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Resumo

O Modelo Padrao das particulas elementares (MP) fornece a descrigdo mais acu-
rada do comportamento da matéria nas menores escalas de distancia acessiveis. Porém,
esse modelo ndo acomoda neutrinos massivos, como nao resolve outros problemas tedri-
cos. Assim, é amplamente aceito que o MP deve ser extendido. Por outro lado, existem
trés mecanismos canoénicos que elucidam a geracao de massa leve para neutrinos de forma
natural a nivel de arvore. Dentre elas, a mais versatil é o tipo II seesaw (iremos explicar
o porqué disso nesta tese). Uma simples realizacao deste mecanismo extende o MP por
um tripleto escalar com hipercarga que interage com os dubletos leptonicos, conhecido
como Modelo do Tripleto do Higgs (HTM). Depois da quebra espontdnea de simetria
(SSB), neutrinos de méao-esquerda ganham massa de Majorana. Como qualquer outro
mecanismo seesaw, tem um termo que viola o nimero leptonico por duas unidades e a
escala de energia na qual essa violacao ocorre nos explica quao pesado sao esses escalares.
Por exemplo, se o nimero leptonico é explicitamente quebrado em baixas energias, os
componentes do tripleto de escalares adquirem massas proximas a escala de TeV. Assim,
¢é tentador estudar tais modelos fenomenologicamente viaveis e suas consequéncias nos
colisores atuais, j4 que nao é consenso se existe apenas um escalar, que é o Higgs padrao,
ou uma realidade mais complexa de varios escalares. Nos discutimos muitos aspectos do
HTM, pontuando as implicagoes fenomenologicas em cada caso. Em particular, procu-
ramos em detalhes por novos processos de violagao de sabor lepténico, decaimento em
dois fétons de novos bdsons de Higgs, decaimento do escalar duplamente carregado e a
contribuicao destas novas extensoes para o espalhamento elétron-neutrino. Nés também
discutimos a estabilidade do potencial do Higgs. Argumentamos sobre a possibilidade do
vacuo do Higgs se tornar estavel em um modelo mais complexo e sob quais configuragoes
do espacgo de parametros tais modelos precisam obedecer para garantir a estabilidade.
Palavras-Chave: Seesaw do tipo II, Seesaw do tipo II em baixas energias, Modelo 123,

Neutrinos estéreis leves, Mecanismo seesaw, Fenomenologia do seesaw do tipo II.



Abstract

The Standard Model (SM) of Particle Physics provides the most accurate descrip-
tion of the behaviour of matter in the smallest accessible distance scales. However, since
it does not account for the nonzero neutrino masses and it is also plagued with a number
of theoretical, experimental and cosmological issues, it is widely accepted that the SM
must be extended. Besides, there are three canonical mechanisms that elucidate naturally
neutrino mass smallness at tree-level. Among them, the most versatile one is type II see-
saw (in this thesis we will explain why). A simple realization of this mechanism extends
SM by a scalar triplet with hypercharge that interacts with leptonic doublets, known as
Higgs Triplet Model (HTM). After spontaneous symmetry breaking (SSB), left-handed
neutrinos gain masses. As any other seesaw, it has a term that violates lepton number
by two units and the energy scale in which this violation occur tell us how heavy are
such new scalars. For example, if lepton number is explicitly broken at low energies, the
scalar triplet components acquire masses near to TeV scales. Thus, it is tempting to
study such phenomenological viable model and its consequences in actual colliders, since
it is not settled if there is only the SM Higgs boson or a more complex scalar scheme.
We discuss several aspects of HT'M, highlighting phenomenological implications in each
case. In particular, we searched in detail for new LFV processes, diphoton decay of the
new Higgs boson, decay of the doubly-charged scalar and contribution of such extension
to the e — v scattering process. We also discuss about the stability of the Higgs potential.
We argue about the possibility to the Higgs vacuum becomes stable in a more complex
model and under what configuration of parametric space such model must obey to ensure
stability.

Keywords: Type Il seesaw, Low Scale Type II seesaw, 123 model, Light sterile neutrinos,

Seesaw Mechanism, Phenomenology of the type II seesaw.
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Introduction

According to the Merriam-Webster Dictionary, a standard is something established
by authority, custom, or general consent as a model or ezample. The Standard Model of
particle physics (SM) is, in fact, a well defined framework for particle physics modeling
upon which we can test our understanding of the fundamental structure of matter. But
standard is also of recognized authority, competence, or excellence; the SM has provided,
since its proposal, an accurate description of most experimental results and precisely
predicted a wide variety of phenomena.

The Standard Model is build as a quantum field theory that describes interactions
between fermionic (as quarks and leptons) and bosonic fields (as the photon)[1, 2, 3, 4, 5].
Such interactions are represented in a mathematical object called Lagrangian that encodes
all main aspects of a model. In general, there are some criteria that a Lagrangian needs to
obey in order to describe a consistent quantum field theory of fundamental forces. One well
known is that any interaction between fields must respect Lorentz invariance. However,
such principle is general and do not specify a dynamics, but only ensure that a quantum
observable must not depend on a specific time or position in space-time. Aside from this
criterion, the most important one is the principle of local gauge invariance, which tells us
that the interactions of vector bosons are associated with a global symmetry group. The
form of these interactions is uniquely specified by the group structure. Therefore, from
the knowledge of the basic symmetry group, we can write down the Lagrangian or the
equations of motion. Specifying the group to be U(1), we derive electromagnetism, for
example.

Thus, a Lagrangian can only remain invariant if the forces interacts in a particular
way. Thereby, one can relate a local gauge symmetry in a Lagrangian, a pure mathe-
matical construction, with the dynamics of quantum particles, measured by experiments.
Although a mathematical elegance has thus been achieved, the results of such construc-
tion are incomplete in several important aspects. First, the gauge principle has led us
to theories in which all the interactions are mediated by massless vector bosons, whereas
only a single massless vector boson, the photon, is directly apparent in nature. Second,
the construction of gauge theories reacquires a exact symmetric Lagrangian, whereas na-
ture exhibits numerous symmetries that are only approximate. Thereby, including in such
framework the famous Higgs mechanism it is vital, since it is a way to deal with symme-

tries that are not exact or not manifest, evading the conclusion that interactions must be



mediated by massless gauge bosons.
Hence, the Standard Model can be associated with the following global symmetric

group,
SU3)e @ SU(2), @ U(1)y,

and after Spontaneous Symmetry Breaking (SSB) lead by the Higgs mechanism, the
invariance by

SU(3)C ® U(l)EM,

predicting the existence of the massless photon, at the same time it describes short range
interactions by massive gauge bosons W+ and Z°, and hadronic physics explained by
SU(3)c symmetry. A last piece to solve this puzzle was the renormability of the SMI6, 7,
8]. t'Hooft and others successfully proved that Standard Model is renormalizable, avoiding
ultraviolet divergences, and this really was the icing on the cake[9, 10, 11].

Nevertheless, after discussing some general principles about dynamics and short
range interactions, one can ask what is the particle content of the SM? In short: The
gauge bosons and its interactions: Electromagnetism has one source, electric charge, and
one boson, the photon; the weak force has two weak charges and three mediators, W+
and ZY; the strong force has three strong charges and eight bosons (gluons). The Higgs
boson is responsible to generate particles masses. Fermionic content: three generations of
charged and neutral leptons. Since quarks have color charges, there are three generations
of up and down quarks and each of them has three colors.

After the Higgs boson detection at the LHC, all proposed SM particles were discov-
ered and well understood. Experiments described their interactions precisely, very similar
to theoretical expectations only with small deviations. However, there are many open
questions of different nature that the SM cannot answer. There are questions that comes
from theoretical, cosmological and experimental points of view. Example of cosmological
questions are, what is the nature of the dark matter that constitutes 80% of the matter in
the Universe? and There is some CP violation beyond the SM that may explain the domi-
nance of matter over antimatter in the Universe today? There is no SM candidate for the
dark matter, but there are good arguments that it might appear at T'eV scale. Moreover,
quark sector is not sufficient source to generate the correct pattern of CP violation that
solves matter-antimatter problem.

From a theoretical point of view, one natural question that appear is What is the
origin of particle masses? This work aims to answer this question for neutrino particles.
However, to understand it deeply, we need to ask ourselves how SM generate masses for
fermions. In the SM framework, fermionic masses are generated at tree-level by the SSB

of the following Yukawa interaction,

— ’U —
Ly ukawa = (yijh0¢iwj + H-C-) % (yij?wiwj + H-C-)> (1)



where v = 246 GeV'. These dimensionless couplings y;; are arbitrary and one needs only
to find experimentally the mass of some particle ( as the mass of the electron, that is
close to 0.5 MeV') and divide this value by 174 GeV to find the correct value for the
Yukawa couplings (y, ~ 3 x 1079). There is none fundamental principle that guide our
understanding in how particles have exact the measured values? or Why an electron do
not have a mass close to 0.5 keV ¢

Experimentally, there are mainly two facts that are a direct probe that the SM is
an incomplete representation of the fundamental structure of matter. Recently, the g — 2
anomaly requires non SM interactions to explain its actual measured value[12, 13], but
we will not dig too much about this. The other and more well known are experiments
related to neutrino oscillations[14, 15, 16, 17, 18], establishing that active neutrinos are
massive, their masses are much smaller than those of the other SM fermions and weak
flavor neutrinos states maximally mix with each other. But, why Standard Model cannot
explain neutrino masses?

We have saw that in Eq. 1, fermionic masses are generated in the Yukawa sector.
For an arbitrary fermion ¢ we always can write its field as a linear combination of its

chiral states g and v, as

Y =1Yr+Yr

and its mass Lagrangian can be written as[19]

ﬁmass = m(,@sz)L + H.C.), (2)

known as a Dirac mass term.

Then, one must have simultaneously Right-handed and Left-handed states in order
to generate fermionic masses. Since the SM do not have a right-handed state for neutrinos,
then clearly cannot generate masses for neutrinos in the usual way, without an extension.
However, there is another way to generate neutrino masses, in which one needs one chiral
state. But, we can reproduce such type of mass in the SM?

Following the discussions in [20, 21], there is only one way to write a mass term
for the neutrinos using vy, that is Lorentz invariant. Nonetheless, it can be shown that
such chiral term is written as

Vim = CLr,

where C'is the charge conjugation operator. v¢ and v§ are left and right-handed fields,
respectively (Pg( L)I/LC( r) 7 0). Therefore the coupling IPLC( r)Vr(r) does not vanish [20][21].
These references shows that I/LC( R) has the correct properties to be used in place of vp(y)

in the Dirac mass term, leading to the Majorana mass term

mass

1 -
LM = —ing(R)VL(R) -+ H.C., (3)



and clearly violates lepton number by two units.

After establishing Majorana mass term, we can answer if it is possible to have an
interaction in the SM that reproduces this Lagrangian for left-handed neutrinos. At tree-
level the answer is negative, because left-handed neutrino field has a third component I3
of the weak isospin equal to 1/2 and hypercharge Y equal to —1. Then, it follows that
the mass term

ELCI/L
has the SM quantum numbers I3 = 1 and Y = —2. Since the SM does not contain any
weak isospin triplet with Y = 2, it is not possible to have a renormalizable Lagrangian
term which can generate a Majorana neutrino mass at tree-level.

When we go beyond simple tree-level approximation, one cannot generate a Ma-
jorana term in the SM simply because there is no broken lepton number interaction in
the SM Lagrangian, even after EWSB. This means that a Majorana mass term cannot
be generated to all orders in perturbation theory in the SM framework, which imply that
neutrinos are massless even beyond tree-level in the SM.

Then, as usual in any scientific procedure, one must build a framework that accom-
modates our previous successful results and at the same time explains the new facts. The
most trivial way is extending the Standard Model. As we will discuss, a simple extension
is sufficient to accommodate neutrino masses. We have saw that fermions needs RH and
LH states in order to generate masses by the trivial Higgs mechanism. So, is it possible
to add in the SM a right-handed neutrino? Saying the truth, there is no fundamental
reason why there is no right-handed states for neutrinos (RHNs) in the fermionic content
of SM, as one does for all other fermions. The vi state was not introduced just because
there was no conclusive experiments that states the existence of masses for the neutrinos.
Nonetheless, one can just as well arrange things in some other way. Another SM massless
particle is the photon. However, its masslessness is a consequence of a local U(1) gauge
symmetry which governs the dynamics of the electromagnetic interaction. For neutrinos,
we see no such symmetry principle in the SM.

Naturally, introducing RHNs fields in the SM will not only generate masses for
neutrinos, but the asymmetry in the SM between the lepton and quark sectors due to the
absence of RHNs is eliminated. To accommodate neutrino masses one can extent the SM

adding to it three RHNs Ng; and allowing them to interact in the following way

v
V2
such that ® is the standard doublet scalar, L' is the left-handed leptonic doublet and
N'gp = (N'cg, N' g, N'-g)". Nevertheless, after Electroweak Symmetry Breaking (EWSB),

neutrinos gain masses in the same way as up-quarks. Such new interaction is invariant

L, =Y pL'®N+ He 28 £ =Y h—N'p/; + He,

by gauge transformations, since RHNs are sterile under SM gauge group, L' ~ (1,2, —1)

and ® ~ (1,2,—1). Such model is sometimes called the minimally extended Standard



Model. The matrix Y’p of neutrino Yukawa couplings can be diagonalized as

VWY pVE =Yy, with Yo, =yP oy (k,j=1,2,3), (4)

with real and positive y”. Here V¥ and V} are two appropriate 3 x 3 unitary matrices.

Defining the chiral massive neutrino arrays

np = VLVV/L, nrp = VRVN/R, (5)

the diagonalized neutrino mass Lagrangian reads

Dy

»Cz/ = yLﬁkRnkL + H~C-7 (6)

V2

and neutrino masses are given by

D
my = &7 (7)

ok
such that v = 246 GeV is the EW vacuum.

For usual Dirac mass term, the total lepton number is conserved. This is so because
the Dirac mass Lagrangian is invariant under the global U(1) gauge transformations.
Noether’s theorem implies that there is a conserved current and consequently a conserved
charge. In this case, it can be proved[20][21] that neutrinos and negatively charged leptons
have L = 41, whereas antineutrinos and positively charged leptons have L = —1, as in
SM. Therefore, leptonic quantum numbers are different for neutrinos and antineutrinos.
Such distinction between neutrinos and antineutrinos is important for classification of
the states describing physical systems with one or more neutrinos and antineutrinos.
Hence, Dirac character of massive neutrinos, implying that neutrinos and antineutrinos
are different particles, is closely related to the invariance of the total Lagrangian under
the global U(1) gauge transformation.

It is important to note that neutrino masses that we have obtained with such
mechanism are proportional to the standard EW vev as the masses of another charged
leptons. However, it is known that the masses of neutrinos are much smaller than those
of charged fermions, in such a way that the ratio between the lightest charged fermion
mass (at MeV scales) and the heaviest neutrino mass (at eV scales) is near to 107, In
the mechanism that we have just described, thus, there is no theoretical explanation of
the very small values of the eigenvalues 32 of the Higgs-neutrino Yukawa coupling matrix
that are needed.



Figure 1: Dimension-5 operator represented as a Feynman diagram.

Introducing a small coupling constant as 3, ~ 107! into a theory is gener-
ally considered unnatural and a powerful theory must find a symmetry reason for such
smallness[22]. Then, one can imagine a theoretical framework where neutrino masses are
due a perturbation of some symmetry, in which such small asymmetry is totally related

with a tiny masses for the neutrinos as in [23][24]
L=Ly+ L.

As we will discuss, such small asymmetry has a connection between the global
B — L number violation and a Majorana mass term[25]. The lowest dimensional term
which could generate a Majorana neutrino mass that one can construct with the SM fields,

respecting SM symmetries, is the lepton number violation term [26]

Ly — %(L’T@@)CT(@T@L’) +He., (8)
such that o; are well known Pauli matrices, A is a effective mass coupling and « is a
dimensionless coupling coefficient.

After EWSB, such interaction generates the following masses of the neutrinos

( -1,2
Ml/ijVIC,’iVLj — MVU - O{Z]A v, (9)

The Lagrangian term L5 is not acceptable in the framework of the SM because it contains
a product of fields with energy dimension five, which is not renormalizable [27].

To include L5 as a perturbative Lagrangian of the total symmetric Lagrangian £
that conserves B — L symmetry, one must fix A to be sufficiently large. Therefore, this
choice naturally encompass tiny masses for neutrinos, counterbalancing the Higgs vev
and generating neutrino masses at el/. As draw in Fig. 1, it can be seen as a contact
interaction whose the contact point is given by aA~!. This way to counterbalance different
energy scales to give the correct neutrino mass pattern is generally known as “Seesaw
Mechanism".

Therefore, we can extend the SM to recover the same structure of the dimension-5

operator using many well motivated renormalizable models. Such models always encom-



passes lepton number violation and consequently imposes that all neutrinos are Majorana
fermions. As shown by [28] there is only three of these constructions that recovers min-
imally such operator at tree-level, known as canonical Type I [29, 25, 30, 31], Type II
(32, 33, 34, 35, 36] and Type III [37] seesaw mechanisms.

Canonical Type I: Since the RHNs are invariant under SU(2);, @ U(1)y, so must
be their conjugate field,

Ng; ~ (1,1,0) = Ngs ~ (1,1,0).

Thus, one can form gauge invariant mass terms

1 _

These terms must be present if we write down the most general gauge-invariant
Lagrangian involving the particles in the model. Therefore, such term is a Majorana mass
term and consequently violates lepton number by 2 units. If we imposes B — L symmetry,
then such interaction vanishes and we go back to the model with Dirac neutrinos. The

total Lagrangian that give masses for neutrinos can be written as

_ 1 _ _ 1 _
L, =YpL'®N) + §MRN’2N]’% + He 258 ) — mpN'gy) + §MRN’§N§ + H.c..(10)

Now, it is convenient to define the column matrix of N = 3 4 3 left-handed fields

N, = ”ILC . (11)
Np

In this way, the Dirac-Majorana mass term can be written in the compact form

1
L, = 5J\QTOTM’:”MJ\Q +He., (12)

with the 6 X 6 symmetric mass matrix
0
MPHM — ( . mD) . (13)

Now, the diagonalization of the Dirac-Majorana mass term is formally written by



r
ar

N, =Ving, with n,=| " (14)

V4L

Vs

Vs

The unitary matrix V} is chosen in order to diagonalize the symmetric mass matrix

(VOIMPTMyy = M, where My,; = mydy;, (15)

with real and positive masses my,. After this diagonalization, one must define the neutrino
fields as mass eigenstates and discovers that they are Majorana fields [20][21].

Since My is not constrained by the SM symmetries, it is natural to choose it to be
at a scale much higher than the weak scale. Then, imposing that Mz >> mp, the mass

matrix can be diagonalized by blocks, up to corrections of the order (Mz) 'mp:

WTMPMY ~ (Mléght MO ) (16)
heavy
with .
o [1 2mb(MrME) COR -
—(Mg)~'mp 1- §(MR)_1mDmE(M1Te)_1

The light 3 x 3 mass matrix Mg, and the heavy 3 x 3 mass matrix M., are

given by

Mlight ~ _mg(MR)ilmDa Mheavy ~ MR' (18)

The heavy masses are given by the eigenvalues of Mg, whereas the light masses
are given by the eigenvalues of Mj;4n:, Whose elements are suppressed with respect to
the elements of the Dirac mass matrix mp by the small matrix factor m5(Mg)~". As
a matter of fact, after fixing the EW scale mass to be close to the EWSB energy scale,
mp ~ 10?2 GeV, to recover neutrinos tiny masses, it requires that Mz ~ 10** —10'® GeV.
Here, we have recovered the same physics of the dimension-5 operator as a renormalizable
model with the Feynman diagram in Fig. 2. In this case, Mg does the same role of A.
Since sterile neutrinos have masses proportional to Mg, their masses are undetectable in
actual and near future experiments.

Canonical Type II: As discussed in the beginning of this section, to generate
Majorana masses for left-handed neutrinos at tree-level in a renormalizable way, without

adding right-handed neutrinos, one must extent the SM by a colorless triplet scalar with



Figure 2: Type I seesaw recovering dimension-5 operator
hypercharge Y = 2. Then, the interaction
A%y, (19)

becomes SU(2); x U(1)y invariant. Then, after SSB of the field A° such interaction
becomes a Majorana mass term. The triplet scalar field is fully represented by A =
(A% AT ATH)T and has six degrees of freedom, the same as if we introduce three RHN.

In SU(2)p, there is many representations for this scalar field, but we will adopt here the
following one

B A*/\/ﬁ AT
A_< A0 —A+/\/§> ~ (1,3,2). (20)

The full invariant form of Eq. (19) is written as

1
V2
Here it is clear that the triplet scalar field carries lepton number L = 2. After
SSB masses of the neutrinos are given by

L, = —=Y}LiosAL; + H.c.. (21)

o Uayr

M J2

such that va is the AY vev. Then, after SSB of the triplet neutral field, this Yukawa
interaction breaks lepton number by two units and leads to Majorana mass for the neutri-
nos. However, if one maintain exact lepton number symmetry in the model and generate
the triplet vev via the usual “mexican hat" potential, then it leads to the triplet Ma-
joron which has been ruled out by actual experimental data and in the same time in such
framework we do not naturally understood smallness of the neutrino masses.

The seesaw relation can be generated only after introducing the following trilinear
interaction in the scalar sector,

udT AP,

that clearly violates explicitly B — L symmetry by 2 units.

When establishing the minimum conditions of the potential, the lepton number
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Figure 3: Type II seesaw recovering the dimension-5 operator.

violation energy scale, u, leads to a seesaw-like relation,
va ~ pv®/M3.

Masses for the neutrinos follows from the combination of these three different energy
scales: explicitly violation of the lepton number pu, EW scale vev v and the mass of the
triplet field Ma.

Then, the smallness of neutrinos masses are naturally explained if the relation
p/M3 is large enough to counterbalance EW vev. However, since these two energy scales
are not necessarily related, we have freedom to choose the best way to fit neutrino masses.
For example, we can fix these two energy scales to be at GUT scales, i ~ 10* GeV and
Ma ~ 10 GeV, and consequently recovering va ~ 0.1 eV. After we will discuss other
interesting choices to naturally explain neutrino mass smallness in such framework. A
last comment is about recovering the Feynman diagram in Fig.(1). The neutral field A°
as a mediator it is responsible to generate the dimension-5 operator at tree-level in such
model, as given by Fig. (3). Here, the effective coupling aA™! is given by YXuMx>.

Canonical Type III: In the canonical type III seesaw one needs to introduce a

fermionic triplet ¥, that transforms as X7, ~ (1,3,0) under the SM gauge group

B ZO/\/§ o+
ZL_( == 20/\/5)’ 22)

and interacts in the following way

1 L 7 ~
£, =~ TrEMsE + TM5Y] - 9'SV2Ys L. (23)

We can associate a lepton number for this fermionic triplet in such a way that
the Dirac mass term is invariant by any global phase symmetry. Neutrino masses can be

approximated by the following relation if we impose that My, >> v,
m, ~ Yavu? Mg?

and the heavy neutral fermions have masses proportional to My, similar to type I seesaw.

As a last comment, to recover the Feynman diagram of the Fig. 1, one needs to write X°
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Figure 4: Type III seesaw recovering the dimension-5 operator.

as the propagator, as in Fig. 4. The contact point in this case is proportional to Y2 Mg?.

Protagonism of the Canonical Type II Seesaw : To generate the right pattern
for tiny masses for the neutrinos, one needs to introduce a very heavy particle that links
neutrinos with standard-like Higgs, as indicated by Figs. 2, 3 and 4. Such link, after
EWSB, reproduces neutrinos masses in the same way as in Eq. 9. As we pointed out,
the effective mass coupling A needs to be sufficiently large to counterbalance v? in order
to reproduce eV neutrinos masses.

Nonetheless, type I and III seesaw mechanisms mix chiral states and the introduced
lepton number violation scales Mg and My are directly responsible for reproducing small
masses for the neutrinos. Then, one needs to associate Mp and My, with A. This is a
crucial difference between type II seesaw and these two. Thus, type II seesaw has two
interesting features. First, one do not need right-handed neutral fermions in order to
reproduce neutrino mass pattern. Second, the seesaw relation va ~ puv?/M3 relates not
only two energy scales, but three. One of them is fixed, the EWSB scale. However,
in principle we are free to choose any value for Ma and p. As explained before, one
can associate u and Ma to be at GUT scales and successfully reproduces neutrino mass
pattern. Therefore, if lepton number is violated at low energies, i ~ va, then the mass
scale of the triplet scalar should be close to the EWSB energies, Ma ~ v. Such mass scale
is fully accessible to current experiments, unlike the two previous types of seesaw. Making
such mechanism the most phenomenologically viable among them. The versatility of type
IT seesaw fully justifies its complete study. Then, in the next chapters we will develop its

main phenomenological and theoretical aspects.



1 Type II Seesaw Mechanism

1.1 Introduction

At first, we will analyse some general aspects of the type II seesaw and its con-
straints, as bounded from below inequalities and the p-parameter. Another relevant as-
pect that will be understood more deeply in this chapter is the lepton number explicitly
violation energy scale p and its theoretical justifications. This chapter is organized as
follows. In sections 1.2 and 1.3 we develop the main aspects of the model including neu-
trino masses. In section 1.4 we discuss naturalness principles in type II seesaw, while in
sections 1.5 and 1.6 we develop the scalar sector. In section 1.7 we discuss the stability

of the vacuum. In section 1.8 we present our final remarks.

1.2 The Model

The scalar sector is composed by the standard Higgs doublet, plus one scalar

triplet,
A7+ A+
A=|V2 |~ ws2) @—(
A ——
V2

where the content in parenthesis means the transformation by the SM gauge group.

¢+

¢0> ~(1,2,1), (1.1)

These particles are described by the following Lagrangian,

£, = (D"®)(D,®) + Tr(D"A) (D, A)] - V(®,A), (1:2)
where the covariant derivative is the same as the Standard Model one,
D, = 0, — igT*we — z'%f/yvu. (1.3)

This triplet scalar representation interacts with the group operators as
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. 1
oA =[0" A

2
VvA  =2A, (1.4)

recovering TYA° = —AY.

The most general potential that conserves Lepton Number explicitly is given by,

V(®,A) = —u3dd+ i(cb*cb)? + 12Tr[(ATA)]
A (RTR)Tr[(ATA)] + Ao (Tr[(ATA)])? + A Tr[(ATA)]
+MPTAATD. (1.5)

However, as we have saw before, we need to include a Lepton Number explicitly
violation interaction that is responsible for neutrinos masses. This new term can be
written as

w(®Tic? AT®) + H.c.

The requirement that the potential be hermitian implies that the parameters 2,
U3, A1, A2, Az, Ay and A5 are real numbers, while 4 is in general complex. Nonetheless, p
could be a source of CP violation if was imaginary. For this work, we are considering u

as a real number, too.

1.3 The Yukawa Sector

The Yukawa interactions involving A and the standard lepton doublet, L = (v , €)%

(1,2,—1) is
1

V2

When A develops vacuum expectation value (vev), we obtain the following general

Ly Vi LSioyALj + H.c.. (1.6)

neutrino mass matrix
my, = YLU3. (17)

The neutrino mass matrix in the flavor basis is related to the physical mass matrix,

mP . through a 3 x 3 unitarity mixing matrix U in the following way

mP = Um,UT, (1.8)

D

where m,;

= diag(my, ms, m3) and U is the neutrino mixing matrix, which may be
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parametrized in the general way by

C12C13 S512€13 513
U= —812C23 — C12523513 C12C23 — 512523513 S23C13 ) (1-9)
512523 — C12C23513 —C12523 — S12C€23513 (C23C13

where ¢;; = cost;; and s;; = sin0;;, while in this work we neglect CP violation phases,
since they are not too relevant in normal hierarchy mass ordering (m; < ms < ms3)[38].

Thus, on inverting the Eq. (1.8) we obtain
m, = UmPU, (1.10)
Combining equations (1.7) and (1.10), we obtain
Vkk

1
Y= —Ulml U (1.11)
A

Explicitly, these Yukawa entries are expressed as

1
L 2 2 2 2
Y] = ;(Clzclgml + ms(c12c23513 — S12523)° + Ma(C23S12 + C12513523)7),
3
YL o 1 2
15 = —(c12¢13m1S12 + mi3(ca3S12513 + C125923) (C12C23513 — S12523) —
U3
m2(023812 + C12313323)(C12023 - 812513523))7
1

Yé = ;(013(623(—”12 + m3)S12823 + c12513(My — C§3m3 - m2533)),
3

1
L 2 2 2 2
Y55 = o C13M1STe + M3(Ca3S12813 + C12893)° + Ma(c1aC23 — S12513523)7,
3

1

Y2§ = ;(013((7"11 - c§3m3)312513 + 012023(m2 - m3)823 - m2312813333)>
3
1
stg = ;3(7”13%3 + 033(633"13 + m25§3))~ (1.12)

The experimental values of these angles are, for the normal ordering[38]

sip = 030670015, 533 = 044170550, 515 = 0.02166 50075 (1.13)

and the masses[38]

Am3, = 7.5010710 x 107%eV?,  Am3, = 2.52470030 x 107%eV2. (1.14)

Many experiments have been limited the values for the mixing angles and neutrino
masses. Fixing my = 0, it can be associated my = \/Am3, and ms = \/Am3;. Now, Y.,
depends exclusively from vz value. We will explore this in detail in Chapter 2.
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1.4 Naturalness principle and explicitly broken B — L

symmetry

Analysing the new Yukawa interaction, Eq. (1.6), one can attribute a lepton
number for this triplet field. Therefore, in type II seesaw, these scalars only interacts
with leptons and the Higgs doublet. Then, to conserve explicitly B — L symmetry in the
Yukawa term we attribute a lepton number 2 for the triplet scalar (N5 ; = —2). After
SSB, this interaction generate Majorana masses for the LHNs and in this interaction
B — L symmetry will be spontaneously broken. In chapter 3 we will explore an extension
of such model with a complex singlet scalar. In that extension, u parameter only appears
after Spontaneous Symmetry Breaking of the introduced scalar field and lepton number
is explicitly conserved.

In Eq. (4.3), there is a term that explicitly violates B — L symmetry[39]. Therefore,
such trilinear interaction p(®7ic? AT®) can reveal a link between hidden gauge symmetries
and new scale physics. Another symmetry that is explicitly broken in such trilinear
interaction is custodial symmetry [40]. Such global symmetry links the left (right) chirality
fermions in the SM, transforming them accordingly to the global symmetry SU(2)(r).
Nonetheless, the Higgs doublet is a bidoublet under this global symmetry. Before EWSB,
the Higgs potential and the Yukawa interactions in the SM has a SU(2), ® SU(2)g global
symmetry which reduces to SU(2)y when the symmetry is broken. However, in the case of
type II seesaw, it is clear that the triplet scalar A only interacts with left-handed fermions
and breaks this symmetry. Then, representing them as A, the trilinear scalar interaction
represents the explicit symmetry breaking energy scale of the custodial symmetry. In
fact, there is a possibility of associating such custodial and B — L explicitly breaking
symmetries with spontaneously broken gauge theory SU(2);, @ SU(2)g®@U(1)p_r, known
as Left-Right gauge symmetry[41].

Nonetheless, the p parameter is expected to be small and natural in the t’"Hooft
sense [42], inasmuch as p is the energy scale at which this symmetry is broken. If p
tends to zero, would increase symmetry of the system. Therefore, we must associate this
trilinear coupling with a low energy scale parameter that can be a reminiscent of new
physics in another scale. On the other hand, GUT scale u could be a remnant of SO(10)
or SU(5) symmetries [43][44] .

1.5 Spontaneous Symmetry Breaking and Seesaw mech-

anism

The Spontaneous Symmetry Breaking occurs when the triplet and the doublet
scalars acquire nonzero vevs. As the vacuum must be invariant under U(1),, transfor-

mations, only the neutral scalars can develop vevs. Thus, if the triplet scalar is not inert,
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one can expand these fields as,

¢0=2 Ry + I
V2 V2
I

A Vs Bty (1.15)

V2 V2

The conditions that minimize such potential for z2 > 0 and p2 > 0 imposes to us

the following equations,

1
5 = 7 (A3 — 4v/2pus + 20103 + 22005,

2 1 2 2 2 3 3
H3 = 203 (\/élwz — Avyus — Aqvyus — 2A905 — 2A305). (1.16)

Back to the gauge interactions with the scalars, vs is constrained in order to re-
produce the mass for the physical gauge bosons Z and W. With the additional triplet,

the Lagrangian for the gauge boson masses is, after standard Weinberg Rotation,

1
L gauge mass = —9° (v + 205) W W + ng(vg + 43) 2, 7", (1.17)

| =

and the W and Z bosons masses are

2 2
my, = g—(vg +203), my = g—Q(US + 403). (1.18)
4 deiy
This change in the mass values of gauge bosons has a directly influence in the
tree-level p-parameter[45],
miy

5

1.19
2m (1.19)

p =
This parameter in the SM framework is exactly one. Experimental evidences points

toward one, too, with small deviations. In type II seesaw, the p-parameter is given by

Q-
_ ety (1.20)

p_U2—|-4’U3 ’

Experimental values for the p-parameter are converging at 3¢ to 1.002[46]. Due to
experimental errors, we cannot conclusively state that p is greater than one. Then, after

these considerations, one can limit superiorly the value of v; as
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v3 < 2.3 GeV. (1.21)

The small value of v3, constrained by the p-parameter, combined with the minimal
conditions in Eq. (1.16), are the key to understand neutrino mass smallness in this
framework. Thus,

N pv3
2[1% + U%()\l + )\4) ’

V3 (1.22)

implies that v3 ~ (u/u3)vs, a seesaw relation, since (p/u2) must suppress v in order to
have a low value for v3. Neutrino mass consequently obeys the same seesaw relation, since
it has a v3 dependence in its mass m, = yvz ~ y(u/u3)vs.

1.6 Scalar Mass Spectrum

1.6.1 CP-even particles

The neutral CP-even mixing matrix after using the minimum conditions, in (R, , R3)”

basis reads

1
5)\11% ’Uz(—\/i,u + ()\1 + )\4)1)3)

) (1.23)
Vo (—v2p + (A1 4 Ag)vs) 2—1}3(\@#1}% +4(Ag + A3)vd)

2 _
Mp, Ry =

This mass matrix can be expressed in the following way

2 2
m m
2 _ R> RoR3
Miyrs = | S (1.24)
Mp,r, Mk,

Imposing the hierarchy v << vy, these two CP-even scalars decouples from each

other, since non-diagonal terms are perturbative compared to diagonal terms. Then, the

exact form for these masses can be written as

1
iy = g, £ iy £\ (mg, —mp)? + A(mi, ) ). (1.25)

We can approximate these exact values inducing some limits. As our case, if the

non-diagonal elements are much minor than the diagonal ones,
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2 2 2
mR2R3 << mR27mR3? (126)

then, these masses can be approximated in first order by,

(mb,r,)?
mi = mib— 2R2R32 ,
mR3 - mR2
2 2
m
mly = i ) (127
Ry — Mg,

At this limit, these masses have become

2
2 MUy
my = ,
" V23
A
m; ~ 503. (1.28)

In this approximation, the scalar i has a mass value very close to the standard

Higgs. After diagonalization, we have obtained the following mixing between these fields

H = CaRg—SaRQ,

h = SaR3+CaR2,

2\ 2uap + 2
tg20 = V20apt 200+ M)t (1.29)

\ 2
2 1Y% — 2()\3 + )\2)1)32)

71} —_—
? \/5113

2

1.6.2 CP-odd

Here, after SSB, we obtain the mass matrix of the CP-odd scalars,

2v2uvs  —v/2pws

2
= 1
Mt —V2uvy  —zv3 "

\/503

One of these scalars, after diagonalization, becomes the neutral Goldstone boson,

(1.30)

G°. The other CP-odd scalar mass is heavy in the same order as H

2 _ H
\/503
mge = 0. (1.31)

(v3 + 403),



19

The mixing states are

A = Cﬁ/[g—Sﬁ/[Q,

G° = 8/3/13—|—C/3/[2,
2
tgs = 2, (1.32)

(%

and these scalars are decoupled, since cg =~ 1. It is notable that if this py-parameter is set
to be zero, the CP-odd particle A would not have mass and become a Goldstone Boson.

This means that B — L explicitly conservation leads to a Majoron.

1.6.3 Single charged particles

For the singly charged scalars we have the following mass matrix

1 1
V2puvs — 5)\4032, ~(—4pvy + V2X40903)

2 _ 4

~(—4pvg + V2X4v903) ZU§<_/\4 +
One of these scalars, after diagonalization, become the charged Goldstone boson,

4 U3

G*. The other charged scalar mass is heavy in the same order as H and A

1
mys = E(Q\/iu — Mus) (V2 + 202),
3

mze = 0. (1.34)

Mixing among these charged fields are given by

H:t = CﬂAi — 85¢i7
Gi = SﬁAi + Cﬂgbi,
2
tgf = \/_Ug. (1.35)

V2

As before, this mixing angle is very close to zero and consequently csz ~ 1. This

means that H* is predominantly a triplet particle.

1.6.4 Double-charged particles

For the doubly charged scalar there is no mix among other particles. Then, the

mass of this scalar is simply
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2 Ly oo f1v3 2
Mpa++ = —5)\41)2 + — )\31}3. (136)

1.7 Potential Stability and Bounded From Below con-
ditions

We have discussed in section (1.5) how SSB generates gauge invariant masses for
some bosons and fermions of the model. Any potential to develop vev, i.e., the lowest
energy state or the ground state of the scalar field, needs to be Bounded From Below
(BFB). This minimum value is the stationary value of the neutral scalar fields, (¢") and
(A%, and consequently the effective interaction at low energies between the Higgs fields
and another particles and gauge fields. This ground state is proportional to what we
measure as the mass of the fundamental particles at tree-level. Exciting a Higgs field
from this ground state is generally manifested as a Higgs particle transition, i.e., several
new Higgs particles will be generated and these particles will decay into lighter particles,
until at some point the Higgs by-product are stable particles and will no longer decay.

As with the inflaton models, the Higgs field will oscillate around its vacuum dis-
sipating energy with Higgs emission (like excited electrons in the atomic orbit that emit
photons and return to the ground state). If this potential is at the global minimum value,
after a while, this field will return to its ground state. However, there is serious issues if
this field doesn’t rest in its minimum value. We will investigate what type of problem it
is in the next chapter.

Here, we will suppose that the potential is BFB, guarantying that the ground
state, or the vev, exists. This means that, by construction, the potential has a global
minimum. To ensure this, if the potential is polynomial, the coefficient of the highest
order it is mandatory to be positive. In the SM case, we have explicitly the potential, for
the complex doublet field ®

p A
V(g) = ?qﬂ@ + Z(<1>T<1>)2. (1.37)
It is necessary to ensure that A > 0. Then, the global minimum of this potential
exists. The value of this minimum depends on whether p? is positive or negative. If

2

p? > 0 it is clear that (¢°) = 0. If p? < 0, then (¢°(9)) = ew\/%. In the last case,

all possible values for the vev have the same magnitude (multiplied by a complex phase),
meaning that all these vev’s are global minima. We will discuss in the next chapter an
arbitrary case where the vacuum rests in a local minima, but it is not a global one.

However, for scalar extensions of the SM, it is not so easy to find the conditions
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to the potential to be BFB. This is so because the quartic interactions between scalars
generally mixes different fields. In the potential (1.5), there is five quartic couplings, but

we can shrink it in only three effective couplings for the neutral scalars

VA", A%) = Aur(6°16°)? + Aurr (710" (ATTAY) + Mg (AYTA)?, (1.38)

and it is sufficient if these three couplings are positive, but not necessary. The necessary

conditions are

Ag > 0, A > 0, AT + 24/ AgAr > 0. (139)

To make a complete treatment of these parameters generally it is used the method
called Spherical Parametrization, detailed in Chapter 4. Directly we can find, after Spher-

ical Parametrization, the following conditions for the potential to be BFB

A > 0, )\2+/\3/2 > 0, Ay + Az > 0, A1 +2\/)\(/\2 +)\3/2) > 0,
A —|—2\/)\(/\2 + )\3) > 0, AL+ A +2\/)\(/\2 + /\3/2) > 0,
)\1"‘)\44‘2\//\()\2“}‘)\3) > 0. (140)

Analysing these inequalities it is viable to infer the parametric space for these
couplings. These are the conditions for the potential to be BFB at low energies. At high
energies quantum effects are relevant, via loop contributions. Then, in the next chapter
we will discuss BFB conditions at high energies. Nonetheless, we present some possible

values for the quartic coupling constants in Fig. (1.1).

1.8 Discussion

In this Chapter, we have discussed how the minimal type II seesaw is versatile and
can either explicitly break lepton number at GUT scales or at low energy scales. Then,
we have found the tree-level mass expressions and mixings for the scalars and neutrinos at
tree-level of this model after SSB. We will use these expressions for scalars masses in the
next chapters, when studying the phenomenology of this model. Finally, we have studied
the stability of the potential and the conditions for the potential to be BFB and some
solutions for its quartic couplings. In the next chapter, we will study the low energy scale

type II seesaw and its main features.
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As A

Figure 1.1: Some possible values for the quartic couplings of the potential using unitarity and BFB
conditions.



2 Low Scale Type II Seesaw

2.1 Introduction

As was discussed in the introduction and in the last chapter, type II seesaw is
the most versatile among canonical seesaw mechanisms. This versatility is associated
with the possibility of this mechanism generates tiny masses for neutrinos with different
energy scales. Explicitly breaking of the lepton number at low energy scales is well
motivated, since spontaneously breaking of the lepton number is at low scales, too. Hence,
v3 is responsible for generate Majorana mass for neutrinos Mv¢v;, that violates lepton
number by 2, as u®7ic?AT® did. Nonetheless, it is theoretically motivating to study a
relation between vs and p close to unity can (relating these lepton number violation energy
scales). As we have discussed, the main type II seesaw relation is given by the expression
v3 ~ pvs /p. If this mechanism is phenomenologically viable, meaning that triplet scalars
masses are close to actual experimental covering range, or us ~ wvy. If this is true,
consequently p ~ vz in which lepton number is explicitly broken in the same scale that
is spontaneously broken [47]. This case can encompass left-right symmetric extensions of
the SM (conformal and B — L symmetry), with additional interesting phenomenology at
the LHC, cf. refs. [48, 49], or can also be studied in its minimal version.

Therefore, to analyse the ratio p/vs, one needs to study its relation with triplet
scalars mass and compare with recent experimental data. Nonetheless, v3 value may be
estimated according to the neutrino masses. For m, = Yv3a) ~ 0.1 eV and assuming
principles of naturalness (Y7 < 1) it is natural to estimate vz to lie at eV scales. So,
assuming the last statement and that scalar triplet has masses close to T'eV energy scales,
we should say that p ~ eV by the seesaw relation. So, our investigation will focus on
the ratio between p and vz, which we will call e. One type of process that can relate the
masses of charged triplet scalars (and consequently this € parameter) are lepton flavor
violation processes (LFV).

The discussion mentioned above will be addressed in Section (2.2) of this chapter.
Another interesting aspect of the type II seesaw mechanism at low energies is its similarity
to the inverse seesaw mechanism (ISS). This subject will be worked out carefully in the
Section (2.3). Finally, we will contextualize the Higgs Metastability problem and how
minimal type II seesaw may solve this problem, in Section (2.4). There is another natu-

ralness problem, related to Higgs mass correction at one-loop. However, as discussed by
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[50], these two problems cannot be solved simultaneously in the minimal type II seesaw.
This is the last subject of this chapter, in Section (2.5), with a brief discussion in Section
(2.6).

2.2 e-Parameter and LFV processes

As we have saw, type II seesaw relation is written as vz ~ pv3/u2. From another
point of view, looking at the scalar triplet mass, this interesting relation can also be seen
as p3 ~ pvs/vz. It is natural, in t'Hooft sense, to assume that p ~ vs, and consequently
pz ~ vy, as discussed in the last chapter. Since uz depends on the ratio p/vs and not
from p and vz individual absolute values, it is immediate to ask what possible values
these parameters may assume. Firstly, vs is superiorly limited by the p-parameter in
such a way that v3 < 2.3 GeV, as we have discussed in the previous chapter. Inferiorly,
v is limited by neutrino masses. In minimal type II seesaw, vs has a direct relation
with m, (vs = m,/Y7). In order to fulfill the perturbativity condition, Yukawa triplet
couplings (from now, we will only refer as Yukawa couplings ) obey the relation Y, < 4.
Conversely, actual constraints for neutrinos masses are around m,, < 0.1 eV. These two
constraints directly implies that v3 > O(1072eV). Therefore, there is an 11-order range
for possible values for vs, 1072 eV — 2.3 GeV. Consequently, for low scale type II seesaw,
p must be limited in the same range as v3[51].

After this brief discussion about v3 and p possible values, once again we will appeal
to the naturalness principle. If v3 ~ 1 GeV, then the Yukawa couplings are unnaturally
tiny (Y7 ~ 107'%). However, considering v3 ~ 1 eV, we don’t need a fine tuning in this
sector (Y7 ~ 0.1). Based upon the assumption that the Yukawa couplings are higher
as possible (respecting perturbativity), vz at eV scales it is a foreseeable consequence.
This choice has many phenomenological consequences. One of them are Lepton Flavor
Violation processes (LFV). Since Y7,; are close to one, the triplet Higgs states can pre-
dominantly induces LFV processes such as y — 3e, 7 — 3u, 7 — e2u, etc at tree-level,
and at one-loop level decays like 4 — ey, 7 — ey and 7 — py can also happen. None of
the above mentioned LFV decay processes have been observed in experiments and strin-
gent experimental upper bounds have been put on the decay branching ratios of these
processes [52].

Therefore, in this model LFV processes depends on neutrino Yukawa couplings
and masses of triplet Higgs states, as discussed above. Nonetheless, Yukawa couplings
can be determined from neutrino masses and mixing angles as well as from the vev of
scalar triplet Higgs. Hence, by determining the Yukawa couplings, the experimental
limits on LFV processes can put constraints on triplet scalars masses. However, as we
have discussed, these masses are totally determined by the ¢ parameter. Consequently,
LFV processes can put constraints on vs, for small e.

In order to find limits for e we must use stringent experimental constraints in LE'V.
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The main processes that contributes are the decays y — e and p — eee. Their branching

ratios should respect these experimental values

BR(p — ve) < 4.2 x 107*?[53],
BR(p — eee) < 1.0 x 107'%[54]. (2.1)

These constraints relates the model parameters with ma++ ~ ma+ as[32, 55]

270 | (Y2)1u(Yo)i2 + (Y2)13(Yz)s2 + (Y2)12(Y2)22 |2
BR(p = ye) = 64nGEM 4+ ’

| (Yo)u P (Yo)i2 2
AGE MR+t

BR(u — ece) BR(u — evv). (2.2)
where « is the fine structure constant and Gr = 1.1663787 x 107° GeV 2 and BR(uu —
evv) ~ 100%.

In order to analyse these expression carefully, we need to find the direct dependence
between the Yukawa couplings and v3. Fixing m; = 0 and applying the experimental

mean values of the mixing angles in neutrino mass normal ordering hierarchy scenario
(m1 =0 < my < mg3), Egs. (1.12), (1.14) and (1.13) lead us to

1
v = —6.26559 x 1072 eV
3
1
Y5 =——1.15733 x 1072 €V,
U3
1
Yh = —7.1017 x 1073 €V,
U3
1
Yih = —2.30257 x 1072 eV,
U3
1
Y = ——1.88369 x 1072 eV,
3

1
Yi5 = —2.78919 x 107 ¢V. 2.3
33
U3

With these Yukawa couplings in hand, we can substitute these expressions in Eq.
(2.2). It is possible to infer that theoretically, after assuming the assumptions above, a
ratio between these two main LFV branching ratios is close 0.17 (BR(u — ~ve)/BR(pu —
eee) == 0.17). Their experimental limits are close, too (difference of only one order). After
considering experimental errors, we can state that these two experimental limits imposes
the same constraints (in the vz X ma++ plane).

Now, after explicitly write the Yukawa couplings as a function of the triplet vev,

Y7 = Y (vs), we will explore tree-level doubly-charged scalar mass parameter dependence,
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Figure 2.1: This plot represents how the vev vs changes compared to the e-parameter, supposing that
the doubly and singly-charged particles are degenerated in mass.

Eq. (1.36). Considering degenerescence between triplet charged scalars is the same as

ignore the \; parameter, since | mi .+ — m¥ |~ 1>\411§. Then, it is possible to write the

doubly-charged scalar mass at tree-level as

2
2 )

MA++ R E (2.4)

As we have discussed before, this doublet scalar vev vy is very close to the standard-
Higgs one, vy = 246 GeV. Now, these branching ratios have a direct constraint between
vy and e-parameter. Explicitly, in the process u — e, the branching ratio constraint

leads toward the relation

—10
273X A0 7 49 1071, (2.5)
vj €2

Following the train of thought, we want to choose the lowest possible value for the
triplet vev (seeking a natural value for the Yukawa couplings). For e-parameter minor
than 10, we have found a more stringent constraint in vs parameter space. The triplet
vev must obey vz > 2 eV, as can be seen in Fig. (2.1) .

With this new limit in low scale type II seesaw, we will choose the most natural

value for vs that respects LF'V processes constraints. From now on in this Section, we
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will work with v3 = 3 eV. We wrote in a table some values for Yukawa couplings in three
different triplet vevs. It is important to mention that for these choices, u lies between
6 — 30 eV. As was discussed in previous chapter, t’Hooft naturalness leads to small p
values. Then, our choice was natural in t’"Hooft sense in two ways (@ — eV and Y, — 1).
Setting these parameters (vs and p) at low energy scales, will lead to a phenomenological

richer type II seesaw. We will investigate some physical consequences in the next chapter.

| Yy wvs=3eV wv3=06eV wvy=9eV |

Y 0.00208853  0.00104427  0.000696177
YL -0.00385776 -0.00192888 -0.00128592
Y 0.00236723  0.00118362  0.000789078
Y5 0.00767522  0.00383761  0.00255841
Yk -0.00627895 -0.00313948 -0.00209298
Yk 0.00929729  0.00464865  0.0030991

Table 2.1: This table represent different neutrino Yukawa coupling values after fixing the triplet vev in
the values 3 eV, 6 eV and 9 eV. After looking at how these Yukawa couplings evolves, it became clear
that it is important to keep vz small as possible if it is wanted natural Yukawa couplings.

2.3 Low scale type II seesaw and Inverse Seesaw mech-

anism

Another interesting aspect that we may investigate is the proximity of the low scale
type II seesaw and the Inverse seesaw mechanism (ISS). Firstly, we will fully introduce
ISS. Implementing minimal ISS mechanism requires the addition of three right-handed
neutrinos N,z and three standard model singlet neutral left-handed fermions S;;, to three
SM active neutrinos v;z, as in [56]. In order to allow that these nine neutrinos develop

exactly the following bilinear terms

_ 1 -
£ =—vympNp — SLMNp = S SppussSy + Hee, (2.6)

where mp, M and prss are generic 3 X 3 mass matrices. These masses can be represented
as a 9 x 9 matrix in the basis (v, NS, Sp):

0 mb 0
M,=|mp 0 MT]|. (2.7)
0 M juss
It is important to note that p;gs is the only term that explicitly breaks lepton

number. Using the same naturalness principles as in chapter 1, urgs lies at low energies.

In this scenario M represents a Dirac mass term, however it is associated with another
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energy scale, a hidden sector that is choose to be at T'eV scales to be phenomenological
viable in actual experiments[56]. mp is our usual Dirac mass generated after EWSB of the
standard-like Higgs. Lastly, urss is the Majorana mass of the LH fermion and explicitly
violates B — L global symmetry. On considering the hierarchy ;s << mp << M, the
diagonalization of the neutrino mass matrix provides the following effective neutrino mass

matrix for active neutrinos:

m, = TTLJDﬂ(MT>71,U,[SSM71mD. (28)

This relation can be written in a simpler form as

Mmphss
m, = 11)\4727 (29)
that has the same form as the low scale type II seesaw
2
VoM
U3 R . (2.10)
13

This similarity is incredible, since they are very different physical scenarios. In
low scale type II seesaw case, there are only three neutrinos, left-handed. Is added
in the SM six degrees of freedom (six spin-0 fields), related to the six scalar fields
H,A H",H-, A, A™". Doubly charged scalars have unique signature, the heavy Higgs
is a particle that can decay in two photons and lastly singly charged scalars contributes
to electron-neutrino scattering amplitude. In the Inverse Seesaw case, there are nine
neutrinos, six left-handed and three right-handed. Adding three right-handed fermions
and three left-handed fermions, in general increases twelve degrees of freedom of the La-
grangian. However, in ISS case, these fermions are Majorana particles. The last fact cut
off these new degrees of freedom by half, i.e., in this case there are six degrees of freedom,
too. Considering its couplings hierarchy, there is a small chance to measure directly these
new Majorana particles, compared to the low scale type II seesaw case.

Another property of ISS mechanism is that the coupling p;ss explicitly violates
B — L symmetry. This parameter is very similar to the pu-parameter of low scale type 11
seesaw, since they are lepton number explicitly broken parameters at low energy scales
(eV — keV'). To justify smallness of 1755, we can use the naturalness principle. In 331
models this small coupling can be associated with a spontaneous symmetry breaking of a
scalar field. Then, B — L symmetry is recovered[56].

The versatility of type II seesaw is quite impressive! Its continuously connects
two completely different seesaw scenarios, the type I seesaw and the ISS. Therefore it
has very different physical realization from both scenarios. The low scale version of

this mechanism is natural in t’Hooft sense and the lepton number violation coupling is
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dynamically justified. Neutrinos masses are generated by SSB of the triplet scalar and
there is not right-handed neutrinos in this mechanism and consequently no Dirac mass

terms.
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Figure 2.2: This figure represents three different ways in which the false vacuum transits to the true
vacuum. To transit using Quantum and Thermal fluctuations, the false ground state climbs the potential
barrier, going to the true vacuum. However, Tunneling this potential barrier is the most effective way
for this transition.

2.4 False Vacuum and Higgs Metastability

2.4.1 False Vacuum vs True Vacuum

If the potential is BFB, then it is guaranteed that a true vacuum exists. A true
vacuum is the the ground state of a quantum (and classical) potential. Consequently,
tunneling to a lower energy state it is not possible. Alternatively, a false vacuum, defined
first in [57] and more detailed in [58, 59], is a local minima of the potential, but it is not a
global one. Therefore, if the potential rests in a false vacuum it is allowed to transit from
this state to a true vacuum state in three different ways, as indicated by Fig. 2.2[59].
It is viable to climb the barrier of the potential via quantum or thermal fluctuations.
Tunneling through this energy barrier it is permitted, too. Qualitatively, a false vacuum
can decay to the true vacuum.

Between these three possibilities, the more frightening transition is via quantum
tunneling. Frightening because the vacuum state can propagate through a potential bar-
rier no matter its height. Following [57, 60], we will try to explain this process intuitively.
Let the potential of a scalar field ¢, V(¢), possess two relative minima, only one of which,
¢_ is an absolute minimum, as in Fig 2.3. Classically and quantically, ¢_ corresponds to

the true vacuum state. The state ¢ = ¢, is a stable classical equilibrium state. Although,
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Figure 2.3: Here we represent a projection of an inclined “mexican hat", in which ¢_ is the true vacuum
of this potential and ¢ is a local minima, but not a global one.

it is rendered unstable by quantum effects, as discussed before. As described in [57], if
the vacuum rests in ¢, quantum fluctuations (instanton effects) can form a bubble of
true vacuum, ¢_.

If the bubble is too small, the gain in volume energy caused by the manifestation of
this bubble is compressed by its positive surface tension (domain walls), and the bubble
shrinks to nothing (volume energy goes with R? and surface tension with R?). Then,
there is a critical radius R. whereby the total energy of this process is zero. Nonetheless,
if a bubble is formed large enough (R > R,), it is energetically favorable for this bubble
to grow. Once this occurs, the bubble expands throughout the universe until it converts
false vacuum to true.

This process requires some time to proceed. Calculations of this time were made
first in [57, 60]. They call this calculation as a “semi-classical approach". Its indicates
that the decay rate of the false vacuum depends on two parameters A and B in such a
way that [61]

I~ Ae 5, (2.11)

in natural units.

The phase factor B is proportional to the difference of the action between the
false vacuum and the true one, AS. If this difference is high, then I' << 1. Knowing
that the time decay is inversely proportional to the decay rate, then tp = 1/T" >> 1,
and the typical time of this decay would become long as the cosmological time. We
will discuss later these implications in the SM picture. Another interpretation for the B
phase parameter is that B is the integral of the radial momentum of the walls through
the potential barrier[60]. As before, this interpretation imposes a very small value for
e P ~ 10770 [60]. Now that we saw what is the semi-classical point of view behind

vacuum transitions, we need to understand how quantically these fields behave.
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2.4.2 The Callan-Symanzik Equation

To connect the above discussion with Higgs Metastability, we must add a very
important feature of Quantum Fields Theories, the evolution of coupling constants. As
commented before, studying the BFB inequalities is a necessary condition for the vacuum
stability, but not sufficient. Opposing classical field theories, quantum field theories have
a very singular feature. Due to quantum corrections, tree-level couplings can change
their behavior at high (and low) momenta. A natural question that arises is whether the
coupling associated with the highest-order potential coupling is negative at some energies.
If this is true for an arbitrary potential, it would not have a global minimum, therefore it
would not acquire a true vacuum. These quantum corrections of the potential plus tree-
level terms can be seen as an effective potential of the model, in the Coleman-Weinberg
formalism [62].

However, this formalism depends on the cutoff scale. To be more general and
precise we will use another formalism, called Renormalization Group [58, 27, 59]. The
term “Group" has no relation to Group Theories, it only refers to a set of parameters that
changes according to the scale of the renormalization of the model. The parameters of a
renormalizable theory are determined by a set of renormalization conditions, which are
applied at a certain momentum scale. Then, by looking at how the parameters of this
arbitrary theory depends on the renormalization scale, we can find out the evolution of
the coupling constants.

Following [27], we will show how the Callan-Symazik equation can be derived in
the ¢*-theory. After, we will obtain the S-function of the Higgs quartic self-coupling A

via computational packages. To start, we must define the Lagrangian of the ¢*-theory as

_1 2 1 2,2 /\0 4
E—i(a/@) —§m0¢ _ﬂ(b’ (2‘12)

in such a way that ¢ is a non renormalized scalar field, Ay and m, are the bare quartic
coupling and the field’s bare mass, respectively. To rescale this field in a renormalizable
way, we must separate infinite (Z) and non infinite (¢,) parts, as the following transfor-

mation(see Appendix B)[27]

b= 712, (2.13)

This transformation modifies the correlation functions values by a factor of Z/2 for
each field and it is dependent on the arbitrary renormalization scale M. Studying these
changes in correlation functions are the key point, since they derive the (1PI) diagrams,

essential in our analysis (see Appendix B). This means that
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Q| Tr(w1).pr(aa) | ) = ZYHQ| Tp(an)...d(xa) | Q). (2.14)

such that | Q) is the vacuum state ket and 7' is the time-ordering operator.
In this procedure, we will rescale all the couplings and the field ¢ of the Lagrangian,
separating infinite (nonphysical) and finite (physical) parameters. Applying the transfor-

mation (2.13) in the Lagrangian, we obtain

1 1 A
L= §Z(8M¢T)2 - §m32¢3 - ZQz? " (2.15)

and the infinite terms can be absorbed by the counterterms

Sg=2—1, 0pm=miZ —m?> 0&\=NZ>—\ (2.16)

The more easy ¢?-theory is massless (physical mass m = 0), and it can be shown
that if m? — 0 would lead to singularities in the counterterms[27]. To avoid this, particle’s
mass will be proportional to a renormalizable energy scale M in such a way that the

renormalization conditions at a space-like momentum p with p?> = —M? are given by

(1PI)=0 at p* = —M?,
d
dp?
(P1, P2, D3, Pa)amp = —1A at (p1 +p2)* = (01 +p3)* = (01 + pa)* = =M,

(1PI)=0  atp*=—M? (2.17)

(Appendix B for more details).

These conditions define the two- and four- point Green’s functions at a certain point
and remove all ultraviolet divergences. It can be seen that the scale of renormalization
M can vary freely, which varies the Green’s functions G . Then, we can derive the same
formalism for a different renormalization scale M’, using a new renormalized quartic
coupling X and a new rescaling factor Z’. Then, it is viable to associate all the different
renormalization scales with the Green’s functions in a invariant scale equation commonly
called Callan-Symanzik equation. In simple terms, a shift in the renormalization scale M
leads to a shift in ¢ and A,

M — M+ 6M,
A = A+,

¢r = (14 0n)or, (2.18)
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where dn = 0¢,./¢, is the perturbation in the renormalized field ¢,. Rescaling the field ¢

shifts the Green’s function, since

G(n)(l‘l, ,ZEn) == <Q | T¢r(x1)¢r(«rn> | Q)connected7 (219)

it is clear that in first order perturbation theory the Green’s functions becomes

G™ — (1 + non)G™. (2.20)

We can think of G(™ as a function of the renormalization scale M and the coupling
A, such that G™ (M, ). The differential form of G™ can be written as

(n) (n)
a6 = %5501 1 295 — i) (2:21)
or, more explicitly
(£4(sM + aa)\d)\ — non)G™ = 0. (2.22)

It is conventional to write this equation with the dimensionless parameters

M M
= —0A = ——m. 2.23
Then, its final form can be written as
(Mﬂ + 53 +ny) G ( ‘M, =0 (2.24)
B ax T L1y ey Ty M) = 0. .

Even G™ depending on the renormalization scale, the parameters § and v does
not. This is so because the Green’s function is renormalized (Eq. 2.19), consequently
these dimensionless parameters cannot depend on the cutoff scale. Since these two pa-
rameters cannot vary with the cutoff scale and by dimensional analysis they are not energy
quantities, the ratio M/dM is independent from M. These functions depends only from
the couplings of the model. Therefore, all Green’s function of massless ¢*-theory must
satisfy this equation.

The physical intuition of the Callan-Symanzik Equation is that the scale M does
not impact the observables of the theory. We can define the theory at any other scale

and obtain the same answer. It is fundamental to understand that exists two universal
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G'['1} = X + + o + X + O(AS)

Figure 2.4: The Green’s function G® at one-loop perturbation theory. We need to calculate each of
these diagrams to find the S-function of the quartic coupling \.

functions (B(A), v(X\)) related to the shifts in the coupling constant and field strength,
respectively, that compensate for the shift in the renormalizable scale M. Interpreting
physically Eq. (2.23) shows us that the S-function is associated with a shift in the quartic
coupling constant, and the y-function as the shift in the field normalization. As we are
not interested in observing shifts in the field, we will deepen our investigation in the (-
function and understand its physical interpretation, not only in the ¢*-theory, but in an
arbitrary model. In agreement with this formalism, we will finally calculate how coupling

constants evolves with energy.

2.4.3 p(-function interpretation

Here, we need to interpret the physical meaning of these dimensionless functions
to make the connection between our previous discussion about false vacuum and the -
function. This function is proportional to the shifting in the coupling constant when the
renormalization scale is changed. Here we will “compute’ the ¢*-theory By-function at
one-loop and interpret this result physically.

Quantum corrections of the coupling A depends on the 4-point correlation function,
here as Green’s function G, as in Fig. (2.4). This Green’s function depends on s, t,

and u diagrams. They can be written as

GW (s, t,u, M) = [—iX+T(s) +I'(t) + — id] f[7 (2.25)

Using the Renormalization Conditions in Eq. (2.18), and after explicit calculations

of these diagrams in [27]

4 .
GO (=M, =M, ~ M) = [iA -+ Bi(—iNPV(-0) — i8] ] = ~AT] 5 2 (2:26)

i=1Pi i—1D;

that implies

d
re-— -
5)

0y = 2(4r) d/2/ dz 2(1 — ) M2)2—d/2 (2.27)
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In the limit as d — 4, it becomes

3\

5 1
AT o(Um)? |2 = d)2

—log M? + finite|, (2.28)

where the finite terms are independent of M. Now, we can apply the Callan-Symanzik
equation in to the Green’s function, since the only dependence of G® comes from 4.

The first term of this equation is

IG® 3N A
M = —. 2.2
oM 2(47)2£p? (2.29)

At one-loop v = 0. Then, the remaining term is, in first order

(4)
85)\ =—i+ 0O\, (2.30)
and finally the S-function
32 3
B(A) = 162 + O(\°). (2.31)

It is notorious the difficulties of this type of calculation. There is a more easy
way to find out the S-function only with the counterterms|27]. However, we will not dive
deeply in this subject. As we have saw, S-function is the rate of change of the renormalized
coupling at the scale M corresponding to a fixed bare coupling. This can be associated
with the rate of the renormalization group flow of the coupling constant A\. Then, a
positive sign for the p-function indicates a renormalized coupling that increases at large
momenta and decreases at small momenta. We can solve explicitly the Callan-Symanzic

equation for the coupling \ as [27]

d _ _ _
TTogoaT PN = ), AL ) = A (2.32)

Integrating with the equation (2.31), this A\ parameter becomes

) A
M) = T 33 /16n2)log(p/ 1)

(2.33)

As expected, a positive value for the S-function should imply an effective coupling

that becomes stronger in large momenta and weaker at low momenta. One can investigate
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what happens for decreasing or null g-functions. If these are the cases, when the (-
function is decreasing, the coupling becomes weaker at large momenta and stronger at
low momenta. For the null S-function, the effective coupling does not vary with momenta.

Nonetheless, it can be shown that if we add fermions in ¢*-theory (known as

Yukawa theory), then it is possible for A to become negative at high momenta [58]

EYuka'wa theory — ‘C¢>4 + “Ef)/ua'uw + yf@hﬂ + H'C'v (234)

in such a way that i represents a fermion. The [, function takes on the following

expression|[58]

16776y = 1202 + 12Xy}yr — 12yhysylyy. (2.35)

In this case, the Sy function of the Yukawa coupling is strictly positive (16728, ;=
9/2 yj’}) Then, it is clear that, for small initial A values and large initial y; values, it is

probable that the g, function is negative at high energies.

2.4.4 f,,,,-function of the Standard Model

As seen in the previous subsection, it is an extremely arduous task to calculate
[-functions for more complex models. For this reason, we seek to do these calculations
in a mathematical package called SARAH-4.14.3[63]. According to this software and
corroborated by the paper [58], the main contribution of the one-loop f,,,-function (Aga

as the quartic coupling of the Higgs) is written as

27 9 9 9
1671—25/\91»1 = v + 7952/92 + *94 - 992)‘5M - 19}2/)‘51\/[ + 12)‘%’M (236)

1007 T 10 4
+12)\5My2yt - 12y2yty;ryt?

where y, is the Yukawa Top coupling, gy and g are the U(1)y and SU(2), gauge couplings,
respectively and Agjs is the quartic self-coupling of the Higgs.

For quark top mass much larger than the Higgs mass, 8),, is negative and Mgy is
weaker at high momenta. If Agy; becomes negative, then the potential is not BFB at high
energies. As was discussed at the beginning of this section, if the vacuum is in a position
of local but not global minimum, it is possible a transition from the false vacuum to the
true vacuum. For negative Agys, this global minimum state is —oo. Another possibility is
if the energy barrier is so thick that the decay time of this vacuum becomes greater than
the cosmological time. We will call this region Metastable.

It is possible to distinguish between three regions, where the vacuum is completely
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Figure 2.5: This plot represents the stability of the SM vacuum state in the Higgs and top masses.
Ellipses show the 1o, 20 , 30 confidence intervals for m; and mj around their central values. In the
green region, the current vacuum is absolutely stable, in the yellow region it is metastable, and in the red
region it is so unstable that it would not have survived until the present day. These blue and red doted
line are associated with cosmological constraints, assuming values for the Reheating temperature Tgryy.
This £ parameter is associated with gravitational corrections in the vacuum state of the universe. More
detailed explanation in the cited paper.

stable, totally unstable and metastable, as in Fig. (2.5)[59].

Our current best estimates of the Higgs and top quark masses are [46]

my =173.1£0.9 GeV, my = 125.18 +0.16 GeV, (2.37)

place the Standard Model squarely in the metastable region [64].

Then a question arises. Is it possible that the contribution of the new scalar triplets
will make the Higgs vacuum totally stable? The answer is: Yes. However, as we will see
in the next section, when solving this problem, another problem related to naturalness

arises, in such a way that it is not possible to solve both at the same time.

2.5 Two problems that cannot be solved simultane-

ously in this Triplet Extension

2.5.1 Vacuum Stability at High Scales

At A =~ 10% — 10'° GeV scale energies, the quartic coupling of the Standard Higgs
Asyr becomes negative, as we already discussed. This transforms the previously stable
vacuum into a metastable one. If we introduce physics beyond Standard Model (BSM) at

low energy scales than A, it is possible to make \gy; always positive. For the potential of
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Figure 2.6: The dashed blue line represents the SM prediction. In the triplet model, the red thick line,
A4 = 0.5. Commonly the other parameters are taken as A\; = Ao = A3 = 0.1. We have observed that this
model can have a stable vacuum at high scales.

Eq. (4.3), positive contributions to the f,,, function arisee (A ~ Agps) due to the quartic
interactions between the Higgs and the scalar triplet, Ay and A;.
Using SARAH-4.14.3[63], the one-loop f,g,, function is

27 4 9 2 2 9 4 9 2 2 2 3 2 3
N — — —g" — =gy A — 99" A+ 122" 4+ AT+ M\ (2.38
5
+3A + 1220ly — 120wyl y.

Analysing this beta function, we can find that, if Ay and/or A, are relatively large,
then the quartic coupling Agys is always positive at high scales as in Fig. (2.6) and this

vacuum is always stable. Otherwise, this potential has a metastable vacuum as the SM.

2.5.2 One-loop Higgs Mass Correction

Higgs mass one-loop correction, according to [50, 65], depends directly from the

triplet mass u3 and the quartic couplings A; and A4

2

M
(A1 + Ag)pis log—32, (2.39)

omy ~ ———
h 1672 13

where Mp; = 2.4 x 10'® GeV is the chosen cutoff.

By naturalness principles in t’Hooft sense, Higgs one-loop mass correction should
be much smaller its at tree-level, dm3 /M7 << 1. For mass corrections to be small as
possible, it is necessary that the coupling between the Higgs and the scalar triplet be very

tiny
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om3 3 T M?
— o ——— (M + M) log—Et << 1. 2.40
M2 T igm A s (2.40)
Then, it is natural to limit A\;, Ay << 1. Therefore, as we have already seen these
quartic couplings are required to be large enough for the Higgs vacuum to be fully stable
at high energies. Furthermore, these two problems cannot be solved simultaneously in
this model. As we will explore in chapter 4, there is one model that solves these two

problems simultaneously. This is the called 123 model.

2.6 Discussion

In this chapter we have complained about some aspects of the low energy scale type
IT seesaw mechanism. Firstly, LEF'V process have guided us to constraint the e-parameter.
Secondly, we have discussed how close low scale type II seesaw is to the ISS mechanism.
However, phenomenological scenarios between these two mechanisms are very different,
even though the seesaw relationship between couplings are very similar. In the last two
sections, we have commented about false vacuum, renormalization group equations and
the metastability of the standard Higgs. Then, in minimal type II seesaw, the naturalness
problem (related to the one-loop mass correction of the Higgs) and vacuum stability at
high scales cannot be performed simultaneously, since these two problems are solved by
the same couplings in very different parametric region. In the next chapter we will study
the main phenomenological properties of this model, as the doubly charged constraints

and the main decays of neutral triplet scalars.



3 Phenomenology of the Low Scale
Type II Seesaw Mechanism

One attractive feature of HT'M is the presence of the doubly-charged Higgs boson,
and its distinguishing decay modes. Depending on the Yukawa coupling value Y (or the
triplet vev), the doubly-charged Higgs boson can decay into same-sign dilepton, same-sign
gauge bosons, or even via a cascade decay [35, 66, 67]. If such couplings are sufficiently
large (va small), it will decay predominantly into same-sign charged leptons, which is a
clear signature of Lepton Flavor Violation (LFV), discussed in chapter 2. Such signal at
colliders are a generic high energy analogue of the neutrinoless double beta decay as a
probe of LFV. Besides, if YA are very small (va large), doubly-charged scalars will decay
predominantly in same sign W bosons.

Another interesting aspect to explore in HTM is its singular contribution to electron

neutrino scattering due singly-charged scalar. v — e scattering is a precision test of the SM
because do not involve QCD contributions. However, such experiment has many sources
of unavoidable background (we will discuss about this later) and it can only be tested in
a restricted energy range. We will explore how H™ contributes for the differential cross
section of such scattering process, comparing it with actual data.

Additionally, for completeness, we will obtain the interactions and branching ratios
for the remaining triplet scalar particles components(A and H). We will searched for
another scalars signatures in experiments, like the heavy Higgs H decay in gauge bosons
and active neutrinos. A particular case that we are interested is the diphoton decay of
H. Thus, for the massive CP-odd scalar, we will calculate the symbolic expression for its
principal decay rate (for small va).

A last comment is about notation. In past chapters we have adopted vs as the
triplet scalar vev and ps as the triplet scalar mass. However, specially in this chapter
we have adopted the substitution 3 — A. Then, va as the triplet scalar vev, Ma as the
triplet scalar mass and v as the doublet scalar vev.

This chapter is organized as follows. In Section 3.1 we develop the decay channels
of doubly-charged scalar, while in Section 3.2 we study the contribution of the H™ to
electron-neutrino scattering processes. In Section 3.3 we briefly discuss the decay rate of
the CP-odd scalar particle, while in Section 3.4 we develop heavy Higgs decays. The last

section of this chapter we present our final remarks.
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3.1 Doubly-charged scalar branching ratios

As commented above, a characteristic feature of type Il seesaw is the presence of
the doubly-charged scalar A**. Its decay into leptonic and bosonic states gives unique
signatures in the colliders. In this section we will investigate these signatures and the
parametric dependence of each decay mode. To do this, we need to find the main vertices

responsible for A** tree-level decay,

'z
V(AT S
( A ]) \/5
VIAYW W) = —V2ivag’ g (3.1)
Since Yp;; = ULZ N ‘ , these two vertices are inversely proportional. This
VA VA

fact will resonate in the decay rate final formula. The relevant decay widths were cal-
culated with the help of CalcHEP v 3.8.6 tool[68]. It is possible to find the following
expression for the Total Decay Width (I') of the double-charged scalar

DA™ = Al ~T(AY = ) + T(AT — W)
1

= (1+f5z;)87f\/ (mAss —4mi ) (mi e —4mi)Yr; +

4,2
g UA 4 2
787TmA++\/1 —4/rw (rw /4 —riy +3), (3.2)

such that ry = ma++/mw[66][35].

Specifically for the case where neutrino mass hierarchy is normal ordered (NO)

and the lightest neutrino mass is zero (m; = 0), it can be inferred the branching fraction
of the leptonic and bosonic modes using Eq.2.3. Figures 3.1, 3.2, 3.3 and 3.4 represents
decay modes vs triplet mass Ma = ma++. Each figure is related to a different triplet vev
value.

For small triplet vevs, va = 1—100 eV, A™* predominantly decays into the same-

sign leptonic states A™" — [7I7" (Figs. 3.1 and 3.2). In this case, its most relevant decays

are ATt — 7t AYY 5yt and AYY — pFut, due to hierarchy Yii, << Yi3, <
Y135 For our choice (m; = 0) the dominance of the leptonic decay mode is balanced with
the gauge boson mode A*T — WTWT around the triplet vev ~ 1 keV), slightly lower
than predictions of the papers [66][35], where va ~ 100 keV. Whereas for larger va, the

gauge boson mode becomes dominant (Figs. 3.3 and 3.4).
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Figure 3.1: For v3 = 1 eV, leptonic decays are totally predominant in the doubly charged scalar channel.
We have fixed m,; = 0 in Normal Hierarchy, using Eq. 2.3.
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Figure 3.2: For vs = 100 eV, leptonic decays are predominant in the doubly charged scalar channel. We
have fixed m,; = 0 in Normal Hierarchy, using Eq. 2.3.
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Figure 3.3: For v3 = 1 keV, W boson decays are predominant in the doubly charged scalar channel. We
have fixed m,; = 0 in Normal Hierarchy, using Eq. 2.3.



44

BR(a** —All)

1.0}

08|
06} — BR[A*™ — /.17

0.4 —— BRIA™ — W*. W]

0.2

e ——
[ M

11  —— ; . L 5
300 400 500 600 700 800 900 1000

Mp

Figure 3.4: For vz = 10 keV, W boson decays are totally predominant in the doubly charged scalar
channel. We have fixed m,; = 0 in Normal Hierarchy, using Eq. 2.3.
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3.2 Neutrino-Electron Scattering in Type II Seesaw

Lately, the study of elastic collisions between electrons and neutrinos have become
of great interest. This type of collision offers a clean probe of contributions from the
Standard Model and deviations of these values can be related to new physics, such as
Dark Photons [69]. We know that in the Standard Model the diagrams that generate
these processes at tree level only have W and Z bosons as intermediaries. There are no
hadronic complications, so that deviations from SM expectations are directly accessible.
Following the line of reasoning of [70] and [71] we will investigate the contribution of the
simply-charged scalar for this collision.

The study of neutrino—electron scattering is experimentally challenging due to its
tiny cross-section, which forces one to pursue very intense sources and large targets. An
important comment that should be made is about irreducible backgrounds for this type
of experiment. The neutrino—nucleon scattering cross-section, as said in [70], is generally
three orders of magnitude larger and serves as a large potential source of background.
Mainly in v, and 7, sources, charged current neutrino—nucleon reaction v.N — eX can
yield a final state that is often consistent with a single recoil electron. Such backgrounds,
however, can still be reduced with Kinematics constraints. For example, electrons pro-
duced by neutrino—electron scattering are constrained by kinematics to have small trans-
verse momenta, whereas the electron distribution in most background events is much
broader (due nucleon masses). Therefore, an experiment with good transverse energy
resolution can significantly constrain this class of background events. More simply, for
collisions with energies much greater (or much smaller) than the resting energy of the
electrons (0.511 MeV'), background associated with neutrino-nucleon collisions are much
greater than the signal of neutrino-electron collisions.

Our goal its to find the differential cross section as a function of the electron’s

recoil energy T and the neutrino beam energy FE,. Precisely,

do-l/&e_ﬂuae_ o dU(EuaT)
dT AT (3:3)

In SM, the contributions are from the diagrams of the Fig. 3.5. The total cross

section as a function of 7" and E,, is[71]

do gitm.

_ 272 | 12 2
TTon W(a E>+b(E, —T)* — abm.T), (3.4)

in such a way that a and b are listed in Table 3.1.
In type II seesaw, the relevant contribution of the singly-charged scalar H™ is due

to the interaction
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Figure 3.5: Feynman Diagrams responsible for the neutrino-electron scattering.

H Process a b H
Ve—€ —Ve—e€ 85 +1/2 s2
Vo—€ —Ue—e s2 sz +1/2
Vo—€ —Vg—e 85 —1/2 s2
Ug—€ —Uy—€ s? 52 —1/2

Table 3.1: Here we have some values for the parameters a and b for each process that contributes for the
e — v scattering

_ Vi
N

Using the package FeynCalc, we calculate the cross section of the singly-charged

V(HI; v) (3.5)

diagram in Fig. 3.6. The total amplitude is the sum of SM, H™ and mixing between
these two terms,

| Mot P=| Msar [P+ | Moo |2+ | Mpge %, (3.6)

however we will focus only in the | Mg+ |[* amplitude. Then, it is possible to define the
differential cross section contribution beyond SM (BSM)

do [ My P
dT s 32mme | py |2

(5 (=

I

o=+

T

£ I

Figure 3.6: New Feynman diagram that predominantly contributes for the e — v scattering.
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After some calculations it is possible to find the following expression for the differ-

ential cross section of the diagram in Fig. 3.6

do |2 m, : ,
_ = ¢ 2F E,—2E, T +2m./ T —3
dT Bsm 647 E2(2E,m, + m?2 — m%{+>2( , T m +2m m?)
| S Y3 Pme, )
~ LR e o p B, —2E, T+ 2m./T — 3m?). 38
64w E2m7, . (RE, +m tem me) (3.8)

Comparing Eqgs. 3.4 and 3.8 it is clear that the numerator part depending on the
recoil energy of the electron and the neutrino beam energy are similar in each equation.

Then, to know the contribution of new physics, we should define the r-parameter as

. | Y3 [P miy  (do/dT) sy

~ ) 3.9
g4 4m‘}{+ (dO’/dT)SM ( )
In the limit of Yukawa natural values, Y7 /g < 1,
4
myy
~ ) 3.10

The last result simply means that the new physics interference in v — e scattering

cross section it is proportional to the ratio between W boson mass (SM physics) and H*

scalar mass (BSM physics). This is expected, because if H* is much more heavier than
Z and W bosons, then it will not be possible to detect its interference (Fig. 3.7).

However, we can make the substitutions Y7,; = M,;/va, mw = gv/2 and m2, =

pv?

V2ua

, and see r parametric dependence. r can be written as

ISP B P

~ 3.11
AT 32¢0k (3:11)

If va or the e-parameter are high valued, r-parameter becomes insignificant. How-
ever, even for small v ~ 1 eV and € = 1 it makes r-parameter tiny (r — 107°). Then, we
can conclude that the minimal extension of the SM that generates low scale type Il seesaw
with natural Y; values is the model that contributes the most for the neutrino-electron

scattering cross section. However, their contribution is still very small.

3.3 CP-odd scalar decay

The CP-odd triplet scalar is not phenomenological appealing. However, a relevant

fact is that, if there is not explicitly lepton number violation in the scalar sector (u — 0)
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Figure 3.7: Here we can see that r becomes irrelevant for current experiments, if triplet scalar masses
are high above T'eV scales.

A’s mass is zero. Then, lepton number global symmetry implies a pseudoscalar A. The
same happens in the model 123 of chapter 4. In that model, a Majoron .J is massless
(unless the potential explicitly broke lepton number). We’ll go into more detail in the
next chapter.

The main two-body decay of the CP-odd scalar is in a standard-like Higgs and a
Z boson. This is possible only if my > 216 GeV. The vertex responsible for this decay is
given by

gua
CuV

V(AhZ) ~ (Pa— Ph)p- (3.12)
Then, having in possession the vertex and with the help of CalcHEP v 3.8.6
tool[68] we find the total decay of this scalar

g A ((ma —mz)* —mi)*?((ma + mz)* — mj)*/?

2 1,2 3.2
16mcs v mymy

I'NA— hZ) =~

(3.13)

As we have discussed, p-parameter suppress the ratio va /v << 1. Then, this decay
is very suppressed by this term and even more if vo ~ eV. In this energy range, the decays
into neutrinos and anti-neutrinos are the most relevant for large Yukawa couplings and in
the low mass region[66]. Notice that the decay A — Zh is higher for large values of v, .

Then, a natural question appears. Is this A CP-odd scalar long lived? For v =
3 eV and my = 390 GeV (e =~ 3.5), the total decay rate is approximated by 'y =
5.5x1072Y GeV. Transforming in seconds, we have the decay time of A, that ist4 ~ 10~°s
(Quark Epoch).
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3.4 CP-even scalar decays and diphoton decay

The diphoton heavy Higgs decay channel provides an interesting opportunity to
test some alternatives to the SM that could be realized at the Electroweak scale, and
hence, be promptly probed at the current phase of LHC. An excess of diphoton signals
can be directly associated with physics Beyond Standard Model. In some SEM extensions
an excess of diphoton signals can be realized by addition of heavy fields and actual data
can help us to limit some parameters of the triplet scalar extension, mainly the H — ~~
decay. As we will see in the end of this section, in the case of eV triplet vevs, the
contribution of the heavy Higgs scalar to this type of decay is negligible. Firstly, let’s
investigate tree-level decays of the heavy CP-even scalar H. The most relevant vertices

for the heavy Higgs two-body decay are

o VA
V(Hhh) =~ ———+ —(=3X+5\ +5A
( ) \/5 + 9 ( + 1 + 4)7
Y.

V(Hylil/lj) = \;%7,
2

V(HZZ) = 4UAC—2gW,

V(HW+W_) ~ 'UAQQ.guV- (314)

Then, having in possession the vertex and with the help of CalcHEP v 3.8.6

tool[68] we find the main decay modes of this scalar

mi (2 + V23X = 5(A + Aa))va)?

m2 124mmy

T(H — hh) ~ | 1—4

Y

mHYL?j
].67'('(1 + 52]) ’

4 /1 — 4mZ /m2 (m3 — Am2m2% + 12m% ) v>
F(H—>ZZ) N g Z/ H( H gz Z)A

4.4
16mmpm7cy,

41— Am3, /m2Z (m3 — 4mZm3, + 12mi o3
T(H =W W) ~ 2 b /7 (M W w) 2. (3.15)

4
64mm gy,

F(H — Viyj)

J

For small triplet vev, it is clear that two neutrinos decay is dominant in these
processes, due natural values for the Yukawa couplings. If va > 1 MeV, its decay in two
standard-like Higgs, two Z bosons and two W bosons are dominant. Now, we will find
explicitly the heavy Higgs diphoton decay rate.

Following the papers [72, 73, 74], we can write an effective Lagrangian for the
heavy Higgs-diphoton interaction by first specifying the relevant interactions of the heavy
Higgs field H with scalars (¢;) and gauge bosons (W, Z) in a general fashion as[75]
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Figure 3.8: Total diphoton decay of the Heavy Higgs.

Lint = =901 0; 0 H + GPAW'W,H + ¢*WHW, H?* — N\ H?, (3.16)

where G is the Fermi constant, my, is the W boson mass, and g, A; the Electroweak and
scalars quartic couplings, respectively. The coupling parameter, gq,4, 1, it is proportional
to the neutral scalars mix among themselves and they are generally proportional to wvs
(after SSB of AY).

From the interaction Lagrangian, we can obtain the following effective Lagrangian

for the H — v — 7 coupling [75],

2
Lopp=Y" o (V2Gp) *HF"F,,, (3.17)

i

Q; is the ratio of the electric charge of the corresponding field to the positron one, and

the form factors F; are given by,

2
Fi  =[2+ 37w + 3rw (2 — TW)]2]U39 ,
)
9§>¢~H
F¢i = [T¢i<1 - 7-@12)]#7 (318)

&

in such a way that 7; = 4m?/m?% and [ is given by

/1
arcsin( ), for 7; > 1,
I = Ti ) (3.19)

1 1++v1—m7
[7r+z'ln[ + TZ]}, for; <1
2 Y

Then, using the effective Lagrangian it is achievable to find the general expression
for diphoton decay rate (as in [75])
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a’>m>,Gp
I'(H — a °F; |? 3.20
(H— 7)) = 128[31262 . (3.20)
In the triplet with hypercharge extension of the SM, the new particles that con-
tributes for diphoton decay are the singly- and doubly-charged scalars. Imposing the
hierarchy between the vevs va << v and after some approximations, our first step is to

find the couplings between the charged scalars and heavy Higgs

ga+u-u ~ 2((A2 4+ A3) — (A1 + A\1))va,

1
gata—u = 2(A—A)va = §9H+H—H- (3:21)

Imposing mass degenerescence between H* and A**, we can find the approximate
value of ¥;Q?F; calculating the Form Factors. Here, TA ~ 4 and In ~ 7/6 and term
7a(l — 7AI?) &~ —1/2. Since Qa++ = 2 and Qy+ = 1, the scalar form factors can be

written as

2 o 2 Ao — A\ 2

AFpoe + Fys ~ 8Fps ~ —a98ammn V02 — A7 (3.22)
mi; miy

Another contribution for this loop diagram is due to the W boson. To simplify our

arguments, we must define the Ry, parameter in such a way that

Ry :2+STw+STw(2—Tw)]2. (323)

This parameter is interesting since can be divided in two parts, Ma < 321 GeV
and Ma > 321 GeV. These two situations are represented in Fig. 3.9. Analysing these
plots it is plausible to state that 8.5 < Ry < 12.5 for 200 GeV < Ma < 1000 GeV,

2 2 2
Fw = Ry l2 5 85( L2 ) < By < 125252, (3.24)
2v 2v 2v

Analysing these form factors, we can see that the contribution of the charged
scalars are negligible compared to the contribution of the W boson, since the first it is a
second order perturbation (v /v?) quantity and the second it is a first order perturbation
quantity (va/v). Then, ¥;Q?F; ~ Fy, and the diphoton decay rate of the heavy Higgs is
approximated by
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Figure 3.9: Here we divided in two regions to understand completely the behavior of the Ry, parameter.

2,03 (12,2 2
" my Gemyy vy

I(H - yy) ~ R}, — W 4
( ) ~ Ry 16V 02

(3.25)
Since we choose to study only small triplet vevs, we made numerical calculations

for all these decays. After fixing va = 3 eV and my = 390 GeV, the decays of the heavy
Higgs in the bosons are

D(H — All) =~ 1.04 MeV,
['(H — hh) =~ 107" MeV,
[(H —vy) ~ 1072 MeV,
I(H—ZZ) ~ 107 MeV,
I(H—-WW™) =~ 1077 MeV. (3.26)

The only relevant decay channels are from Majorana neutrinos,

I'(H = vyv,) =~ 3.355x 107" MeV,
[(H = v,v, 3.079 x 107! MeV,
I'(H — v, 2.300 x 107" MeV,

3.755 x 1072 MeV,
1.711 x 1072 MeV. (3.27)

Q

)
)
)
H =) ~ 1.120 x 107" MeV,
)
)

3.5 Final Remarks

Here in this chapter our main goal was to explore the viable parametric space of
the model HTM. Then, our choice in the last chapter in adopting va ~ 1 eV have leaded
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us to explore its consequences at diphoton decay, e — v scattering and the decay of the
doubly-charged scalar. The results that we have found were very plausible and many of

them can be applied for the next model that we will present in the following chapter.



4 123 Model

4.1 Introduction

We have complained in previous chapters that the explicitly lepton number vio-
lation parameter () is responsible for the type IT seesaw relation vg ~ pv3/p3. This p
coupling at low energy scales can naturally be seen as an effective coupling, associated
with a spontaneous lepton number breaking interaction. Therefore, a simple way to build
such effective coupling is associate it to a singlet scalar field (o) that interacts with the
triplet (A) and doublet the (®) scalars[76, 77, 78, 79, 80]. From now on, we shall refer to
this case as the 123 model.

In such new scenario, we perform the interaction x(®7 A®ci+H.c.), with o carrying
lepton number equal to the scalar triplet. Then, it is possible to preserve the global
symmetry B — L of the Lagrangian, for u = k(o). However, due to o singlet field carrying
a lepton number, it becomes viable a Yukawa interaction between this singlet scalar field
and some neutral fermion that carries a lepton number, too.

Therefore, it is natural to add right-handed neutrinos in this 123 model. In this
case, neutrino Lagrangian yields the most general neutrino mass matrix involving Majo-
rana and Dirac mass terms for both neutrinos. Hence, when we assume that the lepton
number is spontaneously violated at low-energy scales, right-handed neutrinos acquire
light masses and may explain the recent MiniBooNE experimental results[81] by means
of neutrino oscillation.

This discussion resulted in the paper published in the journal Physics Review D[82].
Here, we will derive the complete set of conditions that guarantee the potential of the 123
model to be bounded from below (BFB), as in chapter 1. However, for this model, we will
probe every step using the method called “Spherical Parametrization". As in chapter 2,
we will investigate the case were lepton number violation is at low energy scales. However,
as we have commented above, in 123 model lepton number is spontaneously broken.

We will obtain the spectrum of scalars of the model and discuss the stability of
the vacuum by evaluating the evolution of the self-coupling of the standard-like Higgs
up to Planck scales. The discussion in section “Two problems that cannot be solved
simultaneously" in chapter 2 will guide us and we will probe that this puzzle can be
solved with 123 model.

Therefore, this model is particularly interesting because it encompasses a Majoron
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(due explicitly lepton number conservation) and a light CP-even scalar in their spectrum
of scalars. We will investigate phenomenological aspects of this model and discuss the
contributions of these scalars for the invisible decay channels of the standard-like Higgs
and of the neutral gauge boson Z. We will also obtain the constraints that lepton flavor
violating puts over the parameters of the potential, as was explored in chapter 2. Regard-
ing neutrino physics, we provide a solution, i.e., a set of values for the Yukawa couplings,
that recovers the standard neutrino sector and provides at least one right-handed neutrino
with mass resting on the eV scale and robustly mixed with the standard neutrinos in such
a way that it accommodates MiniBooNE current results by means of neutrino oscillation
and is in agreement with cosmological data.

This chapter is organized as follows. In chapter 4.2 we develop the main aspect of
the model including neutrino masses, while in chapter 4.3 we develop the scalar sector.
In chapter 4.4 we discuss the stability of the vacuum. In chapter 4.5 we present our final

remarks.

4.2 The 1-2-3 model

The leptonic sector of the model is composed of the standard content plus right-

handed neutrinos in the singlet form,

L; = ( ZZ ) ~ (1727_1) ) giR ~ (1717_2); Vig ™~ <171’0>; (4'1)
VS

where i = e, pu, 7.
The scalar sector is composed of the standard Higgs doublet, ®, one Higgs triplet,

A, and one Higgs singlet, o, presented below,

AP ar
A=A+ V21,32, o= ((bo) ~(1,2,-1); o~ (1,1,0). (4.2)
AT+ ¢

V2
The quark sector is the standard one.

The most general potential involving this scalar content that conserves lepton

number is composed of the following terms

Vo, ®,A) = jido*o + e + j2tr(ATA)

F A (DTD)? + Mg [tr(ATA)]? + A3 DT DLr(ATA)

FAtr(ATAATA) 4 A5 (BTATAD) +

Bi(c*0)? + By®®o*o + Bstr(ATA)o* o —

k(®TAP* 4 H.c.). (4.3)
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4.3 The Yukawa Sector

With such lepton and scalar content, the Yukawa interactions that generate mass

for all neutrinos of the model is given by

1
“YE VR0 + Hee.. (4.4)

1
£y = JYLLTAL + Y] Tdus +

2

The Yukawa interactions of the charged fermions are the standard ones.
When the neutral scalars of the model develop vevs other than zero, i.e, (o) = %,
(¢) = % and (A) = %, the Yukawa interactions in Eq. (4.4) provide the following mass

terms for the neutrinos,

mass

1 1
£D+M = §VLMLVL+VLMDVR+ QVRMRVR+HC (45)

with v = (ve, v, Ve )" and vgp = (Vep, Vi Veg)'

Considering the basis v = (v, v$)T, we can simplify Eq. (4.5) to

o Loy, H.c., (4.6)

mass 2
and the 6x6 symmetric mass matrix is given by

My Mp
MPHM — , (4.7)

Mp Mg

where M = YE(A), Mp = YP(¢) and Mr = Y{g). MP™™ is the most general
neutrino mass matrix. It involves Dirac and Majorana mass terms for both left- and
right-handed neutrinos. 123 is the simplest model that generates this mass matrix in the
case of spontaneous violation of the lepton number.

The relation between the flavor basis, v, and the physical ones, N = (N; Ny N3 N; N5 Ng)7T,
is given by N = Uv with U being the unitary matrix that diagonalizes MPTM

UTMP™MU = M = diag(M, M,), (4.8)

where M; = diag(m; my ms3)T and M, = diag(my ms me)’. We will develop the idea

of light sterile neutrinos in next sections. First, we need to explore SSB of this model.
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4.4 Spontaneous Symmetry Breaking

First, we expand the neutral scalar fields around their respective VEVs,

oot it
V2 V2
¢0=2 Ry + 1

+
V2 V2
o_ v Tt

V2 Ve

and obtain the set of minimum conditions required by the potential above to allow spon-

(4.9)

taneous breaking of the symmetries of the model which include the global B-L symmetry,

1 1
v (1 + By + = Bavy + = B303) — —Kvzv3 = 0

2 2 2
1 1 1
va (13 + A\va + 2>\3U§ + 5)\51)% + 552’0% — kvyvs) =0
1 1 1 KU102
Ug(ﬂg + )\21)92) + 2/\321% + )\41)32) + 5/\5@% + 563"0%) — ; 2 — 0. (410)

Upon analyzing this set of constraints, observe that the first and third relations
yield

(N &’Ug. (411)
21

The parameters pq, g and vy are free to take any value while v3 is constrained by the
p-parameter, as discussed in chapter 1. Then, the direct proportionality among v; and wvs
provided by Eq. (4.11) hints that v; < vy which implies that right-handed neutrinos may
be light particles, too. Assuming phenomenologically viable triplet scalars (usz ~ TeV')

with v3 ~ eV as we have explored in chapter 2, it is clear that

MeV)?
oy e V)" (4.12)
H1
Then, a natural scale for v; is when pu; ~ MeV, and consequently v; ~ MeV. This is

why we will assume v; = 107! MeV as a standard value for this vev.

4.5 Scalar sector

We saw in the previous section that the scenario we are developing here is capable
of accommodating neutrino physics including short-baseline (SBL) anomalies as LSND
and MiniBooNE. This provides a strong reason for we go deep into the development of
such case. Thus, in this section we perform a careful analysis of the spectrum of scalars of

the model that is in consonance with previous section which means to consider the vevs
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respecting the hierarchy v; << vy << vy .

4.5.1 Spectrum of scalars

We start developing the CP-even sector. Considering the basis (R; R3 Rs), the

potential above together with the minimum conditions provide,

1 1
231vF + 5/{1)%% B3vivg — im)% [Ba1V9 — KUU3
U1
2 _ 1 1
Mg = Byvivy — imjg 2(Xa + \y)v3 + 5%1)%2 (A5 + A3)vavs — Kvyg | - (4.13)
U3
62’031)2 — RU2U1 (/\5 + )\3)1)21}3 — RU1U9 2/\11}%

The complexity of this mass matrix prevent us to achieve a closed analytic form of the
eigenvalues/eigenvectors. In this case the better we can do is a simplification based on
our assumptions regarding the parameter space. In this way, according to the hierarchy

of the VEVs we assumed here, this matrix may be approximated by

1 1
5/{2}%% —51-6113 ~ 0
1
2 1 1
Mj, =~ Y 7,{6@%& ~0 |- (4.14)
2 2 U3

~ 0 ~ 0 2)\11)%

This means that Ry decouple from the other ones, while R, and R3 mix among themselves

to form H; and Hj according to the following relation

H, Ry
=U . Ry = H, 4.15

1
Up ~ ( 6) D ER % (4.16)
—e 1

where

The masses are given by,

2520v? KU V2
2 291 2 1%2 2 2
~ ~ My, ~ 2\ 5. (4.17)
H1 Y H3 Y HQ 1 2
K 2v3

Observe that, for the hierarchy of the VEVs assumed here, we have that H, will
play the role of the standard Higgs while Hj is a heavy Higgs, with mass around TeV
scale, and H; is a light one with mass at eV scale.

In the CP-odd sector, things are much simple and the mass matrix in the basis
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(I , Iy, I3) is given by

1 2?)3 1 9
5/11)2 /Uil RUoU3 5/431}2
M? = | kuvvs 2kviv3 KUYy | . (4.18)
1 1 2U1

2
KV KU1Vy =KV
2 102 2
2 2 Vs

Its diagonalization leads to a Goldstone boson, G, that is dominantly I, and will be
eaten by the standard gauge boson Z; a massless pseudo-scalar, J, which we call the
Majoron and a heavy pseudo-scalar, A, which is dominantly I5. The relation among these

pseudo-scalars with the basis is given by

J L
G|=Ur|L}|, (4.19)
A I3
where Uj is given by
2
1 2B
V1V2 v
Ur~fo 1 —22]. (4.20)
v v2
e 2= 1
(%)

For the case of interest here, the Majoron is related to the basis in the following way,

1)2
Jrly — 221, — els, (4.21)

U2l
which allow we conclude that it is dominantly singlet. In this case its coupling to the
standard neutrinos may be approximated by ~ ig.svaysvpJ where g, = Y€ For
e = 107 and for the values of Y7, given in Eq. (4.41) we have g.,, ~ 107°. This value for
Jep 1s in agreement with supernova bounds, 330r decay and neutrino decays as discussed
in [83]. Another source of constraint on Majoron arises from star cooling which, for our

hierarchy of vevs, put the following constraint over them ( see Eq. (36 ) of the first paper
in Ref. [77])

=3 <1079, (4.22)
V1U2

which is completely obeyed by our choice in Eq. (4.39). In what concern long-range

force, the Majoron is so weakly coupled to matter that it may have well escaped detection
(84, 85].



60

The mass of the pseudo-scalar A take the following expression,

2
2 RU105
mA ~

5 4.23
20, (4.23)
which allow we conclude that it is a heavy particle even for the set of VEVs considered
here.

In what concern the charged scalars, in considering the basis (A* | ¢™), we have

the following mass matrix for these scalars

1 1
KU1U3 — = A5U3 ——9(A503 — 2K01)
ML — 2 2¢/2 , (4.24)
T v — 2mm) (ke — Asvy)
——09(Asv3 — 2K01)  —12%(2KU1 — A5V
N DA 1 — AsU3

We can easily diagonalize this matrix and find the physical fields

Gﬂ: B ¢j:
()0 (%), 1o

\/§U3

1
~ b2
Uy \/§v3 1 . (4.26)
V2

We see that there are not any relevant mixing between the charged fields. G¥ is

the Goldstone while H* is the simply charged scalar whose mass expression is given by

KU1V3

mye = — (2601 — Asv3) (V3 + 203) =

4.2
o, (4.27)

21)3 .
Observe that it must be heavy for the choice of the VEVs used here.
The doubly-charged scalar acquires the following mass expression
1 KU1V

2 2 2 2
mar = — (KU1v; — 20405 — As0503) &
2?}3 3 2U3

: (4.28)

which must be heavy, too.

Thus, we see have that, although the VEVs v; and v3 are much smaller than vy, we
have that the scalars that belong to the triplet A are heavier than the standard-like Higgs
and their masses are practically determined by the parameter x. This is a consequence of
the hierarchy of the VEVs. It is curious that the same hierarchy among the VEVs does
the opposite with regard to the scalars belonging to the singlet o. The scenario predicts
a light scalar Hy. The heavy scalars may be probed at the LHC, while the massless J
and light H; will contribute to the invisible decay channels of the Higgs and Z.
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4.5.2 Some constraints

The coupling constants s, B2, A3 5 will play an important role in the RGE-evolution
of the quartic coupling of the standard-like Higgs A;. Thus, information on these param-
eters in the form of constraints is mandatory in order to we conclude if the vacuum of the
1-2-3 model in the regime of low energy scale is stable or not. But before we address this
issue, let us investigate the contributions of the light scalars to the invisible decay of the
standard neutral gauge boson Z.

In what concern the invisible decay of Z, the Lagrangian of interest is given by

LRz O —iZ“[R:aauls — I30,R3). (4.29)
Because R3 mix with R; to compose H; and I3 mix with [; to compose J, we
have that this Lagrangian generates an interaction among Z , H; and J modulated by
the following vertex
g€’
Vempyawy) == —(Pr— Py, (4.30)
Cw
where ¢ is the SU(2) coupling constant and cy = cos(fy,) with 0y being the Weinberg
angle. € is given in Eq. (4.16). The current data gives I'(Z);,, = 500.1 £ 1.9 MeV [46].
Because My, << My, the vertex above provides the following expression for the decay
width Z — H,J,

Mz€4GF MI2:[ 2 M23€4GF
I'Z — JH,) = ————(Mz — L) = . 4.31
( ) 16v/27 (Mz MZ) 16v/27 ( )
The expression for the decay width of Z in two neutrinos is given by
GrM;
(7 — ) = L2 (4.32)

12427

On substituting the current values of the standard parameters that enter in the
expression above, i.e., My = 91.18 GeV, Gp = 1.1663787 x 107> GeV =2 we obtain
I'(Z — vv) = 166 MeV. In view of this, the window for new physics is established by
D(Z)iny —3xT(Z — vrv) = 2.1 MeV. In other words, all new contributions to the invisible
decay of Z must lie within 2.1 MeV.

Observe that Egs. (4.31) and (4.32) provide

r
—Z2I 0,756 = Ty yp, ~ 124.5¢* MeV. (4.33)

FZ—)DV

v
According to this we have that I';_, 5, must be smaller than 2.1 MeV. Once - €, at
U1
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the end of the day we get

€ < 0.36 — vy > 2.77us. (4.34)

This result confirms the hierarchy among the VEVs we are considering here.

In order to check that our scenario obeys the constraint put by the invisible decay
of Z as discussed above, see that for v; = 10° eV and v3 = 1 eV, we get I'(Z — JH;) =
124.5 x 10720 MeV which is much smaller than 2.1 MeV. The other possible contribution
to I(2)iny is T'(Z — JJJ). However we must have that I'(Z — JH;) > I'(Z — JJJ)
because the later decay is obtained from the first by means of the decay H; — JJ. Thus,
we conclude here that the invisible Z decay is not a threat to our model.

Now let us extract constraints over the parameters of the potential by means of
the invisible Higgs decay channels and the LF'V process p — ev.

Let us consider the contributions that our case give to the invisible decay of the
standard-like Higgs Hy. We consider the following contributions I'(Hy — HyH;) and
['(Hy — JJ). Their decay widths take the expression|[78]

53712 (A3 + /\5)2U2
128v/27 128v2r

The prediction for the total decay width of the standard Higgs is around 4 MeV
with ~20% being invisible decay rates( BR(Hy — inv) = 0,26 £ 0,17). All this allows

we conclude that B», A3 and A5 are constrained to lie around 10~2 or smaller.

F(HQ — HlHl) ~

and T'(Hy — JJ) ~ (4.35)

Thus we conclude here that the 1-2-3 model in the regime of low energy scale,
although has a Majoron, which is a massless pseudo-scalar, and a light CP-even scalar
it is a safe model in what concern the invisible decay of the standard neutral gauge
boson Z. As a nice fact we have that our particular case gives reasonable contribution
to the invisible decay of the standard Higgs through the channels I'(Hy — H;H;) and
['(Hy — JJ). In other words, our case may be constrained by future improvement of the
data concerning Higgs physics.

In what concern LFV processes, the muon decay channel y — ey provides the
strongest constraint on the parameters of the potential. This is so because in our case
BR(p — 3e) ~ BRU=) oo Eq. (70) of Ref. [86].

160
In one-loop order we have the following expression for the branching ratio of this

process|[87]

27a | (Y2)11(Ye)12 + (Y2)13(Y2 )32 + (Y2)12(Y2 )22 |2
GAnGaML, !

BR(p — ve) = (4.36)

where « is the fine structure constant and Gp = 1.1663787 x 107> GeV 2.
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On substituting the expression of the mass of the doubly charged scalar given in
Eq. (4.28), we have that for the fixed values of Y7 ’s given in Eq. (4.41) and of the VEVs
given in Eq. (4.39), the upper bound BR(u — ve) < 5.7 x 10713 [53]translates in the

following lower bound over s

7x 10719

—— <5.7x107" - k> 11x107° (4.37)

K

In addition to this lower bound over k, there is a natural upper bound over k, too, that
arise from the constraint that all dimensionless parameters in any scalar potential are
required to be less than /47 in order to fulfill the perturbativity condition. In summary,

have
1.1 x 1073 < k < V4n. (4.38)

With this set of constraints in hand, we are ready to analysis the RGE-evolution

of the quartic coupling of the standard-like Higgs A;.

4.6 Light Sterile Neutrinos

A strong reason for the existence of light right-handed neutrinos is the explanation
of short-baseline neutrino results (LSND and MiniBooNE)[81][88] by means of neutrino
oscillation. In this case, the adequate value for v; is one that accommodates at least
one right-handed neutrino with mass around eV with robust mixing with the standard
neutrinos and that is in conciliation with cosmology. We follow this line of reasoning here.

The current scenario of neutrino physics involving MiniBooNE and LSND exper-
imental results may be accommodated within our model with the following set of values
for the VEVs,

vy =107 MeV; vy =246 GeV; v =1¢€V, (4.39)

and the following set of values for the Yukawa couplings,

3,6 x1071% 5, 74x1078 5,74 x 107™
Yp=|-2,21 x107"% —3,45 x 1071 5,75 x 10713 |; (4.40)
—7,07x 10713 5,75 x107? 5,75 x 10713

6,20 x 1073 —4,11 x 10~3 —1,25 x 1072
YV, =|-4,11x 1073 3,90x 1071 1,95 x 1072 |; (4.41)
~1,25x 1072 1,05 x 102 3,83 x 1072

1,40 x 1075 4,75 x 10712 4,52 x 10712
Yi = |4,75 x 10712 10! 5,08 x 10715 | . (4.42)
4,52 x 10712 5,08 x 10715 10!

On substituting all of these values into MP+M | given in Eq. (4.7), we have that
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its diagonalization provides

my  =2x107%eV; my=8,6x10"3eV; my="5x10"2¢eV;
ms =1,4€eV;: my=10"eV; mg= 10" eV. (4.43)

The mixing matrix, U, responsible for the diagonalization of MP*+M and relating

the basis v to N, as in Eq. (4.8), is given by

0,83 0,54 —0,12 0,045 10°°  10°°
~0,25 0,59 0,72 —0,03 —6x 1073 1077
0,44 —0,6 0,69 —0,09 10~*  10°°

U= (4.44)
—0,045 0,03 0,09 1 ~0  ~0
106 107% 10*  ~0 1 ~0
1076 107° 107*  ~0 ~0 1

The values of my, my and mg given in Eq. (4.43) and the upper left 3 x 3 submatrix
of U accommodate the current solar and atmospheric neutrino oscillation data. A nice
thing to observe is that the mixing angles among N, with v, and N, with v., together
with the mass value of my, are in such a way that they allow the explanation of neutrino
anomalies suggested by the data from short-baseline (SBL) neutrino experiments by means
of neutrino oscillation. Finally, observe in U that N5 and Ng practically decouple from
the other neutrinos. In other words, this case recovers the 3+1 sterile neutrino scenario.

A problem with models involving an eV sterile neutrino is that they create tension
with current cosmological data[89, 90, 91]. We will discuss this point at the end of this
chapter.

4.7 Vacuum Stability

Now that we have developed the scalar sector by finding the spectrum of scalars for
a particular set of values of the VEVs and obtained some constraints over the parameters
of the potential due to Higgs invisible decay and lepton flavor violation, it is the moment
to investigate the stability of the vacuum by finding the bound from below conditions and
calculating the running of the self coupling of the Higgs.

4.7.1 Bounded from below conditions

In order to assure that the scalar potential of the 1-2-3 model is bounded from
below at large field strength, where the potential is generically dominated by the Quartic
terms, we need to find the set of conditions that guarantee that the parameters of the
Quartic Couplings of the potential are positive when the fields go to infinity. We find

the whole set of conditions and paved the way for similar models. In this subsection, we
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will derive the BFB conditions, which can be applied in the section (1.7). We follow the
techniques employed in [92, 93, 94].

Firstly, we separate the quartic couplings of the potential,

VA= A (DTD)? + N [tr(ATA)]2 + AT Dtr(ATA) + Mtr(ATAATA) + X5 (DTATAD)
+B81(0%0)? + 8@ Do 0 4 Bstr(ATA)o* o — k(DT ADo! + H.c.)(4.45)

and then build the following parametrization:

r? =310 +tr(ATA) + 0%,
O'd = rcosPysin’é,
tr(ATA) = r?sin®ysin®6),
o*c  =r’cos®d, (4.46)

Whereogrgoo,(]g’yggandogﬁgz.

We also need to develop the following parameters,

 tr(ATAATA)
N T
_ OTAATD
§ ~ didtr(ATA)’
0 - Re(®TAdo) (4.47)

~ tr(AtA)o*o + T doro + tr(ATA) DT’

where ; <(<1,0<¢<Tand -1 < a < 1. Two of them are already knew in the
literature. The third one is a new parameter. We can see in detail in Appendix A how
we can limit this parameter.

Let also define new variables x and y that must vary between 0 and 1 in the

following way:

y = sin®,

r = sin’y. (4.48)
Replacing Eq. (4.48) in Eq. ( 4.45) we get,

V4

r4

= 2 [M (1 —2)? 4+ Aoz + X3(1 — 2)2 + (A2 + EXs(1 — 7))z — 260z (1 — )]
(1 —9)%8 + (1 — 9)y[Ba(l — z) + Bsz — 2kal. (4.49)

We manage things such that we can express these quartic terms in the following
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way,
V74 — A 2 — )2 —
i Y~ + Be(1—y)” + Cuo(1 —y)y where,
Ay =M1 =)+ Do+ )2® + (A3 + EX5 — 26a)(1 — o)z,
B, =/,
C, =0l —2x)+ fsr — 2kKa. (4.50)

We can fix y = 0 or y = 1 to obtain the cases when the quartic couplings of the

potential is positive. When we do this, we obtain the following conditions

Az >0, (4.51)
B, >0, (4.52)
C, + 21/A,B, > 0. (4.53)

For A, > 0 we need to use the same argument as before. Fixing x = 0 and = =1

we have similar conditions for the inequalities

>\1>0,
)\24’()\4 > 0,

/\3 + 5/\5 — 2Kk + 2\/ )\1(/\2 + C>\4) > 0. (454)

These new conditions depends of the parameters in Eq. (4.50). They vary in
different ranges, but we only need to study the boundary values of these intervals. In this

case the new conditions are:
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A1 > 0,
)\2+/\4>O,
1
)\2—|—§)\4>0,

1
A3+ 2Kk + 2 )\1()\2 + 5/\4) > 0,
)\3 + 2K + 2\/)\1()\2 + )\4) > 0,

f 1

A3+ A5 + 2Kk + 2 )\1()\2 + 5)\4) > 0,

A3+ A5 + 2K + 2\/)\1()\2 + )\4) > 0,
1

)\3 —2k+2 )\1()\2 + 5)\4 O,

) >
Az — 2/@4—2\/)\1()\2 +)\4) >0

f 1
)\3+)\5—2/€—|—2 )\1()\2+§)\4)>0,
> 0.

)\3 + )\5 — 2K + 2 )\1()\2 + )\4) (455)

Using the same argument for the condition in Eq. ( 4.52), it turns easy to see that

Using the condition in Eq. (4.53) and the same fact that C, can have z = 0 or

xr = 1, we obtain

53 — 2k + 2\/51()\2 + C)\4)) > 0. (457)

The first inequality has two different solutions while the second has four ones. At

the end of the day, we have

52+2/€+2 51)\1>O,
52—254—2 ﬁl)\1>07

/ 1
B3 + 2K + 24/ B1(Ag + 5)\4) >0,

B3 + 26 + 24/ B1( A2 + Ag) > 0,

1
63 — 25+ 2 51()\2 + 5)\4) > 0,

B3 — 2K + QM > 0. (4.58)
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Figure 4.1: Running of \s ~ A1 at one-loop level as a function of the energy scale u for \s = A3 = (s
=0.001 with y; = 0.9965, gy = 0.4627 and g = 0.6535. The doted line represents the expectation of
Standard Model and the red line represents the expectation for our model for two values of .

So, those are the set of condition that guarantee the potential in Eq. (4.3) is bounded
from below. In what follow we obtain the running of the self coupling related of the

standard-like Higgs.

4.7.2 RGE-evolution of the self coupling of the standard-like
Higgs

The standard model predicts that the self coupling of the Higgs becomes negative
at an energy scale around A = 10 GeV. This means that the standard model can not
assure the stability of the vacuum up to the Planck scale. This must be remedied by
means of new physics in the form of new particles with appropriate interactions. This
issue has been extensively investigated in the literature[50, 95, 96, 97, 98, 99]. As we
already mentioned in chapter 2, the minimum type 2 seesaw can solve this problem, but
a natural problem appears in such a way that the two cannot be solved simultaneously.
Within 123 model we show that the right behavior of the self coupling of the Higgs
that guarantees absolute stability for the Electroweak Vacuum depends strongly on the
coupling «, not only of the quartic couplings between ® and A (in this case, A3 and As).
We do our analysis by implementing the model in SARAH 4.13.0 [63] and evaluating the
[ function for A\; &~ Agps at one-loop level.

The main contributions for the beta function of \; involve the following terms

27 9 9 9
By, = roogé + 194 + %g%(gQ —2\1) — gg% + 12X + 120 ylye — 6yl yeylyn +
5
05+ 3X5 + BAads + AL + 267, (4.59)

where g and gy are the gauge couplings of the standard gauge group SU(2) and U(1)y
while y; is the Yukawa coupling of the quark top.

Observe that the couplings 32, A3 5 and k give positive contributions to the running
of \;. However, as showed above, the invisible Higgs decay requires 2 , A3 5 minor than
1072 which turns insignificant their contributions to the RGE-evolution. Rest us the

contribution of the parameter x. In Fig. 4.1 we show the plot of the running of \; with
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Figure 4.3: Running of A\, = 1 at one-loop level as a function of the energy scale y for A5 = A3 = (s
=0.001 with y; = 0.9965, gy = 0.4627 and g = 0.6535. The doted lines represents the expectation for
our model for three values of 3.

energy scale for two possible values of k. We see that the running of A\; may get positive
up to Planck scale for x > 0.3. Thus, the model may have the vacuum stable thanks to
the contribution of the parameter k.

For sake of completeness, in Figs. 4.2 and 4.3 we present the running at one-loop
level of the other self-quartic couplings A 4 and ;. As we can see in those plots, they do

not develop negative values and are weakly influenced by k.

4.8 Discussion

In this work we studied stability of the vacuum in the 123 model with right-
handed neutrinos. We restricted our investigation to a specific case where lepton number
is spontaneously broken at low energy scale. The scenario is well motivated since it yields
light sterile neutrinos and may explain MiniBooNE by means of neutrino oscillation. In
such a scenario, we obtained the whole set of conditions that guarantee the model is

bounded from below and studied the RGE-evolution of the self-coupling of the standard-
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like Higgs. As main result we have that the quartic coupling k®” A®c' plays a central
role in the process and stability of the vacuum requires x > 0.3.

As interesting consequence, we remark that the model has one Majoron (J) and
one light Higgs (H;) composing the spectrum of scalar of the model. Their contributions
to the invisible decay rate of the standard-like Higgs, H, — JJ and Hy — H;H;, were
considered and the results are the bounds 2, A3, A5 < 1072 over the couplings of the
potential.

In what concern the neutrino sector, the scenario recovers the 3+1 sterile neutrino
model which explain MiniBooNE experiment by means of neutrino oscillation. How-
ever, we know that light sterile neutrinos are strongly disfavored by current cosmological
data involving Big Bang Nucleosynthesis(BBN) , Cosmic Microwave Background(CMB)
anisotropies and Large Scale Structure(LSS)[89]. This is so because, in face of the large
mixing required by MiniBooNE, neutrino oscillation may conduct sterile neutrino to
thermal equilibrium with the active neutrino even before neutrinos decouple from the
primordial plasma. A possible solution for this tension requires the suppression of the
production of these neutrinos in the early universe. This avoids that they thermalize
with the active ones at high temperature. This may be achieved by means of secret
interactions[100, 101, 102, 103] which is nothing more than the interaction of the sterile
neutrino with a pseudo-scalar, I,

~ g75svsl. (4.60)

The solution to the tension requires I be lighter than the lightest sterile neutrino and g,
take values in the range 107% — 107°. Observe that our scenario recover this solution. For
this, recognize that g is Y} whose value in the matrix in Eq. (4.42) is 1,4 x 1075 and
I is the Majoron J. In order to generate a small mass to J we just need to consider a
term like: Mooo in the potential. This term will generate a mass term to .JJ proportional
to M. On assuming that M < my, we have a secret sector that reconciliates eV sterile

neutrino with cosmology as done in [104, 105].



Conclusions and Perspectives

In this document, we have addressed the problem of neutrino masses in a well mo-
tivated Standard Model extension, HT'M, virtually certain to be revealed by experiments
on the 1 TeV scale. In chapter 1, we have a quick look in the main aspects of HTM,
such as its potential, main interactions with gauge bosons and fermions, explicitly and
spontaneous broken of lepton number and its scalar mass spectrum.

In chapter 2, we have focused on a specific realization of HT'M, in which lepton
number is violated at low energy scales, investigating its link between spontaneous and ex-
plicitly lepton number breaking energy scales. Using LFV processes, we have constrained
the ratio € with the triplet scalar mass. Another interesting aspect of such model was
its similarities with the Inverse Seesaw Mechanism, that is naturally manifested at Tel
scales. However, the main part of this chapter is addressed to the problem of stability of
the Higgs at high energies. We have showed that HT'M can become the Higgs vacuum
stable, however such choice of parameters makes the one-loop Higgs mass higher than its
tree-level one, which is not a natural choice. We have proposed a solution to this problem
in a similar framework in chapter 4.

Nonetheless, chapter 3 was devoted to explore some phenomenological consequences
of a low scale type II seesaw. We have explored the main decays of the doubly-charged
scalar, varying with the triplet vev. We have observed that for low and high triplet vevs
it decays predominantly in charged leptons and W gauge bosons, respectively. Another
phenomenological aspect explored in this thesis were effects of the singly-charged scalar
in the process v — e scattering. Besides, the diphoton decay rate is another relevant pro-
cess that we have studied, thus specifically for the heavy Higgs H. Nonetheless, we have
observed that such decay is very suppressed for low triplet vev.

In the last chapter, we have extended the simple HTM by a scalar singlet o that can
become the Higgs stable at high energies and at the same time have a small mass correction
for the one-loop Higgs mass. Such proposal not only solves the Higgs stability problem,
but also explains LSND and MiniBooNE results in a cosmological viable framework. Such
model, know as 123 Model, have a rich scalar structure. When studying the bounded from
below conditions of the potential, we have developed a parameter a and explained in which
values this parameter is permitted to take. In the near future we plan to extent this model,
promoting the global symmetry B — L in a local one. Thus, connecting neutrino physics

and dark matter, exploring signatures at neutrino detectors, and tease out the correlation



between neutrino mass ordering and lepton flavor violation.
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A Proof that o is limited between

[—1,1] interval

Here we will give a hint for the proof of the limitation of the parameter a. The

definition of this parameter is

Re[®T Ado]

= . Al
Ot doto + tr[ATA]DTD + tr[AtA]oto (A1)

«

We can expand this parameter in terms of the components of the fields. We have
that

Numerator = Re[¢°A%¢%0 + 20’ At ¢ 0 + ¢~ ATt oo,
Denominator = (¢°T¢" + ¢T¢™ + oo)(ATA" + ATAT + ATTAT)
+olo (e + o). (A2)
Then, we can study term by term to see what is the behavior of this parameter,

e.g., to see if it is limited or not. As an example, we choose the first term of the Numerator

and expand the fields in the real and imaginary parts. Using the following expansion

(bo = R2 + i]27
A =R +ils,
o == Rl + iIl, (AS)

we will obtain the Denominator terms (only the real part)
R3RsR, — RyRsloly — Iy IsRoRy + 1 I313 — IZR Ry — [1[,RyRs — Ry RyRy I3 — RA11 1.

The idea here is to look closely in each real function and study their limitation
range. For the first term, R3R3R;, we have the following relation (for Ry # 0 )
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R%R?,Rl RsRy Rs Ry
— < : A4
R3R3 + RiR3 + RIR3 + (...) R R+ RIR3 ) R3 + R? (A.4)
2

We can see easily that this last term is limited in the range [-1,1] with polar
coordinates. We use similar arguments for next terms and find that « lies in the range
[-1,1].



B (1PI) and Amputated diagrams -

Renormalization conditions

(1PI) diagrams are one-particle irreducible diagrams. This means that (1PI) are
any diagrams that cannot be split in two by removing a single line. In Fig. (B.1) we
present two simple examples, the first as a (1PI) diagram and while the other is not.

However one can argue why this type of diagram is important in our previous
analysis about renormalization conditions. We will present here only a short explanation
that can be seen in more details in [27]. We will formulate this formalism in ¢*-theory,
since it is the most easy interaction QFT. As is well known, the propagator pole is related
to the particle’s mass. In a non-interaction picture, this propagator has the form, in
momentum-space, '

i

in such a way that this mass my is the same mass represented in the ¢*-theory Lagrangian
1
§m(2J¢27

that we will call this mass as the bare mass of the scalar field ¢.

However, in the interaction picture, we need to be more careful. Since we are in a
quantum theory, we should account all possible diagrams. To do this, for the propagator,
we will use (1PI) diagrams. The sum of all possible (1PI) is represented in Fig. B.2.
This sum is necessary to define the new propagator pole. Let us define the sum of all

possible (1PI) diagrams as

g | A

Figure B.1: The left diagram is (1PI), while the right diagram is not, because we can trace a (red)line
that can divide this diagram in two.




7

\ /_\
.|—

Figure B.2: The sum of 1PI diagrams for the simple scalar theory.

_ __:_____+_____

Figure B.3: Now, the total contribution is simply all combinations of 1PI. Then, we must use the
geometric series well know result, for the case in which higher orders of perturbation theory contributes
less than lower orders.

S (AP = —is(p?). (B.1)

all 1PI diagrams

Then, it is possible to write an expression for all loop contributions for ¢’s propa-
gator as a geometric series of (1PI) diagrams, as in Fig. B.3. If this series is convergent
(in other words, if this theory is perturbative), we can write all these contributions in the

form

N P N i
—1 P e—— e = .
2—mg  p*—mj p?—mj p* —mf — X2 (p?)

(B.2)
p
As we have discussed, this propagator in the interaction picture needs to have its

pole about the physical mass pole. Then, we came to the relation

i iz
P —mi = 2(p) " p?—m? (B3)

in such a way that m is the physical mass of the field ¢ and Z is the field-strength
renormalization scale (as we have commented, this Z factor is the shift of the field ¢ to
the renormalized field ¢,). Now it is possible to see the role of (1PI) diagrams. The

left-hand equation has a pole in the ¢’s physical mass

[p* —mg — T2 (p*)] lp2=me= 0. (B-4)

Close to the pole, the denominator of Eq. B.2 has the form after Taylor expansion
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in first order (p? — m?) and using Eq. B.4 to cancel the first term of the expansion

2 2 d22(p2)
(p"—m )(1— 02

Another important role of (1P[) diagrams are the determination of the field-

) + O((p* — m*)?). (B.5)

p2=m?2

strength renormalization scale using Eqs. B.3 and B.5

d¥?(p®)
dp? pP=m?

Zt=1 (B.6)
Now, it is possible to redefine the field ¢, to be a renormalized field, using two-point
correlation function, with the shift of the Eq. 2.13. With this shift, the numerator of the

right-hand Eq. B.3 becomes 1. Then, the Eq. B.6 can be written, after renormalization
shifts of Eq. 2.16

dy?(p)
dp? p2=m?

= 0. (B.7)
There is another shift, related to mg. Defining the mass counterterm as (Eq. 2.16)
6m = maZ —m?,

the tree-level propagator of the theory is simply

)
i (B3)

With the same procedure as before, expanding all contributions of (1PI) diagrams
leads to
[p* —m® — 22(p®)] |pemmz= 0, (B.9)

or

(22(p*)] |pr=m2= 0. (B.10)

This relation is expected, since we are only working with physical quantities and the
infinities are in the counterterms (hidden in $?(p?) term). There is no more dependence

of the nonphysical quantities Z and mg. Eqs. B.10 and B.7 are the renormalization



79

Figure B.4: The definition of an amputated 4-point diagram. We cut-off the legs of this diagram,
representing this with the red lines. Then, an amputated diagram is the irreducible four-point correction.

N

\ A / /\L‘\

/ >4 |
.: N >_<}+.”
. K \\;«

‘ /N F

Figure B.5: Here we define an amputated diagram for the simple ¢*-theory.

conditions of the propagator. In a theory where m = 0, these conditions cannot be used
because they lead to singularities in the counterterms. To avoid such singularities, we
choose an arbitrary momentum scale M and impose the renormalization conditions at a
spacelike momentum p with p? = — M2

A last comment is about the renormalization condition related to the amputated
four-point correlation function. What is the meaning of “amputated’ diagram? It is
a generalization of (1PI) diagrams to more external legs. Amputated diagrams are n
external legs Feynman diagrams that cannot be split by two by removing a single line.
Fig. B.4 represent this idea with four external legs.

When we talk about Amputated four-point Feynman diagrams, we refer to the
sum of all possible diagrams that are Amputated, as in Fig. B.5. Then, it is natural to
define the renormalization conditions of the quartic coupling A of the ¢*-theory in such
a way that the contribution of all Amputated four-point Feynman diagrams corresponds

to the physical coupling A, as in Eq. 2.18.
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