UNIVERSIDADE FEDERAL DA PARAÍBA CENTRO DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA QUÍMICA

IARA SILVA NUNES

ESTUDO DO ARMAZENAMENTO DO SUCO DO TOMATE (Lycopersicon esculentum Mill) EM PÓ OBTIDO POR SPRAY DRYER

IARA SILVA NUNES

ESTUDO DO ARMAZENAMENTO DO SUCO DO TOMATE (Lycopersicon esculentum Mill) EM PÓ OBTIDO POR SPRAY DRYER

Trabalho Final de Curso, submetido à Universidade Federal da Paraíba, Centro de Tecnologia, João Pessoa – PB, para obtenção do grau de bacharel em Engenharia Química.

Professora Orientadora: Dra. Veruscka Araújo Silva

Professor Coorientador: Dr. Heber Sivini Ferreira

Catalogação na publicação Seção de Catalogação e Classificação

N972e Nunes, Iara Silva.

Estudo do armazenamento do suco de tomate (Lycopersicon esculentum Mill) em pó obtido por spray dryer / Iara Silva Nunes. - João Pessoa, 2019.

80 f.: il.

Orientação: Veruscka Silva.
Coorientação: Heber Ferreira.
TCC (Especialização) - UFPB/CT.

1. Spray Dryer. 2. Armazenamento. 3. Suco em pó. 4.
Tomate. I. Silva, Veruscka. II. Ferreira, Heber. III.
Título.

UFPB/BC

IARA SILVA NUNES

ESTUDO DO ARMAZENAMENTO DO SUCO DO TOMATE (Lycopersicon esculentum Mill) EM PÓ OBTIDO POR SPRAY DRYER

Trabalho Final de Curso, submetido à Universidade Federal da Paraíba, Centro de Tecnologia, João Pessoa – PB, para obtenção do grau de bacharel em Engenharia Química.

Professora Orientadora: Dra. Veruscka Araújo Silva

Professor Coorientador: Dr. Heber Sivini Ferreira.

Data da aprovação: 20 de Setembro de 2019.

BANCA EXAMINADORA

Prof(a). Dr(a). Genaro Zenaide Clericuzi

Avaliador(a): Dra. Clediana Dantas Calixto

Avaliador (a): Marcelo da Silva Pedro (Engenheiro Químico)

AGRADECIMENTOS

À Deus, por todas as portas abertas e por tornar todos os obstáculos superáveis.

À minha mãe, Maria do Socorro, por todo apoio, esforços, força e confiança depositados em mim para que tudo se tornasse possível.

Ao meu pai, Haroldo, minha irmã Íris e minha tia, Margarida, por todo apoio e suporte concedido durante minha caminhada.

À Matheus, pelo carinho, confiança e por muitas vezes acreditar em minhas capacidades até mais do que eu mesma, ensinando-me a perseverar.

A minha orientadora, Veruscka Araújo, pela amizade, apoio, disponibilidade e por toda ajuda e colaboração necessárias para realização deste trabalho.

Ao meu co-orientador, Heber Sivini, por toda ajuda, ensinamento, ideias e por estar sempre disposto a auxiliar no que for preciso.

Aos técnicos dos laboratórios da universidade e todos aqueles que auxiliaram na realização das análises de forma prestativa e paciente.

Aos amigos e colegas de curso, que estiveram ao meu lado durante essa caminhada, tornando-a menos árdua.

A todos vocês, muito OBRIGADA!

RESUMO

O tomate chegou ao Brasil na década de 1920 e devido ao seu alto consumo e produção, tornouse uma hortaliça de grande participação econômica no país. Por fazer parte da necessidade diária das pessoas no preparo de alimentos e possuir alta perecibilidade, a demanda de produtos industrializados ou semiprontos oriundos do tomate também tem crescido consideravelmente, porém, assim como a maioria das frutas e hortaliças, o tomate e produtos à base deste tem vida útil limitada e por esse motivo acaba necessitando passar por métodos de conservação para prolonga-la. A conservação consiste em manter o alimento o mais estável possível, envolvendo características químicas, físicas e biológicas. Dentre os métodos de conservação existentes, este trabalho visa o estudo do armazenamento do pó de tomate obtido por secagem por atomização ou spray dryer. Assim como os demais produtos desidratados, o pó de tomate apresenta degradação de acordo com o tempo de prateleira e com sua forma de armazenagem, que permite que o alimento sofra degradações de acordo com variações de temperatura e incidência de luz, perdendo algumas de suas características físico-químicas importantes para o organismo, por esse motivo o presente trabalho realizou o estudo do armazenamento do pó de tomate obtido à temperatura do ar de entrada à 150°C em spray dryer, em três tipos de embalagens de polietileno com exposição à luz, proteção da luz e refrigeração, analisando as causas da exposição e proteção da luz e também da temperatura ambiente e refrigerada, durante um período de 90 dias, através de caracterizações físico-químicas constantes a cada 30 dias. As análises realizadas no produto em pó obtido foram atividade de água, umidade, cinzas, pH, sólidos solúveis totais, análise granulométrica, microscopia eletrônica de varredura, espectrometria de fluorescência de raios-X e isotermas de adsorção. Algumas dessas análises também foram realizadas no suco in natura para melhores comparações. Como resultado, o processo de secagem apresentou bom rendimento, chegando a 36,51%, quando comparado à literatura. Pôde-se observar que as características do suco in natura foram mantidas em sua maioria, como pH por volta de 4, cinzas, além de apresentar grande redução da umidade e que os métodos de armazenamento estudados apresentaram resultados próximos ao do suco in natura. Porém, o melhor resultado apresentado através do estudo do armazenamento durante os 90 dias foi para amostra armazenada em embalagem de polietileno com refrigeração, que manteve as características do produto inicial, mostrando-se também como método que reduz a facilidade de aquisição de umidade do ambiente, por apresentar redução da umidade durante refrigeração, chegando a valores de 3,23%, baixa aglomeração de partículas, possuindo o menor diâmetro médio final de 7,03 µm e redução da atividade de água de 0,237 para 0,204 após 90 dias de armazenamento, o que é favorável à sua conservação, sendo então escolhida como melhor método de armazenamento, capaz de aumentar o tempo de vida de prateleira do produto.

Palavras-chave: spray dryer; armazenamento; suco em pó; tomate.

ABSTRACT

The tomato arrived in Brazil in the decade of 1920 and because of its high consumption and production it became a fruit of great economic participation in the country. For being part of the people daily need in food prepare and for having high perishability, the demand of industrial products or semi-finished products made from tomatoes has also considerably grown, but as the most fruits or vegetables, the tomato and products made from tomatoes have limited life time and for this reason this has to go through conservation methods to prolong it. The conservation consists in keep the food as most stable as possible, involving chemical characteristics, physical and biological. Among the methods of conservation this work aims to the study of the tomato powder storage obtained by spray drying technique. As well as the other dehydrated products the tomato powder presents degradation with shelf time and with its form of storage that allows food to degrade according to temperature variations and light incidence, losing some of its physicochemical characteristics that are important to the organism, for this reason this work studied the storage of tomato powder obtained at the inlet air temperature at 150°C in spray drying process, in polyethylene packaging with light exposure, light protection and cooling, analyzing the causes of light exposure and protection and also environment and refrigerated temperatures, during a period of 90 days through constant physical-chemical characterization every 30 days. The analyses performed on the powdered product obtained were water activity, humidity, ashes, pH, total soluble solids, particle size analysis, scanning electron microscopy, X-ray fluorescence spectrometry adsorption isotherms. Some of this analysis were also realized in the juice *in natura* for better comparisons. As a result, the drying process presented a good yield, getting to 36,51%, when compared to the literature. It can be observed that the characteristics of the juice in natura were mostly maintained, like pH around 4, ashes, besides presenting a big reduction of humidity and the storage methods studied presented close results when compared to de juice. However, the best result obtained through the 90 days of storage went to the sample stored in polyethylene packaging with cooling that kept the initial product characteristics, showing up as a method that reduces the ease of acquisition of the humidity from the environment for presenting reduction of humidity during refrigeration, reaching to values of 3,23%, low agglomeration of particles owning the smallest final average diameter of 7,03 mm and reduction of water activity from 0,237 to 0,204 after 90 days of storage, what is favorable to its conservation, being chosen as the best storage method capable of increase the product shelf life.

Keywords: spray dryer; storage; juice powder; tomato.

LISTA DE FIGURAS

Figura 1. Constituição do tomate
Figura 2. Fatores que afetam a secagem por <i>spray drying</i>
Figura 3.Micrografia do pó de caju amarelo obtido por <i>spray dryer</i> utilizando Goma Arábica
Figura 4. Tomate do tipo italiano <i>in natura</i>
Figura 5.Obtenção do suco de tomate. A- Peneiramento; B- Suco sem cascas e sementes
Figura 6. Diluição da maltodextrina e agitação constante do suco
Figura 7. Spray dryer de escala piloto da marca Labmaq do Brasil, modelo LM- SD 5.0.
Figura 8. Pó do suco do tomate obtido após secagem em spray dryer
Figura 9. Embalagens utilizadas no armazenamento: A- Embalagem de polietileno utilizada para armazenamento exposto à luz e com refrigeração; B- Embalagem de polietileno envolta com folha de alumínio para armazenamento com proteção à luz
Figura 10. Reconstituição do suco de tomate em pó. A- suco de tomate em pó; B- Adição de água ao pó; C- Suco reconstituído após agitação
Figura 11. Equipamento CILAS 1090LD utilizado para análise granulométrica45
Figura 12. Pó de tomate durante análises isotérmicas. A- Pó no início do processo; B- Pó após 24 horas exposto a umidade do ambiente
Figura 13. Análise granulométrica do pó pós secagem (PS)
Figura 14. Análise granulométrica do pó em EPEL de acordo com o tempo de armazenamento. A- após 30 dias; B- após 60 dias; C- após 90 dias
Figura 15. Análise granulométrica do pó em EPPL de acordo com o tempo de armazenamento. A- após 30 dias; B- após 60 dias; C- após 90 dias
Figura 16. Análise granulométrica do pó em EPR de acordo com o tempo de armazenamento. A- após 30 dias; B- após 60 dias; C- após 90 dias
Figura 17. MEV do pó de tomate PS
Figura 18. MEV do pó de tomate armazenado em EPEL. A- após 30 dias; B- após 60 dias; C- após 90 dias
Figura 19. MEV do pó de tomate armazenado em EPPL. A- após 30 dias; B- após 60 dias; C- após 90 dias

Figura 20. MEV do pó de tomate armazenado em EPR. A- após 30 dias; B- após 60 dias; C- após 90 dias
Figura 21. Gráfico das isotermas de adsorção para amostra PS e armazenada em EPEL.
Figura 22. Gráfico das isotermas de adsorção para amostra PS e armazenada em EPPL67
Figura 23. Gráfico das isotermas de adsorção para amostra PS e armazenada em EPR68

LISTA DE TABELAS

Tabela 1. Composição do tomate in natura (peso médio de 100 g de fruto fresco)
Tabela 2. Embalagens rígidas, semi-rígidas e flexíveis24
Tabela 3. Umidade para alimentos secos em gramas de água por 100 g de produto seco 29
Tabela 4. Condições operacionais da secagem
Tabela 5. Métodos de Armazenamento do pó de tomate
Tabela 6. Caracterização físico-química do suco do tomate in natura (SIN) e pós obtidos por secagem em spray dryer após a secagem (PS) e durante o período de armazenamento51
Tabela 7. Resultados das análises de atividade de água para o pó armazenado em diferentes condições durante os períodos de 30, 60 e 90 dias comparados com o resultado pós secagem.
Tabela 8. Resultados das análises de umidade para o pó armazenado em diferentes condições durante os períodos de 30, 60 e 90 dias comparados com o resultado pós secagem54
Tabela 9. Resultados das análises cinzas para o pó armazenado em diferentes condições durante os períodos de 30, 60 e 90 dias comparados com o resultado pós secagem
Tabela 10. Elementos minerais presentes nas amostras de suco de tomate em pó em diferentes formas de armazenamento e após secagem
Tabela 11. Resultados das análises pH para o pó armazenado em diferentes condições durante os períodos de 30, 60 e 90 dias comparados com o resultado pós secagem
Tabela 12. Resultados das análises de sólidos solúveis totais para o pó armazenado em diferentes condições durante os períodos de 30, 60 e 90 dias comparados com o resultado pós secagem.
Tabela 13. Diâmetros das amostras
Tabela 14 Parâmetros do modelo matemático de PEK 69

SUMÁRIO

1.	INTROI	DUÇAO	13
2.	OBJETI	VOS	15
	2.1. Obj	etivo Geral	15
	2.2. Objeti	vos Específicos	15
3.	REVISÂ	ÁO BIBLIOGRÁFICA	16
	3.1. O T	Comate	16
	3.1.1.	Tomate em Pó	19
	3.2. Arn	nazenamento de alimentos	19
	3.3. Cor	nservação de Alimentos	23
	3.3.2.	Secagem	25
	3.3.2.1.	Secagem por Atomização (Spray Drying)	25
	3.3.2.2.	Agente Carreador	26
	3.3.2.2.1	. Maltodextrina	27
	3.4. Car	acterísticas Físico-Químicas	27
	3.4.1.	Teor de Sólidos Totais	27
	3.4.2.	Atividade de Água	28
	3.4.3.	Umidade	29
	3.4.4.	Cinzas	30
	3.4.4.1.1	. Espectrometria de Fluorescência de Raios- X (FRX)	31
	3.4.5.	Potencial Hidrogeniônico (pH)	32
	3.4.6.	Sólidos Solúveis Totais (°Brix)	33
	3.4.7.	Análise Granulométrica	34
	3.4.8.	Microscopia Eletrônica de Varredura (MEV)	35
	3.4.9.	Isotermas de Sorção	36
4.	METOD	OOLOGIA	39
	4.1. Ma	teriais	39
	4.2. Eta	pas de Processamento	39
	4.2.1.	Preparo da Amostra	39
	4.2.2.	Secagem do Suco de Tomate em Spray Dryer	40
	4.2.3.	Rendimento do Processo	42
	4.3. Mé	todos de Armazenamento	43
	4.4. Est	udo das características físico-químicas do suco	44
	4.4.1. Sc	ólidos Totais	45

	4.4.2.	Atividade de Água	45
	4.4.3.	Umidade	45
	4.4.4.	Cinzas	46
	4.4.4.1.	Espectrometria de Fluorescência de Raios-X	46
	4.4.5.	Potencial Hidrogeniônico (pH)	46
	4.4.6.	Sólidos Solúveis Totais (°Brix)	47
	4.4.7.	Análise Granulométrica	47
	4.4.8.	Microscopia Eletrônica de Varredura (MEV)	48
	4.4.9. Is	otermas de Absorção	49
5.	RESUL	TADOS	50
5	.1. Caract	terísticas do Processo	50
	5.1.1. Re	endimento	50
	5.1.2.	Sólidos Totais	50
5	.2. Car	acterizações físico-químicas do Produto	51
	5.2.1. EPEL, E	Resultados das análises físico-químicas para o suco <i>in natura</i> (SIN) e pós PSEPPL e EPR todas em 30, 60 e 90 dias obtidos por <i>Spray Drying</i>	,
	5.2.2.	Atividade de Água (aw)	52
	5.2.3.	Umidade	53
	5.2.4.	Cinzas	55
	5.2.5.	Espectrometria de Fluorescência de Raios-X (FRX)	56
	5.2.6.	Potencial Hidrogeniônico (pH)	57
	5.2.7.	Sólidos Solúveis Totais (°Brix)	59
	5.2.8.	Análise Granulométrica	60
	5.2.9.	Microscopia Eletrônica de Varredura (MEV)	64
	5.2.10.	Isotermas de Adsorção	68
7.	CONCL	.USÃO	74
RE	FERÊNC	IAS	75

1. INTRODUÇÃO

O tomate (*Lycopersicon esculentum Mill*) tem origem nas regiões andinas, inicialmente ocupadas pelos incas nas regiões do Peru, Bolívia e Equador. Ao final do Século XV o fruto do tomateiro já havia chegado ao México, onde era chamado de fruto de tomati ou jitomati pelos indígenas mexicanos, expandindo-se para as demais regiões da América do Sul e Central, chegando ao Brasil na década de 1920. Desde então o tomate se tornou uma hortaliça de grande produção e consumo no país onde apenas a cadeia agroindustrial do tomate movimenta ao ano cerca de R\$ 3,2 bilhões, sendo o oitavo maior produtor de tomate com produção de 1,5 milhões de toneladas de fruto segundo o Conselho Mundial de Tomate para Processamento (CMTP). (TREICHEL, et al., 2016)

Segundo a revista Hortifruti Brasil (2018), em seu anuário 2018-2019, a área de tomate encerrou 2018 (safras de inverno, anual e indústria 2018 verão 2018/19), com queda de 11,8% frente à de 2017. A redução se deve sobretudo à indústria, que diminuiu sua área em 17,6%, devido aos estoques elevados de polpa. Esses estoques foram realizados frente a alta produção no ano anterior que ocorreu principalmente devido ao grande consumo populacional que gera alta demanda do fruto no mercado. Este crescente consumo relaciona-se a diversos fatores, dentre eles o aumento da necessidade de maior rapidez no preparo dos alimentos, que aumenta a demanda de produtos industrializados ou semiprontos oriundos do tomate, como molhos prontos para consumo, catchups, temperos, que necessitam de uma quantidade considerável do fruto para sua produção.

Assim como a maioria das frutas, vegetais e hortaliças, o tomate é um alimento de alta perecibilidade, o que limita sua vida útil de acordo com a temperatura do ambiente, além do alto grau de maturação que pode atingir em um pequeno espaço de tempo. Esses fatores, quando aliados com a demora entre as colheitas, transporte inadequado, exposição a temperaturas elevadas e demais danos físicos ao fruto resultam em grandes perdas do produto e consequentemente ao lucro que esta quantidade proporcionaria.

Tendo em vista tamanha perecibilidade do fruto, pode-se dizer que o mesmo possui vida de prateleira limitada, necessitando passar por métodos de conservação para prolonga-la. A conservação consiste em manter o alimento o mais estável possível, envolvendo características químicas, físicas e biológicas (FOOD INGREDIENTS BRAZIL, 2012). Dentre os métodos de conservação, pode-se destacar o método pelo uso do frio, mais conhecido e utilizado pela

população, pois este consiste em inibir ou retardar a multiplicação dos microrganismos, além de retardar também as reações químicas e enzimáticas pela redução da temperatura de armazenamento do alimento, que inibe a proliferação e evita a disseminação biológica em um alimento fresco ou processado (LEONARDI; AZEVEDO, 2018).

Outro método utilizado para conservação dos alimentos é a secagem, que permite a obtenção de produtos com baixa umidade de água e por este motivo, aumentam sua vida útil. A secagem natural é um processo barato, que consiste na redução da umidade do alimento em até 70% ao sol e em seguida, na sombra, para que seja preservada a cor e o aroma natural do alimento. Já a secagem artificial utiliza equipamentos específicos, utilizando-se ar quente à uma certa velocidade e com maior possibilidade de retenção de vitaminas do que a secagem realizada ao sol (CELESTINO, 2010).

Muitos processos de secagem têm sido aplicados para produção de alimentos em pó, dentre eles, a secagem por atomização ou *spray dryer*, uma técnica largamente utilizada para produção comercial de leite em pó, sucos de frutas e vegetais. Este método apresenta flexibilidade quanto a sua operação, permitindo que as condições de secagem sejam alteradas para obter o produto seco devido as características de cada produto, obtendo-se um material seco com características homogêneas e de alta qualidade (SILVA, et al., 2012). Além disso, o tomate em pó surge com grandes vantagens, possuindo grande facilidade de armazenamento, transporte e manuseio, representando um ingrediente estável, natural, sem grandes quantidades de conservantes, de fácil dosagem e que pode ser utilizado para conferir cor e sabor para produtos alimentícios (AL-ASHEH et al., 2003; FARAHNAKY et al., 2008; GOULA et al., 2008).

No entanto, a polpa do tomate ou o suco do tomate é um produto de difícil secagem em *spray dryer* devido à baixa temperatura de transição vítrea e baixo peso molecular dos açúcares presentes no fruto (GOULA et al., 2008). Quando expostos a altas temperaturas, necessárias para atomização, esses açucares fazem com que o material fique aderido as paredes do equipamento, devido sua alta higroscopicidade e pegajosidade, tornando seu armazenamento e manipulação ainda mais difícil (MACHADO, 2010). Para amenizar esse problema, faz-se necessário o uso de agentes carreadores antes da atomização ser realizada, pois estes possuem alto peso molecular facilitando o processo de secagem, o armazenamento e o manuseio do produto. Dentre os agentes carreadores, encontram-se a maltodextrina e a goma arábica, que são os mais utilizados em alimentos, sendo a maltodextrina a mais utilizada nos processos de secagem por *spray dryer*, pois possui alta solubilidade, baixa higroscopicidade e menor custo (FERRARI, 2012; GOULA et.al, 2008; WANG, 2012).

Os produtos desidratados apresentam degradação de acordo com o tempo de prateleira e de armazenagem, devido a vários fatores internos e externos ao produto, o que afeta sua qualidade. Os tomates, assim como diversos produtos industriais, quando não armazenados de forma correta, possuindo exposição a luz, contato com oxigênio e consequentemente ganho de umidade, aglomeram-se e ocorre o empedramento além de causar oxidação, impossibilitando que o produto seja recuperado ou utilizado (ALVES, 2001). As embalagens para alimentos são planejadas para proteger o produto, não interagindo com o alimento acondicionado e funcionando como barreira inerte entre o alimento e o ambiente. Dentre as embalagens mais utilizadas encontram-se embalagens de polietileno e embalagens laminadas, que buscam aumentar a vida de prateleira dos alimentos, mantendo suas características de qualidade (RAMOS, et al., 2008; ENDO, et al. 2007).

Portanto, além da importância de estabelecimento de condições de processo, faz-se necessário avaliar e estabelecer boas condições de armazenamento, para que seja garantida a qualidade físico-química do produto durante longo prazo e consequentemente o beneficiamento do consumidor e diminuição de perdas.

2. OBJETIVOS

2.1. Objetivo Geral

O objetivo geral do trabalho consiste em avaliar as condições de armazenamento do pó de tomate seco em spray dryer utilizando maltodextrina 20DE como agente carreador e avaliar as variações das propriedades físico-químicas de acordo com três diferentes condições de armazenamento.

2.2. Objetivos Específicos

- Realizar a secagem do suco de tomate microencapsulado com maltodextrina 20 DE por spray dryer à temperatura de 150°C;
- Obter a caracterização físico-química do produto através de análise granulométrica, atividade de água, cinzas, pH, sólidos solúveis (°BRIX), umidade, microscopia

eletrônica de varredura, isoterma de Adsorção e espectrometria de fluorescência de Raios-X;

- Realizar três diferentes tipos de armazenamento do pó de tomate seco em spray dryer,
 que consistem em:
 - I. Embalagem de polietileno com exposição a luz (transparente);
 - II. Embalagem de polietileno com proteção da luz (envolta com folha de alumínio);
 - III. Embalagem de polietileno com refrigeração;
- Caracterizar físico-quimicamente o produto de cada modo de armazenamento a cada 30 dias iniciados após a secagem, durante um período de 90 dias;
- Selecionar a melhor condição de armazenamento do produto, considerando a conservação das características físico-químicas do mesmo.

3. REVISÃO BIBLIOGRÁFICA

3.1. O Tomate

O tomate (*Lycopersicon esculentum Mill*), fruto do tomateiro, é originário da costa oeste da América do Sul, onde as temperaturas são moderadas (médias de 15 °C a 19 °C) e as precipitações pluviométricas não são muito intensas. Entretanto, floresce e frutifica em condições climáticas bastante variáveis. A planta pode desenvolver-se em climas do tipo tropical de altitude, subtropical e temperado, permitindo seu cultivo em diversas regiões do mundo (EMBRAPA, 2006).

A produção de tomates é de grande importância para o cenário econômico mundial, sendo uma das hortaliças mais consumidas e apreciadas no mundo. O grande consumo de tomates na forma in natura assim como na forma industrializada, em molhos, extratos, polpas, ketchup e tomates secos, abrange não somente o cenário nacional, mas internacional, aumentando também sua produção em diversos países (EMBRAPA, 2006).

O fruto originário da América do Sul, mais precisamente nas regiões andinas ocupadas pelos incas no peru, na Bolívia e no Equador é cultivado em quase todo o mundo. De acordo com a Organização das Nações Unidas para a Alimentação e a Agricultura (FAO), em 2012, a produção mundial de tomates chegou a 161 milhões de toneladas, produzidos principalmente na China, com cerca de 50 milhões de toneladas (FAO, 2012; CARVALHO; PAGLIUCA,

2007). A estimativa brasileira para produção de tomates em 2016 foi de 3,5 milhões de toneladas, produzidas principalmente nas regiões do Nordeste, Sudeste e Centro-Oeste, uma cadeia produtiva que chega a gerar cerca de R\$ 3,2 bilhões por ano (TREICHEL, et al., 2016).

Este crescimento está totalmente associado a demanda do produto, que aumenta continuamente devido o crescimento pela busca de alimentos mais saudáveis, que favorece o crescimento da venda do produto. O tomate é um alimento funcional, que possui altos valores de vitaminas A e E, além de ser rico em licopeno (CARVALHO e PAGLIUCA, 2007). O licopeno é um carotenoide, responsável pela coloração vermelha do fruto e sua quantidade varia de acordo com o estado de maturação do tomate. Normalmente, a quantidade de licopeno presente no tomate varia entre 3 e 5 mg de licopeno por 100 gramas de fruto fresco, podendo possuir valores superiores ou inferiores a este (HART; SCOTT, 1995).

A composição do tomate tende a variar de acordo com sua forma de cultivo e condições ambientais na qual foi produzido (SUÁREZ; RODRÍGUEZ; ROMERO, 2008). Normalmente, o fruto maduro possui entre 93% e 95% de água e consequentemente 5% de matéria seca, dentre eles, 50% são açúcares redutores, como glicose e frutose e 10% são ácidos orgânicos (SHI; MAGUER, 2000). A Tabela 1 apresenta a faixa de minerais e nutrientes que compõe o tomate maduro in natura com peso médio de 100 g.

Tabela 1. Composição do tomate in natura (peso médio de 100 g de fruto fresco).

Água	93 a 97 %
Matéria Seca	5 a 7 %
Sólidos Solúveis	3,5 a 6 %
Caloria	18 a 20
Fibras	0,5 a 0,6 %
Proteína	0,7 a 0,11 g
Gordura	0,13 a 0,30 g
Boro	0,06 a 0,13 mg
Cálcio	6,02 a 34 mg
Cobre	0,05 a 0,33 mg
Enxofre	6,72 a 10,3 mg
Ferro	0,29 a 0,44 mg
Fósforo	17,4 a 43 mg
Magnésio	7,06 a 8,53 mg

Potássio	23 a 190 mg
Sódio	1,09 a 2, 08 mg
Zinco	0,12 a 0,19 mg
Manganês	0,06 a 0,17 mg
Vitamina A (β caroteno)	900 a 1271 U.I. *
Vitamina B1 (tiamina)	0,05 A 0,08 mg
Vitamina B2 (riboflavina)	0,03 a 0,05 mg
Vitamina B3 (ácido	50 a 750 mg
pantotênico)	
Vitamina B5 (niacina)	0,5 a 0,9 mg
Vitamina C (ácido ascórbico)	10 a 40 mg
Vitamina E (α tocoferol)	40 a 1200 mg

Fonte: EMBRAPA, 2006; Ferrari, 2008.

É possível observar a presença significativa de potássio, fósforo e cálcio no fruto, que são responsáveis pela melhoria da qualidade nos frutos, como na síntese de carotenoides, aumento de peso médio e construção da parede celular do tomate, respectivamente. Além disso, o fruto dispõe de diversas vitaminas essênciais para o organismo, além de um baixo teor de gordura e calorias, sendo também fonte de fibras (FERRARI, 2008). O tomate apresenta valor calórico pouco acentuado, é rico em vitaminas, minerais e flavonóides, que protegem contra várias formas de câncer, doenças do coração, derrame e catapora. Suas fibras estimulam as secreções digestivas (CAMARGO, 2005).

Além disso, como mostra a Figura 1, o tomate é constituído por oito partes: epicarpo, mesocarpo, endocarpo, feixe fibrovascular, septo, lóculo (pode variar de acordo com o tipo de tomate), tecido placentário e sementes. Na indústria, não são utilizados a pele e as sementes do fruto no processamento, possuindo outras formas de reutilização ou descarte.

^{*} U.I.= 0,6 μ g de β caroteno.

Figura 12. Constituição do tomate.

Fonte: A autora.

3.1.1. Tomate em Pó

O tomate em pó é procurado por fabricantes de diversos derivados do tomate, ou que necessitem desse produto como acompanhamentos, como molhos, massas desidratadas, temperos secos e ketchup, pois apresentam vida útil maior do que o fruto in natura, além de possuir baixo custo de transporte e necessitar de menor espaço para armazenamento (FARAHNAKY et al., 2008; GOULA et al., 2008).

Esse produto consiste no resultado da desidratação do suco do tomate, que pode ser realizada por diversos métodos, porém, quando realizada em *spray dryer* apresenta maior qualidade do produto final devido sua capacidade de manter a composição do alimento, além de permitir a entrada do mesmo em suspensão, que é característica intrínseca do suco. Quando o pó do tomate é reconstituído, deve apresentar as características mais próximas possíveis do produto in natura, ou seja, rápida dispersão, cor, sabor, aroma, composição química e nutricional (MACHADO, 2010; GOULA et al.,2008).

3.2. Armazenamento de alimentos

Segundo a Embrapa (2000), o armazenamento consiste no conjunto de atividades e requisitos para obter-se uma correta conservação da matéria prima, de insumos ou de produtos acabados. Este armazenamento compreende a manutenção de produtos e ingredientes em um ambiente que proteja sua integridade e qualidade, impedindo contaminações e proliferação de

microrganismos, protegendo contra alterações ou danos ao recipiente ou embalagem em que o produto está contido.

As condições ambientais possuem grande efeito com relação ao armazenamento dos alimentos, pois as condições do meio ambiente determinam qual dos microrganismos presentes no alimento irá se sobrepor, produzindo alterações em suas características. Dentre esses fatores, estão presentes as propriedades físicas e químicas dos alimentos, a disponibilidade de oxigênio e a temperatura (GAVA, 2007).

Estudos de armazenamento de alimentos foram realizados por diversos autores com o passar dos anos, dentre eles estão Gomes et al. (2004), que estudaram o armazenamento da polpa de acerola em pó em temperatura ambiente, Arlindo et al. (2007) estudaram o armazenamento do pimentão em pó em embalagens de polietileno enquanto Lisboa et al. (2012) estudaram o armazenamento do figo da índia em pó, através de frequentes caracterizações dos produtos.

3.2.1. Propriedades Físicas dos Alimentos

No armazenamento de alimentos, umas das propriedades físicas mais importantes é a água, que pode, conforme sua situação e disponibilidade, influenciar grandemente no crescimento microbiano, que necessitam de umidade para se desenvolver. Essa umidade pode ser adquirida também através do ar, pois quando a umidade relativa do ar é menor que a do alimento, este perderá umidade pela superfície, até que a umidade relativa do ar seja maior e o alimento absorva-a (GAVA, 2007).

3.2.2. Propriedades Químicas dos Alimentos

As modificações decorrentes da alteração nas propriedades químicas dos alimentos, são de fácil percepção do consumidor, podendo ocorrer tanto devido ao seu armazenamento, quanto suas manipulações e processamento, alterando sua qualidade. Dentre esses atributos, estão a textura, causando perda de solubilidade e de retenção de água, endurecimento ou amolecimento, o sabor, observado pelo desenvolvimento de rancidez (hidrolítica ou oxidativa) e variação de cor, oriunda de escurecimentos ou branqueamentos (DEMODARAN; PARKIN, 2019).

Ainda segundo Demodaran e Parkin (2019), muitas reações químicas e bioquímicas podem alterar a qualidade e segurança do alimento, como a hidrólise de lipídios e de

polissacarídeos, a oxidação de lipídios, interações com metais, desnaturalização de proteínas, dentre diversos outros fatores que alteram a qualidade do produto, causando as alterações de textura, sabor, cor e valor nutricional assim como seu tempo de prateleira.

3.2.3. Disponibilidade de Oxigênio

A redução da pressão parcial de O₂ em um sistema de armazenamento e embalagem diminui as taxas de metabolismo, crescimento de microrganismos aeróbios e oxidação, promovendo um aumento na vida de prateleira dos alimentos, havendo exceções apenas quando há possibilidade de deterioração por respiração anaeróbia ou crescimento de bactérias anaeróbias (AZEREDO, et al., 2000).

O Oxigênio é o fator que mais contribui para o aumento do potencial redox de um alimento, ou seja, sua facilidade de ganhar ou perder elétrons. Quanto mais oxidada está uma substância, mais positivo será o seu potencial elétrico. Os microrganismos variam no grau de sensibilidade ao potencial redox do meio de multiplicação e podem ser divididos em grupos de acordo com a presença de oxigênio requerida. Esses grupos são divididos em aeróbios, exigem presença de oxigênio, anaeróbios, que requerem ausência de oxigênio, facultativos, que se multiplicam em ausência ou presença de oxigênio e microaerófilas que se multiplicam melhor em baixa quantidade de oxigênio (HOFFMANN, 2001).

De acordo com Demodaran e Parkin (2019) em situações nas quais a exclusão do oxigênio é desejável, essa condição é quase impossível de ser obtida por completo, pois em alguns casos, os efeitos danosos de quantidades residuais de oxigênio tornam-se aparentes durante o armazenamento. Isso pode ser observado na formação prematura de pequenas quantidades de ácido deidroascórbico (a partir da oxidação do ácido ascórbico) que pode resultar em escurecimento do produto durante o armazenamento.

3.2.4. Luz

A exposição a luz é um fator de grande importância no armazenamento de alimentos, pois juntamente com o calor, intensifica a degradação das cores dos carotenoides. Esse resultado baseia-se na hipótese de que os carotenos são descoloridos pela remoção de

hidrogênio, abalando a estrutura do cromóforo e dando origem a radicais peróxidos livres que são bastante instáveis (SCHIOZER e BARATA, 2007).

Ainda, de acordo com Schiozer e Barata (2007), a exposição a luz induz a fotoisomerização trans-cis e a fotodestruição dos carotenoides, portanto, os trabalhos experimentais envolvendo carotenoides devem sempre ser realizados e armazenados sob iluminação reduzida.

Para alguns produtos, a exposição à luz pode causar efeitos danosos. Nesses casos, é adequado que os produtos sejam embalados em material refratário à luz ou que se controlem a intensidade e os comprimentos de onda da luz, se possível (DEMODARAN; PARKIN, 2019).

3.2.5. Temperatura

O armazenamento de alimentos pode ser feito de três formas principais quanto a temperatura, incluindo:

- Armazenamento sob congelamento: Os alimentos são armazenados a temperatura igual ou inferior a 0°C. O congelamento impede que a maior parte da água presente seja aproveitada pelos microrganismos, inibindo seu crescimento.
- Armazenamento sob refrigeração: Utiliza temperaturas um pouco acima do ponto de congelamento, armazenando os alimentos em temperaturas entre 0º e 10º C.
- Armazenamento à temperatura ambiente: Para os alimentos que não necessitam de condições especiais de temperatura para a armazenagem (EMBRAPA, 2000).

A temperatura de refrigeração a ser escolhida varia de acordo com o produto e as condições de armazenamento, fazendo com que apenas variedades diferentes de um mesmo alimento, necessite de diferentes temperaturas de armazenamento (GAVA, 2007).

Altas temperaturas também podem ser utilizadas no processo de conservação e armazenamento dos alimentos, pois tem como fundamento os efeitos destrutivos sobre os microrganismos. O calor desnatura as proteínas, inativando as enzimas necessárias ao metabolismo microbiano, porém, quando resfriado o produto pode ser recontaminado. Já à baixas temperaturas, há a inibição ou retardamento da multiplicação dos microrganismos e das reações químicas e enzimáticas (LOPES, 2007).

3.3. Conservação de Alimentos

Os alimentos são considerados todas as substâncias ou produtos de qualquer natureza que por suas características, aplicações, composições, preparação e estado de conservação estão aptos para serem utilizados na alimentação. Estes, dependendo do modo de armazenamento, durante um período de tempo, vêm a sofrer desnaturação, hidrólise, oxidação, decomposição, entre outros fatores que acabam por reduzir sua vida útil (FREITAS; FIGUEIREDO 2000).

Devido ao alto teor de degradação dos alimentos, principalmente naturais, e a necessidade de produtos sazonais durante todo o ano, faz-se necessário o uso de métodos de conservação para prolongar a vida de prateleira desses alimentos. Desde os primórdios, o homem procura conservar os alimentos, porém, por não haver conhecimento suficiente, esses alimentos sofriam alterações significativas, não cumprindo sua total finalidade no organismo, mesmo que esses métodos fossem efetivos, porém com o passar do tempo têm sido aprimorados, demonstrando maior funcionalidade (FOOD INGREDIENTS BRAZIL, 2012).

A conservação consiste em manter o alimento o mais estável possível, mesmo em condições nas quais isso não seria favorável, envolvendo três características: Físicas, químicas e biológicas (FOOD INGREDIENTS BRAZIL, 2012).

Dentre os métodos de conservação de alimentos, encontram-se:

- Conservação por uso do frio: envolvendo técnicas de refrigeração e congelamento;
- Conservação por uso do calor: envolvendo branqueamento, pasteurização, esterilização, secagem;
- Conservação pelo controle de oxigênio e água: através de desidratação, liofilização e concentração por evaporação;
- Conservação pelo uso de aditivos: Ácido cítrico, nitratos, nitritos e sulfitos;
- Conservação pelo uso da radiação.

Todos os métodos citados resultam em modificações que melhoram a qualidade sensorial dos alimentos, além de aumentar sua estabilidade e vida de prateleira (FREITAS; FIGUEIREDO, 2000). Porém, dentre esses métodos, a conservação pelo uso do frio é amplamente conhecida e realizada com maior facilidade no dia a dia do consumidor, pois este retarda as reações químicas e enzimáticas e inibe a proliferação e disseminação biológica do produto (LEONARDI; AZEVEDO, 2018).

Segundo Alves (2001), a qualidade dos produtos desidratados, podem sofrer alterações devido a várias reações, apresentando necessidade de serem embalados, para evitar o contato com oxigênio, assim como o ganho de umidade e ocorrência de empedramento ou aglomeração e em alguns casos, essas embalagens necessitam evitar a passagem de oxigênio e luz, que evitam a ramificação de produtos com alto teor de gordura.

3.3.1. Embalagem

As embalagens para alimentos têm sido tradicionalmente planejadas e desenvolvidas com o intuito de proteger o produto, tendo como principal requisito a não interação com o alimento acondicionado, funcionando como uma barreira inerte entre o alimento e o ambiente no qual está inserido. Além disso, o uso de embalagem pode reduzir a perda de massa fresca, as mudanças na aparência durante o armazenamento, aumentar de 50 a 400% a vida-útil dos frutos, reduzir as perdas econômicas e facilitar a distribuição dos produtos a longas distâncias sem comprometer a qualidade (RAMOS, et al., 2008).

De acordo com Luengo e Calbo (2001) todas as embalagens possuem prós e contras, cabendo ao produtor decidir qual o melhor tipo para sua atividade, observando qual embalagem produzirá menor dano ao produto.

As embalagens de produtos alimentícios podem ser de metal, plástico, vidro ou papel. Ainda podem ser encontradas embalagens de madeira, têxteis e cortiça. As embalagens podem ser classificadas como rígidas, semi-rígidas ou flexíveis, como mostra a Tabela 2. Em alguns casos é a espessura do material que classifica a embalagem (JORGE, 2013).

Tabela 2. Embalagens rígidas, semi-rígidas e flexíveis.

Embalagens	Metálica	Plástica	Vidro	Papel
	Latas em folha	Bandejas,	Garrafas e	Caixas de
Rígidas	de flandres e	garrafas, potes,	frascos	papelão
	alumínio	grades e caixas		

		Bandejas em		Caixas e
		poliestireno		cartuchos em
	Bandejas de	expandido	-	cartolina
Semi-rígidas	alumínio	Frascos, copos		Bandejas e
		e potes termo		alvéolos em
		formados		polpa moldada
	Folha de	Filmes		Folha de papel
	alumínio	Estruturas	-	Estruturas
Flexíveis	Estruturas	laminadas		laminadas
	laminada			
T (20	10)			

Fonte: Jorge (2013)

Dentre os materiais existentes, estão os filmes plásticos, flexíveis, utilizados no envolvimento das hortaliças para seu armazenamento e conservação, compreendendo: Polietileno de baixa densidade (LDPE), Polietileno linear de baixa densidade (LLDPE), Polietileno de alta densidade (HDPE), Polipropileno Orientado (OPP), Poliestireno Orientado (OPS), Policarbonato (PC), Cloreto de polivinila (PVC) (LUENGO; CALBO, 2001).

3.3.2. Secagem

Segundo a EMBRAPA, a secagem é considerada um dos processos mais antigos utilizados pelo homem na conservação de alimentos, pois os alimentos oriundos de plantações sofrem deterioração com muita facilidade, necessitando de técnicas de conservação, das quais a secagem é a mais utilizada para esta finalidade.

A secagem por meio do calor, tem sido amplamente utilizada, pois além de não necessitar de aditivos químicos em seu processo, reduz a umidade do alimento preservando suas propriedades assim como vitaminas presentes nesses alimentos (CELESTINO, 2010).

3.3.2.1. Secagem por Atomização (Spray Drying)

Este tipo de secagem consiste na transformação do produto em estado fluido (solução, dispersão ou pasta) em um produto seco através de uma corrente de ar quente. O produto seco obtido tem forma variável, podendo estar em pó, grânulos ou aglomerados, porem deve ter conformidade em relação a suas formas. Essa variação depende das propriedades físicas e

químicas do produto inicial e do projeto de funcionamento do *spray dryer* (GOULA et al.,2008). Neste tipo de secador, o alimento liquido é introduzido na câmera de secagem na forma de gotículas, através de bicos atomizadores aumentando a superfície de contato com o ar quente, que pode percorrer a câmara em fluxo contracorrente, concorrente ou como combinação de ambos. (EMBRAPA, 2010; SOUZA et al., 2015).

A Figura 2, mostra de forma esquemática os fatores que podem influenciar o desempenho do secador durante o processo. Dentre esses fatores e condições de operação a temperatura do ar de entrada é o de maior importância determinando a qualidade do produto obtido, pois afeta as propriedades do pó, como teor de umidade, densidade, tamanho de partícula e morfologia (ROSA, et al., 2010). Usualmente, as temperaturas de entrada para essa técnica com finalidade de obtenção de alimento em pó variam entre 150°C e 220°C (OLIVEIRA e PETROVICK, 2010).

Bico Pó • Teor de Sólidos • Tipo e projeto do bico Densidade Temperatura e vazão • Forma do ar de secagem Vazões de ar/ líquido Tamanho Viscosidade • Pressões de ar/ líquido Tipo de fluxo Densidade Tensão Superficial Velocidade de ar/ líquido Compactabilidade Umidade Alimentação Cotas

Figura 13. Fatores que afetam a secagem por spray drying.

Fonte: Rosa, et al. (2010)

3.3.2.2. Agente Carreador

Agentes carreadores são aditivos que podem ser utilizados no processo de secagem de frutas para melhorar o rendimento do processo, pois estes aumentam o peso molecular da mistura, assim como a temperatura de transição vítrea, reduzindo as perdas por adesão as paredes do secador. Alguns desses agentes podem promover modificações nas propriedades do pó seco, tornando-o mais estável, tornando-o menos higroscópico e melhorando seu manuseio (TONON, 2009). Dentre os agentes carreadores existentes, o mais utilizado na secagem de

frutas por *spray dryer* é a maltodextrina, pois possui alta solubilidade, baixa higroscopicidade e menor custo (FERRARI, 2012; GOULA et.al, 2012; WANG, 2012).

3.3.2.2.1. Maltodextrina

A maltodextrina $[(C_6H_{10}O_5)_n]$ tem o papel como agente carreador no processo de secagem auxiliando na dispersão, evitando a aglomeração do produto nas tubulações do *spray*, além de conferir ao produto seco granulação homogênea, garantir boa dispersão do produto em água ou solvente, previnir a cristalização, controlar o congelamento, essa substância é solúvel em água, possui baixa densidade e baixa viscosidade em altas concentrações, não apresenta sabor adocicado ou de amido, garantindo a presença do sabor do material que acompanha (ALEXANDER, 1992).

A literatura apresenta diversos trabalhos desenvolvidos com secagem em *spray dryer* e uso de maltodextrina como agente carreador. Goula e Adampoulos (2008) estudaram o efeito da adição de maltodextrina na secagem da polpa de tomate com dextrose equivalente (DE) iguais a 21, 12 e 6. Durigon (2016), também realizou secagem do tomate com razão de maltodextrina com 50% de sólidos secos. Cavalcante et al. (2017) também utilizaram a maltodextrina na produção de polpa de graviola em pó. É importante ressaltar que o agente proporcionou bons resultados em todos os trabalhos citados.

3.4. Características Físico-Químicas

3.4.1. Teor de Sólidos Totais

Os sólidos totais representam todas as substâncias que permanecem após total secagem de um volume de amostra (Norma Técnica Interna da Sabesp, 1999), ou seja, todos os constituintes das matérias primas que não vaporizam à uma temperatura de 105°C.

Os tomates possuem cerca de 95% de água, sendo que o constituinte orgânico que prevalece é o açúcar. Os teores de frutose e glicose correspondem a 50% dos sólidos totais do fruto e mais de 95% dos açúcares (STEVENS, 1985). Ainda, como observado por Ferrari et al. (2012), na matéria seca do tomate, estão presentes suas fibras, proteína, minerais e vitaminas que o constitui.

Machado (2010) obteve uma porcentagem de sólidos totais em tomates menor do que 5%, já Ferrari et al. (2012), obteve matéria seca de 5 a 7%. Segundo Gould (1991) o conteúdo de sólidos totais no tomate está entre 7 e 8,5%.

3.4.2. Atividade de Água

De acordo com Tonon (2009) a água é o maior constituinte dos alimentos, podendo influenciar no seu manuseio, armazenamento, tempo de vida útil, dentre diversos outros fatores. Nos alimentos essa água pode ser encontrada de diversas formas, como fracamente ligada ao substrato e água combinada. A primeira é facilmente eliminada enquanto a água combinada é fortemente ligada ao substrato, o que dificulta sua eliminação e quando baixa dificulta o crescimento microbiano e retardar as reações químicas.

A atividade de água (a_w) é dada pela razão entre a pressão de vapor da água em equilíbrio com o alimento à uma temperatura pré-determinada e a pressão de vapor da água pura à mesma temperatura. Essa razão varia entre 0 e 1. Alta atividade de água indica mais água livre disponível para as reações bioquímicas e, consequentemente, vida útil mais curta. Valores acima de 0,6 são suficientes para o crescimento de determinados microorganismos, quando menores são microbiologicamente estáveis e as deteriorações ocorrem por reações químicas e não por microorganismos (RAHMAN, 2008; BARBOSA, 2010).

A determinação de atividade de água durante o armazenamento de fruta foi realizada por Lisbôa et al. (2012) no estudo do armazenamento do figo da índia em pó durante 100 dias a temperaturas de 25°C e 40°C e umidade relativa de 55% e 83% para ambas temperaturas, constatando que as atividades de água aumentaram de forma consistente ao longo do armazenamento nas temperaturas e umidades relativas testadas. Ramos et al. (2008) estudaram o efeito do tipo de embalagem e do tempo de armazenamento em abacaxis desidratados, após 80 dias de armazenamento os autores observaram que houveram diferenças quanto ao tipo de embalagens utilizadas para o armazenamento, enquanto as embalagens de polietileno apresentaram valores de atividade de água maiores que o inicial após o armazenamento. As embalagens de policloreto de vinilideno a vácuo apresentaram valores menores, devido a característica de barreira de umidade inerente ao policloreto de vinilideno. Moraes (2014), realizaram análises de atividade de água para polpa de caju amarelo seco em *spray dryer* durante 49 dias de armazenamento, obtendo resultados de 0,288-0,361 e de 0,298-0,355 para diferentes grupos experimentais de embalagens e concentração de agente carreador.

3.4.3. Umidade

O percentual de umidade é uma das principais determinações analíticas realizadas com o propósito de verificar padrões de identidade e qualidade em alimentos, além de auxiliar na tomada de decisão em várias etapas do processamento, como escolha da embalagem e modo de estocagem do produto (FURTADO; FERRAZ, 2007).

Todos os alimentos possuem água em diferentes proporções, nos frutos e legumes os valores médios do conteúdo de água são elevados, oscilam de variedade para variedade, dependem da época da colheita e do tempo de armazenamento. Nos frutos secos e nos grãos estes valores são muito inferiores. A umidade é a perda de peso sofrida pelo produto quando aquecido em condições em que a água é removida (BRASIL, 2005; RODRIGUES, 2003).

A Tabela 3 apresenta valores de umidade em gramas de água por 100 g de produto seco para diversos alimentos desidratados.

Tabela 3. Umidade para alimentos secos em gramas de água por 100 g de produto seco.

Alimento	Umidade (g de água/
	100g de produto seco)
Leite Integral em Pó	2,0
Cebolas desidratadas	3,4-4,7
Bolachas Salgadas	4,0
Batatas desidratadas	5,0 - 8,0
Amido Solúvel	6,0
Carne de Vaca desidratada	4,0-6,0

Fonte: Castro (2003).

Pode-se observar através dessa tabela que o leite integral em pó possui menor tendência de absorver umidade que os demais, não perdendo suas características facilmente quando exposto a umidade, assim, os demais alimentos precisam ser melhores acondicionados para que não percam suas características. No caso de frutas e demais alimentos em pó que possuem maior facilidade de absorção de umidade, se não são bem armazenados, absorvem a umidade do ambiente e aglomeram-se (CASTRO, 2003).

Gomes et al. (2004) determinaram a umidade em polpa de acerola em pó durante o armazenamento de 60 dias, observando que o teor de umidade aumentou com o tempo, chegando ao aumento percentual de umidade de 51,31%, o mesmo comportamento foi observado por Soares et al. (2001) para polpa de acerola desidratada, que possuiu aumento de umidade de 69,89% após 90 dias de armazenamento. Segundo os autores, esse acréscimo na umidade durante o armazenamento e previsível quando a embalagem utilizada não é impermeável ao vapor d'água e a amostra apresenta comportamento higroscópico. Arlindo et al. (2007) observaram no seu estudo de armazenamento com pimentão em pó que após um período de 100 dias, também houveram aumentos significativos na umidade do produto, principalmente entre 20 e 40 dias de armazenamento.

3.4.4. Cinzas

As cinzas constituem o resíduo obtido por incineração, processo de aquecimento do produto à altas temperaturas. Os resíduos obtidos podem ou não representar toda substância inorgânica presente na amostra, pois alguns sais podem sofrer redução ou volatilização nesse aquecimento (BRASIL, 2005).

O conteúdo em cinzas em uma amostra alimentícia representa o conteúdo total de minerais podendo ser utilizado como medida de qualidade e critério na identificação de alimentos. Além disso, o conteúdo em cinzas se torna importante para os alimentos ricos em certos minerais, o que implica em seu valor nutricional (ZAMBIAZI, 2010).

Arlindo et al. (2007) analisando os resultados dos valores médios do teor de cinzas do pimentão em pó ao longo do armazenamento, constatou tendência de redução em seus valores médios, com diferenças significativas entre 0 e 20 dias, além disso o teor de cinzas no final do armazenamento com relação ao início foi reduzido em 2,34%, que segundo o autor, ocorreu devido ao aumento de umidade nas amostras. Pereira et al. (2006) observou que para o armazenamento do tomate em pó em um período de 60 dias, as cinzas não apresentaram diferenças significativas, permanecendo em uma faixa de 8,33% a 8,48%.

3.4.4.1 Minerais

Os minerais possuem diversas funções fundamentais no organismo, como por exemplo, a necessidade do cálcio para estabilização e formação dos ossos e coagulação sanguínea, o ferro que transporta oxigênio, o potássio para manter a pressão osmótica nos líquidos intestinais, dentre diversos outros minerais fundamentais presentes nos alimentos (VOLLMER, 1999).

Alguns minerais participam da formação do esqueleto (Ca, P, Fe, Mg etc.), outros participam da estrutura de compostos importantes para o organismo (Fe, Ca, P, Cu, I etc.), outros são necessários para manter o equilíbrio osmótico das células (Na, K, P etc.) ou no transporte de substâncias através das células (Na). Esses minerais podem ser classificados entre macronutrientes, como Ca, P, Fe, Na, K e Mg, quando necessários em grandes quantidades, e micronutrientes, como Mn, Co, I, Zn, F, Cu, Mo, Se, quando exigidos em quantidades pequenas (GAVA, et al. 2009).

Segundo Ferrari (2008), os minerais que constituem o tomate *in natura* são o Boro (B), Cálcio (Ca), Cobre (Cu), Enxofre (S), Ferro (Fe), Fósforo (P), Magnésio (Mg), Potássio (K), Sódio (Na), Zinco (Zn) e Manganês (Mn), classificados entre os macronutrientes e micronutrientes necessários para o bom funcionamento do organismo.

3.4.4.1.1. Espectrometria de Fluorescência de Raios- X (FRX)

Após vencer diferentes processos de determinação de elementos químicos, a FRX tornou-se uma análise bem disseminada na comunidade científica devido sua habilidade nas determinações de elementos químicos que geralmente ocorre de forma rápida, sem destruir a matriz, com baixo custo operacional e mínimo preparo da amostra (BORJESSON et al., 2003; POTTS et al., 2003).

Hoje a FRX é uma das técnicas mais disseminadas e usadas em todo o mundo, ocupando um lugar de destaque, principalmente para áreas em que a obtenção de rápido perfil de constituintes metálicos e não-metálicos é indispensável (NAGATA et al., 2001). Essa análise mostra-se como uma técnica muito versátil, podendo ser aplicada em diversas amostras, incluindo as de estado sólido e líquidas, sem necessitar de tratamento exaustivo para a preparação destas matrizes, e também oferecendo a grande vantagem de ser uma técnica analítica não destrutiva (SKOOG et al., 2009).

Vásquez e Hotza (2009) utilizaram o método de FRX na caracterização de cinza obtida por combustão de casca de arroz em reator de leito fluidizado, obtendo SiO₂ como principal componente da amostra. Ferreira (2012) em seu estudo de embalagens ativas para alimentos, determinou através de análises de FRX o teor de potássio e sódio incorporados no polietileno. Lima (2018) estudou a composição mineral do ovo em pó obtido por diferentes temperaturas de secagem e observou que a composição mineral presente nas amostras não diferem quanto a temperatura de secagem utilizada.

A análise por fluorescência de Raios-X é um método quali-quantitativo baseado na medida das intensidades (números de Raios-X detectados por unidade de tempo) dos Raios-X característicos emitidos pelos elementos que constituem uma amostra (NASCIMENTO, 1999).

3.4.5. Potencial Hidrogeniônico (pH)

O pH determina o caráter ácido ou básico de uma solução aquosa, possuindo valores de 0 a 14. Para a temperatura de 25°C, um meio aquoso será ácido se tiver pH de 0 a 7, básico se o pH for de 7 a 14 e neutro para pH igual a 7 (MORAIS, 2008). Essas medidas são realizadas através de determinação eletromagnética com a utilização de um potenciômetro e eletrodos (OLIVEIRA; FERNANDES, 2010).

A medida do potencial hidrogeniônico (pH) é importante para as determinações de deterioração do alimento com o crescimento de microrganismos, atividade das enzimas, retenção de sabor e odor de produtos de frutas, estabilidade de corantes artificiais em produtos de frutos, verificação de estado de maturação de frutas e escolha de embalagem (CHECCI, 2003).

A importância da determinação de pH também está relacionada com os microrganismos que interferem na saúde causando infecção e intoxicação alimentar. Essas bactérias não conseguem se desenvolver em pH menor ou igual a 4,5, sendo este, um valor de pH no qual os alimentos são considerados livres de deterioração por bactérias produtoras de toxinas (VICENZI, 2012).

Análises de pH em frutas foram realizadas por Oliveira et al. (2015) no seu estudo da estabilidade da polpa do fruto do mandacaru em pó durante 50 dias de armazenamento com diferentes dextroses equivalentes, observando que o pH assumiu valores oscilantes ao longo do armazenamento sem demonstrar efeitos relacionados ao tempo e atingindo valores próximos a

4,5. Silva et al. (2005) em seu estudo de armazenamento de umbu-cajá em pó em embalagem laminada e de polietileno observou que nas embalagens laminadas o pH se manteve nos níveis iniciais ao longo do armazenamento, possuindo variação máxima de 3,3%, o mesmo comportamento foi observado para embalagem de polietileno, ambas com variação máxima apenas após 50 dias de armazenamento. Arlindo et al. (2007), determinou para o pimentão em pó armazenado durante 100 dias uma oscilação nos valores médios de pH, não existindo diferença significativa entre o valor do pH inicial e o do tempo de 80 dias, que estão presentes entre o valor no tempo zero e os outros tempos, havendo um aumento de 1,2% durante todo o período de armazenamento.

3.4.6. Sólidos Solúveis Totais (°Brix)

O teor de sólidos solúveis é um parâmetro que tem sido usado como indicador da qualidade dos frutos, tanto para o consumo *in natura* quanto para processamento industrial, pois elevados teores de sólidos solúveis presentes na matéria-prima implicam em menor adição de açúcares, menor tempo de evaporação da água, menor gasto de energia e maior rendimento do produto (PINHEIRO et al., 1984).

O método utilizado para determinação dos sólidos solúveis totais consiste no processamento do material e posterior uso do refratômetro em escala Brix, pois é o método mais simples, eficiente, barato e fácil de ser empregado, onde a porção do fruto a ser avaliada deve ser obtida de tal maneira que o teor de sólidos solúveis nela determinado represente o teor de todo o fruto (GRANJEIRO, et al., 1999).

A escala °Brix é calibrada pelo número de gramas de açúcar contidos em 100g de solução. Quando se mede o índice de refração de uma solução de açúcar, a leitura em percentagem de °Brix deve combinar com a concentração real de açúcar na solução (CAVALCANTI et al., 2006).

Ramos et al. (2008) obteve para o abacaxi desidratado algumas variações dos sólidos solúveis totais quanto ao tipo de embalagem utilizada no armazenamento do produto. Enquanto os produtos armazenados em polietileno transparente e folha de alumínio apresentaram diminuição de sólidos solúveis totais após 75 dias de armazenamento, as embalagens de policloreto de vinidileno sob vácuo mantiveram valores constantes durante todas as análises. Silva et al. (2005) no estudo do armazenamento do umbu cajá em pó também observou uma redução significativa para o teor de sólidos solúveis totais do produto armazenado em

embalagem de polietileno e laminada, sendo que a primeira possuiu maiores perdas. Brunini et al. (2004) obteve resultados que variaram de 12 a 15,5% °Brix no estudo de armazenamento da jabuticaba.

3.4.7. Análise Granulométrica

Segundo Papini e Neto (2006), obter um pó e classifica-lo com características adequadas a cada situação é a fase mais importante de qualquer processo baseado na tecnologia do pó, pois permite distinguir se o pó é adequado ou não e realizar controle de sua qualidade e consequentemente do processo envolvido para sua obtenção. A análise granulométrica é de fundamental importância, pois irá influir de maneira significativa em várias etapas de produção (transporte, compactação, sinterização, armazenamento etc.) e na microestrutura do produto acabado, afetando a resistência mecânica, a densidade e as propriedades térmicas e elétricas dos produtos.

As análises granulométricas podem ser realizadas por via seca e via úmida. No caso do pó, a análise realizada por via seca apresenta-se como uma boa alternativa, pois possui algumas vantagens como a utilização do pó em seu estado natural, tendo o ar como agente dispersor, não necessitar de pré- dispersão e realizar a análise de amostras maiores no mesmo tempo que o método por via úmida, melhorando a representatividade estatística, pois no meio líquido, a amostra é recirculada, enquanto que por via seca, o material é avaliado pelo laser uma única vez (PUGH, 1997).

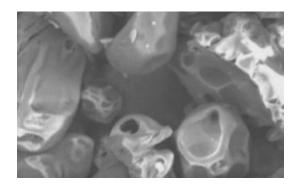
Lannes e Medeiros (2003) determinaram a distribuição granulométrica do achocolatado de cupuaçu antes e após o processamento por *spray dryer* para se avaliar o comportamento das partículas e verificar sua influência na instantaneização do produto, observando-se a diminuição do tamanho das partículas e homogeneidade após o processamento.

Os diâmetros das partículas podem variar com o uso dos agentes carreadores para o processo de secagem em *spray dryer*, como observado por Tonon (2009) que para o suco em pó do açaí, que obteve aumento do diâmetro médio de partículas com o aumento da concentração de maltodextrina.

Carvalho (2010) e Lima (2018) realizaram um estudo da distribuição granulométrica para ovo em pó obtido por secagem em *spray dryer* observando variações de diâmetros de

partícula de 71,2-158μm e 16-37μm respectivamente, de acordo com as condições de secagem de cada material.

3.4.8. Microscopia Eletrônica de Varredura (MEV)


O microscópio eletrônico de varredura é um aparelho que pode fornecer rapidamente, informações sobre a morfologia e identificação de elementos químicos de uma amostra sólida, tendo utilização comum em diversas áreas, sendo um dos instrumentos mais versáteis para observação e análise de características micro estruturais de objetos sólidos (DEDAVID et al., 2007).

A principal razão de utilidade do MEV é a alta resolução que pode ser obtida na observação de amostras. Os instrumentos comerciais apresentam valores de 2 a 5 nanômetros, enquanto instrumentos de pesquisa avançada são capazes de alcançar uma resolução melhor que 1 nanômetro (NAGATANI, et al., 1987). Outra característica importante é a aparência tridimensional da imagem das amostras, resultado da grande profundidade de campo, além de permitir pequenos aumentos e grande profundidade de foco (DEDAVID et al., 2007).

Essa análise se mostra importante por se relacionar com a capacidade de proteção da partícula, indicações dessa capacidade são fornecidas pelo grau de integridade e porosidade das microcápsulas, sendo que materiais com propriedades encapsulantes pobres originam microcápsulas com superfícies muito porosas, altamente rugosas e com quebras (TONON, 2009).

Durigon (2016) observou os pós de tomate obtidos por diferentes processos relatou que as partículas produzidas por *spray drying* apresentaram formato esférico, característico do tipo de processo e tendência a se aglomerar que é característica do material seco após absorver umidade. Moraes (2014) realizou a miscroscopia eletrônica de varredura para os pós de caju amarelo obtido em *spray dryer* utilizando goma arábica como agente carreador, mostrada na Figura 3, garantindo que partículas maiores e com superfícies achatadas são características da microestrutura do agente carreador utilizado.

Figura 14.Micrografia do pó de caju amarelo obtido por *spray dryer* utilizando Goma Arábica.

Fonte: Moraes (2014)

Osorio; Forero; Carriazo (2011), realizaram a avaliação da goiaba microencapsulada com maltodextrina e goma arábica por MEV e obtiveram partículas esféricas de tamanho entre 3 e 5 µm. Os mesmos autores citam também, que a obtenção de partículas esféricas na microencapsulação demonstra um sucesso no processo.

3.4.9. Isotermas de Sorção

A higroscopicidade consiste na afinidade que existe entre a água e os outros componentes de um produto. Essa característica é fundamental quando se trata de processos de manuseio, estocagem e consumo de materiais biológicos (TEIXIERA; QUAST, 1993).

Quando exposto a uma certa umidade o material biológico tende a perder ou ganhar água para que possa ajustar sua própria umidade a uma condição de equilíbrio com o ambiente no qual está inserido. Esse fenômeno ocorre quando a pressão de vapor de água na superfície do material se iguala a pressão de vapor de água do ambiente/ ar que o envolve (TREYBALL, 1968), o estudo da atividade de água, pode ser feita através de isotermas de sorção.

Segundo Gallo et al. (2015), ambientes com baixa umidade relativa possuem menor gradiente de pressão de vapor entre o produto desidratado e o ar ambiente, propiciando maior estabilidade para os pós, além disso, a adsorção de água é proporcional a temperatura, fazendo com que a umidade final adquirida pela a mostra seja maior se maior for a temperatura do armazenamento.

A isoterma é uma curva que descreve, em uma umidade específica, a relação de equilíbrio de uma quantidade de água sorvida por componentes do material biológico e a pressão de vapor ou umidade relativa, a uma dada temperatura. Esta relação depende da composição química dos alimentos (gordura, amido, açúcar, proteínas, etc.) (PARK; BIN; BROD, 2001).

Existem diversos modelos para ajustes de isotermas de sorção, porém o modelo matemático aplicado para a cinética de sorção de vapor é o modelo de cinética exponencial paralela (PEK) que mostra a existência de dois mecanismos distintos para a troca de vapor de água, os processos rápidos e lentos, que são atribuídos a diferentes locais de sorção (KOHLER et al., 2006)

Dantas (2018) realizou análises da isoterma do pó do suco de laranja obtido do suco *in natura*, suco congelado e suco da fruta congelada, observando que os pós expostos a umidade relativa ambiente (cerca de 80%) ganham massa rapidamente, e após cerca de 250 minutos passam a aumentar de peso mais lentamente, explicado pelo fato de que nos primeiros minutos há maior concentração de água entre o produto e o ambiente. Já Zaihan et al. (2009) utilizaram o modelo PEK em seis diferentes amostras de madeiras e obtiveram ótimos ajustes aos dados experimentais obtidos. Rodriguez (2015) utilizou o modelo PEK no estudo do efeito da acetilação na molhabilidade da água em quatro madeiras nativas, obtendo resultados satisfatórios.

De modo geral, nesta revisão foram abordados assuntos relacionados ao tomate e suas principais características, assim como sua produção, consumo e perecibilidade que torna necessário o estudo das vantagens da obtenção do material em pó, assim como o estudo do armazenamento do pó obtido por *spray dryer*, na tentativa de aumentar a vida de prateleira do fruto.

A secagem é um dos processos mais antigos realizados para conservação dos alimentos, consistindo na remoção dos líquidos contidos nos materiais, como a água, que é o maior constituinte dos materiais e possui grandes influências no armazenamento e vida útil dos alimentos, pois permite a ocorrência de reações bioquímicas que podem transformar as características do alimento. Com isso, no presente trabalho, foi realizada a secagem do suco de tomate *in natura* através de um *spray dryer*, que segundo a literatura, apresenta maior qualidade do produto final, mantendo suas características, e como foco principal, foi realizado o estudo do armazenamento do produto final obtido.

O armazenamento consiste no conjunto de atividades e requisitos seguidos para se obter a conservação da matéria prima de forma correta, protegendo a integridade e qualidade do produto, assim como alterações nas embalagens e ambiente no qual está inserido. A suscetibilidade a mudanças constantes no ambiente como alterações de temperatura, luminosidade, umidade, oxigenação, dentre diversos outros fatores, podem vir a transformar a matéria prima armazenada no mesmo, neste caso, o pó de tomate, por isso, este trabalho consistiu no estudo do armazenamento do pó de tomate seco em *spray dryer* em três diferentes ambientes com auxílio de embalagens de polietileno. Estes ambientes foram a exposição a luz, a proteção da luz, ambos em temperatura ambiente e a refrigeração do produto.

Devido à grande importância do estudo das propriedades químicas e físicas dos alimentos obtidos e armazenados em escala industrial, como os alimentos em pó, essa revisão tratou também das análises de aspectos relevantes de caracterizações físico-químicas do tomate e do pó obtido, por meio das quais o método de armazenamento mais relevante ou menos relevante será determinado. De modo geral, foram abordadas análises como o teor de sólidos totais, atividade de água, umidade, cinzas, determinação de minerais por meio de espectrometria de fluorescência de Raios-X (FRX), pH, sólidos solúveis totais, análise granulométrica, microscopia eletrônica de varredura (MEV) e isotermas de sorção.

4. METODOLOGIA

4.1. Materiais

Foram utilizados para secagem em *spray dryer* tomates do tipo italiano (*Lycopersicon esculentum Mill*) *in natura* com mesmo grau de maturação, como mostra a Figura 4, adquiridos no mercado público da cidade de João Pessoa- PB. O agente carreador utilizado foi a Maltodextrina 20DE da marca Pryme Foods, sem sabor, adquirida em Sorocaba- SP.

Figura 15. Tomate do tipo italiano in natura.


Fonte: A autora (2019)

4.2. Etapas de Processamento

4.2.1. Preparo da Amostra

Inicialmente, os tomates foram devidamente lavados com água corrente, para remoção de sujeiras, e secos, seguindo para um triturador/misturador de escala industrial, obtendo-se o suco do tomate com presença de casca e sementes. Em seguida, foi realizado o peneiramento em peneira doméstica, como mostra a Figura 5, para que as cascas e sementes fossem removidas do suco, obtendo-se 6,8 litros de suco, utilizado para secagem em *spray dryer*.

Figura 16. Obtenção do suco de tomate. A- Peneiramento; B- Suco sem cascas e sementes.

4.2.2. Secagem do Suco de Tomate em Spray Dryer

Após a obtenção do suco de tomate, foram adicionados 15% em massa de maltodextrina 20DE, de acordo com a porcentagem de sólidos totais previamente determinados (4,23%), fazendo com que a secagem em *spray dryer* fosse possível. A diluição da maltodextrina foi realizada com auxílio de agitador mecânico Fisatom modelo 713D até que toda a maltodextrina fosse dissolvida no suco.

Como a suco de tomate tem como característica a formação de suspensão quando em estado de repouso, foi necessário manter a agitação do suco constante, porém menos vigorosa, enquanto se realizava a secagem, como mostra a Figura 6.

Figura 17. Diluição da maltodextrina e agitação constante do suco.

Fonte: A autora (2019).

A secagem foi realizada com uso de *spray dryer* de escala piloto da marca Labmaq do Brasil, modelo LM- SD 5.0 (Figura 7) nas condições dispostas na Tabela 4, obtidas através de estudos da literatura. Esse secador dispõe de uma câmara de secagem, ciclone, módulo de comando/controle e sistema carrossel para acoplamento dos frascos coletores.

Figura 18. Spray dryer de escala piloto da marca Labmaq do Brasil, modelo LM- SD 5.0.

Fonte: A autora (2019).

Tabela 4. Condições operacionais da secagem.

Condições de operação	Valores	
Vazão de Alimentação (L/h)	3	
Vazão do Soprador (m³/h)	3	
Vazão do Pulverizador (L/	35	
min)		
Temperatura de Entrada (°C)	150	
Pressão (bar)	5	

Fonte: A autora (2019).

O pó do suco de tomate obtido após o processo está disposto na Figura 8.

Figura 19. Pó do suco do tomate obtido após secagem em spray dryer.

Fonte: A autora (2019)

4.2.3. Rendimento do Processo

O rendimento do processo foi calculado a partir da massa inserida na alimentação do *spray dryer* e a massa de pó obtida no processo, como mostra a Equação 1.

Rendimento (%) =
$$\frac{\text{massa de pó obtida após o processo (g)}}{\text{massa que entra no secador (g)}} \times 100$$
 (1)

Onde a massa que entra no secador ou massa inserida na alimentação é relacionada com o volume do suco e a quantidade de sólidos presentes no mesmo a partir da Equação 2.

Massa que entra no secador
$$(g) = Volume(ml) \times S\'olidos presentes no suco (g/ml)$$
 (2)

4.3. Métodos de Armazenamento

Ao fim do processo de secagem, foi obtida a amostra do suco de tomate em pó. Como visto no item 3.2. do presente trabalho, amostras alimentícias, como o tomate, tendem a perder características importantes, empedrar e se aglomerar quando expostos a umidade do ambiente. Por esse motivo, foram propostas três diferentes formas de armazenamento do pó obtido, dispostas na Tabela 5 e figura 9.

Tabela 5. Métodos de Armazenamento do pó de tomate.

Método e Período de Armazenamento	Sigla de identificação
Produto Pós Secagem	PS
Embalagem de Polietileno Exposta a Luz	EPEL
Embalagem de Polietileno Protegida da Luz*	EPPL
Embalagem de Polietileno em Refrigeração	EPR
EPEL após 30 dias de armazenamento	EPEL ³⁰
EPEL após 60 dias de armazenamento	$EPEL^{60}$
EPEL após 90 dias de armazenamento	$EPEL^{90}$
EPPL após 30 dias de armazenamento	$EPPL^{30}$
EPPL após 60 dias de armazenamento	$EPPL^{60}$
EPPL após 90 dias de armazenamento	$EPPL^{90}$
EPR após 30 dias de armazenamento	EPR^{30}
EPR após 60 dias de armazenamento	EPR^{60}
EPR após 90 dias de armazenamento	EPR^{90}

Fonte: A autora (2019). *A proteção da luz é realizada através do envolvimento da embalagem de polietileno com folha de alumínio.

Figura 20. Embalagens utilizadas no armazenamento: A- Embalagem de polietileno utilizada para armazenamento exposto à luz e com refrigeração; B- Embalagem de polietileno envolta com folha de alumínio para armazenamento com proteção à luz.

As formas de armazenamento propostas visam a observação da degradação do pó de tomate obtido durante um período de 90 dias, observando-se em qual delas o produto mantém suas características por maior período de tempo, permitindo identificar como e quais são os fatores externos que o afetam além de proteger o produto da umidade do ambiente em que se encontra, visando o aumento da sua vida de prateleira.

4.4. Estudo das características físico-químicas do suco

As amostras do suco de tomate em pó microencapsulado obtidas foram devidamente separadas para realização do estudo das características físico-químicas de atividade de água, umidade, cinzas, teor de ácido ascórbico, pH, sólidos solúveis, análise granulométrica, MEV, FRX e isotermas de sorção.

Esse estudo foi realizado durante um período de 90 dias, iniciando-se com a amostra pós secagem (PS) e tendo continuidade com as demais amostras à cada 30 dias de armazenamento.

Os resultados foram obtidos em triplicata e analisados estatisticamente através do teste Tukey, com nível de confiança de 95% (p≤0,05) através do programa computacional OriginPro 8. Os dados foram expressos como médias seguidas por letras que quando localizadas na mesma coluna, não diferem estatisticamente entre si.

4.4.1. Sólidos Totais

A determinação dos sólidos totais contidos no suco de tomate *in natura* foi baseada na metodologia utilizada pelo Instituto Adolfo Lutz (2008). Inicialmente, foram pesados cerca de 20 gramas do suco em cadinhos previamente limpos e secos, que foram levados a estufa, modelo SL-100 da marca Solab, à temperatura de 70°C até secagem completa da amostra, por um período de 24 horas. Após resfriar em dessecador, as amostras foram novamente pesadas e a porcentagem de sólidos totais foi determinada de acordo com a Equação 3.

% Sólidos Totais =
$$\frac{Massa\ de\ amostra\ seca}{Massa\ de\ amostra\ liquida} \times 100$$
 (3)

4.4.2. Atividade de Água

O estudo da atividade de água (a_w) foi realizado em todas as amostras (PS, EPEL, EPPL e EPR) em triplicata através do medidor de atividade de *água Novasina LabMaster AW*, com precisão de +/- 0,003 à temperatura de 30 °C.

4.4.3. Umidade

A análise de umidade foi realizada de acordo com a metodologia do Instituto Adolfo Lutz (2008) através do método gravimétrico com o emprego de calor fazendo com que haja perda em massa do material ao ser submetido ao aquecimento em estufa à temperatura de 105°C até peso constante.

Este processo foi realizado em triplicata para todas as amostras, pesando-se 1 grama de cada. Após retiradas da estufa as amostras foram resfriadas até atingir temperatura ambiente em dessecador com sílica em gel e pesadas em balança analítica

O teor de umidade foi determinado de acordo com a Equação 4.

%
$$Umidade = \frac{N}{P} \times 100$$
 (4)

Onde N é a massa em gramas de umidade (perda de massa) e P é a massa em gramas da amostra.

4.4.4. Cinzas

De acordo com o Instituto Adolfo Lutz (2008), as cinzas ou resíduo por incineração é o material obtido após aquecimento por 1 hora à temperaturas entre 550°C e 570°C. Neste trabalho, a metodologia utilizada baseou-se na descrita anteriormente, porém, foram alterados temperatura e tempo de exposição ao calor.

As cinzas foram obtidas após exposição por 30 minutos à temperatura de 1000°C em mufla. Após resfriamento, as amostras foram pesadas em balança analítica e o teor de cinzas calculado de acordo com a Equação (5).

$$\% Cinzas = \frac{N}{P} \times 100$$
 (5)

Onde N é a massa em gramas de cinzas e P é a massa em gramas da amostra.

4.4.4.1. Espectrometria de Fluorescência de Raios-X

A determinação dos elementos minerais contidos no suco em pó do tomate foi realizada a partir da técnica de espectrometria de fluorescência de Raios-X (FRX). Para que essa técnica seja realizada, faz-se necessário a formação de pastilhas através de prensa hidráulica da marca Shimadzu, que a partir do pó forma uma pastilha compacta e homogênea.

A determinação de elementos minerais nas amostras foi feita utilizando um Espectrômetro Sequencial de Fluorescência de Raios X por Comprimento de Onda XRF-180. As análises foram feitas para todas as amostras em pó.

4.4.5. Potencial Hidrogeniônico (pH)

O pH foi medido através de um pHmetro da marca Lucadema, modelo LUCA-210. Para essa determinação, foi necessário a reconstituição do suco de tomate em pó que consistiu na

pesagem de 11,9 gramas de pó misturados à 50g de água, como mostra a Figura 10, sabendose que a reidratação deste suco consiste em 19,23 % de sólidos e 80,77% de água, que são as mesmas porcentagens obtidas para o suco *in natura* acrescido de 15% de maltodextrina. As análises foram realizadas em triplicata para todas as amostras de pó reconstituídas assim como para o suco *in natura*.

Figura 21. Reconstituição do suco de tomate em pó. A- suco de tomate em pó; B- Adição de água ao pó; C- Suco reconstituído após agitação

Fonte: A autora (2019).

4.4.6. Sólidos Solúveis Totais (°Brix)

O $^{\circ}$ Brix foi medido em Refratômetro Abbe digital de bancada Nova WYA – 2S. As medidas foram realizadas em triplicata para todas as amostras de pó reconstituídas como descrito no item 4.4.5., assim como para o suco *in natura* para se obter o teor de sólidos totais de todas as formas de armazenamento durante o período de 90 dias.

4.4.7. Análise Granulométrica

A análise granulométrica por difração a laser foi realizada no equipamento CILAS 1090LD, como mostra a Figura 11. Esta análise consiste na medição óptica através de difração laser das partículas dispersas, combinando a relação proporcional entre a difração do laser e a concentração de partículas (DEDAVID, et al., 2007).

A caracterização do tamanho das partículas dispersas foi realizada para a operação em modo seco, no caso das amostras de suco de tomate em pó armazenadas, as amostras em pó foram espalhadas através de vibração mecânica sobre jato de ar comprimido com 2500 mb de

pressão. Esse espalhamento das partículas foi realizado em um período de 15 segundos e a coleta de dados em 5 segundos. A análise também foi feita para amostra do suco de tomate in natura, necessitando de um volume de aproximadamente 10 ml e levando um período de tempo um pouco mais longo para determinação.

Figura 22. Equipamento CILAS 1090LD utilizado para análise granulométrica.

Fonte: A autora (2019).

4.4.8. Microscopia Eletrônica de Varredura (MEV)

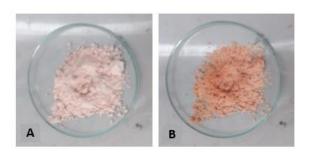
A análise da Microscopia Eletrônica de Varredura (MEV) foi realizada a partir do emprego de uma camada condutora de ouro empregada para cobrir o material através de um metalizador da marca EMITECH, modelo K550X.

O microscópio eletrônico de varredura emprega um feixe de elétrons de pequeno diâmetro para percorrer, ponto a ponto, a superfície da amostra através de linhas consecutivas e propagar o sinal do detector a um painel catódico cuja varredura está sincronizada com a do feixe incidente. O sinal de imagem deriva do contato do feixe incidente com a superfície da amostra. O sinal percebido pelo detector é empregado para fazer a modulação do brilho do monitor e consentir a observação. A maior parte dos aparelhos usa um filamento de tungstênio (W) esquentado como como fonte de elétrons, agindo em um intervalo de tensões de aceleração de 1 a 50 kV. A elevada tensão empregada entre o filamento e o ânodo acelera o feixe de elétrons que, logo após, é enfocado sobre a amostra por três lentes eletromagnéticas com um spot menor que 4 nm. Assim, o feixe interage com a amostra gerando elétrons e fótons que podem ser recebidos por detectores apropriados e transformadas em um sinal de vídeo que constituem as imagens (DEDAVID et al., 2007).

Para produzir imagens de alta ampliação foi-se utilizado um microscópio eletrônico de varredura LEO, 1430VP.

4.4.9. Isotermas de Absorção

As análises isotérmicas foram realizadas através da medição da mudança na massa de uma amostra exposta a umidade relativa variante de acordo com o dia da realização da análise. Os dados sobre a alteração de massa foram adquiridos à cada variação obtida de 0,05 gramas à massa inicial durante um período de 24 horas. O modelo aplicado para obtenção dos resultados foi o modelo PEK.


A equação de PEK é uma exponencial dupla da forma (Equação 6):

$$y = y_0 + A1 \times \left(1 - e^{\left(-\frac{x}{t_1}\right)}\right) + A2 \times \left(1 - e^{\left(-\frac{x}{t_2}\right)}\right)$$
 (6)

Onde y é o teor de umidade no tempo infinito, y_0 é o teor de umidade no tempo inicial, t1 é o tempo característico e A1 o teor de umidade associados ao processo rápido, t2 é o tempo característico e A2 o teor de umidade associados ao processo lento e a soma (y0 +A1+A2) deve ser igual ao teor de umidade da amostra no tempo infinito de exposição à umidade relativa determinada (ZAIHAN et al., 2010).

Foram construídas isotermas de adsorção para todas as formas de armazenamento das amostras em pó e também para o pó obtido pós secagem (PS). A Figura 12 mostra a forma física do pó no início do processo e após absorver umidade do ar durante 24 horas.

Figura 12. Pó de tomate durante análises isotérmicas. A- Pó no início do processo; B- Pó após 24 horas exposto a umidade do ambiente

Fonte: A autora (2019).

5. **RESULTADOS**

5.1. Características do Processo

5.1.1. Rendimento

O rendimento obtido no processo de secagem do suco de tomate em *spray dryer* com uso de 15% de maltodextrina foi de 36,51%. Chegini e Ghobadian (2007), por exemplo, obtiveram rendimentos de 18 a 35% na secagem de suco de laranja com maltodextrina para diferentes temperaturas de secagem. Goula e Adamopoulos (2005a) propuseram um sistema de *spray drying* modificado que consistia na conexão da entrada da alimentação do ar de secagem a um desumidificador de ar, chegando ao rendimento do produto, tomate em pó, variando de 37 a 66%. Goula e Adamopoulos (2003) também avaliaram o desempenho de um *spray dryer* piloto para obtenção de tomate em pó, chegando a uma variação de rendimento de 13,6 a 26,8%.

5.1.2. Sólidos Totais

O teor de sólidos totais calculado para o suco de tomate *in natura* foi de 4,23%. Como observado por Ferrari et al. (2012), na matéria seca do tomate, estão presentes suas fibras, proteína, minerais e vitaminas que o constitui. Devido sua composição possuir 95% de água, a quantidade de sólidos presentes é baixa e pode variar de acordo com a presença ou não de casca e semente em sua determinação. Neste trabalho, as cascas e sementes foram separadas do suco através de peneiramento, não sendo utilizadas.

Alguns estudos apresentam diferentes valores para os sólidos totais no fruto. Machado (2010) obteve uma porcentagem de sólidos totais em tomates menor do que 5%, já Ferrari et al. (2012), obteve matéria seca de 5 a 7%. Segundo Gould (1991) o conteúdo de sólidos totais no tomate está entre 7 e 8,5%.

5.2. Caracterizações físico-químicas do Produto

5.2.1. Resultados das análises físico-químicas para o suco *in natura* (SIN) e pós PS, EPEL, EPPL e EPR todas em 30, 60 e 90 dias obtidos por *Spray Drying*.

Como pode ser observado na Tabela 6, os valores obtidos para as análises de umidade, cinzas, ácido ascórbico, pH e sólidos solúveis entre o suco *in natura*, pó pós secagem e as demais formas de armazenamento possuem algumas semelhanças e diferenças estatísticas.

Tabela 6. Caracterização físico-química do suco do tomate in natura (SIN) e pós obtidos por secagem em *spray dryer* após a secagem (PS) e durante o período de armazenamento.

Análise	SIN	PS	EPEL	EPPL	EPR
Umidade (%)	94,887±0,243ª	5,632±0,266 ^b	5,192±0,385 ^b	5,477±0,702 ^b	3,801±0,490°
Cinzas (%)	0,328±0,196a	2,221±0,547 ^b	1,598±0,085 ^b	1,621±0,305 ^b	1,680±0,111 ^b
pH Sólidos Solúveis Totais	4,390±0,052a	4,090±0,408 ^a	4,470±0,252 ^a	4,697±0,369a	4,323±0,060 ^a
(°Brix)	4,233±0,115 ^a	20,533±0,379 ^b	19,167±0,153°	19,167±0,153°	19,367±0,115°

Médias¹ seguidas por mesma letra na mesma linha não diferem estatisticamente entre si (p≥0,05) pelo teste de Tukey.

Fonte: A autora (2019).

Para o teor de umidade, temos que o suco *in natura* difere estatisticamente ao nível de 5% de probabilidade de acordo com o teste Tukey, de todos os métodos de armazenamento, pois *in natura* a quantidade de água presente no fruto é muito maior do que a existente no pó obtido após a secagem. Para os métodos de armazenamento, pode-se observar que as amostras PS, EPEL e EPPL apresentaram-se semelhantes enquanto a amostra EPR encontra-se estatisticamente diferente das demais, pois o ambiente refrigerado na qual é armazenada possui umidade muito baixa quando comparado aos demais. As cinzas determinadas para o SIN e as demais amostras também diferem estatisticamente, enquanto as amostras PS, EPEL, EPPL e EPR são semelhantes entre si.

Os pH determinados para todas as amostras foram estatisticamente semelhantes, indicando que as amostras armazenadas, independentemente do método, quando reidratadas, mantiveram o pH característico do alimento in natura. Para os sólidos solúveis totais, as amostras SIN e PS são estatisticamente diferentes entre si e também das demais amostras, enquanto EPEL, EPPL

¹ Obtidas pelas diferentes formas de armazenamento e pó obtido após a secagem para cada caracterização físicoquímica.

e EPR apresentam-se semelhantes, indicando que esta propriedade também é mantida dentre os métodos de armazenamento.

Na literatura, são encontradas caracterizações físico-químicas para diversas frutas *in natura*. Alexandre et al. (2014) obtiveram na caracterização físico química da polpa de pitanga *in natura* pH de 2,58 e sólidos totais de 8,04 °Brix, seguindo os padrões legislativos estabelecidos para esse fruto. Já Ferreira (2017) na caracterização físico-química da polpa de jabuticaba, adicionada da casca, *in natura*, obteve pH igual a 3,49, sólidos solúveis totais de 15,58 °Brix, umidade de 84,42 % e cinzas de 2,85%, os valores de cinzas e sólidos solúveis totais são maiores que o esperado devido a presença da casca na polpa.

5.2.2. Atividade de Água (aw)

A Tabela 7 mostra os resultados obtidos para medida de atividade de água das amostras pós secagem e com diferentes condições de armazenamento durante o período de 30, 60 e 90 dias.

Tabela 7. Resultados das análises de atividade de água para o pó armazenado em diferentes condições durante os períodos de 30, 60 e 90 dias comparados com o resultado pós secagem.

	Atividade de Água (aw)
PS	0,237±0,019 a, g
EPEL ³⁰	0,273±0,010 b, d
$EPEL^{60}$	0,239±0,011 a
EPEL ⁹⁰	0,305±0,007 b, c
EPPL ³⁰	0,312±0,001 °
$EPPL^{60}$	0,253±0,006 a, d
EPPL ⁹⁰	0,321±0,002 e
EPR ³⁰	0,170±0,012 e, f
EPR^{60}	$0,152\pm0,014^{\ f}$
EPR ⁹⁰	0,204±0,008 g

Médias seguidas por mesma letra na mesma linha, não diferem estatisticamente entre si (p≥0,05) pelo teste de Tukey.

Fonte: A autora (2019).

É possível observar que as amostras armazenadas em embalagens de polietileno com exposição à luz (EPEL) apresentam-se com atividade de água aproximadamente constantes, quando comparadas ao pó pós secagem (PS), possuindo um pequeno aumento apenas após 90 dias de armazenamento. Já a amostra armazenada em embalagem de polietileno protegida da

luz (EPPL) apresenta valores de atividade de água maiores desde os primeiros 30 dias de armazenamento, enquanto as amostras mantidas em embalagens de polietileno com refrigeração (EPR) possuíram redução de atividade de água, pois abaixando-se a temperatura há diminuição da pressão parcial de vapor no sistema, causando redução da atividade de água do produto, divergindo estatisticamente (p≥0,05) dos demais métodos de armazenamento. Como pode ser observado também, as amostras de 60 dias de armazenamento, independentemente do método utilizado, apresentam valores diferentes do esperado, havendo uma pequena redução da atividade de água com relação aos 30 dias de armazenamento, e em seguida, nas amostras de noventa dias, voltam a aumentar, essa divergência pode ser explicada devido a variação da umidade relativa do ar e temperatura ambiente existentes em diferentes períodos do ano. Além disso, os valores se apresentam menores que 0,6, o que não favorece o crescimento microbiano de acordo com Rahman (2008) e Barbosa (2010).

Moraes (2014), realizou análises de atividade de água para polpa de caju amarelo seco em *spray dryer* e obteve resultados de 0,288- 0,361 e de 0,298- 0,355 para diferentes grupos em mesmo método de armazenamento por um período de 49 dias. Lisbôa et al. (2012), no estudo do armazenamento do figo da índia em pó perceberam que as atividades de água aumentaram de forma consistente ao longo do armazenamento nas temperaturas e umidades relativas testadas; a umidade relativa de 55% nas amostras a temperatura de 40 °C apresentaram maior aw a partir dos 20 dias de armazenamento em que o mesmo efeito da temperatura foi observado na umidade relativa de 83%, quando a aw das amostras a 40 °C superou a de 20 °C em mais de 20%, aos 100 dias de armazenamento. Oliveira et al. (2015) na determinação da estabilidade da polpa do fruto do mandacaru em pó durante o armazenamento em embalagens laminadas e temperatura ambiente observou que durante todo o período do armazenamento (50 dias) ao final do qual a amostra com DE = 10 teve um aumento de 11,50% e na amostra com DE = 14 o aumento foi de 10,03%.

5.2.3. Umidade

De acordo com a Tabela 8 é possível observar que as amostras EPEL não possuíram diferenças significativas quando ao teor de umidade para 30 e 60 dias e pós secagem. As amostras armazenadas em EPPL possuíram decréscimo na umidade com o tempo de armazenamento, tendo em 30 dias um valor maior que o obtido após a secagem e maior que os demais métodos de armazenamento. De acordo com o teste tukey, pode-se observar que a

amostra EPPL apresenta os valores de 60 e 90 dias semelhantes entre si e semelhantes com as amostras EPEL também aos 60 e 90 dias, já as amostras EPR apresentam-se semelhantes apenas entre si para os primeiros 60 dias.

Tabela 8. Resultados das análises de umidade para o pó armazenado em diferentes condições durante os períodos de 30, 60 e 90 dias comparados com o resultado pós secagem.

	Umidade (%)
PS	5,632±0,266 a, c
EPEL ³⁰	5,647±0,210 a, c
$EPEL^{60}$	5,155±0,016 a, b
EPEL ⁹⁰	4,882±0,443 b
$EPPL^{30}$	6,234±0,115 °
$EPPL^{60}$	5,398±0,076 a, b
$EPPL^{90}$	4,849±0,144 ^b
EPR^{30}	4,160±0,099 d, e
EPR ⁶⁰	4,050±0,299 ^e
EPR ⁹⁰	3,323±0,083 ^f

Médias seguidas por mesma letra na mesma linha, não diferem estatisticamente entre si (p≥0,05) pelo teste de Tukey.

Fonte: A autora (2019).

As reduções de umidade das amostras acondicionadas a temperatura não eram esperadas, podendo ser ocasionas por defeitos de medição, como variação da temperatura.

Para as amostras mantidas em EPR houve grande diminuição da umidade com o passar do tempo assim como quando comparada ao pó pós secagem, divergindo estatisticamente dos demais métodos de armazenamento. Essa redução significativa da umidade pode ser explicada pelo fato da refrigeração reduzir a umidade relativa do produto, devido à baixa umidade existente em ambientes refrigerados (geladeira), quanto maior o tempo de exposição do pó ao ambiente refrigerado, maior será o grau de resfriamento das partículas e menor a umidade relativa do produto, quando comparado aos períodos de armazenamento e à análise inicial do pó obtido logo após a secagem. O efeito do aumento da umidade como o aumento da temperatura ambiente foi observado por Chung (2016), constatando que quanto mais elevadas as temperaturas, maior a umidade relativa obtida para polpa de guavira desidratada em *spray dryer*.

O teor de umidade observado por Lima et al. (2004) na avaliação da estabilidade do melão desidratado armazenado durante 180 dias em embalagem flexível de polipropileno biorentado (BOPP), não sofreu acréscimos de umidade. Este fato pode ser explicado de acordo com as diferenças de propriedades de barreiras mecânicas, ópticas e térmicas inerentes aos materiais de embalagens produzidas com diferentes tipos e espessuras de filme, pela orientação das moléculas dos polímeros, pela composição química e estrutura e temperatura e umidade relativa a que os produtos foram expostos (FELLOWS, 2007).

Silva, et al. (2005) estudaram o armazenamento do umbu cajá em pó em embalagem laminada e de polietileno e observou o aumento da umidade para as amostras durante um período de 60 dias, em 20 e 50 dias de armazenamento, houve diminuição da umidade para as amostras armazenadas em polietileno, enquanto para as amostras laminadas a diminuição da umidade ocorreu aos 30 dias e se manteve constante até os 40 dias, voltando a aumentar em 50 dias de armazenamento.

5.2.4. Cinzas

Através da tabela abaixo, é possível observar que o teor de cinzas das amostras armazenadas é um pouco diferente do determinado para o pó pós secagem, porém, nenhum desses resultados são estatisticamente diferentes entre si, apresentando semelhança durante todo o período de armazenamento e mantendo-se praticamente constante.

Tabela 9. Resultados das análises cinzas para o pó armazenado em diferentes condições durante os períodos de 30, 60 e 90 dias comparados com o resultado pós secagem.

	Cinzas (%)
PS	2,221±0,547 a
EPEL ³⁰	1,456±0,449 a
EPEL ⁶⁰	1,474±0,139 a
EPEL ⁹⁰	1,525±0,107 a
EPPL ³⁰	1,963±0,074 ^a
EPPL ⁶⁰	1,593±0,113 ^a
EPPL ⁹⁰	1,611±0,533 a
EPR ³⁰	1,800±0,047 a
EPR ⁶⁰	1,616±0,019 a
EPR ⁹⁰	1,575±0,124 a

Médias seguidas por mesma letra na mesma coluna, não diferem estatisticamente entre si (p≥0,05) pelo teste de Tukey.

Fonte: A autora (2019).

Arlindo et al. (2007) estudaram o armazenamento do pimentão em pó e constataram tendência de redução dos valores médios de teor de cinzas, notando diferença significativa entre as médias nos tempos zero e 20 dias; estabilidade entre 20 dias e 40 dias, entre 40, 60 e 80 dias, e entre 60, 80 e 100 dias, obtendo redução no teor de cinzas no final do armazenamento com relação ao início em 2,34%. Pereira et al. (2006) não registrou diferenças significativas das cinzas do tomate em pó armazenado por 60 dias.

5.2.5. Espectrometria de Fluorescência de Raios-X (FRX)

A análise de espectrometria de Fluorescência de Rios-X (FRX) foi realizada para determinação de minerais presentes nas amostras de tomate em pó, e neste caso, para observação de alterações de quantidade ou presença de minerais nessas amostras com o passar de 90 dias em diferentes métodos de armazenamento.

Como a porcentagem de cinzas retrata o conteúdo total de minerais presentes nas amostras, os resultados dispostos na Tabela 10 foram adquiridos através dos cálculos da quantidade que cada um dos elementos representa percentualmente no teor de cinzas de cada amostra.

Tabela 10. Elementos minerais presentes nas amostras de suco de tomate em pó em diferentes formas de armazenamento e após secagem.

Minerais										
(ppm)	PS	$EPEL^{30}$	$EPEL^{60}$	$EPEL^{90}$	\mathbf{EPPL}^{30}	$EPPL^{60}$	\mathbf{EPPL}^{90}	EPR^{30}	EPR^{60}	EPR ⁹⁰
K	16940,900	9302,238	8150,925	9782,570	13406,309	8171,453	9277,910	11066,580	8389,302	9228,083
Cl	-	1742,541	2132,731	1277,798	2732,692	2643,106	2284,076	1789,200	2590,286	2233,035
Si	496,616	343,616	541,253	761,890	688,817	510,238	1012,352	498,780	491,587	866,408
Ni	261,412	654,763	197,369	755,943	344,899	475,511	708,196	2667,240	767,762	745,920
Na	976,352	423,259	984,632	706,228	-	495,264	607,991	-	554,126	581,175
Fe	459,303	504,358	539,337	481,290	587,919	353,168	559,017	686,160	380,891	500,535
Cu	-	445,390	-	474,733	298,572	-	506,821	-	-	452,655
Ca	383,567	321,048	248,516	395,128	528,832	241,658	422,565	392,580	245,955	432,023
Р	1431,657	522,704	1001,141	361,120	662,120	983,518	366,180	652,680	1006,122	391,073
S	529,709	228,155	326,491	161,345	322,325	348,708	270,326	246,600	351,803	274,365
Al	78,024	71,781	74,732	91,805	57,339	-	60,090	-	-	44,730
Mg	652,441	-	542,579	-	-	495,264	-	-	554,126	-
PF(%)	97,779	98,544	98,526	98,475	98,037	98,407	98,389	98,200	98,384	98,425

Fonte: A autora (2019).

Analisando-se a Tabela 13, é possível afirmar que todas as amostras de tomate em pó possuem como mineral principal o potássio, que é o mineral em maior quantidade em todas as amostras, independentemente de seu período ou forma de armazenamento. Comparando-as com o material pós secagem é possível concluir que com o passar do tempo a quantidade percentual de alguns minerais tende a diminuir, o potássio, por exemplo, presente no pó obtido após a secagem totaliza 16940,900 ppm do total na amostra e chega a atingir 8150,925 ppm após 60 dias de armazenamento em EPEL.

Assim, é possível perceber que com o passar do tempo, ocorrem pequenas mudanças na composição de minerais nas amostras, sem grandes diferenças numéricas. Essas variações, podem ser ocasionadas devido a processos biológicos sofridos pela amostra, não estudados nesse trabalho, porém, não resultando em variações significativas.

Segundo Guardia e Garrigues (2015) no estudo da determinação dos elementos essenciais em frutas e vegetais, foram encontrados em tomates provenientes dos Estados Unidos da América (EUA) 77ppm de calcio, enquanto na Malásia e no oeste da África esses valores atingiram 120 ppm do fruto. Para o potássio foram registrados valores de 2326 ppm nos EUA e 2900 ppm na Finlandia. Ainda de acordo com Guardia e Garrigues (2015), as maiores concentrações de sódio nos alimentos foram encontradas no tomate de forma processada, contendo 900-4988 ppm, porém, nesses casos o sal é adicionado durante o processamento e vale ressaltar que a maior concentração, dos EUA, é quase o dobro da concentração encontrada no Japão (2700 ppm).

5.2.6. Potencial Hidrogeniônico (pH)

Os valores de pH das amostras de tomate em pó variam entre 4,090 para o produto PS obtido, chegando à 4,943 para a amostra armazenada em EPPL após 90 dias. Com exceção das amostras EPEL⁹⁰, EPPL⁶⁰ e EPPL⁹⁰, que apresentaram resultados superiores aos demais, todas as amostras são estatisticamente semelhantes entre si e próximas ao resultado obtido após a secagem, mantendo-se entre 4,090 e 4,430. Os resultados obtidos se encontram semelhantes com os resultados de Souza et al. (2018), que apresenta valores de pH iguais a 4,2 para o tomate concentrado micro encapsulado por *spray dryer*.

Tabela 11. Resultados das análises pH para o pó armazenado em diferentes condições durante os períodos de 30, 60 e 90 dias comparados com o resultado pós secagem.

	рН
PS	4,090±0,408 ^a
EPEL ³⁰	4,357±0,012 a, b, c
EPEL ⁶⁰	4,430±0,261 a, b, c
EPEL ⁹⁰	$4,780\pm0,082^{b,c,d}$
EPPL ³⁰	$4,297\pm0,006$ a, b
$EPPL^{60}$	4,820±0,149 c, d
EPPL ⁹⁰	4,943±0,186 ^d
EPR ³⁰	4,330±0,010 a, b, c
EPR ⁶⁰	4,277±0,047 a, b
EPR ⁹⁰	4,393±0,091 a, b, c

Médias seguidas por mesma letra na mesma linha, não diferem estatisticamente entre si (p≥0,05) pelo teste de Tukey.

Fonte: A autora (2019).

Segundo Modolon et al.(2012), no estudo do fruto do tomateiro após colheita, o pH do suco do tomate indicado como ótimo encontra-se entre 4,2 e 4,3, onde ocorreria o impedimento da proliferação de microrganismos, prolongando seu período de validade. Essa característica deve estar presente tanto nos sucos obtidos *in natura* quanto nos pós secos por *spray dryer*. Através da Tabela 11, é possível observar que o pó do suco de tomate que permaneceu nessa faixa de pH ótimo entre os 90 dias de armazenamento foi a amostra armazenada em EPR, mesmo que nenhuma das amostras tenha ultrapassado um valor de pH 4.

Também é possível afirmar que as amostras analisadas se encontram dentro dos padrões de identidade e qualidade para o suco do tomate, pois este determina que o pH mínimo necessário é de 4,3 (ICP- BRASIL, 2001).

Alexandre et al. (2014) no estudo do armazenamento da pitanga em pó, observaram que o pH obtido diferiu estatisticamente entre o tempo inicial (zero) e o tempo final do armazenamento (60 dias), tendendo a aumentar a partir dos 30 dias de armazenamento. Este constatou que os valores médios nos tempos 30, 50 e 60 dias são significativamente superiores ao valor inicial e verificou que aumento do pH ao final do armazenamento (60 dias) foi de 3,6%, indicando que a embalagem não evitou a alteração do pH. Já Oliveira et al. (2015) observaram que para o fruto do mandacaru o pH assumiu valores oscilantes ao longo do armazenamento sem demonstrar efeitos relacionados ao tempo, mantendo valores entre 4,5 e 4,7.

Arlindo et al. (2007) verificaram que o pimentão em pó apresentou oscilações nos valores médios do pH durante o armazenamento, não apresentando diferenças significativas entre o tempo inicial e 80 dias, porém apresentando essas diferenças entre o tempo inicial e os demais, possuindo aumento de 1,2%.

5.2.7. Sólidos Solúveis Totais (°Brix)

Os resultados obtidos para os sólidos solúveis encontram-se numa faixa de 19- 20,5
Brix, Tabela 12, sendo significativamente semelhantes em sua maioria. As amostras de diferentes métodos de armazenamento também foram significativamente semelhantes entre si, independente do período de armazenamento ou forma de armazenamento nas quais se encontram. Além disso, pode-se observar através da comparação com a amostra PS, que os sólidos solúveis totais tendem a diminuir com o período de armazenamento.

Tabela 12. Resultados das análises de sólidos solúveis totais para o pó armazenado em diferentes condições durante os períodos de 30, 60 e 90 dias comparados com o resultado pós secagem.

	Sólidos Solúveis Totais (°Brix)
PS	20,533±0,379 a
EPEL ³⁰	19,300±0,000 b, c
EPEL ⁶⁰	19,000±0,000 ^b
EPEL ⁹⁰	19,200±0,000 b, c
$EPPL^{30}$	19,233±0,012 b, c
$EPPL^{60}$	19,000±0,000 ^b
$EPPL^{90}$	19,200±0,000 b, c
EPR ³⁰	19,300±0,000 b, c
EPR ⁶⁰	19,133±0,289 b, c
EPR ⁹⁰	19,500±0,000 ^c

Médias seguidas por mesma letra na mesma coluna, não diferem estatisticamente entre si (p≥0,05) pelo teste de Tukey.

Fonte: A autora (2019).

Esse mesmo comportamento foi observado por Silva et al. (2005) no estudo do armazenamento de umbu-cajá em pó onde nas embalagens de polietileno, o °Brix das amostras sofreu redução entre os tempos zero e 10 dias, manteve-se estável entre 10 e 30 dias, diminuiu entre 30 e 40 dias e, continuou estável a partir dos 40 dias até o final do armazenamento.

De acordo com os padrões de identidade e qualidade para o suco do tomate, os sólidos solúveis em °Brix à 20°C deve possuir um valor mínimo de 5 °Brix (ICP- BRASIL, 2001). O suco é *in natura* apresentou aproximadamente 4,233 °Brix, aproximando-se do valor recomendado. Como o pó seco contém maltodextrina, adicionada ao suco antes da secagem, aumentando a quantidade de sólidos solúveis, o °Brix tende a ser maior. Portanto é possível dizer que os pós reidratados em todos os métodos de armazenamento apresentam-se dentro dos padrões estabelecidos pela legislação.

5.2.8. Análise Granulométrica

As Figuras 13, 14, 15 e 16 apresentam todos os gráficos obtidos através da realização da análise granulométrica para o suco de tomate em pó, considerando todas as formas de armazenamento e o pó obtido após a secagem. Para o suco *in natura*, não foi possível a realização deste ensaio.

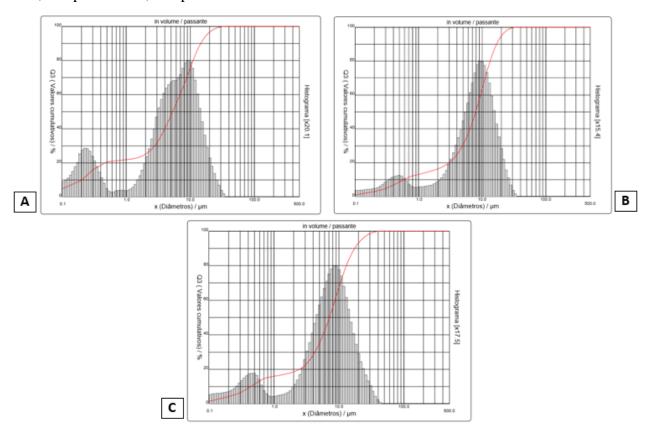
in volume / passante

Histograma (x21.2)

All valores cumulativos) / %

x (Diametros) / µm

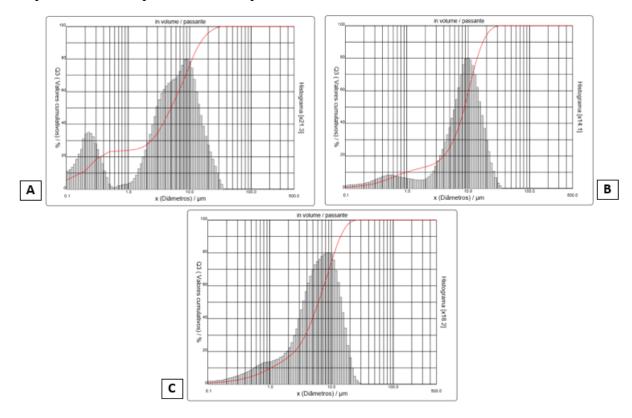
Figura 13. Análise granulométrica do pó pós secagem (PS).


Fonte: A autora (2019).

No pó obtido após a secagem em *spray dryer*, o diâmetro médio das partículas foi de 6,01 μm. Os diâmetros tiveram variações entre 0,22 μm e 13,54 μm, que são diâmetros consideravelmente diferentes dos presentes no suco *in natura* que possui partículas úmidas, apenas passadas por peneira e consideravelmente maiores do que no material seco. Por esse motivo, as comparações a seguir serão feitas apenas entre os pós PS, EPEL, EPPL e EPR considerando o tempo de armazenamento.

Os gráficos obtidos através da análise granulométrica apresentam comportamento bimodal quanto a distribuição de partículas, possuindo dois picos distintos que apresentam a predominância dos tamanhos das partículas. O primeiro pico é o menor e o segundo o maior, mostrando a predominância das menores e maiores partículas respectivamente.

Na Figura 14 são observados os diâmetros médios das partículas para os pós armazenados em EPEL. Para 30 dias de armazenamento, o diâmetro médio das partículas foi de 6,60 μm, enquanto para 60 dias e 90 dias de armazenamento obteve-se 8,60 μm e 8,40 μm respectivamente. Para o primeiro caso, a predominância do menor pico foi de 0,20 μm e do maior de 9,3 μm aproximadamente, já para o segundo período de armazenamento essas predominâncias foram de 0,47 μm e 10 μm e para o terceiro, 0,5 μm e 9 μm.


Figura 14. Análise granulométrica do pó em EPEL de acordo com o tempo de armazenamento. A- após 30 dias; B- após 60 dias; C- após 90 dias.

Fonte: A autora (2019)

No caso das amostras armazenadas em EPPL (Figura 15), foi possível observar variação de diâmetro médio de 6,52 μ m, 9,30 μ m e 7,04 μ m para os respectivos tempos de armazenamento apresentados. Os picos menores apresentaram predominância dos diâmetros de aproximadamente 0,24 μ m, 0,55 μ m e 0,8 μ m, enquanto nos picos maiores esses diâmetros foram de 9,5 μ m, 10 μ m e 9,5 μ m.

Figura 15. Análise granulométrica do pó em EPPL de acordo com o tempo de armazenamento. A- após 30 dias; B- após 60 dias; C- após 90 dias.

Fonte: A autora (2019).

Por fim, para as amostras armazenadas em EPR, a análise granulométrica realizada, Figura 16, apresentou diâmetros médios das partículas de 6,50 μ m, 9,08 μ m e 7,03 μ m para as amostras armazenadas nos períodos de 30, 60 e 90 dias respectivamente. Os diâmetros dos menores picos concentraram tamanhos de aproximadamente 0,25 μ m, 0,5 μ m e 0,23 μ m enquanto no maior pico esses valores foram de 9 μ m, 9,5 μ m e 9 μ m.

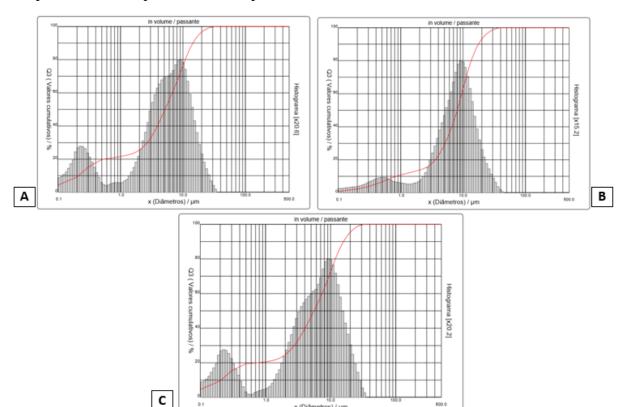


Figura 16. Análise granulométrica do pó em EPR de acordo com o tempo de armazenamento. A- após 30 dias; B- após 60 dias; C- após 90 dias.

A Tabela 13 mostra de forma resumida, os diâmetros citados anteriormente, permitindo melhor observação e comparação desses valores.

Tabela 13. Diâmetros das amostras.

	Diâmetros (µm)					
Amostra	D	D10	D50	D90		
	médio					
PS	6,01	0,22	4,74	13,54		
$EPEL^{30}$	6,6	0,2	5,29	14,57		
$EPEL^{60}$	8,6	0,58	7,9	16,88		
$EPEL^{90}$	8,4	0,43	7,12	17,45		
$EPPL^{30}$	6,52	0,17	4,98	14,96		
$EPPL^{60}$	9,3	0,97	8,71	17,47		
$EPPL^{90}$	7,04	1,04	6,13	14,07		
EPR^{30}	6,5	0,21	5,16	14,44		
EPR^{60}	9,08	0,84	8,04	17,65		
EPR ⁹⁰	7,03	0,21	5,55	15,78		

Fonte: A autora (2019).

A partir da Tabela 13 é possível observar que as amostras de 60 dias de armazenamento apresentaram diâmetros de partículas maiores que as de 30 e 90 dias de armazenamento, assim como picos menores com menor valor cumulativo, isso pode ocorrer quando a amostra passa mais tempo exposta ao ar do ambiente durante a realização dos experimentos, ou quando a embalagem não é perfeitamente selada, permitindo a passagem de ar, fazendo com que a amostra adquira umidade e consequentemente fique mais aglomerada. Dessa forma, pode-se dizer que a amostra armazenada em EPEL adquiriu mais umidade com o passar dos 90 dias, aglomerando partículas e consequentemente apresentando maior diâmetro médio ao fim desse período.

Embora as amostras possuam diferenças quanto ao tamanho médio das partículas, para um mesmo período de armazenamento possuem valores médios muito próximos. Para diferentes tempos de armazenamento, há variações desse diâmetro, tendendo a aumentar com o tempo devido a amostra aos poucos adquirir umidade e consequentemente se aglomerar, porém, a diferença observada quanto aos períodos de armazenamento estudados também é baixa.

Não foram encontrados na literatura trabalhos que realizassem estudo de armazenamento em pó através do uso de análise granulométrica para devidas comparações.

5.2.9. Microscopia Eletrônica de Varredura (MEV)

As imagens obtidas na MEV proporcionam informações em relação à morfologia e topografia presentes nas amostras e quando observada durante um período de tempo, permite observação das modificações das amostras.

As Figuras 17, 18, 19 e 20 apresentam as imagens obtidas para Microscopia Eletrônica de Varredura nas amostras em pó de tomate em diferentes formas e períodos de armazenamento, comparando-as. Todas as imagens possuem aumento de 5000 vezes.

Figura 17. MEV do pó de tomate PS.

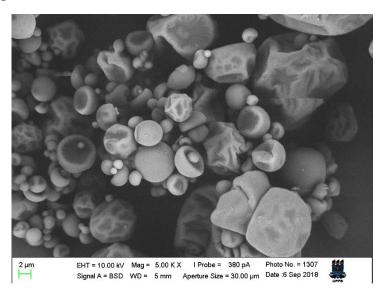


Figura 18. MEV do pó de tomate armazenado em EPEL. A- após 30 dias; B- após 60 dias; C- após 90 dias.

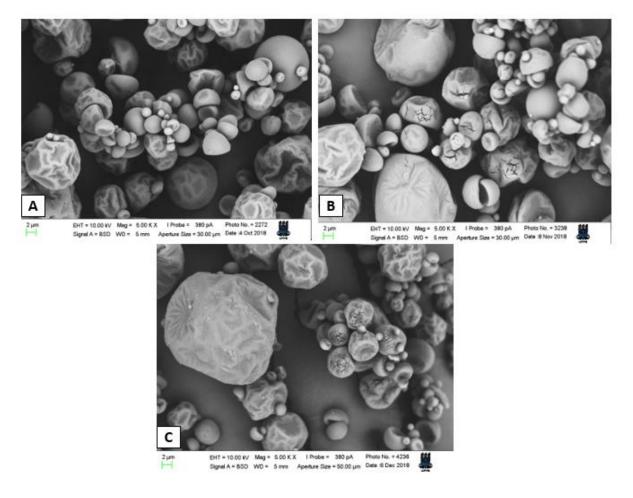
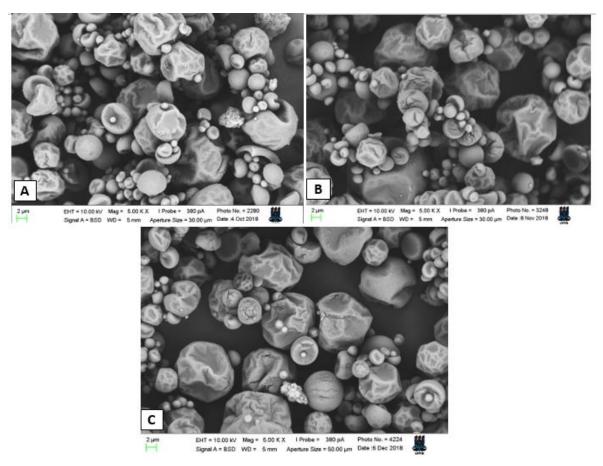



Figura 19. MEV do pó de tomate armazenado em EPPL. A- após 30 dias; B- após 60 dias; C- após 90 dias.

Fonte: A autora (2019).

Figura 20. MEV do pó de tomate armazenado em EPR. A- após 30 dias; B- após 60 dias; C- após 90 dias.

As imagens apresentadas permitem observar o formato das partículas do produto e seu comportamento de acordo com o tempo e método de armazenamento. Algumas dessas imagens apresentam fissuras nas microesferas, que podem indicar que não há formação de um filme contínuo em suas paredes externas.

O formato esférico apresentado é considerado característico de pós produzidos pelo processo de *spray drying*, algumas dessas esferas apresentam superfícies completamente lisas enquanto outras, em sua maioria, possuem rugosidades e depressões (TONON, 2009). Esses fatores podem ser explicados através da temperatura de secagem utilizada no processo, além da grande quantidade de açúcar que faz com que o material em questão passe a adquirir umidade com grande facilidade (TONON, 2009).

Quando o processo de secagem é realizado à altas temperaturas, a umidade evapora rapidamente, tornando a casca seca e dura, o que resulta em esferas perfeitas, porém, quando essa temperatura não é tão alta, o vapor formado nos vacúolos condensa no momento em que

as partículas passam para regiões mais frias ou quando refrigeradas (TONON, 2009). Quando esse pó é refrigerado, as partículas tendem a murchar, como pode ser visto na Figura 20, para amostra mantida em refrigeração, isso ocorre porque neste caso a casca permanece mais flexível, devido a temperatura usada no processo e à quantidade de açúcares presentes na amostra, tornando-as mais enrugadas. Esse mesmo comportamento de partículas foi observado por Tonon (2009) para o suco de açaí em pó durante 120 dias de armazenamento.

A amostra PS, presente na Figura 17, apresenta menor número de partículas enrugadas que as demais. Com o passar do tempo, todas as amostras apresentam aumento de depressões e enrugamentos e algumas poucas partículas com fissuras, sendo possível observar comportamento similar entre as amostras com armazenamento em EPEL e EPPL.

Comparando-se as partículas observadas nas imagens de microscopia eletrônica de varredura e análise granulométrica é possível constatar que as partículas apresentam tamanhos similares em ambos métodos. Na análise granulométrica as partículas possuem diâmetros médios variando de 6,01 a 9,30 μ m, enquanto nas imagens observadas através de MEV essas partículas possuem diâmetros variantes entre 2 e 10 μ m, sendo as partículas próximas de 10 μ m presentes em maiores quantidades.

5.2.10. Isotermas de Adsorção

As curvas das isotermas de adsorção obtida para o pó pós secagem e para cada método de armazenamento estudado foram ajustadas ao modelo matemático de PEK com o intuito de determinar os parâmetros de coeficiente de correlação (R^2), assim como os parâmetros da equação de PEK, ou seja, o conteúdo de umidade da amostra no tempo zero (y_0), os tempos característicos das isotermas referentes aos processos rápido e lento ($t_1 e t_2$) e os conteúdos de umidade associados aos processos rápidos e lentos ($A_1 e A_2$) (ZAIHAN et al., 2010).

A Tabela 14 apresenta os parâmetros ajustados ao modelo matemático de PEK para cada condição e períodos de armazenamento assim como para o pó obtido após a secagem.

Tabela 14. Parâmetros do modelo matemático de PEK.

Amostra	\mathbb{R}^2	y ₀	A ₁	\mathbf{t}_1	\mathbf{A}_2	t_2
PS	0,998	0,076	8,354	860,490	1,885	85,502
EPEL ³⁰	0,978	0,101	4,969	269,068	4,969	269,068
$EPEL^{60}$	0,996	0,252	3,283	315,247	3,283	293,105
EPEL ⁹⁰	0,989	0,036	2,876	677,316	2,876	677,316
$EPPL^{30}$	0,999	0,023	3,950	589,100	4,404	110,630
$EPPL^{60}$	0,999	0,137	3,702	341,619	3,058	83,997
EPPL ⁹⁰	0,947	0,531	2,948	330,385	2,948	330,385
EPR^{30}	0,999	0,025	3,987	672,193	4,563	113,323
EPR^{60}	0,996	0,003	8,634	379,950	2,649	6,047
EPR ⁹⁰	0,991	0,179	3,265	338,026	3,265	338,026

Observa-se a partir da Tabela 14 que o modelo PEK apresentou bom ajuste aos dados experimentais, apresentando coeficiente de correlação (R²) próximo de 1 para a maioria das amostras. No entanto, para as amostras EPEL³0, EPEL90, EPPL90 e EPR90 esses valores não se encontram tão próximos da unidade quanto os demais. Para essas mesmas condições e respectivos períodos de armazenamento, foi observado também que os resultados do tempo das isotermas para o processo de adsorção rápido (t₁) e lento (t₂) foram iguais. Para as demais amostras os tempos t₁ foram sempre maiores que os tempos t₂. Dentre os tempos rápidos obtidos, o da condição de armazenamento EPEL³0 foi o menor enquanto a amostra PS obteve o maior tempo rápido em relação às outras amostras, seguida pelo armazenamento EPEL90.

Os gráficos dispostos nas Figuras 21, 22 e 23 representam as curvas das isotermas de adsorção experimentais ajustadas ao modelo de PEK para cada método de armazenamento e período de tempo de armazenamento analisado comparando-os com o pó obtido após secagem (PS). Nesses gráficos são estabelecidos o tempo do processo de adsorção versus a umidade adquirida durante esse processo.

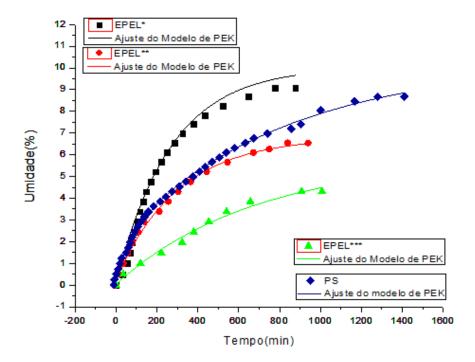
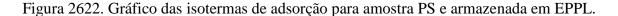
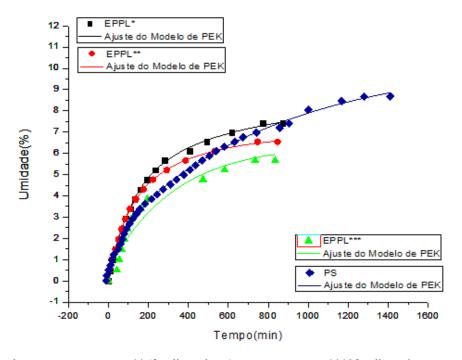




Figura 21. Gráfico das isotermas de adsorção para amostra PS e armazenada em EPEL.

*30 dias de armazenamento; **60 dias de Armazenamento; ***90 dias de armazenamento. Fonte: A autora (2019).

*30 dias de armazenamento; **60 dias de Armazenamento; ***90 dias de armazenamento. Fonte: A autora (2019).

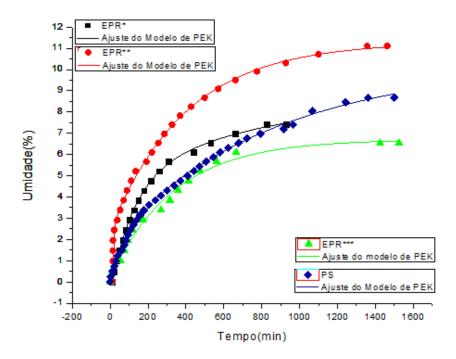


Figura 2273. Gráfico das isotermas de adsorção para amostra PS e armazenada em EPR.

*30 dias de armazenamento; **60 dias de Armazenamento; ***90 dias de armazenamento. Fonte: A autora (2019).

Na Figura 21, observa-se que o tempo do processo de adsorção para 30 e 60 dias de armazenamento são os mais próximos do tempo estimado pelo modelo de PEK, esses resultados se repetem para os demais métodos de armazenamento no período de 30 e 60 dias dispostos nas Figuras 22 e 23. No período de 90 dias esses resultados possuem desvios consideráveis do modelo, mas os valores obtidos para o tempo de processo de adsorção estimados pelo modelo são próximos dos obtidos.

É possível observar também que o método de armazenamento EPR obteve maior tempo de absorção que os demais, ou seja, demorou mais tempo até absorver a umidade presente no ambiente até atingir um valor constante.

6. DISCUSSÕES

Através dos resultados obtidos ao longo desse trabalho observa-se que assim como é possível a obtenção do pó de tomate em *spray dryer* a partir da secagem do suco de tomate *in natura*, é de grande relevância também o estudo do armazenamento desse produto, que pode sofrer diversas alterações de acordo com o ambiente no qual está armazenado, incluindo variações de temperatura, presença de oxigênio e exposição a luz, que podem diminuir a vida de prateleira desse alimento.

Devido a essas alterações, nesse trabalho foi realizado o estudo do armazenamento do pó de tomate seco em *spray dryer* a partir do armazenamento de 90 dias do produto por diferentes métodos, todos em embalagens de polietileno, com exposição a luz (EPEL), protegidos da luz através de envolvimento com papel laminado (EPPL) e amostra armazenada com refrigeração (EPR).

O estudo do armazenamento do pó de tomate foi realizado através de constantes caracterizações físico-químicas do produto, além de comparação de suas características com o suco *in natura*, na busca de mantê-las. Desta forma, foram feitas análises de atividade de água, umidade, cinzas, minerais (FRX), pH, sólidos solúveis totais, análise granulométrica, microscopia eletrônica de varredura (MEV) e isotermas de adsorção.

Comparando-se o suco *in natura* com o pó obtido, foi possível avaliar que independentemente do armazenamento, o pH obtido após a reidratação do pó foi semelhante ao pH do suco, mantendo uma de suas principais características.

Foi observado no comportamento da atividade de água para os pós armazenados que as amostras em EPEL mantiveram valores constantes durante todo o armazenamento, enquanto as amostras armazenadas em EPPL possuíram aumento da atividade de água desde os primeiros 30 dias de armazenamento, já as amostras refrigeradas (EPR) possuíram redução da atividade de água durante os 90 dias de armazenamento. Para as determinações de umidade foi observado um comportamento atípico e inesperado nas amostras, apresentando redução do teor de umidade com o passar do tempo ao invés do aumento, fato observado em todas as amostras de forma semelhante.

Já para as análises de cinzas, foram obtidos valores estatisticamente semelhantes para todas as amostras independente do período de armazenamento. Na determinação dos minerais, realizada por FRX, observou-se que o mineral em maior quantidade nas amostras foi o potássio,

que com o passar dos 90 dias, assim como diversos outros minerais presentes, apresentou diminuições em sua quantidade.

De acordo com a análise granulométrica, o diâmetro médio das partículas aumentou com o tempo, devido ao ganho de umidade e aglomeração das mesmas, porém, mesmo com esse aumento, a amostra armazenada em EPR apresentou menor diâmetro médio de partículas dentre as demais após os 90 dias de armazenamento. A partir das análises de MEV, foi observado que as partículas após a secagem apresentam forma esférica característica de alimentos secos em *spray dryer*, com superfícies lisas e algumas depressões, porém, como passar do tempo há aparecimento de aumento nas depressões, enrugamentos e fissuras. As amostras armazenadas em EPEL e EPPL apresentaram comportamento similar, enquanto as amostras em EPR ficaram mais murchas, possuindo ainda partículas lisas, característica decorrente do congelamento.

Por fim, com o estudo das isotermas observou-se que as amostras armazenadas em EPR obtiveram maior tempo de absorção, ou seja, essas amostras demoraram mais tempo que as demais para absorver a umidade presente no ambiente até atingir um valor constante.

Todas as análises foram comparadas com dados da literatura que relacionaram pós obtidos em *spray dryer*, sendo possível observar que as propriedades físico químicas do pó de tomate obtido apresentam resultados favoráveis com relação aos parâmetros de qualidade e conservação do produto.

Assim, a partir dos resultados apresentados, é possível observar que quando armazenadas em ambiente refrigerado (EPR), as amostras apresentaram menores variações, mantendo as características do produto obtido após a secagem, e que quando apresentaram variações, como no caso da atividade de água ou em sua morfologia, observadas no MEV, foram alterações que favorecem o aumento da vida de prateleira do produto, caracterizando esse método como o melhor dentre os três apresentados para armazenar o tomate em pó seco em *spray dryer*.

7. CONCLUSÃO

De forma geral, o presente trabalho possibilitou a avaliação das condições de armazenamento do pó de tomate seco em *spray dryer* utilizando maltodextrina 20DE como agente carreador, através do estudo das variações de suas características físico- químicas de acordo com os três métodos de armazenamento propostos, EPEL, EPPL e EPR.

Neste trabalho foi realizada a secagem do suco de tomate microencapsulado com maltodextrina 20DE por spray dryer à temperatura de 150°C com rendimento de 36,51% e obtida a caracterização físico química do produto através de análises como atividade de água, umidade, cinzas, espectrometria de fluorescência de Raios-X, pH, sólidos solúveis totais, análise granulométrica, microscopia eletrônica de varredura e isotermas de adsorção.

Para que o estudo do armazenamento fosse realizado, foram usados três diferentes métodos de armazenamento do pó de tomate, consistindo em Embalagem de Polietileno com Exposição a Luz, Embalagem de Polietileno com Proteção da Luz e Embalagem de Polietileno com Refrigeração. Os materiais presentes nessas embalagens possuíram caracterização físico química realizada nos períodos de 30 dias, 60 dias e 90 dias de armazenamento.

Por fim, foi selecionada a melhor condição de armazenamento do produto, o armazenamento com refrigeração, considerando a conservação existente de suas características físico-químicas, pois este apresentou constante durante todo o armazenamento valores de cinzas, sólidos solúveis totais em 19 °Brix, pH por volta de 4,3, similares ao do suco *in natura*, além de apresentar redução da umidade e atividade de água quando exposto a refrigeração, passando de 5,636 à 3,323 e 0,237 à 0,204 respectivamente, dificultando o crescimento microbiano ainda mais, devido à baixa umidade e atividade de água menor que 0,6, a mais baixa aglomeração de partículas após todo o armazenamento e levando o maior tempo para adquirir umidade na análise das isotermas, apresentando-se melhores que os demais métodos utilizados.

Dessa forma, o presente trabalho atingiu seus objetivos de produzir o pó de tomate através de secagem em *spray dryer* e principalmente, estudar os três diferentes métodos de armazenamento propostos para o aumento de vida de prateleira do material através de constantes caracterizações do produto.

REFERÊNCIAS

- AL-ASHEH et al., AL-ASHEH, S. et al. The use of experimental factorial design for analysing the effect of spray dryer operating variables on the production of tomato powder. **Trans IChemE**, v. 81c, p.81-88, 2003.
- ALEXANDER, R. J. Maltodextrins: production, properties, and applications. In: SCHENCK, F. W.; HEBEDA, R. E. Starch hydrolysis products: worldwide technology, production and applications. **New York: VCH Publishers**, p. 233-275, 1992.
- ALEXANDRE, et al.; Armazenamento de Pitanga em pó. Campina Grande-PB. **Com. Sci.**, Bom Jesus, v.5, n.1, p.83-91. 2014.
- ALVES, R. M. V. Embalagem para frutas e hortaliças desidratadas e frutas secas. Campinas: CETEA/ITAL, 2001. 12 p.
- ARLINDO, et al.; Armazenamento de Pimentão em Pó em Embalagem de Polietileno. **Revista Brasileira de Produtos Agroindustriais**, Campina Grande, v.9, n.2, p.111-118, 2007.
- AZEREDO, H.; FARIA, J.; AZEREDO, A.; Embalagens ativas para alimentos. Ciênc. **Tecnol. Aliment**. Campinas. vol.20, no.3. 2000.
- BARBOSA, S. J. **Qualidade de suco em pó de mistura de frutas obtido por spray drying**. Dissertação (Mestrado em Produção Vegetal no semiárido) Universidade Estadual de Montes Claros, Janaúba-MG, 2010.
- BORJESSON, J.; ISAKSSON, M.; MATTSSON, S. X-ray fluorescence analysis in medical sciences: a review. **Acta Diabetologica**, v. 40, n. 1, p. S39-S44, 2003.
- BRASIL. Ministério da Saúde. Agência Nacional de Vigilância Sanitária. **Métodos físico-químicos para análise de alimentos**. Brasília: Ministério da Saúde, 2005. 1017 p.
- BRUNINI, et al. Armazenamento de Jabuticabas: embalagem e temperatura. **Ciênc. Tecnol. Aliment.**, Campinas. 2004.
- CAMARGO, G. A. **Novas tecnologias e pré-tratamentos: tomate seco embalado à vácuo**. Dissertação de Mestrado. Universidade Estadual de Campinas. Campinas, SP, abril. 2005.
- CARDELLO, H. M. A. B.; MORAES M. A. C., CARDELLO L. Ácido ascórbico e ascorbato oxidase em manga (*Mangifera indica L.*) var. Haden processada e congelada. **Alim. Nutri.**, São Paulo, 5: 65-75, 1993/94.
- CARVALHO,F. **Avaliação de desempenho de** *spray dryer* **piloto para produção de ovo em pó.** Tese. Universidade Federal de Lavras, 2010.
- CARVALHO, J. L.; PAGLIUCA, L. G. Tomate, um mercado que não para de crescer globalmente. CAPA. **Hortifruti Brasil**. Junho. 2007.
- CASTRO, A. G. A. **A química e a reologia no processamento de alimentos**. Lisboa: Ciência e Técnica, 2003. 296 p.

- CAVALCANTE, C. E. B. et al. Avaliação dos parâmetros de secagem da polpa de graviola em pó obtida por secagem em spray dryer. **Brazilian Journal of Food Technology**. Campinas, v. 20. 2017.
- CAVALCANTI A. L., OLIVEIRA K. F., PAIVA P. S., DIAS M. V. R., COSTA S. K. P., VIEIRA F.F. **Determinação dos sólidos solúveis totais (°Brix) e pH em bebidas lácteas e sucos de frutas industrializados**. Pesquisa Brasileira em Odontopediatria e Clinica Integrada, 2006.
- CECCHI, H. M. **Fundamentos teóricos e práticos em análises de alimentos**. 2. ed. Campinas: Editora da Unicamp, 2003.
- CELESTINO, S.M.C. Princípios de secagem de alimentos. **Embrapa cerrados**, Planaltina, DF, 2010.
- CHEGINI, G. R.; GHOBADIAN, B. Spray dryer parameters for fruit juice drying. **World Journal of Agricultural Sciences**, v. 3, n. 2, p. 230-236, 2007.
- CHUNG, M. Polpa de Guavira (*Campomanesia cambessedeana Berg*) desidratada em *spray dryer*: Efeitos das condições de processo e composição de alimentação nas propriedades físico químicas e atividade antioxidante. Universidade de São Paulo, Pirassununga, 2016.
- DEDAVID, B. A.; GOMES, CARMEM I.; MACHADO, G. Microscopia eletrônica de varredura: Aplicações e preparação de amostras. Porto Alegre: EDIPUCRS, 2007.
- DEMODARAN, S.; PARKIN, K.; Química de alimentos de FENNEMA. Editora Artmed. 5ª Edição. 2019.
- DURIGON, A. **Produção e caracterização de tomate em pó por cast- tape drying**. Tese de doutorado. Universidade Federal de Santa Catarina. Florianópolis, SC. 2016.
- EMBRAPA. **Cultivo de tomate para industrialização**. 2. Ed. Gama: Embrapa Hortaliças, 2006. Disponível em: http://sistemasdeprodução.cnptia.embrapa.br/FontesHTML/Tomate/TomateIndustrial_2ed/importancia.htm>. Acesso em: 04 mar. 2019.
- EMBRAPA. **Princípio de secagem de alimentos**. Documentos 276. Planaltina, DF: Embrapa Cerrados, 2010.
- EMBRAPA. **Secagem e desidratação**. Brasília- DF: Embrapa- Parque Estação Biológica.2000. Disponível em: http://www.agencia.cnptia.embrapa.br/gestor/tecnologia_de_alimentos/arvore/CONT000fid_5sgie02wyiv80z4s473tokdiw5.html Acesso em: 04 mar. 2019.
- ENDO, E. et al. Avaliação da vida de prateleira do suco de maracujá (*Passiflora edullis f. flavicarpa*) desidratado. **Ciência e Tecnologia de Alimentos**, v. 27, n. 2, abril/junho. Campinas. 2007.
- FAO. FAOSTAT 2012. Disponível em: < http://faostat.fao.org.> Acesso em: 17 mar. 2019.

- FARAHNAKY et al., FARAHNAKY, A. et al. The use of tomato pulp powder as a thickening agent in the formulation of tomato ketchup. **Journal of Texture Studies**, v. 39, n. 2, p.169-182, 2008.
- FELLOWS, P. **Tecnología del processado de los alimentos: Principios y prácticas.** Zaragoza (España): Editorial Acribia, S. A., 746p. 2007.
- FERRARI C. C, RIBEIRO C. P., AGUIRRE J. M. Secagem por atomização de polpa de amora-preta usando maltodextrina como agente carreador. **Brazilian Journal of Food Technology**, Campinas, v.15, n.2, p.157-165, 2012.
- FERREIRA, M. N. Estudo da secagem de jabuticaba (polpa e casca) pelo método da camada de espuma. UFG- Goiânia- GO. 2017.
 - FREITAS, A. C.; FIGUEIREDO, P. Conservação de alimentos. Lisboa. 2000.
- FURTADO, M. A. M.; FERRAZ, F. O. Determinação de umidade em alimentos por intermédio de secagem em estufa convencional e radiação infravermelha- estudo comparativo em alimentos com diferentes teores de umidade. UFJF- Juiz de Fora-MG.2007.
- GALLO, T.; MOSER, P.; TELIS, V.; **Estabilidade do suco de uva em pó microencapsulado por atomização**. Universidade Estadual Paulista, Departamento de Engenharia e Tecnologia de Alimentos. São Paulo. 2015.
- GAVA, et al. **Tecnologia de Aliementos: princípios e aplicações**. Editora Nobel, 2009.
- GOMES, P.; FIGUEIRÊDO, R.; QUEIROZ,A.; Armazenamento da polpa de acerola em pó a temperatura ambiente. **Cienc. Tecnol. Aliment.**, Campinas, 2004.
- GOULA, A. M.; ADAMOPOULOS, K. G. Effect of Maltodextrin Addition during Spray Drying of Tomato Pulp in Dehumidified Air: I. Drying Kinetics and Product Recovery. **Drying Technology**, v. 26, n. 6, p.714-725, 2008a.
- GOULA, A. M.; ADAMOPOULOS, K. G. Effect of Maltodextrin Addition during Spray Drying of Tomato Pulp in Dehumidified Air: II. Powder Properties. **Drying Technology**, v. 26, n. 6, p.726-737, 2008b.
- GOULA, A. M.; ADAMOPOULOS, K. G. Spray drying of tomato pulp in dehumidified air: I. The effect on product recovery. **Journal of Food Engineering**, v. 66, n. 1, p.25-34, 2005a.
- GOULA, A. M.; ADAMOPOULOS, K. G. Spray drying of tomato pulp in dehumidified air: II. The effect on powder properties. **Journal of Food Engineering**, v. 66, n. 1, p.35-42, 2005b.
- GOULA, A. M.; ADAMOPOULOS, K. G. Spray Drying Performance of a Laboratory Spray Dryer for Tomato Powder Preparation. **Drying Technology**, v. 21, n. 7, p.1273-1289, 2003.
- GOULA, A. M. et al. Water sorption isotherms and glass transition temperature of spray dried tomato pulp. **Journal of Food Engineering**, v. 85, n. 1, p.73-83, 2008.

- GOULD, W. A. Composition of tomatoes. Tomato Production, Processing and Quality Evaluation. **AVI Publishing Co.**, Westport, Connectitut, 344-358. 1991.
- GRANGEIRO, L.C.; PEDROSA, J.F.; BEZERRA NETO, F; NEGREIROS, M.Z. de. **Qualidade de híbridos de melão-amarelo em diferentes densidades de plantio**. Horticultura Brasileira, Brasília, v.17, p.110-113, 1999.
- GUARDIA, M. de la.; GARRIGUES, S. **Handbook of Mineral Elements in Food.** 2015.
- HART, D. J.; SCOTT, K. J. Development and evaluation of an HPLC method for the analysis of carotenoids in foods, and the measurement of the carotenoid content of vegetables and fruits commonly consumed in the UK. **Food Chemistry**, v. 54, n. 1, p.101-111, 1995.
- HOFFMANN, F.; Fatores limitantes a proliferação de microorganismos em alimentos. **R. Bras. Alim.** n.9, 2001.
- HORTIFRUTI BRASIL. **Anuários 2018-2019**. Ano 17, n. 185. 2018. Disponível em : < https://www.hfbrasil.org.br/br/revista/acessar/completo/anuario-2018-2019.aspx Acesso em jun./ 2019.
- IAL INSTITUTO ADOLFO LUTZ. **Métodos Físico-Químicos para Análise de Alimentos**, 4 ed, São Paulo, 2008.
- ICP- BRASIL. Regulamento técnico para fixação dos padrões de identidade e qualidade para polpas de frutas. **Diário Oficial da União**. Seção 1. Portaria 86. 2001.
- JORGE, Neuza.; **Embalagens para Alimentos**. São Paulo: Cultura acadêmica: Universidade Estadual Paulista, Pró Reitoria de Graduação, 194 p., 2013.
- KOHLER, R.; ALEX R., BRIELMANN R., AUSPERGER B. A new kinetic model for water sorption isotherms of cellulosic materials. Macromolecular Symposia. WILEYVCH Verlag, p. 89-96, 2006.
- LANNES, S. C. S.; MEDEIROS, M. L. Processamento de achocolatado de cupuaçu por spray dryer. **Revista Brasileira de Ciências Farmacêuticas**. v. 39., n. 1, jan/mar., 2003.
- LEONARDI, J. G.; AZEVEDO, B.M. Métodos de conservação de alimentos. **Revista Saúde em Foco**, v. 10. 2018.
- LIMA, A,S., et al. Estudo da estabilidade de melões desidratados obtidos por desidratação osmótica seguida de secagem convencional. **Revista Brasileira de Fruticultura** 26: 107-109. 2004.
- LISBÔA, C.; FIGUEIRÊDO,R.; QUEIROZ, A.; Armazenamento de Figo-da-Índia em Pó. **R. Bras. Eng. Agríc. Ambiental.** Campina Grande- PB.v. 16, n. 2, p. 216-221. 2012.
- LOPES, R.; Dossiê Técnico: Conservação de Alimentos. **Fundação Centro Tecnológico de Minas Gerais- CETEC**. 2007.
- LUENGO, R.F.A; CALBO, A.G.; **Armazenamento de hortaliças**. Embrapa Hortaliças. 2001.

- MACHADO, V. G. Obtenção de tomate em pó por atomização: Influência das variáveis de processo na qualidade do produto. Dissertação de Mestrado. Universidade Estadual de Campinas. Campinas, SP. 2010.
- MODOLON T. A.; BOFF P; ROSA JM; SOUSA PMR; MIQUELLUTI DJ. 2012. Qualidade pós-colheita de frutos de tomateiro submetidos a preparados em altas diluições. **Horticultura Brasileira**. V. 30,n. 1, p. 58-63, jan/ mar. 2012
- MORAES, F. P. Polpa desidratada de caju amarelo (Anacardium occidentale L) por atomização em spray dryer: Caracterização físico-química, bioativa e estudo da vida de prateleira do produto. Dissertação de mestrado. Universidade Federal do Rio Grande do Norte. Natal, RN. Junho, 2014.
- MORAIS, J. **O valor do pH**. Departamento de Química e Instituto de Ciências Agrárias Mediterrânicas EU, 2008.
- NAGATA, N.; BUENO, M. I. M. S.; PERALTA-ZAMORA, P. G. Métodos Matemáticos para Correção de Interferências Espectrais e Efeitos Interelementos na Análise Quantitativa por Fluorescência de Raios-X. **Química Nova**, v. 24, n. 4, p. 531-539, 2001.
- NAGATANI, T.; SAITO, S.; SATO, M.; YAMADA, M. Development of na ultra high resolution scanning eléctron microscope by means of a field emission source and in-lens system. **Scanning Microscopy**. v. 11, 901-909,1987.
- NASCIMENTO FILHO, V. F. **Técnicas analíticas nucleares de fluorescência de raios X por dispersão de energia (ED- XFR) e por reflexão total (TXRF)**. Departamento de Ciências Exatas/ ESALQ, USP, SP. Julho, 1999. Disponível em web.cena.usp.br/apostilas/Virgilio/cen-5723/EDXRF_TXRF.doc Acesso em: 08 mar. 2019.
 - Norma Técnica Interna SABESP. NTS 013. Sólidos. Revisão 1. São Paulo, junho. 1999.
- OLIVEIRA, et al.; Estabilidade da Polpa do *Cereus jamacaru* em pó durante o armazenamento. **R. Bras. Eng, Agríc. Ambiental.** Campina Grande-PB. v.19, n.2, p.147-153. 2015.
- OLIVEIRA, O. W. e PETROVICK, P. R. Secagem por aspersão (spray drying) de extratos vegetais: bases e aplicações. **Revista Brasileira de Farmacognosia**, v. 20, n. 4, p. 641-650, ago.-set., 2010.
- OLIVEIRA, R.; FERNANDES, C. **Estudo e determinação do "pH"**. Disponível em < http://www.dec.ufcg.edu.br/saneamento/PH.html>. Acesso em: 08 mar. 2010.
- OSORIO, C.; FORERO, D. P.; CARRIAZO, José G. Characterisation and performance assessment of guava (Psidium guajava L.) microencapsulates obtained by spray-drying. **Food res. int.**, Essex, n. 44, 2011.
- PAPINI, C. J.; NETO, R. M. L. **Análise granulométrica de pós metálicos por difração de laser via seca**. 17° Congresso Brasileiro de Engenharia e Ciências Materiais. Foz do Iguaçu- PR, Brasil. 2006.
- PARK, K. J.; BIN, A.; BROD, F. P R. Obtenção das isotermas de sorção e modelagem matemática para a pêra bartlett (*Pyrus ap.*) com e sem desidratação osmótica. **Ciênc. Tecnol. Aliment.**, Campinas, v 21., n 1. p 73-77, jan./abr. 2001.

- PINHEIRO, R.V.R.; MARTELETO, L.O.; SOUZA, A.C.G. de; CASALI, W.D.; CONDÉ, A.R. Produtividade e qualidade dos frutos de dez variedades de goiaba, em Visconde do Rio Branco, Minas Gerais, visando ao consumo ao natural e à industrialização. **Revista Ceres**, Viçosa, v.31, p.360-387, 1984.
- POTTS, P. J. et al. Atomic spectrometry update. X-ray fluorescence spectrometry. **Journal of Analytical Atomic Spectrometry**, v. 18, n. 10, p. 1289-1326, 2003.
- PUGH, 1997- PUGH D. Dry Particle-Size Analysis Do's, Don'ts and Data Endorsement, **Am. Ceram. Soc. Bull.**, v. 76, n. 7, p. 42-44, 1997.
 - RAHMAN, S. Food Properties Handbook. CRC Press, 2008.
- RAMOS, A. M. et al. Efeito do tipo de embalagem e do tempo de armazenamento nas qualidades físico-química e microbiológica de abacaxi desidratado. **Alim. Nutr.**, Araraquara, v.19, n.3, p. 256-269, jul. /set. 2008.
- RODRIGUES, I. A.; CASTRO, A. G. A química e a reologia no processamento dos alimentos. Lisboa: Instituto Piaget, 2003. cap. 1, p. 15-36.
- , M.; Efecto de la acetilación em la movilidad de agua en maderas nativas guanacaste, teca, melina y cedro maria. Ciudad Universitaria Rodrigo Facio Brenes, San josé, Costa Rica. 2015.
- ROSA, E. D.; TSUKADA, M.; FREITAS, L. A. P. **Secagem por atomização na indústria alimentícia: Fundamentos e aplicações.** Disponível em: < http://www.fcf.usp.br/Ensino/Graduacao/Disciplinas/Exclusivo/Inserir/Anexos/LinkAnexos/secagem%20de%20materiais.pdf. Acesso em:15 mar. 2019.
- SCHIOZER, A.; BARATA, L.; Estabilidade de corantes e pigmentos de origem vegetal. **Revista Fitos**. n.2, 2007.
- SILVA, F. A. K.; BEZERRA, G. S.; CHAVES, M. J. L.; SÁ, D. M. A. T.; BRAGA, R. C. Características físico-químicas do suco de caju adicionadas de galactomananas de *Adenanthera pavonina*. VII CONGRESSO NORTE NORDESTE DE PESQUISA E INOVAÇÃO (CONNEOI). Palmas, Tocantins, 2012.
- SILVA, R. N. G.; FIGUEIRÊDO, R. M. F.; QUEIROZ, A. J. M.; GALDINO, P. O. Armazenamento de umbu-cajá em pó. **Ciência Rural**, Santa Maria, v35, n.5, p.1179-1184, set/out, 2015.
- SOARES, et al.; Desidratação da polpa de acerola (*Malpighia emarginata D.C.*). **Ciênc. Tecnol. Aliment.**, v. 21, n. 2. P. 164-170, 2001.
- SOUZA, André Luis Rodrigues et al. **Microencapsulação de sucos e polpas de frutas por spray drying: uma revisão**.2015.
- STEVENS, M. A. Tomato Flavor: Effects of Genotype, Cultural Practices, and Maturity at Picking. In: Ed. Harold E. Patee Evaluation of quality of fruits and vegetables. **AVI Publishing Co**, Inc. Westport, Connecticut, 1985. 410p.
- SUÁREZ, M.H.; RODRÍGUEZ, E.M.R.; ROMERO, C.D. Chemical composition of tomato (Lycopersicon esculentum) from Tenerife, the Canary Islands. **Food Chemistry**, Barking, v. 106, n.3, p. 1046-1056,2008.

- SHI, J.; MAGUER,M.L. Lycopene in tomatoes: chemical and physical properties affected by food processing. **Critical Reviews in Food Science and Nutrition**, Boca Raton, v. 40, n. 1, p. 1-42, 2000.
- SKOOG, D.A.; HOLLER, F.J.; NIEMAN, T. A. **Princípios de Análise Instrumental**, 5^a ed. Porto Alegre: Bookman, p. 31-36; p. 317-342, 2009.
- TEXEIRA NETO, R. O., QUAST, D. G. Isotermas de adsorção de umidade em alimentos. Campinas: ITAL, v. 8, p. 141-197, 1993.
- TONON, R. V.; BRABET, C.; HUBINGER, M. D. Influência da temperatura do ar de secagem e da concentração de agente carreador sobra as propriedades físico-químicas do suco de açaí em pó. **Ciência e Tecnologia de Alimentos**, Campinas, v. 29, n. 2, p.444-450, abr./jun. 2009.
- TONON, R. V. Secagem por atomização do suco de açaí: Influência das variáveis de processo, qualidade e estabilidade do produto. 2009. 212 p. Tese (Doutorado em Engenharia de Alimentos) Faculdade de Engenharia de Alimentos, Universidade Estadual de Campinas, Campinas, 2009.
- TREICHEL, M. et al. **Anuário brasileiro do tomate 2016**. Editora Gazeta Santa Cruz. Santa Cruz do Sul- RS. 2016.
- TREYBALL, R.B. **Drying. Mass Tranfer Operations**. New York: McGraw-Hill, 1968, p. 569-57.
- VÁSQUEZ, J; HOTZA, J.; Caracterização de cinza obtida por combustão de casca de arroz em um reator de leito fluidizado. **Quim. Nova,** Vol. 32, No. 5, 1110-1114, 2009.
- VICENZZI, R. **Tecnologia de frutas e hortaliças**. Curso de Química Industrial dos alimentos Universidade Regional do Noroeste do Estado do Rio Grande, 2012.
- VOLLMER, G.; JOSST, G.; SCHENKER, D.; STURM, W.; VREDEN, N. **Elementos de bromatologia descriptiva**. Zaragoza: Acribia, 1999. 644 p.
- WANG, W.; W. ZHOU. Characterization of spray-dried soy sauce powders using maltodextrins as carrier. **J. Food Eng.**, 109(3): 399-405. 2012.
- ZAIHAN, J. et al. The kinetics of water vapour sorption: analysis using parallel exponential kinetics model on six Malaysian hardwoods. **Journal of Tropical Forest Science**, p. 107117, 2010.
- ZAMBIAZI, R.C. Análise Físico Química de Alimentos. Pelotas: Editora Universitária/UFPEL, 202p. 2010. **SAS Institute. System for Information**, versão 8.0. Cary, 2007.