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Resumo

O trabalho apresentado nesta tese aborda resultados referentes a existéncia de
solugoes para trés classes de sistemas elipticos fortemente acoplados em variedades
Riemannianas compactas sem bordo. Nessas classes, estao envolvidas nao linearidades
acopladas com expoentes criticos no sentido das imersoes de Sobolev e Hardy-Sobolev.
A primeira e a segunda classe de problemas envolvem o operador Laplace-Beltrami
sobre uma variedade e nao linearidades com expoente critico de Sobolev no primeiro
caso e de Hardy-Sobolev no segundo. Na segunda classe, também consideramos po-
tenciais do tipo Hardy. O terceiro problema envolve o operador p-Laplaciano e uma
nao linearidade com expoente critico de Hardy-Sobolev. Dessa forma, em ambos os
problemas, investigamos a falta de compacidade e como recupera-la em algum nivel de

energia. Neste trabalho, a abordagem ¢é realizada por meio de métodos variacionais.

Palavras-chave: Sistemas Elipticos de Segunda Ordem; Métodos Variacionais; Fx-

poentes Criticos.
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Abstract

The work presented in this thesis addresses results concerning the existence of
solutions for three classes of strongly coupled elliptic systems on compact Riemannian
manifolds without boundaries. In these classes, coupled nonlinearities with critical ex-
ponents in the sense of Sobolev and Hardy-Sobolev embeddings are involved. The first
and second classes of problems involve the Laplace-Beltrami operator on a manifold
and nonlinearities with a critical Sobolev exponent in the first case and Hardy-Sobolev
exponent in the second case. In the second class, we also consider Hardy-type poten-
tials. The third problem involves the p-Laplacian operator and a nonlinearity with a
critical Hardy-Sobolev exponent. Thus, in both problems, we investigate the lack of
compactness and how to recover it at some energy level. In this work, the approach is

conducted through variational methods.

Keywords: Second Order Elliptical Systems; Variational Methods; Critical Expo-

nents.
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Introduction

In this thesis, we study the existence of solutions for three classes of strongly
coupled critical elliptic systems on compact Riemannian manifolds without boundary.
Our primary objective is to investigate the influence of scalar curvature on the existence
of solutions for these systems when Riemannian manifolds are involved, since, as far
as we know, there is no research in this direction in the existing literature.

The study of coupled elliptic system has important applications in Mathematical
Physics. They appear in the Hartree-Fock theory for Bose-Einstein double condensates,
in fiber optics theory, in Langmuir wave theory in plasma physics and in the behavior
of deep water waves and freak waves in the ocean. A general reference on such systems
and their role in physics is duo to Ablowitz et al. [IJ.

Our study was motivated by some works: first, by paper due to Alves et al. [2],
in which the authors proved results of the existence and non-existence of solutions to

the following system of elliptic equations

(

—Au+au+bv = %u|u|a*2|v|ﬁ in Q,
—Av+bu+cv= §U’U|B_2|u|a in
u=v=0 on 09,

u,v >0 in €,

\

where (2 is a smooth bounded domain in R", n > 3, a,b,c € R, 2* = 2—"2 is the critical

-
Sobolev exponent and «, 3 > 1. For this, the main point is to compare the value of

a + [ with the critical Sobolev exponent. Moreover, inspired by the paper of Brézis

and Nirenberg [§], they also compare the two real eigenvalues of the matrix



€ My o(R),
b ¢

denoted by p; and pe with Ay (the first eigenvalue of the Laplacian operator). For the
reader interested in solutions for systems of this type, we would also like to refer, for

instance [0, 10, T3], 25, B3, B4, [4T]. Second, by the studies on the equation
—Apu+a(x)u= f(z)|ul* u in M, (1)

where (M, g) is a smooth closed Riemannian manifold of dimension n, A, ; denotes the
p-Laplace-Beltrami of M, f is a smooth function on M with max,; f > 0 and a is a
Hoélder continuous function on M. This equation was studied, for example, by Druet
in [I5], who established existence results, for example, when p =2, n > 4 and —A,+a

is a coercive operator, assuming a local condition, namely, if there exists a point xg in

{z € M : f(x) = max,; f} such that

n—2 (n—4)(n—2) Ayf(xo)
DT TR )

the existence of positive solution was established. In [48], Vétois also addressed the

a(xg) <

problem withp =2, f =1, n > 4 and —A,+a coercive, under same local condition

as above, the multiplicity of solutions is proved. Considering a = 4(n 1)R and p = 2
in , then we have the prescribed scalar curvature equation
- 2 *
—Agu+ MRQu = f(x)|u)* u in M. (2)

4(n —1)
When f is constant, we get the well-known Yamabe equation, first considered by
Yamabe [50], after by Trudinger [47], Aubin [3], Schoen [44] among others. In the
form , it has been intensively studied, for example, by Kazdan and Warner [37], by
Aubin and Hebey [5], Escobar and Schoen [21], Hebey and Vaugon [29]. Geometrically,

the problem is related to the existence of a conformal metric § on M whose scalar

( 1)

curvature equals to ——

f, in other words, given f a smooth function on M, if there

is p € C*°(M) with ¢ > 0 satisfying (2)) then the conformal metric § = goﬁg is such

that Rz = 4(” D f In addition to the works already highlighted, we would also like to

mention Hebey [26], who considered the following elliptic system of equations

p
_Agui + ZA@J(LC)UJ = ui‘ui|2*f2 in M’ 7 = 1’ cep,
j=1



where A = (4;;) : M — M, is a smooth function, p € Z, p > 1, and M;(R) denotes
the vector space of symmetric p X p real matrices. Assuming sufficient conditions on
the matrix A related to the linear geometric potential 41("2—121)}%9, the author studies the
existence of minimizing solutions for this system, the existence of high-energy solutions,
blow-up theory and its compactness properties.

In this present thesis, let (M, g) be a smooth closed Riemannian manifold of
dimension n. Firstly, we are interested in the existence of solutions for the following

elliptic system:

—Ayu+ a(@)u + b(x)v = %f(a:)u|u|a’2|v|5 in M,

—Ayv + b(x)u+ c(z)v = g (z)v|v]f~2|ul® in M,

(3)

where A, is the Laplace-Beltrami operator, a,b and c are functions Holder continuous
in M, f is a smooth function on M, and o > 1, § > 1 are real constants satisfying
a+ [ =2"

Subsequently, we will search for solutions to the Hardy-Sobolev type system:

a(x o« flx a— .
—Aju+ ﬁu + a(z)u + b(x)v = >(5) dg(gc(7x)0)su|u] 2v|f in M,

(4)

c(x 6 T — a
—Agv+p(i)Lv+b(x)u+c(x)v: 2*(5)%1}“}'6 2ul* in M,

where A, is the Laplace-Beltrami operator, d, is the Riemannian distance, a,b, ¢, a, ¢ €
C%¢(M), for some o € (0,1), zg € M, s € [0,2) and 0,y € (0,2), p is a nonnegative
continuous function such that p(x) ~ d,(z,zo) for x near of zy, f € C>(M) with
f(zo) = maxy, f > 0 and @ > 1, B > 1 are real constants satisfying a + 5 = 2*(s),
where 2*(s) = 2(n — s)/(n — 2) is the critical Hardy-Sobolev exponent.

Finally, we investigate the existence of solutions for the generalized system:

—Apgu+ a(a) a2 + () [(p — 1) a2 + o]0 = in M,

5 f@)olv]P?lul
P(s) dg (.ZU, x(])s

~Apgv +b(@)[(p — DIl + [ulP~?Ju + e(@) |20 =

where A, , is the p-Laplace-Beltrami operator, p € (1,n) with p # 2, a,b,c € C*¢(M)
for some ¢ € (0,1) with b =0 when 1 < p <2 29 € M, s € [0,p), f € C°(M) with

f(xg) = maxy, f > 0 and a > 1, § > 1 are real constants satisfying o + 5 = p*(s) =

p(n—s)

n—p °



The main difficulty in this type of problems is the lack of compactness. Indeed, if
M is a compact Riemannian manifolds, we will denote by H'?(M) the Sobolev space of
all functions in LP( M) with one derivative (in the weak sense) in LP(M), when p = 2 we
simply write H'(M). As it is well known, the embeddings of Sobolev spaces, H'(M)
in the Lesbegue space L* (M) and H'?(M) (1 < p < n) in the weighted Lebesgue
space LP")(M, d,(-,29)~*) are continuous, but not compact (see [4, 11, 28, 42]).

In general, the use of variational methods to obtain non-trivial solutions to this
type of problem requires appropriate estimates of the energy level or minimax level,
due to lack of compactness. It is exactly in this step that we find the main geometric
implications of the Riemannian manifold.

We shall work with the space H? := H?(M)x H"?(M) (we write H = H?, when

p = 2) endowed with the norm

1
1, )l = (lulln + 0l.)

We equip H"?(M) with the standard || - || 1o —norm, that is, [lu[l%:, = [Vullh + [lul],
where || - ||, denotes the norm of the Lebesgue space LY(M), ¢ > 1. The norm of
L9(M) x L9(M) will be defined by |(u,v)[l, = (Jlullg + [[vo]}2) """

An important relation obtained by authors in [2] is the following:

()7 (&) 0

where o + 8 = 2*, K2 is defined by

S, =

2
K2 = > Jan VUl de |
weH ENO} ([ o+ da) /

and S, is defined by

2 (|Vul? + | Vo]?) da
S, = inf Joo (Vul® + | |2/)2*
(wo)e[H RO} (o, [u]*|v]Pdz)

(7)

It is known that K, is the sharp constant for the embedding of H'(R") into L? (R").
In general, the relation @ holds for p € (1,n) and s € [0, p), that is,

K?jﬁ) = K(@,@)K(n,p,s), (8)



ﬁ/ *(8) o/p*(s
where k(a, f) = [(%) g + (g) /P )} and K(n,p,s) is the best Hardy-Sobolev
constant defined by

. | VulPdx
K(n,p,s) = 1inf fR [Vl —
u 5P n u *(s * (s

eHV»(R™)\{0} (fRn |ulP Uda:) ()

|z

and IC](’C’YS g) 18 defined by

s _ inf Jen ((Vul? + [V ]P) da
K00 = (et nmm o) e lf ; \FO )
<f]R" dx)

E

In our context, to deal with the lack of compactness, we will also establish Sobolev
and Hardy-Sobolev inequalities, that is, when p = 2 there is a positive constant B

such that

2/2*
( /M |u|a|v|ﬁdvg) < S 1(1Val, [VoD)I2 + Boll(as v)]12 (10)

for all (u,v) € H. Moreover, (S,)”" is the best constant such that holds, thus this
inequality is optimal. In general, given any € > 0 there is a positive constant B, such

that

P

ulelol? P () .
([ )™ < 0, + ATl 190D + Bl ol (1)
g\

for all (u,v) € H. Here, (lCﬁf’ ﬁ))*1 is the best constant such that the inequality holds.
When p = 2 this inequality is optimal since it is true for € = 0, while in the case p # 2,
the inequality is not generally true for ¢ = 0. We prove these inequalities by applying
the results obtained by Hebey and Vaugon [31], Jaber [35] and Chen and Liu [T1]. We
also need to prove a Brézis-Lieb lemma for the nonlinear term involved. More precisely,
let £ € L>(M), if u,, — u and v,, — v in H"?(M), then we have

[ il [ O At

M M M

dy(z,z0)* dg(z,z0)* dg(z,z0)*

where 0,,(1) = 0 as m — oo.

To achieve our goals, we have divided this work into three chapters. Next, we

will describe them.

In Chapter we are interested in problem . In this case, we assume some very

general assumptions on the functions a,b,c and f that will allow us to obtain some

5



existence results for this problem through variational methods. Precisely, we assume
that the function f satisfies

12

max f >0, (12)

and the functions a,b and c satisfy the following coercivity condition: there exists

Cy > 0 such that
/ (|Vul® +|V o2 +a(z)u? +2b(z)uv +c(z)v*)dv, > Col(u,v)|]?, ¥ (u,v) € H. (13)
M

In this context, our first result is the following:

Teorema 0.0.1 Let (M,g) be a smooth closed Riemannian manifold of dimension
n > 3. Let a, 8 > 1 be two real numbers such that o + = 2%, and let a,b and c be
functions Hélder continuous in M, and f € C"X’, with a,b and c satisfying (13| . and f
satisfying ., writing h = Jra + QFb +3 B¢, Let xg be some point in M such that

f(zo) = maxy, f. If, in addition, we assume that

. n— n—4)(n—2 T
(i) h(a:o)<—4(n_21)R( o) + (rz(l)) ;f(o if n >4,

(14)
(i1) h(xg) < §R4(x0) and h < Ry in M, if n = 3.

Then, system has a pair of nontrivial solutions.

As a consequence of Theorem we have the following result.

Corollary 0.0.2 Under the hypothesis of Theorem[0.0.1]. If in addition b < 0 and

. n— n—4 x
<Z> % (x(J) + B (x(J) < ﬁRgQTO) + ( 8(73£1) 2 ;f o) , ifn >4,

(15)
(it) sra(wo) + ﬁc(xo) §Ry(x0) and fa+ —c < Ry in M, if n =3,
then, (3) has a pair of positive solutions.
For the next results, consider the functional Ej, : H — R given by
Ep(u,v) :/ (IVul? + V|2 + au® + 2buv + cv®) dv, (16)
M

and let
S}?‘,{'B) = inf {Eh(u, v) @ u,v € H'(M) and / f(@)u|*[v]’dv, = 1} . (1
M

In the next result we deal with the case where the functions a, b and ¢ satisfy the

condition:

Law) + WQ*_ b) + 5el) < %Rg(x), Vo€ M. (18)

We can state the following result.



Teorema 0.0.3 Let (M,g) be a smooth closed Riemannian manifold of dimension
n > 3. Let a, > 1 be two real numbers such that o+ = 2*, and let a,b and c be
functions Holder continuous in M, and f € C*°, with a,b and c satisfying . ) and

([18), and f satisfying ([12)). Letxzo € M such that f(z¢) = maxy f. IfS}?;;ﬁ) e )2/2*
where S, is defined in @ Then, system has a pair of nontrivial solutions.

Afterwards, we present sufficient conditions for the strict inequality

S*
S (ao)?®

to be true. To get this, inspired by [5l 211, 29], we denote by

(a,8)
Sfyh <

)\f(M,g):inf{/M(|Vu|3+4(nn—__21)Rgu2)dvg: /Mf(ac)|u2*

Recall that if f =1, A\¢(M, g) is the Yamabe invariant of the manifold (M, g) and

dv, = 1}. (19)

is usually denoted by A(M, g). In the particular case of the unit n—sphere S” with the
standard metric, denoted as A(S"), it is well known that when A;(M, g) < A5

(maxps £)2/27)

there exists ¢ € C*°(M) with ¢ > 0 and [, f¢* dv, = 1 such that

_ 2 ng2
Rgp = Ap(M, g) fon—2, (20)

n
EEAdTry

with A;(M, g) = [, (|w|2 2 Ryp ) dv,.

A special case is when we con51der the unit n—sphere S™ with the standard metric
go, where the scalar curvature is R,, = n(n — 1). Note that this case is included in
Theorem [0.0.1] when we make the same assumptions. Therefore the following theorem
is a case special of Theorem when M = S"/T.

We state the following result.

Teorema 0.0.4 Let I' be a nontrivial finite group of isometries of S™ acting without
fized point on S™. Write M = S™/T", and let a,b,c and f be functions invariant under r
and satisfying the same assumptions of Theorem |[0.0.5 Then S O‘B)(S"/F)

and therefore, has a pair of nontrivial solutions on S™.

T

An interesting consequence is the following.

Corollary 0.0.5 Suppose the same assumptions of Theorem[0.0.4 In addition, if we
assume that b = 0, f =1 and a = ¢ = @ then we get that S©@P(S") = S,

and system has infinitely many pair of positive solutions. Moreover, if (u,v) is



a minimizer for S (S") with u,v > 0, then up to rescaling u and v will have the

following forms:

2—n

u(z) =& (po — cosr) 2 and v(x) = (1(py — cos T)Q_Tn (21)

1/2
where T € S", = dyy(2,7), &,¢ >0, po > 1 and % - (%) ’

The main results of this chapter, written together with my PhD advisor, are

contained in the paper [43].

In chapter , inspired by [35], we investigate the coupled Hardy-Sobolev system
, in which Hardy-type potentials are also involved. The interesting aspect of this
study arises from the presence of singular terms, which adds complexity to the challenge
of estimating the energy level. In this context, we assume that the functions a, b, ¢, a, ¢,

and p satisfy:

(H1) Coercivity condition, that is, there exists Cy > 0 such that

/ <|Vgu|2 + |V ,0]? + a(@)u? + 2buv + c(z)v? + 222 4 L) 1)2) dv, > Cyl|(u,v)|?,
M

p(x)? p(x)Y
for all (u,v) € H.

(Hz) The function p satisfies:
(Z) % =1 + O(dg(x,.’ll'o)u), Vx - Bg(.’ﬂo);
g\
(i7) p(x) >0, Vo e M\Bs(zo).

For some ¢ € (0,1,) (here i, denotes the injectivity radius of (M, g)), where p € (0, 1).

Thus, our first result of this chapter can be stated as follows:

Teorema 0.0.6 Let (M, g) be a smooth closed Riemannian manifold of dimension n >
3. Leta,b,c,a,c and p be functions in M satisfying (H1) and (Hs), with a,¢ € C(M).
Let f be smooth function such that f(zo) = maxy f > 0. In addition, assume that

h = 25@@ + é{gb + 2*@(28) ¢, a and ¢ satisfy:

(1) Alw0) < t5gangag Ro(w0) + sy oy and d(zo) = &zo) =0, if n > 4;

(2) when n =3, h(zo) < §Ry(z0) and h < Ry in M, or h= LRy and (M, g) (22)
is not conformally equivalent to the standard sphere S®, and that @ = ¢ = 0.

Then, system has a pair of nontrivial weak solutions.

8



An immediate consequence is the following:

Corollary 0.0.7 Let (M,g) be a closed Riemannian manifold of dimension n > 3.
We assume that @ = ¢ = 0. Let a,b,c and p be functions in M satisfying (Hy)
and (7—[2) Let f be smooth function such that f(zo) = maxy f > 0. Suppose that
h = a+ 2Fb+ B)C satisfies:

)

n s n n Ag f(x
(1) h(zo) < 1(2(2721)(62 s))R (o) + (4(23)(2 j)) f(fz O ifn > 4;

(2) when n =3, h(xg) < §Ry(x0) and h < §Ry in M, or h = R, and
(M, g) is not conformally equivalent to the standard sphere S3.

Then, system has a pair of nontrivial weak solutions.

For our second theorem, we assume only that the functions @ and ¢ are Holder

continuous. Now, we can state our second theorem of the chapter.

Teorema 0.0.8 Let (M, g) be a closed Riemannian manifold of dimension n > 3. Let
a,b,c,a, ¢ and p be functions in M satisfying (H1) and (Hz), let f be smooth function

such that f(x¢) = maxy f > 0. Furthermore, suppose we are in one of the following

cases:
(o) <0 if 0>,
(1) when n >4, and ¢ «aa(zg) + Bé(ze) <0 if 6 =1, (24)
[ &(x0) <0 if v>9,
([ G(z0) <0 if 0>v>1,
(2) when n =3, and { «a(zy) + Bé(xg) <0 if 0=~ >1, (25)
| ¢(w0) <0 if v>602>1.

Then, system has a pair of nontrivial weak solutions.

Finally, in the Chapter [3| motivated by the works of Druet [I5] and Chen and
Liu [II]. In [I5], the author considered equation (as previously mentioned), while
in [IT], the authors studied a class of Hardy-Sobolev equation involving the p-Laplace
operator. When p # 2, an interesting point in its existence results, is the condition:
2<p’<norl<p<min{®=2 2}

Here, we were able to improve the range to p, more specifically, when 2 < p < ”*2

or 1 < p < 2andp < +/n, we establish existence results for ([ . For this we assume that

the functions a, b and ¢ are Holder continuous and f is a smooth function on M with



maxy; f > 0. In addition, these functions satisfy the following coercivity condition,

that is, there exists Cy > 0 such that

/ ([Vgul” + Vgl + a(@)ul” + b(@)uv(|ul"~* + [v]~?) + c(z) [v[] dvy > Coll(u, v)|,
M

(26)
for all (u,v) € HP, where b =0 when 1 < p < 2.

Our first result can be stated as follows:

Teorema 0.0.9 Let (M,g) be a smooth closed Riemannian manifold of dimension
n>5 pé€ (2,n) and s € [0,p). Let a,b and ¢ be functions Holder continuous in

M satisfying and f smooth function on M such that f(xy) = maxy f > 0. In

n+2

3 and

addition, assume that 2 < p <

3(n+2—3p) Af(zo)

0< R,(xzg) + . 27
TG T o) 0

Then, system has a pair of nontrivial weak solutions.
For our next theorem, we consider b = 0, we write h := p*o(‘s)a + p*ﬁ(s) c. We can

state the following result.

Teorema 0.0.10 Let (M, g) be a closed Riemannian manifold of dimension n > 2,
p € (1,2) and s € [0,p). Let a,b and ¢ be functions Holder continuous in M satisfying
and f a smooth function such that f(x¢) = maxy f > 0 . If in addition, we
assume that h(zg) < 0. Then, the system has a pair of non-negative nontrivial

weak solutions, when n > 4. The same conclusion holds when n = 2,3, for p < /n.

Concluding this introduction, we emphasize that the main tools used in this thesis
are the following: "optimal" Sobolev and Hardy-Sobolev inequalities, Brézis-Lieb type
lemma, minimization under constraint and Mountain Pass Theorem. In order not to
resort to the Introduction and for the sake of the independence of the chapters, we will

again present, in each chapter, the main results and the respective hypotheses.
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Notation

(M, g) denotes a smooth compact Riemannian manifold without boundary;
i, denotes the injectivity radius of (M, g);

Bs(z) denotes the geodesic ball centered in = with radius § € (0,1,);

det(g) is the determinant of the components of the metric g;

R™ denotes the usual Euclidean space;

Bgr(0) denotes an ball in R™ of radius R and center at the origin;

LY(M) = {u: M — R : u is measurable and [, |u|?dv, < co};

L>®(M) :={u: M — R : u is measurable and sup,, |u(z)| < co};

H'P(M) denotes the usual Sobolev space;

CE(M) denotes the space of functions possessing continuous derivatives up to

order k on M;
C*e(M) denotes the Hélder space;

C3°(€2) denotes the space of infinitely differentiable functions whose support com-

pact in §;

Uy, — w and u, — wu denote strongly and weak converge, respectively, in a

normed space;

I = /O (1 + 1)t



Chapter 1

On a Class of Strongly Coupled
Critical Elliptic Systems

In this chapter, motivated by [2, 8, [0, 16, 21, 28, 26, B8, @4, 47, 50], we in-
vestigate the existence of solutions for a class of strongly coupled elliptic systems.
The approach is variational, employing the Mountain Pass Theorem and minimization
under constraint. One particularly intricate aspect is estimating the energy level (min-
imax level), especially when n = 3, as the argument is non-local, necessitating the use
of an appropriate Green’s function. The results of this chapter were published in the

paper [43].

1.1 Introduction

Let (M, g) be a smooth closed Riemannian manifold of dimension n > 3. We are
concerned with the existence of solutions of the following system:
—Agu+a(z)u+b(z)v = %f(ac)u\u]“”\v[ﬁ in M, 11)
—Ayv+b(x)u + c(x)v = s (x)v|v[f~2ul® in M,
where A, is the Laplace-Beltrami operator, a, b and ¢ are functions Hélder continuous
in M, f is a smooth function, and o > 1, § > 1 are real constants satisfying a+ 3 = 2*,

where 2* = 2n/(n — 2) is the critical Sobolev exponent.



The system (|1.1)) is strongly related to the equation
~Ayu+a(z)u= f()|ul* u in M,

which has been intensively studied (see for instance, Druet [I5] and Vétois [48]), espe-

cially, when we have a = 4(’2—121)}297 where we get the prescribe scalar curvature equation
n—2 2% _9 .
—Ayu+ ngu = f(x)u|® “u, in M, (1.2)

this problem is a generalization of the well-known Yamabe equation (when f is con-
stant) whose positive solutions are such that the scalar curvature of the conformal
metric § = u? ~2¢ is equal to 4(7%21) f (for more details see Yamabe [50], Trudinger
[47), Aubin [3], Schoen [44], Aubin and Hebey [5], Escobar and Schoen [21], Hebey
and Vaugon [29]). The study of this equation both in the classical and prescribed
form, together with the work of Alves et al. [2], inspired us in this investigation on the
existence of solutions for (L.1)).

Before presenting our main results, we need to introduce some notations and
definitions. Throughout this work, we will denote by H'(M) the Sobolev space of all
functions in L?(M) with one derivative (in the weak sense) in L?(M). We equip H' (M)
with the standard | - || 1 —norm, that is, ||ul|3,, = [|Vul[3 + ||lu||3, where || - ||, denotes
the norm of the Lebesgue space LY(M), whenever ¢ > 1. The norm of L(M) x Li(M)
will be defined by ||(u,v)|l = (||ullg + ||v||q)1/q.

We shall work with the space H = H'(M) x H'(M) endowed with the norm

1/2
1w, )| = (lullfn + ollF)

In this context, we say that a pair of functions (u,v) € H is a weak solution of

(L), if for all (p,v) € H, it holds
[ (90.90),+ (V0. V0, + alwhup + ba)lus + vg] + clz)o) do,
M
— [ set@lePupds, + [ S p@lol Yl vdo,

By elliptic regularity theory (for example, see Lee and Parker |38, Theorem 4.1]),
any weak solution (u,v) of (I.1]), is in C? x C? when a, b and ¢ are Holder continuous,

and is in C'*° x C'*° when a, b and ¢ are smooth functions.
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Recall the relation obtained by Alves et al. [2, Section 4] that we will use in this

(%)/3/2* . (§>a/g*] . -

where o + 8 = 2*, K2 is defined by

chapter is the following:

S =

2
K;2 = inf fR" [Vl d:z:2 >
uweH (R")\{0} (fRn |u|0‘+5dx) /

and S, is defined by

. (|[Vul? + Vo2 d
S.= e e (VT “'2/)2*x. (1.4)
(wo)eH RO} ([, |ulo|v|dx)

It is known that K, is the sharp constant for the embedding of H'(R") into L?" (R"™).
Throughout this chapter we assume some very general hypotheses on the func-
tions a, b, c and f that will allow us to obtain some existence results for system (|1.1))

through variational methods. Precisely, we assume that the function f satisfies
1.
max f>0 (1.5)

and the functions a,b and c satisfy the following coercivity condition: there exists

Coy > 0 such that
/ (|Vgul? + |V v)* +a(z)u? +2b(x)uv+c(z)v*)dv, > Col|(u,v)||?, V (u,v) € H. (1.6)
M
Our first result in this chapter can be stated as follows:

Teorema 1.1.1 Let (M, g) be a closed Riemannian manifold of dimension n > 3. Let
a, B > 1 be two real numbers such that a+ 3 = 2%, and let a,b and ¢ be functions Hélder

continuous in M, and f € C, with a,b and c satisfying (1.6) and f satisfying (1.5)),

2vofy £

writing h = Jra + ssc. Let xy be some point in M such that f(xg) = maxyy f.

If, in addition, we assume that

(i) h(zo) < 7525 Ry (o) + Cglns 8al(e0) -y > g,

(1.7)
(i1) h(xg) < §R4(x0) and h < Ry in M, if n = 3.

Then, system (1.1 has a nontrivial solution.

14



Theorem [L.1.1] will be proved using the Mountain Pass Theorem without the
Palais-Smale compactness condition. A delicate part is the estimating the minimax
level in order to overcome the lack of compactness of the functional associated to system
caused by the critical growth of the nonlinearities. We achieve this objective
following some ideas developed in [3], [ [16]. Here we face some extra difficulties due
to the strong coupling of the system.

As a consequence of Theorem [I.1.1] we prove the following results.

Corollary 1.1.2 Suppose the same assumptions of Theorem |1.1.1, Let xoq be some
point in M such that f(x¢) = maxy f. If, in addition, we assume b < 0 and

N\ n— n—4)(n—=2) Ay f(z .
(Z) 27@(.]30) + Qﬁ*c(x()) < 4(n—_21)Rg(x0) + ( S(n)(—l) ) ;(J;(O)O)a an > 47

(1.8)

(i1) Za(wo) + Zc(w9) < tRy(20) and £a+ Le < LR, in M, if n=3.

Then, system (1.1)) has a pair of positive solutions.

Corollary 1.1.3 Suppose the same assumptions of Theorem and that f is con-

stant and positive. Let xo be some point in M such that

(i) hlwo) < 30755 Ry(0), if n >4,

(#1) h(zo) < §Ry4(x0) and h < £Ry in M, if n = 3. o
Then, system has a nontrivial solution.
For the next results, consider the functional Ej : H — R given by
Ep(u,v) = / (IVul? + V|2 + au® + 2buv + cv?) dv, (1.10)
M
and let
47 :inf{Eh(u,v) :u,v € HY(M) and /Mf(x)|u|°‘|v|5dvg = 1}. (1.11)
Define

)\f(M,g):inf{/J\I(\VuB#—Jn—__zl)Rqu)dvg : /Mf(x)\uy?*dvg: 1}. (1.12)

Remark 1.1.4 When f is constant and equal to 1, A\¢(M, g) is called of Yamabe in-
variant of the manifold (M, g), and is usually denoted by A\(M, g). In the particular
case of the unit n—sphere S™ with the standard metric is denoted by A(S™). It is well

15



)‘(Sn)m*, there exists ¢ € C>®(M) with ¢ > 0 and

(maxps f)

known that when \¢(M,g) <
[y fe* dvg =1 such that

n—2 n+2
Ryp = Ap(M, g) fon—2, (1.13)

_A e
AdTr—

with A\f(M,g) = [,, <|Vg0]3 + ":1)Rg<p2> dvy. It is also known that \(S™) = K, 2,

4(n
with
4
n 2/n’
n(n — 2)wy

where w, is the volume of the unit n—sphere (see [3, (3, [4, [14]).

In the next results we deal with the case where the functions a,b and ¢ satisfy

the condition:

a 2/ap

M) + D) < %

Ry(x), Yz € M. (1.14)

Remark 1.1.5 The coercivity condition (1.6) and (1.14) imply that given ¢ € H' (M)

2
and &,¢ > 0 such that (%) = %, then

o€ + [ ]2n < (€ + )|Vl + /M (a€? + 2EC + eC2 )P,

=@ v {ivu+ [ a2 Zoan,

n

-2
< (€+¢) {IIW/}H% HPTE— /Mngzdvg} :

Therefore, —A, + ﬁ]{g 15 also coercive. In particular we are dealing with the case

where the Yamabe invariant is positive.

We can state the following result.

Teorema 1.1.6 Let (M, g) be a closed Riemannian manifold of dimension n > 3. Let
a, B > 1 be two real numbers such that o + B = 2*, with a,b and ¢ satisfying (1.6 and

(1.14), and f satisfying (1.5)). Let xo be some point in M such that f(xo) = maxy, f.

If S}?‘,{B) < f(xf)*Z/Q*’ where S, is defined in (1.4). Then, system (L.1)) has a nontrivial

solution.

Complementing Theorem and inspired by 211, B, B0], we prove the following

theorems:
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Teorema 1.1.7 Let (M, g) be a closed Riemannian manifold of dimension n > 3. Let
a,b and ¢ be functions Hélder continuous in M satisfying and . Assume
that n > 6 and M is not locally conformally flat. If at a point xo where f(xg) = maxy f
is such that the Weyl tensor is nonvanishing (that is, |Wy(zo)| # 0). If we assume that

(¢) if Agf(zo) =0 when n =6, or
(i) if Agf(xo) =0 and ‘A;f(xo)‘ / f(w0) is small enough, when n > 6.

Then, Sﬁ;ﬂ) < W Consequently, system (L.1)) has a nontrivial solution.

Teorema 1.1.8 Let (M, g) be a closed Riemannian manifold of dimension n > 3. Let
a,b and c be functions Holder continuous in M satisfying and . Assume
that n = 3,4 or 5, or M is locally conformally flat, when n > 6. Let xo € M be a point
such that f(xg) = maxy f > 0. We have the following cases:

(i) if n =3 or, if Ayf(xo) =0 when n =4, 5;

(i1) if Agf(zo) = AL f(20) = 0, when n = 6,7;

(iid) if Dgf(wo) = A%f(w0) =0 and Al f(x0) =0 or [VWy(zo)| =0, whenn = 8.
Then, Sﬁ;ﬁ) < W unless M is conformal to the standard S™. Consequently,
system has a nontrivial solution. When n > 8 the same conclusion holds if
IVWy(xo)| # 0 and A} f(zo) = 0 or when [VWy(xo)| = 0 if |[V*Wy(x0)| # 0 and
A3 f(xzo) = Ay f(xo) = 0, or when all derivatives of W, vanish at xo if AT f(x) = 0
Joralll<m <5 —1.

Corollary 1.1.9 Suppose the same assumptions of Theorems or[I.1.8 In addi-
tion, if b < 0 and the functions a and c satisfy

I} n—2

(z) + ;C(x) < =1

0 Ry(x), Yz € M. (1.15)

Then, system (1.1) has a pair of positive solutions.

Corollary 1.1.10 Suppose the same assumptions of Theorems|1.1.7 or([1.1.8 In ad-
dition, if we assume that f >0, b =0 and a =c = ﬁRQ. Then, system (1.1)) has

a nontrivial solution. Moreover, we have that

S (M) = [(%)B/aw + (g)mw] A (M, g). (1.16)

Therefore, the pair (§p,Cp) (up to rescaling) is solution for the system, for any positive
. : L\ 12
solution ¢ € C* of (L.13)), where [,, fo* dvy =1 and % = (E) .
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A special case is when we consider the unit n—sphere S with the standard metric
go, that is, the scalar curvature is Ry, = n(n — 1). Note that this case is included in
Theorem when we assume the same hypotheses. Therefore the following theorem
is a case special of Theorem when M = S™/T', this result is inspired by [21].

Teorema 1.1.11 Let I' be a nontrivial finite group of isometries of S™ acting without
fized point on S™. Write M = S™/T", and let a,b,c and f be functions invariant under r
and satisfying the same assumptions of Theorem|1.1.8 Then S(a m(S”/F)

and therefore, system (1.1)) has a nontrivial solution on S™.

f(a: 2/2*

Corollary 1.1.12 Suppose the same assumptions of Theorem |1.1.11). In addition, if
we assume that b =0, a = c = @ and f > 0. Then, system (1.1} has a nontrival

solution. Moreover, we have

o B/a+8 a/a+fB
SieP(sm) = [(E) + (g) ] A¢(S™, go). (1.17)

Therefore, the pair (£p, () (up to rescaling) is solution for system (|L.1)), where p € C'*
is a positive solution of Eq. (1.13) on S".

Corollary 1.1.13 Suppose the same assumptions of Theorem [1.1.11 In addition, if
we assume that b = 0, f =1 and a = ¢ = # then we get that S@9(S") = S,
and system has infinitely many pair of positive solutions. Moreover, if (u,v) is
a minimizer for S@P)(S™) with u,v > 0, then up to rescaling u and v will have the

following forms:
u(z) = & (po — cos 7")277" and v(x) = (1(po — cos T)%Tn (1.18)
B B c 1/2
where T € S, r = dgy(z,T), &,( >0, po > 1 and C_i = (%) .

Corollary 1.1.14 Suppose the same assumptions of Theorem |1.1.11. In addition, if
b < 0 and the functions a and c satisfy the following hypothesis

a B
ga(f) + ;C(ﬂv) <

n(n — 2)

o VreM (1.19)

Then, system (1.1)) has a pair of positive solutions on S™.

The chapter is organized as follows. In Sect. we prove an essential
Sobolev inequality to prove the main results. In Sect. [I.3] we prove Theorem [I.1.1 and
its consequences. In Sect. we prove Theorems [1.1.6] [1.1.7] and [T.1.§] We dedicate
Sect. for the case of the sphere S".
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1.2 Some preliminary results

In [3T], Hebey and Vaugon have established that the best constant for the Sobolev

inequality is K2. Precisely, they proved that there is a positive constant B such that
lull3- < EKZIVull3 + Bllull3, (1.20)

for all w € H'(M). Moreover, if ||u

2. < K||Vul3 + C||u||? for all u € H' (M), where
K and C are positive constants, then K > K2.
Initially, we establish an inequality that will be used in the proof of the main

results.

Lemma 1.2.1 Let S, be the constant defined in (1.4)) when o+ = 2*. Then, there

1 a positive constant By such that
2/2*

(/M \u!a\vlﬁdvg) < SVl [VoDI; + Boll(u, )3, (1.21)

for all (u,v) € H. Moreover, (S*)f1 is the best constant such that the inequality holds.

Proof. Given u,v € H'(M), since & + Qﬁ = 1, by Hélder’s inequality,

) a/2* ) B/2*
[l < ([ 1) ([ )
M M M
that is,
2 /2" B/2*
« a 2
([ ltolas,) < (ulg)™ (1o13)"
On the other hand, by Young’s inequality,
B/2*
/2" 82" a/2e ([013-)
(llz)™ (oll2)™ = (ellullz.) o

3*)(1/2* (Hng*gfa/lg)ﬁ/%

= (ellu

« 6 _
< Zelulle + S ol

. 5/2 6 a/2* 71 2* . .
Choosing ¢ = <%> + (E) =, by a straightforward calculation, we get

1

o B e [ (L (B
2*8—2*6 = [(5) + o ,
-1

() <[5 ("o
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Using ((1.22)) and the Sobolev inequality ([1.20)), we can find B > 0 such that

</M |UI°‘|v|5dvg)2/2* < [(%)W + (g)w]l (K2||(1Vul, Vo)) |2 + Bll(u, v)][2)

Therefore, we get that

2/2*
( / rummﬁdvg) < 87 (IVul, [ VoD I3 + Boll(u, o)

B «
Finally, if Sj is a positive constant such that

. -1
for all (u,v) € H, where By = B {<9>5/2 + (ﬁ)a/2 ] :

2/2*
( /M |u|a|v|ﬁdvg) < Soll(IVul, [VoDIE + Bull(as o) 2 (1.23)

for all (u,v) € H, where B; is some positive constant. We claim that Sy, > S,

Indeed, given ¢ € H'(M) and writing u = a'/?p and v = /2, by (1.23)) we have
o 2/2*
(@2 ([ o) <2 (S0 + BullelB),
which gives us
2/2* o
2+ 2 2
([ 1etdn) < e [0l + Bl
« B 2 2
- [aa/z*ﬁﬂ/% + aa/Q*B/B/Q*:| (SO||VQOH2 + BIH‘PHQ)

B/2* a/2*
Q B
_ [(E) N (5) ] Sol V|2 + Ballo|l2

for some By > 0. Since K2 is the best constant in the Sobolev embedding theorem

8/2* a/2*
[(%) + <§) ] So > K2,

. B/2" Bg\o/2” _9
and since S, = (%) + (E) K #, we conclude the proof of the lemma. =

An immediate consequence of this result is the following inequality:

(see 4, [3T]), we reach that

Corollary 1.2.2 Let C = max{S; !, By}, then we have

2/(a+8)
( / rummﬁdvg) < Cll(u, )2
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Another result that will be important later on is the following Brezis-Lieb type

lemma.

Lemma 1.2.3 Let u,, — u and v, — v in H' (M) and let { € L>=(M). Then we have

/ f(x)|um|a|vm|5dvg = / E(x)|u|°‘|v|5dvg +/ () |ty — u|*|vm — v|5dvg + o (1),
M M M

where 0,(1) — 0 as m — 0.

Proof. The proof is done in Lemma [3.2.5]in Chapter[3] m

1.3 Proof of Theorem I1.1.1]

We begin this section by introducing some notations and definitions. First, con-

sider the functional I : H — R associated to the system (|1.1)) given by

1
[(u,v):—/M [[Vul2 + [Vol2 + a(z)u® + 2b(z)uwv + c(x)v®] dvg— / f(@)u|*|v|’dv,.

2

Since the functions a, b and ¢ are Holder continuous and f is a smooth function,

we have that I is well defined and by standard arguments I € C'(H,R) with
Fu) () = [ (T, 96, + (V0. V), + alo)up + b(o)lus + vg] + cla)ou) do,
M

~ [ (@Il + LIl ule v ) doy

Hence, a critical point of I is a weak solution of system ([1.1)) and reciprocally.

Moreover, it is easy to see that [ satisfies the geometry of the Mountain Pass Theorem.

Indeed, from Corollary and by coercivity hypothesis (|1.6]) we have that
CO C *
I(u,v) > —|[(u, )| = 5 1(w, )],
2 2
thus, there exist R > 0 (small enough) and p > 0 such that
I(u,v) > p whenever ||(u,v)|| = R. (1.24)

Now, let p € C5°(M)\{0} such that [, f(x)|p|* dvy > 0, for t > 0, note that:

2

-
= r /M[2|Vg<p|2 + (a+ 2b+ c)gpz]dvg — 162_* /Mf(f)

5 2 dv,

I(tp,tp)

U o
< gliellin =5 | f@)leldus,
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thus, limy_, I(tp, tp) = —o0 as t — oo. Therefore, there exists some (@, ?) € H with
|(@,0)|| > R and such that I(u,v) < 0.

Now, for some pair (@, ) satisfying the second condition above, we consider
the set I' = {y € C([0,1],H) : v(0) =0 and (1) = (@, ?)}, and so we can define the
minimax level

c:=inf sup I(y(t)) > p. (1.25)

vel o<t<1

Next, we will estimate the level c. This will be a very delicate result.

Lemma 1.3.1 Suppose that (1.7) holds, then

S

for some par (u,0) € H, where ¢ is defined in (|1.25)).

Proof. Initially, we will verify that there exists (w,v) € H such that

S

G 177 e

Q) <
where () is defined by
Jar IVul2 + [Vo[2) dvg + [, (a(x)u® + 2b(x)uv + c(x)v?) du,
(yr J@lul*lolPdeg) ™

for (u,v) € H with [,, f(2)]u|*|v|’dv, > 0.

Q(u,v) ==

The proof will be done considering the cases n > 4 and n = 3.

Let g € M be a point such that f(zg) = max{f(x) : x € M}. We denote by
Bs(zo) the geodesic ball of center z, and radius §, with § € (0,4,), where i, is the
injective radius of (M, g). We choose § small enough if necessary such that f(z) > 0

on Bas(p). In normal coordinates we can write the following expansions
h(a)n(r)® = h(wo) +r°O(1),
. 1 o
F@n(r)* = flwo) + éaz‘jf(l'o)xzxj +7°0(1), (1.28)

/Sn_l Vdet(g)do = w,_y (1 - %ﬁ + 7"40(1)> ,

where det(g) is the determinant of the components of the metric g (the third expression
can be seen in [27, Chapter 6, p. 283]) and h = 5ra + 2@()—1— Qﬁ*c, with 6 € (0,1) such
that h € C%(M), and n € C5°([—26,24]), with n = 1 in [~4,8] and 0 < n < 1.
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Now, for n > 4 and € > 0, we consider the following family of functions

(dg(, 20))
ue(w) = (e + gg(x, 10)2)(n=2)/2° (1.29)

For 0 < p,q < oo, we put I} := / t?(1 + t)~“dt, and then it holds that
0

=2 menp_ Wn
n " " 21y, 1’ (1.30)
2 2/2* :
(=2 i — g2 (P2, )
2 2n
When n = 4, from [3, 4], we get
1
/ [Vue(z)[2dvg = 2wse™’ (If + ﬂRg(xo)elne + o(eln e)) :
M
/ h(x)u (x)?dv, — —%h(mo) Ine+ oflne), (1.31)

/ Flauc(e) oy = 2 (o) The (1—1—12Rg(960)6+0(6)).

Now considering &, ¢ > 0 such that % = we obtain

6’

Qe cu) = EHE g Vudivg + fy [ale) + 3660) + Celo)) iy
(ExCh2/2 ([, (a2 duy)
(€ +¢) [y IVudl2dy, + [, hiz)uld,

€OV ([ f @y dug) ™
Then, by (|1.31)) and (1.30)), it follows that (for € small enough):
(€2 + ?) [wslf 4+ Lelne (Ry(xo) — 6h(x0)) + o(elne)]

Q(fuﬂcu ) 1/2 1/2
(€)' [ F @)1 - HRy@)e + ofe))]”
Ko, B) [nglz “elne(R (a:o) — 6h(x0)) + o(eln 6)]
fxo)/? K22w3]2 [1 e + o(e )]
_ flaf) ) n TE€lne (Rg(l"O) - 6’1(930)) +o(elne) + 57 Ry(wo)e + oe)
Pl | ™ 72317 [1— 5By (a)e + o(o)]
Ko, B) o Pelne(Ry(zo) — 6h(x0)) + o(elne)
~ f(wo)V/? {K + K22wsI? [1 — L Ry(x)e + oe)] }
Ko, B) o “elne(Ry(xo) — 6h(xo)) [1 — €O(1)] + €2 In(e)O(1) + o(elne)
= Jlwo) 2 {K i K721 — cO(D) }
k(a, ) L, K? o(elne)
= Tlao)' 2 {K e (aloo) = 6hw) + g L e o] } |
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B2 8 a/2*
where k(a, ) = (2> + (&) and we use that (1 +¢)9 = 1+ gt +--- +

B
Wti—l—- -+, forall [t| < 1, where ¢ € R. Consequently, as I7 = [;* ﬁdt =1
we reach
Q(&ue, Cue) < S + 5. Ine(Ry(xo) — 6h(x0)) + o(elne) (1.32)
€ €] > €ine - elne). .
Flzo) /2 " 8f(x0)1/2 CASY 0

For n > 4, from [3] 4], we have

n—2)2 n -n L
= Dz, (2o (1 — W%Rg(xo)e + 0(6)) ;

/ h(w)uidv, = —Q(H_Q)(n_l)Wn—1fg/2h($o)€(4_”)/2 + o(e=/%),
M

n(n—4)
. ns n=2)/2 —n Agf(zo) | Ry(x0)
[ s, = s g (1 b (< SL0) Bat)) o).
Thus, similarly to what we did above, we find that
S
Q(&ue, Cue) < W L
S, (n—4) Agf(zo) 4(n —1) '
T (T ey Rt~ (g e ) ot
Now, we recall, by , that
n—2 (n—4)(n—2)Ayf(xo)
B A = VR Ty

for n > 4. Then, by (1.32) and (|1.33)), it follows, for e sufficient small, that (|1.27))
holds.

Now, we consider the case n = 3. As a,b and c satisfy the condition (L.6)), it
follows that —A,+h is a coercive operator. Then we can consider G, : M\{zo} — R

the Green function of this operator, that is,
—AgGoy + hGyy = 04y,

where ¢,, is the Dirac mass at xy. It is well known that for x close to xy we can write

G:l‘() (ZL’) = m + m(l’o) + 0(1)

Next, we will use Druet’s idea [I6]. By using the cut-off function 1, we can write

G, as follows:

nldyea) |
waGyy () = d,(z, 70) + wp(z), (1.34)
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where wy, € C22(M\{zo}). In M\ Bs(z), we have

Ui Ui
—-A hw, = Ay | ———— | —h—"——. 1.35
e = 0, (25 ) v )
And, in Bs(xy), we write in normal coordinates
o.(n(det(s) 1
—-A hwy, = — —h . 1.36
gt0n - 2dy(z, z0)? dy(x, x0) (1.36)

In particular, we have that the right side of the above equation is in L*(M) for all
1 < s < 3, so by standard elliptic theory, w, € C°(M) N H'(M) and moreover
wp () = wam(xg) (for more details see Druet [16]).

As we have assumed that h < LRy (see (L.7))), there exists G, the Green function

of —A, + %Rg, and as above we can write

= 1(dy(, o))

walGyy () = 0, (2, 70) w(x). (1.37)

Now, note that

1 — 1 _
—Ag(w — wh) + gRg(w — wh) = — WQAg(GxO — Gmo) + w2§R9<Gwo — Gmo)

1
== (h - gRg) CUQGxO S 0.
Green’s Formula and the hypothesis h < £ R, (but not equal) gives us

@) = [ G (1) - §Re) ) nGi(alry <0, (138)

so, W(y) < wp(y), for all y € M, in particular, as wW(xy) = wem(z) > 0 it follows that
wy(x0) > 0 (here m(x) is given by the expansion of G, in a neighborhood of z, and
the positive mass theorem garantee that m(zg) > 0, see [44], [45].

For ¢ > 0 and x € M, we define the function
ve(x) = M (uc(x) + wi(2)),

where u, is the test-function defined as ([1.29)).
As we did in case n > 4, we estimate Q({v.,Cv.). For this we will estimate

Ju IVl 4 h?)dg and [, f(x)vidv,. First, note that
/ (!VUE@ + hv?)dg = / [ve(—Agve) + hv]du,
M M
=l [ [U2n(=0gm) = (9. VU2)y + b U2, (1.39)

4 61/2/ 772U€(—A9U5)d1)g + 61/2/ (—Agwh + hwh)(wh + 277Ue)dvg7
M M
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where UG(Z') = W.

Note that we can write
1 €

Uelw) = dy(z,x0)? B dy(z,20)2(€ + dy(x,20)?) (1.40)

With that we calculate:

1/2/ U2n(—Agn)dv, = €' / n(=Bgn) L dv, + o(€'?), (1.41)
M M g((L’,I )
51/2/ 1V, VUZ) ydvg = €'/ < < 2)> dvg + o(e"?),  (1.42)
M (x,z0) g
61/2/ hn*U2dv, = 61/2/ hn—dvg—i—o( 12, (1.43)
M v dg(T,70)?

Now, as in normal coordinates the Laplacian of a radial function F' can be written as

follows —A,F = #m&(r"_lwdet(g)&]?), we have

rhT et(g

—A,U. = —AU, — 0,(In+/det(g))0,U., (1.44)

where —A is the Euclidean Laplacian. Since —AU, = 3eU?, and using ([1.40), we get
that

/ U (=AU )dv, = / Uc(—AU, — 0,(In /det(g))0,U.)\/det(g)dz
Bs(zo) Bs(0)

. (Indet(g))d, (U2
s [t ro@ny [ A0nda W,
Bs(0) Bs (o) 4

> 2 Or(Indet(g))
= 3671/2(,0 / S—dS —|—/ T—dv +0 61/2 .
2 ) TP T L 2yl e O

So,

3 _ O, (Indet(g))
2 _ 1/2 1/2 1/2
n“U(—A,U.)dv —wal, +/ ————Zdv, + O(e’/7). (145
/Bg(xo) (FAgUe)dv, = 27 Bs(wo) 2dg(x,20)% 7 (€. (145)

Now, writing that

1 €

Ue(z) = - . (1.46
(=) dg(w,10)  dg(,30)(€ + dg(,70)?)/2[dy(2, 20) + (€ + dy(, 19)*)"/?] (146)
we have
/ U (—A,U)dv, = —/ L A ( ! )dv + O("/?).
M\ Bs (o) J I M\Bs (o) g(0) 7 \dg(x,20) ) 7

(1.47)
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So, we get that

3 Oy (Indet
61/2 [MU2U6(_AgUe)dUg = 5&)2[;/2 + 61/2/ —( nee <g>>

dv
Bs(wo) 2dg(x,20)% 7

(1.48)

’ 1
_51/2/ Ui A ( ) dv, + 0(61/2),
M\ Bs(z0) dg(.T,IO) g dg(.T,.Io) g

Finally, we calculate

2
/ (—Agwp, + hwp,) (wy, + 20U, )dv, = / (—A wy, + hwy,) (wh i Ui ) dv,
M M d(x7 .To)

+/ (—Agwh +hwh)
M

2n
d
G%+%m%w+%@wwwwuwm+@+%mmmwo?@
first, by (1.34]), we have

/ (—Agwp, + hwy,) <wh + d(:rnmo)) dvg = / (—Agwp, + hwp)waG gy dvg = wowp, (o). (1.49)
M ’ M

Second, we get from equations ([1.35)) and ([1.36]) that
Ui
—A h — | d
Jegm e (L5 ) o
O-(In(det h 1
[ (Mbeton, h (LY,
Bs(z0) 2d, (2, o) dg(xa Zo) d(z,xo)

n hn U
o & () - i) () o
M\Bgs(zo) I dg(‘rJIO) dg(];JxO) d(xWIO) 7
so, we have

e (e o= [ = oy i)
2
+/M\B6(wo) [dg(zva)Ag (d(a:,lxo)> * dg(a:t’xo)QAgn:| dvg  (1.50)

1
+/ 77<V77,V()> dv
M\ Bs(z0) d_q(ﬂlfyﬂﬁo)2 g I

Now, using the obtained in (1.41)), (1.42)), (1.43), (1.48) and (1.50) in the equation
(1.39), gives us the following estimate

3
/ (19 g0l + he2)du, = SnT 4 (o) + (e 7). (151)
M
Now, we estimate [,, f(z)vldv,.
/ f(x)wldv, = €/? / flul + 6ulwy, + 15utw; + 20utw; + 15uw) + 6ucw), + wildo,
M M
= /2 /M Flub 4 6ulwy, + 15utw?]dv, + o(e'/?).

(1.52)
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Using the expansion (|1.28)) in normal coordinate,
/ f(2)ubdv, :f(mo)/ USdx + O(l)/ USr?dx +/ f(2)ubdv,
M Bs(x0) Bs(x0) Bas(x0)\Bs(zo)
== flao)e I + O( ) + 0(1),

so, we have

[ ratin, = 2 fan)e 1)+ 0 ), (1.53)
M
Similarly, we get
/M 6. (x)ulwndv, = 3ws f (o) wn(wo)e I3 + o(e™Y/?). (1.54)
Also, we calculate
/ 15f (v)utwidv, = 15ws f(20)wp (o) 271202 4 o(e71?). (1.55)
M

From what was obtained in ([1.53))-(1.55)) and the fact that wzlg/g QfRn Updr =
2 [on (AU )dx = w2, we have that

/ f(x)ldv, = %f(ﬂco)lg/2 + 2wotwp (20) f (20) €' + o(e'/?). (1.56)
M
Now, we can calculate Q(&v,, (v) for € small enough, by the equations ([1.51)) and
(T-50),
[ IV 2+ ho?)dg 313" + wown ()€ + o(e'12)
/3
(Jar f(@)idy) (%f(x )15 V2 1 Qwawp () f (w0 )€1/ —1—0(61/2)>

1/3

80Ty + wywy, ()€ + o(/2)

1/3 ’
for (4177)1 (1 e s

3
1/3
as 137 = 3137 and (3w 3?) " = Sunt” (see (L30)), we get that

S (Vo2 + ho?)dg K;? wawp, (o) e/?

([yy f(z)v8duy) V3 f(wo)t/3 %Jé”/z + 2wawp, (20)€V/2 + 0(€1/2)

As wy(xg) > 0, then

Q(éve, Cue) < [(%)M + (g)am] JC(];T;;/?’ (1.57)

Therefore, we obtain ([1.27]), when n = 3.
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Now, in order to prove ([1.26]), we define for any ¢t > 0 the following functional:

I (t€ue, tCue), when n >4
I (t&ve, tCv.), when n =3

(1) =

2 2%
EXu. — 5 Y., whenn >4

t2
5 Xue —

t;—:%ﬁ, when n = 3,
where X, = (£24¢?) [, [|Vul2 + (€%a + 26¢b + (*c) v?] dvg and Y, = £2¢7 [}, fu® du,.

We want to find ¢y > 0 such that ®'(¢y) = 0, that is, such that t, X — t%*_lY =0.

X, (n—2)/4

( ) , when n > 4
Y.

tyg =

X, 1/4
(Ye) , when n = 3.

Hence,

Therefore, ¢, is the only critical point of ® and since ®(t) — —oo as t — oo, then t is
a maximum point for .

Note that, by the above calculations, we get

% (Q(&uc(x), Cue($)))n/2 , when n >4

L(Q(&ve, Cv))¥?, when n = 3

Sn/?
nf(xe)n=2/2°

D(ty) =

<

Choose t; > ty large such that ®(t;) < 0 and write @ = t1éu.(z) and ¥ = t1Cuc(x)
when n > 4 (and @ = t;£v. and ¥ = t;¢v. when n = 3). So,

0 <c=inf sup I(y(t)) < sup I (tt1€uc(x),tt1Cuc(z)) (we use v, if n = 3)
vel oge<1 0<t<1

= sup D(tty).
0<t<1

< ®(to),

which proves ([1.26]). This completes the proof. m
We now have the tools for the proof of Theorem [1.1.1

Proof of Theorem[1.1.1 By the General Minimax Principle [49, Theorem 2.8], there is

a sequence {(uy,,vy,)} in H such that

I (U, V) = ¢ and  I'(Up, V) — 0. (1.58)
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Now note that

1

I(umvvm) - ;I/(umavm) . (um7vm)
1

—— / [|Vum|3 + |va|§ + a(2)u?, + 2b(2)Up vy, + c(x)vfn} dv,.
nJm

Thus, by the coercivity hypothesis (1.6)), we obtain that {(u,, vy,)} is bounded in H.

Hence, there exists (ug, v9) in H such that, up to a subsequence,

(U, Um) = (ug,vp) in H;
(U, V) = (ug,v0) in L*(M) x L*(M); (1.59)
(U (), v (7)) = (uo(x),v0(x)) a.e in M.

It is easy to see that f(2)|tm|* 2t |v,,|? is an uniformly bounded sequence in L7 (M)

‘a—2

and converges pointwisely to f(z)|uo|® 2ug|vo|?, from Lemma 4.8 in [36], we have

F (@) tn| Pt o] = F(@)[uto]*2u]wo|” i L (M), (1.60)

Similarly we obtain the same for the sequence f(2)|tm|®Vm|vm|?72. As I'(tpm, Vp) -

(p, ) = on(1), for all (¢,v) € H, by using (1.59), (1.60) and letting m — oo, we
reach that I’ (ug, vg) = 0, that is, (ug, vo) is a weak solution of (|1.1]).

The next step is to prove that ug # 0 and vy # 0.

First, let us see that uy = 0, if and only if, vg = 0. Indeed, if ug = 0, then
—Ayvg + c(z)vg =0 in M. So by coercivity hypothesis (1.6)), we have that vy = 0.

If 9 = 0 and vy = 0, we write 7 = lim / (|Vum|3~|— |va|3) dv,. Since
m—0 Jar

I' (U, V) (Uny V) = 01 (1), then we get

m—00

lim F (@) |t |Pdvy, = lim / (V]2 + [Von|2) dvg = 7.

On the other hand, since I(t,, vy) = ¢ + 05,(1), then we get 7 = nc.

Now, by Lemma [I.2.1] we know that there is a positive constant By such that

2/2*
(/Mf(m)lummvmwdvg) < f(xo) "SI (1(Vttm, Vo)1) + Boll (tm, vm)[13]

Thus, passing to the limit in the inequality above and using (1.59)), we get (nc)??" <

f(z0)™=2/"S " nc. Hence,
S
“2 Rl
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But, this contradicts the estimate obtained for the level ¢ in Lemma [1.3.1, Therefore,

ug # 0 and vy # 0. Thus, we conclude the proof of Theorem [1.1.1 |

Proof of Corollary[1.1.3. Consider the functional J : H — R defined by

1
J(u,v) == /M [[Vul2 4+ |Vol2 4 a(z)u® + 2b(x)uv + c(z)v?] du,

2

1 o, +\6
— o [ f(@) ) (vT) dv,.

2% Jur
This functional satisfies the same properties of I. Using the same test functions to
estimate the minimax level and using the same steps as in the previous proof, one
obtains that there exists (ug,v9) € H a nontrivial critical point of the functional J.

Now, we will prove that ug and vy are positive solutions. First, we denote by ut =

max{u,0} and v~ = min{u,0}. Then, since J'(ug, vo) - (ug,vy ) = 0, we get
0= /M [|Vu5|§ + |Vvo_|§ + a(x)(ug )* + b(x)[uevy + ug vo] + c(x)(vo_)ﬂ dvg
— [ 2@ Tt P -+ B0 ] o
= [ (V4G + 1905+ ale) ()* + b oy + o]+ o) )]y
= [ 190+ V0 o+ oo ¥+ 2bla)ug v -+ o) v ] doy
/ b(x)[ug vy + ug vy dv,.
M
As b <0 and udv, + ugvg <0, we deduce that
/M (Vg Iy + [Vvg Iy + al@)(ug)* + 2b(@)ug vy + (@) (vg)*] dvg <0,

and consequently by (|1.6)), we reach u; = 0 and v, = 0. Therefore, ug > 0 and vy > 0.

By elliptic regularity theory and maximum principle follows that g > 0 and vy > 0.1

1.4 Proof of Theorems [1.1.6], [1.1.7] and

In this section, we will study the case where the combination h = fza + %*‘Tﬁb +

B

- is less than or equal to

4(7:;21)}39. We will begin by recalling some notations and

definitions. Considering the functional £} : H — R given by
Ep(u,v) = / (IVul? + |[Vv]?) dvg + / (au® + 2buv + cv?) du,.
M M
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and constraint set A?”B = {(w,v) € H : [,, f(z)[u]*|v]’dvy =1} .
Note that E}, is bounded from below on A?’ﬁ . Indeed, by the coercivity condition

(1.6)) and Corollary |1.2.2 we have

2/2* C
2 al, |8 -
En(u,v) > Col|(u,v)]|* > C (/M |ul*[v] dvg) 2 F(zo)2®

for all (u,v) € A?"ﬁ . Thus, we can consider

SiP = inf  Ey(u,v). (1.61)
’ (u,v)GA?”B
If there exists (u,v) € A?’B which achieves the infimum S}?};B ) it turns out that

(u,v) will be a weak solution of the following system

05)2 .
~Ayu+ a(z)u+b(z)y = S}’};B)Q—?f(x)um\a_ﬂvw in M,

@B (1.62)
—Agv+b(x)u+c(z)v = Spy gf(x)v|v|ﬁ_2|u\°‘ in M.

In order to achieve the existence result we need to recall some results due to
Escobar-Schoen [21], Aubin-Hebey [5] and Hebey-Vaugon [30] for Prescribe scalar cur-
vature problem, which prove that f is the scalar curvature of a conformal metric (see
also [4]).

Before, let us remember that, when max,; f > 0 it is known that A\f(M,g) <
’\(L)m*, where (M, g) is defined in , and if A\f(M,g) < L)m*, then

(maxps f) (maxps f)

there is ¢ € C* with ¢ > 0, [}, f(2)¢* dvy = 1, and such that

A9 = [

n—2
Vo2 + —R,0% | du,,
[ (el + =y
that is, ¢ is a positive solution of the equation —Aju + 481—121)Rgu = \(M, g) fu* 1.
Therefore, § = p? ~2g is a conformal metric to g, where f = R, is the scalar curvature

of the metric g, and moreover, Af(M,g) = Af(M, g).

Theorem A 1 (Escobar-Schoen [21]) Let f be a C™ function with maxy; f > 0 on
a compact riemannian manifold (M, g) not conformal to the sphere with the standard

metric. Then if n =3,
A(S™)
(maxyy f)¥/2

and consequently f is the scalar curvature of a conformal metric. The same conclusion

A(M,g) <

holds for the locally conformally flat manifolds when n > 4 if at a point xq where [ is

mazximal, all its derivatives up to order n — 2 vanish.
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Theorem B 1 (Aubin-Hebey [5]) Assume thatn > 6 and (M, g) is not locally con-
formally flat. Let f be a smooth function with maxy, f > 0. If at a point xy where
f(xo) = maxys f is such that the Weyl tensor is nonvanishing (that is, |Wy(zo)| # 0)
and A, f(xo) =0, then if n =6,

A(S™)

(maxyy f)2/2

(M, g) <

and consequently [ is the scalar curvature of a conformal metric. When n > 6 the

same conclusion holds. If in addition |A§f(x0)‘ / f(xo) is small enough.

Theorem C 1 (Hebey-Vaugon [30]) Let f be a C* function satisfying maxy, f >
0 and A, f(zo) =0 at a point o where f is mazimum. Then
A(S™)

(maxyy f)2/2

(M, g) <

and consequently f is the scalar curvature of a conformal metric when n = 4 or 5,
unless M is conformal to the standard S™. When n > 6 we suppose that |Wy(xg)| = 0.
The same conclusion holds if Af]f(azo) =0, whenn =6 orn =7, and when n = 8 if
in addition A3 f(xzo) = 0 or [VWy(2o)| # 0. When n > 8 the same conclusion holds
if [VWy(xo)| # 0 and A} f(zo) = 0 or when |[VWy(zo)| = 0 if |[V*Wy(z0)| # 0 and
A3 f(xzo) = Ay f(x0) = 0, or when all derivatives of Wy vanish at o if Al f(xzo) = 0
Joralll<m <% —

The next result is the first step to prove Theorems[1.1.7] and [1.1.8]

S
= oy

Lemma 1.4.1 If A\;(M,g) < )‘()2/2 , then S; aﬁ) where S, is given in

I(
9.

Proof. Since A¢(M, g) < f(if)%, from theorems A, B and C, there exists ¢ € C*(M)

with ¢ >0, [}, f(2)¢? dv, =1 and such that

-2 A(S™)
A(M, g) = 24 272 R ) duy < o 1.
f( 79) \/]\/[ (’V@b + 4(7’L o 1) Rggp ) Ug < f(x0)2/2* ( 63)
Now, consider the following pair of functions (wy, ws) € A;"ﬁ, where w; = ¢ (SQCB)_UT
and wy = ( (f“(ﬁ)fl/y v, with % = /5, thus

S}?};B) < Ep(wi, ws)
(€2 + %) far [Veplgdvg + [y (E2alz) + 26Cb(x) + Ce(x)) p*du,
(g2¢o)*

fj;,; §/22 {/ Veol2dvg + / (ﬁa(x) 2\;_ b(z) + 2*c(x)) gﬂdvg}_
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Ash=Za+ 2vafy | Zﬁ*c < ﬁ]{g, it follows that

2*
8/2* /2
Sj(c,ahﬁ) < [(%) + (g) ] )\f(M, g) (164)

B2 a/2” n
a, o) A(S
Sf‘»h”[(%) “(2) ]ﬁ

as desired. Finishing the proof. =

Consequently,

Sx

(a.8)
hence S ;" < o) 7=

We will now prove the second auxiliary result of this section.

N S, : . Ao

Lemma 1.4.2 IfS;h”B) < Flag) = then there exists (u, v) in Af’ﬂ such that Ep(u,v) =
a?/B

S}7h )'

Proof. Let {(um,vm)} C A?’B be a minimizing sequence for S}?‘,{ﬁ ). that is,

Ep (o, V) = |(|V ], [V ) || 34 / (a2, +2bt vy +cv?, )dv, = 45D +0,,(1), (1.65)
M

where 0,,(1) — 0 as m — oo. By the coercivity hypothesis (1.6]), it follows that

{(tm,vm)} is bounded in H. Thus, there exists (u,v) in H such that, up to a

subsequence, (U, V) — (u,v) in H, (Upm, V) — (u,v) in L*>(M) x L*(M), and

(U (), v () = (u(z),v(x)) a.e in M. From Lemma [1.2.1] and ([1.65]), we get

2/2*
- ( / f<x>|um|“|vm|ﬁdvg)

< f(@0)** SVl [Vom )3 + £ (20)** Boll (i, via) 13

< Flw0)? S8 4 F(a0)* Bo|| (i, )2

— flzo)?* S / (auZ, + 26U, vm + cvZ))dvg + 05 (1),
M
for some By > 0. Letting m — oo, we obtain that
1< fla)? SIS + fao)* Boll(u, 0)ll3 = f(20)/*' 8. / (as® + 2buv + cv*) vy,
M

consequently, since S}?};’B ) < W, we get that

0<1— f(x0)2/2*5;1s§?,;ﬂ> < f(20)*¥ Bo||(u, v)||3— f(20)¥* S /M (au?+2buv+cv?)du,,
thus, we have that u # 0 or v # 0.
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We claim that v # 0 and v # 0. Moreover, (u,v) € A‘;’ﬁ is a minimizing for
S](c ,”’. Indeed, rewriting ([1.65), we have

E(u,0) + [(IV (i — )|, [V (0 — 0)) 13 = S5 + 0, (1). (1.66)

On the other hand, since 1 = [, f(@)|tm|*|vm|’dvy, Lemma m gives us

2/2*
1:(/ ﬂmmeWm@+/’ﬂ@mm—uwwm—vwm@+man> o (L67)

Now, note that [, f(z)|u|*lv|’dv, > 0, otherwise, by (1.67) and Lemma [1.2.1} we

would have

1< (/M f(@)|um — u|*vy, — U|ﬂdvg> o + om(1)
< f(ao) STV (i — w)l, [V (v — )3 + 0m (1),
hence,
S < Fa)?* STV = )], [V (0m = 0)DII3 + 0m (1),
But, using the inequality above in , we get

Ep(u,v) = S5 — (1Y (w — )], [V (v — 0)D3 + 0m(1)
< (f(20)* 8718557 — DIV (i — w)], [V (v — 0))3 + 01n(1),

—f(xf)*z/y, we reach that Ej(u,v) < 0, and so v = v = 0, which is a

contradiction. Therefore, [, f(z)|u|*|v|?dv, > 0.

again as Sﬁ;ﬁ ) <

Now, returning to (|1.67) we get

2/2*
1= (/ f(:c)|u]a\v|3dvg + / (@) |y — ul®|vy, — v|5dvg + om(l))
M M
2/2* 2/2*
s(/fummm%%) +fmf”</hm—um%—m%%) o)
M M
2/2*
S(Aﬁhmwwwwﬁ P02 SVt — )]s |V (0 = ) ) + om (1),
asAS§zﬂ)>>O,then
2/2*
SﬁmﬁSﬁm(/f@WMM%%)

+ 81 F0)* STV (= w)], [V (0 = 0) I3 + 0(1).
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By using (1.66)), it follows that
2/2*
By (u,0) < 8757 (/ f@)lul® |v|6dv9)
+ (S}?‘};B)f(xo)Z/Q*S; — DIV gt — )|, | Vg (v — 0) I3 + 0m(1).

Since S}?‘,;B)f(xo)Q/Q*S,jl —1 <0, we have

Ep(u,v) <S(a’3 </ f(@)|ul® |U|5d%>

2*

The lower semicontinuity of Ej, implies Ej(u,v) < Uminf Ey(tm, vym) = Sﬁ;ﬁ ), and

hence 0 < 7 = [, f()|u|*|v|?dv, < 1, now writing up = 77/?'uw and vy = 7% v, we
have
En(u,v
Ep(uo, vo) = (4, 0) < S}?Aﬁ),

2/2*
(Jor f(@lulo[v]?dv,)”
with (ug,vg) € A?’ﬂ. By definition of Sj(f’,;ﬁ it follows that Ej(ug,vo) = S](c ﬁ), SO we
prove that Ej,(u,v) = S}Q’B)TQ/Q*.

Flnally, we can check that 7 = [, f(x)ul* lv|?dv, = 1, for this, we return to

and - Then

2/2*
1< (/ f(x)|u|a|v|ﬁdvg) + f(z0)Y¥ ST [s;f;f)—Eh(u,v)]
M

2/2* 2/2*
=<A/@mwm%¢) +ﬂmW%$%ﬁmk—(LfmwmmwQ ]-

Hence,
2/2*
_ al,, |8
1= ([ st ]
2/2*
+ﬂmW%$%ﬁmb—(/fmmwm%%) ]
M
2/2*
=(4+f@f”&ﬂ$ﬁ)b—(/fmwww%%) ]
M

As f(a:o)2/2*5}?h’ < 8,, then [, f(x)|u|*|v]’dv, = 1.

0< —

Consequenlty, we get that (u,v) € A @8 which proves that (u,v) is a minimizer

for S}({xhﬁ ) m
Now we can prove the main results of this section.
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Proof of Theorem [1.1.6, Since S(a’ﬂ) ﬁ by Lemma |1.4.2| there exists (ug, vg) €

A?’ﬁ such that Ej,(ug,vo) = S( ) Denote by G(u,v) = [, f(z)|u|*lv]’dv, — 1, where

(u,v) € H. Then, there is a Lagrange multiplier A that satisfies

E} (ug,v0) - (¢, %) — MG’ (ug, vo) - (p,¥) =0, for all (p,v) € H. (1.69)

Taking ¢ = ug and ¢ = vy above, we have that 2Ej,(ug, vg) = 2*A, hence A = Z%S](c?;l’ﬁ) >
0. Therefore, by ([1.69)), we have that (ug,vg) is a weak solution of the following system

—Aju+au+bv = S](f,;ﬂ)%—‘ff(x)u|u|°‘_2]v|5 in M, (1.70)
—Agu+bu+cv = S}?};B)g—’ff(x)v|v|5_2|u|°‘ in M. '

It is easy to see that the pair ((25;’0‘,;5))1/(2*_2%0, (QSJ(&ﬁ))l/(z*_Q)vo) is a weak solution
of system [I.I} This completes the proof. |

Proof of Theorems|1.1.1 and|1.1.8 From Theorem B and Theorem C together with

Lemma [1.4.1} it follows that S}?;;’B ) < W Thus the proof follows similar to

Theorem [L.T.6l [ ]

Let us introduce some notations before of the proof of Corollary Let

A?_’f = { (u,v) € H : / f(x v dv, = 1} and S}O‘h@ infaﬂ Ep(u,v).
(u,v)el\f:Jr

Then, if b < 0in M, it is easy to see that E,(|ul, |v]) < Ex(u,v), so if (u,v) € A?’ﬁ

then (|ul, |v]) € A;’ﬁf, and therefore, we deduce that S fahi < S (6) Then, by Lemma

1.4.1,, we have Sfah@ <TG )2/2*. Moreover, we claim that S](cah > (, indeed,

2/2
Bn(u,0) > Coll(uw, vl > C ( / |u|a|v|ﬁdvg)
M

2/2* C
> +\or,,+\B >
> 0(/M(u )2 (o) dvg) 2 T
for all (u,v) € A?fi

Proof of Corollary[1.17.9. Let {(um,vm)} C A ' be a minimizing sequence for thJr

Arguing similarly to Lemma [1.4.2) we obtain a pair (u,v) € A?f such that Ep(u,v) =

S](f’lh’ﬁ, with u # 0 and v # 0, where u,, — u and v,, — v in H*(M). Now, we claim that
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u>0and v > 0in M. Indeed, if we consider G (u,v) = [, f( )*(vT)Pdv, — 1,

there is a Lagrange multiplier A such that
Ej(u,v) - (¢,¢) — MG (u,v) - (p,1) =0, for all (¢,¢) € H. (1.71)
Taking ¢ = v~ and ¢ = v~ as test functions above, we have
2En(u", v ) + 2/ b(utv™ +u v")dv, = 0.
M

Since b < 0, it follows that Ej(u=,v~) < 0, hence u= = v~ = 0. Thus, we con-
clude that v > 0 and v > 0. Considering ¢ = uw and ¢ = v as test functions in
, we get 2E),(u,v) = 2*A > 0, and consequently \ = 2 SfO‘ABJ)r > 0. Therefore,
(2S5 O‘B))l/(z*_2 ,(2 S(afj )Y@ D) is a weak positive solution of system (L.1]), because

the elliptic regularity theory gives us u > 0 and v > 0 in M. |

Proof of Corollary[1.1.10. Here, we assume that b = 0, a = ¢ = %RQ and f > 0.

We claim that
(a 5) a ,8/2* /B a/2*
th (E) + (a) )\f(M,g).

Indeed, from of the proof of Lemma [1.4.1] (see ([1.64))), it is sufficient to prove that

/2" /2"
Sj(f,a};ﬁ) > [(%) + <§> ] )\f(M, g).

In order to achieve this goal, let {(w,, v,)} C A?’ﬁ be a minimizing sequence for S](caf ),

that is,

n—2 o
/M (ivgum\g + |V guml2 + ng (u2, + vfn)) dvg = S37 + 0,(1).  (L.72)

Define w,,, = t,,v,,, where t,, > 0 is chosen so that

Aﬂﬂw%@z@ﬂﬂwf%-

By Young’s inequality, we get that
Yoy + 5 [ f@)
2* Ju

= [ s@lutnlan, < 5 [ f@)
= [ e, = [ g@lonl o,
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Using ((1.73) in , we have
Jar (VU2 + |Von|2) dvg + [, Yoy QI)R (u2, + v2) dv,
(£ (@)t Py )

Sy (|Vum|2 = ] T gt >dvg

SED Fom(1) = £

> ‘
(fM \um 2*dvg)2/2
4+ s 2fM <|Vwm|2 n—2R v )dvg

" (fM )| wn,

> ()T PN (M, g).

2*dvg)

2B/2* 20/2*
On the other hand, it is easy to see that t23/2" 4-¢(26/2)-2 > <\/%> + (\/g) ,

for all t > 0. Therefore,

B/2* /2%
Sj(c?;;ﬁ) > [(%) + (g) ] )\f(M, g).

Thus, Corollary [I.T.10] follows by Lemma |

1.5 Case S"

Let (S™, go) be the n—sphere, where gy is standard metric of S*. Due to the

argument of Escobar and Schoen in |2I] we can prove:

Lemma 1.5.1 Let I' be a nontrivial finite group of isometries of S™ acting without a
fized point on S™. Write (M = S™/T",g), where g is the metric induced by 7 : S" —
S™ /T covering map. Leta,b,¢ and f be functions in M satisfying the same assumptions
of Theorem |1.1.8. Then we have that

S*
Flwo)?

Proof. By hypotheses about IT" it is known that M = S§"/I" is a compact Riemannian

(a,8) (qn
$ed(smm) <

manifold locally conformally flat, which is not conformally diffeomorphic to S™. From
Theorem C, we have A\z(M, g) < A(S")/f(x0)**", and consequently
n S*
Spi (8"/T) < T

as desired. =
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Proof of Theorem [1.1.11. By Lemma and Lemmal(l.5.1} it follows that there exists
(o, o) € H weak solution of system (1.1)) for (M = S"/I", g). Since a,b,c and f are

invariant under I" (and recall that 7*¢g = go and Ay, (uom) = (Ayu)om, for u € C*(M)),
then writing ug = Uy o 7 and vy = Ty o ™ we have that (ug,vy) € H'(S") x H'(S") is a

weak solution of the system

—Agu+au+bv = %f(x)u|u|a_2|v|f3 in S,
25 (1.74)
—Agv+bu+cv = Ef(x)v|v|ﬁ’2|u|a in S,

which ends the proof of the theorem. [ |

Proof of Corollary[1.1.13 As a consequence of the assumptions, from corollary [T.1.12
we immediately have that S(®%)(S") = S,. Let p € C*®(S") be a minimizer for A\(S"),

we can to see that (£p, () is a minimizer for S(®#)(S"). Indeed, notice that

Qeece) @+ (IVaplf+ 2020E) o

(Jun [€0121Co1Bdug, ) (€3¢0 el

So, (£p, ) is a solution of the system

—Agyu 4 M2y, = S(O“’ﬁ)(S")g

. ulul*2jv|? in S",

2 (1.76)
b [v]P~2|ul® in S™

—Agv 4 My = S(a’ﬂ)(Sn)gv

Hence the rescaling ((S(@%)(S"))V/ 2" =2 ¢ (S(@A)(S7))H (2 =2 () is solution of system
(1.1). Therefore, we have infinite positive solutions for system (1.1]), because for zo € S™
fixed, and any p > 1, the functions

2—n

Ppao(®) = (p —cosr) 2 (1.77)

are minimizer for A\(S"), with r = dy, (x, ) (for more details see Theorem 5.1 in [2§]).
On the other hand, if (u,v) is a minimizer for S (S"), with u,v € C*, u,v > 0

and [, uv?dgy = 1. Let o0 : S*\{Py} — R" be the stereographic projection, where

(n—2)/2
Py is the north pole of ", since (07 1)*(go) = U™ g,, where U(y) = (W)
and g, is the Euclidian metric. So, we have
-2
S, = / ([Vul?, + V|2, + %(u2 + v*)]dvg,
s (1.78)

- /n“V[(u o J_I)UH2 +|V[(vo U_l)U]|2]dUge
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and

/ uvPdv,, = / [(wo o U [(voo MU Pdv,, = 1. (1.79)
N n
Consequently, (u,v) is a minimizer for S,, where & = (uo o ')U and v = (voo 1)U,
that is,
« .
—Au = S,—u*'v’ in R",
2 (1.80)
s
—Av = S*Eﬂ%ﬁ*l in R

From Theorem 1.3 in [I4], it follows that

£ (n—2)/2 £ (n—2)/2
w6 (z) wa-a(zo2m) . s

et + |y — vol? g8+ |y — yol?

where yo € R", g9 > 0 and &;, (; > 0 satisfying

Gin(n—2) = S.5:677'¢/,
Gnln —2) = 8. ¢t

arB n(n B 2) 3
§1 Cl - |: )\(Sn) :| )

so, a simple calculation gives us

R
i=(o) Ber)

N
Il
oL
]|
Il
N
™| L
~~
SIS

Therefore, by definition of w and v we get that u = %v. Then & 'u is positive solution

n(n—2) 2%

(up to a rescaling) of the equation —Agw + ““—~w = w* ! in S”. From Theorem

5.1 in [28] then up to a constant scale factor, u is of the following form, u(x) =

2—n 2—n

& (po —cosr) 7z | so, v(x) = (i (po — cosT)72 , where r = dy,(x,x¢) and py > 1. This

complete the proof. |
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Chapter 2

On a Class of Hardy-Sobolev Elliptic

Systems with Critical Exponents

This chapter is dedicated to the study of a class of critical Hardy-Sobolev systems.
To this end, we establish a general existence theorem in which we employ minimization
under constraint, along with an optimal Hardy-Sobolev inequality and a Brézis-Lieb
type lemma with a singular weight. By estimating each term within the associated
energy functional, we derive sufficient conditions for applying the general existence

theorem. Here, our inspiration draws from [35] 42].

2.1 Introduction

Let (M, g) be a smooth closed Riemannian manifold of dimension n > 3. We are

concerned with the existence of solutions of the following Hardy-Sobolev system:

a(x) _ f(z) a—2 :
—Agu+ 5su +a(z)u+ b(x)v = 2*55) Tz Ul 0] in M,
f

—Ayv+ pc(%Lv +b(x)u + c(x)v = () dg(x(,?o)s

(2.1)

v[v[P7ul* in M,

where A, is the Laplace-Beltrami operator, a, b, ¢, a,é € C%¢(M), for some p € (0,1),
rg € M, s € [0,2) and 0,7 € (0,2), p is a nonnegative continuous function such that

p(z) = dy(x,x0) for x near of xy, f € C°(M) with f(xy) = maxy f > 0 and o > 1,

£ > 1 are real constants satisfying a + 5 = 2*(s), where 2*(s) = % is the critical

Hardy-Sobolev exponent.



Next, we would like to mention some works that are strongly related to the system
we propose to study. We start with the Chapter [I] this thesis. The second is the paper
due to Jaber [35], which the author considers elliptic Hardy-Sobolev equation

—Agu+a(r)u = w in M,
dy(z, x0)*
he proves an optimal Hardy-Sobolev inequality in the context of Riemannian manifolds
and a existence result for this equation. Another paper that also motivated this study
was the work of Madani [42], who considered the equation (Yamabe problem with
singularities)

—Ayu+ a(x)u = Rlu|*® % in M,

where a € LI(M), with ¢ > % and R € R. The author proves an Hardy inequality

on compact manifolds and existence result, in particular, when a = 4&—:21)}351 with
R, = R/d,(-, P)¢ for P € M a singular point for R, of order 9 < 2 and R € C°(M). In
addition, we would like to mention some works on coupled systems involving singular
nonlinearities or singular potentials in the Euclidean domain, for example Huang and
Kang 33|, Long and Yang [41] and Mohammed and Yasmina [6].

In the present chapter, our interest is to examine the influence or not of the

scalar curvature for the existence of solutions for the system ([2.1) when we consider a

compact Riemannian manifold without boundary.
Again, we will work in space H = H'(M) x H*(M) endowed with the norm

1/2
1w, ) = (lullfn + ollF)

As it is know 2*(s) = % is the critical exponet of the continuous embedding of
H'(M) in the weighted Lebesgue space Ly, (M) == LY(M,dy(-,29)~°) for 1 < g <
2*(s), which is a compact embedding when 1 < ¢ < 2*(s). Moreover, for any ¥ € (0, 2)
the embedding H'(M) — L?(M, p~?) is compact (see for more details in [42, Theorem

1.3]). We equip L} (M) and L*(M, p~”) with the norm

1 1

|ul? )q (/ u? )2

Ullgs = ———dv and ||ulls v = dv )
s = ( [ gy ) o = (| i

In this context, we say that a pair of functions (u,v) € H is a weak solution of
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(2.1)), if for every (p, 1) € H, it holds

/M (Vgt1, V) + (V0, Vi) + 2 [ + vl + cvi)du,

_ a f(=) B f(=
B /M 2*(s) dg(z,20)* updvy + /M 2*(s) dg(z,x

Recall of the relation (|1.3) obtained by Alves et al. [2, Section 4] when s = 0

vduy.

from which borrowing the idea we obtain an general relation for s € [0,2) which is the

8/2(s) /2 (s)
K = [(%) + (g) ] K(n,s)", (2.2)

where K (n,s) is the best Hardy-Sobolev constant defined by

following:

2d
K(n, s)_1 = inf fRn [Vulde

2 I
uEHl Rn \{0} (f |u|2 (a >2*(s)
Rn |$‘s

and ICfa, 5) I8 defined by

o o e (VP £ |VoP) da (2.3)
(a,IB)_ o a *25 . .
(u)elH B\ (0} ( s ‘“||x}f|5dx> s

When o + 5 = 2*(s).

Throughout this chapter, we make certain broad assumptions about the functions,
which will enable us to derive existence results for the system ({2.1]) using variational

methods. We assume that the functions a, b, ¢, a, ¢, and p satisfy:

(H1) Coercivity condition, that is, there exists Cjy > 0 such that

/M (|Vgu|2 + |V ul* + a(z)u? + 2buv + c(z)v? + ;(%) *+ pé(%)vﬁ) dv, > Cyl|(u,v)|?,

for all (u,v) € H.

(Hz2) The function p satisfies:

(1) dpﬂ =1+ O(dy(x,x0)"), Yo € Bs(zo);

g(xwro)

(i7) p(x) >0, Vo e M\Bs(zo).

For some ¢ € (0,1,) (here i, denotes the injectivity radius of (M, g)), where p € (0, 1).

Thus, our first result in this chapter can be stated as follows:
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Teorema 2.1.1 Let (M, g) be a closed Riemannian manifold of dimension n > 3. Let
a,b,c,a,c and p be functions in M satisfying (H1) and (Hs), with a,é € C*°(M). Let
f be smooth function such that f(xo) = maxy f > 0. In addition if h := w0t

(1) h(z0) < {5525~ Ry(0) + §pg=d 2al0) and (o) = é(wo) = 0, if n > 4;

(2) when n =3, h(xo) < $R4(z0) and h < §Ry in M, or h = LRy and (M (2.4)

.9)
is not conformally equivalent to the standard sphere S3, and that @ = ¢ = 0.

Then, system (2.1) has a pair of nontrivial weak solutions.

The first consequence of Theorem [2.1.1]is the following result.

Corollary 2.1.2 Assuming the same assumptions of Theorem|2.1. 1| with 5 @0t 7m 2*(5)
instead of h. If in addition, we assume that b <0 in M. Then, system (2.1} has a pair

of non-negative nontrivial weak solutions.

Another consequence is when we assume the same hypotheses of Theorem [2.1.1

with @ = ¢ = 0, that is, we obtain that the following system:

© @ _ylyfe-2fyl® in M,

2*5 5) dolee (2.5)

_f@) B—21,, |«
(s )dg(mg)s vlv|P 2 u|® in M,

—Agu+ a(z)u + b(z)v =

—Ayv + b(x)u+ c(z)v =

has a pair of nontrivial weak solutions. More precisely, we have the following result.

Corollary 2.1.3 Let (M,g) be a closed Riemannian manifold of dimension n > 3.
We assume that @ = ¢ = 0. Let a,b,c and p be functions in M satisfying (Hy)
and (7—[2) Let f be smooth function such that f(xo) = maxy f > 0. In addition
if h = a+ QFb + 5 B Ok satisfies:

2*)

n—2)(6—s n—2)(n—4) Ay f(x
(1) h(zo) < %Ry(%) + (4(2n)(2 s)) f(J;(OO ,ifn >4

(2) when n =3, h(xo) < §Ry(x0) and h < £R, in M, or h = R, and (2.6)
(M, g) is not conformally equivalent to the standard sphere S3.

Then, system (2.1) has a pair of nontrivial weak solutions.

For our second theorem, we just assume that the functions a and ¢ are Holder
continuous, and that at least one of the three values a(zg), é(xg) or aa(zg) + 5¢(xg)

is negative, such choice will depend on whether (6 — ) is negative, positive or zero,
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respectively. Here, regarding the functions a,b and ¢, we only need to assume that
they satisfy together with @ and ¢ the coercivity hypothesis (H;).

Now, we can state our second theorem.
Teorema 2.1.4 Let (M, g) be a closed Riemannian manifold of dimension n > 3. Let

a,b,c,a, ¢ and p be functions in M satisfying (H1) and (Hs), let f be smooth function

such that f(x¢) = maxy f > 0. Furthermore, suppose we are in one of the following

cases:
([ a(x0) <0 if 0>,
(1) when n >4, and ¢ «a(zo) + Sé(zo) <0 if =1, (2.7)
[ ¢(z0) <0 if v>0,
([ a(zo) < 0 if 0>~2>1,
(2) when n =3, and { «aa(zo) + Bc(xe) <0 if 6 =~>1, (2.8)
é(xg) <0 if v>02>1.

\

Then, system (2.1) has a pair of nontrivial weak solutions.

Corollary 2.1.5 With the same assumptions of Theorem[2.1.4). If we assume that the
function b < 0 in M. Then, system (2.1) has a pair of non-negative nontrivial weak

solution.

Estimates of the terms in the functional associated with the system for an ap-
propriate test function are a sensitive aspect in the proof of the main theorems. These
estimates are essential to overcome the lack of compactness in these functionals caused
by the critical growth of nonlinearities. We achieved this goal by adopting some ideas
developed in [3, 16, B5]. In this context, we find additional challenges arising from the

coupling of system components, in addition to Hardy-type potentials.

The chapter is organized as follows. In Sect. we present an optimal
Hardy-Sobolev type inequality, important to prove the main results. In Sect. [2.3] we
prove a general existence theorem for system . In Sect. we prove an auxiliary
lemma and Theorem [2.1.1] and its consequences. In Sect. we prove an auxiliary

lemma and Theorem R2.1.4]

2.2 Preliminary

For the purpose of this chapter, in this section, we present some important results.

First, as in [35] Jaber have established that the best constant for the Hardy-Sobolev
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inequality is K (n, s). Precisely, he proved that there is a positive constant B such that

Ju[2 ) o) ) )
/M—d je @0a < K(n, s)[Vully + Bljull, (2.9)

g(:L“,LEO

for all u € H*(M).
Initially, we present an inequality that will be used in the proof of the main

results.

Lemma 2.2.1 Let leaﬁ) be the constant defined in ([2.3)) when o+ f = 2*(s). Then,
there is a positive constant By such that

ul®|v|? 2*%9) -~
([ B a0,) ™ < (Kt IOV VDI + Bollw)3, 210
g\ <L,

for all (u,v) € H. Moreover, (le(w))_1 is the best constant such that the inequality
holds.

Proof. The proof is similar to Lemma of Chapter[]] m

An immediate consequence of this result is the following inequality.

Corollary 2.2.2 Let C = max{(/Cfaﬁ)

|u|a|v|,3 )2*2(5) 5
————dv < C|(u,v)]|*.
(/ g(x7x0)s g = ||< )H

Another result that will be important later on is the following Brezis-Lieb type

)71, Bo}, then we have

lemma.

Lemma 2.2.3 Let u,, — u and v,, — v in H' (M) and let { € L>®(M). Then we have

«a B8 al,,|B — ul — P
/ U(@)|tm|* || dvg:/ Mdvg—f-/ @)l — ul?fom — o) dvg + om (1),
M M M

dy(x, x0)* dy(x, x0)* dy(z, x0)*

where 0,(1) — 0 as m — oo.

Proof. The proof is done in Lemma in Chapter ]

2.3 A General Existence Theorem

In the present section we prove a general existence result, for which we assume

appropriate conditions.
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Initially, consider the functional £} : H — R given by

Ep(u,v) = /M (\VQUIQ + [V ul* + a(z)u® + 2buv + c(z)v? + ;L((;C)GUQ + :((j))w v2> dvg,

and constraint set A‘;f = {(u,v) € H : fM fg;:)(mﬂdvg — 1} )

513@0)5

Note that FEj, is clearly well defined. Furthermore, it is also bounded from below

on A%, Indeed, by the coercivity condition (%) and Corollary [2.2.2) we have

oly|8 () C
Ey(u,v) > Col|(u,v)||* > C (/ LMSCZUQ) > —— >0,
wm dg(2, o) fag)F®
for all (u,v) € A?f Thus, we can consider
ECP (M) = inf  Ey(u,v) > 0. (2.11)

B
(u,v)GA;f

If there exists (u,v) € A?f which achieves the infimum Ks(jc’ﬁ)(: Ks(j;ﬁ)(M)), it

turns out that (u,v) will be a weak solution of the following system

in M,

3 a72|v|,6’
“A (a) b _ K©@P) 2 ulul
gU + g+ a(z)u + b(a)v of O 4 (7, 70)°

: o ol o e T
—Agv+ 5Ly b2+ () = K428
g p(z)Y ( ) ( ) I 2% (s) dg(x7x0)s

(2.12)
n M.

Next, we will prove a general existence result.

Proposition 2.3.1 If f(a:o)Q*%S)KS(?;;’B) < K{, ) then there exists (u,v) in A?f such
that Ep(u,v) = Kéf;;ﬂ).

Proof. Let {(tm,vm)} C Ag‘f be a minimizing sequence for Kio}’ﬁ), that is,

B (ttm; vm) = IVl [Vom] )13

a(l‘) 2 5@) 2 2 2 )
+ / ( Uy, + v,, + au,, + 2bu,v, + cv,, | dv 2.13
w \olr "™ oy o (213)

= K% + 0,(1),

where 0,,(1) — 0 as m — oo. By the coercivity hypothesis (#,), it follows that
{(tm,vm)} is bounded in H. Thus, there exists (u,v) in H such that, up to a
subsequence, (Upm,vy,) — (u,v) in H, (Up,vn) — (w,v) in L2(M) x L*(M), and
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(Um (), v (z)) = (u(x),v(x)) a.e in M. From Lemma [2.2.1f and (2.13]), we get

FfunlTonf ©
1—(/ (@ 70)° dvg)
< (o)™ (K7 )™ 11Vl (V0D + Bol ()] )

< F(20) 7 (K ) T S+ (20) 70 Bol| (v |12

—f(xO)Z*Zm(ICfa’B))_l/ (au2, + 26t v, + cv2,)dv,
M

- f(ZL‘()) 2*2(S> (’Cfa,ﬁ))_l /]\/[ (j(f))g u72n + pé(:j))-y Ui) dvg + Om(l)'

Letting m — oo, we obtain that

< — fxg) T ( faﬁ))_l/ (au® + 2buv + cv?)dv,
M

- s — a(x c(x
= f(20)TO (Ko )" /M (v + b

) dug + f(0) 7 Boll (,v)| 13

Since f(xo)%@f(s(, < K¢
v # 0.

We claim that u # 0 and v # 0. Moreover, (u,v) € Aaf is a minimizing for

K 50},3 ). Indeed, rewriting (2.13), we have

5)» consequently, 0 < [[(u, v)||3 this implies that u # 0 or

(v,

B (u,0) + (19w = )], IV (0 = 0) )15 = K57 + 00 (1). (2.14)
On the other hand, since 1 = | M (f:c(,?o)s Lemma [2.2.3] gives us
8 _ _ B eo)
| = (/ f@lul” |“| LT g +/ flz |“m 4l fom — ol dvg—i-om(l)) L (215)
(,m0)® (r,xq)*
Now, note that [}, RERERE > 0, otherwise, by (2.15) and Lemma [2.2.1) we
would have
1< o fd 7 1
< (z, 70)° Um_u| [— Vg + om(1)
f(l’o)Q (Ko 5) " (Vg (e — )], Vg (0 = 0))II3 + 0 (1),
hence,

K9P < f20) 70 (K ) " KNIV g (i — W), [V g (W = )3+ 0 (1)
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But, using the inequality above in (2.14]), we get

En(u,v) = K57 = (1V (= )], [V (0 = 0) )3 + 0m(1)
< (F(20) 7 (K 5) KL = DIV (= )], [V (0 = )13 + 0 (1),

again as f(xo)i’*%@K(a’B) < Kf, ), we reach that Ej(u,v) <0, and so u = v = 0, which

“lv|fdv, > 0.

is a contradiction. Therefore, f M d “,0

Now, returning to ([2.15)) we get

/() 8 / f(=) ; 2
1 = S Ne d 4y 7 o Ie% . d 1
(/ d (l’ .CCO) |u| |U| Ug v dg(1‘71;0)8|um u| |Um U| ng +0m( )
f(@)ful*[v]” !v!ﬁ 2%) ) / g — [ — o] e
() d .
</ (2, 20)° ) M dg(z,z0)* Vs + om(1)

_2
< ([ Loty
ZL‘[L’O

+ F(00) 70 (Ko 5) ™ IVt = )], [V (0 = ) )+ 0m(1),

then we reach

_2
a,B a,B f($) « e
K< k5 ([ )

4(@, 2o) (2.16)
+ K F(20) 70 (K ) (1Y (i — )], [V (0 — 0) )3 + 01 (1)
By (2.14)), it follows that
Ep(u,v) < K9 (/ LI)u"‘vﬁdv)
) SKFP{ | Gl oo,
+ (K7 f(20) 7T (K2 0) ™" = DIV (i — @), [V (0 — )13 + 0m(1).

Since f(xo)%(@KS;;B) < K,z then

wn ([ _I@) 50 )
Eh(u7 U) S Ks,f (\/];4 m|ﬂ| |U| dUg .

The lower semicontinuity of Ej, gives us Ep(u,v) < liminf Eh(um,vm) =K éo}ﬁ ), and

1
|u| |v|5dvg) T

hence 0 < [}, o wzo)& ul|®|v]Pdv, < 1, now writing ug = (fM o mxo
1
and vy = <fM ol m(fm ) “ 0, we have
Ey(u,v
Ep(uo, vo) = (w.0) < Kif?ﬂ)’

)Ws)

(S 7t
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where (ug,vg) € A?f By definition of Ks(f}’ﬁ) it follows that Ej,(ug,vy) = KS(,C;’B), SO we

2
B 2% (s)
Ep(u,v) (/ f(@)lul*lo] dvg> .
l' Q?O

Finally, we can check that (u,v) € AS”f, for this, we return to (2.14) and (2.16)).
Then

prove that

e ([ At ) )G )7 [ )]
~(L e

bl \ 7
,l‘

o B 2*2(3)
2*(3) S —IK(O‘76) 1— / f($)|u| |?}| d '
+ f (o) ( (a,ﬁ)) s.f o —dg(x, o)’ Vg

Hence,

2 s — o f u Uﬁ 2%“)
0< <_1+f(900)2 @ (Kl )) 1K8(’fﬁ) [ </ 9|3|fﬁo| | " |

As f(x0)2*2(8> (Kias )flK(a’B) < 1, then f,, Twaes Ul |v|Pdv, = 1. Consequently, we

(ﬁ)

get that (u,v) € AS *+» which proves that (u, U) is a minimizer for K [ ]

2.4 Proof of Theorem 2.1.1]

In this section we will prove Theorems[2.1.1jand [2.1.4] First, we state an auxiliary

lemma where we will show that under the assumptions of these theorems we will have

fla) 7O K < K, ).

For this, let § € (0,7,/2) small enough such that f > 0 in Bys(zo) (geodesic
ball centered in zy and with radius 25). We consider the following cut-off function

n € C§°([—26,20]), with n = 1 in [—0,d], 0 <7 < 1 in R, and we define the function

1_s n—2

ue(x):n(dg(a:,xo))( ¢ ) (2.17)

€275 +dy(x, x0)?~

Remark 2.4.1 As is known the function ®(y) = (1 + ]y|2_5)_3%§ (see [3Y]), with

y € R™ is an extremal for

. |[Vul?dx
K(n,s) ™' = inf Jo [V —.
ue H1 (R™)\{0} |u|2*(s)d 2% (s)

(f]R" || I’)
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Lemma 2.4.2 Under the assumptions of Theorem |2.1.1] one get that

Fla)TO K& < K
0 S’f (a7ﬁ).

Proof. In the proof of this estimate we use the ideas of [15] and [35]. According to

the estimates obtained in [35, Section 3] for n > 4 and the test function u. we have

2 P IVe2d
/ IV |2dy — Jor IV ng(x0)62 +o(€?) if n > 5,
/ IV e |?dv, = n Lo (2.18)
M /E IV |2dy — é)Rg(xo)e2 In(e™!) + O(€®) if n = 4,
R4

and for h € C°(M)

h(xo)e2/ D%y + o(e?) if n > 5,

/ hu?dv, = (2.19)
M h(zo)wse In(e™) + O(e2) if n = 4.
Next, we want to estimate [, /%ufdvg for n > 4. First, we have
/ %ufdvg = / %ufdvg + / %uzdvg
M P Bs(xo) P M\Bs(o) P
Q -
- / @ 2dv, + O(e™2), (2.20)
Bs(zo) P
Since a is smooth and by hypothesis a(xy) = 0 we can write for x € Bs(xo)
1

We can also write in normal coordinates the following expansion

R
/ Vdet(g)do = w1y (1 - MT2 + 0(1)7“4) , (2.22)
S§n—1 677/
where \/det(g) denote the determinant of the components of the metric g. So we get

/ %u?dvg _ / (EL o engm)(y) ((Ue o expxo)(y))z /det(g)dy
By ( B;(0) (

o) P ly| + O(Jy|*+#))’

_ (@oexpy)y) (o s
a /35(0) |y\9 (1 + O(|y|#)) (( € pmo)(y)> \/mdy

_ (0saa(wo)y; + 50i;a(w0)yiy; + O(r*)) u. 0 ex 2 /o
B /35(0) w7 (1 + O(jy|")) ((ue 0 exp,, ) (y))*/det(g)dy

noting that for each ¢ = 1,...,n one has

2

ol yil(ue o expy, ) (y))* _
0ii(xo) /m(o) v (1 + O(lyl*)) detlg)dy =0,
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S0, we can rewrite

a 1 yiy; ((ue 0 expy, ) (y))?
uldv, = =0;;a(x )/ . Vv det(g)dy
Lg(zo) p° 9 9 T Bsoy  |y? (1+O(|y|"))

O(r*) ((ue 0 expy, ) (y))? -
*/Bé@ M) R

again since

Yiy; ((ue 0 exp,, )(
\/det )dy
/35(0) lyl? (14 O( |y|

) n+1 2
= wn 1(5” n 2/ L (1 +O(T >> 2(n—2) dr
" 0 (L O() (¢ [ylP)

so we have

[ B bt [ o
v a\To )Wn—1€ 2(n—2 r r
By 0 2 0 70 ( (=3

+/5 o) o (L+ O(r?))dr.
0 70 (14 0O(r#)) (25 + 12 S)T

Now let us calculate the first integral on the right hand side in separate cases: for n > 6

orn=5andf>1,n=5andfd =1, n=>5and # <1, and n = 4. First, for n > 6 or
n =25 and > 1 we have

s prtl g gn+1-0
e”_2/ = dr = 64_0/ ET dt
0 0 (62_8 + 7‘2_5) 2—s 0 (1 + $2— s) —

‘b ) tn—i—l—@
=0 e sy dt
0 (1 + t273) 2-s

= O(e*™).

In the case, n =5 and 0§ < 1 we get

é n+1 é 6
r r
n—2 3
€ / o) dr =€ / e dr
0 TQ ( — — —s

€2 S+T2 s) 2 0 7»0 (62—s+r2—5)ﬁ
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Now, in the case, n =5 and 6 = 1, we reach (for e small enough)
o)

d n+1 2 5
En_2/ " 2(n=2) d?” = 63/ —Ldt
0 7«9 (62_5 + 7«2—5)? 0 (1 + t2fs) 3—s

) 5 g 5
t e t
== 63/ —Gdt+€3/ —bdt
0 (1+t2_5)2*5 5 <1+t2—s)77

1
20(63)+6/ —dt+6/ — = |dt
5 1—|—t2523 t
21 )QES
=0(®) + (e 3/ £9 REE dt
5 1+1t2 S)2s

< 5
=0(ElIn(e™h)) + €0 / L —dt
5 t2ms (1 4t27s)2

=O0(¢In(e ™)) + €0 (/6 t‘3+5dt>

= 0(EIn(e™h)) + €0(e¥7).

Finally, in the case n = 4 we have

) n+1 4 5—0
_ r r
e’ 2/ = dr:62/ —dr
0 1 (s g ) 0 (@)

Thus, for each case above and ( - when n > 4 we get that

0(64 9, ifn>6,
i O(e*?), ifn=>5and § > 1,
/M %U?dvg =9 O(&In(e™)), ifn=>5and 0 =1, (2.23)
O(e®), ifn=>5and 0 < 1,
| O(¢%), ifn=4.
The estimate of || M p%ufdvg is completely analogous. So, we have
0(64 %, ifn > 6,
i O(e*?), ifn=>5and v > 1,
; piu%zug O(éIn(e™Y)), ifn=>5andy =1, (2.24)
O(e®), ifn=>5and vy <1,
0(62), if n = 4.
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/() ug*(s)dvg. First, it is easy to see that

Now, let us estimate [,

dg(w,xg)s
f(x) w2 ®
@ dy, = O 2.25
/M\Bé(xo) dy(z, 10)* ! (7). (2.25)

In coordinate normal we can write the following expansions

* 1 .
f(:l:)n2 (s) (r) = f(zo) + §8ijf(:v0)$’x] + 0(7"3), (2.26)
With that,
/ L““?(S)dvg = [f(x0) / ; sy V det(g)dy
Bgs(z0) dg(x7x0) Bs(0) ‘y’s(EQfs + |y|2fs) P

nsz

1
+ §azjf($0) / \/ det dy + O

Oyl (€275 + [y[>=*) ==
9 n—s,.n—1
- f(xo)wnl/ S o= (1 - Mﬁ —|—O(1)r4> dr
0 TS(GZ s+7a2 s) 6m

A 0 n—sy,n—1
+ f(xO)UJn_l/ € r N (1—{—0(1)7"2) d""“—O(ES),

2n 0 rs(€2—5+r2—s)ﬂ

Taking the variable change ¢ = %, we have

: ! Rg(xO) 2 4
ook [ T (1 " 1 o) ar

+ ths) 5—s

2% (s Zo 2*(s)
= steo) [y B gy [ Iy 4 o

lyl? 6n e |Y[°T

(2.27)

and also,

A n—1 1 ) @2*(8)
J;(f")wnle [ O st [P0y o)

t5(1 4 £2-5) 25

So, by (2.27)) and ( - we reach

fl@)ue ™ 2 (s) fwo) (Af(zo) — Ry(x0) @[> ¢)
/ (z,m0)* (330)||¢H 0 ( D" (R e 2n ( f(xo) B 93 )/R" ly[s—2 dy =+ o()-
(2.29)

Next, let us calculate the quotient

S IV guclPdvg + [, (2* %u2+ b Luf) dvg + [, huldv,

2 )

f(x) 2*(s) 2% (s)
< M dg(ﬂﬁvﬂvo)suE dvg)
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for n > 5 we write the constants k1(n, s) = [g. [y[*|V®|*dy and ka(n,s) = [g. ‘QIZ\QT(;)
so by (2.18)), (2.19), (2.23), (2.24) and (2.29), we get that

Jos IV guel*dog + [, (2*"‘ %uer B >dvg—|—fM hu2dv,

(S) /ﬂ e

(=)  2%(s) o)
<‘fM ‘19(907500)SuE va)

V|32 — B Ry (w0)€ + hwo)||€2[[32€> + o(e?)

2

% Af(x Ry(x ()
= (0750 + e (35 - 252) ka(n.9) + ofe)

K(n,s)™!
f(a0)T®
Ry(zo)  Agf(xzo)) 2k2(ns)IVPI2,  ki(n,s) 2 2 2
(Hatred — etz z*<s>|\¢u2’;&il> = Folro) A2 ) 4 ol )
+ dgs

f(x0) O

Af(z Rg(z0) C (n s)
@HiZ*(s) 1 + 2*2(5) <2nf((x(()))) B gﬁno > qu.ﬁ *(s) 62 + 0(62)
dg:s 3;<:>

so, we reach that

Jus [V guel?dvog + [, (2*0(‘5) [jiguf - 2*6(3) p%uf) dvg + [, huldu,
2
(fM dg xzo)s z*(S)dvg) o
_ K(n,s)™ i K(n,s)™ (Rg(xo) _ Agf(x0)> 2ks(n, s) 2
Flan)™@ fla)m@ \ O 2nf (o) ) 2 (s) |2l

K(”a S)_l kl (TL, 3)
()7 6nl[VOII7.

192117 (g

Ry(z0)€® + h(xo) Val2, ) 2 o(€?).

Now, using that (see [35, Section 3|)

ki(n,s)  Jga lYPIVOPdy  n(n—2)(n+2—s)

[ N P2, o 22n—2-35)
ka(n, s) _ S Y22 Wy _ n(n —4)
12117 @12, 2n—2)2n—2—s)’
19)) 2
V9L — (0205,
12]] 2o
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then for n > 5 we have
S IV guelPdvy + [y, (585 502 + 525 Su2) dvy + [, hdy,

(fM - (f(m) )suz*(S)dvg> 27 ()
_ K(n,s)™! {1 _ (n=2)(n—4) Agf(ajo)}
F(z) 7@ 420 —2~-3s) f(xo)
~ K(n,s)™' ||9]]7 {(n —2)(6—5)

F(x0) T 12(2n — 2 — s)

Similarly for n = 4 we get

Ry(x0) — h(xo)] €2+ o(e?).

Jos IV guelPdog + [, (2*‘” %uf + szs) p%uf) dvg + [, huldv,

F@)  2%(s) 7 (5)
( M dg(ﬂﬁ(vﬁ’?)o)suE dvg)
—1
- K(4"l + ws(6h( ) Fy(0)) EIn(e ) 4+ o(eIn(e™)).
f(xg)T®  6f(xg)>

2* (s)
dg s

As h(zg) < %R (x0) + (?;j)_(g__j)) Ajﬁ(’;(:)‘)) for n > 4, then for e small enough, we

reach that

[ 1V guel2dv, + [, (2:;;) Ll + 52 p—u2> dv, + [, hidv, _ K5

< fir uz*(s)dvg> " f(xo) 2ol

M dy(z,x0)

Therefore, for € small enough we have that
Ep(&ue, Cue) 2
(fur 72y el Cud o, ) ™
G C2 S [V guelPdvog + [, (2*0(‘5)% 2+ 2*65)%1@) dvg + [, huldu,

o
a/p 2*(3) x *(S) 2% (s)
(f ¢P) (Md (za0ye Ue dvg>
]CS
a’ﬁ
< Kon_

f(20)T®

*

1/2%(s)
soif 7 := 1§ ue|*|Cue Bdv then (67 u,, (7~ tu.) € A”) and
M d ( g s.f

E Ue, GUe ICSa,
K0P < By (g7 ue, (M) = h(f L < )

( M d | \Cue\ﬂdvg) =@ f(xo)ws)'

From now on we will estimate the terms of the functional in the case which n = 3.

Since in this case a = ¢ = 0 and a, b and c satisfy the hypothesis (#;) and (2.4)) then
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—A, + h is a coercive operator. Indeed, given any u € H'(M), by (H;) for the pair

(vau,v/Bu) we have

/M 1V ul*dv, + /M {Q*L@a(x) + %b@:) + Q*fs)c(x) Wdv, > Collull3.

a + 2*(5 vaBy | 2* 56 it follows the claim. With that, there exist G,, :

As h = 1®
M \{xg} — R the Green function this operator. So,

—AyGoy + WGy = sy,

where ¢,, is the Dirac mass at xy. It is well known that for x close to xy we can write

Gao(z) = m + m(xg) + o(1).

Next, we will use Druet’s idea [16]. By using the cut-off function n, we can write

G, as follows:

n(d9<x7 1:0))
Gao(2) = —5 7=~ : 2.30
w2 0(.23) dg<£L',£C0) + wh@j) ( )
where wy, € C22(M\{zo}). In M\Bs(z¢), we have
—Aywp, + hw, = A /R R N — (2.31)
g 7\ dy(z,x0) dy(x, x0)
And, in Bs(xg), we write in normal coordinates
Or(In(det(g))) 1
—A hwy = — —h . 2.32
g'n T On 2d,(z, x0)? dg(z, ) (2:32)

In particular, we have that the right side of the above equation is in LP(M) for all
1 < p < 3, so by standard elliptic theory, w, € C%?(M) N H*?(M) N C%*7(M\{xo})
and moreover wy () = wam(xg) (for more details see Druet [16], Section 2]). Since we
assume that or h < Ry and h(z) < gRy(20) or h = $ Ry and (M, g) is not conformally
equivalent to the standard sphere S", then in any case we get that wy(xo) > 0 (for
more details see [43], the second case follows from the positive mass theorem).

In this case, we consider the test function

Ve = Ue + e%wh. (2.33)
T 2*(s .
Now, let’s estimate [, (|Vyvc[* + hv?)dv, and [, o xz)o)s Jdv,. First, from [35,
Section 4| we have
/ (|Vyve|* + hv?)dv, = |V 2dy + ewpwy, (o) + o(€). (2.34)
M Rr
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So let us focus on estimating the other integral. As s € (0,2) then 6 — 2s > 2 and

therefore there is a positive constant C'(s) such that for all y, z € R we have
[ly + 272 = [y = (6 = 2s)yzlyl" | < C(s)(ly"=" + [2"7).

With that, we can write
f(z) 2 () / f() L \6-2
————> ¥y, ——t(u, + e2w Sdv
/M dy(z,00)° © M dg($a$0)5< ) !

f(x) 1 6—2 3_
= ————(ue + €2wp)’ Fdv, + O(e°%)
/Bs(ﬂﬂo) dg(J:v o) " !

B / f)[ud +
Bs(zo) dg

~ 4—2s 2 3—s 6—2s
+ C(S)/ f<x>[ue CWp, +€ "ll}hl ]dvg + 0(63_8).
B(;(wo) dg(xa xo)s

~—~

6 — 25)uP 252 wy]

$’x0)s

dv,

—~

Let’s calculate:

° W o | |6 2s
/]35(960) dy(z, 20)* dvg = f(wo) /]R3 |yl dy + o(e),

o/ f(@)(6 — 2s)uy~ 2ngwhalvg =€(6 — 23)f(950)wh($0)/ |@|5_28dy + o(e),
Bs(zo)

dg(z,z0)* re [yl
f(ar)[u4—2s€w}2l+€3—s|wh|6—23] /6 u4 2s
° € dv, = O(1 ———dv, + o(e o(e).
Ag(mo) dg(x, 10)* J @ o dy(z,20)° 7 (€) = ol
Since —A® = (3 — s)% in R? then
5—2s
/ id dy = (3 — s)_1/ ~A®dy = (3 —5)"" lim 0,®do = (3 — 5) " Lwy.
RS |Y[* R3 =0 JaB,(0)
From the calculations above we reach that
f(l') 2*(s
— . Wy, = Flao)|| @] 2*( )+ 2w f (zo)wp(z0)e + ofe). (2.35)
v dg(, 0)

Hence, by ([2.34) and ([2.35)), we get

Ju(IVgvel* + hod)dv, — K(3,5)" | Zwawn(zo)

= —————"c+o(e)
e : N
A OARIS 20) T D% i,
(fM dq sz)s Ve > dvg f( 0) H Hng’(s)

Since wp(xg) > 0. So for € small enough (as in the case n > 4) it follows that

By (v, Co, ks
K}fxs’ﬁ) < Ep(67 e, (1 M oe) = h(§Ve, Cve) e

<fM dq( )5 EUE\ |CUe’ﬁdvg> *(s) f(x0)2*<s>
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1
where 79 = (fM dg(’;(’;)o)s 2°(s )> “ that is, (€15 e, ¢T3 0e) € Ag?;ﬁ). Which completes

the proof of the lemma. m

We now have the tools for the proof of Theorem

Proof of Theorem [2.1.1]. Since by assumed assumptions we have that f(:zcg)?*i@Ki;’B) <

ICfa ) then from Proposition [2.3.1] there exists (ug, vy) € Aa’ﬁ such that Ej(ug,vg) =
K . Denote by G(u,v)

fM a xwo)e ul|®|v|Pdv, — 1, where (u,v) € H. Then, there

is a Lagrange multiplier A that satisfies

Ej,(uo, vo) - (¢, ¥) — AG'(ug, vo) - (p,9) = 0, for all (¢,1)) € H. (2.36)

w2 K%Y > 0.

2+ (s)

Therefore, by ([2.36)), we have that (ug,vg) is a weak solution of the system

Taking ¢ = ug and ) = vy above, then 2Ej, (ug, vg) = 2*(s)A, hence A =

“Agu+ 2Dyt au+ b = K%V 20 f(pyululo v in M

oo? of 20 ’ (2.37)
~Agv+ 22 = K02 f@yolol*lul® in M.

It is easy to see that the pair ((2K§?;;5))1/(2*(5)_2)u0, (QKSJ‘;B))U(T(S)_”UO) is a pair of
weak solutions of system (2.1]). This completes the proof of the theorem. [ |

To prove that from the hypotheses assumed in Corollary we obtain a positive

solution of the system (12.1)), let us consider the constrained set
AP ::{u,v EH:/Lx)u*aerﬁdU:l}
s, f,+ ( ) Mdg(flf,l’o)s( ) ( ) g

Kﬁlﬂl = inf  Ep(u,v).

(uw)eA®?

Note that, if b < 0 in M, it is easy to see that Ej,(|ul,|v|) < Ex(u,v), and that
if (u,v) € AZY then (Jul,|v]) € AN,
Then, by Lemma [2.4.2) we get that f(xg )2*( >Kj(cahﬁ+) < K{, 5)- Moreover, we claim that

Kéhﬁ > (), indeed,

and

therefore, we deduce that K fo;ﬁ < K (aﬂ )

2

u,v u, v)||? L MU+O‘U+5U 2%(s)
Eh(,)ZC’oH(a)HHZf - (/Mdg(x,xo)s( ) ( )dg)

> —— >0,




for all (u,v) € Ag"’f’i.

Proof of Corollary[2.1.2. Let {(tum,vm)} C AZ’fﬂ,Jr be a minimizing sequence for Kj(f;ﬁz

Argues as in Proposition [2.3.1, we obtain a pair (u,v) € A?ﬁ+ such that Ej(u,v) =

K}?‘,{ﬁ, with u # 0 and v # 0, where u,,, — u and v,, — vin H'(M). Now, we claim that

u>0and v > 0in M. Indeed, if we consider G, (u,v) = [}, %(u*)a(vﬂﬂdvg —1,

,1‘0)

there is a Lagrange multiplier A such that

Ej(u,v) - (0,9) = AGY (u,v) - (0,4) = 0, for all (p,¢) € H. (2.38)
Taking ¢ = v~ and ¢ = v~ as test functions above, we have

28, (u",v7) + 2/ b(utv™ +u v")dv, = 0.
M

Since b < 0, it follows that Ej(u~,v~) < 0, hence u~ = v~ = 0. Thus, we conclude
that w > 0 and v > 0. Considering ¢ = u and ¥ = v as test functions in (2.38]),
we get 2B (u,v) = 2*(s)A > 0, and consequently A = LK}?A@F > 0. Therefore,

()
((ZK}?‘};Q)U(Z*(S)*Q)U, (QK}?‘Aﬁ)l/(Q*(S)*Q)v) is a pair of non-negative weak solutions of
system (2.1)). [

2.5 Proof of Theorem 2.1.4

In the present section, we prove our second theorem. Here we assume only that a
and ¢ are functions Holder continuous. Consequently, the estimation of singular term
of functional Ej, will be different, where we use the same test function of previous
section in the case n > 4. Therefore, under the assumptions of Theorem [2.1.4] we will
prove in the following auxiliary lemma that f (mo)%@Kg}’ﬁ ) < Kio5)-

Lemma 2.5.1 If we assume the same assumptions of Theorem|[2.1.4] Then we have

fla)TO K < K
0 S’f (a7ﬁ)‘

Proof. Using the same test function (2.17)), we have

K < Bu(er " ue, (77 lue) = Ep(&ue, Cue) 2

x 2% (s)
(fM dg(];(@)o)s £Ue|alcuelﬁdvg)
Joy IV gue*dvg + [, (%@%uf + Q*Liuf> dvg + [, huZdv,

_ (s) 7
=k 04, 2 )

f(x) 2*(s) 2% (s)
<fM dg(,70)° te d?}g>
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5/2*(5) a/2*%(s 2 2% (s) 1/2*(5)
where k(a, 3) 1= [(%) +(£) /1 )}, (%) = gand 7= <fM ’;(g:':()gc oL dvg> :
From [35], Section 3| we have that

Y Vo|2d
/ Vo |2dy e |y’6| 9 p (w0)e? + o(e2), it n > 5,
n
/ Vguel*dvg = f IVo|*dy — —R o(20)e2In(e™Y) + O(e?), if n = 4, (2.39)
M
/R IVO|*dy + O(e), ifn=3,
R3
and
h(o) / Bdye? + o) if n > 5,
9 B n
/M PE)ucdvg =4 h(ag)wse In(e™) + O(2) if n = 4. (2.40)
O(e), if n=3.
As already calculated in Lemma we have
(
Fa® F@o)|@172% 5, + O, i n >4,
/ = , o (2.41)
(z,70)* F(xo)| | QSiS)(RS) +0(e), if n=3.

\

Now let us estimate [, %ufdvg. So, for n > 4 we have that

/ %ufdvg = / %ufdvg + / — Edvg
M P Bs(zo) P M\Bs(x0) P

= / %ufdvg + O(" ).
B(;(J:()) Y

As in normal coordinate we can write \/det(g)(y) = (1 + O(|y|?)) and by hypothe-
sis p(expzo( )) = |yl + O(|y[*™*) in Bs(0) (¢ is small enough), since I? denotes the

I 1+t —L—dt, then we get

8.2 (@ 0 exp,,) (1) ,
uzdvg = Ue © €XP,, JVdet(a)d
— /B (Cl O eszo)<y) ((Ue o eprO)(y))Q /det(g)dy

s [y (L+O(Jyl"))

. (e 0 expy, ) (1))? b(y) o
“(Wé@wmrumw»@+émmwu+mmm“g Pro)(¥))dy

- (e 0 exp, ) (1))? 5s) + Oyl
(W/ o WP @féwmwuomw>

1 _
=i [ oo sy o)

(4 [yl 5

62—6 + 0(62_0),

((ue 0 expy, ) (y))*dy

a<x0)wn 1 n— 2+9 ]
o s 2oz

2—s
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]i‘s 0 po(e), if 0>1
a o ‘
y gusdvg =9 a(zo)woeIn(e) + O(e), if 6 =1
O(e), if §<1.

Similarly,

(xo)wgl ;7 277—1—0(627"’), if v>1

c 9 2—5 275
/M Euedvg =\ lmo)waeln(e™) +O(e), if y=1
O(e), if y<1.

Hence, we can estimate the quotient

Jur IV guedvg + [, (555502 + 555 mu€> dvg + [, hudv,

p

f(x) 2*(s) 2*(5)
<fM dg(z,%0)* Ue va)

In fact, according to the above estimates, for n > 4 we reach

s—0 n—=24s—vy

n—2+s—0
HV@HZ aa(l“o)wn L] s 2- 0_'_0( 2— 9) + ﬂC(fEO wn 112(n 2; 2—’y+0(€2—7)

2%(s)(2—s) 2(n 2) 2%(s)

* s 2

K(n, s) !

(2.42)

(2.43)

(2.44)

(2.45)

= 2+ aa(xe)Ci(n, s, f,0)€0 + Bé(x0)Ca(n, s, f,7)e¥7 + 0(e27) 4 o(277),

f(x0) T

W — 1f(170)_2%(s) pogen o

I,.* and Co(n, s, f,v) =
2%(s)(2 — S)H@Hi?(S) 2n—2)

where C(n, s, f,0) =
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2

~3 (9 n=24s—y

2*(w,)1(21f(90(;)”¢”2 I,,%,; are positive constants. So, for n > 4 we get that
S — S 2*(5) 2 s

Jus IV guel?dvg + [, (2*‘55) Sul + 2*5(5) %uf) dvg + [, huldv,

p
“(s) , \T@
(fMd (z,20)" Ue dv9>

( _
o)~ 4 G(wg)aCi(n, s, f,0)€2 + o(e29), if 0>,
fw0) 2 ()
K(n,s)"!
— 3
fl=o) 2%(s)
K(n,s)~1
- _2

\ f(=zo) 20

Since for n > 4, a(zg) < 0 if 0 > v, or aa(xg) + fé(xg) < 0if 6 = ~, or é(xy) < 0 if

+ [a&($0) + 66($0)]Ol (na S, f7 9)6279 + 0(6279)7 if 0= Y5 (246)

+ E<x0)/802(n7 S, fa 7)62_7 + 0(62_7)7 if 0 < v-

~ > 6. Then for € small enough we reach that f(xo)%(s)[(s(f}’ﬁ) < K{, p) forn = 4.
Now, when n = 3 we have

S IV guelPdog + [, (2*04 puz + Q*fs)%uf> dvg + [, huldv,

2

p
flx) . 2%(s) ()
(fM dg(x,x0)° e dvg)

¢
KEDL | Gag)aCl(s, £,6) + o(e?), it 0> 1and 0> 7,
Flxg)2*(®)
KDL () gen(e!) + ofeln(e ™)), i 6=1>7
flao) F*E)
PO 4 6(w0) BCas, f,7)*7 +0(€7), if y>1andy>0
fz0)2"(®)
= KO ) () + ofeln(e ), i y=1>0,
flao) F*E)
—K(B,i + [Oéd(l’o) + ﬁé(l'o)]cl (57 fv 9)62_9 + 0(62_0)7 if 0= v > 1,
f(xo) 2" (®)
Koy [ + S8l weln(e ) +oeln(e ), i 9=7=1
f(x0)2*(®)
K(3,£ +0(e), if 6<1land~y<l,
\ fz0)2"(®)
wa f(x 2 (s) % wa fzo) TG 2( ) 1+i;7
where Cl( f, ) _ 5)2(];( E;HQH%*( [222 and 02(37f7 7) = 2*(5)2(];( 2))||q>||22* )[222 are
s) —s L (s -

ds dg,s

positive constants. As for n =3, a(xy) < 0if § >y and 6 > 1, or aa(zg) + Bé(zo) <0
if 0 =~ >1, or ¢(zp) <0if v >0 and v > 1. This implies that when n = 3 and € is
small enough we get f(:vo)%@)Ks(’o}’ﬁ) <Kl ™

Proof of Theorem [2.1.). Arguing in the same way as it was done in the proof of Theo-

rem we establish the existence of a pair of nontrivial solutions for system ({2.1]).
|
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Chapter 3

On a Class of Quasilinear Elliptic

Systems involving Critical Growth

In this chapter, inspired by ideas from Chen and Liu [II], Demengel and Hebey
[12], and Druet [I5], we establish the existence of solutions for a class of generalized
coupled elliptic systems involving the p-Laplace-Beltrami operator. Here, we focus on
the case where p # 2, as we have already studied the case of p = 2 in Chapters[I]and [2|
The main tool used here is the Mountain Pass Theorem. We encounter an additional
difficulty due to the lack of the Hilbert space structure of H'?(M). This is because if
Uy, — uw in HYP(M), it does not necessarily hold that |V u,,|P72V ju,, — [V,ulP72V u

in H(M).

3.1 Introduction

Let (M, g) be a smooth closed Riemannian manifold of dimension n > 2. We are
concerned with the existence of solutions of the following Hardy-Sobolev system:

o f@)ulul*?v)”

p*(s)  dy(x, z0)*
B f@)ofv]’?|ul
p*(s)  dy(z,0)°

—Apgu+ a(@)|ulP~2u + b(z)[(p — DulP~ + [ ~Jv =

Y

(3.1)

— Ay g0+ b()[(p — D[0P + [uP~u + e(x) [o]P~?0 =

)

where A, , is the p-Laplace-Beltrami operator, p € (1,n) with p # 2, a,b,c € C%¢(M)
for some ¢ € (0,1) with b =0 when 1 <p <2 29 € M, s €[0,p), f € C®°(M) with



f(zo) = maxy f > 0 and « > 1, § > 1 are real constants satisfying o + f = p*(s),

_ p(n=s)
(n—p)

where p*(s) is the critical Hardy-Sobolev exponent.
Next, we will present some works that, along with the previous chapters, moti-
vated us to study the above problem. First is the paper by Druet [15], in which the

author considers a generalized elliptic Yamabe-type equation
—A, gu+ a(@)|ufP?u = f(z)|ul”" ?u in M,

the author proved some existence results for this equation on compact manifolds. An-
other paper that also motivated us, was the work of Chen and Liu in [I1], who inves-
tigated the Hardy-Sobolev equation

|u|P" () =2y,

_Apgu—i—a(x)u:f(x)m in M

They proved a Hardy-Sobolev inequality on compact Riemannian manifolds and an

existence result for this equation. Two sufficient conditions (when p # 2) which both

of the above-mentioned works present ( see Druet [I5] for s = 0), the following:

3(n +2 — 3p) Af(w)
Bp—s)  flwo)

2
(17) 1 < p < min {2, %} and a(zg) < 0.

(1) 2 <p < +/nand 0 < Ry(xg) +

Here in this chapter, in particular, we were able to improve the estimates made
by them in their results, and thus expand the interval for p # 2. More precisely, we

improved the conditions for:

9
(W2<p§n§;

(i) 1<p<2foralln >4, and 1 < p <+/n when n = 3,2;

because \/n < "T*Q, for all n > 5, moreover, when n = 4,3 or n = 2 we have that,

\/71:2232472,%:%< 3and§:¥< 2, respectively.

Now, before presenting our main results, we need to introduce some notations
and definitions. Throughout this work, we will denote by H'P(M) the Sobolev space
of all functions in LP(M) with one derivative (in the weak sense) in LP(M). We equip

H'""(M) with the standard || - || g1, —norm, that is, [|ul[},., = [[Vul]? + [Ju|?, where
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|| - |l denotes the norm of the Lebesgue space LY(M), whenever ¢ > 1. The norm of
L9(M) x L*(M) will be defined by ||(u,v)]l, = (|lufl2 + [[o]|2) """

Here, we will work in the space H? = H'?(M) x H'?(M) endowed with the norm

_ P 1/p

1 o)l = (lull, + ollGn,) "
: * _ p(n—s)
As is know p*(s) = o=
H'?(M) in the weighted Lebesgue space Ly, (M) := LYM,dy(,29)7°) for 1 < ¢ <

is the critical exponent of the continuous embedding of

p*(s), which is a compact embedding when 1 < ¢ < p*(s), see [1I, Lemma 3.1]. We
equip Ly (M) with the norm

1
|ul® )
Ullgs = dv .
H ”q’ (/]\/[ dg($7l‘0)s J

In this context, we say that a pair of functions (u,v) € HP is a weak solution of

(3.1)), if for every (p,1) € HP, it holds
/ (<|Vgu|p_2vgu, Vyp) + <|ng|p_2vgva V) + a(:ﬂ)|u|p—2ugp + c(m)|v|p_2m/}
M

+0(@)[(p = DIul™ + [0 + (p — Dol + [ufuy ) dv, - (3.2)

[ e @ . o )
_/Mp*(s)d (2, wo)* . 2’U|Bu¢dvg / (x,20)* ‘U’ﬁ “lud vipduy,

when 1 < p < 2, we assume b = 0.

Recalling the relation (1.3 established by Alves et al. [2], which can be easily

obtained when p # 2 and s > 0, it is as follows:
’Cl()j,,ﬁ) = R(a,@)K(n,p,s), (33)

B/p*(s) a/p*(s
where k(a, f) = [(%) + (g) /P )1 and K(n,p,s) is the best Hardy-Sobolev

constant defined by

. [VulPd
K(n,p,s) = inf Jon [Vl )

ueH»(R™)\{0} ( [, @ dx) ol
Rn

|z

and ICfO’f g) 1s defined by

o (IVulP 4 [Vol?) d

inf Jor (Vb + [Vol7) do (3.4)
1,p n wle|v p* (s

(ww)E[H P (R)]\{0} < Jron L |Bd:c> Q

|z|®

p7s —_—
Kiap =
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Throughout this chapter we assume some very general hypotheses about the
functions a,b,c and f that will allow us to obtain some existence results for system
through variational methods. We assume that the functions a, b and ¢ are Holder
continuous and f is a smooth function on M. In addition, these functions satisfy the

following coercivity condition, that is, there exists Cy > 0 such that
/M [IVgul” +VgulP + a(x)|ul” + blz)uv(julP~2 + [0[P72) + e(z) o] dvg > Coll(w,v)|I,  (3.5)
for all (u,v) € HP, where b =0 when 1 < p < 2.
Our first result in this chapter can be stated as follows:

Teorema 3.1.1 Let (M, g) be a closed Riemannian manifold of dimension n > 5,
p € (2,n) and s € [0,p). Let a,b and ¢ be functions Holder continuous in M satisfying
and f smooth function on M such that f(xg) = maxy f > 0. If, in addition,
2<p< "T” and

3(n+2—3p) Af(zo)
Bp—s)  f(zo)

Then, system (3.1) has a pair of nontrivial solution.

0< Rg(xo) + (36)

A consequence of Theorem [3.1.1] is the following result.

Corollary 3.1.2 Suppose the same assumptions of Theorem[3.1.1. If, in addition, we
assume that the function b < 0 in M. Then, system (3.1) has a pair of non-negative

nontrivial solution.

For our next theorem, we consider b = 0 and we will write h := —2~a + —2—c.
Thus, we can state the following result.
Teorema 3.1.3 Let (M, g) be a closed Riemannian manifold of dimension n > 2,
p € (1,2) and s € [0,p). Let a,b and ¢ be functions Holder continuous in M satisfying
(13.5) and f a smooth function such that f(xg) = maxy f > 0 . If, in addition, we
assume that h(zg) < 0. Then, system (3.1) has a pair of non-negative nontrivial

solution, when n > 4, and the same conclusion holds when n = 2,3, for p < \/n.

The results will be proved using the Mountain Pass Theorem. A tricky part is to
estimate the minimax level to overcome the lack of compactness caused by the critical
growth of the nonlinearities. We achieved this goal by following some ideas developed
in [I5] IT]. Here, we encounter additional difficulties due to the strong coupling of the

system and the involvement of the p-Laplace-Beltrami operator.
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The chapter is organized as follows. In Sect. [3.2 we prove a Hardy-Sobolev
type inequality, important to prove the main results. In Sect. [3.3] we prove a compact-
ness theorem for (PS) sequence. In Sect. we estimate the minimax level. In Sect.

3.5 we prove the main theorems.

3.2 Preliminary results

In this section, we prove some auxiliary results Specifically, we establish a Hardy-
Sobolev type inequality where the best constant is (ICfi B))_l’ although it is generally
not the optimal constant (as we will discuss shortly). We also present a Brézis-Lieb
type lemma. For this purpose, we mention the work by Chen and Liu [II], where
the authors established that the best constant for the Hardy-Sobolev inequality is
K(n,p,s). However, this constant is generally not optimal. More precisely, for any

given € > 0, there exists a positive constant Be such that the inequality

p

|u|p*(5) P*(5)
(/M deg < [K(n,p,s) + ][ Vgull} + Bellull}, (3.7)

holds for all w € H'?(M). But in general the inequality above does not hold for £ = 0
when p # 2 (for more details, see [I1, Theorems 1,6 and 1.7]).
Initially, we establish an inequality that will be used in the proof of the main

results.

Teorema 3.2.1 Let IC%’(;SB) be the constant defined in (3.4) when a+ B = p*(s). Then,
giwen any € > 0 there is a positive constant B. such that

p

uavﬁ p*(s) s _
([ B an,) ™ < () + 0Tl 0Dl + B0l (59
g\

for all (u,v) € HP.

Proof. Given u,v € H" (M), since p*L(s) + p*i(s) = 1, by Holder’s inequality,

|u|®[v]? [P () a/p*(s) [P () B/v"(3)
[t < ([ ) (] )
M dg(I,ﬁL‘O)S M dg(QT,ZE())s M dg(ZE,LL'Q)S

that is,

p
|u|*|v|? P*(s) » a/p*(s) » B8/p*(s)
([ 2t )™ < ()™ (1ol) ™
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On the other hand, by Young’s inequality,

a/p*(s) B/p*(s) o B
() () < el + e ol

p*(s) p*(s)
Choosing € = k(a, B)_lp*(is), by a simple calculation, we get
[0 € — B E—a/ﬂ — H(a,ﬁ)_l,

p(s) p*(s)

and consequently,

p

Mdv 7 (5) < H(Oé 6)71 (Hqu + Hv”p > (3 9)
Md9<x?x0)s 7 o ’ p*(s),s p*(s),s ] ° .

Using Hardy-Sobolev inequality (3.7]) for arbitrary € > 0 in (3.9)), we can find B. >0
such that

ful*[o]? |\ 7@ »
( /M d_dvg) <n(o, B K (n,p, 5) + enlon A(IVul, Voo |12

g<x7x0)s

+ (e, B) 7' Be| (u, )5

Therefore, we get that

p

Jul*[v)” e s
(/Md N < (K22 5) 7 + el (IVgul, VD2 + Bell(u, )
g )

for all (u,v) € H?, where B. = k(ar, §)'B.. m

An immediate consequence of this result is the following inequality.
Corollary 3.2.2 Let C. = max{(K{ ;)" + ¢, B:}, then taking ¢ = 1, we find C' >0
such that

p

it )
————dv < C|[(u,v)]||?,
([ )™ < clwo

One question that arises is: is the constant (Kfjﬁ))*l = k(a, 8) K (n,p,s) op-

for all (u,v) € HP.

timal? The answer is yes for the case p = 2, while for the case p # 2, the answer is
generally no, as will be proved in the following proposition.
Proposition 3.2.3 Let (M, g) be a smooth closed Riemannian manifold of dimension

n>4, xgeM,2<p<™2ands e (0,p). If we assume that Ry(x¢) > 0. Then the

following optimal inequality

ullel” L N e
([ 2 a0,) ™ < () 19l Wbl + Bl (310
is not valid for all (u,v) € HP.

70



Proof. Suppose by contradiction that (3.10) holds. Let ¢ € H'*(M)\{0} and write
= &y and v = (g, where £, ( € R, will be chosen later. Thus, by (3.10]) it follows
that

) p*(s) o)
e ([ FA )™ < @ {0 IVl + B} - )

9(]771:0

p
Note that choosing &, ( such that (%) = § then gpﬂ;gp( = k(a, B) and so by (3.11)),
(ga¢P)Pr(s)
we get that
P

|p|P"(® P ()
(/Mmd < K(n,p,8)IVellh + wle H)Bliglly. (3.12)

Thus, since ¢ is arbitrary we have a contradiction, because (3.12) is not valid. =

Remark 3.2.4 In the case s = 0, based on the argument developed in the previous

prove, the optimal type inequality (3.10)) is valid when the optimal inequality

([ 1elan) ™ < Kol + Blell, e € 20

15 valid and it is not valid when above inequality s not valid. Details about the above

inequality can be read at [28, Chapter /.

Another result that will be important later on is the following Brézis-Lieb type

lemma.

Lemma 3.2.5 Let u,, — u and v,, — v in H"P(M) and let £ € L>®(M). Then we
have

. 2(:6) 8 8 B
? ———— uw|*om|” — w0 = |y, — ul“ v, — v]7| dv, = 0, (1);

(i) / Ut (2 + [0 2) s, — / oo (ulr2 + |or2)d,
M M
— [ 1)t = )0 = )t = P+ o = ol )ty + 0 (1), when p € (2,m),
M
where o, (1) — 0 as m — oo.
Proof. In the proof of (i) we follow the idea of [I0]. We start by writing the following
a B e _ |8
[ ol [ ol
m o dg(z,20) M dg(, T9)*
g('%.) a B8 _ B B « «
= v d ) [|um| (|Um| |Um - U| ) + |Um - U| (|um| - |um - u| )} dvg

—/ V |um| Hd |vm—tv|ﬂdt} dv,
0

d,(z xo
E —vl? [ta
M (x,z0)* Jo dt
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so, we get that

l(x )|um|alvm|ﬁ (@) |t — ul* v, — 0]
/M dy(x, x0)* dvg _/ dy(x, x0)* dvg
a - B— . 6( )
_5/ [|umy / [Um — t0]P (v, — t0)d }—dg(m e
8 e B l(x)u
&/M {\vm v /0 U, — 1] (U, tu)dt] —dg(x,:cg)sdvg’

Next, to complete the proof of (i), we show the following limits
l “y|?
[ ot
M dg(‘ra xO)S

(x)v
ohm U |* vm—tvﬁ2 ]—v
an [| | / — | oo
: B a—2 E(a:)u
e lim « |V — v \um — tu|* (U, — tu)dt | ————=dv, = 0.
M 0 dg

m—o0

U
<
I

For this purpose, since ¢(z)v, {(x)u € LZ;(SS) (M), then it is enough to show that w,, — w
p*(s)
and w,, — 0 in Lfi’*(;)*l (M), where the functions are given by

() = i (z / o (1) — £0(2) [P~ (0n() — to(x))dt,
D) 1= |om(z) — () ]? / () — t1()|*2 () — ),
w(z) = Ju(z)]? / (1= ) o(@)P2o(@)dt = 6 u(@) | o()]~20(2).

Let us to prove only that w,, — 0, the other weak converge is to similar. Suppose

otherwise, then there exist ¢ € LZ*(SS)(M ) and A > 0 such that (up to a subsequence)

$ IO

since u,, — w and v,, = v in H 1’T’(M ), then there exist subsequences such that

> A Vm, (3.13)

U, () — u(z) and vy, () — v(zr) a.e in M, it is easy to see that this gives us

Wy, () — 0 a.e in M. Now, note that

*(g p*(s)

Nm e ! P*(s)—1 d
h(;’k|—psdvg = / (\vmk — v\ﬁ / |Umk — tU|a_2(umk — tu)dtD %
M g(iB,.’L'o) M 0 g(
_p(s)

l’,l’o)s
1 p*(s)—1 d
< [ (lom =t [y =)
M 0 g‘raxO)

p(*()S)
*(s)—1
P dv,

(wmk o / (0 i+t =0l e)

p*(s)

a1q 5T
o @ dv
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where using Holder’s inequality for < 1 + é =1 and a > 1. So, by triangle inequality

we get that

s)l

.’ﬂ.Z'[)

< mE A L —1)up @ tumy, — “ a_l}m
_/M{|U e = I I = Oy o) + [t — w)llze)] dy(x, 70)*

a—1
1 a p*(s) de
— _ B . a—1 ps)—1 Vg
(531) " Tome = o G = )55

again by Holder’s inequality for pf(‘;)l_l + pf()s) = 1, we reach that

p*(s)—1
|w |P*(s(>3)1 v
B -1
M C&I‘T())dvg S C||vmk - U|’p*(s)’s”|umk| + ’umk - uH|;;*(s),s7
p*(s)
hence, {w,, } is bounded in L§g7(;)_1(M ), because the right side above is bounded.
p*(s)
From [36, Lemma 4.8| follows that @, — 0 in Lc’l’;(;)_l (M), which contradicts (3.13)).
p*(s)

Therefore, w,, — 0 in L 5;’(;)71 (M). The prove of w,, — w is to similar.

For (i7), note that by Holder’s inequality

‘/ 0(2) (U O U [P~ — wvlu|P~?)do,
M

- ‘/M 0 [0 (U [t [P = fuefP2) = wlulP~2 (0 — v)]dvg

< W!loo/ ([0 [t |72 = ulP=2| + [P~ fom, = v])dug
M
< 1€l]so {||Um||pHum|Um|p * = ululP” 2“ Al 1||Um—v||p]7

SInce Uy U |P~2 — ulul[P~2 in Ly"1 (M) and v,, — v in LP(M), thus the right-hand side

of the above inequality converges to zero, hence
[ ) tmvnlnl? = el e, = 0,(1),
M
similarly we get
[ ) vl = wolup ), = 0 (1)
M
/ 0(2) (U — 1) (Vg — V) ([t — u[P ™2 + |0y, — 0[P 2)dvy = 0, (1).
M
This completes the proof of the lemma. =
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3.3 A Compactness Theorem

In this section, let us to prove a compactness result for (PS), sequence at level 7,

where the minimax level 7 satisfies appropriate estimate with respect the best constant

K{ ) defined in (3.4).

For this, we first consider the functional E;, : H? — R given by

1
Bp(u,v) =2 / (IV,ul? + [V ol + alul + buv(fuP=2 + [o]P2) + clof?) dv,

/f ) |ul® |U|5
(%, x0)° Yo

while in the case 1 < p < 2 we consider the same functional with b = 0.

(3.14)

It is easy to see that Ej, is well defined and is of class C'(H?,R) with

B (u,v)(p,¢) =

[ 0729309 + 9,07 29,0,90) + a2 + )~
M

# 20 (= )2 4 o 2)op + (0= DIoP + P 2yu ]}

a  flz) | e 5 f( ) o
_/MP*(S)d (,20)* ul* el updv, + / (7, 20)° [ol” ™ ul*oipdo,.

In this context, we say that a pair of functions (u, v) € H? is a weak solution of ([3.1)

if only if is a critical point of Ej,.
The following lemma is an immediate consequence of the coercivity hypothesis

B3).

Lemma 3.3.1 The functional E) satisfies the geometry of Mountain Pass Theorem,
that is, there exists p > 0 and R > 0 such that

En(u,v) > p whenever ||(u,v)|| =R
and there ezist (4, 0) € HP satisfying ||(@,?)|| > R and Ey(@,?) < 0.

Remark 3.3.2 Let (u,0) be a pair satisfying ||(4,0)|| > R and En(a,0) < 0 given in

the previous lemma, then we consider the set
I = {y € C(0, 1], B?) : 1(0) = 0 and ~(1) = (@, 5)},
and so we can define the minimax level

7 = inf sup En(y(t)) > p > 0. (3.15)

7€l ¢efo,1)
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Lemma 3.3.3 If {(um,vm)} is a sequence in H? such that
Ep(tm,vm) = 7 and E; (upm, vy) — 0, (3.16)

as m — oo. Then {(un,,vm)} is bounded in HP.

Proof. It is enough to note that

1

mEh(um, U ) (U, V)

= =5 /M (IV gtm|? 4 [V gvm[? + a|tm]? + bt vm ([t [P7% + [0 [P7%) + clvm|P) duy,

Eh<um7 Um) -

thus, by the coercivity hypothesis and (|3.16)) follows that

C1 + o (]| (wms vin)[) = Coll (wm, vim)|I7,
this implies that {(um,v,)} is bounded in H?. =

Remark 3.3.4 Let { € L*(M), remember that if {u,} is a bounded sequence in
HY (M) such that u, and Vgu, converge almost everywhere in M to u and Vgu

respectively. Then by Brézis-Lieb [7] one has that

(1) / E(m)|um|pdvg—/ U(z)|ulPdo, :/ U(z) |t — ul|Pdog + 04 (1);
M M M

(17) |V gt |Pdv, — / |V ulPdv, = / |V (tm — w)[Pdvg + 0,,,(1).
M M M

Now we can to prove that a (PS), sequence admits a convergent subsequence

when the minimax level 7 satisfies an appropriate estimate. More precisely:

Proposition 3.3.5 If {(un,vn)} is a sequence in HP such that Ey(upm,v,) — 7 and
E} (U, v) — 0 as m — oo, with

(P*(s)—p)
p—s (Kiig) 7O

T p(n - 5) f(x(])p*(f)—p

(3.17)

Then {(tm,vm)} has a strongly convergent subsequence. Moreover, if (u,v) is the limit

of this subsequence, then (u,v) is a critical point of Ey, and Ej(u,v) = 7.

Proof. Firstly, by hypothesis (3.17) we can choose £y > 0 small enough such that

_(®*(s)=p)
p*(s)

p—s [(’C](Diﬂ))_l + o
p(n - S) f(xo)p*(f)—p

T < , (3.18)
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p*(s)

. —S — *% p*(s)—p »$ -
just choose ¢p < (;&,3)7 1f($0) P (s)7p> P r_ (/C?a,ﬁ)> i

Now, Lemma gives us that {(um,v,)} is bounded in H?| so up to a subse-

quence for some (u,v) € H? we have

(U, U) = (u,v) in HP;
(U, V) — (w,v) in LP(M) x LP(M);
(3.19)
(i 0m) = (w,0) i L, (M) x L, (M), Y € [p,"(5));
(U (), v () = (u(z),v(x)) a.e in M.
We claim that, the pair (u,v) is a critical point of functional Ej,. Indeed, the
sequences { |V u, P72V u,, } and {|V, v, P2V 0, } are bounded in Lp%l(M), thus, we

can assume that

|V gt [P 2V gty — 1 and |V v, [P 2V o, — By in Lo-1 (M).

p*(s)
Now, since { f|tp|* *tm|vp|*} and {[v,,]? vy |um|*} are bounded in Ly " (M) and

converges almost everywhere in M to f|u|*2ulv|® and f|v|*~2v|u|® respectively, then

p*(s)
Flum|* P um|vm]” = flul®2ulol” and [v,] 20 un|* = flo]®2olul® in L]0 (M).
As Ej (U, vm) (@, 1) — 0 for any (p, 1) € HP and since
E;l(um’ Um)(% ¢)
N / {<‘vgum|p_2vgum; Vo) + (|Vguml? >V gvm, Votb) + a() |t [P ume
M
+ e(@) [l 20t + B2 ((p = D72 + [0l 0o

P (= Do a2 0}
_ / o _f@)
IV (s) dg(x,20)*

letting m — oo, by the weak convergences above and (3.18)), we get that

Um|6_2|um|avm¢)dvg,

a—2 B B8 f(=x)
a2 | Prtmip iy + /M oS

0= [ {E0.900) + (22, 9,0) + a@)lulup + a0
+ 2 [«p Dl 4 o2+ (p— Dol + [u2)u ]} do, (3.20)

_ o f@) a8 B f=) 59 a
/ D |ul* "ol USOdUgjL/Mp*(S) a, 0" u|“vpdu,,.

a1 (5) dg(, 20)* (, 20)*
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Now, we want to prove that 3 = |V,ulP?V,u and ¥y = |V,u|P2V,0. To
achieve this purpose, we will adapt the ideas of [12] and [11].

Given 0 > 0 arbitrary, according to Egoroff’s Theorem there exists Us C M such
that vol(M\Us) < 6, and (U, vm,) converge uniformly to (u,v) in Us. So for any € > 0

there exists mg large enough such that
|t () —u(z)| < e and |v,(x) —v(x)| <€, Vo e Us.
We define the function 7, : R — R by

. r, if |r| <e
e\r) =
esign(r), if |r| > e.

From Lindqvist’s inequality [40), Section 4], there exists a positive constant C(p) de-

pending only of p such that, for all X, Y € R"™, one has that

Clp)|X =Y, if p>2,

X-Y|? .
C(p)W, ifl < p < 2,

(IX[P2X = [Y]P72Y) - (X = Y) >

here X - Y denotes the standard scalar product in R™. Thus, we get that

(IVgtuml" 7V gt — [V uP =2V gu, Vo (T, 0 (u — u))) > 0,
<’ngm’p72vgvm - ‘ngypdvgva V(T o (vm —v))) >0,

a.e in M, since V(7. ow) = T!(w)V,w and T/ > 0. Now, for m > my we have

T!(up —u) =T!(v,, —v) =1 for all z € U, and so, we reach that
/ (Vg |V gt — |V ul"7*Vgu, Vo(Te 0 (un — u)))dv,
M

> / (IVgttm PV g, — |V gulP "2V g1, Vi (s, — 1)) dvg > 0,

v (3.21)

/ (IVguml" ™V gom = [VuP 2V 0, V(T 0 (v — v)))dvg
M

> / (|V g0m P2V gvp, — |V 0[P 2V v, YV (v, — v))dv, > 0.
Us

On the other hand, as T o (u,, —u) and T, o (v,, — v) goes to zero weakly in H"P(M)
then

[ 93l 29,9, (T2 (= ),
M

(3.22)

/ (|V0[P~2V v, V(. 0 (Vg — v)))dvy — 0.
M
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As T, o (tup, —u), T, o (v, —v) € HY(M), then we have

’/ [<’V9um‘pi2vguma vg<Te © (um - u))) + <‘ngm’p72vgvm? vg(Te © (vm - v)»] dvg
M

< B (tm, 0m ) (Tt © (U — 1), T © (Upy — 0))|

—/ [a(@) [t P10 (T 0 (1 — ) + (@) [V~ 0in(Te 0 (vin — v))] dg
7)

b
/ Y (= a2 + o2 (T © (1t — ),
M D
[ o b 5 )
M P
(6%
+/ Uma—2UmBUmTEO Um — U dv
v pr(s)d ) ol o P e
s B2
+ Um umavaeo Um — v))dv ’
/Mp*(s a:xo)’ "l o i

since |T, o (uy, — u)|, |T. o (v, — v)| < € and the fact that the sequences are bounded,

we reach that

‘/M [<|V9um|p_2vguma V(Te 0 (U —u))) + <|vgvm|p_2vgvm7 Vy(Te o (v — U))ﬂ dvg

< Ce+ on([|(Te o (U — ), T 0 (v, — v))]]),
now, by , and inequality above, we get that
limjup {/U (|V gtum|P 72V gty — |V gulP 72V gu, Vg (w, — u))dv,
m—r00 5
+/U (IV g0 P2V g0 — |V 0[P 2V g0, Vg (v — v))dvg} < Ce.
5

Since € > 0 is arbitrary and each term above is nonnegative it follows that

(IV gt |P 2V gty — |V gulP "2V g, Vg (U, — )y — 0 in L' (Uy),

(|V g0m P2V v — |V 0[P 2V v, V (0, — v)) — 0 in L' (Us),
hence, up to a subsequence, these sequences converge almost everywhere in Us. The
Lindqvist’s inequality gives us that V,u,, — V,u (Vyu,, — Vgu) ae in Us. This

happens for any ¢ > 0, then V u,, = V,u (Vyu,, = Vyv) a.e in M. Clearly, this in

turn implies that

IV gt [P 2V gty — | VulP2Vyu and |V u,|P 2V v, — | V40|V, ae in M.
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Since {|V ytm|P "2V gt } and {|V,0m[P"2V yv } are bounded in L7-1 (M), from Lemma
4.8 in [36] it follows that

IV gt [P 72V gty — |V gulP "2V u in L5-1 (M),
IV g P2V g — |V40|P 2V 0 in L1 (M),
thus, ¥y = [V,u|P2V,u and 3y = |V,u[P~2V,v. This prove that (u,v) is a critical

point of Ej,.

As consequence we get that

En0) = 58225 [ (Vul? + 1900+ alul? + buul(al? ™+ o) +elol?) ey 20,
M

p(n—s)

Now, writing @, = t,, —u and 9, = v,, —v, we want to prove that ||(@,,, 0,,)|| converge
to zero as m — oo. By Lemma and Brézis-Lieb lemma (since V u,, — V,u and

VU — Vyv a.e in M) we have

B (T, Om) (T, On)

:/ (Vi + |V ml? + aliin]? + bt (P + 50 P) + cliim]?) s,

B
/ [l |um| |Um| dv,

ZL’ZL‘O

= [ (%l + 19,0y~ [ (9l + (9,0,
M M

n /M (@)t + () [0 )y — /M (a(@)ul? + e()[o]")dv,

+/ bttt 7 + [Py — / b)uv([ulP + [o]P?)do,
/f z) |t | |Um|ﬁd +/ J (@) ul® |U|deg+0m(1)

xxo xxos

= B} (U, Vi) (U, V) — B (u,v) (1, v) 4+ 05, (1)

= on(1).

Consequently, up to a subsequence, the above expression gives us

B
lim [ (Vaitml” + Vi) vy = hm/ UG |“m‘ |”m’ dv, =79, (3.23)

m— 00 m— 00

On the other hand, with the same argument used above, we get that

Eh(fl/m, @m) = Eh(um, Um) — Eh(u, U) + Om(l)
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Since Ep(tpm, vy) — T as m — 0o, then

1 ST
lim {—/ (IV gt |? + |V g0m|P)dv, — / UG |u ° ’U | dvg}:T—Eh(u,v),

m—oo | P .CL’ 33'0

hence, (l — I%(S)) 70 =7 — Ep(u,v) < 7, because Eh(u, v) > 0.

p

We claim that 75 = 0. Otherwise, if 75 > 0 then by Lemma for g9 > 0 (such
that (3.18) holds) there exists B., > 0 such that

4

B 4O o |alg |8 *(5)
/ f |um| |Um| dvg P Sf(xo)p%s) / |um| |Um| dvg P
(x,20)* v dg(x,m0)*

< f(20) O KL )™ + ol |V il 1V B DL + Beo |Gt )1

thus, since limy, o0 || (tm, Um) |5 = 0 and by (3.23), passing to the limit in the inequality

above we have

P 1—%8

(o) " O[(K0s) "+ <7 7,

S0,
B eps - O] pp*(s) p(n —s)
f Tg) P-p K:p;y 1 + <o e <1y < (— T=— ‘7T
(o) TEF(KD25) ™ + 2] )=

However, this contradicts (3.18]). Thus, we get that 7p = 0, consequently one has
E(u,v) =7 and

m—00

lim [ (|Vyiiml? + [V ym|?)dv, = 0.
M

This finish the proof. m

3.4 The Minimax Level

First, we state an auxiliary lemma where we will show that under the assumptions
of Theorems [3.1.1] and [3.1.3] there is a pair (a,0) € HP such that ||(q,0)|| > R,
Eh(ﬂ, 73) < 0 and

(P*(s)—p)
p*(s)

s

o (KR
7 = inf sup En(y(t)) < (r=5) Fiap) >
€T te(0,1] p(n—38)  fzg)7rs

To achieve this, let 6 € (0,1,/2) small enough such that f > 0in Bys(z) (geodesic

ball centered in zy and with radius 25). We consider the following cut-off function

n € C§°([—26,20]), with n = 1 in [—0,d], 0 <7 < 1in R, and define the function

ue(a:)zn(dg(a:,xo))< o ps) - (3.24)



Remark 3.4.1 As it is known the function @,(y) = (1 + |y|%)*%, with y € R™ is
an extremal for
Jan [VulPdz

K(n,p,s) = _inf P
ueHLP(R™)\{0} [u|P* (s) p*(s)
( Jan dx)

|z[®

For this result we refer to [23].

Remark 3.4.2 Note that, as s € [0,p), if p < ”T” then p < ™2==_ for all n > 3.

While, if p < \/n then p < ”T“, for all n > 5, moreover, V4 = 2 = g = 4%2, and

V3 > % = % and V2 > % (which correspond to the cases n = 4, n = 3 and n = 2

respectively).

Lemma 3.4.3 If the functions a,b and ¢ satisfy the assumptions of Theorems [3.1.1]
and[3.1.3. Then .

(p—s) (Khip) 7"

p(n—=s)  f(x)7 s

for some pair (a,v) € H? with ||(a,0)|| > R and E,(u,0) < 0, where 7 is defined in
(315).

T <

Proof. Here we are inspired by ideas from [I1, [15]. Since a,b,c € C%¢(M), then
h € C%¢(M). Using the test function u,, let us estimate [, huPdv,. As ¢ > 0 is small
enough, we can write h(z)n? = h(xg) + d(z, x¢)?0(1), for all x € Bs(zo), thus

/ hutdv, = / hufdv, + / hutdv,.
M Bs(zo) M\Bs(zo)

It is easy to see that [ M\ Bs(x0) huPdvg, = O(e%). The first integral will be estimated

in three cases: p? < n,p? =n and p? > n.

(i) p* <m
s (n=p)p
epr(p—1) pee
/ hufdvg = / (h(l'o) -+ 0(1)7"9)<1 + O(l)?"2) <ﬁ> dy
Bs(zo) Bs(0) €r—1 4 rp-1
g ,,ﬂnfl g ,,nn71+g
= h(xo)wn_l/ oy dre’ + O(l)/ o drePte
0 (1—}—7“1771) p—s 0 (1—{—7"1071 p—s
o0 n—1

= h(@o)||B,|Pe? — h(0)wn L _dré 4 O(¢)
p s (1 4 2 : ( )
< ro— p—s

= h(xo)[|®p|[5€” + o(e”).
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(i) p* =n

Ll n—1

/ huPdv, = h(zo)ws—1 / TIH T dre? + O(€'7?).
BJ(:E()) 0 (1 + rpfl) p—s

Thus, we assume that € is small enough, we can write

[} -1 1) n—1 4 n—1
€ r’ r € r
——dr = ——dr + ——dr
p—s (n—p)p p=s (n—p)p p=s (n—p)p
0 (1 _{_rpfl) p—s 0 (1 _|_/r=p—1) p—s 1) (1 + rp-1 p—s

so, we get that
/ huPdv, = h(xg)w, 1’ In(e™) + o(e” In(e™1)).
Bs(xo)

(ii1) p* > n

In this case it is easy to see that

/ hufdv, = O(er1).
Bs(zo)

Therefore, we have
hao) |8, 26 + o(e?) if p < Vi,
/M hu¢dvg = ' h(zg)wp_1€? In(e™?) + o(?In(e ™)) if p = v (3.25)
O(er-t) if p> /n.

Now, let us estimate [ v | VguP|dvg. For that, using the normal coordinate we can

write the following expansion,

'/Sn1 Vdet(g)do = w4 (1 _Bl@o) 0(1)7“3) :

6n

moreover rewrite the gradient norm

p

n—p n—p n—s p—s _ (n=s)p (1=s)p

O‘nge’pzep—l ( 1 (ep—l —i—rp—l) p=s Pl
p_
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p—s =
1
where v (z) = S . Thus,
51’ =1 +dg(x,z0) P~

/ |Vgu5|pdvg:/ |ng6|pdvg—|—/ |V yue|Pdu,.
M Bs(zo) M\Bs (o)

It is easy to see that [ M\ B (o) |V uelPdv, = O(er=1). Now, let us calculate the integral

‘d
|

/ By (z0) |V uc|Pdv,, by the expressions above, we get that

/ |V guclPdug
Bs(zo)

R (L (1 _ Ry(x0) (er)? + O((er)3)> dr

<n—p>p /e r p—1
= wnfl —s n—s
p—1 0 (1+ rﬁﬁ)(p_s)p 6n
(1-=s)p

R,(x0) (n—p\’ ¢ prtndl n=p

= ||V€Pp||§— g( 0) ( P) Wn—1/ P - S)pdTEQJFO(”’{))
6n p—1 0 (1—{—rp )ps
n+2

Next, let us estimate the second term in the cases p < ”;2, p= "*2 and p >

+2
(i) p < =
5 (115)17_;'_”_;'_1 o (1— S)p+n+1
[ a Y e S
p—s (n—s)p p—s (n=s)p
0 (1 —|— rp—l) p—s 0 (]_ + /rp—l) p—s
(i) p =
8 Gt 5 EEnt N A
/ —— dr:/ dr—i—/ dr
p—s _(n—s)p —s _(n—s)p —s _(n—s)p
0 (1—|—7’p—1) p—s 0 (1-|—7ﬂp 1)1)@ é (1—|-rp l)ps
s Gl intn
€ T P 1
=0(1) +In(eh) +/ s — | dr
s 11 +7~p 1)? r

a- S)P+n+1

— 0(1) + In(e ) +/Ef,» =

|

(14 1) s

=O0(1) +In(e™") + O(er1).

g n+2
(13d)" p > =2
3
5 (1—s)p 5
+n+1
A-=s)p S)p (n S)p n+2—3p
+TL+1 d ) —_—
r| =0( »1).

€ r p-1 €
o dr =0 roP
—s p
0 0

(14 r51) 5

So we get that
Rg(IO)Cl(n p,s)e” +o(e?), if p < 2,
o2 (3.26)

IV®ylp —
) 1(p 1) 2111( 71)—’_0( )7 lfp: 3

/ VyucPdo, = 4 [V, L~
stpu,,m(ep B, itp > nt2,
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where C1(n,p,s) = [pn [VO,|P|y[*dy.

flayu? ¢
M dg(x,x0)®

p*(s) .
/ %dvg = O(Epj).
M\ Bj(zo) g(iE, 960)

Finally, let us estimate dvg For that it is easy to see that

In normal coordinate we can write the following expansion
* 1 o
F@m? O (r) = f(xo) + §3ijf(900)$2$] +0(r?). (3.27)

With that, we reach

Fl)ul™® ert
/ d(() Js vy =f (o) oV det(9)dy
Bs (o) Ug(s To B5(0) [y|*(er=1 + [y|7 1) K

1 er 1y iy
+ §5¢jf(l’0)/ — ey V/det(g)dy + O(e

0) Jyls(er=1 + |y|»=1) =

er1pn=l

é
R
0 rs(epl—}-rp l)ps n

A 0 ﬁ n+1
+ f(Io)Wn_l / ,,_f rp_s T (1 + O(T2)) dr + O(é%).
2n 0 rs(er=1 4 rp=1) »=s

Taking the variable change ¢ = %, we have

: gL @, |7 (s
flaohwns | st = flan) | Ly v o). (329
0 ts(l —+ tp 1) p—s n |y|

Now, note that:

. 2
(Z)” p < n+2 S

)
< tn+1 & p*(s) s
o [ it = [y o),
p—s p(n—s) | |8—2
0 ts(]__{_tpfl) p—s R” y

(ii)// p= n+22—s
g tn+l s
/ it = 0(1) + () + (e,
0 ¢5(14 th- 1) ps

(i) p > 2=

)
B tntt nt2—s—
/ = 0( ),

0 (14 trt)

Thus, we reach that
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/f

SL’ .fll'o
( ,D,S Af(x Rg(x n—s n s
<xo>n¢n“<s>+ G (e — M) 4 O(FT), i p < eg=s

_ (fﬂo)H@Hp *(s> (A];(Zco) _ f(:vo)éfg(xo)) 2 11’1(6_1> 4 0(62), if p= n+2 ni2os

(3.29)

n

(x(])”@up p*(s) + 0(6%)7 lfp > %2787

\ dgs

|®|P (S)
ly[*=2

Next, let us calculate the quotient

where Ca(n,p, s) == [

Jos [V guclPdvog + [, hu? dvg
f(l‘)up *(s ) *(s)
fM dg(x,x0)® Vg
Starting when n >4 and p < 2.

First, for p < y/n, by (3.2 , (3.26) and (3.29)) we can compute the following
[y [V guelPdvg + [, hutdo,

[ © @
(fM dg(z,z0)® g>
IVo|r — Ci(n ,p,s)R o (20)€2 + h(0) || ®y|[Be? + o(emin{p2)
L *(s Af(x Ry (x P*LQS)
f(l‘g)p " <H¢p”i§(*(s> + (271]}((;))) g : ) 02(n p,s )62 + 0(62))
g:5

n,p,s) ! x » .
Ko {1 4 teoleglicr o(ep)}, if1<p <2

_ ) 17
K(n,p,s)_1 . p*(s)C1(n,p,s )HQSPH ( ) . ( 0) Af(zo) 2 2 .
f(w0) P {1 " K g L) e T Ty | € Tol@) s ifp>2,

—_— Pyp— C (n7p75)
where k, = k,(n, p, s) ;= —E20PY___ 5 () when 2.
p = R Py 8) = e > p>

From [I1], section 5| we have that Cr ol (oot for 0 < s <
Colnp )Vl (n=s)(nt2-3p) p

(the case s = 0 was calculated by Druet in [I5] subsection 5.2|), therefore, for n > 4
and p < y/n we reach that

Jas IV guelPdvg + [, huPdo,

- =
(:v)up (9) p*(s)
fM dg(z,z0)® Yg

i ) . 3.30

;(((nf% {1+ 55 + o)} i1 <p <2 o
0 S

K(n,p,s)~! 3p—s) Rg(x Af(x :

f((xofp*)%) {1 ~ fip [(71(+p273)p) ) + szs(co(;)] ¢ +0<€2)}’ ifp>2
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In the case n > 5 and /n < p < 2, in a similar way we get that
Ju IV guel*dvg + [y, huZdv,

<fM dg{as(,fc)o)sug(S)d%) =

[ oma fy g [ e ] o) 2 << o2

K(n,p,s)~! _ Ry(zo)wn_1pP €2 -1 2 -1 : _ nt2
== {1 Sarear € (e) +o(e* In(e ))}, if 2 <p="=

Now, when n = 3 (resp. n = 2).
(i) p < V3 (resp. V2)
Jur I Vgue*dvg + [, hugdo, _ K(n,p,s)~! {1 h(zo) 1Py |15 € + o()
2 p(s) ) o) |Vo|b '
( Md (fm(ro ( d”g) f(wo) .
(i1)" p = V3 (resp. V2)

V. ul?d hu?d -1
fM' gle] vQJrfM ucdvg _ K(n,p,s) {1+ fﬁ(é?;HQ e’ In(e” )+0(6pln(61))}.
p

( FH s)dvg> s f(%)p*’is>

M dg(x,z0)®

Therefore, by the hypothesis of Theorems [3.1.1]and [3.1.3]in their respective cases,

and € > 0 small enough in the above estimates we reach that
i b, Kopa gy
f(x)up s p*(s) T ) Pr(s)
(B ) F(w0)

p
Now, to complete the proof, let &, ¢ be positive real number with (%) = 2 and

we define for any ¢ > 0 the following functional:

P p*(s)
O(t) = Ep(téue, tCu,) = — X, —
p

YU&?
p*(s)

where X, = (£74¢?) [5; |Vguc|Pdvg+ [}, (€Pa(x) +£C(EP 72 +CP72)b(x) +(Pe(x)) [ue Pdo,
and Y, = £¢° [ ;2'”;—;1’;)“61@9. We want to find # > 0 such that ®(f,) = 0, this

occurs when t*71 X, — t?"®)=1y, = 0. Hence,

Xue p*(;)—p
Z50 = }/—u6 )

this implies that ¢y is a critical point of ®, more precisely, is a maximum point of ®
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since ®(t) — —oo as t — oco. Thus, we get that

p*(s)
o) = (1- ) (2 o
T\ ) v

p—s (&P +¢?) fM |V guce[Pdvg + fM hutdv,

p(n — S) (faCﬂ)P*LiS) <fM d:v)up (S)dvg> p*(s)

P (3.32)

p*(s)—p

g(x,x0)

and by estimate (3.31)), we reach
(kP )7 os
p—3s (e.B)

20 < 0= Fan) B

Now, choose t; > t; large such that ®(¢;) < 0 and ||(a,?)|| > R with @ = t;§u, and
U = t1Cu.. We have
0 <7 =inf sup Ex(y(t)) < sup Ej(ta,td)
el (0,1 te[0,1]

p
p*(s)—p

p—s (Kigg)
= sup q)(tt1> < q)(t()) < 5 .
te[0,1] p(n - 3) f(gpo)p*(S)—p

This completes the proof of the lemma. m

3.5 Proof of Theorems 3.1.1] and B.1.3

Proof of Theorems[3.1.1] Lemma gives us that

s (»* (s)—p)
(p—5) Kiag) ™

p(n—=s)  f(x)7 s

0<1<

Y

and from Proposition [3.3.5] it follows that Ej satisfies the Palais-Smale condition at
the level 7. Thus, by the Mountain Pass Theorem [49, Theorem 2.10| we reach that 7

is a critical value of E}, that is, there exists (u,v) in H such that
E,(u,v) =0 and Ej(u,v) =T,

this implies that (u,v) is pair of nontrivial weak solutions of system (3.1). Which
completes the proof of Theorem [3.1.1] [ |
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To prove that from the hypotheses assumed in Corollary we obtain a pair

of non-negative solution of system (3.1)), let us consider the functional

1
Ep i (u,v) = / (|V ulP +|V,olP + alul’ + buv(JuP~2 4 |v[P~2) + c|v]p) dvy
b

/f SEwnE g,

Proof of Corollary[3.1.9 Tt is easy to see that the functional Ej . satisfies the same

(3.33)

properties of Ej. Using the same test function we have that the Lemma [3.4.3] is
true for Ej, ;, from Theorem one has that there exists (u,v) € HP a nontrivial
critical point of Ej, . Now, let us to prove that v and v are nonnegative. Since

B, (u,v)(u™,v7) =0, ie,
0= E;L,+(u7 'U)(u77vi>
= / {|Vgu_|p + Vo [P+ alu™ [P + clo™ [P}

Dul”™ + o )ou” + ((p = Do~ + [ul)uv~]dv,

B fx)
w P*(5) dg(, 20)*

/ p*(s)
/ [V Ip + [V [P+ a(@)|u” [P+ b(z)u” o™ (Ju™ P72 4 v [P72) + e(a)|v™ 7] du,
/ b(z

\

p

(™) (o) Pudv, + ()P (w0 dv,.

(x xo)

(0 — Dl P72 + [ P20t + (0 — Dl P2 + [u* P2)at o] do,
and as b < 0, it follows that
/ [V P+ [Vyo | + au™ [P+ b v (Ju~ P2 + o [2) + clo™ ] du, < 0,
M

by coercivity hypothesis one has that v~ = 0 and v~ = 0. Therefore, (u,v) is a pair of

non-negative weak solutions of system (3.1)). This ends the proof. [ ]

Proof of Theorem[3.1.3. In the case 1 < p < 2, where we assume b = 0, the proof

follows a similar approach to that of Corollary [3.1.2] Thus, we establish the existence
of a pair (u,v) in H? of non-negative nontrivial weak solutions of system ({3.1]). This

concludes the proof. [ |
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