

Universidade Federal da Paraíba Centro de Tecnologia

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA CIVIL E AMBIENTAL

- MESTRADO -

ANÁLISE ECONÔMICA DAS OPÇÕES DE BIOMETANIZAÇÃO, COMPOSTAGEM E RECICLAGEM PARA TRATAMENTO DE RESÍDUOS SÓLIDOS URBANOS NO BRASIL

Por

Matheus Vieira Carvalho

Dissertação de Mestrado apresentada à Universidade Federal da Paraíba para obtenção do grau de Mestre

Universidade Federal da Paraíba Centro de Tecnologia

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA CIVIL E AMBIENTAL

- MESTRADO -

ANÁLISE ECONÔMICA DAS OPÇÕES DE BIOMETANIZAÇÃO, COMPOSTAGEM E RECICLAGEM PARA TRATAMENTO DE RESÍDUOS SÓLIDOS URBANOS NO BRASIL

Dissertação submetida ao Programa de Pós-Graduação em Engenharia Civil e Ambiental da Universidade Federal da Paraíba, como parte dos requisitos para a obtenção do título de Mestre.

Matheus Vieira Carvalho

Orientador: Prof. Dr. Heber Pimentel Gomes

Coorientador: Prof. Dr. Gilson Barbosa Athayde Júnior

Catalogação na publicação Seção de Catalogação e Classificação

C331a Carvalho, Matheus Vieira.

Análise econômica das opções de biometanização, compostagem e reciclagem para tratamento de Resíduos Sólidos Urbanos no Brasil / Matheus Vieira Carvalho. -João Pessoa, 2021. 109 f. : il.

Orientação: Heber Pimentel Gomes. Coorientação: Gilson Barbosa Athayde Júnior. Dissertação (Mestrado) - UFPB/CT.

1. Resíduos Sólidos Urbanos (RSU). 2. Análise econômica. 3. Biometanização. 4. Compostagem. 5. Reciclagem. I. Gomes, Heber Pimentel. II. Athayde Júnior, Gilson Barbosa. III. Título.

UFPB/BC

CDU 628.312.1(043)

MATHEUS VIEIRA CARVALHO

ANÁLISE ECONÔMICA DAS OPÇÕES DE BIOMETANIZAÇÃO, COMPOSTAGEM E RECICLAGEM PARA TRATAMENTO DE RESÍDUOS SÓLIDOS URBANOS NO BRASIL

Dissertação aprovada em 25/03/2021 como requisito para a obtenção do título de Mestre em Engenharia Civil e Ambiental do Centro de Tecnologia da Universidade Federal da Paraíba.

BANCA EXAMINADORA:

Prof. Dr. Heber Pimentel Gomes – UFPB

(Orientador)

Prof. Dr. Gilson Barbosa Athayde Júnior – UFPB

(Coorientador)

Prof. Dr. Joácio Morais de Araújo Júnior – UFPB

(Examinador Interno)

Prof. Dr. Saulo de Tarso Marques Bezerra – UFPE

(Examinador Externo)

Dedico esta Dissertação de Mestrado, primeiramente, aos meus pais, Fernando e Terezinha, que sempre me incentivaram a estudar e buscar uma carreira acadêmica e profissional brilhante. Dedico à memória de meus queridos avós paternos, Manoel e Isabel, que faleceram durante meu curso de Mestrado. Também dedico à memória de meu tio José Plínio, vítima da covid-19.

AGRADECIMENTOS

Aos meus pais Fernando Luís Vieira de Sousa e Terezinha de Jesus Carvalho de Oliveira Vieira, que, desde minha infância, souberam-me educar, ensinar e orientar para os desafios da vida, sempre incentivando a estudar, fazendo o possível para que eu e minha irmã tivessem o conforto necessário para o nosso desenvolvimento intelectual. Agradeço em especial à minha mãe, pelo seu tempo dedicado às correções de minhas atividades escolares na infância e na adolescência, além das horas dedicadas a me explicar diversos assuntos de estudos e da vida humana.

A todos os meus familiares que sempre ajudaram meus pais em momentos de dificuldade, em especial a minha tia Maria de Nazaré, que foi como uma espécie de segunda mãe para meu pai quando ele saiu do interior da Paraíba, e a minha tia Maria de Lourdes, que sempre nos ajudou em momentos de dificuldade. Também destaco os papéis de meus avós paternos Isabel, *in memoriam*, e Manoel, *in memoriam*, e maternos Maria do Carmo e Daniel, *in memoriam*, agradecendo-os por darem boa educação aos meus pais e tios, construindo famílias baseadas em princípios éticos, mesmo com todas as dificuldades financeiras que enfrentaram ao longo de suas vidas bastante humildes.

Aos meus amigos de graduação pelos estudos em grupo ao longo de meu curso de Engenharia Civil na Universidade Federal da Paraíba. Às minhas amigas da pós-graduação de Mestrado Ana Cecília, Gracielle Souza, Graziela Freitas e Iana Chaiene, pelas reuniões em grupos de estudos e compartilhamento de dúvidas e conhecimentos.

Aos professores Joácio Morais, examinador interno desta Dissertação de Mestrado, Cláudia Coutinho e Elisângela Rocha que, durante as disciplinas cursadas, auxiliaram-me com a aquisição de conhecimentos e artigos científicos relevantes afins com minha área de estudo. Ao meu primeiro orientador deste Mestrado, hoje coorientador, Gilson Barbosa, o qual conheço desde o ano de 2013, durante a minha graduação em Engenharia Civil na Universidade Federal da Paraíba, desenvolvendo sempre pesquisas e artigos científicos ao longo de sete anos. Reconheço sua fundamental importância em minha carreira acadêmica e o destaco por ser um excelente e exemplar docente da instituição. Ao meu orientador Heber Pimentel, por ter aceitado o desafio de me orientar neste meu novo projeto, devido à mudança de tema da Dissertação, ocorrida em julho de 2020 por causa da necessidade do isolamento social provocado pela pandemia de coronavírus. Ao professor Saulo de Tarso, examinador externo, bem como à toda banca examinadora, por terem sugerido as devidas correções a serem feitas para a entrega final à biblioteca universitária desta Dissertação.

RESUMO

CARVALHO, Matheus Vieira. *Análise econômica das opções de biometanização, compostagem e reciclagem para tratamento de Resíduos Sólidos Urbanos no Brasil.* 2021. 109 f. Dissertação de Mestrado (Programa de Pós-Graduação em Engenharia Civil e Ambiental) – Universidade Federal da Paraíba, João Pessoa, 2021.

Esta Dissertação de Mestrado se propôs a analisar economicamente as opções de biometanização e compostagem para tratamento de Resíduos Sólidos Urbanos (RSU) putrescíveis gerados em todo o Brasil e a opção da reciclagem para reaproveitamento de outros RSU produzidos em nosso território nacional. Para o desenvolvimento deste trabalho acadêmico, primeiramente, angariou-se os dados da ABRELPE sobre a situação dos RSU no Brasil, realizando, em seguida, projeções futuras dos parâmetros alusivos aos RSU pelo método da regressão linear. Logo após, estimou-se um valor médio de taxas de juros e inflação para anos futuros de nosso país, além de se encontrar uma composição gravimétrica média dos RSU produzidos no Brasil. Ainda na metodologia, buscou-se calcular os estimadores dos processos de tratamento de RSU por tonelada de resíduo, utilizando-se novamente do método da regressão linear, a fim de usá-los durante o procedimento das análises econômicas, que foram realizadas para os cenários de 5, 10, 15 e 20 anos de tempo de vida útil de projeto. Como resultado, concluiu-se que os processos de tratamento de RSU putrescíveis por biometanização são mais viáveis economicamente que a compostagem. Já para a reciclagem, apontou-se que, para os tempos de vida útil de 5 e 10 anos, os RSU das subcategorias de 'Plástico Rígido / Duro', 'Plástico Maleável / Mole', 'Papel' e 'Alumínio' têm exploração economicamente viável; enquanto que, para os tempos de 15 e 20 anos de vida útil de projeto, há a inclusão da subcategoria 'Papelão' na lista de RSU com viabilidade econômica para a reciclagem.

PALAVRAS-CHAVE: Resíduos Sólidos Urbanos (RSU); Análise econômica; Biometanização; Compostagem; Reciclagem.

ABSTRACT

CARVALHO, Matheus Vieira. *Economic analysis of biomethanization, composting and recycling options for the treatment of Municipal Solid Waste in Brazil*. 2021. 109 p. Master's Dissertation (Postgraduate Program in Civil and Environmental Engineering) – Federal University of Paraíba, João Pessoa, 2021.

This Master's Dissertation proposed to economically analyse the biomethanization and composting options for the treatment of putrescible Municipal Solid Waste (MSW) generated throughout Brazil and the option of recycling to reuse other MSW produced in our national territory. For the development of this academic work, firstly ABRELPE data about MSW in Brazil was obtained, then future projections of the parameters associated to MSW have done by the linear regression method. Soon after, an average value of interest rates and inflation was estimated for future years in our country, in addition to finding an average gravimetric composition of the MSW produced in Brazil. In the methodology, it was still sought to calculate the estimators of the MSW treatment processes per ton of waste, using again the linear regression method, to use them during the economic analysis procedure, which were performed for the scenarios of 5, 10, 15 and 20 years of project lifetime. As a result, it was concluded that the putrescible MSW treatment processes by biomethanization are more economically viable than composting. For recycling, this Master's Dissertation pointed out that, for the project lifetimes of 5 and 10 years, the MSW of the subcategories of 'Rigid / Hard Plastic', 'Malleable / Flexible Plastic', 'Paper' and 'Aluminium' are economically viable for exploitation, already for 15 and 20 years of project lifetimes, there is the inclusion of the subcategory 'Board' in the list of MSW with economic viability for recycling.

KEYWORDS: Municipal Solid Waste (MSW); Economic analysis; Biomethanization; Composting; Recycling.

SUMÁRIO

1	INTRODUÇÃO	13
	1.1 OBJETIVOS	15
	1.1.1 OBJETIVO GERAL	15
	1.1.2 OBJETIVOS ESPECÍFICOS	15
	1.2 JUSTIFICATIVA	16
2	REFERENCIAL TEÓRICO	17
	2.1 GERAÇÃO PER CAPITA E CARACTERIZAÇÃO DE RSU	17
	2.2 TRATAMENTO DE RESÍDUOS SÓLIDOS ORGÂNICOS	23
	2.2.1 BIOMETANIZAÇÃO	24
	2.2.2 COMPOSTAGEM	28
	2.3 RECICLAGEM	31
3	ÁREA DE ESTUDO	33
4	METODOLOGIA	34
	4.1 PROJEÇÕES RELACIONADAS AOS RSU NO BRASIL	34
	4.2 AUMENTO DE TAXAS, INFLAÇÃO E JUROS MÉDIOS ANUAIS	
	4.3 COMPOSIÇÃO GRAVIMÉTRICA MÉDIA DOS MUNICÍPIOS	36
	4.4 ESTIMADORES DOS PROCESSOS DE TRATAMENTO	
	4.4.1 BIOMETANIZAÇÃO	
	4.4.2 COMPOSTAGEM	
	4.4.3 RECICLAGEM	45
	4.5 ANÁLISES ECONÔMICAS	47
	4.5.1 COLETA DE RSU E DEMAIS SERVIÇOS DE LIMPEZA URBANA	
	4.5.2 BIOMETANIZAÇÃO	
	4.5.3 COMPOSTAGEM	52
	4.5.4 COMPARAÇÃO ENTRE BIOMETANIZAÇÃO E COMPOSTAGEM	56
	4.5.5 RECICLAGEM	57
5	RESULTADOS	59
	5.1 PROJEÇÕES RELACIONADAS AOS RSU	59
	5.1.1 REGIÃO NORTE	59
	5.1.2 REGIÃO NORDESTE	62
	5.1.3 REGIÃO CENTRO-OESTE	
	5.1.4 REGIÃO SUDESTE	
	5.1.5 REGIÃO SUL	70
	5.1.6 BRASIL	72
	5.2 ANÁLISES ECONÔMICAS	77

7	REFERÊ	NCIAS BIBLIOGRÁFICAS 10	02
6	CONCLU	USÕES 10	01
	5.3 DISC	CUSSÕES	9
	5.2.5	RECICLAGEM9	90
	5.2.4	COMPARAÇÃO ENTRE BIOMETANIZAÇÃO E COMPOSTAGEM 8	88
	5.2.3	COMPOSTAGEM 8	33
	5.2.2	BIOMETANIZAÇÃO	78
	5.2.1	COLETA DE RSU E DEMAIS SERVIÇOS DE LIMPEZA URBANA 7	77

LISTA DE FIGURAS

Figura 01 – Seção transversal do biodigestor de modelo tubular de operação contínua 26
Figura 02 – Esquema de geração de energia por biometanização de dejetos de animais 27
Figura 03 – Esquema geral do processo de compostagem
Figura 04 – Gráfico da geração de RSU (kg/hab./dia) na Região Norte (Ano 0 = 2011). 60
Figura 05 – Gráfico dos recursos aplicados na coleta de RSU por unidade de massa (R\$/t) na Região Norte (Ano 0 = 2011).
Figura 06 – Gráfico dos recursos aplicados per capita nos demais serviços de limpeza urbana (R\$/mês/hab.) na Região Norte (Ano 0 = 2015)
Figura 07 – Gráfico da geração de RSU (kg/hab./dia) na Região Nordeste (Ano 0 = 2011). 63
Figura 08 – Gráfico dos recursos aplicados na coleta de RSU por unidade de massa (R\$/t) na Região Nordeste (Ano 0 = 2011).
Figura 09 – Gráfico dos recursos aplicados per capita nos demais serviços de limpeza urbana (R\$/mês/hab.) na Região Nordeste
Figura 10 – Gráfico da geração de RSU (kg/hab./dia) na Região Centro-Oeste
Figura 11 – Gráfico dos recursos aplicados na coleta de RSU por unidade de massa (R\$/t) na Região Centro-Oeste
Figura 12 – Gráfico dos recursos aplicados per capita nos demais serviços de limpeza urbana (R\$/mês/hab.) na Região Centro-Oeste
Figura 13 – Gráfico da geração de RSU (kg/hab./dia) na Região Sudeste (Ano 0 = 2011). 68
Figura 14 – Gráfico dos recursos aplicados na coleta de RSU por unidade de massa (R\$/t) na Região Sudeste (Ano 0 = 2011)
Figura 15 – Gráfico dos recursos aplicados per capita nos demais serviços de limpeza urbana (R\$/mês/hab.) na Região Sudeste (Ano 0 = 2011)
Figura 16 – Gráfico da geração de RSU (kg/hab./dia) na Região Sul (Ano 0 = 2015) 70
Figura 17 – Gráfico dos recursos aplicados na coleta de RSU por unidade de massa (R\$/t) na Região Sul (Ano 0 = 2011).
Figura 18 – Gráfico dos recursos aplicados per capita nos demais serviços de limpeza urbana (R\$/mês/hab.) na Região Sul (Ano $0 = 2011$)
Figura 19 – Gráfico com a regressão linear dos custos iniciais de projeto por unidade de potência fornecida (R\$/kW) pelo tratamento de biometanização em função dos anos. 78
Figura 20 – Gráfico com a regressão linear dos custos anuais de projeto por unidade de potência fornecida (R\$/kW) pelo tratamento de biometanização em função dos anos. 79
Figura 21 – Gráfico com a regressão linear dos custos iniciais de projeto por geração anual de resíduos sólidos compostáveis (R\$/t/ano) em função dos anos
Figura 22 – Gráfico com a regressão linear dos lucros líquidos do primeiro ano de projeto por geração anual de resíduos sólidos compostáveis (R\$/t/ano) em função dos anos 84
Figura 23 – Gráfico com a regressão linear dos lucros líquidos dos demais anos de projeto por geração anual de resíduos sólidos compostáveis (R\$/t/ano) em função dos anos 8/

LISTA DE TABELAS

Tabela 01 – Média de resíduos sólidos gerados por faixa populacional dos municípios	17
Tabela 02 – Composição dos RSU no Estado do Rio Grande do Sul	19
$Tabela\ 03-Composição\ gravim\'etrica\ dos\ RSU\ dos\ municípios\ da\ região\ sul\ de\ SC.\$	20
$Tabela\ 04-Composição\ gravim\'etrica\ dos\ RSU\ de\ dois\ bairros\ do\ munic\'ipio\ de\ Ja\'u.\$	20
Tabela 05 – Composição gravimétrica média dos RSD da cidade de Tandil (Argentina).	21
Tabela 06 – Geração média de vidro e plástico PET nos RSD da cidade de Tandil	21
Tabela 07 – Geração de RSU e PIB per capita de países da América Latina e Caribe	22
Tabela 08 – Geração per capita de RSU de alguns países e da América Latina e Caribe.	22
Tabela 09 – Geração per capita de RSU em regiões do planeta.	23
$Tabela\ 10-Tipos\ de\ informações\ angariadas\ sobre\ a\ situação\ dos\ RSU\ no\ Brasil.\$	34
$Tabela\ 11-Estudos-base\ para\ a\ determinação\ da\ composição\ gravimétrica\ média.\$	36
Tabela 12 – Categorias e subcategorias de RSU gerados no Brasil.	37
$Tabela\ 13-Dados\ coletados\ de\ estudos-base\ sobre\ biometanização\ (Parte\ I).\$	41
$Tabela\ 14-Dados\ coletados\ de\ estudos-base\ sobre\ biometanização\ (Parte\ II).\$	41
$Tabela\ 15-Dados\ coletados\ de\ estudos-base\ sobre\ biometanização\ (Parte\ III).\$	41
Tabela 16 – Dados coletados de estudos-base sobre compostagem.	43
Tabela 17 – Dados coletados de pesquisas de mercado de material reciclável	46
Tabela 18 – Custos da coleta seletiva em relação à coleta convencional	46
Tabela 19 – Dados angariados sobre a situação dos RSU na Região Norte	59
Tabela 20 – Projeções relacionadas à situação dos RSU na Região Norte	61
$Tabela\ 21-Dados\ angariados\ sobre\ a\ situação\ dos\ RSU\ na\ Região\ Nordeste.\$	62
Tabela 22 – Projeções relacionadas à situação dos RSU na Região Nordeste	64
$Tabela\ 23-Dados\ angariados\ sobre\ a\ situação\ dos\ RSU\ na\ Região\ Centro-Oeste.\ \dots\dots$	65
Tabela 24 – Projeções relacionadas à situação dos RSU na Região Centro-Oeste	67
$Tabela\ 25 - Dados\ angariados\ sobre\ a\ situação\ dos\ RSU\ na\ Região\ Sudeste.\$	67
Tabela 26 – Projeções relacionadas à situação dos RSU na Região Sudeste	69
Tabela 27 – Dados angariados sobre a situação dos RSU na Região Sul	70
Tabela 28 – Projeções relacionadas à situação dos RSU na Região Sul	72
Tabela 29 – Dados angariados sobre a situação dos RSU no Brasil	72
Tabela 30 – Projeções relacionadas à situação dos RSU no Brasil	73
$Tabela\ 31-Aumento\ m\'edio\ anual\ de\ taxas\ relacionadas\ aos\ RSU\ gerados\ no\ Brasil.\$	73
Tabela 32 – Taxas de juros, inflação e juros real no Brasil.	74
Tabela 33 – Caracterização dos RSU gerados em municípios brasileiros (Parte I)	74
Tabela 34 – Caracterização dos RSU gerados em municípios brasileiros (Parte II)	75

Tabela 35 – Caracterização dos RSU gerados em municípios brasileiros (Parte III)	75
Tabela 36 – Composição gravimétrica média estimada de RSU gerados no Brasil	76
Tabela 37 – Análises econômicas dos serviços de coleta de RSU e limpeza urbana	77
Tabela 38 – VP dos recursos aplicados em função do tempo de vida útil de projeto	78
Tabela 39 – Análises econômicas dos processos de tratamento por biometanização	80
Tabela 40 – Resumo dos resultados das análises econômicas da biometanização	81
Tabela 41 – Análises das viabilidades econômicas dos processos de biometanização	82
Tabela 42 – Resumo das análises das viabilidades econômicas da biometanização	83
Tabela 43 – Razões entre os lucros líquidos dos estudos-base de compostagem	86
Tabela 44 – Análises econômicas dos processos de tratamento por compostagem	86
Tabela 45 – Resumo dos resultados das análises econômicas da compostagem	88
Tabela 46 – Análise comparativa econômica entre a biometanização e a compostagem.	88
Tabela 47 – Dados para que a biometanização seja mais vantajosa que a compostagem.	90
Tabela 48 – Análise econômica da reciclagem de 'Plástico Rígido / Duro'	90
Tabela 49 – Análise econômica da reciclagem de 'Plástico Maleável / Mole'	91
Tabela 50 – Análise econômica da reciclagem de 'Papel'.	92
Tabela 51 – Análise econômica da reciclagem de 'Papelão'.	93
Tabela 52 – Análise econômica da reciclagem de 'Metais ferrosos'.	94
Tabela 53 – Análise econômica da reciclagem de 'Alumínio'.	95
Tabela 54 – Análise econômica da reciclagem de 'Vidro'.	96
Tabela 55 – VP dos processos de reciclagem de subcategorias de RSU reaproveitáveis.	97
Tabela 56 – VP dos processos de reciclagem das categorias de RSU reaproveitáveis	98
Tabela 57 – VP dos processos de reciclagem com viabilidade econômica	98
Tabela 58 – VP dos processos de reciclagem para todos os RSU reaproveitáveis	98
Tabela 59 – VPL dos processos de tratamento de RSU gerados em território brasileiro	99
Tabela 60 – Comparação de benefícios máximos possíveis com despesas estimadas	99

LISTA DE ABREVIATURAS E SIGLAS

ABRELPE Associação Brasileira de Empresas de Limpeza Pública e Resíduos Especiais

ABNT Associação Brasileira de Normas Técnicas

ANEEL Agência Nacional de Energia Elétrica

CEMPRE Compromisso Empresarial para a Reciclagem

CH₄ Gás Metano

CIRSURES Consórcio Intermunicipal de Resíduos Sólidos Urbanos da Região Sul

CO₂ Gás Carbônico

ETE Estação(ões) de Tratamento de Esgotos

FVP Fator(es) de Valor(es) Presente(s)

IBGE Instituto Brasileiro de Geografia e Estatística

IPCA Índice Nacional de Preços ao Consumidor Amplo

IPCC Painel Intergovernamental sobre Mudanças Climáticas (em português)

IR Imposto de Renda

PEAD Polietileno de Alta Densidade

PEBD Polietileno de Baixa Densidade

PERS Plano Estadual de Resíduos Sólidos

PET Politereftalato de Etileno

PGRS Plano(s) de Gerenciamento de Resíduos Sólidos

PIB Produto Interno Bruto

PMGIRS Plano(s) Municipal(is) de Gestão Integrada de Resíduos Sólidos

PNRS Política Nacional de Resíduos Sólidos

PNSB Pesquisa Nacional de Saneamento Básico

PP Polipropileno

PVC Policloreto de Vinila

REEE Resíduos de Equipamentos Elétricos e Eletrônicos

RSD Resíduos Sólidos Domiciliares

RSO Resíduos Sólidos Orgânicos

RSU Resíduos Sólidos Urbanos

SELIC Sistema Especial de Liquidação e de Custódia

TIR Taxa(s) Interna(s) de Retorno

TMA Taxa Mínima de Atratividade

TRC Tempo(s) de Retorno do Capital

UF Unidade Federativa

VP Valor(es) Presente(s)

VPL Valor(es) Presente(s) Líquido(s)

1 INTRODUÇÃO

É inegável que as atividades diárias humanas produzem grandes quantidades de resíduos sólidos, os quais necessitam de um tratamento e disposição final, podendo ser reaproveitados, agregando valor comercial, evitando-se assim a proliferação de doenças e poluição do solo e de corpos aquáticos. O crescimento populacional junto ao processo de industrialização devido ao avanço tecnológico, aliado às realidades das sociedades atuais, capitalistas e consumistas, fez com que, ultimamente, a geração de resíduos sólidos crescesse de forma intensa, tornando-se um desafio para os governantes, a sociedade e a academia a atenuação desse problema.

De acordo com a NBR 10.004 (ABNT, 2004), os resíduos sólidos são aqueles resultantes de atividades industriais, domésticas, hospitalares, comerciais, agrícolas, de serviços e de varrição, em estado sólido ou semissólido. Nessa definição, estão inclusos os lodos provenientes de sistemas de tratamento de água, lodos gerados em equipamentos e instalações industriais e de controle de poluição, assim como líquidos de inviável lançamento na rede pública de esgotos que exijam soluções técnica e economicamente inviáveis em face à melhor tecnologia existente.

Os resíduos sólidos podem ser classificados quanto à sua natureza física (seco ou molhado), à sua composição química (matéria orgânica ou inorgânica), ao seu risco potencial de contaminação do meio ambiente e à sua natureza ou origem (IPT, 2018). Segundo a NBR 10.004 (ABNT, 2004), os resíduos sólidos podem ser classificados, quantos aos riscos potenciais de contaminação do meio ambiente, em:

- Resíduos Classe I: Perigosos;
- Resíduos Classe II: Não Perigosos;
 - o Resíduos Classe II-A: Não Inertes;
 - o Resíduos Classe II-B: Inertes.

No Brasil, a Política Nacional de Resíduos Sólidos (PNRS), na forma da Lei nº 12.305/2010, é o principal instrumento legal de combate à problemática do manejo e disposição inadequados dos resíduos sólidos. Ela organiza e atribui a responsabilidade compartilhada dos geradores dos mesmos, desde o processo de fabricação de produtos até o seu consumo (BRASIL, 2010). Logo, tanto as pessoas físicas, como as jurídicas, são responsáveis pela geração, manejo e disposição dos resíduos sólidos produzidos durante do todo o processo anterior e posterior ao consumo.

Ainda na Lei nº 12.305/2010, há a atribuição de que os municípios brasileiros e o Distrito Federal devem elaborar os Planos Municipais de Gestão Integrada de Resíduos

Sólidos (PMGIRS) para terem acesso aos recursos da União, ou por ela controlados, destinados a empreendimentos e serviços relacionados à limpeza urbana e ao manejo de resíduos sólidos (BRASIL, 2010). Os PMGIRS devem conter informações, tais como: a situação dos resíduos sólidos gerados no respectivo território, a identificação de áreas favoráveis para disposição final ambientalmente adequada de rejeitos, a identificação das possibilidades de implantação de soluções consorciadas ou compartilhadas com outros municípios e a identificação dos RSU e dos grandes geradores sujeitos aos Planos de Gerenciamento de Resíduos Sólidos (PGRS). Os municípios, com população inferior a 20 mil habitantes, que não se encontram em áreas turísticas e unidades de conservação, bem como aqueles inseridos em áreas de influência de empreendimentos ou atividades de significativos impactos ambientais, podem realizar planos simplificados de PMGIRS.

No ano de 2018, estimou-se que foram geradas 79 milhões de toneladas de resíduos sólidos no Brasil, sendo que 92 % deles foram coletados. Daqueles que passaram pelo serviço de coleta, apenas 59,5 % foram destinados a aterros sanitários, ou seja, 54,76 % do universo total gerado. Os dados ainda revelam que 3.001 municípios brasileiros, 53,88 % da totalidade, despejam os seus resíduos sólidos em locais inadequados (ABRELPE, 2019). Logo, observa-se a importância da elaboração, implantação, monitoramento e revisão dos PMGIRS para que os RSU gerados sejam tratados e dispostos em locais adequados.

Ainda segundo a ABRELPE (2019), em 2018, os municípios brasileiros aplicaram mensalmente, em média, R\$ 10,15 per capita para a realização de serviços de limpeza urbana no Brasil, resultando em R\$ 28,1 bilhões de recursos movimentados no mercado de limpeza urbana do país, empregando direta e formalmente cerca de 332 mil pessoas. Entretanto, registrou-se um recuo de 1,4 % na quantidade de empregos formais e uma queda de 1,28 % de recursos movimentados nesse mercado em relação ao ano anterior. Portanto, um recuo de investimentos nos serviços de limpeza urbana e manejo de resíduos sólidos pode contribuir para que o atual cenário problemático da maioria dos municípios brasileiros não se altere, alimentando-se assim os problemas socioambientais.

Observando esse contexto, este trabalho propõe analisar economicamente as opções de biometanização, compostagem e reciclagem para tratamento de RSU gerados no Brasil. A fim de contribuir com a sociedade e a administração pública, este estudo fornecerá informações importantes quanto a possíveis investimentos financeiros necessários para a melhoria e adequação dos cenários dos RSU em todo o território nacional. Logo, os resultados desta Dissertação de Mestrado podem servir como suporte para a elaboração dos PMGIRS, fornecendo informações importantes de custos financeiros.

1.1 Objetivos

Neste trabalho, os objetivos foram divididos em dois tópicos: geral e específicos. No primeiro, expõe-se a meta principal desta Dissertação de Mestrado, enquanto que, no outro, os objetivos secundários.

1.1.1 Objetivo Geral

Esta pesquisa objetiva analisar economicamente as opções de biometanização e compostagem para tratamento de RSU putrescíveis gerados em todo território nacional e a opção da reciclagem para reaproveitamento de outros RSU produzidos no Brasil.

1.1.2 Objetivos Específicos

- Realizar projeções futuras da geração de RSU no Brasil e dos recursos aplicados na coleta de RSU e nos demais serviços de limpeza urbana;
- Caracterizar, com base em estudos da bibliografía, os RSU gerados no país;
- Estimar o potencial máximo de produção de biogás que pode ser gerado a partir de processos de biometanização para tratamento de RSU produzidos no Brasil;
- Estimar o potencial máximo de produção de energia elétrica que pode ser gerada a partir de processos de biometanização para tratamento de RSU gerados no Brasil;
- Estimar os custos iniciais e anuais de projetos de biometanização por unidade de potência fornecida por usinas de biogás para tratamento de RSU;
- Estimar, com base em estudos da bibliografia, os custos iniciais e lucros líquidos, descontado o Imposto de Renda (IR), de projetos de compostagem por geração anual de RSU compostáveis;
- Calcular, para tempos de 5, 10, 15 e 20 anos, os recursos necessários, em VP para o ano 2022, a serem aplicados para a realização de uma coleta total de RSU gerados no Brasil e para a prática dos demais serviços de limpeza urbana em nosso país;
- Calcular o tempo mínimo de operação do conjunto motogerador dos processos de biometanização, para a geração de energia elétrica, para que esse tipo de tratamento seja viável economicamente;

- Calcular o tempo mínimo de operação do conjunto motogerador dos processos de biometanização, para a geração de energia elétrica, para que esse tipo de tratamento seja mais viável economicamente em relação à compostagem;
- Determinar quais os tipos de subcategorias de RSU gerados no Brasil que possuem viabilidade econômica para a exploração por um processo de reciclagem;
- Avaliar se os potenciais de receitas máximas possíveis de serem arrecadadas com os processos de tratamentos de RSU seriam suficientes para cobrir os gastos, em todo o Brasil, com os serviços de coleta de RSU e de limpeza urbana;
- Comparar as projeções futuras, desta Dissertação, da geração per capita de RSU no Brasil com as de outras regiões do globo terrestre citadas em outra pesquisa.

1.2 Justificativa

A importância desta Dissertação de Mestrado se encontra no fato de poder fornecer subsídios e informações econômicas para que órgãos públicos possam estimar gastos com os processos de coleta e tratamento de RSU, bem como as despesas relacionadas a serviços de limpeza urbana. Além disso, este estudo representa uma possibilidade de incentivar as parcerias público-privadas para tratamentos mais eficientes de RSU, pois os mesmos, além de serem necessários para uma sustentabilidade ambiental, podem gerar receitas atrativas.

Quanto à questão legal, este trabalho se torna necessário pois a PNRS, na forma da Lei nº 12.305/2010, tem como princípios básicos a prevenção, precaução, desenvolvimento sustentável, visão sistêmica, cooperação entre setores e a responsabilidade compartilhada. Com isso, essa lei objetiva a proteção da saúde humana e da qualidade ambiental, bem como o incentivo à indústria de reciclagem e à gestão integrada dos RSU e, além do mais, a PNRS também preconiza tratamentos adequados e viáveis para os RSU.

Já na questão técnica, observa-se que a biometanização é um processo que consiste em transformar predominantemente a matéria orgânica em metano, altamente energético e contribuinte para o efeito estufa. Todavia, esse tipo de tratamento tem um viés sustentável ecologicamente, pois a massa de resíduos sólidos é transformada em um gás, que oxidado, gera uma grande quantidade de energia, emitindo pouco Gás Carbônico (CO₂) em relação aos combustíveis fósseis. Já a compostagem consiste em utilizar a decomposição dos Resíduos Sólidos Orgânicos (RSO) para a produção de fertilizantes, não produzindo gases de alto valor energético.

2 REFERENCIAL TEÓRICO

Neste tópico, estão descritas as revisões bibliográficas relacionadas à geração per capita e caracterização de RSU e aos processos de tratamento citados por esta Dissertação de Mestrado. Além disso, discorreu-se sobre os tratamentos de RSO, fazendo comparativos entre a biometanização e compostagem, com bases nos estudos de bibliografia.

2.1 Geração per capita e caracterização de RSU

Os estudos de caracterização de RSU já realizados têm uma importância primordial para o desenvolvimento deste trabalho. Na literatura brasileira, achou-se alguns resultados, como o de Melo (2015) que encontrou uma geração média de RSU, com coletas *in loco* realizadas no ano de 2014, entre 0,325 e 0,541 kg/hab.dia⁻¹ para cinco municípios do agreste pernambucano, com percentagens de RSO variando entre 24,5 e 42,7 % e plásticos entre 14,1 % e 24,3 %, sendo esses as duas categorias de resíduos mais geradas em cada município respectivamente.

Em um outro estudo, Urban (2016) destacou os critérios, utilizados pela PNSB de 2008, de faixa populacional de municípios brasileiros para a determinar a quantidade de resíduos sólidos gerados em média per capita para cada categoria de município, conforme a Tabela 01. Cabe destacar que a última Pesquisa Nacional de Saneamento Básico (PNSB) realizada, em 2017, não coletou informações sobre a geração de resíduos sólidos.

Tabela 01 – Média de resíduos sólidos gerados por faixa populacional dos municípios. Fonte: PNSB (2008)

Faixa populacional municipal (hab.)	Média de resíduos sólidos gerados (kg/hab.dia ⁻¹)
Até 30 mil	0,81
De 30 a 100 mil	0,77
De 100 a 250 mil	0,81
De 250 mil a 1 milhão	0,97
De 1 a 3 milhões	1,19
Acima de 3 milhões	0,95

Ainda em Urban (2016), foi realizada uma regressão linear utilizando-se dos dados dos municípios do Estado de São Paulo, excetuando-se a capital. Logo, encontrou-se um coeficiente de determinação de 99,77 % para a Equação 01, em que x é representando pela população em número de habitantes e y pela massa de resíduos sólidos gerados em t/ano.

$$y = \frac{3532}{10000}x - 1553,4\tag{01}$$

Já em Oliveira e Athayde Júnior (2017), analisou-se a geração per capita de resíduos sólidos sob a perspectiva do tamanho populacional e do Produto Interno Bruto (PIB) per capita dos municípios brasileiros para dois tipos de modelos, em que um deles considerava apenas a população urbana e o outro a total. No geral, observou-se que os municípios com população entre 1 e 3 milhões de habitantes são os maiores geradores, com médias de geração per capita de RSU próximas a 1,15 kg/hab./dia para os dois tipos de modelos. As menores taxas foram verificadas para municípios com população inferior a 30 mil habitantes, em que se registrou uma média próxima a 0,74 kg/hab./dia para geração de RSU, para o modelo que leva em consideração somente a população urbana, e 0,48 kg/hab./dia considerando-se a população total.

Após a análise de seus resultados, Oliveira e Athayde Júnior (2017) concluíram que a renda e a população dos municípios influenciam na taxa de geração de RSU. Constatouse também que, para municípios de PIB per capita semelhante e com população inferior a 250 mil habitantes, a maior geração per capita de RSU foi observada nos mais populosos. O estudo também apontou que o modelo que considera a população total dos municípios no cálculo da estimativa da geração de RSU possui maior grau de determinação que aquele que considera apenas a população urbana.

Trentin *et al.* (2019) encontraram a seguinte composição gravimétrica de RSU para o município de Santa Cruz do Sul, localizado no Centro-Oeste do Estado do Rio Grande do Sul: 41,65 % de matéria orgânica, 13,48 % de plástico, 9,92 % de papel, 3,02 % de vidro, 2,02 % de metal e 29,91 % de rejeito. Além disso, foi calculada, para o município, uma geração per capita de RSU de 0,69 kg/hab./dia e uma taxa de 28,44 % de RSU passíveis de serem reciclados (plástico, papel, vidro e metal).

Trentin *et al.* (2019) ainda destacam que aproximadamente 72 % dos rejeitos dos RSU apresentam potencial de reaproveitamento. Diante desse cenário, evidenciou-se uma necessidade de políticas públicas voltadas para a otimização do gerenciamento dos RSU, que poderiam focar na separação dos mesmos na fonte de geração, bem como a introdução da coleta seletiva e etapa de triagem de RSO e resíduos passíveis de serem reciclados.

Ainda no Rio Grande do Sul, o PERS (Plano Estadual de Resíduos Sólidos) – RS, elaborado para a vigência de 2015 a 2034, estimou uma geração total de RSU para o estado de 3.150.291 t/ano no ano de 2014, quando a população estimada era 11.207.274 habitantes (IBGE, 2014), resultando em uma taxa de geração de 0,77 kg/hab./dia de RSU

no Estado. No mesmo plano, para 2014, estimou-se uma geração de matéria orgânica em 60 %, material seco reciclável em 25 % e rejeito em 15 % nos RSU do Estado. Entretanto, o PERS – RS destaca as variações nas composições dos RSU produzidos em função da faixa populacional dos municípios gaúchos, conforme pode ser visto na Tabela 02.

Tabela 02 – Composição dos RSU no Estado do Rio Grande do Sul. Fonte: PERS – RS (2014)

Faixa populacional	Composição dos RSU		
(habitantes)	Matéria orgânica	Material seco reciclável	Rejeito
Até 50 mil	65 %	20 %	15 %
De 50 a 300 mil	60 %	25 %	15 %
Mais de 300 mil	55 %	30 %	15 %

Já Alcântara (2010) caracterizou os RSU de Cáceres, localizado no Estado do Mato Grosso. Como resultado, encontrou-se uma composição média de 60,45 % de matéria orgânica, 8,23 % de plástico rígido, 4,93 % de plástico maleável, 4,93 % de papelão, 4,34 % de papel, 3,23 % de vidro, 2,41 % de metais e 11,48 % de outros tipos de materiais. Por fim, o estudo identificou uma geração per capita de RSU de 0,549 kg/hab./dia.

Já em um estudo realizado em Caçu, município situado na UF (Unidade Federativa) de Goiás, fez-se uma caracterização física dos RSD (Resíduos Sólidos Domiciliares) pelo método do quarteamento. Souza e Araújo (2014) acharam, como resultado, a composição gravimétrica média de 54,9 % de matéria orgânica, 16,4 % de plástico, 6,7 % de papelão, 5,7 % de papel, 3,5 % de vidro, 3,3 % de metal, 3,0 % de plástico PET, 1,0 % de tetra-pak (embalagens longa vida), 0,7 % de resíduos perigosos e 4,8 % de outros tipos de materiais. Ao final, os autores calcularam uma geração média per capita de 0,68 kg/hab./dia de RSD para esse município com população de 14.603 habitantes no ano da pesquisa (IBGE, 2014).

Em outro estudo, Guadagnin *et al.* (2014) analisaram a composição gravimétrica de RSU em municípios da região sul do Estado de Santa Catarina. Ao todo, foram estudados nove municípios, sendo que seis deles são consorciados ao Consórcio Intermunicipal de Resíduos Sólidos Urbanos da Região Sul (CIRSURES), realizando-se a caracterização das áreas urbanas e rurais desses locais. Na Tabela 03, em que a sigla AU se refere à área urbana, AR à área rural e AT à área total, tem-se os resultados resumidos do estudo. Ao final, Guadagnin *et al.* (2014) concluíram que as parcelas de materiais com potencial de reciclagem (papel / papelão, plástico mole, plástico duro, vidro, multicamadas e metais) são superiores a quantidade de matéria orgânica gerada nos RSU deste estudo de caso, diferenciando-se de outros estudos de casos citados neste Referencial Teórico.

Tabela 03 – Composição gravimétrica dos RSU dos municípios da região sul de SC. Fonte: Guadagnin *et al.* (2014)

Commonantos dos	Municípios e CIRSURES								
Componentes dos	CIRS	URES	Criciúma	Ja	aguarur	na	No	va Ven	eza
RSU (%)	AU	AR	AT	AU	AR	AT	AU	AR	AT
Matéria orgânica	36,15	25,07	27,92	33,82	22,59	21,15	40,69	31,99	37,83
Papel / Papelão	10,69	10,15	15,06	25,42	6,90	21,57	13,59	11,39	12,86
Plástico Mole	8,72	9,75	13,56	7,94	14,87	8,93	13,26	13,35	13,29
Plástico Duro	7,81	12,37	9,33	5,95	4,00	6,09	7,56	9,61	8,23
Vidro	3,89	3,55	2,67	5,99	2,48	5,01	2,20	2,65	2,34
Multicamadas (tetra pak)	2,46	2,92	1,89	3,86	2,13	3,37	2,91	2,09	2,64
Metais	4,11	3,68	2,11	1,27	0,86	1,18	2,68	3,15	2,84
Rejeito	7,31	6,12	2,89	4,90	12,96	6,04	2,77	3,60	3,05
Perigosos / REEE	1,44	2,44	1,11	0,82	0,07	0,77	0,42	1,75	0,86
Trapos / Têxteis / Couros	4,29	7,75	10,00	5,54	7,18	6,67	6,95	5,30	6,41
Lixo sanitário / Fraudas	12,89	16,04	11,44	4,49	25,96	8,22	6,98	15,12	9,66
Madeira	0,06	0,15	0,38	0,00	0,00	0,00	0,00	0,00	0,00

Já em um município da região centro-oeste do Estado de São Paulo, Rezende *et al.* (2013) analisaram a composição gravimétrica dos RSU de dois bairros de Jaú, comparando os resultados dos anos de 2001 e 2010. Nesse período, a população desses bairros cresceu 29,6 % e a geração de RSU aumentou em 34,9 %, resultando em um crescimento 4,0 % da geração per capita de RSU nessa localidade, passando de 0,618 kg/hab./dia em 2001 para 0,643 kg/hab./dia em 2010. Na Tabela 04, expõe-se os resultados, obtidos por Rezende *et al.* (2013), da caracterização dos RSU desses dois períodos.

Tabela 04 – Composição gravimétrica dos RSU de dois bairros do município de Jaú. Fonte: Rezende *et al.* (2013)

Componentes encon-	Período (Ano)		Componentes encon-	Período	o (Ano)
trados nos RSU (%)	2001	2010	trados nos RSU (%)	2001	2010
Matéria orgânica	49,1	49,4	Metais Ferrosos	3,2	1,4
Rejeitos	23,3	25,1	Alumínio	1,2	1,6
Papel e Papelão	7,2	4,7	Longa Vida (Tetra Pak)	2,2	0,8
PET e Plástico Duro	6,2	4,7	Couro	0,0	1,7
Plástico Mole	3,7	5,9	Tecidos (Têxteis)	0,0	1,6
Vidro	3,9	2,7	Borracha	0,0	0,3

Na literatura internacional, destaca-se o trabalho desenvolvido por Villalba *et al.* (2020) na cidade de Tandil, província de Buenos Aires, na Argentina. Nele, os autores coletaram amostras de RSD de três estratos sociais (alto, médio e baixo) em três épocas do ano: final do outono de 2016, final da primavera de 2016 e início do outono de 2017. Villalba *et al.* (2020) constataram que o estrato social médio teve maior geração per capita de RSD nos dois primeiros períodos coleta das amostras, enquanto que o estrato social

baixo teve maior geração no último período. Ao final, os autores encontraram uma geração média de RSD de 0,4008 kg/hab./dia. Na Tabela 05, expõe-se os resultados médios das caracterizações dos RSD realizadas na cidade de Tandil.

Tabela 05 – Composição gravimétrica média dos RSD da cidade de Tandil (Argentina). Fonte: Villalba *et al.* (2020)

Tipos de RSD	Composição (%)	Tipos de RSD	Composição (%)
Resíduos Orgânicos	53,75	Alumínio	0,26
Resíduos de Jardinagem	2,67	Metais ferrosos	0,90
Papel	4,49	Embalagens Tetra Pak	0,98
Papelão	2,98	Outros Resíduos Especiais	0,63
Plásticos PET	1,94	REEE	0,10
Plásticos PEAD	0,63	Baterias	0,04
Outros Plásticos	7,24	Rejeitos	4,45
Vidros	6,62	Resíduos Sanitários	10,82
Têxteis	1,50		

Villalba *et al.* (2020) observaram ainda que a geração de vidro é maior em períodos de temperaturas mais baixas e menor em épocas mais quentes, enquanto que, para o plástico PET, acontece o inverso, conforme pode ser visto na Tabela 06. Os autores levantaram a hipótese de isso deve estar associado ao fato de que a população costuma consumir maior quantidade de vinhos (armazenados em garrafas de vidro) em períodos mais frios e refrigerantes (armazenados em garrafas de plástico PET) em épocas mais quentes. Também, foi constatado que havia perdas de massa dos resíduos durante o processo de caracterização e que isso poderia estar relacionado com a perda de umidade, a qual pode estar relacionada ao consumo tradicional de infusão de erva-mate na região. Portanto, as épocas dos anos e os comportamentos culturais da população de uma região específica modificam as características dos resíduos sólidos produzidos na sociedade.

Tabela 06 – Geração média de vidro e plástico PET nos RSD da cidade de Tandil. Fonte: Villalba *et al.* (2020)

Tipos de RSD	Final de Outono de 2016	Final da Primavera de 2016	Início do Outono de 2017
Vidros	7,43 %	5,00 %	7,43 %
Plásticos PET	1,76 %	2,23 %	1,83 %

Em Espinoza *et al.* (2010), analisou-se a geração de RSU em diversos países da América Latina e Caribe. Para 2010, constatou-se que o Brasil foi o sexto maior gerador de RSU per capita, observando-se que, dos cinco países que mais geraram, quatro possuíam PIB per capita superior ao do Brasil, conforme Tabela 07. Ao final, concluiu-se que o Brasil tem uma geração per capita de RSU superior à média do grupo de países analisados.

Tabela 07 – Geração de RSU e PIB per capita de países da América Latina e Caribe. Fonte: Espinoza *et al.* (2010)

Países	Geração de RSU per capita (kg/hab./dia)	PIB per capita (2008) (US\$/hab./ano)
Chile	1,25	6.235
Panamá	1,22	5.580
Argentina	1,15	9.885
República Dominicana	1,10	3.688
Uruguai	1,03	8.161
Brasil	1,00	4.446
México	0,94	7.092
Paraguai	0,94	1.521
El Salvador	0,89	2.677
Costa Rica	0,88	5.189
Venezuela	0,86	5.925
Peru	0,75	2.926
Equador	0,71	1.745
Colômbia	0,62	2.983
Guatemala	0,61	1.699
Bolívia	0,49	1.173
Belize	sem dados	3.933
Jamaica	sem dados	3.713
Honduras	sem dados	1.452
Guiana	sem dados	902
Nicarágua	sem dados	897
América Latina e Caribe	0,93	4.921

Espinoza *et al.* (2010) ainda compararam a geração per capita de RSU da América Latina e Caribe com 7 países europeus e os Estados Unidos, conforme a Tabela 08. Então, concluiu-se que esse grupo de oito países têm geração per capita superior a todos os países da América Latina e Caribe analisados pelos autores.

Tabela 08 – Geração per capita de RSU de alguns países e da América Latina e Caribe. Fonte: Espinoza *et al.* (2010)

Países	Geração de RSU per capita	Países	Geração de RSU per capita
Estados Unidos	2,08 kg/hab./dia	Reino Unido	1,56 kg/hab./dia
Suíça	1,95 kg/hab./dia	Itália	1,51 kg/hab./dia
Alemanha	1,59 kg/hab./dia	França	1,48 kg/hab./dia
Espanha	1,59 kg/hab./dia	Suécia	1,42 kg/hab./dia
América Latina e Caribe	0,93 kg/hab./dia	Brasil	1,00 kg/hab./dia

Já em World Bank Group (2018), o Grupo do Banco Mundial estimou, para o ano 2016, a geração per capita de RSU para cada região do planeta. Além disso, a instituição projetou esse dado para os anos de 2030 e 2050, conforme a Tabela 09. Observa-se, então, que a América Latina e Caribe, em 2016, gerou, em média, 0,99 kg/hab./dia de RSU, valor superior à média estimada por Espinoza *et al.* (2010) para o ano de 2010.

Tabela 09 – Geração per capita de RSU em regiões do planeta. Fonte: World Bank Group (2018)

Dagiãos do Dianoto	Geração de RSU per capita (kg/hab./dia)			
Regiões do Planeta	Média (2016)	Estimativa (2030)	Estimativa (2050)	
América do Norte	2,21	2,37	2,50	
Europa e Ásia Central	1,18	1,30	1,45	
América Latina e Caribe	0,99	1,11	1,30	
Oriente Médio e África Saariana	0,81	0,90	1,06	
Leste da Ásia e Pacífico	0,56	0,68	0,81	
Sul da Ásia	0,52	0,62	0,79	
África Subsaariana	0,46	0,50	0,63	

Então, segundo a Tabela 09, projeta-se um aumento da geração de RSU em todas as regiões do planeta ao longo do tempo. Destaca-se também que as duas regiões do globo mais desenvolvidas registraram as maiores gerações per capita de RSU, enquanto que a menos desenvolvida, a menor. Além disso, constata-se que as sociedades ocidentais geram maiores quantidades per capita de RSU, enquanto que as orientais, menores. Isso pode estar associado ao fato de que as primeiras têm um maior comportamento consumista.

2.2 Tratamento de Resíduos Sólidos Orgânicos

Na literatura científica, ainda é comum observar a destinação inadequada de RSO para aterros sanitários, aumentando-se os custos de tratamento e os impactos ambientais. Tendo-se essa problemática, Herrero *et al.* (2019) propuseram construir e estudar um biodigestor anaeróbico em larga escala com custos mínimos para o tratamento de resíduos de frutas e vegetais de um mercado municipal na Bolívia, gerando biogás. Inicialmente o biodigestor foi carregado com rúmen de vaca e, após 8 semanas, apenas com os referidos RSO. Concluiu-se que esse equipamento é tecnicamente viável em larga escala com produção de biogás comparável a outras tecnologias de custo similar.

Também, Achinas *et al.* (2019), Ariyanto *et al.* (2017), Ruffino e Zanetti (2017), Namsree *et al.* (2012) e Siles *et al.* (2013) estudaram a produção de biogás através do tratamento por digestão anaeróbica de RSO. Os primeiros verificaram a quantidade de Gás Metano (CH₄) produzida a partir da adição de estrume à carga orgânica durante o processo de digestão anaeróbica, enquanto que os segundos projetaram uma planta para produção de biogás para converter resíduos sólidos de frutas em CH₄, constatando que essa opção é mais técnica e economicamente viável que o aterro sanitário. Já os outros três últimos,

concentraram-se na otimização da digestão anaeróbica, alterando-se algumas variáveis desse processo, a fim de aumentar a produção de biogás.

Já Zema *et al.* (2018) discorrem sobre os resíduos sólidos gerados de uma indústria de processamento de citros no setor agroindustrial. O descarte desses resíduos apresenta bastantes restrições econômicas e ambientais, limitando-se principalmente à alimentação de animais. Esse estudo demonstra uma melhoria das terras agrícolas, usando esses RSO para a compostagem e indica a necessidade de aperfeiçoamento de sistemas de produção de bioenergia a partir desse resíduo. Entretanto, Ruffino e Zanetti (2017) concluíram que, a partir de RSO e do esgoto de uma fábrica de frutas cristalizadas, o processo de digestão anaeróbica otimizado pode produzir 30 % das necessidades da plana industrial estudada, reduzindo-se os custos com tratamento de RSO via compostagem e as emissões de CO₂.

2.2.1 Biometanização

Indubitavelmente, o avanço tecnológico e o crescimento populacional aumentaram a demanda dos seres humanos por fontes de energia, podendo ter provocado, nos últimos anos, um encarecimento de preços de combustíveis fósseis e da energia elétrica. Com isso, a busca por fontes de energia, de preferência renováveis, proporcionando a preservação dos recursos naturais esgotáveis, é uma necessidade das nossas e futuras gerações. Atualmente, uma dessas fontes que se destaca é a geração de biogás a partir da decomposição de RSO.

Na literatura brasileira, encontrou-se um artigo sobre a decomposição anaeróbia, elaborado por Oliveira *et al.* (2018), que buscaram avaliar a produção de energia elétrica a partir da queima do biogás, verificando se há redução dos impactos ambientais negativos provocados pelos descartes, manuseios e disposição final inadequada dos RSO. Os autores concluíram que o Brasil tem um grande potencial para a geração de energia elétrica através da queima do biogás gerado pela decomposição anaeróbia da matéria orgânica dos RSU. Além disso, apontou-se que, em nosso país, haveria uma redução dos danos ambientais causados pelos descartes, manuseios e disposição final inadequada dos RSU, caso tenha maiores investimentos para a construção e operação de usinas elétricas de biomassa.

Nesta pesquisa, encontrou-se alguns estudos relevantes sobre o aproveitamento de biogás de aterros sanitários para a geração de energia renovável. Em Abreu *et al.* (2009), destacou-se a possibilidade de nações ricas comprarem créditos de carbono de projetos sustentáveis de países em desenvolvimento, a fim de que possam cumprir suas metas

ambientais de acordos internacionais. Nesse estudo de caso, analisou-se o aterro sanitário de Gramacho, na metrópole do Rio de Janeiro, apontando-se que o projeto de captação de biogás do aterro sanitário é viável do ponto de vista econômico a partir da arrecadação de um determinado valor de créditos de carbono. Além disso, os autores concluíram que as turbinas de geração de energia pela queima do biogás têm viabilidade técnica, econômica e ambiental. Entretanto, a partir da promulgação da PNRS, em 2010, determinou-se que os aterros sanitários seriam locais exclusivamente de deposição final de rejeitos de RSU, com a finalidade assim de aumentar a sua funcionalidade e o seu tempo de vida útil.

Já em Nascimento *et al.* (2019), constatou-se que o Brasil, entre os anos de 2004 e 2015, implantou, em aterros sanitários, nove usinas termelétricas, com potência total de 86,3 MW, e duas usinas de produção de biometano, apesar da promulgação da PNRS nesse período. Ao se avaliar as estimativas existentes da época, projetou-se que o Brasil explora de 7 a 20 % do biogás gerado nos aterros para fins energéticos. Num outro artigo, Martins *et al.* (2017) analisaram a viabilidade financeira de uma implantação de usina termoelétrica de biometanização para um aterro sanitário de um município baiano, apesar de contradizer a PNRS, concluindo que o cenário econômico viável ocorria quando houvesse 90 ou 70 % de recuperação do biogás do aterro, sob o financiamento de 75 % de capital de terceiros.

Ainda sob a análise de usinas de biometanização em aterros sanitários municipais, Jacobowski *et al.* (2020) apontaram que, para o município de Toledo, situado no Paraná, a produção de energia elétrica depende de algumas condições de operação do sistema para ser viável financeiramente. Já em outro trabalho, observou-se que o preço de mercado do biogás gerado em projetos de grande escala é competitivo economicamente com o aquele fornecido pelas distribuidoras da Petrobrás (EPE, 2018).

Sob outra perspectiva, Gartner (2015) estudou a viabilidade econômica da geração de biogás através dos processos de digestão anaeróbia de RSO gerados em um condomínio residencial de Balneário Camboriú, em Santa Catarina. Encontrou-se uma capacidade de produção média diária de 898,1 litros de biogás, representando uma potência de 5,7 kW. Todavia, o resultado não se mostrou viável financeiramente, pois os custos eram elevados proporcionalmente para uma planta de biometanização de pequena escala, diferentemente se o projeto fosse dimensionado para o tratamento de todos os RSO gerados no município.

Já em outro estudo, Muniz e Santos (2017) concluíram que o uso de RSO, gerados em um restaurante universitário localizado no Maranhão, para a produção de eletricidade é viável do ponto de vista financeiro, pois haverá uma diminuição de gastos com a coleta de RSU e com a energia elétrica da instituição, amortecendo assim os custos de investimento.

Agora, em um trabalho distinto, Salomon (2007) avaliou técnica e economicamente, para quatro cenários, a biodigestão anaeróbia de vinhaças. As situações em que houve a geração de energia elétrica com motor de combustão interna e a venda da sobra de bagaço obtido da queima conjunta com o biogás nas caldeiras foram as duas viáveis financeiramente.

Além da utilização da matéria orgânica dos RSU para digestão anaeróbia e geração de CH₄, há outros tipos de resíduos orgânicos que podem ser utilizados para o mesmo fim, como os dejetos de animais, principalmente os de suínos, equinos e bovinos. Os estudos de Souza *et al.* (2004), Cervi *et al.* (2010), Catapan *et al.* (2012), Calza *et al.* (2015) e Bezerra *et al.* (2020) abordaram essa temática. Os primeiros objetivaram encontrar o custo e a viabilidade da produção de eletricidade gerada a partir da biometanização em propriedade rural. Ao final, concluíram que o Tempo de Retorno de Capital (TRC) do investimento feito para a geração de energia dependia da tarifa elétrica e da operação diária do conjunto motogerador. Para um cenário de 10 horas diárias de funcionamento dos sistemas, para a tarifa de energia elétrica máxima da época do estudo, encontrou-se um TRC de 5,4 anos.

Também em Cervi *et al.* (2010), estudou-se a viabilidade econômica dos processos de biodigestão de dejetos de suínos para a geração de energia elétrica. Nesse trabalho, foi analisado um biodigestor de formato tubular e operação contínua, cuja seção transversal se encontra na Figura 01, com operação diária, excetuando-se os domingos e os feriados, do conjunto motogerador de 10,5 horas. Como a planta da usina tinha a finalidade de gerar energia elétrica para consumo próprio da granja suinícola, Cervi *et al.* (2010) concluíram que foram gerados excedentes de biogás e energia elétrica não aproveitados pelo sistema, apesar de a biodigestão ser viável do ponto de vista econômico.

Figura 01 – Seção transversal do biodigestor de modelo tubular de operação contínua.

Já em Catapan *et al.* (2012), trabalhou-se com dejetos de equinos para a produção de biogás. No seu artigo, cabe-se destacar que houve viabilidade econômica dos processos de biodigestão para a produção de eletricidade novamente, observando-se um TRC de 30 meses e uma Taxa Interna de Retorno (TIR) de 31,52 %, superior à Taxa Mínima de Atratividade (TMA). Em um outro estudo, Calza *et al.* (2015) aferiram os custos e a geração de energia elétrica de modelos de biodigestores, utilizando-se de dejetos de caprinos, bovinos e suínos. Ao final, os autores apontaram que a produção de eletricidade a partir da queima do biogás resultante dos processos de biometanização dos dejetos de suínos apresentou o menor custo, enquanto que, a de caprinos, foi a mais custosa, e a de bovinos, verificou ser a de maior produção anual de energia. Na Figura 02, tem-se um esquema ilustrativo da geração de energia por biometanização de dejetos de animais.

Fonte: Oliveira Júnior (2014) CAIXA DE ÁGUA DA CHUVA ILUMINAÇÃO EXTERNA **ESTÁBULO** IRRIGAÇÃO DE CHORUME GERADOR DE MOTOROMBA DE BIODIGESTOR ESTERCO MOTOROMRA DE DEPÓSITO CISTERNA DE DE CHORUME DE CIRCULAÇÃO DE CHORUME A BIOGÁS

Figura 02 – Esquema de geração de energia por biometanização de dejetos de animais. Fonte: Oliveira Júnior (2014)

Ainda na questão da digestão anaeróbia de dejetos de animais, Bezerra *et al.* (2020) objetivaram estimar o potencial de geração de energia elétrica, advinda da biodigestão de resíduos agropecuários, e a viabilidade econômica do sistema analisado. Eles concluíram que o uso de biodigestores, em fazendas de criação de animais em confinamento, é viável do ponto de vista técnico-econômico, podendo tornar essas propriedades autossustentáveis sob a perspectiva energética. Entretanto, quanto à criação extensiva de animais, de maior frequência, não teria como garantir a viabilidade e autossustentabilidade desses processos.

2.2.2 Compostagem

É inegável que a fração de RSO é o majoritário encontrado nos RSU, necessitandose assim de processos para a degradação da matéria orgânica, a fim de se reduzir os impactos ambientais provocados por esses poluentes. Um desses métodos é a compostagem, que é um processo biológico de decomposição dos RSO, transformando-os em substâncias húmicas estabilizadas, reduzindo assim a quantidade de RSU destinados a aterros sanitários e gerando compostos orgânicos como adubo (SILVA e REIS, 2012).

Antes da Revolução Industrial, os resíduos sólidos gerados pelos seres humanos eram basicamente materiais orgânicos, visto que a produção era rural. Com o processo de industrialização, que forçou a urbanização e o aumento populacional, os RSU aumentaram de forma exponencial e deixaram de ser tão-somente orgânicos, necessitando-se assim de amplos tratamentos. Nesse sentido, a compostagem ganhou atratividade como uma forma de tratamento promissora para os RSO gerados (VELASQUES *et al.*, 2015).

Silva e Reis (2012), aferiram-se a viabilidade econômica de implantação de uma usina de triagem e compostagem para tratamento de RSU do município de Santa Bárbara do Leste, na UF de Minas Gerais. Ao final do primeiro ano de projeto dessa usina, esperase um VPL positivo e se estima um TRC dos investimentos em 5 anos, concluindo assim que o empreendimento é viável do ponto de vista financeiro. Também, no município de Morro da Fumaça, no Estado de Santa Catarina, Bortolatto (2012) analisou um projeto de usina de triagem e compostagem para tratamento dos RSU municipais, concluindo que esse empreendimento é viável economicamente.

No município de Macaé, no Estado do Rio de Janeiro, Dias (2011) analisou dois cenários: implantação de uma usina de reciclagem e compostagem para a cidade e de uma só de reciclagem. O autor concluiu que a primeira opção se mostrou mais viável do ponto

de vista econômico e ambiental. Isso se deve ao fato de que a primeira obteve maior VPL e um menor TRC, além de que irá provocar uma redução da carga orgânica destinada ao aterro sanitário, aumentando assim o seu tempo de vida útil.

Deparando-se com o cenário adverso de municípios brasileiros de pequeno porte, que enfrentam dificuldades econômicas, logísticas e técnicas para a coleta e tratamento de seus RSU, além da constatação de que os custos proporcionais desses serviços são mais elevados para cidades menos populosas, Gomes (2012) verificou a viabilidade financeira da implantação de uma usina de triagem e compostagem para o município mineiro, com população estimada de 49.077 habitantes para a época do estudo, de Congonhas. Ao final, a autora concluiu que o projeto é viável economicamente e que, para um tempo de vida útil de 10 anos, registrou-se um VPL positivo com uma TIR de 15,61 %, superior à TMA.

Ainda no panorama desfavorável dos municípios de pequeno porte, Bergi (2018) se propôs a investigar a compostagem como tratamento de RSO de Estações de Tratamento de Esgotos (ETE) dessas localidades. Então, fez-se um balanço de massas das frações de matéria orgânica produzidas em cidades de 5, 10 e 15 mil habitantes, verificando em quais dos cenários haveria viabilidade econômica para tratar os RSO das ETE por compostagem. Concluiu-se, então, que apenas os municípios de 5 mil habitantes não seriam viáveis financeiramente. Já as cidades de 10 e 15 mil habitantes, proporcionaram, respectivamente, um VPL de R\$ 70.418,00 e R\$ 406.461,00, uma TIR de 13 % e 24 % e um TRC de 8,21 e 4,85 anos para um tempo de vida útil de 10 anos de projeto. Logo, percebe-se que, quanto maior a população atendida, mais rápido acontecerá o retorno de todo o capital investido, confirmando aquela premissa de que os custos proporcionais dos serviços relacionados à gestão dos RSU são mais elevados para cidades menos populosas. Cabe destacar ainda que a compostagem é um processo de tratamento de RSO de oxidação aeróbia exotérmica, sob o efeito da elevação da temperatura, promovendo assim a desinfecção biológica do resíduo.

Continuando no tema do tratamento de RSO gerados pelas ETE por compostagem, encontrou-se o estudo de Visentin *et al.* (2020), que se propuseram a avaliar a viabilidade econômica desses resíduos misturados exclusivamente com duas fontes de carbono: bagaço de cana-de-açúcar e casca de eucalipto. Os autores concluíram que a primeira mistura era a mais viável, considerando-se que os processos de tratamento dos RSO seriam realizados na própria ETE, arrecadando-se receitas com a venda dos fertilizantes gerados, ao mesmo tempo que se economizaria com o transporte e a disposição final dos lodos dos esgotos em aterros. Vale ressaltar que a segunda mistura também se mostrou viável, tendo uma TIR de 80 % e um TRC de 1,4 anos, bem próximos aos da primeira, que obteve 84 % e 1,3 anos.

Já em Borsato (2015), analisou-se a implantação de uma usina de compostagem a ser alojada em Ponta Grossa. O autor apontou que o empreendimento é viável técnica e economicamente, com uma TIR de 33,9 % e um TRC de 3,46 anos para um projeto de 10 anos. Porém, na análise, considerou-se premissas dificilmente de serem atingidas, como o recebimento dos RSO livres de contaminantes e a venda de 100 % do composto produzido.

Seguindo a mesma linha, Garré *et al.* (2017) avaliaram a implantação de uma usina para a cidade de Pelotas. Dimensionando para o recebimento dos RSU gerados na cidade, o possível empreendimento se mostrou viável economicamente, apresentando benefícios socioambientais. Os principais pontos positivos do projeto, destacados pelos autores, foram a baixa concorrência para a venda dos compostos orgânicos, a geração de empregos e a redução da poluição ambiental, apesar da necessidade de um alto investimento financeiro.

Já Romano (2005) e Gaspar *et al.* (2020) analisaram a viabilidade econômica dos processos de compostagem de RSO gerados em uma central de abastecimento, conhecida popularmente como CEASA, de um município de Santa Catarina e em uma agroindústria de processamento de hortaliças, respectivamente. Para os dois casos, os autores concluíram que os processos são viáveis do ponto de vista econômico, destacando-se o fato da redução de custos relacionados ao transporte e disposição final dos RSO em aterros sanitários.

Por fim, Pires (2011) avaliou um sistema de tratamento por compostagem acelerada para RSU gerados no município gaúcho de Vacaria, concluindo que o empreendimento é viável economicamente. Além disso, o autor enfatizou as vantagens de um processo de compostagem acelerada em relação à tradicional, como o menor tempo para a obtenção do composto e a não necessidade de grandes espaços físicos e revolvimento do material.

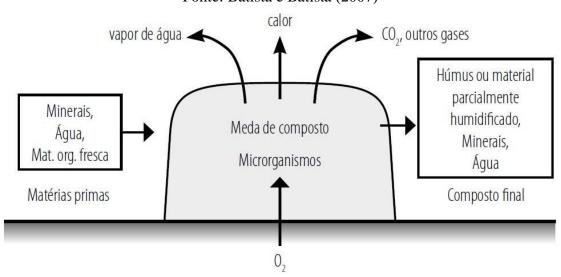


Figura 03 – Esquema geral do processo de compostagem. Fonte: Batista e Batista (2007)

2.3 Reciclagem

Define-se reciclagem como a sequência de processos de coleta, triagem, separação e processamento de RSU descartáveis a fim de utilizá-los como matéria-prima para a fabricação de bens feitos anteriormente com matéria-prima virgem (SILVA e REIS, 2012). Na PNRS, a reciclagem é tida como um dos fatores prioritários no processo de gestão dos RSU, sendo definida, pela Lei nº 12.305/2010, como um processo de transformação dos resíduos sólidos que envolve a modificação de suas propriedades físico-químicas a fim de transformá-los em insumos ou novos produtos.

Conforme citados no tópico anterior, os estudos de Silva e Reis (2012), Bortolatto (2012) e Gomes (2012) propuseram-se a analisar a implantação de usinas de triagem e compostagem para tratamento de RSU, enquanto que Dias (2011) se propôs a verificar a viabilidade de implantação de uma usina de reciclagem e compostagem e de uma só de reciclagem. Os três primeiros concluíram que os projetos examinados são economicamente viáveis, ao passo que o último apontou a usina de reciclagem e compostagem como sendo a opção mais viável do ponto de vista econômico e ambiental. Logo, pode-se afirmar que os processos de triagem de RSU, separando-se os RSO de materiais recicláveis, excluindo-se os rejeitos, facilitaram e dariam uma maior viabilidade econômica para os processos de reciclagem, além de contribuir de um modo geral para o gerenciamento adequado de RSU.

Já Santos e Judice (2014) e Pfeiffer *et al.* (2018) analisaram os custos envolvidos na coleta seletiva para dois municípios do Estado de Goiás. Os autores concluíram, em seus estudos, que os serviços de coleta seletiva municipais são onerosos e não sustentáveis sob o enfoque econômico, apesar de eles proporcionarem benefícios socioambientais, como a geração de renda e melhores condições de trabalho para os catadores, a minimização da degradação dos recursos ambientais e a redução de RSU destinados aos aterros sanitários. No primeiro estudo, para o município de Santa Helena de Goiás, Santos e Judice (2014) apontaram que a implantação da coleta seletiva seria sete vezes mais custosa que a coleta convencional; enquanto que, no segundo, para a cidade de Aparecida de Goiânia, Pfeiffer *et al.* (2018) concluíram que os custos dos serviços de coleta seletiva desse município são superiores proporcionalmente às despesas dos mesmos na capital do estado, Goiânia.

Comparando-se os dados da composição gravimétrica da coleta seletiva, estimada por CEMPRE (2018), com os da caracterização média de RSU coletados pelas associações e cooperativas de catadores no Brasil, calculadas pela ABRELPE (2018), observa-se que as proporções de plásticos, vidros e metais ferrosos são semelhantes. Todavia, constatou-se

que a primeira tem de 24 % de rejeitos e 21 % de papéis, enquanto que a segunda tem 0,8 % e 65 % respectivamente. Essa quantidade de rejeitos vistos na coleta seletiva pode estar associada ao fato de que a população não separa os RSD corretamente, problema esse que não ocorre com as associações e cooperativas, que coletam os RSU recicláveis desejados.

Com a promulgação da PNRS, determinou-se a integração dos catadores de RSU à cadeia da reciclagem, promovendo sua inclusão social e a proibição de seus trabalhos em áreas de disposição final. O papel desses trabalhadores é fundamental para o aumento da vida útil de aterros sanitários, pois eles contribuem para a retirada de RSU reaproveitáveis dos sistemas de gerenciamento de resíduos, diminuindo assim a quantidade dos mesmos a serem destinados aos locais de disposição final. Diante disso, Veras e Rocha (2018) avaliaram as condições de trabalho desses profissionais em Conceição do Araguaia – PA.

As autoras observaram que os catadores trabalhavam em condições insalubres e expostos a agentes contaminantes, possuindo dificuldades para o transporte e para a coleta, o armazenamento e a venda de RSU. Então, Veras e Rocha (2018) concluíram que se faz necessário a implantação de um sistema de gerenciamento de RSU com coleta seletiva e programas de reciclagem, facilitando assim a catação e valorização de materiais recicláveis coletados, proporcionando uma melhoria das condições de trabalho dos catadores.

A promulgação da PNRS representou um marco importante para o planejamento da gestão de RSU no Brasil. Entretanto, após a sua publicação no Diário Oficial da União, a PNRS não padronizou os processos de caracterização de RSU em nosso país, permitindose que os municípios estabelecessem seus próprios critérios para esse processo. Com a não padronização, o planejamento de políticas públicas relacionadas à reciclagem, que afetam diretamente os trabalhos dos catadores, mantem-se prejudicado, pois haverá dificuldade de se determinar quantidade de algumas categorias e subcategorias de RSU recicláveis.

Alves (2003) analisou a viabilidade financeira para a implantação de uma indústria de reciclagem de embalagens PET na região mineira de Ouro Preto. O autor concluiu que, para a época do estudo, o empreendimento era viável economicamente, obtendo-se uma TIR de 64,64 %, superior à TMA. Com isso, observa-se que algumas categorias de RSU reaproveitáveis já apresentavam viabilidade econômica de exploração por reciclagem já no início do século XXI. Associado, a isso, o fato de que a relação dos custos da coleta seletiva por tonelada de RSU pelos os da coleta convencional vem caindo a cada década, pode-se antever que futuramente haverá viabilidade financeira para a reciclagem de novos materiais. Cabe-se destacar ainda que o avanço tecnológico e a necessidade de conservação de recursos naturais finitos podem cooperar para esse cenário.

3 ÁREA DE ESTUDO

O Brasil é um país com uma extensão territorial de 8.510.296 km² e uma população estimada em 211.755.692 habitantes para o ano de 2020 (IBGE, 2020), computando uma densidade populacional média de 24,88 hab./km². Este país é formado por 27 UF, situadas em cinco regiões geopolíticas distintas: Norte (com 7 UF), Nordeste (com 9 UF), Centro-Oeste (com 4 UF), Sudeste (com 4 UF) e Sul (com 3 UF). Além disso, o nosso território é formado por 5.568 munícipios, pelo distrito estadual insular pernambucano de Fernando de Noronha e pelo Distrito Federal, onde está localizada a capital nacional.

Segundo o IBGE (2020), a Região Sudeste é a mais populosa da federação com 89.012.240 habitantes, seguida pela Nordeste com 57.374.243, Sul com 30.192.315, Norte com 18.672.591 e Centro-Oeste com 16.504.303. Já a UF de maior população é São Paulo, com 46.289.333 habitantes, e a de menor é Roraima, com 631.181.

Em 2018, a ABRELPE estimou que o Brasil produziu aproximadamente 79 milhões de toneladas de RSU, resultando em uma geração diária de 216.629 t/dia e uma per capita de 1,039 kg/hab./dia. No mesmo ano, estimou-se uma coleta aproximada de 72,7 milhões de toneladas, equivalente a uma coleta diária de 199.311 t/dia e uma per capita de 0,956 kg/hab./dia, representando 92,01 % do total gerado. Quanto à destinação dos RSU, cerca de 59,5 % dos coletados foram enviados a aterros sanitários, 23,0 % a aterros controlados e 17,5 % a lixões. Ao todo, no Brasil, calculou-se que 54,76 % dos RSU gerados tiveram destinação adequada e 45,24 % destinação inadequada ou não foram coletados.

Quanto à situação dos municípios brasileiros, observou-se que, em 2018, cerca de 46,12 % deles tinham aterros sanitários como disposição final de RSU, 27,07 % aterros controlados e 26,80 % lixões. Com isso, tem-se que 2.569 municípios possuem locais de disposição final adequada, enquanto que 3.001, não. Já na questão de empregos diretos gerados pelo setor de limpeza urbana, para o mesmo ano, o nosso país empregou 140.758 profissionais no setor público e 191.384 no setor privado, sendo 332.142 ao todo.

No Brasil, para 2018, aplicou-se cerca de R\$ 10,031 bilhões na coleta de RSU e R\$ 15,370 bilhões nos demais serviços de limpeza urbana. Isso resultou em R\$ 4,01/mês/hab. em recursos aplicados per capita na coleta de RSU, em R\$ 137,89/t em recursos aplicados por unidade de massa coletada e em R\$ 6,14/mês/hab. em recursos aplicados per capita nos demais serviços de limpeza urbana. Já na questão dos recursos movimentados no mercado de limpeza urbana, estimou-se um valor de R\$ 28,130 bilhões para o ano de 2018, sendo que R\$ 7,943 bilhões foram públicos e R\$ 20,187 privados.

4 METODOLOGIA

Para a execução desta Dissertação de Mestrado, foram angariados, da ABRELPE, dados sobre a situação dos RSU no Brasil no período de 2012 a 2018. Com isso, estimouse, a partir da regressão linear, as futuras quantidades geradas de RSU em nosso país. Subsequentemente, fez-se uma pesquisa bibliográfica com a finalidade de encontrar trabalhos acadêmicos de caracterização de RSU em municípios brasileiros, podendo assim estimar uma composição gravimétrica média dos mesmos em território nacional.

Em sequência, foram pesquisados parâmetros técnicos e econômicos dos processos de biometanização, compostagem e reciclagem para tratamento de RSU no Brasil. A partir dos resultados primários dessas pesquisas, pode-se elaborar uma análise econômica para o tratamento de RSU em território nacional, objetivando a biometanização e compostagem para RSO e a reciclagem para materiais reaproveitáveis.

4.1 Projeções relacionadas aos RSU no Brasil

Inicialmente, foram angariados dados da ABRELPE sobre a situação dos RSU, no Brasil e em casa região geopolítica do país, durante o período de 2012 a 2018. Na Tabela 10, encontram-se os parâmetros obtidos dessa associação.

Tabela 10 – Tipos de informações angariadas sobre a situação dos RSU no Brasil. Fonte: ABRELPE (2012 – 2019)

Informações angariadas	Unidades de medida
População	Habitantes
Geração total de RSU	t/dia
Geração per capita de RSU	kg/hab./dia
Recursos aplicados na coleta de RSU	R\$ milhões/ano
Recursos aplicados na coleta de RSU por unidade de massa	R\$/t
Recursos aplicados nos demais serviços de limpeza urbana	R\$ milhões/ano
Recursos aplicados per capita nos demais serviços de limpeza urbana	R\$/mês/hab.

A partir da coleta dessas informações da Tabela 10, fez-se as projeções para anos futuros, através da regressão linear desses parâmetros para cada região do país. Ao finalizar as projeções regionais, fez-se os cálculos para se encontrar uma projeção nacional, a partir da soma das projeções das cinco regiões geopolíticas brasileiras, conforme a Equação 02.

$$Projeção\ Nacional = \sum Projeções\ Regionais$$
 (02)

As projeções foram direcionadas para os anos de 2022, 2027, 2032, 2037 e 2042, pois se considerou que 2022 será o ano em que haverá os investimentos iniciais para se desenvolver os sistemas de tratamento de RSU em todo território nacional. Baseando-se nesse ano, serão realizadas análises econômicas para a viabilidade de projetos com tempo de vida útil de 5, 10, 15 e 20 anos.

Por fim, destaca-se também que as projeções da população brasileira para os anos futuros não foram realizadas pelo método de regressão linear, já que o IBGE disponibiliza esses dados projetados em sua página oficial na internet, sendo esses os utilizados neste trabalho acadêmico. Além disso, quanto à informação de 'Recursos aplicados na coleta de RSU', considerou-se, no horizonte dos projetos, que todos os RSU gerados deveriam ser coletados, calculando esses recursos de modo que exista uma coleta total de resíduos.

4.2 Aumento de taxas, inflação e juros médios anuais

Efetuadas as projeções futuras de dados relacionados aos RSU gerados no Brasil, a próxima etapa do trabalho foi determinar o aumento médio anual da geração total de RSU, dos recursos aplicados em uma hipotética coleta total de RSU e dos recursos aplicados nos demais serviços de limpeza urbana em nosso país. O cálculo desse aumento médio anual foi realizado para quatro períodos de cinco anos consecutivos, iniciando-se em 2022, ano dos investimentos iniciais, e se encerrando em 2042, quando se completa o tempo máximo de vida útil de projeto de 20 anos. Na Equação 03, encontra-se a fórmula para o cálculo do aumento médio anual para um ciclo de 5 anos, em que *n* será o ano inicial desse ciclo.

Aumento médio anual =
$$\left(\sqrt[5]{\left(1 + \frac{Projeção_{n+5} - Projeção_n}{Projeção_n}\right)} - 1\right) \times 100 \%$$
 (03)

Em seguida, para poder dar suporte às análises econômicas a serem desenvolvidas, fez-se necessário encontrar uma taxa média anual da inflação e da taxa básica de juros brasileiros. Os valores padrões das taxas de juros a serem usados serão os históricos da Taxa SELIC, pois é a taxa básica de juros indexada aos títulos públicos do Tesouro Nacional. Já para a inflação, a referência utilizada foram os dados históricos do IPCA, pois é o indicador mais adequado que mede o aumento médio de preços de um conjunto de

produtos e serviços comercializados no varejo, referentes ao consumo pessoal das famílias (IBGE, 2020). Para se determinar a taxa média anual da inflação e da taxa de juros, foram utilizados os dados históricos de 2012 a 2020 como referência para o cálculo, aplicando-os na Equação 04.

Dado médio anual =
$$\left(\sqrt[n-i+1]{\prod_{i=2012}^{n=2020}(1+Dado_i)} - 1\right) \times 100\%$$
 (04)

Ao final, será calculada a taxa anual real de juros, pois essa é a taxa de juros efetiva estabelecida pelo mercado financeiro, devido às desvalorizações provocadas pela inflação no índice de correção monetária (GOMES, 2019). O procedimento de cálculo da taxa real de juros está em função da taxa de juros e da inflação, conforme Equação 05.

$$Taxa\ real\ de\ juros = \frac{Taxa\ de\ juros - Inflação}{1 + Inflação} \tag{05}$$

4.3 Composição gravimétrica média dos municípios

Para a determinação da quantidade de RSU que devem ser destinados aos processos de tratamento por biometanização, compostagem e reciclagem, deve-se ter, primeiramente, o conhecimento da composição gravimétrica dos mesmos. Para isso, realizou-se pesquisas em trabalhos acadêmicos, listados na Tabela 11, que discorrem sobre a composição gravimétrica dos RSU em municípios brasileiros. Ao todo, foram analisados estudos em 14 municípios de todas as cinco regiões geopolíticas do país, entre o período compreendido de 2009 a 2015. Além disso, considerou-se também o estudo produzido pela ABRELPE que informou a composição gravimétrica média dos RSU gerados, para o ano de 2012, em território nacional.

Tabela 11 – Estudos-base para a determinação da composição gravimétrica média. Fonte: do Autor (2021)

Autores	Municípios	Anos	Autores	Municípios	Anos
Alcântara (2010)	Cáceres – MT	2009	Souza e Araújo (2014)	Caçu – GO	2014
Rezende et al. (2013)	Jaú - SP	2010	Trentin <i>et al.</i> (2019)	Santa Cruz do Sul – RS	2014
ABRELPE (2011)	Brasil	2012	Melo (2015)	Agrestina – PE	2014
Padilha <i>et al.</i> (2012)	Irati – PR	2012	Melo (2015)	Bonito – PE	2014
Santos et al. (2013)	Apuí – AM	2012	Melo (2015)	Altinho - PE	2014
Guadagnin et al. (2014)	Criciúma – SC	2013	Melo (2015)	Belém de Maria – PE	2015
Guadagnin et al. (2014)	Jaguaruna – SC	2013	Melo (2015)	Lagoa dos Gatos – PE	2015
Guadagnin et al. (2014)	Nova Veneza – SC	2013		_	

Tendo os dados das composições gravimétricas desses estudos acadêmicos, fez-se uma média aritmética do percentual de cada categoria de RSU gerada para ter esse resultado como a composição gravimétrica média nacional. Os resíduos sólidos gerados em território nacional foram divididos em categorias e subcategorias, conforme a Tabela 12.

Tabela 12 – Categorias e subcategorias de RSU gerados no Brasil. Fonte: do Autor (2021)

Categorias	Subcategorias	Subdivisões das Subcategorias
Resíduos Orgânicos /	Resíduos Orgânicos	
Sanitários	Resíduos Sanitários	
		PET
	Diástica Dácida / Duna	PEAD
	Plástico Rígido / Duro	PP
Plásticos		PVC
		Plástico filme
	Plástico Maleável / Mole	PEBD
		Outros resíduos de plástico
Papel / Papelão	Papel	
r apei / r apeiao	Papelão	_
Metais	Metais ferrosos	
Wietais	Alumínio	_
Dagiduas Darigasas / DEEE	Resíduos Perigosos	
Resíduos Perigosos / REEE	REEE	
	Outros tipos de Categorias	
Madeira / Coco	Borracha	Compósitos / Tetra-pak
Vidro	Isopor	Resíduos de Jardinagem
Têxteis	Couro	Outros / Rejeitos

Na obtenção da composição gravimétrica média nacional, utilizou-se as médias aritméticas de todas as categorias de RSU gerados no Brasil como referência, exceto as das categorias 'Resíduos Orgânicos / Sanitários' e 'Outros / Rejeitos'. Isso se deve ao fato de que a presença da subcategoria 'Resíduos Sanitários' na caracterização dos RSU em alguns estudos-base provocava uma redução da quantidade de 'Resíduos Orgânicos'. Logo, para a determinação da geração percentual média da categoria 'Resíduos Orgânicos / Sanitários', adotou-se o procedimento da Equação 06, em que esse valor será igual à soma da média do percentual gerado da subcategoria 'Resíduos Orgânicos' com a dos 'Resíduos Sanitários'.

$$Org \hat{a}nicos / Sanit \acute{a}rios (\%) = M \acute{e}dia_{ORG \hat{A}NICOS} + M \acute{e}dia_{SANIT \acute{A}RIOS}$$
 (06)

Já para a questão da categoria 'Outros / Rejeitos', não se utilizou a média aritmética como referência, pois as variações nas porcentagens, entre 2,94 % e 29,91 %, nos estudosbase, foram elevadas pelo fato de que um maior o número de categorias e subcategorias em

algumas metodologias dos estudos-base ocasionara uma menor porcentagem de 'Outros / Rejeitos'. Além disso, ao se utilizar a média aritmética da categoria 'Outros / Rejeitos', o somatório das porcentagens de todos os tipos de RSU gerados seria superior a 100 %, logo, optou-se que o valor de referência da categoria 'Outros / Rejeitos' seria complementar para 100 % do somatório da composição gravimétrica das demais categorias, vide Equação 07.

Outros / Rejeitos (%) =
$$100 \% - \sum Demais \ categorias \ (\%)$$
 (07)

Já para a determinação da porcentagem das demais subcategorias geradas nos RSU brasileiros, adotou-se o seguinte procedimento exposto na Equação 08. Nele, calculou-se a média aritmética do percentual gerado da subcategoria em análise e dividiu esse valor pela soma das médias de todos os percentuais das subcategorias relacionadas ao mesmo grupo de categorias, multiplicando, ao final, o valor dessa divisão pelo percentual médio nacional gerado da categoria em que essa subcategoria está inserida. Essa metodologia foi adotada porque a soma das médias percentuais geradas de todas as subcategorias de um grupo não será igual à média percentual nacional da categoria em que as mesmas estejam incluídas.

$$Subcategoria~(\%) = \frac{M\acute{e}dia~(\%)_{Subcategoria}}{\sum M\acute{e}dias~(\%)_{Subcategorias~do~grupo}} \times Categoria~(\%)$$
(08)

Finalizando, vale salientar que, para o cálculo da média aritmética da categoria 'Madeira / Coco', optou-se por excluir os dados referentes às cidades pernambucanas de Agrestina, Bonito, Belém de Maria e Lagoa dos Gatos, citados no estudo de Melo (2015). Isso se deve ao fato de esses municípios possuírem elevadas taxas de geração desse tipo de RSU, destoando-se do padrão apresentado nos demais estudos-base de referência.

4.4 Estimadores dos processos de tratamento

Neste tópico, serão abordados os estimadores econômicos e de produtividade dos processos de biometanização, compostagem e reciclagem para tratamento de RSU gerados no Brasil. Esses estimadores foram desenvolvidos com base em referências bibliográficas de estudos anteriores que abordaram esses processos de tratamento citados acima e em regressão linear, sendo os mesmos adequados para o desenvolvimento desta Dissertação de Mestrado. Com isso, as análises econômicas a serem realizadas terão como referência os resultados desses estimadores calculados.

4.4.1 Biometanização

Para se poder realizar uma análise econômica do tratamento de RSU por processo de biometanização, é preciso inicialmente definir quais os tipos de resíduos sólidos que podem ser tratados por esse meio e qual a capacidade dos mesmos produzirem biogás e gerar energia. Para isso, utilizou-se a metodologia desenvolvida em Bezerra *et al.* (2020).

Inicialmente, definiu-se que os RSU gerados que poderiam passar por um processo de biometanização seriam os da categoria 'Resíduos Orgânicos / Sanitários', pois são RSU considerados putrescíveis. Após isso, foi necessário determinar a quantidade anual gerada dos mesmos, conforme a Equação 09, citada abaixo.

$$Q_{Biometaniza \xi \tilde{a}o} = \frac{I \times Pop. \times 365 \, dias}{1.000 \, kg/t} \times P_{RSO \, / \, Sanit \acute{a}rios} \tag{09}$$

Em que $Q_{Biometanização}$ representa a quantidade anual gerada de RSU que podem passar por um processo de biometanização, em t/ano; I a geração per capita de RSU em território nacional, em kg/hab./dia; Pop. a população brasileira; e $P_{RSO/Sanitários}$ o percentual de RSU que podem passar por um processo de biometanização, ou seja, RSU da categoria 'Resíduos Orgânicos / Sanitários', em relação ao total gerado no Brasil.

A seguir, fez-se o cálculo da produção de biogás anual, de modo que todos os RSU putrescíveis, gerados em nosso país, fossem destinados a um processo de tratamento por biometanização, de acordo com a Equação 10 (IPCC, 1996), exposta abaixo.

$$M_{Metano} = \left(Q_{Biomet.} \times \frac{1000 \, kg}{1 \, t}\right) \times RSUf \times FCM \times COD \times CODf \times F \times TC \quad (10)$$

Em que M_{Metano} é a produção de CH₄, em kg/ano; $Q_{Biomet.}$ a quantidade anual gerada de RSU que passarão por um processo de biometanização, em t/ano; RSUf é a fração de RSU que é depositada em locais de disposição final, que, neste caso, será igual a 1,0, pois considerou-se hipoteticamente que todos RSU gerados no Brasil serão coletados; FCM é o fator de correção de CH₄ (há valores recomendados pelo IPCC) que, neste caso, adotou-se o valor de 0,60; COD é a quantidade de carbono orgânico degradável nos RSU, em gC/g, usou-se o valor de 0,12 gC/g; CODf é a fração de COD que realmente é degradada, neste caso, adotou-se 0,77; F é a fração de CH₄ contida no biogás, esse valor foi encontrado pelo cálculo da média aritmética de estudos-base de revisão bibliográfica, resultando em 0,5982; e TC é a taxa de conversão de carbono em CH₄, adotou-se 16/12.

Logo após, fez-se a conversão da massa M_{Metano} gerada de CH₄, em kg/ano, para volume anual V_{Metano} produzido, em m^3/ano , usando-se do valor da densidade D_{Metano} desse gás igual a 0,7174 kg/m^3 , segundo a Equação 11.

$$V_{Metano} = \frac{M_{Metano}}{D_{Metano}} \tag{11}$$

Em seguida, o procedimento foi realizar o cálculo da energia elétrica possível de ser gerada com a queima do biogás, produzido pela biometanização, em função do volume de CH₄ presente, conforme a Equação 12.

$$E = V_{Metano} \times PCI \times n \times \frac{1 \, kWh}{860 \, kcal} \tag{12}$$

Em que E é a energia elétrica possível de ser gerada a partir da biometanização, em kWh/ano; V_{Metano} é o volume anual de CH₄ produzido, em m^3/ano ; PCI é o poder calorífico inferior do gás CH₄, igual a $8.500 \, kcal/m^3$; e n é a eficiência da conversão elétrica do conjunto motogerador que, neste caso, considerou-se um valor de 29,47 % de rendimento, que foi resultante da média aritmética de estudos-base de revisão bibliográfica citados nas Tabelas 13, 14 e 15.

Com o valor encontrado da energia elétrica E possível de ser gerada pelo processo de biometanização, pode-se encontrar a potência fornecida Pot por esse tipo de tratamento de RSU em função do tempo Δt de operação anual do conjunto motogerador, em h/ano, conforme a Equação 13. Foi adotado um tempo Δt de operação anual de 8.395 h/ano, equivalente a uma operação média diária de 23 horas ao longo de um ano.

$$Pot = E \div \Delta t \tag{13}$$

Para a determinação dos estimadores financeiros dos processos de tratamento por biometanização, fez-se necessária a realização de pesquisas científicas em busca de estudos de casos de análises econômicas referentes a esse tratamento ou de trabalhos acadêmicos que dissertem sobre a porcentagem de gás metano presente no biogás e sobre a eficiência de conversão elétrica do conjunto motogerador que realiza a combustão do gás CH₄. Nas Tabelas 13, 14 e 15, a seguir, expõe-se os dados importantes dos estudos encontrados nessas pesquisas científicas. Cabe destacar que foram encontradas médias aritméticas de 59,82 % para a presença de CH₄ no biogás e de 29,47 % para a eficiência da conversão elétrica do conjunto motogerador, como citado anteriormente.

Tabela 13 – Dados coletados de estudos-base sobre biometanização (Parte I). Fonte: do Autor (2021)

Parâmetros	Souza <i>et al</i> . (2004)	Salomon (2007)	Silva <i>et al</i> . (2008)	Abreu <i>et al</i> . (2009)	Cervi <i>et al</i> . (2010)
Ano	2004	2007	2008	2009	2009
Tipos de RSO	Resíduos da suinocultura	Vinhaças	RSU de uma comunidade	RSU depositados em um Aterro	Resíduos da suinocultura
Potência máxima (MW)		5,413		10	0,04
Custos iniciais (R\$)		11.994.311,01		27.151.040,00	51.537,17
Custos iniciais (R\$/kW)		2.215,83		2.715,10	1.288,43
Custos anuais (R\$)		872.189,59		2.316.825,00	11.465,37
Custos anuais (R\$/kW)		161,13		231,68	286,63
Presença de CH4 no Biogás	65 %	60 %	57,9 %	60 %	62,5 %
Eficiência do motogerador	25 %	30 %			

Tabela 14 – Dados coletados de estudos-base sobre biometanização (Parte II). Fonte: do Autor (2021)

Parâmetros	Catapan <i>et al.</i> (2012)	Carvalho <i>et al.</i> (2019)	Gartner (2015)	Martins <i>et al</i> . (2017)	Nascimento et al. (2019)
Ano	2012	2012	2015	2016	2016
Tipos de RSO	Dejetos de equinos	Biogás de RSU em geral	RSU de condo- mínios verticais	RSU depositados em um Aterro	RSU em Aterro
Potência máxima (MW)	0,08		0,001	2,5	86,3
Custos iniciais (R\$)	178.800,00		2.190,00	11.001.926,25	280.500.000,00
Custos iniciais (R\$/kW)	2.235,00	3.000,00	2.190,00	4.400,77	3.250,29
Custos anuais (R\$)	5.500,00			617.289,17	
Custos anuais (R\$/kW)	68,75			246,92	
Presença de CH ₄ no Biogás	60 %		60 %	60 %	
Eficiência do motogerador			22 %	33 %	

Tabela 15 – Dados coletados de estudos-base sobre biometanização (Parte III). Fonte: do Autor (2021)

Parâmetros	Muniz e Santos (2017)	Bezerra <i>et al</i> . (2020)	Jacobowski et al. (2020)	EPE (2018)	Bezerra <i>et al</i> . (2020)
Ano	2017	2017	2017	2018	2019

Tipos de RSO	Resíduos de restaurante universitário	RSU do Estado da Paraíba	RSU depositados em um Aterro	RSU em Aterro	Resíduos de suínos e bovinos
Potência máxima (MW)			0,096		
Custos iniciais (R\$)			506.140,15		1.869,06
Custos iniciais (R\$/kW)			5.272,29		
Custos anuais (R\$)			21.967,38		35,76
Custos anuais (R\$/kW)			228,83		
Presença de CH4 no Biogás	60 %		55,72 %	50 %	67 %
Eficiência do motogerador		40 %	26,5 %		

Com a coleta desses dados encontrados nas Tabelas 13, 14 e 15, fez-se as projeções para anos futuros, através da regressão linear dos custos iniciais e anuais de projeto por unidade de potência fornecida pelo tratamento de biometanização, em R\$/kW, em função do tempo, em anos. Essas projeções são imperiosas para o desenvolvimento das análises econômicas referentes a esse processo de tratamento de RSU, pois a partir da potência fornecida pela queima do biogás, poder-se-á estimar os custos envolvidos nesses procedimentos no Brasil.

Em sequência, o próximo procedimento foi determinar o aumento médio anual dos custos iniciais e anuais de projeto por unidade de potência fornecida por esse tratamento. O cálculo do aumento médio anual foi feito para quatro períodos de cinco anos consecutivos, iniciando-se em 2022, ano dos investimentos iniciais, e se encerrando em 2042, quando se completa o tempo máximo de vida útil de projeto de 20 anos. Similarmente a Equação 03, encontra-se a fórmula para o cálculo do aumento médio anual para um ciclo de cinco anos, em que n será o ano inicial desse ciclo, conforme Equação 14.

Aumento médio anual =
$$\left(\sqrt[5]{\left(1 + \frac{Projeção_{n+5} - Projeção_n}{Projeção_n}\right)} - 1\right) \times 100 \%$$
 (14)

Por fim, buscou-se encontrar o valor da tarifa de energia elétrica média, no Brasil, sem contemplar tributos e outras taxas afins, para se desenvolver as análises econômicas. Segundo a ANEEL (2021), essa tarifa é de R\$ 0,575 / kWh, atualizada em 04 de fevereiro de 2021. Com isso, adotou-se esse valor como referência para o ano de 2021 e a inflação média anual calculada como referência para o aumento anual da tarifa de energia elétrica.

4.4.2 Compostagem

Para a determinação dos estimadores financeiros dos processos de tratamento por compostagem, fez-se necessária a realização de pesquisas bibliográficas em busca de estudos de casos de análises econômicas referentes a esse tipo de tratamento. Na Tabela 16, expõe-se os dados importantes dos trabalhos acadêmicos encontrados nessas pesquisas.

Tabela 16 – Dados coletados de estudos-base sobre compostagem. Fonte: do Autor (2021)

Parâmetros	Pires (2011)	Gomes (2012)	Borsato (2015)	Garré et al. (2017)	Bergi (2018)
Tipo de RSO	RSU de um	RSU de um	RSU de um	RSU de um	Resíduos de
	município	município	município	município	ETE 2018
Ano	2011	2011	2015	2016	2018
Coleta de RSU (t/dia)	30	40,15	50	200	6,74918
Dias do mês de Coleta	24	24	22	30	30
Coleta de RSU (t/mês)	720	963,6	1100	6000	202,4754
RSU compostáveis	60 %	79 %	100 %	55 %	100 %
RSU compos- táveis (t/ano)	5184	9100,8	13200	39600	2429,7048
Vida útil de projeto (anos)	10	10	10	10	10
Custos iniciais de projeto (R\$)	1.006.122,16	1.968.021,24	2.853.750,00	7.465.506,67	565.480,93
Custos iniciais de projeto (R\$/t/ano)	194,08	216,25	216,19	188,52	232,74
Lucro Líquido após o IR no 1º Ano (R\$)	208.401,00	Valor descartado	491.982,00	Valor descartado	131.232,82
Lucro Líquido após o IR no 1º Ano (R\$/t/ano)	40,20	Valor descartado	37,27	Valor descartado	54,01
Lucro Líquido após o IR nos demais anos (R\$)	291.707,00	442.799,17	975.642,00	Valor descartado	159.824,82
Lucro Líquido após o IR nos demais anos (R\$/t/ano)	56,27	48,65	73,91	Valor descartado	65,78
Lucro Líquido após o IR no último ano (R\$)	426.425,00	442.799,17	1.024.393,00	3.413.114,37	199.891,12
Lucro Líquido após o IR no último ano (R\$/t/ano)	82,26	48,65	77,61	86,19	82,27

Com a coleta desses dados encontrados na Tabela 16, fez-se as projeções, a partir do ano de 2022, através da regressão linear dos custos iniciais e dos lucros líquidos do primeiro, último e demais anos, após o IR, por geração anual de resíduos sólidos compostáveis, em R\$/t/ano, em função do tempo, em anos. As projeções foram calculadas para 2022 em diante, porque ele será o ano hipotético da realização dos investimentos iniciais para o desenvolvimento, em território nacional, dos processos de tratamentos citados nesta Dissertação de Mestrado. Essas projeções são fundamentais para o desenvolvimento das análises econômicas referentes a esse processo de tratamento de RSU, pois a partir dos estimadores projetados e da quantidade de RSU compostáveis gerados, poder-se-á estimar os custos envolvidos nesses procedimentos.

Na realização da regressão linear, cabe-se destacar que alguns dados da Tabela 16 não foram considerados para esse procedimento. Em Gomes (2012), por exemplo, o valor do lucro líquido, após o IR, do primeiro ano não apresentou similaridade com os dos outros quatro trabalhos, em que, o lucro líquido do primeiro ano é menor em relação aos outros anos, pois as usinas de compostagem estão iniciando a operação e não atingiram a capacidade máxima de produção. No tangente ao lucro líquido do último ano, optou-se por não utilizar a regressão linear, pois houve grandes desajustes da linha de tendência do gráfico. Isso se deve porque alguns estudos não avaliaram o valor financeiro residual dos equipamentos e da estrutura da usina de compostagem, que poderiam ser vendidos após o uso, gerando receitas. Então, optou-se por usar a média da razão entre o lucro líquido do ano de maior ganho pelo do de menor ganho dos estudos de Pires (2011), Gomes (2012) e Borsato (2015) para se estimar o lucro líquido do último ano. Não foram considerados os valores de Garré et al. (2017) e Bergi (2018), pois as relações entre o lucro líquido do ano de maior e menor ganho desses estudos apresentaram uma diferença percentual superior a 25 % em comparação à média dos outros três trabalhos. Excetuando-se Gomes (2012), em que se adotou a média dos dois anos de menor lucro líquido como sendo o lucro de menor ganho, os maiores lucros líquidos encontrados foram para o último ano de vida útil do projeto, enquanto os menores, para o primeiro.

Quanto ao lucro líquido dos demais anos, vale salientar que, em Gomes (2012), utilizou-se a média de todos os anos de operação em que não houve investimentos ou desmobilizações de ativos, pois os valores não eram constantes, porém muito próximos, já que a diferença percentual máxima entre eles era inferior a 0,2 %. Já em Borsato (2015), optou-se por usar a média aritmética entre o segundo e o último ano, pois, nesse caso, o valor do lucro líquido, após o IR, aumentava linearmente ao longo dos anos.

Ainda na Tabela 16, observa-se que, em Garré *et al.* (2017), diferentemente dos custos iniciais de projeto por unidade de RSU tratado, os dados dos lucros líquidos, após o IR, do primeiro e demais anos foram desconsiderados para o procedimento da regressão linear. Isso se deve ao fato de que eles desajustavam a linha de tendência do gráfico, provocando distorções significativas e afetando as projeções.

Por fim, para poder desenvolver uma análise econômica do tratamento de RSU por processo de compostagem, é preciso determinar quais os tipos de resíduos sólidos que podem ser tratados por esse meio. Definiu-se que os RSU gerados que poderiam passar por processo de compostagem seriam os da categoria 'Resíduos Orgânicos / Sanitários', igualmente aos definidos para a biometanização, pois são resíduos sólidos considerados putrescíveis. Portanto, a quantidade anual gerada de RSU que podem ser tratados por um processo de compostagem será igual aos que podem ser tratados pela biometanização. Essa quantidade foi calculada anteriormente pela Equação 09.

4.4.3 Reciclagem

Inicialmente, para poder se realizar uma análise econômica do tratamento de RSU por reciclagem, é preciso definir quais são os tipos de resíduos sólidos recicláveis. Ficou determinado que os RSU das categorias 'Plásticos', 'Papel / Papelão', 'Metais' e 'Vidro' serão considerados recicláveis. Após isso, deve-se determinar a quantidade anual gerada dos mesmos, conforme a Equação 15, citada abaixo.

$$Q_{Categoria\ de\ Reciclável} = \frac{I \times Pop. \times 365\ dias}{1.000\ kg/t} \times P_{Categoria\ de\ Reciclável} \tag{15}$$

Em que $Q_{Categoria\ de\ Reciclável}$ representa a quantidade anual gerada de RSU da categoria de reciclável em análise, em t/ano; I a geração per capita de RSU no Brasil, em kg/hab./dia; Pop. a população brasileira; e $P_{Categoria\ de\ Reciclável}$ o percentual de RSU da categoria de reciclável em análise.

Em seguida, fez-se uma pesquisa para coletar os preços de revenda dos materiais recicláveis. Para esta Dissertação de Mestrado, adotou-se os seguintes valores de mercado para os resíduos recicláveis, conforme a Tabela 17. Ressalta-se que os preços de mercado do 'Papel' e do 'Plástico Rígido / Duro' foram obtidos através de médias ponderadas de resíduos recicláveis que fazem parte dessas subcategorias.

Tabela 17 – Dados coletados de pesquisas de mercado de material reciclável. Fonte: do Autor (2021)

Categoria de RSU	Subcategoria de RSU	Preço de mercado (R\$/t)	Fonte
Plásticos	Plástico Rígido / Duro	822,95	Porto (2019)
	Plástico Maleável / Mole	800,00	Feitosa et al. (2018)
Danal / Danalão	Papel	482,90	Porto (2019)
Papel / Papelão	Papelão	380,00	Porto (2019)
Matais	Metais ferrosos	100,00	Porto (2019)
Metais	Alumínio	3.900,00	Porto (2019)
Vidro		50,00	Porto (2019)

Destaca-se que os valores de mercados da fonte Porto (2019) são referentes ao ano de 2018, enquanto que o de Feitosa *et al.* (2018) a 2016. De modo a atualizar os valores de mercado ao longo do tempo, fez-se a correção dos mesmos pela inflação até o ano de 2020. A partir disso, adotou-se a inflação média anual calculada como referência para o aumento anual dos preços de mercados das subcategorias de RSU recicláveis.

Após isso, encontrou-se dados referentes aos custos da coleta seletiva em relação à coleta convencional. Na Tabela 18, observa-se os dados referentes aos últimos cinco anos com informações. Para o desdobramento desta Dissertação de Mestrado, optou-se por usar a média aritmética dos mesmos como um estimador de custos da coleta seletiva em relação à coleta convencional para o desenvolvimento das análises econômicas para a reciclagem.

Tabela 18 – Custos da coleta seletiva em relação à coleta convencional. Fonte: CEMPRE (2018)

-	Anos	2010	2012	2014	2016	2018	Média
	Relação	4,0	4,5	4,6	4,1	4,6	4,36

Portanto, para se ter o valor do custo CU_{CS} da coleta seletiva por unidade de massa coletada, em R\$/t, é necessário fazer o seguinte procedimento, descrito na Equação 16, em função do custo CU_{CC} da coleta convencional por unidade de massa coletada, em R\$/t.

$$CU_{CS} = 4.36 \times CU_{CC} \tag{16}$$

Por fim, deve-se calcular o estimador da quantidade anual gerada de todos os RSU recicláveis, conforme a Equação 17 abaixo, em que $Q_{RSU\ recicláveis}$ é a quantidade anual gerada de RSU recicláveis, em t/ano, e $Q_{Categoria\ de\ Reciclável}$ é a quantidade anual gerada de cada categoria de RSU reciclável, em t/ano.

$$Q_{RSU \ recicl\'{a}veis} = \sum Q_{Categoria \ de \ Recicl\'{a}vel}$$
 (17)

4.5 Análises econômicas

Com os estimadores dos processos de tratamento de RSU calculados, tem-se os parâmetros técnicos concluídos que possibilitam desenvolver todas as análises econômicas. Neste tópico, serão descritos os procedimentos de tais análises para a coleta de RSU e demais serviços de limpeza urbana, a biometanização, a compostagem e a reciclagem.

4.5.1 Coleta de RSU e demais serviços de limpeza urbana

Inicialmente, coletou-se os dados referentes às projeções de população, taxa de juros, recursos aplicados em uma hipotética coleta total de RSU e recursos aplicados nos demais serviços de limpeza urbana, com seus respectivos aumentos médios anuais durante períodos de cinco anos consecutivos calculados conforme a Equação 03. Em seguida, fezse os cálculos dos FVP (Fatores de Valores Presentes) dos recursos aplicados na coleta de RSU e nos demais serviços de limpeza urbana para cada período de cinco anos consecutivos entre os anos de 2022 e 2042, segundo a Equação 18 abaixo.

$$FVP = \frac{(1+e)^n - (1+i)^n}{(1+e) - (1+i)} \times \frac{1}{(1+i)^n}$$
(18)

Em que FVP é o Fator de Valor Presente; e é o aumento médio anual dos recursos aplicados, em %; i é a taxa de juros projetada, adotou-se um valor de 8,96 %; e n é o número de anos do período em análise que, neste caso, é de 5 anos.

Logo após, o procedimento seguinte seria o cálculo dos VP referentes a cada período de cinco anos consecutivos, conforme desenvolvimento das Equações 19 e 20.

$$VP = FVP \times R_1 \tag{19}$$

$$VP = FVP \times [R_0 \times (1+e)] \tag{20}$$

Em que VP é o Valor Presente para o ano imediatamente anterior ao início do período de cinco anos consecutivos em análise, em R\$; e R_1 é os recursos aplicados no primeiro ano da sequência de cinco anos consecutivos em análise, em R\$, que é matematicamente igual ao produto de (1 + e) por R_0 , que é os recursos aplicados no último ano anterior ao início do período de cinco anos consecutivos, em R\$.

Posteriormente, fez-se as correções de todos os VP para 2022, o ano determinado para a realização dos investimentos iniciais para se desenvolver os processos de tratamento de RSU aqui em análise, conforme a Equação 21.

$$VP_0 = \frac{VP}{(1+i)^{m-2022}} \tag{21}$$

Em que VP_0 é o Valor Presente corrigido para o ano de 2022 do VP e m é o ano imediatamente anterior ao início do período de cinco anos consecutivos da análise.

Ao final, calculou-se o VP dos recursos aplicados na coleta de RSU e nos demais serviços de limpeza urbana para tempos de vida útil de projetos, iniciados no ano de 2022, de 5, 10, 15 e 20 anos, segundo a Equação 22, em que VP_{TVU} é o Valor Presente do projeto com tempo de vida útil de (m-2022+5) anos.

$$VP_{TVU} = \sum_{2022}^{m-2022+5} VP_0 \tag{22}$$

4.5.2 Biometanização

Para a realização da análise econômica do processo de tratamento de RSU por biometanização, utilizar-se-á dos conceitos de FVP e VP, citados no tópico anterior e descritos pelas Equações 18, 19, 20, 21 e 22. Além disso, necessitar-se-á dos estimadores desse processo de tratamento, descritos no tópico 4.4.1. Com isso, permite-se calcular os custos iniciais de projetos de biometanização, em função do tempo de vida útil, conforme a Equação 23.

$$CI = CIUP \times Pot_{M\acute{A}X}. \tag{23}$$

Em que CI é o custo inicial do projeto de biometanização, em R\$ para o VP do ano de 2022, em função do tempo de vida útil; CIUP é o custo inicial projetado por unidade de potência máxima a ser fornecida, em R\$/kW, calculado através de regressão linear; e $Pot_{M\acute{A}X.}$ é a potência máxima requerida, em kW, durante todo o tempo de vida útil de projeto. Vale ressaltar que a $Pot_{M\acute{A}X.}$ sempre aumentará em função do tempo, pois a geração de RSU tende a crescer, logo, a $Pot_{M\acute{A}X.}$ será a potência requerida do último ano do tempo de vida útil.

Após encontrar os custos iniciais de projeto, o próximo objetivo foi a realização dos cálculos dos custos anuais, conforme descrito pela Equação 24.

$$CA = CAUP \times Pot_{MAX} \tag{24}$$

Em que CA é o custo anual de projeto de biometanização, em R\$, e CAUP é o custo anual projetado, em função do tempo, em anos, por unidade de potência máxima a ser fornecida durante todo o tempo de vida útil, em R\$/kW, calculado através de uma regressão linear.

Em seguida, com os resultados das projeções dos custos anuais encontrados pelo método da regressão linear, fez-se os cálculos dos aumentos médios anuais dos mesmos para os quatro períodos de cinco anos consecutivos contados a partir de 2022, segundo procedimento adotado pela Equação 03. Depois disso, pode-se calcular os FVP dos custos anuais de projeto para cada período de cinco anos consecutivos entre os anos de 2022 e 2042, similarmente à Equação 18, conforme descrito na Equação 25.

$$FVP = \frac{(1+a)^n - (1+i)^n}{(1+a) - (1+i)} \times \frac{1}{(1+i)^n}$$
(25)

Em que FVP é o Fator de Valor Presente; a é o aumento médio anual dos CA, em %; i é a taxa de juros projetada, adotou-se um valor de 8,96 %; e n é o número de anos do período em análise que, neste caso, é de 5 anos. A partir disso, pode-se encontrar os VP dos custos anuais de projeto de biometanização similarmente às rotinas de cálculos descritas pelas Equações 19, 20, 21 e 22.

Posteriormente, buscou-se calcular as receitas arrecadadas com a venda de energia elétrica gerada pelos tratamentos de RSU putrescíveis por meio da biometanização. Para isso, buscou-se o preço da tarifa elétrica média brasileira calculada pela ANEEL, que, segundo a última atualização de 04 de fevereiro de 2021, custava R\$ 0,575 / kWh. Então, adotou-se esse valor como referência para o ano de 2021 e a inflação projetada para o aumento anual médio da tarifa de energia elétrica. Portanto, calculou-se a tarifa adotada TEE_{2022} para o ano de 2022, em R\$/kWh, conforme a Equação 26, em que TEE_{2021} é a tarifa de energia elétrica para o ano de 2021, também em R\$/kWh, e f é a taxa de inflação projetada anual, em %.

$$TEE_{2022} = TEE_{2021} \times (1+f)$$
 (26)

Logo após, o seguinte procedimento foi o cálculo dos FVP das receitas oriundas da venda de energia elétrica gerada pela biometanização. Para isso, deve-se considerar a taxa de juros projetada e os reajustes da tarifa de energia elétrica pela inflação, bem como o

aumento da produção de energia devido ao crescimento de RSU gerados. Logo, para os cálculos dos FVP referentes à tarifa de energia, adotou-se o procedimento da Equação 27.

$$FVP = \frac{[(1+f)\times(1+g)]^n - [1+i]^n}{[(1+f)\times(1+g)] - [1+i]} \times \frac{1}{[1+i]^n}$$
(27)

Em que FVP é o Fator de Valor Presente; f é a taxa de inflação projetada anual, em %; g é o aumento médio anual da geração de RSU no Brasil, em %; i é a taxa de juros projetada, adotou-se um valor de 8,96 %; e n é o número de anos do período em análise que, neste caso, é de 5 anos. A partir disso, pode-se calcular os VP das receitas oriundas da venda de energia elétrica gerada pela biometanização similarmente aos procedimentos adotados nas Equações 19, 20, 21 e 22.

A próxima etapa desta análise econômica foi calcular os VPL, para cada tempo de vida útil de projeto, com todos os VP referentes ao ano de 2022, vide Equação 28.

$$VPL = VP_{Energia} - (VP_{CA} + CI) (28)$$

Em que VPL é o Valor Presente Líquido da análise econômica, em R\$; $VP_{Energia}$ é o VP de todas as receitas arrecadadas com a venda de energia elétrica ao longo do tempo de vida útil do projeto, em R\$; VP_{CA} é o VP de todos os custos anuais para a manutenção dos sistemas de tratamento ao longo do tempo de vida útil do projeto, em R\$; e CI são os custos iniciais do processo de tratamento de RSU por biometanização, em R\$.

Quanto à viabilidade econômica do processo de tratamento de RSU, deve-se avaliar os VPL das análises econômicas. Quando os mesmos apresentarem um saldo positivo, é porque se trata de um processo de tratamento viável economicamente, enquanto que, negativo, inviável, e zero, indiferente.

Ato contínuo, calculou-se a Relação Benefício / Custo das análises econômicas de tratamentos de RSU por processo de biometanização, conforme a Equação 29. Quando o valor dessa relação é superior a 1,0, refere-se a um tratamento com viabilidade econômica, enquanto que, inferior a 1,0, com inviabilidade, e igual a 1,0, indiferente.

$$Relação Benefício / Custo = \frac{VP_{Energia}}{VP_{CA} + CI}$$
 (29)

Seguidamente, objetivou-se o cálculo dos TRC, em anos, para cada tempo de vida útil abordado. O TRC é o período necessário para se zerar o VPL do projeto. Observou-se que, para todas as situações, o TRC era inferior a cinco anos, já que, ao final do primeiro

quinquênio de todos os tempos de vida útil de projeto, os VPL apresentavam-se positivos. Logo, utilizou-se o recurso Solver, da ferramenta Microsoft Excel, para resolver a Equação 31, gerada a partir da Equação 30, a fim de encontrar os TRC, com a restrição de que os mesmos se situariam num intervalo de 0 a 5 anos, quando os VPL estiverem zerados.

$$VPL = VP_{Energia} - (VP_{CA} + CI) = 0 (30)$$

$$\frac{VP_E}{FVP_E} \times \frac{[(1+f)\times(1+g)]^{TRC} - [1+i]^{TRC}}{\{[(1+f)\times(1+g)] - [1+i]\}\times[1+i]^{TRC}} - \frac{VP_{CA}}{FVP_{CA}} \times \frac{(1+a)^{TRC} - (1+i)^{TRC}}{[(1+a)-(1+i)]\times(1+i)^{TRC}} - CI = 0 \quad (31)$$

Em que VP_E é o VP das receitas arrecadas com a venda de energia elétrica dos primeiros cinco anos do tempo de vida útil de projeto; FVP_E é o FVP das receitas arrecadas com a venda de energia elétrica dos primeiros cinco anos do tempo de vida útil de projeto; f é a taxa de inflação projetada anual; g é o aumento médio anual da geração de RSU no Brasil; i é a taxa de juros projetada; VP_{CA} é o VP dos custos anuais dos primeiros cinco anos do tempo de vida útil de projeto; FVP_{CA} é o FVP dos custos anuais dos primeiros cinco anos do tempo de vida útil de projeto; a é o aumento médio anual dos primeiros cinco anos do tempo de vida útil de projeto dos custos anuais projetados por unidade de potência máxima a ser fornecida durante todo o tempo de vida útil; e CI é o custo inicial de projeto de tratamento de RSU putrescíveis por meio da biometanização.

Em sequência, buscou-se calcular as TIR para cada tempo de vida útil abordado. A TIR é a taxa de juros em que se zera o VPL do projeto. Quando a TIR é superior à taxa de juros projetada ao ano, significa que o projeto para tratamento de RSU é economicamente atrativo, caso seja inferior, não seria atrativo, e caso igual, indiferente. Cabe destacar que, para essas análises econômicas, considerou-se que a taxa de juros projetada ao ano seria equivalente à TMA. Então, para se encontrar os valores das TIR, utilizou-se o recurso Solver, da ferramenta Microsoft Excel, para forçar o zeramento dos VPL, variando-se a taxa de juros projetada ao ano entre 0 % e 200 % durante esse processo. Zerados os VPL, encontram-se as TIR para o processo de tratamento de RSU em análise.

Por fim, a última fase da análise econômica da biometanização foi calcular o tempo mínimo de operação do conjunto motogerador para que esse processo de tratamento fosse viável economicamente. Observa-se que, com a diminuição do tempo anual de operação do conjunto motogerador, a potência elétrica a ser fornecida pelo sistema deverá aumentar, o que elevaria os custos iniciais e anuais de projeto, para que haja a produção máxima de energia elétrica gerada por tipo desse tratamento, conforme pode ser notado pelas relações das Equações 13, 23 e 24. Portanto, para se encontrar os valores dos tempos mínimos de

operação do conjunto motogerador, em função do tempo de vida útil de projeto, para que o processo de tratamento por biometanização seja viável economicamente, utilizou-se o recurso Solver, da ferramenta Microsoft Excel. Nele, forçou-se o zeramento dos VPL, que consequentemente resultaram em uma Relação Benefício / Custo igual 1,0, um TRC igual ao tempo de vida útil de projeto e uma TIR igual à taxa de juros projetada, variando-se o tempo Δt de operação anual do conjunto motogerador numa faixa de 0 a 8.760 h/ano. Zerados os VPL, acham-se os tempos mínimos de operação do conjunto motogerador para que o processo de tratamento por biometanização seja viável economicamente.

4.5.3 Compostagem

Para a realização da análise econômica dos processos de tratamento de RSU por compostagem, utilizar-se-á dos conceitos de FVP e VP, conforme descritos pelas Equações 18, 19, 20, 21 e 22. Ainda, necessitar-se-á dos estimadores desse processo de tratamento, descritos no tópico 4.4.2. Com isso, permite-se calcular os custos iniciais de projetos de compostagem, em função do tempo de vida útil, vide Equação 32.

$$CI = CIGA \times Q_{Compostagem_{M\acute{A}X}}.$$
 (32)

Em que CI é o custo inicial do projeto de compostagem, em R\$ para o VP do ano de 2022, em função do tempo de vida útil; CIGA é o custo inicial projetado por quantidade anual gerada de RSU que podem passar por um processo de compostagem, em R\$/t/ano, que foi calculado através de regressão linear; e $Q_{Compostagem_{M\acute{A}X}}$ é a geração anual máxima de RSU compostáveis, em t/ano, durante todo o tempo de vida útil de projeto. Realça-se que a $Q_{Compostagem_{M\acute{A}X}}$ sempre aumentará em função do tempo, pois a geração de RSU tende a crescer, logo, a $Q_{Compostagem_{M\acute{A}X}}$ será a geração anual de RSU compostáveis do último ano do tempo de vida útil.

Após encontrar os custos iniciais, o próximo objetivo foi a realização dos cálculos dos lucros líquidos, após o IR, do primeiro ano de projeto, conforme a Equação 33.

$$LL_{2023} = \frac{LLPGA_{2022} \times Q_{Compostagem_{2022}} \times (1+g)}{1+i}$$
(33)

Em que LL_{2023} é o lucro líquido, após o IR, do primeiro ano de projeto, em R\$ para o VP do ano de 2022; $LLPGA_{2022}$ é o lucro líquido, após o IR, projetado para o primeiro

ano de projetos iniciados em 2022 por quantidade anual gerada de RSU que podem passar por um processo de compostagem, em R\$/t/ano, que foi calculado através de regressão linear; $Q_{Compostagem_{2022}}$ é a geração anual de RSU compostáveis para o ano de 2022, em t/ano; g é o aumento médio anual da geração de RSU no Brasil; e i é a taxa de juros projetada, adotou-se um valor de 8,96 %.

Em seguida, buscou-se calcular os lucros líquidos, após o IR, do último ano dos tempos de vida útil de projeto, corrigidos para o VP de 5 anos anteriores, vide Equação 34.

$$LLUA = \frac{LLPUAGA_{u-10} \times Q_{Compostagem_u}}{(1+i)^5}$$
(34)

Em que LLUA é o lucro líquido, após o IR, do último ano de projeto, em R\$ para o VP de 5 anos anteriores; $LLPUAGA_{u-10}$ é o lucro líquido, após o IR, projetado para o último ano por quantidade anual gerada de RSU que podem passar por um processo de compostagem, em R\$/t/ano, que foi calculado através de uma relação com um fator de multiplicação; $Q_{Compostagem_u}$ é a geração anual de RSU compostáveis para o último ano de projeto, em t/ano; e i é a taxa de juros projetada, adotou-se um valor de 8,96%. Destaca-se que, para se achar o valor de $LLPUAGA_{u-10}$, empregou-se os dados referentes a projetos de compostagens com tempo de vida útil de dez anos e, portanto, a projeção deve usar o valor do último ano inferior a 10 na equação de estimativa do $LLPUAGA_{u-10}$.

Após encontrar os valores dos lucros líquidos, após o IR, do primeiro e último ano, fez-se os cálculos para se achar os valores dos demais anos, segundo a Equação 35.

$$LLDA_n = LLPDAGA_{n-2} \times Q_{Compostagem_n}$$
(35)

Em que $LLDA_n$ é o lucro líquido, após o IR, dos demais anos de projeto, em R; $LLPDAGA_{n-2}$ é o lucro líquido, após o IR, projetado para os demais anos por quantidade anual gerada de RSU que podem passar por um processo de compostagem, em R\$/t/ano, que foi calculado através de regressão linear; e $Q_{Compostagem_n}$ é a geração anual de RSU compostáveis para os demais anos de projeto, em t/ano. Destaca-se que, para a regressão linear do $LLPDAGA_{n-2}$, utilizou-se de dados referentes a dois anos posteriores ao ano de investimentos iniciais e, portanto, a projeção deve usar o valor do ano em análise inferior a dois na equação da regressão linear.

Logo após, fez-se os cálculos dos FVP dos lucros líquidos, após o IR, para cada período de cinco anos consecutivos entre os anos de 2022 e 2042, segundo a Equação 36.

$$FVP = \frac{(1+l)^p - (1+i)^p}{(1+l) - (1+i)} \times \frac{1}{(1+i)^p}$$
(36)

Em que FVP é o Fator de Valor Presente; l é o aumento médio anual dos lucros líquidos, após o IR, dos demais anos durante o quinquênio em análise, em %; i é a taxa de juros projetada, adotou-se um valor de 8,96 %; e p é o número de anos do período em análise que, neste caso, é de 5 anos.

Ato contínuo, realizou-se os cálculos dos VP, para o ano anterior ao início do quinquênio, dos lucros líquidos, após o IR, para cada um dos quatro períodos de cinco anos consecutivos de todos os tempos de vida útil possíveis. Para a situação em que o tempo de vida útil seja de cinco anos, o cálculo do VP será de acordo com a Equação 37.

$$VP = FVP \times LLDA_{2022} \times (1+l) + LL_{2023} - \frac{LLDA_{2022} \times (1+l)}{1+i} + LLUA - \frac{LLDA_{2022} \times (1+l)^5}{(1+i)^5}$$
(37)

Já para a situação em que o tempo de vida útil for superior a cinco anos, o cálculo do VP do primeiro quinquênio será realizado de conforme a Equação 38.

$$VP = FVP \times LLDA_{2022} \times (1+l) + LL_{2023} - \frac{LLDA_{2022} \times (1+l)}{1+i}$$
(38)

Enquanto que, para a mesma situação de tempo de vida útil superior a cinco anos, o cálculo do VP do último quinquênio será realizado segundo a Equação 39.

$$VP = FVP \times LLDA_{u-5} \times (1+l) + LLUA - \frac{LLDA_{u-5} \times (1+l)^5}{(1+i)^5}$$
(39)

Em que u é o ano de término do tempo de vida útil de projeto. Já na situação de tempo de vida útil superior a dez anos, o cálculo dos VP dos quinquênios intermediários, ou seja, nem o primeiro e nem o último, será realizado de acordo com a Equação 40.

$$VP = FVP \times LLDA_n \times (1+l) \tag{40}$$

Posteriormente, fez-se as correções de todos os VP para 2022, o ano determinado para a realização dos investimentos iniciais para se desenvolver os processos de tratamento de RSU por compostagem, conforme a Equação 41.

$$VP_0 = \frac{VP}{(1+i)^{n-2022}} \tag{41}$$

Em que VP_0 é o Valor Presente corrigido para o ano de 2022 do VP e n é o ano imediatamente anterior ao início do período de cinco anos consecutivos da análise.

Depois, calculou-se os somatórios dos VP dos lucros líquidos anuais, após o IR, para todos os tempos de vida útil de projetos, segundo a Equação 42, em que VP_{TVU} é o Valor Presente, para o ano de 2022, dos somatórios lucros líquidos anuais, após o IR, de projetos com um tempo de vida útil de (n-2022+5) anos.

$$VP_{TVII} = \sum_{2022}^{n-2022+5} VP_0 \tag{42}$$

A próxima etapa desta análise econômica foi calcular os VPL dos processos de tratamento de RSU putrescíveis por compostagem, para cada tempo de vida útil de projeto, com todos os VP referentes ao ano de 2022, de acordo com a Equação 43.

$$VPL = VP_{TVII} - CI \tag{43}$$

Vale ressaltar que, quando os VPL apresentam um saldo positivo, trata-se de um tratamento viável economicamente, enquanto que, negativo, inviável, e zero, indiferente.

Logo após, foram calculadas as Relações Lucro Líquido / Custo Inicial das análises econômicas de tratamentos de RSU por processo de compostagem, segundo a Equação 44. Quando o valor dessa relação é superior a 1,0, refere-se a um tratamento com viabilidade econômica, enquanto que, inferior a 1,0, com inviabilidade, e igual a 1,0, indiferente.

$$Relação\ Lucro\ L\'iquido\ /\ Custo\ Inicial = \frac{VP_{TVU}}{CI} \tag{44}$$

Similarmente às análises econômicas realizadas para a biometanização, objetivouse seguidamente os cálculos dos TRC, em anos, para cada tempo de vida útil de projeto. Constatou-se que, para todas as situações, o TRC era inferior a cinco anos, já que, ao final do primeiro quinquênio de todos os tempos de vida útil de projeto, os VPL apresentavam-se positivos. Portanto, utilizou-se o recurso Solver, da ferramenta Microsoft Excel, para solucionar a Equação 46, gerada a partir da Equação 45, com a finalidade de encontrar os TRC, com a restrição de que os mesmos se situariam num intervalo de 0 a 5 anos, quando os VPL estiverem zerados. Todavia, para o tempo de vida útil de 5 anos, a restrição para o TRC foi o intervalo entre 0 e 4 anos, pois, na Equação 46, não se utilizou fatores referentes ao lucro líquido, após o IR, do último ano do tempo de vida útil de projeto.

$$VPL = VP_{TVII} - CI = 0 (45)$$

$$\frac{\left[(1+l)^{TRC}-(1+i)^{TRC}\right]\times LLDA_{2022}\times(1+l)}{\left[(1+l)-(1+i)\right]\times(1+i)^{TRC}}+LL_{2023}-\frac{LLDA_{2022}\times(1+l)}{1+i}-CI=0 \tag{46}$$

Por fim, buscou-se calcular as TIR para cada tempo de vida útil. Reafirma-se que a TIR é a taxa de juros em que se zera o VPL do projeto e que, quando a TIR é maior que a taxa de juros projetada, significa que o projeto para tratamento de RSU por compostagem é economicamente atrativo, se menor, não seria atrativo, e caso igual, indiferente. Além disso, vale ressaltar que se considerou a taxa de juros projetada ao ano como a TMA. Logo, para se encontrar os valores das TIR, utilizou-se o recurso Solver, da ferramenta Microsoft Excel, para forçar o zeramento dos VPL, variando-se a taxa de juros projetada ao ano entre 0 % e 100 % durante esse processo. Zerados os VPL, encontram-se as TIR para o processo de tratamento de RSU por compostagem.

4.5.4 Comparação entre Biometanização e Compostagem

Findadas as análises econômicas dos processos de tratamento de RSU putrescíveis por biometanização e compostagem, objetivou-se realizar uma comparação entre os dois. Então, buscou-se encontrar os valores dos tempos mínimos de operação anual do conjunto motogerador para que o processo de tratamento de RSU por meio da biometanização seja mais viável economicamente em relação ao de compostagem. Para isso, primeiramente, teve-se de adotar um novo parâmetro para a biometanização, que seria a Relação Lucro Líquido / Custo Inicial, calculada conforme a Equação 47.

$$Relação\ Lucro\ L\'iquido\ /\ Custo\ Inicial = \frac{VP_{Energia} - VP_{CA}}{CI} \tag{47}$$

Em que $VP_{Energia}$ é o VP de todas as receitas arrecadadas com a venda de energia elétrica gerada a partir do processo de tratamento de RSU putrescíveis por biometanização ao longo de todo o tempo de vida útil do projeto, em R\$; VP_{CA} é o VP de todos os custos anuais para a manutenção dos sistemas de tratamento por biometanização ao longo de todo o tempo de vida útil do projeto, em R\$; e CI são os custos de investimentos iniciais do processo de tratamento de RSU putrescíveis por biometanização, em R\$.

Então, para se desenvolver essa comparação econômica e encontrar os valores dos tempos mínimos de operação anual do conjunto motogerador, em função do tempo de vida útil de projeto, para que o processo de tratamento por biometanização seja mais viável economicamente em relação à compostagem, utilizou-se o recurso Solver, da ferramenta Microsoft Excel. Nele, forçou-se que a Relação Lucro Líquido / Custo Inicial do processo

de tratamento por biometanização fosse igual ao do processo de compostagem, variando-se o tempo Δt de operação anual do conjunto motogerador num intervalo de 0 a 8.760 h. Igualadas as duas Relações Lucro Líquido / Custo Inicial, acham-se os tempos mínimos de operação anual do conjunto motogerador para que o processo de tratamento de RSU por biometanização seja mais viável economicamente em relação ao de compostagem. Isso ocorre porque, com a diminuição do tempo anual de operação do conjunto motogerador, a potência elétrica a ser fornecida pelo sistema deverá aumentar, o que elevaria os custos iniciais e anuais de projeto, para que haja a produção máxima de energia elétrica gerada pelos processos de tratamento de RSU putrescíveis por biometanização, conforme pode ser observado nas relações das Equações 13, 23 e 24.

Em seguida, com os tempos mínimos de operação anual do conjunto motogerador da biometanização calculados, buscou-se encontrar os valores dos TRC para cada tempo de vida abordado. Para isso, usou-se novamente o recurso Solver, da ferramenta Microsoft Excel, para resolver as Equações 30 e 31, com a mesma restrição de que os TRC deveriam se situar num intervalo de 0 a 5 anos, quando os VPL estiverem zerados.

Por fim, calculados os TRC das análises econômicas dos processos de tratamento de RSU putrescíveis por biometanização, para a condição de tempo mínimo de operação anual do conjunto motogerador para que esse tratamento seja mais viável economicamente em relação à compostagem, objetivou-se o cálculo das TIR para cada tempo de vida útil de projeto da biometanização sob a mesma circunstância. Portanto, conforme o mesmo procedimento realizado anteriormente no tópico 4.5.2, utilizou-se o recurso Solver, da ferramenta Microsoft Excel, para forçar o zeramento dos VPL, variando-se a taxa de juros projetada ao ano entre 0 % e 200 % durante esse processo. Zerados os VPL, encontram-se as TIR para o processo de tratamento de RSU por biometanização sob a condição de que esse tipo de tratamento tenha a mesma viabilidade econômica em relação à compostagem.

4.5.5 Reciclagem

Para a realização das análises econômicas dos processos de reciclagem de RSU, utilizar-se-á dos conceitos de FVP e VP, conforme descritos pelas Equações 18, 19, 20, 21 e 22. Ainda, necessitar-se-á dos estimadores de processos de reciclagem de RSU, descritos no tópico 4.4.3. Com isso, pode-se calcular os custos anuais da coleta seletiva para cada tipo de material reciclável, conforme a Equação 48.

$$CACS_{Material} = CU_{CS} \times Q_{Material} \tag{48}$$

Em que $CACS_{Material}$ são os custos anuais da coleta seletiva do material reciclável em análise, em R\$/ano; CU_{CS} é o custo da coleta seletiva por unidade de massa coletada, em R\$/t, que é 4,36 vezes superior ao custo por unidade de massa da coleta convencional do ano referido; e $Q_{Material}$ é a geração anual do material reciclável em análise, em t/ano.

Logo após, calculou-se os FVP dos custos anuais da coleta seletiva para cada tipo de material reciclável para cada período de cinco anos consecutivos entre os anos de 2022 e 2042, conforme exposto na Equação 49.

$$FVP = \frac{(1+e')^n - (1+i)^n}{(1+e') - (1+i)} \times \frac{1}{(1+i)^n}$$
(49)

Em que FVP é o Fator de Valor Presente; e' é o aumento médio anual dos recursos aplicados na coleta convencional, em %; i é a taxa de juros projetada, adotou-se um valor de 8,96 %; e n é o número de anos do período em análise que, neste caso, é de 5 anos. A partir disso, pode-se encontrar os VP dos custos anuais das coletas seletivas dos materiais recicláveis similarmente às rotinas de cálculos descritas pelas Equações 19, 20, 21 e 22.

Posteriormente, buscou-se achar os valores das receitas arrecadadas com a venda de materiais recicláveis. Para isso, primeiramente, calculou-se os FVP dos recursos gerados com essa venda dos RSU reaproveitáveis, segundo a Equação 50.

$$FVP = \frac{(1+f)^n - (1+i)^n}{(1+f) - (1+i)} \times \frac{1}{(1+i)^n}$$
(50)

Em que f é a taxa de inflação projetada anual, considerou-se um valor de 5,61 %. Conforme citado no tópico 4.4.3, adotou-se a inflação anual projetada como referência para o aumento anual de preços de mercados para todos os tipos de materiais recicláveis. A partir disso, pode-se encontrar os VP das receitas arrecadadas com a venda de materiais recicláveis similarmente às rotinas de cálculos descritas pelas Equações 19, 20, 21 e 22.

Em seguida, a próxima etapa foi realizar os cálculos dos VPL dos processos de reciclagem de RSU, para cada tempo de vida útil de projeto, de acordo com a Equação 51.

$$VPL = VP_{Receitas\ Arrecadas\ com\ as\ vendas} - VP_{Custos\ anuais\ da\ Coleta\ Seletiva}$$
 (51)

Por fim, encontrados os VPL dos processos de reciclagem de cada tipo de material reaproveitável, fez-se os cálculos (somatório) dos VPL para a reciclagem de todos os RSU possíveis de serem reciclados e também somente dos materiais com viabilidade econômica.

5 RESULTADOS

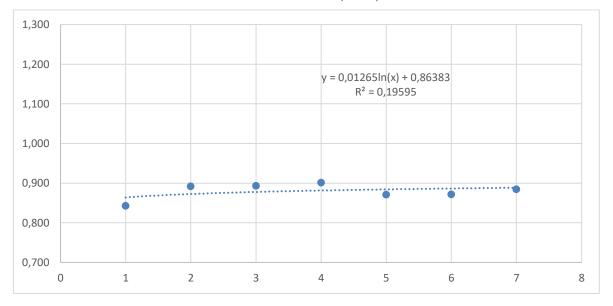
Neste tópico, serão apresentados os dados angariados da ABRELPE referentes ao período de 2012 a 2018. Após isso, serão expostos os resultados das projeções futuras de informações relacionadas aos RSU gerados no Brasil. Após essas etapas, apresentar-se-á os resultados obtidos da composição gravimétrica média dos RSU gerados em municípios brasileiros. Ao final, baseando-se nesses resultados primários, serão desenvolvidas análises econômicas das opções de biometanização, compostagem e reciclagem para o tratamento de RSU gerados em território nacional.

5.1 Projeções relacionadas aos RSU

Conforme explicitado na Tabela 10, foram angariados dados da ABRELPE sobre a situação dos RSU no Brasil. Essas informações foram coletadas por região geopolítica do país e para o Brasil como um todo, de modo a permitir que fossem realizadas as projeções, em anos futuros, das gerações de RSU em território nacional, bem como, as dos gastos financeiros relacionados aos mesmos.

5.1.1 Região Norte

Na Tabela 19, encontram-se os dados angariados da ABRELPE, durante o período de 2012 a 2018, sobre as informações relacionadas aos RSU da Região Norte.


Tabela 19 – Dados angariados sobre a situação dos RSU na Região Norte. Fonte: ABRELPE (2012 – 2019)

Região Norte do Brasil									
2012	2013	2014	2015	2016	2017	2018			
		Popu	ılação (habita	intes)					
16.318.163	17.013.559	17.261.983	17.472.636	17.740.418	17.936.201	18.182.253			
	Geração total de RSU (t/dia)								
13.754	15.169	15.413	15.745	15.444	15.634	16.073			
	(Geração per c	apita de RSU	J (kg/hab./dia)				
0,843	0,892	0,893	0,901	0,871	0,872	0,884			
Recursos aplicados na coleta de RSU (R\$ milhões/ano)									
608	636	681	685	680	697	707			

	Recursos aplicados na coleta de RSU por unidade de massa (R\$/t)								
143,79	143,08	149,76	147,87	149,04	150,30	148,21			
Recu	Recursos aplicados nos demais serviços de limpeza urbana (R\$ milhões/ano)								
976	1.010	1.041	1.044	1.032	1.062	1.073			
Recursos	Recursos aplicados per capita nos demais serviços de limpeza urbana (R\$/mês/hab.)								
4,98	4,95	5,03	4,98	4,85	4,93	4,92			

Após a coleta das informações da Tabela 19, realizou-se uma regressão linear, a fim de obter as projeções, para anos futuros, de dados relacionados aos RSU da Região Norte do Brasil. Na Figura 04, tem-se o gráfico com a equação do modelo de regressão linear da geração per capita de RSU para essa região do país.

Figura 04 – Gráfico da geração de RSU (kg/hab./dia) na Região Norte (Ano 0 = 2011). Fonte: do Autor (2021)

Já na Figura 05, apresenta-se a regressão linear dos recursos aplicados na coleta de RSU por unidade de massa na Região Norte do Brasil.

Na Figura 06, mostra-se a regressão linear dos recursos aplicados per capita nos demais serviços de limpeza urbana na Região Norte do país. Cabe destacar que, neste caso, as informações dos anos de 2012 a 2015 foram excluídas da análise por provocar distorções na linha de tendência do gráfico. Isso se deve ao motivo de que, no biênio de 2015 e 2016, o Brasil enfrentou uma severa crise econômica em que o PIB recuou, respectivamente, 3,55 % e 3,31 % em relação ao ano anterior, afetando assim a geração de RSU e os recursos movimentos no mercado de limpeza urbana.

Finalizada as regressões lineares dos dados angariados, encontrou-se as seguintes projeções relacionadas à situação dos RSU na Região Norte do país, conforme Tabela 20.

Figura 05 – Gráfico dos recursos aplicados na coleta de RSU por unidade de massa (R\$/t) na Região Norte (Ano 0 = 2011).

Fonte: do Autor (2021)

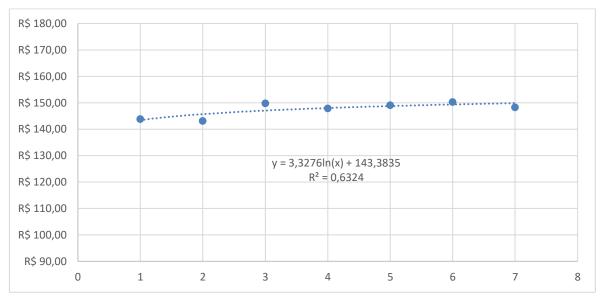


Figura 06 – Gráfico dos recursos aplicados per capita nos demais serviços de limpeza urbana (R\$/mês/hab.) na Região Norte (Ano 0 = 2015).

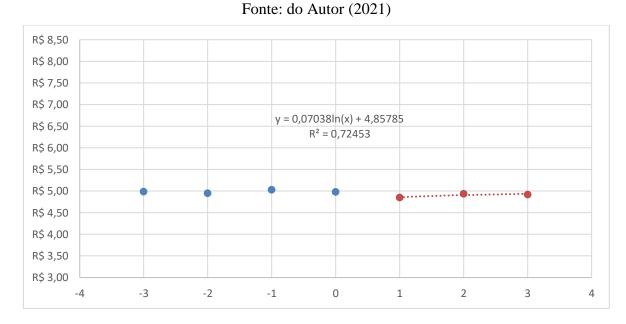


Tabela 20 – Projeções relacionadas à situação dos RSU na Região Norte. Fonte: do Autor (2021)

Região Norte do Brasil									
2020	2021	2022	2027	2032	2037	2042			
	População (habitantes)								
18.672.591	18.906.962	19.133.894	20.178.103	21.099.439	21.889.216	22.542.125			
Geração total de RSU (t/dia)									
16.649	16.883	17.109	18.138	19.039	19.811	20.452			

Geração per capita de RSU (kg/hab./dia)							
0,892	0,893	0,894	0,899	0,902	0,905	0,907	
Recu	rsos aplicado	s em uma hip	otética coleta	total de RSU	J (R\$ milhões	s/ano)	
916	931	945	1.010	1.067	1.115	1.156	
	Recursos apli	cados na cole	eta de RSU p	or unidade de	massa (R\$/t))	
150,70	151,05	151,36	152,61	153,51	154,23	154,81	
Recui	Recursos aplicados nos demais serviços de limpeza urbana (R\$ milhões/ano)						
1.114	1.131	1.147	1.219	1.280	1.333	1.377	
Recursos aplicados per capita nos demais serviços de limpeza urbana (R\$/mês/hab.)							
4,97	4,98	4,99	5,03	5,06	5,08	5,09	

5.1.2 Região Nordeste

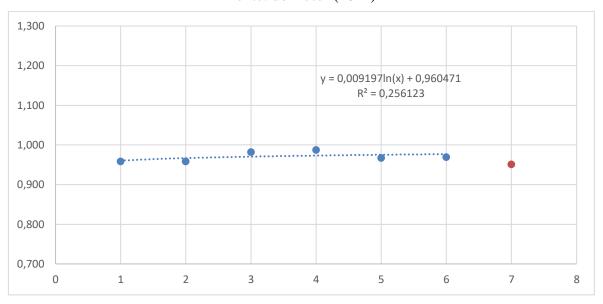

Na Tabela 21, encontram-se os dados angariados da ABRELPE, durante o período, em estudo, de 2012 a 2018, sobre as informações relacionadas aos RSU gerados na Região Nordeste do Brasil, conforme abaixo.

Tabela 21 – Dados angariados sobre a situação dos RSU na Região Nordeste. Fonte: ABRELPE (2012 – 2019)

Região Nordeste do Brasil							
2012	2013	2014	2015	2016	2017	2018	
		Popu	ılação (habita	intes)			
53.907.144	55.794.707	56.186.190	56.560.081	56.915.936	57.254.159	56.760.780	
		Geração	o total de RSI	U (t/dia)			
51.689	53.465	55.177	55.862	55.056	55.492	53.975	
	(Geração per c	apita de RSU	J (kg/hab./dia	.)		
0,959	0,958	0,982	0,988	0,967	0,969	0,951	
	Recurso	s aplicados n	a coleta de R	SU (R\$ milh	ões/ano)		
1.708	1.864	2.019	2.152	2.120	2.163	2.139	
	Recursos apli	cados na cole	eta de RSU p	or unidade de	massa (R\$/t))	
116,92	122,12	127,66	134,32	133,85	135,08	133,91	
Recursos aplicados nos demais serviços de limpeza urbana (R\$ milhões/ano)							
3.483	3.571	3.630	3.646	3.583	3.788	3.664	
Recursos	aplicados pe	r capita nos d	lemais serviç	os de limpeza	urbana (R\$/i	mês/hab.)	
5,38	5,33	5,38	5,37	5,25	5,51	5,38	

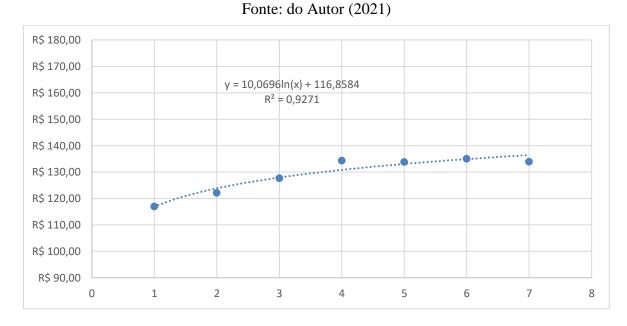

Após a coleta das informações da Tabela 21 realizou-se uma regressão linear a fim de se obter as projeções de dados relacionados aos RSU gerados na Região Nordeste do Brasil. Na Figura 07, encontra-se o modelo de regressão linear da geração per capita de RSU para essa região do país. Cabe destacar que, nesta situação, o dado referente ao ano de 2018 foi excluído por desajustar a linha de tendência, afetando assim as projeções para anos futuros.

Figura 07 – Gráfico da geração de RSU (kg/hab./dia) na Região Nordeste (Ano 0 = 2011). Fonte: do Autor (2021)

Na Figura 08, apresenta-se a regressão linear dos recursos aplicados na coleta de RSU por unidade de massa na Região Nordeste do Brasil.

Figura 08 – Gráfico dos recursos aplicados na coleta de RSU por unidade de massa (R\$/t) na Região Nordeste (Ano 0 = 2011).

Já na Figura 09, exibe-se a regressão linear dos recursos aplicados per capita nos demais serviços de limpeza urbana na Região Nordeste. Finalizada as regressões lineares, encontrou-se as projeções relacionadas à situação dos RSU na Região Nordeste do Brasil, conforme os dados descritos na Tabela 22.

Figura 09 — Gráfico dos recursos aplicados per capita nos demais serviços de limpeza urbana (R\$/mês/hab.) na Região Nordeste.

Fonte: do Autor (2021)

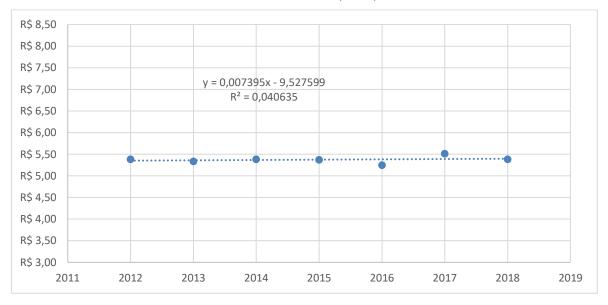
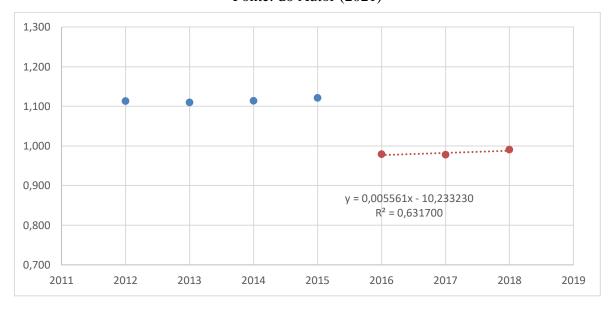


Tabela 22 – Projeções relacionadas à situação dos RSU na Região Nordeste. Fonte: do Autor (2021)

Região Nordeste do Brasil							
2020	2021	2022	2027	2032	2037	2042	
		Рорг	ılação (habita	intes)			
57.374.243	57.667.842	57.951.331	59.187.052	60.064.692	60.519.554	60.537.619	
		Geração	o total de RSI	U (t/dia)			
56.266	56.610	56.939	58.357	59.372	59.941	60.057	
	(Geração per c	capita de RSU	J (kg/hab./dia	.)		
0,981	0,982	0,983	0,986	0,988	0,990	0,992	
Recu	rsos aplicado	s em uma hip	otética coleta	total de RSU	J (R\$ milhõe:	s/ano)	
2.854	2.894	2.930	3.084	3.197	3.274	3.320	
	Recursos apli	cados na colo	eta de RSU p	or unidade de	massa (R\$/t))	
138,98	140,04	141,00	144,78	147,52	149,67	151,44	
Recursos aplicados nos demais serviços de limpeza urbana (R\$ milhões/ano)							
3.725	3.749	3.773	3.879	3.963	4.020	4.048	
Recursos aplicados per capita nos demais serviços de limpeza urbana (R\$/mês/hab.)							
5,41	5,42	5,42	5,46	5,50	5,54	5,57	


5.1.3 Região Centro-Oeste

Na Tabela 23, encontram-se os dados angariados da ABRELPE, durante o período, em estudo, de 2012 a 2018, sobre as informações relacionadas aos RSU gerados na Região Centro-Oeste do Brasil. Nesta tabela, a seguir, observa-se que há uma redução significativa na geração de RSU entre os anos de 2015 e 2016.

Tabela 23 – Dados angariados sobre a situação dos RSU na Região Centro-Oeste. Fonte: ABRELPE (2012 – 2019)

Região Centro-Oeste do Brasil								
2012	2013	2014	2015	2016	2017	2018		
		Popu	ılação (habita	ntes)				
14.423.952	14.993.191	15.219.608	15.442.232	15.660.988	15.875.907	16.085.885		
		Geração	o total de RSI	U (t/dia)				
16.055	16.636	16.948	17.306	15.337	15.519	15.932		
	(Geração per c	apita de RSU	(kg/hab./dia)			
1,113	1,110	1,114	1,121	0,979	0,978	0,990		
	Recurso	s aplicados n	a coleta de R	SU (R\$ milh	ões/ano)			
511	544	572	587	582	597	604		
	Recursos aplicados na coleta de RSU por unidade de massa (R\$/t)							
94,67	96,28	99,02	99,17	112,49	113,54	110,76		
Recursos aplicados nos demais serviços de limpeza urbana (R\$ milhões/ano)								
579	590	607	623	610	622	635		
Recursos	Recursos aplicados per capita nos demais serviços de limpeza urbana (R\$/mês/hab.)							
3,35	3,28	3,32	3,36	3,25	3,26	3,29		

Figura 10 – Gráfico da geração de RSU (kg/hab./dia) na Região Centro-Oeste. Fonte: do Autor (2021)

Após a coleta das informações da Tabela 23, realizou-se uma regressão linear, a fim de se obter as projeções de dados relacionados aos RSU gerados na Região Centro-Oeste do Brasil. Na Figura 10, encontra-se o modelo de regressão linear da geração per capita de RSU para essa região do país. Cabe destacar que, nesta situação, os dados referentes ao período compreendido entre 2012 e 2015 foram excluídos por provocarem distorções na linha de tendência do gráfico. Conforme citado anteriormente, isso provavelmente se deve ao fato de que, no biênio de 2015 e 2016, o Brasil enfrentou uma severa crise econômica

em que o PIB recuou, respectivamente, 3,55 % e 3,31 % em relação ao ano anterior, afetando assim a geração de RSU e os recursos movimentos no mercado de limpeza urbana. Já na Figura 11, exibe-se a regressão linear dos recursos aplicados na coleta de RSU por unidade de massa na Região Centro-Oeste.

Figura 11 – Gráfico dos recursos aplicados na coleta de RSU por unidade de massa (R\$/t) na Região Centro-Oeste.

Fonte: do Autor (2021)

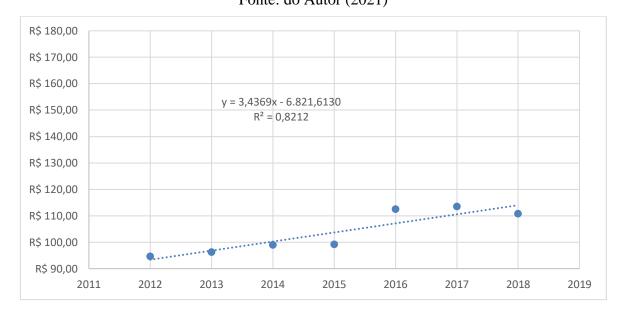
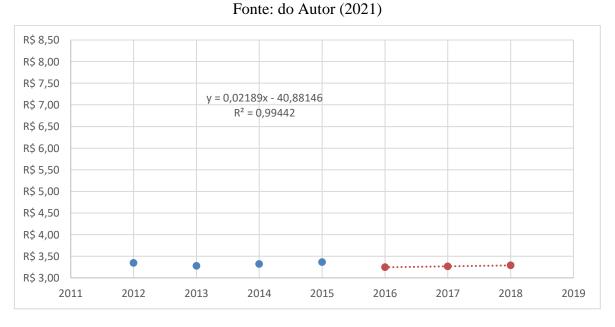



Figura 12 – Gráfico dos recursos aplicados per capita nos demais serviços de limpeza urbana (R\$/mês/hab.) na Região Centro-Oeste.

Na Figura 12, mostra-se a regressão linear dos recursos aplicados per capita nos demais serviços de limpeza urbana na Região Centro-Oeste. Novamente, destaque-se que

os dados referentes ao período entre 2012 e 2015 foram excluídos do processo da regressão linear, devido aos efeitos da crise econômica de 2015 e 2016. Finalizado isso, encontrou-se as seguintes projeções relacionadas à situação dos RSU nessa região, conforme Tabela 24.

Tabela 24 – Projeções relacionadas à situação dos RSU na Região Centro-Oeste. Fonte: do Autor (2021)

Região Centro-Oeste do Brasil							
2020	2021	2022	2027	2032	2037	2042	
		Popu	ılação (habita	intes)			
16.504.303	16.707.336	16.905.776	17.822.413	18.608.448	19.279.701	19.838.451	
		Geração	total de RSI	U (t/dia)			
16.490	16.785	17.079	18.500	19.833	21.085	22.248	
	(Geração per c	apita de RSU	J (kg/hab./dia)		
0,999	1,005	1,010	1,038	1,066	1,094	1,121	
Recu	rsos aplicados	s em uma hip	otética coleta	total de RSU	J (R\$ milhõe	s/ano)	
728	762	796	979	1.174	1.380	1.596	
	Recursos apli	cados na cole	eta de RSU po	or unidade de	massa (R\$/t))	
120,89	124,32	127,76	144,95	162,13	179,31	196,50	
Recursos aplicados nos demais serviços de limpeza urbana (R\$ milhões/ano)							
660	673	685	745	803	857	908	
Recursos	Recursos aplicados per capita nos demais serviços de limpeza urbana (R\$/mês/hab.)						
3,33	3,35	3,38	3,49	3,60	3,70	3,81	

5.1.4 Região Sudeste

Na Tabela 25, constam-se os dados angariados da ABRELPE, durante o período de 2012 a 2018, sobre as informações conexas aos RSU da Região Sudeste. Similar à Região Centro-Oeste, verifica-se que há uma redução na geração de RSU entre 2015 e 2016.

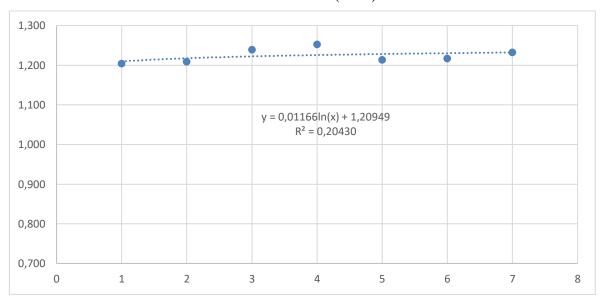
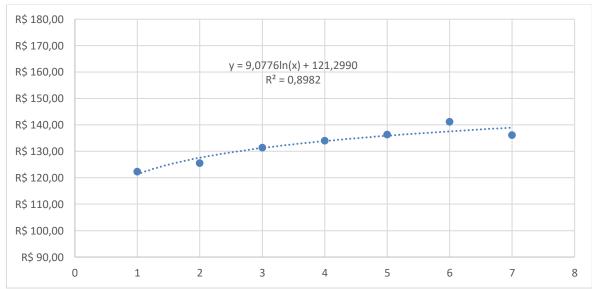
Tabela 25 – Dados angariados sobre a situação dos RSU na Região Sudeste. Fonte: ABRELPE (2012 – 2019)

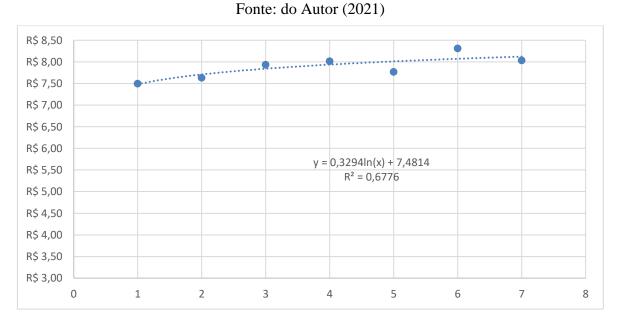
Região Sudeste do Brasil								
2012	2013	2014	2015	2016	2017	2018		
		Popu	ılação (habita	intes)				
81.565.983	84.465.570	85.115.623	85.745.520	86.356.952	86.949.714	87.711.946		
		Geração	o total de RSI	U (t/dia)				
98.215	102.088	105.431	107.375	104.789	105.794	108.063		
	(Geração per c	apita de RSU	(kg/hab./dia)			
1,204	1,209	1,239	1,252	1,213	1,217	1,232		
Recursos aplicados na coleta de RSU (R\$ milhões/ano)								
4.245	4.541	4.917	5.117	5.103	5.343	5.263		
<u> </u>	Recursos aplicados na coleta de RSU por unidade de massa (R\$/t)							
122,24	125,52	131,33	133,99	136,24	141,10	136,06		

Recursos aplicados nos demais serviços de limpeza urbana (R\$ milhões/ano)								
7.336	7.733	8.104	8.247	8.048	8.668	8.452		
Recursos	Recursos aplicados per capita nos demais serviços de limpeza urbana (R\$/mês/hab.)							
7,49	7,63	7,93	8,01	7,77	8,31	8,03		

Após a coleta das informações da Tabela 25, realizou-se uma regressão linear a fim de se obter as projeções de dados relacionados aos RSU da Região Sudeste. Na Figura 13, encontra-se o modelo de regressão linear da geração per capita de RSU, enquanto que, na Figura 14, apresenta-se a de recursos aplicados na coleta de RSU por unidade de massa.

Figura 13 – Gráfico da geração de RSU (kg/hab./dia) na Região Sudeste (Ano 0 = 2011). Fonte: do Autor (2021)


Figura 14 – Gráfico dos recursos aplicados na coleta de RSU por unidade de massa (R\$/t) na Região Sudeste (Ano 0 = 2011).

Fonte: do Autor (2021)

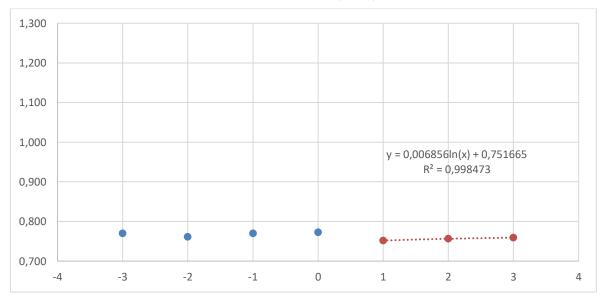
Já na Figura 15, mostra-se a regressão linear dos recursos aplicados per capita nos demais serviços de limpeza urbana na Região Sudeste do Brasil.

Figura 15 – Gráfico dos recursos aplicados per capita nos demais serviços de limpeza urbana (R\$/mês/hab.) na Região Sudeste (Ano 0 = 2011).

Finalizadas as regressões lineares dos dados angariados, encontrou-se as seguintes projeções relacionadas à situação dos RSU gerados na Região Sudeste do Brasil, conforme Tabela 26.

Tabela 26 – Projeções relacionadas à situação dos RSU na Região Sudeste. Fonte: do Autor (2021)

Região Sudeste do Brasil						
2020	2021	2022	2027	2032	2037	2042
		Popu	ılação (habita	intes)		
89.012.240	89.632.912	90.231.492	92.854.166	94.823.250	96.134.614	96.793.261
		Geração	o total de RSI	U (t/dia)		
109.941	110.817	111.658	115.309	118.055	119.927	120.947
	(Geração per c	apita de RSU	J (kg/hab./dia)	
1,235	1,236	1,237	1,242	1,245	1,247	1,250
Recu	rsos aplicado:	s em uma hip	otética coleta	total de RSU	J (R\$ milhões	s/ano)
5.668	5.752	5.831	6.164	6.418	6.604	6.731
	Recursos apli	cados na cole	eta de RSU po	or unidade de	massa (R\$/t))
141,24	142,20	143,07	146,47	148,94	150,87	152,47
Recursos aplicados nos demais serviços de limpeza urbana (R\$ milhões/ano)						
8.764	8.863	8.956	9.354	9.654	9.869	10.003
Recursos	aplicados pe	r capita nos d	lemais serviç	os de limpeza	urbana (R\$/i	mês/hab.)
8,21	8,24	8,27	8,39	8,48	8,55	8,61


5.1.5 Região Sul

Na Tabela 27, encontram-se os dados angariados da ABRELPE, durante o período de 2012 a 2018, sobre as informações relacionadas aos RSU da Região Sul.

Tabela 27 – Dados angariados sobre a situação dos RSU na Região Sul. Fonte: ABRELPE (2012 – 2019)

Região Sul do Brasil								
2012	2013	2014	2015	2016	2017	2018		
		Popu	ılação (habita	intes)				
27.731.644	28.795.762	29.016.114	29.230.180	29.439.773	29.644.948	29.754.036		
		Geração	o total de RSI	U (t/dia)				
21.345	21.922	22.328	22.586	22.127	22.429	22.586		
	(Geração per c	apita de RSU	J (kg/hab./dia	.)			
0,770	0,761	0,770	0,773	0,752	0,757	0,759		
	Recurso	s aplicados n	a coleta de R	SU (R\$ milh	ões/ano)			
1.095	1.179	1.231	1.286	1.274	1.345	1.318		
	Recursos apli	cados na cole	eta de RSU p	or unidade de	massa (R\$/t))		
151,88	156,64	160,24	165,29	166,31	172,78	167,48		
Recursos aplicados nos demais serviços de limpeza urbana (R\$ milhões/ano)								
1.349	1.434	1.486	1.524	1.494	1.571	1.546		
Recursos	aplicados pe	r capita nos d	lemais serviç	os de limpeza	urbana (R\$/i	mês/hab.)		
4,05	4,15	4,27	4,34	4,23	4,42	4,33		

Figura 16 – Gráfico da geração de RSU (kg/hab./dia) na Região Sul (Ano 0 = 2015). Fonte: do Autor (2021)

Após a coleta das informações da Tabela 27, realizou-se uma regressão linear a fim de se obter as projeções de dados relacionados aos RSU gerados na Região Sul. Na Figura 16, encontra-se o modelo de regressão linear da geração per capita de RSU. Cabe destacar

que, nesta situação, os dados referentes ao período entre 2012 e 2015 foram excluídos por provocarem distorções na linha de tendência, devido à crise econômica gerada em 2015 e 2016, como citado anteriormente. Já na Figura 17, apresenta-se a regressão linear dos recursos aplicados na coleta de RSU por unidade de massa, enquanto que, na Figura 18, mostra-se a de recursos aplicados per capita nos demais serviços de limpeza urbana.

Figura 17 – Gráfico dos recursos aplicados na coleta de RSU por unidade de massa (R\$/t) na Região Sul (Ano 0 = 2011).

Fonte: do Autor (2021) R\$ 180,00 R\$ 170,00 R\$ 160,00 R\$ 150,00 R\$ 140,00 y = 9,8665ln(x) + 150,9295R\$ 130,00 $R^2 = 0,9022$ R\$ 120,00 R\$ 110,00 R\$ 100,00 R\$ 90,00 1 8 0

Figura 18 – Gráfico dos recursos aplicados per capita nos demais serviços de limpeza urbana (R\$/mês/hab.) na Região Sul (Ano 0 = 2011). Fonte: do Autor (2021)

Finalizada as regressões lineares dos dados angariados, encontrou-se as seguintes projeções relacionadas à situação dos RSU na Região Sul, conforme Tabela 28.

Tabela 28 – Projeções relacionadas à situação dos RSU na Região Sul. Fonte: do Autor (2021)

	Região Sul do Brasil								
2020	2021	2022	2027	2032	2037	2042			
		Рори	ılação (habita	intes)					
30.192.315	30.402.587	30.606.047	31.503.500	32.181.973	32.635.977	32.877.124			
		Geração	o total de RSI	U (t/dia)					
23.028	23.226	23.414	24.217	24.815	25.223	25.456			
	(Geração per c	capita de RSU	J (kg/hab./dia	.)				
0,763	0,764	0,765	0,769	0,771	0,773	0,774			
Recu	rsos aplicado	s em uma hip	otética coleta	total de RSU	J (R\$ milhõe:	s/ano)			
1.451	1.472	1.492	1.576	1.639	1.685	1.717			
	Recursos apli	cados na colo	eta de RSU p	or unidade de	massa (R\$/t))			
172,61	173,65	174,59	178,29	180,97	183,08	184,81			
Recu	Recursos aplicados nos demais serviços de limpeza urbana (R\$ milhões/ano)								
1.599 1.616 1.632 1.703 1.757 1.795 1.819									
Recursos	aplicados pe	r capita nos c	lemais serviç	os de limpeza	urbana (R\$/	mês/hab.)			
4,41	4,43	4,44	4,50	4,55	4,58	4,61			

5.1.6 Brasil

Na Tabela 29, encontram-se os dados angariados da ABRELPE, durante o período de 2012 a 2018, sobre as informações relacionadas aos RSU gerados em todo o Brasil. Observa-se que, entre 2015 e 2016, houve uma redução significativa na geração de RSU no país, reflexo da crise econômica acontecida nesse biênio.

Tabela 29 – Dados angariados sobre a situação dos RSU no Brasil. Fonte: ABRELPE (2012 – 2019)

	Brasil							
2012	2013	2014	2015	2016	2017	2018		
		Popu	ılação (habita	intes)				
193.946.886	201.062.789	202.799.518	204.450.649	206.114.067	207.660.929	208.494.900		
		Geração	total de RSI	U (t/dia)				
201.058	209.280	215.297	218.874	212.753	214.868	216.629		
	(Geração per c	apita de RSU	J (kg/hab./dia)			
1,037	1,041	1,062	1,071	1,032	1,035	1,039		
	Recurso	s aplicados n	a coleta de R	SU (R\$ milh	ões/ano)			
8.167	8.764	9.420	9.827	9.759	10.145	10.031		
	Recursos apli	cados na cole	eta de RSU po	or unidade de	massa (R\$/t))		
123,42	126,90	132,19	135,46	138,05	141,77	137,89		
Recur	sos aplicados	nos demais	serviços de li	mpeza urbana	a (R\$ milhõe:	s/ano)		
13.723	14.338	14.868	15.084	14.767	15.711	15.370		
Recursos	aplicados pe	r capita nos d	lemais serviço	os de limpeza	urbana (R\$/1	mês/hab.)		
5,90	5,94	6,11	6,15	5,97	6,30	6,14		

Após a conclusão das projeções relacionadas à situação dos RSU de cada região geopolítica brasileira, fez-se a projeção nacional, baseando-se no somatório dos resultados das cinco regiões do país, conforme Tabela 30.

Tabela 30 – Projeções relacionadas à situação dos RSU no Brasil. Fonte: do Autor (2021)

	Brasil								
2020	2021	2022	2027	2032	2037	2042			
		Popu	ılação (habita	intes)					
211.755.692	213.317.639	214.828.540	221.545.234	226.777.802	230.459.062	232.588.580			
		Geração	o total de RSI	U (t/dia)					
222.372	224.321	226.197	234.521	241.115	245.986	249.158			
	(Geração per c	apita de RSU	(kg/hab./dia)				
1,050	1,052	1,053	1,059	1,063	1,067	1,071			
Recu	rsos aplicados	s em uma hip	otética coleta	total de RSU	J (R\$ milhões	s/ano)			
11.616	11.810	11.995	12.813	13.494	14.059	14.519			
	Recursos apli	cados na cole	eta de RSU po	or unidade de	massa (R\$/t))			
143,12	144,24	145,28	149,69	153,33	156,59	159,65			
Recui	rsos aplicados	s nos demais	serviços de li	mpeza urban	a (R\$ milhões	s/ano)			
15.862	1 1 1								
Recursos	aplicados pe	r capita nos d	lemais serviço	os de limpeza	urbana (R\$/1	mês/hab.)			
6,24	6,26	6,28	6,36	6,41	6,46	6,50			

Finalizadas todas as projeções nacionais de dados relacionados aos RSU gerados no país, a próxima fase desta Dissertação de Mestrado foi determinar, para quatro períodos de cinco anos consecutivos, entre 2022 e 2042, o aumento médio anual da geração total de RSU, dos recursos aplicados em uma hipotética coleta total de RSU e dos recursos aplicados nos demais serviços de limpeza urbana em todo o Brasil, conforme a Tabela 31.

Tabela 31 – Aumento médio anual de taxas relacionadas aos RSU gerados no Brasil. Fonte: do Autor (2021)

Períodos de	cinco anos	Aumento médio an	ual de taxas relacionad	las aos RSU gerados
Ano inicial	Ano final	Geração total de RSU	•	Recursos aplicados nos demais serviços de limpeza urbana
2022	2027	0,73 %	1,33 %	0,86 %
2027	2032	0,56 %	1,04 %	0,65 %
2032	2037	0,40 %	0,82 %	0,47 %
2037	2042	0,26 %	0,65 %	0,31 %

Em seguida, utilizou-se dados históricos, do período compreendido entre os anos de 2012 e 2020, da Taxa SELIC e do IPCA para se determinar as taxas médias anuais de juros, inflação e juros real. Na Tabela 32, eis essas informações.

Tabela 32 – Taxas de juros, inflação e juros real no Brasil. Fonte: IBGE (2021) e ADVFN (2021)

Anos	Taxa de Juros (%)	Inflação (%)	Taxa real de Juros (%)
2012	8,62	5,84	2,63
2013	8,29	5,91	2,25
2014	10,96	6,41	4,28
2015	13,47	10,67	2,53
2016	14,18	6,29	7,42
2017	10,11	2,95	6,95
2018	6,58	3,75	2,73
2019	6,03	4,31	1,65
2020	2,88	4,52	- 1,57
Acumulado	116,47	63,39	32,48
Média Anual	8,96	5,61	3,17

Por fim, encerrando-se as projeções relacionadas à geração de RSU em território brasileiro, fez-se uma estimativa da composição gravimétrica média dos RSU gerados no Brasil, a partir de uma análise de estudos de referência, citados nas Tabelas 33, 34 e 35, realizados em 14 municípios de todas as cinco regiões geopolíticas do país e de um estudo de nível nacional executado pela ABRELPE.

Tabela 33 – Caracterização dos RSU gerados em municípios brasileiros (Parte I). Fonte: do Autor (2021)

Composição	Alcântara	Rezende et	ABRELPE	Padilha et al.	Santos et al.
dos RSU	(2010)	al. (2013)	(2011)	(2012)	(2013)
Ano	2009	2010	2012	2012	2012
Local	Cáceres – MT	Jaú – SP	Brasil	Irati – PR	Apuí – AM
		Catego	orias		
RSO / Sanitários	60,45 %	49,4 %	51,4 %	42,83 %	54,92 %
Plásticos	13,16 %	10,6 %	13,5 %	16,12 %	13,33 %
Papel / Papelão	9,27 %		13,1 %		8,63 %
Metais	2,41 %	3,0 %	2,9 %	1,77 %	4,00 %
Madeira / Coco				0,58 %	3,62 %
Vidro	3,23 %	2,7 %	2,4 %	1,97 %	2,49 %
Têxteis		1,6 %		2,11 %	1,30 %
Borracha		0,3 %		0,34 %	0,73 %
Isopor					0,41 %
Couro		1,7 %			0,36 %
Compósitos / Tetra-pak		0,8 %			0,83 %
Jardinagem					2,21 %
Outros / Rejeitos	11,48 %	25,1 %	16,7 %	24,22 %	7,17 %
	Subcategori	as de 'Resíduo	s Orgânicos / S	Sanitários'	_
RSO	60,45 %	49,4 %	51,4 %	42,83 %	54,92 %
	(Subcategorias	de 'Plásticos'		
Rígido / Duro	8,23 %	4,7 %			9,42 %
Maleável / Mole	4,93 %	5,9 %			3,91 %

Subcategorias de 'Papel / Papelão'						
Papel	4,34 %	4,4 %	8,11 %	2,28 %		
Papelão	4,93 %	0,3 %	1,97 %	6,35 %		
		Subcategorias de	'Metais'			
Metais ferrosos		1,4 %		3,31 %		
Alumínio		1,6 %		0,69 %		

Tabela 34 — Caracterização dos RSU gerados em municípios brasileiros (Parte II). Fonte: do Autor (2021)

Composição	Guadagnin et	Guadagnin et	Guadagnin et	Souza e	Trentin et al.
dos RSU	al. (2014)	al. (2014)	al. (2014)	Araújo (2014)	(2019)
Ano	2013	2013	2013	2014	2014
Local	Criciúma – SC	Jaguaruna – SC	Nova Veneza – SC	Caçu – GO	Santa Cruz do Sul – RS
		Catego	orias		
RSO / Sanitários	40,02 %	40,37 %	47,49 %	54,9 %	41,65 %
Plásticos	23,27 %	15,02 %	21,52 %	19,4 %	13,48 %
Papel / Papelão	15,31 %	21,57 %	12,86 %	12,4 %	9,92 %
Metais	2,15 %	1,18 %	2,84 %	3,3 %	2,02 %
Perigosos / REEE	1,13 %	0,77 %	0,86 %	0,7 %	
Madeira / Coco	0,38 %	0,00 %	0,00 %		
Vidro	2,71 %	5,01 %	2,34 %	3,5 %	3,02 %
Têxteis	10,17 %	6,67 %	6,41 %		
Compósitos / Tetra-pak	1,92 %	3,37 %	2,64 %	1,0 %	
Outros / Rejeitos	2,94 %	6,04 %	3,05 %	4,8 %	29,91 %
	Subcategor	ias de 'Resíduo	s Orgânicos / S	anitários'	
RSO	28,39 %	32,15 %	37,83 %	54,9 %	41,65 %
Sanitários	11,63 %	8,22 %	9,66 %		
		Subcategorias	de 'Plásticos'		
Rígido / Duro	9,49 %	6,09 %	8,23 %	3,0 %	
Maleável / Mole	13,78 %	8,93 %	13,29 %	16,4 %	
	Sul	ocategorias de '	Papel / Papelão	,	
Papel				5,7 %	
Papelão				6,7 %	
	Subcateg	orias de 'Resíd	uos Perigosos /	REEE'	
Metais ferrosos		0,14 %	0,58 %		
Alumínio		0,63 %	0,28 %		

Tabela 35 – Caracterização dos RSU gerados em municípios brasileiros (Parte III). Fonte: do Autor (2021)

Composição	Melo	Melo	Melo	Melo	Melo
dos RSU	(2015)	(2015)	(2015)	(2015)	(2015)
Ano	2014	2014	2014	2015	2015
Local	Agrestina – PE	Bonito – PE	Altinho – PE	Belém de Maria – PE	Lagoa dos Gatos – PE
		Catego	orias		
RSO / Sanitários	39,3 %	38,9 %	46,7 %	43,1 %	56,1 %
Plásticos	14,1 %	18,9 %	24,3 %	21,1 %	15,0 %
Papel / Papelão	7,5 %	7,7 %	5,3 %	7,8 %	4,1 %
Metais	0,7 %	1,5 %	2,2 %	0,2 %	1,2 %

Perigosos / REEE	0,6 %	1,0 %	0,4 %	0,4 %	0,9 %		
Madeira / Coco	7,9 % *	6,6 % *	0,6%	5,7 % *	8,7 % *		
Vidro	1,5 %	1,0 %	2,3 %	0,4 %	0,7 %		
Têxteis	7,6 %	6,6 %	8,0 %	4,2 %	4,0 %		
Compósitos / Tetra-pak	0,7 %	1,8 %	2,1 %	3,5 %	2,0 %		
Jardinagem	2,7 %	1,1 %	2,3 %	2,5 %	2,4 %		
Outros / Rejeitos	17,5 %	14,9 %	5,8 %	11,2 %	5,0 %		
	Subcategor	ias de 'Resíduo	s Orgânicos / S	Sanitários'			
RSO	30,2 %	28,8 %	24,5 %	31,7 %	42,7 %		
Sanitários	9,1 %	10,1 %	22,2 %	11,4 %	13,4 %		
Subcategorias de 'Plásticos'							
Rígido / Duro	7,33 %	9,13 %	8,54 %	9,59 %	6,73 %		
Maleável / Mole	6,77 %	9,77 %	15,76 %	11,51 %	8,27 %		

Para o cálculo da média aritmética nacional da categoria 'Madeira / Coco', optou-se por excluir os dados dos municípios pernambucanos de Agrestina, Bonito, Belém de Maria e Lagoa dos Gatos, identificados com um asterisco '*' na Tabela 35, pois eles possuíam elevadas taxas de geração desse tipo de RSU, destoando-se do padrão apresentado nos estudos de referência dos demais municípios brasileiros.

Na Tabela 36, encontram-se as estimativas das composições gravimétricas médias das categorias e subcategorias de RSU gerados em municípios brasileiros. Esses valores foram calculados segundo a metodologia descrita no tópico 4.3, chamado 'Composição gravimétrica média dos municípios'. Ao todo, considerou-se 14 categorias de RSU possíveis de serem gerados em nosso país.

Tabela 36 – Composição gravimétrica média estimada de RSU gerados no Brasil. Fonte: do Autor (2021)

Categorias		Subcategorias		
Resíduos Orgânicos / Sanitários	52,75 %	Resíduos Orgânicos	40,79 %	
Residuos Organicos / Sanitarios	32,73 %	Resíduos Sanitários	11,96 %	
Plásticos	16,85 %	Plástico Rígido / Duro	7,27 %	
Flasticos	10,85 %	Plástico Maleável / Mole	9,58 %	
Danal / Danalão	10,42 %	Papel	5,74 %	
Papel / Papelão	10,42 %	Papelão	4,68 %	
Metais	2,09 %	Metais ferrosos	1,41 %	
Wietais	2,09 %	Alumínio	0,68 %	
Pasíduas Parigosas / PEEE	0.75.0/	Resíduos Perigosos	0,33 %	
Resíduos Perigosos / REEE	0,75 %	REEE	0,42 %	
0	utros tipos	de Categorias		
Têxteis	5,33 %	Borracha	0,46 %	
Vidro	2,35 %	Isopor	0,41 %	
Compósitos / Tetra-pak	1,88 %	Resíduos de Jardinagem	2,20 %	
Couro	1,03 %	Outros / Rejeitos	2,61 %	
Madeira / Coco	0,86 %			

5.2 Análises econômicas

Neste tópico, serão apresentados os resultados das análises econômicas referentes aos recursos aplicados na coleta de RSU e nos demais serviços de limpeza urbana e aos processos de tratamento de RSU por meio da biometanização, compostagem e reciclagem. Para todas essas análises, considerou-se uma inflação projetada de 5,61 % ao ano e uma taxa de juros de mercado de 8,96 % ao ano como TMA.

5.2.1 Coleta de RSU e demais serviços de limpeza urbana

Os dados das análises econômicas dos recursos aplicados na hipotética coleta total de RSU e nos demais serviços de limpeza urbana para todo Brasil encontram-se na Tabela 37. Tais análises foram realizadas a partir de 2022, trabalhando-se com o VP para esse ano.

Tabela 37 – Análises econômicas dos serviços de coleta de RSU e limpeza urbana. Fonte: do Autor (2021)

Anos	2022	2027	2032	2037	2042
População (habitantes)	214.828.540	221.545.234	226.777.802	230.459.062	232.588.580
Geração per capita de RSU (kg/hab./dia)	1,053	1,059	1,063	1,067	1,071
Geração total anual de RSU (t/ano)	82.562.076	85.600.005	88.006.803	89.784.935	90.942.805
Aumento médio anual de RSU para o ciclo dos próximos 5 anos	0,73 %	0,56 %	0,40 %	0,26 %	
Recursos aplicados em uma hipotética coleta total de RSU (R\$ bilhões/ano)	11,995	12,813	13,494	14,059	14,519
Aumento médio anual dos recursos aplicados na hipotética coleta total para o ciclo dos próximos 5 anos	1,33 %	1,04 %	0,82 %	0,65 %	
FVP dos recursos aplicados na hipotética coleta total para os próximos 5 anos	3,990	3,969	3,953	3,940	
VP dos recursos aplicados na hipotética coleta total para o ciclo dos próximos 5 anos (R\$ bilhões)	48,490	51,379	53,780	55,751	
VP, corrigido para 2022, dos recursos aplicados na hipotética coleta total para o ciclo dos próximos 5 anos (R\$ bilhões)	48,490	33,455	22,801	15,391	
VP do projeto, em função do término do tempo de vida útil, dos recursos aplicados na hipotética coleta total (R\$ bilhões)		48,490	81,945	104,746	120,136
Recursos aplicados na coleta de RSU por unidade de massa (R\$/t)	145,28	149,69	153,33	156,59	159,65
Recursos aplicados nos demais serviços de limpeza urbana (R\$ bilhões/ano)	16,193	16,900	17,457	17,874	18,156
Aumento médio anual dos recursos aplicados nos demais serviços de limpeza urbana para o ciclo dos próximos 5 anos	0,86 %	0,65 %	0,47 %	0,31 %	

FVP dos recursos aplicados nos serviços de limpeza urbana pra os próximos 5 anos	3,955	3,940	3,928	3,916	
VP dos recursos aplicados nos demais serviços de limpeza urbana para o ciclo dos próximos 5 anos (R\$ bilhões)	64,598	67,025	68,888	70,215	
VP, corrigido para 2022, dos recursos aplicados nos demais serviços de limpeza urbana para o ciclo dos próximos 5 anos (R\$ bilhões)	64,598	43,642	29,206	19,384	
VP do projeto, em função do término do tempo de vida útil, dos recursos aplicados nos demais serviços de limpeza urbana (R\$ bilhões)		64,598	108,240	137,447	156,830
VP do projeto, em função do término do tempo de vida útil, dos recursos totais aplicados nos serviços de coleta de RSU e limpeza urbana (R\$ bilhões)		113,088	190,185	242,192	276,966

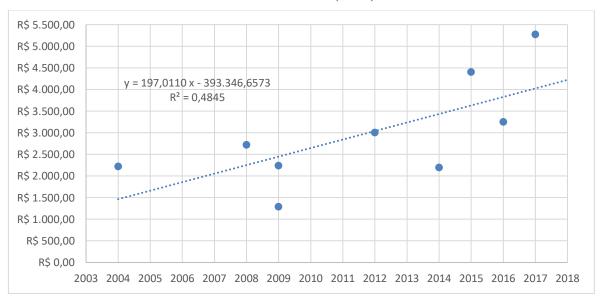

Ato contínuo, elaborou-se a Tabela 38, em que consta o resumo dos VP, para 2022, dos recursos aplicados na hipotética coleta total de RSU e nos demais serviços de limpeza urbana e dos recursos totais aplicados em função dos quatro tempos de vida útil analisados.

Tabela 38 – VP dos recursos aplicados em função do tempo de vida útil de projeto. Fonte: do Autor (2021)

VP dos recursos aplicados	5 anos	10 anos	15 anos	20 anos
Coleta total de RSU	R\$ 48,490 bi	R\$ 81,945 bi	R\$ 104,746 bi	R\$ 120,136 bi
Serviços de limpeza urbana	R\$ 64,598 bi	R\$ 108,240 bi	R\$ 137,447 bi	R\$ 156,830 bi
Recursos aplicados totais	R\$ 113,088 bi	R\$ 190,185 bi	R\$ 242,192 bi	R\$ 276,966 bi

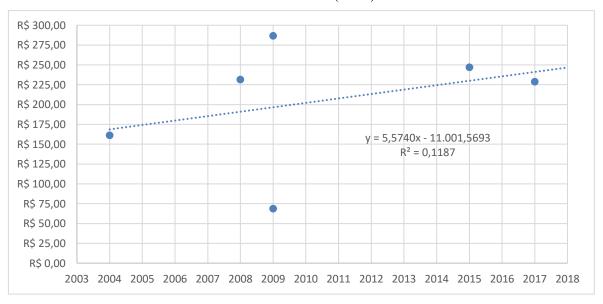

5.2.2 Biometanização

Figura 19 – Gráfico com a regressão linear dos custos iniciais de projeto por unidade de potência fornecida (R\$/kW) pelo tratamento de biometanização em função dos anos. Fonte: do Autor (2021)

Na Figura 19, tem-se a regressão linear dos custos iniciais de projeto por unidade de potência fornecida pelo tratamento de biometanização, em R\$/kW, em função do tempo, em anos, e sua linha de tendência com a equação para as projeções futuras. Já na Figura 20, encontram-se as mesmas informações, só que pra os custos anuais por unidade de potência.

Figura 20 – Gráfico com a regressão linear dos custos anuais de projeto por unidade de potência fornecida (R\$/kW) pelo tratamento de biometanização em função dos anos. Fonte: do Autor (2021)

Portanto, para se calcular os custos iniciais por unidade de potência fornecida pelo tratamento de biometanização *CIUP*, em R\$/kW, utilizou-se da relação da Equação 52.

$$CIUP = 197,0110 \times Ano_0 - 393.346,6573$$
 (52)

Em que Ano_0 é o ano de investimentos iniciais para se desenvolver os processos de tratamento de RSU putrescíveis por biometanização, que, em todos os tempos de vida útil em análise, será o ano de 2022. Logo, o valor de CIUP sempre será de R\$ 5.009,64 / kW.

Já para se encontrar os custos anuais de projeto por unidade de potência fornecida pelo tratamento de biometanização *CAUP*, em R\$/kW, usou-se da relação da Equação 53.

$$CAUP = 5,5740 \times Ano - 11.001,5693$$
 (53)

Em que *Ano* é um ano qualquer do tempo de vida útil de projeto de tratamento de RSU putrescíveis por biometanização. Para esta análise econômica, trabalhou-se apenas com os dados dos anos de 2022, 2027, 2032, 2037 e 2042.

A seguir, na Tabela 39, encontram-se os dados resultantes das análises econômicas

dos processos de tratamento de RSU putrescíveis por biometanização para todo o território nacional. Tais análises foram realizadas para tempos de vida útil de projetos de 5, 10, 15 e 20 anos a partir do ano de 2022, trabalhando-se com o VP para esse ano.

Tabela 39 – Análises econômicas dos processos de tratamento por biometanização. Fonte: do Autor (2021)

·	2022	2025	2022	2027	20.42
Anos	2022	2027	2032	2037	2042
População (habitantes)	214.828.540	221.545.234	226.777.802	230.459.062	232.588.580
Geração per capita de RSU (kg/hab./dia)	1,053	1,059	1,063	1,067	1,071
Geração total anual de RSU (t/ano)	82.562.076	85.600.005	88.006.803	89.784.935	90.942.805
Aumento médio anual de RSU	0,73 %	0,56 %	0,40 %	0,26 %	
para o ciclo dos próximos 5 anos	0,75 70	0,50 70	0,10 70	0,20 70	
Geração total de 'Resíduos	43.552.940	45.155.501	46.425.129	47.363.125	47.973.921
Orgânicos / Sanitários' (t/ano)	13.832.910	10.120.001	10.125.125	17.1303.123	17.575.521
Produção estimada de CH ₄ gerado	1.925.722	1.996.580	2.052.718	2.094.192	2.121.199
pela biometanização (t/ano)	11,7201,722	11,500,000	210021710	2107 11172	
Volume estimado de CH ₄ gerado	2.684.307	2.783.078	2.861.329	2.919.141	2.956.786
pela biometanização (dam³/ano)					
Energia elétrica possível de ser gerada pela biometanização (MWh/ano)	7.819.258	8.106.973	8.334.915	8.503.318	8.612.977
Potência elétrica possível de ser					
fornecida pela biometanização (kW)	931.418	965.691	992.843	1.012.903	1.025.965
Custos iniciais de projeto em					
função do término do tempo de		4,838	4,974	5,074	5,140
vida útil (R\$ bilhões)		,	,	,	,
Custos anuais de projeto por unidade de	269,02	206.80	224.76	352,63	380,50
potência em função do ano (R\$/kW)	209,02	296,89	324,76	332,03	360,30
Aumento médio anual dos custos					
anuais por unidade de potência	1,99 %	1,81 %	1,66 %	1,53 %	
para o ciclo dos próximos 5 anos					
FVP dos custos anuais de projeto	4,038	4,025	4,014	4,004	
para o ciclo dos próximos 5 anos	4,030	4,023	7,017	7,007	
VP referente aos custos anuais para o	1.070				
ciclo dos próximos 5 anos para o tempo de vida útil de 5 anos (R\$ bilhões)	1,070				
VP referente aos custos anuais para o					
ciclo dos próximos 5 anos para o tempo	1,100	1,208			
de vida útil de 10 anos (R\$ bilhões)	_,				
VP, corrigido para 2022, referente					
aos custos anuais para o ciclo dos	1 100	0.796			
próximos 5 anos para o tempo de	1,100	0,786			
vida útil de 10 anos (R\$ bilhões)					
VP referente aos custos anuais para o					
ciclo dos próximos 5 anos para o tempo	1,122	1,232	1,342		
de vida útil de 15 anos (R\$ bilhões)					
VP, corrigido para 2022, referente					
aos custos anuais para o ciclo dos	1,122	0,802	0,569		
próximos 5 anos para o tempo de	, , , , , , , , , , , , , , , , , , ,	, , =	,		
vida útil de 15 anos (R\$ bilhões)					
VP referente aos custos anuais para o ciclo dos próximos 5 anos para o tempo	1 127	1 2/10	1 260	1 471	
de vida útil de 20 anos (R\$ bilhões)	1,137	1,248	1,360	1,471	
ac vida dili de 20 dilos (R\$\psi \text{offilloes})	l .	l	<u> </u>	l	l

VP, corrigido para 2022, referente aos custos anuais para o ciclo dos próximos 5 anos para o tempo de	1,137	0,813	0,576	0,406	
vida útil de 20 anos (R\$ bilhões) VP do projeto, em função do término					
do tempo de vida útil, referente aos custos anuais de projeto (R\$ bilhões)		1,070	1,887	2,494	2,932
VP, em função do término do					
tempo de vida útil, referente aos custos totais (R\$ bilhões)		5,908	6,860	7,568	8,072
FVP da venda de energia elétrica para o ciclo dos próximos 5 anos	4,376	4,362	4,349	4,336	
VP referente à venda de energia para o ciclo dos próximos 5 anos (R\$ bilhões)	22,102	29,953	40,269	53,738	
VP, corrigido para 2022, referente à venda de energia para o ciclo dos próximos 5 anos (R\$ bilhões)	22,102	19,503	17,073	14,835	
VP do projeto, em função do término do tempo de vida útil, referente à venda de energia (R\$ bilhões)		22,102	41,606	58,679	73,513
VPL do projeto, em função do término do tempo de vida útil (R\$ bilhões)		16,195	34,745	51,111	65,442
Relação Benefício / Custo em função do término do tempo de vida útil de projeto		3,741	6,065	7,753	9,108
TRC em função do término do tempo de vida útil de projeto (anos)		1,103	1,136	1,160	1,176
TIR, ao ano, em função do término do tempo de vida útil de projeto		101,43 %	102,51 %	100,65 %	99,40 %

Ato contínuo, elaborou-se a Tabela 40, em que consta o resumo dos VP dos custos dos processos de biometanização e da venda de energia gerada por esse tipo de tratamento. Ademais, citou-se os VPL, os TRC, as TIR e as Relações Benefício / Custo, em função dos quatro tempos de vida útil analisados, alusivos aos processos de biometanização.

Tabela 40 – Resumo dos resultados das análises econômicas da biometanização. Fonte: do Autor (2021)

Tempo de vida útil	5 anos	10 anos	15 anos	20 anos
VP dos custos iniciais	R\$ 4,838 bi	R\$ 4,974 bi	R\$ 5,074 bi	R\$ 5,140 bi
VP dos custos anuais	R\$ 1,070 bi	R\$ 1,887 bi	R\$ 2,494 bi	R\$ 2,932 bi
VP dos custos totais	R\$ 5,908 bi	R\$ 6,860 bi	R\$ 7,568 bi	R\$ 8,072 bi
VP da venda de energia	R\$ 22,102 bi	R\$ 41,606 bi	R\$ 58,679 bi	R\$ 73,513 bi
VPL da biometanização	R\$ 16,195 bi	R\$ 34,745 bi	R\$ 51,111 bi	R\$ 65,442 bi
TRC da biometanização	1,103 ano	1,136 ano	1,160 ano	1,176 ano
TIR da biometanização	101,43 %	102,51 %	100,65 %	99,40 %
Relação Benefício / Custo	3,741	6,065	7,753	9,108

Em seguida, buscou-se avaliar a viabilidade econômica dos processos de tratamento por biometanização a partir do tempo mínimo de operação do conjunto motogerador para a geração de energia elétrica, conforme os resultados das rotinas de cálculos da Tabela 41.

Tabela 41 — Análises das viabilidades econômicas dos processos de biometanização. Fonte: do Autor (2021)

Anos	2022	2027	2032	2037	2042
População (habitantes)	214.828.540	2027	226.777.802	230.459.062	232.588.580
Geração per capita de RSU (kg/hab./dia)	1,053	1,059	1,063	1,067	1,071
Geração total anual de RSU (t/ano)	82.562.076	85.600.005	88.006.803	89.784.935	90.942.805
Aumento médio anual de RSU	82.302.070	83.000.003	88.000.803	09.704.933	90.942.803
	0,73 %	0,56 %	0,40 %	0,26 %	
para o ciclo dos próximos 5 anos					
Geração total de 'Resíduos	43.552.940	45.155.501	46.425.129	47.363.125	47.973.921
Orgânicos / Sanitários' (t/ano)					
Produção estimada de CH ₄ gerado pela biometanização (t/ano)	1.925.722	1.996.580	2.052.718	2.094.192	2.121.199
Volume estimado de CH ₄ gerado					
pela biometanização (dam³/ano)	2.684.307	2.783.078	2.861.329	2.919.141	2.956.786
Energia elétrica possível de ser gerada	7.010.250	0.106.072	0.224.015	0.502.210	0.612.077
pela biometanização (MWh/ano)	7.819.258	8.106.973	8.334.915	8.503.318	8.612.977
Tempo de operação mínimo					
anual do conjunto motogerador		2.244	1 201	1 002	022
em função do término do tempo		2.244	1.384	1.083	922
de vida útil de projeto (h/ano)					
Tempo de operação mínimo diário					
do conjunto motogerador em		06.00.53	03:47:33	02:57:59	02.21.21
função do término do tempo de		06:08:52	03:47:33	02:57:59	02:31:31
vida útil de projeto (h:min:s/dia)					
Potência elétrica possível de ser		3.612.908	6.021.282	7.853.520	9.344.019
fornecida pela biometanização (kW)		3.012.700	0.021.202	7.055.520	7.544.017
Custos iniciais de projeto em					
função do término do tempo de		18,099	30,164	39,343	46,810
vida útil (R\$ bilhões)					
Custos anuais de projeto por unidade de potência em função do ano (R\$/kW)	269,02	296,89	324,76	352,63	380,50
Aumento médio anual dos custos					
anuais por unidade de potência	1,99 %	1,81 %	1,66 %	1,53 %	
para o ciclo dos próximos 5 anos	1,77 /0	1,01 /0	1,00 /0	1,55 /0	
FVP dos custos anuais de projeto					
para o ciclo dos próximos 5 anos	4,038	4,025	4,014	4,004	
VP referente aos custos anuais para o					
ciclo dos próximos 5 anos para o tempo	4,003				
de vida útil de 5 anos (R\$ bilhões)					
VP referente aos custos anuais para o	6 670	7.005			
ciclo dos próximos 5 anos para o tempo de vida útil de 10 anos (R\$ bilhões)	6,672	7,325			
VP, corrigido para 2022, referente					
aos custos anuais para o ciclo dos					
próximos 5 anos para o tempo de	6,672	4,770			
vida útil de 10 anos (R\$ bilhões)					
VP referente aos custos anuais para o					
ciclo dos próximos 5 anos para o tempo	8,702	9,555	10,407		
de vida útil de 15 anos (R\$ bilhões)	,	,	,		
VP, corrigido para 2022, referente					
aos custos anuais para o ciclo dos	8,702	6,221	4,412		
próximos 5 anos para o tempo de	0,702	0,221	1,112		
vida útil de 15 anos (R\$ bilhões)					

VP referente aos custos anuais para o ciclo dos próximos 5 anos para o tempo de vida útil de 20 anos (R\$ bilhões)	10,353	11,368	12,382	13,397	
VP, corrigido para 2022, referente aos custos anuais para o ciclo dos próximos 5 anos para o tempo de vida útil de 20 anos (R\$ bilhões)	10,353	7,402	5,250	3,698	
VP do projeto, em função do término do tempo de vida útil, referente aos custos anuais de projeto (R\$ bilhões)		4,003	11,441	19,335	26,703
VP, em função do término do tempo de vida útil, referente aos custos totais (R\$ bilhões)		22,102	41,606	58,679	73,513
FVP da venda de energia elétrica para o ciclo dos próximos 5 anos	4,376	4,362	4,349	4,336	
VP referente à venda de energia para o ciclo dos próximos 5 anos (R\$ bilhões)	22,102	29,953	40,269	53,738	
VP, corrigido para 2022, referente à venda de energia para o ciclo dos próximos 5 anos (R\$ bilhões)	22,102	19,503	17,073	14,835	
VP do projeto, em função do término do tempo de vida útil, referente à venda de energia (R\$ bilhões)		22,102	41,606	58,679	73,513
VPL do projeto, em função do término do tempo de vida útil (R\$ bilhões)		0,000	0,000	0,000	0,000

Por fim, elaborou-se a seguinte Tabela 42, similar à Tabela 40, em que se consta as informações mais relevantes das análises das viabilidades econômicas da biometanização.

Tabela 42 – Resumo das análises das viabilidades econômicas da biometanização. Fonte: do Autor (2021)

Tempo de vida útil e TRC	5 anos	10 anos	15 anos	20 anos
Tempo de operação mínimo	2.244 h/ano	1.384 h/ano	1.083 h/ano	922 h/ano
Tempo de operação mínimo	06:08:52 /dia	03:47:33 /dia	02:57:59 /dia	02:31:31 /dia
VP dos custos iniciais	R\$ 18,099 bi	R\$ 30,164 bi	R\$ 39,343 bi	R\$ 46,810 bi
VP dos custos anuais	R\$ 4,003 bi	R\$ 11,441 bi	R\$ 19,335 bi	R\$ 26,703 bi
VP dos custos totais	R\$ 22,102 bi	R\$ 41,606 bi	R\$ 58,679 bi	R\$ 73,513 bi
VP da venda de energia	R\$ 22,102 bi	R\$ 41,606 bi	R\$ 58,679 bi	R\$ 73,513 bi

5.2.3 Compostagem

Na Figura 21, encontra-se a regressão linear dos custos iniciais de projeto por geração anual de resíduos sólidos compostáveis, em R\$/t/ano, em função do tempo, em anos. Já na Figura 22, tem-se a dos lucros líquidos do primeiro ano de projeto e, na Figura 23, tem-se a dos lucros líquidos dos demais anos, exceto o último, de projeto, ambos por geração anual de resíduos sólidos compostáveis.

Figura 21 – Gráfico com a regressão linear dos custos iniciais de projeto por geração anual de resíduos sólidos compostáveis (R\$/t/ano) em função dos anos.

Fonte: do Autor (2021)

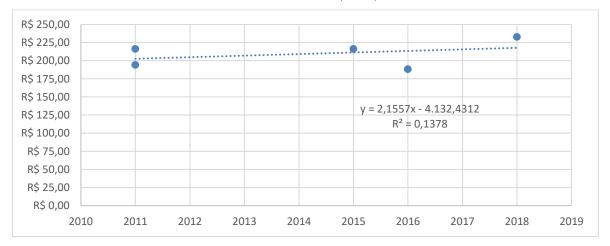


Figura 22 – Gráfico com a regressão linear dos lucros líquidos do primeiro ano de projeto por geração anual de resíduos sólidos compostáveis (R\$/t/ano) em função dos anos. Fonte: do Autor (2021)

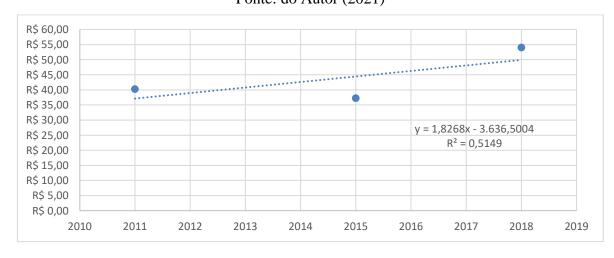
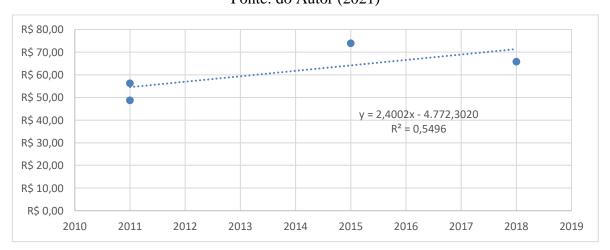



Figura 23 – Gráfico com a regressão linear dos lucros líquidos dos demais anos de projeto por geração anual de resíduos sólidos compostáveis (R\$/t/ano) em função dos anos. Fonte: do Autor (2021)

Portanto, para os processos de tratamento de RSU putrescíveis por compostagem, calculou-se os custos iniciais de projeto por geração anual de resíduos sólidos compostáveis *CIGA*, em R\$/t/ano, utilizando-se da Equação 54.

$$CIGA = 2,1557 \times Ano_0 - 4.132,4312 \tag{54}$$

Em que Ano_0 é o ano de investimentos iniciais para se desenvolver os processos de tratamento de RSU putrescíveis por compostagem, que, em todos os tempos de vida útil em análise, será o ano de 2022. Logo, o valor de CIGA sempre será de R\$ 226,37 /t/ano.

Já para se encontrar os lucros líquidos do primeiro ano de projeto por geração anual de resíduos sólidos compostáveis *LLPGA*₂₀₂₂, em R\$/t/ano, usou-se da Equação 55.

$$LLPGA_{2022} = 1,8268 \times Ano_0 - 3.636,5004 \tag{55}$$

Portanto, o valor de $LLPGA_{2022}$ sempre será de R\$ 57,22 /t/ano, já que o Ano_0 , para todos os tempos de vida útil de projetos, é ordinariamente 2022.

Posteriormente, buscou-se encontrar os lucros líquidos dos demais anos, exceto o último, de projeto por geração anual de resíduos sólidos compostáveis $LLPDAGA_{n-2}$, em R\$/t/ano, segundo a Equação 56 gerada pela regressão linear.

$$LLPDAGA_{n-2} = 2,4002 \times (n-2) - 4.772,3020 \tag{56}$$

Em que n é um ano qualquer inserido no intervalo do tempo de projeto, desde que não seja nem o primeiro e nem o último do tempo de vida útil. Cabe destacar ainda que o fator (n-2), presente na Equação 56, se deve ao fato de que a regressão linear foi gerada com dados referentes a dois anos posteriores ao ano de investimentos iniciais e, portanto, a projeção deve usar o valor do ano em análise inferior a dois na equação da regressão linear.

Em seguida, objetivou-se calcular os lucros líquidos do último ano de projeto por geração anual de resíduos sólidos compostáveis. Conforme descrito no tópico 4.4.2, no segundo parágrafo da página 44, optou-se por não usar a regressão linear para a estimativa dos lucros líquidos, após o IR, do último ano de projeto, pois houve grandes desajustes da linha de tendência do gráfico. Em decorrência disso, optou-se por utilizar a média da razão entre o lucro líquido do ano de maior ganho pelo do de menor ganho dos estudos de Pires (2011), Gomes (2012) e Borsato (2015) como fator multiplicador para se estimar o lucro líquido, após o IR, do último ano. Na Tabela 43, expõe-se os dados necessários para o encontro desse fator multiplicador, que será usado pela Equação 57.

Tabela 43 – Razões entre os lucros líquidos dos estudos-base de compostagem. Fonte: do Autor (2021)

Estudos-base	Pires (2011)	Gomes (2012)	Borsato (2015)
Lucro líquido do ano de maior ganho	R\$ 426.425,00	R\$ 442.799,17	R\$ 1.024.393,00
Lucro líquido do ano de menor ganho	R\$ 208.401,00	R\$ 209.022,04	R\$ 491.982,00
Razão entre os lucros líquidos	2,046	2,118	2,082
Média das Razões		2,082	_

Com a média das razões entre o lucro líquido do ano de maior ganho pelo do de menor ganho dos estudos-base calculada, tem-se o fator multiplicador para se encontrar os lucros líquidos do último ano por geração anual de resíduos sólidos compostáveis. Para se descobrir o valor desse parâmetro, é necessário fazer o produto do fator multiplicador pela equação gerada pela regressão linear dos lucros líquidos do primeiro ano de projeto por geração anual de resíduos sólidos compostáveis (Equação 55), pois geralmente os menores lucros líquidos, após o IR, são referentes ao primeiro ano de projeto, vide Equação 57.

$$LLPUAGA_{u-10} = 2,082 \times [1,8268 \times (u-10) - 3.636,5004] \tag{57}$$

Em que $LLPUAGA_{u-10}$ é o lucro líquido, após o IR, do último ano de projeto por geração anual de resíduos sólidos compostáveis, em R\$/t/ano, e u é o ano do último ano de projeto. Vale ressaltar que o fator (u-10), presente na Equação 57, faz-se necessário porque as razões entre o lucro líquido do ano de maior ganho pelo do de menor ganho foram calculadas baseadas em estudos-base com tempos de vida útil de 10 anos e, portanto, a projeção deve usar o valor do último ano em análise inferior a dez na equação.

Na Tabela 44, tem-se os dados resultantes das análises econômicas dos processos de tratamento de RSU putrescíveis por compostagem. Tais análises foram realizadas para todos os tempos de vida útil de projetos, trabalhando-se com o VP para o ano de 2022.

Tabela 44 – Análises econômicas dos processos de tratamento por compostagem. Fonte: do Autor (2021)

Anos	2022	2027	2032	2037	2042
População (habitantes)	214.828.540	221.545.234	226.777.802	230.459.062	232.588.580
Geração per capita de RSU (kg/hab./dia)	1,053	1,059	1,063	1,067	1,071
Geração total anual de RSU (t/ano)	82.562.076	85.600.005	88.006.803	89.784.935	90.942.805
Aumento médio anual de RSU para o ciclo dos próximos 5 anos	0,73 %	0,56 %	0,40 %	0,26 %	
Geração total de 'Resíduos Orgânicos / Sanitários' (t/ano)	43.552.940	45.155.501	46.425.129	47.363.125	47.973.921
Custos iniciais de projeto em função do término do tempo de vida útil (R\$ bilhões)		10,222	10,509	10,722	10,860
VP, corrigido para 2022, do lucro líquido do primeiro ano (R\$ bilhões)	2,304				

		T	I	I .	_
Lucro líquido dos demais anos por geração de compostáveis (R\$/t/ano)	76,16	88,16	100,16	112,16	124,16
Lucro líquido dos demais anos (R\$ bilhões)	3,317	3,981	4,650	5,312	5,956
Aumento do lucro líquido dos demais anos para o ciclo dos próximos 5 anos	3,72 %	3,16 %	2,70 %	2,32 %	
VP, corrigido para 2022, da exclusão do lucro líquido dos demais anos referente ao primeiro ano (R\$ bilhões)	3,157				
Lucro líquido do último ano por geração anual de compostáveis (R\$/t/ano)		100,14	119,16	138,17	157,19
Lucro líquido do último ano em função do término do tempo de vida útil (R\$ bilhões)		4,522	5,532	6,544	7,541
FVP dos lucros líquidos dos demais anos para o ciclo dos próximos 5 anos	4,168	4,125	4,091	4,062	
VP referente aos lucros líquidos de projeto para o ciclo dos próximos 5 anos para o tempo de vida útil de 5 anos (R\$ bilhões)	13,837				
VP referente aos lucros líquidos de projeto para o ciclo dos próximos 5 anos para o tempo de vida útil de 10 anos (R\$ bilhões)	13,485	17,515			
VP, corrigido para 2022, referente aos lucros líquidos de projeto para o ciclo dos próximos 5 anos para o tempo de vida útil de 10 anos (R\$ bilhões)	13,485	11,404			
VP referente aos lucros líquidos de projeto para o ciclo dos próximos 5 anos para o tempo de vida útil de 15 anos (R\$ bilhões)	13,485	16,940	20,338		
VP, corrigido para 2022, referente aos lucros líquidos de projeto para o ciclo dos próximos 5 anos para o tempo de vida útil de 15 anos (R\$ bilhões)	13,485	11,030	8,623		
VP referente aos lucros líquidos de projeto para o ciclo dos próximos 5 anos para o tempo de vida útil de 20 anos (R\$ bilhões)	13,485	16,940	19,536	23,111	
VP, corrigido para 2022, referente aos lucros líquidos de projeto para o ciclo dos próximos 5 anos para o tempo de vida útil de 20 anos (R\$ bilhões)	13,485	11,030	8,283	6,380	
VP do projeto, em função do término do tempo de vida útil, referente aos lucros líquidos (R\$ bilhões)		13,837	24,889	33,138	39,178
VPL do projeto, em função do térmi- no do tempo de vida útil, referente à compostagem (R\$ bilhões)		3,615	14,380	22,416	28,318
Relação Lucro Líquido / Custo Inicial em função do término do tempo de vida útil		1,354	2,368	3,091	3,608
TRC em função do término do tempo de vida útil de projeto (anos)		3,749	3,856	3,936	3,988
TIR, ao ano, em função do término do tempo de vida útil de projeto		20,64 %	31,61 %	32,98 %	33,06 %

Por fim, elaborou-se a Tabela 45, em que se consta as informações mais relevantes, como os VPL, os TRC e as TIR, das análises econômicas dos processos de tratamento de RSU putrescíveis por compostagem em função de cada tempo de vida útil de projeto.

Tabela 45 – Resumo dos resultados das análises econômicas da compostagem. Fonte: do Autor (2021)

Tempo de vida útil	5 anos	10 anos	15 anos	20 anos
VP dos custos iniciais	R\$ 10,222 bi	R\$ 10,509 bi	R\$ 10,722 bi	R\$ 10,860 bi
VP dos lucros líquidos	R\$ 13,837 bi	R\$ 24,889 bi	R\$ 33,138 bi	R\$ 39,178 bi
VPL da compostagem	R\$ 3,615 bi	R\$ 14,380 bi	R\$ 22,416 bi	R\$ 28,318 bi
TRC da compostagem	3,749 anos	3,856 anos	3,936 anos	3,988 anos
TIR da compostagem	20,64 %	31,61 %	32,98 %	33,06 %
Relação Lucro Líquido / Custo Inicial	1,354	2,368	3,091	3,608

5.2.4 Comparação entre Biometanização e Compostagem

Neste tópico, buscou-se calcular todos os tempos mínimos de operação do conjunto motogerador para a geração de energia elétrica, por processos de tratamento de RSU por biometanização, para cada tempo de vida útil de projeto em análise, de modo que esse tipo de tratamento seja mais viável economicamente em relação à compostagem. Para isso, teve-se de adotar um novo parâmetro para a biometanização, chamado de Relação Lucro Líquido / Custo Inicial, conforme descrito pela Equação 47. Isso se deve ao fato de que não houve parâmetros suficientes para se calcular a Relação Benefício / Custo dos processos de tratamento de RSU putrescíveis por compostagem, optando-se por utilizar uma relação nomeada de Lucro Líquido / Custo Inicial. Na Tabela 46, tem-se os resultados das rotinas de cálculos para se achar os tempos mínimos de operação do conjunto motogerador para que a biometanização seja mais viável economicamente do que a compostagem nos quatro tempos de vida útil analisados por esta Dissertação de Mestrado.

Tabela 46 – Análise comparativa econômica entre a biometanização e a compostagem. Fonte: do Autor (2021)

Anos	2022	2027	2032	2037	2042
População (habitantes)	214.828.540	221.545.234	226.777.802	230.459.062	232.588.580
Geração per capita de RSU (kg/hab./dia)	1,053	1,059	1,063	1,067	1,071
Geração total anual de RSU (t/ano)	82.562.076	85.600.005	88.006.803	89.784.935	90.942.805
Aumento médio anual de RSU para o ciclo dos próximos 5 anos	0,73 %	0,56 %	0,40 %	0,26 %	
Geração total de 'Resíduos Orgânicos / Sanitários' (t/ano)	43.552.940	45.155.501	46.425.129	47.363.125	47.973.921
Produção estimada de CH ₄ gerado pela biometanização (t/ano)	1.925.722	1.996.580	2.052.718	2.094.192	2.121.199
Volume estimado de CH ₄ gerado pela biometanização (dam³/ano)	2.684.307	2.783.078	2.861.329	2.919.141	2.956.786
Energia elétrica possível de ser gerada pela biometanização (MWh/ano)	7.819.258	8.106.973	8.334.915	8.503.318	8.612.977

Tempo de operação mínimo anual do conjunto motogerador em função do término do tempo de vida útil de projeto (h/ano)		2.894	2.757	2.601	2.452
Tempo de operação mínimo diário do conjunto motogerador em função do término do tempo de vida útil de projeto (h:min:s/dia)		07:55:41	07:33:17	07:07:29	06:43:07
Potência elétrica possível de ser fornecida pela biometanização (kW)		2.801.521	3.022.687	3.269.800	3.512.259
Custos iniciais de projeto em função do término do tempo de vida útil (R\$ bilhões)		14,035	15,143	16,381	17,595
Custos anuais de projeto por unidade de potência em função do ano (R\$/kW)	269,02	296,89	324,76	352,63	380,50
Aumento médio anual dos custos anuais por unidade de potência para o ciclo dos próximos 5 anos	1,99 %	1,81 %	1,66 %	1,53 %	
FVP dos custos anuais de projeto para o ciclo dos próximos 5 anos	4,038	4,025	4,014	4,004	
VP referente aos custos anuais para o ciclo dos próximos 5 anos para o tempo de vida útil de 5 anos (R\$ bilhões)	3,104				
VP referente aos custos anuais para o ciclo dos próximos 5 anos para o tempo de vida útil de 10 anos (R\$ bilhões)	3,349	3,677			
VP, corrigido para 2022, referente aos custos anuais para o ciclo dos próximos 5 anos para o tempo de vida útil de 10 anos (R\$ bilhões)	3,349	2,394			
VP referente aos custos anuais para o ciclo dos próximos 5 anos para o tempo de vida útil de 15 anos (R\$ bilhões)	3,623	3,978	4,333		
VP, corrigido para 2022, referente aos custos anuais para o ciclo dos próximos 5 anos para o tempo de vida útil de 15 anos (R\$ bilhões)	3,623	2,590	1,837		
VP referente aos custos anuais para o ciclo dos próximos 5 anos para o tempo de vida útil de 20 anos (R\$ bilhões)	3,892	4,273	4,654	5,036	
VP, corrigido para 2022, referente aos custos anuais para o ciclo dos próximos 5 anos para o tempo de vida útil de 20 anos (R\$ bilhões)	3,892	2,782	1,973	1,390	
VP do projeto, em função do término do tempo de vida útil, referente aos custos anuais de projeto (R\$ bilhões)		3,104	5,744	8,050	10,037
VP, em função do término do tempo de vida útil, referente aos custos totais (R\$ bilhões)		17,139	20,886	24,431	27,632
FVP da venda de energia elétrica para o ciclo dos próximos 5 anos	4,376	4,362	4,349	4,336	
VP referente à venda de energia para o ciclo dos próximos 5 anos (R\$ bilhões)	22,102	29,953	40,269	53,738	
VP, corrigido para 2022, referente à venda de energia para o ciclo dos próximos 5 anos (R\$ bilhões)	22,102	19,503	17,073	14,835	

VP do projeto, em função do término do tempo de vida útil, referente à venda de energia (R\$ bilhões)	 22,102	41,606	58,679	73,513
VPL do projeto, em função do término do tempo de vida útil (R\$ bilhões)	 4,964	20,720	34,248	45,881
Relação Lucro Líquido / Custo Inicial em função do término do tempo de vida útil	 1,354	2,368	3,091	3,608
TRC em função do término do tempo de vida útil de projeto (anos)	 3,651	4,004	4,411	4,824
TIR, ao ano, em função do término do tempo de vida útil de projeto	 21,13 %	31,37 %	31,28 %	29,88 %

Por fim, elaborou-se a Tabela 47, em que se consta as informações mais relevantes da comparação econômica para que os processos de tratamento de RSU putrescíveis por biometanização sejam mais vantajosos economicamente em relação aos de compostagem.

Tabela 47 – Dados para que a biometanização seja mais vantajosa que a compostagem. Fonte: do Autor (2021)

Tempo de vida útil	5 anos	10 anos	15 anos	20 anos
Tempo de operação mínimo	2.894 h/ano	2.757 h/ano	2.601 h/ano	2.452 h/ano
Tempo de operação mínimo	07:55:41 /dia	07:33:17 /dia	07:07:29 /dia	06:43:07 /dia
VP dos custos iniciais	R\$ 14,035 bi	R\$ 15,143 bi	R\$ 16,381 bi	R\$ 17,595 bi
VP dos custos anuais	R\$ 3,104 bi	R\$ 5,744 bi	R\$ 8,050 bi	R\$ 10,037 bi
VP dos custos totais	R\$ 17,139 bi	R\$ 20,886 bi	R\$ 24,431 bi	R\$ 27,632 bi
VP da venda de energia	R\$ 22,102 bi	R\$ 41,606 bi	R\$ 58,679 bi	R\$ 73,513 bi
VPL da biometanização	R\$ 4,964 bi	R\$ 20,720 bi	R\$ 34,248 bi	R\$ 45,881 bi
TRC da biometanização	3,651 anos	4,004 anos	4,411 anos	4,824 anos
TIR da biometanização	21,13 %	31,37 %	31,28 %	29,88 %
Relação Lucro Líquido / Custo Inicial	1,354	2,368	3,091	3,608

5.2.5 Reciclagem

Neste tópico, expõe-se os dados resultantes das análises econômicas dos processos de reciclagem de algumas categorias e subcategorias de RSU reaproveitáveis gerados no Brasil. Tais análises foram realizadas para períodos de 5, 10, 15 e 20 anos a partir do ano de 2022, trabalhando-se com o VP para esse ano. Nas Tabelas 48, 49, 50, 51, 52, 53 e 54, encontram-se os dados referentes às análises econômicas dos materiais analisados.

Tabela 48 – Análise econômica da reciclagem de 'Plástico Rígido / Duro'. Fonte: do Autor (2021)

Anos	2022	2027	2032	2037	2042
População (habitantes)	214.828.540	221.545.234	226.777.802	230.459.062	232.588.580
Geração per capita de RSU (kg/hab./dia)	1,053	1,059	1,063	1,067	1,071

Geração total anual de RSU (t/ano)	82.562.076	85.600.005	88.006.803	89.784.935	90.942.805
Recursos aplicados na coleta seletiva de RSU por unidade de massa (R\$/t)	633,43	652,64	668,52	682,73	696,07
Geração total anual do material coletado em análise (t/ano)	6.004.318	6.225.251	6.400.285	6.529.599	6.613.805
Recursos gerados com a venda do material coletado em análise em função do término do tempo de vida útil (R\$ bilhões)	6,008	8,183	11,051	14,810	19,705
Aumento médio anual dos recursos gera- dos com a venda do material coletado em análise para o ciclo dos próximos 5 anos	6,37 %	6,19 %	6,03 %	5,88 %	
FVP dos recursos gerados com a ven- da do material coletado em análise para o ciclo dos próximos 5 anos	4,376	4,362	4,349	4,336	
VP referente aos recursos gerados com a venda do material coletado em análise para o ciclo dos próximos 5 anos (R\$ bilhões)	27,968	37,902	50,955	67,999	
VP, corrigido para 2022, referente aos recursos gerados com a venda do material coletado em análise para o ciclo dos próximos 5 anos (R\$ bilhões)	27,968	24,679	21,604	18,772	
VP do projeto, em função do término do tempo de vida útil, referente aos re- cursos gerados com a venda do material coletado em análise (R\$ bilhões)		27,968	52,647	74,251	93,023
Custos anuais da coleta seletiva do material em análise em função do ano (R\$ bilhões)	3,803	4,063	4,279	4,458	4,604
Aumento médio anual dos custos anuais da coleta seletiva do material em análise para o ciclo dos próximos 5 anos	1,33 %	1,04 %	0,82 %	0,65 %	
FVP dos custos anuais da coleta seletiva do material em análise para o ciclo dos próximos 5 anos	3,990	3,969	3,953	3,940	
VP referente aos custos anuais da coleta seletiva do material em análise para o ciclo dos próximos 5 anos (R\$ bilhões)	15,375	16,291	17,053	17,678	
VP, corrigido para 2022, referente aos custos anuais da coleta seletiva do material em análise para o ciclo dos próximos 5 anos (R\$ bilhões)	15,375	10,608	7,230	4,880	
VP, em função do término do tempo de vida útil, referente aos custos anuais da coleta seletiva do material em análise (R\$ bilhões)		15,375	25,983	33,213	38,093
VPL do projeto, em função do término do tempo de vida útil, referente aos processos de reciclagem do material coletado em análise (R\$ bilhões)		12,593	26,664	41,038	54,930

Tabela 49 – Análise econômica da reciclagem de 'Plástico Maleável / Mole'. Fonte: do Autor (2021)

Anos	2022	2027	2032	2037	2042
População (habitantes)	214.828.540	221.545.234	226.777.802	230.459.062	232.588.580
Geração per capita de RSU (kg/hab./dia)	1,053	1,059	1,063	1,067	1,071
Geração total anual de RSU (t/ano)	82.562.076	85.600.005	88.006.803	89.784.935	90.942.805
Recursos aplicados na coleta seletiva de RSU por unidade de massa (R\$/t)	633,43	652,64	668,52	682,73	696,07
Geração total anual do material coletado em análise (t/ano)	7.910.144	8.201.203	8.431.795	8.602.155	8.713.089

Recursos gerados com a venda do material coletado em análise em função do término do tempo de vida útil (R\$ bilhões)	8,219	11,193	15,117	20,259	26,955
Aumento médio anual dos recursos gera- dos com a venda do material coletado em análise para o ciclo dos próximos 5 anos	6,37 %	6,19 %	6,03 %	5,88 %	
FVP dos recursos gerados com a ven- da do material coletado em análise para o ciclo dos próximos 5 anos	4,376	4,362	4,349	4,336	
VP referente aos recursos gerados com a venda do material coletado em análise para o ciclo dos próximos 5 anos (R\$ bilhões)	38,257	51,846	69,701	93,015	
VP, corrigido para 2022, referente aos recursos gerados com a venda do material coletado em análise para o ciclo dos próximos 5 anos (R\$ bilhões)	38,257	33,758	29,551	25,678	
VP do projeto, em função do término do tempo de vida útil, referente aos re- cursos gerados com a venda do material coletado em análise (R\$ bilhões)		38,257	72,016	101,567	127,245
Custos anuais da coleta seletiva do material em análise em função do ano (R\$ bilhões)	5,011	5,352	5,637	5,873	6,065
Aumento médio anual dos custos anuais da coleta seletiva do material em análise para o ciclo dos próximos 5 anos	1,33 %	1,04 %	0,82 %	0,65 %	
FVP dos custos anuais da coleta seletiva do material em análise para o ciclo dos próximos 5 anos	3,990	3,969	3,953	3,940	
VP referente aos custos anuais da coleta seletiva do material em análise para o ciclo dos próximos 5 anos (R\$ bilhões)	20,255	21,462	22,465	23,289	
VP, corrigido para 2022, referente aos custos anuais da coleta seletiva do material em análise para o ciclo dos próximos 5 anos (R\$ bilhões)	20,255	13,975	9,525	6,429	
VP, em função do término do tempo de vida útil, referente aos custos anuais da coleta seletiva do material em análise (R\$ bilhões)		20,255	34,230	43,755	50,184
VPL do projeto, em função do término do tempo de vida útil, referente aos processos de reciclagem do material coletado em análise (R\$ bilhões)		18,002	37,785	57,812	77,061

Tabela 50 – Análise econômica da reciclagem de 'Papel'. Fonte: do Autor (2021)

Anos	2022	2027	2032	2037	2042
População (habitantes)	214.828.540	221.545.234	226.777.802	230.459.062	232.588.580
Geração per capita de RSU (kg/hab./dia)	1,053	1,059	1,063	1,067	1,071
Geração total anual de RSU (t/ano)	82.562.076	85.600.005	88.006.803	89.784.935	90.942.805
Recursos aplicados na coleta seletiva de RSU por unidade de massa (R\$/t)	633,43	652,64	668,52	682,73	696,07
Geração total anual do material coletado em análise (t/ano)	4.738.503	4.912.859	5.050.993	5.153.046	5.219.500
Recursos gerados com a venda do material coletado em análise em função do término do tempo de vida útil (R\$ bilhões)	2,782	3,789	5,118	6,858	9,125
Aumento médio anual dos recursos gera- dos com a venda do material coletado em análise para o ciclo dos próximos 5 anos	6,37 %	6,19 %	6,03 %	5,88 %	

FVP dos recursos gerados com a ven- da do material coletado em análise para o ciclo dos próximos 5 anos	4,376	4,362	4,349	4,336	
VP referente aos recursos gerados com a venda do material coletado em análise para o ciclo dos próximos 5 anos (R\$ bilhões)	12,952	17,552	23,597	31,489	
VP, corrigido para 2022, referente aos recursos gerados com a venda do material coletado em análise para o ciclo dos próximos 5 anos (R\$ bilhões)	12,952	11,429	10,004	8,693	
VP do projeto, em função do término do tempo de vida útil, referente aos re- cursos gerados com a venda do material coletado em análise (R\$ bilhões)		12,952	24,380	34,384	43,077
Custos anuais da coleta seletiva do material em análise em função do ano (R\$ bilhões)	3,002	3,206	3,377	3,518	3,633
Aumento médio anual dos custos anuais da coleta seletiva do material em análise para o ciclo dos próximos 5 anos	1,33 %	1,04 %	0,82 %	0,65 %	
FVP dos custos anuais da coleta seletiva do material em análise para o ciclo dos próximos 5 anos	3,990	3,969	3,953	3,940	
VP referente aos custos anuais da coleta seletiva do material em análise para o ciclo dos próximos 5 anos (R\$ bilhões)	12,134	12,857	13,458	13,951	
VP, corrigido para 2022, referente aos custos anuais da coleta seletiva do material em análise para o ciclo dos próximos 5 anos (R\$ bilhões)	12,134	8,372	5,706	3,851	
VP, em função do término do tempo de vida útil, referente aos custos anuais da coleta seletiva do material em análise (R\$ bilhões)		12,134	20,505	26,211	30,062
VPL do projeto, em função do término do tempo de vida útil, referente aos processos de reciclagem do material coletado em análise (R\$ bilhões)		0,818	3,875	8,173	13,015

Tabela 51 – Análise econômica da reciclagem de 'Papelão'. Fonte: do Autor (2021)

Anos	2022	2027	2032	2037	2042
População (habitantes)	214.828.540	221.545.234	226.777.802	230.459.062	232.588.580
Geração per capita de RSU (kg/hab./dia)	1,053	1,059	1,063	1,067	1,071
Geração total anual de RSU (t/ano)	82.562.076	85.600.005	88.006.803	89.784.935	90.942.805
Recursos aplicados na coleta seletiva de RSU por unidade de massa (R\$/t)	633,43	652,64	668,52	682,73	696,07
Geração total anual do material coletado em análise (t/ano)	3.864.466	4.006.661	4.119.316	4.202.544	4.256.741
Recursos gerados com a venda do material coletado em análise em função do término do tempo de vida útil (R\$ bilhões)	1,786	2,432	3,284	4,401	5,856
Aumento médio anual dos recursos gera- dos com a venda do material coletado em análise para o ciclo dos próximos 5 anos	6,37 %	6,19 %	6,03 %	5,88 %	
FVP dos recursos gerados com a ven- da do material coletado em análise para o ciclo dos próximos 5 anos	4,376	4,362	4,349	4,336	
VP referente aos recursos gerados com a venda do material coletado em análise para o ciclo dos próximos 5 anos (R\$ bilhões)	8,312	11,264	15,143	20,209	

VP, corrigido para 2022, referente aos recursos gerados com a venda do material coletado em análise para o ciclo dos próximos 5 anos (R\$ bilhões)	8,312	7,334	6,420	5,579	
VP do projeto, em função do término do tempo de vida útil, referente aos re- cursos gerados com a venda do material coletado em análise (R\$ bilhões)		8,312	15,646	22,067	27,645
Custos anuais da coleta seletiva do material em análise em função do ano (R\$ bilhões)	2,448	2,615	2,754	2,869	2,963
Aumento médio anual dos custos anuais da coleta seletiva do material em análise para o ciclo dos próximos 5 anos	1,33 %	1,04 %	0,82 %	0,65 %	
FVP dos custos anuais da coleta seletiva do material em análise para o ciclo dos próximos 5 anos	3,990	3,969	3,953	3,940	
VP referente aos custos anuais da coleta seletiva do material em análise para o ciclo dos próximos 5 anos (R\$ bilhões)	9,896	10,485	10,975	11,377	
VP, corrigido para 2022, referente aos custos anuais da coleta seletiva do material em análise para o ciclo dos próximos 5 anos (R\$ bilhões)	9,896	6,827	4,653	3,141	
VP, em função do término do tempo de vida útil, referente aos custos anuais da coleta seletiva do material em análise (R\$ bilhões)		9,896	16,723	21,376	24,517
VPL do projeto, em função do término do tempo de vida útil, referente aos processos de reciclagem do material coletado em análise (R\$ bilhões)		- 1,584	- 1,077	0,690	3,128

Tabela 52 – Análise econômica da reciclagem de 'Metais ferrosos'. Fonte: do Autor (2021)

Anos	2022	2027	2032	2037	2042
População (habitantes)	214.828.540	221.545.234	226.777.802	230.459.062	232.588.580
Geração per capita de RSU (kg/hab./dia)	1,053	1,059	1,063	1,067	1,071
Geração total anual de RSU (t/ano)	82.562.076	85.600.005	88.006.803	89.784.935	90.942.805
Recursos aplicados na coleta seletiva de RSU por unidade de massa (R\$/t)	633,43	652,64	668,52	682,73	696,07
Geração total anual do material coletado em análise (t/ano)	1.161.788	1.204.536	1.238.404	1.263.425	1.279.719
Recursos gerados com a venda do material coletado em análise em função do término do tempo de vida útil (R\$ bilhões)	0,141	0,192	0,260	0,348	0,463
Aumento médio anual dos recursos gera- dos com a venda do material coletado em análise para o ciclo dos próximos 5 anos	6,37 %	6,19 %	6,03 %	5,88 %	
FVP dos recursos gerados com a ven- da do material coletado em análise para o ciclo dos próximos 5 anos	4,376	4,362	4,349	4,336	
VP referente aos recursos gerados com a venda do material coletado em análise para o ciclo dos próximos 5 anos (R\$ bilhões)	0,658	0,891	1,198	1,599	
VP, corrigido para 2022, referente aos recursos gerados com a venda do material coletado em análise para o ciclo dos próximos 5 anos (R\$ bilhões)	0,658	0,580	0,508	0,441	

VP do projeto, em função do término do tempo de vida útil, referente aos re- cursos gerados com a venda do material coletado em análise (R\$ bilhões)		0,658	1,238	1,746	2,187
Custos anuais da coleta seletiva do material em análise em função do ano (R\$ bilhões)	0,736	0,786	0,828	0,863	0,891
Aumento médio anual dos custos anuais da coleta seletiva do material em análise para o ciclo dos próximos 5 anos	1,33 %	1,04 %	0,82 %	0,65 %	
FVP dos custos anuais da coleta seletiva do material em análise para o ciclo dos próximos 5 anos	3,990	3,969	3,953	3,940	
VP referente aos custos anuais da coleta seletiva do material em análise para o ciclo dos próximos 5 anos (R\$ bilhões)	2,975	3,152	3,300	3,420	
VP, corrigido para 2022, referente aos custos anuais da coleta seletiva do material em análise para o ciclo dos próximos 5 anos (R\$ bilhões)	2,975	2,053	1,399	0,944	
VP, em função do término do tempo de vida útil, referente aos custos anuais da coleta seletiva do material em análise (R\$ bilhões)		2,975	5,028	6,426	7,371
VPL do projeto, em função do término do tempo de vida útil, referente aos processos de reciclagem do material coletado em análise (R\$ bilhões)		- 2,317	- 3,790	- 4,681	- 5,184

Tabela 53 – Análise econômica da reciclagem de 'Alumínio'. Fonte: do Autor (2021)

Anos	2022	2027	2032	2037	2042
População (habitantes)	214.828.540	221.545.234	226.777.802	230.459.062	232.588.580
Geração per capita de RSU (kg/hab./dia)	1,053	1,059	1,063	1,067	1,071
Geração total anual de RSU (t/ano)	82.562.076	85.600.005	88.006.803	89.784.935	90.942.805
Recursos aplicados na coleta seletiva de RSU por unidade de massa (R\$/t)	633,43	652,64	668,52	682,73	696,07
Geração total anual do material coletado em análise (t/ano)	564.861	585.645	602.112	614.277	622.199
Recursos gerados com a venda do material coletado em análise em função do término do tempo de vida útil (R\$ bilhões)	2,679	3,648	4,927	6,603	8,785
Aumento médio anual dos recursos gera- dos com a venda do material coletado em análise para o ciclo dos próximos 5 anos	6,37 %	6,19 %	6,03 %	5,88 %	
FVP dos recursos gerados com a ven- da do material coletado em análise para o ciclo dos próximos 5 anos	4,376	4,362	4,349	4,336	
VP referente aos recursos gerados com a venda do material coletado em análise para o ciclo dos próximos 5 anos (R\$ bilhões)	12,469	16,898	22,717	30,316	
VP, corrigido para 2022, referente aos recursos gerados com a venda do material coletado em análise para o ciclo dos próximos 5 anos (R\$ bilhões)	12,469	11,003	9,631	8,369	
VP do projeto, em função do término do tempo de vida útil, referente aos re- cursos gerados com a venda do material coletado em análise (R\$ bilhões)		12,469	23,472	33,103	41,472

Custos anuais da coleta seletiva do material em análise em função do ano (R\$ bilhões)	0,358	0,382	0,403	0,419	0,433
Aumento médio anual dos custos anuais da coleta seletiva do material em análise para o ciclo dos próximos 5 anos	1,33 %	1,04 %	0,82 %	0,65 %	
FVP dos custos anuais da coleta seletiva do material em análise para o ciclo dos próximos 5 anos	3,990	3,969	3,953	3,940	
VP referente aos custos anuais da coleta seletiva do material em análise para o ciclo dos próximos 5 anos (R\$ bilhões)	1,446	1,533	1,604	1,663	
VP, corrigido para 2022, referente aos custos anuais da coleta seletiva do material em análise para o ciclo dos próximos 5 anos (R\$ bilhões)	1,446	0,998	0,680	0,459	
VP, em função do término do tempo de vida útil, referente aos custos anuais da coleta seletiva do material em análise (R\$ bilhões)		1,446	2,444	3,125	3,584
VPL do projeto, em função do término do tempo de vida útil, referente aos processos de reciclagem do material coletado em análise (R\$ bilhões)		11,023	21,027	29,979	37,889

Tabela 54 – Análise econômica da reciclagem de 'Vidro'. Fonte: do Autor (2021)

Anos	2022	2027	2032	2037	2042
População (habitantes)	214.828.540	221.545.234	226.777.802	230.459.062	232.588.580
Geração per capita de RSU (kg/hab./dia)	1,053	1,059	1,063	1,067	1,071
Geração total anual de RSU (t/ano)	82.562.076	85.600.005	88.006.803	89.784.935	90.942.805
Recursos aplicados na coleta seletiva de RSU por unidade de massa (R\$/t)	633,43	652,64	668,52	682,73	696,07
Geração total anual do material coletado em análise (t/ano)	1.941.310	2.012.741	2.069.333	2.111.143	2.138.368
Recursos gerados com a venda do material coletado em análise em função do término do tempo de vida útil (R\$ bilhões)	0,118	0,161	0,217	0,291	0,387
Aumento médio anual dos recursos gera- dos com a venda do material coletado em análise para o ciclo dos próximos 5 anos	6,37 %	6,19 %	6,03 %	5,88 %	
FVP dos recursos gerados com a ven- da do material coletado em análise para o ciclo dos próximos 5 anos	4,376	4,362	4,349	4,336	
VP referente aos recursos gerados com a venda do material coletado em análise para o ciclo dos próximos 5 anos (R\$ bilhões)	0,549	0,745	1,001	1,336	
VP, corrigido para 2022, referente aos recursos gerados com a venda do material coletado em análise para o ciclo dos próximos 5 anos (R\$ bilhões)	0,549	0,485	0,424	0,369	
VP do projeto, em função do término do tempo de vida útil, referente aos re- cursos gerados com a venda do material coletado em análise (R\$ bilhões)		0,549	1,034	1,459	1,827
Custos anuais da coleta seletiva do material em análise em função do ano (R\$ bilhões)	1,230	1,314	1,383	1,441	1,488
Aumento médio anual dos custos anuais da coleta seletiva do material em análise para o ciclo dos próximos 5 anos	1,33 %	1,04 %	0,82 %	0,65 %	

·					
FVP dos custos anuais da coleta seletiva do material em análise para o ciclo dos próximos 5 anos	3,990	3,969	3,953	3,940	
VP referente aos custos anuais da coleta seletiva do material em análise para o ciclo dos próximos 5 anos (R\$ bilhões)	4,971	5,267	5,513	5,715	
VP, corrigido para 2022, referente aos custos anuais da coleta seletiva do material em análise para o ciclo dos próximos 5 anos (R\$ bilhões)	4,971	3,430	2,338	1,578	
VP, em função do término do tempo de vida útil, referente aos custos anuais da coleta seletiva do material em análise (R\$ bilhões)		4,971	8,401	10,738	12,316
VPL do projeto, em função do térmi- no do tempo de vida útil, referente aos processos de reciclagem do mate- rial coletado em análise (R\$ bilhões)		-4,422	- 7,367	- 9,280	- 10,489

Em seguida, elaborou-se a Tabela 55, em que consta o resumo dos VP, em bilhões de reais, para o ano de 2022, dos recursos gerados com a venda dos materiais coletados das subcategorias de RSU reaproveitáveis e dos custos anuais da coleta seletiva dos mesmos.

Tabela 55 – VP dos processos de reciclagem de subcategorias de RSU reaproveitáveis. Fonte: do Autor (2021)

-							
Tempo de vida útil	5 anos	10 anos	15 anos	20 anos			
Plástico Rígido / Duro							
VP dos recursos de venda	R\$ 27,968 bi	R\$ 52,647 bi	R\$ 74,251 bi	R\$ 93,023 bi			
VP dos custos da coleta seletiva	R\$ 15,375 bi	R\$ 25,983 bi	R\$ 33,213 bi	R\$ 38,093 bi			
VPL da reciclagem	R\$ 12,593 bi	R\$ 26,664 bi	R\$ 41,038 bi	R\$ 54,930 bi			
	Plástico Ma	aleável / Mole		_			
VP dos recursos de venda	R\$ 38,257 bi	R\$ 72,016 bi	R\$ 101,567 bi	R\$ 127,245 bi			
VP dos custos da coleta seletiva	R\$ 20,255 bi	R\$ 34,230 bi	R\$ 43,755 bi	R\$ 50,184 bi			
VPL da reciclagem	R\$ 18,002 bi	R\$ 37,785 bi	R\$ 57,812 bi	R\$ 77,061 bi			
	P	apel		_			
VP dos recursos de venda	R\$ 12,952 bi	R\$ 24,380 bi	R\$ 34,384 bi	R\$ 43,077 bi			
VP dos custos da coleta seletiva	R\$ 12,134 bi	R\$ 20,505 bi	R\$ 26,211 bi	R\$ 30,062 bi			
VPL da reciclagem	R\$ 0,818 bi	R\$ 3,875 bi	R\$ 8,173 bi	R\$ 13,015 bi			
	Papelão						
VP dos recursos de venda	R\$ 8,312 bi	R\$ 15,646 bi	R\$ 22,067 bi	R\$ 27,645 bi			
VP dos custos da coleta seletiva	R\$ 9,896 bi	R\$ 16,723 bi	R\$ 21,376 bi	R\$ 24,517 bi			
VPL da reciclagem	−R\$ 1,584 bi	- R\$ 1,077 bi	R\$ 0,690 bi	R\$ 3,128 bi			
	Metais	s ferrosos					
VP dos recursos de venda	R\$ 0,658 bi	R\$ 1,238 bi	R\$ 1,746 bi	R\$ 2,187 bi			
VP dos custos da coleta seletiva	R\$ 2,975 bi	R\$ 5,028 bi	R\$ 6,426 bi	R\$ 7,371 bi			
VPL da reciclagem	– R\$ 2,317 bi	– R\$ 3,790 bi	- R\$ 4,681 bi	- R\$ 5,184 bi			
Alumínio							
VP dos recursos de venda	R\$ 12,469 bi	R\$ 23,472 bi	R\$ 33,103 bi	R\$ 41,472 bi			
VP dos custos da coleta seletiva	R\$ 1,446 bi	R\$ 2,444 bi	R\$ 3,125 bi	R\$ 3,584 bi			
VPL da reciclagem	R\$ 11,023 bi	R\$ 21,027 bi	R\$ 29,979 bi	R\$ 37,889 bi			

Tabela 56 – VP dos processos de reciclagem das categorias de RSU reaproveitáveis. Fonte: do Autor (2021)

Tempo de vida útil	5 anos	10 anos	15 anos	20 anos			
Plásticos							
VP dos recursos de venda	R\$ 66,225 bi	R\$ 124,663 bi	R\$ 175,818 bi	R\$ 220,267 bi			
VP dos custos da coleta seletiva	R\$ 35,631 bi	R\$ 60,213 bi	R\$ 76,968 bi	R\$ 88,277 bi			
VPL da reciclagem	R\$ 30,595 bi	R\$ 64,450 bi	R\$ 98,850 bi	R\$ 131,991 bi			
	Papel	/ Papelão					
VP dos recursos de venda	R\$ 21,263 bi	R\$ 40,026 bi	R\$ 56,451 bi	R\$ 70,723 bi			
VP dos custos da coleta seletiva	R\$ 22,029 bi	R\$ 37,228 bi	R\$ 47,587 bi	R\$ 54,579 bi			
VPL da reciclagem	– R\$ 0,766 bi	R\$ 2,798 bi	R\$ 8,864 bi	R\$ 16,143 bi			
	M	etais					
VP dos recursos de venda	R\$ 13,127 bi	R\$ 24,710 bi	R\$ 34,849 bi	R\$ 43,659 bi			
VP dos custos da coleta seletiva	R\$ 4,421 bi	R\$ 7,472 bi	R\$ 9,551 bi	R\$ 10,954 bi			
VPL da reciclagem	R\$ 8,705 bi	R\$ 17,238 bi	R\$ 25,298 bi	R\$ 32,705 bi			
Vidro							
VP dos recursos de venda	R\$ 0,549 bi	R\$ 1,034 bi	R\$ 1,459 bi	R\$ 1,827 bi			
VP dos custos da coleta seletiva	R\$ 4,971 bi	R\$ 8,401 bi	R\$ 10,738 bi	R\$ 12,316 bi			
VPL da reciclagem	– R\$ 4,422 bi	– R\$ 7,367 bi	– R\$ 9,280 bi	- R\$ 10,489 bi			

Ato contínuo, redigiu-se a Tabela 56, com as mesmas informações da Tabela 55, sendo que destinadas para as categorias de RSU reaproveitáveis. Em seguida, calculou-se os VP e os VPL de processos de reciclagem de RSU com viabilidade econômica, conforme a Tabela 57. Para os tempos de vida útil de 5 e 10 anos, observou-se que a reciclagem era viável economicamente para as subcategorias 'Plástico Rígido / Duro', 'Plástico Maleável / Mole', 'Papel' e 'Alumínio'. Já para os tempos de 15 e 20 anos de projeto, há a inclusão da subcategoria 'Papelão' na lista de resíduos com viabilidade econômica para a reciclagem.

Tabela 57 – VP dos processos de reciclagem com viabilidade econômica. Fonte: do Autor (2021)

Tempo de vida útil	5 anos	10 anos	15 anos	20 anos
VP dos recursos de venda	R\$ 91,646 bi	R\$ 172,515 bi	R\$ 265,372 bi	R\$ 332,462 bi
VP dos custos da coleta seletiva	R\$ 49,211 bi	R\$ 83,163 bi	R\$ 127,679 bi	R\$ 146,440 bi
VPL da reciclagem	R\$ 42,435 bi	R\$ 89,352 bi	R\$ 137,693 bi	R\$ 186,023 bi

Por fim, elaborou-se a Tabela 58, similar à anterior, com os dados de VP e VPL dos processos de reciclagem para todos os tipos de RSU considerados reaproveitáveis.

Tabela 58 – VP dos processos de reciclagem para todos os RSU reaproveitáveis. Fonte: do Autor (2021)

Tempo de vida útil	5 anos	10 anos	15 anos	20 anos
VP dos recursos de venda	R\$ 101,165 bi	R\$ 190,433 bi	R\$ 268,576 bi	R\$ 336,477 bi
VP dos custos da coleta seletiva	R\$ 67,053 bi	R\$ 113,314 bi	R\$ 144,844 bi	R\$ 166,126 bi
VPL da reciclagem	R\$ 34,112 bi	R\$ 77,119 bi	R\$ 123,732 bi	R\$ 170,350 bi

5.3 Discussões

Finalizadas todas as análises econômicas, elaborou-se a Tabela 59, em que se tem as informações dos VPL dos processos de tratamento de RSU gerados em todo o território nacional, para tempos de 5, 10, 15 e 20 anos de vida útil, iniciando-se em 2022.

Tabela 59 – VPL dos processos de tratamento de RSU gerados em território brasileiro. Fonte: do Autor (2021)

Tempo de vida útil	5 anos	10 anos	15 anos	20 anos
Biometanização	R\$ 16,195 bi	R\$ 34,745 bi	R\$ 51,111 bi	R\$ 65,442 bi
Compostagem	R\$ 3,615 bi	R\$ 14,380 bi	R\$ 22,416 bi	R\$ 28,318 bi
Reciclagem	R\$ 34,112 bi	R\$ 77,119 bi	R\$ 123,732 bi	R\$ 170,350 bi
Reciclagem só dos viáveis	R\$ 42,435 bi	R\$ 89,352 bi	R\$ 137,693 bi	R\$ 186,023 bi

Observa-se que, para os processos de reciclagem, alguns RSU reaproveitáveis não possuem viabilidade econômica de exploração, mesmo que suas reciclagens representem um ganho ambiental para a sociedade. Analisando apenas do ponto de vista financeiro, o Brasil teria potencial de arrecadar R\$ 186,023 bilhões, em VP para 2022, com a reciclagem de todos os seus RSU reaproveitáveis com viabilidade econômica ao longo de um tempo de 20 anos de vida útil de projeto, e R\$ 170,350 bilhões, em VP para o ano de 2022, para todos os RSU reaproveitáveis gerados para o mesmo tempo de vida útil de projeto.

Em seguida, desenvolveu-se a Tabela 60, baseando-se em informações das Tabelas 38 e 59. Para isso, calculou-se os benefícios máximos que podem ser arrecadados com os processos de tratamento de RSU gerados no Brasil, somando-se os VPL dos processos de biometanização, pois esses se mostraram mais viáveis economicamente para o tratamento de RSU putrescíveis, com os de reciclagem de materiais com viabilidade econômica. Para o valor das despesas estimadas, usou-se os VPL dos recursos aplicados em uma hipotética coleta total de RSU e nos demais serviços de limpeza urbana em todo o território nacional. Ao final, calculou-se o índice de cobertura das despesas como sendo a proporção em que os benefícios máximos cobrem os custos das despesas estimadas de uma hipotética coleta total de RSU e dos demais serviços de limpeza urbana.

Tabela 60 – Comparação de benefícios máximos possíveis com despesas estimadas. Fonte: do Autor (2021)

Tempo de vida útil	5 anos	10 anos	15 anos	20 anos
Benefícios máximos	R\$ 58,630 bi	R\$ 124,097 bi	R\$ 188,803 bi	R\$ 251,464 bi
Despesas estimadas	R\$ 113,088 bi	R\$ 190,185 bi	R\$ 242,192 bi	R\$ 276,966 bi
Índice de cobertura das despesas	51,84 %	65,25 %	77,96 %	90,79 %

A partir da Tabela 60, no que se refere às despesas com as coletas de RSU e com os demais serviços de limpeza urbana, estimou-se que o Brasil terá um gasto financeiro total de R\$ 276,966 bilhões, em VP para 2022, por um tempo de 20 anos. Entretanto, para esse mesmo período, o Brasil teria capacidade de cobrir cerca de 90,79 % desses custos, caso fruísse do potencial máximo econômico dos processos de tratamentos por biometanização de RSU putrescíveis e da reciclagem de materiais reaproveitáveis gerados em nosso país. Portanto, nota-se que os tratamentos de RSU geram receitas que podem subsidiar mais da metade dos custos gerados com os serviços de coleta de resíduos e de limpeza urbana, o que poderia reduzir os valores pagos de impostos, aos órgãos públicos, pelos contribuintes.

Quanto aos RSU putrescíveis, observou-se que, de modo geral, a biometanização foi o processo de tratamento de maior viabilidade econômica em relação à compostagem. Para um funcionamento anual de 8.395 horas do conjunto motogerador, equivalente a 23 horas diárias, o Brasil teria potencial de arrecadar R\$ 65,442 bilhões, em VP para o ano de 2022, com os processos de tratamento por biometanização ao longo de um tempo de 20 anos de vida útil de projeto, enquanto que a compostagem arrecadaria R\$ 28,318 bilhões. Para que esse tratamento seja mais favorável economicamente que aquele, seria necessário que a operação do conjunto motogerador da biometanização fosse inferior a 6 h, 43 min e 7 s diários para o mesmo projeto de 20 anos de vida útil, conforme descrito na Tabela 47.

No tocante à viabilidade econômica de processos de tratamento por biometanização de RSU putrescíveis, calculou-se os tempos mínimos de operação dos conjuntos motogeradores. Para um tempo de 20 anos de vida útil de projeto, estimou-se uma operação diária superior a 2 h, 31 min e 31 s, equivalente a 10,52 % do tempo de um dia, para que esse tipo de tratamento seja viável economicamente.

Para a realização das análises econômicas desta pesquisa, fez-se necessário projetar a geração per capita de RSU para anos futuros no Brasil. Estima-se que nosso país irá gerar em torno de 1,063 kg/hab./dia, no ano de 2032, e 1,071 kg/hab./dia, em 2042, de RSU. Já segundo a ABRELPE (2016), no que se refere a dados históricos coletados, o Brasil gerou cerca de 1,032 kg/hab./dia de RSU em 2016. Comparando-se essas informações com os dados de World Bank Group (2018), constata-se que a geração per capita média de RSU de nosso país foi superior à da América Latina e Caribe em 2016, sendo somente inferior à da América do Norte e Europa e Ásia Central, quando comparado a outras regiões do planeta. Quanto às projeções das gerações per capita de RSU, World Bank Group (2018) estimou que, para 2030, a América Latina e Caribe gerarão 1,11 kg/hab./dia de RSU. Esse resultado mostra-se superior a todas as projeções calculadas para o Brasil por esta Dissertação.

6 CONCLUSÕES

Em suma, constatou-se que tanto os processos de tratamento de RSU putrescíveis por biometanização e compostagem, bem como os de reciclagem de RSU reaproveitáveis, possuem viabilidade econômica para os tempos de 5, 10, 15 e 20 anos de vida útil de projeto. Em geral, observou-se que o tratamento de RSU putrescíveis por biometanização é mais vantajoso economicamente que o por compostagem. Além disso, verificou-se que algumas subcategorias de RSU reaproveitáveis não possuíam viabilidade econômica para serem exploradas por um processo de reciclagem.

Se o Brasil, a partir do ano de 2022, conseguir tratar todos os seus RSU putrescíveis por um processo de biometanização, teria capacidade máxima de gerar receitas das ordens de R\$ 16,195, R\$ 34,745, R\$ 51,111 e R\$ 65,442 bilhões ao longo dos tempos de 5, 10, 15 e 20 anos de vida útil de projeto, respectivamente. Isso equivaleria a uma TIR anual entre 99,40 % e 102,51 % para os períodos de projetos analisados, um valor de mais de 11 vezes superior à TMA, mostrando que esse tipo de tratamento possui uma elevada atratividade.

Já na hipótese para se tratar todos os RSU putrescíveis gerados por um processo de compostagem, o nosso país teria um potencial de arrecadação de receitas das ordens de R\$ 3,615, R\$ 14,380, R\$ 22,416 e R\$ 28,318 bilhões ao longo dos tempos de 5, 10, 15 e 20 anos de vida útil de projeto, respectivamente. Isso equivaleria a uma TIR anual entre 20,64 % e 33,06 % para os quatro períodos de projetos analisados, valores superiores à TMA.

Ao se comparar esses dois processos de tratamento de RSU putrescíveis, conclui-se também que o primeiro é ecologicamente mais sustentável que o segundo. Isso se deve ao fato de que a biometanização é um processo anaeróbio, em um sistema fechado, que gera biogás, que ao entrar em combustão, produz energia elétrica, convertendo o CH₄, gerado pelo processo anaeróbio, em CO₂. Já na compostagem, o processo é aeróbico, gerando, além do composto orgânico, CO₂ e CH₄ ao ar livre, sem a produção de energia elétrica. Cabe destacar que, o CH₄ livre na atmosfera potencializa o efeito estufa, contribuindo mais ainda para o aquecimento global, pois sua molécula absorve mais calor que o CO₂.

Por fim, para a reciclagem no Brasil, observou-se que os RSU das subcategorias 'Plástico Rígido / Duro', 'Plástico Maleável / Mole', 'Papel' e 'Alumínio' possuem viabilidade econômica de exploração ao longo de todos os quatro tempos de vida útil, enquanto que o 'Papelão' apenas para 15 e 20 anos de vida útil de projeto. Já os 'Metais ferrosos' e os 'Vidros' não apresentaram viabilidade econômica, contudo, suas reciclagens representam benefícios ambientais, mantendo-se assim o meio ambiente mais sustentável.

7 REFERÊNCIAS BIBLIOGRÁFICAS

ABNT – ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. NBR 10.004: Resíduos sólidos – classificação. Rio de Janeiro, p. 1–3, mai. 2004.

ABRELPE – ASSOCIAÇÃO BRASILEIRA DE EMPRESAS DE LIMPEZA PÚBLICA E RESÍDUOS ESPECIAIS. Panorama dos resíduos sólidos no Brasil 2011. Disponível em: https://abrelpe.org.br/download-panorama-2011/. Acesso em: 02 set. 2020.

ABRELPE – ASSOCIAÇÃO BRASILEIRA DE EMPRESAS DE LIMPEZA PÚBLICA E RESÍDUOS ESPECIAIS. Panorama dos resíduos sólidos no Brasil 2012. Disponível em: https://abrelpe.org.br/download-panorama-2012/. Acesso em: 02 set. 2020.

ABRELPE – ASSOCIAÇÃO BRASILEIRA DE EMPRESAS DE LIMPEZA PÚBLICA E RESÍDUOS ESPECIAIS. Panorama dos resíduos sólidos no Brasil 2013. Disponível em: https://abrelpe.org.br/download-panorama-2013/ . Acesso em: 02 set. 2020.

ABRELPE – ASSOCIAÇÃO BRASILEIRA DE EMPRESAS DE LIMPEZA PÚBLICA E RESÍDUOS ESPECIAIS. Panorama dos resíduos sólidos no Brasil 2014. Disponível em: https://abrelpe.org.br/download-panorama-2014/. Acesso em: 02 set. 2020.

ABRELPE – ASSOCIAÇÃO BRASILEIRA DE EMPRESAS DE LIMPEZA PÚBLICA E RESÍDUOS ESPECIAIS. Panorama dos resíduos sólidos no Brasil 2015. Disponível em: https://abrelpe.org.br/download-panorama-2015/. Acesso em: 02 set. 2020.

ABRELPE – ASSOCIAÇÃO BRASILEIRA DE EMPRESAS DE LIMPEZA PÚBLICA E RESÍDUOS ESPECIAIS. Panorama dos resíduos sólidos no Brasil 2016. Disponível em: https://abrelpe.org.br/download-panorama-2016/ . Acesso em: 02 set. 2020.

ABRELPE – ASSOCIAÇÃO BRASILEIRA DE EMPRESAS DE LIMPEZA PÚBLICA E RESÍDUOS ESPECIAIS. Panorama dos resíduos sólidos no Brasil 2017. Disponível em: https://abrelpe.org.br/download-panorama-2017/. Acesso em: 02 set. 2020.

ABRELPE – ASSOCIAÇÃO BRASILEIRA DE EMPRESAS DE LIMPEZA PÚBLICA E RESÍDUOS ESPECIAIS. Panorama dos resíduos sólidos no Brasil 2018/2019. Disponível em: < https://abrelpe.org.br/download-panorama-2018-2019/ >. Acesso em: 02 set. 2020.

ABREU, Fábio Viana de; COSTA FILHO, Manoel Antônio Fonseca; SOUZA, Mauro Carlos Lopes. Biogás de aterros sanitários para geração de energia renovável e limpa – um estudo de viabilidade técnica e econômica. *IX Congreso Iberoamericano de Ingeniería Mecánica (CIBIM)*, 2009.

ACHINAS, Spyridon; KROONEMAN, Janneke; EUVERINK, Gerrit Jan Willem. Enhanced Biogas Production from the Anaerobic Batch Treatment of Banana Peels. *Engineering*, v.5, n. 5, p. 970–978, 2019.

ADVFN – ADVANCED FINANCIAL NETWORK. Taxa SELIC. Disponível em: < https://br.advfn.com/indicadores/taxa-selic >. Acesso em: 23 jan. 2021.

ALCÂNTARA, Arleme Janissara de Oliveira. Composição gravimétrica dos Resíduos Sólidos Urbanos e caracterização química do solo da área de disposição final do município de Cáceres – MT. 2010. 88 f. Dissertação de Mestrado – Universidade do Estado do Mato Grosso, Cáceres, 2010.

ALVES, Ricardo Oliveira. Análise de viabilidade econômica da implantação de uma indústria de reciclagem de embalagens de PET na região de Ouro Preto. 2003. 56 f. Monografia de Graduação – Universidade Federal de Ouro Preto, Ouro Preto, 2003.

ANEEL – AGÊNCIA NACIONAL DE ENERGIA ELÉTRICA. Ranking das Tarifas. Disponível em: < https://www.aneel.gov.br/ranking-das-tarifas >. Acesso em: 07 fev. 2021.

ARIYANTO, Teguh; CAHYONO, Rochim Bakti; VENTE, Abby; MATTHEIJ, Stijn; MILLATI, Ria; SARTO; TAHERZADEH, Mohammad J.; SYAMSIAH, Siti. Utilization of fruit waste as biogas plant feed and its superiority compared to landfill. *International Journal of Technology*, v. 8, n. 8, p. 1385–1392, 2017.

BATISTA, J. G. F.; BATISTA, E. R. B. Compostagem – Utilização em horticultura. Universidade dos Açores, Angra do Heroísmo, Açores, 252 pp, 2007.

BERGI, Rafael Scaramussa. Compostagem como alternativa à disposição final de Resíduos Sólidos Orgânicos do saneamento em pequenos municípios. 2018. 108 f. Trabalho de Conclusão de Curso – Universidade Federal do Espírito Santo, Vitória, 2018.

BEZERRA, Vanessa Rosales; MONTERO, Luis Reyes Rosales; LEITE, Valderi Duarte; SILVA, Adriano Oliveira da; BRITO, Yohanna Jamila Vilar de; LIMA, Carlos Antônio Pereira de. Estimativa teórica de aproveitamento energético a partir de biodigestor no município de Sousa – PB. *Mix Sustentável*, Florianópolis, v. 6, n. 4, p. 43–50, ago. 2020.

BEZERRA, Vanessa Rosales; RODRIGUES, Roberta Milena Moura; Ó, Kely Dayane Silva Do; PORTO, Rejane Mirelle Izabel; MONTERO, Luis Reyes Rosales; LEITE, Valderi Duarte. Estimativa do potencial energético a partir da produção de biogás de RSU no Estado da Paraíba. *Brazilian Journal of Development*, v. 6, n. 7, p. 49251–49261, jul. 2020.

BORSATO, Vítor Moreira. Análise de viabilidade técnica-econômica-financeira da implantação de um empreendimento de compostagem de resíduos orgânicos a ser instalado na cidade de Ponta Grossa. 2015. 121 f. Trabalho de Conclusão de Curso — Universidade Tecnológica Federal do Paraná, Ponta Grossa, 2015.

BORTOLATTO, Mário Sérgio. Análise da viabilidade econômica na implantação de uma usina de triagem e compostagem de Resíduos Sólidos Urbanos do município de Morro da Fumaça. 2012. 51 f. Monografia de Pós-Graduação — Universidade do Extremo Sul Catarinense, Criciúma, 2012.

BRASIL. Lei nº 12.305, de 2 de agosto de 2010. Institui a Política Nacional de Resíduos Sólidos; altera a Lei n. 9.605, de 12 de fevereiro 1998; e dá outras providências. Diário Oficial da União. Brasília, 02 de ago. 2010.

CALZA, Lana F.; LIMA, Cléber B.; NOGUEIRA, Carlos E. C.; SIQUEIRA, Jair A. C.; SANTOS, Reginaldo F. Avaliação dos custos de implantação de biodigestores e da energia produzida pelo biogás. *Journal of the Brazilian Association of Agricultural Engineering*, Jaboticabal, v. 35, n. 6, p. 990–997, nov./dez. 2015.

CARVALHO, Ruy de Quadros; TAVARES, André Neiva; SANTOS, Glicia Vieira dos; BAJAY, Sérgio Valdir. Oportunidades enterradas: Geração elétrica a partir do biogás de Resíduos Sólidos Urbanos. Vitória: EDUFES, 2019.

CATAPAN, Dariane Cristina; CATAPAN, Anderson; ROSSET, Nelcindo Rodrigo; HARZER, Jorge Harry. Análise da viabilidade financeira da produção de biogás através de dejetos de equinos. *Custos e Agronegócio*, v. 8, n. 4, out./dez. 2012.

CEMPRE – COMPROMISSO EMPRESARIAL PARA RECICLAGEM. Pesquisa Ciclosoft 2018: Radiografando a Coleta Seletiva. São Paulo, 2018.

CERVI, Ricardo G.; ESPERANCINI, Maura S. T.; BUENO, Osmar de C. Viabilidade econômica da utilização do biogás produzido em granja suinícola para geração de energia elétrica. *Journal of the Brazilian Association of Agricultural Engineering*, Jaboticabal, v. 30, n. 5, p. 831–844, set./out. 2010.

DIAS, Marcelo Vizeu. Viabilidade de implantação de uma usina de triagem e compostagem de lixo no município de Macaé. 2011. 72 f. Dissertação de Mestrado – Instituto Federal de Educação, Ciência e Tecnologia Fluminense, Macaé, 2011.

EPE – EMPRESA DE PESQUISA ENERGÉTICA. Nota Técnica DEA 019/2018: Estudo sobre a Economicidade do Aproveitamento dos Resíduos Sólidos Urbanos em Aterro para Produção de Biometano. Rio de Janeiro, ago. 2018.

ESPINOZA, Pilar Tello; ARCE, Evelyn Martínez; DAZA, Diego; FAURE, Martín Soulier; TERRAZA, Horacio. Relatório da Avaliação Regional da Gestão de Resíduos Sólidos Urbanos na América Latina e Caribe 2010. OPAS — Organização Pan-Americana da Saúde; AIDIS — Associação Interamericana de Engenharia Sanitária e Ambiental; BID — Banco Interamericano de Desenvolvimento. 2010.

FEITOSA, Anny Kariny; BARDEN, Júlia Elisabete; KONRAD, Odorico. Estimativa de ganho econômico com material reciclável a partir de Resíduos Sólidos Domiciliares. *Revista Educação Ambiental em Ação*, v. 16, n. 62, jan. 2018.

GAMA GASES. Propriedades dos gases: Metano. Disponível em: < http://www.gamagases.com.br/propriedades-dos-gases-metano.html >. Acesso em: 17 dez. 2020.

GARRÉ, Saulo de Oliveira; LUZ, Maria Laura Gomes Silva; LUZ, Carlos Alberto Silveira da; GADOTTI, Gizele Ingrid; NAVROSKI, Renan. Análise econômica para implantação de uma usina de compostagem de resíduo orgânico urbano. *Revista ESPACIOS*, v. 38, n. 17, 2017.

GARTNER, Gustavo Luiz. Geração de biogás proveniente de Resíduos Sólidos Urbanos em condomínios verticais residenciais: Estudo de caso no Condomínio Marquês de Firenze. 2015. 53 f. Trabalho de Conclusão de Curso — Universidade do Vale do Itajaí, Itajaí, 2015.

GASPAR, Lívia Mara Ribeiro; INÁCIO, Caio de Teves; QUINTAES, Bianca Ramalho; CARVALHO, Lucinere de Souza Quintanilha; PERES, Afonso Aurelio de Carvalho. Análise econômico-financeira do gerenciamento dos Resíduos Sólidos Orgânicos em uma agroindústria de processamento mínimo de hortaliças. *Eng Sanit Ambient*, v. 25, n. 3, p. 477–488, mai./jun. 2020.

GOMES, Heber Pimentel. Abastecimento de água. João Pessoa: LENHS / UFPB, 2019.

GOMES, Maria Tereza Batista. Análise da viabilidade econômico-financeira da implantação de usina de triagem e compostagem no município de Congonhas / MG. 2012. 47 f. Monografia de Pós-Graduação — Universidade Federal do Paraná, Curitiba, 2012.

GUADAGNIN, Mário Ricardo; OENING, Adrielli da Silva; LIMA, Bruna Borsatto; PONT, Cristiane Bardini Dal; VALVASSORI, Morgana Levati. Estudo de composição gravimétrica dos Resíduos Sólidos Urbanos em municípios do sul catarinense. *IX Simpósio Internacional de Qualidade Ambiental*; mai. 2014; Porto Alegre, 2014.

HERRERO, J. Martí-; CASTELL, G. Soria-; BASURTO, A. Diaz-de-; ALVAREZ, R.; CHEMISANA, D. Biogas from a full scale digester operated in psychrophilic conditions and fed only with fruit and vegetable waste. *Renewable Energy*, v. 133, p. 676–684, 2019.

IBGE – INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. Estimativas da população. Disponível em: < https://www.ibge.gov.br/estatisticas/sociais/populacao/9103-estimativas-de-populacao.html?=&t=o-que-e >. Acesso em: 06 set. 2020.

IBGE – INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. Índice Nacional de Preços ao Consumidor Amplo – IPCA. Disponível em: < https://www.ibge.gov.br/estatisticas/economicas/precos-e-custos/9256-indice-nacional-de-precos-ao-consumidor-amplo. html?=&t=o-que-e >. Acesso em: 23 jan. 2021.

IBGE – INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. Sistema de Contas Nacionais Trimestrais. Disponível em: < https://www.ibge.gov.br/estatisticas/econo micas/contas-nacionais/9300-contas-nacionais-trimestrais.html?=&t=series-historicas&utm _source=landing&utm_medium=explica&utm_campaign=pib#evolucao-taxa >. Acesso em: 27 jan. 2021.

IBGE – INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. Pesquisa Nacional de Saneamento Básico 2008. Rio de Janeiro: IBGE, 2010.

IPT – INSTITUTO DE PESQUISAS TECNOLÓGICAS. Lixo municipal: manual de gerenciamento integrado. São Paulo: IPT/CEMPRE, p. 29, 2018.

JACOBOWSKI, Marcelo; PIACENTI, Carlos Alberto; ROCHA JÚNIOR, Weimar Freire da; SILVA, Christian Luiz da; RAMOS, Manoel João. Viabilidade econômica da cogeração de energia elétrica do biogás: um estudo de caso no aterro sanitário de Toledo, Paraná. *Revista Desafios*, v. 7, n. 3, p. 80–96, 2020.

MARTINS, Luís Oscar Silva; SILVA, Leandro Teixeira e; CARNEIRO, Roberto Antônio Fortuna. Análise da viabilidade econômica e financeira da implantação de usina de geração de energia a partir de Resíduos Sólidos Urbanos no município de Santo Antônio de Jesus – BA. *Revista Livre de Sustentabilidade e Empreendedorismo*, v. 2, n. 2, p. 142–166, abr./jun. 2017.

MELO, Fernando Henrique Ferreira de Alves. Caracterização e estudo do gerenciamento dos Resíduos Sólidos Urbanos em um consórcio municipal do Estado de Pernambuco. 2015. 123 f. Dissertação de Mestrado — Universidade Federal de Pernambuco, Caruaru, 2015.

MUNIZ, João Vitor Rego; SANTOS, Wener Miranda Teixeira dos. Estudo sobre a viabilidade do uso de resíduos sólidos para geração de energia de biogás no Campus Dom Delgado da UFMA. *Revista Brasileira de Iniciação Científica*, Itapetininga, v. 4, n. 6, 2017.

NAMSREE, Pimjai; SUVAJITTANONT, Worakrit; PUTTANLEK, Chureerat; UTTAPAP, Dudsadee; RUNGSARDTHONG, Vilai. Anaerobic digestion of pineapple pulp and peel in a plug-flow reactor. *Journal of Environmental Management*, v. 110, p. 40–47, 2012.

NASCIMENTO, Maria Cândida Barbosa; FREIRE, Elcires Pimenta; DANTAS, Francisco de Assis Souza; GIANSANTE, Miguel Bortoletto. Estado da arte dos aterros de Resíduos Sólidos Urbanos que aproveitam o biogás para geração de energia elétrica e biometano no Brasil. *Eng Sanit Ambient*, v. 24, n. 1, p. 143–155, jan./fev. 2019.

OLIVEIRA, Anderson José de; RODRIGUES, Lucas dos Santos; OHAMA, Marília Akane; PAIXÃO, Mateus Vinicius Faria da; AMARANTE, Mayara dos Santos. Biogás como fonte energética. *Revista Pesquisa e Ação*, v. 4, n. 1, mai. 2018.

OLIVEIRA, Mariana Moreira de; ATHAYDE JÚNIOR, Gilson Barbosa. Estimation of Municipal Solid Waste generation based on income rates and population size in Brazilian municipalities. *International Journal of Environment and Waste Management*, v. 20, n. 2, p. 134-154, 2017.

OLIVEIRA JÚNIOR, Frederico Alvarenga de. Manual de construção do biodigestor rural. 22 p. Disponível em: < http://www1.pucminas.br/imagedb/documento/DOC_DSC_NOME _ARQUI20140917140023.pdf > . Acesso em: 18 fev. 2021.

PADILHA, Diana Janice; GLINSKI, Danilo Menão; VERÍSSIMO, Rafael; SIMÕES, Fernanda Antônio; MARTINS, Carlos Humberto. Caracterização dos Resíduos Sólidos Domiciliares do município de Irati — PR. *III Simpósio de Pós-Graduação em Engenharia Urbana*; nov. 2012; Maringá, 2012.

PFEIFFER, Simone Costa; MARTINS, Manuelton Pinheiro; SILVA, Rhilkey Paulo Hungria de Lima e; CARVALHO, Eraldo Henriques de. Avaliação dos custos envolvidos na coleta seletiva do município de Aparecida de Goiânia, Goiás. *XLVII Congresso Nacional de Saneamento da ASSEMAE*; mai. 2018; Fortaleza, 2018.

PIRES, Adriano Borges. Análise de viabilidade econômica de um sistema de compostagem acelerada para Resíduos Sólidos Urbanos. 2011. 64 f. Trabalho de Conclusão de Curso – Universidade de Passo Fundo, Passo Fundo, 2011.

PORTO, Rafael Noronha. Aplicação do pensamento enxuto (*lean thinking*) em organização de catadores de materiais recicláveis. 2019. 100 f. Dissertação de Mestrado – Universidade Federal do Espírito Santo, Vitória, 2019.

REZENDE, Jozrael Henriques; CARBONI, Marina; MURGEL, Maurício Arruda de Toledo; CAPPS, Ana Luíza de Almeida Prado; TEIXEIRA, Héverton Leandro; SIMÕES, Gislaine Teresinha Capra; RUSSI, Reinaldo Rogério; LOURENÇO, Bruna Letícia Romero; OLIVEIRA, Cristina de Almeida. Composição gravimétrica e peso específico dos Resíduos Sólidos Urbanos em Jaú (SP). *Eng Sanit Ambient*, v. 18, n. 1, p. 1–8, jan./mar. 2013.

RIO GRANDE DO SUL. 2014. PERS-RS – Plano Estadual de Resíduos Sólidos do Rio Grande do Sul (2015-2034). Disponível em: < http://www.pers.rs.gov.br/ >. Acesso em: 06 out. 2020.

ROMANO, Henrique Martini. Viabilidade econômica da compostagem na CEASA / SJ. 2005. 81 f. Monografia de Pós-Graduação — Universidade Federal de Santa Catarina, Florianópolis, 2005.

RUFFINO, Barbara; ZANETTI, Mariachiara. Present and future solutions of waste management in a candied fruit – jam factory: Optimized anaerobic digestion for on-site energy production. *Journal of Cleaner Production*, v. 159, p. 26–37, 2017.

SALOMON, Karina Ribeiro. Avaliação técnico-econômica da biodigestão anaeróbia de vinhaças. *II GERA: Workshop de Gestão de Energia e Resíduos na Agroindústria Sucroalcooleira*; jun. 2007; Pirassununga, 2007.

SALOMON, Karina Ribeiro; LORA, Electo Eduardo Silva. Estimate of the electric energy generating potential for different sources of biogas in Brazil. *Biomass and Bioenergy*, v. 33, p. 1101–1107, 2009.

SANTOS, Aldecy de Almeida; PEIXOTO, Klenna Lívia Gomes; PASSOS, Alessandro; NOGUCHI, Harumy Sales; PESSOA, Jonas Onis; SOBRINHO, Maurício Alves Motta. Caracterização quantitativa e qualitativa dos Resíduos Sólidos Urbanos do município de Apuí – AM. *Revista EDUCAmazônia – Educação Sociedade e Meio Ambiente*, Humaitá, v. 10, n. 1, p. 49–58, jun./jul. 2013.

SANTOS, Angélica Engelberg Silva; JUDICE, Marcelo Gomes. Análise de viabilidade econômico-financeira da implantação da coleta seletiva em Santa Helena de Goiás. *Artigo apresentado à Faculdade de Engenharia Ambiental da Universidade de Rio Verde*; 2014.

SANTOS, Ivan Felipe Silva dos; VIEIRA, Nathalia Duarte Braz; NÓBREGA, Luís Guilherme Bruni de; BARROS, Regina Mambeli; TIAGO FILHO, Geraldo Lúcio. Assessment of potential biogas production from multiple organic wastes in Brazil: Impact on energy generation, use, and emissions abatement. *Resources, Conservation and Recycling*, v. 131, p. 54–63, 2018.

SILES, J. A.; SERRANO, A.; MARTÍN, A.; MARTÍN, M. A. Biomethanization of waste derived from strawberry processing: advantages of pre-treatment. *Journal of Cleaner Production*, v. 42, p. 190–197, 2013.

SILVA, Édison Renato Pereira da; ALMEIDA, Silvio Carlos Aníbal de; LIMA, Luiz Fernando Nunes. Dimensionamento da Produção de Biogás a partir de resíduos residenciais, industriais e de matrizes suínas na Comunidade de Vila Paciência (RJ). *XII CBE – Congresso Brasileiro de Energia*, nov. 2008; Rio de Janeiro, 2008.

SILVA, Paulo Henrique da; REIS, Sérgio Alves dos. Usina de triagem e compostagem como alternativa viável à problemática dos resíduos sólidos do município de Santa Bárbara do Leste – MG. 2012. 73 f. Trabalho de Conclusão de Curso – Instituto Doctum de Educação e Tecnologia, Caratinga, 2012.

SOUZA, Gaudêncya Cunha Cardoso; ARAÚJO, Weliton Eduardo Lima de. Caracterização física dos Resíduos Sólidos Domiciliares do município de Caçu – GO. *Artigo apresentado à Faculdade de Engenharia Ambiental da Universidade de Rio Verde*; 2014.

SOUZA, Samuel Nelson Melegari de; PEREIRA, William Caldart; NOGUEIRA, Carlos Eduardo Camargo; PAVAN, André A.; SORDI, Alexandre. Custo da eletricidade gerada em conjunto motor gerador utilizando biogás da suinocultura. *Acta Scientiarum. Technology*, Maringá, v. 26, n. 2, p. 127–133, 2004.

TRENTIN, Adan William da Silva; BRAUN, Adéli Beatriz; RODRÍGREZ, Adriane Lawisch; LOPES, Diosnel Antônio Rodríguez. Estudo da composição gravimétrica dos Resíduos Sólidos Urbanos em Santa Cruz do Sul, Brasil. *Revista de Ciências Ambientais – RCA*, Canoas, v. 13, n. 1, p. 7–14, 2019.

URBAN, Rodrigo Custódio. Índice de adequação do gerenciamento de Resíduos Sólidos Urbanos como ferramenta para o planejamento: aplicação no estado de São Paulo. *Eng Sanit Ambient*, v. 21, n. 2, p. 367–377, abr./jun. 2016.

VELASQUES, Fábio; BISPO, Éverton Rangel; MELO JUNIOR, Márcio Moreira de; SANTOS, Jônatas Pires Pinto dos; CONCEIÇÃO, Júlio César; PIRES, Michel Ramos. Usinas de triagem, compostagem e tratamento de chorume: uma opção econômica e sustentável. *Revista Augustus*, Rio de Janeiro, v. 20, n. 39, p. 65–75, jan./jun. 2015.

VERAS, Cássia da Silva; ROCHA, Maria do Carmo Rejane Carvalho. O papel dos catadores de materiais secos e recicláveis no município de Conceição do Araguaia — Pará. 2018. 57 f. Trabalho de Conclusão de Curso — Instituto Federal de Educação, Ciência e Tecnologia do Pará, Conceição do Araguaia, 2018.

VILLALBA, Luciano; DONALISIO, Rubén Santiago; BASUALDO, Nicolás Eloy Cisneros; NORIEGA, Roxana Banda. Household Solid Waste characterization in Tandil (Argentina): Socioeconomic, institutional, temporal and cultural aspects influencing waste quantity and composition. *Resources, Conservation and Recycling*, v. 152, 2020.

VISENTIN, Roseli; MATEUS, Caroline; ESPERANCINI, Maura; VILLAS BOAS, Roberto. Viabilidade econômica da compostagem do lodo de esgoto para uso agrícola. *Holos Environment*, v. 20, n. 2, p. 152–167, 2020.

WORLD BANK GROUP. What a Waste 2.0: A Global Snapshot of Solid Waste Management to 2050. *Urban Development Series*; Washington, D. C., 2018.

ZEMA, D. A.; CALABRÒ, P. S.; FOLINO, A.; TAMBURINO, V.; ZAPPIA, G.; ZIMBONE, S. M. Valorisation of citrus processing waste: A review. *Waste Management*, v. 80, p. 252–273, 2019.