

UNIVERSIDADE FEDERAL DA PARAÍBA CENTRO DE CIÊNCIAS EXATAS E DA NATUREZA PROGRAMA DE PÓS-GRADUAÇÃO EM MODELOS DE DECISÃO E SAÚDE

CARLOS SÉRGIO ARAÚJO DOS SANTOS

OS PARTOS CESÁREOS E SUA INFLUÊNCIA NA MORTALIDADE NEONATAL NOS ESPAÇOS REGIONALIZADOS DO ESTADO DA PARAÍBA DE 2009 A 2017

JOÃO PESSOA FEVEREIRO DE 2021

CARLOS SÉRGIO ARAÚJO DOS SANTOS

OS PARTOS CESÁREOS E SUA INFLUÊNCIA NA MORTALIDADE NEONATAL NOS ESPAÇOS REGIONALIZADOS DO ESTADO DA PARAÍBA DE 2009 A 2017

Tese apresentada ao Programa de Pós-Graduação em Modelos de Decisão e Saúde – Nível Doutorado do Centro de Ciências Exatas e da Natureza da Universidade Federal da Paraíba como requisito regulamentar para obtenção do título de Doutor

Linha de pesquisa: Modelos de decisão

Orientadores:

Prof. Dr. Neir Antunes Paes

Prof. Dr. Rodrigo Pinheiro de Toledo Vianna

JOÃO PESSOA FEVEREIRO DE 2021

Catalogação na publicação Seção de Catalogação e Classificação

S237p Santos, Carlos Sérgio Araújo dos.

Os partos cesáreos e sua influência na mortalidade neonatal nos espaços regionalizados do estado da Paraíba de 2009 a 2017 / Carlos Sérgio Araújo dos Santos. - João Pessoa, 2021.

140 f. : il.

Orientação: Neir Antunes Paes. Coorientação: Rodrigo Pinheiro de Toledo Vianna. Tese (Doutorado) - UFPB/CCEN.

1. Parto. 2. Cesárea. 3. Saúde da população rural. 4. Análise multinível. 5. Confiabilidade dos dados. 6. Mortalidade neonatal. I. Paes, Neir Antunes. II. Vianna, Rodrigo Pinheiro de Toledo. III. Título.

UFPB/BC CDU 612.63(043)

CARLOS SÉRGIO ARAÚJO DOS SANTOS

OS PARTOS CESÁREOS E SUA INFLUÊNCIA NA MORTALIDADE NEONATAL NOS ESPAÇOS REGIONALIZADOS DO ESTADO DA PARAÍBA DE 2009 A 2017

João Pessoa, 12 de fevereiro de 2021

BANCA EXAMINADORA

Prof. Dr. Neir Antunes Paes
Orientador - UFPB

Prof. Dr. Rodrigo Pinheiro de Toledo Vianna
Orientador - UFPB

Profa. Dra. Luciana Correia Alves
Examinadora Externa – UNICAMP

Profa. Dra. Rackynelly Alves Sarmento Soares
Examinadora Externa - IFPB

Prof^a. Dra. Everlane Suane de Araújo da Silva Examinadora Externa - UFPB

"Talvez não tenha conseguido fazer o melhor, mas lutei para que o melhor fosse feito. Não sou o que deveria ser, mas Graças a Deus, não sou o que era antes".

(Marthin Luther King)

AGRADECIMENTOS

Em primeiro lugar agradeço ao Deus pai todo poderoso, por me fortalecer e me abençoar. Sem ele não sou e nem serei ninguém.

Aos meus pais Rita e Damião, aos meus irmãos Saulo e Solange e aos meus sobrinhos Luiza e João Victor, por me apoiarem e me alicerçarem durante toda minha trajetória acadêmica.

Ao meu orientador e grande professor Dr. Neir Antunes Paes, pelas preciosas contribuições, pela paciência durante todo esse tempo de trabalho, pelos ensinamentos e por ser uma figura de grande importância na minha vida acadêmica.

Ao professor Dr. Rodrigo Pinheiro de Toledo Vianna, pela co-orientação e amizade.

A todos os professores do Programa de Pós-graduação em Modelos de Decisão e Saúde/UFPB pelos ensinamentos e pelos momentos de aprendizagem e conhecimentos que proporcionaram durante todo doutorado.

À minha grande amiga Tiê Coutinho, por ter sido uma grande companheira durante todo doutorado e pelas parcerias em diversos trabalhos realizados.

Aos colegas do Laboratório de Estudos Demográficos (LED), em especial ao amigo Basílio, pela amizade, troca de experiências e cumplicidade.

Aos membros da banca examinadora Everlane Suane de Araújo da Silva, Rackynelly Alves Sarmento Soares e Luciana Correia Alves por aceitarem fazer parte da avaliação desta tese e pelas contribuições.

Aos demais colegas do PPGMDS, que se tornaram grandes amigos e futuros companheiros de trabalho.

Para não correr o risco da injustiça, agradeço a todos que de alguma forma passaram pela minha vida e contribuíram para construção de quem eu sou hoje.

RESUMO

A mortalidade infantil é considerada um evento de extrema relevância na saúde pública e na demografia. Um dos importantes fatores associados à mortalidade infantil neonatal é o parto cesáreo que no Brasil atinge níveis em torno de 57%, um dos mais elevados do mundo. Este estudo objetivou investigar a influência dos partos cesáreos na mortalidade neonatal nos espaços regionalizados do Estado da Paraíba no período de 2009 a 2017. Foi selecionado o conjunto de variáveis materno-infantis comuns às bases de microdados do SIM e do SINASC: sexo e raça/cor da criança, idade da mãe, escolaridade materna, número de filhos nascidos vivos, número de filhos nascidos mortos, tipo de gravidez, duração da gestação, peso ao nascer e tipo de parto. O problema das informações não preenchidas ou ignoradas das variáveis nas Declarações de Óbitos neonatais foi tratado com uma combinação de procedimentos tendo como base a aplicação das técnicas de Linkage Determinístico e da Imputação Múltipla. A estimação da cobertura dos óbitos neonatais e o Índice de Informações Desconhecida das Variáveis (IIDV) para os três espaços regionalizados do Estado: Urbano, Rural Adjacente e Intermediário Adjacente foram obtidos. Para aplicação do Modelo Logístico Binário Multinível foram considerados dois níveis: cada registro de óbito neonatal (nível 1) e caracterização municipal (nível 2). Foram realizadas três modelagens: No primeiro, a variável tipo de parto foi considerada como variável dependente; no segundo e no terceiro modelos a variável tipo de parto foi considerada como independente. À luz dos 5.149 óbitos neonatais na Paraíba de 2009 a 2017, verificaram-se nos municípios Urbanos proporções mais elevadas de óbitos neonatais de crianças nascidas via parto cesáreo. As variáveis tipo de parto, escolaridade da mãe e número de filhos mortos se destacaram como fatores diferenciadores dos óbitos neonatais nos municípios Urbanos em relação aos municípios Rurais Adjacentes e Intermediários Adjacentes. O Linkage e a Imputação Múltipla solucionaram o problema das variáveis com dados faltantes e impediram que observações do banco de microdados fossem retiradas o que causaria interpretações enviesadas. A estimação da cobertura dos óbitos neonatais e os IIDV dimensionaram o nível de subregistro. Os resultados da modelagem revelaram que a chance de nascimento via cesáreo entre as crianças que morreram em até 28 dias aumenta à medida que a idade e a escolaridade da mãe se eleva e com a presença de gravidez múltipla, e a chance reduz à medida que aumenta o número de filhos nascidos mortos. Os resultados reforçaram a necessidade urgente de políticas públicas e privadas mais efetivas para reduzir o índice de cesarianas eletivas a patamares aceitáveis (10% - 15%) principalmente nos municípios Urbanos para uma consequente redução dos níveis da mortalidade neonatal.

Palavras-chave: Cesárea; Mortalidade Neonatal; Saúde da População Rural; Análise Multinível; Confiabilidade dos Dados.

ABSTRACT

Infant mortality is considered an event of extreme relevance in public health and demography. One of the important factors associated with neonatal infant mortality is cesarean delivery. which in Brazil reaches levels around 57%, one of the highest in the world. This study aimed to investigate the influence of cesarean deliveries in neonatal mortality in the regionalized divisions of the State of Paraíba from 2009 to 2017. It was selected as the set of maternal and child variables common to the SIM and SINASC micro databases: gender and race / child color, age of mother, mother's level of education, number of children born alive, number of children born dead, type of pregnancy, duration of pregnancy, birth weight and type of delivery. The problem of information not filled in or ignored of the variables in the Neonatal Death Statements was treated with a combination of procedures based on the application of the Deterministic Linkage and Multiple Imputation techniques. The estimation of the coverage of neonatal deaths and the Unknown information índex of the variables (IIDV) for the three regionalized divisions of the State: Urban, Adjacent Rural and Adjacent Intermediate were obtained. For application of the Multilevel Binary Logistic Model, two levels were considered: each neonatal death record (level 1) and municipal characterization (level 2). Three models were performed: in the first, the variable Type of Delivery was considered as a dependent variable; in the second and third models the variable Type of delivery was considered as independent. In the light of the micro-data of 5,149 neonatal deaths in Paraíba from 2009 to 2017, higher proportions of neonatal deaths of children born via cesarean delivery were found in Urban municipalities. The variables Type of delivery, Mother's level of education and number of children dead stood out as differentiating factors for neonatal deaths in Urban municipalities in relation to the Adjacent Rural and Adjacent Intermediate municipalities. Linkage and Multiple Imputation solved the problem of variables with missing data and prevented observations from the microdata bank from being removed which would cause biased interpretations. The estimation of the coverage of neonatal deaths and the IIDV dimensioned the level of under-registration. The modeling results revealed that the chance of birth via cesarean section among children who died within 28 days increases as the mother's age and schooling increases and with the presence of multiple pregnancies, and the chance decreases as she increases the number of children born dead. The results reinforced the urgent need for more effective public and private policies to reduce the rate of elective cesarean sections to acceptable levels (10% - 15%) mainly in Urban municipalities for a consequent reduction in neonatal mortality levels.

Keywords: Cesarean Section; Neonatal Mortality; Rural Health; Multilevel Analysis; Data Accuracy.

LISTA DE FIGURAS

Figura 2.1: Distribuição percentual dos nascidos vivos segundo tipo de parto na Paraíba,
SINASC 2009 a 2017
Figura 3.1: Mapa dos municípios da Paraíba segundo caracterização municipal do
IBGE55
Figura 3.2: Estruturação dos bancos de dados e das etapas do linkage entre SIM e SINASC,
Imputação Múltipla e Modelagem Multinível
Figura 4.1: Padrões de não resposta nos registros de óbitos neonatais do SIM na Paraíba, 2009
a 2017 80
Figura 4.2: Percentagem de casos em cada padrão nos registros de óbitos neonatais do SIM na
Paraíba, 2009 a 2017
Figura 4.3: Óbitos neonatais por Sexo da criança segundo os espaços regionalizados da Paraíba
nos triênios de 2009 a 2017
Figura 4.4: Óbitos neonatais por Raça/cor da criança segundo os espaços regionalizados da
Paraíba nos triênios de 2009 a 2017
Figura 4.5: Óbitos neonatais por Idade da mãe segundo os espaços regionalizados da Paraíba
nos triênios de 2009 a 2017
Figura 4.6: Óbitos neonatais por Escolaridade da mãe segundo os espaços regionalizados da
Paraíba nos triênios de 2009 a 2017
Figura 4.7: Óbitos neonatais por Duração da gestação segundo os espaços regionalizados da
Paraíba nos triênios de 2009 a 2017
Figura 4.8: Óbitos neonatais por Tipo de gravidez da mãe segundo os espaços regionalizados
da Paraíba nos triênios de 2009 a 201790
Figura 4.9: Óbitos neonatais por Número de filhos vivos da mãe segundo os espaços
regionalizados da Paraíba nos triênios de 2009 a 201791
Figura 4.10: Óbitos neonatais por Número de filhos mortos da mãe segundo os espaços
regionalizados da Paraíba nos triênios de 2009 a 201792
Figura 4.11: Óbitos neonatais por Tipo de parto segundo os espaços regionalizados da Paraíba
nos triênios de 2009 a 201793
Figura 4.12: Óbitos neonatais por Peso ao nascer segundo os espaços regionalizados da Paraíba
nos triênios de 2009 a 2017
Figura 4.13: Proporção de partos cesáreos entre as caracterizações municipais da Paraíba, 2009
a 2017

Figura 4.14: Gráficos de dispersão e retas ajustadas das relações entre a variável Tipo de Parto
e as variáveis Raça/Cor, Idade da mãe, Escolaridade da mãe, Número de filhos vivos, Número
de filhos mortos e Tipo de gravidez nas caracterizações municipais da Paraíba, 2009 a 201799
Figura 4.15: Gráfico de dispersão dos Resíduos de Pearson versus valores ajustados do modelo
logístico binário multinível
Figura 4.16: Gráfico normal de probabilidades do modelo logístico binário multinível108
Figura 4.17: Proporção de óbitos neonatais que nasceram prematuros entre as caracterizações
municipais da Paraíba, 2009 a 2017
Figura 4.18: Gráfico de dispersão e retas ajustadas da relação entre a variável Duração da
gestação e Tipo de Parto nas caracterizações municipais da Paraíba, 2009 a 2017113
Figura 4.19: Proporção de óbitos neonatais que nasceram com baixo peso entre as
caracterizações municipais da Paraíba, 2009 a 2017
Figura 4.20: Gráfico de dispersão e retas ajustadas da relação entre a variável Peso ao nascer
e Tipo de Parto nas caracterizações municipais da Paraíba, 2009 a 2017118

LISTA DE QUADROS

Quadro 2.1: Critérios utilizados para nova tipologia de classificação municipal54

LISTA DE TABELAS

Tabela 4.1: Número e percentual de informações ignoradas ou não preenchidas segundo
variáveis selecionadas da Declaração de Óbito neonatal no Estado da Paraíba nos triênios de
2009 a 2017 72
Tabela 4.2: Percentual de registros de óbitos neonatais pareados entre todos os registros
segundo espaços regionalizados segundo o ano de ocorrência na Paraíba de 2009 a
2017
Tabela 4.3: Número e percentual de informações ignoradas ou não preenchidas após o linkage
determinístico segundo variáveis selecionadas da Declaração de Óbito neonatal no Estado da
Paraíba nos triênios de 2009 a 2017
Tabela 4.4: Número e percentual de informações ignoradas ou não preenchidas das variáveis
selecionadas antes e após o uso do linkage segundo os espaços regionalizados da Paraíba de
2009 a 2017 78
Tabela 4.5: Eficiência Relativa segundo variáveis materno-infantis selecionadas de acordo
com a escolha de cinco imputações, Paraíba 2009 a 2017 79
Tabela 4.6: Cobertura dos óbitos neonatais nos espaços regionalizados segundo os triênios da
Paraíba de 2009 a 2017
Tabela 4.7: Índice de Informação Desconhecida das Variáveis (IIDV) ignoradas ou não
preenchidas antes e depois do linkage por espaço regionalizado segundo variáveis selecionadas
da Paraíba de 2009 a 2017
Tabela 4.8: Estatísticas do teste Qui-quadrado para verificação da relação entre a variável Tipo
de Parto com as demais variáveis selecionadas, Paraíba, 2009 a 201796
Tabela 4.9: Estatísticas do Modelo Nulo: apenas com o intercepto dos óbitos neonatais nas
caracterizações municipais da Paraíba, 2009 a 2017
Tabela 4.10: Estimativas dos parâmetros do "modelo mais parcimonioso" com todas as
variáveis independentes fixas significativas segundo o modelo de regressão logística binário
multinível ajustado para os dados sobre óbitos neonatais na Paraíba, 2009 a 2017 106
Tabela 4.11: Análise de Variância (ANOVA) para os dados sobre óbitos neonatais segundo
fator de caracterização municipal da Paraíba de 2009 a 2017
Tabela 4.12: Estatísticas do Teste de Bonferroni para as Caracterizações municipais da Paraíba
segundo variáveis Tipo de parto, Escolaridade da mãe e Número de filhos mortos de 2009 a
2017

Tabela 4.13: Modelo Nulo: Apenas com o intercepto dos óbitos neonatais nas caracterizações
municipais da Paraíba, 2009 a 2017115
Tabela 4.14: Estimativas dos parâmetros do modelo final com a variável independente fixa
(Tipo de Parto) significativa dos óbitos neonatais nas caracterizações municipais da Paraíba,
2009 a 2017 116
Tabela 4.15: Modelo Nulo: Apenas com o intercepto dos óbitos neonatais nas caracterizações
municipais da Paraíba, 2009 a 2017
Tabela 4.16: Estimativas dos parâmetros do modelo final com a variável independente fixa
(Tipo de Parto) significativa dos óbitos neonatais nas caracterizações municipais da Paraíba,
2009 a 2017 120

LISTA DE SIGLAS

ANOVA Análise de Variância

ANS Agência Nacional de Saúde Suplementar
CCI Coeficiente de Correlação Intra-classe
CENEPI Centro Nacional de Epidemiologia
CFM Conselho Federal de Medicina

CTA Comitê Técnico Assessor

DATASUS Departamento de Informática do Sistema Único de Saúde

DMS Diferença Média SignificativaDN Declaração de Nascido Vivo

DO Declaração de Óbito

EM Expectation-Maximization

ER Eficiência Relativa

e-SUS AB Estratégia de Informatização da Atenção Básica IBGE Instituto Brasileiro de Geografia e Estatística

ICC Coeficiente de Correlação Intra-classe IDH Índice de Desenvolvimento Humano

IIDV Índice de Informação Desconhecida da Variável

IM Imputação Múltipla

IPEA Instituto de Pesquisa Econômica Aplicada

LSD Least Significant Difference

MAR Missing At Random

MCAR Missing Completely At Random

MCEE Maternal and Child Epidemiology Estimation Group

MICE Multivariate Imputation by Chained Equations

MLG Modelos Lineares Generalizados

MS Ministério da Saúde NMAR Not Missing At Random

OCDE Organização para a Cooperação e Desenvolvimento Econômico

ODM Objetivos de Desenvolvimento do Milênio ODS Objetivos de Desenvolvimento Sustentável

OMS Organização Mundial da Saúde ONU Organização das Nações Unidas

PIB Produto Interno Bruto

PNAD Pesquisa Nacional por Amostra de Domicílio

PNS Pesquisa Nacional de Saúde QME Quadrado Médio dos Resíduos

SAI Sistema de Informações Ambulatoriais

SI-PNI Sistema de Informações do Programa Nacional de Imunização

SIH Sistema de Informações Hospitalares

SIM Sistema de Informações sobre Mortalidade

SINAN Sistema de Informação de Agravos de Notificação SINASC Sistema de Informações sobre Nascidos Vivos

SIOPS Sistema de Informação sobre Orçamento Público em Saúde

SIS Sistemas de Informação em Saúde

SISCAM Sistema de Informações do Câncer da Mulher

SISVAN Sistema de Informações de Vigilância Alimentar e Nutricional

SUS Sistema Único de Saúde
TMI Taxa de Mortalidade Infantil
TMN Taxa de Mortalidade Neonatal
TMP Taxa de Mortalidade Perinatal
UNICEF United Nations Children's Fund
WHO World Health Organization

SUMÁRIO

1 IN	VTRODUÇÃO	18
1.1 J	Justificativa	20
1.2 (Objetivos	23
2 RI	EFERENCIAL TEÓRICO	24
2.1	A Mortalidade Infantil	24
2.1.1	1 Mortalidade Neonatal	26
2.1.2	2 Mortalidade Pós-neonatal	27
2.1.3	3 Mortalidade Perinatal	28
2.2	Tipos de parto	29
2.3 (Os Sistemas Nacionais de Informações das Estatísticas Vitais	31
2.3.1	1 Sistemas de Informações do IBGE	32
2.3.2	2 Sistemas de Informações do Ministério da Saúde	33
2.4	Qualidade das Informações	37
2.5 I	Relacionamentos de bases de dados das Estatísticas Vitais	39
2.6]	Imputação de Dados	41
2.6.1	1 Mecanismos de ausência de dados	42
2.6.2	2 Padrões de dados ausentes	43
2.6.3	3 Métodos de Imputação única	43
2.6.4	4 Imputação Múltipla	45
2.7 N	Modelagem Estatística	47
2.8 N	Modelagem Multinível	48
2.9 (Caracterização dos Espaços Regionais	50
3 M	ETODOLOGIA	55
3.1	Caracterização do estado da Paraíba	55
3.2	Base, Fonte de dados e Tipo de Estudo	56
3.3	Qualidade das informações de óbitos neonatais	57
3.4	Análise Descritiva das Variáveis	61
3.5	Análise Bivariada	62
3.6	Modelagem Multinível	62
3.8	Análise de Variância (ANOVA)	
4 RI	ESULTADOS E DISCUSSÕES	71

4.1 Análise da qualidade dos Registros de óbitos neonatais	71
4.1.1 Linkage Determinístico	72
4.1.2 Imputação Múltipla	78
4.1.3 Cobertura dos Registros de Óbitos Neonatais	81
4.1.4 Índice de Informação Desconhecida das Variáveis	82
4.2 Análise do Perfil das variáveis Materno-infantil da Declaração de G	Óbito Neonatal . 84
4.3 Modelagem Multinível	95
4.3.1 Análise Bivariada	95
4.3.2 Modelagem Estatística	96
5 CONSIDERAÇÕES FINAIS	122
PRODUÇÕES CIENTÍFICAS	125
REFERÊNCIAS	126
ANEXO 1 – Modelo da Declaração de Nascido Vivo	140
ANEXO 2 – Modelo da Declaração de Óbito	141

1 INTRODUÇÃO

A mortalidade infantil representa um evento de extrema relevância na saúde pública e na demografia. Tradicionalmente a mensuração dos seus níveis e padrões é utilizada para tomada de decisão em políticas públicas direcionadas à saúde materno-infantil. A mortalidade infantil pode ser segmentada em neonatal (óbitos ocorridos nos primeiros 27 dias de vida) e pós-neonatal (óbitos de crianças entre 28 dias e menos de um ano de vida). Essa divisão é feita no sentido de se avaliar indiretamente a importância das causas endógenas e exógenas de óbito. As primeiras estão relacionadas às condições desfavoráveis do recém-nascido, tais como imaturidade e anomalias congênitas. Já as segundas são o produto da atuação de condições ambientais hostis sobre crianças nascidas em boas condições (MONTEIRO et al., 1988). Sua redução fez parte das metas do milênio, propostas pela Organização das Nações Unidas (ONU) para o alcance de níveis mais apropriados de vida para a população mundial, uma vez que reflete as condições de vida da sociedade (UNITED NATIONS, 2000).

Apesar dos avanços verificados mundialmente em virtude de compromissos assumidos por entidades internacionais, pela sociedade civil e organizada e pelas políticas públicas instituídas em diversos países, nota-se ainda uma grande disparidade na taxa de mortalidade infantil entre países desenvolvidos e em desenvolvimento (BARRETO, CORREIA e CUNHA, 2014). No Brasil, houve uma importante redução na mortalidade infantil ao longo das últimas décadas (LANSKY et al., 2014), devido à queda da fecundidade, à expansão do saneamento básico, à reorganização do modelo de atenção à saúde, às melhorias na atenção à saúde da criança, ao aumento na cobertura das campanhas de vacinação e na prevalência do aleitamento materno, que influenciaram a redução de doenças infecciosas nos primeiros anos de vida (BRASIL, 2012).

As mortes infantis ocorrem como consequência de uma série de fatores biológicos, sociais, culturais e de falhas do sistema de saúde e, portanto, as intervenções direcionadas à sua redução dependem tanto de mudanças estruturais relacionadas às condições de vida da população, como de ações diretas definidas pelas políticas públicas de saúde (DUARTE e MENDONÇA, 2005). Muitas pesquisas demográficas e epidemiológicas também foram feitas, sobre as causas das doenças infantis e as vias pelas quais elas atuam. O trabalho nesta área que mais influenciou as políticas públicas foi o proposto por Mosley e Chen (2003).

A mortalidade neonatal apresenta variações e tendências diferentes nas várias regiões do mundo. Sendo assim, em países com atenção precária à saúde esperam-se taxas de mortes neonatais bem superior àquelas de países ricos (CABRAL et al., 2013). Nos países

desenvolvidos como Estados Unidos, Finlândia, Inglaterra e País de Gales, onde o peso relativo das doenças infecciosas é baixo, a diminuição se faz principalmente devido à redução da mortalidade neonatal. Segundo Lansky et al. (2014), no Brasil, a mortalidade neonatal é mais frequente nas regiões Norte e Nordeste e menores nas regiões Sul e Sudeste.

A mortalidade neonatal apresenta queda em várias partes do mundo. De 1990 a 2010, houve uma redução nas taxas de mortalidade neonatal de aproximadamente 50% nas regiões europeias e 19% nas regiões africanas (WHO, 2011). No Brasil, estudos mostram uma tendência de redução em todas as regiões (CABRAL et al., 2013). Entretanto, para atingir os níveis de regiões mundiais mais desenvolvidas, ainda existem alguns pontos que necessitam ser alcançados, como: a diminuição das desigualdades regionais e as iniquidades relacionadas à grupos sociais específicos (CARETI, SCARPELINI e FURTADO, 2014).

Estudar os fatores que influenciam a mortalidade neonatal é de suma importância, uma vez que estas informações servem como alerta para o acompanhamento e vigilância dos óbitos, além de favorecer o planejamento de ações de saúde visando à redução das taxas de mortalidade. Partindo desse princípio, conhecer o perfil materno e do recém-nascido auxilia na melhor compreensão desta problemática, tanto em nível acadêmico quanto em nível profissional (SAMPAIO NETO, 2018).

Um dos fatores associados à mortalidade neonatal é o parto (GUROL-URGANCI et al., 2011; HUANG et al, 2011; ALMEIDA, GOMES e NASCIMENTO, 2014). As taxas de partos cesarianos aumentaram muito desde 1985, enquanto a Organização Mundial da Saúde (OMS) estipulou uma recomendação de que a taxa de cesárea em relação ao total de nascimentos não deveria ultrapassar 15%. São muitas razões para este aumento. Até mesmo atualmente, a maior proporção de cesariana ocorre no grupo social mais privilegiado da sociedade, com melhor nível socioeconômico e educacional, paradoxo assistencial relacionado às práticas do setor privado de saúde (DOMINGUES et al., 2014; BARROS et al., 2015).

A cesariana pode provocar complicações que estão relacionadas a uma maior frequência de prematuridade (HOFELMANN, 2012; BALBI, CARVALHAES e PARADA, 2016). Um risco potencial relacionado à cesariana, em especial à cesariana eletiva (realizada com data marcada sem trabalho de parto) é o nascimento prematuro. Segundo a OMS o parto prematuro é aquele que ocorre entre a 22ª e 37ª semana gestacional. Esta prematuridade é vista como um dos principais determinantes da morbidade e da mortalidade infantil (LIU, 2015).

A proporção de partos cesáreos no Brasil é uma das maiores do mundo, muito superior ao limite recomendado pela OMS (WHO, 1985; LAGES, 2012). O percentual de partos cesáreos teve crescimento acentuado em todas as regiões do país. Entre 2001 e 2014, as

cesarianas cresceram 67% no país, tornando-se o método de nascimento prevalente, representando 57% dos nascimentos em 2014 (ENTRINGER, GOMES, COSTA e PINTO, 2018).

As características da área de residência têm sido enfocadas também como um dos determinantes da mortalidade infantil. A área de residência (urbana ou rural) da mulher afeta indiretamente a mortalidade infantil pela determinação do seu acesso a serviços de atenção à saúde. Na área urbana, a mulher tem maior probabilidade de encontrar um meio de transporte aos postos de serviços de saúde, de adquirir recursos monetários para custear medicamentos, assim como maior oportunidade para a educação e habilidade de alocar, no domicílio, recursos necessários para a saúde das crianças (ALBERTO, 2010). Em 2017, O Instituto Brasileiro de Geografia e Estatística publicou uma nova proposta de discussão sobre os critérios até então utilizados na delimitação do território nacional, de forma a aprimorar o Censo Demográfico de 2021, para oferecer à sociedade avanços na diferenciação das áreas rurais e urbanas, de modo a "subsidiar a implementação de políticas públicas e o planejamento em geral no país". Assim, a nova proposta resultou em cinco espaços regionais rural/urbano: Urbano, Intermediário Adjacente, Intermediário Remoto, Rural Adjacente e Rural Remoto (IBGE, 2017).

As regiões brasileiras guardam características particulares em relação à atenção à saúde que necessitam ser bem conhecidas no contexto local. Pouco se conhece sobre os níveis e padrões de mortalidade infantil regional no Estado da Paraíba e seus efeitos provocados pelos partos cesáreos. Assim, o presente estudo parte da premissa de que o Brasil é um país que possui elevado índice de partos cesáreos. Dessa forma, indaga-se sobre a influência do alto índice de cesarianas na mortalidade neonatal no Estado da Paraíba: Qual a influência do parto cesariano na mortalidade neonatal? Há associação entre as características materna e os fatores obstétricos na preferência desse tipo de parto? Havendo associação, como ela se comporta nos diferentes espaços regionais do Estado da Paraíba?

1.1 Justificativa

No Brasil, a mortalidade neonatal representa, no primeiro ano de vida das crianças, em torno de 70% dos óbitos, dos quais 25% ocorrem nas primeiras 24 horas pós-parto, por isso ela tem se tornado mais relevante ao longo das últimas décadas, sendo a principal responsável pela manutenção de altos valores do coeficiente de mortalidade infantil tendo em vista que a mortalidade pós-neonatal se encontra em declínio (GAIVA, FUJIMORI e SATO, 2016).

A mortalidade neonatal é sensível a fatores endógenos ou biológicos relacionados à gestação e ao parto. Sua redução envolve maior complexidade e maior custo na prevenção desses óbitos relacionados a problemas genéticos, malformação do feto, gravidez tardia e complicações no parto e pós-parto (KASSAR et al., 2013).

Conforme dados do Portal da Saúde, o Brasil tem vivido uma epidemia de realização de partos cesarianos, chegando em 2016 a 55% do tipo de parto realizados e atingindo a frequência de 84,6% dos partos realizados nos serviços privados de saúde. No sistema público, a taxa é de 40%, consideravelmente menor, mas ainda elevada (BÉTRAN et al., 2016). As altas taxas de partos cesáreos são questionadas e criticadas pela comunidade acadêmica no campo da obstetrícia por sua associação a eventos indesejáveis para a mãe e filho, como o nascimento de neonatos prematuros, de baixo peso, com transtornos respiratórios e neurológicos e ainda pela alta incidência de infecções maternas puerperais (NANDI, SAHA, MITRA e PAL, 2015; OLIVEIRA, MELO, FALAVINA e MATHIAS, 2015).

A prematuridade é considerada um dos mais sérios problemas gestacionais e um dos principais fatores de risco para o óbito neonatal. O Brasil está entre as 10 nações com maior proporção de nascimentos pré-termo, sendo a maior parte destes considerados reduzíveis por adequada atenção à mulher na gestação (WHO, 2012; LANSKY et al., 2014).

No Brasil, os sistemas de informação em saúde (SIS), notadamente o Sistema de Informações sobre Mortalidade (SIM) e o Sistema de Informações sobre Nascidos Vivos (SINASC), criados pelo Ministério da Saúde (BRASIL, 2011a; BRASIL, 2011b), têm sido a base das estatísticas vitais e são amplamente utilizados para o estudo da mortalidade infantil e neonatal, principalmente pela possibilidade de relacionamento de dados entre os dois sistemas (ZANINI, MORAES, GIUGLIANI e RIBOLDI, 2011; MENDES et al., 2012; SANTOS et al., 2014).

É fundamental a utilização dessas bases de dados para elaboração de análises e perfis epidemiológicos, com a finalidade de obter conhecimento local das necessidades mais urgentes e futuras intervenções em saúde como forma de elucidação dos problemas existentes. Ademais, o conhecimento da mortalidade proporciona a elaboração de políticas públicas resolutivas para a melhoria desse serviço em saúde (MAIA, SOUZA, MENDES e SILVA, 2017).

O conhecimento das características e determinantes dos óbitos subsidia o adequado planejamento em saúde e, portanto, a qualidade das informações das estatísticas vitais é fundamental. No entanto, vários aspectos, dentre os quais se destacam a completude das variáveis, a fidedignidade e a consistência, precisam ser analisados na avaliação da qualidade das estatísticas vitais. O sub-registro e a presença de variáveis ignoradas ou não preenchidas

ainda comprometem a confiabilidade dos dados e, consequentemente, a obtenção de informações reais sobre a mortalidade infantil no país (SILVA, OLIVEIRA, FERREIRA e BONFIM, 2013).

Nessa perspectiva, destaca-se a análise de completude das variáveis enquanto importante dimensão para a avaliação da qualidade das informações, expondo a falta de cuidado e de importância dada ao preenchimento pelos profissionais de saúde, ausência de dados nos prontuários médicos e até o desconhecimento de certas informações pelos acompanhantes da mulher ou da criança (MAIA, SOUZA, MENDES e SILVA, 2017).

A maioria dos estudos investigam as características das mães e das crianças como fatores que elevam o risco de mortalidade infantil, no entanto, boa parte desconsidera a estrutura hierárquica intrínseca nos dados, ou seja, não leva em conta a correlação existente entre indivíduos de um mesmo grupo, o que pode produzir inferências incorretas.

Os modelos de regressão multiníveis permitem contemplar o efeito da hierarquia, possibilitando explorar a dimensão da variabilidade em cada nível, ou seja, avaliar quanto das diferenças individuais do desfecho em estudo é atribuído aos níveis individual e contextual, tornando possível a análise das características que podem explicar essas diferenças, auxiliando em estratégias de prevenção.

No contexto rural e urbano no Estado da Paraíba, os modelos multiníveis são uma ferramenta imprescindível, uma vez que essas regiões guardam entre si características peculiares o que reforça a aplicação dessa modelagem.

O estado da Paraíba carece de estudos regionais com abordagens estatística de multinível que faça uso de variáveis de saúde materno-neonatal que constam na Declaração de Óbito. Abordagens estas, que tenham como desfecho informações decisivas que diferenciem a situação rural-urbana dos municípios do estado. A aplicação de metodologias estatísticas dessa natureza, podem servir como suporte para a elaboração de políticas públicas que possam minimizar os efeitos da mortalidade neonatal nos diferentes espaços regionais da Paraíba.

Desse modo, a investigação dessa problemática é considerada relevante, pois estudos que abordam a mortalidade neonatal e a crescente realização de partos cesáreos tendo como consequência a prematuridade e o baixo peso ao nascer são escassos na região Nordeste e ausentes para o Estado da Paraíba bem como nos seus espaços regionalizados.

1.2 Objetivos

Objetivo Geral:

Analisar a influência dos partos cesáreos na mortalidade neonatal nos espaços regionalizados do Estado da Paraíba de 2009 a 2017.

Objetivos Específicos:

- Avaliar a qualidade dos registros de óbitos neonatais;
- Investigar a associação entre as variáveis materno-infantil e tipo de parto entre os óbitos neonatais;
- Analisar a ocorrência dos partos cesáreos nos diferentes espaços regionais do Estado.

2 REFERENCIAL TEÓRICO

2.1 A Mortalidade Infantil

Compreende-se conceitualmente a mortalidade infantil como o número de óbitos ocorridos no período do nascimento até o primeiro ano de vida. O indicador Taxa de Mortalidade Infantil (TMI) é considerado muito sensível às condições de vida e de saúde de uma população. Esta taxa é calculada pela razão entre o número de óbitos em menores de um ano de idade e o total de nascidos vivos na mesma área geográfica e período, multiplicado por 1.000 (PAES, 2018). Os óbitos de menores de um ano dividem-se em: neonatal precoce (0 a 6 dias); neonatal tardia (7 a 27 dias) e pós-neonatal (28 a 365 dias).

A TMI expressa uma combinação de fatores hereditários, contextuais, individuais da mãe e relacionados à atenção à saúde para crianças menores de um ano. Além de ser um indicador demográfico e de saúde, a mortalidade infantil é um marcador do desenvolvimento humano, sendo crescente o interesse por sua mensuração (ALMEIDA e SZWARCWALD, 2014; LOURENÇO et al., 2014).

Considera-se ainda o óbito perinatal que compreende o número de óbitos fetais (a partir de 22 semanas, ou 154 dias de gestação) acrescidos dos óbitos neonatais precoces (zero a seis dias de vida). Esse indicador é utilizado na avaliação da qualidade de assistência prestada à gestação, parto e ao recém-nascido (BRASIL, 2009; ALMEIDA e SZWARCWALD, 2014; LOURENÇO et al., 2014).

Sendo a TMI um excelente indicador de qualidade de vida de uma população, ela é capaz de explicitar as condições de saúde de uma sociedade quanto ao seu grau de desenvolvimento (ALMEIDA e SZWARCWALD, 2014).

A mortalidade infantil vem diminuindo nos países em desenvolvimento desde o século XX, em razão das melhores condições de vida e de saneamento das populações. A partir da década de 60, avanços tecnológicos na área da saúde e programas, como os de imunizações, aleitamento materno e a reidratação oral, preconizados pela OMS, contribuíram para uma forte redução na mortalidade de crianças no primeiro ano de vida (IBGE, 2011).

No ano 2000, a Organização das Nações Unidas (ONU) firmou um pacto internacional com 191 países pela eliminação da pobreza. Na ocasião, a ONU estabeleceu os oito Objetivos de Desenvolvimento do Milênio (ODM), a serem alcançados até 2015 por meio de ações de combate à fome e a pobreza, promoção de políticas de saúde, saneamento, habitação e meio

ambiente. A meta do quarto ODM visou reduzir a mortalidade de menores de 5 anos em dois terços até 2015, com uma meta global de 32 por 1.000 nascidos vivos (BRASIL, 2009). Segundo o Relatório Nacional de Acompanhamento dos ODM 2013, o Brasil já havia alcançado a meta, estando à frente de muitos países signatários. O Brasil também já atingiu a meta estabelecida em relação às mortes de crianças com menos de 1 ano de idade, passando de 47,1 para 15,3 óbitos por 1.000 nascidos vivos em 2011, superando a meta de 15,7 óbitos estimada para 2015 (BRASIL, 2014).

Mesmo tendo atingido a meta preconizada pela ONU, a redução da mortalidade infantil é ainda um grande desafio no Brasil para os gestores, profissionais de saúde e para a sociedade como um todo. Apesar da queda importante na última década, decorrente da redução da mortalidade pós-neonatal os índices são ainda elevados, há uma estagnação da mortalidade neonatal no país – principal componente da mortalidade infantil desde a década de 90 – e uma concentração nas regiões e populações mais pobres, refletindo as desigualdades sociais (BRUM, 2013). A partir da experiência da agenda do ODM, foi concebida a agenda 2030, concentrada nas áreas social, econômica e ambiental. Abrangendo o período de 2016 a 2030, nela constam os 17 Objetivos de Desenvolvimento Sustentável (ODS) e suas 169 metas, dentre as quais visa a redução da mortalidade neonatal, infantil e materna até 2030 (ONU, 2015).

Apesar dos ganhos históricos, a mortalidade infantil em 2016 interrompeu décadas de queda de mortes de bebês no Brasil, segundo mostram dados do Ministério da Saúde. Pela primeira vez desde 1990, o país apresentou alta na taxa: foram 14 mortes a cada mil nascidos em 2016; um aumento de 4,8% em relação a 2015, quando 13,3 mortes (a cada mil nascimentos) foram registradas. Segundo o Ministério da Saúde essa alta na mortalidade infantil está relacionada ao vírus zika e às mudanças socioeconômicas drásticas ocorridas no país (BRASIL, 2017).

As regiões do país que apresentam os mais elevados riscos de morte infantil são as regiões Norte e Nordeste, principalmente em municípios de pequeno e médio porte. Esses municípios exibem indicadores que revelam uma grande concentração de pobreza, dificuldades de acesso aos serviços de saúde e problemas na completude dos dados vitais do SIM e do SINASC (VICTORA et al., 2011).

A Paraíba possui a menor Taxa de Mortalidade Infantil entre os estados do Nordeste, segundo mostram os dados do Ministério da Saúde. Entre os estados brasileiros com menor índice, a Paraíba se destaca em nono lugar, apresentando melhores resultados que a média nacional. No período de 2010 a 2016, a Paraíba apresentou uma redução de 13% da Taxa de

Mortalidade Infantil, sendo o estado nordestino com o menor índice. São 12,64 óbitos para cada 1.000 nascidos vivos (BRASIL, 2017).

O estudo dos componentes da mortalidade infantil é relevante devido às diferenças que aparecem nas suas causas de óbito. Os períodos em que ocorre a morte apresentam fatores de riscos muito distintos, o que permite avaliar separadamente as suas influências, e estabelecer medidas específicas para controle de cada óbito (MARANHÃO et al., 2012; SARDINHA, 2014).

A análise de fatores de risco para mortalidade infantil deve levar em conta a distinção entre os componentes neonatal e pós-neonatal, a fim de ressaltar as diferenças nos fatores e na magnitude da associação destes com a mortalidade infantil. As causas de morte e o perfil dos fatores de risco apresentam diferenças entre os dois períodos, especialmente com relação às variáveis sócio-econômico-culturais.

A seguir é explorada cada uma das principais desagregações da mortalidade infantil.

2.1.1 Mortalidade Neonatal

A mortalidade neonatal constitui um dos principais componentes da mortalidade infantil e tem como indicador a Taxa de Mortalidade Neonatal (TMN). Este período representa para a criança o de maior risco para adoecer e morrer. Assim, é essencial oferecer um cuidado e uma atenção adequados para aumentar as suas probabilidades de sobreviver e ter uma vida saudável (OMS, 2015a).

O componente neonatal, que compreende os óbitos ocorridos nos primeiros 27 dias de vida, se distribui em mortalidade neonatal precoce (óbitos que ocorrem nos primeiros 6 dias de vida) e tardia (óbitos ocorridos do 7º ao 27º dia de vida), refletindo as condições socioeconômicas e de saúde materna, bem como a qualidade da atenção prestada no pré-natal, parto e ao recém-nascido (BRASIL, 2009).

Dentre os determinantes da mortalidade neonatal destacam-se os biológicos: baixo peso ao nascer, prematuridade, idade materna e malformação ao nascimento; os assistenciais: atenção pré-natal, ao parto e ao recém-nascido; e os socioeconômicos: baixo nível de instrução materna, ausência de cônjuge (BARBOSA, 2012; LIMA, SOUSA, GRIEP e PRIMO, 2012; MOREIRA, GAIVA E BITTENCOURT, 2012).

Os óbitos neonatais em nível mundial, segundo estimativas da OMS e do MCEE (Maternal and Child Epidemiology Estimation Group) (UNICEF, 2015) para 2015, seriam causados principalmente por complicações do nascimento prematuro (35%), complicações

relacionados ao parto (24%), sepsis (15%), anormalidades congênitas (11%), pneumonia (6%), diarreia (1%), tétano (1%) e outros (7%).

Segundo o estudo do perfil da mortalidade neonatal no Brasil realizado por Lansky et al. (2014), as principais causas dos óbitos neonatais foram prematuridade (30,3%), malformação congênita (22,8%), infecção (18,5%), fatores maternos (10,4%) e asfixia/ hipóxia (7,0%).

Grandes desafios precisam ser superados para se conseguir uma redução mais constante da mortalidade neonatal nas diferentes regiões do Brasil. Apesar dos progressos observados no setor saúde no Brasil (BRASIL, 2009), a evitabilidade da parcela considerável dos óbitos neonatais e sua distribuição desigual entre as regiões, indicam a necessidade de ações voltadas para modificar este cenário, especialmente entre grupos sociais menos favorecidos (OLIVEIRA, SILVA e BONFIM, 2011).

2.1.2 Mortalidade Pós-neonatal

A Taxa de Mortalidade Pós-neonatal que caracteriza o risco de óbito entre 28 dias até o final do primeiro ano de vida é um indicador sensível aos fatores externos que influenciam a ocorrência de óbitos nesse componente da mortalidade infantil. Refletem as condições do meio ambiente, nutricionais e de bem-estar em que essa população está inserida. Neste componente da mortalidade infantil, as ações governamentais, como saneamento básico, distribuição de renda e maior oferta dos serviços médicos, têm uma maior influência na sua redução, principalmente quando incluem as classes sociais menos favorecidas (FERRARI e BERTOLOZZI, 2012).

Ao longo dos anos, os progressos quanto à redução da mortalidade pós-neonatal têm sido mais evidentes do que a redução da neonatal, e isto se deve aos fatores determinantes das mortes. No que se refere à neonatal, estão mais associados à gestação, ao parto e aos fatores genéticos, enquanto que a pós-neonatal está relacionada aos fatores determinados pelas condições de vida e características familiares (FERRARI e BERTOLOZZI, 2012).

A maior parte da redução da mortalidade infantil registrada nas últimas décadas concentra-se no período pós-neonatal. Essa maior redução do componente pós-neonatal devese a intervenções específicas às ações de promoção de saúde desenvolvidas em nível da atenção primária como, por exemplo: as imunizações; o tratamento adequado de diarreias e infecções respiratórias; o incentivo ao aleitamento materno; desidratação; anemia e a melhoria nas condições de saneamento básico (REIS, 2017).

O período pós-neonatal, em nível mundial, foi marcado, principalmente, por mortes por doenças infecciosas, seguidas por doenças tropicais, deficiências nutricionais, condições perinatais, anomalias congênitas e causas externas; concordando com o estudo de Santos et al. (2014), por meio do qual mostraram a prevalência de algumas dessas causas de óbitos infantis no Brasil, no mesmo período.

A mortalidade infantil no País, em especial à que se refere ao componente pós-neonatal, apesar do evidente decréscimo a partir da década de 90, em sua maioria está relacionada às causas passíveis de redução, principalmente nos grupos sociais que evidenciam piores condições de vida e acesso aos serviços de saúde. Ao se considerar os estudos em que este componente reduziu mais de 50% nas regiões Sudeste, Sul e Centro-Oeste pôde-se observar que, na região Nordeste, a queda foi pequena se comparada à média nacional (FERRARI e BERTOLOZZI, 2012).

2.1.3 Mortalidade Perinatal

A mortalidade perinatal compreende tanto os óbitos fetais (ocorridos a partir da 22ª semana completa de gestação e/ou com peso a partir de 500 g) quanto os óbitos neonatais precoces (ocorridos no período de 0 a 6 dias de vida), uma vez que esses óbitos partilham as mesmas circunstâncias e etiologias, que influenciam a viabilidade do feto, no final da gestação, e da criança, nas primeiras horas e dias de vida, o que justifica sua análise em conjunto (BRASIL, 2009).

Na mortalidade perinatal, a maioria dos óbitos são do tipo evitáveis, apresentam etiologias semelhantes entre si e estão relacionadas aos fatores biológicos, sociais, culturais, e às falhas na assistência à saúde. A Taxa de Mortalidade Perinatal (TMP) constitui-se como um indicador sensível para avaliação da assistência durante o pré-natal, parto, nascimento e atenção ao recém-nascido. De modo que se pressupõe o conhecimento da TMP e seus determinantes possam apoiar a gestão das três esferas administrativas, e dos serviços de saúde, para o planejamento relacionado à assistência materna e infantil, e ainda, na avaliação das políticas públicas de saúde correlatas. Entretanto, até então, há subnotificação desta ocorrência (BRASIL, 2009).

No mundo, 98% das mortes perinatais ocorrem nas nações em desenvolvimento, com incidência média de 60 óbitos para 1.000 nascimentos, índice este que é de cinco a seis vezes maior do que àqueles verificados nos países desenvolvidos (BERHAN e BERHAN, 2014).

No Brasil, as maiores Taxas de Mortalidade Perinatal são encontradas nas regiões Norte e Nordeste. Entretanto, as menores taxas, que são vistas nas regiões Sul, Sudeste e Centro-Oeste, quando comparadas com países desenvolvidos, ainda são compreendidas como extremamente altas (LANSKY et al., 2014).

As causas da mortalidade perinatal são múltiplas, geralmente relacionadas a infecções, problemas placentários, restrição do crescimento intrauterino, fumo, anomalias congênitas e doenças maternas, como hipertensão, diabetes, além da interferência dos fatores socioeconômicos e da assistência dos serviços de saúde. Esses problemas ocasionam, em sua maioria, a prematuridade e o baixo peso ao nascer, principais determinantes da mortalidade perinatal (LANSKY et al., 2014).

As intervenções recomendadas para reduzir as mortes perinatais são amplas e relacionadas a uma adequada assistência na fase pré-gestacional, durante o pré-natal, ao parto e ao recém-nascido (LANSKY et al., 2014).

A mortalidade infantil aqui caracterizada pelos seus diferentes componentes possui diversos fatores de risco que devem ser estudados conforme os objetivos de cada pesquisa. O tipo de parto cesáreo que é considerado pela literatura um fator de risco para a mortalidade neonatal será abordado a seguir no que tange os seus aspectos obstétricos e sociais.

2.2 Tipos de parto

O parto, que é considerado o momento mais importante de toda a gravidez, deve ser precedido de um pré-natal bastante minucioso. Conhecer as condições de desenvolvimento do bebê é essencial para saber como o nascimento poderá ser conduzido. De evento fisiológico, familiar e social, o parto/nascimento transforma-se em ato médico, no qual o risco de patologias e complicações se torna a regra e não a exceção (MAIA, 2010).

Existem dois tipos principais de parto: o normal, em que tem-se a forma natural de se dar à luz, e a cesariana, em que se realiza um corte no abdômen para a retirada do bebê.

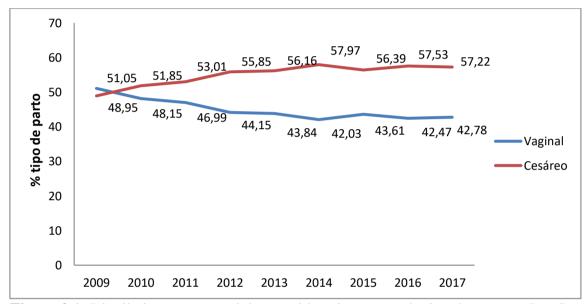
O parto normal é o procedimento no qual o feto nasce por via vaginal facilitando o contato entre mãe e filho, resultando em menores taxas de desconforto respiratórios e menor risco de infecção puerperal (FERRARI, CAVALHAES e PARADA, 2016).

O parto normal acarreta menor risco materno, por menor intervenção, diminuindo o risco de infecção. Opta-se atualmente para não realização da cicatriz aparente. Entretanto, quando há necessidade de incisão perineal é comunicado à gestante durante o trabalho de parto

e explicado o motivo da episiotomia naquele momento (AGÊNCIA NACIONAL DE SAÚDE SUPLEMENTAR, 2017).

A indicação do tipo de parto deve ser baseada em motivos clínicos consistentes e em situações específicas. A cesárea é um procedimento cirúrgico e tem como finalidade intervir quando riscos são maiores diante dos benefícios do parto normal, devendo ser indicada, apenas em casos necessários (OMS, 2015b).

Observa-se elevação expressiva das taxas de cesáreas em praticamente todo o mundo, ultrapassando o percentual de 10% a 15% dos partos, que é considerado aceitável e justificável pela Organização Mundial da Saúde (OMS, 2015b).


De acordo com o *American College of Obstetricians and Gynecologists* (2013), a cesárea eletiva indicada antes de 40 semanas gestacionais, não permite o completo desenvolvimento cerebral do feto, que tem seu término estimado entre 35 a 39 semanas. Diante disso, o neonato pode apresentar problemas respiratórios, dificuldades de controle térmico, dificuldades de sucção/alimentação, icterícia por excesso de bilirrubina, problemas auditivos, visuais, de aprendizagem e de conduta. Além disto, o neonato apresenta maior risco de: morte, necessidade de internação em Centros de Terapia Intensiva, período prolongado de internação e maior procura por serviços de saúde no primeiro ano de vida.

Além dos riscos inerentes ao procedimento cirúrgico, as mulheres submetidas à cesárea apresentam risco de desenvolvimento de infecções e hemorragias, e, em gestações futuras, podem apresentar maior risco para placenta prévia, acretismo placentário, hemorragia pós-parto e histerectomia. Desta forma, preconiza-se que na ausência de indicação materna ou fetal, o parto vaginal é sempre o mais seguro e apropriado (DOMINGUES et al., 2014).

A via de parto tem distribuição desigual no país. As taxas de cesarianas são mais baixas nos serviços públicos e na região Sudeste (DOMINGUES et al., 2014). Entretanto, a iniquidade reversa foi verificada, mostrando que mulheres com mais anos de estudos, melhores condições socioeconômicas e usuárias do setor privado de saúde estão entre as que apresentam taxas mais altas de cesáreas e menores chances de parto normal. Por outro lado, apenas um quinto das gestantes possui preferência inicial pela via de parto cesariana, aumentando esse percentual no final da gestação, principalmente no setor privado.

O aumento substancial no número de partos cesáreos globalmente e no Brasil, onde mais de 50% dos partos são realizados por via cirúrgica, em comparação com o limite recomendado de 10% a 15% estabelecido pela Organização Mundial da Saúde (OMS) é preocupante, haja vista as possíveis consequências para a saúde materna e infantil (VICTORA et al., 2011). O nascimento por parto cesáreo é um procedimento cirúrgico que salva vidas quando realizado

em decorrência de complicações materno-fetais e de acordo com indicação médica formal. Em 2014, o Brasil apresentou 55,6% de nascimentos por parto cesáreo, bem acima do limite recomendado pela OMS (BÉTRAN et al., 2016). Na Paraíba, no período de 2009 a 2017, segundo dados do SINASC do Ministério da Saúde, houve uma tendência de crescimento dos partos cesáreos, onde em 2009 o percentual desses partos era inferior ao percentual de partos vaginais. Em 2017, 57,22% dos partos no estado da Paraíba eram cesáreos enquanto que apenas 42,78% dos partos foram vaginais (Figura 2.1)

Figura 2.1: Distribuição percentual dos nascidos vivos segundo tipo de parto na Paraíba, SINASC, 2009 a 2017

Estudos demonstraram que, ao nível populacional, taxas de ocorrência de cesáreas com valores superiores a 10% não apresentaram associações com a redução de taxas de mortalidade materna e neonatal (BÉTRAN et al., 2016; YE et al., 2016).

Vale destacar que a informação sobre tipos de parto, riscos e benefícios são direitos universais das mulheres grávidas previstos pela Aliança Global para Maternidade Segura, e a preferência e escolha da mulher pelo tipo de parto deve ser considerada sempre em posse deste conhecimento (ISLAM, 2007).

2.3 Os Sistemas Nacionais de Informações das Estatísticas Vitais

O Brasil tem uma vasta tradição na produção de Estatísticas Vitais, haja vista o Cartório de Registro Civil de Pessoas Naturais ser uma instituição secular. Todavia, os diferentes estágios de desenvolvimento econômico e social e as assimetrias regionais, associados às largas

distâncias de um país continental, fizeram com que ao longo de largo período a cobertura e a qualidade de dados sobre os eventos de nascimentos e óbitos ficassem muito aquém das desejadas. Essas deficiências, somadas às necessidades de dados epidemiológicos, por parte do Ministério da Saúde, fizeram com que fossem criados o Sistema de Informações sobre Nascidos Vivos (SINASC) e o Sistema de Informações sobre Mortalidade (SIM) em paralelo às Estatísticas do Registro Civil, produzidas pela Fundação Instituto Brasileiro de Geografia e Estatística - IBGE (Fundação IBGE, 2018). Os primeiros sistemas são produzidos pelo Ministério da Saúde (MS) e as Estatísticas Vitais pela Fundação IBGE, ambas as fontes possuem disponibilidade anual para todos os municípios brasileiros.

2.3.1 Sistemas de Informações do IBGE

As grandes fontes de dados históricos sobre condições de vida, saúde e morbidade referidas dos brasileiros são as Estatísticas de Registro Civil, os Censos Demográficos decenais, as Pesquisas Nacionais por Amostra de Domicílios (PNAD) e os respectivos suplementos especiais de temas relacionados à saúde. Mais recentemente, esses suplementos desdobraramse em uma nova pesquisa especial, a Pesquisa Nacional de Saúde (PNS) (IBGE, 2015).

O IBGE, a partir da aprovação da Lei n. 6.015, de 31/12/1973, passou a ser o responsável, inicialmente, pela centralização do recebimento dos formulários e, posteriormente, por toda a sistematização e produção de Estatísticas do Registro Civil. Dessa forma, o IBGE passou a coletar, em todo território nacional, os dados sobre os eventos vitais registrados nos cartórios (IBGE, 2018).

As Estatísticas de Registro Civil foram sistematizadas a partir de 1974, incluindo os nascidos vivos, os óbitos, incluindo os fetais e os casamentos. A partir de 1984, passou a considerar também as separações judiciais e os divórcios. Quando se analisa a primeira publicação destes registros é curioso notar que desde sua origem, os mesmos já ocorriam e eram divulgados por município. A pesquisa, publicada anualmente, permite análises locais e regionais sobre fecundidade, nupcialidade e mortalidade e ainda viabiliza estudos para o aprimoramento de programas governamentais na área da educação, previdenciária, econômica e social (PINTO, FREITAS e FIGUEIREDO, 2018).

Os três últimos Censos Demográficos Populacionais foram realizados em 1991, 2000 e 2010. A menor unidade de análise para fins de coleta de dados utilizada no trabalho de campo é o setor censitário, que corresponde a menor unidade territorial, criada para fins de controle cadastral da coleta de dados. Quando se realizam pesquisas na área da atenção primária à saúde,

muitas vezes ainda é possível combinar setores censitários com as chamadas "microáreas" das Equipes de Saúde da Família, que correspondem a um conjunto de logradouros, quarteirões, vielas de moradia da população cadastrada pelas equipes (IBGE, 2015).

Para atender à necessidade de estudos nos períodos intercensitários surgiu de forma pioneira a Pesquisa Nacional por Amostra de Domicílios (PNAD) a partir de 1967, hoje, denominada PNAD Contínua. Ao longo dos últimos 50 anos, as PNAD pesquisaram dezenas de áreas temáticas em pesquisas complementares ao questionário básico, abordando desde aspectos demográficos, trabalho e rendimento, trabalho infantil, aspectos sociais e a saúde propriamente dita. Nesse caso, as dimensões investigadas referem-se ao acesso a serviços de saúde, características de saúde dos moradores, serviços preventivos de saúde da mulher, mobilidade física, fatores de risco e proteção à saúde, tabagismo, prática de esportes e atividade física e no campo da Política Nacional de Atenção Básica e características da Estratégia Saúde da Família (IBGE, 2015).

2.3.2 Sistemas de Informações do Ministério da Saúde

Os Sistemas de Informações a respeito dos eventos vitais no âmbito do Ministério da Saúde – SIM e SINASC – foram desenvolvidos com a finalidade de proporcionar dados para o acompanhamento e análise epidemiológica, orientar a gestão da saúde e proporcionar a construção de políticas nessa área. Isto sinaliza objetivos distintos daqueles das Estatísticas do Registro Civil, como apresentado anteriormente, o que justifica a necessária coexistência dos Sistemas (IBGE, 2018).

A gestão do Sistema Único de Saúde (SUS) é um processo pelo qual equipes gestoras (sujeitos) tomam decisões na implementação da Política de Saúde (TAMAKI et al., 2012). Os bancos de dados e Sistemas de Informação em Saúde (SIS) constituem ferramentas importantes para o planejamento e a avaliação das políticas de saúde, assim como dos serviços, redes e sistemas de saúde (FERLA, CECIM e ALBA, 2012).

No Brasil, diversos SIS federais foram instituídos antes mesmo da implantação do SUS e os seus objetivos estavam voltados para os governos federal e/ou estadual. Os municípios assumiam o papel de coletores de dados e, frequentemente, ocorria a subutilização das informações. Assim, eles permaneciam alijados do processo de elaboração dos planejamentos, dispondo de pouca ou nenhuma experiência/autonomia para a formulação de políticas e para a tomada de decisão (VIDOR, FISHER e BORDIN, 2011).

Os Sistemas de Informação em Saúde podem ser definidos como um conjunto de componentes inter-relacionados que coletam, processam, armazenam e distribuem a informação para apoiar o processo de tomada de decisão e auxiliar no controle das organizações de saúde. Assim, os sistemas de informação em saúde congregam um conjunto de dados, informações e conhecimento utilizados na área de saúde para sustentar o planejamento, o aperfeiçoamento e o processo decisório dos múltiplos profissionais da área da saúde envolvidos no atendimento aos pacientes e usuários do sistema de saúde (MARIN, 2010).

Os SIS são influenciados pela organização do SUS, e como tal, integram suas estruturas organizacionais e contribuem para sua missão. São constituídos por vários subsistemas e tem como objetivo geral facilitar a formulação e avaliação das políticas, planos e programas de saúde, subsidiando o processo de tomada de decisões. Para tanto, deve contar com os requisitos técnicos e profissionais necessários ao planejamento, coordenação e supervisão das atividades relativas à coleta, registro, processamento, análise, apresentação e difusão de dados e geração de informações (BRASIL, 2015).

Um de seus objetivos específicos, na concepção do SUS, é possibilitar a análise da situação de saúde no nível local, e considerando, necessariamente, as condições de vida da população na determinação do processo saúde-doença. O nível local tem, então, responsabilidade não apenas com a alimentação do sistema de informação em saúde, mas também com sua organização e gestão (BRASIL, 2005).

No Brasil, existem cinco principais SIS ligados ao Ministério da Saúde: Sistema de Informações sobre Mortalidade (SIM), Sistema de Informações sobre Nascidos Vivos (SINASC), Sistema de Informação de Agravos de Notificação (SINAN), Sistema de Informações Hospitalares do SUS (SIH-SUS) e Sistema de Informações Ambulatoriais do SUS (SIA-SUS) (BRASIL, 2019).

Existem ainda muitos outros sistemas que são operados pela rede de serviços do SUS, servindo como fontes complementares de dados, como: Estratégia de Informatização da Atenção Básica (e-SUS AB), Sistema de Informações de Vigilância Alimentar e Nutricional (SISVAN), Sistema de Informações do Programa Nacional de Imunização (SI-PNI), Sistema de Informações do Câncer da Mulher (SISCAM), Sistema de Informação sobre Orçamento Público em Saúde (SIOPS), Sistema de Informações da Anvisa, entre outros (BRASIL, 2019). Porém, devido à importância no que diz respeito aos objetivos dessa Tese, o enfoque será dado ao SIM e ao SINASC.

Sistemas de Informações sobre Mortalidade - SIM

O SIM foi criado pelo Ministério da Saúde em 1975, a partir do desenvolvimento de um sistema informatizado de seleção de causa básica de óbito (SCB). O formulário de entrada de dados é a declaração de óbito (DO) (ANEXO 2), que deve ser preenchida exclusivamente por médicos, exceto onde não existam estes profissionais. Nestes casos, podem ser preenchidas por oficiais de cartório de registro civil e assinadas por duas testemunhas do óbito (BRASIL, 2010).

O SIM possui um conjunto de objetivos descritos a seguir:

- Coletar dados sobre óbitos em todo o território nacional, formando um banco de dados nacional sobre mortalidade, mediante a agregação dos dados estaduais;
- Fornecer dados sobre óbitos a todos os níveis do Sistema de Saúde;
- Permitir um acompanhamento das estatísticas de mortalidade, com variáveis que são de grande importância para a saúde pública, como a causa básica do óbito, município e local de residência e de ocorrência do óbito;
- Subsidiar a execução das ações básicas na área materno-infantil e mulher em idade fértil;
- Permitir uma maior confiabilidade na elaboração dos coeficientes de mortalidade infantil.

As DO's são impressas pelo Ministério da Saúde e distribuídas às secretarias estaduais de saúde para subsequente fornecimento às secretarias municipais de saúde que as repassam aos estabelecimentos de saúde, institutos de medicina legal, serviços de verificação de óbito e cartórios do registro civil. Este fluxo pode sofrer mudanças conforme a unidade notificadora. Atualmente, a DO possui três vias:

- Primeira via (branca): recolhida dos estabelecimentos de saúde e institutos de Medicina Legal, por busca ativa mensal, pelos órgãos responsáveis pelas estatísticas de mortalidade (geralmente secretarias de saúde), ou enviada a esses pelos estabelecimentos referidos. Seu destino é o processamento de dados na instância municipal ou estadual.
- Segunda via (amarela): entregue, pelo médico/unidade que a elaborou, à família, para que seja levada ao cartório do registro civil, devendo ficar arquivada para os procedimentos legais.
- Terceira via (rosa): permanece na unidade notificadora em anexo à documentação do paciente. No caso de óbitos domiciliares, em que é, geralmente, um médico particular quem

fornece a DO, esta via é também fornecida à família, e segue o mesmo fluxo da segunda via (BRASIL, 2010).

Os dados do SIM permitem calcular importantes indicadores para a vigilância epidemiológica, como: coeficiente de mortalidade e mortalidade proporcional por grandes grupos de causas, por causas específicas, faixa etária, sexo, escolaridade, ocupação, o delineamento do perfil de mortalidade de uma área, etc. (BRASIL, 2010).

Sistema de Informações sobre Nascidos Vivos - SINASC

O SINASC foi criado à semelhança do SIM e implantado em 1990. A informação sobre nascidos vivos é utilizada nas atividades de planejamento da assistência ao parto e ao nascituro, assim como na construção de indicadores de saúde e demográficos, tais como a taxa de mortalidade infantil, neonatal, perinatal, fecundidade e natalidade; proporção de nascidos vivos de baixo peso, de prematuridade, de partos hospitalares e de nascidos vivos por faixa etária da mãe (BRASIL, 2010).

A documentação do SINASC utiliza a definição de nascido vivo da OMS, que é clara quanto à descrição do evento a ser notificado e não leva em conta a viabilidade do recémnascido. Contudo, é comum que nascidos vivos que chegam a óbito logo após o nascimento sejam registrados como óbitos fetais, o que induz à superestimação da mortalidade fetal e à subestimação do número de nascidos vivos (BRASIL, 2017).

A fonte tradicional de dados sobre nascidos vivos é o registro civil, contudo, o subregistro é mais um fator que gera uma subnotificação de nascidos vivos. O pagamento de taxas era um dos fatores que contribuía para a existência de subregistro. A Constituição de 1988 previu a inexistência de cobrança de taxas para o registro de nascimento, porém, a emissão da certidão de nascimento continuou a ser cobrada. Apenas com a Lei n. 9.534/1997, ficou regulamentada a extinção do pagamento de quaisquer taxas para o registro de nascimentos (BRASIL, 2017).

Destacam-se a seguir os objetivos do SINASC:

- Coletar dados sobre nascidos vivos em todo o território nacional, formando um banco de dados nacional sobre nascimentos, mediante a agregação dos dados estaduais;
- Fornecer dados sobre nascidos vivos a todos os níveis do Sistema de Saúde;
- Permitir um acompanhamento das estatísticas de nascimentos, com variáveis que são de grande importância para a saúde pública, como peso ao nascer, apgar 1º e 5º minutos,

escolaridade da mãe, consultas de pré-natal, presença e descrição de anomalia congênita, etc;

- Avaliar os riscos na gravidez, no parto e ao recém-nascido;
- Subsidiar a execução das ações básicas na área materno-infantil;
- Permitir uma maior confiabilidade na elaboração dos coeficientes de mortalidade infantil.

Em 1994, concluiu-se a implantação da Declaração de Nascido Vivo (DN) (ANEXO 1) para a coleta de dados nos hospitais. Definiu-se também que os serviços de saúde seriam a principal fonte de dados do sistema. No Brasil, todas as regiões apontam quase 100% de partos hospitalares (BRASIL, 2017). Os cartórios de registro civil seriam fonte complementar de obtenção de dados, no caso de partos domiciliares. O Centro Nacional de Epidemiologia (CENEPI) foi a instituição responsável pela implantação do SINASC. O sistema tem sua produção de dados descentralizada para as secretarias municipais de saúde, facilitando a execução de ações de saúde. Foi desenvolvida a DN, bem como o detalhamento do fluxo de informações do sistema e a elaboração do manual de instruções para o seu preenchimento. O Manual de Procedimentos também normatiza o destino das três vias da DN (BRASIL, 2010).

Neste sentido, a garantia da qualidade dos dados é condição essencial para a análise objetiva da situação sanitária, assim como para a tomada de decisões e para a programação de ações de saúde.

2.4 Qualidade das Informações

Diversas áreas da ciência que necessitam de informação para tomada de decisão têm demonstrado interesse crescente em avaliar a qualidade da informação. Nas últimas quatro décadas, foram implantados e/ou implementados no Brasil vários SIS, o que ampliou o uso da informação para a gestão do setor saúde e consolidou uma rede de informações composta por sistemas de racionalidade epidemiológica, de assistência à saúde (produção de serviços), monitoramento de programas de saúde, gerenciamento de serviços, entre outros (BRASIL, 2017).

Os dados gerados por estes sistemas compõem uma grande base nacional que tem como finalidade primordial a produção de indicadores de saúde que retratem as condições de saúde da população no que diz respeito ao processo saúde-doença e aos aspectos administrativos dos serviços de saúde. Entretanto, os usos das informações consolidadas nos sistemas apresentam

limites relacionados à cobertura, regularidade, fidedignidade e completude dos instrumentos de coleta (MELO-JORGE, LAURENTI e GOTLIEB, 2007; LIMA, SCHRAMM, COELI e SILVA, 2009; PAES, 2018).

De acordo com Paes (2018), a cobertura significa a magnitude ou nível, medido geralmente em percentual, com que os registros vitais são efetivamente enumerados nos sistemas; a regularidade está relacionada à frequência que um sistema de registro mantém a captação dos dados em um determinado nível durante o tempo; a fidedignidade significa o grau de confiança ou de informações corretas nas variáveis observadas nos registros vitais; a completude representa a magnitude ou nível de declaração de uma determinada variável informada quando o registro foi realizado nos sistemas.

Atualmente, a alimentação das bases de dados nacional com os dados produzidos nas Secretarias Municipais de Saúde ocorre via internet, com periodicidade regulamentada em portarias ministeriais. Cabe ao Ministério da Saúde (MS) a consolidação e a disponibilização desses dados no sítio do Departamento de Informática do Sistema Único de Saúde (DATASUS) (http://www.datasus.gov.br), proporcionando amplo acesso aos gestores, pesquisadores, profissionais de saúde e a sociedade em geral (CORREIA, PADILHA e VASCONCELOS, 2014).

O acesso a dados confiáveis permite verificar, com maior validade, as condições de nascimentos, óbitos e seus determinantes. A disponibilidade de informações com qualidade adequada favorece a análise da situação de saúde e as ações de planejamento para reduzir a mortalidade infantil (MARQUES, OLIVEIRA e BONFIM, 2016).

O uso das informações fornecidas através dos SIM e do IBGE ainda apresentam como limitações a subnotificação dos óbitos, falhas no preenchimento da DO, baixa completude de algumas variáveis e discordância de informações comuns ao SINASC (SILVA et al., 2013; DOMBROWSKI et al., 2015). Fatores institucionais, tais como o tipo de serviço de saúde, a estrutura e a organização dos processos de trabalho podem influenciar o registro das informações da DO (FRIAS et al., 2013; SCHOEPS et al., 2014).

De acordo com os Sistemas de Informações do Ministério da Saúde ainda persistem subregistros nas regiões Norte e Nordeste, apesar de que os mesmos vêm decrescendo ao longo das décadas, o que começa a viabilizar seu uso de forma isolada, ou concomitante com estimativas do IBGE (PINTO, FREITAS e FIGUEIREDO, 2018).

Na prática, os óbitos de crianças e adultos, com frequência, estão sujeitos a distintos graus de cobertura. Dessa forma, para a análise da cobertura dos registros de óbitos, é preciso

distinguir os métodos que se aplicam à população infantil ou na infância e nos adultos (PAES, 2018).

Os estudos sobre a investigação dos óbitos infantis não consideram a importância e adequação das informações para o esclarecimento da singularidade de cada caso (SANTANA, AQUINO e MEDINA, 2012; CAETANO, MORAES VANDERLEI e FRIAS, 2013; SANTOS et al., 2014). A incorporação desses elementos em pesquisas com abordagem avaliativa é imprescindível para elucidar limitações e possibilidades da investigação do óbito infantil, com vistas a sua implantação plena nos diversos estados e municípios do país.

Ressalta-se ainda que a qualidade das informações não é homogênea quando se analisa as caracterizações regionais, como rural e urbano. Haja vista que a qualidade dos registros depende das condições de desenvolvimento humano e tecnológico de cada região.

Segundo Szwarcwald, Leal, Andrade e Souza Jr. (2002), que estudaram a estimação da mortalidade infantil, quanto menor o nível de agregação geográfica, maior é o erro nas estimativas por mensuração indiretas fornecidas pelos municípios.

2.5 Relacionamentos de bases de dados das Estatísticas Vitais

Os Sistemas de Informação em Saúde (SIS) foram criados pelo Ministério da Saúde há mais de trinta anos. Os SIS foram elaborados com a finalidade de gerar dados epidemiológicos que pudessem subsidiar a tomada de decisão por aqueles que planejam e executam as políticas e ações de saúde no país (DANTAS, 2014). Desde então, numerosos estudos sobre a qualidade das informações geradas por estes sistemas estão sendo realizados e disponibilizados na literatura científica (PEDRAZA, 2012; SILVA, OLIVEIRA, FERREIRA e BONFIM, 2013; DANTAS, 2014; SILVA et al., 2014; PAES, 2018).

A primeira referência ao termo relacionamento de dados (*record linkage*), originou-se na área de saúde pública, e foi encontrada pela primeira vez no trabalho do Dr. Halbert Dunn, chefe do *The U.S. National Office of Vital Statistics*, no Canadá (DUNN, 1946). Dunn (1946) declarou a necessidade de relacionar registros no Canadá, utilizando o número da certidão de nascimento como um identificador eficiente e único para relacionar os dados dos registros do sistema estatístico vital.

A disponibilidade de grandes massas de dados, informatizadas, em saúde, tornou a técnica de relacionamento de bases de dados, também conhecida como *linkage*, uma alternativa para diferentes tipos de estudo. Esta técnica proporciona a geração de uma base de dados mais

completa e de baixo custo operacional (BARBUSCIA e RODRIGUES-JÚNIOR, 2011; MAIA, SOUZA e MENDES, 2012).

No campo da saúde, o *linkage* é aplicado para melhorar a qualidade dos dados, para permitir a reutilização de dados secundários para finalidades outras daquela para o qual o banco foi criado e para reduzir os custos na aquisição de dados para pesquisa. Na Saúde Pública, o *linkage* é bem utilizado, por exemplo, no acompanhamento temporal de eventos vitais como nascimento e óbito ou eventos mórbidos específicos; na construção e organização de registros próprios da gestão em saúde; na recuperação de dados sobre histórico clínico de pacientes; em estudos ecológicos diversos e em estudos que analisam custos com cuidados em saúde (MAIA, SOUZA e MENDES, 2015; MARQUES, OLIVEIRA e BONFIM, 2016).

Diversos trabalhos têm empregado o relacionamento de bases de dados (*linkage*) como estratégia para o aperfeiçoamento da qualidade das informações, dado que esse procedimento permite a recuperação de registros incompletos ou inconsistentes, melhorando assim a completude e a confiabilidade das informações disponibilizadas pelo SINASC e pelo SIM (MENDES et al. 2012; MAIA, SOUZA e MENDES, 2015; MARQUES, OLIVEIRA e BONFIM, 2016).

Os métodos de relacionamento de bases de dados automatizados podem ser divididos em dois grandes grupos: os métodos determinísticos, que empregam conjuntos de regras baseadas em resultados de concordância e discordância entre itens correspondentes; e os métodos probabilísticos, que fazem uso de métodos estatísticos para determinar a concordância ou discordância dos registros, os quais normalmente são classificados mediante a interpretação dos escores gerados pelo método (JOFFE et al., 2014).

Relacionar registros de diferentes fontes, independente da técnica de *linkage*, tanto determinística como probabilística, mostra-se uma tarefa pouco trivial, pois as bases de dados são geradas com finalidades distintas, não havendo padronização entre os campos das variáveis ou na digitação dos dados coletados. Além disso, são frequentes os erros de digitação e a presença de valores ignorados (CAMARGO, KENNETH e COELI, 2000).

O relacionamento determinístico identifica os indivíduos de diferentes bases de dados a partir de uma ou várias variáveis. Por exemplo, nome, data de nascimento e data de óbito, ou um identificador comum como o número de RG, CPF ou número da declaração de nascido vivo (MORAES e DUARTE, 2009). Por outro lado, o relacionamento probabilístico faz uso de um escore que mostra o quão verossimilhante os registros pareados pertencem à mesma pessoa (STEVENS, 2007).

A vantagem do *linkage* determinístico está na certeza em identificar um par verdadeiro quando este apresenta um identificador comum ou um conjunto de variáveis com boa qualidade de preenchimento. Outra vantagem está na sua operacionalização, pois não há a necessidade de cálculos complexos de probabilidades ou de programas específicos para a combinação entre as bases de dados. No entanto, a ausência de um identificador único ou um conjunto de variáveis que possam, de forma única e precisa, identificar um mesmo indivíduo nas bases de dados relacionadas podem dificultar o processo (TROMP et al., 2011).

Quanto ao *linkage* probabilístico, a sua vantagem está na capacidade de identificar um indivíduo em diferentes bases de dados mesmo que estes não possuam identificadores unívocos comuns e apresentem problemas de inconsistências, erros e informações não declaradas. A desvantagem desta técnica é o poder de discriminação das variáveis utilizadas no processo de relacionamento, pois as probabilidades são influenciadas pelo número de valores válidos e sua uniformidade (CAMARGO, KENNETH e COELI, 2000; TROMP, 2011).

A técnica de relacionar banco de dados que possui uma relevante importância na recuperação de informações não registradas limita-se aos casos que foram pareados e ainda aqueles que o par seja formado é possível não obter sucesso na captação da informação ausente. Uma técnica alternativa que permite atingir a completitude das informações por meio de métodos de inferência estatística é a imputação de dados. A seguir, a técnica de imputação de dados é apresentada em suas diferentes abordagens.

2.6 Imputação de Dados

Um problema comum em investigações científicas é a ocorrência de dados faltantes (missing data), especialmente na área da Saúde e das Ciências Sociais. Com frequência a ocorrência de dados faltantes dificulta o uso de métodos estatísticos tradicionais para análise dos dados e, quando os mesmos são adotados, existe o risco dos estimadores se tornarem tendenciosos por conta das diferenças existentes entre os valores da variável de interesse para os respondentes e para os não respondentes. Tal viés dificilmente é eliminado, pois na prática, não se conhece o real motivo que gerou a não resposta (RUBIN, 1987). O desenvolvimento de métodos estatísticos direcionados a solucionar problemas de dados faltantes tem sido uma área de pesquisa bastante ativa nas últimas décadas (RUBIN, 1987; RUBIN, 1996; SCHAFER, 1999).

Uma das formas usadas para lidar com dados faltantes é a exclusão daqueles indivíduos que não possuem seus dados completos para se fazer a análise estatística. Mas esta abordagem,

por muitas vezes, restringe a amostra a uma proporção menor da amostra original, e possivelmente o preço a se pagar por isso é a perda de poder e precisão (STERNE et al., 2009). Ignorar o problema da não resposta não é a melhor solução, uma vez que as estimativas obtidas em tais análises podem estar viesadas e, consequentemente, levar a conclusões errôneas. Para contornar este problema uma alternativa comumente recorrida é a imputação de dados.

A imputação é o preenchimento dos dados ausentes com valores plausíveis para uma posterior análise dos dados completos. Diversos são os métodos ou procedimentos que se ocupam do preenchimento de valores ausentes. As primeiras técnicas desenvolvidas possuíam relativa simplicidade, denominadas de imputação única: imputação por média, imputação por substituição pelo vizinho mais próximo e por regressão linear. Contudo, a partir da imputação múltipla, onde para cada dado faltante são imputados mais de um dado, associando assim a variabilidade dos dados aos resultados, os métodos ficaram mais precisos e sofisticados. Os métodos mais atuais, como regressão estocástica, modelagem Markoviana, interpolação, redes neurais, entre outras, viabilizam a imputação múltipla de dados (FERREIRA, SANTOS e LUCIO, 2017).

A fim de se dar um tratamento adequado aos dados, é importante que o pesquisador defina algumas características dos dados faltantes, como os mecanismos que os geraram, se existe algum padrão entre eles e a proporção de dados faltantes na base (VERONEZE, 2011).

2.6.1 Mecanismos de ausência de dados

Segundo Little e Rubin (2002) os valores ausentes podem ser divididos em três classes de acordo com seu valor de aleatoriedade:

Ausentes de forma completamente aleatória: Os valores ausentes distribuídos de forma completamente aleatória (*Missing completely at random* - MCAR) são os de maior grau de aleatoriedade. Eles ocorrem quando o valor da variável ausente não está relacionado com essa variável ou qualquer outra no conjunto de dados.

Ausentes de forma aleatória: Os valores ausentes de forma aleatória (*Missing at random* - MAR) ocorrem quando o valor da variável não está relacionado com essa variável, mas sim com uma ou outras variáveis do conjunto de dados.

Ausentes de forma não aleatória: Os valores ausentes de forma não aleatória (*Not missing at random* - NMAR) ocorrem quando o valor da variável ausente está relacionado à própria variável e a um ou mais atributos do conjunto de dados.

2.6.2 Padrões de dados ausentes

Muitos conjuntos de dados podem ser arranjados na forma de matriz, onde as linhas são os indivíduos e as colunas são as variáveis. Os dados ausentes podem também ser classificados de acordo com o padrão de não resposta. Com a presença de unidades ausentes em uma matriz de dados multivariados, é de suma importância observar a forma com que ocorre essa ausência, o que pode ser verificado por meio dos padrões de comportamento dos dados ausentes, os quais descrevem a localização dos valores em falta (LITTLE e RUBIN, 2002).

Os tipos de padrões segundo Little e Rubin (2002) podem ser especificados como segue:

- Padrão univariado: apresenta uma falta de dados isoladamente em uma variável, o que é comum em estudos experimentais;
- Padrão monótono: geralmente ocorre em pesquisas clínicas, onde os indivíduos participantes da pesquisa em algum momento não podem continuar no estudo devido a alguns fatores. Este tipo de padrão de dados em falta é característico de experimentos longitudinais, sendo as variáveis medidas ao longo do tempo;
- Padrão geral (não-monótono): padrão conhecido como arbitrário que consiste numa dispersão de unidades ausentes por toda matriz de dados. Aparentemente é aleatório, porém pode existir uma relação entre a falta de valores de uma variável e a tendência da falta de dados referente à outra variável medida.

Dentre os padrões descritos, os principais são os monótonos e gerais, sendo que o padrão monótono é utilizado pela maioria dos algoritmos de imputação, o que na prática não ocorre, pois normalmente as respostas estão associadas às características do indivíduo (LITTLE e RUBIN, 2002).

2.6.3 Métodos de Imputação única

Métodos de imputação simples ou única são métodos de substituição de dados faltantes quando os dados perdidos são substituídos uma única vez por algum dos métodos citados a seguir (ENGELS e DIEHR, 2003):

Substituição por um valor de tendência central

Os dados faltantes das variáveis quantitativas são substituídos pela média dos valores conhecidos da variável. Pode ser a média geral, ou seja, a média dos valores observados, ou a média de um grupo mais similar ao do caso com dado faltante, identificado por uma ou mais variáveis categóricas presentes no banco de dados. Também podem substituir os dados faltantes pela mediana dos valores conhecidos da variável ou pela mediana de um grupo de casos mais similares. Sempre que existirem valores extremos (*outliers*) na amostra, é recomendado utilizar o valor da mediana ao invés do valor da média. Se a variável com dados faltantes é categórica ordinal, utiliza-se a mediana ou pode-se também utilizar o valor modal para substituição do dado faltante. Se a variável é categórica não ordinal, é recomendado utilizar a moda e se não houver moda, sorteia-se uma categoria daquelas com maior frequência.

"Hot deck"

Os valores de respondentes, que são similares em relação a variáveis auxiliares, são selecionados para a imputação. São os chamados "doadores". Ou seja, localiza-se o indivíduo com dado observado mais parecido com o indivíduo com dado faltante em relação às variáveis auxiliares e substitui-se o dado faltante pelo valor do respondente pareado. Se houver mais de um respondente pareado, é usado o método de imputação do "vizinho mais próximo", onde algum critério de classificação é desenvolvido para determinar o registro mais semelhante àquele com o dado faltante e esse registro se torna doador desses dados.

Regressão (média predita)

Os valores imputados são preditos através de regressão simples ou múltipla, que pode ser usada simplesmente utilizando uma ou mais variáveis existentes para predizer os valores faltantes de outra variável altamente correlacionada com as anteriores. Dois tipos de regressão para imputação podem ser utilizados: regressão simples e regressão com termo de adição da variância do erro. A imputação que usa a regressão faz com que indivíduos que têm os mesmos valores nas mesmas covariáveis fiquem com o mesmo valor imputado, pois o valor predito é o mesmo.

Esse método faz referência ao algoritmo EM (*Expectation-Maximization*) e é atualmente um método bastante comum de imputação. O algoritmo EM é utilizado quando se deseja estimar parâmetros a partir de um conjunto de dados incompletos. É um processo iterativo em que se repetem dois passos até que haja convergência: E (Estimação) e M (Maximização). No passo E se estima os dados faltantes para completar a matriz de dados. No passo M, com os dados completados, há uma aprendizagem das probabilidades e então essas probabilidades são usadas para se fazer a inferência no passo E, assim, sucessivamente, o algoritmo é processado até que haja convergência.

2.6.4 Imputação Múltipla

Com a tentativa de construir um método que reflita a incerteza sobre as previsões dos dados em falta, Rubin (1987) descreveu o método de imputação múltipla, o qual substitui cada valor ausente por um conjunto de valores plausíveis que representa esta incerteza sobre o valor a ser imputado. Essa técnica possibilita, além da estimativa pontual dos parâmetros, a inclusão da incerteza da imputação dos dados na variância dos resultados estimados, corrigindo o maior problema associado à imputação única (RUBIN, 1987; SCHAFER, 1999).

A ideia por trás da Imputação Múltipla (IM) é que para cada dado faltante são imputados vários valores, por exemplo, m, ao invés de um. Com isso, são obtidos m bancos de dados completos e cada conjunto de dados é analisado usando-se procedimentos para dados completos. Após, obtém-se a estimativa pontual do parâmetro que é obtida através da média das múltiplas imputações e o seu erro padrão obtido através da variância das múltiplas imputações.

Existem três vantagens importantes da IM sobre a imputação única. Primeiro, quando imputações são realizadas aleatoriamente numa tentativa de representar a distribuição dos dados, a IM aumenta a eficiência da estimação. A segunda vantagem da IM é que quando são feitas as m imputações sob um mesmo modelo para não-resposta, inferências válidas - isto é, que reflitam a variabilidade adicional devido aos dados faltantes sob este modelo - são obtidas simplesmente combinando inferências de dados completos de maneira simples. A terceira vantagem é que gerando imputações múltiplas sob diferentes modelos é possível um estudo da sensibilidade das inferências para vários modelos de não-resposta (RUBIN, 1987).

Existem três desvantagens claras da IM sobre a imputação única. Primeiro: é necessário mais trabalho para produzir os valores a serem imputados. Segundo: mais espaço é necessário para armazenar os dados e resultados obtidos com a IM. Terceiro: é necessário mais trabalho para analisar os bancos de dados completos pela imputação múltipla do que o banco completo pela imputação única.

Essas desvantagens não são sérias quando os m's são modestos, m modestos são adequados quando a fração de dados faltantes é pequena. Quando a fração de dados faltantes é grande, imputações múltiplas com m modesto podem não ser completamente satisfatórias, entretanto a imputação única seria muito mais desastrosa (RUBIN, 1987).

Para realização da inferência por meio da imputação múltipla é necessário à realização de três passos, descritas a seguir.

- Os dados ausentes são preenchidos em m (m > 1) tempos gerando m conjuntos de dados completos por meio de técnicas adequadas de imputação. De acordo com a literatura m fica entre 3 e 10 imputações.
- 2. Os *m* conjuntos de dados completos são analisados usando técnicas estatísticas padrões.
- 3. Os resultados dos *m* conjuntos de dados completos são combinados para produzir inferência dos resultados a serem imputados.

O primeiro passo é a parte fundamental da IM, pois as técnicas de imputação utilizadas têm que preservar a relação das observações faltantes e observadas, levar em conta o mecanismo de ausência (MCAR, MAR ou NMAR) e o padrão dos dados faltantes (monotônicos ou não-monotônicos).

Regras de Rubin

As Regras de Rubin (*Rubin rules*) referem-se à combinação dos resultados obtidos nas diferentes análises e podem ser usadas, independentemente do método de IM.

As regras de Rubin estão amplamente divulgadas na literatura que trata de imputação múltipla, pois se trata de regras simples que resolvem o passo três da IM, isto é, a combinação dos resultados obtidos em diferentes análises. Essas regras podem ser usadas independentemente do método que se usou para se fazer a IM (SCHAFER E GRAHAM, 2002).

A partir das m imputações realizadas, o passo dois da IM pode ser realizado, ou seja, os m bancos de dados são analisados por métodos tradicionais de análise. Finalmente, os m

resultados obtidos podem ser combinados de um modo simples e apropriado como proposto por Rubin (1987).

A imputação é uma poderosa ferramenta e tem a grande vantagem de flexibilidade em manusear os dados faltantes. Entretanto, é importante que se tenha cautela, assim como em qualquer estatística que se faça uso. É claro que se o modelo de imputação não consegue capturar o mecanismo não resposta, as análises de imputação estarão comprometidas.

2.7 Modelagem Estatística

Em diversos problemas das áreas de saúde, biologia, industrial, química entre outras, é de grande interesse verificar se duas ou mais variáveis estão relacionadas de alguma forma. Para expressar essa relação é muito importante estabelecer um modelo estatístico. Este tipo de modelagem é chamado de regressão, e o entendimento de como determinadas variáveis influenciam outra variável, ou seja, verifica-se como o comportamento de uma(s) variável(is) pode mudar o comportamento de outra (CORDEIRO e DEMÉTRIO, 2008).

Modelos de regressão são construídos com os seguintes objetivos:

- I) Predição: uma vez se espera que grande parte da variação da variável de saída seja explicada pelas variáveis de entrada, pode-se utilizar o modelo para obter valores de Y correspondentes a valores de X que não estavam nos dados;
- II) Seleção de variáveis: frequentemente, não se tem ideia de quais são as variáveis que afetam significativamente a variação de Y. A análise de regressão pode auxiliar no processo de seleção de variáveis eliminando aquelas cuja contribuição não seja importante;
- III) Estimação de parâmetros: dado um modelo e um conjunto de dados referentes às variáveis resposta e preditoras, estimar parâmetros ou ajustar um modelo aos dados significa obter valores ou estimativas para os parâmetros, por algum processo, tendo por base o modelo e os dados observados;
- IV) Inferência: o ajuste de um modelo de regressão em geral tem por objetivos básicos, além de estimar os parâmetros, realizar inferências sobre eles, tais como, testes de hipóteses e intervalos de confiança.

A seleção de modelos é uma parte importante de toda pesquisa em modelagem estatística e envolve a procura de um modelo que seja o mais simples possível e que descreva bem os dados observados que surgem em diversas áreas do conhecimento (CORDEIRO e DEMÉTRIO, 2008). A essa teoria unificadora de modelagens estatística, uma extensão dos modelos clássicos de regressão linear, deu-se o nome de modelos lineares generalizados

- (MLG). Esses modelos envolvem uma variável resposta univariada, variáveis explanatórias e uma amostra aleatória de *n* observações independentes, sendo que:
- I) a variável resposta, componente aleatório do modelo, tem uma distribuição pertencente à família exponencial;
- II) as variáveis explanatórias entram na forma de uma estrutura linear, constituindo o componente sistemático do modelo;
- III) a ligação entre os componentes aleatório e sistemático é feita através de uma função adequada como, por exemplo, logarítmica para os modelos log-lineares, chamada função de ligação (MCCULAGH e NELDER, 1989).

Um tratamento parecido é dado aos modelos lineares multiníveis quando a análise apropriada envolve variáveis de contagem ou binária ou mesmo quando as transformações não normalizam os dados (HOSMER e LEMESHOW, 1989). Esses modelos multiníveis são uma extensão direta dos modelos lineares generalizados de McCulagh e Nelder (1989).

2.8 Modelagem Multinível

O termo multinível refere-se a dados estruturados de forma hierárquica que consiste em examinar relações entre variáveis medidas em diferentes níveis de dados com essa estrutura (GOLDSTEIN, 1995).

Para realizar a modelagem de regressão multinível, é necessário ter, além de uma estrutura hierárquica da população, uma variável resposta medida no menor nível. Podem-se ter variáveis independentes em quaisquer um dos níveis. Se a variável resposta for quantitativa, o modelo adequado é o de regressão linear multinível ou apenas regressão multinível, mas se a variável resposta for qualitativa, o modelo adequado é o de regressão logística multinível (BRYK e RAUDENBUSH, 1992).

Na literatura encontram-se uma grande variedade de denominações para os modelos multiníveis, tais como modelos hierárquicos, modelos de coeficientes aleatórios, modelos de componentes de variância e modelos de efeitos mistos (GOLDSTEIN, 1995).

Uma característica comum aos dados hierárquicos é a existência de correlação entre as observações no nível individual, onde em geral a variável resposta medida é o foco da análise.

Frequentemente, indivíduos podem estar agrupados em níveis ou hierarquias, sendo muito comum nas investigações epidemiológicas. Variações na saúde dos indivíduos que residem em diferentes áreas geográficas podem ser originadas de tendências específicas das pessoas que podem apresentar maior risco de adoecer por suas características individuais ao

viver em determinado local. Assim, a questão primordial não é somente se existe variações entre as diferentes áreas, mas qual a sua origem (DUNCAN, JONES e MOON, 1998).

Sendo assim, conceitualmente, o modelo pode ser visto como um sistema hierárquico de equações de regressão, possibilitando a estimação dos efeitos intragrupo e dos efeitos entregrupos. É possível, também, modelar a estrutura de variância em cada um dos níveis (GOLDSTEIN, 2003).

Para aplicar a regressão hierárquica, é necessário: (i) os dados devem ser métricos, ou adequadamente transformados; (ii) o pesquisador, antes de estabelecer a equação de regressão, deve decidir qual variável deve ser dependente e quais variáveis serão as independentes. As variáveis individuais devem atender as suposições de: (i) normalidade; (ii) linearidade; (iii) homoscedasticidade e (iv) multicolinearidade.

É necessário estimar a multicolinearidade (correlação) entre as variáveis independentes. A multicolinearidade pode impactar no modelo de regressão, restringindo o poder preditivo de qualquer variável independente que for associada com outras variáveis independentes. Portanto, as variáveis são inseridas na análise em uma determinada sequência.

Ferrão (2003) destaca as seguintes vantagens da utilização do modelo de regressão linear multinível:

- Possibilita a obtenção de estimativas eficientes de coeficientes de regressão;
- Leva em conta a informação sobre o agrupamento dos dados, tornando erros-padrão, intervalos de confiança e testes de hipóteses corretos;
- Permite o uso de variáveis independentes mensuradas em cada nível da hierarquia, permitindo o analista a exploração detalhada da influência e da contribuição de cada nível para a variabilidade da variável resposta;
- Análise de dados nos quais a variância não é homogênea.

Na literatura, diversos pesquisadores têm aplicado a modelagem multinível em diferentes áreas. Inicialmente desenvolvida na área educacional, tem despertado grande interesse nos pesquisadores dos serviços de saúde, nos epidemiologistas e nos profissionais envolvidos com a saúde pública, sendo crescente na literatura relacionada ao estudo da mortalidade geral e infantil.

Zanini, Moraes, Giugliane e Riboldi (2011) analisaram os determinantes da mortalidade neonatal em Estudo de coorte com 138.407 nascidos vivos com declaração de nascimento e 1.134 óbitos neonatais registrados em 2003 no estado do Rio Grande do Sul, segundo modelo

de regressão logística multinível e modelo hierárquico clássico onde concluíram que a aplicação de modelos multiníveis foi capaz de mostrar pequeno efeito dos determinantes contextuais na mortalidade neonatal.

Santos (2016) em sua tese de doutorado utilizou a regressão logística multinível para modelar a mortalidade fetal e neonatal em nível individual (características dos fetos e mães) e ao nível de assistência (tipo de hospital e distância) dos residentes no município de São Paulo em 2010.

Heimerdinger (2011) aplicou a modelagem multinível para estudar o coeficiente de mortalidade por neoplasia de mama no estado do Rio Grande do Sul, nas 35 microrregiões que o subdividem, considerando as microrregiões como nível 2 e os anos como nível 1. A modelagem permitiu relacionar dados contextuais das microrregiões, como características demográficas, indicadores socioeconômicos, indicadores de cobertura e indicadores de recursos com o coeficiente de mortalidade, no período estudado e também possibilitou uma maior compreensão da variabilidade nas taxas de mortalidade por neoplasia de mama entre as microrregiões ao longo dos anos.

A nível internacional, destaca-se o trabalho de Zewdie e Adjiwanou (2017), os quais ajustaram o modelo de regressão logístico multinível para analisar a mortalidade infantil e seus fatores de risco na África do Sul levando-se em conta a natureza hierárquica do problema e investigar a variação do país na modelagem. Os resultados indicaram que as comunidades com melhores padrões de vida e educação das mulheres estavam associadas a menores taxas de mortalidade infantil, enquanto a maior desigualdade de renda e a prevalência do HIV nas comunidades estavam associadas a níveis mais altos de mortalidade infantil.

Mohamoud, Kirby e Ehrenthal (2019) utilizaram os modelos de regressão logística bivariada e multinível para estimar as chances de morte infantil a termo, considerando as variáveis individuais e municipais nos Estados Unidos no ano de 2013. Os autores concluíram que a alta pobreza e os municípios muito rurais continuaram associados à mortalidade infantil a termo independente de fatores sociodemográficos, de saúde e obstétricos maternos individuais.

2.9 Caracterização dos Espaços Regionais

Os conceitos de rural e urbano servem, antes de tudo, para designar dois tipos diferentes de produção e organização do espaço, embora esta dimensão não esteja dissociada do seu conteúdo relacional e social. A cada um destes tipos de espaço correspondem formas de uso

social definidas, geralmente, por fatores demográficos como o número de habitantes, a densidade populacional ou por fatores econômicos como o tipo de atividade econômica, ou ainda por indicadores sociais, como a presença de determinados bens de uso coletivo. Assim, pode argumentar-se que o conceito de urbano, geralmente associado à ideia de cidade, remete para um ambiente produzido e modificado. Esta definição não parece ser suficiente, pois o espaço rural é também modificado, ainda que nele as características do ambiente natural sejam mais visíveis (RODRIGUES, 2014).

A definição de rural está sempre subsidiada pela definição de urbano, sendo na maioria das vezes, o rural classificado como o que está fora do urbano (MIRANDA e SILVA, 2013). Para Mormont (1996), "o rural é uma categoria historicamente situada, que emerge com o processo que vê as forças conjugadas da industrialização e da urbanização (a mobilidade mais que a expansão das cidades) integrarem progressivamente os campos dentro de um sistema econômico e sociopolítico unificado".

Na década de 1980, o surgimento da abordagem territorialista, que se consolidaria nas décadas seguintes, representa uma quebra de paradigma no estudo do rural. A mudança de abordagem não se resume à perspectiva econômica. Nota-se também que o processo de modernização da agricultura levou aos campos produtos e serviços antes considerados tipicamente urbanos. Isto não significa que o rural deixou de ser espaço da agricultura, mas que se torna um espaço multifuncional, marcado, sobretudo pela pluriatividade (KAYSER, 1990; JOLLIVET, 1997; MATHIEU, 1998).

Esta mudança de abordagem indica que a relação entre rural e urbano deixa de ser analisada de forma dicotômica, passando estas duas realidades a ser vistas como partes complementares de um mesmo território. Do ponto de vista da diferenciação quanto ao urbano, Kayser (1990) sintetiza o rural a partir de quatro dimensões:

- a) uma baixa densidade de habitantes e de construções, com a cobertura vegetal como paisagem predominante;
 - b) um uso econômico do solo predominante por atividades agro-silvo- pastoril;
- c) um modo de vida dos seus habitantes caracterizado pela pertença a uma coletividade de tamanho limitado e por uma relação com a natureza.
- d) uma identidade e uma representação específicas fortemente marcadas pela cultura camponesa.

Em resumo, podem-se sistematizar as definições conceituais de rural fornecidas pela bibliografia internacional em duas abordagens paradigmáticas: a abordagem tradicional de rural, na qual este é visto como sinônimo de espaço agrícola e simétrico do urbano; e a abordagem territorialista de rural, uma abordagem em que o rural adquire identidade própria, é economicamente multifuncional e com modalidades de articulação com os espaços urbanos que ditam a sua especificidade. Em ambas as abordagens, o rural é sempre definido tendo o urbano como referência.

O debate sobre o rural brasileiro até então era centrado em dois aspetos: o seu *tamanho* e a sua *natureza*. Quando se fala em *tamanho* do rural pretende-se referir o tamanho da população rural. Ou seja, o número de pessoas que vivem nas áreas consideradas rurais. A menção à *natureza* do rural corresponde, por sua vez, às características socioeconômicas e culturais dos espaços rurais e dos seus habitantes. Deste modo são identificadas duas formas de perceber o rural e o urbano no Brasil. A primeira, através do conceito de população rural medida pelos censos realizados pelo Instituto Brasileiro de Geografia e Estatística (IBGE). A segunda corresponde a aspetos socioeconômicos como a presença de atividades agrícolas e a ausência de bens e serviços modernos. Os conceitos de população rural e população urbana utilizados no Brasil derivam do que o IBGE chama situação de domicílio. Isto é, a localização do domicílio quanto à área urbana ou rural de cada município (RODRIGUES, 2014).

Em relação ao meio rural vale destacar elementos como o aumento das atividades não agrícolas, a mecanização, a intensificação da pluriatividade, a valorização da biodiversidade, a expansão do setor terciário e a intensificação de fluxos materiais e imateriais na caracterização e maior compreensão de suas dinâmicas. Por outro lado, a intensa urbanização vivenciada no país deve levar em conta hoje não apenas os processos migratórios como também o fenômeno da peri-urbanização tanto pela difusão do modo de vida urbano quanto pela construção de novas zonas residenciais.

Tendo em vista o presente cenário, o IBGE publicou a nova proposta de *Classificação* e caracterização dos espaços rurais e urbanos do Brasil (IBGE, 2017) que propõe a discussão sobre os critérios utilizados na delimitação do território nacional. O objetivo do estudo é aprimorar a divulgação do próximo Censo Demográfico do Brasil, a ser realizado em 2021, e oferecer à sociedade avanços na diferenciação de áreas rurais e urbanas que possam servir de base para a otimização de políticas públicas e do planejamento privado. De acordo com a nova proposta, 76% da população brasileira era "urbana" em 2010, enquanto a classificação usada atualmente, via legislação municipal, indica 84,4%.

A Proposta do IBGE de classificação dos espaços rurais e urbanos no Brasil

A metodologia propõe-se a definir uma tipologia rural—urbano para o recorte territorial municipal, mesmo reconhecendo a generalização necessária nessa escala de análise, uma vez que dentro de praticamente todos os municípios brasileiros encontram-se uma variedade de situações que vão desde os espaços eminentemente rurais às grandes densidades urbanas.

O critério fundamental escolhido para essa metodologia é a densidade demográfica, alinhada com tipologias bem aceitas internacionalmente como a da OCDE (Organização para a Cooperação e Desenvolvimento Econômico) e da União Europeia. Essa escolha facilita a comparabilidade dos resultados brasileiros com um número significativo de países. Além disso, optou-se por considerar o critério de acessibilidade a centros com alto nível hierárquico em relação a rede urbana. Desse modo, buscou-se critérios alternativos e complementares àqueles mais frequentes em tipologias oficiais: a patamares demográficos de localidades e a de critérios legais – que vigora atualmente no país (IBGE, 2017).

Adicionalmente, para ampliar o entendimento das áreas urbanas e rurais, qualificou-se a tipologia com um critério que leva em conta o acesso dos municípios a bens e serviços mais complexos. A localização ou a acessibilidade aos centros urbanos mais estruturados também se apresenta como um elemento importante, já que a relação das cidades menores com os centros urbanos de maior hierarquia reflete diretamente no modo de vida e na configuração do espaço. Esse aspecto contribui com o objetivo de se construir uma tipologia que rompa com a abordagem dicotômica que separa os espaços rurais dos espaços urbanos (IBGE, 2017).

Esquematicamente, os critérios utilizados para esta nova tipologia foram assim classificados segundo IBGE (2017) e apresentados no Quadro 2.1.

Assim, a definição da tipologia efetuou-se segundo um processo de classificações e cruzamentos matriciais sucessivos com base nos seguintes critérios: população em áreas de ocupação densa, proporção da população em áreas de ocupação densa em relação à população total e localização, cujo processo metodológico encontra-se descrito detalhadamente em IBGE (2017), resultou em cinco tipologias rural/urbana: Urbano, Intermediário Adjacente, Intermediário Remoto, Rural Adjacente e Rural Remoto. Esta tipologia quando aplicada ao estado da Paraíba classifica os municípios em três tipos: Rural Adjacente, Intermediário Adjacente e Urbano.

Na tipologia proposta neste estudo, nota-se que 84,4% da população brasileira se encontra em municípios considerados predominantemente urbanos, correspondendo somente a 26,0% do total de municípios. A maior parte dos municípios brasileiros foram classificados

como predominantemente rurais (60,4%), sendo 54,6% como rurais adjacentes e 5,8% como rurais remotos.

Quadro 2.1: Critérios utilizados para nova tipologia de classificação municipal

	Citário novo os municípios em Unidado Benulacioneis
Classificação	Citério para os municípios em Unidade Populacionais mais de 50.000 habitantes em área de ocupação densa
Município predominantemente urbano	mais de 50.000 habitantes em area de ocupação densa
	entre 25.000 e 50.000 habitantes em área de ocupação
	densa com grau de urbanização superior a 50%
	entre 10.000 e 25.000 habitantes em área de ocupação
	densa com grau de urbanização superior a 75%
Município intermediário	entre 25.000 e 50.000 habitantes em área de ocupação
	densa com grau de urbanização entre 25 e 50%
	entre 10.000 e 25.000 habitantes em área de ocupação
	densa com grau de urbanização entre 50 e 75%
	entre 3.000 e 10.000 habitantes em área de ocupação densa
	com grau de urbanização superior a 75%
Município predominantemente rural	entre 25.000 e 50.000 habitantes em área de ocupação
	densa com grau de urbanização inferior a 25%
	entre 10.000 e 25.000 habitantes em área de ocupação
	densa com grau de urbanização inferior a 50%
	entre 3.000 e 10.000 habitantes em área de ocupação densa
	com grau de urbanização inferior a 75%
Município rural	() a dimensão da localização de forma que se possibilite
adjacente e	distinguir, dentre os municípios classificados como
intermediário	intermediários e rurais, aqueles adjacentes a centros urbanos
adjacente	de maior hierarquia daqueles que se encontram remotos

Fonte: Classificação e caracterização dos espaços rurais e urbanos do Brasil: uma primeira aproximação / IBGE (2017)

3 METODOLOGIA

3.1 Caracterização do estado da Paraíba

O estado da Paraíba está localizado na região Nordeste do Brasil e limita-se com três estados: Rio Grande do Norte, Pernambuco e Ceará, além do Oceano Atlântico. Seu território é dividido em 223 municípios dos quais, 22 deles são classificados como Intermediário Adjacente, 166 municípios Rurais Adjacentes e 35 municípios Urbanos (IBGE, 2017). A Figura 3.1 ilustra os municípios segundo a nova tipologia rural/urbana do IBGE (SOARES, 2018). Segundo estimativa do IBGE, em 2020 a Paraíba possuía 4.039.277 habitantes com uma área total de 56.467,242 km² com uma densidade demográfica de 66,70 hab/km². Segundo dados do Instituto de Pesquisa Econômica Aplicada (IPEA) em 2017, o estado possuía um Índice de Desenvolvimento Humano (IDH) de 0,722, classificado como "elevado" próximo ao limite inferior do intervalo de 0,700 a 0,799, o qual posiciona o estado na vigésima posição no ranking nacional. Segundo o Ministério da Saúde em 2020 a Paraíba apresentou uma Taxa de Mortalidade Infantil de 13,6 óbitos a cada 1.000 nascidos vivos, em 2010 essa taxa era de 18,2 óbitos a cada 1.000 nascidos vivos.

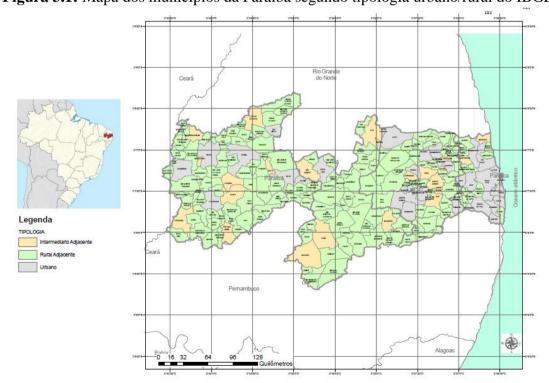


Figura 3.1: Mapa dos municípios da Paraíba segundo tipologia urbano/rural do IBGE*

Fonte: IBGE – Censo Demográfico 2010; Atlas Brasil (2013)

*Adaptado de Soares (2018)

3.2 Base, Fonte de dados e Tipo de Estudo

Para este estudo recorreu-se a todos os 5.149 registros de óbitos neonatais residentes no Estado da Paraíba ocorridos de 2009 a 2017 cujos microdados foram obtidos através da base de dados do Sistema de Informações sobre Mortalidade (SIM), disponíveis na Secretaria Estadual de Saúde da Paraíba. Também se recorreu aos registros de nascimentos de 2008 até 2017 disponíveis no SINASC para as três caracterizações municipais classificadas pelo IBGE (2017) para o Estado da Paraíba. A inclusão do ano 2008 para o SINASC permitiu captar nascimentos ocorridos no final deste ano, cujos óbitos ocorreram no início de 2009. Os dados de óbitos neonatais foram agregados em três triênios: 2009 a 2011, 2012 a 2014 e 2015 a 2017. Optouse pela utilização de três triênios com objetivo de evitar flutuações anuais nos dados analisados nos dois sistemas de informações. Em termos de classificação, este trabalho trata-se de um estudo descritivo, transversal e retrospectivo.

Foram selecionadas as variáveis materno-infantis comuns às duas bases de dados, tanto na DO como na DN, a saber: sexo e raça/cor da criança, idade da mãe, escolaridade da mãe, número de filhos vivos, número de filhos mortos, tipo de gravidez, duração da gestação, peso ao nascer e tipo de parto.

A variável *município de residência* da mãe foi classificada segundo critérios de ruralidade e urbanização utilizado pelo IBGE (2017), ou seja, os municípios foram classificados em: Intermediário Adjacente, Rural Adjacente e Urbano, logo, a nova variável foi renomeada para *caracterização municipal*.

Como as variáveis sexo, raça/cor da criança, escolaridade da mãe, tipo de gravidez e tipo de parto já são categorizadas segundo a Declaração de Óbito e as variáveis idade da mãe, número de filhos vivos, número de filhos mortos, duração da gestação e peso ao nascer são variáveis quantitativas, foram realizadas novas categorizações em algumas variáveis com a finalidade de facilitar as interpretações dos seus atributos. A variável sexo da criança permaneceu com as mesmas categorias da Declaração de Óbito (Masculino e Feminino). A variável raça/cor da criança foi categorizada em: Branca, Parda e Outras. A categoria "Outras" agrega as raças Preta, Amarela e Indígena. A variável escolaridade da mãe foi categorizada em: Sem escolaridade, Fundamental (que agrega as categorias Fundamental I e Fundamental II), Ensino Médio e Superior (que agrega as categorias Superior incompleto e Superior completo). A variável tipo de gravidez permaneceu com as mesmas categorias definidas na Declaração de Óbito (Única, Dupla e Tripla e mais). A variável tipo de parto também conservou a categorização utilizada na Declaração de Óbito (Vaginal e Cesáreo). A variável idade da mãe

foi categorizada em faixas etárias decenais, assim, as categorias foram: 10 a 19 anos, 20 a 29 anos, 30 a 39 anos e 40 anos e mais. A variável *número de filhos vivos* e *número de filhos mortos* foram classificadas em: Nenhum, Um, Dois, Três e mais. Para a variável *duração da gestação* as categorias foram: Prematuro (menos de 37 semanas de gestação) e Não Prematuro (a partir de 37 semanas de gestação). A variável *peso ao nascer* foi categorizada em Baixo peso ao nascer (recém-nascidos com menos de 2.500 gramas) e Peso adequado (recém-nascido com peso a partir de 2.500 gramas). A categoria "Ignorado" que está presente em todas as variáveis foi considerada como valor ausente.

3.3 Qualidade das informações de óbitos neonatais

O percurso metodológico proposto por Paes, Santos e Coutinho (2020) para avaliação da qualidade dos registros de óbitos infantis para os espaços regionalizados da Paraíba foi realizado em três etapas: 1) medição em termos percentuais da completude do preenchimento de variáveis neonatais presentes nas DO's. Por sua vez, a completude do preenchimento das variáveis para os óbitos neonatais foi abordada utilizando duas técnicas estatísticas: *linkage* determinístico e imputação múltipla; 2) estimativas da cobertura dos óbitos neonatais registrados; 3) Cálculo do Índice de Informação Desconhecida da Variável.

ETAPA 1. Completude das variáveis dos óbitos neonatais

Linkage determinístico

O uso do *linkage* determinístico exige que se tenha pelo menos uma variável unificadora comum em bancos de dados distintos. Para esta situação fez-se uso da variável unificadora comum aos sistemas SIM e SINASC, o "número da Declaração de Nascido Vivo". Foi empregada a função de pesquisa e referência (PROCV) do Microsoft Office Excel 2016. A partir do pareamento de registros do SIM e do SINASC, foi possível resgatar nos registros do SINASC informações de variáveis dos registros que não constavam no SIM. Na ausência de um identificador, o *linkage* probabilístico é uma das alternativas mais utilizadas. No entanto, seu uso envolve cálculos que incorpora incertezas no dimensionamento do pareamento entre as bases de dados e que rarissimamente garantirá que todos os dados sejam pareados. Deste modo, para complementar o *linkage* determinístico foi utilizada a imputação múltipla.

Imputação dos dados incompletos

Para aplicação desta técnica foi necessário avaliar o mecanismo e o padrão de dados ausentes dos dados a serem imputados. Os três mecanismos de não-resposta segundo Little e Rubin (2002) são: ausentes de forma completamente aleatória; ausentes de forma aleatória e ausentes de forma não-aleatória. Os padrões de não-resposta se referem à forma com que os valores ausentes estão distribuídos em uma base de dados e podem ser classificados em: padrão univariado, padrão monotônico e padrão não-monotônico. Após essas verificações devem ser imputadas as informações ausentes das variáveis materno-infantis supracitadas.

De acordo com os percentuais de dados ausentes nas variáveis foi possível determinar o método de imputação a ser utilizado. Segundo Harrell Jr (2001) é possível serem definidas linhas gerais para a escolha entre os métodos de imputação de acordo com a proporção de dados faltantes em qualquer uma das variáveis.

- Proporção ≤ 0,05 → Neste caso pode ser usada imputação única ou analisar somente os dados completos.
- Proporção entre 0,05 e 0,15 → Imputação única pode ser usada aqui provavelmente sem problemas, entretanto o uso da imputação múltipla é indicado.
- Proporção $\geq 0.15 \rightarrow A$ imputação múltipla é indicada na maior parte dos casos.

Optou-se pela imputação múltipla, pois essa técnica produz resultados não viesados e com erros padrão apropriados.

Uma questão relevante na imputação múltipla é a escolha da quantidade de imputações m a serem realizadas. Alguns autores argumentam que um m entre 3 e 5 já é suficiente para gerar resultados satisfatórios (RUBIN, 1996; SCHFER, 1999). A decisão sobre a quantidade de imputações se baseia em um indicador denominado por Rubin (RUBIN, 1996) de Eficiência Relativa (ER), expresso como função da quantidade de imputações (m) e do percentual de dados ausentes da variável (λ). O resultado do indicador aponta o percentual de eficiência dos valores imputados de cada variável. Assim, o cálculo para obtenção da Eficiência Relativa é dado por:

$$ER = \left(1 + \frac{\lambda}{m}\right)^{-1}$$

De acordo com os dados observados e o percentual de dados faltantes, tem-se que a eficiência relativa para cada variável foi superior a 96% optando-se por um m = 5 imputações para os dados faltantes das variáveis do estudo.

A técnica de imputação múltipla cria *m* cópias da base de dados onde os valores ausentes são substituídos por valores plausíveis imputados através de técnicas adequadas de estimação. Os valores imputados para o padrão monotônico são obtidos por meio de métodos estatísticos inferenciais como Método da Regressão Linear Bayesiana ou Método da Média Preditiva e para o padrão não-monotônico tem-se o método de Monte Carlo baseado em Cadeias de Markov. Um número *m* de bancos distintos e completos são gerados, e cada um deles deve ser analisado (RUBIN, 1996; SCHFER, 1999). Para a combinação entre todas as *m* estimativas individuais de todas as imputações realizadas, recorreu-se às Regras de Rubin (RUBIN, 1987) que se utiliza de estimativas da média e da variância entre as imputações.

Para cada análise das m bases de dados completas, obtém-se uma estimativa para um parâmetro escalar de interesse Q, ou seja, Q_j , j=1,2,...,m. Segundo Schafer (1999), Q pode ser qualquer medida escalar a ser estimada, tal como média, correlação, coeficiente de regressão ou razão de chances. Então a estimativa combinada \bar{Q} será a média das estimativas individuais (\hat{Q}_j) :

$$\overline{\mathbf{Q}} = \frac{1}{m} \sum_{j=1}^{m} \widehat{\mathbf{Q}}_{j}$$

Para a variância combinada, primeiramente calcula-se a variância dentro das imputações:

$$\overline{U} = \frac{1}{m} \sum_{j=1}^{m} U_j$$

e a variância entre imputações:

$$B = \frac{1}{m-1} \sum_{j=1}^{m} (\hat{Q}_j - \bar{Q})^2$$

Então, a variância total, que é a variância combinada, será:

$$T = \overline{U} + \left(1 + \frac{1}{m}\right)B.$$

O procedimento de Imputação Múltipla foi realizado pelo software estatístico R versão 4.0.2 de acesso livre, disponível em: *https://www.r-project.org*.

ETAPA 2. Cobertura dos óbitos neonatais

ativa/indicadores-de-saude/cobertura/

Para estimar a cobertura dos óbitos neonatais, $C_{obitos\,(neo)}$, procedeu-se aos seguinte passos:

Para obtenção do número de óbitos neonatais estimados, inicialmente foi necessário a disponibilidade ou conhecimento da Taxa de Mortalidade Infantil (TMI). Neste caso, as TMI's para as três caracterizações municipais da Paraíba foram obtidas do Ministério da Saúde (BRASIL, 2020) em cada ano e o valor da TMI das caracterizações municipais foi agrupado através da média das TMI's dos municípios pertencentes a cada espaço regionalizado.

Em seguida foram extraídos os montantes de óbitos neonatais registrados desses municípios através do SIM e calculadas a proporção de óbitos neonatais entre os óbitos infantis para a obtenção das Taxas de Mortalidade Infantil Neonatais (TMI_{neo}). Este último foi obtido pelo produto das TMI's pela proporção de óbitos neonatais em cada município e para cada ano e agrupadas para cada caracterização municipal.

Por sua vez, o número de óbitos neonatais estimados foi obtido pelo produto do número de nascidos vivos estimados e a TMI_{neo}, onde o número de nascidos vivos estimados foi calculado por meio do quociente entre o número de nascidos vivos observados pelo SINASC do Ministério da Saúde (agrupados para as caracterizações municipais) e a cobertura dos nascidos vivos para o Estado da Paraíba. Estas coberturas variaram no período de 2009 a 2017 de 93% a 99% para o estado da Paraíba e foram consideradas de boa qualidade para as caracterizações municipais, conforme classificação proposta por Paes (2018). A cobertura foi obtida através da Busca Ativa do Ministério da Saúde no período estudado disponíveis no sítio: http://svs.aids.gov.br/dantps/acesso-a-informacao/acoes-e-programas/busca-

Finalmente, obteve-se a cobertura dos óbitos neonatais $C_{obitos\,(neo)}$ através da seguinte fórmula:

$$C_{\acute{o}bitos\,(neo)} = \frac{\acute{O}bitos(neo)_{observados}}{\acute{O}bitos(neo)_{estimados}} \times 100$$

Com as coberturas dos óbitos neonatais calculadas em cada ano, foram obtidas as médias das coberturas nos triênios: 2009-2011, 2012-2014 e 2015-2017.

ETAPA 3. Índice de Informação Desconhecida da Variável (IIDV)

O *IIDV* é um indicador complementar proposto por Paes (2018) que auxilia na obtenção de uma estimativa mais aproximada do verdadeiro percentual de informações ausentes nas variáveis de estudo das declarações de óbitos, o qual é dado pela seguinte expressão:

$$IIDV = (100 - C) + \frac{C \cdot V_d}{100}$$

Em que:

C é a cobertura dos óbitos;

 V_d é o percentual de não resposta das variáveis.

Esse indicador representa o efeito conjunto de dois indicadores: o primeiro trata-se dos óbitos neonatais que não foram registrados (o complemento da cobertura C) e que, portanto, não se tem nenhuma informação sobre o preenchimento das variáveis; o segundo incorpora o problema da incompletude (complemento da completude, V_d). Assim, calculou-se o IIDV antes e após à aplicação da técnica do linkage.

3.4 Análise Descritiva das Variáveis

Após a obtenção da completude das variáveis por meio dos métodos de *linkage* determinístico e da Imputação Múltipla, procedeu-se a análise da distribuição percentual das categorias das variáveis *sexo* e *raça/cor* das crianças, *idade da mãe*, *escolaridade da mãe*, *número de filhos vivos*, *número de filhos mortos*, *tipo de gravidez*, *duração da gestação*, *tipo de parto* e *peso ao nascer* segundo as caracterizações municipais e em cada triênio de 2009 a 2017. A análise descritiva das variáveis permitiu elaborar o panorama das características materno-infantis nas três caracterizações municipais da Paraíba em termos de frequência percentual.

3.5 Análise Bivariada

Com objetivo de identificar as possíveis variáveis preditoras do modelo de regressão logística binária multinível, investigou-se a relação entre a variável *tipo de parto* com as demais variáveis por meio do teste Qui-quadrado de independência por se tratar de variáveis categorizadas. Para tanto desenhou-se uma matriz de relações entre a variável *tipo de parto* com as variáveis *sexo*, *raça/cor* da criança, *idade da mãe*, *escolaridade da mãe*, *número de filhos vivos*, *número de filhos mortos*, *tipo de gravidez*, *duração da gestação*, *peso ao nascer* e *caracterização municipal*. Para o teste, considerou-se um nível de significância de 10% (HOSMER e LEMESHOW, 1989). O teste Qui-quadrado de independência é utilizado para testar a hipótese de que duas variáveis não estão relacionadas, isto é, são independentes. A hipótese nula, H_0 afirma que as variáveis em questão são independentes (não há relação entre elas), ou em outras palavras, que as proporções são iguais, a hipótese alternativa, H_1 afirma que as variáveis não são independentes (há relação entre as variáveis).

A estatística de teste, proposta por Karl Pearson, para medir o grau de discrepância entre as frequências observadas O_{ij} e esperadas E_{ij} é no caso de duas variáveis serem independentes:

$$\chi_c^2 = \sum_{i=1}^r \sum_{j=1}^s \frac{(O_{ij} - E_{ij})^2}{E_{ij}} \sim \chi_{(r-1)(s-1)}^2$$

Em que, r e s são o número de categorias ou classes das variáveis que estão sendo analisadas. Rejeita-se a Hipótese nula, H_0 se $\chi_c^2 \ge \chi_{(r-1)(s-1);\alpha}^2$.

3.6 Modelagem Multinível

Após a seleção das variáveis que irão compor a modelagem multinível, levando-se em consideração dois níveis: cada óbito neonatal (nível 1) e caracterização municipal (nível 2). O segundo nível diz respeito à identificação do município de acordo com as três categorias de ruralidade definida pelo IBGE (2017): Urbano, Intermediário Adjacente e Rural Adjacente. Considerando as possíveis variáveis independentes apresentadas na análise bivariada, foram realizadas três modelagens utilizando o modelo logístico binário multinível. No primeiro modelo, a variável *tipo de parto* foi considerada como variável dependente. No segundo e no terceiro modelos a variável *tipo de parto* foi considerada como independente. A alocação da

variável *tipo de parto* para variável dependente ou independente levou-se em consideração a importância da variável como causa e consequência entre as demais variáveis selecionadas neste estudo. Assim, na primeira modelagem as variáveis independentes selecionadas segundo a análise bivariada foram: *raça/cor da criança*, *idade da mãe*, *escolaridade da mãe*, *número de filhos vivos*, *número de filhos mortos* e *tipo de gravidez*. Na segunda e na terceira modelagens a variável dependente considerada foi a *duração da gestação* e o *peso ao nascer*, respectivamente. Assim, neste estudo, a categoria de sucesso considerada para o evento "óbito neonatal" foi a categoria "ter nascido via parto cesáreo".

A análise multinível é aplicável a uma ampla gama de situações em que a população apresenta estrutura hierárquica, ou seja, as unidades em um nível mais baixo estão aninhadas dentro de unidades em um nível mais alto. Para utilizar o modelo de regressão multinível, é necessário ter, além de uma estrutura hierárquica da população, uma variável resposta medida no menor nível. Pode-se ter variáveis independentes em quaisquer um dos níveis. Se a variável resposta for quantitativa, o modelo adequado é o de regressão linear multinível ou apenas regressão multinível, mas se a variável resposta for qualitativa, o modelo adequado é o de regressão logística multinível (BRYK e RAUDENBUSH, 1992; GOLDSTEIN, 1995, HOX, 2010).

A seguir, serão descritos os principais modelos multiníveis:.

Modelo Linear Multinível

Considerando o caso de uma estrutura hierárquica com 2 níveis, assume-se que tem-se P variáveis independentes x no menor nível, indicadas por p, onde tem-se que p=1,2,...,P. Similarmente, tem-se Q variáveis independentes w no maior nível, indicadas por q, com q=1,2,...,Q. A variável resposta, que está no menor nível é denotada por y. Além disso, i=1,2,...,I, é o número de grupos ou clusters, e $j=1,2,...,n_i$, é o número de observações em cada grupo. A equação do modelo completo é dada por (GOLDSTEIN, 2003):

$$y_{ij} = \mu + \sum_{p=1}^{P} \beta_p x_{pij} + \sum_{q=1}^{Q} \gamma_q w_{qi} + \sum_{p=1}^{P} \sum_{q=1}^{Q} \theta_{pq} x_{pij} w_{qj} + \sum_{p=1}^{P} \tau_{pi} x_{pij} + G_i + e_{ij}$$
 (1)

Claramente o modelo completo possui muitos parâmetros. Em regressão multinível é ainda mais importante que sejam incluídas apenas as variáveis e interações que forem de fato

importantes para o estudo, pois esse tipo de modelo pode ficar facilmente "super parametrizado" (GOLDSTEIN, 1995). Em (1), tem-se:

I. Efeitos fixos:

 μ é o intercepto.

 β_p é o coeficiente de regressão das variáveis independentes no menor nível.

 γ_q é o coeficiente de regressão das variáveis independentes no maior nível.

 θ_{pq} é o coeficiente de regressão da interação entre níveis.

II. Efeitos aleatórios:

 τ_{pi} é o termo aleatório que indica se o coeficiente de regressão para o preditor x_p varia entre grupos.

 G_i é o erro no maior nível, que indica diferença entre grupos.

 e_{ii} é o erro no menor nível, que indica diferença dentro de grupos.

III. Suposições do modelo:

- a) suposição inicial é de relação linear entre a variável resposta e as independentes.
- b) $e_{ij} \sim N(0, \sigma_E^2)$ com variância constante (Homocedasticidade).
- c) τ_{pi} e G_i são independentes de e_{ij} e tem distribuição normal multivariada com média igual a 0 e $Var(G_i) = \sigma_G^2$ é a variância do erro entre grupos. $Var(\tau_{pi}) = \sigma_{\tau_p}^2$ é a variância dos coeficientes de regressão entre grupos. Em geral, as covariâncias entre τ_{pi} e G_i não são assumidas iguais a 0.

Os modelos multiníveis são necessários, pois quando os dados têm estrutura hierárquica, indivíduos dentro de um grupo tendem a ter características semelhantes e assim a amostra passa a não ser independente. Essa dependência pode ser expressa pelo coeficiente de correlação intra-classe ρ . Uma das formas de estimá-lo é considerar o modelo sem variáveis independentes, que é um caso particular de um modelo de Componentes da Variância (GOLDSTEIN, 2003):

$$y_{ij} = \mu + G_i + e_{ij} \tag{2}$$

Tem-se que (2) não explica a variabilidade de y, apenas a decompõe em dois termos independentes: e_{ij} com variância σ_E^2 e G_i com variância σ_G^2 , que são chamados de componentes da variância.

Dessa forma, o coeficiente de correlação intra-classe ρ é dado por:

$$\rho = \frac{\sigma_G^2}{\sigma_G^2 + \sigma_E^2}$$

Assim, ρ é a proporção da variância explicada pela estrutura de agrupamento na população. Também pode ser interpretado como a correlação esperada entre dois indivíduos escolhidos aleatoriamente dentro do mesmo grupo (GOLDSTEIN, 1995).

As interpretações dos parâmetros do modelo (1) são análogas à regressão linear múltipla, onde, por exemplo, para cada unidade da variável x_p tem-se um aumento (no caso do coeficiente β_p ser positivo e não ter interação) de y em média de β_p unidades, mantidas as demais variáveis constantes. Na presença de interação, a interpretação depende de outra variável independente (GOLDSTEIN, 1995).

A extensão para três ou mais níveis é análoga, mas bastante complicada, especialmente pelo fato de se ter muitos parâmetros. Nesse caso, os coeficientes de regressão das variáveis independentes no menor nível podem variar em ambos segundo e terceiro níveis, além de que os coeficientes de regressão do segundo nível podem variar no terceiro nível. Para evitar um modelo "super parametrizado", não se deve incluir interações de alta ordem, a não ser que isso seja importante no estudo. Pode-se também definir o coeficiente de correlação intra-classe (HOX, 2010).

Modelo Logístico Multinível

Quando a variável resposta é categórica e os dados têm estrutura hierárquica, o modelo adequado é o de regressão logística multinível. Este modelo é muito parecido com o modelo de regressão logística, incluindo os efeitos aleatórios e variáveis independentes dos demais níveis (BRYK e RAUDENBUSH, 1992). O modelo para o caso com 2 níveis e variável resposta binária é:

$$logito(\pi_{ij}) = \mu + \sum_{p=1}^{P} \beta_p x_{pij} + \sum_{q=1}^{Q} \gamma_q w_{qi} + \sum_{p=1}^{P} \sum_{q=1}^{Q} \theta_{pq} x_{pij} w_{qj} + \sum_{p=1}^{P} \tau_{pi} x_{pij} + G_i$$
 (3)

Em que π_{ij} é a probabilidade de sucesso do indivíduo j no grupo i. Como é usual na notação de regressão logística, (3) não apresenta o termo e_{ij} . As interpretações do modelo são análogas àquelas discutidas em regressão logística (GOLDSTEIN, 1995).

Esse modelo é um caso particular de modelo linear generalizado misto, que tem estrutura parecida com MLG:

- I. Componente aleatório $y_{ij} \quad \text{com distribuição binomial } (n_{ij}, E(y_{ij}) = \pi_{ij}). \quad \text{Onde } n_{ij} = 1, \quad \text{ou seja},$ $y_{ij} \sim Bernoulli(\pi_{ij}).$
- II. Componente sistemático

$$\mu + \sum_{p=1}^{P} \beta_p x_{pij} + \sum_{q=1}^{Q} \gamma_q w_{qi} + \sum_{p=1}^{P} \sum_{q=1}^{Q} \theta_{pq} x_{pij} w_{qj} + \sum_{p=1}^{P} \tau_{pi} x_{pij} + G_i$$

III. Função de ligação

$$g(\pi_{ij}) = logito(\pi_{ij}) = \frac{\pi_{ij}}{1 - \pi_{ij}}$$

Cabe observar que a variância é função da proporção populacional π_{ij} , isto é, $\sigma_E^2 = \pi_{ij}/1 - \pi_{ij}$ e não precisa ser estimada separadamente.

Por ser um modelo mais complicado, os métodos de estimação usados são todos numéricos. Incluir muitos parâmetros pode certamente levar a problemas de convergência do algoritmo para estimação. Geralmente os métodos utilizados são modificações do método da máxima verossimilhança, como marginal quasi-likelihood e penalized quasi-likelihood. Algumas vezes também se usa o método de máxima verossimilhança com algumas aproximações numéricas mais avançadas (GOLDSTEIN, 2003).

Outra questão que surge é a do coeficiente de correlação intra-classe. Com o fator de escala igual a 1, a variância que deve-se usar é dada por $\pi^2/3 \approx 3,29$ onde $\pi \approx 3,14$. Dessa forma, tem-se:

$$\rho = \frac{\sigma_G^2}{\sigma_G^2 + 3{,}29}$$

Nesse caso, ρ tem a mesma interpretação que na regressão linear multinível (EVANS, HASTINGS e PEACOCK, 2000).

Como os três modelos que foram ajustados neste trabalho, as variáveis respostas (*tipo de parto*, *duração da gestação* e *peso ao nascer*) são do tipo binária, utilizou-se o modelo logístico binário multinível.

Inferência Estatística em Modelos Multiníveis

O princípio de que os modelos devem ser parcimoniosos, isto é, o modelo que envolva o mínimo de parâmetros possíveis a serem estimados e que explique bem o comportamento da variável resposta, indica que geralmente deve-se escolher o modelo mais simples (ARAÚJO, 2017). A fim de testar a significância dos coeficientes e para comparar os modelos foram utilizados o teste Wald e a estatística *deviance*, respectivamente, que são especificados abaixo.

O teste de Wald é utilizado para avaliar se o parâmetro é estatisticamente significativo para um determinado nível de significância. Logo, as hipóteses a serem testadas são

$$H_0: \beta_i = 0$$
,

$$H_1: \beta_j \neq 0.$$

Sob H_0 tem-se que

$$z = \frac{\hat{\beta}_j}{EP(\hat{\beta}_j)} \sim N(0,1)$$

Em que $EP(\hat{\beta}_i)$ é o Erros Padrão do parâmetro estimado.

Com objetivo de verificar quão bem o modelo se ajusta a um banco de dados, a partir da função de verossimilhança, utiliza-se a estatística chamada de *deviance*, definida como:

$$deviance = -2\ln(MV)$$

Em que MV é a Máxima Verossimilhança.

De modo geral, modelos que possuem um *deviance* menor estão melhor ajustados aos dados em estudo. Essa medida pode ser utilizada para comparação de modelos aninhados, isto é, quando um modelo é um caso particular de outro mais geral. A diferença entre as *deviances* dos dois modelos aninhados possui distribuição qui-quadrado com *d* graus de liberdade, sendo *d* a diferença entre os parâmetros dos modelos (SANTOS, 2017).

Foram seguidos os passos propostos por Hox (2010) na construção do modelo de regressão logística multinível. Por isso, inicialmente, considerou-se o modelo nulo, ou seja, o modelo multinível mais simples, sem variáveis independentes. Em seguida foram inseridas no modelo todas as variáveis independentes no menor nível, isto é, dos óbitos neonatais. Então, avalia-se se os coeficientes de regressão das variáveis independentes do modelo possuem variância significativa entre os grupos.

A modelagem multinível foi realizada utilizando-se como ferramenta o software estatístico R versão 4.0.2 de acesso livre. Os comandos para realização da modelagem podem ser encontrados no tutorial disponível em: https://www.rensvandeschoot.com/tutorials/lme4/

3.8 Análise de Variância (ANOVA)

Após o ajuste dos modelos multiníveis, àqueles que sinalizaram diferenças significativas entre as diferentes caracterizações municipais da Paraíba foram inseridos na ANOVA. A finalidade da realização da ANOVA para os dados deste estudo consistiu em verificar em quais variáveis essa diferença foi significativa e, em seguida, por meio de teste de comparações múltiplas, examinar as diferenças existentes entre os municípios Urbanos, Intermediários Adjacentes e Rurais Adjacentes. Os pressupostos de independência das observações, normalidade e homogeneidade das variâncias foram verificados previamente e as condições foram satisfeitas, assim, deu-se à cabo a realização da ANOVA. Confirmando diferença significativa entre as médias das caracterizações municipais nas variáveis utilizadas na modelagem, o próximo passo foi realizar as comparações múltiplas entre as caracterizações municipais com a finalidade de avaliar quais grupos foram diferentes.

Existem diversos testes estatísticos de comparações múltiplas, a saber: Dunnett, DMS (Diferença Média Significativa), Tukey, Sheffeé, Bonferroni, entre outros. Como os grupos em que serão realizadas as comparações são de tamanhos diferentes e desejou-se realizar comparações entre as caracterizações municipais, optou-se pelo teste de Bonferroni.

Uma possível abordagem para o problema de comparação múltipla é fazer cada comparação independentemente usando um procedimento estatístico adequado. Por exemplo, um teste de hipótese estatístico pode ser usado para comparar cada par de médias μ_i e μ_j , em que a **hipótese nula** e **a hipótese alternativa** são da forma:

$$H_0: \mu_i = \mu_i$$

$$H_1: \mu_i \neq \mu_i$$

O teste de Bonferroni é um significativo desenvolvimento do teste t, suas inovações têm por finalidade minimizar as restrições contidas no teste t e dar uma maior amplitude na construção das análises das médias em conjunto. Assim, o teste usa a Correção do mesmo autor sobre uma classe de testes denominada LSD (Least Significant Difference), derivados do teste t (BONFERRONI, 1936).

O teste de Bonferroni pode ser usado para quaisquer que sejam os dados balanceados ou não balanceados. Para tamanhos de amostras iguais (dados balanceados), o teste de Bonferroni considera duas médias significativamente diferentes se o valor absoluto de suas diferenças amostrais ultrapassar

$$LSD = t_{(\alpha; N-k)} \sqrt{2 \frac{QME}{n}}$$

E para tamanhos de amostras diferentes (dados não balanceados)

$$LSD = t_{(\alpha; N-k)} \sqrt{QME\left(\frac{1}{n_i} + \frac{1}{n_j}\right)}$$

Em que, $t_{(\alpha; N-k)}$ é o quantil da distribuição de probabilidade t-Student com parâmetro N-k, QME é o Quadrado Médio dos Resíduos, n_i e n_j são os números de repetições das médias i e j.

Rejeita-se a Hipótese H_0 se $|\bar{x}_i - \bar{x}_j| > LSD$, em que \bar{x}_i e \bar{x}_j são as médias amostrais dos grupos i e j que estão sendo comparados (BONFERRONI, 1936).

Concluído o percurso metodológico para avaliar a influência dos partos cesáreos na mortalidade neonatal de acordo com as caracterizações municipais do Estado da Paraíba de 2009 a 2017, desenhou-se na Figura 3.2 um esquema que detalha todo o processo metodológico deste estudo.

SIM (2009 - 2017) SINASC (2008 - 2017) óbitos neonatais nascidos vivos N = 5.149N = 584.963 Linkage Determinístico No de pares = 2.322 Óbitos Neonatais não pareados = 2.827 Óbitos Neonatais: Variáveis com informações incompletas = 10 Nº de casos com informações incompletas = 1.720 Imputação Múltipla (informações completadas) Modelagem Multinivel Modelo Modelo Modelo 3

ANOVA

Figura 3.2: Estruturação dos bancos de dados e das etapas do *linkage* entre SIM e SINASC, Imputação Múltipla e Modelagem Multinível

4 RESULTADOS E DISCUSSÕES

Neste capítulo, os resultados são apresentados conforme a ordem de tratamento dos dados em três etapas: A primeira etapa trata da qualificação dos registros de óbitos neonatais pela completude das variáveis através do *Linkage* Determinístico e da Imputação Múltipla, assim como a verificação dos níveis de cobertura dos registros de óbitos neonatais e do cálculo do Indicador de Informações Desconhecidas das Variáveis (IIDV), ignoradas ou não preenchidas. A segunda etapa aborda a Análise do perfil das variáveis Materno-infantis selecionadas da Declaração de Óbito (DO). A terceira etapa refere-se à Modelagem Logística Binária Multinível da variável resposta *tipo de parto* com as covariáveis independentes materno-infantis. Também foram realizadas modelagens considerando a variável *tipo de parto* como independente e as variáveis *duração da gestação* e *peso ao nascer* como dependente.

4.1 Análise da qualidade dos Registros de óbitos neonatais

A primeira etapa desta pesquisa tratou da qualidade das informações. Um aspecto fundamental foi verificar o percentual de incompletude das variáveis que foram utilizadas nesta investigação. A completude é traduzida pela proporção de campos preenchidos com resposta não-nulas. A Tabela 4.1 apresenta um panorama da situação em termos do percentual de informações ignoradas ou não preenchidas das variáveis da Declaração de Óbito neonatal para os triênios de 2009 a 2017.

Pode-se observar que a variável *escolaridade da mãe* apresentou os percentuais mais elevados de incompletude durante todo o período e a variável *sexo* apresentou os percentuais mais baixos. Observa-se, também, que no total de 2009 a 2017 com exceção da variável *escolaridade da mãe* e da variável *sexo*, todas as variáveis apresentaram percentuais de incompletude variando de 6,68% a 15,28%.

Nota-se uma melhoria da completude com o passar dos anos e no último triênio (2015 – 2017) todas as variáveis apresentaram percentuais abaixo de 16% enquanto que no primeiro triênio (2009 – 2011) haviam quatro variáveis (*idade da mãe*, *escolaridade da mãe*, *número de filhos vivos* e *número de filhos mortos*) que apresentaram percentuais acima de 16% e apenas três variáveis com percentuais de incompletude abaixo dos 10% (*sexo*, *tipo de gravidez* e *tipo de parto*).

Com relação ao número de registros de óbitos neonatais, houve uma diminuição dos registros de óbitos neonatais no tempo, de aproximadamente 19% ao comparar o triênio 2009

– 2011 com o triênio 2015 – 2017. Apesar da queda dos registros de óbitos neonatais registrados do primeiro para o terceiro triênio, os registros anuais do Ministério da Saúde apontam para um aumento das Taxas de Mortalidade Infantil nos anos de 2016 e 2017 em todo Brasil (BRASIL, 2017). Desde 1990 o país não apresentava alta nessa taxa e, segundo opiniões de especialistas nessa temática em entrevistas à Fiocruz (2018) vários fatores podem ter levado a esta alta como a emergência do vírus da zika, o aumento das causas diarreicas em 2016, associados à falhas na linha de cuidado da gestante e desarticulação entre os níveis de atenção ambulatorial e hospitalar.

Tabela 4.1: Número e percentual de informações ignoradas ou não preenchidas segundo variáveis selecionadas da Declaração de Óbito neonatal no Estado da Paraíba nos triênios de 2009 a 2017

Variável	2009 - 2011		2012 – 2014		2015 - 2017		2009 - 2017	
v ai iavei	n	%	n	%	n	%	n	%
Sexo	13	0,69	13	0,74	14	0,92	40	0,78
Raça/Cor	190	10,07	166	9,50	98	6,46	454	8,82
Idade da Mãe	375	19,88	216	12,36	186	12,25	777	15,09
Escolaridade da Mãe	524	27,78	270	15,46	237	15,61	1031	20,02
Número de filhos vivos	342	18,13	183	10,48	135	8,89	660	12,82
Número de filhos mortos	398	21,10	223	12,76	166	10,94	787	15,28
Tipo de Gravidez	143	7,58	118	6,75	83	5,47	344	6,68
Duração da Gestação	251	13,31	263	15,05	199	13,11	713	13,85
Tipo de Parto	159	8,43	125	7,16	91	5,99	375	7,28
Peso ao nascer	201	10,66	163	9,33	116	7,64	480	9,32
Total de registros	1.885	1	1.746	1	1.518	1	5.149	-

Fonte: Sistema de Informações sobre Mortalidade – Ministério da Saúde

4.1.1 Linkage Determinístico

Com a descrição do panorama da incompletude das variáveis, verificou-se que devido ao percentual importante de variáveis com informações ignoradas ou não preenchidas justificou-se a realização do pareamento dos bancos de dados do SIM e do SINASC por meio da aplicação da técnica do *linkage* determinístico. Essa técnica possibilitou resgatar algumas

informações que antes não estavam preenchidas ou ignoradas de algumas variáveis da Declaração de óbito neonatal.

Na Tabela 4.2, são apresentados os percentuais de registros pareados do SIM e do SINASC por meio da aplicação do *linkage* determinístico utilizando a variável identificadora comum aos dois sistemas (*Número da Declaração de Nascido Vivo*). Como essa variável também possui problemas no seu preenchimento, àqueles indivíduos que não possuíam o número da Declaração de Nascido Vivo (DN) preenchido na DO não puderam ser pareados, logo, os percentuais que são mostrados na Tabela 4.1 não representam todas as DO's, ou seja, essa representatividade alcançou 45,1% do total dos 5.149 óbitos neonatais ocorridos na Paraíba no período de 2009 a 2017 (Tabela 4.2).

De acordo com a Tabela 4.2, na Paraíba, nota-se que a partir de 2012, o percentual de registros pareados ficou acima de 50% atingindo um valor máximo de 58,8% em 2015.

Destaca-se também o ano de 2009 com o menor percentual de pareamento (16%). Também estão apresentados os percentuais de pareamento de 2009 a 2017 nos três espaços regionais da Paraíba. Observou-se um aumento nos percentuais de pareamento entre 2009 e 2015. Eles foram maiores nos municípios Urbanos em quase todos os anos comparando com os municípios Intermediários Adjacentes e Rurais Adjacentes. No total, o percentual de pareamento dos registros nos municípios Urbanos foi de 48,3%, para os municípios Rurais Adjacentes foi de 41,6% e para os municípios Intermediários Adjacentes de 35,4%.

Houve uma tendência de crescimento dos percentuais de pareamento nos municípios Rurais Adjacentes de 2009 a 2016, apresentando uma queda apenas em 2017. Também foi observado que para os municípios Urbanos, após atingir o ápice em 2015 com 63,9% de pareamento, em 2016 e 2017 apresentou quedas seguidas. Os municípios Intermediários Adjacentes apresentaram os menores percentuais de pareamento em quase todo período analisado. Apesar do crescimento discreto, o maior percentual de pareamento para esses municípios foi em 2013 com 47,5%. Vale ressaltar que foram implantadas a partir do segundo semestre de 2010 novos formulários da DO e DN, que passaram por um processo de mudança discutido e aprovado no Comitê Técnico Assessor – CTA - do SIM e SINASC no período de 2007 a 2009, o que justifica melhores resultados do pareamento a partir de 2010 (COUTINHO et al., 2019). Um dos principais avanços nesta mudança foi a inclusão do número da DN nas DO's, ou seja, um código identificador único entre DO e DN, respectivamente. Basicamente, aqueles registros de óbitos que possuíam o número da DN foram aproximadamente 100% pareados.

A variável Número da Declaração de Nascido Vivo que consta nas DO's infantis é essencial para o sucesso do pareamento. O não preenchimento desta informação nas DO's infantis compromete a recuperação das informações de outras variáveis materno-infantis presentes nas declarações de óbitos. De acordo com o percentual de informações não preenchidas da variável Número da Declaração de Nascido Vivo nos dados de óbitos neonatais, observou-se que esta incompletude variou de no mínimo 40,82% em 2015 e no máximo 75,61% em 2009, considerando que antes de 2010 não havia a obrigatoriedade da inclusão do Número da Declaração de Nascido Vivo na Declaração de Óbito infantil e que as reduções dos percentuais de informações não preenchidas desta varável foram contínuos até o ano de 2015. Houveram aumentos sucessivos dos percentuais de não-preenchimento da variável Número da Declaração de Nascido Vivo nos anos de 2016 e 2017. A deterioração dos percentuais de pareamento no final do período pode estar relacionada ao aumento das Taxas de Mortalidade Infantil na Paraíba, essa taxa é muito sensível a alterações socioeconômicas, coincidindo com a piora de outros indicadores assim como afeta a qualidade das informações registradas pelos Sistemas de Informações (FIOCRUZ, 2018). Assim, verificou-se uma deficiência na coleta dessa informação, remetendo à necessidade de melhorias no preenchimento desse dado.

Como o percentual de não-preenchimento da variável do *Número da Declaração de Nascido Vivo* na Declaração de Óbito neonatal foi elevado, o processo de relacionamento dos dois bancos não contemplou a totalidade dos registros. Barreto et al. (2018) também reportaram o mesmo problema em seu estudo sobre avaliação da completude das Declarações de Óbitos neonatais em uma cidade do Rio de Janeiro. Maia e colaboradores (2017) encontraram problemas no relacionamento determinístico na cidade de Rio Branco no Acre devido elevado déficit de preenchimento da DN no SIM. Em contrapartida, esses mesmos autores destacaram o sucesso do relacionamento determinístico nas cidades de Porto Alegre, Curitiba e Campo Grande.

Tabela 4.2: Percentual de registros de óbitos neonatais pareados entre todos os registros dos

espaços regionalizados segundo o ano de ocorrência na Paraíba de 2009 a 2017

Ano	Intermediário Adjacente (%)	Rural Adjacente (%)	Urbano (%)	Paraíba (%)
2009	20,3	13,9	16,1	16,0
2010	27,7	25,6	31,0	29,2
2011	27,1	40,9	49,4	44,4
2012	37,1	44,4	56,3	50,7
2013	47,5	47,1	55,7	52,3
2014	36,9	51,5	58,5	54,0
2015	45,2	52,6	63,9	58,8
2016	38,6	59,5	58,2	56,8
2017	46,5	46,1	57,8	53,4
Total	35,4	41,6	48,3	45,1

Fonte: Elaboração própria

Na Tabela 4.3, encontram-se os percentuais de incompletude das variáveis da Declaração de Óbito neonatal após aplicação do *linkage*. O ganho de informações resgatadas na DN permitiu reduzir os percentuais de incompletude em todas as variáveis. Os padrões permaneceram praticamente inalterados, porém, os níveis dos percentuais foram reduzidos. Ao serem comparados os percentuais das variáveis antes (Tabela 4.1) e depois da aplicação do *linkage* (Tabela 4.3) no período de 2009 a 2017, nota-se importantes reduções nas variáveis: *escolaridade da mãe* (de 20,02% para 16,92%), *idade da mãe* (de 15,09% para 13,40%), *número de filhos vivos* (de 12,82% para 10, 88%), *número de filhos mortos* (de 15,28% para 12,29%) e *duração da gestação* (de 13,85% para 11,11%). Após o *linkage*, destaca-se que o último triênio (2015 - 2017) apresentou apenas três variáveis (*idade da mãe*, *escolaridade da mãe* e *duração da gestação*) com percentuais de incompletude acima de 10%, quando no triênio 2009 – 2011, além dessas três variáveis, outras três estavam no mesmo patamar (*número de filhos vivos*, *número de filhos mortos* e *peso ao nascer*).

Tabela 4.3: Número e percentual de informações ignoradas ou não preenchidas após o *linkage* determinístico segundo variáveis selecionadas da Declaração de Óbito neonatal no Estado da Paraíba nos triênios de 2009 a 2017

Variável	2009 - 2011		2012	- 2014	2015 -	2017	2009 - 2017	
v arraver	n	%	n	%	n	%	n	%
Sexo	11	0,58	11	0,63	12	0,79	34	0,66
Raça/Cor	163	8,64	164	9,39	98	6,46	425	8,25
Idade da Mãe	345	18,29	184	10,53	161	10,61	690	13,40
Escolaridade da Mãe	473	25,08	214	12,25	184	12,12	871	16,92
Número de filhos vivos	299	15,85	146	8,36	115	7,58	560	10,88
Número de filhos mortos	342	18,13	161	9,22	130	8,56	633	12,29
Tipo de Gravidez	142	7,53	114	6,53	83	5,47	339	6,58
Duração da Gestação	219	11,61	198	11,33	155	10,21	572	11,11
Tipo de Parto	154	8,17	118	6,75	88	5,80	360	6,99
Peso ao Nascer	195	10,34	158	9,04	112	7,38	465	9,03
Total de registros	1.885	-	1.746	-	1.518	-	5.149	-

Fonte: Sistema de Informações sobre Mortalidade – Ministério da Saúde

A completude das variáveis estudadas nos espaços regionalizados foi verificada a partir dos percentuais de não preenchimento ou informações ignoradas antes e depois da aplicação do *linkage* determinístico (Tabela 4.4). Observou-se que em todos os espaços regionais da Paraíba o percentual de não preenchimento ou ignorados na maioria das variáveis foi superior a 10%, com destaque para a variável *escolaridade da mãe* que nos municípios Intermediários Adjacentes e Rurais Adjacentes tiveram seus percentuais superiores a 20% e nos municípios Urbanos ultrapassou 18% antes da realização do *linkage*. A variável *duração da gestação* se destacou como a segunda variável que apresentou maiores percentuais de não preenchimento ou ignorados nos municípios Intermediários Adjacentes e Rurais Adjacentes com percentuais de 17,4% e 17,3% respectivamente, enquanto que nos municípios Urbanos esse percentual foi 11,6%.

A aplicação do *linkage* determinístico permitiu a captação de informações não preenchidas ou ignoradas que estavam presentes nas DN's. Assim, utilizando como variável identificadora comum aos bancos de dados do SIM e do SINASC (*Número da Declaração de*

Nascido Vivo), os percentuais de não preenchimento ou ignorados após o pareamento estão apresentados na Tabela 4.4. Após o *linkage* os percentuais de informações vazias ou ignoradas reduziram nas variáveis estudadas em todos os espaços regionais da Paraíba. Para os municípios Intermediários Adjacentes e Rurais Adjacentes as variáveis *número de filhos mortos* e *duração da gestação* apresentaram as maiores reduções dos percentuais após o *linkage*. Para os municípios Urbanos as variáveis que apresentaram maiores reduções dos percentuais foram *escolaridade da mãe* e *número de filhos mortos*.

Destaca-se que os municípios Urbanos apresentaram um melhor preenchimento das informações das variáveis estudadas comparada aos demais espaços regionais do estado. Das dez variáveis analisadas, após o *linkage*, os municípios Urbanos apresentaram seis com percentuais de não preenchimento ou ignoradas abaixo de 10%. Além disso, os percentuais de não preenchimento ou ignorados foram menores na maioria das variáveis se comparados com os percentuais dos demais espaços regionalizados.

Na análise da completude das dez variáveis, destaca-se o considerável número de campos ignorados ou não preenchidos que foram recuperados após a utilização do *linkage* determinístico. Entre as variáveis estudadas destacaram-se *escolaridade da mãe*, *idade da mãe*, *número de filhos mortos* e *duração da gestação*, com percentuais de incompletude mais elevados, corroborando com os resultados da literatura (MAIA, SOUZA, MENDES, SILVA, 2017; BARRETO, VIEIRA, TEIXEIRA, FONSECA, 2018; AGRANONIK, JUNG, 2019).

Apesar do baixo número de informações recuperadas após o *linkage* determinístico, àquelas que foram recuperadas permitiram reduzir a proporção de dados faltantes das variáveis, melhorando os resultados da imputação múltipla. Ainda que o par seja formado, não há garantia de resgate das informações incompletas das declarações devido à possível ausência em ambos os bancos de dados. Em síntese, diante das limitações existentes, o uso do *linkage* determinístico proporcionou a redução dos dados faltantes, sem, no entanto, zerar a incompletude. A permanência de dados ausentes somente justifica a aplicação da imputação múltipla que colabora para a obtenção de resultados mais verossímeis e dados completamente preenchidos, cuja técnica se sustenta em métodos estatísticos inferenciais.

Tabela 4.4: Número e percentual de informações ignoradas ou não preenchidas das variáveis selecionadas antes e após o uso do *linkage* segundo os espaços regionalizados da Paraíba de 2009 a 2017

	Intermediário Adjacente			Rural Adjacente			Urbano					
Variáveis	Antes		Depois		Antes		Depois		Antes		Depois	
	n	%	n	%	n	%	n	%	n	%	N	%
Sexo	0	0,0	0	0,0	12	0,8	11	0,7	26	0,8	21	0,7
Raça/Cor	31	6,3	29	5,9	126	8,4	117	7,8	294	9,3	277	8,8
Idade da mãe	85	17,2	75	15,2	250	16,6	217	14,4	440	14,0	396	12,6
Escolaridade da mãe	112	22,6	100	20,2	345	22,9	294	19,5	572	18,2	475	15,1
Número de filhos vivos	65	13,1	56	11,3	212	14,1	183	12,1	380	12,1	319	10,1
Número de filhos mortos	77	15,6	59	11,9	242	16,1	202	13,4	466	14,8	369	11,7
Tipo de gravidez	38	7,7	37	7,5	117	7,8	116	7,7	187	5,9	184	5,8
Duração da gestação	86	17,4	69	13,9	260	17,3	200	13,3	365	11,6	301	9,6
Tipo de parto	39	7,9	39	7,9	127	8,4	124	8,2	207	6,6	195	6,2
Peso ao nascer	56	11,3	56	11,3	169	11,2	163	10,8	253	8,0	244	7,8
Total de registros de óbitos	495	-	495	-	1507	-	1507	-	3147	-	3147	-

Fonte: Sistema de Informações sobre Mortalidade – Ministério da Saúde

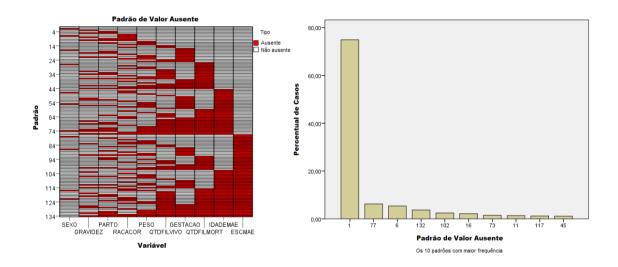
4.1.2 Imputação Múltipla

Após a aplicação do *linkage* determinístico, o próximo passo realizado consistiu na imputação múltipla dos dados. Para aplicar esta técnica fez-se necessário decidir pelo número de imputações que foram estabelecidas por meio do cálculo da Eficiência Relativa (*ER*). Na Tabela 4.5 são observados os valores da Eficiência Relativa das variáveis com observações faltantes que foram utilizadas na modelagem estatística. Optando-se por cinco imputações, a Eficiência Relativa apresentou no mínimo um percentual de 96,7% para a variável *escolaridade da mãe* e um valor máximo de 99,9% para a variável *sexo*. Os altos percentuais da Eficiência Relativa fundamentaram a opção pelas cinco imputações, conforme proposto por Rubin (1987).

Tabela 4.5: Eficiência Relativa segundo variáveis materno-infantis selecionadas de acordo

com a escolha de cinco imputações. Paraíba 2009 a 2017

Variável	Eficiência Relativa (ER)
Sexo	99,9
Raça/Cor	98,4
Idade da Mãe	97,4
Escolaridade da Mãe	96,7
Número de filhos vivos	97,9
Número de filhos mortos	97,6
Tipo de Gravidez	98,7
Duração da Gestação	97,8
Tipo de Parto	98,6
Peso ao nascer	98,2


Fonte: Elaboração própria

Para a aplicação da imputação múltipla foi necessário analisar os padrões de dados ausentes presentes no conjunto de dados (Figura 4.1). Esse gráfico é útil para auxiliar a encontrar indícios sobre o padrão das ausências (SCHAFER e GRAHAM, 2002). O eixo y do gráfico representa cada padrão identificado e no eixo x cada variável com dados ausentes (ENDERS, 2010). Ao todo, foram identificados 134 padrões distintos de dados ausentes.

De acordo com a classificação proposta por Little e Rubin (2002), ficou evidente que o padrão dos dados faltantes foi do tipo "monotônico", já que dados faltantes foram observados em todas as variáveis estudadas. Segundo Enders (2010) esse padrão é considerado o mais frequente na prática. Quanto ao mecanismo gerador dos dados ausentes no banco dados estudado, sugere-se que os dados faltantes foram gerados pelo mecanismo completamente aleatório (MCAR), pois o valor das variáveis ausentes não esteve relacionado com a própria variável ou qualquer outra variável no conjunto de dados. A grande vantagem de o mecanismo ser MCAR é a causa que levou aos dados faltantes não precisa fazer parte da análise para controlar a influência destes nos resultados da pesquisa (GRAHAM, OLCHOWSKI e GILREATH, 2007). Compreender esses mecanismos de dados faltantes é fundamental, pois as propriedades dos métodos de dados faltantes estão condicionadas pela natureza das

dependências desses mecanismos (SILVA JÚNIOR, 2010). Além disso, é necessário supor que os dados ausentes foram gerados por um dos mecanismos para definição do método de imputação utilizado (SCHAFER e GRAHAM, 2002; GRAHAM, OLCHOWSKI e GILREATH, 2007).

Na Figura 4.2, observa-se que, do total de óbitos neonatais, a maioria (aproximadamente 80%) dos registros se enquadraram no padrão 1 (nenhuma variável com dados ausentes), seguido do padrão 77 (apenas a variável *escolaridade da mãe* com dados faltantes), cuja variável apresentou o maior percentual de dados ausentes, logo após tem-se o padrão 6 (apenas a variável "*peso ao nascer*" com dados faltantes) e o padrão 132 com todas as variáveis estudadas possuindo dados ausentes, exceto as variáveis *sexo* e *raça/cor* da criança.

Figura 4.1: Padrões de não resposta nos registros de óbitos neonatais do SIM na Paraíba, 2009 a 2017.

Figura 4.2: Percentagem de casos em cada padrão nos registros de óbitos neonatais do SIM na Paraíba, 2009 a 2017.

Após a verificação do padrão e do mecanismo de dados ausentes deu-se a cabo a imputação múltipla gerando cinco bancos de dados completos utilizando o Método da Regressão Linear Bayesiana para gerar os valores imputados e ao final da imputação realizouse a combinação dos resultados por meio das Regras de Rubin (RUBIN, 1987).

Com a combinação das técnicas de *linkage* determinístico e da imputação múltipla foi possível determinar a completude das informações do banco de dados sobre a mortalidade neonatal. Para que se tenha uma boa avaliação, o *linkage* determinístico necessita que a variável identificadora seja no mínimo bem preenchida em ambos os bancos de dados utilizados no

pareamento. Pois, mesmo que o par seja formado não há garantias de que as informações incompletas das declarações sejam captadas devido à sua ausência em ambos os bancos de dados. Em resumo, diante das limitações existentes, o uso do *linkage* determinístico propiciou a redução dos dados faltantes. Seu uso contribuiu para o uso da imputação múltipla cuja técnica se sustenta em métodos estatísticos colaborando para obtenção de resultados mais verossímeis estimados pela técnica de imputação múltipla.

4.1.3 Cobertura dos Registros de Óbitos Neonatais

Na Tabela 4.6 encontram-se os percentuais de cobertura dos registros de óbitos neonatais e seus respectivos intervalos de confiança nos três espaços regionais e nos três triênios de 2009 a 2017. No geral, observa-se que as coberturas pontuais variaram em todos os períodos e em todos os espaços regionais de 75,9% a 87,4%, com uma elevação do primeiro para o segundo triênio e redução no último. Os municípios Rurais Adjacentes apresentaram coberturas inferiores em todos os triênios comparadas aos demais espaços regionais. Os municípios Intermediários Adjacentes se destacaram com coberturas mais elevadas nos dois primeiros triênios. Os municípios Urbanos apresentaram maior cobertura no último triênio.

No que diz respeito à cobertura dos óbitos neonatais, os resultados corroboraram com outros achados na literatura que sinalizaram níveis de cobertura insuficiente em regiões como a Norte e Nordeste (LIMA e QUEIROZ, 2014; ALMEIDA et al., 2017). A queda nas coberturas no último triênio em todos os espaços regionais pode estar relacionada com o aumento das Taxas de Mortalidade infantil nos anos de 2016 e 2017 no estado da Paraíba, segundo dados da busca ativa do Ministério da Saúde.

O problema dos dados subregistrados está na ausência das informações que nunca serão captadas, conduzindo a erros na estimação de outros indicadores. O grau de subregistro nas caracterizações municipais oscilou de no mínimo 12,6% e no máximo 24,1%, ou seja, essas estimativas referem-se aos óbitos neonatais que não foram registrados. Deste modo, características materno-infantis destes óbitos permanecerão sem notificação, o que compromete a identificação de problemas e a avaliação de ações de saúde (ALMEIDA et al., 2017). Vale ressaltar que os óbitos não registrados não comprometem os achados deste estudo, uma vez que os percentuais de cobertura estiveram em um patamar superior a 75%, o que de acordo com os princípios da teoria da amostragem, os dados apesar de não serem aleatorizados já refletem um grau de cobertura amplo da população de óbitos neonatais, ou seja, com as informações que foram captadas, já é possível inferir sobre a população de interesse por ali estarem todas as

características relevantes para pesquisa. Daniel e Cross (2010) definiram populações amostradas e populações de interesse. Segundo estes autores, a população amostrada refere-se àquela que realmente se extrai uma amostra, enquanto que a população de interesse é a qual se deseja fazer uma inferência. No caso desta pesquisa, os 5.149 óbitos neonatais obtidos através do SIM é a população de interesse. Assim, os métodos estatísticos que foram aplicados neste estudo se refere em média, a cerca de 81% da população de óbitos neonatais na Paraíba, ou seja, assume-se que o perfil das características materno-infantis dos óbitos neonatais dos 81% servem como um *proxy* dos 20% de óbitos neonatais não registrados.

Tabela 4.6: Cobertura dos óbitos neonatais nos espaços regionalizados segundo os triênios da Paraíba de 2009 a 2017

	ou i muiou de 2007 u 2017								
Triênio	Intermediário Adjacente		Rura	al Adjacente	Urbano				
Tremo	%	IC	%	IC	%	IC			
2009 - 2011	81,6	71,2 - 92,0	75,9	64,7 - 87,1	79,2	73,8 - 84,6			
2012 - 2014	87,4	78,1 - 96,7	83,5	73,8 - 93,2	85,8	73,7 - 97,9			
2015 - 2017	78,1	75,0 - 81,2	77,7	70,8 - 84,6	79,1	72,1 - 86,1			

Fonte: Elaboração própria

4.1.4 Índice de Informação Desconhecida das Variáveis

Levando-se em consideração a cobertura estimada e o percentual de ignorados para todos os espaços regionais da Paraíba, calculou-se o Índice de Informação Desconhecida das Variáveis estudadas antes e depois do *linkage* (Tabela 4.7). Esse indicador evidencia uma apreciação mais realista do dimensionamento da incompletude das variáveis. Por exemplo, para a variável *escolaridade da mãe* nos municípios Rurais Adjacentes (Tabela 4.4) o percentual de informações ausentes antes do *linkage* foi de 22,9% baixando para 19,5% após o *linkage*. Ao se levar em conta o percentual de sub-registro (do qual todas as variáveis são consideradas ignoradas porque não houve declaração do registro) esses percentuais aumentaram para 39,1% e 36,4% respectivamente antes e depois do *linkage*, os quais são considerados, em qualquer situação, elevados. Conforme verificado o IIDV para variável *escolaridade da mãe* nos municípios Rurais Adjacentes, o percentual de informação desconhecida continuou elevado após o *linkage* levando-se em consideração a cobertura dos óbitos neonatais. O padrão de respostas declaradas e/ou imputadas das categorias das variáveis são uma *proxy* para as categorias das mesmas variáveis sem preenchimento. Contudo, se a imputação múltipla não fosse realizada, o problema da falta de informação das variáveis se configuraria em um patamar

preocupante, uma vez que além do subregistro de óbitos neonatais que se desconhece qualquer informação do óbito, adiciona-se a esse desconhecimento as informações ausentes ou ignoradas daqueles óbitos que foram registrados.

Os percentuais de informações ausentes ou ignoradas das variáveis analisadas recalculados considerando as coberturas estimadas evidenciaram o grave problema do preenchimento das informações dos óbitos nas DO's. Isto é, uma vez que as informações dos óbitos que não foram registrados não serão computadas, o que dificulta a formulação de medidas adequadas à saúde materno-infantil desses óbitos (ALMEIDA et al., 2017).

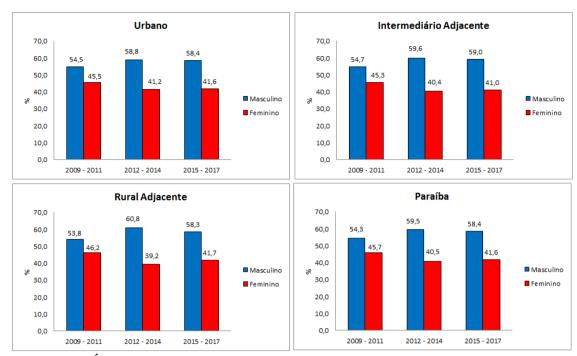
Tabela 4.7: Índice de Informação Desconhecida das Variáveis (IIDV) ignoradas ou não preenchidas antes e depois do *linkage* por espaço regionalizado segundo variáveis selecionadas da Paraíba de 2009 a 2017

Variáveis	Intermediário Adjacente		Rural Adjacente		Urbano	
	Antes	Depois	Antes	Depois	Antes	Depois
Sexo	17,6	17,6	21,6	21,5	19,3	19,2
Raça/Cor	22,8	22,5	27,6	27,1	26,2	25,8
Idade da mãe	31,8	30,1	34,1	32,3	30,0	28,9
Escolaridade da mãe	36,3	34,3	39,1	36,4	33,4	30,9
Número de filhos vivos	28,4	26,9	32,1	30,6	28,5	26,9
Número de filhos mortos	30,4	27,4	33,7	31,6	30,7	28,2
Tipo de gravidez	24,0	23,8	27,1	27,1	23,5	23,4
Duração da gestação	31,9	29,1	34,6	31,5	28,1	26,4
Tipo de parto	24,1	24,1	27,6	27,5	24,0	23,7
Peso ao nascer	26,9	26,9	29,8	29,5	25,2	24,9

Fonte: Elaboração própria

Situando-se a Paraíba no cenário brasileiro, no que diz respeito à cobertura dos óbitos infantis, com base nas informações das caracterizações municipais da Tabela 4.6, o Estado apresentou uma cobertura média no período de 2009 a 2017 de aproximadamente de 81%. De acordo com as coberturas estimadas pela Busca Ativa do Ministério da Saúde, na Região Nordeste, a Paraíba possui cobertura dos óbitos infantis superior a dos Estados do Maranhão, Piauí e Rio Grande do Norte. A Paraíba também supera a média dos estados da Região Norte no período analisado, porém, em relação à média dos estados das regiões Centro-Oeste, Sudeste e Sul, a cobertura dos óbitos infantis da Paraíba situa-se em um patamar inferior, sendo que essas duas últimas regiões possuem estimativas das coberturas consideradas satisfatórias, ou seja, acima de 90%.

4.2 Análise do Perfil das variáveis Materno-infantil da Declaração de Óbito Neonatal


Após a qualificação das informações registradas nas variáveis da DO por meio do *linkage* determinístico e da Imputação Múltipla e considerando o nível de cobertura estimada dos registros de óbitos, procedeu-se a análise dos atributos materno-infantis dos óbitos neonatais nos espaços regionalizados da Paraíba nos três triênios de 2009 a 2017. De 2009 a 2017 foram registrados 5149 óbitos neonatais no estado da Paraíba. Destes, 61,1% ocorreram nos municípios Urbanos, 29,3% nos Rurais Adjacentes e 9,6% nos Intermediários Adjacentes.

Na Figura 4.3 estão apresentados os percentuais de óbitos neonatais distribuídos por *sexo* da criança. Observa-se uma predominância do sexo masculino em todos os espaços regionalizados e em todos os triênios, com percentual mínimo de 53,8% no primeiro triênio dos municípios Rurais Adjacentes e máximo de 60,8% no segundo triênio dos municípios Rurais Adjacentes. Percebeu-se um incremento nos percentuais de óbitos neonatais do sexo masculino no segundo e terceiro triênio em todos os espaços regionais comparando-se ao primeiro triênio.

Essa predominância de óbitos neonatais para o sexo masculino pode ser explicada como uma lei de compensação biológica e ancestral devido a maior proporção de nascimentos de crianças do sexo masculino. Segundo Paes (2018), a Razão de Sexo de aproximadamente 105 nascimentos do sexo masculino para cada 100 do feminino é considerada comum e natural. Essa relação geralmente é reproduzida em nível mundial. Segundo dados do Ministério da Saúde, a Razão de Sexo para o Estado da Paraíba no período de 2009 a 2017 variou de 1,04 a 1,06, valores estes que explicam os maiores percentuais de óbitos neonatais do sexo masculino, o que atesta uma qualidade de registros condizente com o esperado.

A literatura afirma que esta diferença entre os sexos ocorre ainda no útero. O sexo feminino apresenta melhor adaptação metabólica, proporcionando melhor adaptação no nascimento e, consequentemente, menor mortalidade (LUY, 2003; KOLOLA, EKUBAY, TESFA, MORKA, 2016; MOREIRA et al., 2017; ARAUJO FILHO et al., 2017).

Na comparação entre as regiões, não se pode atribuir a nenhuma delas algum tipo de padrão diferenciado das demais, mantendo-se ao longo dos triênios um volume pouco variável para ambos os sexos: na faixa dos 54% a 60% óbitos neonatais para o masculino e dos 40% a 46% para o feminino. Essa estabilidade temporal e regional dá bons indícios de uma boa qualidade dos registros dos óbitos por sexo.

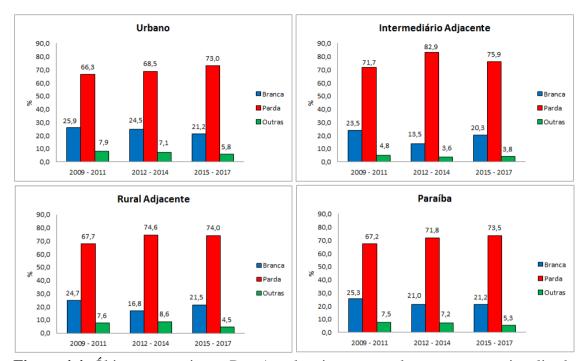


Figura 4.3: Óbitos neonatais por Sexo da criança segundo os espaços regionalizados da Paraíba nos triênios de 2009 a 2017

Na Figura 4.4 ilustra-se a distribuição percentual dos óbitos neonatais segundo a *raça/cor* da criança nos espaços regionais da Paraíba. Nota-se que a raça/cor Parda se destacou em todos os espaços regionais e em todos os triênios com percentuais a partir de 66,3% referente ao primeiro triênio dos municípios Urbanos. O maior percentual observado foi de 82,9% referente ao segundo triênio dos municípios Intermediários Adjacentes. A segunda *raça/cor* mais declarada foi a Branca e as "outras raças" representaram os menores valores percentuais. Percebeu-se que houve um crescimento dos registros de *raça/cor* Parda ao longo dos triênios, ainda com discretas oscilações nos municípios Intermediário Adjacente e Rurais Adjacentes. Na direção contrária observa-se redução dos registros das outras raças, que englobam as raças Preta, Amarela e Indígena. Quando se analisa os percentuais do Estado da Paraíba, vê-se que o percentual de registro da raça Parda cresceu de 67,2% no primeiro triênio para 73,5% no terceiro triênio, compensado pela redução da *raça/cor* Branca de 25,3% para 21,2% e das outras raças de 7,5% no primeiro triênio para 5,3% no terceiro triênio.

Segundo Gaiva, Fujimori, Sato (2016) e Pereira e colaboradores (2018), a disparidade quanto ao número de óbitos neonatais da *raça/cor* Parda e Negra pode ser explicada pela dificuldade de aferir a cor do recém-nascido, ou devido a influências sociais, culturais e regionais que leva ao profissional optar pela *raça/cor* Parda, devido ao fato de que pertencer à raça Preta consiste em explícita desvantagem social. Esse comportamento de maior declaração da *raça/cor* Parda no Brasil é um movimento geral nacional como reflexo das lutas e resgate de

direitos civis históricos (LONGO, CAMPOS, 2006; SILVEIRA, 2019). Nesse sentido, as declarações sinalizam para um alinhamento de comportamento e registro mais condizente com a realidade regional dos dados de óbitos na Paraíba.

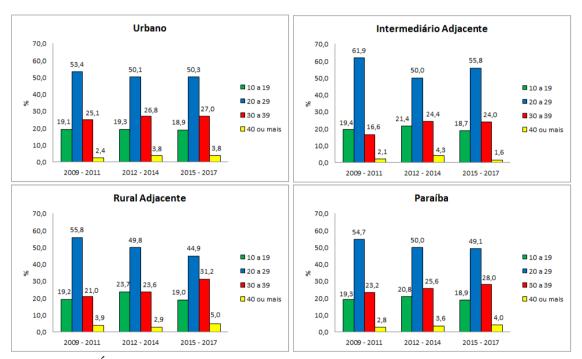


Figura 4.4: Óbitos neonatais por Raça/cor da criança segundo os espaços regionalizados da Paraíba nos triênios de 2009 a 2017

A primeira característica materna da DO neonatal a ser analisada é a *idade da mãe*. Na Figura 4.5, encontra-se a distribuição percentual dos óbitos neonatais segundo idade materna nos espaços regionalizados da Paraíba. O destaque para esta variável foi o elevado percentual de mães com idade variando no intervalo de 20 a 29 anos em todos os espaços regionais. O valor máximo foi atingido no primeiro triênio em todos os espaços regionais, sendo que nos municípios Intermediários Adjacentes esse percentual foi de 61,9%. Em seguida, destacaramse as mães que possuiam idade variando de 30 a 39 anos. Houve uma tendência de crescimento do percentual de mães com idade na faixa etária de 30 a 39 anos nos municípios Urbanos e Rurais Adjacentes, e nos municípios Intermediários Adjacentes o percentual cresceu no segundo triênio e estabilizou-se no último triênio. Esse percentual de aumento na última faixa etária reflete o fenômeno do descenso da fecundidade em concomitância com uma postergação da maternidade. Os efeitos da idade materna sobre a saúde da criança contam com amplas discussões na demografia, que vão desde mudanças no papel da mulher na sociedade contemporânea até riscos sobre a saúde fetal e neonatal (LIMA, 2010). São diversos motivos pelo qual se adia a maternidade, entre eles estão a falta de oportunidade, dependência dos pais,

não encontrar o parceiro ideal ou privilegiar a carreira (COELHO, SOUZA, TORRES, DREZETT, 2017). Desta forma, a mortalidade neonatal se associa à idade materna, principalmente em mulheres com idades mais avançadas, bem como com as adolescentes (GAIVA, FUJIMORI, SATO, 2016; ARAUJO FILHO et al., 2017).

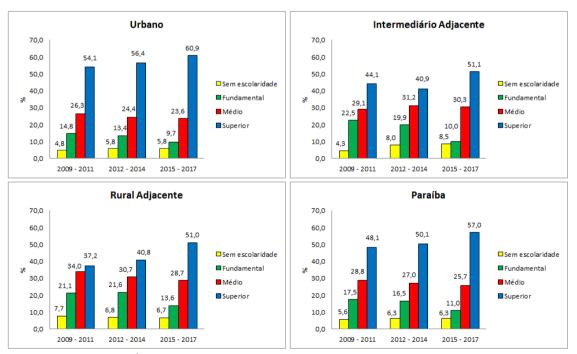

Vale ressaltar que a distribuição percentual da idade da mãe seguiu aproximadamente o mesmo padrão dos percentuais dos registros de nascidos vivos por idade da mãe do SINASC no período estudado, ou seja, o padrão de morte por idade da mãe foi replicado proporcionalmente, sinalizando uma fidedignidade adequada das informações registradas.

Figura 4.5: Óbitos neonatais por Idade da mãe segundo os espaços regionalizados da Paraíba nos triênios de 2009 a 2017

Na Figura 4.6 está apresentada a distribuição percentual dos óbitos neonatais segundo a escolaridade da mãe nos espaços regionalizados da Paraíba. Nota-se que os percentuais de mães com nível superior foram mais elevados em todos os espaços regionais do Estado e em todos os triênios, sendo estes percentuais mais acentuados nos municípios Urbanos com percentuais que variaram de 54,1% a 60,9%. No último triênio o percentual de mães com ensino superior foi mais elevado comparado aos demais triênios em todos os espaços regionais. Essa categoria compreende às mães que possuem o nível superior incompleto ou completo. Em ordem decrescente, destacaram-se as mães que possuíam o ensino médio, fundamental e sem escolaridade. Mais da metade dos óbitos neonatais foram relacionados às mães que possuíam pelo menos o ensino médio. A escolaridade materna tem sido muito utilizada como um

indicador que reflete as condições socioeconômicas de uma região podendo estar relacionada à qualidade dos cuidados com a saúde da criança, e que uma maior escolaridade contribui para o aprimoramento dos conhecimentos de cuidados e proporciona uma melhor qualidade de vida, além de permitir um maior acesso às informações relacionadas à concepção, gestação e parto, o que reflete, em última instância, na redução dos fatores de risco relacionados à prematuridade (UCHIMURA et al., 2007; SILVA et al., 2012; SILVA, RECKZIEGEL, SILVA, 2018). Alguns estudos têm sustentado que crianças nascidas de mães com baixa escolaridade possuem maior chance de morrer antes de completarem um ano de vida (GAIVA, FUJIMORI, SATO, 2016; MOREIRA et al., 2017). No entanto, apesar dessas desvantagens, a literatura por outro lado tem mostrado que o grupo mais instruído é o que mais realiza partos cesáreos com consequências danosas ao parto e na concepção, resultando em nascimentos com baixo peso e prematuros (Figura 4.6), entre outros fatores. Nessa direção, Araújo-Filho e colaboradores (2017) verificaram uma associação positiva da mortalidade neonatal de mães com elevada escolaridade. Desta forma, os resultados para as regiões da Paraíba ratificaram um comportamento bastante conhecido no Brasil e que tem suas raízes pelo menos desde os anos 2000.



Figura 4.6: Óbitos neonatais por Escolaridade da mãe segundo os espaços regionalizados da Paraíba nos triênios de 2009 a 2017

Um dos fatores mais importantes para compreensão da mortalidade neonatal refere-se à *duração da gestação*. Na Figura 4.7 encontra-se a distribuição percentual dos óbitos neonatais nos espaços regionais da Paraíba segundo o tempo de gestação. Observa-se que prevaleceu a

prematuridade em todos os espaços regionais do Estado, com percentuais variando de 60,5% para os municípios Rurais Adjacentes e chegando a 77,1% nos municípios Urbanos. Ademais, os percentuais de prematuridade tiveram um pequeno aumento em todas as regiões e triênios, sinalizando para um problema que se agravou no tempo. Percebe-se ainda que os níveis dos percentuais foram mais elevados nos municípios Urbanos. É na área urbana onde se encontra a melhor infraestrutura de atendimento à saúde da mulher e da criança no estado. Essa conjugação de fatores possivelmente tem favorecido ao maior percentual regional de partos cesáreos na Paraíba, conforme mostrado na Figura 4.11.

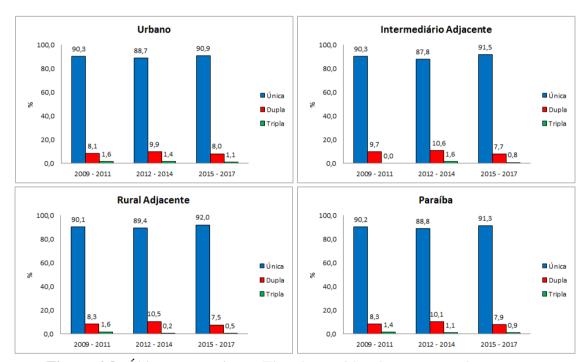

Segundo França e Lansky (2016), a prematuridade é a principal causa de óbito neonatal em todas as regiões do Brasil, seguida pelas infecções, malformações e asfixia/hipóxia. Essas causas têm maior contribuição no excesso de risco de morte neonatal no Brasil e indicam problemas na assistência relacionados ao cuidado pré-natal, durante o trabalho de parto, e ao recém-nascido. Silva e Fensterseifer (2015) relacionaram a prematuridade como causa de parto cesáreo pela margem de erro na idade gestacional. Por sua vez, Guimarães e colaboradores (2017) verificaram a relação da prematuridade com o tipo de parto cesáreo, mães com menor idade e que realizaram seis ou menos consultas de pré-natal.

Figura 4.7: Óbitos neonatais por Duração da gestação segundo os espaços regionalizados da Paraíba nos triênios de 2009 a 2017

Ao analisar a distribuição percentual dos óbitos neonatais segundo o *tipo de gravidez* dos espaços regionalizados da Paraíba (Figura 4.8), destacam-se os óbitos neonatais que

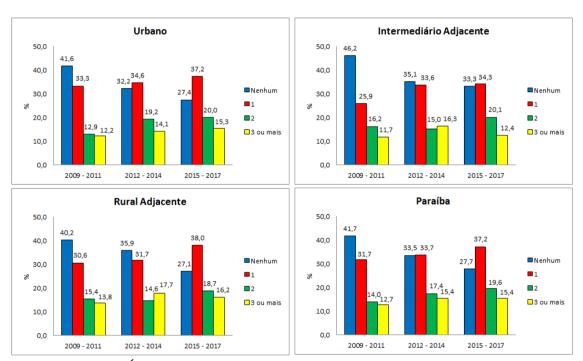

nasceram de gravidez única, com percentuais que variaram de no mínimo 87,8% para os municípios Intermediários Adjacentes e no máximo de 92% para os municípios Rurais Adjacentes. Não foi verificado nenhum comportamento diferenciado entre as regiões, indicando uma homogeneidade e em acordo com o esperado, uma vez que a proporção de nascidos vivos de gravidez única apresenta o mesmo padrão. Logo, a distribuição percentual dos óbitos neonatais é espelhada. Embora, a gravidez do tipo única tenha sido predominante no presente estudo, destaca-se que ela se constitui em um fator protetor para o recém-nascido, uma vez que a gravidez múltipla representa um fator de risco para a prematuridade e o baixo peso (MOREIRA et al., 2017).

Figura 4.8: Óbitos neonatais por Tipo de gravidez da mãe segundo os espaços regionalizados da Paraíba nos triênios de 2009 a 2017

Em relação ao *Número de filhos nascidos vivos*, a distribuição percentual dos óbitos neonatais nos espaços regionalizados da Paraíba está apresentada na Figura 4.9. No primeiro triênio o percentual de óbitos neonatais cuja mãe havia tido nenhum filho vivo apresentou o maior percentual em todos os espaços regionais, com percentuais variando de no mínimo 40,2% nos municípios Rurais Adjacentes e no máximo de 46,2% nos municípios Intermediários Adjacentes. No segundo triênio houve uma diminuição dos percentuais nos municípios Intermediários Adjacentes e Rurais Adjacentes, nos municípios Urbanos o percentual óbitos cujas mães tiveram um filho vivo ultrapassou as que tiveram nenhum filho vivo. No terceiro triênio, todos os espaços regionais apresentaram óbitos neonatais cujas mães tiveram um filho

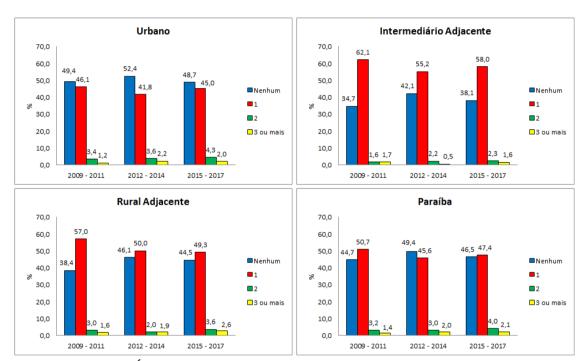

vivo com percentuais mais elevados, variando de no mínimo 34,3% nos municípios Intermediários Adjacentes e no máximo 38% nos municípios Rurais Adjacentes. No geral, observou-se que a maioria dos óbitos neonatais ocorreu naquelas mães que tiveram pelo menos um filho nascido vivo. Segundo Sardinha (2014), a mortalidade infantil se associa a paridade materna (quanto maior se associa a maior risco). A elevada proporção de óbitos neonatais entre mães que possuíam apenas um filho nascido vivo pode estar relacionada à redução nos níveis de fecundidade no Brasil. Segundo dados do Instituto Nacional do Semiárido (INSA, 2015), o decréscimo dessa taxa pode estar associado a vários fatores, tais como: urbanização crescente, melhoria do nível educacional, ampliação do uso de métodos contraceptivos, maior participação da mulher no mercado de trabalho e instabilidade de emprego.

Figura 4.9: Óbitos neonatais por Número de filhos vivos da mãe segundo os espaços regionalizados da Paraíba nos triênios de 2009 a 2017

Outro fator importante na avaliação dos óbitos neonatais é o *número de filhos nascidos mortos* (Figura 4.10). Os municípios Intermediários Adjacentes e Rurais Adjacentes se destacaram com percentuais mais elevados entre as mães que tiveram um filho nascido morto com valores variando de no mínimo 49,3% no terceiro triênio dos municípios Rurais Adjacentes e no máximo de 62,1% no primeiro triênio dos municípios Intermediários Adjacentes. Já os municípios Urbanos se destacaram com percentuais mais elevados de mães que não tiveram filhos nascidos mortos, com valores variando de no mínimo 48,7% no terceiro triênio e no máximo de 52,4% no segundo triênio. A diferença no percentual de filhos nascidos mortos das

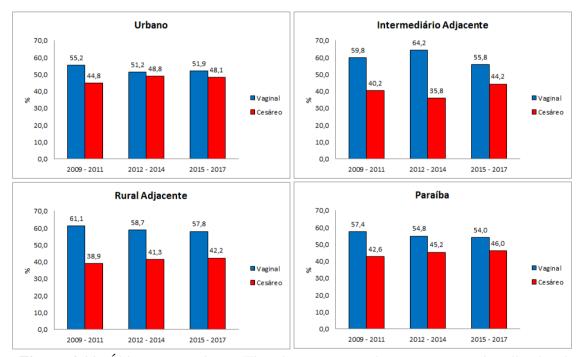

mães residentes nos municípios Urbanos pode estar relacionada ao nível de fecundidade inferior comparado aos demais espaços regionais da Paraíba. As mulheres residentes nos municípios Urbanos estão mais inseridas no mercado de trabalho, além de terem acesso a melhores serviços de saúde e maiores níveis de escolaridade. Segundo Lima (2010) muitas mulheres, nos dias atuais, postergam a maternidade por esperar maiores chances de condições socioeconômicas e psicológicas favoráveis. Araújo-Filho e colaboradores (2017) observaram as mães que tiveram de 1 a 2 filhos nascidos mortos possuíram uma maior frequência de seus filhos apresentarem anomalias congênitas, evidenciando uma recorrência de problemas nos processos da gravidez e que se configura como uma das principais causas da mortalidade neonatal. Gardosi et al. (2013), confirmaram a mortalidade neonatal prévia como fator de risco para malformação fetal.

Figura 4.10: Óbitos neonatais por Número de filhos mortos da mãe segundo os espaços regionalizados da Paraíba nos triênios de 2009 a 2017

Quanto ao parto, a distribuição percentual dos óbitos neonatais nos espaços regionalizados da Paraíba segundo o *tipo de parto* encontra-se na Figura 4.11. Observa-se que houve um predomínio dos óbitos neonatais que nasceram via parto vaginal em todos os espaços regionalizados sendo que nos municípios Intermediários Adjacentes e Rurais Adjacentes os percentuais foram mais elevados. No entanto, houve um aumento dos percentuais de partos cesáreos em todos os espaços regionais ao longo dos três triênios. Nos municípios Urbanos, o percentual de partos cesáreos subiu de 44,8% no primeiro triênio para 48,1% no terceiro triênio. Para os municípios Intermediários Adjacentes a variação do primeiro para o terceiro triênio

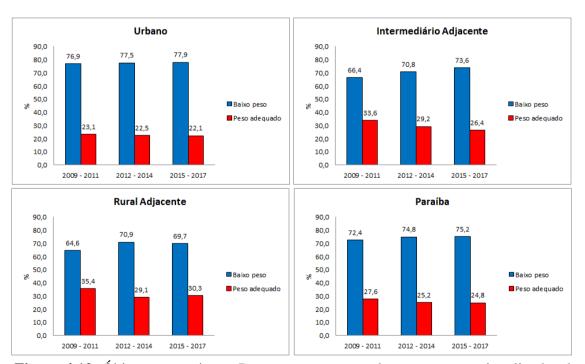

passou de 40,2% para 44,2%, enquanto que nos municípios Rurais Adjacentes subiu 38,9% para 42,2%. Houve um incremento de aproximadamente 4% no percentual de cesarianas em todos os espaços regionalizados do Estado do primeiro para o terceiro triênio. A literatura sustenta que as taxas de cesarianas são mais elevadas em regiões mais desenvolvidas em contraste com as observadas em regiões menos desenvolvidas (GUIMARÃES et al., 2017), fato este também observado na Paraíba. Esse fenômeno do aumento do parto cesáreo não vem ocorrendo somente na Paraíba. Trata-se de uma tendência no Brasil e em várias nações do mundo, a OMS ressalta que o índice de partos por cesárea era de 6%, em 1980, triplicando para 18,6% em 2016, que é referenciado como ano base para a análise mais recente das estatísticas internacionais sobre o tema (BATISTA FILHO, RISSIN, 2018). Esse fenômeno ocorre apesar de não haver evidências científicas favoráveis à realização de cesáreas por razões não médicas, já que estão associadas a maiores riscos para a saúde materna e infantil (XAVIER, et al., 2017). De Jesus et al. (2015) afirmaram que uma maior prevalência de partos cesáreos é justificada em regiões mais urbanizadas, com maior número de habitantes, enquanto que menor proporção em regiões mais rurais.

Figura 4.11: Óbitos neonatais por Tipo de parto segundo os espaços regionalizados da Paraíba nos triênios de 2009 a 2017

Uma das condições mais relevantes na compreensão dos óbitos neonatais é o *peso ao nascer*. A segui,r ilustra-se a distribuição percentual dos óbitos neonatais nos espaços regionalizados da Paraíba segundo essa condição (Figura 4.12). Nota-se que os óbitos neonatais apresentaram percentuais elevados de baixo peso ao nascer em todos os espaços regionais do

Estado, com percentuais a partir de 64,6%. Os municípios Urbanos se destacaram dos demais espaços regionais com percentuais superiores, variando de no mínimo 76,9% no primeiro triênio e no máximo de 77,9% no terceiro triênio. Nos municípios Intermediários Adjacentes os percentuais variaram de 66,4% a 73,6%. Já nos municípios Rurais Adjacentes a variação foi de 64,6% a 70,9%. Quando se observa o Estado como todo, a tendência de aumento dos percentuais de óbitos neonatais que nasceram com baixo peso foi contínua, alertando para um problema de saúde materno-infantil em desafio constante. Sabe-se que o baixo peso ao nascer se configura como um dos principais fatores de risco da mortalidade neonatal. Diversos estudos comprovaram essa relação (DAMIAN, WATERKEMPER e PALUDO, 2016; GAIVA, FUJIMORI e SATO; 2016; SETUMBA et al., 2018). O baixo peso ao nascer pode ter, entre suas causas, a prematuridade e o crescimento intrauterino restrito, indicadores que refletem a qualidade da assistência prestada à mãe durante a gestação. Assim, essas variáveis não devem ser analisadas isoladamente, pois são mediadores de determinantes sociais, como características socioeconômicas e nível de escolaridade da mãe, e de características biológicas, como hábitos de vida e morbidade maternas, além de refletirem também o acesso aos serviços de saúde e à qualidade da atenção prestada durante a gestação (GAIVA, FUJIMORI, SATO, 2016).

Figura 4.12: Óbitos neonatais por Peso ao nascer segundo os espaços regionalizados da Paraíba nos triênios de 2009 a 2017

4.3 Modelagem Multinível

Nesta seção são apresentados os resultados das modelagens multiníveis para os 5.149 óbitos neonatais na Paraíba de 2009 a 2017, levando-se em consideração dois níveis: cada óbito neonatal (nível 1) e a caracterização municipal (nível 2). O segundo nível diz respeito à identificação do município de acordo com as três categorias de ruralidade definida pelo IBGE (2017): Urbano, Intermediário Adjacente e Rural Adjacente. Preliminarmente à modelagem, foi realizada a análise bivariada para verificar quais variáveis irão compor os modelos. Em seguida, foram realizadas três modelagens. No primeiro modelo, a variável tipo de parto foi considerada como variável dependente e as variáveis sexo, raça/cor da criança, idade da mãe, escolaridade da mãe, número de filhos vivos, número de filhos mortos e tipo de gravidez foram consideradas independentes. No segundo e no terceiro modelos a variável tipo de parto foi considerada como independente e as variáveis duração da gestação e peso ao nascer como dependentes, respectivamente.

4.3.1 Análise Bivariada

A análise bivariada permitiu verificar de forma exploratória quais variáveis influenciam no *tipo de parto*. Como trata-se de variáveis categorizadas, utilizou-se o teste Qui-quadrado de associação, sendo consideradas na modelagem àquelas variáveis cujo *p-valor* ficaram abaixo de 10% (HOSMER, LEMESHOW, 1989).

A Tabela 4.8 apresenta os resultados do teste Qui-quadrado de associação da variável *tipo de parto* com as demais variáveis selecionadas na pesquisa. De acordo com o *p-valor*, apenas a variável *sexo* não apresentou associação significativa com a variável *tipo de parto*. Portanto a variável *sexo* foi retirada da modelagem. As demais variáveis foram utilizadas para a realização das modelagens por apresentarem associação significativa com a variável *tipo de parto* ao nível de 10% de significância.

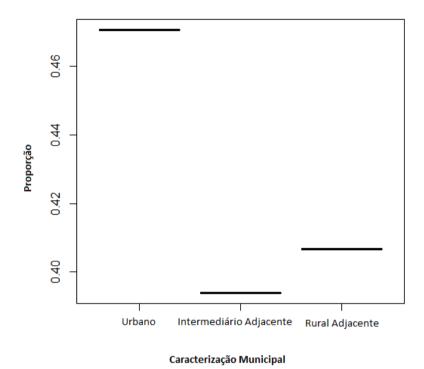
Do ponto de vista estatístico, a não associação entre o *tipo de parto* e o *sexo* da criança significa que a hipótese nula não foi rejeitada, ou seja, a proporção de óbitos neonatais em cada categoria das variáveis *sexo* e *tipo de parto* são iguais àquelas que seriam esperadas pelo acaso. Não houve alguma relação capaz de desviar essas proporções de maneira significativa. Diversos estudos não apontaram relação entre variáveis relacionadas ao óbito neonatal e a variável sexo (GAIVA et al., 2016; SANDERS et al., 2017; SPOHR, 2018). Esses estudos também apontaram

uma predominância dos óbitos neonatais do sexo masculino como visto na Figura 4.3. Em síntese, mesmo que haja uma maior prevalência de óbitos neonatais em favor do sexo masculino, se não houve relação entre *sexo* e *tipo de parto*, as proporções entre meninos e meninas que venham a óbito neonatal independe do tipo de parto (Vaginal ou Cesáreo).

Tabela 4.8: Estatísticas do teste Qui-quadrado para verificação da relação entre a variável Tipo de Parto com as demais variáveis selecionadas, Paraíba, 2009 a 2017

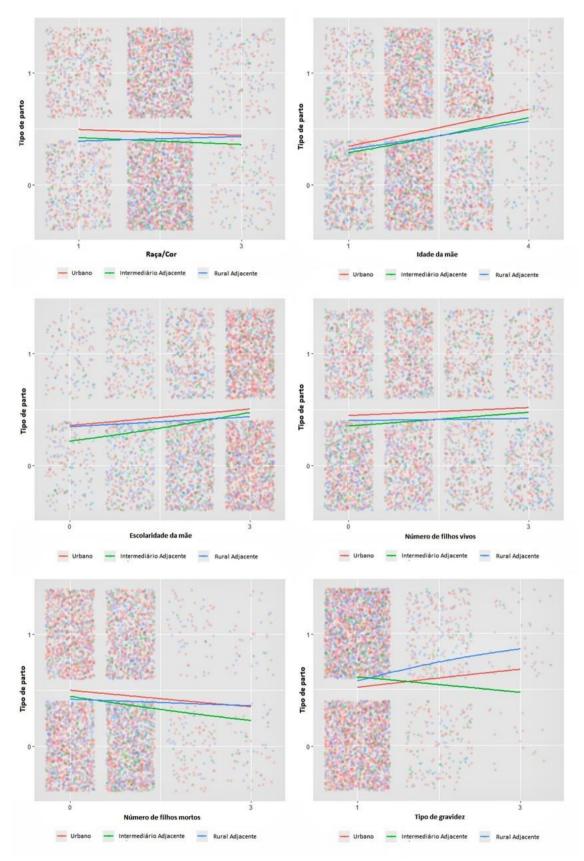
Relação com a variável Tipo de Parto	Estatística do teste	g.l.	p-valor*
Sexo	0,009	1	0,925
Raça/Cor	35,029	2	0,000
Idade da Mãe	138,878	3	0,000
Escolaridade da Mãe	70,931	3	0,000
Número de Filhos Vivos	47,775	3	0,000
Número de Filhos Mortos	19,954	3	0,000
Tipo de Gravidez	19,774	2	0,000
Duração da Gestação	65,689	1	0,000
Peso ao Nascer	108,946	1	0,000
Caracterização Municipal	22,500	2	0,000

^{*}Significativo se p < 0,10


4.3.2 Modelagem Estatística

Considerando as possíveis variáveis independentes apresentadas na análise bivariada, foram realizadas as três modelagens utilizando o modelo logístico binário multinível. Considerou-se a variável tipo de parto como variável dependente na primeira modelagem e como variável independente na segunda e terceira modelagens. Na alocação da variável tipo de parto para variável dependente ou independente levou-se em consideração a importância da variável como causa e consequência entre as demais variáveis selecionadas neste estudo. Assim, na primeira modelagem as variáveis independentes selecionadas segundo a análise bivariada foram: raça/cor da criança, idade da mãe, escolaridade da mãe, número de filhos vivos, número de filhos mortos e tipo de gravidez. Na segunda e na terceira modelagens a variável dependente considerada foi a duração da gestação e o peso ao nascer, respectivamente.

Em todas as modelagens ajustou-se o modelo nulo para analisar o Coeficiente de Correlação Intra-classe (CCI) ou ICC (do inglês Intraclass Correlation Coefficient) que é uma estimativa da fração da variabilidade total de medidas devido a variações entre os indivíduos, ou seja, é usado para justificar o emprego de um modelo de regressão multinível, ao invés de um modelo de regressão clássico. Em seguida inseriu-se uma variável independente por vez, verificando sua significância, bem como foi calculado o *deviance* do modelo.


Modelo 1 (Variável Tipo de Parto como dependente)

Como os dados são agrupados nas caracterizações municipais, é provável que os óbitos neonatais da mesma caracterização municipal sejam mais semelhantes entre si do que entre as outras caracterizações. Por isso, em uma caracterização municipal, a probabilidade da ocorrência de um óbito neonatal, devido a mãe ter gerado um filho através de um parto cesáreo, pode ser alta, enquanto que em outra caracterização, baixa. Além disso, mesmo a relação entre o resultado (nascer de parto cesáreo) e as variáveis de previsão (*raça/cor da criança*, *idade da mãe*, *escolaridade da mãe*, *número de filhos vivos*, *número de filhos mortos* e *tipo de gravidez*) pode ser diferente entre as caracterizações municipais. A Figura 4.13 mostra as proporções de óbitos neonatais que nasceram via parto cesáreo. Pode-se notar que houve diferença nas proporções de partos cesáreos entre as caracterizações municipais com destaque para os municípios Urbanos. Estes apresentaram uma proporção de aproximadamente 0,47, enquanto que os municípios Intermediários Adjacentes a proporção ficou abaixo de 0,40 e os municípios Rurais Adjacentes aproximadamente em 0,41. Portanto, as distintas proporções de partos cesáreos apresentadas pelas caracterizações municipais justificam a modelagem multinível.

Figura 4.13: Proporção de partos cesáreos entre as caracterizações municipais da Paraíba, 2009 a 2017

As relações entre o tipo de parto e as variáveis selecionadas na análise bivariada estão representadas na Figura 4.14, das quais, é possível verificar a dispersão dos óbitos neonatais nas categorias de cada variável, onde as diferentes cores representam cada caracterização municipal. Verifica-se que houve similaridades nos padrões de comportamento das retas de regressões nas relações com as variáveis raça/cor, idade da mãe, escolaridade da mãe, número de filhos vivos e número de filhos mortos, embora haja diferenças nos níveis nas três caracterizações municipais. A relação com a variável tipo de gravidez apresentou a maior diferença entre as caracterizações municipais, com destaque para os municípios Intermediários Adjacentes que apresentaram uma relação negativa enquanto que os municípios Urbanos e Rurais Adjacentes apresentaram relação positiva. As relações com as variáveis raça/cor e número de filhos mortos foram negativas enquanto que as relações com as variáveis idade da mãe, escolaridade da mãe e número de filhos vivos foram positivas. Percebeu-se também que as relações com as variáveis raça/cor e número de filhos vivos apresentaram pouca inclinação das retas de regressão.

Figura 4.14: Gráficos de dispersão e retas ajustadas das relações entre a variável Tipo de Parto e as variáveis Raça/Cor, Idade da mãe, Escolaridade da mãe, Número de filhos vivos, Número de filhos mortos e Tipo de gravidez nas caracterizações municipais da Paraíba, 2009 a 2017

Considerando as possíveis variáveis independentes selecionadas na análise bivariada, foi realizada a modelagem cuja variável resposta foi o *tipo de parto* dos dados sobre óbitos neonatais na Paraíba de 2009 a 2017.

Foram seguidos os passos propostos por Hox (2010) na construção do modelo de regressão logística multinível. Por isso, inicialmente, considerou-se o modelo nulo, ou seja, o modelo multinível mais simples, sem variáveis independentes. Seu preditor linear é composto apenas pelo intercepto. Este modelo é particularmente importante no estudo da distribuição da variância total da variável resposta pelos níveis de agrupamento. A primeira linha do modelo é conhecida como equação do nível 1 e a segunda linha como equação do nível 2.

Modelo: Nulo (somente intercepto)

```
logito(\pi_{ij}) = \beta_{0j} Equação nível 1; \beta_{0j} = \gamma_{00} + \mu_{0j} Equação nível 2; logito(\pi_{ij}) = \gamma_{00} + \mu_{0j} Equação combinada.
```

Em que:

 β_{0j} representa a interceptação nas caracterizações municipais;

 γ_{00} representa a média global de partos cesáreos;

 μ_{0j} representa a diferença entre a interceptação de uma caracterização municipal j e a média global γ_{00} .

Na tabela 4.9 encontram-se as estatísticas do Modelo Nulo (apenas com o intercepto). A média global de partos cesáreos foi $\gamma_{00}=$ -0,2934, significativa ao nível de 5%. Exponencializando a estimativa da interceptação obtém-se o odds ratio, ou seja, $e^{-0,29348}=$ 0,75. Com essa informação calculou-se a probabilidade incondicional de um óbito neonatal ter nascido via parto cesáreo, assim, a probabilidade foi de 0,43. O resíduo no nível da caracterização municipal teve média zero e variância $\sigma_{\mu_{0j}}^2=0,21637$, o que implicou no Coeficiente de Correlação Intra-classe (CCI), $\rho=0,06171$, indicando que aproximadamente 6% da variação da variável *tipo de parto* pode ser explicada pela caracterização municipal. Esse resultado fornece evidências de que um modelo multinível pode fazer diferença nas estimativas do modelo, em comparação com um modelo não multinível. Portanto, o uso de modelos multiníveis se faz necessário e garantido. Segundo Heck, Thomas e Tabata (2014) um CCI de

0,05 é frequentemente considerado como limiar convencional para indicar evidências mais substanciais de agrupamento. Também verificou-se que o valor do *deviance* foi 7060,5. A estimativa do *deviance* serve para fazer comparações entre modelos não concorrentes.

Tabela 4.9: Estatísticas do Modelo Nulo: apenas com o intercepto dos óbitos neonatais nas caracterizações municipais da Paraíba, 2009 a 2017

Modelo	Valor	Erro-padrão	p-valor*
Intercepto	-0,29348	0,08265	0,00038
ρ	0,06171	-	-
deviance	7060,5	-	-

^{*}Significativo se p < 0,05

Modelo: Modelo mais parcimonioso (Inclusão das variáveis independentes)

Após o ajuste do modelo nulo, deu-se início a etapa de seleção de modelos até que um ou vários candidatos a modelo final sejam obtidos. As variáveis independentes fixas foram inseridas uma a uma até que se obteve as estimativas dos parâmetros e verificou-se a significância das mesmas. Considerou-se como variável resposta o tipo de parto e como variáveis independentes: raça/cor da criança, número de filhos vivos, número de filhos mortos, idade da mãe, escolaridade da mãe e tipo de gravidez. Considerou-se a variável caracterização municipal como o fator aleatório de agrupamento. As estimativas do modelo com todas as variáveis independentes fixas foram verificadas. A média global de partos cesáreos foi $\gamma_{00} = -$ 0,3068. A probabilidade incondicional de um óbito neonatal ter nascido via parto cesáreo foi de 0,42. O resíduo no nível da caracterização municipal teve média zero e variância $\sigma_{\mu_0 j}^2$ 0,27853, o que implicou no CCI de 0,07805, ou seja, aproximadamente 8% da variação da variável tipo de parto pode ser explicada pela caracterização municipal. Comparando-se com o modelo nulo, houve um aumento da variação da variável tipo de parto explicada pela caracterização municipal. Observa-se também que a inclusão das variáveis reduziu o valor do deviance (6841,5). Os parâmetros das variáveis raça/cor e número de filhos nascidos vivos foram não significativos, portanto, essas variáveis foram retiradas e um novo modelo foi ajustado.

Como trata-se de um ajuste de um modelo multinível onde leva-se em consideração a heterogeneidade das variáveis independentes nas caracterizações municipais, a não significância das variáveis *raça/cor* e *número de filhos vivos* sugere que os padrões das

proporções das categorias destas variáveis foram similares nos três grupos referentes às caracterizações municipais. Essas similaridades já vinham sido reveladas nas Figuras 4.4 e 4.9 da análise do perfil das variáveis Materno-infantis e na análise das retas de regressão da Figura 4.14 que apresentaram pouca inclinação das retas ajustadas.

A raça/cor é considerada como um fator determinante das desigualdades sociais no Brasil, ao lado da classe social, do gênero e da região de moradia. As desvantagens da população negra podem sobrepor os indicadores socioeconômicos e se estender para os indicadores de acesso aos serviços de saúde e os de mortalidade (PACHECO et al.,2018). Mesmo considerando a inserção social adversa da população negra, que constitui um agravante de sua vulnerabilidade diante das condições de saúde, o resultado da modelagem para os municípios da Paraíba mostrou que a variável raça/cor não se mostrou significativa para explicar o tipo de parto. A esse respeito, vale ressaltar que por não se tratar de uma classificação biológica ou física com base no genótipo do indivíduo, mas sim da percepção de cada um, incorre-se na inexatidão da definição da cor da pele (ARAÚJO et al., 2016). Ainda de acordo com Pacheco e colaboradores (2018), a raça/cor não é, por si só, um fator de risco. Em estudo recente sobre partos cesáreos em uma microrregião de São Paulo, Paes e Soler (2019) também não verificaram associação entre raça/cor e parto cesáreo.

Quanto ao número de filhos vivos, a relação entre ter filhos e decidir entre parto cesáreo e vaginal desencadeia uma série de fatores. Entre os fatores de risco para realização de cesariana, de consenso na literatura está a primiparidade, ou seja, mães que terão o primeiro parto (BARBOSA, 2016). De acordo com Rasador e Abegg (2019) o desejo de realizar o parto cesáreo na primeira gestação predispõe a realização de novas cesarianas em gestações futuras. Entre as multíparas, Alcantara (2018) constatou que estas mães representam fator de risco para óbito neonatal quando decidem realizar parto cesáreo. De acordo com Oliveira e colaboradores (2016), tanto para as mães atendidas pelo SUS como pelo sistema privado, já ter realizado parto cesáreo aumenta em 11 vezes a chance de ter uma nova cesárea. É importante frisar que a não significância desta variável para esta modelagem não significa que esta não representa um fator de risco para o parto cesáreo. A homogeneidade das proporções do número de filhos vivos entre as mães das diferentes caracterizações municipais da Paraíba pode ter influenciado na falta de significância do parâmetro desta variável. Ou seja, a caracterização regional não se revelou como um fator que influenciasse na relação entre tipo de parto e o número de filhos vivos, conforme pode ser verificado graficamente na Figura 4.14, com pouca inclinação das retas ajustadas.

A retirada das variáveis raça/cor e número de filhos vivos permitiu gerar um modelo que melhor se ajustasse aos dados de óbitos neonatais na Paraíba. De acordo com a Tabela 4.10 foi possível verificar que a estimativa do deviance apresentou o menor valor, 6833,5. A média global de partos cesáreos não se alterou em relação ao modelo anterior, ou seja, foi γ_{00} = -0,3068. Como a exponencial da média global de partos cesáreos (0,73581) permite obter a probabilidade incondicional de um óbito neonatal ter nascido via parto cesáreo, tem-se que esse valor permaneceu em 0,42. Também permaneceu inalterado o valor do resíduo no nível da caracterização municipal que teve média zero e variância $\sigma_{\mu_{0j}}^2$ = 0,27853, o que implicou no CCI de 0,07805, ou seja, aproximadamente 8% da variação da variável tipo de parto pode ser explicada pela caracterização municipal.

Todas as estimativas dos parâmetros das variáveis foram significativas para o ajuste do modelo final. Conforme a verificação dos odds ratios, pode-se interpretar as estimativas dos parâmetros do modelo logístico binário multinível. Levando-se em consideração a variável resposta *tipo de parto* e a variável de efeito aleatório de agrupamento *caracterização municipal*, as variáveis independentes de efeito fixo foram *idade da mãe*, *escolaridade da mãe*, *número de filhos mortos* e *tipo de gravidez*. A composição do modelo final resultante deste ajuste expressa um predomínio dos fatores relacionados à mãe e a gravidez na determinação do tipo de parto tendo como consequência a mortalidade neonatal.

Para variável *idade da mãe*, referenciou-se a categoria de 20 a 29 anos, tem-se que às mães que têm entre 30 e 39 anos de idade, aumenta em aproximadamente 2,6 vezes a chance de nascimento por parto cesáreo entre as crianças que morreram em até 28 dias, para as mães com 40 anos e mais, essa chance aumenta para aproximadamente para 3,3 vezes, enquanto que às mães com idade na faixa de 10 a 19 anos a chance de nascimento por parto cesáreo entre os óbitos neonatais comparada com às mães com idade de 20 a 29 anos aumenta em 77% (Tabela 4.10). Diversos estudos têm comprovado a relação entre idade avançada com maior prevalência de cesárea (GAIVA, FUJIMORI e SATO, 2016; MADERO, RUFINO e SANTOS, 2017, ARAUJO FILHO et al., 2017). A idade materna elevada é tradicionalmente considerada como um dos fatores de risco para alta proporção de partos cesáreos (MADERO, RUFINO e SANTOS, 2017). A população do estado da Paraíba, pelo menos desde a última década, embora com características próprias, vem acompanhando as transformações mundiais em termos de transição demográfica, nutricional e epidemiológica. Na Paraíba, a população feminina vem apresentando idade mais avançada (SILVA, 2016), bem como aumento dos casos de obesidade

(MALTA et al., 2019), além do fenômeno do descenso da fecundidade que tem contribuído para o aumento das taxas de cesáreas. Além disso, gestações de mulheres com idade materna avançada são consideradas de alto risco para a mãe e podem ocasionar complicações para o feto, motivando essas mães a optarem pelo parto cirúrgico ou terem indicação para ele (EUFRÁSIO, 2017). Avanços quanto às tecnologias disponíveis relacionadas ao parto, assim como mudanças de comportamento da população feminina, que se inseriu fortemente no mercado de trabalho e, também, uma maior disponibilidade de informações, científicas ou não, também contribuíram para este aumento (ZHOU et al., 2015; COELHO, SOUZA, TORRES e DREZETT, 2017).

Com relação à variável escolaridade da mãe, considerou-se a categoria "Sem escolaridade" como referência, assim, a partir dos valores dos Odds Ratio (Tabela 4.10), observou-se que a medida que a escolaridade da mãe aumenta, a chance de ocorrência de parto cesáreo entre às crianças que morreram em até 28 dias também aumenta. Para às mães com Ensino fundamental a chance foi 19% maior, para às mães com Ensino médio a chance foi duas vezes maior e para àquelas mães com Ensino superior a chance foi aproximadamente três vezes maior, comparadas com as mães sem escolaridade. Este resultado não vem ocorrendo somente na Paraíba. No Brasil, há diversos estudos que sinalizaram essa tendência da escolha dessa via de parto entre mulheres com maiores níveis de instrução. Oliveira et al. (2015) verificaram essa preferência em um município do Paraná, Eufrásio (2017) também constatou essa tendência em todas as regiões brasileiras destacando as regiões Nordeste e Sul. Guimarães et al. (2017) destacaram essa escolha no Brasil baseando-se nos dados de 2014. Expandindo essa analogia para outros países, em Portugal, Oliveira (2013) constatou que a baixa escolaridade materna assume um papel protetor para cesariana. No Chile, Mendoza-Sassi et al. (2010), comprovaram que as mulheres que apresentavam maior nível socioeconômico e que eram assistidas pelo setor privado apresentavam maior probabilidade de serem submetidas à cesariana, comparadas àquelas mães assistidas pela rede pública. Pode-se considerar a elevada escolaridade da mãe como um fator que determina melhores condições de vida, aproximando a parturiente aos serviços especializados de saúde, porém, essa circunstância não minimiza problemas relacionados ao parto cesáreo, os quais as colocam em uma situação paradoxal a respeito das consequências danosas que essa modalidade de parto possa provocar.

Para variável *número de filhos mortos* utilizou-se como referência a categoria "Nenhum" filho nascido morto. Observa-se que os valores dos odds ratio apresentaram relações inversas com a variável *tipo de parto* (Tabela 4.10), ou seja, à medida que aumenta o número de filhos mortos, a chance de nascimento por parto cesáreo entre os óbitos neonatais diminui.

Entre às mães que já tiveram um filho morto a chance reduz em aproximadamente 18%, entre àquelas que tiveram dois filhos mortos a chance foi aproximadamente 23% menor e entre às mães que já tiveram três ou mais filhos mortos, a chance foi aproximadamente 45% menor comparadas com as mães que nunca tiveram filhos nascidos mortos. As perdas fetais maternas têm sido associadas a uma maior prevalência de óbitos infantis e a perdas fetais futuras, ou seja, a história de óbito fetal anterior pode caracterizar a gestação atual como de alto risco (LIMA, OLIVEIRA JÚNIOR e TAKANO, 2016). De acordo com Freitas e Araújo (2015), a realização de investigações dos antecedentes pessoais e obstétricos torna-se necessário como forma de melhoria do cuidado às gestantes e redução do risco de complicações.

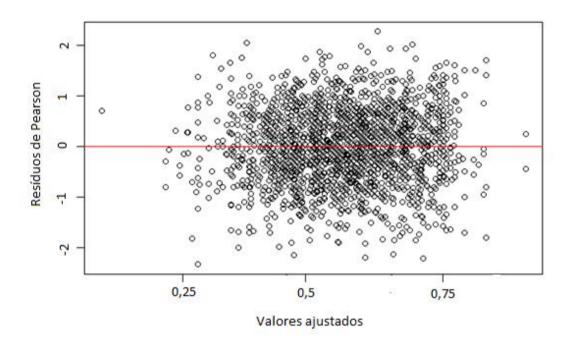

Para variável *tipo de gravidez*, tomou-se como referência a categoria gravidez "Única". Observou-se que a gravidez múltipla aumenta a chance do nascimento por parto cesáreo entre as crianças que morreram em até 28 dias (Tabela 4.10). Entre às mães que tiveram gravidez dupla, a chance do nascimento por parto cesáreo entre as crianças que morreram em até 28 dias aumenta em aproximadamente 36% em relação às mães que tiveram gravidez única. Entre às mães que tiveram gravidez tripla ou mais essa chance aumenta em 2,18 vezes comparadas com as mães que tiveram gravidez única. É sabido que há mais riscos em gestações múltiplas tanto para a mãe, quanto para os fetos. As principais complicações incluem: parto prematuro, baixo peso ao nascer, placentação anormal, crescimento intrauterino restrito, rotura prematura das membranas ovulares, morte fetal intrauterina, diabetes gestacional, pré-eclâmpsia, aumentando as chances de parto cesáreo, muito prevalentes entre os gemelares (SILVA et al., 2019). Segundo Demitto et al. (2017) a gravidez múltipla é considerada fator obstétrico associado à morte neonatal.

Tabela 4.10: Estimativas dos parâmetros do "modelo mais parcimonioso" com todas as variáveis independentes fixas significativas segundo o modelo de regressão logística binário multinível ajustado para os dados sobre óbitos neonatais na Paraíba, 2009 a 2017

Variáveis e categorias	Estimativa	Erro-padrão	Odds Ratio	p-valor*
Intercepto	-0,3068	0,0859	0,7358	<0,0100
Idade da mãe (anos)				
10 a 19	0,5722	0,0323	1,7721	< 0,0100
20 a 29	-	-	1,0000	< 0,0100
30 a 39	0,9873	0,0426	2,6839	< 0,0100
40 e mais	1,1804	0,0392	3,2557	<0,0100
Escolaridade da mãe				
Sem escolaridade	-	-	1,0000	<0,0100
Fundamental	0,1770	0,0228	1,1936	<0,0100
Médio	0,7164	0,0314	2,0471	<0,0100
Superior	1,0590	0,0497	2,8834	<0,0100
Número de filhos mortos				
Nenhum	-	-	1,0000	< 0,0100
Um	-0,2027	0,0546	0,8165	<0,0100
Dois	-0,2607	0,0334	0,7705	<0,0100
Três e mais	-0,6110	0,0481	0,5428	<0,0100
Tipo de gravidez				
Única	-	-	1,0000	<0,0100
Dupla	0,3125	0,0782	1,3669	<0,0100
Tripla e mais	0,7787	0,0631	2,1786	<0,0100
ρ	0,07805	-	-	-
Deviance	6833,5	-	-	

^{*}Significativo se p < 0,05

Para verificar se o modelo logístico binário multinível é razoável para ajustar os dados de óbitos neonatais com *tipo de parto* como variável resposta, apresenta-se na Figura 4.15 o gráfico de dispersão dos Resíduos de Pearson versus valores ajustados. Notou-se que os resíduos de Pearson apresentaram uma distribuição aleatória quando feita a sua dispersão versus valores ajustados, isto é, eles não contêm nenhum padrão evidente, indicando assim, que os resíduos são não correlacionados, ou seja, a hipótese de independência e variância constante para os resíduos foram aceitas.

Figura 4.15: Gráfico de dispersão dos Resíduos de Pearson versus valores ajustados do modelo logístico binário multinível.

Para construir o gráfico de probabilidade normal dos resíduos plotou-se no eixo horizontal o resíduo ordenado e no eixo vertical plotou-se a frequência cumulativa, em uma escala de probabilidade normal. Na Figura 4.16 verificou-se que os pontos ficaram alinhados numa reta, indicando o bom ajuste dos dados. Não se observou pontos muito fora do alinhamento. Por conseguinte, não há indicação de que a consideração de normalidade dos resíduos deva ser rejeitada.

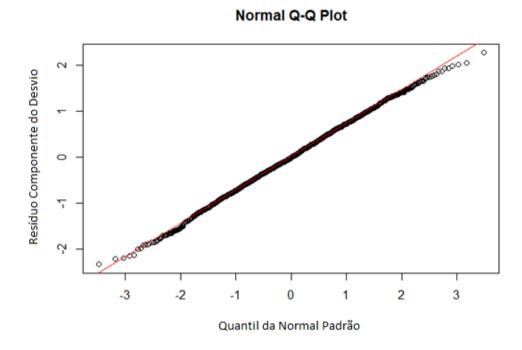


Figura 4.16: Gráfico normal de probabilidades do modelo logístico binário multinível

Análise de Variância (ANOVA) para o fator: Caracterização municipal

Após o ajuste do modelo multinível levando-se em consideração a variável resposta *tipo de parto* verificou-se a existência de diferença significativa entre as caracterizações municipais da Paraíba considerando as variáveis utilizadas na modelagem. Como já explicitado na modelagem, há evidências de agrupamento indicando que houve diferença entre as caracterizações municipais. A finalidade da realização da ANOVA para os dados deste estudo consistiu em verificar em quais variáveis essa diferença foi significativa e, em seguida, por meio de testes de comparações múltiplas, examinar as diferenças existentes entre os municípios Urbanos, Intermediários Adjacentes e Rurais Adjacentes. Os pressupostos de independência das observações, normalidade e homogeneidade das variâncias foram verificados previamente e as condições foram satisfeitas, assim, deu-se à cabo a realização da ANOVA.

Conforme os resultados da ANOVA (Tabela 4.11) foi possível constatar que as hipóteses nulas foram rejeitadas nas variáveis dependentes: tipo de parto, escolaridade da mãe e número de filhos mortos, ou seja, existe diferença significativa entre as médias das caracterizações municipais para essas variáveis. Enquanto que para as variáveis raça/cor, idade da mãe, número de filhos vivos e tipo de gravidez as hipóteses nulas foram aceitas, ou seja, não houve diferença significativa entre as médias das caracterizações municipais para essas

variáveis. As variáveis *idade da mãe* e *tipo de gravidez* que foram significativas para o modelo final, não sinalizaram diferenças entre as caracterizações municipais, isto porque embora o modelo final como um todo apresente diferenças significativas entre caracterizações municipais, na ANOVA, estas diferenças são analisadas em cada variável. Em síntese, a *idade da mãe* e o *tipo de gravidez* não se diferenciaram entre os espaços regionalizados da Paraíba pois a distribuição percentual das categorias dessas variáveis são similares entre os três espaços regionais, contudo, essas variáveis foram significativas para explicar a ocorrência do *tipo de parto*.

Tabela 4.11: Análise de Variância (ANOVA) para os dados sobre óbitos neonatais segundo fator de caracterização municipal da Paraíba de 2009 a 2017

Variáveis	Fonte de variação	Soma dos Quadrados	g.l	Quadrado Médio	Z	p-valor*
	Entre Grupos	5,556	2	2,778	11,293	0,000
Tipo de parto	Nos grupos	1265,864	5146	0,246		
	Total	1271,42	5148			
	Entre Grupos	1,137	2	0,569	2,12	0,120
Raça/Cor	Nos grupos	1380,274	5146	0,268		
	Total	1381,412	5148			
	Entre Grupos	2,113	2	1,057	1,846	0,158
Idade da mãe	Nos grupos	2945,832	5146	0,572		
	Total	2947,945	5148			
Essalari da da	Entre Grupos	68,527	2	34,264	41,053	0,000
Escolaridade da mãe	Nos grupos	4294,986	5146	0,835		
da mae	Total	4363,513	5148			
Niémana da	Entre Grupos	2,851	2	1,425	1,319	0,268
Número de filhos vivos	Nos grupos	5561,461	5146	1,081		
1111103 VIVOS	Total	5564,312	5148			
N14	Entre Grupos	7,245	2	3,622	8,777	0,000
Número de filhos mortos	Nos grupos	2123,792	5146	0,413		
imios mortos	Total	2131,037	5148			
Timo do	Entre Grupos	0,123	2	0,061	0,505	0,604
Tipo de gravidez	Nos grupos	626,334	5146	0,122		
Stavidez	Total	626,547	5148			

^{*}Significativo se p < 0,05

Como na ANOVA detectou-se diferença significativa entre as médias das caracterizações municipais nas variáveis *tipo de parto*, *escolaridade da mãe* e *número de filhos mortos*. O próximo passo foi realizar as comparações múltiplas entre as caracterizações municipais com a finalidade de avaliar quais grupos foram diferentes. Existem diversos testes

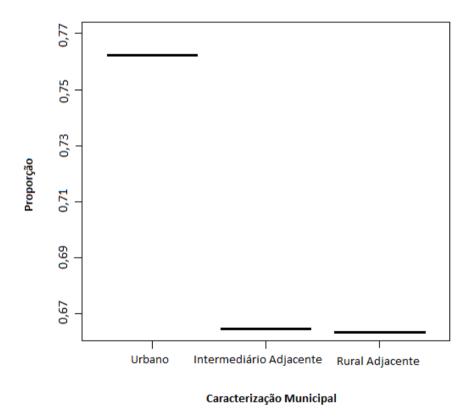
estatísticos de comparações múltiplas, a saber: Dunnett, DMS (Diferença Média Significativa), Tukey, Sheffeé, Bonferroni, entre outros. Como nos grupos em que foram realizadas as comparações são de tamanhos diferentes e desejou-se realizar comparações entre as caracterizações municipais, optou-se pelo teste de Bonferroni.

Conforme os resultados das comparações múltiplas (Tabela 4.12), para variável tipo de parto observou-se que os municípios Urbanos diferem significativamente dos municípios Intermediários Adjacentes e Rurais Adjacentes. Observou-se também que não houve diferença significativa entre os municípios Intermediários Adjacentes e Rurais Adjacentes. Com relação às variáveis escolaridade da mãe e número de filhos mortos ocorreu o mesmo comportamento da variável tipo de parto, ou seja, dentre as três caracterizações municipais da Paraíba, os municípios Urbanos diferiram significativamente dos demais municípios com relação às variáveis tipo de parto, escolaridade da mãe e número de filhos mortos para dados de óbitos neonatais no período de 2009 a 2017.

As melhores condições de vida e saúde da população residente nos municípios Urbanos como acesso à educação e serviços de saúde mais qualificados, refletem nos melhores Índices de Desenvolvimento Humano Municipal (IDHM). Pode-se considerar uma desigualdade social no cuidado em saúde o fato de que mulheres com piores condições socioeconômicas e consequentemente, maiores riscos de complicações no parto, tenham menor chance de cesariana do que aquelas com baixo risco obstétrico, elevada condição socioeconômica e maior acesso à tecnologia médica, o que remete a lei do cuidado inverso (FREITAS e SAVI, 2011). Madero, Rufino e Santos (2017) verificaram que os municípios Urbanos, com maior IDH apresentaram uma maior proporção de cesáreas e que esses municípios são, quase sempre, mais bem equipados e contam com equipes de saúde mais qualificadas, os quais são características de impacto na realização de procedimentos cirúrgicos. Enquanto que a menor frequência de cesáreas em regiões menos populosas e menos desenvolvidas, geralmente mais pobres, leva à suposição de que mulheres com alto risco obstétrico tenham menor acesso ao parto cirúrgico quando necessário.

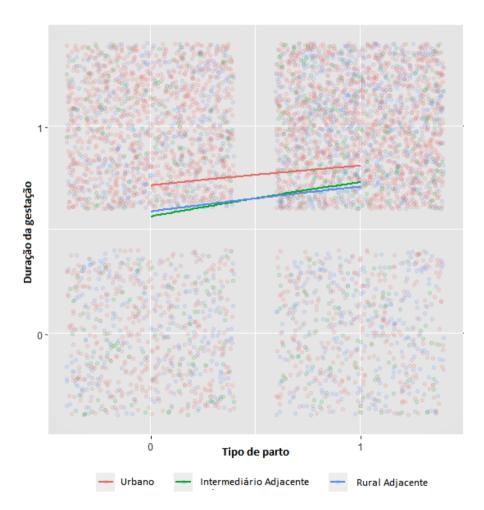
Conforme visto na Figura 4.6, a proporção de óbitos neonatais nos municípios Urbanos foi mais elevada para aquelas mães que possuíam uma maior escolaridade comparada as proporções das demais caracterizações municipais. Como a maior escolaridade reflete melhores condições socioeconômicas, sugere-se que essas mães teriam maior poder para solicitar o parto operatório por acreditarem que ele seria mais seguro que o parto vaginal, além de menos doloroso e mais conveniente.

Quanto ao número de filhos mortos, os municípios Urbanos se diferenciaram dos municípios Intermediários Adjacentes e Rurais Adjacentes. Conforme observado na Figura 4.10, a ocorrência do óbito neonatal nos municípios Urbanos foi mais frequente entre as mães que nunca tiveram filhos nascidos mortos, enquanto que nos municípios Intermediários Adjacentes e Rurais Adjacentes a ocorrência de óbito neonatal foi mais frequente entre as mães que já tiveram um filho nascido morto. A multiparidade espelha o problema do número de filhos mortos e, consequentemente reflete na fecundidade. Os diferenciais nos níveis de fecundidade dos municípios Urbanos e Rurais conforme abordado por Paes e Silva (2020) e Almeida (2019) explicam o efeito causa e consequência que há entre o fato da mãe que já teve um filho morto e vir a ter outro. Assim, as mães residentes nos municípios Intermediários Adjacentes e Rurais Adjacentes são mais susceptíveis à terem filhos nascidos mortos devido aos níveis mais elevados de fecundidade.


Tabela 4.12: Estatísticas do Teste de Bonferroni para as Caracterizações municipais da Paraíba segundo variáveis Tipo de parto, Escolaridade da mãe e Número de filhos mortos de 2009 a 2017

Variável dependente	Caracterização (I)	Caracterização (J)	Diferença média (I-J)	Erro padrão	p-valor*
	Urbano	Intermediário Adjacente	0,077	0,024	0,004
	Orbano	Rural Adjacente	0,064	0,016	0,000
Tipo de	Intermediário	Urbano	-0,077	0,024	0,004
parto	Adjacente	Rural Adjacente	-0,013	0,026	0,618
	Rural	Urbano	-0,064	0,016	0,000
	Adjacente	Intermediário Adjacente	0,013	0,026	0,618
	Urbano	Intermediário Adjacente	0,295	0,044	0,000
	Orbano	Rural Adjacente	0,246	0,029	0,000
Escolaridade	Intermediário	Urbano	-0,205	0,044	0,000
da mãe	Adjacente	Rural Adjacente	0,041	0,047	0,747
	Rural	Urbano	-0,246	0,029	0,000
	Adjacente	Intermediário Adjacente	-0,041	0,047	0,747
	Urbano	Intermediário Adjacente	-0,090	0,031	0,012
	Orbano	Rural Adjacente	-0,072	0,02	0,001
Número de	Intermediário	Urbano	0,090	0,031	0,012
filhos mortos	Adjacente	Rural Adjacente	0,018	0,033	0,326
	Rural	Urbano	0,072	0,02	0,001
	Adjacente	Intermediário Adjacente	-0,018	0,033	0,326

^{*}Significativo se p < 0.05


Modelo 2 (Variável Tipo de Parto como independente e Duração da Gestação como dependente)

Nesta segunda modelagem, a variável *tipo de parto* entrou como variável independente e a variável *duração da gestação* como variável dependente. Antes de realizar a modelagem, avaliou-se as proporções de óbitos neonatais que nasceram prematuros (Figura 4.17). Notou-se que houve diferença nas proporções de óbitos que nasceram prematuros entre as caracterizações municipais destacando os municípios Urbanos que apresentou uma proporção de aproximadamente 0,76, os municípios Intermediários Adjacentes apresentaram uma proporção de aproximadamente 0,67 e os municípios Rurais Adjacentes aproximadamente 0,66. Portanto, as proporções de óbitos neonatais que nasceram prematuros entre as caracterizações municipais sugerem que a modelagem multinível seja necessária.

Figura 4.17: Proporção de óbitos neonatais que nasceram prematuros entre as caracterizações municipais da Paraíba, 2009 a 2017

A relação entre a *duração da gestação* e a variável *tipo de parto* está representada na Figura 4.18, também foi possível verificar a dispersão dos óbitos neonatais nas categorias de cada variável. Verificou-se que houve similaridade nos padrões das retas de regressões, embora haja diferenças nos níveis nas três caracterizações municipais, com destaque para os municípios Urbanos com níveis mais elevados. Observou-se que as relações nas três caracterizações municipais foram positivas, ou seja, quando o *tipo de parto* muda de vaginal para cesáreo, a gestação tende a mudar de não prematuro para prematuro. Na Figura 4.18, os valores 0 e 1 representam as categorias das variáveis, sendo que o valor 1 na variável *duração da gestação* representa os óbitos nascidos prematuros e na variável *tipo de parto* representa os óbitos neonatais nascidos via parto cesáreo.

Figura 4.18: Gráfico de dispersão e retas ajustadas da relação entre a variável Duração da gestação e Tipo de Parto nas caracterizações municipais da Paraíba, 2009 a 2017.

Considerando a variável independente, *tipo de parto*, foi realizada a modelagem cuja variável resposta foi a *duração da gestação* para os dados sobre óbitos neonatais na Paraíba de 2009 a 2017. Assim, neste estudo, a categoria de sucesso foi o óbito neonatal ter nascido prematuro e a categoria de referência da variável independente *tipo de parto* foi o parto cesáreo.

Foram seguidos os mesmos passos do Modelo 1 de acordo com a proposta de Hox (2010) na construção do modelo de regressão logística multinível, considerando o modelo nulo inicialmente, sem variáveis independentes. Como já explicado no Modelo 1, o preditor linear é composto apenas pelo intercepto, sendo importante no estudo da distribuição da variância total da variável resposta pelos níveis de agrupamento. Neste modelo, o parâmetro γ_{00} representa a média global de óbitos neonatais que nasceram prematuros.

Na Tabela 4.13 encontram-se as estatísticas do Modelo Nulo (apenas com o intercepto). A média global de óbitos neonatais nascidos prematuros foi de $\gamma_{00}=0.8516$, significativa ao nível de 5%. Exponencializando a estimativa da interceptação obtém-se o odds ratio, ou seja, $e^{0.8516} = 2.34$. Com essa informação calculou-se a probabilidade incondicional de um óbito neonatal ter nascido prematuro, assim, a probabilidade foi de 0,70. O resíduo no nível da caracterização municipal teve média zero e variância $\sigma_{\mu_0j}^2 = 0,05551$, o que implicou no coeficiente de correlação intra-classe extremamente baixo, igual a 0,01659, indicando que aproximadamente 1,6% da variação da variável duração da gestação pode ser explicada pela caracterização municipal. Assim, não houve evidências de que o modelo multinível se faz necessário neste ajuste, devido a aparente falta de heterogeneidade entre as caracterizações municipais da Paraíba. Nesse caso, a solução mais adequada a ser dada é a utilização de um modelo de regressão logística (tradicional) uma vez que não se faz necessário o uso do modelo multinível. Porém, mesmo que não haja indicação de agrupamento dos dados, a modelagem multinível ajusta os dados conforme a teoria dos modelos lineares generalizados onde neste segundo modelo a variável resposta seguiu uma distribuição binomial com função de ligação logito. Também se verificou que o valor do deviance foi 6005. A estimativa do deviance servirá para fazer comparações entre os modelos não concorrentes.

Tabela 4.13: Modelo Nulo: Apenas com o intercepto dos óbitos neonatais nas caracterizações municipais da Paraíba, 2009 a 2017

Modelo	Valor	Erro-padrão	p-valor*		
Intercepto	0,8516	0,1414	< 0,01		
ρ	0,01659	-	-		
Deviance	6005,0	-			

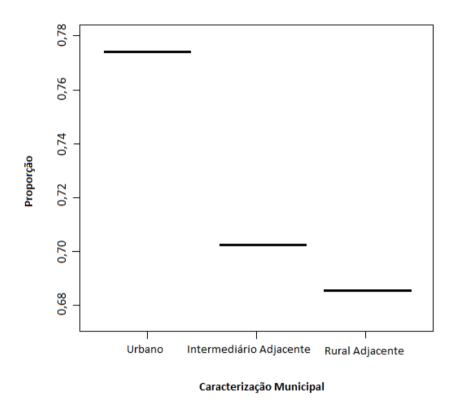
^{*}Significativo se p < 0,05

Após o ajuste do modelo nulo, incluiu-se a variável independente (*tipo de parto*). Na Tabela 4.14 encontram-se as estimativas do modelo. A média global de óbitos neonatais nascidos prematuros foi $\gamma_{00} = 0.86529$. A probabilidade incondicional de um óbito neonatal ter nascido prematuro continuou sendo 0,70. O resíduo no nível da caracterização municipal teve média zero e variância $\sigma_{\mu_{0j}}^2 = 0.05708$, o que fez com que o coeficiente de correlação intraclasse aumentasse em relação ao modelo nulo, ou seja 0,01705, indicando que aproximadamente 1,7% da variação da variável *duração da gestação* pode ser explicada pela caracterização municipal. Mesmo assim, o valor do coeficiente continuou extremamente baixo. Observa-se também que a inclusão da variável *tipo de parto* reduziu o valor do *deviance* (5929).

As estimativas dos parâmetros do Intercepto e da variável *tipo de parto* foram significativas para o ajuste do modelo final. Conforme verificação dos odds ratios, pode-se interpretar as estimativas dos parâmetros do modelo logístico binário. Levando-se em consideração a variável resposta *duração da gestação* e a variável independente de efeito fixo (*tipo de parto*). A variável de efeito aleatório (*caracterização municipal*) não será levada em consideração nesta análise, uma vez que não houve indícios de agrupamento dos dados devido ao baixo coeficiente de correlação intra-classe. De acordo com os resultados, pode-se observar que crianças nascidas via parto cesáreo aumenta em aproximadamente 72% a chance de nascer prematura entre as que morreram em até 28 dias comparada às crianças nascidas via parto vaginal. Isso reflete que um número muito importante de mulheres é levado à cesariana na ausência do trabalho de parto ou após o parto induzido (JIMÉNEZ-HERNANDEZ, 2016).

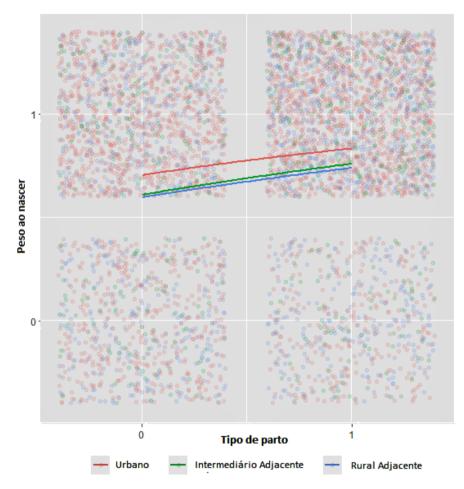
É de conhecimento amplo que a prematuridade é a principal causa de morte de crianças e está associada a várias doenças na infância uma vez que as últimas semanas de gestação permitem maior ganho de peso, maturidade cerebral e pulmonar do recém-nascido (WORLD HEALTH ORGANIZATION, 2011). No Brasil, a alta taxa de prematuridade em regiões mais desenvolvidas foi justificada pela disponibilidade de maiores recursos tecnológicos, que

aumentam o número de partos cesáreos, considerado um fator associado ao parto pré-termo (MEIRA, 2010).


Tabela 4.14: Estimativas dos parâmetros do modelo final com a variável independente fixa (Tipo de Parto) significativa dos óbitos neonatais nas caracterizações municipais da Paraíba, 2009 a 2017

Variável e Categorias	Estimativa	Erro-padrão	odds ratio	p-valor
Intercepto	0,86529	0,14347	2,3757	<0,01
Tipo de parto				
Vaginal	-	-	1,0000	< 0,01
Cesáreo	0,54436	0,07123	1,7235	< 0,01
ρ	0,01705	-	-	-
Deviance	5929,0	-	-	-

^{*}Significativo se p < 0,05


Modelo 3 (Variável Tipo de parto como independente e Peso ao nascer como dependente)

Nesta terceira modelagem, a variável *tipo de parto* entrou como independente e a variável *peso ao nascer* como dependente. Antes de realizar a modelagem, avaliou-se as proporções de óbitos neonatais que nasceram com baixo peso (Figura 4.19). Verificou-se que houve diferença nas proporções de óbitos que nasceram com baixo peso entre as caracterizações municipais destacando os municípios Urbanos que apresentou uma proporção de óbitos que nasceram com baixo peso de aproximadamente 0,78, os municípios Intermediários Adjacentes apresentaram uma proporção de aproximadamente 0,70 e os municípios Rurais Adjacentes aproximadamente 0,68. Portanto, as proporções de óbitos neonatais que nasceram com baixo peso entre as caracterizações municipais sugerem que a modelagem multinível seja necessária.

Figura 4.19: Proporção de óbitos neonatais que nasceram com baixo peso entre as caracterizações municipais da Paraíba, 2009 a 2017

A relação entre as variáveis *peso ao nascer* e o *tipo de parto* está representada na Figura 4.20, também foi possível verificar a dispersão dos óbitos neonatais nas categorias de cada variável. Assim como na relação do Modelo 2, neste Modelo 3 também se verificou que houve similaridade nos padrões das retas de regressões, com diferenças nos níveis nas três caracterizações municipais, com destaque para os municípios Urbanos com nível mais elevado em relação as demais caracterizações. Observa-se que as relações nas três caracterizações municipais foram positivas, ou seja, quando o tipo de parto muda de vaginal para cesáreo, o peso ao nascer tende a mudar de peso adequado para baixo peso ao nascer. Na Figura 4.20, o valor 1 para variável *peso ao nascer* representa os óbitos neonatais nascidos com baixo peso e na variável *tipo de parto* representa os óbitos neonatais nascidos via parto cesáreo.

Figura 4.20: Gráfico de dispersão e retas ajustadas da relação entre a variável Peso ao nascer e Tipo de Parto nas caracterizações municipais da Paraíba, 2009 a 2017.

Considerando a variável independente, *tipo de parto*, foi realizada a modelagem cuja variável resposta é o *peso ao nascer* dos dados sobre óbitos neonatais na Paraíba de 2009 a 2017. Assim, neste estudo, a categoria de sucesso é o óbito neonatal ter nascido com baixo peso e a categoria de referência da variável independente é o parto cesáreo.

Foram seguidos os mesmos passos dos Modelos 1 e 2 de acordo com a proposta de Hox (2010) na construção do modelo de regressão logística multinível, considerando o modelo nulo inicialmente, sem variáveis independentes. Como já explicado nos modelos anteriores, o preditor linear é composto apenas pelo intercepto, sendo importante no estudo da distribuição da variância total da variável resposta pelos níveis de agrupamento. Neste modelo, o parâmetro γ_{00} representa a média global de óbitos neonatais que nasceram com baixo peso.

Na Tabela 4.15 encontram-se as estatísticas do Modelo Nulo (apenas com o intercepto). A média global de óbitos neonatais nascidos com baixo peso foi $\gamma_{00} = 0,9566$, significativa ao nível de 5%. Exponencializando a estimativa da interceptação obtém-se a odds ratio, ou seja,

 $e^{0,9566}=2,60$, com essa informação, calculou-se a probabilidade incondicional de um óbito neonatal ter nascido com baixo peso, assim, a probabilidade foi de 0,72. O resíduo no nível da caracterização municipal teve média zero e variância $\sigma_{\mu_0 j}^2=0,0388$, o que implicou no coeficiente de correlação intra-classe extremamente baixo 0,01166, indicando que aproximadamente 1,2% da variação da variável *peso ao nascer* pode ser explicada pela caracterização municipal. Assim, não há evidências de que o modelo multinível se faz necessário neste ajuste, devido a aparente falta de heterogeneidade entre as caracterizações municipais da Paraíba. Nesse caso, assim como no Modelo 2, a solução mais adequada a ser dada é a utilização de um modelo de regressão logística (tradicional) uma vez que não se faz necessário o uso do modelo multinível. Vale ressaltar que embora não haja indicação de agrupamento dos dados, a modelagem multinível ajusta os dados conforme a teoria dos modelos lineares generalizados onde neste terceiro modelo a variável resposta segue uma distribuição binomial com função de ligação logito. Verifica-se na tabela 4.15 que o valor do *deviance* foi 5867,4.

Tabela 4.15: Modelo Nulo: Apenas com o intercepto dos óbitos neonatais nas caracterizações municipais da Paraíba, 2009 a 2017

Modelo	Valor	Erro-padrão	p-valor*	
Intercepto	0,9566	0,1204	< 0,01	
ρ	0,01166	-	-	
deviance	5867,4	-	-	

^{*}Significativo se p < 0,05

Após o ajuste do modelo nulo, a variável independente *tipo de parto* foi incluída no ajuste. Na Tabela 4.16 encontram-se as estimativas do modelo, a média global de óbitos neonatais nascidos com baixo peso foi $\gamma_{00} = 0.9826$. A probabilidade incondicional de um óbito neonatal ter nascido com baixo peso com a inclusão da variável *tipo de parto* subiu para 0,73. O resíduo no nível da caracterização municipal teve média igual a zero e variância $\sigma^2_{\mu_0 j} = 0.04211$, o que fez o coeficiente de correlação intra-classe aumentasse em relação ao modelo nulo, ou seja 0,01264, indicando que aproximadamente 1,3% da variação da variável *peso ao nascer* pode ser explicada pela caracterização municipal. Ainda assim, o valor do coeficiente foi extremamente baixo. Observa-se também que a inclusão da variável *tipo de parto* reduziu o valor do *deviance* (5747,2).

As estimativas dos parâmetros do Intercepto e da variável *tipo de parto* foram significativas para o ajuste do modelo final. Conforme verificação dos odds ratios, pode-se interpretar as estimativas dos parâmetros do modelo logístico binário. Levando-se em consideração a variável resposta *peso ao nascer* e a variável independente de efeito fixo (*tipo de parto*). A variável de efeito aleatório (*caracterização municipal*) não será levada em consideração nesta análise, uma vez que não houve indícios de agrupamento dos dados devido ao baixo coeficiente de correlação intra-classe. De acordo com os resultados, pode-se observar que crianças nascidas via parto cesáreo aumenta em aproximadamente duas vezes a chance de nascer prematura entre as que morreram em até 28 dias comparadas às crianças nascidas via parto vaginal.

A associação entre baixo peso ao nascer e parto cesáreo, já verificada em diversos estudos (OLIVEIRA et al., 2015; NANDI et al., 2015; MOREIRA, SOUSA e SARNO, 2018), tem apontado que a escolha dessa via de parto principalmente por mães com elevada escolaridade e elevado poder aquisitivo têm provocado uma considerável prevalência de casos de crianças com baixo peso ao nascer. Deve-se considerar, entretanto, que esta relação é complexa, pois o procedimento pode ser indicado nas condições clínicas ou obstétricas relacionadas com complicações para a gestação ou para o feto, condições estas que podem estar associadas com recém-nascidos de baixo peso (MOREIRA, SOUSA e SARNO, 2018).

Tabela 4.16: Estimativas dos parâmetros do modelo final com a variável independente fixa (Tipo de Parto) significativa dos óbitos neonatais nas caracterizações municipais da Paraíba, 2009 a 2017

Variável e Categorias	Estimativa	Erro-padrão	odds ratio	p-valor*
Intercepto	0,98260	0,1252	2,6714	< 0,01
Tipo de parto				
Vaginal	-	-	1,0000	< 0,01
Cesáreo	0,70181	0,0585	2,0174	< 0,01
ho	0,0126	-	-	-
Deviance	5747,2	-	-	-

^{*}Significativo se p < 0,05

O problema da prematuridade e do baixo peso ao nascer não está apenas atrelado às mães com menores condições de vida e baixo nível de instrução. As relações aqui tratadas, evidenciaram que essa problemática está fortemente associada às mães com elevado nível de instrução. De acordo com os resultados, o fato de a mãe possuir elevado nível de escolaridade aumenta o risco de desencadear uma série de fatores que vai desde o aumento da chance da mesma optar pelo parto cesáreo, que eleva a chance de prematuridade e, consequentemente, o

baixo peso ao nascer. Pode-se considerar a elevada escolaridade da mãe como um fator que determina melhores condições de vida, porém, essa circunstância não minimiza problemas relacionados ao parto cesáreo, os quais as colocam em uma situação paradoxal a respeito das consequências danosas que essa modalidade de parto possa provocar.

Nos últimos anos, o Brasil tem incrementado iniciativas públicas e privadas no intuito de reduzir o índice de cesarianas eletivas. Em 2011, o Sistema Único de Saúde – SUS lançou o programa Rede Cegonha envolvendo hospitais que atendiam usuárias do serviço público, com o objetivo de garantir acesso, acolhimento e qualidade na atenção ao parto e nascimento (BRASIL, 2011). Em 2014, a Agência Nacional de Saúde Suplementar (ANS, 2017), o Hospital Israelita Albert Einstein e o Institute for Healthcare Improvement, com o apoio do Ministério da Saúde desenvolveram um projeto-piloto denominado "Parto Adequado" cujo objetivo é identificar modelos transformadores e viáveis de atenção ao parto e nascimento, que valorizem o parto normal e reduzam o percentual de cesarianas sem indicação clínica na saúde suplementar, adequando a infraestrutura das maternidades e enfatizando a capacitação de profissionais para a segurança da assistência ao parto (Projeto Parto Adequado. http://www.ans.gov.br/gestao-em-saude/projeto-parto-adequado). Em 2016, o Conselho Federal de Medicina – CFM estabeleceu que a cesariana em situação de risco habitual somente poderá ser realizada a partir da 39ª semana gestacional, porém, em caso de intercorrências médicas que determinem a necessidade de adiantamento do parto para preservar a saúde da grávida ou do feto, é permitido adiantar a cesariana (CFM, 2016). Em 2017, o Ministério da Saúde lançou um projeto de aprimoramento e inovação no cuidado e ensino em obstetrícia e neonatologia, denominado Apice-On, em parceria com a EBSERH, ABRAHUE, MEC e IFF/ FIOCRUZ, tendo a Universidade Federal de Minas Gerais como instituição executora. O projeto Apice-On visa reduzir a mortalidade materno-infantil no país, por meio da melhoria na prática e formação dos profissionais, melhorando a gestão do cuidado em relação ao parto, nascimento e abortamento (BRASIL, 2017). Exemplos como estes carecem de ampliação de modo a abranger de forma efetiva todo território nacional.

5 CONSIDERAÇÕES FINAIS

À luz dos 5.149 microdados sobre óbitos neonatais na Paraíba de 2009 a 2017, verificouse que a proporção de óbitos neonatais de crianças nascidas via parto cesáreo superou em aproximadamente três vezes o limite proposto pela Organização Mundial da Saúde que é de 15%. Entre as caracterizações, os municípios Urbanos se destacaram com proporções mais elevadas de óbitos neonatais de crianças nascidas via parto cesáreo, sendo que essas proporções foram superiores à do Estado da Paraíba. Quanto às características materno-infantis, as variáveis tipo de parto, escolaridade a mãe e número de filhos mortos se destacaram como fatores diferenciadores dos óbitos neonatais nos municípios Urbanos em relação aos municípios Rurais Adjacentes e Intermediários Adjacentes. As variáveis duração da gestação, peso ao nascer, idade da mãe e tipo de gravidez embora com forte correlação com a variável tipo de parto, não foram fatores diferenciadores entre as caracterizações municipais. As variáveis sexo, raça/cor da criança e número de filhos vivos não foram significativamente relacionadas à variável tipo de parto.

Os métodos utilizados para qualificação das informações como o *linkage* e a Imputação Múltipla solucionaram o problema das variáveis com dados faltantes e impediram que observações do banco de dados fossem retiradas o que causaria interpretações enviesadas. A estimação da cobertura dos óbitos neonatais e os Índices de Informações Desconhecida das Variáveis dimensionaram o nível de sub-registro e sua influência entre as variáveis estudadas. Sendo assim, a utilização de técnicas como o *linkage*, a imputação e a estimação do grau de cobertura foram de extrema importância na avaliação do perfil epidemiológico dos óbitos neonatais nas caracterizações municipais da Paraíba.

A combinação dos procedimentos propostos demanda baixos custos operacionais e seus usos são relativamente simples de serem aplicados pelos gestores e técnicos dos Sistemas de Informações em Saúde. Além de que a aplicação desse percurso metodológico não se restringe à mortalidade neonatal. Ele pode ser estendido à mortalidade pós-neonatal, infantil ou para qualquer idade na infância desde que se tenham o número da DN vinculados nas DO's, ademais de variáveis outras que não as materno-infantis tratadas neste estudo para a recuperação de informações perdidas. Por sua vez, a técnica expressa para estimar a cobertura dos óbitos é de fácil operacionalização, desde que se disponha das informações requeridas. Nesse sentido, é fundamental que haja um esforço por parte dos gestores em saúde no sentido de minimizar os problemas de subnotificação e da qualidade das informações de óbitos infantis uma vez que o sub-registro e a ocorrência de dados faltantes são problemas comuns em investigações

científicas, especialmente na área de Saúde. Medidas que visam ampliar o acesso aos serviços médicos hospitalares devem ser implantadas, principalmente para populações que vivem em municípios rurais.

O arcabouço metodológico proposto neste estudo auxiliou no melhoramento das informações dos registros de óbitos neonatais e avaliou o grau de cobertura desses registros de forma pioneira. O *linkage* que é uma técnica de fácil utilização somada ao uso da imputação múltipla, permitiu solucionar o problema das informações ausentes ou ignoradas presentes nos registros de óbitos infantis. A inovação na aplicação do modelo multinível para esta temática na Paraíba, que enfatiza os diferenciais regionais das variáveis materno-infantis mostrou-se uma ferramenta bastante eficaz para o ajuste da variável *tipo de parto* como causa e consequência da mortalidade neonatal. Como sugestão de prosseguimento desta pesquisa, a inclusão de um terceiro nível para realização de modelagem hierárquica como, por exemplo, incorporar a variável ano de ocorrência do óbito neonatal, o município de residência da mãe, entre outras variáveis com objetivo de avaliar a ocorrência de outros fatores diferenciadores dos óbitos neonatais na Paraíba. Também é possível alinhar informações sobre óbitos maternos às informações de óbitos neonatais de forma que se avalie o risco do parto cesáreo na mortalidade materna.

É importante frisar que as variáveis selecionadas para este estudo compõem o conjunto de informações coletadas por meio da Declaração de Óbito neonatal e que a variável-chave para verificação da influência na mortalidade neonatal foi o *tipo de parto* e tendo como referência o parto cesáreo. A relação de causa e efeito entre as demais variáveis e o parto cesáreo não está perfeitamente caracterizada, sendo preferível o termo "possíveis determinantes" para as variáveis utilizadas na modelagem. Também é importante destacar que os resultados ora apresentados devem ser interpretados considerando algumas limitações próprias das estatísticas vitais, tais como o preenchimento muitas vezes inadequado das declarações de óbitos, dos endereços informados e o sub-registro de óbitos que foi da ordem de 19% e aqueles não registrados espera-se que siga o mesmo padrão de respostas das variáveis ausentes daqueles presentes.

Conforme discutido em outras seções deste estudo, diversos fatores contribuem para o desfecho do óbito neonatal, porém, aqui utilizaram-se informações disponíveis nas declarações de óbitos neonatais e que também são relevantes para explicar o efeito na escolha do tipo de parto e consequentemente na ocorrência do óbito neonatal. Esses "possíveis determinantes" permitiram identificar desigualdades e similaridades entre as caracterizações municipais da Paraíba. Embora algumas variáveis não apresentaram significância estatística, o princípio da

parcimônia é uma exigência da modelagem estatística, no sentido de que o número de parâmetros seja tão pequeno quanto possível.

Apesar dos avanços no tempo, ainda há um longo caminho a ser percorrido tanto na melhoria da qualidade das informações como na compreensão das condições de saúde neonatal nos espaços regionalizados. Sendo essa uma aplicação inédita que abordou técnicas para avaliação e melhoria da qualidade das informações e modelagem considerando níveis hierárquicos dos espaços regionalizados, sugere-se a aplicação dessa metodologia em outros espaços regionalizados, em outros tipos de informações, tais como socioeconômicas, financeiras e demográficas, de modo a ampliar e melhor difundir a sua utilização revertendo suas potencialidades em benefício da sociedade.

É preciso incrementar políticas públicas e privadas além de fortalecer as já existentes no intuito de reduzir o índice de cesarianas eletivas como a formação dos especialistas, muitas vezes treinados para encarar a gestação e o parto como doenças e não como processos fisiológicos, assim como, educar a sociedade e seus aspectos culturais, mitos e crenças relacionadas à mulher, empregar através de atividades educativas a difusão dos benefícios do parto vaginal e dos riscos da cesárea para a população em geral no intuito de fundamentar a decisão da mulher sobre a via de parto. Além disso, é fundamental a implementação de medidas assistenciais à mãe por parte dos gestores em saúde além da capacitação dos profissionais de saúde, qualificando-os a realizar o acompanhamento e o cuidado pré-natal, além do parto normal e intervir com cesariana nos casos realmente necessários, garantindo as boas práticas, a humanização do atendimento, bem como a promoção do parto e nascimento seguros.

PRODUÇÕES CIENTÍFICAS

Ao longo do seu desenvolvimento, este estudo gerou algumas publicações acadêmicas, das quais destacam-se:

- O Artigo "Qualidade dos Registros de Óbitos Infantis para Espaços Regionalizados: Um percurso metodológico" aceito para publicação na Revista Brasileira de Epidemiologia, classificada na área interdisciplinar com Qualis B1 pela CAPES;
- O Capítulo "Caracterização dos óbitos neonatais nos espaços Rurais e Urbanos da Paraíba" do livro "Saúde a serviço da vida 4", publicado pelo Instituto Medeiros de Educação Avançada em 2020, com ISBN: 978-85-53005-37-6;
- O trabalho completo "Completeness assessment of neonatal deaths in a region of Brazil: linkage and imputing missing data" publicado nos Proceedings in 6th Stochastic Modeling Techniques and Data Analysis International Conference with Demographics Workshop – SMTDA 2020, realizado em Barcelona, na Espanha em 2020, publicado por ISAST: International Society for the Advancement of Science and Technology;
- O trabalho completo "Avaliação da qualidade das estatísticas vitais e João Pessoa-PB através do método Linkage" do livro "Anais do IV e V Seminário Nacional População, Espaço e Ambiente (2017-2019) ", publicado pela Associação Brasileira de Estudos Populacionais ABEP em 2020, com ISBN: 978-65-991483-1-6;
- O Artigo "O paradoxo entre o parto cesáreo e o nível de instrução da mãe: Evidências para o município de João Pessoa – PB" submetido para Revista HOLOS, classificada na área interdisciplinar com Qualis B2 pela CAPES.

REFERÊNCIAS

ANS - AGÊNCIA NACIONAL DE SAÚDE SUPLEMENTAR. **Com nova fase, ANS expande Projeto Parto Adequado.** 2017. Disponível em:

http://www.ans.gov.br/aans/noticias-ans/qualidade-da-saude/3771-com-nova-fase-ans-expande-projeto-partoadequado. Acesso em Maio de 2019.

AGRANONIK, M.; JUNG, R.O. Qualidade dos sistemas de informações sobre nascidos vivos e sobre mortalidade no Rio Grande do Sul, Brasil, 2000 a 2014. **Ciência & Saúde Coletiva** 2019; vol.24, n.5, pp.1945-1958.

ALBERTO, S.A. **Fatores associados à mortalidade infantil em Moçambique, 1998 a 2003**. Dissertação (Mestrado em Demografia). Belo Horizonte: Centro de Desenvolvimento e Planejamento Regional, Universidade Federal das Minas Gerais, 2010.

ALCANTARA, L.L.M. Relação Das Características Obstétricas Maternas, óbito Neonatal E Modalidade De Parto No Brasil, 2012-2014. 2018.

ALMEIDA, M.C.S.; GOMES, C.M.S.; NASCIMENTO, L.F.C. Análise espacial da mortalidade neonatal no estado de São Paulo, 2006-2010. **Revista Paulista Pediatria**. 2014; 32(4):374-80.

ALMEIDA, R.R.F.A. **Diferenciais de fecundidade e desenvolvimento rural nas microrregiões da região Nordeste em 2010**. 2019. 100f. Dissertação (Mestrado em Demografia) - Centro de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do Norte, Natal, 2019.

ALMEIDA, W.S. et al. Captação de óbitos não informados ao Ministério da Saúde: pesquisa de busca ativa de óbitos em municípios brasileiros. **Revista Brasileira de Epidemiologia** 2017, v. 20, n. 02, pp. 200-211.

ALMEIDA, W.S.; SZWARCWALD, C.L. Mortalidade infantil nos municípios brasileiros: uma proposta de método de estimação. **Revista Brasileira Saúde Materno Infantil** 2014; 14(4):331-342.

AMERICAN COLLEGE OF OBSTETRICIANS AND GYNECOLOGISTS. El parto electivo antes de las 39 semanas [Internet]. 2013 [acesso em: 27 mai. 2019]. Disponível em: https://www.acog.org/Patients/Search-Patient-Education-Pamphlets-Spanish/Files/El-parto-electivo-antes-de-las-39-semanas.

ARAUJO FILHO, A.C.A.; et al. Aspectos epidemiológicos da mortalidade neonatal em capital do nordeste do Brasil. **Revista Cuidarte**, v. 8, n. 3, p. 1767-1776, 2017.

ARAÚJO, K.R.D.S. et al. Estudo sociodemográfico e obstétrico do parto cesariano em uma maternidade pública. **Rev. G&S** [Internet]. 1 [citado 15° de outubro de 2020];0(supl.): 2016. Pág. 949-962.

- ARAÚJO, P.H.F. **Regressão logística multinível: um estudo sobre o consumo de álcool e inalantes entre crianças e adolescentes**. 2017. 34 f., il. Trabalho de Conclusão de Curso (Bacharelado em Estatística) —Universidade de Brasília, Brasília, 2017.
- BALBI, B.; CARVALHAES, M.A.B.L.; PARADA, C.M.G.L.P. Tendência temporal do nascimento pré-termo e de seus determinantes em uma década. **Ciência & Saúde Coletiva.** 2016; 21(1): 233-41.
- BARBOSA, D.C.M. **Fatores associados com altas taxas de cesáreas na coorte de nascimentos de Ribeirão Preto em 2010: projeto BRISA. 2016**. Tese (Doutorado em Saúde da Criança e do Adolescente) Faculdade de Medicina de Ribeirão Preto, University of São Paulo, Ribeirão Preto, 2016. doi:10.11606/T.17.2017.tde-29032017-102707. Acesso em: 2020-10-15.
- BARBOSA, T.A.G.S. **Determinantes da mortalidade infantil em municípios do Vale do Jequitinhonha, Minas Gerais** [Dissertação]. Belo Horizonte (MG): Universidade Federal de Minas Gerais; 2012.
- BARBUSCIA, D.M.; RODRIGUES-JÚNIOR, A.L. Completude da informação nas Declarações de Nascido Vivo e nas Declarações de Óbito, neonatal precoce e fetal, da região de Ribeirão Preto, São Paulo, Brasil, 2000-2007. **Cadernos Saúde Pública**. 2011;27(6):1192-200.
- BARRETO, I.C. et al. Morte neonatal: incompletude das estatísticas vitais. **Revista Brasileira de Pesquisa em Saúde** 2018; 19. 64-72.
- BARRETO, X.; CORREIA, J.P.; CUNHA, O. [homepage on the Internet]. Mortalidade infantil em Portugal: evolução dos indicadores e factores associados de 1988 a 2008. Lisboa: Fundação Francisco Manuel dos Santos; 2014.
- BARROS, F.C. et al. Cesarean sections in Brazil: will they ever stop increasing? **Revista Panamericana de Salud Pública**. 2015; 38(3): 217-25.
- BATISTA FILHO, M.; RISSIN, A. A OMS e a epidemia de cesarianas. **Revista Brasileira de Saúde Materno Infantil.** [online]. 2018, vol.18, n.1 [cited 2020-07-25], pp.3-4.
- BERHAN, Y.; BERHAN, A. A meta-analysis of selected maternal and fetal factors for perinatal mortality. **Ethiopian Journal of Health Science.** 2014 (suppl. 24):55-68.
- BÉTRAN, A.P.; YE, J.; MOLLER, A.B.; ZHANG, J.; GÜLMEZOGLU, A.M.; TORLONI, M.R. the increasing trend in caesarean section rates: global, regional and national estimates: 1990-2014. **PLoS One.** 2016;11(2):e0148343.
- BONFERRONI, C. E. **Teoria statistica delle classi e calcolo delle probabilità**, Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commerciali di Firenze, 1936.
- BRASIL. DATASUS. Departamento de Informática do SUS. Sistemas e Aplicativos. Disponível em: http://datasus.saude.gov.br/sistemas-e-aplicativos. Acesso em: março de 2019.

BRASIL. Instituto de Pesquisa Econômica Aplicada. Objetivos de Desenvolvimento do Milênio. Relatório Nacional de Acompanhamento. Brasília, DF, IPEA, 2014.

BRASIL. Ministério da Saúde. Departamento de Informática do SUS. Informações de Saúde. Sistemas Epidemiológicos. 2017. Disponível em: http://www2.datasus.gov.br/DATASUS/index.php?area=0203. Acesso em: 16/04/2019.

BRASIL. Ministério da Saúde. Manual de vigilância do óbito Infantil e Fetal do Comitê de Prevenção do Óbito Infantil e Fetal. Brasília, 2. Ed., 2009.

BRASIL. Ministério da Saúde. Manual do Ministério. Secretaria de Vigilância em Saúde. Departamento de Análise de Situação de Saúde. Manual de instruções para o preenchimento da declaração de óbito. Brasília: Ministério da Saúde; 2011a.

BRASIL. Ministério da Saúde. Manual do Ministério. Secretaria de Vigilância em Saúde. Departamento de Análise de Situação de Saúde. Manual de Instruções para o preenchimento da declaração de nascido vivo. Brasília: Ministério da Saúde; 2011b.

BRASIL. Ministério da Saúde. Portaria nº 1.459, de 24 de junho de 2011. Institui, no âmbito do Sistema Único de Saúde - SUS, a **Rede Cegonha**. Diário Oficial da União 2011; 27 jun.

BRASIL. Ministério da Saúde. Secretaria de Atenção à Saúde. Departamento de Regulação, Avaliação e Controle. Sistemas de Informação da Atenção à Saúde: Contextos Históricos, Avanços e Perspectivas no SUS/Organização Pan-Americana da Saúde — Brasília, 2015. 166p.

BRASIL. Ministério da Saúde. Secretaria de Vigilância em Saúde. Departamento de Vigilância Epidemiológica. Doenças Infecciosas e Parasitárias: Guia de Bolso. 8. ed., Brasília, 2010.

BRASIL. Ministério da Saúde. Secretaria de Vigilância em Saúde. Guia de vigilância epidemiológica. Brasília: Ministério da Saúde, 6ª ed, 2005. 816 p.

BRASIL. Ministério da Saúde. Secretaria de Vigilância em Saúde. Saúde Brasil 2011: uma análise da situação de saúde e a vigilância da saúde da mulher. Brasília: Ministério da Saúde; 2012.

BRASIL. Ministério da Saúde. Sistema de Informações sobre Mortalidade – SIM. Brasília: Ministério da Saúde; 2020.

BRASIL. Ministério da Saúde. Sistema de Informações sobre Nascidos Vivos – SINASC. Brasília: Ministério da Saúde; 2017.

BRUM, C.A. **Mortalidade infantil no município de Novo Hamburgo-RS: fatores associados e causas cardiovasculares**. Dissertação (Mestrado) — Instituto de Cardiologia / Fundação Universitária de Cardiologia — Programa de Pós-Graduação em Ciências da Saúde: Cardiologia; Porto Alegre, 2013.

- BRYK, A.S.; RAUDENBUSH, S.W. (1992). Advanced qualitative techniques in the social sciences, 1. Hierarchical linear models: Applications and data analysis methods. Thousand Oaks, CA, US: Sage Publications, Inc.
- CABRAL, I.C. et al. Mortalidade infantil: correlação entre indicadores de entes federativos nos anos de 2007 a 2011. **Revista de Enfermagem UFPE** (online) [Internet]. 2013
- CAETANO, S.F.; MORAES VANDERLEI, L.C.; FRIAS, P.G. Avaliação da completitude dos instrumentos de investigação do óbito infantil no município de Arapiraca, Alagoas. **Cadernos de Saúde Coletiva.** 2013; 21(3):309-317.
- CAMARGO, J.R.; KENNETH, R.; COELI, C.M. Reclink: aplicativo para o relacionamento de bases de dados, implementando o método probabilistic record linkage. **Cadernos de Saúde Pública** [online]. 2000, vol.16, n.2, pp.439-447.
- CARETI, C.M.; SCARPELINI, A.H.P.; FURTADO, M.C.C. Perfil da mortalidade infantil a partir da investigação de óbitos. **Revista Eletrônica de Enfermagem.** [Internet]. 2014; 16(2):352-60.
- COELHO, D.D.R. et al. Gravidez e maternidade tardia: sentimentos e vivências de mulheres em uma unidade de pré-natal de alto risco em barreiras, Bahia. **Hígia Revista de Ciências da Saúde do Oeste Baiano** 2017; 2(1):1-19.
- CONSELHO FEDERAL DE MEDICINA (CFM). Resolução nº 2.144, de 17 de março de 2016. Art. 2º para garantir a segurança do feto, a cesariana a pedido da gestante, nas situações de risco habitual, somente poderá ser realizada a partir da 39ª semana de gestação, devendo haver o registro em prontuário. Diário Oficial da União 2016; 22 jun.
- CORDEIRO, G.M.; DEMÉTRIO, C.G.B. **Modelos lineares generalizados e extensões**. Piracicaba: USP, 2008.
- CORREIA, L.O.S.; PADILHA, B.M.; VASCONCELOS, S.M.L. Métodos para avaliar a completitude dos dados dos sistemas de informação em saúde do Brasil: uma revisão sistemática. **Ciência & Saúde Coletiva** [online]. 2014, vol.19, n.11, pp.4467-4478.
- COUTINHO, T.D.F.; SANTOS, C.S.A.; PAES, N.A.; SILVA, A.B. Avaliação da qualidade das estatísticas vitais em João Pessoa-PB através do método linkage. **Anais...**, p. 1-10, 2019.
- DAMIAN, A.; WATERKEMPER, R.; PALUDO, C.A. Perfil de neonatos internados em unidade de tratamento intensivo neonatal: estudo transversal. **Arquivos de Ciências da Saúde**, v. 23, n. 2, p. 100-105, 2016.
- DANIEL, W.W.; CROSS, C.L. Biostatistics: basic concepts and methodology for the health sciences. New York: John Wiley & Sons, 2010.
- DANTAS, U.I.B. **Sistema de Informação na atenção básica: ferramenta de apoio a decisão na gerência da estratégia de Saúde da Família**. 2014. 89 f. Dissertação (Mestrado em Enfermagem) Universidade Federal da Paraíba, João Pessoa, 2014.

DE JESUS, G.R.; et al. Understanding and managing pregnancy in patients with lupus. **Autoimmune diseases**, v. 2015, 2015.

DEMITTO, M.O.; et al. Gestação de alto risco e fatores associados ao óbito neonatal. **Revista da Escola de Enfermagem da USP** [online]. 2017, vol.51, e03208. Epub Apr 03, 2017. ISSN 1980-220X.

DOMBROWSKI, J.G.A. et al. Effectiveness of the Live Births Information System in the Far-Western Brazilian Amazon. Ciência & Saúde Coletiva, 2015; 20(4), 1245-1254.

DOMINGUES, R.M.S.M. et al. Processo de decisão pelo tipo de parto no Brasil: da preferência inicial das mulheres à via de parto final. **Cadernos de Saúde Pública**, Rio de Janeiro, 2014; (30): 101-116.

DUARTE, J.L.M.B.; MENDONÇA, G.A.S. Factors associated with neonatal mortality among very low birthweight newborns in four maternity hospitals in the city of Rio de Janeiro, Brazil. **Cadernos de Saúde Pública** 2005; 21(1):181-191.

DUNCAN, C.; JONES, K.; MOON, G. (1998). Context, Composition and heterogeneity: using multilevel models in health research. **Social Science & Medicine** 46: 97-117.

DUNN, H.L. Record linkage. American Journal of Public Health 1946; 36:1412-6.

ENDERS, C.K. (2010). Applied missing data analysis. New York: Guilford Press.

ENGELS, J.M.; DIEHR, P. Imputation of missing longitudinal data: a comparison of methods. **Journal of Clinical Epidemiology**, 2003; 56(10):968-76.

ENTRINGER, A.P. et al. Impacto orçamentário do parto vaginal espontâneo e da cesariana eletiva sem indicação clínica no Brasil. **Revista Panamericana Salud Pública**. 2018;42:e116.

EUFRÁSIO, L.S. Prevalência e fatores associados ao parto cesárea no contexto regional brasileiro em mulheres de idade reprodutiva [tese]. Natal: Centro de Ciências da Saúde, Universidade Federal do Rio Grande do Norte: 2017.

EVANS, M.; HASTINGS, N.; PEACOCK, B. Distribuição triangular. **Distribuições estatísticas**, v. 3, p. 187-188, 2000.

FERLA, A.A.; CECIM, R.B.; ALBA, R.D. Information, education and health care work: Beyond evidence, collective intelligence. RECIIS - **Revista Eletrônica de Comunicaçã**, **Informação e Inovação em Saúde** [Internet]. 2012 Ago; 6(2): Sup. 3.

FERRÃO, M.E. (2003). **Introdução aos modelos de regressão multinível em educação**. Campinas: Komedi.

FERRARI, A.P.; CARVALHAES, M.A.B.L.; PARADA, C.M.G.L. Associação entre prénatal e parto na rede de saúde suplementar e cesárea eletiva. **Revista Brasileira de Epidemiologia.** [online]. 2016, vol.19, n.1, pp.75-88.

FERRARI, R.A.P. et al. Fatores determinantes da mortalidade neonatal em um município da região sul do Brasil. **Revista da Escola de Enfermagem da USP**. 2013; 47(3): 531-8.

FERRARI, R.A.P.; BERTOLOZZI, M.R. Postnatal mortality in Brazilian territory: a literature review. **Revista da Escola de Enfermagem da USP**. 2012;46(5):1207-14.

FERREIRA, M.D.M.; SANTOS, A.T.S; LUCIO, P.S. Energia Eólica: preenchimento de falhas para velocidade do vento sobre o Estado do Rio Grande do Norte. **Revista Renováveis, energias complementares**, 2017.

FIOCRUZ. Centro de Estudos Estratégicos da Fiocruz [Internet]. 2018 [citado em 29 de agosto de 2020]. Disponível em: http://cee.fiocruz.br/?q=Abrasco-alerta-para-o-aumento-damortalidade-infantil-e-materna-no-Brasil&qt-conteudosrelacionados=1

FRANÇA, E.; LANSKY, S. Mortalidade infantil neonatal no Brasil: situação, tendências e perspectivas. **Anais ABEP**, p. 1-29, 2016.

FREITAS, P.F.; ARAUJO, R.R. Prematuridade e fatores associados em Santa Catarina, Brasil: análise após alteração do campo idade gestacional na declaração de nascidos vivos. **Revista Brasileira de Saúde Materno Infantil**. Set-2015; v. 15, n. 3: p.309-316.

FREITAS, P.F.; SAVI, E.P. Desigualdades sociais nas complicações da cesariana: uma análise hierarquizada. **Cadernos de Saúde Pública**. 2011; 27(10): 2009-2020.

FRIAS, P.G. et al. Correção de informações vitais: estimação da mortalidade infantil, Brasil, 2000-2009. **Revista de Saúde Pública**, 2013 47(6), 1048-1058.

GAIVA, M.A.M.; FUJIMORI, E.; SATO, A.P.S. Fatores de risco maternos e infantis associados à mortalidade neonatal. **Texto & Contexto - Enfermagem**. 2016; 25(4): 2-9.

GARDOSI, J.; et al. Maternal and fetal risk factors for stillbirth: population based study. **BMJ**, v. 346, 2013.

GOLDSTEIN, H. (1995). Multilevel Statistical Models. London: Edward Arnold.

GOLDSTEIN, H. (2003). Multilevel statistical models. 3 ed. Arnold, London.

GRAHAM, J.W.; OLCHOWSKI, A.E.; GILREATH, T.D. How many imputations are really needed? Some practical clarifications of multiple imputation theory. **Prevention Science.** 2007 Sep;8(3):206-13. Epub 2007 Jun 5. PMID: 17549635.

GUIMARAES, R.M. et al. Fatores associados ao tipo de parto em hospitais públicos e privados no Brasil. **Revista Brasileira de Saúde Materno Infantil.** 2017; 17(3): 571-580.

GUROL-URGANCI, I. et al. Risk of placenta previa in second birth after first birth cesarean section: a population-based study and meta-analysis. **BMC Pregnancy Childbirth** 2011; 11:95.

HARRELL JR, F.E. Regression modeling strategies: with applications to linear models, logistic regression and survival analysis. New York: Springer-Verlag, 2001.

HECK, R.H.; THOMAS, S.L; TABATA, L.N. (2014). **Multilevel modeling of categorical outcomes using IBM SPSS (2nd edition)**. New York: Routledge.

HEIMERDINGER, A.P. Neoplasia de mama no Rio Grande do Sul: uma análise por modelos multiniveis, 2011. Dissertação (Mestrado em Modelagem Matemática). DeFEMDepartamento de Física, Estatística e Matemática. UNIJUÍ- Universidade Regional do Noroeste do Estado do Rio Grande do Sul, Ijuí/RS. 2011.

HOFELMANN, D.A. Tendência temporal de partos cesáreos no Brasil e suas Regiões: 1994 a 2009. **Epidemiologia Serviços de Saúde.** 2012; 21(4): 561-8.

HOSMER, D.; LEMESHOW, S. **Applied logistic regression**. New York: John Wiley & Sons, 1989.

HOX, J. J. (2010). **Multilevel analysis: techniques and applications**. Second Edition. Great Britain: Routledge.

HUANG, X. et al. Cesarean delivery for first pregnancy and neonatal morbidity and mortality in second pregnancy. **European Journal of Obstetrics & Gynecology and Reproductive Biology.** 2011; 158:204-8.

IBGE - Instituto Brasileiro de Geografia e Estatística, disponível no site: http://www.ibge.gov.br/, acesso em março de 2018.

IBGE. Classificação e caracterização dos espaços rurais e urbanos do Brasil : uma primeira aproximação / IBGE, Coordenação de Geografia. — Rio de Janeiro: IBGE, 2017. 84p.

IBGE. Pesquisa Nacional de Saúde: 2013: acesso e utilização dos serviços de saúde, acidentes e violências: Brasil, grandes regiões e unidades da federação Rio de Janeiro: IBGE; 2015.

IBGE: Sistemas de estatísticas vitais no Brasil: avanços, perspectivas e desafios / Antônio Tadeu Ribeiro de Oliveira, organizador - Rio de Janeiro : IBGE, Coordenação de População e Indicadores Sociais, 2018. 70 p.

INSA. **Sinopse do Censo Demográfico para o Semiárido Brasileiro**. Ministério da Ciência, Tecnologia e Inovação. Brasília: Instituto Nacional do Semiárido, 2015.

ISLAM, M. The Safe Motherhood Initiative and beyond. **Bull World Health Organ** [Internet]. 2007;85(10):733-820.

JIMÉNEZ-HERNÁNDEZ, D.L.; et al. Tasa de cesáreas por grupos de Robson en una institución de mediana complejidad de la ciudad de Bogotá, 2012-2014. **Revista Colombiana de Obstetricia y Ginecología**, v. 67, n. 2, p. 101-111, 2016.

JOFFE, E. et al. A benchmark comparison of deterministic and probabilistic methods for defining manual review datasets in duplicate records reconciliation. **Journal of the American Medidical Informatics Association.** 2014; 21:97-104.

- JOLLIVET, M. (1997), "Les metamorphoses d'un rural incertain". In M. Jollivet (dir.), Vers un rural postindustrial, Paris, **L'Harmattan**, pp. 351-371.
- KASSAR, S.B. et al. Determinants of neonatal death with emphasis on health care during pregnancy, childbirth and reproductive history. **Jornal de Pediatria (Rio de Janeiro)**. 2013;89(3):269-77.
- KAYSER, B. (1990), La Renaissance rurale, Paris, Armand Colin.
- KOLOLA, T. et al. Determinants of Neonatal Mortality in North Shoa Zone, Amhara Regional State, Ethiopia. **PLoS One**. 2016 Oct 14;11(10):e0164472. doi: 10.1371/journal.pone.0164472. PMID: 27741284; PMCID: PMC5065191.
- LAGES, A.M.S. **Parto por cesariana: consequências a curto e longo prazo. 2012**. 46p. Mestrado Integrado em Medicina (Mestre em Ginecologia e Obstetrícia) Faculdade de Medicina, Universidade do Porto, Porto, 2012.
- LANSKY, S. et al. Pesquisa Nascer no Brasil: perfil da mortalidade neonatal e avaliação da assistência à gestante e ao recém-nascido. **Cadernos de Saúde Pública**, 2014, 30(Suppl. 1), S192-S207.
- LIMA, C.R.A. et al. Revisão das dimensões de qualidade dos dados e métodos aplicados na avaliação dos sistemas de informação em saúde. **Cadernos de Saúde Pública** 2009; 25(10):2095-2109.
- LIMA, E.E.C.D.; QUEIROZ, B.L. Evolution of the deaths registry system in Brazil: associations with changes in the mortality profile, under-registration of death counts, and ill-defined causes of death. **Cadernos de Saúde Pública** 2014; 30(8): 1721-30.
- LIMA, E.F.A. et al. Fatores de risco para mortalidade neonatal no município de Serra, Espírito Santo. **Revista Brasileira de Enfermagem.** 2012;65(4):578-585.
- LIMA, J.C.; OLIVEIRA JÚNIOR, G.J.; TAKANO, O.A. (2016). Fatores associados à ocorrência de óbitos fetais em Cuiabá, Mato Grosso. **Revista Brasileira de Saúde Materno Infantil**, 16(3), 353-361.
- LIMA, L. C. Idade materna e mortalidade infantil: efeitos nulos, biológicos ou socioeconômicos? **Revista Brasileira de Estudos Populacionais**, São Paulo, v. 27, n. 1, p. 211-226, jun. 2010.
- LITTLE, R.J.A.; RUBIN, D.B. (2002). **Statistical analysis with missing data**. Hoboken, NJ: Wiley.
- LIU, L. Global, regional and national causes of child mortality in 2000-13, with projections to inform post 2015 priorities: an update systematic analysis. **Lancet** 2015; 385: 430-440.
- LONGO, L.A.F.B.; CAMPOS, M.B. Auto ou alter-declaração? Uma análise da informação de raça/cor nas pesquisas domiciliares. In: ENCONTRO NACIONAL DE ESTUDOS POPULACIONAIS, 15. **Anais.Caxambu: Abep,** 2006.

- LOURENÇO, E.C. et al. Variáveis de impacto na queda da mortalidade infantil no Estado de São Paulo, Brasil, no período de 1998 a 2008. **Ciência & Saúde Coletiva**, 2014, 19(7), 2055-2062.
- LUY, M. Causes of Male Excess Mortality: Insights from Cloistered Populations. **Population and Development Review**, (29)4: 647-676, Dec 2003.
- MADEIRO, A.; RUFINO, A.C.; SANTOS, A.O. Partos cesáreos no Piauí: tendência e fatores associados no período 2000-2011. **Epidemiologia e Serviços de Saúde**, v. 26, p. 81-90, 2017.
- MAIA, L.T.S.; SOUZA, W.V.; MENDES, A.C.G. A contribuição do linkage entre o SIM e SINASC para a melhoria das informações da mortalidade infantil em cinco cidades brasileiras. **Revista Brasoleira de Saúde Materno Infantil.** 2015;15(1):57-66.
- MAIA, L.T.S.; SOUZA, W.V.; MENDES, A.C.G. Diferenciais nos fatores de risco para a mortalidade infantil em cinco cidades brasileiras: um estudo de caso-controle com base no SIM e no SINASC. **Cadernos de Saúde Pública**. 2012;28(11):2163-76.
- MAIA, L.T.S. et al. Uso do linkage para a melhoria da completude do SIM e do SINASC nas capitais brasileiras. **Revista de Saúde Pública**, v. 51, p. 112, 2017.
- MAIA, M.B. Humanização do parto: políticas públicas, comportamento organizacional e ethos profissional. Rio de Janeiro: Editora Fiocruz; 2010.
- MALTA, D.C.; et al. Tendência temporal da prevalência de obesidade mórbida na população adulta brasileira entre os anos de 2006 e 2017. **Cadernos de Saúde Pública**, v. 35, p. e00223518, 2019.
- MARANHÃO, A.G.K. et al. Mortalidade infantil no Brasil: tendências, componentes e causas de morte no período de 2000 a 2010. In: Departamento de Análise de Situação de Saúde, Secretaria de Vigilância em Saúde, Ministério da Saúde, organizador. Saúde Brasil 2011: uma análise da situação de saúde e a vigilância da saúde da mulher. v. 1. Brasília: Ministério da Saúde; 2012. p. 163-82.
- MARIN, H.F. Sistemas de informação em saúde: considerações gerais. **Journal of Health Informatics** 2010; 2(1): 20-24.
- MARQUES, L.J.P.; OLIVEIRA. C.M.; BONFIM, C.V. Avaliação da completude e da concordância das variáveis dos Sistemas de Informações sobre Nascidos Vivos e sobre Mortalidade no Recife-PE, 2010-2012. **Epidemiologia e Serviços de Saúde** [online]. 2016, v. 25, n. 4, pp. 849-854.
- MATHIEU, N. (1998), "La notion de rural et les rapports ville-campagne en France". **Économie rurale**, 247, pp. 11-20.
- MCCULLAGH, P.; NELDER, J.A. (1989) **Generalized Linear Models**. 2nd Edition, Chapman and Hall, London.
- MEIRA, A.J. **A saúde dos mineiros em 2008 e 2009.** In: Análise de Situação de Saúde Minas Gerais. Secretaria de Estado de Saúde de Minas Gerais. Belo horizonte; 2010. p.11-16.

MELO-JORGE, H.; LAURENTI, R.; GOTLIEB, S.L. Análise da qualidade das estatísticas vitais brasileiras: a experiência de implantação do SIM e do SINASC. **Ciência & Saúde Coletiva**. 2007;12(3):643-54.

MENDES, A.C.G. et al. Uso da metodologia de relacionamento de bases de dados para qualificação da informação sobre mortalidade infantil nos municípios de Pernambuco. **Revista Brasileira de Saúde Materno Infantil.** 2012; 12(3):243-9.

MENDOZA-SASSI, R.A.; CESAR, J.A.; SILVA, P.R.; DENARDIN, G.; RODRIGUES, M.M. Risk factors for cesarean section by category of health service. **Revista de Saúde Pública**. 2010;44(1):80-9.

MIRANDA, C.; SILVA, H. Concepções da ruralidade contemporânea: as singularidades brasileiras. Instituto Interamericano de Cooperação para a Agricultura-IICA, 2013.

MONTEIRO, C.A. et al. A mortalidade. In: Monteiro, C.A. Saúde e nutrição das crianças de São Paulo. São Paulo, **HUCITEC/EDUSP**, 1988. p.143-58.

MOHAMOUD, Y.A.; KIRBY, R.S.; EHRENTHAL, D.B. Poverty, urban-rural classification and term infant mortality: a population-based multilevel analysis. **BMC Pregnancy Childbirth**. 2019;19(1):40.

MOSLEY, W.; CHEN, L. An analytical framework for the study of child survival in developing countries. **Bulletin World Health Organization 2003**; 81: 140–145.

MORAES, G.H.; DUARTE, E.C. Análise da concordância dos dados de mortalidade por dengue em dois sistemas nacionais de informação em saúde, Brasil, 2000-2005. **Cadernos de Saúde Pública** [online]. 2009, vol.25, n.11, pp.2354-2364.

MOREIRA, A.I.M.; SOUSA, P.R.M.; SARNO, F. Baixo peso ao nascer e seus fatores associados. **Einstein (São Paulo)**, v. 16, n. 4, 2018.

MOREIRA, K.F.A. et al. Perfil e evitabilidade de óbito neonatal em um município da Amazônia Legal. **Cogitare Enfermagem.** 2017; 22(2): e48950.

MOREIRA, M.D.S.; GAÍVA, M.A.M.; BITTENCOURT, R.M. Mortalidade Neonatal: Características assistenciais e biológicas dos recém-nascidos e de suas mães. **Cogitare Enfermagem**, [S.l.], v. 17, n. 1, mar. 2012.

MORMONT, M. "Le rural comme catégorie de lecture du social". In M. Jollivet, N. Eizner (dirs.), L'Europe et ses campagnes, Paris, **Presses de Sciences**, 1996, pp. 161-176.

NANDI, J.K. et al. Maternal morbidity in low risk nulliparous mother associated with cesarean delivery before labor and following induction labor. **International Journal of Recent Scientific Research.** 2015;6(7):5501-04.

OLIVEIRA, R.R.; et al. Fatores associados ao parto cesáreo nos sistemas público e privado de atenção à saúde. **Revista da Escola de Enfermagem da USP**, v. 50, n. 5, p. 733-740, 2016.

- OLIVEIRA, R.R. et al. The growing trend of moderate preterm births: an ecological study in one region of Brazil. **PLoS One** 2015; 10(11):e0141852.
- OLIVEIRA, R.R.C.; SILVA, D.K.F.; BONFIM, C. Mortalidade neonatal e evitabilidade: uma análise do perfil epidemiológico. **Revista de Enfermagem UERJ**. 2011; 19 (1): 114-20.
- OLIVEIRA, A.R. Fatores associados e indicações para a prática de cesariana: um estudo caso-controlo. **Revista Portuguesa de Medicina Geral e Familiar**, v. 29, n. 3, p. 151-159, 2013.
- OMS Organização Mundial da Saúde. **Levels and Trends in Child Mortality**. 2015a. Relatório Anual de Níveis e Tendências da Mortalidade Infantil 2015.
- OMS Organização Mundial da Saúde. Declaração da OMS sobre Taxas de Cesáreas [Internet]. 2015b [acesso em: 27 mai. 2019]. Disponível em: http://apps.who.int/iris/bitstream/10665/161442/3/WHO_RHR_15.02_por.pdf?ua=1&ua=1.
- ORGANIZAÇÃO DAS NAÇÕES UNIDAS (ONU). *T*ransformando Nosso Mundo: A Agenda 2030 para o Desenvolvimento Sustentável, 2015. [acessado 2020 Nov. 12] Disponível em: https://nacoesunidas.org/wp-content/uploads/2015/10/agenda2030-pt-br.pdf PACHECO VC, et al. As influências da raça/cor nos desfechos obstétricos e neonatais desfavoráveis. **Saúde em Debate**, v. 42, p. 125-137, 2018.
- PAES, L.; SOLER, Z. (2019). Nascer de cesárea em microrregião paulista: associação com características sociodemográficas. Sem título. **Enfermagem Brasil**. 18. 242. 10.33233/eb.v18i2.2814.
- PAES, N.A.; SANTOS, C.S.A.; COUTINHO, T.D.F. Qualidade dos Registros de Óbitos Infantis para Espaços Regionalizados: Um Percurso Metodológico. **Revista Brasileira de Epidemiologia** (Aceito para publicação). 2020.
- PAES, N.A.; SILVA, A.A.F.B. A Dinâmica da Fecundidade no Semiárido Brasileiro. **Brazilian Journal of Development**, v. 6, n. 10, p. 76424-76443, 2020.
- PAES, N.A. Demografia estatística dos eventos vitais: com exemplos baseados na experiência brasileira. João Pessoa: Editora do CCTA, 2018. 215p.
- PEDRAZA, D.F. Qualidade do Sistema de Informações sobre Nascidos Vivos (Sinasc): análise crítica da literatura. **Ciência & Saúde Coletiva** [online]. 2012, vol.17, n.10, pp.2729-2737.
- PEREIRA, M.U.L.; et al. Óbitos Neonatais no Município de São Luís: Causas Básicas e Fatores Associados ao Óbito Neonatal Precoce. **Revista de Pesquisa em Saúde**, v. 18, n. 1, 2018.
- PINTO, L.F.; FREITAS, M.P.S.; FIGUEIREDO, A.W.S. Sistemas Nacionais de Informação e levantamentos populacionais: algumas contribuições do Ministério da Saúde e do IBGE para a análise das capitais brasileiras nos últimos 30 anos. **Ciência & Saúde coletiva** [online]. 2018, vol.23, n.6, pp.1859-1870.

- RASADOR, S.; ABEGG, C. Fatores associados à via de parto em um município da região nordeste do Estado do Rio Grande do Sul, Brasil. **Revista Brasileira de Saúde Matero Infantil.**, Recife, v. 19, n. 4, p. 797-805, Dec. 2019.
- REIS, E. Estimativas de mortalidade infantil, aplicando o estimador Bayesiano empírico, nas causas neonatais de pós-neonatal, para o estado de Rondônia 2010. 2017. 35 f. Trabalho de Conclusão de Curso (Bacharel em Estatística) Fundação Universidade Federal de Rondônia, Ji-Paraná, 2017.
- RODRIGUES, J.F. O rural e o urbano no Brasil: uma proposta de metodologia de classificação dos municípios. **Análise Social** [online]. 2014, n.211, pp.430-456.
- RUBIN, D.B. Multiple imputation after 18+ years. **Journal of the American Statistical Association** 1996; 91:473-89.
- RUBIN, D.B. Multiple imputation for nonresponse in surveys. New York: Wiley; 1987.
- SAMPAIO NETO, A.M. **Perfil da Mortalidade neonatal na cidade de Manaus**. Trabalho de Conclusão de Curso. Graduação em Enfermagem. Universidade do Estado do Amazonas, Manaus, 2018.
- SANDERS, L.S.C.; et al. Mortalidade infantil: análise de fatores associados em uma capital do Nordeste brasileiro. **Cadernos de Saúde Coletiva**, v. 25, n. 1, p. 83-89, 2017.
- SANTANA, M.; AQUINO, R.; MEDINA, M.G. Effect of the Family Health Strategy on surveillance of infant mortality. **Revista de Saúde Pública** 2012; 46(1):59-67.
- SANTOS, H.G.D. et al. Agreement on underlying causes of infant death between original records and after investigation: analysis of two biennia in the years 2000. **Revista Brasileira de Epidemiologia** 2014; 17(2):313-322.
- SANTOS, I.S. et al. Óbitos infantis evitáveis nas coortes de nascimentos de Pelotas, Rio Grande do Sul, Brasil, de 1993 e 2004. **Cadernos de Saúde Pública**, Rio de Janeiro, 30(11):2331-2343, nov, 2014.
- SANTOS, P.C. Análise socioespacial dos nascimentos, óbitos neonatais e fetais ocorridos no município de São Paulo em 2010. [tese]. São Paulo: Faculdade de Saúde Pública da USP; 2016.
- SANTOS, S.L.D. et al. Utilização do método linkage na identificação dos fatores de risco associados à mortalidade infantil: revisão integrativa da literatura. **Ciência & Saúde Coletiva.** 2014; 19(7):2095-104.
- SANTOS, B.M.. Fatores associados ao diagnóstico de hipertensão arterial: uma aplicação de regressão logística multinível. 66 f. 2017. Trabalho de Conclusão de Curso (Bacharelado em Estatística) Universidade de Brasília, Brasília, 2017.
- SARDINHA, L.M.V. **Mortalidade infantil e fatores associados à atenção à saúde: estudo caso-controle no Distrito Federal (2007-2010)**. 2014. 181 f. Tese (Doutorado em Medicina Tropical) Faculdade de Medicina, Universidade de Brasília, Brasília, 2014.

- SCHAFER, J.L.; GRAHAM, J.W. Missing data: Our view of the state of the art. **Psychological Methods**, 2002, 7(2), 147-177.
- SCHAFER, J.L. Multiple imputation: a primer. **Statistical Methods in Medical Research** 1999; 8:3-15.
- SCHOEPS, D. et al. Representações sociais de médicos obstetras e neonatologistas sobre declaração de óbito fetal e neonatal precoce no município de São Paulo. **Revista Brasileira de Epidemiologia**, 2014, 17(1), 105-118.
- SETUMBA, M.J.; et al. Mortalidade em recém-nascidos de baixo peso ao nascer: limites e desafios para o acesso universal. **Portuguese Journal of Public Health**, v. 36, n. 2, p. 95-101, 2018.
- SILVA, B.A.; RECKZIEGEL, J.C.L.; SILVA, B.F. Mortalidade neonatal: investigações sobre fatores de risco, causas evitáveis e registros em saúde, **Revista Caribeña de Ciencias Sociales, Servicios Académicos Intercontinentales SL**,2018, issue 2018-06, June.
- SILVA, C.M.C.D. et al. Validade, confiabilidade e evitabilidade da causa básica dos óbitos neonatais ocorridos em unidade de cuidados intensivos da Rede Norte-Nordeste de Saúde Perinatal. **Cadernos de Saúde Pública**, 2013, 29(3), 547-556.
- SILVA, D.A. **Fatores contextuais do envelhecimento populacional no nordeste brasileiro**. 2016. 105f. Tese (Doutorado em Saúde Coletiva) Centro de Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Natal, 2016.
- SILVA, F.B. et al. Complicações Materno-Fetais de Gestações Gemelares. **Cadernos da Medicina-UNIFESO**, 2019, 2(1).
- SILVA JUNIOR, W. **Diferenciais regionais na mortalidade adulta por escolaridade no Brasil em 2010**. 2018. 110f. Dissertação (Mestrado em Demografia) Centro de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do Norte, Natal, 2018.
- SILVA, L.P. et al. Avaliação da qualidade dos dados do Sistema de Informações sobre Nascidos Vivos e do Sistema de Informações sobre Mortalidade no período neonatal, Espírito Santo, Brasil, de 2007 a 2009. **Ciência & Saúde Coletiva**,2014, 19(7), 2011-2020.
- SILVA, R.S. et al. Avaliação da completitude das variáveis do Sistema de Informações sobre Nascidos Vivos Sinasc nos Estados da região Nordeste do Brasil, 2000 e 2009. **Epidemiologia e Serviços de Saúde.** 2013;22(2):347-52.
- SILVA, V.L.S.; et al. Mortalidade infantil na cidade de Pelotas, estado do Rio Grande do Sul, Brasil, no período 2005-2008: uso da investigação de óbitos na análise das causas evitáveis. **Epidemiologia e Serviços de Saúde**, v. 21, n. 2, p. 265-274, 2012.
- SILVA, T.H.; FENSTERSEIFER, L.M. Prematuridade dos recém-nascidos em Porto Alegre e seus fatores associados. **Revista Brasileira De História & Ciências Sociais**, 2015, 7(13), 161–174.

SILVEIRA, L.S. Reclassificação racial e desigualdade: análise longitudinal de variações socieconômicas e regionais no Brasil entre 2008 e 2015. Tese (Doutorado em Sociologia) — Universidade Federal de Minas Gerais, Belo Horizonte, 2019.

SOARES, R.A.S. Modelo decisório espacial para a redução da Mortalidade Infantil: uma discussão no contexto da ruralidade na Paraíba. Tese de Doutorado – UFPB/CCEN, João Pessoa, 2019. 185f.: il.

SPOHR, F.A. **Distribuição de cesáreas em município de fronteira segundo a classificação de Robson. 2018**. 74 f. Dissertação (Mestrado em Saúde Pública em Região de Fronteira) - Universidade Estadual do Oeste do Paraná, Foz do Iguaçu, 2018.

STERNE, J.A. et al. Multiple Imputation for missing data in epidemiological and clinical research: potential and pitfalls. **BMJ**, 338:b2393, Junho. 2009.

STEVENS, A. Pareamento de registros/ SUS [CD-ROM]. São Paulo: Secretaria Municipal de Saúde; 2007.

SZWARCWALD, C.L. et al. Estimação da mortalidade infantil no Brasil: o que dizem as informações sobre óbitos e nascimentos do Ministério da Saúde? **Cadernos de Saúde Pública** 2002; 18:1725-36.

TAMAKI, E.M. et al. Metodologia de construção de um painel de indicadores para o monitoramento e a avaliação da gestão do SUS. **Ciência & Saúde Coletiva**, 2012.

TROMP, M. et al. Results from simulated data sets: probabilistic record linkage outperforms de - terministic record linkage. **Journal of Clinical Epidemiology** 2011; 64:565-72.

UCHIMURA, N.S.; et al. Corioamnionite: prevalência, fatores de risco e mortalidade neonatal. **Acta Scientiarum. Health Sciences**, v. 29, n. 2, p. 159-164, 2007.

UNICEF. Neonatal mortality rate. Banco de dados da UNICEF. 2015. Disponível em: https://data.unicef.org/topic/child-survival/neonatal-mortality/. Acesso em: 17 abril. 2019.

UNITED NATIONS MILLENNIUM DECLARATION. UN, 2000. Disponível em: http://www2.ohchr.org/english/law/millennium.htm

VERONEZE, R. (2011). **Tratamento de dados faltantes empregando biclusterização com imputação múltipla**. Dissertação de Mestrado em Engenharia Elétrica, Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação, Campinas.

VICTORA, C.G. et al. Maternal and child health in Brazil: progress and challenges. **Lancet**. 2011;377(9780):1863-76.

VIDOR, A.C.; FISHER, P.D.; BORDIN, R. Utilização dos sistemas de informação em saúde em municípios gaúchos de pequeno porte. **Revista de Saúde Pública** [Internet]. 2011; 45(1):24-30.

WORLD HEALTH ORGANIZATION (WHO). Appropriate technology for birth. **Lancet**. 1985 Aug;326(8452):436-7.

WORLD HEALTH ORGANIZATION (WHO). Neonatal mortality: trends 1990-2010. Geneva: WHO; 2011. Available

from: http://www.who.int/maternal_child_adolescent/topics/newborn/neonatal_mortality/en/

WORLD HEALTH ORGANIZATION (WHO). Born too soon: the global action report on preterm birth Geneva: WHO; 2012.

WORLD HEALTH ORGANIZATION (WHO)/ Fundo das Nações Unidas para a Infância (UNICEF). Protecting, promoting and supporting breastfeeding: the special role of maternity services. Joint WHO/UNICEF Statement. Geneva; 1989; American College of Obstetricians and Gynecologists. Breastfeeding: maternal and infant aspects: ACOG Educational Bulletin. **International Journal of Gynecology & Obstetrics**. 2011.v.74, pp.217-232.

XAVIER, I.M.; et al. **Vias de parto e suas repercussões neonatais; 2017**; Trabalho de Conclusão de Curso; (Graduação em Medicina) - Centro Universitário de Anápolis.

YE, J. et al. Association between rates of caesarean section and maternal and neonatal mortality in the 21st century: a worldwide population-based ecological study with longitudinal data. **BJOG: An International Journal of Obstetrics & Gynaecology.** 2016;123(5):745–53.

ZANINI, R.R. et al. Determinantes contextuais da mortalidade neonatal no Rio Grande do Sul por dois modelos de análise. **Revista de Saúde Pública**, 2011, 45(1), 79-89.

ZEWDIE, S.A.; ADJIWANOU, V. Multilevel analysis of infant mortality and its risk factors in South Africa. **International Journal of Population Studies**, 2017, 3(2): 43-56.

ZHOU, Y. et al. Maternal obesity, caesarean delivery and caesarean delivery on maternal request: a cohort analysis from China. **Pediatric and Perinatal Epidemiology.** 2015;29(3):232–40.

ANEXO 1 – Modelo da Declaração de Nascido Vivo

ź		República Federativa do Brasil Ministério da Saúde 1º VIA - SECRETARIA DE SAÚDE Declaração de Nascido Vivo
ascido		1 Nome do Recém-nascido
l Recém-n		Data e hora do nascimento 2 Data Hora 3 Sexo M - Masculino F - Feminino 1 - Ignorado
Hentificación do Recém-nascid		4 Peso ao nascer 5 Indice de Apgar Caso afirmativo, usar o bloco anomalia congênita? Caso afirmativo, usar o bloco anomalia congênita para descrevê-las 1 Sim 2 Não 9 Ignorado
-5		T Local da ocorrência Ignorado 8 Estabelecimento Código CNES 2 Outros estab. saúde 4 Outros 9
Tocal da ocorrência		9 Endereço da ocorrência, se fora do estab. ou da resid. da Mãe (rua, praça, avenida, etc) Número Complemento 10 CEP
o leso		11 Bairro/Distrito Código 12 Município de ocorrência Código 13 UF
Ī		14 Nome da Mãe 15 Cartão SUS
		I® Escolaridade (última série concluída) Nível O
si		13 Data nascimento da Mãe 13 Idade (anos) 20 Naturalidade da Mãe 21 Situação conjugal 22 Raça / Cor da Mãe 1 Solteira 4 Separada judicialmente/ 1 Branca 4 Parda 2 Casada 5 Unido estável 2 Preta 5 Indígena 3 Viúva 9 Ignorada 3 Amarela
		Residência da Mãe 23 Logradouro Número Complemento 24 CEP
		23 Bairro/Distrito Código Código Código 22 Município Código
آ		28 Nome do Pai
Ī		Gestações anteriores 30 Histórico gestacional ■ Nº gestações ■ Nº de partos vaginais ■ Nº de cesáreas ■ Nº de nascidos □ Nº de perdas fetais / abortos □ □ vaginais □ □ Nº de cesáreas □ Nº de nascidos □ Nº de perdas fetais / abortos □ □ Nº de perda
A Gestacão e parto		Gestação atual Idade Gestacional 31 Data da Ultima Menstruação (DUM) / / Gesérea de pré-natal de gestação en que iniciou o pré-natal gestação, se DUM Ignorada
		1 Exame Fisico 2 Outro método 9 Ignorado 99 Ignorado 9
Nomalia congenit		
· ·	mento	42 Data do preenchimento 43 Nome do responsável pelo preenchimento 44 Função 1 Médico 2 Enfermeiro 3 Parteira 4 Func. Cartório 5 Outros (descrever)
VII	Lieench	45 Tipo documento
/III §	ouo	48 Cartório Código 49 Registro 59 Data
,,,,	3	S1 Município
		ATENÇÃO: ESTE DOCUMENTO NÃO SUBSTITUI A CERTIDÃO DE NASCIMENTO O Registro de Nascimento é obrigatório por lei. Para registrar esta criança, o pai ou responsável deverá levar este documento ao cartório de registro civil. Versão 01/10 - 2ª Impressão 11/2010

ANEXO 2 – Modelo da Declaração de Óbito

			blica Federativa (Ministério da Sat VIA - SECRETARIA DE :	úde	De	claração	de Óbit	to				
- 1	1 Tipo		2 Data do óbito		Hora	3 Cartão SUS		_	4 Na	turalidade		
	1 F 6	etal ão Fetal							,	Município / UE	(se estrangeiro info	ormar Pais\
	5 Nom	e do Falecio	lo									
ção	6 Nom	e do Pai					7 Nome da	ı Mãe				
— Identificação	- Post	de manelon		- Dide de					110	- C- C'H-		
Iden		de nascim		Idade Anos completos	Menores de 1 ar Meses Dias	Horas Minutos	9 F-	- Masc. 1 2 2 3	taça/Cor Branca 4 P Preta 5 In Amarela	arda 1 S	asado 5 Un	parado judicialmente/ orciado ião estável
	0 S	l em escolarid undamental l	(1ª a 4ª Série) 4 S	fédio (antigo 2º gra superior incompleto superior completo		Série 14 0	cupação habitu nformar anterior,	al se aposentado	/ desemprega	ado)	Códig	go CBO 2002
.eg			l (5" a 8" Série) 5∭ S , praça, avenida, etc.)	apenor completo	3		Núm	nero i	Complemento	16 CEP		
E Residência	17 Bain	ro/Distrito		Código) 18	Município de res	idência			Código		19 UF
	20 Loca	ıl de ocorrêr	ncia do óbito	Ignorado	21 Estabelec	imento						
.ia	1 H 2 O		3 Domicilio 5 saúde 4 Via pública	Outros						'	código CNES	
E Ocorrência	22 Ende	ereço da oco	orrência, se fora do estabel	lecimento ou da r	esidência (ru	a, praça, avenida	ı, etc) Nüm	ero	Complemento	23 CEP		
000	24 Bain	ro/Distrito		Código	25	Município de oco	rrência			Código		26 UF
ano	PREEN 27 Idad (anos	e 28 Esc	EXCLUSIVO PARA ÓBIT olaridade (última série con	OS FETAIS E DI Icluída)	E MENORES	DE 1 ANO - INF	29 0	DBRE A MÃE cupação habitua nformar anterior, se	al e aposentada / c	desempregada)	Cádina (200 2002
due 1 a	(4.10.	0 <u></u> 0	iem escolaridade iundamental I (1ª a 4ª Sé		o (antigo 2º gr		Serie			,	Coalgo	CBO 2002
		2_F	undamental II (5ª a 8ª S	Série) 5 Supe	rior completo	9						
ae a	30 Núm Nasc viv	ero de filho idos Po os Po	s tidos (31) Nº de sema erdas fetais/ de gestaçã			Tipo de parto Uaginal	34 Morte e	em relação ao pa	Durante	3 Depois	9 🗆 1	gnorado
Fetal ou		i_ .		2 Du	pla ola e mais	2 Cesáreo	35 Peso ac				de Nascido Viv	
T.		gnorado 99[☐ Ignorado 99☐ Ignora	ado 9 Ign	orada	9 Ignorado	ASSISTÊNC		as	DIAGNÓS	TICO CONFIRM	IADO POR:
	37 A m	orte ocorreu		_		Ignorado	38 Recebeu ass			39 Necrópsia		indo i orc.
	1 □ Ni 2 □ Ni		3∭ No aborto 4∭ Até 42 dias após o parti			o parto Ignorado	_	_	☐ Ignorado	1 Sim	2 Não	9 Ignorado
óbito	40 CAU	ISAS DA MO				DIAGNÓSTICO	POR LINHA				Tempo aproxima entre o inicio da doença e a mort	ido
causas do	Doença o morte.	PARTE I Doença ou estado mórbido que causou diretamente a a								doença e a mort	e CID	
vans	Estados	S ANTECEI	existirem, que produziram a	b Devido ou	como conseq	uência de:				1		
9	lugar a ca	ausa básica.	i, mencionando-se em último	Devido ou	como conseq	uência de:						
Condições				Devido ou	como conseq	uência de:						
So			-60	_ d								
	Outras o para a m	orte, e que n	nificativas que contribuiram ão entraram, porém, na									
	cadeia a	cima.										
	41 Nom	e do Médico				42 CRM	1	bito atestado por Assistente 4 Substituto 5	SVO Outro	Município e UF	do SVO ou IML	UF
Nédico	45 Meio	de contato	(telefone, fax, e-mail, etc.)	46 Data	do atestado			IML				
2												
	PROVÁ 48 Tipo		UNSTÂNCIAS DE MORTE			Ignorado 49 Ac	idente do trabalho	iológico) o Ignorado 5	Fonte da inf			Ignorado
mas		1 Acide		3 Homicidio	0		Sim Não	9	1 Boletim de 2 Hospital	e Ocorrência	3 Familia 4 Outra	9
iiv externas	51 Desc	crição sumá	ria do evento, incluindo o t	tipo de local de o	corrência							
Causas												
ပိ	52 Logr	adouro (rua	A FOR EM VIA PÚBLICA, , praça, avenida, etc.)	ANOTAR O EN	DEREÇO					Ι,	Código	
	53 Cart	ório				. 0	ódigo	54 Registro		55 Data		
Cartório												I I
Car	56 Mun	icipio										57 UF
. 0	58 Deci	arante				59 A	Testemunhas					
callo Médic						^						
0 =						-						
S/ P		1/10 - 2ª Impre				В						