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Abstract

This work develops a study of the class of minimax modules relative to a good family

of ideals and introduces the collection of the (S, I, β)-cominimax modules, where S is a

Serre class in the R-modules category. Also, it addresses a generalized local cohomology

module and ideal transforms with support into a good family of ideals. In addition,

some results of minimaximality are presented for generalized local cohomology modules

and generalized ideal transforms.

Keywords: Minimax modules; Cominimaximality; Generalized local cohomology;

Ideal transforms.
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Introduction

The �rst studies of local cohomology originated in Grothendieck- Hartshorne's

notes published between 1955 and 1967, from a geometric initiative: they took groups

of cohomology of a topological space X with coe�cients in an abelian sheaf on X and

support in a locally closed subspace. Moreover, even having its roots in Algebraic

Geometry, the study of local cohomology serves for general purposes in calculations

of invariants in Commutative Algebra. Over the years, many authors have presented

generalizations of this concept in commutative algebra (see [2, 5, 17, 27]).

In [27] Takahashi, Yoshino and Yoshizawa introduce a local cohomology module

with respect to a pair of ideals (I,J). This structure is a generalization of the usual local

cohomology module. More precisely, let R be a commutative Noetherian ring. Let

F̃(I, J) = {p ∈ Spec(R)|In ⊆ p + J for some positive integer n} and F(I, J) denotes

the set of ideals a of R such that In ⊆ a + J for some positive integer n. For an

R-module M , we consider the (I, J)- torsion submodule ΓI,J(M) of M which consists

of all elements x belong to M such that SuppR(Rx) ⊆ F̃(I, J). Furthermore, for an

integer i, the local cohomology functor Hi
I,J with respect to (I, J) is de�ned to be

the i-th right derived functor of ΓI,J . The module Hi
I,J(M) is called the i-th local

cohomology module of M with respect to (I, J).

Recently some authors approached the study of properties of theses extended

modules, see for example [9, 10, 24, 28]. In [2] Alba-Sarria presented an even more

general approach than that discussed in [27]. He de�ned a local cohomology module

with respect to a good family of ideals α. In his work, Sarria also addressed many

properties of these new modules. Such properties generalized many results studied in

[27].



In 1970, J. Herzog de�ned in [17] a generalized local cohomology module in the

local case with support in the maximal ideal by

Hj
m(M,N) = lim−→

n

ExtjR

(
M

mnM
,N

)
.

Then, in the year 1980, M. H. Bijan-Zadeh introduced the generalized local cohomology

module, supported by a system of ideals (see [5]).

During this process of generalizing the local cohomology module, we came across

several important problems in commutative algebra related to that module. An im-

portant problem in commutative algebra is determining when is �nite the R-module

HomR(R/I,Hi
I(M)). In [15], Grothendieck conjectured the following:

If R is a Noetherian ring, then for any ideal I of R and any �nite R-module M , the

modules HomR(R/I,Hi
I(M)) are �nite for all i ≥ 0.

It is well-known that if R is a local Noetherian ring with maximal ideal m, then an

R-moduleM is Artinian if and only if SuppR(M) ⊆ {m} and ExtjR(R/m,M) is �nitely

generated for all j ≥ 0.

Motivated by this result, Hartshorne [16] gave a counterexample which show that

this Grothendieck's conjecture is false even when R is regular, and where he de�ned an

R-moduleM to be co�nite with respect to I (abbreviated as I-co�nite) if the support of

M is contained in V (I) and ExtjR(R/I,M) is �nitely generated for all j. On the other

hand, Brodmann and Lashgari showed in [7] that if, for a �nitely generated R-module

M and an integer t, the local cohomology modules H0
I(M),H1

I(M), · · · ,Ht−1
I (M) are

�nitely generated, then R-module HomR(R/I,Ht
I(M)) is �nitely generated and for any

�nitely generated submodule N of Ht
I(M) the set AssR(Ht

I(M)/N) is �nite.

In [32] H. Zöschinger, introduced the interesting class of minimax modules, and

he has in [32, 33] given many equivalent conditions for a module to be minimax. The

R-module M is said to be minimax, if there is a �nitely generated submodule N of M ,

such that M/N is Artinian. The class of minimax modules thus includes all �nitely

generated and all Artinian modules. It was shown by T. Zink [31] and by E. Enochs

[13] that a module over a complete local ring is minimax if and only if it is Matlis

re�exive.

Posteriorly, the authors J. Azami, R. Naghipour and B. Vakili, in a paper pub-

lished in 2009 [3], presented two classes of modules: the class of I-minimax modules
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and I-cominimax modules, which generalized the classes of minimax modules and I-

co�nite modules, respectively. In their paper, the authors re�ned the result presented

by Brodmann and Lashgari as follow:

Theorem 0.0.1 Let R be a Noetherian ring, I an ideal of R and M an I-minimax

R-module. Let t be an non-negative integer such that Hi
I(M) is I-minimax for all i < t.

Then for any I-minimax submodule N of Ht
I(M) the R-module HomR(R/I,Ht

I(M)/N)

is I-minimax. In particular, the Goldie dimension of Ht
I(M)/N is �nite, and so the set

AssR(Ht
I(M)/N) is �nite.

Later, more precisely in 2010, Tehranian and Talemi introduced in [28] the

concept of (I, J)-co�nite modules. An R-module M is called (I, J)-co�nite when

SuppR(M) ⊆ F̃(I, J) and ExtjR(R/I,M) is �nitely generated for any j ≥ 0. This

de�nition generalized the concept presented by Hartshorne [16]. Throughout their

work, Talemi and Tehranian, presented conditions to know when the R-module of ho-

momorphisms HomR(R/I,Ht
I,J(M)) is �nitely generated for some t. An answer to this

question was presented in the following result:

Theorem 0.0.2 Let t be a non-negative integer. Let M be an R-module such that

ExttR(R/I,M) is a �nite R-module and Hi
I,J(M) is (I, J)-co�nite, for every i < t. If

N ⊆ Ht
I,J(M) is such that Ext1

R(R/I,N) is �nite, then HomR(R/I,Ht
I,J(M)/N) is a

�nite R-module.

In addition to this result, they also studied the �niteness conditions of R-module

ExtiR(R/I,Hj
I,J(M)) for i = 1, 2.

Recently Kh. Ahmadi-Amoli and M. Y. Sadeghi [1] de�ned the (I, J)-minimax

R-modules and studied some properties of them. An R-module M is called (I, J)-

minimax when any quotient module of M has �nite (I, J)-relative Goldie dimension.

One of the results interesting presented in [1] proves that the (I, J)-minimax class is a

Serre class which contains the I-minimax modules (see page 10). On the other hand,

considering an arbitrary Serre class of R-modules S, instead of �nitely generated,

the authors de�ned the (S, I, J)-cominimax R-modules. An R-module M is called

(S, I, J)-cominimax whenever SuppR(M) ⊆ F̃(I, J) and ExtjR(R/I,M) ∈ S for each

j ≥ 0. This concept of R-modules can be as a generalization of I-co�nite R-modules

[16], I-cominimax R-modules [3], and (I, J)-co�nite R-modules [28]. Also, the main

result of [1] is more general than that of [7] and [3]. They proved the following:

3



Theorem 0.0.3 Let a ∈ F(I, J) be an ideal. Let t be a non-negative integer such

that ExttR(R/a,M) ∈ S and ExtjR(R/a,Hi
I,J(M)) ∈ S for all i < t and all j non-

negative. Then for any submodule N of Ht
I,J(M) such that Ext1

R(R/a, N) ∈ S, we
have HomR(R/a,Ht

I,J(M)/N) ∈ S.

It is interesting to note that in the works mentioned above, the authors ap-

proached relationships between the concepts of minimaximality, co�niteness, comini-

maximality and local cohomology module, adapting to each context. An interesting

question about previous concepts is whether there is some relationship between them

and the generalized local cohomology module. The answer to this question is yes. In

[18] K. Khashyarmanesh and M. Yassi proved that for any non-zero principal ideal I

of R, the R-module Ht
I(M,N) is an I-co�nite module for all t ≥ 0. Also, A. Ma� and

H. Saremi [19] showed that the generalized local cohomology modules Ht
I(M,N) are I-

co�nite for all t ≥ 0, in the following cases:

(i) cd(I) = 1, where cd is the cohomological dimension of I in R;

(ii) dimR ≤ 2.

Additionally, they proved that if cd(I) = 1 then ExtiR(M,Ht
I(N)) is I- co�nite for all

i, t ≥ 0.

Next, H. Saremi [26] presented a result more general than that in [19]. He got

conditions for the generalized local cohomology module Ht
I(M,N) to be I-cominimax.

His article had as its main result the following:

Theorem 0.0.4 Let M be a �nitely generated R-module and N be a minimax R-

module. Then the following statements hold:

(i) If cd(I) = 1, then Hj
I(M,N) and ExtiR(M,Hj

I(N)) are I-cominimax for all i, j.

(ii) If J is an ideal of R with J ⊆ I and cd(I) = 1, then Hi
I(H

j
J(N)) is I- cominimax

for all i, j.

(iii) If t is a non-negative integer such that Hj
I(M,N) is I-minimax for all j < t, then for

any I-minimax R-submodule L of Ht
I(M,N) the R-module HomR(R/I,Ht

I(M,N)/L)

is I-minimax. As a consequence it follows that the Goldie dimension of Ht
I(M,N)/L

is �nite, and so the associated primes of Ht
I(M,N)/L is �nite.

This work presents more general versions of the concepts of minimax modules,

cominimax modules, local cohomology modules and Ideal transforms, considering a

good family of ideals as their support. In addition, fundamental properties of each of

these structures are proved and relationships established between them.
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The �rst chapter de�nes Goldie dimension of a R-module M relative to a good

family of ideals and presents α-minimax modules, proving that this class of modules

is a Serre class. Next we study some properties involving Serre classes in the R-

modules category and then some relationships between the R-modules minimax and

(I, β)-minimax classes are proved.

The second chapter presents a class of R-modules called modules (S, I, β) - co-

minimax, where S denotes a Serre class in the R-modules category. This concept

generalizes those presented in [16], [3], [28] and [1]. Then some relations between the

(S, I, β) - cominimax modules and the local cohomogy module Hi
I,β(M) are presented

and demonstrated, motivated by the main results of Brodmann and Lashgari [7]; J.

Azami, R. Naghipour and B. Vakili [3]; Tehranian and Talemi [28] and Kh. Ahmadi-

Amoli and M. Y. Sadeghi [1].

Later, the third chapter introduces the concept of generalized local cohomology

module Hi
α(M,N) of R-modules M,N supported by a good family of ideals α and

proves some basic properties. Also, vanishing conditions are presented for the module

Hi
α(M,N) considering the projective dimension of M and the Krull dimension of N .

After these vanishing results, some statements that relate the α-minimax modules

as the generalized local cohomology module are shown. This chapter concludes by

presenting some results that relate the generalized local comology module to the (I, β)-

cominimax modules, using cohomological dimension and spectral sequences.

Next, the chapter four takes an approach to the ideal tranforms Dα(M) of an R-

moduleM with respect to a good family of ideals and some relationships between right

derived functor RiDα(−) modules and the local cohomology functor Hi
α(−) are proven.

In this chapter conditions are presented for the functor Dα(−) to be an exact functor.

Also, is proved that the R-module HomR(R/I,H1
α(M)) is �nitely generated in the case

that M has �nite projective dimension. The chapter closes by dedicating its last two

sections to the study of the generalized ideal transform Dα(M,N) of R-modules M,N

with respect to a good family of ideals. These sections related the functorsRiDα(M,−)

and Hi
α(M,−) and generalize the properties of minimax modules to ideal transforms.

5



Chapter 1

Serre classes and α-minimax modules

Throughout this chapter R will denote a commutative Noetherian ring with iden-

tity. Recall that for an R-module M , the Goldie dimension of M is de�ned as the

cardinality of the set of indecomposable submodules of E(M), the injective hull of M ,

which appears in the decomposition of E(M) into the direct sum of indecomposable

submodules. Therefore, M is said to have �nite Goldie dimension if M does not con-

tain an in�nite direct sum of non-zero submodules, or equivalently E(M) decomposes

as a �nite direct sum of indecomposable submodules. We shall use GdimM to denote

the Goldie dimension of M . It is clear by the de�nition of the Goldie dimension that

GdimM =
∑

p∈Spec(R)

µ0(p,M) =
∑

p∈Ass(M)

µ0(p,M).

Also, in [24], the (I, J)-relative Goldie dimension of M is de�ned as

GdimI,JM :=
∑

p∈F̃(I,J)

µ0(p,M),

where the set F̃(I, J) is de�ned as

F̃(I, J) = {p ∈ Spec(R) : In ⊆ p + J, para algum n ∈ N} .

In this chapter we will de�ne a Goldie dimension and minimax R-modules with

respect to family of ideals more general than the family F̃(I, J) and we will show

that many of the properties already known, both of Goldie dimension and minimax

modules, can be generalized when we consider this new family of ideals. Moreover, In



section 2 will present some results on Serre classes in the category of R-modules and

what the relation of the minimax modules with these classes.

1.1 The α-minimax modules

In this section we de�ne the Goldie dimension of a module relative to a good

family of ideals and then we introduce the concept of minimax modules with respect

to these good families, along with the properties of such modules.

Recall that an R-module M is minimax when there exists a �nite submodule N

of M such that o quotient module M/N is Artinian. It is known that when R is a

Noetherian ring, an R-module M is minimax if and only if any homomorphic image of

M has �nite Goldie dimension (see [14, 31, 32] ). Moreover, an R-module M is (I, J)-

minimax when any quotient module of M has �nite (I, J)-relative Goldie dimension

(see [1]).

De�nition 1.1.1 A non-empty set α of ideals in R is a good family when the following

conditions holds:

(i) If I and J are ideals of R such that J ⊂ I and J ∈ α, then I ∈ α;
(ii) If I and J belong to α, then IJ ∈ α.

Example 1.1.2 (i) Let β be an arbitrary non-empty collection of ideals on R, the set

〈β〉 = {K E R : I1 . . . It ⊆ K, for some Ij ∈ β, j = 1, . . . , t} is a good family of ideals

in R. When β = ∅ we put 〈β〉 = {R}. In particular, when β = {I} is a single set we

use the notation 〈I〉 instead of 〈{I}〉. So 〈I〉 = {K E R : In ⊆ K, for some naturaln};
(ii) The set F(I, β) = {K E R : K + J ∈ 〈I〉 , ∀J ∈ β} is also a good family of ideals.

When β = {J} we call F(I, J) instead of F(I, β). Moreover the set F(I, J) coincides

with set of ideals studied in [1].

Remark 1.1.3 Note that V (I) ⊂ F̃(I, β) can be a strict inclusion. Indeed, let R = Z
be the ring of integer numbers. Consider I = 4Z, β = {Z, 13Z} and p = 3Z. Note that
p ∈ F̃(I, β), since p + Z ⊇ 4Z ∈ 〈I〉 and p + 13Z ⊇ 16Z ∈ 〈I〉. But p /∈ V (I) = {2Z}.
Therefore, we have V (I) ( F̃(I, β).

Now, recall that, for any R-moduleM , the i-th Bass number ofM with respect to

prime ideal p, denoted by µi(p,M), it is de�ned as the number of copies of the injective

hull ER(R/p) of R/p over R occurring as direct summands in the i-th injective module

of a minimal injective resolution of M . Moreover, we have

µi(p,M) = dimk(p)

(
ExtiRp

(k(p),Mp)
)
,

7



where k(p) = Rp/pRp is the fraction �eld of R/p.

De�nition 1.1.4 Let α be a good family of ideals in R and M an R-module. The

α-relative Goldie dimension of M is de�ned as

GdimαM :=
∑

p∈α∩Spec(R)

µ0(p,M).

When α = F(I, β), we shall use F̃(I, β) to denote F(I, β) ∩ Spec(R). In this

case, we will simply call the (I, β) - relative Goldie dimension of M and we will denote

by

GdimI,βM :=
∑

p∈F̃(I,β)

µ0(p,M).

Example 1.1.5 (i) We consider R = C[X, Y ] and the R-module

M =
⊕

(a,b)∈C2

C[X, Y ]

(X − a, Y − b)
.

Let

β =
{

(X − a, Y − b) | (a, b) ∈ C2 and Im(a) = Im(b) = 0
}

and α = 〈β〉 .

We know that

AssR(M) ⊇
⋃

(a,b)∈C2

AssR
C[X, Y ]

(X − a, Y − b)
=
{

(X − a, Y − b) | (a, b) ∈ C2
}

:= B.

Note that B is a in�nite set and consequently AssR(M) is also. Since α∩B is in�nite,

it follows that α ∩ AssR(M) is also. On the other hand µ0(p,M) ≥ 1 if and only if

p ∈ AssR(M). Therefore Gdimα(M) is in�nite.

(ii) Let M be an R-module �nitely generated and α a good family. Then M is

Noetherian module and hence AssR(M) is a �nite set. By [21, Theorem 18.7] we

have µ0(p,M) <∞ for all p ∈ AssR(M). Therefore Gdimα(M) is �nite.

De�nition 1.1.6 Let α be a good family of ideals in R and M an R-module. The

α-torsion module of M is de�ned by

Γα(M) := {x ∈M : Ix = 0, for some I ∈ α}.

Note that Γα(M) is a submodule of M . Moreover, we have

Γα(M) =
⋃
I∈α

ΓI(M) = lim−→
I∈α

ΓI(M),

8



where α is seen as a direct set with the partial order I ≤ J if and only if J ⊆ I, in the

second equality.

For a homomorphism f : M → N of R-modules, it is easy see that the inclusion

f(Γα(M)) ⊆ Γα(N), and hence the mapping Γα(f) : Γα(M) → Γα(N) is de�ned so

that it agrees with f on Γα(M).

Thus Γα becomes an additive covariant functor from the category of R-modules

to itself. In [2] this functor is called α-torsion functor. When α = F(I, β) we will

denote it by ΓI,β instead of ΓF(I,β) and we call it (I, β)-torsion functor.

Note that, if β = {J} then the (I, β)-torsion functor ΓI,β coincides with (I, J)-

torsion functor ΓI,J studied in [27].

Lemma 1.1.7 Let α be a good family of ideals in R and M an R-module. Then

GdimαM = GdimΓα(M).

Proof Let p ∈ Spec(R) be, and let E(R/p) be the injective hull of R/p. In [21,

Theorem 18.4] is proved with E(R/p) is an p-torsion R-module and with, if r ∈ Rr p,

then the multiplication by r induces an automorphism of E(R/p). Therefore, if p ⊇ I,

for some I ∈ α and u ∈ E(R/p), then pnu = 0 ⇒ Inu = 0 ⇒ u ∈ Γα(E(R/p)). So

E(R/p) is an α-torsion. On the other hand, if p + I, for any I ∈ α and u ∈ Γα(E(R/p)),

then there exists I ∈ α such that Iu = 0. Since I * p, there exists y ∈ I r p and

the multiplication by y is an automorphism of E(R/p). So u = 0 and consequently,

Γα(E(R/p)) = 0. Therefore, Γα(E(M)) is can be decomposed as

Γα(E(M)) ∼=
⊕

p∈α∩Spec(R)

Γα(E(R/p))µ
0(p,M)

⊕ ⊕
p/∈α∩Spec(R)

Γα(E(R/p))µ
0(p,M)

=
⊕

p∈α∩Spec(R)

E(R/p)µ
0(p,M)
.

Note that Γα(E(M)) is an essential extension of Γα(M).Indeed, if x ∈ Γα(E(M)) ⊆

E(M) and x 6= 0, then Ix = 0, for some I ∈ α and there exists a ∈ R such that

ax ∈ M r {0}, because E(M) is an essential extension of M . Since Iax = 0, follow

that ax ∈ Γα(M)r{0} and hence, Γα(E(M)) is an essential extension of Γα(M). Also,

we know that

Γα(E(M)) = lim−→
I∈α

ΓI(E(M))
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and ΓI(E(M)) is an injective R-module, for any I ∈ α, we deduce, by [20, Proposi-

tion 1.2(1)], that Γα(E(M)) is an injective R-module and consequently, Γα(E(M)) ∼=

E(Γα(M)). Therefore,

GdimαM =
∑

p∈α∩Spec(R)

µ0(p,M) = GdimΓα(M),

as required.

De�nition 1.1.8 Let α be a good family of ideals in R and let M be an R-module.

We say thatM is α-minimax (or minimax with respect to α) when any quotient module

of M has �nite α-relative Goldie dimension.

Remark 1.1.9 (i) For the family α = F(I, β) we simply called of (I, β)-minimax

module instead of F(I, β)-minimax module;

(ii) By inclusions V (I) ⊆ F̃(I, β) ⊆ F̃(I, J) for all J ∈ β, we have the inequalities

GdimIM ≤ GdimI,βM ≤ GdimI,JM ≤ GdimM

and consequently, the classes of (I, β)-minimax R-modules contain the classes of (I, J)-

minimax R-modules, for any J ∈ β.

Example 1.1.10 (i) If I = 0, then F̃(I, β) = Spec(R) = V (I) and therefore, an

R-module M is minimax if, and only if, it is (I, β)-minimax if, and only if, it is (I, J)-

minimax, for all J ∈ β if, and only if, it is I-minimax;

(ii) If β is the set of all ideals of R, then F̃(I, β) = V (I). So M is (I, β)-minimax if,

and only if, it is I-minimax;

(iii) Let M be an α-torsion module. Then M is α-minimax if, and only if, M is

minimax;

(iv) IfM is an I-torsion module, thenM is minimax if, and only if, it is (I, β)-minimax

if, and only if, it is (I, J)-minimax, for each J ∈ β if, and only if, it is I-minimax.

Proposition 1.1.11 Let 0 −→ M ′ −→ M −→ M ′′ −→ 0 an short exact sequence of

R-modules and α a good family of ideals in R. Then M is α-minimax if, and only if,

M ′ and M ′′ are both α-minimax.

Proof We suposse that M is α-minimax and let is make the identi�cations M ′ ≤ M

and M ′′ = M/M ′. Then, it follows directly that M ′ and M ′′ are α-minimax modules.

Conversely, assume that M ′ and M ′′ are both α-minimax and let N be a submodule

of M . Let p ∈ AssR(M/N) ∩ α. The exact sequence of R-modules

0 −→ M ′ +N

N
−→ M

N
−→ M

M ′ +N
−→ 0

10



induces the exact sequence of Rp-modules

0 −→ HomRp

(
k(p),

M ′
p

M ′
p ∩Np

)
−→ HomRp

(
k(p),

Mp

Np

)
−→ HomRp

(
k(p),

Mp

M ′
p +Np

)
,

where k(p) = Rp/pRp. We know that

(M ′ +N)/N ∼= M ′/M ′ ∩N and M/(M ′ +N) ∼= (M/M ′)/(M ′ +N)/M ′.

By α-minimaximality of M ′ and M ′′, we have

µ0

(
p,
M ′ +N

N

)
≤ Gdimα

(
M ′ +N

N

)
<∞

µ0

(
p,

M

M ′ +N

)
≤ Gdimα

(
M

M ′ +N

)
<∞.

Therefore

µ0

(
p,
M

N

)
≤ µ0

(
p,
M ′ +N

N

)
+ µ0

(
p,

M

M ′ +N

)
<∞.

Moreover, the sets Ass((M ′ + N)/N) ∩ α and Ass(M/(M ′ + N)) ∩ α are both �nite.

Since Ass(M/N) ⊂ Ass((M ′+N)/N)∪Ass(M/(M ′+N)), it follows that Ass(M/N)∩α

is �nite and so M is α-minimax, as required.

Corollary 1.1.12 Let α be a good family of ideals of R. Then any quotient of an α-

minimax module and any �nite direct sum of α-minimax modules are also α-minimax.

1.2 Serre classes

In this section, we prove some results related to Serre classes, or Serre subcategory,

in the category of R-modules.

De�nition 1.2.1 Let Mod(R) the category of R-modules and S a class in Mod(R).

We say that S is a Serre Class (or Serre Subcategory) when the following property is

satis�ed: Given a short exact sequence

0 −→M ′ −→M −→M ′′ −→ 0

of R-modules. Then M ∈ S if, and only if, M ′ ∈ S and M ′′ ∈ S.

Example 1.2.2 The following classes of R-modules are Serre Classes.

(i) The class of Noetherian R-modules ;

(ii) The class of Artinian R-modules;

(iii) The class of R-modules with �nite support;
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(iv) The class of R-modules with dimRM ≤ n, where n is a non-negative integer;

(v) The class of all I-minimax R-modules;

(vi) The class of α-torsion R-modules;

(vii) The class of α-minimax R-modules.

Remark 1.2.3 During the section we will use the following notations:

S for an arbitrary Serre Class in the category Mod(R);

S0 denotes the class of minimax R-modules;

SI for the class of I-minimax R-modules;

SI,J for the class of (I, J)-minimax R-modules;

Sα denotes the class of α-minimax R-modules. For the case α = F(I, β), we denotes

by SI,β the class of (I, β)-minimax R-modules. Using the notation before, we obtains,

from Remark 1.1.9 that S0 ⊆ SI,J ⊆ SI,β ⊆ SI , for all J ∈ β.

Proposition 1.2.4 Let I, I ′ be ideals of R, β, β′ two non-empty sets of ideals of R

and M an R-module. Then

(i) SI,β = S√I,β.
(ii) If β ⊆ 〈{I}〉, then S0 = SI,β.
(iii) If In ⊆

√
I ′, for some n ∈ N, then SI,β ⊆ SI′,β.

(iv) If β′ ⊆ β, then SI,β′ ⊆ SI,β.
(v) If In ⊆

√
I ′, for some n ∈ N and M is (I ′, β)-torsion, then M ∈ SI,β if, and only if,

M ∈ S0 if, and only if, M ∈ SI′,β.
(vi) If β′ ⊆ β and M is (I, β)-torsion, then M ∈ SI,β if, and only if, M ∈ S0 if, and

only if, M ∈ SI,β′ .

Proof (i) Immediate.

(ii) Since β ⊆ 〈I〉, it follows that F̃(I, β) = Spec(R) and, therefore, S0 = SI,β.

(iii) Let M ∈ SI,β. Since In ⊆
√
I ′, we get F̃(

√
I ′, β) ⊆ F̃(I, β). Since M is

(I, β)-minimax R-module, it follows that Gdim√I,βM/N ≤ GdimI,βM/N < ∞, for

any submodule N of M . Therefore M ∈ S√I′,β = SI′,β.

(iv) Let M ∈ SI,β′ . By hypothesis, β′ ⊆ β. So F̃(I, β) ⊆ F̃(I, β′). This implies

that GdimI,βM/N ≤ GdimI,β′M/N < ∞ for all submodule N of M . Therefore,

M ∈ SI,β.

(v) By proof of item (iii) we have F̃(I ′, β) ⊆ F̃(I, β), soM = ΓI′,β(M) ⊆ ΓI,β(M),

that implies M is (I, β)-torsion. Consequently, we get

GdimM/N = GdimI′,βM/N = GdimI,βM/N,

for all submodule N of M . Therefore, it follows the result.
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(vi) The proof is analogous to that of item (v).

Proposition 1.2.5 If N ∈ S and M is a �nitely generated R-module, then, for any

submodule H of ExtiR(M,N) and T of TorRi (M,N), we have ExtiR(M,N)/H ∈ S and

TorRi (M,N)/T ∈ S, for all i ≥ 0.

Proof Since R is Noetherian and M is �nitely generated, it follows that M has a free

resolution

F• : · · · −→ Fi −→ Fi−1 −→ · · · −→ F1 −→ F0 −→ 0,

where each Fi has �nite rank. Applying the functor HomR(−, N) in F•, we get the

complex

HomR(F•, N) : 0 −→ HomR(F0, N)
δ0−→ HomR(F1, N)

δ1−→ · · ·

have in mind that ExtiR(M,N) = H i(HomR(F•, N)), so when i = 0, we have

Ext0
R(M,N) = HomR(M,N)

and we know that there is an injection HomR(M,N) ↪→ Nk, where k is the number

of generators of M . Since N ∈ S, it follows from De�nition 1.2.1 that Nk ∈ S and,

therefore, Ext0
R(M,N) ∈ S.

For the case i > 0, we know that ExtiR(M,N) = Kerδi/Imδi−1. Since Kerδi is a

submodule of HomR(Fi, N) ∼= Nni , where ni is the rank of Fi, and Nni ∈ S, it follows

that Kerδi ∈ S. Moreover, the sequence

0 −→ Imδi−1 ↪→ kerδi � ExtiR(M,N) −→ 0

is exact. So ExtiR(M,N) ∈ S for all i > 0. By De�nition 1.2.1, we have ExtiR(M,N)/H ∈

S for any non-negative integer i. The proof of ToriR(M,N)/T ∈ S, for all non-negative

integer i, is similar to the previous one.

Theorem 1.2.6 Let M be a �nitely generated R-module, N an arbitrary R-module

and t a non-negative integer. Then the following statements are equivalent:

(i) ExtiR(M,N) ∈ S, for all i ≤ t.

(ii) For any �nitely generatedR-moduleH with Supp(H) ⊆ Supp(M), we get ExtiR(H,N) ∈
S, for all i ≤ t.
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Proof (i)⇒(ii) Since SuppH ⊆ SuppM , by Gruson Theorem (see [29]), there exists a

�ltration of R-modules

0 = H0 ⊆ H1 ⊆ · · · ⊆ Hk = H

such that each factor Hj/Hj−1 is a quotient of a �nite direct sum of copies of M . As

a consequence we have the exact sequences

0 −→ K −→Mn −→ H1 −→ 0

0 −→ H1 −→ H2 −→ H2/H1 −→ 0

...

0 −→ Hk−1 −→ Hk −→ Hk/Hk−1 −→ 0

and hence, for each j, a long exact sequence

· · · −→ Exti−1
R (Hj−1, N) −→ ExtiR(Hj/Hj−1, N) −→ ExtiR(Hj, N) −→

−→ ExtiR(Hj−1, N) −→ · · ·

and applying induction on k, is su�cient we prove the result for k = 1. So, when

k = 1, there is a short exact sequence

0 −→ K −→Mn −→ H −→ 0, (1.1)

for some n ∈ N and some �nitely generated R-module K.

Now, we use induction on t. If t = 0, HomR(H,N) is a submodule of R-module

HomR(Mn, N) ∼=
⊕
n

HomR(M,N) ∈ S. Suppose now that t > 0 and ExtjR(H ′, N) ∈ S

for all �nitely generated R-module H ′ with SuppH ′ ⊆ SuppM and for any j ≤ t − 1.

Then, the exact sequence (1.1) induces the long exact sequence

· · · −→ Exti−1
R (K,N)

δi−1

−→ ExtiR(H,N)
δi−→ ExtiR(Mn, N) −→ · · · .

Since SuppK ⊆ SuppMn = SuppM , it follows from induction hypothesis that

Exti−1
R (K,N) ∈ S, for all i ≤ t.

On the other hand, ExtiR(Mn, N) ∼=
⊕
n

ExtiR(M,N) ∈ S. Then, we have

Kerδi = Imδi−1 ∈ S and Imδi = Kerδi+1 ∈ S.
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The result follows from the exact sequence

0 −→ Kerδi −→ ExtiR(H,N) −→ Imδi −→ 0.

(ii)⇒(i) Immediate.

Corollary 1.2.7 Let r a non-negative integer. Then, for any R-module M , the

following statements are equivalent:

(i) ExtiR(R/I,M) ∈ S for all i ≤ r.

(ii) For all ideal a of R with a ⊇ I, ExtiR(R/a,M) ∈ S for all i ≤ r.

(iii) For any �nitely generated R-module N with Supp(N) ⊆ V (I), ExtiR(N,M) ∈ S
for all i ≤ r.

(iv) For any p ∈Min(I), ExtiR(R/p,M) ∈ S for all i ≤ r.

Proof The implications (i)⇒(ii) ⇒(iii)⇒(iv) follow directly from Theorem 1.2.6. So,

remains to prove the implication (iv)⇒(i). Let p1, . . . , pn be the minimal primes ideals

of R. By hypothesis, ExtiR(R/pj,M) ∈ S, for each j = 1, . . . , n. Then, we have

ExtiR(⊕nj=1R/pj,M) ∼= ⊕nj=1Ext
i
R(R/pj,M) ∈ S. Moreover

Supp(R/I) = V (I) = V (
√
I) = V

(
n⋂
j=1

pj

)
=

n⋃
j=1

V (pj) = Supp(⊕nj=1R/pj).

Therefore, by Theorem 1.2.6, ExtiR(R/I,M) ∈ S, for all i ≤ t.
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Chapter 2

Properties of cominimaximality and

�niteness of local cohomology modules

In [2], Alba-Sarria introduces the local cohomology modules with respect to a

good family α which generalizes the local cohomology modules studied in [27]. For an

integer i, the local cohomology functor Hi
α with respect to α is de�ned to be the i-th

right derived functor of Γα. Also Hi
α(M) is called the i-th local cohomology module

of M with respect to α. In [2], Sarria approached the study of properties of these

extended modules.

In this chapter, we will de�ne in section 1 what are (S, I, β)-cominimax modules

and will prove some properties of the local cohomology modules Hi
I,β(M) related to

this de�nition. In addition, starting from what was seen in section 1, we will see in

section 2 when the set of the associated primes of Hi
I,β(M) will be �nite. These results

will conclude the chapter.

2.1 (S, I, β)-Cominimax modules

Given an ideal a, in [16] is de�ned that an R-module M is a-co�nite when M has

support in V (a) and ExtiR(R/a,M) is a �nitely generated R-module for each i. In [3],

Azami, Naghipour and Vakili de�ne the a-cominimax R-modules. More precisely, we

say that an R-module is a-cominimax when SuppR(M) ⊆ V (a) and ExtiR(R/a,M) is an

a-minimax R-module, for all i. This last de�nition generalizes the concept of a-co�nite



R-modules. Furthermore, it is in [1] that Ahmadi-Amoli and Sadeghi present an even

more general concept than the previous ones. These authors de�ned the (S, I, J)-

cominimax R-modules, where S is a Serre Class and I, J are ideals of R. We say that

an R-moduleM is (S, I, J)-cominimax if SuppR(M) ⊆ F̃(I, J) and ExtiR(R/I,M) ∈ S

for each i ≥ 0. In all these cases, properties related to the concept of cominimaximality

were presented for the local cohomology modules Hi
I(M) and Hi

I,J(M) respectively.

In this section we introduce the class of (S, I, β)-Cominimax R-modules and some

relationships between these modules and local cohomology module Hi
I,β(M).

De�nition 2.1.1 Let I be an ideal of R and β a non-empty collection of ideals in

R. We say that an R-module M is (I, β)-co�nite when SuppR(M) ⊆ F̃(I, β) and

ExtiR(R/I,M) is a �nitely generated R-module, for all i ≥ 0.

Recall that for an integer i, the i-th right derived functor of Γα is denoted by Hi
α

and will be referred to as the i-th local cohomology functor with respect to α.

For an R-module M , the module Hi
α(M) is called the i-th local cohomology

module of M with respect to good family α.

When α = F(I, β) we use Hi
I,β(M) to denote the i-th local cohomology R-module

instead of Hi
F(I,β)(M).

It is easy to see that if β = {J}, then Hi
I,β(M) coincides with the local cohomology

functor Hi
I,J de�ned in [27].

Remark 2.1.2 Notice that ΓI(M) ⊆ Γα(M), for I ∈ α. So, if Γα(M) = 0, then

ΓI(M) = 0, for any I ∈ α. Now, let M̄ = M/Γα(M) and let E = ER(M̄). Consider

L = E/M̄ . Since Γα(M̄) = 0, it follows that Γα(E) = 0 and ΓI(M̄) = 0 = ΓI(E), for

each I ∈ α. In particular, HomR(R/I,E) = 0, for all I ∈ α. On the other hand, given

an exact sequence

0 −→ M̄ −→ E −→ L −→ 0

and applying the functors HomR(R/I,−) and Γα(−), we have the following isomor-

phisms:

(i) ExtiR(R/I, L) ∼= Exti+1
R (R/I, M̄), ∀I ∈ α and i ≥ 0.

(ii) Hi
α(L) ∼= Hi+1

α (M), for all i ≥ 0.

De�nition 2.1.3 Let I be an ideal of R and β an arbitrary family of ideals in R. For a

Serre Class S, an R-moduleM is called (S, I, β)-Cominimax when SuppRM ⊆ F̃(I, β)

and ExtiR(R/I,M) ∈ S, for all i ≥ 0.
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Remark 2.1.4 (i) Note that, if we consider S be the class of �nitely generated R-

modules in De�nition 2.1.3, then we recover the De�nition 2.1.1;

(ii) When S = SI,β, we called that the R-module is (I, β)-Cominimax;

(iii) In the case β = {J} and S be the class of �nitely generated R-modules we recuper

the De�nition 2.1 in [28].

Notation 2.1.5 For an ideal I of R, β an non-empty collection of ideals in R and S a

Serre Class, we use C(S, I, β) to denote the class of all (S, I, β)-Cominimax R-modules.

Example 2.1.6 Let N ∈ S be such that SuppR(N) ⊆ F̃(I, β). Then, it follows from

Proposition 1.2.5 that N ∈ C(S, I, β).

Proposition 2.1.7 Let 0 −→M ′ −→M −→M ′′ −→ 0 be a short exact sequence of

R-modules such that two of them are (S, I, β)-Cominimax. Then the third module is

also (S, I, β)-Cominimax.

Proof The result follows from the equality Supp(M) = Supp(M ′) ∪ Supp(M ′′), the

long exact sequence

· · · −→ ExtiR(R/I,M) −→ ExtiR(R/I,M ′′) −→ Exti+1
R (R/I,M ′) −→ · · ·

and Proposition 1.2.5.

Proposition 2.1.8 Let I, I ′ be ideals of R and β, β′ non-empty collections of ideals

in R. Then:

(i) M ∈ C(S, I, β) if and only if M ∈ C(S,
√
I, β).

(ii) If M is I-Cominimax, then M ∈ C(SI,β, I, β).

(iii) If Min(M) ⊆ F̃(I ′, β), In ⊆
√
I ′ for some n ∈ N and ExtiR(R/I,M) ∈ SI,β for all

i ≥ 0, then M ∈ C(SI,β, I, β) and M ∈ C(SI′,β, I ′, β).

(iv) If Min(M) ⊆ F̃(I, β) and β′ ⊆ β, then M ∈ C(SI,β, I, β) if and only if M ∈
C(SI,β′ , I, β′).

Proof (i) Note that F̃(I, β) = F̃(
√
I, β). So M is (I, β)-torsion if and only if is

(
√
I, β)-torsion. Since SI,β = S√I,β,the result follows by Proposition 1.2.4.

(ii) Since M is I-Cominimax, we have

Supp(M) ⊆ V (I) ⊆ F̃(I, β) and ExtiR(R/I,M) ∈ SI ,

for all i ∈ N0. Moreover, SuppExtiR(R/I,M) ⊆ V (I) for any i ∈ N0. So, Ext
i
R(R/I,M)

is I-torsion, for each i ≥ 0 and, consequently, ExtiR(R/I,M) ∈ SI,β for all i.
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(iii) Knowing that Min(M) ⊆ F̃(I ′, β) and In ⊆
√
I ′, we get Supp(M) ⊆

F̃(I ′, β) ⊆ F̃(I, β). Since ExtiR(R/I,M) ∈ SI,β for all i ≥ 0, it follows that M ∈

C(SI,β, I, β). Moreover, SI,β ⊆ SI′,β, by Proposition 1.2.4(iii). Therefore, M ∈

C(SI′,β, I ′, β).

(iv) Suppose thatM ∈ C(SI,β, I, β). Since β′ ⊆ β, we have Supp(M) ⊆ F̃(I, β) ⊆

F̃(I, β′) and, consequently, ExtiR(R/I,M) is (I, β′)-torsion, for all i ≥ 0. So,

ExtiR(R/I,M) ∈ SI,β′ , for any i ∈ N0.

Therefore M ∈ C(SI,β′ , I, β′). Conversely, suppose that M ∈ C(SI,β′ , I, β′). Then

Supp(M) ⊆ F̃(I, β′) and ExtiR(R/I,M) ∈ SI,β′ for each i ≥ 0. Since β′ ⊆ β, it follows

from Proposition 1.2.4(iv) that SI,β′ ⊆ SI,β. Therefore M ∈ C(SI,β, I, β).

Proposition 2.1.9 Let t be a non-negative integer such that Hi
I,β(M) ∈ C(S, I, β)

for all i < t. Then, ExtiR(R/I,M) ∈ S for any i < t.

Proof We use induction on t. If t = 0, there is nothing to prove. For t = 1 we

have HomR(R/I,ΓI,β(M)) = HomR(R/I,M). Since ΓI,β(M) is (S, I, β)-cominimax, it

follows that HomR(R/I,M) ∈ S.

Now, suppose that t ≥ 2 and that for t− 1 the result is hold. Using the notation

of Remark 2.1.2 for α = F(I, β), we have the short exact sequence

0 −→ ΓI,β(M) −→M −→ M̄ −→ 0

which induces the long exact sequence

· · · −→ ExtiR(R/I,ΓI,β(M)) −→ ExtiR(R/I,M) −→ ExtiR(R/I, M̄) −→ · · · .

Since ΓI,β(M) ∈ C(S, I, β), we have ExtiR(R/I,ΓI,β(M)) ∈ S for all i ≥ 0. Therefore,

is su�cient to show that ExtiR(R/I, M̄) ∈ S for any i < t. By Remark 2.1.2 we have

the isomorphisms

ExtiR(R/I, L) ∼= Exti+1
R (R/I, M̄) and Hi

I,β(L) ∼= Hi+1
I,β (M), para todo i ≥ 0.

Assuming that Hi+1
I,β (M) ∈ C(S, I, β) for all i < t− 1, we get that Hi

I,β(L) ∈ C(S, I, β)

for any i < t − 1. So, applying the inductive hypothesis in the R-module L, we get

ExtiR(R/I, L) ∈ S and therefore, Exti+1
R (R/I, M̄) ∈ S for all i < t− 1.
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Corollary 2.1.10 If Hi
I,β(M) ∈ C(S, I, β), for all i ≥ 0, then ExtiR(R/I,M) ∈ S for

any i ≥ 0.

Theorem 2.1.11 Suppose that ExtiR(R/I,M) ∈ S for all i ≥ 0. Let t be a non-

negative integer such that Hi
I,β(M) ∈ C(S, I, β), for any i 6= t, then Ht

I,β(M) ∈
C(S, I, β).

Proof We use induction on t. If t = 0, we must show that H0
I,β(M) = ΓI,β(M), that

is, we must show that ExtiR(R/I,ΓI,β(M)) ∈ S for all i ≥ 0. By long exact sequence

· · · −→ Exti−1
R (R/I, M̄) −→ ExtiR(R/I,ΓI,β(M)) −→ ExtiR(R/I,M) −→ · · ·

and by hypothesis, it is su�cient to show that ExtiR(R/I, M̄) ∈ S for each i ≥ 0. By

Remark 2.1.2, we get Hi
I,β(L) ∈ C(S, I, β), for all i ≥ 0. Therefore, Exti+1

R (R/I, M̄) ∈ S

fro each i ≥ 0, by Corollary 2.1.10. Moreover, Ext0
R(R/I, M̄) = HomR(R/I, M̄) =

HomR(R/I,ΓI,β(M̄)) = 0. So, ExtiR(R/I, M̄) ∈ S, for any i ∈ N0.

Suppose, inductively, that t > 0 and that the result holds for t− 1. By Remark

2.1.2 we have:

ExtiR(R/I, L) ∼= Exti+1
R (R/I, M̄) ∈ S for any i ≥ 0

Hi
I,β(L) ∼= Hi+1

I,β (M) ∈ C(S, I, β) for all i 6= t− 1.

By the inductive hypothesis, Ht−1
I,β (L) ∈ C(S, I, β) which implies that Ht

I,β(M) ∈

C(S, I, β).

Corollary 2.1.12 Let M ∈ S and t be a non-negative integer such that Hi
I,β(M) is

(S, I, β)-cominimax, for all i 6= t. Then Ht
I,β(M) is (S, I, β)-cominimax.

Proof Since M ∈ S, we have ExtiR(R/I,M) ∈ S, for all i ∈ N0. Therefore, applying

Theorem 2.1.11, we get the result.

Now, we have conditions to prove the main Theorem of this section, which is a

generalization of one of the results in [1, Theorem 3.13].

Theorem 2.1.13 Let a ∈ F(I, β). Let t be a non-negative integer such that

ExttR(R/a,M) ∈ S and ExtjR(R/a,Hi
I,β(M)) ∈ S

for any i < t and all j ≥ 0. Then, for any submodule N of Ht
I,β(M) such that

Ext1
R(R/a, N) ∈ S, we have that HomR(R/a,Ht

I,β(M)/N) ∈ S; in particular, for

a = I.
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Proof The short exact sequence

0 −→ N −→ Ht
I,β(M) −→ Ht

I,β(M)/N −→ 0

induces the long exact sequence

· · · −→ HomR(R/a,Ht
I,β(M)) −→ HomR(R/a,Ht

I,β(M)/N) −→ Ext1
R(R/a, N) −→ · · · .

Since Ext1
R(R/a, N) ∈ S, it is su�cient to show that HomR(R/a,Ht

I,β(M)) ∈ S. For

this, we use induction on t. When t = 0, we have

HomR(R/a,H0
I,β(M)) = HomR(R/a,ΓI,β(M)) = HomR(R/a,M) ∈ S.

Now, assume that t > 0 and that the result holds for t − 1. Then, considering

the long exact sequence

· · · −→ ExttR(R/a,M) −→ ExttR(R/a, M̄) −→ Extt+1
R (R/a,ΓI,β(M)) −→ · · ·

we have, by hypothesis, that

ExttR(R/a,M) ∈ S e Extt+1
R (R/a,ΓI,β(M)) = Extt+1

R (R/a,H0
I,β(M)) ∈ S.

So ExttR(R/a, M̄) ∈ S. By Remark 2.1.2 we have

Extt−1
R (R/a, L) ∼= ExttR(R/a, M̄) ∈ S eExtjR(R/a,Hi

I,β(L)) ∼= ExtjR(R/a,Hi+1
I,β (M)) ∈ S,

for each j ≥ 0 and all i < t− 1. Therefore, by induction hypothesis,

HomR(R/a,Ht−1
I,β (L)/N) ∈ S

and consequently, HomR(R/a,Ht
I,β(M)/N) ∈ S.

Corollary 2.1.14 Let t be a non-negative integer such that ExttR(R/I,M) ∈ S and

Hi
I,β(M) ∈ C(S, I, β), for all i < t. Then, for any submodule N of Ht

I,β(M) and all

�nitely generated R-moduleM ′ with Supp(M ′) ⊆ V (I) and Ext1
R(M ′, N) ∈ S, we have

HomR(M ′,Ht
I,β(M)/N) ∈ S.

Proof Knowing that Hi
I,β(M) ∈ C(S, I, β), for all i < t, we get ExtjR(R/I,Hi

I,β(M)) ∈

S for any i < t and all j ≥ 0. If N is a submodule of Ht
I,β(M) and M ′ is a

�nitely generated R-module such that Supp(M ′) ⊆ V (I) and Ext1
R(M ′, N) ∈ S, then
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Ext1
R(R/I,N) ∈ S, by Corollary 1.2.7. By before Theorem, HomR(R/I,Ht

I,β(M)/N) ∈

S. Since M ′ is �nitely generated and Supp(M ′) ⊆ V (I), it follows that

HomR(M ′,Ht
I,β(M)/N) ∈ S.

Proposition 2.1.15 Let t be a non-negative integer such that Hi
I,β(M) ∈ C(S, I, β)

for all i < t. Then the following statements holds:

(i) If ExttR(R/I,M) ∈ S, then HomR(R/I,Ht
I,β(M)) ∈ S.

(ii) If Extt+1
R (R/I,M) ∈ S, then Ext1

R(R/I,Ht
I,β(M)) ∈ S.

(iii) If ExtiR(R/I,M) ∈ S for all i ≥ 0, then HomR(R/I,Ht+1
I,β (M)) ∈ S if, and only if,

Ext2
R(R/I,Ht

I,β(M)) ∈ S.

Proof (i) By hypothesis, Hi
I,β(M) ∈ C(S, I, β) for each i < t. So ExtjR(R/I,Hi

I,β(M)) ∈

S for all j ≥ 0 and each i < t. Knowing that ExttR(R/I,M) ∈ S and taking N = 0 in

the Theorem 2.1.13, we get HomR(R/I,Ht
I,β(M)) ∈ S.

(ii) The proof will be done by induction on t. Suppose that t = 0. Then, by the

long exact sequence

0 −→ Ext1
R(R/I,ΓI,β(M)) −→ Ext1

R(R/I,M) −→ Ext1
R(R/I, M̄)

−→ Ext2
R(R/I,ΓI,β(M)) −→ Ext2

R(R/I,M) −→ Ext2
R(R/I, M̄)

...

−→ ExtiR(R/I,M) −→ ExtiR(R/I, M̄) −→ Exti+1
R (R/I,ΓI,β(M)) −→ · · · (2.1)

and by Ext1
R(R/I,M) ∈ S, we have Ext1

R(R/I,H0
I,β(M)) = Ext1

R(R/I,ΓI,β(M)) ∈ S.

Now, suppose that t > 0 and assume that the result holds for t − 1. Then

H0
I,β(M) = ΓI,β(M) ∈ C(S, I, β), which implies in ExtiR(R/I,ΓI,β(M)) ∈ S, for all

i ≥ 0. Since Extt+1
R (R/I,M) and Extt+2

R (R/I,ΓI,β(M)) belong to S, it follows from

exact sequence (2.1) that Extt+1
R (R/I, M̄) ∈ S. Using the Remark 2.1.2 we conclude

that Hi
I,β(L) ∈ C(S, I, β) for any i < t − 1 and ExttR(R/I, L) ∈ S. By the inductive

hypothesis, Ext1
R(R/I,Ht−1

I,β (L)) ∈ S and therefore, Ext1
R(R/I,Ht

I,β(M)) ∈ S.
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(iii) Suppose that HomR(R/I,Ht+1
I,β (M)) ∈ S. Now, we use induction on t. If

t = 0, then HomR(R/I,H1
I,β(M)) ∈ S. On the other hand, by Remark 2.1.2 we have

HomR(R/I,H1
I,β(M)) ∼= HomR(R/I,ΓI,β(L))

∼= HomR(R/I, L)

∼= Ext1
R(R/I, M̄) ∈ S.

Since Ext2
R(R/I,M) ∈ S, it follows from exact sequence (2.1) that Ext2

R(R/I,ΓI,β(M)) ∈

S.

Suppose that t > 0 and assume that the result holds for t− 1. Since ΓI,β(M) ∈

C(S, I, β), we have ExtiR(R/I,ΓI,β(M)) ∈ S, for any i ≥ 0. So, the exactness of

sequence (2.1) implies that ExtiR(R/I, M̄) ∈ S, for all i ≥ 0. Now, using the Re-

mark 2.1.2 we have ExtiR(R/I, L) ∈ S, for all i ≥ 0, and HomR(R/I,Ht
I,β(L)) ∈ S.

Therefore, by the inductive hypothesis, Ext2
R(R/I,Ht−1

I,β (L)) ∈ S and consequently

Ext2
R(R/I,Ht

I,β(M)) ∈ S.

Conversely, we use induction on t. If t = 0, then Ext2
R(R/I,ΓI,β(M)) ∈ S. So,

we must to show that HomR(R/I,H1
I,β(M)) ∈ S. Since Ext1

R(R/I,M) ∈ S, it follows

from exact sequence

Ext1
R(R/I,M) −→ Ext1

R(R/I, M̄) −→ Ext2
R(R/I,ΓI,β(M))

that Ext1
R(R/I, M̄) ∼= HomR(R/I,H1

I,β(M)) ∈ S.

Assume that t > 0 and that the result holds for t− 1. Then ΓI,β(M) ∈ C(S, I, β)

and consequently ExtiR(R/I,ΓI,β(M)) ∈ S, for all i ≥ 0. By the exact sequence

ExtiR(R/I,M) −→ ExtiR(R/I, M̄) −→ Exti+1
R (R/I,ΓI,β(M))

we get ExtiR(R/I, M̄) ∈ S for all i ≥ 0. Note that ExtiR(R/I, L) ∈ S, for all i ≥ 0, and

Ext2
R(R/I,Hi−1

I,β (L)) ∈ S. By the inductive hypothesis, HomR(R/I,Ht
I,β(L)) ∈ S and

so, HomR(R/I,Ht+1
I,β (M)) ∈ S.

2.2 Properties of associated primes of Ht
I,β(M)

Lemma 2.2.1 Let a be an ideal of R. Let M be an R-module such that SuppM ⊆
V (a) and (0 :M a) has �nite Goldie dimension. Then M has �nite Goldie dimension.
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Proof We know that (0 :M a) ∼= HomR(R/a,M). Then

AssR(0 :M a) = V (a) ∩ AssR(M).

Since AssR(M) ⊆ SuppR(M) ⊆ V (a) it follows that AssR(0 :M a) = AssR(M) and

consequently the set AssR(M) is �nite. On the other hand, for any p ∈ AssRM we

have

HomRp(k(p),Mp) ∼= HomRp(k(p), (0 :Mp aRp)),

as k(p)-vector spaces, where k(p) = Rp/pRp. Therefore µ0(p,M) is �nite and hence

GdimM <∞.

Theorem 2.2.2 Let M be an R-module. Let t be a non-negative integer such

that Hi
I,β(M) is (I, β)-cominimax for all i < t, and ExttR(R/I,M) is (I, β)-minimax.

Then for any (I, β)-minimax submodule N of Ht
I,β(M) and for any �nitely generated

R-module L with SuppR(L) ⊆ V (I), the R-module HomR(L,Ht
I,β(M)/N) is (I, β)-

minimax.

Proof The exact sequence

0 // N // Ht
I,β(M) // Ht

I,β(M)/N // 0

provides the following exact sequence

· · · // HomR(L,Ht
I,β(M)) // HomR(L,Ht

I,β(M)/N) // Ext1
R(L,N) // · · · .

Since by Proposition 1.2.5, Ext1
R(L,N) is (I, β)-minimax, so in view of De�-

nition 1.2.1 it is su�cient to prove that the R-module HomR(L,Ht
I,β(M)) is (I, β)-

minimax. To this end, in view of Corollary 1.2.7, it is enough to prove that the

R-module HomR(R/I,Ht
I,β(M)) is (I, β)-minimax.

We use induction on t. When t = 0, the R-module HomR(R/I,M) is (I, β)-

minimax, by assumption. Since

HomR(R/I,H0
I,β(M)) ∼= HomR(R/I,ΓI,β(M)) ∼= HomR(R/I,M),

it follows that HomR(R/I,H0
I,β(M)) is (I, β)-minimax.

Now suppose, inductively, that t > 0 and that the result has been proved for

t− 1. Since ΓI,β(M) is (I, β)-cominimax, it follows that ExtiR(R/I,ΓI,β(M)) is (I, β)-

minimax for all i ≥ 0. On the other hand, the exact sequence

0 // ΓI,β(M) //M //M/ΓI,β(M) // 0
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induces the exact sequence

// ExttR(R/I,M) // ExttR(R/I,M/ΓI,β(M)) // Extt+1
R (R/I,ΓI,β(M)) // · · · .

Hence, by De�nition 1.2.1 and the assumption, the R-module ExttR(R/I,M/ΓI,β(M))

is (I, β)-minimax. Also since H0
I,β(M/ΓI,β(M)) = 0 and Hi

I,β(M/ΓI,β(M)) ∼= Hi
I,β(M)

for all i > 0, it is follows that Hi
I,β(M/ΓI,β(M)) is (I, β)-cominimax for all i < t. There-

fore we may assume that M is (I, β)-torsion-free. Let E be an injective envelope of M

and put M1 = E/M . Then also ΓI,β(E) = 0 and HomR(R/I,E) = 0. Consequently,

ExtiR(R/I,M1) ∼= Exti+1
R (R/I,M) and Hi

I,β(M1) ∼= Hi+1
I,β (M) for all i ≥ 0. The in-

duction hypothesis applied to M1 yields that HomR(R/I,Ht−1
I,β (M1)) is (I, β)-minimax.

Hence HomR(R/I,Ht
I,β(M)) is (I, β)-minimax.

Theorem 2.2.3 Let M be an (I, β)-minimax R-module. Let t be a non-negative

integer such that Hi
I,β(M) is (I, β)-minimax for all i < t. Then for any (I, β)-

minimax submodule N of Ht
I,β(M) with SuppR(Ht

I,β(M)/N) ⊆ V (I), the R-module

HomR(R/I,Ht
I,β(M)/N) is (I, β)-minimax. In particular, the Goldie dimension of

Ht
I,β(M)/N is �nite, and so the set AssR(Ht

I,β(M)/N) is �nite.

Proof Apply Theorem 2.2.2 and Lemma 2.2.1.

Corollary 2.2.4 Let M be a �nitely generated R-module. Let N (resp. A) denote
the category of all Noetherian (resp. Artinian) R-modules and R-homomorphisms. Let

t be a non-negative integer such that Hi
I,β(M) ∈ Obj(N ) ∪Obj(A) for all i < t. Then

the R-module HomR(R/I,Ht
I,β(M)) is (I, β)-minimax, and so the set AssR(Ht

I,β(M))

is �nite.

Proof Apply Theorem 2.2.2 and the fact that the class of (I, β)-minimax R-modules

contains all Noetherian and Artinian modules.

Proposition 2.2.5 Let t be a non-negative integer such that ExttR(R/I,M) ∈ SI,β
and Hi

I,β(M) ∈ C(SI,β, I, β), for all i < t. Let N an R-submodule of Ht
I,β(M) such that

Ext1
R(R/I,N) ∈ SI,β. If Supp(Ht

I,β(M)/N) ⊆ V (I), then Gdim(Ht
I,β(M)/N) <∞ and

so, the set of associated primes to Ht
I,β(M)/N is �nite.

Proof Using the Theorem 2.1.13 for the class SI,β, we have HomR(R/I,Ht
I,β(M)/N) ∈

SI,β, and this implies that HomR(R/I,Ht
I,β(M)/N) ∈ SI . Note that

SuppHomR(R/I,Ht
I,β(M)/N) = Supp(Ht

I,β(M)/N) ⊆ V (I).
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So HomR(R/I,Ht
I,β(M)/N) is I-torsion and consequently, minimax. Therefore,

GdimHomR(R/I,Ht
I,β(M)/N) <∞.

By isomorphism

HomR(R/I,Ht
I,β(M)/N) ∼= (0 :HtI,β(M)/N I),

it follows from Lemma 2.2.1 that GdimHt
I,β(M)/N <∞.

Corollary 2.2.6 Let t be a non-negative integer such that ExttR(R/I,M) and Hi
I,β(M)

are (I, β)-minimax, for all i < t. Let N be a submodule of Ht
I,β(M) such that

Supp(Ht
I,β(M)/N) ⊆ V (I)

and Ext1
R(R/I,N) is (I, β)-minimax. Then the set AssR(Ht

I,β(M)/N) is �nite.

Proof Since Hi
I,β(M) is (I, β)-torsion, for all i < t, we have Supp(Hi

I,β(M)) ⊆ F̃(I, β),

for any i < t. So, by Example 2.1.6, Hi
I,β(M) ∈ C(SI,β, I, β) for any i < t. Therefore,

by before Proposition, the set AssR(Ht
I,β(M)/N) is �nite.

Corollary 2.2.7 Let t be a non-negative integer such that ExttR(R/I,M) and Hi
I,β(M)

are (I, β)-minimax, for all i < t. If Supp(Ht
I,β(M)) ⊆ V (I), then the set AssR(Ht

I,β(M))

is �nite.

Proof Set N = 0 in Corollary 2.2.6.
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Chapter 3

Generalized local cohomology with

respect to good family of ideals

In [23], Tran Tuan Nam and Nguyen Minh Tri introduced the generalized local

cohomology modules with respect to a pair of ideals (I, J) as follows: for two R-modules

M and N the module ΓI,J(M,N) is the (I, J)-torsion submodule of HomR(M,N),

where for any R-module L

ΓI,J(L) = {x ∈ L | Inx ⊆ Jx for some n ≥ 1} .

For each �xed R-module M , there is a covariant functor ΓI,J(M,−) from the category

of R-modules to itself. The i-th generalized local cohomology functor Hi
I,J(M,−)

with respect to pair of ideals (I, J) is de�ned to be the i-th right derived functor

of ΓI,J(M,−).

Another de�nition of generalized local cohomology functors was introduced by

Zamani in [30] as follow

Hi
I,J(M,N) = H i(HomR(M,ΓI,J(E•)))

for all i ≥ 0, where E• is a minimal injective resolution of R-module N .

Inspired by this, we introduce a module Γα(M,N) as follows: given two R-

modulesM and N we de�ne Γα(M,N) to be the α-torsion submodule of HomR(M,N),

where the α-torsion module is de�ned by Alba-Sarria in [2] by: for any R-module L

Γα(L) = {x ∈ L | SuppR(Rx) ⊆ α} .



If M is a �xed R-module, then there exists a covariant functor Γα(M,−) from the cat-

egory of R-modules to itself. The i-th generalized local cohomology functor Hi
α(M,−)

with the respect to good family α is the i-th right derived functor of Γα(M,−). This

de�nition is really a generalization of the local cohomology funtors Hi
α with respect to α

and it is also a generalization of the generalized local cohomology functors Hi
I,J(M,−).

The organization of the chapter is as follows. In the �rst section, we study some

elementary properties of generalized local cohomology modules with respect to good

family α. We also show some vanishing results concerning these modules.

The second section is devoted to study the α-minimaximality of local coho-

mology modules Hi
α(M,N) and some results of (I, β)-cominimaximality of modules

Hi
I,β(M,N).

3.1 De�nition and properties of the generalized

local cohomology module

De�nition 3.1.1 Let α be a good family of ideals of R. ForM and N two R-modules,

we de�ne the α-torsion module module of M and N by

Γα(M,N) := Γα(HomR(M,N)).

For the case α = F(I, β), we will denote by ΓI,β(M,N) and we will call of (I, β)-

torsion R-module of M and N . When M = R, Γα(R,N) = Γα(N), the α-torsion

R-module of N .

For each R-module M , Γα(M,−) is a left exact covariant functor from the cate-

gory of R-modules to itself.

Let us denote by Hi
α(M,−) the i-th right derived functor of Γα(M,−) and we

call the i-th generalized local cohomology functor with the respect to α.

Theorem 3.1.2 Let M be a �nitely generated R-module and N an R-module. Then

Γα(M,N) = HomR(M,Γα(N)).

Proof If f ∈ Γα(M,N), there exists an ideal J ∈ α such that Jf(x) = 0, for all x ∈M .

Since f(x) ∈ N , for any x ∈ M , we get f(M) ⊆ Γα(N). So f ∈ HomR(M,Γα(N)).

Conversely, let g ∈ HomR(M,Γα(N)). Let x1, . . . , xk generators of M . Then, for each
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i = 1, . . . , k there exists Ji ∈ α such that Jig(xi) = 0. Taking J = J1 . . . Jk, we have

J ∈ α and Jg(x) = 0, for all x ∈M . Therefore g ∈ Γα(M,N).

Corollary 3.1.3 Let M be a �xed �nitely generated R-module and N an arbitrary

R-module. If E• is a minimal injective resolution of N , then

Hi
α(M,N) = H i(HomR(M,Γα(E•)))

for any i.

Proof Since E• is a minimal injective resolution of N and Hi
α(M,−) := RiΓα(M,−)

we have

Hi
α(M,N) = RiΓα(M,N) = H i(Γα(M,E•)).

By Theorem 3.1.2

Γα(M,E•) = HomR(M,Γα(E•))

and hence

Hi
α(M,N) = H i(HomR(M,Γα(E•)))

as required.

Corollary 3.1.4 LetM be a �nitely generated R-module and N an R-module. Then

AssR(Γα(M,N)) = Supp(M) ∩ AssR(N) ∩ α.

Proof Since M is �nitely generated, we have by Theorem 3.1.2

AssR(Γα(M,N)) = AssR(HomR(M,Γα(N)))

= Supp(M) ∩ AssR(Γα(N))

= Supp(M) ∩ AssR(N) ∩ α.

Proposition 3.1.5 Let M be a �nitely generated R-module and N an R-module.

Let I, I ′ be ideals of R and β, β′ non-empty collections of ideals in R. Then:

(i) ΓI,β(ΓI′,β′(M,N)) = ΓI′,β′(ΓI,β(M,N)).

(ii) If I ⊆ I ′, then ΓI,β(M,N) ⊇ ΓI′,β(M,N).

(iii) If β′ ⊆ β, then ΓI,β(M,N) ⊆ ΓI,β′(M,N).

(iv) ΓI,β(ΓI′,β(M,N)) = ΓI+I′,β(M,N).

(v) ΓI,β(ΓI,β′(M,N)) = ΓI,β∪β′(M,N).

(vi) If
√
I =

√
I ′, then Hi

I,β(M,N) = Hi
I′,β(M,N), for all i ≥ 0. In particular,

Hi
I,β(M,N) = Hi√

I,β
(M,N), for each i ≥ 0.

(vii) If β and β′ are co�nals, then Hi
I,β(M,N) = Hi

I,β′(M,N), for any i ≥ 0.
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Proof (i) Since M is �nitely generated, we get

ΓI,β(ΓI′,β′(M,N)) = ΓI,β(HomR(M,ΓI′,β′(N)))

= HomR(M,ΓI,β(ΓI′,β′(N)))

= HomR(M,ΓI′,β′(ΓI,β(N))) by Proposition B.3(i)

= ΓI′,β′(ΓI,β(M,N)).

(ii) By inclusion I ⊆ I ′, it follows from Proposition B.2(i) that F(I ′, β) ⊆ F(I, β).

So ΓI′,β(M,N) ⊆ ΓI,β(M,N).

(iii) Since β′ ⊆ β, we have F(I, β) ⊆ F(I, β′) by Proposition B.2(ii). Therefore

ΓI,β(M,N) ⊆ ΓI,β′(M,N).

(iv) By hypóthesis of M to be �nitely generated, we get

ΓI+I′,β(M,N) = HomR(M,ΓI+I′,β(N))

= HomR(M,ΓI,β(ΓI′,β(N))) by Proposition B.3(iv)

= ΓI,β(ΓI′,β(M,N)).

(v) Note that

ΓI,β∪β′(M,N) = HomR(M,ΓI,β∪β′(N))

= HomR(M,ΓI,β(ΓI,β′(N))) by Proposition B.3(v)

= ΓI,β(ΓI,β′(M,N)).

(vi) Since
√
I =

√
I ′, it follows that 〈I〉 = 〈I ′〉. Logo F(I, β) = F(I ′, β) and

consequently, ΓI,β(M,N) = ΓI′,β(M,N). Therefore Hi
I,β(M,N) = Hi

I′,β(M,N), for all

i ≥ 0.

(vii) Knowing that β and β′ are co�nals, we have 〈β〉 = 〈β′〉. Then Hi
I,β(M,N) =

Hi
I,β′(M,N) for all i ≥ 0.

Proposition 3.1.6 If M is �nitely generated and N is α-torsion, then

Hi
α(M,N) ∼= ExtiR(M,N),

for all i ≥ 0.
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Proof Since N is α-torsion, there exists, by [2, Corollary 1.26], a minimal injective

resolution E• of N formed by α-torsion R-modules. By Theorem 3.1.2, we get

Hi
α(M,N) = H i(HomR(M,Γα(E•)))

= H i(HomR(M,E•))

= ExtiR(M,N),

for any i ≥ 0

Proposition 3.1.7 Let β be a non-empty set of ideals of R. IfM is a �nitely generated

R-module and N is J-torsion, for some J ∈ β, then

Hi
I,β(M,N) ∼= Hi

I(M,N),

for all i ≥ 0 and any ideal I of R.

Proof It is clear that ΓI(N) ⊆ ΓI,β(N). Conversely, if x ∈ ΓI,β(N), then there is

K ∈ F(I, β) such that Kx = 0. Since N is J-torsion, there exists n ∈ N such that

Jnx = 0. Moreover, F(I, β) = F(I, 〈β〉). So K + Jn ∈ 〈I〉 and (K + Jn)x = 0, which

implies that x ∈ ΓI(N). Therefore, by Theorem 3.1.2, we get

ΓI,β(M,N) = HomR(M,ΓI,β(N))

= HomR(M,ΓI(N))

= ΓI(M,N).

On the other hand, since N is J-torsion R-module there exists, by [6, Corollary 2.1.6],

a minimal resolution of N formed by J-torsion R-modules. Therefore

Hi
I,β(M,N) ∼= Hi

I(M,N),

for all i ≥ 0 as required.

Theorem 3.1.8 Let M be a �nitely generated R-module and α a good family of

ideals. Then there exists a natural isomorphism

Hi
α(M,−) ∼= lim−→

a∈α
Hi

a(M,−),

for all i ≥ 0.
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Proof First we show that

HomR(M,Γα(N)) = lim−→
a∈α

HomR(M,Γa(N)).

Note that the right side of above statement equals
⋃

a∈αHomR(M,Γa(N)). So, it is

enough to show that

HomR(M,Γα(N)) =
⋃
a∈α

HomR(M,Γa(N)).

For this, let f ∈ HomR(M,Γα(N)). Then f(M) ⊆ Γα(N). Since M is �nitely gener-

ated, there exists x1, . . . , xk such that M = 〈x1, . . . , xk〉 . So, for each i = 1, . . . , k there

is ai ∈ α such that aif(xi) = 0. Taking a = a1 . . . ak, we get a ∈ α, because α is a good

family, and af(x) = 0, for all x ∈ M . Therefore f ∈ HomR(M,Γa(N)). Conversely, if

g ∈
⋃

a∈αHomR(M,Γa(N)), then there exists a ∈ α such that g ∈ HomR(M,Γa(N)).

So, ang(x) = 0, for some n ∈ N and all x ∈ M . Since an ∈ α, it follows that

g(x) ∈ Γα(N), for any x ∈M . So g ∈ HomR(M,Γα(N)).

Now, let 0 −→ X −→ Y −→ Z −→ 0 be a short exact sequence of R-modules.

Then, this sequence induces a long exact sequence

0 −→ H0
a(M,X) −→ H0

a(M,Y ) −→ H0
a(M,Z) −→

−→ H1
a(M,X) −→ H1

a(M,Y ) −→ H1
a(M,Z) −→ · · · ,

for all a ∈ α. Since the direct limits is exact, we get a long exact sequence

0 −→ lim−→
a∈α

H0
a(M,X) −→ lim−→

a∈α
H0

a(M,Y ) −→ lim−→
a∈α

H0
a(M,Z) −→

−→ lim−→
a∈α

H1
a(M,X) −→ lim−→

a∈α
H1

a(M,Y ) −→ lim−→
a∈α

H1
a(M,Z) −→ · · · .

Since lim−→a∈αH
i
a(M,E) = 0 for all i > 0, whenever E is injective, it follows from [6,

Theorem 1.3.5], that

Hi
α(M,−) ∼= lim−→

a∈α
Hi

a(M,−)

for each i ∈ N0.

Let I ∈ α an ideal of R. In [30] it is shown that, for any exact sequence

0 // X // Y // Z // 0
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and any R-module N we have the long exact sequence

0 // H0
I(Z,N) // H0

I(Y,N) // H0
I(X,N) // · · · .

Applying the direct limits on α, we get the long exact sequence

0 // H0
α(Z,N) // H0

α(Y,N) // H0
α(X,N) // · · · ,

by Theorem 3.1.8.

Theorem 3.1.9 Let (R,m) be a local ring and M,N �nitely generated R-modules

such that M has �nite projective dimension p. Then

Hi
α(M,N) = 0,

for any i > p+ dimN .

Proof We prove by induction on p ≥ 0. If p = 0, then M is a �nitely generated free

R-module Rt, for some t ∈ N. So, by Theorem 3.1.8 and by [2, Lemma 1.38], we have

Hi
α(M,N) ∼= lim−→

a∈α
Hi

a(M,N) ∼= lim−→
a∈α

Hi
a(R

t, N) ∼=
⊕
t

Hi
α(N) = 0,

for all i > p+ dimN .

Assume that p > 0 and that the result holds for p − 1. Then there exists a

�nitely generated free R-module F and a submodule L of F such that L has projective

dimension p− 1 and the sequence

0 −→ L −→ F −→M −→ 0

is exact. The above exact sequence induces the long exact sequence

Hi−1
α (L,N) −→ Hi

α(M,N) −→ Hi
α(F,N).

By inductive hypothesis and Theorem 3.1.8 we get Hi−1
α (L,N) = 0 and Hi

α(F,N) = 0,

for each i > p+ dimN . Therefore Hi
α(M,N) = 0, for any i > p+ dimN .

Corollary 3.1.10 Let (R,m) a local ring and M a �nitely generated R-module with

�nite projective dimension p. Then, Hi
α(M,N) = 0, for i > p + dimR for any (not

necessarily �nitely generated) R-module N .
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Proof By [25, Example 5.32(iii)] , we can write N = lim−→λ
Nλ where each Nλ is a

�nitely generated submodule of N . Note that, for each i ∈ N0

Hi
α(M,N) = lim−→

a∈α
Hi

a(M,N)

= lim−→
a∈α

Hi
a(M, lim−→

λ

Nλ)

= lim−→
a∈α

lim−→
λ

Hi
a(M,Nλ)

= lim−→
λ

lim−→
a∈α

Hi
a(M,Nλ)

= lim−→
λ

Hi
α(M,Nλ).

Since dimR ≥ dimN , it follows from above equality and of Theorem 3.1.9 that

Hi
α(M,N) = 0 for any i > p+ dimR.

The next proposition was taken from [30] and will serve as a tool for the posterior

theorem.

Proposition 3.1.11 Let (R,m) be a local ring with Krull dimension d. Assume that

M,N are �nitely generated R-modules and M has �nite projective dimension. Then,

for each ideal a of R, Hi
a(M,N) = 0 for all i > d.

Proof See [11, Theorem 3.1].

The following Theorem provides a better quota than that of Corollary 3.1.10 for

the vanishing of generalized local cohomology module supported in α.

Theorem 3.1.12 Let (R,m) be a local ring with Krull dimension d. Assume that M

is a �nitely generated R-module and has �nite projective dimension. Then

Hi
α(M,N) = 0

for all i > d and any R-module N .

Proof We can write N = lim−→λ
Nλ where each Nλ is a �nitely generated submodule of

N . Given a ∈ α and Nλ, we have by Proposition 3.1.11

Hi
a(M,Nλ) = 0,

for all i > d. Therefore, by Theorem 3.1.8

Hi
α(M,N) ∼= lim−→

λ

lim−→
a∈α

Hi
a(M,Nλ) = 0,

for each i > d.
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Corollary 3.1.13 Let (R,m) be a local ring. Assume that M is a �nitely generated

R-module and has �nite projective dimension p. Then, for any R-module N �nitely

generated Hi
α(M,N) = 0 for all i > min {dimR, p+ dimN}.

Proof The result follows from Theorem 3.1.9 and Theorem 3.1.12.

3.2 Some results of α-minimaximality

and (I, β)-cominimaximality

Theorem 3.2.1 Let M a �nitely generated R-module and N an R-module. Let t a

positive integer. If Hi
α(N) is α-minimax, for all i < t, then

(i) Hi
α(M,N) is α-minimax, for any i < t.

(ii) ExtiR(R/a, N) is α-minimax, for any i < t and all a ∈ α.

Proof (i) We use induction on t. If t = 1, then H0
α(N) = Γα(N) is α-minimax. Since

H0
α(M,N) = Γα(M,N) = HomR(M,Γα(N))

and M is �nitely generated, it follows that H0
α(M,N) is α-minimax.

Suppose that t > 1 and that the result holds for t − 1. Applying the functors

Γα(−) and Γα(M,−) to short exact sequence

0 −→ N −→ E(N) −→ E(N)/N −→ 0 (3.1)

we get the isomorphisms

Hi
α(E(N)/N) ∼= Hi+1

α (N)

Hi
α(M,E(N)/N) ∼= Hi+1

α (M,N),

for all i > 0. By hypothesis, Hi
α(N) is α-minimax, for any i < t. So Hi

α(E(N)/N) is

α-minimax, for each i < t− 1. Applying the induction hypothesis in E(N)/N we get

Hi
α(M,E(N)/N) is α-minimax, for each i < t− 1. Therefore Hj

α(M,N) is α-minimax,

for all j < t.

(ii) The proof is by induction on t. If t = 1, then Γα(N) is α-minimax. Moreover,

given a ∈ α, we have Γa(N) ⊆ Γα(N). So Γa(N) is α-minimax. Since M is �nitely

generated and

HomR(R/a,Γa(N)) ∼= HomR(R/a, N),
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it follows that Ext0
R(R/a, N) is α-minimax.

Now, suppose that t > 1 and that the proof holds for t − 1. By the short exact

sequence (3.1) we get the isomorphisms

Hi
α(E(N)/N) ∼= Hi+1

α (N)

ExtiR(R/a, E(N)/N) ∼= Exti+1
R (R/a, N),

for all i > 0. Since Hi+1
α (N) is α-minimax for all i < t−1, it follows that Hi

α(E(N)/N)

is also α-minimax, for each i < t− 1. Applying the induction hypothesis in E(N)/N ,

we conclude that ExtiR(R/a, E(N)/N) is α-minimax for all i < t − 1. Therefore

ExtjR(R/a, N) is α-minimax, for any j < t.

Theorem 3.2.2 Let M,N be two �nitely generated R-modules and t a positive in-

teger such that Ht
α(M,R/p) is α-minimax, for all p ∈ Supp(N). Then Ht

α(M,N) is

α-minimax.

Proof As N is �nitely generated, there exists a �ltration of N

0 = N0 ⊆ N1 ⊆ · · · ⊆ Nk = N

such that Ni/Ni−1
∼= R/pi, for some pi ∈ Supp(N).

If i = 1, then Ht
α(M,N1) ∼= Ht

α(M,R/p1) and therefore α-minimax. For each

2 ≤ i ≤ k, there is a short exact sequence

0 −→ Ni−1 −→ Ni −→ R/pi −→ 0. (3.2)

For i = 2, consider the following part of the long exact sequence induced by (3.2)

· · · −→ Ht
α(M,Ni−1) −→ Ht

α(M,Ni) −→ Ht
α(M,R/pi) −→ · · · . (3.3)

Since i = 2, it follows that Ht
α(M,N1) is α-minimax and by hypothesis Ht

α(M,R/p2)

is also α-minimax. Then, by (3.3) we have Ht
α(M,N2) is α-minimax. Proceeding

recursively, we conclude that Ht
α(M,N) is α-minimax.

Corollary 3.2.3 LetM,N be a �nitely generated R-modules and t a positive integer.

Assume that Ht
α(M,R/p) is α-minimax, for all p ∈ Supp(N).

(i) If L is �nitely generated R-module such that Supp(L) ⊆ Supp(N), then Ht
α(M,L)

is α-minimax.

(ii) If a is an ideal of R such that V (a) ⊆ Supp(N), then Ht
α(M,R/a) is α-minimax.

(iii) If α ∩ Spec(R) ⊆ Supp(N), then Ht
α(M,R/a) is α-minimax, for all a ∈ α.
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Proof (i) Since Supp(L) ⊆ Supp(N), it follows that Ht
α(M,R/p) is α-minimax, for

each p ∈ Supp(L). By Theorem 3.2.2 Ht
α(M,L) is α-minimax.

(ii) knowing that V (a) is in bijection with Supp(R/a), we fall back on the hy-

pothesis of item (i). So Ht
α(M,R/a) is α-minimax.

(iii) Given a ∈ α, since α is a good family, it follows that V (a) ⊆ α ∩ Spec(R) ⊆

Supp(N). Therefore, by item (ii), Ht
α(M,R/a) is α-minimax, for any a ∈ α.

Lemma 3.2.4 Assume that (R,m) is a local ring. Let M be a �nitely generated

R-module with Krull dimension d. Then Hd
α(M) is Artinian.

Proof See [2, Theorem 2.2].

Theorem 3.2.5 Let (R,m) be a local ring and M,N be two �nitely generated R-

modules such that M has projective dimension r and N has Krull dimension d. Then

Hr+d
α (M,N) ∼= ExtrR(M,Hd

α(N)).

Moreover, Hr+d
α (M,N) is an Artinian R-module.

Proof Let G(−) = Γα(−) and F(−) = HomR(M,−) be functors from category of

R-modules to itself. Then FG = HomR(M,Γα(−)) = Γα(M,−), since M is �nitely

generated. Moreover, F is left exact. Note that, given an injective module E we have

RiF(G(E)) = RiHomR(M,Γα(E)) = 0,

for all i > 0, since Γα(E) is injective. By Theorem A.9, there exists a Grothedieck

spectral sequence

Ep,q
2 = ExtpR(M,Hq

α(N)) =⇒p H
p+q
α (M,N).

Now, consider the homomorphisms of spectral

Er−k,d+k−1
k −→ Er,d

k −→ Er+k,d+1−k
k .

Note que Hq
α(N) = 0 for all q > d, By [2, Lemma 1.38]. Then Ep,q

2 = 0, for any p > r

or q > d. Moreover, Er−k,d+k−1
k = Er+k,d+1−k

k = 0, for each k ≥ 2. So

Er,d
2 = Er,d

3 = · · · = Er,d
∞ .
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We a�rm that Er,d
∞
∼= Hr+d

α (M,N). Indeed, there is a �ltration Φ ofHr+d = Hr+d
α (M,N)

such that

0 = Φr+d+1Hr+d ⊆ Φr+dHr+d ⊆ · · · ⊆ Φ1Hr+d ⊆ Φ0Hr+d = Hr+d
α (M,N) and holds

Ei,r+d−i
∞ = ΦiHr+d/Φi+1Hr+d for 0 ≤ i ≤ r + d. (3.4)

Note that Ei,r+d−i
2 = ExtiR(M,Hr+d−i

α (N)) = 0, for any i 6= r. So

Ei,r+d−i
2 = Ei,r+d−i

3 = · · · = Ei,r+d−i
∞ = 0,

for all i 6= r. Applying i = r + 1, . . . , r + d and i = 0, . . . , r − 1 in (3.4) we get

Φr+1Hr+d = Φr+2Hr+d = · · · = Φr+d+1Hr+d = 0

ΦrHr+d = Φr−1Hr+d = · · · = Φ0Hr+d = Hr+d
α (M,N).

So

Er,d
∞
∼= ΦrHr+d/Φr+1Hr+d ∼= Hr+d

α (M,N).

Therefore ExtrR(M,Hd
α(N)) ∼= Hr+d

α (M,N). Finally, by Lemma 3.2.4 the module Hd
α(N)

is Artinian. Since M is �nitely generated, it follows that Hr+d
α (M,N) is also Artinian.

Lemma 3.2.6 Let M be an α-minimax R-module such that AssR(M) ⊆ α. Then

Hi
α(M) is α-minimax for all i ≥ 0.

Proof If i = 0, then H0
α(M) = Γα(M) is a submodule of M , and hence Γα(M) is α-

minimax. Since AssR(M) ⊆ α we have M = Γα(M). Consequently, we get Hi
α(M) = 0

for all i > 0, and so Hi
α(M) is α-minimax for each i ≥ 0.

Theorem 3.2.7 Let M be a �nitely generated R-module with �nite projective di-

mension p and N an α-minimax R-module with AssR(N) ⊆ α. Then Hi
α(M,N) is

α-minimax for all i ≥ 0.

Proof We proceed by induction on p. If p = 0, then M is a �nitely generated free

module Rr and so

Hi
α(M,N) ∼= Hi

α(Rr, N) ∼=
⊕
r

Hi
α(N).
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Since each Hi
α(N) is α-minimax by Lemma 3.2.6, it follows that Hi

α(M,N) is also

α-minimax, for all i ≥ 0.

Now, suppose that p > 0. Assume that the result is true for p− 1. There exists

an exact sequence

0 // L // Rk //M // 0, (3.5)

where L is �nitely generated with projective dimension p−1. From the exact sequence

(3.5), we get the following long exact sequence

· · · // Hi−1
α (L,N) // Hi

α(M,N) // Hi
α(N)k // · · · . (3.6)

By induction hypothesis, Hi−1
α (L,N) is α-minimax for all i ≥ 1. Moreover, by

Lemma 3.2.6, Hi
α(N)k is α-minimax for each i ≥ 1 (and also i = 0). Therefore, we

conclude by (3.6) that Hi
α(M,N) is α-minimax, for all i ≥ 1. For the case i = 0, we

have

H0
α(M,N) = Γα(M,N) = HomR(M,Γα(N)).

Since Γα(N) is α-minimax and M is �nitely generated, it follows that H0
α(M,N) is

α-minimax, as required.

De�nition 3.2.8 Let (R,m) be local ring, I an ideal of R and β a non-empty collec-

tion of ideals of R. We de�ne the β-relative cohomological dimension of I by

cdβ(I) = inf
{
n ∈ N0 ; Hi

I,β(M) = 0 for all i > n and all R−module M
}

Note that the set
{
n ∈ N0 ; Hi

I,β(M) = 0 for all i > n and all R−module M
}

is non-empty, by Theorem 3.1.12. Now, we have conditions to prove the next results

that are related to (I, β)-cominimaximality of Hi
I,β(M,N).

Theorem 3.2.9 Let (R,m) a local ring and I an ideal of R such that cdβ(I) = 1.

Let N be an R-module (I, β)-minimax. Then, for all �nitely generated R-module M

and all j ∈ N0, H
j
I,β(M,N) is (I, β)-cominimax.

Proof Let F = ΓI,β(−) and G = HomR(M,−) be functors from category of R-modules

to itself. Then FG = ΓI,β(M,−) = HomR(M,ΓI,β(−)), since M is �nitely generated.

Futhermore, F is left exact. See that, given an injective module E we have

RiF(G(E)) = RiHomR(M,ΓI,β(E)) = 0
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for any i > 0. So, by Theorem A.9 there exists a Grothendieck spectral sequence

Ep,q
2 = Hp

I,β(ExtqR(M,N))
p⇒ Hp+q

I,β (M,N).

Hence, for all j ≥ 0, there is a �nite �ltration of the module Hj = Hj
I,β(M,N)

0 = Φj+1Hj ⊆ ΦjHj ⊆ · · · ⊆ Φ1Hj ⊆ Φ0Hj = Hj

such that

Ep,j−p
∞

∼= ΦpHj/Φp+1Hj

for all 0 ≤ p ≤ j.

By hypothesis, Ep,q
2 = 0 for all p ≥ 2 and all q ≥ 0. Moreover, since Ep,q

∞ is a

subquotient of Ep,q
2 for all p, q ≥ 0, it implies that Ep,q

∞ = 0, for all p ≥ 2 and all q ≥ 0.

It therefore follows

0 = Φj+1Hj = ΦjHj = · · · = Φ2Hj.

On the other hand, by homomorphisms of spectral

0 = E−1,j
2 → E1,j−1

2 → E3,j−2
2 = 0

0 = E−1,j+1
2 → E0,j

2 → E2,j−1
2 = 0

we obtain the equalities

E1,j−1
2 = E1,j−1

3 = · · · = E1,j−1
∞ and E0,j

2 = E0,j
3 = · · · = E0,j

∞ .

The above equalities and the isomorphisms

E1,j−1
2 = E1,j−1

∞
∼= Φ1Hj and E0,j

2 = E0,j
∞
∼= Φ0Hj/E1,j−1

∞ = Φ0Hj/E1,j−1
2

give us a short exact sequence

0 // E1,j−1
2

// Hj
I,β(M,N) // E0,j

2
// 0.

Since E1,j−1
2 and E0,j

2 are both (I, β)-cominimax, it follows from Proposition 2.1.7 that

Hj
I,β(M,N) is also (I, β)-cominimax.

Corollary 3.2.10 Let (R,m) be local ring, I an ideal of R with cdβ(I) = 1 and let

N be an (I, β)-minimax R-module. Then, for all j ≥ 0, Hj
I,β(N) is (I, β)-cominimax.
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Theorem 3.2.11 Let I be an ideal of local ring (R,m) such that cdβ(I) = 1 and let

N be an (I, β)-minimax R-module. Then, for all �nitely generated R-module M and

all i, j ≥ 0, ExtiR(M,Hj
I,β(N)) is (I, β)-cominimax.

Proof By Theorem A.9, we consider the Grothendieck spectral sequence

Ep,q
2 = ExtpR(M,Hq

I,β(N))
p⇒ Hp+q

I,β (M,N). (3.7)

By hypothesis Hj
I,β(N) = 0, for all j > 1 and Ei,0

2 is (I, β)-minimax for all i; thus it

su�ces to show that Ei,1
2 is (I, β)-cominimax for all i. For all p ≥ 2, we consider the

homomorphisms of spectral

0 = Ei−p−1,1+p
p+1

// Ei,1
p+1

// Ei+p+1,1−p
p+1 = 0.

Since Ei,1
p+1 = kerdi,1p /Imd

i−p,p
p , we obtain

kerdi,12
∼= Ei,1

3
∼= · · · ∼= Ei,1

∞

for all i ≥ 0. By using (3.7), there is a �nite �ltration of the moduleH i+1 = Hi+1
I,β (M,N)

0 = Φi+2H i+1 ⊆ Φi+1H i+1 ⊆ · · · ⊆ Φ1H i+1 ⊆ Φ0H i+1 = H i+1

such that

Ep,i+1−p
∞

∼= ΦpH i+1/ΦP+1H i+1

for all 0 ≤ p ≤ i+ 1. It therefore follows that

ΦiH i+1 = Φi−1H i+1 = · · · = Φ1H i+1 = Φ0H i+1 = Hi+1
I,β (M,N).

Now, the exact sequence

0 // Ei+1,0
∞

// Hi+1
I,β (M,N) // Ei,1

∞
// 0

in conjunction with Ei+1,0
∞ is (I, β)-minimax and Hi+1

I,β (M,N) is (I, β)-cominimax by

Theorem 3.2.9, yielding that Ei,1
∞ is (I, β)-cominimax and so is kerdi,12 . Furthermore,

considering the exact sequence

0 // kerdi,12
// Ei,1

2
// Imdi,12

// 0

and knowing that Imdi,12 ⊆ Ei+2,0
2 is (I, β)-cominimax, it follows that Ei,1

2 is (I, β)-

cominimax, as required.

41



Chapter 4

Ideal transforms with respect to a

good family of ideals

Let I be an ideal of R and M be an R-module. In [6], the authors de�ned the

ideal transform DI(M) of M with respect to I by

DI(M) = lim−→
n

HomR(In,M).

Ideal transform turns out to be a powerful tool in various �elds of commutative algebra

and it is an important algebraic tool in studying local cohomology modules with respect

to an ideal. One extensions of DI(M) is the generalized ideal transform DI(M,N) of

two R-modules M ,N with respect to I which was de�ned and studied in [12] and [22].

In this chapter we introduce the notion of ideal transform Dα(M) of an R-module

M with respect to a good family α of ideals of R (generelized ideal transform Dα(M,N)

of two modules M and N with respect to a good family α of ideals of R) and we explore

their properties and its relation with local cohomology modules Hi
α(M) (generalized

local cohomology Hi
α(M,N), respectively).

4.1 Basic properties of ideals transforms

In this chapter α will be denote a good family of ideals of R.

De�nition 4.1.1 The α-transform functor with respect to α is de�ned by

Dα(−) := lim−→
I∈α

HomR(I,−).



Notice that Dα(−) is an R-linear left exact functor from the category of R-modules to

itself. Given an R-module M ,

Dα(M) = lim−→
I∈α

HomR(I,M).

is called ideal transform of M with respect to α (or α-transform of M).

For any non-negative integer i, the i-th right derived functor of Dα is denoted by

RiDα.

Lemma 4.1.2 For each i ≥ 0, there is a natural isomorphism

RiDα(−) ∼= lim−→
I∈α

ExtiR(I,−).

Proof By de�nition 4.1.1 we have Dα(−) = lim−→
I∈α

HomR(I,−). On the other hand, the

short exact sequence 0→M → N → P → 0 induces the long exact sequence

0→ HomR(I,M)→ HomR(I,N)→ HomR(I, P )→ · · ·

· · · → ExtiR(I,M)→ ExtiR(I,N)→ ExtiR(I, P )→ · · ·

for all I ∈ α. Since direct limits are exact functors, we have a long exact sequence

0→ lim−→
I∈α

HomR(I,M)→ lim−→
I∈α

HomR(I,N)→ lim−→
I∈α

HomR(I, P )→ · · ·

· · · → lim−→
I∈α

ExtiR(I,M)→ lim−→
I∈α

ExtiR(I,N)→ lim−→
I∈α

ExtiR(I, P )→ · · · .

Finally, for all i > 0 and any injective R-module E, lim−→
I∈α

ExtiR(I, E) = 0 , because

ExtiR(I, E) = 0.

Lemma 4.1.3 There is a functorial exact sequence

0→ Γα(−)→ Id(−)→ Dα(−)→ H1
α(−)→ 0,

where Id is the identity functor. Moreover, for each i ≥ 1, there exists a natural

isomorphism

RiDα(−) ∼= Hi+1
α (−).

Proof Let I and J two ideals in α such that I ≥ J (i.e., I ⊆ J). Let jIJ : I → J

be the inclusion map and hIJ : R/I → R/J be the natural epimorphism. Consider a

homomorphism f : M → N of R-modules M and N .
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The diagram

0 // I //

jIJ
��

R //

1R

R/I //

hIJ
��

0

0 // J // R // R/J // 0

is commutative (in which the rows are the canonical exact sequences). Such diagram

induces a chain map of the long exact sequence of Ext•R(−,M) modules. Since R is a

projective R-module, we obtain the following commutative diagram

0 // HomR(R/J,M) //

��

M // HomR(J,M) //

��

Ext1
R(R/J,M) //

��

0

0 // HomR(R/I,M) //M // HomR(I,M) // Ext1
R(R/I,M) // 0

and for each i ≥ 1, the commutative diagram

ExtiR(J,M) ∼=

βiJ,M
//

Ext
i
R(jIJ ,M)

��

Exti+1
R (R/J,M)

Ext
i+1
R (hIJ ,M)

��

ExtiR(I,M) ∼=

βiI,M
// Exti+1

R (R/I,M).

Now passing the direct limits, we obtain the exact sequence

0 // Γα(M)
ξM
//M

ηM
// Dα(M)

ζ0M
// H1

α(M) // 0

and, for each i ≥ 1 the isomorphism

βiM : lim−→
I∈α

ExtiR(I,M)
∼=
// lim−→
I∈α

Exti+1
R (R/I,M).

Moreover, since the following diagrams

0 // HomR(R/I,M) //

��

M //

f

��

HomR(I,M) //

��

Ext1
R(R/I,M) //

��

0

0 // HomR(R/I,N) // N // HomR(I,N) // Ext1
R(R/I,N) // 0

ExtiR(I,M) ∼=

βiI,M
//

��

Exti+1
R (R/I,M)

��

ExtiR(I,N) ∼=

βiI,N
// Exti+1

R (R/I,N)

are commutative, it follows that ξ, η, ζ0 and βi constitute natural transformations.

An interesting question related to the ideal transform is about its exactness.

Before to answer a similar question for the α-transform functor we prove a few results.
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Lemma 4.1.4 Let M be an R-module. Then the following statements hold:

(i) If M is an α-torsion module, then RiDα(M) = 0 for all i ≥ 0;

(ii) RiDα(M) ∼= RiDα(M/Γα(M)) for all i ≥ 0;

(iii) RiDα(M) ∼= RiDα(Dα(M)) for all i ≥ 0;

(iv) Γα(Dα(M)) = 0 = H1
α(Dα(M));

(v) Hi
α(M) ∼= Hi

α(Dα(M)) for all i > 1;

(vi) Let f : M → N be an homomorphism of R-modules such that Kerf and Cokerf

are both α-torsion. Then Dα(M) ∼= Dα(N);

(vii) Dα(DI(M)) ∼= Dα(M) for all I ∈ α.

Proof (i) By Lemma 4.1.3 there is an exact sequence

0 // Γα(M) //M // Dα(M) // H1
α(M) // 0.

Since M is an α-torsion R-module, it follows that Hi
α(M) = 0 for all i > 0. Thus

Dα(M) ∼= M/Γα(M) = 0 and RiDα(M) ∼= Hi+1
α (M) = 0 for all i > 0.

(ii) The short exact sequence

0 // Γα(M) //M //M/Γα(M) // 0

yields a long exact sequence

0 // Dα(Γα(M)) // Dα(M) // Dα(M/Γα(M)) // · · ·

//RiDα(Γα(M)) //RiDα(M) //RiDα(M/Γα(M)) // · · · .

Since RiDα(Γα(M)) = 0 by (i), we have

RiDα(M) ∼= RiDα(M/Γα(M))

for all i ≥ 0.

(iii) The exact sequence

0 // Γα(M) //M // Dα(M) // H1
α(M) // 0

gives rise to an exact sequence

0 //M/Γα(M) // Dα(M) // H1
α(M) // 0.

By applying the functor Dα to the above exact sequence, we get a long exact sequence

· · · //RiDα(M/Γα(M)) //RiDα(Dα(M) //RiDα(H1
α(M)) // · · · .
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Since H1
α(M) is α-torsion, it follows from (i) that RiDα(H1

α(M)) = 0 for all i ≥ 0. This

implies that RiDα(M/Γα(M)) ∼= RiDα(Dα(M)) and then RiDα(M) ∼= RiDα(Dα(M))

for all i ≥ 0 by (ii).

(iv) and (v) The short exact sequence

0 //M/Γα(M) // Dα(M) // H1
α(M) // 0

induces a long exact sequence

· · · // Hi
α(M/Γα(M)) // Hi

α(Dα(M)) // Hi
α(H1

α(M)) // · · · .

Note that

Γα(H1
α(M)) = H1

α(M), Γα(M/Γα(M)) = 0 = Hi
α(H1

α(M)) for all i > 1

and H1
α(M/Γα(M)) ∼= H1

α(M). We thus Γα(Dα(M)) = 0 = H1
α(Dα(M)). Moreover, we

have Hα(M) ∼= Hi
α(Dα(M)) for all i > 1.

(vi) Applying the functor Dα to the following exact sequences

0 // Kerf //M // Imf // 0 and 0 // Imf //M ′ // Cokerf // 0

together with (i) yields

Dα(M) ∼= Dα(Imf) ∼= Dα(M ′).

(vii) Let I ∈ α. Note that, if K is an I-torsion R-module, then K is α-torsion.

Applying (vi) in the exact sequence

0 // ΓI(M) //M // DI(M) // H1
I(M) // 0

we obtain the isomorphism Dα(M) ∼= Dα(DI(M)). The proof is complete.

Lemma 4.1.5 Let M be an R-module such that HomR(R/I,M) = 0 for all I ∈ α.
Then AssR(M) ∩ α = ∅. In particular M is α-torsion-free.

Proof By the hypothesis,

V (I) ∩ AssR(M) = AssR(HomR(R/I,M)) = ∅

for all I ∈ α. Note that ⋃
I∈α

V (I) = α ∩ Spec(R)
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and then

∅ = (
⋃
I∈α

V (I))∩AssR(M) = α∩Spec(R)∩AssR(M) = α∩AssR(M) = AssR(Γα(M)),

as required.

Lemma 4.1.6 LetM be an R-module. Then the following statements are equivalent:

(i) Hi
α(M) = 0 for all i ≥ 0;

(ii) ExtiR(R/I,M) = 0 for any i ≥ 0 and all I ∈ α.

Proof Let F = HomR(R/I,−) and G = Γα(−) be functors from the category of R-

modules to itself. We see that FG(M) = HomR(R/I,M) for any R-module M . If E

is an injective R-module, then G(E) = Γα(E) is also injective. Hence G(E) is right

F -acyclic. By Theorem A.9, there is a Grothendieck spectral sequence

Ep,q
2 = ExtpR(R/I,Hq

α(M))
p⇒ Extp+qR (R/I,M).

For n ≥ 0, we have a �ltration of submodules of Hn = ExtnR(R/I,M)

0 = Φn+1Hn ⊆ ΦnHn ⊆ · · · ⊆ Φ0Hn = Hn

such that

Ei,n−i
∞

∼= ΦiHn/Φi+1Hn

for all i ≤ n.

(i) ⇒ (ii) If Hq
α(M) = 0 for all q ≥ 0, then Ep,q

∞ = 0 for all p, q ≥ 0. This implies

that

0 = Φn+1Hn = ΦnHn = · · · = Φ1Hn = Φ0Hn = ExtnR(R/I,M)

for all n ≥ 0.

(ii)⇒(i) We prove Hn
α(M) = 0 by induction on n. Let n = 0, since HomR(R/I,M) =

0 for all I ∈ α, it follows from Lemma 4.1.5 that ∅ = AssR(Γα(M)) and then

Γα(M) = 0. Assume that Hi
α(M) = 0 for all i < n. The homomorphisms of spec-

tral sequence

0 // E0,n
2

d0,n
// E2,n−1

2 = 0

induces that

E0,n
2 = E0,n

3 = · · · = E0,n
∞ .
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Since E0,n
∞
∼= Φ0Hn/Φ1Hn and Hn = ExtnR(R/I,M) = 0, it follows that 0 = E0,n

∞ =

E0,n
2 . So, we have HomR(R/I,Hn

α(M)) = 0 for all I ∈ α. In view of Lemma 4.1.5, we

get Hn
α(M) = 0.

Lemma 4.1.7 Let M be a �nitely generated R-module with �nite projective dimen-

sion d. If Hn
α(R) = 0 for all n ≥ 2, then Hn

α(M) = 0 for all n ≥ 2.

Proof Since M is �nitely generated, we have a free resolution

0 −→ Fd
δd−→ · · · δ3−→ F2

δ2−→ F1
δ1−→ F0

δ0−→M −→ 0

where Fi have �nite rank, for each 0 ≤ i ≤ d. Now, we prove by induction on d. If

d = 0, then M ∼= F0 and therefore Hn
α(M) = 0 for all n ≥ 2. When d = 1, the exact

sequence

0 // F1
// F0

//M // 0

induces a long exact sequence

· · · // Hn
α(F0) // Hn

α(M) // Hn+1
α (F1) // · · · .

Since Hn
α(F0) = 0 = Hn+1

α (F1), it follows that Hn
α(M) = 0.

Assume that d > 1 and the result is true for d− 1. In the free resolution

0 −→ Fd −→ · · · −→ F2 −→ F1 −→ F0 −→M −→ 0

we obtain the exacts sequences

0 // Fd // Fd−1
//Md−1

// 0 (4.1)

0 //Mi
// Fi−1

//Mi−1
// 0 , 0 < i ≤ d− 1 (4.2)

0 //M1
// F0

//M // 0, (4.3)

where Mi = Kerδi−1, for 1 < i ≤ d − 1, and Md = Fd. The exact sequence (4.1)

induces a long exact sequence

· · · // Hn
α(Fd−1) // Hn

α(Md−1) // Hn+1
α (Fd) // · · · .
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Since Hn
α(Fd−1) = 0 = Hn+1

α (Fd), it follows that H
n
α(Md−1) = 0 for all n ≥ 2. On the

other hand, assuming i = d − 1 in the exact sequence (4.2), we obtain the long exact

sequence

· · · // Hn
α(Fd−2) // Hn

α(Md−2) // Hn+1
α (Md−1) // · · ·

and consequently Hn
α(Md−1) = 0. Proceeding recursively, we conclude that Hn

α(Mi) = 0

for each 1 ≤ i ≤ d and all n ≥ 2.

Finally, by exact sequence (4.3), we have the induced long exact sequence

· · · // Hn
α(F0) // Hn

α(M) // Hn+1
α (M1) // · · ·

and therefore Hn
α(M) = 0 for all n ≥ 2, as required.

Theorem 4.1.8 Let M be a �nitely generated R-module with �nite projective di-

mension p. Then the following statements are equivalent:

(i) Dα is an exact functor;

(ii) Hn
α(R) = 0 for all n ≥ 2;

(iii) Hn
α(M) = 0 for all n ≥ 2;

(iv) Hn
α(Dα(M)) = 0 for all n ≥ 0;

(v) ExtnR(R/I,Dα(M)) = 0 for any n ≥ 0 and all I ∈ α;
(vi) TorRn (R/I,Dα(M)) = 0 for any n ≥ 0 and all I ∈ α.

Proof (i)⇒(ii) It follows from Lemma 4.1.3.

(ii)⇒(iii) Since p <∞ and Hn
α(R) = 0 for all n ≥ 2, is follows from Lemma 4.1.7

that Hn
α(M) = 0 for any n ≥ 2.

(iii)⇔(iv) this is immediate from Lemma 4.1.4(iv and v).

(iv)⇔(v) It follows from Lemma 4.1.6.

(v)⇔(vi) See [4, Lemma 3.1].

(iii)⇒(i) By Lemma 4.1.3 and Lemma 4.1.4(v) we have

RiDα(M) ∼= Hi+1
α (M) ∼= Hi+1

α (Dα(M)) ∼= lim−→
I∈α

Exti+1
R (R/I,Dα(M)) = 0

for all i > 0. The proof is complete.

Corollary 4.1.9 Let M be a �nitely generated R-module with �nite projective di-

mension. If Dα is an exact functor, then IDα(M) = Dα(M) for all I ∈ α.

Proof By Theorem 4.1.8(vi) we have TorR0 (R/I,M) = 0 for all I ∈ α. Therefore

IDα(M) = Dα(M) for any I ∈ α.
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Proposition 4.1.10 Let M be an J-torsion R-module for some J ∈ β. Then

DI,β(M) ∼= DI(M).

Proof SinceM is an J-torsion module, we have Hi
I,β(M) ∼= Hi

I(M) for all i ≥ 0. There

is a commutative diagram

0 // ΓI(M) //

∼=
��

M //

1M

��

DI(M) //

��

H1
I(M) //

∼=
��

0

0 // ΓI,β(M) //M // DI,β(M) // H1
I,β(M) // 0

where two rows are exact sequences by Lemma 4.1.3. This implies that DI(M) ∼=

DI,β(M).

Proposition 4.1.11 Let M be a �nitely generated R-module with �nite projective

dimension. Then HomR(R/I,H1
α(M)) is �nitely generated.

Proof The short exact sequence

0 //M/Γα(M) // Dα(M) // H1
α(M) // 0

induces an exact sequence

HomR(R/I,Dα(M)) // HomR(R/I,H1
α(M)) // Ext1

R(R/I,M/Γα(M)).

Since Dα(M) is I-torsion-free, we see that HomR(R/I,Dα(M)) = 0. The proof is

complete by the assumption.

4.2 Generalized ideal transforms

In this section, we proceed with the study of the generalized ideal transform

Dα(M,N) with respect to α which is an extension of the ideal transform Dα(N).

Theorem 4.2.5 shows RiDα(M,N) = 0 provided that M is a �nitely generated R-

module and N is α-torsion.

De�nition 4.2.1 LetM beR-module. The generalized α-transform functor is de�ned

by

Dα(M,−) := lim−→
I∈α

HomR(IM,−).
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We see that Dα(M,−) is an R-linear and left exact functor. The i-th right derived

functor of Dα(M,−) will be denoted by RiDα(M,−). Given an R-module N , we call

Dα(M,N) the generalized ideal transform of M and N with respect to α (or generalized

α-transform of M and N).

Proposition 4.2.2 Let M be a �nitely generated R-module. Then there exists a

natural isomorphism

RiDα(M,−) ∼= lim−→
I∈α

ExtiR(IM,−)

for all i ≥ 0.

Proof We know that Dα(M,−) = lim−→
I∈α

HomR(IM,−) by De�nition 4.2.1. On the other

hand, the short exact sequence 0→ X → Y → Z → 0 induces the long exact sequence

0→ HomR(IM,X)→ HomR(IM, Y )→ HomR(IM,Z)→ · · ·

· · · → ExtiR(IM,X)→ ExtiR(IM, Y )→ ExtiR(IM,Z)→ · · ·

for all I ∈ α. Since direct limits are exact functors, we have a long exact sequence

0→ lim−→
I∈α

HomR(IM,X)→ lim−→
I∈α

HomR(IM, Y )→ lim−→
I∈α

HomR(IM,Z)→ · · ·

· · · → lim−→
I∈α

ExtiR(IM,X)→ lim−→
I∈α

ExtiR(IM, Y )→ lim−→
I∈α

ExtiR(IM,Z)→ · · · .

Moreover, for all i > 0 and any injective R-module E, we get lim−→
I∈α

ExtiR(IM,E) = 0,

because ExtiR(IM,E) = 0. The proof is complete.

In chapter 3, we studied the generalized local cohomology modules with respect

to family α of ideals Hi
α(M,N). The following lemma gives relationship between

Hi
α(M,N) and RiDα(M,N).

Lemma 4.2.3 Let M be a �nitely generated R-module with �nite projective dimen-

sion p. Then there is a functorial long exact sequence

0 // Γα(M,−) // HomR(M,−) // Dα(M,−) // H1
α(M,−) // · · ·

· · · // Hi
α(M,−) // ExtiR(M,−) //RiDα(M,−) // Hi+1

α (M,−) // · · ·

.

Moreover, for each i > p, there exists a natural isomorphism

RiDα(M,−) ∼= Hi+1
α (M,−).
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Proof Let I, J ∈ α be two ideals with I ≥ J . Let jIJ : IM → JM be the inclusion map

and hIJ : M/IM → M/JM be the natural epimorphism. Consider a homomorphism

f : N → P of R-modules N and P . We know that the diagram

0 // IM //

jIJ
��

M //

1M

M/IM //

hIJ
��

0

0 // JM //M //M/JM // 0

is commutative. This diagram induces a chain map of the long exact sequence of

Ext•R(−, N) modules and we obtain the followings commutative diagrams for 0 ≤ i ≤ p

0 // HomR(M/JM,N) //

��

HomR(M,N) // HomR(JM,N) //

��

Ext1
R(M/JM,N)

��

0 // HomR(M/IM,N) // HomR(M,N) // HomR(IM,N) // Ext1
R(M/IM,N)

· · · // ExtiR(M/JM,N) //

��

ExtiR(M,N) // ExtiR(JM,N) //

��

Exti+1
R (M/JM,N)

��

· · · // ExtiR(M/IM,N) // ExtiR(M,N) // ExtiR(IM,N) // Exti+1
R (M/IM,N)

and for each i > p, the commutative diagram

ExtiR(JM,N) ∼=

βiJ,N
//

Ext
i
R(jIJ ,N)

��

Exti+1
R (M/JM,N)

Ext
i+1
R (hIJ ,N)

��

ExtiR(IM,N) ∼=

βiI,N
// Exti+1

R (M/IM,N).

It is known that the direct limits is an exact functor. By applying the diect limits over

α, we obtain the exact long sequence

0 // H0
α(M,N) // HomR(M,N) // Dα(M,N) // H1

α(M,N) // · · ·

· · · // Hi
α(M,N) // ExtiR(M,N) //RiDα(M,N) // Hi+1

α (M,N) // · · ·

and for any i > p an isomorphismRiDα(M,N) ∼= Hi+1
α (M,N). Moreover, the following

diagrams

0 // HomR(M/IM,N) //

��

HomR(M,N) //

HomR(M,f)

��

HomR(IM,N) //

��

Ext1
R(M/IM,N)

��

0 // HomR(M/IM,P ) // HomR(M,P ) // HomR(IM,P ) // Ext1
R(M/IM,P )
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· · · // ExtiR(M/IM,N) //

��

ExtiR(M,N) //

Ext
i
R(M,f)

��

ExtiR(IM,N) //

��

Exti+1
R (M/IM,N)

��

· · · // ExtiR(M/IM,P ) // ExtiR(M,P ) // ExtiR(IM,P ) // Exti+1
R (M/IM,P )

ExtiR(IM,N) ∼=

βiI,N
//

��

Exti+1
R (M/IM,N)

��

ExtiR(IM,P ) ∼=

βiI,P
// Exti+1

R (M/IM,P )

are commutative and hence the proof is complete.

Corollary 4.2.4 If Dα(M,−) is exact, then Hi
α(M,N) ∼= ExtiR(M,N) for all i > 1.

Proof By Lemma 4.2.3 we have the long exact sequence

· · · //Ri−1Dα(M,N) // Hi
α(M,N) // ExtiR(M,N) //RiDα(M,N) // · · · .

If i > 1, then Ri−1Dα(M,N) = 0 = RiDα(M,N). Therefore Hi
α(M,N) ∼= ExtiR(M,N)

for all i > 1.

Theorem 4.2.5 Let M be a �nitely generated R-module and N an α-torsion R-

module. Then RiDα(M,N) = 0 for all i ≥ 0.

Proof We �rst prove that Dα(M,N) = 0. Consider, for each I ∈ α, the injections

λI : HomR(IM,N)→
⊕
J∈α

HomR(JM,N)

and the homomorphisms

ϕIJ : HomR(IM,N)→ HomR(JM,N)

such that ϕIJ(fI) = fI |JM for all I ≤ J .

Let T be an R-submodule of
⊕
J∈α

HomR(JM,N) which is generated by elements

λJϕ
I
J(fI)− λIfI , where fI ∈ HomR(IM,N) and I ≤ J . Then

Dα(M,N) = lim−→
I∈α

HomR(IM,N) = (
⊕
I∈α

HomR(IM,N))/T.

For any u ∈ Dα(M,N), we have u =
∑
K∈α

λKfK +T , where fK ∈ HomR(KM,N).

Since KM is a �nitely generated R-module and N is an α-torsion R-module, there
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exists a ∈ α such that afK(KM) = 0. This implies that fK(aKM) = 0 and so

ϕKaK(fK) = 0. Therefore λKfK +T = 0, for any K, by [25, Theorem 2.17(ii)]. It follows

that u = 0 and then Dα(M,N) = 0.

The proof will be complete if we show RiDα(M,N) = 0 for all i > 0.

As N is α-torsion, there is an injective resolution E• of N such that each term

of the resolution is an α-torsion R-module. It is known that

RiDα(M,N) = H i(Dα(M,E•)).

By the above proof, we have

Dα(M,Ei) = lim−→
I∈α

HomR(IM,Ei) = 0

for all i ≥ 0. Therefore Ri(Dα(M,N)) = 0 for all i ≥ 0.

Corollary 4.2.6 Let M be a �nitely generated R-module and N an R-module such

that Dα(N) = 0. Then RiDα(M,N) = 0 for all i ≥ 0.

Proof We consider the exact sequence

0 // Γα(N) // N // Dα(N) // H1
α(N) // 0.

From the hypothesis, we have Γα(N) ∼= N that means N is α-torsion. By Theorem

4.2.5 we have the conclusion.

Corollary 4.2.7 Let M be a �nitely generated R-module and N an α-torsion R-

module. Then

Hi
α(M,N) ∼= ExtiR(M,N)

for all i ≥ 0.

Proof It follows from Lemma 4.2.3 and Theorem 4.2.5.

Remark 4.2.8 IfM is a �nitely generated R-module, then there is an exact sequence

Rr //M // 0

for some r ∈ N. It induces an exact sequence

IRr // IM // 0
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for all I ∈ α and then we have an exact sequence

0 // HomR(IM,N) // HomR(IRr, N).

Note that HomR(IRr, N) ∼= HomR(I,N)r. Passing direct limits on α, we get the

following exact sequence

0 // Dα(M,N) // Dα(N)r.

If f : N → N ′ is an R-module homomorphism such that Kerf and Cokerf are

both α-torsion R-modules, then RiDα(N) ∼= RiDα(N ′) for all i ≥ 0. We have a similar

property in case of the generalized ideal transforms.

Proposition 4.2.9 LetM be a �nitely generated R-module and f : N → N ′ a homo-

morphism of R-modules such that Kerf and Cokerf are both α-torsion R-modules.

Then

RiDα(M,N) ∼= RiDα(M,N ′)

for all i ≥ 0.

Proof Two short exact sequences

0 // Kerf // N // Imf // 0 and 0 // Imf // N ′ // Cokerf // 0

induces two long exact sequences

0 // Dα(M,Kerf) // Dα(M,N) // Dα(M, Imf) //R1Dα(M,Kerf) // · · ·

0 // Dα(M, Imf) // Dα(M,N ′) // Dα(M,Cokerf) //R1Dα(M, Imf) // · · · .

Since Kerf and Cokerf are both α-torsion R-modules,

RiDα(M,Kerf) = 0 = RiDα(M,Cokerf)

for all i ≥ 0. Hence RiDα(M,N) ∼= RiDα(M, Imf) ∼= RiDα(M,N ′).

Proposition 4.2.10 Let M be a �nitely generated R-module and N an R-module.

The following statements hold:

(i) Dα(M,N) is an α-torsion-free R-module;

(ii) RiDα(M,N) ∼= RiDα(M,N/Γα(N)) for all i ≥ 0;

(iii) RiDα(M,N) ∼= RiDα(M,Dα(N)) for all i ≥ 0;

(iv) Dα(Dα(M,N)) ∼= Dα(M,N);

(v) Dα(HomR(M,N)) ∼= HomR(M,Dα(N));

(vi) Dα(HomR(M,N)) ∼= Dα(M,N).
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Proof (i) We have the following exact sequence by remark 4.2.8

0 // Γα(Dα(M,N)) // Γα(Dα(N))r.

Since Γα(Dα(N)) = 0, we get Γα(Dα(M,N)) = 0.

(ii) The short exact sequence

0 // Γα(N) // N // N/Γα(N) // 0

gives rise to a long exact sequence

0 // Dα(M,Γα(N)) // Dα(M,N) // Dα(M,N/Γα(N)) // · · ·

· · · //RiDα(M,N) //RiDα(M,N/Γα(N)) //Ri+1Dα(M,Γα(N)) // · · · .

Then RiDα(M,N) ∼= RiDα(M,N/Γα(N)) for all i ≥ 0, as RiDα(M,Γα(N)) = 0.

(iii) The short exact sequence

0 // N/Γα(N) // Dα(N) // H1
α(N) // 0

induces a long exact sequence

0 // Dα(M,N/Γα(N)) // Dα(M,Dα(N)) // Dα(M,H1
α(N)) // · · ·

· · · //RiDα(M,N/Γα(N)) //RiDα(M,Dα(N)) //RiDα(M,H1
α(N)) // · · · .

As RiDα(M,H1
α) = 0, we obtains

RiDα(M,N/Γα(N)) ∼= RiDα(M,Dα(N))

for all i ≥ 0. Therefore

RiDα(M,N) ∼= RiDα(M,Dα(N))

for all i ≥ 0, by (ii).
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(iv) We have

Dα(Dα(M,N)) = lim−→
I∈α

HomR(I,Dα(M,N))

∼= lim−→
I∈α

lim−→
J∈α

HomR(I,HomR(JM,N))

∼= lim−→
J∈α

lim−→
I∈α

HomR(I ⊗R JM,N)

∼= lim−→
J∈α

lim−→
I∈α

HomR(JM,HomR(I,N))

∼= lim−→
J∈α

HomR(JM,Dα(N))

∼= Dα(M,Dα(N)) ∼= Dα(M,N).

(v) Note that

Dα(HomR(M,N)) = lim−→
I∈α

HomR(I,HomR(M,N))

∼= lim−→
I∈α

HomR(M,HomR(I,N))

∼= HomR(M,Dα(N)),

as required.

(vi) The long exact sequence

0 // Γα(M,N) // HomR(M,N) // Dα(M,N)
f
// H1

α(M,N) // · · ·

induces an exact sequence

0 // Γα(M,N) // HomR(M,N) // Dα(M,N)
f
// Imf // 0.

Note that Imf is an R-submodule of H1
α(M,N), then Imf is an α-torsion R-

module.

Since Γα(M,N) and Imf are both α-torsion R-modules, there are isomorphisms

Dα(HomR(M,N)) ∼= Dα(Dα(M,N)) ∼= Dα(M,N)

and the proof is complete.
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4.3 Results of minimaximality and �niteness of asso-

ciated primes set for ideals transforms

In this section, we concerned with the associated primes of RiDα(M,N) and

some results of α-minimaximality. If M is �nitely generated and N is minimax,

then Theorem 4.3.7 shows that the associated primes of Dα(N) and Dα(M,N) are

�nite. By using Grothendieck spectral sequences, we get some results on the �nite-

ness of AssR(RiDα(M,N)). This section is closed by Theorem 4.3.10 which says that

if M,N are �nitely generated and SuppR(ExtiR(M,N)) is �nite for all i < t, then

AssR(RtDα(M,N)) is �nite.

Proposition 4.3.1 Let M be a �nitely generated R-module with �nite projective

dimension p. If Dα(M,−) is a exact functor and N is an α-minimax R-module, then

Hi
α(M,N) is α-minimax for all i > 1.

Proof By hypothesis Dα(M,−) is exact. Then we have by Corollary 4.2.4 the isomor-

phism

Hi
α(M,N) ∼= ExtiR(M,N)

for all i > 1. Since N is α-minimax it follows that Hi
α(M,N) is also α-minimax for

any i > 1.

Proposition 4.3.2 LetM be a �nitely generated R-module and N an R-module such

that Dα(N) is α-minimax. Then Dα(M,N) is α-minimax.

Proof By Remark 4.2.8 we get the exact sequence

0 // Dα(M,N) // Dα(N)r (4.4)

for some integer r. Since Dα(N) is α-minimax, we have Dα(N)r is also α-minimax.

The result follows by (4.4).

Theorem 4.3.3 LetM,N be two �nitely generated R-modules and t a positive integer

such that RtDα(M,R/p) is α-minimax for each p ∈ SuppR(N). Then RtDα(M,N) is

α-minimax.

Proof As N is �nitely generated there exists a �ltration of N

0 = N0 ⊆ N1 ⊆ · · · ⊆ Nk = N
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such that Ni/Ni−1
∼= R/pi for some pi ∈ SuppR(N).

If i = 1, then RtDα(M,N1) ∼= RtDα(M,R/p1) and consequently is α-minimax.

When 2 ≤ i ≤ k we get a short exact sequence

0→ Ni−1 → Ni → R/pi → 0. (4.5)

For i = 2, consider the following part of the exact sequence induced by (4.5)

· · · → RtDα(M,N1)→ RtDα(M,N2)→ RtDα(M,R/p2)→ · · · . (4.6)

Since RtDα(M,N1) and RtDα(M,R/p2) are both α-minimax, it follows from (4.6)

that RtDα(M,N2) is also. Proceeding recursively, we conclude that RtDα(M,N) is an

α-minimax R-module.

Corollary 4.3.4 Let M,N be two �nitely generated R-modules and t a positive inte-

ger. Assume that RtDα(M,R/p) is α-minimax for any p ∈ SuppR(N).

(i) If L is a �nitely R-module such that SuppR(L) ⊆ SuppR(N), then RtDα(M,L) is

α-minimax;

(ii) If I is an ideal such that V (I) ⊆ SuppR(N) then RtDα(M,R/I) is α-minimax.

Proof (i) Since SuppR(L) ⊆ SuppR(N), it follows that RtDα(M,R/p) is α-minimax

for each p ∈ SuppR(L). By Theorem 4.3.3 RtDα(M,L) is α-minimax.

(ii) We know that there is a bijection between V (I) and SuppR(R/I). Therefore, the

result follows by item (i).

Lemma 4.3.5 Assume that (R,m) is a local ring. Let M be a �nitely generated

R-module with dimension d > 1. Then Rd−1Dα(M) is an Artinian R-module.

Proof By Lemma 4.1.3 we get a isomorphism

Rd−1Dα(M) ∼= Hd
α(M),

because d > 1. On the other hand, the Lemma 3.2.4 says that Hd
α(M) is Arinian.

Therefore the R-module Rd−1Dα(M) is also Artinian.

Theorem 4.3.6 Let (R,m) be a local ring and M,N be two �nitely generated R-

modules such that M has projective dimension p and N has dimension d > 1. Then

Rp+d−1Dα(M,N) ∼= ExtpR(M,Rd−1Dα(N)).

Moreover, the R-module Rp+d−1Dα(M,N) is Artinian.
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Proof As p+ d− 1 > p it follows from Lemma 4.2.3 that

Rp+d−1Dα(M,N) ∼= Hp+d
α (M,N).

On the other hand, we get the following isormorphisms

Hp+d
α (M,N) ∼= ExtpR(M,Hd

α(M))

Rd−1Dα(N) ∼= Hd
α(N)

by Theorem 3.2.5 and Lemma 4.1.3 respectively. Therefore

Rp+d−1Dα(M,N) ∼= ExtpR(M,Rd−1Dα(N)).

Since the Lemma 4.3.5 says thatRd−1Dα(N) is Artinian, it follows thatRp+d−1Dα(M,N)

is Artinian, as required.

Now, we show some results on the associated primes of Dα(N) and Dα(M,N). It

is well-known that AssR(DI(N)) = AssR(N) r V (I). The followings theorem extends

this property.

Theorem 4.3.7 Let M be a �nitely generated R-module and N an R-module. The

following statements hold:

(i) AssR(Dα(N)) = AssR(N) r α;

(ii) AssR(Dα(M,N)) = SuppR(M) ∩ (AssR(N) r α);

(iii) If N is a minimax R-module, then AssR(Dα(N)) and AssR(Dα(M,N)) are �nite.

Proof (i) From the short exact sequence

0 // N/Γα(N) // Dα(N) // H1
α(N) // 0

we have

AssR(Dα(N)) ⊆ AssR(N/Γα(N)) ∪ AssR(H1
α(N))

⊆ AssR(N/Γα(N)) ∪ α.

Let p ∈ AssR(Dα(N)), there is a monomorphism R/p ↪→ Dα(N). Since Dα(N) is

α-torsion-free, so is R/p and then p /∈ α. This implies that

AssR(Dα(N)) = AssR(N/Γα(N)).
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Moreover,

AssR(N/Γα(N)) ⊆ AssR(N) ∪ SuppR(Γα(N))

⊆ AssR(N) ∪ α.

Consequently, we can conclude that

AssR(Dα(N)) ⊆ AssR(N) r α.

On the other hand, let p ∈ AssR(N) r α, then p /∈ AssR(Γα(N)). Since

AssR(N) ⊆ AssR(Γα(N)) ∪ AssR(N/Γα(N)),

it follows that p ∈ AssR(N/Γα(N)). Therefore

AssR(Dα(N)) = AssR(N) r α.

(ii) By Proposition 4.2.10(v) and (vi) yields

Dα(M,N) ∼= HomR(M,Dα(N)).

Hence,

AssR(Dα(M,N)) = SuppR(M) ∩ AssR(Dα(N))

= SuppR(M) ∩ (AssR(N) r α).

(iii) Since N is minimax, it follows that AssR(N) is a �nite set. This implies that

AssR(Dα(M,N)) = SuppR(M) ∩ (AssR(N) r α) ⊆ AssR(N)

is also a �nite set, as required.

Remark 4.3.8 If E is an injectiveR-module, then Γα(E) is also injective and H1
α(E) =

0. Hence, the short exact sequence

0 // Γα(E) // E // Dα(E) // 0

is split. This implies that Dα(E) is an injective R-module.

Theorem 4.3.9 Let M be a �nitely generated R-module and N an R-module. Let t

be a non-negative integer. Then the following statements hold:

(i) There is a Grothendieck spectral sequence

Ep,q
2 = ExtpR(M,RqDα(N))

p⇒ Rp+qDα(M,N);
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(ii) If RiDα(N) is α-minimax for all i < t, then RiDα(M,N) is α-minimax for any

i < t. In particular, if RiDα(N) is minimax for each i < t, then AssR(RiDα(M,N)) is

�nite for all i < t;

(iii) If RiDα(M) = 0 for all i < t and RtDα(M) is α-minimax, then RtDα(M,N) is

α-minimax;

(iv) AssR(RtDα(M,N)) ⊆
t⋃
i=0

AssR(Ei,t−i
t+2 );

(v) SuppR(RtDα(M,N)) ⊆
t⋃
i=0

SuppR(ExtiR(M,Rt−iDα(N))).

Proof (i) Let F = HomR(M,−) and G = Dα(−) be two functors from the category of

R-modules to itself. If E is an injective R-module, then G(E) = Dα(E) is also injective

by Remark 4.3.8. Hence G(E) is right F -acyclic. Moreover, F is a left exact functor

and FG ∼= Dα(M,−). By Theorem A.9 we have the Grothendieck spectral sequence

Ep,q
2 = ExtpR(M,RqDα(N))

p⇒ Rp+qDα(M,N).

(ii) Let n < t, there is a �ltration Φ of Hn = RnDα(M,N)

0 = Φn+1Hn ⊆ ΦnHn ⊆ · · · ⊆ Φ1Hn ⊆ Φ0Hn = Hn

such that

Ei,n−i
∞

∼= ΦiHn/Φi+1Hn

for all i ≤ n. By hypothesis, Ei,n−i
2 is α-minimax for all i ≤ n. Therefore, Ei,n−i

∞

is α-minimax for any i ≤ n, because Ei,n−i
∞ is a subquotient of Ei,n−i

2 . Hence ΦnHn,

Φn−1Hn, . . . , Φ1Hn, Φ0Hn are all α-minimax. In particular, RnDα(M,N) is also. In

the case that RiDα(N) is minimax, we conclude that RiDα(M,N) is minimax for any

i < t and hence AssR(RiDα(M,N)) is �nite for all i < t.

(iii) In the same manner of the proof of (ii), we can prove that Ei,t−i
∞ = 0 for all

i ≤ t. This implies that

0 = Φt+1H t = ΦtH t = · · · = Φ1H t.

Note that

E0,t
∞
∼= Φ0H t/Φ1H t = RtDα(M,N).

We now consider the homomorphisms of spectral sequence

0 // E0,t
r

d0,tr
// Er,t−r+1

r
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for all r ≥ 2. By the assumption, Er,t−r+1
r = 0 for all r ≥ 2 and then

E0,t
2 = E0,t

3 = · · · = E0,t
∞ .

Therefore,

RtDα(M,N) ∼= E0,t
2 = HomR(M,RtDα(N)).

Since RtDα(N) is α-minimax, it follows that RtDα(M,N) is α-minimax.

(iv) By the isomorphisms

Ei,t−i
∞
∼= ΦiH t/Φi+1H t

for all i ≤ t, we conclude that

AssR(RtDα(M,N)) ⊆ AssR(E0,t
∞ ) ∪ AssR(Φ1H t)

⊆ AssR(E0,t
∞ ) ∪ AssR(E1,t−1

∞ ) ∪ AssR(Φ2H t)

· · ·

⊆
t⋃
i=0

AssR(Ei,t−i
∞ ).

If we prove that AssR(Ei,t−i
∞ ) ⊆ AssR(Ei,t−i

t+2 ) for all 0 ≤ i ≤ t, then the assertion follows.

Now, the homomorphisms of spectral sequence

0 = Ei−t−2,2t−i+1
t+2

// Ei,t−i
t+2

// Et+i+2,−i−1
t+2 = 0

yield

Ei,t−i
t+2 = Ei,t−i

t+3 = · · · = Ei,t−i
∞

for all 0 ≤ i ≤ t.

(v) Analysis similar to that in the proof of (iv) shows that

SuppR(RtDα(M,N)) ⊆
t⋃
i=0

SuppR(Ei,t−i
∞ )

and

Ei,t−i
t+2 = Ei,t−i

t+3 = · · · = Ei,t−i
∞ .

Thus Ei,t−i
∞ is a subquotient of Ei,t−i

2 and then

SuppR(Ei,t−i
∞ ) ⊆ SuppR(Ei,t−i

2 ) = SuppR(ExtiR(M,Rt−iDα(N))).
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This is �nishes the proof.

If M,N are �nitely generated R-modules and AssR(RiDα(M,N)) is �nite, then

we can conclude that AssR(Hi+1
α (M,N)) is �nite by the long exact sequence in Lemma

4.2.3. Therefore, the �niteness of AssR(Hi
α(M,N)) can be implied when we study the

set AssR(RiDα(M,N)).

Theorem 4.3.10 LetM,N be R-modules and t a non-negative integer. The following

statements hold:

(i) There is a Grothendieck spectral sequence

Ep,q
2 = RpDα(ExtqR(M,N))

p⇒ Rp+qDα(M,N);

(ii) If SuppR(ExtiR(M,N)) is �nite for all i < t, then

SuppR(RiDα(M,N)) and SuppR(Hi
α(M,N))

are �nite for all i < t;

(iii) If M,N are �nitely generated and SuppR(ExtiR(M,N)) is �nite for all i < t, then

AssR(RtDα(M,N)) is �nite.

Proof (i) Let F = Dα(−) and G = HomR(M,−) be functors from the category of

R-modules to itself. It follows from Proposition 4.2.10 that FG(N) = Dα(M,N) for

any R-module N . Let E be an injective R-module, we will show that RiF(G(E)) = 0

for all i > 0. Assume that

· · · // F1
// F0

//M // 0

is a free resolution of M in which each Fi is �nitely generated. Note that

0 // HomR(M,E) // HomR(F0, E) // HomR(F1, E) // · · ·

is an injective resolution of HomR(M,E) = G(E). On the other hand, according to Re-

mark 4.3.8, Dα(E) is an injective R-module. By applying the functor HomR(−,Dα(E))

to the free resolution of M , we get an exact sequence

0 // HomR(M,Dα(E)) // HomR(F0,Dα(E)) // HomR(F1,Dα(E)) // · · · .

Since Fi is �nitely generated free for all i ≥ 0, we can conclude by Proposition 4.2.10

that HomR(Fi,Dα(E)) ∼= Dα(HomR(Fi, E)) is injective for all i ≥ 0. Consequently,

there is an exact sequence

0 // Dα(HomR(M,E)) // Dα(HomR(F0, E)) // Dα(HomR(F1, E)) // · · · .
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This implies that RiF(HomR(M,E)) = 0 for all i > 0. It follows from Theorem A.9

that there is a Grothendieck spectral sequence

Ep,q
2 = RpDα(ExtqR(M,N))

p⇒ Rp+qDα(M,N).

(ii) By the hypothesis, SuppR(Ep,q
2 ) is �nite for all q < t. Since Ep,q

∞ is a subquo-

tient of Ep,q
2 , we see that SuppR(Ep,q

∞ ) is �nite for all q < t. Let n < t, we consider a

�ltration Φ os submodules of Hn = RnDα(M,N)

0 = Φn+1Hn ⊆ ΦnHn ⊆ · · · ⊆ Φ1Hn ⊆ Φ0Hn = Hn

such that

Ei,n−i
∞

∼= ΦiHn/Φi+1Hn

for all i ≤ n. This implies that the supports of ΦnHn, Φn−1Hn,. . . , Φ1Hn, Φ0Hn are

�nite. In particular SuppR(RnDα(M,N)) is �nite. The �niteness of SuppR(Hn
α(M,N))

follows from Lemma 4.2.3.

(iii) By an argument analogous to that in the proof of (ii) we conclude that

the supports of ΦtH t, Φt−1H t, . . . , Φ1H t are �nite where H t = RtDα(M,N). The

isomorphism

E0,t
∞
∼= RtDα(M,N)/Φ1H t

gives

AssR(RtDα(M,N)) ⊆ AssR(E0,t
∞ ) ∪ AssR(Φ1H t).

Note that E0,t
∞ is a submodule of E0,t

2 = Dα(ExttR(M,N)). Now, combining the as-

sumption with Theorem 4.3.7(iii) we see that AssR(Dα(ExttR(M,N))) is �nite. This

implies that AssR(E0,t
∞ ) is �nite and the proof is complete.
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Appendix A

Spectral sequences

De�nition A.1 A spectral sequence is a sequence {Er, dr}r≥1 of bigraded modules and

maps of bidegree (−r, r − 1) with drdr = 0 such that

Er+1
p,q = Kerdrp,q/Imd

r
p+r,q−r+1

and then

Er+1 = H(Er, dr)

as bigraded modules.

De�nition A.2 Let M be an R-module. A subquotient of M is a module of the form

M ′/M ′′, where M ′ and M ′′ are submodules of M .

An example of a subquotient module is homology: if C• is a complex, then Hi(C•)

is a subquotient of Ci.

Remark A.3 Let Zr
p,q = Kerdrp,q and B

r
p,q = Imdrp+r,q−r+1. In spectral sequence each

term Er is a subquotient of any earlier term. Set Zr =
{
Zr
p,q

}
p,q

and Br =
{
Br
p,q

}
p,q
.

Write E2 = Z2/B2. Since E3 = Z3/B3 is a subquotient of E2, the third isomorphism

theorem allows us to assume

0 ⊂ B2 ⊂ B3 ⊂ Z3 ⊂ Z2 ⊂ E1.

Iterating, we get

0 ⊂ B2 ⊂ · · · ⊂ Br ⊂ Br+1 ⊂ · · · ⊂ Zr+1 ⊂ Zr ⊂ · · · ⊂ Z2 ⊂ E1.

De�nition A.4 Let Z∞p,q =
⋂
r

Zr
p,q; B

∞
p,q =

⋃
r

Br
p,q; E

∞
p,q = Z∞p,q/B

∞
p,q. The limit term

of the spectral sequence {Er}r is the bigraded module E∞ =
{
E∞p,q

}
p,q
.



Note that, as r gets large, the terms Er do "approximate" the limit term.

De�nition A.5

(i) Let C a complex. A �ltration of C is a family of subcomplexes {F pC}p∈Z with

F p−1C ⊂ F pC for all p.
(ii) A �ltration of a graded module H = {Hn}n∈Z is a family of graded submodules

{F pH}p∈Z with F p−1H ⊂ F pH for each p.

Theorem A.6 Every �ltration {F pC} of a complex C determines a spectral sequence

with E1
p,q = Hp+q(F

pC/F p−1C).

Proof See [25, Corollary 11.12].

De�nition A.7 A �ltration {F pH} of a graded module H is bounded if for each n

there exist integers s = s(n) and t = t(n) such that

F sHn = 0 and F tHn = Hn.

Note that if {F pH} is a bounded �ltration, then for each n we get F pHn = 0 for

any p ≤ s and F pHn = Hn for all p ≥ t. Then there is a �nite chain

0 = F sHn ⊂ F s+1Hn ⊂ · · · ⊂ F tHn = Hn.

De�nition A.8 A spectral sequence {Er}r converges to a graded module H ( denoted

by E2
p,q

p⇒ Hn ) if there is some bounded �ltration {ΦpH} of H such that

E∞p,q
∼= ΦpHn/Φ

p−1Hn

for all p, q with p+ q = n.

Theorem A.9 (Grothendieck) Let G : U → B and F : B → C be two functors

with F left exact such that E injective in U implies GE is right F -acyclic. Then for

each module M in U, there exists a third quadrant spectral sequence with

Ep,q
2 = RpF(RqG(M))

p⇒ Rp+q(FG)(M).

Proof See [25, Theorem 11.38].
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Appendix B

Results of Local Cohomology

Let α a good family of ideals of R.

Lemma B.1 The α-torsion functor Γα is a left exact functor on the category of all

R-modules.

Proposition B.2 Let I, I ′ be ideals of R and β, β′ families of ideals of R.

(i) If I ⊆ I ′, then F(I, β) ⊇ F(I ′, β);

(ii) If β′ ⊆ β, then F(I, β) ⊆ F(I, β′);

(iii) F(I + I ′, β) = F(I, β) ∩ F(I ′, β);

(iv) F(I, β) ∩ F(I, β′) = F(I, β ∪ β′);
(v) F(I, β) = F(

√
I, β).

Proof (i) If K ∈ F(I ′, β), then K + J ∈ 〈I ′〉 for all J ∈ β. Since I ⊆ I ′, this implies

that 〈I ′〉 ⊆ 〈I〉. So K + J ∈ 〈I〉 and therefore, K ∈ F(I, β).

(ii) Let K ∈ F(I, β). This implies that K + J ∈ 〈I〉 for all J ∈ β. By β′ ⊆ β, we

have K + J ∈ 〈I〉 for all J ∈ β′. Thus K ∈ F(I, β′).

(iii) Knowing that I ⊆ I + I ′ and I ′ ⊆ I + I ′ we have F(I + I ′, β) ⊆ F(I, β) ∩

F(I ′, β), by (i). On the other hand, if K ∈ F(I, β)∩F(I ′, β), then K + J ∈ 〈I〉 ∩ 〈I ′〉

for all J ∈ β. Since 〈I〉 ∩ 〈I ′〉 = 〈I + I ′〉, it follows that K ∈ F(I + I ′, β).

(iv) Since β ⊆ β∪β′ and β′ ⊆ β∪β′ it follows that F(I, β∪β′) ⊆ F(I, β)∩F(I, β′),

by item (ii). Conversely, if K ∈ F(I, β) ∩ F(I, β′), then K + J ′′ ∈ 〈I〉 for all J ′′ ∈ β

and K + J ′ ∈ 〈I〉 for any J ′ ∈ β′. So K + J ∈ 〈I〉 for each J ∈ β ∪ β′. Therefore

K ∈ F(I, β ∪ β′).



(v) The proof follows directly from the equality 〈I〉 =
〈√

I
〉
.

Proposition B.3 Let I, I ′ be ideals of R and β, β′ families of ideals in R. Let M be

an R-module.

(i) ΓI,β(ΓI′,β′(M)) = ΓI′,β′(ΓI,β(M));

(ii) If I ⊆ I ′, then ΓI,β(M) ⊇ ΓI′,β(M);

(iii) If β′ ⊆ β, then ΓI,β(M) ⊆ ΓI,β′(M);

(iv) ΓI,β(ΓI′,β(M)) = ΓI+I′,β(M);

(v) ΓI,β(ΓI,β′(M)) = ΓI,β∪β′(M);

(vi) If
√
I =
√
I ′, then Hi

I,β(M) = Hi
I′,β(M), for all i ≥ 0. In particular, Hi

I,β(M) =

Hi√
I,β

(M), for each i ≥ 0;

(vii) If β and β′ are co�nals, then Hi
I,β(M) = Hi

I,β′(M), for any i ≥ 0.

Proof The statements from (i) to (iii) follow from the de�nitions.

(iv) Let x ∈ ΓI,β(ΓI′,β(M)). Then, there exists K ∈ F(I, β) such that Kx = 0.

Since x ∈ ΓI′,β(M), there is K ′ ∈ F(I ′, β) such that K ′x = 0. On the other hand,

K+K ′ ∈ F(I, β)∩F(I ′, β) = F(I+I ′, β), by Proposition B.2(iii), and (K+K ′)x = 0.

So, x ∈ ΓI+I′,β(M). The other inclusion is analogous.

(v) The proof is similar to proof of item (iv).

(vi) Since 〈I〉 =
〈√

I
〉

=
〈√

I ′
〉

= 〈I ′〉, we have F(I, β) = F(I ′, β). Therefore,

ΓI,β(M) = Γ√I,β(M) = Γ√I′(M) = ΓI′,β(M)

and consequently

Hi
I,β(M) = Hi√

I,β
(M) = Hi√

I′,β
(M) = Hi

I′,β(M)

for all i ≥ 0.

(vii) Knowing that β, β′ are co�nals, we have 〈β〉 = 〈β′〉. Thus F(I, β) = F(I, β′)

and therefore Hi
I,β(M) = Hi

I,β′(M) for all i ≥ 0.

Proposition B.4 For an R-module M , the following are equivalent.

(i) M is α-torsion R-module;

(ii) Min(M) ⊆ α;

(iii) AssR(M) ⊆ α;

(iv) SuppR(M) ⊆ α.

Proof The proof of the implications (iv)⇒(iii)⇒(ii) is trivial.
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(ii)⇒(iv) For p ∈ SuppR(M), there exists q ∈ Min(M) such that p ⊇ q. Since

q ∈ α, it follows that p ∈ α.

(i)⇒(iii) If p ∈ AssR(M) then p = Ann(x) for some x ∈ M . Since M is an

α-torsion R-module, there exists I ∈ α such that Ix = 0. So I ⊆ p. Therefore p ∈ α.

(iv)⇒(i) To show that M is α-torsion, it su�ces to prove that M ⊆ Γα(M). Let

x ∈ M and set Min(Rx) = {p1, . . . , pk}. Since Min(Rx) ⊆ SuppR(M) ⊆ α, we have

p1 · · · pk ∈ α. On the other hand,
√
Ann(x) = p1 ∩ · · · ∩ pk ⊇ p1 · · · pk which implies

that (p1 · · · pk)nx = 0 for some n ∈ N. Since (p1 · · · pk)n ∈ α, it follows that x ∈ Γα(M)

and the proof is completed.

Corollary B.5 (i) For x ∈M , the followings conditions are equivalent.

(a) x ∈ Γα(M);

(b) Supp(Rx) ⊆ α;

(ii) Let 0 // L //M // N // 0 be an exact sequence of R-modules. Then

M is an α-torsion modules if and only if L and N are α-torsion modules.

Proof (i):(a)⇒ (b) The assumption implies that Γα(Rx) = Rx. Thus by Proposition

B.4 we get Supp(Rx) ⊆ α.

(b)⇒ (a) By Proposition B.4 we get x ∈ Rx = Γα(Rx) ⊆ Γα(M).

(ii) The proof follows from Proposition B.4 and by the equality SuppR(M) =

SuppR(L) ∪ SuppR(N).

Corollary B.6 If M is an (I, β)-torsion R-module, then M/JM is an I-torsion R-

module for any J ∈ β. The converse holds if M is �nitely generated.

Proof SinceM is an (I, β)-torsion R-module, we have SuppR(M) ⊆ F̃(I, β). For each

J ∈ β, we get

SuppR(M/JM) ⊆ SuppR(M) ∩ V (J) ⊆ F̃(I, β) ∩ V (J).

On the other the hand, if p ∈ F̃(I, β) ∩ V (J) then p + J ∈ 〈I〉. Since p ∈ V (J), we

have p ⊇ J and so p ∈ 〈I〉. Therefore, p ∈ V (I) and consequently M/JM is I-torsion

module.

Suppose that M is a �nitely generated R-module. If x ∈M , then, by Artin-Rees

lemma, for each J ∈ β, there exists nJ ≥ 0 such that JnJM ∩Rx ⊆ Jx. Since M/JM

is I-torsion, we have SuppR(M/JnJM) = SuppR(M/JM) ⊆ V (I), therefore M/JnJM
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is I-torsion as well. Thus there is an integer m ≥ 0 with Imx ⊆ JnJM . Hence it follows

that Imx ⊆ JnJM ∩ Rx ⊆ Jx. Using the above information and taking a = Ann(x),

we get a+J ∈ 〈I〉 for all J ∈ β. This implies that a ∈ F(I, β). Therefore x ∈ ΓI,β(M).

Proposition B.7 Let M be an R-module. Then the equality

AssR(M) ∩ α = AssR(Γα(M))

holds. In particular, Γα(M) 6= 0 if and only if AssR(M) ∩ α 6= ∅.

Proof Since Γα(M) is an α-torsion R-module, we get AssR(Γα(M)) ⊆ α, by Proposi-

tion B.4. This implies that AssR(Γα(M)) ⊆ AssR(M) ∩ α.

Now, take p ∈ AssR(M) ∩ α. Then there is an non-zero element x ∈ M such

that p = Ann(x). Moreover, p ∈ α which implies in x ∈ Γα(M). Since p = Ann(x), it

follows that p ∈ AssR(Γα(M)).

Proposition B.8 Let p ∈ Spec(R) and α a good family in R. If p ∈ α, then E(R/p)

is an α-torsion R-module. On the other hand, if p /∈ α then E(R/p) is an α-torsion-free

R-module.

Proof If p ∈ α, then AssR(E(R/p)) = {p} ⊆ α. Consequently Γα(E(R/p)) = E(R/p)

by Proposition B.4. Now, if p /∈ α, then AssR(E(R/p))∩ α = {p} ∩ α = ∅. Therefore,

by Proposition B.7, we have Γα(E(R/p)) = 0.

Proposition B.9 Let M be an α-torsion R-module. Then there exists an injective

resolution of M in which each term is an α-torsion R-module.

Proof Indeed, let E0 be the injective hull of M . Since M is α-torsion, we have

AssR(E0) = AssR(M) ⊆ α, by Proposition B.4. Then E0 is α-torsion module. Thus

we see that M can be embedded in an α-torsion injective R-module E0.

Suppose, inductively, we have constructed an exact sequence

0 //M // E0 // · · · // Ep−1 dn−1
// En

of R-modules in which E0, . . . , En−1, En are α-torsion injective R-modules. Let

C = Cokerdn−1. Since En is an α-torsion module, C is α-torsion as well by Corollary

B.5(ii). Applying the argument in the �rst paragraph to C, we can embed C into an

α-torsion injective R-module En+1. This completes the proof.
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Corollary B.10 Let M be an R-module. Then the following statements hold.

(i) If M is an α-torsion R-module, then Hi
α(M) = 0 for all i > 0;

(ii) Hi
α(Γα(M)) = 0 for all i > 0;

(iii) M/Γα(M) is an α-torsion-free R-module;

(iv) There is an isomorphism Hi
α(M) ∼= Hi

α(M/Γα(M)) for any i > 0;

(v) Hi
α(M) is an α-torsion R-module for each i ≥ 0.

Proof (i) Follows from Proposition B.9.

(ii) Since Γα(M) is an α-torsion R-module, it follows from (i) that Hi
α(Γα(M)) = 0

for all i > 0.

(iii) and (iv) From the exact sequence

0 // Γα(M) //M //M/Γα(M) // 0

we get an exact sequence

0 // Γα(Γα(M)) // Γα(M) // Γα(M/Γα(M)) // 0.

in which we obtain Γα(M/Γα(M)) = 0 and isomorphisms

Hi
α(M) ∼= Hi

α(M/Γα(M))

for all i ≥ 1.

(v) Since Hi
α(M) is an subquotient of an α-torsion module, for all i ≥ 0, it is also

α-torsion by Corollary B.5 and the proof is completed.

Theorem B.11 Let M be an R-module. Then there is a natural isomorphism

Hi
α(M) ∼= lim−→

I∈α
Hi
I(M)

for any i ≥ 0.

Proof Firstly, we know that Γα(M) = lim−→
I∈α

ΓI(M). Now, we take an exact sequence of

R-modules

0 // L //M // N // 0.

For each I ∈ α, we get a long exact sequence

0 // H0
I(L) // H0

I(M) // H0
I(N) // H1

I(L) // H1
I(M) // · · · .
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Knowing that the direct limits is an exact functor and applying the direct limits on α,

we obtain the long exact sequence

0 // lim−→
I∈α

H0
I(L) // lim−→

I∈α
H0
I(M) // lim−→

I∈α
H0
I(N) //

// lim−→
I∈α

H1
I(L) // lim−→

I∈α
H1
I(M) // lim−→

I∈α
H1
I(N) // · · · .

On the other hand, for any injective R-module E and any integer i > 0, we have

Hi
I(E) = 0 for each I ∈ α. Therefore,

lim−→
I∈α

Hi
I(E) = 0

for all i > 0 and the proof is completed.

The next result shows that the local cohomology functor, with respect to α,

commutes with direct limits.

Proposition B.12 Let {Mλ}λ∈Λ be a direct system of R-modules. Then there is a

isomorphism

Hi
α(lim−→
λ∈Λ

Mλ) ∼= lim−→
λ∈Λ

Hi
α(Mλ)

for all i ≥ 0.

Proof By Theorem B.11 we have

Hi
α(lim−→
λ∈Λ

Mλ) ∼= lim−→
I∈α

Hi
I(lim−→
λ∈Λ

Mλ)

for all i ≥ 0. On the other hand, for each I ∈ α and by [6, Theorem 3.4.10] there is an

isomorphism

Hi
I(lim−→
λ∈Λ

Mλ) ∼= lim−→
λ∈Λ

Hi
I(Mλ)

for all i ≥ 0. This implies that

Hi
α(lim−→
λ∈Λ

Mλ) ∼= lim−→
I∈α

lim−→
λ∈Λ

Hi
I(Mλ)

∼= lim−→
λ∈Λ

lim−→
I∈α

Hi
I(Mλ)

∼= lim−→
λ∈Λ

Hi
α(Mλ)

for any i ≥ 0, as required.
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Theorem B.13 For any �nitely generated R-module M we have the equality

inf
{
i | Hi

α(M) 6= 0
}

= inf {depthMp | p ∈ α ∩ Spec(R)} .

Proof We set n = inf {depthMp | p ∈ α ∩ Spec(R)}, and let E•(M) be a minimal

injective resolution of M .

Given p ∈ α a prime ideal, then n ≤ depthMp = inf {i | µi(p,M) 6= 0} . Hence

we obtain

Γα(Ei(M)) =
⊕
p∈α

E(R/p)µi(p,M) = 0, (B.1)

for each integer i < n and also Γα(En(M)) 6= 0. It follows that Hi
α(M) = 0 if i < n.

It su�ces to show that Hn
α(M) 6= 0. We see from equality B.1 that the complex

Γα(E•(M)) starts from its n-th term. Thus we have a commutative

0 // Hn
α(M) // Γα(En(M)) //

��

Γα(En+1(M))

��

En−1(M) dn−1
// En(M) dn

// En+1(M)

with exact rows. Since kerdn = Imdn−1 ⊆ En(M) is an essential extension, it follows

that Hn(M) = Γα(En(M)) ∩ kerdn 6= 0.

Corollary B.14 Let M be a �nitely generated module over a local ring R with max-

imal ideal m. Then the following statements are equivalent:

(i) M is α-torsion R-module;

(ii) Hi
α(M) = 0 for all integers i > 0.

Proof (i)⇒(ii) Follows from Corollary B.10(i).

(ii)⇒(i) Let us denote N = M/Γα(M). We will show that N = 0. Suppose N 6=

0. From Corollary B.10(iii) and (iv), we have Γα(N) = 0 and Hi
α(N) ∼= Hi

α(M) = 0 if

i > 0. On the other hand, since m ∈ α, we get the inequality

inf {depthNp | p ∈ α} ≤ depthNm = depthN <∞

holds. Thus Hi
α(N) 6= 0 for an integer i ≤ depthN by Theorem B.13. This is a

contradiction. Therefore N = 0.
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