uniqueness of global solution.
Moreover, note that by (2.34) with a = % (3/@’%70 = 1) an energy functional asso-

ciated with (2.37)-(2.38) is given by

u 5 3 1 1 1 1
Ly (|2 ]) = @ AR o) x + (Atu, ABd)x + A Gl + 51 AT GFul%

?u
1
+ g4l

then the following differential equation is satisfied

Doy ([d0]) = (- by o) (Al + A5G ) =0, (239

defined on the domain
D (L) = XH x XH x X3,
4
So (2.39) implies that for a =3

Remark 2.4.5. One of our motivations to consider the class of problems in (2.1)-
(2.2) are the initial-boundary value problems associated with Moore-Gibson-Thompson

the energy is conserved.

equations, these equations arise from modeling high-frequency ultrasound wave, for de-
tails see Moore and Gibson [35] and Thompson [{1]. More precisely, let Q = RN be a
bounded domain with smooth (at least C*>*) boundary o), the Moore-Gibson-Thompson

equations are evolution equations of third order in time of the type
TOU + adiu — Au — BAGu = 0,

where 7 = 0 and «, § € R.
If we consider T = 1 and a« = B = 0, then thanks to results of the previous
sections we can set the “fractional Moore-Gibson-Thompson equations” associated with

the third order linear evolution equation on the time
OPu— Au =0, (2.40)
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subject to zero Dirichlet boundary condition and initial conditions

u(z,t) =0, red,t=0,

(2.41)
u(z,0) = up(x), du(z,0) =wu(x), Fu(z,0) =ux(z), x€ .

If we consider X = L*(Q2) and the negative Laplacian operator
AD'U, = —A'U,,

with domain

D(Ap) = H*() n Hy(Q),

then Ap is a linear, closed, densely defined, self-adjoint and positive definite operator.
There exists ¢ > 0 such that Reo(Ap) > (, that is, ReX > ( for all X € o(A), and
therefore, Ap is a sectorial operator in the sense of Henry [25, Definition 1.3.1], with

the eigenvalues {Vy }nen:
O<n<m< < <..., V,—+0 (asn— +w0).

This allows us to define the fractional power Ap* of order o € (0,1) according to
Amann [3, Formula 4.6.9] and Henry [25, Theorem 1.4.2], as a closed linear operator
on its domain D(ALY) with inverse A$,. Denote by X* = D(A$) for a € [0,1). The

fractional power space X< endowed with graphic norm
|- llxe =A% - Ix

1s a Banach space; namely,

=

X'=H*(Q)nHy(Q), Xz=H;(Q), X"=X=L*Q).

With this notation, we have X~* = (X®)" for all o > 0, see Amann [3] and

Triebel [42] for the characterization of the negative scale. In particular,
X = (IHQ) = 13(Q) = X, X = (H(Q) = H1(9).
The scale of fractional power spaces {X*}aer associated with Ap safisty

X*c H*(Q), «

A\

0,

where H**(Q)) are the potential Bessel spaces, see Cholewa and Diotko [I5]. From

Sobolev embedding theorem, we obtain

IN _ N
N_—da ST

X< L"(QY), forr <
X =L%Q),
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L*(Q) < X%, for s>

2N N
Z<Oé<0,

N i
with continuous embeddings.

It is not difficult to show that A%, is the generator of a strongly continuous analytic
semigroup on X, that we will denote by {e "D : t = 0}, see Krein [31] and Tanabe
[40] for any a € [0, 1].

We recall that the fractional powers of the negative Laplacian operator can to be
calculated through the spectral decomposition: since X = L?(Q) is a Hilbert space and
Ap = —A with zero Dirichlet boundary condition in Q) is a self-adjoint operator and is
the infinitesimal generator of a Cy-semigroup of contractions on X, it follows that there
exists an orthonormal basis composed by eigenfunctions {p,,n = 1} of Ap. Let v, be
the eigenvalues of Ap = —A, then (V2,n) are the eigenvalues and eigenfunctions of
A% = (=A)*, also with zero Dirichlet boundary condition, respectively.

It is well know that the fractional Laplacian A}, : D(AY) ¢ X — X is well
defined in the space

D(Ag) = X = {u = Z anpn € L*(Q) : i a2 < oo}7

where

0
Afu = Z Vpanpn, uwe D(AD) =X
n=1

Finally, we apply all our results from previous sections to boundary value problem

(2.40)-(2.41) to obtain a track in « in which we can present a result of solubility and
passage to the limit at o / % for fractional problems associated with ([2.40)-(2.41]).

2.5 Strongly damped third order equation

In Section we considered, for 0 < a < %, the problem

O3 + koA 02U + BkaoAT O+ A% =0 (2.42)

and we obtained the well-posedness of this problem from the fact that —A% generates
a strongly continuous analytic semigroup on Y for 0 < a < %. If we denote A = A“,

then the equation becomes
03U + ko oA3 02U + 3ka AT du + Au = 0 (2.43)
what led us to consider the following problem:
3u + 3A50%u + 3A30u + Au = 0 (2.44)
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with the initial conditions given by
u(0) = ¢ e X5, du(0) = v e X3, u(0) =& € X, (2.45)

We understand that the fractional term A%@?u + A3 dyu provides a good framework to
the equation

OPu + Au = 0,

in the sense of the gain not only of the existence and uniqueness of global solution but
also the sectorial property for the operator which represents this problem as we will
see in Theorem [2.5.2

We would like to establish an important analogy that brings us to the case of the

wave equation. The second order differential equation in the space X 2 x X
o+ 2nA°0u + Au =0, forn >0 and 0e[1/2,1] (2.46)

has been extensively studied by many authors, see for instance Carvalho and Cholewa
[10], Chen and Triggiani [12], [13]. In [12} 3] the authors prove the sectoriality of the
operators associated with (246), Ay : D(Ag) € X2 x X — X2 x X, for 0 € [1/2,1],

where

0 I

Np = . (2.47)

A 2nA?
We believe that the study of the equation (2.44)) can be seen as the first step to obtaining
for the third order equation a series of analogous results to the second-order case as in
[10, [12] 13]. To our best knowledge, there is no linear analysis, in the sense of geometric
theory of linear parabolic equation as in Henry [25], of Moore-Gibson-Thompson type

equations with fractional damping.

We consider the same phase space

Y = XixX3xX
which is a Banach space equipped with the norm given by

05 =1 + 115y + 1 1

H2 2
X X
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We can write the problem ((2.44)-(2.45)) as a Cauchy problem on Y, letting v = du,

w = 0*u and u = [EZ] and the initial value problem

d

M Au=0,t>0

dt (2.48)
u(0) = uy,

where uy = (p, 1, £) and the unbounded linear operator A : D(A) ¢ Y — Y is defined
by
D(A) = D(A) x D(A3) x D(A3), (2.49)

and

2 1 2 1
A 3A3 3A3 Au+3A3v+3A3w

0 —-I O u —-v u
Au:[o 0 1][&]::[ u ] Vu:[g}eD(/l). (2.50)
In this section we study the resolution of the problem (2.44)-(2.45) and the spectral
properties of the linear operator A. As the main result, we show that A is a sectorial
operator. In this section, we denote
Y= X'x X3 x X5.

Proposition 2.5.1. Let A be the unbounded linear operator defined in (2.49)-(2.50)).
Then the following assumptions hold.

i) A is closed and densely defined;

i1) 0€ p(A) and

moreover, if A has compact resolvent, then A~1 is a compact operator on'Y .

Proof: For (i) note that the inclusion X! x X7 x X3 ¢ X3 x X3 x X is dense (the
inclusions X¢ < X? are dense for @ > 8 = 0). Secondly, we show that the operator

A is closed. Indeed, if u, = [

%Z]GD(A) with u,, - u = [}ﬂ inY as n — oo, and

n

Au, — p = [éé] in Y as n — o0, then
Up — — Q1 in X3 asn — oo
and consequently, v = —¢p; € X 5. As well as, we have

. 1
W, — —po in X3 asn —
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and consequently, w = —ps € X 5.

Next, we have

A(u, + 3A_%vn + 3A_%wn) = Au, + 3A§vn + 3A%wn — 3 in X as n — o0,
and

Xt su, + 3A_%vn + 3A_§wn S u+3A730 + 34 5we X in X asn — 0,

and consequently, since A is a closed operator, we conclude u + 34 350 +3A 5we X1
and A(u+ 34~ 50 + 34~ 3w) = 5. Therefore, [Z] e D(A) and A [Z] - [g]

Item (ii) follows immediately from the definition of A~! which takes bounded
subsets of Y into bounded subsets of Y, the latter space being compactly embedded
inY. [

Theorem 2.5.2. The unbounded linear operator A defined in ([2.49)-(2.50) is a sectorial
operator.

Proof: In this proof, K will denote a positive constant, not necessarily the same one.
First, we note that the operator As D(A%) c X — X is a positive sectorial operator;
that is, there exist ¢ € (0, 5) and M > 0 such that the resolvent set p(A%) contains the

sector

Yo = {AeC; ¢ < |arg(N)| < 7}

and for any A € Xy

1._ M
[ = A3) ey < e
A
It follows that, for each n = 1,2,3,..., (A — A%)_” is a bounded linear operator on
X and
n M"
IO7 = A3 lec) < 5 (2.51)

for any A € X4. Moreover, for each A € ¥4, we have the following identities
AS(AT — A5) % = —(AT — A3) 2 4 A(M — A3) 3,
and
AF(AT — A5)™3 = (A — A3)™ — 2N — A3)™2 4 AX(A] — A3)~5,
Thus A3 (A — A3)™3 and A3 (A — A3)™3 are bounded linear operators on X, and

M?  \MP K

AS(N — A3)~3 < <
|| ( ) ”E(X) |>\|2 + |>\|3 |)\|2’

(2.52)
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and

%_’_ 2AM*> N A2 M3 - 5
AL R T A
Now, we observe that ¥4 < p(A) and for A € p(A), (\[ — A)~" is given by

|AS(A — A3) 2| £ex) < (2.53)

(A2-3XAAF 1343 (A T—A%)=3 (— /\I+3A3)( [—A%)=3 (AI—A3)~3
(A — A)fl = A —AT) (A2—3AA3)(,\1 A%) =3 _\(A[—AF)3 | .
AAN—A%)-3 (BAAZ _A)AT=A3)~3 A2(A[—A3)~3

Finally, we will prove that A is a sectorial operator using the same sector from the

sectoriality of the operator As. If A € ¥y and u = [z] € Y with |uly < 1, then

writing
(A + A) u = [g]
where
o1 = (A2 = 3MAT +3A3)(A — A3) Pu+ (=AI + 3A3)(M — A3) 3y + (A — A3)?
g = —A — A3) By 4+ (A — 3AA3) (M — A3) 30 — MM — A3) P

p3 = A — A3)u+ (3AAT — A)(A — A7)0 + X(A] — AE)—?’

In order to conclude the proof it is sufficient to show that
5], <&
¥p3 Y |)\|

for some K > 0. Note that
loill 3 < IN(AL = A3)™5ul| g + [BAAT (AT — A5)u| s + [3A5 (A — A3)~u

+[AASAT = A5) B0 g+ [BAS(AT = A3) By + [AS(A = A3) Pu|x,

this with (2.51)), (2.52)) and (2.53]) implies that

K
H%HX% < W
Note that
lpall g < IATAT = A5)Pul g + [N(AT — A3) ],
+ [BAAS (AT = A5) 70|y + |AAS (AT — A3) 7w,
and

lesllx < IAAZ (AT — A5)Pull 5 + [3AAS (AL — A5) 7],

3

+AS (AT — A5) 7P|y + [N — A5) Puy,
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From (2.51)), (2.52) and (2.53)) again we have

loal gy < =
and
K
leslx < oik
Therefore,

K
Al

lorll o2 + lle2l 1 + s x <

As a consequence of this last result, we have

Corollary 2.5.3. The unbounded linear operator A defined in (2.49)-(2.50)) is such

that —A is the infinitesimal generator of an analytic semigroup on Y .

Proof: Follows immediately from Theorem [1.3.3
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Chapter 3

Future research directions

The aim of this chapter is to stablish partial results and indicate future research

directions based on the study of the previous chapter.

3.1 Nth order differential equation on a time scale

It is natural to try to generalize the problem ({2.1)-(2.2)) considering for n > 2 the

following abstract evolution equation of n-th order in time, abusing notation

ofu+ Au =10 (3.1)
with initial conditions given by
w0) =upe X5, du(0) =u e X5, 2u(0) =up e X5 ,..., & u(0) = up_y € X,

that is,

n—(i+1)

ou(0) =u; e X =, ie€{0,1,...,n—1}, (3.2)

where A: D(A) € X — X is the linear operator as in Chapter 2.

The idea is to consider analogous results obtained to the case of third order.
When considering this problem, we are faced with several difficulties produced by the
order of the equation. We managed to get some partial results: We prove that the
operator associated with the equation is of positive type and we compute its
fractional powers. For n > 3, we show that the problem given by and is



ill-posed. Finally, we conjecture one result of generation of semigroup for the negative
of the fractional power of the operator associated with and (3.2)).

We will rewrite (3.1)-(3.2) as a first order abstract system. Consider the phase
space

Y =X x X" x X" x - x X
which is a Banach space equipped with the norm given by

Pz 1 P+ ] B

=112 ?

We can write the problem ({3.1)-(3.2)) as a Cauchy problem on Y, letting v; = wu,

vy = Qyu, v3 = O2u, ..., v, = OF 'u and
U1
v2
u= [
and the initial value problem
d
M Au=0,t>0
dt (3.3)
u(0) = uy,

where the unbounded linear operator A : D(A) € Y — Y is defined by

n—1 n—2

D(A)=D(A) x D(A™" ) x D(A™" ) x -+ x D(An

|=

), (3.4)

equipped with the norm given by

=05+ 0 B + 0 e+ 4 1 s
and
0-7 0 - 00 1 —v2 -
000 oo || w i e
Au = - : = : ’ Vu = U.S S D(A) (3'5)
00 0« 0-1| v —m g
AO0O 0 00 Un Avq

From now on, we denote

n—1 n—2 1

YI=D(A)=X"x X7 xX n x--xXn,
equipped with the norm

1.

-0 =15+ 1 B + 0 B+ 4 1 s
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In the following we prove that though the negative of A is not an infinitesimal
generator of a strongly continuous semigroup for n > 3, it is possible to define its
fractional powers A%, for 0 < a < 1, and one can ask what is the maximum subinterval
of (0, 1) where « is taken such that the negative of A% is a generator. We conjecture that
— A% generates a strongly continuous semigroup on Y if and only if 0 < o < 2( 0 and it
generates strongly continuous analytic semigroup on the open interval 0 < a < ﬁ
Note that this agrees with the case of the wave operator, n = 2, and the case n = 3
studied in the last chapter.

Currently, this section is contained in a preprint by myself and Flank D. M.

Bezerra and this manuscript will be submitted for publication soon.

3.1.1 Spectral properties of the operator /A for nth order equa-

tion
In this section, we study spectral properties of the operator A.

Lemma 3.1.1. The resolvent set of —A is given by

p(—A) = {AeC: A" € p(—A)}. (3.6)

Proof: Suppose that A € C is such that \* € p(—A). We claim that A € p(—A).

Indeed, since —A is a closed operator, we only need to show that

My +A:D(A)cY >Y

u1
u2

is bijective. For injectivity consider u = [ :

Un

] € D(A) and (Ay + A)u = 0, then

)\ui—uiH:O, for1<z<n—1
(3.7)

Auy + Au, = 0.
From ([3.7)) we have
(N'Ix + A)u; = 0. (3.8)

Since \" € p(—A), we conclude that u; = 0 and consequently u = 0. For surjectivity
$1

ui
given p = [@:2] €Y we take u = [W] with
Pn Un

= (\"Ix + A)” <Z AnHi=i=1 > Zx i1y (3.9)
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for 1 <i < n. Note that, for 1 <i < n, u; is well defined since \"* € p(—A). Moreover,

n—i+1

u; € D(A" ). Then we have ue D(A) and

My + Du = .

Now suppose that A € p(—A). If u; € D(A) is such that (\"Ix + A)u; = 0, taking

u
Auq
u = :
An71U1

Since A € p(—A), it follows that u = 0 and consequently u; = 0, which proves the

€ D(A) we have

(Aly + A)u = 0. (3.10)

0
injectivity of "Iy + A. Given f € X, consider ¢ = [H € Y. By the surjectivity of

u
u2

: ] € D(A) such that

Un

Ay + A there exists u =

My + Nu = ¢ (3.11)
which gives
(A'Ix + A)uy = f

and the proof is complete.

]

Lemma 3.1.2. If n = 3, then the unbounded linear operator —A with A : D(A) <
Y — Y defined in (3.4)-(3.5) is not the infinitesimal generator of a strongly continuous

semigroup on Y .

Proof: If —/ generates a strongly continuous semigroup {e~4! : ¢t > 0} on Y, it follows

from Theorem that there exist constants w = 0 and M > 1 such that

le Moy < Me*' for all 0 < t < o0. (3.12)

Moreover, from Theorem we have

{Ae C: ReX > w} < p(—4) (3.13)

where p(—A) denotes the resolvent set of the operator —A.
Let u be a nontrivial element of D(A). We shall consider the eigenvalue problem
for the operator —A
—/Au = A\u.
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A straightforward calculation implies
op(—A) ={Ae C: \"eg,(—A)}.

Where 0,(—A) and 0,(—A) denote the point spectrum set of —A and —A, respectively.
Since o,(—A) = {—p; : j € N} with p; € 0,(A) for each j € N and p; — o0 as j — o,
we conclude that

op(—N)n{AeC: Red>w} # J

This contradicts the equation (3.13) and therefore —A can not be the infinitesimal

generator of a strongly continuous semigroup on Y. O

Remark 3.1.3. We note that if n = 3, then —A is not a dissipative operator on Y .

Indeed, if u is a non-trivial element in X' and

oo

—Uu

then

o
ocog

<—/1u,u)Y=< N >=<Au,u>X=||u||§(%>0.
77Auu PU Y

Explicitly, this means that — A is not an infinitesimal generator of a strongly continuous
semigroup of contractions on Y. Nevertheless, the statement in Lemma[3.1.9 is more
precise because it says that —A cannot be the infinitesimal generator of a strongly

continuous semigroup of any type on Y .

Lemma 3.1.4. The unbounded linear operator A defined in (3.4)-(3.5) is of positive
type K = 1.

Ul,j5
u2,5

Proof: Firstly, we show that the operator A is closed. Indeed, if u; = | “* | € D(A)

Un,j

ul %251
ug P2
withu; »u=|" [inY asj— oo, and Au; > pinY as j — oo, where p = | 7 [,
'U:n <P.n
then
Ui j — —@i—q in X" S X asj oo, for 2<i<n
Auyj — ¢, in X as j —
and consequently, u; = —p; 1 € X njﬂ, for 2 < 7 < n. Finally, using the fact that A

is a closed operator, we have u; € D(A) and Au; = ¢,; that is, u € D(A) and Au = .
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Secondly, D(A) = D(A) x D(A") x D(A"7) x --- x D(An) is dense in Y =

n—3

X" < X" x X" x -+ x X since the inclusions X® = X? are dense fora>p=0

Finally, since the operator A is closed, A € p(—A) if and only if the operator AT+ A
u1
ug
u3

is bijective. From Lemma [3.1.1]it follows easily that [0,0) < p(—A). For u =

Un

1
©2
Y= 1 inY and any A = 0 we have

on

M+ A) ta= .

If and only if

n 1—1
— (\"Ix 4+ A)! (Z A”*i“uj) = YNy, (3.14)

P j=1
for 1 < i < n. Note that, for 1 <i < n, ¢; is well defined since A" € p(—A). Moreover,
Vi € D(An Hl) In order to verify the equation (1.8)) for A, it is sufficient to show that

for [uf]y <1 there exists a constant K4 > 1 such that

K,
1+ A

[oallnzr + 2l o2 + 03] s -+ on]x < (3.15)

Note that, for 1 < ¢ < n, we have

i

il et < DINTATOT + A) Mgy s + Y AT A

SO+ A) g o

j=1 Jj=i
(3.16)
Applying Lemma we obtain a constant K > 1 such that
= = AR Ky
Z HQD’L”XTL" Z n TZL+1 < 1 + )\7
i=1 z:1
whereas K, > 1 is sufficiently large. m

3.1.2 Spectral properties of the fractional power operators A

for nth order equation

In this subsection we study spectral properties of the fractional power operators

A% for a € (0,1).

Theorem 3.1.5. If A and A are as in (3.4)-(3.5), respectively, then we have all the
following.

45



i) 0€ p(A) and

0 00 0 A1
-1 00— 0 0
A1 = 0 -0 0 0
0 00 0 0
0 00« —I 0

i1) Fractional powers A“ can be defined for a € (0,1) by

: e
Ao = MJ ALAN + A) A, (3.17)

T 0
iii) Given any o € (0,1) we have that A*: D(A*) €Y — Y, where

at+n—1 at+n—2 at+n—3

D(A*) = D(A" " ) x D(A™ ") x D(A™ %) x --- x D(AR),

s given by

n

A% = [(_2i+j Un_t <cos (M)) A”ﬁj]ij (3.18)

where U, (z) is the n-th Chebyshev polynomial of second kind, see Appendix .

Proof: Part (i) immediately follows from the definition of A. Part (ii) is a consequence
of the fact that A is of positive type operator, see Lemma . Concerning part (7i7)
note that
[AN"T + A)~INT), it i = g
AN+ A7 = ’ : (3.19)
n —1yn+i—j A—1 s ;
[—A T + A)TIAmHI AT i < g
Now we apply in each entry the fractional formula for A
: e
A = MJ ALAN + A)ld,

™ 0

and after the change of variable y = A" and using the property (A.1)), we obtain for

1=

o —1)¢+s ) — 1 ati—j
AT + AN = (=1 Up-1 (cos (M>) A (3.20)

n n

and for ¢ < j, we have

o -1 n+i—j—1 SN atntiej
—A()\nf + A)fl)\nJrzf]Afl _ LUnfl <COS ((Oé +n4+1 ])71')> A%il.

n n
(3.21)
In the last equation we use the property (A.3), which leads to (3.18]). O
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Remark 3.1.6. Analyzing what occurred in the case n = 3 in Theoremm (v), one
may conjecture that for each o € (0,1] the spectrum of —A® is such that the point

spectrum consists of eigenvalues

(3.22)

o mn+(n=2k-1)a)

251,
“‘mﬂtﬁjﬂ:jeN}u{mﬂma = :jeND

U ({ie™==

k=0
where {11} jen denotes the ordered sequence of eigenvalues of A including their multi-

plicity and |z| :== max{z € Z | z < z}.

We include four figures that illustrate the position of the spectrum of —A“ in the

complex plane.

Semi-line containing the eigenvalues of A

Figure 3.1: Location of the eigenvalues for n =4 and a = 1
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Figure 3.2: Location of the eigenvalues for n = 4 and a =
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Figure 3.3: Location of the eigenvalues for n =5 and a = 1
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Figure 3.4: Location of the eigenvalues for n = 5 and o = 2

[ed]

Observe that for « = 1 Figure [3.1] and Figure [3.3] reflect, in particular, the ill-
posedness of the Cauchy problem in the sense that —A® does not generate a
strongly continuous semigroup on the state space Y. See Lemma|3.1.2} Forn =4;a =
2/3 and n = 5;a = 5/8, Figure and Figure show that the spectrum of —A“
begins to reach a region where the generation of a strongly continuous semigroup is
possible. We are thus led to the following conjecture

Conjectura 3.1.7. The negative of the operator A* in (2.12) is the generator of a
0, 57

strongly continuous semigroup on Y if and only if o € %1)] Moreover —A*

generates a strongly continuous analytic semigroup on'Y for a € (O, ﬁ)
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For o € (ﬁ, 1), the computation of the spectrum of —A® in remark [3.1.6

gives

(=A%) " {AeC: Red > w} #

for any w = 0. Thus, the necessary condition for the generation of a strongly continuous
semigroup is violated as in Lemma [3.1.2
when o = ﬁ our idea is to show that —Am D is dissipative and there is

Ao > 0 such that the range, R(Ao + AZ=-), of Aol + A%»-D is Y. Then the result
would follow from Lumer-Phillips Theorem [I.2.5]

For a € (O, ﬁ) we can obtain the sectorial property of —A® by the same
argument as in the case n = 3. Indeed, AZD s also of positive type K = 1 and we
can consider their fractional powers. Therefore we can study A%, for 0 < a < ﬁ,
considering the fractional powers (AZ@-1)8 — AT for 0 < B < 1. Since —AZ=D is
the infinitesimal generator of a strongly continuous contraction semigroup, it follows
from Lemmathat —A% is the infinitesimal generator of an analytic semigroup
for 0 < B < 1 or, in other words, —A® is the infinitesimal generator of an analytic

semigroup for 0 < a < ﬁ

3.2 Fractional powers of operators approach to Euler-
Rodrigues formula for three-dimensional rota-

tion

In this section, we review the Euler-Rodrigues formula for three-dimensional ro-
tation with fractional powers of operators approach. The Euler-Rodrigues formula
describes the rotation of a vector in three dimensions, it was first discovered by Euler
[20] and later rediscovered independently by Rodrigues [39] and it is related a number
of interesting problems in computer graphics, dynamics, kinematics, mathematics, and
robotics, see Cheng and Gupta [14] and references therein.

Reviews of the Euler-Rodrigues formula in different mathematical forms can be
found in the literature, see e.g., Dai [I18], Kahveci, Yayli and Gok [29] and Mebius
[34]. Here, we explored the geometric aspect of the classical Balakrishnan formula in

[4] to obtain a new algorithm for the generation of three-dimensional rotation matrix.
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The idea of exploring the geometry of the spectral behavior of the fractional powers
of operators has been explored in recent years in the infinite-dimensional dynamical
systems, see e.g., Bezerra et al. [7, 5 [6] and Cholewa and Carvalho [10].

Currently, this section is contained in a paper entitled ‘Fractional powers of op-
erators approach to Euler-Rodrigues formula for three-dimensional rotation” by myself
and Flank D. M. Bezerra and this manuscript is submitted for publication.

Here, the matricial representations of linear operators on R? are considered using
the standard basis of R, and i = (n;,ny, n3) denotes a vector in R? with n?+n3+n? =

1.

Lemma 3.2.1. The matriz which represents the rotation by an angle w/2 about the

axis i = (nq,ng,ng) is given by

n? NNy — N3 NiNg + No
A, 7/2) = [ ning + ng n3 nanz —ny | - (3.23)
ning — Ng  NoNg + Ny ng

Proof: Choose two vectors, l1and m, such that {i, m, ii} is a right-handed orthonormal
basis. Let u = al + b + cn, with a, b, c € R, be any vector to be rotated by an angle
7/2 counterclockwise about the axis i. The resulting vector v is the vector u with its

component in the I, 1 plane rotated by /2

u = —bl+ am + ch

= 10 xu+ {u,n)i.
Consider the standard basis {6}, €5, €3} of R3. If u is written as
U = U1€1 + Us€3 + U3€E3,
then

v = fxu+{uni
2 .
= (noug — nauz + uiny + ugning + uzniN3)€1 +
2 ~
(n3u; — nyus + uyning + ugn; + usngng )€z +

~

2
(niug — nauy + ugning + ugneng + ugni)€s.

20



Therefore, the matrix representation of this rotation is

n3 NiNe — N3 NyNg + Noy
A(B,7/2) = | myny +ns nj ngng —my | -0
ning — No  NoNg + Ny n%
Remark 3.2.2. Thanks to the characterization (3.23) of the matriz which represents
the rotation by an angle w/2 about the axis © = (ny,ng,ng) we can obtain a matric
characterization of the linear semigroup generated by A(h,7/2), namely the uniformly

continuous semigroup of bounded linear operators generated by A(fr,7/2), denoted by

T(t), has the following explicit representation
T(t) _ etA(ﬁ,w/2) _ i (tA(ﬁvﬂ-/2))n _

|
o0 n:

ni(e' — cost) + cost  myny(e’ —cost) —nzsint nynz(e’ — cost) + nysint
= | ning(e’ —cost) + ngsint  n3(e! —cost) +cost  ngnz(e’ — cost) —nysint

ning(e’ — cost) —ngsint ngnz(e’ —cost) + nysint  n3(e’ — cost) + cost
for any t = 0.

Remark 3.2.3. An explicit formula for the matrix elements of a general 3 x 3 rotation
matriz can be find in Rodrigues [39]; namely, if R(i,0) denotes the a rotation by an
angle 6 about an azis i = (ny,n2,n3) (n§ + nj + nj = 1), whose elements are denoted

by R;;(11,0), then we have the Rodrigues formula
R;;(10,0) = cos(0)d;; + (1 — cos(0))nin; — sin(8)e;jxn, (3.24)
where d;; denotes the Kronecker delta, i.e.,

1, ifi=j
iy = fi=]
0, ifi#j,

and €, denotes the Levi-Civita tensor, i.e.,
17 Zf(l7j7k)e{(17273)7 (2737 1)7(37 172)}7
€k =4 —1, if (4,7,k) €{(3,2,1),(1,3,2),(2,1, 3)},
0, ifi =7, org=k, ork=n,
which s called the angle-and-axis parameterization of the three-dimensional rotation
matrix.
We wish to derive all the rotations by any angle 6 € R through the rotation by 7 /2
and its fractional powers. In order to get this result we first explicit, in the following
theorem, the fractional power, for 0 < o < 1, of the rotation A(f, 7/2) in Lemma [3.2.1]

It is one of the main results of this section.
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Theorem 3.2.4. For 0 < a < 1, the fractional power of the rotation A(h,7/2) in

Lemmal3.2.1| is given by

AR, 7/2) =
ni(l —cos %) +cos % nyng(l —cos &) —ngsin G nyng(l — cos &F)) 4 ng sin &
ning(1l — cos ) 4 ngsin n3(1 — cos%E) + cos%E nong(l — cos%) — ny sin <
nins(l — cos<F) —ngsin G nong(l — cos 4F) + ny sin & n3(1 — cos%) + cos &

Proof: The proof consists in the explicit calculation of the fractional power of the

operator A(fi, 7/2) through the formula (1.16]) for 0 < a < 1.

AR, 7/2)* — SmoT f N=UAG, 7 /2)(M + A(R, 7/2))"dA, 0 <a <1 (3.25)

T 0

Simple computations give

(M + A(d, 7/2)) ! =
, a?(1=X)+ A1+ A) ab(I—=N)4+c(1+XN) ac(l—X)=b(1+N)
= NF DT D) ab(l—=X)—c(T+X) *(1=XN)+AX1+A) be(l =N +a(l+N)
ac(1 =X +b(1+A) be(1—=X) —a(l+A) A1 =N +A1+N)

and

AR, 7/2)(AT + A(R, 7/2)) " =

XA +1+A  abA(A—=1)—cA(1+A) acA(A — 1) + bA(1 + A)
abAA =1+ A1 +2)  PAN=1)+1+X  beA(A—1) —aX(1+))
acAA—1) —bAL +A) beAA—1) + a1 +A)  AEAA—1)+1+A

1
A+ 1D)(A2+1)

Since
AA-1) 1 |
A+1)(X2+1)  A+1 X +1
At 1 1
A+D2+1) A2 +1
AA+T) A

A+DA2+1)  A2+1

computing the formula in the right-hand side of the equation (3.25]) for each entry of
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the matrix A(f, 7/2)(A + A(f, 7/2))~! and applying (1.16]) for real numbers we obtain

A%(h, 7/2) =
ni(1 — cos &) + cos & n1n2(1 —cos ) —ngsin ¢ nyng(l — cos GF)) + nysin G
ning(1 — cos %) + ngsin G n3(1 — cos%E) + cos<E nang(1 — cos%r) — nysin G
nins(l — cos<F) —nysin & nong(l — cos &) + ny sin & n3(1 — cos&E) + cos &

Finally, the cases a = 0 and o = 1 are immediate, and the proof is complete. o

Corollary 3.2.5. The fractional power A*(fi, 7/2) coincides with the matriz R(f, %) =
[Rij (R, &), where Ri;(i, &) is given by (3.24), for 0 <

We are now in a position to give our definition for the rotation matrix by an angle
6 through fractional powers of the rotation by /2.

Definition 3.2.6. The rotation by 0 € R, denoted by A(i, 0), is defined to be

AR, 0) == A~ (d,7/2). (3.26)

Note that A(fi, 7/2) being of positive type K implies that the fractional power

A%(f, 7/2) is well defined by (1.11]) and (1.14)) for a € R.
Theorem [3.2.4] states that the definition in (3.26]) agrees with the classical one

given by Rodrigues formula in (3.24]) for 0 < 6 < 7/2. The following theorem extends
this result for 6 € R.

Theorem 3.2.7. Let A(iy, ) be the rotation defined in (3.26). Then
A(h,0) = R(1,0) (3.27)
for any 0 € R.

Proof: Firstly for 6 > 0, it is sufficient to show that (3.27) is satisfied for

(n—21)7r< _nm

for n € N. We proceed by induction. The case n = 1 follows from Teorema [3.2.4]

Assuming (3.27)) to hold for n, we will prove it for n + 1. Consider

LU (n+ 1)m
2 2
we have
(n_l)ﬂ\e—zgﬂ
2 2 2



Note that

201

A, 0) = Aii(ﬁ,w/Q) = A= (h,n/2)A(A, 7/2) = AR, 0 — 7/2)A(f, 7/2)  (3.28)
and by induction hypothesis
A(h,0 —7/2) = R(1,0 — 7/2) (3.29)

combining (3.28) with (3.29) we obtain
A(h,0) = R(A,0—n/2)A(R,7/2)
= R(n,0)R(d, —7/2)R(Ra, 7/2)
= R(N,0)
above we use some basic properties of the Euler-Rodrigues formula.

Secondly, for —7/2 < 6 < 0, thanks to (1.11)) and proceeding analogously to the

proof of Theorem (3.2.4)) we can obtain the expression

AR, 7/2) =
ni(1 — cos &) + cos &F n1n2(1 —cos G°) + nzsin ¢ nyng(l — cos G )) — nysin G
ning(l —cos &) —nzsin %t n3(1 —cos G) 4 cos &F nang(1 — cos ) + ny sin F
ning(l — cos ) + ngsin 4 ngng(l — cos G) — nysin G n3(1 — cos &F) + cos &

and so the definition in (3.26]) agrees with the classical one given by Fuler-Rodrigues
formula in (3.24]) for —7/2 < 6 < 0. Finally, an analogous argument of induction as in

the first part of this proof shows that (3.26) agrees with the Euler-Rodrigues formula

in (3.24) for # < 0. ©

Corollary 3.2.8. The family {A(11,0);0 € R}, where

A(n, 0) =
n3(1 —cos(#)) + cos(f)  nying(1 —cos(6)) —nysin(f) nynz(1 — cos(h)) + nysin(6)
nina(l — cos(@)) +mngsin(@)  n3(1 —cos()) +cos(f)  ngnz(1 — cos(h)) — ny sin(h)
(

ninz(1 — cos(0)) — nasin(@) ngnz(1 —cos(6)) + nysin(d)  n3(1 — cos(h)) + cos()

is a uniformly continuous group on R® with infinitesimal generator G : R3 — R3 given

by

0 —nNs3 N9
G = ns 0 —ny
—T9 nq 0



Proof: That the family {A(f, 6); 0 € R} is a group is a immediate consequence of the
definition of A(#, #) in (3.26]) and Lemma|l.5.6, We obtain G easily from the definition

of infinitesimal generator of a group

6—0

D(G) = {u e R? lim w exists}

and

Gu = éiH(l) AW, Oju—u for u e D(G).
Since G is a bounded linear operator, we conclude that {A(f, 0); 0 € R} is a uniformly

continuous group on R?. o

Remark 3.2.9. In particular, we can obtain the explicit expression of the logarithm of
rotations A(1y, 0) thanks to the fact that the logarithm is the infinitesimal generator of

the uniformly continuous group {A%(f, 0); « € R} on R3; namely, we have

0 —0n3 9712
log A(fh,0) = | Ons 0 —0ng
—Hng Gnl 0
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Appendix A

Chebyshev polynomials of the

second kind

In this appendix we give a very brief exposition of the Chebyshev polynomials of
the second kind. We introduce only the definition of these polynomials and state the
two properties used in Chapter [3] See Abramowitz and Stegun [2] for the complete
bibliography. The Chebyshev polynomials of the second kind, U, : C — C for n =

0,1,2,..., are defined by the recurrence relation
UO ([L’) = 1
Up(x) = 2x

Upi1(z) = 22U, (z) — U,_1(z).

They arise in the development of four-dimensional spherical harmonics in angular
momentum theory. However, our interest in them is due to their connection with
trigonometric multiple-angle formulas. Namely, the polynomials of the second kind
satisfy:

Up—1(cosf)sin @ = sinnf (A1)

or
sin ((n + 1))
sin 6

Up(cosf) = (A.2)
They also satisfy the following symmetry property:

Un(—2) = (=1)"U,(z). (A.3)
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