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Resumo

Esta tese está dividida em duas partes. Na primeira parte obtemos o limite

hidrodinâmico para um sistema de partículas com velocidades em contato com reser-

vatórios. Teremos um parâmetro θ, que regula a intensidade dos reservatórios e obte-

remos um sistema de equações diferenciais parciais com diferentes condições de bordo

dependendo do parâmetro θ. Nosso objetivo é analisar o impacto da força dos reser-

vatórios (mudando o valor de θ) no comportamento macroscópico do sistema. O limite

hidrodinâmico deste modelo no caso θ = 0 foi provado em [3].

Na segunda parte desta tese obtemos as flutuações no equilíbrio para o mesmo

modelo com bordos periódicos.

Palavras-chave: Método da Entropia; Limite Hidrodinâmico; Flutuações no Equi-

líbrio;
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Abstract

This Ph.D. thesis consists of two parts. In the first part, we discuss the hydrodynamic

limit of the weakly asymmetric exclusion process with collision among particles having

different velocities and in contact with stochastic reservoirs. We will have a parameter

θ and a system of partial differential equations with boundary conditions that change

depending on this parameter θ. We aim to analyze the impact of the reservoirs (change

the value of θ) on the macroscopic behavior of the system. The hydrodynamic limit of

this model in the case θ = 0 was proved in [3].

In the second part of this work, we obtain the equilibrium fluctuation for the

same model with periodic boundary conditions.

Keywords: Entropy Method; Hydrodynamic Limit; Equilibrium Fluctuations;
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Introduction

Interacting particle systems is an area of probability devoted to the mathematical

analysis of random models (stochastic process) that arise from statistical physics, biol-

ogy, and many other fields of science. Interacting particle systems were introduced in

the 1970s by Spitzer [14]. A classic problem in this field is to derive macroscopic laws of

the thermodynamic quantities of a physical system, considering a microscopic dynam-

ics which is composed of particles that move according to some prescribed stochastic

law. These macroscopic laws are governed by Partial Differential Equations (PDEs)

or stochastic PDEs, depending if one is looking at the convergence to the mean, or

fluctuations around that mean. Convergence to the mean is a scaling limit, called the

hydrodynamic limit. This limit will be the solution of a partial differential equation,

called the hydrodynamic equation, and with it we can understand how the temporal

evolution of the spatial density of particles is, see [1].

To make the reading as pleasant as possible, we will informally describe the model,

which we will work with in Chapter 1 for d = 1(see Figure 1 and 2). Let the set of

possible velocities V , be a finite subset of R, and for x ∈ R. Moreover, fix a velocity

v ∈ V , at any given time, each site of {1, . . . , N − 1} is either empty or occupied by

one particle with velocity v. In {1, . . . , N − 1}, each particle attempts to jump to one

of its neighbors with the same velocity, with a weakly asymmetric rate. To prevent the

occurrence of more than one particle per site with the same velocity v, we introduce

an exclusion rule that suppresses each jump to an already occupied site, with the fixed

velocity v. The boundary dynamics is given by the following birth and death process

at the sites 1 or N − 1. A particle is inserted into the system with rate αv

Nθ at site 1 if

the site is empty, while if the site 1 is occupied a particle is removed from the system

with rate 1−αv

Nθ . On the other hand, at site N − 1 a particle is inserted into the system,

with rate βv

Nθ , if the site is empty, while a particle is removed at N − 1 if the site is

occupied, with rate 1−βv

Nθ . Superposed to this dynamics, there is a collision process that



exchanges velocities of particles in the same site in a way that the moment is conserved.

v1

v2

v3

v4

v5

1 2 3 4 5 N − 1

αv1

Nθ

1− αv5

Nθ

βv1

Nθ

1− βv5

Nθ

· · ·

Figure 1: Illustration of the dynamics

We draw some pictures to illustrate the dynamics that we will work on in the

following sections. In Figure 1, we have an illustration of the dynamics, the particles

at the bulk are colored in gray, and the particles at the two reservoirs are colored in

blue. Note that if a particle at site x with velocity v, attempts to jump to an already

occupied site y with velocity v, the jump is not allowed. In this case the particle does

not move, see for example in Figure 1, the particle at site 3 with velocity v3 is not

allowed to jump to site 2 with velocity v3. On the other hand, if the destination site

is empty the jump is performed, see for example in Figure 1, the particle at site 1

with velocity v2 is allowed to jump to site 2 with velocity v2. Let us suppose that the

clock associated to the left-most reservoir rings, since there exist no particle at site 1

with velocity v1, a particle can be injected into the system at the site 1 with velocity

v1 with rate αv1

Nθ . Also, if the clock associated to the site 1 with velocity v5 rings, the

particle leaves the system at rate 1−αv5

Nθ (See Figure 1). Analogously, suppose that the

clock associated to the right-most reservoir rings, since there exist no particle at site

N −1 with velocity v1, a particle can be injected into the system at the site N −1 with

velocity v1 with rate βv1

Nθ . Also, if the clock associated to the site N − 1 with velocity

2



v1

v2

v3

v4

v5

xk xk

∆t

Figure 2: Illustration of the collision dynamics

v5 rings, the particle leaves the system at rate 1−βv5

Nθ (See Figure 1).

Now let us suppose that the clock associated to the site xk rings (see Figure 2).

We have that two particles at xk, with velocities v2 and v4 collide at rate one and

produce two particles at the same site, with velocities v1 and v5, with v2+v4 = v1+v5.

In Chapter 1 our goal is to show that the system can be described by a hydro-

dynamic equation: fix a macroscopic time interval [0, T ], and consider the dynamical

behavior of the empirical density and momentum over such an interval. The law of

large numbers for the empirical density and momentum, which is called hydrodynamic

limit, and in the context of the diffusive scaling limit here considered, is given by a

system of parabolic evolution equations which is called hydrodynamic equations.

In Chapter 2 we study the equilibrium fluctuations for the model that we pre-

sented in Chapter 1 with periodic boundary conditions, which can be viewed as a

central limit theorem for the empirical distribution of particles when the system starts

from an equilibrium measure. The purpose of this work is to study the density fluctu-

3



ation field of this system as N →∞. We prove that the density field converges weakly

to a generalized Ornstein-Uhlenbeck process.

These notes are organized as follows: In Chapter 1, Sections 1.1 to 1.4, we estab-

lish the notation adopted in this work and state some useful results. In Section 1.5, we

state the main theorem of Chapter 1; the proof of the theorem is postponed to Section

1.10. In Section 1.7, we prove the Replacement Lemmas for the hydrodynamic limits.

In Section 1.12, we prove uniqueness of weak solutions of the hydrodynamic equations,

which are also needed for the hydrodynamic limits. In Chapter 2, we describe in details

the model, in Sections 2.1, 2.2 and 2.3, that we study. Then, in Section 2.4, we start

the analysis of the equilibrium fluctuations for this model, introducing the fluctuation

field and we state our main results. We present the Boltzmann-Gibbs principle in Sec-

tion 2.6; and in Section 2.9, we prove tightness of the density fluctuation field. In the

Appendices, we present some technical results that are needed along with the proofs.

4



Frequently Used Notation

• Cm,n([0, T ], Dd) is the space of continuous functions with m continuous deriva-

tives in time t ∈ [0, T ] and n continuous derivatives in the space Dd;

• ⌊r⌋ denote the integer part of r;

• Lex
N is the generator of the exclusion part of the dynamics;

• Lc
N is the generator of the collision part of the dynamics;

• Lb
N is the generator of the boundary part of the dynamics;

• V is the set of velocities;

• Dd
N = SN × Td−1

N ;

• D([0, T ],M+×Md) is the set of right continuous functions with left limits taking

values inM+ ×Md;

• (QN)N≥1 is a sequence of probability measures defined on D([0, T ],M+ ×Md);

• Q is the set of all collisions which preserve momentum;

• H 1(Dd) the Sobolev space of measurable functions in L2(Dd) that have gener-

alized derivatives in L2(Dd);

• ΩT = (0, T )×Dd;

• C∞
c (ΩT ) stands for the set of infinitely differentiable functions (with respect to

time and space) with compact support contained in ΩT ;

• C∞
0 (ΩT ) stands for the space of infinitely differentiable functions vanishing at the

boundary of Dd.



Hydrodynamic Limit

1.1 Notation and Results

We start by establishing the notation to be used throughout this chapter. Let

Td
N = {0, . . . , N − 1}d = (Z/NZ)d be the d-dimensional discrete torus, and denote by

Dd
N the set SN×Td−1

N , which will henceforth be called by bulk, where SN = {1, . . . , N−
1}. Further, denote the d-dimensional torus by Td = [0, 1)d = (R/Z)d, and let Dd =

[0, 1]×Td−1. Moreover, let V ⊂ Rd be a finite set of velocities v = (v1, . . . , vd). Assume

that V is invariant under reflections and permutations of the coordinates, i.e.,

(v1, . . . , vi−1,−vi, vi+1, . . . , vd) and (vσ(1), . . . , vσ(d))

belong to V for all 1 ≤ i ≤ d, and all permutations σ of {1, . . . , d}, provided (v1, . . . , vd)

belongs to V .

At each site of Dd
N , at most one particle with a certain velocity is allowed. We

also denote by η(x, v) ∈ {0, 1} the number of particles with fixed velocity v ∈ V at

site x ∈ Dd
N ; by ηx = {η(x, v); v ∈ V} the number of particles in each velocity v at

site x; and a configuration by η = {ηx; x ∈ Dd
N}. The set of particle configurations is

XN = ({0, 1}V)Dd
N .

On the interior of the domain, the dynamics consist of two parts:

(i) each particle in the system evolves according to the nearest neighbor weakly

asymmetric random walk with exclusion among particles with the same velocity,

(ii) binary collisions between particles with different velocities.

Let p(x, v) be an irreducible transition probability with finite range, and mean velocity



v, i.e., ∑
x∈Zd

xp(x, v) = v.

The jump law and the waiting times are chosen so that the jump rate from site x, with

velocity v, to site x+ y, with the same velocity v, is given by

PN(y, v) =
1

2

d∑
j=1

(δy,ej + δy,−ej) +
1

N
p(y, v), (1.1)

where δx,y stands for the Kronecker delta, which is equal to one if x = y and 0 otherwise,

and {e1, . . . , ed} is the canonical basis in Rd.

1.2 Infinitesimal Generator

In this section, we describe the model that we are going to consider in these

thesis. Our main interest is to analyze the stochastic lattice gas model given by the

generator LN , which is the superposition of the Glauber dynamics with the collision

and exclusion dynamics:

LN = N2{Lb
N + Lc

N + Lex
N }, (1.2)

where Lb
N denotes the generator of the Glauber dynamics, modeling insertion or re-

moval of particles, Lc
N denotes the generator that models the collision part of the

dynamics and lastly, Lex
N models the exclusion part of the dynamics. Note that in (1.2)

time has been speeded up diffusively due to the factor N2.

Let f : XN → R. The generator of the exclusion part of the dynamics, Lex
N , is

given by

(Lex
N f)(η) =

∑
v∈V

∑
x,z∈Dd

N

η(x, v)(1− η(z, v))PN(z − x, v)[f(ηx,z,v)− f(η)],

where

ηx,y,v(z, w) =


η(y, v) if w = v and z = x,

η(x, v) if w = v and z = y,

η(z, w) otherwise.

7



Because the definition of PN , in (1.1), we can use the decomposition

Lex
N = Lex,1

N + Lex,2
N ,

where

(Lex,1
N f)(η) =

1

2

∑
v∈V

∑
x,z∈Dd

N
|z−x|=1

η(x, v)(1− η(z, v))[f(ηx,z,v)− f(η)],

and

(Lex,2
N f)(η) =

1

N

∑
v∈V

∑
x,z∈Dd

N

η(x, v)(1− η(z, v))p(z − x, v)[f(ηx,z,v)− f(η)].

The generator of the collision part of the dynamics, Lc
N , is given by

(Lc
Nf)(η) =

∑
y∈Dd

N

∑
q∈Q

pc(y, q, η)[f(η
y,q)− f(η)],

where Q is the set of all collisions which preserve momentum:

Q = {q = (v, w, v′, w′) ∈ V4 : v + w = v′ + w′}.

The rate pc(y, q, η) is given by

pc(y, q, η) = η(y, v)η(y, w)[1− η(y, v′)][1− η(y, w′)],

and for q = (v0, v1, v2, v3), the configuration ηy,q after the collision is defined as

ηy,q(z, u) =

 η(y, vj+2) if z = y and u = vj for some 0 ≤ j ≤ 3,

η(z, u) otherwise,

where the index of vj+2 should be taken modulo 4.

Particles of velocities v and w at the same site collide at rate one and produce

two particles of velocities v′ and w′ at the same site and v + w = v′ + w′.

8



Finally, the generator of the Glauber dynamics is given by

(Lb
Nf)(η) =

∑
x∈Dd

N
x1=1

∑
v∈V

(αv(x̃/N)

N θ
[1− η(x, v)] + 1− αv(x̃/N)

N θ
[η(x, v)]

)
[f(σx,vη)− f(η)]

+
∑
x∈Dd

N
x1=N−1

∑
v∈V

(βv(x̃/N)

N θ
[1− η(x, v)] + 1− βv(x̃/N)

N θ
[η(x, v)]

)
[f(σx,vη)− f(η)],

where x̃ = (x2, . . . , xd), x = (x1, x̃) and

σx,vη(y, w) =

 1− η(x, v), if w = v and y = x,

η(y, w), otherwise

for every v ∈ V , αv, βv ∈ C2(Td−1) and θ ≥ 0. We also assume that, for every

v ∈ V , the functions αv and βv, have images belonging to some compact subset of

(0, 1), which means that αv(·) and βv(·) are bounded away from 0 and 1. The functions

αv(·) and βv(·), which affect the birth and death rates at the boundary, represent the

density of the reservoirs.

In the text, sometimes it will be more convenient to write

rx(η, α) = αv(x̃/N)(1− η(x, v)) + (1− αv(x̃/N))η(x, v),

rx(η, β) = βv(x̃/N)(1− η(x, v)) + (1− βv(x̃/N))η(x, v).
(1.3)

Let {η(t), t ≥ 0} be the Markov process with generator LN and denote by

{SN
t , t ≥ 0} the semigroup associated to LN .

Let D(R+, XN) be the set of right continuous functions with left limits taking

values in XN endowed with the Skorohod topology. For a probability measure µ on

XN , denote by Pµ the measure on the path space D(R+, XN) induced by {η(t) : t ≥ 0}
and the initial measure µ. The expectation with respect to Pµ is denoted by Eµ.
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1.3 Mass and Momentum

For each configuration ξ ∈ {0, 1}V , denote by I0(ξ) the mass of ξ and by Ik(ξ),

k = 1, . . . , d, the momentum of ξ, i.e.,

I0(ξ) =
∑
v∈V

ξ(v), Ik(ξ) =
∑
v∈V

vkξ(v).

Set I(ξ) := (I0(ξ), . . . , Id(ξ)). Assume that the set of velocities is chosen in such a way

that the unique conserved quantities by the random walk dynamics described above

are the mass and the momentum:
∑
x∈Dd

N

I(ηx).

Two examples of sets of velocities satisfying these conditions can be found in [7],

one of the models is the following. Denote by E = {e = ±ei for some i = 1, . . . , d},
let V = E , with this choice, the only possible collisions are those q = (v, w, v′, w′) such

that v + w = 0 and v′ + w′ = 0.

For each chemical potential λ = (λ0, . . . , λd) ∈ Rd+1, denote bymλ the probability

measure on {0, 1}V given by

mλ(ξ) =
1

Z(λ)
exp{λ · I(ξ)}, (1.4)

where Z(λ) is a normalizing constant. Note that mλ is a product measure on {0, 1}V ,

i.e., the variables {ξ(v) : v ∈ V} are independent under mλ.

Denote by µN
λ the product measure on XN , with marginals given by

µN
λ {η : η(x, ·) = ξ} = mλ(ξ),

for each ξ ∈ {0, 1}V and x ∈ Dd
N . Note that {η(x, v) : x ∈ Dd

N , v ∈ V} are independent

variables under µN
λ , and that the measure µN

λ is invariant for the exclusion process with

periodic boundary conditions, in this case the generator is given by LN = N2{Lc
N +

Lex
N }. The expectation under µN

λ of the mass and momentum are, respectively, given

by
ρ(λ) := EµN

λ
[I0(ηx)] =

∑
v∈V

θv(λ),

ϱk(λ) := EµN
λ
[Ik(ηx)] =

∑
v∈V

vkθv(λ).
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In the last formula, θv(λ) denotes the expected value of the density of particles with

velocity v under mλ:

θv(λ) := Emλ
[ξ(v)] =

exp

{
λ0 +

d∑
k=1

λkvk

}

1 + exp

{
λ0 +

d∑
k=1

λkvk

} . (1.5)

Denote by (ρ, ϱ)(λ) := (ρ(λ), ϱ1(λ), . . . , ϱd(λ)) the map that associates the chemical po-

tential to the vector of density and momentum. It is possible to prove that (ρ, ϱ) is a dif-

feomorphism onto U ⊂ Rd+1, the interior of the convex envelope of {I(ξ), ξ ∈ {0, 1}V}.
Denote by Λ = (Λ0, . . . ,Λd) : U → Rd+1 the inverse of (ρ, ϱ). This correspondence

allows one to parameterize the invariant states by the density and momentum: for

each (ρ, ϱ) ∈ U, we have a product measure νNρ,ϱ = µN
Λ(ρ,ϱ) on XN .

1.4 Hydrodynamic Equations

From now on, we fix a finite time horizon [0, T ]. We denote by Cm,n([0, T ]×Dd)

the set of functions defined on [0, T ] ×Dd that are m times differentiable on the first

variable, n times differentiable on the second variable and have continuous derivatives.

For a function G := G(t, u) ∈ Cm,n([0, T ]×Dd), we denote by ∂tG its derivative with

respect to the time variable t and by ∂ui
G its derivative with respect to the space

variable ui, with i = 1, . . . , d. For simplicity of notation, we set ∆G :=
d∑

i=1

∂2G

∂ui2
and

∇G represents the generalized gradient of the function G. Finally, Cm,n
0 ([0, T ] × Dd)

is the set of functions G ∈ Cm,n([0, T ]×Dd) such that for any time t the function Gt

vanishes at the boundary, that is, Gt(0, ũ) = Gt(1, ũ) = 0, where we denote u ∈ Dd by

(u1, ũ), with ũ ∈ Td−1.

Let (B, ∥ · ∥B) be a separable Banach space. We denote by L2([0, T ], B) the

Banach space of measurable functions U : [0, T ]→ B for which

∥U∥2L2([0,T ],B) =

∫ T

0

∥Ut∥2B dt <∞.

Moreover, we denote by H 1(Dd) the Sobolev space of measurable functions in L2(Dd)

that have generalized derivatives in L2(Dd).
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Now that we have introduced all the notation and the spaces of functions that we

will use, we can define the system of partial differential equations and the respective

notions of weak solutions which are involved in the hydrodynamic limit of this model,

under different boundary coditions.

1.4.1 Dirichlet boundary conditions

For x = (x1, x̃) ∈ {0, 1} × Td−1, consider

d(x) =


∑
v∈V

(αv(x̃), v1αv(x̃), . . . , vdαv(x̃)) if x1 = 0,∑
v∈V

(βv(x̃), v1βv(x̃), . . . , vdβv(x̃)) if x1 = 1.
(1.6)

Definition 1. Fix a measurable density profile ρ0 : Dd → R+, and a measurable
momentum profile ϱ0 : Dd → Rd. We say that (ρ, ϱ) : [0, T ]×Dd → R+×Rd is a weak
solution of the system of parabolic partial differential equations

∂t(ρ, ϱ) +
∑
v∈V

ṽ[v · ∇χ(θv(Λ(ρ, ϱ)))] =
1

2
∆(ρ, ϱ),

(ρ, ϱ)(0, ·) = (ρ0, ϱ0)(·) and (ρ, ϱ)(t, x) = d(x), x ∈ {0, 1} × Td−1,

(1.7)

where χ(r) = r(1−r) is the static compressibility and for each velocity v = (v1, . . . , vd),
we define ṽ = (1, v1, . . . , vd), if the following two conditions hold:

(i) (ρ, ϱ) ∈ L2([0, T ],H 1(Dd));

(ii) (ρ, ϱ) satisfies the weak formulation:∫
Dd

(ρ, ϱ)(T, u)G(T, u) du−
∫
Dd

(ρ0, ϱ0)(u)G(0, u) du =

∫ T

0

dt

∫
Dd

du

{
(ρ, ϱ)(t, u)∂tG(t, u) +

1

2
(ρ, ϱ)(t, u)

d∑
i=1

∂2G

∂u2i
(t, u)

}

−1

2

∫ T

0

∫
{1}×Td−1

d(1, ũ)
∂G

∂u1
(t, 1, ũ) dS dt+

1

2

∫ T

0

∫
{0}×Td−1

d(0, ũ)
∂G

∂u1
(t, 0, ũ) dS dt

+

∫ T

0

∫
Dd

∑
v∈V

ṽ · χ(θv(Λ(ρ, ϱ)))
d∑

i=1

vi
∂G

∂ui
(t, u) du dt

(1.8)
for all t ∈ [0, T ] and any function G : [0, T ]×Dd → Rd+1 in C1,2

0 ([0, T ]×Dd).
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1.4.2 Robin boundary conditions

Definition 2. Fix a measurable density profile ρ0 : Dd → R+, and a measurable
momentum profile ϱ0 : Dd → Rd. We say that (ρ, ϱ) : [0, T ]×Dd → R+×Rd is a weak
solution of the system of parabolic partial differential equations

∂t(ρ, ϱ) +
∑
v∈V

ṽ[v · ∇χ(θv(Λ(ρ, ϱ)))] =
1

2
∆(ρ, ϱ),

∂(ρ, ϱ)

∂u1
(t, 0, ũ)− 2

∑
v∈V

ṽ[v · χ(θv(Λ(ρ, ϱ)))] = (ρ, ϱ)(t, 0, ũ)−
∑
v∈V

vkαv(ũ),

∂(ρ, ϱ)

∂u1
(t, 1, ũ)− 2

∑
v∈V

ṽ[v · χ(θv(Λ(ρ, ϱ)))] =
∑
v∈V

vkβv(ũ)− (ρ, ϱ)(t, 1, ũ), t ∈ (0, T ],

(ρ, ϱ)(0, ·) = (ρ0, ϱ0)(·)
(1.9)

where χ(r) = r(1 − r) is the static compressibility of the system and for each velocity
v = (v1, . . . , vd), we define ṽ = (1, v1, . . . , vd), if the following two conditions hold:

(i) (ρ, ϱ) ∈ L2([0, T ],H 1(Dd));

(ii) (ρ, ϱ) satisfies the weak formulation:∫
Dd

(ρ, ϱ)(T, u)G(T, u) du−
∫
Dd

(ρ, ϱ)(0, u)G(0, u) du =

∫ T

0

∫
Dd

(ρ, ϱ)(t, u)∂tG(t, u) du dt

+

∫ T

0

∫
Dd

∑
v∈V

ṽ · χ(θv(Λ(ρ, ϱ)))
d∑

i=1

vi
∂G

∂ui
(t, u) du dt

+
1

2

∫ T

0

∫
{1}×Td−1

[
∑
v∈V

vkβv(ũ)− (ρ, ϱ)(t, 1, ũ)]G(t, 1, ũ) dS dt

−1

2

∫ T

0

∫
{0}×Td−1

[(ρ, ϱ)(t, 0, ũ)−
∑
v∈V

vkαv(ũ)]G(t, 0, ũ) dS dt

−1

2

∫ T

0

∫
{1}×Td−1

(ρ, ϱ)(t, 1, ũ)
∂G

∂u1
(t, 1, ũ) dS dt

+
1

2

∫ T

0

∫
{0}×Td−1

(ρ, ϱ)(t, 0, ũ)
∂G

∂u1
(t, 0, ũ) dS dt

+
1

2

∫ T

0

∫
Dd

(ρ, ϱ)(t, u)
d∑

i=1

∂2G

∂u2i
(t, u) du dt

(1.10)
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for all t ∈ [0, T ] and any function G : [0, T ]×Dd → Rd+1 in C1,2([0, T ]×Dd).

1.4.3 Neumann boundary conditions

Definition 3. Fix a measurable density profile ρ0 : Dd → R+, and a measurable
momentum profile ϱ0 : Dd → Rd. We say that (ρ, ϱ) : [0, T ]×Dd → R+×Rd is a weak
solution of the system of parabolic partial differential equations

∂t(ρ, ϱ) +
∑
v∈V

ṽ[v · ∇χ(θv(Λ(ρ, ϱ)))] =
1

2
∆(ρ, ϱ),

∂(ρ, ϱ)

∂u1
(t, 0, ũ)− 2

∑
v∈V

ṽ[v · χ(θv(Λ(ρ, ϱ)))] = 0,

∂(ρ, ϱ)

∂u1
(t, 1, ũ)− 2

∑
v∈V

ṽ[v · χ(θv(Λ(ρ, ϱ)))] = 0, t ∈ (0, T ],

(ρ, ϱ)(0, ·) = (ρ0, ϱ0)(·)

(1.11)

where χ(r) = r(1 − r) is the static compressibility of the system and for each velocity
v = (v1, . . . , vd), we define ṽ = (1, v1, . . . , vd), if the following two conditions hold:

(i) (ρ, ϱ) ∈ L2([0, T ],H 1(Dd));

(ii) (ρ, ϱ) satisfies the weak formulation:∫
Dd

(ρ, ϱ)(T, u)G(T, u) du−
∫
Dd

(ρ, ϱ)(0, u)G(0, u) du =

∫ T

0

∫
Dd

(ρ, ϱ)(t, u)∂tG(t, u) du dt

+

∫ T

0

∫
Dd

∑
v∈V

ṽ · χ(θv(Λ(ρ, ϱ)))
d∑

i=1

vi
∂G

∂ui
(t, u) du dt

−1

2

∫ T

0

∫
{1}×Td−1

(ρ, ϱ)(t, 1, ũ)
∂G

∂u1
(t, 1, ũ) dS dt

+
1

2

∫ T

0

∫
{0}×Td−1

(ρ, ϱ)(t, 0, ũ)
∂G

∂u1
(t, 0, ũ) dS dt

+
1

2

∫ T

0

∫
Dd

(ρ, ϱ)(t, u)
d∑

i=1

∂2G

∂u2i
(t, u) du dt

(1.12)

for all t ∈ [0, T ] and any function G : [0, T ]×Dd → Rd+1 in C1,2([0, T ]×Dd).
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Remark 1. We obtain the weak formulation of the system of partial differential equa-
tions with one of the above boundary conditions by multiplying both sides of the identity

∂t(ρ, ϱ) +
∑
v∈V

ṽ[v · ∇χ(θv(Λ(ρ, ϱ)))] =
1

2
∆(ρ, ϱ)1 (1.13)

by a test function G, then integrating both in space and time and finally, performing two
formal integration by parts in space and one in time. Finally, applying the respective
boundary conditions, we obtain the corresponding integral equations. For more details,
see Appendix A.1.

1.5 Hydrodynamic Limit for the Boundary Driven
Process

Let M+ be the space of finite positive measures on Dd endowed with the weak

topology, and letM be the space of bounded variation signed measures on Dd endowed

with the weak topology. LetM+×Md be the cartesian product of these spaces endowed

with the product topology, which is metrizable.

Recall that the conserved quantities are the mass and momentum presented in

Section 1.3. For k = 0, . . . , d, denote by πk,N
t the empirical measure associated to the

k-th conserved quantity:

πk,N
t (du) =

1

Nd

∑
x∈Dd

N

Ik(ηx(t))δx/N(du), (1.14)

where δu(du) stands for the Dirac measure supported on u ∈ [0, 1]d. We denote by

⟨πk,N
t , G⟩ the integral of a test function G with respect to the empirical measure πk,N

t ,

and let ⟨f, g⟩ν be the inner product in L2(ν) of f and g:

⟨f, g⟩ν =

∫
fg dν.

Let D([0, T ],M+ ×Md) be the set of right continuous functions with left limits

taking values on M+ ×Md endowed with the Skorohod topology. We consider the

sequence (QN)N of probability measures on D([0, T ],M+ ×Md) that corresponds to

the Markov process πN
t = (π0,N

t , . . . , πd,N
t ) starting from µN .

1Remember that in equation (1.13) for each velocity v = (v1, . . . , vd) ∈ V, we define ṽ =
(1, v1, . . . , vd)
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At this point we need to fix initial measurable profiles ρ0 : Dd → R+ and ϱ0 :

Dd → Rd, where ϱ0 = (ϱ0,1, . . . , ϱ0,d) and an initial distribution (µN)N on XN .

Before introducing the main result, we establish some definitions.

Definition 4. We say that (ρ, ϱ) has finite energy if its components belong to L2([0, T ],H 1(Dd)),
i.e., ∇ρ and ∇ϱk are measurable functions and∫ T

0

ds

(∫
Dd

∥∇ρ(s, u)∥2du
)
<∞,

∫ T

0

ds

(∫
Dd

∥∇ϱk(s, u)∥2du
)
<∞,

for k = 1, . . . , d.

Definition 5. We say that a sequence of probability measures (µN)N on XN is associ-
ated to the density profile ρ0 and to the momentum profile ϱ0, if, for every continuous
function G : Dd → R and for every δ > 0,

lim
N→∞

µN

η :

∣∣∣∣∣∣ 1

Nd

∑
x∈Dd

N

G
(

x
N

)
I0(ηx)−

∫
Dd

G(u)ρ0(u)du

∣∣∣∣∣∣ > δ

 = 0,

and for every 1 ≤ k ≤ d,

lim
N→∞

µN

η :

∣∣∣∣∣∣ 1

Nd

∑
x∈Dd

N

G
(

x
N

)
Ik(ηx)−

∫
Dd

G(u)ϱ0,k(u)du

∣∣∣∣∣∣ > δ

 = 0.

Theorem 1. Let ρ0 and ϱ0 be measurable functions, also let (µN)N be a sequence of
probability measures on XN associated to the profile (ρ0, ϱ0). Then, for every t ∈ [0, T ],
for every continuous function G : Dd → R, and for every δ > 0,

lim
N→∞

PµN

∣∣∣∣∣∣ 1

Nd

∑
x∈Dd

N

G
(

x
N

)
I0(ηx(t))−

∫
Dd

G(u)ρ(t, u) du

∣∣∣∣∣∣ > δ

 = 0,

and for 1 ≤ k ≤ d,

lim
N→∞

PµN

∣∣∣∣∣∣ 1

Nd

∑
x∈Dd

N

G
(

x
N

)
Ik(ηx(t))−

∫
Dd

G(u)ϱk(t, u) du

∣∣∣∣∣∣ > δ

 = 0,

where (ρ, ϱ) has finite energy (see Definition 4) and it is the unique weak solution of:

• (1.7) as given in Definition 1, if 0 ≤ θ < 1;

• (1.9) as given in Definition 2, if θ = 1;

• (1.11) as given in Definition 3, if θ > 1.
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Remark 2. We split the proof of Theorem 1 into

(i) proof of tightness of the sequence (QN)N ,

(ii) characterization of the unique limiting point Q∗ of the sequence.

These two results, together, imply the weak convergence of (QN)N to Q∗ as N →∞.

1.6 Heuristics for Hydrodynamic Equations

We need to introduce a function κ, which is going to be described later in Re-

mark 3, to be able to obtain some entropy estimates that are essential to the proof

of the hydrodynamic limit. We then consider νNκ as the product measure on XN with

marginals given by

νNκ {η : η(x, ·) = ξ} = mΛ(κ(x))(ξ), (1.15)

where mλ(·) was defined in (1.4).

Next, we give the main ideas which are behind the identification of limit points

as a weak solution of the system of parabolic partial differential equations given before,

but we only present the heuristic argument.

We fix a function H : [0, T ] × Dd → Rd+1 which is continuously differentiable

in time and twice continuously differentiable in space. By Dynkin’s formula, see for

example in [1, Appendix A1,Lemma 5.1],

MN,k
t (H) = ⟨πk,N

t , H⟩ − ⟨πk,N
0 , H⟩ −

∫ t

0

(LN + ∂s)⟨πk,N
s , H⟩ ds (1.16)

is a martingale with respect to the natural filtration Ft = σ(η(s), s ≤ t). We can

rewrite

MN,k
t (H) = ⟨πk,N

t , H⟩ − ⟨πk,N
0 , H⟩ −

∫ t

0

∂s⟨πk,N
s , H⟩ ds−

∫ t

0

N2Lc
N⟨πk,N

s , H⟩ ds

−
∫ t

0

N2Lex,1
N ⟨πk,N

s , H⟩ ds−
∫ t

0

N2Lex,2
N ⟨πk,N

s , H⟩ ds−
∫ t

0

N2Lb
N⟨πk,N

s , H⟩ ds.
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Therefore, from (A.4), (A.6), (A.8) and (A.10), we have that

MN,k
t (H) = ⟨πk,N

t , H⟩ − ⟨πk,N
0 , H⟩ −

∫ t

0

⟨πk,N
s , ∂sH⟩ ds−

1

2

∫ t

0

⟨πk,N
s ,∆NH⟩ ds

+
1

2

∫ t

0

1

Nd−1

∑
x∈Dd

N
x1=N−1

Ik(ηx(s))
{
N
[
H
(
N
N
, x̃
N

)
−H

(
N−1
N
, x̃
N

)]}
ds

−1

2

∫ t

0

1

Nd−1

∑
x∈Dd

N
x1=1

Ik(ηx(s))
{
−N

[
H
(

0
N
, x̃
N

)
−H

(
1
N
, x̃
N

)]}
ds

−
∫ t

0

1

Nd

d∑
j=1

∑
x∈Dd

N

(∂Nuj
H)
(

x
N

)
τxW

N,ηs
j,k ds

−
∫ t

0

N1−θ

Nd

∑
x∈Dd

N
x1=1

∑
v∈V

vkNH
(

1
N
, x̃
N

)
[αv(

x̃
N
)− ηsN2(1, x̃, v)] ds

−
∫ t

0

N1−θ

Nd

∑
x∈Dd

N
x1=N−1

∑
v∈V

vkNH
(
N−1
N
, x̃
N

)
[βv(

x̃
N
)− ηsN2(N − 1, x̃, v)] ds

(1.17)

where τx stands for the translation by x on the state space XN so that (τxη)(y, v) =

η(x+ y, v) for all x, y ∈ Zd, v ∈ V , and WN,ηs
j,k is given by:

WN,ηs
j,k =

∑
v∈V

vk
∑
z∈Zd

p(z, v)zjηs(0, v)[1− ηs(z, v)],

where v0 = 1. Since p(·, v) is of finite range,

EµN
λ

[
W

N,ηsN2

j,k

]
=
∑
v∈V

vkvjχ(θv(λ)),

where χ(r) = r(1− r) as mentioned previously in Section 1.4.

1.6.1 The case θ ∈ [0, 1)

In this regime, we consider the test function H ∈ C1,2
0 ([0, T ]×Dd). Then, we can

subtract H
(

0
N
, x̃
N

)
(resp. H

(
N
N
, x̃
N

)
) in the eighth term (resp. the ninth term) at the
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right-hand side of (1.17) and then, making a Taylor expansion of H, we get that

MN,k
t (H) = ⟨πk,N

t , H⟩ − ⟨πk,N
0 , H⟩ −

∫ t

0

⟨πk,N
s , ∂sH⟩ ds−

1

2

∫ t

0

⟨πk,N
s ,∆NH⟩ ds

+
1

2

∫ t

0

⟨πk,N,bN−1
s , ∂N,+

u1
H⟩ ds− 1

2

∫ t

0

⟨πk,N,b1
s , ∂N,−

u1
H⟩ ds

−
∫ t

0

1

Nd

d∑
j=1

∑
x∈Dd

N

(∂Nuj
H)
(

x
N

)
τxW

N,ηsN2

j,k ds

−
∫ t

0

N1−θ

Nd

∑
x∈Dd

N
x1=1

∑
v∈V

vk ∂
N,−
x1

H
(

1
N
, x̃
N

)
[αv(

x̃
N
)− ηsN2(1, x̃, v)] ds

+

∫ t

0

N1−θ

Nd

∑
x∈Dd

N
x1=N−1

∑
v∈V

vk ∂
N,+
x1

H
(
N−1
N
, x̃
N

)
[βv(

x̃
N
)− ηsN2(N − 1, x̃, v)] ds

plus a term that vanishes, as N →∞.

Above

∂N,−
x1

H
(

1
N
, x̃
N

)
= −N

[
H
(

0
N
, x̃
N

)
−H

(
1
N
, x̃
N

)]
and

∂N,+
x1

H
(
N−1
N
, x̃
N

)
= N

[
H
(
N
N
, x̃
N

)
−H

(
N−1
N
, x̃
N

)]
.

As a consequence of Lemma 3, we can replace ηsN2(1, x̃, v) by αv

(
x̃
N

)
and ηsN2(N −

1, x̃, v) by βv
(

x̃
N

)
. Then, we have

MN,k
t (H) = ⟨πk,N

t , H⟩ − ⟨πk,N
0 , H⟩ −

∫ t

0

⟨πk,N
s , ∂sH⟩ ds−

1

2

∫ t

0

⟨πk,N
s ,∆NH⟩ ds

+
1

2

∫ t

0

⟨πk,N,bN−1
s , ∂N,+

u1
H⟩ ds− 1

2

∫ t

0

⟨πk,N,b1
s , ∂N,−

u1
H⟩ ds

−
∫ t

0

1

Nd

d∑
j=1

∑
x∈Dd

N

(∂Nuj
H)
(

x
N

)
τxW

N,ηsN2

j,k ds

plus a term that vanishes, as N →∞.
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Taking the expectation with respect to νNκ in the expression above we get

0 =
1

Nd

∑
x∈Dd

N

H
(

x
N

)
EνNκ

[Ik(ηx(t))− Ik(ηx(0))]−
∫ t

0

1

Nd

∑
x∈Dd

N

∂sH
(

x
N

)
EνNκ

[Ik(ηx)] ds

−1

2

∫ t

0

1

Nd

∑
x∈Dd

N

EνNκ
[Ik(ηx(s))]∆NH

(
x
N

)
ds

+
1

2

∫ t

0

1

Nd−1

∑
x∈Dd

N
x1=N−1

EνNκ
[Ik(ηx(s))]∂

N,+
u1

H
(

N−1
N
, x̃
N

)
ds

−1

2

∫ t

0

1

Nd−1

∑
x∈Dd

N
x1=1

EνNκ
[Ik(ηx(s))]∂

N,−
u1

H
(

1
N
, x̃
N

)
ds

−
∫ t

0

1

Nd

d∑
j=1

∑
x∈Dd

N

(∂Nuj
H)
(

x
N

)∑
v∈V

vkvjχ(θv(κ))ds

plus a term that vanishes, as N →∞.

Note that, the restriction θ ≥ 0 comes from the fact that the errors, which arise

from the Taylor expansion in H, have to vanish as N → ∞ and the restriction θ < 1

comes from the replacement of the occupation variables ηsN2(1, x̃, v) and ηsN2(N −
1, x̃, v) by αv(x̃) and βv(x̃), respectively, see Lemma 3. At this point compare the

previous expression with the weak formulation given in (1.8).
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1.6.2 The case θ = 1

In this regime, we consider the test function H ∈ C1,2([0, T ]×Dd) . We get

MN,k
t (H) = ⟨πk,N

t , H⟩ − ⟨πk,N
0 , H⟩ −

∫ t

0

⟨πk,N
s , ∂sH⟩ ds−

1

2

∫ t

0

⟨πk,N
s ,∆NH⟩ ds

+
1

2

∫ t

0

⟨πk,N,bN−1
s , ∂N,+

u1
H⟩ ds− 1

2

∫ t

0

⟨πk,N,b1
s , ∂N,−

u1
H⟩ ds

−
∫ t

0

1

Nd

d∑
j=1

∑
x∈Dd

N

(∂Nuj
H)
(

x
N

)
τxW

N,ηsN2

j,k ds

−
∫ t

0

N2−θ

Nd

∑
x∈Dd

N
x1=1

∑
v∈V

vkH
(

1
N
, x̃
N

)
[αv

(
x̃
N

)
− ηsN2(1, x̃, v)] ds

+

∫ t

0

N2−θ

Nd

∑
x∈Dd

N
x1=N−1

∑
v∈V

vkH
(
N−1
N
, x̃
N

)
[ηsN2(N − 1, x̃, v)− βv

(
x̃
N

)
] ds.

For this regime, the replacement done before, due to Lemma 3, is no longer valid.

Nevertheless, we can replace the integral in time of ηs(1, x̃, v) (resp. ηs(N − 1, x̃, v)) by

integral in time of the average in a box around (1, x̃, v) (resp. (N − 1, x̃, v)):

−→η εN
sN2(1, x̃, v) :=

1

εN

1+εN∑
x1=1

ηsN2(x1, x̃, v),
←−η εN

sN2(N−1, x̃, v) := 1

εN

N−1−εN∑
x1=N−1

ηsN2(x1, x̃, v).

Here we note that the sum above goes from 1 to 1+⌊εN⌋, but for sake of simplicity,

we write 1 + εN . By noting that

−→η εN
sN2(1, x̃, v) ∼ (ρ, ϱ)s(0), ( resp. ←−η εN

sN2(N − 1, x̃, v) ∼ (ρ, ϱ)s(1)),

in some sense, that we will be clear in the Section 1.11, for more information see [18].
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We obtain that

0 =
1

Nd

∑
x∈Dd

N

H
(

x
N

)
EνNκ

[Ik(ηx(t))− Ik(ηx(0))]−
1

Nd

∑
x∈Dd

N

∂sH
(

x
N

)
EνNκ

[Ik(ηx)]

−1

2

∫ t

0

1

Nd

∑
x∈Dd

N

EνNκ
[Ik(ηsN2(x))]∆NH

(
x
N

)
ds

+
1

2

∫ t

0

1

Nd−1

∑
x∈Dd

N
x1=N−1

EνNκ
[Ik(ηsN2(x))]∂N,+

u1
H
(

N−1
N
, x̃
N

)
ds

−1

2

∫ t

0

1

Nd−1

∑
x∈Dd

N
x1=1

EνNκ
[Ik(ηsN2(x))]∂N,−

u1
H
(

1
N
, x̃
N

)
ds

−
∫ t

0

1

Nd

d∑
j=1

∑
x∈Dd

N

(∂Nuj
H)
(

x
N

)∑
v∈V

vkvjχ(θv(κ))ds

−
∫ t

0

N2−θ

Nd

∑
x∈Dd

N
x1=1

H
(

1
N
, x̃
N

)
EνNκ

[∑
v∈V

vkαv(
x̃
N
)− Ik(ηsN2((1, x̃, v))

]

+

∫ t

0

N2−θ

Nd

∑
x∈Dd

N
x1=N−1

H
(

N−1
N
, x̃
N

)
EνNκ

[
Ik(ηsN2(N − 1, x̃, v))−

∑
v∈V

vkβv(
x̃
N
)
]
.

At this point, compare the previous expression with the weak formulation given in

(1.10).

1.6.3 The case θ > 1

This regime is quite similar to the previous one. We consider again an arbitrary

function H ∈ C1,2([0, T ]×Dd). Note that the last two terms at the right-hand side of

(1.16) vanish as N → ∞ since θ > 1. Then, repeating the same arguments as in the
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previous subsection, we obtain

0 =
1

Nd

∑
x∈Dd

N

H
(

x
N

)
EνNκ

[Ik(ηx(t))− Ik(ηx(0))]−
1

Nd

∑
x∈Dd

N

∂sH
(

x
N

)
EνNκ

[Ik(ηx)]

−1

2

∫ t

0

1

Nd

∑
x∈Dd

N

EνNκ
[Ik(ηx(s))]∆NH

(
x
N

)
ds

+
1

2

∫ t

0

1

Nd−1

∑
x∈Dd

N
x1=N−1

EνNκ
[Ik(ηsN2(x))]∂N,+

u1
H
(

N−1
N
, x̃
N

)
ds

−1

2

∫ t

0

1

Nd−1

∑
x∈Dd

N
x1=1

EνNκ
[Ik(ηsN2(x))]∂N,−

u1
H
(

1
N
, x̃
N

)
ds

−
∫ t

0

1

Nd

d∑
j=1

∑
x∈Dd

N

(∂Nuj
H)
(

x
N

)∑
v∈V

vkvjχ(θv(κ))ds.

Again compare with the weak formulation given in (1.12).

1.7 Replacement Lemmas

1.7.1 Estimates on Dirichlet forms

The Dirichlet form ⟨LN

√
f,
√
f⟩νNκ does not always have a closed form. In this

section, we compare the Dirichlet form with the closed form defined below, for each

function f : XN → R,

DνNκ
(
√
f) = Dex

νNκ
(
√
f) +Dc

νNκ
(
√
f) +Db

νNκ
(
√
f),

and

Dex
νNκ

(
√
f) =

∑
v∈V

∑
x∈Dd

N

∑
z∈Dd

N

c(x,z,v)(η)

∫
[
√
f(ηx,z,v)−

√
f(η)]2dνNκ ,

where c(x,z,v)(η) = η(x, v)(1− η(z, v))PN(z − x, v),

Dc
νNκ

(
√
f) =

∑
q∈Q

∑
x∈Dd

N

∫
pc(x, q, η)[

√
f(ηx,q)−

√
f(η)]2dνNκ
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and

Db
νNκ

(
√
f) =

∑
v∈V

∑
x∈{1}×Td−1

N

∫
rx(η, α)

N θ
[
√
f(σx,vη)−

√
f(η)]2dνNκ

+
∑
v∈V

∑
x∈{N−1}×Td−1

N

∫
rx(η, β)

N θ
[
√
f(σx,vη)−

√
f(η)]2dνNκ ,

where rx(η, α) and rx(η, β) was defined in (1.3).

In order to prove the next proposition, we need some intermediate results. For

that purpose, we recall from [4] the following lemmas:

Lemma 1. Let T : η ∈ ΩN → T (η) ∈ ΩN be a transformation in the configuration
space and c : η ∈ ΩN → c(η) be a positive local function. Let f be a density with respect
to a probability measure νNκ on ΩN . Then, we have that

⟨c(η)[
√
f(T (η))−

√
f(η)],

√
f(η)⟩νNκ ≤ −

1

4

∫
c(η)(

√
f(T (η))−

√
f(η))2 dνNκ

+
1

16

∫
1

c(η)

[
c(η)− c(T (η))νNκ (T (η))

νNκ (η)

]2
(
√
f(T (η)) +

√
f(η))2 dνNκ .

(1.18)

Lemma 2. Let f be a density with respect to a probability measure νNκ on ΩN . Then,
we have that

sup
x̸=y

∫
f(ηx,y,v)dνNκ ≤ C

sup
x

∫
f(ηx,q)dνNκ ≤ C

sup
x

∫
f(σx,vη)dνNκ ≤ C.

Remark 3. For each v ∈ V, consider the functions κvk : Dd → (0, 1), for k = 0, . . . , d.
We will have two situations for the function κ =

∑
v∈V

(κv0, v1κ
v
1, . . . , vdκ

v
d):

• When θ ∈ [0, 1), we will assume that κvk are smooth functions, for k = 0, . . . , d,
such that the restriction of κ to {0} × Td−1 equals to the vector valued function
d(0, x̃) defined in (1.6), and that the restricion of κ to {1}×Td−1 equals to vector
valued function d(1, x̃), also defined in (1.6);

• when θ ≥ 1, we will assume that κ is a constant function.

As a consequence of Lemmas 1 and 2, we conclude that
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Corollary 1. Let κ be a function as in Remark 3. Let f : XN → R be a density with
respect to the measure νNκ , which was mentioned previously in (1.15). Then,

(i) if κ is a constant function, then

N2⟨Lex
N

√
f,
√
f⟩νNκ = −N

2

2
Dex

νNκ
(
√
f);

(ii) if κ is a smooth function, then

N2⟨Lex
N

√
f,
√
f⟩νNκ = −N

2

4
Dex

νNκ
(
√
f) + EN(κ)

with |EN(κ)| ≤ CNd.

Proof. By writing N2⟨Lex
N

√
f,
√
f⟩νNκ as its half plus its half and summing and sub-

tracting the term needed to complete the square, we have that

N2⟨Lex
N

√
f,
√
f⟩νNκ

=
N2

2

∫ ∑
v∈V

∑
x∈Dd

N

∑
z∈Dd

N

c(x,z,v)(η)[
√
f(ηx,z,v)−

√
f(η)]

√
f(η) dνNκ

+
N2

2

∫ ∑
v∈V

∑
x∈Dd

N

∑
z∈Dd

N

c(x,z,v)(η)[
√
f(ηx,z,v)−

√
f(η)]

√
f(η) dνNκ

+
N2

2

∫ ∑
v∈V

∑
x∈Dd

N

∑
z∈Dd

N

c(x,z,v)(η)[
√
f(ηx,z,v)−

√
f(η)]

√
f(ηx,z,v) dνNκ

−N
2

2

∫ ∑
v∈V

∑
x∈Dd

N

∑
z∈Dd

N

c(x,z,v)(η)[
√
f(ηx,z,v)−

√
f(η)]

√
f(ηx,z,v) dνNκ ,

where c(x,z,v)(η) = η(x, v)(1 − η(z, v))PN(z − x, v). Putting together the first and
fourth terms and doing a change of variables in the second term, we obtain that the
last display equals to

−N
2

2

∫ ∑
v∈V

∑
x∈Dd

N

∑
z∈Dd

N

c(x,z,v)(η)[
√
f(ηx,z,v)−

√
f(η)]2 dνNκ

+
N2

2

∫ ∑
v∈V

∑
x∈Dd

N

∑
z∈Dd

N

c(x,z,v)(η)[
√
f(ηx,z,v)−

√
f(η)]

√
f(ηx,z,v) dνNκ

−N
2

2

∫ ∑
v∈V

∑
x∈Dd

N

∑
z∈Dd

N

c(z,x,v)(η)
νNκ (ηx,z,v)

νNκ (η)
[
√
f(ηx,z,v)−

√
f(η)][

√
f(ηx,z,v)]dνNκ .
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Last display equals to

−N
2

2

∫ ∑
v∈V

∑
x∈Dd

N

∑
z∈Dd

N

c(x,z,v)(η)[
√
f(ηx,z,v)−

√
f(η)]2 dνNκ

+
N2

2

∫ ∑
v∈V

∑
x∈Dd

N

∑
z∈Dd

N

c(x,z,v)(η)
(
1− νNκ (ηx,z,v)

νNκ (η)

)√
f(ηx,z,v)[

√
f(ηx,z,v)−

√
f(η)] dνNκ .

Hence, N2⟨Lex
N

√
f,
√
f⟩νNκ = −N

2

2
Dex

νNκ
(
√
f) + gN(κ), where

gN(κ) =
N2

2

∫ ∑
v∈V

∑
x∈Dd

N

∑
z∈Dd

N

c(x,z,v)(η)
(
1− νNκ (ηx,z,v)

νNκ (η)

)√
f(ηx,z,v)[

√
f(ηx,z,v)−

√
f(η)]dνNκ .

To handle gN(κ), we start by observing that if we set

γx,v =
θv(Λ(κ(x)))

1− θv(Λ(κ(x)))
, (1.19)

then ∣∣∣∣1− νNκ (ηx,z,v)

νNκ (η)

∣∣∣∣ = ∣∣∣∣1− γz,v
γx,v

∣∣∣∣ . (1.20)

Thus, if κ is constant, then gN(κ) = 0.
On the other hand, if κ is not constant, we need to redo the analysis of gN(κ).

Applying Young’s inequality, (that is ab ≤ 1
2
a2 + 1

2
b2), in gN(κ), with

a =
N√
2

√
η(x, v)(1− η(z, v)PN(z − x, v))[

√
f(ηx,z,v)−

√
f(η)]

and
b =

N√
2

√
η(x, v)(1− η(z, v)PN(z − x, v))

√
f(ηx,z,v)

(
1− νNκ (ηx,z,v)

νNκ (η)

)
,

we can bound gN(κ) from above by

N2

4

∫ ∑
v∈V

∑
x∈Dd

N

∑
z∈Dd

N

η(x, v)(1− η(z, v))PN(z − x, v)[
√
f(ηx,z,v)−

√
f(η)]2 dνNκ

+
N2

4

∫ ∑
v∈V

∑
x∈Dd

N

∑
z∈Dd

N

η(x, v)(1− η(z, v))PN(z − x, v)
(
1− νNκ (ηx,z,v)

νNκ (η)

)2
f(ηx,z,v) dνNκ .

Thus |gN(κ)| ≤ N2

4
Dex

νNκ
(
√
f) + EN(κ), where

EN(κ) :=
N2

4

∫ ∑
v∈V

∑
x∈Dd

N

∑
z∈Dd

N

c(x,z,v)(η)
(
1− νNκ (ηx,z,v)

νNκ (η)

)2
f(ηx,z,v) dνNκ .
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Doing again the change of variables ηx,z,v = ξ, we obtain

EN(κ) =
N2

4

∫ ∑
v∈V

∑
x∈Dd

N

∑
z∈Dd

N

c(z,x,v)(η)
∣∣∣1− νNκ (η)

νNκ (ηx,z,v)

∣∣∣2 νNκ (ηx,z,v)
νNκ (η)

f(η) dνNκ .

Now, observe that ∣∣∣∣1− νNκ (η)

νNκ (ηx,z,v)

∣∣∣∣ = (1− γx,v
γz,v

)
≤ c̃∥γ′∥∞

1

N
, (1.21)

since γ is bounded away from zero, see (1.19), and∣∣∣∣νNκ (ηx,z,v)

νNκ (η)

∣∣∣∣ ≤ C.

Also note that f is a density with respect to νNκ , therefore,

|EN(κ)| ≤ CNd.

This finishes the proof of Corollary 1.

Corollary 2. If κ is the function defined in Remark 3 and let f be a density with
respect to the measure νNκ , which was mentioned previously in (1.15), we have that

N2⟨Lc
N

√
f,
√
f⟩νNκ = −N

2

2
Dc

νNκ
(
√
f). (1.22)

Proof. Let q = (v, w, v′, w′) and q̃ = (v′, w′, v, w). Note that

pc(y, q, ξ
y,q) = ξy,q(y, v)ξy,q(y, w)(1− ξy,q(y, v′))(1− ξy,q(y, w′))

= ξ(y, v′)ξ(y, w′)(1− ξ(y, v))(1− ξ(y, w))
= pc(y, q̃, ξ).

By writing the term at the left-hand side of (1.22) as its half, plus its half and summing
and subtracting the term needed to complete the square as appears in Dc

νNκ
(
√
f), we
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have that

N2⟨Lc
N

√
f,
√
f⟩νNκ =

N2

2

∫ ∑
y∈Dd

N

∑
q∈Q

pc(y, q, η)[
√
f(ηy,q)−

√
f(η)]

√
f(η) dνNκ

+
N2

2

∫ ∑
y∈Dd

N

∑
q∈Q

pc(y, q, η)[
√
f(ηy,q)−

√
f(η)]

√
f(η) dνNκ

+
N2

2

∫ ∑
y∈Dd

N

∑
q∈Q

pc(y, q, η)[
√
f(ηy,q)−

√
f(η)]

√
f(ηy,q) dνNκ

−N
2

2

∫ ∑
y∈Dd

N

∑
q∈Q

pc(y, q, η)[
√
f(ηy,q)−

√
f(η)]

√
f(ηy,q) dνNκ .

(1.23)
Using a change of variables

N2⟨Lc
N

√
f,
√
f⟩νNκ = −N

2

2

∫ ∑
y∈Dd

N

∑
q∈Q

pc(y, q, η)[
√
f(ηy,q)−

√
f(η)]2 dνNκ

+
N2

2

∫ ∑
y∈Dd

N

∑
q∈Q

pc(y, q, η)
[√

f(ηy,q)−
√
f(η)

]√
f(ηy,q) dνNκ

−N
2

2

∫ ∑
y∈Dd

N

∑
q∈Q

pc(y, q, η)
[√

f(ηy,q)−
√
f(η)

]√
f(ηy,q)ν

N
κ (ηy,q)
νNκ (η)

dνNκ .

Putting together the second and third terms in last display we get

N2⟨Lc
N

√
f,
√
f⟩νNκ

= −N
2

2

∫ ∑
y∈Dd

N

∑
q∈Q

pc(y, q, η)[
√
f(ηy,q)−

√
f(η)]2 dνNκ

+
N2

2

∫ ∑
y∈Dd

N

∑
q∈Q

pc(y, q, η)
[√

f(ηy,q)−
√
f(η)

]√
f(ηy,q)

[
1− νNκ (ηy,q)

νNκ (η)

]
dνNκ .

Since v + w = v′ + w′, we observe that

νNκ (ηy,q)

νNκ (η)
=
γy,v′γy,w′

γy,vγy,w
= 1,

therefore,

N2⟨Lc
N

√
f,
√
f⟩νNκ = −N

2

2
Dc

νNκ
(
√
f).

This finishes the proof of Corollary 2.

Corollary 3. If κ is the function defined in Remark 3 and let f be a density with
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respect to the measure νNκ , which was mentioned previously in (1.15), we have that

N2⟨Lb,α
N

√
f,
√
f⟩νNκ = −N

2

4
Db,α

νNκ
(
√
f) + EαN(κ), (1.24)

with

|EαN(κ)| ≤
CNd+1

N θ

∣∣mΛ(κ(x/N)) − αv

(
x̃
N

)∣∣ .
Analogously,

N2⟨Lb,β
N

√
f,
√
f⟩νNκ = −N

2

4
Db,β

νNκ
(
√
f) + EβN(κ), (1.25)

with

|EβN(κ)| ≤
CNd+1

N θ

∣∣mΛ(κ(x/N)) − βv
(

x̃
N

)∣∣ .
Proof. We present the proof for the left boundary since the other case is analogous.
Splitting the integral on the left-hand side of (1.24) into the integral over the sets
A0 = {η : η((1, x̃), v) = 0} and A1 = {η : η((1, x̃), v) = 1}, we obtain

N2⟨Lb,α
N

√
f,
√
f⟩νNκ =

N2

N θ

∫
A0

∑
x∈Dd

N
x1=1

∑
v∈V

αv

(
x̃
N

)
[
√
f(σx,vη)−

√
f(η)]

√
f(η) dνNκ

+
N2

N θ

∫
A1

∑
x∈Dd

N
x1=1

∑
v∈V

(
1− αv

(
x̃
N

))
[
√
f(σx,vη)−

√
f(η)]

√
f(η) dνNκ

=
N2

N θ

∫
A0

∑
x∈Dd

N
x1=1

∑
v∈V

αv

(
x̃
N

)√
f(σx,vη)

√
f(η) dνNκ

+
N2

N θ

∫
A1

∑
x∈Dd

N
x1=1

∑
v∈V

(
1− αv

(
x̃
N

))√
f(σx,vη)

√
f(η) dνNκ

−N
2

N θ

∫
A0

∑
x∈Dd

N
x1=1

∑
v∈V

αv

(
x̃
N

)
[
√
f(η)]2 dνNκ

−N
2

N θ

∫
A1

∑
x∈Dd

N
x1=1

∑
v∈V

(
1− αv

(
x̃
N

))
[
√
f(η)]2 dνNκ .
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Last display can be rewritten as

N2⟨Lb,α
N

√
f,
√
f⟩νNκ =

=
N2

N θ

∫
A0

∑
x∈Dd

N
x1=1

∑
v∈V

αv

(
x̃
N

) [√
f(σx,vη)

√
f(η)− 1

2
[
√
f(η)]2

]
dνNκ

+
N2

N θ

∫
A1

∑
x∈Dd

N
x1=1

∑
v∈V

(
1− αv

(
x̃
N

)) [√
f(σx,vη)

√
f(η)− 1

2
[
√
f(η)]2]

]
dνNκ

− N2

2N θ

∫
A0

∑
x∈Dd

N
x1=1

∑
v∈V

αv

(
x̃
N

)
[
√
f(η)]2 dνNκ

− N2

2N θ

∫
A1

∑
x∈Dd

N
x1=1

∑
v∈V

(
1− αv

(
x̃
N

))
[
√
f(η)]2 dνNκ .

Summing and subtracting the term needed to complete the square, we obtain

N2⟨Lb,α
N

√
f,
√
f⟩νNκ = − N2

2N θ

∫
A0

∑
x∈Dd

N
x1=1

∑
v∈V

αv

(
x̃
N

) [√
f(σx,vη)−

√
f(η)

]2
dνNκ

− N2

2N θ

∫
A1

∑
x∈Dd

N
x1=1

∑
v∈V

(
1− αv

(
x̃
N

)) [√
f(σx,vη)−

√
f(η)

]2
dνNκ

+
N2

2N θ

∫
A0

∑
x∈Dd

N
x1=1

∑
v∈V

αv

(
x̃
N

)
[
√
f(σx,vη)]2 dνNκ

+
N2

2N θ

∫
A1

∑
x∈Dd

N
x1=1

∑
v∈V

(
1− αv

(
x̃
N

))
[
√
f(σx,vη)]2 dνNκ

− N2

2N θ

∫
A0

∑
x∈Dd

N
x1=1

∑
v∈V

αv

(
x̃
N

)
[
√
f(η)]2 dνNκ

− N2

2N θ

∫
A1

∑
x∈Dd

N
x1=1

∑
v∈V

(
1− αv

(
x̃
N

))
[
√
f(η)]2 dνNκ .
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Using a change of variables on the last two terms above, we obtain

N2⟨Lb,α
N

√
f,
√
f⟩νNκ =

= − N2

2N θ

∫
A0

∑
x∈Dd

N
x1=1

∑
v∈V

αv

(
x̃
N

) [√
f(σx,vη)−

√
f(η)

]2
dνNκ

− N2

2N θ

∫
A1

∑
x∈Dd

N
x1=1

∑
v∈V

(
1− αv

(
x̃
N

)) [√
f(σx,vη)−

√
f(η)

]2
dνNκ

+
N2

2N θ

∫
A0

∑
x∈Dd

N
x1=1

∑
v∈V

αv

(
x̃
N

)
[
√
f(σx,vη)]2 dνNκ

+
N2

2N θ

∫
A1

∑
x∈Dd

N
x1=1

∑
v∈V

(
1− αv

(
x̃
N

))
[
√
f(σx,vη)]2 dνNκ

− N2

2N θ

∫
A1

∑
x∈Dd

N
x1=1

∑
v∈V

αv

(
x̃
N

) 1−mΛ(κ(x/N))

mΛ(κ(x/N))

[
√
f(σx,vη)]2 dνNκ

− N2

2N θ

∫
A0

∑
x∈Dd

N
x1=1

∑
v∈V

(
1− αv

(
x̃
N

)) mΛ(κ(x/N))

1−mΛ(κ(x/N))

[
√
f(σx,vη)]2 dνNκ .

(1.26)

For a general function κ(·), we can rewrite (1.26) and we have that N2⟨Lb,α
N

√
f,
√
f⟩νNκ

is equal to −N2

2
Db,α

νNκ
(
√
f) plus

− N2

2N θ

∫
A1

∑
x∈Dd

N
x1=1

∑
v∈V

αv

(
x̃
N

) [1−mΛ(κ(x/N))

mΛ(κ(x/N))

− 1− αv(
x̃
N
)

αv(
x̃
N
)

]
[
√
f(σx,vη)]2 dνNκ

− N2

2N θ

∫
A0

∑
x∈Dd

N
x1=1

∑
v∈V

(
1− αv

(
x̃
N

)) [ mΛ(κ(x/N))

1−mΛ(κ(x/N))

αv(
x̃
N
)

1− αv(
x̃
N
)

]
[
√
f(σx,vη)]2 dνNκ .

The expression above is bounded by

CNd+1

N θ

∣∣mΛ(κ(x/N)) − αv

(
x̃
N

)∣∣ .

Remark 4. In order to prove the Replacement Lemma, see Proposition 1, we need
some intermediate results. Observe that, if H(µN |νNκ ) is the relative entropy of the
measure µN with respect to νNκ , see (1.15), then there exists a constant Cκ such that
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H(µN |νNκ ) ≤ CκN
d. To prove it, note that by the definition of the entropy,

H(µN |νNκ ) =

∫
log

(
µN(η)

νNκ (η)

)
µN(η) ≤

∫
log

(
1

νNκ (η)

)
µN(η).

Since the measure νNκ is a product measure with marginal given by

νNκ {η : η(x, ·) = ξ} = mΛ(κ(x))(ξ),

where mλ(·) was defined in (1.4), we obtain that the last display is bounded from above
by ∫

log

 1

inf
x∈Dd

(mΛ(κ(x))) ∧ (1−mΛ(κ(x)))

Nd

µN(η)

= Nd log

(
1

inf
x∈Dd

(mΛ(κ(x))) ∧ (1−mΛ(κ(x)))

)

= CκN
d.

Since the function κvk, defined in Remark 3, is continuous, the image of each κvk
is a compact set bounded away from 0 and 1. Hence, from the definition of the
measure m, we have that mΛ(κ(x/N)) > 0 and mΛ(κ(x/N)) < 1. The constant Cκ =

log

 1

inf
x∈Dd

mΛ(κ(x/N)) ∧ (1−mΛ(κ(x/N)))

.
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1.7.2 Replacement Lemma for the Boundary

Fix k = 0, . . . , d, a continuous function G : [0, T ] × Td−1 → Rd+1, and consider

the quantities

V 1,l
k (ηs, α,G) =

1

Nd−1

∑
x̃∈Td−1

Gk(s, x̃/N)

(
Ik(η(1,x̃)(s))−

∑
v∈V

vkαv(x̃/N)

)
,

V 1,r
k (ηs, β,G) =

1

Nd−1

∑
x̃∈Td−1

Gk(s, x̃/N)

(
Ik(η(N−1,x̃)(s))−

∑
v∈V

vkβv(x̃/N)

)
,

V 2,l
k (ηs, α,G) =

1

Nd−1

∑
x̃∈Td−1

Gk(s, x̃)

Ik(η(1,x̃)(s))− 1

⌊Nϵ⌋

⌊Nϵ⌋+1∑
x1=1

Ik(η(x1,x̃)(s))

 ,

V 2,r
k (ηs, β,G) =

1

Nd−1

∑
x̃∈Td−1

Gk(s, x̃)

Ik(η(N−1,x̃)(s))−
1

⌊Nϵ⌋
N−1∑

x1=N−1−⌊Nϵ⌋

Ik(η(x1,x̃)(s))

 ,

where s ∈ [0, T ], and 0 ≤ k ≤ d consider that Gk are the components of function G.

The main result of this section is the following proposition:

Proposition 1 (Replacement Lemma for the boundary). For each 0 ≤ t ≤ T , 0 ≤
k ≤ d, and G : [0, T ]×Dd → R continuous,

lim sup
N→∞

EµN

[∣∣∣∣∫ t

0

ds V j,ϑ
k (ηs, ζ, G)

∣∣∣∣] = 0,

where j = {1, 2}, and

ϑ =

{
l, if ζ = α,

r, if ζ = β.

Proof. By the entropy inequality and Jensen’s inequality for any A > 0 the expectation
in the statement of the proposition is bounded from above by

H(µN |νNκ )

ANd
+

1

ANd
logEνNκ

[
exp

{∣∣∣∣∫ t

0

dsANdV j,ϑ
k (ηs, ζ, G)

∣∣∣∣}] . (1.27)

By Remark 4, the left-most term is bounded by Cκ

A
, so we only need to show that the

right-most term vanishes as N →∞. Since e|x| ≤ ex + e−x and

lim sup
N→∞

N−d log{aN + bN} ≤ max{lim sup
N→∞

N−d log(aN), lim sup
N→∞

N−d log(bN)},

we may remove the absolute value from the expression (1.27). By Feynman-Kac for-
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mula, see for instance [1], we obtain that (1.27) is bounded from above by

Cκ

A
+ t sup

f

{∫
V j,ϑ
k (η, ζ, G)f(η) dνNκ +

⟨LN

√
f,
√
f⟩νNκ

ANd−2

}
.

In this formula the supremum is taken over all densities f with respect to νNκ . The
proof follows from an application of the auxiliary lemmas given below.

Lemma 3. For every 0 ≤ t ≤ T , 0 ≤ k ≤ d, and every continuous function G :

[0, T ]× Td−1 → Rd+1,

⟨V 1,ϑ
k (η, ζ, G), f(η)⟩νNκ ≤ CBN θ +

C ′

B
Db

νNκ
(
√
f) +K

where we have the following cases

ϑ =

{
l, if ζ = α,

r, if ζ = β.

Proof. We prove for ϑ = l, since for ϑ = r the proof is entirely analogous. Note that G
is continuous and its domain is a compact set, hence, we may prove the above result
without G. Note that

1

Nd−1

∑
x̃∈Td−1

N

∫
f(η)

[
Ik(η(1,x̃))−

∑
v∈V

vkαv(x̃/N)

]
dνNκ

=
1

Nd−1

∑
x̃∈Td−1

N

∑
v∈V

vk

∫
f(η)[η(1, x̃, v)− αv(x̃/N)] dνNκ .

By summing and subtracting an appropriate term, last term is equal to

1

2

∣∣∣∣∣∣ 1

Nd−1

∑
x̃∈Td−1

N

∑
v∈V

vk

∫
[f(η)− f(σx,vη)][η(1, x̃, v)− αv(x̃/N)] dνNκ

∣∣∣∣∣∣
+
1

2

∣∣∣∣∣∣ 1

Nd−1

∑
x̃∈Td−1

N

∑
v∈V

vk

∫
[f(η) + f(σx,vη)][η(1, x̃, v)− αv(x̃/N)] dνNκ

∣∣∣∣∣∣ .
(1.28)

Applying Young’s inequality on the first term of last display, we can bound it from
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above by

B

4

∣∣∣∣∣∣ N
θ

Nd−1

∑
x̃∈Td−1

N

∑
v∈V

vk

∫
[
√
f(η) +

√
f(σx,vη)]2

[η(1, x̃, v)− αv(x̃/N)]2

rx(η, α)
dνNκ

∣∣∣∣∣∣
+

1

4B

∣∣∣∣∣∣ 1

Nd−1

∑
x̃∈Td−1

N

∑
v∈V

vk

∫
[
√
f(η)−

√
f(σx,vη)]2

rx(η, α)

N θ
dνNκ

∣∣∣∣∣∣
(1.29)

where rx(η, α) = αv(x̃/N)[1 − η(x, v)] + [1 − αv(x̃/N)]η(x, v) and this holds for any
B > 0. Since

[η(1, x̃, v)− αv(x̃/N)]2 ≤ 1

and rx(η, α) ≤ 1, we obtain that (1.29) is bounded from above by

BN θC +
C ′

B
Db,α

νNκ
(
√
f),

with C and C ′ constants.
Now, we analyze the second term on (1.28). Note that

1

2

∣∣∣∣∣∣ 1

Nd−1

∑
x̃∈Td−1

N

∑
v∈V

vk

∫
[f(η) + f(σx,vη)][η(1, x̃, v)− αv(x̃/N)] dνNκ

∣∣∣∣∣∣
=

1

2

∣∣∣∣∣∣ 1

Nd−1

∑
x̃∈Td−1

N

∑
v∈V

vk

∫
f(η)[η(1, x̃, v)− αv(x̃/N)] dνNκ

∣∣∣∣∣∣
+
1

2

∣∣∣∣∣∣ 1

Nd−1

∑
x̃∈Td−1

N

∑
v∈V

vk

∫
f(σx,vη)[η(1, x̃, v)− αv(x̃/N)] dνNκ

∣∣∣∣∣∣ .
Using that [η(1, x̃, v)− αv(x̃/N)] ≤ 1, we obtain that the first term above is bounded
by a constant K1. After a change of variables on the second term above, we obtain
that it is also bounded by a constant K2. Therefore,

⟨V 1,l
k (η, α,G), f(η)⟩νNκ ≤ K1BN

θ +
C ′

B
Db,α

νNκ
(
√
f) +K1 +K2.

Lemma 4. For every 0 ≤ t ≤ T , 0 ≤ k ≤ d, and every continuous function G :

[0, T ]× Td−1 → Rd+1,

lim sup
ε→0

lim sup
N→∞

⟨V 2,ϑ
k (η, ζ, G), f(η)⟩νNκ = 0,
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where we have the following cases

ϑ =

{
l, if ζ = α,

r, if ζ = β.

Proof. First of all, note that sinceG is continuous and its domain [0, T ]×Dd is compact,
it is enough to prove the result without G. We will only prove for ϑ = l, since for ϑ = r

the proof is entirely analogous. Observe that

⟨V 2,l
k (η, ζ, G), f(η)⟩νNκ

=
1

Nd−1

∑
x̃∈Td−1

N

∫
f(η)

[
Ik(η(1,x̃))−

1

Nε

Nε+1∑
x1=1+1

Ik(η(x1,x̃))

]
dνNκ

=
1

Nd−1

∑
x̃∈Td−1

N

∑
v∈V

vk

∫
f(η)

[
η(1, x̃, v)− 1

Nε

Nε+1∑
x1=1+1

η(x1, x̃, v)

]
dνNκ

=
1

Nd−1

∑
x̃∈Td−1

N

∑
v∈V

vk

∫
f(η)

[
1

Nε

Nε+1∑
x1=1+1

{η(1, x̃, v)− η(x1, x̃, v)}
]
dνNκ .

By writing the term
1

Nε

Nε+1∑
x1=1+1

{η(1, x̃, v)− η(x1, x̃, v)} as a telescopic sum, we obtain

that the last term is equal to

1

Nd−1

∑
x̃∈Td−1

N

∑
v∈V

vk

∫
f(η)

[
1

Nε

Nε+1∑
x1=1+1

x1−1∑
y=1

{η(y, x̃, v)− η(y + 1, x̃, v)}
]
dνNκ .

Writing this sum as twice its half, performing change of variables 2, we obtain that the
last display is equal to

+
1

Nd−1

∑
x̃∈Td−1

N

∑
v∈V

vk
1

2Nε

Nε+1∑
x1=1+1

x1−1∑
y=1

∫ [
f(η)− f(ηy,y+1,v)

]
(η(y, x̃, v)− η(y + 1, x̃, v)) dνNκ .

(1.30)
Rewriting [f(η) − f(ηy,y+1,v)] as [

√
f(η) −

√
f(ηy,y+1,v)][

√
f(η) +

√
f(ηy,y+1,v)] and

using Young’s inequality, for all B > 0, we obtain that (1.30) is bounded from above
2In this case, we will assume that κ is constant
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by

1
Nd−1

∑
x̃∈Td−1

N

∑
v∈V

vk
B

2Nε

Nε+1∑
x1=1+1

x1−1∑
y=1

∫ [√
f(η)−

√
f(ηy,y+1,v)

]2
dνNκ

+ 1
Nd−1

∑
x̃∈Td−1

N

∑
v∈V

vk
1

2BNε

Nε+1∑
x1=1+1

x1−1∑
y=1

∫ [√
f(η) +

√
f(ηy,y+1,v)

]2
(η(y, x̃, v)− η(y + 1, x̃, v))2 dνNκ .

Using that f is a density for νNκ , the second term in last display is bounded by CNε
B

.
Letting the sum in y run from 1 to N − 1, the first term in last display is bounded by
BDex

νNκ
(
√
f). By Corollary 1, since κ is a constant function, we obtain that

Dex
νNκ

(
√
f) = −⟨Lex

N

√
f,
√
f⟩νNκ .

Since 0 ≤ Dc
νNκ

(
√
f) = −⟨Lc

N

√
f,
√
f⟩νNκ and 0 ≤ Db

νNκ
(
√
f), using Corollary 3, we have

that Db,α
νNκ

(
√
f) = −⟨Lb,α

N

√
f,
√
f⟩νNκ . Therefore,

Dex
νNκ

(
√
f) ≤ −B⟨LN

√
f,
√
f⟩νNκ .

1.7.3 Replacement Lemma at the bulk

Before we state the replacement lemma that will allow us to prove that the

limit points Q∗ are concentrated on weak solutions of the system of partial differential

equations (1.13), we introduce some notations. Fix L ≥ 1 and a configuration η. Let

IL(x, η) = (IL0 (x), . . . , I
L
d (x)) be the average of the conserved quantities in a cube of

length L centered at x:

IL(x, η) =
1

|ΛL|
∑

z∈x+ΛL

I(ηz),

where, ΛL = {−L, . . . , L}d and |ΛL| = (2L+ 1)d is the discrete volume of the box ΛL.

Let BL be the set of all possible values of IL(0, η) for η ∈ ({0, 1}V)ΛL , that is,

BL = {IL(0, η); η ∈ ({0, 1}V)ΛL}.
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Note that BL is a finite subset of the convex envelope of {I(ξ) : ξ ∈ {0, 1}V}. The set

of configurations ({0, 1}V)ΛL splits into invariant subsets: for i in BL, let

HL(i) := {η ∈ ({0, 1}V)ΛL : IL(0) = i}.

For each i in BL, define the canonical measure νΛL,i as the uniform probability measure

on HL(i). Note that for every λ in Rd+1

νΛL,i(·) = µΛL
λ (· | IL(0) = i).

Let ⟨g ; f⟩µ stand for the covariance of g and f with respect to µ, i.e.,

⟨g ; f⟩µ = Eµ[fg]− Eµ[f ]Eµ[g].

Proposition 2. [Equivalence of ensembles] Fix ℓ, L, the cubes Λℓ ⊂ ΛL, for each
i ∈ BL, denote by νℓ the projection of the canonical measure νΛL,i on Λℓ and by µℓ the
projection of the grand canonical measure µL

Λ(i) on Λℓ. There exists a finite constant
C(ℓ,V), depending only on ℓ and V, such that

|Eµℓ [f ]− Eνℓ [f ]| ≤
C(ℓ,V)
|ΛL|

⟨f ; f⟩1/2
µℓ

for every function f : ({0, 1}V)Λℓ 7→ R.

The proof of Proposition 2 can be found in [6].

Lemma 5 (Replacement lemma). For all δ > 0, 1 ≤ j ≤ d, 0 ≤ k ≤ d:

lim sup
ϵ→0

lim sup
N→∞

PµN

∫ T

0

1

Nd

∑
x∈Dd

N

τxV
j,k
ϵN (η(s)) ds ≥ δ

 = 0,

where

V j,k
ℓ (η) =

∣∣∣ 1

(2l + 1)d

∑
y∈Λℓ

∑
v∈V

vk
∑
z∈Zd

p(z, v)zjτy[η(0, v)(1− η(z, v))]

−
∑
v∈V

vjvkχ(θv(Λ(Iℓ(0))))
∣∣∣.

Note that V j,k
ϵN is well-defined for large N since p(·, v) is of finite range. We now

observe that Corolaries 1 and 2 permit us to prove the previous replacement lemma

for the boundary driven exclusion process by using the process without the boundary
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part of the generator. For the proof of Lemma 5, see [3, Lemma 3.7].

1.8 Tightness

In this section, we show that the sequence of probability measures (QN)N , defined

in Section 1.5, is tight in the Skorohod space D([0, T ],M+×Md). In order to do that,

we invoke the Aldous’ criterion, which says that:

Lemma 6. A sequence (QN)N≥1 of probability measures defined on D([0, T ],M+×Md)

is tight if, and only if, these two conditions hold:

a. For every t ∈ [0, T ] and every ε > 0, there exists Kt
ε ⊂M+ ×Md compact, such

that
sup
N≥1

QN

(
πk,N
t /∈ Kt

ε

)
≤ ε,

b. For every ε > 0

lim
γ→0

lim sup
N→∞

sup
τ∈T
τ≤γ

QN

(
d(πk,N

τ+τ , π
k,N
τ ) > ε

)
= 0,

where T denotes the set of stopping times with respect to the canonical filtration,
bounded by T and d is the metric in the spaceM+×Md. We assume that all the
stopping times are bounded by T , thus, τ + τ should be understood as (τ + τ)∧T .

By [1, Chapter 4, Proposition 1.7] it is enough to show that for every function

H in a dense subset of C(Dd), with respect to the uniform topology, the sequence of

measures, that corresponds to the real processes ⟨πk,N
t , H⟩, is tight. In our setting,

condition a. above translates by saying that:

lim
A→+∞

lim
N→+∞

PµN

(
|⟨πk,N

t , H⟩| > A
)
= 0. (1.31)

This is a consequence of Chebychev’s inequality and the fact that for the exclusion

type dynamics, the number of particles per site is at most one for each fixed velocity.

So, it remains to show condition b. In this context and since we are considering the real

processes ⟨πk,N
t , H⟩, the distance d above is the usual distance in R. Then, we must

show that for all ε > 0 and any function H in a dense subset of C(Dd), with respect
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to the uniform topology, the following holds:

lim
δ→0

lim sup
N→+∞

sup
τ∈T
τ≤δ

PµN

(
η : |⟨πk,N

τ+τ , H⟩ − ⟨πk,N
τ , H⟩| > ε

)
= 0. (1.32)

Recall that it is enough to prove the assertion for functions H in a dense subset

of C(Dd) with respect to the uniform topology. We will split the proof into two cases:

1.8.1 The case θ ≥ 1

Recall from (1.16) that, MN,k
t (H) is a martingale with respect to the natural

filtration (Ft)t≥0. Then

PµN

(
η :
∣∣∣⟨πk,N

τ+τ , H⟩ − ⟨πk,N
τ , H⟩| > ε

)

= PµN

(
η : |MN,k

τ (H)−MN,k
τ+τ (H) +

∫ τ+τ

τ

LN⟨πk,N
s , H⟩ ds

∣∣∣ > ε
)

≤ PµN

(
η : |MN,k

τ (H)−MN,k
τ+τ (H)

∣∣∣ > ε

2

)
+ PµN

(
η :
∣∣∣ ∫ τ+τ

τ

LN⟨πk,N
s , H⟩ ds

∣∣∣ > ε

2

)
.

Applying Chebychev’s inequality (resp. Markov’s inequality) in the first (resp.

second) term on the right-hand side of last inequality, we can bound the previous

expression from above by

2

ε2
EµN

[(
MN,k

τ (H)−MN,k
τ+τ (H)

)2]
+

2

ε
EµN

[ ∣∣∣ ∫ τ+τ

τ

LN⟨πk,N
s , H⟩ ds

∣∣∣ ] .
Therefore, in order to prove (1.32) it is enough to show that

lim
δ→0

lim sup
N→+∞

sup
τ∈T
τ≤δ

EµN

[ ∣∣∣ ∫ τ+τ

τ

LN⟨πk,N
s , H⟩ ds

∣∣∣ ] = 0, (1.33)

and

lim
δ→0

lim sup
N→+∞

sup
τ∈T
τ≤δ

EµN

[(
MN,k

τ (H)−MN,k
τ+τ (H)

)2]
= 0. (1.34)

Let us start by proving (1.33). Given a test function H ∈ C2(Dd), we will show

that there exists a constant C such that LN⟨πk,N
s , H⟩ ≤ C for any s ≤ T . For that

purpose, we use the computations of Appendix A.0.1, where we derived the expression
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of LN⟨πk,N
s , H⟩. Note that,

|LN⟨πk,N
s , H⟩| ≤ |N2Lex,1

N ⟨πk,N
s , H⟩|+ |N2Lex,2

N ⟨πk,N
s , H⟩|+ |N2Lc

N⟨πk,N
s , H⟩|

+|N2Lb
N⟨πk,N

s , H⟩|.

Let us bound this separately. Note that,

|N2Lex,1
N ⟨πk,N

s , H⟩| ≤ |⟨πk,N
s ,

1

2
∆NH⟩|+

∣∣∣ N
2Nd

∑
x∈Dd

N
x1=1

∑
v∈V

vkη(1, x̃, v)∂
N,+
u1

H(0, x̃)
∣∣∣

+
∣∣∣ N
2Nd

∑
x∈Dd

N
x1=N−1

∑
v∈V

vkη(N − 1, x̃, v)∂N,−
u1

H(1, x̃)
∣∣∣

≤ 1

2
∥H ′′∥∞ +

CNNd−1

2Nd
∥H ′∥∞ +

CNNd−1

2Nd
∥H ′∥∞

=
1

2
∥H ′′∥∞ + C∥H ′∥∞,

(1.35)

since |ηsN2(x, v)| ≤ 1 for all s ∈ [0, T ], for each v ∈ V fixed and since H ∈ C2(Dd).

Similarly,

|N2Lb
N⟨πk,N

s , H⟩| ≤
∣∣∣ N2

NdN θ

∑
x∈Dd

N
x1=1

∑
v∈V

vkH
(

1
N
, x̃
N

)
[αv − η(1, x̃, v)]

∣∣∣
+
∣∣∣ N2

NdN θ

∑
x∈Dd

N
x1=N−1

∑
v∈V

vkH
(
N−1
N
, x̃
N

)
[βv − η(N − 1, x̃, v)]

∣∣∣
≤ CN2Nd−1

NdN θ
∥H∥∞ +

CN2Nd−1

NdN θ
∥H∥∞

= 2CN1−θ∥H∥∞.

(1.36)
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Also,

|N2Lex,2
N ⟨πk,N

s , H⟩|

≤
∣∣∣ 1

Nd

d∑
j=1

∑
x∈Dd

N

(∂Nuj
H)
(

x
N

)∑
v∈V

vk
∑
z∈Zd

p(z, v)zjη(x, v)(1− η(x+ z, v))
∣∣∣

≤ C̃Nd∥H ′∥∞
Nd

= C̃∥H ′∥∞.

(1.37)

By Lemma 18,

|N2Lc
N⟨πk,N

s , H⟩| = 0. (1.38)

Therefore, by (1.35), (1.36), (1.37) and (1.38), we have that

|LN⟨πk,N
s , H⟩| ≤ C.

This proves (1.33) for θ ≥ 1.

Now we will prove (1.34). Applying Dynkin’s formula, we have that

(MN,k
t (H))2 −

∫ t

0

LN [⟨πk,N
s , H⟩]2 − 2⟨πk,N

s , H⟩LN⟨πk,N
s , H⟩ds

is a martingale with respect to the natural filtration {Ft}t≥0. By Lemma 20, we have

that
N2Lex,1

N ⟨πk,N
s , H⟩2 − 2⟨πk,N

s , H⟩N2Lex,1
N ⟨πk,N

s , H⟩

=
1

2N2d

∑
v∈V

∑
x∈Dd

N

d∑
j=1

v2k
[
η(x, v)− η(x+ ej, v))

]2
[∂Nuj

H
(

x
N

)
]2

and by using the fact that |ηsN2(x, v)| ≤ 1 for all s ∈ [0, t] and fixed v, the last

expression is bounded from above by C
Nd∥H ′∥∞. We have from Lemma 21 that

N2Lex,2
N ⟨πk,N

s , H⟩2 − 2⟨πk,N
s , H⟩N2Lex,2

N ⟨πk,N
s , H⟩

=
1

N2d+1

∑
v∈V

∑
x∈Dd

N

∑
w∈Zd

v2k η(x, v)(1− η(x+ w, v))p(w, v)w2
j [∂

N
uj
H
(

x
N

)
]2
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and by using the fact that |ηsN2(x, v)| ≤ 1 for all s ∈ [0, t] last expression is bounded

from above by C̃
Nd+1∥H ′∥∞. Additionally, from Lemma 22 we have

N2Lb
N⟨πk,N

s , H⟩2 − 2⟨πk,N
s , H⟩N2Lb

N⟨πk,N
s , H⟩

=
N2

N2d

∑
x∈Dd

N
x1=1

∑
v∈V

[
αv(

x̃
N
)(1− η(x, v)) + (1− αv(

x̃
N
))η(x, v)

N θ

]
v2kH

2
(

x
N

)

+
N2

N2d

∑
x∈Dd

N
x1=1

∑
v∈V

[
βv(

x̃
N
)(1− η(x, v)) + (1− βv( x̃

N
))η(x, v)

N θ

]
v2kH

2
(

x
N

)
(1.39)

and by using the fact that |ηsN2(x, v)| ≤ 1 for all s ∈ [0, t] last expression is bounded

from above by N1−θC
Nd ∥H∥∞, where C comes from the fact that the set V is finite. This

finishes the proof of tightness in the case θ ≥ 1, since C2(Dd) is a subset dense of

C(Dd) with respect to uniform topology.

1.8.2 The case θ ∈ [0, 1)

If we try to apply the same strategy used for θ ≥ 1 we will run into trouble

when trying to control the modulus of continuity of
∫ t

0
N2Lb

N⟨πk,N
s , H⟩ ds, because the

expression in (1.36) can explode when N →∞. We will prove (1.32) first for functions

H ∈ C2
c (D

d) and then we can extend it, by a L1 approximation procedure which is

explained below, to functions H ∈ C1(Dd). We can see in this case that

|N2Lex,1
N ⟨πk,N

s , H⟩| ≤ |⟨πk,N
s ,

1

2
∆NH⟩|+

∣∣∣ N
2Nd

∑
x∈Dd

N
x1=1

∑
v∈V

vkη(1, x̃, v)∂
N,+
u1

H(0, x̃)
∣∣∣

+
∣∣∣ N
2Nd

∑
x∈Dd

N
x1=N−1

∑
v∈V

vkη(N − 1, x̃, v)∂N,−
u1

H(1, x̃)
∣∣∣

≤ 1

2
∥H ′′∥∞.
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Also,

|N2Lb
N⟨πk,N

s , H⟩|

≤
∣∣∣ N2

NdN θ

∑
x∈Dd

N
x1=1

∑
v∈V

vkH
(

1
N
, x̃
N

)
[αv(x̃)− η(1, x̃, v)]

∣∣∣
+
∣∣∣ N2

NdN θ

∑
x∈Dd

N
x1=N−1

∑
v∈V

vkH
(
N−1
N
, x̃
N

)
[βv(x̃)− η(N − 1, x̃, v)]

∣∣∣

≤
∣∣∣ N

NdN θ

∑
x∈Dd

N
x1=1

∑
v∈V

vkN
[
H
(

1
N
, x̃
N

)
−H

(
0
N
, x̃
N

)]
[αv(x̃)− η(1, x̃, v)]

∣∣∣
+
∣∣∣ N

NdN θ

∑
x∈Dd

N
x1=N−1

∑
v∈V

vkN
[
H
(
N−1
N
, x̃
N

)
−H

(
N
N
, x̃
N

)]
[βv(x̃)− η(N − 1, x̃, v)]

∣∣∣
≤
∣∣∣ N

NdN θ

∑
x∈Dd

N
x1=1

∑
v∈V

vk ∂
N,+
u1

H
(

0
N
, x̃
N

)
[αv(x̃)− η(1, x̃, v)]

∣∣∣
+
∣∣∣ N

NdN θ

∑
x∈Dd

N
x1=N−1

∑
v∈V

vk ∂
N,−
u1

H
(
N
N
, x̃
N

)
[βv(x̃)− η(N − 1, x̃, v)]

∣∣∣
= 0

since H ∈ C2
c (D

d). This finishes the proof of (1.33) for any θ ≥ 0.

To prove (1.34) for θ ∈ [0, 1), we use the same computations we did for the case

θ ≥ 1. Since H ∈ C2
c (D

d), the equation (1.39) is equal to zero, but as mentioned before,

we need to extend this result to functions in C1(Dd). To accomplish that, we take a

function H ∈ C1(Dd) ⊂ L1(Dd), and we take a sequence of functions (Hj)j≥0 ∈ C2
c (D

d)

converging to H, with respect to the L1-norm, as j → ∞. Now since the probability

in (1.32) is less or equal than

PµN

(
η : |⟨πk,N

τ+τ , Hj⟩ − ⟨πk,N
τ , Hj⟩| >

ε

2

)
+PµN

(
η : |⟨πk,N

τ+τ , (H −Hj)⟩ − ⟨πk,N
τ , (H −Hj)⟩| >

ε

2

)
and since Hj has compact support, from the computation above, it remains only to

check that the last probability vanishes as N →∞ and then j →∞. For that purpose,
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we use the fact that

|⟨πk,N
τ+τ , (H −Hj)⟩ − ⟨πk,N

τ , (H −Hj)⟩| ≤
C

Nd

∑
x∈Dd

N

|(H −Hj)
(

x
N

)
|

and we use the estimate

1

Nd

∑
x∈Dd

N

|(H −Hj)
(

x
N

)
|

≤
∑
x∈Dd

N

∫ x+1
N

x
N

|(H −Hj)
(

x
N

)
− (H −Hj)(u)| du+

∫
Dd

|(H −Hj)(u)| du

≤ 1

Nd
∥(H −Hj)

′∥∞ +

∫
Dd

|(H −Hj)(u)| du.

The result follows by first taking N →∞ and then j →∞.

1.9 Energy Estimates

We will now define some quantities in order to prove that each component of the

vector solution belongs, in fact, to H 1([0, T ]×Dd).

Let the energy E : D([0, T ],M)→ [0,∞] be given by

E (π) =
d∑

i=1

Ei(π),

with

Ei(π) = sup
G∈C∞

c (ΩT )

{
2

∫ T

0

dt ⟨πt, ∂ui
Gt⟩ −

∫ T

0

dt

∫
Dd

duG(t, u)2
}
,

where ΩT = (0, T ) × Dd and C∞
c (ΩT ) stands for the set of infinitely differentiable

functions (with respect to time and space) with compact support contained in ΩT . For

any G ∈ C∞
c (ΩT ), 1 ≤ i ≤ d and C ≥ 0, let the functional E G

i,C : D([0, T ],M)→ R be

given by

E G
i,C(π) =

∫ T

0

ds ⟨πs, ∂ui
Gs⟩ − C

∫ T

0

ds

∫
Dd

duG(s, u)2.

Note that

sup
G∈C∞

c (ΩT )

{E G
i,C} =

Ei(π)

4C
. (1.40)

It is well-known that E (π) is finite if, and only if, π has a generalized gradient,
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∇π = (∂u1π, . . . , ∂ud
π), which is a measurable function and

Ẽ (π) =

∫ T

0

ds

∫
Dd

du ∥∇πt(u)∥2 <∞,

in which case, E (π) = Ẽ (π). Recall from Section 1.8 that the sequence (QN)N is tight.

We have that:

Proposition 3. Let Q∗ be any limit point of the sequence of measures (QN)N . Then,

EQ∗

[∫ T

0

ds

(∫
Dd

∥∇ρ(s, u)∥2 du
)]

<∞

and

EQ∗

[∫ T

0

ds

(∫
Dd

∥∇ϱk(s, u)∥2 du
)]

<∞,

for k = 1, . . . , d.

The proof follows from the next lemma and Riesz Representation Theorem.

Lemma 7. For all θ ≥ 0, there is a positive constant C > 0 such that

EQ∗

[
sup
G

{∫ T

0

∫
Dd

∂ui
G(s, u)ϱk(s, u)duds− C

∫ T

0

ds

∫
Dd

duG(s, u)2
}]

<∞,

for k = 0, 1, . . . , d, where the supremum is carried over all the functions G ∈ C∞(ΩT )

and ϱ0 = ρ.

Proof. Let {Gm : m ≥ 1} be a sequence of functions in C∞
c (ΩT ) (the space of infinitely

differentiable functions with compact support). Thus, it is sufficient to prove that, for
every r ≥ 1,

EQ∗

[
max
1≤m≤r

{
E Gm

i,C (πk,N)
}]
≤ C̃, (1.41)

for some constant C̃ > 0, independent of r. The expression on the left-hand side of
(1.41) is equal to

lim
N→∞

EµN

[
max
1≤m≤r

{∫ T

0

⟨∂ui
Gm(s, u), πk,N

s ⟩ds− C
∫ T

0

ds

∫
Dd

duGm(s, u)2
}]

. (1.42)

By the relative entropy bound (see Remark 4), Jensen’s inequality and exp{max
1≤j≤k

aj} ≤
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∑
1≤j≤k

exp aj, the expectation in (1.42) is bounded from above by

H(µN |νNκ )

Nd

+
1

Nd
log

∑
1≤m≤r

EνNκ

[
exp

{∫ T

0

N⟨∂ui
Gm(s, u), πk,N

s ⟩ds− C
∫ T

0

ds

∫
Dd

duGm(s, u)2
}]

,

where the profile κ is the same used in Section 1.7.
We can bound the first term in the sum above by Cκ. It is enough to show, for

a fixed function G, that

lim sup
N→∞

1

Nd
logEνNκ

[
exp

{∫ T

0

N⟨∂ui
G(s, u), πk,N

s ⟩ds− C
∫ T

0

ds

∫
Dd

duG(s, u)2
}]
≤ c̃

for some constant c̃ independent of G. Then the result follows from the next lemma
and the definition of the empirical measure.

Lemma 8. There exists a constant C0 = C0(κ) > 0, such that for every i = 1, . . . , d

every k = 0, . . . , d and every function G ∈ C∞
c (ΩT )

lim sup
N→∞

1

Nd
logEνNκ

[
exp{NdE G

i,C0
(πk,N)}

]
≤ C0.

Proof. Writing ∂ui
Gs

(
x
N

)
= N

[
Gs

(
x+ei
N

)
−Gs

(
x
N

)]
+O(N−1) and summing by parts

(the compact support of G takes care of the boundary term), by applying the Feynman-
Kac formula and using the same arguments as in the proof of Lemma 1, we have that

1

Nd
logEνNκ

exp{N ∫ T

0

ds
∑
x∈Dd

N

(Ik(ηx(s))− Ik(ηx−ei(s)))G
(
s, x

N

) }
is bounded from above by

1

Nd

∫ T

0

λNs ds,

where λNs is equal to

sup
f


〈
N
∑
x∈Dd

N

((Ik(ηx(s))− Ik(ηx−ei(s)))G
(
s, x

N

)
, f

〉
νNκ

+N2⟨LN

√
f,
√
f⟩νNκ

 ,

(1.43)
where the supremum is taken over all densities f with respect to νNκ . By Corollaries
1, 2 and 3, for a constant function κ, the expression inside brackets is bounded from
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above by

−N
2

2
DνNκ

(
√
f) +

∑
x∈Dd

N

{
NG

(
s, x

N

) ∫
[Ik(ηx(s))− Ik(ηx−ei(s))]f(η)dν

N
κ

}
.

We now rewrite the term inside the brackets as∑
v∈V

vk
∑
x∈Dd

N

{∫
NG

(
s, x

N

)
[η(x, v)− η(x− ei, v)]f(η)dνNκ

}
. (1.44)

After a simple computation, we may rewrite the terms inside the brackets of the above
expression as

NG
(
s, x

N

) ∫
[η(x, v)− η(x− ei, v)]f(η)dνNκ

= NG
(
s, x

N

) ∫
η(x, v)f(η)dνNκ

−NG
(
s, x

N

) ∫
η(x, v)f(ηx−ei,x,v)ν

N
κ (ηx,x−ei,v)

νNκ (η)
dνNκ

= NG
(
s, x

N

) ∫
η(x, v)[f(η)− f(ηx−ei,x,v)]dνNκ .

By using f(η) − f(ηx−ei,x,v) = [
√
f(η) −

√
f(ηx−ei,x,v)][

√
f(η) +

√
f(ηx−ei,x,v)] and

applying Young’s inequality, the above expression is bounded from above by

N2

2

∫
[
√
f(ηx−ei,x,v)−

√
f(η)]2dνNκ

+2G
(
s, x

N

)2 ∫
η(x, v)(

√
f(η) +

√
f(ηx−ei,x,v))2dνNκ .

Using the above estimate, we have that (1.44) is clearly bounded by N2

2
DνNκ

(
√
f) +

CG
(
s, x

N

)2, where C is a positive constant. Thus, letting C0 = C, the statement of
the lemma holds. Now we will analyze (1.43) for a general function κ. By Corollaries
1, 2 and 3, the expression inside brackets is bounded from above by

CNd − N2

4
DνNκ

(
√
f) +

∑
x∈Dd

N

{
NG

(
s, x

N

) ∫
[Ik(ηx(s))− Ik(ηx−ei(s))]f(η)dν

N
κ

}
.

We will analyze the term inside brackets above

∑
x∈Dd

N

∑
v∈V

vk

{
NG

(
s, x

N

) ∫
[η(x, v)− η(x− ei, v)]f(η)dνNκ

}
. (1.45)
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Now rewrite the term inside the brackets as

NG
(
s, x

N

) ∫
[η(x, v)− η(x− ei, v)]f(η)dνNκ

= NG
(
s, x

N

) ∫
η(x, v)f(η)dνNκ

−NG
(
s, x

N

) ∫
η(x, v)f(ηx−ei,x,v)ν

N
κ (ηx,x−ei,v)

νNκ (η)
dνNκ

= NG
(
s, x

N

) ∫
η(x, v)[f(η)− f(ηx−ei,x,v)]dνNκ

+G
(
s, x

N

) ∫
η(x, v)f(ηx−ei,x,v)N

[
1− νNκ (ηx,x−ei,v)

νNκ (η)

]
dνNκ .

Since f(η)−f(ηx−ei,x,v) = [
√
f(η)−

√
f(ηx−ei,x,v)][

√
f(η)+

√
f(ηx−ei,x,v)] and applying

Young’s inequality, the expression is bounded from above by

N2

∫
1

2
[
√
f(ηx−ei,x,v)−

√
f(η)]2dνNκ

+2G
(
s, x

N

)2 ∫
η(x, v)(

√
f(η) +

√
f(ηx−ei,x,v))2dνNκ

+G
(
s, x

N

)2 ∫
f(ηx−ei,x,v)dνNκ

+
1

4

∫
η(x, v)f(ηx−ei,x,v)

[
N
(
1− νNκ (ηx,x−ei,v)

νNκ (η)

)]2
dνNκ .

Using the above estimate, (1.45) is clearly bounded by C1 + C1G
(
s, x

N

)2, by some
positive constant C1 = C1(κ), using the estimate (1.21) and the fact that f is a density
with respect to νNκ . Thus, letting C0 = C+C1, the statement of the lemma follows.

Proof of Proposition 3. Let {Gm : 1 ≤ m ≤ r} be a sequence of functions in C∞
c (ΩT )

(the space of infinitely differentiable functions with compact support) and 1 ≤ i ≤ d,
and 0 ≤ k ≤ d, be integers. By the entropy inequality, see Remark 4, there exists a
constant Cκ > 0 such that

EµN

[
max
1≤m≤r

{
E Gm
i,C0

(πk,N)
}]
≤ Cκ +

1

Nd
logEνNκ

[
exp

{
Nd max

1≤m≤r
{E Gm

i,C0
(πk,N)}

}]
.
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Therefore, using Lemma 8 together with the elementary inequalities

lim sup
N→∞

N−d log(aN + bN) ≤ lim sup
N→∞

max
{
lim sup
N→∞

N−d log(aN), lim sup
N→∞

N−d log(bN)
}

and
exp{max{x1, . . . , xn}} ≤ exp(x1) + · · ·+ exp(xn)

we set that

EQ∗

[
max
1≤m≤r

{
E Gm
i,C0

(πk,N)
}]

= lim
N→∞

EµN

[
max
1≤m≤r

{
E Gm
i,C0

(πk,N)
}]

≤ Cκ + C0.

Using this, the equation (1.40) and the monotone convergence Theorem, we obtain the
desired result.

1.10 Proof of Theorem 1

Since there is at most one particle per site we have, by a standard argument, that

all limit points Q∗ of (QN)N are concentrated on an absolutely continuous measures

with respect to the Lebesgue measure. For more details, see [1]. Thus,

Q∗{π; πk(du) = ϱk(u)du, for all 0 ≤ k ≤ d} = 1,

where πk denotes the k-th component of π and ϱ0 = ρ.

We consider the martingale

MN,k
t (H) = ⟨πk,N

t , H⟩ − ⟨πk,N
0 , H⟩ −

∫ t

0

LN⟨πk,N
s , H⟩ ds

which can be rewritten explicity as

MN,k
t (H) = ⟨πk,N

t , H⟩ − ⟨πk,N
0 , H⟩ −

∫ t

0

N2Lex,1
N ⟨πk,N

s , H⟩ ds

−
∫ t

0

N2Lex,2
N ⟨πk,N

s , H⟩ ds−
∫ t

0

N2Lb
N⟨πk,N

s , H⟩ ds−
∫ t

0

N2Lc
N⟨πk,N

s , H⟩ ds.
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By equations (A.4), (A.6), (A.8) and (A.10), we have that

MN,k
t (H) = ⟨πk,N

t , H⟩ − ⟨πk,N
0 , H⟩ − 1

2Nd

∑
x∈Dd

N

∑
v∈V

vk η(x, v)∆NH
(

x
N

)
+
N2

2Nd

∑
x∈Dd

N
x1=N−1

∑
v∈V

vk
[
H
(
N−1
N
, x̃
N

)
−H

(
N
N
, x̃
N

)]
η(N − 1, x̃, v)

+
N2

2Nd

∑
x∈Dd

N
x1=1

∑
v∈V

vk
[
H
(

1
N
, x̃
N

)
−H

(
0
N
, x̃
N

)]
η(1, x̃, v)

− 1

Nd

d∑
j=1

∑
x∈Dd

N

(∂Nuj
H)
(

x
N

)
τxW

N,ηs
j,k

− N2

NdN θ

∑
x∈Dd

N
x1=1

∑
v∈V

vkH
(

x
N

)
[αv

(
x̃
N

)
− η(1, x̃, v)]

− N2

NdN θ

∑
x∈Dd

N
x1=N−1

∑
v∈V

vkH
(

x
N

)
[βv
(

x̃
N

)
− η(N − 1, x̃, v)]

where (τxη)(z, v) = η(x+ z, v) and WN,ηs
j,k =

∑
v∈V

vk
∑
z∈Zd

p(z, v)zjηs(0, v)(1− ηs(z, v)).

We then apply the Replacement Lemma to rewrite the martingale in terms of the

empirical measure. Further, we apply Lemma 1 (replacement lemma for the boundary)

to obtain that all limit points satisfy the integral identity in the definition of the

corresponding weak solution.

Using the previous computations and the tightness of the sequence of measures

(QN)N , we conclude that all limit points are concentrated on weak solutions of

∂t(ρ, ϱ) +
∑
v∈V

ṽ[v · ∇χ(θv(Λ(ρ, ϱ)))] =
1

2
∆(ρ, ϱ)

with boundary conditions depending on θ. The uniqueness of weak solutions of the

above equation implies that there is at most one limit point. Moreover, by Proposition

3, each limit point of (QN)N is concentrated on a vector of measures with finite energy,

that is: whose components have a density with respect to the Lebesgue measure that

belongs to the Sobolev space H 1(Dd). This completes the proof of Theorem 1.
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1.11 Characterization of the limit points

This section deals with the characterization of the limit points in the three regime

of θ ≥ 0.

1.11.1 Characterization of the limit points for θ ∈ [0, 1)

Now we look at the limit points of the sequence {QN}N≥1.

Proposition 4. If Q∗ is a limit point of {QN}N≥1, then

Q∗
[
π· :

∫
Dd

(ρ, ϱ)(t, x)G(t, x) dx−
∫
Dd

(ρ, ϱ)(0, x)G(0, x) dx

−
∫ t

0

∫
Dd

∑
v∈V

ṽ · χ(θv(Λ(ρ, ϱ)))
d∑

i=1

vi
∂G

∂xi
(r, x) dx dr

+
1

2

∫ t

0

∫
{1}×Td−1

d(1, x̃)
∂G

∂x1
(r, 1, x̃) dS dr − 1

2

∫ t

0

∫
{0}×Td−1

d(0, x̃)
∂G

∂x1
(r, 0, x̃) dS dr

−
∫ t

0

∫
Dd

(ρ, ϱ)(r, x)

(
∂rG(r, x) +

1

2
∆G

)
dx dr = 0

]
= 1,

for all t ∈ [0, T ], ∀G ∈ C1,2
0 ([0, T ]×Dd).

Proof. It is enough to verify that, for δ > 0 and G ∈ C1,2
0 ([0, T ]×Dd) fixed,

Q∗
[
π· : sup

0≤t≤T

∣∣∣∣∫
Dd

(ρ, ϱ)(t, x)G(t, x) dx−
∫
Dd

(ρ, ϱ)(0, x)G(0, x) dx

−
∫ t

0

∫
Dd

∑
v∈V

ṽ · χ(θv(Λ(ρ, ϱ)))
d∑

i=1

vi
∂G

∂xi
(r, x) du dr

+
1

2

∫ t

0

∫
{1}×Td−1

d(1, x̃)
∂G

∂x1
(r, 1, x̃) dS dr − 1

2

∫ t

0

∫
{0}×Td−1

d(0, x̃)
∂G

∂x1
(r, 0, x̃) dS dr

−
∫ t

0

∫
Dd

(ρ, ϱ)(r, x)

(
∂rG(r, x) +

1

2
∆G

)
dx dr

∣∣∣∣ > δ

]
= 0.

Since the set considered above is an open set, we can use the Portmanteau’s Theorem
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directly and bound the last probability by

lim inf
N→∞

QN

[
π· : sup

0≤t≤T

∣∣⟨πk
t , Gt⟩ − ⟨πk

0 , G0⟩

−
∫ t

0

∫
Dd

∑
v∈V

ṽ · χ(θv(Λ(ρ, ϱ)))
d∑

i=1

vi
∂G

∂xi
(r, x) dx dr

+
1

2

∫ t

0

∫
{1}×Td−1

d(1, x̃)
∂G

∂x1
(r, 1, x̃) dS dr − 1

2

∫ t

0

∫
{0}×Td−1

d(0, x̃)
∂G

∂x1
(r, 0, x̃) dS dr

−
∫ t

0

〈
πk
r ,

(
∂rG(r, x) +

1

2
∆G

)〉
dx dr

∣∣∣∣ > δ

]
= 0.

Summing and subtracting
∫ t

0

N2LN⟨πk,N
r , Gr⟩ dr in the expression above, we can bound

it by the sum of

lim inf
N→∞

QN

[
sup

0≤t≤T
|MN,k

t (G)| > δ

2

]
and

lim sup
N→∞

PµN

[
η· : sup

0≤t≤T

∣∣∣∣∫ t

0

N2LN⟨πk,N
r , Gr⟩ dr −

1

2

∫ t

0

⟨πk,N
r ,∆G⟩ dr

−
∫ t

0

∫
Dd

∑
v∈V

ṽ · χ(θv(Λ(ρ, ϱ)))
d∑

i=1

vi
∂G

∂xi
(r, x) dx dr

+
1

2

∫ t

0

∫
{1}×Td−1

d(1, ũ)
∂G

∂u1
(r, 1, x̃) dS dr − 1

2

∫ t

0

∫
{0}×Td−1

d(0, x̃)
∂G

∂u1
(r, 0, ũ) dS dr

∣∣∣∣ > δ

2

]
,

where MN,k
r (G) was defined in (1.17) and πk,N

r is the empirical measure defined in
(1.14). Now, let us bound the expression inside the probability above by the sum of
the following terms

sup
0≤t≤T

∣∣∣∣∣∣
∫ t

0

[ 1

2Nd

∑
x∈Dd

N

Ik(ηx(r))∆NG
(

x
N

)
− 1

2Nd

∑
x∈Dd

N

Ik(ηx(r))∆G
(

x
N

) ]
dr

∣∣∣∣∣∣ ,

sup
0≤t≤T

∣∣∣∣∣∣∣∣
∫ t

0

1

2Nd−1

∑
x∈Dd

N
x1=N−1

Ik(η(N−1,x̃)(r))
{
∂N,+
x1

G
(
N−1
N
, x̃
N

)
− ∂x1Gr(1, x̃)

}
dr

∣∣∣∣∣∣∣∣ ,

sup
0≤t≤T

∣∣∣∣12
∫ t

0

∂x1Gr(1, x̃)
[
Ik(η(N−1,x̃)(r))− d(1, x̃)

]
dr

∣∣∣∣ ,
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sup
0≤t≤T

∣∣∣∣∣∣∣∣
∫ t

0

1

2Nd−1

∑
x∈Dd

N
x1=1

Ik(η(1,x̃)(r))
{
∂N,−
x1

G
(

1
N
, x̃
N

)
− ∂x1Gr(0, x̃)

}
dr

∣∣∣∣∣∣∣∣ ,

sup
0≤t≤T

∣∣∣∣12
∫ t

0

∂x1Gr(0, x̃)
[
Ik(η(1,x̃)(r))− d(0, x̃)

]
dr

∣∣∣∣ ,

sup
0≤t≤T

∣∣∣∣∣∣∣∣
∫ t

0

N1−θ

Nd

∑
x∈Dd

N
x1=1

∂N,−
x1

G
(

1
N
, x̃
N

) [∑
v∈V

αv(
x̃
N
)− Ik(η(1,x̃))

]
dr

∣∣∣∣∣∣∣∣ ,

sup
0≤t≤T

∣∣∣∣∣∣∣∣
∫ t

0

N1−θ

Nd

∑
x∈Dd

N
x1=N−1

∂N,+
x1

G
(
N−1
N
, x̃
N

) [∑
v∈V

βv(
x̃
N
)− Ik(η(N−1,x̃))

]
dr

∣∣∣∣∣∣∣∣
and

sup
0≤t≤T

∣∣∣∣∣∣
∫ t

0

 1

Nd

d∑
j=1

∑
x∈Dd

N

(∂Nxj
G)( x

N
)τxWj,k −

∫
Dd

∑
v∈V

ṽ · χ(θv(Λ(ρ, ϱ)))
d∑

i=1

vi
∂G

∂xi
dx

 dr
∣∣∣∣∣∣

Since G ∈ C1,2
0 ([0, T ]×Dd) and using the Replacement Lemmas it is easy to see that

terms above converges to zero, as N →∞. This concludes the proof.

1.11.2 Characterization of limit points for θ = 1

Now we look at the limit points of the sequence {QN}N≥1.
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Proposition 5. If Q∗ is a limit point of {QN}N≥1, then

Q∗
[
π· :

∫
Dd

(ρ, ϱ)(t, x)G(t, x) dx−
∫
Dd

(ρ, ϱ)(0, x)G(0, x) dx

−
∫ t

0

∫
Dd

∑
v∈V

ṽ · χ(θv(Λ(ρ, ϱ)))
d∑

i=1

vi
∂G

∂xi
(r, x) dx dr

+
1

2

∫ t

0

∫
{1}×Td−1

(ρ, ϱ)(r, 1, x̃)
∂G

∂x1
(r, 1, x̃) dS dr

−1

2

∫ t

0

∫
{0}×Td−1

(ρ, ϱ)(r, 0, x̃)
∂G

∂x1
(r, 0, x̃) dS dr

−1

2

∫ t

0

∫
{1}×Td−1

[∑
v∈V

vkβv(x̃)− (ρ, ϱ)(r, 1, x̃)

]
G(r, 1, x̃) dS dr

−1

2

∫ t

0

∫
{0}×Td−1

[∑
v∈V

vkαv(x̃)− (ρ, ϱ)(r, 0, x̃)

]
G(r, 0, x̃) dS dr

−
∫ t

0

∫
Dd

(ρ, ϱ)(r, x)

(
∂rG(r, x) +

1

2
∆G

)
dx dr = 0

]
= 1,

for all t ∈ [0, T ], ∀G ∈ C1,2([0, T ]×Dd).

Proof. It is enough to verify that, for δ > 0 and G ∈ C1,2([0, T ]×Dd) fixed,

Q∗
[
π· : sup

0≤t≤T

∣∣∣∣∫
Dd

(ρ, ϱ)(t, x)G(t, x) dx−
∫
Dd

(ρ, ϱ)(0, x)G(0, x) dx

−
∫ t

0

∫
Dd

∑
v∈V

ṽ · χ(θv(Λ(ρ, ϱ)))
d∑

i=1

vi
∂G

∂xi
(r, x) dx dr

+
1

2

∫ t

0

∫
{1}×Td−1

(ρ, ϱ)(r, 1, x̃)
∂G

∂x1
(r, 1, x̃) dS dr

−1

2

∫ t

0

∫
{0}×Td−1

(ρ, ϱ)(r, 0, x̃)
∂G

∂x1
(r, 0, x̃) dS dr

−1

2

∫ t

0

∫
{1}×Td−1

[∑
v∈V

vkβv(x̃)− (ρ, ϱ)(r, 1, x̃)

]
G(r, 1, x̃) dS dr

−1

2

∫ t

0

∫
{0}×Td−1

[∑
v∈V

vkαv(x̃)− (ρ, ϱ)(r, 0, x̃)

]
G(r, 0, x̃) dS dr

−
∫ t

0

∫
Dd

(ρ, ϱ)(r, x)

(
∂rG(r, x) +

1

2
∆G

)
dx dr

∣∣∣∣ > δ

]
= 0.
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Rewrite the expression above as

Q∗
[
π· : sup

0≤t≤T

∣∣∣∣∫
Dd

(ρ, ϱ)(t, x)G(t, x) dx−
∫
Dd

(ρ, ϱ)(0, x)G(0, x) dx

−
∫ t

0

∫
Dd

∑
v∈V

ṽ · χ(θv(Λ(ρ, ϱ)))
d∑

i=1

vi
∂G

∂xi
(r, x) dx dr

+
1

2

∫ t

0

∫
{1}×Td−1

(ρ, ϱ)(r, 1, x̃)

[
∂G

∂x1
(r, 1, x̃) +G(r, 1, x̃)

]
dS dr

−1

2

∫ t

0

∫
{0}×Td−1

(ρ, ϱ)(r, 0, x̃)

[
∂G

∂x1
(r, 0, x̃)−G(r, 0, x̃)

]
dS dr

−1

2

∫ t

0

∫
{1}×Td−1

G(r, 1, x̃)
∑
v∈V

vkβv(x̃) dS dr

−1

2

∫ t

0

∫
{0}×Td−1

G(r, 0, x̃)
∑
v∈V

vkαv(x̃) dS dr

−
∫ t

0

∫
Dd

(ρ, ϱ)(r, x)

(
∂rG(r, x) +

1

2
∆G

)
dx dr

∣∣∣∣ > δ

]
= 0.

(1.46)

We would like to work with the probabilities QN , as we did in the previous case, using
Portmanteau’s Theorem. Unfortunately, the set inside the above probability is not an
open set in the Skorohod space. In order to avoid this problem, we fix ε > 0 and we
consider two approximations of the identity, for fixed u1 ∈ [0, 1] which are given on
w ∈ [0, 1] by

←−ı u1
ε (w) =

1

ε
1(u1−ε,u1](w) and −→ı u1

ε (w) =
1

ε
1[u1,u1+ε)(w).

We use the notation

⟨πr,←−ı u1
ε ⟩ = ⟨(ρ, ϱ)r,←−ı u1

ε ⟩ =
1

ε

∫ u1

u1−ε

(ρ, ϱ)r(w, ũ) dw

and

⟨πr,−→ı u1
ε ⟩ = ⟨(ρ, ϱ)r,−→ı u1

ε ⟩ =
1

ε

∫ u1+ε

u1

(ρ, ϱ)r(w, ũ) dw.

By summing and subtracting proper terms, we bound the probability in (1.46) from
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above by

Q∗
[
π· : sup

0≤t≤T

∣∣∣∣∫
Dd

(ρ, ϱ)(t, x)G(t, x) dx−
∫
Dd

(ρ, ϱ)(0, x)G(0, x) dx

−
∫ t

0

∫
Dd

∑
v∈V

ṽ · χ(θv(Λ(ρ, ϱ)))
d∑

i=1

vi
∂G

∂xi
(r, x) dx dr

+
1

2

∫ t

0

∫
{1}×Td−1

[
(ρ, ϱ)(r, 1, x̃)− ⟨πr,←−ı 1

ε⟩
] [ ∂G
∂x1

(r, 1, x̃) +G(r, 1, x̃)

]
dS dr

+
1

2

∫ t

0

∫
{1}×Td−1

⟨πr,←−ı 1
ε⟩
[
∂G

∂x1
(r, 1, x̃) +G(r, 1, x̃)

]
dS dr

−1

2

∫ t

0

∫
{0}×Td−1

[
(ρ, ϱ)(r, 0, x̃)− ⟨πr,−→ı 0

ε⟩
] [ ∂G
∂x1

(r, 0, x̃)−G(r, 0, x̃)
]
dS dr

−1

2

∫ t

0

∫
{0}×Td−1

⟨πr,−→ı 0
ε⟩
[
∂G

∂x1
(r, 0, x̃)−G(r, 0, x̃)

]
dS dr

−1

2

∫ t

0

∫
{1}×Td−1

G(r, 1, x̃)
∑
v∈V

vkβv(x̃) dS dr

−1

2

∫ t

0

∫
{0}×Td−1

G(r, 0, x̃)
∑
v∈V

vkαv(x̃) dS dr

−
∫ t

0

∫
Dd

(ρ, ϱ)(r, x)

(
∂rG(r, x) +

1

2
∆G

)
dx dr

∣∣∣∣ > δ
5

]
= 0.

(1.47)

By Lebesgue’s Differentiation Theorem, observe that, for almost u1 ∈ [0, 1],

lim
ε→0
|(ρ, ϱ)(r, u1, x̃)− ⟨πr,←−ı u1

ε ⟩| = 0

and
lim
ε→0
|(ρ, ϱ)(r, u1, x̃)− ⟨πr,−→ı u1

ε ⟩| = 0.

Since the functions ←−ı u1
ε and ←−ı u1

ε are not continuous, we cannot use Portmanteau’s
Theorem. However, we can approximate each one of these functions by continuous
functions, in such a way that the error vanishes as ε → 0. Then, since the set inside
the probability in (1.47) is an open set with respect to the Skorohod topology, we can
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use Portmanteau’s Theorem and bound (1.47) from above by

lim inf
N→∞

QN

[
π· : sup

0≤t≤T

∣∣⟨πk
t , Gt⟩ − ⟨πk

0 , G0⟩

−
∫ t

0

∫
Dd

∑
v∈V

ṽ · χ(θv(Λ(ρ, ϱ)))
d∑

i=1

vi
∂G

∂xi
(r, x) dx dr

+
1

2

∫ t

0

∫
{1}×Td−1

←−η εN
r (N − 1, x̃, v)

[
∂G

∂x1
(r, 1, x̃) +G(r, 1, x̃)

]
dS dr

−1

2

∫ t

0

∫
{0}×Td−1

−→η εN
r (1, x̃, v)

[
∂G

∂x1
(r, 0, x̃)−G(r, 0, x̃)

]
dS dr

−1

2

∫ t

0

∫
{0}×Td−1

G(r, 1, x̃)
∑
v∈V

vkβv(x̃) dS dr

−1

2

∫ t

0

∫
{0}×Td−1

G(r, 0, x̃)
∑
v∈V

vkαv(x̃) dS dr

−
∫ t

0

∫
Dd

(ρ, ϱ)(r, x)

(
∂rG(r, x) +

1

2
∆G

)
dx dr

∣∣∣∣ > δ
8

]
= 0.

(1.48)

Summing and subtracting
∫ t

0
N2LN⟨πk,N

s , Gs⟩ ds to the term inside the supremum in
(1.48) from above by the sum of

PµN

[
sup

0≤t≤T
|MN,k

t (G)| > δ

16

]
(1.49)
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and

PµN

[
sup

0≤t≤T

∣∣∣∣∫ t

0

N2LN⟨πk,N
s , Gs⟩ ds

−
∫ t

0

∫
Dd

∑
v∈V

ṽ · χ(θv(Λ(ρ, ϱ)))
d∑

i=1

vi
∂G

∂xi
(r, x) dx dr

+
1

2

∫ t

0

∫
{1}×Td−1

←−η εN
r (N − 1, x̃, v)

[
∂G

∂x1
(r, 1, x̃) +G(r, 1, x̃)

]
dS dr

−1

2

∫ t

0

∫
{0}×Td−1

−→η εN
r (1, x̃, v)

[
∂G

∂x1
(r, 0, x̃)−G(r, 0, x̃)

]
dS dr

−1

2

∫ t

0

∫
{0}×Td−1

G(r, 1, x̃)
∑
v∈V

vkβv(x̃) dS dr

−1

2

∫ t

0

∫
{0}×Td−1

G(r, 0, x̃)
∑
v∈V

vkαv(x̃) dS dr

−
∫ t

0

∫
Dd

(ρ, ϱ)(r, x)

(
∂rG(r, x) +

1

2
∆G

)
dx dr

∣∣∣∣ > δ
16

]
= 0.

(1.50)

From Doob’s inequality the term (1.49) vanishes as N →∞. We can bound (1.50) fom
above by a sum of terms and doing the same argument from previous section, since
G ∈ C1,2([0, T ]×Dd) and using the Replacement Lemmas it is easy to see that terms
above converges to zero, as N →∞ and ε→ 0. This concludes the proof.

1.11.3 Characterization of limit points for θ > 1

As in previous sections, we will look at the limit points of the sequence {QN}N≥1.

59



Proposition 6. If Q∗ is a limit point of {QN}N≥1, then it is true that

Q∗
[
π· :

∫
Dd

(ρ, ϱ)(t, x)G(t, x) dx−
∫
Dd

(ρ, ϱ)(0, x)G(0, x) dx

−
∫ t

0

∫
Dd

∑
v∈V

ṽ · χ(θv(Λ(ρ, ϱ)))
d∑

i=1

vi
∂G

∂xi
(r, x) dx dr

+
1

2

∫ t

0

∫
{1}×Td−1

(ρ, ϱ)(r, 1, x̃)
∂G

∂x1
(r, 1, x̃) dS dr

−1

2

∫ t

0

∫
{0}×Td−1

(ρ, ϱ)(r, 0, x̃)
∂G

∂x1
(r, 0, x̃) dS dr

−
∫ t

0

∫
Dd

(ρ, ϱ)(r, x)

(
∂rG(r, x) +

1

2
∆G

)
dx dr = 0

]
= 1,

for all t ∈ [0, T ], ∀G ∈ C1,2([0, T ]×Dd).

Proof. Following the same reasoning as in Proposition 4 and 5, it is enough to verify
that, for δ > 0 and G ∈ C1,2([0, T ]×Dd) fixed, we have

Q∗
[
π· : sup0≤t≤T

∣∣∣∣∫
Dd

(ρ, ϱ)(t, x)G(t, x) dx−
∫
Dd

(ρ, ϱ)(0, x)G(0, x) dx

−
∫ t

0

∫
Dd

∑
v∈V

ṽ · χ(θv(Λ(ρ, ϱ)))
d∑

i=1

vi
∂G

∂xi
(r, x) dx dr

+
1

2

∫ t

0

∫
{1}×Td−1

(ρ, ϱ)(r, 1, x̃)
∂G

∂x1
(r, 1, x̃) dS dr

−1

2

∫ t

0

∫
{0}×Td−1

(ρ, ϱ)(r, 0, x̃)
∂G

∂x1
(r, 0, x̃) dS dr

−
∫ t

0

∫
Dd

(ρ, ϱ)(r, x)

(
∂rG(r, x) +

1

2
∆G

)
dx dr

∣∣∣∣ > δ

]
= 0.

We need to change the boundary terms (ρ, ϱ)r(0, x̃) (resp. (ρ, ϱ)r(1, x̃)) by −→η εN
r (1, x̃, v)

(resp. ←−η εN
r (N − 1, x̃, v)). Then, we sum and subtract

∫ t

0
N2LN⟨πk,N

r , G⟩ dr, it will be
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enough to analyze

lim sup
N→∞

PµN

[
η· : sup

0≤t≤T

∣∣∣∣∫ t

0

N2LN⟨πk,N
r , G⟩ dr − 1

2

∫ t

0

⟨πk,N
r ,∆G⟩ dr

−
∫ t

0

∫
Dd

∑
v∈V

ṽ · χ(θv(Λ(ρ, ϱ)))
d∑

i=1

vi
∂G

∂xi
(r, x) dx dr

+
1

2

∫ t

0

∫
{1}×Td−1

←−η εN
r (N − 1, x̃, v)

∂G

∂x1
(r, 1, x̃) dS dr

− 1

2

∫ t

0

∫
{0}×Td−1

−→η εN
r (1, x̃, v)

∂G

∂x1
(r, 0, x̃) dS dr

∣∣∣∣ > δ

]
.

(1.51)

Doing the same as in the other cases and using that G ∈ C1,2([0, T ]×Dd) and θ > 1,
we just have to analyze the following, for all δ̃ and x1 = {1, N − 1}

lim sup
N→∞

PµN

[
η· : sup

0≤t≤T

∣∣∣∣∫ t

0

[ηεNs (x1, x̃)− ηs(x1, x̃)]
∂G

∂x1
dr

∣∣∣∣ > δ̃

]
.

Applying Replacement Lemma (4), we conclude that, taking limit when ε → 0 the
limit above goes to 0. This concludes the proof of this proposition.

1.12 Uniqueness of weak solutions

To conclude the proof of the hydrodynamic limit, it remains to prove the unique-

ness of weak solutions to (1.8), (1.10) and (1.12).

1.12.1 Uniqueness of weak solutions of (1.8)

Consider (ρ1, ϱ1), (ρ2, ϱ2) two weak solutions of (1.8) with the same initial condi-

tion and denote their difference by (ρ, ϱ) = (ρ1−ρ2, ϱ1−ϱ2). Let us define the set {ψz}z
given by ψz(u) =

√
2 sin(zπu) for z ≥ 1 and ψ0(u) = 1 which is an orthonormal basis

of L2([0, 1]). Note that (ρ, ϱ) = (p0, p1, . . . , pd) = 0 if, and only if, each component is

equal to zero, which means that pk = 0 for k = 0, . . . , d. Let

Vk(t) =
∑
z≥0

1

2az
⟨pkt , ψz⟩2

where az = (zπ)2 + 1. We claim that V ′
k(t) ≤ CVk(t), where C is a positive constant.

Since Vk(0) = 0, ∀ k = 0, . . . , d, from Gronwall’s inequality we will conclude that
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Vk(t) ≤ 0, but since we know by definition that Vk(t) ≥ 0, we are done. Now we need

to show that the claim is true. Note that

V ′
k(t) =

∑
z≥0

1

az
⟨pkt , ψz⟩

d

dt
⟨pkt , ψz⟩,

and from the integral formulation (1.8) we have that

d

dt
⟨pkt , ψz⟩ =⟨

d

dt
pkt , ψz⟩+ ⟨pkt ,

d

dt
ψz⟩

=
1

2
⟨pkt ,∆ψz⟩+ ⟨χ(θv(Λ(ρ1t , ϱ1t )))− χ(θv(Λ(ρ2t , ϱ2t ))), ∂uψz⟩.

Since ψz(u) =
√
2 sin(zπu) we have that ∂uψz(u) =

√
2zπ cos(zπu) and ∆ψz(u) =

−(zπ)2
√
2 sin(zπu) = −(zπ)2ψz, then

V ′
k(t) =

∑
z≥0

−(zπ)2
2az

⟨pkt , ψz⟩2+
∑
z≥0

1

az
⟨pkt , ψz⟩⟨χ(θv(Λ(ρ1t , ϱ1t )))−χ(θv(Λ(ρ2t , ϱ2t ))), ∂uψz⟩.

Using Young’s inequality on the second term on the right-hand side of last identity, we

bound that term from above by

1

2A

∑
z≥0

1

az
⟨pkt , ψz⟩2 +

A

2

∑
z≥0

1

az
⟨χ(θv(Λ(ρ1t , ϱ1t )))− χ(θv(Λ(ρ2t , ϱ2t ))), ∂uψz⟩2,∀A > 0.

Observe that ∂uψz = zπϕz(u), with ϕz(u) =
√
2 cos(zπu) for z ≥ 1 and ϕ0(u) = 1.

Therefore, the second term at right-hand side in last display can be rewritten as

A

2

∑
z≥0

(zπ)2

az
⟨χ(θv(Λ(ρ1t , ϱ1t )))− χ(θv(Λ(ρ2t , ϱ2t ))), ϕz⟩2

≤ A

2

∑
z≥0

⟨χ(θv(Λ(ρ1t , ϱ1t )))− χ(θv(Λ(ρ2t , ϱ2t ))), ϕz⟩2

because of the choice for az. Observe that, since {ϕz}z is an orthonormal basis of

L2[0, 1], we can rewritten the last display as

A

2

∫ 1

0

(
χ(θv(Λ(ρ

1
t , ϱ

1
t )))− χ(θv(Λ(ρ2t , ϱ2t )))

)2
du.
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Since χ(θv(Λ(ρt, pt))) is Lipschitz (see [16]), last display is bounded from above by
A
2
∥ρt∥22. Putting all this together, we conclude that

V ′
k(t) ≤

∑
z≥0

(−(zπ)2
2az

+
1

2Aaz
+
A

2

)
⟨ρt, ψz⟩2.

Taking A = 1, we get

V ′
k(t) ≤

∑
z≥0

(
1

2az
+

1

2

)
⟨ρt, ψz⟩2 =

1 + az
2az

⟨ρt, ψz⟩2 = C Vk(t).

And this concludes the proof of uniqueness of weak solutions for the problem (1.8).

1.12.2 Uniqueness of weak solutions of (1.12)

The proof above can be adapted to this case, as we describe now. Consider

(ρ1, p1) and (ρ2, p2) two weak solutions of (1.12) with the same initial condition and

denote by (ρ, p) their difference (ρ, p) = (ρ1 − ρ2, p1 − p2). Now consider the set {ϕz}z
given by ϕz(u) =

√
2 cos(zπu) for z ≥ 1 and ϕ0(u) = 1, which is an orthonormal basis

of L2([0, 1]). Note that (ρ, p) = (p0, p1, . . . , pd) = 0 if and only if each component is

equal to zero, which means pk = 0 for k = 0, . . . , d. Let

Vk(t) =
∑
z≥0

1

2az
⟨pkt , ϕz⟩2

where az = (zπ)2+1. We claim that V ′
k(t) ≤ CVk(t), where C is a positive constant and

since Vk(0) = 0∀ k = 0, . . . , d, from Gronwall’s inequality we conclude that Vk(t) ≤ 0,

but we know by definition that Vk(t) ≥ 0, and we are done. Now we need to show that

the claim is true. Note that

V ′
k(t) =

∑
z≥0

1

az
⟨pkt , ϕz⟩

d

dt
⟨pkt , ϕz⟩,
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and from the integral formulation (1.12) we have that

d

dt
⟨pkt , ϕz⟩ =⟨

d

dt
pkt , ϕz⟩+ ⟨pkt ,

d

dt
ϕz⟩

=
1

2
⟨pkt ,∆ϕz⟩+ ⟨χ(θv(Λ(ρ1t , p1t )))− χ(θv(Λ(ρ2t , p2t ))), ∂uϕz⟩

−1

2
pkt (1)∂uϕz(1) +

1

2
pkt (0)∂uϕz(0).

Since ∂uϕz(0) = ∂uϕz(1) = 0, then

V ′
k(t) =

∑
z≥0

− 1

2az
⟨pkt , ϕz⟩⟨pkt ,∆ϕz⟩

+
∑
z≥0

1

az
⟨pkt , ϕz⟩⟨χ(θv(Λ(ρ1t , p1t )))− χ(θv(Λ(ρ2t , p2t ))), ∂uϕz⟩

=
∑
z≥0

−(zπ)2

2az
⟨pkt , ϕz⟩2 +

∑
z≥0

1

az
⟨pkt , ϕz⟩⟨χ(θv(Λ(ρ1t , p1t )))− χ(θv(Λ(ρ2t , p2t ))), ∂uϕz⟩.

(1.52)

Using Young’s inequality in the second term of right-hand side of equation (1.52), this

term is bounded from above by

1

2A

∑
z≥0

1

az
⟨pkt , ϕz⟩2 +

A

2

∑
z≥0

1

az
⟨χ(θv(Λ(ρ1t , ϱ1t )))− χ(θv(Λ(ρ2t , ϱ2t ))), ∂uϕz⟩2,∀A > 0.

Observe that ∂uϕz = −zπψz(u), with ψz(u) =
√
2 sin(zπu) for z ≥ 1 and ψ0(u) = 1.

Therefore, the last term at right-hand side of last display can be rewritten as

A

2

∑
z≥0

(zπ)2

az
⟨χ(θv(Λ(ρ1t , ϱ1t )))− χ(θv(Λ(ρ2t , ϱ2t ))), ϕz⟩2

≤ A

2

∑
z≥0

⟨χ(θv(Λ(ρ1t , ϱ1t )))− χ(θv(Λ(ρ2t , ϱ2t ))), ϕz⟩2

because of the choice for az. Observe that, since {ϕz}z is an orthonormal basis of

L2[0, 1], we can rewritten the last display as

A

2

∫ 1

0

(
χ(θv(Λ(ρ

1
t , ϱ

1
t )))− χ(θv(Λ(ρ2t , ϱ2t )))

)2
du.
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Since χ(θv(Λ(ρt, pt))) is Lipschitz (see [16]), we have the last display is bounded from

above by A
2
∥ρt∥22. Putting all this together we conclude that

V ′
k(t) ≤

∑
z≥0

(−(zπ)2
2az

+
1

2Aaz
+
A

2

)
⟨pkt , ψz⟩2.

Taking A = 1, then we get

V ′
k(t) ≤

∑
z≥0

(
1

2az
+

1

2

)
⟨pkt , ψz⟩2 =

1 + az
2az

⟨pkt , ψz⟩2 = C Vk(t).

And this concludes the proof of uniqueness of weak solutions for the problem (1.12).

1.12.3 Uniqueness of weak solutions of (1.10)

We tried to adapt the same method used in the previous sections 1.12.1 and 1.12.2

for this case. For that, we use the linear combination of sin and cosine, which is an

orthonormal basis of L2([0, 1]). And follows the same as in the subsections 1.12.1 and

1.12.2. But the problem is that, when we derive this basis the result is no longer a

basis.

Fortunately, we have an answer about that uniqueness for the case 1-dimensional.

The proof is ipsis litteris as in [17].
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Equilibrium Fluctuations for a bound-
ary driven stochastic lattice gas model
with many conserved quantities

This work aims to study the equilibrium fluctuations of a weakly asymmetric

exclusion process with collision among particles having different velocities with periodic

boundary conditions. The reader can skip Sections 2.1, 2.2 and 2.3 since is similar to

Sections 1.1, 1.2 and 1.3 from Chapter 1. Just make sure to keep in mind that now we

have periodic boundary conditions.

2.1 Notation and Results

We start by fixing the notation to be used throughout this chapter. Let Td
N =

{0, . . . , N − 1}d = (Z/NZ)d be the d-dimensional discrete torus. Moreover, let V ⊂ Rd

be a finite set of velocities v = (v1, . . . , vd). Assume that V is invariant under reflections

and permutations of the coordinates, i.e.,

(v1, . . . , vi−1,−vi, vi+1, . . . , vd) and (vσ(1), . . . , vσ(d))

belong to V for all 1 ≤ i ≤ d, and all permutations σ of {1, . . . , d}, provided (v1, . . . , vd)

belongs to V .

At each site of Td
N , at most one particle with a certain velocity is allowed. We

also denote: the number of particles with velocity v ∈ V at x ∈ Td
N , by η(x, v) ∈ {0, 1};

the number of particles in each velocity v at site x by ηx = {η(x, v); v ∈ V}; and

a configuration by η = {ηx;x ∈ Td
N}. The set of particle configurations is XN =

({0, 1}V)Td
N .



On the interior of the domain, the dynamics consist of two parts:

(i) each particle in the system evolves according to the nearest neighbor weakly

asymmetric random walk with exclusion among particles with the same velocity,

(ii) binary collisions between particles with different velocities.

Let p(x, v) be an irreducible transition probability with finite range, and mean velocity

v, i.e., ∑
x∈Zd

xp(x, v) = v.

The jump law and the waiting times are chosen so that the jump rate from site x to

site x+ y for a particle with velocity v is given by

PN(y, v) =
1

2

d∑
j=1

(δy,ej + δy,−ej) +
1

N
p(y, v),

where δx,y stands for the Kronecker delta, which is equal to one if x = y and 0 otherwise,

and {e1, . . . , ed} is the canonical basis in Rd.

2.2 Infinitesimal Generator

In this section, we describe the model that we are going to consider in this chapter.

Our main interest is to analyze the stochastic lattice gas model given by the generator

LN , which is the superposition of the collision and exclusion dynamics:

LN = N2{Lc
N + Lex

N }, 1 (2.1)

where Lc
N denotes the generator that models the collision part of the dynamics and

Lex
N models the exclusion part of the dynamics.

Let f : XN → R. The generator of the exclusion part of the dynamics, Lex
N , is

given by

(Lex
N f)(η) =

∑
v∈V

∑
x,x+z∈Td

N

η(x, v)(1− η(z, v))PN(z − x, v)[f(ηx,z,v)− f(η)]

1Note that in (2.1) time has been speeded up diffusively due to the factor N2.
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where

ηx,y,v(z, w) =


η(y, v) if w = v and z = x,

η(x, v) if w = v and z = y,

η(z, w) otherwise.

We will often use the decomposition

Lex
N = Lex,1

N + Lex,2
N ,

where

(Lex,1
N f)(η) =

1

2

∑
v∈V

∑
x,x+z∈Td

N
|z−x|=1

η(x, v)(1− η(z, v))[f(ηx,z,v)− f(η)],

and

(Lex,2
N f)(η) =

1

N

∑
v∈V

∑
x,x+z∈Td

N

η(x, v)(1− η(z, v))p(z − x, v)[f(ηx,z,v)− f(η)].

The generator of the collision part of the dynamics, Lc
N , is given by

(Lc
Nf)(η) =

∑
y∈Td

N

∑
q∈Q

pc(y, q, η)[f(η
y,q)− f(η)],

where Q is a set of all collisions which preserve momentum:

Q = {q = (v, w, v′, w′) ∈ V4 : v + w = v′ + w′}.

The rate pc(y, q, η) is given by

pc(y, q, η) = η(y, v)η(y, w)[1− η(y, v′)][1− η(y, w′)],

and for q = (v0, v1, v2, v3), the configuration ηy,q after the collision is defined as

ηy,q(z, u) =

 η(y, vj+2) if z = y and u = vj for some 0 ≤ j ≤ 3,

η(z, u) otherwise,

where the index of vj+2 should be taken modulo 4.

Particles of velocities v and w at the same site collide at rate one and produce

two particles of velocities v′ and w′ at the same site.
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Let {η(t), t ≥ 0} be the Markov process with generator LN and denote by

{SN
t , t ≥ 0} the semigroup associated to LN .

Let D(R+, XN) be the set of right continuous functions with left limits taking

values in XN . For a probability measure µ on XN , denote by Pµ the measure on the

path space D(R+, XN) induced by {η(t) : t ≥ 0} and the initial measure µ. The

expectation with respect to Pµ is denoted by Eµ.

2.3 Mass and Momentum

For each configuration ξ ∈ {0, 1}V , denote by I0(ξ) the mass of ξ and by Ik(ξ),

k = 1, . . . , d, the momentum of ξ, i.e.,

I0(ξ) =
∑
v∈V

ξ(v), Ik(ξ) =
∑
v∈V

vkξ(v).

Set I(ξ) := (I0(ξ), . . . , Id(ξ)). Assume that the set of velocities is chosen in such a way

that the unique conserved quantities by the random walk dynamics described above are

the mass and the momentum:
∑
x∈Td

N

I(ηx). Two examples of sets of velocities satisfying

these conditions can be found in [7].

For each chemical potential λ = (λ0, . . . , λd) ∈ Rd+1, denote bymλ the probability

measure on {0, 1}V given by

mλ(ξ) =
1

Z(λ)
exp{λ · I(ξ)}, (2.2)

where Z(λ) is a normalizing constant. Note that mλ is a product measure on {0, 1}V ,

i.e., that the variables {ξ(v) : v ∈ V} are independent under mλ.

Denote by µN
λ the product measure on XN , with marginals given by

µN
λ {η : η(x, ·) = ξ} = mλ(ξ),

for each ξ ∈ {0, 1}V and x ∈ Td
N . Note that {η(x, v) : x ∈ Td

N , v ∈ V} are independent

variables under µN
λ , and that the measure µN

λ is invariant for the exclusion process.
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The expectation under µN
λ of the mass and momentum are, respectively, given by

ρ(λ) := EµN
λ
[I0(ηx)] =

∑
v∈V

θv(λ),

ϱk(λ) := EµN
λ
[Ik(ηx)] =

∑
v∈V

vkθv(λ).

In the last formula, θv(λ) denotes the expected value of the density of particles with

velocity v under mλ:

θv(λ) := Emλ
[ξ(v)] =

exp

{
λ0 +

d∑
k=1

λkvk

}

1 + exp

{
λ0 +

d∑
k=1

λkvk

} .

Denote by (ρ, ϱ)(λ) := (ρ(λ), ϱ1(λ), . . . , ϱd(λ)) the map that associates the chemical po-

tential to the vector of density and momentum. It is possible to prove that (ρ, ϱ) is a dif-

feomorphism onto U ⊂ Rd+1, the interior of the convex envelope of {I(ξ), ξ ∈ {0, 1}V}.
Denote by Λ = (Λ0, . . . ,Λd) : U → Rd+1 the inverse of (ρ, ϱ). This correspondence

allows one to parameterize the invariant states by the density and momentum: for

each (ρ, ϱ) ∈ U, we have a product measure νNρ,ϱ = µN
Λ(ρ,ϱ) on XN .

2.4 Density Fluctuations

In this section, we investigate the equilibrium fluctuations of πk,N . We denote by

Y N,k
· the density fluctuation field associated to the k-th conserved quantity that acts

on smooth functions H as

Y N,k
t (H) = N− d

2

∑
x∈Td

N

H
(

x
N

)
(Ik(ηtN2(x))− ρk), 2 (2.3)

where ρ0 = ρ and ρk = ϱk for k = 1, . . . , d. The aim of this chapter is to prove that

Y N,k
· converges to a stationary Gaussian process with given space-time correlations.

To state the main theorem of this chapter we need to introduce some notation.

Consider the lattice Zd endowed with the lexicographical order. Let h0 ≡ 1 and for
2Note the diffusive rescaling of time on the right-hand side of the (2.3).
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each z > 0 (resp. z < 0), define

hz(u) =
√
2 cos(2πz · u) ( resp. hz(u) =

√
2 sin(2πz · u)). (2.4)

Here · denotes the inner product in Rd. It is well known that the set {hz, z ∈ Zd} is

an orthonormal basis of L2(Td): each function f ∈ L2(Td) can be written as

f =
∑
z∈Zd

⟨f, hz⟩hz.

In this formula and bellow ⟨·, ·⟩ stands for the inner product of L2(Td).

Consider on L2(Td) the positive, symmetric linear operator L = (1 − ∆). A

simple computation shows that the functions hz are eigenvectors: L hz = γzhz, where

γz = 1+ 4π2∥z∥2. For a positive integer p, denote by Hp the Sobolev space of order p,

which is the Hilbert space obtained as the completion of C∞ with respect to the inner

product ⟨·, ·⟩p defined by

⟨f, g⟩p = ⟨f,L pg⟩.

It is easy to check that Hp is the subspace of L2(Td) consisting of all functions f such

that ∑
z∈Zd

⟨f, hz⟩2γpz <∞.

In particular, if we denote L2(Td) by H0,

H0 ⊃H1 ⊃H2 ⊃ · · · (2.5)

Moreover, on Hp the inner product ⟨·, ·⟩p can be expressed by

⟨f, g⟩p =
∑
z∈Zd

⟨f, hz⟩⟨g, hz⟩γpz .

For each positive integer p, denote by H−p the dual of Hp relatively to the inner product

⟨·, ·⟩. Note that H−p can be obtained as the completion of L2(Td) with respect to the

inner product obtained from the quadratic form ⟨f, f⟩−p defined by

∥f∥2−p = ⟨f, f⟩−p = sup
g∈Hp

{2⟨f, g⟩ − ⟨g, g⟩p} . (2.6)
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Furthermore, H−p consists of all sequences {⟨f, hz⟩, z ∈ Zd} such that

∑
z∈Zd

⟨f, hz⟩2γ−p
z <∞

and that the inner product ⟨f, g⟩−p of two functions f, g ∈H−p can be written as

⟨f, g⟩−p =
∑
z∈Zd

⟨f, hz⟩⟨g, hz⟩γ−p
z .

It follows also from the explicit characterization of H−p and from (2.5) that

· · · ⊂H2 ⊂H1 ⊂H0 ⊂H−1 ⊂H−2 ⊂ · · ·

We shall consider the density fluctuation field Y N,k
t as taking values in the Sobolev

space H−p for some large enough p. Fix a time T > 0, a positive integer p0 and denote

by D([0, T ],H−p0) (resp. C([0, T ],H−p0)) the space of H−p0 valued functions, that are

right continuous with left limits (resp. continuous), endowed with the uniform weak

topology: a sequence {Y k,j
t }j≥1 converges weakly to Y k

t uniformly in time, i.e., if for

all f ∈Hp0 ,

lim
j→∞

sup
0≤t≤T

∣∣∣⟨Y k,j
t , f⟩ − ⟨Y k

t , f⟩
∣∣∣ = 0.

Denote by QN the probability measure onD([0, T ],H−p0) induced by the density fluctu-

ation field Y N,k
· introduced in (2.3) and the product measure νNρ,ϱ, by PN the probability

measure on D([0, T ], XN) induced by the probability measure νNρ,ϱ and the Markov pro-

cess ηt speeded up by N2 and denote by EN the expectation with respect to PN . We

denote by Q the limit point of QN .

Fix (ρ, ϱ). Based on [1, 19], we give here a characterization of the generalized

Ornstein-Uhlenbeck process which is a solution of

dYt =
1

2
∆Yt −

∑
v∈V

ṽ⟨∇Yt · v,∇Fv(ρ, ϱ)⟩+
√
ZdWt,

where Z =
∑
v∈V

v2k χ(θv(Λ(ρ, p))), Fv(ρ, ϱ) = χ(θv(Λ(ρ, ϱ))) and given v = (v1, . . . , vd) ∈

V we denote by ṽ = (1, v1, . . . , vd). We will see below that this process governs the

equilibrium fluctuations of the density of particles of our model.

Proposition 7. For each (ρ, ϱ) ∈ U there exists an unique random Y· taking values in
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the space C ([0, T ],H−p0) such that:

(i) for every function H ∈ C ([0, T ],Hp0), Mt(H) and Nt(H) given by

Mt(H) = Yt(H)− Y0(H)−
∫ t

0

Ys

(
1

2
∆H

)
ds+

∑
v∈V

ṽ

∫ t

0

⟨Ys(v · ∇H),∇Fv(ρ, ϱ)⟩ds,

Nt(H) = (Mt(H))2 − ∥BH∥22t,

are Ft-martingales, where for each t ∈ [0, T ], Ft = σ(Ys(H); s ≤ t,H ∈ C ([0, T ],Hp0)).
Above, for each velocity v = (v1, . . . , vd) ∈ V, we define ṽ = (1, v1, . . . , vd) and
(Mt(H))2 =

(
(M0

t (H))2, . . . , (Md
t (H))2

)
, also BH = (B0H, . . . ,BdH) with

BkH =

√∑
v∈V

v2k χ(θv(Λ(ρ, ϱ)))∇H.

(ii) Y0 is a Gaussian field of mean zero and covariance given on H,G ∈ C ([0, T ],Hp0)

by

EQ[Y
k
0 (H)Y k

0 (G)] = χ(α)

∫
Td

duH(u)G(u)

Here χ(α) stands for the static compressibility given by χ(α) = V ar(να, η(0, v)).
Then, the sequence {QN}N≥1 converges weakly to the probability measure Q.

Theorem 2. Consider the Markov process {ηtN2 : t ≥ 0} starting from the invariant
state νρ,ϱ. Then, the sequence of process {Y N,k

t }N≥1 converges in ditribution, as N →
∞, with respect to the Skorohod topology of D([0, T ],H−p0), to Yt ∈ C ([0, T ],H−p0),
the generalized Ornstein-Uhlenbeck process of characteristics ∇,∆ which is the formal
solution of the equation

dYt =
1

2
∆Yt −

∑
v∈V

ṽ⟨∇Yt · v,∇Fv(ρ, ϱ)⟩+
√
ZdWt.

2.5 Proof of Theorem 2

2.5.1 Martingale Problem

By Dynkin’s formula, for a given function H ∈ C ([0, T ],Hp0)

MN,k
t (H) = Y N,k

t (H)− Y N,k
0 (H)−

∫ t

0

ΓN
1 (H) ds,

NN,k
t (H) = (MN,k

t (H))2 −
∫ t

0

ΓN
2 (H) ds,

(2.7)
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are martingales with respect to the filtration Gt := σ(ηs : s ≤ t), where

ΓN
1 (H) := (∂s +N2LN)Y

N,k
s (H)

ΓN
2 (H) := N2LN

(
[Y N,k

s (H)]2
)
− 2Y N,k

s (H)N2LN [Y
N,k
s (H)].

By the computations of Appendix B, we obtain

ΓN
1 (H) := (∂s +N2LN)Y

N,k
s (H)

= ∂sY
N,k
s (H) +

1

2
Y N,k
s [∆NH

(
x
N

)
]

−N− d
2

∑
x∈Td

N

d∑
j=1

(∂Nuj
H)
(

x
N

)
[τxW

ηs
j,k − ωρ,ϱ

k ],

(2.8)

where

W ηs
j,k :=

∑
v∈V

vk
∑
z∈Zd

zjp(z, v)ηs(0, v)[1− ηs(z, v)]

and

ωρ,ϱ
k := EνNρ,ϱ

[W ηs
j,k] =

∑
v∈V

vkvjχ(θv(Λ(ρ, ϱ))).

Also by the computations of Appendix B,

ΓN
2 (H) := N2LN

(
[Y N,k

s (H)]2
)
− 2Y N,k

s (H)N2LN [Y
N,k
s (H)]

=
1

2Nd

∑
v∈V

∑
x∈Td

N

d∑
j=1

v2k

(
η(x, v)− η(x+ ej, v)

)2
(∂Nj H

(
x
N

)
)2

+
1

2Nd+1

∑
v∈V

v2k
∑
x∈Td

N

∑
|w|≤R

d∑
j=1

η(x, v)(1− η(x+ w, v))p(w, v)
(
∂Nj H

(
x
N

))2
w2

j .
3

(2.9)
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The goal is to close the MN,k
t (H) in equation (2.7). Note that,

MN,k
t (H) = Y N,k

t (H)− Y N,k
0 (H)−

∫ t

0

1

2N
d
2

∑
x∈Td

N

∆NH
(

x
N

)
(Ik(ηx(s))− ρk) ds

+

∫ t

0

1

N
d
2

∑
x∈Td

N

d∑
j=1

(∂Nj H)
(

x
N

)
[τxW

ηs
j,k − ωρ,ϱ

k ] ds.

(2.10)

By Theorem 3, the Boltzmann-Gibbs principle (see Section 2.6), where Fv(ρ, ϱ) =

χ(θv(Λ(ρ, ϱ))), we have that (2.10) is equal to

MN,k
t (H) = Y N,k

t (H)− Y N,k
0 (H)− 1

2

∫ t

0

1

N
d
2

∑
x∈Td

N

∆NH
(

x
N

)
(Ik(ηx(s))− ρk) ds

+

∫ t

0

1

N
d
2

∑
x∈Td

N

d∑
j=1

(∂Nj H)
(

x
N

)∑
v∈V

vkvj

d∑
i=1

∂ρiFv(ρ, ϱ)[Ii(ηx(s))− ρi] ds,

rewrite the last equation as

Y N,k
t (H)− Y N,k

0 (H)−
∫ t

0

Y N,k
s

(
1

2
∆NH

)
ds

+
d∑

i=1

vk

∫ t

0

Y N,i
s

(∑
v∈V

d∑
j=1

vj∂ρiFv(ρ, ϱ) ∂
N
j H

)
ds

= Y N,k
t (H)− Y N,k

0 (H)−
∫ t

0

Y N,k
s

(
1

2
∆NH

)
ds

+
∑
v∈V

vk

d∑
i=0

∫ t

0

Y N,i
s

(
d∑

j=1

vj∂ρiFv(ρ, ϱ) ∂
N
j H

)
ds

= Y N,k
t (H)− Y N,k

0 (H)−
∫ t

0

Y N,k
s

(
1

2
∆NH

)
ds

+
∑
v∈V

vk

d∑
i=0

∫ t

0

Y N,i
s (∂ρiFv(ρ, ϱ) (v · ∇H)) ds

(2.11)

3R is the range of p
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= Y N,k
t (H)− Y N,k

0 (H)−
∫ t

0

Y N,k
s

(
1

2
∆NH

)
ds+

∑
v∈V

vk

∫ t

0

⟨Y N
s (v · ∇H),∇Fv(ρ, ϱ)⟩ ds

= Y N,k
t (H)− Y N,k

0 (H)−
∫ t

0

Y N,k
s

(
1

2
∆NH

)
ds+

∑
v∈V

ṽ

∫ t

0

⟨Y N
s (v · ∇H),∇Fv(ρ, ϱ)⟩ ds.

(2.12)

By the definition of NN,k
t in (2.7), using the computations of Appendix B, we obtain

that

NN,k
t (H) = (MN,k

t (H))2

−
∫ t

0

1

2Nd

∑
v∈V

∑
x∈Td

N

d∑
j=1

v2k(ηs(x, v)− ηs(x+ ej, v))
2(∂Nj H

(
x
N

)
)2ds+RN,k

t (H),

whereRN,k
t (H) =

1

2Nd+1

∑
v∈V

v2k
∑
x∈Td

N

∑
|w|≤R

d∑
j=1

η(x, v)(1−η(x+w, v))p(w, v)
(
∂Nj H

(
x
N

))2
w2

j ,

is a martingale.

Claim 1. Note that RN,k
t (H) vanishes as N → +∞ in L2(νρ,ϱ).

Proof of the Claim 1: In fact, consider

AN,k
t (H) =

1

2Nd

∑
v∈V

v2k
∑
x∈Td

N

∑
|w|≤R

d∑
j=1

η(x, v)(1− η(x+ w, v))p(w, v)
(
∂Nj H

(
x
N

))2
w2

j

this implies that RN,k
t (H) = 1

N
AN,k

t (H). We prove that AN,k
t (H) is bounded, which

results in RN,k
t (H) vanishes as N → +∞ in L1(νρ,ϱ). Hence, RN,k

t (H) vanishes as
N → +∞ in L2(νρ,ϱ). Note that

AN,k
t (H) =

1

2Nd

∑
v∈V

v2k
∑
x∈Td

N

∑
|w|≤R

d∑
j=1

η(x, v)(1− η(x+ w, v))p(w, v)
(
∂Nj H

(
x
N

))2
w2

j

≤ 1

2Nd
C
∑
x∈Td

N

(∂Nj H
(

x
N

)
)2,

since the set of velocities is finite and the the range of p is finite. Observe that, last

display converges to C̃

∫
Td

∇H2(x) dx, as N →∞. Since C̃

∫
Td

∇H2(x) dx is bounded,

then AN,k
t (H) is bounded. This proves the claim.

Claim 2. Since EN

[
(η(x, v)− η(x+ ej, v))

2] = 2χ(θv(Λ(ρ, ϱ))), with χ(r) = r(1− r),
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then

EN

[(∫ t

0

1

Nd

∑
x∈Td

N

G
(

x
N

) [(
η(x, v)− η(x+ ej, v)

)2 − 2χ(θv(Λ(ρ, ϱ)))
]
ds

)2]
N→+∞−−−−→ 0.

Proof of the Claim 2: In fact, by Cauchy-Schwarz inequality, last expectation is
bounded from above by

EN

t ∫ t

0

 1

Nd

∑
x∈Td

N

G
(

x
N

) [
(ηs(x, v)− ηs(x+ ej, v))

2 − 2χ(θv(Λ(ρ, ϱ)))
]
ds

2
= EN

[ t

N2d

∫ t

0

∑
x,y∈Td

N

G
(

x
N

)
G
(

y
N

)
[(ηs(x, v)− ηs(x+ ej, v))

2 − 2χ(θv(Λ(ρ, ϱ)))]

×[(ηs(y, v)− ηs(y + ej, v))
2 − 2χ(θv(Λ(ρ, ϱ))) ds]

]
≤ t2V ar((η(x, v)− η(x+ ej, v))

2, νρ,ϱ)
3

Nd
⟨G,G⟩Td

N
,

which vanishes as N → ∞, since y ∈ {x − ej, x, x + ej} and V ar((η(x, v) − η(x +

ej, v))
2, νρ,ϱ) does not depend on x nor j. Therefore,

∫ t

0

1

2Nd

∑
v∈V

∑
x∈Td

N

d∑
j=1

v2k(ηs(x, v)− ηs(x+ ej, v))
2(∂Nj H

(
x
N

)
)2ds

L2

−→
∫ t

0

∑
v∈V

d∑
j=1

v2k

∫
Td

χ(θv(Λ(ρ, ϱ)))(∂jH(x))2dx ds

=

∫ t

0

d∑
j=1

∫
Td

(∑
v∈V

v2kχ(θv(Λ(ρ, ϱ)))

)
(∂jH(x))2dx ds.

Define

BkH =

√∑
v∈V

v2k χ(θv(Λ(ρ, ϱ)))∇H and B = (B0, · · · ,Bd). (2.13)

2.6 The Boltzmann-Gibbs Principle

In this section we show that the martingales MN,k
t introduced in (2.7) can be

expressed in terms of the fluctuation field Y N,k
t . The Boltzmann-Gibbs principle is one

of the main ingredients in the proof of the equilibrium fluctuations.

Theorem 3 (Boltzmann-Gibbs principle). For every continuous function G : Td → R
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and every t ∈ [0, T ], 1 ≤ j ≤ d, 0 ≤ k ≤ d,

lim
N→∞

EN

∫ t

0

N− d
2

∑
x∈Td

N

G
(

x
N

)
τxV

j,k
F (ηs)ds

2 = 0

where

V j,k
F (η) =

∑
v∈V

vk

[∑
z∈Zd

zjp(z, v)η(0, v)(1− η(z, v))− vjFv(ρ, ϱ)− vj
d∑

i=0

∂ρiFv(ρ, ϱ)[Ii(0)− ρi]
]

and Fv(ρ, ϱ) = χ(θv(Λ(ρ, ϱ))).

Proof. Fix a positive integer l that shall increase to ∞ after N . For each N , we
subdivide Td

N , the discrete d-dimensional torus, into non-overlapping cubes of linear
size l. Denote them by {Bj ; 1 ≤ j ≤Md}, where M = ⌊N

l
⌋: 4 for each j,

Bj = yj + {1, . . . , l}d , for some yj ∈ Td
N and Bi ∩Bj = ∅ if i ̸= j.

Denote by B0 = Td
N \

Md⋃
j=1

Bj, By construction, the cardinality of B0 is bounded by

dlNd−1. Once p(·, ·) is the probability transition function, which has finite range for
each v ∈ V and V is finite. We will denote by sp be the maximus range of p, that is
sp = max{|x| : ∃v ∈ V ; p(x, v) > 0}. Let Λsp be the smallest cube centered at origin
that contains the support of p. Denote by B0

i the interior of the cube Bi, i.e., the sites
x in Bi that are at a distance at least sp from the boundary:

B0
i = {x ∈ Bi ; d(x,Td

N \Bi) > sp}.

Note that ∀x ∈ B0
i , τxV

j,k
F (η) is measurable with respect to σ(η(z); z ∈ Bi). In par-

ticular, since νNρ,ϱ is product measure and Bi ∩ Bj = ∅, the σ-algebra σ(η(z); z ∈
Bi) and σ(η(z); z ∈ Bj) are independent i ̸= j. Then, τxV i,k

F (η) is independent of
τyV

j,k
F (η) if x ∈ B0

i and y ∈ B0
j , i ̸= j.

Let

B0 =
Md⋃
i=1

B0
i and B1 = Td

N \B0.

By construction, the cardinality of B1 is bounded by dNd (c(p)l−1 + lN−1), for some
constant c(p) <∞ depending only on p.

4⌊r⌋ denote the integer part of r
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With the notation we have just introduced, we have that

N− d
2

∑
x∈Td

N

G
(

x
N

)
τxV

j,k
F (η) = N− d

2

∑
x∈B1

G
(

x
N

)
τxV

j,k
F (η)

+N− d
2

Md∑
i=1

∑
x∈B0

i

[G
(

x
N

)
−G

(
yi
N

)
]τxV

j,k
F (η)

+N− d
2

Md∑
i=1

G
(
yi
N

) ∑
x∈B0

i

τxV
j,k
F (η),

where yi is a point in Bi.
We claim that the expected value of the L2 norm of the time integral of the first

two expressions on the right-hand side, vanishes as N ↑ +∞ and then l ↑ +∞. The
first step is to prove that

lim
l→∞

lim
N→∞

EN

(∫ t

0

N− d
2

∑
x∈B1

G
(

x
N

)
τxV

j,k
F (ηs)ds

)2
 = 0. (2.14)

By Cauchy-Schwarz inequality and invariance of νNρ,ϱ last expectation is bounded from
above by

EN

(∫ t

0

N− d
2

∑
x∈B1

G
(

x
N

)
τxV

j,k
F (ηs)ds

)2


≤ t

∫ t

0

EN

(N− d
2

∑
x∈B1

G
(

x
N

)
τxV

j,k
F (ηs)

)2
 ds

= t2EνNρ,ϱ

(N− d
2

∑
x∈B1

G
(

x
N

)
τxV

j,k
F (η)

)2
 .

Note that EνNρ,ϱ
[V j,k

F ] = 0. Furthermore, if x, y ∈ Td
N such that ∥x − y∥ > 2sp, then

EνNρ,ϱ
[τxV

j,k
F (η) · τyV j,k

F (η)] = 0. Therefore, the last expression is bounded by

t2N−d
∑

x,y∈B1

∥x−y∥≤2sp

G
(

x
N

)
G
(

y
N

)
EνNρ,ϱ

[
τxV

j,k
F τyV

j,k
F

]
.

Note that, for each (ρ, ϱ) fixed, V j,k
F (η) is bounded, thus, V j,k

F (·) ∈ L2(νNρ,ϱ). Since G is
continuous, G

(
x
N

)
and G

(
y
N

)
are uniformly bounded on Td

N . We obtain that the last

79



expression is bounded from above by

t2N−dC |B1| (4sp)d

≤ t2N−dC
(
dNdC(p)l−1 + lN−1

)
(4sp)

d

≤ t2C dC(p) (4sp)
d

l
+
t2 l C (4sp)

d

Nd+1
−→ 0

(2.15)

when N ↑ +∞ and then l ↑ +∞.
Applying the same arguments, for the second term on the right-hand side of

equation (2.14), since G is continuous on Td, which is compact then G is uniformly
continuous in Td. Denote by

Al,N = sup
∥x−y∥≤ l

N

|G(x)−G(y)|2.

For each l fixed, we have that lim
N→+∞

Al,N = 0. Therefore,

EN

∫ t

0

N− d
2

Md∑
i=1

∑
x∈B0

i

[G
(

x
N

)
−G

(
yi
N

)
]τxV

j,k
F (ηs)ds

2

≤ t2EνNρ,ϱ

N−d

Md∑
i,m=1

∑
x∈B0

i

z∈B0
m

(
G
(

x
N

)
−G

(
yi
N

)) (
G
(

z
N

)
−G

(
ym
N

))
[τxV

j,k
F τzV

j,k
F ]

 .

If m ̸= i, τxV j,k
F is independent of τzV j,k

F and EνNρ,ϱ
[V j,k

F (η)] = 0. Then, the last
expression is bounded from above by

t2EνNρ,ϱ

N−d

Md∑
i=1

∑
x,z∈B0

i

(
G
(

x
N

)
−G

(
yi
N

)) (
G
(

z
N

)
−G

(
yi
N

))
[τxV

j,k
F τzV

j,k
F ]


the same argument above can be applied when ∥x − z∥ > 2sp. Therefore, (2.15) is
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bounded from above by

t2EνNρ,ϱ

N−d

Md∑
i=1

∑
x,z∈B0

i
∥x−z∥≤2sp

(
G
(

x
N

)
−G

(
yi
N

)) (
G
(

z
N

)
−G

(
yi
N

))
[τxV

j,k
F τzV

j,k
F ]



≤ t2EνNρ,ϱ

N−d

Md∑
i=1

∑
x,z∈B0

i
∥x−z∥≤2sp

Al,N τxV
j,k
F τzV

j,k
F


for each (ρ, ϱ) fixed, V j,k

F is bounded uniformly on η. So, the last display is bounded
from above by

t2Al,N CM
d |B1| (4sp)dN−d

≤ t2Al,N CM
d ld (4sp)

dN−d

≤ t2Al,N C
Nd

ld
ld (4sp)

dN−d

= t2Al,N C (4sp)
d

and the expression above vanishes as N → +∞.
In order to conclude the proof it remains to show that

lim
l→∞

lim
N→∞

EN

∫ t

0

N− d
2

Md∑
i=1

G
(
yi
N

) ∑
x∈B0

i

τxV
j,k
F (η)ds

2 = 0.

For each 1 ≤ i ≤ Md, denote by ξi the configuration {η(x) : x ∈ Bi}, and by LBi
the

generator LN restricted to the cube Bi,

LBi
= Lex

Bi
+ Lc

Bi
,

where

(Lex
Bi
f)(η) =

∑
v∈V

∑
x,z∈Bi

η(x, v)(1− η(z, v))PN(z − x, v)[f(ηx,z,v)− f(η)]

and
(Lc

Bi
f)(η) =

∑
y∈Bi

∑
q∈Q

pc(y, q, η)[f(η
y,q)− f(η)].

Consider a L2(νNρ,ϱ) cylinder function f measurable with respect to the σ-algebra
σ(η(x), x ∈ B1) and denote by fi the translation of f , that makes fi measurable with
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respect to the σ-algebra σ(η(x), x ∈ Bi). By definition of the generator LBi
, LBi

f is
also measurable with respect to σ(η(x), x ∈ Bi). By [1, Appendix A1, Proposition
6.1], for t > 0

EN

(∫ t

0

N− d
2

Md∑
i=1

G
(
yi
N

)
LBi

fi(ξi(s))

)2

ds


≤ 20t sup

h∈L2(νNρ,ϱ)

[
2

∫
V N
G,f (η)h(η)ν

N
ρ,ϱ(dη)−N2⟨h, (−LNh)⟩νNρ,ϱ

]
, 5

where V N
G,f (η) := N− d

2

Md∑
i=1

G
(
yi
N

)
LBi

fi(ξi).

Claim 3. We claim that
⟨Lc

Bi
f, h⟩νNρ,ϱ = ⟨f,Lc

Bi
h⟩νNρ,ϱ

this means that, the collision generator is a symmetric operator.

Proof of the claim 3: First of all, note that ηy,q = ξ implying that ξy,q̃ = (ηy,q)y,q̃ =

η where q = (v0, v1, v2, v3), q̃ = (v2, v3, v0, v1) and
dνNρ,ϱ(ξ)

dνNρ,ϱ(η)
= 1. From this we obtain

that

⟨Lc
Bi
f, h⟩νNρ,ϱ =

∫
(Lc

Bi
f)(η)h(η)dνNρ,ϱ

=

∫ ∑
y∈Bi

∑
q∈Q

pc(y, q, η)[f(η
y,q)− f(η)]h(η)dνNρ,ϱ

=
∑
y∈Bi

∑
q∈Q

∫
pc(y, q, η)f(η

y,q)h(η)dνNρ,ϱ −
∑
y∈Bi

∑
q∈Q

∫
pc(y, q, η)f(η)h(η)dν

N
ρ,ϱ.

Performing a change of variables η = ξy,q̃, the last display can be rewritten as

∑
y∈Bi

∑
q∈Q

∫
pc(y, q, ξ

y,q̃)f(ξ)h(ξy,q̃)dνNρ,ϱ −
∑
y∈Bi

∑
q∈Q

∫
pc(y, q, ξ)f(ξ)h(ξ)dν

N
ρ,ϱ. (2.16)

Note that

pc(y, q, ξ
y,q̃) = ξy,q̃(y, v0)ξ

y,q̃(y, v1)[1− ξy,q̃(y, v2)][1− ξy,q̃(y, v3)]
= ξ(y, v2)ξ(y, v3)[1− ξ(y, v0)][1− ξ(y, v1)]
= pc(y, q̃, ξ).

5In the formula ⟨·, ·⟩νN
ρ,ϱ

denotes the inner product in L2(νNρ,ϱ)
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Therefore,

(2.16) =
∑
y∈Bi

∑
q∈Q

∫
pc(y, q̃, ξ)f(ξ)h(ξ

y,q̃)dνNρ,ϱ −
∑
y∈Bi

∑
q∈Q

∫
pc(y, q, ξ)f(ξ)h(ξ)dν

N
ρ,ϱ

=
∑
y∈Bi

∑
q∈Q

∫
pc(y, q, ξ)f(ξ)h(ξ

y,q)dνNρ,ϱ −
∑
y∈Bi

∑
q∈Q

∫
pc(y, q, ξ)f(ξ)h(ξ)dν

N
ρ,ϱ

=
∑
y∈Bi

∑
q∈Q

∫
pc(y, q, ξ)f(ξ)[h(ξ

y,q)− h(ξ)]dνNρ,ϱ

= ⟨f,Lc
Bi
h⟩νNρ,ϱ

and this finishes the proof of the claim. However, since

LBi
= Lex,1

Bi
+ Lex,2

Bi
+ Lc

Bi
,

we will need the following result.

Proposition 8. For all fi ∈ L2(νNρ,ϱ)

lim
l→+∞

lim
N→+∞

EN

∫ t

0

N− d
2

Md∑
i=1

G
(
yi
N

)
Lex,2

Bi
fi(ξi(s))

2

ds

 = 0.

Proof of the Proposition 8: Using Cauchy-Schwarz inequality and Tonelli’s theo-
rem, we obtain

EN

∫ t

0

N− d
2

Md∑
i=1

G
(
yi
N

)
Lex,2

Bi
fi(ξi(s))

2

ds



≤ EN

t∫ t

0

N− d
2

Md∑
i=1

G
(
yi
N

)
Lex,2

Bi
fi(ξi(s))

2

ds



= t2EνNρ,ϱ

N−d

Md∑
i=1

G
(
yi
N

)
Lex,2

Bi
fi(ξi(s)

2 .
(2.17)

Observe that
EνNρ,ϱ

[Lex,2
Bi

fi] = 0
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and LBi
f is independent of LBj

f , if i ̸= j, as

(Lex,2
Bi

f)(η) =
1

N

∑
v∈V

∑
x,z∈Bi

η(x, v)[1− η(z, v)]p(z − x, v)[f(ηx,z,v)− f(η)].

Therefore, we have that (2.17) is bounded from above by

t2

Nd
∥G∥2∞MdEνNρ,ϱ

[
(Lex,2

B1
f1(ξ1)

)2]
. (2.18)

Now let us estimate EνNρ,ϱ

[
(Lex,2

B1
f
)2]
. Let sp be the range of p, i.e., p(x − z, v) ≤

1{∥x−z∥≤sp}. We have that

EνNρ,ϱ

[(
Lex,2

B1
f
)2]

= EνNρ,ϱ

[(
1

N

∑
v∈V

∑
x,z∈B1

η(x, v)[1− η(z, v)]p(z − x, v)[f(ηx,z,v)− f(η)]
)2
]

≤ 1

N2
EνNρ,ϱ

(∑
v∈V

∑
x,z∈B1

1{∥x−z∥≤sp}[f(η
x,z,v)− f(η)]

)2


≤ 2

N2
EνNρ,ϱ

(∑
v∈V

∑
x,z∈B1

1{∥x−z∥≤sp}f(η
x,z,v)

)2


+
2

N2
EνNρ,ϱ

(∑
v∈V

∑
x,z∈B1

1{∥x−z∥≤sp}f(η)

)2
 .

Denote by
A = {(v, x, z) ; v ∈ V , x, z ∈ B1 with ∥x− z∥ ≤ sp}.

Consequently, the last display is bounded from above by

2

N2
EνNρ,ϱ

[∑
v∈V

∑
x,z∈B1

1{∥x−z∥≤sp}[f(η
x,z,v)]2

]
+

2

N2
|A|2 ∥f∥2L2(νNρ,ϱ)

.

Doing the change of variables ηx,z,v 7→ η, we obtain

2

N2
|A|EνNρ,ϱ

[∑
v∈V

∑
x,z∈B1

1{∥x−z∥≤sp}[f(η)]
2γx,v
γz,v

]
+

2

N2
|A|2 ∥f∥2L2(νNρ,ϱ)

. (2.19)

Consider
g : (Td)2 −→ R

(x, z) 7−→ γx,v
γz,v

,
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and note that g ∈ C∞, and since (Td)2 is compact, we conclude that g is bounded.
Consequently,

(2.19) ≤ 2

N2
|A|2 ∥f∥2L2(νNρ,ϱ)

∥g∥∞ +
2

N2
|A|2 ∥f∥2L2(νNρ,ϱ)

=
2

N2
|A|2 ∥f∥2L2(νNρ,ϱ)

(∥g∥∞ + 1) .

Therefore, using this estimate in (2.18), we obtain that

EN

∫ t

0

N− d
2

Md∑
i=1

G
(
yi
N

)
Lex,2

Bi
fi(ξi(s))

2

ds


≤ t2

Nd
∥G∥2∞Md 2 (∥g∥∞ + 1)

|A|2
N2
∥f∥2L2(νNρ,ϱ)

≤ C

Nd

|A(l)|2
N2

Nd

ld

=
C

ld
|A|2
N2
−→ 0,

for fixed l and N → +∞. This finishes the prof of Proposition 8.
Set

Lsym
Bi

:= Lex,1
Bi

+ Lc
Bi
. (2.20)

Thus, by Proposition 8, in order to show that

lim
l→+∞

lim
N→+∞

EN

∫ t

0

N− d
2

Md∑
i=1

G
(
yi
N

)
LBi

fi(ξi(s))

2

ds

 = 0,

it is enough to show that

lim
l→+∞

lim
N→+∞

EN

∫ t

0

N− d
2

Md∑
i=1

G
(
yi
N

)
Lsym

Bi
fi(ξi(s))

2

ds

 = 0.

By [1, Appendix A1, Proposition 6.1], we have

lim
l→+∞

lim
N→+∞

EN

∫ t

0

N− d
2

Md∑
i=1

G
(
yi
N

)
Lsym

Bi
fi(ξi(s))

2

ds


≤ 20t⟨V N,sym

G,f , (−N2Lsym
N )−1V N,sym

G,f ⟩νNρ,ϱ
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where V N,sym
G,f := N− d

2

Md∑
i=1

G
(
yi
N

)
Lsym

Bi
fi(ξi).

Note that
⟨ · , (−N2Lsym

N )−1 · ⟩νNρ,ϱ
induces a norm on H−1. Therefore, we obtain

20t⟨V N,sym
G,f , (−N2Lsym

N )−1 V N,sym
G,f ⟩νNρ,ϱ =

20t sup
h

{
2

∫
V N,sym
G,f (η)h(η) dνNρ,ϱ −N2⟨h,−Lsym

N h⟩νNρ,ϱ
}
,

where the supremum is taken over all the functions h in L2(νNρ,ϱ). Observe that

2

∫
V N,sym
G,f (η)h(η) dνNρ,ϱ

= 2N− d
2

Md∑
i=1

G
(
yi
N

) ∫
Lsym

Bi
fi(ξi)h(η)dν

N
ρ,ϱ

≤ 2N− d
2

Md∑
i=1

G
(
yi
N

) [ 1

2γi
⟨−Lsym

Bi
fi, fi⟩νNρ,ϱ +

γi
2
⟨−Lsym

Bi
h, h⟩νNρ,ϱ

]

choosing γi = N2+ d
2 |G

(
yi
N

)
|−1

1{
G
( yi
N

)̸
=0

}, we obtain that last display is bounded from

above by

2N− d
2

Md∑
i=1

G
(
yi
N

) [ |G ( yi
N

)
|

2N2+ d
2

⟨−Lsym
Bi

fi, fi⟩νNρ,ϱ +
N2+ d

2

2|G
(
yi
N

)
|1

{
G
( yi
N

)̸
=0

} ⟨−Lsym
Bi

h, h⟩νNρ,ϱ

]
.

Since ⟨−Lsym
Bi

h, h⟩ ≥ 0, we have that

≤
Md∑
i=1

sgn(G
(
yi
N

)
)G
(
yi
N

)2
Nd+2

⟨−Lsym
Bi

fi, fi⟩νNρ,ϱ +N2

Md∑
i=1

sgn(G
(
yi
N

)
)⟨−Lsym

Bi
h, h⟩νNρ,ϱ

≤ ∥G∥
2
∞Md

Nd+2
⟨−Lsym

B1
f1, f1⟩νNρ,ϱ +N2

Md∑
i=1

⟨−Lsym
Bi

h, h⟩νNρ,ϱ

≤ ∥G∥
2
∞Md

Nd+2
⟨−Lsym

B1
f1, f1⟩νNρ,ϱ +N2⟨−Lsym

N h, h⟩νNρ,ϱ .
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Therefore,

20t sup
h

{
2

∫
V N,sym
G,f (η)h(η) dνNρ,ϱ −N2⟨h,−Lsym

N h⟩νNρ,ϱ
}

≤ 20t ∥G∥2∞Md

Nd+2
⟨−Lsym

B1
f1, f1⟩νNρ,ϱ

=
20t ∥G∥2∞Nd

ldNd+2
⟨−Lsym

B1
f1, f1⟩νNρ,ϱ

which vanishes as N → +∞.
Observe that, since (x+ y)2 ≤ 2x2 + 2y2, we have that

EN

∫ t

0

N− d
2

Md∑
i=1

G
(
yi
N

) ∑
x∈B0

i

τxV
j,k
F (η)ds

2 ≤
2EN

∫ t

0

N− d
2

Md∑
i=1

G
(
yi
N

) ( ∑
x∈B0

i

τxV
j,k
F (η)− LBi

fi(ξi)
)
ds

2+

+2EN

∫ t

0

N− d
2

Md∑
i=1

G
(
yi
N

)
LBi

fi(ξi)ds

2 .
(2.21)

Claim 4. By the inequality (2.21) to prove

lim
l→+∞

lim
N→+∞

EN

∫ t

0

N− d
2

Md∑
i=1

G
(
yi
N

) ∑
x∈B0

i

τxV
j,k
F (η)ds

2 = 0.

It is enought to show that

lim
l→+∞

inf
f

lim
N→+∞

EN

∫ t

0

N− d
2

Md∑
i=1

G
(
yi
N

) ( ∑
x∈B0

i

τxV
j,k
F (η)− LBi

fi(ξi)
)
ds

2 = 0.

where the infimum is taken over all the functions f in L2(νNρ,ϱ) measurable with respect
to σ(η(x) , x ∈ B1) and fi stands for the translation of f that makes it measurable with
respect to σ(η(x) , x ∈ Bi).
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Proof of the claim 4: In fact, using Proposition 8, we obtain that

EN

∫ t

0

N− d
2

Md∑
i=1

G
(
yi
N

) ( ∑
x∈B0

i

τxV
j,k
F (η)− LBi

fi(ξi)
)
ds

2
≤ 2EN

∫ t

0

N− d
2

Md∑
i=1

G
(
yi
N

) ( ∑
x∈B0

i

τxV
j,k
F (η)− Lsym

Bi
fi(ξi)

)
ds

2
+2EN

∫ t

0

N− d
2

Md∑
i=1

G
(
yi
N

)
Lex,2

Bi
fi(ξi)ds

2 .
Finally, to prove the claim it is enough show that

EN

∫ t

0

N− d
2

Md∑
i=1

G
(
yi
N

) ( ∑
x∈B0

i

τxV
j,k
F (η)− Lsym

Bi
fi(ξi)

)
ds

2 −→ 0,

when N →∞. From the Cauchy-Schwarz inequality and Fubini’s theorem, we set

EN

∫ t

0

N− d
2

Md∑
i=1

G
(
yi
N

) ( ∑
x∈B0

i

τxV
j,k
F (η)− Lsym

Bi
fi(ξi)

)
ds

2
≤ t

∫ t

0

N−d EN

Md∑
i=1

G
(
yi
N

) ( ∑
x∈B0

i

τxV
j,k
F (η)− Lsym

Bi
fi(ξi)

)2 ds
= t2N−dEνNρ,ϱ

Md∑
i=1

G
(
yi
N

) ( ∑
x∈B0

i

τxV
j,k
F (η)− Lsym

Bi
fi(ξi)

)2
(2.22)

since the support of τxV j,k
F (η) − Lsym

Bi
fi and τyV

j,k
F (η) − Lsym

Bℓ
fℓ are disjoints for x ∈

B0
i , y ∈ B0

ℓ , i ̸= ℓ. Last display is equal to

t2N−dEνNρ,ϱ

Md∑
i=1

(
G
(
yi
N

) )2( ∑
x∈B0

i

τxV
j,k
F (η)− Lsym

Bi
fi(ξi)

)2
≤ t2N−d∥G∥2∞MdEνNρ,ϱ

( ∑
x∈B0

1

τxV
j,k
F (η)− Lsym

B1
f1(ξ1)

)2
≤ t2 ∥G∥2∞ l−dEνNρ,ϱ

( ∑
x∈B0

1

τxV
j,k
F (η)− Lsym

B1
f1(ξ1)

)2 .
(2.23)
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Denote by R(Lsym
B1

) the range of the generator Lsym
B1

in L2(νB1
ρ,ϱ) and R⊥(Lsym

B1
) the or-

thogonal space to R(Lsym
B1

). Fix a measurable function h ∈ σ
(
η(x) ; x ∈ B1

)
. The

formula
inf

f∈L2(ν
B1
ρ,ϱ)

E
ν
B1
ρ,ϱ

[
(h− Lsym

B1
f)2
]

corresponds to the projection of h on R⊥(Lsym
B1

). Consider

VB1 = {IB1(0, η) ; η ∈ ({0, 1}V)B1}

where IB1(x) = 1
|ΛB1

|

∑
z∈ΛB1

I(ηz). The set VB1 is the set of all the possible values of

IB1(y1). Denote
HB1(i) = {η ∈ ({0, 1}V)B1 ; IB1(y1) = i}

νB1,i(·) = νB1
ρ,ϱ(· |IB1 = i)

M0
B1,i

= {f ∈ L2(νB1,i);EνB1,i
[f ] = 0}.

Note that M0
B1,i

has codimension 1 and R(Lsym
B1

) is a subset of M0
B1,i

. Since νB1
ρ,ϱ is

invariant for the dynamics generated by Lsym
B1

, and since the conserved quantities by the
dynamics are the mass and the momentum, νB1,i is invariant by dynamics generated
by Lsym

B1
. On the other hand, the kernel of Lsym

B1
reduces to the constant functions since

Lsym
B1

f = 0 implies that ⟨f, (−Lsym
B1

)f⟩νB1,i
= 0 that in turn forces f to be constant.6

Consequently,
dimkerLsym

B1
= 1.

And thus R(Lsym
B1

) has codimension 1 because R(Lsym
B1

) ⊂ M0
B1,i

. Since M0
B1,i

has
codimension 1, follows that R(Lsym

B1
) = M0

B1,i
. Observe that M0

B1,i
is the space of

orthogonal functions to constant functions in L2(νB1,i), i.e,

f ⊥ 1⇔ ⟨f, 1⟩L2(νB1,i
) = 0⇔ EνB1,i

[f ] = 0.

Therefore, [M0
B1,i

]⊥ = constant functions in L2(νB1,i). Thus, R(LB1)
⊥ = constant

functions in L2(νB1,i). R(LB1)
⊥ consists of all functions that depends on the configu-

ration η only through its the vector mass and momentum i. In particular, the infimum
6In Appendix B, we prove that ⟨−Lc

Nf, f⟩νN
ρ,ϱ

is nonnegative. Using this, we have that
⟨−Lex,1

N f, f⟩νN
ρ,ϱ

+ ⟨f,−Lcf⟩νN
ρ,ϱ

= 0 implies ⟨−Lex,1
N f, f⟩νN

ρ,ϱ
= 0 for ν-almost every η, f(η) = f(ηx,z,v)

for all x, z ∈ Td
N and v ∈ V. Thus, f is almost surely constant.
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over all f ∈ νB1
ρ,ϱ of the expression (2.22) is equal to 7

inf
f∈L2(ν

B1
ρ,ϱ)

t2l−d∥G∥2∞Eν
B1
ρ,ϱ

[( ∑
x∈B0

1

τxV
j,k
F − Lsym

B1
f1
)2]

= inf
g∈R(Lsym

B1
)
t2l−d∥G∥2∞Eν

B1
ρ,ϱ

[( ∑
x∈B0

1

τxV
j,k
F − g

)2]

= t2l−d∥G∥2∞Eν
B1
ρ,ϱ

[(
E

ν
B1
ρ,ϱ
[
∑
x∈B0

1

τxV
j,k
F | IB1(y1)]

)2 ]
.

(2.24)

Note that IB1(y1) is the vector average of mass and momentum on B1. For x ∈ B0
1 ,

τxV
j,k
F depends only on B1, and since νB1

ρ,ϱ is homogeneous, we have that

E
ν
B1
ρ,ϱ

[
τxΨ|IB1(y1)

]

does not depend on x, above Ψ :=
∑
v∈V

vk
∑
z∈Zd

zj p(z, v)η(0, v)(1− η(z, v)). Define,

Ψ̃l(I
B1(y1)) := E

ν
B1
ρ,ϱ
[τxΨ|IB1(y1)]

and Ψ̃(ρ, ϱ) = Eνρ,ϱ [Ψ]. We can rewrite (2.24) as

t2
|B0

1 |2
ld
∥G∥2∞Eν

B1
ρ,ϱ

[(
Ψ̃l

(
IB1(y1))− Ψ̃(ρ, ϱ)−

d∑
i=0

∂Ψ̃

∂ρi
(ρ, ϱ)

(
IB1
i (y1)− ρi

))2]
. (2.25)

Denote by ℓ the range of the function Ψ. By construction, denote by Λℓ =

{−ℓ, . . . , ℓ}d, and note that Λℓ ⊂ B1. Using Equivalence of ensembles (see ??), we
have that

|Ψ̃l(I
B1(y1))− Ψ̃(IB1(y1))| ≤

C(ℓ, ν)

|B1|
⟨Ψ,Ψ⟩

1
2

µℓ

IB1 (y1)

. (2.26)

We can bound
|Ψ̃l(I

B1(y1))− Ψ̃(IB1(y1))| ≤
C(ℓ, ν)

|B1|
C(Ψ).

Therefore, (2.25) is bounded from above by

2t2
|B0

1 |2
ld
∥G∥2∞Eν

B1
ρ,ϱ

[(
Ψ̃l

(
IB1(y1))− Ψ̃(IB1(y1))

)2]
(2.27)

+2t2
|B0

1 |2
ld
∥G∥2∞Eν

B1
ρ,ϱ

[(
Ψ̃
(
IB1(y1))− Ψ̃(ρ, ϱ)−

d∑
j=0

∂Ψ̃

∂ρi
(ρ, ϱ)

(
IB1
j (y1)− ρj

))2]
. (2.28)

7Let X be a Hilbert space and A ⊂ X a closed subset. Then, inf
g∈A
∥f − g∥2 = ∥fA⊥∥2.
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From (2.26), we can see there exists a constant C(ℓ, ν,Ψ) such that (2.27) is
bounded from above by

2t2
|B0

1 |2
ld
∥G∥2∞

C(ℓ, ν,Ψ)

l2d

=
2t2∥G∥2∞C(ℓ, ν,Ψ)

ld
l→∞−−−→ 0.

Now, let us estimate (2.28). In order to do that define

K
(
(ρ, ϱ), IB1

j (y1)
)
:=
∣∣Ψ̃(IB1(y1))− Ψ̃(ρ, ϱ)−

d∑
j=0

∂Ψ̃

∂ρj
(ρ, ϱ)(IB1

j (y1)− ρj)
∣∣2.

Note that K((ρ, ϱ), IB1
j (y1)) is bounded, and observe that for (ρ, ϱ) fixed,

∂Ψ̃

∂ρj
(ρ, ϱ) is

bounded since the set of velocities is finite.

Remark 5. By the classical large deviations theorem for Bernoulli, if 0 < ε < 1
4
d((ρ, ϱ), ∂V )

there exists constants C(ε) > 0 and m(ε) > 0 such that

P (∥IB1(y1)− ρ∥ > ε) ≤ C(ε) exp{−ldm(ε)}. (2.29)

We can split (2.28) when 1{∥IB1 (y1)−ρ∥>ε} and 1{∥IB1 (y1)−ρ∥≤ε}. Using Remark 5,
we obtain that (2.28) vanishes as ℓ→∞

2t2
|B0

1 |2
ld
∥G∥2∞Eν

B1
ρ,ϱ

[(
K(ρ, ϱ), IB1

j (y1)

)
1{∥IB1 (y1)−ρ∥>ε}

]
−→ 0 (2.30)

when l −→ +∞.
To finish the proof is enough to show that

2t2
|B0

1 |2
ld
∥G∥2∞Eν

B1
ρ,ϱ

[(
K(ρ, ϱ), IB1

j (y1)

)
1{∥IB1 (y1)−ρ∥≤ε}

]
l→+∞−−−−→ 0.

Using Taylor’s expansion up to second order on Ψ̃ and the fact that Ψ̃ ∈ C∞ in the
compact ball B

(
(ρ, ϱ), ε

)
, there exists a constant C(ε, Ψ̃(ρ, ϱ)) such that the last display

becomes bounded from above by

2t2
|B0

1 |2
ld
∥G∥2∞C(d, ε, Ψ̃(ρ, ϱ))

d∑
j=0

E
ν
B1
ρ,ϱ

[(
IB1
j (y1)− ρj

)4]

≤ 2t2
|B0

1 |2
ld
∥G∥2∞C̃(d, ε, Ψ̃(ρ, ϱ))l−2d

≤ 2t2
l2d

ld
∥G∥2∞C̃(d, ε, Ψ̃(ρ, ϱ))l−2d
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and vanishes as l −→ +∞. This concludes the proof of the Boltzmann-Gibbs principle.

2.7 Convergence at initial time

For t ≥ 0, let Ft be the σ-algebra on D([0, T ],H−p0) generated by Ys(H) for s ≤ t

and H in C∞(Td) and set F = σ (∪t≥0Ft).

Lemma 9. For every continuous function H : Td → R and every t > 0,

lim
N→+∞

logEN [exp{iw · Yt(H)}] = −wT X(ρ, ϱ)

2
w⟨H,H⟩,

where X(ρ, ϱ) = [vjvkχ(θv(Λ(ρ, ϱ)))]j,k is a (d+1)× (d+1) matrix, with (j, k)-th entry
is given by [vjvkχ(θv(Λ(ρ, ϱ)))].

Proof. Since νNρ,ϱ is an invariant product measure,

logEN [exp{iw · Yt(H)}]

= logEN

[
exp{i

d∑
j=0

wjY
j
t (H)}

]

= logEνNρ,ϱ

exp
i

d∑
j=0

wj

∑
x∈Td

N

N− d
2H
(

x
N

)
(Ij(ηx(t))− ρj)




=
∑
x∈Td

N

logEνNρ,ϱ

[
exp

{
i

d∑
j=0

wjN
− d

2H
(

x
N

)
(Ij(ηx(t))− ρj)

}]

=
∑
x∈Td

N

logEνNρ,ϱ

[
exp

{
N− d

2H
(

x
N

)
i

d∑
j=0

wj(I
j(ηx(t))− ρj)

}]

=
∑
x∈Td

N

−N
−d

2
H2
(

x
N

)
s

(
d∑

j=0

wjI
j(ηx(t))

)
+O(N− 3d

2 )

=
∑
x∈Td

N

−H
2
(

x
N

)
2Nd

d∑
j=0

d∑
k=0

wjwk cov
(
Ij(ηx), I

k(ηx)
)
+O(N− 3d

2 )

=
∑
x∈Td

N

−H
2
(

x
N

)
2Nd

d∑
j=0

d∑
k=0

wjwkvjvkχ(θv(Λ(ρ, ϱ))) +O(N− 3d
2 ).
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Since

cov
(
Ij(ηx), I

k(ηx)
)
=

= E

[(∑
v∈V

vkη(x, v)− E(
∑
v∈V

vkη(x, v))

)(∑
ṽ∈V

ṽkη(x, ṽ)− E(
∑
ṽ∈V

ṽkη(x, ṽ))

)]
=
∑
v∈V

vjvkχ(θv(Λ(ρ, ϱ))),

then, we have that

lim
N→+∞

logEN [exp{iw · Yt(H)}] = −wT X(ρ, ϱ)

2
w⟨H,H⟩.

Corollary 4. Restricted to F0, Q is a Gaussian field with covariance given by

EQ[Y
j
0 (G)Y

k
0 (H)] =

vjvkχ(θv(Λ(ρ, ϱ)))

2
⟨H,G⟩.

Proof. Fix a positive integer n, θ ∈ Rn and H1, . . . , Hn in Hp0 . Since Y j
0 , Y

k
0 are linear,

and since, by assumption, QN converges weakly to Q, by the previous lemma,

logEQ

[
exp

{
i

d∑
k=0

wk

n∑
j=1

θjY
k
0 (Hj)

}]

= logEQ

[
exp

{
i

d∑
k=0

wkY
k
0 (

n∑
j=1

θjHj)

}]

= −wT X(ρ, ϱ)

2
w

〈
n∑

j=1

θjHj,
n∑

j=1

θjHj

〉
.

(2.31)

2.8 Proof of Proposition 7

Before proving Proposition 7, we recall the following results.

Proposition 9. Let {Mn
t ; t ∈ [0, T ]}n∈N be a sequence of martingales converging in

distribution to some process {Mt; t ∈ [0, T ]} as n → ∞. If the sequence of random
variables {Mt : t ∈ [0, T ], n ∈ N} is uniformly integrable, then {Mt; t ∈ [0, T ]} is a
martingale.

Also the criterion of uniformly integrability:
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Proposition 10. If Uα is a sequence of random variables integrables and

sup
α
∥Uα∥Lp < +∞,

for some p > 1. Then, {Uα} is uniformly integrable.

Proof. Note that
∫
|Uα · 1An| dP −→ 0 as n → +∞. Since by Hölder’s inequality, we

have that ∫
|Uα · 1An| dP ≤ ∥Uα∥Lp · ∥1An∥Lq

= ∥Uα∥Lp · (P (An))
1
q

≤ M · (P (An))
1
q

due to sup
α
∥Uα∥ ≤M.

We will use Propositions 9 and 10 to prove that Mt(H) is a martingale. By
Proposition 9, we need to show that Mt(H) is uniformly integrable. To prove that, we
will use the Proposition 10, with p = 2, then, we need to show that

sup
N,t

E[(Mt(H))2] < +∞.

Note that {MN,k
t (H)} is uniformly integrable:

E[(MN,k
t (H))2] =

E

[
NN,k

t (H) +

∫ t

0

1

2Nd

∑
v∈V

∑
x∈Td

N

d∑
j=1

v2k(ηs(x, v)− ηs(x+ ej, v))
2(∂Nj H

(
x
N

)
)2ds

]

= E
[
NN,k

t (H)
]
+ E

[ ∫ t

0

1

2Nd

∑
v∈V

∑
x∈Td

N

d∑
j=1

v2k(ηs(x, v)− ηs(x+ ej, v))
2(∂Nj H

(
x
N

)
)2ds

]

=
1

2Nd

∫ t

0

∑
v∈V

∑
x∈Td

N

d∑
j=1

v2kE
[
(ηs(x, v)− ηs(x+ ej, v))

2

]
(∂Nj H

(
x
N

)
)2ds

≤ T ⟨∇H,∇H⟩
∑
v∈V

v2k χ(θv(Λ(ρ, ϱ))),

which is bounded. Therefore, {MN,k
t (H)} is uniformly integrable.

Remark 6. If MN
t converges weakly to Mt in Skorohod topology then from Skorohod

representation Theorem, we have that exist

WN
t

d
=MN

t and Wt
d
=Mt
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such that
WN

t → Wt almost surely.

Since uniformly integrable depends only on the distribution, we have that {WN
t } is

uniformly integrable. Then,
WN

t
L1

−→ Wt.
8

Since WN
t is a martingale with respect to the natural filtration Gt = σ{η(s); s ≤ t},

we have that for any A ∈ Gs, s ≤ t

E[WN
t 1A] = E[WN

s 1A].

Since 1A is bounded and WN
t

L1

−→ Wt, then

E[WN
t 1A]→ E[Wt1A].

On the other hand,
E[WN

t 1A] = E[WN
s 1A]→ E[Ws1A].

This implies that
E[Wt|Gs] = Ws,

which means that W is a martingale. Since W and M have the same distribution, M
is a martingale. In fact, for any A ∈ Gs, we have

E[Ms1A] = E[Ws1A] = E[Wt1A] = E[Mt1A],

which implies that E[Mt|Gs] =Ms.

2.9 Tightness

We prove in this section that the sequence of probability measures (QN)N≥1 is
tight and all limit points are concentrated on continuous paths. We first review some
aspects of the uniform weak topology on D([0, T ],H−p) introduced in the beginning of
the chapter. Throughout this section p stands for a positive integer satisfying

p > 2 +
d

2
. (2.32)

For δ > 0 and a path Y in D([0, T ],H−p) define the modulus of continuity wδ(Y ) by

wδ(Y ) = sup
|s−t|≤δ
0≤s,t≤T

∥Yt − Ys∥−p.

8This result follows from Vitali’s convergence Theorem
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To check the definition of ∥ · ∥−p see 2.6.
The first result provides sufficient conditions for a subset to be weakly relatively

compact.

Lemma 10. A subset A of D([0, T ],H−p) is relatively compact for the uniform weak
topology if

(i) sup
Y ∈A

sup
0≤t≤T

∥Yt∥−p <∞

(ii) lim
δ→0

sup
Y ∈A

wδ(Y ) = 0.

From this lemma we deduce a criterion for tightness of a sequence of probability
measures PN defined on D([0, T ],H−p).

Lemma 11. A sequence {PN , N ≥ 1} of probability measures defined on D([0, T ],H−p)

is tight if for every 0 ≤ t ≤ T ,

lim
A→∞

lim sup
N→∞

PN

[
sup

0≤t≤T
∥Yt∥−p > A

]
= 0

and
lim
δ→0

lim sup
N→∞

PN [wδ(Y ) ≥ ε] = 0

for every ε > 0.

We have now all elements to prove tightness of the sequence (QN)N introduced in
the beginning of the chapter.

Proposition 11. The sequence of probability measures QN is tight. Moreover, all limit
points are concentrated on continuous paths.

The proof of this proposition is divided in several lemmas. We start with a key
estimate. For each z ∈ Zd, denote by M z,k

t and N z,k
t the martingales introduced before

with M z,k
t = MN,k

t (hz) and N z,k
t = NN,k

t (hz), where hz was introduced in (2.4). To
keep notation simple let

Γz,k
1 (s) =

1

2N
d
2

∑
x∈Td

N

∆Nhz
(

x
N

) (
Ik(ηx(s))− ρk

)
− 1

N
d
2

∑
x∈Td

N

d∑
j=1

(∂Nuj
hz)
(

x
N

)
[τxW

ηs
j,k−ωρ,ϱ

k ]

(2.33)
where

W ηs
j,k =

∑
v∈V

vk
∑
z∈Zd

zjp(z, v)ηs(0, v)[1− ηs(z, v)],
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and
ωρ,ϱ
k = EνNρ,ϱ

[W s
j,k] =

∑
v∈V

vkvjχ(θv(Λ(ρ, ϱ))).

Also, let

Γz,k
2 (s) =

1

2Nd

∑
v∈V

∑
x∈Td

N

d∑
j=1

v2k (ηs(x, v)− ηs(x+ ej, v))
2(∂Nj hz

(
x
N

)
)2. (2.34)

Therefore

M z,k
t = Y N,k

t (hz)− Y k,N
0 (hz)−

∫ t

0

Γz,k
1 (s)ds (2.35)

and

N z,k
t = (M z,k

t )2 −
∫ t

0

Γz,k
2 (s)ds. (2.36)

Lemma 12. There exists a finite constant C(ρ, ϱ, v, T ) such that ∀z ∈ Zd,

lim sup
N→∞

EN [ sup
0≤t≤T

|Y N,k
t (hz)|2]

≤ C(ρ, ϱ, v, T ) {⟨hz, hz⟩+ ⟨∇hz,∇hz⟩+ ⟨∆hz,∆hz⟩} .

Proof. Rewrite Y N,k
t (hz) as M z,k

t + Y k,N
0 (hz) +

∫ t

0

Γz,k
1 (s)ds. Note that,

∣∣∣Y N,k
t (hz)

∣∣∣ ≤ |M z,k
t |+ |Y k,N

0 (hz)|+
∣∣∣∣∫ t

0

Γz,k
1 (s)ds

∣∣∣∣
≤ |M z,k

t |+ |Y k,N
0 (hz)|+

∫ t

0

|Γz,k
1 (s)|ds.

(2.37)

Consequently

∣∣∣Y N,k
t (hz)

∣∣∣2 ≤ 23

{
|M z,k

t |2 + |Y k,N
0 (hz)|2 +

(∫ t

0

Γz,k
1 (s)ds

)2
}
.
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Now we compute each term separately. Then,

(I) := EN

[
sup

0≤t≤T
|Y k,N

0 (hz)|2
]

= EN [ |Y k,N
0 (hz)|2]

= EN

 1

N
d
2

∑
x∈Td

N

hz
(

x
N

)
(Ik(ηx(0, v))− ρk)

2
=

1

Nd

∑
x∈Td

N

(hz
(

x
N

)
)2EN [(Ik(ηx(0, v))− ρk)2]

=
1

Nd

∑
x∈Td

N

(hz
(

x
N

)
)2 var(Ik(ηx(0, v)), νρ,ϱ),

where var(Ik(η), νρ,ϱ) =
∑
v∈V

v2k var(η(0, v)) =
∑
v∈V

v2k χ(θv(Λ(ρ, ϱ))).

Since hz is continuous,

EN [(Y
N,k
0 (hz))

2]
N→+∞−−−−→ var(Ik(ηx(0, v)), νρ,ϱ)⟨hz, hz⟩

On the other hand, since M z,k
t is a martingale, by Doob’s inequality

(II) := EN

[
sup

0≤t≤T
|M z,k

t |2
]
≤ 4EN

[
|M z,k

T |2
]
. (2.38)

By definition of the martingale N z,k, we have

EN [N
z,k
t ] = EN [N

z,k
0 ] = 0 ∀ t.

Consequently,

0 = EN [N
z,k
T ] = EN [(M

z,k
T )2]− EN

[∫ T

0

Γz,k
2 (s)ds

]
.
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The right-hand side of (2.38) is equal to

EN [(M
z,k
T )2] = EN

[∫ T

0

Γz,k
2 (s)ds

]

= EN

∫ T

0

1

2Nd

∑
v∈V

d∑
j=1

∑
x∈Td

N

v2k(ηs(x, v)− ηs(x+ ej, v))
2(∂Nj hz

(
x
N

)
)2ds


=

1

2Nd

∑
v∈V

d∑
j=1

∑
x∈Td

N

v2k(∂
N
j hz

(
x
N

)
)2
∫ T

0

EN

[
(ηs(x, v)− ηs(x+ ej, v))

2
]
ds

=
1

Nd

(
T
∑
v∈V

v2k χ(θv(Λ(ρ, ϱ)))

)
d∑

j=1

∑
x∈Td

N

(∂Nj hz
(

x
N

)
)2

(2.39)

and the last display converges to(
T
∑
v∈V

v2k χ(θv(Λ(ρ, ϱ)))

)
d∑

j=1

∫
Td

(∂jhz
(

x
N

)
)2ds

=

(
T
∑
v∈V

v2k χ(θv(Λ(ρ, ϱ)))

)
⟨∇hz,∇hz⟩

(2.40)

as N →∞.

Remark 7. Note that

EN [(ηs(x, v)− ηs(x+ ej, v))
2]

= EN [(η2s(x, v)− 2ηs(x, v)ηs(x+ ej, v) + η2s(x+ ej, v)]

= EN [(ηs(x, v)− 2ηs(x, v)ηs(x+ ej, v) + ηs(x+ ej, v)]

= θv(Λ(ρ, ϱ))− 2θv(Λ(ρ, ϱ))
2 + θv(Λ(ρ, ϱ))

= 2χ(θv(Λ(ρ, ϱ))).

To finish, it remains to bound the other term, namely,

(III) := EN

[
sup

0≤t≤T

(∫ t

0

Γz,k
1 (s) ds

)2
]
.
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Observe that, using Cauchy-Schwarz inequality

EN

[
sup

0≤t≤T

(∫ t

0

Γz,k
1 (s) ds

)2
]
≤ EN

[
T

∫ T

0

(
Γz,k
1 (s)

)2
ds

]

= T

∫ T

0

EN

[(
Γz,k
1 (s)

)2]
ds

≤ T

∫ T

0

EN

 1

2N
d
2

∑
x∈Td

N

∆Nhz
(

x
N

) (
Ik(ηx(s))− ρk

)

− 1

N
d
2

∑
x∈Td

N

d∑
j=1

(∂Nuj
hz)
(

x
N

)
[τxW

ηs
j,k − ωρ,ϱ

k ]

2 ds.

(2.41)

Since (a− b)2 ≤ 2a2 + 2b2, last display is bounded from above by

≤ 2T

∫ T

0

EN

 1

4Nd

∑
x∈Td

N

∆2
Nhz

(
x
N

) (
Ik(ηx(s))− ρk

)2+

+ EN

 1

Nd

∑
x∈Td

N

d∑
j=1

(∂Nuj
hz)

2
(

x
N

)
(τxW

ηs
j,k − ωρ,ϱ

k )2

 ds

=
T

2

∫ T

0

1

Nd

∑
x∈Td

N

∆2
Nhz

(
x
N

)
EN

[(
Ik(ηx(s))− ρk

)2]
ds+

+2T

∫ T

0

1

Nd

∑
x∈Td

N

d∑
j=1

(∂Nuj
hz)

2
(

x
N

)
EN

[
(τxW

ηs
j,k − ωρ,ϱ

k )2
]}

ds

=
T

2

∫ T

0

1

Nd

∑
x∈Td

N

∆2
Nhz

(
x
N

)
var(Ik(η), νρ,ϱ) ds+

+2T

∫ T

0

1

Nd

∑
x∈Td

N

d∑
j=1

(∂Nuj
hz)

2
(

x
N

)
var(τxW

s
j,k, νρ,ϱ) ds

(2.42)

and this converges to

T 2

2
var(Ik(η), νρ,ϱ) ⟨∆hz,∆hz⟩+ 2T 2 var(τxW

s
j,k, νρ,ϱ) ⟨∇hz,∇hz⟩

when N → +∞.

Corollary 5. For each p > 2 + d
2
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(i) lim sup
N→+∞

EN

[
sup

0≤t≤T
∥Yt∥2−p

]
<∞

(ii) lim
n→+∞

lim sup
N→+∞

EN

 sup
0≤t≤T

∑
∥z∥≥n

(Yt(hz))
2γ−p

z

 = 0.

Proof. Recall the definition of Hp and the inner product ⟨·, ·⟩p. We have

∥Y N,k
t ∥2−p =

∑
z∈Zd

(Y N,k
t (hz))

2γ−p
z .

The expect in first expression can be estimates as

EN

[
sup

0≤t≤T
∥Y N,k

t ∥2−p

]
= EN

[
sup

0≤t≤T

∑
z∈Zd

(Y N,k
t (hz))

2γ−p
z

]

≤
∑
z∈Zd

γ−p
z EN

[
sup

0≤t≤T
(Y N,k

t (hz))
2

]
.

(2.43)

By the previous lemma, we have

lim sup
N→+∞

EN

[
sup

0≤t≤T
∥Y N,k

t ∥2−p

]

≤ lim sup
N→+∞

∑
z∈Zd

γ−p
z EN

[
sup

0≤t≤T
(Y N,k

t (hz))
2

]

=
∑
z∈Zd

γ−p
z lim sup

N→+∞
EN

[
sup

0≤t≤T
(Y N,k

t (hz))
2

]
≤
∑
z∈Zd

γ−p
z C(ρ, ϱ, v, T ) {⟨hz, hz⟩+ ⟨∇hz,∇hz⟩+ ⟨∆hz,∆hz⟩}

= C(ρ, ϱ, v, T )
∑
z∈Zd

γ−p
z {1 + ⟨∇hz,∇hz⟩+ ⟨∆hz,∆hz⟩}

= C(ρ, ϱ, v, T )
∑
z∈Zd

1

(1 + 4π2∥z∥2)p {1 + ⟨∇hz,∇hz⟩+ ⟨∆hz,∆hz⟩}

= C(ρ, ϱ, v, T )
∑
z∈Zd

1

[1 + (2π∥z∥)2]p {1 + (2π∥z∥)2 + (2π∥z∥)4}

≤ C(ρ, ϱ, v, T )
∑
z∈Zd

[1 + (2π∥z∥)2]2
[1 + (2π∥z∥)2]p

= C(ρ, ϱ, v, T )
∑
z∈Zd

1

[1 + (2π∥z∥)2]p−2
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which is finite as long as 2(p−2)−d > 0⇐⇒ p > 2+ d
2
. This proves the first statement.

The second one follows by the same argument.

It follows from Lemma 12 and Corollary 5 that, in order to prove that the sequence
(QN)N is tight, we only have to show that for every ε > 0,

lim
δ→0

lim sup
N→+∞

PN [ωδ(Y ) > ε] = 0.

In view of part (ii) of the previous corollary, this result follows from the following
lemma:

Lemma 13. For every positive integer n and every ε > 0,

lim
δ→0

lim sup
N→+∞

PN

 sup
|s−t|≤δ
0≤s,t≤T

∑
∥z∥≤n

(Yt(hz)− Ys(hz))2γ−p
z > ε

 = 0.

Proof. To prove this lemma it is enough to show that

lim
δ→0

lim sup
N→+∞

PN

 sup
|s−t|≤δ
0≤s,t≤T

(Yt(hz)− Ys(hz))2 > ε

 = 0.

for every z ∈ Zdand ε > 0.
Fix z ∈ Zd and recall the definition of M z,k

t . Since

Y N,k
t (hz) = Y N,k

0 (hz) +MN,k
t +

∫ t

0

Γz,k
1 (s) ds

the lemma follows from the next two results.

Lemma 14. Fix a function G ∈ C2(Td). For every ε > 0,

lim
δ→0

lim sup
N→+∞

PN

 sup
|s−t|≤δ
0≤s,t≤T

|MN,k
t (G)−Mk,N

s (G)| > ε

 = 0.

Proof. Denote by ω′
δ(M

k,N(G)) the modified modulus of continuity defined as

ω′
δ(M

k,N(G)) = inf
ti

max
0≤i≤r

sup
ti≤s<t≤ti+1

|MN,k
t (G)−Mk,N

s (G)|

where the infimum is taken over all partitions of [0, T ] such that{
0 = t0 < t1 < . . . tr = T

ti+1 − ti > δ with 0 ≤ i < r.
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Since

sup
t
|MN,k

t (G)−Mk,N
t− (G)|

= sup
t
|Y N,k

t (G)− Y N,k
t− (G)|

= sup
t
|N− d

2

∑
x∈Td

N

G
(

x
N

)
(Ik(ηx(t))− ρk)−N− d

2

∑
x∈Td

N

G
(

x
N

)
(Ik(ηx(t

−))− ρk)|

= sup
t
|N− d

2

∑
x∈Td

N

G
(

x
N

)
[Ik(ηx(t))− Ik(ηx(t−))]|.

(2.44)

Since the process is a Markovian process, each particle waits for ring of random clocks
exponentially distributed and independent. Consequently, there exists {x∗, x∗ + ej} ∈
Td

N such that (Ik(ηx(t))− Ik(ηx(t−))) = 0 for every x ∈ Td
N , with x /∈ {x∗, x∗ + ej}.

Besides that, if x ∈ {x∗, x∗ + ej}

Ik(ηx(t))− Ik(ηx(t−)) =
∑
v∈V

vk(ηt(x, v)− ηt−(x, v))

and there exists v∗ ∈ V such that∑
v∈V

vk(ηt(x, v)− ηt−(x, v)) = (ηt(x, v
∗)− ηt−(x, v∗))v∗k = ±v∗k.

Therefore,

N− d
2

∑
x∈Td

N

G
(

x
N

)
[Ik(ηx(t))− Ik(ηx(t−))] = v∗kN

− d
2 (G

(
x
N

)
−G

(x+ej
N

)
).

From this we get

(2.44) = sup
t
|N− d

2 v∗k[G
(

x
N

)
−G

(x+ej
N

)
|

= v∗kN
− d

2 |G
(

x
N

)
−G

(x+ej
N

)
|

≤ v∗kN
− d

2
1
N
G′ ( x̃

N

)
with x̃ ∈ (x, x+ ej)

≤ supw∈Td G′(w)N− d
2
−1

= N−(1+ d
2
)C(G).

(2.45)

Besides,
ωδ(M

G) ≤ 2ω′
δ(M

G) + sup
t
|MG

t −MG
t− |

in order to prove the lemma we just need to show that, for every ε > 0

lim
δ→0

lim sup
N→∞

PN

[
ω′
δ(M

G,k) > ε
]
= 0.

103



By Aldous’ criterion, see for example [1, Chapter 4, Proposition 1.6], it is enough to
check that for every ε > 0:

lim
δ→0

lim sup
N→+∞

sup
τ∈TT
0≤θ≤δ

PN

[
|Mk,N

τ+θ(G)−Mk,N
τ (G)| > ε

]
= 0,

where TT stands for all the stopping times bounded by T . By Chebychev inequality,
the last probability is less than or equal to

1

ε2
EN

[
(Mk,N

τ+θ(G)−Mk,N
τ (G))2

]
=

1

ε2
EN

[
(Mk,N

τ+θ(G))
2 − (Mk,N

τ (G))2
]

because MN,k
t (G) is a martingale and τ a bounded stopping time. By (2.36) this

expression is bounded from above by

1

ε2
EN

[∫ δ

0

ΓG,k
2 (r) dr

]
.

because νNρ,ϱ is invariant, τ a stopping time and θ is bounded from above by delta.
The limit as N →∞ of this last expression is less than or equal to δε−2C∥∇G∥22, this
concludes the proof of the lemma.

Lemma 15. Fix a function G ∈ C2(Td). For every ε > 0,

lim
δ→0

lim sup
N→∞

PN

[
sup

0≤s,t≤T
|s−t|≤δ

∣∣∣ ∫ t

s

ΓG,k
1 (r) dr

∣∣∣ > ε
]
= 0.

Proof. By using the expression of ΓG,k
1 (r), see (2.33), we obtain that

PN

[
sup

0≤s,t≤T
|s−t|≤δ

∣∣∣ ∫ t

s

ΓG,k
1 (r) dr

∣∣∣ > ε
]

= PN

 sup
0≤s,t≤T
|s−t|≤δ

∣∣∣∣∣∣
∫ t

s

1

2N
d
2

∑
x∈Td

N

∆NG
(

x
N

) (
Ik(ηx(r))− ρk

)

− 1

N
d
2

∑
x∈Td

N

d∑
j=1

(∂Nuj
G)
(

x
N

)
[τxW

r
j,k − ωρ,ϱ

k ] dr

∣∣∣∣∣∣ > ε

 .
(2.46)
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Observe that the expression above is bounded by

PN

[
sup

0≤s,t≤T
|s−t|≤δ

∣∣∣ ∫ t

s

1

2N
d
2

∑
x∈Td

N

∆NG
(

x
N

) (
Ik(ηx(r))− ρk

)
dr
∣∣∣ > ε

2

]

+PN

[
sup

0≤s,t≤T
|s−t|≤δ

∣∣∣ 1

N
d
2

∑
x∈Td

N

d∑
j=1

(∂Nuj
G)
(

x
N

)
[τxW

r
j,k − ωρ,ϱ

k ] dr
∣∣∣ > ε

2

]
.

(2.47)

We will compute each term above separately. For the first term, using Chebychev
inequality, we obtain

PN

[
sup

0≤s,t≤T
|s−t|≤δ

∣∣∣ ∫ t

s

1

2N
d
2

∑
x∈Td

N

∆NG
(

x
N

) (
Ik(ηx(r))− ρk

)
dr
∣∣∣ > ε

2

]

≤ 4

ε2
EN

[(
sup

0≤s,t≤T
|s−t|≤δ

∣∣∣ ∫ t

s

1

2N
d
2

∑
x∈Td

N

∆NG
(

x
N

) (
Ik(ηx(r))− ρk

)
dr
∣∣∣)2]

=
4

ε2
EN

[
sup

0≤s,t≤T
|s−t|≤δ

∣∣∣ ∫ t

s

1

2N
d
2

∑
x∈Td

N

∆NG
(

x
N

) (
Ik(ηx(r))− ρk

)
dr
∣∣∣2]

≤ 4

ε2
EN

[
sup

0≤s,t≤T
|s−t|≤δ

|t− s|
∫ t

s

1

4Nd

[ ∑
x∈Td

N

∆NG
(

x
N

) (
Ik(ηx(r))− ρk

) ]2
dr
]

(2.48)

since |t− s| ≤ δ and 0 ≤ s, t ≤ T we can bound (2.48) from above by

≤ δ

Ndε2
EN

[ ∫ T

0

( ∑
x∈Td

N

∆NG
(

x
N

) (
Ik(ηx(r))− ρk

) )2
dr
]

=
δ

Ndε2

∫ T

0

EN

[( ∑
x∈Td

N

∆NG
(

x
N

) (
Ik(ηx(r))− ρk

) )2]
dr

=
δ

Ndε2

∫ T

0

∑
x∈Td

N

(∆NG)
2
(

x
N

)
EN

[(
Ik(ηx(r))− ρk

)2]
dr

=
Tδ

Ndε2

∑
x∈Td

N

(∆NG)
2
(

x
N

)
EN

[(
Ik(ηx(r))− ρk

)2]
=

Tδ

Ndε2
var(Ik(ηx(r)), νρ,ϱ)

∑
x∈Td

N

(∆NG)
2
(

x
N

)

(2.49)

as N →∞, this converges to

Tδ

ε2
var(Ik(ηx(r)), νρ,ϱ)

∫
Td

(∆G)2 dx
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since
T

ε2
var(Ik(ηx(r)), νρ,ϱ)

∫
Td

(∆G)2 dx is bounded, when δ → 0, we obtain that first

term of (2.47) goes to zero.
On the other hand, we have that second term of (2.47) is bounded from above by

PN

[
sup

0≤s,t≤T
|s−t|≤δ

∣∣∣ 1

N
d
2

∑
x∈Td

N

d∑
j=1

(∂Nuj
G)
(

x
N

)
[τxW

r
j,k − ωρ,ϱ

k ] dr
∣∣∣ > ε

2

]

≤ 4

ε2
EN

[(
sup

0≤s,t≤T
|s−t|≤δ

∣∣∣ ∫ t

s

1

N
d
2

∑
x∈Td

N

d∑
j=1

(∂Nuj
G)
(

x
N

)
(τxW

r
j,k − ωρ,ϱ

k ) dr
∣∣∣)2]

=
4

ε2
EN

[
sup

0≤s,t≤T
|s−t|≤δ

∣∣∣ ∫ t

s

1

N
d
2

∑
x∈Td

N

d∑
j=1

(∂Nuj
G)
(

x
N

)
(τxW

r
j,k − ωρ,ϱ

k ) dr
∣∣∣2]

≤ 4

ε2
EN

[
sup

0≤s,t≤T
|s−t|≤δ

|t− s|
∫ t

s

1

Nd

[ ∑
x∈Td

N

d∑
j=1

(∂Nuj
G)
(

x
N

)
(τxW

r
j,k − ωρ,ϱ

k )
]2
dr
]

≤ 4δ

Ndε2
EN

[
sup

0≤s,t≤T
|s−t|≤δ

∫ T

0

[ ∑
x∈Td

N

d∑
j=1

(∂Nuj
G)
(

x
N

)
(τxW

r
j,k − ωρ,ϱ

k )
]2
dr
]

=
4Tδ

Ndε2

{
EN

[ ∑
x∈Td

N

d∑
j=1

(∂Nuj
G)2

(
x
N

)
(τxW

r
j,k − ωρ,ϱ

k )2
]

+EN

[∑
x ̸=y

d∑
j=1

(∂Nuj
G)2

(
x
N

)
(τxW

r
j,k − ωρ,ϱ

k )(∂Nuj
G)2

(
y
N

)
(τyW

r
j,k − ωρ,ϱ

k )
]}

=
4Tδ

Ndε2

∑
x∈Td

N

d∑
j=1

(∂Nuj
G)2

(
x
N

)
EN

[
(τxW

r
j,k − ωρ,ϱ

k )2
]

=
4Tδ

Ndε2

∑
x∈Td

N

d∑
j=1

(∂Nuj
G)2

(
x
N

)
var(W r

j,k, νρ,ϱ)

(2.50)

and when N →∞ this goes to

4Tδ

ε2
var(W r

j,k, νρ,ϱ)

∫
Td

∇G2dx.

Since
4T

ε2
var(W r

j,k, νρ,ϱ)

∫
Td

(∇G)2 dx is bounded, when δ → 0 we obtain that second

term of (2.47) goes to zero. This concludes the proof of tightness.
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Appendix A

In this section, we establish some technical results that are needed in order to
prove the hydrodynamic limit for the model discussed in the previous sections.

A.0.1 Computation of LN⟨πk,Nt , H⟩
Recall that the conserved quantities are the mass and the momentum. For k =

0, . . . , d, denote by πk,N
t the empirical measure associated to the k-th conserved quantity:

πk,N
t =

1

Nd

∑
x∈Dd

N

Ik(ηx(t))δx/N , (A.1)

where δu stands for the Dirac measure supported on u. We denote by ⟨πk,N
t , H⟩ the

integral of a test function H with respect to the empirical measure πk,N
t .

Further, denote by πk,N,b1
t and πk,N,bN−1

t the empirical measures associated to the
k-th thermodynamic quantity restricted to the boundary:

πk,N,bi
t =

1

Nd−1

∑
x∈Dd

N
x1=i

Ik(ηx(t))δx/N ,

for i = 1, N − 1.

Let LN := N2{Lex,1
N +Lex,2

N +Lc
N +Lb

N} and πk,N
t =

1

Nd

∑
x∈Dd

N

Ik(ηx(t))δ x
N
. Let us

compute the action of the generator of the empirical measure. We do this separately to
make the presentation easier to follow.

Lemma 16. Recall the definition of the empirical measure that was defined in (A.1).



Let H be a test function, we obtain that

N2Lex,1
N ⟨πk,N

t , H⟩ =
1

2Nd

∑
x∈Dd

N

∑
v∈V

vk η(x, v)∆NH
(

x
N

)
+
N2

2Nd

∑
x∈Dd

N
x1=N−1

∑
v∈V

vk
[
H
(
N−1
N
, x̃
N

)
−H

(
N
N
, x̃
N

)]
η(N − 1, x̃, v)

+
N2

2Nd

∑
x∈Dd

N
x1=1

∑
v∈V

vk
[
H
(

1
N
, x̃
N

)
−H

(
0
N
, x̃
N

)]
η(1, x̃, v).

(A.2)

Proof. Since the operator is linear, we just need to compute Lex,1
N (η(x, v)). For f(η) =

η(x, v) with x1 ̸= {1, N − 1} note that

(Lex,1
N f)(η) =

1

2

∑
w∈V

∑
y∈Dd

N

d∑
j=1

[η(y, w)(1− η(y + ej, w)) + η(y + ej, w)(1− η(y, w))]

×[f(ηy,y+ej ,w)− f(η)]

+
[
η(y, w)(1− η(y − ej, w)) + η(y − ej, w)(1− η(y, w))[f(ηy−ej ,y,w)− f(η)]

]
.

We have that
ηy,y+ej ,w(x,w) = η(y, v) if x = y + ej and w = v

and
ηy,y+ej ,w(x,w) = η(y + ej, v) if x = y and w = v

if w ̸= v =⇒ ηy,y+ej ,w(x, v) = η(x, v). Hence,

(Lex,1
N f)(η) =

1

2

d∑
j=1

[(η(x+ ej, v)(1− η(x, v)))− (η(x, v)(1− η(x+ ej, v)))]

+ [(η(x, v)(1− η(x− ej, v)))− (η(x− ej, v)(1− η(x, v)))]

=
1

2

d∑
j=1

η(x+ ej, v)− η(x, v) + η(x− ej, v)− η(x, v)

=
1

2

d∑
j=1

η(x+ ej, v) + η(x− ej, v)− 2η(x, v).
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Now consider f(η) = η(x, v) for x1 = 1, we have that

(Lex,1
N f)(η) =

1

2
(η(2, x̃, v)− η(1, x̃, v))

and for x1 = N − 1

(Lex,1
N f)(η) =

1

2
(η(N − 2, x̃, v)− η(N − 1, x̃, v)) .

Therefore,

N2Lex,1
N ⟨πk,N

t , H⟩ =
N2

2Nd

∑
x∈Dd

N
x1 ̸={1,N−1}

∑
v∈V

d∑
j=1

vkH
(

x
N

)
[η(x+ ej, v) + η(x− ej, v)− 2η(x, v)]

+
N2

2Nd

∑
x∈Dd

N
x1=N−1

∑
v∈V

vkH
(
N−1
N
, x̃
N

)
(η(N − 2, x̃, v)− η(N − 1, x̃, v))

+
N2

2Nd

∑
x∈Dd

N
x1=1

∑
v∈V

vkH
(

1
N
, x̃
N

)
(η(2, x̃, v)− η(1, x̃, v)) ,

where x̃ = (x2, . . . , xd). Grouping the terms, we have that

N2Lex,1
N ⟨πk,N

t , H⟩ =
N2

2Nd

∑
x∈Dd

N
x1 ̸={1,N−1}

∑
v∈V

d∑
j=1

vk η(x, v)
[
H
(x+ej

N

)
+H

(x−ej
N

)
− 2H

(
x
N

)]

+
N2

2Nd

∑
x∈Dd

N
x1=N−1

∑
v∈V

vk
[
H
(
N−2
N
, x̃
N

)
−H

(
N−1
N
, x̃
N

)]
η(N − 1, x̃, v)

+
N2

2Nd

∑
x∈Dd

N
x1=1

∑
v∈V

vk
[
H
(

2
N
, x̃
N

)
−H

(
1
N
, x̃
N

)]
η(1, x̃, v).

(A.3)
To force the appearance of the discrete Laplacian, we will add and subtract the ex-
pression below with i = {1, N − 1}

N2

2Nd

∑
x∈Dd

N
x1=i

∑
v∈V

vk η(x, v)
[
H
(
x+e1
N

)
+H

(
x−e1
N

)
− 2H

(
x
N

)]
.
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Then we get

N2Lex,1
N ⟨πk,N

t , H⟩

=
N2

2Nd

∑
x∈Dd

N

∑
v∈V

d∑
j=1

vk η(x, v)
[
H
(x+ej

N

)
+H

(x−ej
N

)
− 2H

(
x
N

)]
+
N2

2Nd

∑
x∈Dd

N
x1=N−1

∑
v∈V

vk
[
H
(
N−2
N
, x̃
N

)
−H

(
N−1
N
, x̃
N

)]
η(N − 1, x̃, v)

− N2

2Nd

∑
x∈Dd

N
x1=N−1

∑
v∈V

vkη(N − 1, x̃, v)
[
H
(
N
N
, x̃
N

)
+H

(
N−2
N
, x̃
N

)
− 2H

(
N−1
N
, x̃
N

)]
+
N2

2Nd

∑
x∈Dd

N
x1=1

∑
v∈V

vk
[
H
(

2
N
, x̃
N

)
−H

(
1
N
, x̃
N

)]
η(1, x̃, v)

− N2

2Nd

∑
x∈Dd

N
x1=1

∑
v∈V

vk η(1, x̃, v)
[
H
(

2
N
, x̃
N

)
+H

(
0
N
, x̃
N

)
− 2H

(
1
N
, x̃
N

)]
,

Which gives

N2Lex,1
N ⟨πk,N

t , H⟩ =
1

2Nd

∑
x∈Dd

N

∑
v∈V

vk η(x, v)∆NH
(

x
N

)
+

+
N2

2Nd

∑
x∈Dd

N
x1=N−1

∑
v∈V

vk
[
H
(
N−1
N
, x̃
N

)
−H

(
N
N
, x̃
N

)]
η(N − 1, x̃, v)+

+
N2

2Nd

∑
x∈Dd

N
x1=1

∑
v∈V

vk
[
H
(

1
N
, x̃
N

)
−H

(
0
N
, x̃
N

)]
η(1, x̃, v).

(A.4)

Lemma 17. Recall the definition of the empirical measure that was defined in (A.1).
Let H be a test function, we obtain that

N2Lb
N⟨πk,N

t , H⟩ =
N2

NdN θ

∑
x∈Dd

N
x1=1

∑
v∈V

vkH
(

x
N

)
[αv

(
x̃

N

)
− η(1, x̃, v)]

+
N2

NdN θ

∑
x∈Dd

N
x1=N−1

∑
v∈V

vkH
(

x
N

)
[βv

(
x̃

N

)
− η(N − 1, x̃, v)].

(A.5)
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Proof. Observe that

N2Lb
N⟨πk,N

t , H⟩ = N2

Nd

∑
x∈Dd

N

∑
v∈V

vkH
(

x
N

)
Lb

N(η(x, v))

Since the operator is linear, we just need to compute Lb
N(η(x, v)), for f(η) = η(x, v).

We have that

(Lb
Nf)(η) =

∑
z∈Dd

N
z1=1

∑
w∈V

1

N θ

[
αv

(
z̃
N

)
(1− η(1, z̃, w)) + η(1, z̃, w)(1− αv

(
z̃
N

)
)
]

×[f(σz,wη)− f(η)]

+
∑
z∈Dd

N
z1=N−1

∑
w∈V

1

N θ

[
βv
(

z̃
N

)
(1− η(N − 1, z̃, w)) + η(N − 1, z̃, w)(1− βv

(
z̃
N

)
)
]

×[f(σz,wη)− f(η)]

where

σz,wη(x, v) =

{
1− η(x, v), if w = v and x = z,

η(x, v), otherwise.

Note that for w ̸= v and x ̸= z we have that f(σz,wη)− f(η) vanishes, then

(Lb
Nf)(η) =

[
αv

(
x̃
N

) (1− η(1, x̃, v))
N θ

+
η(1, x̃, v)

N θ
(1− αv

(
x̃
N

)
)[1− 2η(1, x̃, v)]

]

+

[
βv
(

x̃
N

) (1− η(N − 1, x̃, v))

N θ
+
η(N − 1, x̃, v)

N θ
(1− βv

(
x̃
N

)
)[1− 2η(N − 1, x̃, v)]

]

= αv

(
x̃
N

) (1− η(1, x̃, v))
N θ

− η(1, x̃, v)

N θ
(1− αv

(
x̃
N

)
)

+βv
(

x̃
N

) (1− η(N − 1, x̃, v))

N θ
− η(N − 1, x̃, v)

N θ
(1− βv

(
x̃
N

)
)

=
1

N θ

[
αv

(
x̃
N

)
− η(1, x̃, v)

]
+

1

N θ

[
βv
(

x̃
N

)
− η(N − 1, x̃, v)

]
.
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Therefore, we have that

N2Lb
N⟨πk,N

t , H⟩ =
N2

Nd

∑
x∈Dd

N

∑
v∈V

vkH
(

x
N

)
Lb

N(η(x, v))

=
N2

Nd

∑
x∈Dd

N
x1=1

∑
v∈V

vkH
(

x
N

) 1

N θ
[αv

(
x̃
N

)
− η(1, x̃, v)]

+
N2

Nd

∑
x∈Dd

N
x1=N−1

∑
v∈V

vkH
(

x
N

) 1

N θ
[βv
(

x̃
N

)
− η(N − 1, x̃, v)]

=
N2

NdN θ

∑
x∈Dd

N
x1=1

∑
v∈V

vkH
(

x
N

)
[αv

(
x̃
N

)
− η(1, x̃, v)]

+
N2

NdN θ

∑
x∈Dd

N
x1=N−1

∑
v∈V

vkH
(

x
N

)
[βv
(

x̃
N

)
− η(N − 1, x̃, v)].

(A.6)

Lemma 18. Recall the definition of the empirical measure that was defined in (A.1).
Let H be a test function, we obtain that

N2Lc
N⟨πk,N

t , H⟩ = 0. (A.7)

Proof. Observe that

N2Lc
N⟨πk,N

t , H⟩ = N2

Nd

∑
x∈Dd

N

∑
v∈V

vkH
(

x
N

)
Lc

N(η(x, v)).

Since the operator is linear, we just need to compute Lc
N(η(x, v)) For f(η) = η(x, v),
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we have that

(Lc
Nf)(η)

=
∑
y∈Dd

N

∑
q∈Q

pc(y, q, η)[f(η
y,q)− f(η)]

=
∑
q∈Q

pc(x, q, η)[η(x, vj+2)− η(x, v)]

= η(x, v0)η(x, v1)(1− η(x, v2))(1− η(x, v3))

×[η(x, v2)− η(x, v0) + η(x, v3)− η(x, v1) + η(x, v0)− η(x, v2) + η(x, v1)− η(x, v3)]

= 0.

Therefore,
N2Lc

N⟨πk,N
t , H⟩ = 0. (A.8)

Lemma 19. Recall the definition of the empirical measure that was defined in (A.1).
Let H be a test function, we obtain that

N2Lex,2
N ⟨πk,N

t , H⟩ = 1

Nd

d∑
j=1

∑
x∈Dd

N

(∂Nuj
H)
(

x
N

)
τ 1xW

N,s
j,k (A.9)

where (τ 1xη)(z, v) = η(x+ z, v) and WN,s
j,k =

∑
v∈V

vk
∑
z∈Zd

p(z, v)zjηs(0, v)(1− ηs(z, v)).

Proof. Observe that

N2Lex,2
N ⟨πk,N

t , H⟩ = N2

Nd

∑
x∈Dd

N

∑
v∈V

vkH
(

x
N

)
Lex,2

N (η(x, v))

Since the operator is linear, we just need to compute Lex,2
N (η(x, v)), for f(η) = η(x, v),
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we have that

(Lex,2
N f)(η) =

1

N

∑
w∈V

∑
y,z∈Dd

N

η(y, w)(1− η(z, w))p(z − y, w)[f(ηy,z,w)− f(η)]

=
1

N

∑
y∈Dd

N

η(y, v)(1− η(x, v))p(x− y, v)[η(y, v)− η(x, v)]

+
1

N

∑
z∈Dd

N

η(x, v)(1− η(z, v))p(z − x, v)[η(z, v)− η(x, v)]

=
1

N

∑
y∈Dd

N

η(y, v)(1− η(x, v))p(x− y, v)[η(y, v)− η(x, v)]

+
1

N

∑
y∈Dd

N

η(x, v)(1− η(y, v))p(y − x, v)[η(y, v)− η(x, v)]

=
1

N

∑
y∈Dd

N

[η(y, v)(1− η(x, v))p(x− y, v)]− [η(x, v)(1− η(y, v))p(y − x, v)].

Then

N2Lex,2
N ⟨πk,N

t , H⟩

=
N2

Nd+1

∑
x,y∈Dd

N

∑
v∈V

vkH
(

x
N

)
[η(y, v)(1− η(x, v))p(x− y, v)]− [η(x, v)(1− η(y, v))p(y − x, v)]

= − N2

Nd+1

∑
x,y∈Dd

N

∑
v∈V

vkH
(

x
N

)
[η(x, v)(1− η(y, v))p(y − x, v)]

+
N2

Nd+1

∑
x,y∈Dd

N

∑
v∈V

vkH
(

x
N

)
[η(y, v)(1− η(x, v))p(x− y, v)]
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and we can change x by y in the second term, to get that

N2Lex,2
N ⟨πk,N

t , H⟩ =

− N2

Nd+1

∑
x,y∈Dd

N

∑
v∈V

vkH
(

x
N

)
[η(x, v)(1− η(y, v))p(y − x, v)]

+
N2

Nd+1

∑
x,y∈Dd

N

∑
v∈V

vkH
(

y
N

)
[η(x, v)(1− η(y, v))p(y − x, v)]

= − N2

Nd+1

∑
x∈Dd

N

∑
v∈V

∑
z∈Zd

vkH
(

x
N

)
[η(x, v)(1− η(x+ z, v))p(z, v)]

+
N2

Nd+1

∑
x∈Dd

N

∑
v∈V

∑
z∈Zd

vkH
(
x+z
N

)
[η(x, v)(1− η(x+ z, v))p(z, v)]

=
N2

Nd+1

∑
x∈Dd

N

∑
v∈V

∑
z∈Zd

vk [η(x, v)(1− η(x+ z, v))p(z, v)]
[
H
(
x+z
N

)
−H

(
x
N

)]

=
1

Nd

∑
x∈Dd

N

∑
v∈V

∑
z∈Zd

vk [η(x, v)(1− η(x+ z, v))p(z, v)]
d∑

j=1

(∂Nuj
H)
(

x
N

)
zj

=
1

Nd

d∑
j=1

∑
x∈Dd

N

(∂Nuj
H)
(

x
N

)∑
v∈V

vk
∑
z∈Zd

p(z, v)zjη(x, v)(1− η(x+ z, v))

=
1

Nd

d∑
j=1

∑
x∈Dd

N

(∂Nuj
H)
(

x
N

)
τ 1xW

N,s
j,k .

(A.10)

A.0.2 Computation of LN⟨πk,Nt , H⟩2 − 2⟨πk,Nt , H⟩LN⟨πk,Nt , H⟩
In order to simplify the presentation, we split the generator and calculate sepa-

rately each term.

Remark 8. For πk,N
t the empirical measure associated to the k-th thermodynamic
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quantity introduced in (A.1). Then

⟨πk,N
t , H⟩Ix,z,v − ⟨πk,N

t , H⟩

=
1

Nd

∑
y∈Dd

N

Ik(η
x,z,v
y (t))H

(
y
N

)
− 1

Nd

∑
y∈Dd

N

Ik(ηy(t))H
(

y
N

)
=

1

Nd

∑
y∈Dd

N

∑
w∈V

wkη
x,z,v(y, w)H

(
y
N

)
− 1

Nd

∑
y∈Dd

N

∑
w∈V

wkη(y, w)H
(

y
N

)
=

1

Nd

∑
y∈Dd

N

∑
w∈V

wkH
(

y
N

)
[ηx,z,v(y, w)− η(y, w)] .

Taking v = w, y = x and v = w, y = z,

=
1

Nd
vkH

(
x
N

)
[η(z, v)− η(x, v)] + 1

Nd
vkH

(
z
N

)
[η(x, v)− η(z, v)]

=
1

Nd
vk [η(z, v)− η(x, v)] [H

(
z
N

)
−H

(
x
N

)
].

(A.11)

Lemma 20. For πk,N
t the empirical measure associated to the k-th thermodynamic

quantity introduced in (A.1) it holds,

N2Lex,1
N ⟨πk,N

t , H⟩2 − 2⟨πk,N
t , H⟩N2Lex,1

N ⟨πk,N
t , H⟩

=
1

2N2d

∑
v∈V

∑
x∈Dd

N

d∑
j=1

v2k [η(x, v)− η(x+ ej, v))]
2 [∂Nuj

H
(

x
N

)
]2.

(A.12)
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Proof. Note that

N2Lex,1
N ⟨πk,N

t , H⟩2 − 2⟨πk,N
t , H⟩N2Lex,1

N ⟨πk,N
t , H⟩

=
N2

2

∑
v∈V

∑
x,z∈Dd

N

η(x, v)(1− η(z, v))[⟨πk,N
t , H⟩2Ix,z,v − ⟨πk,N

t , H⟩2]

−2⟨πk,N
t , H⟩N

2

2

∑
v∈V

∑
x,z

η(x, v)(1− η(z, v))[⟨πk,N
t , H⟩Ix,z,v − ⟨πk,N

t , H⟩]

=
N2

2

∑
v∈V

∑
x,z∈Dd

N

η(x, v)(1− η(z, v))[⟨πk,N
t , H⟩2Ix,z,v − ⟨πk,N

t , H⟩2

−2⟨πk,N
t , H⟩⟨πk,N

t , H⟩Ix,z,v + 2⟨πk,N
t , H⟩2]

=
N2

2

∑
v∈V

∑
x,z∈Dd

N

η(x, v)(1− η(z, v))[⟨πk,N
t , H⟩Ix,z,v − ⟨πk,N

t , H⟩]2

=
N2

2

∑
v∈V

∑
x,z∈Dd

N

η(x, v)(1− η(z, v))
[

1

Nd
vk[η(z, v)− η(x, v)][H

(
z
N

)
−H

(
x
N

)
]

]2

=
N2

2N2d

∑
v∈V

∑
x,z∈Dd

N

v2k η(x, v)(1− η(z, v))[η(z, v)− η(x, v)]2[H
(

z
N

)
−H

(
x
N

)
]2

=
N2

2N2d

∑
v∈V

∑
x,z∈Dd

N

v2k η(x, v)(1− η(z, v))[H
(

z
N

)
−H

(
x
N

)
]2

=
N2

2N2d

∑
v∈V

∑
x∈Dd

N

d∑
j=1

v2k
{
η(x, v)(1− η(x+ ej, v))[H

(x+ej
N

)
−H

(
x
N

)
]2

+ η(x, v)(1− η(x− ej, v))
[
H
(x−ej

N

)
−H

(
x
N

)]2}

=
N2

2N2d

∑
v∈V

∑
x∈Dd

N

d∑
j=1

v2k [η(x, v)(1− η(x+ ej, v)) + η(x+ ej, v)(1− η(x, v))]

×[H
(x+ej

N

)
−H

(
x
N

)
]2

=
N2

2N2d

∑
v∈V

∑
x∈Dd

N

d∑
j=1

v2k [η(x, v)− η(x+ ej, v))]
2 [H

(x+ej
N

)
−H

(
x
N

)
]2

=
1

2N2d

∑
v∈V

∑
x∈Dd

N

d∑
j=1

v2k [η(x, v)− η(x+ ej, v))]
2 [∂Nuj

H
(

x
N

)
]2.
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Lemma 21. For πk,N
t the empirical measure associated to the k-th thermodynamic

quantity introduced in (A.1) it holds

N2Lex,2
N ⟨πk,N

t , H⟩2 − 2⟨πk,N
t , H⟩N2Lex,2

N ⟨πk,N
t , H⟩

=
1

N2d+1

∑
v∈V

∑
x∈Dd

N

∑
w∈Zd

v2k η(x, v)(1− η(x+ w, v))p(w, v)w2
j [∂

N
uj
H
(

x
N

)
]2.

(A.13)

Proof. Note that

N2Lex,2
N ⟨πk,N

t , H⟩2 − 2⟨πk,N
t , H⟩N2Lex,2

N ⟨πk,N
t , H⟩

= N2 1

N

∑
v∈V

∑
x,z∈Dd

N

η(x, v)(1− η(z, v))p(z − x, v)[⟨πk,N
t , H⟩2Ix,z,v − ⟨πk,N

t , H⟩2]

−2⟨πk,N
t , H⟩N2 1

N

∑
v∈V

∑
x,z∈Dd

N

η(x, v)(1− η(z, v))p(z − x, v)[⟨πk,N
t , H⟩Ix,z,v − ⟨πk,N

t , H⟩]

= N2 1

N

∑
v∈V

∑
x,z∈Dd

N

η(x, v)(1− η(z, v))p(z − x, v)[⟨πk,N
t , H⟩2Ix,z,v − ⟨πk,N

t , H⟩2

−2⟨πk,N
t , H⟩⟨πk,N

t , H⟩Ix,z,v + 2⟨πk,N
t , H⟩2]

= N2 1

N

∑
v∈V

∑
x,z∈Dd

N

η(x, v)(1− η(z, v))p(z − x, v)[⟨πk,N
t , H⟩Ix,z,v − ⟨πk,N

t , H⟩]2

=
N2

N

∑
v∈V

∑
x,z∈Dd

N

η(x, v)(1− η(z, v))p(z − x, v)[ 1

Nd
vk [η(z, v)− η(x, v)] [H

(
z
N

)
−H

(
x
N

)
]]2

=
N2

N2d+1

∑
v∈V

∑
x,z∈Dd

N

v2k η(x, v)(1− η(z, v))p(z − x, v)[η(z, v)− η(x, v)]2[H
(

z
N

)
−H

(
x
N

)
]2

=
N2

N2d+1

∑
v∈V

∑
x,z∈Dd

N

v2k η(x, v)(1− η(z, v))p(z − x, v)[H
(

z
N

)
−H

(
x
N

)
]2

=
N2

N2d+1

∑
v∈V

∑
x∈Dd

N

∑
w∈Zd

v2k η(x, v)(1− η(x+ w, v))p(w, v)[H(x+ w/N)−H
(

x
N

)
]2

=
1

N2d+1

∑
v∈V

∑
x∈Dd

N

∑
w∈Zd

v2k η(x, v)(1− η(x+ w, v))p(w, v)w2
j [∂

N
uj
H
(

x
N

)
]2.
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Remark 9. Note that

⟨πk,N
t , H⟩Ix,v − ⟨πk,N

t , H⟩

=
1

Nd

∑
y∈Dd

N

Ik(η
x,v
y (t))H

(
y
N

)
− 1

Nd

∑
y∈Dd

N

Ik(ηy(t))H
(

y
N

)
=

1

Nd

∑
y∈Dd

N

∑
w∈V

wkη
x,v(y, w)H

(
y
N

)
− 1

Nd

∑
y∈Dd

N

∑
w∈V

wkη(y, w)H
(

y
N

)
=

1

Nd

∑
y∈Dd

N

∑
w∈V

wkH
(

y
N

)
[ηx,v(y, w)− η(y, w)] .

Taking v = w and y = x last expression is equal to

=
1

Nd

[
vkH

(
x
N

)
(1− η(x, v))− vkH

(
x
N

)
η(x, v)

]
=

1

Nd
vk [1− 2η(x, v)]H

(
x
N

)
.

(A.14)

Lemma 22. For πk,N
t the empirical measure associated to the k-th thermodynamic

quantity introduced in (A.1) it holds

N2Lb
N⟨πk,N

t , H⟩2 − 2⟨πk,N
t , H⟩N2Lb

N⟨πk,N
t , H⟩

=
N2

N2d

∑
x∈Dd

N
x1=1

∑
v∈V

[
αv(

x̃
N
)(1− η(x, v)) + (1− αv(

x̃
N
))η(x, v)

N θ

]
v2kH

2
(

x
N

)

+
N2

N2d

∑
x∈Dd

N
x1=N−1

∑
v∈V

[
βv(

x̃
N
)(1− η(x, v)) + (1− βv( x̃

N
))η(x, v)

N θ

]
v2kH

2
(

x
N

)
.

(A.15)

Proof. In order to make the presentation easier, we denote by

rα(η) =

[
αv(

x̃
N
)(1− η(x, v)) + (1− αv(

x̃
N
))η(x, v)

N θ

]

119



and computing (A.15) for x1 = 1, we obtain

N2Lb
N⟨πk,N

t , H⟩2 − 2⟨πk,N
t , H⟩N2Lb

N⟨πk,N
t , H⟩

= N2
∑
x∈Dd

N
x1=1

∑
v∈V

rα(η)[⟨πk,N
t , H⟩2Ix,v − ⟨πk,N

t , H⟩2]

−2⟨πk,N
t , H⟩N2

∑
x∈Dd

N
x1=1

∑
v∈V

rα(η)[⟨πk,N
t , H⟩Ix,v − ⟨πk,N

t , H⟩]

=
N2

N2d

∑
x∈Dd

N
x1=1

∑
v∈V

rα(η)v
2
kH

2
(

x
N

)
(1− 2η(x, v))2

=
N2

N2d

∑
x∈Dd

N
x1=1

∑
v∈V

rα(η)v
2
kH

2
(

x
N

)
.

For x1 = N − 1

N2Lb
N⟨πk,N

t , H⟩2 − 2⟨πk,N
t , H⟩N2Lb

N⟨πk,N
t , H⟩

=
N2

N2d

∑
x∈Dd

N
x1=N−1

∑
v∈V

[
βv(

x̃
N
)(1− η(x, v)) + (1− βv( x̃

N
))η(x, v)

N θ

]
v2kH

2
(

x
N

)
.

Therefore, by Lemmas 20, 21, and 22. We can establish the following proposition.

Proposition 12. For πk,N
t the empirical measure associated to the k-th thermodynamic

quantity introduced in (A.1), it holds

LN⟨πk,N
t , H⟩2 − 2⟨πk,N

t , H⟩LN⟨πk,N
t , H⟩

=
1

2N2d

∑
v∈V

∑
x∈Dd

N

d∑
j=1

v2k [η(x, v)− η(x+ ej, v))]
2 [∂Nuj

H
(

x
N

)
]2

+
1

N2d+1

∑
v∈V

∑
x∈Dd

N

∑
w∈Zd

v2k η(x, v)(1− η(x+ w, v))p(w, v)w2
j [∂

N
uj
H
(

x
N

)
]2

+
N2

N2d

∑
x∈Dd

N
x1=1

∑
v∈V

[
αv(

x̃
N
)(1− η(x, v)) + (1− αv(

x̃
N
))η(x, v)

N θ

]
v2kH

2
(

x
N

)

+
N2

N2d

∑
x∈Dd

N
x1=N−1

∑
v∈V

[
βv(

x̃
N
)(1− η(x, v)) + (1− βv( x̃

N
))η(x, v)

N θ

]
v2kH

2
(

x
N

)
.

(A.16)
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A.1 Deriving the weak formulation

Note that the weak formulation of the system of PDEs can be obtained in the
following way. Take a test function G ∈ C1,2([0, T ] × Dd) and multiply both sides of
the equality

∂t(ρ, ϱ) +
∑
v∈V

ṽ[v · ∇χ(θv(Λ(ρ, ϱ)))] =
1

2
∆(ρ, ϱ) (A.17)

by G and then integrate both sides in time and space to get∫ T

0

∫
Dd

∂t(ρ, ϱ)G(t, u) du dt+

∫ T

0

∫
Dd

∑
v∈V

ṽ[v · ∇χ(θv(Λ(ρ, ϱ)))]G(t, u) du dt

=
1

2

∫ T

0

∫
Dd

∆(ρ, ϱ)G(t, u) du dt.

Computing each term separately, we perform integration by parts in the time integral
and we get to∫ T

0

∫
Dd

∂t(ρ, ϱ)G(t, u) du dt =

∫
Dd

(ρ, ϱ)(T, u)G(T, u) du−
∫
Dd

(ρ, ϱ)(0, u)G(0, u) du

−
∫ T

0

∫
Dd

(ρ, ϱ)(t, u)∂tG(t, u) du dt.

Let dS be the Lebesgue measure on Td−1,∫ T

0

∫
Dd

∑
v∈V

ṽ[v · ∇χ(θv(Λ(ρ, ϱ)))]G(t, u) du dt =

∫ T

0

∫
{1}×Td−1

∑
v∈V

ṽ[v · χ(θv(Λ(ρ, ϱ)))]G(t, u) dS dt

−
∫ T

0

∫
{0}×Td−1

∑
v∈V

ṽ[v · χ(θv(Λ(ρ, ϱ)))]G(t, u) dS dt

−
∫ T

0

∫
Dd

∑
v∈V

ṽ · χ(θv(Λ(ρ, ϱ)))
d∑

i=1

vi
∂G

∂ui
(t, u) du dt.

(A.18)
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Doing integration by parts twice in the spacial integral

1

2

∫ T

0

∫
Dd

∆(ρ, ϱ)G(t, u) du dt =
1

2

∫ T

0

∫
{1}×Td−1

∂(ρ, ϱ)

∂u1
(t, u)G(t, u) dS dt

−1

2

∫ T

0

∫
{0}×Td−1

∂(ρ, ϱ)

∂u1
(t, u)G(t, u) dS dt− 1

2

∫ T

0

∫
{1}×Td−1

(ρ, ϱ)(t, u)
∂G

∂u1
(t, u) dS dt

+
1

2

∫ T

0

∫
{0}×Td−1

(ρ, ϱ)(t, u)
∂G

∂u1
(t, u) dS dt+

1

2

∫ T

0

∫
Dd

(ρ, ϱ)(t, u)
d∑

i=1

∂2G

∂u2i
(t, u) du dt.

Putting together the last identities, we obtain∫
Dd

(ρ, ϱ)(T, u)G(T, u) du−
∫
Dd

(ρ, ϱ)(0, u)G(0, u) du =

∫ T

0

∫
Dd

(ρ, ϱ)(t, u)∂tG(t, u) du dt−
∫ T

0

∫
{1}×Td−1

∑
v∈V

ṽ[v · χ(θv(Λ(ρ, ϱ)))]G(t, u) dS dt

+

∫ T

0

∫
{0}×Td−1

∑
v∈V

ṽ[v · χ(θv(Λ(ρ, ϱ)))]G(t, u) dS dt

+

∫ T

0

∫
Dd

∑
v∈V

ṽ · χ(θv(Λ(ρ, ϱ)))
d∑

i=1

vi
∂G

∂ui
(t, u) du dt

+
1

2

∫ T

0

∫
{1}×Td−1

∂(ρ, ϱ)

∂u1
(t, u)G(t, u) dS dt− 1

2

∫ T

0

∫
{0}×Td−1

∂(ρ, ϱ)

∂u1
(t, u)G(t, u) dS dt

−1

2

∫ T

0

∫
{1}×Td−1

(ρ, ϱ)(t, u)
∂G

∂u1
(t, u) dS dt+

1

2

∫ T

0

∫
{0}×Td−1

(ρ, ϱ)(t, u)
∂G

∂u1
(t, u) dS dt

+
1

2

∫ T

0

∫
Dd

(ρ, ϱ)(t, u)
d∑

i=1

∂2G

∂u2i
(t, u) du dt.

(A.19)
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Appendix B

In this appendix, we establish some technical results that are needed in order to
prove the equilibrium fluctuations for the model discussed in the previous sections.

B.0.1 Computations of LN [Y
N,k
t (H)]

We will compute separately, in order to simplify the presentation. Recall that

Y N,k
t (H) = N− d

2

∑
x∈Dd

N

H
(

x
N

)
(Ik(ηx(t))− ρk). (B.1)

Lemma 23. For a test function H, we obtain that

N2Lex,1
N [Y N,k

t (H)] =
1

2
Y N,k
t [∆NH

(
x
N

)
]. (B.2)



Proof.

N2Lex,1
N [Y N,k

t (H)] = N2Lex,1
N

N− d
2

∑
x∈Td

N

H
(

x
N

) (
Ik(ηx(t))− ρk

)
= N− d

2
+2
∑
x∈Td

N

H
(

x
N

)
Lex,1

N (Ik(ηx(t))

= N− d
2
+2
∑
x∈Td

N

H
(

x
N

) 1
2

d∑
j=1

[Ik(ηx+ej(t)) + Ik(ηx−ej(t))− 2Ik(ηx(t))]

= 1
2
N− d

2
+2
∑
x∈Td

N

d∑
j=1

[
H
(

x
N

)
Ik(ηx+ej(t)) +H

(
x
N

)
Ik(ηx−ej(t))− 2H

(
x
N

)
Ik(ηx(t))

]

= 1
2
N− d

2
+2
∑
x∈Td

N

d∑
j=1

[
H
(x−ej

N

)
Ik(ηx(t)) +H

(x+ej
N

)
Ik(ηx(t))− 2H

(
x
N

)
Ik(ηx(t))

]

=
1

2
N− d

2
+2
∑
x∈Td

N

d∑
j=1

[
H
(x−ej

N

)
+H

(x+ej
N

)
− 2H

(
x
N

)]
Ik(ηx(t))

=
1

2
N− d

2
+2
∑
x∈Td

N

∆NH
(

x
N

)
Ik(ηx(t))

=
1

2
N− d

2
+2
∑
x∈Td

N

∆NH
(

x
N

) [
Ik(ηx(t))− ρk

]
=

1

2
Y N,k
t [∆NH

(
x
N

)
].

Lemma 24. For a test function H, we obtain that

N2Lex,2
N [Y N,k

t (H)] = −N− d
2

∑
x∈Td

N

d∑
j=1

(∂Nuj
H)
(

x
N

)
[τxW

t
j,k − ωρ,ϱ

k ], (B.3)

where
W t

j,k :=
∑
v∈V

vk
∑
z∈Zd

zjp(z, v)ηt(0, v)[1− ηt(z, v)]

and
ωρ,ϱ
k := EνNρ,ϱ

[W t
j,k] =

∑
v∈V

vkvjχ(θv(Λ(ρ, ϱ))).
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Proof.

N2Lex,2
N [Y N,k

t (H)] = N2Lex,2
N

N− d
2

∑
x∈Td

N

H
(

x
N

) (
Ik(ηx(t))− ρk

)
= N− d

2
+2
∑
x∈Td

N

H
(

x
N

)
Lex,2

N

(
Ik(ηx(t)

)

= −N− d
2

∑
x∈Td

N

d∑
j=1

(∂Nuj
H)
(

x
N

)
τxW

t
j,k

= −N− d
2

∑
x∈Td

N

d∑
j=1

(∂Nuj
H)
(

x
N

)
[τxW

t
j,k − ωρ,ϱ

k ]

=
d∑

j=1

∇F j,k(ρ, ϱ)Y N,k
t [(∂Nuj

H)
(

x
N

)
].

Lemma 25. For a test function H, we obtain that

N2Lc
N [Y

N,k
t (H)] = 0. (B.4)

Proof.

N2Lc
N [Y

N,k
t (H)] = N2Lc

N

N− d
2

∑
x∈Td

N

H
(

x
N

) (
Ik(ηx(t))− ρk

)
= N− d

2
+2
∑
x∈Td

N

H
(

x
N

)
Lc

N

(
Ik(ηx(t)

)
= 0.

B.0.2 Computations of LN

(
[Y N,k

t (H)]2
)
− 2Y N,k

t (H)LN [Y
N,k
t (H)]

We will compute each term separately, in order to simplify the presentation.

Remark 10. Note that

Y N,k
t (H)(Ix,z,v)− Y N,k

t (H) = N− d
2 vk[H

(
x
N

)
−H

(
z
N

)
][η(x, v)− η(z, v)]. (B.5)
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Indeed,

Y N,k
t (H)(Ix,z,v)− Y N,k

t (H)

= N− d
2

∑
y∈Td

N

H
(

y
N

)
[Ik(η

x,z,v(y))− ρk]−N− d
2

∑
y∈Td

N

H
(

y
N

)
[Ik(ηy(t))− ρk]

= N− d
2

∑
y∈Td

N

H
(

y
N

)
[Ik(η

x,z,v(y))− Ik(ηy(t))]

= N− d
2

∑
y∈Td

N

H
(

y
N

)
[
∑
v∈V

vkη
x,z,v(y)−

∑
v∈V

vkη(y)].

If y = x and y = z, because when y ̸= x, z the equation above vanishes. Therefore, the
last display is equal to

N− d
2 [H

(
x
N

)
vkη(z, v)−H

(
x
N

)
vkη(x, v) +H

(
z
N

)
vkη(x, v)−H

(
z
N

)
vkη(z, v)]

= N− d
2 vk[H

(
x
N

)
−H

(
z
N

)
][η(x, v)− η(z, v)].

(B.6)

Using the notation introduced in Remark 10, we obtain that

N2Lex,1
N [Y N,k

t (H)] =
N2

2

∑
v∈V

∑
x,z∈Td

N

η(x, v)[1− η(z, v)]
[
Y N,k
t (H)(Ix,z,v)− (Y N,k

t (H))
]
.

(B.7)
Now we will prove the following lemmas:

Lemma 26. Let H be a test function. We have that

N2Lex,1
N [(Y N,k

t (H))2]− 2Y N,k
t (H)N2Lex,1

N [Y N,k
t (H)]

=
1

2Nd

∑
v∈V

∑
x∈Td

N

d∑
j=1

v2k

(
η(x, v)− η(x+ ej, v)

)2
(∂Nuj

H
(

x
N

)
)2.

(B.8)
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Proof. Using the notation we introduced above, we have that

N2Lex,1
N [(Y N,k

t (H))2]− 2Y N,k
t (H)N2Lex,1

N [Y N,k
t (H)]

=
N2

2

∑
v∈V

∑
x,z∈Td

N
||x−z||=1

η(x, v)[1− η(z, v)]
[
(Y N,k

t (H))2(Ix,z,v)− (Y N,k
t (H))2

]

−2Y N,k
t (H)

N2

2

∑
v∈V

∑
x,z∈Td

N
||x−z||=1

η(x, v)[1− η(z, v)]
[
(Y N,k

t (H))(Ix,z,v)− (Y N,k
t (H))

]

=
N2

2

∑
v∈V

∑
x,z∈Td

N
||x−z||=1

η(x, v)[1− η(z, v)]
[(
(Y N,k

t (H))(Ix,z,v)− (Y N,k
t (H))

)2]
.

Now using the Remark 10 last expression is equal to

N2

2

∑
v∈V

∑
x,z∈Td

N
∥x−z∥=1

η(x, v)[1− η(z, v)]
[
N− d

2 vk(H
(

x
N

)
−H

(
z
N

)
)(η(x, v)− η(z, v))

]2

=
N2

2
N−d

∑
v∈V

∑
x,z∈Td

N
∥x−z∥=1

η(x, v)[1− η(z, v)]v2k(H
(

x
N

)
−H

(
z
N

)
)2(η(x, v)− η(z, v))2.

(B.9)

Remark 11. Note that

η(x, v)(1− η(z, v))(η(z, v)− η(x, v))2

= (η(x, v)− η(x, v)η(z, v))[η(z, v)2 − 2η(z, v)η(x, v) + η(x, v)2]

= η(x, v)η(z, v)− 2η(z, v)η(x, v) + η(x, v)− η(x, v)η(z, v)

+2η(x, v)η(z, v)− η(x, v)η(z, v)

= η(x, v)[1− η(z, v)].

By this remark, we can rewrite (B.9) as

=
N2

2Nd

∑
v∈V

∑
x,z∈Td

N
||x−z||=1

η(x, v)[1− η(z, v)]v2k(H
(

x
N

)
−H

(
z
N

)
)2.
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Since ∥x− z∥ = 1, we obtain

N2

2Nd

∑
v∈V

∑
x∈Td

N

d∑
j=1

v2k

[
η(x, v)(1− η(x+ ej, v))(H

(
x
N

)
−H

(x+ej
N

)
)2

+η(x, v)(1− η(x− ej, v))(H
(x−ej

N

)
−H

(
x
N

)
)2
]

=
N2

2Nd

∑
v∈V

∑
x∈Td

N

d∑
j=1

v2k

[
η(x, v)(1− η(x+ ej, v))(H

(
x
N

)
−H

(x+ej
N

)
)2

+η(x+ ej, v)(1− η(x, v))(H
(

x
N

)
−H

(x+ej
N

)
)2
]

=
N2

2Nd

∑
v∈V

∑
x∈Td

N

d∑
j=1

v2k [η(x, v)(1− η(x+ ej, v)) + η(x+ ej, v)(1− η(x, v))]

×(H
(

x
N

)
−H

(x+ej
N

)
)2

(B.10)

=
N2

2Nd

∑
v∈V

∑
x∈Td

N

d∑
j=1

v2k (η(x, v)− η(x+ ej, v))
2 (H

(
x
N

)
−H

(x+ej
N

)
)2

=
1

2Nd

∑
v∈V

∑
x∈Td

N

d∑
j=1

v2k (η(x, v)− η(x+ ej, v))
2 (∂Nuj

H
(

x
N

)
)2.

(B.11)

Lemma 27. For a test function H, we have that

N2Lex,2
N [(Y N,k

t (H))2]− 2Y N,k
t (H)N2Lex,2

N [Y N,k
t (H)]

=
1

2Nd+1

∑
v∈V

v2k
∑
x∈Td

N

∑
|w|≤R

d∑
j=1

η(x, v)(1− η(x+ w, v))p(w, v)
(
∂Nj H

(
x
N

))2
w2

j .

(B.12)
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Proof. Using Remark 10, we can rewrite

N2Lex,2
N [(Y N,k

t (H))2]− 2Y N,k
t (H)N2Lex,2

N [Y N,k
t (H)]

=
N2

2

 1

N

∑
v∈V

∑
x,z∈Td

N

η(x, v)(1− η(z, v))p(z − x, v)
[
Y N,k
t (H)(Ix,z,v)− Y N,k

t (H)
]2

=
N2

2Nd+1

∑
v∈V

∑
x,z∈Td

N

η(x, v)(1− η(z, v))p(z − x, v)v2k
(
η(x, v)− η(z, v)

)2
(H
(

x
N

)
−H

(
z
N

)
)2

=
N2

2Nd+1

∑
v∈V

∑
x,z∈Td

N

v2k η(x, v)(1− η(z, v))p(z − x, v)(H
(

x
N

)
−H

(
z
N

)
)2.

Note that p(w, v) = 0 for |w| > R, where R is the range of p. Therefore, writing
z − x = w with |w| ≤ R, we obtain

N2

2Nd+1

∑
v∈V

v2k
∑

x,w∈Td
N

η(x, v)(1− η(x+ w, v))p(w, v)
(
H(x+ w/N)−H

(
x
N

))2
=

1

2Nd+1

∑
v∈V

v2k
∑

x,w∈Td
N

η(x, v)(1− η(x+ w, v))p(w, v)

(
d∑

j=1

∂Nj H
(

x
N

)
wj

)2

=
1

2Nd+1

∑
v∈V

v2k
∑

x,w∈Td
N

d∑
j=1

η(x, v)(1− η(x+ w, v))p(w, v)
(
∂Nj H

(
x
N

))2
w2

j

=
1

2Nd+1

∑
v∈V

v2k
∑
x∈Td

N

∑
|w|≤R

d∑
j=1

η(x, v)(1− η(x+ w, v))p(w, v)
(
∂Nj H

(
x
N

))2
w2

j .

Lemma 28. For a test function H, we obtain that

N2Lc
N

(
[Y N,k

t (H)]2
)
= 0. (B.13)
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Proof.

N2Lc
N

(
[Y N,k

t (H)]2
)
= N2Lc

N

N− d
2

∑
x∈Td

N

H
(

x
N

) (
Ik(ηx(t))− ρk

)2
= N−d+2Lc

N

 ∑
x,y∈Td

N

H
(

x
N

)
H
(

y
N

) (
Ik(ηx(t))− ρk

)(
Ik(ηy(t))− ρk

)
= N−d+2

∑
x,y∈Td

N

H
(

x
N

)
H
(

y
N

)
Lc

N

[
Ik(ηx(t))Ik(ηy(t)− ρkIk(ηx(t)− ρkIk(ηy(t) + (ρk)2

]
= N−d+2

∑
x,y∈Td

N

H
(

x
N

)
H
(

y
N

)
Lc

N [Ik(ηx(t))Ik(ηy(t)] ,

(B.14)
note that Lc

N [(ρk)
2] = 0 and Lc

N [Ik(ηx(t))] = 0 because momentum is preserved.

Claim 5. To conclude the computations, let us prove that for every real function f if
Ik(ηx) = Ik(η

z,q
x ) it holds

Lc
N [f(Ik(η))] = 0.

This claim close the case when x = y, in the last equality of (B.14).

Proof of the claim. In fact, if v, w ∈ V are such that{
η(z, v′) = η(z, w′) = 0

η(z, v) = η(z, w) = 1,

then, for q = (v, w, v′, w′) ∈ Q. We have{
ηy,q(z, v) = ηy,q(z, w) = 0

ηy,q(z, v′) = ηy,q(z, w′) = 1.

If z ̸= x we obtain Ik(ηz,qx ) = Ik(ηx).
On the other hand, if z = x,

Ik(η
x,q
x ) =

∑
v∈V

vkη
x,q(x, v)

=
∑
ṽ∈Ṽ∗

ṽk + v′k + w′
k

=
∑
ṽ∈Ṽ∗

ṽk + vk + wk

where Ṽ = {ṽ ∈ V ; η(x, ṽ) = 1} and Ṽ∗ = ṽ\{v, w, v′, w′}. Therefore the last display
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results to be equal to ∑
ṽ∈Ṽ

ṽk = Ik(ηx). (B.15)

From the Claim 5, we can conclude that

Lc
N([Ik(ηx)]

2) = 0.

Claim 6. To finish the proof of Lemma 28, we need to show that

Ik(ηx)Ik(ηy) = Ik(η
z,q
x )Ik(η

z,q
y ).

Proof of the claim. In fact, observe that

if z ̸∈ {x, y} =⇒
{
Ik(η

z,q
x ) = Ik(ηx)

Ik(η
z,q
y ) = Ik(ηy)

consequently,
Ik(ηx)Ik(ηy) = Ik(η

z,q
x )Ik(η

z,q
y ).

On the other hand, if

z = x =⇒
{
Ik(η

z,q
x ) = Ik(η

x,q
x ) = Ik(ηx)

Ik(η
z,q
y ) = Ik(η

x,q
y ) = Ik(ηy)

we also have that
Ik(ηx)Ik(ηy) = Ik(η

z,q
x )Ik(η

z,q
y ).

If

z = y =⇒
{
Ik(η

z,q
x ) = Ik(η

y,q
x ) = Ik(ηx)

Ik(η
z,q
y ) = Ik(η

y,q
y ) = Ik(ηy)

we obtain
Ik(ηx)Ik(ηy) = Ik(η

z,q
x )Ik(η

z,q
y ),

and this proves the claim.

From the Claims 5 and 6, we have that

N2Lc
N

(
[Y N,k

t (H)]2
)
= 0.

this finishes the proof of the Lemma 28.
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B.1 Some extra results

Remark 12. By Taylor expansion, we have that

EN

[(∫ t

0

Y N,k
s

(
1

2
∆NH

)
ds−

∫ t

0

Y N,k
s

(
1

2
∆H

)
ds

)2]
−→ 0,

as N → +∞. Also

EN

[(∑
v∈V

vk

d∑
i=0

∫ t

0

Y N,i
s (

d∑
j=1

vj∂ρiFv(ρ, ϱ)∂
N
uj
H) ds

−
∑
v∈V

vk

d∑
i=0

∫ t

0

Y N,i
s (

d∑
j=1

vj∂ρiFv(ρ, ϱ)∂uj
H) ds

)2
 −→ 0,

as N → +∞.

Remark 13. Note that
⟨−Lc

Nf, f⟩νNρ,ϱ ≥ 0. (B.16)

Proof. By writing the term at the left-hand side of (B.16) as its half plus its half, we
have that

⟨−Lc
Nf, f⟩νNκ = −1

2

∫ ∑
y∈Dd

N

∑
q∈Q

pc(y, q, η)[f(η
y,q)− f(η)]f(η) dνNκ

−1

2

∫ ∑
y∈Dd

N

∑
q∈Q

pc(y, q, η)[f(η
y,q)− f(η)]f(η) dνNκ

Performing a change of variables in one of the terms, last display is equal to

−1

2

∫ ∑
y∈Dd

N

∑
q∈Q

pc(y, q, η)[f(η
y,q)− f(η)]f(η) dνNκ

+
1

2

∫ ∑
y∈Dd

N

∑
q∈Q

pc(y, q, η)[f(η
y,q)− f(η)]f(ηy,q) dνNκ

=
1

2

∫ ∑
y∈Dd

N

∑
q∈Q

pc(y, q, η)[f(η
y,q)− f(η)]2 dνNκ

this implies that ⟨−Lc
Nf, f⟩νNρ,ϱ ≥ 0.
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