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Resumo

Esta tese esta dividida em duas partes. Na primeira parte obtemos o limite
hidrodindmico para um sistema de particulas com velocidades em contato com reser-
vatorios. Teremos um parametro 6, que regula a intensidade dos reservatorios e obte-
remos um sistema de equacgoes diferenciais parciais com diferentes condigoes de bordo
dependendo do parametro #. Nosso objetivo é analisar o impacto da forca dos reser-
vatorios (mudando o valor de ) no comportamento macroscopico do sistema. O limite
hidrodindmico deste modelo no caso 6 = 0 foi provado em [3].

Na segunda parte desta tese obtemos as flutuagoes no equilibrio para o mesmo

modelo com bordos periédicos.

Palavras-chave: Método da Entropia; Limite Hidrodindmico; Flutuagoes no Equi-

librio;
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Abstract

This Ph.D. thesis consists of two parts. In the first part, we discuss the hydrodynamic
limit of the weakly asymmetric exclusion process with collision among particles having
different velocities and in contact with stochastic reservoirs. We will have a parameter
0 and a system of partial differential equations with boundary conditions that change
depending on this parameter . We aim to analyze the impact of the reservoirs (change
the value of #) on the macroscopic behavior of the system. The hydrodynamic limit of
this model in the case § = 0 was proved in [3].

In the second part of this work, we obtain the equilibrium fluctuation for the

same model with periodic boundary conditions.

Keywords: Entropy Method; Hydrodynamic Limit; Equilibrium Fluctuations;
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Introduction

Interacting particle systems is an area of probability devoted to the mathematical
analysis of random models (stochastic process) that arise from statistical physics, biol-
ogy, and many other fields of science. Interacting particle systems were introduced in
the 1970s by Spitzer [14]. A classic problem in this field is to derive macroscopic laws of
the thermodynamic quantities of a physical system, considering a microscopic dynam-
ics which is composed of particles that move according to some prescribed stochastic
law. These macroscopic laws are governed by Partial Differential Equations (PDEs)
or stochastic PDEs, depending if one is looking at the convergence to the mean, or
fluctuations around that mean. Convergence to the mean is a scaling limit, called the
hydrodynamic limit. This limit will be the solution of a partial differential equation,
called the hydrodynamic equation, and with it we can understand how the temporal
evolution of the spatial density of particles is, see [1].

To make the reading as pleasant as possible, we will informally describe the model,
which we will work with in Chapter 1 for d = 1(see Figure 1 and 2). Let the set of
possible velocities V), be a finite subset of R, and for x € R. Moreover, fix a velocity
v € V, at any given time, each site of {1,..., N — 1} is either empty or occupied by
one particle with velocity v. In {1,..., N — 1}, each particle attempts to jump to one
of its neighbors with the same velocity, with a weakly asymmetric rate. To prevent the
occurrence of more than one particle per site with the same velocity v, we introduce
an exclusion rule that suppresses each jump to an already occupied site, with the fixed
velocity v. The boundary dynamics is given by the following birth and death process
at the sites 1 or N — 1. A particle is inserted into the system with rate 3% at site 1 if
the site is empty, while if the site 1 is occupied a particle is removed from the system

11—y
NY -

with rate 2% if the site is empty, while a particle is removed at N — 1 if the site is

1_/811
NO

with rate On the other hand, at site NV — 1 a particle is inserted into the system,

occupied, with rate . Superposed to this dynamics, there is a collision process that



exchanges velocities of particles in the same site in a way that the moment is conserved.
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Figure 1: Tllustration of the dynamics

We draw some pictures to illustrate the dynamics that we will work on in the
following sections. In Figure 1, we have an illustration of the dynamics, the particles
at the bulk are colored in gray, and the particles at the two reservoirs are colored in
blue. Note that if a particle at site  with velocity v, attempts to jump to an already
occupied site y with velocity v, the jump is not allowed. In this case the particle does
not move, see for example in Figure 1, the particle at site 3 with velocity vs is not
allowed to jump to site 2 with velocity v3. On the other hand, if the destination site
is empty the jump is performed, see for example in Figure 1, the particle at site 1
with velocity vs is allowed to jump to site 2 with velocity vy. Let us suppose that the
clock associated to the left-most reservoir rings, since there exist no particle at site 1

with velocity vy, a particle can be injected into the system at the site 1 with velocity

Ay

NO -

vy with rate Also, if the clock associated to the site 1 with velocity vs rings, the

lfav5
NO

particle leaves the system at rate (See Figure 1). Analogously, suppose that the

clock associated to the right-most reservoir rings, since there exist no particle at site

N — 1 with velocity vy, a particle can be injected into the system at the site N —1 with

By
NO -

velocity vy with rate Also, if the clock associated to the site N — 1 with velocity
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Figure 2: Illustration of the collision dynamics

vs rings, the particle leaves the system at rate 1;@“5 (See Figure 1).

Now let us suppose that the clock associated to the site xj rings (see Figure 2).
We have that two particles at xp, with velocities v, and v, collide at rate one and
produce two particles at the same site, with velocities v; and vs, with ve +v4 = v1 + vs.

In Chapter 1 our goal is to show that the system can be described by a hydro-
dynamic equation: fix a macroscopic time interval [0, 7], and consider the dynamical
behavior of the empirical density and momentum over such an interval. The law of
large numbers for the empirical density and momentum, which is called hydrodynamic
limit, and in the context of the diffusive scaling limit here considered, is given by a
system of parabolic evolution equations which is called hydrodynamic equations.

In Chapter 2 we study the equilibrium fluctuations for the model that we pre-
sented in Chapter 1 with periodic boundary conditions, which can be viewed as a

central limit theorem for the empirical distribution of particles when the system starts

from an equilibrium measure. The purpose of this work is to study the density fluctu-



ation field of this system as N — oo. We prove that the density field converges weakly
to a generalized Ornstein-Uhlenbeck process.

These notes are organized as follows: In Chapter 1, Sections 1.1 to 1.4, we estab-
lish the notation adopted in this work and state some useful results. In Section 1.5, we
state the main theorem of Chapter 1; the proof of the theorem is postponed to Section
1.10. In Section 1.7, we prove the Replacement Lemmas for the hydrodynamic limits.
In Section 1.12, we prove uniqueness of weak solutions of the hydrodynamic equations,
which are also needed for the hydrodynamic limits. In Chapter 2, we describe in details
the model, in Sections 2.1, 2.2 and 2.3, that we study. Then, in Section 2.4, we start
the analysis of the equilibrium fluctuations for this model, introducing the fluctuation
field and we state our main results. We present the Boltzmann-Gibbs principle in Sec-
tion 2.6; and in Section 2.9, we prove tightness of the density fluctuation field. In the

Appendices, we present some technical results that are needed along with the proofs.



Frequently Used Notation

o C™n([0,T], D?) is the space of continuous functions with m continuous deriva-

tives in time t € [0, 7] and n continuous derivatives in the space D?;
e |r| denote the integer part of r;
o L% is the generator of the exclusion part of the dynamics;
o L4 is the generator of the collision part of the dynamics;
e L5 is the generator of the boundary part of the dynamics;
e ) is the set of velocities;
e D =Sy x T4

e D([0,T], M, x M%) is the set of right continuous functions with left limits taking

values in M, x M4
e (Qn)n>1 is a sequence of probability measures defined on D([0, T], M, x M?);
e () is the set of all collisions which preserve momentum;

e 1(D?) the Sobolev space of measurable functions in L?(D?) that have gener-

alized derivatives in L?(D?);
° QT = (O,T) X Dd,

e (C(Q) stands for the set of infinitely differentiable functions (with respect to

time and space) with compact support contained in Q7;

e C5°(Q7) stands for the space of infinitely differentiable functions vanishing at the

boundary of D¢



Hydrodynamic Limit

1.1 Notation and Results

We start by establishing the notation to be used throughout this chapter. Let
T4 ={0,...,N — 1}¢ = (Z/NZ)? be the d-dimensional discrete torus, and denote by
D% the set Sy x ']I“f\,_l, which will henceforth be called by bulk, where Sy = {1,..., N —
1}. Further, denote the d-dimensional torus by T¢ = [0,1)¢ = (R/Z)¢, and let D? =
[0, 1] x T4, Moreover, let V C R? be a finite set of velocities v = (vy, ..., v4). Assume

that V is invariant under reflections and permutations of the coordinates, i.e.,

(V1. ., Vi1, =iy Vig1, - -, Vg) and (%(1), e ,Ua(d))

belong to V for all 1 < i < d, and all permutations o of {1,...,d}, provided (vy, ..., vg)
belongs to V.

At each site of D%, at most one particle with a certain velocity is allowed. We
also denote by n(z,v) € {0,1} the number of particles with fixed velocity v € V at
site z € D%; by 1, = {n(z,v); v € V} the number of particles in each velocity v at
site 7; and a configuration by n = {n,; * € D%}. The set of particle configurations is
Xn = ({0, 1}¥)Px.

On the interior of the domain, the dynamics consist of two parts:

(i) each particle in the system evolves according to the nearest neighbor weakly

asymmetric random walk with exclusion among particles with the same velocity,
(ii) binary collisions between particles with different velocities.

Let p(z,v) be an irreducible transition probability with finite range, and mean velocity



The jump law and the waiting times are chosen so that the jump rate from site z, with

velocity v, to site x + y, with the same velocity v, is given by

d
1 1
PN(ya U) = 5 E (5y,ej +0 ,—e]') + Np(?%v)a (11)

j=1

where 6, ,, stands for the Kronecker delta, which is equal to one if = y and 0 otherwise,

and {ey,...,eq} is the canonical basis in RY.

1.2 Infinitesimal Generator

In this section, we describe the model that we are going to consider in these
thesis. Our main interest is to analyze the stochastic lattice gas model given by the
generator Ly, which is the superposition of the Glauber dynamics with the collision

and exclusion dynamics:

Ly = N*LS + LS + LY, (1.2)

where £5 denotes the generator of the Glauber dynamics, modeling insertion or re-
moval of particles, £ denotes the generator that models the collision part of the
dynamics and lastly, £5f models the exclusion part of the dynamics. Note that in (1.2)
time has been speeded up diffusively due to the factor N2.

Let f : Xy — R. The generator of the exclusion part of the dynamics, L5, is
given by

(L5 Hm =3 3 e, 0)(1 =0z 0) Pulz = 2, )[F6r=*) = fn)],

veyY x zEDd
where
7(y,0) if w=vand 2 =z,
N (z,w) = ¢ n(x,v) if w=vand z =y,

n(z,w) otherwise.



Because the definition of Py, in (1.1), we can use the decomposition

ex __ pex,l ex,2
LY =Ly + L7,

where
(5 N =53 S0 ale o)1= (s )0 ~ )
A
and

(L)) =5 30 3 nw )1~ n(z o)z — 2.0 [F) — F()]

vey x,zGDdN

The generator of the collision part of the dynamics, L%, is given by

LSHM) =D pelya.n)lf (") — f(n),

yeDY, 4€Q
where () is the set of all collisions which preserve momentum:
Q:{q: (U,w,v’,w') EV4ZU—|—'LU:U/—|—ZU/}.

The rate p.(y, q,n) is given by

pe(ys a,m) = nly, v)ny, w)[L = n(y, v)][1 — nly,w')],
and for ¢ = (vg, v1, v, v3), the configuration n¥? after the collision is defined as

n(y,vjte) if z =y and u = v; for some 0 < j < 3,
P9z, =
n(z,u) otherwise,

where the index of v;;5 should be taken modulo 4.
Particles of velocities v and w at the same site collide at rate one and produce

two particles of velocities v" and w’ at the same site and v +w = v' + w'.



Finally, the generator of the Glauber dynamics is given by

= 3 (Y )+ 2 ) o) — 1)

LEDd vey
:1:1:1

b3 S (P e+ A ) o)~ s

zeva veV
r1=N-1

where T = (29, ...,24), * = (21, %) and

1 —n(z,v), ifw=vandy ==z,
n(y,w), otherwise

for every v € V, o, B, € C*T? 1) and § > 0. We also assume that, for every
v € V, the functions «, and 3,, have images belonging to some compact subset of
(0, 1), which means that «,(-) and §,(-) are bounded away from 0 and 1. The functions
a,(+) and B,(+), which affect the birth and death rates at the boundary, represent the
density of the reservoirs.

In the text, sometimes it will be more convenient to write

<
8
—~
=
Q
S~—
Il
=
S
—~
N
=
—
|
=
8
=
+
—
|
o
S
&
\
-
S~—
=
8
=

(1.3)

Let {n(t),t > 0} be the Markov process with generator Ly and denote by
{SN t >0} the semigroup associated to Ly.

Let D(R,, Xx) be the set of right continuous functions with left limits taking
values in Xy endowed with the Skorohod topology. For a probability measure p on
Xy, denote by P, the measure on the path space D(R,, Xy) induced by {n(t) : t > 0}

and the initial measure p. The expectation with respect to P, is denoted by E,,.



1.3 Mass and Momentum

For each configuration £ € {0,1}Y, denote by Iy(¢) the mass of ¢ and by I, (€),

k=1,...,d, the momentum of &, i.e.,

= &), (&) =) )

vey vey

Set 1(§) := (Ip(§), ..., 1a(§)). Assume that the set of velocities is chosen in such a way
that the unique conserved quantities by the random walk dynamics described above

are the mass and the momentum: Z I(n.).
zeDY,
Two examples of sets of velocities satisfying these conditions can be found in [7],

one of the models is the following. Denote by &€ = {e = =+e; for some i = 1,...,d},
let V = &, with this choice, the only possible collisions are those ¢ = (v, w, v, w’) such
that v + w =0 and v + w" = 0.

For each chemical potential A = (X, ..., \q) € R denote by m, the probability

measure on {0, 1}V given by

ma(§) =

70 P 1O), (14)

where Z(\) is a normalizing constant. Note that m, is a product measure on {0,1}",
i.e., the variables {{(v) : v € V} are independent under m,.

Denote by 3 the product measure on Xy, with marginals given by

pn{n: n(z,) =& =ma(9),

for each € € {0,1}Y and x € D%. Note that {n(x,v) : x € D%, v € V} are independent
variables under pf, and that the measure p} is invariant for the exclusion process with
periodic boundary conditions, in this case the generator is given by Ly = N?{L% +
L%}, The expectation under pf of the mass and momentum are, respectively, given
by

p(N) = E[lo(na)] = 6u

veY

or(A) = E,v [1e(n:)] = b\

veY

10



In the last formula, 6,()\) denotes the expected value of the density of particles with

velocity v under my:

d
exp {)\0 + Z )\kvk}

k=1

7 .
14 exp {)\0 + Z)\kvk}

k=1

0,(N) == En,[E(v)] = (1.5)

Denote by (p, 0)(A) := (p(A), 01(N), ..., 0a(A)) the map that associates the chemical po-
tential to the vector of density and momentum. It is possible to prove that (p, o) is a dif-
feomorphism onto Y C R+ the interior of the convex envelope of {I(€), £ € {0,1}V}.
Denote by A = (Ag,...,Ag) : ¢ — R the inverse of (p, ). This correspondence
allows one to parameterize the invariant states by the density and momentum: for

each (p, o) € U, we have a product measure Vé\fg = 'u%(p,@) on Xy.

1.4 Hydrodynamic Equations

From now on, we fix a finite time horizon [0, 7. We denote by C™"([0,T] x D<)
the set of functions defined on [0,7] x D? that are m times differentiable on the first
variable, n times differentiable on the second variable and have continuous derivatives.
For a function G := G(t,u) € C™"([0,T] x D), we denote by 9;G its derivative with

respect to the time variable ¢ and by 0,,G its derivative with respect to the space
loale
ou;?
VG represents the generalized gradient of the function G. Finally, C’m"([O T] x D%

and

variable u;, with ¢ = 1,...,d. For simplicity of notation, we set AG := Z

is the set of functions G € C™"([0, T] x D) such that for any time ¢ the function G,
vanishes at the boundary, that is, G;(0, %) = G¢(1, @) = 0, where we denote u € D? by
(uy, @), with @ € T4,

Let (B,| - ||z) be a separable Banach space. We denote by L?*([0,7], B) the

Banach space of measurable functions U : [0,7] — B for which

T
WU 2 01,5 = / U dt < oo.

Moreover, we denote by 1 (D?) the Sobolev space of measurable functions in L?*(D?)

that have generalized derivatives in L?(D?).

11



Now that we have introduced all the notation and the spaces of functions that we
will use, we can define the system of partial differential equations and the respective
notions of weak solutions which are involved in the hydrodynamic limit of this model,

under different boundary coditions.

1.4.1 Dirichlet boundary conditions

For z = (z1,%) € {0,1} x T%!, consider

> ((@), v100(F), .. vaon () if 21 =0,
d(r) = ¢ < (1.6)
> (Bol@), 11Bu(@), . vafu(@) i a1 = 1.

veY

Definition 1. Fiz a measurable density profile po : D¢ — R,, and a measurable
momentum profile oo : DT — R, We say that (p,0) : [0,T] x D* — R, x R? is a weak
solution of the system of parabolic partial differential equations

0p.0) + 3 ol VX(O(Mp. 0))] = 5A(p. o),
veEV (17)

(p7 Q>(07 ) = (p07 QO)(') and (p, Q)(t,:l?) = d(:C), VS {07 1} X Td_la

where x(r) = r(1—r) is the static compressibility and for each velocity v = (vy, ..., vq),
we define v = (1,v1,...,vq), if the following two conditions hold:

(i) (p, 0) € L*([0, T],.21(D?));

(i1) (p, o) satisfies the weak formulation:

/Dd(p7 Q)(T, U)G(T, U) du — /Dd(po, Qo)(U)G(O, u) du =

T 1 492G
| a ] au <p,g)(zs,u)atau,u)+§<p7g><t,u>;auz2 (t,u)
—-// 0 25 1 ayasdi + // G(t,O,a)det
{1}xTd-1 a Uy {0} xTd—-1

// Zv x(0 Zvl tu du dt

veY

(1.8)
for all t € [0,T] and any function G : [0,T] x D¢ — R in Cy*([0,T] x D?).
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1.4.2 Robin boundary conditions

Definition 2. Fiz a measurable density profile po : D¢ — R,, and a measurable
momentum profile oo : DT — R, We say that (p,0) : [0,T] x DT — R, x R? is a weak

solution of the system of parabolic partial differential equations

[ 000+ 30 VXA )] = 5500.0),

22 1 ) =23l A )] = e ><toa>—;vkav<a>,

A8 11,0) 2 Yol (0 =3 0B(@) — (5, 0)(t 1,), t e (0,T),
[ (1,0)(0,-) = (po, 20)(")

(1.9)
where x(r) = r(1 — ) is the static compressibility of the system and for each velocity
v=(v1,...,0q), we define v = (1,v1,...,vq), if the following two conditions hold:

(i) (p,0) € L*([0,T], 2" (D%));

(ii) (p, o) satisfies the weak formulation:

/ (0, 0)(T, ) G(T, u) du — / (9, 0)(0, ) G(0, ) du =

Dd

// p, 0)(t, u)0G(t,u) dudt
Dd

//Ddzv x(6 ))gvig—i(t,u)dudt

vey

% / /{}[Z okBu(@) = (p, 0)(t, 1, W)]G(t, 1, @) S dt
(1.10)

1 /7 ) ) ~
2 /0 /{O}XW_I [(p, 0)(t,0,@) = Y vper,(@)]G(¢,0, @) dS dt

veY

——// (p,0 t,l,u)aG(t,l,u)det
l}XTd 1 a
// (p, 0)(t,0 )aG( ) dS dt
{0} xTd—1 ou U1

17 1. 0°G
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for all t € [0,T] and any function G : [0,T] x D — R in C12([0,T] x D?).

1.4.3 Neumann boundary conditions

Definition 3. Fiz a measurable density profile py : D¢ — R, and a measurable
momentum profile oo : D¢ — RY. We say that (p, o) : [0,T] x D — R, x R? is a weak

solution of the system of parabolic partial differential equations

(

0p.0) + 3 bl - Vxl,(A(p. )] = 5A(p. o).
veY
X0L) 10,0 23 olo - x(0.(Ap. 0))] =0,
' vev (1.11)
WD 1 1,0) 2 ol x(Ou(Mp )] =0, € (0.7,
veY
L (p,0)(0,+) = (po, 20)(")

where x(r) = r(1 — 1) is the static compressibility of the system and for each velocity

v=(v1,...,0q), we define v = (1,v1,...,vq), if the following two conditions hold:
(i) (p,0) € L*([0,T], 71 (D?));

(i1) (p, 0) satisfies the weak formulation:

| 0@ w6@ = [ (5.00.0G0.0) du -

Dd

// p, 0)(t, uw)0:G(t,u) dudt
Dd

// Zv X (0 Zvl tu du dt

veY

——// (p, 0 t,l,u)aG(t,l,u)det
{1}xTd—1 8

// (9. 0)(1,0,0) 2% (1.0, 3) dS dt
O}Xle a

d
p, 0)(t, u) tududt
o3 o0 2 5

’L

(1.12)

for all t € [0,T] and any function G : [0,T] x D* — R4 in C12(][0,T] x D?).
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Remark 1. We obtain the weak formulation of the system of partial differential equa-

tions with one of the above boundary conditions by multiplying both sides of the identity

8p.0) + 7l - VX(O.(A(p. )] = 5A(p. ) (1.13)

veY

by a test function G, then integrating both in space and time and finally, performing two
formal integration by parts in space and one in time. Finally, applying the respective
boundary conditions, we obtain the corresponding integral equations. For more details,

see Appendix A.1.

1.5 Hydrodynamic Limit for the Boundary Driven

Process

Let M. be the space of finite positive measures on D? endowed with the weak
topology, and let M be the space of bounded variation signed measures on D¢ endowed
with the weak topology. Let M x M be the cartesian product of these spaces endowed
with the product topology, which is metrizable.

Recall that the conserved quantities are the mass and momentum presented in
Section 1.3. For k =0, ...,d, denote by ﬂf N the empirical measure associated to the

k-th conserved quantity:

AV () = 7 3 T (1)) (), (119

d
zeDY

where §,(du) stands for the Dirac measure supported on u € [0,1]¢. We denote by
(Wf V@) the integral of a test function G with respect to the empirical measure 7rf N

and let (f, g), be the inner product in L*(v) of f and ¢:

(f,9)v z/fgdu

Let D([0,T], M, x M%) be the set of right continuous functions with left limits
taking values on M, x M? endowed with the Skorohod topology. We consider the
sequence (Qu )y of probability measures on D([0, 7], M, x M%) that corresponds to

the Markov process 7 = (70, ..., 7®") starting from p?.
'Remember that in equation (1.13) for each velocity v = (v1,...,v4) € V, we define o =
(1,v1,...,0q)
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At this point we need to fix initial measurable profiles py : D — R, and g, :

D4 — R? where 0y = (00,1, -, 004) and an initial distribution (4™)y on Xy.

Before introducing the main result, we establish some definitions.

Definition 4. We say that (p, ) has finite energy if its components belong to L*([0,T], 7' (D?)),

i.e., Vp and Vo are measurable functions and

/UT ds (/Dd ||VP(S,U)||2du) < 0, /OT ds (/Dd ||VQk(S,U)||2du) < 0,

fork=1,...,d.

Definition 5. We say that a sequence of probability measures (u¥)n on Xy is associ-
ated to the density profile py and to the momentum profile oy, if, for every continuous

function G : D* = R and for every 6 > 0,

A}gr{;y n: Nd Z (£) Io(n.) /Dd G(u)po(u)du| > 6| =0,

zeDY,
and for every 1 < k < d,
J&EHOOM n: Nd Z:d (£) In(n.) — /Dd G(u)oox(u)dul > | = 0.
zeD%,

Theorem 1. Let py and gy be measurable functions, also let (u™)n be a sequence of
probability measures on Xy associated to the profile (po, 00). Then, for everyt € [0,T],

for every continuous function G : D* — R, and for every § > 0,

lim P~ Nd > G (%) Io(na(t) — /DdG(u)p(t,u)du > 6| =0,

N—o0
:L‘eDd

and for 1 < k <d,

lim P~ Nd Z (£) In(na( ))—/DdG(u)Qk(t,u)du >0 =0,

N—oo
xeDd

where (p, 0) has finite energy (see Definition 4) and it is the unique weak solution of:
o (1.7) as given in Definition 1, if 0 < 0 < 1;
e (1.9) as given in Definition 2, if 0 = 1;
e (1.11) as given in Definition 3, if 0 > 1.

16



Remark 2. We split the proof of Theorem 1 into

(i) proof of tightness of the sequence (Qn)n,
(11) characterization of the unique limiting point Q* of the sequence.

These two results, together, imply the weak convergence of (Qn)n to Q* as N — oo.

1.6 Heuristics for Hydrodynamic Equations

We need to introduce a function s, which is going to be described later in Re-
mark 3, to be able to obtain some entropy estimates that are essential to the proof
of the hydrodynamic limit. We then consider vV as the product measure on Xy with
marginals given by

v {n sn(z, ) = & = mage) (), (1.15)

where m, () was defined in (1.4).

Next, we give the main ideas which are behind the identification of limit points
as a weak solution of the system of parabolic partial differential equations given before,
but we only present the heuristic argument.

We fix a function H : [0,7] x D¢ — R which is continuously differentiable
in time and twice continuously differentiable in space. By Dynkin’s formula, see for

example in [1, Appendix Al,Lemma 5.1],
t
MMM H) = (xpN HY — (rg™, H) — / (L + 0,)(mEN H) ds (1.16)
0

is a martingale with respect to the natural filtration F; = o(n(s),s < t). We can

rewrite

t t
MY (H) = (xbY HY — (xbN H) — / O HY ds — / N2L5 (x| H) ds
0 0

t t t
- / N2LPN N HY ds — / N2LSP2(aN HY ds — / N2LY (7N H) ds.
0 0 0

17



Therefore, from (A.4), (A.6), (A.8) and (A.10), we have that
t 1 t
7H>_/ (Wf’NaasH>dS—§/ (rhN ANH) ds
0 0

MMH) = (oY H) — (g™
/Ndl Z Rl AN [ (35 %) — 7 (52, 3)]} ds
NH($8) - H (5]} ds

—l
N x N,ns
/WZZa )(3) Wi ds
J= 1x€Dd
tN1—e L )
_/ Nd Z kaNH (%, %) law(£) = nen2(1,2,v)] ds
zcD9 veY
tN1—9 n=l Nl a i
— [ S 2 2w NH (SRR [B(F) — mve (N — 1,3, 0)] ds
0 zGDglV veY
(1.17)
V) =

where 7, stands for the translation by x on the state space Xy so that (7,.7)(y,v)

n(z +y,v) for all z,y € Z4,v € V, and Wﬁ;"s is given by

= ka Z p(Z,U)Zjﬂs((),U)[l - 775('27@)]7

veY 2€Z4

N7775
Wiy

) is of finite range,

W
E, [ nsm} Z vevyx(0

veY

where vy = 1. Since p(

where x(r) = (1 — r) as mentioned previously in Section 1.4

1.6.1 The case 6 € [0,1)

In this regime, we consider the test function H € Cy*([0,T] x D%). Then, we can
subtract H (%, <) (resp. H (%, %)) in the eighth term (resp. the ninth term) at the

18



right-hand side of (1.17) and then, making a Taylor expansion of H, we get that
t 1 t

7H> —/ <7T§’N783H> ds — 5/' <7T§N,ANH>dS
0 0

MM H) = {m™ H) = (mg™
1 k,N.b N+ e k,Nbi AN,—
+—/< w1 OV HY ds — /( Vb 9N Y d
- [ 3% S e ()i
J= 1x€Dd
Nl —0 B .
— Z ka H (%, %) [aw(E) — nsn2(1,2,0)] ds
0 zeDd veY
zlfl
Nt N+ 1 3 G
/ SN o oNTH (N £) [Bu(5) — neve(N = 1,3, 0)] ds
zeDng, vey
:c1:N—1
plus a term that vanishes, as N — oo
Above
Oy H (5 %) =—N[H (3. %) — H (7 %)]
and
O TH (55 %) = N [H (F. %) — H (5% %))
%) and ngy2 (N —

As a consequence of Lemma 3, we can replace n,nz(1, Z,v) by «, (

1,%,v) by S, (%) Then, we have
t t
MUME) = (e ) - () - [ oy ds— 5 [ At
0 0

1 ! k,N,by N,—
>d8—2\/0<7'f5 7au1 >d8

1 t
Ly

/ Ndz > N (%)m W d

Jj=1 xEDd

plus a term that vanishes, as N — oo
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Taking the expectation with respect to vV in the expression above we get

t
0 =57 2 HG) Bapllin0) = 1m0 = [ 57 3 0601 () Bu 1)) s
zeDY, z€DY,
/ <5 2 Epllna(s))AnH (%) ds
zeDd
1 ! 1 N,+ N T
t5 [y X Eanoulenio (5 5) ds
xfgl’ifd 1
/ 7 O Bulli(na(s ](’ﬂ’*H(%,%) ds
. 1 p 1:1:1
- [ T @) X ey
j=1 IED?V veY

plus a term that vanishes, as N — oo.

Note that, the restriction # > 0 comes from the fact that the errors, which arise
from the Taylor expansion in H, have to vanish as N — oo and the restriction § < 1
comes from the replacement of the occupation variables n,yz(1,Z,v) and nsy2(N —
1,z,v) by (%) and S,(Z), respectively, see Lemma 3. At this point compare the

previous expression with the weak formulation given in (1.8).
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1.6.2 The case § =1

In this regime, we consider the test function H € C*2([0,T] x D) . We get

t 1 t
MY H) = (PN HY — («PN H) - / (BN O,H) ds—§ / (rBN ANH) ds
0 0

1/t 1/t
+§/< BN ONTH) ds — 5/( BN 9N HY ds
0 0

For this regime, the replacement done before, due to Lemma 3, is no longer valid.
Nevertheless, we can replace the integral in time of 7,(1, Z,v) (resp. ns(N —1,z,v)) by

integral in time of the average in a box around (1, Z,v) (resp. (N —1,%,v)):

14eN | N
TN (1,7,0) Z nen2 (21, 2,0),  TN(N—1,%,0v) == N Z nen2 (21, T, 0).
1= =1 :N

Here we note that the sum above goes from 1 to 1+ [V |, but for sake of simplicity,

we write 1 +/N. By noting that

751\[2(1 T U) (p, Q)s ) resp W,SNQ 1,(%,1}) ~ (pa Q)s(1>>7

in some sense, that we will be clear in the Section 1.11, for more information see [18|.
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We obtain that

= S H(3) Bl (0) — e 0)] — 17 3 0. (%) B [1(n.)]
a:EDd ;veD]d\,
/ < 2 Bl (@ ))]ANH(%>d
zeDY,
Nd S BT (x))]@ﬁ’*H(%, N) ds
zfel’if?\jl
/ Nd 1 Z EZ/N ]k nsNQ ))]aN H<%, %) ds
acEDd
:1:1:1
d
_/ ]\1[d Z Z (85;]—])(%) kavjx(ev(m))ds
Jj=1 meD}’lV veY
t AT2—0
_/0 NNd > H(%. %) B | D mnan(E) — Bnow((1,3,0))]
zeDg; veEY
r1=1
t AT2—0
+ 0 NNd Z H<%7%>EV,§V |:[k<nsN2(N_ 1:3:71})) - kaﬁv(%)}
zeDn%, veY
r1=N-—1

At this point, compare the previous expression with the weak formulation given in

(1.10).

1.6.3 The case 6 > 1

This regime is quite similar to the previous one. We consider again an arbitrary
function H € C2([0,T] x D?). Note that the last two terms at the right-hand side of

(1.16) vanish as N — oo since > 1. Then, repeating the same arguments as in the
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previous subsection, we obtain

LS B (&) By () — L 0)] — 5 S 0.H (£) By [lu(n.)]
N N

d d
zeDY x€DY,

/ Eupllu(na(s))An H (3 ) ds

xEDd

Nd DY Bl (e))0X (S22 ) ds

IGD%

r1=N-1
_;/ Nd-1 Z E,,N U (nsn2(x ))]81]X’7H<%,%> ds

zGDd

/ Ndz Z @ 1) (%) X veryx(6 (s

7=1 a:eDd veY

Again compare with the weak formulation given in (1.12).

1.7 Replacement Lemmas

1.7.1 Estimates on Dirichlet forms

The Dirichlet form (Lx+/f,+/f),~ does not always have a closed form. In this
section, we compare the Dirichlet form with the closed form defined below, for each

function f: Xy — R,

Dy (V1) = D (V) + Doy (V) + Dy (V)

and

=33 Y / WGy — Ty

vey zGD;iV zED;i\,

where ¢(5.2.0) (1) = (2, v)(1 —n(z,v))Pn(z — 2,v),

ZZ/pqun )V f(n=9) =/ f(n)

qeQ xGDd
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and

Dyl =Y Y [T - T

d—1
eV ze{1}xT%

WIS /rw’ [V flomon) = /)Py,

d—1
vEV ze{N-1}xT%

where 7,.(n, «) and 7,(n, 5) was defined in (1.3).

In order to prove the next proposition, we need some intermediate results. For
that purpose, we recall from [4] the following lemmas:
Lemma 1. Let T : n € Qy — T(n) € Qn be a transformation in the configuration

space and ¢ : n € Qn — ¢(n) be a positive local function. Let f be a density with respect

to a probability measure v\ on Qy. Then, we have that

)T — /T /T < —2 / VT — v/ F))? v

1 1 T(n) 2
55 [ 7 [et = T SER] (TG + VTl .

Lemma 2. Let f be a density with respect to a probability measure v on Q. Then,
sup/f(n””’y’”)dl/év <C
Y
sup [ f( )i <
sup / f(o

Remark 3. For each v € V, consider the functions k% : D* — (0,1), for k=0,...,d.

we have that

We will have two situations for the function k = Z(Iig, VIKY, ..., UgRY):
veY
o When 0 € [0,1), we will assume that k}, are smooth functions, for k =0,...,d,

such that the restriction of k to {0} x T4 equals to the vector valued function
d(0,%) defined in (1.6), and that the restricion of k to {1} x T?~1 equals to vector
valued function d(1,%), also defined in (1.6);

e when 0 > 1, we will assume that k is a constant function.

As a consequence of Lemmas 1 and 2, we conclude that
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Corollary 1. Let k be a function as in Remark 3. Let f : Xy — R be a density with

respect to the measure v

-\, which was mentioned previously in (1.15). Then,

(i) if k is a constant function, then

N2
N2< (]3\?\/?’ \/}>V,§V :_7 52\1(\/7),

(11) if Kk is a smooth function, then

2

NUEGVT A D = = DEW/D) + Ex(r)
with |Ex (k)| < CNA.

Proof. By writing N*(LS/ f, VT )y as its half plus its half and summing and sub-

tracting the term needed to complete the square, we have that

N2<£?\:}j\/77 \/7>1/,]{V

= N7 / SN chran V) = VFm)INF () dv)

vey .Z’ED?V zeDﬁl\,

) / D2 D e MV = F)V () dv,)

veV zeDY, zeDY,

5 [ S e VT — T Tl v

vey J:ED?\, zeD]dv

A / ST S V) — T dv),

veV zeDY, zeDY,

where c(;..)(n) = n(x,v)(1 — n(2,v))Pn(2 — x,v). Putting together the first and
fourth terms and doing a change of variables in the second term, we obtain that the

last display equals to

5 [ XX Y @) - VT v

v€Y zeDY, zeDY,

5 [ S e VI — F ) v

vey J}ED?\, zED?V

5 [ XXX o A W) VIIN e

v€V zeD$, zeDY,
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Last display equals to

5 [E XY eI - Vv

vey xED?V zED?{,

+N7/ DD D o) (1 — “%7?;;’”)) VI FiE=) — /Fn)] dv.

veV zeD¢ zeDY,

Hence, N*{C56/F, /Ty = — 5 DA (V/F) + (), where

av(9) =5 [ 323 3 )1~ i W Tl Tl

veV acEDj‘i,zED}i\,

To handle gy (k), we start by observing that if we set

0, (A(s(2)))

Yz = 1— QU(A(H(ZE)))J (119)
then N( )
Ve 77367271} _ o Vzw
‘1 TTRm | '1 Yo (120

Thus, if x is constant, then gy (k) = 0.
On the other hand, if x is not constant, we need to redo the analysis of gy (k).

Applying Young’s inequality, (that is ab < %aQ - %bg), in gn(k), with

o — %mx, 0@ = (2 0) Pr(z — 2, )V Far=) — VT

and

2 (

N U (o
b= E\/17(:10,"0)(1 —n(z,v)Pyn(z — x,v))\/ f (") <1 IO )> ’

we can bound gy (r) from above by

T Y ale) - o) Py~ w o) W) - F

d d
vey zeDY zeDY,

g N(oazoy\ 2
+NT/Z Z Z n(x, v)(1 =n(z,v))Px(z — x,v) (1 - V”V(g?(n) )> fFo™=v) vy

veV zeDY, zeDY,

Thus |gn (#)] < 2 D5k (V) + En(), where

2
Extm) = / S5 Y ) (1 EEED) ey dv

veV zeD% zeDE,
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Doing again the change of variables n**" = £, we obtain

N v
/Z Z Z C(zmv) ’1_1,'19/ z,2,0)

vey J:EDd zeDd

N(nx,z,v)

Nyév(n) f(n) d’/;]-sv-

14

Now, observe that

’1_ vy ()

v (r77)

Va,v <1 1
—(1- ) < o 1.21
(1-22) < ey 1.21)

since 7y is bounded away from zero, see (1.19), and

v (n

vl (n)

x,z,v)

<C.

Also note that f is a density with respect to vV, therefore,
‘5N</<L)| S CNd

This finishes the proof of Corollary 1. O

Corollary 2. If k is the function defined in Remark 3 and let f be a density with

respect to the measure vy, which was mentioned previously in (1.15), we have that

NULT AT = =5 Dip (V) (1.22)

Proof. Let ¢ = (v,w,v',w’) and § = (v, w',v,w). Note that

Pe(y, q,6") = €V(y,v)§¥(y, w) (L — £¥(y, v")) (1 — ¥y, w'))
= €(y> v’)é’(y, w/)(l - é(ya U))<1 - §<y7 ’LU))
= pc<y7 q, f)

By writing the term at the left-hand side of (1.22) as its half, plus its half and summing

and subtracting the term needed to complete the square as appears in DiN(\/f ), we
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have that

NLS AT o / S S pely, 0 ) VI — /TN Fn) dv
yEDd qeQ
5 [ S e VIO — VTGN T do
yeDY, 4€Q
5 [ S ntwa /T - VT v
yED?\, qEQ

—N7/ SN pely. .MV F ) =/ F IV f o) dv

yeDY, 4€Q

(1.23)
Using a change of variables

Ny =~ [ 3 Sty a. ) V) — VTG
yeDY, 4€Q
S St an) [T - T Vo )
yeDY, 4€Q
_N7/ Z ZZ%(Z%Q)”) [\/f(ny,q) — \/f ] \/f nyq Ve (ny)q) dyliv
yeDY, 4€Q

Putting together the second and third terms in last display we get

N2<£§V\/?a ﬁ)yé\’

-5 [ S el - Vv

yeDY, 9€Q

+N72/ > Y nely.aom) [V = VW) V) [1 - S ak.

yED}iV q€Q
Since v + w = v’ + w’, we observe that

V/]{V(n%q) — /7y,v"7y,w’ —1

viN(n) Yy Yy

Y

therefore,
N?
N LA Fo A Py = ——Dﬁw(\/?)

This finishes the proof of Corollary 2. O]

Corollary 3. If k is the function defined in Remark 3 and let f be a density with
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respect to the measure v~ , which was mentioned previously in (1.15), we have that

NLYEN TN Doy =——D§S(\/7)+5%(/<a), (1.24)

with C’Nd“
En(r)| <

| MGy — o ()]

Analogously,

NCTA Py = — DU + ) (129

CNd—H ~
> No |mA(n (z/N)) — 511 (%)‘ .

with

[Ex (k)] <

Proof. We present the proof for the left boundary since the other case is analogous.
Splitting the integral on the left-hand side of (1.24) into the integral over the sets
Ay ={n:n((1,%),v) =0} and A; ={n:n((1,Z),v) = 1}, we obtain

N? <‘CI]7\77a\/77 \/7>yév -

~ / > > () Wilomon) = /Tl i) dv

0 gceDd veV

A Z > (1= () WFemn) = VFmIVf ) dv
1 eDd veEY

Z > au (%) Ve )N Fn) dvy

zEDd veY

r1=1
N? N
v [ X e (B W
0 Lepd VEV
N2 - T 2 N
_W " z;;(l_av(ﬁ))[ f(n)] dyn
r1=1
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Last display can be rewritten as

N2<‘Cljj\7fa\/77 \/7>V,QV =

/ > () [\/f(ff“n)\/f(n)—%[\/mﬂ N

Dd veY
xr1= 1

/ >SS (1= () VI VI = SV dvy

a:eDd veY
1= 1

e [ 2 e () VT

EDd veY

2N0/ ZZ L—a, () V) dvy.

x11

Summing and subtracting the term needed to complete the square, we obtain

NI Py = / S e () [V — V)] v

Dd veY

J:11

2N9/ 2.2 (1= (5)) [\/f(ff“’n)—\/f(77)]2dy;V

Dd veY
r1= 1

2N9/ > o (%) W emen) dv)
zEDd veV
xr1= 1

/ >3 (= (8) WA v}

ocEDd veEY

111

2N6/ Z Z% ) [ V)P dvY
Dd veY
r1= 1

QNH/AlzZ 1—%

Dd vEY
1= 1

ZIN
s
—
=
=
N
S
<
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Using a change of variables on the last two terms above, we obtain

N2<£l])\’[a\/77 \/7>V,{~V =

g [ 2 X (@) [V - V)|

EDd vey
xr1= 1

2N9/ > (- (§) [V - %f(n)r dvy;

meDd veY
xr1= 1

N2 i TV 2dN
+W/ZZ%N f(o™on)]” dv,

eDd veY (1'26)

xl—l

N2
toge f, X (-a
EDd veY
r1= 1

N2 7 K(z
N / 3 Y (3) T A S Y

CL‘GDd 'UEV mA(K/(Z‘/N))

) [V o)) dv,!

Zle

xll

7 MA(k(x
zNe/A —a, (%)) B[/ dv)Y.
0

ol vev L = Mm@/

x1=1

For a general function #(-), we can rewrite (1.26) and we have that N2(L%*\/F, v/F),x
is equal to —NTQD%(\/T ) plus

B / S a (2) [“m““””””—l_“”(%)][ o) v

= maeN)  oly)

xr1= 1 -
N? / . [ MA(k(x/N)) @v(%) ] 2 7 N
2 1—a, (L) = | [V flomn)|" dv, .
2N? Jaq EZD;@ ; 1= MA(e/N) 1 = aw(5)

x1=1

The expression above is bounded by

C Ndt+1 B
7 M) = (F)]-
O

Remark 4. In order to prove the Replacement Lemma, see Proposition 1, we need
some intermediate results. Observe that, if H(u™|vY) is the relative entropy of the

measure u¥ with respect to v, see (1.15), then there exists a constant C, such that

K 7
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H(uN|vN) < C.N9e. To prove it, note that by the definition of the entropy,
N 1
H Nl/sz/log('u (77>>N S/log( )N ‘
(1w o5 ) P (n) 5 )P (n)

Since the measure v

15 a product measure with marginal given by

v {n iz, ) = & = ma) (€),

where my(+) was defined in (1.4), we obtain that the last display is bounded from above
by
Nd
1
log | — ™ (
/ inf (magee) A (1= M)

xeDd

n)

= Ntlog ( - L >
f K(x A (1 — K(x
Anf (M) A (L= Me(a))

= (C,N*.
Since the function kj, defined in Remark 3, is continuous, the image of each Kj
1s a compact set bounded away from 0 and 1. Hence, from the definition of the
measure m, we have that mpa/ny) > 0 and mpe/ny < 1. The constant C, =
1

zleand MA(s(z/N)) A (1= Mas@/N))

lo
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1.7.2 Replacement Lemma for the Boundary

Fix k = 0,...,d, a continuous function G : [0,7] x T? ! — R¥*! and consider

the quantities

1 - -
Vkl’l(UmOéaG) = N1 Z Gi(s,Z/N) <1k(7i(1,5:)(5>) - ka%(x/N)> ,
ZeTd-1 veY
) 1 i ~
V;gL (7757 57 G) - Nd_l Z Gk(S,.T/N) <Ik(n(N—1,i)(5)) — kaﬁv('r/]v)) )
ZeTd-1 veY
1 1 [Ne|+1
2,0 - ~ _ - _
Vk; (7787 «, G) - Nd—1 jg:d_l Gk(87$> Lﬂ(ﬁ(l,x)(s)) LNEJ g; [k(ﬁ(wl,w)<5)) ’
1 1 s

V;’T(ns,ﬁ,G): d—1 Z Gi(s, ) [k<77(N—1,50)<S>>_— Z [k(mxhi“)(s)) )
N | Ne|

FeTd—1 21=N—1—|N¢|

where s € [0,7], and 0 < k < d consider that G} are the components of function G.

The main result of this section is the following proposition:

Proposition 1 (Replacement Lemma for the boundary). For each 0 <t < T, 0 <
k<d, and G :[0,T] x D¢ — R continuous,

t
/ ds V2"’ (ns, ¢, G)H =0,
0

P A
r, if (=p0.

Proof. By the entropy inequality and Jensen’s inequality for any A > 0 the expectation

limsup E,~ [

N—oo

where j = {1,2}, and

in the statement of the proposition is bounded from above by

H(p™vy) 1

AN +ANd10gEV’iV {exp{

/t ds ANV (n,, ¢, G)‘H . (1.27)

0

By Remark 4, the left-most term is bounded by %, so we only need to show that the

xT

right-most term vanishes as N — oco. Since el®l < e* + 7 and

limsup N~ %log{ay + by} < max{limsup N~?log(ay), limsup N~%log(by)},

N—oo N—o0 N—o0

we may remove the absolute value from the expression (1.27). By Feynman-Kac for-
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mula, see for instance 1], we obtain that (1.27) is bounded from above by

Cﬂ . E ) vN
7+ts1]10p{/‘/;3”9(77, ¢, G)f(n)dv, + < Nﬁm\g) ) }

In this formula the supremum is taken over all densities f with respect to vY. The

proof follows from an application of the auxiliary lemmas given below.

Lemma 3. For every 0 < t < T, 0 < k < d, and every continuous function G :
[0, 7] x T4 — R+

C/
(Vi (0.6, G). f(m)y < OBN® + =D (v/F) + K
where we have the following cases
Y — l: Zf C = Q,
r,oif (=0

Proof. We prove for ¥ = [, since for ¥ = r the proof is entirely analogous. Note that G
is continuous and its domain is a compact set, hence, we may prove the above result
without G. Note that

~T D /f [[k =) vk (E/N) | dvY

ETd 1 veY
Z ka/f n(l,z,v) — a,(Z/N)] dv
xe']I'd 1 vey

By summing and subtracting an appropriate term, last term is equal to

% Ni- Zka/ "ML, &,v) — o (Z/N)] dv

ETd 1 vey

(1.28)
4yl o S [+ S nln(1,5,0) - a,/N)) dv

G’]I‘d 1 ey

Applying Young’s inequality on the first term of last display, we can bound it from
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above by

B Nd : Z ka/\/f T @R

ETd 1 pey 1‘(77’ )

a:v Tx(na ) N
= 3 S [V - VAT

’]I‘d L yey

(1.29)

where r;(n, @) = o, (Z/N)[1 — n(z,v)] + [1 — a,(Z/N)|n(z,v) and this holds for any
B > 0. Since
[n(1,%,v) — ay(Z/N)2 < 1

and r,(n, «) < 1, we obtain that (1.29) is bounded from above by

s+ St

with C and C’ constants.

Now, we analyze the second term on (1.28). Note that

% it 2 o [+ Fem nn1.a.0) — au(@/N) d

er 1vey
= ka/f (1, 7,0) = (i /N) dv
']l'd L vey
Al S S [ e - aamar
er 1vey

Using that [n(1,z,v) — o, (Z/N)] < 1, we obtain that the first term above is bounded
by a constant K;. After a change of variables on the second term above, we obtain
that it is also bounded by a constant K. Therefore,

Cl

(V' (0,0, G). F(m)y < KaBN" + = DR (v/F) + Ko + Ko,

]

Lemma 4. For every 0 < t < T, 0 < k < d, and every continuous function G :
[0, 7] x T4 — R

lim sup lim sup (V2 (5.C. G). £ ()} = 0.

e—0 N—oo
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where we have the following cases

S c=a
r, if (=p0.

Proof. First of all, note that since G is continuous and its domain [0, T] x D¢ is compact,
it is enough to prove the result without G. We will only prove for 9 = [, since for ¢ = r

the proof is entirely analogous. Observe that

<Vk27l<777 Ca G)v f(n»ué\’

Ne+1
1

1

== f) | I(naz) — = Ie(N@a) | dvy

N Ne
EETEIV_l r1=14+1

o £ T sk 3 s

jer]rt]i\;l veyY L r1=1+1

:% S ka/f(n) NLE > {n(lﬁi,v)—n(m,:ﬁv)}] vy

je'ﬂ*‘]i\;l veY L r1=1+1
Ne+1
By writing the term N: Z {n(1,z,v) — n(x1,Z,v)} as a telescopic sum, we obtain
5
r1=1+1

that the last term is equal to

N 2 S [ 1w [Ni > i{n@,f,v)—n(yﬂ,i,v)}] vy

je']r‘]i;l veY r1=1+1 y=1

Writing this sum as twice its half, performing change of variables 2, we obtain that the

last display is equal to

Ne+1 x1—1

b 2 Souake S 0 [ L) = 6] () = aly + 1.50) d

566']1‘?{1 veY z1=1+1 y=1

(1.30)

Rewriting [f(n) — f(n*¥*)] as [/ f(n) — /f(nroT0)][V/ f(n) + /(v t1v)] and
using Young’s inequality, for all B > 0, we obtain that (1.30) is bounded from above

2In this case, we will assume that & is constant
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by

Ne+1 z1-1
e Y Sude S [ [VIG - V]
ZeTy VeV z1=1+1 y=1
Ne+lz1—-1 )
Rt ) D tkamn: )L D / VI + V)] (g, .0) - nly + 1., 0))* o
ZeTy WEV a1=1+1y=1

Using that f is a density for v%, the second term in last display is bounded by Cg =

Letting the sum in y run from 1 to N — 1, the first term in last display is bounded by
BD (\/f). By Corollary 1, since & is a constant function, we obtain that

gz\’(\/}> - _< (]2\:;:\/?7 \/?>Vév

Since 0 < DSy (Vf) = —(L5V /[y and 0 < DY (V/f), using Corollary 3, we have
that Diﬁ(\/f) = — (LT, V f)uy. Therefore,

(VI < =BENT A Py

1.7.3 Replacement Lemma at the bulk

Before we state the replacement lemma that will allow us to prove that the
limit points Q* are concentrated on weak solutions of the system of partial differential
equations (1.13), we introduce some notations. Fix L > 1 and a configuration 1. Let
I“(z,n) = (I(x),..., Ik (z)) be the average of the conserved quantities in a cube of

length L centered at z:

IL<x,n>:ﬁ S 1),

where, A = {—L,...,L}? and |AL| = (2L + 1)? is the discrete volume of the box Ay.
Let B, be the set of all possible values of I*(0,7) for n € ({0,1}V)A2, that is,

B, = {I"(0,n); n € ({0,1}V)**}.
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Note that B is a finite subset of the convex envelope of {I(¢) : £ € {0,1}Y}. The set

of configurations ({0, 1}Y)A% splits into invariant subsets: for i in B, let

Hi () == {n € ({0,131 . 15(0) = i}.

For each i in B, define the canonical measure vy, ; as the uniform probability measure

on H(i). Note that for every X in R4
vapi() =y (| T5(0) = 1).
Let (g; f), stand for the covariance of g and f with respect to p, i.e.,

(9; f>u = Eu[fg] - Eu[f]Eu[g]-

Proposition 2. [Equivalence of ensembles| Fix {,L, the cubes Ay C Ap, for each
i € By, denote by v* the projection of the canonical measure va, ; on Ay and by u® the
projection of the grand canonical measure ,uk(i) on Ny. There exists a finite constant
C(¢,V), depending only on £ and V, such that

C(, V)
Azl

|Eelf] — Enelf]] < (f )

for every function f: ({0,1}V)* — R.

The proof of Proposition 2 can be found in [6].
Lemma 5 (Replacement lemma). For all § >0,1<j<d, 0<k<d:

lim sup lim sup IP,» / Ndz Vejj\f ))ds > | =0,

—0 N—
¢ o zeDd

where

V7E () —‘2l+1d220k2pzv2ﬂy (0,v)(1 —n(z,v))]

yENy vEV 2€74
— " wuex (0. (AT(0))))].

veY

Note that ij\f is well-defined for large N since p(-,v) is of finite range. We now
observe that Corolaries 1 and 2 permit us to prove the previous replacement lemma

for the boundary driven exclusion process by using the process without the boundary
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part of the generator. For the proof of Lemma 5, see [3, Lemma 3.7].

1.8 Tightness

In this section, we show that the sequence of probability measures (Qp )y, defined
in Section 1.5, is tight in the Skorohod space D([0, T], M, x M?). In order to do that,

we invoke the Aldous’ criterion, which says that:

Lemma 6. A sequence (Qn)n>1 of probability measures defined on D([0, T], M x M%)
is tight if, and only if, these two conditions hold:

a. For every t € [0,T] and every € > 0, there exists K! C M, x M® compact, such
that

sup Qu (m" ¢ K!) <e,
N>1

b. For every e >0

- kN
lim limsup sup Qu (d(m 5, 70)
7—0 N—o0 TET

Ty

>e) =0,

where ¥ denotes the set of stopping times with respect to the canonical filtration,
bounded by T and d is the metric in the space M, x M. We assume that all the
stopping times are bounded by T', thus, T+7T should be understood as (T+7)AT.

By [1, Chapter 4, Proposition 1.7] it is enough to show that for every function
H in a dense subset of C'(D%), with respect to the uniform topology, the sequence of
measures, that corresponds to the real processes (Wf N H ), is tight. In our setting,
condition a. above translates by saying that:

lim lim IP’MN(KWf’N,H)] > A) = 0. (1.31)

A—+o00 N—+o0

This is a consequence of Chebychev’s inequality and the fact that for the exclusion
type dynamics, the number of particles per site is at most one for each fixed velocity.
So, it remains to show condition b. In this context and since we are considering the real
processes <7rf N H ), the distance d above is the usual distance in R. Then, we must

show that for all € > 0 and any function H in a dense subset of C'(D?), with respect
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to the uniform topology, the following holds:

lim lim sup sup P~ (77 B HY — (7N CH)| > €> = 0. (1.32)
00 N—+o0 12‘%

Recall that it is enough to prove the assertion for functions H in a dense subset

of C'(D?) with respect to the uniform topology. We will split the proof into two cases:

1.8.1 The case 0 > 1

Recall from (1.16) that, M"*(H) is a martingale with respect to the natural
filtration (F;):>o. Then

P (0 |(rB%, H) = (e, )| > )

T4+7
— P~ (n | MNR(H) — MNE(H) + / L{mmN | ) ds‘ > g)

T+T
<P, (n C|MNR(H) - Mﬁ»’;(ﬂ)‘ > g) + P, (77 : )/ L(noN H) ds’ > g)

Applying Chebychev’s inequality (resp. Markov’s inequality) in the first (resp.

second) term on the right-hand side of last inequality, we can bound the previous

expression from above by

?EHN [(Mivvk(H) _ Mﬁ;'j(H))z] + SEHN “ / o Lo (N H) ds” .

Therefore, in order to prove (1.32) it is enough to show that

T+T
lim lim sup supE,~ [ ‘ / Ly{roN 1) ds‘ } =0, (1.33)
6—0 N—+oo 71€% T

and

2
lim lim sup sup E,~ [(Min(H) - Mﬁi(H)) } = 0. (1.34)
6—0 N—+o00 12%

Let us start by proving (1.33). Given a test function H € C?*(D?), we will show
that there exists a constant C' such that ,CN<7T§’N, H) < C for any s < T. For that

purpose, we use the computations of Appendix A.0.1, where we derived the expression
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of Ly(r®N H). Note that,

(Lo (N, H)| < [N?LGHroN, H)| + [INLGHmbN, H)| + N2 Loy (e, H)|

HNZLY (e H).
Let us bound this separately. Note that,

IN2LEN N )| < b S AN 4 5 30 S (1,2, 0)00 H(0,)

zeDd, veY
xr1= 1

+‘W SN vV = 1,7, v)aN H(1, 5;)‘

wEDd veV
:B1:N 1

CNN9-t CNNd-1

H'l| oo + H'||oo
e 1 e + (1]

1
= S IH oo + Cl H [,

(1.35)
since |[nsn2(z,v)| < 1 for all s € [0,T], for each v € V fixed and since H € C?(D?).
Similarly,
IN2LY (RN HY| < ’NdNe SN wH (5.8) o 77(1,@,@)]‘
zGDd vey
331:1
Hyams 2 2w (555 %) B — (N — 1.2.0))
vepd, VEV (1.36)
2 :zville_l CNQNd 1
CN-N* -
- NdN9 HHHOO NdNo ”HHOO
_ 2CON"|| H]..
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Also,

[NZLY* (neN, H)

U

< | P3p a]ﬁH) (£) S0 3 bl v)zm(a, v)(1 -z + 2,0))
Nd

j=1 veY z€Z4 (137)
d /
_ CNY|H N
= O H'|| .
By Lemma 18,
|N2LS AN H)| = 0. (1.38)

Therefore, by (1.35), (1.36), (1.37) and (1.38), we have that
Ly (m H)| < C.

This proves (1.33) for 6 > 1.
Now we will prove (1.34). Applying Dynkin’s formula, we have that

(M (H))? /Otw SN HY? 9N H Ly (n, H) ds

is a martingale with respect to the natural filtration {F;};>¢. By Lemma 20, we have

that
NQL?\QTEJ@T?’N’ H>2 - 2<7T§7N7 H>N2£?\?E71<W§7Nv H>

= o 30 0 Sk [nter ) — e, )] ON H (51

VeV weDd, j=1
and by using the fact that |n,yz(xz,v)] < 1 for all s € [0,¢] and fixed v, the last

expression is bounded from above by < || H'||s. We have from Lemma 21 that

N2 L5 b, H)? = 2N, H)NL 2 (Y H)

— e 3 3 ekl o)1= e+ wo)plw, o0 H (3)

veEY $eDdN weZd
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and by using the fact that |n,yz(z,v)| < 1 for all s € [0,¢] last expression is bounded

from above by %HH |- Additionally, from Lemma 22 we have

NQEZ])V<7T§’N7 H>2 - 2<W§’N7 H>N2£IJ)V<7T§’N’ H>

() (L = n(z,v) + (1 = au(FNn(,0)] 5 o,
N2dZZ|: N? }UkH (ﬁ)

veDd, veEY

(1.39)

3311

ﬁv % 1_ (x U)) (1_61)(%)) (I7U) 2 172 (=
N2d Z Z { NG . } v, H (N)

zeDd, veY
:E1:1

and by using the fact that |n,yz(z,v)| < 1 for all s € [0,¢] last expression is bounded

from above by ¥+ —C||H||so, where C comes from the fact that the set V is finite. This
finishes the proof of tightness in the case § > 1, since C?(D?) is a subset dense of

C(D?) with respect to uniform topology.

1.8.2 The case 6 € [0,1)

If we try to apply the same strategy used for # > 1 we will run into trouble
when trying to control the modulus of continuity of [} N2L% (5N, H) ds, because the
expression in (1.36) can explode when N — co. We will prove (1.32) first for functions
H € C*(D?%) and then we can extend it, by a L' approximation procedure which is

explained below, to functions H € C'(D?). We can see in this case that

IN2LEEN N Y| < [ H)| + ‘2Nd ST (1, i 8]\§=+H(O,95)‘

a:EDd veV
x1= 1

~ N,— ~
+‘2Nd Z kaﬁ _17xvv)au1 H(17I>

d vey
reDN
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Also,

[N2Ly (0, H)

N2 N
= | NdNO Z kaH (%7%) [, (2) — 77(1,!17,12)]‘
zepd vEV
r1=1

$1:NI\LI
_N 1 =z 0 =z ~ ~
= ‘NdNe YD uN[H (% %) —H(§ )] [aw(@) —n(1,7,0)]
zeD4 veVY
r1=1

N
r1=N-—1
N )
< | e 2 2w O H (% %) [ou(@) — (L. 7,0)]
zeD9 veV
r1=1

since H € C?(D?). This finishes the proof of (1.33) for any 6 > 0.

To prove (1.34) for 6 € [0,1), we use the same computations we did for the case
6 > 1. Since H € C?(D?), the equation (1.39) is equal to zero, but as mentioned before,
we need to extend this result to functions in C'(D?). To accomplish that, we take a
function H € C'(D?) C L'(D?), and we take a sequence of functions (H,);so € C*(D?)
converging to H, with respect to the L'-norm, as j — oo. Now since the probability

in (1.32) is less or equal than

g
Puv (13 |(rl, H) = (o, H)| > 2)

By (' (TS, (H = Hy) = (o, (H = Hj)| > )

and since H; has compact support, from the computation above, it remains only to

check that the last probability vanishes as N — oo and then j — oco. For that purpose,
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we use the fact that

(s, (H — Hy)) = (xp, (H = Hj))| < NdZ\H H;) (%) |

a:EDd

and we use the estimate

1 T
Ni > I(H—H;) (%)

< z:d /iTKH—H.) (%) (H—Hj)(u)|du+/Dd\(H—Hj)(u)ydu

< sl =)l [ 107 = )] du

The result follows by first taking N — oo and then j — oo.

1.9 Energy Estimates

We will now define some quantities in order to prove that each component of the
vector solution belongs, in fact, to s#1([0,T] x D).
Let the energy & : D([0,T], M) — [0, 0] be given by

with

T T
éi(m) = sup {2/ dt (¢, 0y, Gt) —/ dt/ duG(t,u)2},
GeCe(Qr) 0 0 Dé

where Qr = (0,T) x D? and C®(Qr) stands for the set of infinitely differentiable
functions (with respect to time and space) with compact support contained in Q7. For

any G € C(Qr), 1 <i<dand C >0, let the functional &% : D([0,T], M) — R be

given by
T
@(‘;GC(W):/ ds (ms, Oy, Gs) / ds/ du G(s,u)?
0 Dd
Note that
& (m
awp (£G) = O (1.40)

GeC(Qr)

It is well-known that &() is finite if, and only if, 7 has a generalized gradient,
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V71 = (0, ...,0,m), which is a measurable function and

T
& () :/ ds/ du ||V (uw)|* < oo,
0 Dd

in which case, &(m) = &(m). Recall from Section 1.8 that the sequence (Qn)y is tight.
We have that:

Proposition 3. Let Q* be any limit point of the sequence of measures (Qn)n. Then,

Fo. [/OTds (/D ||Vp(s,u)||2du)] < o0
o U()Tds (/D ||ng(s,u)||2du)} < o0,

The proof follows from the next lemma and Riesz Representation Theorem.

and

fork=1,....d.

Lemma 7. For all 8 > 0, there is a positive constant C' > 0 such that

. T
Eo [sup{/ / 0w, G(8,u) 0k (s, u)duds — C/ ds/ duG(S,u)Q}} < 00,
G 0 Jpd 0 b

fork=0,1,...,d, where the supremum is carried over all the functions G € C*(Q7)

and 09 = p.

Proof. Let {G™ : m > 1} be a sequence of functions in C2°(£2r) (the space of infinitely
differentiable functions with compact support). Thus, it is sufficient to prove that, for

every r > 1,

Eqg- [max {é;%’"(nk’N)}] <C, (1.41)

1<m<r

for some constant C' > 0, independent of 7. The expression on the left-hand side of
(1.41) is equal to

T T
: m k,N . m 2
]\}EOENN Lgln%gn{/o (0y,G™ (s, u), w3 )ds C/o ds /Dd duG™ (s, u) H . (1.42)

By the relative entropy bound (see Remark 4), Jensen’s inequality and exp{ max a;j} <
SIS
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Z exp a;, the expectation in (1.42) is bounded from above by
1<5<k
H(p"|vY)
Nd

Ndlog Z E,~ {exp{/ N{(0,,G™(s,u), 7 / ds/Dddqusu }],

1<m<r

where the profile x is the same used in Section 1.7.
We can bound the first term in the sum above by C,. It is enough to show, for
a fixed function G, that

limsup —- log E,v {exp{/ N{(0,,G(s,u) / ds/ duG(s,u 2H <
N—oo N Dd

for some constant ¢ independent of G. Then the result follows from the next lemma

and the definition of the empirical measure.

Lemma 8. There exists a constant Cy = Co(k) > 0, such that for every i =1,...,d
every k =0,...,d and every function G € C(Qr)

lim sup — N log B~ [exp{Ndé‘;GCo( kN)}} < (.

N—oo

Proof. Writing 9,,G; (%) = N [G, ((t%) — G, (£)] + O(N™!) and summing by parts
(the compact support of G takes care of the boundary term), by applying the Feynman-

Kac formula and using the same arguments as in the proof of Lemma 1, we have that

108 By o (N [ ds 3 (o) ~ G0 (5. 5)

xeD]d\,

oy
W/O/\st,

is bounded from above by

where A\Y is equal to

sup <N Z Ik 7706 Ik(nx—ei(s)))G (37 %) af> + N2<‘CN\/?> \/?>V,i\’ )

d
zeD%; Y

(1.43)
where the supremum is taken over all densities f with respect to Y. By Corollaries

1, 2 and 3, for a constant function k, the expression inside brackets is bounded from
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above by

S0 VD+ Y NG 5) [10n(6) ~ Rl (D)

xED;{,

We now rewrite the term inside the brackets as

S S [N6 ) e a6 - emar ) 0

veY zeD4,

After a simple computation, we may rewrite the terms inside the brackets of the above

expression as

NG (s. %) /[n(fm v) = n(x — e, ) f(n)dv
= NG (s, %) /n(ﬂff,v)f(n)d%iv
SNG (5.%) [ o) flr o) A

= NG (5.3) [ nao)lftn) = Flore v
By using f(n) — f(r"="") = [\/J() = /Flr=e==2)][\/ () + /F(p7=e=)] and

applying Young’s inequality, the above expression is bounded from above by

e Ve IR

+2G (8%)2/77(567@)(\/1‘(77)+ V f(reor) v,

Using the above estimate, we have that (1.44) is clearly bounded by N72D,,év(\/7) +
CcG (3, ]%)2, where C' is a positive constant. Thus, letting Cy = C, the statement of
the lemma holds. Now we will analyze (1.43) for a general function x. By Corollaries

1, 2 and 3, the expression inside brackets is bounded from above by

o= S0, (VD + X NG (5:5) ) = B DI |

4 d
zeDY

We will analyze the term inside brackets above

> S w6 e8) [ —ne-eolimab. 0

:I?GD‘]i\, veY
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Now rewrite the term inside the brackets as

NG (5.%) [ o) = nfe = e 0) fo)a

Since f(n) = f(n"=>) = [/ f(n) =/ f (= =<e=2)][\/ F () ++/ f (n=~<-=)] and applying

Young’s inequality, the expression is bounded from above by

N [ ST - )

426G (.%)" [ o) (VT + /TPy

2 [ s

Using the above estimate, (1.45) is clearly bounded by Ci + C’lG( ,N) by some
positive constant C; = C(k), using the estimate (1.21) and the fact that f is a density
with respect to Y. Thus, letting Cy = C'+C}, the statement of the lemma follows. [

Proof of Proposition 3. Let {G,, : 1 < m < r} be a sequence of functions in C°(Qr)
(the space of infinitely differentiable functions with compact support) and 1 < < d,
and 0 < k < d, be integers. By the entropy inequality, see Remark 4, there exists a
constant C), > 0 such that
1
E,~ {max {éi%m( kN)H < Ci+ 5 log E,v {exp {N max {5;%”;( kN)}H :

1<m<r Nd 1<m<r
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Therefore, using Lemma 8 together with the elementary inequalities

limsup N~ %log(ay + by) < lim sup max { lim sup N~%log(ay), lim sup N ¢ log(bN)}

N—oo N—oo N—oo N—oo
and
exp{max{z,...,z,}} <exp(z1) + -+ exp(z,)
we set that

N—o0

m k,N — 3 m k‘,N
B | mas {8& @} = i By | max {854}
<C, +C,.

Using this, the equation (1.40) and the monotone convergence Theorem, we obtain the
desired result. O

1.10 Proof of Theorem 1

Since there is at most one particle per site we have, by a standard argument, that
all limit points Q* of (Qy)y are concentrated on an absolutely continuous measures

with respect to the Lebesgue measure. For more details, see [1]. Thus,
Q*{m; 7*(du) = ox(u)du, for all 0 < k < d} =1,

where 7% denotes the k-th component of 7 and gy = p.

We consider the martingale

t
MtNk(H) = (Wf’N,H) — <7T§’N,H> —/ ,CN<7T§’N,H> ds
0

which can be rewritten explicity as

t
MYMH) = (xpN H) — (g™ H) — / N2LGH N, HY ds
0

t t t
— / N2LP2(nbN H) ds — / N2LS (7N HY ds — / N2LS AN H) ds.
0 0 0

20



By equations (A.4), (A.6), (A.8) and (A.10), we have that

MEHH) = ()~ b )~ o S S v, o) A (3)

xGD?\, veY

Y S [H (5L E) — H ()]~ L)

where (7,1)(z,v) = n(x + z,v) and Wﬁ;”s = ka Z p(z,v)215(0,0)(1 — ns(2,v)).

vey 2€7Z4
We then apply the Replacement Lemma to rewrite the martingale in terms of the

empirical measure. Further, we apply Lemma 1 (replacement lemma for the boundary)
to obtain that all limit points satisfy the integral identity in the definition of the
corresponding weak solution.

Using the previous computations and the tightness of the sequence of measures

(Qn)n, we conclude that all limit points are concentrated on weak solutions of

3p.0) + ol - V(A0 0))] = 5A(p. )

veY

with boundary conditions depending on 6. The uniqueness of weak solutions of the
above equation implies that there is at most one limit point. Moreover, by Proposition
3, each limit point of (Qx)y is concentrated on a vector of measures with finite energy,
that is: whose components have a density with respect to the Lebesgue measure that

belongs to the Sobolev space ##1(D?). This completes the proof of Theorem 1. [
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1.11 Characterization of the limit points

This section deals with the characterization of the limit points in the three regime

of 8 > 0.

1.11.1 Characterization of the limit points for 6 € [0,1)

Now we look at the limit points of the sequence {Qn}n>1.

Proposition 4. If Q* is a limit point of {Qn}n>1, then

@ [ wotacta- [ (6000600

Dd

//va A(p, 0)) ZU’ (r,x) dxdr

vey i

// d(1,7) G(r,l,x deT——// G(rOx)der
{1} xTd-1 $1 {0} xTd-1 81‘1

- /Ot /Dd(p, o)(r,z) (&G(T,xH%AG) dxdr:o} =1

for allt € [0,T], VG € Cy*([0,T] x D%).

Proof. It is enough to verify that, for § > 0 and G € 0372([0, T] x D?) fixed,

| rotaGa) = [ (0.00.2)60.0)ds

Dd

Q* |:7T. : sup

0<t<T

//va A(p, 0)) Zvl (r,x) dudr

veY i

// G(r,l,x der——// G(rOa:)der
{1} xTd~-1 {0} xTd~1 81‘1

- [ [ woun (ar(;(r, 1)+ 5AG) dedr

Since the set considered above is an open set, we can use the Portmanteau’s Theorem

>0 =0.
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directly and bound the last probability by

liminf Qn { T.: sup }(Wf,GQ — (7h, Go)
N—oo 0<t<T
d
// Zv X(0,(A(p, 0 sz er dz dr
D¢ veY i=1 ZL‘Z
H2% (r1,7) der——// 595 0, 3) dS dr
{0} xTd-1 8x1

/ /{1}de 1 3351
—/0< (8G(TI)+ AG)>dxdr >5}:0.
¢
Summing and subtracting / N?Ly(7®N G,) dr in the expression above, we can bound
d

it by the sum of
hmmf@N [ sup | MN*(@)| >
0<t<T 2

and
1 t
/ N2 L, Gy dr — / (N AG) dr
0

limsup P~ [ 7. . sup
N—so00 0<t<T
(r,x)dxdr

Z g
oG (r,0,a)dS dr

t
[ [ Yo
0 deev
oG 1/
r, 1,2 deT——// d0,z)=—
) 2 0 J{0}xTd-1 ( )8U1

- 4}
2 Y

1 [ /
+ = d(1,u
2 /0 {1}xTd-1 >8u1(
where MN'*(G) was defined in (1.17) and 75" is the empirical measure defined in

(1.14).
the following terms

s [ g X BDAG ()~ g5 X R ()G (£) |
== zeD%, zeDd,

Now, let us bound the expression inside the probability above by the sum of

t
1 T ~
[ 5 o) (57 (52, 2) 0,600}

sup T
0<t<T |Jo
zeng,
r1=N-—1

1 [t -
5/ aler(l,l’) [[k’(n(Nf
0

23

La)(r) — d(1, )] dr},

sup
0<t<T



t
b 1 3 _
<, %) — 0., G (0, dr|,
oililET/o 2Nd-1 I;D% { (N N) ( if)} r

x1=1

I

1/0 02, G (0, ) [Te(n1,z)(r)) — d(0,Z)] dr

sup
0<t<T

Nl 7] ~ ~
1 x :c
Sup / > TG (% %) | D e R) — Iulnas) | dr,
0<t<T |Jo send, ey

x11

tNl—G ~ ~
sup /0 Z aﬁ’JrG NT % [Zﬁv % — L (M(N- 1,&))] dr

Nd

Ost<T $€D§lv veY
r1=N-—1
and
e
N x
PRI 3 SICICIEIA IS I DUNNCCVAS) gk ot
== 0 Jj=1 zeD¥, VeV i=1

Since G € Cy*([0,T] x D% and using the Replacement Lemmas it is easy to see that

terms above converges to zero, as N — oo. This concludes the proof. O

1.11.2 Characterization of limit points for § =1

Now we look at the limit points of the sequence {Qn}n>1.
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Proposition 5. If Q" is a limit point of {Qn}N>1, then
@ |r: [ oot [ (¢.00.060.0 0
Dd Dd

d

_/0 /DdZﬁ-x(ev(A(p, Q)))Zvig—g(r,x)dwr

// (9. 0)(r, L) 2 (1,1, ) dS dr
{1} xTd-1 8

e oG
D) ,0)(r,0,2)=—(r,0,2)dS dr
2/0 /{O}W_1<p o) )axl( )

t
_1// kaﬁv p,0)(r,1,8) | G(r,1,7)dS dr
2 0 J{1}xTd-1 =y ]

1 t
__// > vkay(®) = (p, 0)(r,0,%)| G(r,0, ) dS dr
2 Jo J{oyxTa-1 _

LveV

_ /;/Dd(p, o)(r, ) <8TG(r,x)+%AG) d:vdr:O] =1,

for all t € [0,T], VG € C*2([0,T] x D%).

Proof. Tt is enough to verify that, for § > 0 and G € C*2([0,T] x D) fixed,

/Dd(p’ Q)(t, l')G(t, iL‘) dr — / (p7 Q)(O, iU)G(O, 1’) dx

Dd

Q* |:7T. . sup

0<t<T

i d
oG

- - )dzd

/O/DdZv X(0, szaxl r,x) dv dr

=1

// (p,e T’l’m)aG(T,Lw)der
(1} xTd-1 e
L/ e
2 $) 2 (r,0,5) dS d
2/0 /{O}Xw_l(p,@)(r,o,x)axl(r,o,x) Sdr

t -
_1// kaﬂv —(p,0)(r,1,2)| G(r,1,&) dS dr
2Jo Juperr |15 |

1 t
_‘/ / > ey (F) = (p, 0)(r,0,%) | G(r,0, %) dS dr
2 Jo J{oyxTa—1

LveY ]

[ 0w (260 + 326 awar

95

>5}:0.



Rewrite the expression above as

Q* |:7T. :sup

0<t<T

Dd

d
0 x(0 Vi=— 6G (r,x) dxdr
Dd Y 81’1

veV
1 t
+: / [ o [%r,l,@w(r,l,@} s dr
2 Jo {1}xTd~-1 Jdxq

t
—1/ / (p, 0)(r,0,2) {a—G(r,O,:E) —G(T,O,JE)] ds dr
2 Jo Jyoyxra-1 Oz,

L PR
—= G(r,1,2 VB () dS dr
2 Jo Jayxra ( )Z 1B (2)

veY
1 t
—= G(r, 0, Vg, (T) dS dr
3, fpene s G00DT

_ /;/Dd(p, 0)(r, z) <8TG(r,x)+%AG) da dr

>5}:

/Dﬂ” o)t 2)G(t, ) d = / (p. 0)(0,2)G(0,z) dz

(1.46)

We would like to work with the probabilities Quy, as we did in the previous case, using

Portmanteau’s Theorem. Unfortunately, the set inside the above probability is not an

open set in the Skorohod space. In order to avoid this problem, we fix ¢ > 0 and we

consider two approximations of the identity, for fixed u; € [0, 1] which are given on

w € [0,1] by

13

We use the notation

and

(s T = ((pr @) T = / " s 0 (w, @) dw.

€ Ju;

1 1
<u —u
v 1<w) = g:ﬂ‘(’lLl—&,Ul](w) and 7 sl(w) = g]l[uhm-‘re)(w)'

By summing and subtracting proper terms, we bound the probability in (1.46) from

26



above by

Q* {71 : sup

0<t<T

/Dd<Pa 0)(t,x)G(t,x) dx — / (p,0)(0,2)G(0, z) dz:

Dd

d
/ / ZU x(0 szgf (r,x)dzdr
D¢ =1 ¢

veY

oG
//{l}del p,0)(r,1,%) — (m, T D] {axl(r,l,x)JrG(r,l,:v)} ds dr

// i )[aG(r,l,I)—i—G(r,l,x)} 4s dr
1}><Td 1 axl

_%/t/o}m (0 0)(r,0,3) = {72 [g—fl( 0,%) — G(r, 0,5;)] dSdr  (1.47)

gy e 0= 600.9)
—= Ty o —(r,0,2) — G(r,0,2)| dSdr
2, {O}XTH( 77 ax1< ) — G(r,0,2)

t
—1// G(r,1,2) > veB(&)dS dr
2 Jo Jyyxra

veEY

.
—— G(r,0, vy, (Z) dS dr
2 Jo Jioyxma Z

veY

_ /0 t /D (pr0)(r ) (a,G(r,xH%AG) d dr

By Lebesgue’s Differentiation Theorem, observe that, for almost u; € [0, 1],

i —
>3 =o.

lim|(p, o) (r,ur, &) — {m,, T2)| = 0

and

. ~\ —>u1 _
ll_r}(l)va Q)(T, ulvx) <7T7‘7 v >| 0.

Since the functions % and % are not continuous, we cannot use Portmanteau’s
Theorem. However, we can approximate each one of these functions by continuous
functions, in such a way that the error vanishes as ¢ — 0. Then, since the set inside

the probability in (1.47) is an open set with respect to the Skorohod topology, we can
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use Portmanteau’s Theorem and bound (1.47) from above by
lim inf Qn [7‘(‘. : sup ‘(Wf,GQ — (7F, Gyo)
N—o0 0<t<T

d

_/O /DdZﬂ-x(ev(A(p, @>>>Zv¢%(r,x)dazdr

veY i=1 v

1 e
+—/ / TN = 1,2,0) [—(nl,i) —i—G(r,l,i)} ds dr
2 Jo Jyuyxre 0y
t
_1/ / 7N, 7,v) {ﬁ(T,O,fv) —G(T’,O,i):| ds dr (1.48)
2 Jo {0} xTd—1 0z,

1/t/ N 8
—= G(r,1,2 VB (T) dS dr
2 )y Jiogeris (r,1,2) Y opfB(®)

veY

gy )Y
—= G(r,0,2 VL, (T) dS dr
5 0{@@*1( )Y ke (&)

veY

- /ot /Dd(p’ 0)(r;z) (@G(r, ) + %AG) dz dr

Summing and subtracting fot N2Ln{(mPN G,) ds to the term inside the supremum in

(1.48) from above by the sum of

>§}—0

P, {sup AkE i} (1.49)
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and

Py~ [ sup

0<t<T

t
/ N2Ly(ahN G ds
0

d
/ /DdZv X (0,(A(p, 0 Zv,gz (r,x)dxdr

veY =1

t
1/ / <ﬁij(N— 1, Z,v) {GG (r,1,%) —|—G(7°,1,:U)1 dS dr
{I}XTd 1 5’

L[ N [9C i
_—/ / TN, 2,0) | =——(r,0,2) — G(r,0,%) | dSdr (1.50)
2 0 J{0}xTd-1 8ZE1

L
—= G(r,1,z) By (Z) dS dr
2 Jo Jioyxra-1 Z *

veY

1/t/ N N
—= G(r,0,2 VL, (Z) dS dr
2 )y Sy ems (r,0,%) > veen (&)

veY

~ /0 t /D (p.0)(r) (&G(T, x)+%AG) da dr

From Doob’s inequality the term (1.49) vanishes as N — oo. We can bound (1.50) fom

d

above by a sum of terms and doing the same argument from previous section, since
G € C12([0,T] x D) and using the Replacement Lemmas it is easy to see that terms

above converges to zero, as N — oo and ¢ — 0. This concludes the proof. O

1.11.3 Characterization of limit points for 6 > 1

As in previous sections, we will look at the limit points of the sequence {Qn } n>1.
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Proposition 6. If Q" is a limit point of {Qn}N>1, then it is true that

|r: [ potactai- [ (¢.00.060.0d0

Da

d

. / /. >0 X (Ap. ) > 02 1.0y

// (p,0 r,l,az)é)G(r,l,x)der
{1} xTd-1 Oy

1 [t 0G
_ = , r,0,2)=—(r, 0, dsS dr
. / /{o}m_l(p 0)(r,0.5) 52,0,

- /Ot /Dd(p, o)(r,z) (&«G(T,m) + %AG> dzdr = 0] =1

for all t € [0,T], VG € C**([0,T] x D%).

Proof. Following the same reasoning as in Proposition 4 and 5, it is enough to verify
that, for § > 0 and G € C**([0,T] x D?) fixed, we have

/;d(pa Q)(t,x)G(t,l') dl'—/;d(p, Q)(O,.I')G(O,x) dx

* .
Q [7? - SUPo<i<T

d
oG
//DdZvX Zvlajrwdzdr

vey =1 ¢

// (p,0 r,l,x)aG(r,l,x)der
1})(']1"11 a

L/ e
2 P (r,0,7)dS d
2/0v /{vo}qu‘d—l(p7 Q)(T’O,I)8$1<T,O7x) S dr

- [ [ 0060 (9600 + 56) ara

We need to change the boundary terms (p, 0),(0, &) (resp. (p, 0),(1,%)) by 7N (1, %, v)
(resp. S7=N(N — 1,#,v)). Then, we sum and subtract [, N2Ly (75, G) dr, it will be

>51:0.
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enough to analyze

t
/ N2Ly(rPN Q) dr—% / (rENCAG) dr
0

limsup P~ |7. : sup
N—oo 0<t<T

7

< - (1.51)
1 t
+—/ / WiN(N—l,a?,v)ﬁ(r,l,fc) dsS dr
2 Jo Jyyxra 0,

t
- 1/ / TN, 7, v)— oG (r,0,%)dS dr| > 5]
2 Jo Jioyxra-1 0xy

Doing the same as in the other cases and using that G € C*2([0,T] x D?) and 6 > 1,
we just have to analyze the following, for all 6 and z; = {1, N — 1}

d
0 - x(0 vlaG (r,x) dxdr
D4 1 81’

g

Applying Replacement Lemma (4), we conclude that, taking limit when ¢ — 0 the

/O[nz (21,&) — s, >]§—de

limsup P~ [fr]. : sup
N—oo 0<t<T

limit above goes to 0. This concludes the proof of this proposition. O

1.12 Uniqueness of weak solutions

To conclude the proof of the hydrodynamic limit, it remains to prove the unique-

ness of weak solutions to (1.8), (1.10) and (1.12).

1.12.1 Uniqueness of weak solutions of (1.8)

Consider (p*, o1), (p?, 0*) two weak solutions of (1.8) with the same initial condi-
tion and denote their difference by (p,2) = (p' —p?, o' —0?). Let us define the set {1, }.
given by v (u) = v/2sin(zmu) for z > 1 and vg(u) = 1 which is an orthonormal basis
of L?([0,1]). Note that (p,0) = (8°,p%,...,p%) = 0 if, and only if, each component is
equal to zero, which means that p* = 0 for k =0,...,d. Let

Vit) = 3 o (5t 0.)?

= 2a,

where a, = (27)? + 1. We claim that V/(t) < CVj(t), where C' is a positive constant.

Since Vi(0) = 0,Vk = 0,...,d, from Gronwall’s inequality we will conclude that
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Vi(t) <0, but since we know by definition that Vj(t) > 0, we are done. Now we need
to show that the claim is true. Note that

Vi) = 37 (k) P )

2>0 ¢
and from the integral formulation (1.8) we have that

d d
<pt ) wz> <dtpt ) Z) <pt ) wz>

=5 P5 A) + (WBlAp) 01) — X(B(A (G}, 01)), Bt

Since 1, (u) = v/2sin(z7u) we have that 9,1, (u) = 2z cos(zmu) and A, (u) =
—(2m)%V/2sin(zmu) = —(27)%4),, then

=y "L ( Ph+ 2 (0 U0 o 0)) — XA ). D)

2>0 z>0

Using Young’s inequality on the second term on the right-hand side of last identity, we

bound that term from above by

o Z g 3 %(X(GU(A(pi, 0))) = x(0.(A(p7, 67))); Duth=)?, VA > 0.

2>0 2>0 ¢

Observe that 0,¢, = 27¢,(u), with ¢,(u) = v2cos(zmu) for z > 1 and ¢o(u) = 1.

Therefore, the second term at right-hand side in last display can be rewritten as

? %Z) (X(Bs (AP}, 01))) — X (65 (A (P2, 02))), 62)°
= %wav(/\@%, 01))) = X(0u(A(p2, 02))), .

because of the choice for a,. Observe that, since {¢.}, is an orthonormal basis of

L?[0,1], we can rewritten the last display as

_/ Ptth))) X(QU(A(pf,Qf))))Qdu_
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Since x(0,(A(ps,p¢))) is Lipschitz (see [16]), last display is bounded from above by
211p,]13. Putting all this together, we conclude that

1 A
< Z ( QCLZ Aaz + 5) <ﬁta¢z>2~

z>0

Taking A = 1, we get

And this concludes the proof of uniqueness of weak solutions for the problem (1.8).

3 ) (ol = S = O

1.12.2 Uniqueness of weak solutions of (1.12)

The proof above can be adapted to this case, as we describe now. Consider
(p*,p') and (p?, p?) two weak solutions of (1.12) with the same initial condition and
denote by (p,p) their difference (p,p) = (p' — p?, p* — p?). Now consider the set {¢.}.
given by ¢.(u) = v/2cos(zmu) for z > 1 and ¢o(u) = 1, which is an orthonormal basis
of L?([0,1]). Note that (p,p) = (p°,p%,...,p%) = 0 if and only if each component is
equal to zero, which means p* = 0 for k = 0,...,d. Let

Vi) = 3 o (5, 0.

= 2a,

where a, = (2m)?+1. We claim that V}/(t) < CVj(t), where C'is a positive constant and
since V;(0) =0Vk =0,...,d, from Gronwall’s inequality we conclude that Vj(¢) <0,
but we know by definition that Vi (¢) > 0, and we are done. Now we need to show that

the claim is true. Note that

Vilt) = Z 4 <pt>¢Z> <pta¢z>
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and from the integral formulation (1.12) we have that

d d
<pt>¢z> <dtpt> Z) <pt7 ¢z>

=S5 A62) + (X0 (A ok p))) — (Ol A 1)), Bus)

_%pf(gau@(n + %pf(O)auqbz(O)-

Since 0,¢.(0) = 0,6,(1) = 0, then

Vi(®) :Z 2%, <pt7¢z><pt7A¢z>

z2>0 z

3 L3t 0 (OGP — XA 1), i)

=2 - (2a3 (P 2) +Z (BF, =) (X (0: (Aot p1))) — X(Ou(A(P}, D7), Dup)-

2>0 2>0 4z

(1.52)
Using Young’s inequality in the second term of right-hand side of equation (1.52), this

term is bounded from above by

24 Z ? > ai<x(€v(A(p%, o)) = X(0u(A(p2, 02))), Duth:)?, VA > 0.

z>0 2>0 7

Observe that 0,0, = —zm,(u), with ¢, (u) = V2sin(zru) for z > 1 and o(u) = 1.

Therefore, the last term at right-hand side of last display can be rewritten as

? <ZCZ) (X(Ou(A(p}, 01))) — x(Bu(A(p2, 02))), 6:)?
< ?Dx(@(A(m& o)) = x(0u(A (52, 62))), 6.2

because of the choice for a,. Observe that, since {¢.}, is an orthonormal basis of

L*0, 1], we can rewritten the last display as

_/ Aot o)) = x(8u(A(p7 0))))) " du.
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Since x(0,(A(ps, pe))) is Lipschitz (see [16]), we have the last display is bounded from
above by 2(p,/|3. Putting all this together we conclude that

1 A
)< Z( 2az 2Aa, 2) Bt 0)"

z>0

Taking A = 1, then we get

1
= Z (2@2
2>0

And this concludes the proof of uniqueness of weak solutions for the problem (1.12).

1 & 1+a, K
by ) 0k = Sk ) = OV

1.12.3 Uniqueness of weak solutions of (1.10)

We tried to adapt the same method used in the previous sections 1.12.1 and 1.12.2
for this case. For that, we use the linear combination of sin and cosine, which is an
orthonormal basis of L?([0, 1]). And follows the same as in the subsections 1.12.1 and
1.12.2. But the problem is that, when we derive this basis the result is no longer a
basis.

Fortunately, we have an answer about that uniqueness for the case 1-dimensional.

The proof is ipsis litteris as in [17].
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Equilibrium Fluctuations for a bound-
ary driven stochastic lattice gas model

with many conserved quantities

This work aims to study the equilibrium fluctuations of a weakly asymmetric
exclusion process with collision among particles having different velocities with periodic
boundary conditions. The reader can skip Sections 2.1, 2.2 and 2.3 since is similar to
Sections 1.1, 1.2 and 1.3 from Chapter 1. Just make sure to keep in mind that now we

have periodic boundary conditions.

2.1 Notation and Results

We start by fixing the notation to be used throughout this chapter. Let T% =
{0,...,N —1}? = (Z/NZ)% be the d-dimensional discrete torus. Moreover, let V C R?
be a finite set of velocities v = (vy,...,vq). Assume that V is invariant under reflections

and permutations of the coordinates, i.e.,

(V1525 Vic1, =iy Vig1, - -+, Vg) and (Ve(), - - - Vo(a))

belong to V for all 1 <i < d, and all permutations o of {1, ..., d}, provided (vy, ..., v4)
belongs to V.

At each site of T4, at most one particle with a certain velocity is allowed. We
also denote: the number of particles with velocity v € V at € T%;, by n(x,v) € {0,1};
the number of particles in each velocity v at site z by n, = {n(z,v);v € V}; and

a configuration by n = {n,;z € T%}. The set of particle configurations is Xy =
({0, 1}¥)7.



On the interior of the domain, the dynamics consist of two parts:

(i) each particle in the system evolves according to the nearest neighbor weakly

asymmetric random walk with exclusion among particles with the same velocity,
(ii) binary collisions between particles with different velocities.

Let p(x,v) be an irreducible transition probability with finite range, and mean velocity

v, l.e.,

Z xp(z,v) = v.

x€Z4

The jump law and the waiting times are chosen so that the jump rate from site z to

site x + y for a particle with velocity v is given by

d

1 1
PN(yvv) = 5 Z((Syvej +4 7_5j) + Np(yav)a

J=1

where 6, ,, stands for the Kronecker delta, which is equal to one if = y and 0 otherwise,

and {ey,...,eq} is the canonical basis in RY.

2.2 Infinitesimal Generator

In this section, we describe the model that we are going to consider in this chapter.
Our main interest is to analyze the stochastic lattice gas model given by the generator

Ly, which is the superposition of the collision and exclusion dynamics:
Ly = N*{LS + LS} ! (2.1)

where L, denotes the generator that models the collision part of the dynamics and
L% models the exclusion part of the dynamics.
Let f: Xy — R. The generator of the exclusion part of the dynamics, L5, is

given by

LN =D > nz,v)(1—n(z,v)Py(z — 2,0)[f (") — f(n)]

d
VeV z,2+2€TY,

Note that in (2.1) time has been speeded up diffusively due to the factor N2.

67



where
n(y,v) if w=v and z =z,

0 w) = { nla,0) ifw = v and 2 =y,
n(z, w) otherwise.

We will often use the decomposition

ex __ pex,l ex,2
LY =Ly + L7,

where
(L ) =53 S e )1~ (o) [F) ~ ),
i,
and

LN =5 X a0 -l 2 o)) - f)

d
vEV z,0+2€TY,

The generator of the collision part of the dynamics, L%, is given by

(LN ) = DD vy, a)lf (") = F(),

yeTd, 9€@Q

where () is a set of all collisions which preserve momentum:
Q:{q: (U,w,vl,w') €V4:U+w:2/—i—w/}.
The rate p.(y, q,n) is given by

pe(y, a;m) = n(y, v)n(y, w)[1 = n(y, v)][1 — ny, w')],
and for ¢ = (vg, v1, v, v3), the configuration n¥? after the collision is defined as

n(y, vjz2) if 2=y and v = v; for some 0 < j < 3,
(2, u) =
n(z,u) otherwise,

where the index of vj;9 should be taken modulo 4.
Particles of velocities v and w at the same site collide at rate one and produce

two particles of velocities v and w’ at the same site.
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Let {n(t),t > 0} be the Markov process with generator Ly and denote by
{SN.t >0} the semigroup associated to L.

Let D(R,, Xx) be the set of right continuous functions with left limits taking
values in Xy. For a probability measure u on Xy, denote by P, the measure on the
path space D(R,, Xy) induced by {n(t) : t > 0} and the initial measure p. The
expectation with respect to PP, is denoted by E,,.

2.3 Mass and Momentum

For each configuration ¢ € {0,1}Y, denote by Iy(¢) the mass of & and by I, (),

k=1,...,d, the momentum of ¢, i.e.,

L&) =) &), L&)=Y ut).

veY veY

Set 1(£) := (1o(&), ..., 14(§)). Assume that the set of velocities is chosen in such a way
that the unique conserved quantities by the random walk dynamics described above are

the mass and the momentum: Z I(n,). Two examples of sets of velocities satisfying
wET%
these conditions can be found in |7].

For each chemical potential A = (Ao, ..., \q) € R%"L denote by m, the probability

measure on {0, 1}V given by

ma(§) = exp{A-I(§)}, (2.2)

Z(0V)

where Z()) is a normalizing constant. Note that m, is a product measure on {0,1},
i.e., that the variables {{(v) : v € V} are independent under m.

Denote by 1} the product measure on Xy, with marginals given by

pAn = nlz,-) =& = ma(9),

for each £ € {0,1}Y and = € T%. Note that {n(z,v) : x € T4, v € V} are independent

variables under £}, and that the measure ;) is invariant for the exclusion process.
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The expectation under p of the mass and momentum are, respectively, given by

p(N) = Ello(na)] = 6u

veY

or(A) = B [Tu()] = D viblo(A

veY

In the last formula, 6,(\) denotes the expected value of the density of particles with

velocity v under m:

d
exp {)\0 + Z )\kvk}

k=1

y .
14 exp {)\0 + Z)\kvk}

k=1

0,(\) = En,[E(v)] =

Denote by (p, 0)(A) := (p(A), 01(N), ..., 0a(A)) the map that associates the chemical po-
tential to the vector of density and momentum. It is possible to prove that (p, ) is a dif-
feomorphism onto Y C R the interior of the convex envelope of {I(€), £ € {0,1}V}.
Denote by A = (Ag,...,Aq) : & — R4 the inverse of (p,0). This correspondence
allows one to parameterize the invariant states by the density and momentum: for

each (p, 0) € U, we have a product measure v}, = ,uf(p’g) on Xy.

2.4 Density Fluctuations

In this section, we investigate the equilibrium fluctuations of 7%, We denote by
Y V* the density fluctuation field associated to the k-th conserved quantity that acts

on smooth functions H as

YR H) = N72 YT H(2) (In(nve (2)) = ), 2 (23)
:JcE']Td
where p° = p and p* = g, for k = 1,...,d. The aim of this chapter is to prove that
YNF converges to a stationary Gaussian process with given space-time correlations.
To state the main theorem of this chapter we need to introduce some notation.

Consider the lattice Z¢ endowed with the lexicographical order. Let hq = 1 and for

ZNote the diffusive rescaling of time on the right-hand side of the (2.3).

70



each z > 0 (resp. z < 0), define
h.(u) = V2cos(2mz - u) (resp. h.(u) = V2sin(2rz - u)). (2.4)

Here - denotes the inner product in R?. Tt is well known that the set {h.,z € Z?} is

an orthonormal basis of L?(T?): each function f € L?(T¢) can be written as

f=> {f ha)he.

z€74

In this formula and bellow (-,-) stands for the inner product of L*(T¢).

Consider on L?(T?) the positive, symmetric linear operator . = (1 — A). A
simple computation shows that the functions h, are eigenvectors: Zh, = 7.h., where
v, = 1 +472||z||?. For a positive integer p, denote by %, the Sobolev space of order p,
which is the Hilbert space obtained as the completion of C*° with respect to the inner

product (-, -), defined by
{(f:9)p = {f, ZL79).

It is easy to check that %, is the subspace of L*(T?) consisting of all functions f such
that

D (i he)* < oo

ze74

In particular, if we denote L?(T?) by %,
Ty D IOD I D - (2.5)

Moreover, on 7%, the inner product (-, -), can be expressed by
<f7 g>p = Z <f7 h2><g7 h2>7§
2€74

For each positive integer p, denote by 2, the dual of .7, relatively to the inner product
(-,+). Note that ., can be obtained as the completion of L?(T%) with respect to the

inner product obtained from the quadratic form (f, f)_, defined by

112, = (f. )= = sup {2(f,9) — (9. 9)p} - (2.6)

geEI
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Furthermore, ., consists of all sequences {(f,h.),z € Z%} such that

D (b < o0

ze74

and that the inner product (f,g)_, of two functions f, g € 2, can be written as

(f.9)=p =D (f h:){g. h)7:7.

2€Z4

It follows also from the explicit characterization of 7, and from (2.5) that
 CHECINCIHGC A CH G C

We shall consider the density fluctuation field Y;N’k as taking values in the Sobolev
space ¢, for some large enough p. Fix a time 7" > 0, a positive integer py and denote
by D([0,T], 5.,) (resp. C([0,T], 5 ,,)) the space of S, valued functions, that are
right continuous with left limits (resp. continuous), endowed with the uniform weak
topology: a sequence {Ytk’j }i>1 converges weakly to Y/* uniformly in time, i.e., if for
all f € 72,

lim sup (V. f) = (¥}, f)| =0.

J700 0<t<T
Denote by Qx the probability measure on D([0, T'], .7 ,,) induced by the density fluctu-
ation field Y*"* introduced in (2.3) and the product measure v/)',, by Py the probability
measure on D([0, T'], X ) induced by the probability measure Y, and the Markov pro-
cess 1, speeded up by N? and denote by Ey the expectation with respect to Py. We
denote by Q the limit point of Q.
Fix (p,0). Based on [1,19], we give here a characterization of the generalized

Ornstein-Uhlenbeck process which is a solution of

1
dY; = SAY; > H(VY; -0, VE,(p, o)) + VZdW,,

veEY

where Z = sz X(0,(A(p,p))), Fulp, 0) = x(0,(A(p, 0))) and given v = (vy,...,vq) €

veY
V we denote by 0 = (1,vy,...,v4). We will see below that this process governs the

equilibrium fluctuations of the density of particles of our model.

Proposition 7. For each (p, 0) € U there ezists an unique random Y. taking values in
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the space C ([0, T], #.,,) such that:

(1) for every function H € C ([0,T], 7,,), M:(H) and N:(H) given by

M) = vite) - vi() - [ v, (Lan)as+ 3o (Vulo - VH),VE,(p. 0))ds

Ni(H) = (M(H))* — | #BH|[3t,

are Fy-martingales, where for eacht € [0,T), F; = o(Ys(H); s <t,H € C([0,T],5%,)).
Above, for each velocity v = (vy,...,vq) € V, we define v = (1,vq,...,v4) and
(My(H))* = (MX(H))?,...,(M}H))?), also BH = (BoH, ..., BsH) with

veY

BH \/Z v \(6.(A(p, ) VH.

(it) Yy is a Gaussian field of mean zero and covariance given on H,G € C ([0,T, 7,,)
by
BV (H)YHG) = x(a) [ dub(u)G(w)

Td
Here x(«v) stands for the static compressibility given by x(a) = Var(va,n(0,v)).

Then, the sequence {Qn}n>1 converges weakly to the probability measure Q.

Theorem 2. Consider the Markov process {nyn= : t > 0} starting from the invariant
state v, ,. Then, the sequence of process {YtN’k}Nzl converges in ditribution, as N —
oo, with respect to the Skorohod topology of D([0,T], 7#.,,), to Yy € C([0,T], 7,,),
the generalized Ornstein-Uhlenbeck process of characteristics V., A which is the formal

solution of the equation

1
dY; = SAY, = 3 VY, 0. VE(p, 0)) + VZdW,.

veY

2.5 Proof of Theorem 2

2.5.1 Martingale Problem

By Dynkin’s formula, for a given function H € C ([0,T], 74,)

M) = Y)Y [ s
NN = (M) / Iy (H) ds,
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are martingales with respect to the filtration G, := o(ns : s <t), where

Y (H) = (0s + N2Ln)YVF(H)

DY (H) == N*Ly ([YNH(H)P) = 2V PR H)N? Ly [ (H)).
By the computations of Appendix B, we obtain

MY (H) = (0s+ N2Ln)YNF(H)

— O, YNR(H) + %YSN”“[ANH ()] (2.8)

d
—NTE Y S (0N H) (£) [ W — wi,

ceTd, j=1
where
VV;?Z = Z Uk Z ij(Z, U)T/S(Oa ’U)[]. - 775(2, U)]
vey z€74
and

Wi = B,y W] =Y vpix(8.(A(p, 0))).

veY

Also by the computations of Appendix B,

LY (H) = N*Ly ([VN(H)]?) — 2Y WM H)N? Ly [Y V4 (H)]

d 2
— o o 2 Dok () — e ego0) O H (3))°

d =
UEVxE']I‘N] 1

e S Y TS ol )1~ e+ 0))pl,0) (O () i

veY JJET?V |lw|<R j=1

(2.9)
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The goal is to close the M (H) in equation (2.7). Note that,

t
1
MNE(H) = YVR(H) = YV H) - / T > ANH (%) (Ik(na(s) = p*) ds
0 2Nz zeTe
. ) (2.10)
) NE 2 20T H) () W — i) ds.
0o Nz o i1

By Theorem 3, the Boltzmann-Gibbs principle (see Section 2.6), where F,(p,0) =
X(0,(A(p, 0))), we have that (2.10) is equal to

1 [t 1
M (H) = Y (H) = Y (H) = 5 / ~7 2 AvH (§) (ulne(s)) — o) ds
g xETd

t
n / Ly Z OV H) (£) zvmzaﬂf p. )L (s)) — p') ds,
o N2 zeTd, j=1 vey

rewrite the last equation as

t 1
YVR(H) — Y () - / yVA (§ANH) s
0

+ka/YN7’<ZZ%5sz P, 0 8NH> ds

veY j=1

! 1
= ¥PH) - ) - [V (Gani ) ds
0

(2.11)

+ka2/ YNZ<ZUJ(9,%F p,o aNH>

veY =0

t 1
= V) - v - [ (gANH) ds
0

+ka2/ YN8, Fy(p, 0) (v- VH)) ds

veY =0

3R is the range of p
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— YR — YR - /YNk <2ANH> ds—l—ka/ (YN(v-VH),VF,(p,o0))ds

veY

=Y,V H) - YR (H) - /OYN’f( ANH) ds+ ) 0 / (YN(v-VH),VF,(p,0)) ds.

(2.12)
By the definition of N)"* in (2.7), using the computations of Appendix B, we obtain
that

NHH) = (M (H))

/ szZZka no(2,v) = sz + e, 0)) (0] H (§))ds + R (H),

veY CCETd 7j=1

d
1 2\ 2
where R\*(H) = Sar g v E E E n(a,v)(1=n(z-+w,v))p(w,v) (0] H (%)) wj,
veV  zeTd lw|<R j=1
is a martingale.

Claim 1. Note that R (H) vanishes as N — +0o in L*(v,,).
Proof of the Claim 1: In fact, consider

ANE (T Ndz 3 ZZ 2,0)(1 = 0z +w,0))p(w,v) (N H (£))" w?

veY xe"ﬂ‘d lw|<R j=1

this implies that R)"(H) = %Ayk(ﬂ) We prove that AY"(H) is bounded, which
results in Ry " (H) vanishes as N — +oo in L'(v,,). Hence, Ry"*(H) vanishes as
N — +o00 in L*(v,,). Note that

AR = ﬁz o D0 D0 D ae )= nle + w,v)p(w,v) (O H (%)) w}

vV geTd, Jw|<R j=1

< 2Ndc > OVH (%

zer

since the set of velocities is finite and the the range of p is finite. Observe that, last

display converges to é/ VH?*(x)dz, as N — oo. Since é/ V H?*(x) dz is bounded,
Td Td
then ANF(H) is bounded. This proves the claim.

Claim 2. Since Ey [(n(z,v) — n(z + €5, v))Q] = 2x(0,(A(p, 0))), with x(r) =r(l —r),
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then

ENK/ 1 2 G () [l 0) i +e5,0))" — 2(Bu(A G g)))}dsﬂ Noto

z€TY,

Proof of the Claim 2: In fact, by Cauchy-Schwarz inequality, last expectation is
bounded from above by

X (01, 0) = oy + €5, 0))* = 2x(0u(A(p, 0))) ]
< PVar((n(, v) — n(a + €5,)), V)G Oy,

which vanishes as N — oo, since y € {x — ej,x,x + e;} and Var((n(x,v) — n(z +
€j,v))*, v,,) does not depend on x nor j. Therefore,

/ Nd Z Z ka 775 xz, U ns(x‘f‘ej,?)))z(aJNH (%))st

VeV gerd, i=1
/ZZU’“/ 0)(0;H (x))*dx ds
/Z/ ( vix (0 A(ﬂ@)))) (0;H(z))*dx ds.

Define

kax 0))VH and B = (B, , PBa). (2.13)

veY

2.6 The Boltzmann-Gibbs Principle

In this section we show that the martingales M}"* introduced in (2.7) can be
expressed in terms of the fluctuation field YtN’k. The Boltzmann-Gibbs principle is one

of the main ingredients in the proof of the equilibrium fluctuations.

Theorem 3 (Boltzmann-Gibbs principle). For every continuous function G : T* — R
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and every t € [0,T),1<j<d,0<k <d,

where

Vit =) [Z 2p(2,0)n(0,0) (1 = n(2,0)) = v;Fu(p, 0) = v; Y 05 Fu(p, )[1(0) = p]

veY 2€Za =0

and FU(P, Q) = X(HU(A(P, Q)))

Proof. Fix a positive integer [ that shall increase to oo after N. For each N, we
subdivide T4, the discrete d-dimensional torus, into non-overlapping cubes of linear
size . Denote them by {B;; 1 < j < M?}, where M = [4]: * for each j,

Bj=y; +{1,...,1}*, for some y; € T4 and B;N B; = 0 if i # j.

Me
Denote by By = T4 \ U B;, By construction, the cardinality of By is bounded by
j=1
dIN4=1. Once p(-,-) is the probability transition function, which has finite range for
ecach v € V and V is finite. We will denote by s, be the maximus range of p, that is
sp = max{|z| : Jv € V;p(x,v) > 0}. Let A,, be the smallest cube centered at origin
that contains the support of p. Denote by BY the interior of the cube B;, i.e., the sites

x in B; that are at a distance at least s, from the boundary:
B) ={x e B;; dx,T4\ B) > s,}.

Note that Vz € BY, 7,V2*(n) is measurable with respect to o(n(z); z € B;). In par-
ticular, since V;’,YQ
B;) and o(n(z); = € Bj) are independent ¢ # j. Then, 7.V&¥(n) is independent of
7, V&) if v € BY and y € BY, i # j.

Let

is product measure and B; N B; = (), the o-algebra o(n(2); z €

Md
B°=|JB} and B'=T}\B"
i=1
By construction, the cardinality of B! is bounded by dN¢ (c(p)i~! + IN~1), for some
constant ¢(p) < oo depending only on p.

4|r| denote the integer part of r
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d

With the notation we have just introduced, we have that
N7 Y G(2)nVifm) =N"2 > G(£)nVitm)
z€TY, reB!

WSS

_ Yi
N

G (3)ImVit ()

1=1 :EEBO

Me
NEY G ) Y v,
i=1

xEB?
where y; is a point in B

We claim that the expected value of the L? norm of the time integral of the first
two expressions on the right-hand side, vanishes as N 1 400 and then [ T +o0c0. The
first step is to prove that

N
zeBl!

=0.

2
. . _g £ ]k:
i B (/ NEY GV W)

(2.14)

By Cauchy-Schwarz inequality and invariance of v
above by

last expectation is bounded from

2
t
Ey (/ N2 G(%)Tzvg’k(ns)ds)
0 z€B!

zeB!

2
t
< t/ Exn (N_g Z G (%) Tng’k(ns)> ds
0

reB!

2
= t*E,x (N—ZZG(%)TIVP@’“(U)> .

Note that E,~ [V#*] = 0. Furthermore, if z,y € T% such that ||z — y|| > 2s,, then
By [7.VE*(n) - 7,VE*(n)] = 0. Therefore, the last expression is bounded by

z,yeB?!
lz—yll<2sp

BN N G(3)G(F) By, |V
Note that, for each (p,

o) fixed, V#*(n) is bounded, thus, V2*(-) € L*(v),). Since G is
continuous, G (—) and G (N) are uniformly bounded on T%,. We obtam that the last
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expression is bounded from above by

t* N~IC | B'| (4s,)*
<N7IC (ANYC(p)It + INY) (4s,) (2.15)

— 0

2CdC(p) (4s,)¢  121C (4s,)
< +
l Nd+1

when N 1 400 and then [ 1 4o00.
Applying the same arguments, for the second term on the right-hand side of

equation (2.14), since G is continuous on T¢, which is compact then G is uniformly

continuous in T?. Denote by

An = sup |G(z) -Gy

le—yll<%
For each [ fixed, we have that Nhr—E A; n = 0. Therefore,
—+oo

2

N [¥ S S e -6 @mitas

=1 rGBO

If m # i, 7,V* is independent of 7,VZ* and Eyévg[Vlf;’k(n)] = 0. Then, the last

expression is bounded from above by

t*E “Z S (G(2) -G () (G(%) -G (%) nVErnvih

=1 rzGBO

the same argument above can be applied when ||z — z|| > 2s,. Therefore, (2.15) is

80



bounded from above by

P E, N dZ > (G -0) () -6 (%) BV

= z,z€BY?
||z— 2H<25p

k k
S t2 Eyé\{g dz Z Al N TJJVJ Tzv]

= z,2€BY
[|z— z||<25p

for each (p, o) fixed, V] is bounded uniformly on 7. So, the last display is bounded

from above by

t? Ay C M®|By| (4s,)* N~

< t2ANC M (4s,)" N7
< AZNCZ—dl (4s,)* N~
= tQ AZ,N C (4Sp)d

and the expression above vanishes as N — +oc.

In order to conclude the proof it remains to show that

2

t M
. . _d ) ;
fim tim £ | [ 060 L vt | | <o

z€BY

For each 1 < i < M9, denote by & the configuration {n(z) : z € B;}, and by Lp, the

generator Ly restricted to the cube B;,
Lp, =Ly + L%,
where

(LEHm =D"> —n(z,0))Pn(z — 2, 0)[f(n™") = f(n)]

veEV x,2€EB;

and

m =Y pely.a.n)lf (") — f(n)).

yEB; ¢€Q

Consider a L*(v)))
o(n(x), x € By) and denote by f; the translation of f, that makes f; measurable with

cylinder function f measurable with respect to the o-algebra
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respect to the o-algebra o(n(z), € B;). By definition of the generator Lg,, Lp, f is
also measurable with respect to o(n(z), = € B;). By [1, Appendix Al, Proposition
6.1], for t > 0

En (/Ot N~% éG (%) EBifi(fi(S))>2dS

<20t sup [2 [V ) - N (L, | 2

heL? (V,IXQ)

Md
where V&, (1) == N72 Y G (%) Lp, fi(&)-
i=1
Claim 3. We claim that
<£CBva h>ué\7’g = <f7 E%ih>ué\{9
this means that, the collision generator is a symmetric operator.

Proof of the claim 3: First of all, note that n¥¢ = £ implying that £49 = (n¥4)¥4 =
dv,),(€)
dv},(n)

n where g = (vo, v1,v2,v3),4 = (v2,v3, Vo, v1) and = 1. From this we obtain

that

(L5 f by, = / (L5, F)(h(n)dvy,

— [ X S nwanlfer) - flhmisy,

yEB; q€Q
=35 [ nvansaropmad, - 3 3 [plvan ooy,
yEB; q€Q yEB; q€Q

Performing a change of variables n = £%4, the last display can be rewritten as
>3 [ntnaens@uena,- % [nwaOf@n@ay, 210
yEB; qeQ yeB; qeQ

Note that

Pe(y, 4,677 = €9y, v0)€" (y, v1)[1 — €9y, va)][1 — € (y, v3)]

- é(y7 UQ)g(yu U3>[1 - §<y7 UU)][l - f(yv vl)]
= pc(ya (j, g)

N

®In the formula (-, *)vy, denotes the inner product in L2},
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Therefore,

(2.16) = ZZ/Pc?JQf (&) dv,, ZZ/pcyqé )h(&)dv

yEB; q€Q yeEB; q€Q

_ ZZ/Z%?/Qf h(Ew)dv,), ZZ/pcyqﬁ Yh(€)dv

y€B; qeQ yEB; q€Q

= S5 [ nlua 5@ b - i,

yEB; ¢€Q

= <fv ‘CCBih>V})\fe
and this finishes the proof of the claim. However, since
Lp =L+ L5+ L5,

we will need the following result.

Proposition 8. For all f; € L*(v)),)

2
A i K/ N‘*ZG %) £a7AE( >>) ds] =0

Proof of the Proposition 8: Using Cauchy-Schwarz inequality and Tonelli’s theo-

[(/ N"ZG () L2 f (6 (s >>) ds]

<Ey [t/o (N2ZG VY L572 fi(&(s)) ds] (2.17)

rem, we obtain

M ]
= 2B,y [N d (ZG 1) z;ﬁ’?fi(g,-(s)> .

=1

Observe that
EV;’YQ [ESB?QJC"] =0
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and Lp, f is independent of Ly, f, if i # j, as

(L f Z >l n(z,0)]p(z =, 0)[f (™) = f(n)].

UEV x,zEB;

Therefore, we have that (2.17) is bounded from above by
CGIE M B,y (£ ? 2.18
~NalGls oy, [(L57 f(6)7] (2.18)

. er.2 2 .
Now let us estimate E,v [(,CBl’zf) } Let s, be the range of p, i.e., p(x — z,v) <
IL{HI—ZHSS;;}' We have that

By, |(c520)"]

B | (72 X (e v)]p(z—x,v)[f(nm’z’“)—f(n)])2]

veEV x,zEB;

< %Eyg,vg (Z > Le—syzsy L 07Y) = f(ﬁ)])

vEY x,2€EB)

2
2
< =B, <§ > V<) F (7 )>

veEY z,2€EB;

5 2
+z B, (Z D e sj<an (77>>
vEVY x,2EB1

Denote by
A={(v,z,2);veV, x,z € By with ||z — z|| < s,}.

Consequently, the last display is bounded from above by

[Z > ez LF 770

vEV x,2EB1

2 2 2
NG AP IZ2 -

Doing the change of variables n**" — n, we obtain

2 Yo,v 2
37 M B, |20 D Liamstzon ()] = AP ey (219)
vEVY x,2EB1
Consider
g : (T2 — R
’V:Bv
( Yzv



and note that g € C*, and since (T?)? is compact, we conclude that g is bounded.

Consequently,

2 2
(219) < <3 AP 11/ Z20y,) lglloo + e AP 1122wy,

@

2
= AP B (lgloe +1).

Therefore, using this estimate in (2.18), we obtain that

2

t . M
Exn / N2 Z G (%) ,CeBII’QfZ(gz(S)) ds
0 i=1

< 2 ez mes )AL 72

< 7 1612 M2 (lglloe + 1) 55 11720,
C |A()]* N4

SNG N
C AP

TN Y

for fixed I and N — +o0o. This finishes the prof of Proposition 8.
Set
LA™ =L+ L.
Thus, by Proposition 8, in order to show that

2

t M
lim lim Ey /N“;ZG(%)E&fi(fi(s)) ds| =0,
0 i=1

l—+00 N—+o00

it is enough to show that

2

=400 N—+o0

t M
lim lim Ey /N-ZZG(%).CSB{%(@(S)) ds| = 0.
0 i=1

By [1, Appendiz A1, Proposition 6.1/, we have

2

t M
. . _d i sym
ll}inoo N1—1>r-Il—loo EN 0 N7z Z_l G (ZJIT/) EBZ‘ fz(gl(S» ds

N,sym symy — N,sym
<20tV 7™ (= N2LY™ ) TV Y Doy,
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Md
where Vé\f}sym = N~% Z G (%) LB fi(&)-
i=1
Note that
(oMLY g

P,Q

induces a norm on 1. Therefore, we obtain

20L( Vi P (= N2LY™) VR )y =

pP,e

20t sup {2 / Vg}sym(n)h(n) dl/[],Vg — N*(h, —,Cf\?,’mh%,év } ,
h ’ ’ @
where the supremum is taken over all the functions h in L2( ',). Observe that

2 / v () diY,

d M
—2N Y06 (%) [ e et
i=1

Me
<2NTEY (%) [Q}w L3 o Fog, + L3 ) }
—1 i

choosing v; = N2+3|G (%) |_11{G(&)¢0}, we obtain that last display is bounded from
N
above by

GG, pagm N2
SN2 e (=LE" fis fi)uy 2|G(yl)| {G(%)#O}

2|‘d

2N“ZG )

Since (—Ly"h,h) >0, we have that

— L™, h)V;XQ] .

Md . 2 Md
(G ()G (8)° o Yy

<3 (ﬁd)m (%) (—LE™ fis Fiur, + N? Y sgn(G (%)) (=L h, B,

i=1 =1

Gl Mt &
< O I e o R, + NS (LB

i=1

G 2 Md sum sum

S H ]l\‘fodoJrZ <_£Byl flafl>l//13\,]g +N2<—£]\3]! h” h>V;IJYQ
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Therefore,

20t sup {2 / vgfym(n)h(n) dvl, — N*(h, —LY"h),y }
h yQ

20t ||G||%, M
< 277 lle0 777

> Nd+2 <_£SBylmfl>f1>V;,\”Q

20t |Gl N? | sym
= ez B Py,

which vanishes as N — +00.
Observe that, since (z +y)? < 22 + 2y*, we have that

2

t M
Ey / N~% Z G (%) Z . Vi¥ (n)ds <
0 i=1

:EEB?

2EN /Ot N—% id:G (%) ( Z Tng’k(T}) - ﬁBifi(fi)>dS + (2.21)

xGB?

2

D
2By || [ N6 W) Lafi)ds
0 i=1

Claim 4. By the inequality (2.21) to prove

t M4
. . —d Yi ]’k —
i B V2000 2 nlE o | =0
=1 xEB?
It 1s enought to show that
t M ?
. . . —d v gk B e .
Jim inf Jim By /0 N ;G (%) ( %; . Vik(n) EBifZ(§Z)>ds = 0.

N
Vo)
to o(n(z),x € By) and f; stands for the translation of f that makes it measurable with

where the infimum is taken over all the functions f in L*( measurable with respect

respect to o(n(z),x € B;).
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Proof of the claim 4: In fact, using Proposition 8, we obtain that

Enx |:(/Ot N~% iZdG (%) ( Z TxVﬁi’k(n) - ﬁ&fi(fi))“) ]

xeB?

t M ?
<2En (/o N2 ZG (%) ( Z Vi () — ESBylmfi(fiDds) ]
=1 .’L'EB?
t M 2
+2Ey (/ N3G (%) L?Z’Zfi(gi)ds) ] :
0 i=1

Finally, to prove the claim it is enough show that

2
t M4
By || [ VIS 6w (X mvito) - ey a@)ds | | —o

0 i=1 z€BY
when N — oo. From the Cauchy-Schwarz inequality and Fubini’s theorem, we set

Ex [( /O N 26 (%) (X mvim - ﬁSBZT”fi(f»)ds) ]

xeB?

<t [ nimy (fc(%)(znvmn).c;%mfx@))) ]ds (222

=1 z€BY
M1 ’
=t*N"E,x Z G (%) ( Z . VE*(n) — ﬁ?ﬁfi(&))) ]
i=1 zeB)

since the support of T,Vi*(n) — LE" fi and Tng’k(n) — LY" fe are disjoints for x €
BY.y € BY, i # (. Last display is equal to

2N~ Eyévg

i () (X viton - ﬁ;{mmmﬂ

=1 z€BY

< ENTUGIE MY Eyy,

( Z Vit (n) — Lsg}llmfl(ﬁl))Z] (2.23)

JSEB?

<PNGIL I By,

( Z V& (n) — ﬁﬁmf1(§1)>2] :

zeB)
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Denote by R(LE™) the range of the generator LF™ in L*(vDy) and R-(LE™) the or-
thogonal space to R(LE™). Fiz a measurable function h € o(n(z); x € By). The

formula

inf  E s [(h—LF"f)?]

rer2pyy e

corresponds to the projection of h on RL(Csé’lm). Consider

Vs, = {I1%(0, 1) ;m € ({0,1}")™}

where IP'(z) = @ Z I(n,). The set Vg, is the set of all the possible values of

M, (1) = {n € ({0, 1) 1P (y1) = i}
v () = vB(- 1P = i)

M, i ={f € L*(vB,); Evg, ,[f] = 0}

Note that MY, ; has codimension 1 and R(LE™) is a subset of MY, ;. Since v}} is
invariant for the dynamics generated by £sBylm, and since the conserved quantities by the
dynamics are the mass and the momentum, vp, ; s invariant by dynamics generated
by LZ™. On the other hand, the kernel of LZ™ reduces to the constant functions since
LE"f = 0 implies that (f,(=LF")f)vs, . = 0 that in turn forces f to be constant.®
Consequently,

dim ker Esym =

And thus R(LE™) has codimension 1 because R(LE") C MY ;. Since MG ; h
codimension 1, follows that R(LE™) = MY, ;. Observe that MY

orthogonal functions to constant functions in L*(vg, ;), i.e,

i 18 the space of

f 11 <f, 1>L2(V31,z‘) =0« EVBN' [f] = 0.

Therefore, (MY & = constant functions in L*(vg,;). Thus, R(Lp, )" = constant
functions in L*(vp, ;). R(Lp,)" consists of all functions that depends on the configu-

ration n only through its the vector mass and momentum t. In particular, the infimum

SIn Appendix B, we prove that (—L%f, f)yévg is nonnegative. Using this, we have that

(=LY Py, +(f, =L f)yy, = 0 implies (=L f, f),x, = 0 for v-almost every 0, f(n) = f(n™*")
for all x,z € ']I‘jlv and v € V. Thus f is almost surely constant.
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over all f € v pé of the expression (2.22) is equal to "

inf  1YGIE, 5 [( PDEAAE ﬁ;ﬁmfl)z}

feL2(wy} z€BY
— inf Y GIAE s ViR —g)?
el CUNCIE gy | (3 V2 =) (2.24)
‘ 2
— G | (B | w2 2l |
P,Q P,Q
IEB?

Note that 15 (y,) is the vector average of mass and momentum on By. For x € BY,

0 _
7. V2" depends only on By, and since v5!

w18 homogeneous, we have that

B, {wa&(yn}

does not depend on x, above U := ka Z z; p(z,v)n(0,v)(1 —n(z,v)). Define,

veY z€7Z4

W™ () = B, [ W11 (1)
and V(p, 0) = E,, [V]. We can rewrite (2.24) as

\30\2

||G||2E31K\i!l(131(y1 —U(p, 0) Xd; By, — p‘)ﬂ. (2.25)

Z

Denote by ¢ the range of the function V. By construction, denote by A, =
{—t,....0}¢, and note that A, C By. Using Equivalence of ensembles (see 7?), we
have that

1 ) = $P ) < T (220
We can bound C(t.v)
B (1)) = DI )| £ =5 C(D)

Therefore, (2.25) is bounded from above by

2By | (9% o - 907 <y1>>)2] (2.27)
vl G, | (207 ) - 9000 Z (17 (1) - pj))z}@.%)

"Let X be a Hilbert space and A C X a closed subset. Then, in1f4 If—gll* = | fax
ge
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From (2.26), we can see there exists a constant C(¢,v,V) such that (2.27) is

bounded from above by

|BO|2 ., v)

2
2t i

IGI%

_YCIRCE 1Y) L
_ (

Now, let us estimate (2.28). In order to do that define

0.

- LN

K((p0). I (1)) = [T (I” (1)) — U(p,0) — > oy, P o) (I (1) — )|
j=0 ""7
B : oU
Note that K((p, 0),I;”' (y1)) is bounded, and observe that for (p, o) fixed, 8_p~('0’ 0)

bounded since the set of velocities is finite.

Remark 5. By the classical large deviations theorem for Bernoulli, if 0 < e < 1d((p, 0),07)
there exists constants C(g) > 0 and m(e) > 0 such that

P(I[I7 (y1) = pll > €) < C(e) exp{~1"m(e)}. (2.29)

We can split (2.28) when 1y 151y —pisey and Lymiy)—pj<ey- Using Remark 5,
we obtain that (2.28) vanishes as { — o0

2t2 ||G||2 E V2 [(K(Pa )JJ (?Jl)) ]]‘{||131(y1)p>€}:| —0 (2-30)

when | — +00.
To finish the proof is enough to show that

IBOI2

l 00
28— |G| E KK(Pa 0), I (yl))]]‘{||131(y1)—p<6}:| % 0.

Using Taylor’s expansion up to second order on W and the fact that U € C™ in the
compact ball B((,o, 0), 6), there exists a constant C(e, W(p, 0)) such that the last display

becomes bounded from above by

Ll 4
2By e, 00, 0 ZE[( w-r) |

< 2t2| |2

IG|2.C(d, e, ¥ (p, 0))I
<2t2 IIGII2 C(d,e,¥(p, )~
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and vanishes as | — +oo. This concludes the proof of the Boltzmann-Gibbs principle.
O

2.7 Convergence at initial time

Fort >0, let F; be the o-algebra on D([0, T, #2,,) generated by Y;(H) fors <t
and H in C®(T) and set F = o (U0 F).

Lemma 9. For every continuous function H : T = R and every t > 0,

Jlim_logEy [expin - Vi()}] = —0” 2 a1y

where X(p, 0) = [v;vpx(0,(Ap, 0)))];k s a (d+1) x (d+ 1) matriz, with (j,k)-th entry
is given by [vuex(0,(A(p, 0)))]-

N

Proof. Since v,', is an invariant product measure,

log En [exp{iw - Y;(H)}]

d
=logEy eXp{iijYtj(H)}]
=logE,y |exp Z’w] Z N ZH(%) (7 (n=(t)) — p;)
= Z logE, ~ exp{iijN QH(%) (7 (n=(2)) —p])}
- d T

= logE,y exp{N—SH(%)iZw;(F(m(fﬁ)) —m}

N~ d j _3d
=Y —5H (%) s Zwﬂ (n:(1)) | + O(N"=)
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Since

cov (]j(na:)7 Ik(nx)) =

= E (Z o (z,v) = EQY_ ven(a, v>>> (Z oy, 9) = B(Y_ v, a»)]
= > v (B.(Alp, 0))),

then, we have that

X
NhIJIrl logEy [exp{iw - Y;(H)}] = —wTMw(H, H).

2
O
Corollary 4. Restricted to Fy, Q is a Gaussian field with covariance given by
- vurx (0 (Alp, 0)))
Eolvg (@) = WX gy )
Proof. Fix a positive integer n,0 € R" and Hy, ..., H, in JZ,,. Since Yoj, Y} are linear,

and since, by assumption, Qy converges weakly to QQ, by the previous lemma,

exp {z Zwk z”: QjYOk(Hj)}]

log Eq

= logEq

exp {szkYO]"’(Z HjHj)}] (2.31)

d
k=0 j=1

X(p.0) /N 3
= —U)TTUJ QjHj,ZQjHj .

J=1 J=1

2.8 Proof of Proposition 7

Before proving Proposition 7, we recall the following results.

Proposition 9. Let {M"; t € [0,T]}nen be a sequence of martingales converging in
distribution to some process {My; t € [0,T]} as n — oo. If the sequence of random
variables {M,; : t € [0,T],n € N} is uniformly integrable, then {M;; t € [0,T]} is a
martingale.

Also the criterion of uniformly integrability:
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Proposition 10. If U, is a sequence of random variables integrables and

sup ||Ua||r < 00,
(03

for some p > 1. Then, {U,} is uniformly integrable.

Proof. Note that [ |U, - 14,]dP — 0 as n — +o0. Since by Holder’s inequality, we
have that

/ Ua-14,ldP < |Uallzr - | 1a,]l2e

= | Uallzr - (P(Ay))

M - (P(An))

IN

due to sup | U, || < M. O

We will use Propositions 9 and 10 to prove that My(H) is a martingale. By
Proposition 9, we need to show that M;(H) is uniformly integrable. To prove that, we

will use the Proposition 10, with p = 2, then, we need to show that

sup E[(M,(H))?] < +o0.

Nt
Note that {M"*(H)} is uniformly integrable:

E[(M""(H))*] =

E

IR D D BB B CACX) —ns($+6jav))2(3§vH(%))QdS]

d =
UEVJ:E']TNJ 1

= E[NtN’k(H)} —I—E[/Ot ﬁ Z Z ivi(ns(x,v) —ns(x + ej,v))2(8JNH (%))st]

d 1=
veY xz€Tg, J 1

~ o [ X5 S e fintee) e e 01 ()P

d 5=
veY zeTy J 1

<T(VH,VH) Y 1} x(0.(A(p, 0))),

veY

which is bounded. Therefore, {M}"*(H)} is uniformly integrable.

Remark 6. If MY converges weakly to M; in Skorohod topology then from Skorohod

representation Theorem, we have that exist
N d arN d
Wt == Mt and Wt == Mt
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such that
WY — W, almost surely.

Since uniformly integrable depends only on the distribution, we have that {WXN} is
uniformly integrable. Then,
1
Wy L w8

Since WX is a martingale with respect to the natural filtration G = o{n(s); s < t},
we have that for any A € G, s <t

EWN1,] = E]WN14].
Since 14 is bounded and W} Lﬁl Wi, then
EWN14] — E[W14].

On the other hand,
EWN1,4] = EWN1 4] — E[W,14].

This implies that
E[Wt|gs] — WS,

which means that W is a martingale. Since W and M have the same distribution, M
is a martingale. In fact, for any A € G,, we have

E[MSI]-A] = E[Ws]]-A] - E[WtI]-A] - E[MtII-AL

which implies that E[M,|G,] = M;.

2.9 Tightness

We prove in this section that the sequence of probability measures (Qn)n>1 1S
tight and all limit points are concentrated on continuous paths. We first review some
aspects of the uniform weak topology on D([0, T, #,) introduced in the beginning of

the chapter. Throughout this section p stands for a positive integer satisfying

d
p>2+3. (2.32)

For § >0 and a path Y in D([0,T),.7,) define the modulus of continuity ws(Y") by

ws(Y) = sup [|Vi — Vill,.
|s—#|<6
0<s,t<T

8This result follows from Vitali’s convergence Theorem
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To check the definition of || - |-, see 2.6.
The first result provides sufficient conditions for a subset to be weakly relatively
compact.
Lemma 10. A subset A of D([0,T],7.,) is relatively compact for the uniform weak

topology if

(i) sup sup [|Vil|_, < oo
YeA 0<t<T

(7) lim sup ws(Y) =0
From this lemma we deduce a criterion for tightness of a sequence of probability

measures Py defined on D([0,T], 7).
Lemma 11. A sequence { Py, N > 1} of probability measures defined on D([0, T, 7#.,)

is tight if for every 0 <t < T,
sup [[Vill_p > A =0
0<t<T

lim limsup Py
A—=00 Nosoo

and
lim lim sup Py[ws(Y) > €] =0
=0 Nooo

for every e > 0.
We have now all elements to prove tightness of the sequence (Qu)n introduced in

the beginning of the chapter.
Proposition 11. The sequence of probability measures Qy is tight. Moreover, all limit

points are concentrated on continuous paths.
The proof of this proposition is divided in several lemmas. We start with a key

estimate. For each z € Z2, denote by M} * and Ntz’k the martingales introduced before
with M7 = MN*(h.) and NP* = NN*(h.), where h. was introduced in (2.4). To

keep notation simple let
1 d
D (08h) (%) W —wp]

Jj=1

ZQ

2 (%) (Te(na(s)) — p’“)—Ng

=3 o Y zp(z,0)ns(0,0)[1 — ny(z,0)),

where
w
veyY z€Z4
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and
S = B W3] = 3 vko(0u(Alp, )

veY

Also, let

D5¥(5) = g D0 00 D0 ek (el 0) — e ey 0) Y@L (3))% (234)

d 7=
vey z€Tg, J 1

Therefore
t
MEF = YY) = YN )~ [ T ) (2:39
0

and

t
NF = (M) - / T2* (s)ds. (2.36)
0
Lemma 12. There exists a finite constant C(p, 0,v,T) such that Vz € 74,

lim sup Ex| sup |Y;Nk(hz) %]
N—o00 0<t<T

< C(p,0,v,T){(hs, hs) + (Vh,, Vh.) + (Ah., Ah,)}.

t
Proof. Rewrite Y,V (h,) as M7" + YN (h,) +/ I'7%(s)ds. Note that,

0
t
/ 5 (s)ds
0

t
< |MF|+ [YEN ()] + / T (s)ds.

Y )| < MR Y () +

(2.37)

Consequently

Y,V (h)

2 t 2
< {|M:”“\2 e+ ([ i) } .
0
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Now we compute each term separately. Then,

(1) = EN[sup m"*N(hz)P] = En{ VY ()

0<t<T

N> xe’ﬂ‘;{,
_ NL (he (£))*Ex[(Ik(n:(0,0)) = p*)?
= ﬁ . (hz (%))2 Uar(]k(nx(oav))7yﬂa.9)’

where var(Ix(n),v,,) = Zvi var(n(0,v)) = sz X(0.(A(p; 0)))-

veY veEY
Since h, is continuous,

En[(Ye" (h2))?] “=222% var(Ix(n,(0,v)), v50) (e, he)

On the other hand, since M; *is a martingale, by Doob’s inequality

(I) = Ex [ sup \Mf”’“|2] < 4Ey [\M;’k\z} . (2.38)
0<t<T
By definition of the martingale N**, we have
En[N/*] =EN[N*]=0 Vi

Consequently,

0= En[Ni*) = Bu{0 ] — B | [ 15 000s]
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The right-hand side of (2.38) is equal to

() = B | [ 15400

0

=Eyn

= d
vey j=1 z€Tg,

/0 ﬁZZ > vilns(,v) = nuw + e, 0)* (9 hs (%))st]

“ T T 0 () [ B ) e e o
= % (T;vi X6, (A(p. Q)))) i ET; (07"h= (%))?
and the last display converges to
(Tzvi X (6, (A(p, Q)))) zd:/w(f‘?jhz (%))%ds
v ! (2.40)

- (Tzv,%x<ev<z\<p, g>>>> (Vh., Vh.)

veyY
as N — oo.

Remark 7. Note that

En [(ns(2,v) = ns(z + ¢j,v))?]

= B [(n2(2,v) — 2n5(z, v)ns(x + €, 0) + 03 (z + €5, 0)]
= En [(ns(2,v) = 2n,(a, v)ns(w + €, 0) + 15z + €5,0))]
= 0u(A(p, 0)) = 20,(A(p, 0))* + 0u(A(p, 0))

= 2x(0,(A(p, 0)))-

To finish, it remains to bound the other term, namely,

t 2
sup (/ T7%(s) ds) ] :
o<t<T \Jo

(I11) := Ey
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Observe that, using Cauchy-Schwarz inequality

sup ( /0 t 75 (s) ds>2 <Ey {T /0 ' (Ff’k(s)>2 ds]

Ey

0<t<T
T r 2
:T/ En (Fik(s)) ] ds
0 L
T [ 1 (2.41)
§T/ E Anh (£) (I(n.(s)) — p*
2

LS S @A) (2) [ -

N zG’]I‘d Jj=1

Since (a — b)? < 2a” + 2b%, last display is bounded from above by

2

T
<of [ 3B | o 3 A3 () (Blna(s) )| +
0 xe'ﬂ'd
+Ey Nd > Z (0N h:)? (%) (W] —wi®)?| ¢ ds
zG’]I‘d J=1
- 2
/ 2 2 Ak () Ex [ (Tulna(s)) — 0)7] dst
Td
" (2.42)
+2T/ Nd Z Z aN h.)? (£) Ex [(TIVV;]Z —wp?)?]} ds
€T, j=1
T (M1 2 (2
— 9 o Nd Z Ayh. N) var(Ix(n), vp,e) ds+
:JcG']Td
—|—2T/ N Z Z 8N 2 % var (T, Wii, Vo) ds
zGTd Jj=1
and this converges to
T2 9
> var(Iy(n), Vp,o) (Ahz, Ah.) + 2T var (1. W}y, vp,) (Vh., V)

when N — +o0.

Corollary 5. For each p > 2+ 5
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(i) limsup Ey { sup ||Yt||2p] < o0
N—+o0 0<t<T

(i1) lim limsupEy | sup Z(Y;(hz))zy_p = 0.

4
n—=+00 N_y4o0o 0<t<T T

Proof. Recall the definition of .7, and the inner product (-,-),. We have

Y512, =) (G (he)) e

ze74

The expect in first expression can be estimates as

Ex [ sup ||Y,5N7’“||2_p] _Ey
0<t<T

sup Z(nN”%hz))%;p]

0<t<T d
ze

(2.43)
< 3 0B | sup (07402

<t<T
z2€74 Osts

By the previous lemma, we have

limsup Ey { sup ||YtNk||2—p:|
N—+o0 0<t<T

< lim sup Z 7. PEn [ sup (Yf,N’k(hz))ﬂ

N <t<T
—+oo z€Z4 Osts

= > 77 limsupEy { sup (YtN’k(hz))Q]

ot N—+00 0<t<T

< P Clp 0.0, T) {(hs, ho) + (Vhe, VA.) + (Ah., Ah.)}

z€Z4
=C(p,0,v,T) > 7" {1+ (Vh., Vh.) + (Ah., Ah.)}
2€74

1
=C(p,o,v,T) Y (TR {14 (Vh,,Vh,) + (Ah,, Ah.)}

z2€74

=Clp, o0, T) Y

z2€74

1
[1 4 (27|z[])?]

AL+ @allzl)* + @nl1z])"}

[+ @[]
[+ 2nl[=])2Pp

Sc(p7Q7U7T) Z

z€74

1
=Cloen ) 3 i e

z2€7Z4
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which is finite as long as 2(p—2)—d > 0 <= p > 2+2. This proves the first statement.
The second one follows by the same argument. O

It follows from Lemma 12 and Corollary 5 that, in order to prove that the sequence

(Qn)n is tight, we only have to show that for every e > 0,

lim lim sup Py jws(Y) > €] = 0.
020 No+oo

In view of part (ii) of the previous corollary, this result follows from the following

lemmoa:
Lemma 13. For every positive integer n and every € > 0,
limlimsup Py | sup Z (Yi(h,) — Yi(h))?*v.P > ¢| =0.

020 N—+oo ls—t|<6
0<s<T IZlI<n

Proof. To prove this lemma it is enough to show that
limlimsupPy | sup (Yi(h.) — Yi(h.))? >e| =0.

020 N—s+too |s—t|<6
0<s,t<T

for every z € Z%nd € > 0.

Fix z € Z? and recall the definition of M;*. Since

t
V() = Y5 () 2 4 [ T (s)ds
0
the lemma follows from the next two results.

Lemma 14. Fiz a function G € C*(T¢). For every ¢ > 0,

limlimsupPy | sup |[MF(G) — MPN(G)| > ¢| = 0.
020 N oo |s—t|<6
0<s,t<T

Proof. Denote by wj(M*V(G)) the modified modulus of continuity defined as

W (MFN(G@)) = inf max  sup  |MVN(G) — MBN(G))

i OSIST 4 <s<t<ti

where the infimum is taken over all partitions of [0, 7] such that

O=toy<t1 <...t, =T
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. (2.44)
=sup|NTE D G (F) (ki) = p) = N75 3 G () (lnalt7) = o)
= Slzp |N 2 Z G (%) []k(nx(t)) - Ik(nac(t_))”

Since the process is a Markovian process, each particle waits for ring of random clocks

exponentially distributed and independent. Consequently, there exists {z*,2* +¢;} €

T, such that (Ix(n.(t)) — Ix(n.(¢t7))) = 0 for every x € T, with z ¢ {z*, 2% + ¢;}.
Besides that, if x € {z*, 2" + ¢;}

L (D) = L(n(t7)) = D welmlw,0) = me- (,0))

veY

and there exists v* € V such that

> v, v) = mi-(2,0)) = (e, v") = - (2, 07) o, = i

veY
Therefore,
NS G (3) ) - Lnalt )] = i NG (3) - G (252))
z€TY,
From this we get
(244) = sup NG () - G () |
— UkN_%‘G (%) G (z-i];[ej) ’
< GINTERG(§) with & € (2,7 +¢)) (2.45)
< supyera G'(w) N-5-1
= N0 C0(G).

Besides,

in order to prove the lemma we just need to show that, for every € > 0

lim lim sup Py [wj(M%*) > €] = 0.

=0 Nooo
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By Aldous’ criterion, see for example [1, Chapter 4, Proposition 1.6], it is enough to

check that for every ¢ > 0:

lim limsup sup Py [|Mf+]g(G) — MFY(@)| > 5] =0,
0—0 N—+oo 71€%p
0<0<6

where %1 stands for all the stopping times bounded by 7. By Chebychev inequality,

the last probability is less than or equal to

1 1
SEx [M3(6) - MEY(6)2] = SEy [(MEN(G)? - MEY(G))?
because MtN k(G) is a martingale and 7 a bounded stopping time. By (2.36) this

expression is bounded from above by

L " G
?EN {/0 ry (r)dr} :

because Y is invariant, 7 a stopping time and @ is bounded from above by delta.

p,0
The limit as N — oo of this last expression is less than or equal to de2C||VG||3, this

concludes the proof of the lemma. n

Lemma 15. Fiz a function G € C*(T¢). For every ¢ > 0,

¢
. . k
hmhmsupIP’N[ sup ’/ %) dr
=0 Nooo 0<st<T | Jg

[5t<3

>€}:0.

Proof. By using the expression of T$"*(r), see (2.33), we obtain that

¢
PN[ sup ’/ Flc’k('r)d'r" >€]
0<s,t<T s
[s—11<6

_Py | sup / ST ANG (2) (k) - ) (2.46)

d
O‘SS_S}E? 2N> z€T4,
1 d
= 7 22 2 ONC) (R) W — wfdr| >
:):E'JT?V j=1
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Observe that the expression above is bounded by

19

P|:Su AGilx kdr)>—]

v,z | ) Z NG (£) (Iu(na(r)) — o) .

ls—t|<3
(2.47)

N' x r s €

+PN[05;1£T & S0 () -t > 5]
oi<s | weTd =1

We will compute each term above separately. For the first term, using Chebychev

inequality, we obtain

t
1 . & 3
Baf o | [ gar X A5G () (it~ ) ] > ]
|s—t|<é z€Tq
4 r tq . . 2
< gEN_(Ojgth / > Z ANG (£) (Tu(na(r)) — p¥) er ]
o o (2.48)
4 [ ' 1 T k 2 ’
Rk / IN Zd ANG () (Bu(ne(r) = p") dr }
|s—t| <8 z€T%,
4 r x o 12
< ?EN-OSS;%TH_S'/ Ve z; ANG (%) (Ie(na(r)) — p )} dr}
|s—t|<6 z€Ty,
since |t — s] <0 and 0 < s,¢ < T we can bound (2.48) from above by
) 2
< it ( 2 G () () =) ) ]
S
) T 2
- [ (5 e ) o
= Nz / > (ANG) (%) B | (In(na(r) = o)°] ar (2.49)
z€TY,
TS
= vz O (OGP (F)E [(Ik(m(r)) —p’“ﬂ
IET%
TS
= NngUar(]k(nz(T)%Vp,@) Z (ANG)? (%)

d
zeTy,

as N — oo, this converges to

S var (). v,) [ (AGY da
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T
since — var(Ix(n.(r)), l/pyg)/ (AG)? dz is bounded, when § — 0, we obtain that first
£ Td

term of (2.47) goes to zero.
On the other hand, we have that second term of (2.47) is bounded from above by

1
P, | T 3@ (0 et o>
0<st<T | N2 y -
|s—t|<§ z€Td, j=
! 2
(o | [ 5 050 () -t
—e 0<sth NS Zdz; (%) = wi)
[s—t|<d zeTy J
! 2
=—F su ’/ aN £ WP dr‘ ]
e? o 0<stlzT Ng Zd z} N ]k k )
|s— t\<6 z€TS, J
4
< B, |t_5|/ Nd ZZaN (%) (W) — wi?)] dr}
L0<s,t<T / -
[s—t|<8 z€Td, J=
< w13 30020 (2) - o ]
— Ndg2 0<s,t<T y - N 7, L (2.5())
|s—t|<6 z€T, J=
4T6 )
= Niz2 2{EN[ZZ % jk_wk )2]
ze’]l‘d j=1
Ea[ S SOOP (5) (W~ OGP () (s - )]}
z#y j=1
4T6 N x .
:ngzzza G (%) [( Wiy — w,'zg)}
z€Tq, J=1

4TS (=) .
~ Ndgz2 Z Z aN N “ar(w/j,k”/ﬁ’»@)

xETd Jj=1

and when N — oo this goes to
4To
— var(Wi, prg)/ VG?dx.
Td

AT
Since —- var(Wjy, VM)/ (VG)? dx is bounded, when § — 0 we obtain that second
9 d

B

T
term of (2.47) goes to zero. This concludes the proof of tightness. O
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Appendix A

In this section, we establish some technical results that are needed in order to

prove the hydrodynamic limit for the model discussed in the previous sections.

A.0.1 Computation of Ly(x/"", H)

Recall that the conserved quantities are the mass and the momentum. For k =

0,...,d, denote by Wf’N the empirical measure associated to the k-th conserved quantity:
1
k,N
T = N Z Le(n:(t))0u/n, (A.1)
mGDdN

where 9, stands for the Dirac measure supported on u. We denote by (Wf’N,H) the
integral of a test function H with respect to the empirical measure Wf a8

k,N,by

Further, denote by m;° and Wf’N’bN’l the empirical measures associated to the

k-th thermodynamic quantity restricted to the boundary:

_ 1
A = S L)

IEED]d\]
r1=1

fori=1,N—1.
ex ex, c s 1
Let Ly = N*{L5 + L5524 L5+ L8} and oY = i > Li(na(t))6s . Let us

xEDflV
compute the action of the generator of the empirical measure. We do this separately to

make the presentation easier to follow.

Lemma 16. Recall the definition of the empirical measure that was defined in (A.1).



Let H be a test function, we obtain that

ex 1 T
N2LG N H) = SN Z kan(%v)ANH (£)

d
z€DY, veY

(A.2)

Proof. Since the operator is linear, we just need to compute £§$’1(77(;E, v)). For f(n) =
n(x,v) with z; # {1, N — 1} note that

(LY () = % DO Iy w)(1 =y + ej,w)) + nly + e, w)(1 =y, w))]

weV yeD¢, j=1

+ [y, w)(1 = nly — ej,w)) + 1y — e;,w) (1 — Ny, w)[f(n?~) = f(n)] .

We have that
77@/4/Jrejww(x7 w)=n(y,v)ifr =y+e;and w=v

and

T]y’y"‘ej?w(x, w) = ’r](y -+ 6j7 ’U) lf r=y and w ="v

if w#v= n¥¥tav(z v) =n(x,v). Hence,

DN | —
=

(L)) = [(n(z + €5, 0)(1 = n(x, v))) = (n(z, V)(1 = n(z + €}, v)))]

1

<
Il

+ (2, 0)(1 =z = e;,0))) = (n(x = ej,0)(1 =0z, v)))]

>0l +ej,v) =l v) + (e — ej,0) =, v)

n(x+ej,v) +n(z —e;,v) — 2n(x,v).

I
| —
(]~
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Now consider f(n) = n(x,v) for z; = 1, we have that

(77(27 i'v U) - 77(17 i'v U))

N | —

(LY () =
and for vty = N — 1

(Li\gfmlf)(n) = (U(N - 27%71}) - U(N - 17‘%71)))'

| —

Therefore,

N2LSPNmfN HY = SN Z Z kaH (£) In(z + €j,v) + n(z — e;,v) — 2n(z,v)]

repd, VEV j=1

xlzN]\il
N? o
+2Nd Z ZUkH (N’ %) (77<27 Z, U) - n(lv Z‘,U)) )
zeD9 veY
r1=1
where Z = (z3,...,x4). Grouping the terms, we have that

€x N2 a T+e; r—e;
NLEMaPN ) = oi D0 DD wen(w) [H () + H ()~ 2H (3)
wepd,  vEV j=1
x1¢{1,N71}

(A.3)
To force the appearance of the discrete Laplacian, we will add and subtract the ex-

pression below with ¢ = {1, N — 1}

S el [ (550) 4 1 () — 211 (5)].

xED‘Ji\, vey
r1=1
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Then we get

N2LG (™ H)

Y S vt [H (5 + 1 (5) 20 ()

$ED§1V vey j=1

N
r1=N-1
N2
+2Nd Z ka [H (%v %) - H (%v %)} n(1,z,v)
zepd, VEV
N2 r1=1
~owa 2 2 wen(LEw) [H(F.5) + H (5. %) = 2H (5. 5)]
zepd VEV

xr1=1

Which gives

ex 1 T
N2£N’1<7Tf’N7H> = oNd Z kan(x,v)ANH (£)+

zeD4, veEV

N
r1=N-1
N? . N
tora Do 2. [H (%) — H (5, %)) (L. 2v)

zeD9 veVY

r1=1
(A.4)

]

Lemma 17. Recall the definition of the empirical measure that was defined in (A.1).
Let H be a test function, we obtain that

N2LE (ab N HY = % Z kaH (£) o (%) —n(1,2,v)]
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Proof. Observe that

N2LY (nb N HY) = % Z ZUkH (%) LY (n(z,v))

Z’ED?V vey
Since the operator is linear, we just need to compute L% (n(x,v)), for f(n) = n(x,v).
We have that
EHIOEDY Z o (%) (L=n(L,2,w) + (1, 2, w)(1 - oy (£))]
zepd, wEV
z1= 1

x[f(e*"n) — f(n)]

- ZNe Bo (%) (1 =n(N = 1,2,w)) + n(N = 1,z,w)(1 = B, (£))]

GDIdV weyY
z21=N-1

where
1 —n(z,v), ifw=wvandz=z,

o?n(z,v) = {

Note that for w # v and = # z we have that f(c**“n) — f(n) vanishes, then

n(x,v),  otherwise.

@i = faw () S T2 0, ()0 - 2000,3,0))

N? N
[ﬁv (2) (1- n<NN_9 1,3,0)) 0N ;\;,f,v)(l — B, ()1 —2p(N — 1,;5,0)]]
= o (3) I - T (3)
5, (2) (1 —n(NN; Lz,v) nN zvle,:ﬁ,v)(l ()
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Therefore, we have that

N2LY (aiN H)

]

Lemma 18. Recall the definition of the empirical measure that was defined in (A.1).

Let H be a test function, we obtain that
N2LS (mp N HY = 0.

Proof. Observe that

N2LS (nb N HY) = % Z kaH (£) L (n(z,v)).

xED?\, veY

(A7)

Since the operator is linear, we just need to compute LS (n(z,v)) For f(n) = n(x,v),
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we have that

(L5 f)(n)

=33 pel @)l @) — F)]
yeDY, 4€Q

- ch($7 q,n)[n(x,vjr2) — n(z,v)]
q€Q

=z, vo)n(z, v1)(1 = n(z,v2))(1 = nlz, v5))
X[U(QZUQ) - 77(% UO) + 77(557 U3) - 77(%“1) + 77(% UO) - 77(957712) + 77(%“1) - 77(% 1}3)]

=0.

Therefore,
N2LS (ni N HY = 0. (A.8)

]

Lemma 19. Recall the definition of the empirical measure that was defined in (A.1).
Let H be a test function, we obtain that

d
exr ]- x s
N2LG (PN H) = FE j aNH ) (2) Wiy (A.9)

where (t1n)(z,v) = n(z + z,v) and W].]Y,;S = ka Z p(z,0)zms(0,0)(1 — ns(z,v)).

veY 2€74
Proof. Observe that
N2LG* ™ H Z > ueH (%) L5 ((z.v))
zeDd veY
Since the operator is linear, we just need to compute £5%(n(z,v)), for f(n) = n(z,v),
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we have that

(LS ; Z[:)d (z,w))p(z =y, w)[f (") — f(n)]
== ED:d n(x, v)p(x = y,0) [y, v) = n(z,v)]
I e o)1 = )t = )l ) a0
- < > 900000 e ke = ) 0) = o)

% Z n(@,v) (1 = n(y, v)p(y — z,0) [0y, v) = n(z,v)

== Z n(z,v))p(x — y,0)] — [z, 0) (1 — n(y, v)p(y —,v)].

yEDd
Then

N2LG (™ H)

- % DD wH (%) [y, v)(1 = n(z,v))p(@ — y,v)] = [z, 0)(1 =y, v)ply — z,v)]

;gyedeEV
= 2 S wH () (e, 0)(1— nly,v))ply — 7, v)]
xyEDd veV
Ndﬂ ST ST (£) Iy, v)(1 =yl 0)ple = y,v)]
J;yeDd veY

114



and we can change x by y in the second term, to get that

NALG (mlN ) =

Ndﬂ Z > weH (£) [n(z,0)(1 = n(y. v)ply — z,v)]
Nd_H Z Z UkH % U)(l - 77(3/7 U))p<y -, U)]
xyEDd veV

e X et (§) o)t ot + 2 0l

LEEDd vEV zeZd

+NNTL S Y S wn (2,0)(1 = nx + 2,0))p(z,v)

zeDY, vEV zeZd (A.lO)

= o 2 3 vkl v) (1= e+ 2,0z, )] [H () — H (3)]

;cED?lV vey ZEZd

d
NdZZka z,v)(1 —n(x + z,v))p Z ) (£) =

zeD% vEV zeZd j=1
d
1 X
= a2 2 OVH) () D w Yz v)zm(a, o) (1= (e +2,v))
J=1 zeD¢, veEV 2z€Z4

I
2=

<
.!.
>

(@0 H) (£) W
d

A.0.2 Computation of £N<7rf’N, H)? — 2<7Tf’N, H>EN<7Tf’N, H)

In order to simplify the presentation, we split the generator and calculate sepa-

rately each term.

Remark 8. For 7rt N the empirical measure associated to the k-th thermodynamic
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quantity introduced in (A.1). Then

<7T5N7H>[m7z’v - <7TfN7H>

= 3 L) H (2) —ﬁ S Lm0 (%)

yeDY, yeDY,
xzv 1
= S0 S ) H ()~ 5 S wnlyw)H (%)
yeDd, weY yeDd, weV
Nd oS weH () [ (y, w) = n(y, w)).
yng weY

Takingv =w, y=x and v =w, y =z

(A.11)
= m’uk [77(2,7)) - ?7(% U)] [H (%) —H (%)]

Lemma 20. For 7rf N the empirical measure associated to the k-th thermodynamic

quantity introduced in (A.1) it holds,
N2LG b H)? — a{l ™, HYN2L (e, )
(A.12)

= oy 2 Stk b)) O H (31

d j=
UEVJ?EDNJ 1
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Proof. Note that

N2£ex1< fN,H> _2<7Tt , >N2£?\}r,l<ﬂ_f,N’H>

=SS ) (1 e )N HYPE (Y E

veV z,zeDY,

et ) S S e, )1 (e, o), H) P ()

veY x,z
N® k,N 2 kN 2
=30 ST o)1=z o) [, HPIE — (Y, )
'UGVZ‘,ZED%

—2(m N HY (mp N HY [P+ 2(mPN | H)?)

:%Z > e, o)1 =z, ) (™, B — (ap™ H)P

veV g zeDd

=SS o) (e 0) | godnCe,) — i ()~ H ()

vEV o zEDd

- 2]]\\77; Z Z vin(z,v)(1 —n(z,v))n(z,v) —n(z,v)]*[H (£) — H (£)

veY m,zEDfV

=gy X vl = nz o)l ()~ # (R

veEY o zEDd

Y S (a1 — e+ e (55) — B (3

veV zeDY, J= 1

e, 0)(U = (e — e, 0)) [H (52) = 1 (3)]°)

= 2]]\\7[2d Z Z ZUI% [77(56,1))(1 - 77(55 + ej?”)) + 77(37 + ejﬁv)(l - 77(93,?1))]

d =
UEVIEDN] 1

<[H (55) — H (%)

- %Z Z sz [77(%1)) _77(.%'+6j,v))]2[]—] (x-]&;/ej) _H(%)]z

d 1=
vey zeDY J 1

= e 2 S0 S ek )~ + e ) PN H (£)

d 9=
vey z€Dg, J 1
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Lemma 21. For 7rt N the empirical measure associated to the k-th thermodynamic
quantity introduced in (A.1) it holds

N2L5H (™ H)? = 2w, H)N? L5 e, )

1 (A.13)
= it 35 20 3 hote e bl ()
Proof. Note that
NALEA N HY? = 2 H)NL 2w, H)

; 2[3) =z, 0)p(z — 2, 0)[(m HY 175 — ()N, H)?)
S ZD e (e — (e, H) I ()
vy Y 3 e = sk st ot
TR
vy Y ZD (e (e — )Y, Y ()P

; 3 et gt~ o) gt (e v) — (e, )] [ () — H (2)]F
- Y S vinta 1otz i) e P () ()
- Y S e e IO RO

= NN—Z S ST i, v)(1 - (e + w,0))p(w, o) [H(z + w/N) — H (£))?

veV zeD¢, weZd

— a2 Y 3 ekl o)1 e+ wo)plu o)ulO) H ()

veV ge DY wed
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Remark 9. Note that

<7T5N7H>]x’v - <7Tf7N7H>

|
=~ D Ll ) H (%) - Nd > L(ny(0)H (%)

yGD;{, yeDd
1
=7 2 2wy w)H (§) - Z > win(y, w)H (%)
yeDd weV ye D%, weY
Nd D wH () 1 (v, w) =y, w)].
yeDd weV

Taking v = w and y = x last expression is equal to

= 2 [0 (£) (1= (e, ) — e (%) (e, )]

(A.14)

= ﬁvk [1—2n(z,v)| H (%) :

Lemma 22. For ﬂf’N the empirical measure associated to the k-th thermodynamic
quantity introduced in (A.1) it holds

N2LY (rp N Y2 — 2(rpN  HYN2LY (™| H)

N2 @v% 1 —n(z,v)) + 1—041;% z,v 2 172 (=
=WZZ[ CILESESURAESNE ) PP

zeD%; veY (A15)
- Bo % 1 -5, % LU o 0 (s
Z Z[ —n(z, ));9( (3))n( )} V2 H(2).

mEDIdV veV
r1=N-1

Proof. In order to make the presentation easier, we denote by

0u(3)(1— n(e.0) + (1~ au(E)n(r.v)
i) = | - }

119



and computing (A.15) for z; = 1, we obtain

N2LAmy ™ H)? = 2(m™ HYN LY (™ H)

= N2 30 S vl AT — (N H)?

vend, veV
xl 1

) NQZZTa ) >]a:v_<ﬂ.i€N7H>]

a:eDd veV
xlzl

- fvv— S S e HE (2) (1 20tz )

zeD% veY
1= 1

2 T
N2d E'ra i H N)'
'zEDd veV
x1:1

Forzy =N -1

N2L (e, HY? — 2(at H)N2Lhy(rb ™ H)

N2d N°¢

zeDd, veV
=N

Z Z [ﬁv N ( )) (1_6v(ﬁ>> (x U) U,%HQ (%)

Therefore, by Lemmas 20, 21, and 22. We can establish the following proposition.

Proposition 12. For 7rt N the empirical measure associated to the k-th thermodynamic

quantity introduced in (A.1), it holds

£N<7T5N7H> - 2<7T5N7H>£N<7T5N7H>

— o 2 2 Dok (e~ nfa + o)) Y H (3)F

veV zepd, j=1

+ﬁz Z Z vi n(z,v)(1 = n(z +w,v))p(w, v)w [aNH(

veV reDY weld

() (L = n(z,v) + (1 = au(FNn(, )] 5 o,
deZZ[ NY : }UkH (ﬁ)

zEDd vey

2=
SN—

mll

v% (1 —n(z,v 1—1,% T,V 9 119 ( x
NQd Z 2[6 n(z,v)) + (1= Bu(F))n( ):|UkH(]_V)‘

N
zeDd, veVY
xlszl
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A.1 Deriving the weak formulation

Note that the weak formulation of the system of PDFEs can be obtained in the
following way. Take a test function G € CY2([0,T] x D) and multiply both sides of
the equality

3p.0) + ol - VX(0(A(p, )] = 5A(p. ) (A17)

veY

by G and then integrate both sides in time and space to get

| [ atvoctwands [ [ 3o VoAl )Gt u) dude
0 JDd 0JDd ey

T
:l// A(p, 0)G(t,u) dudt.
2 0 Dd

Computing each term separately, we perform integration by parts in the time integral

and we get to

/0 [ 0p, 006t 0) dut - / (0, 0) (T, ) G(T, ) dus — /D (0.0)(0, 0G0, ) du

// p, 0)(t,u)0:G(t,u) dudt.
Dd

Let dS be the Lebesque measure on T,

//Ddz A(p, 0)))]G(t, u) dudt =

veY

//{1} Td o[v - x(0,(A(p, 0)))]G(t, u) dS dt

(A.18)
//0} Td—1 X(H (A(p7 Q)))]G(t,u) dsS dt

//ZUX A(p, 0 UZGtududt
D4 U

veY 2:1 ¢

M:“
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Doing integration by parts twice in the spacial integral

1 [T 1 [T

-// A(p,g)G(t,u)dudt:—// A0:0) (y Gk, w) dS

2 0 JDd 2 0 J{1}xTd-1 aul

_1/T/ 0
2 Jo Jyoyxra—

1 (7 oG 1 /T 1520
+§/0/{0}XW1(/), @)(t,u)a—ul(t,u) det+§/0/Dd(P, o)(tu)y 5o (tu) dudt.

=1 ¢

(p; 0) 1 /T/ dG
u, (LGt u)dSdt — o i {1}XW_1(p79)<t’“)8u1<t’“>d5dt

Putting together the last identities, we obtain

[ D@ GE 0 du— [ (p.2)(0.0)G(0,0) du =
//Dd p, 0)(t, u)0,G(t,u dudt—//l}xw 2 v (s (Ap, 0)))]G(t, u) dS dt

/ / opens 2 10 XOA P DG ) dS e

T e
+// (Y vi— (t,u) du dt
0 Dd; (6. ; au

7

1 T/ a(p, 0) 1 /T / a(p, 0)

+= t,u)G(t,u)dS dt — = t,u)G(t,u)dS dt
2 /0 {1}xTd-1 duy (8, )Gt u) 2 Jo {0}xTd-1 duy (t, W)G(t,v)
I oG 1 (7 oG

2 /0 /{1}de1@7 2 u)a—m(t, u)dSdt + 2 /o /{o}xqrdl(p’ o)t u)a_ul(t7 w) dS di

d 92
t t d dt.
//Dd pe “2 2 u u

Z

(A.19)
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Appendix B

In this appendiz, we establish some technical results that are needed in order to

prove the equilibrium fluctuations for the model discussed in the previous sections.

B.0.1 Computations of £Ly[V,""(H)]
We will compute separately, in order to simplify the presentation. Recall that
_d .
YVHH) = N72 Y 0 H (%) (e(ne(t) = o). (B.1)
mED}i\,

Lemma 23. For a test function H, we obtain that

N2 LAY )] = S AN (£)] (B.2)



:N*§+QZ (£) 5 S Uelases (0) + Taliao, (1)) — 200 (0))

= % % +2 Z Z % ]k 77J:+e,( )) +H (%) Ik(nx—ej(t)) —2H (%) Lc(”ﬂc(t))}

—1N—*+2ZZ (552 Te(na(8) + H (252 I(na()) — 2H (£) Le(na(1))]

Lemma 24. For a test function H, we obtain that

d
N2LGYHH) = =N Y SOV H) (£) [ W — wp?l, (B.3)
zeTd, j=1
where
W;’ik = ka Z ij(Z, U)nt(oa U)[l - 77t(27 U)]
veEY z€Z4
and

W 1= = vyx(6,(A(p, 0)))-

veY
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Proof.

N2LPAYNHH) = N2LG? |N72 > H (£) (Te(na (1) — o%)

z€TY,

— N—5+2 Z H(£) L5572 (Iu(na(t))

xET%

d

= N3 Z Z(@ZH) (%) TxVVjt,k

zeTg, J=1
:—N"ZZE)N % TmW]tk—w,’;g

xETd Jj=1

- L X @) ()]

O]
Lemma 25. For a test function H, we obtain that
N2L5 YV (H)] = . (B.4)
Proof.
N2LG Y (H)) = N2Ly (N72 Y0 H (5) (Ie(na() — o)
xETd
iN_é+2 Z H % ‘CN Ik 7]3:( ))
xETd
=0.
O

B.0.2 Computations of Ly ([Y;Nk(H)]Q) — 2V NR () LN YR (H))
We will compute each term separately, in order to simplify the presentation.

Remark 10. Note that

YN H) (172 = Y (H) = NT
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Indeed,

YN H)(170) = Y (H)

W) — = NE ST H (8) [Ty () — o]

d
yETN

k7 (y)) — Li(ny(2))]

H(£) D oen™"(y) = > vin(y)]

veY veY

z|@

_d
2
_d
2

ZI@

d
2

Td
X
yGTd
yeT%,

If y =z and y = z, because when y # x, z the equation above vanishes. Therefore, the

last display is equal to

N*%[H (%) ven(z,v) — H (%) ven(z,v) + H (%) ven(z,v) — H (%) vn(z,v)]

= N=tuu[H (%) — H (%)]n(z,v) = n(z,v)]
(B.6)

Using the notation introduced in Remark 10, we obtain that

N2LHE] = T30S o)1 (e, ] VYR — (75 ().

veY $,Z€T‘Ji\,
(B.7)
Now we will prove the following lemmas:
Lemma 26. Let H be a test function. We have that
N2LGHYH(H))?) = 2V (H) N2 LY [V (H)]
(B.8)

= o 3 S SR (nlw )l +e0)) @Y H (3))

vEV zeTy, j=1

126



Proof. Using the notation we introduced above, we have that

N2LYHY N (H))) = 2y (H) N2 LR Y, ()

=Y ) - e ) [0FE ) — ()]

veY Z’ZET(JiV
[lo—z]|=1

—QYtN’k(H)N? > D @)l =z o) [(VH) () = (v (H))]
vEV 4 erd

[[z—z[|=1

=Y o)l ) [ E) ) — (7))
veEY ©,2€Td

[lz—z[|=1

Now using the Remark 10 last expression is equal to

B3 Y @)= a0l [N E (3) = H () —a0)]

z—=[=1

=N )t obEH (3) — H (3) () — n(z. o)

z—=[=1

Remark 11. Note that

n(z,v)(1 =n(z,0)n(z,0) = n(z,0))?

= (n(z,v) = n(z,v)n(z,v)n(z,v)* = 29z, v)n(z,v) + n(z, v)?
= n(z,v)n(z,v) = 2n(z,v)n(x, v) + n(z,v) = n(z,v)n(z,v)
+2n(z,v)n(z, v) — n(z, v)n(z,v)

= 1n(z, v)[1 = n(z,0)].

By this remark, we can rewrite (B.9) as

:%Z 2 o)l =tz eli(H () - 7 (5))*

|lz—z[|=1
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Since ||z — z|| = 1, we obtain

2 d
o 3 S S B[ )1 = e+ e U (3) — H (S5

d =
veV zeTg, J=1

e, 0) (1= e = e;,v))(H (52) = H (%))?]

= S S B[ )1 e e ) (H (3) - H (25))?

d =
vey z€TS, J 1

+n(z + ej,v)(1 —n(z,v))(H (£) — H (xjvej))ﬂ

- QL]\de Z Z sz n(z,v)(1 —n(x +e;,v)) +n(x+e;,v) (1 —n(z,v))]

d =
vEV zeT¢, J=1

P S X Y ale) e e o) U (5) — H (552
veV zeTd, j=1

d

- ﬁ Z Z sz (77(%1)) - T](ZL‘ + 6]‘,’0))2 (ai\JIH (%))2

d J=
veV zeTd, j=1

Lemma 27. For a test function H, we have that

N2LYP 1Y (H))) = 2v M (H) N2 L2 [y, ()]

(B.10)

(B.11)

= e S S nlw o) (e 4w, v)pw,v) (DN H ()7

veV  zeTd, lw|<R j=1
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Proof. Using Remark 10, we can rewrite

N2LYP (Y (H))) = 2y (H) N2 L2 [y, ()]

2

TS )= (el ) [V — V)|

Uevmze’ﬂ‘d
2Nd+1 Z Z = n(z,0)p(z — 2, 0)v; (77(:1:',@) - 77(2,1)))2([{ (2) - H(£))?
UGszer
_ 2]]\\f[d+1 Z Z vpn(z,v) (1= n(z,0)pz —z,v)(H (£) — H (%))

Note that p(w,v) = 0 for |w| > R, where R is the range of p. Therefore, writing

z —x = w with |w| < R, we obtain

s S YD )1~ e, ))pl ) (HG +w/N) — H ()

vey T wer

d 2
= oy o 20 )L a4 o)) (za;m(%)wj)

veY T wG’]I‘d

_ ﬁz 23S e, 0) (1 - (e 4+ w,v)p(w,v) (N H (%)) w?

—
veY z,weTY J 1

= ﬁ Z s Z Z Z n(z,v)(1 — n(x 4+ w,v))p(w,v) (0N H (%))2%2

vV zeTd, [w|<R j=1

Lemma 28. For a test function H, we obtain that

N2LS, ([YtN’k(H)P) ~0. (B.13)
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Proof.

N2y (I UDR) = N2 | | N8 Y 1 (3) (1(0) = )

= N"Lg | Y H (%) H (%) (n(a(8) = 0°) (Tl (1) = p)

= N Z H (£) H (%) £5 [T () I (0 (8) — 9" Le(na() — 9" Te(ny (1) + (6)7]
_ N z H (£) H (%) L5 (s () I(ny (2)]

(B.14)
note that £%[(pr)?] = 0 and L [11(n.(t))] = 0 because momentum is preserved.

Claim 5. To conclude the computations, let us prove that for every real function f if
I (n:) = Ie(n2?) it holds

Ly k()] = 0.

This claim close the case when x = y, in the last equality of (B.14).

Proof of the claim. In fact, if v,w € V are such that

{ n(z,0) = n(z,w') =0

then, for ¢ = (v, w, v, w’) € Q. We have

(2, 0) = 9(2,w) = 0
n¥i(z,v") = n¥i(z,w'") = 1.

If 2 # o we obtain I(n2?) = I(n,).
On the other hand, if z = x,

I (n7?)

Z ven® Y (x,v)

veY

~ ! /

= E Vg + U, + wy,
DeV*

= E 6k+vk—|—wk

vep*

where V = {0 € V; n(z,9) = 1} and V* = 0\{v,w,v’,w’}. Therefore the last display
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results to be equal to

Z@k = Ii(n2)- (B.15)

ey

From the Claim 5, we can conclude that

Ly ([Lx(n:)]*) = 0.

Claim 6. To finish the proof of Lemma 28, we need to show that

T (1) T (ny) = Te(nz ) (7).

Proof of the claim. In fact, observe that
I 54 —

if z ¢ {z,y} = { U
I (n>?) =

consequently,
Ly (1) Ik (ny) = Te(nz*) Ie ().

On the other hand, if

we also have that
Ii(ne) Ik (ny) = Te(np®) Te(n?).

If
L(nz%) = L(ny?) = Li(n.
smy = D) = LO) = T(n.)
Lie(ny?) = Li(ny?) =

S~—
|
=
—
=3
<
N—

we obtain

Ii(ne) Ik (ny) = Le(nz®) Le(n;?),

and this proves the claim.

From the Claims 5 and 6, we have that
N2L5 (1Y) = 0.

this finishes the proof of the Lemma 28.
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B.1 Some extra results

Remark 12. By Taylor expansion, we have that

t t 2
(/ YSN”“(%ANH> ds—/ YSN”“<%AH> ds> ] — 0,
0 0

as N — +oo. Also

Ey

En

d . d
(S [ ooy
0 i

veY =0

veY =0

d t d 2
- Z Uk Z /0 YsN’z(Z 0;0p, F(p, 0)0u, H) ds) — 0,
j=1

as N — +oo.

Remark 13. Note that
(=LY ] [y, 2 0. (B.16)

Proof. By writing the term at the left-hand side of (B.16) as its half plus its half, we
have that

(Lt D =5 [ X Snwa i) - s v

d
yeDY, a€Q

5 | X Sntanlse - folsm

yeDY, 4€Q

Performing a change of variables in one of the terms, last display is equal to

-5 [ & S ntwamliar) - fols o

yED}iV q€Q

%/ SN vl a0 — fF)If () dvY

yeD% q€Q

5 | X Snvanlorn - s i

d
yeDY 9€Q

this implies that (=L f, ).y, = 0. O
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