

UNIVERSIDADE FEDERAL DA PARAÍBA CENTRO DE CIÊNCIAS AGRÁRIAS CURSO BACHARELADO EM ZOOTECNIA

GILVÂNIA AVELINO DA COSTA

AVALIAÇÃO HISTOLÓGICA DO TRATO GASTROINTESTINAL DE CORDEIROS ALIEMENTADOS COM DIETAS ALTO GRÃO

GILVÂNIA AVELINO DA COSTA

AVALIAÇÃO HISTOLÓGICA DO TRATO GASTROINTESTINAL DE CORDEIROS ALIEMENTADOS COM DIETAS ALTO GRÃO

Trabalho de Conclusão de apresentado ao Curso de Zootecnia no Centro de Ciências Agrárias da Universidade Federal da Paraíba, como requisito parcial à obtenção do título de Bacharel em Zootecnia.

Orientador: Prof. Dra. Jacinara Hody Gurgel Morais Leite.

Coorientador: Prof. Dr. Severino Gonzaga Neto.

Catalogação na publicação Seção de Catalogação e Classificação

C838a Costa, Gilvânia Avelino da.

Avaliação histológica do trato gastrointestinal de cordeiros alimentados com dietas alto grão / Gilvânia Avelino da Costa. - Areia:UFPB/CCA, 2023.

39 f. : il.

Orientação: Jacinara Hody Gurgel Morais Leite. Coorientação: Severino Gonzaga Neto. TCC (Graduação) - UFPB/CCA.

1. Zootecnia. 2. Histologia. 3. Morfometria. 4. Ovinos. I. Leite, Jacinara Hody Gurgel Morais. II. Gonzaga Neto, Severino. III. Título.

UFPB/CCA-AREIA

CDU 636(02)

Elaborado por LUCIANNA SILVESTRE DE CASTRO AZEVEDO - CRB-15/973

UNIVERSIDADE FEDERAL DA PARAÍBA CENTRO DE CIÊNCIAS AGRÁRIAS COORDENAÇÃO DO CURSO DE ZOOTECNIA

DEFESA DO TRABALHO DE GRADUAÇÃO

Aprovada em 09/11/2023

"AVALIAÇÃO HISTOLÓGICA DO TRATO GASTROINTESTINAL DE CORDEIROS ALIEMENTADOS COM DIETAS ALTO GRÃO."

Autor: Gilvânia Avelino da Costa

Banca Examinadora:

Jacinara Hody Gurgel Morais Leits

Prof^a. Dr^a Jacinara Hody Gurgel Morais Leite Orientador(a) – UFPB

Dr. Juraci Marcos Alves Suassuna Examinador(a) – UFPB

Milena Alves dos Santos

MSc. Milena Alves dos Santos Examinador(a) – UFPB A José Avelino de Luna, Eduardo Holanda Moreira Borges (que já se recolheram ao altíssimo, e a minha doce mãe Luciana Avelino de Luna.

DEDICO!

AGRADECIMENTOS

O presente trabalho encerra a minha graduação, e com este passa-se um grande filme em minha memória, o qual com grande alegria visito trechos saudosos desde a infância a vida adulta, dos quais pessoas queridas, que trago com grande afeto em meu peito se fazem necessária menções e notas, pois sem eles nada disso seria possível.

Incialmente agradeço a banca avaliadora, em especial a minha orientadora Prof^a. Dr^a. Jacinara Hody Gurgel Morais Leite, por sempre acreditar em meu potencial, e além disso por me delegar atividades das quais foram fundamentais para meu enriquecimento acadêmico, onde como monitora tive a oportunidade de auxiliar e contribuir para o ensinamento de outros futuros colegas de profissão, além de que outras funções que também foram delegadas relacionadas a extensão, pude auxiliar aos meus colegas e contribuiu de suma maneira.

Agradeço ao Prof. Dr. Severino Gonzaga Neto, o qual sempre admirei por seus conhecimentos, trabalhos e pesquisas, mas fundamentalmente por fazer o aluno tornar-se acolhido e instigar a sua busca por conhecimento. Agradeço ao meu colega de profissão Rinaldo Robson Santos Ferreira, no auxílio acadêmico nas retiradas das dúvidas, sempre relacionando os conhecimentos teóricos e práticos. Também ao minha colega e amiga Milena Alves, por todo apoio, conhecimento transferido, tanto em seu experimento de doutorado, quanto no auxílio acadêmico prestado durante o desenvolvimento deste trabalho. Acrescentando os agradecimentos também ao Dr. Juraci Marcos, por aceitar o convite em ser membro da banca deste TCC, e contribuir significativamente para o trabalho.

Meus sinceros agradecimentos à equipe, que foi fundamental e que auxiliou na parte experimental deste trabalho, principalmente a equipe de estagiários, representadas por Adejaíne Fernandes, Dinah Castro e Iara Gabriela de Lima; e aos alunos do programa de doutorado Mendonça Neto, pós doc, Marcelo Rufino, e aos alunos que iniciaram a parte experimental Sara e Alan. Todos sempre dispostos a auxiliar o grupo de pesquisa e aos colegas participantes. Aos que me auxiliaram no laboratório agradeço, representados pela

pessoa do técnico responsável do laboratório de histologia, Dr. Edijânio, e ao Prof. Dr. Ricardo Guerra, Msc. Vitória Macedo, e os alunos de graduação Débora Lins, Vinícius Araújo.

Agradeço também a cada profissional, seja professor ou demais servidores da Universidade Federal da Paraíba que sempre estiveram disposto a ajudar o próximo, nas pessoas dos professores mais gentis que conheci: Prof. Marcelo Rodrigues e Prof^a Carla Saraiva (minha primeira orientadora, a qual tenho um profundo apresso).

Dentre das grandes misericórdias de Deus, temos os que chamamos de família, não apenas representados em laços sanguíneos, mas que tem nossa afeição por nutrir o amor mais puro e sem cobranças. Incialmente a estes, abro com a minha doce mãe, Luciana Avelino da Costa, que tantas vezes esqueceu de si, para dar o melhor para suas filhas, um coração tão doce e puro, dos quais hoje em dia não se produzem quase. Mainha, tudo sito é para a senhora!

Agradeço a minha irmã mais velha Gizelly Avelino da Costa, a qual a respeito como uma segunda mãe, que me orienta desde as brincadeiras na infância ao redor do pé de macaíba, e a vida adulta, um ponto forte de apoio, meu farol. Ninguém depois da nossa mãe, nos ama nessa vida como a irmã mais velha.

Sem Eduardo Holanda Moreira Borges, não chegaria nem aos pés do que hoje sou e almejo ser! Meu grande exemplo de conhecimento bondade, o amo eternamente, meu exemplo de paternidade, meu padastro. Sem sua filha Clistênia Holanda, também esse sonho não se tornaria realidade, obrigada por todo o amparo e bondade!

Agradeço os meus avós, maternos e paternos, citando minha avó Maria de Lourdes Avelino, a qual tem uma força e perseverança, que motivam e dão forças a famílias toda, nossa rocha e fortaleza.

Aos meus primos e tios, em especial a Carlos André Avelino de Luna, por todos os momentos descontraídos e de brincadeiras, em um ambiente doce e harmonioso.

Este percurso, que por vezes foi árduo, se tornou mais leve com a presença de grandes amizades as quais carrego desde a infância: Juliana Lins, Ingrid Lídia Diniz, Rebeca Vieira, Matheus Emanuel Ataíde, João Victor Sores, Thales Câmara e Allan Matheus. As três primeiras meninas, Deus sabe o quanto agradeço por sempre me acolherem, mesmo sendo uma pessoa fechada, vocês tiram meus melhores sorrisos, e minhas sinceras lágrimas de felicidade e conforto, são parte do meu eixo, que me trazem a realidade em meio as minhas aflições, e estão sempre ali independente da distância, amo vocês!

As amizades que construí nessa caminhada, são também as mais preciosas que Deus poderia me dar: Paulo Machado, Douglas Augusto, Eloyse Cristina, Leila Coelho, Rafaella Geórgia. Muito obrigada por tudo.

Aos que permaneceram até o fim, tenho meus agradecimentos especiais, a pessoa de Débora Lins, não só a ela como aos seus pais. Por meio dela ganhei uma nova família, novos pais, conheci pessoas tementes a Deus que por seu exemplo, ajuda, e conversas me deram momentos únicos de felicidade a aprendizado. Minha querida Débora, só Deus e nos duas sabemos de antas aflições e felicidades que passamos juntos, e com a Graça Divina ainda iremos trilhar um lindo caminho. Te amo!

Vinícius Araújo, Vitória Macedo e Ana Júlia Azevedo, aos que permaneceram em um ciclo íntimo de amizade. Obrigada Vinicius por todo abraço quando eu me desesperava e chorava, a Vitória os choques de realidade dos quais nos puxavam para o presente (e valorizando a dádiva que é o presente!), e a Ana Júlia, nosso senhor sirigueijo, minha "marrone" que sempre entendeu meus pensamentos e compartilhou muitos comigo, obrigada por tudo! Os amo profundamente!

Aos queridos amigos que fiz no nosso amado prédio: Rissonette Muniz: João Paulo Fernandes, Wdson Diniz e Yago Barbosa, e o agregado Guilherme Leite, obrigada por toda ajuda que só os vizinhos podem dar e só verdadeiros amigos podem prover.

Agradeço também a Universidade Federal da Paraíba, pela possibilidade de ser assistida por auxílios e bolsas de estudo, que foram fundamentais para minha manutenção durante o curso.

A todo momento Honra e Glória ao bom Deus, que até hoje não me desamparou, e a cada jornada sinto sua mão misericordiosa sobre mim. Obrigada Senhor, por sua intercessão, por tudo que um dia já foi meta, sonho, e hoje se faz realização.

"Lovely Lady dressed in blue, Teach me how to pray! God was just your little boy, Tell me what to say! Did you lift him up, sometimes Gentle on your knee? Did you sing to him the way Mother does to me? Did you ever try telling him, Stories of the world? And oh, did he cry? Do you think he cares if I tell Him things? Just little things that happen? And the Angel's wings, Make a noise? Can you hear me if I speak low? Does he understand me now?

Tell me for you know Lovele Lady dressed in blue, Teach me how to pray! God was just your little boy, And you know the way!"

Fulton Sheen.

RESUMO

COSTA, GILÂNIA AVELINO DA. **AVALIAÇÃO HISTOLÓGICA DO TRATO GASTROINTESTINAL DE CORDEIROS ALIEMENTADOS COM DIETAS ALTO GRÃO.** UFPB, 2023, 41p, Trabalho de Conclusão de Curso- Universidade Federal da Paraíba, Areia.

Objetivou-se com o presente do estudo avaliar parâmetros histológicos do rúmen e intestino delgado de cordeiros confinados recebendo dieta alto grão, com diferentes processamentos do grão de milho. Foram utilizados 24 cordeiros machos, ½ sangue Dorper, com idade média inicial de 70 dias, e peso corporal médio inicial de 15±2 kg. Foi utilizado um delineamento experimental em blocos casualizados, em três tratamentos e oito repetições cada. Os tratamentos foram formados com base nos diferentes processamentos do grão de milho, sendos eles: T1= grão de milho inteiro (GMI); T2= grão de milho moído grosso, em peneira de 2mm (GMG); T3= grão de milho moído fino representados por três diferentes processamentos do grão de milho (GMF), em peneira de 6 mm. Os dados obtidos foram submetidos a teste de normalidade de Shapiro- Wilk, e a comparação das médias dos tratamentos foi realizada através da ANOVA, seguido de Teste de Tukey, quando os dados apresentaram normalidade ou ainda o teste de Kruskal Wallis, seguido do teste de Dunn quando não apresentavam normalidade, a 5% de probabilidade, utilizado o programa estatístico biestat 5.0. As análises morfométricas de rúmen, espessura da camada muscular e espessura de epitélio não apresentaram diferença significativa entre os tratamentos (P > 0.05). Altura de papila e largura de papilas apresentaram diferença significativa (P < 0.05) entre os tratamentos GMG e GMF. A área de papila foi maior (P < 0.05) no tratamento GMF em comparação aos demais, apresentando valor médio de 893018,5414 µm. Para a porção do intestino delgado, não houve diferença significativa para a espessura de mucosa (P > 0.05). Para a espessura de submucosa foi maior (P < 0.05) para o tratamento diferindo do tratamento GMF 528,60 µm. Para as células caliciformes o tratamento GMF obteve maior média, 34,50 μ m, com diferença significativa (P < 0.05) entre dos demais tratamentos, GMI e GMG. Os diferentes tipos de processamento do grão de milho, não apresentaram alterações deletérias nos parâmetros histológicos do rúmen e intestinos delgado avaliados, de modo que tanto o grão de milho inteiro ou ainda aqueles processados, enfatizando o tratamento de GMF, podem ser utilizados sem comprometer a absorção dos nutrientes ao longo do trato gastrointestinal.

Palavras-Chave: histologia; morfometria; ovinos.

ABSTRACT

COSTA, GILVÂNIA AVELINO DA. **HISTOLOGICAL EVALUATION OF THE GASTROINTESTINAL TRACT OF LAMBS FED HIGH-GRAIN DIETS**. UFPB, 2023, 41 p, Course completion work – Federal University of Paraíba, Areia.

The objective of this study was to evaluate histological parameters of the rumen and small intestine of confined lambs receiving a high-grain diet, with different processing of corn grain. 24 male lambs, ½ Dorper blood, with an initial average age of 70 days, and an initial average body weight of 15±2 kg were used. A randomized block experimental design was used, with three treatments and eight replications each. The treatments were formed based on the different processing of the corn grain, as follows: T1= whole corn grain (GMI); T2= coarsely ground corn grain, on a 2mm sieve (GMG); T3= finely ground corn grain represented by three different corn grain processing (GMF), on a 6 mm sieve. The data obtained were subjected to the Shapiro-Wilk normality test, and the comparison of treatment means was carried out using ANOVA, followed by the Tukey test, when the data presented normality, or the Kruskal Wallis test, followed by the Dunn when they were not normal, at 5% probability, using the statistical program biestat 5.0. The morphometric analyzes of the rumen, muscle layer thickness and epithelium thickness showed no significant difference between treatments (P > 0.05). Papilla height and papilla width showed a significant difference (P < 0.05) between the GMG and GMF treatments. The papilla area was larger (P < 0.05) in the GMF treatment compared to the others, with an average value of 893018.5414 μm. For the small intestine portion, there was no significant difference in mucosal thickness (P > 0.05). For the submucosal thickness, it was greater (P < 0.05) for the treatment, differing from the GMF treatment, 528.60 µm. For goblet cells, the GMF treatment obtained the highest average, 34.50 µm, with a significant difference (P < 0.05) between the other treatments, GMI and GMG. The different types of corn grain processing did not present deleterious changes in the histological parameters of the rumen and small intestines evaluated, so that either the whole corn grain or those processed, emphasizing the GMF treatment, can be used without compromising the absorption of nutrients throughout the gastrointestinal tract.

Keywords: histology; morphometry; sheep.

LISTA DE ILUSTRAÇÕES

Figura 1	Confinamento experimental realizada na Unidade de Pesquisa em Pequenos	
	Ruminantes- UPR- CCA/UFPB. Cocho de animal pertencente ao tratamento	
	GI	25
Figura 2	Procedimentos sequenciais para a formação das lâminas com conteúdo histológico.	
	Laboratório de Histológia do Departamento de Ciências Veterinárias do	
	CCA/UFPB	28
Figura 3	Fotomicrografia ruminal. A esquerda o tratamento GMM, a direita o tratamento	
	GMF	32
Figura 4	Fotomicrografia duodenal. A esquerda o tratamento GMF, e a direta o tratamento	
	GMG	33

LISTA DE TABELAS

Tabela 1	Modelo de adaptação de dieta DAG	19
Tabela 2	Composição do milho (Zea mays L.)	29
Tabela 3	Composição e valores nutricionais do concentrado proteico mineral aditivado,	
	peletizado – QUALICORTE OPTIMAIZE FINAL	29
Tabela 4	Valores de média/mediana seguido do desvio-padrão/intervalo interquartil das	
	variáveis morfométricas do rúmen dos animais submetidos a confinamento com	
	diferentes tipos de processamento do grão de milho, com adição de 15% de núcleo	
	especializado	32
Tabela 5	Valores média/mediana seguido do desvio-padrão/intervalo interquartílico das	
	variáveis morfométricas do intestino delgado dos animais submetidos a	
	confinamento com diferentes tipos de processamento do milho, com adição de 15%	
	de núcleo especializado	34

SUMÁRIO

1	INTRODUÇÃO	13
2	OBEJETIVOS	15
3	REVISÃO DE LITERATURA	16
3.1	Ovinocultura	16
3.2	Dietas Alto Grão	16
3.3	Adaptação a dieta	18
3.4	Morfologia Ruminal	19
3.5	Morfologia Intestinal	21
3.7	Distúrbios Metabólicos	22
4	METODOLOGIA	24
4.1	Local, animais e instalações experimentais	25
4.2	Delineamento Experimental	25
4.3	Adaptação, caracterização das dietas	25
4.4	Abate	28
4.5	Análises Histológicas	28
4.6	Análises Estatísticas	30
5	RESULTADOS E DISCUSSÃO	32
6	CONCLUSÃO	35

1 INTRODUÇÃO

A ovinocultura é um segmento da produção animal que está em franca expansão representando uma das principais fontes de renda para a população do semiárido nordestino. Nesta região, a produção de pequenos ruminantes é desenvolvida em sua maioria ainda de forma empírica, utilizando baixos níveis de tecnologia, contudo, desempenha importante papel no suprimento alimentar, sendo a carne e o leite as principais fontes de proteínas de origem animal (SILVA JÚNIOR, 2019).

A terminação de cordeiros em confinamento, com o uso de dietas de alto grão, vem sendo estudada com o objetivo de diminuir o tempo de permanência dos ovinos no sistema de produção, sobretudo para atingir o peso de abate maiores, no qual os animais apresentem um adequado grau de acabamento da carcaça a para ser comercializada (CARVALHO *et al.*, 2007). O sistema de confinamento pode ser utilizado com eficiência na alimentação de cordeiros na fase de cria e/ou terminação. Neste sistema o abate pode ser uma alternativa zootécnica viável e eficiente para a produção de carne ovina de qualidade, pois resulta em regularidade na oferta, além de padronização das carcaças (VIDAL *et al.*, 2006). Nesse contexto se faz necessário avaliar quais os tipos de processamento que acarretam uma maior eficiência alimentar, pois como esse tipo de dieta quando manejada de forma errada pode acarretar aos animais ruminantes desenvolvimento problemas metabólitos graves.

Em sistemas de confinamento o grão de milho é o principal alimento energético utilizado nas dietas dos animais, além de ser o principal ingrediente em dieta de alto grão (FABIANO NETO *et al.*, 2022). Assim, dietas com alta concentração energética pode aumentar a eficiência de uso de energia metabolizável para ganho, ou seja, uma quantidade maior de energia é depositada na carcaça na forma de proteína ou gordura (SOUZA, 2019).

O milho utilizado no Brasil pelas indústrias de sementes é hibrido de textura dura, sendo predominantes grãos com endospermas com alta vitriosidade (73,1%), o endosperma vítreo está diretamente relacionado com a dureza do grão e tem alta correlação negativa com a degradação ruminal do amido, isto significa que quanto mais vítreo for o grão, menor é a degradabilidade do amido no rúmen (Correa *et al.*, 2002). Desse modo, a baixa digestibilidade do amido contido em cultivares de milho duro pode ocasionar limitação da eficiência de uso de dietas de alto grão com milho inteiro. Portanto, o seu melhor aproveitamento depende dos métodos de processamento (NASCIMENTO, 2020).

Deste modo, torna-se evidente a importância de analisar os aspectos histológicos ao longo do trato gastrointestinal dos ovinos alimentados com dietas ato grão, tendo em vista a possível alteração acarretada diante da alta relação de concentrado presente na ração.

2 OBJETIVO

Objetivou-se com o presente estudo avaliar os parâmetros histológicos do trato gastrointestinal de cordeiros confinados, recebendo dieta de alto grão, em sistema de alimentação com diferentes processamentos de grão de milho.

3 REVISÃO DE LITERATURA

3.1 Ovinocultura

A criação de ovinos foi iniciada a partir do processo de domesticação dos animais, que por volta de 11 mil anos atrás no Sudeste Asiático, os rebanhos eram compostos por ovinos ainda selvagens (CHESSA *et al.*, 2009). A domesticação dos ovinos serviu para humanidade como fonte de recursos vitais e para os historiadores os ovinos estão inclusos entre as espécies domésticas que foram fundamentais para os humanos chegarem ao nível atual de desenvolvimento (ZHAO *et al.*, 2017).

Segundo Carvalho *et al.* (2007), a criação de ovinos é justificada como uma atividade rentável sendo explorado a carne e pele como produtos finais, isto devido a características importantes tais como rusticidade, prolificidade, além da boa habilidade materna. Assim, de acordo com o IBGE (2022), o rebanho ovino no Brasil é de cerca 21. 514.274 mil cabeças, sendo a região Nordeste detentora do maior número de cabeças do rebanho nacional, e o maior produtor, representado pelo estado da Bahia.

Alves *et al.* (2017), afirma que a Ovinocultura no Nordeste, está baseado em sistemas de produção extensivos, caracterizados sobretudo com o uso excessivo de pastagens nativas e poucas técnicas de manejo reprodutivo, sanitário e alimentar, o que resulta em baixos índices produtivos. Segundo Costa (2020), a produção de cordeiros no Semiárido brasileiro pode ter desempenho limitado pela dependência de volumoso, o que é potencializado nos meses de seca com a falta de planejamento forrageiro, fato que torna-se mais preocupante quando o rebanho apresenta categorias de animais em terminação, neste período de escassez, principalmente se consideramos raças mais produtivas e com maior exigência nutricional.

3.2 Dietas de Alto Grão

Conforme Melo (2014), o sistema de terminação de cordeiros em confinamento, apresenta vários benefícios, dentre eles, um aspecto fundamental é a possibilidade de obter maior controle nutricional, proporcionando assim um abate precoce, carcaças com alta qualidade, gerando uma agregação de valor, que reflete diretamente no preço pago pelo mercado. Deste modo, garante ao produtor um retorno mais rápido configurando um método de intensificação de produção da carne ovina.

De acordo com Paniago (2014) e Leite *et. al* (2020), os sistemas que são projetados visando a utilização de dietas com grande proporção de volumosos, acarreta consequentemente em necessidade de maiores áreas destinadas para o manejo alimentar da fazenda. Uma vez que, são demandadas maiores áreas para produção de alimentos, além da necessidade de maior investimento em maquinários, quando compara-se com sistemas que utilizam rações de alto grão.

O uso de dietas de alto grão em sistemas de confinamento vem sendo estudada com a finalidade de reduzir o tempo de permanência dos animais em confinamento, visando atingir o peso de abate e adequado grau de acabamento da carcaça visando a comercialização (Carvalho *et al.*, 2007). A dieta de alto grão é caracterizada pelo fornecimento do milho grão inteiro e concentrado em pellet, composto por proteínas, vitaminas, aditivos, minerais tendo como finalidade o balanceamento da dieta de acordo com a necessidade nutricional da categoria animal e o seu desempenho esperado (MENDES, 2017).

Segundo Rogério *et al.* (2018), as dietas de alto grão, também chamadas de dietas alto concentrado (DAC), podem ser administradas de três modos:

- 1. DAC tipo 01: dietas de alto concentrado com baixa proporção de volumoso, com proporção volumoso: concentrado (20:80);
- 2. DAC tipo 02: dietas ditas "100%" concentrado, que embora apresentem essa nominação, podem conter teores baixos de inclusão de volumosos, que na matéria seca representem entre 0 a 20%;
- 3. DAC tipo 03: dietas alto concentrado com ausência ou baixa inclusão de volumoso, na forma de pellet. Sendo assim a dieta é construída por pellet e grão inteiro.

Segundo Souza (2019), na dieta com grão inteiro, o milho é a principal constituinte utilizado como fonte de fonte de amido utilizada em dietas para ruminantes. O grão inteiro na dieta dos ovinos, pode ser considerada em comparação ao fornecimento pra bovinos, mais vantajoso, do ponto de vista natural, uma vez que, há maior função salivar nos ovinos, e consequentemente há maior aproveitamento do alimento e manutenção da saúde ruminal com ph dentro da faixa considerada ótima, pH 6,5 a 7,0. Desse modo, dietas com alta concentração energética podem aumentar a eficiência de uso de energia metabolizável para ganho, ou seja, uma quantidade maior de energia é depositada na carcaça na forma de proteína ou gordura. Contudo, dietas com alto nível de concentrado apresentam maior acidez do líquido ruminal e com isso, promovem alterações na população microbiana do rúmen e, consequentemente,

pode causar danos ao epitélio ruminal e aumentar sua permeabilidade da membrana (EMMANUEL et al., 2007).

A baixa digestibilidade do amido contido em cultivares de milho duro pode ocasionar limitação da eficiência de uso de dietas de alto grão com milho inteiro. Portanto, o seu melhor aproveitamento depende dos métodos de processamento (NASCIMENTO, 2020). Os métodos mais usados no processamento de grãos envolvem a redução do tamanho das partículas com ou sem adição de água ou vapor. A moagem e a laminação, para formarem grãos moídos a seco ou apenas moídos, são os métodos mais comuns de processamento de grãos (Owens, 2005).

O mérito do processamento de grãos tem sido avaliado por diversos pesquisadores. Em trabalhos desenvolvidos por Bolzan *et al.* (2007) e Vargas Junior (2008), avaliando o processamento do grão de milho, em que os ovinos alimentados com dietas e consequentemente amido taxa de passagem do alimento pelo trato gastrintestinal, que os animais alimentados com MGI, porém isso não ocorre, provavelmente devido ao processo mastigatório dos ovinos ser eficiente, fazendo com que os grãos inteiros consumidos fossem reduzidos, já na ingestão, a partículas pequenas semelhantes aos grãos moídos (OLIVEIRA *et al.*, 2015).

Portanto, ocasionalmente em dietas com grãos processados as partículas pequenas dos carboidratos (entre 1 e 2 mm) que escapam da degradação ruminal, saem do rúmen através do orifício retículo-omasal em direção ao abomaso e, o amido não fermentado é convertido parcialmente em glicose, na porção do intestino delgado, pelas enzimas pancreáticas, que em seguida será aproveitado como energia pelas vísceras, e o restante será fermentado no intestino grosso, produzindo ácidos graxos de cadeia curta ou eliminado com as fezes (NASCIMENTO, 2020).

3.3 Adaptação à dieta

Com o intuito de minimizar os efeitos deletérios da mudança da dieta no ambiente ruminal, faz-se necessário o uso de estratégias de adaptação dos animais à nova situação alimentar. Um dos protocolos de adaptação, é por restrição da dieta final com incrementos gradativos até atingir o consumo *ad libitum*, apresentado como vantagem a facilidade de se trabalhar com uma única dieta (TORQUATO *et al.*, 2012).

O processo consiste, primeiramente, na adaptação dos microrganismos ruminais ao fornecimento de dietas com elevados teores de carboidratos solúveis de fácil fermentação,

tendo em vista que, na maioria dos casos, as dietas para ruminantes geralmente apresentam maior proporção volumosa, a fim de evitar qualquer distúrbio, a exemplo da acidose, devido a isso, devemos respeitar o período de adaptação (CHENG *et al.*, 1998; OWENS *et al.*, 1998).

Para sistemas de confinamento com ovinos, a literatura é incipiente, portanto, adotamse os mesmos protocolos que são utilizados para bovinos, que levam princípios comuns aos ruminantes e, por essa razão, aplicam-se perfeitamente aos ovinos (SANTOS, 2021).

Tabela 1: Modelos de Adaptação para dietas DAG.

MODELO DE ESCALA	NÍVEL DE INCLUSÃO
Este modelo de adaptação consiste no aumento	O período e adaptação consiste em 14 dias, com
gradual do fornecimento do centrado, em substituição	inclusão gradual;
a fração dietética. Considera-se um consumo ad	• -1 ° ao 5° dia: oferecer 1,3% a 1,5% do peso
libitum, ou seja, à vontade, com intervalos te tempo,	corporal;
para o fornecimento crescente de concentrado até a	• No 6° ao 10° dia: oferecer 1,5% a 1,7% do peso
substituição completa.	corporal;
	• E do 10° ao 14° dia: oferecer 1,8% a 2,0% do peso
	corporal. Podendo chegar até 3,0% do peso vivo.
MODELO DE RESTRIÇÃO	NÍVEL DE INCLUSÃO
A adaptação em restrição alimentar é realizada por	Assim, temos que:
meio do controle de ingestão da DAC. Limita-se	
assim o consumo de energia considerando q a	• Do 1 ° ao 5° dia: oferecer 1,3% a 1,5% do peso
quantidade de ração ofertada aos animais utilizando o	corporal;
peso corporal dos animais como balizador, são	• No 6° ao 10° dia: oferecer 1,5% a 1,7% do peso
realizados aumentos graduais do fornecimento em	corporal;
período de tempo pré-estabelecido.	• E do 10° ao 14° dia: oferecer 1,8% a 2,0% do peso
	corporal. Podendo chegar até 3,0% do peso vivo.

Fonte: Adaptado de Rogério et al. (2018).

3.4 Morfologia Ruminal

O estômago dos ruminantes é subdividido em quatro compartimentos, sendo eles o rúmen, retículo, omaso e abomaso (MOLINARI, 2017). Nos três primeiros compartimentos citados não há digestão química do alimento, dessa forma, eles são nomeados de préestômago, enquanto o abomaso é considerado o estômago químico dos ruminantes, local onde acontecem as reações de quebra pelas enzimas secretadas pelo organismo animal, de acordo com o plano alimentar que é oferecido ao animal, podendo também a depender desse plano, causar deficiências, problemas no funcionamento e até a ineficácia dos tecidos responsáveis pela absorção de nutrientes. Segundo Costa *et al.* (2009), as alterações no ambiente ruminal a depender da natureza dietética pode afetar de forma negativa a utilização de nutrientes e propiciar alterações morfológicas na mucosa ruminal.

O ambiente ruminal é composto por populações variadas de bactérias, fungos e protozoários. Com isso, o hospedeiro fornece aos microrganismos um habitat adequado para

seu crescimento, enquanto que os microrganismos fornecem proteínas, vitaminas e ácidos orgânicos de cadeia curta para o animal (Russell e Rychlik, 2001). Dentro deste microbioma, as bactérias são a divisão dominante e representam a maior contribuição para a digestão e conversão de alimentos em ácidos graxos de cadeia curta (AGCC) e proteínas microbianas (Kim *et al.*, 2015).

A parede ruminal morfologicamente é composta sequencialmente, como elucidado por Castro (2013) por quatro túnicas: a serosa, muscular, submucosa e mucosa. O rúmen possui um epitélio estratificado queratinizado com papilas em formato cônico, essas papilas segundo Pereira *et al.* (2002), são responsáveis pela absorção dos nutrientes digeridos através dos microrganismos.

Segundo Bittar *et al.* (2009), o rúmen desenvolvido tem a capacidade de absorver e metabolizar os produtos finais da fermentação, os AGCC. Essa capacidade é aumentada com a introdução de alimentos sólidos, e por meio dos produtos de fermentação esse desenvolvimento se torna mais eficaz. As papilas têm relação direta com a alimentação que é ofertada ao animal, pois dependendo da qualidade do alimento podem aumentar ou diminuir de tamanho (KONIG, 2004).

De acordo com Dantas Junior (2020), quando o animal recebe alimento volumoso, as papilas ruminais tendem a se desenvolver melhor, isto devido a atuação da fibra do capim, já o alimento concentrado auxilia desenvolvimento das papilas de modo irregular e além disso um aumento na camada queratinizada. Em complemento Barbosa (2018), destaca que o desenvolvimento das papilas, detém influência direta com o ácido butírico e propiônico, em contrapartida com o ácido acético que apresenta baixa influência, em que quanto maior a utilização de alimentação de origem volumosa, maior será como resultado o teor de acetato, enquanto que quanto maior a utilização de alimentação concentrada, maior também será a presença de propionato.

Nas dietas de alto grão, os produtos da fermentação modificam os valores estequiométricos, em que 1 hexose +1,34 acetato + 0,45 propionato + 0,11 butirato + 0,61 mol de metano para dietas à base de volumoso e para alto grão, 1 Hexose = 0,90 de acetato + 0,70 proprionato + 0,20 butirato + 0,38 mol de metano. Em comparação a dietas à base de forragem as de alto concentrado aumentam a taxa de fermentação, e, por conseguinte a produção de lactato ruminal (KOZLOSKI, 2019). Porém, as dietas com alto nível concentrado apresentam maior acidez do líquido ruminal com isso, promovem alterações na população microbiana do rúmen e, consequentemente, pode causar danos no epitélio ruminal e aumentar sua permeabilidade da membrana (EMMANUEL *et al.*, 2007).

Oliveira *et al.* (2015), trabalhando com processamento do milho grão, em diferentes formas, considerou a influência no desempenho e saúde ruminal de cordeiros, com 75% de milho em sua dieta, comparando o efeito do milho em dietas com diferentes proporções de concentrado, sobre o ganho de peso, incidência de ruminites, morfometria de paipilas, pH e conteúdo ruminal, presença de abscessos hepáticos e quantificas protozoários. Por fim de sua pesquisa constatou que não houver diferença significativa (P > 0.05), entre o peso vivo final, ganho médio diário, consumo de matéria seca, conversão alimentar, número de papilas, e área papilar em cm², entre os diferentes tipos de processamento do milho, grão inteiro ou moído.

Fabiano Neto *et al.* (2022), ao avaliar dietas de alto grão com diferentes processamentos de tamanho de partícula em associação a diferentes fungos com cordeiros em confinamento, concluiu que em relação aos processamentos, houve diferença significativa para largura de base de papilas e espessura da túnica muscular do epitélio ruminal, havendo diferença significativa, onde o tratamento de grão inteiro foi maior.

3.5 Morfologia Intestinal

O intestino delgado é um tubo que se divide em três partes: duodeno, jejuno e íleo. Nesse órgão, existe um conjunto de células que são responsáveis por três funções: a função de digestão, absorção e defesa, contudo essas porções são compostas por quatro camadas histológicas: epitélio, submucosa, muscular e a serosa e essas células estão aderidas ao epitélio e a camada da submucosa (BOLELI, MAIORKA e MACARI, 2002).

Dentre essas camadas o intestino delgado se diferencia na sua estrutura morfológica em cada compartimento, onde possuem vilosidades que aumentam a superfície de contato com a digesta. No duodeno, as vilosidades apresentam-se em maior massa volumar, mas em tamanho menor com o epitélio colunar simples, aos quais na sua parte apical possuem microvilosidades que aumentam mais a superfície de contato. Em seu epitélio possuem poucas células caliciformes que são responsáveis por produzir muco com a função de proteger o epitélio das agressões que o alimento pode ocasionar e possuem mais enterócitos que são responsáveis pela absorção. No decorrer do tubo essas características vão sendo modificada. Logo em seguida vem o jejuno, nessa parte as vilosidades se tornam mais longas que o duodeno, existe células caliciformes e enterócitos, mas em quantidades diferentes. No jejuno aumenta-se a quantidade de células caliciformes em relação à porção anterior, da mesma forma para os enterócitos onde sua quantidade faz o inverso da porção anterior, diminui. A última porção é o íleo, onde suas vilosidades são menores quando relacionado ao jejuno, e a

proporção de células caliciformes são maiores à medida que se aproxima do intestino grosso (SAMUELSON, 2007).

3.7 Distúrbios Metabólicos

O uso de dietas sem forragem traz, juntamente com suas vantagens, vários riscos e desafios. Justamente por não ter forragem em sua composição, caracteriza-se como uma dieta de alto risco, que torna os animais susceptíveis a desordens metabólicas, especialmente quando o manejo nutricional é mal feito. Esse tipo de dieta requer um período de adaptação muito bem realizado e um acompanhamento bastante rígido das operações de mistura e distribuição da dieta, respeitando-se a quantidade a ser fornecida, os horários de fornecimento, e um constante monitoramento dos animais no que se refere ao consumo, comportamento e escore de fezes, permitindo detectar, de forma precoce e rápida, qualquer tipo de eventualidade que possa comprometer a eficácia dessa tecnologia nutricional (PAULINO *et al.*, 2013).

A melhor maneira de evitar a ocorrência é o acompanhamento diários dos animais e proceder devidamente ao protocolo de adaptação à dieta com grão inteiro, como indicação, caso algum sintoma de transtorno metabólico seja identificado, o fornecimento de concentrado deve ser interrompido imediatamente, seguindo de oferecimento de feno e água limpa à vontade ao animal acometido (EMBRAPA, 2019).

É fundamental conhecer alguns destes distúrbios e as complicações digestivas culminadas pela quantidade reduzida de volumoso presente na dieta. Segundo Owens *et al.* (1998) as mesmas proporcionam as dietas que compostas por maior quantidade de volumoso ocasionam uma maior mastigação (necessária para trabalho de desintegrar a fibra presente nos alimentos), e consequente maior secreção de saliva, o que gera maior liberação de componentes tamponantes, o que em falta podem ocasionar determinados problemas como: acidose ruminal, a laminite e o timpanismo.

A acidose ruminal ou acidose lática é um distúrbio metabólico que ocorre pelo acúmulo de ácido lático no rúmen, um precursor do ácido propiônico, ocasionado principalmente pela ingestão de uma grande quantidade de grãos ou outra fonte de carboidratos não fibrosos que apresentam rápida fermentação (BEVANS *et al.*, 2005). Caracteriza-se pela queda do pH ruminal (entre 4,0 a 5,0) levando a morte de parte da flora microbiana, podendo ocasionar úlceras na parede do rúmen. Sendo os principais sinais clínicos, a falta de apetite, depressão, pouca ruminação e laminite (TEIXEIRA, 2015).

A laminite é caracterizada pela inflamação de cascos dos ovinos que pode ser identificada quando os animais começam a claudicar e apresentar deformidades nos cascos. A associação desta com a acidose ruminal ocorre devido à elevada concentração de ácido láctico dentro do rúmen que ocasiona a lise (morte) de bactérias e, dessa forma, há intensa liberação de toxinas no sangue (SANTOS, 2006; SANTOS, 2021).

O timpanismo é um distúrbio metabólico caracterizado pela alta produção de gases no rúmen. O animal fica incapacitado de liberar os gases pelos mecanismos fisiológicos normais. Esse acúmulo pode reduzir a ação fermentativa microbiana, o fluxo de alimentos pelo sistema digestivo e a consequente morte do animal (SANTANA NETO *et al.*, 2014). Sendo dividido em primário e secundário, o primário ocorre uma rápida distensão do rúmen, geralmente 15 minutos depois de o animal ter ingerido o alimento, seja ele em dietas ricas em concentrados ou pastagens (BLOOD *et al.*, 1997). O timpanismo secundário ocorre quando o animal tem dificuldades de eructar (TEIXEIRA, 2015).

Dentre as enfermidades que podem ter origem nutricional ou metabólica, a urolitíase obstrutiva é uma doença multifatorial, o que torna difícil elucidar a definição da causa principal do seu surgimento. Alguns autores, desde a década de 30 (EVELETH; MILLEN, 1929; CORNELIUS; MOULTON. MCGOWAN, 1959; MCINTOSH, 1978), afirmam que a nutrição desempenha um papel fundamental, na ocorrência da urolitíase, uma vez que, dietas altamente digestíveis, níveis reduzidos de forragem e com composição mineral desbalanceada, poderiam predispor os bovinos e os ovinos a uma alta incidência de urolitíase (BUARQUE, 2021).

4 METODOLOGIA

4.1 Local, animais e instalações experimentais

O experimento foi realizado nas instalações da Unidade de Pesquisa com Ruminantes - UPR, pertencente ao Departamento de Zootecnia/CCA/UFPB, localidade Chã de Jardim, Areia-PB, com latitude -6,963°, 6° 57′ 42`` ao sul, e de longitude -35, 692, 35° 41` 43´´ ao oeste, e altitude de 546 m. O projeto foi submetido à Comissão de Ética no Uso de Animais (CEUA) da Universidade Federal da Paraíba (UFPB). Foram utilizados 24 cordeiros ½ sangue Dorper, com idade média inicial de 70 dias, com peso corporal inicial de 15±2 kg. Os animais foram confinados em baias cobertas (1 animal/baia) com piso de concreto e gradeado com ripa de madeira protegidos da chuva e luz solar direta, todas providos de bebedouro e comedouro.

Os animais durante todo o período de experimento permaneceram em baias individuais construídas com material de alvenaria com cochos individuais, facilitando o controle e recebimento de dieta balanceada de acordo com o consumo por animal e peso dos animais O fornecimento de água, do mesmo modo individual, se fez por meio de baldes, que durante os manejos de alimentação, eram conferidos para reabastecimento. A limpeza das baias er realizada durante a manhã e à tarde, com o intuito de retirar os dejetos.

4.2 Delineamento e tratamentos experimentais

O delineamento foi em blocos casualizados- DBC, ou seja, com três tratamentos (T) de 8 repetições cada. Os tratamentos experimentais foram compostos por três tipos de processamento do milho, conforme apresentado abaixo:

- Tratamento 1- Grão Milho Inteiro (GI);
- Tratamento 2 Grão de Milho Moído Grosso (GMG), e
- Tratamento 3 Grão de Milho Moído Fino (GMF).

Todos os tratamentos em conjunto com núcleo específico. Desse modo, cada dieta obtinha uma porcentagem de 85% de milho e 15% de núcleo.

Para a dieta com milho moído grosso, foi utilizado desintegrador de grãos em peneira de malha de 6 mm e para o milho moído fino foi utilizada uma peneira de malha de 2 mm

Figura 1: Confinamento experimental da Unidade de Pesquisa em Pequenos Ruminantes-UPR- CCA/UFPB. Cocho de animal pertencente ao tratamento GI.

Fonte: Arquivo pessoal.

4.3 Adaptação, caracterização das dietas

O protocolo da adaptação foi como segue:

- 1° ao 3°: Oferta de feno *ad libitum*, com 80% de milho e 20% de núcleo especializado, equivalente a 2,0% do peso corporal (PC);
- 4° ao 6°: Oferta de feno *ad libitum* com 80% de milho e 20% de núcleo especializado, equivalente a 2,5% do peso corporal (PC);
- 7° ao 9°: Restrição total do feno, com 85% de milho e 15% de núcleo especializado, equivalente a 3,0% do peso corporal (PC);
- A partir do 10°, fornecimento da dieta total preconizada, 85% de milho + 15% do núcleo, equivalente a 3,5% do peso corporal (PC);

Os cordeiros foram alimentados com dieta composta por DAG de milho e núcleo específico. Sendo esta balanceada de acordo com as recomendações do NRC (2007), permitindo o consumo de matéria seca de 3,5% de peso vivo (PV), com base em um ganho médio diário (GMD) de 250g. O fornecimento da dieta completa se deu em dois períodos, as 07h00 e as 15h00, com fornecimento de água, *ad libutun*, permitindo assim de 5 a 10% de sobras, ajustadas com base nas sobras de ração e peso dos animais acompanhados semanalmente. As sobras de cocho, eram retiradas dos cochos individuas, com auxílio de balde e pá utilizados especificamente para tal fim, e posteriormente eram pesadas, também de

modo individual, em balança portátil digital SF-400, com capacidade de até 10 KG. Abaixo seguem os componentes nutricionais da dieta:

Tabela 2: Composição do milho (*Zea mays L.*) utilizado na região Nordeste.

Nutriente	Média	
MATÉRIA ORGÂNICA	98,01	
MATÉRIA SECA	88,29	
EXTRATO ETÉREO	4,27	
FIBRA EM DETERGENTE NEUTRO	12,61	
CARBOIDRATO NÃO FIBROSO	71,09	
LIGNINA	1,5	
FÓSFORO	0,3	

Fonte: Adaptado do CQBAL 4.0

Tabela 3. Composição e valores nutricionais do concentrado proteico mineral aditivado, peletizado – QUALICORTE OPTIMAIZE FINAL.

INGREDIENTES:	Quantidade
UMIDADE MÁX. (G/KG)	130
PROTEÍNA BRUTA MÍN. (G/KG)	320
NNP – EQ. PROTEÍNA MÍN. (G/KG)	153
EXTRATO ETÉREO MÍN. (G/KG)	20
FIBRA BRUTA MÁX. (G/KG)	140
FDA MÁX. (G/KG)	180
MATÉRIA MINERAL MÍN. (G/KG)	200
CÁLCIO MÍN. (G/KG)	10
FÓSFORO MÍN. (G/KG)	3
SÓDIO MÍN. (G/KG)	4
POTÁSSIO MÍN. (G/KG)	
MAGNÉSIO MÍN. (G/KG)	
ENXOFRE MÍN. (G/KG)	3,5
COBRE MÍN. (MG/KG)	
COBALTO MÍN. (MG/KG)	1,6
CROMO MÍN. (MG/KG)	6
IODO MÍN. (MG/KG)	3
FERRO MÍN. (MG/KG)	33
MANGANÊS MÍN. (MG/KG)	150
SELÊNIO MÍN. (MG/KG)	1,9
ZINCO MÍN. (MG/KG)	250
VITAMINA A (UL/KG)	20.000
VITAMINA D3 (UL/KG)	3.200
VITAMINA E (UL/KG)	28

MONENSINA SÓDICA (MG/KG)	
VIRGINIAMICINA (MG/KG)	150
SACCHARMYCES CEREVISAE (UFC/KG)	

Fonte: Adm Nutrição Animal®.

4.4 Abate

Os machos foram abatidos, após 60 dias, ao final do experimento, em conformidade com Estatuto 3, de 17 de janeiro de 2000 (Diário Oficial da União de 24/01/2000, Seção 1, página 14) (BRASIL, 2000). Assim os machos foram submetidos a jejum de sólidos por 16 horas, e no momento do abate foram pesados. Após a pesagem, os animais foram abatidos por atordoamento por concussão com pistola de dardo cativo (Modelo Tec 10 P, Ctrade1, Porto Alegre, RS, Brasil) seguido de sangria durante 3 minutos através da secção carotídea e jugular. Posteriormente, procedeu-se a esfola, evisceração, retirada da cabeça (secção na articulação atlantoccipital), e das extremidades dos membros (secção nas articulações do carpo e tarso-metatarsianas).

4.5 Análises histológicas

A obtenção dos fragmentos do trato gastrointestinal (TGI), rúmen e intestino delgado (duodeno) que foram utilizados para as análises histológicas, foi realizada imediatamente após o abate e esvaziamento das vísceras. Com o intuito de que se evitassem as alterações do material, no *pós-mortem*, as amostras foram imersas em formol tamponado, e fixadas por 24 horas, considerando a função de conservação do formol.

As amostras foram encaminhadas ao Laboratório de Histologia do Departamento de Ciências Veterinárias do CCA/UFPB. Para o início do processamento histológico, as amostras coletadas foram seccionadas em porções menores: fragmentos menores que 0,5 cm³ de fígado, rim e intestino delgado, e fragmentos menores que 1 cm² para rúmen. Os quais foram fixados em formol a 10 %, e acondicionados em recipientes identificados.

Em seguida, foi realizado o procedimento de desidratação, clarificação e inclusão das amostras em parafina. O procedimento de desidratação foi realizado com imersão em solução crescente de álcool etílico nas proporções de 70 %, 90 %, 100 % I e 100 % II, durante uma hora cada, depois mais uma hora na solução de álcool + xilol (50 % : 50 %). Para a clarificação, as amostras permaneceram em xilol I por uma hora e em seguida xilol II por

mais uma hora. Em seguida, as amostras ficaram em parafina I, por uma hora, e em seguida mais uma hora na parafina II até a inclusão nos blocos de parafina a 58 a 60 °C.

Os blocos de parafina, contendo o conteúdo histológico, foram cortados com o auxílio de micrótomo rotativo do tipo Minot da LEICA®, para obtenção de cortes de 5 µm (micrômetros) de espessura, e posteriormente os cortes foram incorporados à lâmina. Antes dos procedimentos necessários à coloração, as lâminas foram mantidas em estufa regulada à temperatura de 36 °C, durante 2 horas, para secagem e colagem dos tecidos.

Em seguida, para os estudos histomorfométricos de rúmen, foi realizado processo de coloração pela técnica de hematoxilina-eosina (HE), segundo (Heleno *et al.*, 2011), que consiste em imersão em diferentes concentrações de Xilol (xilol I e xilol II), posterior em álcool etílico, com diferentes teores de pureza 70 a 100 %, lavagem em água corrente, coloração com hematoxilina, novamente lavagem, coloração em eosina, posterior imersão em água corrente, e por fim, novamente, em álcool etílico de 70 a 100 % e em xilol II e xilol I.

Para intestino delgado foi realizado protocolo de coloração com Ácido Periódico-Schiff (PAS) com adição de coloração de hematoxilina, seguindo protocolo adotado pelo laboratório. Deste modo, sequencialmente foram realizados estes procedimentos: incialmente imersão em diferentes concentrações de xilol,(sequencialmente xilol I e Xilol II), em seguida álcool+xilol (50% -50%), imersão em quantidades decrescentes de álcool etílico de 100% -70%, lavagem em água corrente, adição de ácido periódico, imersão em água corrente, água sulfurosa, Reativo Shiff, água sulfurosa e imersão em hematoxilina, lavagem em água corrente e posterior imersão em quantidades crescentes de álcool etílico 70%-100% e posteriormente de xilol I e xilol II. Para fígado, foi utilizada os mesmos procedimentos apenas de coloração com PAS.

Por fim as lâminas foram confeccionas sobre lamínula com entellan, segundo Samuelson (2007). Abaixo seguem imagens em resumo dos procedimentos realizados:

Figura 2: Procedimentos sequenciais para formação das lâminas com conteúdo histológico. Laboratório de Histologia do Departamento de Ciências Veterinárias do CCA/UFPB.

Onde: a primeira imagem representa a formação dos blocos histológicos, em seguida as colorações em hemetoxilina e eosina, e por fim utilização do Reativo Schiff (PAS). Fonte: dados da pesquisa.

Para avaliação, as lâminas foram observadas em programa computacional do software cellSens Dimension® com câmera fotográfica Olympus DP73, acoplada em microscópio OLYMPUS BX53F (Tokyo, Japão) sob diferentes lentes objetivas a depender da necessidade de visualização dos componentes celulares.

Para as análises morfométricas do rúmen, foram consideradas as seguintes variáveis: alturas das papilas, da base ao ápice, largura da papila na região média, espessura da camada queratinizada, espessura do epitélio e espessura da camada muscular. Para todos os tecidos foram analisadas 12 fotomicrografias analisadas nas objetivas de 4x, 10x, 20

x e 40x. As variáveis que foram consideradas para intestino delgado foram: espessura da camada muscular, espessura da camada submucosa, conforme da metodologia de Barboza et al. (2019), e a quantificação das células caliciformes.

4.5 Análise estatística

As análises estatísticas iniciou-se com a avaliação da existência de diferenças entre os três tratamentos. Para tal fim, as variáveis histomorométricas foram submetidas ao teste de normalidade Shapiro- Wilk, e a comparação dos tratamentos foi realizada por ANOVA, seguido do teste de Tukey, quando os dados apresentaram normalidade ou ainda o teste de Kruskal Wallis, seguido do teste de Dunn quando não apresentavam normalidade, a 5% de significância, utilizado o programa estatístico biestat 5.0, segundo metodologia proposta por Ayres et al. (2007).

5 RESULTADOS E DISCUSSÃO

O tipo de processamento do milho não afetou a espessura de epitélio e espessura da camada muscular da mucosa ruminal (P > 0.05) (Tabela 4), que apresentaram valores médios de 127,5 µm e 732,70µm, respectivamente. Estes resultados estão em acordo com os resultados obtidos por Molinari (2017), ao realizar estudo de morfometria de cordeiros alimentados exclusivamente à pasto ou com alimentação concentrada. O epitélio ruminal é responsável pelo revestimento do rúmen, classificado como estratificado pavimentoso e queratinizado, com espessura variável, e com camada muscular que está intrinsecamente relacionado com a intensidade do trabalho físico na digestão (Castro, 2013).

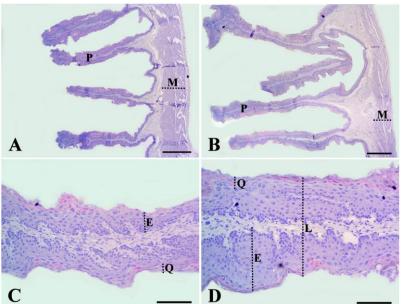
Tabela 4. Valores de média/mediana seguido do desvio-padrão/intervalo interquartílico das variáveis morfométricas do rúmen dos animais submetidos a confinamento com diferentes tipos de processamento do grão de milho, com adição de 15% de núcleo especializado.

Variáveis	GMI	GMG	GMF
EE (μm)	$125.70\pm30,11$	$127,5\pm25,89$	136,86±39,88
LP (µm)	285.60±56,42bc	285,04±64,57c	350,84± 119, 74 a
AP (µm)	$2271,5 \pm 668,06ab$	2024,60±498,92b	2596,50±643,63 a
Área de Papila (μm)	654877.69± 252610.51bc	563930.027± 275615,70c	893018,5414±467330,28a
PQ (µm)	39,81±39,46 ^a	25,29±14,15b	36,89±10,05 ^a
ECM (µm)	649,40±316,35	732,70±232,68	706,00±683,59

Onde: EE = Espessura do epitélio; LP= Largura do epitélio; AP= Altura de Papilas; PQ= Porção queratinizada; ECM= Espessura da camada muscular; µm= micrômetros. Variáveis que na mesma linha apresentam diferentes letras obtiveram diferenças a 5% no Teste de Tukey ou Dunn. Fonte: dados da pesquisa.

A parede ruminal é composta de partes que possuem crescimentos distintos, sendo que o aumento das papilas pode ocorrer em função do tratamento e da porção do rúmen (Cavalcanti *et al.*, 2014). Segundo Bittar *et al.* (2009), o desenvolvimento das papilas é resultado da ação de produtos da fermentação ruminal, aliado ao estímulo físico ocasionado pela dieta consumida. Diferentes autores , e relatam que o processamento de grãos cereais proporciona um aumento no suprimento de carboidratos não fibrosos advindos da dieta, aumentando a produção de AGCC, como o butirato e propionato, que atuam diretamente sobre o tamanho papilar (Owens *et al.*, 1998; Resende Júnior e Cruz, 2006; Oliveira *et al.*, 2015).

A mucosa ruminal dos animais do tratamento GMF, apresentou maior área de papila (893018,54 μ m) (P < 0,005) em comparação aos demais tratamentos, que foram semelhantes


entre si. Do mesmo modo observa-se resultado semelhante quando analisado a altura das papilas, que também apresenta o tratamento de grão de milho moído fino registrando a maior média, sem diferença significativa em relação ao GMI.

Em seu trabalho Costa *et al.* (2003), observaram que papilas ruminais mais alongadas foram encontradas nos animais que receberam dietas com menor granulometria dos sólidos. Ainda sobre altura de papilas e área, Cavalcanti (2014) afirma que também está relacionado com quantidade energética consumida através do alimento, assim, como o terceiro obteve maior número e diferenças entre os dois tratamentos, possuindo a menor granulometria, entende-se que possivelmente obteve maior nível energético, uma vez que devido as menores partículas pode acarretar maior absorção e consequente produção de energia. Ainda assim verificou-se que para esta variável não houve diferença significativa entre milho grão inteiro e milho grão moído fino, o que foi observado em trabalho de Oliveira et al. (2015), ao avaliar diferentes processamentos do milho grão em cordeiros confinados.

Outra variável que está intimamente ligada com as duas primeiras é a largura de papilas (LP). Para esta, os tratamentos referentes a milho grão inteiro e milho moído grosso (2mm) não diferiram significativamente, porém estes diferem do tratamento de GMF (350,84 µm). Resultado semelhante foi encontrado por Fabino et al. (2022), analisando diferentes processamentos do milho associados a protozoários, em que o tratamento com menor granulometria apresentava uma maior largura de papilas.

Em relação a porção queratinizada observou-se que não houve diferença significativa entre o tratamento de GMI e GMF (P < 0.05), algo que já se esperava seria uma porção queratinizada considerável, pois como vista na literatura, e afirmado por Costa (2003), quando a base de alimentação e realizada com concentrado, há uma maior exigência da porção queratinizada mantendo uma camada mais permeável dos metabólitos ruminais, uma vez que é necessária maior capacidade absortiva. Além de que, as partículas moídas com alta taxa de fermentação, normalmente resultam em queratinização e deformação das papilas, além de sedimentação de alimento entre as papilas, o que resulta em maior capacidade de absorção dos produtos ruminais (Greewood $et\ al.$, 1997; Molinari, 2017) O mesmo foi observado por Fabino Neto $et\ al.$ (2022), em que a porção queratinizada tanto para milho grão inteiro quanto para milho grão moído foi considerável.

Figura 3: Fotomicrografia ruminal. A esquerda o tratamento GMM, e a direita o tratamento GMF.

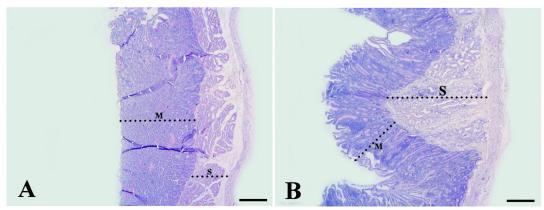
Onde: Em A e B: P- Papilas e M- muscular; C e D, E- espessura de epitélio, Q- camada queratinizada; D- L- Largura de papila. Em A e B barras= 600 micrômetros; em C e D barras=100 Micrômetros Fonte: dados da pesquisa.

Analisando o duodeno dos animais, pode-se concluir que não houveram diferenças significativas espessura de mucosa, apenas nas variáveis de espessura de submucosa e células caliciformes (Tabela 5).

Tabela 5. Valores média/mediana seguido do desvio-padrão/intervalo interquartílico das variáveis morfométricas do intestino delgado dos animais submetidos a confinamento com diferentes tipos de processamento do milho, com adição de 15% de núcleo especializado.

Variáveis	GMI	GMG	GMF
ES (µm)	472,05±267,20ab	528,60±201,54a	$352,00\pm188,02c$
EM (µm)	$701,88\pm280,30$	$750,84\pm202,60$	$730,05\pm321,82$
CC (n)	26,00±18,25bc	26,50±15,25b	34,50±12,00a

Onde: ES= Espessura de Submucosa; EM= Espessura de mucosa; CC= Células caliciformes; μ m=; n= número. Variáveis que na mesma linha apresentam diferentes letras obtiveram diferenças a 5% no Teste de Tukey ou Dunn.


Fonte: dados da pesquisa.

Ao analisar os dados referentes a células caliciformes nota-se o GMG, seguido do GMI obteve um maior número de células, o que positivamente é indicador da saúde intestinal destes animais, além da necessidade de proteção do epitélio, uma vez que as partículas eram maiores e além disse os alimentos concentrados possuem considerável absorção a nível intestinal. As células caliciformes, segundo Rocha (2016), são células presentes nas vilosidades e criptas, que possuem importante papel na manutenção de e desenvolvimento do epitélio intestinal, com atuação na manutenção e desenvolvimento do epitélio intestinal. São

células secretoras de muco, com função de proteger o epitélio durante a digestão, 'na passagem do alimento, além do muco ter função de proteção contra infecções, atuando como uma barreira protetora.

Analisando os resultados referentes a espessura de submucosa, o tratamento que obteve maior média foi o tratamento GMG (528,60µm), sem diferenças (p>0,05) entre o primeiro tratamento. O que afirma a hipótese levantada ao analisar os dados que a granulometria interfere na secreção de muco, bem como a formação da camada submucosa.

Figura 4: Fotomicrografia do duodeno. A esquerda o tratamento GMF, e direita tratamento GMG.

Onde: M= Mucosa. S= Submucosa. A e B barras = 300 micrômetros

Fonte: dados da pesquisa.

6 CONCLUSÃO

Os processamentos com diferentes granulometrias do grão de milho, não apresentou alterações deletérias nos parâmetros histológicos avaliados, de modo que tanto o grão de milho inteiro ou ainda aqueles processados em menores partículas, sobretudo o processamento de GMF, obtiveram bons resultados considerando principalmente a capacidade absortiva, acarretando efeitos benéficos para a absorção dos nutrientes ao longo do trato gastrointestinal.

REFERÊNCIAS

ALVES, A. R.; VILELA M. S.; ANDRADE, M. V. M.; PINTO L. S.; LIMA, D. B.; LIMA BARBOZA S. C. R. Alterações histológicas no sistema digestório de ovinos submetidos à dieta a base de feno da parte aérea da mandioca e palma forrageira. 2018. 65p. Dissertação (Mestrado em Zootecnia) — Centro de ciências agrárias, Universidade Federal da Paraíba, Areia, 2018.

Ayres, M., Ayres Junior, M., Ayres, D.L. e Santos, A.D.A.D. (2007) **BioEstat: aplicações estatísticas nas áreas das ciências biomédicas**. Ong Mamiraua. Belém, PA.

BARBOZA, S. C. R.; OLIVEIRA, J. S.; SOUZA, M. T. C.; LIMA JÚNIOR, D. M.; LIMA, H. B.; GUERRA, R. R. Ovines submitted to diets containing cassava foliage hay and spineless cactus forage: histological changes in the digestive and renal systems. Tropical Animal Health and Production, n. 51, p.1689-1697, 2019.

BEVANS, D. W.; BEAUCHEMIN, K. A.; SCHWARTZKOPF-GENSWEIN, K. S.; MCKINNON, J. J.; MCALLISTER, T. A. **Effect of rapid or gradual grain adaptation on subacute acidosis and feed intake by feedlot cattle**. Journal of Animal Science, v.83, n.5, p. 1116-1132, 2005.

BITTAR, C. M. M.; FERREIRA, L. S.; SANTOS, F. A. P.; ZOPOLLATTO, M.. Desempenho e desenvolvimento do trato digestório superior de bezerros leiteiros alimentados com concentrado de diferentes formas físicas. Revista Brasileira de Zootecnia, v.38, n.8, p. 1561-1567, 2009.

BOLELI, I. C.; MAIORKA, A.; MACARI, M. Estrutura funcional do trato digestório. In:MACARI, M.; FURLAN, R. L.; GONZALES, E. (Ed.). Fisiologia Aviária Aplicada a Frangos de Corte. 2ª.edição Jaboticabal- São Paulo: FUNEP/UNESP, p. 75-95, 2002.

BRASIL. MINISTÉRIO DA AGRICULTURA, PECUÁRIA E ABASTECIMENTO. Instrução Normativa n. 3, de 17 de janeiro de 2000. **Regulamento técnico de métodos de insensibilização para o abate humanitário de animais de açougue**, 2000.

BUARQUE, V. L. M. Uso de aditivos para prevenção de urolitíase em cordeiros alimentados com dietas com elevada proporção de concentrado. 2021. 100p. Tese (Doutorado em Zootecnia)- Universidade de São Paulo, Faculdade de Zootecnia e Engenharia de Alimentos, Pirassunga, 2021.

CARVALHO, S.; BROCHIER, M. A.; PIVATO, J.; TEIXEIRA, R. C.; KIELINGI, R. Ganho de peso, características da carcaça e componentes não-carcaça de cordeiros da raça Texel terminados em diferentes sistemas alimentares. Ciência Rural, v. 37, n. 3, p. 821-827, 2007.

- CASTRO, T. R. de. **Farelo de girassol com diferentes dietas com extrato etéreo para cordeiros em terminação**. 2013. 88p. Dissertação (Mestado em Zootecnia)- UFLA-Universidade Federal de Lavras, Lavras- MG, 2013.
- CAVALCANTI, L. F. L *et al.* **Morfologia dos pré-estômago e de papilas ruminais de cordeiras Santa Inês em crescimento submetidas a dois planos nutricionais**. Pesquisa Veterinária Brasileira, v.34, n. 4. P. 374-380, 2014.
- CHESSA, *et al.* **REVEALING THE HISTORY OF SHEEP DOMESTICATION USING RETROVIRUS INTEGRATIONS.** Revista Science, p.532-536. DOI: https://doi.org/10.1126/science.117087. 2009.
- COSTA, R. G.; RAMOS. J. L. F.; MEDEIROS, A. N. de.; BRITO, L. H. R. de. Características morfológicas e volumétricas do estômago de carpinos submetidos a diferentes períodos de aleitamento. Brazilian Journal of Veterinary Research an animal Science. v.40, p. 118-125. 2003.
- COSTA, S. de F. Alterações morfológicas induzidas por butirato, proprionato e lactato, obre a mucosa ruminal e epiderme de bezerros. Tese de Doutorado. UFLA- Universidade Federal de Lavras, Lavras- MG, 2009.
- COSTA, V. R. da. Resíduo de pré-limpeza de soja como alimento volumoso na terminação de cordeiros em confinamento. Universidade Federal de Santa Maria, 2020.
- DANTAS JUNIOR, P. R. **Níveis de inclusão de farelo da mamona detoxificado na ensilagem de cana de açúcar na dieta de ovinos: desempenho e parâmetros histológicos.** 2020. 40p. Dissertação (Mestrado em Zootecnia)- Centro de Ciências Agrárias, Universidade Federal da Paraíba, Areia. 2020.
- Dukes, H. H. Henry H.; SWENSON, M. J. 1917-; REECE, W. O. Dukes fisiologia dos animais domésticos. [s.l.] Guanabara Koogan, 2017.
- EMBRAPA. PESQUISA DA PECUÁRIA MUNICIPAL 2018: **ANÁLISE DOS REBANHOS CAPRINOS E OVINOS**. Embrapa Caprinos e Ovinos. Sobral: CE, p.17, 2019.
- EMMANUEL, D. G. V.; MADSEN, K. L.; CHURCHILL, T. A.; DUNN, S. M., AMETAJ, B. N. Acidosis and lipopolysaccharide from Escherichia coli B: 055 cause hyperpermeability of rumen and colon tissues. Journal of Dairy Science, v. 90, n. 12, p. 5552-5557, 2007.
- FABINO NETO, R.; PESSOA, F. O. A.; SILVA, T. D.; MIYAGI, E. S.; SANTANA NETO, V. V.; GODOY, M. M. de .; LIMA, D. K. S.; SILVA, J. R. de M.; BRAINER, M. M. de A 2022. **The effect of fungal probiotics added to a high-grain diet on the gastrointestinal tract of sheep.** Ciência Animal Brasileira, v. 23. DOI: https://doi.org/10.1590/1809-6891v22e-70605P

- INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA- IBGE 2023, Disponível em: https://www.ibge.gov.br/explica/producao-agropecuaria/ovino/br. Acessado em 5.nov.2023 às 13:33.
- KHANG, D. N.; WIKTORSSON, H. Effects of ensiled cassava tops on rumen environment parameters, thyroid gland hormones and liver enzymes of cows fed ureatreated fresh rice straw. Asian-Australasian Jo. of Anim. Scien., v.17, p.936-941, 2004.
- KIM, M.; MORRISON, M.; YU, Z. Status of the phylogenetic diversity census of ruminal microbiomes. FEMS Microbiol. Ecol. V.76, p.49–63, 2015.
- König, H. R., **Anatomia dos animais domésticos: texto e atlas colorido**/ Horst Erich König e Hans-Georg Liebich; trad. Althen Teixeira Filho. Porto Alegre: Artmed, 2004.
- KOZLOSKI, G. V. **Bioquímica dos ruminantes.** Terceira edição, 2ª reimpressão. Santa Maria, Editora da UFSM, 2019. 216p.
- LEITE, M. DE. S.; BATISTA. N. V.; LIMA, A. F. DE.; SILVA, L. A. DA.; OLIVEIRA, J. T. M. C. B. DE.; FIRMINO, S. S.; SILVA, M. R. L.; LIMA. P. DE O. **Desempenho e comportamento ingestivo de cordeiros alimentados com dieta alto grão.** Research, Society and Development, v. 9, n. 10, 2020.
- MELO, P. P. de S. **CARACTERÍSTICAS QUALITATIVAS DA CARNE DE BOVINOS ZEBUÍNOS CONFINADOS.** Trabalho de Conclusão de curso. 2014. 30p. Universidade Federal de Brasília- Faculdade de Agronomia e Medicina Veterinária, Brasília DF, 2014.
- MENDES, J. A. C. **Efeito da dieta com e sem volumoso para ovinos em terminação**. 2017. 43p. Dissertação (mestrado), UFM- Universidade do Maranhão, Programa de Pós graduação em Ciência Animal- Chapadinha- MA., 2017.
- MOLINARI, M. Morfometria em rúmen de cordeiros alimentados exclusivamente a pasto ou com concentrado. 2017. 49 f. Dissertação (Mestrado em Zootecnia) Universidade Federal de Santa Maria, Santa Maria, 2017.
- NASCIMENTO, L. M. G. **PROCESSAMENTO DO MILHO EM DIETAS DE ALTO GRÃO PARA OVINO.** 2020. 38p. Dissertação (Mestrado em Zootecnia)-Universidade Estadual do Sudoeste da Bahia- Itapetinga- BA, 2020.
- National Research Council (NRC), Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids, 1st edn. National Academy Press, Washington, DC (2007).
- OLIVEIRA, L. S.; MAZON, M. R.; CARVALHO, R. F.; PESCE, D. M. C.; SILVA, S. da. L. NOGUEIRA FILHO, J. C. M.; GALLO, S. B.; LEME, P. R. **Processamento do milho grão sobre desempenho e saúde ruminal de cordeiro.** Ciência Rural. Santa Maria, RS. 2015, v.45, n.7, p.1292-1298, jul, 2015.

- OWENS, F. N. Corn grain processing and digestion. Johnston, IA: Pioneer Hi-Bred International, 2005. 21p.
- OWENS, F. N.; ZINN, R. A.; KIM, Y. K. Limits to starch digestion in the ruminant small intestine. Journal of Animal Science, v. 63, p. 1634-1648, 1986.
- PANIAGO. R. **Dietas de alto grão x alto volumoso.** 2009. Disponível em: http://www.boviplan.com.br/pagina.asp?idS=2&idS2=12&idT=90. Acesso em: 15 de Setembro, 2023.
- PAULINO, P. V. R.; OLIVEIRA, T. S.; GIONBELI, M. P.; GALLO, S. B.; *et al.* **Dietas Sem Forragem para Terminação de Animais Ruminantes**. Revista Cientifica de Produção Animal, v.15, n.2, p.161-172, dezembro. 2013.
- PEREIRA, W. J. Manejo de uma fábrica de ração para diversos fins da agropecuária. Monografia, Goiânia- GO UCG, p23. 2002.
- ROCHA, P. M. C.; BARROS, M. M. E. G.; NETO, E. E. ANÁLSIE MORFOMÉTRICA DA PAREDE INTESTINAL E DINÂMICA DE MUCINAS SECRETAS NO JEJUNO DE FRANGOS SUPLEMENTADOS COM PROBIÓTICO *BACILLUS SUBTILIS* cepa C3102. Pesq. Vet. Bras. V.36(4) p. 312-316, abril 2016. DOI: https://doi.org/10.1590/S0100-736X2016000400010.
- ROGÉRIO, M. C. P.; GUEDES, L. F.; COSTA, C. S.; POMPEU, R. C. F. F.; GUEDES, F. L.; MORAIS, O. R. **Dietas de alto concentrado para ovinos de corte:** Potencialidades e limitações. Comunicado Técnico, 1ª Edição, p.22, Sobral- Ceará, 2018.
- SAMUELSON, D. A. **Tratado de histologia veterinária** / Don A. Samuelson ; [tradução de Newton da Cruz Rocha... *et al.*]. Rio de Janeiro : Elsevier, 2007.
- SANTOS, J. E. P. **Distúrbios metabólicos.** *In:* BERCHIELLE, T. T.; PIRES, A. V.; OLIVEIRA, S. G. de (Ed.). **Nutrição de ruminantes**. Jaboticabal: Funep, 2006.
- SANTOS, M. A. C. Parâmetros e sanguíneos histopatológicos de ovinos confinados alimentados com silagem de canda-de-açúcar aditivada com farelo de mamona destoxificado. UFPB, 2022, 37p, Trabalho de conclusão de curso- Universidade Federal da Paraíba, Areia, 2022.
- SANTOS; C. da. S. **UTILIZAÇÃO DE DIETAS COM GRÃO INTEIRO NA TERMINAÇÃO DE CORDEIROS.** UFS, 2021, 18p, Trabalho de Conclusão de Curso, Universidade Federal de Sergipe- Campus do Sertão, Nossa Senhora da Glória, 2021.
- SILVA JUNIOR, M. P. da. **Prolificidade e peso ao nascimento de caprinos e ovinos no sertão de Pernambuco.** 2019. 32 f. Trabalho de Conclusão de Curso (Bacharelado em

- Zootecnia) Unidade Acadêmica de Garanhuns, Universidade Federal Rural de Pernambuco, Garanhuns, 2019.
- SILVA, B. C.; VIEIRA, R. I. M. **Avaliação in vitro de fungos ruminais como probiótico para Ovinos em dieta de alto grão**. Braz. J. of Develop., Curitiba, v. 6, n. 7, p. 53642-53656 jul. 2020.
- SOUSA, J. T. L. **Utilização de enzimas exógenas na nutrição de Ovinos**. 2019. 157p. Dissertação (Tese Doutorado). Universidade Federal do Tocantins escola de Medicina Veterinária e Zootecnia. Araguaína TO, 2019.
- TEIXEIRA, R. B. **Dieta de alto grão com milho em confinamento de bovinos**. 2015. 25 p. Trabalho de Conclusão de Curso (TCC) Universidade Federal De São João Del Rei. Sete Lagoas: MG, 2015.
- TORQUATO, C; CABRAL, W.B; VIEIRA JÚNIOR, L. C. **Dietas com baixa e alta participação de concentrado sobre o desempenho de bovinos em confinamento**. Revista Eletrônica Nutrine, v. 9, n. 05, p. 2050-2074, 2012.
- VIDAL, M. F.; SILVA, R. G.; MIRANDA NEIVA, J. N.; CÂNDIDO, M. J. D.; SILVA, D. S.; PEIXOTO, M. J. A. **Análise econômica da produção de ovinos em lotação rotativa em pastagem de capim tanzânia (Panicum maximum**. Revista de Economia e Sociologia Rural, v. 44, n. 4, p. 801-818, 2015.
- ZHAO, Y. X.; YANG, J.; LV, F. H.; HU, X.J.; XIE, X. L.; ZHANG, M.; LI, W. R.; LIU, M. J.; WANG, Y. T.; LI, J.Q.; LIU, Y. G.; REN, Y. L.; WANG, F.; HEHUA, E.; KANTANEN, J.; LENSTRA, J. A.; HAN, J. L.; LI, M. H. Genomic reconstruction of the history of native sheep reveals the peopling patterns of nomads and the expansion of early Pastoralism in East Asia. Mol. Biol. Evol. 34, p. 2380–2395, 2017.