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RESUMO 

 

Encontrar uma metodologia que seja aplicável em várias regiões do mundo, de forma 

que haja condições de identificar áreas com propensão à desertificação, é um desafio 

que a comunidade científica vem encarando desde os anos 70. A desertificação é um 

fenômeno complexo que compreende uma grande extensão territorial e populacional, 

pois envolve problemas ambientais, sociais e econômicos. Indicadores que integram as 

atividades humanas, o meio ambiente e o clima, junto com a tecnologia do 

sensoriamento remoto, são uma alternativa para identificação da desertificação, pois 

podem ser aplicados de forma simples e não onerosa. Entre as metodologias abordadas 

na literatura, o Índice de Risco de Tendência à Desertificação (IRTD) que envolve um 

conjunto de índices espectrais de solo e vegetação, índices climático e de impacto 

humano se mostra prático, adaptável, de baixo custo e satisfatório. Outra abordagem 

que vem sendo estudada é a identificação de áreas degradadas através de análises 

multitemporais para fazer a Análise do Vetor de Mudanças (AVM), podendo indicar 

degradação. Neste contexto, esta tese se propõe a aplicar a AVM através dos índices 

Soil Adjusted Vegetation Index (SAVI) e Bare Soil Index (BSI) e avaliar os resultados 

quando aplicados, diferenciando período chuvoso e seco. Além disso, a proposta é 

examinar, validar e adaptar a metodologia do IRTD em uma região do semiárido 

brasileiro, na sub-bacia Taperoá, localizada no estado da Paraíba, com uma análise 

temporal compreendida entre os anos de 1995 e 2015. Para os dados espectrais, as 

imagens foram selecionadas para os anos de 1995, 1999, 2005 e 2015, levando em 

consideração a sazonalidade. Março, abril e maio compõem o período considerado 

chuvoso, enquanto setembro, outubro e novembro formam o período seco. As imagens 

correspondentes a cada mês do respectivo período tiveram remoção das chamadas 

contaminações por nuvens e foram mescladas de acordo com os respectivos períodos 

sazonais. Para a AVM, os melhores resultados foram obtidos quando aplicada no 

período chuvoso. O IRTD também foi testado de acordo com a sazonalidade e 

classificação de melhor intervalo de distribuição de classes, utilizando intervalo igual e 

quartil, além de considerar a variação do parâmetro L do SAVI (0,8, 0,9 e 1). Ademais, 

foram validados os resultados por dados coletados em campo (43 pontos em 5 

campanhas realizadas de 2016 a 2019), incluindo a identificação e categorização do 

grau de desertificação por profissionais técnicos experientes. Foram realizadas análises 

comparativas pixel/ponto por índices de performance, identificando as áreas com 

tendencia, ou não, à desertificação segundo o levantamento de campo e segundo as 

estimativas deste trabalho. A aplicação do IRTD com distribuição de classes segundo 

intervalo quartil, no período seco, com parâmetro do SAVI igual a 1, apresentou melhor 

desempenho do que as outras variações do método. A estimativa de força motriz dos 

índices aplicados indicou que os parâmetros relacionados ao solo e vegetação foram 

determinantes quanto ao nível da classificação do risco de tendência à desertificação. 
 

Palavras chave: desertificação, semiárido, índices, SAVI.  

 

 

 

 



ABSTRACT 

 

Finding a methodology that is able to identify areas susceptible to desertification in 

many regions of the world is a challenge that the scientific community has been facing 

since the 70’s. The desertification is a complex phenomenon that comprises large 

territorial and population extension, as it involves environmental, social and economic 

problems. An alternative for identification of desertification is the use of indicators that 

integrate human activities, environment and climate, along with satellite technology, 

because it can be applied in a simplified and inexpensive way. Among the 

methodologies found in literature, there is the Risk of Tendency to Desertification Index 

(RTDI). It comprises a group of soil and vegetation spectral indexes, climate indexes 

and human impact indexes, proving to be practical, adaptable, and cheap and with 

satisfactory results. Another approach that has been studied is the identification of 

degraded areas through multitemporal analysis so that the Change Vector Analysis 

(CVA) can be done, making it possible to identify desertification. In this sense, this 

thesis proposes to apply the CVA through the Soil Adjusted Vegetation Index (SAVI) 

and Bare Soil Index (BSI), and to evaluate the results, differentiating between rainy and 

dry periods. Besides that, the goal is to examine, validate and adapt the RTDI 

methodology in the Taperoá sub-basin, a semiarid area of Brazil located in the State of 

Paraíba, considering a temporal analysis between the years of 1995 and 2015. For the 

spectral data, the years selected to the study were 1995, 1999, 2005 and 2015, taking 

into account the seasonality. March, April and May form the rainy period, while the dry 

period is formed by the months September, October and November. The clouds of the 

images of each month were removed and the images were merged according to the 

respective seasonal period. The CVA presented the best results in the rainy period. The 

RTDI was also tested according to the seasonality and the class distribution range, using 

equal and quartile intervals, considering the variation of the SAVI L parameter (0.8, 0.9 

and 1). In addition to that, the results of the collected field data were validated (43 

points in 5 different campaigns carried out from 2016 to 2019), including the 

verification and categorization of the desertification degree according to experienced 

technical professionals. It was done comparative analysis pixel/point by performance 

indexes, identifying areas that are susceptible to desertification, according to the field 

survey and the estimates obtained within this thesis. The application of the RTDI with 

quartile interval class distribution, during the dry period and using the SAVI parameter 

as 1, presented better performance than the other method variations. The applied 

indexes’ driving force estimates showed that the parameters related to the soil and 

vegetation were decisive in terms of the classification level of the risk of tendency to 

desertification. 

 

Keywords: desertification, semiarid, indexes, SAVI.  
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1 – INTRODUÇÃO 

 

As regiões semiáridas existem em diferentes partes do mundo (UNCCD, 1994; 

AB’SABER, 1999; CIRÍLO, 2008) e são conhecidas por apresentarem variações 

climáticas que acrescida de atividades antropogênicas refletem nas condições, 

ambientais, sociais e econômicas (LIMA et al., 2004; CIRILO, 2008; SANTOS, 2014; 

BARBOSA et al., 2015). O regime climático restritivo acrescido de atividades humanas 

desfavoráveis, geram a predisposição à desertificação (UNCCD, 1994; UNCED, 1992; 

PAN-BRASIL, 2004), que é o resultado da degradação da terra em regiões semiáridas 

(LADISA, TODOROVIC e LIUZZI, 2012 e TAVARES et al. 2015). 

O fenômeno da desertificação, sua localização, monitoramento e medidas para 

mitigação têm sido alvo de diversos estudos devido a sua considerável extensão 

territorial e impactos que podem se estender ao longo de várias gerações. Ele pode 

exaurir os recursos naturais, interferindo na capacidade do meio ambiente de se 

regenerar (D’ODORICO et al., 2013; MAU et al., 2015; AZZOUZI, VIDAL-

PANTALEONI e BENTOUNES, 2017).  

Desde a década de 70, a desertificação tem sido o centro de diversos esforços 

governamentais no âmbito nacional e internacional por meio de eventos, encontros, 

convenções, conferências, acordos e leis envolvendo, simultaneamente, vários países e 

diferentes instituições (PAE, 2011; SALIH, GANAWA e ELMAHL, 2017; YOU, 

2017). Além disso, a comunidade científica também tem se debruçado em entender a 

dinâmica de surgimento e evolução da desertificação, e assim, encontrar medidas para 

lidar com esse fenômeno. Diversos estudos têm buscado, nas regiões semiáridas, áreas 

com indícios de desertificação para que seja possível caracterizar padrões, classificar 

e/ou monitorá-los.  

No entanto, por ser um fenômeno de grande extensão territorial e que envolve 

diversos aspectos como clima, solo, vegetação e atividades humanas, esses estudos são 

constituídos de maneira complexa. Apesar disso, muitos pesquisadores nas últimas 

décadas têm buscado alternativas menos onerosas com relação ao tempo e os recursos, 

porém, que sejam práticas e satisfatórias tais como Bencerril-Piña et al. (2015) Lanchin 

et al. (2016) Bandyopdhyay e Saha (2016) Noyola-Medrano e Martínez-Sías (2017). 

O uso de indicadores tem se mostrado um instrumento simples e eficaz nesse 

contexto e, associado à tecnologia do Sensoriamento Remoto (SR), tem sido bastante 

explorado, pois tem contribuído com o mapeamento, quantificação, qualificação e 
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monitoramento da desertificação (SALVATI et al., 2009; BECERRIL-PIÑA et al., 

2015; NOYOLA-MEDRANO e MARTÍNEZ-SÍAS, 2017). 

A United Nations Convention to Combat Desertification (UNCCD) aprovou a 

busca de três indicadores mínimos para encontrar um equilíbrio ambiental, sendo eles: i) 

o estado e as mudanças da cobertura da terra; ii) produtividade da terra; e iii) os 

estoques de carbono abaixo do solo. Isso porque, em 2007 a assembleia geral da ONU 

proclamou os anos de 2010 a 2020 como a Década das Nações Unidas sobre Desertos e 

Lutas contra a Desertificação, visto que, apesar dos esforços que vinham sendo 

realizados por anos, a desertificação e suas consequências têm aumentado (ZONN, 

KUST e ANDREEVA, 2017). 

Infelizmente, mesmo diante de tantas estratégias, a falta de recursos e de 

auxílio governamental somado à incerteza de qual abordagem gera mais resultados, têm 

feito com que muitas medidas não sejam implementadas e nem apoiadas (ZONN, 

KUST E ANDREEVA, 2017). Além disso, há casos de grupos onde pesquisadores 

procuram aplicar metodologias que não podem ser customizadas para outra escala de 

trabalho, inviabilizando a reprodução das técnicas que só podem ser empregadas em um 

prazo longo e que, em geral, acabam ficando mais onerosas. 

O Brasil se destaca pela extensão de sua região semiárida com mais de um 

milhão de quilômetros quadrados (SUDENE, 2017). Por isso, muitos estão na busca de 

encontrar uma metodologia adaptável, que seja fácil de replicar e que tenha um baixo 

custo. Isso é um desafio que tem resultado em um acervo de inúmeras pesquisas usando 

diversas técnicas, porém, até o presente momento, segue sem consolidação (KAIRIS et 

al., 2014; BENCERRIL-PIÑA et al., 2015; VIEIRA et al.; 2015; NOYOLA-

MEDRANO e MARTÍNEZ-SÍAS, 2017).  

Neste contexto a pesquisa de Becerril-Piña et al. (2015), explorou duas frentes: 

a Análise do Vetor de Mudança (AVM), com uso de dois índices espectrais, de solo e 

vegetação; e foi feito uso de um conjunto de índices para identificar um Índice de Risco 

de Tendência à Desertificação (IRTD), aplicando numa região semiárida do México, 

concluindo que era adaptável e de baixo custo. Com essa premissa, este estudo teve 

como proposta adaptar a metodologia para o semiárido brasileiro, ou seja, customizar o 

método de acordo com as características da região e validar a sua aplicabilidade espaço-

temporal, algo essencial para qualquer metodologia. 

Nesta pesquisa, foi aplicada a metodologia do IRTD de forma sazonal (período 

seco e chuvoso) e também se analisou qual método de intervalo de classes representa 
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melhor a área de estudo de acordo com os valores dos índices da região. E, para 

aprimorar a proposta, os valores do parâmetro L do Soil Adjusted Vegetation Index 

(SAVI) foram variados e validados com visitas de campo que classificaram a área de 

estudo de acordo com o grau de desertificação.  

Com 43 pontos de visitação em campo, foram realizadas 5 campanhas entre o 

período de 2016 e 2019, caracterizando o grau de desertificação. As visitas foram 

realizadas tanto no período chuvoso como no seco. Posteriormente, os dados observados 

em campo foram comparados com os dados estimados do IRTD e, em seguida, através 

de índices de performance, foi feita uma análise ponto por pixel.  

 O espaço geográfico da pesquisa envolveu uma área na região semiárida 

brasileira, a sub-bacia Taperoá, localizada no estado da Paraíba, envolvendo, em parte, 

uma das localidades mais secas do país (XAVIER et al., 2012). E como área piloto para 

as visitas de campo, foi selecionada dentro da sub-bacia Taperoá a Área de Preservação 

Ambiental do Cariri. Como escala temporal, a pesquisa envolveu os anos de 1995 a 

2015. 

 

1.1 OBJETIVOS 

Objetivo geral: 

Avaliar o uso de um conjunto de índices para identificar a ocorrência de 

desertificação no semiárido brasileiro, tomando como estudo de caso a sub-bacia 

Taperoá-PB. 

 

Objetivos específicos:  

✓ Investigar a resposta dos índices em relação às variações de distribuição das 

classes por métodos usando intervalos distribuídos igualmente e por quartil; 

✓ Examinar o efeito da sazonalidade (período seco e chuvoso) nas estimativas 

de ocorrência à desertificação; 

✓ Quantificar a sensibilidade da metodologia de estimativa de ocorrência à 

desertificação frente ao parâmetro L do índice espectral de vegetação SAVI; 

✓ Avaliar o potencial de identificação por índices espectrais de vegetação e 

solo referente à degradação e recuperação ambiental; 



25 
 

✓ Examinar os índices mais representativos para a estimativa de ocorrência à 

desertificação. 
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2 – REFERENCIAL TEÓRICO 

  

2.1 CONSIDERAÇÕES SOBRE O SEMIÁRIDO  

 

O Programa de Ação Nacional de Combate à Desertificação e Mitigação dos 

Efeitos da Seca (PAN) define o clima semiárido baseado no índice de aridez, calculado 

através da razão entre a precipitação pluviométrica e a evapotranspiração potencial 

média anual, conforme proposto por Thorntwaite (1941 apud PAE-PB, 2011) e, 

posteriormente, ajustado por Penman (1952 apud PAE-PB, 2011).  

O índice de aridez é dividido em cinco classes: áridas, hiper áridas, semiáridas, 

subúmidas secas e subúmidas úmidas. São classificadas como semiáridas quando 

apresentam valores no intervalo entre 0,21 e 0,50. Na Figura 1, vemos que o clima 

semiárido está presente em todos os continentes e equivale a 15% da superfície da Terra 

(GAUR e SQUIRES, 2018).  

 

 
Figura 1: Distribuição das terras áridas no mundo.  

Fonte: FAO, 2002. 

 

 No Brasil as definições das regiões semiáridas geralmente são intimamente 

relacionadas a aspectos climáticos, baixa umidade, alta evaporação e chuvas irregulares 

durante o ano, ou seja, o período de estiagem é maior que o período de chuvas durante o 

ano (AB´SABER, 1999; LIMA, 2004; VOROVENCII, 2015). 

Essas características climáticas refletem diretamente no meio ambiente, 

contribuindo para um ineficiente armazenamento e captação de água, solos rasos 

fundamentados em rochas cristalinas e muitos rios intermitentes (SANTOS, 2014; 

CIRILO, 2008). É um ambiente também marcado pelo desequilíbrio entre a oferta e 
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demanda dos recursos naturais (LIMA, 2004; BARBOSA et al., 2015) e contribui na 

escassez da água de áreas urbanas (CORDÃO, et al.  2020).  

A região semiárida no Brasil foi delimitada pela Superintendência do 

Desenvolvimento do Nordeste (SUDENE), adotando os seguintes critérios técnicos e 

científicos: “i) Precipitação pluviométrica média anual igual ou inferior a 800 mm; ii) 

Índice de Aridez de Thorntwaite igual ou inferior a 0,50; e iii) percentual diário de 

déficit hídrico igual ou superior a 60%, considerando todos os dias do ano.” (SUDENE, 

2017). 

Com os critérios estabelecidos pela SUDENE em 2017, foi identificado um total 

de 1.262 municípios, os quais englobam parte de todos os estados do Nordeste e o Norte 

de Minas Gerais (Figura 2). 

 

 
Figura 2: Mapa da localização do Semiárido Brasileiro, com a delimitação estabelecida no ano de 2017. 

Fonte: Próprio autor. 



28 
 

 

O Semiárido Brasileiro (SAB) abrange uma área total de 1.128.697 km² e uma 

população superior a 27.800.000 habitantes no ano de 2017 (SUDENE, 2017), sendo 

considerado o semiárido mais populoso do mundo (SILVA, 2003; FIGUERÔA et al., 

2006; CUNHA et al., 2017). A Tabela 1 mostra a quantidade de municípios por estado 

inclusos na região Semiárida e sua respectiva população, bem como sua extensão total e 

o percentual em relação à área total do estado.  

 
Tabela 1: Municípios do SAB, percentual total da região semiárida e sua respectiva população.  

Fonte: Adaptado Sudene, 2017.  

UF Municípios 
Área no SAB 

km² 

Região SAB em 

relação à UF (%) 

População no 

SAB (2017) 

AL 38 12.583 45,19 962.641 

BA 278 446.021 78,98 7.675.656 

CE 175 146.889 98,65 5.827.192 

MA 2 3.523 1,07 213.693 

MG 91 121.259 20,67 1.492.198 

PB 194 51.306 90,86 2.498.117 

PE 123 86.341 88,04 3.993.975 

PI 185 200.610 79,73 2.805.394 

RN 147 49.073 92,92 1.922.440 

SE 29 11.093 50,59 478.935 

 

 No Brasil, a região Semiárida é constituída por três biomas: Cerrado, Mata 

Atlântica e, o maior deles, a Caatinga, que é singular no mundo com várias espécies 

endêmicas (SCHOBER, 2002; SILVA, 2003; MARENGO, 2010). Predominante na 

região semiárida, a Caatinga também é conhecida por ser uma das Florestas Tropicais 

Sazonalmente Secas (FTSS). Resultante do clima árido da região (MORO et al., 2015), 

é considerada a mais diversificada das FTSS no mundo (SILVA et al., 2019). Isso se 

comprova por sua rica heterogeneidade em espécies endêmicas (cerca de 23% do total 

de suas espécies), contendo 29 gêneros endêmicos de distribuição restrita e raros 

localmente (FERNADES e QUEIROS, 2018). O nome “caatinga” é derivado do Tupi-

guarani e significa “floresta branca”, provavelmente, por causa de sua aparência de 

árvores sem folhas durante o longo período de estiagem com aspecto de floresta seca 

(BARBOSA, 2013), arbustos espinhosos de cactos (MELO et al., 2016) e vegetação 

arbustiva (RITO et al., 2017). 

A vegetação da Caatinga “se caracteriza por uma fisionomia e composição 

florística variável em função do tipo de solo e da pluviosidade. Dominam espécies 

caducifólias de caráter xerófilo e grande quantidade de plantas espinhosas” (SILVA, 

SOUZA E BACANI, 2019). 
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Segundo a Organização das Nações Unidas (ONU, 2016), as terras áridas (com 

clima árido, semiárido ou subsumido seco) têm um papel fundamental em exercer a 

regulação do clima no âmbito local e global, pois armazenam 46% do carbono mundial. 

Os seus solos contêm 53% do carbono e suas plantas 14% do carbono biótico do mundo 

inteiro. Portanto, assim como ocorre com outras regiões do planeta, o semiárido com 

suas particularidades tem importância e contribui para o equilíbrio do planeta, desde que 

não seja explorado de forma inadequada, pois, devido à exploração desenfreada dos 

recursos naturais do SAB, vários problemas ambientais têm se agravado, ou mesmo 

surgido. Entre esses problemas, está a desertificação (TRAVASSOS e SOUZA, 2011). 

 

2.2 DESERTIFICAÇÃO: CAUSAS E PROCESSOS  

 

A UNCCD define por desertificação a degradação da terra nas zonas áridas, 

semiáridas e subsumidas secas, resultante de vários fatores, incluindo as variações 

climáticas e as atividades humanas (UNCCD, 1994; UNCED, 1992; BRASIL, 2004). A 

degradação da terra envolve a degradação do solo, dos recursos hídricos, da vegetação e 

da biodiversidade, fatores que comprometem a qualidade de vida das populações 

envolvidas (BRASIL, 2004).  

A degradação do solo está associada à redução ou perda da produtividade 

econômica ou biológica do solo, advinda das atividades humanas, da “erosão causada 

pelo vento e/ou água, a deterioração das propriedades físicas, químicas e biológicas ou 

econômicas do solo e a destruição da vegetação por períodos prolongados” (UNCCD, 

1994). O processo de erosão é tão severo que acarreta a impermeabilização do solo ao 

ponto de autores compararem o impacto à calçamentos de áreas urbanas (FEITOSA, 

2010). Essas frequentes alterações ambientais podem ser irreversíveis, ou mesmo se 

estender por gerações, pois a caracterização deste fenômeno também é associada à 

perda da capacidade do meio ambiente de fornecer os recursos necessários para 

regeneração e sustentação da vida (D’ODORICO et al., 2013; MAU et al., 2015; 

AZZOUZI, VIDAL-PANTALEONI e BENTOUNES, 2017). 

A problemática referente à degradação das terras não é um fenômeno novo. 

Porém, foi apenas na década de 1970, quando houve uma grande calamidade no Sahel, 

na África, resultando em centenas de mortes de pessoas e de milhões de animais, que os 

governos internacionais começaram a se preocupar com a dimensão real da situação, e, 

através de eventos mundiais, passaram a ir em busca de mitigação e/ou solução do 
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problema (LIMA, 2004; PAE, 2011; SALIH, GANAWA e ELMAHL, 2017). Nas 

últimas décadas, se tem procurado medidas de combate à desertificação através de 

políticas nacionais e internacionais e esses esforços já têm envolvido mais de 190 países 

(YOU, 2017). 

 No Brasil, o pioneiro nos estudos da desertificação foi Vasconcelos Sobrinho, 

ainda na década de 70, o qual ajudou bastante na divulgação e compreensão deste 

fenômeno (SALES, 2002; BRASIL, 2004; COSTA et al., 2016). No cenário 

contemporâneo, a Conferência das Nações Unidas sobre Meio Ambiente e 

Desenvolvimento (RIO 92) tem como marca o documento denominado Agenda 21, que 

prioriza formular medidas que previnam a degradação nos ecossistemas secos, como, 

por exemplo, as regiões semiáridas. Com o intuito de se aprofundar ainda mais nessa 

temática, viu-se a importância de uma conferência específica para esse contexto. Em 

1994, a Convenção das Nações Unidas de Combate à Desertificação produziu um 

documento que salienta a participação conjunta do governo com a população em ações 

para combater a desertificação.  

Em 1997, o Brasil assumiu a responsabilidade perante todas as nações de 

combater a desertificação nas regiões áridas, semiáridas e subsumidas secas. O ano de 

2006 foi declarado pelas Nações Unidas como o ano Internacional dos Desertos e da 

Desertificação (BRASIL, 2006). Por fim, em 2015 a Lei 13.153/2015 instituiu a política 

nacional de combate à desertificação e mitigação dos efeitos da seca e seus 

instrumentos, que prevê a criação da Comissão Nacional de Combate à Desertificação 

(CNCD), a qual define os fatores, vetores, processos, bem como o combate da 

desertificação (BRASIL, 2015). 

Mais do que a perda dos componentes do solo, a desertificação reflete no 

desenvolvimento, na economia e socialmente na vida da população e da região afetada 

(NOYOLA-MEDRANO, 2017).  

O gerenciamento inadequado dos recursos naturais do SAB, como o 

desenvolvimento desordenado e não planejado, uso descomedido e a ocupação do solo, 

aumentam ainda mais o desequilíbrio ambiental. Isso gera prejuízos para a sociedade, 

em especial para aqueles de baixa renda, cujo sustento depende dos recursos naturais 

(GRECO et al., 2005; FEITOSA, 2010), tendo em vista que grande parte da população 

retira seu sustento de atividades agropecuárias (MARENGO, 2010). Devido às 

características ambientais do SAB, o homem se torna condicionado a interferir na 
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natureza, para garantir o seu meio de sustento, valendo-se de infraestruturas hídricas que 

permitam o armazenamento de água para seu consumo e atividades (GARJULLI, 2003).   

As cidades, mesmo quando de baixa densidade populacional, em geral, são 

formadas próximas aos corpos d’água e, desproporcionalmente, tendem a explorar as 

áreas ribeirinhas (SALA et al., 2000). A conclusão é que, quanto mais se intensificam as 

atividades antropogênicas, mais difícil se torna o combate à desertificação (ABALAWI 

e KUNAR, 2013).   

Como já mencionado, o SAB é composto pelo bioma Caatinga, que é 

considerado uma floresta seca, o tipo de floresta tropical mais ameaçada do mundo 

(MILES et al., 2006; MORO et al., 2015). Fuley (2007) comenta que o homem é 

protagonista dessas ameaças. Das florestas tropicais, as florestas secas são as que menos 

tem recebido atenção quando se fala de pesquisas científicas (SÁNCHEZ-AZOFEIFA 

et al., 2005; SANTOS et al., 2011). As FTSS têm sofrido grandes mudanças no uso das 

terras, em consequência do adensamento populacional e de práticas agrícolas. Isso fez 

com que mais de 60% da Caatinga fosse modificada por práticas humanas (LESSA et 

al., 2019).  

Por isso, é preocupante a situação tanto da sociedade que habita nessas regiões 

quanto dos recursos naturais dela, pois o clima já é um fator limitante do 

desenvolvimento sócio ambiental. Somando a essa condição a gestão inadequada e uso 

descomedido desses recursos, o equilíbrio ambiental é abalado.   

 

2.3 FUNDAMENTOS DO SENSORIAMENTO REMOTO 

 

A tecnologia do Sensoriamento Remoto (SR) consiste na capacidade de obter 

informações de uma determinada área ou objeto sem a necessidade de contato direto 

(ROSA, 2003; FITZ, 2008; FLORENZANO, 2011). Os dados de SR são coletados 

através de sensores instalados em plataformas terrestres, aéreas e orbitais, como no caso 

dos satélites (FLORENZANO, 2011). 

A possibilidade de capturar dados que possam gerar informações consistentes, 

mesmo de áreas de difícil acesso em qualquer local da superfície da Terra, tem 

impulsionado e dinamizado o acompanhamento das mudanças globais. A captação de 

dados ambientais através do trabalho em campo é importante, porém é limitada 

espacialmente e onerosa (CHEN et al., 2018). 
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Com cobertura multitemporal, ou seja, imagens de diversas datas, a detecção 

remota permite mapear, verificar e/ou monitorar as mudanças da superfície terrestre 

(COLLADO, CHUVIECO e CAMARAS, 2002; SHALABY e TATEISHI, 2007). 

Outras vantagens da tecnologia do SR envolvem o custo, pois existem imagens de 

satélites disponibilizadas gratuitamente. 

O SR tem desempenhado um papel importante em diversas pesquisas 

ambientais, como: classificação de culturas, mudança ou monitoramento do solo, saúde 

e diversidade da vegetação e níveis de água (CARVALHO JÚNIOR et al. 2011; 

ALBALAWI e KUMAR, 2013; JIMÉNEZ-LÓPEZ et al., 2015; YOU, 2017; WEST, 

QUINN e HORSWELL, 2019). 

Para obtenção dos dados, o SR utiliza uma energia denominada Radiação 

Eletromagnética (REM), que envolve um conceito de dualidade de onda e energia, ou 

seja, ela é ao mesmo tempo onda e energia e se propaga pelo espaço vazio. Figueiredo 

(2003) chama a REM de termômetro mensageiro, pois, além de as ondas 

eletromagnéticas captarem as informações encontradas na superfície da terra 

(características e feições), também as leva para os sensores.  

A REM é distribuída por regiões de acordo com o comprimento de onda e 

frequência. Essa distribuição é chamada de espectro eletromagnético, abrangendo desde 

ondas mais curtas até ondas longas (FLORENZANO, 2011). Os intervalos do espectro 

eletromagnético mais utilizados em SR são as faixas do visível, que são as cores que 

enxergamos a olho nu (essas cores formam a composição RGB): vermelho (R), verde 

(G) e azul (B); e as faixas correspondentes ao infravermelho médio, próximo e termal, 

não captadas a olho humano. Essas faixas são divididas em pequenos intervalos 

denominados bandas ou canais espectrais (MENESES E ALMEIDA, 2012). Esses 

intervalos variam de forma descontínua entre 450 nm e 100 cm, onde os valores 

menores em nanômetros são de fontes naturais de radiação de energia eletromagnética: 

o Sol e a Terra. Os valores em centímetros são provenientes de fontes artificiais de 

energia eletromagnética acopladas nos sensores conhecidos como radar (MENESES, 

ALMEIDA e BAPTISTA, 2019).  

Existem regiões do espectro eletromagnético que representam melhor um alvo 

na superfície terrestre do que outros, pois cada alvo tem um comportamento espectral 

distinto variando o comprimento de onda de acordo com suas características (ZANOTA, 

ZORTEA e FERREIRA, 2019). Neste contexto, como processo de interação temos a 

reflectância, que mede a capacidade de um objeto de refletir a REM; a absortância, que 
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é a aptidão do objeto de absorvê-la; e a transmitância, que consiste no potencial do alvo 

de fazer a transmissão da REM (STEFFEN, 2011). 

A resposta da interação dos alvos pode ser trabalhada para uma melhor 

resposta espectral ao se aplicar uma combinação de bandas, ou seja, álgebra de bandas, 

extraindo informações e características implícitas do alvo ou ressaltando-as (ZANOTA, 

ZORTEA e FERREIRA, 2019). Isso pode envolver analisar ou monitorar uma região 

por SR através de imagens multitemporais. Uma das técnicas que envolve esse tipo de 

análise é a Análise do Vetor de Mudança (AVM), que permite avaliar a mudança das 

características da superfície ao longo do tempo através de várias imagens analisadas 

simultaneamente, extraindo a magnitude e a direção da mudança pela análise pixel a 

pixel (MALILA, 1980; JOHNSON e KASISCHKE, 1998; CARVALHO JÚNIOR et 

al., 2011; ZANCHETTA e BITELLI, 2017). Salih, Ganawa e Elmahl (2017) 

classificaram a AVM como uma das análises mais importantes do SR.  

O SR tem mostrado ser eficaz nos estudos da desertificação. As imagens 

multitemporais e o uso de índices têm sido amplamente utilizados nesses estudos.  

Vorovenci (2017) aplicou a técnica da AVM para analisar o risco de desertificação no 

sudoeste da Romênia. Combinando índices de vegetação e de solo, em imagens de 1984 

e 2011, tal autor identificou a expansão das superfícies afetadas pelo aumento do risco 

da desertificação. 

 

2.4 INDICADORES E ÍNDICES ESPECTRAIS  

 

Os índices e indicadores permitem agregar dados ou organizar informações 

complexas de forma simples ou resumida, por isso é fundamental que se entenda o 

papel de cada um deles (SOBRAL et al., 2011). A ideia de se aplicar indicadores em 

diversos estudos se dá pelo princípio deles se demonstrarem simples, práticos e visuais 

(ZHAO et al., 2020). O indicador aponta ou indica o fenômeno (HAMMOND et al., 

1995). Quanto ao índice, auxilia em medir ou evidenciar este fenômeno (SHILDES, 

SOLAR e MARTIN, 2001) (Figura 3).  
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Figura 3: Etiologia das palavras “índice” e “indicador”. 
Fonte: FREITAS, 2007 apud SOBRAL, 2011. 

 

Embora grande parte dos indicadores seja do tipo quantitativo, eles também 

podem ser do tipo qualitativo, hierárquico ou ordinal (CANTU et al., 2007). O índice 

pode ser resultado da junção de outros indicadores com intuito de auxiliar na tomada de 

decisão (SICHE et al., 2007). Um exemplo clássico no Brasil é o Índice de 

Desenvolvimento Humano (IDH), que é composto pelos indicadores de longevidade, 

alfabetização e renda.   

A aplicação de índices em variadas áreas de atuação vem crescendo cada vez 

mais, pois facilitam a comunicação dos usuários (SOBRAL et al. 2011). Neste contexto, 

muitos estudos relacionados à desertificação têm aplicado um conjunto de índices ou 

indicadores para identificar e mensurar fenômenos como o da desertificação. Salvati et 

al. (2009) desenvolveram um índice de vulnerabilidade à desertificação na Itália 

denominado Land Vulnerability Index (LVI), formado por indicadores referentes ao 

clima, vegetação, solo e atividades antrópicas no período de 1990 a 2000. Em sua 

pesquisa, notou-se que, durante este período, as áreas com maior expressividade de seca 

estavam localizadas ao sul da Itália, provável consequência da má gestão das atividades 

agrícolas, e atestaram o LVI para apoio à tomada de decisão em ambientes rurais. 

O precursor dos estudos de desertificação no Brasil, Vasconcelos Sobrinho, foi 

um dos que fez uso de indicadores. De início, aplicou em seus estudos 36 indicadores, 

divididos em 6 categorias, para tentar caracterizar o processo de degradação: física; 

biológica agrícola; biológica humana; social; uso da terra; e assentamento da população 

(MATALLO JUNIOR, 2001). 

Kosmas et al. (2014), com o intuito de definir os riscos de degradação do solo, 

avaliaram inicialmente 70 indicadores candidatos que pudessem melhor caracterizar a 

desertificação. Posteriormente, foi identificado um subconjunto que classificaram como 

eficazes, variando entre 8 e 17 indicadores que abordavam parâmetros biofísicos, 

socioeconômicos e de manejo da terra, aplicados em 1.672 campos de estudo 

distribuídos nas regiões do Mediterrâneo, Europa Oriental, América Latina, África e 
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Ásia. Por evidenciarem que as equações pudessem ser baseadas de acordo com as 

condições biofísicas, socioeconômicas e políticas de cada região, concluíram que o 

método é replicável para todo o mundo.  

A identificação da localização e o monitoramento de áreas secas são 

desafiadoras, especialmente em escala global. O processo de degradação do solo é 

bastante complexo, por isso não se pode identificá-lo de forma eficiente quando se usa 

apenas um indicador. Diante disso, muitos pesquisadores usam um conjunto de 

indicadores para detectar ou monitorar a desertificação e, normalmente, levam em conta 

três categorias: i) as práticas exaustivas antrópicas; ii) alterações nas propriedades 

ambientais comprometendo sua qualidade; e iii) o reflexo da sociedade em resposta às 

mudanças ambientais (KAIRIS et al., 2014). 

Nesse contexto, a tecnologia do SR tem sido um suporte para a coleta de dados 

candidatos à composição de índices que possam mensurar a gravidade do fenômeno da 

desertificação, pois auxilia no monitoramento, capacitando a avaliação e mitigação 

dessa problemática (MU et al., 2013). Entre a diversidade dos índices adquiridos através 

da tecnologia do SR para detecção de áreas sensíveis à desertificação, destacam-se os 

Índices de Vegetação (IV) e Índice de Solo (IS).   

 

2.4.1 Índice de Vegetação (IV) 

Dentre as diversas aplicações que o SR pode ter, desde a década de 1960, o 

estudo da vegetação tem sido um dos mais explorados. Muitas contribuições científicas 

têm sido desenvolvidas aplicando os IV, criando, ou mesmo aperfeiçoando, os já 

existentes, sendo essas pesquisas muitas vezes relacionadas com a quantidade da 

biomassa verde, parâmetros de crescimentos e desenvolvimento da vegetação 

(JUNGES, ALVES e FONTANA, 2007; JENSEN, 2009).  

Quando não se encontra vegetação sobre o solo, este é denominado de solo nu. 

Portanto, a vegetação é como um medidor da conservação e proteção do ambiente, 

através de sua densidade e distribuição pode-se definir o estado de conservação dele 

(MELO, SALES e OLIVEIRA, 2011). Os IV estão suscetíveis a sofrer variações 

externas. Essas variações são resultado da iluminação, visada, arquitetura e do substrato 

abaixo do dossel, o que justifica refinar cada vez mais a aplicação dos IV (TANAJURA, 

ANTUNES e UBERTI, 2005). Portanto, em síntese, pode-se dizer que ao se estudar a 

interação da REM com a vegetação, suas influências internas e externas, tem-se o 
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estudo do comportamento espectral da vegetação (MENESES, ALMEIDA e 

BAPTISTA, 2019). 

Em geral, os IV são utilizados para explorar as propriedades espectrais da 

vegetação. Na maioria dos casos, são fundamentados na reflectância das bandas do 

visível (400 nm a 760 nm), infravermelho próximo (760 nm a 1.300 nm) e 

infravermelho médio (1.300 nm a 2.500 nm) (PONZONI, SHIMABUKURO e 

KUMPLICH, 2012; MENESES, ALMEIDA e BAPTISTA, 2019). Quanto menor for a 

reflectância do vermelho visível, maior é a densidade da vegetação, devido a maior 

quantidade de pigmentos fotossintetizantes (PONZONI, SHIMABUKURO e 

KUMPLICH et al., 2012) (Figura 4). 

 

 
Figura 4: Interação da REM com uma folha saudável. 

Fonte: Meneses, Almeida e Baptista (2019).  
 

Os IV são utilizados para várias análises relacionadas à vegetação, seja sobre 

sua presença, ausência, quantificação ou saúde.  

 

Índice de Vegetação por Diferença Normalizada (NDVI) 

O NDVI é o índice de vegetação mais comumente usado em todo o mundo 

para o monitoramento vegetal em diferentes aspectos (TANAJURA, ANTUNES e 

UBERTI, 2005; ZANZARINI et al., 2013; GOPINATH et al., 2015; BIRTWISTLE et 

al., 2016). Muitos autores têm aplicado o NDVI em várias regiões do Brasil, inclusive 

para o bioma Caatinga (BARBOSA et al., 2006; TSUYUGUCHI et al., 2010; REGO et 



37 
 

al., 2012; AQUINO e OLIVEIRA, 2012; LEIVAS et al., 2013; ALBUQUERQUE et al., 

2014; FRANCISCO et al., 2015). 

O NDVI, segundo Ponzoni e Shimabukuro (2009), pode ser usado para 

construção de perfis sazonais e temporais de acordo com o período do ano, estações ou 

outra periodicidade específica em relação ao comportamento da vegetação, 

possibilitando a análise temporal. Este índice varia entre -1 e 1, onde, quanto mais 

próximo de 0, maior a indicação de vegetação em condições de déficit hídrico, áreas 

normalmente mais secas. Quando os valores são mais próximos de 1, é indicativo de 

ausência de restrições hídricas e vegetação densa. Já valores negativos representam a 

presença de água (DRAGAN et al., 2005).  

O NDVI está relacionado à saúde da vegetação, sua presença e densidade. Por 

isso, tem uma grande aplicação em avaliar o monitoramento de alterações da vegetação 

por longos períodos, ou seja, o acompanhamento da dinâmica da cobertura da terra. 

Tem sido um dos mais usuais quando se trata de mapeamento da variação temporal da 

vegetação (CAO et al., 2016; LAMCHIN et al., 2016), pois através deste índice, se 

torna possível avaliar a distribuição da área verde em certo período (ZANZIRINI et al., 

2012). Ademais, se tem utilizado perfis temporais de NDVI para identificação 

automática de culturas agrícolas, irrigação e estimativa de área plantada e época de 

colheita, ou seja, acompanhamento do ciclo agrícola (MAGNEY et al., 2016; DUAN et 

al., 2017; CRUSIOL et al., 2017; CARUSO et al., 2019) 

Gopinath et al. (2015) aplicaram o NDVI no desenvolvimento de um sistema 

de monitoramento de seca para o norte de Kerala na Índia, resultando em um mapa de 

anomalia, para auxiliar na identificação do risco de seca em cada cultura.  

Pelo fato de a aplicação do NDVI estar diretamente ligada à questão da 

degradação da terra, Vicente-Serrano et al. (2015) usaram o NDVI para analisar 

processos de degradação em todo o mundo com o objetivo de identificar todas as áreas 

semiáridas, em uma longa série histórica de 30 anos, para representar a dinâmica da 

vegetação, mostrando seu decréscimo, ou seja, um provável processo de degradação.  

No Brasil, as aplicações do NDVI também têm sido feitas em diversos estudos 

para identificar regiões em processo de desertificação, tais como: identificação da 

dinâmica da cobertura vegetal; avaliação das características ambientais; análises do 

comportamento da cobertura vegetal, comparando períodos secos e chuvosos 

(ROSEMBACK et al., 2005; MELO et al., 2011; ALBUQUERQUE et al., 2014; 

AQUINO et al., 2018). 
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Apesar da ampla aplicação do NDVI em representar biomassa verde, conteúdo 

de clorofila e estresse hídrico das folhas, existem várias limitações nesse índice. Uma 

delas é referente às condições do solo que interferem na avaliação, em especial quando 

se trata de áreas com cobertura vegetal muito espaçadas (MENESES, ALMEIDA e 

BAPTISTA, 2019). 

 

Índice de Vegetação Ajustado para o Solo (SAVI) 

No NDVI, existem influências externas e internas do solo que, por sua vez, 

limitam a utilidade no âmbito global (JENSEN, 2011).  

Desenvolvido por Huete et al. (1988) uma década depois do NDVI, o SAVI é 

um aperfeiçoamento do NDVI. Ele apresenta valores que também variam entre -1 e 1, 

mas se diferencia por inserir uma constante L com o objetivo de atenuar a influência do 

solo, diminuindo seu brilho no resultado final (PONZONI e SHIMABUKURO, 2009). 

No NDVI, o brilho do solo interfere na interação com a REM aumentando o 

valor dos índices de vegetação (PONZONI, SHIMABUKURO e KUMPLICH, 2012). O 

parâmetro L, que varia entre 0 e 1, diminui a interferência do solo em áreas com baixa 

densidade vegetativa. Quanto mais alta for a densidade, mais próxima de 0 será o valor 

L e quanto mais baixa, mais próxima de 1 (HUETE, 1988).  

A aplicação da constante L na razão do NDVI evoluiu para o SAVI atenuando 

a interferência do solo, podendo ser: seco, encharcado, com vegetação densa, vegetação 

escassa ou solo exposto (OLIVEIRA, 2007).  

Pesquisas têm sido desenvolvidas aplicando conjuntamente SAVI e NDVI. Em 

alguns resultados, tem-se encontrado forte relação entre ambos, com pequenas variações 

quando se trata de área com alta densidade vegetativa (OSGOUEI E KAYA, 2017). Em 

certos casos, os resultados do SAVI se destacam pela melhor descrição dos alvos 

encontrados através do maior número de classes da área vegetada (VIGANÓ et al., 

2011; REGO et al., 2012).  

 

Índice de Vegetação de Diferença Ponderada (WDVI) 

O WDVI foi criado em 1989 e, nesse índice, é feita uma correção na 

reflectância do infravermelho próximo para atenuar a umidade do solo, considerando a 
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declividade da linha do solo (CLERVERS, 1989). O WDVI também ajuda a corrigir a 

variação das condições de iluminação (BOUMAN, KASTEREN e UENK, 1992).  

Em sua pesquisa, Marcusssi et al. (2010) compararam diferentes IV e citaram o 

WDVI como sendo um indicador adequado para regiões áridas e semiáridas. Isso se dá 

devido as suas características de atenuar o brilho do solo, sendo uma vantagem em 

regiões com vegetação de distribuição espaçada, como, por exemplo, nas áreas sensíveis 

ao fenômeno da desertificação que apresentaram mistura (vegetação verde e solo no 

fundo) nos pixels da imagem.  

A potencialidade do WDVI de reduzir a influência do fundo do solo (D’URSO, 

2006) e de apresentar menos dispersão quando comparado com outros IV, como, por 

exemplo, o NDVI (CASANOVA, EPEMA e GOURDRIAAN, 1998), mostra que ele é 

aplicável em áreas pouco vegetadas, mesmo quando essas áreas apresentam 

características sazonais. Isso, porque o diferencial da correção do solo descoberto 

permite reconhecer o quantitativo de cobertura vegetal (CONSOLI, D’URSO e 

TOSCANO 2006).  

A Tabela 2 mostra, sucintamente, características do NDVI, SAVI, WDVI e 

outros IV, como também suas respectivas equações, segundo Eastman (2003); 

Shimabukuro e Ponzoni (2010); e Ponzoni, Shimabukuro e Kumplich (2012).  
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Tabela 2: Principais definições e características dos Índices de Vegetação. 

ÍNDICE DE VEGETAÇÃO 

Nome Definição Equação 

Índice de Vegetação 

da Razão Simples 

(Simple Ratio – SR) 

Elaborado através de uma razão 

simples entre as bandas espectrais do 

infravermelho próximo e vermelho 

visível 

SR = 𝑁𝐼𝑅/𝑅 
 

(1) 

Índice de Vegetação 

por Diferença 

Normalizada 

(Normalized 

Difference 

Vegetation Index – 

NDVI) 

Definido por uma equação que envolve 

as bandas espectrais do infravermelho 

próximo e a reflectância do vermelho 

visível. Este índice normaliza a razão 

simples e varia entre o intervalo de -1 

a 1 

  𝑁𝐷𝑉𝐼 = (𝑁𝐼𝑅 − 𝑅) (𝑁𝐼𝑅 + 𝑅⁄ ) 

(2) 

Índice de Vegetação 

Perpendicular 

(Perpendicular 

Vegetation Index – 

PVI) 

Formado a partir das bandas do 

vermelho visível e do infravermelho 

próximo; insere o parâmetro da linha 

do solo alfa.  

 

𝑃𝑉𝐼 =  𝛼𝑁𝐼𝑅 –  𝑅 

(3) 

Índice de Vegetação 

Ajustado para o 

Solo (Soil Adjusted 

Vegetation Index – 

SAVI) 

Considera o brilho do solo, através de 

uma constante L, para minimizar a 

interferência do solo, variando entre 0 

e 1. L= 1 para densidade de baixa 

vegetação; L= 0,5 para densidade 

média; e L = 0,25 para densidade alta.  

SAVI=
(NIR-R)

(L+NIR+R)*(1+L)
 

(4) 

Ratio Vegetation 

Index – RVI   
 

É o inverso da proporção Simple Ratio 

(SR). 
RVI =  𝑅 𝑁𝐼𝑅⁄  

(5) 

Índice de Vegetação 

Resistente à 

Atmosfera 

(Atmospherically 

Resistant 

Vegetation Index – 

ARVI) 

Proposto para diminuir a dependência 

do NDVI referente às condições 

atmosféricas. Utiliza a banda espectral 

do azul, juntamente com as bandas do 

vermelho e infravermelho próximo. 

𝐴𝑅𝑉𝐼 =
(𝑁𝐼𝑅 − 𝑅𝐵)

(𝑁𝐼𝑅 + 𝑅𝐵)
 

(6) 

Índice de Vegetação 

Realçada 

(Enchanced 

Vegetation Index) 

Propõe reduzir os efeitos do solo e da 

atmosfera, simultaneamente, através da 

incorporação da constante L=1 e da 

banda espectral do azul. 

EVI = G*
NIR-R

NIR+(C1*R-C2*B)+L
 

(7) 

Índice de Vegetação 

de Diferença 

Ponderada (The 

Weighted 

Difference 

Vegetation Index – 

WDVI) 

Baseia-se no efeito da ponderação da 

banda espectral do vermelho visível 

com a inclinação da linha do solo 

(sendo esse referente aos valores 

máximos da faixa do infravermelho 

próximo e do vermelho visível, 

representando os valores 

correspondentes a solo exposto). 

Apresenta valores de -1 a 1.   

𝑊𝐷𝑉𝐼 = 𝑁𝐼𝑅 − α𝑅 

∝=  
𝑁𝐼𝑅

𝑅
 

(8) 

Onde: NIR = Valor da reflectância no infravermelho próximo; R = Valor da reflectância no vermelho 

visível; B = Valor de reflectância na banda espectral azul; α = Inclinação da linha do solo; L = Parâmetro 

da linha do solo; RB = R-𝛾(B-R); 𝛾 = Parâmetro não especificado, que depende do tipo de aerossol; C1 e 

C2 = Coeficientes usados para correção do espalhamento de aerossóis.  
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2.4.2 Índice de Solo (IS) 

Comparado a grande disseminação dos estudos de IV, poucos estudos foram 

desenvolvidos aplicando técnicas do SR para pesquisas de solo (ALVES, DEMATE e 

BARROS, 2015).  

Os estudos dos solos, em termos de recursos naturais, são essenciais, pois o 

solo e suas propriedades estão diretamente ligados à produção agrícola, fertilidade e 

retenção de água (CONFALONIERE et al., 2014; CHAGAS et al., 2016), aspectos 

imprescindíveis nas regiões semiáridas e no estudo dos processos de desertificação.   

Segundo Li et al. (2014), os esforços de se obter informações a nível orbital, 

por meio de faixas específicas do espectro eletromagnético, em busca de solo exposto, 

têm adquirido mais importância. Isso é bastante relevante, visto que, cada vez mais, se 

fazem necessárias pesquisas que envolvam informações com alta densidade pedológica 

e que sejam adquiridas de forma menos dispendiosa e em um período mais curto de 

tempo, diferente dos métodos convencionais laboratoriais (VAN DEVENTER et al., 

1997; EL BAROUDY e MOGHANM 2014; MENESES, ALMEIDA e BAPTISTA, 

2019) 

Os dados adquiridos através de SR são capazes de fornecer informações úteis 

de estimativa da umidade do solo (ZHANG e ZHOU, 2015) e tamanho do grão (XIÃO 

et al., 2005), características que podem indicar a degradação da terra.   

Lievens e Niko (2012) ressaltam o suporte que o SR tem dado a estudos 

relacionados à dinâmica do solo, pois permite a análise de dados em escala temporal e 

espacial. Em sua pesquisa, concluíram que a o índice de umidade do solo adquirido por 

dados do SR potencializou o monitoramento das mudanças da cobertura da terra ao 

longo do tempo, apoiando a tomada de decisão. 

Entre os indicadores e informações encontrados na literatura em relação ao 

estudo do solo por meio de imagem de satélites, estão o Bare Soil Index (BSI) e o Grain 

Size Index (GSI), este segundo também conhecido pela sigla TGSI. 

O BSI, que também é chamado de BI, tem valores que variam entre 0 e 200. 

Quanto mais próximo à 200, menor será a vegetação, ou seja, mais nu será o solo. Este 

índice é baseado no solo nu e na vegetação (RIKIMARU, 2002), quanto maior for a 

exposição do solo, maior será o valor do pixel (USEYA, CHEN e MUREFU, 2019). O 

BSI foi desenvolvido com os dados do satélite Landsat TM tornando possível a 

detecção de erosão em escala nacional (LE ROUX et al., 2007).  
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Segundo Rikimaru et al. (2002), o índice BSI aumenta proporcionalmente de 

acordo com o grau de exposição ao Sol, pois, em áreas que contém maior quantidade de 

vegetação arbórea, o solo tem menor exposição ao Sol, logo a temperatura é mais baixa 

devido à presença de sombra. Porém, os IV, esses estudiosos não os consideraram tão 

confiáveis quando aplicados em área de vegetação escassa. 

Sendo uma peça importante no monitoramento de solo nu, o BSI também pode 

ser aplicado como indicador de crescimento urbano, diferenciando área construída e 

solo urbano (PAL e ANTIL, 2017), sendo um índice normalizado que possibilita 

diferenciar as áreas completamente nuas e as com vegetações esparsas (MUNA e 

WALKER, 2010). Os referidos autores utilizaram o BSI para identificar áreas de solos 

descobertos e pousios, destacando as áreas com maior potencialidade à erosão e 

auxiliando na tomada de decisão por indicar quando houvesse a necessidade de 

intervenção.  

Quanto ao GSI, esse varia entre os valores de -1 e 1, onde valores negativos 

indicam presença vegetativa e valores positivos indicam solo mais arenoso, tendo sido 

desenvolvido por Xiao et al. (2005) quando estavam em busca de um indicador de 

monitoramento da mudança da cobertura da terra. Depois de compararem as correlações 

entre vários índices, chegaram à conclusão de que no GSI encontraram a melhor 

correlação quando se trata do grão do solo. Tais autores aplicaram esse índice em uma 

área de processo de desertificação, considerando o tamanho do grão do solo como um 

fator de identificação de degradação, e afirmaram que esse índice só é eficaz em áreas 

com ausência de vegetação. Posteriormente, Xiao et al. (2006) testaram o GSI em 

comparação com outros índices aplicáveis através do SR em regiões semiáridas, e 

salientaram como diferencial o fato do GSI não sofrer interferências significativas após 

um episódio de chuva.  

Chagas et al. (2016) aplicaram o GSI associado à outros índices numa região 

do semiárido baiano e concluíram que os resultados são satisfatórios quando esse índice 

é aplicado em áreas com características semiáridas, identificando o teor de areia e 

argila.  

A Tabela 3 apresenta alguns índices de solo segundo Rikimaru et al. (2002); 

Rogers e Keaney (2004); Zhao e Chen (2005); Xião et al. (2006); Pal e Antil (2017). 
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Tabela 3: Principais definições e características dos Índices de Solo. 

ÍNDICE DE SOLO 

Nome Definição Equação 

Bare Soil Index 

(BSI) 

Formado através das bandas do 

infravermelho próximo, azul, 

vermelho visível e infravermelho 

médio, que, conforme definição, 

identificam o solo nu (ausência da 

cobertura vegetal). 

𝐵𝑆𝐼 =
(SWIR+R)-(NIR+B)

(SWIR+R)+(NIR+B)
*100+100                         

(9) 

Grain Size Index 

(GSI) 

Extraído por meio das bandas do 

visível nas faixas do vermelho 

visível, verde e azul e está 

relacionado à granulometria do solo, 

implicando diretamente na textura e 

outras propriedades físicas. 

GSI =  
(𝑅−𝐵)

(𝑅+𝐵+𝐺)
 

(10) 

Normalized 

Difference 

Bareness Index 

(NDBaI) 

Utilizado para identificar tipos de 

solo nu. 
𝑁𝐷𝐵𝑎𝐼 =

 𝑆𝑊𝐼𝑅 − 𝑇𝑒𝑟𝑚𝑎𝑙

SWIR + Termal
 

(11) 

Normalized 

Difference Soil 

Index (NDSI) 

Índice de solo com diferença 

normalizada 
𝑁𝐷𝑆𝐼 =  

𝑆𝑊𝐼𝑅 − 𝑁𝐼𝑅 

SWIR + NIR
 

(12) 

Onde: G = Valor da reflectância no verde visível; B = Valor da reflectância no azul visível; e SWIR = 

Infravermelho médio.  

 

2.5 ÍNDICES DE ARIDEZ (IA) 

O IA é um indicador numérico que mede o grau de secura do clima em uma 

determinada área e, por isso, tem sido um indicador bastante relevante quando se trata 

de mensurar o grau de desertificação (COSTA e SOARES, 2012). Segundo Becerril-

Piña et al. (2015), este índice é do tipo climático e está associado a condições áridas, 

sendo expresso pela função da precipitação e temperatura. O Programa das Nações 

Unidas para o Meio Ambiente (PNUMA) associa o IA à disponibilidade hídrica. 

MORAL et al. (2015) o catalogam como um aspecto que afeta o meio ambiente e a 

economia. 

Existem vários IA e índices de seca capazes de auxiliar no gerenciamento dos 

recursos hídricos. Silva e Azevedo (2020) compararam dois conjuntos de índices de 

seca e de aridez para verificar a susceptibilidade de desertificação na bacia do Rio 

Brígida. Eles concluíram que os IA foram os mais apropriados para identificar a 

desertificação.   

O fato de o clima influenciar as mudanças meteorológicas reflete na 

evapotranspiração e o regime hídrico da região (HUO et al., 2013). Essa não é uma 

questão local; muitos países têm se preocupado cada vez mais com a redução da 

precipitação sazonal e consequente alteração do clima (KOFFI e KOMLA, 2015). É 
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importante ressaltar que o clima semiárido ou árido é uma condição do ambiente, 

diferente do conceito relacionado à seca, que pode ser definido como um longo período 

de estiagem (MORAL et al., 2015). 

 O IA é considerado um indicador representativo do clima regional, logo, 

alterações nesse indicador são refletidas diretamente no ciclo hidrológico, implicando, 

então, na necessidade de se buscar novos métodos na gestão dos recursos e ecossistemas 

da região, devido ao maior grau de vulnerabilidade deles (MARENGO e 

BERNASCONI, 2015). Os efeitos decorrentes de um clima cada vez mais árido 

também são notados através do aumento de focos de incêndios, ligados à pouca chuva e 

temperaturas elevadas. Além disso, o solo se torna mais propício à erosão, há 

diminuição do escoamento da água, entre outros fatores de impacto ambiental (COSTA 

e SOARES, 2012; MARENGO e BERNASCONI, 2015).  

Existe uma estreita relação entre o IA, a vegetação e as práticas agrícolas 

(DEFFUNE et al., 1994; KOFFI E KOMLA, 2015; MORAL et al., 2015). A produção 

agrícola depende efetivamente do equilíbrio da umidade do solo, que advém da 

precipitação. A precipitação, consequentemente, está sujeita à temperatura que, por sua 

vez, influencia a evaporação (FREITAS et al., 2011). Isso explica a necessidade de 

incorporar o IA quando se procura identificar, qualificar e quantificar a vulnerabilidade 

da desertificação em qualquer localidade.  

De acordo com os critérios estabelecidos por Thornthwaite (1941) e ajustado 

por Pennan (1953), a UNESCO (1979) propôs um índice indicativo da intensidade de 

aridez de uma região. Esse índice consiste na razão entre a precipitação pluviométrica; o 

volume de chuva acumulado durante o período de um ano; e a evapotranspiração 

potencial, que é a máxima capacidade de água perdida como vapor, em uma dada 

condição climática, por um meio contínuo de vegetação, que cobre toda a superfície do 

solo, estando este na capacidade de campo ou acima dela. Desta maneira, inclui a 

evaporação do solo e transpiração de uma vegetação de uma região específica em um 

dado intervalo de tempo.  

Para obtenção do IA proposto pela UNESCO (1979), é necessário um conjunto 

de equações. As equações 13, 14, 15 e 16 representam os cálculos para obtenção do IA 

mensal, onde: PR é a Precipitação mensal; ETP, a Evapotranspiração Potencial mensal; 

T, a temperatura média mensal (°C); I é o índice de calor mensal; e i representa o mês 

do ano.  
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𝐼𝐴 = 𝑃𝑅
𝐸𝑇𝑃⁄  (13) 

  

𝐸𝑇𝑃 = 16,2. (10.
𝑇𝑖

𝐼
) . 𝑎 

(14) 

  

a = 6,750.10-7I3-7,71.10-5I²+1,792.10-2I+0,49239 (15) 

  

𝐼 = ∑(0,2. 𝑇𝑖)1,514

12

𝑖=1

 (16) 

 

Conforme observado na Tabela 4, quando os valores do IA são menores, maior 

a probabilidade de desertificação, segundo Penman (1953). 

  
Tabela 4: Classificação climática de acordo com o índice de aridez. 

Fonte: PAE, PB. 

Clima Índice de aridez 

Hiper-árido < 0,03 

Árido 0,03-0,20 

Semiárido 0,21-0,50 

Subúmido seco 0,51-0,65 

Subúmido úmido > 0,65 

 

Segundo Matallo Júnior (2003), de acordo com o IA proposto pela UNESCO 

(1979), a região do Brasil que se encaixa nessa classificação é denominada por alguns 

autores como polígono da seca, ou seja, as regiões semiáridas e subúmidas secas 

localizadas no Nordeste brasileiro. Eles abordam em 3 categorias uma classificação que 

caracteriza o grau de susceptibilidade à desertificação conforme o IA na Tabela 5.   

 
Tabela 5: Subclassificação conforme a susceptibilidade à desertificação para o Brasil. 

Fonte: Matallo Júnior (2003).   

Susceptibilidade à 

desertificação 
Índice de aridez 

Muito Alta 0,05 – 0,20 

Alta  0,21 – 0,50 

Moderada 0,51 – 0,65 

 

A característica climática com estiagens prolongadas associada às atividades 

antrópicas torna a região semiárida mais propícia à desertificação. Neste cenário, o 

bioma Caatinga, predominante na região SAB, está entre os mais vulneráveis em 

relação ao aumento da temperatura global. Essa situação altera ainda mais o ciclo 
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hidrológico, que já tem regimes hídricos extremos, fragilizando ainda mais a região 

(NOBRE, 2011), pois a pouca disponibilidade de água afeta todo o meio ambiente.  

 

2.6 ÍNDICE ANTRÓPICO  

 

Uma das principais fontes de risco à desertificação se dá pela falta de 

infraestrutura e convivência com o semiárido. As secas prolongadas associadas a outros 

fatores climáticos afetaram a sociedade, impactando na qualidade de vida, em especial 

daqueles que dependem dos recursos naturais, retirando o sustento deles através de 

técnicas exploratórias (FEITOSA et al., 2010).  

A crise da disponibilidade hídrica afeta a população em vários aspectos 

essenciais. Entre esses aspectos, estão: a produção de alimentos, que reflete diretamente 

na desnutrição; a higiene que, consequentemente, prejudica a saúde através de doenças 

infecciosas; e o desencadeamento do êxodo, que produz a aglomeração urbana, além de 

poder propagar doenças endêmicas (CONFALONIERE et al., 2014). Quem mais se 

prejudica, em geral, são as populações mais carentes que, com a escassez dos recursos 

hídricos, são obrigadas a percorrer longas distâncias em busca de uma nova fonte desses 

recursos, e esse sofrimento se estende por meses e, em alguns casos, por anos de 

estiagem característica da região (SOUSA, FERNANDES e BARBOSA, 2008). 

As atividades humanas em geral e a má gestão municipal geram alguns 

prejuízos, como: maiores desgastes ao solo; desmatamento; manejo inadequado da 

agricultura e pastagem; uso exploratório de madeira para fins energéticos; conservação 

precária de infraestrutura rodoviária, gerando ravinamento devido ao escoamento 

laminar; falta de mão de obra qualificada no âmbito rural, industrial e comercial; 

assoreamento dos cursos d’água e reservatórios, além da remoção da cobertura vegetal 

dos mananciais e áreas de recarga; e a falta de comprometimento dos gestores 

municipais através de políticas públicas mitigadoras (BEZERRA et al,. 2011 e ARMAS 

et al., 2016). Conforme Armas et al. (2016), o grau da seca está diretamente relacionado 

ao desenvolvimento econômico e social, sendo um precedente para o equilíbrio 

ambiental.  

O uso descomedido de práticas extrativistas, mesmo em regime de 

subsistência, tem contribuído para a extinção de diversas espécies da fauna e da flora 

que são imprescindíveis para o desenvolvimento da região, trazendo maiores riscos 

econômicos e sociais (DUARTE e BARBOSA, 2010). Grande parte da população extrai 
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fauna e flora para subsistência, mas infelizmente fazem isso de forma inconsciente e 

exaustiva, esgotando os recursos naturais. Além disso, as condições climáticas 

desfavoráveis tornam ainda maior a susceptibilidade à desertificação nessas áreas.  

SINGH (1998) classifica as perturbações humanas como uma forma de 

distúrbio crônico. Essas perturbações causam a remoção de pequenas frações da 

biomassa da floresta de forma lenta e em curtos intervalos de tempo, não permitindo a 

regeneração adequada dessa biomassa devido à frequência do impacto sutil e destrutivo.  

O regime pluviométrico do SAB tem sido bastante severo, chegando ao ponto 

de, em áreas com baixo adensamento populacional e de pouca exigência, ainda ser 

bastante desfavorável para atividades agrícolas, pois tem poucos recursos hídricos, 

ineficazes para abastecimento (CAMPOS, 2014). 

Em grande parte da região do SAB o crescimento populacional, as 

monoculturas e o intenso desmatamento da Caatinga através de técnicas exploratórias 

inconsequentes ampliaram a fragilidade dos recursos naturais já sofridos com longos 

períodos de estiagem, deixando marcas expressivas na paisagem, em especial no solo e 

na vegetação (ISRAEL, QUEIROZ e CARDOSO, 2005).  Essas práticas exploratórias 

imprudentes geram um ciclo de vulnerabilidade ambiental e social, pois influencia na 

deterioração do meio ambiente, refletindo na vegetação, no solo e, consequentemente, 

nas atividades agrícolas que, em geral, são a única fonte de renda da população afetada 

(SOUSA, FERNANDES e BARBOSA, 2008). Em síntese, o homem pode ser 

considerado o protagonista no fenômeno da desertificação, mas também, vítima das 

condições impostas pelo clima e suas necessidades.   

Conforme Kairis et al. (2014), muitos autores declararam a necessidade dos 

indicadores de desertificação levarem em conta as ligações entre as atividades 

antrópicas que pressionam o meio ambiente, as alterações nos componentes ambientais 

e as respostas sociais da população envolvida. Isso, porque as diversas práticas de 

manejo da terra interferem no grau de degradação, logo, pode-se assumir que o homem 

faz parte da problemática desse fenômeno através de suas interações. 

Vieira et al. (2015) incluíram o índice de impacto humano no conjunto de 

indicadores para identificação das áreas susceptíveis à desertificação e comprovaram 

que áreas críticas que anteriormente não foram identificadas com sensibilidade à esse 

fenômeno se tornaram evidentes.  

Pei et al. (2015) objetivaram estudar a vulnerabilidade característica das 

regiões áridas e hiper áridas utilizando 16 índices. Dentre esses, foi-se usado o índice de 
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densidade humana devido às atividades de pastoreio e uso inadequado de recursos 

hídricos e concluíram a necessidade do consciente uso dos recursos naturais.  

O impacto humano é um indicador determinante em relação à definição de 

desertificação adotada pela ONU, pois o clima semiárido pode ser potencialmente 

desertificado se esse tiver atividades antropogênicas.  

 

2.7 ABORDAGENS CIENTÍFICAS DE DETECÇÃO DA SUSCEPTIBILIDADE À DESERTIFICAÇÃO 

 

Tentar compreender o processo da desertificação tem sido bastante desafiador. 

Os esforços são refletidos em inúmeras abordagens científicas encontradas na literatura 

em nível internacional e nacional. Vários autores têm realizado estudos com conjuntos 

de indicadores associados à tecnologia do SR para identificar ou monitorar as áreas 

susceptíveis a desertificação.  

Com o objetivo de identificar áreas de risco de desertificação na região do 

México, que apresenta em seu território 30% de terras secas com uma população de 250 

milhões, Bencerril-Piña et al. (2015) aplicaram no Centro-Norte do país, uma região 

com alta densidade populacional e fortes contribuições nos setores industrial e 

econômico, uma metodologia que envolveu uso de indicadores e produtos de SR. 

Assim como Kairis et al. (2014), que citaram três categorias de índices para o 

auxílio de identificação de desertificação, Becerril-Piña et al. (2015) se apoiaram em 

três pilares: ambiental (vegetação e solo), antrópico e climático. Tais autores usaram 

imagens dos satélites Landsat TM, dos anos de 1995, 2000, 2005 e 2010, nos períodos 

secos da região, evitando assim influências de cobertura de nuvens, e fizeram análises 

espaço-temporais para obter o Índice do Risco de Tendência à Desertificação (IRTD). 

O IRTD é composto por índices de vegetação (NDVI, SAVI e WDVI), índices 

de solo (BSI e GSI), índice de clima (AI) e índice antrópico (IIH). Na metodologia, foi 

tomado por base o estimador não paramétrico de Theil-Sen, que fornece uma análise de 

tendência, usualmente aplicado em séries hidrológicas e em outros estudos com séries 

temporais (SHAN et al., 2015; MASIOL et al., 2017; GUERREIRO, RUZ e PAJARES, 

2017; AYDOGAN e AYAT, 2018). Após a obtenção do IRTD, foi elaborado um mapa 

dividido em quatro categorias de classificação de risco à desertificação por intervalo de 

quebras naturais, distribuído em risco baixo, médio, alto e extremo. 
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Os autores supracitados também determinaram as taxas de mudança da 

cobertura da terra, através da AVM, resultado da combinação do SAVI e BSI para o ano 

inicial de 1993, terminando em 2011.  

Através dos resultados da análise, tais pesquisadores concluíram que o 

conjunto de indicadores proposto é vantajoso, pois apresenta baixo custo, aplicação 

simples e mostrou-se ser eficaz no monitoramento de áreas em processo de 

desertificação. Porém, recomendaram que, em próximos estudos, fosse adicionada a 

etapa de validação, pois, devido à complexidade do fenômeno da desertificação, a 

dinâmica espectral pode não ser suficiente para caracterização da área. A Figura 5 

mostra o fluxograma seguido e a escala temporal adotada para cada conjunto de 

indicadores no estudo de Becerril-Piña et al. (2015).  

 

 
Figura 5: Esquema metodológico de Becerril-Piña et al. (2015). 

Fonte: Becerril-Piña et al. (2015). 

 

 Vieira et al. (2015) desenvolveram uma pesquisa no Nordeste brasileiro, 

selecionando um conjunto de 11 indicadores para identificar as áreas susceptíveis à 

desertificação, baseado em estudos anteriores: pedologia; geologia; geomorfologia; 

dados topográficos; uso e cobertura do solo; IA; densidade de gado; densidade de 

habitantes rurais; densidade de áreas mais quentes; Índice de Desenvolvimento Humano 

(IDH); e conservação de unidades. 
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Os indicadores foram coletados para o ano de 2000 e 2010 e distribuídos em 

grupos, onde cada um recebeu um fator de peso (1 = baixa susceptibilidade; e 2 = alta 

susceptibilidade). A metodologia adotada por tais autores foi a Mediterranean 

Desertification and Land Use (MEDALUS), que é bastante usual devido a sua 

simplicidade e flexibilidade. Ela mapeia a sensibilidade ambiental da área e permite 

uma avaliação de causa e efeito. Essa metodologia ficou dividida em quatro categorias: 

i) meio físico (pedologia, geologia, geoformologia e declividade), contendo dados 

derivados de mapas pré-existentes em órgãos e entidades governamentais; ii) meio 

climático (IA); iii) gestão da terra (uso e cobertura do solo, densidade animal, densidade 

de áreas mais quentes, unidades de conservação), derivado de imagens de satélites e 

outros mapas pré-existentes de uso e cobertura do solo, sendo proveniente também de 

dados do Ministério do Meio Ambiente; e iv) IDH. 

No estudo de Vieira et al. (2015), os dados foram validados por meio de um 

método que segue uma função de probabilidade binomial, que faz a relação entre os 

erros de imagens de satélites e as amostras de um mapa, e quantifica quantas amostras 

são necessárias para validação em relação à área de estudo. No estudo específico, foi 

selecionado um total de 110 amostras aleatoriamente através do Google Earth e de 

imagens de campo, classificadas em baixa, média e alta susceptibilidade à desertificação 

e comparadas com as imagens correspondentes.   

No referido estudo, após a validação dos índices, os mapas das áreas 

susceptíveis à desertificação foram elaborados, um para o ano de 2000 e outro para o 

ano de 2010. Depois, foi analisada a diferença entre esses mapas. Na Figura 6, 

apresentam-se os mapas referentes aos anos de 2000 e 2010 e o resultado da operação 

de diferença entre ambos. Em suas considerações finais, os autores afirmaram que a 

metodologia proposta mostrou ser útil e rentável, e sugeriram a integração de outros 

indicadores que pudessem contribuir para a análise.  
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Figura 6: Mapas de áreas susceptíveis à desertificação dos anos de 2000 e 2010, e mapa da diferença entre 

esses anos.  

Fonte: Vieira et al. (2015).  

 

Lanchin et al. (2016) realizaram uma avaliação da cobertura do solo e da 

desertificação em uma região de preservação na Mongólia. Através de imagens Landsat 

multitemporais dos anos 1990, 1995, 1999, 2002, 2006, 2010 e 2011, tais pesquisadores 

extraíram os índices NDVI, TGSI e albedo da superfície terrestre para avaliar a 

desertificação, que foi classificada em 5 categorias: zero, baixa, média, alta e severa.  

A metodologia adotada no referido estudo chama-se árvore de decisão, onde se 

tem uma estrutura recursiva para cada indicador, seguindo um critério de classificação 

de desertificação. Na Figura 7, vê-se a árvore de decisão utilizada, a qual pode sofrer 

alterações conforme os resultados dos indicadores variem. Além disso, foi calculado o 

coeficiente de correlação de Pearson entre os índices.  

 Após esse procedimento, com os resultados, foram elaborados mapas com 

cada indicador para obter a classificação final de cada período de observação. Os pixels 

foram avaliados em relação às matrizes de mudança da cobertura da terra do ano de 

1990 a 2011, similar ao que foi realizado por Vieira et al. (2015), comparando os 

resultados do ano inicial e final da pesquisa. 
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Os resultados encontrados por Lanchin et al. (2016) referentes à avaliação dos 

indicadores NDVI, TGSI e albedo identificaram que no período do estudo a variação da 

área desertificada foi de um total de 87%. Não foi citado pelos autores nenhum 

procedimento referente à validação dos resultados encontrados nessa pesquisa.   

 

 
Figura 7: Diagrama da árvore de decisão aplicada por Lanchin et al. (2016). 

Fonte Lanchin et al. (2016). 

 

Bandyopdhyay e Saha (2016) desenvolveram uma pesquisa comparando a 

interrelação entre índices de vegetação e índices meteorológicos, com o intuito de 

compreender o impacto da chuva na vegetação em uma região semiárida no Noroeste da 

Índia, em um estado chamado Gujarat. Os pesquisadores direcionaram a pesquisa para 

investigar períodos de seca. Como escala temporal, adotaram o período de 1982 a 2001, 

levando em consideração a sazonalidade. 

O estado de Gujarat chegou a apresentar, em uma escala temporal de 15 anos 

(1986-2011), 12 períodos críticos de longa estiagem com grande número de mortalidade 

no ano de 1987. A metodologia do estudo aplicada por Bandyopdhyay e Saha (2016) 

envolveu 4 indicadores, sendo dois climáticos e dois de vegetação. Os climáticos são: 

Índice de Precipitação Padronizado (SPI); e o Índice de Anomalia de Precipitação 

(RFA). E os indicadores de vegetação são: Índice de Condição Vegetativa (VCI); e o 

NDVI Anomaly Index (NAI), que é uma variação do NDVI que leva em consideração o 
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desvio e a média dos valores em longo prazo. Para validação foram utilizados dados de 

precipitação disponíveis.  

 Os autores supracitados concluíram que os quatro índices mostram entre si 

correlações múltiplas e têm potencialidade de selecionar regiões com seca, pois 

apresentaram valores altos durante os anos de seca e valores baixos durante o período de 

não seca. A Figura 8 mostra a validação dos índices com a precipitação obtida no 

referido estudo, apresentando a eficácia na identificação da seca.  

 

 
Figura 8: Média da precipitação em relação ao percentual de áreas afetada pela seca, identificada pelos 

índices SPI, RFA, NAI e VCI no período de 1982 a 2001.  

Fonte: Bandyopdhyay e Saha (2016). 

 

Noyola-Medrano e Martínez-Sías (2017), assim como Lanchin et al. (2016), 

usaram uma metodologia baseada em árvore de decisões para verificar se há o progresso 

de desertificação em uma região na província do Planalto Central do extremo sul do 

deserto de Chihuahuan, no México. A Figura 9 ilustra a metodologia seguida nesse 

estudo. 

Através de imagens do Landsat TM dos anos 1990, 1995, 2000, 2005 e 2011, 

em um período considerado seco, os pesquisadores calcularam o NDVI, NDWI, Índice 

de Óxidos de Ferro (IO) e Temperatura Superficial (TS), e propuseram uma nova 

equação de equilíbrio para comparar as mudanças ocorridas entre um ano e outro. Dessa 

forma, similar à metodologia de Bencerril-Piña et al. (2015), as mudanças que 

ocorreram ao longo desse período, resultando em valores positivos ou negativos de cada 

pixel, indicariam um maior ou menor risco de degradação.  
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Como produto, Noyola-Medrano e Martínez-Sías (2017) elaboraram um mapa 

com base nas quatro imagens para obter a probabilidade da desertificação. Eles 

validaram os resultados através de 20 pontos de observação de campo, onde verificaram 

a temperatura com medição em campo. A umidade foi estimada por dados paramétricos 

de órgãos da região e a vegetação foi estimada por proporção da área em 1 m². Dessa 

forma, concluíram que a probabilidade de desenvolvimento de um processo de 

desertificação na região de estudo era muito baixa, mesmo assim, pontuaram algumas 

regiões que deveriam ter um olhar mais cuidadoso.  

 

 
Figura 9: Metodologia do progresso da desertificação em Chihuahuan.  

Fonte: Noyola-Medrano e Martínez-Sías (2017). 

 

Cunha et al. (2017) realizaram uma pesquisa no SAB enquanto tal região ainda 

envolvia um total de 1.135 municípios. Foi testada a aplicabilidade de mensurar o 

impacto da seca na região estudada através de um índice híbrido denominado 

Vegetation Supply Water Index (VSWI), formado pelo NDVI e a Temperatura da 

Superfície (TS).  

Os dados foram coletados através do sensor MODIS a bordo dos satélites Terra 

e Acqua. Cunha et al. (2017) obtiveram dados referentes ao NDVI e à TS para o período 

de 2003 a 2014, com médias mensais e, na escala espacial, excluíram as áreas que 

representavam a região urbana e os corpos hídricos.  
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Para validação, foram utilizados dados de precipitação de estações 

meteorológicas, assim como Bandyopdhyay e Saha (2016), sendo que Cunha et al. 

(2017) também incluíram dados de armazenamento de água em solo obtidos por meio 

de um balanço hídrico. Diante disso, concluíram que a relação empírica do VSWI tem 

potencialidade para identificar, em análises espaço-temporais, regiões com déficit 

hídrico, em especial quando aplicada em período chuvoso. Dessa forma, o estudo de 

Cunha et al. (2017) difere das metodologias já relatadas, como a de Bencerril-Piña et al. 

(2015) e Noyola-Medrano e Martínez-Sías (2017), que foram aplicadas em período 

seco. A Figura 10 mostra o resultado do VSWI obtido por Cunha et al. (2017), no qual 

os valores mais elevados são indicativos de situação de estresse hídrico.  

 

 
Figura 10: VSWI médio no ano hidrológico (de Outubro a Setembro) para o período de 2003 a 2014.  
Fonte: Cunha et al. (2017). 

 

Mail (2017) desenvolveu um método baseado na modelagem do uso e 

cobertura da terra que, através da tecnologia do SR e uso de indicadores, pudesse avaliar 

a desertificação. Assim como Vieira et al. (2015), a escala temporal do referido estudo 
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se limitou a dois anos, iniciando em 2007 e finalizando em 2015. Mail (2017) utilizou 

imagens Landsat do período seco, calculando os índices NDVI, Normalized Difference 

Building Index (NDBI), Normalized Difference Water Index (NDWI), NDBaI e Crust 

Index (CI). Como área de estudo, tal autor considerou a bacia hidrográfica Udhaim, uma 

das mais importantes do Iraque, com condições climáticas do tipo árida, semiárida e 

úmida.  

 No estudo de Mail (2017), foram elaborados mapas binários para os anos de 

2007 e 2015, derivados de limiares selecionados para cada índice: NDVI representando 

área de vegetação limiar maior ou igual 0,4; NDBI representando área construída com 

limiar maior que 0,1 e menor que 0,3; NDWI pela área de água limiar maior que 0,243; 

NDBail referente ao solo nu com limiar maior que 0; e CI com área de crosta de solo 

maior que 0,5. Posteriormente, multiplicou-se os resultados de cada mapa binário por 

um número código para obter o mapa de uso e ocupação da terra dos anos de 2000 e 

2015. Na Figura 11, tem-se o fluxograma da metodologia adotada por Mail (2017), 

mostrando as etapas de coleta dos dados, tratamento das imagens, cálculo dos índices e 

álgebra de mapas. 

 

 
Figura 11: Fluxograma da metodologia adotada por Mail (2017). 

Fonte: Mail (2017). 
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A área de estudo de Tomasella et al. (2018) foi a mesma estudada por Vieira et 

al. (2015): o Nordeste brasileiro. Com imagens do satélite Terra, Tomasella et al. (2018) 

calcularam o NDVI entre os anos de 2000 e 2016, em períodos secos e chuvosos, para 

monitorar áreas de solo nu candidatas à degradação de solo.   

A validação da pesquisa do referido estudo foi realizada no ano de 2016, no 

período seco, em uma região leste do estudo, conhecida como Sertão Sergipano. 

Através de uma técnica de amostras aleatórias, foram visitados 170 pontos em 

diferentes processos de densidade de vegetação para coleta do solo. Em seguida, com 

imagens Landsat, desenharam polígonos em torno de cada ponto para amostras de 

treinamento, classificando-os como: solo nu, pastagem, agricultura e floresta. Também 

foi aplicado um questionário na comunidade local para verificar o histórico de solo nu 

da região.  

Para calibração do NDVI, no estudo de Tomasella et al. (2018) fez-se uso de 

outro índice denominado Woody Vegetation Biomass Index (WVBI), que foi calculado 

em campo e, posteriormente, classificado. Depois, calcularam uma relação linear entre o 

NDVI e o WVBI, onde foi possível estabelecer os valores limiares para NDVI em 

período seco e chuvoso (Figura 12).  

 Tomasella et al. (2018) concluíram que, para a escala espacial adotada de 250 

metros, os valores do NDVI foram consistentes para identificar a desertificação.  

 

 
Figura 12: Valores médios de NDVI para estação seca e chuvosa, segundo metodologia de Tomasella et 

al. (2018). 

Fonte: Tomasella et al. (2018). 
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Cunha et al. (2020) selecionaram uma região no SAB conhecida como “Cariris 

Velhos” como área de estudo do processo de desertificação com SR. Com o intuito de 

encontrarem um melhor indicador de mudança de uso da terra, utilizaram um conjunto 

de imagens Landsat com escala temporal de 31 anos. A partir das imagens Landsat 

selecionadas, calcularam os índices espectrais Surface Albedo (SA), EVI e NDVI para 

comparar qual teria o melhor desempenho em identificar a mudança de uso e cobertura. 

Para isso, aplicaram o método de tendência residual (TSS-RESTREND).   

Para validação dos dados, assim como Vieira et al. (2015), Cunha et al. (2020) 

utilizaram interpretação visual de imagens de alta resolução do Google Earth. Também 

usaram técnicas que incluíam imagens RapidEye e Landsat com composição colorida e 

falsa cor. Além disso, foram feitas visitas de campo para averiguação da cobertura da 

terra, localizando pontos específicos para amostras, delimitando uma área de influência 

e validando através de métricas. 

Os autores mencionados concluíram que índice SA apresentou melhores 

resultados para identificar as mudanças de uso e cobertura do solo. Ao comparar os 3 

índices, perceberam que o NDVI e o EVI obtiveram um desempenho mais baixo na 

identificação das mudanças de uso e cobertura do solo, porém apresentaram um melhor 

desempenho quando aplicados em período seco. A Figura 13 mostra os resultados de 

cada índice, a escala temporal e o mapa formado pelos dados observados no estudo de 

Cunha et al. (2020).  

 

 
Figura 13: Anos e pontos de não detecção do LCC nos índices AS, EVI e NDVI, e o ano de comparação 

final.  

Fonte: Cunha et al. (2020). 
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2.8 MÉTRICAS PARA AVALIAÇÃO DE DESEMPENHO 

 

A tecnologia do SR é bastante efetiva para analisar áreas extensas de difícil 

acesso, mas, para pesquisas científicas, é importante que se possa validar os dados 

estimados. Para isso, existem diversas metodologias sendo aplicadas com esse objetivo, 

conforme abordado nas pesquisas de Vieira et al. (2015), Bandyopdhyay e Saha (2016), 

Noyola-Medrano e Martínez-Sías (2017), Cunha et al. (2017), Tomasella et al. (2018) e 

Cunha et al. (2020).  

As métricas para validação de desempenho, também chamadas de índices de 

desempenho, têm sido comumente aplicadas para validação de dados derivados do SR, 

comparando o evento estimado pelo satélite ao evento ocorrido (observado).  

A Tabela 6 mostra alguns índices de performance para análise e avaliação, 

quando se tem dados estimados e observados. 

 

Tabela 6: Índices de desempenho de acertos e erros.  

Fonte: Adaptado de PAZ e COLLICHONN, 2011. 

Índice Definição Equação  Valores 

PC (Proporção 

correta) 

Percentual de acertos 

gerais, independente dos 

valores referentes ao acerto 

da ocorrência ou não 

ocorrência do evento.   

𝑃𝐶

=
𝑎 + 𝑑

𝑛
  

(17) 

Varia entre 0 e 1. Quanto mais 

próximo de 1, melhor a 

performance.  

 

POD 

(Probabilidade de 

detecção) 

Percentual de acertos em 

relação à ocorrência.  

𝑃𝑂𝐷 =
𝑎

𝑎+𝑐
  

(18) 

FAR (Taxa de 

alarme)  

O percentual do evento foi 

estimado em relação à sua 

não ocorrência. 

𝐹𝐴𝑅 =
𝑏

𝑎+𝑏
  

(19) 

ISC (Índice de 

sucesso crítico)  

Mensura a fração de 

eventos que foram 

estimados e realmente 

ocorreram. 

𝐼𝑆𝐶 =
𝑎

𝑎+𝑏+𝑐
   

(20) 

BIAS (taxa de 

tendência)  

Relação entre a quantidade 

de vezes que o evento foi 

estimado e o ocorrido. 

 

𝐵𝐼𝐴𝑆

=
𝑎 + 𝑏

𝑎 + 𝑐
 

(21) 

Assume qualquer valor > que 0. 

Quanto mais próximo de 1, melhor 

a performance. Quando > 1, 

superestimativa de ocorrência do 

evento; quando < 1   subestimativa.  

PFD 

(Probabilidade de 

falsa detecção) 

Probabilidade de falsa 

detecção. 

 

𝑃𝐹𝐷

=
𝑏

𝑏 + 𝑑
 

(22) 

Varia entre 0 e 1 e quanto mais 

próximo de 0 melhor o 

desempenho.  

Onde: n = a+b+c+d; a = acertos; b = falsos alarmes; c = erros; d = o número de vezes que o 

fenômeno foi corretamente identificado.  

 

Os estudos hidrológicos estão entre os que mais exploram o uso das métricas 

para avaliação de desempenho. Além disso, eles comparam os produtos de estimativa de 
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chuva dos satélites e os validam com dados observados de estações meteorológicas 

(PAZ e COLLICHONN, 2011; KIM et al., 2017; ISLAN, 2018; WANG et al., 2019; 

MAHBOD, VERNESI e SHIRVANI, 2019; GUMINDOGA et al. 2019; PAREDES 

TREJO, BARBOSA e SANTOS, 2019).  

Mahbod, Veronesi e Shirvani (2019) utilizaram os índices de ponderação POD, 

FAR e ISC para validar a precipitação do produto 3B42, do satélite Tropical Rainfall 

Measuring Mission (TRMM), para regiões áridas e semiáridas. Como a variável tempo 

também estava sendo analisada, os dados foram avaliados em escala de períodos de 1, 2, 

3, 5, 7, 10, 15 e 20 dias e mensal. Como dados observados, foram utilizados 

pluviômetros das estações terrestres. 

Na pesquisa de Mahbod, Veronesi e Shirvani (2019), os melhores valores de 

desempenho foram encontrados quando a escala temporal apresentava um período 

maior, ou seja, quanto mais dias, melhores foram os resultados. A Figura 14 mostra os 

resultados da análise ponto ao pixel em relação à quantidade de chuvas estimadas pelo 

satélite e os dados observados dos pluviômetros em relação ao número de dias. 

 

 

Figura 14: Valores médios das métricas da previsão de detecção, índice de sucesso e alarme falso em 

diferentes escalas de tempos.  

Fonte: Adaptada de Mahbod, Veronesi e Shirvani (2019). 

 

Gumindoga et al. (2019) também realizaram um estudo com objetivo similar ao 

de Mahbod, Veronesi e Shirvani (2019). Eles validaram os dados estimados de 

precipitação do produto CMORPH com dados observados de estações meteorológicas 

da área de estudo. Como índices de desempenho, utilizaram POD, FAR, ISC e 

Frequency Bias (FBS). 



61 
 

Embora os índices de desempenho sejam bem difundidos para validar os 

produtos dos satélites de estimativa de chuva, outros autores, como Lessel e Ceccato 

(2016), Ezzine et al. (2017), Mosavi et al (2020) e Cunha et al. (2020), mostraram que 

esses índices também podem ser aplicados em outras temáticas, como validação de 

índices espectrais.  

Lessel e Ceccato (2016), em sua pesquisa de uso e ocupação do solo, aplicaram 

a tecnologia do SR para identificação de áreas de culturas no Uruguai a partir de 

análises do NDVI, de uma composição colorida das cores vermelho, verde e azul (RGB) 

e da extração de valores que correspondem ao solo e vegetação.  

Tais autores realizaram uma combinação temporal entre os anos de 2009 a 

2013. Com imagens Landsat, identificaram cenários referentes ao ciclo de cultura. 

Como dados observados, usaram o plano de cultivo e mapas de localização de cultivo 

fornecidos por órgãos oficiais da região.  

De acordo com os valores obtidos de POD, FAR e ISC, os resultados foram 

satisfatórios. Mesmo com interferência de nuvens nas imagens, foi possível identificar 

melhores resultados quando comparados ao plano de cultivo da região. A Figura 15 

mostra os resultados encontrados referentes à identificação da cultura em uma das cenas 

Landsat e à identificação de ocorrências, erros e alarmes falsos.  

 

 
Figura 15: Resultados da aplicação da metodologia de Lessel e Ceccato (2016) para identificação de 

culturas em uma determinada região, onde as ocorrências em verde são os acertos, em rosa constam os 

erros e o amarelo se refere aos alarmes falsos.  

Fonte: LESSEL e CECCATO (2016). 
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Cunha et al. (2020) também utilizaram métricas para validar dados de 

reflectância com dados observados em campo. Eles agruparam os resultados validados 

da seguinte forma: i) verdadeiro, quando o ano de mudança de uso da terra real foi 

detectado em um intervalo de 95% de confiança do ano estimado ou quando tal 

mudança não foi detectada e de fato não ocorreu; ii) tempo errado, quando a mudança 

de uso da terra não estava no intervalo definido como de segurança de 95%; iii) falso 

negativo, quando tal mudança não foi detectada, mas ocorreu; e iv) falso positivo, 

quando a mudança de uso da terra foi detectada, mas não ocorreu.  
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3– MATERIAIS E MÉTODOS  

 

Os materiais utilizados no presente estudo envolveram o software de Sistema 

de Informações Geográficas (SIG) de acesso livre QGIS, imagens do satélite Landsat, 

dados dos setores censitários, dados de estimativas populacionais, dados meteorológicos 

obtidos de fontes oficiais e informações de campo acerca de pontos avaliados quanto ao 

processo de desertificação, e coleta de coordenadas geográficas por aparelho receptor 

Sistema de Posicionamento Global (GPS) de navegação.  

De forma resumida, as etapas desenvolvidas na pesquisa envolveram cálculos 

de índices a partir dos dados de SR, populacionais e meteorológicos. Em todos esses 

cálculos foram levadas em consideração as escalas espacial e temporal. Em seguida, 

com os dados espacializados, foram realizadas as álgebras de mapas, tomando por base 

a metodologia adotada por Bencerril-Piña et al. (2015), citada no item 2.7, que calcula a 

AVM e o IRTD. Paralelamente, foram feitas visitas de campo para coletar as 

coordenadas geográficas da região e caracterizá-la. Em seguida, foi realizada a 

validação dos resultados das álgebras de mapas com a caracterização adquirida em 

campo e avaliado o índice de maior peso.  

A pesquisa se desenvolveu em um recorte geográfico do semiárido brasileiro, 

precisamente na sub-bacia do Rio Taperoá, localizada na Paraíba. Como área piloto para 

visitas de campo, foi selecionada uma região localizada no sudeste da sub-bacia do Rio 

Taperoá, esta, por sua vez, denominada de Área de Preservação Ambiental (APA) do 

Cariri.  

A Figura 16 mostra, de forma resumida, o fluxograma da metodologia 

desenvolvida, descrita detalhadamente nos itens a seguir.  
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Figura 16: Fluxograma da metodologia do trabalho. 

Fonte: Próprio autor.  

 

3.1 CARACTERIZAÇÃO DA ÁREA DE ESTUDO E OBTENÇÃO DE DADOS DE CAMPO  

 

A metodologia foi aplicada na sub-bacia do rio Taperoá, localizada em região 

semiárida do estado da Paraíba, no Nordeste do Brasil. A sub-bacia deságua no açude 

Boqueirão, que abastece a maior zona metropolitana do interior do Nordeste com quase 

700 mil habitantes (LIMA et al., 2019). Ela recobre uma região que está entre as mais 

secas do Brasil, conhecida regionalmente por Cariri Paraibano (XAVIER et al., 2012), e 

abrange uma pequena porção da microrregião do Seridó que possui um dos núcleos 

desertificados. 

A região da sub-bacia apresenta precipitação média anual entre 350 e 600 mm, 

sendo classificada pelo método de Koeppen como região semiárida quente (Bsh). 

Apresenta maior precipitação total em um período de dois a quatro meses, sendo esses 

de janeiro a abril. As temperaturas mais baixas ocorrem entre os meses de julho e 

agosto, com mínimas de 21°C; as temperaturas mais altas estão entre os meses de 

novembro e dezembro, com máximas de 28°C; e a média anual é de 24°C (SOUZA, 

SILANS e SANTOS, 2004; LACERDA et al., 2005). A cobertura vegetal da região é 

predominantemente a Caatinga, com representações diferentes devido aos processos de 

desertificação encontrados na região. 

Localizada na região central do estado da Paraíba, a sub-bacia do rio Taperoá 

compreende uma área de drenagem de aproximadamente 5.600 km², englobando, total 

ou parcialmente, 23 municípios e abrange as Mesorregiões da Borborema, Agreste e 
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Sertão Paraibano. Inserida na sub-bacia do rio Taperoá, também se encontra uma Área 

de Proteção Ambiental (APA) denominada APA do Cariri. A Figura 17 mostra o mapa 

de localização da sub-bacia do rio Taperoá e da APA do Cariri. Todos os dados 

geográficos dessa pesquisa foram reprojetados para o Sistema de Coordenadas 

Universal Transversa de Mercator (UTM) 24S, Datum SIRGAS 2000. As bases 

cartográficas utilizadas de limites estadual e municipal foram adquiridas junto ao 

Instituto Brasileiro de Geografia e Estatística (IBGE), e o limite da sub-bacia 

hidrográfica é proveniente da Agência Executiva de Gestão das Águas (AESA). 

 

 
Figura 17: Área de localização da sub-bacia do Taperoá e da APA.  

Fonte: Próprio autor. 

 

3.1.1 Caracterização da Área Piloto 

Considerada desde junho de 2004 pelo Decreto n.º 25.083 do Governo do 

Estado da Paraíba, a APA do Cariri se localiza no Sudeste da sub-bacia do Taperoá, 

medindo uma área de aproximadamente 18.560 ha. Está situada entre os municípios de 

Cabaceiras, Boa Vista e São João do Cariri e é populada por pequenas comunidades 

espaçadas com atividades agrícolas de subsistência. As principais vias de acesso para a 

APA são a rodovia estadual PB 160 ao Leste e a rodovia federal BR 412 ao Norte.  
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Por apresentar vegetação predominantemente da Caatinga, tomou-se por base a 

classificação de níveis de desertificação realizada por Souza e Souza (2016) para 

classificar as formas de degradação em 4 níveis: Baixo, Médio, Alto e Extremo. Foram 

levados em consideração alguns aspectos analisados em campo, sendo eles a 

diversidade, densidade, extrato da vegetação e solo exposto, conforme mostra a Tabela 

7.  

 

Tabela 7: Caracterização do grau de desertificação na área piloto.  

Fonte: Adaptada de Souza (2008) e Souza e Souza (2016). 

Fotografias da área dos pontos de 

visitação da APA 
Caracterização das diferentes formas de degradação da Caatinga 

 

Arbórea Arbustiva Fechada: Área com pouca atividade antrópica, 

e elementos ambientais favoráveis (solo e umidade).  

Arbustiva Arbórea Fechada: área com um pouco mais de 

atividade antrópica comparada à Arbórea Arbustiva Fechada, e 

com ambiente menos favorável, solos menos profundos e maior 

problema de drenagem, podendo ser classificada como uma 

“catinga secundária em avanço estágio sucessional” (baixo); 

 

Arbustiva Fechada: Área que corresponde já a uma Caatinga com 

pequeno grau de degradação, com manchas de solo expostos, mas 

ainda com forte presença de cobertura vegetal. Essa pode ser 

caracterizada como uma área onde a sucessão ecológica está em 

fase intermediária (médio); 

 

Arbustiva Semiaberta: Estágio de degradação avançado, apenas 

com pequenas ilhas de vegetação e maior parte do solo recoberta 

por plantas herbáceas. Tem uma vegetação de caracterização de 

sucessão regressiva (alto); 

 

Arbustiva Aberta: Área mais degradada. Com maior presença de 

solo exposto, apresenta vegetações arbustivas ainda mais isoladas 

em relação ao estágio anterior (extremo). 

 



67 
 

3.1.2 Procedimentos em campo  

As visitas de campo foram realizadas com o apoio do Grupo de Estudos do 

Semiárido (GESA), que desenvolve diversas pesquisas na região e oferece suporte 

técnico com profissionais experientes, inclusive nativos, dispondo de transporte e 

pontos de apoio.  

As campanhas de visitação foram realizadas em períodos curtos de duração, 

porém, com pernoites, sempre sendo acompanhadas por profissionais técnicos para 

caracterização da área e guia nativo. Os estudos foram realizados em períodos secos e 

chuvosos, sempre levando em consideração a acessibilidade. A Tabela 8 mostra a data 

da realização de cada campanha, bem como alguns registros fotográficos.  

Em cada visita foram coletados pontos por aparelho receptor de GPS e feita a 

caracterização quanto ao grau de desertificação, conforme a Tabela 7. A Figura 18 

mostra a espacialização dos pontos coletados dentro da APA coletado por GPS, bem 

como as principais vias de acesso a ela.  

 

 
Figura 18: Área de localização da sub-bacia do Taperoá, APA e indicação dos 43 pontos de visitação de 

campo, com classificação, segundo o nível de desertificação descrito na Tabela 6.  

Fonte: Próprio autor.  
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Tabela 8: Data das campanhas de visitação à área piloto e registros fotográficos. 

Fonte: Próprio autor.  

Data da visita Registro fotográfico 

24-25/11/2016 

 

22-26/01/2018 

 

14-15/05/2018 

 

21-22/01/2019 

 

12/11/2019 

 

 

Alguns pontos foram selecionados para revisitação, para reconhecimento e 

acompanhamento, em especial quando o registro era feito em locais que os técnicos não 

tinham nenhum histórico de visita. A Figura 19 mostra um desses registros em dois 

períodos distintos. 
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Figura 19: Registro fotográfico da mesma área em períodos distintos. Na imagem da esquerda, a visita foi 

realizada no período chuvoso, na campanha entre 14 e 15/05/2018. Na imagem da direita temos a visita 

no dia 12/11/2019, no período seco. 

Fonte: Próprio autor.  

 

3.2 AQUISIÇÃO E TRATAMENTO DOS DADOS ORBITAIS  

 

3.2.1 Aquisição dos Dados Orbitais 

Os dados orbitais foram adquiridos através do site U.S Geological Survey 

(USGS). Para propósito desta pesquisa, foram selecionadas imagens Landsat TM 5 e 

Landsat OLI 8, cena 215/65, com resolução espacial de 30 metros, que compreende toda 

a área de estudo. A seleção das imagens foi feita de acordo com o período dos meses 

considerados chuvosos (março a maio) e secos (setembro a novembro) nos anos de 

1995, 1999, 2005 e 2015. A Tabela 9 mostra a data e o satélite correspondente à cada 

imagem. É importante ressaltar que foi feito um acervo de todas as imagens disponíveis 

compreendendo esse período, mas, devido ao alto percentual de nuvens recobrindo a 

área de estudo, nem todas puderam ser utilizadas. 

As imagens selecionadas para o desenvolvimento desta pesquisa tiveram que 

atender aos seguintes critérios: ter no máximo um percentual de 20% de cobertura de 

nuvens, pois as nuvens contaminam os resultados da pesquisa (MIZAYAKI; NAGAI; 

SHIBASAKI, 2016), e ter, no mesmo ano, uma imagem correspondente ao período seco 

e outra ao período chuvoso, pois a variabilidade climática influencia nos resultados dos 

índices espectrais (TOMASELLA et al., 2018). 
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Tabela 9: Data das imagens, satélites e a cena utilizados nessa pesquisa.   

Data Landsat  Órbita Ponto 

29/04/1995 5 

215/65 

20/09/1995 5 

08/04/1999 5 

17/10/1999 5 

07/03/2005 5 

02/11/2005 5 

06/05/2015 8 

14/11/2015 8 

 

3.2.2 Estimativa de Cobertura de Nuvens e Pré-Processamento 

O percentual de nuvem nas imagens foi calculado no software QGIS, através 

do plugin Cloud Masking, desenvolvido por Xavier Corredor Llano, tomando por base o 

algoritmo de Zhu e Woodcock (2012) e Zhu, Wang e Woodcock (2015). Através do 

arquivo metadados das imagens e de uma composição colorida, o plugin cria uma 

camada máscara do tipo vetorial referente aos pixels identificados como nuvens e 

sombra de nuvens.  

Com o resultado da camada máscara de nuvem gerada, foi realizado o recorte 

conforme a delimitação da área de estudo e calculada a quantificação de nuvens dentro 

desta delimitação da sub-bacia Taperoá. A Figura 20 mostra uma das cenas selecionadas 

com as nuvens e a camada máscara criada com o plugin Cloud Masking dentro da área 

de estudo.   

 

 
Figura 20: Aplicação do plugin Cloud Masking em uma cena de composição colorida utilizada na 

pesquisa e o resultado da camada máscara aplicada somente na área de estudo na sub-bacia Taperoá.  

Fonte: Próprio autor.  
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A Tabela 10 mostra as datas, os satélites e o percentual de nuvens em cada 

cena pré-selecionada para o andamento da pesquisa. 

 
Tabela 10: Características das imagens coletadas e o percentual de nuvem correspondente dentro dos 

limites da sub-bacia Taperoá, a área de estudo.  

Data Landsat  
Cobertura de nuvens na área 

de estudo (%) 

29/04/1995 5 9 

20/09/1995 5 3 

08/04/1999 5 0,1 

17/10/1999 5 0 

07/03/2005 5 19 

02/11/2005 5 12 

06/05/2015 8 20 

14/11/2015 8 0 

 

Posteriormente, foi constatada a necessidade de diminuir ainda mais a 

quantidade de pixels contaminados por nuvens para um melhor desenvolvimento da 

pesquisa. Para isso, foram utilizadas as imagens referentes a cada trimestre considerado 

chuvoso, ou seja, foram adotadas imagens dos meses de março, abril e maio (trimestre 

chuvoso) e em cada uma dessas imagens foi feita a camada máscara de nuvens para 

identificação dos pixels com nuvens. O mesmo procedimento foi realizado para o 

trimestre seco, sendo os meses de setembro, outubro e novembro. A Tabela 11 mostra 

as imagens utilizadas anualmente referentes ao trimestre chuvoso e o trimestre seco.  

 

 Tabela 11: Datas das imagens por trimestre chuvoso e trimestre seco e o ano de referência utilizado na 

pesquisa.  

Trimestre 1995 1999 2005 2015 

Chuvoso 

28/03 23/03 07/03 19/03 

28/04 08/04 24/04 04/04 

31/05 10/05 26/05 06/05 

Seco  

20/09 15/09 15/09 27/09 

22/10 17/10 01/10 29/10 

07/11 18/11 02/11 14/11 

 

Em seguida, foi realizado o pré-processamento para as correções atmosféricas 

através do método DOS1 (Dark Object Subtraction) proposto por Chavez (1996), com o 

objetivo de mitigar os efeitos atmosféricos, como espalhamento por poeiras e aerossóis. 

Posteriormente, elas foram reprojetadas para o sistema de coordenadas Universal 

Transversa de Mercator (UTM) 24S, Datum SIRGAS 2000, e o recorte foi realizado 

com a camada máscara da sub-bacia Taperoá.   
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Para cada imagem, aproveitou-se apenas os pixels não contaminados por 

nuvens para compor uma imagem final de cada trimestre, como cada trimestre foi 

composto por três imagens optou-se pela média como medida de centralidade, ou seja, o 

atributo de cada pixel foi calculado com a média das reflectâncias das imagens de cada 

trimestre, considerando apenas os pixels válidos de cada cena. Nas situações em que o 

mesmo pixel estava contaminado por nuvens nas três imagens do mesmo trimestre, tal 

pixel ficou com valores nulos, sem representação.  

A Figura 21 mostra um conjunto de imagens que passou por esse processo e o 

resultado da imagem de um trimestre, já com menor percentual de nuvens. Em destaque 

tem-se a imagem pré-selecionada por ter apresentado um percentual de nuvens inferior a 

20%. 

 

 
Figura 21: Reflectância das imagens dos meses referentes ao período chuvoso de 2015 que passaram pelo 

processo de pré-processamento, remoção de nuvens e depois mesclagem.  

Fonte: Próprio autor.  

 

A Tabela 12 mostra o resultado do percentual de nuvem de cada trimestre seco 

e chuvoso de cada ano após o processo de mesclagem das imagens como substituição 

dos pixels contaminados por nuvens. Após esse pré-processamento, as imagens 

mescladas dos períodos chuvosos e secos de cada ano estavam aptas para álgebra de 

mapas, podendo, assim, obter os índices. 
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Tabela 12: Resultado do percentual de nuvens das imagens mescladas de acordo com os trimestres 

considerados chuvosos (março abril e maio) e secos (setembro, outubro e novembro).  

Data 
Cobertura de nuvens na área de 

estudo (%) 

Chuvoso/1995 0,94 

Seco/1995 1,21 

Chuvoso/1999 0,01 

Seco/1999 0 

Chuvoso/2005 8,90 

Seco/2005 5,65 

Chuvoso/2015 0,59 

Seco/2015 0 

 

 

3.3 DETERMINAÇÃO DOS ÍNDICES BASE 

 

3.3.1 Cálculos dos Índices de Vegetação (IV) 

Os IV selecionados para essa pesquisa foram o NDVI, SAVI e WDVI, 

conforme mostra a Tabela 2 do subitem 2.4.1. Para as imagens do satélite Landsat TM 

5, as bandas equivalentes tomadas foram a Banda 4 (B4), condizente ao NIR, e a Banda 

3 (B3), correspondente ao R. Quanto ao Landsat OLI 8, tem-se o NIR correspondente à 

Banda 5 (B5) e R correspondente à Banda 4 (B4).  

Os cálculos foram realizados com todas as imagens resultantes da mesclagem 

do trimestre seco e chuvoso para a janela temporal de estudo mencionada na Tabela 12.  

Seguindo recomendação de Bencerril-Piña et al. (2015), foram realizados testes 

de variação do parâmetro (L) que atenua o brilho do solo, na obtenção do SAVI. Por 

padrão, a literatura científica sugere o valor 1 para esse parâmetro no caso de vegetação 

muito baixa, e o valor 0,5 para vegetação intermediária. Nesta pesquisa, se considerou 

inicialmente a adoção de L com valor 1 para o índice base que foi utilizado para as 

primeiras análises. Posteriormente, foram testadas duas variações, além do padrão para 

vegetação baixa. Adotou-se para avaliação os valores do parâmetro L = 0,8 e 0,9, assim 

como Silva et al. (2015), Sashikkumar et al. (2017) e Ren, Zhou e Chang (2018), que 

adotaram valores de parâmetro L do solo customizados para a região de estudo. 

Para o cálculo do WDVI, os valores correspondentes ao solo exposto, referente 

a linha do solo, foram calculados em cada cena. Foram selecionadas através de imagens 

do Google Earth, amostras de solo exposto e, se fez uma média dos valores máximos do 
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infravermelho próximo e do vermelho visível para aplicar na Equação 8, mencionada na 

Tabela 2 do subitem 2.4.1.    

Para analisar o comportamento do trimestre chuvoso e trimestre seco de cada 

ano do estudo (1995, 1999, 2005 e 2015) dos IV (NDVI, SAVI, WDVI), foi realizado 

um perfil transversal. A linha vertical foi definida no sentido Norte-Sul e a linha 

horizontal no sentido Oeste-Leste sobre a área de estudo, extraindo ao longo da linha os 

valores de cada IV. A Figura 22 mostra a direção das linhas por onde foram traçados os 

perfis transversal na sub-bacia Taperoá.  

 

 
Figura 22: Perfil transversal dos valores dos índices de vegetação na sub-bacia Taperoá.  

Fonte: Próprio autor.  

 

 3.3.2 Cálculos dos Índices de Solo (IS) 

Para os índices de solo, foi utilizado o mesmo conjunto de imagens dos IV, ou 

seja, as imagens do resultado da mesclagem do trimestre seco e as imagens da 

mesclagem do trimestre chuvoso. Os índices calculados foram o BSI e GSI, utilizando 

as equações apresentadas na Tabela 3 do subitem 2.4.2.  

O cálculo do BSI foi feito com as bandas B4, B1, B3 e B5 do Landsat TM 5. 

Quando utilizadas as cenas do Landsat OLI 8, fez-se uso das bandas B5, B2, B4 e B6, 

correspondentes, respectivamente, às bandas do infravermelho próximo, azul, vermelho 

visível e infravermelho médio.  
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O GSI foi calculado com as bandas B1, B2, B3 do Landsat TM 5 e as bandas 

B2, B3 e B4 do Landsat OLI 8, correspondentes, respectivamente, às bandas do azul, 

verde e vermelho.  

Assim como realizado com o trimestre seco e chuvoso dos IV, também foi 

realizado o perfil transversal, conforme a Figura 22 do subitem 3.3.1, para os valores 

dos IS correspondentes ao trimestre seco e chuvoso de cada ano (1995, 1999, 2005 e 

2015), para analisar o comportamento do BSI e do GSI na sub-bacia Taperoá.  

 

3.3.3 Índice de Aridez (IA) 

Para o cálculo de Índice de Aridez, os dados utilizados foram os de 

temperatura e chuva, adquiridos, respectivamente, junto ao Instituto Nacional de 

Meteorologia (INMET) e à Agência Executiva de Gestão das Águas da Paraíba 

(AESA). Foi selecionado um total de 45 postos pluviométricos, sendo 22 dentro da sub-

bacia Taperoá e os demais nos municípios adjacentes, distantes no máximo por 18,5 km 

do limite da área de estudo.  

A Figura 23 mostra a espacialização dos postos pluviométricos, bem como da 

estação meteorológica localizada em Campina Grande, a 21,5 km do limite da sub-bacia 

Taperoá, onde foram extraídos os valores de temperatura. No Anexo 1, são listados os 

postos pluviométricos com as respectivas coordenadas. 
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Figura 23: Mapa da espacialização dos postos pluviométricos da (AESA) e da estação meteorológica do 

(INMET).   

Fonte: Próprio autor. 

 

Com os dados pluviométricos diários, foi realizada a soma da precipitação 

diária para obter a precipitação mensal. Já os dados de temperatura foram adquiridos por 

período mensal. A Figura 24 mostra a espacialização da média da precipitação para o 

período do trimestre chuvoso (março, abril e maio) e trimestre seco (setembro, outubro 

e novembro). Na Figura 25, tem-se a média trimestral das temperaturas para o período 

de trimestre chuvoso e seco da estação meteorológica de Campina Grande para os anos 

de 1995, 1999, 2005 e 2015.  

Depois de organizar em uma planilha os dados de precipitação e temperatura 

mensais, foi consultada a tabela de correção de Thornthwaite (1941) para o valor de 

correção mensal de acordo com a latitude da área de estudo. Em seguida, foram 

utilizadas as Equações 13, 14, 15 e 16, descritas no subitem 2.5, para se obter os valores 

da ETP e calcular o IA mensal. 
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Figura 24: Isoietas da média da precipitação dos trimestres chuvoso (março, abril e maio) e seco 

(setembro, outubro e novembro) na área de estudo, a sub-bacia do rio Taperoá, nos anos da pesquisa 

1995, 1999, 2005 e 2015.  

Fonte: Próprio autor. 
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Figura 25: Gráfico das médias trimestrais de período chuvoso e seco da estação meteorológica localizada 

em Campina Grande nos anos de 1995, 1999, 2005 e 2015.  

Fonte: Próprio autor.  

 

Após realizar o cálculo do IA mensal, foi feita a média trimestral do IA dos 

meses para período chuvoso (março, abril e maio) e período seco (setembro, outubro e 

novembro). Depois, através do método do inverso da distância ao quadrado, foi 

realizada a interpolação de cada trimestre, período seco e período chuvoso, para o 

espaço temporal de estudo de 1995, 1999, 2005 e 2015, transformando os resultados 

pontuais em dado raster com resolução espacial de 30m para ficar equivalente à 

resolução espacial dos índices espectrais.  

Para uma melhor análise dos anos mais secos e chuvosos envolvidos no 

período da pesquisa, foram adquiridos, junto à AESA, os dados de precipitação anual 

dos 45 postos pluviométricos selecionados na área de estudo. Na Figura 26, mostra-se o 

gráfico com a média de chuva anual dos 45 postos pluviométricos quando apresentaram 

dados de chuva de cada ano correspondente, destacando os anos do desenvolvimento da 

pesquisa. 
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Figura 26: Gráfico da média de chuva anual entre os anos de 1994 e 2015 dos 45 postos selecionados na 

pesquisa. 

Fonte: Próprio autor.  

 

Da mesma forma, para uma análise da temperatura da região, foram adquiridos 

dados de temperatura média para todos os anos, entre 1995 e 2015. Na Figura 27 

mostra-se o gráfico de temperatura média anual dando destaque aos anos da pesquisa. 

 

 
Figura 27: Gráfico da temperatura média anual para os anos de 1995, 1999, 2005 e 2015 da estação 

meteorológica de Campina Grande e anos adjacentes.  

Fonte: Próprio autor.  
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3.3.4 Índice de Impacto Humano (IIH) 

O Índice de Impacto Humano foi obtido através da razão da distribuição da 

população estimada nos setores censitários e a área do pixel em quilômetros quadrados, 

ou seja, o índice é tomado em termos de densidade populacional ao nível de pixel. Os 

dados foram adquiridos junto ao IBGE: os dados de setores censitários referentes aos 

anos 2000, 2007 e 2010, sendo que 2007 foi realizada a contagem da população e os 

dados de estimativa populacional dos anos de 1995, 1999, 2005, 2007 e 2015.  

O setor censitário é a unidade territorial de controle cadastral para coleta de 

dados do censo que respeita parâmetros dimensionais, como de limite rural e urbano, e é 

constituído por áreas contíguas (IBGE, 2003). A população dos anos 2000, 2007 e 2010 

estão espacializadas por setores censitários, e a estimativa populacional dos anos 1995, 

1999, 2005 e 2015 estão agregadas por municípios. Por isso, a estimativa populacional 

desse segundo conjunto de anos teve que ser redistribuída para os setores censitários, foi 

dividido em forma proporcional assumindo-se que o crescimento ou o decréscimo da 

população ocorresse de forma proporcional.  A distribuição populacional por setor 

censitário para o ano de 2000 foi realizada a partir das distribuições levantadas pela 

estimativa populacional dos anos 1995 e 1999. Para a distribuição populacional nos 

anos de 2007 e 2010, foram utilizadas as distribuições do ano mais próximo com dados 

disponíveis, 2005 e 2015, respectivamente. 

Depois de distribuir a população por setores censitários para os anos da 

pesquisa de 1995, 1999, 2005 e 2015, foi gerado, através do método de Kernel 

(PARZEN, 1962), um raster com resolução espacial de 30m, com a distribuição espacial 

da população para poder compor a álgebra de mapas com dados matriciais. Em seguida, 

com o raster do Kernel, foram realizados procedimentos que envolveram estatísticas por 

zonas, ou seja, por setor censitário. Então, foi calculado o fator de correção para manter 

a concordância entre o valor total da população, por município, e a distribuição na área 

do setor censitário. A Figura 28 mostra o resumo da metodologia adotada nesta etapa.   
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Figura 28: Metodologia para gerar o Índice de Impacto Humano.  

Fonte: Próprio autor. 
 

Setor Censitário  

Para esta pesquisa se deu preferência ao cálculo de população por setores 

censitários, pois, além de permitir a espacialização por áreas urbanas e rurais, notou-se 

que, ao realizar os cálculos da distribuição da população, geralmente não é na área 

central (geometricamente falando) do município que se localiza o maior adensamento 

populacional. Por exemplo, a Figura 29 mostra o polígono do município de Livramento, 

que se localiza ao Oeste da sub-bacia Taperoá, e duas linhas transversais ao município: 

uma passando na área central do município e outra na região onde se localiza os setores 

censitários mais adensados.  
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Figura 29: Polígono do município de Livramento e duas linhas transversais: uma passando pelo centroide 

do município e outra correspondente ao adensamento dos setores censitários. 

Fonte: Próprio autor. 

 

Considerando a Figura 29, foram extraídos os valores dos pixels ao longo das 

duas linhas transversais traçadas no polígono do município, resultando em dois 

cenários: o primeiro, representado pelas Figuras 30 (a) e 30 (b), onde a densidade 

populacional foi calculada através do centroide do município; e, no segundo cenário, a 

densidade populacional é calculada com a população espacializada pelos setores 

censitários, conforme as Figuras 30 (c) e 30 (d). Os dois cenários têm o objetivo de 

espacializar a densidade populacional e identificar qual pode representar melhor a 

realidade de um município.   

No primeiro cenário, é possível notar que a densidade populacional se encontra 

apenas no centro do município, em um único pico, como mostra a Figura 30 (a). E a 

Figura 30 (b) ilustra o que ocorre nas demais regiões do município, com densidade 

populacional nula, mesmo quando se encontra na região um adensamento de setores 

censitários.   

No segundo cenário, pode-se notar que, no centro do município, se encontra 

uma quantidade de adensamento populacional bem menos expressiva que no primeiro 

cenário, distribuída em, pelo menos, duas regiões, conforme a Figura 30 (c). A Figura 
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30 (d) mostra um comportamento da densidade da população maior que no centro do 

município, distribuída em pelo menos dois picos, representando a espacialização da 

população dentro do município de forma mais distribuída e coerente. 

 

 
Figura 30: Extração dos valores dos pixels de densidade populacional (população/pixel) em duas linhas 

que cortam o polígono do município Livramento. (a) e (b): extração realizada quando calculado a 

densidade populacional pelo centroide do município.  (c) e (d): extração realizada quando a densidade 

populacional foi calculada pelos setores censitários.  

Fonte: Próprio autor. 

 

Estimativa Populacional e Setor Censitário 

Em algumas ocasiões, os dados populacionais tiveram que sofrer alguns ajustes 

por atualização da base do IBGE, procurando-se manter a coerência e eliminar a criação 

de população artificial. Um exemplo disso foi a seguinte ocorrência: a base de 

municípios do IBGE sofreu alterações, pois alguns municípios foram desmembrados de 

outros, ou seja, ao longo da janela temporal do estudo, novos municípios foram criados. 

Tem-se, como exemplo dessa situação, o município de Taperoá. Quando houve a 

contagem da estimativa da população em 1995, ele ainda não existia. Porém, no final de 

1995, Taperoá foi desmembrada dos municípios de Sumé e Boa Vista. Assim, a 

população foi dividida entre os três municípios.   

Um segundo caso surgiu com a necessidade de ajustar os dados tabulares com 

relação aos dados vetoriais. Alguns dados tabulares tinham maior quantidade de setores 
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censitários em relação à base cartográfica. O IBGE classifica os setores censitários de 

acordo com algumas características, rural ou urbana, distribuindo por situação, 

numerando de 1 a 8, sendo, de 1 a 3, situações de área urbana e, de 4 a 8, situações de 

área rural. 

Nesse estudo, quando ocorreu essa segunda circunstância, os dados tiveram 

que ser unificados. A Figura 31 mostra o exemplo do município de Boa vista, onde a 

geometria possui 5 feições e suas respectivas situações, e o dado tabular tem 6 

informações com as respectivas situações. Então, as situações do dado tabular foram 

unificadas com a situação correspondida no vetor. 

 

 
Figura 31: Ajuste para distribuição da população dos dados referentes aos setores censitários quando o 

dado vetorial difere do dado tabular. 

Fonte: Próprio autor.  

 

Espacialização do formato vetorial para o formato raster 

Após a distribuição da população por setores censitários, se extraiu a 

informação dos polígonos dos setores para os centroides dos setores censitários. Então, 

adaptou-se a metodologia adotada por Amaral et al. (2002) e Rufino e Silva (2017), os 

quais estimaram a densidade populacional baseada em Kernel (PARZEN, 1962), 

transformando o dado vetorial em um dado raster com a distribuição espacial por pixel.  

O Kernel foi calculado aplicando um raio de 2,5 km, pois, através da 

observação de imagens do Google Earth, essa distância foi selecionada ao verificar, nos 

municípios, uma distância média do centroide do setor censitário até a identificação de 

algum aglomerado urbano dentro do respectivo setor censitário. Como o foco do 

mapeamento com análise de Kernel não tinha simplesmente o objetivo na distribuição 

espacial dos dados pontuais, mas sim um estudo com base na concentração das maiores 
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populações atribuídas a cada centroide dos setores censitários, foi definido um 

parâmetro de peso, onde a população total do setor serviu para a ponderação do Kernel.  

Ao distribuir a população para análise de Kernel por setor censitário, a 

quantidade da população ficou maior que o valor real inicial. Então, foi realizado um 

procedimento de correção aplicando a ferramenta de estatística zonal, que teve por 

objetivo somar os valores por pixel de cada município para saber o valor total da 

população de acordo com o setor censitário dentro de cada município. 

A seguir, foi calculado o fator de correção entre a população do município e a 

estatística zonal. Ao se obter o fator de correção para cada município, multiplicou-se 

esse fator com o valor do Kernel. Com o resultado do kernel multiplicado pelo fator de 

correção, foi dividido pelo valor da área do pixel em km², obtendo-se a densidade da 

população em hab/km². 

 

3.4 DESCRIÇÃO DA ANÁLISE DO VETOR DE MUDANÇA (AVM) 

 

Para análise do vetor de mudança nesta pesquisa, foi adotada a metodologia 

usada por Bencerril-Piña et al. (2015), visando identificar áreas que apontam algum 

grau de degradação. Ela é baseada na determinação de dois componentes: magnitude da 

mudança e a direção da mudança.  

Para o cálculo da magnitude da mudança, é empregada a Equação 23, a partir 

dos índices base SAVI (com parâmetro L = 1) e BSI. Para o cálculo de magnitude de 

mudança, foram feitas algumas combinações de anos, sendo essas: 1995 e 1999; 1999 e 

2005; 2005 e 2015; e uma avaliação do período total de 1995 a 2015. Nessas 

combinações, foi levada em conta a sazonalidade, ou seja, os cálculos foram aplicados 

separadamente para os trimestres chuvoso e seco de cada combinação.  

 

𝑀 =  √(𝑆𝐴𝑉𝐼1 − 𝑆𝐴𝑉𝐼2)² + (𝐵𝑆𝐼1 − 𝐵𝑆𝐼2)²                                                        (Equação 23) 

 

O resultado da mudança da magnitude é expresso em 4 classes, mostrando a 

intensidade de mudança, conforme abordado por Bencerril-Piña et al. (2015) e 

Vorovencii (2017). Posteriormente, foi realizada uma reclassificação dessas 4 classes 

conforme mostra na Tabela 13.  
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Tabela 13: Valores da magnitude de mudança na análise AVM, classes de representação de cada valor 

encontrado e a reclassificação dos valores por categorias.  

Valores (%) Classes Reclassificação 

0 a 25 Baixo 1 

25 a 50 Médio 2 

50 a 75 Alto  3 

>75 Extremo 4 

 

A direção de mudança é o ângulo entre dois vetores. Esse ângulo define o 

quadrante referente à mudança do pixel medido da data 1 ao pixel correspondente à data 

2 (Vorovencii, 2017). Expressa em ângulos, a direção da mudança foi calculada através 

da Equação 24, levando em consideração os seguintes fatores: a mesma combinação da 

magnitude da mudança; os índices SAVI e BSI; a combinação dos anos 1995 e 1999, 

1999 e 2005, 2005 e 2015, e 1995 e 2015; e a sazonalidade das imagens referente ao 

período do trimestre chuvoso e trimestre seco.  

 

𝑡𝑎𝑛𝑔 𝜃 = (𝐵𝑆𝐼1 − 𝐵𝑆𝐼2)/(𝑆𝐴𝑉𝐼1 − 𝑆𝐴𝑉𝐼2)                                                        (Equação 24)   

 

O resultado da direção de mudança varia entre -180° e 180°, com quatro 

classes representando a mudança no comportamento da vegetação e solo. Por exemplo, 

quando o ângulo de direção de mudança for no intervalo de 0° a 90°, ou no intervalo de 

-90° a -180°, tem-se a classe sem variação, isto é, segundo a abordagem AVM, esse 

pixel não sofreu alteração significativa em termos de desertificação do ano 1 para o ano 

2. Já quando o ângulo resultante for no intervalo de 0° a -90°, tem-se a classe de 

degradação, indicando que o pixel sofreu algum grau de degradação. A classe de 

recuperação ocorre quando o ângulo resultante varia entre 90° e 180°, ou seja, a área 

que antes estava com algum grau de desertificação teve redução deste nível. 

Posteriormente, os resultados foram reclassificados, conforme mostrado na 

Tabela 14.  

 

Tabela 14: Valores dos ângulos de direção da Análise do Vetor de Mudança (AVM) do ano 1 para o ano 

2; classes de representação de cada quadrante de acordo com os valores encontrados; e a reclassificação 

por categorias. 

Ângulos  Classes Reclassificação 

-180 a -90 Sem Variação  1 

-90 a 0  Degradação 2 

0 a 90  Sem Variação   3 

90 a 180  Recuperação 4 
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A reclassificação da mudança de magnitude e da direção de mudança foi 

necessária para realizar o cruzamento dos dados. A Figura 32 mostra, resumidamente: a 

metodologia da AVM; a magnitude com a mudança de direção, variando entre os 

intervalos de 25%, 50%, 75% e > 75%, e sua classificação correspondente (baixo, 

médio, alto e extremo); e a direção da mudança com as respectivas classes, sendo elas, 

sem variação, recuperação e degradação. 

A combinação entre a intensidade e direção indica se cada pixel teve variação ou 

não. Se teve variação indicativa de desertificação, qual foi a intensidade (baixa, média, 

alta ou extremo), ou se teve variação indicativa de recuperação, e a correspondente 

intensidade (baixa, média, alta ou extrema). 

 

  
Figura 32: Quadrantes de direção da mudança (sem variação, recuperação e degradação) e a magnitude de 

mudança (baixo, médio, alto e extremo), mudança do vetor do ano 1 para o ano 2 no quadrante de direção 

da mudança sem variação.  

Fonte: Próprio autor. 

 

3.5 RISCO DE TENDÊNCIA À DESERTIFICAÇÃO (IRTD) 

 

3.5.1 Determinação do Índice de Risco de Tendência à Desertificação (IRTD) 

Nesta pesquisa, o Índice de Risco de Tendência à Desertificação (IRTD) foi 

calculado pela abordagem que considera a análise de Theil-Sen (THEIL, 1950; SEN, 
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1968), onde considera-se a inclinação β de vários pares de dados de acordo com a 

Equação 25.  

 

𝛽 = 𝑀𝑒𝑑𝑖𝑎𝑛𝑎 (
𝑥𝑖−𝑥𝑗

𝑡𝑖−𝑡𝑗
)                                                                                      (Equação 25) 

 

Onde: i = ano final; j = ano inicial; x = índice;  t = ano. 

 

A Equação 25 é calculada para cada índice x (SAVI, NDVI, WDVI, BSI, GSI, 

IIH e IA), com os pares de anos t mais próximos: 1995 com 1999, 1999 com 2005 e 

2005 com 2015. Obteve-se uma imagem para cada par de anos, logo o β foi obtido para 

cada pixel pela mediana das imagens de cada índice.  

O procedimento também levou em consideração o conjunto de imagens 

correspondentes à sazonalidade do trimestre de período chuvoso e seco.  

Com o resultado do β para cada índice, para verificar a amplitude dos índices e 

identificar qual seria o melhor método de distribuição foi feito o histograma, e através 

dele se identificou que os métodos de distribuição: intervalo quartil e igual permitiam a 

distribuição dos conjuntos de dados dos índices em quatro classes. Isso foi possível para 

todos os índices, exceto o Índice de Impacto Humano (IIH) que só foi efetivado pelo 

intervalo igual, por conta da sua amplitude estreita, quando aplicado outro método de 

distribuição resultou em classes vazias. Então, quando se fez uso dos índices por 

intervalo quartil, o IIH entrou na classificação com distribuição de intervalo igual. 

Ademais, este é o único índice que não tem variação sazonal de período chuvoso e seco. 

Os intervalos iguais e quartis foram divididos em 4 classes correspondentes ao 

grau de desertificação: 1 (baixo), 2 (médio), 3 (alto) e 4 (extremo). Depois, para 

identificar a força motriz, conforme os índices aplicados na área de estudo, foram 

atribuídos códigos a cada índice de acordo com a respectiva categoria, o que permitiu 

que, quando calculado o IRTD, fosse identificado qual índice impulsiona a 

classificação, além de auxiliar na avaliação entre os índices de vegetação (SAVI, NDVI 

e WDVI). Assim, foi avaliado o comportamento de cada índice de acordo com o 

resultado apresentado, identificando se algum apresentou maior peso. O mesmo 

procedimento também foi feito com os índices de solo (BSI e GSI). A Tabela 15 mostra 

a atribuição dos valores dos índices. 
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Tabela 15: Códigos atribuídos a cada índice de acordo com sua respectiva classificação para identificar a 

força motriz.  
Classificação IA IIH SAVI NDVI WDVI BSI GSI 

Baixo 1 10 100 1000 10000 100000 1000000 

Médio 2 20 200 2000 20000 200000 2000000 

Alto 3 30 300 3000 30000 300000 3000000 

Extremo 4 40 400 4000 40000 400000 4000000 

 

Em seguida, conforme a Equação 26, o IRTD foi obtido como uma imagem 

dada pela soma algébrica das imagens β reclassificadas, ou seja, pela soma do β de 

todos os índices (IA, IIH, SAVI, NDVI, WDVI, BSI e GSI) após a distribuição das 

classes. Analogamente, obteve-se a imagem da força motriz a partir da soma algébrica 

das imagens dos betas codificados. 

A Figura 33 mostra o exemplo do resultado do IRTD em um pixel, a 

distribuição das classes e o cálculo para obter a força motriz.  

 

𝐼𝑅𝑇𝐷 =  𝛽𝐼𝐴 + 𝛽𝐼𝐼𝐻 + 𝛽𝑆𝐴𝑉𝐼 + 𝛽𝑁𝐷𝑉𝐼 + 𝛽𝑊𝐷𝑉𝐼 + 𝛽𝐵𝑆𝐼 + 𝛽𝐺𝑆𝐼                       (Equação 26) 

 

 
 

Figura 33: Exemplificação do Cálculo do IRTD em um pixel obtido pela soma do β da classificação de 

cada índice e a atribuição do valor, de acordo com cada índice e respectiva classificação.  

Fonte: Próprio autor.  

 

3.5.2 Validação com dados de campo 

Após o cálculo do IRTD, foi realizado um procedimento para validar a 

metodologia. Para este objetivo, foram adotadas algumas métricas, um conjunto de 

índices de desempenho que pudesse verificar o grau de acerto da metodologia. 

Conforme Ezzine et al. (2017), não é encontrado na literatura, de forma consensual, 
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qual métrica é mais apropriada para quantificar o grau de acerto de um modelo, por isso, 

foram adotados os índices de desempenho mostrados na Tabela 6 do item 2.8. 

 Com o resultado do IRTD definido como valor estimado, comparou-se este 

resultado aos dados observados, coletados em campo, estabelecendo uma comparação 

de pixel e ponto. Assim, foi feita a seguinte classificação: foi tido como “ocorrência de 

tendência à desertificação” quando o resultado era classificado como alto ou extremo; e 

“não ocorrência”, ou seja, sem tendência à desertificação, quando o resultado era 

classificado como baixo ou médio. A Figura 34 mostra uma tabela de contingência 

construída para mostrar os acertos (tipos “a” e “b”) e os erros (“c” e “d”), onde se 

mostra a comparação do dado estimado, referente ao IRTD, com o dado observado em 

campo.   

Para o teste de desempenho dos dados, foram geradas análises com valor 

padrão do parâmetro L = 1 do SAVI, comumente usado na literatura para áreas com 

baixa densidade vegetativa. E, para o resultado que apresentou melhor desempenho em 

relação aos índices base de performance, foram testadas duas variantes do parâmetro L 

do índice base SAVI: 0,8 e 0,9. 

  

 
Figura 34: Tabela de contingência com estimativa de erros e acertos, com ocorrências e não ocorrências.  

Fonte: Adaptado de Paz e Collischonn (2011). 

 

Em relação aos dados observados em campo, foi coletado um total de 43 

pontos. Estes pontos foram divididos em dois conjuntos: um conjunto com 21 pontos e 

o outro conjunto com 22 pontos. Os dois conjuntos são compostos por, 

aproximadamente, mesma distribuição de pontos entre as quatro categorias de nível de 

desertificação constatadas nas visitas de campo (Figura 35). Tal divisão teve o objetivo 
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de testar e avaliar os resultados quando alterado o valor do parâmetro L do SAVI, 

quantificando o grau de acerto em relação a cada parâmetro, como procedimento de 

calibração e validação. O conjunto 1, contendo 21 pontos, foi utilizado para validar os 

resultados encontrados no conjunto 2, com 22 pontos, que foi usado para calibrar, ou 

seja, para ajustar os parâmetros. A Figura 35 mostra a espacialização dos dois conjuntos 

de pontos.     

Em seguida, foi possível comparar a força motriz de acordo com os 43 pontos  

relacionado a cada pixel (pixel-ponto).  

 

 
Figura 35: Espacialização e identificação dos dois conjuntos de pontos: conjunto 1 utilizado para validar 

os resultados para o valor testado; e, conjunto 2, usado para calibrar, realizar os ajustes de acordo com os 

parâmetros (em cada ponto, é identificado o nível de desertificação observado em campo segundo a 

simbologia indicada). 

Fonte: Próprio autor.   
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4– RESULTADOS E DISCUSSÃO  

 

4.1. ANÁLISE ESPAÇO-TEMPORAL DOS ÍNDICES BASE  

 

Nesta seção está apresentada a análise dos índices base, os índices espectrais 

relacionados à vegetação (NDVI, SAVI e WDVI) e ao solo (BSI e GSI), bem como os 

índices referentes ao clima (IA) e às atividades humanas (IIH). 

 

4.1.1 Análise Espaço-Temporal dos Índices de Vegetação 

Perfis Transversais dos Índices de Vegetação 

Como os índices foram calculados para um determinado intervalo de tempo, é 

possível analisar o comportamento da vegetação dentro desse período. A análise do 

SAVI foi realizada para três valores do parâmetro L (0,8, 0,9 e 1). O valor L = 1 foi tido 

como parâmetro base para todas as análises e, posteriormente, foram testados os 

desempenhos dos resultados quando variado o parâmetro L para 0,8 e 0,9.   

As Figuras 36 e 37 mostram os resultados do perfil transversal. A Figura 36 

mostra os IV ao longo da linha vertical no sentido Norte-Sul. Na Figura 37, vê-se os IV 

ao longo da linha horizontal Oeste-Leste. 

As figuras anteriormente mencionadas mostram que os três IV, embora 

apresentem de forma distinta os seus valores máximo e mínimo, exibem um 

comportamento bastante similar, seja no período seco ou no período chuvoso. O período 

chuvoso apresentou maiores valores de IV quando comparado com o período seco. No 

ano de 2005, o período seco teve a média mais baixa dos valores de todos os índices, 

comparada aos outros anos do estudo. 

O WDVI, em todas as análises da pesquisa na região estudada, apresentou 

valores mais baixos, enquanto o NDVI apresentou os valores mais altos. O SAVI ficou 

em todas as variações do parâmetro L com valores intermediários aos outros dois 

índices de vegetação, esse resultado é provavelmente por conta da sensibilidade do solo 

nos índices, pois o SAVI e WDVI apresentaram atenuação do brilho do solo (SILLEOS, 

et al. 2006).  

Quanto à variação dos resultados do período chuvoso e seco, pode-se notar que 

todos os IV ficam com maior oscilação ao longo da distância do eixo no período 

chuvoso, ou seja, no período seco os valores são mais uniformes para um mesmo IV ao 
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longo da distância do eixo. Isso provavelmente ocorre devido à precipitação, conforme 

por exemplo Birtwistle et al. (2016), que encontraram aumento significativo no valor do 

NDVI quando ocorria precipitação, ou seja, ao chover, a região semiárida tem rápida 

resposta em relação à vegetação, podendo estender, neste caso, o mesmo 

comportamento para todos os índices da pesquisa.   

 

 

Figura 36: Gráficos com os valores dos IV, resultado do perfil transversal ao longo da linha vertical de 

Norte para Sul, cortando a sub-bacia Taperoá. Valores de IV referentes aos anos de 1995, 1999, 2005 e 

2015 das imagens correspondentes ao trimestre do período chuvoso e seco. 

Fonte: Próprio autor 
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Figura 37: Gráficos com os valores dos IV, resultado do perfil transversal ao longo da linha horizontal de 

Oeste para Leste, cortando a sub-bacia Taperoá. Valores de IV referentes aos anos de 1995, 1999, 2005 e 

2015 das imagens correspondentes ao trimestre do período chuvoso e seco. 

Fonte: Próprio autor. 
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Distribuição espacial dos índices de vegetação 

Para as análises espacial e temporal dos dados, foi realizada a espacialização 

dos IV para o período chuvoso e seco na área de estudo, a sub-bacia Taperoá, e na 

delimitação da APA do Cariri para os anos de 1995, 1999, 2005 e 2015. 

Na Figura 38, mostra-se a espacialização dos IV no período chuvoso. Os 

intervalos dos valores de IV apresentam valores de maior amplitude de variação no 

período chuvoso do que no período seco, conforme mostra a Figura 39. Isso permitiu 

identificar de modo mais distinto as regiões com maior e menor densidade vegetativa. 

Apesar dos IV do período chuvoso apresentarem intervalos diferentes de valores entre 

si, a distribuição espacial é similar entre eles, conforme se pode observar em cada IV e 

ano respectivo.  

 

 
Figura 38: Mapa dos IV (NDVI, WDVI, SAVI, com variação do parâmetro L = 1, 0,8 e 0,9) da sub-bacia 

Taperoá e da APA do Cariri para o período de trimestre chuvoso correspondente aos anos de 1995, 1999, 

2005 e 2015. 

Fonte: Próprio autor.  

 

Na distribuição geográfica dos IV no período chuvoso, tem-se que a região 

localizada no Sudoeste da sub-bacia Taperoá, mesma região ocupada pela APA, em 
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geral apresenta valores correspondentes à vegetação menos densa e solo nu em todos os 

anos e IV. 

A Figura 39 mostra o comportamento dos IV na área de estudo para o período 

seco. Pode-se notar que os anos de 1995 e 2015 foram anos com maior densidade 

vegetativa, especialmente como mostra o SAVI em todas as variações do parâmetro L.  

Em geral, os valores dos IV encontrados para a região são mais próximos de 0 

do que de 1, onde, nos IV analisados, os valores mais próximos de 0 indicam menor 

densidade vegetativa (DRAGAN et al., 2005). Especialmente nos anos de 1999 e 2005, 

a vegetação apresentou valores dos IV mais baixos, próximos de 0, indicando densidade 

vegetal baixa e esparsa.  

 

 
Figura 39: Mapa dos IV (NDVI, WDVI, SAVI, com variação do parâmetro L = 1, 0,8 e 0,9) da sub-bacia 

Taperoá e da APA do Cariri para o período de trimestre seco correspondente aos anos de 1995, 1999, 

2005 e 2015.  

 

Pode-se notar que, no período seco e no chuvoso o WDVI foi o índice que 

apresentou a vegetação mais crítica, isso se dá provavelmente pela correção realizada 

nele para atenuar a umidade e brilho do solo, ou seja o solo tem menor interferência nos 

resultados.  
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Histogramas de frequência dos IV 

Os histogramas de frequência de cada IV foram calculados para melhor 

visualização e compreensão da frequência de variabilidade dos valores de cada IV de 

acordo com período (chuvoso e seco) e ano (1995, 1999, 2005 e 2015).  

A Figura 40 mostra os histogramas da área de estudo no período chuvoso e os 

anos de análise. Pode-se notar, conforme a Figura 40, que o intervalo dos valores de 

índices em relação ao período seco é mais amplo, ou seja, existe uma maior amplitude, 

como já observado na Figura 38. Isso provavelmente ocorre devido ao período chuvoso 

apresentar maior quantidade de precipitação, o que, consequentemente, reflete na 

vegetação. 

Embora o período do trimestre chuvoso indique maior quantidade de chuva na 

região, o que poderia resultar em uma vegetação mais densa, os valores maiores que 0,5 

são significativamente baixos, mesmo para o NDVI no ano de 2015, que apresentou 

valores mais altos. Lanchin et al. (2016), Tomasella et al. (2018) e Aquino et al. (2018) 

consideraram o intervalo de 0,30 a 0,40 para o NDVI como transitório, com vegetação 

baixa, variando com gramíneas herbáceas e plantações espaçadas, ou seja, ainda com 

presença de solo nu.    

A Figura 41 mostra os histogramas de cada IV para o período seco e o ano 

correspondente. A partir desses histogramas, é possível notar que os valores, em geral, 

apresentam um intervalo estreito entre 0 e 0,2, podendo assim, classificar a região com 

vegetação baixa com presença de solo nu. Tomasella et al. (2018) identificaram para o 

NDVI a classe que está entre o intervalo de 0 a 0,3 como solo descoberto.  
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Figura 40: Histogramas dos IV (NDVI, WDVI, SAVI, com variação do parâmetro L = 1, 0,8 e 0,9) 

referentes ao período chuvoso para os anos de 1995, 1999, 2005 e 2015, da sub-bacia Taperoá.   

Fonte: Próprio autor. 
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Figura 41: Histogramas dos IV (NDVI, WDVI, SAVI, com variação do parâmetro L = 1, 0,8 e 0,9) 

referentes ao período seco para os anos de 1995, 1999, 2005 e 2015 da sub-bacia Taperoá.   

Fonte: Próprio autor.  
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Para auxiliar na análise do desenvolvimento da vegetação por meio dos IV, a 

Figura 42 mostra o gráfico com as médias espaciais dos valores de cada IV por ano 

(1995, 1999, 2005 e 2015) e período (seco e chuvoso) sobre a área de estudo. Pode-se 

observar nos gráficos que o ano de 1995 apresentou as médias de valores mais altas no 

período chuvoso, comparado aos demais anos, e os menores valores no ano de 1999. No 

período seco, o ano de 2005 apresentou a média dos menores valores dos IV e, em 

2015, os valores mais altos.    

Quando se analisa a média dos valores dos IV no período chuvoso sobre toda a 

área de estudo, é possível notar que, mesmo de forma sensível, os valores aumentaram, 

o que pode indicar que houve certo aumento de densidade vegetativa, consequência da 

chuva.  

 

 
Figura 42: Gráfico das médias espaciais dos IV (NDVI, WDVI, SAVI, com variação do parâmetro L = 1, 

0,8 e 0,9) na sub-bacia Taperoá para os anos de 1995, 1999, 2005 e 2015, para o período chuvoso e seco.  

Fonte: Próprio autor.  

 

Conforme o gráfico da Figura 43, que mostra a diferença absoluta entre as 

médias dos valores dos IV para os períodos chuvoso e seco por ano (1995, 1999, 2005 e 

2015), o WDVI foi o que teve menor amplitude entre o período chuvoso e seco. Tais 

resultados estão coerentes com a literatura. Por exemplo, Nereson, Olivera e Finnegan 

(2018) comentam que o WDVI tem variação gradual, em contraste com o NDVI, que 
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teve maior amplitude, pois, assim como Birtwistle et al. (2016) explicaram, ele 

apresenta grande sensibilidade à precipitação. 

Pode-se entender que, do ano de 1995 para 2015, a diferença dos IV do período 

chuvoso para o período seco foi diminuindo de modo gradual, exceto pelo ano de 1999, 

que apresentou a menor diferença chuvoso-seco entre os quatro anos estudados. 

A resposta vegetativa corresponde à fragilidade do ambiente, logo, quanto 

maior pressão sobre a região, maior será o tempo para uma possível recuperação. 

Assim, conforme mencionado por Barbosa, Huete e Baethgen (2006), a sazonalidade 

corresponde ao estado de crescimento ou decrescimento da vegetação.  

 

 
Figura 43: Gráfico da diferença absoluta das médias dos valores dos IV (NDVI, WDVI, SAVI, com 

variação do parâmetro L = 1, 0,8 e 0,9) entre o período seco e chuvoso na sub-bacia Taperoá nos anos de 

estudo de 1995, 1999, 2005 e 2015. 

Fonte: Próprio autor.  

 

Em termos relativos da diferença entre as médias dos valores dos IV do 

período chuvoso com o seco, conforme a Figura 44, o comportamento do WDVI foi de 

maior taxa percentual de diferença, de forma bem destacada em relação aos demais IV. 

Isso provavelmente por ser de menor valor absoluto quando comparado aos outros IV. 

Nota-se também que o ano de 1999 mostrou a menor variação entre os IV, 

provavelmente por ter sido um dos anos de menor precipitação, além de ter tido o 
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reflexo de baixa precipitação do ano que antecedeu, 1998, pois, conforme mostrou a 

Figura 26, os anos de 1998 e 1999 estão entre os mais secos no intervalo de tempo desta 

pesquisa.  

 

 
Figura 44: Gráfico da diferença relativa das médias dos valores dos IV (NDVI, WDVI, SAVI, com 

variação do parâmetro L = 1, 0,8 e 0,9) entre o período seco e chuvoso na sub-bacia Taperoá nos anos de 

estudo de 1995, 1999, 2005 e 2015. 

Fonte: Próprio autor.  

 

4.1.2 Análise espaço temporal dos Índices de solo 

 

Distribuição espacial dos IS 

Ao analisar os resultados para o IS na área de estudo (Figura 45), pode-se notar 

que, geralmente, no centro da sub-bacia Taperoá, os valores dos índices foram mais 

elevados. Isso indica, no caso do BSI, menor cobertura vegetal e, no caso do GSI, além 

de pouca vegetação, solo mais arenoso.  

A vantagem da análise temporal é que se torna possível avaliar melhor as 

condições do ambiente. Se fossem analisadas somente as cenas referentes ao ano de 

2005, que foi o ano de maior precipitação, conforme mostrado na Figura 26, o período 

seco do BSI, ou para ambos os períodos no GSI, as conclusões poderiam não refletir de 

forma adequada a real situação da região, pois pode-se ver que foi um ano em que os 
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valores dos índices foram mais baixos, refletindo um ambiente menos propício à 

degradação. Porém, vê-se nos demais anos os valores dos índices mais altos.  

Assim como aconteceu nos IV, a região da APA apresenta as mesmas 

características de variação temporal encontradas na sub-bacia Taperoá em relação aos 

IS.  

 
Figura 45: Distribuição espacial dos IS (BSI e GSI) da sub-bacia Taperoá e da APA do Cariri para o 

período do trimestre chuvoso e seco correspondente aos anos de 1995, 1999, 2005 e 2015.  

Fonte: Próprio autor.  

 

Perfis transversais dos IS 

As Figura 46 e 47 mostram o perfil transversal dos IS por período (chuvoso e 

seco) para os anos de estudos de 1995, 1999, 2005 e 2015 na sub-bacia Taperoá. 

Embora os índices sejam de escala de valores diferentes, é possível notar semelhança 

em seu comportamento, assim como ocorreu com os IV. 

Pode-se ver nos perfis que, entre os períodos secos, o ano de 2005 foi o que 

apresentou valores menores de IS, indicativo de melhores condições ambientais do solo 

(menos arenoso e com presença de vegetação). Isso provavelmente ocorreu por ter sido 

entre os anos da pesquisa o ano de maior pluviosidade. Apesar de apresentar no perfil 

transversal muitas áreas sem informação, pode-se notar que os valores do BSI foram os 

menores do período seco, indicando que teve mais solo coberto quando comparado com 
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outros anos na escala temporal da pesquisa. E o GSI apresentou muitos valores 

negativos que também é indicativo de vegetação (XIÃO et al., 2005). Isso também pôde 

ser notado na distribuição espacial da Figura 45. 

No período chuvoso, o ano com melhores condições ambientais estimadas 

pelos IS foi o ano de 1995. Já o ano que apresentou valores de IS mais altos foi o ano de 

1999 que, além de ter tido uma baixa pluviosidade, pode ter tido um reflexo do ano de 

1998, que foi o de menor pluviosidade nos anos do período final e inicial da pesquisa 

(1995 e 2015), conforme pode ser visto na Figura 26.   

Nos períodos chuvosos, os IS apresentaram menores valores, provavelmente 

devido às características climáticas caracterizadas como chuvosas. Em período chuvoso, 

os IV também são mais altos por indicarem maior presença de vegetação, o que também 

reflete nos valores de IS, pois, assim como Bencerril-Piña et al. (2015) comentaram, nas 

regiões semiáridas a cobertura vegetal depende fortemente da precipitação, o que reflete 

também na oscilação ao longo da distância do eixo no período chuvoso, e o período 

seco mais uniforme.  
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Figura 46: Resultado do perfil transversal dos IS ao longo da linha vertical de Norte para Sul, cortando a 

sub-bacia Taperoá. Valores de IS referentes aos anos de 1995, 1999, 2005 e 2015 das imagens 

correspondentes ao trimestre do período chuvoso e seco. 

Fonte: Próprio autor 
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Figura 47: Gráficos com os valores dos IS. Resultado do perfil transversal ao longo da linha horizontal de 

Oeste para Leste, cortando a sub-bacia Taperoá. Valores de IS referentes aos anos de 1995, 1999, 2005 e 

2015 das imagens correspondentes ao trimestre do período chuvoso e seco. 

Fonte: Próprio autor. 

 

Histogramas de frequência dos IS 

A Figura 48 mostra os histogramas referentes aos valores dos IS para o período 

seco e chuvoso dos anos de 1995, 1999, 2005 e 2015 da sub-bacia Taperoá. Pode-se 
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notar que, pelo histograma do BSI, os valores apresentados são relativamente baixos, 

não tão próximos de 200, sendo isso um indicativo de solo totalmente nu, pois os 

valores do solo aumentam quanto mais descobertos (BENCERRIL-PIÑA et al., 2015). 

Porém, também se pode associar esses valores encontrados à uma vegetação esparsa, 

característica de regiões semiáridas (KUMAR, et al., 2016). No período seco, o BSI 

apresentou um intervalo mais estreito, variando os valores entre 100 e 140, comparado 

ao período chuvoso, com um intervalo mais amplo, variando entre 70 e 130.  

Podemos notar que, no histograma, o GSI no período seco apresentou grande 

quantidade de valores entre 0,2 e 0,3. Xião et al. (2005) consideram os valores nesse 

intervalo como característicos de areia fina na camada superficial do solo.  

Os histogramas de IS para o BSI no período seco são assimétricos à direita, 

onde se encontram os valores mais altos do BSI, indicativos de solo com vegetação 

espaçada, pois a região tem características correspondentes à vegetação baixa, conforme 

já comentado anteriormente. A oscilação do período chuvoso pode ser consequente da 

precipitação, pois é um período com maior resposta vegetativa.  

Com relação ao GSI, nota-se grande oscilação, tanto no período seco quanto no 

chuvoso, o que talvez indique maior sensibilidade em relação ao BSI, quando reflete a 

vegetação consequente da precipitação.  

 



108 
 

 
Figura 48: Histogramas dos IS (BSI e GSI) referentes ao período seco para os de 1995, 1999, 2005 e 2015 

da sub-bacia Taperoá.   

Fonte: Próprio autor.  

 

A Figura 49 mostra o gráfico das médias espaciais dos IS no período seco e 

chuvoso na janela temporal do estudo (1995, 1999, 2005 e 2015) desenvolvido na sub-

bacia Taperoá. É possível observar que, embora os índices BSI e GSI tenham escalas de 

valores diferentes entre si, quando houve valores referentes a uma condição ambiental 

que indicou maior ou menor fragilidade no solo, foi notado em ambos os índices tal 

resultado. Por exemplo, o ano de 1999 apresentou os valores mais altos para ambos, BSI 

125,45 e GSI 0,26, ambos indicativos de vegetação escassa e solo arenoso.  
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Pode-se observar também que a variação entre um ano e outro, nos períodos 

chuvoso e seco, teve comportamento semelhante. Por exemplo: do ano de 1999 para o 

ano de 2005, em ambos os IS, tanto no período chuvoso quanto no período seco, 

apresentaram uma sensível melhora na condição ambiental, o que provavelmente pode 

ser explicado pela influência da precipitação, conforme comentado anteriormente. Além 

de 1999 ter sido um ano de baixa pluviosidade, o ano que antecedeu também foi muito 

baixo, com apenas 158,12 mm no ano, e o ano 2005, conforme visto na figura 25, tanto 

para o período chuvoso como seco, teve uma boa pluviometria quando comparado com 

os outros anos da pesquisa.   

 

 
Figura 49: Gráfico das médias espaciais dos IS (BSI e GSI) na sub-bacia Taperoá para os anos de 1995, 

1999, 2005 e 2015 nos períodos chuvoso e seco. 

Fonte: Próprio autor.  

 

4.1.3 Análise espaço temporal do Índice de Aridez (IA) 

 

Foi elaborado o mapa da espacialização do índice de aridez referente à sub-

bacia Taperoá, destacando a APA para os anos de desenvolvimento da pesquisa (1995, 

1999, 2005 e 2015). A categorização foi realizada de acordo com os critérios no plano 
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de combate à desertificação (Matallo Júnior, 2003), apresentados na Tabela 5 do item 

2.5, classificando a susceptibilidade à desertificação como muito alta, alta e moderada, 

em conformidade com o índice de aridez.  

Conforme mostra a Figura 50, pode-se ver que o período seco, de forma geral, 

apresentou susceptibilidade como muito alta, exceto por uma pequena porção próxima à 

APA ao Sudeste e outra a Sudoeste, que foram classificadas, respectivamente, como 

moderada e alta.  

 Nota-se que no mesmo ano, no período chuvoso, uma área foi classificada 

como moderada susceptibilidade e, na estação seca do mesmo ano, como alta 

susceptibilidade. Isso pode ser explicado pela característica da região semiárida, assim 

como mencionado no subitem 2.1 que o déficit hídrico é igual ou superior a 60% no 

ano.  

No período chuvoso, o IA apresentou maior variabilidade espacial, pois nota-se 

que, nos anos da pesquisa, foi encontrada a variação do grau de susceptibilidade à 

desertificação, de acordo com o índice, em nível alto, médio e moderado. Os anos de 

1995 e 2005 tiveram mais classificações do tipo alta e moderada. No ano de 1999, as 

regiões mais ao Leste e ao Sul da sub-bacia Taperoá apresentaram mais valores 

correspondentes à uma susceptibilidade muito alta e alta e, ao Leste, moderada. Já no 

ano de 2015, apenas uma pequena porção da sub-bacia Taperoá, ao Noroeste, 

apresentou valores correspondentes à susceptibilidade moderada e alta, enquanto a 

predominância era do tipo muito alta.   
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Figura 50: Distribuição espacial do IA da sub-bacia Taperoá e da APA do Cariri categorizado pela 

susceptibilidade à desertificação para o período do trimestre chuvoso e seco correspondente aos anos de 

1995, 1999, 2005 e 2015.  

Fonte: Próprio autor.  
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Conforme foi visto na Figura 24 do subitem 3.3.4, o trimestre chuvoso é 

caracterizado pela alta precipitação, e o trimestre seco, pela baixa. Isso é refletido 

também no IA. No período seco, o IA indicou maior susceptibilidade à desertificação do 

que no período chuvoso, como mostra a Figura 51 o período chuvoso do ano 1999, onde 

a variabilidade espacial do IA se assemelha muito com a precipitação. 

 

 
Figura 51: Mapa do IA classificado de acordo com a susceptibilidade à desertificação, segundo os 

critérios de Matallo Júnior (2003), e a precipitação pluviométrica da Sub-bacia Taperoá para o ano de 

1999 no período chuvoso.  

Fonte: Próprio autor.  

  

4.1.4 Análise espaço temporal do Índice de Impacto Humano (IIH) 

 

A Figura 52 contém a APA do Cariri e a espacialização do IIH na sub-bacia 

Taperoá para os anos da janela temporal da pesquisa (1995, 1999, 2005 e 2015). 
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Figura 52: Distribuição espacial do IIH da sub-bacia Taperoá e da APA do Cariri nos anos de 1995, 1999, 

2005 e 2015.  

Fonte: Próprio autor.  

 

Pode-se observar que, no ano de 1995, o IIH apresenta valores mais altos, ou 

seja, foi o ano que se encontrou as regiões na área de estudo com maior adensamento 

populacional, sendo especialmente visto ao Norte da sub-bacia e ao Sudeste. Já os anos 

de 1999, 2005, e 2015 apresentaram um menor adensamento populacional, além de 

conterem uma distribuição geográfica semelhante entre eles.  

A redução populacional do ano 1999 pode ter sido oriunda de alguns anos 

secos, como já observado anteriormente na figura 26. O ano de 1997 teve uma baixa 

pluviosidade, e o ano de 1998 foi ainda mais seco dentro do período da pesquisa. E, 

como visto anteriormente, refletiu no ambiente, os índices de solo e vegetação, e o ano 

de 1999 mostrou o reflexo dessa escassez hídrica, o que provavelmente implicou no 

êxodo. Pode se notar que, posteriormente houve um aumento gradual na densidade 

populacional dos anos 2005 e 2015. 

O centro da área de estudo, em todos os anos, foi a região que apresentou 

menor densidade populacional, diferentemente das extremidades, que apresentaram 

maior adensamento, especialmente ao Norte, Leste e Oeste, sendo que, ao Leste, em um 
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único ponto, isso é observado de forma mais acentuada. Isto ocorreu provavelmente 

porque os setores censitários, que estão localizados no centro da área de estudo, são 

menores comparados com os municípios ao redor. Eles têm apenas um núcleo urbano, 

enquanto os municípios da extremidade da sub-bacia apresentam mais divisões de 

setores urbanos. 

 

4.2 ANÁLISE DO VETOR DE MUDANÇA (AVM)  

 

4.2.1 Análise do Vetor de Mudança (AVM) da sub-bacia Taperoá 

 

A Figura 53 mostra os gráficos de dispersão referentes aos índices aplicados 

para obtenção da AVM, sendo eles o SAVI, com parâmetro L=1, e o BSI, para os 

períodos seco e chuvoso dos anos de 1995 e 2015. 

Pode-se notar que, nos anos e períodos mencionados, quanto mais baixo o 

valor do SAVI, ou seja, mais próximo de 0, sendo isso indicativo de estresse hídrico na 

vegetação, maior o valor referente ao BSI, que é indicativo de menor quantidade de 

densidade vegetal, ou seja, solo nu, mostrando coerência entre o SAVI e BSI. Os 

valores do período seco refletiram um ambiente com condições um pouco mais críticas 

que o período chuvoso, ou seja, um ambiente um pouco mais degradado com vegetação 

mais baixa e espaçada.  
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Figura 53: Gráfico de dispersão da sub-bacia Taperoá entre os índices SAVI e BSI (cada ponto dos 

gráficos correspondes a um dos cerca de 6 milhões pixels da discretização espacial), para os anos de 1995 

e 2015, período chuvoso e seco. 

Fonte: Próprio autor.  

 

Os gráficos da Figura 53 também mostram que, entre o ano de 1995 e 2015, 

tanto no período seco quanto no período chuvoso, houve um sensível aumento na 

degradação, podendo ser notado nos valores do SAVI e BSI, pois, como já mencionado 

anteriormente, quanto mais alto o valor do BSI, maior indicação de solo nu. E, no 

SAVI, quanto mais valores positivos próximos de 0, menor presença de vegetação.    

A Figura 54 mostra a distribuição espacial da AVM na sub-bacia Taperoá para 

as seguintes combinações de anos nos períodos seco e chuvoso: 1995 e 1999; 1999 e 

2005; 2005 e 2105; e 1995 e 2015.  

Pode-se notar a variação dos resultados quando é analisada a escala sazonal. 

Por exemplo: a variação sazonal entre o ano de 2005 no período seco e no período 

chuvoso. No período seco os valores dos índices indicaram um ambiente com condições 

mais críticas. Já no período chuvoso do ano 2015, os valores dos índices indicaram uma 

melhora nas condições ambientais, provavelmente por influencia da umidade 

(RAHMAN E MESEV, 2019), o que reflete diretamente no solo e na vegetação.  



116 
 

 

 
Figura 54: Mapa de Análise do Vetor de Mudança dos períodos seco e chuvoso na sub-bacia Taperoá para 

as combinações dos anos de 1995 e 1999; 1999 e 2005; 2005 e 2015; e 1995 e 2015, considerando as 

classes sem variação, recuperação e degradação (baixa, média e alta).  

Fonte: Próprio autor.  
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Pode-se notar a diferença dos resultados, não só entre as combinações dos 

anos, mas também quando a metodologia é aplicada em períodos distintos, pois, mesmo 

sendo no mesmo ano, os resultados dos períodos seco e chuvoso foram diferentes, assim 

como já observado por Rahman e Mesev (2019), que notaram a influência da umidade 

quando a AVM é calculada para o período chuvoso. Na sub-bacia Taperoá essa 

diferença também pode ser consequência do uso da terra, pois no período chuvoso é 

época de plantação. 

A distribuição espacial mostra que, no período seco, grande parte da sub-bacia 

Taperoá é classificada, de forma relativamente homogênea, como “sem variação” ou 

“de degradação baixa”. Este resultado homogêneo no período seco pode ser 

consequência da severidade da seca característica desse período. Pois, como é 

característico da região semiárida, existem longos períodos de estiagem, o que, 

consequentemente, reflete nas condições ambientais, em especial no solo e na 

vegetação. Dewi, Bijker e Stein (2017) encontraram algo inversamente similar quando 

aplicaram a AVM para uma área de zona costeira, neste caso, em uma região úmida, 

onde os resultados foram homogêneos predominando a classe de sem variação no 

período chuvoso, portanto concluíram que devido às características do ambiente, neste 

período os resultados geravam incertezas.  

Em contrapartida, quando a AVM é aplicada no período chuvoso, observa-se 

os seguintes resultados, em diferentes combinações de anos, referentes à classificação 

de pixels: sem variação, degradação de nível baixo e degradação de nível médio. Pode-

se ressaltar que os anos que envolveram combinação com o ano de 1995 no período 

chuvoso apresentaram maior quantidade de áreas com degradação do tipo média. 

Em relação à análise de estudo, através do conjunto de pares de imagens com 

cenas de anos distintos, confirmou-se a sensibilidade da AVM em relação ao ano que 

ele é aplicado, conforme Lambin e Strahlers (1994) e Dewi, Bijker e Stein (2017). Por 

isso, sugeriram o uso de vários pares de imagens. 

Através das mudanças dos pixels no período chuvoso, comparando os anos 

iniciais da primeira cena, 1995 e 1999, e a última cena, 1995 e 2015, mesmo nas cenas 

com os anos intermediários, notam-se regiões que antes estavam na categoria de baixa 

degradação e não variaram em um certo período, mas, posteriormente, passaram a ser 

classificadas como nível médio de degradação, o que indica que essa região passou por 

um processo de transição gradual agravando sua condição ambiental, solo mais 
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espaçado com pouca presença vegetativa. Um exemplo deste comportamento pode ser 

observado ao Oeste e Sudoeste da sub-bacia Taperoá.  

A Figura 55 mostra os percentuais da sub-bacia Taperoá em relação à 

classificação do resultado da AVM, tanto para o período seco quanto para o período 

chuvoso, com as seguintes combinações de anos: 1995 e 1999; 1999 e 2005; 2005 e 

2015; e 1995 e 2015.  

Pode-se notar que no período seco, entre os anos de 2005 e 2015, quase 100% 

da área de estudo foi classificada como sem variação, demonstrando que não houve 

regeneração, mas também não avançou o grau de degradação. Uma possibilidade deste 

resultado é o fato de que 2015 foi o ano da pesquisa com menor precipitação, tanto no 

período seco como no chuvoso, e foi o ano mais quente no período chuvoso, conforme 

visto, respectivamente, nas Figuras 24 e 25 do subitem 3.3.4. 

Para as combinações dos anos de 1995 e 1999 e de 1995 e 2015, tanto no 

período seco como no chuvoso, as mudanças da AVM foram, em sua maioria, 

classificadas como nível médio, tornando essas áreas de maior prioridade para 

monitoramento com percentuais, respectivamente, de 53,32% e 47,93%. Já nas outras 

combinações de anos, a classificação de degradação com maior percentual foi a do tipo 

baixa. 

O percentual referente à classificação de recuperação, em todos os gráficos, foi 

inexpressivo, sendo encontrado em maior quantidade nas cenas correspondentes à 

combinação do ano de 1999 e 2005, no período seco. Mesmo assim, sendo pouco maior 

que 1%. Por isso, na Figura 54, não é possível identificar as áreas em recuperação, pois 

são pixels isolados. O baixo percentual de área em recuperação também confirma o que 

se tem notado, desde os primeiros resultados da pesquisa, com os índices base, 

conforme visto nos Índices de Vegetação da Figura 43 do subitem 4.1.1.  

Similarmente, os valores correspondentes ao grau de degradação alto também 

têm percentuais baixos. O mais alto é encontrado na combinação entre os anos de 1995 

e 2015 com 0,32%. Porém, diferente das áreas com recuperação, os pixels de 

degradação alta estão agrupados e é possível identificá-los, conforme foi mostrado na 

distribuição espacial da Figura 54. 

É possível perceber que, entre as combinações dos anos e períodos de estudo, 

não se notou um padrão claro referente ao vetor de mudança, apesar de ser encontrada 

certa similaridade entre as combinações dos anos de 1995 e 1999 e de 1995 e 2015, 

tanto para o período seco quanto para o chuvoso. Tal comportamento talvez possa ser 
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explicado pelo fato de o SAVI apresentar valor mais próximo de 1 no período chuvoso 

e, em 2015, no período seco, conforme exibido no gráfico da Figura 43 do subitem 

4.1.1. 

   

  
Figura 55: Gráficos da Análise do vetor de Mudança com percentuais quantitativos da área de estudo, 

sub-bacia Taperoá, para o período seco e chuvoso. 

Fonte: Próprio autor.  
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4.2.2 Análise do Vetor de Mudança na área da APA 

 

A Figura 56 mostra a espacialização da análise do vetor de mudança da APA. 

Nota-se que, ao Sul e Sudoeste da APA, no período chuvoso, apresenta-se, em todas as 

combinações de anos (1995 e 1999; 1999 e 2005; 2005 e 2015; e 1995 e 2015), uma 

área com degradação de nível médio. 

De acordo com a metodologia aplicada, a área da APA não apresenta, de forma 

expressiva, regiões com sinais de recuperação, assim como ocorrido com a sub-bacia 

Taperoá. 

Entre os anos de 2005 e 2015, no período seco, as regiões que mostraram 

algum grau de degradação estão localizadas, em sua maioria, nos cursos de água, 

indicando maior necessidade de monitoramento da mata ciliar da região, como também 

a implantação de programas de recuperação e preservação. Por exemplo, Silva, Souza e 

Bacani (2019) identificaram, ao longo dos rios da APA, uma área com planície ocupada 

por plantação. 
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Figura 56: Mapas da Análise do Vetor de Mudança dos períodos seco e chuvoso na sub-bacia Taperoá, 

para as combinações dos anos de 1995 e 1999; 1999 e 2005; 2005 e 2015; e 1995 e 2015. 

Fonte: Próprio autor.  

 

Na Figura 57 são mostradas duas áreas que, em todos os anos de combinação 

no período chuvoso, apresentou um alto grau de degradação. Na combinação de 1995 e 

1999, nota-se que a figura em destaque apresenta uma região da APA contendo várias 

áreas com vetor de mudança classificado como degradação de nível alto. Silva, Souza e 

Bacani (2019) identificaram em seus estudos essas áreas como transformada e 
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extremamente transformada devido às atividades antrópicas, pois, por se localizarem 

nas extremidades da APA, a população tem acesso mais fácil.  

No destaque dado dentro dessas regiões na Figura 57, representado por um 

círculo, pode-se observar que a mancha de degradação nível alto permanece e, 

inclusive, apresenta sinais de aumento. 

 

 
Figura 57: Destaque da mudança da cobertura da terra para nível alto de degradação na APA, em período 

chuvoso, para todo período da área de estudo, segundo a análise AVM.  

Fonte: Próprio autor.  

 

A Figura 58 mostra os gráficos referentes à AVM da APA. Pode-se ver que o 

percentual da área de degradação média, nos períodos chuvosos, foi maior nas 

combinações que envolveram o ano de 1995, correspondendo a um percentual maior 

que 55% do total da área. 
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Figura 58: Gráficos do Vetor de Mudança com percentuais quantitativos da APA para os períodos seco e 

chuvoso. 

Fonte: Próprio autor.  

 

O vetor de mudança entre os anos de 1999 e 2005 no período chuvoso 

apresenta o maior percentual de área de recuperação. Mesmo assim, este é muito baixo, 

sendo inferior a 2% da área total. Como mostra a Figura 57, não se identificam 
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agrupamentos significativos com essa caracterização. Já os percentuais referentes às 

áreas de degradação alta, embora sejam representados por, no máximo, 3,09% do total 

da área da APA, pode-se observar os agrupamentos dos pixels na Figura 57.  

Através das imagens das Figuras 56 e 57, é possível notar a região da APA que 

está comprometida pela degradação em algum grau, sendo, em sua maioria, médio ou 

alto. Apesar de a Caatinga ser um bioma bastante resiliente, essas características 

despertam a necessidade de monitoramento e proposição de ações para que a 

degradação não aumente.  

 

4.3 ANÁLISE DO ÍNDICE DE RISCO DE TENDÊNCIA À DESERTIFICAÇÃO (IRTD)  

 

4.3.1 Análise de Theil-Sen  

 

Antes de efetuar o cálculo do IRTD, foram analisados os histogramas do 

cálculo de Theil-Sen de cada índice para verificar quais seriam os possíveis métodos de 

classificação, a fim de dividir em quatro classes o risco de tendência à desertificação: 

baixo, médio, alto e extremo.   

A Figura 59 mostra o resultado dos histogramas e, como pode-se notar, o 

intervalo dos valores mínimos e máximos é bem estreito para todos os índices, 

restringindo, assim, o método de classificação para dividir em quatro classes.  

Em geral, a maioria dos histogramas apresentaram um comportamento 

simétrico, ou seja, no centro do histograma está a maior quantidade de dados, o que 

facilita analisar o comportamento dos dados em relação à área de estudo, pois os valores 

no centro em grande quantidade podem ser tidos como padrão característico da área, e 

os valores ao redor, como diferenciais. 

Nota-se que o IA apresenta um histograma com alguns picos, ou seja, tipo 

multimodal. No período seco, o IA obteve três valores com maior frequência na área de 

estudo, sendo um desses valores bem próximo a 0. Já no período chuvoso, também 

apresentou picos de valores negativos. 

O IIH também se diferiu dos demais histogramas. Pode-se notar que seu 

formato é do tipo assimétrico, com frequência de dados acumulada à esquerda com uma 

queda abrupta dos valores. Esse resultado foi devido à característica do dado, pois o IIH 
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foi baseado na densidade da população distribuída na região, limitada por uma área de 

abrangência em cada setor censitário, ou seja, tem os centroides do setor com valor mais 

alto que vai diminuindo ao se distanciar do centro até um raio de 2,5km do centroide do 

setor.   
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Figura 59: Histograma do resultado do cálculo de Theil-Sen para todos os índices (NDVI, SAVI, WDVI, 

BSI GSI, IIH e IA) da área de estudo (sub-bacia Taperoá) para os períodos chuvoso e seco. 

Fonte: Próprio autor.  
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Com o intuito de identificar qual classe de distribuição se adequa melhor à área 

de estudo, foram selecionados dois métodos de acordo com os resultados dos 

histogramas, o método com intervalo do tipo igual e quartil, para ambos os períodos 

(seco e chuvoso), sendo divididos em quatro classes, identificando o nível do risco de 

tendência à desertificação como baixo, médio, alto e extremo pelo cálculo de Theil-Sen 

para cada índice. 

Nas Tabelas 16 e 17 tem-se os limites de cada faixa, respectivamente, com 

intervalo do tipo igual e quartil para o período seco e chuvoso, distribuído nas quatros 

classes de nível de tendência à desertificação mencionadas anteriormente. 

Pode-se notar que, devido às características dos intervalos, o método de 

distribuição igual distribui os limites das faixas de forma regular com os limites de 

amplitude iguais linearmente. Já no intervalo pelo método quartil, os limites nas classes 

médio e alto tem maior concentração dos valores do que nas classes baixo e extremo. 

Becerril-Piña et al. (2015) utilizaram o método de quebras naturais do algoritmo de 

Jenks que agrupam os dados, identificando os pontos que a diferença é maximizada, 

delimitando a categoria. Nesta pesquisa, a variação dos dados não apresentou amplitude 

suficiente para classificar em quatro categorias pelo método de quebras naturais do 

algoritmo de Jenks, pois, quando aplicado, resultou em classes vazias.  

Pode-se notar que o intervalo do tipo quartil não apresenta as classes referentes 

ao IIH, pois, devido à característica do dado, conforme notado no histograma da Figura 

59, não há amplitude para ser dividido em quatro classes, pois, no tipo de intervalo 

quartil, cada classe tem o mesmo número de dados. Depois de encontrado o valor da 

mediana, os dados são divididos abaixo e acima dela (Esri, 2016).      
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Tabela 16: Valores dos intervalos pela classificação no modo igual para o conjunto de índices adotados na 

pesquisa para períodos seco e chuvoso.  

Limites das faixas do método de classificação por intervalo igual distribuído em quatro classes   

Índice Período Baixo (1) Médio (2) Alto (3) Extremo (4) 

NDVI 
Chuvoso 0,100 a 0,019 0,019 a -0,057 -0,057 a -0,134 < -0,134 

Seco 0,200 a 0,040 0,040 a -0,043 -0,043 a -0,128 <-0,128 

SAVI 
Chuvoso 0,044 a 0,005 0,005 a -0,032 -0,032 a -0,071 <-0,071 

Seco 0,043 a 0,007 0,007 a -0,028 -0,028 a -0,064 <-0,064 

WDVI 
Chuvoso 0,030 a -0,0004 -0,0004 a -0,030 -0,030 a -0,060 <-0,060 

Seco 0,060 a 0,011 0,011 a -0,018 -0,018 a -0,048 <-0,048 

BSI 
Chuvoso -4,000 a -2,692 -2,692 a 2,932 2,932 a 8,557 >8,557 

Seco -15,000 a -8,616 -8,616 a -1,739 -1,739 a 5,137 >5,137 

GSI 
Chuvoso -0,050 a -0,038 -0,038 a 0,008 0,008 a 0,054 >0,054 

Seco -0,080 a -0,036 -0,036 a -0,007 -0,007 a 0,022 >0,022 

IA 
Chuvoso 0,100 a 0,0004 0,0004 a -0,033 -0,033 a -0,067 <-0,067 

Seco 0,001 a -0,004 -0,004 a -0,010 -0,010 a -0,016 <-0,016 

IIH -25,000 a -22,238 -22,238 a -3,669 -3,669 a 14,899 >14,899 

 
Tabela 17: Valores dos intervalos pela classificação no modo quartil para o conjunto de índices adotados 

na pesquisa para períodos seco e chuvoso.  

Limites das faixas do método de classificação por intervalo quartil distribuído em quatro classes   

Índice Período Baixo (1) Médio (2) Alto (3) Extremo (4) 

NDVI 
Chuvoso 0,010 a 0,001 0,001 a -0,006 -0,006 a -0,200 <-0,200 

Seco 0,200 a 0,0003 0,0003 a -0,005 -0,005 a -0,200 <-0,200 

SAVI 
Chuvoso 0,050 a 0,001 0,001 a -0,003 -0,003 a -0,080 <-0,080 

Seco 0,090 a 0,001 0,001 a -0,001 -0,001 a -0,070 <-0,070 

WDVI 
Chuvoso 0,030 a 0,00006 0,00006 a -0,003 -0,003 a -0,070 <-0,070 

Seco 0,080 a 0,001 0,001 a 0,0002 0,0002 a -0,070 <-0,070 

BSI 
Chuvoso -5,000 a -2,692 -2,692 a 1,289 1,289 a 2,083 >2,083 

Seco -15,000 a -8,616 -8,616 a 0,357 0,357 a 0,955 >0,955 

GSI 
Chuvoso -0,050 a -0,038 -0,038 a 0,023 0,023 a 0,027 >0,027 

Seco -0,080 a -0,036 -0,036 a 0,003 -0,003 a 0,006 >0,006 

IA 
Chuvoso 0,040 a -0,037  -0,037 a -0,046 -0,046 a -0,070 <-0,070 

Seco 0,001 a -0,002 -0,002 a -0,004 -0,004 a -0,016 <-0,016 

 

A Figura 60 mostra a espacialização dos dados resultantes dos cálculos de 

Theil-Sen pelo método de intervalo igual para o período chuvoso. E, na Figura 61, 

mostra os gráficos com os percentuais das áreas classificados de acordo com a tendência 

a desertificação (baixa, média, alta e extrema).  

Nota-se que os resultados do NDVI e SAVI apresentaram um padrão geral 

semelhante. Algumas regiões que foram classificadas com nível baixo no SAVI também 

se repetiram no WDVI, que apresentou maiores variações entre os IV, bem como maior 

quantidade de área no nível de classificação baixo, quase 40. Essas características foram 

identificadas desde o cálculo do IV base, no subitem 4.1.1, nas figuras 44 e 45, nos 
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gráficos que mostram as diferenças absolutas e relativas de recuperação do período seco 

com o chuvoso. Os valores do WDVI indicaram melhor recuperação da vegetação. 

O cálculo de Theil-Sen para o BSI apresentou valores predominantes na classe 

média, com 91,32%, e, no GSI, com 99,63%, na classe alta. Isso provavelmente é um 

reflexo dos índices base. Como se viu no histograma da Figura 48, do subitem 4.1.2, o 

GSI tem menor amplitude que o BSI, ou seja, os resultados do GSI mostram uma 

condição ambiental mais crítica, pois além de indicar solo nu também é um indicativo 

de solo arenoso. O mesmo aconteceu com os resultados de IS de Becerril-Piña et al. 

(2015) quando calcularam Theil-Sen para classificação de tendência à desertificação.  

Pode-se observar também a representação diferenciada dos resultados para IA, 

relativos aos resultados dos IV e IS, que apresenta valores de forma mais uniforme 

devido à metodologia adotada, conforme descrito no subitem 3.3.4. O mapa do IA, com 

20,13% de área classificada como média, reflete bem a predominância das estações 

pluviométricas, conforme foi mostrado no mapa da Figura 24, que indicam maior 

precipitação a Noroeste da sub-bacia. 
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Figura 60: Cálculo de Theil-Sen de cada índice (NDVI, SAVI, WDVI, BSI, GSI e IA) quanto à 

probabilidade de desertificação, classificado pelo método de intervalo igual distribuído em quatro classes 

(baixo, médio, alto e extremo) para a sub-bacia Taperoá no período chuvoso.  

Fonte: Próprio autor.  
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Figura 61: Gráficos de Theil-Sen de cada índice (NDVI, SAVI, WDVI, BSI, GSI e IA) quanto a 

probabilidade à desertificação, classificado pelo método de intervalo igual distribuído em quatro classes 

(baixo, médio, alto e extremo) para a sub-bacia Taperoá no período chuvoso.  

Fonte: Próprio autor. 

 

As Figuras 62 e 63 mostram, respectivamente, a espacialização e os gráficos 

dos índices de acordo com o cálculo de Theil-Sen, no período seco, classificado pelo 

método de intervalo igual com a tendência de desertificação (baixa, média, alta e 

extrema).   

É possível observar que, dos IV, o SAVI e o WDVI apresentaram mais áreas 

com classificação de baixa probabilidade à desertificação com, respectivamente, 1,34% 

e 0,71%. Porém, para os IV, a classificação de maior probabilidade à desertificação foi 
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do tipo médio, com mais de 98% da área, provável reflexo do IA base, conforme visto 

na Figura 49 do subitem 4.1.3. 

Os IS apresentaram, predominantemente, a classificação de probabilidade à 

desertificação do tipo alto, BSI com 98,87% e GSI com 75,20%. Também foi 

identificado nos IS base, apresentados na Figura 46 do subitem 4.1.2, o resultado para o 

GSI com valores mais heterogêneos.  

Diferente do que ocorreu no IA do período chuvoso para o método de 

classificação igual, o IA do período seco apresentou quase 65% da área com 

classificação do tipo baixa. Esse resultado também reflete a precipitação da sub-bacia 

Taperoá. Pode-se ver, na Figura 24 do subitem 3.3.4, os anos de 2005 e 1999 indicando, 

em especial, maior precipitação ao Leste, sendo classificado como baixo no cálculo de 

Theil-Sen.  
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Figura 62: Cálculo de Theil-Sen de cada índice (NDVI, SAVI, WDVI, BSI, GSI e IA) quanto à 

probabilidade de desertificação, classificado pelo método de intervalo igual, distribuído em quatro classes 

(baixo, médio, alto e extremo), para a sub-bacia Taperoá no período seco.  

Fonte: Próprio autor.  
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Figura 63: Gráficos de Theil-Sen de cada índice (NDVI, SAVI, WDVI, BSI, GSI e IA) quanto a 

probabilidade à desertificação classificado pelo método de intervalo igual distribuído em quatro classes 

(baixo, médio, alto e extremo) para a sub-bacia Taperoá no período seco.  

Fonte: Próprio autor.  

 

As Figuras 64 e 65 mostram a espacialização e o gráfico do cálculo de Theil-

Sen para o IIH classificado pelo método igual. Como já mencionado anteriormente, esse 

é o único índice que não teve a aplicação sazonal. E devido à amplitude dos dados, 

também é o único com método de classificação aplicado apenas no intervalo igual. 

O IIH apresentou, de forma bem homogênea, a classe do tipo alto de propensão 

à desertificação pelo cálculo de Theil-Sen, com mais de 95% da área. Esse resultado se 

mostra tendencioso, pois essa classe tem o valor 0 em seu intervalo. Algumas áreas 

pontuais ainda foram classificadas como extremo, 0,20%, ou seja, algumas áreas 

apresentaram maior densidade populacional. E Becerril-Piña et al. (2015), em seus 
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resultados, tiveram predominância na classe baixa, pois não encontraram valores 

negativos, talvez por ter uma população sempre crescente.  

Pode-se observar, também, em manchas pontuais, algumas áreas na classe de 

nível médio, com 4,17%. Essas características das manchas pontuais correspondem a 

um decréscimo da densidade populacional nessas áreas, conforme já visto anteriormente 

na figura 52. 

 

Figura 64: Cálculo de Theil-Sen do IIH quanto a probabilidade à desertificação classificado pelo método 

de intervalo igual distribuído em quatro classes (baixo, médio, alto e extremo) para a sub-bacia Taperoá.  

Fonte: Próprio autor.  
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Figura 65: Cálculo de Theil-Sen do IIH quanto a probabilidade à desertificação classificado pelo método 

de intervalo igual distribuído em quatro classes (baixo, médio, alto e extremo) para a sub-bacia Taperoá.  

Fonte: Próprio autor.  

  

Na Figura 66, mostra os mapas com intervalo do tipo quartil para o período 

chuvoso do cálculo de Theil-Sen, com as classes de tendência à desertificação por 

índice (NDVI, SAVI, WDVI, BSI, GSI, IIH e IIH) e, na Figura 67, os gráficos.  

Para os IV do período chuvoso, as áreas classificadas como extrema foram 

muito inexpressivas, e as classes baixa, média e alta, em termos de percentuais, ficaram 

similarmente distribuídas com, aproximadamente, 30% em cada classe. Quanto à 

distribuição espacial no centro da sub-bacia Taperoá, as variações foram menores, o que 

pode ter sido reflexo do IA mostrado na Figura 49 do subitem 4.1.3, onde, nos anos de 

1999 e 2015, foi apresentado valores mais altos nas extremidades.  

Quando aplicado o intervalo do tipo igual no período chuvoso, o WDVI 

mostrou classificação bem semelhante aos resultados dos quartis por IV. Isso indica que 

esse método distribui melhor os valores, pois, como visto no subitem 4.1.1, o 

comportamento entre os IV são semelhantes. 

De forma similar, para o IS, embora tendo apresentado valores mais altos, 

variando entre as classes média, alta e extrema, no entorno da sub-bacia prevaleceu a 

classe extrema. O mesmo, de forma semelhante, ocorreu com os IV, sendo um provável 

reflexo do IA. Porém, a variação da degradação do solo do ano de 1995 para 2015 foi 

maior que da vegetação. Já no intervalo do tipo igual, não houve similaridades, pois, 

como já mencionado, a classificação foi bem homogênea.  

O IA, assim como no IV, apresentou variação das classes: baixo, médio e alto. 

Isso se deu devido à diferença da precipitação. Pode-se notar que, como visto no 

subitem 3.3.4, o ano de 2015, na espacialização da precipitação, coincide com a classe 
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baixa. Na Figura 24 e no gráfico da Figura 26, vemos a grande variação da precipitação, 

sendo o ano de 2015 o de menor precipitação dentre os anos usados neste estudo.  

Já ao considerar o método de intervalo igual, a classe baixa é identificada em 

algumas áreas. Nos IV e IA, no centro da sub-bacia, e estas mesmas áreas nos IS, são 

classificadas como média. 

 

 

Figura 66: Cálculo de Theil-Sen de cada índice (NDVI, SAVI, WDVI, BSI, GSI e IA) quanto à 

probabilidade de desertificação classificado pelo método de intervalo quartil, distribuído em quatro 

classes (baixo, médio, alto e extremo) para a sub-bacia Taperoá no período chuvoso.  

Fonte: Próprio autor.  
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Figura 67: Gráficos de Theil-Sen de cada índice (NDVI, SAVI, WDVI, BSI, GSI e IA) quanto a 

probabilidade à desertificação classificado pelo método de intervalo quartil distribuído em quatro classes 

(baixo, médio, alto e extremo) para a sub-bacia Taperoá no período chuvoso.  

Fonte: Próprio autor. 

 

A Figura 68 mostra o resultado referente à classificação do cálculo de Theil-

Sen pelo método quartil no período seco para as classes (baixa, média, alta e extrema), e 

a Figura 69 mostra os respectivos gráficos. Nota-se que os percentuais de distribuição 

da área são bem semelhantes ao período chuvoso do método do intervalo quartil.    

Assim como ocorreu com o intervalo pelo método quartil chuvoso no IV, a 

predominância foi das classes do tipo baixa, média e alta, onde os valores da classe alta 

predominaram mais a Oeste da sub-bacia Taperoá, assim como o valor do IA para essa 

região que, para os anos 2005 e 2015, foram muito próximos de 0. Diferente do que 

ocorreu com o intervalo igual, o resultado pelo método quartil foi mais heterogêneo. 



139 
 

O resultado para o IS no método quartil seco, assim como método quartil 

chuvoso, teve predominância das classes do tipo média, alta e extrema, apresentando 

também regiões com classificação igual, como, por exemplo, ao Sudeste da sub-bacia, 

que teve classe do tipo extrema como predominante. No GSI, pode-se notar um 

comportamento bem semelhante ao índice base, conforme mostrado na Figura 45 do 

subitem 4.1.2. O BSI e o GSI apresentaram algumas similaridades, representando 

mesmas classes ao Norte e Oeste.   

O IA apresentou certa semelhança no intervalo quartil chuvoso na distribuição 

espacial com os resultados da precipitação da sub-bacia Taperoá, conforme a Figura 24 

do subitem 3.3.4. Pôde-se notar isso, especialmente, nos anos de 2005 e 1999, que 

indicaram maior precipitação ao Leste.  
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Figura 68: Cálculo de Theil-Sen de cada índice (NDVI, SAVI, WDVI, BSI, GSI e IA) quanto à 

probabilidade de desertificação, classificado pelo método de intervalo quartil distribuído em quatro 

classes (baixo, médio, alto e extremo) para a sub-bacia Taperoá no período seco.  

Fonte: Próprio autor.  
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Figura 69: Gráficos de Theil-Sen de cada índice (NDVI, SAVI, WDVI, BSI, GSI e IA) quanto à 

probabilidade de desertificação, classificado pelo método de intervalo quartil distribuído em quatro 

classes (baixo, médio, alto e extremo) para a sub-bacia Taperoá no período seco.  

Fonte: Próprio autor.  

4.3.2 Estimativa de Risco à Desertificação 

Nas Figuras 70 e 71, mostram respectivamente, a distribuição espacial e os 

gráficos dos resultados da estimativa de risco à desertificação, segundo o cálculo do 

IRTD para período chuvoso e seco. Foram aplicados dois métodos de classificação, por 

intervalo do tipo quartil e igual, ambos distribuídos em quatro classes (baixa, média, 

alta e extrema).  

Pode-se notar grande diferença nos resultados em relação ao tipo de método de 

distribuição empregado. Como existem outros tipos de método de distribuição, a seleção 
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de qual pode gerar melhores resultados para cada área pode ser um limitador da 

metodologia do IRTD.  

No intervalo igual para o período chuvoso, predominou-se a classe do Índice 

de Risco de Tendencia à Desertificação do tipo alto, com 83,40%, provável reflexo do 

resultado do cálculo de Theil-Sen, em especial do GSI. Já as áreas que se enquadraram 

na classe do tipo médio, com 16,33% da área, coincidem com o IA quando, no cálculo 

de Theil-Sen, apresentou-se a classe de tipo médio.  

Já no método de intervalo igual para o período seco, pode-se ver que, em 

termos de percentual de área, os valores são bem semelhantes ao intervalo do método 

igual para o período chuvoso, se diferindo um pouco na espacialização.  

Para o método do intervalo quartil, diferente do método do intervalo igual, teve 

maior percentuais das áreas classificadas pela classe alta e extrema, aproximadamente 

52% das áreas foram distribuídas nessas duas classes, seja no período seco ou chuvoso. 

E a distribuição espacial também se mostrou mais heterogênea, permitindo identificar 

melhor as áreas com maior criticidade, consequência do método de intervalo aplicado.    

O método para intervalo quartil no período chuvoso mostra algumas manchas 

ao Norte com a classe baixa, representando apenas 0,58% da área, se assemelhando com 

o resultado do cálculo de Theil-Sen para IIH que, nessas áreas, foram classificadas 

como médio. Assim também como nos IV, onde a mesma região foi classificada como 

classe baixa para IA. Já na borda da sub-bacia Taperoá, prevalece a classificação do tipo 

extremo, com 32,82%. Isso é reflexo dos IS com classificação do tipo extremo e, nos 

IV, a mesma região classificada como classe alta. Ao Leste, pode-se ver também a 

influência do IA classificando a área como baixa no IRTD e, ao mesmo tempo, para o 

IA, foi classificada como baixo.  

 No intervalo quartil para o período seco, a predominância das classes também 

se assemelhou ao resultado de Theil-Sen para os IS, com classes do tipo média, 45,64% 

da área total, e extrema, 27,98%. Pode-se ver a Oeste da sub-bacia Taperoá a região 

com classe média. Isso é reflexo do cálculo de Theil-Sen para o IA, quando apresentou 

nessa região a classe baixa. Isso também se aplica dentro da área da APA, que apresenta 

maior quantidade da classe média.   

Nas análises, pode-se observar que os IS foram bastante determinantes quanto 

à classificação da área. Em especial quando foi classificada como extremo, mostrando o 

quanto o solo da região está fragilizado. 
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Figura 70: Índice de Risco de Tendência à Desertificação da sub-bacia Taperoá no período chuvoso e 

seco, classificado pelo método de intervalo igual e quartil. 

Fonte: Próprio autor.  
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Figura 71: Gráfico dos Índice de Risco de Tendência à Desertificação da sub-bacia Taperoá no período 

chuvoso e seco classificado pelo método de intervalo igual e quartil. 

Fonte: Próprio autor. 

 

Na Figura 72, mostra-se a espacialização e, na Figura 73, os gráficos 

resultantes do IRTD para os períodos chuvoso e seco, intervalo do tipo igual e quartil na 

APA. Pode-se observar que, quando se aplica o intervalo igual, a predominância dos 

pixels fica no intervalo classificado como alto, com algumas regiões com nível médio. 

No intervalo pelo método quartil, prevalece as classes médio e extremo, com transição 

pela classe do tipo alto. Já na Figura 65, foi possível observar que a área da APA, apesar 

de ser uma área de preservação, mostra-se ter as características da sub-bacia, permitindo 

a representação dela.  

No IRTD do método de intervalo igual para o período chuvoso, pode-se ver a 

predominância da classe de tipo alto, com 98,79% da área, com 1,11% de regiões da 

classe de tipo médio. As regiões que estão predominando na classe média também 

foram identificadas como classe baixa no cálculo de Theil-Sen, nos IV. No IS, essas 

mesmas áreas tiveram classificação média. Apenas 0,10% da área classificada como 
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extrema é resultado de uma classificação extrema do cálculo de Theil-Sen para os IS e, 

ao mesmo tempo, como classe de tipo médio no NDVI. 

No método igual do IRTD, no período seco, embora tenha apresentado como 

predominância as mesmas classes do período chuvoso, apresentou-se maior quantidade 

de regiões com a classificação do tipo médio, 23,25% da área. As regiões de 

classificação média são oriundas do cálculo de Theil-Sen dos IV e BSI, quando também 

foi classificado, nessas áreas, como classe de tipo baixo e, na região noroeste, ainda 

houve a influência do IIH com essa mesma classificação. Já a classificação do tipo alto 

é consequência do GSI e IA que, para essas regiões, no cálculo de Theil-Sen também 

foram classificadas como alto.  

Para o método quartil no período chuvoso, predominaram os valores de classe 

do tipo extremo, com 64,11% do total da área. A região que foi classificada como 

médio, 10,80%, possivelmente teve essa classificação por causa dos IV que, no cálculo 

de Theil-Sen, nessa mesma área, apresentou valores baixos e, no IS, essas áreas foram 

classificadas como médio. Já as áreas na classe de tipo alto, 27,73% da área são reflexo 

do cálculo de Theil-Sen nos IS, que apresentaram classe de tipo alto e, nos IV, médio.  

 

 
Figura 72: Índice de Risco de Tendência à Desertificação da APA no período chuvoso e seco, classificado 

pelo método de intervalo igual e quartil. 

Fonte: Próprio autor.  
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Para o intervalo quartil seco, a predominância foi dos valores altos com 

32,65%. Na parte Leste e central da APA, os resultados da classe de tipo médio, total de 

47,10%. A classe tipo médio possivelmente é reflexo dos IS que, nessa área, no cálculo 

de Theil-Sen, em geral, apresentaram como resultado a classe de tipo médio e, da 

mesma forma, os IV ao mesmo tempo na classe de tipo baixo. E a predominância na 

classe de tipo extremo, 20,25%, é resultado dos IS, com a classe tipo alto no cálculo de 

Theil-Sen dos IV, em especial o WDVI. E, assim como ocorreu no método quartil 

chuvoso, a classe de tipo alto, com 32,65%, é reflexo do cálculo de Theil-Sen dos IS 

que apresentaram a classe de tipo alto e, nos IV, médio. 

Foi possível notar em todas as análises que o IS foi determinante para decidir 

em qual classe a região iria se locar.  

 

 

Figura 73: Gráficos dos percentuais da área da APA de acordo com Índice de Risco de Tendência à 

Desertificação, classificados pelo método de intervalo igual e quartil para período chuvoso e seco. 

Fonte: Próprio autor. 

 

4.3.3 Avaliação do risco à desertificação com dados de campo 

 

Nesta sessão, são apresentadas as análises para avaliar à estimativa de risco à 

desertificação, comparando o dado estimado, que é o derivado do cálculo do IRTD, e o 

dado observado que foi coletado em campo.  
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A Figura 74 mostra o resultado do IRTD para o método de distribuição de 

intervalo igual e quartil, para o período chuvoso e seco, que foram reclassificados para 

as classes “sem tendência à desertificação” e “com tendência à desertificação”. E o 

conjunto número dois com 22 pontos coletados em campo, classificados como 

“desertificado”, quando ocorreu a desertificação, e como “não desertificado”, quando 

não ocorreu a desertificação, segundo o levantamento de campo, conforme abordado na 

tabela 7. 

Através da espacialização, pode-se notar que os dados de acordo com período 

sazonal apresentaram resultados semelhantes, apesar de usarem métodos de 

classificação distintos. Embora o período seco pareça mais tendencioso à desertificação 

devido às características climáticas naturais da região, onde a paisagem fica mais 

uniforme pelo aspecto seco, com solo nu, vegetação espaçada e baixa, esse período 

apresentou maior quantidade de áreas onde não ocorreu tendência à desertificação. 

Já o período chuvoso, ao se realizar a reclassificação para identificar as áreas 

de ocorrência, ou não, à desertificação, tanto no intervalo igual como no quartil, 

apresentou maior quantidade de área com tendência à desertificação, apesar de a 

característica da região apresentar maior quantidade de rebrota da vegetação. As 

exceções de áreas sem tendência a desertificação ocorreram nas áreas ribeirinhas e 

bordas de lajedos, possivelmente por causa da precipitação, pois a resposta da vegetação 

nessas áreas foi muito mais representativa do que nas outras regiões, pois tanto no 

período seco como no chuvoso é possível identificá-las, ou seja independente da 

sazonalidade são áreas vegetadas, já nas outras áreas apresenta densidade vegetativa por 

rebrota.    

No intervalo pelo método quartil chuvoso, muitas regiões da parte central que 

foram classificadas como sem tendência à desertificação não se repetem nas outras 

situações.  

Para o intervalo quartil seco, o resultado é muito próximo ao chuvoso com 

intervalo igual. Porém, classificou-se uma quantidade maior de áreas sem tendência à 

desertificação, o que se nota especialmente ao Noroeste da APA, como já observado no 

IRTD. Essas áreas sem tendência à desertificação, localizadas em situações particulares, 

onde a cobertura vegetal está mais presente: bordas de lajedos, Serra do Caruá e 

algumas áreas ribeirinhas. Possível influência dominante do WDVI e BSI.  
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Então, através dos índices de performance, assim como Cunha et al. (2020) 

abordaram anteriormente, foi possível quantificar quando houve o falso negativo e o 

falso positivo para cada situação.  

A Tabela 18 mostra os resultados dos índices de performance para as quatro 

situações, os métodos de distribuição (igual e quartil) e o período (seco e chuvoso).  

É possível observar que, para o POD, o método de intervalo igual, chuvoso e 

seco, obteve a melhor quantidade de acertos (1,0) do que quando aplicado para o 

método de intervalo quartil, período seco e chuvoso, ou seja, todas as vezes que foi 

estimada a tendência à desertificação, ela também foi observada em campo. Porém, esse 

resultado requer um olhar mais cuidadoso, pois, como observado na Figura 74, a 

distribuição espacial dos dados mostrou os mapas do intervalo igual, homogêneos, com 

tendência à desertificação.  

 

 
Figura 74: Índice de Risco de Tendência à Desertificação pelos métodos de intervalo igual e quartil para 

os períodos chuvoso e seco, com a classificação de tendência e sem tendencia à desertificação, e a 

primeira amostra dos pontos observados em campo e sua classificação (não desertificado e desertificado) 

com 22 pontos. 

Fonte: Próprio autor.  

 

Por isso que, no PFD, o erro de omissão apresentou o valor de 0,90 para o 

método de intervalo igual chuvoso e 0,80 para o período seco, se destacando entre as 

demais situações, ou seja, apresentou maior quantidade de falsos positivos. Isso foi 
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confirmado com a taxa do BIAS que foi a mais alta para superestimação, ou seja, teve 

muitos falsos positivos quando comparado às outras situações desse estudo, sendo os 

valores 1,75 para o intervalo pelo método igual no período chuvoso e 1,66 para o 

período seco.   

O intervalo quartil chuvoso apresentou o valor do POD (0,66) mais baixo, ou 

seja, com menor número de acertos comparado a outras situações. Embora, como visto 

na Figura 74, ele apresentasse uma distribuição espacial semelhante ao intervalo quartil 

igual seco, os valores do POD foram bem diferentes entre eles. Também apresentou pior 

performance no PC (0,50), que significa o menor percentual de acertos, seja na 

ocorrência ou não ocorrência do evento. E no ISC (0,42), confirmando a fração de 

quando o evento foi estimado, descontando as vezes que apresentou falso positivo. O 

índice de performance FAR (0,47) teve o menor desempenho comparado com as outras 

situações nessa pesquisa, ou seja, apresentou a maior quantidade de falsos positivos.  

O intervalo quartil no período seco foi o que apresentou os valores de melhor 

desempenho em relação aos índices de performance. Embora o POD, quando aplicado 

ao método do intervalo igual, apresentasse um valor mais alto, o resultado requer um 

olhar mais abrangente, o que foi observado ao analisar os outros índices de 

performance, conforme já mencionado.  

Já no intervalo quartil no período seco, foi demonstrada boa performance 

também nas outras métricas, como no PFD (0,20) e FAR (0,18), sendo um indicativo de 

falsa detecção, ou seja, falso positivo. O BIAS (0,92) apresentou uma pequena 

subestimação, enquanto foi superestimando nas outras situações.  

O intervalo quartil no período seco também teve melhor performance no ISC 

(0,64) e PC (0,77), tendo um bom percentual de acertos, mesmo levando em 

consideração a quantidade de falsos positivos. Isso significa que é mais fácil identificar 

a tendencia, ou não tendência, à desertificação no período seco quando aplicado o 

método de intervalo quartil.  

 

Tabela 18: Índices de Performance (PC, ISC, POD, FAR e BIAS) de acordo com os métodos de 

distribuição (quartil e igual) e intervalo (chuvoso e seco) para os dados estimados, Índice de Risco de 

Tendência à Desertificação da APA e os dados observados (pontos coletados em campo).  

Método de Distribuição e 

Período 

Índices de Performance 

PC ISC POD PFD FAR BIAS 

Intervalo Igual Chuvoso  0,59 0,57 1,00 0,90 0,43 1,75 

Intervalo Igual Seco 0,64 0,60 1,00 0,80 0,40 1,66 

Intervalo Quartil Chuvoso 0,50 0,42 0,66 0,70 0,47 1,25 

Intervalo Quartil Seco 0,77 0,64 0,75 0,20 0,18 0,92 
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 Avaliando Ajustes do parâmetro do Índice SAVI 

Com o intuito de conseguir melhores resultados dos índices de performance do 

método de intervalo igual para o período seco, foram testadas variações da constante 

“L” do SAVI. Visto que o parâmetro “L” diminui a tendência do brilho do solo e, como 

na região semiárida, apesar de ter muito solo nu, é enquadrada na definição de Florestas 

Tropicais Sazonalmente Secas (FTSS), foram testados valores mais próximos de uma 

densidade vegetativa média de 0,8 e, posteriormente, retomando para valores mais 

próximo de uma densidade baixa de 0,9.  

A Figura 75 mostra a distribuição espacial para o cálculo IRTD utilizando o 

parâmetro 0,8 e, posteriormente, com valor 0,9 no SAVI e os pontos observados in loco. 

Tal figura também mostra o IRTD do método de intervalo quartil para o período seco 

reclassificado para as classes sem tendência à desertificação e com tendência à 

desertificação, com parâmetro do SAVI de 0,8 e 0,9, e os 22 pontos coletados em 

campo classificados como desertificado quando ocorreu a desertificação, e como não 

desertificado quando não ocorreu a desertificação. 

Pode-se notar que, entre os valores do SAVI com parâmetro de 0,8 e 0,9, existe 

uma diferença significativa que é exibida entre eles na distribuição espacial. Porém, o 

parâmetro 0,9 não traz diferenças expressivas quando comparado ao SAVI com 

parâmetro de valor 1.  

Para o SAVI com parâmetro L = 0,8, dos 22 pontos, 16 foram acertados quanto 

a identificar a ocorrência, ou não ocorrência, de desertificação. Já o SAVI com 

parâmetro L = 0,9 teve um total de 17 pontos identificados de forma correta em relação 

à ocorrência ou não do fenômeno.  
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Figura 75: Índice de Risco de Tendência à Desertificação pelo método de intervalo quartil para o período 

seco, com parâmetro L = 0,8 e 0,9 do SAVI, com a classificação de tendência ou não à desertificação e a 

primeira amostra dos pontos observados em campo com sua classificação (não desertificado e 

desertificado) com 22 pontos. 

Fonte: Próprio autor.  

 

No mapa com o parâmetro de SAVI igual a 0,9, dos pontos que apresentaram 

falso negativo, o ponto 16 está inserido em uma área que, ao seu redor, existe uma 

grande quantidade de pixels com observações que indicam desertificação, mas tem um 
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pixel ao lado do ponto que indica a não ocorrência do fenômeno. Isso talvez possa ter 

acontecido por um deslocamento de ponto, algo similar a um ponto falso positivo 21, 

que está inserido em uma área estimada desertificada, identificada em campo como uma 

área de catingueira morta. Mas tem o pixel ao lado identificado como não ocorrência do 

fenômeno, diferente dos pontos 12 e 13, que estão em áreas bem caracterizadas na 

imagem.   

No parâmetro SAVI 0,8, além dos mesmos pontos 12 e 13 com aspectos iguais 

do SAVI 0,9, também houve superestimação nos pontos 9 e 17, e ambos se encontram 

em áreas com arredores correspondentes ao valor observado de não ocorrência do 

fenômeno.  

Na Tabela 19, tem-se os resultados dos índices de performance para as análises 

com o parâmetro do L = 0,8 e L = 0,9. Observa-se que os valores, quando aplicado o 

parâmetro 0,9, apresentam resultados semelhantes quando aplicado o parâmetro de valor 

1.  

Através dos índices de performance, é possível notar que o parâmetro 0,9 teve 

um melhor desempenho que o 0,8. Embora o POD (0,83) para o parâmetro 0,8 tenha 

tido um melhor desempenho que no POD (0,75) do parâmetro 0,9, nos outros índices o 

parâmetro 0,9 apresentou melhor desempenho. Quando se analisa o PFD (0,40) e FAR 

(0,29), a identificação de falso negativo para o parâmetro 0,8 teve um menor 

desempenho, assim como no BIAS (1,17) que apresentou superestimação, e o PC, que 

está relacionado à quantidade de acertos. 

Também não ocorreu a melhor performance no PC, o que significa o menor 

percentual de acertos, e no ISC, que confirma a fração de quando o evento foi estimado 

descontando as vezes que apresentou falso positivo. 

 

Tabela 19: Índices de Performance (PC, ISC, POD, FAR e BIAS) de acordo com os métodos de 

distribuição (quartil e igual) e intervalo (chuvoso e seco) para os dados estimados, Índice de Risco de 

Tendência à Desertificação da APA e os dados observados (pontos coletados em campo).  

Método de Distribuição e 

Período 

Índices de Performance 

PC ISC POD PFD FAR BIAS 

Intervalo Quartil Seco 0,8 0,73 0,62 0,83 0,40 0,29 1,17 

Intervalo Quartil Seco 0,9 0,77 0,64 0,75 0,20 0,18 0,92 

  

Os gráficos na Figura 76 mostram o percentual das áreas identificadas com 

ocorrência, ou não, à desertificação, quando usado o parâmetro L = 0,8, L= 0,9 e L = 1 

na APA. Pode-se notar que, quando aplicado o SAVI 0,8, foi apresentado maior 
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percentual de tendência à desertificação, quase 10% a mais do que quando se usa os 

parâmetros SAVI 0,9 e 1.  

 

 
Figura 76: Gráficos dos percentuais da quantidade de presença ou ausência da desertificação para três 

variações do parâmetro “L” do SAVI, consecutivamente: 1, 0,9 e 0,8.  

Fonte: Próprio autor. 

 

Medidas de desempenho do total de pontos observados e o IRTD, intervalo quartil, 

período seco, com parâmetro do SAVI igual a 1 

 

Após a avaliação do índice de desempenho para os métodos de intervalo quartil 

e igual, dos períodos chuvoso e seco, e da variação do parâmetro L = 0,8, L = 0,9 e L = 

1, para uma amostra dos conjuntos dos pontos observados em campo, foi identificado 

que o melhor desempenho ocorreu quando usado o método de intervalo quartil no 

período seco para o parâmetro L = 1 do SAVI. Então, foi calculado para o conjunto total 

de 43 pontos os índices de desempenho.  

Conforme se pode observar na Figura 77, os pontos foram espacializados 

seguindo os resultados de identificação de tendência à ocorrência, ou não, de 

desertificação, sobrepondo o raster do IRTD. Observa-se que a área estimada com 

tendência à desertificação a Noroeste da APA também, em sua maior parte, foi 

observada nos dados de campo. Assim como no Oeste da APA, que mostra algumas 

áreas sem tendência à desertificação, também foram identificadas áreas como não 

ocorrência à desertificação. 

A Tabela 20 mostra os índices de desempenho. Pode-se notar que os valores 

indicam que houve uma redução de desempenho quando adicionados novos pontos na 

área de estudo em relação ao número de acertos, como pode-se ver nos resultados do 

PC, ISC, POD FAR e BIAS. Entretanto, o resultado do PFD (0,19), que está 
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relacionado à quantidade de falsos negativos, teve uma melhora no desempenho, o que 

indica que houve menor quantidade de áreas com resultado camuflado quanto à não 

detecção. 

 

Tabela 20: Índices de Performance (PC, ISC, POD, FAR e BIAS), dado estimado do método de 

distribuição quartil, período seco, parâmetro do L do SAVI = 1 do Índice de Risco de Tendência à 

Desertificação da APA, e os dados observados (pontos totais coletados em campo). 

 

Índices de Performance 

PC ISC POD PFD FAR BIAS 

0,77 0,61 0,73 0,190 0,200 0,91 

 

 
Figura 77: Dado estimado, o IRTD no período seco com intervalor do tipo quartil, parâmetro L = 1 do 

SAVI, e o total de dados observados em campo. Ambos classificados com a ocorrência, ou não, do 

fenômeno.  

Fonte: Próprio autor. 

Força motriz do IRTD 

Como observado anteriormente, o IRTD foi obtido a partir da soma do 

resultado do cálculo de Theil-Sen de cada índice e foi aplicado um código para cada 

índice com o intuito de identificar a força motriz deles. 

No Apêndice 1, mostra-se a tabela com os valores dos pixels que coincidem 

com os pontos observados, coletados em campo. Os valores foram extraídos do IRTD 

classificado pelo método de intervalo quartil para o período seco, com parâmetro L do 

SAVI = 1. Com os respectivos códigos atribuídos, foi possível identificar a classe 

quanto ao grau de desertificação de cada índice, bem como, obter o resultado da 

comparação do valor observado com o estimado (positivo, negativo, falso positivo e 

falso negativo).  
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Conforme mostra a Figura 78, é possível identificar a força motriz entre os 

índices aplicados na metodologia (NDVI, SAVI, WDVI, BSI, GSI, IIH e IA) de acordo 

com a classificação: baixo (1), médio (2), alto (3) e extremo (4); identificando, assim, o 

grau de ocorrência à desertificação (positiva, negativa, falso positiva e falso negativa) 

conforme os dados observados em campo.  

Nos gráficos classificados como positivo, apresentando ocorrência de 

desertificação, percebe-se que, em geral, as teias dos gráficos estão mais abertas, pois 

envolve as classes de tendência de ocorrência à desertificação alta (3) e extrema (4). 

Nota-se que dos 16 gráficos, 13 apresentaram o BSI com classe extrema.  

Nos gráficos classificados como negativos, não identificando risco de ocorrência 

de desertificação, as teias dos gráficos estão mais fechadas, envolvendo as 

classificações de valores de baixa (1) e média (2) tendência de ocorrência à 

desertificação. É possível observar o comportamento dos IS neles, pois, dos 17 gráficos, 

apenas em um caso o BSI apresentou a classe extrema, do mesmo modo com GSI.  

Dos índices de vegetação, o WDVI obteve maior peso na maioria dos resultados 

quando foi identificada a tendência de ocorrência à desertificação. Nota-se que, em 

metade dos gráficos classificados como positivo, o WDVI apresentou classificação alta. 

Dessa forma, o BSI foi o índice predominante quando houve a identificação da 

ocorrência do risco à desertificação. Ou seja, no cálculo do IRTD, o BSI é determinante 

em ocorrências positivas de desertificação. 
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Figura 78: Gráficos da força motriz quantificando as classes: baixo (1), médio (2), alto (3) e extremo (4), 

dos valores de cada índice (NDVI, SAVI, WDVI, BSI, GSI, IA e IIH) estimados pelo IRTD e a 

observação de campo, quando houve ocorrência de desertificação em relação aos dados observados 

(positivo), quando não houve ocorrência de desertificação (negativo), quando a ocorrência de 

desertificação foi estimada pelo cálculo IRTD e não observada em campo (falso positivo) e quando não 

foi estimada pelo cálculo IRTD, mas observada em campo (falso negativo). 

Fonte: Próprio autor. 
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5– CONCLUSÕES E RECOMENDAÇÕES 

 

5.1. CONCLUSÕES 

Com base nos estudos e análises feitos nesta pesquisa, pode-se concluir que o 

comportamento dos índices espectrais foi condizente com a sazonalidade da região, com 

grande influência da precipitação, tanto nos índices de vegetação quanto nos índices de 

solo. Entre os índices de vegetação, o Índice de Vegetação de Diferença Ponderada 

(WDVI) foi o que apresentou melhor identificação das áreas com vegetação baixa e 

espaçada em relação aos outros índices, o Índice de Vegetação por Diferença 

Normalizada (NDVI) e o Índice de Vegetação Ajustado para o Solo (SAVI). Isso se dá 

porque no WDVI é feita uma correção para atenuar a umidade e brilho do solo, o que 

mostrou ser um diferencial na região aplicada.  

Na Análise do Vetor de Mudança (AVM), que possibilita a análise e a 

avaliação da mudança da cobertura do solo ao longo do tempo através de várias imagens 

analisadas simultaneamente, ficou claro que é importante que seja feita uma avaliação 

por períodos curtos e longos para um melhor monitoramento, pois foi observado que as 

combinações de períodos mais curtos e mais longo confirmam a classificação de 

determinadas áreas que persistem em uma mesma classe durante todo o período e 

combinações de anos. 

Assim como mencionaram Rahman e Mesev (2019), neste trabalho também se 

conclui que a sazonalidade muda totalmente os resultados da AVM. Devido ao 

semiárido apresentar longos períodos de estiagem, e nesses períodos a paisagem se 

torna mais homogênea, árvores sem folhas, com aspecto de floresta seca, a AVM 

apresentou resultados mais semelhantes para esse período. Para o período chuvoso, 

representou, de forma mais definida, as respectivas classificações entre os anos 

estudados, identificando as classes com algum grau de degradação, ou sem variação. 

A metodologia proposta por Becerril-Piña et al. (2015) tem duas frentes: a 

AVM para identificar as áreas degradadas e a integração de um conjunto de índices 

(ambientais, climático e antrópico) para compor um único Índice de Risco de Tendência 

à Desertificação (IRTD). Tal proposta é de fácil replicação e considerada flexível, 

permitindo ajustes condizentes com a realidade da região onde é aplicada, pois pode se 

adaptar de acordo com os dados disponíveis. Neste estudo, ela foi aplicada com o 

intuito de diagnosticar e avaliar o risco de tendência à desertificação. Porém, também 



158 
 

pode ser efetuada como monitoramento, aplicada anualmente para acompanhar as 

mudanças e auxiliar na tomada de decisão.  

Entre as adaptações que podem ser realizadas na metodologia de Becerril-Piña 

et al. (2015), está a seleção de qual é o melhor método de classificação para se adotar. 

Visto que os dados são agrupados para identificar o grau de ocorrência à desertificação 

(baixo, médio, alto e extremo), o método de classificação vai variar de acordo com a 

área. Outra adequação é quanto ao período sazonal mais apropriado para a região, pois 

envolve ajustes que interferem nos resultados e sucesso do método. Para a sub-bacia 

Taperoá, conclui-se que o método que proporcionou resultados mais satisfatórios foi o 

de intervalo quartil aplicado no período seco. 

Diferente do que ocorreu com a AVM, que teve melhor classificação das áreas 

em processo de degradação quando aplicado o método no período chuvoso, devido à 

sua sensibilidade quanto à umidade, o IRTD teve melhor desempenho no período seco, 

conforme o levantamento dos dados de campo. Ou seja, o melhor resultado vai 

depender da sazonalidade e da metodologia, mesmo quando houver objetivos similares. 

A variação no parâmetro L do SAVI, para um valor abaixo de 1 não trouxe 

resultados satisfatórios. Dentro da aplicação do IRTD, a variação do L abaixo de 1 

apresentou menor desempenho em relação ao valor unitário padrão encontrado na 

literatura, geralmente em regiões com características semiáridas, embora autores como 

Silva et al. (2015), Sashikkumar et al. (2017) e Ren, Zhou e Chang (2018), tenham 

adotado para região semiárida valores do parâmetro L do SAVI menores que 1 e 

encontrado bons resultados.  

Apesar de apresentar subestimação, o IRTD foi validado de forma satisfatória 

por meio de dados observados em campo, onde se obteve a caracterização de acordo 

com a diversidade, extrato e densidade da vegetação e solo exposto. Assim, foi possível 

identificar as regiões com tendência à desertificação.  

O IRTD também possibilitou identificar, no conjunto de índices integrados, a 

força motriz deles. Ao analisar os índices ambientais, dentre os índices de vegetação, o 

WDVI foi o que apresentou maior peso diante do SAVI e NDVI, ou seja, o WDVI, por 

ter menor influência do solo, teve mais êxito ao identificar as áreas com risco de 

tendência à desertificação quando verificado com as características encontradas em 

campo. Pode-se inferir que, quanto menos influência do solo o IV tiver, melhor é o 

resultado para aplicação em regiões semiáridas.  
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Com relação aos índices de solo, ambos os índices usados tiveram força igual 

na maioria dos casos. Os índices de solo foram determinantes ao identificar as áreas 

com maior grau de tendência à desertificação, pois o solo das regiões semiáridas 

geralmente é raso, com muitos afloramentos rochosos, o que reflete no equilíbrio 

ambiental e na produtividade.  

O procedimento para obter o dado antrópico, Índice de Impacto Humano (IIH), 

não foi baseado no centroide dos municípios, conforme comumente encontrado na 

literatura, mas prezou por uma espacialização populacional mais coerente, adotando 

como localização a população por setores censitários, urbanos e rurais. Então, foi 

aplicado o método de Kernel (PARZEN, 1962) e os resultados foram tratados para 

manter a população total dentro de cada município, permanecendo, dessa forma, a 

concentração espacial populacional de forma mais coesa dentro de cada município.       

Em suma, de acordo com o IRTD, quase 30% da área da sub-bacia Taperoá está 

em estágio extremo de desertificação, e 26,19% em estágio alto. Isso quer dizer que, de 

forma mais intensa, essas áreas estão passando pelo processo de desertificação. O solo e 

a vegetação foram os que sofreram maior pressão com as mudanças no uso da terra e 

desmatamento, embora a classe extrema também teve sua distribuição espacial 

fortemente influenciada pelo índice de aridez.  

 

5.2 RECOMENDAÇÕES  

Como recomendações para futuras pesquisas, sugere-se: 

✓ Testar o WDVI para o AVM, variando também o IS; 

✓ Aprimorar a metodologia adotada para distribuição populacional, estudando melhor 

qual raio aplicar; 

✓ Utilizar uma escala temporal e espacial maior, com mais dados coletados em 

campo, e testar para validação imagens de melhor resolução espacial, fazendo 

maior detalhamento da caracterização física da área;  

✓ Inferir novos índices relacionados à influência das atividades antrópicas;  

✓ Comparar os resultados da metodologia aplicada com outras metodologias que 

busquem identificar regiões propensas à desertificação.  
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ANEXO 1 – Lista dos postos pluviométricos com as respectivas coordenadas. 

 

ID Estação Pluviométrica 
Coordenadas (grau decimal) 

Longitude Latitude 

1 Algodão de Jandaíra -36,0075 -6,9061 

2 Amparo -37,0639 -7,5697 

3 Areia de Baraúnas -36,9483 -7,1236 

4 Areial -35,9258 -7,0494 

5 Assunção -36,7322 -7,0764 

6 Boa Vista -36,23750 -7,2575 

7 Boqueirão/Açude Boqueirão -36,1358 -7,4908 

8 Cabaceiras -36,2869 -7,4922 

9 Cacimba de Areia -37,1558 -7,1275 

10 Cacimbas -37,0583 -7,2114 

11 Caturiteia Faz Emas -36,0646 -7,3871 

12 CG SitioAcude de Dentro -36,0842 -7,3386 

13 CG São José da Mata -35,9844 -7,1897 

14 Coxixola -36,6056 -7,6286 

15 Cubati -36,3514 -6,8631 

16 Desterro -37,0881 -7,2903 

17 Gurjão -36,4892 -7,2478 

18 Juazeirinho -36,5800 -7,0683 

19 Junco do Seridó -36,7131 -6,9950 

20 Livramento -36,9492 -7,3761 

21 Matureia -35,3514 -7,2561 

22 Montadas -35,9419 -7,1053 

23 Olivedos -36,2436 -6,9886 

24 Parari -36,6531 -7,3178 

25 Passagem -37,0475 -7,1364 

26 Pocinhos -36,0592 -7,0778 

27 Puxinana -35,9594 -7,1472 

28 Salgadinho -36,8453 -7,1022 

29 Santa Luzia/Riacho do Saco -36,9203 -6,9639 

30 Santo André -36,6311 -7,2214 

31 São Domingos do Cariri -36,4311 -7,6331 

32 São João do Cariri -36,5286 -7,3825 

33 São José dos Cordeiros -36,8058 -7,3908 

34 Seridó -36,4106 -6,8553 

35 Seridó/São Vicente do Seridó -36,3772 -6,9356 

36 Serra Branca -36,6600 -7,4819 

37 Soledade -36,3619 -7,0608 

38 Soledade/Fazenda Pendência -36,4864 -7,1769 

39 Sossêgo -36,2467 -6,7664 

40 Sumé -36,8964 -7,6736 

41 Sumé/Fazenda Bananeiras -36,9631 -7,5069 

42 Sumé/Fazenda Nova -36,7222 -7,3361 

43 Taperoá -36,8281 -7,2164 

44 Teixeira -37,2497 -7,2217 

45 Tenório -36,6294 -6,9408 

 



173 
 

APÊNDICE 1 – Valores dos pixels e pontos observados em campo.  

Pontos 
Theil-Sen 

IRTD 
Ocorrência à 

Desertificação IA IIH SAVI NDVI WDVI BSI GSI 

1 2 3 3 2 1 4 4 19 Positivo 

2 2 3 1 1 1 3 2 13 Negativo 

3 2 3 2 2 2 4 3 18 Positivo 

4 2 3 1 1 2 4 4 17 Positivo 

5 2 3 2 1 1 3 3 15 Negativo 

6 2 3 2 2 2 4 4 19 Positivo 

7 2 3 2 1 3 3 4 18 Positivo 

8 2 3 1 1 2 4 4 17 Positivo 

9 2 3 1 2 2 3 3 16 Negativo 

10 2 3 2 2 3 4 4 20 Falso positivo 

11 2 3 1 2 3 2 3 16 Negativo 

12 2 3 3 2 3 2 3 18 Falso positivo 

13 2 3 2 1 3 2 2 15 Falso negativo 

14 2 3 2 2 2 2 3 16 Negativo 

15 2 3 2 3 2 3 3 18 Positivo 

16 2 3 2 2 2 4 3 18 Falso positivo 

17 2 3 2 2 2 4 2 17 Falso positivo 

18 2 3 1 2 1 2 3 14 Negativo 

19 2 3 1 1 1 2 1 11 Negativo 

20 2 3 3 3 3 2 3 19 Positivo 

21 2 3 1 1 1 3 4 15 Falso negativo 

22 2 3 1 1 1 2 2 12 Negativo 

23 2 3 1 1 1 2 2 12 Negativo 

24 2 3 1 1 1 2 4 14 Negativo 

25 2 3 3 3 2 4 4 21 Falso positivo 

26 2 3 1 1 3 4 3 17 Positivo 

27 2 3 2 2 3 4 3 19 Positivo 

28 2 3 1 1 2 2 2 13 Falso negativo 

29 2 3 1 1 1 3 2 13 Negativo 

30 2 3 1 1 2 4 2 15 Negativo 

31 2 3 2 1 3 4 4 19 Positivo 

32 2 3 2 2 3 4 4 20 Positivo 

33 2 3 1 2 2 3 3 16 Negativo 

34 2 3 1 1 1 2 2 12 Negativo 

35 2 3 3 3 3 2 2 18 Falso positivo 

36 2 3 2 2 3 4 4 20 Positivo 

37 2 2 1 2 3 2 4 16 Falso negativo 

38 2 3 1 1 3 3 2 15 Negativo 

39 2 3 2 3 2 4 4 20 Positivo 

40 2 3 2 2 2 4 4 19 Positivo 

41 2 3 3 2 3 4 3 20 Positivo 

42 2 3 1 1 2 3 3 15 Negativo 

43 2 3 1 2 2 3 3 16 Negativo 

 


