

Universidade Federal da Paraíba Centro de Tecnologia Programa de Pós-Graduação em Engenharia Mecânica - Mestrado

EFICIENTIZAÇÃO ENERGÉTICA PARA UM SISTEMA DE DISTRIBUIÇÃO DE ÁGUA

por

Enrique Douglas Casado da Silva

Dissertação de Mestrado apresentada à Universidade Federal da Paraíba para obtenção do grau de Mestre.

João Pessoa - Paraíba

Dezembro, 2020

ENRIQUE DOUGLAS CASADO DA SILVA

EFICIENTIZAÇÃO ENERGÉTICA PARA UM SISTEMA DE DISTRIBUIÇÃO DE ÁGUA

Dissertação apresentada ao curso de Pós-Graduação em Engenharia Mecânica da Universidade Federal da Paraíba, *campus* João Pessoa, em cumprimento às exigências para obtenção do Grau de Mestre.

Orientador: Prof. Dr. Heber Pimentel Gomes

João Pessoa - Paraíba

2020

Catalogação na publicação Seção de Catalogação e Classificação

```
S586e Silva, Enrique Douglas Casado da.

Eficientização energética para um sistema de distribuição de água / Enrique Douglas Casado da Silva.

- João Pessoa, 2020.

137 f.: il.

Orientação: Heber Pimentel Gomes.
Dissertação (Mestrado) - UFPB/CT.

1. Engenharia mecânica. 2. Eficiência energética. 3. Modelagem hidráulica. 4. EPANET (software). 5. Bombeamento e distribuição de água. 6. Engenharia hidráulica. I. Gomes, Heber Pimentel. II. Título.

UFPB/BC CDU 621(043)
```

Elaborado por ANNA REGINA DA SILVA RIBEIRO - CRB-15/024

EFICIENTIZAÇÃO ENERGÉTICA PARA UM SISTEMA DE DISTRIBUIÇÃO DE ÁGUA

por

ENRIQUE DOUGLAS CASADO DA SILVAA

Dissertação aprovada em 29 de dezembro de 2020

Prof. Dr. HEBER PIMENTEL GOMES

Maunk

Orientador - UFPB

Prof. Dr. CICERO DA ROCHA SOUTO

Examinador Interno - UFPB

Prof. Dr. SAULO DE TARSO MARQUES BEZERRA

Examinador Externo - UFPE

João Pessoa - PB 2020

A minha esposa e amada filha, dedico este trabalho.

AGRADECIMENTOS

Primeiramente, a Deus, por todas as coisas e por me permitir chegar até aqui.

A minha amada esposa Jenyffer Ferreira, por toda compreensão, amor e motivação contínua. Você faz parte de todo o meu crescimento pessoal e profissional.

A minha pequena Beatriz, por ser a beleza do meu horizonte e a felicidade dos meus dias.

Aos meus queridos pais Luiz Carlos e Ednalva Casado, por toda dedicação e esforço. Sempre me apoiando em cada novo desafio.

Ao meu irmão Lineker Diego por todos os conselhos, incentivos e orações.

A todos da minha família pelo apoio e orações.

Ao meu orientador, professor Dr. Heber Pimentel Gomes, pelas orientações, paciência ao ensinar, e incentivos a pesquisa desde a minha graduação em Engenharia Civil.

Ao professor Dr. Juan Moises Villanueva, que atuou em todos as etapas como um co-orientador e amigo sempre disposto a contribuir para o sucesso da minha pesquisa.

Aos amigos do Laboratório de Eficiência Energética e Hidráulica em Saneamento (LENHS) Hugo Augusto, Thommas Kevin e Kamila Henrique, por todo apoio concedido para que este trabalho fosse concluído com êxito.

Aos funcionários da CAGEPA, que em nenhum momento colocaram dificuldade em firmar o convênio que possibilitou esta pesquisa.

Aos meus estimados amigos da engenharia e da vida, Higo Braga e Rivaildo Miranda, por toda ajuda e companheirismo verdadeiro.

Aos meus amigos Felipe Sena, Jamelly Rodrigues, Jefferson Lima, Marcos Matias e Maxsullivan por todo apoio e companheirismo.

A todos os amigos que torcem pelo meu sucesso, fazendo esta jornada ter mais significado.

A todas as pessoas que de alguma forma contribuíram para a realização deste trabalho.

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Código de Financiamento 001.

EFICIENTIZAÇÃO ENERGÉTICA PARA UM SISTEMA DE DISTRIBUIÇÃO DE ÁGUA

RESUMO

Os sistemas de abastecimento de água têm um impacto ambiental e energético significativo, devido à grande quantidade de energia consumida para o bombeamento e às elevadas perdas de água. A operação segura e eficiente desses sistemas é crucial, pois em termos de qualidade e quantidade os recursos são escassos e, paralelamente, o custo da energia para transpor as águas até os consumidores finais é bastante elevado. Este trabalho tem como objetivo analisar indicadores operacionais e hidroenergéticos de uma estação elevatória de um sistema de abastecimento urbano de água, buscando a eficiência energética do sistema, levando-se em consideração a limitada disponibilidade de dados do sistema. Como estudo de caso, o trabalho foi aplicado em parte do sistema de abastecimento de água da cidade de Guarabira, PB, com limitações de dados operacionais. Através de dados armazenados no sistema supervisório SCADA, pela companhia de água e esgoto do estado da Paraíba – CAGEPA -, foi possível desenvolver um modelo hidráulico da estação elevatória no software EPANET, possibilitando, dessa forma, as análises de eficiência energética em diferentes cenários dinâmicos de operação. Os resultados alcançados demostraram que investir no aumento do rendimento do conjunto motobomba estudado é bastante atrativo, podendo resultar numa economia de mais de 50% no custo com a energia elétrica consumida no bombeamento. Não obstante, a manobra de paralisação da bomba no horário de ponta mostrou-se inviável para as configurações atuais do sistema.

Palavras chaves - Eficiência Energética, Eficiência hidráulica, EPANET, Estação elevatória de água.

ENERGY OPTIMIZATION FOR A WATER DISTRIBUTION SYSTEM

ABSTRACT

Water supply systems have a significant environmental and energetic impact due to the large amount of energy consumed in water pumping and water losses. The safe and efficient operation of these systems is crucial, given the scarcity of resources and the high amount of energy consumed in water transporting to the final consumer. In this work, operational and hydro-energetic indicators of an urban water supply system (pumping station) were analyzed. The energy efficiency of this system was studied with data availability restrictions. The methodology was applied in part to the water supply system located in the State of Paraíba, Brazil (city of Guarabira). The available data were obtained from the supervisory system (SCADA) of the State Water and Sewerage Company. Energy efficiency analysis – in different dynamic operating scenarios – was performed using a high station hydraulic model obtained from the EPANET software. The increased efficiency of the pump set studied is quite attractive due to the energy savings associated with the pumping process (reaching more than 50%). The pump shutdown maneuver at peak times proved to be unfeasible for the current system settings.

Keywords: Energy and hydraulic Efficiency; EPANET Software, Water Pumping Station.

SUMÁRIO

1.	INTRODUÇAO	1	
	1.1 OBJETIVOS	3	
	1.2 ESTRUTURA DO TRABALHO	3	
2.	REVISÃO BIBLIOGRÁFICA	4	
3.	REFERENCIAL TEÓRICO		
	3.1 EFICIENTIZAÇÃO DE SISTEMAS DE ABASTECIMENTO	9	
	3.1.1 Indicadores de Desempenho Hidroenergéticos	12	
	3.2 MODELAGEM DE REDES DE DISTRIBUIÇÃO	16	
	3.2.1 EPANET	19	
	3.2.2 Calibração de modelos hidráulicos	21	
4	METODOLOGIA	24	
	4.1 ESTUDO DE CASO	24	
	4.1.1 Sistema Tauá	25	
	4.2 CARACTERIZAÇÃO DA ESTAÇÃO ELEVATÓRIA	29	
	4.2.1 Sistema supervisório	29	
	4.2.2 Dados do Reservatório R1	30	
	4.2.3 Dados da estação elevatória de água tratada 3 (EEAT3)	30	
	4.3 TARIFA DE ENERGIA PRATICADA	33	
	4.4 MODELAGEM HIDRÁULICA	33	
	4.4.1 Definição do Ponto de Operação da Bomba	34	
	4.5 CALIBRAÇÃO DO SISTEMA	35	
	4.6 ANÁLISE ENERGÉTICA DO SISTEMA DO CMB	36	
	4.7 LIMITAÇÕES E DIFICULDADES	39	
5	RESULTADOS E DISCUSSÕES	40	

5.1	DE	FINIÇÃO DO CONSUMO MÉDIO DA REDE	40	
4	5.1.1	Vazão média com base na área de influência do reservatório	41	
4	5.1.2	Vazão média utilizando os indicadores operacionais do SNIS	42	
4	5.1.3	Vazão média com base nos dados obtidos no SCADABR	43	
5.2	MC	DELAGEM ALTERNATIVA PROPOSTA ATRAVÉS	DO	
PROGRAMA EPA	ANET		48	
5.3	SIM	MULAÇÃO DINÂMICA DO CENÁRIO DE OPERAÇÃO NO EPAN	NET	
E CALIBRAÇÃO	DO S	ISTEMA	49	
4	5.3.1	Procedimento adotado para estimar o padrão de consumo	49	
4	5.3.2	Tentativas para definição da vazão de funcionamento do CMB	51	
4	5.3.3	Registro da calibração do nível do reservatório para a vazão adotada	68	
5.4	EN	ERGIA DO BOMBEAMENTO	70	
	5.4.1	Avaliação do impacto do rendimento no custo de energia	72	
5.5	AN	ÁLISE ENERGÉTICA DAS SOLUÇÕES PROPOSTAS	75	
4	5.5.1	Análise do consumo de energia elétrica com a paralisação da bomba	a no	
horário de bo	mba	76		
4	5.5.2	Análise da viabilidade econômica de aquisição de novo CMB	81	
6 CON	CLUS	ÃO		86
6.1	RE	COMENDAÇÕES	87	
REFERÊN	NCIAS			89
ANEXO				96

LISTA DE FIGURAS

Figura 3.1- Evolução do consumo específico de energia (IN058) na produção de água	13
Figura 3.2 - Índices de perdas por ligação e na distribuição (IN051 e IN049) dos prest	adores de
serviço.	15
Figura 3.3 - Índice de perdas na distribuição (IN049) dos prestadores de serviços de ab	rangência
regional do SNIS 2017 e 2018	16
Figura 3.4 – Interface gráfica do EPANET.	20
Figura 4.1 – Zonas regionais da CAGEPA.	24
Figura 4.2 – Reservatório R2 apoiado da cidade de Guarabira.	26
Figura 4.3 – Diagrama de blocos de uma parte do Sistema Tauá.	27
Figura 4.4 – Diagrama Operacional do Sistema Tauá.	28
Figura 4.5 - Nível operacional do SCADALTS dos Reservatórios R1 apoiado e elevado	29
Figura 4.6 – Reservatório R1 apoiado e em segundo plano o reservatório R1 elevado	30
Figura 4.7 – Conjunto motobomba de 5 cv da EEAT3.	31
Figura 4.8– Curvas características para bombas KSB 3500 rpm.	32
Figura 4.9– Gráfico de quadrículas KSB 32-160 3500 rpm.	32
Figura 4.10 – Digitalização do projeto original do CMB.	35
Figura 4.11 – Fluxograma metodológico da criação e calibração do modelo hidráulico	38
Figura 5.1 – Área de Influência do Reservatório Elevado R1-B	41
Figura 5.2 – Variação do nível do reservatório R1 elevado em metros.	44
Figura 5.3 – Situação operacional da bomba (Liga/Desliga) ao longo de 72 horas	47
Figura 5.4 – Mapa da rede produzida no EPANET.	48
Figura 5.5 – Editor de curva da bomba	49
Figura 5.6 – Editor de Padrão para a variação de demanda na saída do reservatório	50
Figura 5.7 – Editor de Controles simples da simulação	51
Figura 5.8 - Variação do nível do reservatório R1_B para a vazão de entrada de 10 m³/h	(2,78 l/s).
	53
Figura 5.9 - Variação do nível do reservatório R1_B para a vazão de entrada de 20 m³/h	(5,56 l/s).
	54
Figura 5.10 – Variação do nível do reservatório R1_B para a vazão de entrada de 30 m³/h	(8,33 l/s).
	55
Figura 5.11 – Variação do nível do reservatório R1_B para a vazão de entrada de 31 m³/h	(8,61 l/s).
	56

Figura 5.12 – Variação do nível do reservatório R1_B para a vazão de entrada de 32 m³/h (8,88 l/	's).
	57
Figura 5.13 – Variação do nível do reservatório R1_B para a vazão de entrada de 32,5 m³/h (9,	02
l/s)	58
Figura 5.14 – Variação do nível do reservatório R1_B para a vazão de entrada de 33 m³/h (9,16 l/	
Figura 5.15 – Correlação gráfica dos valores observados e simulados para a vazão de entrada de	10
m³/h (2,78 l/s)	61
Figura 5.16 – Correlação gráfica dos valores observados e simulados para a vazão de entrada de	20
m³/h (5,56 l/s)	62
Figura 5.17 – Correlação gráfica dos valores observados e simulados para a vazão de entrada de	30
m³/h (8,33 l/s)	63
Figura 5.18 – Correlação gráfica dos valores observados e simulados para a vazão de entrada de	
m³/h (8,61 l/s)	64
Figura 5.19 – Correlação gráfica dos valores observados e simulados para a vazão de entrada de	32
m³/h (8,88 l/s)	65
Figura 5.20 – Correlação gráfica dos valores observados e simulados para a vazão de entrada	de
32,5 m³/h (9,021/s)	66
Figura 5.21 – Correlação gráfica dos valores observados e simulados para a vazão de entrada de	33
m³/h (9,16l/s)	67
Figura 5.22 – Caixa de diálogo de Opções do Relatório de Calibração	69
Figura 5.23 – Relatório de Calibração	69
Figura 5.24 – Comparação gráfica dos valores médios computado e observado	70
Figura 5.25 – Editor do padrão da variação da tarifa de energia	71
Figura 5.26 – Rendimento médio de bombeamento e preço do KWh	71
Figura 5.27– Energia e custo do bombeamento de um dia para o rendimento de 30%	72
Figura 5.28 – Energia e custo do bombeamento de um dia para o rendimento de 35%	73
Figura 5.29 – Energia e custo do bombeamento de um dia para o rendimento de 40%	73
Figura 5.30 – Energia e custo do bombeamento de um dia para o rendimento de 45%	73
Figura 5.31 – Energia e custo do bombeamento de um dia para o rendimento de 50%	74
Figura 5.32 – Energia e custo do bombeamento de um dia para o rendimento de 55%	74
Figura 5.33 – Custo anual com energia elétrica em função do rendimento do CMB	75
Figura 5.34 – Editor de Controles simples da simulação 2	76
Figura 5.35 – Variação do nível do reservatório R1_B com o desligamento do CMB das 18h às 2	1h
	78

Figura 5.36 – Variação do nível do reservatório R1_B com o desligamento do CMB das 191	h às 21h
	79
Figura 5.37 – Variação do nível do reservatório R1_B com o desligamento do CMB das 191	h às 21h
(Simulação de 240h)	80
Figura 5.38 – Medidas da corrente das Fase 1 (A), Fase 2 (B) e Fase (C)	82
Figura 5.39 – Medida da Tensão elétrica	82
Figura 5.40 – Energia e custo do bombeamento de um dia para o rendimento de 19,97%	83
Figura 5.41 – Gráfico de quadrículas KSB e ponto de operação do CMB	84
Figura 5.42 – Rendimento para o grupo de rotores 32-125	84

LISTA DE TABELAS

Tabela 4.1 – Quadro de tarifas de energia / CAGEPA 2019	33
Tabela 5.1 – População do Município de Guarabira e Domicílios Particulares Permanentes	42
Tabela 5.2 – Indicadores de consumo e perdas	42
Tabela 5.3 - Indicadores operacionais de água. (SNIS, 2018).	43
Tabela 5.4 – Vazões médias para esvaziar o reservatório com a bomba desligada	45
Tabela 5.5 – Situação operacional (Liga/Desliga) da Bomba (setembro/2019)	46
Tabela 5.6 – Padrão de consumo adotado no EPANET	50
Tabela 5.7 – Vazão adotada, correlação entre medidas e desvio padrão	68
Tabela 5.8 – Intervalo de rendimentos do CMB e custos com energia elétrica	74
Tabela 5.9 Intervalo de rendimentos do CMB e custos com energia elétrica 2	81
Tabela 5.10 – Custo por rendimento	85

LISTA DE ABREVIATURAS

ABES Associação Brasileira de Engenharia Sanitária e Ambiental

CAGEPA Companhia de Água e Esgotos da Paraíba

CMB Conjunto Motobomba

ETA Estação de Tratamento de Água

LENHS Laboratório de Eficiência Energética e Hidráulica em Saneamento

mca Carga hidráulica em metros de coluna de água

SAA Sistema de Abastecimento de Água

SDA Sistema de Distribuição de Água

SNIS Sistema Nacional de Informações sobre Saneamento

EEAB Estação elevatória de água bruta

EEAT Estação elevatória de água tratada

CAPÍTULO I

1. INTRODUÇÃO

Os sistemas de abastecimento de água (SAA) têm um impacto ambiental e energético significativo, devido à grande quantidade de energia consumida para o bombeamento e às elevadas perdas de água. A operação segura e eficiente desses sistemas é crucial, pois em termos de qualidade e quantidade os recursos são escassos e, paralelamente, o custo com energia elétrica para transpor as águas até os consumidores finais é bastante elevado.

Há um grande esforço técnico e científico para desenvolver e aplicar ferramentas digitais no monitoramento e controle dos sistemas de abastecimento, onde algoritmos são desenvolvidos para otimizar as decisões operacionais. Essas são algumas das abordagens fundamentais que desempenham um papel importante nas decisões de suporte.

Entre as medidas de otimização operacional, os métodos de eficientização energética são vistos como uma alternativa bastante atraente para reduzir os custos com eletricidade e aumentar o desempenho de um SAA. A determinação do potencial hidráulico e do desempenho energético destes sistemas (ou de qualquer um de seus componentes) depende de estudos de engenharia, como modelagem, simulação e otimização. Tais técnicas nem sempre são conhecidas e/ou dominadas pelos gerentes ou operadores das companhias de saneamento. Traduzir os resultados dessas técnicas e métodos em informações para apoiar os processos de tomada de decisão dos operadores dos SAA é uma tarefa complexa, que pode ser realizada através do estabelecimento de indicadores e procedimentos operacionais.

A literatura sobre medição de eficiência e desempenho de SAA apresenta conjuntos de indicadores operacionais, de infraestrutura e financeiros, que são designados para medir seu desempenho global e econômico. Nessa literatura, a eletricidade, de uma maneira

geral, é tratada de forma superficial e a eficiência é frequentemente associada à capacidade produtiva do sistema (ligação direta entre a quantidade de recursos/insumos para fornecer uma certa quantidade de produtos/serviços). Em um cenário comparativo, essa abordagem pode levar os operadores a uma avaliação equivocada do estado real do sistema e de seus potenciais de economia de energia. Isso se deve ao fato de que a medição de eficiência e desempenho nos SAA é tradicionalmente realizada por meio da análise da eficiência relativa. Portanto, não é considerado o insumo ideal de recursos (neste caso, eletricidade) que conduziriam cada SAA, individualmente, ao seu nível máximo de eficiência (eficiência absoluta). De um modo geral, os indicadores padronizados desconsideram as características individuais dos SAA, necessárias para a normalização e comparação dos processos de produção e o uso de recursos energéticos em diferentes sistemas.

Além disso, há uma grande dificuldade, por parte de alguns prestadores de serviço, em consolidar um protocolo padronizado para a obtenção e a sistematização das informações coletadas nos SAA. Para um diagnóstico e monitoramento preciso destes sistemas, devem ser utilizados instrumentos de medição, devidamente calibrados, em conformidade com metodologias bem definidas.

Segundo Giacone e Mancò (2011), quando não é possível levar em consideração todas as variáveis que afetam a eficiência energética de diferentes instalações, o uso de indicadores de eficiência energética para comparar essas instalações pode levar a conclusões enganosas. O principal exemplo dos inconvenientes mencionados é o uso do consumo específico de energia (CE) para a comparação de dois SAA diferentes. O CE é definido como a quantidade de energia necessária para a produção/fornecimento de 1 m³ de água. Outros indicadores permitem a comparação entre a situação atual do sistema e sua condição técnica ideal, representada por um valor-alvo. O valor-alvo corresponde ao menor consumo/demanda de eletricidade ou altura hidráulica que possibilita atender aos limites e requisitos operacionais do sistema (demanda de água e pressões), considerando o melhor uso da energia hidráulica implícita nos volumes de água que fluem pelos SAA.

Dessa forma, a importância deste trabalho se dá pela contribuição da avaliação de desempenho de um dos sistemas de bombeamento da cidade de Guarabira-PB, buscando soluções de melhorias no seu desempenho hidroenergético, apesar da indisponibilidade de indicadores de eficiência energética, quer seja por falta de equipamento de medição ou pela falta de mecanismos de técnicas de gestão-operacional.

1.1 OBJETIVOS

Este trabalho tem como objetivo analisar a eficiência energética de uma estação elevatória da cidade de Guarabira-PB.

Os objetivos específicos são:

- Propor alternativas de operação para melhorar o sistema;
- Realizar um estudo de viabilidade econômica das medidas de eficientização;

1.2 ESTRUTURA DO TRABALHO

Este trabalho está organizado em seis capítulos. O primeiro descreve a relevância deste trabalho, bem como a sua motivação e os objetivos gerais e específicos. O segundo capítulo apresenta uma relação comparativa dos principais trabalhos desenvolvidos recentemente e suas contribuições na área. O terceiro capítulo contém o referencial teórico relacionado aos SAA, modelagem hidráulica, softwares de modelagem, eficientização de sistemas de abastecimento, sistemas de aquisição de dados e aos indicadores de eficiência energética de sistemas de abastecimento. O quarto capítulo caracteriza o sistema analisado, bem como descreve a metodologia para a análise energética. Os resultados e as discussões estão no quinto capítulo, onde os procedimentos operacionais são descritos de forma a alcançar a eficiência energética do sistema de abastecimento de parte da cidade de Guarabira. Por fim, o sexto capítulo traz as conclusões do método aplicado e as recomendações para trabalhos futuros.

CAPÍTULO II

2. REVISÃO BIBLIOGRÁFICA

Os atuais SAA lidam com variações hidráulicas, operacionais, técnicas e administrativas, o que eleva sua complexidade de operação. A modelagem das redes e dos sistemas de abastecimento possibilita a descrição hidráulica do sistema, auxiliando na tomada de decisões e na gestão mais eficiente da rede, bem como de seus componentes. No entanto, nem sempre o sistema modelado apresenta as mesmas condições operacionais da rede real, o que torna necessário realizar a calibração da rede. Desta forma, a calibração permite adequar o modelo hidráulico, elaborado em softwares e algoritmos robustos, ao sistema real, com suas condições práticas de operação.

Com uma rede devidamente modelada e calibrada, as companhias e empresas de saneamento terão um melhor embasamento técnico para a tomada de decisões, gerando eficiência e reduzindo gastos e desperdícios financeiros.

A complexidade da modelagem hidráulica adequada está associada a escolha do método de calibração, como apontou Shu and Zhang (2010). A partir de um trabalho desenvolvido na área de modelagem de redes de abastecimento. Os autores empregaram algoritmos genéticos para o desenvolvimento de uma estrutura de calibração integrada, garantindo maior flexibilidade e robustez ao modelo.

Entre as metodologias empregadas para calibração de modelos hidráulicos, outros importantes fatores que devem ser levados em consideração nas etapas decisórias são os indicadores energéticos. Cabrera et al (2010) elaboraram indicadores de desempenho com base no balanço energético da rede. Tais indicadores puderam ser posteriormente utilizados para caracterizar todo o balanço energético, permitindo a avaliação da eficiência energética da rede, bem como a influência das perdas de energia no período ótimo de renovação da tubulação através de uma análise de custo-benefício. Os autores ainda sugeriram a

implementação da metodologia de cálculo desenvolvida, no software EPNAET, atrelando os indicadores ao modelo hidráulico elaborado. Assim como apresentado por Ganem et al. (2013), a partir da proposição da calibração de uma rede através do programa EPANET.

Com o avanço da modelagem hidráulica associada aos sistemas de distribuição de água, Nicolini et al. (2011) apresentaram a calibração do modelo hidráulico com base em algoritmos genéticos. O modelo forneceu valores ideais dos fatores de atrito do tubo e um coeficiente dependente de vazamento. Com a aplicação da metodologia proposta, a concessionária obteve uma redução de perda de água e em uma diminuição nos custos de bombeamento.

Napolitano *et al.* (2014) otimizaram o acionamento do sistema de bombeamento levando em conta o balanço entre o custo e o risco, ou seja, a redução máxima dos custos para atender o sistema de abastecimento com mínimo risco. Foram avaliados quatro cenários de operação, através do estudo da curva de demanda, em conjunto com indicadores energéticos e financeiros. Hong *et al.* (2017) realizou um trabalho semelhante, entretanto, utilizando funções multiobjetivas.

O uso de modelagem hidráulica associada a sistemas de impulsão, com o objetivo de otimizar a eficiência energética de uma rede foi apresenta por Diniz (2015). A pesquisa desenvolvida objetivou a determinação da velocidade de rotação de bombas ao longo de um ciclo de trabalho de modo a assegurar um volume adequado de água no reservatório de distribuição e o devido atendimento à demanda horária de consumo. Os resultados da otimização mostram os ganhos de economia de energia conseguidos por meio do uso de conversores de frequência, considerando-se as restrições impostas e a variabilidade da demanda de consumo ao longo do ano. Aqui ressalta-se a presença de dados e informações que auxiliaram o autor na pesquisa na modelagem do sistema, bem como na obtenção dos resultados pretendidos.

Em 2015, Salvino, Carvalho e Gomes propuseram um modelo computacional objetivando a calibração multivariada de modelos hidráulicos para sistemas de distribuição de água. O sistema proposto teve como objetivo possibilitar a identificação de algumas irregularidades, muitas vezes inerentes ao funcionamento da rede, tais como: vazamentos, obstruções nas tubulações, válvulas defeituosas ou estranguladas e algumas inconsistências na modelagem referente aos dados reais. Os autores empregaram um algoritmo genético multiobjetivo no processo de calibração, e assim foi possível ajustar as diferenças das variáveis de estado da rede, com o intuito de produzir informações compatíveis com o

sistema real. O modelo proposto permitiu o uso de até sete variáveis: rugosidade, demanda, perda de carga singular, cota topográfica, vazamentos, diâmetros e as válvulas. As variáveis poderiam ser empregadas simultaneamente, ou a partir de combinações desejadas. Os resultados com relação ao tempo de processamento e a aproximação dos dados medidos e calculados foram bastante promissores.

Ainda segundo Salvino, Carvalho e Gomes (2015) a aplicação experimental foi realizada no Laboratório de Eficiência Energética e Hidráulica em Saneamento da Universidade Federal da Paraíba (LENHS/UFPB) com os dados do seu Sistema Piloto de Distribuição de Água (SPDA). Desde então diversas pesquisas vem sendo realizadas. Muitos trabalhos que já foram desenvolvidos na área foram realizados no LENHS/UFPB e utilizaram inteligência artificial para otimizarem os ganhos energéticos (Camboim, 2012; Carvalho, 2012; Mendonça, 2016; Salvino, 2016; Oliveira, 2017; Barros *et al.* 2017; Moura *et al.*, 2018; Mendonça *et al.*, 2019).

Associados aos algoritmos genéticos, há também o uso da calibração de redes a partir do uso de sensores de vazão e pressão, com resultados bastante satisfatórios (SANZ e PERÉZ, 2015). Para os pesquisadores, as medições de pressão e fluxo são a principal fonte de informações ao calibrar um modelo hidráulico. Além disso, a seleção do tipo e localização dos sensores é crucial para garantir uma boa calibração.

Além da calibração das redes hidráulicas modeladas, etapa essencial para a gestão dos sistemas reais, outros fatores importantes que devem ser analisados são indicadores de desempenho. Eles auxiliam na gestão e análise dos sistemas de abastecimento de água, em suas mais diversas etapas de operação. Os indicadores de desempenho permitem aos gestores dos sistemas realizarem análises e verificarem quais são os níveis de eficiência ou de ineficiência dos processos inerentes ao funcionamento do sistema.

Dentre os indicadores que devem ser analisados, um dos mais importantes são àqueles associados ao desempenho energético dos sistemas elétricos, tais como as estações elevatórias das redes de abastecimento. Com a análise energética dos sistemas, é possível determinar se a atual situação de operação está favorável ao ótimo desempenho energético da rede. As informações obtidas a partir da análise energética, podem ser empregadas no processo de tomada de decisão, dando um maior suporte técnico na fase de gerência da rede.

As pesquisas relacionadas à modelagem e calibração vieram acompanhadas do desenvolvimento de estudos associados aos indicadores de energia para quantificar melhor

onde a energia está sendo desperdiçada em relação à operação de um sistema de distribuição de água. Esses indicadores de energia ajudaram os municípios a identificar maneiras de tornar seus sistemas mais eficientes em termos energéticos. Scanlan e Filion (2015) aplicaram esses indicadores em três redes de distribuição. Os indicadores de energia foram usados para comparar eficiência energética, energia perdida por atrito e vazamento e a energia útil entre cada uma das redes de distribuição modeladas. Os autores também discutiram as principais características e padrões que levam as redes ao desperdício de energia.

Vilanova e Balestieri (2015) testaram três indicadores hidráulicos e de eficiência energética, através da abordagem de três estudos de caso. Os indicadores de recuperação de energia hidráulica, indicador de operação de bombeamento otimizado e indicador da carga hidráulica fornecida foram utilizados. O indicador de carga hidráulica fornecida (que relaciona a carga hidráulica média com a carga hidráulica necessária para atender o sistema) foi o mais versátil e pode ser adaptado para analisar diferentes unidades/equipamentos. Além disso, pode ser aplicado não apenas durante a fase de operação do SAA, mas também no projeto do sistema e na análise, apoiando a escolha de alternativas para expandir o suprimento de água, considerando a maior eficiência energética possível entre todas as opções apresentadas.

Gama et al. (2017) estudou parte do sistema de abastecimento da cidade de Milão na Itália, com o objetivo de realizar otimizações energética através da programação do acionamento dos CMB's. Foi estudado uma estação de bombeamento e 4 CMB's de um total de 26 estações e 103 CMB's. A solução proposta foi a otimização multiobjetiva para a redução do consumo de energia de toda a rede de distribuição de água usando o modelo EPANET na rede. Os resultados mostraram que há espaço para melhorias no gerenciamento de energia e pressão em todo o sistema.

Para Camponogara et al (2017), a otimização energética de sistemas de impulsão associados aos SAA deve ser embasada em parâmetros técnicos, como o uso de indicadores de desempenho, análise energética do sistema, além dos fatores que interferem em seu funcionamento. Os pesquisadores reforçam a importância em se conhecer os parâmetros elétricos e hidráulicos ligados a operação dos SAA. Desta forma, as equipes de gestão das companhias podem definir metas de melhorias realistas, identificando oportunidades de intervenção, objetivando o alcance da máxima eficiência energética.

Com relação aos parâmetros hidráulicos, Campos (2018) desenvolveu uma rotina computacional para calibração do fator de atrito (f) de Darcy-Weisbach, seguido do cálculo da rugosidade absoluta para sistemas reais de abastecimento de água. O autor da pesquisa também realizou um estudo de calibração para situações nas quais não se conhece a pressão em todos os nós da rede. Foram realizadas 10.252 calibrações do fator de atrito para o cálculo da rugosidade absoluta da rede de abastecimento de água do Setor da Aldeota, Fortaleza/CE. Com os resultados obtidos, o autor recomenda que para melhoria dos resultados da calibração, deve-se atualizar a base cadastral dos sistemas implantados, incrementando o monitoramento para conhecer a disponibilidade de pressão e vazão no sistema e assim fornecer os dados necessários para calibração do modelo com sucesso.

Papapostolou *et al.* (2019) realizou a análise energética de um sistema de abastecimento, altamente dependente de energia fóssil, localizado em uma ilha grega. O objetivo era de realizar ações operacionais no bombeamento como forma de evitar o acionamento contínuo dos geradores diesel. Para tanto, um estudo da demanda de água foi realizado com dados de um ano, para prever os melhores momentos para o acionamento através de programação linear.

Isidoro e Chaveiro (2019) destacaram a relevância que as entidades gestoras de SAA vêm dando aos processos de modelagem e calibração de redes de abastecimento, dado o contexto global de escassez de água e de serviços de qualidade no setor. Os autores apresentaram a modelagem de uma rede, através do software Epanet, com 75,86 km de extensão. O modelo foi criado a partir do uso dos dados físicos e topológicos do cadastro georreferenciado, devidamente atualizados. A calibração foi efetuada com base nos dados de vazão de entrada na rede de distribuição e de uma campanha. Os dados foram posteriormente tratados, calculando-se as médias horárias dos dados de pressão e consumo de 72 horas (em dias úteis). Com base nos dados recolhidos foram também criados padrões de consumo para: consumos domésticos, indústria, grandes consumidores e parque da cidade (espaço verde de lazer da cidade), sendo também possível traçar os padrões de consumos horários para os dias úteis e fins de semana. O modelo de simulação da rede permitiu verificar o funcionamento hidráulico do SAA da cidade de Reguengos de Monsaraz, testar novas soluções para a gestão da rede, a criação/simulação de zonas de medição e controlo (ZMC), com o objetivo último da promoção da redução de perdas reais de água.

CAPÍTULO III

3. REFERENCIAL TEÓRICO

3.1 EFICIENTIZAÇÃO DE SISTEMAS DE ABASTECIMENTO

Apesar do crescimento registrado em pesquisas, bibliografias especializadas e normas técnicas, os SAA's ainda apresentam ineficiência de operação, seja no setor de bombeamento, ou mesmo em sua rede de distribuição, com sistemas super ou subdimensionados.

Segundo informações do Sistema Nacional de Informações sobre Saneamento (SNIS), em 2018, as despesas com energia elétrica dos prestadores de serviço de saneamento no Brasil atingiram R\$ 6,19 bilhões, o que corresponde a um consumo de energia elétrica de 12,9 milhões de MWh, compostos por 11,5 milhões de MWh com abastecimento de água e 1,4 milhões de MWh com esgotamento sanitário.

De acordo com as condições de projeto que são pré-estabelecidas na fase de concepção e elaboração dos SAA's, a água tratada é fornecida, em pressão e vazão adequada, por dois subsistemas: a estação de bombeamento e os reservatórios de armazenamento ou elevados.

No entanto, apesar da grande relevância desses elementos dentro da rede de abastecimento, os atuais sistemas vêm registrando acentuada redução de eficiência energética e operacional. Ocorre que, grande parte dos sistemas são muito antigos e foram projetados para operarem com elevado fator de segurança (situação de baixo risco de interrupção do fornecimento de água).

A operação ineficiente dos sistemas de bombeamento vem aumentando o gasto energético e as despesas geradas pelo setor. Nos últimos anos, o custo com energia

consistiu entre as três principais despesas das empresas de saneamento, chegando a representar até 30% das despesas operacionais. Além disso, aproximadamente 95% dos consumos de energia no saneamento estavam relacionados com às instalações de bombeamento (BRASIL, 2018).

Com o uso cada vez mais crescente da energia elétrica associada aos sistemas de impulsão, além de uma operação carente de eficiência energética, há uma crescente preocupação com os gastos associados a esse consumo. A Agência Nacional de Energia Elétrica (ANEEL), responsável pela fixação de tarifas de diversos setores, incluindo os serviços de saneamento básico, instituiu, em 2018, a Agenda de Desoneração Tarifária. Com isso, a ANEEL estabeleceu uma redução gradual dos descontos nas tarifas de energia elétrica destinados aos setores de serviços públicos de irrigação, rural e aos serviços de saneamento. O desconto empregado até o final de 2018, no setor era de 15%. Desde 2019, esse desconto está passando por uma redução gradativa, e em um prazo de 5 anos, será totalmente extinto (ANEEL, 2019).

Com isso, o uso de técnicas e metodologias operacionais destinadas à redução do consumo, ou mesmo desperdício, de energia elétrica nos sistemas de saneamento vêm sendo largamente difundidas. As medidas empregadas podem ser tanto administrativas, ou seja, quando interferem na gestão dos sistemas; quanto operacionais, ou seja, medidas destinadas à alteração de técnicas e equipamentos ineficientes em atual operação. Dentre as medidas administrativas, citam-se (BRASIL, 2018):

- Gestão de contas: a inspeção das contas de energia para renegociação do valor de demanda contratada com a concessionária é uma atividade administrativa;
- Medidas institucionais: conscientização do pessoal de todas as áreas do prestador de serviços através da disseminação da cultura de eficiência energética, eventos de sensibilização, seminários, são utilizados como fator motivacional interno.

As medidas operacionais de eficientização buscam, muitas vezes, reduzir o consumo elétrico em horários de pico através do desligamento dos conjuntos motobomba. Esta manobra é uma das primeiras a serem testadas tendo em vista que a única preocupação é de verificar se a água armazenada no reservatório é suficiente para manter a segurança do abastecimento durante o desligamento dos CMB's. Entretanto, devido às

complexidades de um SAA, gestores operacionais tomam decisões intuitivas com o único objetivo de atender às demandas hídricas sem se preocupar com a eficiência energética.

As melhorias indicadas para alavancar a eficiência energética dentro do setor de saneamento são focadas em atuar na melhoria do sistema de bombeamento-reservação, na utilização do inversor de frequência, além da otimização nos procedimentos operacionais de estações de tratamento de água (SOBRINHO, 2012). A seguir são apresentadas as principais medidas operacionais destinadas à redução do consumo de energia elétrica e diminuição dos períodos de ineficiência do setor (BRASIL, 2018):

- Planejamento das ações: qualquer medida que se pretenda implementar deve ser devidamente planejada. As ações devem ser formuladas de modo a evitar a possibilidade de desabastecimento durante a realização dos trabalhos. No caso específico das ações de eficiência energética, tanto as atividades de diagnóstico para proposição das devidas intervenções, como as correspondentes à execução dessas ações;
- Redução das perdas reais de água e impacto no consumo de energia: programas voltados para redução de perdas de água, quando devidamente planejados, geram bons resultados. Tem-se uma relação direta entre perdas de água e de energia, observada através do indicador kWh/m³;
- Operação de reservatórios de água de modo a minimizar o bombeamento em horários de ponta: a operação otimizada do volume de reservatórios se dá quando é possível garantir que o reservatório esteja cheio no início do horário de ponta e com volume seguro ao final desse período;
- Redução da altura manométrica de bombeamento, através de alterações físicas ou operacionais: com manutenções regulares do estado das tubulações, evitando incrustações, que aumentam as perdas, e consequentemente a altura manométrica requerida pelo sistema;
- Melhoria do rendimento dos equipamentos: redimensionamento de sistemas antigos;
- Utilização de inversores de frequência em conjuntos motobombas que operem com variação de pressão e/ou de vazão ao longo do tempo: o uso de inversores de frequência que alteram a rotação nominal do CMB permite a supressão do uso de

válvulas que operam estranguladas, de modo a gerarem uma perda de carga a jusante, em períodos de menor demanda e maior pressão.

E para que se possa escolher as melhores medidas a serem adotadas com o objetivo de tornar os SAA's mais eficientes, o uso de indicadores de desempenho é empregado como uma consistente ferramenta de análise e classificação do atual estado de operação desses sistemas.

Os indicadores de desempenho são utilizados para mensurar a eficiência de um sistema. A eficiência é uma medida que reflete até que ponto um sistema é capaz de produzir produtos utilizando seus recursos. O seu objetivo principal é promover uma linguagem de referência adequada para uma gestão voltada ao desempenho e cumprimento de metas, permitindo a comparação entre países e regiões distintas (ALEGRE e BAPTISTA, 2004).

3.1.1 Indicadores de Desempenho Hidroenergéticos

O SNIS (2018) estabeleceu um conjunto de indicadores para analisar e avaliar as companhias de saneamento. Estes indicadores medem os serviços oferecidos em cinco aspectos:

- Econômicos financeiros e administrativos;
- Operacionais de água;
- Operacionais de esgoto;
- Qualidade da água;
- Balanço contábil.

Estes indicadores recebem, para sua identificação, um prefixo (IN) e uma numeração, como por exemplo, IN058. Existe uma vasta literatura disponível com a aplicação de indicadores em sistemas de saneamento (Vilanova e Balestieri, 2015; Nudurupati *et al.*, 2011; Vilanova *et al.*, 2015; Alegre *et al.*, 2004; Vilanova, 2012).

Em específico, os indicadores operacionais de água, que abrangem os indicadores hidroenergético. Estes indicadores refletem até que ponto a energia é utilizada para prestar serviços de fornecimento de água.

Devido à diversidade das ações existentes para a eficientização do sistema, é necessário que estas medidas sejam avaliadas através de análises quantitativas de forma a contabilizar o impacto de cada uma destas na eficiência energética do sistema. Alguns trabalhos investigaram o uso de indicadores hidroenergéticos e o seu impacto na avaliação dos sistemas de abastecimento (Neura e Edvaldo, 2002; Spiller, 2016).

Como já mencionado, o uso de indicadores para auxiliar na tomada de decisões voltadas para eficientização energética já estão bem difundidos no setor de abastecimento. Dentre os indicadores de desempenho operacional destinados ao setor de bombeamento, podem-se citar:

• Consumo Específico de Energia Elétrica – CE: indicador de eficiência energética de uso mais difundido e o de maior utilidade (ver Equação 3.1):

$$CE\left(\frac{kWh}{m^3}\right) = \frac{Consumo\ de\ energia}{Volume\ bombeado} \tag{3.1}$$

O CE é utilizado, geralmente, para comparar a eficiência energética de um mesmo sistema de bombeamento sob diferentes condições de operação; no SNIS este índice recebe o código **IN058.** Este indicador depende de vários aspectos do sistema, como topografia, localização dos mananciais e tamanho da rede de distribuição.



Figura 3.1– Evolução do consumo específico de energia (IN058) na produção de água.

Fonte: SNIS (2018).

No gráfico ilustrado na Figura 3.1**Erro! Fonte de referência não encontrada.** pode-se aferir que a Paraíba é o quarto estado brasileiro com o maior CE. Apesar deste indicador não poder ser utilizado para comparar sistemas de abastecimentos distintos, nos dá um estado geral do gasto energético de cada Estado e Região.

• Consumo Específico de Energia Elétrica Normalizado – CEN: a International Water Association (IWA, 2000) propôs o artifício de reduzir as alturas manométricas de diferentes instalações à altura única de 100 m, criando assim o Consumo Específico de Energia Elétrica Normalizado – CEN, que serve como uma medida indireta do rendimento médio dos conjuntos motobomba (ver Equação 3.2):

$$CEN = \left(\frac{Consumo\ de\ energia}{volume\ bombeado}\right) * \left(\frac{100}{Hman}\right)$$
(3.2)

Bezerra (2009) avaliou a influência de controlador fuzzy para controle piezométrico. De posse dos resultados, atestou-se que o CEN pode apresentar discrepância nas avaliações de eficiência energética em sistemas de bombeamento. Observando a Equação 3.2 pode-se aferir que quanto menor a altura manométrica e o volume bombeado de operação, maior será o CEN. Dessa forma, o CEN não é um indicador que transmite corretamente a eficiência energética de um processo que envolva intervenções na rede hidráulica. Segundo Gomes (2019): "o CEN pode ser indicado apenas para comparação do rendimento, individual ou médio, de um ou vários conjuntos motobomba."

Já com relação aos indicadores mais empregados destinados a análise de operação do setor hidráulico dentro das redes de abastecimento, tem-se:

 Índice de perdas por ligação - IPD (IN051): que reflete a média de água perdida pela quantidade de consumidores ativos da rede de abastecimento. O IPD é dado pela Equação (3.3) em l/dia/lig.

$$IPD = \frac{volume \ de \ água \ (produzido+tratada \ importada-de \ serviço)-volume \ de \ água \ consumido}{quantidade \ de \ ligações \ ativas} \tag{3.3}$$

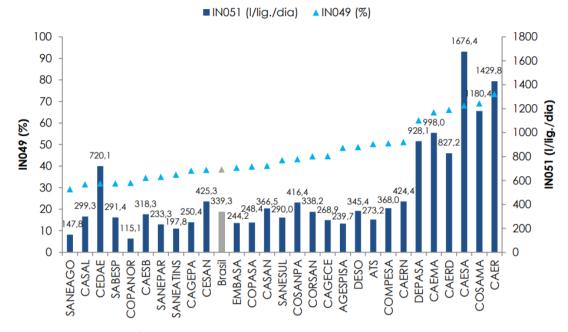


Figura 3.2 – Índices de perdas por ligação e na distribuição (IN051 e IN049) dos prestadores de serviço.

Fonte: SNIS (2018).

A Figura 3.2 apresenta a variação percentual dos índices de perdas por ligação e na distribuição (IN051 e IN049) dos prestadores de serviço.

 Indicador do consumo médio de água por economia – CME (IN053): fornece a média de água consumida por um consumidor em uma cidade ou estado, sendo fornecida pela Equação (3.4) e é dada em m³/mês/econ.

$$CME = \frac{volume \ de \ água \ consumido-volume \ de \ água \ tratado \ exportado}{quantidade \ de \ economias \ ativas \ de \ água}$$
(3.4)

 Índice médio de perdas de água na distribuição – IPD (IN049): este índice avalia percentualmente o volume de água produzido com relação ao volume efetivamente consumido no SAA, conforme Equação 3.5.

$$IPD = \frac{(AG006 + AG018 + AG010 - AG025)}{(AG006 + AG018 - AG025)} \times 100$$
(3.5)

Onde,

AG006: Volume de água produzido

AG010: Volume de água consumido

AG018: Volume de água tratada importado

AG024: Volume de serviço

A Figura 3.3 apresenta o IN049 os prestadores de serviços de abrangência regional para os anos de 2017 e 2018 e as médias do Brasil, destacadas em cinza. Atribui-se estas perdas às tubulações antigas, falta de manutenção e, principalmente, às deficiências operacionais, entre elas a elevada carga hidráulica da rede.

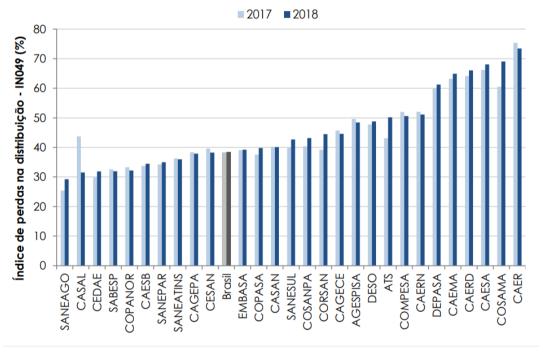


Figura 3.3 – Índice de perdas na distribuição (**IN049**) dos prestadores de serviços de abrangência regional do SNIS 2017 e 2018.

Fonte: SNIS (2018).

3.2 MODELAGEM DE REDES DE DISTRIBUIÇÃO

De uma maneira geral, os médios e grandes sistemas públicos de abastecimento de água possuem um elevado número de bombas hidráulicas e válvulas de controle, o que torna a definição de regras operacionais, para um período estendido, uma tarefa bastante difícil (TSUTIYA, 2006). Como forma de solucionar tais problemáticas, softwares de

modelagem e pesquisas correlacionadas têm sido desenvolvidos com o objetivo de modelar computacionalmente as redes de abastecimento. Tais modelos permitem simular e analisar cenários de operação de forma rápida e econômica, auxiliando na tomada de decisões.

Uma aplicação prática de controle operacional pode ser vista em Montenegro (2009) que realizou um estudo na estação de bombeamento do bairro de Mangabeira em João Pessoa-PB. Através do balanço hidráulico do sistema foi proposta uma solução operacional sem gerar custos de alteração com a estação elevatória. Para isso, o autor elaborou um diagnóstico da atual situação de operação da estação de bombeamento. Com os dados relativos à operação real do sistema, bem como da curva de consumo médio diário, o autor utilizou o EPANET para análise da alternativa apresentada. A proposta foi a desativação do conjunto elevatório que apresentava péssimo estado de conservação e desperdícios e, em contrapartida, o acionamento de mais uma bomba existente na estação elevatória, para manutenção da vazão demandada. Com isso, o trabalho realizado apresentou resultados satisfatórios, onde foi possível utilizar apenas uma estação elevatória para a demanda existente, com eficiência energética, necessitando apenas do acionamento de mais uma bomba em paralelo no horário de pico do consumo.

O uso da modelagem hidráulica para auxiliar na gestão das redes de abastecimento, bem como nos sistemas de bombeamento vem se mostrando cada vez mais urgente. Por muitos anos alguns métodos desenvolvidos para projetar e analisar redes de distribuição foram grandemente empregados no setor; no entanto, por não levar em consideração fatores como eficiência energética e dimensionamento econômico, essas técnicas vêm se mostrando ultrapassadas.

Os SAA possuem uma quantidade elevada de componentes, o que torna oneroso o uso de planilhas eletrônicas e métodos numéricos convencionais. O uso de softwares de simulação hidráulica, como o EPANET e o WaterCAD, permitem a criação de cenários e a modelagem de redes existentes ou novas, com objetivo de gerar alternativas mais eficientes do ponto de vista hidroenergético e econômico. Essas ferramentas são empregadas na gestão e análise da atual operação da rede, e quando devidamente alimentadas com as informações extraídas em campo, como consumo-base, cotas, diâmetros e rugosidade, é possível realizar simulações hidráulicas que auxiliam aos gestores dos sistemas. Para Gomes (2019):

[&]quot;A importância do emprego de um modelo de simulação na fase de planejamento do sistema de abastecimento é inquestionável. O projetista poderá antever as

inúmeras situações operacionais do sistema e assim optar por alternativas de projeto que possam melhorar a qualidade do serviço, associada à minimização dos custos de energia".

Segundo Coelho *et al.* (2006), o modelo de simulação hidráulica é formado por três aspectos:

- Técnicos: dados descritivos das características físicas do sistema, demandas e condições operacionais;
- Físicos: conjunto de equações matemáticas que reproduzem o comportamento individual hidráulico dos componentes e do sistema como um todo, expressas em termos das principais variáveis de estado, por exemplo, a vazão e pressão nos pontos de consumo;
- Matemáticos: algoritmos numéricos necessários para a resolução desse conjunto de equações matemáticas.

O processo de modelagem computacional compreende uma série de passos sequenciais, recursivos e inter-relacionados. O resultado é uma ferramenta de fácil compreensão do sistema simulado, que muitas vezes pode ser complexo e de difícil entendimento. A simulação matemática compreende as seguintes etapas (AZEVEDO *et al.*, 2000):

- Entendimento do fenômeno para desenvolvimento de um modelo computacional que responda as questões do problema a ser resolvido;
- Delimitação dos objetivos, restrições e critérios de forma consistente, afinal, compreendem o passo mais importante do processo de modelagem;
- Especificações das variáveis, parâmetros e propriedades para a formulação do modelo, e então a seleção de equações matemáticas e os algoritmos necessários para expressar as relações entre os processos (sendo essas teóricas, empíricas ou operacionais);
- Análise da estrutura, da lógica e da formulação, para certificação que o modelo atende a realidade e os seus propósitos;
- Fornecimento de dados e valores para calibração, checando a concordância do simulador com o sistema real:

- Avaliação do simulador, para constatar se é necessária a modificação de alguma etapa (com exceção dos objetivos, restrições e critérios);
- Realização de testes, como o teste de sensibilidade, para identificar a proximidade com os valores do sistema real;
- Simulação do sistema, para conferir se atende os propósitos porque foi elaborado.

3.2.1 EPANET

Os métodos empregados na engenharia hidráulica voltados para dimensionamento, construção e gestão dos SAA são antigos, e em alguns casos ainda empregados, rudimentares (OLAIA, 2012). Os cálculos realizados para dimensionamento de redes hidráulicas através de métodos como Hardy-Cross, seccionamento fictício ou planilhas hidráulicas demandam tempo e, atualmente, mostram-se ineficientes, dado o grande volume de cálculos e variáveis. Além disso, não se preocupam em analisar os aspectos relacionados à eficiência energética. Sendo assim, o uso de softwares iterativos que permite a modelagem da rede, bem como seu dimensionamento, vem ganhando cada vez mais espaço nos escritórios de engenharia no setor de saneamento.

Aqui ressalta-se que o software de modelagem hidráulica EPANET não é empregado de forma direta no dimensionamento das redes hidráulica. Para isso, recomenda-se como opção o uso da metodologia LENHSNET: "algoritmo iterativo de dimensionamento otimizado de um sistema pressurizado de distribuição de água composto pela rede de abastecimento com seu dispositivo de impulsão" (GOMES et al, 2009). O programa LENHSNET utiliza a metodologia acima descrita e foi desenvolvido na mesma interface do EPANET pelo LENHS/UFPB (GOMES, 2019).

Segundo Gomes (2009, p.17) "O EPANET é um programa de computador que permite executar simulações estáticas e dinâmicas do comportamento hidráulico e de qualidade da água em redes de distribuição pressurizada." Ele foi desenvolvido e distribuído inicialmente pela *U.S. Environmental Protection Agency* – EPA (agência estatal dos Estados Unidos da América). Sua primeira versão foi desenvolvida em 1993 pela agência norte americana de proteção ambiental.

A interface gráfica do EPANET é ilustrada na Figura 3.4. O software permite modelar a rede hidráulica através de elementos gráficos, tornando a modelagem intuitiva e agilizando o processo de análise e simulação de grandes sistemas. Devido a sua ampla

versatilidade, o EPANET tem sido utilizado em inúmeros trabalhos que buscam analisar o SAA (Ramana e Sudheer, 2015; Sayyed *et al.*, 2014; Kara *et al.*, 2016; Luna *et al.*, 2019).

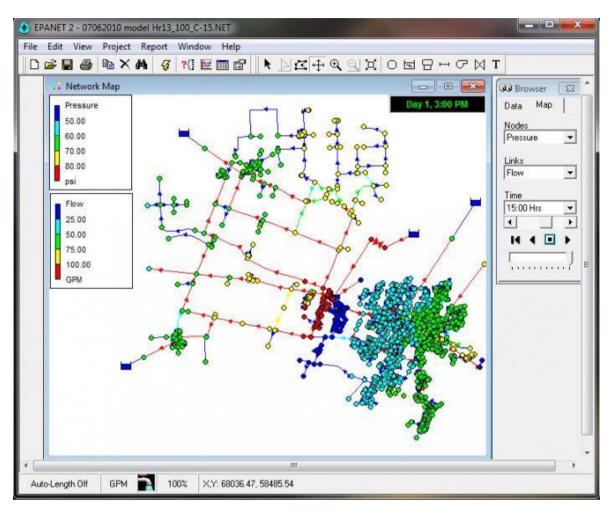


Figura 3.4 – Interface gráfica do EPANET.

Disponível em: www.cesbd.com. Acesso em 18 de junho de 2020.

As vantagens do EPANET em realizar modelagem hidráulica são inúmeras, onde se destacam como principais, segundo Rossman (2008) consistem na:

- Modelagem gráfica da rede de abastecimento;
- Quantidade ilimitada do número de componentes da rede;
- Cálculo da perda de carga utilizando as fórmulas de Hazen-Williams, Darcy-Weisbach ou Chezy-Manning;
- Modelagem de bombas de velocidade constante ou variável;
- Cálculo da energia de bombeamento e do custo de bombeio;

- Modelagem de válvulas, incluindo válvulas de seccionamento, de retenção, reguladoras de pressão e de vazão.
- Modelagem de reservatórios de armazenamento de nível variável de formas diversas, através de curvas de volume em função da altura de água;
- Diversos padrões de consumo nos nós, cada um com um padrão próprio de variação no tempo;
- Modelagem da relação entre pressão e vazão efluente de dispositivos emissores
 (p.ex. aspersores de irrigação, ou consumos dependentes da pressão);
- Possibilidade de basear as condições de operação do sistema em controles simples, dependentes de uma só condição (p.ex., altura de água num reservatório de nível variável, tempo), ou em controles com condições múltiplas;
- Estabelecer cenários de operação em tempo contínuo.

Com o uso de softwares de modelagem hidráulica é possível criar cenários de novas redes que se deseja projetar, modelar redes existentes ou mesmo propor soluções diversas com variação dos parâmetros iniciais, tais como os diâmetros das tubulações, a rugosidade a partir da alteração dos materiais, ou mesmo o traçado, alterando comprimento e assim as perdas de carga. No entanto, para sistemas já existentes, a modelagem hidráulica exige não apenas a inserção dos dados de projeto, mas também uma verificação dos dados reais atrelados a operação atual do sistema. Para tanto, tem-se na calibração da rede uma importante ferramenta a ser adotada, a partir das medições e verificações in loco das reais condições de operação da rede.

3.2.2 Calibração de modelos hidráulicos

Modelos hidráulicos de redes de abastecimento de água são amplamente utilizados por empresas de serviços de saneamento para auxiliar na tomada de decisões. A confiabilidade do modelo depende fortemente da qualidade de sua calibração, ou seja, da correspondência entre as variáveis medidas e as calculadas. Quando o modelo é estático, a calibração é fácil de alcançar para os valores médios das variáveis. No entanto, para os modelos dinâmicos onde é preciso alocar espacialmente as demandas e distribuí-las entre os nós da rede, há maior complexidade de realização.

De maneira geral, entende-se por calibração o procedimento que deve ser empregado nas modelagens de redes de distribuição de água, que visam a atenuação das divergências encontradas entre os valores reais (aqueles medidos em campo) e os valores simulados (aqueles apresentados no modelo). A partir da calibração da rede, é possível realizar os ajustes necessários, de modo a adequar os parâmetros modelados com àqueles efetivamente mensurados no sistema real.

A rede hidráulica ou sistema de abastecimento de água possui incertezas difíceis de serem modeladas em softwares de simulação hidráulica, como o EPANET. Em busca de atenuar isso, dados experimentais da rede modelada podem ser utilizados para calibrar o modelo hidráulico antes de sua utilização. A precisão do modelo hidráulico está diretamente associada à sua calibração, portanto faz-se necessária uma análise para a validação da calibração antes do modelo ser aplicado para tomada de decisão (VICENTE, 2005). Os dados são coletados através de sensores instalados na rede; posteriormente, estes dados são utilizados em um modelo de calibração que adequará os parâmetros ao modelo computacional.

Segundo Silva (2003) os procedimentos de calibração de redes de distribuição podem ser divididos em três categorias: iterativos, explícitos ou diretos e implícitos ou inversos. Dentro da categoria de calibração explícita ou direta, Cheung (2002) realizou a comparação entre dois métodos: analítico e explícito. Segundo o autor, o método analítico apresentou uma combinação satisfatória entre os valores calibrados e os valores reais. Enquanto o método explícito apresentou os maiores desvios em relação aos valores reais, porém os desvios apresentados foram considerados aceitáveis na validação dos resultados obtidos.

De forma geral, os métodos iterativos utilizam uma solução de tentativa e erro, ou uma solução incremental/decremental a partir de valores máximos e mínimos. Onde cada valor calculado no processo iterativo é comparado com o valor medido. Este método foi utilizado por Wu e Walski (2011).

O método explícito ou direto tem como base a solução, em regime permanente, de equações e análise matricial em condições de contorno definidas, utilizando como base as equações clássicas da energia e continuidade. Alvisi e Franchini (2010) utilizaram este método de calibração para estudar indicadores de desempenho em sistemas de abastecimento. Os autores destacaram a influência das variáveis de entrada (rugosidade do tubo, pequenas perdas de válvula, velocidades da bomba) nas variáveis de saída (níveis de

água do reservatório, pressões de nó e fluxos de tubo). O que gerou informações úteis para o projeto do sistema, reabilitação e gerenciamento em tempo real.

Nos métodos implícitos ou inversos as variáveis ou os parâmetros desconhecidos são estimados. Ou seja, valores são atribuídos às demandas, às rugosidades e aos demais parâmetros hidráulicos mediante utilização de algum procedimento ou algoritmo a fim de aproximar sua resposta, em termos das variáveis de estado, de sua referência, o que significa minimizar as diferenças, principalmente, das pressões e vazões medidas e calculadas (Salvino *et al.*, 2015).

Outros trabalhos relevantes desenvolvidos na área de calibração de redes hidráulicas validam essa metodologia e atestam sua eficiência em se adequar os valores do modelo aos valores medidos em campo a partir dos métodos já descritos acima (Solano *et al.*, 2017; Nicolini et al., 2011).

Há diversos métodos e equipamentos que podem ser empregados para a obtenção dos dados de operação da rede hidráulica. Os valores medidos em campo podem ser realizados de forma pontual a partir de equipamentos instalados em pontos estratégicos e cuja leitura é realizada pela Interface Homem-Máquina (IHM) do próprio equipamento. Ou ainda a partir de medidores e transdutores instalados ao longo do sistema, de acordo com os pontos de interesse de monitoramento. Esses equipamentos realizam a leitura dos parâmetros de interesse a partir da captação de sinais analógicos e a partir de um sistema supervisório, há a conversão dos sinais em valores compreensíveis ao sistema hidráulico.

CAPÍTULO IV

4 METODOLOGIA

4.1 ESTUDO DE CASO

A Companhia de Água e Esgotos da Paraíba (CAGEPA) é responsável pelo planejamento, execução e operação dos serviços de saneamento básico em todo o Estado da Paraíba. A população urbana atendida com serviço de água, segundo a própria companhia, é de 2.841.101.

A Companhia é subdividida em gerências regionais que possuem autonomia para administrar os recursos hídricos das suas regiões (ver Figura 4.1); a sede de cada regional fica localizada numa cidade polo de cada região.

 $Figura\ 4.1-Zonas\ regionais\ da\ CAGEPA.$

Fonte: CAGEPA (2020)

A sede administrativa da Companhia está localizada na cidade de João Pessoa-PB e as 06 (seis) gerências regionais são:

- Regional do Litoral com sede em João Pessoa;
- Regional do Brejo com sede em Guarabira;
- Regional da Borborema com sede em Campina Grande;
- Regional das Espinharas com sede em Patos;
- Regional do Rio do Peixe com sede em Sousa; Regional do Alto Piranhas com sede em Cajazeiras.

A área objetivo deste estudo faz parte do sistema de abastecimento de água de Guarabira, cidade paraibana situada a 97 km da capital João Pessoa. Compreendendo a estação elevatória de água tratada (EEAT3) que abastece o reservatório R1 elevado (que faz parte do sistema Tauá).

4.1.1 Sistema Tauá

A barragem Tauá (localizada entre os municípios de Cuitegi e Alagoinha) foi construída em 1951, para a captação de água bruta, possuindo uma capacidade de 1.250.000 m³. Na mesma época foi construída uma ETA e uma adutora de cimento amianto com DN 200, com vazão de operação de 30 l/s. Essa concepção inicial do Sistema Tauá atendia parte da cidade de Guarabira, com 1.599 ligações e 9 chafarizes. O reservatório construído para atender essa demanda inicial foi o R1 apoiado, com capacidade de 1000 m³.

Com o intuito de melhorar o atendimento à população, diversas ampliações do sistema ocorreram ao longo dos anos. Em 1970, foi realizada a construção dos reservatórios R2 elevado e R3, cada um com capacidade de 500 m³. Em 1987, a barragem de Tauá foi ampliada para o volume total anual de 8.573.500 m³ e no mesmo período foi construído o reservatório R2 apoiado com capacidade para armazenar 3.600 m³ de água. Em maio de 2014, foi inaugurado o sistema adutor Araçagi-Guarabira, que atende as cidades de Guarabira, Araçagi, Cuitegi e Pilõezinhos.

Ainda hoje, o reservatório R1 apoiado é alimentado pela EEAT1, que originalmente operava com um conjunto motobomba de 75 cv. A adutora possui uma extensão de 8.668

metros, com tubulação de DN 200 em cimento amianto. Atualmente, opera com um conjunto motobomba do tipo KSB METN 50-160 25 cv em um intervalo de vazões entre 30 e 35 m³/h. Essa adutora, inaugurada em 1951, está em processo de desativação devido, de acordo com o setor de operação da CAGEPA, aos elevados custos com reparos na tubulação e pela expressiva ocorrência de vazamentos ao longo do trecho. Com isso, o reservatório R1 apoiado, passará a ser alimentado por gravidade através de uma tubulação que o conectará diretamente ao R2 apoiado (ver Figura 4.2).

Figura 4.2 – Reservatório R2 apoiado da cidade de Guarabira.

Fonte: Elaboração Própria.

O reservatório apoiado R2, com capacidade de 3.600 m³, recebe água tratada de duas elevatórias. A EEAT1 (situada no município de Cuitegi) através de uma adutora com extensão de 9.550 metros, com tubulação de DN 250 de ferro fundido. E a EEAT 10 que faz parte do sistema do Açude Araçagi, cuja adutora possui uma extensão de 26.500 metros, com tubulação de DN 450 de ferro fundido. Na Figura 4.3 pode-se observar o diagrama de blocos do trecho do sistema Tauá citado neste trabalho. Com destaque no trecho empregado para a realização da modelagem e calibração. A Figura 4.4 apresenta o diagrama operacional do sistema de Tauá.

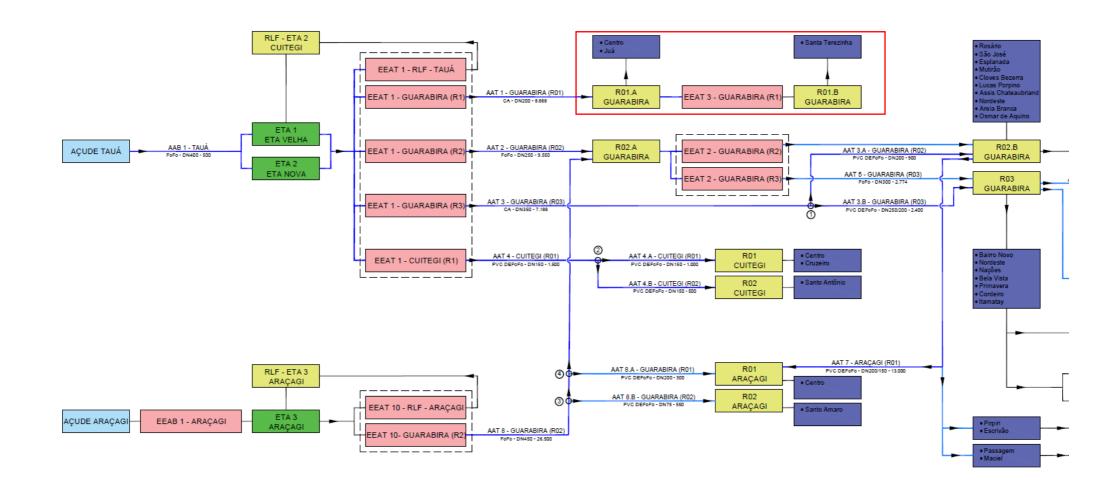


Figura 4.3 – Diagrama de blocos de uma parte do Sistema Tauá.

Fonte: CAGEPA (2020)

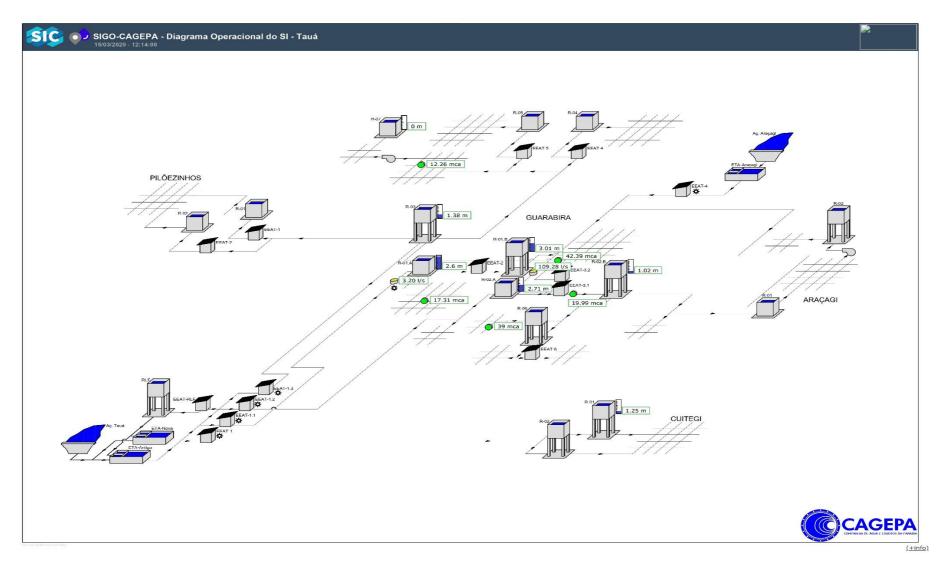


Figura 4.4 – Diagrama Operacional do Sistema Tauá.

Fonte: CAGEPA (2020)

4.2 CARACTERIZAÇÃO DA ESTAÇÃO ELEVATÓRIA

Para a análise dos indicadores operacionais da estação elevatória que abastece o R1, foi necessário realizar a caracterização atual do sistema, bem como suas condições atuais de operação.

4.2.1 Sistema supervisório

O sistema supervisório utilizado pela CAGEPA para aquisição e armazenamento de dados é o ScadaLTS, um software do tipo SCADA. Os dados coletados são enviados pelos dispositivos remotos e armazenados via protocolo HTTP a cada segundo. No entanto, o sistema SCADA registra apenas o valor médio (de cada seis minutos) da pressão (PIT), nível do reservatório (LIT), vazão (FIT) e situação operacional das bombas (CMB). O sistema foi idealizado para funcionar de forma ininterrupta, a fim de possibilitar a comparação histórica das informações e avaliar a influência de uma variável em outra. A Figura 4.5 ilustra o sistema supervisório do R1, apoiado e elevado.

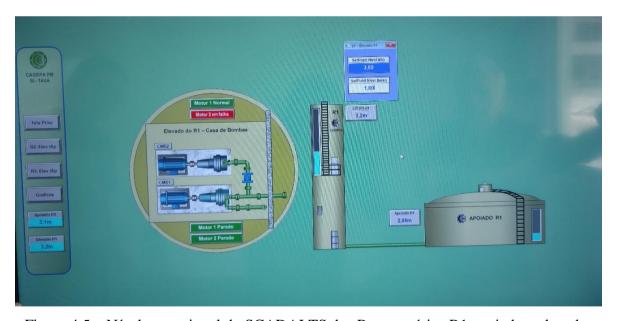


Figura 4.5 – Nível operacional do SCADALTS dos Reservatórios R1 apoiado e elevado. Fonte: Elaboração Própria.

4.2.2 Dados do Reservatório R1

O reservatório R1 apoiado abastece os bairros do Centro e Juá. Já o reservatório R1 elevado possui uma capacidade de 100 m³ e atende às demandas do bairro de Santa Terezinha. Em ambos os reservatórios, a variável medida e armazenada é o nível da lâmina d'água em relação à laje de fundo. Para esse sistema, não é realizada a aferição das vazões de entrada e saída dos reservatórios. A Figura 4.6 apresenta a disposição do R1 elevado e apoiado.

Figura 4.6 – Reservatório R1 apoiado e em segundo plano o reservatório R1 elevado. Fonte: Elaboração Própria.

4.2.3 Dados da estação elevatória de água tratada 3 (EEAT3)

A EEAT3 está localizada abaixo do reservatório R1 elevado, conforme ilustrado na Figura 4.7. A estação é composta por 1 CMB, que está em operação desde 1987. O sistema de impulsão adotado é do tipo KSB Etanorm, cuja família de rotores varia de 32-160 e apresenta uma rotação de 3500 rpm de eixo horizontal; a estação elevatória opera afogada.

A EEAT3 não apresenta um CMB reserva, o que dificulta a garantia do abastecimento em períodos de manutenção corretiva do conjunto principal. Segundo o

setor de operação e manutenção da CAGEPA, este conjunto opera com a vazão nominal fornecida pelo fabricante.

Figura 4.7 – Conjunto motobomba de 5 cv da EEAT3.

Fonte: Elaboração Própria.

Conforme informações do setor de operação e manutenção, não são feitas medições para conferir o ponto de operação da elevatória. Além disso, não foi possível obter o manual original do CMB, junto ao setor responsável, necessário para análise inicial da vazão no modelo em EPANET. Desta forma, foi considerado o intervalo de vazões contidas no manual de curvas características KSB para a mesma família de rotores (32-160), conforme Figura 4.8 e Figura 4.9.

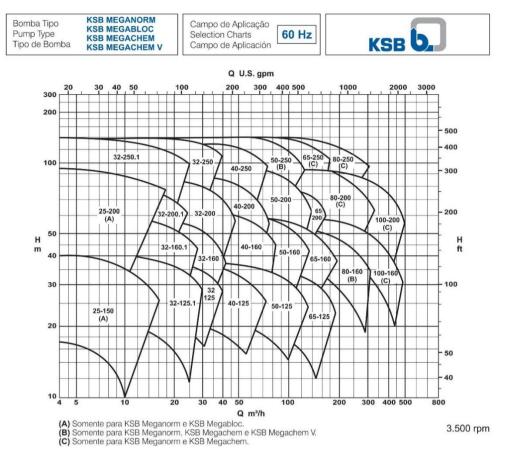


Figura 4.8– Curvas características para bombas KSB 3500 rpm. Disponível em: www.ksb.com.br/. Acesso em 25 de abril de 2020.

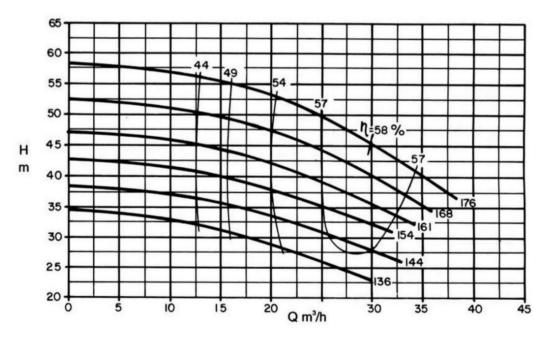


Figura 4.9– Gráfico de quadrículas KSB 32-160 3500 rpm.

Disponível em: www.ksb.com.br/. Acesso em 25 de abril de 2020.

4.3 TARIFA DE ENERGIA PRATICADA

Para a investigação econômica dos cenários de operação do sistema de bombeamento, proposta como objetivo específico deste trabalho, foram utilizadas as mesmas tarifas praticadas pela companhia.

Conforme informações da Gerência de Gestão de Energia, localizada na sede da CAGEPA em João Pessoa, a tarifa de energia que foi praticada pela regional de Guarabira, em 2019, está detalhada na Tabela 4.1.

CONCESSIONÁRIA ENERGISA PARAÍBA MODALIDADE TARIFÁRIA A3H AZUL / DATA BASE SETEMBRO - 2019 **CONSUMO DEMANDA DEMANDA CONSUMO DEMANDA DEMANDA** FORA ULTRAPASSADA ULTRAPASSADA **PONTA PONTA** FORA PONTA PONTA PONTA FORA PONTA R\$/KWh R\$/KWh R\$/KW R\$/KW R\$/KW R\$/KW 0,34933 0,21768 17,25 7,1 39,22 16,14

Tabela 4.1 – Quadro de tarifas de energia / CAGEPA 2019

4.4 MODELAGEM HIDRÁULICA

A partir da caracterização física e hidráulica do sistema, além da obtenção dos seus dados de operação, foi possível realizar a modelagem hidráulica da estação elevatória. Para isso, buscou-se utilizar todos os dados disponíveis para diagnosticar os principais problemas do sistema, e assim propor técnicas de eficientização para a EEAT3.

Para a realização da modelagem hidráulica, optou-se pela análise da variável de nível do R1 elevado (LIT_R1_02) por um período de três dias. Além disso, também foi empregada a análise da situação operacional da bomba (CMB1_R1_Ligado). Com isso, foi possível construir a modelagem hidráulica no EPANET.

Para fins deste trabalho, foi possível considerar o nível do reservatório R1 apoiado como sendo constante sem comprometer os resultados e análises.

A ausência de medidores de vazão instalados na saída do reservatório elevado R1 impossibilita a obtenção da medição da vazão em campo. No entanto, é preciso que se estabeleça o consumo médio da rede abastecida pelo reservatório em análise. Para a determinação da vazão média foram empregadas três metodologias:

Método 1 – Cálculo da vazão média com base na área de influência do reservatório
 R1

Neste método, é necessário fazer o levantamento da área de influência que o reservatório abastece, o número de pessoas atendidas (Pop), o consumo médio por habitante (q) além do índice de perdas na distribuição (IN049), (ver Equação 4.1). Após o cálculo do consumo diário, obtém-se a vazão necessária pelo período desejado.

$$C_d = \frac{Pop \times q}{1 - IN049} \tag{4.1}$$

Método 2 – Cálculo da vazão média a partir dos indicadores operacionais do SNIS
Neste segundo método, o cálculo do consumo diário, para o levantamento da vazão,
é feito a partir dos indicadores operacionais. Foram utilizados os indicadores: Consumo
médio de água faturado por economia (CM) e Índice de perdas por ligação (IN051),
conforme ilustrado na Equação 4.2).

$$C_d = Unidades \ Habitacionais \times (CM + IN051)$$
 (4.2)

• Cálculo da vazão média com base nos dados obtidos no SCADABR.

O terceiro método empregado para o cálculo da vazão média do sistema utilizou os dados medidos pelo sistema supervisório da CAGEPA. A partir da variação do nível de água do reservatório e do intervalo do tempo de medição, foi possível calcular a vazão média da rede.

4.4.1 Definição do Ponto de Operação da Bomba

Após o cálculo das vazões médias demandas pela rede, a etapa seguinte, para criação do modelo hidráulico proposto foi o levantamento dos pontos de operação do CMB.

Conforme o arquivo do projeto original do CMB da EEAT3, disponibilizado pela CAGEPA, a vazão média de projeto era de 10 m³/h e a altura manométrica de 16,35 m.c.a (ver Figura 4.10).

Como a altura estática de bombeamento e as conexões de sucção e recalque são as mesmas, será inserido no modelo hidráulico o mesmo valor para o parâmetro de carga hidráulica de funcionamento.

Para definir a vazão de operação, tendo em vista que a demanda aumentou gradativamente com o crescimento da população nas últimas décadas, será investigado valores dentro do intervalo limite de 10 m³/h até o valor aproximado da vazão nominal (conforme manual do fabricante) que é de 35 m³/h. O valor escolhido será aquele que melhor aproximar os valores calculados no modelo com os observados no supervisório.

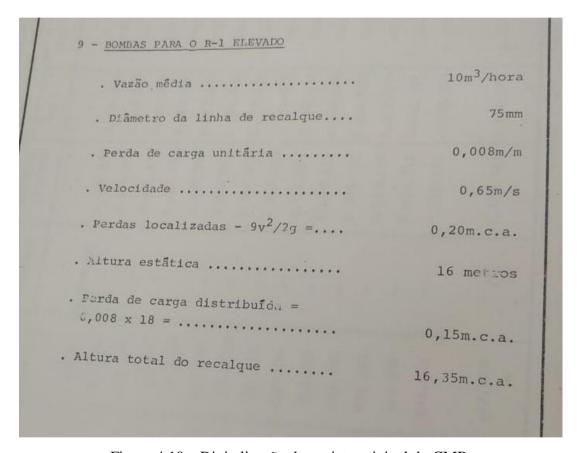


Figura 4.10 – Digitalização do projeto original do CMB.

4.5 CALIBRAÇÃO DO SISTEMA

A calibração dos sistemas de abastecimento é essencial para que as modelagens realizadas representem o modelo real de forma mais coerente. Para a calibração dos valores inseridos no modelo, tais como as vazões demandas, e a vazão a ser bombeada para a rede, foram adotados os seguintes critérios:

- Calibração das vazões na rede: inserção do padrão de consumo, variável de acordo com o horário do dia;
- Calibração da vazão de bombeamento: correlação gráfica entre os valores medidos e os valores simulados para um intervalo de sete vazões: 10 m³/h, 20 m3/h, 30 m³/h, 31 m³/h, 32 m³/h, 32,5 m³/h e 33 m³/h.

Além da metodologia acima empregada, o próprio software Epanet permite a calibração do modelo gerado, a partir da correlação realizada entre os valores medidos em campo e os valores simulados. Fornecendo ao projetista informações a respeito da eficiência das metodologias empregadas.

4.6 ANÁLISE ENERGÉTICA DO SISTEMA DO CMB

Com o sistema devidamente modelado e calibrado, é possível então partir para obtenção da análise energética do sistema proposto. O intuito é avaliar o comportamento do sistema elevatório e propor medidas que reduzam os gastos energéticos, e tornem o sistema mais eficiente.

Para tanto, foram feitas simulações de operação, variando o rendimento do conjunto elevatório em seis intervalos de rendimento: 30%, 35%, 40%, 45% e 50%. Além disso, também se verificou a relação do consumo energético com a paralisação do sistema de bombeamento nos horários de ponta.

Para a obtenção da viabilidade econômica do sistema proposto, foram necessárias a obtenção de algumas variáveis elétricas medidas em campo, além do levantamento da vazão de operação do sistema. Com o levantamento da potência do CMB, além da vazão e altura manométrica do sistema elevatório, foi possível calcular o rendimento do sistema, e assim avaliar, economicamente, as soluções propostas.

O rendimento do conjunto motobomba (η) pode ser expresso pela Equação 4.3:

$$\eta = \frac{\gamma * Q * H}{P} \tag{4.3}$$

Onde,

 γ = Peso específico da água em N/m³

Q = Vazão média em m³/s

H = Altura manométrica em m.c.a

P = Potência elétrica em W

O cálculo da vazão média está demonstrado na Equação 4.4.

$$Q = vazão \ m\'axima * \frac{horas \ de \ bombeamento}{24}$$
 (4.4)

Para o cálculo da potência elétrica, em W, para um motor trifásico (ver Equação 4.5), empregou-se um alicate amperímetro, para o levantamento das variáveis necessárias.

$$P = \sqrt{3} * V * In * cos \varphi \tag{4.5}$$

Onde,

P = potência em W

V = tensão em V

I = corrente em A

 $Cos\phi$ = fator de potência

A Figura 4.11 apresenta o fluxograma metodológico para a criação e calibração do modelo hidráulico elaborado.

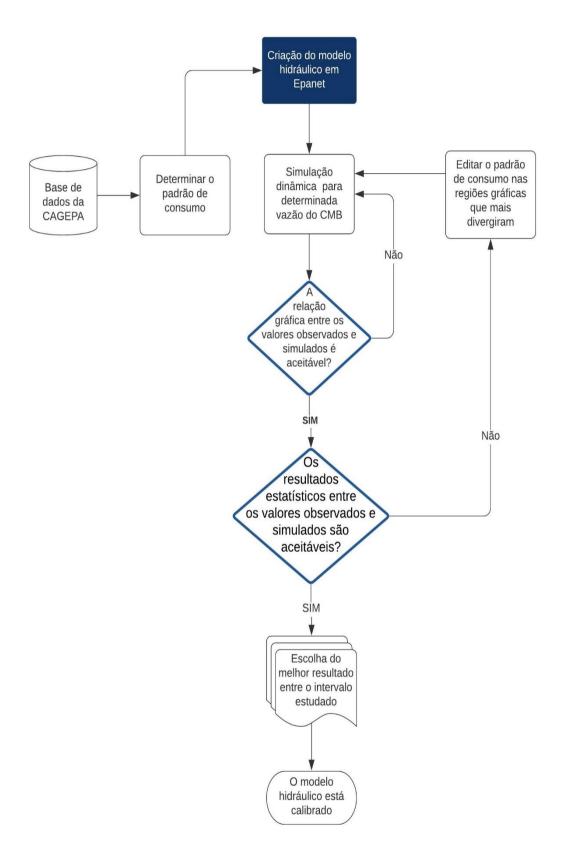


Figura 4.11 — Fluxograma metodológico da criação e calibração do modelo hidráulico

4.7 LIMITAÇÕES E DIFICULDADES

As restrições decorrentes do isolamento social, necessário ao combate à pandemia da Covid-19, impossibilitaram a aquisição de dados (elétricos, mecânicos e hidráulicos) necessários ao cálculo de indicadores hidroenergéticos relevantes ao estudo. Além disso, como não há um programa de manutenção ativo para o CMB da EEAT3, não existe banco de dados periódicos relativos aos componentes eletromecânicos, impossibilitando antecipar eventuais problemas e soluções. Para superar essas limitações, foram realizadas considerações empíricas e a utilização de valores teóricos indicados na literatura relacionada.

CAPÍTULO V

5 RESULTADOS E DISCUSSÕES

Os resultados apresentados a seguir foram obtidos a partir da aplicação dos procedimentos metodológicos descritos no capítulo IV. A modelagem hidráulica, bem como a calibração do modelo e a análise energética da estação elevatória foram elaboradas a partir dos dados fornecidos pelo sistema supervisório.

Para a obtenção do modelo hidráulico, foram coletados os dados referentes a um período de três dias de medição. A partir dos dados armazenados no ScadaLTS, da EEAT3, medidos nos dias 2, 3 e 4 de setembro de 2019, foi elaborado o modelo hidráulico no EPANET do sistema em estudo. Os dados utilizados encontram-se na Tabela A.1 no anexo desta dissertação.

Após a coleta dos dados referentes a variação do nível de água do reservatório R1, o passo seguinte foi estabelecer o consumo médio da rede, bem como a vazão de operação do CMB.

5.1 DEFINIÇÃO DO CONSUMO MÉDIO DA REDE

Como já mencionado no item referente a caracterização da EEAT3, não há medidores de vazão instalados na saída do reservatório elevado R1. No entanto, foi preciso realizar considerações empíricas para definir a demanda média da região em estudo. Os itens a seguir apresentam os resultados obtidos em três diferentes sistemas metodológicos empregados.

5.1.1 Vazão média com base na área de influência do reservatório

Conforme o arquivo da CAGEPA que delimita as áreas de influência de cada reservatório na rede do município de Guarabira, foram contabilizadas 1003 unidades consumidoras abastecidas pelo reservatório R1 elevado. A Figura 5.1 representa a área de influência do R1 elevado.

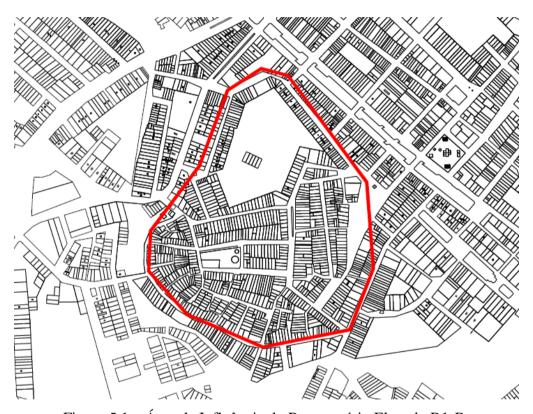


Figura 5.1 – Área de Influência do Reservatório Elevado R1-B.

Fonte: Elaboração Própria.

Para o levantamento da vazão média que abastece a área de influência destacada na Figura 5.1, foi necessário determinar a população atendida nessa região. Com base nas informações do conjunto universo do Censo Demográfico 2010 da cidade de Guarabira, conforme a Tabela 5.1, foi possível calcular a média de moradores por domicílio do município, dividindo-se a população total pelo número de domicílios particulares permanentes. Com isso, obteve-se a média de 3,40 moradores por domicílio.

Tabela 5.1 – População do Município de Guarabira e Domicílios Particulares Permanentes.

Município	População			Domicílios Particulares Permanentes (total)
Guarabira	Total	Urbana	Rural	Bonnemos i arrealares i ermanences (total)
2010	55.326	48.960	6.366	16.264

Fonte: Elaborada com base em IBGE (2010).

Para o cálculo da vazão média, além do número total de habitantes, também é necessário estabelecer o consumo médio per capita, levando-se em consideração o índice de perdas que ocorrem na distribuição. Esses dados podem ser obtidos através de dados registrados no SNIS, conforme observa-se na Tabela 5.2.

Tabela 5.2 – Indicadores de consumo e perdas.

CAGEPA	Consumo médio per capita de água	Índice de perdas na		
	hidrometrado	distribuição		
Município	l/hab.dia	Percentual		
Guarabira	104,70	46,89		

Fonte: Elaborada com base em: SNIS (2018).

Sabendo que o consumo diário per capita (considerando as perdas) é o consumo médio per capita de água incrementado pelo percentual de perdas na distribuição, calculam-se o consumo diário da região e a vazão média consumida (Q_1) em litros por segundo.

Consumo diário =
$$1003 * 3,40 * \left(\frac{104,70}{1-0,4689}\right) = 672.280,06 l/dia$$

$$Q_1 = \frac{672.280,06}{86400} \cong 7,78 \ l/s$$

5.1.2 Vazão média utilizando os indicadores operacionais do SNIS

Os dados referentes aos indicadores necessários foram obtidos na plataforma do SNIS e estão detalhados na Tabela 5.3.

CAGEPA Consumo médio de água, hidrometrado, findice de perdas por ligação

Município m³/mês/econ l/dia/lig.

Guarabira 13,18 300,93

Tabela 5.3 - Indicadores operacionais de água. (SNIS, 2018).

Considerando que a unidade [mês] é composta por 30 dias e transformando a unidade de [m³] metros cúbicos em [1] litros, obtém-se o consumo médio diário de água em litros por economia. Dessa forma, obtém-se o valor de 439,33 l/dia/econ. Conforme o indicador **IN051**, do SNIS, o índice de perdas por ligação é de 300,93 l/dia/ligação.

A partir dos dados obtidos foi calculado o consumo diário da região e a vazão média consumida (Q_2) em litros por segundo.

Consumo diário =
$$1003 * (439,33 + 300,93) = 742.480,78 l/dia$$

$$Q_2 = \frac{742.480,78}{86400} \cong 8,59 \ l/s$$

5.1.3 Vazão média com base nos dados obtidos no SCADABR

O CMB da estação elevatória possui um controle de operação com base no nível do reservatório elevado R1. Os níveis foram definidos conforme critérios operacionais realizados pela Sub Gerência de Operação da CAGEPA. Para operação de desligamento, o nível estabelecido é de 3,50 m; e para o acionamento, o nível estabelecido é de 1,80 m. Esta variação do nível, ao longo dos três dias em análise, medida e armazenada a cada 6 minutos, pode ser observada na Figura 5.2.

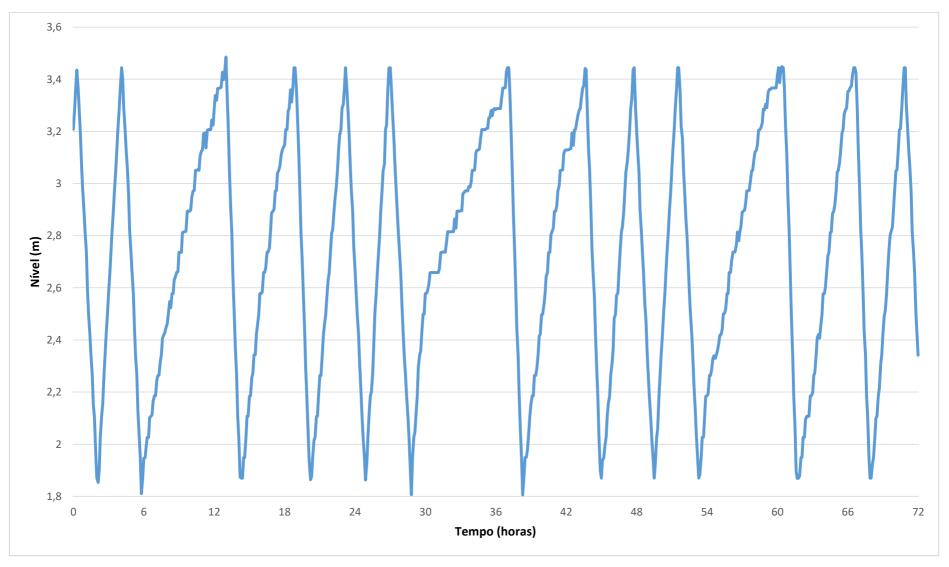


Figura 5.2 – Variação do nível do reservatório R1 elevado em metros.

Quando o CMB está desligado a variação da lâmina d'água do reservatório é função da vazão demandada pela rede. Dessa forma, foram calculadas as vazões médias nos intervalos em que a bomba estava fora de operação, a fim de obter um consumo médio diário mais preciso do que o calculado nos itens anteriores.

Os valores obtidos (em l/s), para o intervalo em estudo, podem ser observados na Tabela 5.4 a seguir.

Tabela 5.4 – Vazões médias para esvaziar o reservatório com a bomba desligada.

DIA	INTERVALO EM	VAZÃO MÉDIA PARA ESVAZIAR O			
DIA	HORAS	RESERVATÓRIO [l/s]			
	00:27 ATÉ 02:03	6,49			
	04:15 ATÉ 05:45	6,72			
02/09/2019	13:03 ATÉ 14:15	9,33			
	19:03 ATÉ 20:09	9,04			
	23:21 ATÉ 00:57	6,52			
03/09/2019	03:03 ATÉ 04:45	6,19			
	13:15 ATÉ 14:15	9,78			
	19:45 ATÉ 20:57	8,91			
	23:51 ATÉ 01:27	6,52			
04/09/2019	03:39 ATÉ 05:15	6,52			
	12:39 ATÉ 13:39	10,20			
	18:45 ATÉ 19:51	9,33			
	22:57 ATÉ 00:03	6,96			

A partir das medições apresentadas, foi calculada a vazão média diária (Q_3), obtendo-se o valor de 7,89 l/s.

$$Q_3 = \frac{\sum_{1}^{n} Q_{m\acute{e}dia}}{n} \cong 7,89 \; l/s$$

Entre as três vazões calculadas (Q_1 , Q_2 e Q_3), optou-se pelo uso da vazão de demanda Q_3 como Consumo-Base no modelo hidráulico no EPANET (nó de saída do reservatório) tendo em vista a confiabilidade de sua obtenção, baseada em parâmetros físicos do sistema (variação do nível do reservatório).

Na Tabela 5.5 pode-se verificar a situação operacional do CMB ao longo dos três dias. A Tabela 5.5 foi elaborada com base nos dados da variável (BOMB1_R1_ligado) obtida no sistema SCADA. O supervisório armazena uma variável numérica a cada 6 minutos; o valor inteiro "1" representa a situação do conjunto em operação (ligado) e o valor inteiro "0" para a situação fora de operação (desligado).

Tabela 5.5 – Situação operacional (Liga/Desliga) da Bomba (setembro/2019).

DIA	DATA	HORA	BOMBA	
		00:03	Lig	
	2	00:27	Deslig	
		02:09	Lig	
		04:15	Deslig	
Saa		05:51	Lig	
Seg		13:03	Deslig	
		14:21	Lig	
		19:03	Deslig	
		20:15	Lig	
		23:21	Deslig	
		01:03	Lig	
	3	03:03	Deslig	
		04:51	Lig	
Ter		13:15	Deslig	
161		14:21	Lig	
		19:45	Deslig	
		21:03	Lig	
		23:51	Deslig	
	4	1:33	Lig	
		3:39	Deslig	
		5:21	Lig	
Qua		12:39	Deslig	
		13:45	Lig	
		18:45	Deslig	
		19:57	Lig	
		22:57	Deslig	

Na Figura 5.3, pode-se conferir o gráfico da situação operacional do conjunto motobomba ao longo dos três dias estudados.

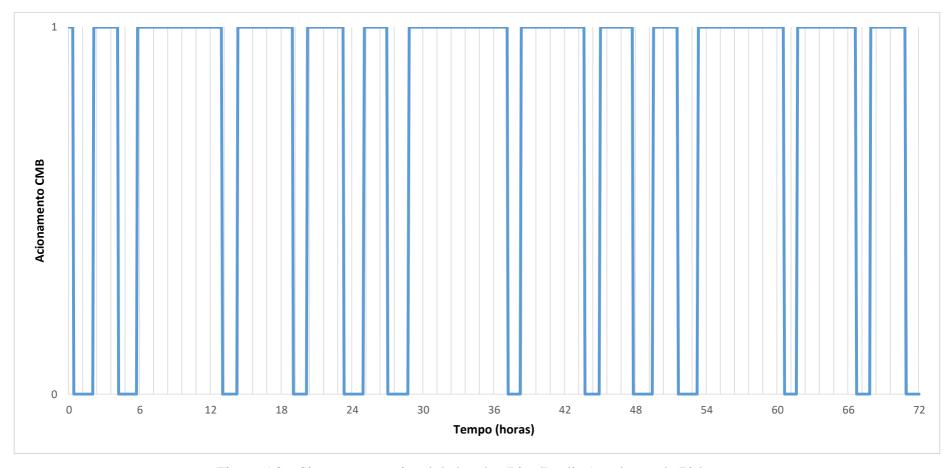


Figura 5.3 – Situação operacional da bomba (Liga/Desliga) ao longo de 72 horas.

5.2 MODELAGEM ALTERNATIVA PROPOSTA ATRAVÉS DO PROGRAMA EPANET

Através da análise dos dados obtidos no sistema SCADA, das características do CMB e dos parâmetros físicos dos reservatórios, foi possível inserir as curvas e os padrões temporais (que caracterizam a estação elevatória) no modelo hidráulico desenvolvido no EPANET (ver Figura 5.4).

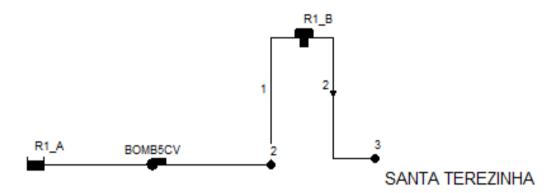


Figura 5.4 – Mapa da rede produzida no EPANET.

As características gerais inseridas na modelagem em estudo são:

- R1_A RNF (reservatório de nível fixo) para representar o reservatório R1 apoiado;
- R1_B RNV (reservatório de nível variado) para representar o reservatório R1 elevado;
- BOMB5CV Bomba centrifuga para representar o conjunto motobomba da EEAT3.

As informações necessárias para o preenchimento dos nós (2,3) do modelo são as cotas e os consumo-base; e dos trechos são os diâmetros, rugosidade e comprimento. Para os reservatórios é necessário fornecer o nível de água, bem como a cota de fundo. E, por fim, para caracterização do CMB, foi inserida a curva da bomba. Conforme ilustrado na Figura 5.5 pode-se verificar o editor de curva do EPANET, com a vazão inserida de 8,33 l/s (30 m³/h).

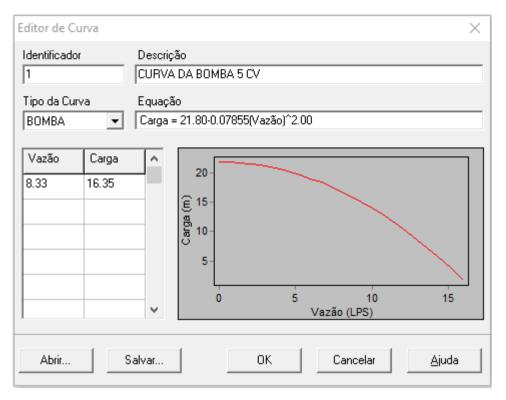


Figura 5.5 – Editor de curva da bomba.

5.3 SIMULAÇÃO DINÂMICA DO CENÁRIO DE OPERAÇÃO NO EPANET E CALIBRAÇÃO DO SISTEMA

Após a modelagem hidráulica da rede que representa o sistema elevatório da EEAT3, foram realizadas simulações dinâmicas para determinação da vazão de funcionamento do CMB, bem como a calibração do nível do reservatório para a vazão adotada.

5.3.1 Procedimento adotado para estimar o padrão de consumo

Para executar a simulação dinâmica do cenário proposto, faz-se necessário determinar o padrão de consumo que represente a variação periódica da demanda da rede, ao longo das 24 horas do dia, na saída do reservatório elevado.

Apesar da demanda na rede ser relativamente constante ao longo dos dias, para possibilitar a calibração manual no EPANET, a simulação foi definida para um intervalo de 24 horas.

A alternativa utilizada para suprir a falta da medição da vazão na saída do reservatório elevado R1 foi associar à variação de demanda da rede com a variação do

nível d'água do reservatório. As vazões calculadas no item 4.1.3 serviram como balizadores dos intervalos aceitáveis. Os fatores multiplicativos dos intervalos foram editados individualmente, considerando o comportamento padrão de consumo nas cidades do litoral paraibano, as vazões médias calculadas e o consumo-base adotado. A vazão de cada intervalo pode ser obtida multiplicando-se o consumo-base pelo fator multiplicativo correspondente, conforme ilustrado na Figura 5.6.

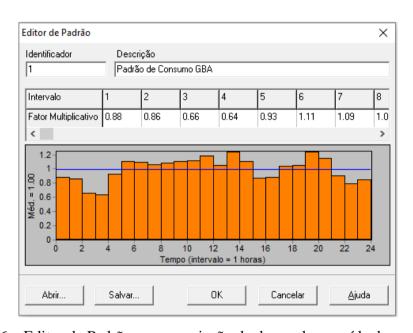


Figura 5.6 – Editor de Padrão para a variação de demanda na saída do reservatório.

Na Tabela 5.6 a seguir podem-se verificar todos os fatores multiplicativos adotados, que caracterizam a variação horária do consumo da região abastecido pelo reservatório R1 elevado (R1_B).

Tabela 5.6 – Padrão de consumo adotado no EPANET

Horário	Padrão de Consumo						
01:00	0,88	7:00	1,09	13:00	1,05	19:00	1,02
02:00	0,86	8:00	1,06	14:00	1,19	20:00	1,20
03:00	0,66	9:00	1,08	15:00	1,11	21:00	0,99
04:00	0,64	10:00	1,11	16:00	0,87	22:00	0,86
05:00	0,93	11:00	1,12	17:00	0,98	23:00	0,85
06:00	1,11	12:00	1,22	18:00	1,03	24:00	0,97

5.3.2 Tentativas para definição da vazão de funcionamento do CMB

De posse do padrão de consumo apresentado no item anterior, do consumo-base da região e da variação do nível do reservatório (dado obtido no SCADA) pode-se encontrar a vazão de operação do conjunto motobomba. Do ponto de vista matemático, é uma equação com três variáveis (vazão de entrada, nível do reservatório e vazão de saída), sendo apenas a vazão de entrada do reservatório a incógnita. Como a bomba não opera com modulação de carga (inversor de frequência) a vazão de operação obtida será uma constante.

A bomba da EEAT3 não funciona intermitentemente 24 horas por dia. Conforme abordado no item 4.1.3, o funcionamento da bomba é determinado em função da variação do nível do reservatório R1 elevado. Para representar esse funcionamento no modelo, foram adicionadas duas regras de controle simples na sintaxe própria do EPANET. As regras de operação são observadas na Figura 5.7.

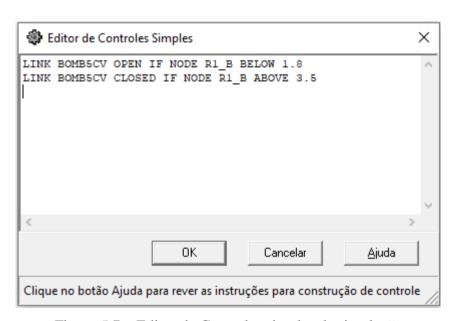


Figura 5.7 – Editor de Controles simples da simulação

Os significados das regras são:

 REGRA 1: "Se no reservatório R1_B o nível for inferior a 1,80 metros, então a bomba é ligada". • REGRA 2: "Se no reservatório R1_B o nível for superior a 3,50 metros, então a bomba é desligada".

Após a inserção das regras na modelagem proposta da EEAT3 foram realizadas sete simulações de operação da rede, variando a vazão e obtendo o nível do reservatório R1_B correspondente. Os parâmetros adotados para definir a melhor vazão que representa o sistema estudado foram: relatório de calibração do EPANET, desvio padrão e a correlação entre as medidas (calculadas no modelo e as observadas).

Em resumo, procurou-se a vazão que proporciona o menor desvio padrão e a maior correlação entre as medidas. Os gráficos da variação do nível do reservatório elevado para cada vazão inserida podem ser observados nas figuras:

- Figura 5.8— para uma vazão de 10 m³/h;
- Figura 5.9— para uma vazão de 20 m³/h;
- Figura 5.10— para uma vazão de 30 m³/h;
- Figura 5.11— para uma vazão de 31 m³/h;
- Figura 5.12— para uma vazão de 32 m³/h;
- Figura 5.13— para uma vazão de 32,5 m³/h;
- Figura 5.14— para uma vazão de 33 m³/h.

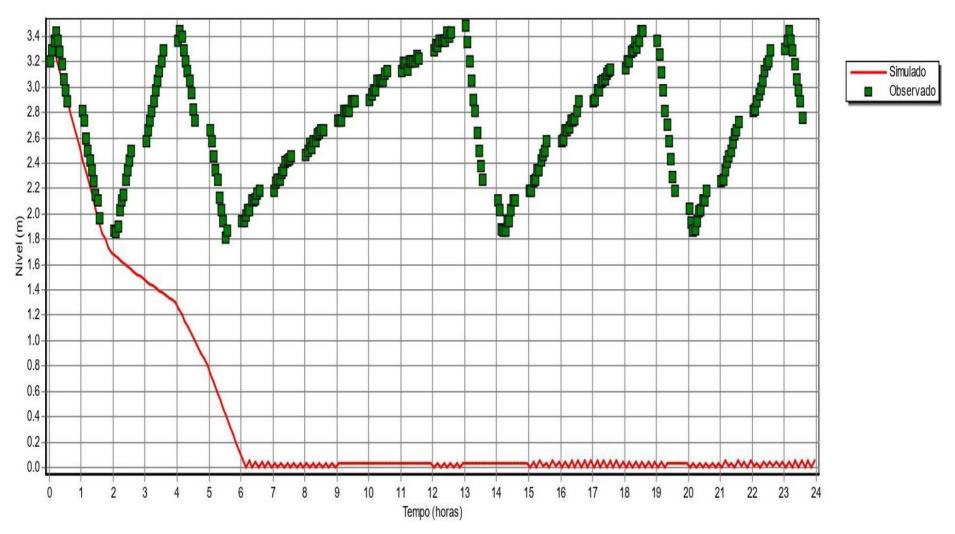


Figura 5.8 – Variação do nível do reservatório R1_B para a vazão de entrada de 10 m³/h (2,78 l/s).

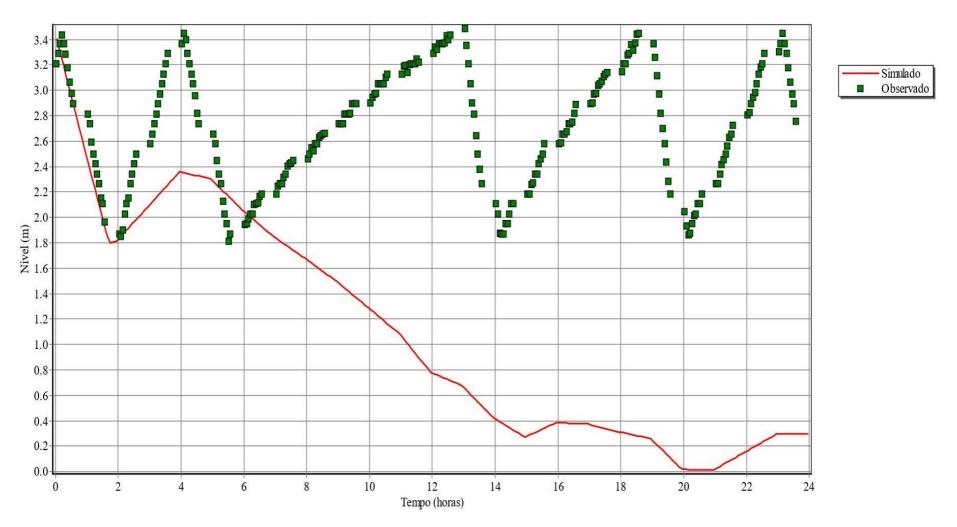


Figura 5.9 – Variação do nível do reservatório R1_B para a vazão de entrada de 20 m³/h (5,56 l/s).

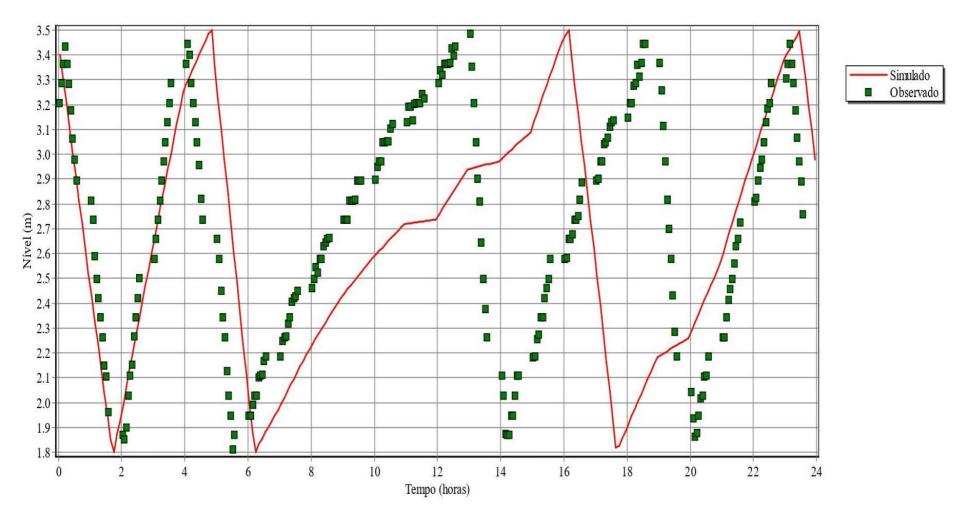


Figura 5.10 – Variação do nível do reservatório R1_B para a vazão de entrada de 30 m³/h (8,33 l/s).

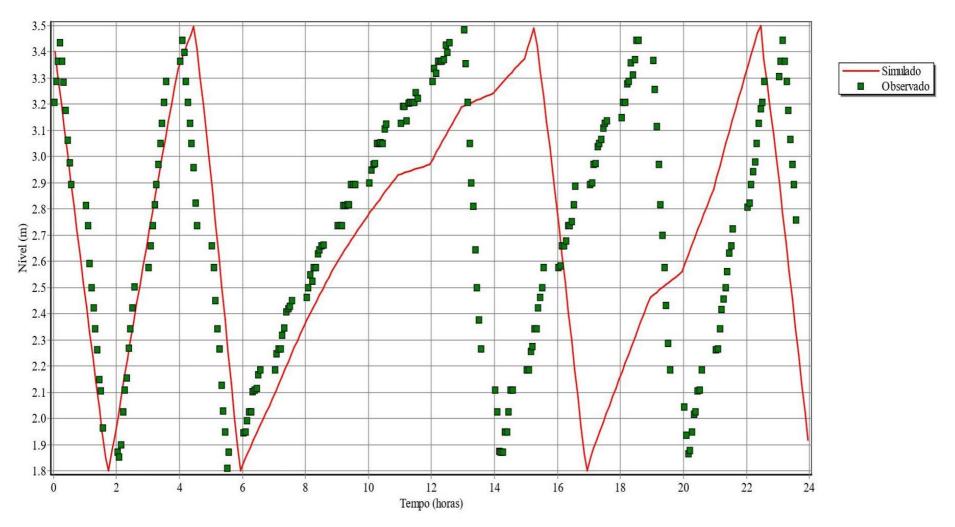


Figura 5.11 – Variação do nível do reservatório R1_B para a vazão de entrada de 31 m³/h (8,61 l/s).

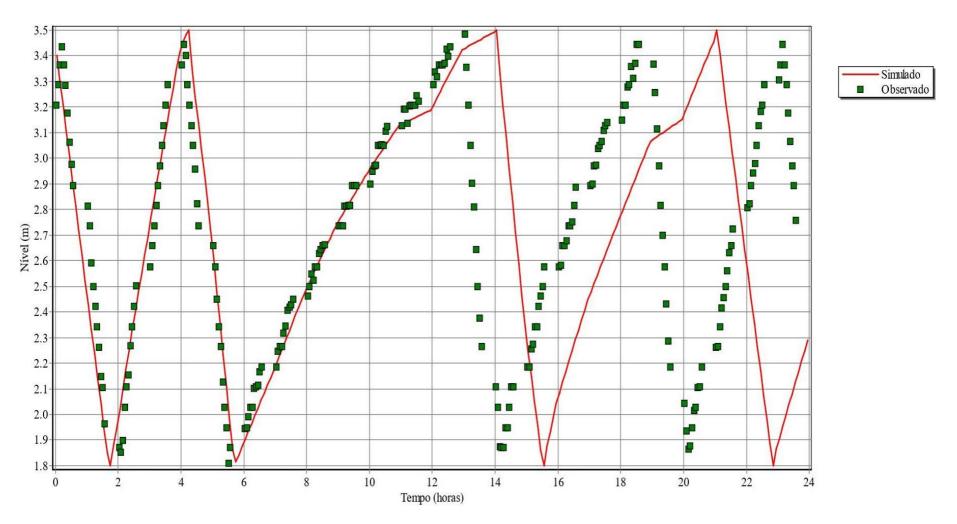


Figura 5.12 – Variação do nível do reservatório R1_B para a vazão de entrada de 32 m³/h (8,88 l/s).

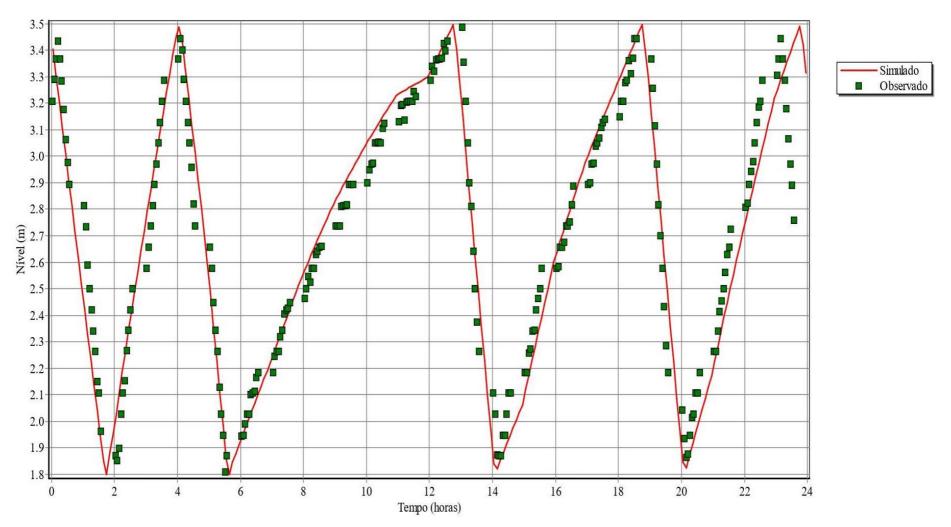


Figura 5.13 – Variação do nível do reservatório R1_B para a vazão de entrada de 32,5 m³/h (9,02 l/s).

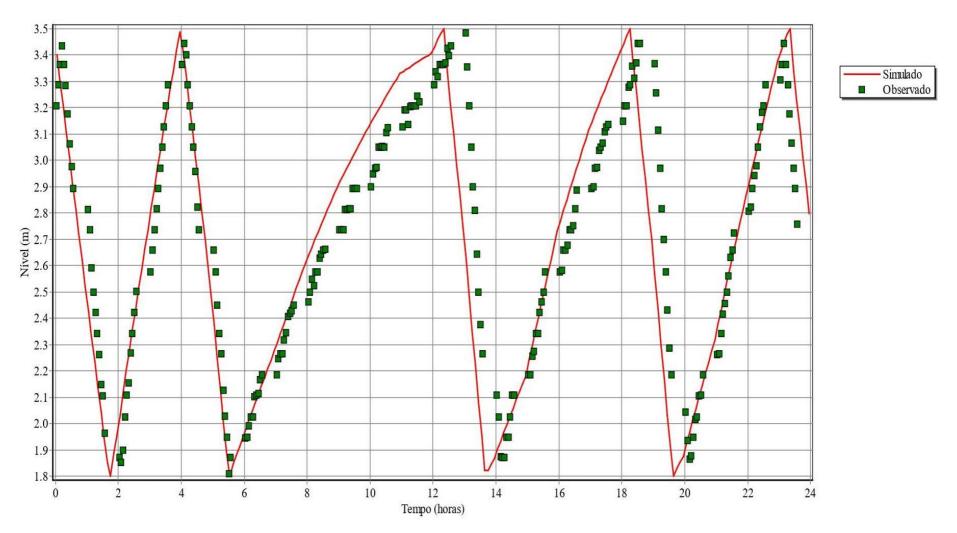


Figura 5.14 – Variação do nível do reservatório R1_B para a vazão de entrada de 33 m³/h (9,16 l/s).

Pode-se observar a correlação gráfica dos valores observados e simulados do nível do reservatório, para cada vazão adotada, nas figuras:

- Figura 5.15— para uma vazão de 10 m³/h;
- Figura 5.16— para uma vazão de 20 m³/h;
- Figura 5.17 para uma vazão de 30 m³/h;
- Figura 5.18— para uma vazão de 31 m³/h;
- Figura 5.19— para uma vazão de 32 m³/h;
- Figura 5.20— para uma vazão de 32,5 m³/h;
- Figura 5.21— para uma vazão de 33 m³/h.

Conforme descreve o manual do EPANET, quanto mais próximo estiverem os pontos da linha a 45° melhor será o ajustamento entre os valores computados e observados.

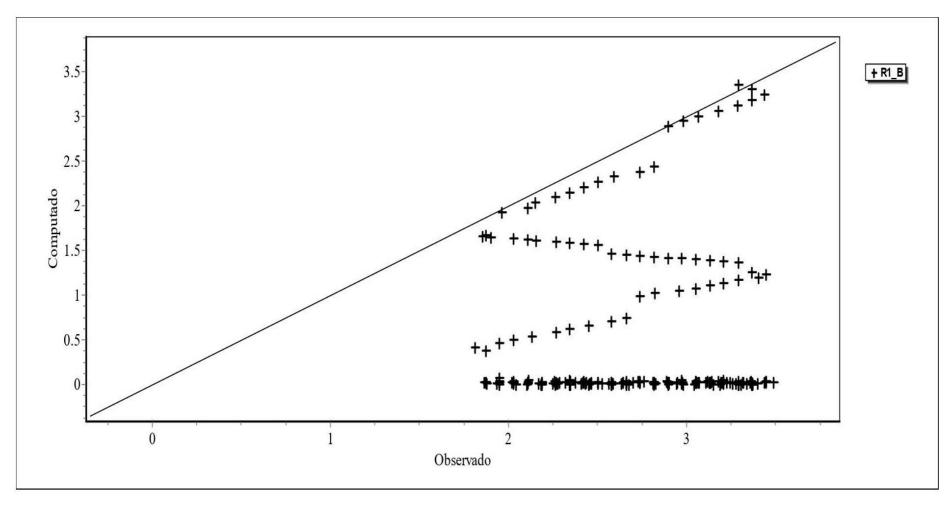


Figura 5.15 – Correlação gráfica dos valores observados e simulados para a vazão de entrada de 10 m³/h (2,78 l/s).

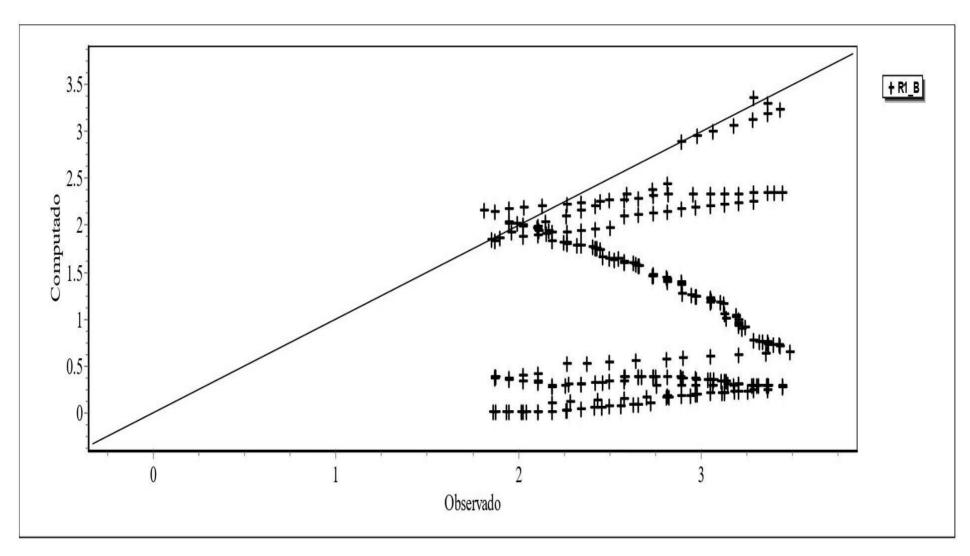
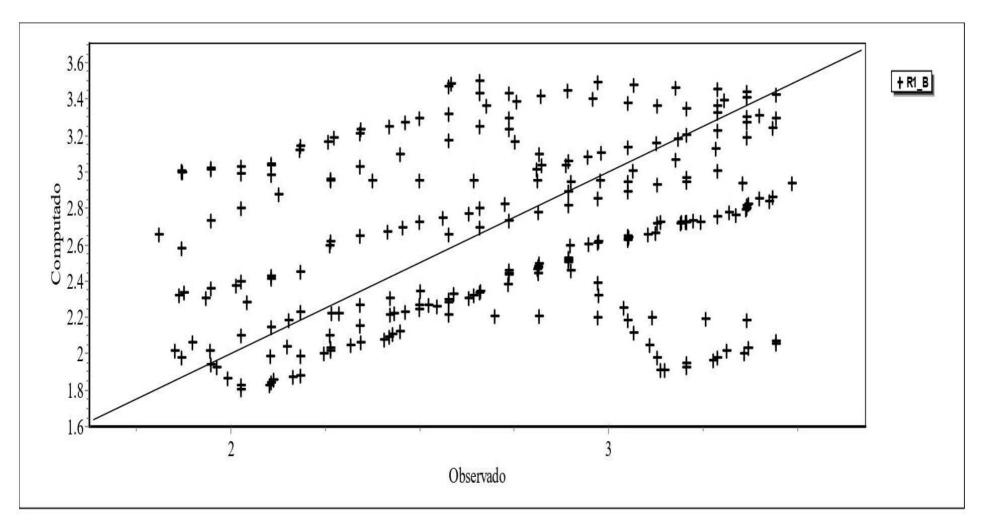



Figura 5.16 – Correlação gráfica dos valores observados e simulados para a vazão de entrada de 20 m³/h (5,56 l/s).

 $Figura~5.17-Correlação~gráfica~dos~valores~observados~e~simulados~para~a~vazão~de~entrada~de~30~m^3/h~(8,33~l/s).$

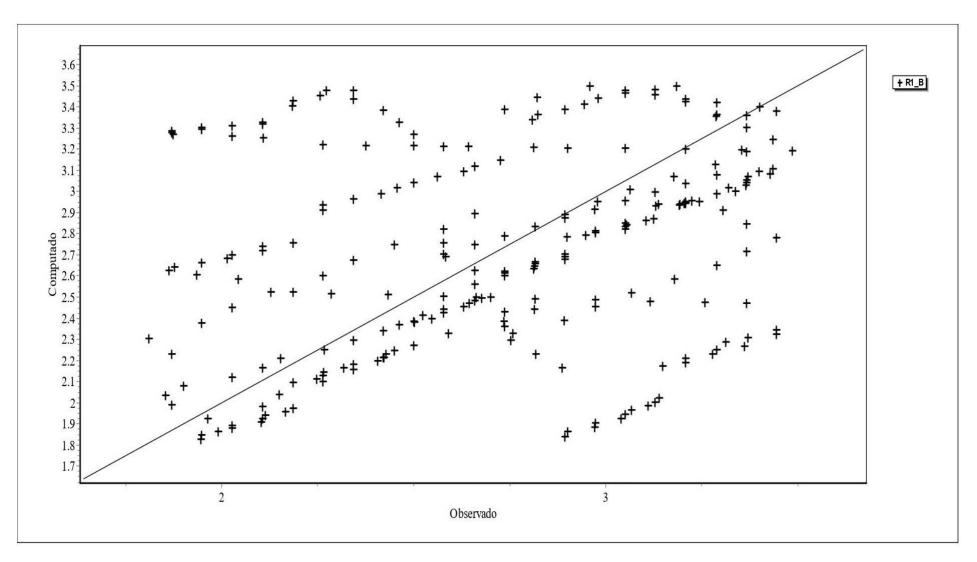


Figura 5.18 – Correlação gráfica dos valores observados e simulados para a vazão de entrada de 31 m³/h (8,61 l/s).

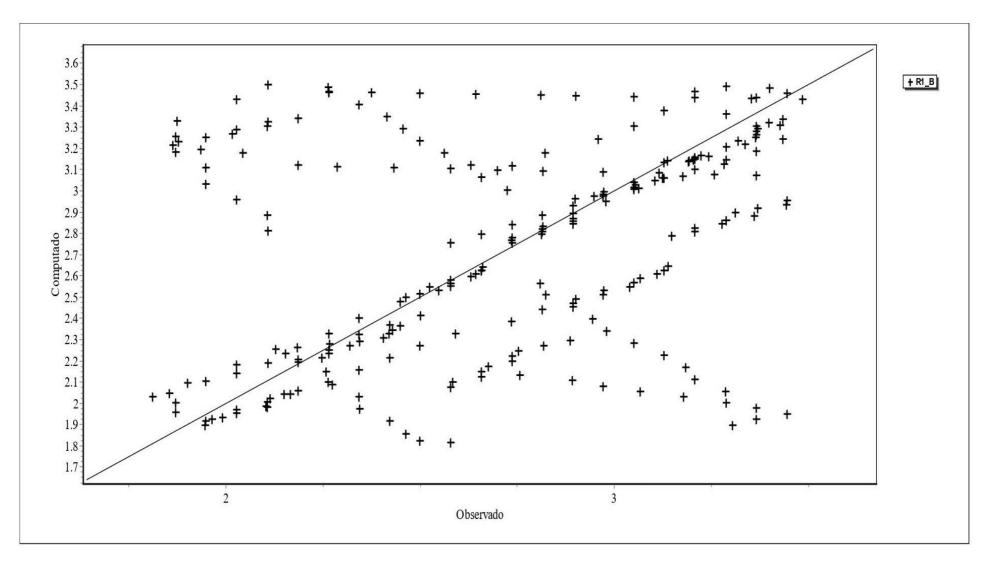


Figura 5.19 – Correlação gráfica dos valores observados e simulados para a vazão de entrada de 32 m³/h (8,88 l/s).

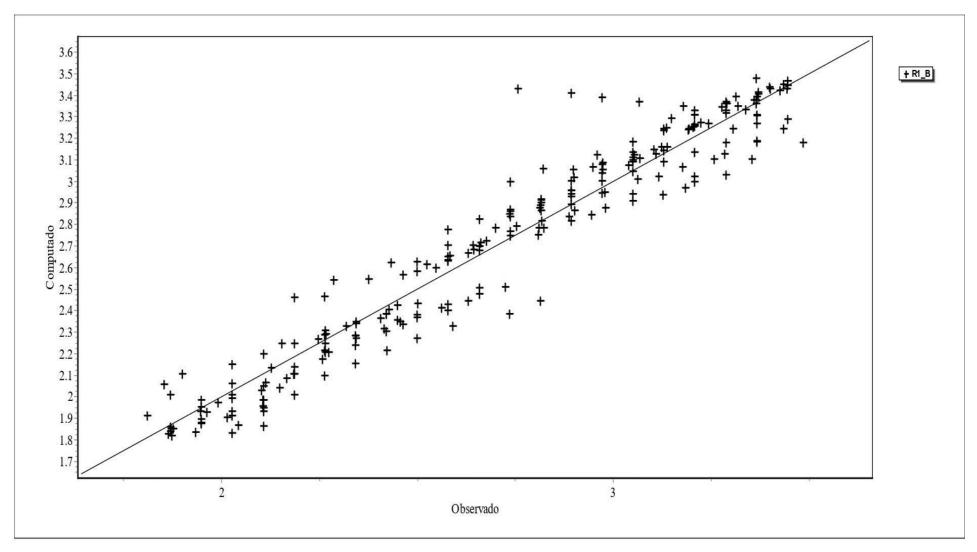


Figura 5.20 – Correlação gráfica dos valores observados e simulados para a vazão de entrada de 32,5 m³/h (9,021/s).

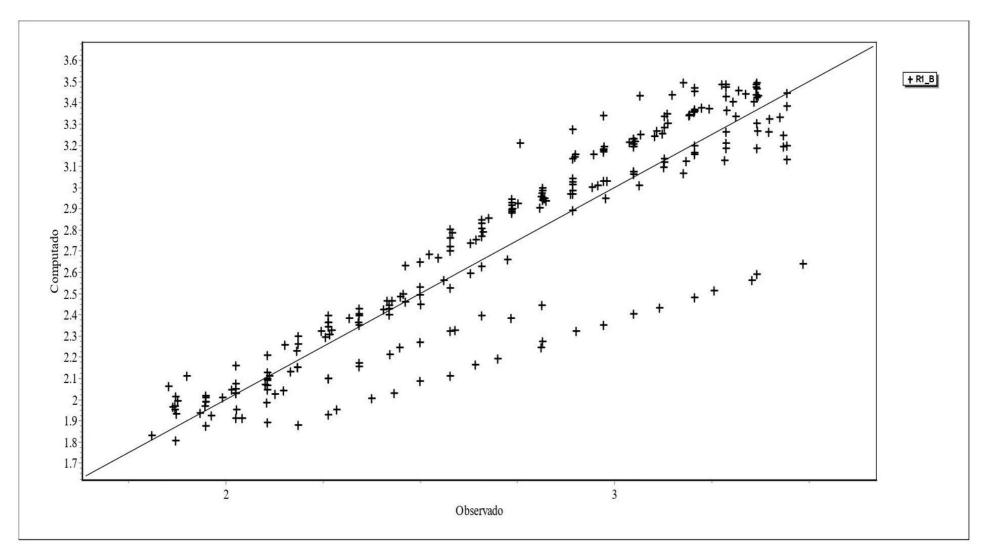


Figura 5.21 – Correlação gráfica dos valores observados e simulados para a vazão de entrada de 33 m³/h (9,16l/s).

A correlação entre os valores (computados e observados) e o desvio padrão de cada vazão inserida está registrada na Tabela 5.7.

Tabela 5.7 – Vazão adotada, correlação entre medidas e desvio padrão.

VAZÃO (m³/h)	VAZÃO (l/s)	CORRELAÇÃO ENTRE MEDIDAS	DESVIO PADRÃO
10,0	2,78	-1,879	2,451
20,0	5,56	1,050	1,903
30,0	8,33	0,000	0,557
31,0	8,61	0,000	0,566
32,0	8,88	0,000	0,562
32,5	9,02	6,804	0,130
33,00	9,16	0,000	0,219

Conforme pode-se observar pelos valores da Tabela 5.7, a vazão de 32,5 m³/h (9,02 l/s) foi a que obteve o menor desvio padrão e a maior correlação entre as medidas das variáveis hidráulicas. O item a seguir, apresenta o relatório gerado na calibração com esta vazão.

5.3.3 Registro da calibração do nível do reservatório para a vazão adotada

A calibração compara os valores medidos em campo (inseridos no modelo) com os valores calculados na simulação. O nó selecionado para ser calibrado foi o R1_B que corresponde ao reservatório R1 elevado, tendo em vista ser o único parâmetro físico medido com relação a EEAT3. A Figura 5.22 apresenta a caixa de diálogo disponível pelo EPANET para obtenção do relatório de calibração do ponto selecionado.

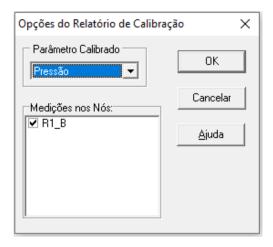


Figura 5.22 – Caixa de diálogo de Opções do Relatório de Calibração.

Os resultados estatísticos obtidos na calibração foram (ver Figura 5.23):

- Número de observações: 239;
- Média dos Valores Observados: 2,71;
- Média dos Valores Simulados: 2,71;
- Erro médio absoluto entre cada valor observado e simulado: 0,097;
- Desvio padrão em relação aos valores simulados: 0,130.



Figura 5.23 – Relatório de Calibração.

Dado que a variação do consumo da rede abastecida pelo reservatório elevado possui um elevado grau de liberdade, o resultado da calibração foi considerado

satisfatório. Além dos bons resultados no desvio padrão e na correlação entre as medidas, a média dos valores simulados se igualou a média dos valores observados.

Na Figura 5.24, observa-se o gráfico de barras que compara o valor médio observado com o valor médio simulado (computado) da calibração.



Figura 5.24 – Comparação gráfica dos valores médios computado e observado

Com o modelo devidamente calibrado pode-se verificar a energia gasta no bombeamento, como também testar a validação das hipóteses de eficientização.

5.4 ENERGIA DO BOMBEAMENTO

A tarifa de energia ao longo do dia é variável, sendo maior para os horários de ponta. Para representar corretamente essa variação na simulação, foi criado um padrão temporal para a energia, observado na Figura 5.25. Foram introduzidos os fatores multiplicativos de 1,605 para as três horas que compreendem o horário de ponta, e de 1,0 para o restante do dia. Isto representa que a tarifa entre as 18 e 21 horas é 60,5% maior do que as demais horas do dia. O rótulo (2) do padrão do custo foi inserido em **Padrão de Preço** na janela de propriedades da bomba.

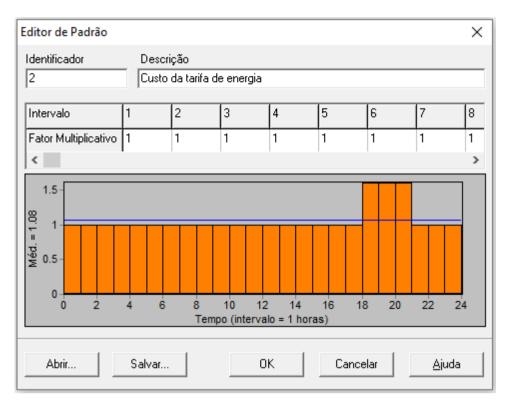


Figura 5.25 – Editor do padrão da variação da tarifa de energia

Os rendimentos de bombas de pequeno porte podem atingir valores abaixo de 40%. Como não há nenhum programa ativo de manutenção preditiva e preventiva, para o CMB em estudo, foi considerado um rendimento de bombeamento de 30% (ver Figura 5.26).

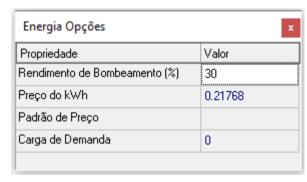


Figura 5.26 – Rendimento médio de bombeamento e preço do KWh

Para avaliação dos custos relacionados à operação do CMB, foi gerado um Relatório de Energia em formato de tabela, através das ferramentas e rotinas de cálculo disponíveis no próprio EPANET (ver Figura 5.27).

■ Relatório de Energia □ □ ■							
Percentagem Utilização	Rendimento Médio	kWh /m3	kW Médio	kW Máximo	Custo /dia		
74.67	30.00	0.13	4.94	4.95	20.36		
					20.36		
					0.00		
	Percentagem Utilização 74.67	Percentagem Rendimento Utilização Médio 30.00	Percentagem Rendimento kWh Utilização Médio /m3 74.67 30.00 0.13	Percentagem Rendimento kWh kW Utilização Médio /m3 Médio 74.67 30.00 0.13 4.94	Percentagem Rendimento kWh kW kW Utilização Médio /m3 Médio Máximo 74.67 30.00 0.13 4.94 4.95		

Figura 5.27– Energia e custo do bombeamento de um dia para o rendimento de 30%

Para o rendimento adotado na simulação, o custo diário de energia foi de R\$ 20,36, o que corresponde a um custo mensal de R\$ 610,80 (30 dias) e anual de R\$ 7.431,40.

5.4.1 Avaliação do impacto do rendimento no custo de energia

Levando-se em consideração a falta de dados disponibilizados pela companhia, bem como a ausência de equipamentos de medição no local, optou-se por avaliar o impacto da variação de rendimento no custo de energia. Ou seja, além dos resultados obtidos no item anterior, foi considerado um intervalo de rendimento de bombeamento entre 35 e 55% (intervalo definido depois de observado o gráfico de quadrículas da figura 3.9) com incremento de 5% no rendimento em cada nova simulação.

Pode-se observar variação do custo de bombeamento para cada valor de rendimento nas figuras:

- Figura 5.28 rendimento de 35%;
- Figura 5.29 rendimento de 40%;
- Figura 5.30 rendimento de 45%;
- Figura 5.31 rendimento de 50%;
- Figura 5.32 rendimento de 55%.

■ Relatório de Energia								
Tabela Gráfico	Tabela Gráfico							
Bomba	Percentagem Utilização	Rendimento Médio	kWh /m3	kW Médio	kW Máximo	Custo /dia		
BOMB5CV	74.67	35.00	0.11	4.23	4.24	17.45		
Custo Total						17.45		
Tarifa de Consumo Máx						0.00		

Figura 5.28 – Energia e custo do bombeamento de um dia para o rendimento de 35%

■ Relatório de Energia □ □ ▼							
Tabela Gráfico							
Bomba	Percentagem Utilização	Rendimento Médio	kWh /m3	kW Médio	kW Máximo	Custo /dia	
BOMB5CV	74.67	40.00	0.10	3.70	3.71	15.27	
Custo Total						15.27	
Tarifa de Consumo Máx						0.00	

Figura 5.29 – Energia e custo do bombeamento de um dia para o rendimento de 40%

■ Relatório de Energia							
Tabela Gráfico							
Bomba	Percentagem Utilização	Rendimento Médio	kWh /m3	kW Médio	kW Máximo	Custo /dia	
BOMB5CV	74.67	45.00	0.09	3.29	3.30	13.57	
Custo Total						13.57	
Tarifa de Consumo Máx						0.00	

Figura 5.30 – Energia e custo do bombeamento de um dia para o rendimento de 45%

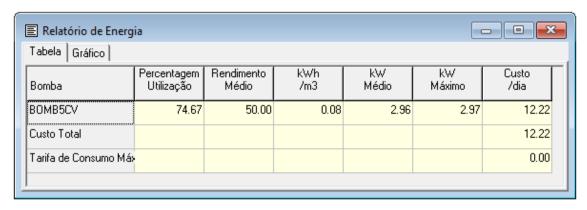


Figura 5.31 – Energia e custo do bombeamento de um dia para o rendimento de 50%



Figura 5.32 – Energia e custo do bombeamento de um dia para o rendimento de 55%

Os resultados obtidos com as novas simulações no bombeamento, tais como custo diário, mensal e anual com energia elétrica, estão descritos na Tabela 5.8.

Tabela 5.8 – Intervalo de rendimentos do CMB e custos com energia elétrica

DENDIMENTO	1/33/11 / 2		CUSTO	
RENDIMENTO	KWh/m³	DIÁRIO	MÊS (30 DIAS)	ANUAL
30%	0,13	R\$ 20,36	R\$ 610,80	R\$ 7.431,40
35%	0,11	R\$ 17,45	R\$ 523,50	R\$ 6.369,25
40%	0,10	R\$ 15,27	R\$ 458,10	R\$ 5.573,55
45%	0,09	R\$ 13,57	R\$ 407,10	R\$ 4.953,05
50%	0,08	R\$ 12,22	R\$ 366,60	R\$ 4.460,30
55%	0,07	R\$ 11,10	R\$ 333,00	R\$ 4.051,50

De posse de cada rendimento adotado, e seu respectivo custo anual com energia elétrica, foi gerado um gráfico (ver Figura 5.33) de dispersão e em seguida obtida a Equação 5.1, através da ferramenta "linha de tendência" do software Microsoft Excel, que representa

a relação entre estas variáveis. A variável "y" representa o custo anual com energia elétrica e o a variável "x" representa o rendimento de bombeamento.

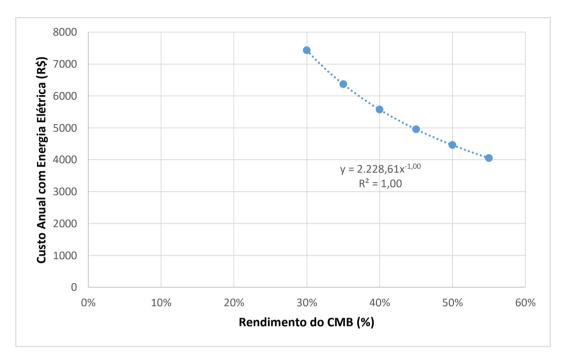


Figura 5.33 – Custo anual com energia elétrica em função do rendimento do CMB

Para atingir um nível ótimo de eficiência com relação ao rendimento do CMB atual, deve-se comparar os custos de investimento para aumentar o rendimento de bombeamento com o benefício direto da redução do custo com energia elétrica (para o período de vida útil das intervenções adotadas). Para exemplificar, o aumento do rendimento de 30% para 55% produz uma redução no custo com energia elétrica de aproximadamente 54,52% o que equivale a uma economia anual de R\$ 3.379,90.

5.5 ANÁLISE ENERGÉTICA DAS SOLUÇÕES PROPOSTAS

Após a realização da modelagem, calibração e simulação dos cenários propostos, foram feitas análises energéticas das soluções propostas, para o levantamento quantitativo dos cenários de mudança, buscando uma maior eficientização energética, além da viabilidade econômica do projeto.

5.5.1 Análise do consumo de energia elétrica com a paralisação da bomba no horário de bomba

Uma das alternativas que contribui para a redução do consumo e demanda por energia elétrica em horário de ponta é a operação otimizada do volume de reservatórios, com o bombeamento desligado. Isto só é viabilizado quando é possível garantir que o reservatório esteja cheio no início do horário de ponta e com um volume residual seguro ao final. Para testar esta hipótese foi imposta uma nova regra de operação ao modelo hidráulico, conforme ilustrado no editor de regras do EPANET (ver Figura 5.34):

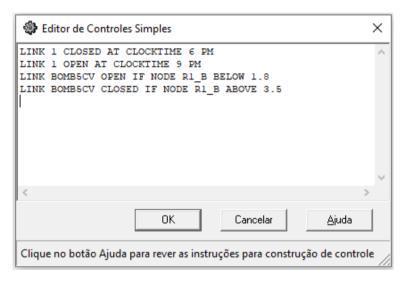


Figura 5.34 – Editor de Controles simples da simulação 2

Os significados das novas regras são:

- REGRA da linha 1: "O trecho 1 estará fechado às seis da noite";
- REGRA da linha 2: "O trecho 1 estará aberto às nove da noite".

O trecho 1 representa a tubulação de recalque entre a bomba e o reservatório elevado R1. Conforme dados da calibração, às 18:00h o nível do reservatório está em 3,26 m, próximo da capacidade máxima de operação.

Devido a paralisação do bombeamento no horário de ponta o reservatório esvazia por completo, às 20:43h, 17 minutos antes do acionamento do CMB (ver Figura 5.35). Haja vista a impossibilidade de garantir um volume seguro ao final do horário de

ponta, a simulação foi refeita para o intervalo de desligamento das 19h (nível em 3,33 m) às 21h (ver Figura 5.36).

Desta maneira o reservatório chegou ao nível mínimo de 0,86 m às 21:00h. Apesar do resultado satisfatório, a simulação foi refeita para um intervalo de 240h com a finalidade de validar esta hipótese em outros cenários dinâmicos inerentes ao sistema (ver Figura 5.37).

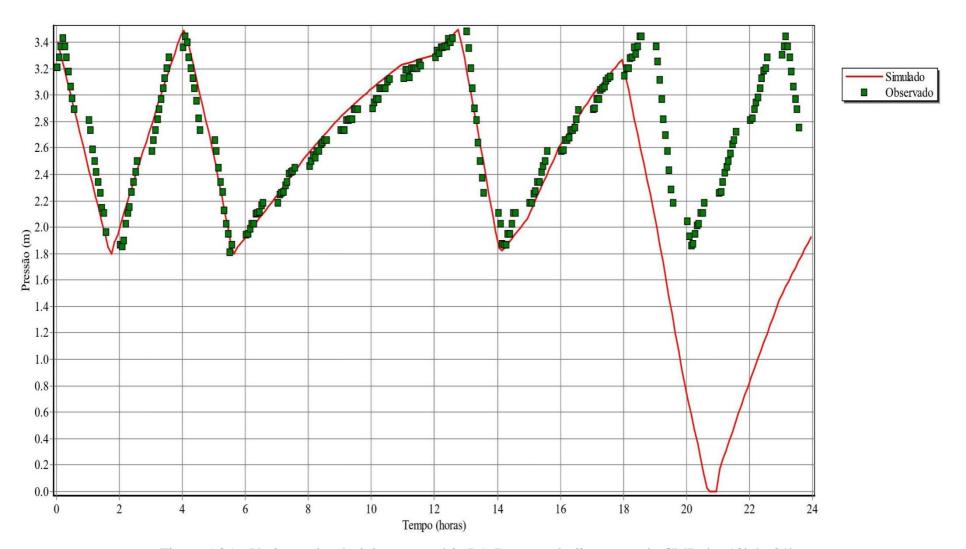


Figura 5.35 – Variação do nível do reservatório R1_B com o desligamento do CMB das 18h às 21h

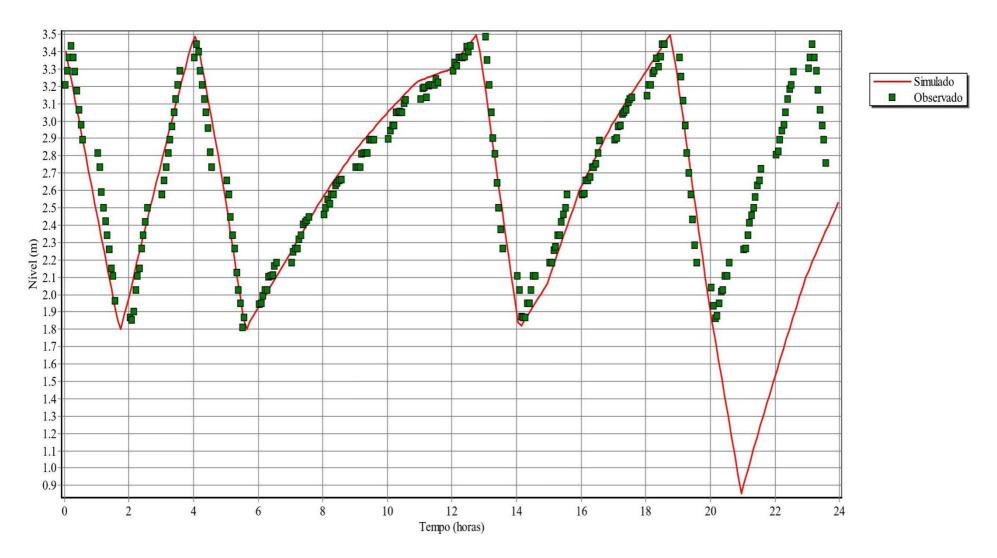


Figura 5.36 – Variação do nível do reservatório R1_B com o desligamento do CMB das 19h às 21h

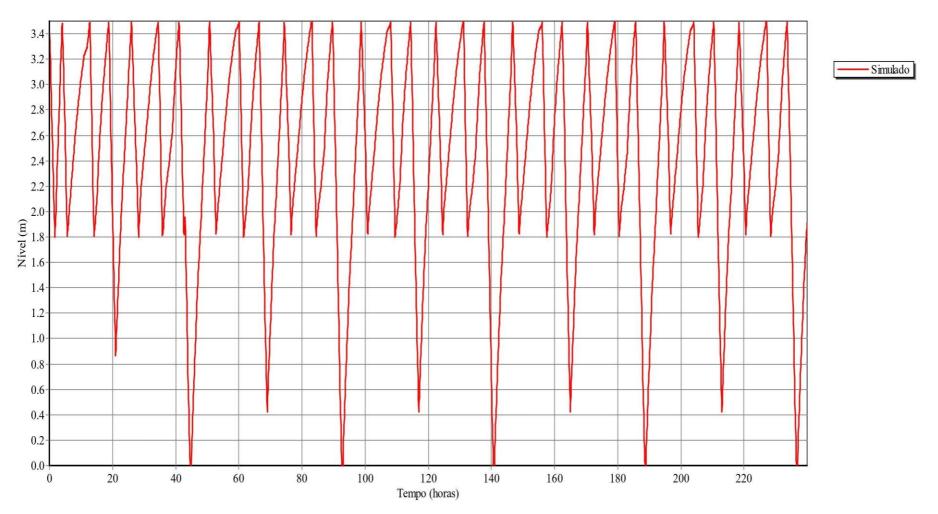


Figura 5.37 – Variação do nível do reservatório R1_B com o desligamento do CMB das 19h às 21h (Simulação de 240h)

Na nova simulação do modelo (ver Figura 5.37) o reservatório esvazia por completo depois de 44:35 h, 15 minutos antes do acionamento do CMB. Neste segundo ciclo de desligamento o nível do reservatório é de 1,96 m (próximo do mínimo operacional de 1,80 m) no momento do desligamento do CMB.

Apesar do abastecimento do reservatório elevado R1 ser predominantemente residencial (alimentação indireta) para as configurações atuais do sistema não há viabilidade econômica que justifique o desligamento do CMB nos intervalos propostos nas simulações. Com esta manobra a economia anual (para um rendimento fixo de 30%) seria de apenas R\$ 474,50. Os custos de bombeamento (com e sem paralisação do CMB no horário proposto) estão apresentados na Tabela 5.9.

Tabela 5.9 Intervalo de rendimentos do CMB e custos com energia elétrica 2

RENDIMENTO	CUSTO S	EM DESLIGA CMB	AMENTO DO	CUSTO COM DESLIGAMENTO DO CMB DAS 19H ÀS 21H			
KLI (DIVILI) TO	DIÁRIO	MÊS (30 DIAS)	ANUAL	DIÁRIO	MÊS (30 DIAS)	ANUAL	
30%	R\$ 20,36	R\$ 610,80	R\$ 7.431,40	R\$ 19,06	R\$ 571,80	R\$ 6.956,90	
35%	R\$ 17,45	R\$ 523,50	R\$ 6.369,25	R\$ 16,34	R\$ 490,20	R\$ 5.964,10	
40%	R\$ 15,27	R\$ 458,10	R\$ 5.573,55	R\$ 14,30	R\$ 429,00	R\$ 5.219,50	
45%	R\$ 13,57	R\$ 407,10	R\$ 4.953,05	R\$ 12,71	R\$ 381,30	R\$ 4.639,15	
50%	R\$ 12,22	R\$ 366,60	R\$ 4.460,30	R\$ 11,44	R\$ 343,20	R\$ 4.175,60	
55%	R\$ 11,10	R\$ 333,00	R\$ 4.051,50	R\$ 10,40	R\$ 312,00	R\$ 3.796,00	

5.5.2 Análise da viabilidade econômica de aquisição de novo CMB

Para análise da viabilidade econômica de aquisição de um novo CMB, foi necessário realizar o levantado do rendimento do atual CMB que opera na estação elevatória em análise. Para isso, obteve-se a vazão de operação, a altura manométrica e a potência elétrica do CMB. Cálculo da vazão média está ilustrado na Equação 5.2.

$$Q = 32.5 * \frac{17.5}{24} = 23.69 \frac{m^3}{h} = 0.00658 \, m^3 / s \tag{5.2}$$

Após o cálculo da vazão, fez-se o levantamento das variáveis elétricas in loco (ver Figura 5.38 e Figura 5.39), para o cálculo da potência elétrica.

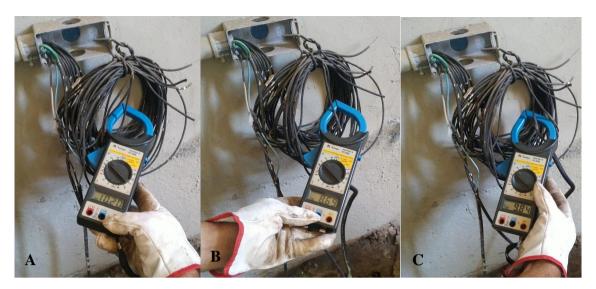


Figura 5.38 – Medidas da corrente das Fase 1 (A), Fase 2 (B) e Fase (C)

Figura 5.39 – Medida da Tensão elétrica

Para um motor trifásico, calcula-se a potência, em W por meio da equação:

$$P = \sqrt{3} * V * In * cos \varphi$$

$$In = \frac{10,20 + 8,69 + 9,84}{3} = 9,58 A$$

$$P = \sqrt{3} * 362 * 9,58 * 0,88 = 5285,88 W$$

Logo, o rendimento do conjunto motobomba (η) pode ser expresso por:

$$\eta = \frac{\gamma * Q * H}{P}$$

$$\eta = \frac{9810 * 0,00658 * 16,35}{5285,88} = 0,1997$$

De posse do rendimento atual foi possível obter o custo do kWh por cada m³ bombeado (ver Figura 5.40).

Relatório de Energi	ia					
Tabela Gráfico						
Bomba	Percentagem Utilização	Rendimento Médio	kWh /m3	kW Médio	kW Máximo	Custo /dia
BOMB5CV	74,67	19,97	0,20	7,42	7,43	30,58
Custo Total						30,58
Tarifa de Consumo Máx						0,00

Figura 5.40 – Energia e custo do bombeamento de um dia para o rendimento de 19,97%

Para a escolha da nova bomba foram utilizados os dados e gráficos contidos no catálogo da KSB, para frequência de 60Hz e 3.500 rpm. Na Figura 5.41 pode-se observar o gráfico de quadriculas e o ponto de operação da elevatória. Dessa forma, o novo CMB será procurado na família de rotores 32-125.

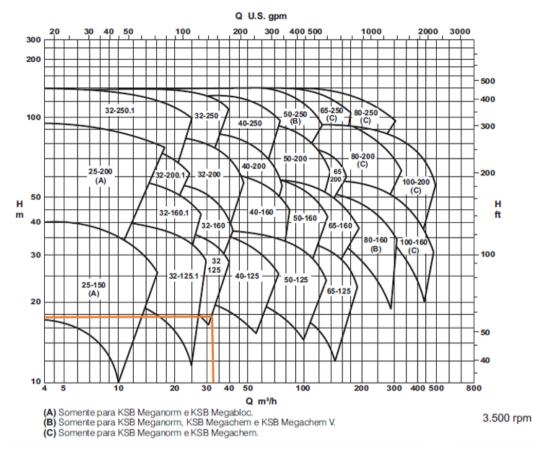


Figura 5.41 – Gráfico de quadrículas KSB e ponto de operação do CMB.

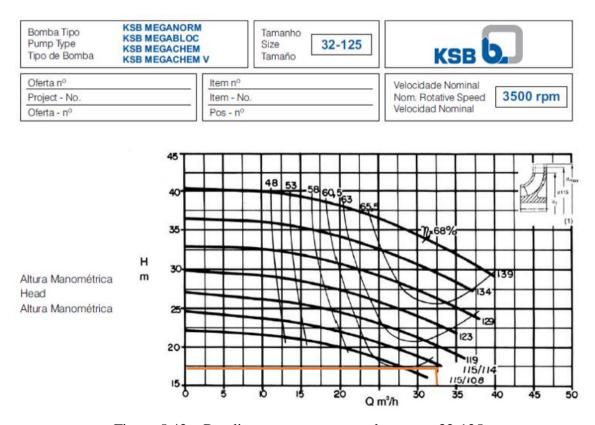


Figura 5.42 – Rendimento para o grupo de rotores 32-125

Do gráfico de rotores e rendimento (ver Figura 5.42) foi possível encontrar o rendimento de 58% do rotor 115/114, para o ponto de operação da elevatória. Na Tabela 5.10 está catalogado os custos diário, mensal e anual para o CMB atual (rendimento 19,97%) e para o CMB proposto (rendimento de 58%).

Tendo em vista que o custo médio de um CMB nessa configuração é de R\$ 4.300,00, a aquisição desse equipamento será compensada em apenas 7,2 meses após sua instalação, devido a economia mensal com energia elétrica de R\$ 601,50.

Tabela 5.10 – Custo por rendimento

DENDIMENTO	1/33/1 / 2	CUSTO					
RENDIMENTO	DIMENTO KWh/m ³		MÊS (30 DIAS)	ANUAL			
19,97%	0,20	R\$ 30,58	R\$ 917,40	R\$ 11.161,70			
58%	0,07	R\$ 10,53	R\$ 315,90	R\$ 3842,45			

CAPÍTULO VI

6 CONCLUSÃO

Neste trabalho pode-se verificar a contribuição da modelagem em fornecer parâmetros para racionalizar a operação de uma estação elevatória, para que os custos com energia elétrica sejam minimizados sempre que possível. A possibilidade de simular diversos cenários de operação do sistema e funcionamento dos equipamentos maximiza as alternativas de solução, possibilitando encontrar a solução mais viável.

As técnicas de eficientização propostas foram formuladas com base na redução dos custos de bombeamento com energia elétrica, respeitando a premissa da segurança hídrica da região.

A alternativa de aumentar o rendimento do conjunto motobomba mostrou-se bastante atrativa, podendo gerar uma economia anual em torno de 50% com o custo de energia elétrica de bombeamento. Em contrapartida, a paralização do conjunto motobomba, no horário de ponta, apresentou-se inviável visto que o reservatório não possui capacidade de armazenar o volume necessário para atender a demanda nas horas de desligamento do CMB. Além disso, o benefício financeiro anual desta manobra, para as configurações atuais do sistema não justifica o risco de desabastecimento em situações atípicas de consumo.

Mediante os resultados e discussões, recomenda-se que a variação do nível de operação do reservatório seja condicionada à demanda de água real do sistema abastecido (considerando parâmetros que não foram discutidos neste trabalho, como reserva de incêndio). A relevância desta altura mínima se justifica ainda mais pela implantação (em andamento) da nova adutora que alimentará o reservatório R1 apoiado, vindo do reservatório R2 apoiado, que possui capacidade de reserva muito superior à

demanda atual da região, garantindo, dessa forma, a segurança hídrica do abastecimento.

Para que se obtenha um melhor rendimento da elevatória é recomendado a realização periódica de medições das grandezas hidráulicas e elétricas simultâneas, possibilitando um diagnóstico preciso do conjunto motobomba o que proporcionará uma manutenção preditiva eficiente. A integração multidisciplinar dessas áreas — hidráulica, mecânica e elétrica — possibilitará a implantação de medidas que reduzem a ineficiência energética.

Como sugestão para trabalhos futuros, pode-se modelar a nova adutora que interligará o reservatório R1 apoiado e R2 apoiado, investigando a possibilidade de uma ramificação próximo à saída do R1 elevado afim de reduzir ao máximo a sua zona de influência e consequentemente a necessidade de utilização da elevatória. Esta solução contribuiria para a eficiência do sistema como um todo (visto que a nova adutora funcionará em regime de conduto forçado por gravidade).

6.1 RECOMENDAÇÕES

Para melhorar a eficiência do sistema estudado podem ser adotadas medidas para reduzir o consumo de energia elétrica, como também proporcionar a otimização do comportamento hidráulico da elevatória.

A redução da energia consumida e da demanda contratada, pode ser obtida através das seguintes sugestões:

- Uso de conjunto motobomba bem dimensionado e mais eficiente;
- Monitoramento do ponto de operação e comando remoto da elevatória.

Semelhantemente, medidas referentes às variáveis hidráulicas repercutem na melhoria da eficiência energética, tal como a redução da perda de carga das tubulações.

Recomenda-se que sejam seguidas as seguintes rotinas operacionais:

- Medir e registrar as vazões de saída do reservatório elevado.
- Evitar, sempre que possível, a variação de vazão dos conjuntos motobomba por registros de estrangulamento;

Na área da gestão corporativa recomenda-se que o custo de manutenção e vida útil dos equipamentos também sejam levados em consideração como critério comparativo nos objetos das licitações.

Por fim, recomenda-se que sejam feitas medições elétricas do conjunto motobomba (potência, tensão, corrente e fator de potência) e hidráulicas (vazão e altura manométrica) com a finalidade de calcular os indicadores de desempenho operacional da elevatória, como o CE (consumo específico de energia). Dessa forma, e de posse do registro histórico dos indicadores, objetivos específicos e metas hidroenergéticas poderão ser traçadas de forma precisa, facilitando a identificação de padrões anormais na operação além de fornecer dados para o planejamento das medidas corretivas ou de expansão do sistema.

REFERÊNCIAS

[ABNT] Associação Brasileira de Normas Técnicas. NBR 12211 – Estudos de concepção de Sistemas Públicos de Abastecimento de Água. 1994.

[ABNT] Associação Brasileira de Normas Técnicas. **NBR 12214- Projeto de estação** de bombeamento ou de estação elevatória de água — Requisitos. 2020.

- Alegre, H., Baptista, J.M. O Sistema de Indicadores de Desempenho da IWA Para Serviços de Abastecimento de Água. Portugal: 199X. Disponível em: http://members.fortunecity.com/perdasdagua/links.html >. Acesso em: 25 mar. 2004.
- Alegre, H., Hirner, W., Baptista, J. M., Parena, R. Indicadores de desempenho para serviços de abastecimento de água. Lisboa: Instituto Regulador de Águas e Resíduos e Laboratório Nacional de Engenharia Civil, 2004.
- Alvisi, S., Franchini, M. (2010) Calibration and sensitivity analysis of the C-town pipe network. Tucson, AZ: Model Water Distribution System Analysis.

[ANEEL] Agência Nacional de Energia Elétrica. **Agenda de desoneração tarifária.** 2019.

- Azevedo, L. G. T., Porto, R. L., Filho, K. Z. Sistemas de suporte a decisões aplicados a problemas de recursos hídricos. In: Técnicas Quantitativas para o Gerenciamento dos Recursos Hídricos. 2000. ABRH, Editora UFRGS, Porto Alegre RS.
- Bezerra, S. T. M. Sistema fuzzy para controle piezométrico de sistemas de distribuição de água visando a economia de água e energia. 164p. Tese de D.Sc. Programa de Pós-Graduação em Engenharia Mecânica UFPB, João Pessoa, 2009.

- BRASIL, Ministério das Cidades. Eficiência Energética: Ações de Assistência Técnica em Redução e Controle de Perdas de Água e Uso Eficiente de Energia Elétrica. Brasília, 2018.
- Cabrera, E. Pardo, M. A. Cobacho, R. Cabrera Jr., E. (2010). Energy Audit of Water Networks. Journal Of Water Resources Planning And Management. pp. 669 677, DOI: 10.1061/ASCEWR.1943-5452.0000077.
- Camponogara, G. Kuritza, J. Castiglio, G. Ferla, R. Marques, M. G. Teixeira, E. D. De Borja, J. (2017). Indicadores Hidroenergéticos em Sistemas de Abastecimento de Água. Simpósio de Hidráulica e Recursos Hídricos dos Países de Língua Portuguesa.
- CAMPOS, R. D. G. Calibração de coeficientes de rugosidade em redes reais de abastecimento de água, usando o método iterativo do gradiente hidráulico alternativo MIGHA. 2018. 91 f. Dissertação (Mestrado em Engenharia Civil)-Centro de Tecnologia, Programa de Pós-Graduação em Engenharia Civil: Recursos Hídricos, Universidade Federal do Ceará, Fortaleza, 2018.
- Castro-Gama, M., Pan, Q., Lanfranchi, E. A., Jonoski, A., & Solomatine, D. P. (2017). Pump Scheduling for a Large Water Distribution Network. Milan, Italy. Procedia Engineering, 186, 436–443. doi:10.1016/j.proeng.2017.03.249.
- Cheung, P.B. (2002) Comparação de métodos de calibração de redes hidráulicas. Seminário Iberoamericano sobre Sistemas de Abastecimento Urbano de Água, 1 Anais... João Pessoa. Seção de Simulação e Operação de Redes, Item 4, p. 65-73.
- Coelho, S. T., Loureiro, D., Alegre, H., 2006. Modelação e análise de sistemas de abastecimento de água. Instituto Regulador de Águas e Resíduos (IRAR) e Laboratório Nacional de Engenharia Civil (LNEC), 2006.
- Diniz, A. M. F. (2015). Modelagem em regime transitório, simulação e otimização energética de um sistema de abastecimento de água baseado no reconhecimento

- de padrões de consumo. 150 f. Tese (Doutorado Engenharia Industrial) Universidade Federal da Bahia. Escola Politécnica.
- Ganem, Lívia, Martinez, Carlos Barreira, Jacob, Ana Claudia. (2013). Calibração E Proposição de Melhorias de um Sistema de Abastecimento de Água de uma Pequena Localidade Utilizando o Software Epanet. XX Simpósio Brasileiro de Recursos Hídricos.
- Giacone E, Mancò S. Energy efficiency measurement in industrial processes. Energy 2012;38:331–45. http://dx.doi.org/10.1016/j.energy.2011.11.054.
- Gomes, J.E.C., 2013. Controle fuzzy Takagi-Sugeno de pêndulo invertido: Projeto e validação em bancada didática. Trabalho de Graduação em Engenharia de Controle e Automação, Publicação FT.TG-nº 07, Faculdade de Tecnologia, Universidade de Brasília, Brasília, DF, Brasil, 52p.
- Gomes, H.P. Abastecimento de Água. 2019. Ed. Universitária Universidade Federal da Paraíba. 1 ed. Brasil.
- Gomes, H. P., Carvalho, P. S. O., 2012. Manual de Sistemas de Bombeamento Eficiência Energética. Manual do Usuário, PROCEL / SANEAR. 1 ed, Editora Universitária UFPB, João Pessoa, PB, Brasil.
- Hong, S.-P., Kim, T., Lee, S. (2017). A precision pump schedule optimization for the water supply networks with small buffers. Omega. doi:10.1016/j.omega.2017.12.001.
- IBGE, Disponível em https://cidades.ibge.gov.br/brasil/pb/guarabira/pesquisa/23/27652?detalhes=tru
 e acesso em 01/06/2020.
- Isidoro, J.M. G. P. Chaveiro, P. J. D. 2019, Modelação e Calibração de Redes de Abastecimento de Água: O Caso de Reguengos de Monsaraz. 30° Congresso Brasileiro de Engenharia Sanitária e Ambiental ABES.

- Kara, S., Karadirek, I. E., Muhammetoglu, A., & Muhammetoglu, H. (2016). Hydraulic Modeling of a Water Distribution Network in a Tourism Area with Highly Varying Characteristics. Procedia Engineering, 162, 521–529. doi:10.1016/j.proeng.2016.11.096.
- KSB Bombas Hidráulicas AS. Manual de curvas características. São Paulo, 2013.
- Luna, T., Ribau, J., Figueiredo, D., & Alves, R. (2019). Improving energy efficiency in water supply systems with pump scheduling optimization. Journal of Cleaner Production, 213, 342–356. doi:10.1016/j.jclepro.2018.12.190.
- Martínez-Solano, F. J., Iglesias-Rey, P. L., & Arce, S. X. M. (2017). Simultaneous Calibration of Leakages, Demands and Losses from Measurements. Application to the Guayaquil Network (Ecuador). Procedia Engineering, 186, 397–404. doi:10.1016/j.proeng.2017.03.237.
- Montenegro, L.L.B. Eficiência Hidráulica e Energética da Operação do Bombeamento para o Abastecimento do Bairro de Mangabeira em João Pessoa. 2009. 93f. Dissertação (Mestrado em Engenharia Civil) Centro de Tecnologia, Universidade Federal da Paraíba, João Pessoa, 2009.
- Napolitano, J., Sechi, G. M., & Zuddas, P. (2014). Scenario Analysis for Optimization of Pumping Schedules in Complex Water Supply Systems Considering a Costrisk Balancing Problem. Procedia Engineering, 89, 565–572. doi:10.1016/j.proeng.2014.11.479.
- Neura, A. S. S., Edvaldo, L. J., 2002. Indicadores De Gestão Para Sistemas De Abastecimento De Água. SEREA, 2002.
- Nicolini, M., Giacomello, C., Deb, K. (2011) Calibration and optimal leakage management for a real water distribution network. Journal of Water Resources Planning Management, v. 137, n. 1, p. 134-142.

- Nudurupati, S. S., Bititci, U. S., Kumar, V., Chan, F. T. S. State of the art literature review on performance measurement. Computers & Industrial Engineering. Los Angeles, v. 1, n. 60, p. 279-290, 2011.
- Papapostolou, C. M., Kondili, E. M., Zafirakis, D. P., & Tzanes, G. T. (2019). Sustainable water supply systems for the islands: The integration with the energy problem. Renewable Energy. doi:10.1016/j.renene.2019.07.130.
- Rossman, L. A., 2008. EPANET2: User's manual. U. S. Environment Protection Agency, Cincinnati, Ohio, USA.
- S. Shu and D. Zhang, (2010) "Calibrating water distribution system model automatically by genetic algorithms," International Conference on Intelligent Computing and Integrated Systems, Guilin, pp. 16-19, doi: 10.1109/ICISS.2010.5654995.
- Salvino, Moisés Menezes, Carvalho, Paulo Sergio Oliveira de, & Gomes, Heber Pimentel. (2015). Calibração multivariada de redes de abastecimento de água via algoritmo genético multiobjetivo. Engenharia Sanitaria e Ambiental, 20(3), 503-512. https://doi.org/10.1590/S1413-41522015020000099484
- Sanz, Gerard, Pérez, Ramon. (2015). Comparison of demand calibration in water distribution networks using pressure and flow sensors, Procedia Engineering. Volume 119, Pages 771-780, ISSN 1877-7058.
- Sayyed, M. A. H. A., Gupta, R., & Tanyimboh, T. T. (2014). Modelling Pressure Deficient Water Distribution Networks in EPANET. Procedia Engineering, 89, 626–631. doi:10.1016/j.proeng.2014.11.487.
- Scanlan, M., & Filion, Y. R. (2015). Application of Energy Use Indicators to Evaluate Energy Dynamics in Canadian Water Distribution Systems. Procedia Engineering, 119, 1039–1048. doi:10.1016/j.proeng.2015.08.931.

- Silva, F.G.B. (2003) Estudos de calibração de redes de distribuição de água através de Algoritmos Genéticos (Tese de Doutorado). Universidade de São Paulo, Campus de São Carlos, São Carlos.
- [SNIS] Sistema Nacional de Informações Sobre Saneamento. **Diagnóstico dos Serviços** de Água e Esgotos. Brasília, 2018.
- Sobrinho, R.A. Gestão das Perdas de Água e Energia em Sistemas de Abastecimento de Água da Embasa: Um Estudo dos Fatores Intervenientes na RMS. 2012. 288f. Dissertação (Mestrado em Meio Ambiente, Águas e Saneamento) Escola Politécnica da Universidade Federal da Bahia, Salvador, 2012.
- Spiller, M. (2016). Adaptive capacity indicators to assess sustainability of urban water systems Current application. Science of The Total Environment, 569-570, 751–761. doi:10.1016/j.scitotenv.2016.06.088.
- Ramana, G. V., Sudheer, C. V. S. S., & Rajasekhar, B. (2015). Network Analysis of Water Distribution System in Rural Areas using EPANET. Procedia Engineering, 119, 496–505. doi:10.1016/j.proeng.2015.08.875.
- Tsutiya, M. T., 2006. Redução do Custo de Energia Elétrica em Sistemas de Abastecimento de Água. ABES Associação Brasileira de Engenharia Sanitária e Ambiental. São Paulo, SP, Brasil.
- Vicente, R. V. Modelo de operação para centros de controle de sistemas de abastecimento de água. Estudo de caso: Sistema adutor metropolitano de São Paulo. 2005. 139p. Tese(Mestrado em Engenharia) Escola Politécnica da Universidade de São Paulo, São Paulo SP. Disponível em: < http://www.teses.usp.br/teses/disponiveis/3/3147/tde-10042006-141721/ptbr.php >. Acesso em: 23/03/2011.
- Vilanova, M. R. N., & Balestieri, J. A. P. (2015). Modeling of hydraulic and energy efficiency indicators for water supply systems. Renewable and Sustainable Energy Reviews, 48, 540–557. doi:10.1016/j.rser.2015.04.024.

- Vilanova, M. R. N., Magalhães FILHO, P., Balestieri, J. A. P. Performance measurement and indicators for water supply management: review and international cases. Renewable and Sustainable Energy Reviews. Golden, v. 1, n. 43, p. 1-12, 2015.
- Vilanova, M. R. N. Desenvolvimento e avaliação de indicadores de eficiência hidráulica e energética para sistemas de abastecimento de água como ferramenta de suporte à tomada de decisões. 2012.319 p. Tese (Doutorado em Engenharia Mecânica) Universidade Estadual Paulista, Guaratinguetá. 2012.
- Wu, Z.Y. & Walski, T.M. (2012) Effective approach for solving battle of water calibration network problem. Journal of Water Resources Planning and Management, v. 138, n. 5, p. 533-542.

 ${\bf ANEXO}$ - Dados do supervisório SCADA/BR – Medições a cada 6 min

ТЕМРО .	LIT_R1_01	CMB-1	LIT_R1_02
TEMPO	NÍVEL R1	BOMBA	NÍVEL R1
	APOIADO [m]	PRINCIPAL	ELEVADO [m]
2/9/19 0:03	1,634054	1	3,207695
2/9/19 0:09	1,63772	1	3,288842
2/9/19 0:15	1,638259	1	3,365966
2/9/19 0:21	1,653092	1	3,43477
2/9/19 0:27	1,668465	0	3,365966
2/9/19 0:33	1,68456	0	3,283876
2/9/19 0:39	1,708249	0	3,177051
2/9/19 0:45	1,729953	0	3,063317
2/9/19 0:51	1,745325	0	2,977945
2/9/19 0:57	1,761179	0	2,893271
2/9/19 1:03	1,78452	0	2,813768
2/9/19 1:09	1,807266	0	2,735036
2/9/19 1:15	1,822638	0	2,590375
2/9/19 1:21	1,84393	0	2,499369
2/9/19 1:27	1,866293	0	2,421777
2/9/19 1:33	1,884578	0	2,342183
2/9/19 1:39	1,89995	0	2,263047
2/9/19 1:45	1,918786	0	2,148923
2/9/19 1:51	1,94534	0	2,105859
2/9/19 1:57	1,961439	0	1,962987
2/9/19 2:03	1,976811	0	1,870216
2/9/19 2:09	1,992765	1	1,852889
2/9/19 2:15	2,008006	1	1,899835
2/9/19 2:21	2,008007	1	2,026282
2/9/19 2:27	2,023338	1	2,10699

2/9/19 2:33	2,024609	1	2,152918
2/9/19 2:39	2,038739	1	2,267099
2/9/19 2:45	2,038752	1	2,342552
2/9/19 2:51	2,051765	1	2,420655
2/9/19 2:57	2,054274	1	2,500823
2/9/19 3:03	2,064601	1	2,57738
2/9/19 3:09	2,069495	1	2,658079
2/9/19 3:15	2,083927	1	2,736611
2/9/19 3:21	2,084867	1	2,814876
2/9/19 3:27	2,098794	1	2,893298
2/9/19 3:33	2,10024	1	2,971301
2/9/19 3:39	2,116015	1	3,050068
2/9/19 3:45	2,116064	1	3,128467
2/9/19 3:51	2,128831	1	3,206864
2/9/19 3:57	2,131436	1	3,287566
2/9/19 4:03	2,135594	1	3,365228
2/9/19 4:09	2,146808	1	3,444362
2/9/19 4:15	2,16218	0	3,399942
2/9/19 4:21	2,180706	0	3,288304
2/9/19 4:27	2,208285	0	3,206864
2/9/19 4:33	2,224121	0	3,128466
2/9/19 4:39	2,239493	0	3,050068
2/9/19 4:45	2,255011	0	2,958016
2/9/19 4:51	2,279901	0	2,821323
2/9/19 4:57	2,299896	0	2,736494
2/9/19 5:03	2,316353	0	2,658079
2/9/19 5:09	2,331725	0	2,577377
2/9/19 5:15	2,347549	0	2,448331
2/9/19 5:21	2,367898	0	2,342399
2/9/19 5:27	2,381921	0	2,264036
2/9/19 5:33	2,406946	0	2,127609
2/9/19 5:39	2,412684	0	2,027541
2/9/19 5:45	2,428847	0	1,947888

2/9/19 5:51	2,439782	1	1,809751
2/9/19 5:57	2,440184	1	1,870598
2/9/19 6:03	2,444216	1	1,945748
2/9/19 6:09	2,446945	1	1,947888
2/9/19 6:15	2,444484	1	1,991197
2/9/19 6:21	2,439782	1	2,026286
2/9/19 6:27	2,439782	1	2,026287
2/9/19 6:33	2,439782	1	2,101867
2/9/19 6:39	2,433487	1	2,106782
2/9/19 6:45	2,42441	1	2,112672
2/9/19 6:51	2,42441	1	2,165576
2/9/19 6:57	2,4244	1	2,185388
2/9/19 7:03	2,409112	1	2,185389
2/9/19 7:09	2,409038	1	2,246211
2/9/19 7:15	2,408503	1	2,263785
2/9/19 7:21	2,393666	1	2,264584
2/9/19 7:27	2,393666	1	2,318203
2/9/19 7:33	2,380287	1	2,343585
2/9/19 7:39	2,378294	1	2,405793
2/9/19 7:45	2,367288	1	2,420212
2/9/19 7:51	2,362922	1	2,427959
2/9/19 7:57	2,351127	1	2,449306
2/9/19 8:03	2,345207	1	2,462425
2/9/19 8:09	2,331725	1	2,498979
2/9/19 8:15	2,331002	1	2,546953
2/9/19 8:21	2,316353	1	2,523489
2/9/19 8:27	2,311651	1	2,577376
2/9/19 8:33	2,300981	1	2,577377
2/9/19 8:39	2,29843	1	2,629769
2/9/19 8:45	2,285609	1	2,64322
2/9/19 8:51	2,28299	1	2,658079
2/9/19 8:57	2,270237	1	2,6615
2/9/19 9:03	2,269757	1	2,736474

2/9/19 9:09	2,254865	1	2,735519
2/9/19 9:15	2,252915	1	2,736479
2/9/19 9:21	2,239493	1	2,812013
2/9/19 9:27	2,234562	1	2,813621
2/9/19 9:33	2,224121	1	2,814876
2/9/19 9:39	2,211834	1	2,815619
2/9/19 9:45	2,208296	1	2,893271
2/9/19 9:51	2,198701	1	2,893272
2/9/19 9:57	2,192924	1	2,893272
2/9/19 10:03	2,191778	1	2,898412
2/9/19 10:09	2,177552	1	2,947482
2/9/19 10:15	2,165801	1	2,97167
2/9/19 10:21	2,16218	1	2,972927
2/9/19 10:27	2,147239	1	3,050068
2/9/19 10:33	2,145723	1	3,050068
2/9/19 10:39	2,131436	1	3,053462
2/9/19 10:45	2,126122	1	3,050261
2/9/19 10:51	2,116064	1	3,104435
2/9/19 10:57	2,101961	1	3,123608
2/9/19 11:03	2,10024	1	3,128761
2/9/19 11:09	2,084867	1	3,191285
2/9/19 11:15	2,07391	1	3,193194
2/9/19 11:21	2,069495	1	3,136619
2/9/19 11:27	2,054369	1	3,203823
2/9/19 11:33	2,044719	1	3,206864
2/9/19 11:39	2,038751	1	3,206864
2/9/19 11:45	2,02613	1	3,206867
2/9/19 11:51	2,023379	1	3,24382
2/9/19 11:57	2,009666	1	3,223815
2/9/19 12:03	2,008007	1	3,287566
2/9/19 12:09	1,993193	1	3,337437
2/9/19 12:15	1,992635	1	3,318991
2/9/19 12:21	1,977152	1	3,364334

2/9/19 12:27	1,976735	1	3,365355
			·
2/9/19 12:33	1,961439	1	3,365966
2/9/19 12:39	1,955275	1	3,369655
2/9/19 12:45	1,946101	1	3,426361
2/9/19 12:51	1,939165	1	3,398103
2/9/19 12:57	1,930694	1	3,43477
2/9/19 13:03	1,930694	0	3,48519
2/9/19 13:09	1,931047	0	3,353975
2/9/19 13:15	1,946067	0	3,206845
2/9/19 13:21	1,946067	0	3,050068
2/9/19 13:27	1,961062	0	2,900949
2/9/19 13:33	1,961439	0	2,811096
2/9/19 13:39	1,975204	0	2,642954
2/9/19 13:45	1,976811	0	2,499139
2/9/19 13:51	1,97693	0	2,375348
2/9/19 13:57	1,992635	0	2,263785
2/9/19 14:03	1,993315	0	2,107542
2/9/19 14:09	2,008007	0	2,026286
2/9/19 14:15	2,013983	0	1,873255
2/9/19 14:21	2,009477	1	1,869477
2/9/19 14:27	2,008007	1	1,869494
2/9/19 14:33	2,001856	1	1,947888
2/9/19 14:39	1,99607	1	1,948014
2/9/19 14:45	1,992635	1	2,026287
2/9/19 14:51	1,992635	1	2,106702
2/9/19 14:57	1,986265	1	2,10699
2/9/19 15:03	1,976811	1	2,18344
2/9/19 15:09	1,976811	1	2,18539
2/9/19 15:15	1,971168	1	2,256952
2/9/19 15:21	1,961442	1	2,273039
2/9/19 15:27	1,961439	1	2,342141
2/9/19 15:33	1,961439	1	2,343431
2/9/19 15:39	1,958007	1	2,420581
		ı	

2/9/19 15:45	1,946067	1	2,462538
2/9/19 15:51	1,946067	1	2,498979
2/9/19 15:57	1,946064	1	2,577332
2/9/19 16:03	1,938467	1	2,577377
2/9/19 16:09	1,930694	1	2,583307
2/9/19 16:15	1,930694	1	2,658079
2/9/19 16:21	1,930687	1	2,65808
2/9/19 16:27	1,916509	1	2,676322
2/9/19 16:33	1,915322	1	2,736478
2/9/19 16:39	1,915322	1	2,73698
2/9/19 16:45	1,899955	1	2,752152
2/9/19 16:51	1,890533	1	2,817099
2/9/19 16:57	1,884578	1	2,886749
2/9/19 17:03	1,869207	1	2,893272
2/9/19 17:09	1,855951	1	2,900341
2/9/19 17:15	1,853382	1	2,971248
2/9/19 17:21	1,83801	1	2,972999
2/9/19 17:27	1,822786	1	3,039321
2/9/19 17:33	1,819473	1	3,050068
2/9/19 17:39	1,807266	1	3,067142
2/9/19 17:45	1,791893	1	3,109591
2/9/19 17:51	1,784448	1	3,128466
2/9/19 17:57	1,776521	1	3,138112
2/9/19 18:03	1,770366	1	3,148208
2/9/19 18:09	1,761962	1	3,206853
2/9/19 18:15	1,761149	1	3,206864
2/9/19 18:21	1,760723	1	3,277163
2/9/19 18:27	1,746048	1	3,287566
2/9/19 18:33	1,745325	1	3,359678
2/9/19 18:39	1,744926	1	3,31247
2/9/19 18:45	1,733891	1	3,369345
2/9/19 18:51	1,729953	1	3,444285
2/9/19 18:57	1,727783	1	3,444363

2/9/19 19:03	1,729953	0	3,366275
2/9/19 19:09	1,73999	0	3,257511
2/9/19 19:15	1,745397	0	3,115549
2/9/19 19:21	1,761149	0	2,971662
2/9/19 19:27	1,763325	0	2,81613
2/9/19 19:33	1,776521	0	2,699857
2/9/19 19:39	1,788608	0	2,577376
2/9/19 19:45	1,791893	0	2,432755
2/9/19 19:51	1,805095	0	2,285623
2/9/19 19:57	1,809365	0	2,185389
2/9/19 20:03	1,822638	0	2,042889
2/9/19 20:09	1,837523	0	1,934239
2/9/19 20:15	1,83801	1	1,863295
2/9/19 20:21	1,83801	1	1,877166
2/9/19 20:27	1,83801	1	1,947888
2/9/19 20:33	1,83801	1	2,015023
2/9/19 20:39	1,83801	1	2,026287
2/9/19 20:45	1,83801	1	2,106129
2/9/19 20:51	1,83801	1	2,107062
2/9/19 20:57	1,837992	1	2,185388
2/9/19 21:03	1,837576	1	2,263161
2/9/19 21:09	1,835835	1	2,263848
2/9/19 21:15	1,837257	1	2,342183
2/9/19 21:21	1,831102	1	2,414786
2/9/19 21:27	1,837966	1	2,455751
2/9/19 21:33	1,837937	1	2,49898
2/9/19 21:39	1,83801	1	2,561126
2/9/19 21:45	1,83801	1	2,630416
2/9/19 21:51	1,83801	1	2,658079
2/9/19 21:57	1,83801	1	2,724967
2/9/19 22:03	1,83801	1	2,808455
2/9/19 22:09	1,841337	1	2,823455
2/9/19 22:15	1,83805	1	2,893272

2/9/19 22:21	1,838188	1	2,943999
	·		·
2/9/19 22:27	1,845346	1	2,980322
2/9/19 22:33	1,849168	1	3,050068
2/9/19 22:39	1,853165	1	3,127358
2/9/19 22:45	1,853382	1	3,184224
2/9/19 22:51	1,853382	1	3,206864
2/9/19 22:57	1,853382	1	3,287329
2/9/19 23:03	1,853382	1	3,305205
2/9/19 23:09	1,853747	1	3,365969
2/9/19 23:15	1,867875	1	3,444363
2/9/19 23:21	1,882405	0	3,365966
2/9/19 23:27	1,89995	0	3,287566
2/9/19 23:33	1,915322	0	3,177982
2/9/19 23:39	1,93068	0	3,065888
2/9/19 23:45	1,946067	0	2,97167
2/9/19 23:51	1,961439	0	2,89187
2/9/19 23:57	1,976811	0	2,757391
3/9/19 0:03	1,992635	0	2,665989
3/9/19 0:09	2,008157	0	2,581231
3/9/19 0:15	2,02392	0	2,498979
3/9/19 0:21	2,050272	0	2,420543
3/9/19 0:27	2,069495	0	2,310061
3/9/19 0:33	2,084867	0	2,201931
3/9/19 0:39	2,10024	0	2,108115
3/9/19 0:45	2,116064	0	2,02642
3/9/19 0:51	2,131451	0	1,947888
3/9/19 0:57	2,154069	0	1,862761
3/9/19 1:03	2,161153	1	1,926406
3/9/19 1:09	2,16218	1	2,025018
3/9/19 1:15	2,171474	1	2,106297
3/9/19 1:21	2,177552	1	2,184998
3/9/19 1:27	2,178782	1	2,200483
3/9/19 1:33	2,192562	1	2,272109
<u> </u>		1	1

3/9/19 1:39	2,192924	1	2,381731
3/9/19 1:45	2,205242	1	2,498698
3/9/19 1:51	2,208296	1	2,577094
3/9/19 1:57	2,209602	1	2,651769
3/9/19 2:03	2,224121	1	2,736476
3/9/19 2:09	2,224121	1	2,800634
3/9/19 2:15	2,239492	1	2,89187
3/9/19 2:21	2,239493	1	2,97167
3/9/19 2:27	2,253336	1	3,048221
3/9/19 2:33	2,254865	1	3,074439
3/9/19 2:39	2,266748	1	3,20686
3/9/19 2:45	2,270237	1	3,224754
3/9/19 2:51	2,27037	1	3,365962
3/9/19 2:57	2,285609	1	3,442857
3/9/19 3:03	2,300981	0	3,444362
3/9/19 3:09	2,316353	0	3,365345
3/9/19 3:15	2,331725	0	3,276984
3/9/19 3:21	2,34848	0	3,181661
3/9/19 3:27	2,378244	0	3,079557
3/9/19 3:33	2,393666	0	2,974991
3/9/19 3:39	2,409038	0	2,893272
3/9/19 3:45	2,427471	0	2,814876
3/9/19 3:51	2,452499	0	2,728185
3/9/19 3:57	2,461496	0	2,656392
3/9/19 4:03	2,486351	0	2,524066
3/9/19 4:09	2,501723	0	2,430513
3/9/19 4:15	2,517457	0	2,342199
3/9/19 4:21	2,536349	0	2,263918
3/9/19 4:27	2,563211	0	2,185389
3/9/19 4:33	2,579035	0	2,106989
3/9/19 4:39	2,594407	0	2,026286
3/9/19 4:45	2,609779	0	1,929129
3/9/19 4:51	2,625151	1	1,806037
<u> </u>		•	

3/9/19 4:57	2,637567	1	1,941251
3/9/19 5:03	2,64009	1	2,026198
3/9/19 5:09	2,640524	1	2,044507
3/9/19 5:15	2,64053	1	2,107821
3/9/19 5:21	2,64112	1	2,186128
3/9/19 5:27	2,649104	1	2,295145
3/9/19 5:33	2,65565	1	2,342183
3/9/19 5:39	2,655896	1	2,357806
3/9/19 5:45	2,655896	1	2,427961
3/9/19 5:51	2,655896	1	2,498979
3/9/19 5:57	2,655896	1	2,499259
3/9/19 6:03	2,655896	1	2,577096
3/9/19 6:09	2,655896	1	2,578116
3/9/19 6:15	2,6531	1	2,589586
3/9/19 6:21	2,641247	1	2,616015
3/9/19 6:27	2,640524	1	2,657337
3/9/19 6:33	2,625987	1	2,658079
3/9/19 6:39	2,625151	1	2,658079
3/9/19 6:45	2,624128	1	2,658079
3/9/19 6:51	2,609779	1	2,658079
3/9/19 6:57	2,609779	1	2,658079
3/9/19 7:03	2,598358	1	2,658079
3/9/19 7:09	2,594407	1	2,658079
3/9/19 7:15	2,580735	1	2,673702
3/9/19 7:21	2,579035	1	2,735224
3/9/19 7:27	2,567432	1	2,736197
3/9/19 7:33	2,563211	1	2,737143
3/9/19 7:39	2,547853	1	2,736773
3/9/19 7:45	2,54783	1	2,736479
3/9/19 7:51	2,532467	1	2,777421
3/9/19 7:57	2,520577	1	2,814834
3/9/19 8:03	2,512392	1	2,814876
3/9/19 8:09	2,501723	1	2,814876
<u>. </u>			

3/9/19 8:15	2,486507	1	2,814876
3/9/19 8:21	2,472867	1	2,814876
3/9/19 8:27	2,470978	1	2,815225
3/9/19 8:33	2,455154	1	2,864119
3/9/19 8:39	2,442342	1	2,828648
3/9/19 8:45	2,439782	1	2,893271
3/9/19 8:51	2,42441	1	2,893271
3/9/19 8:57	2,421271	1	2,893272
3/9/19 9:03	2,409038	1	2,894748
3/9/19 9:09	2,393666	1	2,895867
3/9/19 9:15	2,384873	1	2,959838
3/9/19 9:21	2,372651	1	2,966874
3/9/19 9:27	2,362922	1	2,97167
3/9/19 9:33	2,347549	1	2,97167
3/9/19 9:39	2,344601	1	2,97167
3/9/19 9:45	2,331725	1	2,988273
3/9/19 9:51	2,316353	1	2,985784
3/9/19 9:57	2,302982	1	3,005176
3/9/19 10:03	2,300981	1	3,050068
3/9/19 10:09	2,285609	1	3,050437
3/9/19 10:15	2,273722	1	3,050848
3/9/19 10:21	2,263652	1	3,118866
3/9/19 10:27	2,254865	1	3,128466
3/9/19 10:33	2,239493	1	3,128467
3/9/19 10:39	2,231067	1	3,132157
3/9/19 10:45	2,22412	1	3,170777
3/9/19 10:51	2,208296	1	3,206816
3/9/19 10:57	2,196091	1	3,206864
3/9/19 11:03	2,192924	1	3,206864
3/9/19 11:09	2,177555	1	3,206864
3/9/19 11:15	2,162991	1	3,210564
3/9/19 11:21	2,16218	1	3,211697
3/9/19 11:27	2,146808	1	3,252065
<u>. </u>			ı

3/9/19 11:33	2,138201	1	3,25198
3/9/19 11:39	2,131436	1	3,280924
3/9/19 11:45	2,116064	1	3,260427
3/9/19 11:51	2,100925	1	3,284666
3/9/19 11:57	2,10024	1	3,287547
3/9/19 12:03	2,084867	1	3,283816
3/9/19 12:09	2,076589	1	3,287545
3/9/19 12:15	2,069307	1	3,287545
3/9/19 12:21	2,054123	1	3,287566
3/9/19 12:27	2,042239	1	3,287616
3/9/19 12:33	2,038751	1	3,326371
3/9/19 12:39	2,024465	1	3,365966
3/9/19 12:45	2,023379	1	3,365966
3/9/19 12:51	2,014662	1	3,367073
3/9/19 12:57	2,006922	1	3,428996
3/9/19 13:03	1,992635	1	3,443973
3/9/19 13:09	1,992221	1	3,444363
3/9/19 13:15	1,992635	0	3,351544
3/9/19 13:21	1,994882	0	3,190138
3/9/19 13:27	2,008007	0	3,048958
3/9/19 13:33	2,008007	0	2,893272
3/9/19 13:39	2,020315	0	2,740458
3/9/19 13:45	2,023379	0	2,602363
3/9/19 13:51	2,025291	0	2,444991
3/9/19 13:57	2,038736	0	2,342133
3/9/19 14:03	2,038766	0	2,185389
3/9/19 14:09	2,054123	0	2,039394
3/9/19 14:15	2,054123	0	1,942898
3/9/19 14:21	2,054123	1	1,805129
3/9/19 14:27	2,054123	1	1,877905
3/9/19 14:33	2,050323	1	1,947885
3/9/19 14:39	2,038751	1	1,950208
3/9/19 14:45	2,036126	1	1,978311
			ı

3/9/19 14:51	2,025203	1	2,033665
3/9/19 14:57	2,023379	1	2,106988
3/9/19 15:03	2,018393	1	2,152501
3/9/19 15:09	2,00808	1	2,185347
3/9/19 15:15	2,008007	1	2,185507
3/9/19 15:21	1,999943	1	2,263531
3/9/19 15:27	1,992684	1	2,263812
3/9/19 15:33	1,992635	1	2,288686
3/9/19 15:39	1,987332	1	2,343836
3/9/19 15:45	1,976811	1	2,414201
3/9/19 15:51	1,976811	1	2,422352
3/9/19 15:57	1,973088	1	2,496723
3/9/19 16:03	1,961439	1	2,498981
3/9/19 16:09	1,961363	1	2,536868
3/9/19 16:15	1,957909	1	2,57738
3/9/19 16:21	1,946067	1	2,643425
3/9/19 16:27	1,946057	1	2,658109
3/9/19 16:33	1,932576	1	2,734219
3/9/19 16:39	1,930694	1	2,736479
3/9/19 16:45	1,925801	1	2,802548
3/9/19 16:51	1,915479	1	2,814876
3/9/19 16:57	1,915322	1	2,829191
3/9/19 17:03	1,901036	1	2,893207
3/9/19 17:09	1,900601	1	2,893272
3/9/19 17:15	1,89995	1	2,915296
3/9/19 17:21	1,886028	1	2,97167
3/9/19 17:27	1,883884	1	2,992208
3/9/19 17:33	1,869206	1	3,050039
3/9/19 17:39	1,857512	1	3,05026
3/9/19 17:45	1,853363	1	3,051913
3/9/19 17:51	1,83801	1	3,115115
3/9/19 17:57	1,822638	1	3,128466
3/9/19 18:03	1,819974	1	3,128467

3/9/19 18:09	1,807266	1	3,12913
3/9/19 18:15	1,791893	1	3,128601
3/9/19 18:21	1,780643	1	3,131906
3/9/19 18:27	1,776521	1	3,134642
3/9/19 18:33	1,761149	1	3,19401
3/9/19 18:39	1,7454	1	3,146692
3/9/19 18:45	1,73762	1	3,206118
3/9/19 18:51	1,729953	1	3,206864
3/9/19 18:57	1,7149	1	3,237678
3/9/19 19:03	1,709452	1	3,261445
3/9/19 19:09	1,699209	1	3,282033
3/9/19 19:15	1,696876	1	3,287566
3/9/19 19:21	1,683837	1	3,327342
3/9/19 19:27	1,671461	1	3,365966
3/9/19 19:33	1,668465	1	3,374232
3/9/19 19:39	1,661155	1	3,440673
3/9/19 19:45	1,653237	0	3,437333
3/9/19 19:51	1,657428	0	3,287566
3/9/19 19:57	1,668465	0	3,128631
3/9/19 20:03	1,668465	0	3,050068
3/9/19 20:09	1,675185	0	2,893272
3/9/19 20:15	1,683837	0	2,742823
3/9/19 20:21	1,687476	0	2,658079
3/9/19 20:27	1,699208	0	2,56179
3/9/19 20:33	1,699267	0	2,420579
3/9/19 20:39	1,708023	0	2,279029
3/9/19 20:45	1,714581	0	2,176921
3/9/19 20:51	1,71632	0	2,026287
3/9/19 20:57	1,729953	0	1,89811
3/9/19 21:03	1,729953	1	1,869198
3/9/19 21:09	1,718913	1	1,938615
3/9/19 21:15	1,714581	1	1,947461
3/9/19 21:21	1,714581	1	1,990777
L			

3/9/19 21:27	1,701368	1	2,027762
3/9/19 21:33	1,69921	1	2,10699
3/9/19 21:39	1,699209	1	2,156531
3/9/19 21:45	1,698737	1	2,185394
3/9/19 21:51	1,685332	1	2,263785
3/9/19 21:57	1,683837	1	2,309671
3/9/19 22:03	1,675539	1	2,361158
3/9/19 22:09	1,677274	1	2,482576
3/9/19 22:15	1,668465	1	2,498979
3/9/19 22:21	1,668465	1	2,57161
3/9/19 22:27	1,666821	1	2,581016
3/9/19 22:33	1,653142	1	2,661769
3/9/19 22:39	1,653092	1	2,736469
3/9/19 22:45	1,653092	1	2,814135
3/9/19 22:51	1,652499	1	2,834126
3/9/19 22:57	1,649836	1	2,893272
3/9/19 23:03	1,641344	1	2,97167
3/9/19 23:09	1,63772	1	3,044524
3/9/19 23:15	1,63772	1	3,082305
3/9/19 23:21	1,63772	1	3,128495
3/9/19 23:27	1,63772	1	3,206864
3/9/19 23:33	1,63772	1	3,28759
3/9/19 23:39	1,636997	1	3,323888
3/9/19 23:45	1,636635	1	3,437434
3/9/19 23:51	1,63772	0	3,444362
3/9/19 23:57	1,653092	0	3,291485
4/9/19 0:03	1,663011	0	3,206864
4/9/19 0:09	1,668465	0	3,128467
4/9/19 0:15	1,683837	0	3,042688
4/9/19 0:21	1,698775	0	2,896962
4/9/19 0:27	1,714559	0	2,814952
4/9/19 0:33	1,716177	0	2,734632
4/9/19 0:39	1,730978	0	2,657864

4/0/10 0.45	1 74547	l 0	2.525104
4/9/19 0:45	1,74547	0	2,535104
4/9/19 0:51	1,761149	0	2,479304
4/9/19 0:57	1,776521	0	2,342183
4/9/19 1:03	1,791439	0	2,261351
4/9/19 1:09	1,807254	0	2,180497
4/9/19 1:15	1,819102	0	2,099898
4/9/19 1:21	1,828357	0	2,021144
4/9/19 1:27	1,838769	0	1,942008
4/9/19 1:33	1,853382	1	1,869479
4/9/19 1:39	1,853382	1	1,923201
4/9/19 1:45	1,853382	1	2,023704
4/9/19 1:51	1,853382	1	2,058513
4/9/19 1:57	1,854829	1	2,185388
4/9/19 2:03	1,860672	1	2,263785
4/9/19 2:09	1,861982	1	2,342183
4/9/19 2:15	1,869064	1	2,420581
4/9/19 2:21	1,869206	1	2,498979
4/9/19 2:27	1,869206	1	2,577376
4/9/19 2:33	1,869206	1	2,658079
4/9/19 2:39	1,869206	1	2,736484
4/9/19 2:45	1,876121	1	2,814876
4/9/19 2:51	1,875987	1	2,893271
4/9/19 2:57	1,884577	1	2,97167
4/9/19 3:03	1,884578	1	3,050068
4/9/19 3:09	1,884578	1	3,128466
4/9/19 3:15	1,884578	1	3,206864
4/9/19 3:21	1,884636	1	3,287566
4/9/19 3:27	1,890857	1	3,365743
4/9/19 3:33	1,898138	1	3,444362
4/9/19 3:39	1,89995	0	3,44436
4/9/19 3:45	1,915322	0	3,351122
4/9/19 3:51	1,930694	0	3,220048
4/9/19 3:57	1,946067	0	3,17141
<u> </u>		ı	

4/9/19 4:03	1,961222	0	3,050068
4/9/19 4:09	1,976773	0	2,97167
4/9/19 4:15	1,989544	0	2,861913
4/9/19 4:21	1,994293	0	2,798457
4/9/19 4:27	2,011913	0	2,679703
4/9/19 4:33	2,023379	0	2,57739
4/9/19 4:39	2,038751	0	2,49898
4/9/19 4:45	2,054123	0	2,420501
4/9/19 4:51	2,069495	0	2,329266
4/9/19 4:57	2,084815	0	2,227381
4/9/19 5:03	2,096032	0	2,129168
4/9/19 5:09	2,101562	0	2,032928
4/9/19 5:15	2,116064	0	1,941159
4/9/19 5:21	2,130122	1	1,869428
4/9/19 5:27	2,125528	1	1,883328
4/9/19 5:33	2,11665	1	1,947892
4/9/19 5:39	2,116194	1	2,026287
4/9/19 5:45	2,116064	1	2,026868
4/9/19 5:51	2,116064	1	2,10699
4/9/19 5:57	2,115474	1	2,182145
4/9/19 6:03	2,100241	1	2,185462
4/9/19 6:09	2,10024	1	2,191682
4/9/19 6:15	2,086214	1	2,263784
4/9/19 6:21	2,084867	1	2,263785
4/9/19 6:27	2,069495	1	2,284209
4/9/19 6:33	2,069445	1	2,328904
4/9/19 6:39	2,054123	1	2,339443
4/9/19 6:45	2,04183	1	2,329232
4/9/19 6:51	2,038751	1	2,342183
4/9/19 6:57	2,02338	1	2,358786
4/9/19 7:03	2,023379	1	2,386192
4/9/19 7:09	2,008007	1	2,417986
4/9/19 7:15	1,992635	1	2,420581

4/0/10 7.21	1.077420	l 1	2.441221
4/9/19 7:21	1,977429	1	2,441231
4/9/19 7:27	1,97587	1	2,498979
4/9/19 7:33	1,961439	1	2,502675
4/9/19 7:39	1,948714	1	2,518348
4/9/19 7:45	1,945126	1	2,577377
4/9/19 7:51	1,930694	1	2,57749
4/9/19 7:57	1,915332	1	2,658079
4/9/19 8:03	1,910276	1	2,658079
4/9/19 8:09	1,89995	1	2,7012
4/9/19 8:15	1,884578	1	2,736478
4/9/19 8:21	1,880065	1	2,738328
4/9/19 8:27	1,856606	1	2,737539
4/9/19 8:33	1,852149	1	2,763812
4/9/19 8:39	1,83801	1	2,813768
4/9/19 8:45	1,822638	1	2,779826
4/9/19 8:51	1,808003	1	2,814876
4/9/19 8:57	1,7922	1	2,834727
4/9/19 9:03	1,790392	1	2,891028
4/9/19 9:09	1,776304	1	2,893271
4/9/19 9:15	1,761149	1	2,898025
4/9/19 9:21	1,746658	1	2,926502
4/9/19 9:27	1,736978	1	2,971448
4/9/19 9:33	1,729736	1	2,971671
4/9/19 9:39	1,714581	1	2,973951
4/9/19 9:45	1,700511	1	3,012337
4/9/19 9:51	1,698572	1	3,046865
4/9/19 9:57	1,68346	1	3,050068
4/9/19 10:03	1,668465	1	3,094664
4/9/19 10:09	1,653092	1	3,121231
4/9/19 10:15	1,640979	1	3,128516
4/9/19 10:21	1,635502	1	3,147357
4/9/19 10:27	1,621896	1	3,204163
4/9/19 10:33	1,606524	1	3,206864
L L		I .	l

4/9/19 10:39	1,595979	1	3,213649
4/9/19 10:45	1,590815	1	3,231936
4/9/19 10:51	1,575329	1	3,284814
4/9/19 10:57	1,560408	1	3,281841
4/9/19 11:03	1,545036	1	3,304523
4/9/19 11:09	1,529664	1	3,290746
4/9/19 11:15	1,514442	1	3,347692
4/9/19 11:21	1,49933	1	3,360349
4/9/19 11:27	1,49235	1	3,360634
4/9/19 11:33	1,473172	1	3,365962
4/9/19 11:39	1,467504	1	3,365966
4/9/19 11:45	1,452351	1	3,366718
4/9/19 11:51	1,436979	1	3,366482
4/9/19 11:57	1,421607	1	3,366209
4/9/19 12:03	1,406293	1	3,41664
4/9/19 12:09	1,404949	1	3,444235
4/9/19 12:15	1,388102	1	3,386698
4/9/19 12:21	1,375038	1	3,442517
4/9/19 12:27	1,359666	1	3,44805
4/9/19 12:33	1,344294	1	3,444421
4/9/19 12:39	1,344294	0	3,365993
4/9/19 12:45	1,344294	0	3,2258
4/9/19 12:51	1,344294	0	3,110868
4/9/19 12:57	1,344277	0	2,95614
4/9/19 13:03	1,344294	0	2,813396
4/9/19 13:09	1,344294	0	2,656028
4/9/19 13:15	1,344294	0	2,498979
4/9/19 13:21	1,344294	0	2,342242
4/9/19 13:27	1,344594	0	2,185641
4/9/19 13:33	1,35008	0	2,058319
4/9/19 13:39	1,346865	0	1,896667
4/9/19 13:45	1,344294	1	1,86828
4/9/19 13:51	1,329725	1	1,869491
		1	1

4/9/19 13:57	1,328913	1	1,878603
4/9/19 14:03	1,31355	1	1,947888
4/9/19 14:09	1,305116	1	1,949529
4/9/19 14:15	1,298178	1	2,026286
4/9/19 14:21	1,282806	1	2,026361
4/9/19 14:27	1,280134	1	2,093266
4/9/19 14:33	1,26698	1	2,10699
4/9/19 14:39	1,25161	1	2,10699
4/9/19 14:45	1,24301	1	2,107011
4/9/19 14:51	1,236237	1	2,184962
4/9/19 14:57	1,220865	1	2,18539
4/9/19 15:03	1,219126	1	2,197461
4/9/19 15:09	1,205305	1	2,263785
4/9/19 15:15	1,190121	1	2,273259
4/9/19 15:21	1,189402	1	2,342183
4/9/19 15:27	1,174749	1	2,408223
4/9/19 15:33	1,171239	1	2,420581
4/9/19 15:39	1,159377	1	2,406927
4/9/19 15:45	1,14833	1	2,450929
4/9/19 15:51	1,143553	1	2,499083
4/9/19 15:57	1,137623	1	2,576993
4/9/19 16:03	1,128181	1	2,577377
4/9/19 16:09	1,116842	1	2,604501
4/9/19 16:15	1,112808	1	2,658079
4/9/19 16:21	1,097436	1	2,72311
4/9/19 16:27	1,097419	1	2,736479
4/9/19 16:33	1,082064	1	2,81197
4/9/19 16:39	1,066797	1	2,814876
4/9/19 16:45	1,066692	1	2,883675
4/9/19 16:51	1,05132	1	2,893272
4/9/19 16:57	1,050958	1	2,918176
4/9/19 17:03	1,035948	1	2,971975
4/9/19 17:09	1,03576	1	3,044311

4/9/19 17:15	1,020124	1	3,050068
4/9/19 17:21	1,019333	1	3,083468
4/9/19 17:27	1,004752	1	3,128465
4/9/19 17:33	0,992637	1	3,193081
4/9/19 17:39	0,98938	1	3,206864
4/9/19 17:45	0,98403	1	3,265169
4/9/19 17:51	0,974008	1	3,283084
4/9/19 17:57	0,958636	1	3,287572
4/9/19 18:03	0,958634	1	3,353042
4/9/19 18:09	0,943581	1	3,354897
4/9/19 18:15	0,943263	1	3,366025
4/9/19 18:21	0,927891	1	3,373721
4/9/19 18:27	0,920142	1	3,414805
4/9/19 18:33	0,912067	1	3,444362
4/9/19 18:39	0,898177	1	3,444363
4/9/19 18:45	0,896921	0	3,426435
4/9/19 18:51	0,908849	0	3,286448
4/9/19 18:57	0,910837	0	3,128467
4/9/19 19:03	0,912067	0	2,972851
4/9/19 19:09	0,912125	0	2,822721
4/9/19 19:15	0,913029	0	2,736479
4/9/19 19:21	0,927891	0	2,578853
4/9/19 19:27	0,927891	0	2,430549
4/9/19 19:33	0,927945	0	2,342183
4/9/19 19:39	0,943263	0	2,185941
4/9/19 19:45	0,943263	0	2,106778
4/9/19 19:51	0,955883	0	1,947888
4/9/19 19:57	0,958636	1	1,86942
4/9/19 20:03	0,943595	1	1,869491
4/9/19 20:09	0,943263	1	1,923905
4/9/19 20:15	0,929378	1	1,948036
4/9/19 20:21	0,927891	1	2,026095
4/9/19 20:27	0,927891	1	2,099376

4/9/19 20:33	0,925347	1	2,106992
4/9/19 20:39	0,913514	1	2,185388
4/9/19 20:45	0,912067	1	2,215825
4/9/19 20:51	0,910972	1	2,307095
4/9/19 20:57	0,909452	1	2,344043
4/9/19 21:03	0,896695	1	2,418367
4/9/19 21:09	0,896695	1	2,490556
4/9/19 21:15	0,895465	1	2,511047
4/9/19 21:21	0,895217	1	2,577756
4/9/19 21:27	0,881323	1	2,658079
4/9/19 21:33	0,881323	1	2,730428
4/9/19 21:39	0,881321	1	2,799295
4/9/19 21:45	0,870453	1	2,814876
4/9/19 21:51	0,865951	1	2,834188
4/9/19 21:57	0,865951	1	2,901093
4/9/19 22:03	0,865951	1	2,97167
4/9/19 22:09	0,865951	1	3,047919
4/9/19 22:15	0,86583	1	3,052017
4/9/19 22:21	0,856187	1	3,13223
4/9/19 22:27	0,850999	1	3,206326
4/9/19 22:33	0,850579	1	3,210055
4/9/19 22:39	0,850579	1	3,291257
4/9/19 22:45	0,850579	1	3,365966
4/9/19 22:51	0,850579	1	3,444354
4/9/19 22:57	0,850584	0	3,444363
4/9/19 23:03	0,865951	0	3,301794
4/9/19 23:09	0,881321	0	3,207012
4/9/19 23:15	0,895082	0	3,128467
4/9/19 23:21	0,898865	0	3,049331
4/9/19 23:27	0,912067	0	2,966574
4/9/19 23:33	0,927891	0	2,814878
4/9/19 23:39	0,943261	0	2,736478
4/9/19 23:45	0,945219	0	2,656852
<u>. </u>		•	

4/9/19 23:51	0,959149	0	2,501325
4/9/19 23:57	0,974008	0	2,42059
5/9/19 0:03	0,98938	0	2,341741

- Medições do nível do reservatório R1_B

Tempo	Nível – R1_B
00:03	3,207695007
00:09	3,288842201
00:15	3,365965843
00:21	3,434769630
00:27	3,365965843
00:33	3,283876419
00:39	3,177050591
00:45	3,063317299
00:51	2,977945328
00:57	2,893271446
01:03	2,813768387
01:09	2,735035896
01:15	2,590374947
01:21	2,499368668
01:27	2,421776772
01:33	2,342183113
01:39	2,263047218
01:45	2,148922920
01:51	2,105858803
01:57	1,962986946
02:03	1,870216370
02:09	1,852889061
02:15	1,899834633
02:21	2,026282310
02:27	2,106989861
02:33	2,152917862
02:39	2,267099380
02:45	2,342552185
02:51	2,420655251
02:57	2,500823021
03:03	2,577380180
03:09	2,658079147
03:15	2,736611366
03:21	2,814875603
03:27	2,893298149

03:33	2,971301079
03:39	3,050067902
03:45	3,128466606
03:51	3,206864357
03:57	3,287566185
04:03	3,365227699
04:09	3,444361687
04:15	3,399942398
04:21	3,288304329
04:27	3,206864357
04:33	3,128465652
04:39	3,050067902
04:45	2,958016396
04:51	2,821323395
04:57	2,736494064
05:03	2,658079147
05:09	2,577377319
05:15	2,448330879
05:21	2,342398643
05:27	2,264036179
05:33	2,127609253
05:39	2,027541161
05:45	1,947888374
05:51	1,809750557
05:57	1,870597839
06:03	1,945748329
06:09	1,947888374
06:15	1,991196632
06:21	2,026286125
06:27	2,026287079
06:33	2,101866722
06:39	2,106781960
06:45	2,112671852
06:51	2,165575981
06:57	2,185387611
07:03	2,185388565
07:09	2,246211052
07:15	2,263785362
07:21	2,264583588
07:27	2,318202972
07:33	2,343585014
07:39	2,405793190
07:45	2,420211792

07:51	2,427959442
07:57	2,449305534
08:03	2,462425232
08:09	2,498978615
08:15	2,546953201
08:21	2,523488998
08:27	2,577376366
08:33	2,577377319
08:39	2,629769325
08:45	2,643219948
08:51	2,658079147
08:57	2,661499977
09:03	2,736474037
09:09	2,735519409
09:15	2,736478806
09:21	2,812012672
09:27	2,813620567
09:33	2,814875603
09:39	2,815619469
09:45	2,893271446
09:51	2,893272400
09:57	2,893272400
10:03	2,898411751
10:09	2,947482109
10:15	2,971670151
10:21	2,972927094
10:27	3,050067902
10:33	3,050067902
10:39	3,053462029
10:45	3,050260544
10:51	3,104434967
10:57	3,123607635
11:03	3,128761292
11:09	3,191285133
11:15	3,193194389
11:21	3,136618614
11:27	3,203823090
11:33	3,206864357
11:39	3,206864357
11:45	3,206867218
11:51	3,243820190
11:57	3,223814964
12:03	3,287566185

12:09	3,337436676
12:15	3,318990707
12:21	3,364334106
12:27	3,365355492
12:33	3,365965843
12:39	3,369654655
12:45	3,426361084
12:51	3,398102760
12:57	3,434769630
13:03	3,485190392
13:09	3,353975296
13:15	3,206845284
13:21	3,050067902
13:27	2,900949478
13:33	2,811096191
13:39	2,642953873
13:45	2,499138832
13:51	2,375348091
13:57	2,263785362
14:03	2,107542038
14:09	2,026286125
14:15	1,873254776
14:21	1,869477272
14:27	1,869494438
14:33	1,947888374
14:39	1,948014259
14:45	2,026287079
14:51	2,106701851
14:57	2,106989861
15:03	2,183440208
15:09	2,185389519
15:15	2,256952286
15:21	2,273038864
15:27	2,342141151
15:33	2,343430519
15:39	2,420580864
15:45	2,462537766
15:51	2,498978615
15:57	2,577332497
16:03	2,577377319
16:09	2,583307266
16:15	2,658079147
16:21	2,658080101

16:27	2,676321983
16:33	2,736477852
16:39	2,736980438
16:45	2,752152443
16:51	2,817098618
16:57	2,886749268
17:03	2,893272400
17:09	2,900341034
17:15	2,971247673
17:21	2,972998619
17:27	3,039320946
17:33	3,050067902
17:39	3,067142487
17:45	3,109591484
17:51	3,128465652
17:57	3,138112068
18:03	3,148207664
18:09	3,206852913
18:15	3,206864357
18:21	3,277162552
18:27	3,287566185
18:33	3,359678268
18:39	3,312470436
18:45	3,369344711
18:51	3,444285393
18:57	3,444362640
19:03	3,366274834
19:09	3,257511139
19:15	3,115549088
19:21	2,971661568
19:27	2,816129684
19:33	2,699856758
19:39	2,577376366
19:45	2,432755470
19:51	2,285622597
19:57	2,185388565
20:03	2,042888641
20:09	1,934239388
20:15	1,863294601
20:21	1,877165794
20:27	1,947888374
20:33	2,015023232
20:39	2,026287079

20:45	2,106128693
20:51	2,107062340
20:57	2,185387611
21:03	2,263160706
21:09	2,263848305
21:15	2,342183113
21:21	2,414786339
21:27	2,455751419
21:33	2,498979568
21:39	2,561125755
21:45	2,630415916
21:51	2,658079147
21:57	2,724967003
22:03	2,808455467
22:09	2,823454857
22:15	2,893272400
22:21	2,943999290
22:27	2,980321884
22:33	3,050067902
22:39	3,127358437
22:45	3,184224129
22:51	3,206864357
22:57	3,287328720
23:03	3,305205345
23:09	3,365968704
23:15	3,444362640
23:21	3,365965843
23:27	3,287566185
23:33	3,177982330
23:39	3,065888405
23:45	2,971670151
23:51	2,891869545
23:57	2,757390976