UNIVERSIDADE FEDERAL DA PARAÍBA CENTRO DE TECNOLOGIA PÓS-GRADUAÇÃO EM CIÊNCIA E TECNOLOGIA DE ALIMENTOS MESTRADO

POLYANA DOS SANTOS FERREIRA

ELABORAÇÃO DE SNACKS COM CLADÓDIOS DE FACHEIRO (Pilosocereus pachycladus) E PALMA FORRAGEIRA (Opuntia ficus-indica)

João Pessoa-PB 2020

POLYANA DOS SANTOS FERREIRA

ELABORAÇÃO DE SNACKS COM CLADÓDIOS DE FACHEIRO (Pilosocereus pachycladus) E PALMA FORRAGEIRA (Opuntia ficus-indica)

Dissertação apresentado ao Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos, Universidade Federal da Paraíba em requisitos para obtenção do título de Mestre em Ciência e Tecnologia de Alimentos.

Orientadora: Prof.ª Dra. Angela Maria Tribuzy de Magalhães Cordeiro

> João Pessoa, PB 2020

F383e Ferreira, Polyana dos Santos.

ELABORAÇÃO DE SNACKS COM CLADÓDIOS DE FACHEIRO (Pilosocereus pachycladus) E PALMA FORRAGEIRA (Opuntia ficus- indica) / Polyana Dos Santos Ferreira. - João Pessoa, 2020.

72 f. : il.

Orientação: Angela Maria Tribuzy de Magalhães Cordeiro. Dissertação (Mestrado) - UFPB/PPGCTA/CT.

 Cactáceas. 2. Lanches. 3. Qualidade nutricional. 4.
 Semiárido paraibano. I. Cordeiro, Angela Maria Tribuzy de Magalhães. II. Título.

UFPB/BC

POLYANA DOS SANTOS FERREIRA

Dissertação aprovada em 03 de março de 2020.

BANCA EXAMINADORA

Prof^a Dra. Angela Maria Tribuzy de Magalhães Cordeiro- PPGCTA/CT/UFPB

Coordenadora da Banca Examinadora

Prof^a Dra. Nataly Albuquerque dos Santos- DTA/CTDR/UFPB

Membro Externo

Profa Dra. Cristiani Viegas Brandão Grisi- PPGTA/CCHSA/UFPB

Bristiani Viegos B. Grasi

Membro Externo

DEDICO:

Ao meu amado e querido esposo Júnior Ildefonso e ao meu filho Amado Samuel Nicolas por serem os grandes amores de minha vida.

Aos meus pais José Gomes e Amariles Belarmino por todo apoio, incentivo, compreensão, ensinamentos, por todos os esforços para educar e me tornar a pessoa que sou.

A minha querida irmã Paloma Santos, por todo incentivo, amor e orações.

AGRADECIMENTOS

Primeiramente a Deus, pelo dom da vida, por me amar incondicionalmente, pela saúde, pelo privilégio de servi-lo e por nunca me deixar em nenhum momento de minha caminhada com Ele e sempre me mostrando que sou capaz de ultrapassar os limites da vida.

A minha família, em especial minha querida mãe, por acreditar em mim, por todo seu incentivo e dedicação, ao meu esposo Júnior Ildefonso e meu amado filho, por sempre ser minha força e razão do meu viver, minha irmã amada, pelo amor, apoio, incentivo, compreensão, carinho e ombro amigo nas horas difíceis.

Agradeço de forma especial, professora Angela Cordeiro, mais que uma orientadora, um anjo de Deus que foi colocado em minha vida, pelo amor e dedicação sempre comigo, pela confiança, orientação, paciência, por me guiar nesse trabalho e todo aprendizado que disponibilizou.

Ao Adilson Muller, por disponibilizar-se na coleta das matérias-primas, principalmente no início da pesquisa, pelo sacrifício durante a casa de Farinha, jamais esquecerei!

A minha querida Maristela Alcântara por ser uma grande amiga, enviada por Deus, que sempre tinha uma palavra específica na hora certa para mim, por todos os conselhos, orientações, um braço sempre estendido.

Érica Andrade, amiga querida, grandes momentos passamos juntas, por todo aprendizado, sempre estando presente quando precisava, por toda orientação, ajuda e companheirismo, admiro sua vida e tenho um carinho especial.

A Cris Grisi, por sua disponibilidade sempre em me ajudar, pelos conselhos, orientações, esclarecimentos, dúvidas, companheirismo, um exemplo de ser humano, admiro demais.

Ao pessoal do CTDR todos os técnicos, em especial a Claudinha, Alline Souza, Natasha, e querida Gisleania, por ter me ajudado, pelas sugestões, críticas e discussões, solidariedade e apoio durante todo tempo das análises.

Ao meu amigo João Bosco, sempre comigo nessa caminhada, por sua disponibilidade todo tempo em me ajudar, grata!

A minha amiga querida Jessica Ferreira, por todo os momentos que passamos juntas na vida acadêmica, e tudo que compartilhamos, pelo amor, carinho, atenção e palavras de incentivos uma para outra.

Enfim... a todos que me ajudaram direta e indiretamente e que sempre oraram por mim, para que esse sonho se tornasse realidade.

Meus sinceros agradecimentos!

RESUMO

As cactáceas são plantas alimentícias não convencionais (PANC's) e possuem grande potencial para aplicações na indústria alimentícia, no desenvolvimento de novos produtos, como no preparo de snacks salgados. Este trabalho tem como objetivo a utilização de cladódios de cactos frescos como ingrediente principal para elaboração de snacks salgados. Testes preliminares foram realizados e padronizou-se a substituição de 60% de farinha pelos cladódios frescos triturados de Opuntia ficus indica (OF) e Pilosocereus pachycladus (PP), da mesma forma que se definiu os ingredientes adicionais e sem conservantes químicos. Três formulações de snacks foram preparadas: duas elaboradas com cladódios da espécie OF, sendo uma adicionada de farinha de trigo (OSWF) e outra glúten-free (OSRF) que recebeu farinha de arroz; e a terceira formulação utilizando cladódios da espécie (PP) adicionadas de farinha de trigo (PSWF). Os cladódios de OF e PP apresentaram alto teor de umidade (>90%), de 2 a 3% de carboidratos e teores ínfimos de proteínas, cinzas e lipídios, contudo suficientes para conferirem propriedades tecnológicas e funcionais em produtos alimentícios. A espécie (PP) revelou teor de taninos duas vezes superior a (OF), e ainda, o teor baixo de ácido fítico foi verificado em ambas. A utilização de cladódios frescos triturados de (OF) e (PP) como ingredientes principais nas formulações dos snacks contribuíram para ampliar a variedade de minerais, sobretudo dos *snacks* formulados com a espécie OF por apresentar um maior teor de minerais. Os *snacks* mostraram a presença de ácidos graxos saturados (34,49-35,89%) e insaturados (40,62-43,32%), revelando perfis similares com predominância do ácido linoleico, seguido dos ácidos oleico e palmítico. As três formulações de snacks apresentaram alto teor de carboidratos e amido, seguidos de lipídios, proteínas e cinzas, e valor calórico médio de 464,24 Kcal. Durante a avaliação da vida de prateleira os snacks de cactos apresentaram coloração tendendo ao amarelo claro, sendo a mais escura estatisticamente a amostra (OSWF), e menos vermelha a formulação que utilizou cladódio de PP e farinha de trigo (PSWF). A baixa atividade de água (0,60) ao longo do armazenamento contribui para o controle microbiológico. O snack glúten-free, formulado com (OF) e farinha de arroz, manteve sua crocância inicial até o final do armazenamento (90 dias). Assim, este estudo revela que os cladódios de cactos frescos de Opuntia ficus indica e Pilosocereus pachycladus, espécies nativas do Semiárido paraibano, são promissores como ingredientes alternativos em substituição das farinhas comerciais para serem empregados na elaboração de snacks e produtos de panificação. Conclui-se que os snacks de cactos podem ser uma alternativa para consumidores que buscam alimentos mais saudáveis e livre de conservantes, com a opção glúten-free. Sugere-se novas pesquisas com mucilagens de cactos na elaboração de produtos cárneos, lácteos e de panificação, estimulando a exploração dessas espécies alimentícias não convencionais desvalorizadas para o consumo humano.

Palavras- chave: Cactáceas; Lanches; Qualidade nutricional; Semiárido paraibano.

ABSTRACT

Cacti are unconventional food plants (PANC's) and have great potential for applications in the food industry, in the development of new products, such as in the preparation of savory snacks. This work aims to use cladodes of fresh cacti as the main ingredient for preparing savory snacks. Preliminary tests were performed and the replacement of 60% of flour by the freshly crushed cladodes of *Opuntia ficus indica* (OF) and *Pilosocereus* pachycladus (PP) was standardized, in the same way, that the additional ingredients were defined and without chemical preservatives. Three snack formulations were prepared: two made with cladodes of the OF species, one being added wheat flour (OSWF) and another gluten-free OSRF that received rice flour; and the third formulation using cladodes of the PP species added with wheat flour (PSWF). The OF and PP cladodes had a high moisture content (> 90%), from 2 to 3% of carbohydrates and very low levels of proteins, ashes, and lipids, however sufficient to confer technological and functional properties in food products. The PP species showed a tannin content twice higher than OF, and the low phytic acid content was verified in both. The use of fresh crushed OF and PP cladodes as main ingredients in the formulation of Snacks contributed to expanding the variety of minerals, especially of Snacks formulated with the OF species as it has higher mineral content. Snacks showed the presence of saturated (34, 49-35,89%) and unsaturated (40,62–43,32%), fatty acids, revealing similar profiles with a predominance of linoleic acid, followed by oleic and palmitic acids. The three snack formulations had a high content of carbohydrates and starch, followed by lipids, proteins and ashes, and average caloric value of 464.24 Kcal. During the shelf-life assessment, the cactus snacks showed a color tending to light yellow, the statistically darker the sample (OSWF), and less red the formulation that used PP cladode and wheat flour (PSWF). The low water activity (0.60) during storage contributes to microbiological control. The gluten-free snacks, formulated with OF and rice flour, maintained its initial crispness until the end of storage (90 days). Thus, this study reveals that the fresh cactus cladodes of Opuntia ficus indica and Pilosocereus pachycladus, species native to the Semi-arid region of Paraiba, are promising as alternative ingredients to replace commercial flours to be used in the preparation of snacks and bakery products. We conclude that cactus snacks can be an alternative for consumers looking for healthier and preservative-free foods, with the gluten-free option. Further research is suggested with cactus mucilages in the preparation of meat, dairy and bakery products, stimulating the exploitation of these unconventional food species devalued.

Keywords: cactaceae; human consumption; nutritional quality; snacks;

LISTA DE ILUSTRAÇÕES

Figura 1-Distribuição das cactáceas no mundo	14
Figura 2- Espécie de Facheiro.	16
Figura 3- Espécie de Palma Forrageira.	17
Figura 4- apresenta as etapas de execução desta dissertação	23
Figura 5- Cladódios de cactos utilizados para elaboração dos Snacks	24
Figura 6- Fluxograma da produção dos Snacks	29
ARTIGO	
Figure 1: Color variations of snacks formulated with cacti with and without gluten, du storage	
Figure 2: Image of snacks formulated with cacti	57
Figure 3 - Hardness of formulations during storage	60

LISTA DE TABELAS

Tabela 1: Formulação dos Snacks	28
ARTIGO	
Table 1 - Formulations of cactus cladode snacks.	47
Table 2 - Anti-nutritional compounds of the OF and PP cladodes	51
Table 3 - Characterization of cactus snacks	52
Table 4 - Fatty acid profile¹ of cactus snacks.	54
Table 5: Microbiological analysis of snacks during storage	58

LISTA DE ABREVIATURAS E SIGLAS

ANOVA Análise de Variância

AOAC Official Analytical Chemists International

AW Atividade de Água

CNNPA Comissão Nacional de Normas e Padrões para Alimentos

DG18 Ágar Dicloran 18

EC Escherichia Coli

FAO Food Agriculture Organization

KCAL Quilocalorias

NMP/G Número Mais Provável por gramas

OF Opuntia fícus-indica

OSWF Opuntia fícus-indica com farinha de trigo

OSRF Opuntia fícus-indica com farinha de arroz

PSWF Pilosocereus pachycladus com farinha de trigo

PP Pilosocereus pachycladus

PANCS Plantas Comestíveis não- convencionais

RDC Resolução de Diretoria Colegiada

UFC/G Unidade Formadoras de Colônias por grama

VB Caldo Verde Brilhante

XLD Ágar Xilose Lisina Desoxicolato

SUMÁRIO

1 INTRODUÇÃO	15
2 REFERENCIAL TEÓRICO	17
2.1 PLANTAS ALIMENTÍCIAS NÃO CONVENCIONAIS (PANCs)	17
2.1.1 Facheiro	20
2.1.2 Palma forrageira	22
2.2 Snacks	
3 MATERIAL E MÉTODOS	27
3.1 OBTENÇÃO DAS CACTÁCEAS	28
3.2 CARACTERIZAÇÃO DOS CLADÓDIOS	29
3.2.1 Propriedades físico-química	29
3.2.2 Fatores antinutricionais dos cladódios das cactáceas	30
3.2.3 Composição de Ácidos Graxos	31
3.3 ELABORAÇÃO DOS SNACKS	32
3.4 CARACTERIZAÇÃO E AVALIAÇÃO DA VIDA DE PRATEL DOS SNACKS	
3.4.1 Composição proximal dos snacks	33
3.4.2 Conteúdo Mineral	34
3.4.3 Estabilidade ao armazenamento	34
3.5 ANÁLISES ESTATÍSTICAS	36
REFERÊNCIA:	37
4 RESULTADOS E DISCUSSÃO	44
4.1 ARTIGO:	44
5 CONSIDERAÇÕES FINAIS	70
ANEXO A- Comprovante	71

1 INTRODUÇÃO

Apesar dos diversos avanços registrados no combate à fome, atualmente 820 milhões sofrem com a fome no mundo, as quais estão concentradas nas áreas rurais dependendo largamente da agricultura para sua subsistência (FAO, 2019). Diante dessa realidade, se fazem necessárias fontes alternativas de alimentos, principalmente em regiões com condições climáticas adversas que dificultam o manejo e o cultivo.

O Nordeste Brasileiro, região semiárida, apresenta condições de temperatura elevada e baixa incidência pluviométrica (MORO et al., 2016) que comprometem o cultivo com plantas convencionais (CAVALCANTE; CÂNDIDO, 2003). Contudo, a Caatinga, principal bioma do Nordeste, sendo o único exclusivamente brasileiro (BAPTISTA; CAMPOS, 2015) apresenta diversidade de recursos vegetais que possibilita a utilização para diversos fins pela população regional, principalmente para a alimentação humana e animal (INSA, 2017).

As cactáceas são as que melhor representam o semiárido brasileiro, que por sua vez, são plantas comestíveis não convencionais (PANCs) caracterizadas por serem espécies nativas, exóticas, espontâneas, silvestres ou cultivadas, e são consumidas tradicionalmente ou terapêuticas em determinadas regiões e culturas (PASCHOAL; GOUVEIA; SOUZA, 2016).

O gênero *Opuntia*, amplamente distribuído nas Américas, é uma das mais importantes espécies, popularmente conhecida por palma forrageira ou figo-da-índia. É fonte de antioxidantes, compostos fenólicos, carotenoides e vitaminas, além de ser rica em fibra alimentar e mucilagem (ARUWA, AMOO, KUDANGA, 2018; NASCIMENTO et al.,2011). Além de ser utilizado como anti-inflamatórios, cicatrizante e antimicrobiano, proporciona efeitos benéficos à saúde humana, pois na forma de plantas medicinais é também utilizada no tratamento de diabetes, gastrite e obesidade (EL-MOSTAFA et al., 2014). Estudos mostram que os cladódios de palma forrageira (*Opuntia ficus-indica*) representam uma fonte de polissacarídeos extraível que podem ser usados para produção de alimentos ou para modificar a textura de produtos alimentícios (DICK et al., 2020).

Dentre as várias cactáceas que crescem na região semiárida nas Américas, também encontramos o facheiro (*Pilosocereus pachycladus*) que por sua vez, as informações científicas sobre esta espécie de cacto são extremamente escassas, principalmente à

respeito da utilização de seus cladódios para uso alimentícios, citando apenas o potencial antioxidantes e compostos bioativos de seus frutos (DE SOUZA et al., 2015).

A Food Agriculture Organization (FAO, 2017) também já reconhece o potencial para alimentação humana das cactáceas e sua importância para o desenvolvimento das regiões áridas e semiáridas, especialmente nos países em desenvolvimento, através da exploração econômica das várias espécies, com consequências sustentáveis para o meio ambiente e para segurança alimentar. Neste sentido, vários estudos buscam revelar o potencial nutricional e comercial de espécies nativas subutilizadas, a exemplo das cactáceas do semiárido paraibano, como o facheiro e palma forrageira.

A literatura tem mostrado que a elaboração de *snacks* de PANC's tem sido amplamente pesquisadas, apresentando alternativas nutricionais e funcionais, tornandose lanches mais saudáveis (CHAHDOURA et al., 2018; DICK et al., 2020; SCIAMMARO; FERRERO; PUPPO, 2018; ZUNGU et al., 2019). O desenvolvimento de novos produtos, como biscoitos de cladódios de cactáceas, é uma alternativa simples pela tecnologia aplicada e acessível, onde o baixo custo de fabricação, bem como a vida útil, devido à baixa atividade de água, favorece para um produto com um prazo maior de validade, além de ser atrativo para diferentes faixas etárias. Inclusive, possibilitando a geração de emprego e renda para os pequenos agricultores, contribuindo com o desenvolvimento da região do semiárido.

Diante do exposto, o presente estudo tem como objetivo desenvolver e caracterizar *snacks* elaborados com cladódios de cactos, oriundos do semiárido paraibano, facheiro e palma forrageira e monitorar a vida útil de prateleira, para confirmar o potencial das cactáceas como fontes alternativas de energia alimentícia.

2 REFERENCIAL TEÓRICO

2.1 PLANTAS ALIMENTÍCIAS NÃO CONVENCIONAIS (PANCS)

Plantas alimentícias não convencionais são caracterizadas por espécies comestíveis nativas, exóticas, espontâneas, silvestres ou cultivadas, e que podem ser utilizadas de forma terapêutica em determinadas regiões e culturas. Grande parte se desenvolve espontaneamente em diferentes ambientes e climas adversos, enquanto outras requerem cuidados mais simples, com excelente adaptação, sem a necessidade de fertilizantes e agrotóxicos (GOUVEIA, 2016). Desse modo, são plantas que poderíamos consumir, mas não fazem parte do nosso cotidiano. E o termo coloquial "não-convencionais" refere-se ao fato de não serem produzidas e comercializadas em grande escala, fazendo com que seu cultivo seja menor e pouco divulgado (KINUPP; DE BARROS, 2007).

De acordo, com a FAO (Organização das Nações Unidas para Alimentação e a Agricultura) existe cerca de 6 mil espécies de plantas cultivadas para alimentação e menos de 200 contribuem substancialmente para a produção global de alimentos, e apenas nove respondem por 66% da produção agrícola total (FAO, 2019). Observando-se, assim, que há necessidade de mais conhecimento e divulgação acerca do valor sobre as propriedades funcionais, nutritivas, formas de cultivo, manejo e consumo das PANCs, para se tornarem um potencial econômico e incluir na escala industrial.

BARREIRA et al., (2015) afirmam que o consumo das PANCs pode trazer uma estratégia para manter a diversificação alimentar, estimulando assim a manutenção da floresta, se realizado de forma sustentável, pode ser considerada uma forma de utilização com baixo impacto na agricultura, associada à conservação ambiental.

O Brasil, possui um sistema agroalimentar convencional limitado e com padrão industrializado, que incentiva apenas monoculturas (como o do trigo, milho e soja) e que desfavorece centenas de espécies nativas com potencial nutricional e econômico as (PANCs) (GOUVEIA, 2016). Porém, cada vez mais pesquisas estão sendo realizadas sobre o papel importante dessas plantas, capazes de fornecer benefícios para saúde (BEZERRA, 2018; CALLEGARI, 2017; EMBRAPA, 2017; LIBERATO; TRAVASSOS; SILVA, 2019; KINUPP; DE BARROS, 2007).

Deve salientar, que o Brasil é um país com grande diversidade na fauna e na flora que se encontram em várias regiões. O uso de PANC's tem sido cada vez mais mencionado, como a exemplo na culinária, como folhas e/ou frutos refogadas, que são saborosos, aromáticos, fontes de compostos fenólicos, fibras alimentares, vitamina C, betacaroteno, riboflavina e ácido oleico e ainda possuem propriedades antioxidantes como a capeba (*Pothomorphe Umbrellata*) e o pequi (*Caryocar brasiliense Cambess*) (GOUVEIA, 2016), folhas de alfavaca e grãos do feijão guandu (LORENZI; KINUPP, 2014), seriguela (*Spondias purpúrea L.P*) (LIBERATO; TRAVASSOS; SILVA, 2019). Como também, o uso de espécies de cactáceas na elaboração de biscoitos (DICK et al., 2020) *snacks* com a casca dos cactos (NAMIR et al., 2017), bolos (CHAHDOURA et al., 2018), bebidas (BARBA et al., 2017), entre outros.

Diante de toda a diversidade da flora brasileira, se encontra a família de Cactaceae, pertencente a região Nordeste, que apresenta uma grande variedade de espécies, que podem servir de alimento para o consumo humano, porém seu potencial nutricional não tem sido explorado suficientemente.

2.2 FAMÍLIA CACTACEAE

A família *Cactaceae* compreende 127 gêneros e 1.816 táxons específicos e infraespecíficos, distribuídos em quatro subfamílias: *Cactoideae*, *Opuntioideae*, *Pereskioideae e Maihuenioideae*, as quais foram separadas com base na presença ou ausência de folhas, características das sementes e na presença ou ausência de gloquídeos (HUNT, 2006).

Cactaceae é o termo da língua latina atribuído à família de plantas que agrupa os cactos, nativa do continente americano, destacando-se as regiões do México, Estados Unidos, Peru, Bolívia, Equador, Chile, Argentina e Brasil, tendo observado também fora das Américas, provavelmente introduzidas pelo homem ou por aves migratórias, como pode ser visto na Figura 1 (CAVALCANTE; TELES; MACHADO, 2013).

Figura 1-Distribuição das cactáceas no mundo

Fonte: CAVALCANTE; TELES; MACHADO, 2013.

Nas Américas, a família *Cactaceae* compreende aproximadamente 1.500 espécies. No Brasil, os cactos estão distribuídos tanto na Bacia Amazônica, quanto Cerrado, Mata Atlântica, Pampa, Pantanal e Caatinga (SOUZA; LORENZI, 2008). Existe registro de 254 espécies nativas no espaço geográfico brasileiro, onde no semiárido são conhecidas 85 espécies de cactos nativos presentes na vegetação xerófila (CAVALCANTE; TELES; MACHADO, 2013).

Os cactos são plantas habitualmente espinhentas e suculentas que constituem um importante elemento da paisagem da Caatinga. Essas plantas crescem sob condições de estresse ambiental e têm desenvolvido sistemas de defesa baseado em compostos fitoquímicos, como alcalóides, flavonóides, terpenos, e taninos, substâncias com notáveis atividades biológicas (CAVALCANTE; TELES; MACHADO, 2013; HARLEV et al., 2012).

Segundo estudos, as espécies de cactáceas mostram ser uma fonte interessante de compostos bioativos vegetais (GABALLAH, et al., 2016), onde o gênero *Opuntia spp*

apresentou compostos fenólicos associados ao potencial antioxidante (ZEA; et al., 2011). Algumas espécies são utilizadas principalmente na medicina tradicional e na alimentação (SMIDA et al., 2017) sendo indicado para a produção de sucos, bebidas alcoólicas, geleias e adoçantes naturais (ABDEL-HAMEED, et al., 2014; GURRIERI et al., 2000; LEE et al., 2002; PARK et al., 2017).

Nesse contexto, outros estudos, relatam que espécie de *Opuntia fícus- indica* é uma das melhores matérias-primas para fabricação de suplementos alimentares, uma vez que são bem conhecidos por seus vários benefícios a saúde, como prevenção de doenças cardiovasculares, câncer e diabetes e inibição de inflamação, infecções virais (CHAHDOURA et al., 2018) e combate à resistência microbiana (ARUWA; AMOO; KUDANGA, 2018).

Com o interesse do consumidor, cada vez mais, em produtos naturais, a indústria de alimentos tem crescido muito nessa tendência, levando a pesquisa de novas fontes naturais, como corantes, antimicrobianos e compostos antioxidantes, como reportado por ANTUNES-RICARDO et al., (2020) onde mostram que gêneros de *Opuntia* apresentam potencial para extração de corantes naturais.

De acordo com a Flora Brasil (2020) dentre as espécies encontradas no semiárido brasileiro, estão presentes no território paraibano: facheiro ou facheiro-azul (*Pilosocereus pachycladus*), xique-xique (*Pilocereus gounellei*), mandacaru (*Cereus jamacaru*), palma forrageira ou figo-da-índia (*Opuntia ficus-indica*), quipá (*Tacinga inamoena*) e coroa de frade (*Melocactus zehntneri*).

As xerófitas do semiárido Brasileiro necessitam de estudos aprofundados para geração de dados que possibilitem o desenvolvimento de produtos alimentícios, agreguem valor, com potencial nutricional, e que apresente tecnologia acessível para atender o mercado.

2.1.1 Facheiro

O facheiro é uma espécie de maior abrangência no semiárido Nordestino, possuindo valor ornamental e forrageiro e ainda serve de alimentação de bovinos, caprinos e ovinos, principalmente na época de estiagem (ROCHA; AGRA, 2002).

É uma planta perene, arbustiva, robusta, de tronco ereto com galhos laterais, porém, pouco ramificada, de coloração verde escura, que apresentam espinhos agudos e flores grandes, alvas e isoladas (BRAGA, 1976), visto na Figura 2 A. O fruto é uma baga comestível com formato oblongo, apresenta 45 mm de diâmetro transversal, a coloração varia de totalmente verde a vermelho-púrpura durante maturação, sem espinhos na casca, muito apreciados por pássaros e suas sementes são dispersas pela avifauna (MEDEIROS et al., 2015), podendo ser visto na Figura 2 B.

A

Figura 2- Espécie de Facheiro

A- Facheiro, B- Facheiro com fruto. Fonte: Autoria Própria, 2019 Estudos mostraram características fitoquímicas da espécie *Pilosocereus Pachycladus*, identificando substância promissora de siringaldeído para reverter a resistência bacteriana (FILHO et al., 2017). É citada como medicinal, para tratar de anemia e gastrite, como combustível (óleo e lenha), mas pouco se conhece sobre o valor nutricional desta *cactaceae* (LUCENA et al.,2013; NASCIMENTO et al., 2010). Outros estudos, investigaram as características físico-químicas, bioativas e funcionais da espécie do facheiro, confirmando sua capacidade antioxidante e antienzimática (DE SOUZA et al., 2015).

2.1.2 Palma forrageira

A palma forrageira é uma espécie de múltiplos usos e está amplamente distribuída nas regiões áridas e semiáridas da América do Sul e Central, África e região do Mediterrâneo. É nativa do México, país que a explora desde o período pré-hispânico, detendo a maior riqueza de cultivares (CAGNO et al., 2016).

Adaptada ao clima semiárido do Nordeste brasileiro, as espécies de palma forrageira mais cultivadas são a redonda, a gigante e a miúda, sendo a redonda e a gigante mais resistentes à seca e mais produtivas (NEVE et al., 2010). Mostrado na Figura 3, a palma forrageira gigante.

Figura 3- Espécie de Palma Forrageira

Fonte: Autoria Própria, 2019

No México, estudos mostraram que a secagem de cladódios de palma forrageira para a produção de farinhas tem sido proposta como alternativa nutricional viável (LÓPEZ-CERVANTES et al., 2011). Além do uso para alimentação e forragem, a palma forrageira é também usada para fins farmacêuticos e cosméticos por apresentar propriedades medicinais em Marrocos (KHARRASSI et al., 2016). É também fonte alternativa e promissora de corantes vermelhos em aplicações alimentares e cosméticas, de espécie de *Opuntia fícus-indica* pertencentes ao Egito (AYOUB, et al., 2011). Demonstrou ser rico em betalaína e carotenoides, possuindo cerca de 40 compostos voláteis dentre eles ácidos, álcoois, cetonas, ésteres, hidrocarbonetos e monoterpenos de espécies encontradas na Itália (FARAG et al., 2017).

Du Toit (2016) acrescenta que o efeito da inclusão da palma forrageira em produtos assados tem sido bastante investigado na África do Sul devido às vantagens nutricionais e à facilidade de sua adição aos produtos de panificação, como também é utilizado em substituição a farinha de trigo na produção de bolos, biscoitos.

Andreu-Coll et al., (2019) afirmaram que é bastante comum na Espanha e na Itália, o consumo dos frutos da palma forrageira, porém os cladódios tem se destacado principalmente no México. Os frutos são comumente consumidos frescos, mas podem ser consumidos desidratados, concentrados de sucos, compotas e xaropes. Os cladódios podem ser armazenados enlatados e consumidos como sucos ou pó desidratado, com alto teor de fibra alimentar.

Segundo De Santiago et al., (2018) obtiveram bons resultados para os cladódios fritos em azeite para o perfil de ácidos graxos e em relação ao tratamento térmico obtiveram melhores resultados aqueles que foram desidratados em micro-ondas para a presença dos compostos fenólicos.

Du Toit et al.,(2018) pesquisaram sobre o processamento dos cladódios e caracterizaram quanto a sua capacidade antioxidante, comparando com cladódios frescos, concluiram que os produtos secos foram melhores em termos de capacidade antioxidante.

Atualmente, o uso dos cladódios de palma forrageira pode ser visto como uma estratégia importante para aumentar a riqueza socioeconômico das comunidades rurais, contribuindo assim para os objetivos de desenvolvimento sustentável (ANTUNES-RICARDO et al., 2020).

Devido a diversidades de usos e aplicações da palma forrageira, apesar de ser cultivada no semiárido para exploração de alimentação animal, muitos estudos ainda podem contribuir para o desenvolvimento de novos produtos alimentícios.

2.2 Snacks

Com a crescente demanda mundial por alimentos ao longo dos anos, atrelado ao estilo moderno, as indústrias tem desenvolvido diversos tipos de lanches (doces, barras, flocos, salgadinhos, biscoitos, entre outros) prontos para comer com gosto agradável e alto prazo de validade.

Os snacks, como são conhecidos, representam uma tendência de conveniência e praticidade, uma categoria que abrange uma grande variedade de produtos, entre lanches, refeições leves, petiscos, salgadinhos, salgados, biscoitos, cookies e frutas em pedaços, entre outros. Possibilitam o consumo em diferentes lugares e momentos, e proporcionam redução do tempo de consumo ou eliminação da necessidade de utensílios tradicionais, permitindo a individualização do consumo, proporcionando bem-estar e satisfação (ITAL, 2010). Conforme a RDC N° 64 da Agência Nacional de Vigilância Sanitária (BRASIL, 2008) snacks "compreende o produto para aperitivo, aromatizados ou não, a base de batata, cereais, farinha ou amido (derivados de raízes e tubérculos, legumes e leguminosas)". Diferenciando- se "biscoito ou bolacha" que segundo a legislação brasileira, conforme Resolução 12/78 da Comissão Nacional de Normas e Padrões para Alimentos (CNNPA) (BRASIL,1978), "é o produto obtido pelo amassamento e cozimento conveniente de massa preparada com farinhas, amidos, féculas, fermentadas ou não, e outras substancias alimentícias". Considerando-se "biscoito" um termo genérico para biscoitos, cookies e crackers, nota-se que esse produto contém um baixo conteúdo de umidade. Isso garante que esses produtos estejam geralmente livres de microrganismos, aumentando sua vida de prateleira, objetivo que não é atingido se a embalagem não for adequada.

BRASIL, (1978) descreve a classificação, que entre os mais comuns, encontramse:

a) biscoitos ou bolachas salgadas - produtos que contêm cloreto de sódio em quantidade que acentue o sabor salgado, além das substâncias normais desses produtos;

- b) biscoitos ou bolachas doces produtos que contêm açúcar, além das substâncias normais nesse tipo de produtos;
 - c) recheados quando possuírem um recheio apropriado;
- d) biscoitos ou bolachas para aperitivos e petiscos ou salgadinhos produtos que contêm condimentos, substâncias alimentícias normais desses tipos de produtos;
- e) palitos para aperitivos ou "pretsel" produto preparado com farinha, água, sal, manteiga ou gordura e fermento-biológico; a massa é moldada em forma de varetas, que podem ser dobradas em forma de oito, e são submetidas a prévio cozimento rápido em banho alcalino, antes de assadas.
- f) "waffle" produto preparado à base de farinha de trigo, amido, fermento químico, manteiga ou gordura, leite e ovos e apresentado sob a forma de folha prensadas;
- g) "waffle" recheado produto preparado à base de farinhas, amidos ou féculas, doce ou salgado, podendo conter leite, ovos, manteiga, gorduras e outras substancias alimentícias que o caracteriza, como coco, frutas oleaginosas, geleias de frutas.

Atualmente diversos estudos tem direcionado na busca de novas fontes vegetais para elaboração de *snacks*, tais como: farinha de arroz, castanha, amaranto, chia, alba, quinoa, moringa oleífera, entre outras (MIR; BOSCO; SHAH, 2019; SCIAMMARO; FERRERO; PUPPO, 2018; ZUNGU et al., 2019).

Um fator importante a se considerar é a popularidade destes produtos que se dá pela sua disponibilidade e facilidade em encontrar a qualquer lugar e hora do dia. Além de sua conveniência, estes tipos de alimentos apresentam alto valor energético, qualidade nutricional quando são fortificados com minerais e vitaminas (SCIAMMARO; FERRERO; PUPPO, 2018).

Por outro lado, a diversificação na composição dos *snacks* possibilita atender as exigências do consumidor. E nesse sentido, estudos conduzem a busca de fontes alternativas de forma a responder e ofertar ao mercado produtos sortidos. Logo, os *snacks* à base de farinha de arroz tem ganhado importância devido à seu valor nutricional e atributos sensoriais (MIR et al., 2017), sendo alternativa principalmente para pessoas com doença celíaca que são incapazes de consumir produtos à base de cereais que contem proteínas de glúten. Ainda, estudos mostram a investigação das propriedades tecnológicas e nutricionais frente ao efeito de diferentes proporções de substituição da farinha de

castanha no *snacks* à base de farinha de arroz, mostrando ter um bom potencial para aceitação do consumidor (MIR; BOSCO; SHAH, 2019).

Recentemente, são inúmeros os estudos realizados com a substituição da farinha de trigo por farinhas elaboradas a partir de diversas matrizes, como alcachofra, amaranto, centeio, sálvia, obtendo excelentes resultados. (CARDOSO et al., 2019; DÍAZ et al., 2019; YUKSEL; ILYASOGLU; BALTACI, 2019).

Contudo, deve-se acentuar que o trigo por ser o cereal mais cultivado no mundo, dispõe para produção de diversos produtos da panificação por apresentar características funcionais e tecnológicas únicas, além de serem compostos por macronutrientes, como o amido, água, proteínas e micronutrientes, como polissacarídeos não amiláceos, lipídios e cinzas, sendo importante fonte energética (CARDOSO et al., 2019).

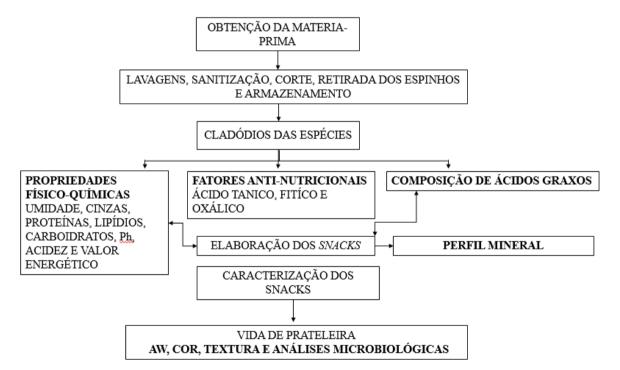
Hoje encontramos diversos tipos de *snacks* com sabores e aromas variados, porém a meta de mercado destes é oferecer aos seus consumidores produtos com alegações saudáveis, sem conservantes, baixo teor de sódio e especiarias naturais. Recentemente, estudo do cladódios de cacto, ofereceu ingredientes potenciais para produção de biscoitos crackers, mostrando maior atividade fenólica e antioxidante (DICK et al., 2020).

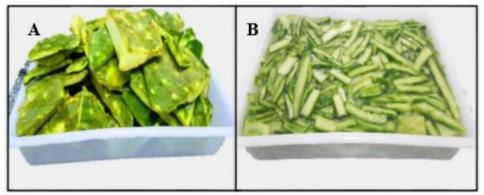
Diante disso, os cladódios de cactos de palma forrageira e facheiro são fontes promissoras para o desenvolvimento de *snacks*, tornando ainda mais atrativo para consumidores que buscam produtos mais saudáveis e com a opção glúten-free.

3 MATERIAL E MÉTODOS

Primeiramente, enuncia-se que esta pesquisa foi cadastrada no Sistema Nacional de Gestão do Patrimônio Genético e do Conhecimento Tradicional Associado (SisGen) sob o nº AB489D3.

A elaboração dos *snacks* de cactáceas, assim como os ensaios experimentais foram realizados na Universidade Federal da Paraíba, no Laboratório de Processamento de Alimentos, do Centro de Tecnologia e Desenvolvimento Regional (CTDR), como também no Núcleo de Pesquisa e Extensão - Laboratório de Combustíveis e Materiais (NPE – LACOM). As análises físicas, físico-químicas e de qualidade microbiológica dos *snacks* foram realizadas, respectivamente: Núcleo de Pesquisa e Extensão Laboratório de Combustíveis e Materiais (NPE – LACOM), Laboratório de Tecnologia Sulcroalcooleira, Laboratório de Processamentos de Alimentos, de Análise Físico-Química de Alimentos e de Microbiologia no Centro de Tecnologia e Desenvolvimento Regional (CTDR).




Figura 4- Apresenta as etapas de execução desta dissertação

3.1 OBTENÇÃO DAS CACTÁCEAS

Os cladódios de cactáceas das espécies de palma forrageira (*Opuntia ficus-indica*) e facheiro (*Pilosocereus pachycladus*) foram coletados, no mês de julho de 2019 diretamente no local de ocorrência em uma área silvestre, localizado na região do semiárido paraibano, no Sítio Canoa de Dentro, situada na zona rural do município de Pedra Lavrada, Paraíba, Brasil, com as coordenadas latitudinais: 6° 45' 16.1" -Sul e as coordenadas longitudinais: 36° 18' 36.0" — Oeste. Os ingredientes utilizados na formulação dos *snacks* foram: queijo ralado (Natural da Vaca®, Goiana, Brasil), cebola desidratada (Hikari®, São Paulo, Brasil), páprica doce ((Hikari®, São Paulo, Brasil), alho frito crocante(Hikari®, São Paulo, Brasil), salsa desidratada (Kitano®, São Paulo, Brasil), sal marinho (Lebre®, Rio Grande do Norte, Brasil), gordura vegetal(Deline®, Pernambuco, Brasil), farinha de arroz (Urbano®, Santa Catarina, Brasil) e farinha de trigo (Rosa Branca®, São Paulo, Brasil) foram adquiridos no comércio local de João Pessoa, Paraíba, Brasil.

Após a coleta, os cladódios foram acondicionados em caixas de papelão para o transporte e permaneceram em temperatura ambiente até a realização das análises. Os gloquídeos dos cladódios foram retirados e em seguida, submetidos à limpeza conforme RDC n°216/2004 (BRASIL, 2004) (Figura 4).

Figura 5- Cladódios de cactos utilizados para elaboração dos Snacks

(A) Opuntia ficus-indica, cladódio cortado transversalmente sem espinhos (B) Pilosocereus pachycladus, cladódio cortado transversalmente sem espinhos com solução de hipoclorito de sódio (2% de cloro ativo).

3.2 CARACTERIZAÇÃO DOS CLADÓDIOS

3.2.1 Propriedades físico-química

Os cladódios das espécies de cactáceas foram avaliadas quanto aos parâmetros físico-químicos: as análises de Umidade, Cinzas, Proteínas, Carboidratos por diferença, Amido total, Acidez e pH foram realizadas de acordo com o Método Oficial da Association of Official Analytical Chemists Internacional (AOAC, 2002). Para a análise de Umidade as amostras foram determinadas por triplicatas após secagem em estufa de circulação de ar (marca ACB, LABOR) por 105° C por 24h até peso constante. As cinzas foram determinadas através da queima das amostras em uma mufla (Zezimaq, modelo:2000F) 550 °C por 24h até peso constante. O teor de proteínas foi determinado pelo método Kjeldahl; o fator utilizado para a conversão de nitrogênio em proteína foi 6,25. O conteúdo lipídico foi determinado pelo método de Bligh- Dyer (1959), usando uma combinação de clorofórmio- metanol- água com uma proporção de 1:2:0,8 em volume, usada como solvente. O teor de carboidratos foi determinado por diferença entre 100 e a soma de cinzas, lipídios, proteínas e umidade. A atividade de água (Aw) que foi medida usando o método higrométrico, com temperatura controlada de 25 °C ± 0,1 °C em um medidor de atividade de água (AQUALAB Serie 4TEV), previamente calibrado com água destilada, as análises foram realizadas em triplicata. O pH foi determinado pelo método potenciométrico, calibrando-se o potenciômetro (marca Even, modelo: pH/3s) com as soluções tampão pH 4,0 e pH 7,0. A acidez titulável total (ATT) foi determinada pelo método de titulação potenciométrico com NaOH 0,1M, determinando o ponto de equivalência pela medida do pH da solução (8,2-8,4), resultado expresso em g Equiv. de ácido cítrico/100g de amostra. O valor energético total proveniente dos nutrientes foi expressos em quilocalorias (Kcal)/100g, estimado a partir dos fatores de conversão de Atwater: Kcal= (4x g proteína) + (4x g carboidratos) + (9 x g lipídios) (MERRIL; WATT, 1973).

3.2.2 Fatores antinutricionais dos cladódios das cactáceas

Para a determinação das análises de compostos antinutricionais dos cladódios foram divididas entre (parte interna e externa) das espécies de *Opuntia ficus-indica* (OF) e *Pilosocereus pachycladus* (PP).

3.2.2.1 Determinação de taninos

A determinação dos ácidos tânicos foi realizada pelo método Folin-Denis segundo Rangana (1979). Para o preparo da amostra, pesou-se 2,5g e a dissolveu em 100 mL de água destilada, em seguida foi submetida ao aquecimento em banho-maria (SOLAB, SL-154/10) a 70 °C por 15 minutos e logo filtrado a vácuo (SOLAB, SL-61). O filtrado coletado foi transferido para um balão de 250 mL onde teve seu volume completado com água destilada. Transferiu-se uma alíquota de 0,5 mL da amostra para balões volumétricos de 50 mL, com 15 mL de água destilada, 1,25 mL da solução de Folin-Denis e 2,5 mL de solução de carbonato de sódio saturado e completou-se o volume com água destilada. Após 30 minutos foi realizada a leitura da absorbância à 760 nm em espectrofotômetro (Spectrophotometer, Edutec, EEQ- 9005, UV-Vis). O teor de ácidos tânicos foi obtido através de uma curva padrão de ácido tânico (y=0,0453x+0,1313, R²= 0,99) e o resultado foi expresso em mg de ácido tânico/100g em base seca da amostra.

3.2.2.3 Determinação de fitatos

A quantificação de fitatos foi realizada segundo a metodologia descrita de Chang & Xu (2009). Para obtenção do extrato, pesou-se 0,5g da farinha e a dissolveu em 10mL de éter de petróleo, em seguida a submeteu ao *shaker* (LUCADEMA, LUCA-223) com agitação a 220rpm por 4horas. Após este período, adicionou-se ao resíduo 10mL de HCl a 2,4% e foi colocada novamente no *shaker* por um tempo de 16 horas. O resultante foi centrifugado (EPPENDORF, CENTRIFUGE 5430r) a 1000rpm em temperatura de 10 °C por 20minutos e filtrado em bomba a vácuo (SOLAB, SL-61). Transferiu-se uma alíquota de 0,3mL do extrato resultante para tubos falcon com 2,7mL de água destilada e 1mL do reagente de Wade, em seguida foram submetidos ao vortex e centrifugação a 10 °C com rotação de 5500 rpm por 10 minutos. Após este período, fez-se a leitura da absorbância à

500nm em espectrofotômetro (Spectrophotometer, Edutec, EEQ- 9005, UV-Vis), usando água como branco. O teor de ácido fítico foi obtido através de uma curva padrão (y=-0,0429x+0,356, r²= 0,99) e o resultado foi expresso em mg de ácido fítico/100g em base seca da amostra.

3.2.2.4 Determinação de oxálico

Para determinação do teor de ácido oxálico foi utilizado o método descrito por Moir (1953), onde pesou-se 2,5 g da amostra e adicionou-se ácido clorídrico a 0,25N, homogeneizou e a colocou em banho-maria (SOLAR, SL-154/10) a 70° C por 1 hora. Em seguida o material foi filtrado, sendo 5 mL transferido para um tubo de falcon de 15 mL e mantido a 4 °C por 12 horas. Após o resfriamento, as amostras forma centrifugadas por 15 minutos, sendo o precitado obtido dissolvido, em solução de ácido clorídrico a 0,25N e adicionado de reagente precipitante sob agitação, o sobrenadante obtido foi descartado e realizou-se uma nova lavagem por centrifugação do precitado com solução de amônio e etanol 96% (2:1 v/v). Novamente descartou-se o sobrenadante, e o precipitado foi colocado para secar em estufa a 100 °C por 30 minutos. A amostra seca foi dissolvida com ácido sulfúrico a 2N, aquecida em água fervente e titulada com permanganato de potássio a 0,02N. O teor de ácido oxálico foi obtido através de uma curva padrão e o resultado foi expresso em mg de ácido oxálico/100g em base seca da amostra.

3.2.3 Composição de Ácidos Graxos

Para a determinação do perfil de ácidos graxos, o conteúdo lipídico extraído dos cladódios foi esterificado (Hartman; Lago, 1973), e seus ésteres analisado por cromatógrafo gasoso acoplado a um espectrômetro de massa (GC-MS-QP-2010, Shimadzu, Japão). Foi utilizada a coluna capilar de sílica fundida DB-23 de 30 m x 0,25 μm x 0,25mm. Foi utilizado o hélio como gás de arraste (vazão de 1 ml/min.). As condições do CG foram: Temperatura do injetor e detector de 250 °C; temperatura inicial do forno de 90 °C, aumentando-se 2,5 °C/mim até atingir 230 °C, permanecendo-se por 30 minutos, totalizando em tempo total de corrida de 39 minutos (Alcântara et al., 2019). Alíquotas de 1,0 μL do extrato esterificado foram injetadas modo Split, ratio 100 e os cromatogramas foram registrados em software CG-MS *Lab Solution*. A identificação e

quantificação dos picos foram obtidos por porcentagens em relação ao conteúdo total de ácidos graxos.

3.3 ELABORAÇÃO DOS SNACKS

Testes preliminares foram realizados com a finalidade de obter uma formulação mais saudável, sem conservantes químicos/artificiais e uma massa homogênea. Assim, para a massa dos *snacks* padronizou-se a substituição de 60% de farinha pelos cladódios frescos triturados de *Opuntia ficus-indica* para as formulações (OSWF e OSRF) e *Pilosocereus pachycladus* para a formulação (PSWF), como ingredientes principais. Os demais ingredientes foram iguais para ambas formulações conforme Tabela 1.

Tabela 1: Formulação dos Snacks.

	Formulação (%)		
Ingredientes	OSWF	OSRF	PSWF
Cladódio	60	60	60
Farinha de trigo	30	-	30
Farinha de arroz	-	30	-
Gordura vegetal	4	4	4
Queijo parmesão	2	2	2
Sal	2	2	2
Especiarias	2	2	2

O processamento dos *snacks* seguiu o fluxograma conforme a figura 5. Os ingredientes foram pesados, e após adição foram homogeneizados por 60 segundos manualmente até formar uma massa uniforme. Em seguida, a massa de cada espécie foi disposta separadamente dentro de uma forma retangular e estendida com rolo de polietileno.

As massas, ainda cruas, foram cortadas em formas simétricas de diâmetro 30 cm por 4,0 mm de altura. As amostras foram aquecidas no forno, com temperatura de 180° por 20 ± 5 minutos.

Figura 6- Fluxograma da produção dos Snacks

Após o resfriamento, os *snacks* foram desenformados, colocados dentro de sacos plásticos transparente de polietileno, devidamente selados à vácuo (Tecmaq TM-150, São Paulo, Brasil) e armazenados em temperatura ambiente para posterior análise.

3.4 CARACTERIZAÇÃO E AVALIAÇÃO DA VIDA DE PRATELEIRA DOS SNACKS

3.4.1 Composição proximal dos snacks

As análises físico-químicas (umidade, proteínas e gordura) e valor energético seguiu metodologia mencionada no item 3.2.1, seguindo a metodologia da AOAC (2012). A composição dos ácidos graxos foi determinada seguido a metodologia apresentada no item 3.4. O teor de amido total foi determinado pelo método Lane Eynom (1934), por meio de hidrólise ácida, neutralizada com hidróxido de sódio a 10%, utilizou-se o fator da solução de Fehling 0,03 e o resultado foi convertido em g de amido por 100g de amostra, ao ser multiplicado pelo fator de conversão de 0,9, em triplicata.

3.4.2 Conteúdo Mineral

As amostras foram submetidas a um processo de incineração a mufla (Zezimaq, 2000F, Minas Gerais, Brasil) à 550 °C. Em seguida, a quantificação dos minerais foi realizada usando um espectrômetro de fluorescência de raio X por energia dispersiva da marca Shimadzu, modelo EDX- 720 (Shimadzu, Tóquio, Japão). O tubo de raio-X utilizado foi de ródio e a atmosfera de trabalho foi o vácuo. A energia de excitação utilizada foi de 50 keV e detector operando a -176 °C. As amostras foram colocadas em cubetas cobertas por um filme de polipropileno de 5 μ m de espessura e seus resultados expressos em mg/100 mg e g/100 g, sendo analisado os minerais: Fósforo, Potássio, Cálcio, Magnésio, Enxofre, Sódio, Alumínio, Cobre, Ferro, Cloro, Manganês, Silício, Rubídio e Zinco.

3.4.3 Estabilidade ao armazenamento

O monitoramento dos *snacks* OSWF, OSRF e PSWF foi realizado no período de 0, 7, 15, 30 e 90 dias através das análises físico-químicas (textura, cor e Aw) e de controle microbiológico (coliformes a 45° C, *Staphylococcus aureus coagulase positivo*, *Salmonella spp*, *Bacillus cereus* e bolores e leveduras).

3.4.3.1 Cor

As medições da colorimetria foram realizadas em 3 *snacks* para cada formulação totalizando 45 amostras, medidas em um analisador de cores (GRETAG MACBETH, COLOR-EYE 2180, USA). A calibração com padrões em preto e branco foi realizada antes da medição da cor. Os parâmetros luminosidade (L*), coordenada vermelho- verde (a*) e coordenada azul-amarela (b*) do espaço de cores CIELAB foram determinados. A variação da cor após cozimento foi calculada pelo total da diferença da cor (Δ E = $\sqrt{(\Delta L)^2 + (\Delta a)^2 + (\Delta b)^2}$ dos *snacks*. Sendo: Δ L= (L _{amostra}- L _{padrão}), Δ a= (a _{amostra}- a _{padrão}) e Δ b= (b _{amostra}- b _{padrão}).

3.4.3.2 Atividade de água (Aw)

A atividade da água (Aw) seguiu metodologia descrita no item 3.2.1.

3.4.3.3 Determinação de Textura

A avaliação das propriedades mecânicas dos *snacks* foi realizada por meio de ensaios de punção com o auxílio do texturômetro (CT3, Brookfield, EUA) com uma célula de carga de 25 Kg. A força de pico de ruptura (g) dos *snacks* usando a força na compressão foi então registrada. O analisador foi ajustado em ciclo de retorno ao início, com uma velocidade de pré-teste de 2 mm/s, velocidade de teste de 3mm/s, velocidade de pós-teste de 3 mm/s; probe: TA7, distância de ruptura: 4,0 mm; limiar de força: (N) e medida em força de cisalhamento. Os resultados foram obtidos através da média aritmética de 3 repetições de cada um dos 5 ensaios.

3.4.3.4 Determinação dos parâmetros microbiológicos

Foram realizadas as análises microbiológicas preconizadas pela legislação para massas alimentícias secas, como também para produtos sólidos prontos para o consumo (petiscos e similares) e (bolachas e biscoitos, incluindo cookies e similares) segundo RDC n° 12 de 02 de janeiro de 2001 (BRASIL, 2001), que aprova o regulamento técnico sobre os padrões microbiológicos para alimentos. Todas as análises foram realizadas segundo metodologia descrita pela APHA (2001).

Coliformes totais e termotolerantes: a amostra foi preparada diluindo-se 25 g da amostra em 225 mL de água peptonada com posterior diluições (10⁻², 10⁻³, 10⁻⁴,10⁻⁵). O teste presuntivo foi realizado em tubos com caldo Lauril Sulfato Triptose – LST incubados a 35 °C por 24-48 h, de cada tubo apresentando turvação e formação de gás foi transferido uma alçada para realização do teste confirmativo, em tubos contendo caldo *Escherichia coli* (EC) (termotolerantes) incubados em banho-maria a 45,5 °C por 24 horas, e em tubos de caldo Verde Brilhante (VB) (totais) incubados em estufa 35 °C por 24-48 horas. Os resultados foram expressos em Número Mais Provável por grama (NMP/g).

Salmonella spp: a pesquisa de Salmonella foi realizada inicialmente com o préenriquecimento da amostra, utilizando-se caldo lactosado incubado a 35 °C por 24 h, seguido por etapa de enriquecimento seletivo com caldo Tetrationato, incubado a 37 °C por 24 h e caldo Rappaport onde os tubos foram incubados a 42 °C por 24 h. Posteriormente, foi retirada uma alíquota dos ambos caldos, transferida para placas contendo Ágar Xilose Lisina Desoxicolato (XLD) incubado a 37 °C por 24h. Os resultados foram expressos com presencia ou ausência.

Staphylococcus coagulase positiva: a amostra foi preparada inicialmente, diluindo-se em água peptonada e homogeneizando-a, para posteriores diluições (10⁻², 10⁻³). Para o isolamento do *S. coagulase positiva*, 0,1 mL de cada diluição da amostra foram espalhados com o auxílio de alças de *Drigalski* na superfície das placas com Ágar Baird-Parker e incubadas em estufa a 36 °C por 48 horas. Os resultados foram expressos em unidades formadoras de colônias por grama de amostra (UFC/g).

Bolores e leveduras: 25 g da amostra foi colocada em 225 mL água peptonada com posterior diluições (10⁻², 10⁻³, 10⁻⁴). Sendo retirada uma alíquota de 0,1 mL para placas que continham Ágar Dicloran Glicerol 18 (DG18) incubado de 22 - 25 °C por 5 dias. Os resultados foram expressos em Unidades Formadoras de Colônias por grama de amostra (UFC/g).

Bacillus cereus: 25g da amostra foi colocada em 225 mL de água peptonada com posterior diluições (10⁻², 10⁻³, 10⁻⁴). Em seguida, foi transferida 1mL das diluições para tubo que continham Caldo Triplicase de Soja (TSB) com Polimixina, incubado a 30 °C por 48h.Em seguida, retirou-se uma alíquota, estriada em placa que continham ágar Manitol Gema de ovo Polimixina (MYP) incubado de 30-35 °C por 24h. Os resultados foram expressos em Unidades Formadoras de Colônias por grama de amostra (UFC/g).

3.5 ANÁLISES ESTATÍSTICAS

Os resultados dos receptivos ensaios laboratoriais foram submetidos à análise de variância (ANOVA), e as diferenças entre as médias foi determinada pelo teste de Tukey, com intervalo de confiança de 95% (p<0,05), utilizando ASSISTAT (2011).

REFERÊNCIA:

ABDEL-HAMEED, E. S. S; NAGATY, M. A; SALMAN, M. S; SA BAZAID, S. A. Fitoquímicos, nutricionais e propriedades antioxidantes de duas cultivares de palma (*Opuntia ficus indica* Mill.) Crescendo em Taif, KSA. **Food Chemistry**, v. 160, p. 31 – 38, 2014.

ALCÂNTARA, M. A. et al. Influence of the emulsion homogenization method on the stability of chia oil microencapsulated by spray drying. **Powder Technology**, v. 354, p. 877–885, 2019.

ANDREU-COLL, L. et al. Fatty acid profile of fruits (pulp and peel) and cladodes (young and old) of prickly pear [Opuntia ficus-indica (L.) Mill.] from six Spanish cultivars. **Journal of Food Composition and Analysis**, v. 84, n. August, p. 103294, 2019.

ANTUNES-RICARDO, M. et al. Enzyme-assisted supercritical fluid extraction of antioxidant isorhamnetin conjugates from Opuntia ficus-indica (L.) Mill. **Journal of Supercritical Fluids**, v. 158, 2020.

AOAC. Official methods of analysis of the Association of Analytical Chemists International (19th ed.). Gaithersburg, AOAC International, 2012.

ARUWA, C. E.; AMOO, S. O.; KUDANGA, T. Opuntia (Cactaceae) plant compounds, biological activities and prospects – A comprehensive review. **Food Research International**, v. 112, n. June, p. 328–344, 2018.

APHA. American public health association. **Compendium of methods for the microbiological examination of foods.** 4th ed. Washington D.C.: APHA, 676 p., 2001.

ARROYO, G.; ARROYO, J.A. Detection of Salmonella serotypes in edible organ meats from markets in Madrid, Spain. **Food Microbiology**, v. 12, p. 13-20, 1995.

ASSISTAT 7.6 BETA. **Assistência Estatística.** DEAG- CTRN- Universidade Federal de Campina Grande- pb, 2011.

AYOUB- OUSSA, T. E; EL-SAMAHY, S. K; ROHN, S; KROH, L. W. Flavonols, betacyanin content and antioxidant activity of cactus fruits *Opuntia macrorhiza*. **Food Research International**, v.44, 7^a ed., p. 2169-2174, Agosto de 2011.

BAPTISTA, N.; CAMPOS, C. H. Caracterização do Semiárido brasileiro. 2015. Disponível em:< http://www4.planalto.gov.br/consea/comunicacao/artigos/2014-1/caracterizacao-dosemiarido-brasileiro>. Acesso em: 5 de Ag. 2017.

BARBA, F. J. et al. Impact of conventional and non-conventional processing on prickly pear (Opuntia spp.) and their derived products: From preservation of beverages to valorization of by-products. **Trends in Food Science and Technology**, v. 67, p. 260–270, 2017.

BARREIRA, T. F. et al. Diversidade e equitabilidade de Plantas Alimentícias Não Convencionais na zona rural de Viçosa, Minas Gerais, Brasil. **Revista Brasileira de Plantas Medicinais**, v. 17, n. 4, p. 964–974, 2015.

BLIGH, E. G., DYER, W. J. A rapid method of total lipid extraction and purification. **Canadian Journal of Biochemistry and Physiology,** v.37, p. 911-917, 1959.

BRAGA, R. **Plantas do Nordeste, especialmente do Ceará.** Mossoró: Escola Superior de Agricultura de Mossoró, v. 3, p. 510, 1976.

BRASIL. Ministério da Saúde. Agência de Vigilância Sanitária. **Resolução N° 64 de 16 de Setembro de 2008**. Regulamento Técnico sobre Atribuiçao de aditivos e seus limites máximos para alimentos. Diário Oficial da União, Brasília, DF, 17 de Setembro de 2008.

BRASIL. Ministério da Saúde. Agência Nacional de Vigilância Sanitária. **Resolução** - **CNNPA nº 12, de 1978.** Definição sobre Biscoitos e Bolachas. Disponível em: https://portal.anvisa.gov.br/legislacao-por-categoria-de-produto>. Acesso em :14/02/2020.

BRASIL. Ministério da Saúde. Agência Nacional de Vigilância Sanitária. **Resolução RDC n. 12, de 02 de janeiro de 2001**. Regulamento Técnico sobre os padrões microbiológicos para alimentos. Diário Oficial da União, 2001.

BRASIL. Ministério da Saúde. Agência Nacional de Vigilância Sanitária. **Resolução RDC n. 216, de13 de setembro de 2004.** Regulamento Técnico de Boas Práticas para Serviços de Alimentação. Diário Oficial da União, 2004.

BEZERRA, A. N. PLANTAS ALIMENTÍCIAS NÃO CONVENCIONAIS (Pancs) UTILIZADAS POR COMUNIDADES INDÍGENAS E TRADICIONAIS. 2018.

BHARATH, K. S. et al. Green synthesis of metal nanoparticles using spices. **Cutting Edge**, 42–45, 2017.

CAGNO, R.; FILANNINO, P.; VINCENTINI, O.; LANERA, A.; CAVOSKI, I.; GOBBETTI, M. Exploitation of Leuconostoc mesenteroides strains to improve shelf life, rheological, sensory and functional features of prickly pear (Opuntia ficus-indica L.) fruit puree. **Food Microbiology**, v.59, n.1, p.176-189, 2016.

CALLEGARI, C. R. Plantas Alimentícias Não Convencionais PANCs. 2017.

CARDOSO, R. V. C. et al. Physicochemical characterization and microbiology of wheat and rye flours. **Food Chemistry**, v. 280, n. September 2018, p. 123–129, 2019.

- CHAHDOURA, H. et al. Incorporation of Opuntia macrorhiza Engelm. in cake-making: Physical and sensory characteristics. **LWT Food Science and Technology**, v. 90, n. December 2017, p. 15–21, 2018.
- CAVALCANTE, A. C. R.; CÂNDIDO, M. J. D. Alternativas para aumentar a disponibilidade de alimentos nos sistemas de produção a pasto na região Nordeste. Embrapa Caprinos, p. 31, 2003.
- CAVALCANTE, A.; TELES, M.; MACHADO, M. Cactos do Semiárido do Brasil: guia ilustrado. Campina Grande PB: Instituto Nacional do Semiárido, p.132, 2013.
- CORRAL-AGUAYO, R. D., YAHIA, E. M., CARRILLO-LÓPEZ, A., GONZÁLEZ-AGUILAR, G. Correlation between some nutritional components and the total antioxidant capacity measured with six different assays in eight horticultural crops. **Journal of Agricultural and Food Chemistry**, 56(22), 10498–10504, 2008.
- CHANG, S.K. C, & XU, B. (2009). Total phenolic, phenolic acid, anthocyanin, flavan-3-ol, and flavonol profiles and antioxidant properties of pinto and black beans (Phaseolus vulgaris L.) as affected by thermal processing. **Journal of Agricultural and food Chemistry**, 57 (1), 4754-4764.
- DE SANTIAGO, E. et al. Impact of cooking process on nutritional composition and antioxidants of cactus cladodes (Opuntia ficus-indica). **Food Chemistry**, v. 240, n. April 2017, p. 1055–1062, 2018.
- DE SOUZA, R. L. A. et al. Physicochemical, bioactive and functional evaluation of the exotic fruits Opuntia ficus-indica AND Pilosocereus pachycladus Ritter from the Brazilian caatinga. **Journal of Food Science and Technology**, v. 52, n. 11, p. 7329–7336, 2015.
- DÍAZ, A. et al. Jerusalem artichoke tuber flour as a wheat flour substitute for biscuit elaboration. **Lwt**, v. 108, n. November 2018, p. 361–369, 2019.
- DICK, M. et al. Mucilage and cladode flour from cactus (Opuntia monacantha) as alternative ingredients in gluten-free crackers. **Food Chemistry**, p. 126178, 2020.
- DU TOIT, A. et al. Antioxidant properties of fresh and processed cactus pear cladodes from selected Opuntia ficus-indica and O. robusta cultivars. **South African Journal of Botany**, v. 118, p. 44–51, 2018.
- DU TOIT M, A. Selection, extraction, characterization and application of mucilage from cactus pear (Opuntia ficus-indica and Opuntia robusta). Philosophiae Doctor. Department of Consumer Science, Faculty of Natural and Agricultural Sciences at the University of the Free State, Bloemfontein, South Africa August 2016.
- EL-MOSTAFA, K; KHARRASSI EL; BADREDDINE A, ANDREOLETTI, P; VAMECQ, J; KEBBAJ,M.S. EL; LATRUFFE, N; LAGARTO, G; NASSER, B; CHERKAOUI-MALKI, M.Nopal Cactus (*Opuntia ficus-indica*) as a source of

- bioactive c ompounds for nutrition, health and disease. **Molecules**, v. 19, p. 14879-14901, 2014.
- EMBRAPA- Empresa Brasileira de Pesquisa Agropecuária. **Hortaliças em Revista**. PANC Açoes de resgate e de multiplicações das hortaliças não convencionais promovem sua volta ao campo e à mesa. Ano VI. Número 22. 2017.
- FAO Food and Agriculture Organization of the United Nations. It's time to put cactus on the menu. Rome, 2017. Disponível em: http://www.fao.org/news/story/es/item/1070263/icode/>Acesso em: 22/01/2020.
- FAO- **Food and Agricultural Organization**. In: Inglese, P., Mondragon, C., Nefzaoui, A., Sáenz, C. (Eds.), Ecologia del cultivo, manejo y usos del nopal. FAO, Roma, Italy, 2019.
- FAO- **Organização das Nações Unidas para Alimentação e a Agricultura**. Estudo inédito da FAO aponta que a biodiversidade do planeta está desaparecendo,2019. Disponível em :http://www.fao.org/brasil/noticias/detail-events/pt/c/1181587/ Acesso em :20/01/2020.
- FARAG, M. A; MAAMOUN, A. A; EHRLICH, A; FAHMY, S; WESJOHANN, A. L. . Assessment of sensory metabolites distribution in 3 cactus *Opuntia ficus-indica* fruit cultivars using UV fingerprinting and GC/MS profiling techniques, **LWT-Food Science and Technology**, v. 80, p. 145-154, 2017.
- FILHO, S. G.B; MACIEL, J. K. S; TELES, Y. C. F; FERNANDES, M. M. M. S; CHAVES, O. S; FERREIRA, M. D. L; FERNANDES, P. D; FELIX, L.P; CIRINO, I. C. S; SIQUEIRA-JÚNIOR, J. P; BRAZ-FILHO, R; SOUZA, M. F. V. Phytochemical study of Pilosocereus pachycladus and antibiotic resistance modifying activity of syringaldehyde. **Brazilian Journal of Pharmacognosy**, v.27, 4^a ed., p. 453-458, Julho-Agosto de 2017.
- FLORA DO BRASIL. Cactaceae in Flora do Brasil 2020 em construção. Jardim Botânico do Rio de Janeiro. Disponível em: http://floradobrasil.jbrj.gov.br/reflora/floradobrasil/FB70>Acesso em: 11 Ag. 2018.
- GABALLAH, A. A; EMBABY, H. E. S; HAMED, Y. S; El-SAMAHY, S. K. Alterações nas propriedades físicas e químicas de *Opuntia dillenii* frutas durante as fases de crescimento. **Jornal da Associação Profissional para o Desenvolvimento de Cactos,** v. 18, p. 1 14, 2016.
- GOUVEIA, I. Plantas Alimentícias Não Convencionais (PANCs): o potencial da biodiversidade brasileira. **Revista Brasileira de Nutrição Funcional**, v. 33, n. 21764522, p. 8-15, 2016.
- GUEVARA-FIGUEROA, T., et.al. Proximate composition, phenolic acids, and flavonoids characterization of commercial and wild nopal (Opuntia spp.). **Journal of Food Composition and Analysis**, 23, 525–532, 2010.

- GURRIERI, S; MICELI, L; LANZA, C.M; TOMASELLI, F; BONOMO, R. P; RIZZARELLI, E. Caracterização química da *Opuntia ficus indica* e perspectivas para o armazenamento de seu suco. **Journal of Agricultural and Food Chemistry**, v.48, p. 5424 5431, 2000.
- HARLEV, E; NEVO, E; LANSKY, P. E; LANSKY, S; BISHAYEE U. Anticancer attributes of desert plants: a review. **Anticancer Drug,** London, v. 23, n. 3, p. 255–271, 2012.
- HARTMAN, L.; LAGO, R.C.A. Rapid preparation of fatty acids methyl esters. **Laboratory Practice**, v. 22, p. 475-476, 1973.
- HUNT, D. **The new cactus lexicon.** Text Volume. DH Books, Milborne Port, p. 373, 2006.
- INSTITUTO DE TECNOLOGIA DE ALIMENTOS (ITAL): FEDERAÇÃO DAS INDÚSTRIAS DO ESTADO DE SÃO PAULO DEPARTAMENTO DO AGRONEGÓCIO DEAGRO. KELEN, M. E. B. Sensorialidade Prat Qualidade. **Plantas Alimentícias Não Convencionais (PANC) no Brasil**. v.l. Brasil Foo, 2010.
- INSTITUTO NACIONAL DO SEMIÁRIDO (INSA). **Bioprospecção, conservação e avaliação de recursos genéticos e bioquímicos do bioma caatinga, 2017**. Disponível em: < https://portal.insa.gov.br/biodiversidade/57-bioprospeccao-conservacao-e-avaliacao-de-recursos-geneticos-e-bioquimicos-do-bioma-caatinga>. Acesso em: 11 de Ag.2018.
- KHARRASSI, Y. E.; MAZRI, M. A.; BENYAHIA, H.; BENAOUDA, H.; NASSER, B.; EL MZOURI, E. H. Fruit and juice characteristics of 30 accessions of two cactus pear species (Opuntia ficus indica and Opuntia megacantha) from different regions of Morocco. **LWT Food Science and Technology**, v.65, n.1, p.610-617, 2016.
- KINUPP, V. F.; DE BARROS, I. B. I. Riqueza de Plantas Alimentícias Não-Convencionais na Região Metropolitana de Porto Alegre, Rio Grande do Sul. **Revista Brasileira de Biociências**, v. 5, n. 1, p. 63–65, 2007.
- LANE, J.H.; EYNON, L. Determination of reducing sugars by Fhling's solution with methylene blue indicator, Normam Rodge, London, p.8, 1934.
- LEE, J. C; KIM, H. R; KIM, J; JANG Y.S. Propriedade antioxidante de um extrato etanólico do caule de *Opuntia ficus-indica*var. Sabotar. **Journal of Agricultural and Food Chemistry**, v. 50, p. 6490 6496, 2002.
- LIBERATO, P. D. S.; TRAVASSOS, D. V.; SILVA, G. M. B. DA. PANCs PLANTAS ALIMENTÍCIAS NÃO CONVENCIONAIS E SEUS BENEFÍCIOS NUTRICIONAIS. **Environmental Smoke**, v. 2, n. 2, p. 102–111, 2019.
- LÓPEZ-CERVANTES, J. et al. Functional properties and proximate composition of cactus pear cladodes flours | Propriedades funcionais e composição centesimal de

- farinhas dos cladódios de palma forrageira. **Ciencia e Tecnologia de Alimentos**, v. 31, n. 3, p. 654–659, 2011.
- LUCENA, C. M.; LUCENA, R. F. P.; COSTA, G. M.; CARVALHO, T. K. N.; COSTA, G.G. S.; ALVES, R. R. N.; PEREIRA, D. D.; PEREIRA, J. E. S.; RIBEIRO, J. E. S.; ALVES, C. A. B.; QUIRINO, Z. G. M.; NUNES, E. N. Use and knowledge of Cactaceae in Northeastern Brazil. **Journal of Ethnobiology and Ethnomedicine**, la ed., v. 9, n. 62, p. 1-11, 2013.
- MEDEIROS, R. L. S. et al. Germinação e vigor de sementes de *Pilosocereus catingicola* (Gürke) Byles e Rowleysubsup. *Salvadorensis* (Werderm.) Zappi (Cactaceae) da Caatinga paraibana. **Gaia Scientia**, v. 9, n. 2, p. 61-66, 2015.
- MERRIL, A. L.; WATT, B. K. Energy values of foods: basis and derivation Washington: United States Department of Agricuture, 1973.
- MIR, S. A. et al. Effect of apple pomace on quality characteristics of brown rice based cracker. **Journal of the Saudi Society of Agricultural Sciences**, v. 16, n. 1, p. 25–32, 2017.
- MIR, S. A.; BOSCO, S. J. D.; SHAH, M. A. Technological and nutritional properties of gluten-free snacks based on brown rice and chestnut flour. **Journal of the Saudi Society of Agricultural Sciences**, v. 18, n. 1, p. 89–94, 2019.
- MOIR, K. W. Determination of oxalic acid in plant Queensland. **Journal Agricultural Science**, 10 (1), pag.1-3, 1953.
- MORO, M.F, LUGHADHA, E.N, ARAÚJO, F.S, MARTINS, F.R. Uma meta análise fitogeográfica do domínio da Caatinga semi-árido no Brasil. **Revista Botânica** 82: 91-148. 2016.
- NAMIR, M. et al. Cactus pear peel snacks prepared by instant pressure drop texturing: Effect of process variables on bioactive compounds and functional properties. **Journal of Food Measurement and Characterization**, v. 11, n. 2, p. 388–400, 2017. RIAZ, M. N. Snack Foods, Processing. In: **Reference Module in Food Science**. 2. ed. [s.l.] Elsevier Ltd., 2016. v. 3p. 1–9.
- NASCIMENTO, V. T; MOURA, N.P; VASCONCELOS, A. S; MACIEL, M. I. S; ALBUQUERQUE, U.P. Chemical Characterization of Native Wild Plants of dry seasonal forests of the northeastern semi arid region. **Food Research International**, v. 44, n.7, p. 2112-2119, 2011.
- NEVES, A. L. A.; PEREIRA, L. G. R.; SANTOS, R. D.; VOLTOLINI, T. V.; ARAÚJO, G. G. L.; MORAES, S. A.; ARAGÃO, A. S. L.; COSTA, C. T. F. Plantio e uso da palma forrageira na alimentação de bovinos no semiárido brasileiro. Juiz de Fora: Embrapa Gado de Leite, (Embrapa Gado de Leite. Comunicado Técnico, 62), p. 7, 2010.

- PARK, K; CHOI, H. S; HONG, Y. H; JUNG, E. Y. Extrato de H.J Suh Cactus cladodes (*Opuntia humifusa*) minimiza os efeitos da irradiação UV em queratinócitos e camundongos sem pêlo. **Pharmaceutical Biology**, v. 55, p. 1032 1040, 2017.
- PASCHOAL, V; GOUVEIA, I; SOUZA, N. S. Plantas Alimentícias Não Convencionais (PANCs): o potencial da biodiversidade brasileira. **Brazilian Journal of Functional Nutrition**, 68^a ed., p.8-13, 2016.
- RANGANA, S. Manual of analysis of fruit and vegetable products. New Delhi: Tata Mc Graw- Hill, 1979.
- ROCHA, E. A.; AGRA, M. F. Flora do Pico do Jabre, Paraíba, Brasil: *Cactaceae* Juss. **Acta Botânica Brasileira**, v.16, n.1, p.15-21, 2002.
- SOUZA, V. C.; LORENZI, H. **Botânica sistemática: guia ilustrado para identificação das famílias de fanerógamas nativas e exóticas do Brasil**. Nova Odessa: Instituto Plantarun, ed. 2, p.768, 2008.
- SCIAMMARO, L.; FERRERO, C.; PUPPO, C. Physicochemical and nutritional characterization of sweet snacks formulated with Prosopis alba flour. **Lwt**, v. 93, n. March, p. 24–31, 2018.
- SMIDA, A. NCIBI, S; TALEB, J; UM, B. S; NCIB, S; ZOURGUI, L. Immunoprotective activity and antioxidant properties of cactus (*Opuntia ficus indica*) extract against chlorpyrifos toxicity in rats. **Biomedicine & Pharmacotherapy**, v. 88, p. 844-851, 2017.
- YUKSEL, F.; ILYASOGLU, H.; BALTACI, C. Bioactive Carbohydrates and Dietary Fibre Development of a healthy corn-based snack with sage (Salvia officinalis L.) seed. **Bioactive Carbohydrates and Dietary Fibre**, n. November, p. 100207, 2019.
- ZEA, L. S; GUTIÉRREZ-URIBE, J. A; SERNA-SALDIVAR, O. Comparative Analyses of Total Phenols, Antioxidant Activity, and Flavonol Glycoside Profile of Cladode Flours from Different Varieties of *Opuntia spp.* **Journal of Agricultural and Food Chemistry**, v. 59, p. 7054-7061, 2011.
- ZUNGU, N. et al. South African Journal of Botany Assessing the nutritional composition and consumer acceptability of Moringa oleifera leaf powder (MOLP) based snacks for improving food and nutrition security of children. **South African Journal of Botany**, 2019.

4 RESULTADOS E DISCUSSÃO

Os resultados obtidos com o desenvolvimento desta pesquisa proporcionaram a elaboração de um artigo científico, no qual foi submetido à revista *Journal of Food Composition and Analysis*, com Fator de Impacto 2,99 e Qualis A1 na área de Ciência de Alimentos

4.1 ARTIGO: Desenvolvimento de Snacks sem Glúten de Cladódios de Palma (*Opuntia Ficus-Indica*) e Facheiro (*Pilosocereus Pachycladus*)

DESENVOLVIMENTO DE SNACKS SEM GLÚTEN DE CLADODIOS DE PALMA (Opuntia ficus-indica) E FACHEIRO (Pilosocereus pachycladus)

DEVELOPMENT OF GLUTEN-FREE SNACKS FROM CLADODES of PALM (Opuntia ficus-indica) AND FACHEIRO (Pilosocereus pachycladus)

Ferreira, P.S^{1,*}, Vieira, E.A¹, Amaral, J.B.S², Rodrigues, C.G², Vieira, P. P.F², Grisi, C.V.B³, Alcântara, M. A¹, Santos, N.A^{2,4}, Cordeiro, A.M.T.M^{1,2,3,4}

¹Universidade Federal da Paraíba, Programa de Pós-Graduação em Ciência e Tecnologia de Alimentos, CT, João Pessoa, PB, Brasil.

²Universidade Federal da Paraíba, Departamento de Tecnologia de Alimentos, CTDR, João Pessoa, PB, Brasil.

³Universidade Federal da Paraíba, Centro de Ciências Humanas, Sociais e Agrárias, CCHSA, Bananeiras, Paraíba, Brasil.

⁴Universidade Federal da Paraíba, Instituto UFPB de Desenvolvimento do Estado da Paraíba, IDEP, João Pessoa, Pb, Brasil.

*Corresponding author: Polyana Santos Ferreira

Graduate Program in Food Science and Techonology— PPGCTA/UFPB Federal University of Paraíba — Campus I — Cidade Universitária — Castelo Branco, s/nº, João Pessoa, Paraíba, Brazil, CEP 58051-900 Phone: +55 83 3216-7269 e-mail: polyanashalon@hotmail.com

Abstract

The objective of this work was to use fresh cactus cladodes as an alternative in the development of gluten-free savory snacks. Three snack formulations were prepared: OSRF (cladodes of *Opuntia ficus-indica* (OF) with rice flour), OSWF (cladodes of OF with wheat flour) and PSWF (cladodes of *Pilosocereus pachycladus* (PP) with wheat flour). The use of fresh crushed OF and PP cladodes as main ingredients in the snack formulation contributed to expand the variety of minerals. The snacks had a high content of carbohydrates and starch, and an average caloric value of 464.24 Kcal. Both revealed similar profiles of fatty acids with a predominance of linoleic, oleic and palmitic acids. The quality parameters (hardness, water activity, color and microbiological) were

monitored in snacks for 90 days. All snacks were colored tending to light yellow. The low water activity (0.60) during storage contributed to the microbiological control and safety of the developed food. The gluten-free snack (OSRF) maintained its crispness until the end of storage. It is concluded that cladodes of (OF) and (PP) can be used as alternative ingredients for the preparation of gluten-free snacks, maintaining the nutritional characteristics and superior qualities and/or similar to those with gluten.

Keywords: Cactaceae, unconventional food plants, nutritional quality, quality parameters.

Introduction

In the last decades, due to the practicality, convenience and acceptability of ready-to-eat snacks, snacks have been gaining more and more space in the diet, presenting varieties of flavors and types that please all age groups, and can still provide energy and nutrients to consumers (Potter et al., 2013; Rathod and Annapure, 2016; Sciammaro et al., 2018).

Huffman et al., (2014) report that there is an increasing tendency to consume processed snacks in low and middle income countries in Asia, Latin America and Africa. However, the consumption of unhealthy snacks represents a serious risk to the nutritional status, especially of children, since they are part of the daily diet. Contrary to this fact, snacks when prepared with selected raw materials or even supplemented can contribute to improving the consumer's food and nutritional security status (da Silva et al., 2016; Zungu et al., 2019).

It is worth mentioning that there is a growing demand for gluten and lactose-free foods due to the high incidence of food allergies and/or intolerances in industrialized countries (Rahaie et al., 2014; Estévez and Araya, 2016). With this, studies show healthy snack alternatives that bring health benefits using mainly unconventional food sources (Zungu et al., 2019; Sciammaro et al., 2018; Díaz et al., 2019).

Cactaceae, in turn, have stood out as promising sources of food, in the production of cakes (Chahdoura et al., 2018), drinks (Barba et al., 2017), have already produced cladodes and pickle flour (Du Toit et al., 2018), used the mucilage and flour from the *Opuntia monacantha* cladode for the manufacture of gluten-free crackers, (Dick et al., 2020). Other studies also highlight the production of juices, alcoholic beverages, jellies and natural sweeteners(Abdel-Hameed et al., 2014; Gurrieri et al., 2000; Lee et al., 2002; Pawar, 2017), as well as obtaining cladodes flour rich in fibers, calcium and potassium (Sáenz, 2002).

The literature also reports that cacti are excellent sources of antioxidants (du Toit et al., 2018), fibers and minerals (Toit, Alba du, 2018) mucilages and pigments (Otálora et al., 2015). And research shows that cacti have anti-inflammatory, healing, antimicrobial properties, as well as being used in the treatment of diabetes, gastritis and obesity (El-Mostafa et al., 2014).

Brazil, is one of the most abundant countries in species of cacti, since, currently, it has approximately 30% of the genera registered in the world. In the Caatinga, an exclusively Brazilian biome, there is its great biodiversity of cacti, among the most popular: the palm (*Opuntia ficus-indica*), the mandacaru (*Cereus jamacaru*), the xique-xique (*Pilosocereus gounellei*), the facheiro (*Pilosocereus pachycladus*) and the quipá (*Tacinga inamoena*)(Zappi et.al, 2011; Do Nascimento et al., 2011; Aruwa et al., 2019).

The palm and the cane are the cacti that best represent the landscape of the Brazilian semiarid, considered unconventional food plants (UFPs), however, its greatest use is for animal feed, and most of its cladodes are neglected. Therefore, the preparation of cactus snacks can become an option of nutritional source, enabling sustainable commercial exploitation, since it is a simple alternative for the applied and accessible technology.

In this context, there are no studies that have developed snacks using cladodes of cacti as ingredients in the formulation. The fresh stems of *Opuntia ficus-indica* and *Pilosocereus pachycladus* were tested as a substitute ingredient for commercial flours while maintaining the quality of the product. In addition to the production of snacks, it aimed to evaluate the physical-chemical characteristics and microbiological quality of snacks during 90 days of storage.

2. Material and methods

2.1. Materials

The cladodes of *Opuntia ficus-indica* and *Pilosocereus pachycladus* were collected in June 2019 in the region of Seridó paraibano (6°45'16.1" S and 36° 18'36.0" W), in the city of Cubati, Paraíba, Brazil.

The ingredients used in the formulation of snacks were: grated cheese (Natural da Vaca®, Goiana, Brazil), dehydrated onion (Hikari®, São Paulo, Brazil), sweet paprika (Hikari®, São Paulo, Brazil), crispy fried garlic (Hikari®, São Paulo, Brazil), dehydrated parsley (Kitano®, São Paulo, Brazil), sea salt (Lebre®, Rio Grande do Norte, Brazil), vegetable fat (Deline®, Pernambuco, Brazil), rice flour (Urbano®, Santa Catarina, Brazil) and wheat flour (Rosa Branca®, São Paulo, Brazil) were purchased from the local trade in João Pessoa, Paraíba, Brazil.

2.2. Preparation of cladodes

In the manufacture of snacks, the use of fresh cladodes was standardized. Thus, after collection they were washed with drinking water, sanitized with sodium hypochlorite (2% active chlorine), the thorns were removed from the exoderm and were crushed.

2.3. Characterization of cladodes

2.3.1. Proximal composition

For the proximal composition, official methods (AOAC, 2012) were used, in which the analyzes were performed: humidity drying in an air circulation oven (ACB, LABOR, São Paulo, Brazil) for 105 °C for 24 hours until constant weight; ash by incineration of the samples in a muffle furnace (Zezimaq, 2000F, Minas Gerais, Brazil) 550 °C for 24 h until constant weight; proteins by the Kjeldahl method, in which the nitrogen to protein conversion factor was 6.25; total titratable acidity (TTA) using the potentiometric titration method and the pH through potentiometric, (Even, pH / 3s, Curitiba, Brazil). The lipid content was determined by the method of Bligh-Dyer, (1959), using a combination of chloroform-methanol-water (1: 2: 0.8 v / v). The total starch

content was measured according to (Lane-Eynon, 1934) by means of acid hydrolysis, neutralized with 10% sodium hydroxide, using the factor of Fehling's solution 0.03 and the result was converted to g of starch per 100g of sample, when multiplied by the conversion factor of 0.9. The energy value of snacks was calculated and expressed in kilocalories (Kcal / 100g), by Atwater conversion factors: Kcal = (4 x g protein) + (4 x g carbohydrates) + (9 x g lipids) (Merril, A. L.; Watt, 1973).

2.3.2. Antinutritional factors

For the determination of the analysis of antinutritional compounds of the cladodes, they were divided between (internal and external part) of the species of *Opuntia ficus-indica* (OF) and *Pilosocereus pachycladus* (PP).

The determination of tannic acids present in the cladodes was performed by the Folin-Denis method, according to (Rangana, 1979), with an absorbance reading at 760 nm in a spectrophotometer (Spectrophotometer, Edutec, EEQ-9005, UV-Vis, Curitiba, Brazil). Thirteen standard concentrations of tannic acid (Dinâmica, Química Contemporânea Ltda, São Paulo, Brazil) were prepared with concentrations ranging from 0 to 7.0 mg/ml. The tannic acid content was obtained through a standard tannic acid curve (y = 0.0453x + 0.1313, $R^2 = 0.99$) and the result was expressed in mg of tannic acid / 100g dry sample.

The quantification of phytates in the cladodes was performed according to the methodology described by Chang, and Xu (2009), using the absorbance reading at 500 nm in a spectrophotometer (Spectrophotometer, Edutec, EEQ-9005, UV-Vis, Curitiba, Brazil). Eight standard concentrations of phytic acid (Dinâmica, Química Contemporânea Ltda, São Paulo, Brazil) were used with concentrations ranging from 0 to 200 mg/ml. The phytic acid content was obtained through a standard curve (y = -0.0429x + 0.356, $R^2 = 0.99$) and the result was expressed in mg of phytic acid/100 g dry sample.

To determine the oxalic acid content, present in the cladodes, the method described by Moir, (1953) was used. The oxalic acid content was obtained through a standard curve and the result was expressed in mg of oxalic acid/100g dry sample.

2.3.3. Fatty acids

To determine the fatty acid profile, the lipid content extracted from the cladodes was esterified (Hartman; Lago, 1973), and its esters analyzed by a gas chromatograph coupled to a mass spectrometer (GC-MS-QP-2010, Shimadzu, Japan). The 30 m x 0.25 μm x 0.25 mm fused silica DB-23 capillary column was used. Helium was used as the carrier gas (flow rate of 1 ml / min.). The conditions of the CG were: Injector and detector temperature of 250 °C; initial oven temperature of 90 °C, increasing by 2.5 °C/min until reaching 230 °C, remaining for 30 minutes, totaling a total running time of 39 minutes (Alcântara et al., 2019). 1.0 μL aliquots of the esterified extract were injected in Split, ratio 100 mode and the chromatograms were recorded in CG-MS Lab Solution software. The identification and quantification of the peaks were obtained by percentages in relation to the total fatty acid content.

2.4. Preparation of cactus snacks

Preliminary tests were carried out in order to obtain a healthier formulation, without artificial preservatives and a homogeneous mass. Thus, for the dough of snacks, the replacement of 60% of flour by the fresh crushed cladodes of *Opuntia ficus-indica* and *Pilosocereus pachycladus* was standardized as the main ingredients. The other ingredients were the same for both formulations, as shown in Table 1.

Table 1 - Formulations of cactus cladode snacks.

Ingredients	Formulation (%)				
nigredients	OSWF	PSWF	OSRF		
Cladodes	60	60	60		
Wheat flour	30	30	-		
Rice flour	-	-	30		
Vegetable fat	4	4	4		
Parmesan cheese	2	2	2		
Salt	2	2	2		
Spices	2	2	2		

After homogenizing the ingredients, the doughs were cut into symmetrical square shapes (3.0x4.0 cm), placed in trays and then taken to the oven preheated to 180 °C for 25 min. After cooking, the snacks were unmolded, vacuum-packed (Tecmaq TM-150,

São Paulo, Brazil) in transparent polyethylene plastic bags and stored at room temperature for later analysis.

2.5. Characterization and evaluation of the shelf life of snacks

2.5.1. Proximal composition of snacks

The analysis of the proximal composition of the samples of the cactus snacks was conducted as described in section 2.3.1 and 2.3.3.

2.5.2. Mineral content

The samples were subjected to a muffle incineration process (Zezimaq, 2000F, Minas Gerais, Brazil) at 550 °C. Then, the quantification of minerals was performed using a dispersive energy X-ray fluorescence spectrometer of the brand Shimadzu, model EDX-720 (Shimadzu, Tokyo, Japan). The X-ray tube used was rhodium and the working atmosphere was a vacuum. The excitation energy used was 50 keV and detector operating at -176 °C. The samples were placed in cuvettes covered with a 5µm thick polypropylene film and their results expressed in mg / 100 mg and g / 100 g, and the minerals were analyzed: Phosphorus, Potassium, Calcium, Magnesium, Sulfur, Sodium, Aluminum, Copper, Iron, Chlorine, Manganese, Silicon, Rubidium and Zinc.

2.5.3. Storage stability

The formulated snacks were monitored at 0, 7, 15, 30, 60 and 90 days through color, Aw, texture and microbiological analyzes.

2.5.3.1. Color

Colorimetry measurements were performed on 3 snacks for each formulation totaling 45 samples, measured on a color analyzer (GRETAG MACBETH, COLOR-EYE 2180, USA). Calibration with black and white standards was performed before color measurement. The parameters luminosity (L *), red-green coordinate (a *) and blue-yellow coordinate (b *) of the CIELAB color space were determined.

The color variation after cooking was calculated by the total color difference $\Delta E = \sqrt{(\Delta L)^2 + (\Delta a)^2 + (\Delta b)^2}$ for snacks. Where: $\Delta L = (L \text{ sample-} L \text{ standard})$, $\Delta a = (a \text{ sample-} a \text{ standard})$ and $\Delta b = (b \text{ sample-} b \text{ standard})$.

2.5.3.2. Water activity (Aw)

Water activity (Aw) was measured using the hygrometric method, with a controlled temperature of 25 $^{\circ}$ C \pm 0.1 $^{\circ}$ C on a water activity meter (AQUALAB Serie 4TEV, São Paulo, Brazil).

2.5.3.3. *Texture*

The evaluation of the mechanical properties of the snacks were carried out by means of puncture tests with the aid of a texturometer (CT3, Brookfield, USA) with a 25 kg load cell. The peak breaking force (g) of the snacks using the compression force was then recorded. The analyzer was adjusted in a return to start cycle, with a pre-test speed of 2 mm/s, test speed of 3 mm/s, post-test speed of 3 mm/s; probe: TA7, breaking distance: 4.0 mm; force threshold: (g) and measured in shear force. The results were expressed in Newton (N).

2.5.3.4. Microbiological parameters

Microbiological analyzes were carried out for possible contaminants: coliforms at 45 °C, *Staphylococcus spp*, *Salmonella spp*, *Bacillus cereus*, molds and yeasts, according to methodologies of the American Public Health Association (APHA, 2001).

2.6. Statistical analysis

All tests were analyzed in triplicates, expressed as mean \pm standard deviation and subjected to analysis of variance (ANOVA) and the differences compared by the Tukey test at 5% level of significance, using the Assistat software(ASSISTAT, 2011).

3. Results and discussion

3.1 Proximal composition of cladodes

The cladodes of (OF) and (PP) showed a high moisture content for both species, which differed statically, ranging from 92.60% for (OF) to 94.2% for (PP) of humidity. This result was already expected, since most cacti are succulent, and they are vegetables adapted to semi-arid regions, they have acquired the ability to reserve water, which can increase its humidity depending on the season.

Regarding the amount of proteins, ash and lipids, no significant differences were identified between the cladodes, thus, the amount of total proteins was 1.24 for (OF) and 1.26 for (PP), the ash content varied from 1.18 (PP) to 1.37 (OF), while the lipids of 0.97 for both species, both results calculated in g/100 g of stem respectively. Protein, ash and lipid contents are low, but sufficient to provide technological and functional properties comparable to commercial hydrocolloids (Dick et al., 2020).

Regarding the titratable acidity and pH, (OF) showed 3.66 acidity with a pH of 1.15, showing to be more acidic compared to (PP) with an acidity of 5.01 with pH 4.91. The calculation of the carbohydrate content, demonstrated that the species provide low concentrations of this substance, the (OF) presented a higher value of 3.44, while the (PP) 2.18 g/100 g of cladodes. In addition, the species studied have a low energy value, from 22.46 (PP) to 27.43 (OF), which can be attractive for both fresh consumption and product development, such results are similar to those of *Opuntia spp.* according to the characterization performed by Melgar et al. (2017).

It was observed that the major constituent of the cactus species was water, representing more than 90% of the total weight, followed by the carbohydrate content, around 2 to 3%. However, according to de Souza et al., (2015), there may be differences between the different values of macronutrients depending on the different regions where they are found or cultivated, including for the same species, since environmental factors, such as soil, climate, time of year, among others, can affect significantly the physical-chemical composition of the cacti, clarifying the results observed for (OF) and (PP).

The cladodes, despite having low levels of lipids, exhibited the presence of saturated and unsaturated fatty acids, eleven fatty acids were identified in the samples of

OF with a concentration of 0,96- 27, 51%, obeying the following decreasing order (C18:2_{n6c}-27,51; C16:0-26,45; C18:1_{n9c}-19,78; C18:0-12,43; C18:3_{n3}-5,2; C14:0-2,5; C12:0-1,47; C30:0-1,35; C16:1-1,31; C18:1_{n9t}-1,04; C15:0-0,96). In the PP cladodes, seven fatty acids were identified with concentrations ranging from 2.3-36.28% in decreasing order (C16:0-36,28; C18:1_{n9c}-22,17; C18:2_{n6c}-21,38; C18:0-12,30; C14:0-2,91; C18:3_{n3}-2,66; C18:1_{n9t}-2,3). The most abundant fatty acids in the (OF) cladode were linoleic, palmitic, oleic, stearic and linolenic acids, representing 45% SFA and 32% PUFA. While for the PP species, palmitic, oleic, linoleic and stearic acids were the most significant. It is noteworthy that fatty acids play important roles in the structure of cell membranes and in metabolic processes, being necessary to maintain, under normal conditions, cell membranes, brain functions and the transmission of nerve impulses (Carvalho; Caramujo, 2018; Nagy, Katalin; Tiuca, 2017).

3.2 Antinutritional factors of cladodes

The table 2 has information regarding the anti-nutritional factors present in the epidermis and pulp of the studied species.

Table 2 - Anti-nutritional compounds of the (OF) and (PP) cladodes.

Samples	Parameters				
	Tannins (mg Tannic Acid/100 g)	Phytates (10 ⁻³ mg Phytic Acid/100 g)	Oxalic (mg Oxalic Acid/100 g)		
External part of the cladode					
EOF	21.3 ± 0.15^{c}	1.75 ± 0.03^{a}	nd		
EPP	43.19 ± 0.60^{a}	1.65 ± 0.05^{b}	nd		
Internal part of the cladode					
IOF	20.92 ± 0.68^{c}	1.77 ± 0.03^{a}	nd		
IPP	40.13 ± 0.33^{b}	0.23 ± 0.03^{c}	nd		

Results expressed on a dry basis. Mean standard deviation (n = 3). Different letters in the same column mean significant differences between the samples (p < 0.05). * nd = not detected.

In this study, the tannin content ranged from 21.83 to 43.19 mg Tannic Acid/100 g, evaluating in both species in relation to part of the vegetable, it is possible to say that tannins are present in greater amounts in the epidermis. However, the (PP) cladode showed higher concentrations of tannins in both the epidermis and the pulp. These results are similar to other studies that analyzed the antinutritional issue of other food matrices,

such as bitter cucumber (*Momordica charantia*) (Somsub et al., 2008). Other studies have shown higher values for Kiwicha (*Amaranthus caudatus*) (Burgos et al., 2018).

High concentrations of tannins in vegetables can affect insoluble complexes such as proteins, cellulose, gelatin, among others, which are undesirable in nutritional terms (Lal et al., 2012). On the other hand, some of these, classified as naturally occurring polyphenols, show interesting antioxidant properties that can bring health benefits to foods (Nidhina and Muthukumar, 2015).

According to research by Suttikomin, (2002), they indicated that the tannin content is higher in raw and cooked leafy vegetables, such as water mimosa (*N. oleracea*) and Chinese cabbage (*Ipomoea reptans*). Therefore, as the (OF) and (PP) are absent of leaves, a lower concentration was expected. However, it is worth noting that some variations may occur mainly due to environmental conditions, soil, seasonality, plant maturity status, among others (Brune et al., 1992).

Regarding the phytate content, it was observed that a low concentration between species from 0.23 to 1.77 (10⁻³ mg Phytic Acid/100 g on dry basis). (OF) was the one that contained the highest values, but there was no difference between the amount present in the epidermis and in the pulp, in contrast, in (PP) the epidermis contains a higher concentration of phytates than its pulp. In this case, although there is variation in the levels of phytic acid in cladodes of (OF) and (PP), its content is irrelevant, thus, it will not interfere in the bioavailability of nutrients such as minerals, as was verified by (Simopoulos, 2004) in study with raw lentil seeds.

The oxalic acid content was not detected in any of the species, since the cactaceae species have spines, which are modified leaves, which were removed during the cleaning and preparation of the samples, thus not detecting the presence of oxalic acid. In turn, it has become a favorable result, as the presence of oxalic acid produces a toxic effect on the body, such as the formation of kidney stones (Maria et al., 2011).

3.3 Proximal composition of cactus snacks

The table 3 has the results of the proximal characterization of the OSWF, OSRF and PSWF cactus snacks.

Table 3 - Characterization of cactus snacks.

Domorrotomo	snacks for	mulations (g/100g d	llations (g/100g dry sample)			
Parameters	OSWF OSRF		PSWF			
Moisture	0.92 ± 0.00^{b}	0.93 ± 0.00^{b}	0.96±0.01a			
pН	5.30 ± 0.01^{b}	5.49 ± 0.01^{a}	5.25 ± 0.01^{c}			
Acidity	3.61 ± 0.04^{a}	3.60 ± 0.04^{a}	3.61 ± 0.04^{a}			
Proteins	11.82 ± 0.71^{a}	11.60 ± 0.18^{a}	$12.19\pm0,28^{a}$			
Lipids	13.07 ± 1.03^{a}	14.82 ± 0.51^{a}	13.19 ± 0.88^{a}			
Ashes	$0.13\pm0,01^{a}$	0.12 ± 0.00^{a}	0.11 ± 0.01^{a}			
Starch	32.60 ± 1.50^{a}	26.03 ± 1.66^{b}	28.17 ± 1.89^{b}			
Carbohydrates	74.07 ± 0.58	72.53 ± 0.43	73.55 ± 0.71			
Energy value (Kcal)	461.16 ± 1.10^{a}	469.88 ± 0.54^{a}	461.68 ± 0.95^{a}			
Macroelements (g/100g dry sample)						
Phosphorus (P)	1.272	1.667	0.125			
Potassium (K)	6.272	5.880	0.203			
Calcium (Ca)	4.612	5.477	0.123			
Magnesium (Mg)	0.414	0.612	0.054			
Sulfur (S)	0.484	0.362	0.023			
Sodium (Na)	4.015	4.215 0.290				
Microelements (mg/100mg dry sample)						
Aluminum (Al)	0.070	0.064 0.010				
Copper (Cu)	0.016	0.019	-			
Iron (Fe)	0.100	0.057 0.002				
Chlorine (Cl)	35.393	36.783	1.429			
Manganese (Mn)	0.419	0.055	0.054			
Silicon (Si)	0.197	0.195	0.014			
Rubidium (Rb)	0.011	0.010	-			
Zinc (Zn)	0.039	0.045 0.001				

OSWF (Opuntia ficus-indica snacks with wheat flour), PSWF (Pilosocereus pachycladus snacks with wheat flour) and OSRF (Opuntia ficus-indica snacks with wheat flour). Mean standard deviation (n = 3). Different letters on the same line mean significant differences between the samples (p <0.05). Results expressed in g / 100g of dry sample.

Due to the ingredients added in the formulations, they favored, for the high content of carbohydrates and starch observed in all formulations of snacks. There were no significant differences (p> 0.05) in the content of proteins, lipids, acidity, ash and the energy value between all samples evaluated, which is justified by the results of characterization of the cladodes that had the same behavior (OF and PP) and also demonstrating that the addition of ingredients for the formulation of snacks was standardized. Studies by Dick et al., (2020) show similar results for cracker-type cookies formulated with flour and mucilages from cactus cladodes with the gluten-free appeal.

The (PSWF) sample showed higher humidity than the other formulations, not significantly differing from the (OSWF) and (OSRF) samples. Thus, it appears that the moisture content of the formulated snacks followed the same trend observed in the cladodes of their cactus species. As for the caloric value, both snack formulations were similar, close to that of a 432 Kcal craker biscuit made with conventional ingredients (TACO, 2005).

The use of fresh crushed cladodes of OF and (PP) as main ingredients in the snack formulations contributed to the identification of a variety of minerals present in the formulations, especially the snacks formulated with the OF species, which guaranteed higher values.

In comparison to other studies, snacks formulated with cladodes of cacti were, in general, superior as a source of minerals when compared to the juices of *O. ficus indica* and *O. dillenii* (Méndez et al., 2015) and *O. monacantha* flour (Willd) (Dick et al., 2020). In turn, as described by Barba et al., (2017) who used *Opuntia macrorhiza* flour in the manufacture of cake, justifies that cactus cladodes can be used as an ingredient to improve the nutritional quality of bakery products.

3.4 Fatty acid profile of snacks

The fatty acid profile of snacks formulated with cacti, can be seen according to table 4.

Table 4 - Fatty acid profile¹ of cactus snacks.

Fatty acids -		snacks formulat	ion
	OSWF	OSRF	PSWF
$C_{10:0}$	0.29	0.13	0.21
$C_{12:0}$	4.84	4.82	4.33
$C_{14:0}$	3.32	3.28	3.03
$C_{14:1}$	0.24	nd	0.12
$C_{15:0}$	0.26	nd	0.19
$C_{16:0}$	16.54	17.13	16.04
$C_{16:1}$	0.24	0.45	0.51
$C_{18:0}$	9.26	10.53	10.16
$C_{18:1n9t}$	1.53	1.51	1.77
$C_{18:1n9c}$	20.16	21.53	20.42
$C_{18:2n6c}$	39.79	37.39	38.61
$C_{18:3n3}$	3.53	3.23	3.91

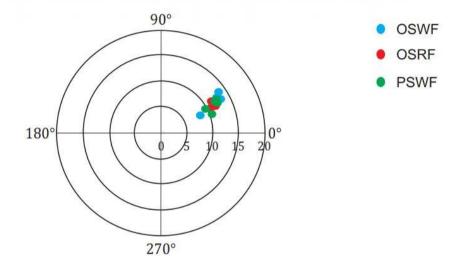
$C_{20:0}$	nd	nd	0.26
$C_{20:1}$	nd	nd	0.17
$C_{22:0}$	nd	nd	0.27
SFA	34.51	35.89	34.49
PUFA	43.32	40.62	42.52
MUFA	22.17	23.49	22.99
PUFA/SFA	1.25	1.13	1.23
n-6/n-3	11.27	11.57	9.87
<u></u>			

¹The results are presented as percentages relative to the amount of total fatty acids.

OF (Opuntia ficus indica cladodes), PP (Pilosocereus pachycladus cladodes), OSWF (snacks of Opuntia ficus indica with wheat flour), PSWF (snacks of Pilosocereus pachycladus with wheat flour) and OSRF (snacks of Opuntia ficus indica with flour) rice).

SFA (saturated fatty acids), PUFA (polyunsaturated fatty acids), PUFA / SFA, n-6 / n-3 (linoleic / α -linolenic acid ratio, MUFA (monounsaturated fatty acids).

In turn, all of the snack formulations showed similar fatty acid composition with a predominance of linoleic acid, followed by oleic and palmitic acids. The total of unsaturated fatty acids was over 40% for all snack formulations, with emphasis on OSWF. It can be seen that the addition of ingredients, such as vegetable fat, influenced the fatty acid profile, increasing the presence of PUFA in snacks.


The value of the PUFA / SFA ratio found for cactus snacks is in line with that recommended by the Department of Health and Social Security of England - DHSS (Santos-Filho, et al., 2001), which advocates a minimum of 0.45 certifying that snacks met this parameter. Values lower than this, characterize unhealthy foods, especially in relation to cardiovascular diseases. While the ratio of n-6 /n-3 fatty acids found in cladodes and cactus snacks is lower than many vegetable oils, such as corn (76.57), soy (6.68), sunflower (30.77), olive oil (17.86) (Tuberoso et al., 2007). Low proportions of n-6 / n-3 have been associated with reduced risk of cardiovascular disease (Simopoulos, 2004) since the presence of ω3 inhibits cancer cell induction and progression (Yang et al., 2013).

3.5 Monitoring of quality parameters during storage

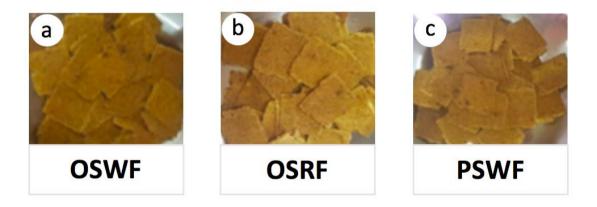
3.5.1. Cactus Snacks Color

The Figure 1 has the color parameters (L *, a *, and b *) of the snacks formulated with cactus cladodes.

Figure 1: Color variations of snacks formulated with cacti with and without gluten, during storage.

The b * value (yellow-blue) observed in the snacks was higher than the values of a*, indicating that the snacks showed a color tending to yellow. It is also observed that the samples did not differ significantly, at time 1, regarding parameter b*. On the contrary, it is noted that the OSWF sample presented values higher than the coordinate a *, differing significantly from the others. This may explain the darker tone found in snacks made with OF (Fig 2).

The variation of the coordinate a* (red-green) was observed only for the OSWF samples increased during storage (8.53 - 13.14), accentuating the red tone. While, for the OSRF and PSWF formulations, there was little variation for this shade.


It can be observed that the luminosity (L *) of the OSWF formulation decreased in relation to the other samples, at the end of the 90 days of storage, indicating that the color of the final product became darker. It was also noted that the OSRF snack, made with flour and rice, showed variations in this parameter throughout the evaluation of the

shelf life, both formulated with OF. It is common to observe, over the time of storage, that the luminosity decreases, considering that the interaction of the product with light, temperature and packaging are determining factors for its alteration, and oxidation of the product may occur.

During the shelf-life assessment, the cactus snacks showed a color tending to light yellow, the darkest statistically being the OSWF sample, and the least red the formulation that used PP cladode and wheat flour (PSWF).

The total color difference (ΔE) between the samples was considered low, since, according to the values of Jozinović et al.,(2016) above 6, the samples are in different color groups. Thus, the lower ΔE result between samples showed that there was no difference between formulations during storage time.

Figure 2: Image of snacks formulated with cacti.

3.5.2. Water Activity (Aw) of snacks

The water activity of the cactus snacks was monitored over 90 days of storage. The average values of water activity ranged from 0.52 to 0.60 during the monitoring time. These results were similar for snacks with *prosopis alba* flour (0.651) (Sciammaro et al., 2018).

Comparing the three snack formulations to each other, at the end of the 90 days of storage, there were no statistical differences in water activity. Evidencing that the

cactus snacks presented limits values to the critical activity for the deterioration and the development of microorganisms, however susceptible to oxidation.

However, it should be noted that Aw close to 0.60, it can lead to the emergence of fungi and yeasts. According to Beuchat et al., (2013) species of xerophilic fungi and osmophilic yeasts can grow in Aw from 0.60 to 0.70, and the minimum for the production of mycotoxins is 0.80, however, during the storage time of the snacks were not detected. Emphasizing that the useful life of a product is attested by the Aw analysis must be less than 0.6 for snacks to avoid loss of crispness.

3.5.3 Microbiological analysis

Microbiological monitoring was carried out for 90 days and did not differ with time, observed for *Bacillus cereus*, *Staphylococcus aureus* coagualse positive and fungi and yeasts counting $<1.0\times10^1$ CFU / g in all stored formulations. *Salmonella spp* was not found in the formulations of (OSWF, OSRF and PSWF). In relation to coliforms at 45 °C (0.31 CFU/g), all formulations were within the parameters, being safe microbiological.

We can consider that snacks formulated with cladodes of cacti, as they present low humidity and water activity, did not exhibit the development of pathogenic microorganisms such as *Salmonella spp.*, *Staphylococcus aureus* coagualse positive, as they tend to develop in products with high humidity. On the other hand, it could develop fungi and yeasts, however, cactus snacks showed low water activity (0.4-0.6) which, therefore, did not allow for the growth of fungi and yeasts. Thus, the results of the microbiological analyzes indicated adequate hygienic conditions for processing and handling the raw material during the preparation of the cactus snacks.

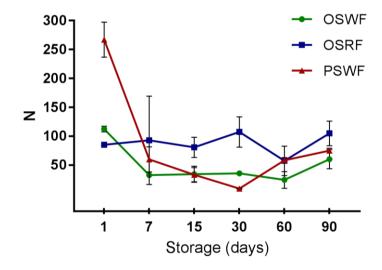
Table 5: Microbiological analysis of snacks during storage

		Storage days				
Microbiology	1			90		
	OSWF	OSRF	PSWF	OSWF	OSRF	PSWF
Bacillus cereus CFU/g	<101	<101	<101	<101	<101	<101
Coliforms at 45° C CFU/g	<0,3	<0,3	<0,3	<0,3	<0,3	<0,3
Salmonella spp	off	off	off	off	off	off
Staphylococcus coagulase + CFU/g	<101	$<10^{1}$	<101	<101	$<10^{1}$	$<10^{1}$
Fungi and yeasts CFU/g	$<10^{1}$	$<10^{1}$	$<10^{1}$	<101	$<10^{1}$	$<10^{1}$

CFU/g- Colony Forming unit/gram

3.5.4. Snack texture

The texture of the snacks was determined by evaluating the fracture property (OSWF, OSRF and PSWF), which is the force required to break a sample, measured for crunchiness / hardness or firmness by an instrumental analyzer (Figure 3) (Kayacier, A., & Singh, RK 2003).


The reduction in firmness of cactus snacks, during storage for 90 days, was 46% and 72% for the OSWF and PSWF formulations, while for the OSRF formulation there was a 23% increase in hardness. In other words, it is observed that with the evolution of the storage period, that the firmness of snacks has been decreasing for the OSWF and PSWF formulations. What did not happen with snacks formulated with OF and rice flour maintaining their initial crispness until the end of storage (90 days).

Another highlight is the snacks made with PP and wheat flour (PSWF), which presented, at time 1, higher crispness, differing significantly from the other snack formulations, being 2.4 times greater than OSWF and 3 times that of OSRF. On the other hand, it is clear that the greatest loss of firmness of the PSWF snacks was between the initial storage period and at 30 days of storage, occurring after this date, gradual restoration of hardness until its maintenance at 90 days of observation. We recommend the PSWF formulation for immediate consumption due to the greater crispness compared to other periods.

Making a comparison with commercial cookies, Mareti et al., (2010) observed those whose composition contained soy flour or oat bran, hardness values between 24.67 and 40.53 N, noting a discrepancy in firmness in relation to cactus snacks. However, the same authors report that the differences in this property may be related to the levels of substitution of wheat flour, and even that substitutions in commercial products may be smaller.

At 90 days, it is observed that all formulations (OSWF, ORWF and PSWF) did not show significant differences in hardness, which can be explained by the low water activity and its humidity, which contributes to the crispness of the product. Corroborating with Vanin, Lucas and Trystram (2009) where they describe that the extent of crunchiness can be influenced by the moisture content and the activity of water present in food.

Figure 3 - Hardness of formulations during storage.

4. Conclusion

This study reveals that the fresh cactus cladodes of *Opuntia ficus-indica* and *Pilosocereus pachycladus* can be used as alternative ingredients to replace commercial flours for making snacks and baked goods. The three snack formulations had a high content of carbohydrates and starch, followed by lipids, proteins and ashes, and an average caloric value of 464.24 Kcal was recorded in all snack formulations.

During the evaluation of the shelf life, the cactus snacks showed a color tending to light yellow, showing a low total color difference between the formulations and low water activity during storage, thus contributing to microbiological control and improvement in product quality.

The gluten-free snack, formulated with OF and rice flour, maintained its initial crispness until the end of storage (90 days). These results indicate that the cactus cladodes can be sources of raw material for the preparation of snacks with or without gluten, or even bakery products, making it an option to promote the nutritional health of the population.

Acknowledgments

All authors are grateful to the Brazilian agency, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES, Brazil) for the financial support provided for this research.

References

- Abdel-Hameed, E.S.S., Nagaty, M.A., Salman, M.S., Bazaid, S.A., 2014. Phytochemicals, nutritionals and antioxidant properties of two prickly pear cactus cultivars (Opuntia ficus indica Mill.) growing in Taif, KSA. Food Chem. 160, 31–38. https://doi.org/10.1016/j.foodchem.2014.03.060
- Alcântara, M.A., Lima, A.E.A. de, Braga, A.L.M., Tonon, R.V., Galdeano, M.C., Mattos, M. da C., Brígida, A.I.S., Rosenhaim, R., Santos, N.A. dos, Cordeiro, A.M.T. de M., 2019. Influence of the emulsion homogenization method on the stability of chia oil microencapsulated by spray drying. Powder Technol. 354, 877–885. https://doi.org/10.1016/j.powtec.2019.06.026
- AOAC., 2012. Official methods of analysis of the Association of Analytical Chemists International. AOAC International 19, Gaithersburg.
- APHA. American public health association, Compendium of Methods for the Microbiological Examination of Foods, 2001.

- Aruwa, C.E., Amoo, S.O., Kudanga, T., 2019. Extractable and macromolecular antioxidants of Opuntia ficus-indica cladodes: Phytochemical profiling, antioxidant and antibacterial activities. South African J. Bot. 125, 402–410. https://doi.org/10.1016/j.sajb.2019.08.007
- Assistat 7.6 Beta, 2011. Assistat 7.6 Beta. 2011. Assistência Estatística.
- Barba, F.J., Putnik, P., Bursać Kovačević, D., Poojary, M.M., Roohinejad, S., Lorenzo, J.M., Koubaa, M., 2017. Impact of conventional and non-conventional processing on prickly pear (Opuntia spp.) and their derived products: From preservation of beverages to valorization of by-products. Trends Food Sci. Technol. 67, 260–270. https://doi.org/10.1016/j.tifs.2017.07.012
- Bligh, E. G., Dyer, W.J., 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917.
- Brune, M., N, L.R., Hallberg, L., Sandberg, A.N.N.G.A., 1992. Human and Clinical Nutrition Iron Absorption from Bread in Humans: Inhibiting Effects of Cereal Fiber, Phytate and Inositol Phosphates with Different Numbers of Phosphate Groups1 442–449.
- Burgos, V.E., Binaghi, M.J., de Ferrer, P.A.R., Armada, M., 2018. Effect of precooking on antinutritional factors and mineral bioaccessibility in kiwicha grains. J. Cereal Sci. 80, 9–15. https://doi.org/10.1016/j.jcs.2017.12.014
- Carvalho, Carla C. C. R. de; Caramujo, M.J., 2018. The Various Roles of Fatty Acids. Molecules. Molecules 23, 2583.
- Chahdoura, H., Chaouch, M.A., Chouchéne, W., Chahed, A., Achour, S., Adouni, K., Mosbah, H., Majdoub, H., Flamini, G., Achour, L., 2018. Incorporation of Opuntia macrorhiza Engelm. in cake-making: Physical and sensory characteristics. LWT Food Sci. Technol. 90, 15–21. https://doi.org/10.1016/j.lwt.2017.12.001
- Chang, S.K. C, & Xu, B., 2009. Total phenolic, phenolic acid, anthocyanin, flavan- 3-ol, and flavonol profiles and antioxidant properties of pinto and black beans (Phaseolus vulgaris L.) as affected by thermal processing. J. Agric. Food Chem. 57, 4754-4764.
- da Silva, E.P., Siqueira, H.H., Damiani, C., Vilas Boas, E.V. de B., 2016.
 Physicochemical and sensory characteristics of snack bars added of jerivá flour (Syagrus romanzoffiana). Food Sci. Technol. 36, 421–425.

- https://doi.org/10.1590/1678-457X.08115
- de Souza, R.L.A., Santana, M.F.S., de Macedo, E.M.S., de Brito, E.S., Correia, R.T.P., 2015. Physicochemical, bioactive and functional evaluation of the exotic fruits Opuntia ficus-indica AND Pilosocereus pachycladus Ritter from the Brazilian caatinga. J. Food Sci. Technol. 52, 7329–7336. https://doi.org/10.1007/s13197-015-1821-4
- Díaz, A., Bomben, R., Dini, C., Viña, S.Z., García, M.A., Ponzi, M., Comelli, N., 2019. Jerusalem artichoke tuber flour as a wheat flour substitute for biscuit elaboration. Lwt 108, 361–369. https://doi.org/10.1016/j.lwt.2019.03.082
- Dick, M., Limberger, C., Cruz, R., Thys, S., Rios, A.D.O., Flôres, S.H., 2020. Mucilage and cladode flour from cactus (Opuntia monacantha) as alternative ingredients in gluten-free crackers. Food Chem. 126178. https://doi.org/10.1016/j.foodchem.2020.126178
- Do Nascimento, V.T., De Moura, N.P., Da Silva Vasconcelos, M.A., Maciel, M.I.S., De Albuquerque, U.P., 2011. Chemical characterization of native wild plants of dry seasonal forests of the semi-arid region of northeastern Brazil. Food Res. Int. 44, 2112–2119. https://doi.org/10.1016/j.foodres.2010.12.024
- du Toit, A., de Wit, M., Osthoff, G., Hugo, A., 2018. Antioxidant properties of fresh and processed cactus pear cladodes from selected Opuntia ficus-indica and O. robusta cultivars. South African J. Bot. 118, 44–51. https://doi.org/10.1016/j.sajb.2018.06.014
- El-Mostafa, K., El Kharrassi, Y., Badreddine, A., Andreoletti, P., Vamecq, J., El Kebbaj, M.S., Latruffe, N., Lizard, G., Nasser, B., Cherkaoui-Malki, M., 2014. Nopal cactus (Opuntia ficus-indica) as a source of bioactive compounds for nutrition, health and disease. Molecules 19, 14879–14901. https://doi.org/10.3390/molecules190914879
- Estévez, V., Araya, M., 2016. Gluten-free diet and gluten-free foods. Rev. Chil. Nutr. 43, 428–433. https://doi.org/10.4067/S0717-75182016000400014
- Gurrieri, S., Miceli, L., Maria Lanza, C., Tomaselli, F., Bonomo, R.P., Rizzarelli, E., 2000. Chemical characterization of sicilian prickly pear (Opuntia ficus indica) and perspectives for the storage of its juice. J. Agric. Food Chem. 48, 5424–5431. https://doi.org/10.1021/jf9907844

- Hartman, L.; Lago, R.C.A., 1973. Rapid preparation of fatty acids methyl esters., Laboratory Practice.
- Huffman, S.L., Piwoz, E.G., Vosti, S.A., Dewey, K.G., 2014. Babies, soft drinks and snacks: A concern in low- and middle-income countries? Matern. Child Nutr. 10, 562–574. https://doi.org/10.1111/mcn.12126
- Jozinović, A., Šubarić, D., Ačkar, D., Babić, J., Miličević, B., 2016. Influence of spelt flour addition on properties of extruded products based on corn grits. J. Food Eng. 172, 31–37. https://doi.org/10.1016/j.jfoodeng.2015.04.012
- Kayacier A, S.R., 2003. Textural properties of bakeed tortilha chips. LWT Food Sci. Technol. 36, 463. https://doi.org/10.4315/0362-028X.JFP-12-211
- Lal, D., Shrivastava, D., Verma, H.N., Gardner, J.J., 2012. Production of Tannin Acyl Hydrolase (E.C.3.1.1.20) from Aspergillus niger isolated from bark of Acacia nilotica. J. Microbiol. Biotechnol. Res. 2, 566–572.
- Lane, J.H.; Eynon, L., 1934. Determination of reducing sugars by Fhling's solution with methylene blue indicator, Normam Rod. ed. London.
- Lee, J.C., Kim, H.R., Kim, J., Jang, Y.S., 2002. Antioxidant property of an ethanol extract of the stem of Opuntia ficus-indica var. saboten. J. Agric. Food Chem. 50, 6490–6496. https://doi.org/10.1021/jf020388c
- Mareti, M.C., Grossmann, M.V.E., Benassi, M. de T., 2010. Características físicas e sensoriais de biscoitos com farinha de soja e farelo de aveia. Cienc. e Tecnol. Aliment. 30, 878–883. https://doi.org/10.1590/S0101-20612010000400007
- Maria, C., Benevides, D.J., Souza, M.V., Dias, R., Souza, B., Lopes, M.V., 2011. Fatores antinutricionais em alimentos: revisão Antinutritional factors in foods: a review. Segurança Aliment. e Nutr. 18, 67–79.
- Melgar, B., Pereira, E., Oliveira, M.B.P.P., Garcia-Castello, E.M., Rodriguez-Lopez, A.D., Sokovic, M., Barros, L., Ferreira, I.C.F.R., 2017. Extensive profiling of three varieties of Opuntia spp. fruit for innovative food ingredients. Food Res. Int. 101, 259–265. https://doi.org/10.1016/j.foodres.2017.09.024
- Merril, A. L.; Watt, B.K., 1973. Energy values of foods: basis and derivation Washington.
 United States Department of Agricuture.
- Moir, K.W., 1953. Determination of oxalic acid in plant Queensland. J. Agric. Sci. 10, 1–

- Nagy, Katalin; Tiuca, I.-D., 2017. Importance of Fatty Acids in Physiopathology of Human Body. Intechopen. https://doi.org/DOI: 10.5772/67407
- Nidhina, N., Muthukumar, S.P., 2015. Antinutritional factors and functionality of protein-rich fractions of industrial guar meal as affected by heat processing. Food Chem. 173, 920–926. https://doi.org/10.1016/j.foodchem.2014.10.071
- Otálora, M.C., Carriazo, J.G., Iturriaga, L., Nazareno, M.A., Osorio, C., 2015. Microencapsulation of betalains obtained from cactus fruit (Opuntia ficus-indica) by spray drying using cactus cladode mucilage and maltodextrin as encapsulating agents. Food Chem. 187, 174–181. https://doi.org/10.1016/j.foodchem.2015.04.090
- Pawar, A. V, 2017. Opuntia: Medicinal Plant 3, 148–154.
- Potter, R., Stojceska, V., Plunkett, A., 2013. The use of fruit powders in extruded snacks suitable for Children's diets. LWT Food Sci. Technol. 51, 537–544. https://doi.org/10.1016/j.lwt.2012.11.015
- Rahaie, S., Gharibzahedi, S.M.T., Razavi, S.H., Jafari, S.M., 2014. Recent developments on new formulations based on nutrient-dense ingredients for the production of healthy-functional bread: a review. J. Food Sci. Technol. 51, 2896–2906. https://doi.org/10.1007/s13197-012-0833-6
- Rangana, S., 1979. Manual of analysis of fruit and vegetable products. New Delhi: Tata Mc Graw-Hill., . New Delh. ed.
- Sáenz, C., 2002. Cactus pear fruits and cladodes: A source of functional components for foods. Acta Hortic. 581, 253–263. https://doi.org/10.17660/ActaHortic.2002.581.28
- Santos-Filho, J. M.; Morais, S. M.; Beserra, F. J.; Zapata, J.F.F., 2001. Lipids in meat from animals used for human consumption: a review. Sci. Anim. 11, 87–100.
- Sciammaro, L., Ferrero, C., Puppo, C., 2018. Physicochemical and nutritional characterization of sweet snacks formulated with Prosopis alba flour. Lwt 93, 24–31. https://doi.org/10.1016/j.lwt.2018.03.019
- Simopoulos, A.P., 2004. Omega-6/Omega-3 Esseential Fatty Acid Ratioand Chronic Diseases. Food Rev. Int. 66, 114–123. https://doi.org/10.1016/j.lwt.2015.10.028
- Somsub, W., Kongkachuichai, R., Sungpuag, P., Charoensiri, R., 2008. Effects of three conventional cooking methods on vitamin C, tannin, myo-inositol phosphates

- contents in selected Thai vegetables. J. Food Compos. Anal. 21, 187–197. https://doi.org/10.1016/j.jfca.2007.08.002
- Suttikomin, W., 2002. Effect of blanching, boiling and stir-frying on total iron vitamin C, phytate and tannin contents in Thai vegetables. M.Sc. Thesis in Food and Nutrition for Development, Faculty of Graduate Studies, Mahidol University Thailand. Mahidol University Thailand.
- TACO, 2005. Tabela brasileira de composição de alimentos, NEPA-UNICAMP. Campinas. https://doi.org/10.1007/s10298-005-0086-x
- Toit, Alba du, M. de W. and A.H., 2018. Cultivar and Harvest Month Influence the Nutrient Content of Opuntia spp. Cactus Pear Cladode Mucilage Extracts. https://doi.org/10.3390/molecules23040916
- Tuberoso, C.I.G., Kowalczyk, A., Sarritzu, E., Cabras, P., 2007. Determination of antioxidant compounds and antioxidant activity in commercial oilseeds for food use. Food Chem. 103, 1494–1501.
- Vanin, F. M., Lucas, T., & Trystram, G., 2009. Crust formation and its role during bread baking. Trends Food Sci. Technol. 20, 333-343.
- Yang, T., Fang, S., Zhang, H., Xu, L., Zhang, Z., Yuan, K., Xue, C., Yu, H., Zhang, S., Li, Y., Shi, H., Zhang, Y., 2013. N-3 PUFAs have antiproliferative and apoptotic effects on human colorectal cancer stem-like cells in vitro ★. J. Nutr. Biochem. 24, 744–753. https://doi.org/10.1016/j.jnutbio.2012.03.023
- Zappi et.al, 2015, 2011. Plano de ação nacional para a conservação das cactáceas.
- Zungu, N., Onselen, A. Van, Kolanisi, U., Siwela, M., 2019. South African Journal of Botany Assessing the nutritional composition and consumer acceptability of Moringa oleifera leaf powder (MOLP) -based snacks for improving food and nutrition security of children. South African J. Bot. https://doi.org/10.1016/j.sajb.2019.07.048

5 CONSIDERAÇÕES FINAIS

Este estudo revela que os cladódios de cactos frescos de *Opuntia ficus indica* e *Pilosocereus pachycladus* podem ser utilizados como ingredientes alternativos em substituição das farinhas comerciais para fabricação de snacks e produtos de panificação, sem a necessidade de obter uma farinha.

Os cladódios possuem alto teor de umidade (>90%), o que já era esperado pois são suculentas, e possuem habilidade para reservar água. Possuem entre 2 a 3% de carboidratos e teores ínfimos de proteínas, cinzas e lipídios, mas suficientes para conferirem propriedades funcionais. São também, fontes de taninos, polifenóis que mostram propriedades antioxidantes, apresentando a espécie (PP) teor duas vezes superior à (OF).

As três formulações de *snacks* apresentaram alto teor de carboidratos e amido, seguidos de lipídios, proteínas e cinzas, e valor calórico médio de 464,24 Kcal foi registrado em todas as formulações de *snacks*. Durante a avaliação da vida de prateleira os snacks de cactos apresentaram coloração tendendo a amarelo claro apresentando baixa diferença total de cores entre as formulações e baixa atividade de água ao longo do armazenamento, contribuindo assim para o controle microbiológico e segurança do alimento.

O snack glúten-free, formulado com (OF) e farinha de arroz, manteve sua crocância inicial até o final do armazenamento (90 dias). Estes resultados indicam que os cladódios de cactáceas podem ser fontes de matéria-prima para elaboração de *snacks* com ou sem glúten, ou ainda, produtos de panificação, tornando uma opção para promover a saúde nutricional da população.

Desta forma, as cactáceas brasileiras revelam ser fontes alimentares amplamente disponíveis, espécies de fácil cultivo, para o desenvolvimento de snacks, tornando um produto atrativo e de baixo custo.

Salientando-se, estudos adicionais das formulações (OSWF, ORWF e PSWF) para compreender o aspecto sensorial como a preferência do consumidor e intenção de compra.

ANEXO A- Comprovante

Successfully received: submission DEVELOPMENT OF GLUTEN-FREE SNACKS FROM CLADODES of PALMA (Opuntia ficus-indica) AND FACHEIRO (Pilosocereus pachycladus) for Journal of Food Composition and Analysis

Journal of Food Composition and Analysis <EviseSupport@elsevier.com> Qui, 27/02/2020 23:14 Você ⊗

This message was sent automatically.

Ref: JFCA_2020_272

Title: DEVELOPMENT OF GLUTEN-FREE SNACKS FROM CLADODES of PALMA (Opuntia ficus-indica) AND FACHEIRO (Pilosocereus pachycladus)

Journal: Journal of Food Composition and Analysis

Dear Dr. Ferreira.

Thank you for submitting your manuscript for consideration for publication in Journal of Food Composition and Analysis. Your submission was received in good order.

To track the status of your manuscript, please log into EVISE® at:

http://www.evise.com/evise/faces/pages/navigation/NavController.jspx?JRNL ACR=JFCA and locate your submission under the header 'My Submissions with Journal' on your 'My Author Tasks' view.

Thank you for submitting your work to this journal.