Computação Plugada Web: Um Sistema Web para Divulgação e Acompanhamento de Atividades relacionadas ao Pensamento Computacional

Wyllian de Asevedo Mendes¹

Departamento de Ciências Exatas (DCX) Universidade Federal da Paraíba (UFPB) - Campus IV Cep 58297-000 - Rio Tinto - PB - Brasil

wyllian.mendes@dcx.ufpb.br

Abstract. This article has a technological nature and describes an opportunity to promote the learning of computing concepts through the development of a Web system. The main idea of the system is to eliminate the need to install applications previously developed to promote computational thinking, allowing their activities to be accessed by any type of device with internet access and a browser. The objective of this work is to present the system developed to spread activities related to Computational Thinking, expand the scope of Unplugged Computing activities and facilitate the application of these activities. The methodology used started with a first stage of study and analysis of the applications of the Computação Plugada project. Then, the development of the Web system was planned and carried out. The current version of the system provides the contents of the Computação Plugada Binários application, with some modifications and improvements in its functionalities, and provides activities based on the activity Counting the Dots -Binary Numbers, from the book Unplugged Computing by Bell et al (2011). We believe the system will be able to facilitate the dissemination of activities inspired by unplugged computing to promote computational thinking.

Keywords: Plugged Computing; Computational Thinking; Binaries; Web System.

Resumo. O presente artigo é de caráter tecnológico e descreve uma oportunidade para a promoção do aprendizado de conceitos da computação, por meio do desenvolvimento de um sistema Web. A ideia principal do sistema é a de eliminar a necessidade de instalações de aplicativos previamente desenvolvidos para promover o pensamento computacional, permitindo que suas atividades possam ser acessadas por qualquer tipo de dispositivo com acesso à internet e um navegador. O objetivo do trabalho é apresentar o sistema desenvolvido com o intuito de difundir atividades relacionadas ao pensamento computacional, expandir o alcance das atividades de Computação Desplugada e facilitar a aplicação dessas atividades. A metodologia utilizada iniciou-se com uma primeira etapa de estudo e análise dos aplicativos do

¹ Trabalho de conclusão de curso, sob orientação da professora Ayla Débora Dantas de Souza Rebouças submetido ao Curso de Licenciatura em Ciência da Computação do Centro de Ciências Aplicadas e Educação (CCAE) da Universidade Federal da Paraíba, como parte dos requisitos necessários para obtenção do grau de LICENCIADO EM CIÊNCIA DA COMPUTAÇÃO.

projeto Computação Plugada. Em seguida, passou-se pela etapa de planejamento do desenvolvimento e, por fim, pelo desenvolvimento do sistema Web. A atual versão do sistema disponibiliza os conteúdos do aplicativo Computação Plugada Binários, com algumas modificações e melhorias em suas funcionalidades, e disponibiliza atividades baseadas na atividade Contando os Pontos - Números Binários, do livro Computação Desplugada de Bell et al (2011). Acredita-se que o sistema tem potencial para facilitar a divulgação de atividades inspiradas na computação desplugada e assim promover o desenvolvimento do pensamento computacional.

Palavras-chave: Computação Plugada; Pensamento Computacional; Binários; Sistema Web.

1. Introdução

Segundo Yadav et al. (2017), nos últimos anos o entusiasmo para o ensino da Computação cresceu em vários países, incluindo a Austrália, Estados Unidos e Reino Unido. Os autores também mencionam que em 2012, a *Royal Society* declarou que toda criança deveria ter a oportunidade de aprender conceitos e princípios da computação, englobando a ciência da computação e tecnologias da informação a partir dos anos iniciais do ensino fundamental. No Brasil, em particular, a ciência da computação também vem se tornando cada vez mais presente na educação e foram recentemente aprovadas normas para seu ensino na educação básica².

Antes disso, o termo pensamento computacional também vinha se tornando mais frequente em discussões, aparecendo inclusive na BNCC³, mas bastante relacionado à área de matemática. O Pensamento Computacional (PC), de acordo com Wing (2006) envolve resolver problemas, projetar sistemas e entender o comportamento humano utilizando nesse processo conceitos fundamentais da ciência da computação. O termo foi apresentado em uma publicação de artigo na revista Communications of the ACM⁴ em 2006 para disseminar a ideia de que a computação deveria fazer parte do processo básico de formação de todos os indivíduos e não apenas da formação de cientistas da computação. Desde então, surgiram novas definições para o PC. Neste trabalho estamos adotando a definição de Wing (2014), segundo a qual "Pensamento Computacional é o processo de pensamento envolvido na formulação de um problema e na expressão de sua solução de forma que um computador – humano ou máquina – possa efetivamente solucioná-lo" (tradução nossa).

Uma das formas de desenvolver o PC é por meio de atividades da computação desplugada, uma técnica que visa ensinar os fundamentos da computação de forma lúdica, sem o uso de computadores, sem distrações e detalhes técnicos em demasia [Vieira, Passos e Barreto, 2013]. Segundo Santos et al. (2016):

"A computação desplugada permite levar o conhecimento sobre Ciência da Computação a lugares em que os computadores e suas tecnologias ainda não são uma realidade. Essas técnicas estimulam o raciocínio e o Pensamento

_

https://www.sbc.org.br/noticias/10-slideshow-noticias/2380-cne-aprova-normas-sobre-computacao-na-educacao-basica

³ http://basenacionalcomum.mec.gov.br/images/BNCC EI EF 110518 versaofinal site.pdf

⁴ Communications of the ACM é a revista mensal carro-chefe da Association for Computing Machinery.

Computacional, que tendem a modificar a forma dos indivíduos resolverem problemas".

Bell, Witten e Fellows (2011) trazem em seu livro, Computação Desplugada (do inglês - *Computer Science Unplugged*), atividades envolvendo conceitos fundamentais da Ciência da Computação. Essas atividades são descritas de maneira lúdica e bem intuitiva, facilitando a sua aplicação em qualquer lugar e por qualquer pessoa, mesmo que não seja da área de computação.

Uma das atividades presentes no livro é chamada "Contando os Pontos - Números Binários", que consiste em abordar como os dados são representados em um sistema computacional por meio de números binários e como é feita a conversão desses números para a base decimal. Essa atividade abrange também a área do conhecimento da matemática e é sugerida para pessoas a partir dos sete anos de idade.

Tendo como base esta atividade, no trabalho de conclusão de curso de Matheus Oliveira (2019), foi construído o aplicativo "Computação Plugada Binários". A partir deste trabalho surgiu o projeto Computação Plugada⁵ com o objetivo de desenvolver aplicativos para dispositivos móveis Android com base em atividades da computação desplugada para buscar assim desenvolver habilidades do Pensamento Computacional de forma atrativa para os estudantes. Porém, nem sempre é simples instalar o aplicativo em dispositivos para utilizá-los em atividades em sala de aula e é difícil acompanhar se todos os estudantes estão realmente realizando as atividades.

Observando estes aspectos, o trabalho apresentado no presente artigo dedica-se à implementação de um sistema Web com as atividades contidas no aplicativo Computação Plugada Binários. A ideia principal é eliminar a necessidade de instalações de aplicativos e poder acompanhar melhor a realização das atividades propostas por meio de um sistema Web, além de permitir a sua utilização em diferentes sistemas.

Sendo assim, o objetivo geral deste trabalho de conclusão de curso (TCC) é apresentar o sistema Web construído para divulgação e acompanhamento de atividades para promover o desenvolvimento de habilidades relacionadas ao pensamento computacional com foco inicial na atividade "Contando os Pontos", de Bell et al. (2011). Pretende-se assim ajudar a difundir atividades relacionadas ao pensamento computacional; expandir o alcance das atividades de Computação Desplugada; e facilitar a aplicação de atividades inspiradas na computação desplugada para promoção do pensamento computacional.

Ter a versão Web significa ter mais uma alternativa de possibilitar a aplicação das atividades de projeto Computação Plugada em escolas e em locais voltados à educação. Com o sistema desenvolvido não será mais necessária a instalação do aplicativo, o que pode apoiar pessoas que não tenham dispositivos com uma capacidade de armazenamento adequada ou disponível. Outro ponto importante a ser destacado é que espera-se que este sistema em versões futuras possa enviar dados de *feedback* do progresso dos alunos aos professores para que assim possam melhor acompanhar a realização de atividades propostas.

As demais seções deste artigo estão organizadas conforme descrito a seguir: a Seção 2 apresenta a fundamentação teórica; a Seção 3 apresenta a metodologia utilizada no trabalho; a Seção 4 apresenta os resultados alcançados neste trabalho; e, por fim, a Seção 5 apresenta as conclusões e propostas de trabalhos futuros.

_

⁵ Site do projeto Computação Plugada: https://sites.google.com/view/computacaoplugada/página-inicial.

2. Fundamentação Teórica e Trabalhos Relacionados

Nesta seção serão detalhados conceitos em que o presente trabalho foi baseado e outros trabalhos que têm relação com este artigo de forma a facilitar a compreensão sobre os resultados obtidos.

2.1 Pensamento Computacional e Atividades da Computação Desplugada

Quando se fala em PC, há vários conceitos citados na literatura. Mannila et al. (2014), por exemplo, citam nove conceitos mencionados por duas grandes organizações de tecnologia na educação, a ISTE e a CSTA⁶: a coleta de dados, análise de dados, representação de dados, decomposição de problemas, abstração, algoritmos, automação, paralelização e simulação. Tais conceitos podem muito bem ser implementados em outras áreas da educação, promovendo um maior desenvolvimento das capacidades dos seres humanos.

Em seu trabalho, Tang et al. (2020) faz uma revisão sistemática do Pensamento Computacional e constrói uma tabela que classifica as definições do PC, de acordo com com trabalhos de outros autores, em duas vertentes: i) Relacionadas a conceitos de programação e computação; ii) Competências necessárias tanto em conhecimento de domínios específicos quanto de habilidades gerais de resolução de problemas.

Neste trabalho se foca no desenvolvimento do PC mesmo sem explorar programação e computadores, com base em atividades da computação desplugada, mas com o apoio de dispositivos móveis ou computadores. A atividade principal em que este trabalho se baseia é a atividade "Contando os Pontos", do livro de Bell, Witten e Fellows (2011).

Para a atividade são necessárias cinco cartas com pontos pintados, como é mostrado na Figura 1. As cartas representam os cinco primeiros números do resultado das potências de 2, dos quais: $2^0 = 1$, $2^1 = 2$, $2^2 = 4$, $2^3 = 8$ e $2^4 = 16$. As cartas devem estar mantidas na ordem decrescente e seguir a linha horizontal.

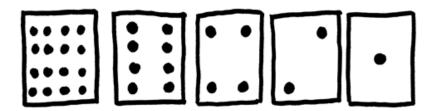


Figura 1 - Cartas representando os números para a atividade Contando os Pontos - Números Binários - Fonte: Bell et al. (2011)

A aplicação da atividade busca relacionar as cartas e seus pontos aos números binários e decimais. Exibir a face que contém os pontos simboliza o *bit* 1 e omitir esta face (carta virada) simboliza o *bit* 0. Para formar os números binários, busca-se identificar que cartas devem ser viradas ou não ao representar um certo número decimal correspondente ao somatório de pontos desejado. As cartas que não são utilizadas no processo de representar um

⁶ International Society for Technology in Education (ISTE) e Computer Science Teachers Association (CSTA).

número decimal ficam viradas para baixo sendo representadas pelo bit zero. A Figura 2 demonstra como pode ser representado no sistema binário o número decimal 9 (8+1).

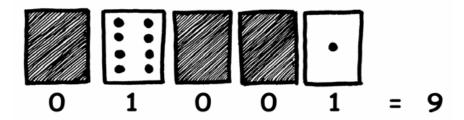


Figura 2 - Número binário 01001 formado a partir das cartas com a atividade Contando os Pontos - Números Binários - Fonte: Bell et al. (2011)

2.2 Tecnologias Utilizadas: Angular

Para desenvolver o sistema proposto neste trabalho, foi utilizado o *framework* Angular.

O Angular⁷ pode ser entendido como um *framework* de código aberto utilizado para o desenvolvimento *front-end* de aplicações para a Web. Ele é responsável pela construção da parte em que o usuário interage diretamente com a aplicação [Sahani, Singh e Jeyamani, 2020]. Ele é baseado na linguagem Typescript⁸ que é uma extensão com novos recursos da linguagem Javascript⁹. Além do Typescript, o Angular conta com um conjunto de arquivos chamados componentes, que possuem o HTML5, CSS3 e o gerenciador de pacotes NPM (*Node Package Manager*), o que o torna uma ferramenta ideal para o desenvolvimento de aplicações Web.

2.3 Trabalhos Relacionados

Um dos trabalhos mais relacionados ao presente trabalho é o artigo de Oliveira e Rebouças (2021), publicado na Revista Brasileira de Informática na Educação – RBIE, que apresenta uma primeira versão do aplicativo Android Computação Plugada Binários, baseado em exercícios da computação desplugada sobre binários e avalia a sua aceitação por professores e alunos. Seguindo uma linha semelhante ao trabalho de Oliveira e Rebouças, o presente trabalho propõe uma versão Web da versão mais recente deste aplicativo do que a utilizada no artigo como estratégia para disseminar o pensamento computacional e tem um foco mais técnico na solução produzida.

Outro trabalho relacionado a este trabalho de conclusão de curso é o de Sassi, Maciel e Pereira (2021), que apresentam um relato de experiência de ensino do conceito de números binários para alunos de uma escola através de atividades desplugadas aplicadas em sala de aula remota. Porém, o objetivo do trabalho deles é o de observar a percepção do professor quanto à contribuição dessas atividades no ensino de conceitos da matemática. Já no presente trabalho o foco maior é no sistema desenvolvido em si.

Outro trabalho analisado foi o de Tavares, Marques e Cruz (2021) que envolveu consultas em bases de pesquisas digitais com o intuito de encontrar maneiras de adequar materiais didáticos de Computação Desplugada durante a pandemia causada pelo vírus

⁸ Typescript: https://www.typescriptlang.org.

⁷ Angular: <u>https://angular.io</u>.

⁹ Javascript: https://developer.mozilla.org/pt-BR/docs/Web/JavaScript.

¹⁰ Avaliações Apps: https://sites.google.com/view/computacaoplugada/avalia%C3%A7%C3%B5es-apps

Sars-CoV-2. O resultado foi o de produzir animações computacionais e utilizar com alunos para coletar dados junto com um projeto da UNISC Inclusão Digital, que tem a finalidade de contribuir para o desenvolvimento social, na busca da humanização e do desenvolvimento das capacidades cognitivas e lógico-computacionais de crianças e adolescentes. Com este trabalho foi possível perceber que o uso de atividades digitais apoiando-se na computação desplugada é um excelente meio de introduzir conceitos de Computação na escola.

Outros trabalhos relacionados são artigos e trabalhos de conclusão de curso de participantes do projeto Computação Plugada¹¹. Oliveira (2019) em seu TCC, deu o pontapé inicial para "plugar" as atividades de Computação Desplugada como forma de desenvolver habilidades do Pensamento Computacional através de aplicativos móveis. Neto (2019), também em seu TCC, propôs uma melhoria para o aplicativo Computação Plugada, através de heurísticas de usabilidade, para incentivar crianças na faixa-etária entre 7 a 9 anos a utilizar o aplicativo. Veiga (2021), baseando-se nos trabalhos anteriores, desenvolveu um outro aplicativo para o projeto, visando ensinar conceitos básicos de algoritmos de ordenação para crianças e jovens. Medeiros (2021) apresenta a evolução do aplicativo Computação Plugada - Pixel, com foco em identificar pontos de melhoria e estratégias de avaliação do mesmo. Contudo, todos esses trabalhos possuem o foco em aplicativos móveis e alguns apresentam outras atividades do livro de Bell et al. (2011), já o trabalho apresentado neste artigo dedica-se à implementação de um sistema Web com as atividades contidas no aplicativo Computação Plugada Binários, inicialmente.

3. Metodologia

Para este trabalho, primeiramente foi feita uma análise dos aplicativos para dispositivos móveis do projeto Computação Plugada já implementados: Binários, Pixel e o Ordenação. Viu-se então a possibilidade de implementação de um sistema web contendo as atividades do aplicativo Binários e permitindo aos professores o acompanhamento do progresso dos seus estudantes.

Foi escolhido para a construção do sistema Web o framework Angular para os elementos visuais e de validações em tela. Optou-se pelo framework Angular pelo seu grande potencial em construir aplicações para a web e pela familiaridade do autor com o padrão SPA (single-page-application) bastante utilizado por quem usa esse framework.

Além disso, foi aproveitado o código fonte do aplicativo para dispositivos móveis Computação Plugada Binários, inspirado na atividade de computação desplugada "Contando os Pontos" [Bell, Witten e Fellows 2011].

O processo de desenvolvimento do sistema estará documentado neste trabalho juntamente com o seu local de implantação e com as imagens do projeto final.

4. Resultados

Para a primeira versão do Computação Plugada WEB foi escolhido o aplicativo para dispositivos móveis "Computação Plugada Binários" para ter o seu conteúdo disponível pela Web. Nesta seção são apresentados alguns detalhes de implementação e que podem apoiar pessoas que continuem evoluindo o sistema Web produzido neste trabalho.

¹¹ Site do projeto Computação Plugada: https://sites.google.com/view/computacaoplugada/página-inicial.

4.1 Telas desenvolvidas

Algumas das telas já implementadas estão apresentadas nas Figuras 3, 4, 5, 6, 9, 10, 11 e 12. Ao acessar o sistema, será exibida a tela inicial (Figura 3), onde é mostrado um botão INICIAR que direciona o usuário para a tela de seleção de fase (Figura 4).

Figura 3 - Tela inicial do sistema Computação Plugada WEB

Na Figura 4 podemos observar a tela de seleção das fases que é apresentada logo após o usuário pressionar o botão INICIAR. Como supracitado, apenas a atividade "Contando os Pontos - Números Binários" foi implementada nesta primeira versão por meio das oito fases disponíveis.

Figura 4 - Tela de seleção de fase

Ao clicar em uma das fases, o usuário é redirecionado para a tela onde serão apresentadas algumas informações visando ensinar sobre o conteúdo e também algumas atividades. A Figura 5 mostra um texto explicativo da primeira fase.

Figura 5 - Tela de informações sobre os cartões apresentados na atividade Contando os Pontos - Números Binários

Através dos botões de navegação dispostos nas extremidades direita e esquerda da página, como mostrado na Figura 5, é possível navegar entre as telas da fase. Algumas telas, como a ilustrada pela Figura 6, apresentam atividades de múltipla escolha. Em algumas das telas de atividades são também mostrados cartões com os quais o usuário pode interagir pressionando cada um e assim exibir ou não os pontos destes cartões. Em telas de atividades, ao acertar, o botão fica verde por um tempo e se passa para a próxima atividade. Ao errar, o botão fica vermelho e é mostrada uma mensagem "Tente novamente".

Figura 6 - Primeiro exercício da Fase 1

O protótipo inicial do sistema Computação Plugada WEB está disponível através do domínio do GitHub Pages¹². A seguir, nas Figuras 7 e 8, são apresentados alguns trechos de código do projeto e que estão disponíveis no repositório público do GitHub¹³. Visto que no aplicativo para dispositivos móveis alguns elementos são estáticos e com transições simples, foi pensado para o sistema Web dispor de algumas animações em algumas telas de atividades, como as telas onde são exibidos os cartões de referência dos números binários. Na Figura 7 abaixo, o código implementado é o responsável pela animação de virar os cartões ao serem clicados, movimento chamado de *flip*. Nele é possível perceber que são utilizados estados (ativo e inativo) para cada cartão, identificando se está virado para cima ou para baixo.

```
@Component ({
 selector: 'app-screen-three',
 templateUrl: './screen-three.component.html',
 styleUrls: ['./screen-three.component.css'],
 animations: [
   trigger('flipState', [
     state(
        'active',
       style({
         transform: 'rotateY(179deg)',
     state(
       'inactive',
       style({
         transform: 'rotateY(0)',
     transition('active ⇒ inactive', animate('500ms ease-out')),
      transition('inactive ⇒ active', animate('500ms ease-in')),
export class ScreenThreeComponent implements OnInit {
 flip1: string = 'inactive';
 flip2: string = 'active';
 flip4: string = 'active';
 flip8: string = 'inactive';
 flip16: string = 'active';
```

Figura 7 - Trecho de código implementado relativo ao movimento de virar cartas ao serem clicadas

Na Figura 8 é mostrado o código da função de realizar a animação de virar as cartas, chamada de *toggleFlip*. Essa função verifica qual a carta que foi clicada e altera seu estado para ativo (virada com a face para cima) ou inativa (virada com a face para baixo).

¹² https://wyllianyurk77.github.io/plugged-computing-web-front/

¹³ https://github.com/WyllianYurk77/plugged-computing-web-front

```
constructor(private router: Router)
ngOnInit(): void {
  this.answers.sort(() ⇒ Math.random() - 0.5);
toggleFlip(card:number): void {
  if(card = 1) {
   this.flip1 = (this.flip1 = 'inactive') ? 'active' : 'inactive';
 } else if(card = 2) {
  this.flip2 = (this.flip2 = 'inactive') ? 'active' : 'inactive';
} else if(card = 4) {
    this.flip4 = (this.flip4 = 'inactive') ? 'active' : 'inactive';
  } else if(card = 8) {
    this.flip8 = (this.flip8 = 'inactive') ? 'active' : 'inactive';
  } else if(card = 16) {
    this.flip16 = (this.flip16 = 'inactive') ? 'active' : 'inactive';
  this.toggleBynaries();
changeAnswers(value: string) {
  if(value 	≡ "Possuem metade do valor anterior") {
    this.answers = ["24", "20", "32", "18"];
this.question = "Quantos pontos teria o próximo cartão à esquerda?";
```

Figura 8 - Trecho de código com alguns métodos implementados

Além das telas de explicação e de atividades, há também no sistema Web algumas telas de *feedback* ao fim de cada fase, como a tela ilustrada pela Figura 9.

Figura 9 - Tela apresentada ao final da Fase 6 do sistema Web

É importante destacar também que há telas com atividades que não são de múltipla escolha, como a atividade em que o usuário tem de decodificar uma mensagem em binários e que está ilustrada pela Figura 10.

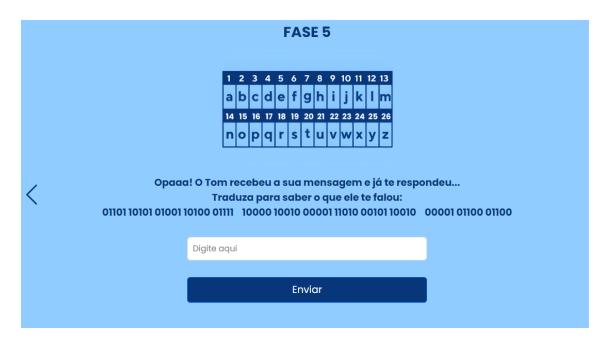


Figura 10 - Tela de atividade com decodificação de números binários

Houve também melhorias em algumas telas implementadas no aplicativo, como por exemplo na tela de atividades da fase 5, apresentada na Figura 11. Na primeira pergunta da atividade, o conteúdo digitado pelo usuário é armazenado e utilizado na tela de decodificar a mensagem (Figura 10). Dessa forma o usuário tem uma interação ainda maior com a atividade, que fica mais personalizada. Este comportamento não ocorre na versão original do aplicativo para dispositivos móveis já que a resposta era padrão, independente do conteúdo digitado.

Figura 11 - Primeira atividade da Fase 5

4.2 Implementação da Responsividade

Foi utilizado no desenvolvimento do sistema o padrão *Mobile First*, que consiste em um conceito aplicado em projetos web onde o foco inicial da arquitetura e desenvolvimento é direcionado aos dispositivos móveis. Para isso, as telas desenvolvidas foram todas adaptadas aplicando um design responsivo para que possam ser visualizadas de forma mais agradável tanto nos dispositivos móveis quanto nos computadores e dispositivos com telas de maior resolução.

Essa responsividade foi implementada nos componentes do projeto, através dos arquivos de folhas de estilo (CSS). Utiliza-se algumas anotações para definir as características dos elementos da tela para cada tipo de resolução, fazendo com que esses elementos se adaptem à visualização do dispositivo utilizado. Um exemplo está ilustrado pela tela na Figura 9, cujo código CSS para navegadores *desktop* está na Figura 13 e o CSS para interface *mobile* está na Figura 14. A adaptação é feita a partir da definição de novos valores para as propriedades dos elementos a serem modificados dentro da anotação "@media" (ver Figura 14).

Figura 12 - Versão desktop à esquerda e versão mobile à direita

```
color: var(--dark-blue);
  width: 45%;
  text-align: center;
 margin: 1rem;
  font-weight: bold;
  font-size: 1.2rem;
.bi {
 color: var(--dark-blue);
  font-size: 3rem;
  position: absolute;
  top: 50%;
.answer-table {
  margin-top: 0.8rem;
.btn {
 background-color: var(--dark-blue);
  margin-top: 0.5rem;
  font-size: 1.2rem;
  padding-inline: 10px;
  padding-block: 10px;
```

Figura 13 - Trecho de código com propriedades css para desktop

Figura 14 - Trecho de código com propriedades css para mobile

4.3 Implantação do Sistema

O sistema Computação Plugada Web foi hospedado na plataforma GitHub por meio de um de seus serviços, chamado GitHub Pages. Este serviço utiliza diretamente o projeto enviado para o repositório remoto do GitHub, executa um comando interno de configuração e publica o projeto em um website sem nenhum custo.

Para um projeto desenvolvido com o *framework* Angular, o GitHub Pages possui certas especificidades. Foi necessário alterar a pasta padrão de construção do projeto, chamada *dist*, para *docs* no arquivo angular.json. Nas configurações do repositório remoto foi preciso informar a *branch* que seria utilizada na hospedagem e também apontar para a pasta *docs* que foi alterada no projeto.

Por fim, para que a implantação ocorresse, foi utilizado o comando *ng build* --configuration production --base-href urlpadrão, que é disponibilizado pelo próprio Angular para fazer essa interação com o GitHub Pages. Após este último passo, pode-se iniciar o processo de implantação, que cria os arquivos necessários dentro da pasta *docs* para que o GitHub possa construir o website. O URL padrão para os projetos hospedados no GitHub Pages são geralmente no formato "https://seunomedeusuário.github.io/nomedorepositóriodoprojeto". Um último passo foi necessário para resolver um problema de roteamento. Foi necessário criar um arquivo HTML chamado 404.html dentro da pasta docs tendo o mesmo conteúdo do arquivo index.html. Essa medida foi a maneira encontrada por alguns desenvolvedores para solucionar um *bug* que ainda não foi oficialmente identificado e que faz com que ao clicar em voltar ou recarregar a página aconteça um erro se esse arquivo não for criado.

5. Conclusões e Trabalhos Futuros

Neste trabalho foi apresentado o sistema Web "Computação Plugada Web" que foi desenvolvido com o propósito de promover a divulgação e o acompanhamento de atividades relacionadas ao Pensamento Computacional através de atividades de Computação Desplugada presentes em aplicativos do projeto "Computação Plugada". O conteúdo inicial disponibilizado foi baseado no aplicativo Computação Plugada Binários, com a implementação de melhorias e novas funcionalidades. O processo de desenvolvimento foi apresentado no presente artigo, incluindo principais telas e detalhes técnicos que mostram como foi construído e implantado o sistema de modo a apoiar futuros desenvolvedores.

Com o que foi construído até o momento, espera-se que se possa facilitar a aplicação de atividades inspiradas na computação desplugada para promoção do pensamento computacional e estudos para avaliar este aspecto são previstos como trabalhos futuros. Por enquanto, o sistema ainda não permite ao professor fazer o acompanhamento das atividades realizadas pelos alunos, o que é um outro trabalho futuro previsto. Com relação à persistência de dados, o sistema Web ainda tem a mesma limitação dos aplicativos móveis com relação ao armazenamento do progresso obtido nas atividades, mas espera-se no futuro implementar funcionalidades como login de usuários e armazenamento de dados do progresso de cada usuário em um serviço Web.

Vale ressaltar que o sistema web traz a oportunidade de implementação de outras melhorias ainda como a internacionalização, que poderá ser implementada em trabalhos futuros através de pequenas modificações na estrutura do projeto do sistema. Outra melhoria é a adição de menus para facilitar a navegação durante o uso do sistema, algo que também poderá ser incorporado pelos aplicativos móveis. Deste modo, haverá um compartilhamento de funcionalidades entre o sistema e os aplicativos.

Por fim, a realização deste trabalho permitirá a realização de estudos com o sistema e usuários reais no futuro, visando obter uma avaliação do que foi produzido e de como o sistema pode apoiar na simplificação de aplicação de atividades com base na computação desplugada e no apoio ao desenvolvimento de competências relacionadas ao pensamento

computacional. Além disso, também surge a possibilidade de trabalhos futuros darem continuidade ao presente trabalho por meio da adição de novas funcionalidades, como a de acompanhamento dos professores, e também com a implementação de conteúdos relativos a outras atividades de Computação Desplugada. Espera-se também continuar o desenvolvimento do sistema realizando melhorias e correções contínuas no sistema atual.

Referências

- Bell, Tim; Witten, Ian Hugh; Fellows, Michael Ralph. (2011) **Ensinando Ciência da Computação sem o uso do computador**. Computer Science Unplugged ORG.
- Mannila, Linda et al. (2014) **Computational thinking in K-9 education**. In: Proceedings of the working group reports of the 2014 on innovation & technology in computer science education conference. p. 1-29.
- Oliveira, Matheus Barbosa de; Rebouças, Ayla Débora Dantas de Souza. (2021) **Avaliando um Aplicativo Android Para Apoiar a Aplicação de Exercícios de Computação Desplugada**. Revista Brasileira de Informática na Educação, v. 29, p. 798-826.
- Santos, Elisângela Ribas dos et al. (2016) **Estímulo ao Pensamento Computacional a partir** da Computação Desplugada: uma proposta para Educação Infantil. Revista Latinoamericana de Tecnología Educativa.
- Sahani, Amarpreet Kaur; Singh, Pawan; Jeyamani, VijiPriya. (2020) **Web Development Using Angular: A Case Study**. Journal of Informatics Electrical and Electronics Engineering (JIEEE), v. 1, n. 2, p. 1-7.
- Sassi, Sabrina Bourscheid; Maciel, Cristiano; Pereira, Vinícius Carvalho. (2021) Computação (Des)plugada: um relato de experiência sobre o ensino remoto de Números Binários em tempos de distanciamento social. In: Anais do XXIX Workshop sobre Educação em Computação. SBC, p. 21-30.
- Tang, Xiaodan et al. (2020) Assessing computational thinking: A systematic review of empirical studies. Computers & Education, v. 148, p. 103798.
- Tavares, Tainã Ellwanger; Marques, Samanta Ghisleni; Cruz, Marcia Kniphoff da. (2021) **Plugando o Desplugado para Ensino de Computação na Escola Durante a Pandemia do Sars-CoV-2**. In: Anais do Simpósio Brasileiro de Educação em Computação. SBC, p. 263-271.
- Vieira, Anacilia; Passos, Odette; Barreto, Raimundo. (2013) **Um relato de experiência do uso da técnica computação desplugada**. Anais do XXI WEI, p. 670-679.
- Wing, Jeannette Marie. (2006) **Computational thinking**. Communications of the ACM, v. 49, n. 3, p. 33-35.
- Wing, Jeannette Marie. (2014) Computational thinking benefits society. 40th anniversary blog of social issues in computing, v. 2014, p. 26.
- Yadav, Aman; Stephenson, Chris; Hong, Hai. (2017) Computational thinking for teacher education. Communications of the ACM, v. 60, n. 4, p. 55–62.