Universidade Federal da Paraiba
Centro de Informatica

Programa de P6s-Graduagdo em Informatica

ST-SPF & STMS: Two new Algorithms for Path Finding in
Robotic Mobile Fulfillment Systems

[talo Renan da Costa Barros

Dissertacao submetida a Coordenagdo do Curso de Pés-Graduagdo em
Informética da Universidade Federal da Paraiba como parte dos requisi-

tos necessarios para obtencao do grau de Mestre em Informatica.

Area de Concentracio: Ciéncia da Computagio

Linha de Pesquisa: Sinais, Sistemas Digitais e Graficos

Tiago Pereira do Nascimento
(Orientador)
Luis Feliphe Silva Costa
(Co-Orientador)

Joao Pessoa, Paraiba, Brasil

©ltalo Renan da Costa Barros, 15 de Junho de 2021

Cat al ogacdo na publicacéo
Secdo de Catal ogacdo e O assificacéo

B277s Barros, italo Renan da Costa.
ST-SPF & STM5 : two new al gorithns for path finding

in
Robotic Mobile Fulfillment Systems / ital o Renan da
Costa Barros. - Jodo Pessoa, 2021.
120 f. : il.
Oientacdo: Tiago Pereira do Nascinento.
Coori entagdo: Luis Feliphe Silva Costa.
Di ssertacdo (Mestrado) - UFPB/PPG .
1. Informatica. 2. RMFS. 3. MAPF. 4. Path Pl anning.
5.
Mul ti - Agent Systens. 6. Robotized Warehouses. |.
Nasci mento, Tiago Pereira do. |I. Costa, Luis Feliphe
Silva. Ill. Titulo.
UFPB/ BC CDU 004(043)

El aborado por RUSTON SAMVEVI LLE ALEXANDRE MARQUES DA SI LVA -
CRB- 15/ 0386

Universidade Federal da Paraiba
PROGRAMA DE POS -GRADUA(IZO EM INFORMATICA

ATAN°S8

Aos dezenove dias do més de margo do ano de dois mil e vinte e um, as nove horas, por meio de
videoconferéncia, reuniram-se os membros da Banca Examinadora constituida para julgar o Trabalho Final de
ITALO RENAN DA COSTA BARROS, vinculado a esta Universidade sob a matricula n° 20191000951,
candidato ao grau de Mestre em Informatica do Programa de P6s-Graduagao em Informatica da Universidade
Federal da Paraiba. A Comissdo Examinadora foi composta pelos professores doutores TTAGO PEREIRA DO
NASCIMENTO (UFPB), Orientador e Presidente da Banca; GILBERTO FARIAS DE SOUSA FILHO (UFPB),
Examinador Interno; TEOBALDO LEITE BULHOES JUNIOR (UFPB), Examinador Interno; e ANDRE LUIS
MARQUES MARCATO (UFJF), Examinador Externo. Dando inicio aos trabalhos, o Presidente da Banca
cumprimentou os presentes, comunicou aos mesmos a finalidade da reunido e passou a palavra ao candidato para
que o mesmo fizesse a exposi¢do oral do trabalho de dissertagdo intitulado ST-SPF E STMS: DOIS NOVOS
ALGORITMOS PARA DESCOBERTA DE CAMINHOS EM SISTEMAS DE PREENCHIMENTO MOVEL
ROBOTICO. Concluida a exposi¢io, o candidato foi arguido pela Banca Examinadora que emitiu o parecer
APROVADO. Do ocorrido, eu, TTAGO PEREIRA DO NASCIMENTO, Presidente da Comissdo Examinadora,

lavrei a presente ata que vai assinada por mim e pelos membros da banca examinadora.

er /'~~O M v }ﬁ.mé

Dr. ANDRE LUIS MARQUES MARCATO, UFJF

Examinador Externo a Institui¢cdo
K’\i L&\JL;{L k Y O Jj ‘j o (/ b{u
Dr/GILBERTO FARIAS DE SOUSA FILHO, UFPB
Examinador Interno
“Tookdds pahs,
Dr. TEOBALDO LEITE BULHOES JUNIOR, UFPB

Examinador Inte

Presidente

Y

ITALO RENAN DA COSTA BARROS

Mestrando

Cidade Universitaria, Jodo Pessoa-PB, CEP 58051-900 Telefax: null e null

Universidade Federal da Paraiba
PROGRAMA DE POS -GRADUACEO EM INFORMATICA

FOLHA DE CORRECOES
ATAN’S8
Autor: ITALO RENAN DA COSTA BARROS
Titulo: ST-SPF e STMS: dois novos algoritmos para descoberta de caminhos em sistemas de
preenchimento mével robético
Banca examinadora:
Prof. ANDRE LU{S MARQUES MARCATO Examinador Externo a Institui¢io aJ Wl M g }‘pmé :
Prof. GILBERTO FARIAS DE SOUSA FILHO Examinador Interno
Prof. TEOBALDO LEITE BULHOES JUNIOR Examinador Interno mJ 9 M;)
Prof. TIAGO PEREIRA DO NASCIMENTO Presidente i
c?/%—-z—

Os itens abaixo deverdo ser modificados, conforme sugestdo da banca examinadora.

COMENTARIOS GERAIS:

Declaro, para fins de homologacao, que as modificacSes, sugeridas pela banca examinadora, acima
mencionadas, foram aceitas e serdo cumpridas integralmente,.

RA DO NASCIMENTO

Orientador

Cidade Universitaria, Jodo Pessoa-PB, CEP 58051-900 Telefax: null e null

Resumo

Um dos principais problemas enfrentado no Multi-Agent Path Finding aplicado a Robotic
Mobile Fulfillment Systems é como trazer uma maior escalabilidade ao sistema conforme
aumentamos o nimero de agentes. Este trabalho tem como objetivo propor dois novos al-
goritmos offline, o algoritmo descentralizado Space-Time Swarm Path Finding (ST-SPF),
e o algoritmo centralizado Space-Time Multi-Start (STMS). Os algoritmos foram testados
em um simulador desenvolvido no framework PyGame, onde foram realizados experimen-
tos com até 250 agentes em trés tipos de warehouses (instancias) diferentes, e com dois
tipos representacdes do mapa: Grid-Based e Graph-Based. Os resultados demonstram que
o ST-SPF ¢€ escaldvel em instancias grandes e populosas, alcancando até 48% de reducdo
do tempo de execug¢do quando comparado com o algoritmo de estudo da arte Conflict-based
Search (CBS), enquanto que o STMS apresentou uma vantagem ao CBS por ser mais com-
pleto (completeness) em instancias pequenas e populosas. Por fim, também foi notado que a
utilizagcdo da representagdo Graph-Based possui uma alta utilizagdo de memoria para instan-
cias complexas (acima de 600 nds), sendo a representacao Grid-Based mais eficiente.

Palavras-chave: RMFS, MAPEF, Path Planning, Sistemas Multi-Agentes, Warehouses

Robotizadas.

Abstract

One of the main problems faced in Multi-Agent Path Finding (MAPF) applied to Robotic
Mobile Fulfillment Systems (RMFS) is how to bring greater scalability as we increase the
number of agents in the system. This work aims to propose two new offline algorithms, the
Space-Time Swarm Path Finding (ST-SPF) a decentralized algorithm, and the Space-Time
Multi-Start (STMS), an centralized algorithm. The algorithms were tested in a simulator
developed in the PyGame framework, with up to 250 agents in three different types of ware-
houses (instances) and two types of map representations: Grid-Based and Graph-Based. The
results show that the ST-SPF is scalable in complex and populous maps, achieving up to 48%
reduction in execution time when compared to the Conflict-based Search (CBS) art study al-
gorithm, while the STMS presented an advantage to CBS since achieves more completeness
in small and populous instances. Finally, it was also noted that the use of the Graph-Based
representation has a high use of memory for complex instances (above 600 nodes), with the
Grid-Based representation being the most efficient.

Keywords: RMFS, MAPF, Path Planning, Multi-Agent Systems, Robotized Ware-

houses.

il

Agradecimentos

A minha mie, Cecilia Barros, a maior maestra da minha vida e que sempre me mostrou que
podemos levar conosco um sorriso no rosto independente da dificuldade que enfrentamos no
caminho.

Ao meu pai, José Barros, 0 meu maior exemplo de perseveranga € quem sempre me
incentivou a dar um passo a mais independente do desafio.

A minha esposa, Luanna Barros, que durante todo este drduo processo me apoiou durante
todos os altos e baixos me incentivando a permanecer firme e focado a continuar.

Ao meu orientador Dr. Tiago Nascimento, pela enorme pacié€ncia e por todos os ensina-
mentos durante todo este trajeto, um exemplo de educador e pesquisador que levarei como
exemplo ao longo de toda minha trajetAsria.

Ao meu Co-orientador Dr. Luis Feliphe, pelo enorme apoio no inicio do mestrado, ensi-
nando e me preparando para os desafios que seriam enfrentados.

Aos professores Teobaldo Junior e Gilberto Filho que me ajudaram imensamente no
desenvolvimento desta pesquisa com suas precisas € importantes criticas e pontuacoes.

Ao CNPq pelo apoio financeiro concedido.

Aos meus amigos Vannuty Cabral, Vinicius Medeiros, Jodo Vitor, e Erivan Filho pelo
apoio durante toda esta jornada.

Aos demais membros e amigos do LaSER que me ajudaram a trilhar este caminho.

il

Contents

1 Introduction

2

3

1.1 Motivation.

1.2 Objectives

1.3 Contributions

1.4 Dissertation Structure

Theoretical Concepts and Foundations

2.1 Path Planning for Autonomous Mobile Robots

2.1.1

Path Planning Schemes and Approaches

2.1.2 Common Path Planning Algorithms
2.1.3 The Multi-Agent Path Finding (MAPF) Problem

2.2 Warehouses Systems, Designs and Typologies

221
222
223
224
225
2.2.6
2.2.7

Warehouse Typologies . . .
Warehouse Layouts

Warehouse Systems

Robotic Mobile Fulfillment Systems (RMFES)

System Architecture
Performance Improvements

Discussion

Related Researches
3.1 Multi-Agent Path Finding
3.2 Path Planning Algorithms in RMFS

33 Discussion.

v

~ B~ W

=)

17
23
28
30
32
34
35
37
38
39

CONTENTS

4 The ST-SPF & STMS Algorithms

4.1 Low-Level Algorithms
4.1.1 The Breadth-First Search Algorithm
4.1.2 The Dijkstra’s Algorithm
413 The A* Algorithm,
4.1.4 Low-Level Algorithms Comparison
4.2 The Space-Time Swarm Path-Finder (ST-SPF) Algorithm
421 TheST-SPFSwarms
422 DISCUSSION e e e
4.3 The Space-Time Multi-Start Algorithm (STMS)
43.1 Discussion e

5 Experimental Evaluation

5.1 Traditional Horizontal . . .
5.1.1 Tiny Layout
5.1.2 Small Layout . . .
5.1.3 Medium Layout . .
5.14 Large Layout . . .

5.2 Traditional Vertical
5.2.1 Tiny Layout
5.2.2 Small Layout . . .
5.2.3 Medium Layout . .
524 Large Layout . . .

53 Flying-V..........
5.3.1 Tiny Layout
5.3.2 Small Layout . . .
5.3.3 Medium Layout . .
5.3.4 Large Layout . . .

6 Conclusion and Future Directions

Referéncias Bibliogréficas

49
49
49
50
50
50
55
55
59
60
63

65
66
66
68
70
72
74
74
76
78
79
81
81
83
84
86

88

CONTENTS vi
A The WarehousePy Simulator 100
A.1 Discussion and Final Considerations 107

Lista de Simbolos

AGVs : Automatic Guided Vehicles

AMRSs : Autonomous Mobile Robots

CBS : Conflict-Based Search

MAPF : Multi-Agent Path Finding

RFMS : Robotic Mobile Fulfillment Systems
ST-SPF : Space-Time Swarm Path Finding

STMS : Space-Time Multi-Start

vii

List of Figures

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14

3.1
3.2
33

4.1
4.2
43
4.4
4.5
4.6

The Piano-Mover Problem 8
Different Map Representations for Robot Localization 10
Common Graph Construction Methods 13
Types of Graph Representations 15
Node SearchExample 16
A-Star Algorithm 21
Common Classical MAPF Conflicts 26
An Typical Warehouse Flow and Operation 29
Pick-and-Pass and Pick-and-Merge Methods 30
Industrial Warehouse Typologies 31
Traditional Warehouse Layout Design 33
Irregular Warehouse Layouts Design 34
Automated and Robotized Warehouse Robots 35
An Generic RMF System L L L. 36
Where the Cooperative A* Fails 41
Path Planning Methodologies generally used before the MAPF 44
The Reservation Table 47
Path Planning Results for the Traditional Layout 52
Path Planning Results for the Traditional Vertical Layout 53
Path Planning Results for the Flying-V Layout 54
The Swarm Zone Creation for Isolated Agents 56
The Swarm Zone Appending 56
Avoiding Blind Spots and Conflicts 57

viii

LIST OF FIGURES ix

4.7
4.8
4.9

5.1
5.2
5.3
54
5.5
5.6
5.7
5.8
59
5.10
5.11
5.12

Al
A2
A3
A4
AS
A6
A7

The ST-SPF Algorithm 58
The STMS Algorithm 61
Space-Time Multi-Start Algorithm 62
Tiny Traditional Horizontal Graph 67
Small Traditional Horizontal Graph 69
Medium Traditional Horizontal Graph 71
Large Traditional Horizontal Graph 73
Tiny Traditional Vertical Graph 75
Small Traditional Vertical Graph 77
Medium Traditional Vertical Graph 79
Large Traditional Vertical Graph 80
Tiny Flying-V Graph oL 82
Small Flying-V Graph o 84
Medium Flying-V Graph L L. 85
Large Flying-V Graph 87
The asprilo Simulator oL 101
The WarehousePy Algorithm Flowchart 103
Warehouse Layouts implemented in WarehousePy 104
The Tiny Traditional Horizontal Grid Environment 105
The Tiny Traditional Horizontal Environment Connections 105
Examples of Obstacle Removal after the Initialization 106
Tiny Traditional Horizontal Graph & Grid Environments 107

List of Tables

2.1 Most Common Map Decomposition Techniques 11
2.2 Advantages and Disadvantages of Common Graph Construction Methods . 12
2.3 Taxonomies of EDCs i 32
2.4 Main Differences Between AMRs, AGVsand AGCs 37
3.1 Related Researches Comparison 48
5.1 Tiny Traditional Horizontal Results 67
5.2 Small Traditional Horizontal Results 69
5.3 Medium Traditional Horizontal Results 70
5.4 Large Traditional Horizontal Results 72
5.5 Tiny Traditional Vertical Results 74
5.6 Small Traditional Vertical Results 76
5.7 Medium Traditional Vertical Results 78
5.8 Large Traditional Vertical Results 80
59 Tiny Flying-V Results 81
5.10 Small Flying-V Results 83
5.11 Medium Flying-V Results 85
5.12 Large Flying-V Results 86

Chapter 1

Introduction

In this first chapter, a brief introduction to the research theme will be elaborated, also ad-
dressing the motivations, objectives, and contributions in the author’s view that led to the
development of this research. At the end of the chapter, a brief summary of the dissertation

structure will also be made.

1.1 Motivation

Recent advances in the field of robotics had allowed several improvements in diverse fields
of study. As a result of this new trend, many applications can acquired an better productivity,
efficiency, robustness, and flexibility. While some applications require only one robot to per-
form tasks, others require multiple robots to perform certain actions. Thus, a Multi-Robot
Systems (MRS) is a system where two or more robots perform a task using a cooperative
approach.

Despite the new progresses in localization, mapping and autonomous exploration, we
can still find new problems that need solutions or improvements. Some that can be cited is
the ability to perform complex tasks similar to human execution, reliability on the robot’s
movement in the real world, and the improvement of information analysis in a more rational
way [74]. Some improvements and current challenges are also mentioned in [32], where the
objectives can be better coordination in homogeneous or heterogeneous systems, the phys-
ical identity of agents, and adaptations of artificial intelligence techniques to solve control

problems.

1.1 Motivation 2

The field of robotics is vast, but one branch that has been gaining attention is the Robotic
Mobile Fulfillment Center (RMFS). Although the industrial area already has a good im-
plementation and several studies that analyze the use of Automated Guided-Vehicles (AGV),
the RMFES (which is also based on the same concept as AGVs) is focused on the use of an ap-
plied Multi-Agent System Fulfillment Centers and Warehouses. The great advantage of this
new technology concerning common AGVs is the ability to make decisions in real-time with
a certain level of autonomy and more "intelligent" trajectory planning, based on computer
vision or based on more powerful sensors such as LIDAR.

Although the first large-scale implementation of this system was only in 2008 [25], this
new implementation brought a revolution to the Warehouses sector especially in 2012 after
the purchase of Kiva Robotics by Amazon Robotics intending to improve the efficiency of
theirs Fulfillment Centers and Warehouses autonomously. The first system implemented was
characterized by a path planning based on the traditional A* Algorithm, a localization system
made by reading a QR Code on the floor, and infrared sensors and basic communication to
avoid collisions. Over the years, this new research niche has allowed the union of an artificial
intelligence branch that has been studied since 2006 [62], called Multi-Agent Path Finding.

The MAPF was initially proposed in 2006 [46] as a way to solve the path planning
problem with multiple agents in Games. However, it started to take shape for the field of
Robotics, Artificial Intelligence, and Transport Systems over the years. Most of the proposed
algorithms are based on A*, these being characterized by the non-collision key constraint
while the agents perform the path concurrently. As can be imagined, the RMFS has benefited
from the new implementations of this problem. Since it is also A*-based, it has to deal with
a large complexity and processing load in its planner, since the planning of multiple robots
must be done in a way that there are no collisions.

In recent years, several state-of-the-art algorithms and optimizations have been proposed,
such as STA* (also known as CA*) [59], RRA* [60] , WHCA* [46], CBS [54]. However,
despite the advances and new implementations, MAPF still considered NP-hard, and even if
some solutions are optimal, complete, or efficient, these variables directly depend on factors
such as grid size, number of agents, bottlenecks, free space available, among others. It is
correct to state then that the best solution for MAPF is unknown [62], and some questions

still need to be tackled, such as:

1.2 Objectives 3

e How to distribute the MAPF without losing efficiency and completeness?
e How to model MAPF considering Kinematic Constraints?

e How to plan for each agent separately maintaining soundness, completeness, and op-

timality?

e How to create complete and efficient MAPF algorithms but that are also optimal and

non-complex?
e Which low-level solver to use?
e When to merge the agents?
e How reduce conflicts?
e When to use which algorithm?
e How to scale up to one thousand robots, yet achieve good throughput?
e How to do "lifelong" planning for Automated Warehouses?
e How to handle heterogeneous robots?

As can be seen, there are several questions that still need to be answered. In this spe-
cific work, we will focus on how we could distribute this problem, what kind of low-level

algorithm to use, how to reduce conflicts, and how to make the system more scalable.

1.2 Objectives

This dissertation has the main objective of implementing two new algorithms applied to
RMEFS with a focus on Path Planning based on the latest state-of-the-art developments. The

secondary objectives of this dissertation are:

e Develop a simulator that allows to manipulate the desired environment (map) so that

different trajectory algorithms and desired layouts for single and multi-agent analysis;

e Implementation of two new algorithms that allows better scalability when compared

to state-of-the-art algorithms;

1.3 Contributions 4

1.3 Contributions
The main contributions of this work are:

e An algorithm based on the concept of swarm called Space-Time Swarm Path Finding
(ST-SPF), that brought scalability as the number of agents increases, reaching up to
48% reduction in Running Time when compared to Conflict-Based Search (CBS). The
ST-SPF also allows the modification of its internal algorithms, whether high or low

level, thus allowing future tests with new state-of-the-art algorithms;

e An algorithm called Space-Time Multi-Start (STMS), capable of reducing Makespan
in small and populous spaces by up to 20%, which also brought the possibility of
solutions not found by other algorithms due to this. The STMS also allows the modi-
fication of its internal algorithms, whether high or low level, thus allowing future tests

with new state-of-the-art algorithms;

e A simulator for pathfinding for single or multi-agent analysis, where the user can de-
fine the map and other settings in a Grid-Like or Graph-Like environment that will be

made available to the community Open Source, tested with up to 250 agents;

e Efficiency tests using different state-of-the-art warehouse environments of different

sizes, such as Traditional Vertical, Traditional Horizontal, and Flying-V;i

e Efficiency tests with low-level algorithms such as Dijkstra’s, A*, Breadth-First Search,
to identify which performs better in different types of warehouse environments and

which one should be used for the MAPF.

1.4 Dissertation Structure

In Chapter 2, a brief theoretical review of the subjects will be made to assist the understand-
ing of the solutions proposed in the dissertation, covering topics of Robotics, Path Planning,
and a review about Warehouse Systems and Robotic Mobile Fulfillment Systems. In Chapter
3, the latest research trends in the related fields of this work will be presented, where a brief

discussion on the themes is also elaborated, presenting the author’s point of view and the

1.4 Dissertation Structure 5

possible research gaps. In Chapter 4, the developed algorithms will be presented, address-
ing the reason of choice for the A* as the base low-level algorithm, the ST-SPF algorithm,
and the STMS algorithm. In Chapter 5, the experimental evaluation is presented for 3 types
of warehouse layouts with 4 different sizes from 1 to 250 robots. Finally, in Chapter 6 we

discuss the conclusions and future directions.

Chapter 2

Theoretical Concepts and Foundations

This chapter aims to present the main concepts and theories used in this thesis, serving as a

knowledge base for the later chapters.

2.1 Path Planning for Autonomous Mobile Robots

According to [18], the path planning of mobile robots involves different tasks, and the most
classic approach is defined as the creation of a path on a respective map, which guides the
robot movement from its initial position to the desired position, without collision with obsta-
cles on the way. Although the solution is relatively simple in its definition, path planning can
be really difficult at a computational level, since considerations such as mechanical problems,
limitations of sensors in the robot, and uncertainties found in real scenarios can complicate
the planner development [56].

In the field of artificial intelligence, planning and reaction are usually actions with differ-
ent or opposite approaches, but applied to autonomous mobile robots, planning and reaction
can be considered complementary to each other [58]. To prove this statement, let’s consider
a robot A at time ¢; and located in a map M : R?, that needs to leave its current location
P : {Xy, Yy} and go to a certain goal G : { X, Yy}, it is clear that to execute the move-
ment, an action or planning will be necessary. But what happens if he encounters an obstacle
along the way or the environment changes? In respect of an autonomous robot, it must react
to the unexpected event (the obstacle) so that it can still reach the desired position, that is,

without planning or reaction the robot will never reach the goal. In the best cases the reac-

2.1 Path Planning for Autonomous Mobile Robots 7

tion will modulate the robot’s behavior locally, however, we can approach a strategy to its
maximum possible limit, where the planner will react to the new information in real time,
achieving the concept of integrated planning and execution [58].

Before moving on, an extremely important concept that needs to be highlighted is the
relationship between the system’s ability to find the desired position regardless of whether
a solution exists, called completeness [58]. In summary, a robotic system can be called as
complete if for all defined problems such as initial states, maps and goals, the robot will
find the expected solution. As can be seen, achieving this directly affects the computational

complexity, where a sacrifice of completeness may be needed in exchange for performance.

2.1.1 Path Planning Schemes and Approaches

The way we develop an path planning solution will directly depends on the problem [58].
Industrial robots on a factory line for example, may need to be developed to achieve the
maximum movement speed as possible, since this is directly linked to an economic return.
In this case, the dynamics and kinematics of the movements are significant factors to achieve
a satisfactory planning. However, if the speed is relatively low, as the mobile robots found
in Warehouses for example, where high speeds can possible cause accidents due to contin-
uous Human-robot interaction, the dynamics will rarely be considered in the path planning,
simplifying the problem.

In the next subtopics, some basic concepts will be addressed, since they are fundamen-
tal for understanding how a Path Planning algorithm works. After that, some of the most

common algorithms used in AMR and MRS systems will be covered.

Geometric Path Planning Problem

For mobile robots, the robot is generally considered only as a point [58], in order to facilitate
the spatial configuration of the path planning in an almost identical 2D representation of
the physical space, differing only in the size of the obstacles on the map, which must
be increased at least to the same radius as the robot [18]. The reason for this approach
can be found in the piano-mover problem, where an object with a complex shape needs to

be transferred from a starting position P : {X,;, Yy} to a goal G : {X, Yy} around a

2.1 Path Planning for Autonomous Mobile Robots 8

physical space with obstacles as seen in Figure 2.1, adapted from [18]. In order to find
the best path, the piano is reduced to a point and the obstacles are increased in the same

proportion, allowing to find a possible path between the starting and ending position.
Figure 2.1: The Piano-Mover Problem

Final position Final position

Obstacle s

Obstacle Sem ? P ;+_
‘ O I"

? Obstacle _+_ :

Starting position O

Starting position

[

By definition, the piano-mover problem [11] demonstrates how path planning can be
done in an ideal environment without external interference. However, in conditions where
the obstacles are unknown, or the obstacle moves randomly during the path execution, the
planning must be done in a way that this change becomes noticeable to the robot (online)
through sensors, cameras, and a controller with enough memory that allows calculating the
distance between the robot and the object over time. In addition to these topics, there are
also other prominent areas of research, such as the correct local and global robot pose in

the physical space, the mapping and sensing of the surroundings, and the collective behavior

[18].

The Configuration Space and Workspace

The path planning of a robot is formally defined by a mathematical representation called con-
figuration space (C-Space) [58]. As previously mentioned, the robot pose can be represented
at different locations and orientations in the plane when it moves, and the configuration space
allows us to find mathematically the minimum of order parameters that will define the robot’s
posture [18]. Thus, for a planar moving object, as discussed in the Kinematics topic of a mo-
bile robot, only three parameters are needed: the 2D coordinates of the robot’s center of
gravity and its orientation angle. Regarding the Workspace, it can be defined as the geomet-
ric set of points that the robot can reach, that is, for a mobile robot it is the two-dimensional

space in which it can operate.

2.1 Path Planning for Autonomous Mobile Robots 9

An more formal definition can be found at [56], defining the Workspace W = RN,
where N = 2 v 3, as a static environment populated with Obstacles C W. To find the
collision-free path planning for an robot R, the configuration ¢, it is, every point on the robot
geometry must be provided. The C-space, where ¢ € C, is all the possible configurations and
transformations applied to a robot given its kinematics. Considering the closed set R(q) C
W as the set of points occupied by the robot when ¢ € C, the C-space obstacle region will
be:

Copstacte = {q € C|R(q) N Obstacles # (1} (2.1)

And the free space will be:

Clree = C'\ Cobs 2.2)

Finally, it is worth mentioning that C',. is usually coupled with a cost function [18],
allowing that the path planning performance is measured, quantifying the error between
predicted values and expected values, and presenting in the form of a single real number .
Generally the most used functions for this work are the Mean Absolute Error (Equation 2.3),

and the Mean Squared Error (Equation 2.4).

1 ¢ A (1 i
MAE = — D 19 =y (2.3)
i=1
1 m))
MSE = —) (30 —y)? 2.4
S mZ(y y) (2.4)

i=1
Where:

e ¢ its the sample index;
e ¢ is the predicted value;
e 7 is the expected value;

e m is the number of samples in dataset.

2.1 Path Planning for Autonomous Mobile Robots 10

Map Representations

Before starting to study the most used schemes and approaches, it is necessary to under-
stand how the environment representation works in conjunction which the path planning
algorithm. Generally, this representation will vary from a continuous geometric description
to a decomposition-based geometric map or topological map, in Figure 2.2 it is possible to

observe different hypotheses of the robot’s position using different map representations [58].

Figure 2.2: Different Map Representations for Robot Localization

robot p()sili()n\{.'j‘ =] (_w,‘a)l—t
¥ =] o |

Considering Figure 2.2, it is possible to observe that the robot movement will depend
directly on how the environment (map) is represented since it provides the actual and future
robot’s real position. To obtain a better fidelity of this position, some relationships must be

analyzed before choosing a specific map representation [58]:

e The map must be similar to the real environment in an precision sufficient for the robot

to reach its objective;

e The accuracy of the map and its peculiarities must be represented in a way that the

data read by the robot’s sensors in the real environment is similar;

2.1 Path Planning for Autonomous Mobile Robots 11

e The complexity of the map representation has a direct impact on the computational

complexity of tasks such as location, navigation, and mapping.

Considering these relationships, several decomposition strategies of a continuous map
(an exact decomposition of the environment) can be carried out in a way that the fidelity
of the real and abstracted map is not lost. Some of the most common used decomposition
methods are: exact cell decomposition, fixed decomposition, and occupancy grid [58]. In

Table 2.1 it is possible to analyze some of the advantages and disadvantages of each.

Table 2.1: Most Common Map Decomposition Techniques

Advantages Disadvantages
» - Extremely Compact - If the information of the obstacles and free space
Exact Cell Decomposition
- Effective to capture the Environment Connectivity is expensive or unknown becomes unfeasible

. . - Extremely Popular in mobile robotics; . .) X
Fixed Decomposition - Inexact Nature since some narrow passages can be lost during transformation;
- Easy to implement
- Not compatible with closed-world assumption;
X - Solves the inexact nature found on the Fixed Decomposition; - The Size of the map in robot memory grows with
Occupancy Grid
- Can provide high resolution maps the size of the environment;

- The cell size can become untenable.

As discussed in the previous subtopics, the environment representation in which the robot
will perform his movement can be achieved through a geometric description, a geometric
decomposition, or a topological map. Taking this into account, the first step to implement a
path-planning system is the real environment conversion into a discrete map, with needs to
be feasible to the path planning algorithm. According to [58], the planning algorithms will

differ in how they use this discrete decomposition, which can be:

e An Graph Search: An connectivity graph is constructed based on the free space and

searched, generally performed offline;

e An Potential Field: An mathematical function is imposed on the free space and the

function’s gradient is followed to the goal.

Although the Potential Field Planning can be found in several studies in the past years,
due to the characteristic of the research proposed using Metaheuristics and Swarm Intelli-
gence which focuses on a Graph Search approach, his explanation will not be addressed.

According to [58], the Graph Search technique is firmly linked to the field of mathemat-

ics, however, it has received a lot of attention in recent years in the field of mobile robotics.

2.1 Path Planning for Autonomous Mobile Robots 12

Most of the methods that use this approach are based on two steps: the construction of the
graph, where nodes are connected via edges, and the graph search, where the computation
of an optimal solution is made. For building a set of nodes and edges on the map we first
need to find some solutions that will construct the graph in a way that the path planning
understands what paths are available. Generally, the most common methodologies to solve
this problem are through a Visibility graph, Voronoi Diagram, Exact Cell decomposition,
Approximate Cell Decomposition, or the Lattice Graph. The advantages and disadvantages

of these methodologies can be seen at Table 2.2.

Table 2.2: Advantages and Disadvantages of Common Graph Construction Methods

Advantages Disadvantages
- Simple to Implement - The size and number of edges and nodes increase with the number of obstacles;
Visibility Graph - Fast and efficient in sparse environments - The planner solution can take the robot close as possible to the obstacles as he moves to the goal;
- The shortest solution is optimal in terms of path length. - The optimal-length results may be sacrificed in order to improve the disadvantage above

- More complete than the Visibility Graph;
- Usually far from optimal in terms of path length;
Voronoy Diagram - Maximize the distance between the robot and obstacles;
- Limited range sensor localization, causing the danger of don’t sense the surroundings in short-range:
- Simple control rules can be implemented due to his unique \fexecutability } characteristic

- The particular robot position within each cell (free space) does not matter; - The computation planning efficiency depends on the objects size, density, and geometric complexity:
Exact Cell Decomposition
- In large or sparse environments the representation is efficient and lossless. - The exact cell decomposition is rarely used in mobile robots due to its complexities.
. . - Starts with a coarse resolution until the limit resolution is attained; . .
Fixed-size Cell Decomposition - Narrow Passages can be lost due to tessellation when a high map resolution is needed:
- Low computational complexity induced to path planning.

Lattice Graph - Freedom to design feasible edges - Typically precomputed for a given platform and stored in memory.

In Figure 2.3 (adapted from [58]) is possible to see the most common graph construction
methods. The Visibility Graph (Figure 2.3a) consists of joining all the pairs of vertices that
can see each other, including the starting and ending points, then the planner is responsible
for finding the shortest path from the point initial to final. The Voronoy Diagram (Figure
2.3b) is a complete road map focused on maximizing the distance between robots and obsta-
cles, where for each free-space point the distance to the next obstacle is computed, increasing
the characteristic of moving away from the obstacle, and becoming extremely viable for au-
tomatic environment mapping. The Exact Cell decomposition (Figure 2.3c) is based on
the geometric criticality of every cell boundary, making each resulting cell free or occupied.
The Fixed-size Cell Decomposition (Figure 2.3d) is the most used in mobile robotics due
to the grid representation popularity, and works similar to the previous method but using
fixed grid-size cell decomposition’s, where the cell size (generally a 5 x 5 cm cell size) is not
dependent on the size of the objects in the environment. Finally, the Lattice Graph (Figure
2.3e) has been adapted in recent years for the graph search, and its graph formation is done

through the construction of a base set of repeated edges over the whole configuration space

2.1 Path Planning for Autonomous Mobile Robots 13

to form a graph.

Figure 2.3: Common Graph Construction Methods

>

¥ goal

(b) Voronoy Diagram Method

T —I——--:_-:.__ = =]
& | |1 . - N = .:.{/,»' _

e 12 |1
0 0 o —(10 ﬁ\
r(@)
Q (s 0 1, _f
(a4 G213 Ol

(c) Exact Cell decomposition

Method

(d) Fixed-size Decomposition (e) Lattice Graph Method
Method

Considering the explanations above, of what methods are used to construct a graph usable
to the path planning algorithm, as the basic operational concepts of each one, we can enter
now int the topic of how some algorithms elaborate the search to the most optimal path.
In summary, considering the way that the graph construction method was elaborated, the
algorithm will look for the best path in the connection map between the start point and the
goal in a way that the chosen path is the best possible. In general, most deterministic graph
search algorithms are relatively similar to each other but have some differences in the result
of total cost f(n), path cost g(n), cross edge cost c¢(n,n’) (cost of node n to adjacent node
n’), and heuristic cost h(n) (cost of node n to goal node), being these all functions of node n

and the adjacent node n’ [58]. Thus, the total cost of a deterministic path planning algorithm

2.1 Path Planning for Autonomous Mobile Robots 14

from start to goal, considering that € will be the parameter that assumes the values dependent

on the algorithm, can be described according to Equation 2.5:

f(n) = g(n) + - h(n) (2.5)

It is worth mentioning that the value of € has a direct relationship with a faster conver-
gence rate, or a more optimal algorithm, or a suboptimal algorithm and its value must be

analyzed according to each algorithm and situation.

Search Algorithms

Considering the behavior of acting rationally in an artificial intelligence system and the con-
cept of agent defined earlier, we can now talk about a branch of Artificial Intelligence study
that involves problem-solving based on an agent search. Let’s consider that we have an agent
in the city of Jodo Pessoa enjoying his vacation and that wants to visit several places before
leaving. For him to start his journey it is necessary to define a goal, that is, which place he
should visit first. This will help to better organize his behavior and limit the actions that our
agent wants to accomplish. For him to achieve this goal, we must follow a set of states that
will be responsible for taking our agent to the desired goal, such as turning left on a certain
street. As it may be possible to imagine, in the middle of the journey we may encounter
several difficulties due to the "unknown", such as the decision of which street to take at a
bifurcation, but which can be resolved if the agent has a map of the city. Considering this
example, we can define some important concepts in the field of artificial intelligence.

An environment is unknown if we have to make some random decisions like choosing
the street without a map, but it becomes observable if we have a map in our hands. We
can tell if the environment is discrete if we consider the execution of an action by states,
and deterministic if each action has exactly one outcome. Considering this, we can assume
that the solution to any problem is a fixed sequence of actions, whether random or known
in an observable environment or not. Thus, a search is nothing more than this sequence of
actions, which has defined inputs and returns a solution in the form of a sequence of actions.
According to [61] a search is usually done through a directed network or graph, where nodes
are states and links between nodes are actions. The path will then be a sequence of states

connected by a sequence of actions, with your cost being a function that adds a numerical

2.1 Path Planning for Autonomous Mobile Robots 15

cost to each path. With this cost, we can find not only a solution but a optimal solution,
characterized by the path with the lowest cost among the others.

Before we continue the discussion, it is important to review the concept of Graphs
and Heuristics. According to [61], a graph G = (V| E) is generally represented in two
ways, as an adjacency matrix (Figure 2.4 (left), adapted from [61]), characterized by a two-
dimensional Boolean array M, where M; ;,1 < ¢,j < nistrue iff an edge contains a node
with index ¢ as a source and a node index j as a target. For graphs with few edges (sparse
graphs) a adjacency list is more appropriate (Figure 2.4 (right), adapted from [61]), where
its implementation is a L array of pointers to node list, where for each node u € V/, the entry

L, will have a pointer to the list of all nodes v with (u,v) € E.

Figure 2.4: Types of Graph Representations

@8\@ T
<] I s E s e K1

Another important point for a search is the heuristic. A heuristic is commonly used to

estimate the remaining distance of a node to the goal, being used by search algorithms to
determine which status or direction is more viable than the other. Thus, for a more formal

presentation, we can define a heuristic as [61]:

Definition 2.1.1. (Heuristic) A heuristic / is a node evaluation function, mapping V' to R>o.
If h(t) = 0 for all ¢ in T" and if all other nodes u € V' then h(u) # 0. Thus, considering g(u)

the path cost to a node u and h(u) its estimate:

f(u) = g(u) + h(u) (2.6)

2.1 Path Planning for Autonomous Mobile Robots 16

Figure 2.5: Node Search Example

PARENT

Node ACTION = Right

PATH-COST =6

¢
STATE

H'

Although there are currently several heuristics for Grid-like environments, such as Diag-
onal distance and Euclidean distance, one of the most used today is Manhattan Distance

(Taxicab Metric, Manhattan Length, e.g.) which can be defined as:

Definition 2.1.2. (Manhattan Distance) The Manhattan Distance is the distance between
two points measured along axes at right angles. In other words, in a plane defined as a
n-dimensional real vector space with fixed Cartesian coordinate system, with vectors p at
(z1,y1) and q at (2, y»), the Manhattan Distance is the sum of lengths for the projections in
the line segment between the points onto the coordinate axes, itis (|z1 — 2|+ |y1 — y2|) * D,

where D is the cost. Formally we have:

di(p.q) = llp—allh = >_ Dlpi — ail (2.7)
=1

Before we enter in the topic of search algorithms that will be used in this thesis, it is also
important to understand the search algorithms basic infrastructure and the methodologies for
measuring problem-solving performance. The search algorithms needs a data structure to
keep the search tree active, to achieve this for each n node in a tree the structure must have

four components (see Figure 2.5 [51]):
e node.STATE: the state in the space to which the node corresponds;
e node.PARENT: the node in the search tree that generated this node;
e node.ACTION: the action that was applied to the parent to generate the node;

e node.PATH-COST: the cost, traditionally denoted by g(n) of the path from the initial

state to the node;

2.1 Path Planning for Autonomous Mobile Robots 17

Finally, to evaluate the performance of the algorithms, the following methodologies can

be applied:

Completeness: Characterized by the guarantee that a solution will be found if it exists;

Optimality: Characterized by the strategy to find the optimal solution;

Running Time: Characterized by the time spend to find the solution;

Space Complexity: Characterized by the memory needed to perform the search;

Depth: Characterized by the number of steps along the path from the root.

2.1.2 Common Path Planning Algorithms
Basic Algorithm

Analyzing the piano-mover problem previously addressed, and mathematical explanation of

the Configuration Space, and the Workspace, the above formal definition can be made [56]:

e Considering:

— A workspace W, where W = R?;

— An obstacle region or the collection of obstacles where Obstacle C W

A robot defined in W, being that a rigid body R or the collection of = links:
Rh RQ? ceey R:B’

The configuration space C' with the C-space obstacle region C,bs, and the free

space ('t defined;

An initial configuration ¢, € Clree;

A goal configuration qg € Clree;

An query (QDQG) € Cfree-

e The continuous path can be computed for 7 : [0, 1] — C/ree such that 7(0) = ¢; and

7(1) = gc-

2.1 Path Planning for Autonomous Mobile Robots 18

Breadth-First Search Algorithm

Algorithm 1: Breadth-First Search Pseudo Code
node < a node with STATE = problem.INITIAL_STATE, node. PATH_COST =0

if problem.GOAL_TEST(node.STATE) then return SOLUTION(node)

frontier +— a FIFO queue with node as the only element
explored <— an empty set

RUN_SEARCH = True

while RUN_SEARCH do

if EMPTY(frontier) then
| return failure

end
node < POP(frontier)
add node.STATE to explored nodes

for each action in problem. ACTIONS(node.STATE) do
node <— CHILD_NODE(problem, node, action)

if child STATE not in explored or frontier then

if problem. GOAL_TEST(child. STATE) then
return SOLUTION(child) node < INSERT(child, frontier)

RUN_SEARCH = False
end

end

end

end

According to [51], the Breadth-First Search (see the Pseudo Code 1 adapted from the
same author) is one of the simplest strategies that can be adopted, characterized by the initial
expansion of the root node, followed by the successor nodes expansion through a FIFO
queue. This algorithm is considered complete since the breadth-first search will eventually
find the goal node in some finite depth d. He can be also considered optimal, but only if
the path cost is a non-decreasing function of the depth of the node. One of the biggest
disadvantages of using this search method is due to the high need for available memory [61],

as well as its execution time since the total number of nodes generated in the worst case will

2.1 Path Planning for Autonomous Mobile Robots 19

be the value at Equation 2.8.

b+0*+ 0+ -+ b7 = 0% (2.8)

Dijkstra’s Algorithm

The Dijkstra’s algorithm is based on the principle of optimality, that is, if an optimal path
has the property of initial conditions and choices over some initial period, then the decision
variables chosen should be optimal for the rest of the problem. In other words, the minimum
distance of a node s to v is equal to the minimum distance sum of the predecessor u of v plus

the edge weight between v and v. More formally, we can build the equation 2.9 [61]:

0(s,v) = Minyesucew){0(s, u) +w(u,v)} (2.9)

In addition, the Theorems 2.1.1 and 2.1.2 [61] are also important for defining and under-

stand the algorithm’s exploration scheme.

Theorem 2.1.1 (Correctness Dijkstra’s Algorithm). In weighted graphs with non-negative
weight function, the algorithm is optimal, since at the first node ¢ € T' selected to expansion

we have f(t) = d(s,T)

Theorem 2.1.2 (Dijkstra’s Algorithm on Infinite Graphs). If the weight function w of a
problem graph G = (V, E, w) is strictly positive and the weight of every infinite path is

infinite, the algorithm terminates with an optimal solution.

According to [18], this algorithm is most used when the workspace is dense with obsta-

2.1 Path Planning for Autonomous Mobile Robots 20

cles, and the pseudocode can be described as follows:

Algorithm 2: Dijkstra Pseudo Code
Create a vertex setv; € V

Mark dist(v;) the distance from ¢, (start point) to v;
Mark v;. the parent node of v;

Set dist(c,) (start point) = 0

Set dist(v;) = oo for all v;c,

while V' is not empty do
Pick u from V' such that dist(u) = min{dist(V')}

remove v from V'

for each neighbor v; of u do
temp = dist(u) + cost(u, v;)

if temp > dist(u) then
dist(v;) < temp
v.parent = u

end

end

end

return dist, parent

As the mathematical formulation of this algorithm has already been studied in Chapter
2.1, this topic will only approach its computational method applied to the path planning
problem in robotics. Dijkstra’s algorithm is based on a specialized tree-based data structure
called heap. The elements of this structure are ordered according to the total path cost f(n)
for a given node n, followed by the expansion of the nodes beginning from the starting point,
and a reordering of the nodes according to their value f(n). In this way, the cheapest state
in the element at the top after reordering (heap) is extracted and expanded until the goal
node is expanded and there are no more nodes remaining in the heap, being able them to
find the solution by tracing the route from the goal node to the start node. Due to reordering
operations, the complexity of the algorithm will be O(nlog(n) + m), where n is the number
of nodes and m the number of edges.

The advantage of using the algorithm for robot path planning is that the best path and all

the lowest cost paths for any initial position from the initial node to the end are computed,

2.1 Path Planning for Autonomous Mobile Robots 21

allowing the robot to find the best route through its current position (the process is repeated

without needing a replanning until the goal) [58].

A* Algorithm

One of the best known and most studied algorithms for solving search problems is A-star
Search (A *), which based on the best-first search, evaluates the nodes by combining the

cost to reach the node and the cost to get from the node to the goal (see Equation 2.10).

f(n) = g(n) + h(n) (2.10)

The A-Star algorithm (A*) is similar to the Algorithm 2, differing only in the inclusion
of the h(n) function, which makes the graph search efficient for node by node single queries
[58]. Generally, the A* algorithm is implemented in an grid map representation, and the
major advantage of this method is the reduction of the expanded nodes numbers needed to

find a solution.

Figure 2.6: A-Star Algorithm

Considering an environment (Figure 2.6, adapted from [58]) where there is a discrete
two-dimensional space (C' — Space), a starting point c,, an ending point ¢, and obstacles
(black cells), the A* starts the search by expanding the starting node and placing him neigh-
bors nodes in a heap ordered according to the smallest value of f(n), and including the

heuristic function h(n). The smallest state value is extracted and expanded until the goal

2.1 Path Planning for Autonomous Mobile Robots 22

node is explored. Generally, it is not necessary to obtain an optimal solution as long the are

suboptimal level guarantees [58]. The A* pseudocode can be described as follows:

Algorithm 3: A-Star Pseudo Code
Initialize an open set OL

Initialize a close set C'LL

Mark c.g and c. f, cparent the g, g values of a cell ¢ and its parent cell
OL < ¢,

Set c,. f to zero

while OL is not empty do
Pick q to be the node ¢ € OL with ¢, f minimal

Drop ¢ from OL
Add gto CL

if q is the goal cell then
| return

end
for all neighbors n; or q check do

if n; is an obstacle cell or is in C'L then
| skip to the next neighbor

end
Gtemps ftemp < calculate g, f of n;

if 7.9 > giemp then
Update 1.9 <= Gtemp and 1. f < fremp

Set n;.parent < q

end

Add n; to OL
end

end

Construct a path from ¢, back to ¢, by tracking the parent cells

Where:

e OL is the set of cells that are currently under inspection;

e ('L is the set of cells that are already been inspected;

It is worth mentioning that to achieve smooth movements in the configuration space, it

2.1 Path Planning for Autonomous Mobile Robots 23

is necessary to increase the grid density. However, this will cause an increase in the volume
of data as the volume of C-Space increases exponentially with the size of the configuration
space [18]. It is possible to perceive the similarity with Equation 2.6, that is, A* uses a h(n)
heuristic function that satisfies certain conditions. A* is a complete and optimal algorithm,
but for optimality to be achieved h(n) must be an admissible heuristic, that is, it should
never overstate the cost to reach the goal. Another important feature for this algorithm to
achieve optimality is the consistency (monotonicity, e.g.) of the heuristic function, where
for each node n and each successor n’ of n generated by an action a, the estimated cost of
reaching the goal should not be greater than the step cost of getting to n’ plus the estimated
cost of reaching the goal from n’. This definition is also known as triangle inequality[51],

or formally:

h(n) > c¢(n,a,n’) + h(n’) (2.11)

Considering this, according to [51], the A* has the following characteristics: the tree-
search is great if h(n) is permissible, the graph-search is great if h(n) is consistent. For [61],
the A* is an elegant caste as the in a reweighted graph, where heuristics are incorporated into
the weight function. Putting all these points together, we can perform the Theorems 2.1.3

and 2.1.4 [61]:

Theorem 2.1.3 (A* for Consistent Heuristics). Let h be consistent. If we set f(s) = h(s)
for the initial node s and update f(v) with f(u) + (u,v) instead of f(u) + w(u,v), at each
o(s

1)

time a node ¢ € T is selected, we have f (1) = §(

Theorem 2.1.4 (A* for Admissible Heuristics). For weighted graphs F' = (V| E,w) and

admissible heuristics h, the A* algorithm is complete and optimal.

2.1.3 The Multi-Agent Path Finding (MAPF) Problem

According to [62], the Multi-Agent Path Finding (MAPF) problem is a research area that
addresses the problems and possible optimizations of path planning for multiple agents, be-
ing characterized by the non-collision key constraint while the agents perform the path con-

currently.

2.1 Path Planning for Autonomous Mobile Robots 24

Also, according to the authors, the classical MAPF problem with & agents is a tuple
(G,s,t) where G = (V. F) is an undirected graph, s : [1,...,k] — V maps an agent to a
source vertex, and ¢ : [1, ..., k] — V maps an agent to a target vertex. For this type of system,
time is discretized, and each agent can perform a single function action a : V' — V so that
a(v) = v'. That is, if an agent is in a v vertex and executes a a action he will be in the v’

vertex in the next time step. By definition, agents can perform two types of actions:

e Wait: The agent stays in its current vertex for another time step;

e Move: The agent moves from vertex v to v'.

Considering these assumptions, we can ask the following question: How does a sequence
of actions in Classical MAPF work? For a sequence of actions 7 = (ay, ..., a,,) and an agent
i where m;[z] is the location of the agent after executing the first action x on 7 we will have

[62]:

milr] = az(az_1(- - - a1(s(0)))) (2.12)

Where s(i) is the agent’s source, a sequence of actions 7 is a single-agent plan for agent
1 iff executing this sequence of actions in s(i) results ¢(i), and a solution is the set of % single-
agent plans for each agent. In this way, if we have a function f,; ;,, with defines the agent
movement, where the a is the agent, ¢ the initial position, 7, the final position, and ¢ the time,
the function fj,;;, = 1 indicates that agent a transact to state Ay_qj(a) =i to A (a) = j. If
» = j then the agent a stayed in his vertex position, and if ¢ = 0 we have the initial position

of each agent.

Problem Definition

Considering again G = (V| F) as an undirected graph, and a set of movable agents R =

{F1,7a,...,7,} where v < |V, the initial and goal robots arrangement will defined by a

uniquely invertible functions found at Equation 2.13 and Equation 2.14 respectively.

S%:R—V ie. S°#SY for Vr,s€ R with r#s (2.13)

2.1 Path Planning for Autonomous Mobile Robots 25

St:R—V ie. ST#ST for Vr,s€e R with r#s (2.14)

The multi-agent pathfinding problem is the task to find a number ¢ and a sequence Si =
[S9, Sk, ..., S%] where Sk : R — V is a uniquely invertible function for every k = 1,2, ..., C.

For this happens, the following conditions must hold for the sequence S, :

1 All agents reaches their destination vertices:

S5, =S5 (2.15)

ii A agent can either stay in a vertex or move to the neighboring vertex at each time step:

Sh(r)=8E(r) ¥V re RAk=1,2,...,(1 (2.16)
{SE(r),SE (1)} eE ¥V r€RANk=1,2,...(-1 (2.17)

iii The agent r moves between time steps k and k£ + 1:

Sk(r) # SEH(r) (2.18)

iv No robot s occupies the target vertex at same time step k:

SE(r) # SEtH(r) VseR (2.19)

v If there’s no other robot s on the target vertex at time step k, them the move of r at the

time step k is allowed;

vi If the robot » moves into a vertex that is being left by the robot s, and the move of s at
the time step k is allowed, then the move of r at the time step k is also allowed. That
is:

St(r) £ SEt(r), seR (2.20)

s# 1 ASE(s) = SEM(r) A SE(s) # SET(s) (2.21)

2.1 Path Planning for Autonomous Mobile Robots 26

Conlflicts, Agent Behavior and Objective Functions

Figure 2.7: Common Classical MAPF Conflicts

The objective of MAPF solvers is to find a solution and a plan for each agent without col-
lisions. To achieve this, the proposed solver uses the concepts of conflicts (see Figure 2.7,
adapted from [62]), where the solution is only considered valid iff there is no conflict between
any set of two single-agent plans. Although the definition of these conflicts depends directly
on the environment, some definitions of the most common conflicts for a single-agent pair

can be seen below [62]:

Definition 2.1.3. (Vertex Conflict) A Vertex Conflict occurs iff the agents are planned to

occupy the same vertex at the same time (1st illustration at Figure 2.7).

Definition 2.1.4. (Edge Conflict) A Edge Conflict occurs iff the agents are planned to trans-

verse the same edge at the same time step and direction (2st illustration at Figure 2.7).

Definition 2.1.5. (Following Conflict) A Following Conflict occurs iff one agent is planned

to occupy a vertex that was occupied in the previous time step (3st illustration at Figure 2.7);

Definition 2.1.6. (Cycle Conflict) A Cycle Conflict occurs iff the agents performs an rotating

cycle pattern at same time step (4st illustration at Figure 2.7);

Definition 2.1.7. (Swapping Conflict or Edge Conflict) Occurs iff the agents are planned to

swap location in a single time step (5st illustration at Figure 2.7);

Another important definition of a classical MAPF problem is how the agent behaves in
after the goal is reached and before it reaches the goal. According to [62], the most common

assumptions are:

2.1 Path Planning for Autonomous Mobile Robots 27

Definition 2.1.8. (Stay at the Goal) The agent will waits in its goal until all agents have

reached their goals (will cause a vertex conflict if any plan passes trough its goal);

Definition 2.1.9. (Disappear at the Goal) The agent immediately disappears when reaches

its goal.

To evaluate a classical MAPF work, benchmarks and a objective function are usually
used. For the Benchmarks part, the graph type and map representation selected must be
analyzed first. As the MAPF application has a wide range of applications, we will focus
only on maps based on Warehouse Grids (Figure 2.11), which are based in a way that is
similar to real Warehouses and with long corridors. Considering the map in question, it is
necessary to perform some methods for setting agent’s sources and goals, the most common

being:

e Random: Set the source and goal vertices by randomly choosing vertices in the graph

(must be a path in the graph between the two);

e Clustered: Set the first agent’s source and goal randomly, and all the others agents

with distance r from the first agent’s source and goal;

e Designated: Set the source of each agent randomly from a possible set of source

vertices, and the goal in the same way;

Finally, the objective functions most used to evaluate a MAPF solution are the Makespan
and Sum of Costs. The Makespan is the number of time steps required to all agents reach the
goal, and for a MAPF solution 7 = {my, ..., 7}, the makespan of 7 is defined by Equation
2.22. The Sum of Costs, also known as Flowtime, is the sum of time steps required for each

agent reach the goal, where the sum of costs of 7 is defined by Equation 2.23 [62].

makespan, = maxy<;<x|m| (2.22)

k

Costs, = Z |7 (2.23)

i=1

2.2 Warehouses Systems, Designs and Typologies 28

2.2 Warehouses Systems, Designs and Typologies

One of the first references to the storage of goods as a form of trade can be found in ancient
Rome, where the increase in trade caused the need to construct buildings where this type
of work was carried out, called horreas (for more information see [49]). Over the years, it
was possible to notice the development of this system gaining strength with the creation of
railroads in the United States and the great impulse and need for storage of goods during the
consecutive Industrial Revolutions [1].

After the Second World War and with the new trend of technologies and research de-
velopment in the field of Data Analysis, Artificial Intelligence, Machine Learning, and
Robotics, the Warehouse system was divided into several Typologies, Layouts, and Sys-
tems. According to [57], a Warehouse is an industrial building, characterized as a facility
primarily used for storage or distribution of materials. We can complement this technical
definition through a more general view of its use today, [48] defines that the main function of
a Warehouse is to satisfy the form of exponential consumption, efficiently meeting the needs
of the consumer so that the product is delivered in the right time, quantity and quality.

The typical flow of goods in a Warehouse can be seen in Figure 2.8 [40], and according

to [9], the whole process can be described as follows:

e The goods received are unloaded, where quantities are checked and quality checks are

carried out;

e The approved goods are prepared for transport to storage, where a label, QR Code, Bar
Code or Magnetic Label is added

e After transportation, the goods are stored in the Storage Area, following some storage
policies [40]. If any material present at this location is requested, the process of Order
Picking starts, where the products are listed, classified and sent to the Picking Storage

Area;

e After that, the goods will be accumulated, assorted and packaged, thus proceeded to

shipment.

2.2 Warehouses Systems, Designs and Typologies 29

Figure 2.8: An Typical Warehouse Flow and Operation

(——— RECEIVING —PUTAJ;A*«1
PUTAWAY
RESERVE STORAGE AREA

REPLENISHMENT

PICKING STORAGE AREA

I—l

ACCUMULATION, SORTATION, PACKING

l

SHIPPING

It is worth mentioning that more than 60% of all operational costs of a Warehouse are
attributed to Order Picking [9], with Packing being the biggest throttle in the entire fulfill-
ment process [47]. According to [53], the sub-processes of Order Picking that have a major
impact on the time needed to perform the activity is the traveling and the search for items,
totaling approximately 70% of the collection time, and becoming one of the most important
factors for achieving better efficiency in the operational level.

Because a Warehouses normally has to deal with different quantities of SKUs, some
fundamental concepts and taxonomies must be scored [9]. Some policies commonly used

during a order-picking can be seen bellow [53]:

e When multiple orders need to be picked simultaneously in a single order-picking is

called batch-picking, where picking is done in a certain zone (zoning);

e A zone can be created considering some variables such as product size, temperature

and safety procedures [53];

2.2 Warehouses Systems, Designs and Typologies 30

e Although the zoning method has some advantages, such as reducing the distance cov-
ered by the picker [53] and consecutively reducing the collection time, the products

will need to be sorted during or after the process [9], increasing the total process time;

e One of the ways to reduce the total process time in the zoning is to use methods like
sequential zoning/pick-and-pass and parallel zoning/pick-and-merge [53]; As can be
seen in Figure 2.9 [31], the pick-and-pass method is characterized by the collection of
products from a order, made zone by zone sequentially until all parts of an order are
reached. The pick-and-merge is the collection of products from a order from different

zones at the same time, followed by the merge of all order parts;

e The product sorting can be done during the process (sort-while-pick) where the orders
are separated into specific containers for each individual order, or after the execution
of the same (pick-and-sort), where wave picking can be done in turns in the respective

zones at the same time.

Figure 2.9: Pick-and-Pass and Pick-and-Merge Methods

Mulllpla Plckars

w @ Parts of Packed into

¥ One Order Carton

e = > =
Multiple Parts of Merged inte
Pickers One Order Carton

vw_.._y

—w—

e e

2.2.1 Warehouse Typologies

A Warehouse can be divided into several categories, as seen at Figure 2.10 [57].Other ty-
pologies can be found in [9], which defines two more types of Warehouses, such as Produc-
tion Warehouses, characterized by the storage of raw materials, semi-finished and finished
products, and Contract Warehouses, responsible for the operation on behalf of one or more

consumers. The Warehouse typology is directly linked to the type of activity developed, the

2.2 Warehouses Systems, Designs and Typologies 31

type of product or goods, and the form of logistics and product management. For this study
in question, only two types are interesting to be analyzed, much of this due to the large vol-
ume of material and goods that pass through, requiring a more efficient and faster logistics:

Fulfillment Centers and Distribution Centers.

Figure 2.10: Industrial Warehouse Typologies

PRIMARY TYPE: GENERAL PURPOSE WAREHOUSE GENERAL PURPOSE DISTRIBUTION FULFILLMENT CENTER

SUBSETS: BULK WAREHOUSE, COLD STORAGEf | OVERNIGHT DELIVERY SERVICES
. FREEZER STORAGE, HIGH-CUBE AIR CARGO

DELIVERY DIRECT
TO CONSUMER

SIZE: ANY ANY

PRIMARY USE: STORAGE DISTRIBUTION | DISTRIBUTION |
| ANY |

Fulfillment Centers

According to [57], a Fulfillment Center (FC) (formerly called Packing Warehouses) has the
distribution of goods as its primary use feature and can have different sizes. This type of
facility can also be defined as an industrial property that allows an efficient movement and
transport of goods directly to the consumer. The main focus is on delivering a final good to
the consumer, executing order receipt, checking, labeling, packing, and shipment. Because
this contact with the final consumer, can work with thousands to millions of Stock Keeping
Unit (SKUs), it also has some characteristics as work in high speeds with good efficiency

rates, individual piece pick or small parcel pick, and packing in corrugated boxes [47].

Distribution Centers

Although its definition is similar to a FC [57], a Distribution Center (DC), it is a Warehouse
Facility with finished goods ready to be redistributed or distributed locally to internationally
[37]. Like the FC, its primary use is the distribution of goods, but it differs in one special

function, the DC is demand-driven. This works using an adaptable network focused on

2.2 Warehouses Systems, Designs and Typologies 32

a value-based outcome that changes according to the variables market share in near real-
time. Other characteristics of this type of Warehouse that differs from the previous one can
be described as picking on a larger scale through pallets and case quantities and a varied
method of packing [47].

A distribution center also has some subdivisions and taxonomies, which are classified
depending on their region location and activity. For example, according to [16], a European
Distribution Center (EDC) is a Warehouse of Type DC that distributes to at least five different
countries. The four most common types of EDCs and their taxonomies can be seen in the

Table 2.3 adapted from [16].

Table 2.3: Taxonomies of EDCs

SKUs Handling Warehouse Size Objectives Additional Information
. . . Traditional Activities Created as part of a Large System
Warehouse EDC (WHS) Medium, High Medium, Large
(Storage, Picking, Transportation) Divided into Different Business Units

" Traditional Activities and Typically Distributes to a Global

Warehouse/Office EDC (WHS/OFF) Low Small
Management-Related Activities Market.
Traditional Activities and
Warehouse/Management EDC (WHS/MGT) High, Very High Large Intensity Management-Related Typically Focused on Local Market
Activities (Forecasting, Inventory, etc.)
. Different Activities Characterized by a High Level of Value
Warehouse/Factory EDC (WHS/FAC) Very High Large
(Traditional, Technical, Management, etc.) and High Intensity of Activities

2.2.2 Warehouse Layouts

The warehouse layout design is one of the most important components to achieve optimiza-
tion since it has a direct influence on the process of order-picking. To determine the ideal lay-
out, it is necessary to consider the number of warehouse blocks and their sizes, the number of
rack levels, and the locations of the pickup and deposit (P&D) of products [27]. According to
[40], the types of Warehouses Layouts can be divided in Traditional Layouts, Flying-V Lay-
outs, and Fishbone Layouts. However, some research has been carried out in the last years to
discover new ways to optimize the layout of Warehouses, whether regular or irregular, new
designs were proposed, like the V-Shaped Layouts [76],Chevron aisles, Layout Design from
Multiple (P&D) Points [27], and V-Shaped Layout [76].

According to [78] Warehouses generally follow two basic design rules: Picking aisles

must be straight and parallel to each other and cross-aisles must be straight. Considering

2.2 Warehouses Systems, Designs and Typologies 33

these rules, the layout of a Traditional Warehouse is similar to that found in Figure 2.11,

adapted from [27].

Figure 2.11: Traditional Warehouse Layout Design

The selection between the layout designs will directly depend on the location of the P&D
points. Considering the traditional design, the layout design of the Figure 2.11 (middle)
and the Figure 2.11 (right) have greater efficiency (smaller traveled time) compared to the
traditional format Figure 2.11 (left). It is also worth considering that the Figure 2.11 (right)
is more efficient in several parameters regardless of the location of the P&D than the Figure
2.11 (middle), but the last one is more common in practice [41].

However, as seen at Figure 2.12 (adapted from [79], [76], and [27]) it was discovered
that Flying-V Layouts (Figure 2.12a, 2.12b), and Fishbone Layouts (Figure 2.12c) can reduce
up to 20% the traveled distance during the execution of batch-picking and 15% when it is
necessary to carry out retrieval and storage in the same run (dual-command) [79] compared
to traditional designs.

The Fishbone Layout design can reduce the time travel by up to 20% when compared to
traditional warehouses, and up to 15 % when running dual-commands, however, it has the
disadvantage of limited access to the storage space [41]. The Flying-V Layouts are less effi-
cient than the Fishbone, reaching around 10% efficiency compared to traditional warehouses
[41], but if the P&D points are located in front of each picking aisle the design of Figure
2.12 (left) can reduce traveling by about 3% to 6%, while the design of Figure 2.12 (right)
can provide up to 2% reduction compared to a Traditional Warehouses with considerable
size [27]. It is worth noting that one of the biggest drawbacks of these layouts concerning

traditional design is that the facility must be 3-5% larger [41].

2.2 Warehouses Systems, Designs and Typologies 34

Figure 2.12: Irregular Warehouse Layouts Design

(a) Fishbone Layout A (b) Fishbone Layout B
T I°s ITITITIT I
T | | e .. l | I
T 1 AT . ________ =]
B R o) A—
E SR .9 A
i': TSI [T] .1 S
é 1 _:If:
i L\ |
|

(c) Flying-V Layouts

2.2.3 Warehouse Systems
According to [9], a Warehouse System can be defined as a set of equipment and policies

applied to the collection, storage, and removal of items. Considering the level of automa-
tion applied to activities, been these physical, data-driven or decision-making, we can divide
the system into the following: Manual Warehouses, Automatic Warehouses, Automated and
Robotized Warehouses, Multi-Shuttle Warehouses, and Smart Warehouses. As the expla-
nation of all the aforementioned systems would become exhaustive, only the Automated
and Robotized Warehouses will be addressed, since it will be the systems proposed in this

thesis.

Automated and Robotized Warehouses

An Automated Warehouse is the type of system characterized by a considerable degree of in-
telligence to collect and process items with minimum human interference, or when a robotic

system (AGVs, SDVs, Cooperative Robots, etc.) is added to perform the order-picking ac-

2.2 Warehouses Systems, Designs and Typologies 35

tivities [9]. This type of system is generally used when you have items with high added
value, small size or when the focus is high productivity and accuracy. The types of picking
equipment most used in this type of system are Layer Pickers, Dispensers and Robots [53]
(see Figure 2.13). For [15], although Automated Warehouses are characterized by complex
modeling due to several components interacting with each other, this type of system has
widely used shuttle-based storage and retrieve system for picking automation. In addition
to these types of picking equipment, the recent field of Automated Mobile Robots (AMRs)
applied to logistics and Warehouses has grown considerably in recent years, and could reach

an investment of $ 290 billion by 2040 [24].

Figure 2.13: Automated and Robotized Warehouse Robots

(a) Kiva Robot from Amazon Robotics (b) Adapto Shuttle-based System
L. | I L5N <huu
pa- L&

&7 |

2.2.4 Robotic Mobile Fulfillment Systems (RMFS)

According to [4], an RMF system is based on three major components: Robots that com-
municate in a centralized or decentralized way (Robot Drive Units), the movable shelf racks
that contain the stored products (Inventory Pods), and areas where workers perform replen-
ishment, picking and packing Workstations. A representation of this system according to [4]

can be seen in Figure 2.14.

2.2 Warehouses Systems, Designs and Typologies 36

Figure 2.14: An Generic RMF System

Inventory pod

% T T T T

1l | | |§| .\\"l.rrkrilnl:.un

Z \ Z e IU s
—_—— | : H:(i

[obotc arve wit__| T T T]

Robot and inventory pod Schematic of the RMF system with one workstation

Although the concept of RMF is based on the characteristic of lift and transport mov-
able shelf racks ([4], [39]), recently, new AMR technologies applied to the Distribution and
Fulfillment Centers were launched for the sorting, and compact picking processes. In this
way, we can define it as: a goods-to-person AMRs based system, responsible to carry
and transport small or large volumes of products to execute order-picking and sorting

processes.

Autonomous Mobile Robots Applied to RMFS

A mobile robot can be defined as a set of elements that allow it to move around under its
control [21]. If he can understand his environment without human interference, he can be
considered autonomous [20]. Generally, his autonomous path planning is made through an
array of sensors, cameras, and maps that allow materials to be transported without the need
for coordination with other transport flows (asynchronous transport).

Although this type of solution has a similarity with the automatically guided vehicles
(AGVs) and the automated guided carts (AGCs), they have some important differences as
can be seen in Table 2.4. In 2012, after Amazon® bought Kiva Robotics, a new era of AMRs
applied to Distribution Centers and Fulfillment Centers started. Although the conceptual
idea of Kiva Robots was conceived in 1989 [4], the solution was implemented only in 2008

[25].

2.2 Warehouses Systems, Designs and Typologies 37

Table 2.4: Main Differences Between AMRs, AGVs and AGCs

Automated Guided Vehicle (AGV) Automated Guided Cart (AGC) Autonomous Mobile Robot (AMR)

Rigid Preset Routs (6] (6]
Fixed Infrastructure (6] O
Infrastructure Requirements (6] O
Product Transport (6} O
Picking Process Assistance (6} O
Sortation Assistance

Redeployable

Intelligent

O O © © O ©

Modular Deployment

2.2.5 System Architecture

One of the first articles found that proposed an AMR solution applied to the transport of
objects can be found at [12]. The author uses sensors and an operational control center to
better locate the robot, also adopting a global location path planning based on static data,
a local sensor-based path planning for obstacle avoidance, Object and Pose Recognition
to identify the pallet to be transported, and uses sensor fusion to obtain pose and object
recognition. A more complete approach to a framework designed exclusively for warehouse
systems compared to the previous can be found at [63]. The authors used the concept of dis-
tributed autonomous intelligent units (cells) (actually called AMRs) and studied the effect
of some path planning algorithms. This framework is much more robust than the previous
one, having a global memory, and a task manager in the highest control layer activity flow.
More recent architectures can be found at [35] and [70]. The first addresses the creation
of a cyber-physical system model for smart warehouses, which performs the development
of a complete CPS-enabled framework, covering topics of data acquisition, path planning,
wireless sensor network, collision detection with time window, and some robot strategies
(avoidance, go-away, detour, and wait-before-startup). The second research features a mod-
ular robotic system with aisle-captive robots applied to small or medium-sized warehouses.
It is worth mentioning that different from the previous frameworks, both studies propose a
congestion-free system.

Regarding simulators, an framework proposal can be found at [72], characterized by an

agent-based discrete-event simulation framework designed to study the context of an RMFS

2.2 Warehouses Systems, Designs and Typologies 38

while evaluating multiple decision problems jointly. The simulator also have an application
programming interface (API) for integrating with ERP and other enterprise systems, and an
implementation of the agent interface for robots and station apps. To validate the simulator,
experiments were carried out with real robots on a 3x4 Grid Map and a location system based

on a OR Code Grid Map.

2.2.6 Performance Improvements

A simpler and general review about this topic can be found in [28], were address the basic
performance characteristics, the relationship between contexts and system design RMF with
respect to performance, and some important taxonomies in this type of system. In [34] the
first model of a RMF system is designed based on analytical models. System performance
and robot usage values are estimated through parameters such as warehouse layouts and con-
trol policies. In addition, the article provides information on performance impacts regarding
the length-to-width ratio, workstations locations, number of robots and number of orders that
need to be completed per hour. In this way, it becomes an excellent reference for comparing
results when creating new models or improvements.

Considering the previous impacts the following question can be made: What is the op-
timal speed and number of robot values in a Warehouse? The answer to this question can
be found at [75]. The authors elaborate a study with numerical experiments and simulation
of the analytical results using the Arena 14.0 software, describing the formulas that can be
used to optimize the values of speed and number of robots for a mobile picking system. An-
other topic with great importance in the management of robotized warehouses and already
studied previously on AGVs is the battery management problem. According to [77], a bad
policy can cause an additional cost of 15% to the system. According to the authors, factors
such as battery cost, cost of robots, and a small required retrieval transaction throughput time
directly influence in the battery management policy selection.

Finally, some other variables can also directly influence the performance of a RMF sys-
tem, the research found in [50] performs the study of robot assignment strategies in storage
areas where any pod can be stored in any available location, and the effect of this on system
performance. A study is about the energy efficiency of a RMF system based on the work

performed by the robot can be found in [73], and in [67] the impact of not using safety

2.2 Warehouses Systems, Designs and Typologies 39

constraints is compared relative to operational inefficiency.

2.2.7 Discussion

Notably, the interest in this field of research received attention after the solution proposed by
the Kiva Robotics in 2008, where the traditional AGV's were replaced by several autonomous
mobile robots with a basic notion of intelligence. Although the first proposed solution uses
only a traditional A* algorithm, several studies can now be found promoting ways to im-
prove system performance and efficiency. This field of study is relatively wide, as an RMFS
addresses problems such as Network Design, Internet of Things, Cloud Computing, Schedul-
ing, Path Planning, Database Implementations, Pick & Order, Delivery, Routing, Location
Assignment, Aisle Computation & Performance, Order Batching, Packing, Ideal Velocity,
Ideal Number of Robots, among others. And each of these areas is further expanded with
the different types of Warehouses Design (Traditional, Flying-V, Fishbone), thus promoting
different forms of analysis and solutions.

Considering the state-of-the-art reviewed, despite the considerable amount of studies
found some research gaps were found. Regarding the robot localization, it is quite common
to find articles with the proposal of QR Codes on the floor, ceiling, or natural landmarks.
However, an increasing number of articles using LIDAR and other sensors for localization
has also become present, despite its high cost considered with previous methods. Finally, re-
garding the performance and Improvements, although some articles are found demonstrating
the impact of good scheduling for battery charging or Order & Picking on the robot battery
and distance traveled, a large research gap is: how to use the heavy data available in the
environment (from the robots, sensors, networks) in a way that improves the system
efficiency. Some authors even propose new studies that use techniques of Data Analysis,
Business Intelligence, or Machine Learning to improve decision making or creation of tech-
niques and solutions to analyzes the robot’s Health and Monitoring [14]. The latter topic can
considerably increase the efficiency of the system through Forecasting techniques that can

be attached to the heuristics of the robot’s path planning.

Chapter 3

Related Researches

This chapter will present the latest state-of-the-art developments, addressing some problems,
topics, and fields that will be implemented or elaborated in this dissertation. After the presen-
tation of this summary, a brief discussion about the reason for choosing specific frameworks

and platforms will be made.

3.1 Multi-Agent Path Finding

By definition, the path finding for multiple agents can be Cooperative, where the agents are
aware of the others and their routes, Non-Cooperative, where the agents are not aware of the
others and must predict their movements, or Antagonist, where each agent tries to reach his
goal avoiding that the others reach theirs [59]. The Multi-Agent Path Finding, as previously
mentioned in Chapter 2, is when multiple agents plan their route avoiding collisions with the
others, thus being an cooperative way to find a path.

Although the first concepts that would initiate the field of Multi-Agent Path Finding
date from 1987 [17], and that the traditional A* can be adapted to make a new route if
necessary [64], the real start of this field of research began to gain strength after the first
publication of three A* modifications that allowed a new way to approach the cooperative
pathfinding [59]. One of the major challenges in trajectory planning for multi-agent systems
is the possibility of breakdown due to bottlenecks, deadlocks, and cyclical repetitions, and to
avoid this problem the authors developed new four A* based algorithms, the Local Repair

A* (LRA¥*), Cooperative A*, Hierarchical Cooperative A* (HCA*), and the Windowed

40

3.1 Multi-Agent Path Finding 41

Hierarchical Cooperative A* (WHCA¥*).

According to [59], the operation of these algorithms is relatively similar in its founda-
tion, being then differentiated in some specific changes. The LRA* algorithm is a family of
algorithms widely used in the gaming industry, where each agent performs the route search
using a traditional A* and ignoring other agents with the exception of neighbors. If during
his movement he will occupy a position that may cause a collision he will recalculate his
route to the goal avoiding it. As can be imagined, this results in a higher computational cost,
in addition to being unfeasible for very crowded regions.

The CA* (Space Time A%, e.g.) difference from the previous algorithm is the ability
performs a search in the three-dimensional space (z,y,t) taking into account the route of
the other agents, where the action of wait is used so that a given agent remains stationary
if in the next instant of time it collides after the movement. In short, routes are added to a
reservation table (implemented as a hash table) that will be avoided by the next agents when
searching for a route. As a heuristic function, the distance from Manhattan is generally used,
but any additional heuristics can be implemented in a way that reduces the computational
cost. One of the shortcomings of this algorithm is that any decoupled, greedy algorithm
that precalculates the optimal path will not solve some problems, like the one in Figure 3.1

(adapted from [59]). More information about the CA* and how to implement it can be found

in [46].

Figure 3.1: Where the Cooperative A* Fails

The HCA* algorithm is nothing more than an attempt to improve the heuristic used by

3.1 Multi-Agent Path Finding 42

CA*, where the abstract distance is computed according to demand, and the dimension of
time and the reservation table are ignored. To achieve this the authors used the Reverse Re-
sumable A* (RRA¥*) to calculate abstract distances. Finally, the last implementation by the
authors is the WHCA * algorithm, where through a "window" each agent will search for his
partial route to the destination and start moving his path. Using continuous intervals of time
the window is shifted forwards, and a new partial route is computed. In this way, an agent’s
goal is no longer to reach his destination but to complete the window via the terminal edge,
also allowing the processed time to be shared with the other agents. Lastly, the authors de-
veloped 10 tests in a maze-life environment, where the environment is a 32x32 4-connected
grid with obstacles randomly placed in 20% of the space available. The authors concluded
that the LRA* is highly influenced by crowded maps causing bottlenecks, being unfeasible
in real situations, while the others managed to cope well with the situation, achieving only
2% failure for tests with 100 agents. Finally, CA* was the algorithm with most computa-
tional cost, taking about 1s to calculate 100 routes, followed by HCA * with 1ms per agent,
and WHCA* with 0.6ms per agent.

Although this is one of the main articles in the field, others have also been published over
the years, either promoting a new solution or making new implementations and heuristics
for the previously proposed algorithms. In [68] a tractable algorithm for multi-agent path
planning (MAPP) based on grid maps is elaborated where costs are kept low by eliminating
the need for replanning, and is characterized by low polynomial complexity in time, space,
and quality of the solution. In [60] the RRA* is used with two additions, the use of a Simple
Independence Detection (SID), which assumes that the paths of all agents are independent
and computes cooperatively the paths with conflict using an optimal algorithm, and Indepen-
dence Detection (ID), which starts each agent in a group, searches and tries to find the most
optimal path.

In [69], an improvement of the MAPP is made by adding target isolation, a buffer area
to solve bottlenecks, and a new strategy that reduces the number of movements. These
modifications allowed an efficiency of 92 to 99.7 % even in scenarios with 2000 agents,
and reduced the distance traveled by more than 50 %. In [54] the first generalization of the
Conflict-Based Search (CBS) is applied to MAPF, this being characterized as an algorithm

divided into two levels, the highest level is responsible for executing a tree based on the

3.2 Path Planning Algorithms in RMFS 43

conflicts of the agents and the low level is responsible for research for a single agent at a
time. New implementations and improvements for CBS are also made in the following years
by [6], [10], [55], [3], and [19] consecutively.

In [30] the first MAPF study is carried out with kinematic constraints and real tests with
robots, where the MAPF-POST is elaborated, being responsible for the use of a temporal
network that performs MAPF post-processing and allows the use in differential-drive robots
taking into account their maximum speed. At [62] a summary of MAPF definitions and vari-
ations is made, presenting for example the Online MAPF (Lifelong MAPF, eg), characterized
by a sequence of MAPF problems that must be solved in the same graph. One of the research
subtopics included here is the use of Warehouse Models, where an agent can be directed to
other tasks, being this inspired by Automated and Robotized Warehouses. A more in-depth
analysis of the most used algorithms in Online MAPF can be found at [65], who presents
the Replan Single (RS), characterized by the search for an optimal path for each new agent
one at a time, Replan Single Grouped (RSG), where we search for the optimal paths for all
agents at once, and the Online Independence Detection (OID), based on the ID algorithm
[60].

3.2 Path Planning Algorithms in RMFS

The architecture proposed by [12] can be seen in Figure 3.2a. The path planning algorithm
was divided into two hierarchical levels: a global (lowest) an local (highest) planning. The
global planning used the visibility graph approach in conjunction with the Dijkstra algo-
rithm, and the local planning used the local criteria and heuristics. The two planners were
combined together with the localization algorithm (Extended Kalman Filter) was used with
reflectors placed in the workspace, making possible to move the robot around the environ-
ment. More recent and relatively similar work can be found at [45] (see 3.2b) and [5]. Both
uses the Dijkstra’s algorithm, however the first one uses the Manhattan distance as heuristic
method to find the shortest path, the breadth first search (BFS) with limit node depth as local
search, and the experiments were carried out with one agent. The last one uses the same
algorithm for Path Planning (Dijkstra’s Algorithm), however, the heuristic function used is

the two-dimensional Euclidean space consisting of multiple tiles in a Warehouse Grid Map

3.2 Path Planning Algorithms in RMFS 44

with 100x100, using 5 to 25 robots randomly allocated. According to the authors, the time

required to find a solution for each delivery task is 17.36 seconds for a system with 25 robots

Figure 3.2: Path Planning Methodologies generally used before the MAPF

Start

Arm and Gripper Assign lists of
Planning =

Application

items to stations | yes

Local Planner

Parcel
Recognition

Routing method

Global Planner L i
_______________ and local search

Shared Memory
@
=
]
2
B
3

Mobile Base Path
Planing

Robot r travel
Seskels along the path to |[+———

the destination n
E Motion Control E E Localization E l
...................... Full

| Robot Hardware Interface | capacity?
(2) AMR System Architecture Proposed by [12] (b) RMFS Path Planning Proposed by
[45]

With the advancement of research on the Multi-Agent Path Finding Problem (with was
more focused on Al and Games), new Path Planning algorithms were developed and applied
to Warehouse Systems. The beginning of this research field received more attention after the
work published by [71], characterized by the first RMFS implemented, were the first Path
Planning version was a standard implementation of the A* Algorithm to plan the robots paths
to storage locations and inventory stations. One of the main features of this system is the
delivery of a new pod every six seconds, processing in real time, expandability, a multi-agent
architecture, and a two-dimensional Grid graph used as Map Representation. According to
[72], the Multi-Agent Path Finding (MAPF) is a challenging problem that can be applied
in robotics, and many of the MAPF algorithms do not consider kinematic constraints, such
as maximum velocity limits, maximum acceleration, maximum deceleration, turning times,
and the movement is only considered in discretized environments. Furthermore, those who

consider kinematic constraints work only for a small number of agents and are very slow for

3.2 Path Planning Algorithms in RMFS 45

a massive search like an RMFS.

The first article found that compiles the MAPF algorithms in recent years, briefly ex-
plaining how the areas of Al, Robotics, and Computer Theory address this problem can be
found at [38]. One of the important characteristics of this work is the analysis of how an Au-
tomated and Robotized Warehouse raises an interesting number of optimization problems,
such as trajectory planning and where and when "pods" must be moved by the Warehouse.
A feature shared in the latest state-of-the-art multi-agent path-finding algorithms applied to
Warehouses is the inability to find bounded-suboptimal solutions for 100 robots in small
warehouses in real-time, since there’s a direct relationship between a tight space and
the runtime.

In [42] there is an interesting compilation that addresses some of the most used algo-
rithms in RMFS systems, these being: WHCA*, FAR, BCP, OD&ID, and CBS. The authors
perform complete tests, which analyze the idle time, Timeouts, Memory Average, Maximum
Memory, and Handled Units per instance. According to the authors, WHCA* was the one
that had the best performance, but did not scale well. CBS was the one that suffered the most
in long instances, but it becomes more efficient than WHCA* for instances with the lower
robot to station ration, and it was the one that used less memory compared to the others.
Some recent state-of-the-art algorithms already address the Pick & Delivery issue, as in [26]
and [36]. The first study proposes a new centralized heuristic for Online Multi-Agent Pickup
and Delivery (MAPD, reducing the service time 43%., And the second addresses solutions
for the deadlock and the salesman problem. In [29] a framework that can be added to the
current MAPF planners solving the problems of the continuous movement of robots through
the Action Dependency Graph (ADG).

The most recent work finally develops a framework that can produce a high quality of so-
lutions for up to 1000 agents [66]. According to the authors, most of the methods that resolve
the Lifelong MAPF include: resolving the system as a whole, decomposing the system
into a sequence of MAPF instances at each time-step, where one re-plans the path for
all agents, or decompose the problem in a sequence of instances where planning is only
done for agents with new goals. Each method previously described has its defects, such as
the need to know all the goals affecting the scalability, to re-plan all the paths at each time-

step becoming time-consuming, or to need additional structures to guarantee completeness.

3.3 Discussion 46

The authors then modify the Multi-Label A* [26] for single-agent trajectory planning, where
the framework (Windowed MAPF) is responsible for resolving collisions in a specific time

window.

3.3 Discussion

All studies reviewed in Path Planning the state-of-the-art for RMFS focused to solve two
problems: how to achieve better efficiency of an already known algorithm or how to develop
a framework (or algorithm) to solve some of the MAPF problems. In this way, most arti-
cles provided only theoretical bases that complement results from previous articles executing
tests with around 100 agents. Few articles carried out real tests with robots, be it for solution
analysis or hypothesis tests, and among those that tested only two had real implementations
of planning algorithms working in real-time. Much of this is because of the NP-hard char-
acteristic and the point that MAPF does not have a correct solution yet, becoming then more
theoretical than experimental. However, the MAPF applied to RMFES is also not focused only
on the issue of computational optimization, few simulators were found in a way that allows
the assignment and testing of new algorithms for Warehouses of different layouts. This is
another research gap found, all articles found promote MAPF solutions are only consider-
ing the Traditional Layout, not having performance analysis for unconventional layouts like
Fishbone and Flying-V for example. Again, due to the complexity of MAPF, in addition to
being a recent issue in Automated Warehouses where the best solution is unknown may be
one of the reasons why other layouts have not yet been explored.

The MAPF is a well-known and well-studied problem in Artificial Intelligence that has
gained attention in recent years, not only for researches in optimization, but also because
migrated to the fields of Games, Robotics, Urban Traffic, and Networks. Despite the con-
ceptual approach dating from 1987, it was only in 2005 that the first algorithm was developed
trying to solve the path planning for multiple agents using a cooperative approach (CA*). Al-
though several algorithms have been developed since this date, one of the biggest difficulties
still faced today is how to develop a search for n agents still allowing a robust, complete,
and optimal solution. This is an interesting problem, because the complexity of the problem

is polynomial in the grid size and max time, and is also influenced by the total number of

3.3 Discussion 47

agents, becoming then NP-hard.

Figure 3.3: The Reservation Table

_——

But why does this happen? Let’s review some of the available algorithms. To solve this
problem, the CA*, LRA* and WHCA* algorithms use the interesting idea of reservation-
based planning (see Figure 3.3), initially proposed in [59], which increases the search speed
since it needs almost no coordination, however, it is incomplete and not optimal. Some
complete algorithms can also be applied in MAPF such as the Push & Swap and Bibox,
however, they are far from optimally and have a complex formulation. Other algorithms
like M* and CBS, although they can become optimal, complete, and efficient, are variable
dependent, were the solution depends on the free space, bottlenecks, number of agents, graph
size, heuristic accuracy, and conflicts.

Another research gap is also Lifelong Planning, characterized by MAPF planning for
multiple goals. As it is an extremely recent issue, first presented in 2017 [42], some several
questions and paths still need to be explored. One is how the Pick and battery recharge can
be attached to the MAPF planner in a way he understands when and why a robot should
recharge its battery considering its paths or future actions. As in the previous discussion,
this theme opens new doors for emerging technologies such as the use of Machine Learning
for Forecasting, or the determination of new heuristics based on the Health of the robot.
It is possible to realize then that MAPF has a wide opening for new solutions, be they to
demonstrate what works and what does not, thus allowing the growth and maturity of new
implementations.

Regarding the Map Representation, the Fixed-Size Cell Decomposition will be used, and

3.3 Discussion 48

the Map Representation will be a Grid Map. The reason for this choice is is due to the con-
siderable number of studies found in the state-of-the-art that uses this representation to run
the path planning algorithms ([5], [33], [35], [45], [70], e.g.). Regarding the Path Planning
Algorithms applied to RMFS, although research has intensified in recent years involving
both MAPF and MAPD, there are still several fields of study open [52]. Some of them are:
how to understand the "how" and "why" this problem is computationally hard, how adding
"learn from experience" can decrease computational difficulty, how to work with the MAPF
or MAPD distributed in multiple machines without losing completeness, how to do "lifelong"
planning for automated warehouses, and how to handle heterogeneous robots.

Considering this, it is clear that this is an area that is still under development, much
of it is relatively new and open to new solutions that try to promote a new way of solving
the problem. In Table 3.1 it is possible to see a brief comparison of some state-of-the-art

researches with the implementation made in this work.

Table 3.1: Related Researches Comparison

Approaches Number of Robots Type of Environment Type of Layout Size Decentralization Focus
(Max) (Max.)
[711 Undefined Grid Traditional Horizontal Undefined Undefined First Implementation of RMFS
[45] 5 Graph Mixed (Horizontal + Vertical) 45x25 Not Possible MAPF
[301 4 Grid Layout for Validation Only S5x4 Not Possible Implementation of Kinematic Constraints
[291 50 Graph Traditional Horizontal 16x8 Not Possible MAPF
[351 5 Grid Traditional Vertical 20x10 Not Possible MAPF
[5] 25 Grid Mixed (Horizontal + Vertical) 100x100 Not Possible Task Routing
Traditional Vertical
ST-SPF 250 Grid Graph Traditional Horizontal Up to 100x50 Possible MAPF
Flying-V
Traditional Vertical
STMS 48 Graph Traditional Horizontal Upto50x 14 Not Possible MAPF
Flying-V

Chapter 4

The ST-SPF & STMS Algorithms

This chapter aims to describe the implementations and developments made for the path find-
ing algorithms and the simulator. In Topic 4.1 the algorithms used in low-level search will be
presented. Finally, in Topic 4.2 and 4.3, the proposed ST-SPF and STMS operating principle

will be respectively presented.

4.1 Low-Level Algorithms

In the study of art, despite the fact that most algorithms use the A* or its variants, was also
possible to find some proposals with the Dijkstra’s and the Breadth-First Search. Thus, it be-
came necessary to implement and test these three algorithms to identify which one performs

better for low-level search.

4.1.1 The Breadth-First Search Algorithm

By definition, the Breadth-First Search traverses and search a tree or graph starting at the
tree root. One of its main differences is the feature of First-In, First-Out when searching
for the best path. The developed algorithm uses the Python 3+ deque module to perform the
search operation, and can be viewed in the [8]. One of the reasons for using this algorithm
is due to its ability to find the shortest path, making this a favorable point to possibly reduce

Makespan when compared to Traditional A*.

49

4.1 Low-Level Algorithms 50

4.1.2 The Dijkstra’s Algorithm

The Dijkstra algorithm is widely used in robotic applications to find the shortest path distance
or minimum cost in a graph environment. Its main feature is the backwards search, going
from the goal to the start position. The algorithm can be considered greedy and complete
since there is a guarantee of finding the shortest path if there is a solution. Unlike the previous
algorithm, the Python 3+ module heapg was used to elaborate the priority queue (heap) of
the search algorithm and can be viewed at [8]. One of the reasons for using this algorithm in

the tests is to evaluate the weighted graph developed by the simulator.

4.1.3 The A* Algorithm

As mentioned in the state-of-the-art, most of the algorithms developed to solve the MAPF
are A* based due to its high performance and low branching factor. The Python 3+ heapq
module was also used to build the priority queue (heap) of the search algorithm, and for the
heuristic, the Manhattan distance was chosen as seen at [8]. One of the reasons for using this
algorithm is that the A* is the most commonly used in the state-of-the-art MAPF algorithms,
being found and algorithms like the CA* and CBS.

The Manhattan Distance

The reason for choosing this heuristic is its high efficiency in Grid Like Environments with
four possible movements. This heuristic is also recommended when the dimension of the

space may increase [2]. The software implementation can be seen at [8].

4.1.4 Low-Level Algorithms Comparison

The tests were run on a Notebook ASUS Expert X23, with an Intel IS 7200U 2.50 GHz
Processor, an NVIDIA 920MX GPU, 8 GB DDR4 SDRAM, and an Ubuntu 18.04 operating
system with PyGame v1.9.6 and Python 3.6. Before showing the algorithms results for

different Warehouses Layouts, the following considerations need to be highlighted:

e The input graph is a 4-connected grid Bidirectional graph with some vertices removed

to represent static obstacles (Pods, Workers, Treadmill) and positions that the robot

4.1 Low-Level Algorithms 51

cannot move;

e For the Breadth-First Search a Simple Graph environment was used, and for the A*
and Dijkstra’s Algorithms a Weighted Graph with weights in the recharge and pickup

zones was used;
e The comparative tests between the algorithms have the same start and goal point;
e The memory measurement was done through the Python Memory Profiler library;

e The Warehouses Layouts Design are based on the layouts proposed in the state-of-the-

art, as shown in Figures 2.11 and 2.12;

e The start and goal nodes are defined in the Settings file, which are modified according

to the desired simulation experiments to new nodes locations;

e The goal is represented in green, the start position in red, the shortest path through
the directional arrows, and in light gray it is possible see the nodes explored by the

algorithm.

Traditional Horizontal Warehouse Layout

A total of 9 tests were performed for each of the algorithms using the simulator proposed,
where the location of the goal and start position were modified for each test. In Figure 4.1
is possible to review the results of the experimental evaluation where the Interactions are the
number of interactions needed to find the solution, the Time is the algorithm Running Time,

and the Depth is the number of nodes visited by each algorithm to find the solution.

4.1 Low-Level Algorithms 52

Figure 4.1: Path Planning Results for the Traditional Layout

Breadth-First Search (Traditional)
Interactions Time
et While Loop | Forloop | WallTime(s) | Process Time (5) i
1 37 3 0.0037 0.0078 9
2 33 3 0.0011 0.0011 7
3 19 3 0.0006 0.0019 5
4 44 3 0.0014 0.0014 14
5 55 3 0.0012 0.0012 12
6 55 2 0.0015 0.0037 10
ir. 44 3 0.0013 0.0051 9
-] 44 3 0.0018 0.0017 1
9 56 2 0.0016 0.0017 13
Dijkstra's Algorithm
Interactions Time
Tt While Loop For Loop Wall Time (s) Process Time (s) Dot
1 49 3 0.0007 0.0007 9
2 48 3 0.0016 0.0015 7
3 38 2 0.0010 0.0010 5
4 55 2 0.0009 0.0034 14
5 55 2 0.0008 0.0011 12
6 56 2 0.0029 0.0070 10
7 53 2 0.0007 0.0003 9
8 48 3 0.0015 0.0045 1
9 53 2 0.0008 0.0048 13
A-Star Algorithm
Interactions Time
Test While Loop For Loop Wall Time (s) Process Time (s) Depth
I 32 2 0.0005 0.0030 9
2 23 4 0.0006 0.0006 7
3 1 4 0.0002 0.0002 5
4 17 2 0.0004 0.0004 14
5 17 2 0.0007 0.0007 12
6 17 2 0.0003 0.0003 10
7 17 2 0.0009 0.0023 9
8 23 3 0.0007 0.0011 1
9 23 3 0.0009 0.0009 13

It is possible to notice that the A* was the one with less running time than the others
even having the same Depth, leading advantage also in the number of interactions in all tests.
Meanwhile, Dijkstra’s Algorithm fared similarly to Breadth-First Search but had to search a
greater number of nodes to find the shortest path as seen in the Figure below. Regarding space
complexity, all algorithms showed similar memory usage (~ 75 MB), one of the reasons may
be the reduced size of the environment, resulting in a low memory requirement during search

operations.

Traditional Vertical Warehouse Layout

A total of 9 tests were performed for each of the algorithms using the simulator proposed,
where the location of the goal and start position were modified for each test. In Figure 4.2
is possible to review the results of the experimental evaluation where the Interactions are the
number of interactions needed to find the solution, the Time is the algorithm Running Time,

and the Depth is the number of nodes visited by each algorithm to find the solution.

4.1 Low-Level Algorithms 53

Figure 4.2: Path Planning Results for the Traditional Vertical Layout

Breadth-First Search
Interactions Time
= While Loop | For Loop | Wall Time (3) | Process Tme 5y | oPt!
1 34 3 0.0009 0.0035 9
2 28 3 0.0012 0.0012 7
3 21 3 0.0010 0.0042 5
4 42 2 0.0012 0.0035 14
5 53 2 0.0013 0.0013 12
6 42 2 0.0007 0.0007 10
[42 2 0.0011 0.0045 9
8 54 3 0.0013 0.0013 11
9 54 3 0.0009 0.0015 13
Dijkstra's Algorithm
Interactions Time
st While Loop For Loop | Wall Time (s) | Process Time (s) Depth
1 47 4 0.0015 0.0055 9
2 42 2 0.0014 0.0058 7
3 36 2 0.0006 0.0006 5
4 54 2 0.0008 0.0008 14
5 54 2 0.0021 0.0047 12
6 55 3 0.0008 0.0030 10
i 31 3 0.0013 0.0021 9
-] 41 4 0.0007 0.0007 1u
9 51 2 0.0008 0.0008 13
A-Star Algorithm
Interactions Time
et While Loop | ForLoop | WallTime ()| Process Tme 5) | or
I 35 2 0.0007 0.0016 9
2 23 4 0.0004 0.00045 7
3 13 4 0.0003 0.0003 5
4 20 2 0.0009 0.0009 14
] 20 2 0.0011 0.0011 12
6 20 2 0.0004 0.0004 10
7 10 3 0.0013 0.0011 9
8 16 3 0.0004 0.0004 14
9 22 3 0.0004 0.0004 13

It is possible to notice that the A* was the one with less running time than the others
even having the same Depth, leading advantage also in the number of interactions in all tests.
Meanwhile, Dijkstra’s Algorithm fared similarly to Breadth-First Search but had to search a
greater number of nodes o find the shortest path as seen in the Figure below. Regarding space
complexity all algorithms showed similar memory usage (~ 75 MB), one of the reasons may
be the reduced size of the environment, resulting in a low memory requirement during search

operations.

Flying-V Warehouse Layout

A total of 9 tests were performed for each of the algorithms using the simulator proposed,
where the location of the goal and start position were modified for each test. In Figure 4.3
1s possible to review the results of the experimental evaluation where the Interactions are the
number of interactions needed to find the solution, the Time is the algorithm Running Time,

and the Depth is the number of nodes visited by each algorithm to find the solution.

4.1 Low-Level Algorithms 54

Figure 4.3: Path Planning Results for the Flying-V Layout

Breadth-First Search
Interactions Time
=t While Loop For Loop | Wall Time (s) [Process Time (s) Depth
1 30 3 0.0013 0.0033 9
2 19 3 0.0006 0.0006 7
3 45 3 0.0018 0.0056 5
4 52 3 0.0020 0.0041 14
5 45 3 0.0008 0.0008 12
6 51 2 0.0008 0.0008 10
7 57 2 0.0015 0.0048 15
8 57 2 0.0013 0.0043 13
9 51 2 0.0015 0.0015 11
Dijkstra’s Algorithm
Interactions Time
Test While Loop For Loop | Wall Time (s} | Process Time (s) Depth
I 46 2 0.0007 0.0007 9
" 46 2 0.0006 0.0006 T
3 39 2 0.0007 0.0048 5
4 57 3 0.0017 0.0038 14
5 57 3 0.0008 0.0008 12
6 58 3 0.0026 0.0066 10
7 46 2 0.0011 0.0035 15
8 54 2 0.0008 0.0008 13
9 46 2 0.0007 0.0007 1
A-Star Algorithm
Interactions Time
= While Loop For Loop | Wall Time (s) [Process Time (s) Detin
1 31 2 0.0005 0.0027 9
2 25 2 0.0007 0.0009 T
3 13 2 0.0003 0.0011 5
4 19 2 0.0007 0.0007 14
5 34 2 0.0008 0.0008 12
6 19 2 0.0004 0.0004 10
T 31 3 0.0006 0.0006 15
g 25 3 0.0010 0.0010 13
9 19 3 0.0008 0.0026 n

It is possible to notice that the A* was the one with less running time again. Meanwhile,
Dijkstra’s Algorithm fared similarly to Breadth-First Search but had to search a greater num-
ber of nodes to find the shortest path as seen in the Figure below. Regarding space com-
plexity, all algorithms showed similar memory usage (~ 75 MB), one of the reasons may be
the reduced size of the environment, resulting in a low memory requirement during search

operations.

Final Considerations

Through the tests, it is possible to see that the simulator has achieved the expected result
for the Single Robot mode, where in all tests it was possible to find a way to the goal. The
analysis also makes it clear that Dijkstra’s algorithm is not feasible for the RFMS or even
the MAPF problem since for being greedy it will perform a larger search before finding the
shortest path. The A* was the one that best performed, justifying the choice of this algorithm

for the implementation in the MAPF solutions. The result differences between Breadth-First

4.2 The Space-Time Swarm Path-Finder (ST-SPF) Algorithm 55

and A-Star for the various types of Warehouse are more linked to the running time than to
node search since the nodes searched by the Breadth-First search to find the shortest path
came relatively close to A-Star, however, the algorithm had a much higher running time,
making it unfeasible for the real REMS scenario since the environment will be much larger

than the one performed in these tests.

4.2 The Space-Time Swarm Path-Finder (ST-SPF) Algo-
rithm

This chapter aims to present the Space-Time Swarm Path Finding (ST-SPF) proposal based
on the concept of Swarms. Some rules will be defined for creating or appending the Swarms
in the environment, as well as the high-level implementation of the algorithm and the reason

for choosing low-level algorithms.

4.2.1 The ST-SPF Swarms

Firstly, let’s define a Swarm as the joining of multiple agents with reduced intelligence, but
that together can exhibit intelligent behavior. One of the main characteristics of the MAPF
becoming so computationally heavy is the fact that it performs the pathfinding for all the
robots in the environment. Our main hypothesis is that since the ST-SPF will distribute the
planning by groups, the computational effort will be reduced since each group has a fewer
number of agents, increasing the scalability as we bring more complexity, bigger instance
sizes, and more agents. Considering the Definitions 2.1.3 and 2.1.3 that avoid conflicts in

MAPEF, we can make the following definitions for swarms creations or appending:

Definition 4.2.1. (Swarm Creation) A new swarm can only be created iff an agent is iso-
lated and is not inside another agent’s zone, where the swarm zone created must have the
maximum size of the nodes around the agent plus a node cell for each direction where the

movement is possible.

Definition 4.2.2. (Swarm Appending) If the agent is inside another agent zone, the previous
Swarm will be appended and the robot will be inserted in this new group, were the Swarm

Zone will become the sum of all swarms zones of the agents.

4.2 The Space-Time Swarm Path-Finder (ST-SPF) Algorithm 56

Considering the Definition 4.2.1, all agents when started in the environment will look
for another agent in their vicinity looking at two nodes (or grid spaces) on the left, two on
the right, two on the top, two on the bottom, and one on each diagonal. An example of the
Swarm zone can be seen in Figure 4.4, where three robots are used in different environment

locations.

Figure 4.4: The Swarm Zone Creation for Isolated Agents

[oventory Poa [] Recharge & Maintenance Area [| Free area [Dotwery arca [J] worker [rosami [Pk area

Considering the Definition 4.2.1, if an agent is started within a zone of some other agent,
it must be inserted in the swarm of the previous one and increase the new zone of the swarm,
this being the sum of the zones of the two agents. An example of the Swarm zone appending

can be seen in Figure 4.5, where three robots are used in different environment locations.

Figure 4.5: The Swarm Zone Appending

B ventory Poa [| Recharge & Maintenance Area || Free Area [Dotvery arva [Jj worker [rocami [Pk area

4.2 The Space-Time Swarm Path-Finder (ST-SPF) Algorithm 57

The need to include the diagonal zones to the agent swarm zone is that this prevents
the agents from being in blind spaces, where Edge, Vertex or Cycle conflict can happen. In
Figure 4.6 is possible to see an example of this problem if we don’t use the diagonal zones for
the agents. Considering that the "green" agent is going to right and the "orange" to bottom,

we will probably have a collision at the next time-step.

Figure 4.6: Avoiding Blind Spots and Conflicts

D Inventory Pod D Recharge & Maintenance Area Froe Area D Delivery Area . Worker - Troadmil - Pick Area

The swarm’s implementation in the simulator is done as the agents are added to the
map. For the multi-robot simulation, the simulator starts one agent at a time in the location
specified by the user at the setting file, followed by the function create_swarms_area, with is
responsible for verify if there is already a zone present at the robot start location. After that,
the path is calculated considering the free space available and also if the agent is isolated or
in another swarm zone. Considering this rules, the ST-SPF algorithm principle of working

can be seen at Figure 4.7, were code implementation can be seen in [8].

4.2 The Space-Time Swarm Path-Finder (ST-SPF) Algorithm

58

Figure 4.7: The ST-SPF Algorithm

‘ Simulation Started

1

Get the Number of
Agents specified by
User

-

For each agent

Finished all the
agents?

‘ End Simulation %7

Yes

A,

Get the Agent Start
Position

I

Get the Agent Goal
Position

}

Create the Agent Swarm

The agent is inside
another swarm?

Insert the Agent to the
warm

l

s No Append the swarm zone
Create a New Swarm l
Zone

—

Was possible to find a
solution?

No

‘ End Simulation ‘

D

l

Run STA* to find the
path

!

Save this Path in case
another agent join this
swarm

Run STA® for this new
Agent to find the path

l

Run CBS for this swarm
to check collisions

|

Get the time steps and
Yes—| nodes that the collision
will happen

The agent will colide?

li)

Save the paths for all
agents in the swarm

Run STA* again avoiding
€¢—— the nodes at the defined

times

For the ST-SPF implementation, as shown in the figure, two algorithms from the state-

of-the-art were used: the Conflict Based-Search (CBS) and the Space-Time A* (STA*, also

known as Cooperative A*). In summary, the STA* is used for the low-level search, while

CBS is used to detect collisions between the paths found by STA*. But how does STA*

work? The only difference from this to the traditional A* is that it adds the concept of time,

that is, instead of a map with a traditional location (X, Y), we will have a third variable (X, Y,

t), being ¢ the time. This allows algorithms like CBS to detect the location of the agent over

4.2 The Space-Time Swarm Path-Finder (ST-SPF) Algorithm 59

time and perform collision control. One of the reasons for choosing this specific algorithm
is that A* was the one that brought the best results for all types of layouts. The algorithm
implementation is also simpler since it is only necessary to add one more variable to the
traditional A*. More details about STA * can be viewed at [59].

The reason for choosing CBS is due to its extensive research in recent years and easy
implementation. In summary, CBS is a high-level algorithm that detects a collision and adds
it to a constraint tree, allowing to the agents avoid this location at the respective time ¢. More
information about this algorithm can be found at cite Sharon2015CBS.

In this way, the ST-SPF can be considered as a high-level offline and decentralized al-
gorithm, where through the concepts and rules of swarm represented previously it allows to
execute the trajectory planning of multiple agents and the MAPF problem in a distributed
way. Despite the choices of the aforementioned algorithms, any other algorithm could be

used at a low-level and high-level, bringing more flexibility in its use.

4.2.2 Discussion

One of the main drawbacks of this algorithm is that collision control is only performed within
a swarm group with more than one agent, thus enabling the collision of an agent outside this
group. However, because it has the characteristic of being decentralized, this problem can
be easily solved by implementing the algorithm in an "online" environment, where agents
check and update their location over time and can request entry into a swarm. In this way,
we are replicating the same swarm appending process of the algorithm, thus avoiding future
collisions and making the algorithm fail-proof.

One of the reasons for not implementing this add-on is that it would become relatively
complicated to do this process through the PyGame library, in addition to the fact that CBS
does not perform this type of online analysis since its execution is done one-time (since it is
centralized). In this way, it was chosen to leave this implementation out of this work, since
the online position detection method can be performed in several possible ways. Another
detail that needs to be clarified is that during the comparative tests of CBS and ST-SPF in the
Grid-Like environment, it was noticed that ST-SPF only achieved good running time results
from a considerable number of robots. Thus the question arose: How to reduce running

time for a few robots?.

4.3 The Space-Time Multi-Start Algorithm (STMS) 60

We created a Graph-Like environment to answer this question with the hypothesis that
since it has a simpler structure than a Grid-Like environment, we would considerably de-
crease the search, creation, and appending of the swarm algorithm. To also bring more
complexity to this environment and understand how the algorithms will scale, the follow-
ing restrictions (restrictions found in MAPF, as in 2.7) also added to the Graph-Like STA*

algorithm:

e Avoid Vertex Conflict;

Avoid Edge Conflict;

Avoid Following Conflict;

Avoid Cycle Conflict;

Avoid Swapping Conflict;

These changes allow a comparison to be made between a Grid-Like and Graph-Like
environment, in addition to bringing a sense of which type of environment allows better
scalability since if the Graph-Like environment has better results than the Grid-Like even
with all retractions but not scales well, the Grid-Like will scale as well since have a heavier

data structure.

4.3 The Space-Time Multi-Start Algorithm (STMS)

As explained earlier, CBS has an excellent performance in small environments, and during
experimental evaluation the difference in performance of the ST-SPF in relation to the CBS in
small spaces and with a reduced number of robots was notable. Thus the following question
arose: How to get better results in small and less crowded spaces maintaining collision
control but bringing an advantage to the system? To answer this question, Space-Time
Multi-Start (STMS) was implemented, an centralized algorithm with focus on reducing the
Makespan value. Unlike the ST-SPF, the STMS algorithm solves the path conflicts for all
agents through three pillars: Randomness, Collision Avoidance, and Neighbors Search. An
explanation of these definitions can be found below, while the algorithm flowchart can be

seen in Figure 4.8.

4.3 The Space-Time Multi-Start Algorithm (STMS)

61

Figure 4.8: The STMS Algorithm

Simulation Started }—y

Get the Number of
Agents specified by ———
User

Pick a Agent
Randomly

Run Low Level Search

No
Finished Path Finding
or all agents?

Run CBS Collision
avoidance Method

l

—Yes—>|

«

Run
Nulghice: Search For each agent Path

New Path has better

’7 Makespan?
|

!

Mantain the Previous
Path

Save the new Path as
the Best Solution

L]

No

Finished all Agents? 4'

Pick a new agent

\

Definition 4.3.1. (Randomness) To calculate the paths by the Low-Level Algorithm, each

agent must be start randomly instead of following a certain order, but respecting the desired

goal and start positions;

Definition 4.3.2. (CBS Collision Avoidance) Considering two agents A and B with position

variant in time (%), if the path of these agents has a conflict at £ 1 n, the conflicting node must

be placed as a constraint and the path of one of the agents must be recalculated to avoid this

node.

Definition 4.3.3. (Neighbors Search) After finding a valid path through the low-level algo-

rithm (initial solution), the agent must look at their neighboring nodes and calculate a new

4.3 The Space-Time Multi-Start Algorithm (STMS) 62

path, if this new path is different from the initial solution and has a smaller Makespan this

path should be considered as the best solution.

Let’s approach these definitions with a practical example, considering the Definition 4.3,
each agent is started randomly, and its path is resolved by the low-level algorithm. Assuming
that the chosen agent was located at the recharge point and needed to be sent to one of the
delivery points, after the execution of the low-level algorithm it was defined that the best
path would be the black arrow as seen in Figure 4.9a. Since we are working with multiple
agents we need to verify if the current path has any conflict with some other agent (Definition
4.3). Considering that there were no conflicts and the path remained the same, the following
question can be made: Would it be possible to have a better solution than the initial

solution proposed by the low-level algorithm?

Figure 4.9: Space-Time Multi-Start Algorithm

[

(I vty P[] Rschag & Matoarce A | oo s [ooty v [oo [l s [ek aes
[LT L p—— J on s [otvry v [rer [s [Peies _

(a) Initial Path (b) Neighbor Search

(c) Makespan Reduction

4.3 The Space-Time Multi-Start Algorithm (STMS) 63

The answer to this question can be found by implementing the Definition 4.3 (Figure
4.9b). The agent can look at its neighboring nodes, and considering the initial path chosen as
a constraint, it will look for a new solution starting from its neighbors. If he finds a solution
that has a lower Makespan than the initial solution this new solution is the best solution (see
Figure 4.9¢). Like the ST-SPF, the STMS can be considered a high-level offline algorithm,
since it is possible to modify the internal algorithms, however, it has the characteristic of
being centralized like the CBS since it performs the Collision Avoidance based on the paths

of all agents.

4.3.1 Discussion

One of the biggest drawbacks of this algorithm is the considerable increase in running time
since we are calculating n new paths for each agent, focusing on achieve best Makespan
value. Like the ST-SPF and CBS for the Graph-Like environment, the following restrictions

(restrictions found in MAPE, as in 2.7) were also added to the algorithm:

e Avoid Vertex Conflict;

Avoid Edge Conflict;

Avoid Following Conflict;

Avoid Cycle Conflict;

Avoid Swapping Conflict;

The reason the choice behind reducing the makespan (and consequently the Sum of
Costs) is that with a reduction in the number of robot movements in the environment, we
considerably increase the possibility of solving more paths in crowd environments (since we
will have more free spaces). Also, considering a real implementation, this would reduce the
battery consumption of the robots in addition to the mechanical efforts, increasing the system
life-cycle.

Finally, two algorithms were selected to perform the low-level search, the A-star (A*) and
the Breadth-First Search (BFS). Thus, in the results two STMS algorithms will be analyzed,
the STMS A*-Based (STMS A*) and the STMS BFS-Based (STMS BFS). The reason to

4.3 The Space-Time Multi-Start Algorithm (STMS) 64

include the BFS is that the algorithm will find the shortest path between two vertices instead
of prioritizing the paths with the smallest weight (as in A*). This feature is important since
we want to reduce the Makespan as much as possible and will optimize the implementation
of Definition 4.3. Is also worth mentioning that both algorithms needed to be implemented
considering the time, so the correct nomenclature would be Space-Time A* and Space-Time
BFS, but for simplification, we will use the nomenclature used at the beginning of the para-

graph.

Chapter 5

Experimental Evaluation

In this chapter, the proposed algorithms results will be presented. Despite the definition
of the maximum number of agents, tests were executed in the tiny and large environments
exceeding these limits to identify the robustness and scalability of the algorithms in populous
and complex spaces. The reason for choosing only these sizes for robustness testing is that
CBS performs best with a reduced number of agents (no crowd) in small and large spaces.
Thus, for robustness analysis criteria, 15 robots were used in the Tiny environment and 250 in
the Large environment. Is worth mentioning that this section will also cover the simulator’s
ability to run the multi-agent simulations in multiple warehouse layouts.

The chapter is divided as follows: In Topic 5.1, the algorithms results and discussion
are presented regarding the Traditional Horizontal Layout using the Tiny, Small, Medium,
and Large sizes. In Topic 5.2, the algorithms results and discussion are presented regarding
the Traditional Vertical Layout using the Tiny, Small, Medium, and Large sizes. In Topic
5.3, the algorithms results and discussion are presented regarding the Traditional Horizontal
Layout using the Tiny, Small, Medium, and Large sizes. Finally, in Topic an brief discussion
is made to resume the results and discuss possible algorithms advantages and disadvantages.

The tests were run on a Notebook ASUS Expert X23, with an Intel I5 7200U 2.50 GHz
Processor, an NVIDIA 920MX GPU, 8 GB DDR4 SDRAM, and an Ubuntu 18.04 operating
system with PyGame v1.9.6 and Python 3.6. Before showing the algorithms results for

different Warehouses Layouts, the following considerations need to be highlighted:

e The agents can perform movements in four directions: Top, Bottom, Left, and Right;

65

5.1 Traditional Horizontal 66

e The agents can perform only one movement per time step;

e The comparative tests between the algorithms have the same start and goal point for

each layout;
e The Running Time measurement was done through the timer built-in function;

e The Warehouses Layouts Design are based on the layouts proposed in the state-of-the-

art, as shown in Figures 2.11 and 2.12;

e The Makespan is the maximum number of movements (time-steps) done by an agent

to reach the goal;
e The Sum of Costs is the sum of all agents movements (time-steps) to reach the goals;

e Five rounds of tests were performed for each robot number and each algorithm, so the

values in the tables are the average;

e The algorithms can’t exceed the 8 GB limit for memory usage, if this happens we

declare as memory overflow;
e The maximum time limit defined to find a solution is 500 s;

e The green items in the tables are the best results for a evaluation criteria (Running
Time, Makespan, Sum of Costs), while the red items are tests that exceeded the time

limit.

5.1 Traditional Horizontal

5.1.1 Tiny Layout

The Tiny environment has 18 x 8 (144 nodes/grid points) in size, however with the limitation
of 128 nodes/grid points free for movement (128 states) due to the location of the Workers
and Treadmill zones. Considering the minimum number of robots is 1 and the maximum is
10 since it has 9 pickup and recharge points. However, since the CBS works better in small
spaces, we increased the maximum number of robots to 15 to compare which algorithm have

more scalability in complex and crowded environment.

5.1 Traditional Horizontal

67

Table 5.1: Tiny Traditional Horizontal Results

Running Time (s) Makespan Sum of Costs Winner Algorithm (by Turn)
Winner Algorithm
Number of Agents Grid-Like Graph-Like Grid-Like Graph-Like Grid-Like Graph-Like
Running Time Makespan Sum of Costs | (by Comparison)
CBS | ST-SPF | CBS | ST-SPF | STMS (A*) | STMS (BFS) | CBS | ST-SPF | CBS [ST-SPF | STMS (A*) | STMS (BFS) | CBS | ST-SPF | CBS | ST-SPF | STMS (A*) | STMS (BFS)
1 0.0057 | 0.0079 [0.0007 | 0.0008 0.1459 0.1219 9 9 10 10 9 9 9 9 10 10 9 9 CBS (Graph) — — —
2 0.0079 | 0.0101 | 00010 0.0026 0.1776 0.1642 9 9 14 14 9 9 18 18 28 24 18 18 CBS (Graph) — — —
3 0.0151 | 0.0161 | 00018 | 0.0044 0.2293 0.1662 9 9 16 14 9 9 27 27 48 33 27 27 CBS (Graph) — — —
4 0.0203 | 0.0199 | 00021 0.0050 0.2531 0.2682 10 10 14 14 9 9 37 37 56 42 36 36 CBS (Graph) | STMS (Graph) | STMS (Graph) STMS (Graph)
5 0.0277 | 0.0326 [00032 0.0122 03180 0.3246 10 10 10 10 9 9 55 46 49 45 45 CBS (Graph) | STMS (Graph) | STMS (Graph) STMS (Graph)
10 0.0620 | 0.0800 — 0.0324 0.8222 0.6068 13 13 — 11 11 11 96 87 — 101 110 110 ST-SPF (Graph) — ST-SPF (Graph) ST-SPF (Graph)
15 0.1103 | 0.1267 — 0.0507 1.2339 0.8484 13 13 — 14 12 11 139 125 — 155 180 165 ST-SPF (Graph) | STMS (Graph) | ST-SPF (Graph) ST-SPF (Graph)
Running Time
CBS GRID ST-SPF GRID CBS GRAPH ST-SPFGRAPH STMS A* GRAPH STMES BFS GRAPH
14
a1
T
£
001 4
0001 +
1 2 4] E 10
MNumber of Agents
Makespan Sum of Costs
OB GRID CBS GRID
i 9 9 10 10 L]] ST-8PF GRID 1 ST-SPF GRID
2 (]] 14 14] (] RS GRAPH 2
8T8l GRAPH
3 L} 9 16 14 L] 9 3
* (GRAPH
s 4 1w 0 it 4 9 9 STME BFS GRAPH 5 4 3737 56 4236 STMS BFS GRAPH
g] 10 10 10 10] (] E 5 5548 50 49 45 45
10 13 1 " n 1 10 % 87 0 110 110
18 13 13 14 12 11 15 139 125 155 180 165
Makespan Value Sum of Costs Values

As seen in Figure 5.1 and Table 5.1 the swarm algorithm of the ST-SPF brought a Run-

ning Time increase of approximately 30% for just one agent in the Grid-Like environment.

This indicates that the swarm algorithm is responsible for this increase, however, the algo-

rithm remained within the same time range as CBS (<0.01 s). As we scale the number of

agents, it is possible to see that ST-SPF maintains the same Running Time range as CBS,

being able to win with 2 and 4 robots, providing a gain of 8% and 2% respectively. The

ST-SPF also reduced the sum of costs by approximately 16%, 9%, and 10% for 5, 10, and

5.1 Traditional Horizontal 68

15 robots respectively.

Regarding the Graph-Like environment, CBS was the one that had the best result consid-
ering the time of execution, since the ST-SPF brought an additional gain of approximately
13% due to the swarm algorithm. This considerable reduction in the Running Time compared
to the Grid-Like environment is because the data structure in the Graph-Like environment is
already saved in memory as an integer type instead of an (X, Y) position. The STMS has a
relatively longer execution time than the other two, but this is already expected considering
that it is a Metaheuristic that will loop until it finds the best possible solution. Despite the
time, STMS (A*-Based & BFS-Based) stood out in the reduction of Makespan and Sum of
Costs when compared to the other algorithms (Grid & Graph-like), reaching a gain of up
to 56% when compared to CBS (Graph-Like), but falling behind ST- SPF after 10 robots.
Comparing the two STMS algorithms, it is possible to notice that the BFS-Based brought up
to 46 % time-complexity reduction when compared to the A*-Based, becoming more viable
for small and populous spaces using this particular layout.

Finally, a very interesting point to be highlighted in this environment is that CBS was un-
able to find a solution for the Graph-Like environment after 8 agents. This happens because
of the additional MAPF and Collision rules that were implemented for this specific envi-
ronment. Is worth mentioning that even though CBS failed to find the solution, the ST-SPF
and both STMSs found a solution. This happens because the ST-SPF is not concerned with
collisions between agents outside of swarms blocks, and the STMSs reduced the makespan

and sum of costs, freeing up then spaces in the environment.

5.1.2 Small Layout

The Small environment has 28 x 10 (280 nodes/grid points) in size, however with the lim-
itation of 260 nodes/grid points free for movement (128 states) due to the location of the
Workers and Treadmill zones. Considering the minimum number of robots is 1 and the

maximum is 25 since it has 24 pickup and recharge points.

5.1 Traditional Horizontal

69

Table 5.2: Small Traditional Horizontal Results

Running Time (s) Makespan Sum of Costs Winner Algorithm (by Turn)
‘Winner Algorithm
Number of Agents Grid-Like Graph-Like Grid-Like Graph-Like Grid-Like Graph-Like 5
Running Time (s) | Makespan | Sum of Costs | (by Comparison)
CBS | ST-SPF | CBS | ST-SPF | STMS(A*) [STMS(BFS) | CBS | ST-SPF [CBS | ST-SPF | STMS (A*) | STMS(BFS) | CBS | ST-SPF | CBS | ST-SPF | STMS(A*) | STMS(BFS)
1 0.0079 | 0.0105 0.0044 0.6252 0.4183 18 18 19 19 18 18 18 19 19 18 CBS (Graph) STMS (Graph) | STMS (Graph) STMS (Graph)
2 0.0194 | 0.0261 0.0154 1.1078 0.7296 22 22 23 23 20 40 40 46 42 40 CBS (Graph) STMS (Graph) | STMS (Graph) STMS (Graph)
3 00291 | 00342 00318 | 15252 | o989 | 2| 2 [25| 23 20 sa | s s | s 60 CBS (Graph) | STMS (Graph) [STMS (Graph) |~ STMS (Graph)
4 0.0327 | 0.0436 0.0635 1.8708 1.2569 2 22 25 23 20 60 60 100 64 80 CBS (Graph) STMS (Graph) | STMS (Graph) STMS (Graph)
5 0.0414 | 0.0422 0.0880 2.0684 1.5602 23 2 23 23 20 63 63 115 68 100 CBS (Graph) STMS (Graph) | STMS (Graph) STMS (Graph)
0 0.0904 | 0.0940 0.3242 45372 35983 26 26 27 27 26 138 138 270 142 260 CBS (Graph) STMS (Graph) | STMS (Graph) STMS (Graph)
15 0.1281] 0.1929 0.5773 6.7240 6.7405 26 26 31 27 26 201 201 465 223 390 CBS (Graph) STMS (Graph) | STMS (Graph) STMS (Graph)
25 0.2595 | 0.3158 1.2427 13.8617 10.0719 26 26 31 27 26 368 347 775 438 650 CBS (Graph) STMS (Graph) | STMS (Graph) STMS (Graph)
Running Time
CBS GRID ST-SPF GRID CBS GRAPH ST-SPF GRAPH STMS A~ GRAPH STMS BFS GRAPH
10 4
14
W
[]
01 4
001
1 2 4] 8 10 20
Number of Agents
Makespan Sum of Costs
L CBS GRID 1 CBS GRID
1018 1w 18 14 1
[g ¥ & ST.SPF GRID I ST-SPF GRID
2 i 2 n 23 230 W 4 CBE GRAPH 2 CBS GRAPH
L
3 2 2 25 23 20 14 STSPF GRAPH 3 ST-SPF GRAPH
L
‘g 4 22 22 25 230 20 14 STME A" GRAPH 5 n STME A* GRAPH
s L STMS BFS GRAPH s L STMS BFS GRAPH
s] 23 22 23 23 20 14 i]
[[
s 10 2 26 aw ar 26 24 5 10
L {
18 6 2% n F1d 26 24 18
L |
25 26 26 n 27 26 24 25 | 368 (a7 715 438 650 600
I |
Makespan Value Sum of Costs Values

As seen in Figure 5.2 and Table 5.2, the ST-SPF swarm creation algorithm brought a

Running Time increase of approximately 28% for just one agent for the Grid-Like environ-

ment but was worse in Running Time when compared to the Tiny Traditional layout since it

left the CBS time range (> 0.01 s). As we scale the number of agents, it is possible to see that

ST-SPF was worse than CBS considering the Running Time but had a sum of costs reduction

by 6% for 25 robots.

Regarding the Graph-Like environment, the CBS achieved the lowest Running Time even

5.1 Traditional Horizontal 70

when compared to the Grid-Like results, since the ST-SPF and STMS increased exponen-
tially when the number of agents was increased, where the ST-SPF also brought an additional
gain of approximately 16% due to the swarm algorithm. The STMSs still have a relatively
longer execution time but stood out in the Makespan reduction when compared to the CBS
and ST-SPF algorithms (Grid & Graph-like). Comparing the two versions of the STMS, it is
possible to notice that the BFS-Based brought a reduction of time-complexity of up to 38%
in relation to the A*-Based for 25 agents, also achieving 29% reduction of the Makespan &
Sum of Costs values when compared to the CBS (Graph-like) and STMS A*-Based. For this
specific layout, despite its high time-complexity value, the STMS BFS-Based brought satis-
factory results, since it achieved better Makespan and Sum of Costs values in all scenarios

even when the number of agents was increased.

5.1.3 Medium Layout

The Medium environment has 50 x 14 (700 nodes/grid points) in size, however with the
limitation of 672 nodes/grid points free for movement (128 states) due to the location of
the Workers and Treadmill zones. Considering the minimum number of robots is 1 and the

maximum is 48 since it has 47 pickup and recharge points.

Table 5.3: Medium Traditional Horizontal Results

Running Time (s) Makespan Sum of Costs ‘Winner Algorithm (by Turn)
Winner Algorithm
Number of Agents | Grid-Like Graph-Like Grid-Like Graph-Like Grid-Like Graph-Like
Running Time (s) | Makespan | Sum of Costs | (by Comparison)
cs [srspr| cBs [srser | stvs as) [stvs BFs) [cBs | stser [oBs | stser [svs (ax) [stvs @rs) | s | stser | eBs [stspr [stvs (as) [sTvs @)
1 0.0275 | 0.0674 | 0.0244] 0.0257 34391 3.6089 42 42 43 43 42 42 43 42 43 43 42 42 CBS — — CBS
2 0.0674 | 0.0945 [00550 0.0982 57109 5.6606 49 49 50 50 49 49 100 91 100 93 98 98 CBS — ST-SPF (Grid) —
3 0.0955 | 0.1101 [01050] 0.1952 74789 7.5031 49 40 50 50 49 49 150 138 150 141 147 147 CBS — ST-SPF (Grid) —
4 0.1072 | 0.1631 {01002 0.4020 9.9233 9.9629 49 49 50 50 49 49 200 183 200 187 196 196 CBS iph) — ST-SPF (Grid) —
5 0.1936 | 0.1597 [01450 0.6213 114239 11.4508 49 49 50 50 49 49 250 216 250 221 245 245 CBS (Graph) — ST-SPF (Grid) —
10 0.3902 | 0.2958 [02527| 2.0457 235316 223519 49 49 50 50 49 49 500 391 500 405 490 490 CBS (Graph) — ST-SPF (Grid) —
15 04472 | 04833 [03529 | 48635 | 360818 | 329674 |49 | 49 [52| so 49 49 780 [544 | 780 | sel 735 735 CBS (Graph) — | STSPF (Gridy —
25 09082 | 0.9063 [06550 [13.9099 | 583798 | szso18 |49 | 49 [52| so 51 49 1300 | 744 [1300 [824 1275 1225 CBS (Graph) — | stspF Grigy —
48 25426 | 23128 | 14221 | — | 1335517 | ni9so90 | 49 | 49 | s2 | — 53 49 2496 | 1381 | 2496 — 2544 2352 CBS (Graph) — | stspF(Grigy —

5.1 Traditional Horizontal 71

Figure 5.3: Medium Traditional Horizontal Graph

Running Time

CBS GRID ST-SPF GRID CBS GRAPH ST-SPFGRAPH STMS A= GRAPH STMS BFS GRAPH
100 +
10 A
W
L 1
01 +
1 2 4 8 10 20 40
Number of Agents
Makespan Sum of Costs
CBS GRID
42 4z 43 43 42 42 1
ST-EPF GRID
49 49 50 50 49 4 2

CHE GRAPH
49 an 50 50 a9 a4

» O o e oW M

g a9 a9 50 50 a9 4 : g wPH
s a9 a9 w 50 L 9 STME OFS GRAPH k-1 5 STMS BFS GRAPH
E aw a9 50 50 a9 a9 E w
5 a9 a9 2 50 aa I 5 nme
26 a0 10 52 50 51 4 25 1300 748 1300 82 125 1225
4 a9 ® 52 5 i 4 2496 1381 296 2544
Makespan Value Sum of Costs Values

As seen in Figure 5.3 and Table 5.3, the ST-SPF swarm creation algorithm brought a
Running Time increase of approximately 84% for just one agent for the Grid-Like environ-
ment. However, as we scale the number of agents, it is possible to see that ST-SPF was better
than CBS in Running Time for 5, 10, 25, and 48 agents. In this environment size, was pos-
sible to decrease by 27% the Running Time, and we also had better results for the ST-SPF
sum of costs for almost all the number of agents, where the algorithm reduced the value by
10% for 48 robots.

Regarding the Graph-Like environment, the CBS achieved the lowest Running Time even
when compared to the Grid-Like results, since the ST-SPF and STMS increased exponen-
tially when the number of agents was increased. The ST-SPF also brought an additional gain
of only 5% due to the swarm algorithm, becoming the best result when compared to the Tiny
and Small sizes. Lastly, both STMS algorithms continues to increase the time-complexity,

however the STMS BFS-Based still have better time-complexity values than the A*-Based

5.1 Traditional Horizontal 72

(up to 12% difference).

In this specific size, it is possible to identify that the MAPF rules added to the algorithms
in conjunction with the size of the environment started to affect the ST-SPF and STMS for the
Graph-Like environment. The STMS appears to have a more negative impact since started
to lose the ability to reduce the Makespan and Sum of Costs and considerably increase the
Running Time. On the other hand, ST-SPF was unable to solve the problem from 48 robots
due to memory overflow. One of the reasons that the algorithm has reached a high memory
consumption since the algorithm implementation for the Graph-Like environment creates a
class instance in memory with the values of the adjacency list, adjacency matrix, and swarm

size for each robot or swarm.

5.1.4 Large Layout

The Large environment has 100 x 50 (5000 nodes/grid points) in size, however with the
limitation of 4900 nodes/grid points free for movement (128 states) due to the location of
the Workers and Treadmill zones. Considering the minimum number of robots is 1 and the
maximum is 98 since it has 97 pickup and recharge points. However, to test the complexity

and scalability of the algorithms, the maximum number of robots was increased to 250.

Table 5.4: Large Traditional Horizontal Results

Running Time (5) Makespan Sum of Costs Winner Algorithm (by Turn)
Number of Agents Grid-Like Graph-Like Grid-Like Graph-Like Grid-Like Graph-Like Winner Algerithm
Running Time (s) | Makespan | Sum of Costs | (by Comparison)
CBS ST-SPF CBS ST-SPF | STMS (A*) | STMS (BFS) | CBS | ST-SPF | CBS | ST-SPF | STMS (A*®) | STMS (BFS) | CBS | ST-SPF | CBS | ST-SPF | STMS (A*) | STMS (BFS)
1 08034 [15891 [12879 | 12821 | 1164756 | 1374416 [80 | 89 [o0 [90 89 89 89 [g0 [| o 89 89 CBS (Grid) — — CBS (Grid)
2 16108 | 32302 | 20724 | 52760 | 2359232 | 2684970 | 92 | o2 | 93 [93 92 92 s | s | 1se | 183 184 184 CBS (Grid) - - CBS (Grid)
3 23875 | 50833 | 34149 | 100257 | 3363882 [3sssior | 92 | 92 |95 | 93 92 92 29 | 260 [285| 212 276 276 CBS (Grid) - — CBS (Grid)
4 33002 | 62885 | 42456 | 223073 | 3616341 [ag2so79 | 92 | 92 |93 | 93 92 92 356 | 356 | 372 | 360 368 368 CBS (Grid) — — CBS (Grid)
5 4358 | sse03 | o000 | — (IS — 2| 9 [a]| — 92 43 | 443 faes | — 460 460 CBS (Grid) - - CBS (Grid)
10 86963 | 100054 [105594| — — — 2| 92 [s]| — — — 868 | 868 [930 | — — — CBS (Grid) - — CBS (Grid)
15 132858 | 139592 [15.7366 — — — 92 92 93 — — — 1282 1282 1395 — — — CBS (Grid) — — CBS (Grid)
25 202850 | 23579 | — - - - usfous [—| — - - s | 208 | — | — - - CBS (Grid) - - CBS (Grid)
50 463232 | 456554 | — — — — ns|ons | — | — — — 3607 | 3607 [— | — — — ST-SPF (Grid) — — ST-SPF (Grid)
70 587702 | 57.9867 — — — — 15 15 — — — — 5321 5321 — — — — ST-SPF (Grid) — — ST-SPF (Grid)
100 1136118 [1035556 — - - - Bof 1o [—| — - - 7637 | 1637 | — | — - - ST-SPF (Grid) - — ST-SPF (Grid)
150 27579 | 1802749 | — — — — Bof 1o [—| — — — 10075 [10075 | — | — — — ST-SPF (Grid) — — ST-SPF (Grid)
250 - 4080578 | — — — 130 1o | — | — — — 70 | i5263 | — | — — — ST-SPF (Grid) — | STSPF(Grid) [ST-SPF (Grid)

5.1 Traditional Horizontal 73

Figure 5.4: Large Traditional Horizontal Graph

Running Time

CBS GRID ST-SPF GRID CBS GRAPH ST-SPF GRAPH STMS A* GRAPH STNS BFS GRAPH

500 +

100

Time [s)

Number of Agents

Makespan Sum of Costs

RS GRID
ST-SPF GRID

oo

CHE GRAPH
ST-SPF GRAPH

ok o

STSPF GRAPH
10 STME A" GRAPH
18 STMES BFS GRAPH
28

&0

10 BTME A * GRAPH
15 STMS BES GRAPH
26

50

Number of Robots
o
Number of Robots

100
150

150
250 250

Makespan Value Sum of Costs Values

As seen in Figure 5.4 and Table 5.4, the ST-SPF swarm creation algorithm brought a
Running Time increase of approximately 65% for just one agent for the Grid-Like environ-
ment. However, as we scale the number of agents, it is possible to see that ST-SPF was better
than CBS in Running Time from 50 to 250 agents. In this environment size, was possible to
decrease by 43% the Running Time, and we also had better results for the ST-SPF sum of
costs, where the algorithm reduced the value by 10% for 250 robots. This result proves our
previous hypothesis that the ST-SPF could bring more scalability as we increase the number
of robots in instances with a considerable size. This happens because instead of calculating
the collision for all the agents like CBS, we are clustering the problem in small swarms and
making this calculation in a "decentralized" way.Finally, it is worth noting that CBS has also
exceeded the maximum simulation time for 250 robots, achieving 135s above the limit.

Regarding the Graph-Like environment, neither the CBS, STMS (A*-Based and BFS-

Based), or ST-SPF performed well. As in the Medium size, it is possible to identify that

5.2 Traditional Vertical 74

the MAPF rules added to the algorithms caused a considerable degree of complexity to the
problem since all the algorithms reached memory overflow at some time. Since the ST-SPF
is more memory-heavy for this specific environment, he reached the memory overflow first
at 5 robots, followed by STMS A*-Based at 5, STMS BFS-Based at 4, and CBS at 15.

This behavior raises the question of whether the use of a Graph-Like environment is
good for complex environments with a large number of nodes since it is necessary to save
the adjacency list and the adjacency matrix in memory. Despite this drawback, it is worth
mentioning that the algorithm among the three that could circumvent this situation is the
ST-SPF due to its characteristic of swarms that allows decentralizing the problem through an

"Online" implementation, different from CBS and STMS that would need to be centralized.

5.2 Traditional Vertical

5.2.1 Tiny Layout

The Tiny environment has 18 x 8 (144 nodes/grid points) in size, however with the limitation
of 128 nodes/grid points free for movement (128 states) due to the location of the Workers
and Treadmill zones. Considering the minimum number of robots is 1 and the maximum is
10 since it has 9 pickup and recharge points. However, since the CBS works better in small
spaces, we increased the maximum number of robots to 15 to compare which algorithm have

more scalability in a complex and crowded environment.

Table 5.5: Tiny Traditional Vertical Results

Running Time (s) Makespan Sum of Costs Winner Algorithm (by Turn)

Winner Algorithm
Number of Agents [Grid-Like Graph-Like Grid-Like Graph-Like Grid-Like Graph-Like

CBS | ST-SPF | CBS | ST-SPF | STMS (A*) | STMS (BFS) | CBS | ST-SPF [CBS | ST-SPF | STMS (A*) | STMS (BFS) | CBS | ST-SPF [CBS | ST-SPF | STMS (A*) [STMS (BFS)

Running Time (s) |~ Makespan | Sum of Costs | (by Comparison)

1 0.0056 | 0.0059 | 0.0004| 0.0005 [0.1552 0.0877 10| 10 n 1 10 10 10 10 n 11 10 10 CBS (Graph) | STMS (Graph)
2 0.0119 | 00140 | 00008 | 0.0011 [02211 0.1379 14 14 13 13 12 12 24 [24 | 26| 26 2 24 CBS (Graph) | STMS (Graph)
3 0.0132| 00260 | 0.0025 [00018 | 02676 0.1787 14 14 13 13 (] 2 3| 33 [39| a4 36 36 STSPF (Graph) | STMS (Graph)
4 0.0242| 0.0230 | 0.0031 | 0.0036 [03553 02199 U et 13 13 12 12 8| 38 | 2| 40 48 48 CBS (Graph) | STMS (Graph) -

5 0.0308 | 0.0261 | 0.0049 | 0.0068 [04115 02594 14 14 13 13 2 12 s8 [48 | o5 | 48 60 60 CBS (Graph) | STMS (Graph) | ST-SPF (Grid)
10 0.0785 | 0.0641 | 00077 | 0.0315 [07492 06574 1| e 15 15 14 14 90 [80 | 150 | 109 140 140 CBS (Graph) — ST-SPF (Grid)
15 0.0963 | 0.1149 | 0.0111 | 00537 | 0.8908 07846 14 14 17 17 14 14 133 | 123 | 255 | 174 210 210 ST-SPF (Graph) — ST-SPF (Grid)

5.2 Traditional Vertical 75

Figure 5.5: Tiny Traditional Vertical Graph

Running Time

CBS GRID ST-SPF GRID CBS GRAPH ST-SPF GRAPH STMS A* GRAPH STMS BFS GRAPH

Makespan Sum of Costs
CBS GRID
0 10 n n o STSPF GRID

1
2
3

1 14 1 13 12 12 STMS DES GRAPH A

6 58

Number of Robots.

10 90 80 130 09 140 140
15 14 14 17 17 14 14 15 133 B 255 174 20 20

Makespan Value Sum of Costs Values

As seen in Figure 5.5 and Table 5.5 the swarm algorithm of the ST-SPF brought a Run-
ning Time increase 5% for just one agent for the Grid-Like environment, but the algorithm
remained within the same time range as CBS (<0.006 s). As we scale the number of agents,
it is possible to see that ST-SPF maintains the same Running Time range as CBS, being able
to win with 4, 5, and 10 agents, providing a gain of 5%, 16%, and 20% respectively. The
ST-SPF also reduced the sum of costs by approximately 17%, 11%, and 8% for 5, 10, and
15 agents respectively. Comparing this layout with the Tiny Traditional Horizontal, it was
possible to reduce the computational complexity of CBS by 2 % and 12 % for 1 and 15
agents, and the ST-SPF to 26 %, 19 %, and 9% for 1, 10, and 15 agents. Despite this gain,
this layout brought a considerable gain to Makespan for both algorithms reaching up to 55
% for 3 agents.

Regarding the Graph-Like environment, CBS was the one that had the best result con-

sidering the time of execution in general, since the ST-SPF brought an additional gain of

5.2 Traditional Vertical 76

approximately 5% due to the swarm algorithm. However, the ST-SPF achieved better results
achieving 25% of Running Time reduction with 3 agents. The STMS algorithms stood out in
the reduction of Makespan from 1 to 5 robots when compared to the other algorithms (Grid
& Graph-like), also reducing the Sum of Costs for 2 and 3 robots. It is interesting to men-
tion that in this specific layout the STMSs algorithms achieved equal Makespan and Sum of
Costs results. This happens since the layout is a little heavier than the Traditional Horizontal.
Despite this, the STMS BFS-Based brought a time-complexity reduction of up to 15% when

compared to A*-Based.

5.2.2 Small Layout

The Small environment has 28 x 10 (280 nodes/grid points) in size, however with the lim-
itation of 260 nodes/grid points free for movement (128 states) due to the location of the
Workers and Treadmill zones. Considering the minimum number of robots is 1 and the

maximum is 25 since it has 24 pickup and recharge points.

Table 5.6: Small Traditional Vertical Results

Running Time (s) Makespan Sum of Costs Winner Algorithm (by Tum)
Winner Algorithm
Number of Agents | Grid-Like Graph-Like Grid-Like Grapi-Like Grid-Like. Grapii-Like
Running Time (s) | Makespan | Sum of Costs | (by Comparison)
CBS [ST-SPF [CBS [ST-SPF [STMS (A*) [STMS (BFS) | CBS | ST-SPF | CBS [ST-SPF | STMS (A*) | STMS (BFS) | CBS | ST-SPF | CBS [ST-SPF | STMS (A%) | STMS (BFS)

1 00105 | 00142 | 00059 | 00035 | 0.8362 o7 |27 [27 [26 [26 25 25 27| 2 || 26 25 25 ST-SPF (Graph) [STMS (Graph) | STMS (Graph) [STMS (Graph)
2 0.0347 | 0.0236 [OOLI6 | 0.0155 1.3446 L0180 27 27 28 26 25 25 40 40 56 40 50 50 CBS (Graph) STMS (Graph) — —
3 00271 | 00350 [00204 | 0.0310 | 16439 12565 | 27 [27 |26 | 2 25 25 ag [a7 | a0 75 7 CBS (Graph) | STMS (Graph) — —
4 0.0375 | 0.0485 | DO1T8 | 0.0586 1.9310 1.9483 27 27 28 28 27 27 75 75 112 77 108 108 CBS (Graph) — — —
5 00435 | 00515 00260 | 0.0880 | 22542 e [27| 27 | 28| s 27 27 80| s0 |140]| 83 135 135 CBS (Graph) — — —
10 0.0889 | 0.1236 | 0.0493 | 0.2701 4.5005 37318 27 27 28 28 27 29 162 162 280 211 270 290 CBS (Graph) — — —
15 02550 | 02086 [00860 | 05065 | 67282 60l |27 | 27 || 28 3 2 238 (124 | 435 | 298 495 435 CBS (Graph) — ST-SPF (Grid) —
25 03834 | 03654 [01550 | 15831 | 105646 t04t16 | 27| 27 | 29| 28 33 31 387 31 | 75| s 825 775 CBS (Graph) — ST-SPF (Grid) —

5.2 Traditional Vertical 77

Figure 5.6: Small Traditional Vertical Graph

Running Time

CBS GRID ST-SFF GRID CBS GRAPH ST-SFF GRAPH STMS A~ GRAPH STME BFS GRAPH
10
T
L
[iK]
0.01
1 2 4] 8 0 20
Number of Agents
Makespan Sum of Costs
CBS GRID
1 27 7 26 26 25 25 B AR, 1
2 7) 28 2 25 25 2
» 3 27 b1 26 2 23 23 # 3
i 4 F1d ko 28 28 a2 7 i 4
; 5 7 7 28 28 7 27 ; 5
i 10 i) 7 28 28 7 20 i 10
186 i 7 0 28 33 2 15 85 435
25 27 n 20 28 23 k| 25 Jaeran 725 s 825 775
Makespan Value Sum of Costs Values

As seen in Figure 5.6 and Table 5.6, the ST-SPF swarm creation algorithm brought a
Running Time increase of approximately 29% for just one agent for the Grid-Like environ-
ment (1% higher than the Small Traditional Horizontal), and was also worse in Running
Time when compared to the Tiny Traditional layout since it left the CBS time range (> 0.01
s). As we scale the number of agents, it is possible to see that ST-SPF achieved a better
Running Time for 2 and 25 agents, and also a better sum of costs, achieving a reduction by
5% and 4% for 15 and 25 robots.

Regarding the Graph-Like environment, the CBS achieved the lowest Running Time even
when compared to the Grid-Like results, however, the ST-SPF performed well for 1 robot
achieving a reduction in Running Time by 69%. Lastly, the STMS algorithms achieved a
better Makespan from 1 to 3 agents, a gain of 4% when compared to the ST-SPF, and 8%

when compared to CBS.

5.2 Traditional Vertical 78

5.2.3 Medium Layout

The Medium environment has 50 x 14 (700 nodes/grid points) in size, however with the
limitation of 672 nodes/grid points free for movement (128 states) due to the location of
the Workers and Treadmill zones. Considering the minimum number of robots is 1 and the

maximum is 48 since it has 47 pickup and recharge points.

Table 5.7: Medium Traditional Vertical Results

Running Time (s) Makespan Sum of Costs Winner Algorithm (by Turn)
Winner Algorithm
Number of Agents | Grid-Like Graph-Like Grid-Like Graph-Like Grid-Like Graph-Like
Running Time (s) |~ Makespan | Sum of Costs | (by Comparison)
CBS | ST-SPF | CBS | ST-SPF | STMS(A™) [STMS(BFS) | CBS | ST-SPF | CBS [ST-SPF | STMS(A*) | STMS(BFS) [CBS | ST-SPF | CBS [ST-SPF [STMS(A®) [STMS(BFS)

1 00307 | 0.0485 | 0.0311 [100260 34102 36402 | 2| 2 | 8| 8 42 42 2| 2 |s8| s 42 2 ST-SPF (Graph) - - ST-SPF (Graph)
2 00558 [0.0805 | 0.0578 | 0.0906 | 53899 60056 | 49 | 49 [a5 | 48 47 a7 91 91 9 | 91 94 94 CBS (Grid) | STMS (Graph) - -
3 00854 | 0.1280 [00771 | 0.1349 [77951 78502 | 49 | 49 | 48 [48 47 a7 18| 138 | 144 | 139 141 141 CBS (Graph) | STMS (Graph) - -
4 0.1189 | 0.1650 [00905 | 02685 [9.0925 9.6871 49 | 49 | 4s | a8 47 a7 181 st [192 | 183 188 188 CBS (Graph) | STMS (Graph) - -
5 01673 | 0.1713 [0.1255 | 05135 | 118044 | 128095 | 49 [49 [48| 48 47 47 251 (216 | 240 | 219 235 235 CBS (Graph) | STMS (Graph) | ST-SPE (Grid) -
10 02993 | 03952 [02337 | 16674 | 320273 | 239989 | 49 | 49 [53| 48 47 47 303 [358 | 530 | 374 410 470 CBS (Graph) | STMS (Graph) | ST-SPF (Grid) -
15 04270 [04506 (03681 | 5.1619 | 379543 | 353796 | 49 | 49 | s6 | 50 49 49 483 | 483 | 840 [506 735 735 CBS (Graph) - - CBS (Graph)
25 10554 [0.8043 [[0635 | 11.7222| 636951 | 646201 | 49 [49 [56| s0 49 49 6ss [6 | 1400 776 1225 1225 CBS (Graph) - ST-SPF (Grid) -
48 21159 | 20036 | — — | 1189849 — 49 | a9 | — | — 55 — g | | — 2640 — ST-SPF (Grid) — ST-SPF (Grid) | ST-SPF (Grid)

As seen in Figure 5.7 and Table 5.7, the ST-SPF swarm creation algorithm brought a
Running Time increase of approximately 44% for just one agent for the Grid-Like environ-
ment, almost the half when compared to Medium Traditional Horizontal. As we scale the
number of agents it is possible to see that ST-SPF was better than CBS in Running Time for
25 and 48 agents, decreasing by 27% the Running Time. The ST-SPF also had better results
for the sum of costs, where the algorithm reduced the value by 9% for 48 robots.

Regarding the Graph-Like environment, the CBS achieved the lowest Running Time even
when compared to the Grid-Like results, however, the ST-SPF achieved the best Running
Time results for 1 agent for both Grid and Graph-Like environments.The STMS algorithms
achieved a better Makespan from 2 to 10 agents, a gain of 4% when compared to the ST-SPF,
and 8% when compared to CBS. Finally, is worth mentioning that in this particular layout,
the STMS BFS-Based achieved memory overflow for 48 agents while the CBS and ST-SPF

didn’t found a solution.

5.2 Traditional Vertical 79

Figure 5.7: Medium Traditional Vertical Graph

Running Time

CBS GRID ST-SPF GRID CBS GRAPH ST-S5PF GRAPH STMS A= GRAPH STMS BFS GRAPH
100 +
10 +
)
|
0.1 4
1 2 4 -]) 10 20 40
Number of Agents
Makespan Sum of Costs
B8 GRID
1 42 42 43 43 a2 42 1
ST-5PF GRID
2 A9 NS AR 8 pEn &7 ptiny 2
3 Qe A8 dn &7 il 3
g O e ds s pan &7 STMS A* ORAPH g 4
s 8 a® a9 a8 48 a7 a7 STMS BFS GRAPH s 8
§ 0 e 53 8 pan 4 § 1030
5 s s T 5 s anamm a0 sos s 7
25 49 % soaw 4 25 685 674 W0 776 5 1225
48 9w 55 48 1231 mz 2620
Makespan Value Sum of Costs Values

5.2.4 Large Layout

The Large environment has 100 x 50 (5000 nodes/grid points) in size, however with the
limitation of 4900 nodes/grid points free for movement (128 states) due to the location of
the Workers and Treadmill zones. Considering the minimum number of robots is 1 and the
maximum is 98 since it has 97 pickup and recharge points. However, to test the complexity

and scalability of the algorithms, the maximum number of robots was increased to 250.

5.2 Traditional Vertical 80

Table 5.8: Large Traditional Vertical Results

Running Time (s) Makespan Sum of Costs ‘Winner Algorithm (by Turn)
Winner Algorithm
Number of Agents Grid-Like Graph-Like Grid-Like Graph-Like Grid-Like Graph-Like
Running Time (s) [Makespan | Sum of Costs | (by Comparison)
CBS ST-SPF CBS ST-SPF | STMS (A*) | STMS (BFS) | CBS | ST-SPF | CBS | ST-SPF | STMS (A*) [STMS (BFS) | CBS | ST-SPF | CBS | ST-SPF | STMS (A*) | STMS (BFS)
1 08183 17135 1.0645 | 1.0557 125.0262 130.9634 89 89 98 98 93 93 89 89 98 98 93 93 CBS (Grid) — — CBS (Grid)
2 16215 27236 | 2.1257 | 4.3762 | 304.0403 283.9042 94 94 100 98 93 93 183 183 200 186 186 186 CBS (Grid) — — CBS (Grid)
3 3.0484 3.6892 3.1526 | 10.3219 - 478.5309 94 94 100 98 93 93 271 271 300 270 279 279 CBS (Grid) — — CBS (Grid)
4 4.0292 43808 43334 | 137135 — 94 94 100 98 — — 362 362 400 360 — — CBS (Grid) — — CBS (Grid)
5 52121 5.2480 | 52047 | 17.5941 — — 94 94 100 — — — 451 451 500 “ — - CBS (Grid) — — CBS (Grid)
10 9.0773 9.7331 | 111878 — — — 94 94 98 — — — 878 878 980 — — — CBS (Grid) — — CBS (Grid)
15 15.2324 149731 | 16.0462 — — — 94 94 109 — — — 1292 1292 1635 — — — ST-SPF(Grid) — — ST-SPF(Grid)
25 31.0096 | 27.6759 — — — — s 115 — — — — 2136 2136 — — — — ST-SPF(Grid) — — ST-SPR(Grid)
50 53.2806 | 529702 — — — — 15 115 — — — — 3631 3631 — — — — ST-SPF(Grid) — — ST-SPF(Grid)
70 752212 | 65.8104 - - - - 11 115 —_ - —_ - 5343 5343 - - - - ST-SPF(Grid) — — ST-SPE(Grid)
100 121.0908 (99,6551 — — — — 130 130 — — — — 7659 | 7659 — — — — ST-SPF(Grid) — — ST-SPF(Grid)
150 173.2315 [(153.7619 — — — — 130 130 — — — — 10081 | 10081 — — — — ST-SPF(Grid) — — ST-SPF(Grid)
250 - 376.5263 — — — — 130 130 — — — — 15235 | 15235 — — — — ST-SPF(Grid) — — ST-SPF(Grid)
Running Time
CBS GRID ST-SPF GRID CBS GRAPH ST-SPF GRAPH STMS A* GRAPH STMS BFS GRAPH
500 4
100 +
B0 +
=
[}
10 +
54
14+
1 5 0 50 100
Number of Agents
Makespan Sum of Costs
1 CBS GRID - 0BS GRID
2 STSPF GRID 2 ST-SPF GRID
3 CBE GRAPH 2 CBS GRAPH
4 4
M STSPF GRAPH M ST-SPF GRAPH
g 10 ATMS A * GRAPH ‘g 10 BTME A" ORAPH
k] 16§ STMS DFS GRAPH s 15 STME BFS GRAPH
] § 2
50 &0
f 5
100 | 100
150 150
250 250
Makespan Value Sum of Costs Values

As seen in Figure 5.8 and Table 5.8, the ST-SPF swarm creation algorithm brought a
Running Time increase of approximately 71% for just one agent for the Grid-Like environ-
ment. However, as we scale the number of agents, it is possible to see that ST-SPF was
better than CBS in Running Time from 15 to 250 agents. In this environment size, was pos-
sible to decrease by 48% the Running Time. In some parts, this layout showed better results

regarding Running Time than the Large Traditional Horizontal for both CBS and ST-SPF,

5.3 Flying-V 81

achieving up to 21% and 14% time reduction for 25 robots respectively.

Regarding the Graph-Like environment, neither the CBS, STMS (A*-Based and BFS-
Based), or ST-SPF performed well. As in the Medium size, it is possible to identify that
the MAPF rules added to the algorithms caused a considerable degree of complexity to the
problem since all the algorithms reached memory overflow or time limit at some time. Dif-
ferent from the Medium Traditional Horizontal Layout, the STMS algorithms reached the
time limit with 4 agents, and the CBS and ST-SPF achieved memory overflow at 15 and 10
agents respectively, raising another flag to the use of a Graph-Like environment with a large

number of nodes and agents.

5.3 Flying-V

5.3.1 Tiny Layout

The Tiny environment has 18 x 8 (144 nodes/grid points) in size, however with the limitation
of 128 nodes/grid points free for movement (128 states) due to the location of the Workers
and Treadmill zones. Considering the minimum number of robots is 1 and the maximum is
10 since it has 9 pickup and recharge points. However, since the CBS works better in small
spaces, we increased the maximum number of robots to 15 to compare which algorithm have

more scalability in complex and crowded environment.

Table 5.9: Tiny Flying-V Results

Running Time (s) Mukespan Sum of Costs Winner Algorithm (by Turn)
Winner Algorithm
Number of Agents | Grid-Like Graph-Like Grid-Like Graph-Like Grid-Like Graph-Like
LLLLLLLL ime (s) | Makespan Sum of Costs | (by Comparison)
CBS | ST-SPF | CBS | ST-SPF | STMS (A*) | STMS (BFS) | CBS | ST-SPF | CBS | ST-SPF | STMS (A*) | STMS (BFS) | CBS | ST-SPF | CBS | ST-SPF | STMS (A*) | STMS (BES)

1 00074 [0.0073 [0.0004 [0.0005 | 0.0944 00538 | o2 |7 7 6 6 s 1 |7 7 6 6 CBS (Graph) | STMS (Graph) | STMS (Graph) | STMS (Graph)

2 00095 [00136 {00011 | 00013 | 0.1906 0373 | 12| 12 | u| 10 10 18 18 |2 18 20 20 CBS (Graph) | STMS (Graph) — —

3 0.0153 | 0.0233 FOO0I2 | 0.0023 0.2577 0.1753 12 12 1 11 10 10 34 26 33 27 30 30 CBS (Graph) STMS (Graph) | ST-SPF (Grid) —

4 00234 | 00347 {00034 [0.0037 | 0.2805 0230 |2 | 12 | u| n 10 10 40 (32 | as | 34 40 40 CBS (Graph) | STMS (Graph) | ST-SPF (Grid) —

5 0.0266 | 0.0345 | 00028 | 0.0069 0.4269 0.3064 14 14 15 15 14 14 54 46 75 49 60 60 CBS (Graph) STMS (Graph) | ST-SPF (Grid) —

10 00573 [00732 | — [00298 | 09352 06422 o [s 14 1 os [| — | o 140 140 ST-SPF (Graph) | STMS (Graph) | ST-SPF (Girid) —

15 01135 01043 | — [00578 | 10514 08038 | e [= s 14 14 16 | 2 | — | 14 210 210 ST-SPF (Graph) | STMS (Graph) | ST-SPF (Grid) —

5.3 Flying-V 82

Figure 5.9: Tiny Flying-V Graph

Running Time

CBS GRID ST-SPF GRID CBS GRAPH ST-SPF GRAPH STMS A~ GRAPH STME BFS GRAPH

Time (s}

MNumber of Agents

Makespan Sum of Costs

8BS GRID CBS GRID
12 EEE 7 ¢

STSPF GRID

1
2
3
4

1
2
3 12 2 n n 10 10
4
]

i i
s 2 2 n n 10 10 STMS DFS GRAPH s
i 14 14 15 15 14 14 b 6 5446 735 49 60 &0
E 10 14 14 15 14 14 E 10 93 78 W 140 140
15 14 14 15 14 14 15 146 112 154 Fal] 210
Makespan Value Sum of Costs Values

As seen in Figure 5.9 and Table 5.9 the swarm algorithm of the ST-SPF brought a Run-
ning Time decrease by approximately 1% for just one agent at the Grid-Like environment,
but the CBS remained within the same time range (<0.008 s). As we scale the number of
agents, it is possible to see that CBS stayed ahead from 1 to 10 agents, falling behind at 15
agents, where the ST-SPF reduced the Running Time by approximately 8%. The ST-SPF
had the same sum of costs values as CBS for 1 and 2 agents but reduced these values up
to 24% from 3 to 15 agents. Comparing this layout with the Tiny Traditional Horizontal, it
was possible to reduce the computational complexity of CBS by 7% for 10 agents, and the
ST-SPF to 8%, and 17% for 10, and 15 agents. Comparing to the Tiny Traditional Vertical,
it was possible to reduce the computational complexity of CBS by 27% for 10 agents, and
the ST-SPF to 9% for 15 agents.

Regarding the Graph-Like environment, CBS was the one that had the best result consid-

ering the time of execution from 1 to 5 agents, since the ST-SPF brought an additional gain

5.3 Flying-V 83

of approximately 18% due to the swarm algorithm. However, the ST-SPF achieved better
results for 10 and 15 robots, being better than the Grid-Like algorithms. The STMS stood
out in the reduction of Makespan when compared to the other algorithms (Grid & Graph-
like), however, the ST-SPF achieved a better Sum of Costs from 3 to 15 agents. Comparing
the two STMS algorithms, it is possible to notice that the BFS-Based brought a reduction of
time-complexity of up to 31% when compared to the A -Based, an both achieved up to 50%
Makespan reduction when compared to the Grid-Like algorithms.

Finally, like the Tiny Traditional Vertical, the CBS and STMS were unable to find a
solution for the Graph-Like environment after 8 and 12 agents respectively. However, the

ST-SPF and STMS algorithms found a solution for all the number of agents.

5.3.2 Small Layout

The Small environment has 28 x 10 (280 nodes/grid points) in size, however with the lim-
itation of 260 nodes/grid points free for movement (128 states) due to the location of the
Workers and Treadmill zones. Considering the minimum number of robots is 1 and the

maximum is 25 since it has 24 pickup and recharge points.

Table 5.10: Small Flying-V Results

Running Time (s) Makespan Sum of Costs ‘Winner Algorithm (by Turn)
Winner Algorithm
Number of Agents | Grid-Like Graph-Like Grid-Like Graph-Like Grid-Like Graph-Like
Running Time (s) | Makespan | Sun of Costs | (by Comparison)
cBS | STSPF | CBS [ST-SPF | STMS (A*) | STMS (BFS) | CBS [ST-SPF [B | ST-SPF [5TMS (A™ | STMS (BFS) [CBS [ST-SPF | CBS | ST-5PF [ST™S (A% [STMS (BFS)
1 00123 | 00187 00079 00032 [09837 o712 | 2| 2 [k]| » 30 30 3 ENEI 30 30 CBS (Graph) [STMS (Graph) | STMS (Graph) [STMS (Graph)
2 00218 | 0.0287 | 00108 0.0170 [1.8070 1256 | 3 3 EEN 30 30 ss| s || s 60 60 CBS (Graph) | STMS (Graph) — —
3 00364 | 00395 | 00155 0.0324 [17732 13375 | 2| % EEN) 30 30 s0 | so 05| 7 %0 90 CBS (Graph) | STMS (Graph) — —
4 00707 | 0.0461 | 00166/ 0.0563 [20827 18 [32| 2 || 3 30 30 ot | 91 [0 | 8 120 120 CBS (Graph) | STMS (Graph) — —
5 00481 | 00562 | 00210 0.0905 | 2.3486 1w | 3 33 % 30 30 99 | o [1es| 95 150 150 CBS (Graph) | STMS (Graph) — —
10 01505 | 0.1186 | 00538 | 0.2792 [4.5756 sy | 3 3 B3| » 30 30 223 (1196 | 330 [213 300 300 CBS (Graph) | STMS (Graph) | ST-SPF(Grid) —
15 01728 | 02272 | 00957 | 05833 | 6.5447 sisi | 2| 3 35| 3 30 30 202 | 265 | 525 | 367 450 450 CBS (Graph) [STMS (Graph) | ST-SPF(Grid) —
25 03289 04386 | — | 11826 | 106447 | 105264 | 3 3 — | » 30 30 402 | 465 | — | o35 750 750 STSPF (Grid)_| STMS (Graph) | ST-SPF(Grid) | ST-SPF (Grid)

As seen in Figure 5.10 and Table 5.10, the ST-SPF swarm creation algorithm brought a
Running Time increase of approximately 41% for just one agent for the Grid-Like environ-
ment. As we scale the number of agents, it is possible to see that ST-SPF achieved a better
Running Time for 4 and 10 agents, achieving a reduction by 41% and 42%. Regarding the
Sum of Costs, the ST-SPF reduced the values when compared to CBS from 10 to 25 robots

up to 12%.

84

5.3 Flying-V
Figure 5.10: Small Flying-V Graph
Running Time
CBS GRID ST-SPF GRID CBS GRAPH ST-SPF GRAPH STMS A* GRAPH STMS BFS GRAPH
10 +
)
= 01
0.01
1 2 4] 8 o 20
Number of Agents
Makespan Sum of Costs
8BS GRID

1 32 EH 3 33 0 30 pGRaE 1

2 32 35 35 33 30 30 CBE GRAPH 2
s 3 3 n 35 33 0 30 " 3
i 4 2 EH 33 K] 0 30 g 4
; 5 2 32 5 3 0 30 ; 5
E 10 ks EH 3 33 0 30 5 10

18 32 1 35 13 0 30 15 202265 525 367 | 4500 450

25 32 a2 33 30 0 25 482 aes €35 750 7%

Sum of Costs Values

Makespan Value

Regarding the Graph-Like environment, the CBS achieved the lowest Running Time even

when compared to the Grid-Like results Regarding the STMS algorithms, was possible to

reduce the Makespan up to 17% compared to CBS (Graph-Like), and 10% compared to ST-

SPF (Graph-Like). Finally, is worth mentioning that CBS didn’t found a solution starting

with 24 agents.

5.3.3 Medium Layout

The Medium environment has 50 x 14 (700 nodes/grid points) in size, however with the

limitation of 672 nodes/grid points free for movement (128 states) due to the location of

the Workers and Treadmill zones. Considering the minimum number of robots is 1 and the

maximum is 48 since it has 47 pickup and recharge points.

5.3 Flying-V 85

Table 5.11: Medium Flying-V Results

Running Time (s) Makespan Sum of Costs ‘Winner Algorithm (by Turn)
Winner Algorithm
Number of Agents [Grid-Like Graph-Like Grid-Like Graph-Like Grid-Like Graph-Like
Running Time (s) | Makespan Sum of Costs | (by Comparison)
CBS [STSPE [CBS | ST-SPF | STMS (A%) | STMS (BFS) [CBS | ST-SPF | CBS [ST-SPF | STMS (A*) [STMS (BFS) [CBS | ST-SPF | CBS | ST-SPF [STMS (A%) | STMS (BFS)
1 00620 [0.0562 | 00242 | 00255 | 4.0251 4087 | 55| 55 [52| s2 51 51 ss|oss [2| s2 51 51 CBS (Graph) [STMS (Graph) | STMS (Graph) | STMS (Graph)
2 00703 1 0.0969 | 0.0767 | 0.1053 75914 6.4045 55 55 54 52 51 51 71 71 108 69 102 102 CBS (Grid) STMS (Graph) | ST-SPF (Graph) —
3 00890 [0.1068 | 00792 02130 | 88422 88336 | 55 | 55 [54| s2 s s1 8s | 85 [162 | 80 153 153 CBS (Graph) | STMS (Graph) | ST-SPF (Graph) —
4 02121 [01968 | 01120 04241 | 101330 105600 |55 [55 | se| s2 51 51 18 | 128 | 206 [18 204 204 CBS (Graph) | STMS (Graph) | ST-SPF (Graph) —
5 0.1506 | 01785 [0.1169 | 0.5286 | 124301 s | 55| s | se | s £t 51 158 [158 [270 | 149 255 255 CBS (Graph) | STMS (Graph) | ST-SPF (Graph) —
10 04635 [03461 | 02359 20258 | 251207 | 212579 [55| 55 | sa [52 sl s1 277 | 247 | sa0 | 241 510 510 CBS (Graph) | STMS (Graph) | ST-SPF (Graph) -
15 04364 [04070 | 03649 | 45344 | 357144 M7t | ss | oss | s | s 51 51 379 [335 | s10| 350 765 765 CBS (Graph) [STMS (Graph) | ST-SPF (Grid) —
25 08644 | 0.8367 | 0648 | 123240 | 586306 | 606978 | 55| 55 | 54| 2 sl 51 556 | 566 | 1350 625 1275 1275 CBS (Graph) | STMS (Graph) | ST-SPF (Grid) —
48 22320 | 21447 | — — | 1e00627 | azeom2 [s | ss | | — 53 53 |0 | | 2544 2544 ST - SPF (Grid) — ST-SPF (Grid) | ST-SPF (Grid)

Figure 5.11: Medium Flying-V Graph

Running Time

CBES GRID ST-SPF GRID CBS GRAPH ST-SPF GRAPH STMS A~ GRAPH STMS BFS GRAPH
100 +
10
L
1
01
1 2 4 8 10 20 40
Number of Agents
Makespan Sum of Costs
B8 GRID
1 35 55 52 52 51 51 1
TS RID
H 55 55 54 2.8 51 2
3 35 55 54 2. M 5 3
g “ 58 5 54 52 = 5 g 4
5 5 £} 5) 2 5 T °
P ow L] £ 54 2 | i o0
§ R T T I] IR
26 35 35 54 2 N 51 26 5567566/ 1350’ €25 LIS 1275
48 35 L) 5 5 48 1244 1079 344 2544
Makespan Value Sum of Costs Values

As seen in Figure 5.11 and Table 5.11, the ST-SPF swarm creation algorithm brought a
Running Time decrease of approximately 10% for just one agent for the Grid-Like environ-
ment As we scale the number of agents it is possible to see that ST-SPF was better than CBS
in Running Time for 4, 10, 15, and 25 agents, decreasing the Running Time up to 29%. The
ST-SPF also had better results for the sum of costs, where the algorithm reduced the value
by 13% for 48 robots.

Regarding the Graph-Like environment, the CBS achieved the lowest Running Time even
when compared to the Grid-Like results (being behind only at 2 robots for the Grid-Like
CBS). The STMS achieved a better makespan from 1 to 48 agents, also getting a better Sum
of Costs for 1 agent. Finally, the ST-SPF achieved the best sum of costs from 2 to 25 agents

when compared to the Grid-Like and Graph-Like algorithms.

5.3 Flying-V 86

In this specific size, we identify again that the MAPF rules added to the algorithms in
conjunction with the size of the environment started to affect the ST-SPF and CBS. The CBS
didn’t found a solution starting with 31 agents, while the ST-SPF achieved memory overflow
with 48 agents. The STMS algorithms then stands out in the Graph-Like environment since
was possible to find a solution for all the number of agents, however, it remains behind the
Grid-Like CBS and ST-SPF in Running Time, and the ST-SPF (Grid-Like) for the Sum of

Costs.

5.3.4 Large Layout

The Large environment has 100 x 50 (5000 nodes/grid points) in size, however with the
limitation of 4900 nodes/grid points free for movement (128 states) due to the location of the
Workers and Treadmill. Considering the minimum number of robots is 1 and the maximum is
98 since it has 97 pickup and recharge points. However, to test the complexity and scalability
of the algorithms, the maximum number of robots was increased to 250.

As seen in Figure 5.12 and Table 5.12, the ST-SPF swarm creation algorithm brought a
Running Time decrease of approximately 2% for just one agent for the Grid-Like environ-
ment. However, as we scale the number of agents, it is possible to see that ST-SPF was better
than CBS in Running Time for 15, 50, 70, 150, and 250 agents. In this environment size,
was possible to decrease the Running Time up to 37%. In some parts, this layout showed
better results regarding Running Time than the Large Traditional Vertical for both CBS and
ST-SPF, achieving up to 21% and 11% time reduction for 250 agents respectively. This lay-
out also showed better results than the Large Traditional Horizontal, achieving up to 23%

and 18% time reduction for 250 agents respectively.

Table 5.12: Large Flying-V Results

Running Time (5) Makespan Sum of Costs Winner Algorithm (by Turn) N .
Number of Agents Grid-Like Gruph-Like Grid-Like Graph-Like Grid-Like Grapli-Like Wianer Algorin
Running Time (s) | Makespan [Sum of Costs | (by Comparison)
CBS | STSPF | CBS [ST-SPF | STMS (A*) | STMS (BFS) [CBS [ST-SPF [CBS | ST-SPF [STMS (A%) [STMS (BFS) | CBS | ST.SPF | CBS | ST-SPF | STMS (A%) [STMS (BFS)
1 15181 [14882 | 10617 | 11034 [127919 | 1206209 [89 | 89 | 92 | 92 91 91 89 89 [2| 92 a1 a1 CBS (Grid) - - CBS (Grid)
2 28069 | 21618 [21155 | 20857 [2341463 [2893008 | 92 | 92 | 92 [92 91 91 181 [st [osa [oise 182 182 CBS (Grid) - - CBS (Grid)
3 32922 | 30421 [32731 | 68194 [3704300 [3202146 | 92 | 92 |92 [9 91 91 260 | 200 [276 [259 273 273 CBS (Grid) - - CBS (Grid)
4 43643 | 40773 | 41275 [154263 _ o | o1 | 2| %2 91 91 356 | 3s6 | 368 | 320 364 364 CBS (Grid) — | STSPF (Graph) —
5 53238 | 53466 | 56680 | 244766 — — 92 | 92 |2 102 - - 443 | a3 | si0 [481 — — CBS (Grid) — | ST:SPF (Graph) —
10 103259 | 115068 | 115833 — — 92| 92 [ur| — - - s | 872 (1o — — — CBS (Grid) - CBS (Grid)
15 181873 (163962 | — - — — 2| 92 | —| — - - s | 1288 [— [— — — ST-SPF (Grid) - - ST-SPF (Grid)
2 249694 | 289733 | — - - - ns| s | —| — - - 126 | 2126 [— [— - - CBS (Grid) - - CBS (Grid)
50 713903 | 562227 | — - — — s s [— | — - - 3625 [3625 | — | — — — ST-SPF (Grid) - - ST-SPF (Grid)
70 113.0037 [1048742 | — - — — ot [| — - - 909 | 5909 | — | — — — ST-SPF (Grid) - - ~ST-SPF (Grid)
100 1438834 [1658952 | — - — — m| o2 | —| — - - 8455 | 8455 | — | — — — ST-SPF (Grid) - - ST-SPF (Grid)
150 2346684 [2153088 | — - — — o [| — - - n7or | 1791 [— [— — — ST-SPF (Grid) - - ST-SPF (Grid)
250 - 3314795 — — — — o [| — — — 18791 | 18791 [— [— — — ST-SPF (Grid) — — ST-SPF (Grid)

87

5.3 Flying-V
Figure 5.12: Large Flying-V Graph
Running Time
CBSGRID ST-SPF GRID CBS GRAPH ST-SPF GRAPH STMS A* GRAPH STMS BFS GRAPH
500 +
100
50
£
10
5
1 5 100
Mumber of Agents
Makespan Sum of Costs

1 1
2 2
3 S GRAPH 3
; STEPF GRAPH ;
g 10 aT g 10
= 18 = 18
e 25 v 26
3 w0 i w
f i
100

100
150
250

Makespan Value Sum of Costs Values

Regarding the Graph-Like environment, neither the CBS, STMS, or ST-SPF performed
well. As in the other layouts with a larger size, it is possible to identify that the MAPF rules
added to the algorithms caused a considerable degree of complexity to the problem since all
the algorithms reached memory overflow at some time. Like the Traditional vertical Layout,

the ST-STPF reached memory overflow at 10 agents, the STMS at 7, followed by CBS at

25.

Chapter 6

Conclusion and Future Directions

This work performed the implementation of two new algorithms with different focuses, the
ST-SPE, focused on MAPF scalability in medium and large crowded instances, and the
STMS algorithms focused on reducing Makespan in small and crowded instances. Tests
were also carried out with low-level algorithms, exemplifying the efficiency of each in the
state-of-the-art warehouse layouts. Finally, a simulator was developed that allows the execu-
tion of pathfinding algorithms for single or multi-agents, in addition to the analysis of MAPF
problems, where the environment can be modified according to the user’s needs.

It is noteworthy that the main objective of the comparative tests is to analyze three essen-

tial factors to the MAPF problem:

e The Running Time, that is, the time it took for the algorithm to reaches the solution;

e The Makespan, that is, is the number of movements required to all agents reach the

goal;

e And the Sum of Costs, that is, the sum of movements steps required for each agent to

reach the goal;

These factors are essential to achieve maximum throughput in the warehouse since with
a lower Running Time, a higher amount of pickups and deliveries can be done since we will
have less processing time. While a Smaller Makespan and Sum of Costs allow a better flow
in the environment since we will have more spaces available (also avoiding possible "traffic"

congestion).

88

89

In Chapter 4 the Low-Level algorithms are presented, and the implementations of the
ST-SPF and STMS algorithms, explaining in detail the characteristics of each one and their
respective advantages and disadvantages. The Chapter 5 presents the results for CBS, ST-
SPF, and STMS algorithms in both Grid-Like and Graph-Like environments. In all, three
types of layouts with four different sizes were tested, measuring then which type is more
viable in a given scenario and which algorithm scaled better. As a result, it is possible to say
that the simulator remained stable in all tests, whether in single or multi-agent mode.

The Grid-Like ST-SPF brought good scalability in large and crowded spaces compared to
CBS in all scenarios. This result becomes a good implementation for large warehouses with
a large number of robots. Despite the drawback of not performing the collision detection of
agents outside a swarm, this problem is easily solved by bringing the system to an online
environment, where agents update their position at any time and can make the request to
enter into a swam (swarm appending), solving then this problem.

The Graph-Like STMS algorithms has become a good implementation for small and
populous spaces, where even with a considerable number of restrictions it has managed to
find a solution, differently from ST-SPF and CBS. This becomes a good implementation
for small warehouses, whether those with few or many robots. Also, the STMS algorithms
allows a greater Life-Cycle in these environments by reducing the Makespan. This also
decreases the need for recharging and the efforts in the mechanical and electrical parts since
they will make fewer movements. For spaces of small size using the Traditional Layout, it
was also possible to notice that the STMS BFS-Based has the best results since it brings a
reduction of the Running Time added with the possibility of lower Makespan when compared
with the STMS A * -Based.

Regarding the type of environment, the Graph-Like brought good results for small spaces,
but it brought very high memory consumption for large and complex spaces. In contrast,
Grid-Like loses performance considerably in small spaces but has better use of memory in
large and complex spaces. In this way, a Graph-Like environment with all MAPF restrictions
is best used in small environments (up to 280 nodes/grid points), while a Grid-Like environ-
ment with few restrictions becomes better in medium, large, and complex environments (>
700 nodes/grid points). Regarding the type of warehouse layout, it was noted that Traditional

Horizontal has better scalability than the others for tiny and small sizes, while Traditional

90

Vertical found itself better in small and medium sizes. The Flying-V shows good results for
the Large size when there are a lot of agents (> 150). Was also possible to notice that the
Traditional Horizontal has a lower computational cost, while Flying-V allows a considerable
reduction in Makespan (in exchange for a small computational cost).

It is also worth mentioning that this work resulted in two publications. The first being
the development of a graphical interface, which allows the monitoring of experiments in
real-time (Human-Robot Interface) and manipulation of robot variables [7], which can be
used later in the online ST-SPF for monitoring. The second was a survey that addresses the
latest trends and research gaps in the field of Autonomous Mobile Robots applied to Robotic
Mobile Fulfillment Systems [13].

Finally, several topics can be addressed in future works. Concerning the simulator, it
would be interesting to have a better implementation of the user interaction process, as well
as the possibility of integration with ROS or Gazebo, allowing a simulation considering
some characteristics of the robot and the environment. Regarding the algorithms, a possible
improvement of the ST-SPF is the implementation of it in a online environment, solving its
current drawback. Besides, it is also interesting to perform tests with other state-of-the-art
algorithms, such as RRT*, and WHCA* for example. About the STMS algorithms, a point
of improvement is the reduction of Running Time, so that it becomes competitive when

compared to CBS and ST-SPF.

Bibliography

[1]

[2]

(3]

(4]

[5]

[6]

(7]

Kenneth B. Ackerman. Warehousing: Origins, History and Development. Springer
US, Boston, MA, 1990.

Charu C. Aggarwal, Alexander Hinneburg, and Daniel A. Keim. On the surprising

behavior of distance metrics in high dimensional space. pages 420-434. Springer, 2001.

Dor Atzmon, Roni Stern, Ariel Felner, Roman Bartdk, Glenn Wagner, and Neng Fa
Zhou. Robust multi-agent path finding. Proceedings of the International Joint Confer-
ence on Autonomous Agents and Multiagent Systems, AAMAS, 3:1862-1864, 2018.

Kaveh Azadeh, René De Koster, and Debjit Roy. Robotized and automated warehouse
systems: Review and recent developments. Transportation Science, 53(4):917-945,

2019.

Nikolaos Baras and Minas Dasygenis. An algorithm for routing heterogeneous vehicles
in robotized warehouses. 2019 Panhellenic Conference on Electronics & Telecommu-

nications (PACET), pages 1-4, 2020.

Max Barer, Guni Sharon, Roni Stern, and Ariel Felner. Suboptimal variants of the
conflict-based search algorithm for the multi-agent pathfinding problem. Proceedings
of the 7th Annual Symposium on Combinatorial Search, SoCS 2014, 2014-Janua:19—
27,2014.

I. R. C. Barros, L. F. Costa, and T. P. Nascimento. Turtleui: A generic graphical user
interface for robot control. In 2019 Latin American Robotics Symposium (LARS), 2019
Brazilian Symposium on Robotics (SBR) and 2019 Workshop on Robotics in Education
(WRE), pages 174—-179. IEEE, 2019.

91

BIBLIOGRAPHY 92

[8] TItalo Barros. = Warehousepy. https://github.com/LASER-Robotics/
MRS_Warehouse/tree/master/rfms_simulator, 2021. Online, Accessed:

February 31, 2021.

[9] J. P.Van Den Berg and W. H.M. Zijm. Models for warehouse management: Classifi-
cation and examples. International Journal of Production Economics, 59(1):519-528,

1999.

[10] Eli Boyarski, Ariel Feiner, Guni Sharon, and Roni Stern. Don’t split, try to work it out:
Bypassing conflicts in multi-agent pathfinding. Proceedings International Conference

on Automated Planning and Scheduling, ICAPS, 2015-Janua:47-51, 2015.

[11] H. Choset, K. Lynch, and S. et al Hutchinson. Principles of Robot Motion. Bradford
Books, 2005.

[12] C. Cosma, M. Confente, M. Governo, and P. Fiorini. An autonomous robot for indoor
light logistics. 2004 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 3:3003-3008, 2004.

[13] ftalo Renan da Costa Barros and Tiago Pereira Nascimento. Robotic mobile fulfillment
systems: A survey on recent developments and research opportunities. Robotics and

Autonomous Systems, 137:103729, March 2021.

[14] Raffaello D’ Andrea and Peter Wurman. Future challenges of coordinating hundreds of
autonomous vehicles in distribution facilities. BT - IEEE International Conference on

Technologies for Practical Robot Applications, 2008. TePRA 2008, pages 80-83, 2008.

[15] René B.M. De Koster, Andrew L. Johnson, and Debjit Roy. Warehouse design and
management. International Journal of Production Research, 55(21):6327-6330, 2017.

[16] David Desmet, Robert Boute, and Ann Veerecke. A typology of european distribution
centres, 2013. Online, Accessed: February 11, 2020.

[17] Michael Erdmann and Tomds Lozano-Pérez. On multiple moving objects. Algorith-

mica, 2(1-4):477-521, November 1987.

BIBLIOGRAPHY 93

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

Irad Ben-Gal Eugene Kagan, Nir Shvalb. Autonomous Mobile Robots and Multi-Robot
Systems. John Wiley & Sons Ltd, 2020.

Ariel Felner, Jiaoyang Li, Eli Boyarski, Hang Ma, Liron Cohen, T. K.Satish Kumar, and
Sven Koenig. Adding heuristics to conflict-based search for multi-agent path finding.
Proceedings International Conference on Automated Planning and Scheduling, ICAPS,

2018-June:83-87, 2018.

International Organization for Standardization. Robots and robotic devices AAT Vocab-

ulary. Standard, International Organization for Standardization, August 2012.

International Organization for Standardization. Mobile robots - Vocabulary. Standard,

International Organization for Standardization, March 2017.

Martin Gebser, Philipp Obermeier, Thomas Otto, Torsten Schaub, Orkunt Sabuncu,
Van Nguyen, and Tran Cao Son. Experimenting with robotic intra-logistics domains.

CoRR, abs/1804.10247, 2018.

Martin Gebser, Philipp Obermeier, Thomas Otto, Torsten Schaub, Orkunt Sabuncu,
Van Nguyen, and Tran Cao Son. Experimenting with robotic intra-logistics domains.

TPLP, 18(3-4):502-519, 2018.

Khasha Ghaffarzadeh and Na Jiao. Mobile robots, autonomous vehicles, and drones in
logistics, warehousing, and delivery 2020-2040, 2019. Online, Accessed: February 19,
2020.

E. Giuzzo. Three engineers, hundred of robots, one warehouse. IEEE Spectrum,

45(7):26-34, 2008.

Florian Grenouilleau, Willem Jan Van Hoeve, and J. N. Hooker. A multi-label AALU
algorithm for multi-agent pathfinding. Proceedings International Conference on Auto-

mated Planning and Scheduling, ICAPS, pages 181-185, 2019.

K. R. Gue and R. D. Meller. A constructive aisle design model for unit-load warehouses

with multiple pickup and deposit points. European Journal of Operational Research,

236(1):382-394, 2014.

BIBLIOGRAPHY 94

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

Robin Hanson, Lars Medbo, and Mats I. Johansson. Performance Characteris-
tics of Robotic Mobile Fulfilment Systems in Order Picking Applications. IFAC-
PapersOnLine, 51(11):1493-1498, 2018.

Wolfgang Honig, Scott Kiesel, Andrew Tinka, Joseph W. Durham, and Nora Ayanian.
Persistent and Robust Execution of MAPF Schedules in Warehouses. IEEE Robotics
and Automation Letters, 4(2):1125-1131, 2019.

Wolfgang Honig, T. K.Satish Kumar, Liron Cohen, Hang Ma, Hong Xu, Nora Ayanian,
and Sven Koenig. Summary: Multi-agent path finding with kinematic constraints. 1J-

CAI International Joint Conference on Artificial Intelligence, pages 4869—4873, 2017.

iCepts Technology Group. Warehouse management basics-zone picking. https://

www.1lcepts.com/warehouse-management-basics-zone-picking/,

2016. Online, Accessed: February 19, 2020.

Zool Hilmi Ismail and Nohaidda Sariff. A survey and analysis of cooperative multi-

agent robot systems: Challenges and directions. March 2019.

N. Vimal Kumar and C. Selva Kumar. Development of collision free path planning al-

gorithm for warehouse mobile robot. Procedia Computer Science, 133:456—463, 2018.

T. Lamballais, D. Roy, and M. B.M. De Koster. Estimating performance in a Robotic
Mobile Fulfillment System. European Journal of Operational Research, 256(3):976—
990, 2017.

C. K.M. Lee, Bingbing Lin, K. K.H. Ng, Yaqgiong Lv, and W. C. Tai. Smart robotic mo-
bile fulfillment system with dynamic conflict-free strategies considering cyber-physical

integration. Advanced Engineering Informatics, 42(July), 2019.

Minghua Liu, Hang Ma, Jiaoyang Li, and Sven Koenig. Task and Path Planning for
Multi-Agent Pickup and Delivery of the 18th International Conference on Autonomous
Agents and Multiagent Systems. Proceedings of the 18th International Conference on

Autonomous Agents and MultiAgent Systems (AAMAS), 2019.

David Lowe. The Dictionary of Transport and Logistics. Kogan Page, feb 2002.

BIBLIOGRAPHY 95

[38] Hang Ma and Sven Koenig. Al Buzzwords Explained: Multi-Agent Path Finding
(MAPF). AI Matters, 3(3):15-19, 2017.

[39] Kamran Mahroof. A human-centric perspective exploring the readiness towards smart
warehousing: The case of a large retail distribution warehouse. International Journal

of Information Management, 45(July 2018):176—-190, 2019.

[40] K V Manjunath and Dr B Ravishankar. Development of Algorithm and Flowchart for

the Operation Optimization in Warehouse. International Journal of Scientific Develop-

ment and Research, 1(7):296-313, 2016.

[41] Riccardo Manzini. Warehousing in the global supply chain: Advanced models, tools
and applications for storage systems. Warehousing in the Global Supply Chain: Ad-
vanced Models, Tools and Applications for Storage Systems, 9781447122746(March
2016):1-483, 2012.

[42] Marius Merschformann, Lin Xie, and Daniel Erdmann. Path planning for Robotic

Mobile Fulfillment Systems. arXiv e-prints, page arXiv:1706.09347, June 2017.

[43] Van Nguyen, Philipp Obermeier, Tran Cao Son, Torsten Schaub, and William Yeoh.
asprilo. https://asprilo.github.io/.

[44] Van Nguyen, Philipp Obermeier, Tran Cao Son, Torsten Schaub, and William Yeoh.
Generalized target assignment and path finding using answer set programming. In

IJCAI, pages 1216-1223. jjcai.org, 2017.

[45] Nantawat Pinkam, Francois Bonnet, and Nak Young Chong. Robot collabora-

tion in warehouse. International Conference on Control, Automation and Systems,

0(Iccas):269-272, 2016.

[46] Steve Rabin. Al game programming wisdom 3. Charles River Media, Boston, Mass,
2006.

[47] K. Reed and D. Harmelink. What is the difference between distribution centers and
fulfillment centers, 2013. Online, Accessed: February 9, 2020.

BIBLIOGRAPHY 96

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[571

[58]

Gwynne Richards. Warehouse Management: A Complete Guide to Improving Effi-

ciency and Minimizing Costs in the Modern Warehouse. Kogan Page, nov 2017.

Geoffrey Rickman. Roman Granaries and Store Buildings. Cambridge University

Press, apr 1971.

Debjit Roy, Shobhit Nigam, René de Koster, Ivo Adan, and Jacques Resing. Robot-
storage zone assignment strategies in mobile fulfillment systems. Transportation Re-
search Part E: Logistics and Transportation Review, 122(November 2018):119-142,
2019.

S. Russel and P. Norvig. Artificial Intelligence: A Modern Approach, Global Edition.
CL, may 2019.

Oren Salzman and Roni Stern. Research Challenges and Opportunities in Multi-Agent
Path Finding and Multi-Agent Pickup and Delivery Problems. Conference on Au-
tonomous Agents and Multiagent System (AAMAS 2020), pages 3-7, 2020.

Bhavin Shah and Vivek Khanzode. A comprehensive review of warehouse operational
issues. International Journal of Logistics Systems and Management, 26(3):346-378,
2017.

Guni Sharon, Roni Stern, Ariel Felner, and Nathan Sturtevant. Meta-agent conflict-
based search for optimal multi-agent path finding. Proceedings of the 5th Annual Sym-
posium on Combinatorial Search, SoCS 2012, pages 97-104, 2012.

Guni Sharon, Roni Stern, Ariel Felner, and Nathan R. Sturtevant. Conflict-based search

for optimal multi-agent pathfinding. Artificial Intelligence, 219:40-66, 2015.
B. Siciliano and O. Khatib. Handbook of Robotics. Springer, Berlin, 2016.

Maria Sicola. Commercial Real Estate Terms and Definitions. The NAIOP Research

Foundation.San Francisco, California, pages 28,29, 2017.

R. Siegwart, 1. R. Nourbakhsh, and D. ScaramuzzaAngeles. [Introduction to Au-
tonomous Mobile Robots. The MIT Press, Massachusetts, EUA, 2011.

BIBLIOGRAPHY 97

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

D. Silver. Cooperative Pathfinding. In AIIDE Conference on Artificial Intelligence and

Interactive Digital Entertainment, 2005. Online, Accessed: July 1, 2020.

Trevor Standley. Finding optimal solutions to cooperative pathfinding problems. Pro-

ceedings of the National Conference on Artificial Intelligence, 1:173—-178, 2010.
E. Stefan and S. Stefan. Heuristic Search: Theory and Applications. Elsevier, 2012.

Roni Stern, Nathan Sturtevant, Ariel Felner, Sven Koenig, Hang Ma, Thayne Walker,
Jiaoyang Li, Dor Atzmon, Liron Cohen, T. K. Satish Kumar, Eli Boyarski, and Roman
Bartak. Multi-agent pathfinding: Definitions, variants, and benchmarks. https:
//arxiv.org/abs/1906.08291, 2019. Online, Accessed: June 06, 2020.

M. Stiefelhagen, K. Van Der Werff, B. Meijer, and T. Tomiyama. Distributed au-
tonomous agents, navigation and cooperation with minimum intelligence in a dynamic

warehouse application. Conference Proceedings - IEEE International Conference on

Systems, Man and Cybernetics, 6:5573-5578, 2004.

Bryan Stout. Smart moves: Intelligent pathfinding. In Game Developer Magazine,

April 1998.

Jiri Svancara, Marek VIk, Roni Stern, Dor Atzmon, and Roman Bartdk. Online Multi-
Agent Pathfinding. Proceedings of the AAAI Conference on Artificial Intelligence,
33:7732-7739, 2019.

Andrew Tinka, Joseph W Durham, and Sven Koenig. Lifelong Multi-Agent Path Find-
ing in Large-Scale Warehouses Extended Abstract. In International Conference On

Autonomous Agents and Multi-Agent Systems, pages 1-3, 2020.

Teun van Gils, An Caris, Katrien Ramaekers, Kris Braekers, and René B.M. de Koster.
Designing efficient order picking systems: The effect of real-life features on the re-
lationship among planning problems. Transportation Research Part E: Logistics and

Transportation Review, 125(January):47-73, 2019.

Ko Hsin Cindy Wang and Adi Botea. Tractable multi-agent path planning on grid
maps. IJCAI International Joint Conference on Artificial Intelligence, pages 1870—
1875, 2009.

BIBLIOGRAPHY 98

[69] Ko Hsin Cindy Wang and Adi Botea. Scalable multi-agent pathfinding on grid maps
with tractability and completeness guarantees. Frontiers in Artificial Intelligence and

Applications, 215:977-978, 2010.

[70] Wei Wang, Yaohua Wu, Jun Zheng, and Cheng Chi. A comprehensive framework
for the design of modular robotic mobile fulfillment systems. IEEE Access, 8:13259—
13269, 2020.

[71] Peter R. Wurman, Raffaello D’ Andrea, and Mick Mountz. Coordinating hundreds of

cooperative, autonomous vehicles in warehouses. AI Magazine, 29(1):9-19, 2008.

[72] Lin Xie, Hanyi Li, and Nils Thieme. From simulation to real-world robotic mobile

fulfillment systems. Logistics Research, 12(1):1-13, 2019.

[73] Tianfeng Xu, Peng Yang, and Huijie Guo. Energy Efficiency Analysis on Robotic
Mobile Fulfillment System. 2019 IEEE 6th International Conference on Industrial
Engineering and Applications, ICIEA 2019, pages 145-149, 2019.

[74] Zhi Yan, Nicolas Jouandeau, and Arab Ali Cherif. A survey and analysis of multi-robot
coordination. International Journal of Advanced Robotic Systems, 10(12):399, January

2013.

[75] Zhe Yuan and Yeming Yale Gong. Bot-in-time delivery for robotic mobile fulfillment

systems. [EEE Transactions on Engineering Management, 64(1):83-93, 2017.

[76] Li Zhou, Jing Liu, Xiani Fan, Dongjie Zhu, Pingyu Wu, and Ning Cao. Design of
V-Type Warehouse Layout and Picking Path Model Based on Internet of Things. /IEEE
Access, 7(c):58419-58428, 2019.

[77] Bipan Zou, Xianhao Xu, Yeming (Yale) Gong, and René De Koster. Evaluating battery
charging and swapping strategies in a robotic mobile fulfillment system. European

Journal of Operational Research, 267(2):733-753, 2018.

[78] E. Zunic, A. Besirevic, S. Delalic, K. Hodzic, and H. Hasic. A generic approach for
order picking optimization process in different warehouse layouts. In 2018 41st Inter-
national Convention on Information and Communication Technology, Electronics and

Microelectronics (MIPRO). IEEE, May 2018.

BIBLIOGRAPHY 99

[79] Emir Zunic, Admir Besirevic, Rijad Skrobo, Haris Hasic, Kerim Hodzic, and Almir
Djedovic. Design of optimization system for warehouse order picking in real environ-

ment. In 2017 XXVI International Conference on Information, Communication and

Automation Technologies (ICAT). IEEE, October 2017.

Appendix A

The WarehousePy Simulator

As commented in the contributions and the Chapter 3, one of the difficulties and questions
encountered during the development of this framework was: How to perform the tests of Path
Planning algorithms, and how to simulate the obstacles and zones of the Warehouse in a way
that simulates the problem real? For this problem, several options could be used such as the
use and creation of the map through frameworks such as ROS Gazebo or V-REP, however,
these applications generally use SLAM to perform locomotion of the robot, making it difficult
to create a graph network based on a Grid-type environment for the Path Planning and MAPF
analysis. Also, because they are relatively heavy, we can be limited in the capacity of robots
within the environment, since the number of robots added to the simulator will reduce the
simulation efficiency depending on the computer specifications. A simple way to solve this
problem is to simulate a Grid environment, where each cell of the map can be assigned
to a real-world area, thus representing characteristics such as obstacles, starting point, and
desired goal. This modification makes the simulation relatively light, allowing to be repeated
on any other machine as long the necessary packages are installed.

In Chapter 2 was presented the most common types of map and environment representa-

tion, but let’s review some important points:
e The map must be similar to the real environment;
e The accuracy of the map and its peculiarities must be represented;

e The Map Representation complexity has direct relation to the computational complex-

ity of tasks such as location, navigation, and mapping.

100

101

With the review of the state-of-the-art carried out in Chapter 3 it was possible to notice
that the articles that made some contribution in the area of Path Planning for robotic appli-
cations, or that simulated the behavior of the robot inside the Warehouse they also usually
did it through a Graph-like or Grid-like environment, some examples were the contributions
found in Section 3.3. Some of the available simulators work with a Grid-like environment,
one example is asprilo, characterized as a benchmarking framework to study typical sce-
narios in intra-logistics and warehouse automation with multiple mobile robots (see Figure
A.1). Despite the interesting proposal, the application is more focused on the concept of
intra-logistics and TAPF (Combined Target Assignment and Path Finding), that is, the sim-
ulator is focused on the steps involved in handling materials with multiple robots, such
as the number of tasks that must be performed, and not in the implementation of a
framework that performs the global or local planning of the robots [22], [23], [44]. The
simulator has the possibility to connect with other simulators, either to provide instantiat-
ing and order plans or to get an instance from the visualizer and returns a valid plan to the

visualizer [43].

Figure A.1: The asprilo Simulator

Considering the gap both in the field of mobile robotics and in the MAPF problem, a sim-
ulator was developed through the PyGame framework, where it is possible to create the de-
sired environments by defining obstacles, goals, start positions, workers locations, recharge
zones, pickup zones, and treadmill zone. The simulator allows the creation of environments
through simple graphs, weighted graphs, and grids, where the user can program his search
algorithm and use the one that best benefits him. A detail that must be emphasized, however,
is that since an RFMS robot can move only in 4 directions (Top, Bottom, Right, Left), the

simulator uses this as a constraint, but the user can easily modify this on the source code,

102

with is available at [8].

The desired environment settings can be made in the Sertings file, where the user must
define the object’s locations with a matrix representation (a.k.a. Undirected Adjacency Ma-
trix), the size of the desired nodes, and the maximum size of the grid (length and height). In
this same file, it is also possible to create new environments, whether warehouse-like or not.
The user can modify or add the robot’s starts positions, their goals, the recharge locations,
and all the other objects present in the simulator. It is also possible to add new objects if
necessary, but this requires the addition of the object’s function to the create World simulator
class, with is responsible to translate the settings to a visible environment.

Through the createWorld simulator class, the user can select if he wants to run a Single
Agent Path Planning Algorithm or a Multi-Agent Path Finding Algorithm calling the classes
MultiRobot or SingleRobot and inputting the paths calculated by the user path planning al-
gorithm. These classes will abstract the paths to the PyGame format and create the robot
agents on the simulator. In Figure A.2 it is possible to view a flowchart that demonstrates

how the simulator high-level principle of work.

103

Figure A.2: The WarehousePy Algorithm Flowchart

Import the Create
World Class

;—Graph‘L ik ‘Stants the u:i-lee—l

Read the Settings Read the Settings
File File

v Y

Create a Graph
based on the Creale a Simple
Simple Grid Grid Environment
Environment

.

: Create a
Init the Pygame 4
R Module - We\glhled Grid
Environment
Y
Draw the
Grid Objects
Y
Define
Non-Passable
Cells
Init the Single Y Init the
Robot Class Multi-Robot Class
Init
I i y I
Init the Path Single Robot L Multi-Robot m;l?:n?m
Planning chid 9
Algorithm Algorithm for
Every Robot
I s the Sil ion Single or ;
Multi-Robot?
Calculate the Calculate the
Shortest Path to Shortest Paths to
the Goal the Goal

Space Key Move the Robot Space Key Run the

Using the methodology explained above, and considering the types of layouts covered
in Subsection 2.2.2, the Traditional Horizontal, Traditional Vertical, and Flying-V environ-
ments were created in both Grid and Graph formats. Finally, for a better understanding of
the scalability of the algorithms, four sizes were also implemented for each mentioned en-
vironment as shown in Figure A.3 and the details for each environment size can be viewed

below:

e Tiny: 18 W x 8 L in size, 128 states and maximum of 11 robots;

104

e Small: 28 W x 10 L in size, 260 states and maximum of 25 robots;
e Medium: 50 W x 14 L in size, 672 states and maximum of 48 robots;

e Large: 100 W x 50 L in size, 5000 states and maximum of 98 robots;

Where the maximum number of robots for each environment size was defined by the

Equation A.1:

Agents = No.of RechargeZones + No.of PickupZones + 1 (A.1)

Figure A.3: Warehouse Layouts implemented in WarehousePy

HEH EEE B
HEH EEE B

E H
E | W
= ! TR]
- T S
- T 111
E TN]
E []
E | |]
i SRAREARERERR AR RRRARRREARNEL S O 5
W NRRRRE SRR Ry S 3 0 1 0 KB
e AR T T TV T A p— S S
ﬂ T T T S o O A O
Tt TR TR R E LT i 9 W WL 1 1 A W 1 A 4 1t
T BT T 10 A A W 1 Wl
i FRNSEARIEEARAMTREAAERERANREY S0 L A T 0 8
it FRARNARARE AR RN R R RN S S

Let’s unravel the environments above in a way that the simulator’s operation can be better
understood using the Tiny Horizontal environment (Figure A.4) as example. In our tiny
layout we have a Grid-like environment where each cell has a specific matrix coordinate. In
white, we have the coordinates with the free space available, in gray the static obstacles (in
this case the Warehouse Pods), in yellow the cells responsible for the recharge zone, in red
the cells responsible for the Pick zone, in light blue the delivery points, dark blue the location

of the workers, and light purple the location of the treadmill.

105

Figure A.4: The Tiny Traditional Horizontal Grid Environment

(1,0) (2,00 (3,0) | (4,0) (50) (6,0) (7,0) (80)](9,0)

(0,0)

(8,2) (9,2

-
0,7) 1(1,7) | (27) (3,7) |(4,7)

. Inventory Pod Dmm&mm/mAm D Froe Area .mmAm . Worker . Troadmil . Pick Area

03)(1,3) ‘(2,3) (33)

(0,6) |(1,6) |(2,6) | (3,6) (4,6)

Through this matrix the simulator will read the values and translate the desired environ-
ment, this is made identifying each cell as the desired Undirected Adjacency Matrix and

transforming their in a connected grid environment as shown in Figure A.S5.

Figure A.5: The Tiny Traditional Horizontal Environment Connections

- Inventory Pod DW&MM{M/)«AN: |:| Froe Area . Doiivery Area - Worker . Troadmil . Pick Area

Through the figure above, the following question can be made: Why the workers and
treadmill cells was not added to the graph by the simulator? One of the main reasons is the
function is_passable found in the file responsible for generating the world (see the source
code at [8]). The function excludes the cells matrix that should not be visited by the robot,

leading to the exclusion of the grid node. This is an important factor for the RFMS system

106

in particular since workers will not walk around the warehouse and will hold their positions
waiting for the robot deliver the product, acting then like static obstacles (the same goes for
the treadmill). A detail that should be emphasized is that in the Grid-like environment, the
robot will avoid going through the pods (obstacles). However, it will go to the position if
it is the final destination (goal), so for this reason, the grid connectivity for these respective
nodes are not being represented. The obstacles (Pods) can also be removed after starting
the simulator (Right Mouse Click), where the environment will be updated with the new
free space available. This possibility becomes interesting for analyzing the desired Path
Planning algorithm or planner since it can be programmed to recalculates the path (route) if
a new obstacle appears. In Figure A.6 is possible to see the Grid connectivity change after

removing some obstacles.

Figure A.6: Examples of Obstacle Removal after the Initialization

The simulator also allows the creation of a Weighted Grid Environment. This modifica-
tion can be done through the main program function, where the user simply calls the type
of graph he wants to create. The implementation of this graph in the software level is rela-
tively simple, using Object Orient Programming (OOP) the program performs the Class
Inheritance of the Simple Graph Class, receiving the values stored in the Settings file and
the non-desired positions. After that, the program executes the path costs for every con-
nected node being able to be used in Weighted Algorithms like the A*. This type of graph
was specifically chosen for our experiments, since the Recharge and Pickup zones must not
be visited by the robot during the free search since the robot should only go to these zones

when they are the destination. In Figure A.7 is possible to see the modifications made by the

A.I Discussion and Final Considerations 107

Simulator when the Weighted Grid is used.

Figure A.7: Tiny Traditional Horizontal Graph & Grid Environments

o oo o)
o o ¥X o o X

Y 0
D Inventory Pod [Recharge & Maintenance Area Free Ares |:| Delivery Aree . Worker . Treadmil . Pick Area D Inventory Pod Recharge & Maintenance Area Froe Area |:| Delivery Area . Worker . Treadmil . Pick Area

(a) The Grid Environment (b) The Graph Environment

Considering the previous explanations, the question may arise: what is the difference
of this type of environment compared to the Graph-like? The only difference is the data
structure that will be used by the path planning algorithm. For this type of environment
(see Figure A.7), the simulator will perform the translation of the nodes in Grid format to
a Graph of integers, and perform the calculation of the adjacency list and adjacency matrix.
In this way, the algorithms will use these new structures to carry out the planning, which

considerably reduces the Running Time.

A.1 Discussion and Final Considerations

The same process used in the creation of the Tiny Traditional Horizontal environment can
be replicated for the others at Figure A.3, the only variables that will change are: The En-
vironment Length (integer), The Environment Width (integer), and the Pods Location (list
of tuples). With the modifications of these values in the settings file, the recharge, pickup,
treadmill, delivery and work positions zones will be modified automatically. The change
process is manual, where the user only has to make the modification. It is also interesting
to comment that the purpose of this simulator, besides is used here to simulate the REMS
system, is also to provide an Open Source simulator for other researches or applications that

involve the study of path planning algorithms for single or multiple robots. The relation-

A.1 Discussion and Final Considerations 108

ship between the pixels and the real environment allows a more realistic simulation since the

relation between pixels x real distance is respected.

