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Resumo

Flocking, também conhecido como movimento coordenado, é um comportamento coletivo
que consiste em um grande grupo de indivíduos movendo-se juntos numa direção-alvo. Os
controladores de movimento coordenado para Veículos Aéreos Não-Tripulados (VANTs)
contam com o Sistema Global de Navegação por Satélite (SGNS) e a comunicação intra-
robô para obter as informações relativas absolutas dos robôs próximos. Esta abordagem
é aplicável apenas em ambientes externos conhecidos e acessíveis. Nesta dissertação,
exploramos a possibilidade de atingir movimento coordenado utilizando uma equipe
de VANTs em locais de difícil acesso, particularmente em ambientes com restrições de
sensoriamento remoto. Assim, propomos um método baseado em controle proximal para
movimento coordenado auto-organizado de VANTs que emprega um sistema de localização
relativa baseado em visão proposto por Walter, Saska and Franchi (2018) conhecido
como sistema Ultra-Violet Direction And Ranging (UVDAR). Os robôs usam uma função
potencial de Lennard-Jones para manter a coesão do grupo, evitando a colisão entre os
companheiros. Após inúmeras simulações de ajuste e verificação de segurança, avaliamos
nosso método proposto em um ambiente de mundo real com um grupo de VANTs de médio
porte usando duas abordagens distintas de detecção relativa intra-enxame. Em ambos
os casos, nosso método atingiu com eficiência o movimento coordenado sem controle de
alinhamento e direção e se moveu em uma direção arbitrária. Desta forma, obtivemos
movimento coordenado auto-organizado com informações sensoriais limitadas para robôs
aéreos com alta dinâmica em ambientes sem restrições nas condições de fronteira. Como
contribuições, temos uma extensão do trabalho do Ferrante et al. (2012) e um método
de controle de movimento coordenado descentralizado com sensoriamento local capaz de
funcionar em ambientes com restrição de SGNS.

Palavras-chave: Robótica de enxame. Movimento coordenado. Micro veículos aéreos.
Veículos aéreos não-tripulados. Auto-organização.



Abstract

Flocking, also known as coordinated motion, is a collective behavior that consists of a
large group of individuals moving together towards the same target direction. Unmanned
Aerial Vehicle (UAV) flocking controllers have relied on Global Navigation Satellite System
(GNSS) and intra-robot communication to obtain the absolute relative information of
the nearby robots. This approach is only applicable in known and accessible outdoor
environments. In this thesis, we explore the possibility of achieving flocking using a team
of UAVs in hard-to-access locations, particularly with remote sensing restrictions. Thus,
we propose a proximal control-based method for UAV self-organized flocking that relies
on a vision-based relative localization approach proposed by Walter, Saska and Franchi
(2018) called the Ultra-Violet Direction And Ranging (UVDAR) system. Robots use
a Lennard-Jones potential function to maintain the cohesiveness of the flocking while
avoiding collision within the teammates. After numerous simulations for safe verification
and tuning, we evaluate our proposed method in a real-world environment with a group
of middle-size UAVs using two distinct intra-swarm relative sensing approaches. In both
cases, our method efficiently achieves flocking without alignment and direction control
and moves into an arbitrary direction. In this way, we accomplished self-organized flocking
with limited sensory information for aerial robots with high dynamics in environments
with no constraints on the boundary conditions. As contributions, we have an extension of
the work of Ferrante et al. (2012) and a decentralized flocking control method with local
sensing capable of work in environments with GNSS restriction.

Keywords: Swarm robotics. Flocking. Micro aerial vehicles. Unmanned aerial vehicles.
Self-organization.



List of Figures

Figure 1 – A schematic representation of a quad-rotor with A as the reference
point, I as the inertial reference frame and J is the robot’s reference frame 22

Figure 2 – Swarms of multirotor UAV testing novel flocking algorithms . . . . . . 29
Figure 3 – The image depicts the world frame W = {ê1, ê2, ê3} in which the 3-D
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1 Introduction

Coordinated motion, also known as flocking, is a collective behavior that consists of
a large group of individuals moving together towards the same target direction. It can be
observed in different species in nature, and replicate this behavior using robots has been
an active research topic inspired by how easily simple individuals with limited resources
can achieve complex organizations.

The combination of this basic behavior with others can tackle a variety of complex
real-world applications. For a group of autonomous robots, coordinated motion can be an
effective way to navigate in an environment with limited or no collisions between robots
(BRAMBILLA et al., 2013). When designed as a swarm robotics system, the flocking, as a
global behavior, emerges from local interactions between the robots and the environment
in a distributed manner. The robots rely only on onboard sensors and make their decisions
locally, without centralized control, using a set of simple rules.

1.1 Motivation

Developing flocking control for Unmanned Ground Vehicles (UGVs) has achieved
the highest stage of maturity. The works of Turgut et al. (2008) and Ferrante et al.
(2012) presented effective methods for accomplishing ordered and cohesive flocking using
a combination of decentralized control and local sensing. However, design controls with
similar attributes for Unmanned Aerial Vehicles (UAVs) are still an open challenge.

A fundamental component in robot behavior necessary to implement flocking is the
ability to measure the distance and relative orientation of neighboring robots (BAYINDIR,
2016). Due to simplicity, previous works using UAVs have relied on remote position sensing,
such as Global Navigation Satellite Systems (GNSSs), and intra-robot communication to
obtain the absolute relative information of the nearby robots in outdoor environments.

These solutions provide precise mutual position information with the drawback of
requiring preinstalled infrastructures, limiting the usage to known, uncluttered, and easily
accessible environments. Additionally, they are costly and tend to rely on intensive radio
communication, which is subject to limited range and interferences (WALTER; SASKA;
FRANCHI, 2018). Several tasks, especially when it involves exploration, cannot rely on
these solutions (COPPOLA et al., 2020).

In this work, we explore the possibility of achieving flocking using a team of UAVs
in hard-to-access locations, particularly in environments with remote sensing restrictions.
The capability to deal with this kind of environment increases the application range of the
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flocking as a navigation behavior.

1.2 Objectives

1.2.1 Main Objective

The main objective of this work is to develop a decentralized flocking control system
that enables cohesive and ordered navigation with multiple UAVs and does not rely on
remote sensing.

1.2.2 Secondary Objectives

The secondary objectives to reach the main one are:

• Develop a decentralized control system that enables coordinated motion with multi-
ples flying robots. For that, we extend the work of Ferrante et al. (2012) by adapting
their method for UAVs;

• Employ a relative localization system that does not depend on remote sensing. We
aim to use a vision-based relative localization approach proposed by Walter, Saska
and Franchi (2018) called the Ultra-Violet Direction And Ranging (UVDAR) system
to accomplish local relative sensing.

1.3 Dissertation Structure

The rest of this dissertation is arranged as follows. In Chapter 2, we give a brief
introduction of the related subjects to assist the understanding of our method. We present
an overview of multirotor UAVs, which is the type of robot used. Additionally, we outline
the topic of swarm robotics, a field of research that aims to develop robotics systems that
exhibit natural behaviors. We also describe flocking behavior as a whole. In Chapter 3, we
review the related researches. We start with flocking methods designed for UGVs since
early contributions were achieved using this kind of robot. Then, we explain the flocking
methods developed for UAVs. In Chapter 4, we detail the proposed decentralized flocking
control and how we assembled it with the UAV overall system. In Chapter 5, we describe
the implementation, the metrics, the simulation and the real robot experimental setup,
and the results. Then, we also discuss the whole work. Finally, we conclude our work in
Chapter 6.
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2 Theoretical Concepts and Founda-

tions

In this chapter, we present the theoretical concepts and foundations. In Section 2.1,
we introduce the concepts of UAVs. In Section 2.2, we explain the topic of swarm robotics
and its relation with flocking. In Section 2.3, we describe flocking as a collective behavior
and how it is accomplished with robots as individuals.

2.1 Multirotor Unmanned Aerial Vehicles

Aerial robotics is a fast-growing field of robotics. Multirotor aircraft, such as
the quad-rotor, is rapidly growing in popularity. Quad-rotor aerial robotic vehicles have
become a standard platform for robotics research worldwide. They already have sufficient
payload and flight endurance to support several indoor and outdoor applications. The
improvements of batteries and other technology are rapidly increasing the scope for
commercial opportunities. They are highly maneuverable and enable safe and low-cost
experimentation in mapping, navigation, and control strategies for robots that move in
Three-Dimensional (3-D) space. This ability to move in a 3-D space brings new research
challenges compared with the wheeled mobile robots, which have driven mobile robotics
research over the last decade. Small quad-rotors have been demonstrated for exploring
and mapping 3-D environments, transporting, manipulating, and assembling objects, and
acrobatic tricks such as juggling, balancing and flips. Additional rotors can be added
to improve payload and reliability, leading to generalized N-rotor vehicles (MAHONY;
KUMAR; CORKE, 2012).

Unmanned multirotor aircraft systems have been studied extensively in recent years
(LEE; KIM, 2017; SHRAIM; AWADA; YOUNESS, 2018). One of the main reasons for
this is their high mobility and their capacity to perform tasks with complete autonomy.
Furthermore, due to several limitations characterizing these vehicles, such as their under-
actuation, low computational power, high working frequency, low autonomy, and so on, they
make ideal test-beds for innovative theoretical approaches to the problem of controlling
mechanical systems (L’AFFLITTO; ANDERSON; MOHAMMADI, 2018).

2.2 Swarm Robotics

Swarm robotics is the study of how a large number of relatively simple physically
embodied agents can be designed such that a desired collective behavior emerges from the
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Figure 1 – A schematic representation of a quad-rotor with A as the reference point, I as
the inertial reference frame and J is the robot’s reference frame

Source: Elaborated by the Author

local interactions among the agents and between the agents and the environment (ŞAHIN,
2005). It takes inspiration from the collective behavior observed in nature in many living
species, where local interaction between individuals and with the environment leads a
group of autonomous agents to solve complex tasks in a distributed manner, without a
central control unit (BAYINDIR, 2016).

Analogous to groups of social animals, a swarm of robots should feature three
functional attributes:

• Robustness: the swarm robotic system should continue to operate, although at lower
performance, despite failures in the individuals, or disturbances in the environment
(ŞAHIN, 2005);

• Scalability: the swarm should operate under a wide range of group sizes (ŞAHIN,
2005), and the introduction or removal of individuals does not result in a drastic
change in performance (BRAMBILLA et al., 2013);

• Flexibility: the swarm should cope with a broad spectrum of different environments
and tasks (BRAMBILLA et al., 2013).

Together with other collective behaviors in swarm robotics, flocking have as typical
applications: UAV controlling, post-disaster relief, geological survey, and military appli-
cations (TAN; ZHENG, 2013). Concerning Micro Aerial Vehicles (MAVs), these global
behaviors include, but are not limited to: collaborative transport and object manipulation,
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collaborative construction, distributed sensing, and parallelized exploration and mapping
of environments (COPPOLA et al., 2020).

2.3 Flocking

Coordinated motion, also known as flocking, can be defined as the cohesive and
ordered movement of a group of individuals in a common direction (REYNOLDS, 1987).
It is one of the collective behaviors studied in the field of swarm robotics and focuses on
how to organize and coordinate the movement of a swarm of robots (BRAMBILLA et al.,
2013).

Flocking can be observed in nature in many bird species, fish schooling, and the
formation of herds in ungulates (BAYINDIR, 2016). More precise navigation, reduced
energy consumption, and increase survival rate are some of the advantages for animals
obtained through flocking (BRAMBILLA et al., 2013).

There are still no formal or precise ways to design the local interactions that produce
any collective behavior. However, flocking generally draws inspiration from artificial physics
(BRAMBILLA et al., 2013). Artificial physics is a field of research that models the behavior
of individual agents using virtual forces. These forces determine the movement of agents,
and consequently, the interactions between agents and the surrounding environment
(BAYINDIR, 2016). Although the forces are virtual, agents act as if they were real. Thus
the agent’s sensors must see enough to allow it to compute the force to which it is reacting.
The agent’s effectors must allow it to respond to this perceived force (SPEARS et al.,
2004). Each robot perceives neighboring robots and obstacles and estimates their distance
and relative position. Then, the robot computes a virtual force vector V as described in
Equation 2.1 (BRAMBILLA et al., 2013).

V =
k∑
i=1

vi(di)e
jφi (2.1)

Where: vi(di)ejφi is a vector expressed in the complex plane, φi and di are, respectively,
the relative bearing and range of the ith perceived robot or obstacle, k is the number of
robots and obstacles perceived, and vi(di) is the negative derivative of a virtual potential
function.

A virtual potential function, also known as artificial potential function, is often
used in swarm robotics and statistical physics to model social interaction between robots
or between particles (FERRANTE et al., 2012). The most commonly used virtual potential
is the Lennard-Jones potential (BRAMBILLA et al., 2013). The Lennard-Jones potential
function models two distinct forces between neutral molecules and atoms, and either
neutral molecules or atoms. The forces are based on the distances between the molecules:
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the attractive force makes the molecules move closer at long ranges, and the repulsive
force makes the molecules move apart at short ranges, causing the molecules to maintain
a natural balance (SPEARS et al., 2004). A generalized version of the Lennard-Jones
potential function Pi(di) is computed as (FERRANTE et al., 2012):

Pi(di) = 4ε

[(
σ

di

)2α

−
(
σ

di

)α]
(2.2)

Where: ε is the strength of the potential function, α is the steepness of the potential
function, and σ is the amount of noise.

The Lennard-Jones function behavior as follows: when di = 2
1
ασ, the interaction

energy between two robots is at zero. When di > 2
1
ασ, the interaction energy decreases to

−1 and then increases and eventually reaches zero at longer range, causing non-interaction.
When di < 2

1
ασ, the interaction energy is very high, reaching infinite (SPEARS et al.,

2004). We calculate the negative derivative of the generalized version of the Lennard-Jones
potential function pi(di) as (FERRANTE et al., 2012):

pi(di) = −∂P (di)

∂di
= −4αε

di

[
2

(
σ

di

)2α

−
(
σ

di

)α]
(2.3)

Since the force interaction between two robots is zero when di = 2
1
ασ, to impose

the robots to maintain a desire inter-robot distance using the Lennard-Jones force function,
we calculate the amount of noise σ as:

σ =
ddes

2
1
α

(2.4)

Where: ddes is the desired inter-robot distance.

When using the negative derivate of the Lennard-Jones potential function, each
robot interacts with its surrounding in three distinct manners. It moves to the opposite
direction of the force when di < 2

1
ασ. Alternatively, it goes in the direction of the force

when di > 2
1
ασ. When di = 2

1
ασ, the force does not affect the robot.
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3 Related Researches

Reynolds (1987) published one of the early works about flocking in the domain of
computer graphics. In his paper, three basic rules are carried out by each individual in the
swarm to accomplish the flocking: separation rule, cohesion rule, and alignment rule. The
separation rule forces the individual to maintain a distance from its neighbors to avoid
collisions. The cohesion rule allows the individual to stay close to its neighbors to keep
the group together. The alignment rule aligns the individual’s heading with the average
heading of its neighbors.

The most common use of the Reynolds’ rules in flocking is in the form of virtual
forces (TAN; ZHENG, 2013). As one of the first works, Khatib (1986) used the concept
of an artificial potential field. In his work, a PUMA 560 robot manipulator moves in a
field of forces. The position to be reached performs an attraction force while the obstacles
perform a repulsion force.

Spears et al. (2004) introduced a virtual physics-based method called physicomimet-
ics, a framework for distributed control of a large number of mobile robots based on
artificial physics. In one of the experiments with real robots, a group of seven robots moves
toward a light source while keeping a self-organized hexagon formation. Each robot uses
an infrared sensor to estimate the relative bearing and distance of each neighboring robot.
Then, the robot computes the attraction or repulsion force using the Newtonian force law.
As the final step, the robot responded by turning or moving to some position.

Turgut et al. (2008) developed a self-organized flocking for a swarm of robots using
proximal and heading control. The robot uses an infrared sensor to measure the relative
distance and bearing of the nearby robots and distinguish robots from obstacles. Later, the
proximal control, which encodes the separation and cohesion rules, uses this information
to maintain a desired distance from the nearby robots and avoid obstacles. The robot
also utilizes a sensor called Virtual Heading Sensor. The Virtual Heading Sensor uses a
digital compass to estimate the robot heading in a clockwise direction concerning the
sensed North and broadcast it to the neighboring robots inside the communication range.
The heading control, which encodes the alignment rule, aligns the robot heading with the
average of its neighbors. The combination of the proximal and heading control generates
the desired heading vector. Then, the motion control translates the desired heading vector
into a forward and angular velocity.

The work of Turgut et al. (2008) not only was the first implementation of all
Reynolds’ rules (REYNOLDS, 1987) for real robots but also was the first work capable
of accomplishing the flocking using only onboard sensing. The experiments used a small
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group of seven physical mobile ground robots and, in the simulations, a swarm of 1000
robots.

Hettiarachchi and Spears (2009) extended the framework physicomimetics proposed
by Spears et al. (2004) introducing the Lennard-Jones force law. In the results, the
application of the Lennard-Jones force law as a potential function demonstrated superior
performance compared with the Newtonian force law. Later, the Lennard-Jones potential
function became the most commonly used function.

Çelikkanat and Şahin (2010) continued the work of Turgut et al. (2008) introducing
the possibility of control the flocking direction using informed robots. Informed robots are
a small fixed number of individuals in the swarm with knowledge of a goal direction. All
robots still move forward and maintain a desired distance from the others. In addition,
the informed robots have the desired direction to move.

Ferrante et al. (2012) proposed a self-organized flocking behavior using only the
proximal control, without the alignment control, and without informed robots. The
implementation of the proximal control is similar to the described by Turgut et al. (2008),
and the contribution lies in the motion control method called Magnitude-dependent Motion
Control (MDMC). In previous works, the robot moves forward with a fixed velocity and
rotates based on the direction of the virtual force. However, the motion control presented
by Ferrante et al. (2012) makes the robot move forward but also allows it to go backward
depending on the direction of the virtual force. The MDMC, together with the proximal
control, achieved flocking without alignment, without goal direction, and without external
computation.

All those works were applied for UGVs in indoor environments (SPEARS et al.,
2004; TURGUT et al., 2008; ÇELIKKANAT; ŞAHIN, 2010; FERRANTE et al., 2012).
The use of mobile ground robots in an indoor environment for testing flocking algorithms
is mainly due to the simpleness of the environment setup. Still, the adaptation of the
proposed methods from ground robots to flying robots is usually mentioned as future work
by many authors.

Among the works involving UAV flocking algorithms, Virágh et al. (2014) presented
a decentralized control flocking algorithm developed using a realistic simulation framework.
A self-propelled flocking control generates the desired velocity vector using a short-range
repulsion term to avoid collisions and a velocity alignment term to align the heading
direction of nearby units. The author describes the alignment term as a viscous friction-like
force that prevents instabilities, such as sensor inaccuracy or delay. The outdoor experiment
was performed using nine quad-copters with an onboard computer, GPS device, and XBee
module communication. Each robot extracts the required relative coordinates from the
global position and velocity broadcasted using a local wireless communication without
establishing one-to-one connections or a mesh network.
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Kownacki and Ołdziej (2016) demonstrated a decentralized control algorithm for
self-organized flocking using fixed-wing UAVs. Without the alignment rule, the cohesion
and separation rules proposed by Reynolds (REYNOLDS, 1987) were combined with a
leadership feature. The leadership plays a guidance role in the flocking. The leader can
be a single member or a small group of individuals with information of direction, similar
to the informed robots concepts, but does not follow the repulsion and cohesion rules
and is fully controllable by the Ground Control Station (GCS). As individuals, the work
uses two Multiplex twin-engine TwinStar with an 868 MHz radio modem XBee Pro to
enable navigation data exchange between the individuals through a local wireless network,
a 2.4 GHz radio modem to establish the communication between leaders and the GCS,
and a GPS. Outdoor experiments were performed to evaluate the proposed method.

The work of Benedetti et al. (2017) developed a decentralized control for self-
organized UAV flocking and area coverage mission planning. The overall mission consisted
of acquiring relevant data from a specific location using the onboard sensors of the
UAVs and then transmitting it to a GCS. The flocking behavior follows the Reynolds’
rules (REYNOLDS, 1987): separation, cohesion, and alignment rules. The flock is highly
configurable by tuning a set of parameters, which made their method suitable for distinct
types of monitoring missions. Each UAV exchanges relative information among them using
a gossiping and update mechanism. The gossiping mechanism consists of broadcast the
local agent database, which stores the relative position of the own UAV and its nearby
neighbors, to the robots through a low-power communication range. The update mechanism
is responsible for updating the local database with the information received. To ensure
the area coverage, each UAV also has an Area Parts Database (APD), which saves the
covered area parts, and periodically sends this information to a leader robot that merges
all APDs and plans the path to follow. The proposed method has been evaluated only in
simulations using quad-rotors with 450 mm of inter-distance between the motors, 8 x 4.5
propellers, and a weight of 1 kg.

Vásárhelyi et al. (2018) proposed a decentralized UAV flocking control for confined
environments. The proposed method generates a desired velocity using repulsion and
velocity alignment rules. However, to maintain the individuals together, a repulsive force
retains the individuals inside a bounded flight arena. In addition, a similar repulsive
force describes the obstacles as a collision avoidance mechanism. The authors applied
an evolutionary optimization to identify the parameters that maximize the flock’s speed
and coherence while minimizing the collisions. Thirty identical quad-copters equipped
with a Pixwawk autopilot, an onboard minicomputer Odroid C1+, an XBee module, and
GNSS receivers were applied in real-world experiments in an outdoor environment. The
robots used two complementary, independent, and parallel wireless modules to inter-robot
communication. The XBee module broadcasts packets with a small bandwidth but with a
larger range. A Wi-Fi module embedded in the onboard PC transmits packets through a
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local ad hoc wireless network with a large bandwidth but shorter range. The shared data
contain the geodetic position and velocity measured by the onboard GNSS receivers, and
the relative information comes from the differences of GNSS-based absolute measurements.

Silic and Mohseni (2019) introduced an atmospheric platform system for plume
monitoring using fixed-wing UAVs. Since the arrangement of the sensors in the environment
is crucial to obtain rich information, the main objective was to organize the UAVs equipped
with onboard sensors in a cohesive formation inside the plume boundary. To explore an
unknown environment, the UAVs randomly moves to a fixed position and gathering data
for a while. The GCS receives from the UAVs the environmental data through wireless
communication and then processes it to estimate the plume location. Also, the GCS
organizes the formation by receiving their GPS coordinates and sending new positions to
investigate. Once the position of the plume is well-known, they keep loitering in circles
inside the plume boundary. The system was evaluated with three delta wing UAVs with
a GPS receiver, a radio transceiver, a barometer, an atmospheric sensor, and a 9-axis
inertial measurement unit. The UAV communicates only with the GCS using XBee radios.

In Table 1, we compare the mentioned UAV flocking algorithms and our proposed
work. Flocking is often accomplished with decentralized planning using GNSS information.
The work of Virágh et al. (2014), Kownacki and Ołdziej (2016) and Vásárhelyi et al. (2018)
were tested through realistic simulations and real-world experiments while the work of
Benedetti et al. (2017) was tested only using realistic simulations. With experiments using
thirty physical UAVs, the work of Vásárhelyi et al. (2018) can be considered one of the
most impressive achievements so far. However, achieving coordinated swarm behaviors
without external sensing and computation is a challenging task, as has been very well
explained in the recent survey of Coppola et al. (2020).

Table 1 – Comparison between the mentioned UAV flocking algorithms and our work

Work Decentralized
planning

Real-world
experiment Local sensing

Virágh et al. (2014) 3 3

Kownacki and Ołdziej (2016) 3 3

Benedetti et al. (2017) 3

Vásárhelyi et al. (2018) 3 3

Silic and Mohseni (2019) 3

Our work 3 3 3

Source: Elaborated by the Author

UAV swarm control is a relatively new field of research, and its applications are
yet to be explored (SASKA, 2020). One of the many possibilities is the use of UAVs for
inspecting hard-to-access locations, especially in GNSS-denied environments. This type of
application requires the swarm coordination to be flexible and to move adaptively (see
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Figure 2 – Swarms of multirotor UAV testing novel flocking algorithms

(a) Localized by a GNSS system

UAVs

(b) Localized by onboard sensors only within a forest environment

Source: Baca et al. (2020)

Figure 2). This type of situation often requires a deeper study of the flocking capabilities
of the UAV group.
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4 Self-organized Flocking

Flocking control methods are generally composed of three different term-functions:
a proximal term, an alignment term, and an optional goal direction term, which is needed
when the swarm is required to steer towards a specific target. Let us assume that in a
flocking of N robots, a robot i, with i ∈ {1, . . . , N}, is called the focal robot. In our
work, we propose a flocking control function that uses only the proximal term in order to
converge and move the UAVs into a unified direction.

4.1 Proximal Control

The proximal control is used to make the UAV maintain the desired distance
from other neighbor robots while keeping a cohesive formation and assumes that the
focal robot can sense the relative range and bearing of its neighboring UAVs within a
maximum interaction distance of Dp. For the model of Ferrante et al. (2012) to be properly
implemented on a flocking of UAVs, we must be less or equal to the maximum sensing range
of the sensor. When the swarm converges into a stable formation, interactions between
UAVs are limited to the first neighbors in the Voronoi sense, which in turn mandates that
Dp = λddes, where ddes is the desired distance between UAVs, and λ is a positive gain
that limits the maximum interaction distance is less than the twice the desired distance
between two robots. The proximal control computes a proximal control vector P as:

P =

mp∑
i=1

pi(di)e
jφi (4.1)

Where: pi(di)ejφi is a vector expressed in the complex plane, P is a virtual force vector,
pi(di) is the negative derivative of the generalized version of the Lennard-Jones potential
function, mp is the number of neighboring UAVs perceived by the focal robot within the
maximum interaction distance Dp, and φi and di are, respectively, the relative bearing
and range of the ith perceived robot.

4.2 Magnitude-dependent Motion Control

To pass the information calculated in the proximal control to the UAV control
system, we need first to translate it into robot motion. In the following, we assume that
the UAV has a translation axis x and a rotational axis y. First, we decompose the value of
the proximal control vector P into fx and fy by using the values of the relative bearing φ.



Chapter 4. Self-organized Flocking 31

We call fx and fy the projection of the proximal control vector P on the XY-plane of the
body frame of the focal robot:

fx =

mp∑
i=1

pi(di) cosφi

fy =

mp∑
i=1

pi(di) sinφi

(4.2)

After that, we employ the MDMC. The basic idea of the MDMC algorithm is to
convert the flocking control vector into a desired linear translational speed u and a desired
angular speed v of the robot. However, it is important to assume that the robot has a
non-holonomic behavior (FERRANTE et al., 2012). The desired linear translational speed
u is assumed to be directly proportional to the x component of the vector (fx), which
results in the forward velocity of the robot in the body frame. Conversely, the desired
angular speed v will be directly proportional to the y component of the vector (fy). Thus,
we can calculate both as:

u = κ1fx +Bs

v = κ2fy
(4.3)

Where: Bs is a forward biasing speed, and κ1 and κ2 are the linear and angular gains,
respectively.

Note here that the larger the value of fx, the faster the robot moves forward, while
the larger the value of fy, the faster the robot turns. However, this approach also allowed
the robot to move backward, although tending to move forward due to the forward biasing
speed Bs.

4.3 UAV Model application

The above-mentioned sections presented how we used the approach proposed by
Ferrante et al. (2012). The initial method was designed for non-holonomic ground robots
running at a maximum speed of 0.005 m/s and a maximum distance of 0.81 m. In contrast,
we propose the use of this method in a flocking of UAVs with a maximum linear velocity
of 0.3 m/s and the desired distance of 6 m.

To illustrate the model of the robot, let us use a dynamical model of a multirotor
aerial vehicle presented in the work of Lee, Leok and McClamroch (2010). We need this
model to understand the influence of this algorithm on the behavior of the UAV. Figure
3 illustrates the coordinate frames used in this work. In this section, all variables are
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Figure 3 – The image depicts the world frame W = {ê1, ê2, ê3} in which the 3-D position
and the orientation of the UAV body is expressed
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ê2

ê1

ê3

span (ê1, ê2)

b̂2

b̂1

b̂3

B

η

h

r,R⊺

Source: Baca et al. (2020)

expressed in the world coordinate frame except the angular velocities ω. Our UAV feedback
system architecture relies on state variables defined as:

r = [x, y, z]ᵀ the position of the center of the mass of a UAV in the world frame;
ṙ ∈ R3 the velocity of the center of the mass of a UAV in the world frame;
r̈ ∈ R3 the acceleration of the center of a mass of a UAV in the world frame;
R ∈ SO(3) ⊂ R3×3 the rotation matrix from the body frame of a UAV to the world

frame, det R = 1, Rᵀ = R−1;
ω = [ω1, ω2, ω3]

ᵀ the angular velocity in the body frame of a UAV.

These states are linked by a nonlinear model, which has a translation part:

mr̈ = fTRê3 +mgê3 (4.4)

And a rotational part:

Ṙ = RΩ (4.5)

Where: Ω is the tensor of angular velocity, under the condition Ω v = ω×v,∀v ∈ R3. The
vehicle experiences downwards gravitational acceleration with magnitude g ∈ R together
with the thrust force fT created collectively by the propellers in the direction of b̂3.

However, as we are focused on non-aerobatic flight, we separately consider and
estimate the azimuth of the b̂1 axis in the world as the UAV heading. Under the condition
of |êᵀ

3b̂1| > 0, we define the heading as:

η = atan2
(
b̂ᵀ
1ê2, b̂

ᵀ
1ê1

)
(4.6)
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The heading is a more intuitive alternative to the widely-used yaw angle as one of
the 4 controllable Degrees Of Freedom (DOFs). It is possible to use the yaw, but with
the assumption that the tilt of the UAV (cos−1 b̂ᵀ

3ê3) is low, near horizontal. We do not
use Euler angles due to the overwhelming number of conventions, which often lead to
misunderstanding. Generally, the widely-used yaw angle (as in Euler angles (DIEBEL,
2006)) has no direct meaning concerning the particular orientation of any of the body
axes in any of the conventions, since the final orientation also depends on the remaining
two rotations (pitch, roll). A user would need to take the remaining part of the desired
orientation (produced by the controllers) into account to properly design the desired yaw,
which leads to a chicken or egg problem. Thus, we define the heading vector by the b̂1

axis as:

h =
[
R(1,1),R(2,1), 0

]ᵀ
= [bᵀ

1ê1,b
ᵀ
1ê2, 0]ᵀ (4.7)

And its normalized form:

ĥ =
h

‖h‖
= [cos η, sin η, 0]ᵀ (4.8)

Figure 3 also illustrates the heading vector and the heading for the UAV body
frame. Therefore, we can note that all these factors directly influence the calculations of
range and bearing between neighboring robots, being the bearing calculation the most
problematic in UAVs. Furthermore, for the algorithm to work, the robots must behave
in a non-holonomic manner. Finally, the dynamic effects caused by friction between the
wheels of the mobile ground robots and the floor present a major feature for the algorithm
of Ferrante et al. (2012) to work stably, preventing the ground robots to rotate on their
axis when the bearing calculates varies rapidly.

When implementing this algorithm into multirotor UAVs, one must first decrease
the robot dynamics to mimic the friction effect. UAVs are highly unstable and tend to
drift due to errors in state estimation. Thus, we use a system architecture that includes a
Model Predictive Control (MPC) Tracker (BACA et al., 2018) and a Position/Attitude
controller (BACA et al., 2020). We will discuss this architecture later.

However, even when stabilizing the UAV (and therefore mimicking the friction
effect), the presence of a rapid variation on the bearing still presents a major problem. We
re-calculate the observed heading with a Spherical Linear Interpolation (SLERP) technique
to minimize this problem. SLERP represents a popular technique to interpolate between
two 3-D rotations in a mathematically sounded manner while producing visually smooth
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paths. Thus, the recalculation of the bearing transforms the robot physical heading angle:

qs(t) =

[
sin((1− γ)θ)

sin θ

]
qp(t) +

[
sin(γθ)

sin θ

]
qs(t− 1) (4.9)

Where: qs is the quaternion of the smoothed heading angle at the instant t, qp is the
quaternion of the physical heading angle, θ is the angle between both quaternions, and γ
is an interpolation coefficient.

For θ ≈ 0, the SLERP equation results in:

qs(t) = (1− γ)qp(t) + γqs(t− 1) (4.10)

Thus, we find the smoothed heading angle ηs through the quaternion of the
smoothed heading angle qs. With the problems solved, there is still the need to input the
non-holonomic behavior on the UAVs. The system architecture, which will be discussed
later, takes as input values the desired position and heading in the global frame. To input
a non-holonomic behavior, we must input the update of the robot’s position as we would
in a non-holonomic robot. Therefore, we can use the smoothed heading angle ηs to update
the reference position according to the equations below.

xd(t) = x+ u cos ηs

yd(t) = y + u sin ηs

zd(t) = zcoeff

ηd(t) = ηs + v

(4.11)

Where: [xd, yd, zd]
ᵀ = rd is the desired 3-D position of the center of the mass of the focal

UAV, and ηd is the desired heading of the focal UAV, both at the instant t and in the
world frame.

After calculate the desired reference rd and desired heading ηd, our proposed method
send it to the next block in the system architecture. Note that, similar to the work of
Ferrante et al. (2012), the method only organizes the swarm in the Two-Dimensional (2-D)
space. Therefore, each robot maintains a desired 2-D Euclidean distance from the others
while keeping a constant distance from the ground.

4.4 Intra-swarm Relative Sensing

As explained in the previous sections, the information required to achieve and
maintain the flocking using our proposed method is the relative range d and bearing φ of
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each neighbor in the maximum interaction range Dp. Detect and localize nearby neighbors
is the key to obtaining the relative range d and bearing φ.

To evaluate our method, we use two relative localization approaches. The first
approach relies on the exchange of GNSS information inside the swarm through direct
communication using Wi-Fi. The second approach consists of a direct vision-based relative
localization system called the UVDAR system. Both can obtain the required information
to achieve the flocking differing in each circumstance they can be applied and the high-level
properties of the swarm. However, the use of the UVDAR System as a relative localization
approach is one of the main contributions of this work since we aim to demonstrate that
self-organized UAV flocking can be achieved in GNSS-denied environments.

4.4.1 Direct Information Exchange-based approach

In outdoor environments, relative position can be obtained via a combination of
GNSS and intra-swarm communication. Global position information obtained via GNSS
is communicated between MAVs and then used to extract relative position information
(COPPOLA et al., 2020). For each position information received through communication,
we calculate the relative range di of the ith neighboring robot as:

di =
√

(xi − xf )2 + (yi − yf )2 (4.12)

Where: [xf , yf ]
ᵀ is the 2-D position information of the focal UAV in the world frame,

and [xi, yi]
ᵀ , i ∈ {1, . . . ,mp} is the 2-D position information of the ith robot inside the

maximum interaction range Dp in the world frame.

And we calculate the relative bearing φi of the ith neighboring robot as:

φi = ηp − atan2(yi − yf , xi − xf ) (4.13)

Where: ηp is the physical heading angle of the UAV in the world frame.

The main advantages of this approach are: low computational and power cost
when comparing with others approaches, can work in visually clustered environments, and
omnidirectional sensing. However, the dependency on a communication network lowers
the upper limit for swarm scalability, due to the bandwidth limitations, and significantly
reduces the fault tolerance of the entire system.

Generally, UAV practical approaches use ranging systems based on radio signals
transmissions (NGUYEN et al., 2019; BHAVANA; NITHYA; RAJESH, 2017), which in
turn is subject to the effects of network congestion and interference. Also, according to
Coppola et al. (COPPOLA et al., 2020), external infrastructure is required to provide
a communication network. The dependency on external infrastructure limits the swarm
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Figure 4 – UVDAR LEDs and cameras

Source: Walter, Saska and Franchi (2018)

to being operable only in areas that have been properly fitted to the task. Several tasks,
especially the ones that involve exploration, cannot rely on these methods.

4.4.2 UVDAR system

Traditionally, flocking approaches attempt to replicate, as close as possible, the same
behavior found in nature where each individual in the swarm is capable of estimates its
neighbor’s state by itself, without any communication between them. To accomplish local
sensing, we use a direct vision-based relative localization system called the UVDAR system.
According to Walter et al. (2019), the UVDAR system provides relative position and yaw
measurements independently of environmental conditions such as changing illumination
and the presence of undesirable light sources and their reflections and does not require
communication.

As illustrated in Figure 4, the UVDAR system is based on the application of
markers composed of Ultra-Violet (UV) light-emitting diodes on the UAVs, in addition to
equipping the observer UAVs with cameras with fish-eye lenses and specialized band-pass
filters (WALTER; SASKA; FRANCHI, 2018). To be recognized by the others, a UAV uses
pairs of blinking UV-markers attached to its arms. Each pair have a known position around
the UAV which makes possible the estimation of the relative position and orientation.
A unique frequency in each blinking marker can be used to distinguish each UAV. To
recognize the others, a UAV uses two modified cameras with fish-eye lenses providing
almost 360◦ horizontal field of view. The UVDAR system is available as open-source1.

The use of active markers facilitates the task of detection and increases accuracy.
1 Repository is available at: <https://github.com/ctu-mrs/uvdar_core>, accessed in June 2021

https://github.com/ctu-mrs/uvdar_core
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Also, the independence of communication devices and external computation allows the
usage in environments with communication restrictions. As for disadvantages, we have
high power expense since it required a few markers and cameras to obtain omnidirectional
sensing and may not work in environments where occur occlusion.

Similar to the direct information exchange-based approach (see Equation 4.12
and Equation 4.13), we use the neighbor’s position estimated by the UVDAR system to
calculate the relative range d and bearing φ. However, we do not subtract the focal UAV
position from the neighbor’s position because the estimation is expressed in the body
frame of the focal robot.

4.5 System Architecture

The platforms used in this work consist of several interconnected subsystems, as
depicted in Figure 5. The orange blocks represent the relative localization approaches. Only
one is active during each experiment. The Intra-swarm communication returns the global
position information of each near teammates received through Wi-Fi, and the UVDAR
system block uses the onboard UV-cameras’ information to estimate the relative position
of nearby teammates. The yellow blocks outline all the mentioned calculations previously.
The Range and bearing extractor block extracts from each relative position the relative
range d and bearing φ and then sent to the Flocking controller, supplies at 5 Hz. The
Flocking controller supplies the time-parametrized sequence of the desired position rd

and heading ηd. The gray blocks depict the essential subsystems to handle basic flight
operations. They are part of the Multi-robot Systems (MRS) UAV system, according
to Baca et al. (2020), is a multirotor UAV control and estimation system created with
emphasis on realistic simulations and real-world experiments. A MPC Tracker receives
and processes the desired position rd and heading ηd. This control reference contains the
desired position, its derivatives up to the jerk, the heading, and the heading rate, supplied
at 100 Hz. Then, a Position/Attitude controller receives and provides feedback control of
the translational dynamics and the orientation of the UAV. This block creates an attitude
rate ωd and a thrust command Td, which are sent to an embedded flight controller2. The
white blocks stand for the physical design of the UAV. The flight controller encapsulates
the underlying physical UAV system with motors and motor electronic speed controllers
and creates 4 new controllable DOFs: the desired angular speed around b̂1, b̂2, b̂3 and
the desired thrust 〈0, 1〉 of all propellers. Finally, onboard sensor data (e.g., position
measurements from GPS, velocity measurements from visual odometry) are processed by
the State estimator and provides the needed information to all these previous blocks.

2 The proposed system is compatible with the Pixhawk flight controller, installed with PX4 firmware,
considering it as already pre-configured with motors, motor speed controllers, and a basic embedded
flight controller providing Attitude rate controller.
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Figure 5 – A diagram of the system architecture: The orange blocks represent the relative
localization approaches. Only one is active during each experiment. Intra-
swarm communication returns the global position information of each near
teammate received through Wi-Fi, and UVDAR system block uses the onboard
UV-cameras’ information to estimate the relative position of nearby teammates.
The yellow blocks outline all the mentioned calculations previously. Range and
bearing extractor block extracts from each relative position the relative range
d and bearing φ and then sent to the Flocking controller. Flocking controller
supplies the time-parametrized sequence of the desired position rd and heading
ηd. The gray blocks depict the essential subsystems to handle basic flight
operations. They are part of the Multi-robot Systems (MRS) UAV system.
MPC Tracker creates a smooth and feasible reference χ for the reference
feedback controller. The feedback Position/Reference controller produces the
desired thrust and angular velocities (Td, ωd) for the Pixhawk embedded flight
controller. The white blocks stand for the physical design of the UAV. The
State estimator fuses data from the onboard sensors to create an estimate of
the UAV translation and rotation (x, R)
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5 Experimental evaluation

Swarming algorithms usually are applied in a large group of robots (≥ 100). When
using ground robots, gathering this high number of robots is somehow feasible. However,
in our experiments, we aim to analyze the behavior of autonomous middle-size UAVs,
where disturbances from outdoor environments can disturb the group cohesiveness. Thus,
we performed real-world experiments with a small number of robots. Before testing our
proposed method with real robots, we performed numerous simulations for safe verification
and tuning.

In Section 5.1, we explain how our proposed method works and how it was developed
by defining the tools used for creating the code. In Section 5.2, we explain the metrics
used for determining the performance of our method. In Section 5.3, we describe how the
simulations were performed. In Section 5.4, we describe how the experiments with real
robots were performed.

5.1 Implementation

Since there is a minimal difference between simulated flight and real-world flight
due to the high fidelity simulations of all UAV hardware elements (BACA et al., 2020),
the method described in Chapter 4 is implemented almost the same way for simulated
and real robots. Each UAV runs an instance of the implementation. The flocking can be
accomplished by measuring the relative range d and bearing φ of each neighbor inside
the maximum interaction range Dp using either the direct communication between the
members of the swarm or the UVDAR system. The proposed flocking method is built on
Robot Operating System (ROS) and is available as open-source1.

5.2 Used Metrics

To analyze the effectiveness of our method, we use three metrics. First, we demon-
strate how cohesive the swarm aligns in a common direction in a short period using the
order metric ψ (VICSEK et al., 1995), which measures the degree of agreement of the
orientations of the UAVs within the swarm. Thus, the vectorial sum of the headings of all
1 Repository is available at: <https://github.com/thulioguilherme/flocking_behavior>, accessed in June

2021

https://github.com/thulioguilherme/flocking_behavior
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N robots is:

b =
N∑
i=1

ejφi (5.1)

And the order can be calculated as:

ψ =
1

N
||b|| (5.2)

With this metric, the value of the ψ ≈ 1 defines robots with a common heading.
When the value of the ψ ≈ 0, the robots are point in different directions. We also analyze
the steady-state µ̄ (FERRANTE et al., 2012) value for a given metric, which is the order
metric ψ in our case. The steady-state metric is the asymptotic value reached by the order
metric during the experiment. We can compute the value of the steady-state as:

µ̄ =

∑T
(t=T−100) ψt

100
(5.3)

Additionally, we use the settling time t∗ (FERRANTE et al., 2012), which is the
time needed to reach a steady-state in order. More precisely, the settling time t∗ is defined
as the time for which ∀t ≥ t we have µ ≥ 0.95µ̄. In other words, t∗ is the time at which
and after which the order stays above the 95% of the steady-state.

We can only evaluate our method using those three metrics because we use only
the proximal term for calculate the flocking control function. Other metrics used to assess
the performance of flocking behaviors, such as accuracy δ and effective traveled distance
De (FERRANTE et al., 2012), are only measured when the flocking control function
incorporates the goal control vector, which is not the case in our method.

5.3 Simulations

In this section, we describe how we performed realistic simulations to evaluate
our proposed method. We also explain the experimental setup used and then present the
results obtained with both relative localization approaches.

5.3.1 Simulator

We utilized the MRS simulator to evaluate our proposed method through realistic
simulations before testing on real robots. According to Baca et al. (2020), the MRS
simulator is a simulation environment based on the open-source Gazebo simulator with
realistic sensors and models that can run in real-time. The MRS simulator is also part of
the MRS UAV system. Among the various advantages of the platform, we can highlight:
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• Capable of simulate realistic sensors and models in real-time;

• Compatible with multiple versions of the ROS;

• Suitable for swarming researches since scale for multiple UAVs;

• Allow easy transference of simulation settings to real-world experiments.

5.3.2 Experimental Setup

When developing swarm robotics systems, one of the main obstacles is having
access to a large number of robots. When performing experiments in simulations and
real-world experiments, the available resources restrict the size of the swarm. Due to
computational power limitations, we performed simulations with four robots using the
direct information exchange-based approach. We used a group of three robots when using
the UVDAR system. We kept the same number of robots in the real-world experiments as
safety measurements. We consider that the number of robots used is enough to evaluate
our method using the following assumptions:

• Putting a number as a lower bound of group size is difficult to justify and swarm
robotics should be open to studies with a smaller group sizes, but with a vision
of scalability (ŞAHIN, 2005). As presented in the previous chapters, the proposed
method aims to be scalable through local sensing and decentralized control;

• The flocking control proposed by Ferrante et al. (2012) achieved cohesive self-
organized flocking with UGVs using a similar controller configuration, a proximal
control and a MDMC control, as the presented in the Chapter 4. They performed
numerical analysis with a large number of robots, 1000 simulated and 10 real robots.

To run the simulations, we use a desktop computer with an Intel Core i5-3470
(4-Cores, 6 MB Cache), an Intel HD Graphics 2500 (IVB GT1), and 8 GB (2 x 4 GB)
1600 MHz DDR3 Memory. The simulated robot has a hardware configuration identical
to the real one, and all the actuators and sensors are realistic simulated using the MRS
simulator. We will discuss the hardware configuration of the robot later in this chapter.
For the communication among UAVs, each UAV transmits its global position with a
frequency of 2 Hz, which is the expected average frequency in the real-world experiment.
The simulated communication does not include loss or delay of transmitted packages.

The proposed flocking method ensures intra-swarm collision avoidance using the
proximal term, but it does not have a collision avoidance mechanism between the focal
robot and other obstacles. Therefore, as a safety measure, we performed experiments in
an open environment to avoid collisions. The simulation environment was composed of a
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horizontal plane with no border limits or obstacles. The initial position of each individual
was set manually with the restriction that there is at least one neighbor inside the maximum
interaction range Dp of each member of the swarm, and the initial inter-distance from each
neighbor is higher than the desired inter-robot distance ddes. We set the initial heading
randomly.

We execute all simulations the same way for both relative localization approaches:
after the take-off, the whole swarm hovers and waits for the signal to run the proposed
method. Since the expected behavior is to achieve and maintain the flocking, we let each
robot run the implementation for a certain period. Most of the parameters are the same
for both relative localization approaches, only differing in the desired inter-robot distance
ddes, which is 6 m for the direct information exchange-based approach and 5 m for the
UVDAR system. We summarize the value of the parameters in Table 2.

Table 2 – Parameters values for simulations

Parameter Description Value
BS Maximum forward speed 0.3 m/s
κ1 MDMC linear gain 0.5
κ2 MDMC angular gain 0.2
α Steepness of potential function 2
ε Strength of potential function 6
Dp Maximum interaction range 10.8 m
λ Interaction range gain 1.8
γ Interpolation coefficient 0.95

zcoeff Desired height 2.5 m
T Duration of experiments 240 s

Source: Elaborated by the Author

5.3.3 Results with the Direct Information Exchange-based approach

After the take-off and hovering for a 10 s period, the simulation starts. With only
the proximal method proposed here, the UAVs rapidly converged in range and bearing, as
can be observed in the settling time t∗ of 26 seconds (see Figure 6).

During the simulation, the flocking moved towards an arbitrary direction, as
intended (see Figure 7). Once the experiment reaches its duration, the robots are triggered
to finish the mission and standstill in their last position. The simulation revealed a steady-
state value of µ̄ = 1.0097, demonstrating the success of our method, as it indicates that
the order assumed values close to 1 during the simulation.
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Figure 6 – Order value in the simulation using the direct information exchange-based
approach

Source: Elaborated by the Author

Figure 7 – XY plot showing UAV headings during the simulation using the direct informa-
tion exchange-based approach

Source: Elaborated by the Author
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5.3.4 Results with the UVDAR system

As in the simulation using the direct information exchange-based approach, the
swarming starts 10 s after, and again, the UAVs rapidly converge into a cohesive flocking.
For a while, the robots converged in range and bearing and moved in an arbitrary direction
(see Figure 8), as intended. During the simulation, the swarm was not able to maintain
the formation for long periods, which can be noticed in the order’s value oscillations and
also in the settling time value (see Figure 9). This simulation revealed a steady-state
µ̄ = 0.949469.

Figure 8 – XY plot showing the heading of the flocking during the simulation using the
UVDAR system

Source: Elaborated by the Author

To better explain the lower result, we first describe a commonly faced issue when
attempting to have realistic simulations in the Gazebo simulator. Run realistic simulations
is more expensive due to all calculations of physics computation are on a single thread.
Due to insufficient processing power, the blinking signals send by the UVDAR LEDs
get corrupted, which results in a higher estimation error. It was not possible to have
the UVDAR system fully working during the simulation. Despite the issues, the swarm
effectively achieved ordered and cohesive flocking, only unsuccessful in maintaining it.
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Figure 9 – Order value in the simulation using the UVDAR system

Source: Elaborated by the Author

5.4 Real robots

In this section, we define the components of the UAV used for real-world experiments.
Also, we describe the experimental setup, and then present the results obtained with both
relative localization approaches.

5.4.1 Hardware

For real-world experiments, we use four identical DJI f450-based quad-copters with
T-Motor MN2212 motors. Figure 10 shows the main hardware components of the UAV.
As the low-level embedded flight controller, we use a Pixhawk 4 which is composed of
a set of sensors: an accelerometer, a gyroscope, a magnetometer, and a barometer. An
onboard Intel NUC i7 PC with Linux Ubuntu provides computational power for all required
tasks, such as flocking control, state estimation, and motion planning. Communication
between the Pixhawk flight controller and the onboard PC is established using MAVlink
protocol through a serial line. A down-facing rangefinder Garmin LidarLite V3 retrieves
the UAV height above the ground. An Ublox Neo-M8N GPS with a compass estimates the
global position and the orientation. A base-station laptop operated by a human supervisor
supplies basic commands, such as start or stop the experiment, through the local wireless
network to the swarm. When using the UVDAR system, each UAV is also equipped with
the actuators and sensors required to recognize and be perceptible by the others as depicted
in Section 4.4.2.
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Since we decided to perform outdoor experiments, the robots have a GPS as the
self-localization system. When using the UVDAR system, the robot does not rely on
the GNSS system to achieve the desired swarm behavior. It does not use the GNSS
information to obtain the relative range d and bearing φ of the teammates. We could
replace the remote localization system with small or no changes to the proposed method.
In contrast to recent works (KOWNACKI; OŁDZIEJ, 2016; VÁSÁRHELYI et al., 2018),
where the communication among robots does not rely on a mesh network, we used a
local access point to create a wireless network for achieving intra-swarm communication
in real-world experiments. We employed this configuration because it was the available
hardware equipment.

5.4.2 Experimental Setup

For the real-world experiment, the environment was an outdoor delimited plain field
with no obstacles. The base-station laptop operator suspends the experiment if any robot
gets close to the borders. The experiments were performed with the support of the MRS
group, which supplied the required equipment and personal knowledge for evaluating our
flocking method with real UAVs. We kept the same number of robots for each experiment:
four robots for the experiment using the direct information exchange-based approach and
three robots with the UVDAR system. The values of the parameters are the same as in
the simulation (see Table 2). We used GPS data to analyze the trajectory of the robots.

5.4.3 Results with the Direct Information Exchange-based approach

After the take-off and hovering for a 10 s period, the experiment with four UAVs
starts. With only the proximal approach proposed here, the UAVs rapidly converged in
range and bearing. We selected this run of experimental evaluation to show a typical
problem in which one of the UAVs had a minor inaccuracy in its position estimation that
placed the robot within a 1.5 m error in the flocking. However, even with this error in
the position estimate, the flocking algorithm was successful in converging the robots into
a cohesive group (see Figure 11). A video of the real-world experiment with the direct
information exchange-based approach2 is available on Youtube.

During the experiment, the flocking moved towards an arbitrary direction, as
intended (see Figure 12). After reaching the boundary of the workspace, the robots are
triggered to finish the mission and land. The experiment revealed a steady-state value
of µ̄ = 0.996, demonstrating the success of our method, as it indicates that the order
assumed values close to 1 during the experiment (see Figure 13).
2 Video of the real-world experiment with the direct information exchange-based approach available at:

<https://youtu.be/S5e0lbQw0aU>, accessed in October 2021

https://youtu.be/S5e0lbQw0aU
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Figure 10 – The main hardware components of the UAV: we use a Pixhawk 4 as a low-level
embedded flight controller to control the motors, an onboard Intel NUC i7 PC
provides computational power for all required tasks, a down-facing rangefinder
Garmin LidarLite V3 retrieves the UAV height above the ground, and an
Ublox Neo-M8N GPS with a compass estimates the global position and the
orientation of the focal robot
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5.4.4 Results with the UVDAR system

In the experiment with real robots using the UVDAR, the swarming starts 10 s

after, and again, the UAVs rapidly converge into a cohesive flocking. Figure 14 present the
flocking using UVDAR and the data collected by the UV cameras from two UAVs at the
start of the experiment. For a while, the robots converged again in range and bearing and
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Figure 11 – The UAVs maintain the flocking up until they reach the field limit

Source: Elaborated by the Author

Figure 12 – XY plot showing UAV headings during the experiment with real robots using
the direct information exchange-based approach

Source: Elaborated by the Author

moved in an arbitrary direction (see Figure 15), as intended. A video of the real-world
experiment with the UVDAR system3 is available on Youtube.
3 Video of the real-world experiment with the UVDAR system is available at: <https://youtu.be/

bJMioc3VgHM>, accessed in October 2021

https://youtu.be/bJMioc3VgHM
https://youtu.be/bJMioc3VgHM
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Figure 13 – Order value in the experiment with real robots using the direct information
exchange-based approach

Source: Elaborated by the Author

Figure 14 – During the experiment, each UAV can detect the other robots within the
flocking

Source: Elaborated by the Author
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Figure 15 – XY plot showing the heading of the flocking during the experiment with real
robots using the UVDAR system

Source: Elaborated by the Author

Figure 16 – Screenshot of the experiment when the blue UAV turns into a blind spot of
the UVDAR system

Source: Elaborated by the Author

This experiment revealed a steady-state value of µ̄ = 0.691870. To better understand
the lower result of the steady-state value, refer to Figure 16, which is a screenshot of the
exact moment when the ordered plot diverges (see Figure 17). For a brief moment, the
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blue UAV (the UAV at the bottom of Figure 16) changes its heading due to noise in the
estimate of the bearing of the other detected UAVs. When performing this move, there is
even more noise in the detection. Figure 16 also shows that the detected UAVs move to the
edge of the camera. After a while, the UAV can no longer detect the other UAVs because
the other robots are in the blind spot region of the UV cameras. Despite the sensory
limitations that were purposely shown in this selection of one of the experimental runs,
the proposed swarming method was able to stabilize the swarm and achieved the required
behavior. This correlates with the results of realistic simulations and with a numerical
analysis of the behavior of large swarms (FERRANTE et al., 2012).

Figure 17 – Order value in the experiment with real robots using the UVDAR system

Source: Elaborated by the Author

5.5 Discussion

We focused on developing a decentralized control method to achieve self-organized
flocking using middle-size UAVs in GNSS-denied environments. The proposed method
accomplishes ordered and cohesive flocking with UAVs following an abstract rule and using
minimal information: the robot needs to have non-holonomic movement and senses the
relative range and bearing of nearby neighbors.

In the simulated and real-world experiment, our results demonstrated that the
proposed method works on UAVs. Despite the estimation errors, the swarm converged
into the desired formation and moved in an arbitrary direction, which shows robustness to
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inaccurate measurements. Additionally, the proposed method with the UVDAR system
enabled the UAVs to achieve and maintain the flocking in a real-world environment using
only onboard sensors and processing capabilities.

One of the main contributions is the extension of the work of Ferrante et al. (2012)
by itself. We adapted their method to work with multirotor UAVs by being robust to
larger sensor noise and greater measurement distances. Also, we proposed the use of a
spherical linear interpolation function was used as an exponential smoothing technique
to deal with the fast angle measurement variations. Similar to Ferrante et al. (2012), but
apart from the cited UAV works, our work is capable of achieving flocking without the
alignment control. Local communication is often used to obtain the advantages of the
alignment control but is impractical in some situations. The absence of alignment control
leads to a more flexible swarm behavior.

The robot can estimate the required information using remote sensing and intra-
swarm communication or using the UVDAR system. The aspect of handle GNSS-denied
environments is another contribution. From a swarm robotics perspective, the onboard
estimation provided by the UVDAR system is preferable over the intra-swarm communica-
tion since it increases the robustness, scalability, and flexibility of the swarm due to the
independence of external devices for sensing.

The proposed method achieves flocking in environments with no constraints on
the boundary conditions since no collision-avoidance behavior is implemented along with
the flocking control. Because the expected behavior of the swarm is to keep an ordered
formation while moving forward, tasks that include gathering information from hard-access
environments using only onboard sensors are an example of possible applications. As
more solid examples, we have parallelized exploration and mapping of environments, and
surveys. The proposed method only coordinates the motion of the individuals and could
be executed in parallel with another method to retrieve, process, or store the input data.
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6 Conclusion

In this work, we have presented a decentralized proximal control-based method to
achieve flocking using UAVs in GNSS-denied environments. The proposed method extended
the work of Ferrante et al. (2012) by adapting a flocking control originally designed for
UGVs. We evaluate our proposed method in a real-world environment with a group of
middle-size UAVs using two distinct relative localization approaches. The first approach
relies on the exchange of GNSS information between the members of the swarm. The
second approach uses a direct vision-based relative localization system called the UVDAR
system, which can estimate the relative position of the nearby teammates using only the
onboard sensors and without communication devices.

The robots converged into a flock formation in the 2-D space, moving in an arbitrary
direction with both approaches. The results demonstrated that the UVDAR system can
be an alternative to remote sensing. In this way, we achieved self-organized flocking with
limited sensory information for aerial robots with high dynamics in environments with
no constraints on the boundary conditions. Within the novel flocking method itself, we
have provided a framework and guidelines to enable fundamental achievements of swarm
research to be integrated into UAV systems working in real-world conditions.

6.1 Publications

To demonstrate the relevance of our work, Table 3 presents the publications that
are products of this thesis until the date of October 2021.

Table 3 – Publications that are products of this thesis until the date of October 2021

Work Journal/Event Title

Amorim et al. (2021)

2021 International
Conference on

Unmanned Aircraft
Systems (ICUAS)

Self-Organized UAV Flocking
Based on Proximal Control

Amorim and Nascimento (2021) Comunicações em
Informática

Self-Organized UAV
Flocking Based Only on

Relative Range and Bearing
Source: Elaborated by the Author
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6.2 Future Works

As future works of this thesis, we have the following possibilities:

• Perform experiments with more robots in simulated and real-world environments to
validate the scalability of the proposed method;

• Addition of obstacles as virtual repulsion force inside the flocking control vector. This
operation would generate a collision-avoidance behavior along with the navigation
behavior, increasing the robustness and flexibility of the swarm;

• Replace the remote self-localization system with an onboard system to achieve
complete independence to GNSS.
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