

UNIVERSIDADE FEDERAL DA PARAÍBA CENTRO DE TECNOLOGIA DEPARTAMENTO DE ENGENHARIA DE ALIMENTOS CURSO DE GRADUAÇÃO EM ENGENHARIA DE ALIMENTOS

DANIEL FELIPE LIMA SOARES

PRODUÇÃO DE ÁLCOOL HIDRATADO CONCENTRADO EM ESCALA PILOTO A PARTIR DE DESCARTES DE UÍSQUE

JOÃO PESSOA – PB 2022

DANIEL FELIPE LIMA SOARES

PRODUÇÃO DE ÁLCOOL HIDRATADO CONCENTRADO EM ESCALA PILOTO A PARTIR DE DESCARTES DE UÍSQUE

Trabalho de Conclusão de Curso apresentado à coordenação do curso de Engenharia de Alimentos sendo parte das atividades para obtenção do título de Bacharel em Engenharia de Alimentos da Universidade Federal da Paraíba, Centro de Tecnologia, Campus I, João Pessoa.

Orientador: Prof. Dr. Pierre Corrêa Martins

Coorientador: Prof. Dr. Geraldo D. Silvestre Filho

JOÃO PESSOA – PB 2022

FICHA CATALOGRÁFICA

```
S676pp Soares, Daniel Felipe Lima.

PRODUÇÃO DE ÁLCOOL HIDRATADO CONCENTRADO EM ESCALA

PILOTO A PARTIR DE DESCARTES DE UÍSQUE / Daniel Felipe
Lima Soares. - João Pessoa, 2022.

56 f.: il.

Orientação: Pierre Correa Martins.

Coorientação: Geraldo Dantas Silvestre Filho.

TCC (Graduação) - UFPB/CT.

1. Extrato alcoólico. 2. Destilação. 3. Resíduos. I.

Martins, Pierre Correa. II. Filho, Geraldo Dantas
Silvestre. III. Título.

UFPB/CT/BSCT

CDU 664(043.2)
```


PRODUÇÃO DE ÁLCOOL HIDRATADO CONCENTRADO EM ESCALA PILOTO A PARTIR DE DESCARTES DE UÍSQUE

Trabalho de Conclusão de Curso apresentado à coordenação do curso de Engenharia de Alimentos como parte das atividades para obtenção do título de Bacharel em Engenharia de Alimentos da Universidade Federal da Paraíba, Centro de Tecnologia, Campus I, João Pessoa.

Aprovado em: 15 / 06 / 2022

BANCA EXAMINADORA

line Case to
Prof. Dr. Pierre Corrêa Martins
UFPB A Like
Prof. Dr. Geraldo Dantas Silvestre Filho
UFPB
toulong A. de Amoin
Prof. Dra. Joselma Araújo de Amorim
Examinadora/UFPB
your le Ball
Prof. Dr. Marcelo Barbosa Muniz
Examinador/UFPB

AGRADECIMENTOS

A Deus, por me dar saúde e me capacitar para que eu pudesse concluir mais uma etapa da minha vida. Sem Ele eu não seria nada.

Aos meus pais, Conceição e Severino, por me ensinarem seus valores, por todo apoio e investimento nos meus estudos e por se alegrarem em cada vitória da minha vida.

Aos meus irmãos, Danilo e Diego, por todo apoio e cuidado que me deram e por toda contribuição no meu futuro.

À minha amiga, Maria Izabel, por estar ao meu lado em todos os momentos da minha vida.

Aos amigos que conquistei na graduação, em especial Lara Patrício, Raquel Medeiros, Luana Clementino, Raissa Mirella, Larissa Rolim, Pedro Bittencourt, Mateus Bittencourt e Diego Santos, por todas as vivências compartilhadas.

Aos meus orientadores, Pierre Martins e Geraldo Dantas, pelo acolhimento e por todo auxílio durante a realização deste trabalho.

Aos professores e técnicos do Departamento de Engenharia de Alimentos da Universidade Federal da Paraíba, em especial aos do LEA, pela contribuição durante a minha formação.

RESUMO

Existem muitas vias de produção de etanol hidratado, entre elas, a destilação de descartes alcoólicos para produção de misturas alcoólicas concentradas. Neste estudo foi realizado o uso de misturas de uísque cedidos pela Receita Federal brasileira para o reaproveitamento do seu conteúdo alcoólico. O objetivo foi obter álcool hidratado concentrado através da destilação destes descartes alcoólicos em uma coluna piloto experimental para produção de soluções desinfetantes e sanitizantes, com teor alcoólico superior a 60 °INPM ou 66 °GL. A metodologia utilizada foi o monitoramento operacional (tempo, temperatura e volume do destilado) e das propriedades físico-químicas (concentração alcoólica, pH e densidade) das soluções envolvidas no decorrer da destilação. A adsorção em coluna de carvão ativo em bancada de laboratório foi aplicada ao produto com teor alcoólico inferior ao desejável. Foi utilizada 180 litros (L) da mistura de uísque e os destilados obtidos foram divididos em três conjuntos para mistura e produção de três tipos de álcool hidratado: produto mais concentrado (78 °GL ou 73 °INPM), produto menos concentrado (71 °GL ou 65 °INPM) e produto residual (57 °GL ou 51 °INPM). O álcool mais concentrado apresentou a maior quantidade volumétrica (53 L, 72,2%), seguido do álcool menos concentrado (10,5 L,16,5%) e do álcool residual (8.25 L. 11,3%). As características físico-químicas do álcool mais concentrado demonstraram sua adequada qualidade comercial para uso como desinfetante de superfícies e materiais, é incolor, tem aroma característico de etanol, possui densidade similar a mistura etanol-água, pH igual 6,2 e teor alcoólico superior a 70 °INPM. O álcool menos concentrado apresentou teor alcoólico para uso como sanitizante (teor alcoólico superior a 60 °INPM), seu pH foi levemente ácido (pH 5,74), é incolor e tem densidade próxima da mistura etanol-água. O álcool residual foi submetido a adsorção, a qual aumentou seu pH, tornou-o incolor e reduziu seu aroma de uísque. O rendimento operacional de extração de álcool anidro da mistura de uísque na destilação foi desejável e igual a 72%. A destilação das misturas de uísques na coluna piloto experimental se apresentou como uma via de produção alcoólica de etanol hidratado para produção de desinfetantes e sanitizantes que serão utilizados pela comunidade local.

Palavras-chave: extrato alcoólico, destilação, resíduos.

ABSTRACT

There are many ways of producing hydrated ethanol, among them, there is the distillation of alcoholic waste to produce concentrated alcoholic mixtures. In this study, whiskey blends provided by the Brazilian Federal Revenue were used for the reuse of their alcoholic content. The objective was to obtain concentrated hydrated alcohol through the distillation of these alcoholic wastes in an experimental pilot column for the production of disinfectant and sanitizing solutions, with an alcohol content greater than 60 °INPM or 66 °GL. The methodology used was the operational monitoring (time, temperature and volume of the distillate) and the physical-chemical properties (alcoholic concentration, pH and density) of the solutions involved during the distillation process. The adsorption in a column of active carbon in a laboratory bench was applied to the product with an alcohol content lower than desirable. 180 liters (L) of the whiskey mixture was used and the distillates obtained were divided into three sets for mixing and producing three types of hydrated alcohol: more concentrated product (78 °GL or 73 °INPM), less concentrated product (71 ° GL or 65 °INPM) and residual product (57 °GL or 51 °INPM). The most concentrated alcohol had the highest volumetric amount (53 L, 72.2%), followed by less concentrated alcohol (10.5 L, 16.5%) and residual alcohol (8.25 L, 11.3%). The physicochemical characteristics of the most concentrated alcohol demonstrated its adequate commercial quality for use as a disinfectant for surfaces and materials, it is colorless. has a characteristic aroma of ethanol, has a density similar to the ethanol-water mixture, pH equal to 6.2 and alcohol content greater than 70°INPM. The less concentrated alcohol had an alcohol content for use as a sanitizer (alcohol content greater than 60 °INPM), its pH was slightly acidic (pH 5.74), it was colorless and its density was close to the ethanol-water mixture. The residual alcohol was subjected to adsorption, which increased its pH, made it colorless and reduced the whiskey aroma. The operating yield of extracting anhydrous alcohol from the whiskey mixture in the distillation was desirable and equal to 72%. The distillation of whiskey mixtures in the experimental pilot column was presented as a route of alcoholic production of hydrated ethanol for the production of disinfectants and sanitizers that will be used by the local community.

Keywords: alcoholic extract, distillation, residues

LISTA DE FIGURAS

Figura 1 - Estrutura do álcool5
Figura 2 - Mistura de uísque cedidos pela Receita Federal brasileira (Figura 2A) e coluna experimental usada para a produção do álcool hidratado (Figura 2B)10
Figura 3 - Fluxograma geral de produção de álcool hidratado11
Figrua 4 - Coluna de adsorção com carvão ativo (Fig. 4A) e extremidade da sua base coletando a solução percolada em erlenmayer e a solução inicial de álcool residual em béquer (Fig. 4B)
Figura 5 - Relações da temperatura operacional com o tempo de destilação (Figura 5A) e com o volume de coleta de destilado (Figura 5B)18
Figura 6 - Relações do volume de coleta de destilados com o seu pH (Figura 6A) e a sua densidade experimental (Figura 6B)
Figura 7 - Relação entre os resultados experimentais e os estimados teoricamente para a densidade dos destilados a 29 °C
Figura 8 - Relação da concentração alcoólica com o volume de destilado coletado, expressa em °GL (Figura 8A) e em °INPM (Figura 8B)21
Figura 9 - Relação entre os valores de concentração alcoólica dos destilados coletados expressos em ºGL e ºINPM a 29 °C
Figura 10 - Resultados do Adimensional de concentração de evaporação alcoólica para a produção de destilados no decorrer dos ensaios de destilação
Figura 11 - Variações da massa de carvão ativo (Fig. 11A), da massa e temperatura do álcool (Figuras 11B e 11C) e do tempo operacional (Fig. 11D)29
Figura 12 - Variações da concentração alcoólica (Fig. 12A), do pH (Fig. 12B) e da densidade da solução alcoólica concentrada nos testes preliminares de adsorção em coluna com carvão ativo
Figura 13 - Relações da concentração alcoólica (Fig. 13A) e da densidade (Fig. 13B) com o volume de solução coletada nos ensaios de adsorção em coluna de carvão ativo com o álcool residual

Fig	ura 14 - Relaço	es da temperatu	ra da soluçad	o alcoolica co	m o tempo (de adsorçac
(Fiç	g. 14A) e do pH	d com o volume	de solução	coletada (Fi	g. 14B) nos	ensaios de
ads	sorção em colun	a de carvão ativo	o com o álco	ol residual		34

LISTA DE QUADROS

Quadro 1 - Resultados dos parâmetros operacionais e das propriedades físico-
químicas das soluções obtidas nos ensaios de destilação da mistura de uísque16
Quadro 2 - Estimativas volumétricas das misturas dos destilados destinadas a
produção de diferentes tipos de álcool hidratado, baseados no seu teor alcoólico,
obtidos nos ensaios de destilação e os volumes das demais soluções alcoólicas
envolvidas nesses experimentos26
Quadro 3 - Valores de volume, teor alcoólico, pH e densidade do álcool residual
antes e depois de sua adsorção em coluna com carvão ativo

SUMÁRIO

1. INTRODUÇAO	1
2. OBJETIVOS	2
2.1 OBJETIVO GERAL	2
2.2 OBJETIVOS ESPECÍFICOS	
3 REVISÃO DA LITERATURA	3
3.1 BEBIDAS ALCOÓLICAS	3
3.2 DESTINAÇÃO SUSTENTÁVEL DE BEBIDAS APREENDIDAS	
3.3 ÁLCOOL ETÍLICO	5
3.4 CARACTERÍSTICAS FÍSICO-QUÍMICAS DO ETANOL HIDRATADO	
3.5 PRODUÇÃO INDUSTRIAL DE ETANOL HIDRATADO	
3.6 SANITIZANTES E DESINFETANTES	7
3.7 USO DE ÁLCOOL NA COVID-19	7
3.8 ADSORÇÃO EM COLUNA COM CARVÃO ATIVO(CA)	8
4 MATERIAL E MÉTODOS	9
4.1 MATERIAL	9
4.2 METODOLOGIA EXPERIMENTAL	
4.2.1 Caracterização físico-química das soluções alcoólicas	11
4.2.2 Adsorção em coluna de carvão ativo de bancada de laboratório	
4.3 ANÁLISE DE DADOS	
5. RESULTADOS E DISCUSSÃO	15
5.1 CARACTERIZAÇÃO FÍSICO-QUÍMICA DA MISTURA DE UÍSQUE	15
5.2 ENSAIOS DE DESTILAÇÃO NA COLUNA EXPERIMENTAL PILOTO	15
5.3 MISTURA DOS DESTILADOS E PRODUÇÃO DAS SOLUÇÕES ALCOÓL	ICAS
	25
5.4 ENSAIOS DE ADSORÇÃO EM COLUNA COM CARVÃO ATIVO	28
6 CONCLUSÃO	37
REFERÊNCIAS	38
APÊNDICES	43
APÊNDICE A	43
APÊNDICE B	54

1. INTRODUÇÃO

De acordo com o decreto nº 6.871, de 4 de junho de 2009, bebida alcoólica é a bebida que possui uma graduação alcoólica entre 0,5% e 54% em volume a 20°C (MAPA, 2022). Elas podem ser classificadas como fermentadas, destiladas, retificadas ou por mistura.

Os álcoois são compostos que possuem a hidroxila (OH) ligada com um dos carbonos de sua estrutura, são compostos fundamentais na química por serem utilizados na indústria química, farmacêutica e de alimentos (DINIZ, 2008).

Com a chegada da pandemia causada pelo vírus da Sars-Cov-2 (Covid-19), declarada pela Organização Mundial da Saúde (OMS) em 2020, muitos países, inclusive o Brasil, implementaram medidas de combate ao vírus tendo como medida primordial o isolamento social, uso de máscaras e a higiene das mãos e superfícies. Incentivaram a utilização de álcool etílico, chamado popularmente apenas de álcool, cujo consumo foi ampliado, promovendo uma escassez deste produto nas prateleiras dos seus mercados fornecedores (QUEIROGA et al., 2021).

Essa maior demanda de consumo do álcool proporcionou o desenvolvimento de métodos alternativos de obtenção do produto. Assim, a utilização de descartes alcoólicos procedentes de bebidas alcoólicas, impróprias para o consumo, torna-se uma "matéria-prima" para a produção de álcool etílico hidratado concentrado através da operação de destilação.

A destilação é um método de separação de componentes sólidos ou líquidos presentes em uma solução de acordo com sua volatilidade, onde o componente mais volátil se desloca sendo separado da solução (SARTORI et al., 2009). O produto obtido na destilação com uma graduação alcoólica elevada pode ser utilizado como desinfetante ou sanitizante para higiene de superfícies.

O presente estudo tem como finalidade a avaliação da produção de álcool hidratado concentrado, em escala piloto, a partir da destilação das misturas de uísque cedidas pela Receita Federal brasileira, avaliando os parâmetros operacionais e as propriedades físico-químicas das soluções alcoólicas envolvidas no processo.

2. OBJETIVOS

2.1 OBJETIVO GERAL

Avaliar a produção de álcool hidratado concentrado a partir de uma coluna experimental para obtenção da destilação, em escala piloto, de uma mistura de uísque cedida pela Receita Federal brasileira.

2.2 OBJETIVOS ESPECÍFICOS

- Avaliar as condições operacionais e as propriedades físico-químicas das soluções alcoólicas por destilação
- Produzir álcool hidratado concentrado, com graduação alcoólica na faixa de 78 a 80 °GL, para ser utilizado como agente desinfetante de superfícies.
- Produzir álcool hidratado, com graduação alcoólica na faixa de 69 a 71 °GL, para ser utilizado como sanitizante de superfícies.
- Desenvolver uma metodologia operacional e de tratamento de dados para adsorção em coluna de carvão ativo das soluções alcoólicas de menor concentração alcoólica.

3 REVISÃO DA LITERATURA

3.1 BEBIDAS ALCOÓLICAS

De acordo com Sales (2010), o álcool é utilizado na sociedade desde épocas remotas para fins de fabricação de remédios, perfumes e até mesmo como bebida para ser consumida na alimentação, em atos religiosos ou mesmo em confraternizações. Desde então a prática de consumir bebidas como o vinho e cerveja foram cada vez mais aceitas e associada até mesmo à saúde.

Com a evolução do consumo a indústria se aprimorou criando novas bebidas alcoólicas com características específicas para os diferentes paladares. Destas destacam-se: Cerveja, vinho, uísque, vodca, cachaça, gim dentre outras. (VIANA, 2017).

O art. 12 do decreto n° 6.871, de 4 de junho de 2009, classifica bebidas alcoólicas em (MAPA, 2022):

- Bebida alcoólica fermentada: bebida alcoólica obtida por processo de fermentação alcoólica;
- Bebida alcoólica destilada: bebida alcoólica obtida por processo de fermentodestilação, pelo rebaixamento de teor alcoólico de destilado alcoólico simples, pelo rebaixamento do teor alcoólico do etílico potável de origem agrícola ou pela padronização da própria bebida alcoólica;
- Bebida alcoólica retificada: Bebida alcoólica obtida por processo de retificação do destilado alcoólico, pelo rebaixamento do teor alcoólico do álcool etílico potável de origem agrícola ou pela padronização da própria bebida alcoólica retificada;
- Bebida alcoólica por mistura: bebida alcoólica obtida pela mistura de destilado alcoólico simples de origem agrícola, álcool etílico potável de origem agrícola e bebida alcoólica, separadas ou em conjunto, com outra bebida não-alcoólica, ingrediente não-alcoólico ou sua mistura.

3.2 DESTINAÇÃO SUSTENTÁVEL DE BEBIDAS APREENDIDAS

Segundo Barros (2020), o desenvolvimento sustentável surgiu para tratar problemas ligados ao consumo excessivo de bens naturais ligados a produção e consumo dos países.

Dentre as principais atribuições da Receita Federal do Brasil encontra-se o combate ao contrabando, o descaminho e a fiscalização de imposto sobre produtos industrializados que geram, por consequência, uma quantidade considerável de apreensões de bebidas alcoólicas (RECEITA FEDERAL, 2016).

Cabe, também, a Receita Federal dar a destinação correta a esses produtos apreendidos que sofreram pena de perdimento e, de acordo com o art. 2° da portaria MF n° 282/2011, existem 3 destinações possíveis para tais mercadorias. São elas (RECEITA FEDERAL, 2016):

- ➤ Leilão;
- Destruição;
- Doação e Incorporação a órgãos da administração pública.

Como o alcoolismo é considerado uma doença pela Organização Mundial de Saúde (OMS) e, portanto, o consumo de bebidas alcoólicas representar uma preocupação para o governo federal, a doação e incorporação dessas bebidas torna-se uma opção desagradável. Para o leilão do produto, este precisa estar em perfeito estado de conservação e com todas as suas especificidades de acordo com a legislação brasileira, tornando, assim, inviável o leilão de produtos adulterados. Assim, por muitas vezes, a destinação das bebidas alcoólicas resulta na sua destruição ou inutilização, a qual acaba gerando resíduos que precisam de descarte adequado, tais como, aterramento ou incineração. Para isso a Receita Federal precisa desprender de recursos humanos além de uma área de descarte que gera à instituição de um custo indesejado (RECEITA FEDERAL, 2016).


Em consequência disso a Receita Federal deu início a estudos destinados a identificar soluções de utilizar esses produtos apreendidos como ferramentas que contribuíssem socialmente e gerassem economia com a sua população. A doação desses descartes alcoólicos para instituições de ensino que produzam extratos alcoólicos é uma dessas ações (RECEITA FEDERAL, 2016).

3.3 ÁLCOOL ETÍLICO

O álcool etílico, mais conhecido como etanol, é produzido e consumido desde os primórdios através da fermentação de açúcares presentes em vegetais. Até o presente momento grande parte do etanol produzido industrialmente é decorrente da fermentação e suas aplicações são muito vastas atendendo a indústria química, farmacêutica e de alimentos (BASTOS, 2007; DINIZ, 2008).

O etanol é quimicamente composto de 2 moléculas de carbono, 5 moléculas de hidrogênio e uma hidroxila (OH), conforme a ilustração apresentada na Figura 1. Além disso, é possível destacar que ele é totalmente solúvel em água, possui ponto de ebulição de 78,5°C e, em sua forma líquida, é altamente inflamável (VOLLHARDT; SHORE, 2013).

Figura 1: Estrutura do álcool.

Fonte: Ilustração baseada em Vollhardt e Shore (2013).

Segundo Zarpelon (2002), o álcool hidratado pode ser separado em três classificações:

- Álcool Neutro: álcool livre de impurezas agressivas, sendo o mais indicado para consumo humano e veterinário.
- Álcool Industrial: utilizado em produtos industriais que não estejam relacionados com o consumo humano, cuja qualidade pode variar de acordo com a sua destinação, o qual geralmente possui graduação alcoólica mínima de 96% e baixas impurezas.
- Álcool de Baixa Qualidade: álcool menos elaborado, no qual não é necessário realizar extração de impurezas e, seu uso, está mais relacionado à fabricação

de combustível e, em alguns casos, utilizado como matéria-prima para a fabricação do álcool neutro.

3.4 CARACTERÍSTICAS FÍSICO-QUÍMICAS DO ETANOL HIDRATADO

A legislação brasileira por meio da RDC n° 490, de 8 de abril de 2021, define como critérios de qualidade para o álcool apenas a graduação alcoólica e a viscosidade, para o álcool em sua forma de gel (ANVISA, 2021).

Já a Agência Nacional do Petróleo, Gás Natural e Biocombustíveis (ANP) define, por meio do seu Regulamento Técnico n. 3/2011 importantes características físico-químicas para o etanol hidratado como (ANP, 2022):

Cor: Deve ser incolor;

> pH: Deve estar com pH entre 6,0 e 8,0;

3.5 PRODUÇÃO INDUSTRIAL DE ETANOL HIDRATADO

A destilação é um processo de separação dos componentes de uma mistura em duas ou mais correntes, conforme suas respectivas volatilidades. Existem basicamente dois tipos de destilação (BONFIM-ROCHA et al.; 2016):

- Destilação diferencial: é a técnica simples de separação, realizada em apenas um estágio. Por ser eficaz apenas para misturas binárias não é muito utilizada industrialmente já que nas indústrias são utilizadas substâncias com mais de um componente.
- Destilação fracionada: Constituída por uma coluna com vários estágios de separação que possibilita ao usuário separar múltiplos compostos presentes em uma substância.

Industrialmente, a produção de etanol hidratado altamente concentrado é realizada em duas colunas de destilação fracionada. Na primeira coluna é adicionado o vinho produzido pela fermentação e nela ocorre a retificação onde será produzido vapores com maior concentração de álcool. Na segunda coluna é adicionada o flegma, que é o produto contido no topo da primeira coluna, que possui

entre 49 e 53% de etanol, desta coluna sai o álcool hidratado com a maior concentração alcoólica possível (GENEROSO, 2021).

3,6 SANITIZANTES E DESINFETANTES

A contaminação humana por microrganismos pode acontecer de diversas formas, seja pela ingestão de alimentos contaminados ou até mesmo pelo contato com superfícies. Desta forma o uso de medidas de combate à estes microrganismos é amplamente utilizado tanto por indústrias quanto no dia a dia das pessoas.

Segundo Domingues et al (2011), diversas são as formas de combate à patologias causadas por estes. Dentre elas destacam-se o uso dos sanitizantes e desinfetantes. Estes podem ser definidos como:

- Sanitizantes: Agentes capazes de reduzir o nível de contaminantes bacterianos em um nível seguro. Estes agentes não precisam ter ação germicida, ou seja, não precisam destruir todos os microrganismos e seus esporos.
- Desinfetantes: Agentes capazes de matar microrganismos em sua forma vegetativa.

Dentre os desinfetantes é possível destacar a amônia quaternária além dos iodóforos. Já nos sanitizantes destacam-se o hipoclorito de sódio e o ácido paracético (KICH et al, 2018; MENEGARO et al, 2016).

3.7 USO DE ÁLCOOL NA COVID-19

Em março de 2020 foi decretado pela Organização Mundial da Saúde (OMS) o início da pandemia causada pelo Sars-Cov-2, popularmente conhecido COVID-19 ou coronavírus. O vírus é disseminado a partir de secreções nasais ou microgotas de saliva que são espalhadas no ambiente quando pessoas contaminadas com o vírus tossem, espirram ou até mesmo falam. Estas microgotas se espalham no ambiente e entram em contato com superfícies e pessoas, podendo ficar ativo no local por alguns dias (SEQUINEL et al, 2020).

Como forma de prevenção do vírus foram adotados o distanciamento social, uso de máscaras e a constante higienização pessoal e de superfícies. O agente mais eficaz na inativação do vírus é o sabão, entretanto nem sempre é possível encontrar com facilidade água e sabão disponíveis para a higienização, então, a melhor forma de realizar este procedimento torna-se o uso de soluções que contenham álcool com, no mínimo, 60% de volume (RAMOS et al, 2020).

Como consequência deste fato o consumo do álcool hidratado a 70% para higiene foi aumentado levando à uma falta do produto nas prateleiras e, consequentemente, ao aumento do seu preço, tornando cada vez mais difícil de se obter o produto para uso (QUEIROGA et al, 2021).

Pesquisadores observaram que o vírus da COVID-19 pode ser inativado de forma eficiente em superfícies com o uso de soluções alcoólicas a partir de 62% a 71% de concentração mássica. Sendo assim, torna-se viável a produção de álcool a 62% em peso para fins de combate ao vírus (KAMPF et al., 2020).

3.8 ADSORÇÃO EM COLUNA COM CARVÃO ATIVO (CA)

Entre os métodos mais eficazes no processo de remoção de contaminantes de uma solução encontra-se a adsorção com materiais adsorventes, visto que este processo é de baixo custo e pouca complexidade. Dentre estes materiais adsorventes destaca-se o carvão ativo (COSTA, et al. 2015).

Os carvões ativos são produtos carbonáceos porosos que apresentam uma boa capacidade de adsorção, sendo utilizado na remediação de contaminantes. Em sua produção são necessários dois procedimentos. Carbonização, que consiste no aquecimento do produto à altas temperaturas em uma atmosfera inerte, além da etapa de ativação que é onde o material é submetido a reações secundárias para aumentar a sua área superficial que irá aumentar sua capacidade de adsorção (BARBOSA, 2011).

Como a adsorção em CA promove a remoção de compostos responsáveis por conferir odor e sabor à substâncias, além de corantes, metais ou gases dissolvidos, o uso deste produto é muito praticado pelas indústrias no controle da poluição além da purificação de produtos como por exemplo a água. O CA pode ser utilizado tanto na forma de pó quanto na forma granular (SOARES, 2002).

4 MATERIAL E MÉTODOS

4.1 MATERIAL

O material utilizado para destilação e produção das soluções alcoólicas foi uma mistura de uísque fornecida pela Delegacia da Receita Federal de João Pessoa/PB.

O carvão ativo usado na pesquisa para a adsorção das soluções alcoólicas é do tipo "carvão ativo granulado CAS [7440-44-0]", fabricado pela Dinâmica Química Contemporânea Ltda.

A determinação das propriedades físico-químicas do álcool hidratado concentrado e da mistura de uísque foi realizada com a utilização de equipamentos e vidrarias de laboratório, tais como: alcoolômetro, picnômetro, pHmetro, termopar, balança digital, erlenmeyers, béqueres e provetas.

4.2 METODOLOGIA EXPERIMENTAL

A mistura de uísque foi fornecida devidamente descaracterizada para consumo humano pela Comissão de destruição de mercadorias apreendidas da Receita Federal, a qual é acondicionada em galões de 20 litros e adicionada uma pequena porção de colorífico alimentar comercial (popularmente conhecido como "colorau") e está apresentada na Figura 2A.

O álcool hidratado foi produzido por meio de destilação da mistura de uísque em uma coluna piloto experimental, demonstrada na Figura 2B, em bateladas de 20 litros. Os destilados foram coletados em frações de 250 mL durante todo o processo dedestilação com a finalidade de se obter o maior número de informações possíveis sobre as propriedades físico-químicas do álcool obtido durante a operação de destilação, tais como: densidade, pH e concentração alcoólica. Após a coleta dos destilados alcoólicos, realizaram-se as determinações físico-químicas já citadas, e, em seguida, foram acondicionados em garrafas de vidro âmbar com suas identificações.

Figura 2: Mistura de uísque cedidos pela Receita Federal brasileira (Figura 2A) e coluna experimental usada para a produção do álcool hidratado (Figura 2B)

Fonte: Autor (2022).

Foram realizadas misturas alcoólicas dos destilados produzidos para produção do álcool hidratado com diferentes concentrações alcoólicas. Na composição destas misturas foram utilizados os conjuntos de destilados que produzissem um álcool com concentração alcoólica na faixa de 78 a 80 °GL e outro na faixa de 69 a 71 °GL. Os destilados descartados para compor estas misturas devido ao seu baixo teor alcoólico, foram misturados para produzir um álcool residual que foi submetido ao processo de adsorção em coluna com carvão ativo para melhorar suas características físico-químicas.

O fluxograma apresentado na Figura 3 demonstra, de forma geral, as etapas de produção dos produtos alcoólicos a partir da destilação da mistura de uísque.

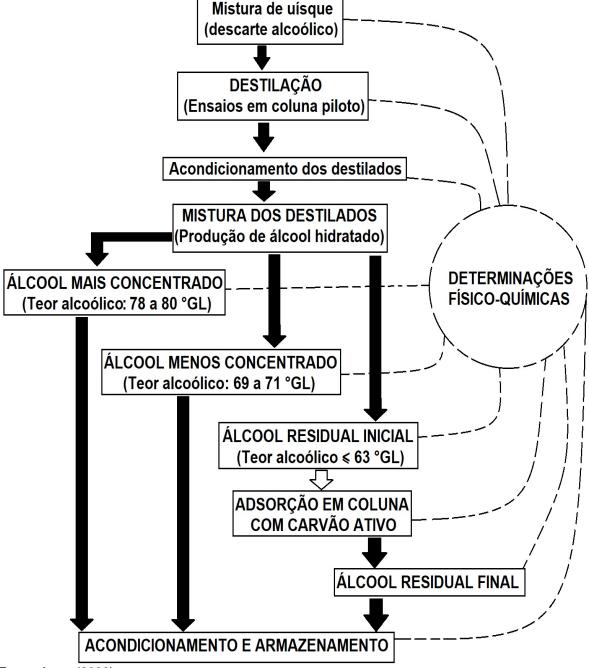


Figura 3: Fluxograma geral de produção de álcool hidratado.

Fonte: Autor (2022).

4.2.1 Caracterização físico-química das soluções alcoólicas

O monitoramento operacional das operações de destilação e adsorção em coluna com carvão ativo e a avaliação da qualidade comercial das soluções alcoólicas utilizadas e produzidas neste estudo foram realizadas experimentalmente pelas seguintes determinações:

- Concentração ou Teor alcoólico, determinada com o uso de alcoolômetro de acordo com a norma ABNT-NBR 5992 de 2008 (ABNT, 2008);
- Densidade, determinada através de picnometria líquida utilizando um picnômetro de 50 mL (marca DiogoLab[®], Brasil) e seguindo metodologia de Webb (2001);
- Medida de pH, determinado em pHmetro de bancada de laboratório (modelo MPA-210/MPA 210-P, marca Tecnopon®, Brasil), além de soluções tampão (pH 4,0 e 7,0) para calibrar o equipamento.

4.2.2 Adsorção em coluna de carvão ativo de bancada de laboratório

A adsorção do álcool hidratado em uma coluna de carvão ativo consistiu em realizar a percolação de uma massa de solução alcoólica por uma coluna de vidro de adsorção, com 54 cm de altura e 3,7 cm de diâmetro, completamente preenchida com carvão ativo granulado, contendo papel filtro na sua extremidade de coleta de solução. A Figura 4 apresenta a coluna de adsorção com carvão ativo em bancada de laboratório desenvolvida no Laboratório de Engenharia de Alimentos (LEA/DEA/CT/UFPB).

Figura 4: Coluna de adsorção com carvão ativo (Fig. 4A) e extremidade da sua base coletando a solução percolada em erlenmayer e a solução inicial de álcool residual em béquer (Fig. 4B).

Fonte: Autor (2022).

4.3 ANÁLISE DE DADOS

Os ensaios de destilação foram monitorados através da determinação de curvas experimentais que avaliaram a relação entre os parâmetros operacionais (tempo, temperatura e volume) com as características físico-químicas dos destilados (teor alcoólico, densidade e pH). A análise quantitativa foi realizada através de planilhas eletrônicas e diagramas, gráficos bidimensionais fornecidos por *software* computacional.

A concentração alcoólica em base mássica das soluções alcoólicas foi determinada teoricamente em valores de grau INPM (⁰INPM), pois é uma medida padrão adotada pela indústria de álcool para a concentração de suas soluções (ANP, 2022), foi calculado através da Equação 1.

$${}^{\circ}INPM = \left[\frac{\left({}^{\circ}GL_{soluç\~ao} * \rho_{etanol}\right)}{\left({}^{\circ}GL_{soluç\~ao} * \rho_{etanol}\right) + \left(\left(100 - {}^{\circ}GL_{SOLUç\~ao}\right) * \rho_{\'agua}\right)}\right] * 100$$
 Eq. 1

onde: ⁰INPM = conteúdo mássico de etanol na mistura binária etanol+água (massa de etanol/massa de mistura); ⁰GL_{mistura} = conteúdo volumétrico de álcool na solução alcoólica (volume de álcool/volume de solução); ρ_{etanol} e ρ_{água} = densidades do etanol anidro e da água na faixa de 25 a 30 °C, cujos valores são informados por Southard et al. (2019).

A densidade dos destilados alcoólicos também foi estimada teoricamente através da Equação 2 para se obter uma estimativa sobre pureza dos produtos em relação ao conteúdo de etanol hidratado (mistura binária etanol-água) comparando esses resultados com os obtidos experimentalmente.

$$\rho_{\text{solução alcoólica}} = \left(\left(\frac{^{\circ}\text{GL}_{\text{solução}}}{100} \right) * \rho_{\text{etanol}} \right) + \left(\left(1 - \left(\frac{^{\circ}\text{GL}_{\text{mistura}}}{100} \right) \right) * \rho_{\text{água}} \right)$$
 Eq. 2

onde: $\rho_{\text{solução alcoólica}} = \text{conteúdo de massa por volume (g/cm}^3); \, {}^{\circ}\text{GL}_{\text{mistura}} = \text{teor alcoólico da solução em base volumétrica (V}_{\text{álcool}} / \text{V}_{\text{solução}}); \, \rho_{\text{etanol}} = \rho_{\text{água}} = \text{densidades do etanol anidro e da água na faixa de 25 a 30 °C, cujos valores são informados por Southard et al. (2019).}$

A concentração alcoólica das misturas de determinado volume destilados coletados foi estimada teoricamente através da relação de diluição de mistura, segundo Harris (2012) e expressa pela Equação 3.

$$C_f = \frac{\sum_i^n c_i \times v_i}{v_f}$$
 Eq. 3

onde: C representa as concentrações das soluções; V se refere aos volumes das soluções; os subíndices f, i e n são iguais, respectivamente, a final, inicial e enésima.

Foi elaborado um parâmetro de rendimento para avaliar o desempenho da destilação, denominado de rendimento operacional percentual. É determinado através da relação volumétrica entre o volume de álcool anidro presente na mistura e no seu destilado, representando o volume de álcool extraído, e foi calculado através da Equação 4.

$$RO = \begin{bmatrix} V_{destilado} \times \left(\frac{{}^{0}GL_{destilado}}{100} \right) \\ \hline V_{mistura} \times \left(\frac{{}^{0}GL_{mistura}}{100} \right) \end{bmatrix} \times 100$$
 Eq. 4

onde: RO é o rendimento operacional volumétrico de álcool anidro extraído (%); V é o volume de solução (litros); °GL é a concentração volumétrica percentual de álcool na solução ou graus *Gay-Lussac*.

Outro parâmetro foi elaborado para a verificação da taxa de transferência evaporação do álcool para as soluções coletadas que foi baseado nas relações aplicadas às taxas de transferências dos fenômenos de transporte (GEANKOPLIS, 2011), denominado de Adimensional de Concentração. É expresso pela razão entre a variação pontual e variação máxima da concentração alcoólica obtida pelos destilados coletados em cada ensaio de destilação e foi calculado pela Equação 5.

Adimensional de Concentração =
$$\frac{(C_n - C_E)}{(C_0 - C_E)}$$
Eq. 5

onde: C representa as concentrações das soluções (°GL); os subíndices n, 0 e E referem-se, respectivamente, ao destilado coletado ao longo do tempo de destilação (n), ao destilado inicial (0) ao último destilado coletado (E) no ensaio de destilação.

5. RESULTADOS E DISCUSSÃO

Neste tópico os resultados das atividades experimentais e as suas discussões estão distribuídas em subtópicos que descrevem: i) as propriedades físico-químicas e quantidade do material utilizado; ii) a magnitude e o comportamento dos parâmetros operacionais e das físico-químicas dos produtos obtidos nos ensaios de destilação na coluna experimental piloto; iii) as proporções, as propriedades físico-químicas e o rendimento das soluções alcoólicas desejáveis obtidas após a mistura dos destilados obtidos; iv) o monitoramento operacional do processo de adsorção em coluna de carvão ativo das soluções de menor concentração alcoólica.

5.1 CARACTERIZAÇÃO FÍSICO-QUÍMICA DA MISTURA DE UÍSQUE

Os resultados das determinações de graduação alcoólica, pH, densidade e do volume utilizado da mistura de uísque fornecida pela Delegacia da Receita Federal de João Pessoa/PB estão apresentados na Tabela 1.

Tabela 1: Volume, concentração alcoólica, pH e densidade da mistura de uísque.

Descarte alcoólico	Volume (litros)	Concentração alcoólica (°GL)	рН	Densidade (g/cm³)	
Mistura de	180	42.0 + 4.0	4.02 . 0.00	0.947 ± 0.003	
uísque	180	42,0 ± 1,0	$4,02 \pm 0,09$	0,947 ± 0,003	

Fonte: Autor (2022).

Os valores das propriedades físico-químicas da mistura de uísque demonstrados na Tabela 1 indicam que esta solução é similar ao uísque comercializado no mercado varejista brasileiro, pois estão nas faixas informadas por Russell, Bamforth e Stewart (2003) para esse tipo de destilado alcoólico, as quais são de 40 à 44 °GL, pH 4,0 a 4,5 e densidade 0,900 a 0,970 g/cm³, respectivamente.

5.2 ENSAIOS DE DESTILAÇÃO NA COLUNA EXPERIMENTAL PILOTO

Os resultados operacionais (volumes do destilado e da solução descarte, tempos de destilação operacional, temperatura operacional, rendimento operacional) e das propriedades físico-químicas (concentração alcoólica, pH, densidade) das soluções obtidas nos ensaios de destilação da mistura de uísque estão apresentados no Quadro 1. A notação dos parâmetros operacionais e das propriedades físico-químicas das soluções alcoólicas apresentadas no Quadro 1 se referem as seguintes situações:

- Tempo operacional: É o tempo total do ensaio, contemplando os períodos de aquecimento e de destilação da mistura alcoólica.
- <u>Tempo de destilação</u>: Está relacionado apenas ao período de coleta de destilado.
- <u>Solução</u> <u>descarte</u>: Representa a solução remanescente da mistura de uísque que permanece na caldeira da coluna experimental de destilação após o término da destilação. A finalização da destilação ocorre com o estancamento, término da coleta de destilado para a faixa de temperatura operacional utilizada (82 a 94 °C).
- <u>Resultados de pH, concentração alcoólica, densidade</u> e <u>temperatura operacional</u>: São valores médios dos dados pontuais de coleta avaliados no decorrer do ensaio de destilação.

Quadro 1: Resultados dos parâmetros operacionais e das propriedades físico-químicas das soluções obtidas nos ensaios de destilação da mistura de uísque.

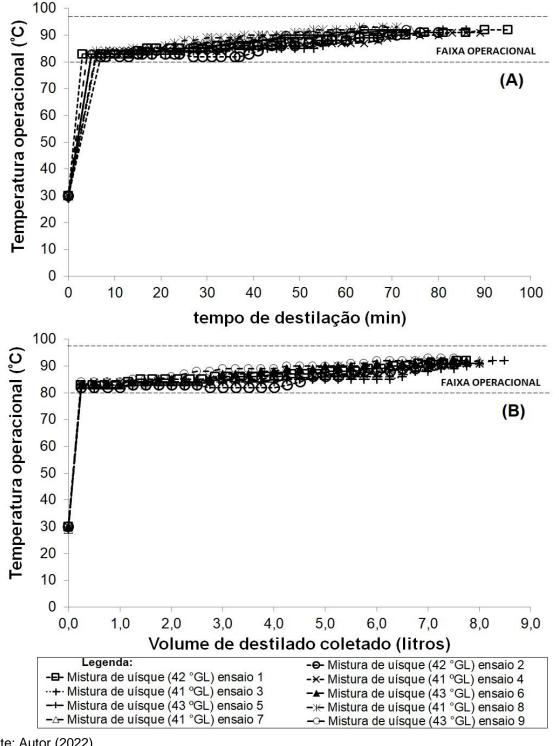
Ensaios	tempo (min)		Volume de solução (L)		Concentração alcoólica ⁱ (°GL)		pH ⁱ destilados	Densidade ⁱ destilados	Temperatura operacional ⁱ	Rendimento operacional
	Operacional	Destilação	Destilado	Descarte	Destilado	Descarte	(valor abs.)	(g/cm³)	(°C)	RO (%)
1ª Destilação	124,0	95,0	7,743	12,000	78,3	12,0	5,62	0,8645	86,9	72,2
2ª Destilação	110,0	80,0	9,000	10,700	76,3	10,7	5,44	0,8707	84,8	66,7
3ª Destilação	111,0	83,0	8,485	11,200	75,6	11,2	5,45	0,8723	85,4	78,3
4ª Destilação	135,0	104,0	8,485	11,200	74,9	11,2	5,41	0,8724	86,9	77,5
5ª Destilação	119,0	86,0	8,485	11,200	75,2	11,2	5,54	0,8709	85,6	74,2
6ª Destilação	105,0	74,0	7,750	11,900	75,9	11,9	5,70	0,8691	87,8	68,4
7ª Destilação	101,0	71,0	8,000	11,700	76,9	11,7	5,86	0,8670	86,7	75,0
8ª Destilação	103,0	73,0	7,250	12,400	77,7	12,4	6,00	0,8659	86,9	68,7
9ª Destilação	101,0	71,0	7,500	12,200	78,0	12,2	5,75	0,8631	88,8	68,1
Média dos Resultados	112,1	81,9	8,078	11,611	76,5	12,1	5,64	0,8684	86,6	72,1
Desvio Padrão	11,7	11,5	0,569	0,564	1,3	0,9	0,20	0,0034	1,2	4,4

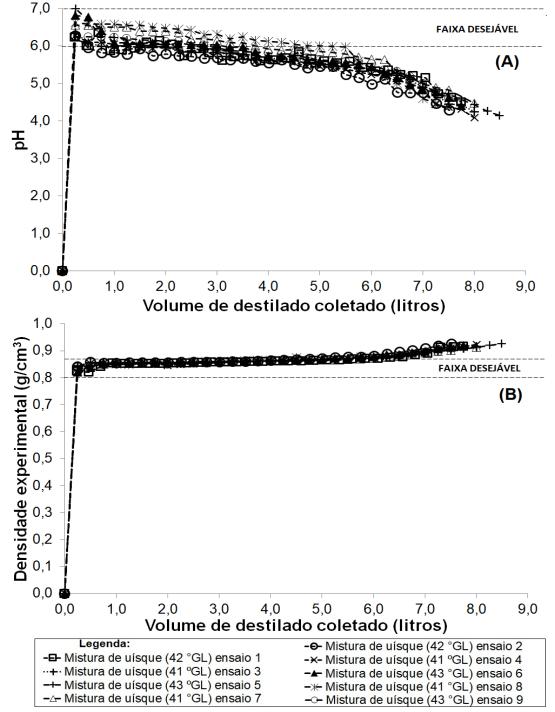
ⁱValores da média dos resultados experimentais pontuais obtidos do material coletado no decorrer da destilação da mistura de uísque. Fonte: Autor (2022).

Os resultados do Quadro 1 demonstram uma diferença de cerca de 30 min entre os tempos de destilação e operacional, representada pelo período de aquecimento da mistura de uísque até a produção de destilado. Ocorreu uma pequena perda volumétrica da solução alcoólica inicial de aproximadamente 300 mL, a qual pode estar relacionada a retenção de material no vaso de destilação, derrame acidental da solução, perdas por evaporação e outras. A concentração alcoólica dos destilados apresentou um valor médio próximo da faixa desejada de 78 a 80 °GL e a solução descarte também apresentou um conteúdo alcoólico representativo, aproveitável, e podem ser utilizadas em novas misturas alcoólicas mais concentradas. O valor médio do pH do destilado está abaixo da faixa desejável (6,0 a 7,0) devido, provavelmente, a característica mais ácida da sua fração final coletada, a qual deve ser descartada na realização da mistura dos destilados coletados e produção das soluções alcoólicas desejadas, conforme suas respectivas faixas de concentrações alcoólicas definidas (69 a 71 °GL e 78 a 80 °GL). O volume da solução descarte foi superior ao volume dos destilados obtidos. Porém, o volume de álcool presente nos destilados é muito superior ao presente nessa solução remanescente, cujo seus respectivos valores são iguais a 6,2 litros e 1,3 litros.

Os resultados do rendimento operacional de extração de álcool da mistura de uísque apresentados nos ensaios de destilação são satisfatórios, obtendo-se o máximo possível de destilado para faixa operacional fixada (82 a 94 °C). Evitou-se operar com temperaturas muito próximas do ponto de ebulição da água (100 °C) para restringir o arraste de compostos indesejáveis, pois observou-se que após breve estancamento de coleta de destilado a temperatura operacional aumentava abruptamente de 2 a 3 °C e começava a ser produzido um destilado viscoso com uma tonalidade variando de branco a amarelada e exalando um aroma característico de uísque.

O comportamento dos parâmetros operacionais e das propriedades físicoquímicas dos destilados produzidos nos ensaios de destilação da mistura de uísque é melhor visualizado através de diagramas gráficos que demonstram as suas relações. A elaboração de tais Figuras foram realizadas através dos resultados pontuais experimentais de tais parâmetros apresentados no tópico de APÊNDICE A (Quadros de A1 a A10). A Figura 5 apresenta as relações da temperatura operacional com o tempo de destilação (Figura 5A) e com o volume de destilado coletado (Figura 5B).



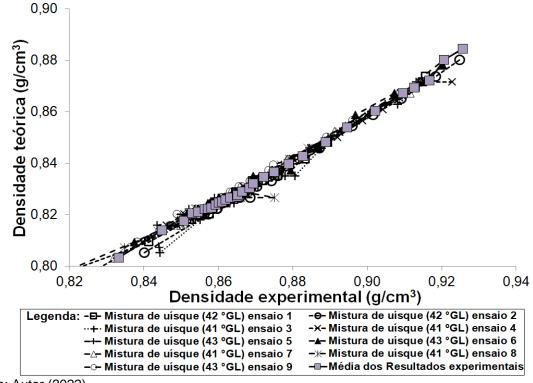

Figura 5: Relações da temperatura operacional com o tempo de destilação (Figura 5A) e com o volume de coleta de destilado (Figura 5B).

Fonte: Autor (2022).

O comportamento das variações da temperatura operacional em relação ao tempo de destilação e ao volume de coleta de destilado é similar, cujo aumento da temperatura da solução no vaso ao longo da operação para produção de destilado é um mecanismo característico deste tipo de destilação diferencial. A Figura 6 demonstra as relações do volume da coleta de destilado com o pH (Figura 6A) e a

densidade (Figura 6B), determinada experimentalmente através de picnometria líquida.

Figura 6: Relações do volume de coleta de destilados com o seu pH (Figura 6A) e a sua densidade experimental (Figura 6B).

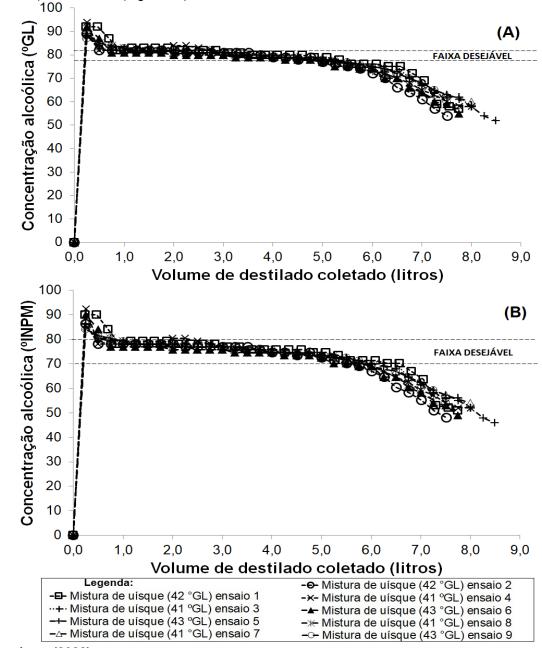

Fonte: Autor (2022).

Uma quantidade volumétrica significativa dos destilados produzidos na coluna experimental piloto apresentou valores de pH e densidade na faixa desejável indicada para a produção de álcool hidratado concentrado, produto com maior concentração de álcool, na faixa de 78 a 80 °GL, conforme indicam os resultados

das Figura 6. Observa-se que a última fração de destilado coletado, obtido a partir de seis (6) litros de produto, se caracteriza como um produto de menor qualidade, um álcool residual, apresentando os maiores valores de densidade e os menores de pH. Esta solução alcoólica deve ser excluída da composição das misturas alcoólicas de maior e menor concentração, cujas concentrações médias são iguais 79 °GL e 70 °GL, respectivamente.

Foi realizada uma averiguação dos resultados experimentais de densidade através do levantamento de resultados estimados teoricamente por meio da Equação 2, que calcula a densidade da mistura binária etanol-álcool utilizando os valores de concentração alcoólica e dos valores da literatura das densidades destes componentes puros a temperatura ambiente local de 29 °C. A relação entre os resultados experimentais e os estimados teoricamente para a densidade dos destilados estão apresentados na Figura 7.

Figura 7: Relação entre os resultados experimentais e os estimados teoricamente para a densidade dos destilados a 29 °C.

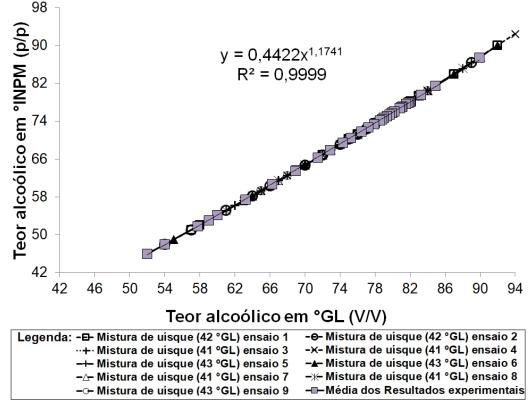

Fonte: Autor (2022).

Verificou-se um desvio de 4,2% entre os resultados experimentais e os estimados teoricamente, seguindo o comportamento de variação linear constante apresentado na Figura 7. Os valores experimentais são superiores aos teóricos, estimados para mistura binária etanol e água, puros, cuja suposição inicial é que os destilados devem apresentar outros compostos diferentes desses componentes. No

entanto, como essa diferença é pequena, inferior a 5%, pode-se presumir que a composição dos destilados é constituída, predominantemente, de uma mistura hidroalcoólica.

A relação da concentração alcoólica com o volume de destilado coletado está demonstrada na Figura 8, expressa em °GL (Figura 8A) e em °INPM (Figura 8B).

Figura 8: Relação da concentração alcoólica com o volume de destilado coletado, expressa em °GL (Figura 8A) e em °INPM (Figura 8B).


Fonte: Autor (2022).

Observa-se, novamente na Figura 8 que a maior parte da quantidade volumétrica dos destilados apresenta resultados de concentração alcoólica na faixa desejável para produção dos sanitizantes propostos. O produto obtido a partir de

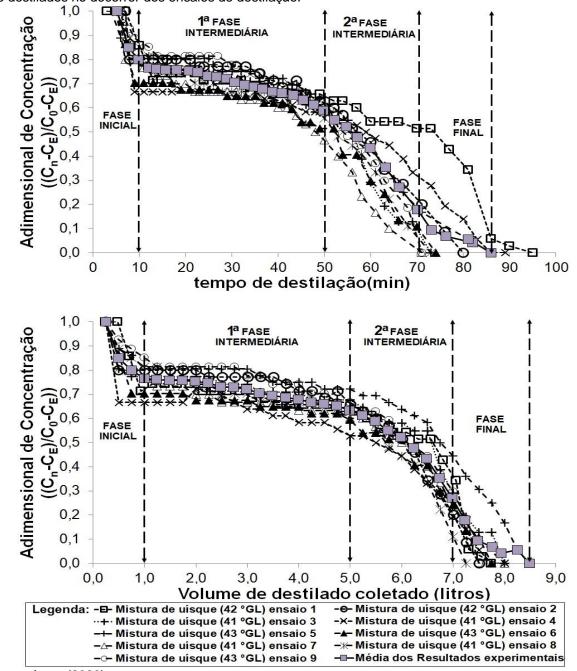
seis (6) litros de coleta é o álcool residual que deve ser destinado a elaboração de uma terceira mistura alcoólica, a qual deve ser submetida a outro tratamento físico e/ou químico para melhorar sua qualidade comercial. O álcool residual apresenta uma coloração amarelada e um aroma de uísque e é a principal fração alcoólica que deve ser destinada ao processo de adsorção em coluna com carvão ativo.

Verifica-se que existe uma defasagem dos resultados de concentração alcoólica mássica (°INPM) em relação a volumétrica (°GL), já prevista por Cipriano et al (2021), cuja relação pode delinear uma expressão empírica, uma correlação experimental, para se obter a transformação dos valores de °GL em °INPM, a qual está apresentada na Figura 9.

Figura 9: Relação entre os valores de concentração alcoólica dos destilados coletados expressos em °GL e °INPM a 29 °C.

Fonte: Autor (2022).

A relação entre os resultados de concentração alcoólica dos destilados expressos em °GL e em °INPM apresenta um comportamento exponencial, o qual segue a lei de potência, conforme o ajuste matemático apresentado na Figura 9, demonstrado pelo expressivo valor do seu coeficiente de correlação (R²) de 99,99%. Portanto, pode-se utilizar a correlação apresentada na Figura 9, expressa pela Equação 6, para se estimar mais facilmente a concentração alcoólica em termos


mássicos, °INPM, a qual não é obtida através dos usuais densímetros com escala *Gay-Lussac* (°GL) utilizados para verificar o teor alcoólico de soluções alcoólicas.

$$^{\circ}$$
INPM = 0,4422 x $^{\circ}$ GL^{1,1741} Eq. 6

onde: °INPM expressa a concentração mássica de álcool na solução; °GL é a concentração volumétrica de álcool na solução.

Os resultados do adimensional de concentração em relação ao tempo de destilação e ao volume de destilado coletado estão apresentados na Figura 10.

Figura 10: Resultados do Adimensional de concentração de evaporação alcoólica para a produção de destilados no decorrer dos ensaios de destilação.

Fonte: Autor (2022).

A investigação inicial do comportamento de migração, evaporação alcoólica da mistura de uísque para a produção de destilados apresentada na Figura 10 está baseada nos resultados de concentração dos destilados alcoólicos coletados. Assim, toda análise refere-se ao empobrecimento, a redução do teor alcoólico destes produtos. O comportamento dessa taxa de concentração alcoólica nos destilados ao decorrer da destilação sugere que existem alguns períodos de comportamento similar que podem ser divididos em fases da destilação. A redução do teor dos destilados é esperada na destilação diferencial, conforme relata Geankoplis (2011), e todo comportamento do adimensional de concentração adotado é decrescente, o qual foi subdivido nas seguintes fases:

- ➤ <u>Fase inicial</u>: É o período de evaporação alcoólica que apresenta uma acentuada variação linear decrescente do teor alcoólico com o tempo de destilação e, também, com o volume de destilado coletado. Essa fase apresenta um intervalo de tempo inicial de 10 min para a coleta de um (1) litro de destilado.
- ▶ 1ª Fase intermediária: Representa o primeiro período de uma taxa exponencial decrescente do teor alcoólico em relação ao tempo de destilação e o volume de destilado coletado. É um período de atenuada variação da taxa de evaporação alcoólica e de maior intervalo de tempo (40 min), na qual é obtida o maior volume de destilado coletado (4 litros).
- ➤ 2ª Fase intermediária: Representa o segundo período de taxa exponencial decrescente com acentuada variação do teor alcoólico em relação ao tempo de destilação (20 min) e de segunda maior coleta de destilado (2 litros). Nesta fase se observa o início da coleta do álcool residual e a finalização da produção da solução alcoólica desejável.
- ► Fase final: É o período de produção apenas de álcool residual que ocorre a partir de 70 min de fervura da solução, apresentando um intervalo de tempo de cerca de 10 min e um volume de destilado de um (1) litro. Toda solução alcoólica coletada nesta fase deve ser excluída da mistura com os demais destilados obtidos, servindo apenas para a produção do álcool residual.

5.3 MISTURA DOS DESTILADOS E PRODUÇÃO DAS SOLUÇÕES ALCOÓLICAS

As informações do monitoramento operacional e das propriedades físicoquímicas dos destilados coletados, principalmente de volume e de concentração alcoólica, indicam a possibilidade de elaboração das misturas alcoólicas para três tipos de produto, sendo estes:

- Álcool hidratado mais concentrado: É o produto idealizado para uso como desinfetante de superfícies e materiais, pois deve ter uma concentração alcoólica mínima de 70 °INPM, a qual equivale a um valor na faixa de 77 a 78 °GL, e apresentar ação de eliminação/inibição da atividade microbiana, principalmente de bactérias e vírus. Para a produção desta solução alcoólica devem ser misturados todos os destilados com concentração alcoólica superior a 75 °GL.
- Álcool hidratado menos concentrado: É o produto para ser utilizado como sanitizante devido a sua menor concentração alcoólica, arbitrada para uma faixa de 69 a 71 °GL que equivale a 64 °INPM, e indicado para redução da atividade microbiana. Os destilados com concentração alcoólica na faixa de 75 a 64 °GL devem ser utilizados na composição da mistura e produção desse tipo de solução alcoólica.
- Álcool Residual: É o produto obtido nas fases finais de coleta de destilados, apresentando características físicas (cor amarelada) e químicas (baixo pH, aroma de uísque) inconformes com os requisitos estipulados para o álcool hidratado desejado, do tipo sanitizante/desinfetante (ANP, 2022). Devem ser utilizados todos os destilados coletados que apresentam concentração alcoólica igual ou inferior a 63 °GL.

Assim, foi realizada a estimativa da produção volumétrica destas soluções alcoólicas para todo material coletado em cada ensaio e em todos ensaios de destilação realizados e para todo material produzido nestes experimentos (volume de destilados e de solução descarte). Esta estimativa foi acompanhada da determinação das concentrações alcoólicas destas soluções e da proporção volumétrica das mesmas baseadas no volume de destilado coletado (Total Parcial I), no volume de solução produzida (Total Parcial II) e no volume total de mistura de uísque utilizada (Total Geral).

O Quadro 2 apresenta as estimativas volumétricas para as misturas dos destilados que produzirão os três tipos de álcool hidratado arbitrados (mais concentrado, menos concentrado e residual) obtidos em cada e em todos os ensaios de destilação realizados. As informações do volume da solução descarte e da mistura de uísque envolvidas nestes experimentos também estão demostrados neste quadro, assim como, os valores do teor alcoólico de todas soluções alcoólicas apresentadas no mesmo.

Quadro 2: Estimativas volumétricas das misturas dos destilados destinadas a produção de diferentes tipos de álcool hidratado, baseados no seu

teor alcoólico, obtidos nos ensaios de destilação e os volumes das demais soluções alcoólicas envolvidas nesses experimentos.

Ensaios		cool Mais		ool Menos ncentrado	Álco	ol Residual	Soluç	ão Descarte	Mate	éria-prima
Liisaios	Volume (L)	Teor alcoólico (°GL)	Volume (L)	Teor alcoólico (°GL)	Volume (L)	Teor alcoólico (°GL)	Volume (L)	Teor alcoólico (°GL)	Volume (L)	Teor alcoólico (°GL)
1ª Destilação	6,569	81,0	0,488	70,5	0,686	58,1	12,000	12,5	20	42
2ª Destilação	5,510	80,5	1,250	69,2	0,750	57,3	10,700	10,0	20	43
3ª Destilação	6,500	80,1	0,750	67,0	1,235	57,7	11,200	12,0	20	41
4ª Destilação	5,750	80,9	1,250	69,8	1,485	55,9	11,200	12,0	20	41
5ª Destilação	6,000	80,0	1,250	70,0	1,235	57,7	11,200	12,0	20	43
6ª Destilação	5,500	80,0	1,500	69,7	0,750	58,0	11,900	12,0	20	43
7ª Destilação	6,000	80,4	1,250	69,6	0,750	61,3	11,700	13,0	20	41
8ª Destilação	5,500	80,6	1,500	70,0	0,250	61,0	12,400	12,0	20	41
9ª Destilação	5,750	80,8	1,500	70,3	0,250	60,0	12,200	13,0	20	43
Média Resultados	5,898	80,5	1,193	69,6	0,821	58,6	11,611	12,1	20	42
Desvio Padrão	0,410	0,4	0,352	1,0	0,429	1,8	0,564	0,9	0	1
Total Parcial I e %Volumétrica	53,08 li	tros e 74,54%	10,74 li	tros e 15,08%	7,39 lit	ros e 10,38%		Soluções	excluídas	i
Total Parcial II e %Volumétrica		71,21 litros e 39,56% 104,50 litros e 58,06% Solução excluída								ão excluída ⁱ
Total Geral e %Volumétrica	175,71 litros e 97,62% 180 litros e 100%							tros e 100%		

^ISoluções excluídas para a determinação da %Volumétrica dos Totais Parciais I e II, baseadas, respectivamente, nos volumes dos destilados coletados (I) e de toda solução produzida (II) nos ensaios de destilação da mistura de uísque. Fonte: Autor (2022).

Os resultados do Quadro 2 demostram que a maior percentagem volumétrica dos destilados coletados (74,54%) pode ser destinada a produção do álcool mais concentrado, o qual é o produto desejado para a produção de desinfetante. A quantidade volumétrica de álcool residual foi a menor em relação as demais soluções alcoólicas produzidas (10,38%), justificando o desejável rendimento operacional obtido (72%). A quantidade esperada de álcool menos concentrada também foi pequena (15,08%), corroborando para obtenção desse desejável rendimento operacional. Observa-se novamente a desigualdade volumétrica da relação solução utilizada (mistura de uísque) e produzida (destilados coletados e solução descarte), indicando mais perdas de material, possivelmente da retirada do produto, até o acondicionamento. Assim como, a maior produção de solução descarte em relação a quantidade de destilado coletada, fato que está relacionado a faixa de temperatura utilizada para a coleta de destilado concentrado e com característica físico-química adequada para a produção dos tipos de álcool hidratado desejáveis.

Após essa estimativa volumétrica para produção dos três tipos de álcool propostos foram realizadas as misturas das frações alcoólicas obtidas em todos os ensaios de destilação, cujos resultados de quantidade volumétrica, concentração alcoólica, pH e densidade estão apresentadas na Tabela 2.

Tabela 2: Volume, concentração alcoólica, pH e densidade dos três tipos de álcool hidratado produzidos pela mistura dos destilados coletados nos ensaios de destilação da mistura de uísque.

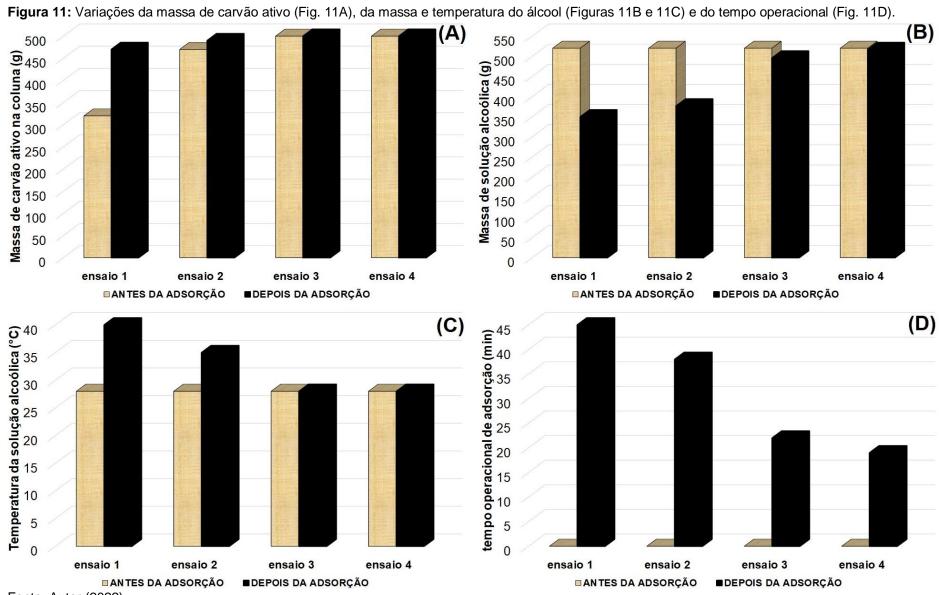
Tipo Álcool	Volume		ntração ólica:	рН	Densidade (g/cm³):			
hidratado	(litros) -	°GL	°INPM ⁱ	•	Experimental	Teórica ⁱ		
Mais Concentrado	53,0	78,0	73,6	6,17	0,8659	0,8288		
Menos Concentrado	10,5	71,0	65,8	5,74	0,8841	0,8438		
Residual	8,25	57,0	51,0	4,86	0,9166	0,8738		

Valores estimados por equações físico-matemáticas.

Fonte: Autor (2022).

Verifica-se na Tabela 2 que os volumes dos três tipos de álcool hidratado produzidos através das misturas das frações alcoólicas dos destilados coletados são similares aos propostos pela estimativa volumétrica realizadas apresentadas no Quadro 2. As proporções volumétricas destes produtos em relação ao volume total

de destilado coletado são iguais a 72,16% de álcool mais concentrado (78 °GL), 16,49% de álcool menos concentrado (71 °GL) e 11,34% de álcool residual (57 °GL).


O volume total do álcool produzido apresentou um pequeno acréscimo volumétrico de 0,5 litros, representando um desvio de 0,76% em relação ao volume de destilados coletados, que pode ser incorporação de água nos destilados coletados durante a sua manipulação e acondicionamento. Ocorreu um pequeno decréscimo na concentração da mistura alcoólica da fração mais concentrada em relação ao valor estimado (80 °GL), apresentado no Quadro 2, provavelmente devido as perdas evaporativas de álcool dos destilados mais concentrado para o meio ambiente durante sua manipulação em atividades analíticas experimentais.

5.4 ENSAIOS DE ADSORÇÃO EM COLUNA COM CARVÃO ATIVO

Foram realizados testes preliminares de adsorção em coluna com carvão ativo com as misturas alcoólicas produzidas nos ensaios de destilação para o aprimoramento da metodologia pesquisada na literatura (BARBOSA, 2010) e verificação do comportamento das propriedades físico-químicas destas soluções. Inicialmente o álcool mais concentrado foi escolhido como solução para estes testes, pois é o produto com os melhores valores para estes parâmetros analíticos e poderia expressar com maior precisão as possíveis alterações que este processo de adsorção pode fornecer a solução coletada na coluna com carvão ativo.

Foram realizados quatro ensaios de adsorção na coluna com carvão ativo com o álcool mais concentrado nos quais foram verificadas as alterações de temperatura, concentração alcoólica, pH e densidade da solução antes e depois de sua passagem pelo meio sólido poroso. A determinação da variação das massas de carvão ativo e das soluções alcoólicas utilizadas nos ensaios também foram verificadas, assim como, o tempo operacional dos ensaios experimentais. É importante ressaltar que os ensaios foram realizados subsequentemente, um após o outro, utilizando o mesmo leito poroso de carvão ativo. Cada solução alcoólica em teste foi submetida ao escoamento na coluna, reposta uma após a outra de forma sequencial, através da massa de carvão cada vez mais encharcada.

A Figura 11 apresenta os resultados dos testes preliminares para as variações da massa de carvão ativo (Fig. 11A), da massa e temperatura de solução alcoólica (Figuras 11B e 11C) e do tempo operacional (Fig. 11D).

As Figuras 11A, 11B e 11C demonstram que as variações de massa do carvão ativo, de massa e temperatura das soluções alcoólicas ocorrem predominantemente nos dois ensaios iniciais (1 e 2) e, a partir do terceiro ensaio, tais parâmetros se estabilizam. Observa-se então, que o total encharcamento do meio poroso de carvão ativo ocorreu ao término do segundo ensaio e que nesse contato sólido-líquido ocorreu uma elevação dos materiais na coluna, principalmente na sua base, representada pelo aumento da temperatura do álcool coletado. A relação do ganho de massa de carvão ativo e perda de massa da solução alcoólica nesses ensaios iniciais não foi proporcional, na qual a fase líquida apresenta uma maior perda mássica devido, provavelmente, a maior retenção de material nos interstícios do leito particulado poroso. O tempo de operação dos ensaios continuou diminuindo, conforme as informações da Figura 11D. Porém, nos dois ensaios finais (3 e 4) essa diferença foi muito menor em relação aos resultados dos ensaios iniciais (1 e 2), indicando uma evidente tendência a estabilização desse tempo operacional.

Portanto, unindo todos os ensaios para a representação de um único procedimento de adsorção de toda a sua massa de álcool nessa coluna com carvão ativo, pode-se verificar que a principal variação dos parâmetros operacionais ocorre na sua etapa inicial, e no período de sua estabilização, alguns destes retorna a sua condição inicial, tal como, a temperatura da solução alcoólica.

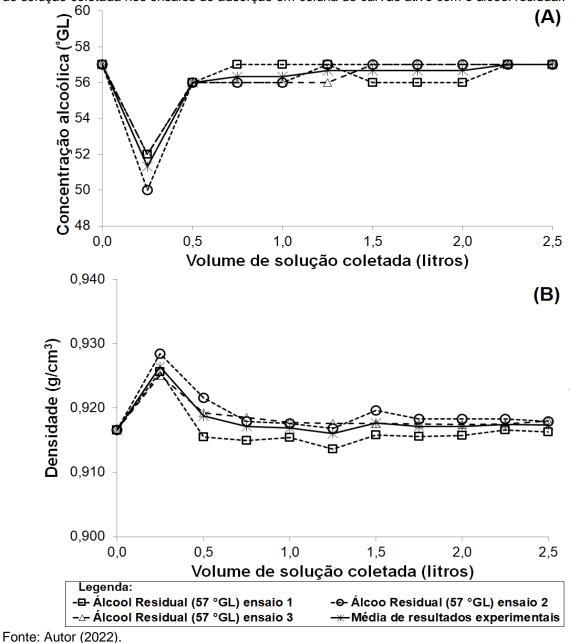
O principal interesse desse procedimento de adsorção é a retirada de impurezas da solução alcoólica e manutenção de suas características desejáveis, as quais podem ser verificadas através de alterações nas suas propriedades físico-químicas. Assim, mediante a instrumentação analítica disponível para o atual estudo, a magnitude de alteração da concentração alcoólica, pH e densidade da solução alcoólica é a principal justificativa para a aplicação dessa operação nas soluções alcoólicas produzidas, cujos resultados obtidos nestes testes preliminares estão apresentados na Figura 12.

ensaio 4 ensaio 1 ensaio 2 ensaio 3 ■ ANTES DA ADSORÇÃO ■ DEPOIS DA ADSORÇÃO (B) 6,6 6,5 6,4 (valor abs. 6,3 6,2 6,1 6,0 **五** 5,9 5,8 5,7 ensaio 4 ensaio 1 ensaio 2 ensaio 3 ■ ANTES DA ADSORÇÃO ■ DEPOIS DA ADSORÇÃO (C) 0,890 0,885 Densidade (d/cm₃)
0,880
0,875
0,865
0,865
0,866
0,855 0,855 0,850 ensaio 1 ensaio 2 ensaio 3 ensaio 4 ■ ANTES DA ADSORÇÃO ■ DEPOIS DA ADSORÇÃO

Figura 12: Variações da concentração alcoólica (Fig. 12A), do pH (Fig. 12B) e da densidade da solução alcoólica concentrada nos testes preliminares de adsorção em coluna com carvão ativo.

A variação da concentração alcoólica, pH e densidade da solução alcoólicas nos testes preliminares, apresentada na Figura 12, segue comportamento similar dos parâmetros operacionais avaliados anteriormente, demonstrado na Figura 11. No entanto, aspectos negativos e positivos deste processo devem ser destacados, tais como:

- Variação da concentração alcoólica: A sua redução nos ensaios iniciais (1 e 2) é indesejável, pois a perda alcoólica resulta na diminuição de sua atividade antimicrobiana e na sua qualidade comercial. No ensaio inicial (1), o produto alcoólico concentrado (78 °GL) é rebaixado da condição de desinfetante para sanitizante (70 °GL). O fato favorável observado é que nos ensaios finais esse decréscimo diminui (ensaio 3) e se anula (ensaio 4), indicando que não haverá redução da concentração alcoólica em outro posterior ensaio nessa coluna de carvão ativo.
- Variação do pH: O aumento do pH é extremamente favorável para a qualidade comercial do produto alcoólico, indicando a pureza dos seus componentes. A variação do pH da solução alcoólica apresentou uma atenuada oscilação, cujo resultado do ensaio final (4) manteve uma elevação de 0,4 pontos do seu valor absoluto em relação a sua condição inicial, devido a uma provável adsorção de compostos ácidos presentes no álcool residual.
- Variação da densidade: Seus resultados acompanharam inversamente o comportamento da variação da concentração alcoólica. Inicialmente ocorreu um acentuado aumento da densidade (ensaios 1 e 2) da solução alcoólica e depois um decréscimo e retorno ao seu valor de sua condição inicial (ensaios 3 e 4). O aumento da densidade do álcool é um fator negativo, pois indica diminuição do seu teor alcoólico. No entanto, favoravelmente, no estágio de estabilização dos parâmetros operacionais seu valor permanece inalterado em relação a sua condição inicial.


Reunindo as informações dos testes preliminares de adsorção em coluna de carvão ativo, pode-se verificar que este procedimento implica na redução do teor alcoólico de determinada fração volumétrica da solução utilizada. Portanto, o álcool concentrado utilizado nestes testes preliminares não deve ser submetido a este processo, pois apresenta pH na faixa adequada (6,0 a 8,0), aparência física adequada (incolor e cheiro característico a etanol), segundo a ANP (2022): A sua densidade também é muito próxima ao valor teórico para a mistura binária etanolágua (desvio de +4,48%) e sua graduação alcoólica está no valor limitante para garantir sua ação desinfetante (78 °GL).

A aplicação da operação de adsorção em coluna de carvão ativo deve ser destinada apenas ao álcool residual que apresenta uma aparência inadequada para

uso como sanitizante (possui coloração amarelada e aroma de uísque) e a menor concentração alcoólica (57 °GL) em relação aos demais álcoois produzidos.

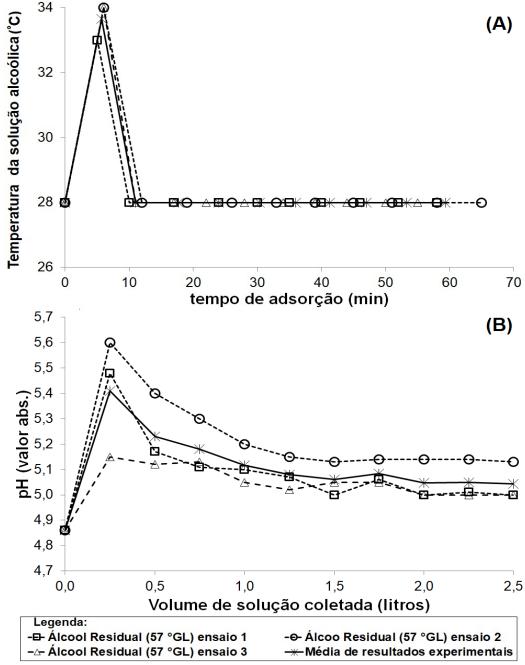

Assim, foram realizados três (3) ensaios de adsorção na coluna com carvão ativo para processar todo volume de álcool residual, nos quais se fez o monitoramento da operação através da coleta de solução percolada em frações de 250 mL. Efetuou-se as determinações do tempo operacional de cada ensaio e das propriedades físico-químicas (°GL, pH e densidade) das soluções coletadas, cujos resultados estão apresentados na Figuras 13 e 14.

Figura 13: Relações da concentração alcoólica (Fig. 13A) e da densidade (Fig. 13B) com o volume de solução coletada nos ensaios de adsorção em coluna de carvão ativo com o álcool residual.

Verifica-se nas Figuras 13A e 13B que o comportamento da concentração alcoólica e da densidade são similares, mas inversamente proporcionais, e confirmam os resultados obtidos nos testes preliminares realizados com o álcool mais concentrado. Inicialmente ocorre uma acentuada variação de seus valores e posteriormente os mesmos retornam a sua magnitude inicial. Na Figura 14 estão demonstrados os comportamentos da temperatura da solução alcoólica com o tempo de adsorção e do pH em relação ao volume de solução coletada.

Figura 14: Relações da temperatura da solução alcoólica com o tempo de adsorção (Fig. 14A) e do pH com o volume de solução coletada (Fig. 14B) nos ensaios de adsorção em coluna de carvão ativo com o álcool residual.

Observa-se na Figura 14 que o comportamento da temperatura da solução alcoólica com o tempo de adsorção e do pH com o volume de solução coletada é similar ao verificado nos testes preliminares. Porém, a magnitude das variações das relações de todos os parâmetros apresentados nas Figuras 13 e 14 são menores em relação aos apresentados nos testes preliminares, provavelmente devido ao menor teor alcoólico, menor pH e maior densidade do álcool residual em relação aos parâmetros e os tais valores do álcool concentrado (78 °GL).

Ocorreu uma pequena perda volumétrica de álcool residual nestes ensaios de adsorção, cujos resultados gerais estão apresentados na Quadro 3.

Quadro 3: Valores de volume, teor alcoólico, pH e densidade do álcool residual antes e depois de sua adsorção em coluna com carvão ativo.

Ensaios	Álcool Resid	dual antes adsorç	ão em colun	a de carvão ativo	Álcool Resi	dual após adsorç	ão em colu	na de carvão ativo
Lilouido	Volume (L)	Teor alcoólico (°GL)	рН	densidade (g/cm³)	Volume (L)	Teor alcoólico ⁱ (°GL)	рН ^і	densidade ⁱ (g/cm³)
1ª Adsorção	2,750	57,0	4,86	0,9166	2,500	56,1	5,10	0,9165
2ª Adsorção	2,740	57,0	4,86	0,9166	2,500	56,0	5,23	0,9195
3ª Adsorção	2,760	57,0	4,86	0,9166	2,500	56,1	5,06	0,9186
Média dos Resultados	2,750	57,0	4,86	0,9166	2,500	56,1	5,13	0,9182
Desvio Padrão	0,010	0,0	0,00	0,0000	0,000	0,1	0,09	0,0015
Total	8,250				7,500			

ⁱValores da média dos resultados experimentais pontuais obtidos do álcool residual coletado no decorrer da adsorção em coluna com carvão ativo. Fonte: Autor (2022).

Os resultados das propriedades físico-químicas do álcool residual obtido após sua adsorção em coluna com carvão ativo são valores médios de todos os pontos dos diagramas apresentados nas Figuras 13 e 14. Assim, incluem a solução coletada no período inicial de suas máximas variações e resultam na redução do teor alcoólico do álcool residual, a qual deve ser evitada. Assim, foi realizado o descarte desse material menos concentrado para a realização da mistura de todas as soluções percoladas coletadas e se obter todo álcool residual coletado após adsorção, cujos resultados para volume produzido e para suas propriedades físicas foram:

- Volume do álcool residual após adsorção: 6,75 litros;
- Concentração alcoólica do álcool residual após adsorção: 56,5 °GL;
- pH do álcool residual após adsorção: 5,2;
- Densidade do álcool residual após adsorção: 0,917 g/cm³.

6 CONCLUSÃO

A destilação da mistura de uísque na coluna piloto experimental apresentou um rendimento em extração de álcool anidro representativo e igual a 72%, resultando em uma produção de 71,75 litros de solução alcoólica.

A maior quantidade de álcool hidratado produzido foi do tipo álcool mais concentrado (72,2%), cujo teor alcoólico, pH e densidade são iguais a 78 °GL (73,6 °INPM), 6,17 e 0,823 g/cm³. O volume final desse produto foi de 53 litros, o qual pode ser destinado ao uso como desinfetante de superfícies e materiais.

O álcool menos concentrado apresentou um teor alcoólico de 71 °GL (61,8 °INPM) e uma menor proporção volumétrica igual a 16,5%. Seu volume total foi de 10,5 litros e seu pH igual a 5,74, podendo ser utilizado como sanitizante.

A destilação da mistura de uísque produziu um álcool residual com características físico-químicas indesejáveis para produção de sanitizante/desinfetante que foi submetida ao processo de adsorção em coluna com carvão ativo. Foram produzidos 8,25 litros deste álcool residual, o qual representa 11,3% do volume total de destilado coletado, com teor alcoólico, pH e densidade iguais a 51 °GL, 4,86 e 0,916 g/cm³, respectivamente.

O processo de adsorção em coluna com carvão ativo do álcool residual proporcionou: i) um aumento de pH em 0,3 pontos absolutos e um decréscimo da concentração alcoólica de 0,5 °GL; ii) uma diminuição de volume de 1,5 litros, a qual representa uma perda volumétrica de 18,2%. Assim, deve-se analisar outras características físico-químicas para justificar esse processo de adsorção, pois verificou-se uma redução da tonalidade amarelada e do aroma característico de uísque entre a solução adsorvida e a inicial.

REFERÊNCIAS

ABNT. ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **NBR 5992: Informação e documentação: Referências**. p. 24. Rio de Janeiro, 2008.

ANP. AGÊNCIA NACIONAL DO PETRÓLEO, GÁS NATURAL E BIOCOMBUSTÍVEIS. **REGULAMENTO TÉCNICO ANP Nº 3/2015**, 49 páginas. Disponível em: https://www.gov.br/anp/pt-br/assuntos/pesquisa-desenvolvimento-e-inovacao/investimentos-em-pd-i/rt-03-2015.pdf. Acesso em: 17 abril 2022. ANVISA. AGÊNCIA NACIONAL DE VIGILÂNCIA SANITÁRIA. **RESOLUÇÃO RDC Nº 490, de 8 de Abril de 2021**. Diário Oficial da União (DOU), Edição: 69, Seção: 1, Página: 204, Publicado em 14/04/2021.

BARBOSA, I. R. Preparação de carvão ativado a partir das tortas das amêndoas de inajá (Maximilliana maripa) e de açaí (Euterpe Oleracea) para redução de contaminantes ambientais. Universidade Federal do Amazonas - UFAM, 2011. Disponível em: http://riu.ufam.edu.br/handle/prefix/2079. Acesso em: 22 mai 2022.

BARBOSA, L. **Desodorização de álcool**: Métodos e produtos utilizados na desodorização do álcool etílico para produção de bebidas alcoólicas. [S.I.], 2010. Disponível em: https://www.sebrae.com.br/sites/PortalSebrae/sbrt/desodorizacao-de-alcool,96c06ffa87341710VgnVCM1000004c00210aRCRD. Acesso em: 04 jun 2022.

BARROS, L. S. Estudo do impacto da gestão estratégica na criação de valor associado à destruição sustentável de mercadorias apreendidas: Caso de estudo. 2020. 114 p. Dissertação (Gestão de empresas) — Universidade Autónoma de Lisboa. Disponível em: http://hdl.handle.net/11144/5004. Acesso em: 20 abril 2022

BASTOS, V. D. Etanol, alcoolquímica e biorrefinaria. **BNDES Setorial**, Rio de Janeiro, n. 25, p. 5-38, mar. 2007. Disponível em: http://web.bndes.gov.br/bib/jspui/handle/1408/2527. Acesso em: 20 abril 2022.

BONFIM-ROCHA, L.; MOREIRA, W. M.; LIMA, O. M. Simulação rigorosa de colunas de destilação em aspen plus® para produção de etanol hidratado e etanol anidro. In:

III Encontro de Pesquisa da FATEB. 2016. Telêmaco Borba – PR. v. 2. p. 491 –

511, 2016. Disponível em:

https://www.researchgate.net/publication/311105787_SIMULACAO_RIGOROSA_DE

COLUNAS DE DESTILACAO EM ASPEN PLUSR PARA PRODUCAO DE ET ANOL HIDRATADO E ETANOL ANIDRO. Acesso em: 22 abril 2022.

CIPRIANO, E. et al. Produção de álcool etílico anidro a partir da hidrólise e fermentação alcoólica do amido de milho. In: BARROS, C. et al. (Ed.). **IV Congresso Internacional da Ordem dos Engenheiros de Angola**. Luanda, 2021. p. 43 – 54. ISBN 978-989-33-2731-9. ISSN 2790-2226. Disponível em: https://www.anest.org.br/wp-content/uploads/sites/2/2022/01/Anais-do-IV%C2%B0-Congresso-Internacional-da-Ordem-dos-Engenheiros-de-Angola-.pdf#page=51.

Acesso em: 01 jun 2022.

COSTA, P. D. de; FURMANSKI, L. M.; DOMINGUINI, L. Produção, Caracterização e Aplicação de Carvão Ativado de Casca de Nozes para Adsorção de Azul de Metileno. **Revista Virtual de Química**, Criciúma, v. 7, n. 4, Março 2015. ISSN 1984-6835. Disponível em: https://rvq-sub.sbq.org.br/index.php/rvq/article/view/871. Acesso em: 22 maio 2022.

DINIZ, D. dos S. Produção de álcool etílico utilizando como matérias primas resíduos florestais e agrícolas. 2008. 231 p. Dissertação (Bioenergia) — Universidade Nova de Lisboa. Disponível em: http://hdl.handle.net/10362/1895. Acesso em: 17 abril 2022.

DOMINGUES, P. F.; RICCI, G. D.; ORSI, A. M. Desinfecção e Desinfetantes. Suínos & Cia, Consuitec, Campinas, v. 7, n. 41, p. 30 – 37, 2011. Disponível em: http://www.consuitec.com.br/sgc/fotos/69958Sanidade%20-

%20Desinfec%C3%A7%C3%A3o%20e%20desinfetantes%20-

%20Edi%C3%A7%C3%A3o%2041.pdf. Acesso em: 03 jun 2022.

GEANKOPLIS, C.J. **Transport processes and separation process principles:** (includes unit operations), 4a edition, Prentice Hall PTR, Englewood Cliffs, New Jersey, 2011.

GENEROSO, B. R. Simulação de uma coluna de destilação para produção de etanol hidratado e análise de perdas na vinhaça e pureza do etanol produzido. 2021. 39 p. Monografia (Engenharia Química) — Universidade Federal de São Carlos. Disponível em: https://repositorio.ufscar.br/handle/ufscar/14990. Acesso em: 22 abril 2022.

HARRIS, D. C. Análise química quantitativa. 8ª Edição. Rio de Janeiro: LTC, 2012.

KAMPF, G; TODT, D.; PFAENDER, S.; STEINMANN, E. Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. **Journal of Hospital Infection,** v. 104, n. 3, p. 246–251, 2020. Disponível em: https://doi.org/10.1016/j.jhin.2020.01.022. Acesso em: 22 abril 2022.

KICH, J. D., BOROWSKY, L. M., SILVA, V. S., RAMENZONI, M., TRIQUES, N., KOOLER, F. L., & CARDOSO, M. R. de I. (2018). Avaliação da atividade antibacteriana de seis desinfetantes comerciais frente a amostras de SalmonelOs aspectos relacionados a biossegurança, limpeza e desinfecção são os principais componentes de programasla Typhimurium isoladas de suínos. **Acta Scientiae Veterinariae**, 32(1), 33–39. Disponível em: https://doi.org/10.22456/1679-9216.16792. Acesso em 03 jun 2022.

MAPA - Ministério da Agricultura, Pecuária e Abastecimento. **Decreto nº 6871, de 4 de junho de 2009. Art. 12. Brasília, 2009.** Disponível em: http://www.planalto.gov.br/ccivil_03/_ato2007-2010/2009/decreto/d6871.htm. Acesso em: 17 abril 2022.

MENEGARO, A.; FLORES, A. F.; SIMER, P.; DA SILVA, F. I.; SBARDELOTTO, P. R. R.; PINTO, E. P. Sanitizantes: concentrações e aplicabilidade na indústria de alimentos. **Scientia Agraria Paranaensis**, [S. I.], v. 15, n. 2, p. 171–174, 2016. DOI: 10.18188/sap.v15i2.13022. Disponível em: https://saber.unioeste.br/index.php/scientiaagraria/article/view/13022. Acesso em: 3 jun. 2022.

QUEIROGA, V. V.; FILGUEIRA, E. G. K.; VASCONCELOS, A. M. DE A.; PROCÓPIO, J. V. V.; GOMES, F. W. C.; GOMES, C. H. F. DE M.; GOMES FILHO, C. A. M.; JACÓ, A. P.; ARAUJO, J. M. B. G.; NÓBREGA, J. C. DA S.; NÓBREGA FILHO, M. M. DE S. A pandemia da Covid-19 e o aumento do consumo de álcool no Brasil. **Research, Society and Development**, 10(11), 2021. Disponível em: https://rsdjournal.org/index.php/rsd/article/view/18580. Acesso em: 18 abril 2022.

RAMOS, M. J., FERNANDES, P. A. O álcool contra a COVID-19. **Revista de Ciência Elementar**. Volume 8 (02):018, 2020. Disponível em: https://rce.casadasciencias.org/rceapp/art/2020/018/. Acesso em: 22 abr 2022.

RECEITA FEDERAL. Ministério da Fazenda (MF) - Delegacia da Receita Federal do Brasil em Santa Maria. Destinação Ambientalmente adequada de resíduos provenientes da destruição de bebidas apreendidas pela Receita Federal.

Repositório Institucional da Escola Nacional de Administração Pública (Enap), 20 p., 2016.

RUSSELL, I.; BAMFORTH, C.; STEWART, G. **Whisky**: Technology, Production and Marketing. 1. ed. [S.I.]: Academic Press, 2003. v. 1. 629 p. ISBN 978-0126692020.

SALES, E. Aspectos da história do álcool e do alcoolismo no século XIX. **Cadernos de História UFPE**, Recife, v. 7, n. 7, p. 167 – 203, 2010. ISSN 2594-3766. Disponível

https://periodicos.ufpe.br/revistas/cadernosdehistoriaufpe/article/view/110065.Acesso em: 16 abril 2022.

SARTORI, E. R.; BATISTA, E. F.; SANTOS, V. B.; FATIBELLO-FILHO, O. Construção e Aplicação de um Destilador como Alternativa Simples e Criativa para a Compreensão dos Fenômenos Ocorridos no Processo de Destilação. **Química Nova na Escola**, Sociedade Brasileira de Química, v. 31, n. 1, p. 55 – 57, Fevereiro, 2009. Disponível

http://webeduc.mec.gov.br/portaldoprofessor/quimica/sbq/QNEsc31_1/10-EEQ-0308.pdf. Acesso em: 18 abril 2022.

SEQUINEL, R.; LENZA, G.F., SILVA, F. J. L. B.; SILVA, F. R. Soluções a base de álcool para higienização das mãos e superfícies na prevenção da Covid-19: compêndio informativo sob o ponto de vista da química envolvida. **Química Nova**, v. 43, n. 5, pp. 679-684, 2020. Disponível em: https://doi.org/10.21577/0100-4042.20170553. Acesso em: 21 abril 2022.

SOARES, Alvaro Guedes. Adsorção de gases em carvão ativado de celulignina. 2002. 136 p. Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin, Campinas, SP. Disponível em: https://hdl.handle.net/20.500.12733/1591602. Acesso em: 24 mai. 2022.

SOUTHARD, M. Z.; ROWLEY, R. L.; WILDING, W. V. Physical and Chemical Data. In: GREEN, D. W.; SOUTHARD, M. Z. Perry's Chemical Engineer's Handbook, 9th edition, chapter 2, 2272 p., 2019.

VIANA, F. L. E. Indústria de bebidas alcoólicas. **Caderno Setorial ETENE**. Fortaleza: Banco do Nordeste do Brasil, ano 2, n. 2, fev. 2017. (Série Caderno Setorial ETENE, nº 02, 2017). Disponível em: https://www.bnb.gov.br/s482-dspace/handle/123456789/264. Acesso em 17 abril 2022.

VOLLHARDT, P.; SHORE, N. **Química Orgânica: Estrutura e Função**. 6. ed. [S.I.]: bockman, 2013. 1391 p.

WEBB, P.A. **Volume and density determinations for particle technologists**. Micromeritics Instrument Corporation, 16 p., 2001.

ZARPELON, F. **As especificações do álcool focadas para o mercado mundial**.

2002. Disponível em:

https://www.agencia.cnptia.embrapa.br/Repositorio/Especificacoes do Alcool Foca

do para Mercado Mundial 000fxgfcrtu02wyiv80soht9hal6t8qx.pdf. Acesso em: 20

abril 2022.

APÊNDICES

APÊNDICE A

Os resultados dos parâmetros operacionais e das propriedades físicoquímicas dos destilados coletados nos ensaios experimentais de destilação na coluna experimental piloto de destilação do Laboratório de Engenharia de Alimentos (LEA/CT/UFPB) estão apresentados nos quadros a seguir (Quadro A1 a Quadro A9), assim como, os valores das médias dos resultados desses parâmetros (Quadro A10).

Quadro 1: Resultados operacionais da primeira destilação da mistura de uísque na coluna experimental do LEA/DEA/CT/UFPB.

tempo destilação	т .			densidade (g		luna Piloto experime		Adimensional de	° INPM	N°
•	T _{operacional}	V _{destilado}	* GL	densidade (g/cm²)	tempo operação	рН			
(min)	(°C)	(L)		experimental	teórica	(min)		Concentração (°GL)	(teórico)	coletas
0	30	0,000	0	0,000	0,0000	0	0,00	0,000	0	0
3	83	0,240	92	0,8235	0,7988	29	6,23	1,000	90	1
7	83	0,474	92	0,8212	0,7988	33	6,00	1,000	90	2
10	83	0,704	87	0,8414	0,8095	36	6,36	0,857	84	3
13	83	0,932	82	0,8549	0,8202	39	5,87	0,714	78	4
15	84	1,162	83	0,8516	0,8181	41	5,89	0,743	79	5
17	85	1,400	83	0,8523	0,8181	43	5,94	0,743	79	6
19	85	1,632	83	0,8529	0,8181	45	6,10	0,743	79	7
22	85	1,882	83	0,8529	0,8181	48	6,14	0,743	79	8
24	85	2,132	82	0,8550	0,8202	50	6,04	0,714	78	9
27	85	2,366	82	0,8550	0,8202	53	5,73	0,714	78	10
29	85	2,600	82	0,8556	0,8202	55	5,92	0,714	78	11
32	86	2,850	82	0,8576	0,8202	58	5,81	0,714	78	12
34	86	3,100	81	0,8577	0,8223	60	5,61	0,686	77	13
37	86	3,350	81	0,8580	0,8223	63	5,70	0,686	77	14
39	86	3,600	80	0,8591	0,8245	65	5,74	0,657	76	15
41	86	3,850	80	0,8598	0,8245	67	5,60	0,657	76	16
44	86	4,092	80	0,8609	0,8245	70	5,63	0,657	76	17
46	87	4,342	80	0,8617	0,8245	72	5,68	0,657	76	18
49	87	4,592	80	0,8610	0,8245	75	5,84	0,657	76	19
52	87	4,842	79	0,8628	0,8266	78	5,65	0,629	75	20
54	88	5,087	79	0,8648	0,8266	80	5,60	0,629	75	21
57	88	5,337	78	0,8648	0,8288	83	5,54	0,600	74	22
60	88	5,587	76	0,8692	0,8331	86	5,59	0,543	71	23
63	89	5,837	76	0,8708	0,8331	89	5,42	0,543	71	24
66	89	6,087	76	0,8719	0,8331	92	5,33	0,543	71	25
70	90	6,327	75	0,8752	0,8352	96	5,36	0,514	70	26
73	90	6,569	75	0,8760	0,8352	99	5,23	0,514	70	27
77	91	6,807	72	0,8834	0,8416	103	5,21	0,429	67	28
81	91	7,057	69	0,8894	0,8481	107	5,15	0,343	64	29
86	91	7,307	59	0,9130	0,8695	112	4,72	0,057	53	30
90	92	7,557	58	0,9149	0,8716	116	4,62	0,029	52	31
95	92	7,743	57	0,9157	0,8738	121	4,50	0,000	51	32

Quadro 2: Resultados operacionais da segunda destilação da mistura de uísque na coluna experimental do LEA/DEA/CT/UFPB.

tempo destilação	T		° GL	densidade (g	-	una Piloto experime tempo operação	рН	Adimensional de	° INPM	N°
(min)	T _{operacional}	V _{destilado} (L)	GL		<u> </u>	(min)	рп	Concentração (°GL)	(teórico)	coletas
(111111)				experimental	teórica	(111111)			(leonco)	Coletas
0	30	0,000	0	0,000	0,0000	0	0,00	0,000	0	0
7	82	0,250	89	0,8401	0,8052	30	6,27	1,000	86	1
8	82	0,500	82	0,8573	0,8202	31	5,95	0,800	78	2
11	82	0,760	82	0,8540	0,8202	34	5,82	0,800	78	3
13	82	1,010	82	0,8550	0,8202	36	5,83	0,800	78	4
15	83	1,260	82	0,8562	0,8202	38	5,78	0,800	78	5
16	83	1,510	82	0,8556	0,8202	39	5,92	0,800	78	6
18	83	1,760	82	0,8554	0,8202	41	5,73	0,800	78	7
21	83	2,010	82	0,8557	0,8202	44	5,79	0,800	78	8
23	83	2,260	81	0,8576	0,8223	46	5,73	0,771	77	9
24	83	2,510	81	0,8572	0,8223	47	5,72	0,771	77	10
27	82	2,760	81	0,8584	0,8223	50	5,67	0,771	77	11
29	82	3,010	81	0,8582	0,8223	52	5,68	0,771	77	12
31	82	3,260	81	0,8596	0,8223	54	5,62	0,771	77	13
33	82	3,510	81	0,8597	0,8223	56	5,66	0,771	77	14
36	82	3,760	80	0,8612	0,8245	59	5,59	0,743	76	15
37	82	4,010	79	0,8629	0,8266	60	5,54	0,714	75	16
39	83	4,260	79	0,8658	0,8266	62	5,62	0,714	75	17
41	84	4,510	78	0,8671	0,8288	64	5,50	0,686	74	18
44	86	4,760	79	0,8685	0,8266	67	5,41	0,714	75	19
46	86	5,010	77	0,8704	0,8309	69	5,45	0,657	72	20
49	86	5,260	76	0,8743	0,8331	72	5,45	0,629	71	21
52	87	5,510	75	0,8760	0,8352	75	5,24	0,600	70	22
54	88	5,760	74	0,8763	0,8373	77	5,15	0,571	69	23
56	88	6,010	72	0,8806	0,8416	79	4,98	0,514	67	24
60	88	6,260	70	0,8871	0,8459	83	5,11	0,457	65	25
63	89	6,510	66	0,8960	0,8545	86	4,76	0,343	60	26
67	89	6,760	64	0,9016	0,8588	90	4,74	0,286	58	27
71	90	7,010	61	0,9091	0,8652	94	4,74	0,200	55	28
76	91	7,260	57	0,9184	0,8738	99	4,46	0,086	51	29
80	91	7,510	54	0,9248	0,8802	103	4,28	0,000	48	30

Quadro 3: Resultados operacionais da terceira destilação da mistura de uísque na coluna experimental do LEA/DEA/CT/UFPB.

tompo dostilosão	_		o GL			una Piloto experime		Adimensional de	° INPM	N°
tempo destilação	Toperacional	V _{destilado}	V GL	densidade (<u>, , , , , , , , , , , , , , , , , , , </u>	tempo operação	рН			
(min)	(°C)	(L)		experimental	teórica	(min)		Concentração (°GL)	(teórico)	coletas
0	29	0,000	0	0,000	0,0000	0	0,00	0,000	0	0
6	82	0,250	89	0,8443	0,8052	34	6,35	1,000	86	1
9	82	0,500	83	0,8551	0,8181	37	6,08	0,806	79	2
11	83	0,750	82	0,8537	0,8202	39	5,99	0,774	78	3
13	83	1,000	82	0,8539	0,8202	41	5,98	0,774	78	4
14	83	1,250	82	0,8549	0,8202	42	6,00	0,774	78	5
16	83	1,500	82	0,8541	0,8202	44	5,96	0,774	78	6
18	83	1,750	82	0,8550	0,8202	46	5,96	0,774	78	7
21	83	2,000	82	0,8515	0,8202	49	5,95	0,774	78	8
22	83	2,250	82	0,8515	0,8202	50	5,90	0,774	78	9
25	84	2,500	81	0,8573	0,8223	53	5,84	0,742	77	10
26	84	2,750	81	0,8565	0,8223	54	5,90	0,742	77	11
27	84	3,000	81	0,8580	0,8223	55	5,90	0,742	77	12
30	84	3,250	80	0,8642	0,8245	58	5,70	0,710	76	13
32	84	3,500	80	0,8624	0,8245	60	5,65	0,710	76	14
34	84	3,750	80	0,8621	0,8245	62	5,64	0,710	76	15
36	85	4,000	80	0,8630	0,8245	64	5,65	0,710	76	16
38	85	4,250	79	0,8638	0,8266	66	5,68	0,677	75	17
39	85	4,500	79	0,8637	0,8266	67	5,62	0,677	75	18
42	85	4,750	79	0,8655	0,8266	70	5,64	0,677	75	19
43	85	5,000	79	0,8657	0,8266	71	5,58	0,677	75	20
45	85	5,250	78	0,8679	0,8288	73	5,47	0,645	74	21
46	85	5,500	77	0,8706	0,8309	74	5,45	0,613	72	22
49	85	5,750	76	0,8713	0,8331	77	5,40	0,581	71	23
51	85	6,000	76	0,8734	0,8331	79	5,40	0,581	71	24
53	85	6,250	75	0,8779	0,8352	81	5,32	0,548	70	25
55	86	6,500	75	0,8806	0,8352	83	5,27	0,548	70	26
58	88	6,750	70	0,8878	0,8459	86	5,10	0,387	65	27
60	89	7,000	67	0,8933	0,8523	88	4,90	0,290	61	28
63	89	7,250	64	0,9006	0,8588	91	4,71	0,194	58	29
66	89	7,500	62	0,9049	0,8631	94	4,45	0,129	56	30
69	91	7,750	62	0,9082	0,8631	97	4,44	0,129	56	31
73	91	8,000	58	0,9155	0,8716	101	4,24	0,000	52	32

Quadro 4: Resultados operacionais da quarta destilação da mistura de uísque na coluna experimental do LEA/DEA/CT/UFPB.

tempo destilação	Т	V _{destilado}		densidade (-	luna Piloto experime tempo operação	рН	Adimensional de	° INPM	N°
(min)	T _{operacional} (°C)	▼ destilado /I \	GL		<u> </u>	(min)	рп	Concentração (°GL)	(teórico)	coletas
, ,		(L)		experimental	teórica	` ,		, ,	` '	
0	30	0,000	0	0,000	0,0000	0	0,00	0,000	0	0
6	83	0,250	94	0,8220	0,7945	37	6,28	1,000	92	1
9	84	0,500	82	0,8538	0,8202	40	6,10	0,667	78	2
11	84	0,750	82	0,8539	0,8202	42	6,10	0,667	78	3
13	84	1,000	82	0,8552	0,8202	44	6,05	0,667	78	4
15	84	1,250	82	0,8542	0,8202	46	5,98	0,667	78	5
17	84	1,500	82	0,8555	0,8202	48	5,98	0,667	78	6
23	84	1,750	82	0,8508	0,8202	54	5,95	0,667	78	7
29	84	2,000	84	0,8461	0,8159	60	6,02	0,722	80	8
32	84	2,250	84	0,8488	0,8159	63	6,08	0,722	80	9
33	84	2,500	83	0,8514	0,8181	64	6,03	0,694	79	10
35	85	2,750	82	0,8541	0,8202	66	5,95	0,667	78	11
37	86	3,000	81	0,8563	0,8223	68	5,90	0,639	77	12
39	86	3,250	81	0,8572	0,8223	70	5,86	0,639	77	13
42	86	3,500	80	0,8589	0,8245	73	5,71	0,611	76	14
43	86	3,750	80	0,8596	0,8245	74	5,60	0,611	76	15
46	87	4,000	79	0,8608	0,8266	77	5,63	0,583	75	16
48	87	4,250	79	0,8628	0,8266	79	5,60	0,583	75	17
49	87	4,500	79	0,8639	0,8266	80	5,56	0,583	75	18
52	87	4,750	78	0,8654	0,8288	83	5,46	0,556	74	19
54	87	5,000	77	0,8669	0,8309	85	5,45	0,528	72	20
57	87	5,250	77	0,8687	0,8309	88	5,42	0,528	72	21
59	87	5,500	76	0,8706	0,8331	90	5,38	0,500	71	22
61	87	5,750	75	0,8725	0,8352	92	5,32	0,472	70	23
64	87	6,000	74	0,8760	0,8373	95	5,24	0,444	69	24
67	88	6,250	72	0,8801	0,8416	98	5,18	0,389	67	25
69	89	6,500	70	0,8849	0,8459	100	5,08	0,333	65	26
73	90	6,750	68	0,8920	0,8502	104	5,01	0,278	63	27
76	90	7,000	65	0,8987	0,8566	107	4,86	0,194	59	28
80	90	7,250	63	0,9042	0,8609	111	4,44	0,139	57	29
83	91	7,500	60	0,9089	0,8674	114	4,37	0,056	54	30
86	91	7,750	58	0,9140	0,8716	117	4,32	0,000	52	31
89	91	8,000	58	0,9228	0,8716	120	4,09	0,000	52	32

Quadro 5: Resultados operacionais da quinta destilação da mistura de uísque na coluna experimental do LEA/DEA/CT/UFPB.

	<u> </u>				•	una Piloto experime			T	
tempo destilação	T _{operacional}	$V_{ m destilado}$	° GL	densidade (g/cm³)	tempo operação	рН	Adimensional de	° INPM	N°
(min)	(°C)	(L)	-	experimental	teórica	(min)		Concentração (°GL)	(teórico)	coletas
0	30	0,000	0	0,0000	0,0000	0	0,00	0,000	0	0
4	83	0,250	88	0,8440	0,8073	37	7,20	1,000	85	1
6	83	0,500	84	0,8436	0,8159	39	6,68	0,889	80	2
8	83	0,750	83	0,8505	0,8181	41	6,25	0,861	79	3
10	83	1,000	81	0,8521	0,8223	43	6,23	0,806	77	4
12	83	1,250	81	0,8536	0,8223	45	6,16	0,806	77	5
14	83	1,500	81	0,8543	0,8223	47	6,03	0,806	77	6
16	83	1,750	81	0,8546	0,8223	49	6,01	0,806	77	7
18	83	2,000	81	0,8562	0,8223	51	5,96	0,806	77	8
20	83	2,250	81	0,8561	0,8223	53	5,89	0,806	77	9
22	83	2,500	81	0,8571	0,8223	55	5,87	0,806	77	10
24	83	2,750	81	0,8576	0,8223	57	5,83	0,806	77	11
25	84	3,000	81	0,8576	0,8223	58	5,83	0,806	77	12
26	84	3,250	80	0,8581	0,8245	59	5,80	0,778	76	13
28	84	3,500	79	0,8590	0,8266	61	5,79	0,750	75	14
30	84	3,750	79	0,8602	0,8266	63	5,75	0,750	75	15
32	84	4,000	79	0,8612	0,8266	65	5,71	0,750	75	16
34	85	4,250	79	0,8624	0,8266	67	5,69	0,750	75	17
36	85	4,500	78	0,8645	0,8288	69	5,61	0,722	74	18
39	85	4,750	78	0,8658	0,8288	72	5,55	0,722	74	19
41	86	5,000	78	0,8664	0,8288	74	5,51	0,722	74	20
43	86	5,250	77	0,8677	0,8309	76	5,50	0,694	72	21
44	86	5,500	77	0,8694	0,8309	77	5,44	0,694	72	22
46	86	5,750	76	0,8707	0,8331	79	5,44	0,667	71	23
49	86	6,000	75	0,8732	0,8352	82	5,36	0,639	70	24
51	86	6,250	74	0,8771	0,8373	84	5,28	0,611	69	25
53	87	6,500	73	0,8792	0,8395	86	5,21	0,583	68	26
57	88	6,750	70	0,8845	0,8459	90	5,16	0,500	65	27
59	88	7,000	68	0,8894	0,8502	92	5,01	0,444	63	28
63	89	7,250	65	0,8979	0,8566	96	4,78	0,361	59	29
65	90	7,500	63	0,9017	0,8609	98	4,72	0,306	57	30
67	90	7,750	61	0,9070	0,8652	100	4,57	0,250	55	31
71	91	8,000	58	0,9131	0,8716	104	4,44	0,167	52	32
81	92	8,250	54	0,9206	0,8802	114	4,26	0,056	48	33
86	92	8,485	52	0,9256	0,8845	119	4,15	0,000	46	34

Quadro 6: Resultados operacionais da sexta destilação da mistura de uísque na coluna experimental do LEA/DEA/CT/UFPB.

						una Piloto experime				
tempo destilação	T _{operacional}	$V_{destilado}$	° GL	densidade (g	y/cm³)	tempo operação	рН	Adimensional de	° INPM	N°
(min)	(°C)	(L)	•	experimental	teórica	(min)		Concentração (°GL)	(teórico)	coletas
0	30	0,000	0	0,000	0,0000	0	0,00	0,000	0	0
5	83	0,250	92	0,8203	0,7988	36	6,81	1,000	90	1
7	83	0,500	87	0,8375	0,8095	38	6,78	0,865	84	2
9	83	0,750	81	0,8564	0,8223	40	6,41	0,703	77	3
11	83	1,000	81	0,8581	0,8223	42	6,08	0,703	77	4
13	84	1,250	81	0,8565	0,8223	44	6,08	0,703	77	5
15	84	1,500	81	0,8564	0,8223	46	6,07	0,703	77	6
17	85	1,750	81	0,8580	0,8223	48	6,08	0,703	77	7
19	85	2,000	80	0,8576	0,8245	50	6,04	0,676	76	8
21	85	2,250	80	0,8578	0,8245	52	6,04	0,676	76	9
23	85	2,500	80	0,8572	0,8245	54	6,03	0,676	76	10
25	85	2,750	80	0,8584	0,8245	56	6,03	0,676	76	11
27	87	3,000	80	0,8600	0,8245	58	6,03	0,676	76	12
29	87	3,250	79	0,8602	0,8266	60	5,97	0,649	75	13
31	87	3,500	79	0,8614	0,8266	62	5,98	0,649	75	14
33	88	3,750	79	0,8614	0,8266	64	5,84	0,649	75	15
35	88	4,000	79	0,8622	0,8266	66	5,74	0,649	75	16
37	89	4,250	78	0,8639	0,8288	68	5,73	0,622	74	17
39	89	4,500	78	0,8648	0,8288	70	5,71	0,622	74	18
41	89	4,750	78	0,8661	0,8288	72	5,64	0,622	74	19
43	90	5,000	77	0,8676	0,8309	74	5,59	0,595	72	20
45	90	5,250	75	0,8723	0,8352	76	5,60	0,541	70	21
47	90	5,500	75	0,8694	0,8352	78	5,56	0,541	70	22
49	90	5,750	74	0,8758	0,8373	80	5,51	0,514	69	23
52	91	6,000	74	0,8795	0,8373	83	5,44	0,514	69	24
54	91	6,250	70	0,8870	0,8459	85	5,26	0,405	65	25
57	91	6,500	70	0,8863	0,8459	88	5,15	0,405	65	26
60	91	6,750	66	0,8942	0,8545	91	4,97	0,297	60	27
63	92	7,000	64	0,8968	0,8588	94	4,83	0,243	58	28
66	92	7,250	60	0,9074	0,8674	97	4,78	0,135	54	29
70	92	7,500	59	0,9127	0,8695	101	4,62	0,108	53	30
74	92	7,750	55	0,9203	0,8781	105	4,41	0,000	49	31

Quadro 7: Resultados operacionais da sétima destilação da mistura de uísque na coluna experimental do LEA/DEA/CT/UFPB.

	_				-	una Piloto experime				
tempo destilação	Toperacional	V _{destilado}	° GL	densidade (g	g/cm³)	tempo operação	рН	Adimensional de	° INPM	N°
(min)	(°C)	(L)		experimental	teórica	(min)		Concentração (°GL)	(teórico)	coletas
0	29	0,000	0	0,000	0,0000	0	0,00	0,000	0	0
5	83	0,250	90	0,8319	0,8030	35	6,56	1,000	88	1
7	83	0,500	84	0,8472	0,8159	37	6,55	0,800	80	2
9	84	0,750	84	0,8499	0,8159	39	6,50	0,800	80	3
11	84	1,000	83	0,8523	0,8181	41	6,50	0,767	79	4
13	84	1,250	82	0,8528	0,8202	43	6,51	0,733	78	5
14	84	1,500	82	0,8536	0,8202	44	6,40	0,733	78	6
16	84	1,750	82	0,8535	0,8202	46	6,40	0,733	78	7
18	84	2,000	81	0,8547	0,8223	48	6,39	0,700	77	8
20	84	2,250	81	0,8587	0,8223	50	6,35	0,700	77	9
22	84	2,500	80	0,8587	0,8245	52	6,20	0,667	76	10
24	85	2,750	80	0,8597	0,8245	54	6,20	0,667	76	11
26	85	3,000	80	0,8592	0,8245	56	6,15	0,667	76	12
27	85	3,250	80	0,8586	0,8245	57	6,09	0,667	76	13
29	85	3,500	80	0,8595	0,8245	59	6,08	0,667	76	14
31	85	3,750	80	0,8605	0,8245	61	6,01	0,667	76	15
32	86	4,000	79	0,8613	0,8266	62	5,92	0,633	75	16
34	86	4,250	79	0,8620	0,8266	64	5,90	0,633	75	17
36	87	4,500	79	0,8630	0,8266	66	5,90	0,633	75	18
38	87	4,750	79	0,8635	0,8266	68	5,88	0,633	75	19
40	88	5,000	78	0,8655	0,8288	70	5,86	0,600	74	20
42	88	5,250	78	0,8660	0,8288	72	5,83	0,600	74	21
44	88	5,500	77	0,8677	0,8309	74	5,79	0,567	72	22
46	89	5,750	76	0,8688	0,8331	76	5,70	0,533	71	23
48	89	6,000	75	0,8711	0,8352	78	5,65	0,500	70	24
50	89	6,250	74	0,8746	0,8373	80	5,64	0,467	69	25
53	89	6,500	72	0,8786	0,8416	83	5,33	0,400	67	26
56	90	6,750	70	0,8844	0,8459	86	5,17	0,333	65	27
58	90	7,000	67	0,8912	0,8523	88	4,99	0,233	61	28
61	91	7,250	65	0,8967	0,8566	91	4,90	0,167	59	29
64	91	7,500	63	0,9012	0,8609	94	4,83	0,100	57	30
71	92	8,000	60	0,9116	0,8674	101	4,47	0,000	54	31

Quadro 8: Resultados operacionais da oitava destilação da mistura de uísque na coluna experimental do LEA/DEA/CT/UFPB.

					-	una Piloto experime	ental do		<u>.</u>	
tempo destilação	T _{operacional}	$V_{\text{destilado}}$	° GL	densidade (g	g/cm³)	tempo operação	рН	Adimensional de	° INPM	N°
(min)	(°C)	(L)	-	experimental	teórica	(min)		Concentração (°GL)	(teórico)	coletas
0	30	0,000	0	0,000	0,0000	0	0,00	0,000	0	0
5	83	0,250	88	0,8348	0,8073	35	6,62	1,000	85	1
8	83	0,500	85	0,8438	0,8138	38	6,59	0,889	82	2
10	83	0,750	84	0,8505	0,8159	40	6,59	0,852	80	3
12	83	1,000	83	0,8507	0,8181	42	6,58	0,815	79	4
13	83	1,250	83	0,8490	0,8181	43	6,55	0,815	79	5
15	83	1,500	82	0,8523	0,8202	45	6,56	0,778	78	6
16	84	1,750	82	0,8525	0,8202	46	6,50	0,778	78	7
17	84	2,000	81	0,8538	0,8223	47	6,48	0,741	77	8
19	84	2,250	81	0,8543	0,8223	49	6,45	0,741	77	9
22	85	2,500	80	0,8599	0,8245	52	6,43	0,704	76	10
24	85	2,750	80	0,8602	0,8245	54	6,30	0,704	76	11
26	85	3,000	80	0,8606	0,8245	56	6,32	0,704	76	12
28	86	3,250	79	0,8612	0,8266	58	6,20	0,667	75	13
30	86	3,500	79	0,8640	0,8266	60	6,25	0,667	75	14
32	86	3,750	79	0,8653	0,8266	62	6,15	0,667	75	15
35	87	4,000	79	0,8656	0,8266	65	6,12	0,667	75	16
37	87	4,250	79	0,8661	0,8266	67	6,10	0,667	75	17
40	87	4,500	79	0,8752	0,8266	70	6,05	0,667	75	18
42	88	4,750	78	0,8672	0,8288	72	6,00	0,630	74	19
45	89	5,000	78	0,8686	0,8288	75	6,00	0,630	74	20
47	90	5,250	78	0,8688	0,8288	77	5,99	0,630	74	21
50	90	5,500	76	0,8701	0,8331	80	5,98	0,556	71	22
53	90	5,750	74	0,8764	0,8373	83	5,60	0,481	69	23
56	90	6,000	73	0,8769	0,8395	86	5,40	0,444	68	24
58	91	6,250	72	0,8792	0,8416	88	5,22	0,407	67	25
61	91	6,500	70	0,8841	0,8459	91	5,00	0,333	65	26
64	92	6,750	67	0,8925	0,8523	94	4,89	0,222	61	27
68	92	7,000	64	0,9001	0,8588	98	4,60	0,111	58	28
73	92	7,250	61	0,9087	0,8652	103	4,47	0,000	55	29

Quadro 9: Resultados operacionais da nona destilação da mistura de uísque na coluna experimental do LEA/DEA/CT/UFPB.

tempo destilação	Toperacional	V _{destilado}	° GL	densidade (g		una Piloto experime tempo operação	рН	Adimensional de	° INPM	N°
(min)	(°C)	(L)	0_	***	teórica	(min)	ρ	Concentração (°GL)	(teórico)	coletas
				experimental		` ′	0.00		, ,	
0	30	0,000	0	0,0000	0,0000	0	0,00	0,000	0	0
6	84	0,250	87	0,8384	0,8095	36	6,25	1,000	84	1
8	84	0,500	85	0,8444	0,8138	38	6,25	0,926	82	2
9	84	0,750	84	0,8470	0,8159	39	6,24	0,889	80	3
12	84	1,000	83	0,8497	0,8181	42	6,23	0,852	79	4
14	85	1,250	82	0,8518	0,8202	44	6,21	0,815	78	5
17	85	1,500	82	0,8527	0,8202	47	6,16	0,815	78	6
20	85	1,750	82	0,8528	0,8202	50	6,15	0,815	78	7
21	86	2,000	82	0,8489	0,8202	51	6,13	0,815	78	8
23	87	2,250	82	0,8516	0,8202	53	6,12	0,815	78	9
25	88	2,500	82	0,8533	0,8202	55	6,09	0,815	78	10
27	88	2,750	82	0,8546	0,8202	57	6,03	0,815	78	11
30	89	3,000	81	0,8564	0,8223	60	5,95	0,778	77	12
31	89	3,250	81	0,8573	0,8223	61	5,88	0,778	77	13
33	89	3,500	80	0,8588	0,8245	63	5,86	0,741	76	14
35	89	3,750	80	0,8591	0,8245	65	5,84	0,741	76	15
36	89	4,000	80	0,8603	0,8245	66	5,81	0,741	76	16
38	90	4,250	79	0,8608	0,8266	68	5,78	0,704	75	17
41	90	4,500	79	0,8610	0,8266	71	5,75	0,704	75	18
42	90	4,750	78	0,8632	0,8288	72	5,69	0,667	74	19
45	90	5,000	78	0,8639	0,8288	75	5,62	0,667	74	20
47	90	5,250	77	0,8656	0,8309	77	5,61	0,630	72	21
49	91	5,500	77	0,8664	0,8309	79	5,58	0,630	72	22
51	91	5,750	76	0,8685	0,8331	81	5,55	0,593	71	23
53	92	6,000	74	0,8736	0,8373	83	5,53	0,519	69	24
55	92	6,250	73	0,8748	0,8395	85	5,37	0,481	68	25
55 58	92	6,500	72	0,8790	0,8393	88	5,33	0,444	67	26
61	92	6,750	70	0,8861	0,8459	91	5,33	0,370	65	27
63	93	7,000	68	0,8891	0,8502	93	5,19	0,370		
		,	65	<u>'</u>		I .		· · · · · · · · · · · · · · · · · · ·	63	28
68	93	7,250		0,8962	0,8566	98	4,73	0,185	59	29
71 Fonte: Autor (2022)	93	7,500	60	0,9089	0,8674	101	4,60	0,000	54	30

Quadro 10: Média dos resultados operacionais dos ensaios de destilação da mistura de uísque na coluna experimental do LEA/DEA/CT/UFPB.

tempo destilação	T _{operacional}	eracional V _{destilado} (L)	° GL	densidade (g/cm³)		tempo operação	рН	Adimensional de	° INPM	N°
(min)	(°C)			experimental	teórica	(min)		Concentração (°GL)	(teórico)	coletas
0,0	29,8	0,000	0,0	0,000	0,0000	0,0	0,00	0,000	0,0	0
5,2	82,9	0,249	89,9	0,8332	0,8033	34,3	6,51	1,000	87,5	1
7,7	83,0	0,497	84,9	0,8449	0,8140	36,8	6,33	0,849	81,5	2
9,8	83,2	0,746	83,2	0,8508	0,8176	38,9	6,25	0,800	79,6	3
12,0	83,2	0,994	82,1	0,8535	0,8200	41,1	6,15	0,766	78,3	4
13,8	83,7	1,241	82,0	0,8534	0,8202	42,9	6,13	0,762	78,1	5
15,7	83,8	1,490	81,9	0,8541	0,8204	44,8	6,11	0,758	78,0	6
18,1	84,0	1,738	81,9	0,8539	0,8204	47,2	6,10	0,758	78,0	7
20,7	84,1	1,988	81,8	0,8530	0,8207	49,8	6,10	0,753	77,9	8
22,7	84,2	2,238	81,6	0,8546	0,8211	51,8	6,07	0,747	77,6	9
24,8	84,6	2,486	81,1	0,8563	0,8221	53,9	5,99	0,732	77,1	10
26,8	84,7	2,734	81,0	0,8572	0,8223	55,9	5,98	0,729	77,0	11
28,8	85,3	2,984	80,8	0,8582	0,8228	57,9	5,95	0,722	76,7	12
30,6	85,4	3,234	80,2	0,8593	0,8240	59,7	5,86	0,705	76,1	13
32,8	85,4	3,484	79,9	0,8602	0,8247	61,9	5,85	0,695	75,7	14
34,8	85,6	3,734	79,7	0,8609	0,8252	63,9	5,80	0,688	75,5	15
36,7	86,0	3,984	79,3	0,8619	0,8259	65,8	5,75	0,678	75,1	16
38,8	86,4	4,234	79,0	0,8632	0,8266	67,9	5,75	0,668	74,7	17
40,8	86,8	4,484	78,8	0,8650	0,8271	69,9	5,71	0,661	74,4	18
43,2	87,1	4,734	78,6	0,8651	0,8276	72,3	5,68	0,653	74,2	19
45,4	87,6	4,984	77,9	0,8664	0,8290	74,6	5,63	0,634	73,4	20
47,7	87,8	5,233	77,2	0,8685	0,8304	76,8	5,61	0,614	72,7	21
49,8	88,0	5,483	76,4	0,8694	0,8321	78,9	5,55	0,589	71,8	22
52,1	88,2	5,733	75,2	0,8722	0,8347	81,2	5,47	0,551	70,4	23
54,7	88,6	5,983	74,3	0,8750	0,8366	83,8	5,38	0,522	69,4	24
57,1	88,8	6,233	72,9	0,8789	0,8397	86,2	5,30	0,479	67,9	25
59,9	89,3	6,482	71,4	0,8827	0,8428	89,0	5,17	0,434	66,3	26
63,2	90,0	6,731	68,9	0,8888	0,8483	92,3	5,05	0,354	63,5	27
66,1	90,6	6,980	66,2	0,8946	0,8540	95,2	4,91	0,271	60,6	28
70,1	90,9	7,230	63,2	0,9022	0,8604	99,2	4,71	0,179	57,5	29
73,1	91,0	7,477	60,0	0,9095	0,8674	102,1	4,57	0,094	54,1	30
76,2	91,3	7,760	59,0	0,9127	0,8695	106,0	4,47	0,068	53,1	31
82,0	91,3	7,936	57,8	0,9168	0,8722	111,5	4,32	0,042	51,8	32
81,0	92,0	8,250	54,0	0,9206	0,8802	114,0	4,26	0,056	48,0	33
86,0	92,0	8,485	52,0	0,9256	0,8845	119,0	4,15	0,000	46,0	34

APÊNDICE B

Os resultados dos parâmetros operacionais e das propriedades físicoquímicas dos destilados coletados nos ensaios experimentais de desodorização em coluna experimental de adsorção com carvão ativo em bancada de laboratório do Laboratório de Engenharia de Alimentos (LEA/CT/UFPB) estão apresentados nos quadros a seguir (Quadro A11 a Quadro A13), assim como, os valores das médias dos resultados desses parâmetros (Quadro A14).

Quadro 11: Resultados operacionais do primeiro ensaio experimental de adsorção em coluna com carvão ativo do álcool residual em bancada de laboratório do LEA/DEA/CT/UFPB.

1ª Adsorção em Coluna com Carvão Ativo do álcool residual em bancada de laboratório do LEA/2022										
tempo adsorção (min)	T _{operacional} (°C)	V _{coletado} (L)	° GL	densidade (g	рН	° INPM	N° coletas			
			_	experimental	teórica	1	(teórico)			
0	28	0,000	57	0,9166	0,8738	4,86	51	0		
5	33	0,250	52	0,9257	FALSO	5,48	46	1		
10	28	0,500	56	0,9155	0,8759	5,17	50	2		
17	28	0,750	57	0,9150	0,8738	5,11	51	3		
24	28	1,000	57	0,9154	0,8738	5,10	51	4		
30	28	1,250	57	0,9136	0,8738	5,07	51	5		
35	28	1,500	56	0,9158	0,8759	5,00	50	6		
40	28	1,750	56	0,9156	0,8759	5,06	50	7		
46	28	2,000	56	0,9157	0,8759	5,00	50	8		
52	28	2,250	57	0,9166	0,8738	5,01	51	9		
58	28	2,500	57	0,9163	0,8738	5,00	51	10		

Quadro 12: Resultados operacionais do segundo ensaio experimental de adsorção em coluna com carvão ativo do álcool residual em bancada de laboratório do LEA/DEA/CT/UFPB.

2ª Adsorção em Coluna com Carvão Ativo do álcool residual em bancada de laboratório do LEA/2022										
tempo adsorção (min)	T _{operacional} (°C)	V _{coletado} (L)	° GL	densidade (g	рН	° INPM	N° coletas			
				experimental	teórica		(teórico)			
0	28	0,000	57	0,9166	0,8738	4,86	51	0		
6	34	0,250	50	0,9284	0,8888	5,60	44	1		
12	28	0,500	56	0,9216	0,8759	5,40	50	2		
19	28	0,750	56	0,9179	0,8759	5,30	50	3		
26	28	1,000	56	0,9176	0,8759	5,20	50	4		
33	28	1,250	57	0,9169	0,8738	5,15	51	5		
39	28	1,500	57	0,9196	0,8738	5,13	51	6		
45	28	1,750	57	0,9183	0,8738	5,14	51	7		
51	28	2,000	57	0,9183	0,8738	5,14	51	8		
58	28	2,250	57	0,9183	0,8738	5,14	51	9		
65	28	2,500	57	0,9179	0,8738	5,13	51	10		

Quadro 13: Resultados operacionais da terceira adsorção em coluna com carvão ativo do álcool residual em bancada de laboratório do LEA/DEA/CT/UFPB.

tempo adsorção (min)	T _{operacional} (°C)	V _{coletado} (L)	° GL	densidade (g	рН	° INPM	N° coletas	
				experimental	teórica		(teórico)	
0	28	0,000	57	0,9166	0,8738	4,86	51	0
6	34	0,250	52	0,9251	0,8845	5,15	46	1
11	28	0,500	56	0,9192	0,8759	5,12	50	2
17	28	0,750	56	0,9186	0,8759	5,13	50	3
22	28	1,000	56	0,9178	0,8759	5,05	50	4
28	28	1,250	56	0,9176	0,8759	5,02	50	5
34	28	1,500	57	0,9176	0,8738	5,05	51	6
39	28	1,750	57	0,9176	0,8738	5,05	51	7
44	28	2,000	57	0,9175	0,8738	5,00	51	8
50	28	2,250	57	0,9175	0,8738	5,00	51	9
55	28	2,500	57	0,9180	0,8738	5,00	51	10

Quadro 14: Média dos resultados operacionais dos ensaios de adsorção em coluna com carvão ativo do álcool residual em bancada de laboratório do LEA/DEA/CT/UFPB.

tempo adsorção (min)	T _{operacional} (°C)	V _{coletado} (L)	° GL	densidade (g	рН	° INPM	N° coletas	
				experimental	teórica		(teórico)	
0,0	28,0	0,0	57	0,9166	0,8738	4,9	51	0
5,7	33,7	0,3	51	0,9264	0,8866	5,4	45	1
11,0	28,0	0,5	56	0,9188	0,8759	5,2	50	2
17,7	28,0	0,8	56	0,9172	0,8752	5,2	50	3
24,0	28,0	1,0	56	0,9169	0,8752	5,1	50	4
30,3	28,0	1,3	57	0,9160	0,8745	5,1	51	5
36,0	28,0	1,5	57	0,9177	0,8745	5,1	51	6
41,3	28,0	1,8	57	0,9171	0,8745	5,1	51	7
47,0	28,0	2,0	57	0,9172	0,8745	5,0	51	8
53,3	28,0	2,3	57	0,9175	0,8738	5,1	51	9
59,3	28,0	2,5	57	0,9174	0,8738	5,0	51	10