Universidade Federal da Paraiba
Programa de Pés-Graduagao em Matematica

Doutorado em Matemaéatica

On Minimax and Cominimax Modules
Relative to a Good Family of Ideals

por

Renato Bezerra Silvestre

Joao Pessoa - PB

Fevereiro/2020



On Minimax and Cominimax Modules
Relative to a Good Family of Ideals

por

Renato Bezerra Silvestre/f
sob orientacao do
Prof. Dr. Roberto Callejas Bedregal
e coorientacao do

Prof. Dr. Napoleén Caro Tuesta

Tese apresentada ao Corpo Docente do Programa de
Pos-Graduacao em Matematica - UFPB, como requisito
parcial para obtencao do titulo de Doutor em

Matematica.

Joao Pessoa - PB

Fevereiro/2020

tEste trabalho contou com apoio financeiro da CAPES.

i



Abstract

This work develops a study of the class of minimax modules relative to a good family
of ideals and introduces the collection of the (S, I, §)-cominimax modules, where S is a
Serre class in the R-modules category. Also, it addresses a generalized local cohomology
module and ideal transforms with support into a good family of ideals. In addition,
some results of minimaximality are presented for generalized local cohomology modules

and generalized ideal transforms.

Keywords: Minimax modules; Cominimaximality; Generalized local cohomology;

Ideal transforms.
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Introduction

The first studies of local cohomology originated in Grothendieck- Hartshorne’s
notes published between 1955 and 1967, from a geometric initiative: they took groups
of cohomology of a topological space X with coefficients in an abelian sheaf on X and
support in a locally closed subspace. Moreover, even having its roots in Algebraic
Geometry, the study of local cohomology serves for general purposes in calculations
of invariants in Commutative Algebra. Over the years, many authors have presented
generalizations of this concept in commutative algebra (see |2, [5, 17, 27]).

In [27] Takahashi, Yoshino and Yoshizawa introduce a local cohomology module
with respect to a pair of ideals (I,J). This structure is a generalization of the usual local
cohomology module. More precisely, let R be a commutative Noetherian ring. Let
F(I,J) = {p € Spec(R)|I™ C p + J for some positive integer n} and F(I,J) denotes
the set of ideals a of R such that [ C a + J for some positive integer n. For an
R-module M, we consider the (I, J)- torsion submodule I'; ;(M) of M which consists
of all elements = belong to M such that Suppg(Rz) C F(I,J). Furthermore, for an
integer 4, the local cohomology functor Hj ; with respect to (I,.J) is defined to be
the i-th right derived functor of I'; ;. The module Hj ;(M) is called the i-th local
cohomology module of M with respect to (1, .J).

Recently some authors approached the study of properties of theses extended
modules, see for example [9, 10, 24, 28]. In [2] Alba-Sarria presented an even more
general approach than that discussed in |27]. He defined a local cohomology module
with respect to a good family of ideals o. In his work, Sarria also addressed many

properties of these new modules. Such properties generalized many results studied in

27].



In 1970, J. Herzog defined in [17] a generalized local cohomology module in the

local case with support in the maximal ideal by

H? (M,N) = li%nExtfé (mniM N) .
Then, in the year 1980, M. H. Bijan-Zadeh introduced the generalized local cohomology
module, supported by a system of ideals (see [3]).

During this process of generalizing the local cohomology module, we came across
several important problems in commutative algebra related to that module. An im-
portant problem in commutative algebra is determining when is finite the R-module
Hompg(R/I,H;(M)). In [15], Grothendieck conjectured the following:

If R is a Noetherian ring, then for any ideal I of R and any finite R-module M, the
modules Hompg(R/I,H;(M)) are finite for all i > 0.

It is well-known that if R is a local Noetherian ring with maximal ideal m, then an
R-module M is Artinian if and only if Suppz(M) C {m} and Ext}(R/m, M) is finitely
generated for all j > 0.

Motivated by this result, Hartshorne [16] gave a counterexample which show that
this Grothendieck’s conjecture is false even when R is regular, and where he defined an
R-module M to be cofinite with respect to I (abbreviated as I-cofinite) if the support of
M is contained in V(I) and Ext},(R/I, M) is finitely generated for all j. On the other
hand, Brodmann and Lashgari showed in [7] that if, for a finitely generated R-module
M and an integer t, the local cohomology modules HY(M), H;(M),--- , H (M) are
finitely generated, then R-module Homg(R/I,H%(M)) is finitely generated and for any
finitely generated submodule N of H}(M) the set Assyp(H:(M)/N) is finite.

In [32] H. Zoschinger, introduced the interesting class of minimax modules, and
he has in [32, B3] given many equivalent conditions for a module to be minimax. The
R-module M is said to be minimax, if there is a finitely generated submodule N of M,
such that M/N is Artinian. The class of minimax modules thus includes all finitely
generated and all Artinian modules. It was shown by T. Zink [3I] and by E. Enochs
[13] that a module over a complete local ring is minimax if and only if it is Matlis
reflexive.

Posteriorly, the authors J. Azami, R. Naghipour and B. Vakili, in a paper pub-

lished in 2009 [3], presented two classes of modules: the class of /-minimax modules
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and /-cominimax modules, which generalized the classes of minimax modules and /-
cofinite modules, respectively. In their paper, the authors refined the result presented
by Brodmann and Lashgari as follow:

Theorem 0.0.1 Let R be a Noetherian ring, I an ideal of R and M an [-minimax
R-module. Let ¢ be an non-negative integer such that H} (M) is [-minimax for all i < .
Then for any I-minimax submodule N of H;(M) the R-module Homg(R/I, H,(M)/N)

is I-minimax. In particular, the Goldie dimension of H}(M)/N is finite, and so the set
Assr(H5(M)/N) is finite.

Later, more precisely in 2010, Tehranian and Talemi introduced in [28] the
concept of (I, J)-cofinite modules. An R-module M is called (I,J)-cofinite when
Suppgr(M) C F(I,J) and Ext},(R/I, M) is finitely generated for any j > 0. This
definition generalized the concept presented by Hartshorne [16]. Throughout their
work, Talemi and Tehranian, presented conditions to know when the R-module of ho-
momorphisms Hompg(R/I, Hj ;(M)) is finitely generated for some ¢. An answer to this
question was presented in the following result:

Theorem 0.0.2 Let ¢ be a non-negative integer. Let M be an R-module such that
ExtR(R/I, M) is a finite R-module and Hj ;(M) is (I, J)-cofinite, for every i < t. If

N C Hf ;(M) is such that Ext(R/I, N) is finite, then Homg(R/I,H} ;(M)/N) is a
finite R-module.

In addition to this result, they also studied the finiteness conditions of R-module
Extl(R/1,H] ;(M)) for i =1,2.

Recently Kh. Ahmadi-Amoli and M. Y. Sadeghi [I] defined the (I, J)-minimax
R-modules and studied some properties of them. An R-module M is called (I, .J)-
minimax when any quotient module of M has finite (I, J)-relative Goldie dimension.
One of the results interesting presented in [I] proves that the (7, J)-minimax class is a
Serre class which contains the I-minimax modules (see page . On the other hand,
considering an arbitrary Serre class of R-modules S, instead of finitely generated,
the authors defined the (S, I, J)-cominimax R-modules. An R-module M is called
(S, 1,J)-cominimax whenever Suppg(M) C F(I,J) and Ext?,(R/I, M) € S for each
j > 0. This concept of R-modules can be as a generalization of I-cofinite R-modules
[16], I-cominimax R-modules [3], and (I, J)-cofinite R-modules [28]. Also, the main

result of [I] is more general than that of [7] and [3]. They proved the following:
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Theorem 0.0.3 Let a € F(I,J) be an ideal. Let ¢ be a non-negative integer such
that Extf(R/a, M) € S and Extyh(R/a,H; ,(M)) € S for all i < ¢ and all j non-
negative. Then for any submodule N of Hj ;(M) such that Extyp(R/a,N) € S, we
have Hompg(R/a,H} ;(M)/N) € S.

It is interesting to note that in the works mentioned above, the authors ap-
proached relationships between the concepts of minimaximality, cofiniteness, comini-
maximality and local cohomology module, adapting to each context. An interesting
question about previous concepts is whether there is some relationship between them
and the generalized local cohomology module. The answer to this question is yes. In
[18] K. Khashyarmanesh and M. Yassi proved that for any non-zero principal ideal T
of R, the R-module H’(M, N) is an I-cofinite module for all ¢t > 0. Also, A. Mafi and
H. Saremi [19] showed that the generalized local cohomology modules H (M, N) are I-
cofinite for all ¢ > 0, in the following cases:

(i) cd(I) = 1, where cd is the cohomological dimension of [ in R;

(ii) dimR < 2.

Additionally, they proved that if ed(I) = 1 then Ext% (M, H'(N)) is I- cofinite for all
i,t > 0.

Next, H. Saremi [26] presented a result more general than that in [I9]. He got
conditions for the generalized local cohomology module H}(M, N) to be I-cominimax.

His article had as its main result the following:

Theorem 0.0.4 Let M be a finitely generated R-module and N be a minimax R-
module. Then the following statements hold:

(i) If cd(I) = 1, then H’(M, N) and Ext’, (M, H)(N)) are I-cominimax for all i, 5.

(i) If J is an ideal of R with J C I and cd(I) = 1, then H}(H’,(N)) is I- cominimax
for all 7, j.

(iii) Tf ¢ is a non-negative integer such that (M, N) is I-minimax for all j < ¢, then for
any [-minimax R-submodule L of H}(M, N) the R-module Homp(R/I,H}(M, N)/L)
is I-minimax. As a consequence it follows that the Goldie dimension of H}(M, N)/L
is finite, and so the associated primes of H;(M, N)/L is finite.

This work presents more general versions of the concepts of minimax modules,
cominimax modules, local cohomology modules and Ideal transforms, considering a
good family of ideals as their support. In addition, fundamental properties of each of

these structures are proved and relationships established between them.
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The first chapter defines Goldie dimension of a R-module M relative to a good
family of ideals and presents a-minimax modules, proving that this class of modules
is a Serre class. Next we study some properties involving Serre classes in the R-
modules category and then some relationships between the R-modules minimax and
(I, f)-minimax classes are proved.

The second chapter presents a class of R-modules called modules (S, I, ) - co-
minimax, where S denotes a Serre class in the R-modules category. This concept
generalizes those presented in [16], [3], [28] and [1]. Then some relations between the
(8,1, 8) - cominimax modules and the local cohomogy module Hj ;(M) are presented
and demonstrated, motivated by the main results of Brodmann and Lashgari [7]; J.
Azami, R. Naghipour and B. Vakili [3]; Tehranian and Talemi [28] and Kh. Ahmadi-
Amoli and M. Y. Sadeghi [I].

Later, the third chapter introduces the concept of generalized local cohomology
module H (M, N) of R-modules M, N supported by a good family of ideals a and
proves some basic properties. Also, vanishing conditions are presented for the module
H! (M, N) considering the projective dimension of M and the Krull dimension of N.
After these vanishing results, some statements that relate the a-minimax modules
as the generalized local cohomology module are shown. This chapter concludes by
presenting some results that relate the generalized local comology module to the (1, §)-
cominimax modules, using cohomological dimension and spectral sequences.

Next, the chapter four takes an approach to the ideal tranforms D, (M) of an R-
module M with respect to a good family of ideals and some relationships between right
derived functor R"D,(—) modules and the local cohomology functor H’,(—) are proven.
In this chapter conditions are presented for the functor D,(—) to be an exact functor.
Also, is proved that the R-module Homg(R/I,H.(M)) is finitely generated in the case
that M has finite projective dimension. The chapter closes by dedicating its last two
sections to the study of the generalized ideal transform D, (M, N) of R-modules M, N
with respect to a good family of ideals. These sections related the functors R*D, (M, —)

and H;(]\/[ ,—) and generalize the properties of minimax modules to ideal transforms.



Chapter 1

Serre classes and a-minimax modules

Throughout this chapter R will denote a commutative Noetherian ring with iden-
tity. Recall that for an R-module M, the Goldie dimension of M is defined as the
cardinality of the set of indecomposable submodules of E(M), the injective hull of M,
which appears in the decomposition of E(M) into the direct sum of indecomposable
submodules. Therefore, M is said to have finite Goldie dimension if M does not con-
tain an infinite direct sum of non-zero submodules, or equivalently E (M) decomposes
as a finite direct sum of indecomposable submodules. We shall use GdimM to denote
the Goldie dimension of M. It is clear by the definition of the Goldie dimension that

GdimM = Y p°(p,M)= > pu(p, M).
peSpec(R) peAss(M)

Also, in [24], the (I, J)-relative Goldie dimension of M is defined as

Gd’im[”]M = Z ,LLO(]J,M),
peF(1,J)

where the set F(I,J) is defined as

F(I,J)={p e Spec(R) : I" C p+ J, para algum n € N}.

In this chapter we will define a Goldie dimension and minimax R-modules with
respect to family of ideals more general than the family F (I,J) and we will show
that many of the properties already known, both of Goldie dimension and minimax

modules, can be generalized when we consider this new family of ideals. Moreover, In



section 2 will present some results on Serre classes in the category of R-modules and

what the relation of the minimax modules with these classes.

1.1 The a-minimax modules

In this section we define the Goldie dimension of a module relative to a good
family of ideals and then we introduce the concept of minimax modules with respect
to these good families, along with the properties of such modules.

Recall that an R-module M is minimax when there exists a finite submodule N
of M such that o quotient module M/N is Artinian. It is known that when R is a
Noetherian ring, an R-module M is minimax if and only if any homomorphic image of
M has finite Goldie dimension (see [14}, B1], 32] ). Moreover, an R-module M is (I, J)-
minimax when any quotient module of M has finite (I, J)-relative Goldie dimension
(see [O).

Definition 1.1.1 A non-empty set « of ideals in R is a good family when the following
conditions holds:

(7) If I and J are ideals of R such that J C I and J € a, then I € o;

(22) If I and J belong to «, then I.J € a.

Example 1.1.2 (i) Let 8 be an arbitrary non-empty collection of ideals on R, the set
(B) ={K<R:1...I, CK, forsome I; € 3,j=1,...,t} is a good family of ideals
in R. When = @ we put () = {R}. In particular, when g = {I} is a single set we
use the notation (I) instead of ({I}). So (I) = {K < R: I" C K, for some naturaln};
(77) The set F(I,5) ={K < R: K+ J e (I),YJ € B} is also a good family of ideals.
When 8 = {J} we call F(I,J) instead of F(I, /). Moreover the set F(I,.J) coincides
with set of ideals studied in [I].

Remark 1.1.3 Note that V(1) € F(I, 3) can be a strict inclusion. Indeed, let R = Z
be the ring of integer numbers. Consider I = 4Z, 5 = {Z,13Z} and p = 37Z. Note that
peF(I,B), since p+7Z DA4Z € (I) and p + 13Z D 16Z € (I). But p ¢ V(I) = {27Z}.
Therefore, we have V(I) C F(I, ).

Now, recall that, for any R-module M, the i-th Bass number of M with respect to
prime ideal p, denoted by p(p, M), it is defined as the number of copies of the injective
hull ER(R/p) of R/p over R occurring as direct summands in the i-th injective module

of a minimal injective resolution of M. Moreover, we have
i (p, M) = dimigy) (Bt (k(p), My))
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where k(p) = R,/pR, is the fraction field of R/p.

Definition 1.1.4 TLet o be a good family of ideals in R and M an R-module. The

a-relative Goldie dimension of M is defined as

GdimoM := Z 1P (p, M).
peanSpec(R)

When o = F(I,/3), we shall use F(I,3) to denote F(I,53) N Spec(R). In this
case, we will simply call the (I, 3) - relative Goldie dimension of M and we will denote
by

Gdim; gM := Z pl(p, M).
pEF(1,5)

Example 1.1.5 (i) We consider R = C[X, Y] and the R-module

ClX,Y]

M = .
(X —a,Y —0)

(a,b)eC?

Let
B = {(X —a,Y —b) | (a,b) € C* and Im(a) = Im(b) = O} and a = (f).
We know that

={(X-a, Y —0) | (a,b) €C*} :=B.

Note that B is a infinite set and consequently Assg(M) is also. Since aN B is infinite,
it follows that o N Assp(M) is also. On the other hand p°(p, M) > 1 if and only if
p € Assgr(M). Therefore Gdim, (M) is infinite.

(7i) Let M be an R-module finitely generated and a a good family. Then M is
Noetherian module and hence Assg(M) is a finite set. By [2I, Theorem 18.7] we
have (°(p, M) < oo for all p € Assg(M). Therefore Gdim,, (M) is finite.

Definition 1.1.6 Let o be a good family of ideals in R and M an R-module. The
a-torsion module of M is defined by

Io(M):={zxeM:Ir=0, for some I € a}.
Note that I', (M) is a submodule of M. Moreover, we have

La(M) = U I (M) = lm T (M),

Ica ITea



where « is seen as a direct set with the partial order I < J if and only if J C I, in the
second equality.

For a homomorphism f : M — N of R-modules, it is easy see that the inclusion
f(Lo(M)) C T'y(N), and hence the mapping Iy (f) : T'o(M) — T'o(N) is defined so
that it agrees with f on I',(M).

Thus I', becomes an additive covariant functor from the category of R-modules
to itself. In [2] this functor is called a-torsion functor. When o = F(I, ) we will
denote it by I'; 3 instead of I'z(; gy and we call it (I, 3)-torsion functor.

Note that, if 5 = {J} then the (I, §)-torsion functor I'; 5 coincides with (I, J)-

torsion functor I'; ; studied in [27].

Lemma 1.1.7 Let a be a good family of ideals in R and M an R-module. Then

Gdim M = GdimI',(M).

Proof Let p € Spec(R) be, and let E(R/p) be the injective hull of R/p. In [21],
Theorem 18.4| is proved with E(R/p) is an p-torsion R-module and with, if r € R~ p,
then the multiplication by r induces an automorphism of E(R/p). Therefore, if p O I,
for some I € a and u € E(R/p), then p"u =0 = ["u =0 = u € T',(E(R/p)). So
E(R/p) is an a-torsion. On the other hand, ifp 2 I, forany I € candu € I',(E(R/p)),
then there exists / € « such that Ju = 0. Since I ¢ p, there exists y € I \ p and
the multiplication by y is an automorphism of E(R/p). So u = 0 and consequently,
Lo (E(R/p)) = 0. Therefore, I',(E(M)) is can be decomposed as

To(E(M)) = @@ TuERM)CE @ TalBR/p) M

peanSpec(R) p¢anSpec(R)

R

peanSpec(R)

Note that I',(E(M)) is an essential extension of I', (M ).Indeed, if x € ', (E(M))
E(M) and z # 0, then Ix = 0, for some I € « and there exists a € R such that

N

ax € M ~ {0}, because E(M) is an essential extension of M. Since Jax = 0, follow
that axz € ', (M)~ {0} and hence, I',(E(M)) is an essential extension of ', (M). Also,
we know that

Da(E(M)) =l T (E(M))

Ica



and ['f(E(M)) is an injective R-module, for any I € «, we deduce, by [20, Proposi-
tion 1.2(1)], that I',(F(M)) is an injective R-module and consequently, I',(E(M)) =
E(T,(M)). Therefore,

Gdim,M = > p°(p, M) = GdimIo(M),

peanSpec(R)

as required. m

Definition 1.1.8 Let o be a good family of ideals in R and let M be an R-module.
We say that M is a-minimaz (or minimaz with respect to o) when any quotient module

of M has finite a-relative Goldie dimension.

Remark 1.1.9 (i) For the family o = F(I,3) we simply called of (I, $)-minimax
module instead of F(I, #)-minimax module;
(4) By inclusions V(I) C F(I,) C F(I,.J) for all J € 3, we have the inequalities

Gdzmﬂ\/[ S Gd’im[”gM S Gdim[,JM S GdimM

and consequently, the classes of (I, 5)-minimax R-modules contain the classes of (I, J)-

minimax R-modules, for any J € .

Example 1.1.10 (i) If I = 0, then F(I,3) = Spec(R) = V(I) and therefore, an
R-module M is minimax if, and only if, it is (I, §)-minimax if, and only if, it is (I, J)-
minimax, for all J € g if, and only if, it is /-minimax;

(i7) If § is the set of all ideals of R, then F(I, ) = V(I). So M is (I, §)-minimax if,
and only if, it is I-minimax;

(1ii) Let M be an a-torsion module. Then M is a-minimax if, and only if, M is
minimax;

(7v) If M is an I-torsion module, then M is minimax if, and only if, it is (/, §)-minimax

if, and only if, it is (/, J)-minimax, for each J € S if, and only if, it is /-minimax.

Proposition 1.1.11 Let 0 — M’ — M — M"” — 0 an short exact sequence of
R-modules and « a good family of ideals in R. Then M is a-minimax if, and only if,
M'" and M" are both a-minimax.

Proof We suposse that M is a-minimax and let is make the identifications M’ < M
and M" = M/M'. Then, it follows directly that M’ and M" are a-minimax modules.
Conversely, assume that M’ and M"” are both a-minimax and let N be a submodule

of M. Let p € Assg(M/N) N a. The exact sequence of R-modules

0— — 0

M’—FNHM_> M
N N M+ N

10



induces the exact sequence of R,-modules

Mé Mp MP
0— HOIan k’(p), m — I‘IOH]R]J k(p), F — Home k(p)a M/ + N. )

where k(p) = R,/pR,. We know that
(M'+ N)/N =M /M AN and M/(M' +N) = (M/M")/(M' +N)/M'.

By a-minimaximality of M’ and M”, we have

1 (p,M+N)<Gdzma(M+N)<oo
N
u(p,M )<Gdzma< M )<oo.

/+ N
M N 0 M\
< u’ Wby ) <o
Moreover, the sets Ass( (M + N)/N) N« and Ass(M/(M' + N)) N« are both finite.
Since Ass(M/N) C Ass((M'+N)/N)UAss(M/(M'+N)), it follows that Ass(M/N)Na

=

Therefore

is finite and so M is a-minimax, as required. m

Corollary 1.1.12 Let a be a good family of ideals of R. Then any quotient of an a-

minimax module and any finite direct sum of a-minimax modules are also a-minimax.

1.2 Serre classes

In this section, we prove some results related to Serre classes, or Serre subcategory,

in the category of R-modules.

Definition 1.2.1 Let Mod(R) the category of R-modules and S a class in Mod(R).
We say that S is a Serre Class (or Serre Subcategory) when the following property is

satisfied: Given a short exact sequence
0O—M —M-—M"—0

of R-modules. Then M € S if, and only if, M’ € S and M" € S.

Example 1.2.2 The following classes of R-modules are Serre Classes.
(1) The class of Noetherian R-modules ;

(77) The class of Artinian R-modules;

(7ii) The class of R-modules with finite support;

11



iv) The class of R-modules with dimgM < n, where n is a non-negative integer;

(
(v) The class of all I-minimax R-modules;
(vi) The class of a-torsion R-modules;

(

vii) The class of a-minimax R-modules.

Remark 1.2.3 During the section we will use the following notations:

S for an arbitrary Serre Class in the category Mod(R);

Sy denotes the class of minimax R-modules;

S; for the class of I-minimax R-modules;

Sy for the class of (I, J)-minimax R-modules;

S, denotes the class of a-minimax R-modules. For the case o« = F (I, ), we denotes
by Sr the class of (I, f)-minimax R-modules. Using the notation before, we obtains,
from Remark [I.1.9 that Sy C Sr; C Srs € Sy, for all J € S.

Proposition 1.2.4 Let I,I’ be ideals of R, 3,5’ two non-empty sets of ideals of R
and M an R-module. Then

(i) S15=Syip

(1) If 5 C ({I}), then Sy = Sy .

(#4) It I" C \/T', for some n € N, then S; 3 C Sy 3.

(iv) If B’ C 8, then S;p C Sy p.

(v) If I" C V/T', for some n € N and M is (I, B)-torsion, then M € S1 5 if, and only if,
M € S, if, and only if, M € Sy g.

(vi) If " C B and M is (I, B)-torsion, then M € Sy if, and only if, M € S, if, and
only if, M € S;p.

Proof (i) Immediate.

(i) Since B C (I), it follows that F(I, ) = Spec(R) and, therefore, Sy = S; 5.

(iii) Let M € Sy 5. Since I™ C VT', we get F(VT',8) € F(I,5). Since M is
(1, B)-minimax R-module, it follows that Gdim, ;,M/N < Gdim;gM/N < oo, for
any submodule N of M. Therefore M € S 77 5 = Sr .

(iv) Let M € S; 4. By hypothesis, 8/ C 8. So F(I,58) € F(I,5"). This implies
that Gdim;gM/N < Gdim;gM/N < oo for all submodule N of M. Therefore,
M € S;p.

(v) By proof of item (iii) we have F(I’, 8) € F(I, ), s0 M =T g(M) C T;5(M),
that implies M is (I, §)-torsion. Consequently, we get

GdzmM/N = GdimpﬁM/N = GdimIﬁM/N,
for all submodule N of M. Therefore, it follows the result.

12



(vi) The proof is analogous to that of item (v). m

Proposition 1.2.5 If N € § and M is a finitely generated R-module, then, for any
submodule H of Ext (M, N) and T of Tor*(M, N), we have Ext’, (M, N)/H € S and
Torf'(M,N)/T € S, for all i > 0.

Proof Since R is Noetherian and M is finitely generated, it follows that M has a free
resolution

Foi:oioio — F— F_ 1 — - — F1 — Fy — 0,

where each F; has finite rank. Applying the functor Homg(—, N) in F,, we get the

complex

Hompa(Fa, N) : 0 — Homp(Fo, N) - Homp(Fy, N) 2 -

have in mind that Exti(M, N) = H'(Hompg(F,, N)), so when i = 0, we have
Ext%(M, N) = Homg(M, N)

and we know that there is an injection Homgz(M, N) < N* where k is the number
of generators of M. Since N € §, it follows from Definition that N* € S and,
therefore, Ext% (M, N) € S.

For the case i > 0, we know that Exth,(M, N) = Kerd’/Imé—'. Since Kerd® is a
submodule of Hompg(F;, N) = N™ where n; is the rank of F;, and N™ € S, it follows

that Kerd® € S. Moreover, the sequence
0 — Imdé"™* — kerd" — Ext’y(M,N) — 0

is exact. So Ext’y (M, N) € Sfor alli > 0. By Definition we have Ext’ (M, N)/H €
S for any non-negative integer 4. The proof of Tork, (M, N)/T € S, for all non-negative

integer ¢, is similar to the previous one. m

Theorem 1.2.6 Let M be a finitely generated R-module, N an arbitrary R-module
and t a non-negative integer. Then the following statements are equivalent:

(i) BExto(M,N) € S, for all i < ¢.

(41) For any finitely generated R-module H with Supp(H) C Supp(M), we get Ext’(H, N) €
S, for all 2 < t.

13



Proof (i)=(ii) Since SuppH C SuppM, by Gruson Theorem (see [29]), there exists a
filtration of R-modules

0=HyCH C---CH,=H

such that each factor H;/H,_; is a quotient of a finite direct sum of copies of M. As

a consequence we have the exact sequences
0— K —M"— H —0

0—>H1—>H2—>H2/H1—>0

0— Hk,1 — Hk — Hk/Hk,1 —0
and hence, for each j, a long exact sequence
oo — Extly Y(H; 1, N) — Exty(H;/H; 1, N) — Extiy(Hj, N) —

— Exty(H; 1, N) — -+~
and applying induction on k, is sufficient we prove the result for £ = 1. So, when

k =1, there is a short exact sequence
0 — K —M"— H—0, (1.1)

for some n € N and some finitely generated R-module K.
Now, we use induction on ¢. If ¢ = 0, Homg(H, N) is a submodule of R-module

Hompg(M"™, N) = Homp(M, N) € S. Suppose now that ¢ > 0 and Ext’,(H', N) € S
R

for all finitely generated R-module H' with SuppH’ C SuppM and for any j <t — 1.

Then, the exact sequence ([1.1]) induces the long exact sequence
o BxtiTU (K, N) 25 Excti(H, N) -5 Bxth (M™, N) —» -
Since SuppK C SuppM™ = SuppM, it follows from induction hypothesis that
Exto ' (K,N) € S, for all i <t.
On the other hand, Exty,(M", N) = @ Ext},(M, N) € S. Then, we have

Kerd' = Imdé™' € S and Imd* = Kerd™ € S.
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The result follows from the exact sequence
0 — Kers' — BExthy(H, N) — Imdé* — 0.

(ii)=(i) Immediate. m

Corollary 1.2.7 Let r a non-negative integer. Then, for any R-module M, the
following statements are equivalent:

(i) Extiy(R/I, M) € S for all i < 7.

(i1) For all ideal a of R with a D I, Exth(R/a, M) € S for all i < r.

(4ii) For any finitely generated R-module N with Supp(N) C V(I), Ext,(N,M) € S
for all 7 <r.

(iv) For any p € Min(I), Exth(R/p, M) € S for all i < 7.

Proof The implications (i)=-(ii) =(iii)=(iv) follow directly from Theorem So,
remains to prove the implication (iv)=-(i). Let py,...,p, be the minimal primes ideals
of R. By hypothesis, ExtE(R/pj,M) € S, for each 7 = 1,...,n. Then, we have
Ext%(@?le/pj, M) = ?ZlExt}é(R/pj, M) € §. Moreover

Supp(R/1) = V(1) = V(V) = V (m pj) = V(b)) = Supp(®_. R /).

Therefore, by Theorem [1.2.6] Exti(R/I, M) € S, foralli <t. m
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Chapter 2

Properties of cominimaximality and

finiteness of local cohomology modules

In [2], Alba-Sarria introduces the local cohomology modules with respect to a
good family o which generalizes the local cohomology modules studied in [27]. For an
integer i, the local cohomology functor H’, with respect to « is defined to be the i-th
right derived functor of T',. Also H’ (M) is called the i-th local cohomology module
of M with respect to a. In [2], Sarria approached the study of properties of these
extended modules.

In this chapter, we will define in section 1 what are (S, I, §)-cominimax modules
and will prove some properties of the local cohomology modules H’IB(M ) related to
this definition. In addition, starting from what was seen in section 1, we will see in
section 2 when the set of the associated primes of H}B(M) will be finite. These results

will conclude the chapter.

2.1 (S,1,3)-Cominimax modules

Given an ideal a, in [I6] is defined that an R-module M is a-cofinite when M has
support in V(a) and Ext’(R/a, M) is a finitely generated R-module for each 4. In [3],
Azami, Naghipour and Vakili define the a-cominimax R-modules. More precisely, we
say that an R-module is a-cominimax when Suppy(M) C V (a) and Ext’(R/a, M) is an

a-minimax R-module, for all 7. This last definition generalizes the concept of a-cofinite



R-modules. Furthermore, it is in [1] that Ahmadi-Amoli and Sadeghi present an even
more general concept than the previous ones. These authors defined the (S,1,.J)-
cominimax R-modules, where S is a Serre Class and I, J are ideals of R. We say that
an R-module M is (S, I, J)-cominimax if Supp (M) C F(I,J) and Exti(R/I, M) € S
for each 7 > 0. In all these cases, properties related to the concept of cominimaximality
were presented for the local cohomology modules H} (M) and Hj ;(M) respectively.
In this section we introduce the class of (S, I, §)-Cominimax R-modules and some

relationships between these modules and local cohomology module H’Iﬁ(]\/[ ).

Definition 2.1.1 TLet I be an ideal of R and § a non-empty collection of ideals in
R. We say that an R-module M is (I, )-cofinite when Suppy(M) € F(I,5) and
Ext’(R/I, M) is a finitely generated R-module, for all i > 0.

Recall that for an integer i, the i-th right derived functor of Ty, is denoted by H,
and will be referred to as the i-th local cohomology functor with respect to a.

For an R-module M, the module H’ (M) is called the i-th local cohomology
module of M with respect to good family «.

When o = F(I, ) we use H 4(M) to denote the i-th local cohomology R-module
instead of H}(w)(M).

It is casy to see that if 3 = {J}, then H} 5(M) coincides with the local cohomology
functor Hj ; defined in [27].

Remark 2.1.2 Notice that I';/(M) C I',(M), for I € a. So, if I'y(M) = 0, then
['/(M) =0, for any I € a. Now, let M = M/To(M) and let E = Eg(M). Consider
L =E/M. Since I',(M) = 0, it follows that ',(E) = 0 and T';(M) = 0 = I';(E), for
each I € «. In particular, Homg(R/I, E) = 0, for all I € a. On the other hand, given
an exact sequence

0—M-—FE—L—0

and applying the functors Hompg(R/I,—) and I',(—), we have the following isomor-
phisms:

(i) Extiy(R/I, L) = Exty (R/I, M), VI € a and i > 0.

(i3) H' (L) = HPH (M), for all i > 0.

Definition 2.1.3 Let I be an ideal of R and § an arbitrary family of ideals in R. For a
Serre Class S, an R-module M is called (S, I, §)-Cominimaz when SuppzM C ]}(I, B)
and Exty(R/I, M) € S, for all i > 0.
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Remark 2.1.4 (i) Note that, if we consider S be the class of finitely generated R-
modules in Definition 2.1.3] then we recover the Definition

(i7) When S = Sy 3, we called that the R-module is (I, 5)-Cominimax;

(i74) In the case = {J} and S be the class of finitely generated R-modules we recuper
the Definition 2.1 in [28§].

Notation 2.1.5 For an ideal I of R, § an non-empty collection of ideals in R and S a
Serre Class, we use C(S, I, ) to denote the class of all (S, I, 3)-Cominimax R-modules.

Example 2.1.6 Let N € S be such that Suppg(N) € F(I,8). Then, it follows from
Proposition that NV € C(S, 1, ).

Proposition 2.1.7 Let 0 — M’ — M — M"” — 0 be a short exact sequence of
R-modules such that two of them are (S, I, 5)-Cominimax. Then the third module is

also (S, I, 5)-Cominimax.

Proof The result follows from the equality Supp(M) = Supp(M’) U Supp(M”), the

long exact sequence
oo — Bxt(R/I, M) — Extiy(R/I,M") — ExtY(R/I,M') — - -
and Proposition [1.2.5] =

Proposition 2.1.8 Let I, I’ be ideals of R and (3, /' non-empty collections of ideals
in R. Then:

(i) M € C(S,1,8) if and only if M € C(S,VT, ).

(¢3) If M is I-Cominimax, then M € C(Srg, 1, ).

(#7) If Min(M) C F(I', B), I € /T’ for some n € N and Ext,(R/I, M) € Sy 4 for all
i >0, then M € C(S;4,1,5) and M € C(Sp 3,1, 5).

(iv) If Min(M) C F(I,53) and B C B, then M € C(S;p,1,0) if and only if M €
C(Srp,1,0).

Proof (i) Note that F(I,3) = F(VI,8). So M is (I,[)-torsion if and only if is
(V/I, B)-torsion. Since Sy = S,/7.5:the result follows by Proposition m

(ii) Since M is I-Cominimax, we have
Supp(M) C V(I) C F(I, 5) and Extyp(R/I, M) € Sy,

for all i € Ny. Moreover, SuppExt%(R/I, M) C V(I) for any i € Ny. So, Extiz(R/I, M)
is I-torsion, for each i > 0 and, consequently, Ext%(R/I, M) € S; 4 for all i.
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N

(iii) Knowing that Min(M) C ]}([’,B) and I" C /T, we get Supp(M)
F(I',B) € F(I,B). Since Extih(R/I,M) € Sy for all i > 0, it follows that M €
C(Sr,1,6). Moreover, S;3 C Sy, by Proposition [1.2.4[iii). Therefore, M €
C(Srp, I, B).

(iv) Suppose that M € C(S; 3,1, ). Since ' C 3, we have Supp(M) C F(I,B)
F(I,B') and, consequently, Extt(R/1, M) is (I, 8')-torsion, for all i > 0. So,

N

Exto(R/I, M) € Sy 4, for any i € Ny.

Therefore M € C(Srp,1,). Conversely, suppose that M € C(S;p,1,5"). Then
Supp(M) C F(I, ') and Ext,(R/I, M) € Sy p for each i > 0. Since §' C g, it follows
from Proposition [I.2.4(iv) that S; 5 C Sy 3. Therefore M € C(S;3,1,5). =

Proposition 2.1.9 Let ¢ be a non-negative integer such that H ;(M) € C(S,1,5)
for all i < t. Then, Ext',(R/I, M) € S for any i < t.

Proof We use induction on t. If ¢t = 0, there is nothing to prove. For ¢t = 1 we
have Homg(R/I,T'; 3(M)) = Hompg(R/I, M). Since I'; 3(M) is (S, I, f)-cominimax, it
follows that Homgz(R/I, M) € S.

Now, suppose that t > 2 and that for t — 1 the result is hold. Using the notation
of Remark for « = F(I, 5), we have the short exact sequence

0—Trp(M)— M — M —0
which induces the long exact sequence
oo — Ext%(R/I, T 5(M)) — Extiy(R/I, M) — Exto(R/I, M) — -+ .

Since ' 5(M) € C(S, 1, 3), we have Exth(R/I,T;5(M)) € S for all i > 0. Therefore,
is sufficient to show that Exth(R/I, M) € S for any i < t. By Remark we have

the isomorphisms
Exty(R/1, L) = Exty ' (R/I, M) and Hj 4(L) = H}; (M), para todo i > 0.

Assuming that Hi'j (M) € C(8,1,3) for all i <t — 1, we get that Hj 4(L) € C(S,1,5)
for any i < t — 1. So, applying the inductive hypothesis in the R-module L, we get
Extt(R/I,L) € S and therefore, ExtZ ' (R/I,M) € Sforalli <t—1. m
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Corollary 2.1.10 If Hj 4(M) € C(S,1,), for all i > 0, then Exty(R/I,M) € S for
any ¢ > 0.

Theorem 2.1.11 Suppose that Ext’%(R/I, M) € S for all i > 0. Let ¢ be a non-
negative integer such that Hj z(M) € C(S,1,0), for any i # ¢, then Hj 4(M) €
C(S,1,5).

Proof We use induction on ¢. If ¢ = 0, we must show that H} 4(M) = I'; 3(M), that
is, we must show that Extt(R/I,T';5(M)) € S for all i > 0. By long exact sequence

oo — BxtY(R/I, M) — BExth(R/I,T;5(M)) — Extho(R/I, M) — -

and by hypothesis, it is sufficient to show that Ext’%(R/I, M) € S for each i > 0. By
Remark we get Hj 5(L) € C(S, 1, 8), for all i > 0. Therefore, Extyy'(R/I,M) € S
fro each ¢« > 0, by Corollary Moreover, Exth(R/I, M) = Homg(R/I, M) =
Hompg(R/I,T;3(M)) = 0. So, Exth(R/I, M) € S, for any i € Ny.

Suppose, inductively, that ¢ > 0 and that the result holds for t — 1. By Remark
we have:

Exth(R/1,L) = BExtd ' (R/I, M) € S for any i > 0

Hj (L) = Hy' (M) € C(S,1,5) for all i # ¢ — 1.
By the inductive hypothesis, Htjfﬁl(L) € C(S8,1,5) which implies that Hj 4(M) €
C(S,I1,5). m

Corollary 2.1.12 Let M € S and ¢ be a non-negative integer such that Hj 4(M) is
(8,1, B)-cominimax, for all i # ¢. Then Hj 5(M) is (S, I, §)-cominimax.

Proof Since M € S, we have Ext,(R/I, M) € S, for all i € Ny. Therefore, applying
Theorem [2.1.11} we get the result. m
Now, we have conditions to prove the main Theorem of this section, which is a

generalization of one of the results in |1, Theorem 3.13].
Theorem 2.1.13 Let a € F(I,[). Let t be a non-negative integer such that
Extly(R/a, M) € S and Extj(R/a,H 4(M)) € S

for any ¢ < t and all j > 0. Then, for any submodule N of HﬁB(M) such that
Extp(R/a,N) € S, we have that Hompg(R/a,H} ;(M)/N) € S; in particular, for
a=1.
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Proof The short exact sequence
0 — N — Hj 4(M) — Hj 4(M)/N — 0
induces the long exact sequence
.-+ — Hompg(R/a,H} 4(M)) — Hompg(R/a,H} 4;(M)/N) — Extp(R/a,N) — - -

Since Extp(R/a, N) € S, it is sufficient to show that Homg(R/a,Hf 4(M)) € S. For

this, we use induction on t. When ¢ = 0, we have
HOIHR(R/Q, H?ﬁ(M)) = HOIHR(R/O, F[’g(M)) = HOIIlR(R/Cl, M) €S.

Now, assume that ¢ > 0 and that the result holds for ¢ — 1. Then, considering

the long exact sequence
coo — Exth(R/a, M) — Extly(R/a, M) — Exti (R/a, T 5(M)) — - -
we have, by hypothesis, that
Exti(R/a, M) € S e Extif'(R/a,T';5(M)) = Exti{'(R/a,H] 4(M)) € S.
So Exth(R/a, M) € S. By Remark [2.1.2] we have
Ext%;'(R/a, L) = Exty(R/a, M) € S eExth(R/a, Hj 4(L)) = Ext}(R/a,H} (M)) € S,
for each 7 > 0 and all i <t — 1. Therefore, by induction hypothesis,
Homp(R/a,H;(L)/N) € S
and consequently, Homg(R/a,H] ;(M)/N) € S. =

Corollary 2.1.14 Let t be a non-negative integer such that Exth(R/I, M) € S and
H} 4(M) € C(S,1,B), for all i < t. Then, for any submodule N of Hf ;(M) and all
finitely generated R-module M’ with Supp(M’) C V(I) and Extg(M’, N) € S, we have
Homp (M, H} 5(M)/N) € 8.

Proof Knowing that H?B(M) € C(S,I,p), for all i < t, we get Ext?,(R/I, H?B(M)) €
S for any i < t and all j > 0. If N is a submodule of Hj 4(M) and M’ is a
finitely generated R-module such that Supp(M’) C V(1) and Extp(M’, N) € S, then
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Exty(R/I,N) € S, by Corollary By before Theorem, Hompg(R/I,H} 4(M)/N) €
S. Since M’ is finitely generated and Supp(M') C V(I), it follows that

HOH]R(M/, H?B(M)/N) €S.
|

Proposition 2.1.15 Let ¢ be a non-negative integer such that Hj 4(M) € C(S, 1, )
for all © < ¢t. Then the following statements holds:

(i) If Extx(R/I,M) € S, then Hompg(R/I,Hj 4(M)) € S.

(i) If Extlf'(R/I, M) € S, then Ext(R/I,Hj ;(M)) € S.

(iii) If Exty(R/I, M) € S for all i > 0, then Hompg(R/I,Hi'j (M)) € S if, and only if,
Exth(R/1,H] 4(M)) € S.

Proof (i) By hypothesis, H} 4(M) € C(S, 1, 8) foreach i < t. So Ext)(R/1, Hj 4(M)) €
S for all j > 0 and each i < t. Knowing that Ext%,(R/I, M) € S and taking N = 0 in
the Theorem [2.1.13] we get Homp(R/I,Hj 4(M)) € S.

(ii) The proof will be done by induction on t. Suppose that ¢ = 0. Then, by the

long exact sequence
0 — BExty(R/I,T13(M)) — Extp(R/I, M) — Extyh(R/I, M)

— Exth(R/I,T;5(M)) — Ext%(R/I, M) — Exth(R/I, M)

— Exth(R/I, M) — Exthy(R/I, M) — Ext i (R/I,T;3(M)) — -+ (2.1)

and by Extp(R/I,M) € S, we have Extp(R/I,H} ;(M)) = Extyp(R/I,T15(M)) € S.
Now, suppose that ¢ > 0 and assume that the result holds for ¢ — 1. Then
H) (M) = T;3(M) € C(S,1,), which implies in Exty(R/I,T;5(M)) € S, for all
i > 0. Since Ext''(R/I, M) and Ext'?>(R/I,T;5(M)) belong to S, it follows from
exact sequence that Extt'(R/I, M) € S. Using the Remark we conclude
that Hj 4(L) € C(S,1,) for any i <t — 1 and Ext%(R/I,L) € S. By the inductive
hypothesis, Exty(R/I,Hj (L)) € S and therefore, Exty(R/I,Hj 4(M)) € S.
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(iii) Suppose that HomR(R/I,HtIfFBI(M)) € S. Now, we use induction on ¢. If
t =0, then Homp(R/I,H} 4(M)) € S. On the other hand, by Remark we have

Hompg(R/I,Hj 4(M)) = Hompg(R/I,T; 4(L))
= Hompg(R/I,L)
>~ Extp(R/I,M) € S.

Since Exth(R/I, M) € S, it follows from exact sequence that Exty(R/I, T 4(M)) €
S.

Suppose that ¢t > 0 and assume that the result holds for ¢ — 1. Since I'; 3(M) €
C(S,1,5), we have Exto(R/I,T;5(M)) € S, for any i > 0. So, the exactness of
sequence implies that Ext%(R/I,M) € S, for all i > 0. Now, using the Re-
mark we have Exty(R/I,L) € S, for all i > 0, and Hompg(R/I,H} 4(L)) € S.
Therefore, by the inductive hypothesis, Ext%(R/I, Hfﬁl(L)) € S and consequently
Ext}(R/I,H} 4(M)) € S.

Conversely, we use induction on ¢. If + = 0, then Ext}(R/I,T';5(M)) € S. So,
we must to show that Homg(R/I,Hj 5(M)) € S. Since Extp(R/I, M) € S, it follows

from exact sequence
Extp(R/I, M) — BExtyp(R/I, M) — Exti(R/I,T;5(M))

that Extp(R/I, M) = Homg(R/I,Hj 4(M)) € S.
Assume that ¢t > 0 and that the result holds for t — 1. Then I'; 3(M) € C(S, I, )
and consequently Extz(R/I,T';5(M)) € S, for all i > 0. By the exact sequence

Exto(R/1, M) — Exth(R/I, M) — Exti ' (R/I,T;5(M))

we get Extly(R/I, M) € S for all i > 0. Note that Exty(R/I,L) € S, for all i > 0, and
Exty(R/I,H} (L)) € S. By the inductive hypothesis, Homg(R/I,Hj 4(L)) € S and
so, Homp(R/I,LHY} (M) € S. =

2.2 Properties of associated primes of Hj ;(M)

Lemma 2.2.1 Let a be an ideal of R. Let M be an R-module such that SuppM C
V(a) and (0 :p; a) has finite Goldie dimension. Then M has finite Goldie dimension.
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Proof We know that (0 :3, a) = Hompg(R/a, M). Then
Assr(0:pr a) = V(a) N Assg(M).

Since Assp(M) C Suppr(M) C V(a) it follows that Assg(0 :py a) = Assg(M) and
consequently the set Assgp(M) is finite. On the other hand, for any p € AssgM we
have

Hompg, (k(p), My) = Homp, (k(p), (0 10, aRy)),
as k(p)-vector spaces, where k(p) = R,/pR,. Therefore pu°(p, M) is finite and hence

GdimM < oco. m

Theorem 2.2.2 Let M be an R-module. Let t be a non-negative integer such
that H}ﬁ(M) is (I, 3)-cominimax for all i < t, and Ext%(R/I, M) is (I, 3)-minimax.
Then for any ([, 3)-minimax submodule N of Htfﬁ(]\/[) and for any finitely generated
R-module L with Suppg(L) € V(I), the R-module Homp(L,Hj 5(M)/N) is (I, f3)-

minimax.
Proof The exact sequence
0—=N— HI}’E(M) — H}B(M)/N —0
provides the following exact sequence
-+ —Hompg(L,H} 45(M)) — Homp(L,H 5(M)/N) —Extp(L,N) —--- .

Since by Proposition Extp(L, N) is (I, 3)-minimax, so in view of Defi-
nition it is sufficient to prove that the R-module Hompg(L,Hj 3(M)) is (I, f)-
minimax. To this end, in view of Corollary it is enough to prove that the
R-module Homp(R/I,H} 4(M)) is (1, 3)-minimax.

We use induction on t. When ¢ = 0, the R-module Homg(R/I, M) is (I, )-

minimax, by assumption. Since
HomR(R/I,H?ﬂ(M)) =~ Hompg(R/I,T; 5(M)) = Homg(R/I, M),

it follows that Homg(R/I,H] 4(M)) is (I, )-minimax.
Now suppose, inductively, that ¢ > 0 and that the result has been proved for
t — 1. Since I'; 3(M) is (I, 3)-cominimax, it follows that Ext’(R/I,T;5(M)) is (I, B)-

minimax for all ¢ > 0. On the other hand, the exact sequence
0—T3(M) —> M — M/T5(M)—0
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induces the exact sequence
—— Exth(R/I, M) —Exty(R/I, M/T;5(M)) — Ext?l(R/I, Lrp(M))—---

Hence, by Definition and the assumption, the R-module Extl(R/I, M /T 5(M))
is (1, 8)-minimax. Also since HY 5(M/T;5(M)) =0 and Hj 4(M/T;5(M)) = H} 4(M)
for all i > 0, it is follows that HY (M /T 5(M)) is (I, 8)-cominimax for all i < ¢. There-
fore we may assume that M is (I, 5)-torsion-free. Let E be an injective envelope of M
and put M; = E/M. Then also I'; 3(F) = 0 and Homg(R/I, E) = 0. Consequently,
Exty(R/I, M) = Extif'(R/I, M) and Hj 4(M;) = Hy'j (M) for all i > 0. The in-
duction hypothesis applied to M; yields that Homg(R/1, H'}Tﬁl(Ml)) is (/, 8)-minimax.
Hence Hompg(R/I,H] 45(M)) is (I, §)-minimax. m

Theorem 2.2.3 Let M be an (/,/)-minimax R-module. Let ¢ be a non-negative
integer such that Hj 43(M) is (I,)-minimax for all i < ¢. Then for any (I,})-
minimax submodule N of Hj 4(M) with Suppg(Hj 4(M)/N) C V(I), the R-module

Hompg(R/I,H] 4(M)/N) is (I,3)-minimax. In particular, the Goldie dimension of
HY 5(M)/N is finite, and so the set Assp(H 3(M)/N) is finite.

Proof Apply Theorem and Lemma ]

Corollary 2.2.4 Let M be a finitely generated R-module. Let N (resp. A) denote
the category of all Noetherian (resp. Artinian) R-modules and R-homomorphisms. Let
t be a non-negative integer such that Hj 5(M) € Obj(N') U Obj(A) for all i < t. Then
the R-module Homp(R/I, Hj 4(M)) is (I, §)-minimax, and so the set Assp(Hj 5(M))

is finite.

Proof Apply Theorem and the fact that the class of (/, #)-minimax R-modules

contains all Noetherian and Artinian modules. =

Proposition 2.2.5 Let ¢ be a non-negative integer such that Exth(R/I, M) € S; 4
and Hj 4(M) € C(Srp,1,3), for all i < t. Let N an R-submodule of Hj 5(M) such that
Exth(R/I, N) € S 5. Tt Supp(H} 5(M)/N) C V(I), then Gdim(H} 4(M)/N) < oo and
50, the set of associated primes to Hj 5(M)/N is finite.

Proof Using the Theorem [2.1.13|for the class Sy 3, we have Hompg(R/I,H] 4(M)/N) €
S5, and this implies that Hompg(R/I,H} 3(M)/N) € S;. Note that

SuppHompg(R/I,Hj 3(M)/N) = Supp(Hj 5(M)/N) C V(I).
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So Homp(R/I,Hj 4(M)/N) is I-torsion and consequently, minimax. Therefore,
GdimHompg(R/I,H] ;(M)/N) < .

By isomorphism
Hompg(R/I,H] 4(M)/N) = (0 HHY L (M)/N 1),
it follows from Lemma that GdimH} 5(M)/N < co. ®

Corollary 2.2.6 Let ¢ be a non-negative integer such that Exty(R/I, M) and Hj 4(M)
are (I, 8)-minimax, for all i < t. Let N be a submodule of Hj 4(M) such that

Supp(H, ,(M)/N) € V(1)
and Extp(R/I,N) is (I, 3)-minimax. Then the set Assp(Hf 3(M)/N) is finite.
Proof Since Hj 43(M) is (I, B)-torsion, for all i < t, we have Supp(H} 4(M)) C F(I,p),

for any ¢ < t. So, by Example m, H}B(M) € C(S1,1, ) for any i < t. Therefore,
by before Proposition, the set Assp(Hj 5(M)/N) is finite. m

Corollary 2.2.7 Let ¢ be a non-negative integer such that Exty(R/I, M) and H 4(M)
are (I, f)-minimax, for alli < ¢. If Supp(Hj 4(M)) € V(I), then the set Assg(Hj 5(M))
is finite.

Proof Set N =0 in Corollary |
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Chapter 3

Generalized local cohomology with

respect to good family of ideals

In [23], Tran Tuan Nam and Nguyen Minh Tri introduced the generalized local
cohomology modules with respect to a pair of ideals (7, J) as follows: for two R-modules
M and N the module I'; ;(M,N) is the (I, J)-torsion submodule of Hompg(M, N),

where for any R-module L
I'ys(L)={xe L | It C Jx for somen > 1}.

For each fixed R-module M, there is a covariant functor I'; ;(M, —) from the category
of R-modules to itself. The i-th generalized local cohomology functor Hj ;(M,—)
with respect to pair of ideals (7, J) is defined to be the i-th right derived functor
of I'y ;(M,—).

Another definition of generalized local cohomology functors was introduced by

Zamani in [30] as follow
H} ;(M,N) = H'(Homp(M,T; ;(E®)))

for all + > 0, where E*® is a minimal injective resolution of R-module N.

Inspired by this, we introduce a module I',(M, N) as follows: given two R-
modules M and N we define I', (M, N) to be the a-torsion submodule of Hompg(M, N),
where the a-torsion module is defined by Alba-Sarria in [2] by: for any R-module L

I'o(L) ={z € L | Suppg(Rz) C a}.



If M is a fixed R-module, then there exists a covariant functor I', (M, —) from the cat-
egory of R-modules to itself. The i-th generalized local cohomology functor H’ (M, —)
with the respect to good family « is the i-th right derived functor of I', (M, —). This
definition is really a generalization of the local cohomology funtors H’, with respect to a
and it is also a generalization of the generalized local cohomology functors H‘I J(M,—).

The organization of the chapter is as follows. In the first section, we study some
elementary properties of generalized local cohomology modules with respect to good
family . We also show some vanishing results concerning these modules.

The second section is devoted to study the a-minimaximality of local coho-

mology modules H’ (M, N) and some results of (I, 3)-cominimaximality of modules

H}B(M, N).

3.1 Definition and properties of the generalized

local cohomology module

Definition 3.1.1 Let a be a good family of ideals of R. For M and N two R-modules,
we define the a-torsion module module of M and N by

T'o(M,N) :=T,(Hompg(M, N)).

For the case a = F(I, 3), we will denote by I'; 3(M, N) and we will call of (1, §)-
torsion R-module of M and N. When M = R, I',(R,N) = I',(N), the a-torsion
R-module of N.

For each R-module M, ', (M, —) is a left exact covariant functor from the cate-
gory of R-modules to itself.

Let us denote by H’ (M, —) the i-th right derived functor of I'o(M, —) and we

call the i-th generalized local cohomology functor with the respect to a.

Theorem 3.1.2 Let M be a finitely generated R-module and N an R-module. Then
Lo(M,N) =Hompg(M,T',(N)).

Proof If f € I',(M, N), there exists an ideal J € a such that Jf(x) =0, for allz € M.

Since f(z) € N, for any = € M, we get f(M) C T'o(N). So f € Homg(M,T',(N)).
Conversely, let g € Homg(M,T'o(N)). Let 1, ...,z generators of M. Then, for each
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i =1,...,k there exists J; € « such that J;g(z;) = 0. Taking J = J; ... Ji, we have
J € a and Jg(z) =0, for all z € M. Therefore g € T',(M,N). =

Corollary 3.1.3 Let M be a fixed finitely generated R-module and N an arbitrary
R-module. If E* is a minimal injective resolution of N, then

H!(M,N) = H'(Homp(M,T4(E®)))
for any 1.
Proof Since E*® is a minimal injective resolution of N and H’,(M, —) := R'T(M, —)
we have

H (M,N) =R'T.(M,N) = H(I'y(M, E*)).
By Theorem [3.1.2]
Lo (M, E®*) = Homg(M, T, (E®))

and hence

H! (M,N) = H' (Homp(M,T4(E")))
as required. m
Corollary 3.1.4 Let M be a finitely generated R-module and N an R-module. Then

Assp(To (M, N)) = Supp(M) N Assgr(N) N a.
Proof Since M is finitely generated, we have by Theorem [3.1.2]

Assgp(To(M,N)) = Assg(Hompg(M,T',(N)))
— Supp(M) N Assa(Ta(N))

= Supp(M) N Assg(N)Na.
u

Proposition 3.1.5 Let M be a finitely generated R-module and N an R-module.
Let 1,1’ be ideals of R and /3, 8’ non-empty collections of ideals in R. Then:

(1) Trp(T'r g (M,N)) =Ty g (T1s(M,N)).

(i) If I C I', then Ty 5(M, N) D T'p (M, N).

(idi) Tf B C B, then Ty 5(M, N) C Ty 5 (M, N).

(iv) T1p(Trg(M, N)) =Trp (M, N).

(v) Trg(Ure (M, N)) = Irpup (M, N).

(vi) If /I = /T, then H"I,B(M, N) = Hé,,B(M, N), for all @ > 0. In particular,
H} 5(M,N) =H'; ,(M, N), for each i > 0.

v1p , ,
(vii) If B and (' are cofinals, then Hj 5(M, N) = Hj 5 (M, N), for any i > 0.
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Proof (i) Since M is finitely generated, we get

I (M,N)) = T'pg(Homp(M, Ty g (N)))
= Hompg(M, T 5Ty (N)))
= Hompg(M,I'y 5 (L1 5(N))) by Proposition [B.3|1)
= Trpls(M,N)).
(ii) By inclusion I C I, it follows from Proposition [B.2{(1) that F(I’, 8) C F(I, ).
So Ty 5(M, N) C Ty 5(M, N).
(iil) Since 8’ C 3, we have F(I,3) C F(I, ') by Proposition [B.2{ii). Therefore
Lyp(M,N)C Tz (M,N).

(iv) By hypothesis of M to be finitely generated, we get
FI+1/76(M’ N) = HOIHR<M,F[+I/7B(N))
= HOIHR<M, F[ﬂ(F]/ﬁ(N))) by PI‘OpOSitiOIl (IV)
= Lrp(Crp(M, N)).

(v) Note that

L1 pup (M, N) = Homp(M, 1 505(N))
= Hompg(M,T';4(T;5(N))) by Proposition [B.3{v)

- F[ﬁ(F]ﬁ/(M, N))

(vi) Since VI = /T, it follows that (I) = (I'). Logo F(I,3) = F(I',3) and
consequently, I'y 5(M,N) = 'y (M, N). Therefore H; 4(M, N) = Hj, 4(M, N), for all
1> 0.

(vii) Knowing that 8 and 8’ are cofinals, we have (3) = (8'). Then Hj 4(M, N) =
Hj 5 (M, N) foralli > 0. =

Proposition 3.1.6 If M is finitely generated and N is a-torsion, then
HL (M, N) 2 Exty (M, N),

for all 7 > 0.
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Proof Since N is a-torsion, there exists, by [2, Corollary 1.26], a minimal injective
resolution E*® of N formed by a-torsion R-modules. By Theorem we get
H' (M,N) = H'(Hompg(M,T,(E*)))
= H'(Homg(M, E*))

= Exth(M,N),
forany 1 >0 m

Proposition 3.1.7 Let § be a non-empty set of ideals of R. If M is a finitely generated
R-module and N is J-torsion, for some J € (3, then

Z-I,B(M7 N) = HZI(M7 N)>
for all + > 0 and any ideal I of R.
Proof 1t is clear that I';(N) C I';g(N). Conversely, if © € I'; (), then there is
K € F(I,pB) such that Kz = 0. Since N is J-torsion, there exists n € N such that

J"z = 0. Moreover, F(I,5) = F(I,(5)). So K+ J" € (I) and (K + J")x = 0, which
implies that « € I';(N). Therefore, by Theorem we get

F]ﬁ(M,N) = HOIHR(M,F[ﬁ(N))
= HOIHR(M, F[(N))
— T;(M,N).

On the other hand, since N is J-torsion R-module there exists, by [6, Corollary 2.1.6],

a minimal resolution of N formed by J-torsion R-modules. Therefore
sz",ﬁ(Ma N) = H?(M> N)7
for all ¢ > 0 as required. m

Theorem 3.1.8 Let M be a finitely generated R-module and o a good family of

ideals. Then there exists a natural isomorphism

I (M, ) = ling HE (M, ),

aca

for all 7 > 0.
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Proof First we show that
Hompg(M,I'(N)) = ligHomR(M, La(N)).
aca

Note that the right side of above statement equals (J,., Homgr(M,T'c(N)). So, it is

enough to show that

Homp(M,To(N)) = | Homp(M,To(N)).

aca
For this, let f € Homg(M,T'4(N)). Then f(M) C I',(N). Since M is finitely gener-
ated, there exists z1, ...,z such that M = (xy,...,xx). So, foreach i = 1,... k there
is a; € a such that a;f(x;) = 0. Taking a = a; ... ag, we get a € «, because « is a good
family, and af(x) = 0, for all x € M. Therefore f € Homg(M,[';(N)). Conversely, if
9 € Uueo Homp(M,o(N)), then there exists a € o such that g € Homg(M,T'q(N)).
So, a"g(z) = 0, for some n € N and all z € M. Since a" € «, it follows that
g(x) € T'o(N), for any z € M. So g € Homp(M,T'o(N)).

Now, let 0 — X — Y — Z — 0 be a short exact sequence of R-modules.

Then, this sequence induces a long exact sequence

0 — HYM,X) — HY(M,Y) — HY(M,Z) —

— HY{(M, X) — HY(M,Y) — HY{(M,Z) — -+,
for all a € a. Since the direct limits is exact, we get a long exact sequence

0 — lim Hy(M, X) — lim Hy(M,Y) — lim Hy(M, Z) —

aco aco aco

— lim Hy (M, X) — im Hy (M, Y) — lim Hy(M, Z) — - -+ .

aco aco aco

Since lim H!(M,E) = 0 for all i > 0, whenever E is injective, it follows from [6],
Theorem 1.3.5], that
HY (M, —) 2 lig HE(M, —)

for each 7 € Ny. m

Let I € a an ideal of R. In [30] it is shown that, for any exact sequence

0 X Y A 0
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and any R-module N we have the long exact sequence
0 — HY(Z, N) — H)(Y, N) —> H)(X, N) —>- - .
Applying the direct limits on «, we get the long exact sequence
0—H%Z N)—=H2(Y,N) —H%(X,N) — -

by Theorem [3.1.8]

Theorem 3.1.9 Let (R, m) be a local ring and M, N finitely generated R-modules
such that M has finite projective dimension p. Then

H: (M,N) =0,

for any ¢ > p+ dimN.

Proof We prove by induction on p > 0. If p = 0, then M is a finitely generated free
R-module R!, for some t € N. So, by Theorem and by [2, Lemma 1.38], we have

H' (M,N) = limH'(M,N) = limH' (R, N) 2 (D H".(N) =0,
« ﬂ a g’l a " o

aco aco

for all © > p+ dimN.
Assume that p > 0 and that the result holds for p — 1. Then there exists a
finitely generated free R-module F' and a submodule L of F' such that L has projective

dimension p — 1 and the sequence
0—L—F—M-—70
is exact. The above exact sequence induces the long exact sequence
HYL,N) — H'(M,N) — H' (F,N).

By inductive hypothesis and Theorem we get H. '(L, N) = 0 and H',(F, N) = 0,
for each i > p 4 dimN. Therefore H! (M, N) = 0, for any i > p + dimN. m

Corollary 3.1.10 Let (R, m) a local ring and M a finitely generated R-module with
finite projective dimension p. Then, H’ (M, N) = 0, for i > p + dimR for any (not
necessarily finitely generated) R-module N.
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Proof By [25, Example 5.32(iii)] , we can write N = lig/\ N, where each N, is a
finitely generated submodule of N. Note that, for each i € Ny

H,(M,N) = lmH,(M,N)

aco

= lim H!(M,lim N
ae% a( 7% )\)

= linylig (M, )
aco A

= hﬂhﬂHz(MvNA)
A a€a

= I%HQ(M , Ny).
Since dimR > dimN, it follows from above equality and of Theorem that
H:(M,N) =0 for any i > p+ dimR. m
The next proposition was taken from [30] and will serve as a tool for the posterior

theorem.

Proposition 3.1.11 Let (R, m) be a local ring with Krull dimension d. Assume that
M, N are finitely generated R-modules and M has finite projective dimension. Then,
for each ideal a of R, H.(M, N) = 0 for all i > d.

Proof See [11, Theorem 3.1|. m
The following Theorem provides a better quota than that of Corollary [3.1.10] for

the vanishing of generalized local cohomology module supported in a.

Theorem 3.1.12 Let (R, m) be a local ring with Krull dimension d. Assume that M

is a finitely generated R-module and has finite projective dimension. Then
H (M,N) =0
for all 7 > d and any R-module N.

Proof We can write N = @A N, where each N, is a finitely generated submodule of
N. Given a € a and N,, we have by Proposition [3.1.11

H; (M, N,) =0,
for all ¢ > d. Therefore, by Theorem [3.1.§]
fo<M7 N) = hgthz(Mv N)\) = 07
A

aca

foreachi>d. m
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Corollary 3.1.13 Let (R,m) be a local ring. Assume that M is a finitely generated
R-module and has finite projective dimension p. Then, for any R-module N finitely
generated H', (M, N) = 0 for all i > min {dimR, p+ dimN}.

Proof The result follows from Theorem [3.1.9]and Theorem [3.1.12] m

3.2 Some results of a-minimaximality
and ([, f)-cominimaximality

Theorem 3.2.1 Let M a finitely generated R-module and N an R-module. Let ¢ a
positive integer. If H’ (V) is a-minimax, for all 7 < ¢, then

(i) H',(M, N) is a-minimax, for any i < t.

(4i) Ext(R/a, N) is a-minimax, for any i < ¢ and all a € a.

Proof (i) We use induction on ¢. If ¢ = 1, then H?(N) = I'y(N) is a-minimax. Since
HY(M,N) =T4(M,N) = Homp(M,To(N))

and M is finitely generated, it follows that HY (M, N) is a-minimax.
Suppose that ¢ > 1 and that the result holds for ¢ — 1. Applying the functors
I'y(—) and ', (M, —) to short exact sequence

0— N— E(N)— E(N)/N —0 (3.1)

we get the isomorphisms

HL(E(N)/N) = H (N)
H, (M, E(N)/N) = H," (M, N),

for all i > 0. By hypothesis, H’,(N) is a-minimax, for any i < ¢t. So H'(E(N)/N) is
a-minimax, for each i <t — 1. Applying the induction hypothesis in E(N)/N we get
H: (M, E(N)/N) is a-minimax, for each i < ¢t — 1. Therefore H? (M, N) is a-minimax,
for all j < t.

(ii) The proof is by induction on ¢. If ¢ = 1, then I',(N) is a-minimax. Moreover,
given a € a, we have I';(N) C T'o(N). So I'4(N) is a-minimax. Since M is finitely
generated and

Hompg(R/a,I'y(N)) = Hompg(R/a, N),
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it follows that Ext%(R/a, N) is a-minimax.
Now, suppose that ¢ > 1 and that the proof holds for t — 1. By the short exact

sequence (13.1)) we get the isomorphisms
H,(E(N)/N) = H ' (N)
Ext%(R/a, E(N)/N) = Ext''(R/a, N),

for all i > 0. Since H."'(N) is a-minimax for all i < ¢ — 1, it follows that H’ (E(N)/N)
is also a-minimax, for each ¢ < ¢t — 1. Applying the induction hypothesis in E(N)/N,
we conclude that Ext(R/a, E(N)/N) is a-minimax for all i < ¢ — 1. Therefore

Ext’(R/a, N) is a-minimax, for any j <t. m

Theorem 3.2.2 Let M, N be two finitely generated R-modules and ¢ a positive in-
teger such that H' (M, R/p) is a-minimax, for all p € Supp(N). Then H) (M, N) is

a-minimax.
Proof As N is finitely generated, there exists a filtration of N
0=NgCNC---CN,=N

such that N;/N;_1 = R/p;, for some p; € Supp(N).
If i = 1, then H' (M, N;) = H' (M, R/p;) and therefore a-minimax. For each

2 <1 < k, there is a short exact sequence
0— N,y — N; — R/p; — 0. (3.2)
For ¢ = 2, consider the following part of the long exact sequence induced by
oo — HY (M, N;_y) — HY (M, N;) — HL (M, R/p;) — -+ . (3.3)

Since i = 2, it follows that H. (M, N;) is a-minimax and by hypothesis H’, (M, R/p)
is also a-minimax. Then, by (3.3) we have H) (M, N;) is a-minimax. Proceeding

recursively, we conclude that H! (M, N) is a-minimax. m

Corollary 3.2.3 Let M, N be a finitely generated R-modules and ¢ a positive integer.
Assume that H, (M, R/p) is a-minimax, for all p € Supp(V).

(1) If L is finitely generated R-module such that Supp(L) C Supp(N), then H' (M, L)
iIs a-minimax.

(43) If a is an ideal of R such that V(a) C Supp(N), then H. (M, R/a) is a-minimax.
(4ii) If oM Spec(R) C Supp(N), then H (M, R/a) is a-minimax, for all a € a.

36



Proof (i) Since Supp(L) € Supp(N), it follows that H’,(M, R/p) is a-minimax, for
each p € Supp(L). By Theorem H. (M, L) is a-minimax.

(ii) knowing that V'(a) is in bijection with Supp(R/a), we fall back on the hy-
pothesis of item (i). So H',(M, R/a) is a-minimax.

(iii) Given a € a, since « is a good family, it follows that V(a) C a N Spec(R) C

Supp(N). Therefore, by item (ii), H', (M, R/a) is a-minimax, for any a € o. =

Lemma 3.2.4 Assume that (R, m) is a local ring. Let M be a finitely generated
R-module with Krull dimension d. Then H% (M) is Artinian.

Proof See [2, Theorem 2.2|. m

Theorem 3.2.5 Let (R,m) be a local ring and M, N be two finitely generated R-

modules such that M has projective dimension r and N has Krull dimension d. Then
HL (M, N) 2 Extip(M,HE(N)).

Moreover, H""(M, N) is an Artinian R-module.

Proof Let G(—) = I'y(—) and F(—) = Hompg(M, —) be functors from category of
R-modules to itself. Then FG = Homp(M,['y(—)) = I'y(M, —), since M is finitely

generated. Moreover, F is left exact. Note that, given an injective module £ we have
R'F(G(E)) = R'Homg(M, T (E)) =0,

for all 4 > 0, since T',(E) is injective. By Theorem there exists a Grothedieck

spectral sequence
EP? = Exth,(M,HL(N)) =, HE"(M, N).
Now, consider the homomorphisms of spectral
E;guk,dJrkfl N Ez,d N E£+k,d+1fk.

Note que HE(N) = 0 for all ¢ > d, By [2, Lemma 1.38]. Then E5? =0, for any p > r

or ¢ > d. Moreover, E,:_k’d+k_1 = E,:Jrk’dﬂ_k =0, for each k > 2. So

rd rd _ prd
E2 —E3 —"'—EOO.
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We affirm that E7¢ = Ht(M, N). Indeed, there is a filtration @ of H™+¢ = H""(M, N)
such that

0=ttt c griigrtd ... Cc ' g4 C ¢"H™ = H'™(M, N) and holds

Eirtdt = ¢t /e T for 0 < i < 4 d. (3.4)
Note that Ey" " = Exti,(M,HF4(N)) = 0, for any i # r. So
Eirtd=i _ g _ L pirbdei _ g
for all i #r. Applyingi=r+1,...,r+dandi=0,...,7 — 1 in (3.4) we get

¢r+1Hr+d — ¢T+2H7"+d - = ¢T+d+1Hr+d =0

PTH =gt = = @O = HIPY(M, N).

So
E;ad ~ @rHqud/@rJrlHrﬂi ~ H;—’_d(M, N)

Therefore Ext’ (M, H%(N)) = H-™(M, N). Finally, by Lemma the module H? (V)
is Artinian. Since M is finitely generated, it follows that Hgfd(M, N) is also Artinian.

Lemma 3.2.6 Let M be an a-minimax R-module such that Assp(M) C a. Then
H! (M) is a-minimax for all i > 0.

Proof If i = 0, then H (M) = I'o(M) is a submodule of M, and hence I',(M) is a-
minimax. Since Assz(M) C a we have M = I',(M). Consequently, we get H’, (M) = 0

for all i > 0, and so H’ (M) is a-minimax for each i > 0. m

Theorem 3.2.7 Let M be a finitely generated R-module with finite projective di-
mension p and N an a-minimax R-module with Assp(N) C a. Then H, (M, N) is

a-minimax for all 7 > 0.

Proof We proceed by induction on p. If p = 0, then M is a finitely generated free
module R" and so

H, (M, N) = H,(R", N) = (D H,(N).
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Since each H(N) is a-minimax by Lemma [3.2.6] it follows that H’ (M, N) is also
a-minimax, for all ¢ > 0.
Now, suppose that p > 0. Assume that the result is true for p — 1. There exists

an exact sequence

0 L Rk M 0, (3.5)

where L is finitely generated with projective dimension p — 1. From the exact sequence

(3.5), we get the following long exact sequence
- ——H (L, N) —=H (M, N) —H (N)F —---. (3.6)

By induction hypothesis, H (L, N) is a-minimax for all i > 1. Moreover, by
Lemma H',(N)* is a-minimax for each i > 1 (and also i = 0). Therefore, we
conclude by that H' (M, N) is a-minimax, for all i > 1. For the case i = 0, we
have

H? (M, N) =To(M,N) = Homgz(M, T(N)).
Since T'y(N) is a-minimax and M is finitely generated, it follows that H’ (M, N) is
a-minimax, as required. m

Definition 3.2.8 Let (R, m) be local ring, I an ideal of R and £ a non-empty collec-
tion of ideals of R. We define the §-relative cohomological dimension of I by

cdg(I) =inf {n € Ng; Hj 4(M) =0 for all i >n and all R — module M }
Note that the set {n € Ny ; H}B(M) =0 for all i > n and all R —module M}

is non-empty, by Theorem [3.1.12 Now, we have conditions to prove the next results
that are related to (I, 3)-cominimaximality of Hj 4(M, N).

Theorem 3.2.9 Let (R, m) a local ring and I an ideal of R such that cdg(I) = 1.
Let N be an R-module (I, )-minimax. Then, for all finitely generated R-module M
and all j € No, H} ,(M, N) is (I, 8)-cominimax.

Proof Let F =T'13(—) and G = Hompg(M, —) be functors from category of R-modules
to itself. Then FG = I'; 3(M, —) = Hompg(M,I'; 5(—)), since M is finitely generated.

Futhermore, F is left exact. See that, given an injective module F we have
R'F(G(F)) = R'Homp(M,T;4(E)) =0
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for any ¢ > 0. So, by Theorem there exists a Grothendieck spectral sequence
ER? =HY J(Exth(M, N)) & HYE(M, N).
Hence, for all j > 0, there is a finite filtration of the module H/ = HJI"B(M, N)
0O=dH"H CHPH C...-CP'H CPH = H

such that
EPI—P o CI)ij/@pHHj

forall 0 <p <.
By hypothesis, E¥? = 0 for all p > 2 and all ¢ > 0. Moreover, since EP? is a
subquotient of E5? for all p, ¢ > 0, it implies that E2:4 = 0, for all p > 2 and all ¢ > 0.

It therefore follows

0= Pt — QI — ... — ®2HI.

On the other hand, by homomorphisms of spectral

0=Ey" 5 By 5 B3/ =0

0= E;l’jﬂ — Eg’j — Ezz’jf1 =0
we obtain the equalities
By =B =...=EYWland By = E)) = ... = E%,
The above equalities and the isomorphisms
By ' =EYT 2 o'H and EyY = E% 2 @°HY /BT = @17 /B,

give us a short exact sequence

0—= By ™' ——=HJ ,(M, N) By 0.

Since E,7 "' and Ey” are both (I, 3)-cominimax, it follows from Proposition m that
HJ},B<M7 N) is also (I, 3)-cominimax. m

Corollary 3.2.10 Let (R, m) be local ring, I an ideal of R with cdg(I) = 1 and let
N be an (I, f)-minimax R-module. Then, for all j > 0, HJI‘ﬂ(N) is (1, f)-cominimax.
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Theorem 3.2.11 Let [ be an ideal of local ring (R, m) such that cdg(I) = 1 and let
N be an (I, f)-minimax R-module. Then, for all finitely generated R-module M and
all i,j > 0, Extp(M, H] 4(N)) is (I, 3)-cominimax.

Proof By Theorem we consider the Grothendieck spectral sequence
ER? = Extly(M,H{ ;(N)) & HY5!(M, N). (3.7)

By hypothesis HJI‘”B(N) =0, for all j > 1 and E3° is (I, §)-minimax for all 4; thus it
suffices to show that F2' is (I, 8)-cominimax for all 4. For all p > 2, we consider the

homomorphisms of spectral
0= BT B, B
Since Ej, = kerdi'/ImdiP?, we obtain
kerdy' = Byt = ...~ pil
for all4 > 0. By using , there is a finite filtration of the module H**! = H}; (M, N)
0= G2+l ¢ G C ... C QUL C QO — it

such that
E'p,i+1fp Y (I)pHi+1/(I)P+1Hi+1

for all 0 < p < i+ 1. It therefore follows that
q)iHi-i-l — @i—lHi-l-l — .. = (I)lHi—I—l — (I)OHH-I — HZ]—}-BI(M7 N)

Now, the exact sequence

0— B —HY/ (M, N) E%} 0

in conjunction with E710 is (I, 8)-minimax and H?fﬁl(M, N) is (I, f)-cominimax by
Theorem m yielding that E%! is (I, §)-cominimax and so is kerdy'. Furthermore,

considering the exact sequence

0 — kerdy' Et Imdy' —0

and knowing that I'mdy' € Eyt*° is (I, B)-cominimax, it follows that Ey' is (I, 3)-

cominimax, as required. m
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Chapter 4

Ideal transforms with respect to a

good family of ideals

Let I be an ideal of R and M be an R-module. In [6], the authors defined the
ideal transform D;(M) of M with respect to I by

D[(M) = hﬂHOHlR(ITL, M)

Ideal transform turns out to be a powerful tool in various fields of commutative algebra
and it is an important algebraic tool in studying local cohomology modules with respect
to an ideal. One extensions of Dy(M) is the generalized ideal transform Dy(M, N) of
two R-modules M,N with respect to I which was defined and studied in [12] and [22].

In this chapter we introduce the notion of ideal transform D, (M) of an R-module
M with respect to a good family o of ideals of R (generelized ideal transform D,(M, N)
of two modules M and N with respect to a good family o of ideals of R) and we explore
their properties and its relation with local cohomology modules H’, (M) (generalized

local cohomology H’, (M, N), respectively).

4.1 Basic properties of ideals transforms

In this chapter a will be denote a good family of ideals of R.

Definition 4.1.1 The a-transform functor with respect to « is defined by

Do(—) := ligHomR(I, —).

Iea



Notice that D,(—) is an R-linear left exact functor from the category of R-modules to
itself. Given an R-module M,
D.(M) = hﬂHomR(I, M).
Ica
is called ideal transform of M with respect to a (or a-transform of M ).

For any non-negative integer ¢, the ¢-th right derived functor of D, is denoted by

R'D,.
Lemma 4.1.2 For each ¢ > 0, there is a natural isomorphism

R'D,(—) 2 lim Exty(1, —).

Iea

Proof By definition [1.1.1| we have D,(—) = @HomR(I, —). On the other hand, the
Iea
short exact sequence 0 - M — N — P — 0 induces the long exact sequence

0 — Homg(I, M) — Homg(I,N) — Homg(I,P) — ---

oo = Bxty (I, M) — Extz (I, N) — Exty (I, P) — - -

for all I € a. Since direct limits are exact functors, we have a long exact sequence

0— ligHomR(I,M) —>li_n;1HomR(],N) — li_n>1HomR(]7P) O

Iea Iea Iea

c = @Extjq(f, M) — thxth(J, N) — @Ext%(], P) — .

Ica Iea Ica

Finally, for all ¢ > 0 and any injective R-module E, li&Eth]’{([,E) = 0, because
Iea

Exth(I[,E)=0. m
Lemma 4.1.3 There is a functorial exact sequence
0= o(—) = Id(=) = Du(—) = HL (=) — 0,

where Id is the identity functor. Moreover, for each i > 1, there exists a natural
isomorphism

R'D,(—) = H M (-).
Proof Let I and J two ideals in « such that I > J (i.e., I C J). Let j5: 1 — J
be the inclusion map and h% : R/I — R/J be the natural epimorphism. Consider a
homomorphism f: M — N of R-modules M and N.
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The diagram

0 [ —>R—>R/I—>0

0 J—>R—>R/J—>0

is commutative (in which the rows are the canonical exact sequences). Such diagram
induces a chain map of the long exact sequence of Exty(—, M) modules. Since R is a

projective R-module, we obtain the following commutative diagram

0 — Homp(R/J, M) —= M — Homp(J, M) — Ext,(R/J, M) —0

] |

0 — Homg(R/I, M) —> M — Hompg(I, M) — Exty,(R/I, M) —=0
and for each ¢ > 1, the commutative diagram
, B ,
Exty(J, M) —2 Extiy ' (R/J, M)

Extg(gg,M)l lExtgl(hg,M)

Ext’ (I, M) ili’Extgl(R/I, M).
Now passing the direct limits, we obtain the exact sequence
0 —— T (M) 2 M 20D, () 5 HY () —>0
and, for each ¢ > 1 the isomorphism

Biy + lim Exty (I, M) — lim Exti ' (R/I, M).

Iea Iea

Moreover, since the following diagrams

0 —Hompg(R/I, M) —> M — Hompg(I, M) — Extp(R/I, M) —0

| P |

0 — Homg(R/I,N) — N —Homp(I, N) — Extp(R/I, N) —=0

%
I,M

. B .
Extly(I, M) —2 Ext{'(R/I, M)

| |

, Bi ,
Ext}(I, N) — Exty ' (R/I,N)
are commutative, it follows that &, n, (Y and 8 constitute natural transformations. =
An interesting question related to the ideal transform is about its exactness.

Before to answer a similar question for the a-transform functor we prove a few results.
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Lemma 4.1.4 Let M be an R-module. Then the following statements hold:

(4) If M is an a-torsion module, then R*D, (M) = 0 for all i > 0;

(i1) R'Do(M) = R'Do(M /T (M) for all i > 0;

(iii) R'"D,(M) = R'Dy (D, (M)) for all i > 0;

(1) La(Du(M) = 0 = Hy (D (M)

(v) H (M) = H (D, (M)) for all i > 1;

(vi) Let f: M — N be an homomorphism of R-modules such that Kerf and Coker f
are both a-torsion. Then D, (M) = D,(N);

(vii) Do(Dr(M)) = Dyo(M) for all I € a.

Proof (i) By Lemma there is an exact sequence
0—>Ty(M)—> M —>Dy(M)—H. (M) —0.

Since M is an a-torsion R-module, it follows that H’ (M) = 0 for all i > 0. Thus
Do(M) = M/To(M) =0 and R'D,(M) = H-PY (M) = 0 for all i > 0.

(ii) The short exact sequence
0—To(M)—M —M/T,(M)—0
yields a long exact sequence

0———=D,(I'o(M))

Da(M)

Da(M/Fa(M>) -

— > R'D,(To(M)) —=R'Dy (M) —=R'Dy(M/T ((M)) — - -
Since R'D,, (T« (M)) = 0 by (i), we have
R'D,(M) = R'D,(M/To(M))

for all « > 0.

(iii) The exact sequence
0—>To(M)—>M—>Dy(M)—H.,(M) —0
gives rise to an exact sequence
0— M/T'y(M) —>Dy(M) —H. (M) —0.
By applying the functor D, to the above exact sequence, we get a long exact sequence
— > R'DY(M/T (M) —= R'Do(Dy (M) —= R'Do(HL (M) — - - -
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Since H) (M) is a-torsion, it follows from (i) that R'D,(HL(M)) = 0 for all i > 0. This
implies that R'Dy(M/Ty(M)) = R'Dy(Dy(M)) and then R'Dy (M) = R'D, (Do (M))
for all i > 0 by (ii).

(iv) and (v) The short exact sequence
0—> M/To(M) —=Do(M) —=H. (M) —=0
induces a long exact sequence

+o = H, (M/To(M)) — H,(Da(M)) — H (Ho (M) — - -

«

Note that
[, (HL(M)) =HL(M), To(M/To(M)) =0 = H', (H.(M)) for all i > 1

and HY (M /To(M)) = HL(M). We thus T'y(Da(M)) = 0 = H.(D,(M)). Moreover, we
have H, (M) = H, (D,(M)) for all i > 1.
(vi) Applying the functor D, to the following exact sequences

0—— Kerf M Imf 0 and 0 Imf M’ Cokerf——0

together with (i) yields
Do(M) = Dy(Imf) = Dy (M).

(vii) Let I € «. Note that, if K is an [-torsion R-module, then K is a-torsion.

Applying (vi) in the exact sequence
0—>TI/(M)—>M—=Dy(M)—=H}(M) —=0

we obtain the isomorphism D, (M) = D,(D;(M)). The proof is complete. m

Lemma 4.1.5 Let M be an R-module such that Homg(R/I, M) = 0 for all I € .
Then Assp(M)Na = @. In particular M is a-torsion-free.

Proof By the hypothesis,
V(I)NAssgr(M) = Assg(Homg(R/I, M)) = &

for all I € . Note that
U V(I) = an Spec(R)

Iea
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and then

o= (U V(I))NAssgr(M) = anSpec(R)NAssgr(M) = anAssgr(M) = Assg(To(M)),

as required. m

Lemma 4.1.6 Let M be an R-module. Then the following statements are equivalent:
(i) H,(M) = 0 for all i > 0;
(i1) Ext(R/I, M) =0 for any i > 0 and all I € a.

Proof Let F = Hompg(R/I,—) and G = I',(—) be functors from the category of R-
modules to itself. We see that FG(M) = Hompg(R/I, M) for any R-module M. If £
is an injective R-module, then G(E) = T',(F) is also injective. Hence G(F) is right
F-acyclic. By Theorem [A.9] there is a Grothendieck spectral sequence

EPY = Exth(R/I,HL(M)) & Ext®(R/I, M).
For n > 0, we have a filtration of submodules of H" = Ext',(R/I, M)

such that
Bt = @i /@it e
for all 7 <n.
(i) = (ii) If HI(M) = 0 for all ¢ > 0, then E?? = 0 for all p,q > 0. This implies
that
0=¢""H"=0"H"=-.. = ®'H" = d"H" = Ext},(R/I, M)

for all n > 0.

(ii)=(i) We prove H: (M) = 0 by induction on n. Let n = 0, since Hompg(R/I, M) =
0 for all I € a, it follows from Lemma that @ = Assg(T'n(M)) and then
(M) = 0. Assume that H. (M) = 0 for all i < n. The homomorphisms of spec-

tral sequence

dO,n _
0 Ey" E3" =0

induces that

On _ 0mn _ 0n
E2 —E3 —"'—EOO.
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Since E%" =~ ®°H"/®'H™ and H" = Ext}(R/I, M) = 0, it follows that 0 = E%" =
E3™. So, we have Homg(R/I,H"(M)) = 0 for all I € . In view of Lemma [4.1.5, we
get HY (M) =0. m

Lemma 4.1.7 Let M be a finitely generated R-module with finite projective dimen-
sion d. If HY(R) = 0 for all n > 2, then H),(M) = 0 for all n > 2.

Proof Since M is finitely generated, we have a free resolution
34 3 2 51 8o
0 —F— - —FE—=F —F—M-—70

where F; have finite rank, for each 0 < ¢ < d. Now, we prove by induction on d. If
d =0, then M = F; and therefore H. (M) = 0 for all n > 2. When d = 1, the exact
sequence

0 Fy Fy M 0

induces a long exact sequence
- ——Hy(Fy) —= Hy (M) —Hy " (F) — -

Since H” (Fy) = 0 = HX*'(F}), it follows that H?(M) = 0.

Assume that d > 1 and the result is true for d — 1. In the free resolution
0O —F— - —FEKE—F—F—M-—70

we obtain the exacts sequences

0>y Fy ——> My ——0 (4.1)
0 Mz Fi—l Mi—l —0 , 0<i1 < d—1 (42)
0—> M, —> Fy—> M —>0, (4.3)

where M; = Kerd;_y, for 1 < i < d—1, and My; = F;. The exact sequence (4.1)

induces a long exact sequence

v W (Fyey) —= Hy (Myy) —= Hy " (Fy) — -
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Since H"(Fy_1) = 0 = H'"'(F}), it follows that H"(My_,) = 0 for all n > 2. On the
other hand, assuming i = d — 1 in the exact sequence (4.2]), we obtain the long exact

sequence
s M (Fyg) —= Ho (Myp) —= T3 (M) — -

and consequently H), (M,_1) = 0. Proceeding recursively, we conclude that H (M;) = 0
for each 1 <4 <d and all n > 2.

Finally, by exact sequence (4.3), we have the induced long exact sequence
+——Hy(Fy) —=Hy (M) —=Hy " (M) —= -+

and therefore H (M) = 0 for all n > 2, as required. m

Theorem 4.1.8 Let M be a finitely generated R-module with finite projective di-
mension p. Then the following statements are equivalent:

(i) D, is an exact functor;

(77) HX(R) = 0 for all n > 2;

(23i) HL (M) = 0 for all n > 2;

(iv) HY(Dy(M)) = 0 for all n > 0;

(v) Exth(R/I,Dy(M)) =0 for any n > 0 and all € a;

(vi) Tor®(R/I,Dy(M)) = 0 for any n > 0 and all I € a.

Proof (i)=(ii) It follows from Lemma [1.1.3]
(i

i)=>(iii) Since p < co and H(R) = 0 for all n > 2, is follows from Lemma [1.1.7]
that H), (M) = 0 for any n > 2.
(iil)<>(iv) this is immediate from Lemma [1.1.4[iv and v).
(iv)<(v) Tt follows from Lemma [4.1.6]
(v)<(vi) See [4, Lemma 3.1].
(iii)=-(i) By Lemma and Lemma [4.1.4[v) we have
R'D, (M) = HiF (M) 2 HEF(D, (M) 2 lim Exti (R/1, Da(M)) = 0

Ica

for all 7 > 0. The proof is complete. =

Corollary 4.1.9 Let M be a finitely generated R-module with finite projective di-
mension. If D, is an exact functor, then ID,(M) = D,(M) for all I € .

Proof By Theorem [4.1.§(vi) we have Torf(R/I, M) = 0 for all I € a. Therefore
ID,(M)=D,(M) forany I € . m
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Proposition 4.1.10 Let M be an J-torsion R-module for some J € (. Then
Drs(M) =D (M).

Proof Since M is an J-torsion module, we have H} ,(M) = H} (M) for all i > 0. There

is a commutative diagram

0——1I'1(M) M Dy(M) ——H}(M) —0

A T

0Ty (M) = M —— Dy (M) —— H} (M) —0

where two rows are exact sequences by Lemma [4.1.3] This implies that Dy(M) =
D],B(M). |

Proposition 4.1.11 Let M be a finitely generated R-module with finite projective
dimension. Then Hompz(R/I,H(M)) is finitely generated.

Proof The short exact sequence
00— M/To(M) —Dy(M) —H (M) —0
induces an exact sequence
Homg(R/I, Dy(M)) — Homp(R/I,HL(M)) — Ext(R/I, M/To(M)).

Since D, (M) is I-torsion-free, we see that Hompg(R/I,D,(M)) = 0. The proof is

complete by the assumption. m

4.2 Generalized ideal transforms

In this section, we proceed with the study of the generalized ideal transform
D.(M,N) with respect to o which is an extension of the ideal transform D, (V).
Theorem shows R'D,(M,N) = 0 provided that M is a finitely generated R-

module and N is a-torsion.

Definition 4.2.1 Let M be R-module. The generalized a-transform functor is defined
by
Do(M,—) := lim Hom g (1M, -).

Ica
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We see that D, (M, —) is an R-linear and left exact functor. The i-th right derived
functor of D, (M, —) will be denoted by R*D, (M, —). Given an R-module N, we call

D, (M, N) the generalized ideal transform of M and N with respect to o (or generalized
a-transform of M and N ).

Proposition 4.2.2 Let M be a finitely generated R-module. Then there exists a
natural isomorphism
R'D,(M,—) = thxt;(IM, -)
Iea
for all « > 0.

Proof We know that D, (M, —) = hﬂHomR(IM, —) by Definition 4.2.1} On the other
Ica
hand, the short exact sequence 0 - X — Y — Z — 0 induces the long exact sequence

0 — Hompg(IM, X) — Homp(IM,Y) = Homp(IM,Z) — - --

oo Bxth (IM, X) — Extih(IM,Y) — Exty(IM, Z) — -

for all I € a. Since direct limits are exact functors, we have a long exact sequence

0— liﬂHomR(IM,X) — @HomR(IM,Y) — @HomR(IM, Z)— -

Ica Iea Iea
coo = lim Bxt’ (IM, X) — lim Ext'(IM,Y) — lim Ext%,(IM, Z) — - - - .

Moreover, for all 7 > 0 and any injective R-module F, we get ligExth(IM, E) =0,
Iea
because Ext’(IM, E) = 0. The proof is complete. m

In chapter 3, we studied the generalized local cohomology modules with respect

to family a of ideals H' (M, N). The following lemma gives relationship between

H' (M, N) and R'D, (M, N).

Lemma 4.2.3 Let M be a finitely generated R-module with finite projective dimen-
sion p. Then there is a functorial long exact sequence

0 ——=I'y(M, —) —=Hompg(M, —) — D, (M, —) H (M, —) ——---

o ——=H (M, —) — Bxth(M, —) —=RD,(M, —) —=H (M, =) — - -
Moreover, for each ¢ > p, there exists a natural isomorphism
R'D, (M, —) = H (M, —).
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Proof Let I,J € abe two ideals with [ > J. Let jL : IM — JM be the inclusion map
and hY : M/IM — M/JM be the natural epimorphism. Consider a homomorphism
f N — P of R-modules N and P. We know that the diagram

0 IM M M/IM —=0

tjff 1m lhﬂ

0 JM —> M —> M/JM —>0

is commutative. This diagram induces a chain map of the long exact sequence of

Ext%(—, V) modules and we obtain the followings commutative diagrams for 0 <i <p

0 —> Homp(M/JM, N) — Homp(M, N) —> Homp(JM, N) — ExtL (M/JM, N)

| | | |

0 —> Homp(M/IM, N) — Hompg(M, N) — Homp(IM, N) — ExtL (M /IM, N)

oo Bxty(M/JM, N) — Exty(M, N) — Extb(JM, N) — Ext (M/JM, N)
o ——=Exty(M/IM, N) — Ext'z (M, N) — Exth(IM, N) — Ext'3'(M/IM, N)

and for each ¢ > p, the commutative diagram

. Bt .
Extl(JM, N) —= Exty ' (M/JM, N)
ExtiR(jg,N)l lExtg';l(h{,,N)
. Be .
Ext},(IM, N) —% Extif' (M/IM, N).

It is known that the direct limits is an exact functor. By applying the diect limits over

a, we obtain the exact long sequence

0 ——>H%(M, N) —Homg(M, N) —=Dy(M, N) H (M,N) —— -

o ——H. (M, N) ——Exty(M, N) ——=R'D,(M,N) —=H" (M, N) — - -

and for any 7 > p an isomorphism R'D, (M, N) = H-" (M, N). Moreover, the following

diagrams

0 — Homp(M/IM, N) —= Hompg(M, N) — Homp(IM, N) — ExthL(M/IM, N)

| | |

0 —> Homp(M/IM, P) — Homp(M, P) — Homp(IM, P) —= ExtL(M/IM, P)
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oo ——Exty(M/IM,N) — Exty (M, N) — Extx(IM, N) — Ext'7' (M /IM, N)

| | |

o Exth(M/IM, P) — Ext’y (M, P) — Ext’%(IM, P) — Ext (M /IM, P)

. Bi .
Extf,(IM, N) —% Exti ' (M/IM, N)

| |

A Bi )
Ext},(IM, P) —2% Extiy ' (M/IM, P)

are commutative and hence the proof is complete. m

Corollary 4.2.4 If D,(M, —) is exact, then H (M, N) = Ext’ (M, N) for all i > 1.
Proof By Lemma we have the long exact sequence
- —=R"!'Dy(M,N) —=H' (M, N) — Exthy(M,N) —=R'Dy(M,N) —- - - .

Ifi > 1, then R"'D, (M, N) = 0 = R"D,(M, N). Therefore H’,(M, N) = Ext% (M, N)

foralli >1. m

Theorem 4.2.5 Let M be a finitely generated R-module and N an a-torsion R-
module. Then R'D, (M, N) = 0 for all i > 0.

Proof We first prove that D, (M, N) = 0. Consider, for each I € «, the injections

Ar : Homg(IM, N) — € Homp(JM, N)

Jea

and the homomorphisms
@ - Homg(IM, N) — Homp(JM, N)

such that @4 (fr) = frlyn forall I < J.
Let T be an R-submodule of @ Hompg(JM, N) which is generated by elements

Jea

N0 (fr) = Arfr, where f;r € Homg(IM, N) and I < J. Then

Do (M, N) = limy Homp(IM, N) = (€ Homp(IM, N))/T.
Iea Iea
For any u € D,(M, N), we have u = > Axfx + T, where frx € Homg(KM,N).

Kea
Since KM is a finitely generated R-module and N is an a-torsion R-module, there
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exists a € a such that afx(KM) = 0. This implies that fr(aKM) = 0 and so
oK (fr) = 0. Therefore A\g fxx +T = 0, for any K, by [25, Theorem 2.17(ii)]. Tt follows
that v = 0 and then D, (M, N) = 0.

The proof will be complete if we show R'D,(M, N) = 0 for all i > 0.

As N is a-torsion, there is an injective resolution E*® of N such that each term

of the resolution is an a-torsion R-module. It is known that
R'D,(M,N) = H (D, (M, E*)).
By the above proof, we have

D, (M, E") = lig Hom (1M, E) =0

Iea

for all i > 0. Therefore R (D, (M, N)) =0 for all i > 0. m

Corollary 4.2.6 Let M be a finitely generated R-module and N an R-module such
that Do (N) = 0. Then R'D, (M, N) =0 for all i > 0.

Proof We consider the exact sequence
0—>T4(N)—= N —=Dy(N) —=H:(N) —0.

From the hypothesis, we have I',(N) = N that means N is a-torsion. By Theorem

[1.2.5 we have the conclusion. m

Corollary 4.2.7 Let M be a finitely generated R-module and N an a-torsion R-
module. Then
H! (M, N) = Exth(M, N)

for all « > 0.

Proof 1t follows from Lemma [4.2.3[ and Theorem ]

Remark 4.2.8 If M is a finitely generated R-module, then there is an exact sequence
R ——M—0

for some r € N. It induces an exact sequence

IR" IM 0
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for all I € o and then we have an exact sequence
0 ——Homp(IM,N) — Hompg(IR",N).

Note that Homg(IR", N) = Hompg(I, N)". Passing direct limits on «, we get the

following exact sequence

0 ——Do(M, N) —=D,(N)".

If f: N — N'is an R-module homomorphism such that Kerf and Cokerf are
both a-torsion R-modules, then R'D,(N) = R'D,(N’) for all i > 0. We have a similar
property in case of the generalized ideal transforms.

Proposition 4.2.9 Let M be a finitely generated R-module and f : N — N’ a homo-
morphism of R-modules such that Kerf and Cokerf are both a-torsion R-modules.

Then
R'D,(M,N) = R'D,(M,N')

for all 7 > 0.

Proof Two short exact sequences

0—— Kerf N Imf 0 and 0 Imf N’ Cokerf——=0

induces two long exact sequences

0_)Doc(M7 Kerf)_>Da<M7N)—)Da(M7 ]mf>—)R1Da(M7K€Tf)—)

0 —— D, (M, Imf) —Dy(M, N') — D, (M, Coker f) —=R'D, (M, Imf) —

Since Kerf and Cokerf are both a-torsion R-modules,
R'D,(M,Kerf) = 0= R'Dy(M, Cokerf)

for all i > 0. Hence R'D,(M, N) 2 R'D, (M, Imf) = R'Dy(M,N'). m

Proposition 4.2.10 Let M be a finitely generated R-module and N an R-module.
The following statements hold:

(1) Do(M, N) is an a-torsion-free R-module;

(ii) R'D, (M N) =2 R'Dy(M, N/T(N)) for all i > 0;

(iii) R'"D,(M, N) =2 R'D, (M, Do(N)) for all i > 0;

(iv) Da(Da(M, N)) = Dy(M, N);

(v) Do(Homp(M, N)) = Hompg(M,D,(N));

(vi) Do(Hompg(M, N)) = D, (M, N).
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Proof (i) We have the following exact sequence by remark
0——=T4(Da(M,N)) —=T,(Dy(N))".

Since 'y (Da(N)) = 0, we get I'y(Do(M, N)) = 0.

(ii) The short exact sequence
0——=T4(N)—=N—>N/T(N)—=0
gives rise to a long exact sequence

0——=D,(M,T',(N))

D.(M,N)

Do(M,N/To(N)) ——---

oo ——>RIDL (M, N) —=R'Dy(M, N/To(N)) —=R™Dy (M, Ty (N)) — - --

Then R'D,(M,N) = R'D,(M, N/T(N)) for all i > 0, as R'D,(M,T,(N)) = 0.

(iii) The short exact sequence
0—> N/T'o(N) —=Do(N) —=H}(N) —=0

induces a long exact sequence

0 ——>Do(M,N/To(N)) Do (M, Do(N))

i — > RID, (M, N/To(N)) —= R'Do(M, Do(N)) —= R'Do(M, HL(N)) —> - - -

As R'D,(M,H}) = 0, we obtains
R'D, (M, N/To(N)) = R'Dy(M, D, (N))
for all + > 0. Therefore
R'D,(M,N) = R'D,(M,D,(N))

for all i > 0, by (ii).

26

Dy (M, HL(N)) —— -



(iv) We have

Da(Da(M, N)) = lim Homp(I, Da(M, N))

Ica

=} ligqligHomR(I, Hompg(JM, N))

Ica Jea

o @@HomR([ ®gr JM,N)

Jea Iea

= lin limy Hom (M, Homp(7, N))

Jea Iea

o thomR(JM, D,(N))

Jea

=~ Dy (M, Do(N)) = Do(M, N).
(v) Note that

Dy (Homp(M, N)) = lig Homp(1, Homp(M, N))

Ica

= lim Hompg(M, Homg(I, N))

Ica

=~ Hompg (M, D,(N)),

as required.

(vi) The long exact sequence
0 —>T'w(M, N) —> Homp(M, N) —= Do (M, N) —= T (M, N) —> - - -

induces an exact sequence

0—Lo(M, N) —> Homp(M, N) —= D, (M, N) -~

Imf 0.

Note that Imf is an R-submodule of H (M, N), then I'mf is an a-torsion R-
module.

Since I'y (M, N) and Imf are both a-torsion R-modules, there are isomorphisms
Do(Hompg(M,N)) = Dy(Do(M,N)) = D, (M, N)

and the proof is complete. m
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4.3 Results of minimaximality and finiteness of asso-

ciated primes set for ideals transforms

In this section, we concerned with the associated primes of R'D, (M, N) and
some results of a-minimaximality. If M is finitely generated and N is minimax,
then Theorem shows that the associated primes of D,(N) and D,(M, N) are
finite. By using Grothendieck spectral sequences, we get some results on the finite-
ness of Assp(R'D,(M, N)). This section is closed by Theorem which says that
if M, N are finitely generated and Suppg(Ext% (M, N)) is finite for all i < ¢, then
Assp(R'D, (M, N)) is finite.

Proposition 4.3.1 Let M be a finitely generated R-module with finite projective

dimension p. If D,(M,—) is a exact functor and N is an c-minimax R-module, then
H! (M, N) is a-minimax for all i > 1.

Proof By hypothesis D, (M, —) is exact. Then we have by Corollary the isomor-
phism
HI (M, V) = Extiy(M, N)

for all i > 1. Since N is a-minimax it follows that H’ (M, N) is also a-minimax for

any ¢ > 1. m

Proposition 4.3.2 Let M be a finitely generated R-module and N an R-module such
that D,(N) is e-minimax. Then D, (M, N) is a-minimax.

Proof By Remark we get the exact sequence
0——=D,(M,N)——=D,(N)" (4.4)

for some integer r. Since D,(N) is a-minimax, we have D,(N)" is also a-minimax.

The result follows by (4.4). m

Theorem 4.3.3 Let M, N be two finitely generated R-modules and ¢ a positive integer
such that R'D, (M, R/p) is a-minimax for each p € Suppr(N). Then R'D, (M, N) is

a-minimax.
Proof As N is finitely generated there exists a filtration of N
0=NgC N, C---CN,=N

28



such that N;/N;_1 = R/p; for some p; € Suppg(N).
If i = 1, then R'D, (M, N,) = R'"D,(M, R/p,) and consequently is a-minimax.

When 2 <1 < k we get a short exact sequence
0— N,y — N; —» R/p; = 0. (4.5)
For ¢ = 2, consider the following part of the exact sequence induced by
w5 R'DL (M, Ny) = R'D, (M, Ny) — R'Do(M, R/ps) — -+ - . (4.6)

Since R'D, (M, Ny) and R'"D,(M, R/p,) are both a-minimax, it follows from (4.6)
that R'D,(M, Ny) is also. Proceeding recursively, we conclude that R'D, (M, N) is an

a-minimax R-module. =

Corollary 4.3.4 Let M, N be two finitely generated R-modules and ¢ a positive inte-
ger. Assume that R'D,(M, R/p) is a-minimax for any p € Suppg(N).

(i) If L is a finitely R-module such that Suppz(L) C Suppg(N), then R'D,(M, L) is
a-minimax;

(4i) If I is an ideal such that V(1) C Suppg(N) then R'D, (M, R/I) is a-minimax.

Proof (i) Since Suppg(L) € Suppg(N), it follows that R'D, (M, R/p) is a-minimax
for each p € Suppy(L). By Theorem [4.3.3 R'D, (M, L) is a-minimax.
(ii)) We know that there is a bijection between V(1) and Suppy(R/I). Therefore, the

result follows by item (i). =

Lemma 4.3.5 Assume that (R,m) is a local ring. Let M be a finitely generated
R-module with dimension d > 1. Then R D, (M) is an Artinian R-module.

Proof By Lemma [4.1.3| we get a isomorphism
RID, (M) = Hy (M),

because d > 1. On the other hand, the Lemma says that H%(M) is Arinian.
Therefore the R-module R*™'D, (M) is also Artinian. m

Theorem 4.3.6 Let (R,m) be a local ring and M, N be two finitely generated R-

modules such that M has projective dimension p and N has dimension d > 1. Then
RPID, (M, N) = Exth (M, R¥'D,(N)).
Moreover, the R-module R”** 1D, (M, N) is Artinian.
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Proof As p+d— 1> p it follows from Lemma that
RPTID (M, N) = HET(M, N).
On the other hand, we get the following isormorphisms
HET (M, N) = Ext? (M, H(M))
R'D,(N) = HY(N)
by Theorem [3.2.5] and Lemma respectively. Therefore
RPHID (M, N) = Ext?,(M, R D, (N)).

Since the Lemmasays that R¥ "D, (N) is Artinian, it follows that RP* 1D, (M, N)
is Artinian, as required. =

Now, we show some results on the associated primes of D,(N) and D, (M, N). It
is well-known that Assgr(D;(N)) = Assgr(N) ~ V(I). The followings theorem extends
this property.

Theorem 4.3.7 Let M be a finitely generated R-module and N an R-module. The
following statements hold:

(1) Asspr(Du(N)) = Asspr(N) N\ a;

(77) Assr(Dy(M, N)) = Suppr(M) N (Assgr(N) \ «a);

(¢43) If N is a minimax R-module, then Assg(D,(N)) and Assg(D, (M, N)) are finite.

Proof (i) From the short exact sequence
0—> N/T4(N) —=D4(N) —=HL(N) —=0
we have

Assp(Do(N)) C Assp(N/To(N)) U Assgp(HL(N))
C Asspr(N/Tw(N)) U .

Let p € Assg(D,(N)), there is a monomorphism R/p < D,(N). Since D,(N) is
a-torsion-free, so is R/p and then p ¢ o. This implies that

Assp(Da(N)) = Assp(N/To(N)).
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Moreover,

Assp(N/To(N)) € Assp(N) USuppg(Ta(N))

C Assg(N)Ua.
Consequently, we can conclude that
Assgp(DL(N)) C Assr(N) N\ «a.
On the other hand, let p € Assgp(N) \ «, then p ¢ Assg(I',(IV)). Since
Assr(N) C Assg(I'o(N)) U Assg(N/T'w(V)),
it follows that p € Assgr(N/T'o(N)). Therefore
Assr(Do(N)) = Assg(N) \ .
(ii) By Proposition [£.2.10[v) and (vi) yields
Do (M, N) = Hompg(M, Do(N)).
Hence,

Assp(Do(M, N)) = Suppr(M) N Assg(Da(N))

= Suppr(M) N (Assgr(N) \ ).
(iii) Since N is minimax, it follows that Assg(/N) is a finite set. This implies that
Assgr(Dy(M, N)) = Suppr(M) N (Assgp(N) N «) C Assg(N)

is also a finite set, as required. m

Remark 4.3.8 If F is an injective R-module, then T (E) is also injective and H.,(F) =
0. Hence, the short exact sequence

0 —>To(E) —= E—=Dy(E) —>0
is split. This implies that D, (F) is an injective R-module.

Theorem 4.3.9 Let M be a finitely generated R-module and N an R-module. Let ¢
be a non-negative integer. Then the following statements hold:

(i) There is a Grothendieck spectral sequence
EPY = Exth(M,RD,(N)) & RP™D, (M, N);
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(4i) If R'"D4(N) is a-minimax for all 4 < ¢, then R*D, (M, N) is a-minimax for any
i < t. In particular, if R"D,(N) is minimax for each i < ¢, then Assg(R'D, (M, N)) is
finite for all « < t;

(4ii) If R'"D,(M) = 0 for all i < t and R'D,(M) is a-minimax, then R'D,(M, N) is
a-minimax;

t . .
(iv) Assp(R'D, (M, N)) C U Assr(Er{5");

=0

(v) Suppp(R'Du(M, N)) € U Suppa(Exti(M, R “Do(N)).

=0
Proof (i) Let F = Hompg(M, —) and G = D,(—) be two functors from the category of
R-modules to itself. If E' is an injective R-module, then G(E) = D, (F) is also injective
by Remark Hence G(FE) is right F-acyclic. Moreover, F is a left exact functor
and FG = D,(M,—). By Theorem we have the Grothendieck spectral sequence

EPY = Exth (M, RID,(N)) & RPHD, (M, N).
(ii) Let n < t, there is a filtration ® of H" = R"D, (M, N)
O:(I)nJrlHn g PrH" g g(DlHn g (I)OHn:Hn
such that
Eé’:_i ~ @iH'rL/q)H—lHn

for all + < n. By hypothesis, E;”ﬂ is a-minimax for all i < n. Therefore, £/
is a-minimax for any i < n, because E%" is a subquotient of E2"*. Hence ®"H",
ontH™ .. ®LH™ ®YH" are all a-minimax. In particular, R"D, (M, N) is also. In
the case that R"D,(N) is minimax, we conclude that R'D,(M, N) is minimax for any
i <t and hence Assg(R'D,(M, N)) is finite for all 7 < .

(iii) In the same manner of the proof of (ii), we can prove that £/~ = 0 for all

t < t. This implies that
0=0"H =d'H =... = ' H.

Note that
E%~o'H'/o'H = R'D,(M, N).
We now consider the homomorphisms of spectral sequence

d()

)t
0,t rit—r+1
0——> KO E"
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for all r > 2. By the assumption, £/~ = ( for all » > 2 and then

Byt =FE)'=...= E%.
Therefore,

R'D,(M,N) = Ey" = Homp(M,R'D,(N)).
Since R'D,(N) is a-minimax, it follows that R'D,(M, N) is a-minimax.
(iv) By the isomorphisms
Eggfi ~ (I)th/q)iJrlHt

for all + < t, we conclude that

Assp(R'Dy(M, N)) C Assg(E%") U Assp(PTH')

C Assp(EY") U Assp(EL™) U Assp(®*HY)

t
- U Assp(ELTY).

i=0
If we prove that Assp(E% ") C Assg(E}},") for all 0 < i < t, then the assertion follows.

Now, the homomorphisms of spectral sequence

i t—2,2t—it1 it—i tHit2,—i—1
0=FE. —E, — B =0

yield
it—i it—i it—i
By = Ejyg = :Eog
forall 0 <q¢ <4,

(v) Analysis similar to that in the proof of (iv) shows that
¢
Supp(R'D, (M, N)) C USuppR(E;g_z)
i=0
and
it _ gt it

t+2 — 43

Thus E% is a subquotient of E5*" and then

Suppr(EL ™) C Suppg(E5" ") = Suppp(Exth (M, R7D,(N))).
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This is finishes the proof. m

If M, N are finitely generated R-modules and Assz(R'D, (M, N)) is finite, then
we can conclude that Assp(H5™ (M, N)) is finite by the long exact sequence in Lemma
. Therefore, the finiteness of Assgz(H’ (M, N)) can be implied when we study the
set Assp(R'Dy(M, N)).
Theorem 4.3.10 Let M, N be R-modules and ¢ a non-negative integer. The following

statements hold:

(1) There is a Grothendieck spectral sequence

E?? = RPD,(ExtL(M,N)) & RPMD, (M, N);

(i1) If Suppg(Exty (M, N)) is finite for all i < ¢, then

Suppp(R'D, (M, N)) and Supp,(H, (M, N))
are finite for all 7 < t;
(i33) If M, N are finitely generated and Suppy(Extyy (M, N)) is finite for all i < ¢, then
Assp(R'D, (M, N)) is finite.
Proof (i) Let F = D,(—) and G = Homg(M, —) be functors from the category of
R-modules to itself. It follows from Proposition [4.2.10 that FG(N) = D, (M, N) for
any R-module N. Let E be an injective R-module, we will show that R'F(G(E)) = 0

for all 7 > 0. Assume that

Fy Fy M 0
is a free resolution of M in which each F; is finitely generated. Note that
00— HOHlR(M, E) — HOIHR(F(), E) —— HomR(Fl, E) —_—

is an injective resolution of Hompg (M, E) = G(FE). On the other hand, according to Re-
mark D, (E) is an injective R-module. By applying the functor Hompg(—, D, (F))

to the free resolution of M, we get an exact sequence
0 — Homg(M,D,(E)) — Hompg(Fy, Do (E)) — Hompg(Fi, Dy(E)) — - - -

Since F; is finitely generated free for all ¢« > 0, we can conclude by Proposition [4.2.10
that Hompg(F;, D, (E)) = D,(Hompg(F;, E)) is injective for all ¢« > 0. Consequently,

there is an exact sequence
0 — D, (Homg(M, E)) — D, (Hompg(Fy, E)) — D,(Hompg(F}, E)) — - - -
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This implies that R'F(Homg(M, E)) = 0 for all 4 > 0. It follows from Theorem [A.9

that there is a Grothendieck spectral sequence
B2 = RPD,(Ext%L(M, N)) & RPHD, (M, N).

(ii) By the hypothesis, Supp(E57) is finite for all ¢ < ¢. Since E2? is a subquo-
tient of EY? we see that Suppg(EP9) is finite for all ¢ < t. Let n < t, we consider a
filtration ® os submodules of H" = R"D, (M, N)

O:(I)nJrlHng(I)anggq)lHngq)OHn:Hn

such that
B~ @'H" /O H”

for all # < n. This implies that the supports of ®*H", & 1H" ... ®'H", ®°H™ are
finite. In particular Supp,(R"D, (M, N)) is finite. The finiteness of Supp,(H (M, N))
follows from Lemma [£.2.3]

(iii) By an argument analogous to that in the proof of (ii) we conclude that
the supports of ®'H!, ®'~1H! ... ®'H! are finite where H* = R'D,(M, N). The
isomorphism

E% = R'D,(M,N)/d' H'

gives

Assp(R'D, (M, N)) C Assp(E%") U Assp(®'HY).

Note that E% is a submodule of Ey" = D,(Extb (M, N)). Now, combining the as-
sumption with Theorem [£.3.7(iii) we see that Assg(D,(Exti(M,N))) is finite. This

implies that Assgp(E%!) is finite and the proof is complete. ®
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Appendix A

Spectral sequences

Definition A.1 A spectral sequence is a sequence {E",d"} ., of bigraded modules and
maps of bidegree (—r,r — 1) with d"d" = 0 such that

ENtY = Kerd, JImd,,, ...,
and then
ET+1 — H(ET,dr)
as bigraded modules.

Definition A.2 Let M be an R-module. A subquotient of M is a module of the form
M'/M", where M' and M" are submodules of M.

An example of a subquotient module is homology: if C, is a complex, then H;(C,)

is a subquotient of C;.

Remark A.3 Let Z) = Kerd, ,and B) , =Imd,, . ...
term E" is a subquotient of ‘any earlier term. Set Z" = {Z;7q}p7q and B" = {B;7q}p7q.
Write E? = Z%/B?. Since E3 = Z3/B3 is a subquotient of E?, the third isomorphism

theorem allows us to assume

In spectral sequence each

0OcB*’cB*cZz®cZ?cE.
Iterating, we get
0OcB*c---cB cBc...cztcz c---cZ?*cE".

Definition A.4 Let Z3% = () Z;; By, =By,

7q’

B = 7 /By The limit term

of the spectral sequence {E"}  is the bigraded module E> = {E;j]}pq.



Note that, as r gets large, the terms E" do "approximate" the limit term.

Definition A.5
i) Let C a complex. A filtration of C is a family of subcomplexes {FPC with
pEL
FP=1C c FPC for all p.
1) A filtration of a graded module H = {H, is a family of graded submodules
nez
{F”H}pGZ with FP~YH C FPH for each p.

Theorem A.6 Every filtration {FPC} of a complex C determines a spectral sequence
with E) = H,(FPC/FP~'C).

Proof See |25, Corollary 11.12]. =

Definition A.7 A filtration {FPH} of a graded module H is bounded if for each n

there exist integers s = s(n) and ¢ = t(n) such that
F*H, =0and F'H, = H,.

Note that if {FPH} is a bounded filtration, then for each n we get FPH,, = 0 for
any p < s and FPH,, = H, for all p > t. Then there is a finite chain

0=FH,Cc F°''H, c---C F'H, = H,,.

Definition A.8 A spectral sequence {E"}  converges to a graded module H ( denoted
by E2, £ H, ) if there is some bounded filtration {®?H} of H such that

00 A~ —1
B = OPH, /®" T H,
for all p,q with p 4+ q = n.

Theorem A.9 (Grothendieck) Let G : & — B and F : B — € be two functors
with F left exact such that E injective in 4 implies GF is right F-acyclic. Then for

each module M in U, there exists a third quadrant spectral sequence with

EPY =RPF(RIG(M)) 2 RPH(FG)(M).

Proof See |25, Theorem 11.38]. m
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Appendix B

Results of Local Cohomology

Let o a good family of ideals of R.

Lemma B.1 The a-torsion functor I', is a left exact functor on the category of all

R-modules.

Proposition B.2 Let I, I’ be ideals of R and 3, 5’ families of ideals of R.
(i) If I C I, then F(I, ) 2 F(I', 8);

(i) If B’ C B, then F(I,B) C F(I,B');

(tii) F(I+1I',8) = F(I,5) N F(I', B);

() F(I,B)NF(I,B) =F(,BU LR

(v) F(I,8) = F(VI,B).

Proof (i) It K € F(I',3), then K + J € (I') for all J € 5. Since I C [’ this implies
that (I') C (I). So K + J € (I) and therefore, K € F(I, ).

(i) Let K € F(I,[3). This implies that K + J € (I) for all J € 5. By 5/ C 3, we
have K + J € (I) for all J € f'. Thus K € F(I,(').

(i) Knowing that I C I + 1" and I’ C I + I' we have F(I +I',8) C F(I,8) N
F(I',3), by (i). On the other hand, if K € F(I, 3) N F(I', §), then K +J € (I) N ({I")
for all J € 8. Since (I) N (") = (I + I'), it follows that K € F(I +I',3).

(iv) Since f C pUB’ and B’ C U’ it follows that F (I, pUp’) C F(I,B)NF (I, ),
by item (ii). Conversely, if K € F(I,5)NF(I,['), then K + J” € (I) for all J" €
and K + J € (I) for any J' € /. So K +J € (I) for each J € U . Therefore
KeF(I,pup).



(v) The proof follows directly from the equality (/) = <\/7 > n

Proposition B.3 Let I, I’ be ideals of R and 3, 5’ families of ideals in R. Let M be
an R-module.

) L1s(Tr g (M)) =T g (T

I, ( ))a
Z’L)IfIC[/ thenFlﬁ( )QF

(¢

( s(M);

(212) If " C B, then I'; (M) C T’y 5 (M);

(i) Trg(Tr (M) = Tryr g(M);

(v) Prp(Trp(M)) =T pos (M); |

(vi) If VI = /T, then Hj 4(M) = H}, 4(M), for all i > 0. In particular, H} 4(M) =
W,B(M> for each i > 0; | |

(vi) If B and B’ are cofinals, then Hj 5(M) = Hj 5 (M), for any i > 0.

Proof The statements from (i) to (iii) follow from the definitions.

(iv) Let @ € I'; g(I'p g(M)). Then, there exists K € F(I, ) such that Kz = 0.
Since x € 'y 3(M), there is K" € F(I',8) such that K’z = 0. On the other hand,
K+K' e F(I,B)NF(I',B) = F(I+1I',8), by Proposition B.2[(iii), and (K + K’)z = 0.
So, x € I'r1p g(M). The other inclusion is analogous.

(v) The proof is similar to proof of item (iv).

(vi) Since (1) = (VT) = (V') = (), we have F(1,3) = F(I',§). Therefore,
Lrg(M) =T 75M)=T,5(M)=Tp (M)
and consequently
i (M) = H, (M) = HL (M) = H (M)

for all 7 > 0.
(vii) Knowing that g, 5’ are cofinals, we have (8) = (5'). Thus F(I, ) = F(I, ')
and therefore Hj 4(M) = Hj 5 (M) for all i > 0. m

Proposition B.4 For an R-module M, the following are equivalent.
(1) M is a-torsion R-module;

(i7) Min(M) C o

(1i1) Assr(M) C «;

(1v) Suppr(M) C a.

Proof The proof of the implications (iv)=-(iii)=(ii) is trivial.
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(ii)=(iv) For p € Suppyp(M), there exists ¢ € Min(M) such that p DO g. Since
q € a, it follows that p € a.

(i)=(iii) If p € Assr(M) then p = Ann(z) for some z € M. Since M is an
a-torsion R-module, there exists I € a such that Iz = 0. So I C p. Therefore p € a.

(iv)=(i) To show that M is a-torsion, it suffices to prove that M C I',(M). Let
r € M and set Min(Rz) = {p1,...,pr}. Since Min(Rz) C Supprp(M) C «, we have
p1---Pr € . On the other hand, \/W(:E) =pyN--- NP D Py ---pr which implies
that (p;---px)"z = 0 for some n € N. Since (p;---px)" € «, it follows that z € I, (M)

and the proof is completed. m

Corollary B.5 (i) For x € M, the followings conditions are equivalent.
(a) x € To(M);
(b) Supp(Rz) C o
(17) Let 0 L M N 0 be an exact sequence of R-modules. Then

M is an a-torsion modules if and only if L and N are a-torsion modules.

Proof (i):(a) = (b) The assumption implies that I',(Rz) = Rz. Thus by Proposition
we get Supp(Rx) C a.
(b) = (a) By Proposition we get x € Re =T, (Rzx) CT'\(M).
(ii) The proof follows from Proposition and by the equality Suppg(M) =
Suppg(L) U Suppg(N). =

Corollary B.6 If M is an ([, 3)-torsion R-module, then M/JM is an I-torsion R-
module for any J € 3. The converse holds if M is finitely generated.

Proof Since M is an (I, 3)-torsion R-module, we have Suppy(M) C F(I, 8). For each
J € B, we get

Supp(M/JM) C Suppr(M) NV (J) C F(I,B8) NV (J).

On the other the hand, if p € F(I,8) N V(J) then p + J € (I). Since p € V(J), we
have p O J and so p € (I). Therefore, p € V(1) and consequently M/JM is I-torsion
module.

Suppose that M is a finitely generated R-module. If z € M, then, by Artin-Rees
lemma, for each J € 3, there exists n; > 0 such that J™ M N Rz C Jx. Since M/JM
is I-torsion, we have Suppg(M/J" M) = Suppr(M/JM) C V(I), therefore M/J™ M
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is [-torsion as well. Thus there is an integer m > 0 with I™x C J"/ M. Hence it follows
that ™z C J" M N Rx C Jx. Using the above information and taking a = Ann(x),
we get a+J € (I) for all J € 5. This implies that a € F(I, 8). Therefore x € T'; 5(M).

|
Proposition B.7 Let M be an R-module. Then the equality
Assp(M) Na = Assr(I'o(M))

holds. In particular, I', (M) # 0 if and only if Assgp(M) Na # @.

Proof Since I', (M) is an a-torsion R-module, we get Assz(I'o(M)) C a, by Proposi-
tion This implies that Assg(I'o(M)) C Assg(M) N a.

Now, take p € Assg(M) N a. Then there is an non-zero element = € M such
that p = Ann(x). Moreover, p € a which implies in = € I',(M). Since p = Ann(x), it
follows that p € Assg(I'o(M)). m
Proposition B.8 Let p € Spec(R) and « a good family in R. If p € «, then E(R/p)

is an a-torsion R-module. On the other hand, if p ¢ « then E(R/p) is an a-torsion-free
R-module.

Proof If p € «, then Assgr(E(R/p)) = {p} C a. Consequently I',(E(R/p)) = E(R/p)
by Proposition Now, if p ¢ «, then Assg(E(R/p)) Na = {p} Na = &. Therefore,
by Proposition [B.7, we have I'o(E(R/p)) =0. =

Proposition B.9 Let M be an a-torsion R-module. Then there exists an injective

resolution of M in which each term is an a-torsion R-module.

Proof Indeed, let E° be the injective hull of M. Since M is a-torsion, we have
Assg(E®) = Assgr(M) C «, by Proposition Then E° is a-torsion module. Thus
we see that M can be embedded in an a-torsion injective R-module E°.

Suppose, inductively, we have constructed an exact sequence

0 M E° . pr1 2 pn

of R-modules in which E° ..., E" !, E™ are a-torsion injective R-modules. Let
C = Cokerd™!. Since E™ is an a-torsion module, C' is a-torsion as well by Corollary
B.5[(ii). Applying the argument in the first paragraph to C, we can embed C' into an

a-torsion injective R-module E™*. This completes the proof. =
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Corollary B.10 Let M be an R-module. Then the following statements hold.
(i) If M is an a-torsion R-module, then H’ (M) = 0 for all i > 0;

(43) H',(To(M)) = 0 for all i > 0;

(1ii) M/T'o(M) is an a-torsion-free R-module;

(#v) There is an isomorphism H’ (M) = H’ (M/T',(M)) for any i > 0;

(

v) H' (M) is an a-torsion R-module for each i > 0.

Proof (i) Follows from Proposition
(ii) Since ', (M) is an a-torsion R-module, it follows from (i) that H’,(T'y(M)) = 0
for all 7 > 0.

(iii) and (iv) From the exact sequence
0—Ty(M)—M— M/T(M)—0
we get an exact sequence
0 ——=To(Ta(M)) —=To(M) —=T'a(M/To(M)) —0.
in which we obtain I',(M/T',(M)) = 0 and isomorphisms
HE (M) = B (M/To (M)

for all ¢« > 1.
(v) Since H’, (M) is an subquotient of an a-torsion module, for all i > 0, it is also

a-torsion by Corollary and the proof is completed. =

Theorem B.11 Let M be an R-module. Then there is a natural isomorphism
H, (M) = limy H) (M)

for any ¢ > 0.

Proof Firstly, we know that ', (M) = ligf‘f(M). Now, we take an exact sequence of

R-modules

0 L M N 0.

For each I € o, we get a long exact sequence
0—HYL) —=HYM) —=H)Y(N) —=H}(L) —=H}(M) —- - - .
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Knowing that the direct limits is an exact functor and applying the direct limits on «,
we obtain the long exact sequence

0l () —— limy H)(M) —— limy H)(N) —

Iea Ica Ica

_>h_n;H}(L)_>th}(M)_>th}(N)_>...
Ica Iea Iea
On the other hand, for any injective R-module E and any integer ¢ > 0, we have
HY(E) = 0 for each I € a. Therefore,
lig H}(E) =0
Ica
for all ¢ > 0 and the proof is completed. m
The next result shows that the local cohomology functor, with respect to «a,

commutes with direct limits.

Proposition B.12 Let {M,}, ., be a direct system of R-modules. Then there is a

isomorphism

HY (lim M) 2 lig ) (M)
AEA AeA
for all 7 > 0.

Proof By Theorem we have
I, (lim M) = lim H (lim M)
AeA Iea  Aeh

for all i > 0. On the other hand, for each I € o and by [6, Theorem 3.4.10] there is an

isomorphism

H; (lim M),) = lim 7 (M)
AeA AeA
for all ¢ > 0. This implies that

B (liny M) 2 ling iy (M)
AEA Ica MeA

= Ly Ly 13 (M)
AeA Iea

= lim 1, (M)
ex

for any ¢ > 0, as required. m
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Theorem B.13 For any finitely generated R-module M we have the equality

inf {i | HL(M) # 0} = inf {depthM, | p € a N Spec(R)} .

Proof We set n = inf {depthM, | p € a N Spec(R)}, and let E*(M) be a minimal
injective resolution of M.

Given p € a a prime ideal, then n < depthM, = inf{i | p;(p, M) # 0} . Hence
we obtain

La(E'(M)) = D E(R/p)“®M =0, (B.1)

pea

for each integer i < n and also I',(E™(M)) # 0. It follows that H' (M) = 0 if i < n.
It suffices to show that H. (M) # 0. We see from equality that the complex

Lo (E*(M)) starts from its n-th term. Thus we have a commutative

0 ——H{(M) —— Lo (E"(M)) —To(E"(M))

| |

BN (M) L B (M) — L B (M)

with exact rows. Since kerd” = Imd"™! C E™(M) is an essential extension, it follows

that H"(M) = Do (E™(M)) N kerd” # 0. m

Corollary B.14 Let M be a finitely generated module over a local ring R with max-
imal ideal m. Then the following statements are equivalent:

(1) M is a-torsion R-module;

(43) H',(M) = 0 for all integers i > 0.

Proof (i)=(ii) Follows from Corollary [B.10{i).
(ii)=(i) Let us denote N = M /T, (M). We will show that N = 0. Suppose N #
0. From Corollary [B.10{(iii) and (iv), we have [',(N) = 0 and H' (N) = H' (M) = 0 if

¢ > 0. On the other hand, since m € o, we get the inequality
inf {depthN, | p € a} < depthNy = depthN < 0o

holds. Thus H’,(N) # 0 for an integer i < depthN by Theorem This is a

contradiction. Therefore N =0. m
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