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Abstract

In this thesis, we address the existence of solutions for some class of planar semilinear elliptic
problems involving subcritical and critical growth. To do this, we establish some new weighted
Trudinger-Moser type inequalities in weighted Sobolev spaces including the radial and nonradial
cases.

Keywords: Trudinger-Moser type inequality, Weighted Sobolev space, Weighted Lebesgue
space, Semilinear elliptic problem.
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Resumo

Nesta tese, abordamos a existência de soluções para alguma classe de problemas elípticos
semilineares planos envolvendo crescimento subcrítico e crítico. Para fazer isso, estabelecemos
algumas desigualdades do tipo Trudinger-Moser ponderadas em espaços de Sobolev ponderados,
incluindo os casos radiais e não radiais.

Palavras-chave: Desigualdade do tipo Trudinger-Moser, Espaço de Sobolev com peso, Espaço
de Lebesgue com peso, Problema elíptico semilinear.
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Notation

We select here some notations used throughout the work.

Spaces

• Lp(R2;ω) :=
{
u : R2 → R measurable : ‖u‖Lp(R2;ω) :=

(∫
R2 ω(x)|u|pdx

)1/p
< +∞

}
;

• L∞(Ω) = {u : Ω→ R : u is bounded and mensurable};

• R2 denotes the usual euclidean space with the norm |x| =
(∑2

j=1 x
2
j

)1/2

, x ∈ R2;

• H1(R2) denotes the usual Sobolev space;

• C0(Ω) denotes the space of continuous real functions in Ω ⊂ R2;

• For an integer k ≥ 1, Ck(Ω) denotes the space of k-times continuously differentiable real
functions in Ω ⊂ R2;

• C∞(Ω) = ∩
k
Ck(Ω);

• C∞0 (Ω) denotes the space of infinitely differentiable real functions whose support is compact
in Ω ⊂ R2;

• E ′ denotes the topological dual of the Banach space E;

Norms

• For 1 ≤ p < +∞, the standard norm in Lp(R2;ω) is denoted by ‖ · ‖Lp(R2;ω);

Other Notation

• |A| denotes the Lebesgue measure of a set A ⊂ R2;

• suppϕ denotes the support of function ϕ;

• C, C0, C1, C2, C3, . . . denote positive constants possibly different;
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• C(s) denotes constant which depends of s;

• on(1) denotes a sequence which converges to 0 as n→∞;

• ⇀ denotes weak convergence in a normed space;

• → denotes strong convergence in a normed space;

• ↪→ denotes continuous embedding;

• For R > 0 and y ∈ R2, we denote by BR(x) the open ball {x ∈ R2 : |y − x| < R}. If x = 0,
we write only BR;

• Weight functions are functions measurable and positive almost everywhere (a.e.)

x



Introduction

The purpose of this thesis is to address the existence of solutions for some class of semilinear
elliptic problems in the euclidean space R2. Precisely, we consider four class of problems that
we will be describe next.

Firstly, we study semilinear elliptic equations of the form

−∆u+ V (|x|)u = λQ(|x|)f(u), x ∈ R2, (1)

where λ > 0 is a parameter, V,Q : (0,∞) → R are radial weights, and the nonlinearity f has
exponential critical growth, which will be explained below.

After, we will look for solutions to the Schrödinger-Poisson system{
−∆u+ V (|x|)u+ ηφK(|x|)u = λQ(|x|)f(u), x ∈ R2,

∆φ = K(|x|)u2, x ∈ R2,
(2)

where η, λ > 0, the potentialK : (0,∞)→ R is radial function. Moreover, we consider a Hartree-
Fock type system in presence of a Coulomb interacting term, driven by a suitable parameter
β ≥ 0, namely 

−∆u+ (1 + φ)u = |u|2p−2u+ β|v|p|u|p−2u, in R2,

−∆v + (1 + φ)v = |v|2p−2v + β|u|p|v|p−2v, in R2,

∆φ = 2π(u2 + v2), in R2,

(3)

with 2 ≤ p <∞.
Finally, we investigate the existence of solutions for the following Choquard type equation

−∆u+ V (x)u =
1

2π

[
log

1

|x|
∗
(
K(x)F (u)

)]
Q(x)f(u), x ∈ R2, (4)

where V,K,Q are nonradial potentials.
As is well known, in bounded planar domains Ω ⊂ R2, the Sobolev embedding theorem

assures that the embedding

H1
0 (Ω) ↪→ Lq(Ω) for any 1 ≤ q <∞,

is continuous, and it does not holds when q =∞.
In view of this feature, Yudovic [85], Pohozaev [67] and Trudinger [81], states an alternative
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Sobolev inequality. Precisely, they proved that there exists a positive constant α > 0 such that
the embedding

H1
0 (Ω) ↪→ Lφ(Ω),

where Lφ(Ω) is the Orlicz space determined by the Young function φ(s) = eαs
2−1. Later, Moser

in [63] sharpened this result by finding the best constant α in the embedding above. More
precisely, he proved that there exists a constant C > 0 such that

sup
‖∇u‖L2(Ω)≤1

∫
Ω

eαu
2

dx ≤ C|Ω|,

for any 0 < α ≤ 4π. Moreover, the constant 4π is sharp in the sense that if α > 4π, then the
supremum above will become infinity.

In the whole space R2, by using using Schwarz symmetrization, D. Cao in [27] proved the
following version of Trudinger-Moser inequality in the space H1(R2): There exists a constant
C = C(M,α) > 0 such that

sup{
‖∇u‖2

L2(R2)
≤m<1, ‖u‖L2(R2)<M

}
∫
R2

(
eαu

2 − 1
)
dx ≤ C(m,M),

for any 0 < α ≤ 4π. Later B. Ruf proved in [73] that 4π is a critical exponent. See also [1,41,82]
for an equivalent version.

Therefore, to study problems (1), (2), and (4) we need to establish some weighted Trudinger-
Moser type inequalities of the form

sup
‖u‖E≤1

∫
R2

ω(x)Φα,j0(u)dx <∞,

considering radial and nonradial positive weights functions ω ∈ L1
loc(R2) , where E is a Sobolev

space that will be defined later and Φα,j0(s) is a Young function of the form

Φα,j0(s) := eαs
2 −

j0−1∑
j=0

αj

j!
s2j, s ∈ R,

with α > 0, j0 := [γ/2] = inf{j ∈ N : j ≥ γ/2}, γ := max {2, 2(2 + 2b− a)/(a+ 2)}, and
a, b ∈ R.

Next we will describe the content of this thesis which is written in five chapters as follows.
In Chapter 1, we will focus on the problem (1). In this case, we consider the Hilbert space

E :=

{
u ∈ L2

loc(R2) : |∇u| ∈ L2(R2) and
∫
R2

V (|x|)u2dx <∞
}
,

2



endowed with inner product

〈u, v〉E :=

∫
R2

[∇u∇v + V (|x|)uv] dx.

On the other hand, we will assume the following assumptions on the radial functions V and
Q:

(V ) V : (0,∞)→ R is continuous, V > 0 and there are a0, a > −2 such that

lim sup
r→0+

V (r)r−a0 <∞ and lim inf
r→∞

V (r)r−a > 0.

(Q) Q : (0,∞)→ R is continuous, Q > 0 and there are b0, b > −2 such that

0 < D0 := lim inf
r→0+

Q(r)r−b0 ≤ lim sup
r→0+

Q(r)r−b0 <∞, lim sup
r→∞

Q(r)r−b <∞.

Moreover, we assume that f(s) is continuous and has exponential critical growth at infinity,
i.e., there exists α0 > 0 such that

lim
|s|→∞

|f(s)|
eαs2

=

{
0 if α > α0,

∞ if α < α0.
(5)

Also, we consider the following assumptions:

(f1) f(s) = o(|s|γ−1) as s→ 0, where

γ := max {2, 2(2 + 2b− a)/(a+ 2)} =

{
2 if − 2 < b ≤ a,

2(2 + 2b− a)/(a+ 2) if − 2 < a < b;

(f2) there exists θ > γ such that 0 < θF (s) ≤ f(s)s for all s 6= 0, where F (s) :=
∫ s

0
f(t)dt;

(f3) the following limit holds: lim
|s|→∞

f(s)s/F (s) =∞.

Using the condition (Q), there exists r0 > 0 such that Q(r) ≥ D0r
b0/2 for all 0 < r ≤ r0.

For this fixed r0 we will assume the following assumption:

(f4) there exists β0 > 2(b0 + 2)2/D0α0r
b0+2
0 such that lim inf

|s|→∞
f(s)se−α0s2 ≥ β0.

Our existence result for problem (1) can be stated as follows:

Theorem 0.0.1. Assume that (5), (f1) − (f4), (V ) and (Q) hold. Then, for each λ > 0, the
problem (1) possesses a nonzero weak solution uλ ∈ E satisfying,

0 ≤ uλ(x) ≤ c0 exp
(
−c1|x|(a+2)/4

)
, x ∈ R2,

for some constants c0, c1 > 0 depending only on λ.
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In addition if we assume the local hypothesis

(f5) there exists ν > γ such that lim inf
s→0

F (s)|s|−ν > 0,

our multiplicity result is stated as follows

Theorem 0.0.2. Assume that (5), (f1)− (f5), (V ) and (Q) hold. If in addition, f is odd, there
exists a sequence (λk) ⊂ R+ with λk → ∞ such that for all λ > λk, (1) has at least k pairs of
weak solutions in E.

In Chapter 2, we investigate the existence of solutions to the system (2). To this, we will
assume conditions (V ), (Q) and the potential K satisfies

(K) K : (0,∞)→ R is continuous, K > 0 and there are l0 > −3/2, −2 < l < min {a, (a− 1)/2}
such that

lim sup
r→0+

K(r)

rl0
<∞ and lim sup

r→∞

K(r)

rl
<∞.

We suppose that f satisfy (5) and (f1). Furthermore, we also assume the following assump-
tions on f :

(f̃2) there exists θ > max {γ, 4} such that 0 < θF (s) ≤ f(s)s for all s ≥ 0;

(f̃3) there exists r > max {γ, 4} such that lim inf
s→0+

F (s)/sr > 0;

(f̃4) the function s 7→ f(s)/s3 is increasing for s > 0.

In the past few years, many authors have considered the 3-dimensional case assuming different
conditions on the potentials and the nonlinearity f . We could cite [14, 33, 37, 48, 53, 55, 74] and
references therein. A common aspect in most of the works is the variational approach. It
essentially consists in impose some regularity condition on K, use Lax-Milgram Theorem to
solve the second equation and obtain φ as the convolution φ = Γ3 ∗ (Ku2), where Γ3 is the
fundamental solution of the Laplacian in R3, namely Γ3(x) = (−1/4π)|x|−1.

For the planar case, we can use the same idea to conclude that

φu(x) :=
1

2π

∫
R2

log(|x− y|)K(y)u2(y)dy,

where we have used that the fundamental solution in R2 is given by Γ2(x) := (1/2π) log |x|.
Hence, we are leading to consider the nonlocal equation

−∆u+ V (|x|)u+
η

2π
[log | · | ∗ (Ku2)](x)K(|x|)u = Q(|x|)f(u), x ∈ R2. (6)

The main existence result for problem (6) can be stated as follows:

4



Theorem 0.0.3. Assume that (V ), (K), (Q), (1.1), (f1), and (f̃2) − (f̃4) hold. Then, equation
(6) possesses a nonzero weak solution uλ ∈ W with minimal energy (or ground state solution) if

λ ≥ λ̄ := max

 λ0

θC0

,

4α0‖Q‖L1(B1/2)λ
r
r−2

0

α2

((
2

r

) 2
r−2

−
(

2

r

) r
r−2

) r−2
2

 ,

where

λ0 :=
4π + ‖V ‖L1(B1) + log 3‖K‖2

L1(B1)

‖Q‖L1(B1/2)

and α2 := 4π(1 + b0/2).

As a byproduct of Theorem 0.0.3, we prove the existence of solutions to the system (2).

Theorem 0.0.4. Assume the conditions of Theorem 0.0.3 and let uλ be the solution obtained
in Theorem 0.0.3. In addition, suppose that K ∈ Cσ

loc(R2) for some σ ∈ (0, 1). Then, the pair
(uλ, φuλ) is a weak solution of system (2), where φuλ = Γ2 ∗Ku2

λ.

In Chapter 3, we will show the existence of semitrivial and vectorial solutions to system (3)
depending on the parameters involved. Defining the logarithmic potential

φu,v(x) :=

∫
R2

log(|x− y|)
(
u2(y) + v2(y)

)
dy,

we can to consider the following auxiliary system with the nonlocal term φu,v{
−∆u+ (1 + φu,v)u = |u|2p−2u+ β|v|p|u|p−2u, in R2,

−∆v + (1 + φu,v)v = |v|2p−2v + β|u|p|v|p−2v, in R2.
(7)

In this context we now formulate our main result, concerning systems (7) and (3).

Theorem 0.0.5. Assume that 2 ≤ p <∞. Then, for any β ≥ 0 the coupled system (7) possesses
a least energy solution (u, v) ∈ W̃rad × W̃rad, where W̃rad is an appropriated subspace of H1(R2),
with u, v ≥ 0 satisfying the following statements:

(i) for every β > 2p−1 − 1 the pair (u, v) is a vector solution, i.e., u 6= 0, v 6= 0 and in this
case u, v > 0;

(ii) for 0 ≤ β < 2p−1 − 1 the least energy solution is semi-trivial, i.e., u = 0 or v = 0.

Furthermore, the triple (u, v, φu,v) is a weak solution of system (3).

In Chapter 4, we will prove the embeddings results, involving the potential V,K and Q,
such that:

(V KQ) V,K,Q ∈ C(R2) and there exist γ̃ ≤ 2 < β̃ and positive constants a0, b0 such that

a0

(1 + |x|)γ̃
≤ V (x), 0 < K(x), Q(x) ≤ b0

(1 + |x|)β̃
, for all x ∈ R2.

5



Considering the auxiliary weight function w̃ ∈ L1
loc(R2), satisfying

ω̃(x) ≤ C0 ·

{
1 if |x| ≤ 1

log(1 + |x|)Q(x) if |x| > 1,

for some C0 > 0, we have the following result.

Proposition 0.0.6. Assume (V KQ). Then, for any 2 ≤ p <∞, the weighted Sobolev embedding
E ↪→ Lp(R2; ω̃) is continuous and compact.

Thus, it is natural to study embedding from E into Orlicz space. To this end, we will prove
a version of Trudinger-Moser type inequality, case nonradial.

Theorem 0.0.7. For any α > 0 and u ∈ E, the function ω̃(·)Φα,1(u) belongs to L1(R2). More-
over, there exists α∗ ∈ (0, 4π) such that

sup
u∈E, ‖u‖E≤1

∫
R2

ω̃(x)Φα,1(u)dx <∞,

for any 0 < α ≤ α∗.

This chapter ends with the study of system 2, case nonradial, assuming that f satisfies the
following assumptions:

(f1) f(s) = o(|s|) as s→ 0;

(f2) there exists θ > 4 such that 0 < θF (s) ≤ f(s)s for all s 6= 0;

(f3) there exists ζ > 0 such that F (s) ≥ ζ|s|4, for all s ∈ R;

(f4) the function s 7→ f(s)/|s|3 is increasing in |s| > 0.

The main existence result for problem (6) can be stated as follows:

Theorem 0.0.8. Suppose that (V KQ), (5), and (f1)− (f4) hold. Then, there exists α∗ ∈ (0, 4π)

such that problem (6) has a nonzero small energy solution provided

ζ > S2
4(Q) max

{
1

S2(K)
,
α0

2α∗

}
.

As consequence of Theorem 0.0.8, we can give a contribution concerning the existence of
solutions to the system (2), namely

Theorem 0.0.9. Suppose the same hypotheses of Theorem 0.0.8 and let u ∈ W be the solution
obtained in that theorem. Then, the pair (u, φu) is a weak solution of system (2), where φu =

Γ2 ∗ (Ku2).

Finally, Chapter 5 contains our study of the problem (4), using the embeddings results and
Trudinger-Moser type inequality, obtained in the Chapter 4. To this end, we shall consider that
the nonlinearity f : R → R is differentiable, f(s) = 0 for all s ≤ 0 and f(s) > 0 for all s > 0,
(1.1) holds, and satisfies the following conditions:

6



(f1) f(s) = o(|s|) as s→ 0;

(f̃2) there exists δ ∈ (0, 1) such that

δ ≤ F (s)f ′(s)

f 2(s)
, ∀ s > 0;

(f̃3) there exist ξ > 0 and κ > 2 such that F (s) ≥ ξsκ, for all s ∈ (0, 1].

Under this hypotheses, our main result can be stated as follows.

Theorem 0.0.10. Suppose that (V KQ), (5), (f1), and (f̃2) hold. Then there exists ξ∗ > 0 such
that if (f̃3) holds with ξ ≥ ξ∗, (4) has a nontrivial weak solution which is nonnegative.

7



Chapter 1

Nonlinear Schrödinger equations involving
exponential critical growth

This chapter is devoted to present the results of paper [28], where we proved a Trudinger-
Moser type inequality in the radial case and as a consequence we established some results of
existence and multiplicity to the semilinear Schröringer equation.

1.1 Main results

In this chapter, we are concerned with semilinear elliptic equations of the form

−∆u+ V (|x|)u = λQ(|x|)f(u), x ∈ R2, (P)

where λ > 0 is a parameter, V,Q : (0,∞)→ R are radial weights, which can by singular at the
origin, unbounded or decaying at infinity and the nonlinearity f : R→ R is continuous and has
exponential critical growth at infinity, i.e., there exists α0 > 0 such that

lim
|s|→∞

|f(s)|
eαs2

=

{
0 if α > α0,

∞ if α < α0.
(1.1)

The study of the stationary equation (P) is motivated by the study of standing wave solutions
of the nonlinear Schrödinger equation, see e.g., [24,68,72,77] and references therein. Our starting
point here are the works [79, 80], where the authors proved some weighted Sobolev embedding
theorems, and there is a growing recent interest in applications of these results in the study of
partial differential equations, see for example [3, 17,26,59,75].

We will assume the following assumptions on the radial functions V and Q:

(V ) V : (0,∞)→ R is continuous, V > 0 and there are a0, a > −2 such that

lim sup
r→0+

V (r)r−a0 <∞ and lim inf
r→∞

V (r)r−a > 0.

(Q) Q : (0,∞)→ R is continuous, Q > 0 and there are b0, b > −2 such that

8



1. Nonlinear Schrödinger equations involving exponential critical growth

0 < D0 := lim inf
r→0+

Q(r)r−b0 ≤ lim sup
r→0+

Q(r)r−b0 <∞, lim sup
r→∞

Q(r)r−b <∞.

We also comment here that Ambrosetti-Felli-Malchiodi [11] and do Ó-Sani-Zhang [42] studied
equation (P) by assuming that V and Q satisfy the following assumption: there are A1, A2, A3 >

0 such that

A1(1 + |x|α)−1 ≤ V (x) ≤ A2 and 0 < Q(x) ≤ A3(1 + |x|β)−1,

where 0 < α < 2 and β > 0. Thus, when V and Q are radial we are considering a more general
class of potentials than the one in [11,42].

In the papers [79, 80], the authors studied the existence of solutions for the equation (P)
when f(u) = |u|p−2u with 2 < p < 2N/(N − 2) if N ≥ 3 and 2 < p < ∞ if N = 2. Our main
purpose is to obtain solutions when the nonlinearity f has exponential critical growth. Precisely,
besides the critical growth condition (1.1), we also assume the following conditions:

(f1) f(s) = o(|s|γ−1) as s→ 0, where

γ := max {2, 2(2 + 2b− a)/(a+ 2)} =

{
2 if − 2 < b ≤ a,

2(2 + 2b− a)/(a+ 2) if − 2 < a < b;

(f2) there exists θ > γ such that 0 < θF (s) ≤ f(s)s for all s 6= 0, where F (s) :=
∫ s

0
f(t)dt;

(f3) the following limit holds: lim
|s|→∞

f(s)s/F (s) =∞.

In view of hypothesis (Q), there exists r0 > 0 such that Q(r) ≥ D0r
b0/2 for all 0 < r ≤ r0. For

this fixed r0 we will assume the following assumption:

(f4) there exists β0 > 2(b0 + 2)2/D0α0r
b0+2
0 such that lim inf

|s|→∞
f(s)se−α0s2 ≥ β0.

It is worthwhile to mention that similar issues have been addressed in the paper [3], where
the authors proved the existence of positive solutions for equation (P) by assuming similar
hypotheses (V ) and (Q) with a, b in the range −2 < b < (a − 2)/2 and f with exponential
critical growth. To improve this condition, inspired by the paper [69], we used a change of
variables to obtain a sharp weighted Trudinger-Moser type inequality. We also mention that our
hypotheses on f include the ones in [3].

In order to present our main results, we need some notations. As usual, we denote by C∞0 (R2)

the space of infinitely differentiable functions with compact support. Moreover, given a positive
function ω ∈ L1

loc(R2) and 1 ≤ p <∞, we define the weighted Lebesgue space

Lp(R2;ω) :=

{
u : R2 → R measurable : ‖u‖Lp(R2;ω) :=

(∫
R2

ω(x)|u|pdx
)1/p

<∞

}
.

As in the paper [42], we consider the space

E :=

{
u ∈ L2

loc(R2) : |∇u| ∈ L2(R2) and
∫
R2

V (|x|)u2dx <∞
}
,

9



1. Nonlinear Schrödinger equations involving exponential critical growth

which is a Hilbert space (see [6]) when endowed with inner product

〈u, v〉E :=

∫
R2

[∇u∇v + V (|x|)uv] dx,

and its correspondent norm ‖u‖E := 〈u, u〉1/2E .
Using standard arguments one can prove that C∞0 (R2) is dense in E. Furthermore, the

subspace
Erad :=

{
u ∈ E : u is radial

}
is closed in E and thus it is a Hilbert space itself. In this context, by a weak solution of (P) we
understand a function u ∈ E such that∫

R2

[∇u∇ϕ+ V (|x|)uϕ] dx = λ

∫
R2

Q(|x|)f(u)ϕdx, for all ϕ ∈ C∞0 (R2).

Remark 1.1.1. We observe that condition a, b > −2 seems to be necessary to the existence of
weak solutions to equation (P). To illustrate, let u ∈ E be a solution of the model equation

−∆u+ |x|au = |x|bf(u), x ∈ R2, (1.2)

and for µ > 0, consider uµ(x) = u(µx) the continuous path in E converging to u, as µ → 1.
Since u is a critical point of the energy functional

J(u) =
1

2

∫
R2

|∇u|2dx+
1

2

∫
R2

|x|au2dx−
∫
R2

|x|bF (u)dx,

it should satisfies dJ
dµ

(uµ)
∣∣∣
µ=1

= 0, and taking into account that ‖∇uµ‖L2(R2) is constant, by

performing a change of variables we get

(a+ 2)

2

∫
R2

|x|au2dx = (b+ 2)

∫
R2

|x|bF (u)dx. (1.3)

Therefore, equation (1.2) has no nonzero weak solution if (a, b) belongs to the region R =(
(−∞,−2] × (−2,∞)

)
∪
(

(−2,∞) × (−∞,−2]
)
. Furthermore, if u is a nonzero weak solu-

tion of equation (1.2) we see that∫
R2

|∇u|2dx+

∫
R2

|x|au2dx =

∫
R2

|x|bf(u)udx,

which combined with (1.3), yields∫
R2

|∇u|2dx =

∫
R2

|x|b
(
f(u)u− 2(b+ 2)

(a+ 2)
F (u)

)
dx.

Consequently, equation (1.2) has no nonzero weak solution if f(u)u ≤ 2(b+ 2)/(a+ 2)F (u), and
hence θ > γ ≥ γ0 := 2(b + 2)/(a + 2) in the hypothesis (f2) is a necessary condition for the

10



1. Nonlinear Schrödinger equations involving exponential critical growth

existence when a = b.

In this setting our first result can be stated as follows.

Theorem 1.1.2. Assume that (1.1), (f1)− (f4), (V ) and (Q) hold. Then, for each λ > 0, the
problem (P) possesses a nonzero weak solution uλ ∈ Erad satisfying,

0 ≤ uλ(x) ≤ c0 exp
(
−c1|x|(a+2)/4

)
, x ∈ R2, (1.4)

for some constants c0, c1 > 0 depending only on λ.

We quote that conditions (f3) and (f4) have already been considered in others works, see
for instance [46, 64]. The crucial ingredient to prove Theorem 1.1.2 and Theorem 1.1.3 is a
weighted Trudinger-Moser type inequality. This inequality, combined with a suitable estimate
of the minimax level, yields compactness of the Palais-Smale sequence.

Our second main result concerns the multiplicity of solutions to equation (P) for large λ > 0.
To this purpose, we shall assume in addition the following local hypothesis:

(f5) there exists ν > γ such that lim inf
s→0

F (s)|s|−ν > 0.

Our multiplicity result is stated as follows.

Theorem 1.1.3. Assume that (1.1), (f1) − (f5), (V ) and (Q) hold. If in addition, f is odd,
there exists a sequence (λk) ⊂ R+ with λk →∞ such that for all λ > λk, (P) has at least k pairs
of weak solutions in Erad.

For instance, one can check that Theorem 1.1.2 and Theorem1.1.3 apply for the model
equation

−∆u+ |x|au = λ|x|b
(
|u|ν−2u+ |u|q−2u(eu

2 − 1)
)
, x ∈ R2,

with a, b > −2, λ > 0, ν > γ and q ≥ γ, where γ is defined in (f1). Thus, this class of equations
includes the Henon and singular equations ones, which correspond to a, b > 0 and a, b < 0,
respectively.

The remainder of the chapter is organized as follows. In Section 1.2, we introduce our
variational setting and prove a weighted Trudinger-Moser type inequality. Finally, in Section 1.3,
we present the proofs of Theorem 1.1.2 and Theorem 1.1.3.

1.2 A sharp Trudinger-Moser type inequality

In this section we introduce the variational framework and prove a weighted Trudinger-Moser
type inequality, which is a key ingredient in the proof of Theorem 1.1.2 and Theorem 1.1.3. For
the proof, we borrow some ideas of [27,69,73]. We start off by collecting some well-known results
that we shall use throughout.

Lemma 1.2.1. [79, Lemma 4] Assume (V ). If u ∈ E and R > 0, then u ∈ H1(BR) and
‖u‖H1(BR) ≤ CR‖u‖E with CR > 0.

11



1. Nonlinear Schrödinger equations involving exponential critical growth

Lemma 1.2.2. [79, Theorem 2] Assume that (V ) and (Q) hold. Then the embedding Erad ↪→
Lp(R2;Q) is continuous for all γ ≤ p < ∞. Furthermore, if −2 < b < a the embedding is
compact for γ ≤ p <∞ and if −2 < a ≤ b the embedding is compact for all γ < p <∞.

For easy reference, it follows from assumptions (V ) and (Q) that for every 0 < R0 < R1 there
are positive constants C0, C1, C3, C4 such that{

V (|x|) ≤ C0|x|a0 , C1|x|b0 ≤ Q(|x|) ≤ C2|x|b0 if 0 < |x| < R0

C3|x|a ≤ V (|x|), Q(|x|) ≤ C4|x|b if |x| > R1.
(1.5)

In view of Lemma 1.2.2, it is natural to look for a weighted Trudinger-Moser inequality on
the space Erad determined by the Young function

Φα,j0(s) := eαs
2 −

j0−1∑
j=0

αj

j!
s2j, s ∈ R, (1.6)

where α > 0 and j0 := [γ/2] = inf{j ∈ N : j ≥ γ/2}. For this purpose, the next lemma plays
an important role in the proof of the optimal exponent of our weighted Trudinger-Moser type
inequality.

Lemma 1.2.3. Assume (V ) and consider the so-called Moser’s sequence (see e.g., [63]) given
by

Mn(x, r) =
1

(2π)1/2


(log n)1/2 if |x| ≤ r/n,

log(r/|x|)
(log n)1/2

if r/n ≤ |x| ≤ r,

0 if |x| ≥ r.

Then ‖Mn‖2
E ≤ 1 + on(1), where on(1) denotes a quantity which goes to zero as n→∞.

Proof. First, one can easily check that ‖∇Mn‖L2(R2) = 1. On the other hand, we can write∫
R2

V (|x|)M2
ndx =

∫
Br/n

V (|x|)M2
ndx+

∫
Br\Br/n

V (|x|)M2
ndx.

By (1.5), with R0 = r we get∫
Br/n

V (|x|)M2
ndx ≤ C0 log n

∫ r/n

0

sa0+1ds =
C0 log n

(a0 + 2)

( r
n

)a0+2

= on(1).

Considering the change of variables t = log(r/s) we get∫
Br\Br/n

V (|x|)M2
ndx ≤

C0

log n

∫ r

r/n

log2(r/s)sa0+1ds =
C0r

a0+2

log n

∫ logn

0

t2e−(a0+2)tdt,

12



1. Nonlinear Schrödinger equations involving exponential critical growth

and integrating by parts twice, we obtain∫ logn

0

t2e−(a0+2)tdt =

(
− log2 n

(a0 + 2)na0+2
− 2 log n

(a0 + 2)2na0+2
− 2

(a0 + 2)3na0+2
+

2

(a0 + 2)3

)
,

which implies the desired result.

Now we prove a weighted Trudinger-Moser type inequality in balls.

Lemma 1.2.4. Let R > 0 be fixed and assume that (V ) and (Q) hold. Then for all α > 0 and
u ∈ Erad, it holds that Q(|x|)eαu2 ∈ L1(BR). Moreover,

L(α, V,Q,R) := sup
‖u‖E≤1

∫
BR

Q(|x|)eαu2

dx <∞,

if and only if 0 < α ≤ α2 := 4π(1 + b0/2).

Proof. Let α > 0 and R0 > 0 to be chosen later. We shall split the proof into two cases.
Case 1: Assume b0 ≤ a0. For each u ∈ Erad and a0 > −2, inspired by the paper [69] we consider
the function

w(r) :=

(
a0 + 2

2

)1/2

u(H(r)), for all r ≥ 0,

where H(r) =
(
a0+2

2

)2/(a0+2)
r2/(a0+2). Carrying out a straightforward computation one has∫

BR0

|∇w|2dx =

∫
BH(R0)

|∇u|2dx and
∫
BR0

w2dx =

∫
BH(R0)

|x|a0u2dx. (1.7)

Moreover, there exists C1 = C1(a0, b0) > 0 such that∫
BR0

|x|δe( 2α
a0+2

)w2

dx = C1

∫
BH(R0)

|x|b0eαu2

dx, (1.8)

where δ = −2(a0 − b0)/(a0 + 2) ∈ (−2, 0] since b0 ≤ a0. By (1.5), there exists C2 > 0 such that
C2|x|a0 ≤ V (|x|) for all 0 < |x| ≤ R0. Thus, by (1.7) we get∫

BR0

|∇w|2dx+ C2

∫
BR0

w2dx ≤
∫
BH(R0)

|∇u|2dx+

∫
BH(R0)

V (|x|)u2dx,

and consequently w ∈ H1(BR0). Now following a scheme similar to the one in [73] we define
w ∈ H1

0 (BR0) by

w(x) :=

{
w(|x|)− w(R0) if 0 ≤ |x| ≤ R0,

0 if |x| ≥ R0,

and using Young’s inequality we see that

w2(x) ≤ w2(x) + w2(x)w2(R0) + 1 + w2(R0) = v2(x) + c2,

13



1. Nonlinear Schrödinger equations involving exponential critical growth

with
v(x) := w(x)

(
1 + w2(R0)

)1/2 ∈ H1
0 (BR0) and c :=

(
1 + w2(R0)

)1/2
.

According to (1.8) and [2, Theorem 2.1] we have

C1

∫
BH(R0)

|x|b0eαu2

dx =

∫
BR0

|x|δe( 2α
a0+2

)w2

dx ≤ ec
2

∫
BR0

|x|δe( 2α
a0+2

)v2

dx <∞. (1.9)

By (1.5) with R1 = H(R0), Q(|x|) ≤ C3|x|b0 if 0 < |x| ≤ H(R0). Consequently, Q(|x|)eαu2 ∈
L1(BR) for R0 sufficiently large such that H(R0) > R. On the other hand, observe that, by (1.7)
if ‖u‖ ≤ 1 we have∫

BR0

|∇w|2dx+

∫
R2

V (|x|)u2dx =

∫
BH(R0)

|∇u|2dx+

∫
R2

V (|x|)u2dx ≤ ‖u‖2
E ≤ 1,

that is, ∫
BR0

|∇w|2dx =

∫
BR0

|∇w|2dx ≤ 1−
∫
R2

V (|x|)u2dx.

Therefore, this inequality and the definition of v gives us the estimate∫
BR0

|∇v|2dx ≤
(
1 + w2(R0)

)(
1−

∫
R2

V (|x|)u2dx

)
≤ 1−

∫
R2

V (|x|)u2dx+ w2(R0).

Thus, by the definition of w we get∫
BR0

|∇v|2dx ≤ 1−
∫
R2

V (|x|)u2dx+

(
a0 + 2

2

)
u2(H(R0)).

Then, using the following version of the so-called Radial Lemma (see e.g., [3, Lemma 2.1]) due
to Strauss [77]

|u(x)| ≤ C0‖u‖|x|−(a+2)/4, if |x| � 1, (1.10)

we have that ‖∇v‖L2(BR0
) ≤ 1 for R0 sufficiently large. Now, we observe that α ≤ 4π(1 + b0/2)

if and only if (2/(a0 + 2))α ≤ 4π(1 + δ/2) and hence by [2, Theorem 2.1] we have

sup
‖v‖

H1
0(BR0

)
≤1

∫
BR0

|x|δe( 2α
a0+2

)v2

dx <∞.

Once again using that Q(|x|) ≤ C2|x|b0 for all 0 < |x| ≤ H(R0), from the last estimate and (1.9)
we infer that

L(α, V,Q,R) ≤ L(α, V,Q,H(R0)) = sup
‖u‖E≤1

∫
BH(R0)

Q(|x|)eαu2

dx <∞,

for R0 sufficiently large such that H(R0) > R.
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1. Nonlinear Schrödinger equations involving exponential critical growth

Case 2: Assume a0 < b0. In this case, we consider the function

w(r) :=

(
b0 + 2

2

)1/2

u(H(r)), for all r ≥ 0,

where H(r) =
(
b0+2

2

)2/(b0+2)
r2/(b0+2). Once again, a straightforward computation shows that∫

BR0

|∇w|2dx =

∫
BH(R0)

|∇u|2dx and
∫
BR0

w2dx =

∫
BH(R0)

|x|b0u2dx.

Moreover, there exists C3 = C3(a0, b0) > 0 such that∫
BR0

e
( 2α
b0+2

)w2

dx = C1

∫
BH(R0)

|x|b0eαu2

dx.

Then, using that a0 < b0 and (V ) we find C4 > 0 such that∫
BR0

|∇w|2dx+ C4

∫
BR0

w2dx ≤
∫
BH(R0)

|∇u|2dx+

∫
BH(R0)

V (|x|)u2dx.

Now, repeating the same argument as in the proof of Case 1 and applying the classical Trudinger-
Moser inequality we conclude that L(α, V,Q,R) < ∞ if 2α/(b0 + 2) ≤ 4π, that is, α ≤ 4π(1 +

b0/2). Next, we will prove that L(α, V,Q,R) = ∞ whenever α > α2. In fact, setting M̃n =

Mn/‖Mn‖E we see that M̃n ∈ Erad and ‖M̃n‖E = 1. By Lemma 1.2.3 if |x| ≤ r/n we have

M̃2
n(x, r) =

M2
n

‖Mn‖2
E

=
log n

2π‖Mn‖2
E

≥ log n

2π(1 + on(1))
. (1.11)

Once again, by assumption (Q), there exists C5 > 0 such that Q(|x|) ≥ C5|x|b0 for all 0 < |x| ≤ r.
Thus, for large n ∫

BR

Q(|x|)eαM̃2
ndx ≥ C6r

b0+2nα(2π)−1(1+on(1))−1−(b0+2),

which goes to infinity, since α(2π)−1−(b0+2) > 0 implies that α(2π)−1(1+on(1))−1−(b0+2) > 0

for large n and this completes the proof.

We are now ready to prove our sharp weighted Trudinger-Moser type inequality in the whole
space R2.

Theorem 1.2.5. Let j0 = [γ/2] and assume that (V ) and (Q) hold. Then, for all α > 0 and
u ∈ Erad, it holds that Q(|x|)Φα,j0(u) ∈ L1(R2). Moreover,

L(α, V,Q,∞) := sup
‖u‖E≤1

∫
R2

Q(|x|)Φα,j0(u)dx <∞,

if and only if 0 < α ≤ α2 := 4π(1 + b0/2).
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Proof. For R > 0 and u ∈ Erad we split the integral as∫
R2

Q(|x|)Φα,j0(u)dx =

∫
BR

Q(|x|)Φα,j0(u)dx+

∫
BcR

Q(|x|)Φα,j0(u)dx. (1.12)

Since Q(|x|)Φα,j0(u) ≤ Q(|x|)eαu2
, by Lemma 1.2.4 it is enough to estimate the second integral

on the right-hand side of (1.12). For that, by (1.5) there exists C1 > 0 such that Q(|x|) ≤ C1|x|b

for all |x| ≥ R and according to (1.10) we have u2j(x) ≤ (C‖u‖E)2j|x|−j(a+2)/2 for |x| ≥ R. If
2j0 ≥ γ we can choose j1 ∈ N, j1 ≥ 1 such that (b + 2) − j(a+2)

2
< −1, for j ≥ j1 > j0.

Consequently, we can estimate

∫
BcR

Q(|x|)Φα,j0(u)dx ≤
j1−1∑
j=j0

αj

j!

∫
BcR

Q(|x|)u2jdx+ C2R
−1eαC

2‖u‖2E . (1.13)

Since 2j0 ≥ γ, by the continuous embedding Erad ↪→ Lp(R2;Q) with γ ≤ p <∞, we get

∫
BcR

Q(|x|)Φα,j0(u)dx ≤ C3

j1−1∑
j=j0

‖u‖2j
E + C2R

−1eαC‖u‖
2
E <∞,

and taking the supremum over u ∈ Erad with ‖u‖E ≤ 1 we conclude the proof.

We quote here that Theorem 1.2.5 improves the Trudinger-Moser inequality proved in [3] in
the case that γ = 2, i.e., −2 < b ≤ a where the authors obtain a similar result for 0 < α < α2 :=

min
{

4π, 4π(1 + b0/2)
}
.

As a consequence of Theorem 1.2.5 we have the following version of a convergence result due
to Lions [54].

Corollary 1.2.6. Let j0 = [γ/2] and assume that (V ) and (Q) hold. Let (vn) ⊂ Erad with
‖vn‖E = 1 and suppose that vn ⇀ v in Erad with ‖v‖E < 1. Then, for each 0 < β < α2(1 −
‖v‖2

E)−1, up to a subsequence, it holds that

sup
n∈N

∫
R2

Q(|x|)Φβ,j0(vn)dx <∞.

Proof. Since vn ⇀ v in Erad and ‖vn‖E = 1 we see that

‖vn − v‖2
E = 1− 2 〈vn, v〉E + ‖v‖2

E → 1− ‖v‖2
E <

α2

β
, as n→∞.

Thus, for large n ∈ N we have β‖vn − v‖2
E < β′ < α2 for some β′ > 0. Moreover, observing that

βv2
n ≤ β(1 + ε2)(vn − v)2 + β

(
1 + 1

ε2

)
v2 and applying Young’s inequality with 1/r1 + 1/r2 = 1

and r1 > 1 such that r1β(1 + ε2)‖vn − v‖2
E ≤ α2 one has

eβv
2
ndx ≤ 1

r1

e
r1β(1+ε2)‖vn−v‖2E

(
vn−v
‖vn−v‖E

)2

+
1

r2

er2β(1+ 1
ε2

)v2

.

16



1. Nonlinear Schrödinger equations involving exponential critical growth

For every R > 0, multiplying the above inequality by Q(x) and invoking Lemma 1.2.4 we obtain

sup
n∈N

∫
BR

Q(|x|)Φβ,j0(vn)dx ≤ sup
n∈N

∫
BR

Q(|x|)eβv2
ndx <∞.

On the other hand, as 2j0 ≥ γ, we can use inequality (1.13) with vn to conclude that

sup
n∈N

∫
BcR

Q(|x|)Φβ,j0(vn)dx <∞,

and hence the proof is complete.

The proof Theorem 1.1.2 will be reached by using variational approach. For this purpose,
we start off by considering α > α0, as in the hypothesis (1.1) and q ≥ 1. Thus, from (f1), for
any given ε > 0, there exist constants C1, C2 > 0 such that

|f(s)| ≤ ε|s|γ−1 + C1|s|q−1Φα,j0(s), for all s ∈ R, (1.14)

and
|F (s)| ≤ ε

2
|s|γ + C2|s|qΦα,j0(s), for all s ∈ R. (1.15)

Consider the energy functional associated with equation (P) given by

Jλ(u) =
1

2
‖u‖2

E − λ
∫
R2

Q(|x|)F (u)dx, for all u ∈ Erad.

By using that, for all r ≥ 1 the elementary inequality (see e.g., [83, Lemma 2.1])

(Φα,j0(s))r ≤ Φrα,j0(s), for all s ∈ R, (1.16)

holds, it follows from (1.15), Lemma 1.2.2 and Theorem 1.2.5 that Jλ is well defined and standard
arguments show that Jλ ∈ C1(Erad,R) with derivative given by:

J ′λ(u)v =

∫
R2

(∇u∇v + V (|x|)uv) dx− λ
∫
R2

Q(|x|)f(u)vdx, for all v ∈ Erad.

Remark 1.2.7. Since the value of λ > 0 is not relevant in the proof of Theorem 1.1.2, we
restrict our analysis to λ = 1 and to simplify notation we denote J1 by J .

Inspired by [16, Lemma 5.1 ], we have the following version of Palais’ Principle of Symmetric
Criticality due to Palais [65].

Proposition 1.2.8. Every critical point of J in Erad is a weak solution of (P).

Proof. Let u ∈ Erad and consider the linear functional Tu : E → R defined by

Tu(w) :=

∫
R2

∇u∇wdx+

∫
R2

V (|x|)uwdx−
∫
R2

Q(|x|)f(u)wdx.
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1. Nonlinear Schrödinger equations involving exponential critical growth

First, we are going to check that Tu is well defined and continuous on E, which is enough to
estimate the last term. For each w ∈ E, by (1.14) with q = γ + 1 and ε = 1 we get a constant
C1 > 0 such that∫

R2

Q(|x|)|f(u)w|dx ≤
∫
R2

Q(|x|)|u|γ−1|w|dx+ C1

∫
R2

Q(|x|)|u|γΦα,j0(u)|w|dx. (1.17)

Let us to analyze the last two integrals above. For any R > 0, we can write∫
R2

Q(|x|)|u|γ−1|w|dx =

∫
BR

Q(|x|)|u|γ−1|w|dx+

∫
BcR

Q(|x|)|u|γ−1|w|dx.

Now using Hölder’s inequality and Lemma 1.2.2 we get C2 > 0 such that∫
BR

Q(|x|)|u|γ−1|w|dx ≤ C2‖u‖γ−1
E

(∫
BR

Q(|x|)|w|γdx
)1/γ

. (1.18)

Choosing p1 > 1 such that p1b0 > −2, we see that |x|p1b0 ∈ L1(BR), and hence we can use (Q)

together with Hölder’s inequality with 1/p1 + 1/p2 = 1 to get

∫
BR

Q(|x|)|w|γdx ≤ C3

(∫
BR

|x|p1b0dx

)1/p1
(∫

BR

|w|p2γdx

)1/p2

≤ C4

(∫
BR

|w|p2γdx

)1/p2

.

From this and the continuous embedding E ↪→ Lp2γ(BR) (see Lemma 2.2.2), we deduce that∫
BR

Q(|x|)|w|γdx ≤ C5‖w‖E, (1.19)

which combined with (1.18) implies that∫
BR

Q(|x|)|u|γ−1|w|dx ≤ C6‖w‖E. (1.20)

On the other hand, by (1.5), inequality (1.10) and the fact that b − (γ − 2)(a + 2)/4 ≤ a, for
|x| > R one has

Q(|x|)|u|γ−1 ≤ C7‖u‖γ−2
E |x|

b−(γ−2)(a+2)/4|u| ≤ C8|x|a|u| ≤ C9V (|x|)|u|.

Consequently, we get ∫
BcR

Q(|x|)|u|γ−1|w|dx ≤ C9‖u‖E‖w‖E = C10‖w‖E.

This, combined with (1.20), implies∫
R2

Q(|x|)|u|γ−1|w|dx ≤ C11‖w‖E. (1.21)
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1. Nonlinear Schrödinger equations involving exponential critical growth

Next, we estimate the second integral on the hight-hand side of (1.17). For R > 0 we also split∫
R2

Q(|x|)|u|γΦα,j0(u)|w|dx = T1(w) + T2(w),

where

T1(w) :=

∫
BR

Q(|x|)|u|γΦα,j0(u)|w|dx and T2(w) :=

∫
BcR

Q(|x|)|u|γΦα,j0(u)|w|dx.

Invoking Hölder’s inequality, (1.16), Lemma 1.2.2, Lemma 1.2.4, and (1.19), we see that

|T1(w)| ≤
(∫

BR

Q(|x|)|u|q1γdx
)1/q1 (∫

BR

Q(|x|)Φq2α,j0(u)dx

)1/q2 (∫
BR

Q(|x|)|w|q3dx
)1/q3

≤ C12‖w‖E,

for q1, q2, q3 > 1 satisfying 1/q1 + 1/q2 + 1/q3 = 1 and q3 = γ. On the other hand, using that
b− γ(a+ 2)/2 ≤ a, from Hölder’s inequality, (V ), (Q), (1.10), (1.16) and Theorem 1.2.5 we get

|T2(w)| ≤ C13

(∫
BcR

|x|b|u|2γw2dx

)1/2(∫
BcR

Q(|x|)Φ2α,j0(u)dx

)1/2

≤ C14‖u‖γE

(∫
BcR

|x|b−γ(a+2)/2w2dx

)1/2

≤ C15

(∫
BcR

|x|aw2dx

)1/2

≤ C16‖w‖E.

Therefore, ∫
R2

Q(|x|)|u|γΦα,j0(u)|w|dx ≤ C17‖w‖E.

This, together with (1.17) and (1.21), implies that Tu is continuous. Now, suppose that u ∈ Erad

is a critical point of J , i.e., Tu(w) = 0 for all w ∈ Erad. By the Riesz Representation Theorem
in the space E, there exists a unique u ∈ E such that Tu(u) = ‖u‖2

E = ‖Tu‖2
E′ , where E ′ denotes

the dual space of E. Let O(2) denotes the group of orthogonal transformations in R2. Since
V,Q and u are radial, by using change of variables, one has for each w ∈ E

Tu(gw) = Tu(w) and ‖gw‖E = ‖w‖E, for all g ∈ O(2).

Applying this with w = u, by uniqueness, gu = u, for all g ∈ O(2), which means that u ∈ Erad

and consequently Tu(u) = 0, that is, ‖Tu‖E′ = 0 which implies that Tu(w) = 0, for all w ∈ E
and this concludes the proof.

1.3 Proofs of Theorem 1.1.2 and Theorem 1.1.3

In view of Proposition 1.2.8 we are going to get solutions of (P) looking for critical points of
J . We first prove that J satisfies the Mountain Pass geometry.
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1. Nonlinear Schrödinger equations involving exponential critical growth

Lemma 1.3.1. Assume that (1.1), (f1)− (f2), (V ) and (Q) hold. Then

(i) there exist τ, ρ > 0 such that J(u) ≥ τ if ‖u‖E = ρ;

(ii) there exists e ∈ Erad, with ‖e‖E > ρ, such that J(e) < 0.

Proof. For every q > γ ≥ 2, by Hölder’s inequality with exponents 1/r1 + 1/r2 = 1 together
with (1.16) we get

∫
R2

Q(|x|)|s|qΦα,j0(u)dx ≤ ‖u‖qLqr1 (R2;Q)

(∫
R2

Q(|x|)Φr2α‖u‖E ,j0

(
u

‖u‖E

)
dx

)1/r2

.

Choosing ‖u‖E = ρ < (α2/r2α)1/2, we can apply Theorem 1.2.5 and use inequality (1.15) to get
C3 > 0 such that ∫

R2

Q(|x|)F (u)dx ≤ ε

2
‖u‖γLγ(R2;Q) + C3‖u‖qLqr1 (R2;Q),

for every ε > 0. Hence according to Lemma 1.2.2, there exist constants C4, C5 > 0 such that

J(u) ≥ 1

2
‖u‖2

E −
C4ε

2
‖u‖γE − C5‖u‖qE,

which gives us (i), if γ > 2. In case that γ = 2, we obtain the result by choosing ε > 0 sufficiently
small.

To prove (ii), we consider a function ϕ ∈ C∞0,rad(R2) \ {0} and denote its support by suppϕ.
From (f2) there exist θ > γ ≥ 2 and constants C6, C7 > 0 such that F (s) ≥ C6|s|θ − C7, for all
s ∈ R. Thus, for all t > 0, it holds that

J(tϕ) ≤ t2

2
‖ϕ‖2

E − C6t
θ

∫
suppϕ

Q(|x|)|ϕ|θdx+ C7

∫
suppϕ

Q(|x|)dx.

Since θ > 2, we obtain (ii) by taking e = tϕ with t > 0 sufficiently large and this concludes the
proof.

In view of Lemma 1.3.1 the minimax level

c = inf
g∈Γ

max
t∈[0,1]

J(g(t)),

with Γ = {g ∈ C([0, 1], Erad) : g(0) = 0 and J(g(1)) < 0} is positive. According to the Moun-
tain Pass Theorem without the Palais-Smale condition (see e.g., [23]) we obtain a Palais-Smale
sequence ((PS)c for short) (un) ⊂ Erad at the level c, that is,

J(un)→ c and ‖J ′(un)‖E∗ → 0.

Whenever (un) ⊂ Erad is a (PS)c sequence, we will show next that, up to a subsequence,
un ⇀ u in Erad. In order to prove that u is a weak solution of (P) we will need the following
compactnesses result:
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1. Nonlinear Schrödinger equations involving exponential critical growth

Lemma 1.3.2. Assume (1.1), (f1)− (f3), (V ) and (Q). If (un) ⊂ Erad is a (PS)c sequence to
J then (un) is bounded in Erad and, up to a subsequence, it holds that:

(i) Q(|x|)f(un)→ Q(|x|)f(u) in L1
loc(R2);

(ii) Q(|x|)F (un)→ Q(|x|)F (u) in L1(R2).

Proof. By hypothesis, we have

1

2
‖un‖2

E −
∫
R2

Q(|x|)F (un)dx = c+ on(1)

and
‖un‖2

E −
∫
R2

Q(|x|)f(un)undx = on(‖un‖E).

Thus, for every θ > γ ≥ 2 we get constants C1, C2 > 0 such that

1 + C1 + C2‖un‖E ≥
(

1

2
− 1

θ

)
‖un‖2

E +

∫
R2

Q(|x|)
(

1

θ
f(un)un − F (un)

)
dx, (1.22)

which yields that (un) is bounded by (f2). As a consequence we have the estimate∫
R2

Q(|x|)f(un)undx ≤ C3, for all n ∈ N.

Then, up to a subsequence, un ⇀ u in Erad and Q(|x|)un → Q(|x|)u in L1
loc(R2) by Lemma 2.2.2.

From (1.14), Lemma 2.2.2 and Theorem 1.2.5 we see that Q(|x|)f(u) ∈ L1
loc(R2). Therefore,

thanks to [44, Lemma 2.1] we conclude that (i) holds.
In order to prove (ii), for every R > 0 we write∫

R2

Q(|x|)(F (un)− F (u))dx = In(BR) + In(Bc
R),

where for Ω = BR or Ω = Bc
R,

In(Ω) :=

∫
Ω

Q(|x|)(F (un)− F (u))dx.

First we check that, for all R > 0 fixed we have

lim
n→∞

In(BR) = 0. (1.23)

In fact, for any ε > 0, according to Egoroff’s Theorem there exists a measurable set Ω ⊂ BR

with |Ω| < ε such that un(x)→ u(x) uniformly in BR \ Ω, and consequently

|In(BR)| ≤
∫

Ω

Q(|x|)F (u)dx+

∫
Ω

Q(|x|)F (un)dx+ on(1). (1.24)
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1. Nonlinear Schrödinger equations involving exponential critical growth

From (1.15), for q ≥ γ we see that∫
Ω

Q(|x|)F (u)dx ≤ ε

2

∫
Ω

Q(|x|)|u|γdx+ C2

∫
Ω

Q(|x|)|u|qΦα,j0(u)dx.

On the other hand, by Lemma 1.2.2, (1.16) and Theorem 1.2.5 we have

∫
Ω

Q(|x|)|u|qΦα,j0(u)dx ≤
(∫

Ω

Q(|x|)dx
)1/q3

‖u‖qLqq1 (R2;Q)

(∫
Ω

Q(|x|)Φq2α,j0(u)dx

)1/q2

≤ C3

(∫
Ω

Q(|x|)dx
)1/q3

,

whenever q1, q2, q3 > 1 satisfy 1/q1 + 1/q2 + 1/q3 = 1. From hypothesis (Q), there exists C4 > 0

such that Q(|x|) ≤ C4|x|b0 , for all 0 < |x| ≤ R. Since b0 > −2 we can choose r1 > 1 with
1/r1 + 1/r2 = 1 such that r1b0 > −2 and hence

∫
Ω

Q(|x|)dx ≤ C5

(∫
Ω

|x|r1b0dx
)1/r1

|Ω|1/r2 ≤ C6ε
1/r2 .

Thus, we conclude that ∫
Ω

Q(|x|)F (u)dx ≤ C7ε
1/r2q3 . (1.25)

Next, we estimate the second integral on the right-hand side of (2.27). To do this, from (1.22),
it follows that ∫

R2

Q(|x|)
(

1

θ
f(un)un − F (un)

)
dx ≤ C8. (1.26)

For any ε > 0, we can choose θ0 > θ such that

0 <
θC8

(θ0 − θ)
< ε. (1.27)

By hypothesis (f3) there exists s0 > 0 such that θ0F (s) ≤ f(s)s for any |s| ≥ s0. Furthermore,
by (1.26) we infer that ∫

{|un|≥s0}
Q(|x|) (f(un)un − θF (un)) dx ≤ θC8,

and consequently by (f2) we get

(θ0 − θ)
∫
{|un|≥s0}

Q(|x|)F (un)dx =

∫
{|un|≥s0}

Q(|x|) (θ0F (un)− f(un)un + f(un)un − θF (un)) dx

≤ θC8,

which combined with (1.27) implies that∫
{|un|≥s0}

Q(|x|)F (un)dx < ε. (1.28)
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1. Nonlinear Schrödinger equations involving exponential critical growth

On the other hand, since Q(|x|)f(un) → Q(|x|)f(u) in L1(BR) there exists g ∈ L1(BR) such
that Q(|x|)|f(un)| ≤ g a.e in BR. From assumption (f2), we have

Q(|x|)F (un) ≤ 1

θ
Q(|x|)f(un)(un) ≤ 1

θ
gs0 a.e. in Ω ∩ {|un| < s0} .

Then, by applying the Lebesgue Dominated Convergence Theorem and using (1.25) we obtain

lim
n→∞

∫
Ω∩{|un|<s0}

Q(|x|)F (un)dx =

∫
Ω∩{|u|<s0}

Q(|x|)F (u)dx < C7ε
1/r2q3 .

Since ∫
Ω

Q(|x|)F (un)dx =

∫
Ω∩{|un|≥s0}

Q(|x|)F (un)dx+

∫
Ω∩{|un|<s0}

Q(|x|)F (un)dx,

from (1.28) we find

lim sup
n→∞

∫
Ω

Q(|x|)F (un)dx ≤ ε+ C7ε
1/r2q3 .

Since ε > 0 is arbitrary, the last estimate above together with (2.27), and (1.25) imply that
(2.26) holds true.

Next, we will prove that for R > 0 sufficiently large limn→∞ In(Bc
R) = 0. For this, using that

Q(|x|)F (u) ∈ L1(R2) for any ε > 0 we can choose R > 0 sufficiently large such that

|In(Bc
R)| ≤

∫
BcR

Q(|x|)F (u)dx+

∫
BcR

Q(|x|)F (un)dx < ε+

∫
BcR

Q(|x|)F (un)dx. (1.29)

To estimate the last integral above, since (un) is bounded, using Hölder’s inequality with 1/r1 +

1/r2 = 1 we get

∫
BcR

Q(|x|)|un|qΦα,j0(un)dx ≤

(∫
BcR

Q(|x|)|un|r1qdx

)1/r1

×

(∫
BcR

Q(|x|)Φr2α,j0(un)dx

)1/r2

.

(1.30)

This together with inequality (1.15) implies that∫
BcR

Q(|x|)F (un)dx ≤ ε

2

∫
BcR

Q(|x|)|un|γdx+ C9

∫
BcR

Q(|x|)|un|qΦα,j0(un)dx

≤ C10ε+ C11

(∫
BcR

Q(|x|)Φr2α,j0(un)dx

)1/r2

,

(1.31)

for every ε > 0 and n ∈ N. Now using inequality (1.13) with u replaced to un we get

∫
BcR

Q(|x|)Φr2α,j0(un)dx ≤
j1−1∑
j=j0

αj

j!

∫
BcR

Q(|x|)u2j
n dx+ C12R

−1er2αC
2‖un‖2E .
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1. Nonlinear Schrödinger equations involving exponential critical growth

Since (un) is bounded by Lemma 1.2.2 we deduce that

lim sup
n→∞

∫
BcR

Q(|x|)Φr2α,j0(un)dx ≤
j1−1∑
j=j0

αj

j!

∫
BcR

Q(|x|)u2jdx+ C12R
−1er2αC

2C13 ,

that goes to zero as R → ∞. This in combination with (1.29) and (1.31) implies that the
convergence limn→∞ In(Bc

R) = 0 holds, and so the lemma is proved.

As a consequence of the previous lemma, we have the following local compactness result:

Proposition 1.3.3. Assume (1.1), (f1)− (f3), (V ) and (Q). Then the functional J satisfies the
(PS)c condition for every c ∈ (0, α2/2α0).

Proof. Let (un) ⊂ Erad be a (PS)c. By Lemma 1.3.2 we can assume, up to a subsequence, that
un ⇀ u weakly in Erad and for all ϕ ∈ C∞0,rad(R2) we have∫

R2

(∇un∇ϕ+ V (|x|)unϕ) dx−
∫
R2

Q(|x|)f(un)ϕdx = on(1)‖ϕ‖E. (1.32)

Passing to the limit and using Lemma 1.3.2 we get∫
R2

(∇u∇ϕ+ V (|x|)uϕ) dx−
∫
R2

Q(|x|)f(u)ϕdx = 0, for all ϕ ∈ C∞0,rad(R2). (1.33)

Next, we are going to check that

lim
n→∞

∫
R2

Q(|x|)f(un)undx =

∫
R2

Q(|x|)f(u)udx. (1.34)

If this is true, from (1.32) and (1.33) it follows that

lim
n→∞

‖un‖2
E = lim

n→∞

∫
R2

Q(|x|)f(un)undx =

∫
R2

Q(|x|)f(u)udx = ‖u‖2
E

and this finishes the proof. Thus, it remains to prove (1.34). To this end, we first observe that by
Lemma 1.3.2Q(|x|)F (un)→ Q(|x|)F (u) in L1(R2) and hence from the fact that J(un) = c+on(1)

we get

lim
n→∞

‖un‖2
E = 2

(
c+

∫
R2

Q(|x|)F (u)dx

)
> 0. (1.35)

Defining vn := un/‖un‖E, by the weak convergence of (un) we have

vn ⇀ v := u/ lim
n→∞

‖un‖E weakly in Erad,

with ‖v‖E ≤ 1. If ‖v‖E = 1 we finish the proof. Otherwise, it follows from (f2) and (1.33) that

J(u) = J(u)− 1

θ
J ′(u)u =

(
1

2
− 1

θ

)
‖u‖2

E +

∫
R2

Q(|x|)
(

1

θ
f(u)u− F (u)

)
dx ≥ 0.
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Setting A :=
(
c+

∫
R2 Q(|x|)F (u)dx

)
(1 − ‖v‖2

E), it follows from the definition of v that A =

c− J(u). Thus, from (1.35) we reach

1

2
lim
n→∞

‖un‖2
E =

A

1− ‖v‖2
E

=
c− J(u)

1− ‖v‖2
E

≤ c

1− ‖v‖2
E

<
α2

2α0(1− ‖v‖2
E)
.

Consequently, for large n ∈ N there are q1 > 1 sufficiently close to 1, α > α0 close to α0 and
β > 0 such that q1α‖un‖2

E ≤ β < α2(1 − ‖v‖2
E)−1. Therefore, by Corollary 1.2.6 there exists

C1 > 0 such that ∫
R2

Q(|x|)Φq1α,j0(un)dx ≤ C1. (1.36)

Now we observe that ∣∣∣∣∫
R2

Q(|x|) (f(un)un − f(u)u) dx

∣∣∣∣ ≤ L1(n) + L2(n),

where

L1(n) :=

∫
R2

Q(|x|)|f(un)(un − u)|dx and L2(n) :=

∫
R2

Q(|x|)|f(un)− f(u)||u|dx.

We are going to check that limn→∞ Li(n) = 0 for i = 1, 2. To this, by inequality (1.14) with
q = 1, for every ε > 0 there exists C2 > such that Hölder’s inequality implies

I1(n) ≤ ε‖un‖γ−1
Lγ(R2;Q)‖un − u‖Lγ(R2;Q) + C2

∫
R2

Q(|x|)|un − u|Φα,j0(un)dx.

Now, using (1.16) and Hölder’s inequality with exponents 1/q1 + 1/q2 = 1, q1 close to 1 and q2

sufficiently large we get∫
R2

Q(|x|)Φα,j0(un)|un − u|dx ≤ ‖un − u‖Lq2 (R2;Q)

(∫
R2

Q(|x|)Φq1α,j0(un)dx

)1/q1

.

This combined with (1.36) and the compact embedding in Lemma 1.2.2 implies that the con-
vergence limn→∞ L1(n) = 0 holds. Next we will check that limn→∞ L2(n) = 0. For this purpose,
since C∞0,rad(R2) is dense in Erad, for each ε > 0, there exists v ∈ C∞0,rad(R2) such that ‖u−v‖E < ε.
Now, notice that

L2(n) ≤
∫
R2

Q(|x|)|f(un)(u− v)|dx+

∫
R2

Q(|x|)|f(u)(v − u)|dx

+ ‖v‖L∞(R2)

∫
supp v

Q(|x|)|f(un)− f(u)|dx.

Since (un) is bounded, applying (1.32) with ϕ = u− v we find C3 > 0 such that∣∣∣∣∫
R2

Q(|x|)f(un)(u− v)dx

∣∣∣∣ ≤ on(1)‖u− v‖E + ‖un‖E‖u− v‖E ≤ C3ε.
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In a similar way, from (1.33) we get C4 > 0 such that∫
R2

Q(|x|)|f(u)(u− v)|dx < C4ε

and according to Lemma 1.3.2 we have

‖v‖L∞(R2)

∫
supp v

Q(|x|)|f(un)− f(u)|dx = on(1).

Therefore, limn→∞ L2(n) = 0 and this completes the proof.

Next, we will obtain an estimate for the minimax level.

Lemma 1.3.4. Assume (f2), (f4), (V ) and (Q). Then, there exists n ∈ N such that

max
t≥0

J(tM̃n) = max
t≥0

{
t2

2
−
∫
R2

Q(|x|)F (tM̃n)dx

}
<

α2

2α0

,

where M̃n(x, r0) := Mn(x, r0)/‖Mn‖E with r0 given in condition (f4).

Proof. We argue towards a contradiction, by supposing that the conclusion of the lemma fails.
Then, for every n ∈ N, there exists tn > 0 such that

t2n
2
−
∫
R2

Q(|x|)F (tnM̃n)dx ≥ α2

2α0

.

SinceQ(|x|) > 0 and F (s) ≥ 0, we have t2n ≥ α2/α0. Taking into account that d
dt

(
J(tM̃n)

) ∣∣∣
t=tn

=

0 we infer that
t2n =

∫
R2

Q(|x|)f(tnM̃n)tnM̃ndx. (1.37)

Now we recall that by hypothesis (f4), for all 0 < ε < β0 there exists R = R(ε) > 0 such that

f(s)s ≥ (β0 − ε)eα0s2 for all |s| ≥ R, (1.38)

where β0 > 2(b0 + 2)2/D0α0r
b0+2
0 with r0 and D0 satisfying

Q(|x|) ≥ D0

2
|x|b0 for all 0 < |x| ≤ r0. (1.39)

Since t2n ≥ α2/α0, for large n ∈ N we obtain tnM̃n(x, r0) ≥ R for all 0 ≤ |x| ≤ r0/n and hence
by (1.38) we obtain

f(tnM̃n(x, r0))tnM̃n(x, r0) ≥ (β0 − ε)eα0(tnM̃n(x,r0))2

.

On the other hand, from estimate (1.11) with r = r0 we have

M̃2
n(x, r0) ≥ log n

2π(1 + on(1))
if |x| ≤ r0/n.
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Then, from the above estimates we obtain

t2n ≥
(β0 − ε)D0

2

∫
|x|≤r0/n

|x|b0e
α0t

2
n logn

2π(1+on(1))dx =
(β0 − ε)D0π

(b0 + 2)

(r0

n

)b0+2

e
α0t

2
n logn

2π(1+on(1)) ,

which leads to

C0t
2
nn

b0+2 ≥ nα0t2n/2π(1+on(1)) with C0 = (b0 + 2)/(β0 − ε)D0πr
b0+2
0 . (1.40)

We claim that (tn) is bounded. Indeed, suppose by contradiction that tn →∞. From (1.40) we
get

log(C0) + log(t2n) + (b0 + 2) log n ≥ α0

2π(1 + on(1))
t2n log n. (1.41)

Thus,
log(C0)

t2n log n
+

log(t2n)

t2n log n
+

(b0 + 2)

t2n
≥ α0

2π(1 + on(1))
,

and taking the limit we obtain a contradiction. Now we will show that

lim
n→∞

t2n =
α2

α0

.

Otherwise, there exists some δ > 0 such that for n ∈ N sufficiently large t2n ≥ α2/α0 + δ. This,
together with (1.41) implies

log(C0)

log n
+

log(t2n)

log n
+ (b0 + 2) ≥ α0t

2
n

2π(1 + on(1))
≥ α2 + α0δ

2π(1 + on(1))
.

Since (tn) is bounded, taking the limit we obtain 2π(b0 + 2) ≥ (α2 +α0δ), which contradicts the
fact that α2 = 2π(b0 + 2). Finally, we estimate β0 to get a contradiction. It follows from (1.37)
that

t2n =

∫
An

Q(|x|)f(tnM̃n)tnM̃ndx+

∫
Bn

Q(|x|)f(tnM̃n)tnM̃ndx, (1.42)

where An := {x ∈ R2 : |tnM̃n| ≤ R} and Bn := {x ∈ R2 : |tnM̃n| ≥ R}. Since M̃n → 0 a.e. in
R2, by applying the Lebesgue Dominated Convergence Theorem we get

lim
n→∞

∫
An

Q(|x|)f(tnM̃n)tnM̃ndx = 0.

Thus, taking the limit in (1.42) we obtain

α2

α0

= lim
n→∞

∫
Bn

Q(|x|)f(tnM̃n)tnM̃ndx. (1.43)

Using that t2n ≥ α2/α0, from (1.38) and (1.39) it follows that∫
Bn

Q(|x|)f(tnM̃n)tnM̃ndx ≥
(β0 − ε)D0

2

∫
Bn

|x|b0eα2M̃2
ndx.
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1. Nonlinear Schrödinger equations involving exponential critical growth

Now we observe that∫
Br0

|x|b0eα2M̃2
ndx =

2πrb0+2
0

(b0 + 2)
+

∫
r0
n
≤|x|≤r0

|x|b0eα2M̃2
ndx.

Performing a straightforward computation and doing the change of variables r = r0e
−‖M̃n‖E(logn)1/2s

we get ∫
r0
n
≤|x|≤r0

|x|b0eα2M̃2
ndx = 2π

∫ r0

r0/n

rb0e(b0+2)[(logn)−1/2‖M̃n‖−1
E log(r0/r)]2rdr

= 2πrb0+2
0 ‖M̃n‖E 2

√
log n

∫ ‖M̃n‖−1
E (logn)1/2

0

e(b0+2)[s2−‖M̃n‖E(logn)1/2s]ds.

Since e(b0+2)s2 ≥ 1, after a simple computation we find∫
r0
n
≤|x|≤r0

|x|b0eα2M̃2
ndx ≥ 2πrb0+2

0

(b0 + 2)

(
1 +

1

nb0+2

)
.

Therefore,

lim inf
n→∞

∫
Br0

|x|b0eα0t2nM̃
2
ndx ≥ 4π

(b0 + 2)
rb0+2

0 . (1.44)

On the other hand, observing that∫
Bn

|x|b0eα2M̃2
ndx =

∫
Br0

|x|b0eα2M̃2
ndx−

∫
An

|x|b0eα2M̃2
ndx,

and by applying the Lebesgue Dominated Convergence Theorem we obtain

lim
n→∞

∫
An

|x|b0eα2M̃2
ndx =

2π

(b0 + 2)
rb0+2

0 .

Then, estimate (1.44) yields

lim inf
n→∞

∫
Bn

|x|b0eα2M̃2
ndx ≥ 2π

(b0 + 2)
rb0+2

0 .

Therefore, from (1.42) and (1.43) we get

α2

α0

≥ (β0 − ε)D0π

(b0 + 2)
rb0+2

0 .

Using that α2 = 2π(b0 + 2) and letting ε → 0 we contradicts (f4), and this completes the
proof.

We shall also need a basic regularity result, which will be used to prove (1.4).
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Lemma 1.3.5. Let R > 0 and u ∈ H1
0 (BR) be a weak solution of the semilinear elliptic problem{

−∆u = h(x, u), in BR,

u = 0, on ∂BR,
(1.45)

where h : BR × R→ R is a Carathéodory function satisfying

|h(x, s)| ≤ C0|x|b0eαs
2

, for a.e. x ∈ BR, and s ∈ R,

with C0 > 0, b0 > −2, and α > 0. Then, u ∈ Cσ(BR) for some σ ∈ (0, 1).

Proof. Since b0 > −2, there exists p > 1 such that pb0 > −2. Similarly, we can choose q1, q2 > 1

satisfying 1/q1 + 1/q2 = 1 and q1pb0 > −2. Then, by Hölder’s inequality one has

∫
BR

|h(x, u)|pdx ≤ Cp
0

(∫
BR

|x|q1pb0dx
)1/q1 (∫

BR

eq2pαu
2

dx

)1/q2

.

Taking into account that |x|q1pb0 ∈ L1(BR), and by the classical Trudinger-Moser inequality (see
[63],[81]) it holds that eq2pαu2 ∈ L1(BR), we conclude that |h(x, u)|p ∈ L1(BR). Therefore, by
classical elliptic regularity theory u ∈ W 2,p(BR) ↪→ Cσ(BR) for some σ ∈ (0, 1) and this finishes
the proof.

We now present the proof of Theorem 1.1.2 with the aid of the previous results.

Proof of Theorem 1.1.2. By Proposition 1.2.8 it is sufficient to show that J has a critical point.
By Proposition 1.3.3, Lemma 1.3.4 and the Mountain Pass Theorem J has a nonzero critical
point. Moreover, we can assume that f(s) = 0 for s ≤ 0 and the above results are valid also
for this modified nonlinearity. Thus, there exists u ∈ Erad \ {0} such that J ′(u) = 0. Since
u−(x) := max {−u(x), 0} one has 0 = J ′(u)u− = −‖u−‖2

E, which implies that u ≥ 0 a.e. in
R2. To conclude the proof it remains to prove (1.4). For this purpose, by the assumption
(V ) for all R0 > 0 there exists C0 > 0 such that V (|x|) ≥ C0|x|a for all |x| ≥ R0. Defining
φ(x) = e−c1|x|

(a+2)/4 with c1 = 2
√
C0/(a+ 2) > 0 and using a straightforward computation we see

that
−∆φ+ V (|x|)φ ≥ C0

4
|x|aφ in |x| ≥ R0. (1.46)

On the other hand, from assumption (Q) there exists C1 > 0 such that Q(|x|) ≤ C1|x|b for all
|x| ≥ R0. Then, by inequality (1.10) and (f1), for R0 sufficiently large we have

Q(|x|)f(u) ≤ C0

4
|x|b|u|γ−2u ≤ C0

4
|x|b−(γ−2)(a+2)/4u for all |x| ≥ R0.

Taking into account that b− (γ−2)(a+2)
4

≤ a we get

Q(|x|)f(u) ≤ C0

4
|x|au, for all |x| ≥ R0.
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1. Nonlinear Schrödinger equations involving exponential critical growth

This combined with (1.46) (where c0 is a positive constant such that u ≤ c0φ on |x| = R0)
implies 

−∆(u− c0φ) +

(
V (|x|)− C0

4
|x|a
)

(u− c0φ) ≤ 0 in |x| > R0,

u− c0φ ≤ 0 on |x| = R0.

Then, by the maximum principle we have that u(x) ≤ c0φ(x) if |x| ≥ R0. To complete the proof
it is enough to show that u ∈ Cσ(BR0) for some σ ∈ (0, 1). Defining v(x) := u(x) − u(R0) and
using Lemma 2.2.2, v ∈ H1

0 (BR0). By the behavior of V and Q at the origin, we can assume
that V (|x|) = |x|a0 and Q(|x|) = |x|b0 and so v is a weak solution of problem (1.45) with R = R0

and h(x, v) = |x|b0
[
f(v + u(R0))− |x|a0−b0(v + u(R0)

]
. Now using that b0 ≤ a0 (similarly to

a0 < b0), by (1.1) and the continuity of f we find C2 = C2(R) > 0 such that for all x| ≤ R0

|h(x, v)| ≤ |x|b0
[
|f(v + u(R0))|+Ra0−b0

0 |v + u(R0)|
]
≤ C2|x|b0eαv

2

.

By applying Lemma 3.2.3, we conclude that v ∈ Cσ(BR0). Therefore, u = v+ u(R0) ∈ Cσ(BR0)

and this completes the proof of Theorem 1.1.2.

In order to prove our multiplicity result we shall use the following version of the Symmetric
Mountain Pass Theorem (see, e.g., [13]).

Theorem 1.3.6. Let E be a real Banach space and I ∈ C1(E,R) be an even functional satisfying
I(0) = 0 and

(I1) there are constants ρ, τ > 0 such that I(u) ≥ τ , for all ‖u‖E = ρ;

(I2) there exist D > 0 and a finite-dimensional subspace S of E such that
maxu∈S I(u) ≤ D.

If the functional I satisfies the (PS)c condition for 0 < c < D, then it possesses at least dimS

pairs of nonzero critical points.

Proof of Theorem 1.1.3. Since f is odd and satisfies (f1), then Jλ is even and Jλ(0) = 0. More-
over, we observe that all the results proved in the previous sections holds for Jλ, for all λ > 0.
Arguing as in the proof of the first theorem, we obtain that Jλ satisfies (I1). From (f3) and the
local condition (f5), there exists C0 > 0 such that F (s) ≥ C0

ν
|s|ν , for all s ∈ R. Consequently,

Jλ(u) ≤ 1

2
‖u‖2

E −
C0λ

ν

∫
R2

Q(|x|)|u|νdx.

We now observe that, for any k−dimensional subspace S of Erad, the norms are equivalent and
hence

max
u∈S

Jλ(u) ≤ max
u∈S

[
1

2
‖u‖2

E − ck
C0λ

ν
‖u‖νE

]
=

(
1

2
− 1

ν

)(
1

ckC0

) 2
ν−2

λ
2

2−ν =: Dk(λ).
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1. Nonlinear Schrödinger equations involving exponential critical growth

Since 2/(2 − ν) < 0, we have that limλ→∞Dk(λ) = 0. Thus, there exists λk > 0 such that
Dk(λ) < α2/(2α0) for any λ > λk. Therefore, we can apply Proposition 1.3.3 and Theorem 1.3.6
to obtain k pairs of nonzero critical points of Jλ, which concludes the proof.
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Chapter 2

On a planar non-autonomous
Schrödinger-Poisson system involving
exponential critical growth

In this chapter, we present the results of the paper [4] where we investigate the existence of
solutions for a class of planar non–autonomous Schrödinger-Poisson system. One of our basic
tools consists in a Trudinger-Moser type inequality obtained in the Chapter 1.

2.1 Main results

Here, we are concerning with the existence of a solution to the planar non–autonomous
Schrödinger-Poisson system{

−∆u+ V (|x|)u+ ηφK(|x|)u = λQ(|x|)f(u), x ∈ R2,

∆φ = K(|x|)u2, x ∈ R2,
(S)

where η, λ > 0, the potentials V,K,Q : R2 → R are radial functions, which can by singular at
the origin, unbounded or decaying at infinity and f(s) is a continuous function with exponential
critical growth in the Trudinger-Moser sense.

It is well-known that the solutions of system (S) are related to solitary wave solutions to the
nonlinear Schrödinger-Poisson system{

iψt −∆xψ + E(x)ψ + ηφK(x)ψ = Q(x)f(ψ), (x, t) ∈ R2 × (0,∞),

∆xφ = K(x)ψ2, (x, t) ∈ R2 × (0,∞),
(2.1)

where ψ : R2 × (0,∞) → C is the wave function, E(x) = V (x) − ξ with ξ ∈ R is a real-valued
external potential, φ represents an internal potential for a nonlocal self-interaction of the wave
function and the nonlinear term f(s) describes the interaction effect among particles. If we look
for a standing wave ansatz ψ(x, t) = e−iξtu(x), with ξ ∈ R, the system (2.1) reduces to system
(S).
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Similar problems in dimension N ≥ 2 have been widely investigated due to the fact that
they have a strong physical meaning, because they appear in quantum mechanics models and
semiconductors (see e.g., [22, 32, 50, 53, 57] and references therein). In [20, 21], systems like (S)
have been introduced as a model describing solitary waves, for nonlinear stationary equations of
Schrödinger type interacting with an electrostatic field, and are usually known as Schrödinger-
Poisson systems. Due to this deep physical meaning, in dimension N = 3, the non–autonomous
Schrödinger-Poisson system{

−∆u+ V (x)u+ φK(x)u = λQ(x)f(u), x ∈ R3,

−∆φ = K(x)u2, x ∈ R3,
(2.2)

has strongly attracted the attention of many researches (see e.g., [33, 34, 74] and references
therein). In this case, we can take the advantage of the Sobolev space D1,2(R3) to obtain a
solution to the Poisson equation in system (2.2). Roughly speaking, for each u ∈ H1(R3),
thanks to the Lax-Milgram lemma the unique solution of the Poisson equation is given by the
Newtonian potential of Ku2, i.e.,

φ(x) :=
[
Γ3 ∗Ku2

]
(x) =

∫
R3

Γ3(x− y)K(|y|)u2(y)dy,

where Γ3(x) = 1/(4π|x|) is the fundamental solution of the Laplacian in R3. Plugging this
relation into the Schrödinger equation in (2.2) we get a nonlinear Schrödinger equation with a
nonlocal term and, afterward, a solution of this equation is obtained by using different techniques.
There is a vast literature dealing with system (2.2) under different assumptions on V,Q and f
in the autonomous case, that is, K ≡ 1 and the non–autonomous. We can refer the reader to
the papers [14,33,37–39,48,49,53,55,62,74] and references therein.

In dimension N = 2, motived by the papers [8, 36, 78] we will use a different strategy:
Precisely, for any u in an appropriated Hilbert space we consider the Newton potential of Ku2,
that is,

φ(x) :=
[
Γ2 ∗Ku2

]
(x) =

∫
R2

Γ2(x− y)K(|y|)u2(y)dy,

where Γ2(x) = (1/2π) log(|x|) is the fundamental solution of the Laplacian in R2 and by choosing
η = 2π we obtain first the solution of the integrodifferential equation

−∆u+ V (|x|)u+
[
log ∗Ku2

]
(x)K(|x|)u = λQ(|x|)f(u), x ∈ R2. (E)

Afterward, we obtain a solution to the Poisson equation by using some regularity results. In this
context, some mathematical difficulties appear different from the articles mentioned above and,
therefore, the number of papers is scantier. The first difficulty that we face in dealing with the
two-dimensional case is the fact that the integral kernel Γ2 is sign-changing, differently from Γ3

that is positive. To overcome this difficulty, we employ a similar argument to that developed in
the papers [8, 36].

The weighted feature of V yields another difficulty that prevents us to work directly in
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H1(R2). As performed in many papers, we use an appropriate Hilbert space. With this aim,
our starting point here is the hypotheses of the weight functions V,K and Q which were firstly
introduced in the works [79, 80], where the authors proved some weighted Sobolev embedding
theorems. Furthermore, there is a recent growing interest in applications of these results in the
study of partial differential equations, see for example [3, 12,15,17,26].

Throughout this chapter we assume the conditions (V ) and (Q) (see Chapter 1) on the radial
potentials V and Q. Moreover, we assume the following assumptions on K:

(K) K : (0,∞)→ R is continuous, K > 0 and there are l0 > −3/2, −2 < l < min {a, (a− 1)/2}
such that

lim sup
r→0+

K(r)

rl0
<∞ and lim sup

r→∞

K(r)

rl
<∞.

We consider in this chapter that f(s) satisfy (1.1) and (f1) (see Chapter 1). Furthermore,
to perform a variational approach, recalling that γ = max {2, 2(2 + 2b− a)/(a+ 2)}, we also
assume the following assumptions on f :

(f̃2) there exists θ > max {γ, 4} such that 0 < θF (s) ≤ f(s)s for all s ≥ 0;

(f̃3) there exists r > max {γ, 4} such that lim inf
s→0+

F (s)/sr > 0;

(f̃4) the function s 7→ f(s)/s3 is increasing for s > 0.

In order to obtain a positive solution of system (S), we look for a positive solution of equation
(E). For that, we observe that (E) has, at least formally, a variational structure given by the
energy functional defined by

Iλ(u) =
1

2
‖u‖2

E +
1

4

∫
R2

∫
R2

log(|x− y|)K(|y|)u2(y)K(|x|)u2(x)dydx− λ
∫
R2

Q(|x|)F (u)dx.

Remark 2.1.1. As we will see, it follows from the hypotheses on V,Q and f(s) that the functional
Iλ is well defined in Erad, except possibly at the nonlocal term. Taking into account the elementary
inequality

|log(|x− y|)| ≤ 1

|x− y|
+ log(1 + |x|) + log(1 + |y|),

and the Sobolev embedding Erad ↪→ L2(R2;K) (see Lemma 1.2.2), for each u ∈ Erad \ {0} we see
that∫

R2

∫
R2

log(1 + |x|)K(|y|)u2(y)K(|x|)u2(x)dydx = ‖u‖2
L2(R2;K)

∫
R2

log(1 + |x|)K(|x|)u2(x)dx

and∫
R2

∫
R2

log(1 + |y|)K(|y|)u2(y)K(|x|)u2(x)dydx = ‖u‖2
L2(R2;K)

∫
R2

log(1 + |y|)K(|y|)u2(y)dy,

which combined with the Hardy-Littlewood-Sobolev inequality (see Proposition 2.3.5) motivate
the definition of our function space on which Iλ is well-defined.
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Inspired by the paper [78] (see also [58]) and Remark 2.1.1 we consider the new Hilbert space
defined by

W :=

{
u ∈ E :

∫
R2

log(1 + |x|)K(|x|)u2dx <∞
}
,

with the norm ‖u‖W := 〈u, u〉1/2W induced by the scalar product

〈u, v〉W = 〈u, v〉E +

∫
R2

log(1 + |x|)K(|x|)uvdx.

Using standard arguments one can prove that C∞0 (R2), the space of infinitely differentiable
functions with compact support, is dense in W . The proof that (W, ‖ · ‖W ) is a Hilbert space is
not direct and so it will be done in the next section.

Remark 2.1.2. Naturally, the continuous embedding (W, ‖ · ‖W ) ↪→ (E, ‖ · ‖E) holds true.

Even if W provides a variational framework to equation (E), some difficulties appear due to
the following unpleasant facts. For example, the norm in W does not appear explicitly in the
expression of the functional. Another obstacle is that the quadratic part of Iλ is not coercive
on W . However, the condition (f̃4) allows us to use the minimization arguments in the Nehari
manifold.

Now we can introduce the concept of solution that we are interested in here. We say that
u ∈ W is a weak solution to equation (E) if, for all ϕ ∈ C∞0 (R2) it holds that

〈u, ϕ〉E +

∫
R2

∫
R2

log(|x− y|)K(|y|)u2(y)K(|x|)u(x)ϕ(x)dydx = λ

∫
R2

Q(|x|)f(u)ϕdx.

Remark 2.1.3. It follows from (1.1) and (f̃3) that there exists C0 > 0 such that F (s) ≥ C0s
r

for all s ≥ 0.

Now, we are ready to state the main result concerning the existence of the solution to equation
(E). Our main result is the following:

Theorem 2.1.4. Assume that (V ), (K), (Q), (1.1), (f1), and (f̃2) − (f̃4) hold. Then, equation
(E) possesses a nonzero weak solution uλ ∈ W with minimal energy (or ground state solution) if

λ ≥ λ̄ := max

 λ0

θC0

,

4α0‖Q‖L1(B1/2)λ
r
r−2

0

α2

((
2

r

) 2
r−2

−
(

2

r

) r
r−2

) r−2
2

 , (2.3)

where

λ0 :=
4π + ‖V ‖L1(B1) + log 3‖K‖2

L1(B1)

‖Q‖L1(B1/2)

and α2 := 4π(1 + b0/2). (2.4)

As a byproduct of Theorem 1.1.2, under additional assumptions on the potential K, our
contribution in the present paper concerns the existence of solutions to the system (S) is the
following:
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Theorem 2.1.5. Assume the conditions of Theorem 2.1.4 and let uλ be the solution obtained
in Theorem 2.1.4. In addition, suppose that K ∈ Cσ

loc(R2) for some σ ∈ (0, 1). Then, the pair
(uλ, φuλ) is a weak solution of system (S), where φuλ = Γ2 ∗Ku2

λ.

Remark 2.1.6. Examples of functions satisfying the hypotheses (V ), (K), and (Q) are:

i) V (x) = |x|a, with a > −2;

ii) K(x) = |x|l, with l = l0 > −2;

iii) Q(x) = |x|b, with b = b0 > −2.

Furthermore, if l ≥ 1 then the functions V,K, and Q satisfy the assumptions of Theorem 2.1.5.

The remainder of this chapter is organized as follows: In Section 2.2, we prove that (W, ‖·‖W )

is a Hilbert space. In Section 2.3, we study the nonlocal term and establish the functional
setting in which the problem will be posed. The two further sections are devoted to the proof
of Theorem 2.1.4 and Theorem 2.1.5, respectively.

2.2 Preliminary results

In this section, we will establish some preliminary results used in the proof of our main
theorems. We start by proving that (W, ‖ · ‖W ) is a Hilbert space, whose proof is inspired by
the paper [6].

Proposition 2.2.1. (W, ‖ · ‖W ) is a Hilbert space.

Proof. Let (un) ⊂ W be a Cauchy sequence in the norm ‖ · ‖W . We can say that(
∂un
∂xi

)
n

(i = 1, 2),
(
V 1/2(|x|)un

)
n

and
(
[log(1 + |x|)K(|x|)]1/2un

)
n

are both Cauchy sequences in L2(R2). Consequently,

∂un
∂xi
→ ui (i = 1, 2), V 1/2(|x|)un → v and [log(1 + |x|)K(|x|)]1/2un → z in L2(R2), (2.5)

as n→∞. Hence, up to a subsequence,

∂un
∂xi
→ ui (i = 1, 2) and un → w := V −1/2(|x|)v = [log(1 + |x|)K(|x|)]−1/2 z a.e. in R2, (2.6)

as n → ∞. To complete the proof it is sufficient to show that w ∈ W and un → w in W .
First we check that w ∈ L2

loc(R2). Indeed, let R > 0 and consider ϕ ∈ C∞0,rad(R2) satisfying
suppϕ ⊂ BR+1 and ϕ ≡ 1 in BR. Thus, ϕ(un − um) ∈ H1

0 (BR+1) and by Poincaré’s inequality
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we get∫
BR

|un − um|2dx ≤
∫
BR+1

|ϕ(un − um)|2dx ≤ C1

∫
BR+1

|∇(ϕ(un − um))|2dx

≤ C2

(∫
BR+1

|ϕ|2|∇un −∇um|2dx+

∫
BR+1\BR

|∇ϕ|2|un − um|2dx

)
≤ C2‖ϕ‖2

L∞(R2)

∫
BR+1

|∇un −∇um|2dx

+
C2‖∇ϕ‖2

L∞(R2)

MR

∫
BR+1\BR

V (|x|)|un − um|2dx

≤ C3‖un − um‖2
E ≤ C3‖un − um‖2

W ,

(2.7)

where MR := minBR+1\BR V (|x|) > 0. The last inequality gives us that (un)n is a Cauchy
sequence in L2(BR) and so there exists uR ∈ L2(BR) such that

un → uR in L2(BR) and un → uR a.e. in BR, (2.8)

as n→∞. This and (2.6) implies that w = uR ∈ L2(BR) and so w ∈ L2
loc(R2). Next, we prove

that w has weak derivate and |∇w| ∈ L2(R2). In fact, let ϕ ∈ C∞0 (R2) with suppϕ ⊂ BR. For
each n ∈ N, one has ∫

R2

un
∂ϕ

∂xi
dx = −

∫
R2

∂un
∂xi

ϕdx, i = 1, 2.

From (2.5) and (2.8) together with the fact that uR = w in BR, we have∫
R2

w
∂ϕ

∂xi
dx = −

∫
R2

uiϕdx, i = 1, 2,

guaranteeing the existence of weak derivative of w, with
∂w

∂xi
= ui, i = 1, 2. As the direct effect

of the last equality and (2.5), we ensure that |∇w| ∈ L2(R2). Moreover, by (2.6)∫
R2

V (|x|)w2dx =

∫
R2

v2dx <∞ and
∫
R2

log(1 + |x|)K(|x|)w2dx =

∫
R2

z2dx <∞,

and hence w ∈ W . Finally, it remains to prove that un → w inW . Observe that from (2.5),(2.6)

and since
∂w

∂xi
= ui, i = 1, 2, it follows that

∫
R2

|∇un −∇w|2dx→ 0,

∫
R2

V (|x|)|un − w|2dx =

∫
R2

∣∣V (|x|)1/2un − v
∣∣2 dx→ 0, as n→∞,

∫
R2

log(1 + |x|)K(|x|)|un − w|2dx =

∫
R2

∣∣[log(1 + |x|)K(|x|)]1/2un − z
∣∣2 dx→ 0, as n→∞,

completing the proof.

Remark 2.2.2. By estimates (2.7), we observe that for each open ball BR ⊂ R2, the space W is
continuously immersed in H1(BR). Thus, in particular, W is continuously immersed in Lp(BR)
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for all 1 ≤ p <∞. Similarly, we can also conclude this fact for the space E.

2.3 The variational setting

2.3.1 Properties of the nonlocal term

We now collect some important properties of the nonlocal term. First, we prove that the
nonlocal term is well-defined. For this purpose, we need to introduce the following subspace of
W :

Wrad :=
{
u ∈ W : u is radial

}
.

Taking r = |x− y| in the elementary identity log r = log(1 + r)− log(1 + r−1), for each u ∈ Wrad

we can write the nonlocal term as:∫
R2

∫
R2

log(|x− y|)K(|y|)u2(y)K(|x|)u2(x)dx = V1(u)− V2(u), (2.9)

where
V1(u) :=

∫
R2

∫
R2

log(1 + |x− y|)K(|y|)u2(y)K(|x|)u2(x)dydx,

and
V2(u) :=

∫
R2

∫
R2

log(1 + |x− y|−1)K(|y|)u2(y)K(|x|)u2(x)dydx.

Remark 2.3.1. It follows from Remark 2.1.2 and Lemma 1.2.2 that the embedding Wrad ↪→
L2(R2;K) is compact.

Lemma 2.3.2. The functional V1 : Wrad → [0,∞) is well-defined and the following two state-
ments hold:

i) V1(u) ≤ 2‖u‖2
L2(R2;K)‖u‖2

W ;

ii) V1 ∈ C1(Wrad,R) and for all v ∈ Wrad, we have

V ′1(u)v = 4

∫
R2

∫
R2

log(1 + |x− y|)K(|y|)u2(y)K(|x|)u(x)v(x)dydx.

In particular, we have that V ′1(u)u = 4V1(u).

Proof. Since 1 + |x− y| ≤ (1 + |x|)(1 + |y|) for all x, y ∈ R2 and the increasing behaviour of the
log-function, we get the elementary inequality

log(1 + |x− y|) ≤ log((1 + |x|)(1 + |y|)) = log(1 + |x|) + log(1 + |y|). (2.10)

This, together with Remark 2.3.1 yields

V1(u) ≤
∫
R2

∫
R2

(
log(1 + |x|) + log(1 + |y|)

)
K(|y|)u2(y)K(|x|)u2(x)dydx

≤ 2‖u‖2
L2(R2;K)‖u‖2

W <∞.
(2.11)
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Hence, the first assertion holds. Now we taking a sequence (un) in Wrad such that un → u in
Wrad. A simple computation shows that

V1(un)− V1(u) =

∫
R2

∫
R2

log(1 + |x− y|)K(|y|)K(|x|)u2
n(y)

(
u2
n(x)− u2(x)

)
dydx

+

∫
R2

∫
R2

log(1 + |x− y|)K(|y|)K(|x|)
(
u2
n(y)− u2(y)

)
u2(x)dydx.

This, (2.10) and Hölder’s inequality imply that

|V1(un)− V1(u)| ≤
∫
R2

∫
R2

log(1 + |x|)K(|y|)K(|x|)u2
n(y)|un(x)− u(x)||un(x) + u(x)|dydx

+

∫
R2

∫
R2

log(1 + |y|)K(|y|)K(|x|)u2
n(y)|un(x)− u(x)||un(x) + u(x)|dydx

+

∫
R2

∫
R2

log(1 + |x|)K(|y|)K(|x|)|un(y)− u(y)||un(y) + u(y)|u2(x)dydx

+

∫
R2

∫
R2

log(1 + |y|)K(|y|)K(|x|)|un(y)− u(y)||un(y) + u(y)|u2(x)dydx

≤ ‖un‖2
L2(R2;K)‖un − u‖W‖un + u‖W + ‖un‖2

W‖un − u‖L2(R2;K)‖un + u‖L2(R2;K)

+ ‖un − u‖L2(R2;K)‖un + u‖L2(R2;K)‖u‖2
W + ‖un − u‖W‖un + u‖W‖u‖2

L2(R2;K).

Since (un) is bounded in Wrad, by Remark 2.3.1, we derive that V1(un) converges to V1(u), as
n→∞. For any v ∈ Wrad, we see that the Gateaux derivative of V1 at u ∈ Wrad is given by

V ′1(u)v = 4

∫
R2

∫
R2

log(1 + |x− y|)K(|y|)u2(y)K(|x|)u(x)v(x)dydx.

From (2.10), Hölder’s inequality and Remark 2.3.1, one has

|V ′1(u)v| ≤ 4

∫
R2

∫
R2

(
log(1 + |x|) + log(1 + |y|)

)
K(|y|)u2(y)K(|x|)|u(x)v(x)|dydx

≤ ‖u‖2
L2(R2;K)‖u‖W‖v‖W + ‖u‖2

W‖u‖L2(R2;K)‖v‖L2(R2;K) ≤ C1‖v‖W
, (2.12)

and hence V ′1(u) ∈ W ′. Now, for any sequence (un) ⊂ Wrad such that un → u and v ∈ Wrad we
have

V ′1(un)v − V ′1(u)v = 4

∫
R2

∫
R2

log(1 + |x− y|)K(|y|)K(|x|)
(
u2
n(y)un(x)− u2(y)u(x)

)
v(x)dydx

= 4

∫
R2

∫
R2

log(1 + |x− y|)K(|y|)K(|x|)u2
n(y)

(
un(x)− u(x)

)
v(x)dydx

+ 4

∫
R2

∫
R2

log(1 + |x− y|)K(|y|)K(|x|)
(
u2
n(y)− u2(y)

)
u(x)v(x)dydx.
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This combined with (2.10), Hölder’s inequality and Remark 2.3.1 yields that

|V ′1(un)v − V ′1(u)v|
4

≤
∫
R2

∫
R2

log(1 + |x|)K(|y|)K(|x|)u2
n(y)|un(x)− u(x)||v(x)|dydx

+

∫
R2

∫
R2

log(1 + |y|)K(|y|)K(|x|)u2
n(y)|un(x)− u(x)||v(x)|dydx

+

∫
R2

log(1 + |x|)K(|y|)K(|x|)|un(y)− u(y)||un(y) + u(y)|u(x)v(x)|dydx

+

∫
R2

log(1 + |y|)K(|y|)K(|x|)|un(y)− u(y)||un(y) + u(y)|u(x)v(x)|dydx

≤ ‖un‖2
L2(R2;K)‖un − u‖W‖v‖W + ‖un‖2

W‖un − u‖L2(R2;K)‖v‖L2(R2;K)

+ ‖un − u‖L2(R2;K)‖un + u‖L2(R2;K)‖u‖W‖v‖W
+ ‖un − u‖W‖un + u‖W‖u‖L2(R2;K)‖v‖L2(R2;K) = on(‖v‖W ).

Thus, V1 is continuously differentiable on Wrad and this ends the proof.

The next embedding result will be crucial in the course of the work.

Lemma 2.3.3. Assume that (V ) and (K) hold. Then the embedding Erad ↪→ L8/3(R2;K4/3) is
continuous and compact.

Proof. Let R > 0 to be chosen later. For any u ∈ Erad, we can split the integral as∫
R2

K4/3(|x|)|u|8/3dx =

∫
BR

K4/3(|x|)|u|8/3dx+

∫
BcR

K4/3(|x|)|u|8/3dx. (2.13)

Our first task is to estimate the integral on the ball. For this purpose, we observe that by
hypothesis (K), there exists C1 > 0 such that K(|x|) ≤ C1|x|l0 , for any 0 < |x| ≤ R. Since
l0 > −3/2, then (4l0)/3 > −2 and thus it is possible to get p1 > 1 such that (4p1l0)/3 > −2.
Hence |x|(4p1l0)/3 ∈ L1(BR) and consequently by Hölder’s inequality and Remark 2.2.2, one has∫

BR

K4/3(|x|)|u|8/3dx ≤ C2

∫
BR

|x|4l0/3|u|8/3dx

≤ C2

(∫
BR

|x|(4p1l0)/3dx

)1/p1
(∫

BR

|u|(8p2)/3dx

)1/p2

≤ C3‖u‖8/3
E ,

(2.14)

with 1/p1 + 1/p2 = 1. Now, we estimate the second integral on the right-hand side of (2.13). By
(K) and (1.10), there exists C4 > 0 such that K(|x|) ≤ C4|x|l and |u(x)| ≤ C5‖u‖E|x|−(a+2)/4,
for any |x| ≥ R. Since l < (a− 1)/2 then (4l)/3− 2(a+ 2)/3 + 2 < 0, and so we obtain∫

BcR

K4/3(|x|)|u|8/3dx ≤ C6‖u‖8/3
E

∫
BcR

|x|(4l)/3−2(a+2)/3dx = C7‖u‖8/3
E R4l/3−2(a+2)/3+2. (2.15)

This combined with (2.14), implies that the embedding Erad ↪→ L8/3(R2;K4/3) is continuous.
We shall next prove the compactness. To do this, let (un) be a sequence in Erad such that un ⇀ 0
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in Erad. From (2.14), Remark 2.2.2 and Rellich-Kondrachov theorem, we can conclude∫
BR

K4/3(|x|)|un|8/3dx = on(1). (2.16)

On the other hand, since (4l)/3− 2(a+ 2)/3 + 2 < 0 and (un)n is bounded, for ε > 0 arbitrary,
we can take R > 0 large enough in (2.15) such that∫

BcR

K4/3(|x|)|un|8/3dx ≤ ε, for all ∈ N,

and this together with (2.16) completes the proof of the lemma.

Remark 2.3.4. Combining Remark 2.1.2 and Lemma 2.3.3, we infer that the embeddingWrad ↪→
L8/3(R2;K4/3) is continuous and compact.

To make use later, let us recall the well-known Hardy-Littlewood-Sobolev inequality.

Proposition 2.3.5. [49] Let s, r > 1 and 0 < µ < 2 with 1/s+ µ/2 + 1/r = 2, g ∈ Ls(R2), and
h ∈ Lr(R2). There exists a sharp constant C(s, µ, r) > 0, independent of g, h, such that∣∣∣∣∫

R2

∫
R2

g(y)h(x)

|x− y|µ
dydx

∣∣∣∣ ≤ C(s, µ, r)‖g‖Ls(R2)‖h‖Lr(R2).

Lemma 2.3.6. The functional V2 : Wrad → [0,∞) is well-defined and the following two state-
ments hold:

i) there exists C > 0 such that V2(u) ≤ C‖u‖4
E for all u ∈ Wrad;

ii) V2 ∈ C1(Wrad,R) and for each v ∈ Wrad we have

V ′2(u)v = 4

∫
R2

∫
R2

log(1 + |x− y|−1)K(|y|)u2(y)K(|x|)u(x)v(x)dydx, for all v ∈ Wrad.

In particular, we have that V ′2(u)u = 4V2(u).

Proof. From the elementary inequality

log(1 + |x− y|−1) ≤ |x− y|−1 (2.17)

we get

V2(u) ≤
∫
R2

∫
R2

K(|y|)u2(y)K(|x|)u2(x)

|x− y|
dydx.

Now, we can use Remark 2.3.4 and Proposition 2.3.5, with µ = 1, s = r = 4/3, to obtain

V2(u) ≤ C

(∫
R2

(K(|x|)u2)4/3dx

)3/4(∫
R2

(K(|x|)u2)4/3dx

)3/4

≤ C‖u‖4
Erad

<∞,
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and i) is proved. Considering (un) ⊂ Wrad, such that un → u in Wrad, and using (2.17) it follows
that

|V2(un)− V2(u)| =
∫
R2

∫
R2

log(1 + |x− y|−1)K(|y|)K(|x|)
(
u2
n(y)u2

n(x)− u2(y)u2(x)
)
dydx

=

∫
R2

∫
R2

log(1 + |x− y|−1)K(|y|)K(|x|)u2
n(y)

(
u2
n(x)− u2(x)

)
dydx

+

∫
R2

∫
R2

log(1 + |x− y|−1)K(|y|)K(|x|)
(
u2
n(y)− u2(y)

)
u2(x)dydx

≤
∫
R2

∫
R2

K(|y|)K(|x|)u2
n(y) |un(x)− u(x)| |un(x) + u(x)|

|x− y|
dydx

+

∫
R2

∫
R2

K(|y|)K(|x|) |un(y)− u(y)| |un(y) + u(y)|u2(x)

|x− y|
dydx.

Combining the above estimate, Remark 2.3.4, Proposition 2.3.5, with µ = 1, s = r = 4/3 and
Hölder’s inequality, we get

|V2(un)− V2(u)| ≤ C‖un‖2
L8/3(R2;K4/3)‖un − u‖L8/3(R2;K4/3)‖un + u‖L8/3(R2;K4/3)

+ C‖un − u‖L8/3(R2;K4/3)‖un + u‖L8/3(R2;K4/3)‖u‖2
L8/3(R2;K4/3)

≤ C‖un − u‖L8/3(R2;K4/3)‖un + u‖L8/3(R2;K4/3)

×
(
‖un‖2

L8/3(R2;K4/3) + ‖u‖2
L8/3(R2;K4/3)

)
= on(1).

(2.18)

Hence V2 is continuous on Wrad. We can see that for any v ∈ Wrad the Gateaux derivative of V2

at u ∈ Wrad along v is given by

V ′2(u)v = 4

∫
R2

∫
R2

log(1 + |x− y|−1)K(|y|)u2(y)K(|x|)u(x)v(x)dydx.

By applying Proposition 2.3.5 with µ = 1 and s = r = 4/3, and using Remark 2.3.4 together
with Lemma 2.3.3 we derive that

|V ′2(u)v| ≤ 4

∫
R2

∫
R2

K(|y|)u2(y)K(|x|)|u(x)||v(x)|
|x− y|

dydx

≤ 4C

(∫
R2

(K(|x|)u2)4/3dx

)3/4(∫
R2

(K(|x|)|uv|)4/3dx

)3/4

≤ 4C‖u‖3
L8/3(R2;K4/3)‖v‖L8/3(R2;K4/3) ≤ C1‖u‖3

W‖v‖W .

(2.19)

Thus, we conclude that V ′2(u) ∈ W ′. Now, we will prove that V2 is continuously differentiable
on Wrad. To this, we observe that for any sequence un → u in Wrad and v ∈ Wrad, we have

V ′2(un)v − V ′2(u)v = 4

∫
R2

∫
R2

log(1 + |x− y|−1)K(|y|)K(|x|)
(
u2
n(y)un(x)− u2(y)u(x)

)
v(x)dydx

= 4

∫
R2

∫
R2

log(1 + |x− y|−1)K(|y|)K(|x|)u2
n(y)

(
un(x)− u(x)

)
v(x)dydx

+ 4

∫
R2

∫
R2

log(1 + |x− y|−1)K(|y|)K(|x|)
(
u2
n(y)− u2(y)

)
u(x)v(x)dydx.
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This identity, (2.17), Lemma 2.3.3, Proposition 2.3.5, with µ = 1, s = r = 4/3 and Hölder’s
inequality, implies that

|V ′2(un)v − V ′2(u)v|
4

≤
∫
R2

K(|y|)K(|x|)u2
n(y)|un(x)− u(x)||v(x)|
|x− y|

dydx

+

∫
R2

∫
R2

K(|y|)K(|x|)|un(y)− u(y)||un(y) + u(y)||u(x)||v(x)|
|x− y|

dydx

≤ C‖un‖2
L8/3(R2;K4/3)‖un − u‖L8/3(R2;K4/3)‖v‖L8/3(R2;K4/3)

+ C‖un − u‖L8/3(R2;K4/3)‖un + u‖L8/3(R2;K4/3)

× ‖u‖L8/3(R2;K4/3)‖v‖L8/3(R2;K4/3) = on(‖v‖W ).

Therefore, V2 is continuous differentiable on Wrad and so V2 ∈ C1(Wrad,R), which shows the
result.

2.3.2 Critical points of Iλ are weak solutions of (E)

In this subsection, inspired by the paper [16], we show that critical points of Iλ are weak
solutions of (E).

By (2.9), we see that the functional associated to equation (E) can be written as

Iλ(u) =
1

2
‖u‖2

E +
1

4
V1(u)− 1

4
V2(u)− λ

∫
R2

Q(|x|)F (u)dx.

From (1.15), Lemma 1.2.2, and Theorem 1.2.5 we have that
∫
R2 Q(|x|)F (u)dx is well-defined.

This together with Lemmas 2.3.2 and 2.3.6, infer that the functional Iλ is well-defined. Moreover,
by using standard arguments we see that Iλ ∈ C1(Wrad,R) with

I ′λ(u)v = 〈u, v〉E +
1

4
V ′1(u)v − 1

4
V ′2(u)v − λ

∫
R2

Q(|x|)f(u)vdx, for all v ∈ Wrad.

Inspired by [16, Lemma 5.1 ], we have the following version of the Principle of Symmetric
Criticality due to Palais [65].

Proposition 2.3.7. Assume (V ), (K), (Q), (1.1), and (f1). If u ∈ Wrad is a critical point of Iλ,
then u is a weak solution of equation (E).

Proof. Let u ∈ Wrad be fixed. We claim that the linear functional Tu : W → R defined by

Tu(w) := 〈u,w〉E +

∫
R2

∫
R2

log(|x− y|)K(|y|)u2(y)K(|x|)u(x)w(x)dydx− λ
∫
R2

Q(|x|)f(u)wdx

is well-defined and continuous on W . In the Proposition 1.2.8, it has been proven that∣∣∣∣∫
R2

Q(|x|)f(u)wdx

∣∣∣∣ ≤ C1‖w‖E ≤ C1‖w‖W .

Now, to ensure that Tu is well-defined and continuous on W , it is sufficient to analyze the
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term
G(w) :=

∫
R2

∫
R2

log(|x− y|)K(|y|)u2(y)K(|x|)u(x)w(x)dydx.

By Hölder’s inequality, (2.10) and (1.21) replacing γ by 2 and Q by K, we estimate

|G(w)| ≤
∫
R2

∫
R2

(
log(1 + |x|) + log(1 + |y|)

)
K(|y|)u2(y)K(|x|)u(x)w(x)dydx

≤ ‖u‖2
L2(R2;K)‖u‖W‖w‖W + ‖u‖2

W

∫
R2

K(|x|)|u(x)w(x)|dx ≤ C2‖w‖W .

Therefore |Tu(w)| ≤ C3‖w‖W , for all w ∈ W and the claim is proved.
Now, if u ∈ Wrad is a critical point of Iλ then Tu(w) = 0 for all w ∈ Wrad. The Riesz

Representation Theorem in the space W guarantees the existence of a unique u ∈ W such that
Tu(u) = ‖u‖2

W = ‖Tu‖2
W ′ , where W ′ denotes the dual space of W . Let O(2) be the group of

orthogonal transformations in R2. Then, by using a change of variables, for each w ∈ W we get

Tu(gw) = Tu(w) and ‖gw‖W = ‖w‖W , for all g ∈ O(2),

whence, applying with w = u, by uniqueness, gu = u, for all g ∈ O(2), which means that
u ∈ Wrad. Consequently, since Tu(w) = 0, for all w ∈ Wrad, we obtain ‖Tu‖W ′ = 0, which implies
that Tu(w) = 0, for all w ∈ W . This concludes the proof of the proposition.

2.4 Proof of Theorem 2.1.4

In what follows, we denote by Nλ the Nehari manifold associated to the functional Iλ, that
is,

Nλ := {u ∈ Wrad \ {0} : I ′λ(u)u = 0} .

We first prove that Nλ is not empty and that Iλ is bounded from below on Nλ.

Lemma 2.4.1. Assume (V ), (K), (Q), (1.1), (f1), (f̃3), and (f̃4). For each u ∈ Wrad \{0}, there
exists a unique t = t(u) > 0 such that tu ∈ Nλ. Furthermore, Iλ(u) > 0 for every u ∈ Nλ.

Proof. For each u ∈ Wrad \ {0}, defining γu(t) = Iλ(tu) for t > 0, we see that

tu ∈ Nλ ⇔ I ′λ(tu)(tu) = 0⇔ I ′λ(tu)u = 0⇔ γ′u(t) = 0. (2.20)

First, we shall prove that γu(t) > 0 for t > 0 sufficiently small and limt→∞ γu(t) = −∞. For this
purpose, from (1.15), given ε > 0, α > α0 and q > γ, one has∫

R2

Q(|x|)F (tu)dx ≤ ε

2
tγ
∫
R2

Q(|x|)|u|γdx+ C2t
q

∫
R2

Q(|x|)|u|qΦα,j0(tu)dx.
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This, together with Hölder’s inequality, (1.16), and Lemma 1.2.2, implies that

∫
R2

Q(|x|)F (tu)dx ≤ εC3t
γ‖u‖γE + C2t

q

(∫
R2

Q(|x|)|u|r1qdx
)1/r1 (∫

R2

Q(|x|)Φr2α,j0(tu)dx

)1/r2

≤ εC3t
γ‖u‖γE + C4t

q‖u‖qE
(∫

R2

Q(|x|)Φr2α‖tu‖2E ,j0

(
tu

‖tu‖E

)
dx

)1/r2

,

whenever r1, r2 > 1 satisfies 1/r1 + 1/r2 = 1. Choosing t1 > 0 sufficiently small such that
r2α‖t1u‖2

E < α2 and applying Theorem 1.2.5 we obtain∫
R2

Q(|x|)F (tu)dx ≤ εC3t
γ‖u‖γE + C5t

q‖u‖qE,

for all t ∈ (0, t1). Therefore, using that V1 ≥ 0 and Lemma 2.3.6, we infer that

γu(t) ≥ t2
[

1

2
‖u‖2

E −
C

4
t2‖u‖4

E − λεC3t
γ−2‖u‖γE − λC5t

q−2‖u‖qE
]
.

Assuming that γ > 2, since q > 2 we can get t̄ > 0 such that γu(t) > 0 for all t ∈ (0, t̄). If γ = 2,
we can choose 0 < ε < 1/(2λC3) and deduce that

γu(t) ≥
1

2
‖u‖2

E −
C

4
t2‖u‖4

E − λεC3‖u‖2
E − λC5t

q−2‖u‖qE > 0,

and so γu(t) > 0 for t > 0 sufficiently small.
To check that limt→∞ γu(t) = −∞, we note that by Remark 2.1.3 there exists C0 > 0 such

that F (s) ≥ C0s
r for all s ≥ 0. Since V2 ≥ 0, by Lemma 2.3.2 we get

γu(t) ≤
t2

2
‖u‖2

E +
1

4
V1(tu)− λC0t

r

∫
R2

Q(|x|)|u|rdx

≤ t2

2
‖u‖2

E +
1

2
t4‖u‖2

L2(R2;Q)‖u‖2
W − λC0t

r

∫
R2

Q(|x|)|u|rdx,

which implies that limt→∞ γu(t) = −∞, since r > 4. As a consequence, there exists t = t(u) > 0

with γ(t(u)) = Iλ(t(u)u) > 0 such that t(u)u ∈ Nλ. We claim that t(u) is unique. Indeed, by
Lemmas 2.3.2 and 2.3.6 it follows that

V ′1(tu)u = 4

∫
R2

∫
R2

log(1 + |x− y|)K(|y|)(tu)2(y)K(|x|)(tu)(x)u(x)dydx = 4t3V1(u)

and

V ′2(tu)u = 4

∫
R2

∫
R2

log(1 + |x− y|−1)K(|y|)(tu)2(y)K(|x|)(tu)(x)u(x)dydx = 4t3V2(u).
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Computing the derivative, we get

γ′u(t) = t‖u‖2
E +

1

4
V ′1(tu)u− 1

4
V ′1(tu)u− λ

∫
R2

Q(|x|)f(tu)udx

= t‖u‖2
E + t3V1(u)− t3V2(u)− λ

∫
R2

Q(|x|)f(tu)udx

= t3
(

1

t2
‖u‖2

E + V1(u)− V2(u)− λ
∫
R2

Q(|x|)f(tu)

(tu)3
u4dx

)
.

By hypothesis (f̃4), the function t 7→ f(t)/t3 is increasing for t > 0 and hence γ′u(t)/t3 is
decreasing. Suppose by contradiction that there are t2 > t1 > 0 such that t1u, t2u ∈ Nλ. Then,
it follows from (2.20) that γ′u(t1) = γ′u(t2) = 0 and using that γ′u(t)/t3 is decreasing we get

0 =
γ′u(t1)

t31
>
γ′u(t2)

t32
= 0,

which is a contradiction.
Lastly, we prove that Iλ(u) > 0 for any u ∈ Nλ. In fact, since for all u ∈ Nλ there

exists a unique t > 0 such that tu ∈ Nλ and Iλ(tu) > 0. By uniqueness, t = 1 and hence
Iλ(u) = Iλ(tu) > 0 and this completes the proof.

Remark 2.4.2. As a byproduct of the above proof, we see that the point tu which projects u in
the Nehari manifold is exactly the maximum point of γu. Since γu > 0 near the origin and it
has a unique critical point, we conclude that γ′u is positive in (0, tu) and negative in (tu,∞). In
particular, we have that tu ∈ (0, 1] whenever γ′u(1) = I ′λ(u)u ≤ 0.

In view of Lemma 2.4.1 the value

cλ := inf
u∈Nλ

Iλ(u) (2.21)

is well-defined. Now, we will prove that a minimizing sequence for cλ is bounded in the norm
‖ · ‖E.

Lemma 2.4.3. Assume (V ), (K), (Q), (1.1), and (f̃2). If (un) ⊂ Nλ is a minimizing sequence
for cλ, then (un) is bounded in the norm ‖ · ‖E.

Proof. Let (un) ⊂ Nλ be a minimizing sequence for cλ. Thus Iλ(un) = cλ+on(1) and I ′λ(un)un =

0. Using this with the fact that V ′1(un)un = 4V1(un) and V ′2(un)un = 4V2(un) (see Lemmas 2.3.2
and 2.3.6), and (f̃2) we have

cλ + on(1) = Iλ(un)− 1

4
I ′λ(un)un

=
1

4
‖un‖2

E +
1

4
V1(un)− 1

4
V2(un) + λ

∫
R2

Q(|x|)
(

1

4
f(un)un − F (un)

)
dx

− 1

16
V ′1(un)un +

1

16
V ′2(un)un

=
1

4
‖un‖2

E + λ

∫
R2

Q(|x|)
(

1

4
f(un)un − F (un)

)
dx ≥ 1

4
‖un‖2

E,

(2.22)
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for large n ∈ N and completes the proof.

In the next result we prove that sequences in Nλ cannot converge to 0.

Lemma 2.4.4. Assume (V ), (K), (Q), (1.1), and (f1). Then there exists a constant C > 0 such
that

0 < C ≤ ‖u‖E, for all u ∈ Nλ.

Proof. Otherwise, there exists a sequence (un) ⊂ Nλ such that un → 0 strongly in E. Since

‖un‖2
E +

1

4
V ′1(un)un −

1

4
V ′2(un)un − λ

∫
R2

Q(|x|)f(un)undx = 0,

and V ′1(un)un = 4V1(un) ≥ 0 (see Lemma 2.3.2), there holds

‖un‖2
E −

1

4
V ′2(un)un − λ

∫
R2

Q(|x|)f(un)undx ≤ 0.

Combining (2.19) and the continuous embedding in Lemma 2.3.3, one has

|V ′2(un)un| ≤ 4C‖un‖3
L8/3(R2;K4/3)‖un‖L8/3(R2;K4/3) = on(1) (2.23)

and hence
‖un‖2

E + on(1) ≤ λ

∫
R2

Q(|x|)f(un)undx. (2.24)

According to (1.14), with q > γ, Hölder’s inequality with exponents 1/r1 + 1/r2 = 1, (1.16) and
Lemma 1.2.2, we have∫

R2

Q(|x|)f(un)undx ≤ ε

∫
R2

Q(|x|)|un|γdx

+ C1

(∫
R2

Q(|x|)|un|r1qdx
)1/r1 (∫

R2

Q(|x|)Φr2α,j0(un)dx

)1/r2

≤ εC2‖un‖γE + C3‖un‖qE
(∫

R2

Q(|x|)Φr2α‖un‖2E ,j0

(
un
‖un‖E

)
dx

)1/r2

.

From the convergence un → 0 in Erad, we get r2α‖un‖2
E < α2 for large n ∈ N. This, Proposi-

tion 1.2.5, (2.24) and the last estimate, implies that

‖un‖2
E + on(1) ≤ λεC2‖un‖γE + λC4‖un‖qE.

Taking 0 < ε < 1/(λC2), case γ = 2 and using that q > γ ≥ 2, the above inequality contradicts
the fact that un → 0 strongly in Erad and we finish the proof.

In order, we will need the following compactnesses result:

Lemma 2.4.5. Assume (V ), (K), (Q), (1.1), (f1), and (f̃2). If (un) ⊂ Nλ is a minimizing
sequence for cλ < α2/4α0 such that un ⇀ u in Erad, then:
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i) Q(|x|)f(un)un → Q(|x|)f(u)u in L1(R2);

ii) Q(|x|)F (un)→ Q(|x|)F (u) in L1(R2).

Proof. To prove i), for every R > 0 we can write∫
R2

Q(|x|)(f(un)un − f(u)u)dx = JR1 (n) + JR2 (n), (2.25)

where

JR1 (n) :=

∫
BR

Q(|x|)(f(un)un − f(u)u)dx and JR2 (n) :=

∫
BcR

Q(|x|)(f(un)un − f(u)u)dx.

First we check that, for all R > 0 fixed we have

lim
n→∞

JR1 (n) = 0. (2.26)

In fact, for any ε > 0, according to Egoroff’s Theorem there exists a measurable set Ω ⊂ BR

with |Ω| < ε such that un(x)→ u(x) uniformly in BR \ Ω, and consequently

|JR1 (n)| ≤
∫

Ω

Q(|x|)f(un)undx+

∫
Ω

Q(|x|)f(u)udx+ on(1). (2.27)

From (1.14), for q ≥ γ we see that∫
Ω

Q(|x|)f(un)undx ≤ ε

∫
Ω

Q(|x|)|un|γdx+ C1

∫
Ω

Q(|x|)|un|qΦα,j0(un)dx. (2.28)

By (3.14) and the inequality cλ < α2/4α0 , one has

lim
n→∞

‖un‖2
E ≤ 4cλ <

α2

α0

.

Thus, we can obtain r1 > 1, α > α0 and 0 < β < α2 such that r1α‖un‖2
E ≤ β < α2, for large n ∈

N. Therefore, by (1.16), Lemma 1.2.2, Hölder’s inequality with exponents 1/r1 +1/r2 +1/r3 = 1

such that r2 ≥ γ and Proposition 1.2.5, we get∫
Ω

Q(|x|)|un|qΦα,j0(un)dx ≤
(∫

Ω

Q(|x|)Φr1α‖un‖2E ,j0

(
un
‖un‖E

)
dx

)1/r1

×
(∫

Ω

Q(|x|)|un|r2qdx
)1/r2 (∫

Ω

Q(|x|)dx
)1/r3

≤ C2

(∫
Ω

Q(|x|)dx
)1/r3

.

(2.29)

From hypothesis (Q), there exists C3 > 0 such that Q(|x|) ≤ C3|x|b0 , for all 0 < |x| ≤ R. Since
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b0 > −2 we can choose q1 > 1 with 1/q1 + 1/q2 = 1 such that q1b0 > −2 and hence

∫
Ω

Q(|x|)dx ≤ C3

(∫
Ω

|x|q1b0dx
)1/q1

|Ω|1/q2 ≤ C4ε
1/q2 .

This combined with (2.28) and (2.29) implies∫
Ω

Q(|x|)f(un)undx ≤ C5ε
1/q2r3 .

Similarly ∫
Ω

Q(|x|)f(u)udx ≤ C5ε
1/q2r3

and hence (2.26) is true.
Next, we will prove that for any ε > 0 there is R > 0 such that for all n large

∣∣JR2 (n)
∣∣ < ε. (2.30)

In fact, since (un) is bounded and r1α‖un‖2
E ≤ β < α2, for large n ∈ N, from (1.14), for q ≥ γ,

Hölder’s inequality, (1.16), Lemma 1.2.2, and Theorem 1.2.5 it follows that∫
BcR

Q(|x|)f(un)undx ≤ ε

∫
BcR

Q(|x|)|un|γdx+ C6

∫
BcR

Q(|x|)|un|qΦα,j0(un)dx

≤ C7ε+ C6

(∫
BcR

Q(|x|)|un|r2qdx

)1/r2

×

(∫
BcR

Q(|x|)Φr1α‖un‖2E ,j0

(
un
‖un‖E

)
dx

)1/r1

≤ C7ε+ C8

(∫
BcR

Q(|x|)|un|r2qdx

)1/r2

,

for all n ∈ N. Invoking Lemma 1.2.2, there holds

lim sup
n→∞

∫
BcR

Q(|x|)f(un)undx ≤ C7ε+ C8

(∫
BcR

Q(|x|)|u|r2qdx

)1/r2

< C7ε+ C8ε,

for R > 0 large enough. A similar argument provides
∫
BcR
Q(|x|)f(u)udx < ε. Hence (2.30)

holds. By using estimates (2.26) and (2.30), from (2.25) we infer that

lim sup
n→∞

∣∣∣∣∫
R2

Q(|x|)(f(un)un − f(u)u)dx

∣∣∣∣ ≤ ε.

As this holds for any ε > 0, the desired result follows.
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To prove ii), note that by item i), there exists g ∈ L1(R2) such that

F (un) ≤ 1

θ
f(un)un ≤

1

θ
g, a.e. in R2,

where we used (f̃2). Now, since F (un)→ F (u) a.e. in R2, we can apply the dominated conver-
gence theorem to get ii), proving the lemma.

The next result guarantees that the weak limit of a minimizing sequence for cλ is nonzero.

Lemma 2.4.6. Assume (V ), (K), (Q), (1.1), (f1), and (f̃2). If (un) ⊂ Nλ is a minimizing
sequence for cλ < α2/4α0 such that un ⇀ u in Erad, then u 6= 0.

Proof. Suppose by contradiction that u = 0. Since un ⇀ u in Erad, we can apply Lemma 2.3.3
in (2.23) to get V ′2(un)un = on(1). Moreover, from Lemma 2.4.5, it follows that∫

R2

Q(|x|)f(un)undx = on(1).

Now using that

‖un‖2
E +

1

4
V ′1(un)un =

1

4
V ′2(un)un + λ

∫
R2

Q(|x|)f(un)undx, (2.31)

recalling that V ′1(un)un = 4V1(un) ≥ 0, we obtain that un → 0 which contradicts Lemma 2.4.4.

Now, we state a boundedness result.

Lemma 2.4.7. Assume (V ), (K), (Q), (1.1), (f1), and (f̃2). If (un) ⊂ Nλ is a minimizing
sequence for cλ < α2/4α0 then, up to a subsequence, V ′1(un)un ≤ C, for all n ∈ N.

Proof. By Lemma 2.4.3 the sequence (un) is bounded in the norm ‖ · ‖E. Since I ′λ(un)un = 0,
we obtain

1

4
V ′1(un)un ≤ ‖un‖2

E +
1

4
V ′1(un)un =

1

4
V ′2(un)un + λ

∫
R2

Q(|x|)f(un)undx. (2.32)

From Lemma 2.3.6, we see that

V ′2(un)un = 4V2(un) ≤ 4C‖un‖2
E ≤ C1,

for all n ∈ N. Next we will estimate the integral on the right-hand side of (2.32). To do this,
we observe that since (un) is bounded in the norm ‖ · ‖E, then un ⇀ u in Erad. Therefore, using
that cλ < α2/4α0, we can apply Lemma 2.4.5 to get∫

R2

Q(|x|)f(un)undx ≤ C2,

for all n ∈ N, concluding the proof.
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Next, we shall obtain a boundedness in the norm of W .

Lemma 2.4.8. Assume (V ), (K), (Q), (1.1), (f1), (f̃2), and (f̃3). If (un) ⊂ Nλ is a minimizing
sequence for cλ < α2/4α0, then (un) is bounded in the norm ‖ · ‖W .

Proof. By Lemmas 2.4.3 and 2.4.6, we can assume that un ⇀ u weakly in Erad \ {0}. Since

‖un‖2
W = ‖un‖2

E +

∫
R2

log(1 + |x|)K(|x|)u2
ndx,

it remains to calculate
∫
R2 log(1 + |x|)K(|x|)u2

ndx. Note that for x ∈ R2 \ B2R and y ∈ BR, we
obtain

1 + |x− y| ≥ 1 + |x| − |y| ≥ 1 + |x| −R ≥ 1 +
|x|
2
≥
√

1 + |x|. (2.33)

From Lemma 2.3.2, we may then estimate

V ′1(un)un ≥ 4

∫
R2\B2R

∫
BR

log(1 + |x− y|)K(|y|)u2
n(y)K(|x|)u2

n(x)dydx

≥ 2

∫
R2\B2R

∫
BR

log(1 + |x|)K(|y|)u2
n(y)K(|x|)u2

n(x)dydx

= 2

(∫
BR

K(|y|)u2
n(y)dy

)(∫
R2\B2R

log(1 + |x|)K(|x|)u2
n(x)dx

)
.

(2.34)

In view of the convergence un ⇀ u in Erad \ {0}, by Lemma 1.2.2 we see that K(|y|)u2
n(y) →

K(|y|)u2(y) a.e. in BR and so we can use Fatou’s Lemma to obtain δ > 0 such that

lim inf
n→∞

∫
BR

K(|y|)u2
n(y)dy ≥

∫
BR

K(|y|)u2(y)dy > δ > 0. (2.35)

On the other hand, recalling that log(1 + |x|) ≤ 1 + |x|, there holds∫
B2R

log(1 + |x|)K(|x|)u2
n(x)dx ≤

∫
B2R

(1 + |x|)K(|x|)u2
n(x)dx ≤ C1‖un‖2

E ≤ C2.

This, combined with (2.34) and (2.35), yields

lim inf
n→∞

V ′1(un)un ≥ 2δ

(∫
R2

log(1 + |x|)K(|x|)u2
n(x)dx−

∫
B2R

log(1 + |x|)K(|x|)u2
n(x)dx

)
≥ 2δ

(∫
R2

log(1 + |x|)K(|x|)u2
n(x)dx− C2

)
.

Therefore, by Lemma 2.4.7 we conclude that (un) is bounded in the norm ‖ · ‖W , proving the
desired result.

The next result is an estimate from above to cλ.

Lemma 2.4.9. Assume (V ), (K), (Q), (1.1), and (f̃2) − (f̃4). If λ satisfies (2.3), then cλ <

α2/4α0.
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Proof. First, we are going to consider a function ϕ ∈ C∞0,rad(R2), given by ϕ(x) = 1 if |x| ≤ 1/2,
ϕ(x) = 0 if |x| ≥ 1, 0 ≤ ϕ(x) ≤ 1 for all x ∈ R2 and |∇ϕ(x)| ≤ 2 for all x ∈ R2. By
assumption (f̃2) and Remark 2.1.3, one deduces that f(s)s ≥ θF (s) ≥ θC0s

r. By the fact that
V ′1(ϕ)ϕ = 4V1(ϕ), V ′2(ϕ)ϕ = 4V2(ϕ) ≥ 0 and λ ≥ λ0/(θC0) (see (2.3) for the definition of λ0),
there holds

I ′λ(ϕ)ϕ ≤
∫
B1

[
|∇ϕ|2 + V (|x|)ϕ2

]
dx+

∫
B1

∫
B1

log(1 + |x− y|)K(|y|)ϕ2(y)K(|x|)ϕ2(x)dydx

− λ
∫
B1

Q(|x|)f(ϕ)ϕdx < 4π + ‖V ‖L1(B1) + log 3‖K‖2
L1(B1) − λ0‖Q‖L1(B1/2) = 0

where we used that log(1 + |x− y|) ≤ log 3 in B1 and the definition of λ0. In particular∫
B1

[
|∇ϕ|2 + V (|x|)ϕ2

]
dx < λ0‖Q‖L1(B1/2) − log 3‖K‖2

L1(B1). (2.36)

From Lemma 2.4.1, since I ′λ(ϕ)ϕ ≤ 0 there exists t ∈ (0, 1] such that tϕ ∈ Nλ. Combining this,
(2.36) and the hypothesis on λ, a simple computation shows that for all t ∈ (0, 1]

cλ ≤ Iλ(tϕ) ≤
[
t2

2

(∫
B1

[
|∇ϕ|2 + V (|x|)ϕ2

]
dx

)
+
t4 log 3

4
‖K‖2

L1(B1) − λtr‖Q‖L1(B1/2)

]
<

[
t2
(
λ0‖Q‖L1(B1/2) −

log 3

2
‖K‖2

L1(B1)

)
+
t4 log 3

4
‖K‖2

L1(B1) − λtr‖Q‖L1(B1/2)

]
.

Since t4 log 3
4
≤ t2 log 3

2
for all t ∈ (0, 1], we get

cλ < ‖Q‖L1(B1/2) max
t>0

[
λ0t

2 − λtr
]
.

By carrying out a straightforward computation, we conclude that

cλ < ‖Q‖L1(B1/2)

λ
r
r−2

0

λ
2
r−2

((
2

r

) 2
r−2

−
(

2

r

) r
r−2

)
≤ α2/4α0,

for any

λ ≥ λ̃ =

4α0‖Q‖L1(B1/2)λ
r
r−2

0

α2

((
2

r

) 2
r−2

−
(

2

r

) r
r−2

) r−2
2

.

Therefore, the estimate holds for all λ ≥ λ̄ := max{λ0/(θC0), λ̃} and the proof is complete.

Now, we are ready to present the proof of Theorem 2.1.4.

Proof of Theorem 2.1.4. First, observe that without loss of generality, we can assume that f(s) =

0 for s ≤ 0 and the above results are valid also for this modified nonlinearity, again denoted by
f . For λ as in hypothesis (2.3), it follows from Lemma 2.4.9 that cλ < α2/4α0. Let (un) ⊂ Nλ be
a minimizing sequence for cλ. By Lemma 2.4.3 we have that un ⇀ u in Erad. By Lemmas 2.4.6
and 3.3.4 we conclude that u 6= 0 and (un) is bounded in the norm ‖ · ‖W , respectively. Thus
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un ⇀ v in Wrad and hence by Lemma 1.2.2 and Remark 2.3.1, we have that un(x) → u(x) and
un(x)→ v(x) a.e. in R2 and consequently u = v ∈ Wrad.

Our next task is to show that there exists t > 0 such that tu ∈ Nλ and Iλ(tu) = cλ for to
conclude that tu is a point critical of Iλ, thanks to [19, Proposition 3.1] and [45, Lemma 2.5].
Since I ′λ(un)un = 0, then

‖un‖2
E +

1

4
V ′1(un)un −

1

4
V ′2(un)un − λ

∫
R2

Q(|x|)f(un)undx = 0. (2.37)

We claim that
lim inf
n→∞

V ′1(un)un ≥ V ′1(u)u. (2.38)

In fact, for any R > 0 we see that

V ′1(un)un ≥ 4

∫
BR

∫
BR

log(1 + |x− y|)K(|y|)u2(y)K(|x|)u2(x)dydx+ 4Dn(R), (2.39)

where

Dn :=

∫
BR

∫
BR

log(1 + |x− y|)K(|y|)K(|x|)
(
u2
n(y)u2

n(x)− u2(y)u2(x)
)
dydx.

On the other hand, there exists C1 = C1(R) such that log(1 + |x− y|) ≤ C1 in BR. By doing a
straightforward computation and Remark 2.3.1, one has

|Dn| ≤ C1

∫
BR

∫
BR

K(|y|)K(|x|)u2
n(y)

(
u2
n(x)− u2(x)

)
dydx

+ C1

∫
BR

∫
BR

K(|y|)K(|x|)
(
u2
n(y)− u2(y)

)
u2(x)dydx

≤ C1‖un‖2
L2(R2;K)‖un − u‖L2(R2;K)‖un + u‖L2(R2;K)

+ C1‖un − u‖L2(R2;K)‖un + u‖L2(R2;K)‖u‖2
L2(R2;K) = on(1),

which combined with (2.4) implies that

lim inf
n→∞

V ′1(un)un ≥ 4

∫
BR

∫
BR

log(1 + |x− y|)K(|y|)u2(y)K(|x|)u2(x)dydx.

Considering a sequence Rm → ∞ and applying the monotone convergence theorem to the
sequence of functions fm(x) =

(∫
BRm

log(1 + |x− y|)K(|y|)u2(y)K(|x|)u2(x)dy
)
χBRm together

with Lemma 2.3.2 to get

lim
R→∞

4

∫
BR

∫
BR

log(1 + |x− y|)K(|y|)u2(y)K(|x|)u2(x)dydx = 4V1(u) = V ′1(u)u,

and we conclude that the claim holds true. Moreover, using the fact that V ′2(un)un = 4V2(un)
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and V ′2(u)u = 4V2(u) together with Remark 2.3.4 and (2.18) we get

lim
n→∞

V ′2(un)un = V ′2(u)u.

Thus, by (2.37), (2.38), Lemma 2.4.5 and using that the norm is weakly lower semicontinuous,
we obtain

I ′λ(u)u = ‖u‖2
E +

1

4
V ′1(u)u− 1

4
V ′2(u)u− λ

∫
R2

Q(|x|)f(u)udx ≤ 0.

This inequality implies that there exists t ∈ (0, 1] such that tu ∈ Nλ (see Remark 2.4.2).
Consequently,

cλ ≤ Iλ(tu) = Iλ(tu)− 1

4
I ′λ(tu)(tu) =

1

4
‖tu‖2

E + λ

∫
R2

Q(|x|)
(

1

4
f(tu)(tu)− F (tu)

)
dx. (2.40)

On the other hand, by hypothesis (f̃3) the function 1
4
f(s)s − F (s) is increasing in (0,∞) (see

[8, Lemma 2.4]) and hence∫
R2

Q(|x|)
(

1

4
f(tu)(tu)− F (tu)

)
dx =

∫
{u>0}

Q(|x|)
(

1

4
f(tu)(tu)− F (tu)

)
dx,

≤
∫
{u>0}

Q(|x|)
(

1

4
f(u)u− F (u)

)
dx

=

∫
R2

Q(|x|)
(

1

4
f(u)u− F (u)

)
dx.

Combining (3.14), (3.19), Lemma 2.4.5, and the fact that the norm is weakly lower semicontin-
uous, implies that

cλ ≤ Iλ(tu) ≤ lim inf
n→∞

[
1

4
‖un‖2

E + λ

∫
R2

Q(|x|)
(

1

4
f(un)un − F (un)

)
dx

]
= lim inf

n→∞
Iλ(un) = cλ.

Therefore, cλ = Iλ(tu) and this completes the proof of Theorem 2.1.4.

2.5 Proof of Theorem 2.1.5

This section is devoted to the proof of Theorem 2.1.5. See that, as an application of
Lemma 1.3.5 we have the following regularity result.

Lemma 2.5.1. Assume (V ), (K), (Q), and (1.1). Suppose that uλ is a weak solution of (E),
then uλ ∈ C σ̃

loc(R2) for some σ̃ ∈ (0, 1).

Proof. Let R > 0 and define v(x) := uλ(x)−uλ(R) with x ∈ BR. By Remark 2.2.2, v ∈ H1
0 (BR)

and v is a weak solution of problem (3.2.3) with

h(x, v) = λQ(|x|)f(v + uλ(R))− V (|x|)(v + uλ(R))−
[
log ∗Ku2

λ

]
(x)K(|x|)(v + uλ(R)).
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Given x ∈ BR, we estimate

∣∣[log ∗Ku2
λ

]
(x)
∣∣ ≤ ∫

|x−y|<1

|log(|x− y|)|K(|y|)u2
λ(y)dy +

∫
|x−y|≥1

log(|x− y|)K(|y|)u2
λ(y)dy.

From Hölder’s inequality and Remark 2.3.4 we get C1 > 0 such that∫
|x−y|<1

|log(|x− y|)|K(|y|)u2
λ(y)dy ≤

(∫
|x−y|<1

|log(|x− y|)|4 dy
)1/4

×
(∫

R2

K4/3(|y|)|uλ(y)|8/3dy
)3/4

≤ C1‖uλ‖2
W =: C2.

On the other hand, using that log |x − y| ≤ log(|x| + |y|) ≤ log ((1 + |x|)(1 + |y|)) = log(1 +

|x|) + log(1 + |y|) we get∫
|x−y|≥1

log(|x− y|)K(|y|)u2
λ(y)dy ≤

∫
R2

(
log(1 + |x|) + log(1 + |y|)

)
K(|y|)u2

λ(y)dy

≤ log(1 + |x|)
∫
R2

K(|y|)u2
λ(y)dy

+

∫
R2

log(1 + |y|)K(|y|)u2
λ(y)dy.

Now using that log(1 + |x|) ≤ C3 in BR and the continuous embedding Wrad ↪→ L2(R2;K), we
obtain ∣∣[log ∗Ku2

λ

]
(x)
∣∣ ≤ C4 + C5‖uλ‖2

W =: C6. (2.41)

By the assumptions (V ), (K) and (Q), there are constants C7, C8 > 0 and C9 > 0 that depend
on R such that V (|x|) ≤ C7|x|a0 , K(|x|) ≤ C8|x|l0 and Q(|x|) ≤ C9|x|b0 , for every 0 < |x| ≤ R.
Consequently, considering d0 := min {a0, l0, b0, } > −2, the estimate above together with (1.1)
and the continuity of f(s), we can find C10, C11 > 0 such that

|h(x, v)| ≤ C10|x|d0

(
f(v + uλ(R)) + (v + uλ(R)

)
≤ C11|x|d0eαv

2

, for a.e. x ∈ BR.

It follows from (2.41) that [log ∗Ku2
λ] (x) ∈ L1(BR) and hence h(x, v) is measurable. This and

the above estimate, combined with Lemma 1.3.5, imply that v ∈ C σ̃(BR) for some σ̃ ∈ (0, 1)

and so uλ = v + uλ(R) ∈ C σ̃(BR) and this completes the proof.

Now we are ready to prove Theorem 2.1.5.

Proof of Theorem 2.1.5. Let uλ be the weak solution obtained in Theorem 2.1.4. By Lemma 2.5.1,
uλ ∈ C σ̃

loc(R2), for some σ̃ ∈ (0, 1). Taking into account that the potentialK ∈ Cσ
loc(R2), for some

σ ∈ (0, 1) we see that Ku2
λ is locally Hölder continuous. Since φuλ is the Newtonian potential of

Ku2
λ, by elliptic regularity (see [47, Lemma 4.2]) we have that φuλ ∈ C2(R2) and ∆φuλ = Ku2

λ,
in BR for any R > 0. Therefore, the pair (uλ, φuλ) is a weak solution of system (S) and this
finishes the proof.
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Chapter 3

On a planar Hartree-Fock type system

This chapter is devoted to study the existence of solutions for a class of Hartree-Fock type
system in the two dimensional Euclidean space. Our approach is variation and based on a
minimization technique in the Nehari manifold. The main steps in the prove are some trick
estimates from the sign-changing logarithm potential in an appropriate subspace of H1(R2).
This chapter is in [29].

3.1 Main results

Here, we are concerned with the existence of solutions to the following class of planar Hartree-
Fock system 

−∆u+ (1 + φ)u = |u|2p−2u+ β|v|p|u|p−2u, in R2,

−∆v + (1 + φ)v = |v|2p−2v + β|u|p|v|p−2v, in R2,

∆φ = 2π(u2 + v2), in R2,

(Sβ)

where 2 ≤ p <∞ and β ≥ 0 is a real parameter.
In higher dimension, system (Sβ) appears in quantum mechanics model describing the nonrel-

ativistic electrons interacting with static nuclei via Coulomb forces. For more details on Hartree
and Hartree-Fock approximations, see [40, 51,53] and the references therein.

Our motivation to study (Sβ), comes from the study of L2− normalized solutions of planar
coupled Schrödinger-Poisson equations developed in the works [8,35,36,78]. In fact, system (Sβ)
has a slight relation with the couple Schrödinger-Poisson system{

−∆u+ (1 + φ)u = |u|2p−2u, in Rn,

−∆φ = cnu
2, in Rn,

(SP)

where cn = 2π if n = 2 and cn = n(n−2)ωn if n ≥ 3, with ωn denoting the volume of the unit ball
in Rn, which has been object of intense study in recent years. For instance, if n = 3 then system
of the type (SP) appeared in semiconductor theory and has been studied in [20, 21, 33, 37, 74],
and many others.

In the planar case n = 2, if the pair (u, φ) is a solution from the Schrödinger–Poisson system
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(SP) then the triple (u, 0, φ) is a semi-trivial solution of system (Sβ).
An essential ingredient to solve (Sβ) in dimension 3 consists in to use the Lax-Milgram

Theorem to solve the third equation and obtain φ as the convolution φ = Γ3 ∗4π(u2 +v2), where
Γ3 is the fundamental solution of the Laplacian in R3, namely Γ3(x) = (−1/4π)|x|−1 (see [40]).

In dimension n = 2, we can not make use of the same idea and there are less results available.
However, given (u, v) ∈ W̃ × W̃ , where W̃ is an appropriated subspace of H1(R2), we can define
at least formally the logarithmic potential

φu,v(x) :=

∫
R2

log(|x− y|)
(
u2(y) + v2(y)

)
dy, (3.1)

and so we are lead to consider the following auxiliary system with the nonlocal term φu,v{
−∆u+ (1 + φu,v)u = |u|2p−2u+ β|v|p|u|p−2u, in R2,

−∆v + (1 + φu,v)v = |v|2p−2v + β|u|p|v|p−2v, in R2,
(Aβ)

and after obtaining a weak solution, we can use regularity theory to prove that the triple
(u, v, φu,v) weakly solves (Sβ).

In fact, systems involving this kind of power nonlinearities have motivated a large amount of
works (see for instance [10,43,56,76] and references therein).

When dealing with (Aβ) via variational methods, the first difficulty occurs due to the loga-
rithmic kernel, which is unbounded and has indefinite sign. It turns out that the formal energy
functional associated to the difficult equation is not well defined in H1(R2). To overcome this,
Stubbe [78] (see also Cingolani-Weth [36]) introduced a new space which is appropriated to deal
with the nonlocal part of the energy functional, namely

T (u, v) :=

∫
R2

φu,v
(
u2(x) + v2(x)

)
dx =

∫
R2

∫
R2

log (|x− y|)
(
u2(y) + v2(y)

) (
u2(x) + v2(x)

)
dydx.

Precisely, inspired by the paper [78], we shall addresses the a variational frame work to deal with
(Aβ), within the subspace of H1(R2) defined by

W̃ :=

{
u ∈ H1(R2) :

∫
R2

log(1 + |x|)u2dx <∞
}
,

endowed with the norm

‖u‖W̃ :=

(
‖u‖2

H1(R2) +

∫
R2

log(1 + |x|)u2dx

)1/2

.

We observe that (Aβ) has, at least formally, a variational structure given by an associated energy
functional defined in W̃

Iβ(u, v) =
1

2

(
‖u‖2

H1(R) + ‖v‖2
H1(R)

)
+

1

4
T (u, v)− 1

2p

(
‖u‖2p

L2p(R2) + ‖v‖2p
L2p(R2) + 2β

∫
R2

|uv|pdx
)
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with derivative given by

I ′β(u, v)(ϕ, ψ) =

∫
R2

(∇u∇ϕ+ uϕ+∇v∇ψ + vψ) dx+

∫
R2

φu,v (uϕ+ vψ) dx

−
∫
R2

(
|u|2p−2uϕ+ |v|2p−2vψ

)
dx− β

∫
R2

(
|v|p|u|p−2uϕ+ |u|p|v|p−2vψ

)
dx.

Actually, it is necessary to guarantee that the nonlocal term T (u, v) is well defined. Naturally,
we have the continuous Sobolev embeddings

W̃ ↪→ H1(R2) ↪→ Lr(R2), for all 2 ≤ q <∞. (3.2)

We say that a pair (u, v) ∈ W̃ × W̃ is a weak solution to system (Aβ) if for all ϕ, ψ ∈ C∞0 (R2),
it holds that∫

R2

(∇u∇ϕ+ uϕ) dx+

∫
R2

φu,vuϕdx =

∫
R2

[|u|2p−2u+ β|v|p|u|p−2u]ϕdx,

and ∫
R2

(∇v∇ψ + vψ) dx+

∫
R2

φu,vvψdx =

∫
R2

[|v|2p−2v + β|u|p|v|p−2v]ψdx.

Therefore, critical points of Iβ are weak solutions of (Aβ).
In order to overcome the loss of compactness, we will work reduce ourselves to the radial

setting

W̃rad :=

{
u ∈ H1

rad(R2) :

∫
R2

log(1 + |x|)u2dx <∞
}
,

and we have the compact embedding (see [77])

W̃rad ↪→ H1
rad(R2) ↪→ Lq(R2), for all 2 < q <∞. (3.3)

We also will prove that the functional Iβ restricted to W̃rad × W̃rad is well defined and critical
points of Iβ are weak solutions of (Aβ).

Our main interest here is on the least energy solutions to systems (Aβ). Precisely, let us
denote by N the Nehari manifold associated to the functional Iβ, namely

N :=
{

(u, v) ∈
(
W̃rad × W̃rad

)
\ {0, 0} : Γβ(u, v) = 0

}
,

where Γβ(u, v) := I ′β(u, v)(u, v), i.e.,

Γβ(u, v) =
(
‖u‖2

H1(R2) + ‖v‖2
H1(R2)

)
+ T (u, v)−

(
‖u‖2p

L2p(R2) + ‖v‖2p
L2p(R2) + 2β

∫
R2

|uv|pdx
)
.

We shall see that the least energy level

cβ := inf
(u,v)∈N

Iβ(u, v),
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is well defined (see Lemma 3.3.1) and so we will consider solutions that are minimizers of cβ,
also called least energy solutions.

In this context we now formulate our main result, concerning systems (Aβ) and (Sβ).

Theorem 3.1.1. Assume that 2 ≤ p < ∞. Then, for any β ≥ 0 the coupled system (Aβ)
possesses a least energy solution (u, v) ∈ W̃rad × W̃rad with u, v ≥ 0 satisfying the following
statements:

(i) for every β > 2p−1 − 1 the pair (u, v) is a vector solution, i.e., u 6= 0, v 6= 0 and in this
case u, v > 0;

(ii) for 0 ≤ β < 2p−1 − 1 the least energy solution is semi-trivial, i.e., u = 0 or v = 0.

Furthermore, the triple (u, v, φu,v) is a weak solution of system (Sβ).

We emphasize here that the explicitly value of β obtained in item (i) of Theorem 3.1.1 is the
same one obtained in [56].

To prove Theorem 3.1.1 we adopt here some arguments introduced in [40], where the authors
have studied the system (Sβ) in dimension 3, and [36,78], where the couple Schrödinger-Poisson
system of the type (SP) was consider.

This chapter is organized as follows: In Section 3.2, we study the nonlocal term and establish
the functional setting in which the problem will be posed, as well as some regularity properties.
The final section is devoted to the proof of our existence result.

3.2 Preliminary results

3.2.1 Properties of the nonlocal term

First we collect some important properties of the nonlocal term. Using that log r =

log(1 + r)− log(1 + r−1) for any r > 0, we can write

T (u, v) = T1(u, v)− T2(u, v),

where
T1(u, v) :=

∫
R2

∫
R2

log (1 + |x− y|)
(
u2(y) + v2(y)

) (
u2(x) + v2(x)

)
dydx,

and
T2(u, v) :=

∫
R2

∫
R2

log
(
1 + |x− y|−1

) (
u2(y) + v2(y)

) (
u2(x) + v2(x)

)
dydx.

Hence, Iβ can be rewritten as

Iβ(u, v) =
1

2

(
‖u‖2

H1(R) + ‖v‖2
H1(R)

)
+

1

4
[T1(u, v)− T2(u, v)]− 1

2p

(
‖u‖2p

L2p(R2) + ‖v‖2p
L2p(R2)

)
− β

p

∫
R2

|uv|pdx.
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As proved in [36, Lemma 2.2], the nonlocal terms T1, T2 are well defined and belong to
C1(W̃ × W̃ ,R). Furthermore, taking into account that 1 + |x − y| ≤ (1 + |x|)(1 + |y|), for any
x, y ∈ R2, we have that

log(1 + |x− y|) ≤ log((1 + |x|)(1 + |y|)) = log(1 + |x|) + log(1 + |y|). (3.4)

By using a straightforward computation, we find

T1(u, v) ≤ 2
(
‖u‖2

L2(R2) + ‖v‖2
L2(R2)

) (
‖u‖2

W̃
+ ‖v‖2

W̃

)
, for all (u, v) ∈ W̃ × W̃ . (3.5)

Now, we estimate T2(u, v). Applying Proposition 2.3.5 with µ = 1, q = s = 4/3, and using
the elementary inequality log(1 + r) ≤ r for any r > 0 together with the Sobolev embedding
(3.3), one has

T2(u, v) ≤
∫
R2

∫
R2

u2(y)u2(x) + u2(y)v2(x) + v2(y)u2(x) + v2(y)v2(x)

|x− y|
dydx

≤ C1

(
‖u‖4

L8/3(R2) + 2‖u‖2
L8/3(R2)‖v‖

2
L8/3(R2) + ‖v‖4

L8/3(R2)

)
≤ C2

(
‖u‖4

W̃
+ ‖u‖2

W̃
‖v‖2

W̃
+ ‖v‖4

W̃

)
.

(3.6)

3.2.2 Critical points of Iβ are weak solutions of (Aβ)

Inspired by [16, Lemma 5.1], we have the following version of the Principle of Symmetric
Criticality due to Palais [65].

Proposition 3.2.1. Assume that p ≥ 2 and β ≥ 0. If (u, v) ∈ W̃rad× W̃rad is a critical point of
Iβ, then (u, v) is a weak solution of system (Aβ).

Proof. Let (u, v) ∈ W̃rad × W̃rad be a critical point and consider the linear functionals Tu, Tv :

W̃ → R defined by

Tu(w) :=

∫
R2

(∇u∇w + uw) dx+

∫
R2

φu,vuwdx−
∫
R2

[|u|2p−2u+ β|v|p|u|p−2u]wdx

and

Tv(w) :=

∫
R2

(∇v∇w + vw) dx+

∫
R2

φu,vvwdx−
∫
R2

[|v|2p−2v + β|u|p|v|p−2v]wdx.

We claim that Tu, Tv are continuous on W̃ . To see this, using (3.4) and Hölder’s inequality, one
deduce∣∣∣∣∫

R2

φu,vuwdx

∣∣∣∣ ≤ ∫
R2

∫
R2

(
log(1 + |x|) + log(1 + |y|)

)
(u2(y) + v2(y))u(x)w(x)dydx

≤ (‖u‖2
L2(R2) + ‖v‖2

L2(R2))‖u‖W̃‖w‖W̃ + (‖u‖2
W̃

+ ‖v‖2
W̃

)‖u‖L2(R2)‖w‖L2(R2)

≤ C1‖w‖W̃ ,
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where C1 = C1(u, v). On the other hand, by Hölder’s inequality and the embedding (3.2) we get∣∣∣∣∫
R2

|u|2p−2uwdx

∣∣∣∣ ≤ (∫
R2

|u|2(2p−1)dx

)1/2(∫
R2

w2dx

)1/2

≤ C2‖w‖W̃ ,

and∣∣∣∣∫
R2

|v|p|u|p−2uwdx

∣∣∣∣ ≤ (∫
R2

|v|3pdx
)1/3(∫

R2

|u|3(p−1)dx

)1/3(∫
R2

|w|3dx
)1/3

≤ C3‖w‖W̃ .

Therefore, |Tu(w)| ≤ C4‖w‖W̃ , for all w ∈ W̃ . Similarly we get |Tv(w)| ≤ C5‖w‖W̃ for all w ∈ W̃
and so the claim is proved. By the Riesz representation theorem in the Hilbert space W̃ there
exists an unique u ∈ W̃ such that Tu(u) = ‖u‖2

W̃
= ‖Tu‖2

(W̃ )′
, where (W̃ )′ denotes the dual space

of W̃ . Similarly, there exists an unique v ∈ W̃ such that Tv(v) = ‖v‖2
W̃

= ‖Tv‖2
(W̃ )′

. Let O(2) be
the group of orthogonal transformations in R2. Then, by performing a change of variables, for
each w ∈ W̃ we find

Tu(gw) = Tu(w), Tv(gw) = Tv(w), and ‖gw‖W̃ = ‖w‖W̃ , for all g ∈ O(2).

Applying this with w = u and w = v, by uniqueness we concluded that gu = u and gv = v, for all
g ∈ O(2), which means that (u, v) ∈ W̃rad×W̃rad. Consequently, if (u, v) ∈ W̃rad×W̃rad is a critical
point of Iβ, i.e., Tu(w) = Tv(w) = 0 for all w ∈ W̃rad we obtain that ‖Tu‖(W̃ )′ = ‖Tv‖(W̃ )′ = 0,
which implies that Tu(w) = Tv(w) = 0, for all w ∈ W̃ and this completes the proof.

3.2.3 Regularity results and non triviality

In this subsection, we discuss the regularity and positivity of nonnegative solution of system
(Aβ). We also analyze when the pair (u, v) is vectorial or semi-trivial depending from the
parameter β ≥ 0.

Proposition 3.2.2. If the pair (u, v) is a solution of couple system (Aβ) then the triple (u, v, φu,v),
where φu,v is defined in (3.1), is a weak solution of system (Sβ)

Proof. Indeed, let (u, v) ∈ W̃ × W̃ be a solution of (Aβ) and ϕ ∈ C∞0 (R2) fixed. Consider R > 0

such that BR contains the support of ϕ. Since u, v ∈ H1(BR), then u, v ∈ Lq(BR), for every
q > 1. From the classical potential theory (see [47, Theorem 9.9]) we derive that φu,v ∈ W 2,q(BR)

and ∆φu,v = 2π(u2 + v2) for a.e. x ∈ BR. This and the Divergence Theorem imply that

−
∫
BR

∇φu,v∇ϕdx =

∫
BR

(∆φu,v)ϕdx = 2π

∫
BR

(u2 + v2)ϕdx.

Therefore, (u, v, φu,v) ∈ W ×W ×W 2,q
loc (R2) is a weak solution of system (Sβ) and this completes

the proof.

Lemma 3.2.3. If (u, v) ∈ W̃ × W̃ is a weak solution of system (Aβ), then u, v ∈ C2(R2).
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Proof. First we observe that for every R > 0 and ϕ ∈ C∞0 (BR) we have∫
BR

(∇u∇ϕ+ uϕ) dx =

∫
BR

h1ϕdx,

where h1 = −φu,vu+ |u|2p−2u+β|v|p|u|p−2u. By Proposition 3.2.2 we know that φu,v ∈ W 2,q
loc (R2)

for every q > 1 and consequently by the Sobolev embedding φu,v ∈ C0,α
loc (R2) for some α ∈ (0, 1)

and hence |φu,v| ≤ C1 in BR for some constant C1 > 0. A simple computation shows that, for
every q ≥ 2 there exists C2 > 0 such that

|h1|q ≤ C2

(
|u|q + |u|q(2p−1) + |v|2qp + |u|2q(p−1)

)
in BR.

Therefore, h1 ∈ Lq(BR) and by classical elliptic regularity theory, it follows that u ∈ W 2,q(BR) ↪→
C0,α1(BR). Similarly, we have that v ∈ C0,α2(BR). Thus, we conclude that h1 ∈ C0,α3(BR)

for some α3 > 0 and by the regularity theorem of Agmon-Douglas-Nirenberg u ∈ C2,α(BR).
Similarly, one has v ∈ C2,α(BR) and this finishes the proof.

Lemma 3.2.4. Assume that 2 ≤ p < ∞ and β ≥ 0. Let (u, v) ∈ W̃ × W̃ be a minimizer of cβ
with u ≥ 0 and v ≥ 0. If u 6= 0 and v 6= 0 then u, v > 0.

Proof. If (u, v) is a minimizer of cβ, then (u, v) is a weak solution of system (Aβ), and hence by
Lemma 3.2.3 u, v ∈ C2(R2). Since, for every r > 0 we have that log r = log(1 + r)− log(1+ r−1),
we can write

φu,v(x) =

∫
R2

log(|x− y|)
(
u2(y) + v2(y)

)
dy = ψ1(x)− ψ2(x),

where
ψ1(x) :=

∫
R2

log(1 + |x− y|)
(
u2(y) + v2(y)

)
dy ≥ 0

and
ψ2(x) :=

∫
R2

log(1 + |x− y|−1)
(
u2(y) + v2(y)

)
dy ≥ 0.

Thus,
−∆u+ (1 + ψ1)u = ψ2u+ |u|2p−2u+ β|v|p|u|p−2u ≥ 0,

and the result follows from the strong maximum principle.

The following is a key lemma in our analysis:

Lemma 3.2.5. Assume that p ≥ 2 and β > 2p−1 − 1. If (u, v) is a minimizer of cβ then u 6= 0

and v 6= 0.

Proof. Let (u, v) ∈ N be such that Iβ(u, v) = cβ and suppose by contradiction that v = 0.
Considering the vectorial function (ũ, ṽ) := (u cos θ, u sin θ) ∈

(
W̃rad × W̃rad

)
\ {(0, 0)}, by using

a simple computation one can check that

‖ũ‖2
H1(R2) + ‖ṽ‖2

H1(R2) = cos2 θ‖u‖2
H1(R2) + sin2 θ‖u‖2

H1(R2) = ‖u‖2
H1(R2),
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T (ũ, ṽ) =

∫
R2

∫
R2

log (|x− y|)
(
cos2 θu2(y) + sin2 θu2(y)

) (
cos2 θu2(x) + sin2 θu2(x)

)
dydx

=

∫
R2

∫
R2

log (|x− y|)u2(y)u2(x)dydx = T (u, 0),

and

‖ũ‖2p
L2p(R2) + ‖ṽ‖2p

L2p(R2) + 2β

∫
R2

|ũṽ|pdx

=
(
(cos2 θ)p + (1− cos2 θ)p + 2β(cos2 θ)p/2(1− cos2 θ)p/2

)
‖u‖2p

L2p(R2).

In particular, if we choose θ = π/4 we get

‖ũ‖2p
L2p(R2) + ‖ṽ‖2p

L2p(R2) + 2β

∫
R2

|ũṽ|pdx = (β + 1)21−p‖u‖2p
L2p(R2) > ‖u‖

2p
L2p(R2),

whenever β > 2p−1 − 1. By (Lemma 3.3.1 below) there exists t0 > 0 such that (t0ũ, t0ṽ) ∈ N .
Consequently, it holds

Iβ(t0u, 0) =
t20
2
‖u‖2

H1(R2) +
t40
4
T (u, 0)− t2p0

2p
‖u‖2p

L2p(R2)

>
t20
2

(
‖ũ‖2

H1(R2) + ‖ṽ‖2
H1(R2)

)
+
t40
4
T (ũ, ṽ)

− t2p0
2p

(
‖ũ‖2p

L2p(R2) + ‖ṽ‖2p
L2p(R2) + 2β

∫
R2

|ũṽ|pdx
)

= Iβ(t0ũ, t0ṽ) ≥ cβ.

(3.7)

This, together with the fact that (u, 0) ∈ N , Lemma 3.3.1, imply that

cβ = Iβ(u, 0) = max
t>0

Iβ(tu, 0) ≥ Iβ(t0u, 0) > cβ,

which is a contradiction and this finishes the proof.

We also need the following lemma taken from [40]. Here we present a simple proof.

Lemma 3.2.6. Let p ≥ 2 and 0 ≤ β < 2p−1 − 1. Then the function defined by hβ(s) :=

sp + (1− s)p + 2βsp/2(1− s)p/2 with s ∈ [0, 1] satisfies hβ(s) < 1, for all s ∈ (0, 1).

Proof. First we note that hβ(0) = 1 = hβ(1),

hβ(
1

2
) =

1 + β

2p−1
< 1 and hβ(

1

2
− s) = hβ(

1

2
+ s) for all s ∈ (−1

2
,
1

2
).

Thus, is enough to prove that hβ(s) < 1 for s ∈ (0, 1/2). Since h0 is strictly decreasing in (0, 1/2)

the case β = 0 is trivial, and so let us consider β > 0. Now, observe that

h′β(s) = psp−1 − p(1− s)p−1 + βpsp/2−1(1− s)p/2 − βpsp/2(1− s)p/2−1. (3.8)
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We will assume that p > 2, since the case p = 2 is immediate. Notice that

h′β(s)

p(1− s)p−1
=

(
s

1− s

)p−1

− 1 + β

(
s

1− s

)p/2−1

− β
(

s

1− s

)p/2
. (3.9)

Since y = s/(1− s) ∈ (0, 1), the right hand side of (3.9) can be written as

gβ(y) := yp−1 − 1 + βyp/2−1 − βyp/2, y ∈ [0, 1].

Thus, is enough to prove that gβ(y) < 0 for all y ∈ (0, 1). For that, we observe gβ(0) = −1,
gβ(1) = 0 and the derive of gβ is given by

g′β(y) = (p− 1)yp−2 +
β(p− 2)

2
yp/2−2 − βp

2
yp/2−1,

which implies
2g′β(y)

yp/2−2
= 2(p− 1)yp/2 + β(p− 2)− βpy =: fβ(y). (3.10)

We observe that fβ(0) = β(p− 2) > 0, fβ(1) = 2(p− 1− β) and

f ′β(y) = p(p− 1)yp/2−1 − βp.

Consequently,

f ′β(y) = 0⇔ p(p− 1)y
p−2

2 = βp⇔ y =

(
β

p− 1

) 2
p−2

=: y0.

Depending from the location of the critical point y0 we will consider three case:
Case 1: If 0 < β < p − 1 we have that fβ(1) > 0. This together with the fact that fβ is

strictly decreasing in (0, y0) and strictly increasing in (y0, 1) implies that y0 is a local minimum
and hence a straightforward calculation shows that

fβ(y) ≥ fβ(y0) =
β(p− 2)

(p− 1)2/(p−2)

(
(p− 1)2/(p−2) − β2/(p−2)

)
> 0 for all y ∈ [0, 1],

and this concludes the proof in this case.
Case 2: If β = p − 1 we have that fβ(0) > 0, fβ(1) = 0, and fβ is is strictly decreasing in

(0, 1) and hence fβ(y) > 0 for y ∈ (0, 1) and this also concludes the proof in this case.
Case 3: If β > p − 1, we have that fβ(0) > 0, fβ(1) < 0, and fβ is (strictly) decreasing

in (0, 1). Thus, fβ has an unique zero tβ which is the unique critical point of gβ (see (3.10)).
Moreover, gβ is strictly increasing in (0, tβ) and strictly decreasing in (tβ, 1). Consequently,
gβ has a unique zero in (0, 1) which gives us a unique critical point of hβ in (0, 1/2). Since
hβ(0) = hβ(1) = 1, lims→0+ h

′
β(s) = −p < 0 (that is, hβ is strictly decreasing in a neighborhood

of 0), and hβ(1/2) = (1 + β)/2p−1 < 1, then hβ(s) < 1, for any s ∈ (0, 1/2) and the lemma is
proved.

Lemma 3.2.7. Assume p ≥ 2 and 0 ≤ β < 2p−1 − 1. If (u, v) ∈ W̃ × W̃ is a minimizer of cβ
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then u = 0 or v = 0.

Proof. Let (u, v) ∈ N be such that Iβ(u, v) = cβ and assume by contradiction that u 6= 0 and
v 6= 0. By Lemma 3.2.4 we have that u, v > 0 and using polar coordinates for the pair (u, v),
namely we write

(u, v) = (ρ cos θ, ρ sin θ) where ρ2 = u2 + v2 and θ = θ(x) ∈ (0, π/2).

It is straightforward to check that

∇u = ∇ρ cos θ − ρ∇θ sin θ and ∇v = ∇ρ sin θ + ρ∇θ cos θ.

Hence
|∇u|2 + |∇v|2 =

(
|∇ρ|2 cos2 θ − 2ρ cos θ sin θ∇ρ∇θ + ρ2|∇θ|2 sin2 θ

)
+
(
|∇ρ|2 sin2 θ + 2ρ sin θ cos θ∇ρ∇θ + ρ2|∇θ|2 cos2 θ

)
= |∇ρ|2 + ρ2|∇θ|2,

and so

‖u‖2
H1(R2) + ‖v‖2

H1(R2) =

∫
R2

|∇ρ|2dx+

∫
R2

ρ2|∇θ|2dx+

∫
R2

ρ2dx ≥ ‖ρ‖2
H1(R2).

On the other hand,

T (u, v) =

∫
R2

∫
R2

log (|x− y|)
(
ρ2(y) cos2 θ(y) + ρ2(y) sin2 θ(y)

)
×
(
ρ2(x) cos2 θ(x) + ρ2(x) sin2 θ(x)

)
dydx

=

∫
R2

∫
R2

log (|x− y|) ρ2(y)ρ2(x)dydx = T (ρ, 0).

Since θ ∈ (0, π/2), then 0 < cos2 θ < 1. Thus, we can apply Lemma 3.2.6 to obtain

‖u‖2p
L2p(R2) + ‖v‖2p

L2p(R2) + 2β

∫
R2

|uv|pdx

=

∫
R2

(
(cos2 θ)p + (sin2 θ)p + 2β(cos2 θ)p/2(sin2 θ)p/2

)
|ρ|2pdx

< ‖ρ‖2p
L2p(R2).

Thus, there exists t0 > 0 such that (t0ρ, 0) ∈ N (see Lemma 3.3.1 below). Consequently, we
obtain

Iβ(t0u, t0v) =
t20
2

(
‖u‖2

H1(R2) + ‖v‖2
H1(R2)

)
+
t40
4
T (u, v)

− t2p0
2p

(
‖u‖2p

L2p(R2) + ‖v‖2p
L2p(R2) + 2β

∫
R2

|uv|pdx
)

>
t20
2
‖ρ‖2

H1(R2) +
t40
4
T (ρ, 0)− t2p0

2p
‖ρ‖2p

L2p(R2) = Iβ(t0ρ, 0) ≥ cβ.

(3.11)
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This, together with the fact that (u, v) ∈ N and Lemma 3.3.1 below imply that

cβ = Iβ(u, v) = max
t>0

Iβ(tu, tv) > Iβ(t0ρ, 0) ≥ cβ,

which is a contradiction and this concludes the proof.

3.3 Proof of Theorems 3.1.1

The proof of Theorem 3.1.1 will be fulfilled in some lemmas. We first prove that N is not
empty and Iβ is bounded from below on N . More precisely, we have

Lemma 3.3.1. Assume that p ≥ 2 and β ≥ 0. Then, for each (u, v) ∈
(
W̃rad × W̃rad

)
\ {0, 0},

there exists an unique tu,v > 0 such that Iβ(tu,vu, tu,vv) = maxt>0 Iβ(tu, tv) and (tu,vu, tu,vv) ∈ N .
Furthermore, Iβ(u, v) > 0 for every (u, v) ∈ N .

Proof. Let (u, v) ∈ W̃rad × W̃rad \ {0, 0} and for t > 0 we define

γ(t) := Iβ(tu, tv) =
t2

2

(
‖u‖2

H1(R) + ‖v‖2
H1(R)

)
+
t4

4
T (u, v)

− t2p

2p

(
‖u‖2p

L2p(R2) + ‖v‖2p
L2p(R2) + 2β

∫
R2

|uv|pdx
)
.

A simple computation shows that

Γβ(tu, tv) = t2
(
‖u‖2

H1(R) + ‖v‖2
H1(R)

)
+ t4T (u, v)

− t2p
(
‖u‖2p

L2p(R2) + ‖v‖2p
L2p(R2) + 2β

∫
R2

|uv|pdx
)

= tγ′(t),

and consequently
(tu, tv) ∈ N ⇔ γ′(t) = 0. (3.12)

Taking into account that

γ(t) =
t2

2

(
‖u‖2

H1(R) + ‖v‖2
H1(R)

)
− t4

4
T (u, v)− t2p

2p

(
‖u‖2p

L2p(R2) + ‖v‖2p
L2p(R2) + 2β

∫
R2

|uv|pdx
)
,

and using that p ≥ 2 > 1 we deduce that there exists t1 > 0 sufficiently small such that γ(t) > 0

for any t ∈ (0, t1). On the other hand, using that p ≥ 2 > 1 we see limt→∞ γ(t) = −∞. So, the
function γ achieves its maximum value at some tu,v > 0 such that γ′(tu,v) = 0. Furthermore, tu,v
is the unique critical point of γ. To prove this, we observe that

γ′(t) = t
(
‖u‖2

H1(R) + ‖v‖2
H1(R)

)
+ t3T (u, v)

− t2p−1

(
‖u‖2p

L2p(R2) + ‖v‖2p
L2p(R2) + 2β

∫
R2

|uv|pdx
)

= t3h(t),
(3.13)
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where

h(t) :=
‖u‖2

H1(R) + ‖v‖2
H1(R)

t2
+ T (u, v)− t2p−4

(
‖u‖2p

L2p(R2) + ‖v‖2p
L2p(R2) + 2β

∫
R2

|uv|pdx
)
.

Since p ≥ 2 we see that h is decreasing and as a consequence the function γ′(t)/t3 is decreasing.
Now, suppose by contradiction that there exist t2 > t1 > 0 such that γ′(t1) = γ′(t2) = 0. Then,
using that γ′(t)/t3 is decreasing, we find

0 =
γ′(t1)

t31
>
γ′(t2)

t32
= 0,

which is a contradiction. Finally, we prove that Iβ(u, v) > 0 for every (u, v) ∈ N . In fact, if
(u, v) ∈ N there exists a unique t > 0 such that (tu, tv) ∈ N and γ(t) > 0 and so by uniqueness
t = 1. Therefore, Iβ(u, v) = γ(1) = γ(t) > 0 and this completes the proof.

Remark 3.3.2. As a byproduct of the above proof, we see that the point tu,v which projects (u, v)

in the Nehari manifold is exactly the maximum point of γ. Since γ > 0 near the origin and it
has a unique critical point, we conclude that γ′ is positive in (0, tu,v) and negative in (tu,v,∞).
In particular, we have that tu,v ∈ (0, 1] whenever γ′(1) = Γβ(u, v) ≤ 0.

Next, we will prove that any minimizing sequence for cβ is bounded in H1(R2).

Lemma 3.3.3. Assume that p ≥ 2 and β ≥ 0. If (un, vn) ⊂ N is a minimizing sequence for cβ,
then the following conditions holds:

(i) the sequences (un) and (vn) are bounded in the norm ‖ · ‖H1(R2);

(ii) up to a subsequence un ⇀ u and vn ⇀ v, in H1(R2) with (u, v) 6= (0, 0);

(iii) there exists C > 0 such that T1(un, vn) ≤ C, for all n ∈ N.

Proof. Since Γβ(un, vn) = 0 and p ≥ 2, we see that

cβ + on(1) = Iβ(un, vn)− 1

4
Γβ(un, vn)

=
1

4

(
‖un‖2

H1(R2) + ‖vn‖2
H1(R2)

)
+

(p− 2)

4p

(
‖un‖2p

L2p(R2) + ‖vn‖2p
L2p(R2) + 2β

∫
R2

|unvn|pdx
)

≥ 1

4

(
‖un‖2

H1(R2) + ‖vn‖2
H1(R2)

)
,

(3.14)

which implies (i). Thus, up to a subsequence we can assume that un ⇀ u and vn ⇀ v, in H1(R2)

and we claim that (u, v) 6= (0, 0). Otherwise, ‖un‖H1(R2) → 0 and ‖vn‖H1(R2) → 0. By (3.6) and
the embedding (3.3) with r = 8/3 it follows that

T2(un, vn) ≤ C0

(
‖un‖4

H1(R2) + ‖vn‖4
H1(R2)

)
. (3.15)
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Thus, using that Γβ(un, vn) = 0 and T1(un, vn) ≥ 0, we get

‖un‖2
H1(R2) + ‖vn‖2

H1(R2) ≤ C1

(
‖un‖2p

H1(R2) + ‖vn‖2p
H1(R2)

)
+ 2β

∫
R2

|unvn|pdx+ T2(un, vn).

On the other hand, using Hölder’s inequality and the embedding (3.2) we obtain∫
R2

|unvn|pdx ≤ ‖vn‖pL2p(R2)‖un‖
p
L2p(R2) ≤ C2

(
‖vn‖2p

H1(R2) + ‖un‖2p
H1(R2)

)
. (3.16)

Combining this estimates we conclude that(
‖un‖2

H1(R2) + ‖vn‖2
H1(R2)

)
≤ C0

(
‖un‖4

H1(R2) + ‖vn‖4
H1(R2)

)
+ (C1 + C2)

(
‖un‖2p

H1(R2) + ‖vn‖2p
H1(R2)

)
,

from where we obtain a contradiction, since p ≥ 2 > 1 and (ii) is proved. To see that (iii) holds,
since Γβ(un, vn) = 0, i.e.,(
‖un‖2

H1(R2) + ‖vn‖2
H1(R2)

)
+ T1(un, vn) = T2(un, vn)

+

(
‖un‖2p

L2p(R2) + ‖vn‖2p
L2p(R2) + 2β

∫
R2

|unvn|pdx
)
,

from estimates (3.15)-(3.16) and the Sobolev embedding we get

T1(un, vn) ≤ C0

(
‖un‖4

H1(R2) + ‖vn‖4
H1(R2)

)
+ (C1 + C2)

(
‖un‖2p

H1(R2) + ‖vn‖2p
H1(R2)

)
,

and hence (iii) follows from item (i), and this completes the proof.

Next, we shall obtain boundedness in the norm of W̃ .

Lemma 3.3.4. Assume that p ≥ 2 and β ≥ 0. If (un, vn) ⊂ N is a minimizing sequence for cβ,
then (un) and (vn) are bounded in the norm ‖ · ‖W̃ .

Proof. First we observe that

‖un‖2
W̃

= ‖un‖2
H1(R2) +

∫
R2

log(1 + |x|)u2
ndx and ‖vn‖2

W̃
= ‖vn‖2

H1(R2) +

∫
R2

log(1 + |x|)v2
ndx.

Thus, by item (i) of Lemma 3.3.3 it remains to prove that there exists C > 0 such that∫
R2

log(1 + |x|)(u2
n + v2

n)dx ≤ C, ∀n ∈ N. (3.17)

For this, by Lemma 3.3.3 there exists R > 0 such that∫
BR

(u2 + v2) dx > 0.
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For any x ∈ R2 \B2R and y ∈ BR, there holds

1 + |x− y| ≥ 1 + |x| − |y| ≥ 1 + |x| −R ≥ 1 +
|x|
2
≥
√

1 + |x|.

Now using Lemma 3.3.3 we deduce that

C1 ≥ T1(un, vn) ≥
∫
R2\B2R

∫
BR

log(1 + |x− y|)
(
u2
n(y) + v2

n(y)
) (
u2
n(x) + v2

n(x)
)
dydx

=
1

2

(∫
BR

(
u2
n(y) + v2

n(y)
)
dy

)(∫
R2\B2R

log(1 + |x|)
(
u2
n(x) + v2

n(x)
)
dx

)
.

Taking the limit and using the compact embedding H1(BR) ↪→ L2(BR) we get

lim sup
n→∞

∫
R2\B2R

log(1 + |x|)
(
u2
n(x) + v2

n(x)
)
dx ≤ 2C1

(∫
BR

(u2 + v2) dx

)−1

.

On the other hand, using that log(1 + |x|) ≤ 1 + |x| we see that∫
B2R

log(1 + |x|)
(
u2
n(x) + v2

n(x)
)
dx ≤ (1 + 2R)

(
‖un‖2

H1(R2) + ‖vn‖2
H1(R2)

)
≤ C2.

Therefore, (3.17) holds and this completes the proof.

We collect some auxiliary compactnesses results in the following

Lemma 3.3.5. Assume that p ≥ 2 and β ≥ 0. If (un, vn) ⊂ N is a minimizing sequence for cβ,
then the following statements hold true:

(i) limn→∞
∫
R2 |unvn|pdx =

∫
R2 |uv|pdx;

(ii) lim infn→∞ T1(un, vn) ≥ T1(u, v);

(iii) limn→∞ T2(un, vn) = T2(u, v).

Proof. Note that by Hölder’s inequality, one deduces∣∣∣∣∫
R2

(|unvn|p − |uv|p) dx
∣∣∣∣ ≤ ∫

R2

|un|p ||vn|p − |v|p| dx+

∫
R2

|v|p ||un|p − |u|p| dx

≤ ‖un‖pL2p(R2)

(∫
R2

||vn|p − |v|p|2 dx
)1/2

+ ‖v‖pL2p(R2)

(∫
R2

||un|p − |u|p|2 dx
)1/2

,

(3.18)

and one can easily obtain (i) from the compact embedding (3.3). To prove (ii) we write

T1(un, vn) = A1
n + 2A2

n + A3
n,

69



3. On a planar Hartree-Fock type system

where

A1
n :=

∫
R2

∫
R2

log (1 + |x− y|)u2
n(y)u2

n(x)dydx, A2
n :=

∫
R2

∫
R2

log (1 + |x− y|)u2
n(y)v2

n(x)dydx,

and
A3
n :=

∫
R2

∫
R2

log (1 + |x− y|) v2
n(y)v2

n(x)dydx.

Now, we observe that for any R > 0 we have

A1
n ≥ Dn(R) +

∫
BR

∫
BR

log(1 + |x− y|)u2(y)u2(x)dydx,

where Dn := D1
n +D2

n and

D1
n :=

∫
BR

∫
BR

log(1 + |x− y|)u2
n(y)

(
u2
n(x)− u2(x)

)
dydx,

D2
n :=

∫
BR

∫
BR

log(1 + |x− y|)u2(x)
(
u2
n(y)− u2(y)

)
dydx.

Taking into account that log(1 + |x− y|) ≤ C1 for x, y ∈ BR, it follows from Hölder’s inequality
and the compact embedding H1(BR) ↪→ L2(BR) that

|D1
n| ≤ C1‖un‖2

L2(BR)‖un − u‖L2(BR)‖un + u‖L2(BR) = on(1).

Similarly, one has D2
n = on(1) and hence by Fatou’s lemma

lim inf
n→∞

A1
n ≥

∫
BR

∫
BR

log(1 + |x− y|)u2(y)u2(x)dydx.

In a similar way,

lim inf
n→∞

A2
n ≥

∫
BR

∫
BR

log(1 + |x− y|)u2(y)v2(x)dydx,

lim inf
n→∞

A3
n ≥

∫
BR

∫
BR

log(1 + |x− y|)v2(y)v2(x)dydx.

As a consequence, we get

lim inf
n→∞

T1(un, vn) ≥
∫
BR

∫
BR

log(1 + |x− y|)
(
u2(y) + v2(y)

) (
u2(x) + v2(x)

)
dydx.

Letting R → ∞ in the above expression and using the Monotone Convergence Theorem, (ii)

holds.
To prove that (iii) holds true, we write

T2(un, vn) = B1
n + 2B2

n +B3
n,
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where
B1
n :=

∫
R2

∫
R2

log
(
1 + |x− y|−1

)
u2
n(y)u2

n(x)dydx,

B2
n :=

∫
R2

∫
R2

log
(
1 + |x− y|−1

)
u2
n(y)v2

n(x)dydx,

and
B3
n :=

∫
R2

∫
R2

log
(
1 + |x− y|−1

)
v2
n(y)v2

n(x)dydx.

Using the elementary inequality log(1 + r) ≤ r, for any r > 0 it follows that

Cn :=

∣∣∣∣B2
n −

∫
R2

∫
R2

log
(
1 + |x− y|−1

)
u2(y)u2(x)dydx

∣∣∣∣
≤
∫
R2

∫
R2

|u2
n(y)u2

n(x)− u2(y)u2(x)|
|x− y|

dydx.

Since
u2
n(y)u2

n(x)− u2(y)v2(x) = u2
n(y)

(
u2
n(x)− u2(x)

)
+ v2(x)

(
u2
n(y)− u2(y)

)
,

we find
Cn ≤

∫
R2

∫
R2

u2
n(y)|un(x)− u(x)||un(x) + u(x)|

|x− y|
dydx

+

∫
R2

∫
R2

u2(x)|un(y)− u(y)||un(y) + u(y)|
|x− y|

dydx.

Thus, applying Proposition 2.3.5 with µ = 1, q = s = 4/3 we obtain

Cn ≤ ‖un‖2
L8/3(R2)

(∫
R2

(|un − u||vn + u|)4/3 dx

)3/4

+‖u‖2
L8/3(R2)

(∫
R2

(|un − u||un + u|)4/3 dx

)3/4

.

Using Hölder’s inequality and the compact embedding (3.3) with q = 8/3 we get

Cn ≤ ‖un‖2
L8/3(R2)‖un − v‖L8/3(R2)‖un + u‖L8/3(R2) + ‖u‖2

L8/3(R2)‖un − u‖L8/3(R2)‖un + u‖L8/3(R2)

= on(1).

Thus, we find

B1
n =

∫
R2

∫
R2

log
(
1 + |x− y|−1

)
u2(y)u2(x)dydx+ on(1).

Proceeding, in a similarly way we obtain

B2
n =

∫
R2

∫
R2

log
(
1 + |x− y|−1

)
u2(y)v2(x)dydx+ on(1),

and
B3
n =

∫
R2

∫
R2

log
(
1 + |x− y|−1

)
v2(y)v2(x)dydx+ on(1).
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Therefore,

T2(un, vn) =

∫
R2

∫
R2

log
(
1 + |x− y|−1

) (
u2(y) + v2(y)

) (
u2(x) + v2(x)

)
dydx+ on(1)

= T2(u, v) + on(1),

which implies (iii), completing the proof.

We are now in the position to complete the proof of Theorem 3.1.1.

Finalizing the proof of Theorem 3.1.1. Let (un, vn) ⊂ N be a minimizing sequence for cβ. By
Lemma 3.3.3, we may assume that un ⇀ u and vn ⇀ v weakly in H1(R2), with (u, v) 6= (0, 0).
On the other hand, by Lemma 3.3.4, up to subsequence we may assume that un ⇀ ũ and
vn ⇀ ṽ weakly in W̃rad. From the compact embedding (3.3), we conclude that un(x) → u(x)

and un(x) → ũ(x) for a.e. x ∈ R2. Similarly vn(x) → v(x) and vn(x) → ṽ(x) for a.e. x ∈ R2

and consequently (u, v) = (ũ, ṽ) ∈ (W̃rad × W̃rad) \ {(0, 0)}.
Let t = tu,v > 0 be such that (tu, tv) ∈ N . Arguing as in (3.14), we conclude that

cβ ≤ Iβ(tu, tv) =
t4

4

(
‖u‖2

H1(R2) + ‖v‖2
H1(R2)

)
+

(p− 2)t2p

4p

(
‖u‖2p

L2p(R2) + ‖v‖2p
L2p(R2) + 2β

∫
R2

|uv|pdx
)
.

(3.19)

Now, recalling that the norm is weakly lower semicontinuous, and the compact embedding (3.3),
we can use Lemma 3.3.5 to obtain

Γβ(u, v) =
(
‖u‖2

H1(R2) + ‖v‖2
H1(R2)

)
+ T (u, v)−

(
‖u‖2p

L2p(R2) + ‖v‖2p
L2p(R2) + 2β

∫
R2

|uv|pdx
)

≤ lim inf
n→∞

Γβ(un, vn) = 0,

and hence by Remark 3.3.2 we conclude that t ∈ (0, 1]. Consequently,

cβ ≤ Iβ(tu, tv) ≤ 1

4

(
‖u‖2

H1(R2) + ‖v‖2
H1(R2)

)
+

(p− 2)

4p

(
‖u‖2p

L2p(R2) + ‖v‖2p
L2p(R2) + 2β

∫
R2

|uv|pdx
)
.

This, the item (i) of Lemma 3.3.5, the weak semicontinuity of the norm, and (3.14) imply that

cβ ≤ Iβ(tu, tv)

≤ lim inf
n→∞

1

4

(
‖un‖2

H1(R2) + ‖vn‖2
H1(R2)

)
+ lim inf

n→∞

(p− 2)

4p

(
‖un‖2p

L2p(R2) + ‖vn‖2p
L2p(R2) + 2β

∫
R2

|unvn|pdx
)

= lim inf
n→∞

Iβ(un, vn) = cβ.

Thus, Iβ(tu, tv) = cβ and by using a rather standard deformation argument as in [19, Proposition
3.1] (see also [9, pp. 1163]) we conclude that (tu, tv) is the desired solution. Noting that
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3. On a planar Hartree-Fock type system

Iβ(u, v) = Iβ(|u|, |v|) and Γβ(u, v) = Γβ(|u|, |v|), whenever (u, v) ∈ N we may assume that
u, v ≥ 0. Therefore, applying Lemmas 3.2.5, Lemma 3.2.7, and Proposition 3.2.2 we concludes
the proof of Theorem 3.1.1.
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Chapter 4

Embeddings results, Trudinger-Moser type
inequality and an application

Finally, in this chapter we will present the results obtained in the paper [5], where we establish
embedding results and a Trudinger-Moser type inequality involving potential nonradial. More-
over, as an application, we investigate the existence of solutions for a class of Schröringer-Poisson
system similar to that presented in Chapter 2 in the nonradial case.

4.1 Embeddings results

Inspired in the paper [11] (see also [79, 80]), we will focus our study on embeddings results
and Trudinger-Moser type inequality, involving the potential V,K and Q, such that:

(V KQ) V,K,Q ∈ C(R2) and there exist γ̃ ≤ 2 < β̃ and positive constants a0, b0 such that

a0

(1 + |x|)γ̃
≤ V (x), 0 < K(x), Q(x) ≤ b0

(1 + |x|)β̃
, for all x ∈ R2.

In order to formulate our main weighted Sobolev embedding we consider the auxiliary weight
function w̃ ∈ L1

loc(R2), satisfying

ω̃(x) ≤ C0 ·

{
1 if |x| ≤ 1

log(1 + |x|)Q(x) if |x| > 1,

for some C0 > 0.

Example 4.1.1. w̃(x) := Q(x) and w̃(x) := log(1 + |x|)Q(x), for any x ∈ R2.

Next we prove a weighted Sobolev embedding which will play a fundamental role in our
variational setting. For related results see for instance [70].

Proposition 4.1.2. Assume (V KQ). Then, for any 2 ≤ p <∞, the weighted Sobolev embedding
E ↪→ Lp(R2; ω̃) is continuous and compact.
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4. Embeddings results, Trudinger-Moser type inequality and an application

Proof. For any u ∈ E we observe that

∫
R2

ω̃(x)|u|pdx ≤ C0

(∫
B1

|u|pdx+
∞∑
j=0

∫
Aj

log(1 + |x|)Q(x)|u|pdx

)
, (4.1)

where Aj := {z ∈ R2 : 2j < |z| < 2j+1}, for j ∈ N ∪ {0}. To estimate the first integral on the
right-hand side of (4.1) we notice that by the embedding E ↪→ H1(B1) ↪→ Lp(B1), which holds
for all p ≥ 2 we obtain∫

B1

|u|pdx ≤ C1

(∫
B1

[
|∇u|2 + u2

]
dx

)p/2
≤ C2

(∫
B1

[
|∇u|2 + V (x)u2

]
dx

)p/2
, (4.2)

for some constants C1, C2 > 0, where we apply (V KQ).
Next we will estimate the second integral on the right-hand side of (4.1). For this, we observe

that using hypothesis (V KQ) and performing a change of variables y := 2−jx we obtain∫
Aj

log(1 + |x|)Q(x)|u|pdx ≤ log(1 + 2j+1)

2β̃j

∫
Aj

|u|pdx =
log(1 + 2j+1)

2(β̃−2)j

∫
A0

|uj(y)|pdy,

where uj(y) := u(2jy). By the Sobolev embedding H1(A0) ↪→ Lp(A0), there exists C3 > 0 such
that ∫

A0

|uj(y)|pdy ≤ C3

(∫
A0

[
|∇uj(y)|2 + u2

j(y)
]
dy

)p/2
= C3

(∫
Aj

[
|∇u(x)|2 + 2−2ju2(x)

]
dx

)p/2

.

Since (1 + 2j+1) ≤ 2 · 2j+1 and we may assume without loss of generality that γ̃ ≥ 0, one deduce∫
Aj

2−2ju2(x)dx ≤ 2−2j(1 + 2j+1)γ̃
∫
Aj

u2(x)

(1 + |x|)γ̃
dx ≤ 22γ̃+(γ̃−2)j

∫
Aj

V (x)u2dx.

Since 2 < β, then limj→+∞ log(1 + 2j+1)/2(β−2)j = 0, and so we obtain C4 > 0 such that
log(1 + 2j+1)/2(β−2)j ≤ C4, for j ∈ N ∪ {0}. This, combined with the above estimates and the
fact that γ ≤ 2, we deduce that

∫
Aj

log(1 + |x|)Q(x)|u|pdx ≤ log(1 + 2j+1)

2(β̃−2)j

(∫
Aj

[
|∇u|2 + 22γ̃+(γ̃−2)jV (x)u2

]
dx

)p/2

≤ C4

(∫
Aj

[
|∇u|2 + V (x)u2

]
dx

)p/2

.

(4.3)

Thus, recalling that the function s 7→ sp/2 is super additive for p ≥ 2, we conclude that

∞∑
j=0

∫
Aj

log(1 + |x|)Q(x)|u|pdx ≤ C4

(∫
Bc1

[
|∇u|2 + V (x)u2

]
dx

)p/2

. (4.4)
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This, together with (4.2) and (4.1) implies the continuous embedding.
For the compactness result, we take (un) ⊂ E such that un ⇀ 0 weakly in E. From

convergence limj→∞ log(1 + 2j+1)/2(β̃−2)j = 0, for any ε > 0, there exists j0 ∈ N such that
log(1 + 2j+1)/2(β̃−2)j < ε, whenever j ≥ j0. Since the embedding E ↪→ H1(B1) ↪→ Lp(B1) is
compact we have that

∫
B1
|un|pdx = on(1). Using this, (V KQ), (4.3), and that s 7→ sp/2 is super

additive, we obtain

∞∑
j=j0

∫
Aj

log(1 + |x|)Q(x)|un|pdx ≤ εC4

∞∑
j=j0

(∫
Aj

[
|∇un|2 + V (x)u2

n

]
dx

)p/2

≤ εC4‖un‖pE,

and using that (un) is bounded and ε > 0 is arbitrary we obtain the compact embedding and
this completes the proof.

As a byproduct of Proposition 4.1.2 we have the following result.

Remark 4.1.3. Suppose that (V KQ) holds. If ω(x) = Q(x), ω(x) = log(1+|x|)Q, ω(x) = K(x)

or ω(x) = log(1 + |x|)K(x), then clearly we have that ω(x) ≤ C1ω̃(x) for some constant C1 > 0.
Therefore, for any 2 ≤ p <∞, the Sobolev embedding E ↪→ Lp(R2;ω) is continuous and compact.
Furthermore, take into account that

Q(x) := Q4/3(x) ≤ b
4/4
0

(1 + |x|)4β̃/3
and K(x) := K4/3(x) ≤ b

4/3
0

(1 + |x|)4β̃/3

and 4β̃/3 > 2, we see that Q and K satisfy hypothesis (V KQ). Hence the embedding also holds
when ω(x) = Q4/3(x) or ω(x) = K4/3(x).

4.2 Trudinger-Moser type inequality

In view of Proposition 4.1.2 the following Trudinger-Moser type inequality is natural on the
space E determined by the Young function

Φα,1(s) := eαs
2 − 1,

where α > 0 (see (1.6) with j0 = 1).

Theorem 4.2.1. For any α > 0 and u ∈ E, the function ω̃(·)Φα,1(u) belongs to L1(R2). More-
over, there exists α∗ ∈ (0, 4π) such that

sup
u∈E, ‖u‖E≤1

∫
R2

ω̃(x)Φα,1(u)dx <∞,

for any 0 < α ≤ α∗.

Before to present the proof of Theorem 4.2.1 we will need some auxiliary result. We start off
by recalling a Trudinger-Moser inequality in the ball [82, Lemma 3.1].
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Lemma 4.2.2. Let x0 ∈ R2 and u ∈ H1
0 (BR(x0)) be such that

∫
BR(x0)

|∇u|2dx ≤ 1. Then there
exists C > 0 such that ∫

BR(x0)

(
e4πu2 − 1

)
dx ≤ C ·R2

∫
BR(x0)

|∇u|2dx.

The second auxiliary result is a version, for our functional space, of a previous result presented
in [42]. In their proof, the authors used, among other things, Besicovitch covering lemma. The
proof we present here is new and easier than the former one.

Lemma 4.2.3. Suppose that (V KQ) holds. Then there exist C̃ > 0 and α∗ ∈ (0, 4π) such that∫
R2

ω̃(x)Φα,1(u)dx ≤ C̃,

for any 0 < α ≤ α∗ and u ∈ E verifying ‖u‖E ≤ 1.

Proof. Let u ∈ E be such that ‖u‖E ≤ 1 and observe that∫
R2

ω̃(x)
(
eαu

2 − 1
)
dx ≤ C0

∫
B1

(
eαu

2 − 1
)
dx

+ C0

∞∑
j=0

∫
Aj

log(1 + |x|)Q(x)
(
eαu

2 − 1
)
dx.

(4.5)

In order to estimate the first integral on the right-hand side of (4.5) we consider ϕ ∈ C∞0 (B2)

satisfying ϕ ≡ 1 in B1 and |∇ϕ| ≤ 2 in B2. By (V KQ), we can estimate∫
B2

|∇ (ϕu)|2 dx ≤ C1

∫
B2

[
|∇u|2 + u2

]
dx ≤ C2

∫
B2

[
|∇u|2 + V (x)u2

]
dx.

Setting v := (1/C2)1/2ϕu, we can apply Lemma 4.2.2 to obtain∫
B2

(
e4πv2 − 1

)
dx ≤ C · 22

∫
B2

|∇v|2dx ≤ C3

∫
B2

[
|∇u|2 + V (x)u2

]
dx.

Thus, for any 0 < α ≤ 4π/C2, one has∫
B1

(
eαu

2 − 1
)
dx ≤ C4

∫
B2

(
eα(ϕu)2

− 1
)
dx = C4

∫
B2

(
eαC2v2 − 1

)
dx

≤ C5‖u‖2
E ≤ C5.

(4.6)

We claim that there exists C6 > 0 and α∗ > 0 such that

∞∑
j=0

∫
Aj

log(1 + |x|)Q(x)
(
eαu

2 − 1
)
dx ≤ C6. (4.7)

for any 0 < α ≤ α∗. For this purpose, let us j ∈ N ∪ {0} fixed. Performing the change of
variables y := 2−jx, (V KQ) and using the fact that limj→∞ log(1 + 2j+1)/2(β̃−2)j = 0 together
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with (V KQ) we obtain∫
Aj

log(1 + |x|)Q(x)
(
eαu

2 − 1
)
dx ≤ b0 log(1 + 2j+1)

2β̃j

∫
Aj

(
eαu

2 − 1
)
dx

=
b0 log(1 + 2j+1)

2(β̃−2)j

∫
A0

(
eαu

2
j − 1

)
dy

≤ C7

∫
A0

(
eαu

2
j − 1

)
dy,

(4.8)

where uj(y) := u(2jy). To estimate the last integral above, for y ∈ A0, setting Ry := dist(y, ∂A0)

we see that BRy(y) ⊂ A0. Moreover, from the compactness of A0, we obtain points y1, . . . , yk ∈
A0 such that A0 ⊂

⋃k
i=1BRi/2(yi), where Ri := Ryi . For each i = 1, . . . , k, we pick a function

ϕi ∈ C∞0 (BRi(yi)) such that 0 ≤ ϕi ≤ 1 in BRi(yi), ϕi ≡ 1 in BRi/2(yi) and |∇ϕi| ≤ 4/Ri in
BRi(yi). If we call Bi := BRi(yi), we have that∫

Bi
|∇ (ϕi(y)uj(y))|2 dy ≤ C8

∫
A0

22j|∇u(2jy)|2dy + C8R
−2
i

∫
A0

u2(2jy)dy

≤ C8

∫
Aj

|∇u|2dx+
C8R

−2
i

22j

∫
Aj

u2dx.

Since (1 + 2j+1)γ̃ ≤ 4γ̃ · 2γ̃j and we may assume without loss of generality that γ̃ ≥ 0 and hence
from (V KQ) one has∫

Aj

u2dx ≤ 4γ̃ · 2γ̃j
∫
Aj

u2

(1 + |x|)γ̃
dx ≤ 4γ̃ · 2γ̃j

a0

∫
Aj

V (x)u2dx

Since γ̃ ≤ 2, there holds∫
Bi
|∇ (ϕi(y)uj(y))|2 dy ≤ C9

∫
Aj

[
|∇u|2 + V (x)u2

]
dx.

At this point we define

α∗ := min

{
4π

C2

,
4π

C9

}
.

If vi,j := (1/C7)1/2 ϕiuj, we can apply Lemma 4.2.2 to estimate∫
Bi

(
e4πv2

i,j − 1
)
dy ≤ C ·R2

i

∫
Bi
|∇vi,j|2dy ≤ C10

∫
Aj

[
|∇u|2 + V (x)u2

]
dx.

Consequently, for all 0 < α ≤ α∗ it holds∫
Bi

(
eα(ϕiuj)

2

− 1
)
dy ≤ C10

∫
Aj

[
|∇u|2 + V (x)u2

]
dx,
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Therefore,

∫
A0

(
eαu

2
j − 1

)
dy ≤

k∑
i=1

∫
BRi/2(yi)

(
eα(ϕiuj)

2

− 1
)
dy ≤ C11

∫
Aj

[
|∇u|2 + V (x)u2

]
dx.

Combining this inequality with (4.8) and summing up we obtain that (4.7) holds, since ‖u‖E ≤ 1.
Finally, the desired result follows from (4.5) together with the estimates (4.6) and (4.7).

We are ready to present the proof of our first main theorem.

Proof of Theorem 4.2.1. Let α > 0 and u ∈ E. By density, there exists u0 ∈ C∞0 (R2) such that

‖u− u0‖E ≤ δ,

with δ > 0 to be chosen later. Since u2 ≤ 2(u− u0)2 + 2u2
0, we may estimate∫

R2

ω̃(x)Φα,1(u)dx =

∫
R2

ω̃(x)
(
eαu

2 − 1
)
dx ≤

∫
R2

ω̃(x)
(
e2α(u−u0)2

e2αu2
0 − 1

)
dx.

Recalling the elementary inequality

ab− 1 ≤ 1

2
(a2 − 1) +

1

2
(b2 − 1), ∀ a, b ≥ 0,

setting w := u− u0 and denoting by Ω0 the support of u0, we obtain

2

∫
R2

ω̃(x)
(
eαu

2 − 1
)
dx ≤

∫
R2

ω̃(x)
(
e4αw2 − 1

)
dx+

∫
Ω0

ω̃(x)
(
e4αu2

0 − 1
)
dx

≤
∫
R2

ω̃(x)

(
e

4α‖w‖2E
(

w
‖w‖E

)2

− 1

)
dx+ C1

∫
Ω0

1dx,

with C1 := ‖ω̃‖L∞(Ω0)e
4α‖u0‖2L∞(Ω0) . We now pick δ > 0 in such way that

4α‖w‖2
E ≤ 4αδ2 ≤ α∗

and we using Lemma 4.2.3 to conclude that∫
R2

ω̃(x)
(
eαu

2 − 1
)
dx ≤ C

2
+
C1

2
|Ω0| <∞.

This proves the first statement of Theorem 4.2.1. The second one is a direct consequence of
Lemma 4.2.3.

Remark 4.2.4. Assume (V KQ) holds. As a immediate consequence of Theorem 4.2.1, there
exists α∗ ∈ (0, 4π) such that

sup
u∈E, ‖u‖E≤1

∫
R2

ω(x)Φα,1(u)dx <∞,
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for any 0 < α ≤ α∗ whenever ω is one of the functions Q(x), K(x), log(1 + |x|)Q(x), log(1 +

|x|)K(x), Q4/3(x)or K4/3(x).

4.3 Application

In this section, we are concerned with the existence of solution to the system (S), where
λ = 1, the potential V,K,Q are nonradial and satisfy (V KQ), and (1.1) holds.

Since W ↪→ E, by Remark 4.1.3, we can define the numbers

S4(Q) := inf
u∈W\{0}

‖u‖2
W

‖u‖2
L4(R2;Q)

, S2(K) := inf
u∈W\{0}

‖u‖2
W

‖u‖2
L2(R2;K)

.

On the other hand, we assume that f satisfies the following conditions:

(f1) f(s) = o(|s|) as s→ 0;

(f2) there exists θ > 4 such that 0 < θF (s) ≤ f(s)s for all s 6= 0;

(f3) there exists ζ > 0 such that F (s) ≥ ζ|s|4, for all s ∈ R;

(f4) the function s 7→ f(s)/|s|3 is increasing in |s| > 0.

The main existence result for problem (E) can be stated as follows:

Theorem 4.3.1. Suppose that (V KQ), (1.1), and (f1)−(f4) hold. Then, there exists α∗ ∈ (0, 4π)

such that problem (E) has a nonzero small energy solution provided

ζ > S2
4(Q) max

{
1

S2(K)
,
α0

2α∗

}
. (4.9)

As a byproduct of Theorem 4.3.1, we can give a contribution concerning the existence of
solutions to the system (S), namely

Theorem 4.3.2. Suppose the same hypotheses of Theorem 4.3.1 and let u ∈ W be the solution
obtained in that theorem. Then, the pair (u, φu) is a weak solution of system (S), where φu =

Γ2 ∗ (Ku2).

4.3.1 Existence results

Since the proof of Theorem 4.3.1 it is similar the proof of Theorem 2.1.4, in this subsection
we will estimate the level c1 = infu∈N1 I1(u) differently (see (2.21) and recall that in this case we
are considering λ = 1).

We obtain in what follows the required estimate on the minimax level c1.

Lemma 4.3.3. Suppose that (f3) holds and let α∗ ∈ (0, 4π) be given by Theorem 4.2.1. If ζ
satisfies (4.9), then c1 < α∗/(4α0).
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Proof. Since W ↪→ E ↪→ L4(R2;Q) and this last embedding is compact (see Remark 4.1.3),
there exists ω ∈ W \ {0} such that

‖ω‖2
W = S4(Q),

∫
R2

Q(x)ω4dx = 1.

We may assume ω ≥ 0, and therefore we obtain from Lemma 2.4.1 a number tω > 0 such that
tωω ∈ N . So, recalling that V2 ≥ 0, using (3.5), (f3) and the above equalities, we obtain

c1 ≤ I(tωω) ≤ t2ω
2
S4(Q) +

1

4
V1(tωω)−

∫
R2

Q(x)F (tωω)dx

≤ t2ω
2
S4(Q) +

t4ω
2
‖ω‖2

L2(R2;K)S4(Q)− t4ωζ.

But the definition of S2(K) and (4.9) provide

‖ω‖L2(R2;K) ≤
1

S2(K)
‖ω‖2

W =
S4(Q)

S2(K)
≤ ζ

S4(Q)
,

and therefore

c1 ≤
t2ω
2
S4(Q) +

t4ω
2
ζ − t4ωζ

≤ 1

2
max
t>0

[
t2S4(Q)− t4ζ

]
=

1

2

(
S2

4(Q)

4ζ

)
=
S2

4(Q)

8ζ
<

α∗
4α0

,

where we have used (4.9) again in the last part. The proof is complete.

Arguing as in the proof of Theorem 2.1.4 we can check that Theorem 4.3.1 holds. Using the
solution obtained in Theorem 4.3.1 and elliptic regularity, we can easily obtain a weak solution
for the system (S), with λ = 1.

Proof of Theorem 4.3.2. Let u ∈ W be the solution given by Theorem 4.3.1, ϕ ∈ C∞0 (R2) and
R > 0 be such that the support of ϕ is contained in BR. For any 1 < p <∞, we have that∫

BR

|K(x)u2|pdx ≤ ‖K‖pL∞(R2)

∫
BR

|u|2pdx <∞,

since W ↪→ L2p(BR). It follows from the classical potential theory (see [47, Theorem 9.9]) that
φu := Γ2∗(Ku2) ∈ W 2,p(BR) and ∆φu = K(x)u2 for a.e. x ∈ BR. This and Divergence Theorem
ensure that

−
∫
BR

∇φu · ∇ϕdx =

∫
BR

(∆φu)ϕdx =

∫
BR

(K(x)u2)ϕdx.

Therefore, the pair (u, φu) ∈ W ×W 2,p
loc (R2) is a weak solution of system (S) and the theorem is

proved.
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Chapter 5

On the planar Choquard equation with
nonradial potencial and exponential
critical growth

In this chapter is devoted to the paper [30], where we study a Choquard type equation in
the whole plane involving the logarithmic kernel and the exponential nonlinearity. We will use
results obtained in the Chapter 4.

5.1 Main results

In this chapter we investigate the existence of solutions for the equation

−∆u+ V (x)u =
1

2π

[
log

1

|x|
∗
(
K(x)F (u)

)]
Q(x)f(u), x ∈ R2, (E .C)

where V,K,Q are continuous potentials (see Chapter 4) and[
log

1

| · |
∗
(
KF (u)

)]
(x) =

∫
R2

log

(
1

|x− y|

)
K(y)F (u(y))dy.

.
The Choquard equation appears in several physical contents, such as an approximation to the

Hartree-’Fock theory for one component plasma in the paper Lieb-Simon [51] and the description
by Pekar of the quantum physics of a polaron at rest [66]. For complete discussion and references
on the nonlinear Choquard equation we refer the reader to [18, 49, 51, 52, 55, 62] and references
therein.

In [51], the authors have addressed the classical Choquard equation

−∆u+ u = (I2(x) ∗ |u|2)u R3, (5.1)

where I2(x) = |x|−1 is the Riesz potential.
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5. On the planar Choquard equation with nonradial potencial and exponential critical growth

The nonlinear Choquard equation in high dimension

−∆u+ u = (Iα(x) ∗ |u|p)|u|p−2u RN , N ≥ 3, (5.2)

when the potential Iα(x) = |x|α−N (with 0 < α < N) is the Riesz potential, has been subject of
interest by many authors in the last years (see for instance [7,18,60–62] and references therein).

We quote that the existence of solutions for the nonlinear Choquard equation in the planar
case has been addressed in many papers such as [7,31,60,71,84]. In [7] the authors consider the
equation when Iα(x) = |x|−α (with 0 < α < 2) is the Riesz potential and V is periodic.

As in the papers [25, 36, 78], it is quite natural to consider potentials Iα of logarithm type
which have signal changes. In [18], the authors investigate the existence of solutions for the
planar Choquard equation when the potential V interacts with Iα(x) and the nonlinearity f has
polynomial growth.

Motivated by the aforementioned results, our purpose here is to investigate the existence of
solutions to problem (E .C) when the nonlinearity f has the maximal growth for which the energy
functional associated is well defined.

In this chapter, we shall assume that the nonlinearity f : R → R is differentiable, f(s) = 0

for all s ≤ 0 and f(s) > 0 for all s > 0, (1.1) holds, and satisfies the following conditions:

(f1) f(s) = o(|s|) as s→ 0;

(f̃2) there exists δ ∈ (0, 1) such that

δ ≤ F (s)f ′(s)

f 2(s)
, ∀ s > 0;

(f̃3) there exist ξ > 0 and κ > 2 such that F (s) ≥ ξsκ, for all s ∈ (0, 1].

A typical example of nonlinearity satisfying our assumptions is F (s) = eα0s2 − 1, that is,
f(s) = F ′(s) = 2α0se

α0s2 .

Remark 5.1.1. It follows from (f̃2) that f is monotone increasing and hence

F (s) =

∫ s

0

f(t)dt ≤ f(s)s, ∀s > 0, (5.3)

which improves the famous Ambrosetti-Rabinowitz condition. Furthermore,

d

ds

(
F (s)

f(s)

)
=
f 2(s)− F (s)f ′(s)

f 2(s)
≤ 1− δ. (5.4)

Consequently, for s > 0 fixed, if we choose 0 < ε < s arbitrary, one deduce∫ s

ε

d

dt

(
F (t)

f(t)

)
dt ≤

∫ s

ε

(1− δ)dt,
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which implies
F (s)

f(s)
− F (ε)

f(ε)
≤ (1− δ)(s− ε).

By (5.3), limε→0+ F (ε)/f(ε) = 0. Thus, taking ε→ 0+ in the last estimate, follows that

F (s) ≤ (1− δ)f(s)s, ∀s > 0. (5.5)

We say that u ∈ E is a weak solution for (E .C) if for any ϕ ∈ C∞0 (R2) there holds∫
R2

[∇u∇ϕ+ V (x)uϕ] dx =
1

2π

∫
R2

[
log

1

|x|
∗
(
K(x)F (u)

)]
Q(x)f(u)ϕdx. (5.6)

Remark 5.1.2. If u ∈ E is a weak solution for equation (E .C), considering ϕ = u− :=

max{0,−u} as a test function in (5.6) we obtain that u− = 0 and consequently every weak
solution of (E .C) is nonnegative.

Our main existence result for problem (E .C) is state as follows.

Theorem 5.1.3. Suppose that (V KQ), (1.1), (f1), and (f̃2) hold. Then there exists ξ∗ > 0 such
that if (f̃3) holds with ξ ≥ ξ∗, (E .C) has a nontrivial weak solution which is nonnegative.

The remainder of the chapter is organized as follows. In Section 5.2 we shows some properties
of the nonlocal term which are fundamental in our approach. Finally, in Section ?? we prove
Theorem 5.1.3.

5.2 Variational setting

This section is devoted to introduce the variational setting to study equation (E .C). To this
purpose we observe that (E .C) has, at least formally, a variational structure given by the energy
functional J : E → R defined by

J (u) =
1

2
‖u‖2

E −
1

4π
G(u),

where
G(u) :=

∫
R2

∫
R2

[
log

(
1

|x− y|

)(
Q(y)F (u(y))

)]
Q(x)F (u(x))dydx.

First let us show that the functional I is well defined. Since Q and K have the same growth,
from now on we will assume that Q ≡ K. Using the elementary identity

log
1

r
= log

(
1 +

1

r

)
− log(1 + r),

we can write G(u) = G1(u)− G2(u), where

G1(u) :=

∫
R2

∫
R2

[
log

(
1 +

1

|x− y|

)(
Q(y)F (u(y))

)]
Q(x)F (u(x))dydx
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and
G2(u) :=

∫
R2

∫
R2

[
log (1 + |x− y|)

(
Q(y)F (u(y))

)]
Q(x)F (u(x))dydx.

Hence
J (u) =

1

2
‖u‖2

E −
1

4π
(G1(u)− G2(u)) . (5.7)

To show that the nonlocal term G1(u) is well defined, we recall the relevant Hardy–Littlewood–
Sobolev inequality (see for instance Proposition 2.3.5).

Since log (1 + 1/t) ≤ 1/t holds for all t > 0, applying Proposition 2.3.5 with µ = 1 and
s = r = 4/3 one has

|G1(u)| ≤
∫
R2

∫
R2

Q(y)F (u(y))Q(x)F (u(x))

|x− y|
dydx

≤ C

(∫
R2

Q4/3(y)F 4/3(u)dy

)3/4(∫
R2

Q4/3(x)F 4/3(u)dx

)3/4

= C

(∫
R2

Q4/3(x)F 4/3(u)dx

)3/2

.

(5.8)

From (1.15) (with γ = 2) and (1.16) it follows that∫
R2

Q4/3(x)F 4/3(u)dx ≤ ε4/3

∫
R2

Q4/3(x)|u|8/3dx+ C1

∫
R2

Q4/3(x)|u|4q/3Φ(4α/3), 1(u)dx.

On the other hand, by Hölder’s inequality with exponents 1/r1 + 1/r2 = 1 together with (1.16)
we deduce ∫

R2

Q4/3(x)|u|4q/3Φ(4α/3), 1(u)dx ≤
(∫

R2

Q4/3(x)|u|4r2q/3dx
)1/r2

×
(∫

R2

Q4/3(x)Φ(4r1α/3), 1(u)dx

)1/r1

.

Hence, ∫
R2

Q4/3(x)F 4/3(u)dx ≤ C2‖u‖8/3

L8/3(R2;Q4/3)
+ C2‖u‖4q/3

L4r2q/3(R2;Q4/3)

×
(∫

R2

Q4/3(x)Φ(4r1α/3), 1(u)dx

)1/r1

.

(5.9)

This combined with and (5.8) yields

|G1(u)| ≤ C3‖u‖4
L8/3(R2;Q4/3)

+ C3‖u‖2p

L4r2q/3(R2;Q4/3)

(∫
R2

Q4/3(x)Φ(4r1α/3), 1(u)dx

)3/2r1

.
(5.10)

Choosing q ≥ 2, it follows from Remarks 4.1.3 and 4.2.4 that G1(u) is well defined.
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Now, we estimate G2(u). Since log(1 + |x− y|) ≤ log(1 + |x|) + log(1 + |y|), we get

|G2(u)| ≤
∫
R2

∫
R2

[(
log(1 + |x|) + log(1 + |y|)

)(
Q(y)F (u(y))

)]
Q(x)F (u(x))dydx

≤
∫
R2

∫
R2

log(1 + |x|)Q(y)F (u(y))Q(x)F (u(x))dydx

+

∫
R2

∫
R2

log(1 + |y|)Q(y)F (u(y))Q(x)F (u(x))dydx

=

(∫
R2

Q(y)F (u(y))dy

)(∫
R2

log(1 + |x|)Q(x)F (u(x))dx

)
+

(∫
R2

log(1 + |y|)Q(y)F (u(y))dy

)(∫
R2

Q(x)F (u(x))dx

)
= 2

(∫
R2

log(1 + |x|)Q(x)F (u(x))dx

)(∫
R2

Q(x)F (u(x))dx

)
.

By (1.15) (with γ = 2), one has∫
R2

log(1 + |x|)Q(x)F (u)dx ≤ ε

∫
R2

log(1 + |x|)Q(x)u2dx

+ C

∫
R2

log(1 + |x|)Q(x)|u|qΦα,1(u)dx.

Applying Hölder’s inequality with exponents 1/q1 + 1/q2 = 1, together with Theorem 4.1.2,
(1.16), and Theorem 4.2.1, we obtain∫

R2

log(1 + |x|)Q(x)F (u)dx ≤ ε

∫
R2

log(1 + |x|)Q(x)u2dx

+

(∫
R2

log(1 + |x|)Q(x)|u|q1qdx
)1/q1

×
(∫

R2

log(1 + |x|)Q(x)Φq2α,1(u)dx

)1/q2

≤ C4‖u‖2
E + C4‖u‖qE

(∫
R2

log(1 + |x|)Q(x)Φq2α,1(u)dx

)1/q2

<∞.

Similarly, we can use Remark 4.1.3, (1.16) and Remark 4.2.4 to get

∫
R2

Q(x)F (u)dx ≤ ε

∫
R2

Q(x)u2dx+ C5

(∫
R2

Q(x)|u|q1qdx
)1/q1

×
(∫

R2

Q(x)Φq2α,1(u)dx

)1/q2

≤ C6‖u‖2
E + C6‖u‖qE

(∫
R2

Q(x)Φq2α,1(u)dx

)1/q2

<∞.

(5.11)
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From the above estimates we conclude that

|G2(u)| ≤ C7‖u‖2
E + C7‖u‖qE

(∫
R2

log(1 + |x|)Q(x)Φq2α,1(u)dx

)1/q2

+ C7‖u‖qE
(∫

R2

Q(x)Φq2α,1(u)dx

)1/q2

<∞.
(5.12)

Next, following the same steps proved in [31, Lemma 4.2] we can see that G ∈ C1(E,R) and
for all u, v ∈ E it holds

J ′(u)v = 〈u, v〉E −
1

2π

∫
R2

[
log

1

|x|
∗
(
Q(x)F (u)

)]
Q(x)f(u)vdx

= 〈u, v〉E −
1

2π
(G ′1(u)v − G ′2(u)v) ,

where

G ′1(u)v =

∫
R2

∫
R2

[
log

(
1 +

1

|x− y|

)(
Q(y)F (u(y))

)]
Q(x)f(u(x))v(x)dydx

and
G ′2(u)v =

∫
R2

∫
R2

[
log (1 + |x− y|)

(
Q(y)F (u(y))

)]
Q(x)f(u(x))v(x)dydx.

Consequently, weak solutions of problem (E .C) are precisely the critical points of J .

5.3 Proof of Theorem 5.1.3

This section is devoted to prove Theorem 5.1.3 which will be achieved by using a variational
approach.

First, we show that the functional I satisfies the geometry required in the Mountain Pass
Theorem.

Lemma 5.3.1. Suppose that (V KQ), (1.1), and (f1) hold. Then there are constants ρ, τ > 0

such that J (u) ≥ τ , for any ‖u‖E = ρ. Furthermore, there exists e ∈ E such that ‖e‖E > ρ and
J (e) < 0.

Proof. From (5.7), (5.12), and the fact that G1 ≥ 0, we can use Remarks 4.2.4 and 4.1.3 to
conclude that

J (u) ≥ C1‖u‖2
E − C2‖u‖qE,

whenever ‖u‖E ≤ ρ1, with ρ1 > 0 satisfying q2αρ
2
1 ≤ α∗. Taking q > 2 and 0 < ρ ≤ ρ1 small

enough, we can easily use the above estimate to obtain this first statement of the lemma.
In order to prove the second one, we fix ϕ ∈ C∞0 (R2) \ {0}, with suppϕ ⊂ B1/4. Taking into
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account that |x− y| < 1/2 for any x, y ∈ B1/4, we have, for t > 0, that

G(tϕ) =

∫
B1/4

∫
B1/4

log
1

|x− y|
Q(y)F (tϕ(y))Q(x)F (tϕ(x))dydx

≥ log 2

(∫
B1/4

Q(x)F (tϕ(x))dx

)2

.

By (1.1), for q > 1 fixed there are constants C3, C4 > 0 such that F (s) ≥ C3|s|q − C4 for all
s ∈ R. Thus, for some constants C5, C6 > 0 we get

J (tϕ) ≤ t2

2
‖ϕ‖2

E − log 2

(
C5t

q

∫
B1/4

Q(x)|ϕ|qdx− C7

∫
B1/4

Q(x)dx

)2

.

Since 2q > 2, the second statement holds for e := tϕ with t > 0 sufficiently large, completing
the proof.

In view of Lemma 5.3.1, the minimax level

cMP := inf
g∈Γ

max
t∈[0,1]

J (g(t)), (5.13)

where Γ := {g ∈ C ([0, 1], E) : g(0) = 0 and J (g(1)) < 0} is well defined and positive.
The following result holds true.

Lemma 5.3.2. Suppose that (V KQ) and (f̃2) hold. If (un) ⊂ E is a (PS)c sequence for the
functional J , then (un) is bounded in E.

Proof. If (un) ⊂ E is a (PS)c sequence we have

1

2
‖un‖2

E −
1

4π

∫
R2

[
log

1

|x|
∗
(
Q(x)F (un)

)]
Q(x)F (un)dx = c+ on(1) (5.14)

and ∣∣∣∣〈un, v〉E − 1

2π

∫
R2

[
log

1

|x|
∗
(
Q(x)F (un)

)]
Q(x)f(un)vdx

∣∣∣∣ ≤ τn‖v‖E, (5.15)

for any v ∈ E, where τn → 0 as n → ∞. We claim that vn := F (un)/f(un) ∈ E, for all n ∈ N.
Considering

Tn(v) :=

∫
R2

[
log

1

|x|
∗
(
Q(x)F (un)

)]
Q(x)f(un)vdx,

since f(s) = 0, for all s ≤ 0, one deduces

Tn(v) =

∫
{un>0}

[
log

1

|x|
∗
(
Q(x)F (un)

)]
Q(x)f(un)vdx

+

∫
{un≤0}

[
log

1

|x|
∗
(
Q(x)F (un)

)]
Q(x)f(un)vdx

=

∫
{un>0}

[
log

1

|x|
∗
(
Q(x)F (un)

)]
Q(x)f(un)vdx.
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Thus, we can assume un > 0 and so f(un) > 0, implying that vn is well defined. Now, to show
that vn ∈ E, for all n ∈ N, let us notice that from (5.3) there holds∫

BR

v2
ndx =

∫
BR

F 2(un)

f 2(un)
dx ≤

∫
BR

u2
ndx <∞,

for any R > 0, since (un) ⊂ E. Again by (5.3), we obtain∫
R2

V (x)v2
ndx ≤

∫
R2

V (x)u2
ndx <∞. (5.16)

On the other hand, observing that

∇vn = ∇un
f 2(un)− F (un)f ′(un)

f 2(un)
, (5.17)

from (5.4) it follows that ∫
R2

|∇vn|2dx ≤ (1− δ)2

∫
R2

|∇un|2dx <∞.

Therefore, (vn) ⊂ E as claimed. So, we can apply (5.15) with vn instead of v to get

−〈un, vn〉E +
1

2π

∫
R2

[
log

1

|x|
∗
(
Q(x)F (un)

)]
Q(x)F (un)dx ≤ τn‖vn‖E.

This last inequality combined with (5.14) and the fact that ‖vn‖E ≤ ‖un‖E infer that

‖un‖2
E = 2c+ 2on(1) + 〈un, vn〉E + τn‖un‖E.

By the definition of vn, (5.17), (5.4), and (5.5), we obtain

〈un, vn〉E =

∫
R2

|∇un|2
(
f 2(un)− F (un)f ′(un)

f 2(un)

)
dx+

∫
R2

V (x)un
F (un)

f(un)
dx

≤ (1− δ)
∫
R2

|∇un|2dx+ (1− δ)
∫
R2

V (x)u2
ndx.

From the above estimates and the fact that for ε > 0 arbitrary, one can choose 2on(1), τn ≤ ε,
for sufficiently large n ∈ N, to conclude that

δ‖un‖2
E ≤ 2c+ ε+ ε‖un‖E, (5.18)

which implies the (un) is bounded in E and the proof is complete.

Next, we need to establish the following compactness result:

Lemma 5.3.3. Suppose that (V KQ), (1.1), (f1), and (f̃2) hold. Then there exists c0 > 0 such
that the functional J satisfies the (PS)c condition at any level 0 < c < c0.
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Proof. If (un) ⊂ E is a (PS)c sequence, by Lemma 5.3.2, up to a subsequence, we can assume
that un ⇀ u weakly in E. We claim that

Dn :=

∫
R2

[
log

1

|x|
∗
(
Q(x)F (un)

)]
Q(x)f(un)(un − u)dx = on(1). (5.19)

If this is true, since limn→∞ J (un)(un − u) = 0 and un ⇀ u weakly in E, we must have

lim
n→∞

(
‖un‖2

E − 〈un, u〉E
)

= lim
n→∞

(
‖un‖2

E − ‖u‖2
E

)
= 0.

Hence, this and the fact that un ⇀ u weakly in E, give us

lim
n→∞

‖un − u‖2
E = lim

n→∞

(
‖un‖2

E − 2 〈un, u〉E − ‖u‖
2
E

)
= ‖u‖2

E − 2 〈u, u〉E + ‖u‖2
E = 0,

and this finishes the proof. Thus, it remains to prove (5.19).
To this end, note that

Dn = G ′1(un)(un − u) + G ′2(un)(un − u). (5.20)

Taking into account that log (1 + 1/t) ≤ 1/t for t > 0 and Proposition 2.3.5, with µ = 1 and
r = s = 4/3, we get

G ′1(un)(un − u) ≤ C1

(∫
R2

Q4/3(x)F 4/3(un)dx

)3/4(∫
R2

Q4/3(x)f 4/3(un)|un − u|4/3dx
)3/4

.

From (5.9) and Remark 4.2.4, it follows that∫
R2

Q4/3(x)F 4/3(un)dx ≤ C2‖un‖8/3
E + C2‖un‖4q/3

E

×
(∫

R2

Q4/3(x)Φ(4r1α/3)‖un‖2E ,1

(
un
‖un‖E

)
dx

)1/r1

.

(5.21)

On the other hand, since (un) is bounded in E, by (5.18) one deduces

δ lim
n→∞

‖un‖2
E ≤ 2c+ ε+ ε lim

n→∞
‖un‖E ≤ 2c+ ε+ εC3.

Thus, picking c1 > 0 and ε > 0 small enough such that

lim
n→∞

‖un‖2
E ≤

2c

δ
+
ε

δ
+
εC3

δ
<

(
2c1

δ
+
ε

δ
+
εC3

δ

)
<

3α∗
4αr1

, (5.22)

for any 0 < c < c1. So, we can conclude that (4r1α/3)‖un‖2
E < α∗, for any n ∈ N large enough.

Using Remark 4.1.3 in (5.21), there holds

G ′1(un)(un − u) ≤ C4

(∫
R2

Q4/3(x)f 4/3(un)|un − u|4/3dx
)3/4

.
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Invoking Hölder’s inequality with exponents 2/3 + 1/3 = 1, we get

∫
R2

Q4/3(x)f 4/3(un)|un − u|4/3dx ≤
(∫

R2

Q4/3(x)f 2(un)dx

)2/3

‖un − u‖4/3

L4(R2;Q4/3)
.

By Remark 4.2.4, we obtain the following convergence

lim
n→∞

‖un − u‖4/3

L4q2/3(R2;Q4/3)
= 0,

and so, to guarantee that limn→∞ G ′1(un)(un − u) = 0, it is enough shows that the sequence(∫
R2 Q

4/3(x)f 2(un)dx
)
is bounded. In fact, from (1.14) with q = 1, Remark 4.2.4, and (1.16),

we have ∫
R2

Q4/3(x)f 2(un)dx ≤ ε

∫
R2

Q4/3(x)u2
ndx+ C5

∫
R2

Q4/3(x)Φ2α,1(un)dx

≤ C6 + C6

∫
R2

Q4/3(x)Φ2α‖un‖2E ,1

(
un
‖un‖E

)
dx.

(5.23)

From the first inequality (5.22), taking c2 > 0 and ε > 0 small enough we get

lim
n→∞

‖un‖2
E ≤

2c

δ
+
ε

δ
+
εC3

δ
<

(
2c2

δ
+
ε

δ
+
εC3

δ

)
<
α∗
2α
,

for any 0 < c < c2. Thus, for any n ∈ N large

2α‖un‖2
E < α∗. (5.24)

By Remark 4.2.4 and (5.23), the sequence
(∫

R2 Q
4/3(x)f 2(un)dx

)
is bounded and therefore

limn→∞ G ′1(un)(un − u) = 0. This and (5.20) imply

lim
n→∞

Dn = lim
n→∞

G ′2(un)(un − u).

Since log(1 + |x− y|) ≤ log(1 + |x|) + log(1 + |y|) we have

G ′2(un)(un − u) =

∫
R2

∫
R2

[
log (1 + |x− y|)

(
Q(y)F (un(y))

)]
×Q(x)f(un(x))(un(x)− u(x))

≤ An +Bn,

where

An :=

(∫
R2

Q(y)F (un(y))dy

)(∫
R2

log(1 + |x|)Q(x)f(un(x))(un(x)− u(x))dx

)
and

Bn :=

(∫
R2

log(1 + |y|)Q(y)F (un(y))dy

)(∫
R2

Q(x)f(un(x))(un(x)− u(x))dx

)
.
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From (5.11), we can estimate

∫
R2

Q(x)F (un)dx ≤ C7‖un‖2
E + C7‖un‖qE

(∫
R2

Q(x)Φq2α‖un‖2E ,1

(
un
‖un‖E

)
dx

)1/q2

. (5.25)

Once again, by (5.22) we can choose c3 > 0 and ε > 0 small enough such that

lim
n→∞

‖un‖2
E ≤

(
2c

δ
+
ε

δ
+
εC3

δ

)
<

(
2c3

δ
+
ε

δ
+
εC3

δ

)
<

α∗
αq2

,

for all 0 < c < c3. Thus, q2α‖un‖2
E < α∗, for n ∈ N large. This, Remark 4.2.4, and (5.25) imply

that
An ≤ C8

(∫
R2

log(1 + |x|)Q(x)f(un(x))(un(x)− u(x))dx

)
.

Invoking Hölder’s inequality we conclude that∫
R2

log(1 + |x|)Q(x)f(un(x))(un(x)− u(x))dx ≤
(∫

R2

log(1 + |x|)Q(x)f 2(un)dx

)1/2

× ‖un − u‖L2(R2;Q).

Since, limn→∞ ‖un − u‖L2(R2;Q) = 0 (see Theorem 4.1.2), if we show that the sequence(∫
R2

log(1 + |x|)Q(x)f 2(un)dx

)
is bounded, we have that limn→∞An = 0. In fact, from (1.14), with q = 1, (1.16), (5.24),
Theorem 4.1.2, and Theorem 4.2.1, yield∫

R2

log(1 + |x|)Q(x)f 2(un)dx ≤ ε

∫
R2

log(1 + |x|)Q(x)u2
ndx

+ C9

∫
R2

log(1 + |x|)Q(x)Φ2α‖un‖2E ,1

(
un
‖un‖E

)
dx

≤ C10.

Similarly limn→∞Bn = 0, that is, limn→∞ G ′2(un)(un−u) = 0. Consequently, limn→∞Dn = 0 (see
(5.20)). Now choosing 0 < c0 < min{c1, c2, c3} we obtain the desired result and this completes
the proof.

The next result is an estimate from above for the minimax level cMP defined in (5.13).

Lemma 5.3.4. Suppose that (V KQ) and (f1) hold. There exists λ∗ > 0 such that if (f̃3) holds
with λ ≥ λ∗, then c < c0, where c0 is given in Lemma 5.3.3.

Proof. First, we shall consider a function ϕ ∈ C∞0 (R2), given by ϕ(x) = 1 if |x| ≤ 1/2, ϕ(x) = 0
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if |x| ≥ 1, 0 ≤ ϕ(x) ≤ 1 for all x ∈ R2 and |∇ϕ(x)| ≤ 2 for all x ∈ R2. Thus,

J (ϕ) =
1

2

∫
B1

(
|∇ϕ|2 + V (x)ϕ2

)
dx− 1

4π
(G1(ϕ)− G2(ϕ))

≤ 4π +
1

2
‖V ‖L1(B1)

− 1

4π

∫
B1

∫
B1

log

(
1 +

1

|x− y|

)
Q(y)F (ϕ(y))Q(x)F (ϕ(x))dydx

+
1

4π

∫
B1

∫
B1

log (1 + |x− y|)Q(y)F (ϕ(y))Q(x)F (ϕ(x))dydx.

For any x, y ∈ B1 we see that |x− y| ≤ 2 and hence

3

2
= 1 +

1

2
≤ 1 +

1

|x− y|
.

Therefore, log (1 + 1/|x− y|) ≥ log(3/2). Moreover, log(1+ |x−y|) ≤ log 3 in B1. Consequently,

J (ϕ) ≤ 4π +
1

2
‖V ‖L1(B1) −

log(3/2)

4π

∫
B1/2

∫
B1/2

Q(y)F (ϕ(y))Q(x)F (ϕ(x))dydx

+
log 3

4π

∫
B1

∫
B1

Q(y)F (ϕ(y))Q(x)F (ϕ(x))dydx.

On the one hand, by assumption (f1) there exists C1 > 0 such that F (s) ≤ C1s
2, for all s ∈ [0, 1].

On the other hand, from (f̃3), F (s) ≥ λ|s|ν , for all s ∈ (0, 1]. So,

J (ϕ) ≤ 4π +
1

2
‖V ‖L1(B1) −

log(3/2)

4π
λ2‖Q‖2

L1(B1/2) +
log 3

4π
C1‖Q‖2

L1(B1),

where we used that ϕ(x) = 1 if |x| ≤ 1/2 and 0 ≤ ϕ(x) ≤ 1 for all x ∈ R2. Since the right-hand
side above goes to −∞ as λ→∞, we can obtain λ1 > 0 such that J (ϕ) < 0, whenever λ ≥ λ1

and hence the path g(t) := tϕ belongs to Γ. Since t4 ≤ t2 for t ∈ [0, 1], a simple computation
shows that

cMP ≤ max
t∈[0,1]

I(tϕ)

≤ max
t∈[0,1]

[
t2

2

(
4π +

1

2
‖V ‖L1(B1)

)
− t2ν log(3/2)

4π
λ2‖Q‖2

L1(B1/2) + t4
log 3

4π
C1‖Q‖2

L1(B1)

]
≤ max

t∈[0,1]

[
t2

2

(
4π +

1

2
‖V ‖L1(B1) +

log 3

2π
C1‖Q‖2

L1(B1)

)
− t2ν log(3/2)

4π
λ2‖Q‖2

L1(B1/2)

]
≤ max

t≥0

[
t2

2
A− t2νD(λ)

]
,

where
A := 4π +

1

2
‖V ‖L1(B1) +

log 3

2π
C1‖Q‖2

L1(B1)

and
D(λ) :=

log(3/2)

4π
λ2‖Q‖2

L1(B1/2).
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By carrying out a straightforward computation, we conclude that

c ≤ A2ν/(2ν−2)

(D(λ))2/(2ν−2)

(
1

2(2ν)2/(2ν−2)
− 1

(2ν)2ν/(2ν−2)

)
.

Since limλ→∞D(λ) = ∞, the right-hand side above goes to 0 as λ → ∞, and hence we obtain
λ∗ ≥ λ1 such that the inequality c < c0 is verified, for any λ ≥ λ∗ and this concludes the
proof.

Finalizing the proof of Theorem 1.1.2. Let λ∗ be given by the last lemma and suppose that (f̃3)

holds with λ ≥ λ∗. It follows from all the above lemmas and the Mountain Pass Theorem [13] that
J has a nonzero critical point u ∈ E which is a weak solution for equation (E .C). Furthermore,
u is nonnegative by Remark 5.1.2 and this finishes the proof.
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