

UNIVERSIDADE FEDERAL DA PARAÍBA CENTRO DE CIÊNCIAS AGRÁRIAS CURSO MEDICINA VETERINÁRIA

ANTÔNIO DAVI PARNAÍBA CÂNDIDO

DOENÇA DO ACÚMULO DE FERRO, GOTA ÚRICA VISCERAL E ARTICULAR EM Ramphastus tucanus: RELATO DE CASO.

AREIA

2023

ANTÔNIO DAVI PARNAÍBA CÂNDIDO

DOENÇA DO ACÚMULO DE FERRO, GOTA ÚRICA VISCERAL E ARTICULAR EM Ramphastus tucanus: RELATO DE CASO.

Trabalho de Conclusão de Curso apresentado como requisito parcial à obtenção do título de Bacharel em Medicina Veterinária pela Universidade Federal da Paraíba.

Orientador: Prof.(a) Dr.(a) Jeann Leal de Araújo.

AREIA

2023

Catalogação na publicação Seção de Catalogação e Classificação

C217d Cândido, Antônio Davi Parnaíba.

Doença do acúmulo de ferro, gota úrica visceral e articular em Ramphastus tucanus: relato de caso / Antônio Davi Parnaíba Cândido. - Areia:UFPB/CCA, 2023. 27 f.: il.

Orientação: Jeann Leal de Araújo. TCC (Graduação) - UFPB/CCA.

1. Medicina veterinária. 2. Ranfastídeos. 3. Doença do Acúmulo de ferro. 4. Gota úrica. 5. Conservação. I. Araújo, Jeann Leal de. II. Título.

UFPB/CCA-AREIA

CDU 636.09(02)

UNIVERSIDADE FEDERAL DA PARAÍBA CENTRO DE CIÊNCIAS AGRÁRIAS COORDENAÇÃO DE MEDICINA VETERINÁRIA CAMPUS II – AREIA - PB

DEFESA DO TRABALHO DE GRADUAÇÃO

Aprovada em 13/06/2023.

"DOENÇA DO ACÚMULO DE FERRO, GOTA ÚRICA VISCERAL E ARTICULAR EM *Ramphastos tucanus*: RELATO DE CASO."

Autor: ANTÔNIO DAVI PARNAÍBA CÂNDIDO

Banca Examinadora:

Prof. Dr. Jeann Leal de Araújo Orientador(a) – UFPB

Prof.Dr. Ricardo Barbosa de Lucena Examinador(a) – UFPB

M.V. Hodias Sousa de Oliveira Filho Examinador(a) – UFPB

AGRADECIMENTOS

Agradeço primeiramente à minha mãe Geórgia, por cuidar de mim e ser meu refúgio nos momentos mais difíceis.

Ao meu pai Roberto (*in memoriam*) pela força herdada e pelos momentos de felicidade.

Ao meu irmão Breno pela ajuda e compreensão nos meus momentos de cansaço.

Aos meus avós, Fátima por ser minha segunda mãe, Mauro (*in memoriam*) pelo exemplo de benevolência, Lindalva e Róseo (*in memoriam*) por todos os gestos de carinho.

Aos meus tios Georgiana, Marciliano, Mauro Filho, Djanir e Gilvania.

Aos meus primos Nathan, Denise e Yuri.

Ao meu amigo Israel e minha "tia" Márcia por todos os momentos de acolhimento e música boa.

A minha madrinha de crisma Eidiran por todos os presentes e por ser o estopim da minha jornada acadêmica.

Aos meus ex-colegas de quarto João e Thayná.

A todos os meus amigos e amigas que caminharam ao meu lado e que se importam comigo.

A Ubirajara pelos muitos momentos de troca de conhecimento na Laticínio escola.

Ao pessoal do LAMCOM por todo aprendizado que me foi oferecido.

Aos todos os meus professores do ensino fundamental e médio. Aos professores do curso de Veterinária que foram para mim uma fonte de inspiração ou/e um exemplo de verdadeiros professores; Yanna, Valeska, Felipe, Ricardo Lucena, Sara, Alexandre, Bruna, Luiz, Nathalia e Inácio. Agradeço em especial ao professor Jeann que acreditou em mim, me orientou neste trabalho, e me ensinou bastante sobre animais silvestres e patologia.

A todos que me ajudaram o mínimo possível, sou grato de todo o coração.

"Não existe mais dodô A voz que gritava esganiçada calou-se Mas você pode ver seus ossos e bico Tudo no mu-se-u (Belloc, 1896)"

•

RESUMO

Dentre as afecções metabólicas que acometem ranfastídeos sob cuidados humanos, a gota úrica e doença do acúmulo de ferro são comumente relatadas de forma individual nessas espécies. Este trabalho relata um caso de doença do acúmulo do ferro, gota úrica visceral e articular simultânea em um tucano-do-papo-branco (*Ramphastus tucanus*). A ave foi encaminhada de um zoológico para a investigação da *causa mortis* no Laboratório de patologia animal do Hospital Veterinário do CCA-UFPB na cidade de Areia – PB. Os achados macroscópicos e histológicos da necropsia foram compatíveis com a DAF, gota úrica articular e visceral, sendo esta última considerada sua *causa mortis*. Na histologia também foram encontrados cistos de *Sarcocystis* spp. na musculatura. Tais doenças metabólicas estão associadas a uma dieta inadequada e são de difícil diagnóstico clínico, podendo causar morte súbita. Por isso, o conhecimento prévio destes distúrbios é muito importante para os profissionais que trabalham com a conservação de ranfastídeos.

Palavras-Chave: ranfastídeos; doença do acúmulo de ferro; gota úrica; conservação.

ABSTRACT

Among the metabolic disorders that affect ranfastids under human care, uric gout and iron storage disease are commonly reported individually in these species. This paper reports a case of simultaneous iron storage disease, visceral and articular uric gout in a white-footed toucan (*Ramphastus tucanus*). The bird was sent from a Zoo for investigation of the *causa mortis* at the Animal Pathology Laboratory of the Veterinary Hospital of CCA-UFPB in the city of Areia - PB. The necropsy macroscopic and histological findings were compatible with Iron storage disease, articular and visceral uric gout, the latter being considered the cause of death. In histology *Sarcocystis* spp. cysts were also found in the musculature, such metabolic diseases are associated with an inadequate diet and are difficult to diagnose clinically, and can cause sudden death. Therefore, prior knowledge of these disorders is very important for professionals working in ranfastid conservation.

Keywords: ranfastids; iron storage disease; uric gout; conservation.

LISTA DE ILUSTRAÇÕES

Figura 1 –	Área focalmente extensa de apteria na região peitoral e aumento de volume focal na articulação tarsometatarso-digital do membro pélvico esquerdo	
Figura 2 –	Achados macroscópicos em necropsia de um Tucano-de-papo- branco (<i>Ramphastos tucanus</i>). A) Articulação tarsometatarso-digital ao corte apresentando material brancacento espesso em seu interior. B) Musculatura intercostal com áreas multifocais esbranquiçadas. C) Rins difusamente pálidos com pontos milimétricos esbranquiçados multifocais dentro da cavidade celomática. D) Fígado estava aumentado de volume, com bordos arredondados, áreas multifocais de coloração vermelho-escuro e um pigmento alaranjado finamente granular recobrindo a superfície capsular	
Figura 3 –	Fotomicrografia de achados histológicos dos rins e fígado de um Tucano-de-papo-branco (Ramphastos tucanus). A) Degeneração e necrose tubular (pontas de seta), deposição de cristais de urato em forma de agulhas formando tofos gotosos. Obj. 40x, H/E. B) Áreas multifocais de necrose com hepatócitos apoptóticos (setas) pelo parênquima hepático, e quantidade significativa de Pigmento castanho granular intracitoplasmático nas células de Kupffer e nos hepatócitos. Obj. 10x, H/E. C) Observa-se leve a moderada deposição de hemossiderina distribuída pelo parênquima hepático. Obj. 20x, AP. D) Cisto muscular de Sarcocystis spp. repleto de	
	bradizoítos. Obj 20x, H/E	21

LISTA DE ABREVIATURAS E SIGLAS

PB Paraíba

UFPB Universidade federal da Paraíba

CCA Centro de ciências agrárias

Fe+2 Ferro divalente ou ferro ferroso

Fe+3 Ferro trivalente ou ferro férrico

DMT-1 Transportador de metal divalente

FPT Ferroportina

DAF Doença do acúmulo de ferro

AP Azul da Prússia.

H/E Hematoxilina e Eosina.

IUCN The International Union for Conservation of Nature.

1	CONSIDERAÇOES INICIAIS	10
2	DESENVOLVIMENTO	10
2.1	REVISÃO DE LITERATURA	10
2.1.1	Características biológicas dos ranfastídeos	10
2.1.2	Metabolismo do ferro em aves	11
2.1.3	Doença do acúmulo de ferro	14
2.1.4	Metabolismo da excreção do nitrogênio em aves	16
2.1.5	Gota úrica visceral e articular nas aves	17
2.2	RELATO DE CASO	18
3	CONSIDERAÇÕES FINAIS	23
	REFERÊNCIAS	24

1 CONSIDERAÇÕES INICIAIS

A gota úrica é uma doença metabólica que pode acometer répteis, aves e mamíferos, onde há deposição de cristais de urato de sódio em serosas de órgãos, caracterizando a gota úrica visceral, ou em articulações, caracterizando a gota úrica articular (Sales *et al.*, 2015). A gota úrica articular e visceral são diagnósticos comuns em várias espécies de aves e podem frequentemente ser atribuídas à doença renal (Rocha, 2009).

Doença do acúmulo de ferro (DAF) ou hemocromatose são termos utilizados na literatura para designar o processo patológico de acúmulo excessivo de hemossiderina, geralmente em fígado e em outros órgãos, com consequências funcionais e/ou morfológicas ao tecido afetado (Klasing *et al.*, 2012; Oliveira *et al.*, 2014; Strefezzi e Pereira, 2014).

Dentre as afecções que compreendem distúrbios metabólicos nos ranfastídeos sob cuidados humanos, a gota úrica e a DAF são comumente relatadas de forma individual nessas espécies (Spalding *et al.*, 1986; Coppola *et al.*, 2013; Mainez *et al.*, 2015; Vieira *et al.*, 2015; Ulguim *et al.*, 2022).

O trabalho proposto tem como objetivo relatar um caso de DAF, gota úrica visceral e articular simultânea em um *Ramphastos tucanus*.

2 DESENVOLVIMENTO

A seguir será apresentado uma revisão e literatura a respeito do tema proposto e o relato do caso.

2.1 REVISÃO DE LITERATURA

2.1.1 Características biológicas dos ranfastídeos

Aves da família ramphastidae, pertencem a ordem dos piciformes e englobam seis gêneros com 34 espécies, que são encontrados apenas na América neotropical. Habitam primariamente florestas tropicais, porém algumas espécies podem ser

encontradas em campos e cerrados, nesses habitats, são importantes dispersores de sementes. De maneira simples, pode-se separar os membros desta família em araçaris, aves de menor porte; e tucanos, aves de maior porte (Dislich, 2014).

Essas espécies dispõe um bico córneo pneumático apresentando tômias, que são bordas serrilhadas na maxila similares a dentes, que lhes confere força. seus uropígeos são bilobulados, não possuem inglúvio, e quanto à disposição de seus dedos, são zigodáctilos. No solo, movimentam-se saltitando. Apresentam cores intensas e vibrantes na plumagem, no bico e ao redor dos olhos (Massarotto e Marietto-Gonçalves, 2010; Dislich, 2014).

São considerados frutívoros primários e faunívoros oportunistas. Os araçaris são mais vegetarianos, enquanto os tucanos consomem insetos e pequenos vertebrados. A literatura aponta uma enorme variedade de alimentos consumidos por estas aves. Em cativeiro, elas alimentam-se avidamente, aceitando prontamente uma série de itens (Dislich, 2014).

O Tucano-de-papo-branco (*Ramphastos tucanus*) habita florestas de planícies, próximas a água, bordas de mata, clareiras, matas ciliares dos cerrados, plantações e árvores em pastagens. Com distribuição estendendo-se por toda região amazônica: Venezuela, Colômbia, Guianas e Brasil (Pará, Amazonas, Rondônia, Tocantins, Maranhão e norte do Mato Grosso). Na avaliação de 2021 pela IUCN – (The International Union for Conservation of Nature) o estado de conservação da espécie foi classificado como pouco preocupante. Em cativeiro, apresentam peso médio de 500-700g, e leve dimorfismo sexual (Dislich, 2014; Iucn, 2021; Avibase, 2023).

2.1.2 Metabolismo do ferro em aves

O ferro é um micronutriente importante para praticamente todos os organismos vivos, exceto bactérias do ácido láctico (Weinberg, 1997). Ele se apresenta como íon reduzido (Fe2+) e oxidado (Fe3+), desempenhando várias funções do organismo por participar de reações de oxidação e redução. Proteínas contendo ferro são essenciais para transporte e armazenamento de oxigênio, respiração, síntese de DNA, função do ciclo do ácido cítrico e várias reações enzimáticas (Harvey, 2008). Apesar disso, essas mesmas propriedades oxidativas e redutoras, quando reagem com o oxigênio molecular geram radicais livres e atuam como uma toxina nos tecidos. Por isso, na

evolução de proteínas complexas contendo ferro, a natureza teve que projetar um eficiente e não tóxico meio de controlar a absorção de ferro, transporte, e seu armazenamento (Ryan e Aust, 1992).

O ferro utilizado pelo organismo é obtido de duas fontes principais: da dieta e da reciclagem de hemácias senescentes. O ferro disponível na dieta pode se apresentar na forma orgânica (ligada ao Heme) ou inorgânica férrica (Fe3+), sendo seus mecanismos de absorção diferentes. A forma inorgânica é encontrada em mais abundancia nos alimentos vegetais, enquanto a forma orgânica nos alimentos de origem animal (Grotto, 2008).

O ferro inorgânico (Fe3+) ingerido é insolúvel em pH acima de 3, por isso, é solubilizado no estômago glandular dos mamíferos e no proventrículo e ventrículo das aves pela ação do ácido clorídrico, formando uma solução rica em prótons no duodeno. Sua absorção ocorre em todo o intestino, mas nos mamíferos é mais eficiente no duodeno e nas aves no duodeno e jejuno. Essa solução e absorvida através de uma proteína de membrana beta-3-integrina, sendo em seguida transferidos a uma proteína chaperona (auxiliar), a mobilferrina. No citoplasma do enterócito, o ferro absorvido é convertido ao estado ferroso (Fe2+) por um complexo proteico citoplasmático chamado paraferritina. Outra via de absorção ocorre quando o ferro inorgânico (Fe3+) é convertido para o estado ferroso (Fe2+) no intestino por ação enzimática de redutases férricas intestinais, ele então é transportado através da membrana apical para o citoplasma do enterócito por uma proteína de transporte de ferro conhecida como transportador de metal divalente (DMT-1) (Whiteside, 2002).

A absorção do ferro orgânico advindo da dieta ainda é pouco conhecida, mas sabe-se que o heme é liberado da mioglobina e hemoglobina ingeridas, através da digestão proteolítica por enzimas pancreáticas, e uma proteína específica faz a passagem do heme pela membrana apical do enterócito, sendo em seguida a heme degradada no citoplasma pela hemoxigenase e o ferro (Fe2+) liberado da sua estrutura (Cubas, 2008).

O ferro heme ingerido na dieta de carnes tem uma absorção 3 vezes superior em relação ao ferro adquirido da ingestão de vegetais. Quando se produz rações com subprodutos de origem animal para aves frugívoras e insetívoras, a quantidade total e a biodisponibilidade do mineral não são compatível com suas dietas naturais (Sheppard e Dierenfeld, 2002).

Então, no interior do enterócito, os minerais ingeridos da dieta na forma heme ou não-heme, independente da forma de absorção se encontrarão na forma inorgânica (Fe2+). Podendo ser utilizados em funções celulares específicas dos enterócitos ou armazenados no citoplasma associado à ferritina, para serem utilizados posteriormente ou excretado nas fezes pela descamação de enterócitos senis. Esse ferro também pode ser transferido para o plasma através da membrana basolateral do enterócito por intermédio da proteína ferroportina (FPT). Na membrana basolateral do enterócito o ferro é oxidado e transformado em Fe3+ por ação de uma enzima, a hefastina, para que então possa se ligar naturalmente à transferrina (Cubas, 2008). A transferrina liga-se também ao ferro disponibilizado por macrófagos, após degradação da hemoglobina no interior destas células (Whiteside, 2002).

A partir daí o ferro é distribuído para o organismo, de modo que 80% é levado à medula óssea para utilização pelos precursores de eritrócitos e o restante é enviado a outras células para a síntese de hemoglobina, citocromos, peroxidase e outras enzimas dependentes de ferro (Cubas, 2008).

Mecanismos fisiológicos de controle do ferro no organismo asseguram que quantidades adequadas do mineral possam suprir a demanda fisiológica. Como não há via de excreção efetiva de ferro no corpo e a perda que ocorre normalmente é baixa (com exceção de primatas que menstruam e aves de postura), o controle fisiológico na absorção deve ser preciso (Harvey, 2008).

A Quantidade de ferro que é absorvida é regulada por diversos fatores sistêmicos, incluindo quantidade de ferro recentemente ingerida, reserva de ferro no organismo, atividade hematopoiética e hipóxia. Assim, em situações em que há falta de ferro ou aumento da necessidade (hemólise, por exemplo), há uma maior absorção de ferro. Para responder a essa maior demanda, há uma maior expressão das proteínas envolvidas nesse processo, como a proteína transportadora de metal divalente (DMT-1) e a ferroportina (FPT) (Whiteside, 2002; Grotto, 2008).

O ferro é armazenado nos tecidos como ferritina – solúvel e não visível na microscopia óptica – ou como hemossiderina – agregados insolúveis visíveis na microscopia óptica. A ferritina é formada na medula óssea, fígado, baço e células mononucleares-fagocitárias. Os órgãos com maior concentração de ferro são o baço e o fígado seguidos pelo rim, coração, músculo esquelético e cérebro. Quando o corpo contém baixas reservas de ferro o mineral é mais armazenado como ferritina do que

como hemossiderina, e quando as reservas estão altas, mais mineral é depositado como hemossiderina (Cubas, 2008; Harvey, 2008).

Embora a anemia esteja associada a efeitos prejudiciais para o organismo, a hipoferremia conjunta a ela mostra um efeito positivo no combate a doenças infecciosas e neoplásicas, já que o ferro também faz parte do metabolismo desses microrganismos e células. Sendo assim, animais com doenças de sobrecarga de ferro são predispostos a desenvolverem mais doenças infecciosas e neoplásicas. Em um estudo com amostragem de 180 aves submetidas a necropsia, 75% das aves que apresentavam deposição de ferro tinham infecções parasitarias e bacterianas concomitantes (Cork *et al.*, 1995; Theurl *et al.*, 2005; Cassat e Skaar, 2013).

2.1.4 Doença do Acúmulo de ferro

O acúmulo de ferro em órgãos parenquimatosos e comum em várias espécies de aves. Quando o acúmulo nos tecidos não está associado dano celular ou tecidual essa condição é chamada de hemossiderose, mas se o acúmulo for severo o suficiente para causar danos teciduais com consequências funcionais e morfológicas, a condição se caracteriza como doença do acúmulo de ferro (DAF) ou hemocromatose (Trupkiewicz *et al.*, 2018).

O termo hemocromatose é mais comumente utilizado para a doença em humanos, onde alguns indivíduos apresentam um defeito genético no metabolismo de absorção do ferro (Pietrangelo, 2006). Diferente das aves, onde toda uma população está susceptível a condição, por isso o termo é considerado inapropriado (Schmidt *et al.*, 2003).

Em aves sob cuidados humanos, a DAF é uma doença de interesse para espécies susceptíveis, visto que essa doença causa uma mortalidade significativa nas unidades de conservação (Cubas, 2008).

A DAF acomete mais comumente ranfastídeos, mainás (*Gracula* sp.), aves do paraíso (Paradisaeidae), quetzals (*Pharomacrhus* sp.), e a fada-azul-asiática (*Irena puella*). Com rara predominância em outras espécies (Schmidt *et al.*, 2003).

Nos tucanos, a DAF é uma das doenças mais comuns, foi descrita em pelo menos 13 espécies e ao que parece, não existem espécies mais susceptíveis dentro da família Ramphastidae (Cubas, 2008).

Um estudo com mainás (*Gracula* sp.) demonstrou que há um nível maior de expressão de transportadores de ferro intestinais DMT-1 e FPT em relação a outras aves consideradas não susceptíveis. Por isso, acredita-se que as aves susceptíveis a essa doença, viviam em ambientes onde havia baixa disponibilidade ferro na dieta, e por pressão evolutiva desenvolveram mecanismos para obter maior absorção do ferro no intestino. Assim, quando levadas a ambientes cativos e expostas a dietas com altas concentrações do mineral, apresentam exacerbada absorção e deposição de ferro nos órgãos internos. O acúmulo nos órgãos é lento e gradativo até a origem da doença (Schmidt *et al.*, 2003; Mete *et al.*, 2005; Mete *et al.*, 2005).

Em aves-do-paraíso (Paradisaeinae) a taxa de absorção pode ser de até 90% do ferro consumido, persistindo alta mesmo quando os estoques orgânicos de ferro são elevados (Ritchie e Cornelissen, 1994). Um estudo em galinhas poedeiras demonstrou uma absorção de 15-20% do ferro advindo da dieta, além disso, essas aves conseguem excretar o ferro mais eficientemente pela frequência da postura de ovos (Ramsay e Campbell, 1954).

Em tucanos com DAF, normalmente os sinais clínicos são inespecíficos e dificilmente são perceptíveis antes de estágios avançados. As aves podem ir a óbito subitamente ou apresentar sinais clínicos de emagrecimento, dispneia e distensão abdominal. Nos achados de necropsia, em casos leves o fígado pode estar normal, já em casos graves observa-se sinais como ascite, fígado de coloração amarelada, laranja ou marrom. Na Histologia vista por microscopia óptica e corada em H/E, observa-se depósitos de ferro em forma de hemossiderina na cor marrom principalmente nos hepatócitos e células de Kupffer. As lesões da DAF são hemorragias, necrose tecidual, fibrose e cirrose hepática. As duas últimas são alterações patológicas mais graves da doença. (Strefezzi e Pereira, 2014; Trupkiewicz, Garner et al., 2018).

A coloração por AP pode ser utilizada para diferenciar o ferro de outros pigmentos presentes no fígado como a bile e a lipofucsina. Apesar disso, a presença de ferro no fígado sem a presença de outras lesões não aponta para o diagnóstico de DAF (Schmidt, Reavill *et al.*, 2003; Trupkiewicz, Garner *et al.*, 2018).

2.1.2 Metabolismo da excreção do nitrogênio em aves

As proteínas e seus aminoácidos integram e desempenham funções vitais nos sistemas orgânicos de todos os animais. O nitrogênio é um produto resultante da degradação dos aminoácidos e sua excreção evoluiu nas diferentes espécies. Nos peixes o nitrogênio é excretado em forma de amônia, nos mamíferos de ureia, as aves e a maioria dos répteis excretam principalmente o ácido úrico e por isso são chamados de urotélicos (Braun, 1998).

Os rins são os órgãos responsáveis por excretar o ácido úrico que se encontra em excesso no organismo. Ele é produzido no fígado e nos rins, posteriormente sendo excretado nos túbulos renais. ele é um produto principalmente do metabolismo das purinas, que são degradadas em hipoxantina, e esta por sua vez é transformada em xantina por meio da xantina oxidase. A xantina oxidase também atua posteriormente transformando a xantina em ácido úrico e urato de sódio (Rocha, 2009; Campbell, 2015).

O ácido úrico é uma forma menos solúvel em água quando comparada a outros compostos nitrogenados como a ureia e amônia, logo se torna muito eficiente quanto a baixa disponibilidade de água para a excreção. Isso acontece por que a maioria do ácido úrico da urina não está como uma solução, mas existe como uma suspensão coloidal formada de proteínas e esferas de ácido úrico. As esferas são compostas por 65% de ácido úrico, e esta não é sua forma cristalina. Em forma de suspensão coloidal, evita-se que haja um aumento da osmolaridade na urina e menos água é excretada nas fezes. Outra vantagem da excreção por meio do ácido úrico é que a sua baixa solubilidade do mesmo também permite que ele se armazene no alantoide dentro dos ovos das aves e não cause danos ao concepto (Braun, 1998).

A urina das aves possui em média 5 mg/ml de proteína, e apesar de não exigirem muita água para excretar o nitrogênio como fazem os mamíferos, requerem grandes quantidades de proteína para formar a suspensão coloidal. Porém, a proteína ureteral não é perdida pelas aves, por que a urina é transferida para o reto na cloaca por peristaltismo reverso, lá essas proteínas são degradadas e seus aminoácidos serão absorvidos e reciclados (Braun, 1998).

A quantidade de urato no organismo é mantida de acordo com a excreção do excedente da produção diária pelos rins e fígado, quando os níveis de urato estão

elevados, há risco da formação de cristais de urato monossódico. O processo de cristalização ainda não está completamente explicado, mas fatores como diminuição da temperatura, localização nos tecidos e PH estão envolvidos (Galvão, 2015).

2.1.4 Gota úrica visceral e articular

Quando ocorre um excesso de ácido úrico no sangue que excede a solubilidade do urato, o ácido úrico precipita nos tecidos e articulações na forma de cristais monoidratados de urato monossódico, condição caracterizada como gota. A gota se apresenta mais comumente como sequela de uma insuficiência renal, e acomete mais predominantemente animais urotélicos (Campbell, 2015).

Qualquer fator que comprometa a função renal ou induza diretamente a hiperuricemia é uma causa para desenvolver a gota. Os principais são a desidratação, excesso de cálcio ou proteína na dieta, doenças dos túbulos renais, infecções renais, hipovitaminose A ou obstrução ureteral. Aumentos consideráveis de ácido úrico no sangue só são notados após um comprometimento de 70% dos rins, por isso são considerados inúteis para o diagnóstico precoce da doença (Rocha, 2009).

A gota úrica pode ocorrer em duas formas, articular ou visceral, e as duas formas raramente ocorrem simultaneamente. No Passado, ambas as formas eram tratadas como uma, mas hoje se sabe que são muito diferentes quanto a patogênese, tempo de início, frequência, alterações macroscópicas e microscópicas (Siller, 1981; Bretz, 2015).

A gota úrica visceral é comum em várias espécies de aves e se caracteriza como uma doença de quadro clínico agudo, e normalmente as aves não apresentam sinais clínicos, morrendo subitamente. Na necropsia, há presença de deposição de urato com aspecto açúcar em forma de membranas brancacentas que se estendem principalmente sobre a superfície dos rins, fígado, coração, baço e sacos aéreos. Microscopicamente observa-se cristais de urato monossódico nesses órgãos que formam os chamados tofos gotosos (Rocha, 2009; Crespo *et al.*, 2018).

Na gota úrica articular as lesões ocorrem de forma crônica nas articulações, principalmente na metatarsofalangeana, onde primeiramente é vista. Normalmente acomete aves maduras e os sinais clínicos são dor intensa nas articulações, resistência para se empoleirar e aumento de volume em região de articulações.

Durante a necrópsia encontramos material branco e pastoso nas articulações comprometidas, enquanto na histologia podemos observar áreas de cristais de urato formando os tofos (Tung *et al.*, 2006; Crespo *et al.*, 2018)

2.2 RELATO DE CASO

Em um zoológico localizado no estado da Paraíba, um Tucano-de-papo-branco (*Ramphastos tucanus*) foi encontrado morto em seu recinto. A ave foi encaminhada para investigação da causa mortis no Laboratório de patologia animal do Hospital Veterinário do CCA-UFPB na cidade de Areia - PB. Era uma fêmea adulta, pesando 416g, escore corporal baixo e foi submetida a necropsia. No exame físico externo apresentou uma área focalmente extensa de apteria na região do peitoral e um aumento de volume focal na articulação tarsometatarso-digital do membro pélvico esquerdo (Figura 1).

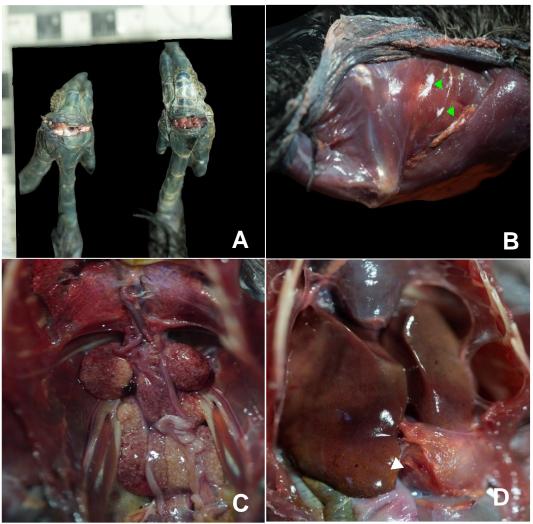
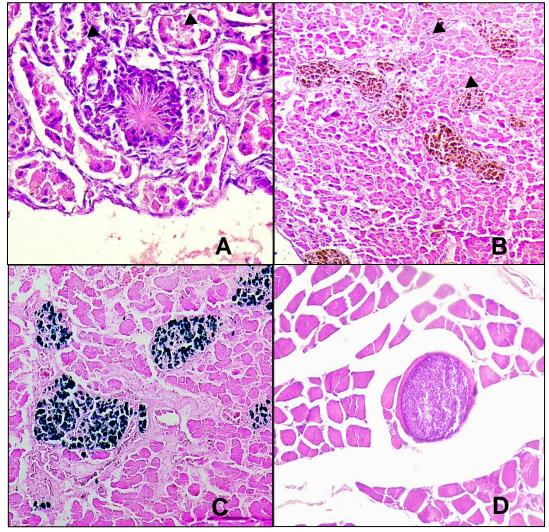

Durante o exame interno da necropsia, observou-se no interior da articulação tarsometatarso-digital do membro pélvico esquerdo significativa quantidade de material brancacento espesso (Figura 2A), deposição multifocal de material branco na musculatura intercostal e do membro pélvico direito (Figura 2B), rins difusamente pálidos e recobertos por áreas puntiformes milimétricas esbranquiçadas que adentravam à superfície de corte (Figura 2C). Além disso, o fígado estava aumentado de volume, com bordos arredondados, apresentando áreas multifocais de coloração vermelho-escuro e deposição de pigmento alaranjado finamente granular em sua superfície capsular que se adentrava à superfície de corte (Figura 2D).

Figura 1: Área focalmente extensa de apteria na região peitoral (seta) e aumento de volume focal na articulação tarsometatarso-digital do membro pélvico esquerdo (pontas de seta).

Fonte: Jeann Leal.

Figura 2: Achados macroscópicos em necropsia de um Tucano-de-papo-branco (*Ramphastos tucanus*). A) Articulação tarsometatarso-digital ao corte apresentando material brancacento espesso em seu interior. B) Musculatura intercostal com áreas multifocais esbranquiçadas (pontas de seta). C) Rins difusamente pálidos com pontos milimétricos esbranquiçados multifocais dentro da cavidade celomática. D) Fígado estava aumentado de volume, com bordos arredondados, áreas multifocais de coloração vermelho-escuro e um pigmento alaranjado finamente granular recobrindo a superfície capsular (ponta de seta).


Fonte: Jeann Leal.

Fragmentos dos tecidos foram coletados, fixados em formalina a 10% e passaram pelo processamento histológico de rotina. As colorações realizadas foram Hematoxilina e Eosina (H/E) e Azul da Prússia (AP).

Durante o exame histopatológico, foi possível observar nos rins degeneração e necrose tubular, e presença de depósitos de urato formando tofos gotosos (Figura 3A). Em fígado, foi observado necrose multifocal pelo parênquima e presença de

pigmento castanho granular intracitoplasmático nas células de Kupffer e nos hepatócitos (Figura 3B). Caracterizado como acúmulo de hemossiderina quando corado pelo Azul da Prússia (Figura 3C). Na musculatura encontramos estruturas parasitárias compatíveis com Sarcocystis spp. (Figura 3D).

Figura 3: Fotomicrografia de achados histológicos dos rins e fígado de um Tucano-de-papo-branco (Ramphastos tucanus). A) Degeneração e necrose tubular (pontas de seta), deposição de cristais de urato em forma de agulhas formando tofos gotosos. Obj. 40x, H/E. B) Áreas multifocais de necrose com hepatócitos apoptóticos (setas) pelo parênquima hepático, e quantidade significativa de Pigmento castanho granular intracitoplasmático nas células de Kupffer e nos hepatócitos. Obj. 10x, H/E. C) Observa-se leve a moderada deposição de hemossiderina distribuída pelo parênquima hepático. Obj. 20x, AP. D) Cisto muscular de Sarcocystis spp. repleto de bradizoítos. Obj 20x, H/E.

Fonte: Jeann Leal.

O aumento de volume na articulação esquerda e área de apteria na região peitoral do tucano indica que provavelmente a ave evitava a tensão sobre articulação acometida apoiando o peitoral no chão para se locomover. Os principais sinais clínicos da gota úrica articular são inchaço na articulação acometida, dor intensa, vocalização, dificuldade para se empoleirar e predileção pelo chão (Bretz, 2015).

Os achados macroscópicos dos rins e musculatura foram semelhantes aos descritos em outros relatos de gota úrica visceral (Sales, Nogueira *et al.*, 2015; Silva e Reis, 2021). O exame histológico dos rins também indica gota úrica visceral pela presença de cristais de urato radiantes sem a presença de inflamação histiocitica, granulomatosa ou mista, como descrito por Fenton, *et al* (2018). A apresentação da gota úrica articular e visceral simultânea no mesmo indivíduo como neste caso, é descrita como rara (Bretz, 2015).

A necrose e os corpúsculos apoptóticos presentes no exame histopatológico caracterizam a DAF e excluem um quadro de hemossiderose. A quantidade de ferro observada no exame histopatológico e a ausência de fibrose designam que o estágio da doença não é avançado. Schmidt *et al.*, (2003) mencionou ascite, aumento de tamanho, coloração marrom dourado e focos escuros como achados de necropsia no fígado de aves com DAF. Também que, histologicamente a quantidade de ferro pode ser variável quanto ao estágio da doença, em casos severos, apresentando necrose ou fibrose em estágios avançados da doença.

Os cistos de *Sarcocystis Spp.* são descritos como incidentais em necropsias de ranfastídeos, porém estudos sugerem que animais com acúmulo de ferro nos tecidos estejam predispostos a doenças infecto-parasitárias (Cork *et al.*, 1995; Theurl *et al.*, 2005; Cassat e Skaar, 2013; Dislich, 2014). Por isso, os cistos podem estar associados a DAF.

Tanto a DAF quanto a Gota úrica visceral podem causar morte súbita (Rocha, 2009; Strefezzi e Pereira, 2014), mas ao que os achados indicam, a *causa mortis* da ave foi uma insuficiência renal aguda associada ao quadro avançado de gota úrica visceral, visto que a DAF não estava em estágios avançados e havia comprometimento severo difuso do parênquima renal macroscopicamente e na histologia.

Aves sob cuidados humanos estão mais predispostas a dietas desbalanceadas do que indivíduos que vivem em seu habitat natural. A gota úrica e a DAF são doenças

associadas a dietas de composição alimentar inadequada, e este caso é possivelmente representativo.

3 CONSIDERAÇÕES FINAIS

A preocupação em relação a dieta dos ranfastídeos é fundamental para o desenvolvimento das espécies dentro de unidades de conservação, e sua nutrição está intimamente ligada ao bem-estar. A gota úrica visceral foi a *causa mortis* do tucano, esta e a doença do acúmulo de ferro são doenças metabólicas de difícil diagnóstico clínico que causam morte súbita, enquanto a gota úrica articular comprometeu o bem-estar da ave em uma parte de sua vida no zoológico. Tais doenças podem ser prevenidas com uma dieta balanceada, por isso, é preciso ter conhecimento prévio destas desordens metabólicas e que se elabore uma dieta controlada para os ranfastídeos sob cuidados humanos.

REFERÊNCIAS

AVIBASE. The Worlds Bird Database 2023.

BELLOC, H. **The bad child's book of beasts**. Londres: Simpkin, Marshall, Hamilton, Kent & Co. LTD., 1896.

BRAUN, E. J. Comparative renal function in reptiles, birds, and mammals. **Seminars in Avian and Exotic Pet Medicine**, 1998. Elsevier. p.62-71.

BRETZ, B. A. M. Síndrome da gota úrica em aves mantidas em cativeiro: artigo de revisão. **Periódico Científico do Núcleo de Biociências,** v. 5, n. 9, p. 21-26, 2015.

CAMPBELL, T. Bioquímica clínica de aves. In: (Ed.). **Hematologia e bioquímica clínica veterinária**. São Paulo: ROCA, 2015. cap. 35.

CASSAT, J. E.; SKAAR, E. P. Iron in infection and immunity. **Cell Host and Microbe,** v. 13, n. 5, p. 509-519, 2013.

COPPOLA, M. P. et al. Gota úrica visceral em tucano toco (Ramphastos toco). **Veterinária e Zootecnia**, p. 260-263, 2013.

CORK, S.; ALLEY, M.; STOCKDALE, P. A quantitative assessment of haemosiderosis in wild and captive birds using image analysis. **Avian Pathology**, v. 24, n. 2, p. 239-254, 1995.

CRESPO, R. et al. Galliformes and Columbiformes. In: (Ed.). **Pathology of wildlife and zoo animals**: Academic Press, 2018.

CUBAS, Z. S. **Siderose Hepática em Tucanos e Açarís**. 2008. 159 Tese de mestrado (Mestre). Departamento de Medicina Veterinária, UFPR, Curitiba.

DISLICH, M. Piciformes (Tucanos, Araçaris e Pica-paus). In: ROCA (Ed.). **Tratado de Animais Selvagens**. São Paulo, v.1, 2014.

FENTON, H.; MCMANAMON, R.; HOWERTH, E. W. Anseriformes, Ciconiiformes, Charadriiformes, and Gruiformes. In: (Ed.). **Pathology of wild life and zoo animals**: Academic press, 2018.

GALVÃO, I. Mecanismos envolvidos na resposta inflamatória e resolutiva em um modelo murino de gota: papel de MIF e da Anexina A1. 2015.

GROTTO, H. Z. Metabolismo do ferro: uma revisão sobre os principais mecanismos envolvidos em sua homeostase. **Revista Brasileira de Hematologia e hemoterapia,** v. 30, p. 390-397, 2008.

HARVEY, J. W. Iron metabolism and its disorders. **Clinical biochemistry of domestic animals,** v. 6, p. 259-285, 2008.

IUCN. **The IUCN Red List of Threatened Species in 2021.** 2021. Disponível em: https://www.iucnredlist.org/species/22682153/211269670 >. Acesso em: 15/04.

KLASING, K. C.; DIERENFELD, E. S.; KOUTSOS, E. A. Avian iron storage disease: variations on a common theme? **Journal of Zoo Wildlife Medicine**, v. 43, n. 3s, 2012.

MAINEZ, M. et al. Bilateral renal tubular neoplasm in a channel-billed toucan (Ramphastos vitellinus). **Journal of avian medicine surgery**, v. 29, n. 1, p. 46-50, 2015.

MASSAROTTO, V. M.; MARIETTO-GONÇALVES, G. A. Hemocromatose em aves da família ramphastidae. **Veterinária e Zootecnia**, v. 17, n. 4, p. 450-460, 2010.

METE, A. et al. Intestinal over-expression of iron transporters induces iron overload in birds in captivity. **Blood Cells, Molecules, Diseases,** v. 34, n. 2, p. 151-156, 2005.

METE, A. et al. Partial purification and characterization of ferritin from the liver and intestinal mucosa of chickens, turtledoves and mynahs. **Avian Pathology,** v. 34, n. 5, p. 430-434, 2005.

OLIVEIRA FACCIONI, A. L. D. et al. Hemocromatose em Ranfastídeos: patogenia e tratamento, uma revisão. **PUBVET,** v. 8, p. 0975-1135, 2014.

PIETRANGELO, A. Hereditary hemochromatosis. **Biochim Biophys Acta,** v. 1763, n. 7, p. 700-10, Jul 2006. ISSN 0006-3002 (Print) 0006-3002 (Linking). Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/16891003>.

RAMSAY, W.; CAMPBELL, E. Iron metabolism in the laying hen. **Biochemical Journal,** v. 58, n. 2, p. 313, 1954.

RITCHIE, B. W.; CORNELISSEN, H. Ramphastidae. In: (Ed.). **Avian medicine: principles and application**, 1994. cap. 47, p.1276-1283.

ROCHA, J. B. D. Gota úrica em calopsitas (Nymphicus hollandicus). 2009.

RYAN, T. P.; AUST, S. D. The role of iron in oxygen-mediated toxicities. **Critical reviews in toxicology,** v. 22, n. 2, p. 119-141, 1992.

SALES, I. D. S.; NOGUEIRA, C. H. D. O.; SILVEIRA, L. S. D. Gota úrica visceral em coruja suindara (Tyto alba) de vida livre. **Pesquisa Veterinária Brasileira**, v. 35, p. 169-172, 2015.

SCHMIDT, R. E.; REAVILL, D. R.; PHALEN, D. N. Liver. In: (Ed.). **PATHOLOGY OF PET AND AVIARY BIRDS**. USA: Blackwell publishing, 2003. p.234

SHEPPARD, C.; DIERENFELD, E. Iron storage disease in birds: speculation on etiology and implications for captive husbandry. **Journal of Avian Medicine Surgery,** v. 16, n. 3, p. 192-197, 2002.

SILLER, W. Renal pathology of the fowl—a review. **Avian Pathology,** v. 10, n. 3, p. 187-262, 1981.

SILVA, G. A. M. D.; REIS, T. M. Q. D. Achados necroscópicos de gota úrica visceral em lóris arco-íris (Trichoglossus haematodus): Relato de caso. **PUBVET**, v. 15, p. 188, 2021.

SPALDING, M. G. et al. Hepatic encephalopathy associated with hemochromatosis in a toco toucan. **Journal of the American Veterinary Medical Association,** v. 189, n. 9, p. 1122-3, Nov 1 1986. ISSN 0003-1488 (Print) 0003-1488 (Linking). Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/2851573>.

STREFEZZI, R. D. F.; PEREIRA, L. Q. Doença do Acúmulo de Ferro em Aves. In: ROCA (Ed.). **Tratado de Animais Selvagens**. São Paulo, v.1, 2014. cap. 78,

THEURL, I. et al. The macrophage: a cellular factory at the interphase between iron and immunity for the control of infections. **Biometals,** v. 18, p. 359-367, 2005.

TRUPKIEWICZ, J.; GARNER, M. M.; SALLÉS, C. J. Passeriformes, Caprimulgiformes, Coraciiformes, Piciformes, Bucerotiformes and Apodiformes. In: (Ed.). **Pathology of wildlife and zoo animals**: Academic Press, 2018.

TUNG, J.; MULLIN, M.; HEATLEY, J. J. WHAT IS YOUR DIAGNOSIS? **Journal of Avian Medicine and Surgery,** v. 20 n. 1, p. 39-43, 5, 2006. Disponível em: < https://doi.org/10.1647/1082-6742(2006)20[39:WIYD]2.0.CO;2 >.

ULGUIM, G. K. et al. Hemocromatose e capilariose em tucano-de-bico-verde (Ramphastos dicolorus). **PUBVET,** v. 16, p. 180, 2022.

VIEIRA, F. D. T. et al. Hemocromatose em tucano-Ramphastos toco-Relato de caso. **Naureza Online**, 2015.

WEINBERG, E. D. The Lactobacillus anomaly: total iron abstinence. **Perspect Biol Med,** v. 40, n. 4, p. 578-83, Summer 1997. ISSN 0031-5982 (Print) 0031-5982 (Linking). Disponível em: https://www.ncbi.nlm.nih.gov/pubmed/9269745.

WHITESIDE, D. P. Evaluation of the oral iron chelator deferiprone in the white leghorn chicken and domestic pigeon. 2002. National Library of Canada = Bibliothèque nationale du Canada, Ottawa.