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Abstract

In this thesis, we address the existence of solutions for some class of planar semilinear elliptic
problems involving subcritical and critical growth. To do this, we establish some new weighted
Trudinger-Moser type inequalities in weighted Sobolev spaces including the radial and nonradial

cases.

Keywords: Trudinger-Moser type inequality, Weighted Sobolev space, Weighted Lebesgue

space, Semilinear elliptic problem.



Resumo

Nesta tese, abordamos a existéncia de solugoes para alguma classe de problemas elipticos
semilineares planos envolvendo crescimento subcritico e critico. Para fazer isso, estabelecemos
algumas desigualdades do tipo Trudinger-Moser ponderadas em espacos de Sobolev ponderados,

incluindo os casos radiais e nao radiais.

Palavras-chave: Desigualdade do tipo Trudinger-Moser, Espaco de Sobolev com peso, Espaco

de Lebesgue com peso, Problema eliptico semilinear.
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Notation

We select here some notations used throughout the work.

Spaces
o [P(R%w):= {u : R? — R measurable : [|[u]|pr@2.) = ([po w(x)|u|pdx)1/p < —I—oo};
o [*(Q) ={u:Q— R: uis bounded and mensurable};
2 : . 2 9\ /2 )
e R” denotes the usual euclidean space with the norm |z| = (ijl :L’j) , ¢ € R?%
e H'(R?) denotes the usual Sobolev space;

e (%)) denotes the space of continuous real functions in  C R?;

e For an integer k > 1, C*(Q) denotes the space of k-times continuously differentiable real

functions in 0 C R?;
o C(9) = NCHO);

e C§°(92) denotes the space of infinitely differentiable real functions whose support is compact
in Q C R%

e F' denotes the topological dual of the Banach space E;

Norms

e For 1 < p < +oo0, the standard norm in LP(R?* w) is denoted by || - || 1r(r2s0);

Other Notation

e |A| denotes the Lebesgue measure of a set A C R?;
e suppyp denotes the support of function ¢;

o (', Cy, C1, Oy, C5, ... denote positive constants possibly different;
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C'(s) denotes constant which depends of s;

on(1) denotes a sequence which converges to 0 as n — oc;
— denotes weak convergence in a normed space;

— denotes strong convergence in a normed space;

— denotes continuous embedding;

For R > 0 and y € R?, we denote by Bgr(z) the open ball {xr € R? : |y — z| < R}. If x = 0,

we write only Bg;

Weight functions are functions measurable and positive almost everywhere (a.e.)



Introduction

The purpose of this thesis is to address the existence of solutions for some class of semilinear
elliptic problems in the euclidean space R2. Precisely, we consider four class of problems that
we will be describe next.

Firstly, we study semilinear elliptic equations of the form
— Au+V(z))u=2Q(lz]) f(u), =eR (1)

where A\ > 0 is a parameter, V,Q : (0,00) — R are radial weights, and the nonlinearity f has
exponential critical growth, which will be explained below.

After, we will look for solutions to the Schrédinger-Poisson system

{ — Au+V([z)u+noK (|z))u = AQ(|2]) f(u), € R, 2)

A¢ = K (Jz|)u?, z € R,

where 1, A > 0, the potential K : (0,00) — R is radial function. Moreover, we consider a Hartree-
Fock type system in presence of a Coulomb interacting term, driven by a suitable parameter

£ > 0, namely
—Au+ (1 + ¢)u = [u**2u+ Blv|P|ulP"u, in R?

~Av+ (14 6o = o 20 + BluPlof v, in B2, 3)
A¢ = 27 (u* 4+ v?), in R?,
with 2 < p < 0.

Finally, we investigate the existence of solutions for the following Choquard type equation

At V(@ = = {log . <K(I)F(u)>] Qz)f(u), =€R? (4)

27 ||

where V., K, () are nonradial potentials.
As is well known, in bounded planar domains Q C R?, the Sobolev embedding theorem

assures that the embedding
Hy(Q) < LYQ) forany 1< ¢q< oo,

is continuous, and it does not holds when ¢ = oo.

In view of this feature, Yudovic [85], Pohozaev [67] and Trudinger [81], states an alternative



Sobolev inequality. Precisely, they proved that there exists a positive constant o > 0 such that
the embedding
Hy () = Ly(9),

where Ly (Q) is the Orlicz space determined by the Young function ¢(s) = e*** — 1. Later, Moser
in [63] sharpened this result by finding the best constant « in the embedding above. More
precisely, he proved that there exists a constant C' > 0 such that

sup / e dr < C|Q,
Q

”VUHL2(Q)§1

for any 0 < a < 47. Moreover, the constant 47 is sharp in the sense that if o > 47, then the
supremum above will become infinity.

In the whole space R?, by using using Schwarz symmetrization, D. Cao in [27] proved the
following version of Trudinger-Moser inequality in the space H'(R?): There exists a constant
C = C(M,«a) > 0 such that

sup / <eo‘“2 — 1) dx < C(m, M),
R2

{17012 oy Sm<L, Ilul 2 g2y <M }

for any 0 < aw < 4. Later B. Ruf proved in [73| that 47 is a critical exponent. See also [1,41,82]
for an equivalent version.
Therefore, to study problems (1), (2), and (4) we need to establish some weighted Trudinger-

Moser type inequalities of the form

sup / w(x) Py jo (u)dr < 00,
R2

ulle<1

considering radial and nonradial positive weights functions w € L} _(R?) , where E is a Sobolev

space that will be defined later and @, j,(s) is a Young function of the form

Jo—1

with o > 0, jo := [y/2] = inf{j € N:j > ~/2}, v := max{2,2(2+2b—a)/(a+2)}, and
a,beR.

Next we will describe the content of this thesis which is written in five chapters as follows.

In Chapter 1, we will focus on the problem (1). In this case, we consider the Hilbert space

E = {u € L (R?) : |Vu| € L*(R?) and /

V(|z))u?dr < oo} :
R2



endowed with inner product
(u,v) = / [VuVv + V(|z|)uv] dx.
RQ
On the other hand, we will assume the following assumptions on the radial functions V' and

Q:

(V) V:(0,00) — R is continuous, V' > 0 and there are ag,a > —2 such that

limsup V(r)r~* < oo and liminf V(r)r=® > 0.

r—0+ =00

(Q) Q:(0,00) — R is continuous, ¢ > 0 and there are by, b > —2 such that

0 < Dy = liminf Q(r)r~" < limsup Q(r)r " < oo, limsup Q(r)r~" < oco.

r—0t r—0+ r—00

Moreover, we assume that f(s) is continuous and has exponential critical growth at infinity,

i.e., there exists ay > 0 such that

2 .
s|—o0 €% o if a < ag.

MJﬂﬂ:{O if a> ay, 5)

Also, we consider the following assumptions:
(f1) f(s)=o(|s]""') as s — 0, where

2 if —2<b<a,

7::max{2,2(2+25—a)/(a+2)}:{2(2+2b_a)/(a+2) if  —2<a<b;

(f2) there exists § > ~ such that 0 < 0F(s) < f(s)s for all s # 0, where F(s) := [ f(t)dt;

(f3) the following limit holds: lim f(s)s/F(s) = oo.

|s]—o00

Using the condition (Q), there exists ro > 0 such that Q(r) > Dyr® /2 for all 0 < r < 1.

For this fixed ry we will assume the following assumption:

1) there exists By > 2(by + 2)? Doaor?®™? such that liminf f(s se—a0s? > By.
0

|s|—o0

Our existence result for problem (1) can be stated as follows:

Theorem 0.0.1. Assume that (5), (fi1) — (f1), (V) and (Q) hold. Then, for each A > 0, the

problem (1) possesses a nonzero weak solution uy € E satisfying,
0 < ux(x) < coexp (—Cl|$|(a+2)/4) , reR?

for some constants cq,c; > 0 depending only on .



In addition if we assume the local hypothesis
(f5) there exists v > v such that lim ionf F(s)|s|™ >0,
s—
our multiplicity result is stated as follows

Theorem 0.0.2. Assume that (5), (f1)— (f5), (V) and (Q) hold. If in addition, f is odd, there
exists a sequence (A,) C Ry with A, — oo such that for all X > A, (1) has at least k pairs of

weak solutions in E .

In Chapter 2, we investigate the existence of solutions to the system (2). To this, we will

assume conditions (V'), (Q)) and the potential K satisfies
(K) K :(0,00) — Ris continuous, K > 0 and there are [y > —3/2, =2 <[ < min{a, (a — 1)/2}

such that % %
lim sup (r) < oo and limsup (r)

r—0+ rlo r—00 7t

< OQ.

We suppose that f satisfy (5) and (f;). Furthermore, we also assume the following assump-

tions on f:

(f2) there exists § > max {7, 4} such that 0 < 8F(s) < f(s)s for all s > 0;

(f3) there exists 7 > max {7, 4} such that liminf F(s)/s" > 0;

s—0t

(f1) the function s — f(s)/s? is increasing for s > 0.

In the past few years, many authors have considered the 3-dimensional case assuming different
conditions on the potentials and the nonlinearity f. We could cite [14,33,37,48,53,55,74] and
references therein. A common aspect in most of the works is the variational approach. It
essentially consists in impose some regularity condition on K, use Lax-Milgram Theorem to
solve the second equation and obtain ¢ as the convolution ¢ = T's x (Ku?), where I's is the
fundamental solution of the Laplacian in R3, namely ['3(z) = (—1/4m)|z|7 .

For the planar case, we can use the same idea to conclude that

6u(e) = 5= [ Tox(le — y) Kyl (s)dy,

:27r

where we have used that the fundamental solution in R? is given by I's(z) := (1/27)log |x|.

Hence, we are leading to consider the nonlocal equation
N
= Au+V(ja)u+ g-llog| - |« (Ku”)|(@)K ([e))u = Q(z]) f(u), =€ R*. (6)

The main existence result for problem (6) can be stated as follows:



Theorem 0.0.3. Assume that (V), (K),(Q), (1.1), (f1), and (f2) — (f1) hold. Then, equation

(6) possesses a nonzero weak solution uy € W with minimal energy (or ground state solution) if

r—2

_r_ r P)
N o 40‘0HQHL1(31/2))‘672 9 — 9\ 72
max - — (=
0C,’ Q9 r r ’

A + ||Vl +log 3| K17 5,

>

IV
>
I

where

0= and ag :=4mw(1 +by/2).

1@l 21(8,,.)

As a byproduct of Theorem 0.0.3, we prove the existence of solutions to the system (2).

Theorem 0.0.4. Assume the conditions of Theorem 0.0.3 and let uy be the solution obtained
in Theorem 0.0.5. In addition, suppose that K € CZ_(R?) for some o € (0,1). Then, the pair

loc
(ux, buy) 18 a weak solution of system (2), where ¢, = Tq* Ku3.

In Chapter 3, we will show the existence of semitrivial and vectorial solutions to system (3)

depending on the parameters involved. Defining the logarithmic potential

bun@)i= [ Togle = o) (22(0) +v*(w) dy
]RQ
we can to consider the following auxiliary system with the nonlocal term ¢, ,

—Aut (14 ) = @2+ BloPluu, n B,
—Av+ (14 ¢up)v = [0/ %0 + BlulP[v]P?v, in R
In this context we now formulate our main result, concerning systems (7) and (3).

Theorem 0.0.5. Assume that2 < p < oco. Then, f07’ any 3 > 0 the coupled system (7) possesses
a least energy solution (u,v) € Wrad X Wrad, where Wrad is an appropriated subspace of H'(R?),

with u,v > 0 satisfying the following statements:

(i) for every B > 2P~1 — 1 the pair (u,v) is a vector solution, i.e., u # 0, v # 0 and in this

case u,v > 0;
(i1) for 0 < B < 2P71 —1 the least energy solution is semi-trivial, i.e., u =0 or v = 0.
Furthermore, the triple (u,v, ¢y,) is a weak solution of system (3).

In Chapter 4, we will prove the embeddings results, involving the potential V, K and @),
such that:

(VKQ) V,K,Q € C(R?) and there exist 7 < 2 < E and positive constants ag, by such that

Qo bO 2
——— < V(z), 0<K(x),Q(x) < —, forallxeR".
s < V@) 0).Q0) £ s



1
loc

Considering the auxiliary weight function w € Li (R?), satisfying

- 1 if Jz| <1
w(z) < Cp -
log(1+ [z)@(x)  if || > 1,

for some Cjy > 0, we have the following result.

Proposition 0.0.6. Assume (VKQ). Then, for any 2 < p < oo, the weighted Sobolev embedding

E — LP(R% Q) is continuous and compact.

Thus, it is natural to study embedding from E into Orlicz space. To this end, we will prove

a version of Trudinger-Moser type inequality, case nonradial.

Theorem 0.0.7. For any a > 0 and u € E, the function &(-)®,1(u) belongs to L'(R?). More-

over, there exists o, € (0,47) such that

sup / W(2) Py 1 (u)dr < oo,
R2

ueE, |lullp<1

for any 0 < a < a.

This chapter ends with the study of system 2, case nonradial, assuming that f satisfies the

following assumptions:

(71) f(s) = o(ls|) as s — 0;
(f2) there exists # > 4 such that 0 < 0F(s) < f(s)s for all s # 0;
(f3) there exists ¢ > 0 such that F(s) > (|s|*, for all s € R;

(f4) the function s — f(s)/|s|? is increasing in |s| > 0.
The main existence result for problem (6) can be stated as follows:

Theorem 0.0.8. Suppose that (VKQ), (5), and (f1) — (f4) hold. Then, there exists v, € (0,4)

such that problem (6) has a nonzero small energy solution provided

1 (%))
¢ > SE(Q)IH&X{%,E}-

As consequence of Theorem 0.0.8, we can give a contribution concerning the existence of

solutions to the system (2), namely

Theorem 0.0.9. Suppose the same hypotheses of Theorem 0.0.8 and let w € W be the solution
obtained in that theorem. Then, the pair (u,d,) is a weak solution of system (2), where ¢, =
[y x (Ku?).

Finally, Chapter 5 contains our study of the problem (4), using the embeddings results and
Trudinger-Moser type inequality, obtained in the Chapter 4. To this end, we shall consider that
the nonlinearity f : R — R is differentiable, f(s) = 0 for all s < 0 and f(s) > 0 for all s > 0,
(1.1) holds, and satisfies the following conditions:

6



(7)) f(s) = o(ls]) as s = 0;

(f2) there exists 0 € (0,1) such that

(F3) there exist £ > 0 and x > 2 such that F(s) > &s¥, for all s € (0, 1].
Under this hypotheses, our main result can be stated as follows.

Theorem 0.0.10. Suppose that (VKQ), (5), (f1), and (§2) hold. Then there exists £ > 0 such
that if (§3) holds with &€ > £*, (4) has a nontrivial weak solution which is nonnegative.



Chapter 1

Nonlinear Schrodinger equations involving

exponential critical growth

This chapter is devoted to present the results of paper [28|, where we proved a Trudinger-
Moser type inequality in the radial case and as a consequence we established some results of

existence and multiplicity to the semilinear Schroringer equation.

1.1 Main results
In this chapter, we are concerned with semilinear elliptic equations of the form
— Au+V(jz))u = AQ(z|) f(u), =€ R? (P)

where A > 0 is a parameter, V,Q : (0,00) — R are radial weights, which can by singular at the
origin, unbounded or decaying at infinity and the nonlinearity f : R — R is continuous and has

exponential critical growth at infinity, i.e., there exists ay > 0 such that

o 1)) :{ 0 if a>a 11)

2 .
|s|—ro0 €% oo if a < ag.

The study of the stationary equation (P) is motivated by the study of standing wave solutions
of the nonlinear Schrédinger equation, see e.g., [24,68,72,77| and references therein. Our starting
point here are the works |79, 80|, where the authors proved some weighted Sobolev embedding
theorems, and there is a growing recent interest in applications of these results in the study of
partial differential equations, see for example [3,17,26,59, 75].

We will assume the following assumptions on the radial functions V' and @Q:

(V) V:(0,00) — R is continuous, V' > 0 and there are ag,a > —2 such that

limsup V(r)r~* < oo and liminf V(r)r=® > 0.

r—0+ =0

(@) Q:(0,00) — R is continuous, () > 0 and there are by, b > —2 such that

8



1. Nonlinear Schrédinger equations involving exponential critical growth

0 < Dy :=liminf Q(r)r " < limsup Q(r)r " < oo, limsupQ(r)r " < oo.

r—0t r—0+ r—00

We also comment here that Ambrosetti-Felli-Malchiodi [11] and do O-Sani-Zhang [42] studied
equation (P) by assuming that V' and @ satisfy the following assumption: there are Ay, Ay, A3 >
0 such that

AL+ ) S V(@) <S4, and 0<Q2) < Ag(1+[a]’)

where 0 < a < 2 and 8 > 0. Thus, when V' and @) are radial we are considering a more general
class of potentials than the one in [11,42].

In the papers [79, 80|, the authors studied the existence of solutions for the equation (P)
when f(u) = |ulP~?u with 2 < p < 2N/(N —2) if N > 3 and 2 < p < oo if N = 2. Our main
purpose is to obtain solutions when the nonlinearity f has exponential critical growth. Precisely,

besides the critical growth condition (1.1), we also assume the following conditions:

(f1) f(s)=o(|s]""!) as s — 0, where

2 if —2<b<a
= max {2,2(2 + 20 — a)/(a + 2)} = 0
v := max {2, 2( a)/(a+2)} { 22420—a)/(a+2) if —2<a<b

(f2) there exists § > ~ such that 0 < 0F(s) < f(s)s for all s # 0, where F(s) := [ f(t)dt;
(f3) the following limit holds: ‘l‘im f(s)s/F(s) = .

S|—00
In view of hypothesis (Q), there exists ro > 0 such that Q(r) > Dgr /2 for all 0 < r < rq. For

this fixed ro we will assume the following assumption:

(fs) there exists By > 2(by + 2)2/Doaori®™ such that lim inf f(s)se"*%" > B,

|s|—o00

It is worthwhile to mention that similar issues have been addressed in the paper [3], where
the authors proved the existence of positive solutions for equation (P) by assuming similar
hypotheses (V') and (@) with a,b in the range —2 < b < (a — 2)/2 and f with exponential
critical growth. To improve this condition, inspired by the paper [69], we used a change of
variables to obtain a sharp weighted Trudinger-Moser type inequality. We also mention that our
hypotheses on f include the ones in [3].

In order to present our main results, we need some notations. As usual, we denote by C5°(R?)

the space of infinitely differentiable functions with compact support. Moreover, given a positive

1
loc

function w € L{ (R?) and 1 < p < oo, we define the weighted Lebesgue space

1/p
LP(R*w) := {u : R* — R measurable : ||u]|»g2.) = (/ w(:c)]u|pd:c) < oo} :
R2
As in the paper [42], we consider the space

g {u € I2.(R?) : |Vu| € [2(R?) and /

loc
R2

V(|x))u?dr < oo} :

9



1. Nonlinear Schrédinger equations involving exponential critical growth

which is a Hilbert space (see [6]) when endowed with inner product

(u,v) p = /R2 [VuVv + V(|z|)uv] d,

and its correspondent norm ||ul|g := (u,u)gz.

Using standard arguments one can prove that C5°(R?) is dense in E. Furthermore, the
subspace
FEq = {u e F:uis radial}

is closed in E and thus it is a Hilbert space itself. In this context, by a weak solution of (P) we

understand a function v € E such that
/ VuVe + V(|z|)up] de = )\/ Q(|z]) f(u)pdz, for all p € C5°(R?).
R2 R2

Remark 1.1.1. We observe that condition a,b > —2 seems to be necessary to the existence of

weak solutions to equation (P). To illustrate, let u € E be a solution of the model equation
— Au+ |z|%u = |z f(u), z€R? (1.2)

and for p > 0, consider u,(x) = u(ux) the continuous path in E converging to u, as p — 1.

Since u is a critical point of the energy functional

1 1
J(u) = 5/}1%2 |Vul*dz + 5/]1%2 2| udw — /R? |z|°F (u)dz,

it should satisfies Z—i(uu)‘ = 0, and taking into account that ||Vu,| @2y is constant, by

performing a change of variables we get

D [ e = 0+2) [ e Pl (13

Therefore, equation (1.2) has no nonzero weak solution if (a,b) belongs to the region R =
((—oo,—2] X (-2, oo)) U ((—2,00) X (—oo,—Q]). Furthermore, if u is a nonzero weak solu-

tion of equation (1.2) we see that

/]Vu|2dx+/ |x|au2d$:/ |2|® f (w)udz,
R2 R2 R2

which combined with (1.3), yields

/}R2 [Vulde = /R2 | (f(u)u _ 2((ab:22)>F(u)) "

Consequently, equation (1.2) has no nonzero weak solution if f(u)u < 2(b+ 2)/(a+ 2)F(u), and
hence 6 > v > ~y = 2(b+ 2)/(a + 2) in the hypothesis (f2) is a necessary condition for the

10



1. Nonlinear Schrédinger equations involving exponential critical growth

existence when a = b.
In this setting our first result can be stated as follows.

Theorem 1.1.2. Assume that (1.1), (f1) — (f1), (V) and (Q) hold. Then, for each A > 0, the

problem (P) possesses a nonzero weak solution uy € FEi.q satisfying,
0 < up(z) < cpexp (—ci]z|@T2) | 2 e R, (1.4)

for some constants cqg,c; > 0 depending only on .

We quote that conditions (f3) and (fs) have already been considered in others works, see
for instance [46,64]. The crucial ingredient to prove Theorem 1.1.2 and Theorem 1.1.3 is a
weighted Trudinger-Moser type inequality. This inequality, combined with a suitable estimate
of the minimax level, yields compactness of the Palais-Smale sequence.

Our second main result concerns the multiplicity of solutions to equation (P) for large A > 0.

To this purpose, we shall assume in addition the following local hypothesis:
(f5) there exists v > v such that lim ionf F(s)|s|™ > 0.
5—

Our multiplicity result is stated as follows.

Theorem 1.1.3. Assume that (1.1), (f1) — (f5), (V) and (Q) hold. If in addition, f is odd,
there exists a sequence (M) C Ry with \y — oo such that for all X > A, (P) has at least k pairs

of weak solutions in Fi.q.

For instance, one can check that Theorem 1.1.2 and Theoreml.1.3 apply for the model
equation
—Au + |z|"u = Nx|® <]u\"_2u + Ju|?2u(e” — 1)) , x €R?

with a,b > —2, A > 0, v > v and q > =, where 7 is defined in (f;). Thus, this class of equations
includes the Henon and singular equations ones, which correspond to a,b > 0 and a,b < 0,
respectively.

The remainder of the chapter is organized as follows. In Section 1.2, we introduce our
variational setting and prove a weighted Trudinger-Moser type inequality. Finally, in Section 1.3,

we present the proofs of Theorem 1.1.2 and Theorem 1.1.3.

1.2 A sharp Trudinger-Moser type inequality

In this section we introduce the variational framework and prove a weighted Trudinger-Moser
type inequality, which is a key ingredient in the proof of Theorem 1.1.2 and Theorem 1.1.3. For
the proof, we borrow some ideas of [27,69,73]. We start off by collecting some well-known results

that we shall use throughout.

Lemma 1.2.1. |79, Lemma 4| Assume (V). Ifu € E and R > 0, then u € H'(Bg) and
|ullg1(Bry < Crllullg with Cr > 0.

11



1. Nonlinear Schrédinger equations involving exponential critical growth

Lemma 1.2.2. [79, Theorem 2| Assume that (V') and (Q) hold. Then the embedding Fyraq —
LP(R%, Q) is continuous for all v < p < oo. Furthermore, if —2 < b < a the embedding is
compact for v < p < oo and if —2 < a < b the embedding is compact for all v < p < 0.

For easy reference, it follows from assumptions (V') and (Q) that for every 0 < Ry < R; there

are positive constants Cy, C, C3, Cy such that

{V(lxl) < Colz|*,  Cilal™ < Q(lz]) < Colzf™ if 0 <o < Ro (L5)

Csla|* < V(Jal),  Q(lz]) < Cula]’ if |z[ > Ry

In view of Lemma 1.2.2, it is natural to look for a weighted Trudinger-Moser inequality on
the space E.,q determined by the Young function
Jo—1 ol

B jo(5) = € =y FSQj’ s €R, (1.6)

=0
where o > 0 and jo := [y/2] = inf{j € N: j > ~/2}. For this purpose, the next lemma plays

an important role in the proof of the optimal exponent of our weighted Trudinger-Moser type

inequality.

Lemma 1.2.3. Assume (V') and consider the so-called Moser’s sequence (see e.g., |63]) given

by
(logn)'? if |z| <r/n,

1 log(r/l|)
(2m)172 ) (logn)'/?

0 i |z|>r

M, (z,r) = if r/n< el <,

Then || M,||% < 1+ 0,(1), where 0,(1) denotes a quantity which goes to zero as n — oo.

Proof. First, one can easily check that ||V M,|[12®2) = 1. On the other hand, we can write

/RQV(|x|)M5dx:/B

By (1.5), with Ry = r we get

J

Considering the change of variables t = log(r/s) we get

V(|x|)Mgdx+/ V() M2da.
BT\BT/’I’L

r/n

Cologn (r)ao+2

(a0 +2) \n = on(L).

n

r/n
V(jz|)M2dx < C logn/ st ds =
0

r/n

C r C ap+2 logn
/ V(’m‘)]\/[zdx < 0 / 10g2(r/s)8a0+1d8 — L/ t267(a0+2)tdt>
Br\Br/n ]‘Ogn r/n logn 0

12



1. Nonlinear Schrédinger equations involving exponential critical growth

and integrating by parts twice, we obtain

logn
0 (ag + 2)n®+2  (ag + 2)2n%0t2  (ag + 2)3n®+2  (ag+2)3 )’

which implies the desired result. [
Now we prove a weighted Trudinger-Moser type inequality in balls.

Lemma 1.2.4. Let R > 0 be fized and assume that (V') and (Q) hold. Then for all > 0 and
U € Eraq, it holds that Q(|z])e®” € LY(Bg). Moreover,

L(e,V,Q.R) = sup [ Q(z])e" dw < oo,

[ulle<1JBr
if and only if 0 < o < g :=4m(1 + by /2).

Proof. Let a > 0 and Ry > 0 to be chosen later. We shall split the proof into two cases.
Case 1: Assume by < ag. For each u € F,,q and ay > —2, inspired by the paper [69] we consider

the function

9\ 1/2
w(r) = (a();t ) u(H(r)), forall r >0,

where H(r) = (“OT”)W (@02) .2/ (a0+2), Carrying out a straightforward computation one has

/ |Vw|*dz :/ |Vul*’dr  and / w?dx :/ |z| " u?dx. (1.7)
Bg, B (ry) Br, Bu(ry)
Moreover, there exists C; = Ci(ag, by) > 0 such that
/ \:L']‘se(%)wd:c = Cl/ || e d, (1.8)
Bg, Br(ry)

where § = —2(ag — by)/(ap + 2) € (—2,0] since by < ag. By (1.5), there exists Cy > 0 such that
Cylz|™ < V(|z|) for all 0 < |x| < Ry. Thus, by (1.7) we get

/ |Vw|*dx + Cg/ w?dx g/ \Vu|2d:l:—|—/ V(|x|)ude,
B, B, B (ry) Bri(ro)

and consequently w € H'(Bg,). Now following a scheme similar to the one in [73] we define
w e H& (B Ro) by

() = {w(lxD—w(RO) it 0<|z| <R,

o i |z > R,

and using Young’s inequality we see that

w(z) W (x) + @ (z)w?(Ro) + 1+ w?(Ro) = v*(w) + ¢,

13



1. Nonlinear Schrédinger equations involving exponential critical growth

with
1/2

v(z) = w(z) (1 +w’(Ro))"? € HY(Br,) and c:= (1+w’(Ro))

According to (1.8) and |2, Theorem 2.1| we have
cl/ 2o g — / el gy < 602/ 2@ 0y < 0o, (1.9)
B (ry) Bry Bry

By (1.5) with Ry = H(Ry), Q(|z]) < Cs|z|® if 0 < |z| < H(R,). Consequently, Q(|z|)e®
L'(Bg) for Ry sufficiently large such that H(Ry) > R. On the other hand, observe that, by (1.7)

if ||u|| <1 we have

/ ]Vw|2dx+/ V(\x|)u2dx:/ |Vu|2dx+/ V(la)utds < ull% < 1.
Br, R2 BH(Rp) R2

that is,

/ |Vw|*dx :/ |Vw[*dx <1 —/ V(|z|)uda.
Br, Br, R?

Therefore, this inequality and the definition of v gives us the estimate
/ IVol*dz < (1+w?(Ry)) (1 —/ V(|x|)u2d:v) <1 —/ V(|z|)uldz + w?(Ry).
B, R2 R2

Thus, by the definition of w we get

/BRO Vol*de <1 - /R V(|z|)u?dr + (“0;2) W2(H(Ro)).

Then, using the following version of the so-called Radial Lemma (see e.g., [3, Lemma 2.1]) due
to Strauss |77]
[u(z)] < Collullla] =274, if |z > 1, (1.10)

we have that ||Vvl|r2p, ) <1 for Ro sufficiently large. Now, we observe that o < 4 (1 + by/2)
if and only if (2/(ag + 2))a < 47(1 + §/2) and hence by [2, Theorem 2.1] we have

2a 2
sup / |20l a0t)” dr < oo,
<1 B,

ol o) <

Once again using that Q(|z|) < Cy|z|% for all 0 < |x| < H(Ry), from the last estimate and (1.9)

we infer that

L(0,V.Q. R) < L(ov,V,Q, H(Ry)) = sup /B Qja])e™ d < oo,
H(

lule<1 J By ny,

for Ry sufficiently large such that H(Ry) > R.

14



1. Nonlinear Schrédinger equations involving exponential critical growth

Case 2: Assume ag < by. In this case, we consider the function

b 42\ 1/2
w(r) = ( 0;_ ) w(H(r)), forall r >0,

where H(r) = (bOTJ“Q)Q/ (bo42) 12/(b0+2) Opce again, a straightforward computation shows that

/ \Vw|2dq::/ |Vul?dr  and / w2dx:/ |z uPda.
Bry BH(ry) Bry Br(rg)

Moreover, there exists C3 = Cs(ag, bg) > 0 such that

2« 2 2
/ w2V gy — C’l/ |x|b°ea“ dx.
Bry Br(rg)

Then, using that ag < by and (V') we find Cy > 0 such that

/ |Vw|*dx + 04/ w?dr < / |Vul?dz +/ V(|z|)udz.
Bry Bry B (rg) Bri(r)

Now, repeating the same argument as in the proof of Case 1 and applying the classical Trudinger-
Moser inequality we conclude that L(a, V,Q, R) < oo if 2a/(by + 2) < 4, that is, o < 4rw(1 +
bo/2). Next, we will prove that L(a,V,Q, R) = oo whenever a > ay. In fact, setting M, =
M, /|| M, ||z we see that M, € Eq and ||M,||z = 1. By Lemma 1.2.3 if |2| < r/n we have

M? logn logn

M? x,r) = = > . 1.11
) = RLE T TG 2e (L + onD) (L11)

Once again, by assumption (Q), there exists Cs5 > 0 such that Q(|z|) > Cs|z|* forall 0 < |z| < r.

Thus, for large n

Q(|x‘)eaM3de > C«GTb(H-2na(27r)*1(1-~-on(1))*1—(bo—|—2)7
Br N
which goes to infinity, since a/(27) ™! — (bg+2) > 0 implies that «(27) " (140, (1))t = (by+2) > 0
for large n and this completes the proof. n

We are now ready to prove our sharp weighted Trudinger-Moser type inequality in the whole

space R2.

Theorem 1.2.5. Let jo = [v/2] and assume that (V) and (Q) hold. Then, for all o > 0 and
u € Eraq, it holds that Q(|x])Pa.j, (v) € L' (R?). Moreover,

L(a7V7Q>OO) ‘= Sup 62(|‘r|)q)a,jo(u)d‘r < 00,

[ull e<1 JR2

if and only if 0 < a < g :=4m(1 + by/2).
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1. Nonlinear Schrédinger equations involving exponential critical growth

Proof. For R > 0 and u € E,,q we split the integral as
Q) Pa g (w)dr = [ Q(|z|)Payo(w)dr + [ Q|z])Pa,jo(u)dz. (1.12)
R2 Bpr By

Since Q(|z])Pq o (1) < Q(|z])e®, by Lemma 1.2.4 it is enough to estimate the second integral
on the right-hand side of (1.12). For that, by (1.5) there exists C; > 0 such that Q(|z|) < Cy|z|®
for all |#| > R and according to (1.10) we have u*(x) < (C|jul|g)¥|z|77@*?/2 for |x| > R. If
2jo > v we can choose j; € N,j; > 1 such that (b +2) — ](‘ITJFZ) < =1, for j > j1 > jo.
Consequently, we can estimate
izl
/Bc Q|z])Pa,j, (w)dz < Z % /Bc Q(|z|)u¥dx + CyR™eC?Iulg, (1.13)
R R

Jj=Jo

Since 2jy > 7, by the continuous embedding E,.q — LP(R?; Q) with v < p < oo, we get

Jji—1
Q) ®q o (w)dz < Cy Y [lul[F + CoR™ eIl < o0,
P J=Jjo
and taking the supremum over u € E,,q with [ju||z < 1 we conclude the proof. u

We quote here that Theorem 1.2.5 improves the Trudinger-Moser inequality proved in [3] in
the case that v = 2, i.e., —2 < b < a where the authors obtain a similar result for 0 < a < ap :=
min {47r, 4r(1 + bO/Q)}.

As a consequence of Theorem 1.2.5 we have the following version of a convergence result due
to Lions [54].

Corollary 1.2.6. Let jo = [v/2] and assume that (V) and (Q) hold. Let (v,) C Eiaq with
lvnlle = 1 and suppose that v, — v in Enq with ||v]|g < 1. Then, for each 0 < f < ag(l —

|lvl|%)~", up to a subsequence, it holds that

sup [ Q(|z])Pg,j, (vn)dr < 0.
neN JR2

Proof. Since v, — v in Fy,q and ||v,||g = 1 we see that

lon = ol =1 = 2 (e o)+ oll = 1= Jollf < a5 o0
Thus, for large n € N we have 3||v, —v[|% < 8 < ay for some 3’ > 0. Moreover, observing that
B2 < B(1+e?) (v, —v)? + B (1 + %) v* and applying Young’s inequality with 1/ +1/rp =1

and r; > 1 such that r18(1 + €?)||v, — v||% < a9 one has

Unp —V

2
eﬁv%dl, S iemﬁ(l—l—e?)”?)n—v”ZE(m) + i€T25(1+§2)v2'
1 T2
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1. Nonlinear Schrédinger equations involving exponential critical growth

For every R > 0, multiplying the above inequality by Q(z) and invoking Lemma 1.2.4 we obtain

sup [ Q(lz)) s, (vn)dz < sup [ Q(|z|)e’ dx < .
neN J Bg neN JBg

On the other hand, as 2jy > 7, we can use inequality (1.13) with v,, to conclude that

sup Q|z])Ps,4, (vn)dr < o0,
neN B,

and hence the proof is complete. n

The proof Theorem 1.1.2 will be reached by using variational approach. For this purpose,
we start off by considering o > «p, as in the hypothesis (1.1) and ¢ > 1. Thus, from (f;), for
any given € > 0, there exist constants C, Cy > 0 such that

1f(s) <els|™' + Cyls|97 D, 4, (s), for all s € R, (1.14)

and
IF(s)] < §|s|v + Cols|"®y , (s), for all s € R. (1.15)

Consider the energy functional associated with equation (P) given by
Lo
Ja(u) = éﬂuHE — A [ Qz|)F(u)dz, forallu € Epaq.
R2
By using that, for all » > 1 the elementary inequality (see e.g., [83, Lemma 2.1|)
(Do jo ()" < Prajo(s), forallseR, (1.16)

holds, it follows from (1.15), Lemma 1.2.2 and Theorem 1.2.5 that Jy is well defined and standard
arguments show that Jy € C1(E,.g, R) with derivative given by:

Ji(u)v = /R2 (VuVo + V(|z|)uw) de — A/RQ Q(|z|) f(w)vdx, for all v € Epaq.

Remark 1.2.7. Since the value of X > 0 is not relevant in the proof of Theorem 1.1.2, we

restrict our analysis to A = 1 and to simplify notation we denote Jy by J.

Inspired by [16, Lemma 5.1 |, we have the following version of Palais’ Principle of Symmetric
Criticality due to Palais [65].

Proposition 1.2.8. Every critical point of J in FEy.q is a weak solution of (P).

Proof. Let u € F,,q and consider the linear functional T}, : E — R defined by

Ty(w) = Vquda:—i—/RQV(\xDuwdx—/R2Q(|:c|)f(u)wdx.

R2
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1. Nonlinear Schrédinger equations involving exponential critical growth

First, we are going to check that T, is well defined and continuous on FE, which is enough to
estimate the last term. For each w € E, by (1.14) with ¢ = v+ 1 and € = 1 we get a constant
C'1 > 0 such that

| etablsuits < [ QUalululdz+ s | QP ®ap@luoldz. (117
Let us to analyze the last two integrals above. For any R > 0, we can write
[ @ehterwlds = [ Qel)fululds + [ Qe fuids
R2 Br By

Now using Hélder’s inequality and Lemma 1.2.2 we get Cy > 0 such that

1/
/ Q) |u| w|dx < Col|ul|} </ Q(!x\)]w[”dw) ) (1.18)
Br Bgr

Choosing p; > 1 such that p;by > —2, we see that |z|P** € L'(Bg), and hence we can use (Q)
together with Holder’s inequality with 1/p; + 1/ps = 1 to get

1/ 1/p2 1/p2
Q|z|)|w]"dx < Cs (/ |x|p1b°dx> (/ |w|p”dx> <y (/ |w|p27dx) .
BR BR BR BR

From this and the continuous embedding F — LP?7(Bpg) (see Lemma 2.2.2), we deduce that

Q(lz)[w]"dr < Cs[jwl|g, (1.19)

Br

which combined with (1.18) implies that
[ @ablurulds < Collwls (1.20
Br

On the other hand, by (1.5), inequality (1.10) and the fact that b — (y — 2)(a + 2)/4 < a, for
|z| > R one has

QUal)lul™" < Crllully 2"~ M u] < Cylal®lul < CoV (J])]ul.
Consequently, we get

/BC Q(z)lulMwldz < Collullpllwlle = Collwlle.
R

This, combined with (1.20), implies

/ QU ul" wldr < Cualfwl|e. (1.21)
R2
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Next, we estimate the second integral on the hight-hand side of (1.17). For R > 0 we also split

/RQ Q|z])[ul"Pajo (w)|w|dz = Ti(w) + Tr(w),
where

Ni(w) = | Qa))|ul”®ajo(u)[wldz and  Ty(w) := [ Qz])|ul oo (u)|w|dz.

Br Bg

Invoking Holder’s inequality, (1.16), Lemma 1.2.2, Lemma 1.2.4, and (1.19), we see that

1/q1 1/q2 1/q3
Tyw)| < ( / @<|x|>|u|mda:) ( Q(|w|><1>q2a,jo(U)dﬂf) ( @<|x|>|w|%dx)
Br Br Br
< Cpllw|| g,

for q1,q2,q3 > 1 satisfying 1/q; + 1/¢2 + 1/g3 = 1 and g3 = . On the other hand, using that
b—~(a+2)/2 < a, from Holder’s inequality, (V), (@), (1.10), (1.16) and Theorem 1.2.5 we get

1/2 1/2
Ta(w)| < Cis (/ IIIbIUI2”w2dl’> ( Q(le)%a,jo(U)dﬂf)
Bg Bg

1/2
< Challul} ( / lxll"““*”/?w?dx) < (i3 ( /
B¢ B

R

1/2
|x|“w2dx> < Cygl|lw]| g

c
R
Therefore,

[ @UaDlul @) fwlde < Cirluol

This, together with (1.17) and (1.21), implies that T;, is continuous. Now, suppose that u € Eyaq
is a critical point of J, i.e., T,(w) = 0 for all w € E,.q. By the Riesz Representation Theorem
in the space E, there exists a unique u € E such that T, (u) = ||[u]|% = ||T.||%/, where £’ denotes
the dual space of E. Let O(2) denotes the group of orthogonal transformations in R?. Since

V,@Q and u are radial, by using change of variables, one has for each w € F
T.(gw) =T,(w) and |gw|g = |w|g, forall ge& O(2).
Applying this with w = @, by uniqueness, gu = @, for all g € O(2), which means that u € E,.q

and consequently T, (u) = 0, that is, ||T,||z = 0 which implies that T;,(w) = 0, for all w € E
and this concludes the proof. ]

1.3 Proofs of Theorem 1.1.2 and Theorem 1.1.3

In view of Proposition 1.2.8 we are going to get solutions of (P) looking for critical points of

J. We first prove that J satisfies the Mountain Pass geometry.
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Lemma 1.3.1. Assume that (1.1), (f1) — (f2), (V) and (Q) hold. Then
(1) there exist T,p > 0 such that J(u) > 7 if |ul|p = p;
(1) there exists e € Fyaq, with ||e||g > p, such that J(e) < 0.

Proof. For every ¢ > v > 2, by Holder’s inequality with exponents 1/r + 1/ry = 1 together
with (1.16) we get

1/r2
u

[ QIS a0 < ol sy ([ QUi () o)
R? [ulle

Choosing ||ul|g = p < (az/rya)'/?, we can apply Theorem 1.2.5 and use inequality (1.15) to get
C'5 > 0 such that

€
y QUal)F(u)de < S llullzmeg) + Csllull e 2.q):
for every € > 0. Hence according to Lemma 1.2.2, there exist constants Cy, C5 > 0 such that

(746
—lullz = Cs[lullz,

Tw) > Ll ~
which gives us (7), if v > 2. In case that 7y = 2, we obtain the result by choosing € > 0 sufficiently
small.

To prove (ii), we consider a function ¢ € C§5,4(R?) \ {0} and denote its support by suppe.
From (f;) there exist > v > 2 and constants Cs, C7 > 0 such that F(s) > Cg|s| — C, for all
s € R. Thus, for all t > 0, it holds that

t2
J(tp) < §||90||%—06t9 Q(|z])|¢|’dz + Cr Q(|z])dz
suppyp suppyp

Since 6 > 2, we obtain (i7) by taking e = t@ with ¢ > 0 sufficiently large and this concludes the
proof. O]

In view of Lemma 1.3.1 the minimax level

= inf
c= ;grtrg[%J(()),

with T' = {g € C([0,1], Eraa) : g(0) =0 and J(g(1)) < 0} is positive. According to the Moun-
tain Pass Theorem without the Palais-Smale condition (see e.g., [23]) we obtain a Palais-Smale
sequence ((PS), for short) (u,) C FEyaq at the level ¢, that is,

J(u,) = ¢ and ||J (up)| g — 0.

Whenever (u,) C Fpq is a (PS). sequence, we will show next that, up to a subsequence,
U, — u in Fi,q. In order to prove that u is a weak solution of (P) we will need the following

compactnesses result:
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Lemma 1.3.2. Assume (1.1), (f1) — (f3), (V) and (Q). If (u,) C Eraq is a (PS). sequence to

J then (uy) is bounded in Fy,q and, up to a subsequence, it holds that:
(1) Qlz])f(un) = Q(|2])f(u) in Li,,(R?);
(i) Q(|z|)F (un) — Q(|x])F(u) in L'(R?).

Proof. By hypothesis, we have

lualls = [ @lel) e = e+ 0,(1)

and

= | QU Fun)unde = on(un ).
Thus, for every 6 > v > 2 we get constants C;,Cy > 0 such that

1 1

L+ Gt Calule 2 (5 5 ) Il + [ QGel) (30— Pl Jas, 122

which yields that (u,) is bounded by (f>). As a consequence we have the estimate

/ Q|z|) f (up)updx < Cs, for alln € N.
RQ

Then, up to a subsequence, u, — u in Fyq and Q(|z|)u, — Q(|z|)u in L (R?) by Lemma 2.2.2.
From (1.14), Lemma 2.2.2 and Theorem 1.2.5 we see that Q(|z|)f(u) € Li..(R?). Therefore,
thanks to [44, Lemma 2.1| we conclude that (i) holds.

In order to prove (ii), for every R > 0 we write

|, QUaD(Pun) = Pla)de = 1,(Bx) + (B,

where for 2 = Bg or Q = B,

L) = [ QUel)(F(w) = Fu)ds,
First we check that, for all R > 0 fixed we have
lim I,,(Bg) = 0. (1.23)
n—o0

In fact, for any € > 0, according to Egoroff’s Theorem there exists a measurable set {2 C Bp

with |Q| < € such that u,(x) — u(z) uniformly in Bg \ €2, and consequently

|1 (Br)| S/QQ(|56|)F(U)dSC+AQ(|$|)F(un)dx+0n(1)- (1.24)
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1. Nonlinear Schrédinger equations involving exponential critical growth

From (1.15), for ¢ > v we see that

: Tdx ) |ul?®, i, (u)dz.
[ @ebFdr <5 [ @ellurds+Ca [ QUiablul'®, q(wd

On the other hand, by Lemma 1.2.2, (1.16) and Theorem 1.2.5 we have

1/q3 1/q2
[ @aDlulra, ) < ( / @<rx|>dx) — ( / @<|:cr><1>m,jo<u>dx)

< ( /ﬂ Q(lxl)dw) "

whenever ¢y, g2, q3 > 1 satisfy 1/g; +1/q2 + 1/g3 = 1. From hypothesis (@), there exists Cy > 0
such that Q(|z]) < Cylz|b, for all 0 < |z| < R. Since by > —2 we can choose r; > 1 with
1/r1 4+ 1/ry = 1 such that r1by > —2 and hence

1/r1
/Q(|:E|)dl‘ < Oy </ |:p|mb0dl’) |Q|1/r2 < 0651/T2'
Q Q
Thus, we conclude that
/ Q(|z])F(u)dr < Crel/m2as, (1.25)
Q

Next, we estimate the second integral on the right-hand side of (2.27). To do this, from (1.22),
it follows that

1
/ Q(|x]) (gf(un)un - F(un)) dr < Cs. (1.26)
R2
For any € > 0, we can choose 6, > 6 such that
0C

By hypothesis (f3) there exists so > 0 such that 0yF(s) < f(s)s for any |s| > so. Furthermore,
by (1.26) we infer that

/{ oy DU U ()t = 0F (un)) do < 6C,

and consequently by (f2) we get

60=0) [ QUelF(u)dr = [ Qel) (o () = Flun)un + (1)~ 6F (1) do
{lun|=so} {lun|>s0}

S 0087

which combined with (1.27) implies that

/{ @l F(a)ds <& (1.28)
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1. Nonlinear Schrédinger equations involving exponential critical growth

On the other hand, since Q(|z|)f(u,) — Q(|z|)f(u) in L'(Bg) there exists g € L'(Bg) such
that Q(|z|)|f(un)| < g a.e in Bg. From assumption (fs), we have

QU F() < 5QU) () (m) < 7950 ae. in Q0 {ua] < 0

Then, by applying the Lebesgue Dominated Convergence Theorem and using (1.25) we obtain

lim Q|z|) F (up)dx = / Q(|z|)F (u)dx < Crel/r2es,

=0 Jon{|un|<so} QN{jul<so}

Since

/Q QU] F () = / @l P+ / Q] F (),

QN {|un|<so}

from (1.28) we find
limsup/ Q(|z]) F (uy)dx < £+ Crel/r2as,
Q

n—so0
Since £ > 0 is arbitrary, the last estimate above together with (2.27), and (1.25) imply that
(2.26) holds true.

Next, we will prove that for R > 0 sufficiently large lim,, . I,,(B%) = 0. For this, using that
Q(|z|)F(u) € L'(R?) for any € > 0 we can choose R > 0 sufficiently large such that

[In(Bg)| < . Q[ ) F(u)dx + . Q) F(un)dr <& + . Q(|]) F (un)dr. (1.29)

To estimate the last integral above, since (u,) is bounded, using Hélder’s inequality with 1/ry +

J

1/ry =1 we get

1/r
QU Dl " Pas () < < o @<rx\>|un|wdx>

c
R

R
e (1.30)
x ( Q(|$D‘I>r2a,jo(un)dx> :
By
This together with inequality (1.15) implies that
£
Q([]) F (un)dx < 5/ Q(l$|)|un|”d93+09/ Q[ ])un|*Pa, o (un) d
By By By
(1.31)

1/ra
S 0105 + Cll < Q(|x|)q)rga,jo(un)d$> )
B

for every £ > 0 and n € N. Now using inequality (1.13) with u replaced to u, we get

n-1 s
/ Q|2])Pryajo (un)dr < Z O‘_/ Q(\x!)uijd:z: + 012R71€7‘2a02||un||21~:_
B B%,

c !
R J=jo J
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1. Nonlinear Schrédinger equations involving exponential critical growth

Since (uy,) is bounded by Lemma 1.2.2 we deduce that

-1

o’ , )
lim sup Q|2]) Pryajo (un)d < E —,/ Q(|z|)u¥dx 4+ Cra R~ e,
. B}C%

*) c . .
e Bi J=Jo J

that goes to zero as R — oo. This in combination with (1.29) and (1.31) implies that the

convergence lim,,_,, I,,(B%) = 0 holds, and so the lemma is proved. O
As a consequence of the previous lemma, we have the following local compactness result:

Proposition 1.3.3. Assume (1.1), (f1) = (f3), (V) and (Q). Then the functional J satisfies the
(PS). condition for every c € (0, as/2ayp).

Proof. Let (uy,) C FEraq be a (PS).. By Lemma 1.3.2 we can assume, up to a subsequence, that

U, — u weakly in Eyq and for all ¢ € C§%,4(R?) we have

| (0o Viahuplde = [ QUahfun)ede =onlgle. (132

Passing to the limit and using Lemma 1.3.2 we get

/ (VuVe + V(|z])up) dx — / Q(lz]) f(u)pdz =0, for all p € C5%q(R?). (1.33)
R R?

Next, we are going to check that

lim [ Q) f (un)unde = / QUlel)f (- (1.34)

n—oo R2

If this is true, from (1.32) and (1.33) it follows that

i s = i [ QU A )unde = [ @lel) fuude =

and this finishes the proof. Thus, it remains to prove (1.34). To this end, we first observe that by
Lemma 1.3.2 Q(|z|)F(u,) — Q(|x|)F(u) in L'(R?) and hence from the fact that J(u,) = c+0,(1)

we get
lim [ju, |3 = 2 (c—l—/ Q(|:U|)F(u)dx) > 0. (1.35)
n—oo R2

Defining v, := u,,/||un|| g, by the weak convergence of (u,,) we have
v, — v :=u/lim ||u,||g weakly in Fi.q,
n—oo

with ||v]|g < 1. If ||v]|g = 1 we finish the proof. Otherwise, it follows from (f2) and (1.33) that

) = 30 = g @ = (5= 5 ) Il + [ Qe (G- Faw) e =0
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1. Nonlinear Schrédinger equations involving exponential critical growth

Setting A := (c+ [p Q(|z|)F(u)dz) (1 — [Jv]|%), it follows from the definition of v that A =
¢ — J(u). Thus, from (1.35) we reach
A c—J(u) < c Qg

1
~ lim ||u,||3 = = < :
2nmoc T T 0 1= ol T 1= ollE T 2a0(1 — [[0]|%)

Consequently, for large n € N there are ¢; > 1 sufficiently close to 1, a > «g close to ag and
B > 0 such that g al|u,||% < 8 < as(1 — ||v||%)~!. Therefore, by Corollary 1.2.6 there exists
C1 > 0 such that

| @)@y (wa)ie < €1 (130

Now we observe that

< Li(n) + La(n),

[ QD) () — () i

where

L) = [ QUaIf () = wlde and Lan) = [ QUleD)|fun) = Sl

We are going to check that lim,, o, L;(n) = 0 for i = 1,2. To this, by inequality (1.14) with
q = 1, for every € > 0 there exists C5 > such that Holder’s inequality implies

L(n) < ellunll7 gegllun — ull o @e) + Co /R2 Q) |un — u|Pa,j, (un)da.

Now, using (1.16) and Hoélder’s inequality with exponents 1/¢; + 1/g2 = 1, g1 close to 1 and ¢

sufficiently large we get

/@
[ Qe — ke < =l ([ Qo))

This combined with (1.36) and the compact embedding in Lemma 1.2.2 implies that the con-
vergence lim,,_,, L1(n) = 0 holds. Next we will check that lim,,_,o, L2(n) = 0. For this purpose,
since C§%,4(R?) is dense in Eiaq, for each e > 0, there exists v € C%,4(R?) such that [[u—v||p < e.

Now, notice that

L) < [ QUallf(u)u—vldz+ [ Qe =~ wlde
{0l e ee) QUzDIf (un) = f(u)ldz.

supp v

Since (uy,,) is bounded, applying (1.32) with ¢ = v — v we find C3 > 0 such that

< on(Dlu =2llg + llun|lpllu = |z < Cse.

. Q(|[) f (un) (v — v)da
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1. Nonlinear Schrédinger equations involving exponential critical growth

In a similar way, from (1.33) we get Cy > 0 such that

[ QU)o < e

and according to Lemma 1.3.2 we have

[[0]] oo 2) Qz[)|f (un) — f(u)ldz = 0,(1).

supp v
Therefore, lim,, o La(n) = 0 and this completes the proof. O

Next, we will obtain an estimate for the minimax level.

Lemma 1.3.4. Assume (f2),(f1), (V) and (Q). Then, there exists n € N such that

max J(tMn) = max {—2 — Q(|$|)F<tMn)d$} < 2,

>0 >0

where M, (z,7) := My(2,70)/||My||z with ro given in condition (fy).

Proof. We argue towards a contradiction, by supposing that the conclusion of the lemma fails.

Then, for every n € N, there exists ¢,, > 0 such that

b [ Qe Pt > 22
2 R nemm 20[0

Since Q(|z]) > 0 and F(s) > 0, we have t2 > as/ap. Taking into account that 4 (J(t]\an)>
t=tn

0 we infer that

ty = 5 Q(|z) f (tn My )ty Mydzr. (1.37)

Now we recall that by hypothesis (fy), for all 0 < ¢ < fy there exists R = R(¢) > 0 such that
F(s)s > (B —€)e™* forall |s| >R, (1.38)
where By > 2(by + 2)2/Doaort®™ with ry and Dy satisfying
Qlz|) > %mbo for all 0 < |z| < 7. (1.39)

Since t2 > ay/aq, for large n € N we obtain ¢, M, (z,r0) > R for all 0 < |z| < ro/n and hence
by (1.38) we obtain

f(tnMn(xa TO))tnMn(xa TO) 2 (60 - E)eao(tnMn(QE,T‘o))2.
On the other hand, from estimate (1.11) with r = ry we have

~ |
Mi(a:,ro) > ogn

Z e+ onD) it |z| <ro/n.
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1. Nonlinear Schrédinger equations involving exponential critical growth

Then, from the above estimates we obtain

2 Jogn — apt2 logn
ti Z M / ’x‘b0627r?fiolng(l)) daj — M <@>b0+2 6277?12}:"%(1))’
2 jzl<ro/n (bo+2) \n

which leads to
C’otinbo—i_Q 2 naot%/27r(1+on(l)) with Co = (bo + 2)/(ﬁ0 — €)D07T7“80+2. (140)

We claim that (¢,) is bounded. Indeed, suppose by contradiction that ¢, — co. From (1.40) we

get
Qo
1 log (¢ 2) 1 P — P T 1.41
0g(Co) + log(t:) + (bo + 2) logn > 27T(1+0n(1))t" ogn ( )
Thus,
log(Cy)  log(t2) N (bo + 2) - ap
t2logn  t2logn 2 T 2m(140,(1))’

and taking the limit we obtain a contradiction. Now we will show that

. &%)
lim 2 = —=.
n—oo O{O

Otherwise, there exists some § > 0 such that for n € N sufficiently large t2 > ay/aq + d. This,
together with (1.41) implies

IOg(Co) i log(ti)

apt? Qg + apd
(bo +2) > oly 2 0
logn logn

“2r(140,(1)) — 27(1 + 0,(1))

Since (t,) is bounded, taking the limit we obtain 27 (by + 2) > (g + apd), which contradicts the
fact that ap = 27(by + 2). Finally, we estimate [y to get a contradiction. It follows from (1.37)
that
2= [ QUa|)f(tad)t,Mudz + | Q(|x]) f (ta M)t M, dz, (1.42)
Ay Bn

where A, := {z € R? : [t,M,| < R} and B, := {z € R?: |t,M,| > R}. Since M, — 0 a.e. in
R2, by applying the Lebesgue Dominated Convergence Theorem we get

lim [ Q(|2]) f(tn M)t Myda = 0.
n—oo An

Thus, taking the limit in (1.42) we obtain
2 im [ QUa|)f (M)t M, de (1.43)

O{O n—o0 B

Using that t2 > as/aq, from (1.38) and (1.39) it follows that

[ Qe sttt it = B2 [yt
B 2 B,
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1. Nonlinear Schrédinger equations involving exponential critical growth

Now we observe that

- 2 _
/ |z |Po e Mi gy = T +/ |z P02 Mi .
B (0o +2)  Jrociai<ry

70
Performing a straightforward computation and doing the change of variables r = roe~IMnllz(logn)!/2s

we get

7o

72 —1/2) 47 |=1 2

/ |z |0 e2Mn dy = 27T/ rbo g(bo+2){(legm) =Ml 5 log(ro/r) . gy
20 <|z|<ro ro/n

boigr - 1M " (log m) /2 - e
AR 2/—logn/ (o2 | s log m) /28]
0

Since e™+2s* > 1 after a simple computation we find

- opbot? 1
by o M2 0
z|Pe?Mndr > 1+——.
/’;gg|x|gm o ~ (bo+2) ( ”b°+2>

Therefore,

~ 4
lim inf z|Poe0tnMi gp > T pbot2 1.44
n—00 /B & = (by + 2) 0 ( )

70

On the other hand, observing that

/ |x|b°ea2M5d:ﬂ:/ |$|b°e°‘2M5d$—/ |:B|b°ea2M5dx,

70

and by applying the Lebesgue Dominated Convergence Theorem we obtain

|l_|boea2]\;[3bdx — 2—7T b0+2'

lim Ty

n—oo J 4 (bO + 2)
Then, estimate (1.44) yields

27
rhot?,

hmlnf/ |$|bo€a2M721d$ Z m 0

n—oo
n

Therefore, from (1.42) and (1.43) we get

az (Bo — €)D07TTb0+2
oy (bo + 2) 0

Using that ay = 2m(by + 2) and letting ¢ — 0 we contradicts (fy), and this completes the
proof. n

We shall also need a basic regularity result, which will be used to prove (1.4).
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1. Nonlinear Schrédinger equations involving exponential critical growth

Lemma 1.3.5. Let R > 0 and u € H}(Bg) be a weak solution of the semilinear elliptic problem

(1.45)

—Au = h(z,u), in DBrg,
u =0, on O0Bg,

where h : B X R — R is a Carathéodory function satisfying
Ih(z, s)| < Colz|?e™”,  for a.e. z € By, and s € R,

with Cy > 0, by > —2, and a > 0. Then, u € C°(Bg) for some o € (0,1).

Proof. Since by > —2, there exists p > 1 such that pby > —2. Similarly, we can choose ¢, g2 > 1
satisfying 1/q1 + 1/g2 = 1 and ¢1pby > —2. Then, by Hélder’s inequality one has

1/ ) 1/q2
/ |h(x,u)Pde < C¥ (/ |x|q1pb°dx) (/ etd2pat dx) :
Br Br Br

Taking into account that |z|%P% € L*(Bg), and by the classical Trudinger-Moser inequality (see
[63],[81]) it holds that eP*** e L'(Bpg), we conclude that |h(z,u)|? € L'(Bg). Therefore, by
classical elliptic regularity theory u € W2P(Bg) — C°(Bp) for some o € (0, 1) and this finishes
the proof. n

We now present the proof of Theorem 1.1.2 with the aid of the previous results.

Proof of Theorem 1.1.2. By Proposition 1.2.8 it is sufficient to show that J has a critical point.
By Proposition 1.3.3, Lemma 1.3.4 and the Mountain Pass Theorem J has a nonzero critical
point. Moreover, we can assume that f(s) = 0 for s < 0 and the above results are valid also
for this modified nonlinearity. Thus, there exists u € Ey.q \ {0} such that J'(u) = 0. Since
u”(r) := max {—u(z),0} one has 0 = J'(u)u~ = —|ju~||%, which implies that u > 0 a.e. in
R2. To conclude the proof it remains to prove (1.4). For this purpose, by the assumption
(V) for all Ry > 0 there exists Cy > 0 such that V(|z|) > Cy|z|* for all |x| > Ry. Defining
d(z) = e~ with ¢, = 2¢/Ch/(a+2) > 0 and using a straightforward computation we see
that

80+ V(el)g = Ll in el 2 Ro (1.46)

On the other hand, from assumption (Q) there exists C; > 0 such that Q(|z|) < Cy|z|® for all
|z| > Ry. Then, by inequality (1.10) and (f;), for Ry sufficiently large we have

Q(x]) f(u) < %|x|b|u|72u < %|x!b(72)(“+2)/4u for all |z| > Ry.

—2)(a+2)

Taking into account that b — (v A < a we get

Q(|z]) f(u) < %ll’\au, for all |x| > Ry.
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1. Nonlinear Schrédinger equations involving exponential critical growth

This combined with (1.46) (where ¢y is a positive constant such that u < ¢y¢ on |z| = Rp)
implies
C :

— A(u — cop) + (V(]m\) - Zo|x\a> (u—copp) <0 in |x]| > Ry,

u—cop <0 on |z|= Ry
Then, by the maximum principle we have that u(z) < ¢yé(x) if |z| > Ro. To complete the proof
it is enough to show that u € C?(Bp,) for some o € (0, 1). Defining v(z) := u(z) — u(Ry) and
using Lemma 2.2.2, v € H}(Bg,). By the behavior of V and @ at the origin, we can assume
that V(|z|) = |z|% and Q(|z|) = |x|% and so v is a weak solution of problem (1.45) with R = R,
and h(z,v) = |z| [f(v+ w(Ro)) — |z|* ™ (v + u(Ro)]. Now using that by < ao (similarly to
ag < bp), by (1.1) and the continuity of f we find Cy = Cy(R) > 0 such that for all z| < Ry

bz, v)| < J2f [1f (0 + u(Ro))] + B ™[0 + u(Ro)[] < Calaloe.

By applying Lemma 3.2.3, we conclude that v € C?(Bg,). Therefore, u = v+ u(Ry) € C’(Bg,)
and this completes the proof of Theorem 1.1.2.

In order to prove our multiplicity result we shall use the following version of the Symmetric

Mountain Pass Theorem (see, e.g., [13]).

Theorem 1.3.6. Let E be a real Banach space and I € C1(E,R) be an even functional satisfying
I(0) =0 and

(I1) there are constants p,T > 0 such that I(u) > 7, for all ||ul|g = p;

(Iy) there exist D > 0 and a finite-dimensional subspace S of E such that
max,es I(u) < D.

If the functional I satisfies the (PS). condition for 0 < ¢ < D, then it possesses at least dim S

pairs of nonzero critical points.

Proof of Theorem 1.1.3. Since f is odd and satisfies (f1), then J is even and J,(0) = 0. More-
over, we observe that all the results proved in the previous sections holds for Jy, for all A > 0.
Arguing as in the proof of the first theorem, we obtain that J, satisfies (1;). From (f3) and the
local condition (f5), there exists Cp > 0 such that F(s) > <2|s|*, for all s € R. Consequently,

) < el = <2 [ Qeblula.

We now observe that, for any k—dimensional subspace S of El.q, the norms are equivalent and

hence

2
1 C 1 1 1 V=2
mox (o) < x|l - 0 Sl | = (5-1) () A = Do

ues
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1. Nonlinear Schrédinger equations involving exponential critical growth

Since 2/(2 — v) < 0, we have that limy_,o, Dx(A) = 0. Thus, there exists Ay > 0 such that
Di(N) < as/(2ap) for any A > A,. Therefore, we can apply Proposition 1.3.3 and Theorem 1.3.6

to obtain k pairs of nonzero critical points of Jy, which concludes the proof. O
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Chapter 2

On a planar non-autonomous
Schrodinger-Poisson system involving

exponential critical growth

In this chapter, we present the results of the paper [4] where we investigate the existence of
solutions for a class of planar non—autonomous Schrédinger-Poisson system. One of our basic

tools consists in a Trudinger-Moser type inequality obtained in the Chapter 1.

2.1 Main results

Here, we are concerning with the existence of a solution to the planar non—autonomous

Schrodinger-Poisson system

{ — Au+ V(jz)u +noK (Jz))u = AQ(|z|) f(u), =€ R (S)

A¢ = K(Jz|)u?, z € R,

where 7, A > 0, the potentials V, K, @ : R? — R are radial functions, which can by singular at
the origin, unbounded or decaying at infinity and f(s) is a continuous function with exponential
critical growth in the Trudinger-Moser sense.

It is well-known that the solutions of system (S) are related to solitary wave solutions to the

nonlinear Schrédinger-Poisson system

{ Wy — Agtp + E(x)y + noK (2) = Q(2) f(¥),  (2,1) € R* x (0, 00), 2.1)

Ap¢ = K(z)?, (z,t) € R? x (0, 00),

where v : R? x (0,00) — C is the wave function, E(z) = V(x) — £ with £ € R is a real-valued
external potential, ¢ represents an internal potential for a nonlocal self-interaction of the wave
function and the nonlinear term f(s) describes the interaction effect among particles. If we look

for a standing wave ansatz ¥ (x,t) = e %'u(z), with £ € R, the system (2.1) reduces to system

(S)-
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2. On a planar non-autonomous Schrodinger-Poisson system involving exponential critical
growth

Similar problems in dimension N > 2 have been widely investigated due to the fact that
they have a strong physical meaning, because they appear in quantum mechanics models and
semiconductors (see e.g., [22,32,50,53,57| and references therein). In [20,21], systems like (S)
have been introduced as a model describing solitary waves, for nonlinear stationary equations of
Schrodinger type interacting with an electrostatic field, and are usually known as Schrodinger-
Poisson systems. Due to this deep physical meaning, in dimension N = 3, the non-autonomous

Schrodinger-Poisson system

{ — Au+V(z)u+ oK (z)u=AQ(x)f(u), = €R (2.2)

— A¢p = K(z)u?, z € R?,

has strongly attracted the attention of many researches (see e.g., [33,34, 74| and references
therein). In this case, we can take the advantage of the Sobolev space D'?(R?) to obtain a
solution to the Poisson equation in system (2.2). Roughly speaking, for each v € H'(R?),
thanks to the Lax-Milgram lemma the unique solution of the Poisson equation is given by the

Newtonian potential of Ku?, i.e.,

o) = [Tas K] (@) = [ Tl =) () (0)y,

where T'3(z) = 1/(4x|z|) is the fundamental solution of the Laplacian in R?. Plugging this
relation into the Schrodinger equation in (2.2) we get a nonlinear Schrédinger equation with a
nonlocal term and, afterward, a solution of this equation is obtained by using different techniques.
There is a vast literature dealing with system (2.2) under different assumptions on V, @ and f
in the autonomous case, that is, X = 1 and the non—autonomous. We can refer the reader to
the papers [14,33,37-39,48,49,53,55,62, 74| and references therein.

In dimension N = 2, motived by the papers [8, 36, 78] we will use a different strategy:
Precisely, for any u in an appropriated Hilbert space we consider the Newton potential of Ku?,
that is,

o) = [Ta Ku') (@) = [ Tala = ) () (0),

where 'y (z) = (1/27) log(|z|) is the fundamental solution of the Laplacian in R? and by choosing

1 = 27 we obtain first the solution of the integrodifferential equation
— Au+ V(|z))u+ [log *Ku2] (2)K(|z|)u = AQ(|z|) f(u), =€ R &)

Afterward, we obtain a solution to the Poisson equation by using some regularity results. In this
context, some mathematical difficulties appear different from the articles mentioned above and,
therefore, the number of papers is scantier. The first difficulty that we face in dealing with the
two-dimensional case is the fact that the integral kernel I'y is sign-changing, differently from I'3
that is positive. To overcome this difficulty, we employ a similar argument to that developed in
the papers |8, 36].

The weighted feature of V yields another difficulty that prevents us to work directly in
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H'(R?). As performed in many papers, we use an appropriate Hilbert space. With this aim,
our starting point here is the hypotheses of the weight functions V, K and () which were firstly
introduced in the works [79,80], where the authors proved some weighted Sobolev embedding
theorems. Furthermore, there is a recent growing interest in applications of these results in the
study of partial differential equations, see for example [3,12,15,17,26].

Throughout this chapter we assume the conditions (V') and (@) (see Chapter 1) on the radial

potentials V' and (). Moreover, we assume the following assumptions on K:

(K) K :(0,00) — Ris continuous, K > 0 and there are [y > —3/2, =2 < [ < min{a, (a — 1)/2}

such that % %
lim sup (r) < oo and limsup (lr)
r

r—0t rt r—00

< OQ.

We consider in this chapter that f(s) satisfy (1.1) and (f;) (see Chapter 1). Furthermore,
to perform a variational approach, recalling that v = max {2,2(2+ 2b —a)/(a+ 2)}, we also

assume the following assumptions on f:
(f2) there exists § > max {7, 4} such that 0 < 8F(s) < f(s)s for all s > 0;

(f3) there exists 7 > max {7, 4} such that liminf F(s)/s" > 0;

s—0t
(f1) the function s — f(s)/s? is increasing for s > 0.
In order to obtain a positive solution of system (S), we look for a positive solution of equation

(£). For that, we observe that (£) has, at least formally, a variational structure given by the

energy functional defined by

B = sl + 5 [ [ 1og(le = s K (s (el (e)dds =X [ QUlel)Fus

Remark 2.1.1. As we will see, it follows from the hypotheses on'V, @ and f(s) that the functional
I, is well defined in F..q, except possibly at the nonlocal term. Taking into account the elementary

inequality

[log(|z —y[)| < +log(1 + [x[) 4 log(1 + |y]),

1
|z =yl
and the Sobolev embedding Er.q — L*(R?; K) (see Lemma 1.2.2), for each u € Ep,q\ {0} we see
that

/RQ 10801+ DB ) ) K (el (e = ey [ 10801+ ) K (ol)ol (@)da

/RQ [ 100+ D () 0) K (el o)y = ey | 1081+ [ K (1) )

which combined with the Hardy-Littlewood-Sobolev inequality (see Proposition 2.5.5) motivate

the definition of our function space on which Iy is well-defined.
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Inspired by the paper 78| (see also [58]) and Remark 2.1.1 we consider the new Hilbert space
defined by

W= {u SO / log(1 + |z|) K (|z|)u*dz < oo} )
R2

with the norm ||u|lw := (u, u}ll,‘//2 induced by the scalar product

(U, v) = (U, v) g + /R2 log(1 + |z|) K (|z|)uvdzx.

Using standard arguments one can prove that C5°(R?), the space of infinitely differentiable
functions with compact support, is dense in W. The proof that (W, | - ||w) is a Hilbert space is

not direct and so it will be done in the next section.
Remark 2.1.2. Naturally, the continuous embedding (W, || - ||w) < (E, || - ||g) holds true.

Even if W provides a variational framework to equation (&), some difficulties appear due to
the following unpleasant facts. For example, the norm in W does not appear explicitly in the
expression of the functional. Another obstacle is that the quadratic part of I is not coercive
on W. However, the condition (ﬁ) allows us to use the minimization arguments in the Nehari
manifold.

Now we can introduce the concept of solution that we are interested in here. We say that
u € W is a weak solution to equation (&) if, for all ¢ € C§°(R?) it holds that

wire+ [ [ tow(le = s K () ) K (eu(oyplahdyds = A | QUialf(u)ede.
Rr? JR? R?
Remark 2.1.3. It follows from (1.1) and (f3) that there exists Cy > 0 such that F(s) > Cys"

for all s > 0.

Now, we are ready to state the main result concerning the existence of the solution to equation

(€). Our main result is the following:

Theorem 2.1.4. Assume that (V),(K),(Q), (1.1), (f1), and (f2) — (f1) hold. Then, equation

(&) possesses a nonzero weak solution uy € W with minimal energy (or ground state solution) if

r—2

_r_ 2 r 2
_ o 4040HQ||L1(31/2))\5*2 92\ 72 9\ 72
A> )\ i= - — |- 2.
=T ey oz (7«) (r) &9

_Am o+ [Vizae,) +log 3 K7y 5,

where

0: and g = 4w (1 + by/2). (2.4)

1@l 21(8,,)

As a byproduct of Theorem 1.1.2, under additional assumptions on the potential K, our
contribution in the present paper concerns the existence of solutions to the system (S) is the

following:
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Theorem 2.1.5. Assume the conditions of Theorem 2.1.4 and let uy be the solution obtained
in Theorem 2.1.4. In addition, suppose that K € CZ _(R?) for some o € (0,1). Then, the pair

(ux, Guy) 1s a weak solution of system (S), where ¢, = Ta* Kuj.
Remark 2.1.6. Examples of functions satisfying the hypotheses (V'),(K), and (Q) are:
i) V(x) = |z|*, with a > —2;
i) K(x)=|z|', with | =1y > —2;
i) Q(z) = |x|°, with b= by > —2.
Furthermore, if | > 1 then the functions V, K, and Q) satisfy the assumptions of Theorem 2.1.5.

The remainder of this chapter is organized as follows: In Section 2.2, we prove that (W, ||-|lw)
is a Hilbert space. In Section 2.3, we study the nonlocal term and establish the functional
setting in which the problem will be posed. The two further sections are devoted to the proof

of Theorem 2.1.4 and Theorem 2.1.5, respectively.

2.2 Preliminary results

In this section, we will establish some preliminary results used in the proof of our main
theorems. We start by proving that (W, || - ||w) is a Hilbert space, whose proof is inspired by
the paper [6].

Proposition 2.2.1. (W, || - ||w) is a Hilbert space.

Proof. Let (u,) C W be a Cauchy sequence in the norm || - [[. We can say that

(?;j) (i=12), (V'*(lz)u,), and ([log(l+ |z])K(Jz)]"*u,),

are both Cauchy sequences in L?*(R?). Consequently,

ou,,

5 — (i=1,2), V1/2(|x|)un — v and [log(1 + |:1:|)K(|x|)]1/2un — 2z in L2(R2), (2.5)
T

as n — 0o. Hence, up to a subsequence,

ou,,

o u' (i =1,2) and u, — w =V "2(|z))v = log(1 + [z) K (|z])] * 2z ae. in R%, (2.6)
Z;

as n — o0o. To complete the proof it is sufficient to show that w € W and u, — w in W.
First we check that w € Li (R?). Indeed, let R > 0 and consider ¢ € Cg3,4(R?) satisfying

loc

suppy C Bry1 and ¢ = 1 in Bg. Thus, ¢(u, — u,,) € Hi(Bgr+1) and by Poincaré’s inequality
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we get

/ |, — um\de < / lo(tuy — um)\zdx < Cl/ 'V (p(u, — um))]2dw
Bgr Brt1 BRr+1

SOQ/ 0P [V — V|2 + / V0Pt — P
Bri1 Br+1\Br

< Cz||§0||2Loo(R2) / |V, — Vi, [2de

Bry1
02 VQD 200
1 Vel m/ V(2] ttn — t|?d
Mp Br+1\Br

< 03”“71 - umHQE < Csljup, — um”%/[/?

(2.7)

where My := ming,, \p, V(|z]) > 0. The last inequality gives us that (u,), is a Cauchy

sequence in L?(Bg) and so there exists up € L*(Bg) such that
u, — ug in L*(Bg) and wu, — ugr a.c. in Bg, (2.8)

as n — oo. This and (2.6) implies that w = ug € L?(Bgr) and so w € L2 _(R?). Next, we prove

loc

that w has weak derivate and |Vw| € L*(R?). In fact, let p € C§°(R?) with suppy C Bg. For

each n € N, one has

w .
guaranteeing the existence of weak derivative of w, with — = u’, i = 1,2. As the direct effect

8xi
of the last equality and (2.5), we ensure that [Vw| € L?*(R?). Moreover, by (2.6)

/ V(|x))wdz = / v?’dr < oo and / log(1 + |z|) K (|z])w*dx = / Z2dx < oo,
R? R2 R? R?

and hence w € W. Finally, it remains to prove that u, — w in W. Observe that from (2.5),(2.6)

i, i =1,2, it follows that
8137;

and since

|Vu, — Vw|*dz — 0, / V(2w — w|*dr = / |V(|x|)1/2un - v‘zdx — 0, asn— oo,
R? R?

RQ

/ log(1 + ) K (|]) s — w]?dz = / log(1 + [N K (|e)]2un — 2" dz = 0, s n — oo,
R2 R2
completing the proof. O

Remark 2.2.2. By estimates (2.7), we observe that for each open ball B C R?, the space W is

continuously immersed in H'(Bg). Thus, in particular, W is continuously immersed in LP(Bg)
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for all1 < p < oo. Similarly, we can also conclude this fact for the space E.

2.3 The variational setting

2.3.1 Properties of the nonlocal term

We now collect some important properties of the nonlocal term. First, we prove that the

nonlocal term is well-defined. For this purpose, we need to introduce the following subspace of
W:
Wiad := {u eW uis radial}.

Taking r = |x — y| in the elementary identity logr = log(1 +7) —log(1+r71), for each u € Wyaq

we can write the nonlocal term as:

/RQ /RQ log(|z — y|) K (Jy))u?(y) K (Jz])u? (z)dz = Vi (u) — Vo(u), (2.9)

where

Vitw) = [ [ tow(t + o = yD Kol @)K (e o)

and
V)= [ [ Toe(1 + o =y K (DA (el o)y

Remark 2.3.1. It follows from Remark 2.1.2 and Lemma 1.2.2 that the embedding Wi.q —
L*(R% K) is compact.

Lemma 2.3.2. The functional Vy : Wiaa — [0,00) is well-defined and the following two state-

ments hold:
i) Vi(u) < 2”““%2(R2;K)HU||%/V;

i) Vi € CY(Weaa, R) and for all v € Wiaq, we have
Vi(u)o = 4 / / log(1 + & — gD K (ly))a®() K (|2 u(x)o () dyde.
RQ RQ

In particular, we have that Vi(u)u = 4V (u).

Proof. Since 1+ |z —y| < (14 |z|)(1 + |y|) for all z,y € R? and the increasing behaviour of the

log-function, we get the elementary inequality
log(1 + [z —y|) <log((1+ [z])(1+ [y|)) = log(1 + |2|) + log(1 + [y])- (2.10)

This, together with Remark 2.3.1 yields

Vi) < [ [ (10814 la) + Tog(1-+ o) K (s () (o o)y

< 2||ull Lo lulliy < oo

(2.11)
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Hence, the first assertion holds. Now we taking a sequence (u,) in Wi.q such that v, — v in

Wiaa. A simple computation shows that

Vi) =Valw) = [ [ tog(1+ ko = sDK (oD (e () () = 1 (0) )y
[ w1t e = a) KUK el) (200 = () ) o)

This, (2.10) and Hoélder’s inequality imply that

Vi(un) = Vi(u)] < / / log(1 + [z K (Jy1) K (2] )un (1) [un (2) — u(@)][un (@) + u(z)|dydz
2/ log(1 + [y K (Jy)) K (s () [un(2) — u(@)|Jun () + u(z)|dydz

2

2/ log(L + [a) K (|y1) K (2] un(y) — u(m)|Jun(y) + u(y)|u*(z)dydz

/ / log(1 + [y K 1y K ([2])tn () — u(w)][t0n () + () |t ()l

< Hun”L2(R2;K)“un — ullw||lun + ullw + HunH%/VHun - UHL2(R2;K)Hun + U||L2(R2;K)

=

+

%\%\

=

+ [l = ull aesso lun + ull Loz lulliy + lun — wllw llun + ullw lull 2@z -

Since (uy) is bounded in Wiy.q, by Remark 2.3.1, we derive that V;(u,,) converges to Vi (u), as

n — 0o. For any v € W,,q, we see that the Gateaux derivative of V; at u € W,,q is given by

Vitwo =4 [ [ Tos(1-+1e = s K () ) K (el uta)ota)dyde.

From (2.10), Holder’s inequality and Remark 2.3.1, one has

Vitwe] <4 [ [ (loa(+[ol) + log(1+ o) K (s () (e ue)oo) de

< Nullza @z, lullw llollw + [l el 2ge o]l 2@ < Crllvliw

o (2.12)

and hence Vi(u) € W’. Now, for any sequence (u,) C Wiaq such that u, — v and v € Wy,q we

have
- 4/}}@ /R log(1 + |z — y|) K (|y) K (|z])ui (y) (un(:v) - u(x)>v(x)dydx
+ 4/R2 /R2 log(1 + |z — y[) K(|y|) K (|]) <ui(y) - U2(y)>u(a:)v(a:)dyda:.
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This combined with (2.10), Holder’s inequality and Remark 2.3.1 yields that

|V{(un)

D [ outa ke Ko ol o) — (o) o)y

+ [ [ o0+ DK QDK (i )l () = uta) (o)l dyda
+ [ 1og(1+ DB QDK (Dl () = wo)l o) + ulo)luaCo)oo) dyd
+ [ 101+ DB (ol K (o) () = ) e (9) + (ool

< Jun ey [tn — ullw l0llw + [en[f 1w — wll 2@ V]| 222 x)
+ llun — ull @20 [un + vl 2@z l|ullw |v]lw
+ llun = ullw l|un + ullwllull L2 x) V] L2200 = on([[v]lw)-
Thus, V; is continuously differentiable on W4 and this ends the proof. O

The next embedding result will be crucial in the course of the work.

Lemma 2.3.3. Assume that (V) and (K) hold. Then the embedding Er.q — L¥3(R%; K*/3) is

continuous and compact.

Proof. Let R > 0 to be chosen later. For any u € E,,q4, we can split the integral as
/ K4/3(|a:|)|u|8/3dm = / K4/3(|:1c|)|u|8/3d$ +/ K4/3(|:E|)|u|8/3dx. (2.13)
R2 Br By

Our first task is to estimate the integral on the ball. For this purpose, we observe that by
hypothesis (K), there exists C; > 0 such that K(|z|) < Ci|z|, for any 0 < || < R. Since
lo > —3/2, then (4ly)/3 > —2 and thus it is possible to get p; > 1 such that (4pily)/3 > —2.
Hence |z|“4P10)/3 € L'(Bg) and consequently by Holder’s inequality and Remark 2.2.2, one has

/ K4/3(|3:|)|u|8/3dx§ 02/ |$|4l°/3|u|8/3d$
Br

Br

1/p1 1/p2
S 02 (/ |x|(4p1l0)/3dx) </ |u’(8p2)/3dx) < Cj”UHS/S
BR BR

with 1/p; +1/py = 1. Now, we estimate the second integral on the right-hand side of (2.13). By
(K) and (1.10), there exists Cy > 0 such that K(|z|) < Cy|z|" and |u(z)| < Cs|jul|g|z|~*+2/4,
for any |z| > R. Since [ < (a — 1)/2 then (41)/3 —2(a +2)/3 + 2 < 0, and so we obtain

(2.14)

K4/3(|x|)|u|8/3dx < O ||u||8/3/ |x| (41)/3=2(a+2)/3 J, — C, HUH8/3R41/3 2(a+2)/3+2 (2.15)

B, B,

This combined with (2.14), implies that the embedding E,.q < L%3(R?; K*/3) is continuous.

We shall next prove the compactness. To do this, let (u,) be a sequence in F,,q such that u,, — 0
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in Epaq. From (2.14), Remark 2.2.2 and Rellich-Kondrachov theorem, we can conclude

K3 (|a)) fun | dae = 0,(1). (2.16)
Br

On the other hand, since (41)/3 —2(a +2)/3+ 2 < 0 and (uy), is bounded, for £ > 0 arbitrary,
we can take R > 0 large enough in (2.15) such that

K3 (|2 |un|®?de < e, forall €N,
B,

and this together with (2.16) completes the proof of the lemma. [

Remark 2.3.4. Combining Remark 2.1.2 and Lemma 2.3.3, we infer that the embedding W.q —

L33(R?%; K*/3) is continuous and compact.
To make use later, let us recall the well-known Hardy-Littlewood-Sobolev inequality.

Proposition 2.3.5. [49] Let s,r > 1 and 0 < pp < 2 with 1/s + p/2+1/r =2, g € L*(R?), and
h € L"(R?). There exists a sharp constant C(s,p,7) > 0, independent of g, h, such that

Lemma 2.3.6. The functional Vo : Wiaq — [0, 00) is well-defined and the following two state-

ments hold:

< Cs 11, 7) |9 o 2y 12| 2 2y

i) there exists C' > 0 such that Vo(u) < Cl|u||% for all u € Wiaq;

i) Vo € C1(Wpaq, R) and for each v € Wiaq we have
Vy(u)v = 4/ / log(1 + |z — y| ™YK (ly])u?(y) K (|2|)u(z)v(z)dydx,  for allv € Wiaq.
Rr2 JR2

In particular, we have that Vi(u)u = 4Vs(u).

Proof. From the elementary inequality
log(1+ |z —y|™) < |z —y|™ (2.17)

we get

K (Jyl)u?(y) K (o |)u?(x)
Va(u) < /R? . P— dydz.

Now, we can use Remark 2.3.4 and Proposition 2.3.5, with 4 =1, s = r = 4/3, to obtain

v <0 ( [ oettya) ([ caieian) < i, <o
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and i) is proved. Considering (u,) C Wiaq, such that u,, — u in Wi,q, and using (2.17) it follows
that

Va(up) — Va(u)| = /RQ /R? log(1 + |z — y| YK (ly) K (|2]) (Ui(y)ui(a:) _ uz(y)u2($)>dydz
= /}R2 /R2 log(1 + |z — y| YK (ly)) K (|o))u2 (y) (v (z) — u2($)>dydx

4 / 2 / log(L+ | — y[ K (gD K () (w2 () — u*(9) ) (@) dyd

< / K(ly) K (Jz])uz (y) [un(z) — u(2)] [un(z) + U($)|dydx
~ Jr2 JR2 |z -yl
[ A ) ) ) ),
R2 JR2 ’.CE - y’ .

Combining the above estimate, Remark 2.3.4, Proposition 2.3.5, with u =1, s = r = 4/3 and
Holder’s inequality, we get
Va(un) — Va(u)| < C||un||%8/3(R2;K4/3)Hun - U||L8/3(R2;K4/3)||un + UHL8/3(R2;K4/3)
+ Clun — U||L8/3(R2;K4/3)||Un + UHL8/3(R2;K4/3)“uHiSB R2:K4/3
N OR T
< Cllun — u||L8/3(IR2;K4/3)||un + u||L8/3(R2;K4/3)
% (It 2essqgocscarsy + Nul2essquocscars)) = on(1).
Hence Vs is continuous on W, ,q. We can see that for any v € W,,q the Gateaux derivative of Vs

at u € Wi,q along v is given by
Vi(u)o = 4 / / log(1+ | — 5| ™) K [y () K (|2 u(x)o(x)dyd.
R2 JRR2

By applying Proposition 2.3.5 with = 1 and s = r = 4/3, and using Remark 2.3.4 together

with Lemma 2.3.3 we derive that

Vil < [ [ SDSOKGED ),

<ac ([ iy oa) " ([ ttablu ) Te

< ACull s gz, ey 01| s e perrsy < Cullulliy [[ollw-

Thus, we conclude that Vi(u) € W’. Now, we will prove that V, is continuously differentiable

on Wi.q. To this, we observe that for any sequence u,, — u in Wy,q and v € Wy,q, we have
_ 4/RQ /R log (1 + [ — | ) K (ly) K (2] (1) (1o () — u(x) o)y
i 4/RQ / log(1+ |2 = y| ™)K (gD K (Jo]) (w2 (y) — w*(y) ) u(e)o(@)dyd.
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This identity, (2.17), Lemma 2.3.3, Proposition 2.3.5, with u = 1, s = r = 4/3 and Holder’s
inequality, implies that

Va(un)v = Vo(u)o| _ K(IyI)K(IwI)U?L(y)wn(rr)—U(fv)||v(rr)ldydx
4 o R2 |x—y|

N / K(yDElzDlunly) = u@)llun(y) + u)[lu@)llv@)] ) o

lz — |

< CH“nHisw(Rz;Kws)”un - UHL8/3(R2;K4/3)||UHL8/3(R2;K4/3)
+ CHun — UHLS/S(RZ;KAL/S) Hun + UHLS/S(RQ;K4/3)

X |ull ps/s ey 10l Lsss wesiearsy = on(([v]lw)-

Therefore, V, is continuous differentiable on W4 and so V, € C'(W,.q,R), which shows the
result. O

2.3.2 Critical points of I, are weak solutions of (&)

In this subsection, inspired by the paper [16]|, we show that critical points of I, are weak
solutions of ().

By (2.9), we see that the functional associated to equation (£) can be written as
1, ., 1
L) = gllullz + P(w) - —V2 Q |z[) F

From (1.15), Lemma 1.2.2, and Theorem 1.2.5 we have that [, Q(|z])F (u)dz is well-defined.
This together with Lemmas 2.3.2 and 2.3.6, infer that the functional I is well-defined. Moreover,
by using standard arguments we see that I, € C'(W;aq, R) with

1 1
() = () + V()0 = 3 Vau)o = A / Qllzl) f(u)vdz, for all v € Wing.
R2

Inspired by [16, Lemma 5.1 |, we have the following version of the Principle of Symmetric
Criticality due to Palais [65].

Proposition 2.3.7. Assume (V), (K),(Q), (1.1), and (f1). If u € Wyaq is a critical point of I,

then u is a weak solution of equation (£).

Proof. Let u € Wi,q be fixed. We claim that the linear functional T, : W — R defined by

Tu(w) = (aswhs+ [ [ Torle =y K)ol ) K Jalute)uote)dyde = ) [ @lel) f(upuds

is well-defined and continuous on W. In the Proposition 1.2.8, it has been proven that

/ Q(|z]) f(u)wdz

Now, to ensure that T, is well-defined and continuous on W, it is sufficient to analyze the

< Ci|wle < Cifjwlw-
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term

Gw) = /Rz /R? log(Jz — y K (lyl)u*(y) K (] )u(z)w(x)dydz.

By Hélder’s inequality, (2.10) and (1.21) replacing v by 2 and @ by K, we estimate

Glu)l < [ [ (10814 e + Tor(1-+ o)) K Iy () (el (o))
< lalgeollallwl + ulfy | K(aDlute)u()lds < Callwlw.

Therefore |T,(w)| < Cs||w||lw, for all w € W and the claim is proved.

Now, if u € Wi, is a critical point of I, then T, (w) = 0 for all w € W,,q. The Riesz
Representation Theorem in the space W guarantees the existence of a unique w € W such that
T.(u) = |[ul|?, = |||}/, where W’ denotes the dual space of W. Let O(2) be the group of

orthogonal transformations in R2. Then, by using a change of variables, for each w € W we get
T.(gw) =T,(w) and |gw|w = [|Jw|w, forall g€ O(2),

whence, applying with w = @, by uniqueness, gu = @, for all ¢ € O(2), which means that
U € Wiaa. Consequently, since T),(w) = 0, for all w € Wi,aq, we obtain ||T,||w = 0, which implies
that T,,(w) = 0, for all w € W. This concludes the proof of the proposition. ]

2.4 Proof of Theorem 2.1.4

In what follows, we denote by Ny the Nehari manifold associated to the functional Iy, that
18,
Ny = {u € Weaa \ {0} : I3 (u)u = 0} .
We first prove that N, is not empty and that I, is bounded from below on Nj.

Lemma 2.4.1. Assume (V), (K),(Q), (1.1), (f1), (f3), and (f1). For eachu € Wyaq \ {0}, there
exists a unique t = t(u) > 0 such that tu € N. Furthermore, I\(u) > 0 for every u € N,.

Proof. For each u € Wyaq \ {0}, defining 7, (t) = I(tu) for ¢ > 0, we see that
tu € Ny & I (tu)(tu) = 0 & I\ (tu)u = 0 & . (t) = 0. (2.20)

First, we shall prove that ~,(t) > 0 for ¢ > 0 sufficiently small and lim;_,, 7, (t) = —oo. For this
purpose, from (1.15), given € > 0, o > o and ¢ > y, one has

[ QUehFewds <56 [ QUablulds + Cutt [ QUalluf @, tu)de.
R2 R2 R2
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This, together with Holder’s inequality, (1.16), and Lemma 1.2.2, implies that

1/r 1/ra
[ @abreds < carfuli+ e ([ @abiurae) ([ Qb (eie)
R2 R2 R2

1/ra
tu
< <t ully+ Cattlull ([ QD@ (7o) )
R [tulle
whenever ri,ry > 1 satisfies 1/r; + 1/r; = 1. Choosing t; > 0 sufficiently small such that

roal||tiul|% < oo and applying Theorem 1.2.5 we obtain
Q) F(tu)dr < eCst™|[ull; + C5t?||ull,
R2

for all £ € (0,¢1). Therefore, using that V; > 0 and Lemma 2.3.6, we infer that

1 C _ _
ult) 2 € il = Sl — reCar 2l - A2l
Assuming that v > 2, since ¢ > 2 we can get ¢ > 0 such that v,(¢) > 0 for all t € (0,). If v = 2,
we can choose 0 < ¢ < 1/(2AC5) and deduce that
0 > Ll = Cepullt, = AcCullulz — ACst2[ullt, > 0
W) 2 Gllullz = tllully = AcCsllullz 5t |ullp > 0,
and so 7, (t) > 0 for ¢t > 0 sufficiently small.
To check that lim; ,,, v,(t) = —o0, we note that by Remark 2.1.3 there exists Cy > 0 such

that F'(s) > Cys” for all s > 0. Since V, > 0, by Lemma 2.3.2 we get

IN

t? 1
(®) < Sl + Pattw) - 23Got” [ Qlel)lufds
RQ
t2 2 1 4 2 2 r T
< Gl + 5l lulfy = Cot” [ QUeDlurde,

which implies that lim;_, 7, (t) = —o0, since r > 4. As a consequence, there exists t = t(u) > 0
with y(t(u)) = I\(t(u)u) > 0 such that t(u)u € N). We claim that ¢(u) is unique. Indeed, by
Lemmas 2.3.2 and 2.3.6 it follows that
Vittuyu =1 [ [ g1+ 12 = s K (o)t @)K (e ()l dyde = 46V )
R? JR?

and

Vittuyu =4 [ | [ Ton(1-+1e =y )t () el (1) ()l = 4V ()
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Computing the derivative, we get
/ 2 1 / ]' /
Yu(t) = tullz + Vi(tu)u — 2 Vi(tu)u — A . Qlz) f (tu)udz
= tlull? + £V () — V() — )\/ Q2 f (tu)ude
]RQ

- (t%”uug Vi) = Vi) <A [ Q(|x!){;3)2 u4daj> .

By hypothesis (f;), the function ¢ ~— f(t)/t3 is increasing for ¢ > 0 and hence ~/,(t)/t® is
decreasing. Suppose by contradiction that there are t5 > t; > 0 such that t;u, tou € Ny. Then,
it follows from (2.20) that +/,(¢;) = 7. (t2) = 0 and using that +/(t)/t> is decreasing we get

A GV ()
0=—73 3
ty 12

=0,

which is a contradiction.

Lastly, we prove that Iy(u) > 0 for any v € N,. In fact, since for all v € N, there
exists a unique ¢ > 0 such that tu € N, and I\(tu) > 0. By uniqueness, ¢ = 1 and hence
I\(u) = Iy(tu) > 0 and this completes the proof. O

Remark 2.4.2. As a byproduct of the above proof, we see that the point t, which projects u in
the Nehari manifold is exactly the maximum point of ~,. Since v, > 0 near the origin and it
has a unique critical point, we conclude that ~,, is positive in (0,t,) and negative in (t,,00). In

particular, we have that t,, € (0,1] whenever v, (1) = I§(u)u < 0.

In view of Lemma 2.4.1 the value

ey = uler}\f[A I(u) (2.21)

is well-defined. Now, we will prove that a minimizing sequence for ¢, is bounded in the norm
Il

Lemma 2.4.3. Assume (V),(K),(Q), (1.1), and (ﬁ) If (u,) C Ny is a minimizing sequence

for ¢y, then (uy,) is bounded in the norm || - || .

Proof. Let (u,) C N, be a minimizing sequence for c¢y. Thus I)(u,) = ¢x+0,(1) and I (u,)u, =
0. Using this with the fact that Vi (u,)u, = 4V (u,,) and V5 (u,)u, = 4Va(u,) (see Lemmas 2.3.2
and 2.3.6), and (f5) we have

1
ex+o,(1) = Li(uy,) — Z—lf/’\(un)un

= s+ ) = ) 44 [ QGel) (G700, ~ Flu) ) da
k2 (2.22)

1 1

— 1—61/{ (U ) Uy + EVé(un)un

1 1 1

= 4 A [ Q0el) (7~ Fun) ) do > gl
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for large n € N and completes the proof. O
In the next result we prove that sequences in N, cannot converge to 0.

Lemma 2.4.4. Assume (V),(K),(Q), (1.1), and (f1). Then there ezists a constant C' > 0 such
that
0<C <Jul|lg, forallue N,.

Proof. Otherwise, there exists a sequence (u,) C N, such that u, — 0 strongly in E. Since

U — SV ()t — A [ QUi =0

1
i3 + Vi )it —

and V] (un)u, = 4V (u,) > 0 (see Lemma 2.3.2), there holds

2 1 /
ol = V() =X [ @Ulel) ()l < 0

Combining (2.19) and the continuous embedding in Lemma 2.3.3, one has

Vo (un )| < AC tnlI o3 g2y a1l 57 s scaray = on(1) (2.23)

and hence
el +0,(1) <3 [ Qlel) () (2.24)

According to (1.14), with ¢ > v, Holder’s inequality with exponents 1/ +1/r5 = 1, (1.16) and

Lemma 1.2.2; we have

[ @Uahstuunde << [ QUiablu s

v ([ auebimrnar)” ([ @ehtonpma)

1/ra
Unp,
< <Callnll + Callunll, ([ QB (2 )de)

From the convergence u,, — 0 in E,.q, we get roa||u,||% < ag for large n € N. This, Proposi-
tion 1.2.5, (2.24) and the last estimate, implies that

lunll + 0n(1) < AeCollunlly + AC|Junl| -

Taking 0 < € < 1/(AC%), case v = 2 and using that ¢ > v > 2, the above inequality contradicts
the fact that w,, — 0 strongly in E..q and we finish the proof. O

In order, we will need the following compactnesses result:

Lemma 2.4.5. Assume (V),(K),(Q), (1.1), (f1), and (f2). If (u,) C N is a minimizing

sequence for cy < ag/4ag such that u, — u in Fi.g, then:
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i) Qz]) f(un)un — Q7)) f(u)u in L'(R?);
i) Q(|2))F(un) = Q(|z|)F(u) in L*(R?).
Proof. To prove i), for every R > 0 we can write
. Q(l=)(f (un)un — f(wu)da = Jf(n) + J53'(n), (2.25)

where

Ji'(n) = ; Q) (f (un)un — f(wu)dz and  Jy'(n) = [ Q(lz[)(f (un)un — f(u)u)dz.

By

First we check that, for all R > 0 fixed we have
lim J{*(n) = 0. (2.26)

n—oo

In fact, for any € > 0, according to Egoroff’s Theorem there exists a measurable set {2 C Bp

with |Q] < e such that u,(z) — w(z) uniformly in By \ 2, and consequently

[T ()| < /QQ(|I|)f(Un)Und$ + /QQ(|93|)f(u)ud$+ on(1). (2.27)
From (1.14), for ¢ >  we see that
[ QUabsununde <& [ @elun e+ 0y [ Qe @ap(w)ds. (229
By (3.14) and the inequality ¢y < ag/4ayq , one has
T flunff < dex < 2.
Thus, we can obtain r; > 1, @ > ag and 0 < 8 < g such that rialju,||% < 8 < ay, for large n €

N. Therefore, by (1.16), Lemma 1.2.2, Holder’s inequality with exponents 1/r +1/ro+1/r3 =1
such that ro > ~ and Proposition 1.2.5, we get

AQ(!%\)Iun\q®a,jo(un)dx < (/Q Q) By, 2 (H;ﬁ) d&?)l/rl
< ([ @tishnras) v ([ e o
<0 (é@(!x\)dz)l/rg.

From hypothesis (Q), there exists C3 > 0 such that Q(|z|) < Cs|z|®, for all 0 < |z| < R. Since
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by > —2 we can choose ¢; > 1 with 1/¢; + 1/g = 1 such that ¢;by > —2 and hence

q
/Q(\x!)dw < Oy (/ ‘x"hbodx) |Q|l/q2 < Oyet/e,
Q Q

This combined with (2.28) and (2.29) implies

/ Q(|z]) f (un)updz < Cre'/®,
Q

Similarly
/ Q(|z]) f(u)udr < Csel/ers
Q

and hence (2.26) is true.
Next, we will prove that for any € > 0 there is R > 0 such that for all n large

|J2R(n)| < e. (2.30)

In fact, since (u,) is bounded and rial|u,||% < 8 < ay, for large n € N, from (1.14), for ¢ > 7,
Hoélder’s inequality, (1.16), Lemma 1.2.2, and Theorem 1.2.5 it follows that

. Q) f(un)undz < e [ Q(|z))|lun"dz + Cs | Q(|2])|un|*Pa,jo (un)d

Bg Bg

1/ra
< Cre + Cg < Q(]az|)|un|r2qd$>

Bg

1/r1
(%
X QUz))Br o2 <—”> dx
( ., QD st (i )

1/rg
< Cre + Cyg ( Q(]x\)]un\”qu> ,

By

for all n € N. Invoking Lemma 1.2.2, there holds

1/T2

lim sup Q|z]) f (un)undx < Cre 4+ Cy Q(|x])|u|™dx < Cre + Cge,

for R > 0 large enough. A similar argument provides [, Q(|z|)f(u)udz < e. Hence (2.30)
R

holds. By using estimates (2.26) and (2.30), from (2.25) we infer that

lim sup <e.

n—oo

g Q=) (f (un)un — f(u)u)dz

As this holds for any € > 0, the desired result follows.
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To prove 7i), note that by item ), there exists g € L*(IR?) such that
1 1 2
F(uy,) < éf(un)un < g9 e in R=,
where we used (f5). Now, since F(u,) — F(u) a.e. in R, we can apply the dominated conver-
gence theorem to get ii), proving the lemma. O

The next result guarantees that the weak limit of a minimizing sequence for ¢, is nonzero.

Lemma 2.4.6. Assume (V),(K),(Q), (1.1), (f1), and (f5). If (u,) C Ny is a minimizing

sequence for cy < as/4ag such that u, — u in E..q, then u # 0.

Proof. Suppose by contradiction that u = 0. Since u,, — u in E},q, we can apply Lemma 2.3.3
in (2.23) to get Vi(uy,)u, = 0,(1). Moreover, from Lemma 2.4.5, it follows that

[ QUaD () = o).

Now using that
2 1 / 1 /
HunHE + Zvl(un)un = ZVQ(UN)un + A . Q(|x|)f(un)undxv (2‘31)

recalling that V] (u,)u, = 4V (u,) > 0, we obtain that u, — 0 which contradicts Lemma 2.4.4.
]

Now, we state a boundedness result.

Lemma 2.4.7. Assume (V),(K),(Q), (1.1), (f1), and (f5). If (u,) C Ny is a minimizing

sequence for cyx < as/4aq then, up to a subsequence, Vi (uy)u, < C, for alln € N.

Proof. By Lemma 2.4.3 the sequence (uy,) is bounded in the norm || - ||g. Since I} (uy)u, = 0,
we obtain
1 / 2 ]' / 1 /
ZVl(un)un < un |z + Z—lvl(un)un = ZVQ(un)un + A ] Qx| f (up)undz. (2.32)
R

From Lemma 2.3.6, we see that
Vi(ua)itn = 4V3(u,) < 4C % < C,

for all n € N. Next we will estimate the integral on the right-hand side of (2.32). To do this,
we observe that since (u,) is bounded in the norm || - || g, then u,, — w in E\,q. Therefore, using

that ¢y < as/40y, we can apply Lemma 2.4.5 to get

[ @leh ftununds <
R2
for all n € N, concluding the proof. n
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Next, we shall obtain a boundedness in the norm of W.

Lemma 2.4.8. Assume (V),(K),(Q), (1.1), (f1), (f2), and (f3). If (un) C N is a minimizing

sequence for cy < as/4ay, then (uy) is bounded in the norm || - ||w.

Proof. By Lemmas 2.4.3 and 2.4.6, we can assume that u,, — u weakly in Fy,q \ {0}. Since
el = lualls+ [ 1og(1 + fa (),

it remains to calculate [, log(1 + |z|)K(|z|)uldz. Note that for x € R*\ Byp and y € Bg, we
obtain

1—|—|x—y|21+|x\—|y[21+|x|—R21+|§—|2\/1+|x]. (2.33)

From Lemma 2.3.2, we may then estimate
Vitwdun 24 [ [ log(+ o — gD K Iy () K (el (o)
R2\Bar J Br
> 2/ / log(1 + |2 K (ly)us, () K (|2 ])u;, () dydz (2.34)
R2\B2g ¥ Br

=2 s ) ([ oo+ K (el o).

In view of the convergence u, — u in Eq \ {0}, by Lemma 1.2.2 we see that K(|y|)u?(y) —

K(|ly|)u?*(y) a.e. in Bg and so we can use Fatou’s Lemma to obtain § > 0 such that

lim inf / K@y > | K(ly)e)dy > 6 > 0. (2.35)

n—oo BR

On the other hand, recalling that log(1 + |z|) < 1+ |z|, there holds

/B log(1 + [a) K (|2|)uy ()do < / (1 + [2) K (J2))u ()de < CrjunllE < Co.

Bar

This, combined with (2.34) and (2.35), yields

lim inf V), (uy )y > 26 (/R log(1 + |2) K (|2])u2 (x)dx — /

n—oo BQR

log(1 + !x\)K(\wDui(w)dw)
> 20 (/}R2 log(1 + |z|) K (|z|)u (x)dz — 02) .

Therefore, by Lemma 2.4.7 we conclude that (u,) is bounded in the norm || - ||y, proving the
desired result. O

The next result is an estimate from above to c,.

Lemma 2.4.9. Assume (V),(K),(Q), (1.1), and (f2) — (f1). If X satisfies (2.3), then ¢y <

012/4040.
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Proof. First, we are going to consider a function ¢ € C§5,4(R?), given by p(z) = 1 if |2 < 1/2,
o) = 0if |Jz| > 1, 0 < p(x) < 1 for all z € R? and |[Vp(z)] < 2 for all z € R% By
assumption (fg) and Remark 2.1.3, one deduces that f(s)s > 0F(s) > 0Cys". By the fact that
Vi(e)p = Wi(p), Vi(e)e = a(p) > 0 and A > N/ (0Cy) (see (2.3) for the definition of \),
there holds

I (o)p < /B [Vl + V(Ja])¢?] do + /B /B log(1+ |z — y) K 1y ¢ (0) K (|2]) 0 () dydz
—A . Q=) f(p)pdr < 4m + |VLisy) +10g 3| K|71 5,y — AollQllLi(B, ) = 0
where we used that log(1 + |z — y|) <log3 in By and the definition of Ag. In particular
[ 190P 4 Vae?) do < XalQlns, = Y0831 o, (2.36)

From Lemma 2.4.1, since I}(¢)p < 0 there exists ¢ € (0, 1] such that t¢ € N,. Combining this,
(2.36) and the hypothesis on A, a simple computation shows that for all ¢ € (0, 1]

t2 5 5 t4log3 .
ashitv) <5 { | (IVel* + V(jal)e®] du | + 1Kz 50y = MRl (5,2

log 3 t*log 3

<[t2(AO||Q||L1(Bm>— ||K||L131)+ T >\V||Q||L1(Bl/2)]

Since o83 12g3 < Rl%?’ for all t € (0, 1], we get
2 r
e < HQHLl(Bl/Q) T?EOX [)\ot — At ] .

By carrying out a straightforward computation, we conclude that

2 T
)\'r 2 2 T—2 2 73
o ((—) -(3) ) < as/4a0,
r r—2
~ 4o 1 A2 23 =
Ao = |Jell@llemmAs ((2) L (2) )
Q2 r r

Therefore, the estimate holds for all A > X := max{\/(ACy), A} and the proof is complete. [

for any

Now, we are ready to present the proof of Theorem 2.1.4.

Proof of Theorem 2.1.4. First, observe that without loss of generality, we can assume that f(s) =
0 for s < 0 and the above results are valid also for this modified nonlinearity, again denoted by
f. For X as in hypothesis (2.3), it follows from Lemma 2.4.9 that ¢y < ag/4ap. Let (u,) C N, be
a minimizing sequence for c¢). By Lemma 2.4.3 we have that u, — v in E,,q. By Lemmas 2.4.6

and 3.3.4 we conclude that v # 0 and (u,) is bounded in the norm | - ||w, respectively. Thus
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Up — v in Wiag and hence by Lemma 1.2.2 and Remark 2.3.1, we have that u,(z) — u(x) and
un,(z) = v(z) a.e. in R? and consequently u = v € Wi,q.

Our next task is to show that there exists ¢ > 0 such that tu € N, and I,(tu) = ¢, for to
conclude that tu is a point critical of I, thanks to [19, Proposition 3.1] and [45, Lemma 2.5].
Since I§(uy,)u, = 0, then

1 1
| || 5 + ZV{(un)un — ZVé(un)un — )\/ Q|z]) f(un)updx = 0. (2.37)
R2
We claim that
lim inf V| (uy, )u, > V] (u)u. (2.38)
n—oo

In fact, for any R > 0 we see that
Vitwen =4 [ [ tog(1-+le = gD K (0K (el (@)dyde +4D,(R),  (239)
o
where
D= [ [ tog(t + o = ) KD () (v )0 0) = (o) d

On the other hand, there exists C, = C(R) such that log(1 + |z — y|) < C} in Bg. By doing a

straightforward computation and Remark 2.3.1, one has

DA< [ KD e (vie) - @) dydo
won [ ] RDK(eD) (40) ~ ) ) @)y

< Cl||un||2L2(R2;K)||un - U||L2(R2;K)Hun + uHLQ(R?;K)

+ Cillun — ull 2o, ||un + u||L2(R2;K)||uH%2(R2;K) = on(1),

which combined with (2.4) implies that

lim inf V] (u,, )u >4/B /B log(1 + |z — y|) K (|y|)u?(y) K (|2])u?(x)dydz.

n—o0

Considering a sequence R — oo and applying the monotone convergence theorem to the

sequence of functions f,,(z (fB log(1+ |z —y|)K (\y|)u2(y)K(\x|)u2(x)dy> XBp, together
with Lemma 2.3.2 to get

lim 4 / / log(1 + |z — y) K (Jy])u2 () K (2] a2 (z)dydz = 4V (u) = V. (),

R—o0

and we conclude that the claim holds true. Moreover, using the fact that Vi(u,)u, = 4Vs(u,)
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and Vi(u)u = 4V, (u) together with Remark 2.3.4 and (2.18) we get

lim Vi (uy)u, = Vi(u)u.

n—00

Thus, by (2.37), (2.38), Lemma 2.4.5 and using that the norm is weakly lower semicontinuous,

we obtain ) )
By = ol + Vi = pWu = [ QlaDf(uudz <o

This inequality implies that there exists ¢ € (0,1] such that tu € N, (see Remark 2.4.2).
Consequently,

1

o < Iy(tu) = Iy (tu) — }l];(tu)(tu) = el + A/RZ Q(lz)) Glf(tu)(tu) _ F(tu)) de. (2.40)

On the other hand, by hypothesis (f3) the function 1f(s)s — F(s) is increasing in (0, 00) (see
[8, Lemma 2.4]) and hence

|t Gf(tU)(tU) - F(tu>) dr= [ Qal G () (tu) — F(tu)) dr,

{u>0}

< [ alel) (30— Fw) de

_ /{ Tc;}uxo (= F) de

Combining (3.14), (3.19), Lemma 2.4.5, and the fact that the norm is weakly lower semicontin-

uous, implies that

ex < I\(tu) < liminf EHUHH% + )\/ Q(|z|) <if(un)un - F(un)> dw} = liminf I, (u,) = c.
n—oQ R2

n—oo

Therefore, ¢y = I(tu) and this completes the proof of Theorem 2.1.4. n

2.5 Proof of Theorem 2.1.5

This section is devoted to the proof of Theorem 2.1.5. See that, as an application of

Lemma 1.3.5 we have the following regularity result.

Lemma 2.5.1. Assume (V),(K),(Q), and (1.1). Suppose that uy is a weak solution of (&),
then uy € CF _(R?) for some & € (0,1).

loc

Proof. Let R > 0 and define v(z) := uy(x) — ux(R) with x € Bg. By Remark 2.2.2, v € H}(Bg)

and v is a weak solution of problem (3.2.3) with

h(z,v) = AQ(|z]) f (v + ux(R)) = V(|2[)(v + ur(R)) — [log *Kui] () K (|z])(v + ua(R)).
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Given x € By, we estimate

Hlog *Kui] (a:)| < /

lz—y|<1

log(|lz — y[)| K(|y|)ui(y)dy + / log(lz — y) K (Jyl)u3 (y)dy.

lz—y|>1

From Holder’s inequality and Remark 2.3.4 we get C; > 0 such that

1/4
/|x—y<1 log(|z — y[)| K(|y))ux(y)dy < (/x_y|<1 log(|z — yl)| dy)

X (/R2 K4/3(‘y’)’u>\(y)‘g/3dy) 3/4

< Cilluslly =: Co.

On the other hand, using that log |z — y| < log(|z| + |y|) < log ((1+ |z])(1+ |y|)) = log(1l +
|z]) + log(1 + |y[) we get

/|_ N log(lz =y K (|yl)ui (v)dy < /]R (log(1 +z]) + log(1 + yy\))K(yy\)ui(y)dy
<tog(1 +[al) [ K ()i (0)dy

N /Rz log(1 + [y|) K (|y[)ui (y)dy.

Now using that log(1 + |z|) < C3 in By and the continuous embedding W,.q — L*(R?; K), we
obtain
| [log * K u3] (a:)! < Oy + Csl|ualzy =: Ce. (2.41)

By the assumptions (V'), (K) and (Q), there are constants C7,Cs > 0 and Cy > 0 that depend
on R such that V(|z|) < Cr7lz|%, K(|z]) < Cglz| and Q(|z]) < Co|z|*, for every 0 < |z| < R.
Consequently, considering dy := min {ao, lo, by, } > —2, the estimate above together with (1.1)
and the continuity of f(s), we can find Cyg, Cy; > 0 such that

|h(x,v)| < Cholz|® <f(?f +ur(R)) + (v+ uA(R)> < Cplz|®e™®,  for a.e. x € Bp.

It follows from (2.41) that [log*Ku3] (z) € L'(Bg) and hence h(z,v) is measurable. This and
the above estimate, combined with Lemma 1.3.5, imply that v € C°(By) for some & € (0, 1)
and so uy = v + uy(R) € C?(Bg) and this completes the proof. O

Now we are ready to prove Theorem 2.1.5.

Proof of Theorem 2.1.5. Let uy be the weak solution obtained in Theorem 2.1.4. By Lemma 2.5.1,
uy € CZ (R?), for some & € (0,1). Taking into account that the potential K € C¢_(IR?), for some
o € (0,1) we see that Ku3 is locally Holder continuous. Since ¢, is the Newtonian potential of
Ku3, by elliptic regularity (see [47, Lemma 4.2]) we have that ¢,, € C*(R?) and A¢,, = Ku3,
in Bg for any R > 0. Therefore, the pair (uy, ¢y, ) is a weak solution of system (S) and this
finishes the proof. O
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Chapter 3
On a planar Hartree-Fock type system

This chapter is devoted to study the existence of solutions for a class of Hartree-Fock type
system in the two dimensional Euclidean space. Our approach is variation and based on a
minimization technique in the Nehari manifold. The main steps in the prove are some trick
estimates from the sign-changing logarithm potential in an appropriate subspace of H'(R?).
This chapter is in [29].

3.1 Main results

Here, we are concerned with the existence of solutions to the following class of planar Hartree-
Fock system
—Au+ (1 + ¢)u = [u*2u+ Blv|P|lulPu, in R?
—Av+ (1 +¢)v = |v|* v + BlulP|v]P?v, in R? (Sp)
A¢ =27 (u® +v?), in R?,
where 2 < p < oo and # > 0 is a real parameter.

In higher dimension, system (Sg) appears in quantum mechanics model describing the nonrel-
ativistic electrons interacting with static nuclei via Coulomb forces. For more details on Hartree
and Hartree-Fock approximations, see [40,51,53] and the references therein.

Our motivation to study (Ss), comes from the study of L?— normalized solutions of planar
coupled Schrédinger-Poisson equations developed in the works [8,35,36,78]. In fact, system (Sp)

has a slight relation with the couple Schrodinger-Poisson system

—Au+ (1 +¢)u = [u[*2u, in R",
{ 1+ )= -

o 2 . n
—A¢p = c u’, in R",

where ¢, = 2 if n = 2 and ¢, = n(n—2)w, if n > 3, with w,, denoting the volume of the unit ball
in R™, which has been object of intense study in recent years. For instance, if n = 3 then system
of the type (SP) appeared in semiconductor theory and has been studied in [20, 21, 33,37, 74,
and many others.

In the planar case n = 2, if the pair (u, ¢) is a solution from the Schrodinger—Poisson system
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3. On a planar Hartree-Fock type system

(SP) then the triple (u, 0, ¢) is a semi-trivial solution of system (Sg).

An essential ingredient to solve (Sp) in dimension 3 consists in to use the Lax-Milgram
Theorem to solve the third equation and obtain ¢ as the convolution ¢ = I's 47 (u® +v?), where
['; is the fundamental solution of the Laplacian in R3 namely '3(z) = (—1/47)|z|~" (see [40]).

In dimension n = 2, we can not make use of the same idea and there are less results available.
However, given (u,v) € W x /V[v/, where W is an appropriated subspace of H!(R?), we can define

at least formally the logarithmic potential

unl@) = [ ToB(le =) () + o*(0) d (3.1

and so we are lead to consider the following auxiliary system with the nonlocal term ¢, ,

—Au+ (14 ¢up)u = |u[* u+ BlofPluf~*u, n R
(As)

—Av A+ (L+ dyp)v = [v]P %0 + Bluf’[o]P v, in R,

and after obtaining a weak solution, we can use regularity theory to prove that the triple
(u, v, pur) weakly solves (Sg).

In fact, systems involving this kind of power nonlinearities have motivated a large amount of
works (see for instance [10,43,56, 76| and references therein).

When dealing with (Ag) via variational methods, the first difficulty occurs due to the loga-
rithmic kernel, which is unbounded and has indefinite sign. It turns out that the formal energy
functional associated to the difficult equation is not well defined in H'(R?). To overcome this,
Stubbe [78] (see also Cingolani-Weth [36]) introduced a new space which is appropriated to deal

with the nonlocal part of the energy functional, namely

T (u,v) := . Pup (0P (z) + 0% (7)) do = /11@2 /R2 log (|2 — y|) (v?*(y) + v*(v)) (u*(z) + v*(x)) dyda.

Precisely, inspired by the paper [78|, we shall addresses the a variational frame work to deal with
(Ap), within the subspace of H'(R?) defined by

W= {u € H'(R?) : / log(1 + |z|)uldx < oo} ,
R2

endowed with the norm

1/2
ol = (e + [ tog(1-+ )

We observe that (Ag) has, at least formally, a variational structure given by an associated energy
functional defined in W

1

]_ ) 2 ]- 2 2
%mw=§@wmmﬂmm®yq¢mw—%(w&mwwwﬁwﬁaﬁWwwm
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3. On a planar Hartree-Fock type system

with derivative given by

o)) = [

R

= [ gk o on) da =6 [ (oPlab g+ fuplol o) de
R2

RQ

(VuVe +up + VoV + v) de + / Guw (up +v0) dz
2 R2

Actually, it is necessary to guarantee that the nonlocal term 7 (u, v) is well defined. Naturally,

we have the continuous Sobolev embeddings
W < H'(R?) — L'(R?), forall 2 < ¢ < . (3.2)

We say that a pair (u,v) € W x W is a weak solution to system (Ag) if for all ¢, € C3°(R2),
it holds that

/ (VuVe +uyp) de —I—/ Gupupdr = / [|u|2p—2u + ﬂ|v|p|u|p_2u]<pda:,
R2 R2 R2

and

[ s wydnt [ o= [ (P 2ok plaplop 2ol
R2 R2 R2

Therefore, critical points of I3 are weak solutions of (Ag).
In order to overcome the loss of compactness, we will work reduce ourselves to the radial

setting
Wiaq i= {u € H! (R?): / log(1 + |z|)udz < oo} :
R2

and we have the compact embedding (see [77])

Wiaa < HL (R?) — LY(R?), forall 2 < ¢ < oo. (3.3)

We also will prove that the functional I restricted to Wrad X Wrad is well defined and critical
points of Iz are weak solutions of (Ag).
Our main interest here is on the least energy solutions to systems (Ag). Precisely, let us

denote by N the Nehari manifold associated to the functional I3, namely
N = {(u,v) € (Wmd X Wrad) \ 0,0} : Ds(u, v) = o} ,
where I's(u, v) := [3(u,v)(u,v), ie.,
C0) = (Jull ey + [olBen) + T(00) = (Wl + ol +28 | JuoPde)
We shall see that the least energy level

cg = inf Ig(u,v
A (u,v)EN 5( ’ )7
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3. On a planar Hartree-Fock type system

is well defined (see Lemma 3.3.1) and so we will consider solutions that are minimizers of cg,

also called least energy solutions.

In this context we now formulate our main result, concerning systems (Ag) and (Sg).

Theorem 3.1.1. Assume that 2 < p < oco. Then, for any f > 0 the coupled system (Ap)
possesses a least energy solution (u,v) € Wrad X Wrad with u,v > 0 satisfying the following

statements:
(i) for every B > 2P~1 — 1 the pair (u,v) is a vector solution, i.e., u # 0, v # 0 and in this
case u,v > 0;
(i1) for 0 < B < 2P~1 —1 the least energy solution is semi-trivial, i.e., u =0 or v = 0.
Furthermore, the triple (u,v, ¢,,) is a weak solution of system (Sg).

We emphasize here that the explicitly value of § obtained in item (7) of Theorem 3.1.1 is the
same one obtained in [56].

To prove Theorem 3.1.1 we adopt here some arguments introduced in [40], where the authors
have studied the system (Sg) in dimension 3, and [36, 78], where the couple Schrédinger-Poisson
system of the type (SP) was consider.

This chapter is organized as follows: In Section 3.2, we study the nonlocal term and establish
the functional setting in which the problem will be posed, as well as some regularity properties.

The final section is devoted to the proof of our existence result.

3.2 Preliminary results

3.2.1 Properties of the nonlocal term

First we collect some important properties of the nonlocal term. Using that logr =

log(1 + 1) —log(1 +r~1) for any r > 0, we can write
T(“?”) = ﬂ(U, U) - 75(“77])7

where

Titw) = [ [ log(1+ fo=ul) (12(0) +02(0) (u2(a) + 1*(a) dyde.

and

Tatwo)i= [ [ Tog (1 ko =3l ™) (220) + °0) (w(0) + () dyd

Hence, Ig can be rewritten as

1 1 1
To(u,0) = 5 (0l ey + Nellngey ) + 70 0) = ToCwsw)] = o (s + ol
s

luv|Pd.
D Jr2
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3. On a planar Hartree-Fock type system

As proved in [36, Lemma 2.2|, the nonlocal terms 77, 75 are well defined and belong to
CY(W x W,R). Furthermore, taking into account that 1+ |z — y| < (1 + |z[)(1 + |y|), for any
x,y € R?, we have that

log(1 + [z —y|) < log((1+ [z])(1+ [y|)) = log(1 + |z|) + log(1 + [y])- (3.4)
By using a straightforward computation, we find
Ti(u,v) <2 (HuH%z(Rz) + ||v||%2(R2)> (H“H%V + ||v||gm7) , forall (u,v) e W x W. (3.5)

Now, we estimate 73(u,v). Applying Proposition 2.3.5 with 4 = 1, ¢ = s = 4/3, and using
the elementary inequality log(1 + ) < r for any r > 0 together with the Sobolev embedding
(3.3), one has

wn / ) () e) £ o) + )
R2 JR2 |I—y|
<G (||u||m o) + 2l 1012 s ey + 10l e

< G (llullfy + lullf ol + lvl) -

(3.6)

3.2.2 Critical points of I3 are weak solutions of (Ap)

Inspired by [16, Lemma 5.1|, we have the following version of the Principle of Symmetric
Criticality due to Palais [65].

Proposition 3.2.1. Assume that p > 2 and § > 0. If (u,v) € Wiaq X Waad is a critical point of
I3, then (u,v) is a weak solution of system (Ag).

Proof. Let (u,v) € Wrad X Wrad be a critical point and consider the linear functionals T, 7T, :
W — R defined by

Tu(w) == / (VuVw +uw)de + [ ¢y uwde — / [|u*~2u + Blv|P |ulP~2u]wdz
R? R? R?
and

T,(w) = /RQ (VoVw + vw) dz + g Guprwdr — /RQ[|U|2”_QU + BlulPlv|P~?v]wdz.

We claim that T},, T, are continuous on W. To see this, using (3.4) and Hoélder’s inequality, one

deduce

Oupuwdr| <
R2

/R2 /R log 1+\x|)+1og(1+|y|))< *(y) + v*(y))u(r)w(x)dyde

< (lullZo@e) + ol @) el llwlig + (il + 1ol el e w2 e

< Cijwlli,
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3. On a planar Hartree-Fock type system

where C} = C}(u,v). On the other hand, by Holder’s inequality and the embedding (3.2) we get

1/2 1/2
< </ |u\2(2p_1)dx> </ dex> < Collwl|g,
R2 R2
1/3 1/3 1/3
[0 [P|ulP~ 2uwdz| < |v|*Pdx 2P~V dz lw|*dzx < Csllwl|-
R2 R? R2 R? v

Therefore, |T,,(w)| < Cyf|wl|z, for all w € W. Similarly we get |T,(w)| < Cs||w for all w € W

and so the claim is proved. By the Riesz representation theorem in the Hilbert space W there

|u|*P~?uwdz
R2

and

exists an unique @ € W such that 7, () = [al|% = HTUH?W),, where (W)’ denotes the dual space

of W. Similarly, there exists an unique ¥ € W such that T, (7) = [9]1% = HT””?W)/' Let O(2) be
the group of orthogonal transformations in R2. Then, by performing a change of variables, for
cach w € W we find

Tu(gw) = Tu(w), T,(gw) = T,(w), and |gwllg = [[wlw, forall g€ O(2).

Applying this with w = @ and w = v, by uniqueness we concluded that gu = w and gv = v, for all
g € O(2), which means that (u,v) € /eradx/WVrad. Consequently, if (u,v) € Wradxwrad is a critical
point of Ig, ie., T,(w) = T,(w) = 0 for all w € Wiaa We obtain that 1Tl g7y = I Toll g7y = 0,
which implies that T, (w) = T,(w) = 0, for all w € W and this completes the proof. O

3.2.3 Regularity results and non triviality

In this subsection, we discuss the regularity and positivity of nonnegative solution of system
(Ag). We also analyze when the pair (u,v) is vectorial or semi-trivial depending from the

parameter 8 > 0.

Proposition 3.2.2. If the pair (u,v) is a solution of couple system (Ag) then the triple (u, v, ¢u.),
where ¢y, is defined in (3.1), is a weak solution of system (Sp)

Proof. Indeed, let (u,v) € W x W be a solution of (Ap) and ¢ € C5°(R?) fixed. Consider R > 0
such that Bp contains the support of ¢. Since u,v € H'(Bg), then u,v € L%(Bg), for every
q > 1. From the classical potential theory (see [47, Theorem 9.9]) we derive that ¢,,., € W%%(Bg)
and A¢,, = 27(u? +v?) for a.e. * € Bg. This and the Divergence Theorem imply that

—/ ngu,vVgpdx:/ (A¢u7v)<pdx:27r/ (u® + v p dz.
Br Br Bgr

Therefore, (u, v, ¢un) € W x W x W2I(R?) is a weak solution of system (Sg) and this completes
the proof. n

Lemma 3.2.3. If (u,v) € W x W is a weak solution of system (Ag), then u,v € C2(R2).
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3. On a planar Hartree-Fock type system

Proof. First we observe that for every R > 0 and ¢ € C5°(Bg) we have

/ (VuVp + uyp)dx :/ hipdz,
Br

Br

where hy = — byt + |[u[?2u+ B|v[P|u|P~2u. By Proposition 3.2.2 we know that ¢,, € W,27(R?)

loc

for every ¢ > 1 and consequently by the Sobolev embedding ¢, , € Cloo’ca (R?) for some « € (0,1)
and hence |¢,,| < C; in Bp for some constant C; > 0. A simple computation shows that, for

every g > 2 there exists Cy > 0 such that
1< Gy - v w| T in Bg.
[ |? < G (Jul” + [ul]?®P™D 4 o2 4 u1?7D) in B

Therefore, h; € LY(Bgr) and by classical elliptic regularity theory, it follows that u € W2%(Bg) <
C%*1(Bpg). Similarly, we have that v € C%*2(Bpg). Thus, we conclude that hy € C%(Bp)
for some a3 > 0 and by the regularity theorem of Agmon-Douglas-Nirenberg u € C*%(Bg).
Similarly, one has v € C*%(Bpg) and this finishes the proof. O

Lemma 3.2.4. Assume that 2 < p < oo and f > 0. Let (u,v) € W x W be a minimizer of ca
with w >0 and v > 0. If u# 0 and v # 0 then u,v > 0.

Proof. If (u,v) is a minimizer of cg, then (u,v) is a weak solution of system (.A3), and hence by
Lemma 3.2.3 u,v € C*(R?). Since, for every r > 0 we have that logr = log(1+7r) —log(1+r~1),

we can write

bunle) = [ Mow(le = 3l) (12(0) +0*(0)) dy = 1 (2) = a0

where
in(o)i= [ log(1 4o~ y)) () + *(0)) dy = 0
R

and

ua(e)i= [ tog(L 4o = o) (u2(0) + 0*(0) dy 2 0

R

Thus,

—Au+ (1 + 1)u = ou + |[u)* u + BlofP|ulf?u > 0,
and the result follows from the strong maximum principle. O

The following is a key lemma in our analysis:

Lemma 3.2.5. Assume that p > 2 and § > 2P~ — 1. If (u,v) is a minimizer of cs then u # 0
and v # 0.

Proof. Let (u,v) € N be such that Ig(u,v) = cg and suppose by contradiction that v = 0.
Considering the vectorial function (@, ) := (ucosf,usinf) € (Wrad X /V[v/rad> \ {(0,0)}, by using

a simple computation one can check that

14015 2y + 1811701 2y = cos” Ollullip g2y + sin® Ol g2y = llullin gz,
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3. On a planar Hartree-Fock type system

= / / log (|z — y|) (cos® Bu*(y) + sin® u*(y)) (cos® Gu*(z) + sin® Ou*(x)) dyda
r? JR2

- / 2 / g (Jo = ) () () dyd = T (u,0),

and

il + 11520 g, + 23 / s

= ((cos® )" + (1 — cos® )" + 2[3(cos 0)P/2(1 — cos 0)p/2) ]| 75, (E2)-

In particular, if we choose 6 = 7/4 we get

8y + ey + 26 a0 = (8 -+ D2l > ol
whenever 3 > 2°~! — 1. By (Lemma 3.3.1 below) there exists ¢ty > 0 such that (tya,ty0) € N.
Consequently, it holds

2, td tﬁp
Totto,0) = 2l ey + ST (w.0) = 2=l

> gt(mH o+ 1) + 572, .
2 (il + 161 + 26 [ a0
= Iﬂ(tou,tov) > ca.
This, together with the fact that (u,0) € N, Lemma 3.3.1, imply that
cg = 1g(u,0) = nglfoxlg(tu,O) > Ig(tou,0) > cs,
which is a contradiction and this finishes the proof. n

We also need the following lemma taken from [40]. Here we present a simple proof.

Lemma 3.2.6. Let p > 2 and 0 < § < 2?71 — 1. Then the function defined by hs(s) =
sP 4 (1 — s)P + 2BsP/2(1 — s)P/2 with s € [0, 1] satisfies hz(s) < 1, for all s € (0,1).

Proof. First we note that hg(0) = 1 = hg(1),

I, 1+p

1 1 11
= op 1 <1 and hﬂ(é_S)—h/j(Z-i-S) for all SE(_§’§)'

Thus, is enough to prove that hg(s) < 1 for s € (0,1/2). Since hy is strictly decreasing in (0,1/2)

the case f = 0 is trivial, and so let us consider # > 0. Now, observe that
Wy(s) = ps = p(1 — s + Bps? (1 — P2 - gpa 21— s (38)
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We will assume that p > 2, since the case p = 2 is immediate. Notice that

p<1h/f(j)>p—1 B (1 = S>p‘1 R (1 . s)m_l — B <1 - s)m- (3.9)

Since y = s/(1 — s) € (0,1), the right hand side of (3.9) can be written as

gs(y) = yP = 14 By — ByP? y e [0,1].

Thus, is enough to prove that gz(y) < 0 for all y € (0,1). For that, we observe gg(0) = —1,
gs(1) = 0 and the derive of gz is given by

gs(y) = (p— 1)y 2 + Myp/w — %ym‘l,
which implies
%2@ =2(p — )y*"* + B(p — 2) — By =: fo(y). (3.10)
We observe that f5(0) = B(p — 2) > 0, f5(1) = 2(p — 1 — §) and
f5(y) = p(p — )y"*~" — Bp.
Consequently,
fy)=0epp—1)y'T =fpsy= <2%1) Q.

Depending from the location of the critical point 1y, we will consider three case:

Case 1: If 0 < § < p — 1 we have that fz(1) > 0. This together with the fact that fz is
strictly decreasing in (0,70) and strictly increasing in (yo, 1) implies that y, is a local minimum
and hence a straightforward calculation shows that

fs(y) = fs(yo) = % ((p—1)*=2 — @2 > 0 forally € [0,1],

and this concludes the proof in this case.

Case 2: If § = p — 1 we have that f3(0) > 0, f5(1) = 0, and f3 is is strictly decreasing in
(0,1) and hence fg(y) > 0 for y € (0,1) and this also concludes the proof in this case.

Case 3: If § > p — 1, we have that f3(0) > 0, fs(1) < 0, and fs is (strictly) decreasing
in (0,1). Thus, fz has an unique zero tz which is the unique critical point of gs (see (3.10)).
Moreover, gg is strictly increasing in (0,¢3) and strictly decreasing in (¢g,1). Consequently,
gp has a unique zero in (0,1) which gives us a unique critical point of hg in (0,1/2). Since
hs(0) = hp(1) = 1, lim, 01 hj(s) = —p < 0 (that is, hg is strictly decreasing in a neighborhood
of 0), and hg(1/2) = (1 + B)/2P~1 < 1, then hg(s) < 1, for any s € (0,1/2) and the lemma is
proved. O

Lemma 3.2.7. Assume p > 2 and 0 < 8 < 271 — 1. If (u,v) € W x W is a minimizer of cg
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then u =0 orv=0.

Proof. Let (u,v) € N be such that Is(u,v) = ¢ and assume by contradiction that u # 0 and
v # 0. By Lemma 3.2.4 we have that u,v > 0 and using polar coordinates for the pair (u,v),

namely we write
(u,v) = (pcosf, psinf) where p?> =u?>+0v> and 0 =0(z)c (0,7/2).
It is straightforward to check that

Vu=Vpcost — pVlsind and Vv =Vpsin€+ pVlcosé.

Hence
[Vul? + |Vo]* = (|Vp|* cos® 6 — 2pcos 0 sin 6V pV o + p*|V0)|* sin® 6)
+ (|Vp|*sin® 0 + 2psin 6 cos OV pV o + p*| V| cos® 6)
= |[Vpl* + p*| VO],
and so

[l 2y + 0017 ey :/ |VP|2d:L'+/ 02|V9|2d£17+/ pPdx > || plli g2y
R2 R2 R2

On the other hand,

Tlu,v) /]R /R log (| — y|) (p*(y) cos® 8(y) + p*(y) sin® B(y))
(z) cos® O(x) + p*(x) sin® 0(z)) dydx
/R2 /R2 log (| — y|) p*(y)p*(x)dydz = T (p,0).

Since 6 € (0,7/2), then 0 < cos?@ < 1. Thus, we can apply Lemma 3.2.6 to obtain

whmfwmﬁm+w@mwm
= / ((cos®0)” + (sin® 6)? + 23(cos® 0)P/%(sin* 9)”/2) |p|*dx
R2
< HPHsz (R2)"

Thus, there exists to > 0 such that (¢9p,0) € N (see Lemma 3.3.1 below). Consequently, we

obtain
2

t to
Is(toustov) = 2 (Il ey + ol e ) + 2T (w,0)

2P
= 2 (Wl + Dol 428 | o) (3.11)
2p R2
B Lt i
> Lol + 270, 0) = Ll ey = Tolt00,0) =
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This, together with the fact that (u,v) € N and Lemma 3.3.1 below imply that
cg = Ig(u,v) = r?aoxfﬁ(tu,tv) > I5(top,0) > cp,
>

which is a contradiction and this concludes the proof. O

3.3 Proof of Theorems 3.1.1

The proof of Theorem 3.1.1 will be fulfilled in some lemmas. We first prove that N is not

empty and I3 is bounded from below on N. More precisely, we have

Lemma 3.3.1. Assume that p > 2 and 5 > 0. Then, for each (u,v) € (Wrad X Wrad> \ {0, 0},
there exists an unique t,, > 0 such that I5(t, . u, ty,v) = maxso Ig(tu, tv) and (ty,wu, t,,v) € N.
Furthermore, Ig(u,v) > 0 for every (u,v) € N.

Proof. Let (u,v) € Wyaq X Wraa \ {0,0} and for ¢ > 0 we define

30 1= Ioftut) = & (Il + [0l ) + 5 T

t2p
~ 5 (HuHL%)Rz + o)l e ) +—25L/n hMAde>
P R?

A simple computation shows that
Dt to) = ¢ (I[ullfn g + 013w ) + T (w,0)
— %P (||u||L2p r2) T ||1)||L2p(]R2 +2p /2 |uv|de> = t7/(¢),
R
and consequently
(tu,tv) € N & +/(t) = 0. (3.12)
Taking into account that

t2

t2 t4
1(0) = 5 (lllinge + Iolling) — 3 70n0) = 5

(100 0+ Dl + 26 [ uopae)

and using that p > 2 > 1 we deduce that there exists t; > 0 sufficiently small such that v(¢) > 0
for any ¢ € (0,¢1). On the other hand, using that p > 2 > 1 we see lim;_,o, ¥(t) = —00. So, the
function v achieves its maximum value at some t,, > 0 such that +'(¢,,) = 0. Furthermore, ¢,

is the unique critical point of 7. To prove this, we observe that

V() = ¢ (Il + Nolage) ) + 7 ()

(3.13)
= 07 (il + 0l +28 | o) = (o),
R2
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where

[l ) + 10l

h(t) := > + T (u,v) — 274 (Huui%p(w + |Jv||%5, ®2) T 20 /R2 |uv\pdx) :

Since p > 2 we see that h is decreasing and as a consequence the function +/(¢)/t3 is decreasing.
Now, suppose by contradiction that there exist 5 > ¢; > 0 such that 7/(t1) = 7/(t2) = 0. Then,
using that 7/(¢)/t® is decreasing, we find

v (1) - 7' (t2)

0=
t} t

=0,

which is a contradiction. Finally, we prove that Iz(u,v) > 0 for every (u,v) € N. In fact, if
(u,v) € N there exists a unique ¢ > 0 such that (tu,tv) € N and y(¢t) > 0 and so by uniqueness
t = 1. Therefore, I5(u,v) = (1) = v(t) > 0 and this completes the proof. O

Remark 3.3.2. As a byproduct of the above proof, we see that the point t,,, which projects (u,v)
in the Nehari manifold is exactly the maximum point of v. Since v > 0 near the origin and it
has a unique critical point, we conclude that v is positive in (0,t,,) and negative in (t,.,, 00).

In particular, we have that t,, € (0,1] whenever v'(1) = I'g(u,v) < 0.
Next, we will prove that any minimizing sequence for ¢z is bounded in H'(R?).

Lemma 3.3.3. Assume that p > 2 and > 0. If (un,v,) C N is a minimizing sequence for cg,
then the following conditions holds:

(i) the sequences (u,) and (vy,) are bounded in the norm || - || g1 (r2);
(i1) up to a subsequence u, — u and v, — v, in H'(R?) with (u,v) # (0,0);
(1i1) there exists C' > 0 such that Ti(un,v,) < C, for alln € N.

Proof. Since I'g(uy,v,) = 0 and p > 2, we see that

~

1
cg + on(1) = 5(unavn) - Zrﬁ(umvn)

+ =

et s ey + ol e

(p—2)
1 ||un”L2p R2) + ||UnHL2p R2) + 28 |unvn|pdx
P R2

(s gaey + lonlragesy )

(3.14)

>

IO,

which implies (7). Thus, up to a subsequence we can assume that u,, — u and v, — v, in H'(R?)
and we claim that (u,v) # (0,0). Otherwise, ||up| g1 ®2) — 0 and [|v, || g1 @2y — 0. By (3.6) and
the embedding (3.3) with » = 8/3 it follows that

Taltn; va) < Co (Jlunllip ey + [vallfy ) ) (3.15)
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3. On a planar Hartree-Fock type system

Thus, using that T'g(u,,v,) = 0 and T (u,,v,) > 0, we get
2
ol + oulfiesy < o (lanlZhce + Dol + 26 [ o+ a0

On the other hand, using Holder’s inequality and the embedding (3.2) we obtain

42|unvn|pdx3||vn||§2p(R2 lanlongay < Co (lonlF ) + lualfoes)) - (3.16)

Combining this estimates we conclude that

(lunlrsgaey + Ionlrageey ) < Co (Ilunlirsgaey + Ionllyaes) )

+ (C1 + Cs) (Huthﬂ r?) T HU”HHI(RQ ) ’

from where we obtain a contradiction, since p > 2 > 1 and (i) is proved. To see that (iii) holds,

since I'g(up,v,) =0, ie.,
(Ilaalls ey + lonlli gy ) + Tt 00) = T (1t vn)
(g + el 428 [ JuninPte),
from estimates (3.15)-(3.16) and the Sobolev embedding we get
Ti(tn, vn) < Co <Hun||§{1(R2) + ”Un”%l([[@?)) + (G + ) (HunHi?l(W + lloall: (R2 ) )

and hence (7i7) follows from item (i), and this completes the proof. O
Next, we shall obtain boundedness in the norm of W,

Lemma 3.3.4. Assume that p > 2 and 5 > 0. If (un,v,) C N is a minimizing sequence for cg,

then (u,) and (v,) are bounded in the norm || - ||.

Proof. First we observe that
el = Nl + [ 1081+ falide and ol = onlfey + [ lo(1 + fal)idde.
Thus, by item (7) of Lemma 3.3.3 it remains to prove that there exists C' > 0 such that

/R2 log(1 + |z|)(u2 +v2)dx < C, V¥n€N. (3.17)
For this, by Lemma 3.3.3 there exists R > 0 such that

/ (u* +v*) dx > 0.
Br
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3. On a planar Hartree-Fock type system

For any x € R? \ Byp and y € Bg, there holds

x
1+\x—y\21+]w\—\y[21+\x!—R21+|2—|2\/1—|—|w].

Now using Lemma 3.3.3 we deduce that

Oz T 2 [ [ tos(1+ o) (10) +0300) (1) +03(0) dyde

= % (/BR (u(y) +vi(y)) dy) (/RQ\BM log(1 + |2]) (up(z) + va(x)) dw) :

Taking the limit and using the compact embedding H'(Bg) < L*(Bg) we get

-1
lim sup/ log(1+ |z|) (uj(x) +v2(z)) de < 2Cy (/ (u? + v?) dx) :
R?\Bsp B

n—00 R

On the other hand, using that log(1 + |z|) < 1+ |z| we see that
/B log(1 + Ja]) (u2 () + v2(2)) do < (1+2) (unll3 o) + ol ey ) < Co
2R

Therefore, (3.17) holds and this completes the proof. O

We collect some auxiliary compactnesses results in the following

Lemma 3.3.5. Assume that p > 2 and > 0. If (un,v,) C N is a minimizing sequence for cg,

then the following statements hold true:
(4) limyoo [go [UnvplPde = [, |uv|Pde;
(73) liminf, . T1(Un,vn) > Ti(u,v);
(731) limp—yo0 T2(Un, vy) = Ta(u,v).

Proof. Note that by Holder’s inequality, one deduces

‘/ (|upvn|? — |uv|?) dz
]R2

< [ JuaP lloal = 0Pl o+ [ (o lfunl? = fuP] da
R2 R2

1/2
2
< ol ([ ol = o e (319

1/2
2
ey ([l = )
R2

and one can easily obtain (i) from the compact embedding (3.3). To prove (i) we write

Ti(tn, vy) = A}l + 2A$L + Ai,
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3. On a planar Hartree-Fock type system

where
Al = / / log (14 |2 — y]) w2 (y)e2 () dyda, A2 = / / log (14 | — y]) w2 ()2 (2)dydz,
R2 JRR? R2 JR2

and
A= [ og (14— yl) e )i @)y
R2 JR2

Now, we observe that for any R > 0 we have

AL > Dy(R) + / / log(1 + |z — yl)u(y)e?(z)dydr,
Br J Br
where D,, := D! + D? and

D} = / R / (1 4 b =y 0) (1 0) — )y,

D= [ R / (1 + b — (@) (1) — ()

Taking into account that log(1+ |z — y|) < C4 for z,y € Bg, it follows from Hélder’s inequality
and the compact embedding H'(Bg) < L?(Bg) that

|Dr1L| < Cl”“ﬂ”%?(BR)Hun - UHLZ(BR)HUn + u||L2(BR) = 0,(1).

Similarly, one has D? = 0,(1) and hence by Fatou’s lemma

liminf A > / / log(1 + |z — y|)u?(y)u?(z)dydz.
Br JBr

n—o0

In a similar way,

n—oo

liminf A2 > / / log(1 + |z — y|)u?(y)v*(x)dydz,
Br JBg

liminf A > / / log(1 + |z — y|)v*(y)v?(z)dydz.
Br JBg

n—oo

As a consequence, we get

lim inf 77 (u,, v,) > /B /B log(1+ |z —y]) (v’(y) + v*(y)) (v*(z) + v*(z)) dydz.

n—oo

Letting R — oo in the above expression and using the Monotone Convergence Theorem, (i7)
holds.

To prove that (ii7) holds true, we write

T2 (tn,vn) = B +2B2 + B3,
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3. On a planar Hartree-Fock type system

where

B, rz/ / log (1 + [z —y|™") ul(y)ul(z)dydz,
R2 JR2

B? = / / log (1 + [z — y]™) w2 (y)o2 («)dydz,
R2 JRR2
and

B} = / / log (14 |z — y|™") v2 (y)vi(z)dydz.
r? JR2

Using the elementary inequality log(1 4 r) < r, for any r > 0 it follows that

/RQ /Rz log (1 + [z — y|™") u’(y)u?(z)dyda
S/ ug (y)uz (x) — u(y)u’(x )’dyda:

|z =y
Since
U (y)un () — u*(y)v*(2) = up(y) (v (@) — u’(2)) +0*(2) (un(y) — v*(y)) .,
we find
T N
/RQ /R ) |un(y |;(_y)y|:un(y) Wl 4.

Thus, applying Proposition 2.3.5 with =1, ¢ = s = 4/3 we obtain

3/4

3/4
4/3 4/3
Cn S ||un||%8/3(R2) (/2 (|U'n, - UHUn +U/|) / d.ﬁU) +||U||%8/3(R2) (/']R2 (|Un - U||U/n +U|) / d.r)
R

Using Holder’s inequality and the compact embedding (3.3) with ¢ = 8/3 we get

Co < latallsssgan 1t — 0l sy et + ll vy + 1l 2o gyt — ll sy 1t + 0] ey

= 0,(1).

Thus, we find
= / / log (1+ |z —y|™") v’ (y)u*(z)dydz + 0,(1).
R2 JR2

Proceeding, in a similarly way we obtain

- / / log (1+ |z — y| ™) w*(y)v*(x)dyda + 0a(1),

and

_ / 2 / log (1+ [z = y|™!) v2(y)v*(@)dyda + 0,(1),
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3. On a planar Hartree-Fock type system

Therefore,

T (U, V) = /R2 /R2 log (14 |z —y|™") (v*(y) + v*(y)) (v*(z) + v*(2)) dydz + 0,(1)
= Ta(u,v) + o,(1),
which implies (7i7), completing the proof. O
We are now in the position to complete the proof of Theorem 3.1.1.

Finalizing the proof of Theorem 3.1.1. Let (uy,v,) C N be a minimizing sequence for c¢z. By
Lemma 3.3.3, we may assume that u, — u and v, — v weakly in H'(R?), with (u,v) # (0,0).
On the other hand, by Lemma 3.3.4, up to subsequence we may assume that u, — u and
Up — ¥ weakly in Wyaq. From the compact embedding (3.3), we conclude that wu,(z) — u(zx)
and u,(z) — u(z) for a.e. z € R Similarly v,(z) — v(z) and v,(x) — 0(z) for a.e. z € R?
and consequently (u,v) = (@, 7) € (Wraa X Weaa) \ {(0,0)}.
Let t = t,,, > 0 be such that (tu,tv) € N. Arguing as in (3.14), we conclude that
44
¢p < T(tu,tv) = 7 (Ilulldge) + 0l e

(p—2)t*

(3.19)
1 (HUHsz N ] +2B/ ]uv]pda:).
D R?

+

Now, recalling that the norm is weakly lower semicontinuous, and the compact embedding (3.3),

we can use Lemma 3.3.5 to obtain

C0) = (Il + 101 e) + T(00) = (e + 10l + 25 [ o)

<liminf I'g(uy,v,) =0,

n—oo

and hence by Remark 3.3.2 we conclude that ¢ € (0, 1]. Consequently,

( )
H ||L2P(R2 + HUHsz (R2) +2p |U’U|pdl‘ :
RQ

1
o < To(tu, ) < 7 (Il ey + ol sy )+
This, the item (i) of Lemma 3.3.5, the weak semicontinuity of the norm, and (3.14) imply that
cg < Ig(tu,tv)
1
< timinf 7 (lunles) + ol o))

- )@nmbw+wmmwz+w/ﬂ%%w@
RQ

= llmlnf][g(un, Up) = Cg.
n—oo

+ hm mf

Thus, Ig(tu, tv) = cz and by using a rather standard deformation argument as in [19, Proposition
3.1] (see also |9, pp. 1163|) we conclude that (tu,tv) is the desired solution. Noting that
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3. On a planar Hartree-Fock type system

Is(u,v) = Ig(|ul,|v]) and Tg(u,v) = Tg(|ul, |v]), whenever (u,v) € N we may assume that
u,v > 0. Therefore, applying Lemmas 3.2.5, Lemma 3.2.7, and Proposition 3.2.2 we concludes
the proof of Theorem 3.1.1. O
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Chapter 4

Embeddings results, Trudinger-Moser type

inequality and an application

Finally, in this chapter we will present the results obtained in the paper [5|, where we establish
embedding results and a Trudinger-Moser type inequality involving potential nonradial. More-
over, as an application, we investigate the existence of solutions for a class of Schréringer-Poisson

system similar to that presented in Chapter 2 in the nonradial case.

4.1 Embeddings results

Inspired in the paper [11] (see also [79,80]), we will focus our study on embeddings results

and Trudinger-Moser type inequality, involving the potential V, K and @), such that:

(VKQ) V,K,Q € C(R?) and there exist ¥ < 2 < B and positive constants ag, by such that

bo
m <V(z), 0<K(z),Q(r)< m, for all z € R?.

(%)

In order to formulate our main weighted Sobolev embedding we consider the auxiliary weight

1
loc

function w € L (R?), satisfying

1 if |z <1

log(1 + |2])Q(z) if |z > 1,

for some Cj > 0.
Example 4.1.1. w(z) := Q(x) and w(x) :=log(1 + |z|)Q(z), for any x € R.

Next we prove a weighted Sobolev embedding which will play a fundamental role in our

variational setting. For related results see for instance [70].

Proposition 4.1.2. Assume (VKQ). Then, for any 2 < p < oo, the weighted Sobolev embedding

E — LP(R% Q) is continuous and compact.
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4. Embeddings results, Trudinger-Moser type inequality and an application

Proof. For any u € E we observe that

/RQC)(xHuPdI < Cy (/B |ulPdz + Z/A log(1 + \x|)Q(x)|u]pdx) ) (4.1)

where A; := {z € R? : 20 < |z| < 277}, for j € NU{0}. To estimate the first integral on the
right-hand side of (4.1) we notice that by the embedding E < H'(B;) < LP(By), which holds
for all p > 2 we obtain

p/2 p/2
lulPdz < C4 </ [qu|2 + UQ} d:L‘) < Oy (/ [|Vu|2 + V(x)uQ} dx) , (4.2)
By B1 B1

for some constants Cy, Cy > 0, where we apply (VKQ).
Next we will estimate the second integral on the right-hand side of (4.1). For this, we observe

that using hypothesis (VK@) and performing a change of variables y := 277z we obtain

log(1 4 2711) log(1 42741
log(1 Pdr < ———-+ P d
| st s lh@eiupar < PEEEED [ jupar = PR | upay

A

where u;(y) := u(27y). By the Sobolev embedding H'(A4g) < LP(Ay), there exists C3 > 0 such
that

= (f [our+sw]ar)

=03(/AV

J

p/2
[|Vu(x)|2 + 2_2ju2(x)] dx) .

Since (14 2711) <2.2/%1 and we may assume without loss of generality that ¥ > 0, one deduce

2

/ 272y (x)dr < 27%(1 + 2j+1)ﬁ/ &dw < 28+(-2 / V(z)udr.
4 a; (L4 [a])7

Since 2 < 3, then lim;, o log(1 + 2/%1)/2(5=27 = 0, and so we obtain Cj > 0 such that

log(1 + 27*+1)/2(6=2 < €y, for j € NU {0}. This, combined with the above estimates and the

fact that v < 2, we deduce that

p log(1 +27+1)
| tos(1 + e @) upds < 25 (/A

J J

p/2
[[Vul? + 227027V (2)0?] d:z:)

b/ (4.3)
< Oy (/ [[Vul® + V(z)u?] da:) :
Aj
Thus, recalling that the function s — sP/2 is super additive for p > 2, we conclude that
0o p/2
Z/ log(1 + |z|)Q(z)|u|Pdx < Cy (/ [[Vul> + V(2)u?] d:v) : (4.4)
j=0 7 A4; i
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4. Embeddings results, Trudinger-Moser type inequality and an application

This, together with (4.2) and (4.1) implies the continuous embedding.

For the compactness result, we take (u,) C E such that w, — 0 weakly in £. From
convergence lim;_, ., log(1 +2j+1)/2(g_2)j = 0, for any € > 0, there exists jo € N such that
log(1 + 2j+1)/2('§*2)j < &, whenever j > jy. Since the embedding F < H'(B;) < LP(B) is
compact we have that [, |un[Pdz = 0,(1). Using this, (VKQ), (4.3), and that s — sP/? is super

additive, we obtain

p/2
/ [|wn|2+v<x>ui}das> < <Callun

J

> [ tonl1 + leh@@lmlrde <200y (

J=jo J=jo
and using that (u,) is bounded and € > 0 is arbitrary we obtain the compact embedding and
this completes the proof. O

As a byproduct of Proposition 4.1.2 we have the following result.

Remark 4.1.3. Suppose that (VKQ) holds. Ifw(x) = Q(z), w(z) = log(1+|z|)Q, w(z) = K(z)
or w(z) =log(1+ |z|)K(x), then clearly we have that w(z) < Ciw(x) for some constant Cy > 0.
Therefore, for any 2 < p < oo, the Sobolev embedding E — LP(R?;w) is continuous and compact.

Furthermore, take into account that

Qz) = Q" (x) < L and K(z):= K*3(z) < L
(L fa])r T (14 |@])48s

and 45/3 > 2, we see that Q and K satisfy hypothesis (VKQ). Hence the embedding also holds
when w(z) = QY3 (z) or w(z) = K*¥3(x).

4.2 Trudinger-Moser type inequality

In view of Proposition 4.1.2 the following Trudinger-Moser type inequality is natural on the

space E determined by the Young function
D, 1(s) =™ —1,

where a > 0 (see (1.6) with jo = 1).

Theorem 4.2.1. For any o > 0 and u € E, the function @(-)®,1(u) belongs to L*(R?). More-

over, there exists a, € (0,47) such that

sup / W(2) Py 1 (u)dr < 0o,
R2

ueE, ||lu||p<1
for any 0 < a < a,.

Before to present the proof of Theorem 4.2.1 we will need some auxiliary result. We start off

by recalling a Trudinger-Moser inequality in the ball [82, Lemma 3.1].
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4. Embeddings results, Trudinger-Moser type inequality and an application

Lemma 4.2.2. Let zy € R? and v € Hj (Bgr(xo)) be such that fBR(xO) \Vu|*dz < 1. Then there
exists C' > 0 such that

/ (64”“2 - 1) dr < C - R? / Vu|?dz.
Br(zo) Br(zo)

The second auxiliary result is a version, for our functional space, of a previous result presented
in [42]. In their proof, the authors used, among other things, Besicovitch covering lemma. The

proof we present here is new and easier than the former one.

Lemma 4.2.3. Suppose that (VKQ) holds. Then there exist C > 0 and o, € (0,47) such that

/R BB (u)dr < C,

for any 0 < a < o, and u € E verifying ||u||g < 1.

Proof. Let u € E be such that ||u||gz <1 and observe that

[ (e ) ar<e, [ (o 1)a

% (4.5)
+ Cy z_; /Aj log(1 + |z|)Q(x) (ea“2 — 1) dx.

In order to estimate the first integral on the right-hand side of (4.5) we consider ¢ € C§°(B2)
satisfying ¢ =1 in By and |[Vy| <2 in By. By (VKQ), we can estimate

]V(gpu)]de < Cl/

By

[[Vul® + ] do < Cg/ [[Vul® + V(z)u*] da.

B2 B2

Setting v := (1/C4)"?pu, we can apply Lemma 4.2.2 to obtain
/ <e47”’2 — 1) dr < C-22 | |V’ dx < Cg/ [|Vu|2 + V(a:)uQ] dx.
Bs Bs Bs

Thus, for any 0 < a < 47/C5, one has

/B1 (eo“ﬂ — 1) dr < Cy /32 <e°‘(‘p“)2 — 1) dr = 04/3 <e°‘02”2 — 1) dx (46)

2

< Gsllull < Cs.

We claim that there exists Cg > 0 and o, > 0 such that
Z/ log(1 + |z])Q(z) <eo‘“2 - 1) dx < Cg. (4.7)
=0 A

for any 0 < o < a,. For this purpose, let us j € N U {0} fixed. Performing the change of
variables y := 277z, (VKQ) and using the fact that lim;_,., log(1 + 2771)/2(5=27 = 0 together
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4. Embeddings results, Trudinger-Moser type inequality and an application

with (VKQ) we obtain

[ tos1-+lal)@te) (¢~ 1) e < O - | (1)

J 26] J

by log(1 4 27+1
_ Y Og(~+A )/ (eau§ . 1) dy (4.8)
2(6_2).7 Ao

< 07/ <€au§ - 1) dy,
Ao

where u;(y) := u(27y). To estimate the last integral above, for y € Ay, setting R, := dist(y, dAo)

we see that Bg, (y) C Ag. Moreover, from the compactness of Ag, we obtain points i, ...y, €
Ag such that Ay C Ule Bg,/2(y;), where R; := R,,. For each i = 1,...,k, we pick a function
@; € C5°(Bg,(y;)) such that 0 < ¢; < 1in Bg,(y;), i = 1 in Bg,2(y;) and [V;| < 4/R; in
Bg,(y;). If we call B := Bp.(y;), we have that

|V (i) (9) Py < Cs /A 21|V u(2y)2dy + CsR; > /A 2 (2y)dy
B* 0 0

—2
< Cs | |VulPdr + CSR? u?dz.
A; 2%y,

J

Since (1 + 2/+1)7 < 47 .27 and we may assume without loss of generality that 7 > 0 and hence
from (VK@) one has

- . u2 4? . 277
/ wldr < 47 2”/ —dx < / V(z)u*dx
A A, (T4 [2])7 ap  Ja,

J J J

Since 7 < 2, there holds

[ I i)y < o [ (190 + V)]

J

. A 4Ar
Q4 = ming —, — ¢ .
Cy’ Cy

If v ; = (1/07)1/2 p;u;, we can apply Lemma 4.2.2 to estimate

At this point we define

J

/ <e4””i2,j — 1) dy < C-R} [ |Vu|Pdy < 010/ [[Vul® + V(z)u?] da.
Bi Bi
Consequently, for all 0 < a < «, it holds

/ <ea(<muj)2 _ 1) dy < Cw/ [[Vul? + V(z)u?] dz,
Bi A

J
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Therefore,

k
/ (ea%z - 1> dy < Z/ <€a(<muj)2 _ 1) dy < C'n/ [[Vul® + V(z)u?] da.
Ao i=1 Y Br,/2(¥i)

J

Combining this inequality with (4.8) and summing up we obtain that (4.7) holds, since ||ul|z < 1.
Finally, the desired result follows from (4.5) together with the estimates (4.6) and (4.7). O

We are ready to present the proof of our first main theorem.

Proof of Theorem 4.2.1. Let a > 0 and u € E. By density, there exists ug € C5°(R?) such that
lu = uolle <6,

with 6 > 0 to be chosen later. Since u? < 2(u — ug)? + 2u3, we may estimate

/ () @1 () dr = / B (e —1) dr < / B (20" 1) d
R2 R2 R2

Recalling the elementary inequality
Loy Lo
ab—1< i(a —1)+§(b —1), Va,b>0,

setting w := u — ug and denoting by {2y the support of ugy, we obtain

2/]R2 w(x) (ea“Q - 1) dr < /RQCJ(:U) <e4aw2 — 1) dx +/Q w(z) <e40‘"g - 1) dx

0
2 w 2
R2 Qo

We now pick 6 > 0 in such way that

Wlth Cl = ||&||Loo(QO)€4aHuO”%°°(QO)‘

dallw])f < 4ad® < a,
and we using Lemma 4.2.3 to conclude that

- 2 c O
w(x) (e —1)de < — + —|Q] < o0.
3@ (e =1)dr < 5+ GHiow

This proves the first statement of Theorem 4.2.1. The second one is a direct consequence of
Lemma 4.2.3. ]

Remark 4.2.4. Assume (VKQ) holds. As a immediate consequence of Theorem 4.2.1, there
exists . € (0,4m) such that

sup / w() Py 1 (u)dr < 0o,
R2

uelE, ||lu||g<L1
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for any 0 < a < a, whenever w is one of the functions Q(z), K(x), log(1 + |z|)Q(z), log(1 +
2] K (z), Q%3 (x)or K**(x).

4.3 Application

In this section, we are concerned with the existence of solution to the system (S), where
A =1, the potential V| K, Q) are nonradial and satisfy (VK @), and (1.1) holds.
Since W — E, by Remark 4.1.3, we can define the numbers

i@ = inf il gy g el
weWAO} s g g w0} Tl 22 g

On the other hand, we assume that f satisfies the following conditions:

(f1) f(s) =o(]s]) as s = 0;
(f2) there exists § > 4 such that 0 < 0F(s) < f(s)s for all s # 0;
(f3) there exists ¢ > 0 such that F(s) > (|s|*, for all s € R;

(f4) the function s — f(s)/|s|® is increasing in |s| > 0.

The main existence result for problem (€) can be stated as follows:

Theorem 4.3.1. Suppose that (VKQ), (1.1), and (f1)— (f4) hold. Then, there ezists cv. € (0,4m)

such that problem (&) has a nonzero small energy solution provided

1 Q)
> 52 —_—— . 4.9
¢ > s3Qmax{ g 0| (49)
As a byproduct of Theorem 4.3.1, we can give a contribution concerning the existence of

solutions to the system (S), namely

Theorem 4.3.2. Suppose the same hypotheses of Theorem 4.3.1 and let w € W be the solution

obtained in that theorem. Then, the pair (u,¢,) is a weak solution of system (S), where ¢, =
[y x (Ku?).

4.3.1 Existence results

Since the proof of Theorem 4.3.1 it is similar the proof of Theorem 2.1.4, in this subsection
we will estimate the level ¢; = inf,en, I (u) differently (see (2.21) and recall that in this case we
are considering A\ = 1).

We obtain in what follows the required estimate on the minimax level ¢;.

Lemma 4.3.3. Suppose that (f3) holds and let o, € (0,4m) be given by Theorem 4.2.1. If ¢
satisfies (4.9), then ¢; < au/(4ay).
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4. Embeddings results, Trudinger-Moser type inequality and an application

Proof. Since W — E — L*R?%* Q) and this last embedding is compact (see Remark 4.1.3),
there exists w € W\ {0} such that

lwll? = S4(Q). / Qle)w'ds = 1.
RQ

We may assume w > 0, and therefore we obtain from Lemma 2.4.1 a number ¢, > 0 such that

tow € N. So, recalling that V, > 0, using (3.5), (f3) and the above equalities, we obtain

t2 1
o1 < I(tyw) < 5“5’4(@) + Zvl(tww) — | Qx)F(t,w)dx
R2
£ by 2 4
< §S4<Q) + E||w||L2(R2;K)S4(Q) —t,G.
But the definition of Sy(K) and (4.9) provide

1 2 S4(Q) ¢
|w|l 221y < WHWHW T Sy (K) = Si(Q)’

and therefore

t2, to . a4
c1 < 554(62) + 5( —1,C

< smax [25,Q) — '] = ¢ (Sm) _5Q) _ o

2\ 4C 8C " dag
where we have used (4.9) again in the last part. The proof is complete. ]

Arguing as in the proof of Theorem 2.1.4 we can check that Theorem 4.3.1 holds. Using the
solution obtained in Theorem 4.3.1 and elliptic regularity, we can easily obtain a weak solution
for the system (S), with A = 1.

Proof of Theorem 4.3.2. Let u € W be the solution given by Theorem 4.3.1, ¢ € C§°(R?) and
R > 0 be such that the support of ¢ is contained in Bg. For any 1 < p < oo, we have that

/ K (2)2Pdz < | K| o / lufdz < oo,
(R?)
Br Br
since W < L*(Bg). Tt follows from the classical potential theory (see [47, Theorem 9.9]) that
¢y = Tax (Ku?) € W*P(Bg) and A¢, = K(x)u? for a.e. © € Bg. This and Divergence Theorem

ensure that

— Vo, Vedr = /

Br Br

(Adu)pdz = / (K (2)u?) oz

Br

Therefore, the pair (u, ¢,) € W x W2P(R?) is a weak solution of system (S) and the theorem is
proved. O
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Chapter 5

On the planar Choquard equation with
nonradial potencial and exponential

critical growth

In this chapter is devoted to the paper [30], where we study a Choquard type equation in
the whole plane involving the logarithmic kernel and the exponential nonlinearity. We will use

results obtained in the Chapter 4.

5.1 Main results

In this chapter we investigate the existence of solutions for the equation

AU V(@)= {log N (K(x)F(u))] Q) f(u), z€R? (£.0)

27 ||

where V, K, () are continuous potentials (see Chapter 4) and

ow 1+ (7)) = [ 10w (1) K Flatoay

The Choquard equation appears in several physical contents, such as an approximation to the
Hartree-"Fock theory for one component plasma in the paper Lieb-Simon [51] and the description
by Pekar of the quantum physics of a polaron at rest [66]. For complete discussion and references
on the nonlinear Choquard equation we refer the reader to [18,49,51,52,55,62| and references
therein.

In [51], the authors have addressed the classical Choquard equation
—Au+tu = (T(x) * |[u>)u R (5.1)

where Z,(z) = |z| ™! is the Riesz potential.
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5. On the planar Choquard equation with nonradial potencial and exponential critical growth

The nonlinear Choquard equation in high dimension
— Au+u = (Ty(z) * [u)|uff?u RN, N >3, (5.2)

when the potential Z,(z) = |z|*™" (with 0 < a < N) is the Riesz potential, has been subject of
interest by many authors in the last years (see for instance |7, 18,60-62| and references therein).
We quote that the existence of solutions for the nonlinear Choquard equation in the planar
case has been addressed in many papers such as |7,31,60,71,84]. In [7] the authors consider the
equation when Z,(z) = |z|~* (with 0 < a < 2) is the Riesz potential and V' is periodic.

As in the papers [25,36, 78|, it is quite natural to consider potentials Z,, of logarithm type
which have signal changes. In [18], the authors investigate the existence of solutions for the
planar Choquard equation when the potential V' interacts with Z,(x) and the nonlinearity f has
polynomial growth.

Motivated by the aforementioned results, our purpose here is to investigate the existence of
solutions to problem (£.C) when the nonlinearity f has the maximal growth for which the energy
functional associated is well defined.

In this chapter, we shall assume that the nonlinearity f : R — R is differentiable, f(s) =0
for all s <0 and f(s) > 0 for all s >0, (1.1) holds, and satisfies the following conditions:

(7)) f(s) = o(ls]) as s = 0;

(F2) there exists & € (0,1) such that

(F3) there exist £ > 0 and & > 2 such that F(s) > s, for all s € (0, 1].

A typical example of nonlinearity satisfying our assumptions is F(s) = e®s* _ 1, that is,
f(s) = F'(s) = 2apse*”.

Remark 5.1.1. It follows from (f;) that f is monotone increasing and hence
F(s) :/ f)dt < f(s)s, Vs>0, (5.3)
0

which improves the famous Ambrosetti-Rabinowitz condition. Furthermore,

% <F(S)) _ As) }2];§;>f/(5>

Consequently, for s > 0 fized, if we choose 0 < € < s arbitrary, one deduce

[ (E) s [a- o
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5. On the planar Choquard equation with nonradial potencial and exponential critical growth

which implies (5 “
F(s F(e
Fo) o S0

By (5.3), lim._,g+ F(¢)/f(e) = 0. Thus, taking e — 0T in the last estimate, follows that
F(s) <(1=96)f(s)s, V¥s>0. (5.5)

We say that u € E is a weak solution for (£.C) if for any ¢ € C5°(R?) there holds
1 1
/ [VuVy + V(2)up] do = — {log = (K(@F(@ﬂ Q(2)f(w)pde.  (5.6)
R2 27 Jre ||

Remark 5.1.2. If u € E is a weak solution for equation (£.C), considering ¢ = u~ :=
max{0, —u} as a test function in (5.6) we obtain that u= = 0 and consequently every weak

solution of (£.C) is nonnegative.
Our main existence result for problem (£.C) is state as follows.

Theorem 5.1.3. Suppose that (VKQ), (1.1), (1), and (f2) hold. Then there exists £* > 0 such
that if (§3) holds with & > &, (£.C) has a nontrivial weak solution which is nonnegative.

The remainder of the chapter is organized as follows. In Section 5.2 we shows some properties
of the nonlocal term which are fundamental in our approach. Finally, in Section 7?7 we prove
Theorem 5.1.3.

5.2 Variational setting

This section is devoted to introduce the variational setting to study equation (£.C). To this

purpose we observe that (£.C) has, at least formally, a variational structure given by the energy
functional J : E — R defined by

1 1

T (w) = 3 llully - 6w

where

60 = [ [ e (=) (QuiF )] @@prtutoayas

First let us show that the functional I is well defined. Since ) and K have the same growth,

from now on we will assume that () = K. Using the elementary identity

1 1
log; = log (1 + ;) —log(1+ 1),

we can write G(u) = Gy(u) — Go(u), where

i) = [ [ e (14 ) Q) | Qo) Fute) s
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5. On the planar Choquard equation with nonradial potencial and exponential critical growth

and
= [ [ [ostt+ b =) (QUIF(u(6))] QIF(ute)dyde
Hence ) ,
T () = Sllulll = - (Guw) = Go(u). (5.7)

To show that the nonlocal term G (u) is well defined, we recall the relevant Hardy-Littlewood-
Sobolev inequality (see for instance Proposition 2.3.5).
Since log (14 1/t) < 1/t holds for all ¢ > 0, applying Proposition 2.3.5 with © = 1 and

s =1 =4/3 one has

Q) F(u(y))Q(x) F(u(x))
|G1(u |</R2 g P dydx

<o( [ @Bureua) " ([ @ @rsar) " (53)

3/2
=C ( Q4/3(a:)F4/3(u)dx) .
R2

From (1.15) (with v = 2) and (1.16) it follows that

QY3 (x)F*3(u)dx < 64/3/ QY3 (x)|ul*3dx + C’l/ QY3 () |[u[*"3® (403, 1 (u)dz.
R2 R?

RQ

On the other hand, by Hélder’s inequality with exponents 1/r; + 1/ry = 1 together with (1.16)

we deduce

1/r2
[ @@ 0 0 101 < ( / Q4/3($)|U|4”‘”3drv)
R2 R2
1/r
X < Q4/3( )q)(47"1a/3 ( )d!E) .
RQ

Hence,

8/3 4q/3
/R2 QY3 () FY3 (u)da < Cz||u||L/8/3(R2;Q4/3 + Cz||u||Li{2q/3 )
1/r1 (59)
X ( ) Q4/3(1‘)(I>(47«1a/3), 1(u)da:) .
R

This combined with and (5.8) yields
G ()] < Ol

s 3/2r1 (5.10)
+ C3HU'HL4r2q/3 R2;Q4/3) (/IRL2 Q / (x)q)(4r1a/3)v 1(16)(1.1’) .

Choosing ¢ > 2, it follows from Remarks 4.1.3 and 4.2.4 that G;(u) is well defined.
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5. On the planar Choquard equation with nonradial potencial and exponential critical growth

Now, we estimate Gy(u). Since log(1 + |z — y|) < log(1l + |z|) + log(1 + |y|), we get

91 < [ [ [(tox(0 +Iel) +1og(1 + 4 (QUIP(u(v)) ] QIF(u(w)dyds
< [ [ 1081 + eDQ) () Qo) F(u(w)) g
+ [ [ o801+ DR F () Q) Futa)dyis

- ([ awrawiar) ([ 1os0+ khawr s )
+ ([ st + e raan) ( [ awrte)

i

By (1.15) (with v = 2), one has

[ toxtt + @) Futads ) ([ QoFtu(enas )

/}R2 log(1 + |z))Q(z)F(u)dx < 5/ log(1 + |z|)Q(z)u’dx

RQ

+ C/W log(1 + |z))Q(z)|u|*"®a 1 (u)dz.

Applying Holder’s inequality with exponents 1/q; + 1/go = 1, together with Theorem 4.1.2,
(1.16), and Theorem 4.2.1, we obtain

/]R2 log(1 + |2))Q(z) F(u)dx < 5/2 log(1 + |z|)Q(z)u’dx

- E/R log(1 + |x|)Q(x)|u|q1qu> 1/a
X (/R2 log(1 + |x|)Q(x)(quJ(u)dx) 1/ax

1/Q2
< Cullull% + Calull% ( [ s+ |x|>@<x><1>m,1<u>dx)
RQ

< oQ.

Similarly, we can use Remark 4.1.3, (1.16) and Remark 4.2.4 to get

1/q1
Q(z)F(u)dr <e | Q(z)u’dx + Cs ( Q(x)|u]q1qu>
1/q2
< ([ Qs -
1/q2
< Collulls + Collull®, ( / Q($)¢q2a,1(U)dw)
R2

< Q.
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5. On the planar Choquard equation with nonradial potencial and exponential critical growth

From the above estimates we conclude that

1/Q2
Go(u)] < Cllulls + G ull ( [ s+ |x|>@<x><1>q2a,1<u>dx)
R (5.12)

1/Q2
T Gl ( / Q<x><1>q2a,1<u>dx) < oo.
R?

Next, following the same steps proved in [31, Lemma 4.2] we can see that G € C*(E,R) and
for all u,v € E it holds

w0 =0 - o [ o (Qir) | Qo rtwyeds

Cor 2|

= () — 5 (G (u)o — Gy(u)o).

where

o= [ [ e (14 ) (@) | @ steetoas

lz —yl

and

Gytwyo = [ [ [los (1-+1e = o) (QUIP((r))] Qo) (ute)u(e)dyds

Consequently, weak solutions of problem (£.C) are precisely the critical points of 7.

5.3 Proof of Theorem 5.1.3

This section is devoted to prove Theorem 5.1.3 which will be achieved by using a variational
approach.
First, we show that the functional Z satisfies the geometry required in the Mountain Pass

Theorem.

Lemma 5.3.1. Suppose that (VKQ), (1.1), and (f1) hold. Then there are constants p,7 > 0
such that J(u) > 1, for any ||u||g = p. Furthermore, there exists e € E such that ||e|]|g > p and

J(e) <0.

Proof. From (5.7), (5.12), and the fact that G; > 0, we can use Remarks 4.2.4 and 4.1.3 to
conclude that

J(u) = Cillullf — Collul%,

whenever ||ul|z < p1, with p; > 0 satisfying gaap? < a,. Taking ¢ > 2 and 0 < p < p; small
enough, we can easily use the above estimate to obtain this first statement of the lemma.

In order to prove the second one, we fix ¢ € C5°(R?) \ {0}, with suppy C By/4. Taking into
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5. On the planar Choquard equation with nonradial potencial and exponential critical growth

account that |z —y| < 1/2 for any x,y € By /4, we have, for ¢ > 0, that

Glie)= [, [, 108 T QIR )QEF (o)t

> 1og2< @(x)F(tw(az»das) -
By

By (1.1), for ¢ > 1 fixed there are constants C3,Cy > 0 such that F(s) > Cs|s|? — Cy for all
s € R. Thus, for some constants C5, Cg > 0 we get

2
2
J(ty) < %Ilwll% —log?2 <O5t" Q(z)|p|?dr — Cy Q(w)dﬂf) :

Bi4 Bija
Since 2q > 2, the second statement holds for e := tp with ¢ > 0 sufficiently large, completing
the proof. n

In view of Lemma 5.3.1, the minimax level

= inf t 5.13
enp = inf max J (g(¢)), (5.13)

where I' := {g € C'([0,1], E) : g(0) = 0 and J(g(1)) < 0} is well defined and positive.
The following result holds true.

Lemma 5.3.2. Suppose that (VKQ) and (}) hold. If (u,) C E is a (PS). sequence for the
functional J, then (u,) is bounded in E.

Proof. If (u,) C E is a (PS). sequence we have

%Hunu‘g _ L /R [log Ly (Q(x)F(un)ﬂ Q(x) F(un)dz = ¢ + 0,(1) (5.14)

47 ||

and

(s t) = 5 [ J1ow e (@) P | Qs

o |z]

for any v € E, where 7,, — 0 as n — oo. We claim that v, := F(u,)/f(u,) € E, for all n € N.

Considering

1,00) = [ frow i+ (@) Pl | Qo tun

|z]

since f(s) =0, for all s <0, one deduces

rw) = [ e+ (@) | @G s

" /{ungm {bg% i (Q(x)F(“n)ﬂ Q(x) f(un)vdz
B /{un>0} {log \% «(Qu)F (“n))] Q(2) f (un)vdz.
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5. On the planar Choquard equation with nonradial potencial and exponential critical growth

Thus, we can assume u,, > 0 and so f(u,) > 0, implying that v, is well defined. Now, to show
that v, € E, for all n € N; let us notice that from (5.3) there holds

F?(u,
/ vidr = 2(u )dx < / u?dr < oo,
BR BR f (uTL) BR

for any R > 0, since (u,) C E. Again by (5.3), we obtain

/RQ V(x)vide < / V(z)uldr < oo. (5.16)

R2
On the other hand, observing that

f2(un> — F(un) f'(un)

an = Vun )
[ (un)

(5.17)
from (5.4) it follows that
Vo 2dz < (1 — 5)2/ VPl < oo,
R2 R2

Therefore, (v,) C E as claimed. So, we can apply (5.15) with v, instead of v to get

— (U, Va)  + % /R {log 1, (Q(@F(un))] Q@) F(un)dz < 7|vn]| -

2]
This last inequality combined with (5.14) and the fact that ||v,||g < ||u,||g infer that
lunllE = 2¢ + 200 (1) + (Un, vn) p + Tallunl -

By the definition of v,, (5.17), (5.4), and (5.5), we obtain

(i n) g = /]R V| <f2(“") }QZZE:)"W“”)) dz + /R V(x)uni((z:))dx

<(1-0) / Y, Pz + (1 — 0) / V(2)ulds.

From the above estimates and the fact that for € > 0 arbitrary, one can choose 20,(1),7, < &,

for sufficiently large n € N, to conclude that
S|lunl|2 < 2¢4 € + ||lun]l g, (5.18)

which implies the (u,) is bounded in F and the proof is complete. O
Next, we need to establish the following compactness result:

Lemma 5.3.3. Suppose that (VKQ), (1.1), (f1), and (f) hold. Then there exists co > 0 such
that the functional J satisfies the (PS). condition at any level 0 < ¢ < cy.
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5. On the planar Choquard equation with nonradial potencial and exponential critical growth

Proof. If (u,) C E is a (PS). sequence, by Lemma 5.3.2, up to a subsequence, we can assume

that u, — v weakly in E. We claim that

1
D, = / {log — % (Q(:U)F(un))] Q) f(up)(un, —u)dzr = 0,(1). (5.19)
R2 2]
If this is true, since lim,, o J (u,)(u, —u) = 0 and u,, — u weakly in E, we must have

Jimn (wnllf = (n, ) 5) = T (Jlun[f = [lullE) = 0.

Hence, this and the fact that u,, — u weakly in F, give us
Tim JJu, —ullp = lm (Jlunlf = 2 (un, w)p = llullz) = llullp = 2w, u)p + ulll =0,

and this finishes the proof. Thus, it remains to prove (5.19).
To this end, note that

Dy, = G (tn)(tn — 1) + G5 (un) (un — u). (5.20)

Taking into account that log (1 + 1/t) < 1/t for ¢ > 0 and Proposition 2.3.5, with = 1 and
r=s=4/3, we get

3/4 3/4
G )0~ ) < €1 ([ @@ PR w)de) ([ Q) ~ i )
R2 R2
From (5.9) and Remark 4.2.4, it follows that
L@ @P e < Callua i + Callua
) G2
3 (1) 2 [ —— ) d :
X (/R2 QY (T) P (4rya/3) fun 2,1 <||UnHE) x)
On the other hand, since (u,,) is bounded in E, by (5.18) one deduces
§ lim ||u,||% < 2¢+¢e+e lim ||Ju,|lp < 2¢+ ¢+ eCs.
n—00 n—0o0
Thus, picking ¢; > 0 and € > 0 small enough such that
) 2¢c ¢ eCy 2c; e  eC4 30,
m ]2 < = 4+ o4 2 < (L p 24258 , 5.22
i funlle < 545+ (5+5+ 5 ) < Far (5.22)

for any 0 < ¢ < ¢;. So, we can conclude that (4r;a/3)||u,||% < s, for any n € N large enough.
Using Remark 4.1.3 in (5.21), there holds

3/4
Gl ()t — ) < C ( / @4/3<x>f4/3<un>|un—u|4/3dx) .
RQ
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5. On the planar Choquard equation with nonradial potencial and exponential critical growth

Invoking Holder’s inequality with exponents 2/3 4+ 1/3 =1, we get

2/3
QY3 () f3 (up) Juy — u|Y3dr < QY3 (@) fA(up)dr ) un — [} -
RQ RQ ( 7Q )

By Remark 4.2.4, we obtain the following convergence

4/3 —0

nh_g.lo Hun - uHL4q2/3(R2 QA3

and so, to guarantee that lim, o Gj(un)(u, —u) = 0, it is enough shows that the sequence
(Jo @3(2) f*(un)dz) is bounded. In fact, from (1.14) with ¢ = 1, Remark 4.2.4, and (1.16),

we have
QY3 () fA(un)dr < e | QY3(x)uldr +Cs | QY3 (x)Poey(uy)da
R? R? R?

., (5.23)
< Cs + Cs Q4/3($)(I)2a|\unu%,1 (—n) dz.
R? [un|
From the first inequality (5.22), taking co > 0 and € > 0 small enough we get
2c e eCy 2c0 ¢ (4 Qu
1 n ot =< == ) < S
Jim llunlls < 5+ 5+ (5*5*5 %
for any 0 < ¢ < ¢o. Thus, for any n € N large
20| ||% < . (5.24)

By Remark 4.2.4 and (5.23), the sequence ([, Q"3(x)f?(u,)dz) is bounded and therefore
lim,, o0 G (uy) (u, — w) = 0. This and (5.20) imply
lim D, = hm Gy (un) (ty, — u).

n—oo

Since log(1 + |z — y|) <log(1 + |z|) + log(1 + |y|) we have

G311t — ) // [log (1 412~ 31) (Q) F(wa(v)))]

(@) f (un(2)) (un () = u(z))
< An + B,

where
A= ([ @urtuntay) (] tou(t + o) Qo) luno)) (o) - )i )
and

B = ( | tog(1+ 1nDQuIF () ) ([ Qo) un(o) o) = ateie).
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5. On the planar Choquard equation with nonradial potencial and exponential critical growth

From (5.11), we can estimate

1/g2
Up
[ Qwrtu)ds < Colul+ Gl [ Q@8 guns (725 ) ) - 529

[unl

Once again, by (5.22) we can choose ¢3 > 0 and € > 0 small enough such that

lim fug|2 < (26454 583) < (268,56 @
nosoo HonllE =\ 75 ) ) 5 5 5 ag’

for all 0 < ¢ < c3. Thus, ga||u,]|% < ., for n € N large. This, Remark 4.2.4, and (5.25) imply
that

A < G ([ 1081+ 1)@ (0 () 00fr) — u()de )

Invoking Holder’s inequality we conclude that

1/2
| et + 1)@ o)) o) ) < ( | 101+ Qo) )
X ||un — u||L2(R2;Q).

Since, limy, o0 ||Un — ul|22(r2,0) = 0 (see Theorem 4.1.2), if we show that the sequence

(/RQ log(1 + \:cy)Q(x)fz(un)dx)

is bounded, we have that lim, ,., 4, = 0. In fact, from (1.14), with ¢ = 1, (1.16), (5.24),
Theorem 4.1.2, and Theorem 4.2.1, yield

/R2 log(1 + |2))Q(z) f*(uy,)dx < 5/

log(1 + |2))Q(z)updz
RQ

Up,
e / log(1 + |2)) Q@) s s.n (—) da
RZ

[n

< Cp.

Similarly lim,, ., B, = 0, that is, lim,_,, G5(u,)(u, —u) = 0. Consequently, lim,,_,, D,, = 0 (see
(5.20)). Now choosing 0 < ¢y < min{ecy, c2, c3} we obtain the desired result and this completes
the proof. n

The next result is an estimate from above for the minimax level ¢y p defined in (5.13).

Lemma 5.3.4. Suppose that (VKQ) and (f,) hold. There exists \* > 0 such that if (§3) holds

with A > \*, then ¢ < ¢y, where ¢y is given in Lemma 5.3.3.

Proof. First, we shall consider a function ¢ € C§°(R?), given by p(z) = 1if |z| < 1/2, p(x) =0
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5. On the planar Choquard equation with nonradial potencial and exponential critical growth

if |z] > 1,0 < p(x) <1 for all z € R? and |Vo(z)| < 2 for all z € R Thus,

T =3 [ (V6P +V@)e?) do = - (Gule) = Ga(e)

< 4+ Vllurcan
B iw/B /B log (1 i i y|) Q) F(p(y)Q(x)F(p(x))dydx
o /B /B log (1 + [z — 41) Q(y) F(s2(1)) Q&) F () dyd.

For any z,y € B; we see that |z — y| < 2 and hence

Sl b
2 2T Tyl

Therefore, log (1 + 1/|z — y|) > log(3/2). Moreover, log(1+ |z —y|) < log3 in B;. Consequently,

10g(3/2)

ﬂ@§“+hWM@r- / QW) F(p(y))Q(x)F(p(z))dyds
Byjs J Byjo

§ 82 /B [ QIF () Q@ P p(a) dyds.

On the one hand, by assumption (f;) there exists C; > 0 such that F(s) < s, for all s € [0,1].
On the other hand, from (f3), F(s) > A|s|", for all s € (0,1]. So,

log 3

1 log(3/2)
J(p) < Am+ SVl — NN QI s, ) +

= 201 QI

where we used that ¢(z) =1 if |z| < 1/2 and 0 < p(z) < 1 for all z € R?. Since the right-hand
side above goes to —oo as A — oo, we can obtain A; > 0 such that J(¢) < 0, whenever A > )\
and hence the path ¢(t) := t¢ belongs to I'. Since t* < ¢ for ¢ € [0,1], a simple computation
shows that

< It
WP_%%<w)

t2 1 Llog(3/2) 10g3
< x| 5 (14 31V ) = 52000 o, + Gl

te[0,1] 47

log 3

< E s Ly
max | — —
= max | (A glViieey +

Vlog(3/2)
21N ) — 2B,

2
< max {%A — tQVD()\)] :

t>0

where
log 3

1
A= dr + S |Vils) + 5 —Cill@lLi s,

and
log(3/2)

D()\) = p

>\2HQH%1(B1/2)'
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5. On the planar Choquard equation with nonradial potencial and exponential critical growth

By carrying out a straightforward computation, we conclude that

< AQV/(QV—Q) 1 1
= (D)Y@ \2(20)Y @ (2u)/v-2) )

Since limy o D(A) = 00, the right-hand side above goes to 0 as A — oo, and hence we obtain
A* > A1 such that the inequality ¢ < ¢y is verified, for any A > A* and this concludes the
proof. O

Finalizing the proof of Theorem 1.1.2. Let \* be given by the last lemma and suppose that (f~3)
holds with A > A*. It follows from all the above lemmas and the Mountain Pass Theorem [13] that
J has a nonzero critical point v € E which is a weak solution for equation (£.C). Furthermore,

u is nonnegative by Remark 5.1.2 and this finishes the proof. ]
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