

UNIVERSIDADE FEDERAL DA PARAÍBA UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIVERSIDADE FEDERAL DO CEARÁ PROGRAMA DE DOUTORADO INTEGRADO EM ZOOTECNIA

COMPOSIÇÃO CORPORAL E EXIGÊNCIAS DE MACRO E MICROELEMENTOS MINERAIS PARA BOVINOS SINDI

DANIELLE FARIAS DOS SANTOS

AREIA - PB

AGOSTO - 2016

UNIVERSIDADE FEDERAL DA PARAÍBA UNIVERSIDADE FEDERAL RURAL DE PERNAMBUCO UNIVERSIDADE FEDERAL DO CEARÁ PROGRAMA DE DOUTORADO INTEGRADO EM ZOOTECNIA

COMPOSIÇÃO CORPORAL E EXIGÊNCIAS DE MACRO E MICROELEMENTOS MINERAIS PARA BOVINOS SINDI

DANIELLE FARIAS DOS SANTOS

Zootecnista

AREIA - PB

AGOSTO - 2016

DANIELLE FARIAS DOS SANTOS

COMPOSIÇÃO CORPORAL E EXIGÊNCIAS DE MACRO E MICROELEMENTOS MINERAIS PARA BOVINOS SINDI

Tese apresentada ao Programa de Doutorado Integrado em Zootecnia da Universidade Federal da Paraíba, Universidade Federal Rural de Pernambuco e Universidade Federal do Ceará como requisito parcial para obtenção do título de Doutor em Zootecnia.

Área de Concentração: Nutrição Animal

Comitê de Orientação:

Prof. Dr. Severino Gonzaga Neto – Orientador Principal

Prof. Dr. Ariosvaldo Nunes de Medeiros

Prof. Dr. Evaristo Jorge Oliveira de Souza

AREIA - PB

AGOSTO - 2016

Ficha Catalográfica Elaborada na Seção de Processos Técnicos da Biblioteca Setorial do CCA, UFPB, campus II, Areia – PB

S237c Santos, Danielle Farias dos.

Composição corporal e exigências de macro e microelementos minerais para bovinos Sindi / Danielle Farias dos Santos. - Areia: UFPB/CCA, 2016. xviii, 86 f.

Tese (Doutorado em Zootecnia) - Centro de Ciências Agrárias. Universidade Federal da Paraíba, Areia, 2016. Bibliografia.

Orientador: Prof. Dr. Severino Gonzaga Neto.

1. Bovinos. 2. Exigências Líquidas. 3. Restrição alimentar. 4. Sindi. I. Gonzaga Neto, Severino (Orientador) II. Título.

UFPB/CCA CDU: 636.2(043.2)

UNIVERSIDADE FEDERAL DA PARAÍBA CENTRO DE CIÉNCIAS AGRÁRIAS

PROGRAMA DE DOUTORADO INTEGRADO EM ZOOTECNIA UFPB-UFC - UFRPE

PARECER DE DEFESA DO TRABALHO DE TESE

TÍTULO: "Composição corporal e exigências de macro e micro elementos minerais para bovinos Sindi"

AUTORA: Danielle Farias dos Santos

ORIENTADOR: Prof. Dr. Severino Gonzaga Neto

JULGAMENTO

CONCEITO: APROVADO

EXAMINADORES:

Prof. Dr. Severino Gouzaga Neto

Presidente

Universidade Federal da Paraiba

Prot Prantisco Fernando Ramos de Carva

Examinador

Universidade Federal Rural de Pernambuco-

Profa. Dra. Antonia Sherlânea Chaves Véras

Examinadora

Universidade Federal/Rural de Pernambuco

Prof. Dr. Aderbal Marcos de Azevedo Silva

Examinador

Universidade Federal de Campina Grande

Prof. Dr. José Morais Pereira Filho

Examinador

Universidade Federal de Campina Grande

Areia, 26 de agosto de 2016

DADOS CURRICULARES DO AUTOR

DANIELLE FARIAS DOS SANTOS, filha de Aldeny Farias dos Santos e Ronaldo Bernardino dos Santos, nasceu em Maceió, Alagoas, em 02 de abril de 1985.

Formada em Zootecnia pela Universidade Federal de Alagoas em 2009, nesse mesmo ano ingressou no curso de mestrado em Zootecnia da Universidade Federal de Alagoas, recebendo o titulo em 2011.

Em 2012 ingressou no curso de doutorado em Zootecnia na Universidade Federal da Paraíba, defendendo o título em agosto de 2016.

"Tente uma, duas, três vezes e se possível tente a quarta, a quinta e quantas vezes for necessárias. Só não desista nas primeiras tentativas, a persistência é amiga da conquista. Se você quer chegar aonde à maioria não chega, faça aquilo que a maioria não faz."

Bill Gates

Aos meus pais, Aldeny e Ronaldo; Ao meu irmão , Ronaldo Junior Pelo amor e apoio

Dedico

AGRADECIMENTOS

A Deus por ter me dado força e por não ter me deixado desistir nos momentos mais difíceis.

Aos meus pais Aldeny e Ronaldo, pelo amor, carinho e pela educação dada a mim nesses anos de convivência.

Ao meu irmão Ronaldo Junior pelo companheirismo, pela amizade e por me ouvir nas horas que eu mais precisava.

Ao Professor Severino Gonzaga Neto pela oportunidade, orientação e aprendizado.

Ao Programa de Doutorado Integrado de Zootecnia da Universidade Federal da Paraíba que possibilitou a realização do curso de Doutorado.

Ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPQ) pela concessão da bolsa de doutorado.

Aos professores Pedro Veiga e Sebastião Valadares que viabilizaram a realização do experimento na Universidade Federal de Viçosa.

Aos meus companheiros de experimento Flávio Soares e Jaqueline Trajano pelo apoio durante o experimento.

A Juliana Nogueira e ao professor Dr. Paulo Sérgio pela ajuda durante a análise de fósforo no LAPOA.

Aos funcionários do LANA do CCA-UFPB, pelo apoio durante as análises laboratoriais.

Aos funcionários da UFV Zezé, Natanael (Pum), Júnior (*In memória*) e Joélcio, Monteiro, Juliana pela colaboração durante a realização do experimento.

Aos Funcionários do Abatedouro do DZO/UFV, Nuvanor, Sérvulo, Vicente e Graça, pela ajuda durante o abate dos animais.

Ao Centro de Apoio a Pesquisa (CENAPESQ) da Universidade Federal Rural de Pernambuco pelo acolhimento durante as análises laboratoriais de minerais.

Ao professor Aderbal Marcos de Azevedo Silva pelo apoio para realização das análises laboratoriais na Universidade Federal de Campina Grande.

Ao professor José Luiz Rufino pelo apoio durante as análises laboratoriais.

Ao professor Evaristo Jorge Oliveira de Souza pelo acolhimento, orientação e pela contribuição durante as análises estatísticas.

A todos os professores da Pós-Graduação de Zootecnia da UFPB de Areia que contribuíram para realização dessa conquista.

A todas as pessoas que contribuíram direta e indiretamente, meu eterno OBRIGADA...

SUMÁRIO

	Página
Lista de Tabelas	xiii
Resumo Geral	xvii
General Abstract	xviii
Considerações Iniciais	1
Referências Bibliográficas.	3
Capítulo I - Composição corporal e exigências de macro e microelementos	
minerais para bovinos Sindi	4
Referencial Teórico	4
1. Raça Sindi.	5
2. Importância dos minerais para os ruminantes	6
3. Composição corporal e exigências nutricionais de macro e micro elementos minerais para bovinos	8
3.1. Métodos para determinação da composição corporal para bovinos	8
3.2. Exigências nutricionais de macro e microelementos minerais para bovinos	13
3.2.1. Cálcio	14
3.2.2. Fósforo	16
3.2.3. Magnésio	18
3.2.4. Sódio e Potássio	20
3.2.5. Ferro e cobre	22
3.2.6. Zinco e Manganês	23
4. Referências Bibliográficas	24

Capítulo II - Composição corporal e exigências de macroelementos	
minerais para bovinos Sindi	32
Resumo	33
Abstract	34
Introdução	35
Material e Métodos	36
Resultado e Discussão	44
Conclusões	56
Referências Bibliográficas	56
Capítulo III - Composição corporal e exigências de microelementos	
minerais para bovinos Sindi	61
Resumo	62
Abstract	63
Introdução	64
Material e Métodos	65
Resultado e Discussão	72
Conclusões	83
Referências Bibliográficas	83

LISTA DE TABELAS

	CAPÍTULO II	Página
1.	Participação dos ingredientes na dieta experimental com base na matéria seca	36
2.	Composição química dos ingredientes utilizados na dieta experimental, expressos com base na matéria seca	37
3.	Equações de predição da composição química do peso de corpo vazio	
	de zebuínos a partir da composição química da seção entre 9-10-11ª costelas	41
4.	Equações de predição da composição mineral do corpo vazio de	
	zebuínos a partir da seção entre 9-10-11ª costelas	41
5.	Perdas endógenas totais e biodisponibilidade média de Ca, P, Na, K	
	e Mg nos alimentos	43
6.	Consumo de matéria seca (CMS), cálcio (CCa), fósforo (CP), sódio	
	(CNa), potássio (CK) e magnésio (CMg) por bovinos Sindi	
	submetidos a restrição alimentar	44
7.	Desempenho e composição corporal de cinzas, água, sódio (Na),	
	potássio (K), magnésio (Mg) e fósforo (P) de bovinos Sindi	
	submetidos a restrição alimentar	45
8.	Composição corporal de cinzas, água, cálcio (Ca), fósforo (P), sódio	
	(Na), potássio (K) e magnésio (Mg) no corpo vazio de bovinos Sindi	
	obtidas por meio de dois métodos de determinação	46
9.	Equações alométricas do conteúdo corporal de Ca, P, Na, K e Mg,	
	em função do peso de corpo vazio (PCVZ) de bovinos Sindi, obtidas	
	pelo método direto	48
10.	Equações alométricas do conteúdo corporal de Ca, P, Na, K e Mg em	
	função do peso de corpo vazio (PCVZ) de bovinos Sindi, obtidas	
	pelo método indireto	48
	Estimativas dos conteúdos de Ca, P, Na, K e Mg no peso de corpo	
11.	vazio, em g/KgPCVZ, de bovinos Sindi, em função do peso	
	corporal (PC), obtidas pelo método direto	49

	Estimativas dos conteúdos corporais de Ca, P, Na, K e Mg no peso do	
12.	corpo vazio, em g/KgPCVZ, de bovinos Sindi, em função do peso	
	corporal (PC), obtidas pelo método indireto	49
	Equações para estimação das exigências líquidas de ganho de 1 Kg de	
13.	PCVZ de Ca, P, Na, K e Mg, em função do peso de corpo vazio	
	(PCVZ) de bovinos Sindi, obtidas pelo método direto	50
	Equações para estimação das exigências líquidas de ganho de 1 Kg de	
14.	PCVZ de Ca, P, Na, K e Mg, em função do peso de corpo vazio	
	(PCVZ) de bovinos Sindi, obtidas pelo método indireto	50
15.	Exigências líquidas de Ca, P, Na, K e Mg em g por quilo de ganho de	
	peso de corpo vazio (g/Kg GPCVZ) e g por quilo de ganho de peso	
	corporal (g/Kg GPC), de bovinos Sindi, em função do peso de corpo	
	vazio (PCVZ) e peso corporal (PC) obtida pelo método	
	direto	51
	Exigências líquidas de Ca, P, Na, K e Mg, em g por quilo de ganho	
	de peso de corpo vazio (g/Kg GPCVZ) e g por quilo de ganho de	
16.	peso de corporal (g/Kg GPC), de bovinos Sindi, em função do peso	
	de corpo vazio (PCVZ) e peso corporal (PC) obtida pelo método	
	indireto	52
17.	Exigências líquidas de mantença de Ca, P, Na, K e Mg, em g/dia, de	
1/.	bovinos Sindi, em função do peso corporal (PC)	53
18.	Exigências dietéticas totais de Ca, P, Na, K e Mg, em g/dia e %MS,	
	de bovinos Sindi, obtidas por meio do método direto	55
19.	Exigências dietéticas totais de Ca, P, Na, K e Mg, em g/dia e %MS,	
	de boyinos Sindi, obtidas por meio do método indireto	55

LISTA DE TABELAS

	CAPÍTULO III	Página
1.	Participação dos ingredientes na dieta experimental com base na matéria seca	66
2.	Composição química dos ingredientes utilizados na dieta experimental, expressos com base na matéria seca	66
3.	Equações de predição da composição química do peso de corpo vazio de zebuínos a partir da composição química da seção entre 9-10-11 ^a costelas.	70
4.	Consumo de matéria seca (CMS), cobre (CCu), ferro (CFe), zinco (CZn) e manganês (CMn) por bovinos Sindi submetidos a restrição alimentar.	73
5.	Desempenho e composição corporal em cinzas, água, cobre (Cu), ferro (Fe), zinco (Zn) e manganês (Mn) de bovinos Sindi submetidos à restrição	74
6.	Equações de predição da concentração de cobre (Cu), ferro (Fe) e zinco (Zn) no corpo vazio a partir da seção entre a 9ª e 11ª costelas	75
7.	Composição corporal de cinzas, água, cobre (Cu), ferro (Fe), zinco (Zn) e manganês (Mn) de bovinos Sindi, obtidas por meio de dois métodos de determinação da composição corporal	76
8.	Equações alométricas do conteúdo corporal de Cu, Fe, Zn e Mn em função do peso de corpo vazio (PCVZ) de bovinos Sindi, obtidas pelo método direto	77
9.	Equações alométricas do conteúdo corporal de Fe e Zn em função do peso de corpo vazio (PCVZ) de bovinos Sindi, obtidas pelo método indireto	77
10.	Estimativas dos conteúdos corporais de Cu, Fe, Zn e Mn, em mg/KgPCVZ, de bovinos Sindi, entre 275 e 400 Kg de peso	77

	corporal (PC), obtidas pelo método direto	
11.	Estimativas dos conteúdos corporais de Fe e Zn, em mg/KgPCVZ, de	
	bovinos Sindi, entre 275 e 400 Kg de peso corporal (PC), obtidas pelo	
	método indireto	78
12.	Exigências líquidas de cobre (Cu), ferro (Fe), zinco (Zn) e manganês	
	(Mn) em mg por quilo de ganho de peso de corpo vazio (mg/Kg	
	GPCVZ) e mg por quilo de ganho de peso de corporal (mg/Kg GPC),	
	de bovinos Sindi, em função do peso de corpo vazio (PCVZ) ou peso	
	corporal (PC), obtida pelo método direto	78
13.	Exigências líquidas de ferro (Fe) e zinco (Zn) em mg por quilo de	
	ganho de peso de corpo vazio (mg/Kg GPCVZ) e mg por quilo de	
	ganho de peso de corporal (mg/Kg GPC), de bovinos Sindi, em	
	função do peso de corpo vazio (PCVZ) ou peso corporal (PC) obtida	
	pelo método indireto	79
14	Equações de regressão e exigências líquidas para mantença de	
	bovinos Sindi	80
15	Exigência líquida para mantença de microelementos minerais de	
	bovinos Sindi	81
16.	Exigências dietéticas totais de cobre (Cu), ferro (Fe), zinco (Zn) e	
	manganês (Mn), em mg/dia e mg/Kg MS, de bovino Sindi, em função	
	do peso corporal (PC), obtidas por meio do método direto	81
17.	Exigências dietéticas totais de ferro (Fe) e zinco (Zn), em mg/dia e	
	mg/Kg MS, de bovinos Sindi, em função do peso corporal (PC),	
	obtidas por mejo do método indireto	82

COMPOSIÇÃO CORPORAL E EXIGÊNCIAS DE MACRO E MICROELEMENTOS MINERAIS PARA BOVINOS SINDI

RESUMO GERAL

O presente estudo teve como objetivo determinar a composição corporal e as exigências líquidas e dietéticas de macrominerais e líquidas e dietéticas para ganho de peso de microminerais de bovinos da raça Sindi, por meio da análise física e química de todos os tecidos corporais (método direto) e da seção entre a 9 e 11ª costelas (método indireto). Foram utilizados 40 machos inteiros com peso médio inicial 296,65 ± 21,33 Kg e idade média de 21 ± 1,5 meses. Quatro animais de cada método foram abatidos no início do experimento para compor o grupo referência. Os demais animais foram distribuídos, dentro de cada método, aleatoriamente, em quatro níveis de restrição alimentar (0,0; 15,0; 30,0 e 45,0%), perfazendo um esquema fatorial 2x4. Ao final do experimento todos os animais foram abatidos, e o trato gastrintestinal de cada animal foi esvaziado, lavado e pesado juntamente, com o coração, pulmões, fígado, baço, rins, gordura interna e omental, diafragma, mesentério, cauda, traquéia, esôfago, aparelho reprodutor, cabeça, couro, patas, sangue e carcaça para a obtenção do peso de corpo vazio (PCVZ), os quais, posteriormente, foram analisados para determinação dos teores de Ca, P, Na, K, Mg, Cu, Fe, Zn e Mn assim como os tecidos da seção entre a 9 e 11^a costelas. As exigências líquidas para ganho de Cu, Fe, Zn e Mn variaram de 5,37 a 4,99; 48,91 a 52,21; 57,62 a 85,09 e 0,061 a 0,075 mg/Kg de GPCVZ, respectivamente, para o método direto e de 41,83 a 42,27 e 27,84 a 28,02 mg/Kg de GPCVZ para o Fe e Zn, respectivamente, para o indireto, em animais com peso corporal variando de 275 a 400 Kg, respectivamente. As exigências dietéticas totais de Ca, P, Na, K e Mg, obtidas foram de 57,75; 14,63; 3,94; 39,67 e 8,38 g d⁻¹ para o método direto e de 35,09; 16,45; 4,26; 40,02 e 8,41 g d⁻¹ para animais com 400 Kg de PC. Conclui-se que o método direto foi o mais adequado para determinar as exigências de macrominerais e microminerais de bovinos Sindi.

Palavras chaves: bovinos, exigências líquidas, restrição alimentar, sindi

BODY COMPOSITION AND OF MACRO AND MICROMINERALS REQUIREMENTS OF SINDI CATTLE

GENERAL ABSTRACT

The present study had as objective to determine net and dietary requirements of macromineral of Sindi cattle, through physical and chemical analysis of all tissue body (direct method) and section between 9 and 11^a ribs (indirect method). Forty bulls with average weight 296.65 \pm 21.33 kg and mean age of 21 \pm 1.5 months were used in the experiment. Four animals of each method were slaughtered at the beginning of the experiment to compose the reference group, the remaining animals were distributed, within each method, randomly, into four food restriction levels (0.0, 15.0, 30.0 and 45.0%), making a scheme 2x4 factorial. At the end of the experiment all animals were slaughtered, and the gastrointestinal tract of each animal was emptied, washed and weighed, and this weight was added to the organs and other animal's body parts (carcass, head, leather, tail, feet and blood) for empty body weight (EBW) determination. These parts, as well as tissues section between 9 and 11^a ribs, were analyzed for determination of Ca, P, Na, K and Mg. The net requirements of Cu, Fe, Zn and Mn for gain ranged from 5.37 to 4.99; 48.91 to 52.21; 57.62 to 85.09 and from 0.061 to 0.075 mg kg EBW⁻¹, respectively, in the direct method and from 41,83 a 42,27 e 27,84 a 28,02 mgKg EBW⁻¹ for the Fe and Zn, respectively, in the indirect method, as the BW increased from 250 to 400 kg. The total dietary macrominerals requirements of Ca, P, Na, K and Mg were obtained 57.75; 14.63; 3.94; 39.67 and 8.38 g d⁻¹ to the direct method and 35.09; 16.45; 4.26; 40.02 and 8.41 g d⁻¹ for animals with a live weight of 400 kg. In conclusion, the direct method was the most appropriate to determine the requirements of macromineral and micromineral Sindhi cattle.

Keywords: cattle, food restriction, net requirement, sindi

CONSIDERAÇÕES INICIAIS

O Brasil destaca-se entre os maiores produtores de carne bovina, ocupando a segunda posição mundial, com uma produção, segundo dados da Organização das Nações Unidas para Alimentação e a Agricultura (FAO, 2015), de 9,68 milhões de toneladas no ano de 2013. Além disso, no ano de 2014, o país possuía um rebanho comercial de 212,34 milhões de cabeças, indicando um aumento de 0,3% em relação ao ano de 2013 (IBGE, 2014).

Em um sistema de produção, a alimentação representa um dos maiores custos. Assim, o desenvolvimento de um programa nutricional, que supra as necessidades nutricionais dos animais é uma forma de melhorar a exploração e aumentar a eficiência produtiva, uma vez que a carência de nutrientes pode ser um dos limitantes da produtividade. Portanto, o conhecimento das exigências nutricionais dos animais, em diferentes níveis de produção e em cada grupo genético, é fundamental para a implantação de estratégias nutricionais que permitam melhor planejamento na produção de carne no país.

Embora, os minerais representem uma pequena porcentagem de nutrientes presentes no corpo, são fundamentais, e exercem importantes funções no organismo (NRC, 1996). Ao menos, 15 elementos são considerados nutricionalmente essenciais, por isso devem ser adicionados na dieta. Com base na quantidade exigida pelo animal, os minerais são classificados em macroelementos, cálcio (Ca), fósforo (P), potássio (K), sódio (Na), cloro (Cl), magnésio (Mg) e enxofre (S) e microelementos, cobalto (Co), cobre (Cu), iodo (I), ferro (Fe), manganês (Mn), molibdênio (Mo), selênio (Se) e zinco (Zn) (Conrad et al., 1985).

Dada a sua importância, a deficiência de um ou mais minerais nos tecidos e fluidos corporais, provocada pelo consumo de dietas desbalanceadas, pode levar a desordens bioquímicas que causam problemas reprodutivos, redução no crescimento, anemia, anormalidades ósseas, entre outros. Destacando, assim, a importância do fornecimento desses nutrientes em quantidades adequadas para que a produtividade e a saúde do animal sejam mantidas.

As exigências de minerais para bovinos em crescimento, em geral, são estimadas pelo método fatorial, que consiste na soma das exigências para produção e mantença. A primeira corresponde à quantidade de cada elemento depositada no corpo, enquanto que a segunda está relacionada com a quantidade de minerais necessária para suprir as

perdas endógenas do corpo. A determinação das exigências de minerais para bovinos é extremamente complexa, em virtude dos diversos fatores que influenciam a sua utilização pelo animal. Entre esses fatores estão: a idade, sexo, nível de produção, grupo genético, biodisponibilidade e inter-relações com outros nutrientes. (Coelho da Silva, 1995; Valadares Filho, 2010).

Informações a respeito da composição corporal e, consequentemente, sobre as exigências de minerais para bovinos de raças zebuínas, como a Sindi, são escassas no Brasil, havendo a necessidades de mais pesquisas na área. Desta forma, objetivou-se com esse trabalho determinar a composição corporal e as exigência nutricionais de macro e microelementos minerais para bovinos Sindi.

REFERÊNCIAS BIBLIOGRÁFICAS

- COELHO DA SILVA, J.F. Exigências de macroelementos inorgânicos para bovinos: o sistema ARC/AFRC e a experiência no Brasil. In: SIMPÓSIO INTERNACIONAL SOBRE EXIGÊNCIAS NUTRICONAIS DE RUMINANTES, 1995, Viçosa, MG. *Anais...* Viçosa, MG: DZO, 1995. p. 467-504.
- CONRAD, J.H.; McDOWELL, L.R.; ELLIS, G.L. et al. **Minerais para ruminantes**em pastejo em regiões tropicais, 1985. Disponível em:
 http://pdf.usaid.gov/pdf_docs/pnabc098.pdf. Acesso em: 30 abr. de 2015.
- FOOD AND AGRICULTURE ORGANIZATION [2015]. FAOSTAT FAO **Statistics**division/Prodstat:
 Livestock primary.
 Disponível em:
 <phhttp://faostat.fao.org/site/339/default.aspx. Acesso em: 11 de nov. de 2015.</pre>
- INTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA. **Produção pecuária municipal 2014.** Disponível em: ftp://ftp.ibge.gov.br/Producao_Pecuaria/Producao_da_Pecuaria_Municipal/2012/pp m2012.pdf. Acesso em: 10 nov. de 2015.
- NATIONAL RESEARCH COUNCIL NRC. **Nutrient requirements of beff cattle**. 7.ed. Washington, D.C.: 1996. 248p.
- VALADARES FILHO, S.C.; MARCONDES, M.I.; CHIZZOTTI, M.L.C. et al. Exigências nutricionais de zebuínos puros e cruzados: BR-CORTE, 2010.

 Disponível em:<
 http://www.brcorte.com.br/bundles/junglebrcorte2/book/br/c7.pdf>. Acessado em:
 01 de abr. de 2015

CAPÍTULO I

Referencial Teórico

Composição Corporal e Exigências de Macro e Microelementos minerais para Bovinos Sindi

1. RAÇA SINDI

A raça Sindi tem sua origem no Paquistão, na província de Sindhi. Região que se caracteriza por apresentar um clima árido quente (BWhw, classificação climática de Köppen-Geiger), com temperaturas que podem frequentemente, ficar acima de 46°C, entre os meses de Maio e Agosto, durante o verão, e um inverno curto e frio com temperaturas que podem ficar abaixo 2°C, nos meses de dezembro e janeiro. Apresenta precipitações médias anuais próximas a 150 - 180 mm, das quais mais de 70% ocorrem durante período das monções, em julho e agosto (Khan e Gadiwala, 2013; Sarfaraz et al., 2014).

Devido às características do seu local de origem, os bovinos Sindi são animais rústicos e com boa tolerância às altas temperaturas. Além disso, apresentam porte pequeno, pelagem vermelha, boa cobertura muscular e aptidão maternal, bom rendimento de carcaça, precocidade e boa produção de leite (Leite et al., 2001). Turco et al. (2004), estudando o efeito de vários fatores do clima sobre o comportamento fisiológico e desempenho de bovinos Sindi, observaram que apesar dos animais terem apresentado temperatura retal e frequência respiratória elevadas, nos meses em que a temperatura ambiente esteve acima da temperatura de conforto (27°C), as mesmas ainda se encontravam dentro dos valores considerados como padrão (38, a 39,0°C e de 15 a 30 movimentos respiratórios por minuto).

Souza et al. (2007), ao estudarem os parâmetros fisiológicos e tolerância ao calor de bovinos Sindi, relataram que a raça Sindi apresentou alto índice de tolerância ao calor (9,83). Furtado et al. (2012), ao avaliarem a termorregulação e desempenho de tourinhos Sindi e Guzerá, relataram que a temperatura retal, frequência respiratória e temperatura superficial dos animais se mantiveram dentro da faixa considerada normal para a espécie bovina, não havendo influência negativa no consumo de nutrientes; além disso, os animais tiveram ganho de peso acima do esperado.

Souza (2008) observou que o consumo de nutrientes, em %PC, foi semelhante entre as raças Guzerá e Sindi. Contudo, animais da raça Guzerá apresentaram um maior GPMD que os animais da raça Sindi. Cândido (2009), avaliando o efeito da restrição alimentar em novilhos Sindi e Guzerá, relatou que não houve diferença entre as raças Guzerá e Sindi quanto ao ganho de peso, ganho de peso médio diário e eficiência alimentar. Contudo, melhor conversão alimentar foi observada em bovinos da raça Sindi quando comparada aos animais da raça Guzerá.

Cabral Neto et al. (2013), ao avaliar as características de carcaça de bovinos Sindi e bubalinos Mediterrâneo em confinamento, observaram que os bovinos Sindi apresentaram maior rendimento de carcaça quente (55,1 e 48,3% para bovinos e bubalinos, respectivamente) e fria (53,8 e 47,0% para bovinos e bubalinos, respectivamente) do que os bubalinos. Souza et al. (2012), estudando as características de carcaça de animais Nelore e F1 Nelore x Sindi, relataram que não houve diferença entre os grupos genéticos com relação a porcentagem de cortes comerciais (serrote, costilhar e dianteiro) e peso da carcaça; contudo, o rendimento de carcaça foi maior para os animais F1 Nelore x Sindi. Segundo os autores, isto se deve a estrutura corporal dos animais da raça Sindi, os quais apresentam membros mais curtos, levando a um maior rendimento de carcaça.

2. IMPORTÂNCIA DOS MINERAIS PARA OS RUMINANTES

Minerais são elementos inorgânicos presentes em menor concentração no corpo, sendo sua presença necessária, pois estão envolvidos em vários processos do metabolismo animal, além de atuar como componentes de tecidos e fluidos. Onde, os mesmos desempenham funções fisiológicas, estruturais, catalítica e reguladora no organismo animal. Sendo cada função não exercida por apenas um mineral, de forma que, um único mineral pode participar de mais de uma função, assim como, vários elementos minerais podem desempenhar uma única função quando interagem entre si no corpo do animal (Conrad et al., 1985; Mendonça Junior et al., 2011)

Dos 50 minerais encontrados no corpo, apenas 15 são indispensáveis para os ruminantes, e desta forma, devem estar presentes em sua dieta. Com base na quantidade exigida pelo animal, os minerais são classificados em macroelementos minerais, cálcio (Ca), fósforo (P), potássio (K), sódio (Na), cloro (Cl), magnésio (Mg) e enxofre (S) e microelementos minerais, cobalto (Co), cobre (Cu), iodo (I), ferro (Fe), manganês (Mn), molibdênio (Mo), selênio (Se) e zinco (Zn) (Conrad et al., 1985).

O Ca, P, Mg, F exercem funções estruturais nos ossos e dentes; P e S compõem as proteínas nos músculos. O Na, K, Cl, Mg e Ca estão presentes nos fluídos e tecidos corporais, garantindo o equilíbrio osmótico, o balanço ácido básico e a permeabilidade da membrana, ou seja, exercem funções fisiológicas.

Os micronutrientes minerais (Cu, Zn, Mo, Se, I, e Co) e o Mg desempenham função catalítica ao participar da estrutura ou da atividade funcional de enzimas,

hormônios ou vitaminas, além de atuarem como cofatores enzimáticos. Ca e Zn influenciam no sinal da transdução e na transcrição durante a síntese protéica, exercendo, assim, função reguladora no organismo animal (Mendonça Junior et al., 2011; Pedreira e Berchielli, 2011).

Por terem um papel fundamental na manutenção da saúde dos animais, a ingestão de dietas desbalanceadas em elementos minerais provoca alteração de suas concentrações nos tecidos e fluidos corporais, ativando os mecanismos homeostáticos, que têm como finalidade minimizar o efeito das mudanças provocadas pela dieta. Quando esses mecanismos não são suficientes, surgem alterações no desempenho, como redução na produção de leite, de carne, problemas reprodutivos e, no caso de deficiência severa, pode levar o animal a morte (Moraes, 2001).

A deficiência mineral em herbívoros, segundo Conrad et al. (1985), foi verificada em diversas partes do mundo, sendo os elementos minerais, Ca, P, Na, Cu, Co, I, Se e Zn os mais deficientes, sob condições tropicais. A deficiência de Ca é dificilmente observada em ruminantes sob pastejo, uma vez que as forragens são boas fontes de cálcio, sendo mais comum em animais alimentados basicamente com concentrados. Ao contrário do cálcio, a deficiência de fósforo é mais comum em animais mantido em regime de pasto, devido ao baixo nível de P nos solos. (Mendonça Junior et al., 2011; Duarte et al., 2011).

O Na é o mineral, cuja carência é mais comum, principalmente, em ruminantes mantidos em regime de pastejo, pois sua concentração nas espécies forrageira é baixa, por ser um elemento considerado prejudicial à planta. Possivelmente, a deficiência de Na ocorre em animais de rápido crescimento; durante a lactação, devido à excreção desse mineral no leite; em ruminantes pastejando em pastagem que receberam fertilização pesada de K e em condições semiáridas e tropicais, regiões onde há grandes perdas de Na no suor, e onde as pastagens são pobres nesse mineral (Conrad et al., 1985; Pedreira e Berchielli, 2011). Em geral, a deficiência de K é rara nas espécies forrageiras, podendo ocorrer em pastagens maduras, pois a quantidade desse mineral reduz com o aumento da idade da planta (Conrad et al., 1985).

Além dos ruminantes, os minerais também são importantes para os microrganismos ruminais. Cerca de 80% do P total encontra-se na forma de ácidos nucléicos, sendo sua concentração no rúmen, com o intuito de otimizar a degradação da parede celular dos alimentos pelos microorganismos, ser de pelo menos cinco gramas de P por quilograma de matéria orgânica digerida. O Mg atua como ativador de enzimas

bacterianas relacionadas com as vias metabólicas que envolvem o ATP e reações com pirofosfato de tiamina. A celulase, enzima secretada pela bactéria *Ruminococcus flavefaciens*, também precisa desse mineral para sua ativação (Durand e Komisarczuk, 1987; NRC, 2000)

Além desses minerais, o K, Zn, Fe, Mo e Co também são exigidos pela microflora ruminal, pois atuam como cofatores enzimáticos, componentes de vitaminas (vit. B12), além de serem necessários para o crescimento de alguns tipos microrganismos. Assim, a falta desses minerais no ambiente ruminal pode levar a uma redução no consumo de alimentos ocasionada, em parte, pela redução na atividade dos microorganismos, o que pode prejudicar o desempenho do animal (Durand e Komisarczuk, 1987; Mendonça Junior et al., 2011).

3. COMPOSIÇÃO CORPORAL E EXIGÊNCIAS NUTRICIONAIS DE MACRO E MICROELEMENTOS MINERAIS PARA BOVINOS

3.1. MÉTODOS PARA DETERMINAÇÃO DA COMPOSIÇÃO CORPORAL PARA BOVINOS

Na produção animal, a alimentação representa um dos maiores custos. Assim, a produtividade do animal, como também a rentabilidade do sistema de produção, depende do conhecimento da composição química e do valor nutritivo do alimento, bem como das exigências nutricionais de proteína, energia e minerais dos animais. Apesar da sua pouca participação na composição corporal, os minerais são fundamentais para o funcionamento normal do organismo animal. Desse modo, o entendimento a respeito das suas exigências pelos animais permite a formulação de dietas adequadas, de forma que não haja excesso ou falta desses nutrientes, uma vez que o excedente é eliminado no ambiente (Coutinho et al., 2015).

Para que a exigência nutricional para bovinos em crescimento seja estimada é preciso conhecer a composição corporal dos animais, a qual é obtida através da determinação da composição química (proteína, gordura, água e minerais) de todos os tecidos do corpo do animal, sendo essa determinação importante não só para estimar as exigências nutricionais, mas também para pesquisas que analisam o efeito de regimes alimentares e de fatores que afetam a deposição de tecidos no corpo (Ross, 2005; Paulino et al., 2009).

O crescimento do animal consiste no aumento da massa de tecidos que ocorre devido à multiplicação celular (hiperplasia), pelo aumento do tamanho das células (hipertrofia) e pela adição de componentes específicos do ambiente, com crescimento em função da idade obedecendo a uma curva sigmóide composta por uma fase prépuberdade, de auto-aceleração, e outra pós-puberdade de auto-inibição, onde o ponto de inflexão (associado com a puberdade) consiste no ponto onde acontecem as modificações na deposição de tecidos da carcaça (Owens et al., 1993).

Nesse sentido, durante o crescimento, o animal apresenta modificações na sua estrutura corporal que ocorrem de forma sequencial e específica, iniciando com o tecido nervoso, depois ósseo, posteriormente com o muscular e por último ocorre à deposição do tecido adiposo. Assim, do nascimento até a maturidade, proporcionalmente, o músculo tem maior desenvolvimento do que o tecido ósseo, ao passo que após atingir a maturidade a proporção de gordura aumenta em relação a de músculo. No caso do tecido ósseo seu desenvolvimento após o nascimento é baixo e se mantém constante durante a vida do animal, uma vez que a maior parte do crescimento ósseo ocorre durante a vida intrauterina. Vale ressaltar que todos os tecidos crescem simultaneamente, mas, em proporções diferentes (Moulton, 1923; Berg e Butterfield, 1968; ARC 1980; Ross, 2005).

Vários fatores influenciam a deposição dos constituintes corporais, e, consequentemente, na composição corporal, como raça, idade, sexo, plano nutricional e fatores hormonais. Guenthe et al. (1965), ao estudar o efeito do plano nutricional (alto e moderado) no crescimento e desenvolvimento de tecidos da carcaça de novilhos Hereford desmamados, observaram que apesar do ligeiro aumento nas medidas do esqueleto (comprimento de carcaça, lombo, perna e profundidade corporal), com a elevação da idade e do peso corporal, a maior parte do crescimento ocorreu no início da vida dos bezerros.

Assim, de acordo com os mesmos autores, os bezerros abatidos no desmame já possuíam 87% do tamanho total do esqueleto. Ao passo que os bezerros abatidos após o desmame com peso vivo de 125 Kg e 11meses de idade apresentaram, nesse ponto, crescimento esquelético de 96% do comprimento final total. Além disso, não houve diferença entre os bezerros recebendo alto (ganho de 0,91 Kg/dia) e baixo (ganho de 0,77 Kg/dia) plano nutricional sobre o crescimento ósseo, em animais abatidos com mesma idade. Porém, os bezerros recebendo dietas com alto nível nutricional apresentaram maior quantidade de músculo e gordura na carcaça do que os animais

recebendo dietas com baixo nível nutricional, sendo ambos abatidos com a mesma idade.

Fernandes et al. (2005), ao avaliar o crescimento de componentes corporais diferentes grupos genéticos, relataram que animais mestiços (1/2 Holandês x 1/2 Zebu) apresentaram maior crescimento de órgãos do que animais Nelore, enquanto efeito contrário foi observado para o desenvolvimento da carcaça. Segundo os autores, isto se deve a seleção a qual os animais leiteiros e de corte são submetidos, privilegiando animais com maior desenvolvimento de órgãos, devido a maior capacidade de consumo de alimentos, e de carcaça (animais com menor exigência de mantença devido a órgão menores e com menor atividade), respectivamente. Com relação ao tecido adiposo, os grupos genéticos apresentaram comportamento semelhante, ocorrendo elevação do tecido adiposo à medida que houve o aumento da idade.

Perón et al. (1993) também observaram que a raça influencia a deposição de tecidos no corpo, esses autores concluíram que animais mestiços (1/2 Nelore-Holandês e 3/4 Holandês-Gir) apresentaram maior massa de órgãos em relação ao peso vivo do que bovinos Nelore e 1/2 Nelore-Chianina. Quanto a gordura localizada externa (carcaça, couro, cabeça, pés e cauda) e internamente (gordura cavitária e visceral), houve diferença entre os grupos genéticos, observando maior proporção de gordura localizada internamente para as raças 1/2 Nelore-Holandês e 3/4 Holandês-Gir, enquanto que as raças de corte apresentaram maior proporção de tecido adiposo localizado externamente.

Ao avaliar a deposição de tecidos e os componentes químicos corporais em bovinos Nelore em três classes sexuais, Paulino et al. (2009) observaram que as fêmeas apresentaram maior participação dos órgãos mais vísceras no peso de corpo vazio (PCVZ) do que os machos inteiros, o que contribuiu para que as mesmas possuíssem maior teor de gordura visceral, além de apresentarem maior teor de extrato etéreo e menor teor de cinzas no PCVZ. Ao passo que os machos inteiros apresentaram maior taxa de acréscimo de proteína em comparação as fêmeas e machos castrados, devido, segundos os autores, a testosterona que estimula a síntese protéica no músculo.

A determinação da composição física e química da carcaça, assim como, do corpo do animal como um todo, segundo Hankins e Howe (1946), é essencial para se estimar as exigências nutricionais, dentre essas as de minerais. Uma das formas mais precisa, para se determinar a composição física e química corporal do animal é por meio da moagem e, posterior, análise química do corpo inteiro do animal, denominado

método direto. Nesse procedimento todas as partes do corpo do animal, após o abate, são separadas, pesadas, moídas e retiradas amostras que são submetidas à análise química. Contudo, por ser um método caro e demorado, principalmente em se tratando de animais de grande porte, levou a busca por metodologias mais simples, rápidas e precisas, que estimassem de forma indireta a composição do animal por meio do uso de partes do corpo do animal, por exemplo.

Vários métodos indiretos foram desenvolvidos e usados para determinação da composição corporal do animal, dentre esses podem ser citados, a gravidade específica que teve alguns estudos realizados no Brasil; contudo, segundo Marcondes et al. (2010) não produziu resultados satisfatórios com animais produzidos no país. Outros métodos como diluição de uréia, água tritiada, antipirina e ⁴⁰K, segundo Marcondes et al. (2010), foram pouco estudados no Brasil em razão do custo, falta de mão de obra e dificuldade no emprego das técnicas. No Brasil, a técnica mais empregada para estimar a composição corporal dos animais, de forma indireta, é a desenvolvida por Hankins e Howe (1946) que obtiveram equações, através das quais a composição corporal dos animais poderia ser estimada a partir da composição da seção HH (seção entre a 9-10-11ª costelas).

O experimento desenvolvido por Hankins e Howe (1946) foi feito utilizando apenas fêmeas e machos castrados, sendo obtidas equações para estimar a composição física e química da carcaça para essas classes sexuais, assim como, uma equação que incluía ambas. Com relação à composição química, só foram obtidas equações para estimar a concentração de proteína e extrato etéreo na carcaça, pois, de acordo com os autores, os coeficientes de correlação entre o teor de cinzas na porção comestível da seção HH e da porção comestível da carcaça foram baixos (0,46; 0,51 e 0,32 para ambas as classes, machos castrados e fêmeas, respectivamente), indicando que a primeira não deve ser utilizada como um índice para estimar o teor de cinzas na carcaça. A análise química realizada nesse estudo foi feita apenas na porção comestível, não levando em conta a composição dos ossos, tal fato, segundo Marcondes et al. (2010), pode ter contribuído para a obtenção de resultados variados nos estudos que tinham como objetivo validar as equações.

Por terem sido desenvolvidas utilizando animais taurinos, as equações de Hankins e Howe (1946) poderiam não ser aplicáveis aos animais criados no Brasil, uma vez que a maior parte desses animais é zebuíno. Com isso, foram feito vários estudos utilizando essas raças com o intuito de determinar a composição física e química da

carcaça e do PCVZ a partir da seção HH, analisando quimicamente tanto o tecido mole, quanto os ossos (Marcondes et al., 2010).

Lanna et al. (1995), ao avaliar a estimativa da composição corporal de animais Nelore por meio de cortes da costela (seção entre a 9-10-11ª e 10ª das costelas) relataram que a composição de ambas as seções das costelas pode ser utilizada como parâmetro para estimar a composição corporal. Foram obtidos altos coeficientes de determinação (0,99; 0,98; 0,98 e 0,91 e de 0,98, 0,98, 0,97 e 0,88 para as estimativas de kg de água, lipídeo, proteína e cinzas para composição obtida a partir da seção HH e 10ª costelas) e baixo desvio padrão da estimativa. Segundo os mesmos autores, os resultados são parecidos com os encontrados na literatura, porém os coeficientes lineares das regressões foram estatisticamente diferentes daqueles publicados para animais taurinos. Por isso, equações específicas devem ser utilizadas para animais zebuínos.

Paulino et al. (2005), avaliando o uso da seção entre 9-10-11ª costelas para estimar a composição química da carcaça e do PCVZ de bovinos Nelore, concluíram que a composição física da carcaça de animais zebuínos pode ser estimada pela composição da seção HH. Porém, para a composição química observou-se que a porcentagem de proteína, água, cinzas e macrominerais pode ser estimada por essa seção da costela, com exceção da concentração de extrato etéreo e cálcio. Para esses componentes observou-se uma super e subestimação de 7,84 e 13,34%, respectivamente.

A subestimação do conteúdo de cálcio, segundo os autores, pode ser explicada pelo fato de que a composição da carcaça foi obtida analisando uma amostra composta por todos os ossos da carcaça, incluindo ossos como o fêmur, que possui relação área cortical/área medular proporcionalmente maior do que os ossos da costela; o que poderia torná-lo com maior teor de cálcio, enquanto que a amostra da seção HH é composta por vértebras e costelas. Assim, a possível diferença na concentração de Ca entre os ossos da carcaça pode ter contribuído para esse resultado.

Marcondes et al. (2009), também ao avaliar a predição da composição corporal e da carcaça de bovinos Nelores a partir da seção HH, relataram que a composição física da carcaça (músculos, gordura e ossos) de bovinos Nelore não pôde ser estimada corretamente pela seção HH. Houve subestimação do tecido muscular em 8,83%, enquanto o tecido adiposo apresentou uma superestimação de 37,45%. Com relação a estimação do conteúdo de macrominerais no PCVZ a partir da composição desses

minerais na seção HH, apenas a equação proposta para cálcio foi eficiente em obter o teor desse mineral no PCVZ do animal. Houve uma subestimação dos teores de fósforo e magnésio no PCVZ, com valores de 7,72 e 14,22%, respectivamente, enquanto o sódio e o potássio apresentaram superestimação de 10,31 e 7,72%, respectivamente.

Uma das explicações, segundo Marcondes et al (2009), para esse resultado seria que as equações propostas por Paulino et al. (2002), utilizadas para estimar os teores de minerais no PCVZ foram desenvolvidas utilizando um pequeno numero de animais (19 animais), sendo necessário um maior números para a obtenção de equações mais confiáveis. Nesse mesmo trabalho, novas equações para predizer a concentração de macrominerais no PCVZ dos animais foram ajustadas, a partir da junção dos dados de Paulino et al. (2002) e desse experimento. Sendo posteriormente citadas por Marcondes et al. (2010), porém, segundo os mesmos, essas equações devem ser avaliadas quanto ao efeito da raça e/ou sexo.

3.2. EXIGÊNCIAS NUTRICIONAIS DE MACRO E MICROELEMENTOS MINERAIS PARA BOVINOS

As exigências de minerais para crescimento e engorda têm sido estimadas pelo método fatorial. A exigência total de cada mineral compreende a soma das exigências para mantença (perdas endógenas fecais, na urina e suor) e produção (abrange as demandas para o crescimento e ganho de peso, crescimento fetal e produção de leite). A exigência dietética de cada mineral é obtida dividindo a exigência líquida total pelo coeficiente de absorção do elemento mineral no trato digestivo do animal, sendo essas exigências expressas em quantidades por dia ou por unidade de produto, ou ainda em proporção da matéria seca ingerida (Gionbelli et al., 2010).

As exigências dos ruminantes são influenciadas por diversos fatores como idade, raça, espécie, nível de produção, ambiente, aspectos da dieta (Gionbelli et al., 2010; Mendonça Junior et al., 2011). A composição corporal de ganho, como a deposição de gordura, influencia a quantidade de minerais retidos no corpo do animal, Uma vez que, quanto maior a deposição de tecido adiposo, menor a retenção de minerais, pois esse tecido possui baixas concentrações de minerais, quando comparado aos tecidos ósseo e muscular (Jorge, 1993).

O NRC (2000) considera, cálcio (Ca), fósforo (P), magnésio (Mg), potássio (K), sódio (Na), cloro (Cl), enxofre (S), Cr (cromo), cobalto (Co), cobre (Cu), iodo (I), ferro

(Fe), manganês (Mn), selênio (Se), Ni (níquel), molibidênio (Mo) e zinco (Zn) como minerais requeridos para bovinos de corte. É pouco o conhecimento das exigências de minerais para bovinos de corte, no Brasil, além disso, os resultados ainda são variáveis.

3.2.1. CÁLCIO

O Ca é o mineral em maior concentração no corpo do animal, cerca de 98% está localizado no esqueleto, onde em conjunto com o fósforo providenciando resistência estrutural e dureza do osso. Os outros 2% estão localizados nos fluidos extracelulares, atuando na transmissão impulsos nervosos, excitações de contrações musculares esqueléticas e cardíaca, na coagulação sanguínea, além de ser componente do leite (Goff, 2014).

A absorção de Ca pode acontecer por transporte passivo ou ativo, no duodeno, Com controle, exercido por dois hormônios, hormônio da paratireóide (PTH) e vitamina D3 metabolicamente ativa, 1,25 diidroxivitamina D. Sendo, essa forma de transporte predominante, quando as dietas apresentam baixo nível de Ca (Goff, 2014). Sua absorção no trato gastrointestinal é influenciada por vários fatores, dentre esses, pela forma química e fonte de cálcio, inter-relação com outros nutrientes, pela exigência e pela quantidade ingerida pelo animal. O consumo desse mineral acima dos requerimentos dos animais provoca redução na sua absorção, aumentado sua eliminação nas fezes (NRC, 1996). Por ser absorvido na forma iônica, fatores que reduzem a concentração de íons de Ca, como oxalato; fitato; fosfato e excesso de sulfato, diminuem sua absorção pelo animal (Ammerman et al., 1995; Benevides et al., 2011).

A idade é outro fator que exerce influencia sobre a absorção de Ca, animais mais velhos apresentam menor eficiência na utilização do Ca ingerido do que os mais jovens. Hansard et al. (1954) observaram que a excreção de Ca aumentou a medida que se elevou a idade do animal. Em animais adultos o balanço positivo ainda foi mantido, mas nos animais com idade acima de 36 meses apresentaram balanço negativo para Ca. A absorção diminuiu de 99 para 41%, e depois para 22% para bovinos com 10 dias, seis meses e em animais mais velhos, respectivamente. Assim, nos bezerros com 10 dias de idade o cálcio não absorvido foi de 1%, enquanto que nos animais mais velhos, esse valor foi de 78%.

Os mesmos autores também observaram que existiu pouca diferença entre os valores da digestibilidade verdadeira e aparente para o Ca em animais mais jovens,

porém essa diferença aumentou com o elevação da idade. A digestibilidade aparente em animais adultos e mais velhos foi negativa, indicando que nenhum do cálcio ingerido foi estocado. Os valores para digestibilidade aparente e verdadeira foram de 93,0; 84,0; 24,0; 14,0; 17,0; -3,0; - 28,0% e 98,0; 98,0; 41,0; 34,0; 36,0; 34,0 e 22,0%, respectivamente, para bovinos com idades de 10 dias, 30 dias, 6 meses, 1 ano, 2 anos, adultos e mais velhos, respectivamente.

A redução na absorção, bem como na utilização de Ca pelos animais com o aumento da idade pode estar relacionada com mecanismos internos, que controlam a absorção no intestino ou regula a deposição e subsequente fixação do Ca absorvido no esqueleto. Uma vez que com a idade com declínio dos receptores de vitamina D no intestino, reduzindo a habilidade de resposta a resposta a 1,25-di-hidroxivitamina D (Hansard et al.,1954; NRC, 2001). O NRC (2000) e o AFRC (1991) consideram o valor de 50% e 68% como coeficiente de absorção verdadeira para esse mineral, respectivamente.

Quanto às exigências para bovinos, o NRC (2000) recomenda como exigência líquida diária para mantença, o valor de 15,4 mg/Kg por quilo de peso vivo (PV), enquanto o ARC (1980) preconiza o valor de 16,0 mg/Kg de PV. O AFRC (1991) utiliza a equação: [PMFCa (g/dia) =0,66 × CMS (kg/dia) + 0,74 × PC (kg) – 0,74], também adotada pelo CSIRO (2007), para estimar as perdas endógenas fecais (PMF) em função do consumo de matéria seca e do peso corporal do animal. Dessa forma, um animal com 400 Kg de PV, consumindo 8,8 Kg MS/dia (2,21% PV) apresenta perda metabólica fecal de 8,25 g/dia. Valor superior sugerido pelo NRC (2000) foi observado por Gionbelli (2010), o qual encontrou valor de 26,5 mg/kgPCVZ como exigência diária para mantença, por meio da regressão do Ca retido em função do Ca consumido.

Para ganho, lactação e gestação, o NRC (2000) recomenda os valores de 7,1 g/100 g de ganho de proteína, de 1,23 g/Kg de leite e de 13,7 g/Kg de PV fetal, respectivamente. Esse mesmo comitê recomenda para um animal com PV de 400 Kg, os valores de 12,0 e de 19,0 g/dia de Ca para mantença e para ganho de um quilo de PV/dia, respectivamente. Silva et al. (2002); Véras et al. (2001a); Almeida et al. (2001), estudando a composição corporal e as exigências líquidas e dietéticas de macrominerais de bovinos Nelore não-castrados, de novilhos mestiços Holandês-Gir, respectivamente, encontraram valores de exigência líquida para ganho de 11,93 e 11,19; 9,60 e 8,18; 11,49 e 12,12 g/Kg de ganho de PCVZ para animais com PV de 300 e 400 Kg, respectivamente.

Ambos os autores, com exceção de Almeida et al. (2001) perceberam que houve uma redução nas exigências líquidas para ganho com aumento do peso corporal do animal, isso ocorreu devido a diminuição da proporção de tecido ósseo e aumento da gordura corporal. Visto que esse tecido apresenta baixa concentração desse mineral, o aumento da sua deposição provoca uma redução da retenção de minerais no corpo do animal. Segundo Almeida et al. (2001) o aumento na concentração corporal de Ca, assim como, da sua exigência líquida para ganho se deve ao estágio de desenvolvimento dos animais utilizados no experimento, que ainda encontravam-se em crescimento, de forma que a deposição corporal de osso e músculo superou a de gordura.

Aumento no conteúdo corporal e nas exigências líquidas para ganho também foi observada por Miranda et al. (2006), trabalhando com bovinos Caracu e Nelore, obtendo valores de exigência líquida para ganho e dietética total para Ca de 17,09 e 17,14 g/Kg de ganho de PCVZ e de 45,51 e 51,75 g/dia, respectivamente para Nelore e de 15,37 e 15,41 g/Kg de ganho de PCVZ e de 42,16 e 48,70 g/dia, respectivamente para Caracu com peso corporal de 400 e 600 Kg, respectivamente.

Paulino et al. (2004), ao avaliar as exigências nutricionais de minerais de zebuínos castrados, relataram conteúdo corporal e exigências líquidas de Ca para ganho de variando de 15,57 a 14,29 g/kg de PCVZ, quando o PV passou de 250 para 400 Kg e de 12,72 a 11,67 g/Kg de ganho de PV, quando o peso corporal passou de 250 para 400 kg. Com exigências dietéticas variando de 30,59 a 33,32 g/dia, de um animal com peso vivo de 250 a 400 kg. O AFRC (1991) recomenda, para animais com faixa de peso variando de 300 a 600 Kg, exigência dietética total de 27,0 a 31,0 g/dia.

3.2.2. FÓSFORO

O fósforo é o segundo maior mineral presente no corpo, com aproximadamente 80% localizado nos ossos e dentes. O fósforo atua como componente estrutural dos fosfolipídios, das fosfoproteínas, dos ácidos nucléicos e das moléculas transferidoras de energia, como o ATP, dessa forma, está envolvido em toda via metabólica principal do organismo. Também está relacionado com sistema tampão ácido-básico do sangue e outros fluidos corporais.

O fósforo também é importante para os microrganismos, uma vez que os mesmos o utilizam para digestão da celulose e síntese de proteína microbiana. Para aperfeiçoar a degradação da parede celular dos alimentos pelos microorganismos são necessários, dentro do rúmen, pelo menos cinco gramas de P por quilograma de matéria orgânica digerida, sendo essa concentração alcançada pela reciclagem de P da saliva e das dietas que atendem a exigência do animal (NRC, 2000; NRC, 2001; Goff, 2014).

A absorção de P acontece, principalmente, no intestino delgado por meio transporte ativo, controlado pelo 1,25-diidroxivitamina D. A absorção passiva é predominante, quando quantidades normais a altas de P é ingerido, essa absorção está diretamente relacionada com a quantidade de fósforo no lúmen intestinal e suas concentrações no sangue (NRC, 2001; Goff, 2014).

Prados (2012), em estudo com bovinos cruzados, relatou o valor de 0,67 como coeficiente de absorção verdadeira para o fósforo. O NRC (2000) considera o valor de 68% como absorção verdadeira para P, enquanto o AFRC (1991) adota como coeficiente de absorção verdadeira para forragem o valor de 0,64 e de 0,70 para concentrado.

O NRC (2000) considera que a exigência diária de P para mantença é de 16 mg/kg de peso vivo. Enquanto o ARC (1980) considera o valor 12,0 mg/Kg de PV como exigência diária para mantença. Dessa forma, um animal com PV de 350 Kg apresenta exigência diária para mantença segundo o NRC (2000) e ARC (1980) de 5,60 e 4,20 g/dia, respectivamente. Gionbelli (2010), estudando Nelores em crescimento, o obteve como perda endógena diária de fósforo o valor de 27,1 mg/kgPCVZ. Prados (2012), ao avaliar bovinos alimentados com dietas contendo diferentes níveis de Ca e P, obteve exigência diária para mantença de 14,36 mg/PCVZ/dia. Gionbelli et al. (2010) recomenda o valor de 17,6 mg/kgPV como exigências liquidas diárias de P para mantença.

Para ganho, lactação e gestação, o NRC (2000) recomenda os valores de 3,9 g/100 g de ganho de proteína, de 0,95 g/Kg de leite e de 7,6 g/Kg de PV fetal, respectivamente. Esse mesmo comitê recomenda para um animal com PV de 400 Kg uma exigência dietética para mantença e dietética para ganho de 10,0 g/dia e de 8,0 g/Kg de ganho de PV/dia, respectivamente. Para um animal do mesmo PV com ganho de 1Kg de PV/dia, o AFRC (1991) recomenda o valor de 25,0 g/d como exigência dietética total para fósforo. Gionbelli (2010) trabalhando com fêmeas Nelore encontrou exigências dietéticas totais de P variando de 13,02 a 14,34 g/dia para fêmeas com PV na faixa de 200 a 350 Kg com ganho de um quilo de PV por dia. Almeida et al. (2001) obtiveram valores de 9,41 e 22,94 g para as exigências de ganho de 1Kg de PCVZ e dietéticas totais de P para bovinos com 450 Kg de PV, respectivamente.

Para bovinos Nelore com PV variando de 250 a 400 Kg, Paulino et al. (2004) e Miranda et al. (2006) estimaram conteúdo corporal de P de 8,14 a 7,30 g/KgPCVZ e 7,17 a 7,89 g/KgPCVZ, respectivamente e exigências líquidas para ganho de 6,26 a 5,62 g/KgGPCVZ e de 8,48 a 9,33 g/KgGPCVZ, respectivamente. Silva et al. (2002) e Véras et al. (2001a) obtiveram exigências líquidas de fósforo de 8,67 e 8,16 g/KgGPCVZ e de 7,90 e 7,39 g/KgGPCVZ, respectivamente, em animais com 300 e 450Kg de PV. Martins et al. (2007), trabalhando com Bovinos Nelore e Mestiços (½ Holandês x Nelore e ½ Caracu x Nelore), estimaram conteúdo corporal e exigências dietéticas totais de fósforo em 6,89 e 7,08 g/KgPCVZ e 20,54 e 27,10 g/d, respectivamente, para animais Nelore e de 6,64 e 6,48 g/KgPCVZ e 19,18 e 25,25 g/d, respectivamente, para Mestiços.

Leonel et al. (2006), em estudo com novilhos com diferentes grupos genético (Nelore; F1 Nelore x Aberdeen-Angus; F1 Nelore x Pardo-Suíço e F1 Nelore x Simental), obtiveram exigência dietética total, para animal com 400 de PV, de 24,38 g/d. Pires et al. (1993), estudando bovinos de corte em acabamento (Nelore, F1 Nelore x Marchigiana, F1 Nelore x Limousin), observaram que não houve diferença entre os grupos genéticos com relação as exigências para fósforo. Para um animal com 400 Kg de PV a exigência dietética foi de 21,22 g/d. Gionbelli et al. (2010) recomenda valores de 17,84; 18,21 e 18,08 g/d como exigência dietética total de fósforo, respectivamente, para bovinos Nelore puros (confinamento), cruzados (confinamento) e Nelore em pastejo com 400 Kg de PV e ganho de 1Kg de PV/d, respectivamente.

3.2.3. MAGNÉSIO

O magnésio (Mg) está presente nos ossos (70%), dentro das células (29%) e no fluido extracelular (1%). Atua como cofator de mais de 300 enzimas celulares que estão associadas com funções de produção de energia, síntese de moléculas essenciais, transporte de íons, formações estruturais e sinalização celular. O Mg combina-se com o ATP, formando o ATP-Mg, substrato para maioria das reações catalisadas pela cinase. Também participa da síntese de ácidos nucléicos e da glutationa, na atividade de várias enzimas que participa da síntese de lipídios e carboidratos e como componente estrutural de membranas celulares, ossos e cromossomos (NRC, 2007).

Os principais locais de absorção do Mg são o intestino delgado e o rúmenretículo em animais jovens e adultos, respectivamente. A absorção ocorre por meio de transporte passivo, e, dessa forma, depende da concentração de Mg solúvel que é maior em baixo pH ruminal (< 6,5). O magnésio absorvido além das necessidades dos animais é eliminado na urina (NRC, 2007; Goff, 2014).

A exigência para mantença de magnésio preconizado pelo NRC (2000) é de 3,0 mg/KgPV, mesmo valor recomendado pelo ARC (1980). Gionbelli (2010) obteve exigência diária para mantença de 4,4 mg/KPCVZ, ao obter a mesma, por meio da relação entre o Mg retido em função do Mg consumido, o valor de 3,3 mg/kgPCVZ. De acordo com Gionbelli et al. (2010), o segundo valor poderia ser o mais praticável, uma vez que sua mensuração extrapola para todas as possíveis perdas de Mg quando o consumo desse elemento é zero.

Assim como, em outros minerais a eficiência de utilização do Mg é influenciada por vários fatores como, composição da dieta, quantidade do mineral retido no animal, contéudo fósforo, sódio, potássio, manganês e citrato na dieta, idade e diferenças genéticas entre os animais, gordura da dieta e níveis de vitamina D, nível de nitrogênio e estação do ano para as forragens (Peeler, 1972).

Forragens com baixa concentração de Mg mantém baixo os níveis de Mg solúvel no rumén, o que provoca redução na absorção desse mineral. Em regiões temperadas, o clima frio, comum na primavera e no outono, quando as pastagens estão crescendo rapidamente, reduz a absorção de Mg pela planta, da mesma forma como a fertilização de potássio nas pastagens (NRC, 2001). Greene et al. (1983) observaram que a absorção de Mg reduziu 56 g/dia para 37 g/dia quando os níveis de K na dieta aumentou de 2,8 para 4,8%, respectivamente.

O pH ruminal acima 6,5 também reduz a absorção de Mg, por dimnuir a sua solubilidade. Dessa forma, animais em pastejo por apresentarem pH ruminal mais alto, devido a alta produção saliva, apresentam menor absorção de Mg do que animais rebendo dietas rica em concentrado (NRC, 2001). O ARC (1980) preconiza que a absorção verdadeira de Mg para ruminantes adultos alimentados com feno e gramíneas varia de 17 a 37%. Valor semelhante a este foi observado por Gionbelli (2010), que obteve valor de 0,16 como coeficiente de retenção de Mg.

O NRC (2000) recomenda requerimentos, em porcentagem da matéria seca, de 0,10% para bovino em terminação e crescimento; de 0,12% para vacas gestantes e de 0,20% para vacas em lactação. Paulino et al. (2004) encontraram exigência de Mg de 0,10 a 0,09% para zebuínos com peso vivo de 250 a 400Kg. Para bovinos de corte à pasto sob suplementação, Sales et al. (2011), encontraram exigência dietética total de

Mg variando de 0,08 a 0,10% MS. Silva et al. (2002a) encontraram exigência dietéticas totais de 0,10 e 0,09 % MS e 0,11 e 0,09 % MS para zebuínos e animais cruzados com peso corporal de 250 e 450 Kg, respectivamente. Silva et al. (2002) obtiveram valores de 0,33 e 0,32 g/Kg GPCVZ e de 0,11 e 0,09 % MS como exigências líquidas para ganho e dietéticas totais, respectivamente para bovinos Nelore inteiros com PV de 200 e 450 Kg

As exigências líquidas de Mg, para ganho de 1 kg de PCVZ, obtidas por Almeida et al. (2001), variaram de 0,50 a 0,38 g para novilhos com pesos entre 150 e 450 kg, respectivamente. Para as exigências dietéticas totais, na mesma faixa de peso, os mesmos autores, obtiveram valores variando de 5,12 a 9,82 g/d. Gionbelli et al. (2010) recomenda valores de 6,38 e 9,04; 6,48 e 9,14; 6,26 e 8,32 g/d como exigência dietética total Mg, respectivamente, para bovinos Nelore puros (confinamento), cruzados (confinamento) e Nelore em pastejo com peso de 250 e 400 Kg e ganho de 1Kg de PV/d, respectivamente. Leonel et al. (2006) obtiveram o valor de 12,53 g/d como exigência total de Mg em bovinos com peso corporal de 400 Kg.

Gionbelli. (2010) estimaram exigências dietéticas totais de fêmeas Nelore com ganho de 1Kg de PV/d em 4,13 e 6,73 g/d para animais com peso corporal de 150 e 350 Kg. Martins et al. (2007) obtiveram exigências dietéticas totais de bovinos Nelore e mestiços, com peso vivo de 450 Kg, de 9,89 e 10,61 g/d, respectivamente. Resultados semelhantes foram obtidos por Miranda et al. (2006), encontrando valores de 10,51 e 10,05 g/d para animais Nelore e Caracu com mesmo peso, respectivamente.

3.2.4. SÓDIO E POTÁSSIO

O sódio (Na) é o cátion em maior concentração nos fluidos extracelulares, atua na manutenção da pressão osmótica e do teor de água (do volume extracelular) da circulação, na regulação do equilíbrio ácido-básico e transmissão dos impulsos nervosos. Além disso, a absorção de alguns nutrientes, como monossacarídeos e certos aminoácidos, dependem dos processos de transporte acoplados ao Na, por meio da bomba de Na-K ATPase (Goff, 2014).

O potássio (K) é o principal cátion intracelular, sua principal função é manter o potencial de membrana em repouso, além de atuar na manutenção do volume intracelular e do equilíbrio ácido-básico, contração muscular. A concentração

intracelular e extracelular de K é de 150 mM e 5 mM, respectivamente, sendo esse nível mantido pela bomba Na-K ATPase (NRC, 2007; Goff, 2014).

A absorção de Na ocorre por transporte ativo no rúmen-retículo, omaso e duodeno, enquanto que absorção passiva acontece no intestino. A manutenção constante do Na no sangue é feita através da reabsorção e excreção pelos rins. O controle endócrino é feito pela aldosterona e pelo sistema renina-angiotensina. Os rins são eficientes na reabsorção de Na quando o mesmo está deficiente na dieta. A excreção Na é feita principalmente através da urina. O rúmen-retículo, omaso e intestino são os locais onde ocorre a absorção de K em ruminantes adultos. Da mesma forma que para o Na, a principal via de excreção do potássio é a urina, sob controle da aldosterona. Esse hormônio aumenta a excreção de K, ao passo que estimula a reabsorção de Na pelos rins (NRC, 2000; NRC, 2001).

No trato gastrointestinal, o sódio e o potássio da dieta são prontamente absorvidos, sendo várias fontes, desses minerais, consideradas totalmente disponíveis. O coeficiente de absorção aparente de Na em forragens frescas varia de 77 a 95%, com uma média de 85%. O Na do sal comum usado na dieta de ruminantes é considerado essencialmente 100% disponível. Para o potássio, a absorção verdadeira recomendada é 90% (Peeler, 1972; NRC, 2001). ARC (1980) considera o valor de 91% como coeficiente de absorção verdadeira em bovinos.

Para bovinos de corte em crescimento e vacas em gestação, a exigência recomendada pelo NRC (2000) é de 0,06-0,08% para Na e 0,60% para K, enquanto para vacas de corte em lactação a exigência é de 0,10% e 0,70%, respectivamente. Paulino et al. (2004) encontraram valores de exigência dietética total para Na e K de 0,039 e 0,49 %MS para zebuínos com peso vivo de 400 Kg, respectivamente. Valor superior para o Na (0,07 %MS) e K(0,52 %MS) foi observado por Sales et al. (2011) em bovinos Nelore à pasto sob suplementação com mesmo peso corporal. Silva et al. (2002a) encontraram exigência dietéticas totais de 0,50 e 0,48 %MS e 0,50 e 047%MS para o K e de 0,05 e 0,04%MS para o Na, para zebuínos e animais cruzados, respectivamente, com peso corporal de 250 e 450 Kg.

Silva et al. (2002) obtiveram valores de 1,57 e 1,30 g/Kg GPCVZ e de 0,07 e 0,04 %MS como exigências líquidas para ganho e dietéticas totais de Na, respectivamente para bovinos Nelore inteiros com PV de 200 e 450 Kg. Martins et al. (2007) obtiveram exigências dietéticas totais de bovinos Nelore e mestiços, com peso vivo de 450 Kg, de 4,89 e 4,65 g/d para Na e de 52,14 e 51,88 g/d para K,

respectivamente. Resultados semelhantes foram obtidos por Miranda et al. (2006), encontrando valores de 5,61 e 5,54 g/d para Na e de 52,01 e 51,90 para K, para animais Nelore e Caracu com mesmo peso, respectivamente.

Almeida et al. (2001) estimaram exigências dietéticas diárias em 2,25 e 4,35 g/d para sódio e 18,23 e 49,18 g/d para potássio. Gionbelli et al. (2010) recomenda valores de 43,14; 43,09 e 43,16 g/d e de 4,22; 4,17 e 4,15 g/d como exigência dietética total de potássio e sódio, respectivamente, para bovinos Nelore puros (confinamento), cruzados (confinamento) e Nelore em pastejo com 400 Kg de PV e ganho de 1Kg de PV/d, respectivamente. Leonel et al. (2006) obtiveram os valores de 4,45 e 46,51 g/d como exigência total de Na e K, respectivamente, em bovinos com peso corporal de 400 Kg.

3.2.5. FERRO E COBRE

O ferro (Fe) atua como componente do heme, presente na hemoglobina e mioglobina que são responsáveis pelo transporte de oxigênio. Enzimas da cadeia transportadora de elétrons, citrocromo oxidase, ferredoxina, mieloperoxidase, catalase e citodromo P-450 precisam ferro como co-fatores (Goff, 2014).

O cobre (Cu) é o componente de enzimas, atuando em vários processos fisiológicos. As enzimas, citocromo oxidase, necessária para o transporte de elétrons durante a respiração aeróbica; lisil oxidase, que catalisa a formação de ligações cruzadas de demosina no colágeno e na elastina necessárias para formação dos ossos e tecidos conjuntivos fortes; ceruloplasmina, necessária para a absorção e o transporte de ferro utilizado para produção de hemoglobina; tirosinase, que atua na síntese de melanina a partir de tirosina e a superóxido dismutase, que atua na proteção da célula contra os efeitos tóxicos dos metabólicos do oxigênio são enzimas que o cobre participa como componente estrutura (NRC, 2001; NRC, 2007; Goff, 2014).

A absorção do ferro na forma férrica (Fe³⁺) é baixa no intestino delgado. Por isso, o mesmo é reduzido a forma ferrosa (Fe²⁺), para assim ser absorvido nos enterócitos por meio da proteína transportadora de metal divalente (DMT-1). Dentro da célula, o ferro deslocado para membrana basolateral e liga-se a transferrina para ser transportada no sangue. Caso, a quantidade de Fe no organismo animal seja adequada, o Fe liga-se a ferritina, proteína sintetizada pelos enterócitos, não sendo, assim, transportado para membrana basolateral. O ferro ligado a ferritina é excretado nas fezes quando os enterócitos morrem e são destruídos. A absorção o ferro é afetada por vários

fatores como, idade, concentração corporal de Fe e fontes dietéticas, sendo sugerido como coeficiente de absorção de Fe para animais adultos o valor de 0,10 (NRC, 2001).

A absorção de cobre ocorre, principalmente, no intestino delgado por meio de difusão simples e facilitada (co-transporte com determinados aminoácidos). Em bovinos adultos sua absorção fica entre 1 a 5%, podendo ser influenciada pelo nível de Mo, S, Fe e em menor extensão pelo Ca e Zn (NRC, 2007; Goff, 2014). As exigências de ferro e cobre, recomendada pelo NRC (2000), é de 10 mg de Cu/Kg MS da dieta e de 50 mg/Kg MS da dieta.

3.2.6. MANGANÊS E ZINCO

O manganês (Mn) está envolvido como co-fatores de várias metaloenzimas necessárias para produção de colágeno ósseo e cartilagem, como a glicosil transferase; a piruvato carboxilase que está envolvida no metabolismo da glicose e dos lipídeos; e a manganês superóxido dismutase atua na proteção de células contra formas reativas do oxigênio (NRC, 2007; Goff, 2014).

O zinco (Zn) atua como componente de várias enzimas, como o cobre-zinco superóxido dismutase, anidrase carbônica, álcool desidrogenase, carboxipeptidase, fosfatase alcalina e RNA polimerase, que afetam o metabolismo lipídeos, proteínas, carboidratos e ácidos nucléicos. O Zinco também controla a produção de calmodulina, da proteína cinase C, do hormônio de ligação da tireóidea e do inositol fosfato (NRC, 2001).

O Mn dietético, em sua maioria é absorvido e retirado da corrente sanguínea pelo fígado e excretado na bile. Uma pequena quantidade está ligada com transferrina no fígado, sendo liberada no sangue para transporte para os tecidos. A proporção de Mn absorvido da dieta é de menos de 4% e geralmente próxima a 1% (NRC, 2007; Goff, 2014). A absorção do manganês é reduzida por altos níveis de cálcio, potássio e fósforo na dieta.

A absorção do Zn ocorre no intestino delgado, em animais com carência de Zn, este mineral entra nos enterócitos, sendo deslocado através da célula pela proteína intestinal rica em cisteína (PIRC) e liberado no sangue, onde para ser transportado, se liga a transferrina ou albunina. Já em animais repletos de Zn, uma segunda proteína rica em cisteína, a metalotioneína, encontrada nas células da mucosa, compete com a primeira proteína pelo Zn vindo através da borda em escova. O Zn ligado a

metalotioneína é excretado com as fezes, quando ocorre a descamação da mucosa intestinal (Goff, 2014). O ARC (1980) sugeri coeficiente de absorção de 0,30 e 0,20 para ruminantes em crescimentos e adultos, respectivamente.

Bovinos de corte requerem 20 mg de Mn/Kg MS da dieta para animais em crescimento e terminação. A exigência de Mn para reprodução é maior que para crescimento e desenvolvimento do esqueleto, sendo o valor estimado de 40 mg/Kg. A exigência para zinco é de 30 mg de Zn/Kg de MS da dieta (NRC, 2000).

4. REFERÊNCIAS BIBLIOGRÁFICAS

- AGRICULTURAL AND FOOD RESEARCH COUNCIL AFRC. A reappraisal of the calcium and phosphorus requirements of sheep and cattle. 6.ed. Nutrition Abstract and Reviews (Series B). Wallingford: 1991. p.573-612.
- ALMEIDA, M.I.V.; FONTES, C.A.A.; ALMEIDA, F.Q. et al. Conteúdo Corporal e Exigências Líquidas e Dietéticas de Macroelementos Minerais (Ca, P, Mg, Na e K) de Novilhos Mestiços Holandês-Gir em Ganho Compensatório. **Revista Brasileira de Zootecnia**, v.30, n.3, p.849-857, 2001.
- AMMERMAN, C.B.; BACKER, D.H.; LEWIS, A.J. Bioavailability of Nutrients for Animals. Amino Acids, Minerals, and Vitamins. Academic Press, San Diego: 1995, 441p.
- ARC Agricultural Research Council. **The Nutrient Requirements of Ruminant Livestock**. London: Agricultural Research Council. The Gresham Press, 1980. 351p.
- BENEVIDES, M.J., SOUZA, M.V.; SOUZA, R.D.B. Fatores antinutricionais em alimentos: revisão. **Segurança Alimentar e Nutricional**, v.18, n.2, p. 67-79, 2011.
- BERG, R.T.; BUTTERFIELD; R.M. Growth patterns of bovine muscle, fat and bone. **Journal Animal Science**, v.27, p. 611-619, 1968.

- CABRAL NETO, O.; SOUZA, S.L.G. de; CAMARGO, A.M. et al. Características da carcaça de bovinos sindi e bubalinos mediterrâneos em confinamento. **Acta Tecnológica**, v.8, n.2, p.1-7, 2013.
- CÂNDIDO, E.P. **Efeito da restrição alimentar em novilhas Sindi e Guzerá**. 2009, 71f. Dissertação (Mestrado em Zootecnia) -Universidade Federal da Paraíba, Areia, 2009.
- CONRAD, J.H.; McDOWELL, L.R.; ELLIS, G.L. et al. 1985. **Minerais para ruminantes em pastejo em regiões tropicais**. Disponível em: http://pdf.usaid.gov/pdf_docs/pnabc098.pdf. Acesso em: 30 abr. de 2015.
- COUTINHO, R.A; BORGES, A.L.C.; SILVA, J.S. et al. 2015. Exigências nutricionais de bovinos: Uma ferramenta a favor da produtividade. Disponível em: http://www.pubvet.com.br/artigo/740/pstrongexigecircncias-nutricionais-debovinos-uma-ferramenta-a-favor-da-produtividadestrongp. Acesso em: 21 dez. de 2015.
- CSIRO Commonwealth Scientific and Industrial Research Organization. **Nutrient Requirements of Domesticated Ruminants**. Collingwood, VIC: Commonwealth Scientific and Industrial Research Organization, 2007. 270p.
- DUARTE, A.L.L.; PIRES, M.L.S.; BARBOSA, R.R. et al. Avaliação da deficiência de fósforo em ruminantes por meio de bioquímica sérica. **Acta Veterinaria Brasilica**, v.5, n.4, p.380-384, 2011.
- DURAND, M; KOMISARCZUK, S. Influence of Major Minerals on Rumen Microbiota1. 1988. Disponível em:http://jn.nutrition.org/content/118/2/249.full.pdf>. Acesso em: 18 de nov. de 2015.
- FERNANDES, H.J.; PAULINO, M.F.; MARTINS, R.G.R. et al. Crescimento de Componentes Corporais de Três Grupos Genéticos na Fases de Recria e Terminação. **Revista Brasileira de Zootecnia**, v.34, n.1, p.288-296, 2005.

- FURTADO, D.A.; PEIXOTO, A.P.; REGIS, J.E.F. et al. Termorregulação e desempenho de tourinhos Sindi e Guzerá, no agreste paraibano. **Revista Brasileira de Engenharia Agrícola e Ambiental**. v.16, n.9, p.1022–1028, 2012.
- GIONBELLI, M.P.; MARCONDES, M.I.; VALADARES FILHO, S.C. et al. Exigências nutricionais de minerais para bovinos de corte. In: VALADARES FILHO, S.C.; MARCONDES, M.I.; CHIZZOTTI, M.L.C. et al. Exigências nutricionais de zebuínos puros e cruzados: BR-CORTE. 2.ed. Viçosa, MG:UFV, DZO, 2010. p.135-174.
- GOFF, J.P. Minerais. In: REECE, W.O. **Dukes- Fisiologia dos Animais Domésticos**. 12ª ed. Rio de Janeiro: Editora Guanabara Koogan, p.532-555, 2014.
- GREENE, L.W.; WEBB, K.E.; FONTENOT, J.P. Effect of potassium level on site of absorption of magnesium and other macroelements in sheep. **Journal Animal Science**, v.56, n.5, 1983.
- GUENTHER, J. J.; BUSHMAN, D. H.; POPE, L. S. et al. Growth and development of the major carcass tissues in beef calves from weaning to slaughter weight, with reference to the effect of plane of nutrition. **Journal Animal Science**, v. 24, p. 1184-1191, 1965.
- HANKINS, O.G., HOWE, P.E. 1946. Estimation of the composition of beef carcass and cuts. Washington, D.C. (Technical Bulletin USDA, 926).
- HANSARD, S.L.; COMAR, C.L.; PLUMLEE, M.P. The effects of age upon calcium utilization and maintenance requirements in the bovine. **Journal Animal Science**, v.13, n.1, p.25-36, 1954.
- JORGE, A.M. Ganho de peso, conversão alimentar e características de carcaça de bovinos e bubalinos. 1993. 93f. Dissertação (Mestrado em Zootecnia) Universidade Federal de Viçosa, Viçosa, 1993.

- KHAN, M. A.; GADIWALA, M.S. A Study of Drought over Sindh (Pakistan) Using Standardized Precipitation Index (SPI) 1951 to 2010. **Pakistan Journal of Meteorology**, v.9, p.15-22, 2013.
- LANNA, D.P.D.; BOIN, C.; ALLEONI, G.F. et al. Estimation of carcass and empty body composition of Zebu bulls using the composition of rib cuts. **Sciencia Agrícola**, v.52, n.1, p.189-197, 1995.
- LEONEL, F.P.; PEREIRA, J.C.; VIEIRA, R.A.M. et al. Exigências nutricionais em macronutrientes minerais (Ca, P, Mg, Na e K) para novilhos de diferentes grupos genéticos. **Revista Brasileira de Zootecnia**, v.35, n.2. p.584-590, 2006.
- LEITE, P.R.M.; SANTIAGO, A.A.; NAVARRO FILHO, H.R. et al. **Sindi: Gado vermelho para o semiárido**. João Pessoa: EMEPA PB / Banco do Nordeste, 2001. 147p.
- MARCONDES, M. I.; VALADARES FILHO, S. C.; PAULINO, P. V. R., et al. Predição da composição corporal e da carcaça a partir da seção entre a 9a e 11a costelas em bovinos Nelore. **Revista Brasileira de Zootecnia**, v.38, n.8, p.1597-1604, 2009.
- MARCONDES, M.I.; PAULINO, P.V.R.; VALADARES FILHO, S.C. et al. Predição da composição química corporal e da carcaça de animais Nelore puros e cruzados. In: VALADARES FILHO, S. C.; MARCONDES, M.I.; CHIZZOTTI, M.L. et al. Exigências nutricionais de zebuínos puros e cruzados BR CORTE. 2.ed. Viçosa, MG:UFV, DZO, 2010. p.65-84.
- MARTINS, R.; GALVÃO, R.; PAULINO, M.F. et al. Composição corporal e exigências de macroelementos minerais (Ca, P, Na, K e Mg) de bovinos nelore e mestiços, não castrados, em confinamento. **Revista Ceres**, v.54, n.315, p.453-460, 2007.

- MENDONÇA JÚNIOR, A.F.; BRAGA, A. P.; RODRIGUES, A.P.M.S. et al. Minerais: importância de uso na dieta de ruminantes. **Agropecuária científica no semi-árido**, v.07, n.1, janeiro/março, p.1-13, 2001.
- MIRANDA, E.N.; QUEIROZ, A.C.; LANA, R.P. et al. Composição corporal e exigências nutricionais de macrominerais de bovinos Caracu selecionados e Nelore selecionados ou não para peso ao sobreano. **Revista Brasileira de Zootecnia**, v.35, n.3, p.1201-1211, 2006 (supl.).
- MORAES, S.S. 2011. Importância da suplementação mineral para bovinos de corte. Disponível em: www.cnpgc.embrapa.br/publicacoes/doc/doc114. Acesso em: 29 de mar. de 2015.
- MOULTON, C.R. Age and chemical development in mammals. **The Journal of Biological Chemistry**, v.57, p.79-97, 1923.
- NATIONAL RESEARCH COUNCIL NRC. **Nutrient requirements of beff cattle**. 7.ed. Washington, D.C.: 2000. 248p.
- NATIONAL RESEARCH COUNCIL NRC. **Nutrient requirements of dairy cattle**. 7.ed. Washington, D.C.: 2001. 381p.
- NATIONAL RESEARCH COUNCIL NRC. Nutrient requirements of small ruminants. 7.ed. Washington, D.C.: 2007. 292p.
- OWENS, F.N.; DUBESKI, P.; HANSON, C.F. Factors that Alter the Growth and Development of Ruminants. **Journal Animal Science**, v.71, p.3138-3150, 1993.
- PAULINO, P. V. R., Exigências nutricionais e validação da seção HH para predição da composição corporal de zebuínos. 2002. 150f. Dissertação (Mestrado em Zootecnia) Universidade Federal de Viçosa, Viçosa, 2002.

- PAULINO, P.V.R.; COSTA, M.A.L.; VALADARES FILHO, S.C. et al. Exigências nutricionais de zebuínos: minerais. **Revista Brasileira de Zootecnia**, v.33, n.3, p.770-780, 2004.
- PAULINO, P.V.R.; VALADARES FILHO, S.C.; COSTA, M.A.L. et al. Validation of the 9–11th rib cut to estimate the chemical composition of the dressed carcass and of the whole empty body of Zebu cattle. **Livestock Production Science**, v.93, p.245–253, 2005.
- PAULINO, P.V.R.; VALADARES FILHO, S.C.; DETMANN, E. Deposição de tecidos e componentes químicos corporais em bovinos Nelore de diferentes classes sexuais. **Revista Brasileira de Zootecnia**, v.38, n.12, p.2516-2524, 2009.
- PEDREIRA, M.S; BERCHIELLI, T.T. Minerais. In: BERCHIELLI, T.T.; PIRES, A.V.; OLIVEIRA, S.G. **Nutrição de ruminantes**. Funep: Jaboticabal, p. 345-368, 2011.
- PEELER, H.T. Biological availability of nutrients in feeds: availability of major mineral fons. **Journal of Animal Science**, v.35, n.3, p695-711, 1972.
- PERÓN, A.J; FONTES, C.A.A; LANA, R.P. et al. Tamanho de órgãos internos e distribuição de gordura corporal de novilhos de cinco grupos genéticos, submetidos a alimentação restrita e "ad libitum". **Revista Brasileira de Zootecnia**, v.20, n.5, p.813-819, 1993.
- PIRES, C. C.; FONTES, C. A. A.; GALVÃO, J. G. et al. Exigências nutricionais de bovinos de corte em acabamento. III. Exigências de cálcio e fósforo para o ganho. **Revista da Sociedade Brasileira de Zootecnia**, Viçosa, v. 22, n. 1, p. 133-143, 1993.
- PRADOS, L.F. **Desempenho e exigências nutricionais de bovinos alimentados com dietas contendo diferentes níveis de cálcio e fósforo**. 2012, 96f. Dissertação (Mestrado em Zootecnia) Universidade Federal de Viçosa, Viçosa, 2012.

- ROSS, R.A. Evaluation of Techniques to Estimate Carcass Composition of Beef Cattle. 2005, 53f. Dissertação (Mestrado em Ciência Animal) Oklahoma State University, Stillwater, 2005.
- SALES, M.F.L.; PAULINO, M.F.; VALADARES FILHO, S.C. et al. Macromineral requirements by beef cattle under pasture supplementation. **Revista Brasileira de Zootecnia**, v.40, n.2, p.426-432, 2011.
- SARFARAZ, S.; ARSALAN, M.H., FATIMA, H. Regionalizing the climate of Pakistan using Köppen classification system. **Pakistan Geographical Review**, v.69, n.2, p.111-132, 2014.
- SILVA, F.F.; VALADARES FILHO, S.C.; ÍTAVO, L.C.V. et al. Composição corporal e requisitos líquidos e dietéticos de macroelementos minerais de bovinos Nelore não-castrados. **Revista Brasileira de Zootecnia**, v.31, n.2, p.757-764, 2002.
- SILVA, F.F.; VALADARES FILHO, S.C.; ÍTAVO, L.C.V. et al. Exigências líquidas e dietéticas de energia, proteína e macroelementos minerais de bovinos de corte no Brasil. **Revista Brasileira de Zootecnia**, v.31, n.2, p.776-792, 2002a.
- SOUZA, B.B.; SILVA, R.M.N. da; MARINHO, M.L. et al. Souza, A.P. Parâmetros fisiológicos e índice de tolerância ao calor de bovinos da raça Sindi no semiárido paraibano. **Ciência e Agrotecnologia**, v.31, p.883-888, 2007.
- SOUZA, J.E.L. Confinamento de animais das raças Guzerá e Sindi em duas fases de crescimento. 2008, 72f. Dissertação (Mestrado em Zootecnia) Universidade Federal da Paraíba, Areia, 2008.
- SOUZA, S.L.G.; CABRAL NETO, O.; QUIRINO, C.R. et al. Características da carcaça de animais Nelore e F1 Sindi Nelore abatidos aos 36 e 48 meses de idade. **Acta Tecnológica**, v.7, n.1, p.60-66, 2012.
- TURCO, S.H.N.; ARAUJO, G.G.L. de; TEIXEIRA, A.H.C. Avaliação de alguns fatores do clima que influenciam a adaptação, o comportamento fisiológico e o

desempenho de bovinos da raça Sindi, no Semi-Árido brasileiro. Disponível em:< http://ainfo.cnptia.embrapa.br/digital/bitstream/CPATSA/34046/1/BPD66.pdf >. Acesso em: 04 de fev. de 2016.

VÉRAS, A.S.; VALADARES FILHO, S.C.; COELHO DA SILVA, J.F. et al. Composição corporal e requisitos líquidos e dietéticos de macroelementos minerais de bovinos Nelore não-castrados. **Revista Brasileira de Zootecnia**, v.30, n.3, p.1106-1111, 2001a.

	,	•			
CA	TOI		TT	\sim	TT
	$\boldsymbol{\nu}$				
-			\mathbf{U}	_,,	

Composição corporal e Exigências de Macroelementos minerais para bovinos Sindi

Composição Corporal e Exigências de Macroelementos Minerais para Bovinos Sindi

RESUMO

O presente estudo teve como objetivo determinar a composição corporal e as exigências líquidas e dietéticas de macrominerais de bovinos da raça Sindi, através da análise física e química de todos os tecidos corporais (método direto) e da seção HH (método indireto). Foram utilizados 40 machos inteiros com peso médio inicial 296,65 ± 21,33 Kg e idade média de 21 ± 1,5 meses. Quatro animais de cada método foram abatidos no início do experimento para compor o grupo referência, os demais animais foram distribuídos, dentro de cada método, aleatoriamente, em quatro níveis de restrição alimentar (0, 15, 30 e 45%), perfazendo um esquema fatorial 2x4. Ao final do experimento todos os animais foram abatidos, e o trato gastrintestinal de cada animal foi esvaziado, lavado e pesado juntamente, com o coração, pulmões, fígado, baço, rins, gordura interna e omental, diafragma, mesentério, cauda, traquéia, esôfago, aparelho reprodutor, cabeça, couro, patas, sangue e carcaça para a obtenção do peso de corpo vazio (PCVZ), as quais, posteriormente, foram analisadas para determinação dos teores de Ca, P, Na, K e Mg, assim como os tecidos da seção HH.As exigências líquidas de minerais (Ca, P, Na, K e Mg) para ganho de 1 kg de PCVZ foram estimadas derivando as equações de predição dos conteúdos corporais de cada mineral em função do peso de corpo vazio (PCVZ). Observou-se que houve redução no conteúdo corporal e nas exigências líquidas para ganho de 1Kg de PCVZ, de todos os minerais estudados, à medida que aumentou o peso vivo do animal. As exigências líquidas para ganho de peso para Ca, P, Na, K e Mg, encontradas, para animais com peso vivo de 400 Kg foram de 25,52; 3,99; 0,97; 1,16 e 0,25 g Kg de GPCVZ⁻¹ para o método direto e de 12,79; 5,77; 1,39; 1,65 e 0,28 g Kg de GPCVZ⁻¹ para o método indireto. As exigências dietéticas totais de Ca, P, Na, K e Mg obtidas foram de 57,75; 14,63; 3,94; 39,67 e 8,38 g d⁻¹ para o método direto e de 35,09; 16,45; 4,26; 40,02 e 8,41 g d⁻¹ para animais com 400 Kg de PV. Conclui-se que o método direto foi o mais adequado para determinar as exigências de macroelementos minerais de bovinos Sindi.

Keywords: exigência líquida, minerais, restrição, seção HH

Corporal Composition and Microminerals Requirement for Sindi Cattle

ABSTRACT

The present study had as objective to determine net and dietary requirements of macromineral of Sindi cattle, through physical and chemical analysis of all tissue body (direct method) and HH section (indirect method). Forty bulls with average weight 296.65 ± 21.33 kg and mean age of 21 ± 1.5 months were used in the experiment. Four animals of each method were slaughtered at the beginning of the experiment to compose the reference group, the remaining animals were distributed, within each method, randomly, into four food restriction levels (0.0, 15.0, 30.0 and 45.0%), making a scheme 2x4 factorial. At the end of the experiment all animals were slaughtered, and the gastrointestinal tract of each animal was emptied, washed and weighed, and this weight was added to the organs and other animal's body parts (carcass, head, leather, tail, feet and blood) for empty body weight (EBW) determination. These parts, as well as tissues HH section, were analyzed for determination of P, Na, K and Mg. The net requirements of minerals (P, Na, K and Mg) for gain of 1 kg EBW were estimated deriving the prediction equations for the inorganic macrominerals content in the animal body in function of the EBW. There was a reduction in body content and net requirements for gain of 1 kg of EBW of all minerals studied, as increased live weight of the animal. The net requirements for weight gain of Ca, P, Na, K and Mg found for animals with a live weight of 400 kg were 25.52; 3.99; 0.97; 1.16 e 0.25 g kg⁻¹ EBWG to the direct method and 12.79; 5.77; 1.39; 1.65 and 0.28 kg of EBW-1 to the indirect method. The total dietary macrominerals requirements of Ca, P, Na, K and Mg were obtained 57.75; 14.63; 3.94; 39.67 and 8.38 and 14.64 g d-1 to the direct method and 35.09; 16.45; 4.26; 40.02 and 8.41 g d-1 for animals with a live weight of 400 kg. In conclusion, the direct method was the most appropriate to determine the requirements of macromineral Sindhi cattle.

Keywords: minerals, net requirement, restriction, section HH

INTRODUÇÃO

O organismo animal possui quantidades variáveis de elementos inorgânicos, que são necessários para o seu crescimento normal e reprodução. Na dieta do animal devem ser adicionados 14 minerais que são considerados essências, ou seja, são elementos cuja função está comprovada no organismo animal. Esses minerais são divididos em dois grupos, de acordo com a quantidade exigida pelo animal, em macro e microelementos minerais. Os primeiros são requeridos em grandes quantidades, e nestes incluem o cálcio, fósforo, magnésio, potássio, enxofre e cloro (Underwood e Suttle, 1999; Valadares Filho et al., 2010).

Os minerais apesar de estar em pequenas quantidades no corpo do animal, atuam em diversas funções, de modo que sua carência pode prejudicar a saúde e a produção do animal. Os macroelementos minerais atuam como componentes estruturais, como o cálcio, fósforo e magnésio que compõem os ossos e dentes. O sódio, potássio, cálcio e magnésio estão presentes nos fluidos corporais e tecidos e promovem a manutenção do equilíbrio ácido-básico, da pressão osmótica, da transmissão dos impulsos nervosos e do potencial elétrico da membrana (Valadares Filho et al., 2010; Goff, 2014).

As exigências de macroelementos minerais para ruminantes são estimadas pelo método fatorial que divide a exigência do animal em mantença e de produção. A exigência de mantença refere-se às perdas endógenas fecais e perdas urinárias, e para alguns minerais de minerais através da pele, que são as perdas inevitáveis do corpo. Enquanto que a de produção consiste na quantidade de minerais que ficam retidos ou secretados durante o crescimento do animal, gestação e lactação. A exigência dietética do mineral é obtida dividindo a exigência líquida total (mantença + produção) pelo coeficiente de absorção do mineral no trato gastrointentinal (CSIRO, 2007).

Vários fatores como idade, espécie, raça, sexo, nível nutricional e de produção, estado fisiológico influenciam nas exigências dos animais. Além disso, poucas são as informações disponíveis sobre as exigências de macroelementos minerais para bovinos de corte. Desta forma, o presente trabalho tem como objetivo determinar a composição corporal e as exigências de macroelementos minerais de bovinos Sindi obtidas por meio de dois métodos de determinação da composição corporal.

MATERIAL E MÉTODOS

O experimento foi realizado no setor de Bovinocultura de Corte do Departamento de Zootecnia da Universidade Federal de Viçosa (DZO-UFV), em Minas Gerais, localizada na região da Zona da Mata. O período experimental teve duração de 74 dias, sendo 14 dias de adaptação à dieta e as instalações de manejo, durante o qual as temperaturas médias máxima e mínima foram de 27,3 e 18,9°C, respectivamente, com umidade relativa de 76%.

Foram utilizados 40 bovinos da raça Sindi, não castrados, adquiridos de uma única propriedade com idade média de 21 ± 1,5 meses e peso corporal médio de 296,65 ±21,33 Kg. Destes, oito foram abatidos no início do experimento e serviram como referência no estudo da composição corporal e do peso de corpo vazio iniciais dos animais. A meia carcaça direita de quatro foi dissecada totalmente, enquanto na meia carcaça direita dos outros quatro animais foi retirada a seção entre a 9ª e 11ª costelas.

Os animais restantes foram distribuídos em delineamento inteiramente casualizado, em esquema fatorial, sendo quatro níveis de restrição de ingestão de matéria seca (MS), 0,0; 15,0; 30,0 e 45,0% e dois métodos de determinação da composição corporal (direto e indireto). No método direto, todas as partes do corpo do animal foram após o abate; separadas, pesadas, moídas e retiradas amostras que foram submetidas à análise química, enquanto no indireto foram determinadas as composições química e física da seção entre a 9ª e 11ª costelas para estimar a composição corporal dos animais.

A dieta foi formulada segundo o BR-CORTE (Valadares Filho et al. 2010), estimando-se um ganho de peso médio diário de 1,2 kg para os animais alimentados à vontade. Em decorrência da falta de informações sobre as exigências da raça Sindi, a formulação da dieta foi feita tomando como base nas exigências nutricionais de bovinos da raça Nelore. A alimentação dos animais consistiu de silagem de milho e concentrado, com uma relação de volumoso: concentrado, com base na matéria seca, fixa de 40:60 durante todo o período experimental. O volumoso foi silagem de milho e o concentrado composto por farelo de soja, farelo de trigo, fubá de milho, uréia/sulfato de amônio (9:1) e mistura mineral, conforme as Tabelas 1 e 2.

Tabela 1. Participação dos ingredientes na dieta experimental com base na matéria seca

Ingredientes Proporção (g/kg MS)

Silagem de Milho	400,0
Fubá de Milho	360,0
Farelo de soja	60,0
Farelo de Trigo	150,0
Ureia (SA)	10,0
Mistura Mineral ¹	20,0

¹Mistura Mineral: cálcio - 314,02 g/kg; cobalto- 27,19 mg/kg; cobre - 628,59 mg/kg; enxofre - 10,01 g/kg; fósforo - 42, g/kg; magnésio - 3,80 g/kg; manganês - 625,91 mg/kg; sódio - 262,00 g/kg e zinco - 1120,71 mg/kg.

Tabela 2 – Composição química dos ingredientes utilizados na dieta experimental, expressos com base na matéria seca

Ttomo	Dista	Silagem	Fubá de	Farelo de	Farelo de	Ureia
Itens	Dieta	de milho	milho	soja	Trigo	SA ¹ (9:1)
MS, g/KgMN ¹	458,1	266,1	881,8	880,4	868,2	999,0
MO, g/KgMS	932,2	949,7	988,8	938,8	949,3	-
MM, g/KgMS	37,8	56,3	11,2	61,2	50,7	-
PB, g/KgMS	146,2	66,2	92,3	535,4	190,7	2.600,0
EE, g/KgMS	37,4	33,7	47,7	19,7	36,9	-
FDN, g/KgMS	380,2	637,8	125,8	186,8	457,2	
FDN _{cp} , g/KgMS	340,2	574,1	103,4	117,9	441,8	-
CHOT, g/KgMS	774,6	843,8	848,8	383,7	721,6	
CNF, g/KgMS	609,8	269,9	745,5	266,04	280,14	-
NDT ² , g/KgMS	691,3	-	-	-	-	-
Ca, g/KgMS	8,28	3,82	0,27	3,07	1,04	-
P, g/KgMS	4,36	1,89	2,61	7,04	9,33	-
Na, g/KgMS	5,54	0,33	0,11	0,11	0,23	-
K, g/KgMS	8,93	11,43	3,18	23,63	11,86	-
Mg, g/KgMS	1,99	1,89	0,89	3,41	4,26	-
Cu, mg/KgMS	58,89	62,25	30,86	46,22	48,84	-
Fe, mg/KgMS	589,34	1353,77	31,83	218,55	154,40	-
Zn, mg/KgMS	56,98	13,35	30,38	58,70	97,72	-
Mn, mg/KgMS	62,48	58,59	7,26	14,32	153,30	-

MS = matéria seca; ¹MN= matéria natural; MO = matéria orgânica; PB = proteína bruta; EE = extrato etéreo; FDNcp = fibra em detergente neutro corrigido para proteína bruta e cinzas; CNF = carboidratos não fibrosos; ¹SA: Sulfato de Amônia 9:1; ²NDT= nutrientes digestíveis totais estimados pelo BR-CORTE (Valadares Filho et al., 2010); Na= sódio; K= potássio; Mg = magnésio; P = fósforo; Cu = cobre; Fe = ferro; Zn = zinco; Mn = Manganês.

Após o período de adaptação, os animais do grupo referência foram abatidos e os demais foram pesados, após jejum sólido de 16 horas, para dar inicio ao experimento. O fornecimento da dieta foi feito duas vezes ao dia (6h30 e 14h30), em forma de ração completa, sendo aproximadamente, metade distribuída pela manhã e a outra metade à tarde. A quantidade ofertada foi ajustada a cada três dias, de maneira a obter sobras entre 5 a 10% para animais recebendo dieta à vontade.

A quantidade de ração oferecida, assim como, a de sobras foi registrada, diariamente, para determinação do consumo. Também foram feitas coletas das amostras das sobras e da silagem de milho, as quais foram, posteriormente, congeladas. Semanalmente, essas amostras foram descongeladas, homogeneizadas, agrupadas, formando uma amostra composta, as quais foram secas em estufa com ventilação forçada a 55°C por 72h e depois moídas em moinhos de facas com peneiras de malha de 1mm e acondicionadas em recipientes plásticos. No final de cada período, foi elaborada uma amostra composta da silagem de milho e das sobras de cada animal. A amostragem dos ingredientes do concentrado foi feita cada vez que ocorria a produção do mesmo. A cada 28 dias foi feita a pesagem dos animais para acompanhamento do ganho de peso.

Para o cálculo dos nutrientes digestíveis totais (NDT) da dieta; durante o período experimental, foi realizado um ensaio digestibilidade, no final de cada período experimental, em que foi feita a coletada de amostras de fezes. Esta foi realizada em três dias consecutivos, em horários predefinidos, no 1º dia entre 7h00 e 8h00 da manhã, no 2º dia entre 12h00 e 13h00 da tarde e no 3º dia 16h00 e 17h00 da tarde. Após a coleta, as fezes foram pesadas e secas em estufa de ventilação forçada 55°C por 72h e, posteriormente, moídas em moinho de facas com peneiras de 2mm. Depois foi feita uma amostra composta por animal em cada período e armazenadas para posteriores análises. Também foram coletadas amostras das sobras por animal, ingredientes do concentrado e da silagem de milho para posteriores análises.

A excreção de matéria seca fecal (MSFECAL) do animal foi determinada utilizando como indicador interno a fibra em detergente neutro indigestível (FDNi). Para isso, amostras de ingredientes do concentrado, silagem de milho, sobras e fezes foram moídas em peneira de crivo de 2 mm e, posteriormente, incubadas por 240h, conforme recomendado por Casali et al. (2008). Após a incubação as amostras foram analisadas quanto ao seu teor de FDN, segundo método INCT–CA F-0008/1.

O cálculo para a estimativa de produção fecal (PF) foi realizado pela seguinte fórmula: MSFECAL (kg/dia) = (CFDNi / %FDNi nas fezes)*100. Onde: MSF= matéria

seca fecal; CFDNi=consumo de FDNi. A digestibilidade aparente dos nutrientes foi calculada a partir das quantidades ingeridas e excretadas, em que a matéria seca fecal (MSFECAL) excretada foi estimada pela concentração de fibra em detergente neutro indigestível (FDNi). Para o cálculo da digestibilidade aparente dos nutrientes utilizou-se a seguinte fórmula: DA (%) = [(nutriente ingerido – nutriente excretado) / nutriente ingerido] × 100.

A análise bromatológica foi realizada no Laboratório de Nutrição Animal do CCA/UFPB. As amostras de alimentos, sobras e fezes foram analisadas quanto aos seus teores de matéria seca (MS), segundo método INCT-CA G-003/1, matéria mineral (MM), segundo método INCT-CA CA-001/1, proteína bruta, segundo método INCT-CA N-001/1, fibra detergente neutro, segundo método INCT-CA F-001/1, e correções para proteína e cinzas, segundo método INCT-CA N-004/1 e INCT-CA M-002/1, respectivamente, e extrato etéreo (EE), segundo método INCT-CA G-004/1, de acordo com as metodologias descritas por Detmann et al. (2012).

Para as análises de FDN foi utilizado o sistema ANKOM, utilizando-se tecido TNT, (dimensões 5,0 cm x 5,0 cm), porosidade de 100 μm. Além disso, foi utilizada alpha-amilase estável ao calor nas análises de FDN. A solução mineral foi preparada por digestão nitro perclórica, segundo método INCT-CA M-0,004/1, conforme metodologia descrita por Detmann et al. (2012). O teor de Ca e P foram determinados por espectrofotometria de chama e colorimetria, utilizando o kit fósforo (ref.: 42) da Labtest, respectivamente, e os demais minerais por espectrofotometria de absorção atômica.

Os carboidratos totais (CHOT) foram calculados pela equação: CHOT (%) = 100 - (% PB + % EE + % MM), proposta por Sniffen et al. (1992). Para a estimativa dos carboidratos não fibrosos dos ingredientes (CNF), foi usada a equação preconizada por Weiss (1999), em que CNF (%) = 100 - (% PB + % EE + % Cinzas + % FDNcp). Já os CNF da dieta, foram calculados pela equação proposta por Hall (2000), sendo CNF (%) = 100 - [(% PB - % PB derivada da ureia + % de ureia) + FDNcp + % EE + % MM]. O teor de nutrientes digestíveis totais (NDT) da dieta foi calculado através da soma dos nutrientes digestíveis.

No final do período experimental, oito animais, sendo dois de cada tratamento, foram abatidos por dia, após jejum de sólidos de 16 horas, de acordo com as normas recomendadas pelo comitê de ética para abate de bovinos, sendo os animais insensibilizados pelo método da concussão cerebral, com pistola de dardo cativo,

seguido por sangria pela secção da veia jugular. Após o abate, o trato gastrintestinal de cada animal foi esvaziado, lavado (rúmen, retículo, omaso, abomaso e intestinos delgado e grosso) e pesado, juntamente com o coração, pulmões, fígado, baço, rins, gordura interna e omental, diafragma, mesentério, cauda, traquéia, esôfago, aparelho reprodutor, cabeça, couro, patas, sangue e carcaça para a obtenção do peso de corpo vazio (PCVZ).

As amostras de sangue foram colhidas imediatamente após a sangria, e colocadas em estufa com ventilação forçada de ar a 55°C para determinação de MS. Estas amostras foram moídas (1mm) e acondicionadas em recipientes para posteriores análises químicas.

Após o abate, a carcaça de cada animal foi dividida em duas metades, as quais foram pesadas e resfriadas em câmara fria a 4 °C, durante 24 horas. Decorrido este tempo, as meias carcaças foram retiradas da câmara fria e pesadas para determinação do peso de carcaça frio. A meia carcaça direita de 16 animais foi dissecada em ossos, gordura e músculo que foram, posteriormente, pesados. O tecido muscular e a gordura foram moídos juntos, enquanto que ossos foram triturados em triturador industrial. Posteriormente, foram obtidas amostras representativas de cada componente para determinação direta dos teores de proteína, gordura e minerais.

Da meia carcaça direita, dos outros 16 animais, foi retirada a seção HH, procedendo-se a separação dos componentes músculo, gordura e ossos que foram, posteriormente, pesados. O tecido muscular e o tecido adiposo foram moídos juntos, ao passo que os ossos foram serrados e triturados. Posteriormente, foram obtidas amostras representativas de cada componente para determinação de forma indireta da composição química do corpo vazio.

O rúmen-retículo, omaso, abomaso, intestino delgado e grosso, gordura interna, gordura omental, mesentério, fígado, coração, rins, pulmão, língua, baço, diafragma, esôfago, traquéia e aparelho reprodutor foram moídos em triturador industrial e homogeneizados para constituir uma amostra de órgãos e vísceras; a cabeça e as patas foram trituradas também em triturador industrial e o couro picado. Posteriormente, foram obtidas amostras de cada componente para posteriores análises.

No caso dos animais referência, amostras dos componentes: cabeça e patas, órgãos e vísceras e sangue, e couro foram agrupadas e homogeneizadas e, posteriormente, elaborada uma amostra composta proporcional à presença desses componentes no corpo vazio (amostra não carcaça). Da mesma forma, amostras de

carne e gordura e ossos, da carcaça, também foram agrupadas e homegeneizadas, e depois foi preparada uma amostra composta proporcional à presença desses componentes no corpo vazio (amostra carcaça).

Posteriormente, essas amostras foram liofilizadas durante 48 a 72 horas, para determinação da matéria seca gordurosa (MSG). Em seguida, as amostras foram submetidas a um processo de extração de gordura com éter de petróleo, obtendo-se a matéria seca pré-desengordurada (MSPD), que, posteriormente, foram processadas em moinho tipo bola, para posterior análise dos teores de matéria seca (MS), segundo método INCT–CA G-003/1, matéria mineral (MM) segundo método INCT–CA M-001/1, proteína bruta (PB) segundo método INCT–CA N-001/1 e extrato etéreo (EE) segundo método INCT–CA G-004/1. A solução mineral foi preparada por digestão nitro perclórica, segundo método INCT–CA M-0,004/1, conforme metodologias descritas por Detmann et al. (2012). O teor de Ca e P foram determinados por espectrofotometria de chama e colorimetria, utilizando o kit fósforo (ref.: 42) da Labtest, respectivamente, e os demais minerais por espectrofotometria de absorção atômica.

A concentração de cinzas, água, Ca, P, Mg, K e Na no PCVZ a partir da composição química da seção HH foi estima utilizando as equações preconizadas por Valadares Filho et al. (2010) que estão descritas abaixo:

Tabela 3. Equações de predição da composição química do peso de corpo vazio de zebuínos a partir da composição química da seção entre 9-10-11^a costelas

Variáveis	Equação de estimação	Erro padrão da estimativa	Coeficiente de determinação
Água no PCVZ, % (Y) Água na HH, % (X)	Y = 31,42 + 0,51X	1,94	0,71
Cinzas no PCVZ, % (Y) Cinzas na HH, % (X)	Y = 2,54 + 0,39X	0,47	0,45

Tabela 4. Equações de predição da composição mineral do corpo vazio de zebuínos a partir da seção entre 9-10-11^a costelas

Itens	Equação de Estimação	R^2	
Cálcio	$Ca_{PCVZ} = 0.7334 + 0.5029 \text{ x } Ca_{HH}$	0,71	
Fósforo	$P_{PCVZ} = 0.3822 + 0.4241 \text{ x } P_{HH}$	0,70	
Magnésio	$Mg_{PCVZ} = 0.0096 + 0.6260 \text{ x } Mg_{HH}$	0,73	

Sódio	$Na_{PCVZ} = 0.1111 + 0.2886 \text{ x } Na_{HH}$	0,31	
Potássio	$K_{PCVZ} = 0.0357 + 0.6732 \text{ x } K_{HH}$	0,60	

Ca $_{pcvz}$ = cálcio no peso de corpo vazio (%), Ca $_{HH}$ = cálcio na seção HH (%), P $_{pcvz}$ = fósforo no peso de corpo vazio (%), P $_{HH}$ = fósforo na seção HH (%), Mg $_{pcvz}$ = magnésio no peso de corpo vazio (%), Mg $_{HH}$ = magnésio na seção HH (%), Na $_{pcvz}$ = sódio no peso de corpo vazio (%), Na $_{HH}$ = sódio na seção HH (%), K $_{pcvz}$ = potássio no peso de corpo vazio (%), K $_{HH}$ = potássio na seção HH (%).

A relação obtida entre o peso de corpo vazio (PCVZ) e o peso vivo (PV) dos animais referência foi utilizada para a estimativa do PCVZ inicial dos animais que permaneceram no experimento. Para a conversão do PV em PCVZ no final do experimento, calculou-se a relação entre o PCVZ e PV dos animais mantidos no experimento. A composição química no PCVZi dos animais mantidos no experimento foi estimada multiplicando a média da composição mineral corporal dos referências pelo PCVZi dos animais em experimento.

O conteúdo corporal de minerais retidos (Ca, P, Mg, K e Na) foram calculados pela diferença entre quantidade do mineral no PCVZ no final do experimento e no PCVZi. O conteúdo corporal de minerais em função do peso de corpo vazio (PCVZ) dos animais foi estimado, conforme o modelo alométrico proposto pelo ARC (1980):

$$CM = a \times PCVZ^{b}$$

Onde: CM = conteúdo corporal do mineral (g); PCVZ = peso de corpo vazio dos animais (kg); "a" e "b" são parâmetros da regressão.

As exigências líquidas de minerais (Ca, P, Mg, K e Na) para ganho de 1 kg de PCVZ foram estimadas derivando as equações de predição dos conteúdos corporais de cada mineral em função do peso de corpo vazio (PCVZ) dos mesmos, conforme o modelo alométrico, segundo o ARC (1980):

$$EL_g = a \times b \times PVCZ^{b-1}$$

Onde: EL_g = exigência líquida do mineral para ganho (g/kg GPCVZ/dia); PCVZ = peso de corpo vazio do animal (kg).

Para o cálculo das exigências líquidas de mantença de cada mineral foram adotadas as recomendações para as perdas endógenas totais de Mg, Na, K, Ca e P destes elementos segundo o ARC (1980) e o NRC (2000), conforme Tabela 5.

Tabela 5. Perdas endógenas totais e biodisponibilidade média de Na, Mg, K e P nos alimentos

Mineral	Perda endógena total	Biodisponibilidade (%)
Na	6,8 mg/Kg PV/dia ¹	91 ¹
Mg	3,0 mg/Kg PV/dia ¹	17^{1}
	Fecal – 2,6 g/Kg MS consumida ^{1,3}	
IZ	Urinária – 37,5 mg/Kg PV/dia ¹	100^{1}
K	Salivar – 0,7 g/100 Kg PV/dia ¹	
	Pele – 1,1 g/dia ¹	
Ca ²	15,4 mg/KgPC	50^2
P	16 mg/kg PV ²	68^2

¹ Dados obtidos do ARC (1980);

As exigências dietéticas totais dos minerais foram obtidas através da soma da exigência líquida de mantença à exigência líquida para ganho de peso, sendo o resultado obtido dividido pelo seu respectivo coeficiente de absorção, proveniente do ARC (1980) e NRC (2000).

Os dados de consumo, peso vivo inicial (PVi), peso vivo final (PVf), ganho médio diário (GMD), composição corporal em água, cinzas, Mg, K, Na, Ca e P foram interpretados estatisticamente por meio de análises de variância e regressão, utilizandose o Sistema de Análises Estatísticas – SAS University edition (2014), aplicando-se o teste F a 5% de probabilidade na análise de variância.

Os modelos não lineares foram construídos por intermédio do PROC REG e do PROC NLIN do SAS, respectivamente. Para todos os testes foram utilizados 0,05 como nível crítico de probabilidade para verificar a significância dos parâmetros dos modelos. As comparações entre as equações de regressão dos parâmetros avaliados para cada método de determinação da composição corporal (direto e indireto) foram realizadas de acordo com a metodologia proposta por Regazzi (1996), para testar a identidade de modelos.

² Dados obtidos do NRC (2000);

³ Considerando consumo de MS de 1,86% do PV, obtido da média dos animais recebendo alimentação à vontade

RESULTADOS E DISCUSSÃO

Houve efeito linear decrescente (P<0,05) da restrição alimentar sobre o consumo de matéria seca (CMS), tanto expresso em Kg/dia quanto em porcentagem de peso vivo, assim como, no consumo de cálcio (CCa), sódio (CNa) e magnésio (CMg), enquanto que o de potássio (CK), e fósforo (CP) apresentaram efeito quadrático. Assim, para cada 1% de restrição alimentar aplicada houve uma redução de 73,0; 0,14; 0,93; 0,22, 0,056 e 0,50g no CMS, CMg, CK, CNa, CCa e CP (Tabela 6).

O AFRC (1991) recomenda como consumo diário de MS, Ca e P para bovinos em crescimento com 300 Kg de PC, valor próximo ao PC médio dos animais deste experimento, os valores de 7,2 Kg/dia, 33,0 g/dia e 29,0 g/dia, respectivamente. Observa-se que o valor de matéria seca, cálcio e de fósforo ingerido foi próximo, superior e semelhante, respectivamente, aos valores observados neste trabalho para animais recebendo alimentação à vontade. Os animais submetidos à restrição de 45% apresentaram CMS de 4,34 Kg/dia, valor semelhante ao preconizado por esse mesmo comitê, 4,3 Kg/dia, para animais com 300 Kg de PC e 0,50 Kg de ganho de PC por dia. Tal fato poderia explicar o ganho médio diário de peso apresentado por esses animais (Tabela 7).

Para esses mesmo animais observou-se que a ingestão de Ca e P foi superior ao consumo diário sugerido pelo AFRC (1991), de 16,0 e 14,0 g/dia, respectivamente. Utilizando os dados de CMS da Tabela 6 e as exigências de Mg, K e Na sugeridas pelo NRC (2000), observou-se que o Mg, K e Na ingerido foram suficientes para atender a exigências diárias para os animais com alimentação à vontade, assim como, para os animais recendo alimentação restrita.

Tabela 6. Consumo de matéria seca (CMS), cálcio (CCa) e fósforo (CP), sódio (CNa), potássio (CK) e magnésio (CMg) de bovinos Sindi submetidos a restrição alimentar.

Itens	Níveis de Restrição (%)			EPM	Val	or P	
	0	15	30	45	EFIVI	L	Q
¹CMS (Kg/dia)	7,70	6,78	5,79	4,34	0,25	<0,001	0,2425
² CMS %PV	2,26	2,04	1,76	1,40	0,06	< 0,001	0,1026
³ CCa (g/dia)	58,07	54,06	47,85	35,96	1,91	< 0,001	0,1348
⁴ CP (g/dia)	28,27	27,57	25,18	18,93	0,87	< 0,001	0,0352
⁵ CNa (g/dia)	44,19	38,16	32,05	24,04	1,46	< 0,001	0,4125
⁶ CK (g/dia)	62,38	57,99	51,60	38,76	1,88	< 0,001	0,0463
⁷ CMg (g/dia)	14,72	13,23	11,53	8,66	0,46	< 0,001	0,1295

EPM - Erro Padrão da Média; P - Probalididade;

Na Tabela 7 encontram-se os dados de peso vivo incial (PCi), peso vivo final (PCf), ganho médio diário (GMD), e composição de cinzas, água, cálcio, fósforo, sódio, potássio e magnésio no corpo vazio de bovinos Sindi submetidos a restrição alimentar. Houve redução linear (P<0,05) no PCf em função da restrição alimentar, enquanto que o GPC e GMD apresentaram efeito quadrático (P<0,05). Esse comportamento já era esperado devido a redução na disponibilidade de nutrientes causada pela diminuição na quantidade de dieta ofertada.

Redução de 12,7 e 20,1% quando comparada aos animais à vontade no GMD para animais submetidos a 10 e 20% de restrição alimentar foi observado por Murphy e Loerch (1994), ao avaliar o efeito da restrição alimentar no desempenho composição e características de carcaça de novilhos em crescimento. Cândido (2009), ao avaliar o efeito da restrição alimentar em novilhas Sindi e Guzerá, observou que o ganho de peso e ganho de peso médio diário reduziram com o aumento da restrição alimentar, obtendo valores de 58,05; 38,28 e 23,21 Kg para GPC e de 0,83; 0,55 e 0,33 Kg para GMD para animais submetidos a 0, 20 e 40% de restrição, respectivamente.

Tabela 7. Desempenho e composição corporal de cinzas, água, sódio (Na), potássio (K), magnésio (Mg) e fósforo (P) de bovinos Sindi submetidos a restrição alimentar.

Itens	Níveis de Restrição (%)				EPM	Valo	or P
	0	15	30	45		L	Q
PCi, kg	299,56	294,50	297,81	294,69	3,83	0,7424	0,8997
¹ PCf, kg	381,87	370,69	358,56	328,50	6,11	0,0007	0,3472
² GPC, kg	82,31	76,19	60,75	33,81	4,15	<,0001	0,036
³ GMD, kg	1,16	1,07 %P	0,85 VCZ	0,48	0,06	< ,0001	0,0379
Cinzas	4,03	3,86	4,12	4,23	0,15	0,1814	0,3516
Água	62,49	63,25	62,16	62,57	0,44	0,7533	0,7814
Ca	1,38	1,43	1,48	1,65	0,09	0,1321	0,6098

 $^{^{1}\}hat{y} = -0.073x + 7.813; (R^{2} = 0.99);$

 $^{^{2}\}hat{y} = 0.019x + 2.295; (R^{2} = 0.98);$

 $^{^{3}\}hat{y}$ -0,483x + 59,86; (R² = 0,94);

 $^{^{4}\}hat{y} = -0.006x^{2} + 0.074x + 28.16; (R^{2} = 0.99);$

 $^{^{5}\}hat{y} = -0.443x + 44.59 (R^{2} = 0.99);$

 $^{^{6}\}hat{y} = -0.009x^{2} - 0.092x + 62.16; (R^{2} = 0.99)$ $^{7}\hat{y} = -0.132x + 15.0; (R^{2} = 0.97)$

P	0,66	0,63	0,83	0,84	0,02	0,3952	0,5975
Na	0,16	0,16	0,16	0,16	0,001	0,1231	0,8543
K	0,23	0,22	0,23	0,24	0,005	0,2472	0,4621
Mg	0,04	0,04	0,04	0,04	0,001	0,3852	0,3252

EPM - erro padrão da média; P - probabilidade; L - linear; Q - quadrática;

Quanto a composição química no corpo vazio, não houve efeito da restrição alimentar sobre a composição de cinzas, água, Na, K, Mg, Ca e P no corpo vazio de bovinos Sindi. Um dos fatores que alteram a composição corporal do animal é o plano nutricional, assim, a diminuição na disponibilidade de nutrientes leva o organismo a reduzir o tamanho dos órgãos e vísceras, com o intuito de reduzir o gasto com a mantença. Essa diminuição na mantença pode ter permitido que os animais, mesmo em restrição de 45%, apresentassem ganho de peso vivo e que não houvesse alteração da composição química no corpo vazio (Fluharty e McCLure, 1997).

Fato comprovado por Trajano (2014), utilizando animais do presente trabalho, onde se observou que houve redução no peso do fígado, trato gastrointestinal e na gordura (interna, mesentérica e omental) com o aumento da restrição alimentar, com valores variando de 5,13 a 3,74 Kg para o fígado, 15,26 a 13,03 Kg para trato gastrointestinal e de 17,42 a 12,37 Kg para a gordura, para restrição alimentar variando de 0 a 45%.

Houve diferença significativa (P<0,05) entre os métodos direto e indireto, seção entre a 9^a e 11^a costelas, com relação a composição de água, cinzas, Ca e P no corpo vazio de bovinos Sindi (Tabela 8).

Tabela 8. Composição corporal de cinzas, água, cálcio (Ca), fósforo (P), sódio (Na), potássio (K) e magnésio (Mg) no corpo vazio de bovinos Sindi obtidas por meio de dois métodos de determinação.

Itens	Método	os Avaliados	EPM	Valor P
	Direto	Direto Indireto (HH)		
Cinzas (%)	3,34b	4,78ª	0,15	<.0001
Água (%)	64,46 ^a	60,78b	0,44	<.0001
Ca (%)	1,11b	1,86a	0,09	<.0001
P (%)	0,67b	0,83a	0,02	0,0002
Na (%)	0.16^{a}	0.16^{a}	0,001	0,0823

 $[\]hat{\hat{y}} = -1,148x + 385,7 (R^2 = 0,93);$ $\hat{\hat{y}} = -0,023x^2 - 0,032x + 82,20; (R^2 = 0,99)$ $\hat{\hat{y}} = -0,0003x^2 - 0,0005x + 1,1511; (R^2 = 0,99);$

K (%)	$0,23^{a}$	$0,22^{a}$	0,005	0,0769
Mg (%)	0,03b	$0,04^{a}$	0,001	<.0001

EPM - erro padrão da média; P - probabilidade

Os teores de cinzas, água, Mg, Ca e P no corpo vazio foram maiores quando estimados a partir seção HH do que obtido pela método direto. A diferença observada entre os métodos pode ter ocorrido, pois as equações desenvolvidas por Valadares Filho et al. (2010) e usada para calcular a composição química do PCVZ dos animais deste experimento, não estimaram de forma apropriada a concentração desses componentes no corpo vazio do animal. Comportamento também observado por Costa e Silva et al. (2013), ao avaliar equações para predição da composição corporal de bovinos Nelore.

Apesar, das equações descritas na Tabela 3 e 4 serem recomendadas para serem utilizadas na estimativa da composição química corporal de animais zebuínos, as diferenças entre as raças podem ter contribuído para as divergências observadas entre os métodos, uma vez que o grupo genético é um dos fatores que pode afetar a predição da composição corporal dos animais. Além disso, segundo Marcondes et al. (2010) as equações utilizadas para estimar a concentração de Ca, P, K, Na e Mg, devem ser validadas quanto o efeito da raça, sexo para obtenção de equações mais confiáveis.

A equação obtida para ambos os métodos através da relação entre o PCVZ e o PV foi: PVCZ = 0,890 x PC, valor próximo ao recomendado pelo NRC (2000) de 0,891 e encontrado por Paulino et al. (2004), de 0,8956. Para conversão das exigências para ganho de PCVZ (GPCVZ) em exigências para ganho de peso corporal (GPC), foi obtida a relação GPCVZ/GPC. De forma que, as exigências líquidas para ganho de 1 kg de GPCVZ foram multiplicadas pelo fator 0,89, para o método direto, e pelo fator 0,83, para o indireto, para obtenção dos requisitos para ganho de 1 kg de PC.

Na Tabela 9 e 10 encontram-se as equações alométricas dos conteúdos de sódio (Na), potássio (K), magnésio (Mg), cálcio (Ca) e fósforo (P) no corpo vazio, em função do peso de corpo vazio, obtidas para cada método de determinação da composição corporal (direto e indireto). O teste de identidade de modelos aplicado as equações alométricas do conteúdo corporal dos elementos minerais, em função do PCVZ, indicou haver diferença significativa (P<0,05) entre os métodos para Na, Mg, Ca e P, não havendo diferença significativa (P>0,05) apenas para o K. Assim, para melhor entendimento foram desenvolvidas equações específicas para Na, K, Mg, Ca e P para cada método.

Tabela 9. Equações alométricas do conteúdo corporal de Ca, P, Na, K e Mg, em função do peso de corpo vazio (PCVZ) de bovinos Sindi, obtidas pelo método direto

Minerais	Equações
Ca	$Y = 0.000034 \text{ x PCVZ}^{2.0083}$
P	$Y = 0.0574 \times PCVZ^{0.6259}$
Na	$Y = 0.0136 \text{ x PCVZ}^{0.63}$
K	$Y = 0.0397 \times PCVZ^{0.5121}$
Mg	$Y = 0.00141x \text{ PCVZ}^{0.7546}$

PCVZ - peso de corpo vazio.

Tabela 10. Equações alométricas do conteúdo corporal de Ca, P, Na, K e Mg em função do peso de corpo vazio (PCVZ) de bovinos Sindi, obtidas pelo método indireto

Minerais	Equações
Ca	$Y = 0.0896 \times PCVZ^{0.7237}$
P	$Y = 0.0524 \text{ x PCVZ}^{0.6881}$
Na	$Y = 0.00286 \text{ x PCVZ}^{0.8961}$
K	$Y = 0.003399 \text{ x PCVZ}^{0.8961}$
Mg	$Y = 0.00318 \times PCVZ^{0.7546}$

PCVZ - peso de corpo vazio.

Os conteúdos corporais de Ca, P, Na, K e Mg, por quilo de PCVZ, em g/Kg PCVZ, para os métodos direto e indireto são apresentadas nas Tabelas 11 e 12. Observou-se que houve redução no conteúdo corporal, da maioria dos minerais estudados, com exceção do Ca no método direto, à medida que aumentou o peso vivo do animal. Comportamento semelhante para de Ca, P, Na, K e Mg para o método indireto, foi observado por Paulino et al. (2004), Silva et al. (2002) e Verás et al. (2001). Comportamento esperado uma vez que, à medida que o peso corporal dos animais aumenta, ocorre uma redução na proporção de tecido ósseo no corpo vazio, ao passo que ocorre um aumento da participação do tecido adiposo. Como esse tecido não contém quantidades significativas de minerais, quanto maior a deposição de gordura no corpo do animal menor a deposição de minerais (Verás et al., 2001; Silva et al., 2002).

Contudo, Almeida et al. (2001), Martins et al. (2003) e Miranda et al. (2006) relataram efeito contrário aos dados observados na literatura, em que os mesmos observaram um aumento na concentração de Ca com a elevação do PV, como observado no método direto. Uma possível explicação para a elevação dos teores de Ca, no método direto, poderia estar relacionado ao fato de que, apesar desses animais estarem

submetidos a restrição alimentar, os mesmos apresentaram ganho de peso vivo, indicando que os animais poderiam estar em ganho compensatório, uma vez que estes, antes da entrada no experimento, estavam submetidos a uma alimentação a nível de mantença, o que poderia ter proporcionado um aumento na mineralização óssea.

O conteúdo corporal de Na e K variaram de 1,72 a 1,55 g/Kg de PCVZ e 2,60 a 2,26 g/Kg de PCVZ para o método direto, respectivamente, e de 1,60 a 1,55 g/Kg de PCVZ e 1,90 a 1,85 g/Kg de PCVZ, respectivamente, para o método indireto para bovinos com peso corporal variando de 300 a 400 Kg. Paulino et al. (2004), ao estudar as exigências de minerais para zebuínos, encontraram valores de 1,47 a 1,27 g/Kg de PCVZ para o Na e de 2,12 a 1,76 g/Kg de PCVZ para o K, para animais com o mesmo peso corporal, valores inferiores aos observados nesse trabalho para o método direto. Para o indireto, os valores encontrados por Paulino et al. (2004) foram superiores ao observados nesse trabalho para o K e inferiores para o Na.

Tabela 11. Estimativas dos conteúdos de Ca, P, Na, K e Mg no peso de corpo vazio, em g/KgPCVZ, de bovinos Sindi, em função do peso corporal (PC), obtidas pelo método direto

PC (Kg)	PCVZ	Ca	P	Na (// PCV/Z)	K	Mg
	(Kg)	(g/KgPCVZ)	(g/KgPCVZ)	(g/KgPCVZ)	(g/KgPCVZ)	(g/KgPCVZ)
275	244,75	8,71	7,33	1,78	2,71	0,37
300	267,00	9,51	7,10	1,72	2,60	0,36
325	289,25	10,31	6,89	1,67	2,50	0,35
350	311,50	11,11	6,70	1,63	2,41	0,34
375	333,75	11,91	6,53	1,58	2,33	0,34
400	356,00	12,71	6,37	1,55	2,26	0,33

PC - peso corporal; PCVZ - peso de corpo vazio

Tabela 12. Estimativas dos conteúdos corporais de Ca, P, Na, K e Mg no peso do corpo vazio, em g/KgPCVZ, de bovinos Sindi, em função do peso corporal (PC), obtidas pelo método indireto

PC (Kg)	PCVZ (Kg)	Ca (g/KgPCVZ)	P (g/KgPCVZ)	Na (g/KgPCVZ)	K (g/KgPCVZ)	Mg (g/KgPCVZ)
275	244,75	19,60	9,43	1,62	1,92	0,48
300	267,00	19,14	9,17	1,60	1,90	0,47
325	289,25	18,72	8,95	1,59	1,89	0,45
350	311,50	18,34	8,74	1,58	1,87	0,44
375	333,75	17,99	8,56	1,56	1,86	0,43
400	356,00	17,67	8,39	1,55	1,85	0,42

PC - peso corporal; PCVZ - peso de corpo vazio

Martins et al. (2007), ao estudar a composição corporal e as exigências de macroelementos minerais de bovinos Nelore e mestiços, obtiveram conteúdo corporal para Mg e P de 0,43 e 7,08 g/Kg de PCVZ, respectivamente, para bovinos Nelore e de 0,46 e 6,48 g/Kg de PCVZ, respectivamente, para animais mestiços, ambos com 400 Kg de peso vivo. Esses valores foram semelhantes ao obtidos, nesse trabalho, para o Mg e P no método indireto e direto, respectivamente. Enquanto que, os conteúdo de Mg e P no método direto e indireto foram inferiores e superiores, respectivamente, ao encontrado por esses autores para animais com mesmo peso corporal.

Miranda et al. (2006), trabalhando com animais Nelore e Caracu, encontraram concentrações de Na, K e Mg menores que as observada nesse trabalho para o método direto, e concentrações maiores de Ca e P. Já no método indireto as concentrações de Na, Mg, Ca e P foram superiores as estimadas por esses autores.

Derivando as equações alométricas apresentadas anteriormente, foram obtidas as equações para predição das exigências líquidas de Ca, P, Na, K e Mg para ganho de 1Kg de PCVZ para cada método de determinação da composição corporal (Tabela 13 e 14), por meio das quais foram estimadas as exigências líquidas para ganho de 1 Kg de PCVZ (Tabela 15 e 16).

Tabela 13. Equações para estimação das exigências líquidas de ganho de 1 Kg de PCVZ de Ca, P, Na, K e Mg, em função do peso de corpo vazio (PCVZ) de bovinos Sindi, obtidas pelo método direto

Minerais	Equações de Regressão
Ca	$Y = 0.000034 \times 2.0083 \times PCVZ^{1.0083}$
P	$Y = 0.0574 \times 0.6259 \times PCVZ^{-0.3741}$
Na	$Y = 0.0136 \times 0.63 \times PCVZ^{-0.37}$
K	$Y = 0.0397 \times 0.5121 \times PCVZ^{-0.4879}$
Mg	$Y = 0.00141 \times 0.7546 \times PCVZ^{-0.2454}$

PCVZ - peso de corpo vazio

Tabela 14. Equações para estimação das exigências líquidas de ganho de 1 Kg de PCVZ de Ca, P, Na, K e Mg em função do peso de corpo vazio (PCVZ) de bovinos Sindi, obtidas pelo método indireto

Minerais	Equações de Regressão
Ca	$Y = 0.0896 \times 0.7237 \times PCVZ^{-0.2763}$

P	$Y = 0.0524 \times 0.6881 \times PCVZ^{-0.3119}$
Na	$Y = 0.00286 \times 0.8961 \times PCVZ^{-0.1039}$
K	$Y = 0.003399 \times 0.89161 \times PCVZ^{-0.1039}$
Mg	$Y = 0.00318 \times 0.7546 \times PCVZ^{-0.2454}$

PCVZ - peso de corpo vazio

As exigências líquidas para ganho de peso da maioria dos minerais estudados reduziram como o aumento do peso vivo do animal, com exceção do Ca no método direto, da mesma forma como os conteúdos corporais. Redução nas exigências líquidas para ganho de peso de Ca, P, Mg, Na, K também foram relatados por Paulino et al. (2004); Silva et al. (2002), Pires et al. (1993) e Veloso et al. (2002). Enquanto que Almeida et al. (2001), Martins et al. (2003) e Miranda et al. (2006) observaram efeito contrário ao observado por esses autores e semelhante as exigências líquidas para Ca obtidas nesse trabalho.

As exigências líquidas para ganho de peso para Na e K encontradas, para animais com peso vivo de 300 e 400 Kg foram de 1,08 e 0,97 g/Kg GPCZ para Na e de 1,33 e 1,16 g/Kg GPCVZ para o K, respectivamente, para o método direto, e de 0,96 e 0,87 g/Kg GPCVZ para o Na e de 1,70 e 1,65 g/Kg GPCVZ para o K para o método indireto. Veloso et al. (2002) encontraram, trabalhando com bovinos F1 Limousin x Nelore inteiros, valores para o Na (1,81 e 1,64 g/kg GPCVZ) e para o K (2,12 e 2,07 g/kg de GPCZ). Esses valores foram superiores ao estimados nesse trabalho para os métodos indireto e direto.

Valores superiores ao estimado nesse trabalho para as exigências líquidas para ganho de Na (1,43 e 1,33 g/Kg GPCVZ) e K (2,66 e 2,77 g/Kg GPCVZ), para ambos os métodos, foram relatados por Silva et al. (2002) e Verás et al. (2001). O ARC (1980) preconiza exigências líquidas fixas de Na e K de 1,50 e 2,0 g/kg de GPCVZ, que foram superiores aos estimados nesse trabalho para ambos os métodos.

Tabela 15. Exigências líquidas de Ca, P, Na, K e Mg em g por quilo de ganho de peso de corpo vazio (g/Kg GPCVZ) e g por quilo de ganho de peso corporal (g/Kg GPC), de bovinos Sindi, em função do peso de corpo vazio (PCVZ) e peso corporal (PC) obtida pelo método direto

PV (Kg) PCVZ Exigência Líquida (g/Kg GPCVC)							
PV (Kg)	(Kg)	Ca	P	Na	K	Mg	
275	244,8	17,49	4,59	1,12	1,39	0,28	

300	267,0	19,10	4,44	1,08	1,33	0,27
325	289,3	20,70	4,31	1,05	1,28	0,26
350	311,5	22,31	4,19	1,02	1,23	0,26
375	333,8	23,92	4,09	1,00	1,19	0,26
400	356,0	25,52	3,99	0,97	1,16	0,25
	·	Exigé	encia Líquid	la (g/Kg GF	PC)	
		Ca	P	Na	K	Mg
275	244,8	15,57	4,08	1,00	1,24	0,25
300	267,0	17,00	3,95	0,96	1,18	0,24
325	289,3	18,42	3,84	0,94	1,14	0,24
350	311,5	19,85	3,73	0,91	1,10	0,23
375	333,8	21,28	3,64	0,89	1,06	0,23
400	356,0	22,72	3,55	0,87	1,03	0,22

PC - peso corporal; PCVZ - peso de corpo vazio; GPCVZ - ganho de peso de corpo vazio; GPC - ganho de peso corporal.

Tabela 16. Exigências líquidas de Ca, P, Na, K e Mg em g por quilo de ganho de peso de corpo vazio (g/Kg GPCVZ) e g por quilo de ganho de peso corporal (g/Kg GPC), de bovinos Sindi, em função do peso de corpo vazio (PCVZ) e peso corporal (PC)obtida pelo método indireto

PC (Kg)	PCVZ							
IC (Kg)	(Kg)	Ca	P	Na	K	Mg		
275	244,8	14,19	6,49	1,45	1,72	0,32		
300	267,0	13,85	6,31	1,43	1,70	0,31		
325	289,3	13,55	6,16	1,42	1,69	0,30		
350	311,5	13,27	6,02	1,41	1,68	0,29		
375	333,8	13,02	5,89	1,40	1,67	0,28		
400	356,0	12,79	5,77	1,39	1,65	0,28		
		Exigência Líquida (g/Kg GPC)						
		Ca	P	Na	K	Mg		
275	244,8	12,63	5,38	1,20	1,43	0,26		
300	267,0	12,33	5,24	1,19	1,41	0,25		
325	289,3	12,06	5,11	1,18	1,40	0,25		
350	311,5	11,81	4,99	1,17	1,39	0,24		
375	333,8	11,59	4,89	1,16	1,38	0,24		
400	356,0	11,38	4,79	1,16	1,37	0,23		

PC - peso corporal; PCVZ - peso de corpo vazio; GPCVZ - ganho de peso de corpo vazio; GPC - ganho de peso corporal.

Para o Mg, as exigências líquidas para ganho, para animais com 300 e 400 Kg de PV, foram de 0,27 e 0,25 g/Kg GPCVZ para o método direto e de 0,31 e 0,28 g/Kg GPCVZ para o indireto. Valores próximos aos encontrados nesse trabalho, para os dois métodos, foram obtidos por Verás et al. (2001) e Silva et al. (2002), de 0,25 e 0,21 g/Kg GPCVZ e 0,32 g/Kg de GPCVZ, respectivamente, e superiores aos valores estimados

nesse trabalho foram observados por Veloso et al. (2002), de 0,70 e 0,67 g/Kg de GPCVZ. O ARC (1980) recomenda exigências líquidas para ganho de Mg de 0,45 g/Kg de GPCVZ, que foi superior ao relatado nesse trabalho.

Em relação ao P, para animais com peso vivo de 300 e 400 Kg, as exigências liquidas obtidas foram de 4,44 e 3,99 g/Kg de GPCVZ para o método direto e de 6,31 e 5,37 g/Kg de GPCVZ. Os resultados obtidos foram inferiores aos encontrados por Verás et al. (2001), Silva et al. (2002) e Veloso et al. (2002), de 8,67 e 8,31 g/Kg de GPCVZ; de 7,90 e 7,53 g/Kg de GPCVZ e de 7,31 e 6,67 g/Kg de PCVZ, respectivamente.

Para o Ca, as exigências líquidas para ganho foram de 19,10 e 25,52 g/Kg de GPCVZ para o método direto e de 13,85 e 12,79 g/Kg de GPCVZ para o método indireto, para animais com peso vivo de 300 e 400 Kg. Os resultados obtidos foram superiores aos obtidos por Silva et al. (2002), de 11,93 e 11,19 g/Kg de GPCVZ, para os dois métodos, enquanto Verás et al. (2001) e Veloso et al. (2002) encontraram valores de 18,38 e 16,77 g/Kg de GPCVZ e de 18,07 e 15,40 g/Kg de GPCVZ, respectivamente, os quais foram inferiores e superiores para os métodos direto e indireto, respectivamente.

As exigências líquidas para mantença de cada mineral foram estimadas utilizando as recomendações para perdas endógenas totais de Ca, P, Na, K e Mg, e as biodisponibilidades desse elementos nos alimentos de acordo com o ARC (1980) e NRC (2000) (Tabela 17 e 18). Pode-se observar que houve um aumento das exigências líquidas de mantença com o aumento do peso vivo do animal.

Tabela 17. Exigências líquidas de mantença de Ca, P, Na, K e Mg, em g/dia, de bovinos Sindi, em função do peso corporal (PC)

DC (Va)	PCVZ	Exigência Líquida de Mantença (g/dia)					
PC (Kg)	(Kg)	Ca	P	Na	K	Mg	
275	244,8	4,24	4,40	1,87	26,79	0,83	
300	267,0	4,62	4,80	2,04	29,16	0,90	
325	289,3	5,01	5,20	2,21	31,53	0,98	
350	311,5	5,39	5,60	2,38	33,90	1,05	
375	333,8	5,78	6,00	2,55	36,27	1,13	
400	356,0	6,16	6,40	2,72	38,64	1,20	

PC - peso corporal; PCVZ - peso de corpo vazio

As exigências dietéticas totais (mantença + 1Kg de ganho de PC) de Ca, P, Na, K e Mg, para o método direto e indireto, estão apresentadas nas Tabelas 18 e 19. Pode se observar que as exigências, expressas em g/dia e % MS, aumentaram à medida que se elevou o peso vivo do animal, comportamento esperado, uma vez que as exigências de mantença se encontram embutidas dentro das exigências totais.

Para animais com 400 Kg de peso vivo, as exigências dietéticas totais de Ca foram de 57,75 g/dia e 0,64 % da MS para o método direto e de 35,09 g/dia e 0,39 % da MS para o indireto. O NRC (2000) e AFRC (1991) preconizam uma exigência total de 31 e de 27 g/dia, para animais com o mesmo peso corporal e ganho de 1 Kg de PV, valores inferiores aos encontrados para os animais do presente trabalho, para ambos os métodos. Silva et al. (2002), trabalhando com animais inteiros, encontraram exigência dietética total de 0,39 % da MS, para animais com 400 Kg de PV, valor inferior e semelhante para o método direto e indireto, respectivamente, ao valor obtido nesse trabalho. Paulino et al. (2004), trabalhando com animais castrados, encontraram o valor de 0,36 % da MS como exigência dietética total, o qual foi inferior ao encontrado nesse trabalho para ambos os métodos.

As exigências dietéticas totais de P, para animais com 400 Kg de peso vivo, foram de 14,63 g/dia e 0,16 % da MS para o método direto e de 16,45 g/dia e 0,18 % da MS para o indireto. O AFRC (1991) recomenda, para animais com o mesmo peso corporal e ganho de 1 Kg de PV, exigência de 15 g/dia, valor próximo ao observado nesse trabalho para o método direto, porém inferior ao estimado para o método indireto. O NRC (2000) preconiza uma exigência total de 18 g/dia, valor superior aos obtidos para os animais do presente trabalho, para ambos os métodos.

Paulino et al. (2004) encontraram exigências dietéticas totais de 16,84 g/dia e 0,18 %MS, em animais castrados, valores próximos aos estimados nesse trabalho para o método indireto, mas superior aos obtidos para o direto. A diferença entre os valores encontrado por Paulino et al. (2004) e aos estimados nesse trabalho, em relação ao método direto, pode ter ocorrido pelo fato de as análises químicas, nesse método, terem sido feitas em todos os tecidos do animal, enquanto que as de Paulino et al. (2004) foi estimada a partir da composição química da HH, o que também poderia explicar a semelhança observada entre os valores encontrados por esses autores e os estimados nesse trabalho para o método indireto, indicando que a utilização da HH para estimação do teor de P no corpo vazio de bovino Sindi pode ter apresentado algum vício.

Além disso, esperava-se que os animais desse trabalho apresentassem exigências maiores de P do que os animais estudados por Paulino et al. (2004), uma vez que segundo esses autores, animais inteiros (utilizados nesse experimento) por depositarem menos gordura que animais castrados, tendem a apresentar exigências maiores de P, o que não foi observado nesse trabalho. Contudo, os valores obtidos, nesse trabalho, para animais com 400 Kg de PV, foram inferiores aos estimados por Silva et al. (2002), de 27,24 g/dia e 0,28 % da MS, e Paulino et al.(1999), de 16,19 g/dia, os quais trabalharam com zebuínos inteiros. Por serem animais de menor porte quando comparado a outras raças zebuínas, como o Nelore, a deposição de gordura desses animais poderia ter o mesmo comportamento de animais castrados, o que explicaria a menor exigência de P apresentada pelos animais desse experimento.

Tabela 18. Exigências dietéticas totais de Ca, P, Na, K e Mg, em g/dia e %MS, de bovinos Sindi, obtidas por meio do método direto

PC (Kg)	PCVZ (Kg)		Exigência l	Dietética To	otal (g/dia)	
- (6)	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Ca	P	Na	K	Mg
275	244,75	39,61	12,48	3,15	28,02	6,30
300	267,00	43,23	12,87	3,30	30,34	6,71
325	289,25	46,86	13,29	3,46	32,67	7,12
350	311,50	50,49	13,72	3,62	35,00	7,54
375	333,75	54,12	14,17	3,78	37,34	7,96
400	356,00	57,75	14,63	3,94	39,67	8,38
	•			% MS		
		Ca	P	Na	K	Mg
275	244,75	0,64	0,20	0,05	0,45	0,10
300	267,00	0,64	0,19	0,05	0,45	0,10
325	289,25	0,64	0,18	0,05	0,44	0,10
350	311,50	0,64	0,17	0,05	0,44	0,10
375	333,75	0,64	0,17	0,04	0,44	0,09
400	356,00	0,64	0,16	0,04	0,44	0,09

PC - peso corporal; PCVZ - peso de corpo vazio;

Tabela 19. Exigências dietéticas totais de Ca, P, Na, K e Mg, em g/dia e %MS, de bovinos Sindi, obtidas por meio do método indireto

PC (Kg)	PCVZ (Kg)	Exigência Dietética Total (g/dia)				
		Ca	P	Na	K	Mg
275	244,75	33,72	14,39	3,38	28,21	6,39
300	267,00	33,89	14,76	3,55	30,57	6,79

¹Consumo médio de MS de 2,26%, obtido da média dos animais recebendo alimentação à vontade

325	289,25	34,12	15,16	3,73	32,93	7,19
350	311,50	34,40	15,58	3,90	35,29	7,59
375	333,75	34,73	16,01	4,08	37,65	8,00
400	356,00	35,09	16,45	4,26	40,02	8,41
				% MS		
	-	Ca	P	Na	K	Mg
275	244,75	0,54	0,23	0,05	0,45	0,10
300	267,00	0,50	0,22	0,05	0,45	0,10
325	289,25	0,46	0,21	0,05	0,45	0,10
350	311,50	0,43	0,20	0,05	0,45	0,10
375	333,75	0,41	0,19	0,05	0,44	0,09
400	356,00	0,39	0,18	0,05	0,44	0,09

PC - peso corporal; PCVZ - peso de corpo vazio;

Para o Mg, a exigência dietética total, para animais com 400 Kg de PV, foi de 0,09% da MS para ambos os métodos, valor semelhante ao obtido por Paulino et al. (2004), de 0,09% da MS, Silva et al. (2002), de 0,09% da MS e NRC (2000), de 0,10% da MS. As exigências de Na, para animais com 400 Kg de PV, foi 0,04% da MS para o método direto e de 0,05% da MS para o indireto, esses valores foram próximos aos valores recomendados pelo NRC (2000) e aos obtidos por Silva et al. (2002), de 0,05% da MS, Paulino et al. (2004), de 0,04% da MS. Para o K, a exigência dietética total foi de 0,44% da MS para ambos os métodos, valor inferior ao recomendado pelo NRC (1996), de 0,60% da MS e próximo ao obtido por Paulino et al. (2004), de 0,47% da MS.

CONCLUSÕES

As equações utilizadas no método indireto não são eficientes para predizer a concentração de extrato etéreo, cinzas, água, magnésio e fósforo no corpo vazio de bovinos Sindi a partir da concentração desses constituintes na seção HH. Assim, novos dados devem ser reunidos, incluindo efeito de raças, sexo, plano nutricional, para que equações mais eficientes sejam obtidas.

As exigências dietéticas de P, Na, K, em ambos os métodos, são inferiores as recomendações pelo NRC (2000), enquanto que as de Mg e Na são semelhantes e a de Ca superior.

REFERÊNCIAS BIBLIOGRÁFICAS

¹Consumo médio de MS de 2,26%, obtido da média dos animais recebendo alimentação à vontade

- AGRICULTURAL and FOOD RESEARCH COUNCIL. A reappraisal of the calcium and phosphorus requirements of sheep and cattle. 6.ed. Nutrition Abstract and Reviews (Series B). Wallingford: 1991. p.573-612.
- AGRICULTURAL RESEARCH COUNCIL. **The nutrient requirements of ruminants livestock**. London: Commonwealth Agricultural Bureaux, 1980. 351p.
- ALMEIDA, M.I.V.; FONTES, C.A.A.; ALMEIDA, F.Q. et al. Conteúdo Corporal e Exigências Líquidas e Dietéticas de Macroelementos Minerais (Ca, P, Mg, Na e K) de Novilhos Mestiços Holandês-Gir em Ganho Compensatório. **Revista Brasileira de Zootecnia**, v.30, n.3, p.849-857, 2001.
- CÂNDIDO, E.P. **Efeito da restrição alimentar em novilhas Sindi e Guzerá**. 2009, 71f. Dissertação (Mestrado em Zootecnia) -Universidade Federal da Paraíba, Areia, 2009.
- COMMONWEALTH SCIENTIFIC and INDUSTRIAL RESEARCH ORGANIZATION. **Nutrient Requirements of Domesticated Ruminants**. Collingwood, VIC: Commonwealth Scientific and Industrial Research Organization, 2007. 270p.
- COSTA E SILVA, L.F.; VALADARES FILHO, S.C.; DETMANN, E. et al. Evaluation of equations to predict body composition in Nellore bulls. **Livestock Science**, v.151, p.46-57, 2013.
- DETMANN, E.; SOUZA, M.A.; VALADARES FILHO, S.C. et al. **Métodos para Análise de Alimentos**. INCT Ciência Animal. Suprema, Visconde do Rio Branco, 2012. 214p.
- FLUHARTY, F.L.; McCLURE, K.E. Effects of dietary energy intake and protein concentration on performance and visceral organ mass in lambs. **Journal Animal Science**, v.75, p.604-610, 1997.

- GOFF, J.P. Minerais. In: REECE, W.O. Dukes- **Fisiologia dos Animais Domésticos**. 12. ed. Rio de Janeiro: Editora Guanabara Koogan, 2014. p.532-555.
- HALL, M.B. Calculation of non-structural carbohydrate content of feeds that contain non-protein nitrogen. Gainesville: University of Florida, 2000. p.A-25 (Bulletin, 339).
- MARCONDES, M.I.; PAULINO, P.V.R.; VALADARES FILHO, S.C. et al. Predição da composição química corporal e da carcaça de animais Nelore puros e cruzados. In: VALADARES FILHO, S. C.; MARCONDES, M.I.; CHIZZOTTI, M.L. et al. Exigências nutricionais de zebuínos puros e cruzados BR CORTE. 2.ed. Viçosa, MG:UFV, DZO, 2010. p.65-84.
- MARCONDES, M.I.; TEDESCHI, S.C.; VALADARES FILHO, S.C. et al. Prediction of physical and chemical body compositions of purebred and crossbred Nellore cattle using the composition of a rib section. **Journal Animal Science**, v.90, p.1280–1290, 2012.
- MARTINS, R.; GALVÃO, R.; PAULINO, M.F. et al. Composição corporal e exigências de macroelementos minerais (Ca, P, Na, K e Mg) de bovinos nelore e mestiços, não castrados, em confinamento. **Revista Ceres**, v.54, n.315, p.453-460, 2007.
- MIRANDA, E.N.; QUEIROZ, A.C.; LANA, R.P. et al. Composição corporal e exigências nutricionais de macrominerais de bovinos Caracu selecionados e Nelore selecionados ou não para peso ao sobreano. **Revista Brasileira de Zootecnia**, v.35, n.3, p.1201-1211, 2006 (supl.).
- MURPHY, T. A.; LOERCH, S. C. Effects of Restricted Feeding of Growing Steers on Performance, Carcass Characteristics, and Composition. **Journal of Animal Science**, v.72, p.2497-2507, 1994.
- NATIONAL RESEARCH COUNCIL NRC. **Nutrient requirements of beef cattle**. 7. rev. ed. Washington: National Academy Press, 2000. 242p.

- PAULINO, M.F.; FONTES, C.A.A.; JORGE, A.M. et al. Composição corporal e exigências de macroelementos minerais (Ca, P, Mg, Na e K) de bovinos não-castrados de quatro raças zebuínas. **Revista Brasileira de Zootecnia**, v.28, n.3, p.634-641, 1999.
- PAULINO, P.V.R.; COSTA, M.A.L.; VALADARES FILHO, S.C. et al. Exigências nutricionais de zebuínos: minerais. **Revista Brasileira de Zootecnia**, v.33, n.3, p.770-780, 2004.
- PIRES, C. C.; FONTES, C. A. A.; GALVÃO, J. G. et al. Exigências nutricionais de bovinos de corte em acabamento. III. Exigências de cálcio e fósforo para o ganho. **Revista da Sociedade Brasileira de Zootecnia**, Viçosa, v. 22, n. 1, p. 133-143, 1993.
- REGAZZI, A.J. Teste para verificar a identidade de modelos de regressão. **Pesquisa Agropecuária Brasileira**, v.31, n.1, p.1-17, 1996.
- SAS INSTITUTE INC. **SAS University Edition**. Cary: Statistical Analysis System Institute, USA, 2014.
- SILVA, F.F.; VALADARES FILHO, S.C.; ÍTAVO, L.C.V. et al. Composição corporal e requisitos líquidos e dietéticos de macroelementos minerais de bovinos Nelore não-castrados. **Revista Brasileira de Zootecnia**, v.31, n.2, p.757-764, 2002.
- SNIFFEN, C.J.; O,,CONNOR, J.D.; VAN SOEST, et al. A net carbohydrate and protein system for evaluation cattle diets. II. Carbohydrates and protein availability. **Journal of Animal Science**, v.70, p.3562-3577, 1992.
- TRAJANO, J.S. Avaliação da restrição alimentar em bovinos da raça Sindi em crescimento. 2014, 83f. Tese (Doutorado em Zootecnia) Universidade Federal da Paraíba, Areia, 2014.

- UNDERWOOD, E.J.; SUTTLE, N.F. The mineral nutrition of livestock. 4.ed. New York: CAB International, 1999. 614p
- VALADARES FILHO, S. C.; MARCONDES, M.I.; CHIZZOTTI, M.L. et al. Exigências nutricionais de zebuínos puros e cruzados BR CORTE. 2.ed. Viçosa, MG:UFV, DZO, 2010. 193p.
- VELOSO, C.M.; VALADARES FILHO, S.C.; GESULADI JÚNIOR, A. et al. Composição Corporal e Exigências Líquidas e Dietéticas de Macroelementos Minerais de Bovinos F1 Limousin x Nelore Não-Castrados. Revista Brasileira de Zootecnia, v.31, n.3, p.1294-1301, 2002.
- VÉRAS, A.S.; VALADARES FILHO, S.C.; COELHO DA SILVA, J.F. et al. Composição corporal e requisitos líquidos e dietéticos de macroelementos minerais de bovinos Nelore não-castrados. **Revista Brasileira de Zootecnia**, v.30, n.3, p.1106-1111, 2001.
- WEISS, W.P. Energy prediction equations for ruminant feeds. Cornell: Nutrition conference for feed manufactures, p. 176-184, 1999.

CAPÍTULO III

Composição corporal e Exigências de Microelementos Minerais para Bovinos Sindi

Composição Corporal e Exigências de Microelementos Minerais para Bovinos Sindi

RESUMO

O presente estudo teve como objetivo estimar a composição corporal e as exigências dietéticas de microelementos minerais para bovinos da raça Sindi. Foram utilizados 40 machos inteiros com peso médio inicial 296,65 \pm 21,33 Kg e idade média de 21,0 \pm 1,5 meses. Oito animais foram abatidos no início do experimento para compor o grupo referência, os demais animais foram distribuídos, aleatoriamente, em delineamento inteiramente casualizado, em quatro níveis de restrição alimentar (0, 15, 30 e 45%) e dois métodos de determinação da composição corporal, direto e indireto, perfazendo um esquema fatorial 4x2. Ao final do experimento todos os animais foram abatidos, e o trato gastrintestinal de cada animal foi esvaziado, lavado e pesado, juntamente com o coração, pulmões, fígado, baço, rins, gordura interna e omental, diafragma, mesentério, cauda, traquéia, esôfago, aparelho reprodutor, cabeça, couro, patas, sangue e carcaça para a obtenção do peso de corpo vazio (PCVZ), os quais, posteriormente, foram analisados para determinação dos teores de Cu, Fe, Zn e Mn, assim como, os tecidos da seção entre a 9 e 11ª costelas. As exigências líquidas de minerais (Cu, Fe, Zn e Mn) para ganho de 1 kg de PCVZ foram estimadas derivando as equações de predição dos conteúdos corporais de cada mineral em função do peso de corpo vazio (PCVZ). Observou-se que houve aumento no conteúdo corporal e nas exigências líquidas para ganho de 1Kg de PCVZ dos minerais estudados, à medida que aumentou o peso vivo do animal, com exceção do Cu. As exigências líquidas para ganho de Cu, Fe, Zn e Mn variaram de 5,37 a 4,99; 48,91 a 52,21; 57,62 a 85,09 e 0,061 a 0,075 mg/Kg de GPCVZ, respectivamente, para o método direto e de 41,83 a 42,27 e 27,84 a 28,02 mg/Kg de GPCVZ para o Fe e Zn, respectivamente, para o indireto em animais com peso vivo variando de 275 a 400 Kg, respectivamente. Recomendam-se como exigências dietéticas totais de bovinos Sindi, os valores de 143,68 e 140,25; 422,10 e 370,31; 40,88 e 41,34; 43,74 e 43,05 mg/Kg MS, para Cu, Fe, Zn e Mn, respectivamente, para animais com 275 e 400 Kg de PC, respectivamente.

Palavras chaves: bovinos, exigências líquidas, minerais, restrição

Corporal Composition and Microelements minerals Requirements for Sindi Cattle

ABSTRACT

The present study had as objective to estimate body composition and dietary microminerals requirements for Sindhi cattle. Forty bulls with average weight 296.65 ± 21.33 kg and mean age of 21.0 \pm 1.5 months were used in the experiment. Eight animals were slaughtered at the beginning of the experiment to compose the reference group, the remaining animals were, randomly, distributed in four food restriction levels (0.0, 15.0, 30.0 and 45.0 %) and two method of the composition corporal determination, making a factorial scheme 4x2. At the end of the experiment all animals were slaughtered, and the gastrointestinal tract of each animal was emptied, washed and At the end of the experiment all animals were slaughtered, and the gastrointestinal tract of each animal was emptied, washed and weighed, and this weight was added to the organs and other animal's body parts (carcass, head, leather, tail, feet and blood) for empty body weight (EBW) determination. These parts were analyzed for determination of Cu, Fe, Zn and Mn, as well as tissues section between 9 and 11^a ribs. The net requirements of minerals (Cu, Fe, Zn and Mn) for gain of 1 kg EBW were estimated deriving the prediction equations for the inorganic macrominerals content in the animal body in function of the EBW. There was an increase in body content and net requirements for EBW gain of 1kg of the studied minerals, as increased live weight of the animal, with the exception of Cu. The net requirements of Cu, Fe, Zn and Mn for gain ranged from 5.37 to 4.99; 48.91 to 52.21; 57.62 to 85.09 and from 0.061 to 0.075 mg kg EBW⁻¹, respectively, in the direct method and from 41.83 a 42.27 e 27.84 a 28.02 mgKg EBW⁻¹ for the Fe and Zn, respectively, in the indirect method, as the BW increased from 250 to 400 kg. The total dietary requirements of Sindi cattle were 143,68 e 140,25; 422,10 e 370,31; 40,88 e 41,34; 43,74 e 43,05 mg/Kg MS, para Cu, Fe, Zn e Mn, respectively, for the animals with 275 e 400 Kg de BW, respectively.

Keywords: cattle beef, minerals, net requirement, restriction

INTRODUÇÃO

Os microminerais ou elementos traços estão presentes no corpo do animal em concentrações muito baixas. Apesar disso, são essenciais para o funcionamento do organismo animal. O ferro atua como componente do heme encontrado na hemoglobina e na mioglobina e de várias proteínas envolvidas na cadeia transportadora de elétrons, como citrocromo oxidase, catalase, ferredoxina e mieloperoxidase (NRC, 2000; Goff, 2014).

O Zinco faz parte de várias enzimas que estão envolvidas no metabolismo de carboidratos, lipídios, proteínas e ácidos nucléicos, como fosfatase alcalina, RNA polimerase, carboxipeptidase, entre outras. Esse mineral também é importante para o desenvolvimento e funcionamento normal do sistema imune. O manganês atua como co-fator de enzimas envolvidas na formação do colágeno ósseo e cartilagem. Entre as enzimas ativadas por esse mineral estão as transferases, quinases e hidrolases. O cobre (Cu) é o componente de enzimas, como citocromo oxidase, lisil oxidase, ceruloplasmina, tirosinase e superóxido dismutase que atuam em vários processos fisiológicos (NRC, 2000; Goff, 2014).

Dada sua importância, os microelementos minerais devem ser fornecidos na dieta, de forma que atendam as necessidades dos animais. Por isso, é necessário conhecer a concentração desses minerais no corpo do animal, uma vez que, por serem requeridos em quantidades muito baixas a ocorrência da toxicidade causada por consumo em excesso pode ser possível. Ao passo que, o fornecimento inadequado pode causar deficiência no animal. Ambos, com efeito negativo no desempenho e na saúde do animal.

A composição química corporal é fundamental para determinação das exigências dos animais. Existem dois métodos para se obtê-la, o direto, em que todas as partes do corpo do animal são analisas quimicamente, sendo considerado o mais preciso, porém oneroso e trabalhoso; e o indireto, mais simples e rápido, que utiliza animais vivos (avaliação da conformação, ultrassonografia, mensuração da radioatividade do 40K, entre outros) ou cortes da carcaça, como a seção entre a 9ª e 11ª costelas, para estimar a composição corporal (Verás et al., 2001).

Muitos fatores podem influenciar a composição corporal dos animais, e consequentemente sua exigência, entre os principais fatores estão a raça, o plano nutricional, idade, espécie animal, sexo, estado fisiológico (mantença, lactação,

crescimento e gestação) e nível de produção. Além disso, a interação entre os minerais pode alterar a sua absorção, o que também modificação sua exigência (NRC, 2007; Pedreira e Berchielli, 2011).

Diante disso, informações sobre o requerimento de microminerais é necessário para garantir o fornecimento apropriado desses nutrientes para o animal e, assim, se obter uma adequada performance e saúde do animal. Contudo, são escassos os dados sobre a exigência desses minerais para bovinos.

Dessa forma, esse trabalho teve como objetivo determinar a composição corporal e as exigências de microelementos minerais para bovinos Sindi, por meio de dois métodos de determinação da composição corporal.

MATERIAL E MÉTODOS

O experimento foi realizado no setor de Bovinocultura de Corte do Departamento de Zootecnia da Universidade Federal de Viçosa (DZO-UFV), em Minas Gerais, localizada na região da Zona da Mata. O período experimental teve duração de 74 dias, sendo 14 dias de adaptação à dieta e as instalações de manejo, durante o qual as temperaturas médias máxima e mínima foram de 27,3 e 18,9°C, respectivamente, com umidade relativa de 76%.

Foram utilizados 40 bovinos da raça Sindi, não castrados, adquiridos de uma única propriedade com idade média de 21 ± 1,5 meses e peso corporal médio de 296,65 ±21,33 Kg. Destes, oito foram abatidos no início do experimento e serviram como referência no estudo da composição corporal e do peso de corpo vazio iniciais dos animais. A meia carcaça direita de quatro foi dissecada totalmente, enquanto na meia carcaça direita dos outros quatro animais foi retirada a seção entre a 9ª e 11ª costelas.

Os animais restantes foram distribuídos em delineamento inteiramente casualizado, em esquema fatorial, sendo quatro níveis de restrição de ingestão de matéria seca (MS), 0,0; 15,0; 30,0 e 45,0% e dois métodos de determinação da composição corporal (direto e indireto). No método direto, todas as partes do corpo do animal foram após o abate; separadas, pesadas, moídas e retiradas amostras que foram submetidas à análise química, enquanto no indireto foram determinadas as composições química e física da seção entre a 9ª e 11ª costelas para estimar a composição corporal dos animais.

A dieta foi formulada segundo o BR-CORTE (Valadares Filho et al. 2010), estimando-se um ganho de peso médio diário de 1,2 kg para os animais alimentados à vontade. Em decorrência da falta de informações sobre as exigências da raça Sindi, a formulação da dieta foi feita tomando como base nas exigências nutricionais de bovinos da raça Nelore. A alimentação dos animais consistiu de silagem de milho e concentrado, com uma relação de volumoso: concentrado, com base na matéria seca, fixa de 40:60 durante todo o período experimental. O volumoso foi silagem de milho e o concentrado composto por farelo de soja, farelo de trigo, fubá de milho, uréia/sulfato de amônio (9:1) e mistura mineral, conforme as Tabelas 1 e 2.

Tabela 1. Participação dos ingredientes na dieta experimental com base na matéria seca

Ingredientes	Proporção (g/kg MS)
Silagem de Milho	400,0
Fubá de Milho	360,0
Farelo de soja	60,0
Farelo de Trigo	150,0
Ureia (sulfato de amônia)	10,0
Mistura Mineral ¹	20,0

¹Mistura Mineral: cálcio - 314,02 g/kg; cobalto- 27,19 mg/kg; cobre - 628,59 mg/kg; enxofre - 10,01 g/kg; fósforo - 42, g/kg; magnésio - 3,80 g/kg; manganês - 625,91 mg/kg; sódio - 262,00 g/kg e zinco - 1120,71 mg/kg.

Tabela 2. Composição química dos ingredientes utilizados na dieta experimental, expressos com base na matéria seca

Itens	Dieta	Silagem de milho	Fubá de milho	Farelo de soja	Farelo de Trigo	Ureia SA ¹ (9:1)
MS, g/KgMN ¹	458,1	266,1	881,8	880,4	868,2	999,0
MO, g/KgMS	932,2	949,7	988,8	938,8	949,3	-
MM, g/KgMS	37,8	56,3	11,2	61,2	50,7	-
PB, g/KgMS	146,2	66,2	92,3	535,4	190,7	2.600,0
EE, g/KgMS	37,4	33,7	47,7	19,7	36,9	-
FDN, g/KgMS	380,2	637,8	125,8	186,8	457,2	
$FDN_{cp}, g/KgMS$	340,2	574,1	103,4	117,9	441,8	-
CHOT, g/KgMS	774,6	843,8	848,8	383,7	721,6	
CNF, g/KgMS	609,8	269,9	745,5	266,04	280,14	-
NDT ² , g/KgMS	691,3	-	-	-	-	-
Ca, g/KgMS	8,28	3,82	0,27	3,07	1,04	-

P, g/KgMS	4,36	1,89	2,61	7,04	9,33	-
Na, g/KgMS	5,54	0,33	0,11	0,11	0,23	-
K, g/KgMS	8,93	11,43	3,18	23,63	11,86	-
Mg, g/KgMS	1,99	1,89	0,89	3,41	4,26	-
Cu, mg/KgMS	58,89	62,25	30,86	46,22	48,84	-
Fe, mg/KgMS	589,34	1353,77	31,83	218,55	154,40	-
Zn, mg/KgMS	56,98	13,35	30,38	58,70	97,72	-
Mn, mg/KgMS	62,48	58,59	7,26	14,32	153,30	-

MS = matéria seca; ¹MN= matéria natural; MO = matéria orgânica; PB = proteína bruta; EE = extrato etéreo; FDNcp = fibra em detergente neutro corrigido para proteína bruta e cinzas; CNF = carboidratos não fibrosos; ¹SA: Sulfato de Amônia 9:1; ²NDT= nutrientes digestíveis totais estimados pelo BR-CORTE (Valadares Filho et al., 2010); Na= sódio; K= potássio; Mg = magnésio; P = fósforo; Cu = cobre; Fe = ferro; Zn = zinco; Mn = Manganês.

Após o período de adaptação, os animais do grupo referência foram abatidos e os demais foram pesados, após jejum sólido de 16 horas, para dar inicio ao experimento. O fornecimento da dieta foi feito duas vezes ao dia (6h30 e 14h30), em forma de ração completa, sendo aproximadamente, metade distribuída pela manhã e a outra metade à tarde. A quantidade ofertada foi ajustada a cada três dias, de maneira a obter sobras entre 5 a 10% para animais recebendo dieta à vontade.

A quantidade de ração oferecida, assim como, a de sobras foi registrada, diariamente, para determinação do consumo. Também foram feitas coletas das amostras das sobras e da silagem de milho, as quais foram, posteriormente, congeladas. Semanalmente, essas amostras foram descongeladas, homogeneizadas, agrupadas, formando uma amostra composta, as quais foram secas em estufa com ventilação forçada a 55°C por 72h e depois moídas em moinhos de facas com peneiras de malha de 1mm e acondicionadas em recipientes plásticos. No final de cada período, foi elaborada uma amostra composta da silagem de milho e das sobras de cada animal. A amostragem dos ingredientes do concentrado foi feita cada vez que ocorria a produção do mesmo. A cada 28 dias foi feita a pesagem dos animais para acompanhamento do ganho de peso.

Para o cálculo dos nutrientes digestíveis totais (NDT) da dieta; durante o período experimental, foi realizado um ensaio digestibilidade, no final de cada período experimental, em que foi feita a coletada de amostras de fezes. Esta foi realizada em três dias consecutivos, em horários predefinidos, no 1º dia entre 7h00 e 8h00 da manhã, no 2º dia entre 12h00 e 13h00 da tarde e no 3º dia 16h00 e 17h00 da tarde. Após a coleta, as fezes foram pesadas e secas em estufa de ventilação forçada 55°C por 72h e,

posteriormente, moídas em moinho de facas com peneiras de 2mm. Depois foi feita uma amostra composta por animal em cada período e armazenadas para posteriores análises. Também foram coletadas amostras das sobras por animal, ingredientes do concentrado e da silagem de milho para posteriores análises.

A excreção de matéria seca fecal (MSFECAL) do animal foi determinada utilizando como indicador interno a fibra em detergente neutro indigestível (FDNi). Para isso, amostras de ingredientes do concentrado, silagem de milho, sobras e fezes foram moídas em peneira de crivo de 2 mm e, posteriormente, incubadas por 240h, conforme recomendado por Casali et al. (2008). Após a incubação as amostras foram analisadas quanto ao seu teor de FDN, segundo método INCT–CA F-0008/1.

O cálculo para a estimativa de produção fecal (PF) foi realizado pela seguinte fórmula: MSFECAL (kg/dia) = (CFDNi / %FDNi nas fezes)*100. Onde: MSF= matéria seca fecal; CFDNi=consumo de FDNi. A digestibilidade aparente dos nutrientes foi calculada a partir das quantidades ingeridas e excretadas, em que a matéria seca fecal (MSFECAL) excretada foi estimada pela concentração de fibra em detergente neutro indigestível (FDNi). Para o cálculo da digestibilidade aparente dos nutrientes utilizou-se a seguinte fórmula: DA (%) = [(nutriente ingerido – nutriente excretado) / nutriente ingerido] × 100.

A análise bromatológica foi realizada no Laboratório de Nutrição Animal do CCA/UFPB. As amostras de alimentos, sobras e fezes foram analisadas quanto aos seus teores de matéria seca (MS), segundo método INCT-CA G-003/1, matéria mineral (MM), segundo método INCT-CA CA-001/1, proteína bruta, segundo método INCT-CA N-001/1, fibra detergente neutro, segundo método INCT-CA F-001/1, e correções para proteína e cinzas, segundo método INCT-CA N-004/1 e INCT-CA M-002/1, respectivamente, e extrato etéreo (EE), segundo método INCT-CA G-004/1, de acordo com as metodologias descritas por Detmann et al. (2012).

Para as análises de FDN foi utilizado o sistema ANKOM, utilizando-se tecido TNT, (dimensões 5,0 cm x 5,0 cm), porosidade de 100 μm. Além disso, foi utilizada alpha-amilase estável ao calor nas análises de FDN. A solução mineral foi preparada por digestão nitro perclórica, segundo método INCT-CA M-0,004/1, conforme metodologia descrita por Detmann et al. (2012). Os teores de Cu, Fe, Zn e Mn foram obtidos por espectrofotometria de absorção atômica.

Os carboidratos totais (CHOT) foram calculados pela equação: CHOT (%) = 100 - (% PB + % EE + % MM), proposta por Sniffen et al. (1992). Para a estimativa

dos carboidratos não fibrosos dos ingredientes (CNF), foi usada a equação preconizada por Weiss (1999), em que CNF (%) = 100 - (% PB + % EE + % Cinzas + % FDNcp). Já os CNF da dieta, foram calculados pela equação proposta por Hall (2000), sendo CNF (%) = 100 - [(% PB - % PB derivada da ureia + % de ureia) + FDNcp + % EE + % MM]. O teor de nutrientes digestíveis totais (NDT) da dieta foi calculado através da soma dos nutrientes digestíveis.

No final do período experimental, oito animais, sendo dois de cada tratamento, foram abatidos por dia, após jejum de sólidos de 16 horas, de acordo com as normas recomendadas pelo comitê de ética para abate de bovinos, sendo os animais insensibilizados pelo método da concussão cerebral, com pistola de dardo cativo, seguido por sangria pela secção da veia jugular. Após o abate, o trato gastrintestinal de cada animal foi esvaziado, lavado (rúmen, retículo, omaso, abomaso e intestinos delgado e grosso) e pesado, juntamente com o coração, pulmões, fígado, baço, rins, gordura interna e omental, diafragma, mesentério, cauda, traquéia, esôfago, aparelho reprodutor, cabeça, couro, patas, sangue e carcaça para a obtenção do peso de corpo vazio (PCVZ).

As amostras de sangue foram colhidas imediatamente após a sangria, e colocadas em estufa com ventilação forçada de ar a 55°C para determinação de MS. Estas amostras foram moídas (1mm) e acondicionadas em recipientes para posteriores análises químicas.

Após o abate, a carcaça de cada animal foi dividida em duas metades, as quais foram pesadas e resfriadas em câmara fria a 4 °C, durante 24 horas. Decorrido este tempo, as meias carcaças foram retiradas da câmara fria e pesadas para determinação do peso de carcaça frio. A meia carcaça direita de 16 animais foi dissecada em ossos, gordura e músculo que foram, posteriormente, pesados. O tecido muscular e a gordura foram moídos juntos, enquanto que ossos foram triturados em triturador industrial. Posteriormente, foram obtidas amostras representativas de cada componente para determinação direta dos teores de proteína, gordura e minerais.

Da meia carcaça direita, dos outros 16 animais, foi retirada a seção HH, procedendo-se a separação dos componentes músculo, gordura e ossos que foram, posteriormente, pesados. O tecido muscular e o tecido adiposo foram moídos juntos, ao passo que os ossos foram serrados e triturados. Posteriormente, foram obtidas amostras representativas de cada componente para determinação de forma indireta da composição química do corpo vazio.

O rúmen-retículo, omaso, abomaso, intestino delgado e grosso, gordura interna, gordura omental, mesentério, fígado, coração, rins, pulmão, língua, baço, diafragma, esôfago, traquéia e aparelho reprodutor foram moídos em triturador industrial e homogeneizados para constituir uma amostra de órgãos e vísceras; a cabeça e as patas foram trituradas também em triturador industrial e o couro picado. Posteriormente, foram obtidas amostras de cada componente para posteriores análises.

No caso dos animais referência, amostras dos componentes: cabeça e patas, órgãos e vísceras e sangue, e couro foram agrupadas e homogeneizadas e, posteriormente, elaborada uma amostra composta proporcional à presença desses componentes no corpo vazio (amostra não carcaça). Da mesma forma, amostras de carne e gordura e ossos, da carcaça, também foram agrupadas e homegeneizadas, e depois foi preparada uma amostra composta proporcional à presença desses componentes no corpo vazio (amostra carcaça).

Posteriormente, essas amostras foram liofilizadas durante 48 a 72 horas, para determinação da matéria seca gordurosa (MSG). Em seguida, as amostras foram submetidas a um processo de extração de gordura com éter de petróleo, obtendo-se a matéria seca pré-desengordurada (MSPD), que, posteriormente, foram processadas em moinho tipo bola, para posterior análise dos teores de matéria seca (MS), segundo método INCT–CA G-003/1, matéria mineral (MM) segundo método INCT–CA M-001/1, proteína bruta (PB) segundo método INCT–CA N-001/1 e extrato etéreo (EE) segundo método INCT–CA G-004/1. A solução mineral foi preparada por digestão nitro perclórica, segundo método INCT-CA M-0,004/1, conforme metodologias descritas por Detmann et al. (2012). Os teores de Cu, Fe, Zn e Mn foram determinados por meio de espectrofotômetro de absorção atômica.

A partir da concentração de Cu, Fe e Zn no peso de corpo vazio (PCVZ), determinada por meio da análise química de todas as partes do corpo, foram ajustadas equações de regressão entre a concentração de Cu, Fe e Zn da seção HH e da composição desses minerais no PCVZ. A concentração de cinzas e água no PCVZ a partir da composição química da seção entre a 9ª e 11ª costelas foi estima utilizando as equações preconizadas por Valadares Filho et al. (2010) para zebuínos que estão descritas abaixo:

Tabela 3. Equações de predição da composição química do peso de corpo vazio de zebuínos a partir da composição química da seção entre 9ª e 11ª costelas

Variáveis	Equação de estimação	Erro padrão da estimativa	Coeficiente de determinação
Água no PCVZ, % (Y) Água na HH, % (X)	Y = 31,42 + 0,51X	1,94	0,71
Cinzas no PCVZ, % (Y)		2.45	0.45
Cinzas na HH, % (X)	Y = 2,54 + 0,39X	0,47	0,45

A relação obtida entre o peso de corpo vazio (PCVZ) e o peso corporal (PC) dos animais referência foi utilizada para a estimativa do PCVZ inicial dos animais que permaneceram no experimento. Para a conversão do PC em PCVZ no final do experimento, calculou-se a relação entre o PCVZ e PC dos animais mantidos no experimento. A composição química no PCVZi dos animais mantidos no experimento foi estimada multiplicando a média da composição mineral corporal dos referências pelo PCVZi dos animais em experimento.

O conteúdo corporal de minerais retidos (Cu, Fe, Zn e Mn) foram calculados pela diferença entre quantidade do mineral no PCVZ no final do experimento e no PCVZi. O conteúdo corporal de minerais em função do peso de corpo vazio (PCVZ) dos animais foi estimado, conforme o modelo alométrico proposto pelo ARC (1980):

$$CM = a \times PCVZ^{b}$$

Onde: CM = conteúdo corporal do mineral (mg); PCVZ = peso de corpo vazio dos animais (kg); "a" e "b" são parâmetros da regressão.

As exigências líquidas de minerais (Cu, Fe Zn e Mn) para ganho de 1 kg de PCVZ foram estimadas derivando as equações de predição dos conteúdos corporais de cada mineral em função do peso de corpo vazio (PCVZ) dos mesmos, conforme o modelo alométrico, segundo o ARC (1980):

$$EL_g = a \times b \times PVCZ^{b-1}$$

Onde: EL_g = exigência líquida do mineral para ganho (mg/kg GPCVZ/dia); PCVZ = peso de corpo vazio do animal (kg).

As exigências líquidas para mantença e o coeficiente de retenção de cada mineral foram obtidas pela regressão do mineral retido no corpo vazio em função do ingerido, conforme o seguinte modelo de regressão:

$$MR = \beta_0 + \beta_1 \times MI$$

Onde: MR = minerais retidos (mg/kg PCVZ/dia); MI = minerais ingeridos (mg/kg PCVZ/dia); " β_0 " e " β_1 " são parâmetros da regressão, de modo que " β_0 " é o intercepto e é interpretado como sendo a exigência líquida para mantença de cada mineral, " β_1 " é o desvio e é considerado ser o coeficiente de retenção.

As exigências dietéticas totais para ganho de 1Kg de PCVZ dos minerais foram obtidas através da divisão da exigência líquida total de cada mineral pelo seu respectivo coeficiente de retenção.

Os dados de consumo, peso corporal inicial (PCi), peso corporal final (PCf), ganho médio diário (GMD) e composição corporal em água, cinzas, Cu, Fe, Zn e Mn foram interpretados estatisticamente por meio de análises de variância e regressão, utilizando-se o Sistema de Análises Estatísticas – SAS University edition (2014), aplicando-se o teste F a 5% de probabilidade na análise de variância.

Os modelos lineares e não lineares foram construídos por intermédio do PROC REG e do PROC NLIN do SAS, respectivamente. Para todos os testes foram utilizados 0,05 como nível crítico de probabilidade para verificar a significância dos parâmetros dos modelos. As comparações entre as equações de regressão dos parâmetros avaliados para cada método de determinação da composição corporal (direto e indireto) foram realizadas de acordo com a metodologia proposta por Regazzi (1996), para testar a identidade de modelos.

RESULTADOS E DISCUSSÃO

Os consumos de matéria seca (CMS), expresso em Kg/dia e em % PV, de cobre (CCu), de ferro (CFe) e de manganês (CMn), expressos em mg/dia, reduziram linearmente (P<0,05) com o aumento da restrição alimentar, enquanto que o de zinco (CZn) apresentou efeito quadrático (Tabela 4). Comportamento semelhante para o CMS foi observado por Clack et al. (2007), ao avaliar o efeito da restrição no consumo de matéria seca em novilhos de corte, obtendo valores de 10,0; 8,7 e 7,9 Kg/dia para animais submetidos a restrição de 0,0; 10,0 e 20,0%, respectivamente. Utilizando a equação: CMS = -2,7878 + 0,08789PVM^{0,75} + 5,0487GMD – 1,6835GMD² preconizada por Valadares Filho et al. (2010) para estimar o CMS de animais Nelore, e o peso vivo

médio (340,72 Kg), estimou-se o CMS esperado dos animais recebendo alimentação à vontade. O valor estimado foi de 7,81 Kg/dia, sendo este, próximo ao observado neste trabalho.

Tabela 4. Consumo de matéria seca (CMS), cobre (CCu), ferro (CFe), zinco (CZn) e manganês (CMn) de bovinos Sindi submetidos a restrição alimentar

Itana -	Nívo	Níveis de Restrição (%)					or P
Itens -	0	15	30	45	EPM	L	Q
¹ CMS (Kg/d)	7,70	6,78	5,79	4,34	0,25	<0,001	0,2425
² CMS %PV	2,26	2,04	1,76	1,40	0,06	<0,001	0,1026
³ CCu (mg/dia)	392,66	339,81	339,31	255,76	10,86	<,0001	0,2494
⁴ CFe (mg/dia)	3947,10	3607,90	3410,33	2559,36	121,65	<,0001	0,1152
⁵ CZn (mg/dia)	364,68	357,38	328,75	247,43	10,99	<,0001	0,0201
⁶ CMn (mg/dia)	480,64	422,15	361,47	271,32	15,42	<,0001	0,2498

EPM - erro padrão da média; P - probabilidade; L - linear; Q - quadrática;

Considerando as recomendações do NRC (2000) de 10,0; 50,0; 30,0 e 20,0 mg/Kg MS da dieta para Cu, Fe, Zn e Mn, respectivamente, estimou-se o CCu, CFe, CZn e CMn esperado, obtendo valores de 77,1; 385,5; 231,3 e 154,2 mg/dia para Cu, Fe, Zn e Mn, respectivamente, para animais recebendo alimentação à vontade. Esses valores foram inferiores ao observado neste trabalho.

Houve redução linear (P<0,05) no PCf a medida que aumentou a restrição alimentar, enquanto que a composição química corporal dos animais não foi afetada (Tabela 5). O ganho de peso corporal (GPC) e o ganho médio diário (GMD) apresentaram efeito quadrático (P<0,05). Tal comportamento é esperado, pois a restrição na quantidade de nutrientes oferecidas aos animais, causada pela redução do consumo de MS, acarreta em menor peso corporal final dos animais.

Apesar da redução no consumo de nutrientes, os animais submetidos a 45,0% de restrição apresentaram GMD de 0,48 Kg (Tabela 5), demonstrando que a raça Sindi, como citado por Souza et al. (2007), apresenta boa eficiência alimentar, mesmo quando os nutrientes são limitados. Este comportamento pode ter ocorrido por causa da redução

 $^{^{1}\}hat{y} = -0.073x + 7.813; (R^{2} = 0.99);$

 $^{^{2}\}hat{y} = 0.019x + 2.295; (R^2 = 0.98);$

 $^{^{3}\}hat{y} = -2,741x + 393,5; (R^{2} = 0,88);$

 $^{^{4}\}hat{y} = -29,07x + 4.035,29; (R^{2} = 0,91);$

 $^{^{5}\}hat{y} = -0.082x^{2} + 1.165x + 363.1; (R^{2} = 0.99);$

 $^{^{6}\}hat{y} = -4,590x + 487,1; (R^{2} = 0,98)$

na exigência de mantença dos animais, provocada pela redução no tamanho dos órgãos. Efeito confirmado por Trajano (2014), ao utilizar animais do mesmo experimento, no qual se observou que o peso do fígado, trato gastrointestinal e na gordura (interna, mesentérica e omental) reduziu significativamente com o aumento da restrição alimentar apresentando valores variando de 5,13 a 3,74 Kg para o fígado, 15,26 a 13,03 Kg para trato gastrointestinal e de 17,42 a 12,37 Kg para a gordura, para restrição alimentar variando de 0,0 a 45,0%.

Tabela 5. Desempenho e composição corporal em cinzas, água, cobre (Cu), ferro (Fe), zinco (Zn) e manganês (Mn) de bovinos Sindi submetidos à restrição

Itens	Ni	Níveis de Restrição (%)			EPM	Va	lor P
	0	15	30	45		L	Q
PCi, kg	299,56	294,50	297,81	294,69	3,83	0,7424	0,8997
¹ PCf, kg	381,87	370,69	358,56	328,50	6,11	0,0007	0,3472
² GPC, kg	82,31	76,19	60,75	33,81	4,15	< ,0001	0,036
³ GMD, kg	1,16	1,07	0,85	0,48	0,06	< ,0001	0,0379
		%PC	CVZ				
Cinzas	4,03	3,86	4,12	4,23	0,15	0,1814	0,3516
Água	62,49	63,25	62,16	62,57	0,44	0,7533	0,7814
		mg/Kg	PVCZ				
Cu	8,79	7,09	9,66	8,68	0,68	0,6359	0,7343
Fe	39,91	46,68	41,94	42,38	1,36	0,8283	0,2558
Zn	32,92	33,05	32,90	33,20	0,96	0,8690	0,9214
Mn	0,04	0,04	0,04	0,01	0,01	0,2766	0,4423

Murphy e Loech (1994); Fluharty e McClure (1997), ao avaliar a restrição alimentar em bovinos, também observaram redução na exigência de mantença dos animais, provocada pela redução no tamanho dos órgãos. Assim, o ganho de peso observado nos animais submetidos à maior restrição alimentar (45,0%), pode ter ocorrido pelo desvio dos nutrientes que antes seriam utilizados para mantença e passaram a ser direcionados para o crescimento do animal.

As equações de predição da concentração de cobre (Cu), ferro (Fe) e zinco (Zn) no peso de corpo vazio (PCVZ) a partir da seção HH (seção entre 9ª e 11ª costelas) são apresentadas na Tabela 6, onde se observa que as equações apresentaram coeficientes de

 $[\]begin{array}{l} ^{1}\hat{y}=-1,148x+385,7\;(R^{2}=0,93);\\ ^{2}\hat{y}=-0,023x^{2}-0,032x+82,20;\;(R^{2}=0,99)\\ ^{3}\hat{y}==-0,0003x^{2}-0,0005x+1,1511;\;(R^{2}=0,99); \end{array}$

determinação baixos (Zn e Fe) a relativamente baixos (Cu), de forma que apenas 48%, 1% e 8% das variações da concentração de Cu, Fe e Zn no corpo vazio são explicadas pelas variações do conteúdo desses minerais na seção HH (seção entre a 9ª e 11ª costelas), respectivamente. No caso do Mn, não foi gerada equação devido a ausência, durantes as análises, desse mineral na seção entre a 9 e 11ª costelas, havendo, assim, apenas os dados obtidos através do método direto.

O número de animais (20 animais para cada método), utilizados para desenvolver as equações para determinação da concentração desses minerais no PCVZ, pode ter contribuído para o baixo coeficiente de determinação apresentado pelas equações obtidas nesse trabalho. Isto pode ter ocorrido, porque a amplitude de variação da concentração de Cu, Fe e Zn na seção HH foi pequena a ponto de não permitir que uma relação com a concentração desses minerais no corpo vazio fosse detectada.

Tabela 6. Equações de predição da concentração de cobre (Cu), ferro (Fe) e zinco (Zn) no corpo vazio a partir da seção entre a 9ª e 11ª costelas

Minerais	Equações de Estimação	R^2
Cobre	$Cu_{PCVZ} = 0.00066 + 0.817 \text{ x } Cu_{HH}$	0,48
Ferro	$Fe_{PCVZ} = 0.004 + 0.149 \text{ x } Fe_{HH}$	0,01
Zinco	$Zn_{PCVZ} = 0.002 + 0.184 \text{ x } Zn_{HH}$	0,08

 Cu_{pcvz} = cobre no peso de corpo vazio (%), Cu_{HH} = cobre na seção HH (%), Fe $_{pcvz}$ = ferro no peso de corpo vazio (%), Fe $_{HH}$ = ferro na seção HH (%), Zn $_{pcvz}$ = zinco no peso de corpo vazio (%), Zn $_{HH}$ = zinco na seção HH (%).

Observou-se na Tabela 7 que os métodos determinação da composição corporal influenciaram significativamente (P<0,05) nas concentrações corporais de água, cinzas, Cu, Zn e Mn do animal, obtendo-se maiores concentrações de água, Cu, Zn e Mn no método direto, enquanto que os teores de cinzas foram menores no indireto, ao passo que os de Fe foram semelhantes. As diferenças observadas, entre os métodos, com relação as concentrações corporais de Cu e Zn podem ter ocorrido porque as variações da concentração desses minerais no PCVZ não foram perfeitamente explicadas pelas variações desses minerais na seção entre a 9ª e 11ª costelas, de modo que devem existir outras variáveis das quais as concentrações desses minerais no PVCZ depende, como, por exemplo, o teor desses minerais nos componentes não carcaça (sangue, couro, cabeça e patas e órgãos e vísceras), o que pode ter levado a uma subestimação do teor

desses minerais no corpo do animal, haja vista que a presença dos mesmos nesses componentes podem ter sido superior ao da seção entre a 9ª e 11ª costelas.

No caso das concentrações corporais de cinzas e água, as diferenças observadas podem ter ocorrido, pois as equações utilizadas para calcular a composição química dos animais do presente trabalho, desenvolvidas por Valadares Filho et al. (2010), foram feitas utilizando dados de bovinos com maior porte do que os animais estudados, o que pode ter contribuído para que houvesse uma superestimação no teor de cinzas, uma vez que a genética é um dos fatores que influenciam a predição da composição corporal dos animais.

Tabela 7. Composição corporal de cinzas, água, cobre (Cu), ferro (Fe), zinco (Zn) e manganês (Mn) de bovinos Sindi, obtidas por meio de dois métodos de determinação da composição corporal.

Itens	Método	Métodos Avaliados		Valor P
	Direto	Indireto (HH)		
Cinzas (%)	3,34b	4,78a	0,15	<,0001
Água (%)	64,46a	60,78b	0,44	<,0001
Cu (mg/KgPCVZ)	11,11a	6,01b	0,68	<,0001
Fe (mg/KgPCVZ)	44,01a	41,45a	1,36	0,3566
Zn (mg/KgPCVZ)	37,88a	28,16b	0,96	<,0001
Mn (mg/KgPCVZ)	0,07a	0,0	0,01	0,0014

EPM - erro padrão da média; P - probabilidade.

A relação obtida entre o PCVZ e o PC dos animais, do presente trabalho, para ambos os métodos foi de 0,890, valor próximo ao recomendado pelo NRC (2000), de 0,891, por Paulino et al. (2004), de 0,8956 e por Silva et al. (2002), de 0,8975. Para conversão das exigências para ganho de PCVZ (GPCVZ) em exigências para ganho de peso corporal (GPC), foi obtida a relação GPCVZ/GPC. Assim, as exigências líquidas para ganho de 1 kg de GPCVZ foram multiplicadas pelo fator 0,89, para o método direto, e pelo fator 0,83, para o indireto, para obtenção dos requisitos para ganho de 1 kg de PC.

As equações alómetricas dos conteúdos corporais de Cu, Fe, Zn e Mn em função do PCVZ, assim como as estimativas dos conteúdos corporais para esses minerais, obtidas neste trabalho, são apresentadas na Tabelas 8 e 9. O teste de identidade do modelo foi realizado apenas nas equações alómetricas do conteúdo corporal de Fe e Zn,

pois, o ajusto do modelo para Cu não atingiu a convergência, assim, a equação para predição da concentração de Cu no corpo vazio, para o método indireto, não foi obtida.

Tabela 8. Equações alométricas do conteúdo corporal de Cu, Fe, Zn e Mn em função do peso de corpo vazio (PCVZ) de bovinos Sindi, obtidas pelo método direto

Minerais	Equações de Regressão
Cu (Kg)	$Y = 0,00002 \text{ x PCVZ}^{0,8013}$
Fe (Kg)	$Y = 0.000016 \text{ x PCVZ}^{1.174}$
Zn (Kg)	$Y = 0.000000009239 \text{ x PCVZ}^{2.0404}$
Mn (Kg)	$Y = 0.00000000206 \times PCVZ^{1.5374}$

PCVZ - peso de corpo vazio.

Tabela 9. Equações alométricas do conteúdo corporal de Fe e Zn em função do peso de corpo vazio (PCVZ) de bovinos Sindi, obtidas pelo método indireto

Minerais	Equações de Regressão
Fe (Kg)	$Y = 0.000035 \times PCVZ^{1.0275}$
Zn (Kg)	$Y = 0,000025 \text{ x PCVZ}^{1,0166}$

PCVZ - peso de corpo vazio.

O teste de identidade detectou que houve diferença significativa, ao nível de 5% de probabilidade, entre os métodos apenas para o Zn. Assim, para melhor entendimento foram desenvolvidas equações específicas para Fe e Zn para cada método. Observou-se, na Tabelas 10 e 11, que houve aumento dos conteúdos corporais de Zn, Fe e Mn, em ambos os métodos, enquanto que as concentrações de Cu reduziram com o aumento do peso vivo do animal. Os conteúdos de Cu, Fe, Zn e Mn no PCVZ variaram de 6,70 a 6,22; 41,66 a 44,47; 28,24 a 37,12 e 0,040 a 0,048 mg/Kg de PCVZ para o método direto e de 40,72 a 41,14 para o Zn e de 27,39 a 27,56 para o Fe para o método indireto, quando o PV passou de 275 para 400 Kg, respectivamente.

Tabela 10. Estimativas dos conteúdos corporais de Cu, Fe, Zn e Mn, em mg/KgPCVZ, de bovinos Sindi, entre 275 e 400 Kg de peso corporal (PC), obtidas pelo método direto

	PC	PCVZ	Cu	Fe	Zn	Mn
_	(Kg)	(Kg)	(mg/KgPCVZ)	(mg/KgPCVZ)	(mg/KgPCVZ)	(mg/KgPCVZ)
	275	244,75	6,70	41,66	28,24	0,040
	300	267,00	6,59	42,30	30,92	0,041
	325	289,25	6,49	42,89	29,91	0,043

350	311,50	6,39	43,45	32,30	0,045
375	333,75	6,30	43,97	34,71	0,047
400	356,00	6,22	44,47	37,12	0,048

PCVZ= peso de corpo vazio.

Tabela 11. Estimativas dos conteúdos corporais de Fe e Zn, em mg/KgPCVZ, de bovinos Sindi, entre 275 e 400 Kg de peso corporal (PC), obtidas pelo método indireto

PC (Kg)	PCVZ (Kg)	Fe (mg/KgPCVZ)	Zn (mg/KgPCVZ)
275	244,75	40,72	27,39
300	267,00	40,81	27,43
325	289,25	40,90	27,47
350	311,50	40,99	27,50
375	333,75	41,06	27,53
400	356,00	41,14	27,56

PCVZ= peso de corpo vazio.

Derivando as equações alométricas das Tabelas 8 e 9, foram obtidas as equações para predição das exigências líquidas de Cu, Fe, Zn e Mn para ganho de 1 Kg de PCVZ para cada método de determinação da composição corporal, por meio das quais foram estimadas as exigências líquidas para ganho de 1 Kg de PCVZ (Tabelas 13 e 14).

Assim como a composição corporal, as exigências líquidas de Fe, Zn e Mn para ganho de peso aumentaram, enquanto que as de Cu diminuíram à medida que se elevou o peso vivo do animal, para os dois métodos. As exigências líquidas para ganho de Cu, Fe, Zn e Mn variaram de 5,37 a 4,99; 48,91 a 52,21; 57,62 a 85,09 e 0,061 a 0,075 mg/Kg de GPCVZ, respectivamente, para o método direto e de 41,83 a 42,27 e 27,84 a 28,02 mg/Kg de GPCVZ para o Fe e Zn, respectivamente, para o indireto em animais com peso vivo variando de 275 a 400 Kg, respectivamente.

Tabela 12. Exigências líquidas de cobre (Cu), ferro (Fe), zinco (Zn) e manganês (Mn) em mg por quilo de ganho de peso de corpo vazio (mg/Kg GPCVZ) e mg por quilo de ganho de peso de corporal (mg/Kg GPC), de bovinos Sindi, em função do peso de corpo vazio (PCVZ) ou peso corporal (PC), obtida pelo método direto

DV (Va)	PCVZ (Kg)	E	Exigência Líquio	da (mg/Kg GPC	(VZ)
PV (Kg)		Cu	Fe	Zn	Mn
275	244,8	5,37	48,91	57,62	0,061
300	267,0	5,28	49,66	63,08	0,064
325	289,3	5,20	50,36	68,56	0,067

350	311,5	5,12	51,01	74,04	0,069
375	333,8	5,05	51,63	79,56	0,072
400	356,0	4,99	52,21	85,09	0,075
			Exigência Líqu	uida (mg/Kg GP	C)
275	244,8	4,78	43,53	51,281	0,054
300	267,0	4,70	44,20	56,140	0,057
325	289,3	4,63	44,82	61,015	0,059
350	311,5	4,56	45,40	65,906	0,062
375	333,8	4,50	45,95	70,811	0,064
400	356,0	4,44	46,47	75,728	0,066

PC - peso corporal; PCVZ - peso de corpo vazio; GPCV - ganho de peso de corpo vazio; GPC - ganho de peso corporal.

Tabela 13. Exigências líquidas de ferro (Fe) e zinco (Zn) em mg por quilo de ganho de peso de corpo vazio (mg/Kg GPCVZ) e mg por quilo de ganho de peso de corporal (mg/Kg GPC), de bovinos Sindi, em função do peso de corpo vazio (PCVZ) ou peso corporal (PC), obtida pelo método indireto

		Exigência Líquida (mg/Kg GPCVZ)		
PC (kg)	PCVZ (Kg)	Fe	Zn	
275	244,8	41,83	27,84	
300	267,0	41,94	27,88	
325	289,3	42,03	27,92	
350	311,5	42,11	27,96	
375	333,8	42,19	27,99	
400	356,0	42,27	28,02	
	_	Exigência Líqui	da (mg/Kg GPC)	
275	244,8	34,72	23,11	
300	267,0	34,81	23,14	
325	289,3	34,88	23,18	
350	311,5	34,95	23,20	
375	333,8	35,02	23,23	
400	356,0	35,08	23,26	

PC - peso corporal; PCVZ - peso de corpo vazio; GPCV - ganho de peso de corpo vazio; GPC - ganho de peso corporal.

Bellof et al. (2007), ao avaliarem a deposição de microelementos minerais em cordeiros, relataram que o Zn e Fe foram encontrados em maiores quantidades nos músculos (42,0 e 15,0%, respectivamente) e ossos (29,0 e 40,0%, respectivamente), do que em componentes não carcaça (13,0%); enquanto o Cu e Mn foram detectados em maior concentração nesses componentes (55,0 e 40,0%, respectivamente). Assim, o aumento da concentração Fe e Zn e a redução de Cu no corpo vazio, assim como, das exigências líquidas para ganho desses minerais, observada nesse trabalho, podem ser

explicados pela presença dos mesmos em tecidos da carcaça (músculos e ossos), uma vez que a medida que o peso corporal dos animais aumenta, a proporção desses tecidos, no corpo vazio, se torna um pouco maior, do que os componentes não carcaça.

Costa e Silva et al. (2015), trabalhando com bovinos Nelore, observaram que houve aumento das exigências líquidas de Cu, Fe, Zn e Mn para ganho com o aumento do peso corporal do animal, obtendo valores variando de 7,74 a 8,76; 166,87 a 196,0; 134,45 a 185,6; 5,82 a 7,86 mg/Kg de GPCVZ, respectivamente, que foram superiores aos estimados nesse trabalho, para animais com peso corporal variando de 275 a 400 Kg. Comportamento oposto ao relatado por esses autores, para as exigências de Cu foi observada nesse trabalho. Esse efeito contrário pode ter sido causado por diferenças no teor desse mineral na dieta, diferenças entre as raças estudadas e/ou pelo estado fisiológico dos animais, uma vez que são fatores que exercem influência sobre as exigências dos animais (Costa e Silva et al., 2015).

As equações de regressão entre os minerais retidos em função dos minerais ingeridos, assim como, as exigências líquidas de Cu, Fe, Zn e Mn para mantença, em mg/kg PCVZ/dia e mg/Kg PC/dia, estão apresentadas na Tabela 14. As exigências líquidas em função do PC estimadas utilizando um fator de correção de 0,89 (PCVZ/PC). Conforme pode se observar na Tabela 15, houve aumento nas exigências líquidas de Cu, Fe, Zn e Mn para mantença à medida que se elevou o peso corporal dos animais.

Tabela 14. Equações de regressão e exigências líquidas para mantença de bovinos Sindi

Equações	ELm (mg/KgPCVZ/dia	ELm (mg/KgPC/dia)	R^2
$Cu_{ret} = -0.276 + 0.081 * Cu_{Ing}$	0,276	0,246	0,22
$Fe_{ret} = -0.208 + 0.036*Fe_{Ing}$	0,208	0,185	0,13
$Zn_{ret} = -0.077 + 0.276*Zn_{Ing}$	0,077	0,068	0,61
$Mn_{ret} = -0.002 + 0.002*Mn_{Ing}$	0,002	0,002	0,37

 $Cu_{ret} = cobre \ retido$; $Fe_{ret} = ferro \ retido$; $Zn_{ret} = zinco \ retido$; $Mn_{ret} = manganês \ retido$; $Cu_{Ing} = cobre$ ingerido; $Fe_{Ing} = ferro \ ingerido$; $Zn_{Ing} = zinco \ ingerido$; $Mn_{Ing} = manganês \ ingerido$; ELm = exigência líquida para mantença.

Tabela 15. Exigência líquida para mantença de microelementos minerais de bovinos Sindi

DC (Va)	PCVZ (Kg) -	Exigência Líquida de Mantença (mg/dia)			
PC (Kg)	FCVZ (Kg) =	Cu	Fe	Zn	Mn
275	244,8	67,551	50,908	18,846	0,490
300	267,0	73,692	55,536	20,559	0,534
325	289,3	79,833	60,164	22,272	0,579
350	311,5	85,974	64,792	23,986	0,623
375	333,8	92,115	69,420	25,699	0,668
400	356,0	98,256	74,048	27,412	0,712

PCVZ - peso de corpo vazio; PC= peso corporal.

As eficiências de retenção de bovinos Sindi em crescimento, obtida a partir das equações da Tabela 14, foram de 8,1; 3,6; 27,6 e 0,2% para Cu, Fe, Zn e Mn, respectivamente. Underwood e Suttle (1999) e NRC (2001) relataram absorção para Cu variando de 1 a 6% e de 1 a 5%, respectivamente, os quais se encontram inferiores ao que foi descrito no presente trabalho. Vagg (1976) sugere o valor de 0,5% como absorção para Mn, valor próximo ao encontrado nesse trabalho. Porém, inferior ao valor de 75% recomendado pelo NRC (2001).

As exigências dietéticas totais (mantença + 1Kg de ganho peso corporal) de Cu, Fe, Zn e Mn, para os métodos direto e indireto, estão apresentadas nas Tabelas 16 e 17, as quais foram obtidas dividindo as exigências líquidas para ganho pela eficiência de retenção de cada mineral. As exigências dietéticas totais de Cu, Fe, Zn e Mn variaram de 893,0 a 1267,83; 2623,35 a 3347,6; 254,08 a 373,7 e 271,86 a 389,16 mg/dia, respectivamente para o método direto e de 1057,17 a 1347,29 para Fe e de 152,02 a 183,58 mg/dia para Zn no indireto, para animais com peso corporal variando de 275 a 400 Kg.

Tabela 16. Exigências dietéticas totais de cobre (Cu), ferro (Fe), zinco (Zn) e manganês (Mn), em mg/dia e mg/Kg MS, de bovino Sindi, em função do peso corporal (PC), obtidas por meio do método direto

DC (Va)	PCVZ (Kg) -	Exigência Dietética Total (mg/dia)			
PC (Kg)	PCVZ (Kg)	Cu	Fe	Zn	Mn
275	244,8	893,00	2623,35	254,08	271,86
300	267,0	967,80	2770,36	277,90	295,41
325	289,3	1042,70	2916,13	301,77	318,91
350	311,5	1117,68	3060,84	325,69	342,36
375	333,8	1192,73	3204,63	349,67	365,78
400	356,0	1267,83	3347,60	373,70	389,16

			mg/Kg	MS	
275	244,8	143,68	422,10	40,88	43,74
300	267,0	142,74	408,61	40,99	43,57
325	289,3	141,96	397,02	41,08	43,42
350	311,5	141,30	307,25	41,17	41,33
375	333,8	140,73	378,13	41,26	43,16
400	356,0	140,25	370,31	41,34	43,05

PCVZ - peso de corpo vazio; PC= peso corporal; CMS = 2,26% PC.

Tabela 17. Exigências dietéticas totais de ferro (Fe) e zinco (Zn), em mg/dia e mg/Kg MS, de bovinos Sindi, em função do peso corporal (PC), obtidas por meio do método indireto

PV (kg)	PCVZ (Kg)	Exigência dietética	a Total (mg/dia)
rv (kg)	rcvz (Kg)	Fe	Zn
275	244,8	1057,17	152,02
300	267,0	1115,34	158,35
325	289,3	1173,42	164,67
350	311,5	1231,43	170,98
375	333,8	1289,39	177,28
400	356,0	1347,29	183,58
		mg/Kg	MS
275	244,8	170,10	24,46
300	267,0	164,50	23,35
325	289,3	159,76	22,42
350	311,5	155,68	21,62
375	333,8	152,14	20,92
400	356,0	149,04	20,31

PCVZ - peso de corpo vazio;PC= peso corporal; CMS = 2,26% PC.

O NRC (2000) sugeri valores de 10, 50, 30 e 20 mg/Kg da MS para exigência dietética total de Cu, Fe, Zn e Mn, respectivamente. Assim, para um animal com peso corporal de 400 Kg, com consumo de matéria seca 2,26% PV (9,0 Kg de MS), as exigências dietéticas estimadas foram de 90,0; 450,0; 270,0 e 180,0 mg/dia de Cu, Fe, Zn e Mn, respectivamente, valores inferiores ao observados no presente trabalho.

Costa e Silva et al. (2015) encontraram exigências dietéticas totais de Cu, Fe, Zn e Mn de 9,53; 218,0; 61,0 e 9,59 mg/Kg da MS, respectivamente. Assim, para um animal com peso corporal de 400 Kg, com consumo de matéria seca 2,26% PV (9,0 Kg de MS), as exigências dietéticas estimadas foram de 85,77; 1972,0; 549,0 e 86,31 mg/dia de Cu, Fe, Zn e Mn, respectivamente, as quais foram inferiores, para Cu, Fe e Mn e no método direto e superiores para Fe e Zn no indireto, para Fe e Zn, e superiores,

para Cu e Mn, para o método direto e superiores para o indireto, aquelas obtidas nesse trabalho.

CONCLUSÕES

As equações desenvolvidas não são eficientes para estimar a composição química de Cu, Fe e Zn no corpo vazio de bovinos Sindi a partir da seção entre a 9ª e 11ª costelas. Assim, maior número de informações, assim como, a inclusão de novas variáveis deve ser providenciado para que novas equações com melhor precisão sejam obtidas.

Recomendam-se como exigências dietéticas totais de bovinos Sindi, os valores de 143,68 e 140,25; 422,10 e 370,31; 40,88 e 41,34; 43,74 e 43,05 mg/Kg MS, para Cu, Fe, Zn e Mn, respectivamente, para animais com 275 e 400 Kg de PC, respectivamente.

REFERÊNCIAS BIBLIOGRÁFICAS

- AGRICULTURAL research council. **The nutrient requirements of ruminants livestock**. London: Commonwealth Agricultural Bureaux, 1980. 351p.
- BELLOF, G.; PALLAUF, J. Deposition of copper, iron, manganese and zinc in the empty body of growing lambs of the breed German Merino Landsheep. **Animal**, v., n.6, p.787-796, 2007
- CLARK, J.H.; OLSON, K.C.; SCHMIDT, T.B. et al. Effects of dry matter intake restriction on diet digestion, energy partitioning, phosphorus retention, and ruminal fermentation by beef steers. **Journal Animal Science**, v.85, p.3383-3390, 2007.
- COSTA E SILVA, L.F.; VALADARES FILHO, S.C.; ENGLE, T.E. Macrominerals and trace element requirements for beef cattle. 2015. Disponível em: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0144464. Acesso em: 02 de mar. de 2016.

- DETMANN, E.; SOUZA, M.A.; VALADARES FILHO, S.C. et al. **Métodos para Análise de Alimentos**. INCT Ciência Animal. Suprema, Visconde do Rio Branco, 2012. 214p.
- FLUHARTY, F.L.; McCLURE, K.E. Effects of dietary energy intake and protein concentration on performance and visceral organ mass in lambs. **Journal Animal Science**, v.75, p.604-610, 1997.
- GOFF, J.P. Minerais. In: REECE, W.O. **Dukes- Fisiologia dos Animais Domésticos**. 12. ed. Rio de Janeiro: Editora Guanabara Koogan, 2014. p.532-555.
- HALL, M.B. Calculation of non-structural carbohydrate content of feeds that contain non-protein nitrogen. Gainesville: University of Florida, 2000. p.A-25 (Bulletin, 339).
- MURPHY, T.A.; LOERCH, S.C. Effects of restricted feeding of growing steers on performance, carcass characteristics, and composition. **Journal Animal Science**, v.72, p.2497-2507, 1994.
- NATIONAL RESEARCH COUNCIL NRC. **Nutrient requirements of beef cattle**. 7. rev. ed. Washington: National Academy Press, 2000. 242p.
- NATIONAL RESEARCH COUNCIL NRC. Nutrient requirements of dairy cattle. 7.ed. Washington: National Academy Press, 2001. 381p.
- NATIONAL RESEARCH COUNCIL NRC. Nutrient requirements of small ruminants. 7.ed. Washington: National Academy Press, 2007. 292p.
- PAULINO, P.V.R.; COSTA, M.A.L.; VALADARES FILHO, S.C. et al. Exigências nutricionais de zebuínos: minerais. **Revista Brasileira de Zootecnia**, v.33, n.3, p.770-780, 2004.
- PEDREIRA, M.S; BERCHIELLI, T.T. Minerais. In: BERCHIELLI, T.T.; PIRES, A.V.; OLIVEIRA, S.G. **Nutrição de ruminantes**. Jaboticabal: Funep, 2011. p. 345-368.

- REGAZZI, J.A. Teste para verificar a identidade de modelos de regressão. **Pesquisa Agropecuária Brasileira**, v.31, n.1, p.1-17, 1996.
- SAS INSTITUTE INC. **SAS University Edition**. Cary: Statistical Analysis System Institute, USA, 2014.
- SILVA, F.F.; VALADARES FILHO, S.C.; ÍTAVO, L.C.V. et al. Composição corporal e requisitos líquidos e dietéticos de macroelementos minerais de bovinos Nelore não-castrados. **Revista Brasileira de Zootecnia**, v.31, n.2, p.757-764, 2002.
- SNIFFEN, C.J.; O,,CONNOR, J.D.; VAN SOEST, et al. A net carbohydrate and protein system for evaluation cattle diets. II. Carbohydrates and protein availability. **Journal of Animal Science**, v.70, p.3562-3577, 1992.
- SOUZA, B.B.; SILVA, R.M.N.; MARINHO, M.L.; SILVA, G.A. et al. Parâmetros fisiológicos e índice de tolerância ao calor de bovinos da raça sindi no semi-árido paraibano. **Ciência e Agrotecnologia**, v.31, n.3, p.883-888, 2007.
- TRAJANO, J.S. Avaliação da restrição alimentar em bovinos da raça Sindi em crescimento. 2014, 83f. Tese (Doutorado em Zootecnia) Universidade Federal da Paraíba, Areia, 2014.
- UNDERWOOD, E.J.; SUTTLE, N.F. The mineral nutrition of livestock. 4.ed. New York: CAB International, 1999. 614p.
- VAGG, M.J. Assessment of trace element metabolism in farm animals. **Proc. Roy. Soc. Med.**, v.69, p.473-474, 1976.
- VALADARES FILHO, S. C.; MARCONDES, M.I.; CHIZZOTTI, M.L. et al. Exigências nutricionais de zebuínos puros e cruzados BR CORTE. 2.ed. Viçosa, MG:UFV, DZO, 2010. 193p.

- VÉRAS, A. S. C.; VALADARES FILHO, S. C.; SILVA, J. F. C., et al. Predição da composição química corporal de bovinos Nelore e F1 Simental x Nelore a partir da composição química da seção Hankins e Howe (seção HH). **Revista Brasileira de Zootecnia**, v.30, n.3, p.1112-1119, 2001 (Suplemento 1).
- WEISS, W.P. Energy prediction equations for ruminant feeds. Cornell: Nutrition conference for feed manufactures, p. 176-184, 1999.