UNIVERSIDADE FEDERAL DA PARAÍBA

CENTRO DE ENERGIAS ALTERNATIVAS E RENOVÁVEIS PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

Trabalho de Dissertação de Mestrado

Impacto da I<mark>ntegração</mark> da Geração Fotovoltaica no Conteúdo Harmônico das

Microrredes

Osmar Lucas Dias Aires

João Pessoa, Brasil Fevereiro de 2022

Osmar Lucas Dias Aires

IMPACTO DA INTEGRAÇÃO DA GERAÇÃO FOTOVOLTAICA NO CONTEÚDO HARMÔNICO DAS MICRORREDES

Trabalho de Dissertação apresentado ao Programa de Pós-Graduação em Engenharia Elétrica - PPGEE, da Universidade Federal da Paraíba - UFPB, como parte dos requisitos para a obtenção do título de Mestre em Engenharia Elétrica.

Orientador: Prof. Dr. Fabiano Salvadori

João Pessoa, Brasil

Fevereiro de 2022

Catalogação na publicação Seção de Catalogação e Classificação

A298i Aires, Osmar Lucas Dias.

Impacto da integração da geração fotovoltaica no conteúdo harmônico das microrredes / Osmar Lucas Dias Aires. - João Pessoa, 2022. 53 f.: il.

Orientação: Fabiano Salvadori. Dissertação (Mestrado) - UFPB/CEAR.

1. Geração distribuída - Energia elétrica. 2. Microrrede. 3. Harmônicos. 4. Detecção de harmônicos -Métodos. 5. Sistema com 13 barras. I. Salvadori, Fabiano. II. Título.

UFPB/BC

CDU 621.311(043)

UNIVERSIDADE FEDERAL DA PARAÍBA CENTRO DE ENERGIAS ALTERNATIVAS E RENOVÁVEIS PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA

A Comissão Examinadora, abaixo assinada, aprova o Trabalho de Dissertação:

IMPACTO DA INTEGRAÇÃO DA GERAÇÃO FOTOVOLTAICA NO CONTEÚDO HARMÔNICO DAS MICRORREDES

Elaborada por:

OSMAR LUCAS DIAS AIRES

Como um dos requisitos para obtenção para o grau de:

TRABALHO DE DISSERTAÇÃO EM ENGENHARIA ELÉTRICA

Trabalho aprovado. João Pessoa, Brasil, Fevereiro de 2022:

Prof. Ør. Fabiano Salvadori

Orientador

Prof. Dr. Kleber Freire da Silva

Avaliador Externo ao Programa

Prof. Dr. Røgério Gaspar de Almeida

Avaliador Externo ao Programa

João Pessoa, Brasil

AGRADECIMENTOS

Agradeço primeiramente a Deus, meu Mestre, escritor da minha vida e companheiro de todas as horas. Sem Ele, eu não chegaria aqui.

Aos meus pais, Milena Carneiro Dias Aires e Osmar da Silva Aires, por todo apoio e cuidado.

A todos os meus familiares, por toda torcida e incentivo. Em especial, agradeço a meu avô materno Milton Carneiro de Farias, minha referência desde criança.

Ao professor Fabiano Salvadori, meu orientador, por todos os ensinamentos e por toda disponibilidade de tirar dúvidas e me orientar no desenvolvimento deste trabalho.

Agradeço aos professores Kleber Freire da Silva e Rogério Gaspar de Almeida por aceitarem participar da banca deste trabalho, bem como pelas contribuições e sugestões realizadas no exame de Pré-Banca para o aprimoramento da dissertação.

Aos professores e alunos participantes do Smart Grid Group (SG2) que contribuíram com ideias para o desenvolvimento deste trabalho.

A todos os funcionários e professores do PPGEE da Universidade Federal da Paraíba (UFPB) que sempre atenderam prontamente a qualquer solicitação por mim realizada durante a minha pós-graduação.

Por fim, deixo meus sinceros agradecimentos a todos aqueles que de forma direta ou indireta contribuíram para que eu atingisse este objetivo.

RESUMO

Nos últimos anos, a geração distribuída vem se tornando de grande importância e atraindo novas pesquisas no setor elétrico brasileiro. No entanto, a inserção da geração distribuída em um sistema elétrico sem a devida análise dos possíveis impactos, pode ocasionar o surgimento de fenômenos indesejáveis tanto para a concessionária como também para o consumidor, tais como, a elevação, abaixamento ou interrupção de tensão, problemas de proteção e controle ocasionando instabilidade no sistema e a baixa qualidade de energia elétrica para o consumidor final. Baseado nisso, este trabalho de dissertação avalia o impacto da integração da geração fotovoltaica (PV) no conteúdo harmônico das microrredes, utilizando como base um modelo modificado do IEEE com 13 barras. A localização de uma fonte PV na microrrede, o seu número de unidades e o seu nível de penetração são usados como parâmetros para verificar os efeitos e as contribuições dos harmônicos no sistema. Métodos de detecção de harmônicos também são apresentados, discutidos e utilizados. As simulações são realizadas por intermédio do software MATLAB/SimulinkTM e os resultados gerados são analisados em sua respectiva seção.

Palavras-chave: Geração Distribuída, Microrrede, Harmônicos, Métodos de Detecção de Harmônicos, Sistema com 13 barras.

ABSTRACT

In recent years, distributed generation has become of great importance and attracting new research in the Brazilian electricity sector. However, the insertion of distributed generation in an electrical system without proper analysis of possible impacts can lead to the emergence of undesirable phenomena for both the utility and the consumer, such as the rise, fall or interruption of voltage, protection problems and control causing instability in the system and low quality of electricity for the final consumer. Based on that, this dissertation work evaluates the impact of the integration of photovoltaic generation on the harmonic content of microgrids, using as a basis a modified 13-bus IEEE model. The location of a PV source in the microgrid, its number of units and its penetration level are used as parameters to verify the effects and contributions of harmonics in the system. Harmonic detection methods are also presented, discussed and used. Simulations are performed through the *software* MATLAB/SimulinkTM and the results generated are analyzed in their respective section.

Keywords: Distributed Generation, Microgrid, Harmonics, Harmonics Detection Methods, System with 13 busbars.

LISTA DE ILUSTRAÇÕES

Figura 1.1 – Matriz elétrica brasileira, ano 2021	12
Figura 3.1 – Representação fasorial de tensão e correntes para uma determinada	
ordem harmônica	22
Figura 3.2 – Classificação das Subestações	25
Figura 3.3 – Exemplo de aplicação de um banco de capacitores.	26
Figura 4.1 – Sistema de distribuição IEEE padrão com 13 Barras.	28
Figura 4.2 – Fluxo de Carga do sistema IEEE 13 barras.	29
Figura 4.3 – Irradiância e Temperatura de entrada do painel fotovoltaico	30
Figura 4.4 – Fonte PV no Simulink	31
Figura 4.5 – Potência Média, Tensão Média e Duty Cycle	31
Figura 4.6 – Conversor de Fonte de Tensão.	32
Figura 5.1 – Tensão do Consumidor 1 para o caso 4.1	43
Figura 5.2 – Corrente do Consumidor 1 para o caso 4.1	44
Figura 5.3 – Tensão do Consumidor 1 para o caso 4.2	45
Figura 5.4 – Corrente do Consumidor 1 para o caso 4.2	45
Figura 5.5 – Tensão do Consumidor 1 para o caso 4.3	46
Figura 5.6 – Corrente do Consumidor 1 para o caso 4.3	46

LISTA DE TABELAS

Tabela 2.1 – Síntese Bibliográfica	18
Tabela 3.1 – Limites de Distorção de Tensão de acordo com o Padrão IEEE 519 $^{\mathrm{TM}}$ -214 $^{\mathrm{2}}$	20
Tabela 4.1 – Dados das barras e as respectivas cargas utilizadas	28
Tabela 5.1 – THD_V para o Cenário 1	37
Tabela $5.2-THD_I$ para o Cenário $1.$	38
Tabela 5.3 – THD_V para o Cenário 2	39
Tabela $5.4-THD_I$ para o Cenário $2.$	10
Tabela $5.5 - THD_V$ para o Cenário 3	11
Tabela 5.6 – THD_I para o Cenário 3	12
Tabela 5.7 – Valores obtidos dos parâmetros avaliados para o Cenário 4	17
Tabela $5.8 - THD_V$ para o Cenário $5.$	17
Tabela 5.9 – THD_I para o Cenário 5	18
Tabela 5.10–Valores obtidos para o Cenário 6	19

LISTA DE ABREVIATURAS E SIGLAS

ABSOLAR Associação Brasileira de Energia Solar Fotovoltaica

ANEEL Agência Nacional de Energia Elétrica

DTP Distorção Total de Potência

FP Fator de Potência

GD Geração Distribuída

HBM Método de Equilíbrio Harmônico

IDH Índice de Distorção Harmônica

IEC International Electrotechnical Commission

IST Índice de Sensibilidade por Tensão

MPPT Rastreamento do Ponto de Máxima Potência

NBR Norma Brasileira

NDU Norma de Distribuição Unificada

ONS Operador Nacional do Sistema

PRODIST Procedimentos de Distribuição de Energia Elétrica no Sistema Elétrico

Nacional

PV Fotovoltaico

QEE Qualidade de Energia Elétrica

SIN Sistema Interligado Nacional

THD Distorção Harmônica Total

SUMÁRIO

1	INTRODUÇÃO	12
1.1	MOTIVAÇÃO	13
1.2	OBJETIVOS	14
1.2.1	Objetivo geral	1 4
1.2.2	Objetivos específicos	14
1.3	PUBLICAÇÕES	14
1.4	ORGANIZAÇÃO DA DISSERTAÇÃO	14
2	REVISÃO BIBLIOGRÁFICA	16
3	FUNDAMENTAÇÃO TEÓRICA	19
3.1	HARMÔNICOS	19
3.1.1	Distorção Harmônica Total - THD	19
3.1.2	Métodos de Detecção de Harmônicas	21
3.1.3	Índice de Distorção Harmônica - IDH	21
3.2	SISTEMAS DE DISTRIBUIÇÃO	23
3.2.1	Subestações de Distribuição	2 3
3.2.1.1	Classificação das Subestações Elétricas	24
3.2.1.2	Localização das Subestações Elétricas	24
3.3	GERAÇÃO DISTRIBUÍDA	25
3.4	BANCO DE CAPACITORES	26
4	METODOLOGIA E MODELAGEM	27
4.1	SISTEMA TESTE DE DISTRIBUIÇÃO	27
4.2	SISTEMA FOTOVOLTAICO	29
4.2.1	Painel Fotovoltaico	30
4.3	SOFTWARE UTILIZADO	32
4.4	CENÁRIOS AVALIADOS	32
4.4.1	Cenário 1: Impacto da localização da fonte PV no sistema	32
4.4.2	Cenário 2: Impacto da capacidade da fonte PV	33
4.4.3	Cenário 3: Impacto da quantidade de fontes PV no sistema	34
4.4.4	Cenário 4: Inserção de novos consumidores residenciais na mi-	
	$\mathbf{crorrede} \; \ldots \; $	34
4.4.5	Cenário 5: Alocação de bancos de capacitores na microrrede	
	utilizando como base o Cenário 2	35
4.4.6	Cenário 6: Alocação de bancos de capacitores na microrrede	
	utilizando como base o Cenário 4	35

5	RESULTADOS	37
5.1	CENÁRIO 1: IMPACTO DA LOCALIZAÇÃO DA FONTE PV NO	
	SISTEMA	37
5.2	CENÁRIO 2: IMPACTO DA CAPACIDADE DO SISTEMA PV	39
5.3	CENÁRIO 3: IMPACTO DA QUANTIDADE DE FONTES PV NO	
	SISTEMA	41
5.4	CENÁRIO 4: INSERÇÃO DE NOVOS CONSUMIDORES RESIDEN-	
	CIAIS NA MICRORREDE	43
5.5	CENÁRIO 5: ALOCAÇÃO DE BANCOS DE CAPACITORES NA	
	MICRORREDE UTILIZANDO COMO BASE O CENÁRIO 2	47
5.6	CENÁRIO 6: ALOCAÇÃO DE BANCOS DE CAPACITORES NA	
	MICRORREDE UTILIZANDO COMO BASE O CENÁRIO 4	48
6	CONCLUSÕES	50
7	TRABALHOS FUTUROS	51
	REFERÊNCIAS	52

1 INTRODUÇÃO

Nos últimos anos, no Brasil, a geração distribuída vem se tornando de grande importância e atraindo novas pesquisas no setor elétrico. De acordo com a (ABSOLAR, 2021), a geração distribuída (GD) no Brasil teve uma alta de 77,83% no primeiro semestre de 2020 em comparação com o mesmo período de 2019. Neste cenário, a energia fotovoltaica tem sua contribuição, sendo responsável por quase 2% da matriz elétrica brasileira em 2021, conforme é indicado na Figura 1.1.

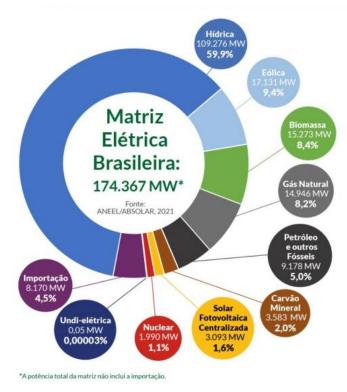


Figura 1.1 – Matriz elétrica brasileira, ano 2021.

Fonte: ABSOLAR 2021

Diante desta realidade, tem-se investido cada vez mais no desenvolvimento de equipamentos com maior eficiência energética e, principalmente, em fontes renováveis de energia. No entanto, a inserção da geração distribuída em um sistema elétrico sem a devida análise dos possíveis impactos, pode ocasionar o surgimento de fenômenos indesejáveis tanto para a concessionária como para o consumidor, como a elevação, abaixamento ou interrupção de tensão, problemas de proteção e controle ocasionando instabilidade no sistema e a baixa qualidade de energia elétrica para o consumidor final.

O planejamento de sistemas integrados com geração distribuída requer a caracterização de vários fatores, tais como: o tipo de GD, o número e a capacidade das unidades, a melhor localização, a configuração da rede, etc. O problema da alocação de unidades de GD e sua potência é uma questão de muita importância; a instalação dessas unidades em locais

e tamanhos não ideais podem resultar em um aumento das perdas e uma deterioração na qualidade de energia, implicando em um aumento dos custos e, portanto, tendo efeitos indesejáveis. A seleção dos melhores locais para instalação e o tamanho das unidades de GD em grandes sistemas de distribuição é um complexo problema de otimização combinatória (Sa'ed et al., 2017).

Sistemas solares fotovoltaicos (PVs) usam equipamentos da eletrônica de potência como inversores e conversores eletrônicos que estão se tornando uma nova fonte potencial de harmônicos. Além disso, a geração de energia solar é de difícil previsão devido à imprevisibilidade da nuvem e efeitos sazonais (Chidurala; Saha; Mithulananthan, 2016).

As configurações de interface PV mais comuns são conversores de dois estágios e inversores de um único estágio. Os conversores de dois estágios consistem em um conversor de reforço CC para CC para o primeiro estágio, que aumenta a tensão CC de saída do painel fotovoltaico para o segundo estágio e realiza o Rastreamento do Ponto de Máxima Potência (MPPT) ou segue uma potência ativa de referência. O segundo estágio é um inversor, que gera a tensão CA compatível com a rede e fornece tensão/var ao controle. Os inversores de estágio único consistem apenas em um inversor que controla a potência ativa e reativa, bem como gera uma tensão compatível com a rede (Li et al., 2012).

Neste trabalho, o impacto da geração distribuída com componente fotovoltaica no nível de distribuição do sistema com harmônicos é estudado. O estudo adotou um sistema de distribuição IEEE radial em que uma fonte PV está conectada de acordo com cenários diferentes, onde a distorção harmônica total da tensão de saída e da corrente são medidas e comparadas com os limites que são definidos por padrões internacionais, como o padrão IEEE 519TM-214.

1.1 MOTIVAÇÃO

Os sistemas de distribuição tradicionais e mais convencionais foram projetados levando em consideração a geração centralizada como única fonte de geração de energia e um fluxo unidirecional de potência. A introdução da GD, entre outros aspectos, muda o sistema e o torna bidirecional em termos de fluxo de potência. Este fato leva estes sistemas a determinadas situações operacionais que não acontecem em um sistema considerado convencional, tornando necessário estudos do impacto da inserção de GD na rede elétrica, mais especificamente nas microrredes, bem como, de forma específica, quantificar e analisar os níveis de distorções de tensão e corrente presentes em cada barra do sistema elétrico.

Para entender melhor os problemas trazidos pela inserção da GD, vários trabalhos na literatura buscam a melhor maneira de analisar os impactos da GD na rede de distribuição, no entanto esses trabalhos dependem de inúmeras variáveis para avaliar o impacto da GD. Partindo desta perspectiva, este trabalho, busca focar na análise dos harmônicos,

utilizando uma ferramenta de simulação acessível aos estudantes e professores da área, o Matlab/SimulinkTM, diferentemente de outros trabalhos que usam análises de dados reais e que requerem medições nos locais de estudos aumentando os custos da pesquisa.

1.2 OBJETIVOS

1.2.1 Objetivo geral

O objetivo deste trabalho consiste em analisar os impactos da inserção da geração distribuída fotovoltaica em uma microrrede, levando em consideração alguns parâmetros como referência, sendo eles: a localização da fonte, o número de fontes inseridas, bem como a capacidade que cada fonte tem em termos de fornecimento de potência.

1.2.2 Objetivos específicos

- Estudar o sistema IEEE com 13 barras utilizando as Distorções Hamônicas Totais $(THD_V \ e \ THD_I)$, valores de corrente e tensão das barras e suas respectivas cargas;
- Analisar a contribuição com relação aos harmônicos que uma fonte PV pode realizar na microrrede;
- Analisar e discutir a influência que a localização da fonte PV na microrrede, a sua capacidade em termos de potência e a quantidade de fontes podem gerar no sistema;
- Estudar e validar índices que ajudem na identificação e quantificação de distorções harmônicas, com destaque para o Índice de Distorção Harmônica proposto por (Anu; Fernandez, 2020);
- Avaliar a contribuição que um banco de capacitores pode trazer para o sistema a partir do momento em que é inserido uma fonte PV na microrrede.

1.3 PUBLICAÇÕES

Durante o período em que este trabalho foi realizado, o seguinte artigo foi aceito para publicação, apresentado e publicado:

• AIRES, O.L.D.; LEAL, R.; HARTMANN, L.V.; GEHRKE, C.; SALVADORI, F. "Comparative Analysis of the Contribution of Harmonic Injection by PV Systems in Microgrids". Simpósio Brasileiro de Automação Inteligente - SBAI 2021.

1.4 ORGANIZAÇÃO DA DISSERTAÇÃO

A organização do trabalho é feita da seguinte maneira:

- No capítulo 2 é feita uma revisão de trabalhos publicados sobre os impactos da geração distribuída na rede elétrica e a metodologia aplicada para essas análises;
- No capítulo 3 é apresentada a fundamentação teórica com os principais assuntos utilizados para o desenvolvimento desta pesquisa;
- No capítulo 4 é apresentada a metodologia utilizada neste trabalho, bem como descrito os cenários que foram avaliados e estudados;
- No capítulo 5 são mostrados e discutidos os resultados obtidos por intermédio das simulações com base na metodologia e nos cenários expostos no capítulo 4;
- No capítulo 6 são apresentadas as conclusões finais;
- Por fim, o trabalho é encerrado com a exposição das referências utilizadas.

2 REVISÃO BIBLIOGRÁFICA

Este capítulo tem como principal objetivo apresentar os principais trabalhos desenvolvidos desde 2012, envolvendo a análise de microrredes com GD e harmônicos, que serviram como base de estudos e pesquisa para o desenvolvimento desta dissertação.

O impacto da geração distribuída e sua operação em paralelo com a rede elétrica de distribuição é estudado em (Kai et al., 2015), no qual analisa a forma de conexão da rede elétrica distribuída, constroi um modelo de rede de distribuição típica, com base na análise da potência distribuída. Em seguida, pelo cálculo teórico do modelo utilizado, analisa o efeito sobre as características de estado estacionário e qualidade de energia, fornecendo assim embasamento teórico para um possível planejamento tecnológico da rede de distribuição.

Em (Chidurala; Saha; Mithulananthan, 2016) é analisado o impacto harmônico de sistemas fotovoltaicos em redes de distribuição. Uma abrangente análise do comportamento harmônico foi realizada na rede de distribuição do IEEE com 13 barras com sistemas fotovoltaicos de grande potência. Um certo nível de harmônicos também é injetado na rede IEEE por meio de cargas não-lineares para se assemelhar a um cenário realista.

A investigação foi realizada através de simulações de três estudos de caso: o primeiro utiliza um sistema fotovoltaico integrado em um único nó em particular sem a presença de distorções no fornecimento, o segundo caso contém a presença de distorções, e o terceiro caso utiliza sistemas PV em vários nós com distorções.

Além disso, um estudo de avaliação foi realizado no site da Universidade de Queensland (Brisbane - Austrália) para validar os resultados da simulação. Este estudo destacou as contribuições harmônicas dos sistemas fotovoltaicos em redes de distribuição reais e o impacto da propagação de harmônicas no fator K (constante que indica a capacidade do transformador para alimentar cargas não-lineares) do transformador.

Os resultados mostram que as distorções harmônicas totais de corrente e tensão estão excedendo os limites quando o número de sistemas fotovoltaicos aumenta, causando sobrecarga e aquecimento do transformador.

O impacto da integração de GD com base fotovoltaica em harmônicos da rede de distribuição é analisado por (Sa'ed et al., 2017), no qual um sistema teste de distribuição do IEEE foi utilizado para analisar a variação da distorção harmônica na presença de geração distribuída baseada em PV.

O estudo testou vários cenários de integração de GD, onde a localização, nível de penetração e o número de GD adicionados foram variados. Técnicas de mitigação também foram discutidas e um caso de simulação de um filtro passivo foi avaliado. De acordo com os autores, uma análise abrangente deve ser feita antes de integrar unidades de GD para

fornecer a solução ideal que resulta efetivamente na integração de GD em sistemas de distribuição que maximiza os beneficíos e minimiza os custos.

Em termos de métodos de análise de harmônicos, (Lu, 2018) contribui com a proposição de um método preciso e eficaz de análise harmônica, denominado de Método de Equilíbrio Harmônico (HBM) para eletrônica de potência e sistema de energia distribuída. O HBM pode calcular todas as formas de harmônicos gerados a partir de cargas não lineares incluindo eletrônica de potência e carga indutiva, e transformadores saturados ou polarizados CC; portanto, pode fornecer previsão precisa de componentes harmônicos para o controle harmônico e filtro de potência ativa.

Em (Nömm; Rönnberg; Bollen, 2018), a distorção de tensão harmônica foi medida em uma microrede de uma única casa na Suécia. A microrede pode operar no modo isolado e no modo conectado à rede. Uma comparação das magnitudes harmônicas de tensão foi feita entre os dois estados de operação. As magnitudes da tensão harmônica são maiores durante o modo de operação isolado e em alguns casos, as magnitudes de ambas as distorções harmônicas totais e de harmônicos individuais excedem os limites descritos nos padrões.

Nos estudos dos recursos energéticos distribuídos em geral, tem-se a análise elaborada por (Zehir et al., 2018), o qual investiga a caracterização e comparação da potência e energia individual e flexibilidades de gerenciamento de energia de diferentes tipos de recursos energéticos distribuídos. Abordagens de identificação são usadas para destacar contrastantes diferenças entre vários armazenamentos de energia e as opções de geração distribuída. Os experimentos foram realizados em uma baixa tensão de teste para comparar os limites de flexibilidade usando o mesmo controle e infraestrutura de comunicação.

Um estudo da correção de fator de potência de um sistema fotovoltaico conectado à rede foi realizado por (Silva; Vieira; Guerra, 2018). Os autores analisam como a presença de sistemas solares fotovoltaicos conectados à rede de baixa tensão influenciam na percepção do fator de potência de uma unidade consumidora pela concessionária, e como isso impacta a rede elétrica de distribuição, podendo causar defeitos relacionados à qualidade de energia elétrica. Para isso, foram realizadas simulações de três configurações de rede de distribuição utilizando como ferramenta o software MATLAB-Simulink.

Em termos de métodos de redução da distorção harmônica, destaca-se (Shukla; Das; Anand, 2019), o qual propõe um novo método para garantir o compartilhamento de corrente harmônica de forma proporcional, mantendo a distorção de tensão harmônica dentro do limite. O aumento dos harmônicos na tensão de saída devido à alta impedância virtual é estimado e compensado. Uma comunicação de baixa largura de banda (LBC) é usado para compensar a tensão harmônica que utiliza apenas dois bits por frequência harmônica. Um estudo de simulação detalhado é feito no MATLAB-Simulink para validar a técnica proposta.

Em (Rad et al., 2012), é estudado o efeito dos harmônicos em uma rede com relação à perda gerada pelas correntes parasitas, aos outros tipos de perdas, à temperatura do ponto mais quente e ao tempo de vida dos transformadores de distribuição. Os harmônicos de corrente de seis transformados de 100 kVA em um centro de distribuição de energia são medidos em um período de teste de uma semana e os impactos dos harmônicos da rede no transformador investigado são amplamente discutidos.

Em (Pazouki; Asrari, 2020), uma abordagem técnica, financeira e dos impactos ambientais dos recursos energéticos distribuídos em redes de energia multi portadoras é realizada. Os resultados da simulação demonstram que a integração da combinação entre calor e energia e da turbina de vento reduz o fator de carga, os custos de emissão e custos de operação.

A seguir, na Tabela 2.1, é apresentado uma síntese bibliográfica com os artigos, os temas principais discutidos por cada um deles, bem como o software utilizado em cada trabalho.

TEMA PRINCIPAL ARTIGOS SOFTWARE UTILIZADO Kai et al. Impacto da GD na rede de distribuição. Não foi especificado pelos autores. Impacto harmônico de sistemas Chidurala; Saha; Mithulananthan. PSCAD. fotovoltaicos em redes de distribuição. Impacto da integração de GD Sayed. Matlab-Simulink. fotovoltaica na rede de distribuição. Proposição de um novo método de Lu. análise harmônica chamado Não foi especificado pelo autor. Método de Equilíbrio Harmônico (HBM). Estudo de uma microrrede de Nomm; Ronnberg; Bollen. uma casa na Suécia e análise Não foi especificado pelos autores. da tensão harmônica. RSE DER-TF. Zehir et al. Comparação de diferentes tipos de DERs. Estudo da correção do fator de Silva; Vieira; Guerra. Matlab-Simulink. potência de um sistema fotovoltaico conectado à rede. Proposição de novo método de Shukla; Das; Anand. Matlab-Simulink. redução da distorção harmônica. Análise e identificação dos efeitos Rad et al. Não especificado pelo autor. dos harmônicos em uma rede elétrica. Realização de uma abordagem Pazouki; Asrari. GAMS. técnica, financeira e dos impactos ambientais dos DERs.

Tabela 2.1 – Síntese Bibliográfica.

3 FUNDAMENTAÇÃO TEÓRICA

Para melhor contextualização e entendimento do trabalho, é realizado neste capítulo uma abordagem teórica acerca de temas fundamentais para a base do trabalho, como: harmônicas, sistemas de distribuição, geração distribuída, sistemas não-senoidais e banco de capacitores.

3.1 HARMÔNICOS

De acordo com (Singh; Chandra; Al-Haddad, 2015), harmônico é um componente sinusoidal de uma onda periódica tendo uma frequência que é um múltiplo integral da frequência fundamental. Por exemplo, um componente com uma frequência duas vezes a frequência fundamental é chamada de segundo harmônico. Eles são fenômenos contínuos e não devem ser confundidos com fenômenos de curta duração, como por exemplo, afundamentos, elevações ou interrupções de tensão com duração menor ou igual a três segundos, os quais duram apenas alguns poucos ciclos.

Pode-se considerar a Qualidade de Energia Elétrica (QEE) a partir de uma análise dual onde a qualidade da tensão de suprimento tem influência no perfil da corrente que circula na instalação e o perfil da tensão pode ser impactado pela natureza da carga (corrente). O grau de tolerância de harmônicos em um sistema de potência está intimamente relacionado com a susceptibilidade da carga ou da fonte de energia. Para aqueles equipamentos em que a forma de onda é irrelevante, por exemplo cargas resistivas para aquecimento, a sensibilidade é menor. Os de maior sensibilidade são aqueles que, na sua concepção, pressupõem a existência de uma alimentação senoidal como, por exemplo, equipamentos de comunicação e processamento de dados. Porém, mesmo para cargas de baixa susceptibilidade, a presença de harmônicos (de tensão ou de corrente) pode ser prejudicial, produzindo maiores esforços nos componentes e isoladores.

O efeito direto dos sistemas não-lineares sobre a QEE é a distorção na corrente, e o indireto, a distorção na tensão. A distorção na tensão é propagada, assim como as correntes harmônicas que circularão por cargas lineares alimentadas por tais tensões. Alguns dos problemas que os harmônicos podem causar incluem superaquecimento e falha de equipamentos, falsos disparos de cargas, operação incorreta de relés de proteção e interferência no circuito de comunicação.

3.1.1 Distorção Harmônica Total - THD

A Distorção Harmônica Total (THD) é a deformação das formas de onda da tensão e da corrente que resultam em desvios da forma de onda da senoide pura (Ajeigbe; Munda; Hamam, 2018). De acordo com (Santoso et al., 2012), a distorção harmônica é causada

por dispositivos não-lineares (cargas ou fontes) no sistema de potência e, de acordo com muitos especialistas da área, ela é, ainda, o problema mais significativo de QEE.

Parâmetros tradicionais do sistema de potência, como: potências (reativa, ativa e aparente), fator de potência e sequências de fase são definidos para o contexto de frequência fundamental em uma condição senoidal pura. Na presença de distorção harmônica, o sistema de potência não opera mais em uma condição senoidal e, consequentemente, muitas das simplificações que os engenheiros de potência usam para a análise da frequência fundamental não se aplicam mais.

Para se medir a THD de um circuito, precisa-se verificar a amplitude de cada harmônico gerado em relação à fundamental do sinal de entrada. Este cálculo nada mais é do que uma média dos níveis de tensão em relação à entrada.

A equação utilizada para o cálculo da THD é:

$$THD = \frac{\sqrt{\sum_{h=2}^{h_{max}} X_h^2}}{X_1} \tag{3.1}$$

onde: X representa uma variável genérica, a qual pode indicar tensão ou corrente e h representa a ordem da componente harmônica.

Por causa dos efeitos prejudiciais que os harmônicos podem causar nos equipamentos do consumidor e na rede, é necessário monitorar e regular os níveis de harmônicos para mantê-los nos limites permitidos que garantem o funcionamento adequado do sistema. O padrão IEEE 519TM-214 foi desenvolvido para empresas de serviços públicos e seus clientes, a fim de limitar o conteúdo harmônico e fornecer a todos os consumidores melhor qualidade de energia, estabelecendo os limites de distorção de tensão listados na Tabela 3.1.

Tabela 3.1 – Limites de Distorção de Tensão de acordo com o Padrão IEEE $519^{\mathrm{TM}}\text{-}214$

Tensão na barra	Harmônicos	Distorção Harmônica
na subestação - V	Individuais (%)	Total (THD)
$V \le 1.0 \text{ kV}$	5,0	8,0
$1 \text{ kV} < \text{V} \le 69 \text{ kV}$	3,0	5,0
$69 \text{ kV} < \text{V} \le 161 \text{ kV}$	1,5	2,5
161 kV < V	1,0	1,5*

*Sistemas com alta tensão podem ter até 2,0% de THD em que a causa é atribuída a terminais de HVCC (correntes contínuas de alta tensão), cujos efeitos são atenuados em pontos da rede onde futuros consumidores podem ser conectados.

3.1.2 Métodos de Detecção de Harmônicas

Alguns métodos de detecção de harmônicas foram propostos em diversos estudos, como: (Anu; Fernandez, 2020), (Wilsun Xu; Chun Li; Tayjasanant, 2004), (Aiello et al., 2005) e (Cristaldi; Ferrero; Salicone, 2002). Segundo (Chang-Song Li et al., 2016), esses métodos podem ser classificados de acordo com o número de pontos de medição das grandezas elétricas em: multiponto e de ponto único. O primeiro, o qual é baseado em medição distribuída e coleta de dados síncronos, pode resultar em informações completas e precisas sobre os harmônicos. Todavia, na prática, é difícil sua implementação por causa dos altos custos de instalação e operação. Os métodos de ponto único é simples e conveniente para aplicação na engenharia, porém gerando resultados menos precisos.

3.1.3 Índice de Distorção Harmônica - IDH

A norma IEEE 1459-2010 (Emanuel; Langella; Testa, 2012) trata sobre definições padrões para a medição de parâmetros do sistema elétrico sob condições senoidais, não-senoidais, equilibradas e desequilibradas. Expressões matemáticas que foram usadas no passado, bem como novas expressões, são listadas nessa norma e também explicações sobre as características das novas definições são apresentadas. A potência aparente para condições não-senoidais pode ser definida como:

$$S^2 = S_1^2 + D_I^2 + D_V^2 + S_H^2 (3.2)$$

Particionando a Eq. 3.2, inicialmente se apresenta a expressão para o cálculo da potência aparente fundamental (S_1^2) , obtida a partir da relação:

$$S_1^2 = P_1^2 + Q_1^2 (3.3)$$

onde, (P_1) é potência ativa fundamental; e, (Q_1) é a potência reativa fundamental obtidas das Eqs. 3.4 e 3.5:

$$P_1 = V_1 I_1 cos\Theta \tag{3.4}$$

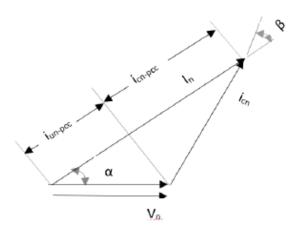
$$Q_1 = V_1 I_1 sen\Theta \tag{3.5}$$

Também da Eq. 3.2, tem-se, respectivamente na sequência, potência de distorção de corrente (D_I) , potência de distorção de tensão (D_V) , potência aparente harmônica (S_H) , potência de distorção harmônica (D_H) , e, a Distorção Total de Potência (DTP) expressas por:

$$D_I = V_1 + I_H (3.6)$$

$$D_V = I_1 + V_H \tag{3.7}$$

$$S_H = V_H I_H = \sqrt{P_H^2 + D_H^2} (3.8)$$


$$D_H = \sqrt{S_H^2 - P_H^2} \tag{3.9}$$

$$DTP = \sqrt{D_I^2 + D_V^2 + D_H^2} (3.10)$$

 P_1 e P_H se referem à potência ativa e os demais termos constituem potência não ativa. A energia reativa fundamental é essencial para criar fluxo em transformadores e máquinas. Essa potência reativa precisa ser fornecida pela concessionária ou pelo cliente. As potências de distorção D_V , D_I e D_H não transferem energia líquida para as cargas, mas todas essas potências contribuem para perdas no sistema. Elas caracterizam a quantidade de poluição harmônica criada por cargas não-lineares. Portanto, a concessionária deve implementar medidas para limitar o fluxo de potências de distorção no sistema (Anu; Fernandez, 2020).

A tensão e correntes normalizadas para um componente harmônico particular n pode ser representado como mostrado na Figura 3.1. Aqui Vn e In representam a tensão harmônica e corrente de ordem n na localização do consumidor, i_{cn} indica a corrente harmônica de ordem n injetada pelo consumidor.

Figura 3.1 – Representação fasorial de tensão e correntes para uma determinada ordem harmônica.

Fonte: (Anu; Fernandez, 2020)

A magnitude normalizada da corrente harmônica de ordem n pode ser decomposta em i_{un-pcc} e i_{cn-pcc} as quais são, respectivamente, as contribuições da concessionária e

do consumidor. De acordo com (Anu; Fernandez, 2020), as equações 3.11 e 3.12 definem, matematicamente, os termos citados anteriormente.

$$i_{un-pcc} = i_{un} cos\alpha \tag{3.11}$$

$$i_{cn-pcc} = i_{un} cos \beta \tag{3.12}$$

Com isso, a contribuição total de corrente harmônica no ponto do consumidor pode ser expressa por meio da seguinte fórmula:

$$i_h = \sqrt{\sum_{n=2}^{h} (i_{cn} cos \beta)^2}$$
(3.13)

A natureza física das potências de distorção tem suas raízes no processo de geração de harmônicas de corrente e não deve ser confundida com a potência reativa, mas monitorada separadamente (Emanuel, 2012). De acordo com a Eq. 3.14, a injeção harmônica no local do consumidor pode ser quantificado por um termo conhecido como Índice de Distorção Harmônica (IDH) que consiste na relação entre a contribuição total de corrente harmônica (i_h) no ponto de conexão do consumidor e a corrente fundamental (I_1) do consumidor.

$$i_{DH} = \frac{i_h}{I_1} \tag{3.14}$$

3.2 SISTEMAS DE DISTRIBUIÇÃO

3.2.1 Subestações de Distribuição

Os Procedimentos de Distribuição de Energia Elétrica no Sistema Elétrico Nacional (PRODIST) definem as subestações elétricas (SE) como "conjunto de instalações elétricas em média ou alta tensão que agrupa os equipamentos, condutores e acessórios, destinados à proteção, medição, manobra e transformação de grandezas elétricas. São pontos de convergência, entrada e saída, de linhas de transmissão ou distribuição. Com freqüência, constituem uma interface entre dois subsistemas."

Um típico Sistema de Distribuição de Energia Elétrica (SDEE) inicia-se com a subestação de distribuição (SED), que é alimentada por uma ou mais linhas de subtransmissão. Em alguns casos, a SED é alimentada diretamente a partir de uma linha de transmissão de alta tensão. Cada SE de distribuição pode servir um ou mais alimentadores primários (Filho, 2016).

O PRODIST também estabelece algumas normas à respeito das subestações de distribuição:

- O conjunto de unidades consumidoras é definido por SED;
- A abrangência do conjunto deve ser as redes MT à jusante da SED e de propriedade da distribuidora.
- SED que possuam número de unidades consumidoras igual ou inferior a 1.000 devem ser agregadas a outras, formando um único conjunto;
- SED com número de unidades consumidoras superior a 1.000 e igual ou inferior a 10.000 podem ser agregadas a outras, formando um único conjunto;
- A agregação de SED deve obedecer ao critério de contiguidade das áreas;
- É vedada a agregação de duas ou mais SED cujos números de unidades consumidoras sejam superiores a 10.000;
- Mediante aprovação da ANEEL, poderão formar diferentes conjuntos SED que atendam a áreas não contíguas, ou que atendam a subestações MT/MT cujas características de atendimento sejam muito distintas da subestação supridora, desde que nenhum dos conjuntos resultantes possua número de unidades consumidoras igual ou inferior a 1.000. Na segunda hipótese, a fronteira dos conjuntos deverá corresponder à entrada da subestação MT/MT.
- Poderão ser divididas, mediante aprovação da ANEEL, SED com redes subterrâneas e aéreas, devendo os conjuntos resultantes possuir número de unidades consumidoras superior a 1.000.

3.2.1.1 Classificação das Subestações Elétricas

As subestações elétricas podem ser classificadas quanto à função, ao nível de tensão, ao tipo de instalação e à forma de operação, conforme é especificado na Tabela 3.2.

3.2.1.2 Localização das Subestações Elétricas

Alguns pontos devem ser considerados quando se trata da localização das subestações dentro de um sistema de distribuição. São eles:

- Necessidade de espaço para possível expansão;
- Centro de carga como localização ideal no sistema;

Classificação das Subestações			
Função	Nível de Tensão	Tipo de Instalação	Forma de Operação
1 – SE de Manobra;	1 – SE de Alta Tensão	1 – SE Desabrigada;	1 – SE com Operador;
2 – SE de	(Tensão nominal	2 – SE Abrigada;	2 – SE Semi-
Transformação;	abaixo de 230kV);	3 – SE Blindada.	automática;
3 – SE de	2 - SE de Extra Alta		3 – SE Automatizada.
Distribuição;	Tensão (Tensão		
4 – SE de Regulação	nominal acima de		
de Tensão;	230kV).		
5 – SE Conversoras.			

Figura 3.2 – Classificação das Subestações.

Fonte: Própria

- Facilidade de acesso para linhas de subtransmissão (entradas) e linhas de distribuição (saídas) existentes e futuras;
- Minimização do número de consumidores afetados por descontinuidade de serviço;
- Estabelecimento de regras para uso do solo.

3.3 GERAÇÃO DISTRIBUÍDA

A Agência Nacional de Energia Elétrica (ANEEL), define a geração distribuída como a instalação de geradores de pequeno porte, normalmente a partir de fontes renováveis ou mesmo utilizando combustíveis fósseis, localizados próximos aos centros de consumo de energia elétrica. Esse tipo de geração difere da geração centralizada que é o tipo de geração que envolve grandes usinas geradoras de energia em locais apropriados, longe dos consumidores, sendo necessário o uso de linhas e redes de transmissão para a distribuição de energia pelas concessionárias locais, resultando em perdas e diminuição de eficiência.

Dentro da definição da geração distribuída, são definidos ainda a microgeração distribuída e a minigeração distribuída, sendo a microgeração a geração de energia elétrica em uma unidade consumidora com potência instalada menor ou igual a 75 kW conectada à rede de distribuição e que utilize fontes renováveis de energia ou cogeração qualificada. A minigeração é caracterizada pelo mesmo tipo de instalação porém abrangendo limites de potência instalada dependendo da fonte utilizada, superior a 75 kW e menor ou igual a 3 MW para fontes hídricas ou menor ou igual a 5 MW para as demais fontes renováveis de energia ou cogeração qualificada.

A inserção da GD na rede elétrica tem trazido alguns desafios aos gerenciadores do sistema elétrico brasileiro e para que esses problemas possam ser minimizados, normas regulamentadoras foram elaboradas pela ANEEL e devem ser seguidas para que os padrões estabelecidos pelas distribuidoras de energia sejam atendidos pelos consumidores que desejam instalar a GD. Além disso, os inversores utilizados nas instalações devem seguir os

requisitos previstos em normas brasileiras e internacionais a fim de manter a estabilidade dos sistemas de energia.

3.4 BANCO DE CAPACITORES

São equipamentos elétricos utilizados como filtros com o objetivo de compensar o uso de energia reativa e corrigir o fator de potência, podendo ser implementados por capacitores em série ou em paralelo, como é exemplificado na Figura 3.3.

Transformador
13.8kV/380V

Fonte trifásica

Banco de capacitores

FV

Sombreamento

Figura 3.3 – Exemplo de aplicação de um banco de capacitores.

Fonte: (Silva; Vieira; Guerra, 2018)

Os benefícios que os bancos de capacitores podem trazer para o consumidor são os seguintes: redução na conta de energia, melhoria na tensão, perda reduzida no sistema de potência e aumento da capacidade de cargas nos circuitos existentes.

4 METODOLOGIA E MODELAGEM

Neste capítulo, o objetivo é apresentar a metodologia e modelagem utilizada. É especificado o sistema IEEE, o painel fotovoltaico, os casos avaliados, bem como o software utilizado para a realização das simulações e obtenção dos resultados.

4.1 SISTEMA TESTE DE DISTRIBUIÇÃO

O sistema de distribuição radial IEEE padrão com 13 barras foi considerado neste trabalho para fins de simulação. Ele é composto por uma subestação, transformadores, alimentadores, cargas e bancos de capacitores. Ele tem interessantes características de uma rede de distribuição real que representam adequadamente uma microrrede e que possibilitam este estudo e suas respectivas análises.

Na Figura 4.1 é apresentado o diagrama unifilar do sistema de distribuição IEEE padrão com 13 barras. No entanto, algumas modificações foram realizadas em relação ao sistema original com o objetivo de facilitar as simulações. Dentre elas estão:

- O sistema deste trabalho é trifásico, diferentemente do sistema IEEE padrão, o qual possui trechos de linhas monofásicos, bifásicos e trifásicos.
- O regulador de tensão na barra 650 foi desativado;
- A tensão da subestação utilizada é de 69kV, diferentemente do sistema IEEE padrão, o qual possui 115kV como tensão da subestação.
- A chave presente entre as barras 671 e 692 do sistema original foi retirada.
- Eventuais bancos de capacitores presentes nas barras do sistema também foram inicialmente retirados.

Na Tabela 4.1 são apresentados as informações referentes às barras do sistema, bem como as respectivas cargas utilizadas para a análise do trabalho.

A subestação, localizada na Barra 650, possui tensão fase-fase RMS de 69kV com frequência de 60Hz. O transformador localizado entre as barras 650 e 632 é abaixador de 69kV para 13.8kV com ligação Δ/Y . O transformador localizado entre a barra 633 e 634 também é abaixador de 13.8kV para 380V, porém com ligação Y/Y.

As barras 632, 633, 645, 646, 671, 692, 675, 684, 611 e 652 estão alimentadas por uma tensão de 13.8kV. Já as barras 634 está alimentada por uma tensão de 380V. Em relação às cargas contidas no sistema, elas variam de barra para barra, conforme é descrito na Tabela 4.1. Nesta dissertação, procurou-se trabalhar com tensões e cargas próximas as utilizadas no sistema elétrico brasileiro.

650
646
645
632
633
634
692
675
652
680

Figura 4.1 – Sistema de distribuição IEEE padrão com 13 Barras.

Fonte: Própria

Tabela4.1 – Dados das barras e as respectivas cargas utilizadas.

Barra	Tensão da Barra (kV)	Tensão em pu	Ângulo em graus	Cargas	
				P(kW)	Q(kVAr)
650	69.00	1.03	0.00	0.00	0.00
632	13.80	1.00	0.00	0.00	0.00
671	13.80	1.00	0.00	0.00	0.00
680	13.80	1.00	0.00	30.00	5.00
633	13.80	1.00	0.00	0.00	0.00
634	0.38	1.00	0.00	35.00	6.00
645	13.80	1.00	0.00	0.00	0.00
646	13.80	1.00	0.00	30.00	3.00
692	13.80	1.00	0.00	0.00	0.00
675	13.80	1.00	0.00	35.00	6.00
684	13.80	1.00	0.00	0.00	0.00
611	13.80	1.00	0.00	30.00	3.00
652	13.80	1.00	0.00	30.00	5.00

Fonte: Própria

Por fim, na Figura 4.2, é apresentado o Fluxo de Carga do sistema IEEE 13 barras simulado pelo Matlab-Simulink.

Base power (VA): 1e+08 Max iterations: PQ tolerance (pu): 0.0001 Frequency (Hz): 60.0 | Vbase (kV) | Vref (pu) | Vangle (deg) | P (MW) | Q (Mv... | Qmin (Mvar) | Qmax (Mvar) | V_LF (pu) | Vangle_LF (deg) | P_LF (MW) | Q_LF (Mvar) | BUS_650 -Inf Subestação BUS 632 13.80 0.00 0.00 0.00 0.00 0.00 1.0181 27.51 0.00 0.00 Load Flow Bus14 BUS 671 13.80 0.00 0.00 0.00 0.00 0.00 1.0150 26.69 0.00 0.00 Load Flow Bus15 0.01 P = 30kW O = 5kVArl 13.80 0.01 26.69 BUS 680 0.00 0.03 -Inf Inf 1.0150 0.03 BUS 692 13.80 0.00 1.0122 25.86 Load Flow Bus17 0.00 0.00 0.00 0.00 0.00 0.00 BUS_675 13.80 0.00 0.04 0.01 -Inf Inf 1.0095 25.03 47.04 8.06 P = 35kW Q = 6kVAr2 BUS_633 1.0179 Load Flow Bus19 13.80 0.00 0.00 0.00 0.00 BUS_634 0.38 0.00 0.01 1.0176 27.48 0.04 0.01 P = 35kW Q = 6kVArl BUS_684 1.0150 Load Flow Bus21 BUS_611 13.80 0.00 0.03 0.00 -Inf Inf 1.0150 26.68 0.03 0.00 P = 30kW Q = 3kVAr2BUS 652 13 80 0.00 0.03 0.01 -Inf Inf 1 0150 26 68 0.03 0.01 P = 30kWO = 5kVAr2 BUS_645 13.80 0.00 0.00 0.00 0.00 0.00 1.0181 27.51 0.00 0.00 Load Flow Bus24 BUS 646 13.80 0.00 0.03 0.00 -Inf Inf 1.0181 27.51 0.03 0.00 P = 30kW Q = 3kVAr1

Figura 4.2 – Fluxo de Carga do sistema IEEE 13 barras.

Fonte: Própria

4.2 SISTEMA FOTOVOLTAICO

O sistema fotovoltaico utilizado neste estudo é trifásico, valor da irradiância é $1000.00\ W/m^2$ e o da temperatura é 25° C (conforme Figura 4.3) e é composto, originalmente, pelos seguintes componentes:

- Painel fotovoltaico (PV array): fornece um máximo de 10 kW a 1000.00 W/m^2 de irradiação solar.
- Conversor Boost CC-CC de 5kHz: Aumenta a tensão da tensão natural da PV (273 V CC na potência máxima) para 500 V CC.
- Conversor de Fonte de Tensão (VSC) trifásico de três níveis: O VSC converte a tensão do barramento CC de 500 V para 260 V CA e mantém o fator de potência unitário. O sistema de controle VSC usa duas malhas de controle: uma malha de controle externa que regula a tensão do barramento CC para +/- 250 V e uma malha de controle interna que regula as correntes de rede Id e Iq (componentes de corrente ativa e reativa).
- Filtro: Capacidade de filtrar harmônicos produzidos pelo conversor. Utiliza-se, para esta aplicação, banco de capacitores. Inicialmente, neste trabalho, os filtros foram retirados.
- Transformador de acoplamento trifásico: Eleva a tensão de 260 V para 380 V.

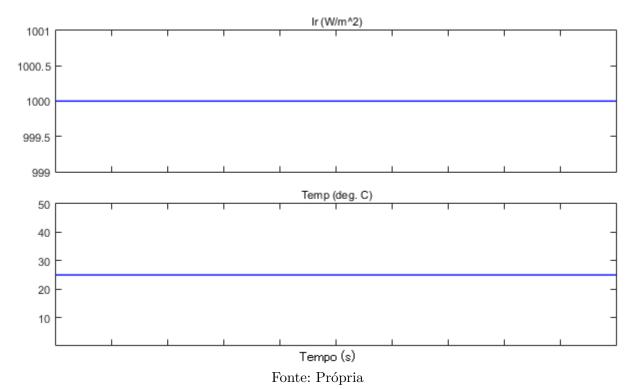


Figura 4.3 – Irradiância e Temperatura de entrada do painel fotovoltaico.

4.2.1 Painel Fotovoltaico

A modelagem dos painéis fotovoltaicos é feita através de uma modelagem matemática com uma equação capaz de reproduzir o comportamento correspondente às curvas características dos painéis, considerando a influência da temperatura e da irradiação solar (Oliveira, 2016).

O esquema do sistema fotovoltaico utilizado no Simulink está detalhado na Figura 4.4. Os gráficos de potência média, tensão média e *duty cycle* estão reunidos na Figura 4.5. O gráfico do conversor de fonte de tensão, que está localizada logo após a ponte trifásica (nomeado como "3-level VSC"), é apresentado na Figura 4.6.

| Same |

Figura 4.4 – Fonte PV no Simulink.

Fonte: Própria

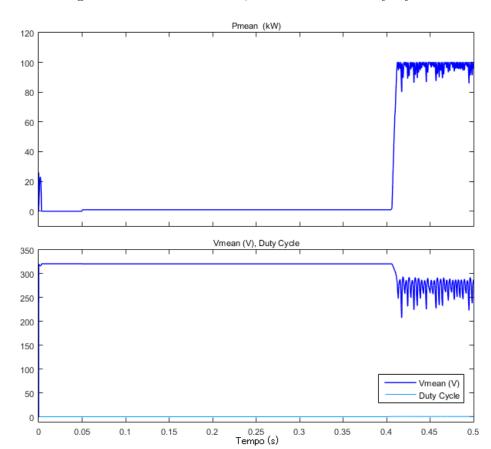


Figura 4.5 – Potência Média, Tensão Média e Duty Cycle.

Fonte: Própria

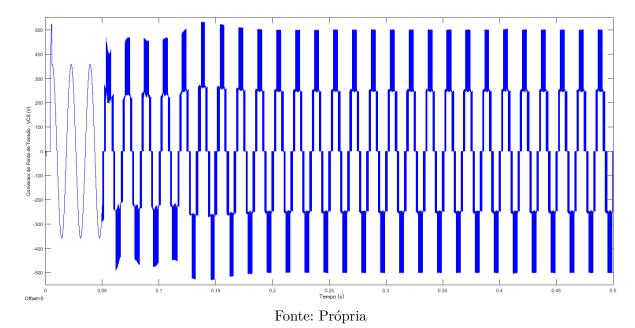


Figura 4.6 – Conversor de Fonte de Tensão.

4.3 SOFTWARE UTILIZADO

Neste trabalho, foi utilizado, como software para a realização das simulações, o Matlab, desenvolvido pela Mathworks. É uma ferramenta utilizada por milhões de engenheiros, a qual possibilita, além das simulações, construir gráficos, realizar análise de dados, o desenvolvimento de algoritmos e criação de modelos numéricos.

Dentro deste software localiza-se o Simulink, que é uma ferramenta que proporciona a simulação gráfica e modelagem de diversos sistemas, pois funciona na forma de blocos. Cada bloco atua de acordo com o algoritmo que lhe foi programado e isso simplifica o trabalho de modelagem e simulação (Oliveira, 2016).

O SimPowerSystems é uma biblioteca do Simulink que possui diversos elementos da área de sistemas de potência modelados através equações numéricas e apresentados na forma de blocos, que são utilizados para modelar o sistema de interesse de forma descomplicada, com a possibilidade de ajustar parâmetros dos blocos e de criar novos blocos conforme o interesse e objetivo do usuário (Oliveira, 2016).

4.4 CENÁRIOS AVALIADOS

4.4.1 Cenário 1: Impacto da localização da fonte PV no sistema

O objetivo deste cenário é investigar o impacto da localização do sistema PV nas demais barras. A localização da unidade PV foi alterada repetidamente, onde foi conectada a diferentes barras no sistema de acordo com os casos listados a seguir. Em cada caso foi medido o THD_V e THD_I (na entrada da barra) de cada barra presente na microrrede.

- Caso 1.1: O sistema foi simulado sem a conexão de qualquer geração distribuída e sem a presença de quaisquer harmônicos iniciais;
- Caso 1.2: A fonte PV com 100kW foi conectada à barra 634 do sistema IEEE com 13 barras;
- Caso 1.3: A fonte PV com 100kW foi conectada à barra 633 do sistema IEEE com 13 barras;
- Caso 1.4: A fonte PV com 100kW foi conectada à barra 671 do sistema IEEE com 13 barras;
- Caso 1.5: A fonte PV com 100kW foi conectada à barra 675 do sistema IEEE com 13 barras;
- Caso 1.6: A fonte PV com 100kW foi conectada à barra 680 do sistema IEEE com 13 barras;
- Caso 1.7: A fonte PV com 100kW foi conectada à barra 692 do sistema IEEE com 13 barras;

4.4.2 Cenário 2: Impacto da capacidade da fonte PV

O objetivo deste cenário é investigar o impacto da capacidade da fonte PV nas demais barras. A capacidade da fonte PV foi alterada repetidamente, onde foi acrescido em 100kW partindo de 100kW até 1000kW de acordo com os casos listados abaixo. Em cada caso foi medido o THD_V e THD_I de cada barra.

- Caso 2.1: O sistema foi simulado sem a conexão de qualquer geração distribuída e sem a presença de quaisquer harmônicos iniciais;
- Caso 2.2: A fonte PV com 100kW foi conectada à barra 671 do sistema IEEE com 13 barras;
- Caso 2.3: A fonte PV com 200kW foi conectada à barra 671 do sistema IEEE com 13 barras;
- Caso 2.4: A fonte PV com 500kW foi conectada à barra 671 do sistema IEEE com 13 barras;
- Caso 2.5: A fonte PV com 750kW foi conectada à barra 671 do sistema IEEE com 13 barras;
- Caso 2.6: A fonte PV com 1000kW foi conectada à barra 671 do sistema IEEE com 13 barras;

A barra 671 foi escolhida neste cenário, considerando-se a sua localização central na microrrede, com o objetivo de afetar as demais barras à medida que a capacidade da fonte PV for aumentando.

4.4.3 Cenário 3: Impacto da quantidade de fontes PV no sistema

O objetivo deste cenário é investigar o impacto da quantidade de fontes PV no sistema. Uma série de unidades PV, variando de 1 a 3 unidades, foram integrados no sistema em diferentes locais, conforme explicado nos seguintes casos. Em cada caso foi medido o THD_V e THD_I de cada barra.

- Caso 3.1: O sistema foi simulado sem a conexão de qualquer geração distribuída e sem a presença de quaisquer harmônicos iniciais;
- Caso 3.2: Uma fonte PV com 100kW foi conectada à barra 633;
- Caso 3.3: Duas fontes PV com 100kW cada foram conectadas à barra 633;
- Caso 3.4: Uma fonte PV com 100kW foi conectada à barra 633 e outra fonte PV com 100kW foi conectada à barra 680;
- Caso 3.5: Uma fonte PV com 100kW foi conectada à barra 633 e outra fonte PV com 100kW foi conectada à barra 671;
- Caso 3.6: Três fontes PV com 100kW cada foram conectadas à barra 633;
- Caso 3.7: Uma fonte PV com 100kW foi conectada à barra 633, uma fonte PV com 100kW foi conectada à barra 680 e uma terceira fonte com as mesmas características das anteriores foi conectada à barra 675.

4.4.4 Cenário 4: Inserção de novos consumidores residenciais na microrrede

O objetivo deste cenário é avaliar e validar o Índice de Distorção Harmônica (i_{DH}) . Com isso, dois consumidores residenciais são inseridos no sistema IEEE com 13 barras entre as barras 692 e 675, alimentados por uma tensão de 380 V. Para possibilitar isso, é inserido no sistema um novo transformador abaixador de 13.8kV para 380V com ligação Y/Y.

Os consumidores, inicialmente, apenas possuem cargas lineares com 35kW de potência ativa e 6kVAr de potência reativa. Os casos avaliados neste cenário são os seguintes:

• Caso 4.1: Consumidor 1 e Consumidor 2 com cargas lineares em seu sistema.

- Caso 4.2: Consumidor 1 com fonte PV com 100kW em seu sistema, enquanto o consumidor permanece apenas com cargas lineares.
- Caso 4.3: Ambos os consumidores recebem uma fonte PV com 100kW.

4.4.5 Cenário 5: Alocação de bancos de capacitores na microrrede utilizando como base o Cenário 2

Nesta situação, o cenário 2 é refeito com o objetivo de mitigar a extrapolação de tensão ocorrida. Para isso, é inserido na fonte PV um banco de capacitores trifásico de 10kVAr com as seguintes características: tensão nominal fase-fase de 240V, frequência nominal de 60Hz e configuração Y aterrado. Baseado nisso, os casos avaliados foram os seguintes:

- Caso 5.1: O sistema foi simulado sem a conexão de qualquer geração distribuída e sem a presença de quaisquer harmônicos iniciais;
- Caso 5.2: A fonte PV com 100kW e com um banco de capacitores trifásico em paralelo foi conectada à barra 671 do sistema IEEE com 13 barras;
- Caso 5.3: A fonte PV com 200kW e com um banco de capacitores trifásico em paralelo foi conectada à barra 671 do sistema IEEE com 13 barras;
- Caso 5.4: A fonte PV com 500kW e com um banco de capacitores trifásico em paralelo foi conectada à barra 671 do sistema IEEE com 13 barras;
- Caso 5.5: A fonte PV com 750kW e com um banco de capacitores trifásico em paralelo foi conectada à barra 671 do sistema IEEE com 13 barras;
- Caso 5.6: A fonte PV com 1000kW e com um banco de capacitores trifásico em paralelo foi conectada à barra 671 do sistema IEEE com 13 barras;

4.4.6 Cenário 6: Alocação de bancos de capacitores na microrrede utilizando como base o Cenário 4

Nesta situação, o cenário 4 é refeito. No entanto, é inserido na fonte PV um banco de capacitores trifásico de 10kVAr com as seguintes características: tensão nominal fase-fase de 240V, frequência nominal de 60Hz e configuração Y aterrado. Baseado nisso, os casos avaliados foram os seguintes:

- Caso 6.1: Consumidor 1 e Consumidor 2 com cargas lineares em seu sistema;
- Caso 6.2: Consumidor 1 com fonte PV com 100kW em seu sistema com um banco de capacitores trifásico em paralelo, enquanto o consumidor permanece apenas com cargas lineares.

• Caso 6.3: Ambos os consumidores recebem uma fonte PV com 100kW e banco de capacitores trifásico em paralelo.

Os resultados obtidos em cada cenário estão apresentados na próxima seção, sendo que todos os valores contidos nas Tabelas da seção 5 estão aproximados para duas casas decimais.

5 RESULTADOS

Neste capítulo, são apresentados os resultados obtidos referentes às simulações e aos cenários descritos no capítulo anterior.

5.1 CENÁRIO 1: IMPACTO DA LOCALIZAÇÃO DA FONTE PV NO SISTEMA

Os resultados obtidos após a simulação do Cenário 01 estão apresentados nas Tabelas 5.1 e 5.2.

	$THD_V(\%)$									
Nº Barra	Sem PV	PV	PV com 100kW conectada à barra							
	Sem i v	634	633	671	675	680	692			
650	0,00	0,00	0,00	0,00	0,00	0,00	0,00			
632	0,00	0,01	0,12	0,34	0,21	0,31	0,26			
633	0,00	0,06	0,20	0,33	0,23	0,31	0,26			
634	0,00	0,07	0,18	0,33	0,24	0,31	0,26			
645	0,00	0,00	0,12	0,34	0,24	0,32	0,26			
646	0,00	0,00	0,12	0,34	0,24	0,32	0,26			
671	0,00	0,00	0,10	0,52	0,29	0,41	0,35			
692	0,00	0,00	0,04	0,50	0,34	0,39	0,44			
675	0,00	0,00	0,12	0,50	0,39	0,39	0,43			
684	0,00	0,00	0,10	0,51	0,29	0,41	0,35			
611	0,00	0,00	0,10	0,49	0,29	0,41	0,35			
652	0,00	0,00	0,10	0,49	0,29	0,41	0,35			
680	0,00	0,00	0,10	0,49	0,29	0,52	0,35			

Tabela 5.1 – THD_V para o Cenário 1.

Com a obtenção dos resultados expostos nas Tabelas, podem-se fazer as seguintes considerações:

- Caso 1.1: Os resultados mostram valores de distorção próximos a 0, tanto para a análise de tensão como para corrente.
- Caso 1.2: Os resultados indicam que a barra 634 possui maior distorção de tensão (0,07%) quando comparado com as demais barras, como esperado, pois a fonte PV se localiza nesta barra. No caso da distorção de corrente, nota-se que o maior valor (3,94%) também ocorre na barra 634.
- Caso 1.3: Os resultados indicam que a barra 633 possui maior distorção de tensão (0,20%) quando comparado com as demais barras, como esperado, pois a fonte PV se localiza nesta barra. No caso da distorção de corrente, nota-se que o maior valor de distorção não é o da barra 633, mas sim da barra 634, a qual é vizinha à barra

	$THD_I(\%)$									
Nº Barra	Sem PV	PV o	PV com 100kW conectada à barra							
	Sem r v	634	633	671	675	680	692			
650	0,00	0,01	0,03	0,20	1,43	2,31	1,71			
632	0,00	0,25	0,19	0,33	3,17	1,99	2,23			
633	0,00	0,50	0,54	0,28	0,49	0,32	0,32			
634	0,00	3,94	0,73	0,32	0,26	0,28	0,25			
645	0,00	0,26	0,53	0,33	0,25	0,29	0,26			
646	0,00	0,26	0,54	0,33	0,25	0,29	0,26			
671	0,00	0,25	0,41	0,52	0,34	2,60	0,34			
692	0,00	0,25	0,19	0,48	3,17	0,34	2,26			
675	0,00	0,25	0,19	0,48	3,18	0,34	0,42			
684	0,00	0,25	0,42	0,51	0,33	0,37	0,35			
611	0,00	0,26	0,42	0,51	0,32	0,38	0,35			
652	0,00	0,25	0,42	0,51	0,34	0,36	0,35			
680	0,00	0,25	0,42	0,51	0,34	2,61	0,34			

Tabela $5.2 - THD_I$ para o Cenário 1.

- 633. Este fato é justificado, pois a barra 634 está com nível de corrente maior, sendo mais susceptível a distorções em seu sistema em relação à barra 633, a qual está alimentada com 13,8kV.
- Caso 1.4: Os resultados indicam que a barra 671 possui maior distorção de tensão (0,52%) quando comparado com as demais barras, como esperado, pois a fonte PV se localiza nesta barra. No caso da distorção de corrente, nota-se que o maior valor (0,52%) também ocorre na barra 671.
- Caso 1.5: Os resultados indicam que a barra 675 possui maior distorção de tensão (0,39%) quando comparado com as demais barras, como esperado, pois a fonte PV se localiza nesta barra. No caso da distorção de corrente, nota-se que o maior valor (3,18%) também ocorre na barra 675.
- Caso 1.6: Os resultados indicam que a barra 680 possui maior distorção de tensão (0,52%) quando comparado com as demais barras, como esperado, pois a fonte PV se localiza nesta barra. No caso da distorção de corrente, nota-se que o maior valor (2,61%) também ocorre na barra 680.
- Caso 1.7: Os resultados indicam que a barra 692 possui maior distorção de tensão (0,44%) quando comparado com as demais barras, como esperado, pois a fonte PV se localiza nesta barra. No caso da distorção de corrente, nota-se que o maior valor (2,26%) também ocorre na barra 692.

Em resumo, no Cenário 1, pode-se concluir que a barra onde a fonte PV está conectada, em todos os casos avaliados, tem o maior THD_V e as barras vizinhas também

são afetadas, porém, com valores menores de distorção. Percebe-se também que os menores valores de THD_V nas barras ocorreram nas situações em que a fonte PV estava conectada nas barras 633 e 634, indicando que, para o sistema em estudo, as barras que não estão localizadas no alimentador principal da microrrede são os lugares mais adequados para a instalação da fonte PV.

No caso da análise das distorções de corrente, foi verificado que, com exceção do caso 1.3, todos os casos apresentaram maior distorção de corrente nas barras em que a fonte PV estava conectada. Os limites de distorção de tensão estabelecidos pelo IEEE (até 5.0%) não foram excedidos em nenhum dos casos estudados no Cenário 1.

5.2 CENÁRIO 2: IMPACTO DA CAPACIDADE DO SISTEMA PV

Os resultados obtidos após a simulação do Cenário 02 estão apresentados nas Tabelas 5.3 e 5.4.

	$THD_V(\%)$									
Nº Barra	Sem PV	Potência da fonte PV na barra 671:								
	Sem i v	$100 \mathrm{kW}$	200kW	$500 \mathrm{kW}$	$750 \mathrm{kW}$	1000kW				
650	0,00	0,00	0,00	0,00	0,00	0,00				
632	0,00	0,34	0,34	0,34	0,34	0,34				
633	0,00	0,33	0,33	0,33	0,33	0,33				
634	0,00	0,33	0,33	0,33	0,33	0,33				
645	0,00	0,34	0,34	0,34	0,34	0,34				
646	0,00	0,34	0,34	0,34	0,34	0,34				
671	0,00	0,52	1,15	1,53	1,63	2,28				
692	0,00	0,50	1,15	1,54	1,63	2,29				
675	0,00	0,50	1,14	1,45	1,61	1,88				
684	0,00	0,51	1,21	1,72	2,44	3,51				
611	0,00	0,49	1,15	1,43	1,61	1,89				
652	0,00	0,49	1,68	4,22	6,73	8,20				
680	0,00	0,49	0,91	1,28	1,65	2,61				

Tabela $5.3 - THD_V$ para o Cenário 2.

Por intermédio dos resultados obtidos no Cenário 2, pode-se fazer as seguintes considerações em cada caso:

- Caso 2.1: O mesmo para o caso 1.1 apresentado no Cenário 01.
- Caso 2.2: Os resultados mostram que a barra 671 teve distorção no valor de 0.52% e que todas as demais barras, com exceção da barra 650, foram afetadas com valores diferentes de THD_V . Com relação à distorção de corrente, verifica-se que todas as barras sofreram alterações nos valores da THD_I , com destaque para a barra 671, sendo a mais afetada com valor igual a 0.52%.

	$THD_I(\%)$								
Nº Barra	Sem PV	Potência da fonte PV na barra 671:							
	Sem i v	100kW	$200 \mathrm{kW}$	$500 \mathrm{kW}$	$750 \mathrm{kW}$	1000kW			
650	0,00	0,20	0,30	0,98	1,40	2,10			
632	0,00	0,33	0,45	1,33	1,90	2,71			
633	0,00	0,28	0,42	1,30	1,84	2,54			
634	0,00	0,32	0,45	1,34	1,92	2,75			
645	0,00	0,33	0,45	1,34	1,92	2,75			
646	0,00	0,33	0,46	1,35	1,95	2,83			
671	0,00	0,52	0,80	2,11	4,50	6,77			
692	0,00	0,48	0,68	1,70	2,71	4,20			
675	0,00	0,48	0,68	1,70	2,70	4,20			
684	0,00	0,51	0,71	1,95	3,16	5,61			
611	0,00	0,51	0,71	1,94	3,14	5,60			
652	0,00	0,51	0,72	1,98	3,25	5,69			
680	0,00	0,51	0,69	1,92	3,01	5,40			

Tabela $5.4 - THD_I$ para o Cenário 2.

- Caso 2.3: Os resultados mostram que a barra 671 teve distorção no valor de 1,15% e que todas as demais barras, com exceção da barra 650, foram afetadas com valores diferentes de THD_V. Neste caso, a barra 652 começa a se destacar adquirindo o maior valor de distorção de tensão (1,68%). Com relação à distorção de corrente, verifica-se que todas as barras sofreram alterações nos valores da THD_I, com destaque para a barra 671, sendo a mais afetada com valor igual a 0,80%.
- Caso 2.4: Os resultados mostram que a barra 671 teve distorção no valor de 1,53% e que todas as demais barras, com exceção da barra 650, foram afetadas com valores diferentes de THD_V. A barra 652 continua com o maior valor de distorção de tensão (4,22%). Com relação à distorção de corrente, verifica-se que todas as barras sofreram alterações nos valores da THD_I, com destaque para a barra 671, sendo a mais afetada com valor igual a 2,11%.
- Caso 2.5: Os resultados mostram que a barra 671 teve distorção no valor de 1,63% e que todas as demais barras, com exceção da barra 650, foram afetadas com valores diferentes de THD_V. A barra 652 continua com o maior valor de distorção de tensão (6,73%). Com relação à distorção de corrente, verifica-se que todas as barras sofreram alterações nos valores da THD_I, com destaque para a barra 671, sendo a mais afetada com valor igual a 4,50%.
- Caso 2.6: Os resultados mostram que a barra 671 teve distorção no valor de 2,28% e que todas as demais barras, com exceção da barra 650, foram afetadas com valores diferentes de THD_V . A barra 652 continua com o maior valor de distorção de tensão (8,20%). Com relação à distorção de corrente, verifica-se que todas as barras sofreram

alterações nos valores da THD_I , com destaque para a barra 671, sendo a mais afetada com valor igual a 6,77%.

Em resumo, no Cenário 2, pode-se concluir que as distorções aumentaram conforme o valor de potência da fonte PV foi aumentando. No caso da análise da THD_V , destaca-se o comportamento da barra 652 sendo a mais afetada a partir do caso 2.3. Nos casos 2.5 e 2.6 os limites de distorção de tensão estabelecidos pelo IEEE (até 5,0%) foram excedidos.

5.3 CENÁRIO 3: IMPACTO DA QUANTIDADE DE FONTES PV NO SISTEMA

Os resultados obtidos após a simulação do Cenário 3 estão apresentados nas Tabelas 5.5 e 5.6.

		$THD_V(\%)$						
Nº Barra		Cas	sos pa	ra o (Cenári	o 3		
	3.1	3.2	3.3	3.4	3.5	3.6	3.7	
650	0,00	0,00	0,00	0,00	0,00	0,00	0,00	
632	0,00	0,12	0,15	0,12	0,12	0,12	0,12	
633	0,00	0,20	0,50	0,20	0,20	1,02	0,20	
634	0,00	0,18	0,49	0,18	0,18	0,97	0,18	
645	0,00	0,12	0,15	0,12	0,12	0,12	0,12	
646	0,00	0,12	0,15	0,12	0,12	0,12	0,12	
671	0,00	0,10	0,12	0,41	0,50	0,11	0,74	
692	0,00	0,04	0,05	0,40	0,39	0,04	0,73	
675	0,00	0,12	0,14	0,39	0,39	0,12	0,75	
684	0,00	0,10	0,12	0,42	0,41	0,13	0,80	
611	0,00	0,10	0,12	0,41	0,40	0,13	0,79	
652	0,00	0,10	0,12	1,62	1,41	0,13	1,98	
680	0,00	0,10	0,12	1,59	0,40	0,13	1,78	

Tabela $5.5 - THD_V$ para o Cenário 3.

Por intermédio dos resultados obtidos no Cenário 3, pode-se fazer as seguintes considerações em cada caso:

- Caso 3.1: O mesmo para os casos 1.1 e 2.1 apresentados respectivamente nos Cenários 1 e 2.
- Caso 3.2: Os resultados mostram que a barra 633 teve distorção de tensão no valor de 0,20% e que todas as demais barras, com exceção da barra 650, foram afetadas com valores diferentes de THD_V. Com relação à distorção de corrente, verifica-se que todas as barras sofreram alterações nos valores da THD_I, com destaque para a barra 634, sendo a mais afetada com valor igual a 0,73%.

	$THD_I(\%)$									
Nº Barra		Cas	sos pa	ra o (Cenári	o 3				
	3.1	3.2	3.3	3.4	3.5	3.6	3.7			
650	0,00	0,03	0,04	0,03	0,03	0,03	0,04			
632	0,00	0,19	0,20	0,19	0,21	0,19	0,21			
633	0,00	0,54	1,04	0,55	0,54	1,62	0,55			
634	0,00	0,73	1,22	0,73	0,73	1,65	0,70			
645	0,00	0,53	0,55	0,53	0,53	0,55	0,54			
646	0,00	0,54	0,55	0,54	0,54	0,55	0,53			
671	0,00	0,41	0,80	0,98	1,12	0,42	1,05			
692	0,00	0,19	0,22	0,94	0,94	0,20	1,05			
675	0,00	0,19	0,23	0,93	0,93	0,21	1,07			
684	0,00	0,42	0,80	1,03	1,02	0,81	1,25			
611	0,00	0,42	0,81	1,02	1,03	0,82	1,20			
652	0,00	0,42	0,80	1,21	1,20	0,81	1,78			
680	0,00	0,42	0,81	1,20	0,41	0,81	1,62			

Tabela 5.6 – THD_I para o Cenário 3.

- Caso 3.3: Os resultados mostram que a barra 633 teve distorção no valor de 0,50% e que todas as demais barras, com exceção da barra 650, foram afetadas com valores diferentes de THD_V. Com relação à distorção de corrente, verifica-se que todas as barras sofreram alterações nos valores da THD_I, com destaque para a barra 634, sendo a mais afetada com valor igual a 1,22%.
- Caso 3.4: Os resultados mostram que a barra 633 teve distorção no valor de 0,20% e que todas as demais barras, com exceção da barra 650, foram afetadas com valores diferentes de THD_V, com destaque para a barra 652 que foi a mais afetada com 1,62% para a THD_V e 1,21% para a THD_I.
- Caso 3.5: Os resultados mostram que a barra 633 teve distorção no valor de 0,20% e que todas as demais barras, com exceção da barra 650, foram afetadas com valores diferentes de THD_V , com destaque para a barra 652 que foi a mais afetada com 1,41% para a THD_V e 1,20% para a THD_I .
- Caso 3.6: Os resultados mostram que a barra 633 teve distorção de tensão no valor de 1,02% e que todas as demais barras, com exceção da barra 650, foram afetadas com valores diferentes de THD_V. Com relação à distorção de corrente, verifica-se que todas as barras sofreram alterações nos valores da THD_I, com destaque para a barra 634, sendo a mais afetada com valor igual a 1,65%.
- Caso 3.7: Os resultados mostram que a barra 633 teve distorção no valor de 0,20% e que todas as demais barras, com exceção da barra 650, foram afetadas com valores diferentes de THD_V, com destaque para a barra 652 que foi a mais afetada com 1,98% para a THD_V e 1,78% para a THD_I.

Em resumo, no Cenário 3, pode-se concluir que com aumento do número de fontes PV no sistema, as barras foram mais afetadas em termos de distorção de tensão e corrente. A posição em que está localizada a fonte PV também influencia consideravelmente nos valores das distorções presentes nas barras. Os limites de distorção de tensão estabelecidos pelo IEEE (até 5,0%) não foram excedidos em nenhum dos casos estudados no Cenário 3.

5.4 CENÁRIO 4: INSERÇÃO DE NOVOS CONSUMIDORES RESIDENCIAIS NA MICRORREDE

• Caso 4.1: Nesta situação, ambos os Consumidores conectados ao sistema de distribuição tem conectadas cargas lineares. Os parâmetros obtidos são apresentados na Tabela 5.7. Os valores da THD_V e da THD_i são zero e do Índice de Distorção Harmônica (i_{DH}) é próximo de zero, indicando que os Consumidores pouco contribuem para a inserção de harmônicos na rede elétrica. Os gráficos de tensão e corrente para o Consumidor 1, neste caso, estão apresentados respectivamente nas Figuras 5.1 e 5.2. O Consumidor 2 possui comportamento semelhante ao Consumidor 1.

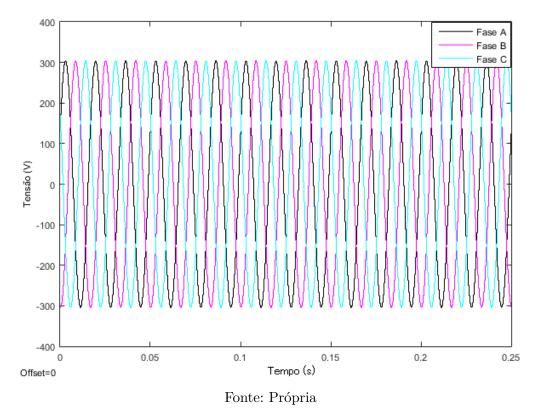


Figura 5.1 – Tensão do Consumidor 1 para o caso 4.1.

• Caso 4.2: Nesta situação, foi colocado no Consumidor 1 uma fonte fotovoltaica, enquanto o Consumidor 2 permaneceu com cargas lineares. Os parâmetros obtidos são apresentados na Tabela 5.7. Os valores da THD_V e da THD_i e do Índice

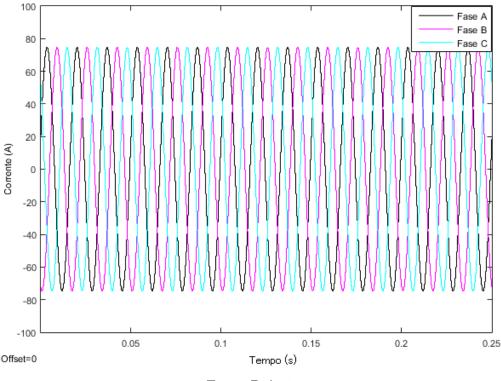


Figura 5.2 – Corrente do Consumidor 1 para o caso 4.1.

Fonte: Própria

de Distorção Harmônica (i_{DH}) para o Consumidor 1 foram acrescidos de forma significativa, indicando que este Consumidor contribui para a injeção de harmônicos na rede elétrica. No caso do Consumidor 2, o i_{DH} permaneceu relativamente baixo, indicando que este consumidor, assim como no caso 4.1, não tem responsabilidade acerca dos harmônicos presentes no sistema. Os gráficos de tensão e corrente para o Consumidor 1, neste caso, estão apresentados respectivamente nas Figuras 5.3 e 5.4.

• Caso 4.3: Nesta situação, foi mantida no Consumidor 1 uma fonte fotovoltaica, enquanto ao Consumidor 2 foi acrescido uma outra fonte fotovoltaica. Os parâmetros obtidos são apresentados na Tabela 5.7. Os valores da THD_V e da THD_i e do Índice de Distorção Harmônica (i_{DH}) para o Consumidor 1 permaneceram elevados, enquanto que para o Consumidor 2, os parâmetros que antes estavam baixos foram acrescidos de forma significativa também. Com isso, pode-se aferir que ambos os Consumidores são responsáveis pela poluição harmônica contida na rede elétrica. Os gráficos de tensão e corrente para o Consumidor 1, neste caso, estão apresentados respectivamente nas Figuras 5.5 e 5.6.

400 Fase A Fase B Fase C 300 200 100 Tensão (V) 0 -100 -200 -300 -400 0.05 0.1 0.15 0.2 0.25 Tempo (s) Offset=0

Figura 5.3 – Tensão do Consumidor 1 para o caso 4.2.

Fonte: Própria

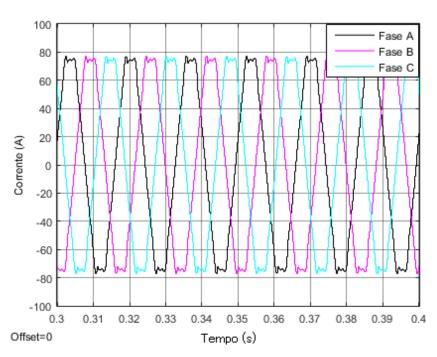


Figura 5.4 – Corrente do Consumidor 1 para o caso 4.2.

Fonte: Própria

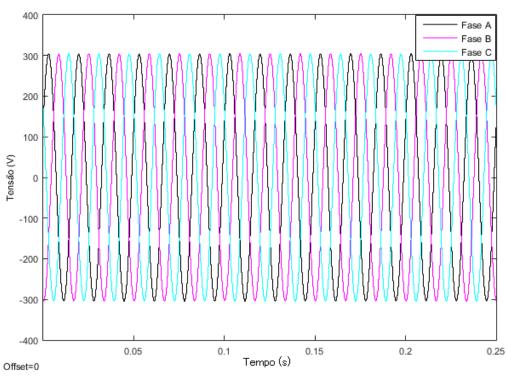


Figura 5.5 – Tensão do Consumidor 1 para o caso 4.3.

Fonte: Própria

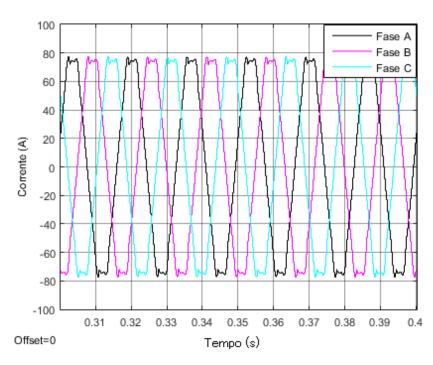


Figura 5.6 – Corrente do Consumidor 1 para o caso 4.3.

Fonte: Própria

	С	onsumidor	· 1	Consumidor 2			
			Ca	sos			
	4.1	4.2	4.3	4.1	4.2	4.3	
$\overline{THD_V}$	'	/	$2,00 \text{x} 10^{-1}$	l /	'	/	
THD_I	l '	/	$4,42x10^{-1}$	/	'	,	
i_{DH}	$1,00 \times 10^{-2}$	$2,30x10^{-1}$	$2,50 \text{x} 10^{-1}$	$1,00 \times 10^{-2}$	$2,00 \times 10^{-2}$	$2,60 \text{x} 10^{-1}$	
$\overline{D_I}$	0.00×10^{0}	$6,21x10^2$	$6,56x10^2$	0.00×10^{0}	$3,20 \times 10^{1}$	$6,68 \times 10^2$	
D_V	0.00×10^{0}	$3,10x10^2$	$3,24x10^2$	0.00×10^{0}	$2,10x10^2$	$3,35 \times 10^2$	
$\overline{D_H}$	0.00×10^{0}	$5,20x10^{1}$	$7,00x10^{1}$	0.00×10^{0}	$5,00 \times 10^{0}$	$7,10x10^{1}$	
DTP	0.00×10^{0}	$6,96x10^2$	$7,35x10^2$	0.00×10^{0}	$2,12x10^2$	$7,51x10^2$	

Tabela 5.7 – Valores obtidos dos parâmetros avaliados para o Cenário 4

5.5 CENÁRIO 5: ALOCAÇÃO DE BANCOS DE CAPACITORES NA MICRORREDE UTILIZANDO COMO BASE O CENÁRIO 2

Os resultados obtidos após a simulação do Cenário 5 estão apresentados nas Tabelas $5.8~{\rm e}~5.9.$

		$THD_V(\%)$									
Nº Barra	Sem PV	Potência da fonte PV na barra 671:									
	Sem i v	100kW	200kW	$500 \mathrm{kW}$	$750 \mathrm{kW}$	1000kW					
650	0,00	0,00	0,00	0,00	0,00	0,00					
632	0,00	0,28	0,28	0,28	0,28	0,28					
633	0,00	0,27	0,27	0,27	0,27	0,27					
634	0,00	0,27	0,27	0,27	0,27	0,27					
645	0,00	0,28	0,28	0,28	0,28	0,28					
646	0,00	0,28	0,28	0,28	0,28	0,28					
671	0,00	0,46	1,05	1,40	1,50	2,18					
692	0,00	0,45	1,05	1,40	1,50	2,19					
675	0,00	0,45	1,04	1,35	1,49	1,70					
684	0,00	0,46	1,10	1,59	2,28	3,29					
611	0,00	0,43	1,05	1,32	1,50	1,70					
652	0,00	0,43	1,55	3,98	6,45	7,80					
680	0,00	0,43	0,84	1,20	1,52	2,50					

Tabela $5.8 - THD_V$ para o Cenário 5.

Por intermédio dos resultados obtidos no Cenário 5, pode-se fazer as seguintes considerações:

Verifica-se, como esperado, que em todos os casos houveram diminuição da distorção de tensão e corrente com a inserção do banco de capacitores. Todavia, nos casos 5.5 e 5.6 os limites de distorção de tensão estabelecidos pelo IEEE (até 5,0%) permaneceram excedidos. Recomenda-se, portanto, fazer estudos mais aprofundados, visando a utilização de banco de capacitores com maiores potências.

	$THD_I(\%)$								
Nº Barra	Sem PV	Potência da fonte PV na barra 671:							
	Sem r v	$100 \mathrm{kW}$	200kW	$500 \mathrm{kW}$	$750 \mathrm{kW}$	1000kW			
650	0,00	0,15	0,24	0,90	1,30	2,00			
632	0,00	0,27	0,39	1,25	1,78	2,56			
633	0,00	0,22	0,36	1,22	1,72	2,40			
634	0,00	0,26	0,39	1,26	1,80	2,62			
645	0,00	0,27	0,39	1,26	1,80	2,62			
646	0,00	0,27	0,40	1,29	1,83	2,63			
671	0,00	0,46	0,74	2,03	4,20	6,45			
692	0,00	0,42	0,62	1,54	2,56	4,01			
675	0,00	0,42	0,62	1,54	2,55	4,01			
684	0,00	0,45	0,65	1,82	3,05	5,34			
611	0,00	0,45	0,65	1,81	3,03	5,33			
652	0,00	0,45	0,66	1,84	3,14	5,35			
680	0,00	0,45	0,63	1,81	2,90	5,17			

Tabela $5.9 - THD_I$ para o Cenário 5.

5.6 CENÁRIO 6: ALOCAÇÃO DE BANCOS DE CAPACITORES NA MICRORREDE UTILIZANDO COMO BASE O CENÁRIO 4

- Caso 6.1: Os mesmos resultados obtidos no caso 4.1;
- Caso 6.2: Nesta situação, foi colocado no Consumidor 1 uma fonte fotovoltaica com um banco de capacitores trifásico, enquanto o consumidor 2 permaneceu com cargas lineares. Os parâmetros obtidos são apresentados na Tabela 5.10. Os valores da THD_V e da THD_i e do Índice de Distorção Harmônica (i_{DH}) para o consumidor 1 foram menores quando comparados com o caso 4.2. No entanto, é possível verificar que o consumidor 1 contribui para a injeção de harmônicos na rede elétrica, levando-se em consideração que os parâmetros do consumidor 2 permaneceram baixos.
- Caso 6.3: Nesta situação, foi mantida no consumidor 1 uma fonte fotovoltaica com um banco de capacitores, enquanto ao consumidor 2 foi acrescido uma outra fonte fotovoltaica também com banco de capacitores. Os parâmetros obtidos são apresentados na Tabela 5.10. Os valores da THD_V e da THD_i e do Índice de Distorção Harmônica (i_{DH}) para o consumidor 1 e para o consumidor 2 foram menores quando comparados com o caso 4.3, conforme esperado. Mesmo assim, podese aferir que ambos os consumidores são responsáveis pela injeção de harmônicos na rede elétrica.

Tabela5.10 – Valores obtidos para o Cenário 6.

	С	onsumidor	1	Consumidor 2			
			Ca	sos			
	4.1	4.2	4.3	4.1	4.2	4.3	
$\overline{THD_V}$	/	/	$1,40x10^{-2}$	· /	'	,	
$\overline{THD_I}$	l '	/	$4,19x10^{-1}$	/	'	,	
i_{DH}	$1,00 \times 10^{-2}$	/	$2,30x10^{-1}$	· /	'	$2,40x10^{-1}$	
$\overline{D_I}$	0.00×10^{0}	$5,11x10^2$	$5,41x10^2$	0.00×10^{0}	$2,10x10^2$	$5,55x10^2$	
$\overline{D_V}$	0.00×10^{0}	$2,40x10^2$	$2,59x10^2$	$0,00 \times 10^{0}$	$1,40 \times 10^2$	$2,69x10^2$	
$\overline{D_H}$	0.00×10^{0}	$3,00x10^{1}$,	l ′	'	$5,40x10^{1}$	
DTP	0.00×10^{0}	$5,65 \times 10^2$	$6,02x10^2$	0.00×10^{0}	$2,52 \times 10^2$	$6,19x10^2$	

6 CONCLUSÕES

Com os resultados obtidos nesta dissertação, conclui-se que fatores como: a localização da fonte PV no sistema, o seu nível de potência e a quantidade de fontes influenciam na análise de distorção de tensão e corrente.

No Cenário 1, conclui-se que a barra onde a fonte PV está conectada, em todos os casos avaliados, tem o maior THD_V e as barras vizinhas também são afetadas, porém, com valores menores de distorção. No caso da análise das distorções de corrente, foi verificado que, com exceção do caso 1.3, todos os casos apresentaram maior distorção de corrente nas barras em que a fonte PV estava conectada.

No Cenário 2, conclui-se que as distorções aumentaram conforme o valor de potência da fonte PV foi aumentando. Verificou-se também que, a partir de 750 kW, a barra 652 ultrapassou os limites de distorção de tensão do Padrão IEEE 519TM-214. No Cenário 3, conclui-se que com aumento do número de fontes PV no sistema, as barras foram mais afetadas em termos de distorção de tensão e corrente.

Com relação ao quarto Cenário, verificou-se que, com a inserção da fonte fotovoltaica no sistema de distribuição pelo Consumidor 1 ou Consumidor 2, o Índice de Distorção Harmônica e as distorções de potência total aumentaram significativamente quando comparados a casos que não possuem fontes ou cargas não-lineares no sistema. Este índice também pode ser usado como referência ao atribuir a responsabilidade pela poluição harmônica na rede elétrica.

Nos Cenários 5 e 6 foram utilizados bancos de capacitores para diminuir as distorções de tensão e corrente. Este objetivo foi alcançado, porém o Cenário 5 continuou apresentando distorções de tensão acima do recomendado pelo IEEE. Outros filtros ou bancos de capacitores com maior potência podem ser usados para tentar mitigar esse problema, porém estudos mais aprofundados devem ser feitos para avaliar a viabilidade do aumento dos bancos de capacitores na microrrede.

7 TRABALHOS FUTUROS

Com base nos estudos realizados nesta dissertação e com os resultados obtidos, recomenda-se para trabalhos futuros os seguintes tópicos:

- Realizar estudos comparativos envolvendo o índice proposto por (Anu; Fernandez, 2020) com outros métodos de identificação e análise de distorção harmônica em uma microrrede, a fim de identificar as vantagens e desvantagens que cada método possui e suas respectivas confiabilidades;
- Pesquisar e estudar trabalhos relativos ao tema em questão que utilizem como simulador o openDSS;
- Comparar os limites de distorção de tensão do Padrão IEEE 519TM-214 com os limites definidos no módulo 8 do PRODIST e aplicá-los aos cenários desta dissertação;
- Para os Cenários 5 e 6, fazer estudos mais aprofundados visando a utilização de banco de capacitores com maiores potências, bem como outros tipos de filtros de harmônicos;
- Fazer estudos envolvendo sistemas fotovoltaicos considerando as perdas nas linhas da microrrede.

REFERÊNCIAS

- Aiello, M. et al. A self-synchronizing instrument for harmonic source detection in power systems. *IEEE Transactions on Instrumentation and Measurement*, v. 54, n. 1, p. 15–23, 2005.
- Ajeigbe, O. A.; Munda, J. L.; Hamam, Y. Characterisation of harmonic distortions produced by small domestic back-up generators. In: 2018 IEEE PES/IAS PowerAfrica. [S.l.: s.n.], 2018. p. 432–437.
- Anu, G.; Fernandez, F. M. Identification of harmonic injection and distortion power at customer location. In: 2020 19th International Conference on Harmonics and Quality of Power (ICHQP). [S.l.: s.n.], 2020. v. 1, n. 1, p. 1–5.
- Chang-Song Li et al. Research of harmonic distortion power for harmonic source detection. In: 2016 17th International Conference on Harmonics and Quality of Power (ICHQP). [S.l.: s.n.], 2016. p. 126–129.
- Chidurala, A.; Saha, T. K.; Mithulananthan, N. Harmonic impact of high penetration photovoltaic system on unbalanced distribution networks learning from an urban photovoltaic network. In: 2016 IET Renewable Power Generation (Brisbane, Australia). [S.l.: s.n.], 2016. p. 1–10.
- Cristaldi, L.; Ferrero, A.; Salicone, S. A distributed system for electric power quality measurement. *IEEE Transactions on Instrumentation and Measurement*, v. 51, n. 4, p. 776–781, 2002.
- Emanuel, A.; Langella, R.; Testa, A. Power definitions for circuits with nonlinear and unbalanced loads the ieee standard 1459-2010. In: [S.l.: s.n.], 2012. p. 1–6. ISBN 978-1-4673-2727-5.
- Emanuel, A. E. Non-sinusoidal reactive power and its impact on smart meter infrastructure in the era of smart grid. In: 2012 IEEE Power and Energy Society General Meeting. [S.l.: s.n.], 2012. p. 1–4.
- Filho, J. G. G. Analise de curto-circuito em sistemas desequilibrados de distribuicao com geracao distribuida. In: 2016 Universidade Federal do Rio Grande do Sul. [S.l.: s.n.], 2016. p. 1–110.
- Kai, Z. et al. The impact of distributed generation and its parallel operation on distribution power grid. In: 2015 5th international conference on Electric Utility Deregulation and Restructuring and Power Technologies (Changsha, China). [S.l.: s.n.], 2015. p. 1–5.
- Li, H. et al. Real and reactive power control of a three-phase single-stage pv system and pv voltage stability. In: *IEEE*. [S.l.: s.n.], 2012. v. 1, n. 1, p. 1–8.
- Lu, J. Harmonic balance methods used in power electronics and distributed energy system. In: 2018 School of Engineering, Griffith University, (Australia). [S.l.: s.n.], 2018. p. 1–6.
- Nömm, J.; Rönnberg, S.; Bollen, M. Harmonic voltage measurements in a single house microgrid. In: 2018 18th International Conference on Harmonics and Quality of Power (ICHQP). [S.l.: s.n.], 2018. v. 1, n. 1, p. 1–5.

- Oliveira, T. T. Análise de distorção harmônica e fator de potência associados à inserção de geração fotovoltaica em rede de distribuição. In: 2016 Trabalho de Conclusão de Curso TCC. [S.l.: s.n.], 2016. p. 1–83.
- Pazouki, S.; Asrari, A. Technical, financial, and environmental effects of distributed energy resources on multi carrier energy networks. In: 2020 Southern Illinois University Carbondale (SIUC), (Carbondale, Illinois, United States). [S.l.: s.n.], 2020. p. 1–5.
- Rad, M. et al. Analysis of the grid harmonics and their impacts on distribution transformers. In: 2012 IEEE. [S.l.: s.n.], 2012. v. 1, n. 1, p. 1–5.
- Sa'ed, J. A. et al. Impact of integrating photovoltaic based dg on distribution network harmonics. In: 2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I CPS Europe). [S.l.: s.n.], 2017. p. 1–5.
- Santoso, S. et al. *Electrical Power Systems Quality*. Third edition. New York: McGraw-Hill Education, 2012.
- Shukla, A.; Das, A.; Anand, S. Method to reduce harmonic voltage distortion and improve harmonic current sharing in an islanded ac microgrid. In: 2019 Indian Institute of Technology Kanpur, (Kanpur, India). [S.l.: s.n.], 2019. p. 1–6.
- Silva, A. K. F.; Vieira, R. G.; Guerra, M. I. S. Estudo da correção do fator de potência de um sistema fotovoltaico conectado à rede. In: 2018 https://repositorio.ufersa.edu.br/bitstream/prefix/3640/2/Aline%20KFS-MONO.pdf. [S.l.: s.n.], 2018. v. 1, n. 1, p. 1–8.
- Singh, B.; Chandra, A.; Al-Haddad, K. Power Quality Problems And Mitigation Techniques. First edition. Reino Unido: John Wiley and Sons Ltd, 2015.
- Wilsun Xu; Chun Li; Tayjasanant, T. A "critical impedance" based method for identifying harmonic sources. In: *IEEE Power Engineering Society General Meeting*, 2004. [S.l.: s.n.], 2004. p. 917 Vol.1—.
- Zehir, M. A. et al. Identification and comparison of power and energy management capabilities of distributed energy resources. In: 2018 6th International Istanbul Smart Grids and Cities Congress and Fair (ICSG), (Istanbul, Turkey). [S.l.: s.n.], 2018. p. 1–5.