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Resumo

O trabalho apresentado nesta tese aborda resultados referentes à existência de

soluções para três classes de sistemas elípticos fortemente acoplados em variedades

Riemannianas compactas sem bordo. Nessas classes, estão envolvidas não linearidades

acopladas com expoentes críticos no sentido das imersões de Sobolev e Hardy-Sobolev.

A primeira e a segunda classe de problemas envolvem o operador Laplace-Beltrami

sobre uma variedade e não linearidades com expoente crítico de Sobolev no primeiro

caso e de Hardy-Sobolev no segundo. Na segunda classe, também consideramos po-

tenciais do tipo Hardy. O terceiro problema envolve o operador p-Laplaciano e uma

não linearidade com expoente crítico de Hardy-Sobolev. Dessa forma, em ambos os

problemas, investigamos a falta de compacidade e como recuperá-la em algum nível de

energia. Neste trabalho, a abordagem é realizada por meio de métodos variacionais.

Palavras-chave: Sistemas Elípticos de Segunda Ordem; Métodos Variacionais; Ex-

poentes Críticos.
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Abstract

The work presented in this thesis addresses results concerning the existence of

solutions for three classes of strongly coupled elliptic systems on compact Riemannian

manifolds without boundaries. In these classes, coupled nonlinearities with critical ex-

ponents in the sense of Sobolev and Hardy-Sobolev embeddings are involved. The first

and second classes of problems involve the Laplace-Beltrami operator on a manifold

and nonlinearities with a critical Sobolev exponent in the first case and Hardy-Sobolev

exponent in the second case. In the second class, we also consider Hardy-type poten-

tials. The third problem involves the p-Laplacian operator and a nonlinearity with a

critical Hardy-Sobolev exponent. Thus, in both problems, we investigate the lack of

compactness and how to recover it at some energy level. In this work, the approach is

conducted through variational methods.

Keywords: Second Order Elliptical Systems; Variational Methods; Critical Expo-

nents.
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Introduction

In this thesis, we study the existence of solutions for three classes of strongly

coupled critical elliptic systems on compact Riemannian manifolds without boundary.

Our primary objective is to investigate the influence of scalar curvature on the existence

of solutions for these systems when Riemannian manifolds are involved, since, as far

as we know, there is no research in this direction in the existing literature.

The study of coupled elliptic system has important applications in Mathematical

Physics. They appear in the Hartree-Fock theory for Bose-Einstein double condensates,

in fiber optics theory, in Langmuir wave theory in plasma physics and in the behavior

of deep water waves and freak waves in the ocean. A general reference on such systems

and their role in physics is duo to Ablowitz et al. [1].

Our study was motivated by some works: first, by paper due to Alves et al. [2],

in which the authors proved results of the existence and non-existence of solutions to

the following system of elliptic equations

−∆u+ au+ bv =
α

2∗
u|u|α−2|v|β in Ω,

−∆v + bu+ cv =
β

2∗
v|v|β−2|u|α in Ω,

u = v = 0 on ∂Ω,

u, v > 0 in Ω,

where Ω is a smooth bounded domain in Rn, n ≥ 3, a, b, c ∈ R, 2∗ = 2n
n−2

is the critical

Sobolev exponent and α, β > 1. For this, the main point is to compare the value of

α + β with the critical Sobolev exponent. Moreover, inspired by the paper of Brézis

and Nirenberg [8], they also compare the two real eigenvalues of the matrix



 a b

b c

 ∈M2×2(R),

denoted by µ1 and µ2 with λ1 (the first eigenvalue of the Laplacian operator). For the

reader interested in solutions for systems of this type, we would also like to refer, for

instance [6, 10, 13, 25, 33, 34, 41]. Second, by the studies on the equation

−∆p,gu+ a(x)u = f(x)|u|2∗−2u in M, (1)

where (M, g) is a smooth closed Riemannian manifold of dimension n, ∆p,g denotes the

p-Laplace-Beltrami of M , f is a smooth function on M with maxM f > 0 and a is a

Hölder continuous function on M . This equation was studied, for example, by Druet

in [15], who established existence results, for example, when p = 2, n ≥ 4 and −∆g +a

is a coercive operator, assuming a local condition, namely, if there exists a point x0 in

{x ∈M : f(x) = maxM f} such that

a(x0) <
n− 2

4(n− 1)
Rg(x0) +

(n− 4)(n− 2)

8(n− 1)

∆gf(x0)

f(x0)
,

the existence of positive solution was established. In [48], Vétois also addressed the

problem (1) with p = 2, f ≡ 1, n ≥ 4 and −∆g+a coercive, under same local condition

as above, the multiplicity of solutions is proved. Considering a ≡ (n−2)
4(n−1)

Rg and p = 2

in (1), then we have the prescribed scalar curvature equation

−∆gu+
(n− 2)

4(n− 1)
Rgu = f(x)|u|2∗−2u in M. (2)

When f is constant, we get the well-known Yamabe equation, first considered by

Yamabe [50], after by Trudinger [47], Aubin [3], Schoen [44] among others. In the

form (2), it has been intensively studied, for example, by Kazdan and Warner [37], by

Aubin and Hebey [5], Escobar and Schoen [21], Hebey and Vaugon [29]. Geometrically,

the problem (2) is related to the existence of a conformal metric g̃ on M whose scalar

curvature equals to 4(n−1)
n−2

f , in other words, given f a smooth function on M , if there

is ϕ ∈ C∞(M) with ϕ > 0 satisfying (2) then the conformal metric g̃ = ϕ
4

n−2 g is such

that Rg̃ ≡ 4(n−1)
(n−2)

f . In addition to the works already highlighted, we would also like to

mention Hebey [26], who considered the following elliptic system of equations

−∆gui +

p∑
j=1

Aij(x)uj = ui|ui|2
∗−2 in M, i = 1, · · ·, p,

2



where A = (Aij) : M → Mp is a smooth function, p ∈ Z, p ≥ 1, and M s
p (R) denotes

the vector space of symmetric p × p real matrices. Assuming sufficient conditions on

the matrix A related to the linear geometric potential n−2
4(n−1)

Rg, the author studies the

existence of minimizing solutions for this system, the existence of high-energy solutions,

blow-up theory and its compactness properties.

In this present thesis, let (M, g) be a smooth closed Riemannian manifold of

dimension n. Firstly, we are interested in the existence of solutions for the following

elliptic system: 
−∆gu+ a(x)u+ b(x)v =

α

2∗
f(x)u|u|α−2|v|β in M,

−∆gv + b(x)u+ c(x)v =
β

2∗
f(x)v|v|β−2|u|α in M,

(3)

where ∆g is the Laplace-Beltrami operator, a, b and c are functions Hölder continuous

in M , f is a smooth function on M , and α > 1, β > 1 are real constants satisfying

α + β = 2∗.

Subsequently, we will search for solutions to the Hardy-Sobolev type system:
−∆gu+ ã(x)

ρ(x)θ
u+ a(x)u+ b(x)v =

α

2?(s)
f(x)

dg(x,x0)s
u|u|α−2|v|β in M,

−∆gv + c̃(x)
ρ(x)γ

v + b(x)u+ c(x)v =
β

2?(s)
f(x)

dg(x,x0)s
v|v|β−2|u|α in M,

(4)

where ∆g is the Laplace-Beltrami operator, dg is the Riemannian distance, a, b, c, ã, c̃ ∈

C0,%(M), for some % ∈ (0, 1), x0 ∈ M , s ∈ [0, 2) and θ, γ ∈ (0, 2), ρ is a nonnegative

continuous function such that ρ(x) ≈ dg(x, x0) for x near of x0, f ∈ C∞(M) with

f(x0) = maxM f > 0 and α > 1, β > 1 are real constants satisfying α + β = 2?(s),

where 2?(s) = 2(n− s)/(n− 2) is the critical Hardy-Sobolev exponent.

Finally, we investigate the existence of solutions for the generalized system:
−∆p,gu+ a(x)|u|p−2u+ b(x)[(p− 1)|u|p−2 + |v|p−2]v = α

p?(s)

f(x)u|u|α−2|v|β

dg(x, x0)s
in M,

−∆p,gv + b(x)[(p− 1)|v|p−2 + |u|p−2]u+ c(x)|v|p−2v = β
p?(s)

f(x)v|v|β−2|u|α

dg(x, x0)s
in M,

(5)

where ∆p,g is the p-Laplace-Beltrami operator, p ∈ (1, n) with p 6= 2, a, b, c ∈ C0,%(M)

for some % ∈ (0, 1) with b ≡ 0 when 1 < p < 2, x0 ∈ M , s ∈ [0, p), f ∈ C∞(M) with

f(x0) = maxM f > 0 and α > 1, β > 1 are real constants satisfying α + β = p?(s) =

p(n−s)
n−p .

3



The main difficulty in this type of problems is the lack of compactness. Indeed, if

M is a compact Riemannian manifolds, we will denote by H1,p(M) the Sobolev space of

all functions in Lp(M) with one derivative (in the weak sense) in Lp(M), when p = 2 we

simply write H1(M). As it is well known, the embeddings of Sobolev spaces, H1(M)

in the Lesbegue space L2∗(M) and H1,p(M) (1 < p < n) in the weighted Lebesgue

space Lp?(s)(M,dg(·, x0)−s) are continuous, but not compact (see [4, 11, 28, 42]).

In general, the use of variational methods to obtain non-trivial solutions to this

type of problem requires appropriate estimates of the energy level or minimax level,

due to lack of compactness. It is exactly in this step that we find the main geometric

implications of the Riemannian manifold.

We shall work with the space Hp := H1,p(M)×H1,p(M) (we write H = H2, when

p = 2) endowed with the norm

‖(u, v)‖ =
(
‖u‖pH1,p + ‖v‖pH1,p

)1/p
.

We equip H1,p(M) with the standard ‖ · ‖H1,p−norm, that is, ‖u‖pH1,p = ‖∇u‖pp + ‖u‖pp,

where ‖ · ‖q denotes the norm of the Lebesgue space Lq(M), q ≥ 1. The norm of

Lq(M)× Lq(M) will be defined by ‖(u, v)‖q =
(
‖u‖qq + ‖v‖qq

)1/q
.

An important relation obtained by authors in [2] is the following:

S∗ =

[(
α

β

)β/2∗
+

(
β

α

)α/2∗]
K−2
n , (6)

where α + β = 2∗, K−2
n is defined by

K−2
n = inf

u∈H1(Rn)\{0}

∫
Rn |∇u|

2dx(∫
Rn |u|α+βdx

)2/2∗
,

and S∗ is defined by

S∗ = inf
(u,v)∈[H1(Rn)]2\{0}

∫
Rn (|∇u|2 + |∇v|2) dx(∫

Rn |u|α|v|βdx
)2/2∗

. (7)

It is known that Kn is the sharp constant for the embedding of H1(Rn) into L2∗(Rn).

In general, the relation (6) holds for p ∈ (1, n) and s ∈ [0, p), that is,

Kp,s(α,β) = κ(α, β)K(n, p, s), (8)

4



where κ(α, β) :=

[(
α
β

)β/p?(s)

+
(
β
α

)α/p?(s)
]
and K(n, p, s) is the best Hardy-Sobolev

constant defined by

K(n, p, s) = inf
u∈H1,p(Rn)\{0}

∫
Rn |∇u|

pdx(∫
Rn
|u|p?(s)
|x|s dx

) p
p?(s)

,

and Kp,s(α,β) is defined by

Kp,s(α,β) = inf
(u,v)∈[H1,p(Rn)]2\{0}

∫
Rn (|∇u|p + |∇v|p) dx(∫

Rn
|u|α|v|β
|x|s dx

) p
p?(s)

. (9)

In our context, to deal with the lack of compactness, we will also establish Sobolev

and Hardy-Sobolev inequalities, that is, when p = 2 there is a positive constant B0

such that (∫
M

|u|α|v|βdvg
)2/2∗

≤ S−1
∗ ‖(|∇u|, |∇v|)‖2

2 +B0‖(u, v)‖2
2 , (10)

for all (u, v) ∈ H. Moreover, (S∗)−1 is the best constant such that (10) holds, thus this

inequality is optimal. In general, given any ε > 0 there is a positive constant Bε such

that(∫
M

|u|α|v|β

dg(x, x0)s
dvg

) p
p?(s)

≤ [(Kp,s(α,β))
−1 + ε]‖(|∇gu|, |∇gv|)‖pp +Bε‖(u, v)‖pp , (11)

for all (u, v) ∈ H. Here, (Kp,s(α,β))
−1 is the best constant such that the inequality holds.

When p = 2 this inequality is optimal since it is true for ε = 0, while in the case p 6= 2,

the inequality is not generally true for ε = 0. We prove these inequalities by applying

the results obtained by Hebey and Vaugon [31], Jaber [35] and Chen and Liu [11]. We

also need to prove a Brézis-Lieb lemma for the nonlinear term involved. More precisely,

let ` ∈ L∞(M), if um ⇀ u and vm ⇀ v in H1,p(M), then we have∫
M

`(x)|um|α|vm|β

dg(x, x0)s
dvg =

∫
M

`(x)|u|α|v|β

dg(x, x0)s
dvg +

∫
M

`(x)|um − u|α|vm − v|β

dg(x, x0)s
dvg + om(1),

where om(1)→ 0 as m→∞.

To achieve our goals, we have divided this work into three chapters. Next, we

will describe them.

In Chapter 1, we are interested in problem (3). In this case, we assume some very

general assumptions on the functions a, b, c and f that will allow us to obtain some

5



existence results for this problem through variational methods. Precisely, we assume

that the function f satisfies

max
M

f > 0, (12)

and the functions a, b and c satisfy the following coercivity condition: there exists

C0 > 0 such that∫
M

(|∇gu|2 + |∇gv|2 +a(x)u2 +2b(x)uv+c(x)v2)dvg ≥ C0‖(u, v)‖2, ∀ (u, v) ∈ H. (13)

In this context, our first result is the following:

Teorema 0.0.1 Let (M, g) be a smooth closed Riemannian manifold of dimension
n ≥ 3. Let α, β > 1 be two real numbers such that α + β = 2∗, and let a, b and c be
functions Hölder continuous in M , and f ∈ C∞, with a, b and c satisfying (13) and f
satisfying (12), writing h = α

2∗
a + 2

√
αβ

2∗
b + β

2∗
c. Let x0 be some point in M such that

f(x0) = maxM f . If, in addition, we assume that

(i) h(x0) < n−2
4(n−1)

Rg(x0) + (n−4)(n−2)
8(n−1)

∆gf(x0)

f(x0)
, if n ≥ 4,

(ii) h(x0) < 1
8
Rg(x0) and h ≤ 1

8
Rg in M, if n = 3.

(14)

Then, system (3) has a pair of nontrivial solutions.

As a consequence of Theorem 0.0.1, we have the following result.

Corollary 0.0.2 Under the hypothesis of Theorem 0.0.1. If in addition b ≤ 0 and

(i) α
2∗
a(x0) + β

2∗
c(x0) < n−2

4(n−1)
Rg(x0) + (n−4)(n−2)

8(n−1)

∆gf(x0)

f(x0)
, if n ≥ 4,

(ii) α
2∗
a(x0) + β

2∗
c(x0) < 1

8
Rg(x0) and α

2∗
a+ β

2∗
c ≤ 1

8
Rg in M, if n = 3,

(15)

then, (3) has a pair of positive solutions.

For the next results, consider the functional Eh : H → R given by

Eh(u, v) =

∫
M

(
|∇u|2g + |∇v|2g + au2 + 2buv + cv2

)
dvg (16)

and let

S
(α,β)
f,h = inf

{
Eh(u, v) : u, v ∈ H1(M) and

∫
M

f(x)|u|α|v|βdvg = 1

}
. (17)

In the next result we deal with the case where the functions a, b and c satisfy the

condition:

α

2∗
a(x) +

2
√
αβ

2∗
b(x) +

β

2∗
c(x) ≤ n− 2

4(n− 1)
Rg(x), ∀x ∈M. (18)

We can state the following result.

6



Teorema 0.0.3 Let (M, g) be a smooth closed Riemannian manifold of dimension
n ≥ 3. Let α, β > 1 be two real numbers such that α + β = 2∗, and let a, b and c be
functions Hölder continuous in M , and f ∈ C∞, with a, b and c satisfying (13) and
(18), and f satisfying (12). Let x0 ∈M such that f(x0) = maxM f . If S(α,β)

f,h < S∗
f(x0)2/2

∗ ,
where S∗ is defined in (7). Then, system (3) has a pair of nontrivial solutions.

Afterwards, we present sufficient conditions for the strict inequality

S
(α,β)
f,h <

S∗
f(x0)2/2∗

to be true. To get this, inspired by [5, 21, 29], we denote by

λf (M, g) = inf

{∫
M

(|∇u|2g +
n− 2

4(n− 1)
Rgu

2)dvg :

∫
M

f(x)|u|2∗dvg = 1

}
. (19)

Recall that if f ≡ 1, λf (M, g) is the Yamabe invariant of the manifold (M, g) and

is usually denoted by λ(M, g). In the particular case of the unit n−sphere Sn with the

standard metric, denoted as λ(Sn), it is well known that when λf (M, g) < λ(Sn)

(maxM f)2/2
∗ ,

there exists ϕ ∈ C∞(M) with ϕ > 0 and
∫
M
fϕ2∗dvg = 1 such that

−∆gϕ+
n− 2

4(n− 1)
Rgϕ = λf (M, g)fϕ

n+2
n−2 , (20)

with λf (M, g) =
∫
M

(
|∇ϕ|2g + n−2

4(n−1)
Rgϕ

2
)
dvg.

A special case is when we consider the unit n−sphere Sn with the standard metric

g0, where the scalar curvature is Rg0 = n(n − 1). Note that this case is included in

Theorem 0.0.1 when we make the same assumptions. Therefore the following theorem

is a case special of Theorem 0.0.3, when M = Sn/Γ.

We state the following result.

Teorema 0.0.4 Let Γ be a nontrivial finite group of isometries of Sn acting without
fixed point on Sn. Write M = Sn/Γ, and let a, b, c and f be functions invariant under Γ

and satisfying the same assumptions of Theorem 0.0.3. Then S(α,β)
f,h (Sn/Γ) < S∗

f(x0)2/2
∗ ,

and therefore, (3) has a pair of nontrivial solutions on Sn.

An interesting consequence is the following.

Corollary 0.0.5 Suppose the same assumptions of Theorem 0.0.4. In addition, if we
assume that b ≡ 0, f ≡ 1 and a ≡ c ≡ n(n−2)

4
then we get that S(α,β)(Sn) = S∗

and system (3) has infinitely many pair of positive solutions. Moreover, if (u, v) is

7



a minimizer for S(α,β)(Sn) with u, v > 0, then up to rescaling u and v will have the
following forms:

u(x) = ξ1(ρ0 − cos r)
2−n
2 and v(x) = ζ1(ρ0 − cos r)

2−n
2 (21)

where x ∈ Sn, r = dg0(x, x), ξ1, ζ1 > 0, ρ0 > 1 and ξ1
ζ1

=
(
α
β

)1/2

.

The main results of this chapter, written together with my PhD advisor, are

contained in the paper [43].

In chapter 2, inspired by [35], we investigate the coupled Hardy-Sobolev system

(4), in which Hardy-type potentials are also involved. The interesting aspect of this

study arises from the presence of singular terms, which adds complexity to the challenge

of estimating the energy level. In this context, we assume that the functions a, b, c, ã, c̃,

and ρ satisfy:

(H1) Coercivity condition, that is, there exists C0 > 0 such that∫
M

(
|∇gu|2 + |∇gv|2 + a(x)u2 + 2buv + c(x)v2 + ã(x)

ρ(x)θ
u2 + c̃(x)

ρ(x)γ
v2
)
dvg ≥ C1‖(u, v)‖2,

for all (u, v) ∈ H.

(H2) The function ρ satisfies:

(i)
ρ(x)

dg(x, x0)
= 1 +O(dg(x, x0)µ), ∀x ∈ Bδ(x0);

(ii) ρ(x) > 0, ∀x ∈M\Bδ(x0).

For some δ ∈ (0, ig) (here ig denotes the injectivity radius of (M, g)), where µ ∈ (0, 1).

Thus, our first result of this chapter can be stated as follows:

Teorema 0.0.6 Let (M, g) be a smooth closed Riemannian manifold of dimension n ≥
3. Let a, b, c, ã, c̃ and ρ be functions inM satisfying (H1) and (H2), with ã, c̃ ∈ C∞(M).
Let f be smooth function such that f(x0) = maxM f > 0. In addition, assume that
h := α

2?(s)
a+ 2

√
αβ

2?(s)
b+ β

2?(s)
c, ã and c̃ satisfy:

(1) h(x0) < (n−2)(6−s)
12(2n−2−s)Rg(x0) + (n−2)(n−4)

4(2n−2−s)
∆gf(x0)
f(x0) and ã(x0) = c̃(x0) = 0, if n ≥ 4;

(2) when n = 3, h(x0) < 1
8Rg(x0) and h ≤ 1

8Rg in M, or h ≡ 1
8Rg and (M, g)

is not conformally equivalent to the standard sphere S3, and that ã ≡ c̃ ≡ 0.

(22)

Then, system (4) has a pair of nontrivial weak solutions.
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An immediate consequence is the following:

Corollary 0.0.7 Let (M, g) be a closed Riemannian manifold of dimension n ≥ 3.
We assume that ã ≡ c̃ ≡ 0. Let a, b, c and ρ be functions in M satisfying (H1)

and (H2). Let f be smooth function such that f(x0) = maxM f > 0. Suppose that
h := α

2?(s)
a+ 2

√
αβ

2?(s)
b+ β

2?(s)
c satisfies:

(1) h(x0) < (n−2)(6−s)
12(2n−2−s)Rg(x0) + (n−2)(n−4)

4(2n−2−s)
∆gf(x0)

f(x0)
, if n ≥ 4;

(2) when n = 3, h(x0) < 1
8
Rg(x0) and h ≤ 1

8
Rg in M, or h ≡ 1

8
Rg and

(M, g) is not conformally equivalent to the standard sphere S3.

(23)

Then, system (4) has a pair of nontrivial weak solutions.

For our second theorem, we assume only that the functions ã and c̃ are Hölder

continuous. Now, we can state our second theorem of the chapter.

Teorema 0.0.8 Let (M, g) be a closed Riemannian manifold of dimension n ≥ 3. Let
a, b, c, ã, c̃ and ρ be functions in M satisfying (H1) and (H2), let f be smooth function
such that f(x0) = maxM f > 0. Furthermore, suppose we are in one of the following
cases:

(1)when n ≥ 4, and


ã(x0) < 0 if θ > γ,

αã(x0) + βc̃(x0) < 0 if θ = γ,

c̃(x0) < 0 if γ > θ,

(24)

(2)when n = 3, and


ã(x0) < 0 if θ > γ ≥ 1,

αã(x0) + βc̃(x0) < 0 if θ = γ ≥ 1,

c̃(x0) < 0 if γ > θ ≥ 1.

(25)

Then, system (4) has a pair of nontrivial weak solutions.

Finally, in the Chapter 3, motivated by the works of Druet [15] and Chen and

Liu [11]. In [15], the author considered equation (1) (as previously mentioned), while

in [11], the authors studied a class of Hardy-Sobolev equation involving the p-Laplace

operator. When p 6= 2, an interesting point in its existence results, is the condition:

2 < p2 < n or 1 < p < min
{
n+2

3
, 2
}
.

Here, we were able to improve the range to p, more specifically, when 2 < p ≤ n+2
3

or 1 < p < 2 and p ≤
√
n, we establish existence results for (5). For this we assume that

the functions a, b and c are Hölder continuous and f is a smooth function on M with

9



maxM f > 0. In addition, these functions satisfy the following coercivity condition,

that is, there exists C0 > 0 such that∫
M

[
|∇gu|p + |∇gv|p + a(x)|u|p + b(x)uv(|u|p−2 + |v|p−2) + c(x)|v|p

]
dvg ≥ C0‖(u, v)‖p,

(26)

for all (u, v) ∈ Hp, where b ≡ 0 when 1 < p < 2.

Our first result can be stated as follows:

Teorema 0.0.9 Let (M, g) be a smooth closed Riemannian manifold of dimension
n ≥ 5, p ∈ (2, n) and s ∈ [0, p). Let a, b and c be functions Hölder continuous in
M satisfying (26) and f smooth function on M such that f(x0) = maxM f > 0. In
addition, assume that 2 < p ≤ n+2

3
and

0 < Rg(x0) +
3(n+ 2− 3p)

(3p− s)
∆f(x0)

f(x0)
. (27)

Then, system (5) has a pair of nontrivial weak solutions.

For our next theorem, we consider b ≡ 0, we write h := α
p?(s)

a + β
p?(s)

c. We can

state the following result.

Teorema 0.0.10 Let (M, g) be a closed Riemannian manifold of dimension n ≥ 2,
p ∈ (1, 2) and s ∈ [0, p). Let a, b and c be functions Hölder continuous in M satisfying
(26) and f a smooth function such that f(x0) = maxM f > 0 . If in addition, we
assume that h(x0) < 0. Then, the system (5) has a pair of non-negative nontrivial
weak solutions, when n ≥ 4. The same conclusion holds when n = 2, 3, for p ≤

√
n.

Concluding this introduction, we emphasize that the main tools used in this thesis

are the following: "optimal" Sobolev and Hardy-Sobolev inequalities, Brézis-Lieb type

lemma, minimization under constraint and Mountain Pass Theorem. In order not to

resort to the Introduction and for the sake of the independence of the chapters, we will

again present, in each chapter, the main results and the respective hypotheses.
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Notation

• (M, g) denotes a smooth compact Riemannian manifold without boundary;

• ig denotes the injectivity radius of (M, g);

• Bδ(x) denotes the geodesic ball centered in x with radius δ ∈ (0, ig);

• det(g) is the determinant of the components of the metric g;

• Rn denotes the usual Euclidean space;

• BR(0) denotes an ball in Rn of radius R and center at the origin;

• Lq(M) :=
{
u : M → R : u is measurable and

∫
M
|u|qdvg <∞

}
;

• L∞(M) := {u : M → R : u is measurable and supM |u(x)| <∞};

• H1,p(M) denotes the usual Sobolev space;

• CK(M) denotes the space of functions possessing continuous derivatives up to

order k on M ;

• Ck,%(M) denotes the Hölder space;

• C∞0 (Ω) denotes the space of infinitely differentiable functions whose support com-

pact in Ω;

• um → u and um ⇀ u denote strongly and weak converge, respectively, in a

normed space;

• Ipq :=

∫ ∞
0

tp(1 + t)−qdt.



Chapter 1

On a Class of Strongly Coupled
Critical Elliptic Systems

In this chapter, motivated by [2, 3, 10, 16, 21, 28, 26, 38, 44, 47, 50], we in-

vestigate the existence of solutions for a class of strongly coupled elliptic systems.

The approach is variational, employing the Mountain Pass Theorem and minimization

under constraint. One particularly intricate aspect is estimating the energy level (min-

imax level), especially when n = 3, as the argument is non-local, necessitating the use

of an appropriate Green’s function. The results of this chapter were published in the

paper [43].

1.1 Introduction

Let (M, g) be a smooth closed Riemannian manifold of dimension n ≥ 3. We are

concerned with the existence of solutions of the following system:
−∆gu+ a(x)u+ b(x)v =

α

2∗
f(x)u|u|α−2|v|β in M,

−∆gv + b(x)u+ c(x)v =
β

2∗
f(x)v|v|β−2|u|α in M,

(1.1)

where ∆g is the Laplace-Beltrami operator, a, b and c are functions Hölder continuous

inM , f is a smooth function, and α > 1, β > 1 are real constants satisfying α+β = 2∗,

where 2∗ = 2n/(n− 2) is the critical Sobolev exponent.



The system (1.1) is strongly related to the equation

−∆gu+ a(x)u = f(x)|u|2∗−2u in M,

which has been intensively studied (see for instance, Druet [15] and Vétois [48]), espe-

cially, when we have a = n−2
4(n−1)

Rg, where we get the prescribe scalar curvature equation

−∆gu+
n− 2

4(n− 1)
Rgu = f(x)|u|2∗−2u, in M, (1.2)

this problem is a generalization of the well-known Yamabe equation (when f is con-

stant) whose positive solutions are such that the scalar curvature of the conformal

metric g̃ = u2∗−2g is equal to 4(n−1)
n−2

f (for more details see Yamabe [50], Trudinger

[47], Aubin [3], Schoen [44], Aubin and Hebey [5], Escobar and Schoen [21], Hebey

and Vaugon [29]). The study of this equation both in the classical and prescribed

form, together with the work of Alves et al. [2], inspired us in this investigation on the

existence of solutions for (1.1).

Before presenting our main results, we need to introduce some notations and

definitions. Throughout this work, we will denote by H1(M) the Sobolev space of all

functions in L2(M) with one derivative (in the weak sense) in L2(M). We equip H1(M)

with the standard ‖ · ‖H1−norm, that is, ‖u‖2
H1 = ‖∇u‖2

2 + ‖u‖2
2, where ‖ · ‖q denotes

the norm of the Lebesgue space Lq(M), whenever q ≥ 1. The norm of Lq(M)×Lq(M)

will be defined by ‖(u, v)‖q =
(
‖u‖qq + ‖v‖q

)1/q
.

We shall work with the space H = H1(M)×H1(M) endowed with the norm

‖(u, v)‖ =
(
‖u‖2

H1 + ‖v‖2
H1

)1/2
.

In this context, we say that a pair of functions (u, v) ∈ H is a weak solution of

(1.1), if for all (ϕ, ψ) ∈ H, it holds∫
M

(〈∇u,∇ϕ〉g + 〈∇v,∇ψ〉g + a(x)uϕ+ b(x)[uψ + vϕ] + c(x)vψ) dvg

=

∫
M

α

2∗
f(x)|u|α−2|v|βuϕdvg +

∫
M

β

2∗
f(x)|v|β−2|u|αvψdvg.

By elliptic regularity theory (for example, see Lee and Parker [38, Theorem 4.1]),

any weak solution (u, v) of (1.1), is in C2 ×C2 when a, b and c are Hölder continuous,

and is in C∞ × C∞ when a, b and c are smooth functions.
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Recall the relation obtained by Alves et al. [2, Section 4] that we will use in this

chapter is the following:

S∗ =

[(
α

β

)β/2∗
+

(
β

α

)α/2∗]
K−2
n , (1.3)

where α + β = 2∗, K−2
n is defined by

K−2
n = inf

u∈H1(Rn)\{0}

∫
Rn |∇u|

2dx(∫
Rn |u|α+βdx

)2/2∗
,

and S∗ is defined by

S∗ = inf
(u,v)∈[H1(Rn)]2\{0}

∫
Rn (|∇u|2 + |∇v|2) dx(∫

Rn |u|α|v|βdx
)2/2∗

. (1.4)

It is known that Kn is the sharp constant for the embedding of H1(Rn) into L2∗(Rn).

Throughout this chapter we assume some very general hypotheses on the func-

tions a, b, c and f that will allow us to obtain some existence results for system (1.1)

through variational methods. Precisely, we assume that the function f satisfies

max
M

f > 0 (1.5)

and the functions a, b and c satisfy the following coercivity condition: there exists

C0 > 0 such that∫
M

(|∇gu|2+|∇gv|2+a(x)u2+2b(x)uv+c(x)v2)dvg ≥ C0‖(u, v)‖2, ∀ (u, v) ∈ H. (1.6)

Our first result in this chapter can be stated as follows:

Teorema 1.1.1 Let (M, g) be a closed Riemannian manifold of dimension n ≥ 3. Let
α, β > 1 be two real numbers such that α+β = 2∗, and let a, b and c be functions Hölder
continuous in M , and f ∈ C∞, with a, b and c satisfying (1.6) and f satisfying (1.5),
writing h = α

2∗
a+ 2

√
αβ

2∗
b+ β

2∗
c. Let x0 be some point in M such that f(x0) = maxM f .

If, in addition, we assume that

(i) h(x0) < n−2
4(n−1)

Rg(x0) + (n−4)(n−2)
8(n−1)

∆gf(x0)

f(x0)
, if n ≥ 4,

(ii) h(x0) < 1
8
Rg(x0) and h ≤ 1

8
Rg in M, if n = 3.

(1.7)

Then, system (1.1) has a nontrivial solution.
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Theorem 1.1.1 will be proved using the Mountain Pass Theorem without the

Palais-Smale compactness condition. A delicate part is the estimating the minimax

level in order to overcome the lack of compactness of the functional associated to system

(1.1) caused by the critical growth of the nonlinearities. We achieve this objective

following some ideas developed in [3, 4, 16]. Here we face some extra difficulties due

to the strong coupling of the system.

As a consequence of Theorem 1.1.1, we prove the following results.

Corollary 1.1.2 Suppose the same assumptions of Theorem 1.1.1. Let x0 be some
point in M such that f(x0) = maxM f . If, in addition, we assume b ≤ 0 and

(i) α
2∗
a(x0) + β

2∗
c(x0) < n−2

4(n−1)
Rg(x0) + (n−4)(n−2)

8(n−1)

∆gf(x0)

f(x0)
, if n ≥ 4,

(ii) α
2∗
a(x0) + β

2∗
c(x0) < 1

8
Rg(x0) and α

2∗
a+ β

2∗
c ≤ 1

8
Rg in M, if n = 3.

(1.8)

Then, system (1.1) has a pair of positive solutions.

Corollary 1.1.3 Suppose the same assumptions of Theorem 1.1.1 and that f is con-
stant and positive. Let x0 be some point in M such that

(i) h(x0) < n−2
4(n−1)

Rg(x0), if n ≥ 4,

(ii) h(x0) < 1
8
Rg(x0) and h ≤ 1

8
Rg in M, if n = 3.

(1.9)

Then, system (1.1) has a nontrivial solution.

For the next results, consider the functional Eh : H → R given by

Eh(u, v) =

∫
M

(
|∇u|2g + |∇v|2g + au2 + 2buv + cv2

)
dvg (1.10)

and let

S
(α,β)
f,h = inf

{
Eh(u, v) : u, v ∈ H1(M) and

∫
M

f(x)|u|α|v|βdvg = 1

}
. (1.11)

Define

λf (M, g) = inf

{∫
M

(|∇u|2g +
n− 2

4(n− 1)
Rgu

2)dvg :

∫
M

f(x)|u|2∗dvg = 1

}
. (1.12)

Remark 1.1.4 When f is constant and equal to 1, λf (M, g) is called of Yamabe in-
variant of the manifold (M, g), and is usually denoted by λ(M, g). In the particular
case of the unit n−sphere Sn with the standard metric is denoted by λ(Sn). It is well
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known that when λf (M, g) < λ(Sn)

(maxM f)2/2
∗ , there exists ϕ ∈ C∞(M) with ϕ > 0 and∫

M
fϕ2∗dvg = 1 such that

−∆gϕ+
n− 2

4(n− 1)
Rgϕ = λf (M, g)fϕ

n+2
n−2 , (1.13)

with λf (M, g) =
∫
M

(
|∇ϕ|2g + n−2

4(n−1)
Rgϕ

2
)
dvg. It is also known that λ(Sn) = K−2

n ,
with

Kn =

√
4

n(n− 2)ω
2/n
n

,

where ωn is the volume of the unit n−sphere (see [3, 5, 4, 16]).

In the next results we deal with the case where the functions a, b and c satisfy

the condition:

α

2∗
a(x) +

2
√
αβ

2∗
b(x) +

β

2∗
c(x) ≤ n− 2

4(n− 1)
Rg(x), ∀x ∈M. (1.14)

Remark 1.1.5 The coercivity condition (1.6) and (1.14) imply that given ψ ∈ H1(M)

and ξ, ζ > 0 such that
(
ξ
ζ

)2

= α
β
, then

C0(ξ2 + ζ2)‖ψ‖2
H1 ≤ (ξ2 + ζ2)‖∇ψ‖2

2 +

∫
M

(aξ2 + 2bξζ + cζ2)ψ2dvg

= (ξ2 + ζ2)

{
‖∇ψ‖2

2 +

∫
M

(
α

2∗
a+

2
√
αβ

2∗
b+

β

2∗
c)ψ2dvg

}
≤ (ξ2 + ζ2)

{
‖∇ψ‖2

2 +
n− 2

4(n− 1)

∫
M

Rgψ
2dvg

}
.

Therefore, −∆g + n−2
4(n−1)

Rg is also coercive. In particular we are dealing with the case
where the Yamabe invariant is positive.

We can state the following result.

Teorema 1.1.6 Let (M, g) be a closed Riemannian manifold of dimension n ≥ 3. Let
α, β > 1 be two real numbers such that α+ β = 2∗, with a, b and c satisfying (1.6) and
(1.14), and f satisfying (1.5). Let x0 be some point in M such that f(x0) = maxM f .
If S(α,β)

f,h < S∗
f(x0)2/2

∗ , where S∗ is defined in (1.4). Then, system (1.1) has a nontrivial
solution.

Complementing Theorem 1.1.6 and inspired by [21, 5, 30], we prove the following

theorems:

16



Teorema 1.1.7 Let (M, g) be a closed Riemannian manifold of dimension n ≥ 3. Let
a, b and c be functions Hölder continuous in M satisfying (1.6) and (1.14). Assume
that n ≥ 6 andM is not locally conformally flat. If at a point x0 where f(x0) = maxM f

is such that the Weyl tensor is nonvanishing (that is, |Wg(x0)| 6= 0). If we assume that

(i) if ∆gf(x0) = 0 when n = 6, or

(ii) if ∆gf(x0) = 0 and
∣∣∆2

gf(x0)
∣∣ /f(x0) is small enough, when n > 6.

Then, S(α,β)
f,h < S∗

f(x0)2/2
∗ . Consequently, system (1.1) has a nontrivial solution.

Teorema 1.1.8 Let (M, g) be a closed Riemannian manifold of dimension n ≥ 3. Let
a, b and c be functions Hölder continuous in M satisfying (1.6) and (1.14). Assume
that n = 3, 4 or 5, or M is locally conformally flat, when n ≥ 6. Let x0 ∈M be a point
such that f(x0) = maxM f > 0. We have the following cases:

(i) if n = 3 or, if ∆gf(x0) = 0 when n = 4, 5;

(ii) if ∆gf(x0) = ∆2
gf(x0) = 0,when n = 6, 7;

(iii) if ∆gf(x0) = ∆2
gf(x0) = 0 and ∆3

gf(x0) = 0 or |∇Wg(x0)| = 0, when n = 8.

Then, S(α,β)
f,h < S∗

f(x0)2/2
∗ unless M is conformal to the standard Sn. Consequently,

system (1.1) has a nontrivial solution. When n > 8 the same conclusion holds if
|∇Wg(x0)| 6= 0 and ∆3

gf(x0) = 0 or when |∇Wg(x0)| = 0 if |∇2Wg(x0)| 6= 0 and
∆3
gf(x0) = ∆4

gf(x0) = 0, or when all derivatives of Wg vanish at x0 if ∆m
g f(x0) = 0

for all 1 ≤ m ≤ n
2
− 1.

Corollary 1.1.9 Suppose the same assumptions of Theorems 1.1.7 or 1.1.8. In addi-
tion, if b ≤ 0 and the functions a and c satisfy

α

2∗
a(x) +

β

2∗
c(x) ≤ n− 2

4(n− 1)
Rg(x), ∀x ∈M. (1.15)

Then, system (1.1) has a pair of positive solutions.

Corollary 1.1.10 Suppose the same assumptions of Theorems 1.1.7 or 1.1.8. In ad-
dition, if we assume that f ≥ 0, b = 0 and a = c = n−2

4(n−1)
Rg. Then, system (1.1) has

a nontrivial solution. Moreover, we have that

S
(α,β)
f,h (M) =

[(
α

β

)β/α+β

+

(
β

α

)α/α+β
]
λf (M, g). (1.16)

Therefore, the pair (ξϕ, ζϕ) (up to rescaling) is solution for the system, for any positive

solution ϕ ∈ C∞ of (1.13), where
∫
M
fϕ2∗dvg = 1 and ξ

ζ
=
(
α
β

)1/2

.
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A special case is when we consider the unit n−sphere Sn with the standard metric

g0, that is, the scalar curvature is Rg0 = n(n − 1). Note that this case is included in

Theorem 1.1.1 when we assume the same hypotheses. Therefore the following theorem

is a case special of Theorem 1.1.8, when M = Sn/Γ, this result is inspired by [21].

Teorema 1.1.11 Let Γ be a nontrivial finite group of isometries of Sn acting without
fixed point on Sn. Write M = Sn/Γ, and let a, b, c and f be functions invariant under Γ

and satisfying the same assumptions of Theorem 1.1.8. Then S(α,β)
f,h (Sn/Γ) < S∗

f(x0)2/2
∗ ,

and therefore, system (1.1) has a nontrivial solution on Sn.

Corollary 1.1.12 Suppose the same assumptions of Theorem 1.1.11. In addition, if
we assume that b = 0, a = c = n(n−2)

4
and f ≥ 0. Then, system (1.1) has a nontrival

solution. Moreover, we have

S
(α,β)
f,h (Sn) =

[(
α

β

)β/α+β

+

(
β

α

)α/α+β
]
λf (Sn, g0). (1.17)

Therefore, the pair (ξϕ, ζϕ) (up to rescaling) is solution for system (1.1), where ϕ ∈ C∞

is a positive solution of Eq. (1.13) on Sn.

Corollary 1.1.13 Suppose the same assumptions of Theorem 1.1.11. In addition, if
we assume that b = 0, f = 1 and a = c = n(n−2)

4
then we get that S(α,β)(Sn) = S∗

and system (1.1) has infinitely many pair of positive solutions. Moreover, if (u, v) is
a minimizer for S(α,β)(Sn) with u, v > 0, then up to rescaling u and v will have the
following forms:

u(x) = ξ1(ρ0 − cos r)
2−n
2 and v(x) = ζ1(ρ0 − cos r)

2−n
2 (1.18)

where x ∈ Sn, r = dg0(x, x), ξ1, ζ1 > 0, ρ0 > 1 and ξ1
ζ1

=
(
α
β

)1/2

.

Corollary 1.1.14 Suppose the same assumptions of Theorem 1.1.11. In addition, if
b ≤ 0 and the functions a and c satisfy the following hypothesis

α

2∗
a(x) +

β

2∗
c(x) ≤ n(n− 2)

4
, ∀x ∈M. (1.19)

Then, system (1.1) has a pair of positive solutions on Sn.

The chapter is organized as follows. In Sect. 1.2 we prove an essential

Sobolev inequality to prove the main results. In Sect. 1.3 we prove Theorem 1.1.1 and

its consequences. In Sect. 1.4 we prove Theorems 1.1.6, 1.1.7 and 1.1.8. We dedicate

Sect. 1.5 for the case of the sphere Sn.
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1.2 Some preliminary results

In [31], Hebey and Vaugon have established that the best constant for the Sobolev

inequality is K2
n. Precisely, they proved that there is a positive constant B such that

‖u‖2
2∗ ≤ K2

n‖∇u‖2
2 +B‖u‖2

2, (1.20)

for all u ∈ H1(M). Moreover, if ‖u‖2
2∗ ≤ K‖∇u‖2

2 + C‖u‖2
2 for all u ∈ H1(M), where

K and C are positive constants, then K ≥ K2
n.

Initially, we establish an inequality that will be used in the proof of the main

results.

Lemma 1.2.1 Let S∗ be the constant defined in (1.4) when α + β = 2∗. Then, there
is a positive constant B0 such that(∫

M

|u|α|v|βdvg
)2/2∗

≤ S−1
∗ ‖(|∇u|, |∇v|)‖2

2 +B0‖(u, v)‖2
2 , (1.21)

for all (u, v) ∈ H. Moreover, (S∗)−1 is the best constant such that the inequality holds.

Proof. Given u, v ∈ H1(M), since α
2∗

+ β
2∗

= 1, by Hölder’s inequality,∫
M

|u|α|v|βdvg ≤
(∫

M

|u|2∗dvg
)α/2∗ (∫

M

|v|2∗dvg
)β/2∗

,

that is, (∫
M

|u|α|v|βdvg
)2/2∗

≤
(
‖u‖2

2∗

)α/2∗ (‖v‖2
2∗

)β/2∗
.

On the other hand, by Young’s inequality,

(
‖u‖2

2∗

)α/2∗ (‖v‖2
2∗

)β/2∗
=

(
ε‖u‖2

2∗

)α/2∗ (‖v‖2
2∗)

β/2∗

εα/2∗

=
(
ε‖u‖2

2∗

)α/2∗ (‖v‖2
2∗ε
−α/β)β/2∗

≤ α

2∗
ε‖u‖2

2∗ +
β

2∗
ε−α/β‖v‖2

2∗ .

Choosing ε =

[(
α
β

)β/2∗
+
(
β
α

)α/2∗]−1
2∗

α
, by a straightforward calculation, we get

α

2∗
ε =

β

2∗
ε−α/β =

[(
α

β

)β/2∗
+

(
β

α

)α/2∗]−1

,

and consequently,(∫
M

|u|α|v|βdvg
)2/2∗

≤

[(
α

β

)β/2∗
+

(
β

α

)α/2∗]−1 (
‖u‖2

2∗ + ‖v‖2
2∗

)
. (1.22)
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Using (1.22) and the Sobolev inequality (1.20), we can find B > 0 such that(∫
M

|u|α|v|βdvg
)2/2∗

≤

[(
α

β

)β/2∗
+

(
β

α

)α/2∗]−1 (
K2
n‖(|∇u|, |∇v|)‖2

2 +B‖(u, v)||22
)
.

Therefore, we get that(∫
M

|u|α|v|βdvg
)2/2∗

≤ S−1
∗ ‖(|∇u|, |∇v|)‖2

2 +B0‖(u, v)||22

for all (u, v) ∈ H, where B0 = B

[(
α
β

)β/2∗
+
(
β
α

)α/2∗]−1

.

Finally, if S0 is a positive constant such that(∫
M

|u|α|v|βdvg
)2/2∗

≤ S0‖(|∇u|, |∇v|)‖2
2 +B1‖(u, v)||22, (1.23)

for all (u, v) ∈ H, where B1 is some positive constant. We claim that S0 ≥ S−1
∗ .

Indeed, given ϕ ∈ H1(M) and writing u = α1/2ϕ and v = β1/2ϕ, by (1.23) we have

(
αα/2ββ/2

)2/2∗
(∫

M

|ϕ|2∗dvg
)2/2∗

≤ 2∗
[
S0‖∇ϕ‖2

2 +B1‖ϕ‖2
2

]
,

which gives us(∫
M

|ϕ|2∗dvg
)2/2∗

≤ 2∗

αα/2∗ββ/2∗
[
S0‖∇ϕ‖2

2 +B1‖ϕ‖2
2

]
=

[
α

αα/2∗ββ/2∗
+

β

αα/2∗ββ/2∗

] (
S0‖∇ϕ‖2

2 +B1‖ϕ‖2
2

)
=

[(
α

β

)β/2∗
+

(
β

α

)α/2∗]
S0‖∇ϕ‖2

2 +B2‖ϕ‖2
2,

for some B2 > 0. Since K−2
n is the best constant in the Sobolev embedding theorem

(see [4, 31]), we reach that[(
α

β

)β/2∗
+

(
β

α

)α/2∗]
S0 ≥ K2

n,

and since S∗ =

[(
α
β

)β/2∗
+
(
β
α

)α/2∗]
K−2
n , we conclude the proof of the lemma.

An immediate consequence of this result is the following inequality:

Corollary 1.2.2 Let C = max{S−1
∗ , B0}, then we have(∫

M

|u|α|v|βdvg
)2/(α+β)

≤ C‖(u, v)‖2.
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Another result that will be important later on is the following Brezis-Lieb type

lemma.

Lemma 1.2.3 Let um ⇀ u and vm ⇀ v in H1(M) and let ` ∈ L∞(M). Then we have∫
M

`(x)|um|α|vm|βdvg =

∫
M

`(x)|u|α|v|βdvg +

∫
M

`(x)|um − u|α|vm − v|βdvg + om(1),

where om(1)→ 0 as m→∞.

Proof. The proof is done in Lemma 3.2.5 in Chapter 3.

1.3 Proof of Theorem 1.1.1

We begin this section by introducing some notations and definitions. First, con-

sider the functional I : H → R associated to the system (1.1) given by

I(u, v) =
1

2

∫
M

[
|∇u|2g + |∇v|2g + a(x)u2 + 2b(x)uv + c(x)v2

]
dvg−

1

2∗

∫
M

f(x)|u|α|v|βdvg.

Since the functions a, b and c are Hölder continuous and f is a smooth function,

we have that I is well defined and by standard arguments I ∈ C1(H,R) with

I ′(u, v) · (ϕ, ψ) =

∫
M

(〈∇u,∇ϕ〉g + 〈∇v,∇ψ〉g + a(x)uϕ+ b(x)[uψ + vϕ] + c(x)vψ) dvg

−
∫
M

(
α

2∗
f(x)|u|α−2|v|βuϕ+

β

2∗
f(x)|v|β−2|u|αvψ

)
dvg.

Hence, a critical point of I is a weak solution of system (1.1) and reciprocally.

Moreover, it is easy to see that I satisfies the geometry of the Mountain Pass Theorem.

Indeed, from Corollary 1.1.2 and by coercivity hypothesis (1.6) we have that

I(u, v) ≥ C0

2
||(u, v)||2 − C

2∗
||(u, v)||2∗ ,

thus, there exist R > 0 (small enough) and ρ > 0 such that

I(u, v) ≥ ρ whenever ‖(u, v)‖ = R. (1.24)

Now, let ϕ ∈ C∞0 (M)\{0} such that
∫
M
f(x)|ϕ|2∗dvg > 0, for t > 0, note that:

I(tϕ, tϕ) =
t2

2

∫
M

[2|∇gϕ|2 + (a+ 2b+ c)ϕ2]dvg −
t2

∗

2∗

∫
M

f(x)|ϕ|2∗dvg

≤ t2

2
||ϕ||2H1 −

t2
∗

2∗

∫
M

f(x)|ϕ|2∗dvg,
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thus, limt→∞ I(tϕ, tϕ) = −∞ as t→∞. Therefore, there exists some (ũ, ṽ) ∈ H with

‖(ũ, ṽ)‖ > R and such that I(ũ, ṽ) < 0.

Now, for some pair (ũ, ṽ) satisfying the second condition above, we consider

the set Γ = {γ ∈ C([0, 1], H) : γ(0) = 0 and γ(1) = (ũ, ṽ)}, and so we can define the

minimax level

c := inf
γ∈Γ

sup
0≤t≤1

I(γ(t)) ≥ ρ. (1.25)

Next, we will estimate the level c. This will be a very delicate result.

Lemma 1.3.1 Suppose that (1.7) holds, then

0 < c <
Sn/2∗

nf(x0)(n−2)/2
, (1.26)

for some par (ũ, ṽ) ∈ H, where c is defined in (1.25).

Proof. Initially, we will verify that there exists (u, v) ∈ H such that

Q(u, v) <
S∗

(maxM f)2/2∗
, (1.27)

where Q is defined by

Q(u, v) :=

∫
M

(
|∇u|2g + |∇v|2g

)
dvg +

∫
M

(a(x)u2 + 2b(x)uv + c(x)v2) dvg(∫
M
f(x)|u|α|v|βdvg

)2/2∗

for (u, v) ∈ H with
∫
M
f(x)|u|α|v|βdvg > 0.

The proof will be done considering the cases n ≥ 4 and n = 3.

Let x0 ∈ M be a point such that f(x0) = max{f(x) : x ∈ M}. We denote by

Bδ(x0) the geodesic ball of center x0 and radius δ, with δ ∈ (0, ig), where ig is the

injective radius of (M, g). We choose δ small enough if necessary such that f(x) > 0

on B2δ(x0). In normal coordinates we can write the following expansions

h(x)η(r)2 = h(x0) + rθO(1),

f(x)η(r)2∗ = f(x0) +
1

2
∂ijf(x0)xixj + r3O(1),∫

Sn−1

√
det(g)dσ = ωn−1

(
1− Rg(x0)

6n
r2 + r4O(1)

)
,

(1.28)

where det(g) is the determinant of the components of the metric g (the third expression

can be seen in [27, Chapter 6, p. 283]) and h = α
2∗
a+ 2

√
αβ

2∗
b+ β

2∗
c, with θ ∈ (0, 1) such

that h ∈ C0,θ(M), and η ∈ C∞0 ([−2δ, 2δ]), with η = 1 in [−δ, δ] and 0 ≤ η ≤ 1.
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Now, for n ≥ 4 and ε > 0, we consider the following family of functions

uε(x) =
η(dg(x, x0))

(ε+ dg(x, x0)2)(n−2)/2
. (1.29)

For 0 < p, q <∞, we put Ipq :=

∫ ∞
0

tp(1 + t)−qdt, and then it holds that

n− 2

n
In/2n = I(n−2)/2

n =
ωn

2n−1ωn−1

,

(n− 2)2

2
ωn−1I

n/2
n = K−2

n

(
n− 2

2n
ωn−1I

n/2
n

)2/2∗

.

(1.30)

When n = 4, from [3, 4], we get∫
M

|∇uε(x)|2gdvg = 2ω3ε
−1

(
I2

4 +
1

24
Rg(x0)ε ln ε+ o(ε ln ε)

)
,∫

M

h(x)uε(x)2dvg = −ω3

2
h(x0) ln ε+ o(ln ε),∫

M

f(x)uε(x)4dvg =
ω3

2
f(x0)I1

4 ε
−2

(
1− 1

12
Rg(x0)ε+ o(ε)

)
.

(1.31)

Now considering ξ, ζ > 0 such that ξ
ζ

=
√

α
β
, we obtain

Q(ξuε, ζuε) =
(ξ2 + ζ2)

∫
M
|∇uε|2gdvg +

∫
M

[ξ2a(x) + 2ξζb(x) + ζ2c(x)]u2
εdvg

(ξαζβ)2/2∗
(∫

M
f(x)u2∗

ε dvg
)2/2∗

=
(ξ2 + ζ2)

(ξαζβ)2/2∗

∫
M
|∇uε|2gdvg +

∫
M
h(x)u2

εdvg(∫
M
f(x)u2∗

ε dvg
)2/2∗

.

Then, by (1.31) and (1.30), it follows that (for ε small enough):

Q(ξuε, ζuε) =
(ξ2 + ζ2)

(ξαζβ)1/2

[
ω3I

2
4 + ω3

12
ε ln ε (Rg(x0)− 6h(x0)) + o(ε ln ε)

][
ω3

2
f(x0)I1

4 (1− 1
12
Rg(x)ε+ o(ε))

]1/2
=

κ(α, β)

f(x0)1/2

[
2ω3I

2
4 + ω3

12
ε ln ε (Rg(x0)− 6h(x0)) + o(ε ln ε)

]
K2

42ω3I2
4

[
1− 1

24
Rg(x)ε+ o(ε)

]
=

κ(α, β)

f(x0)1/2

{
K−2

4 +
ω3

12
ε ln ε (Rg(x0)− 6h(x0)) + o(ε ln ε) + 1

24
Rg(x0)ε+ o(ε)

K2
42ω3I2

4

[
1− 1

24
Rg(x)ε+ o(ε)

] }

=
κ(α, β)

f(x0)1/2

{
K−2

4 +
ω3

12
ε ln ε (Rg(x0)− 6h(x0)) + o(ε ln ε)

K2
42ω3I2

4

[
1− 1

24
Rg(x)ε+ o(ε)

] }

=
κ(α, β)

f(x0)1/2

{
K−2

4 +
ω3

12
ε ln ε (Rg(x0)− 6h(x0)) [1− εO(1)] + ε2 ln(ε)O(1) + o(ε ln ε)

K2
42ω3I2

4 [1− εO(1)]

}
=

κ(α, β)

f(x0)1/2

{
K−2

4 +
K−2

4

24I2
4

ε ln ε (Rg(x0)− 6h(x0)) +
o(ε ln ε)

K2
42ω3I2

4

[
1− 1

24
Rg(x)ε+ o(ε)

]} ,
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where κ(α, β) =

[(
α
β

)β/2∗
+
(
β
α

)α/2∗]
and we use that (1 + t)q = 1 + qt + · · · +

q(q−1)...(q−i+1)
i!

ti+· · · , for all |t| < 1, where q ∈ R. Consequently, as I2
4 =

∫∞
0

t2

(1+t)4
dt = 1

3

we reach

Q(ξuε, ζuε) ≤
S∗

f(x0)1/2
+

S∗
8f(x0)1/2

ε ln ε (Rg(x0)− 6h(x0)) + o(ε ln ε). (1.32)

For n > 4, from [3, 4], we have

= (n−2)2

2
In/2n ωn−1ε

(2−n)/2
(

1− n+2
6n(n−4)

Rg(x0)ε+ o(ε)
)
,∫

M

h(x)u2
εdvg = 2(n−2)(n−1)

n(n−4)
ωn−1I

n/2
n h(x0)ε(4−n)/2 + o(ε(4−n)/2),∫

M

f(x)u2∗

ε dvg = ωn−1

2
f(x0)I(n−2)/2

n ε−n/2
(

1− 1
2(n−2)

(
−∆gf(x0)

f(x0)
+
Rg(x0)

3

)
ε+ o(ε)

)
.

Thus, similarly to what we did above, we find that

Q(ξuε, ζuε) ≤
S∗

f(x0)2/2∗

− S∗
(n− 4)nf(x0)2/2∗

(
(n− 4)

2

∆gf(x0)

f(x0)
+Rg(x0)− 4(n− 1)

(n− 2)
h(x0)

)
ε+ o(ε).

(1.33)

Now, we recall, by (1.7), that

h(x0) <
n− 2

4(n− 1)
Rg(x0) +

(n− 4)(n− 2)

8(n− 1)

∆gf(x0)

f(x0)
,

for n ≥ 4. Then, by (1.32) and (1.33), it follows, for ε sufficient small, that (1.27)

holds.

Now, we consider the case n = 3. As a, b and c satisfy the condition (1.6), it

follows that −∆g+h is a coercive operator. Then we can consider Gx0 : M\{x0} −→ R

the Green function of this operator, that is,

−∆gGx0 + hGx0 = δx0 ,

where δx0 is the Dirac mass at x0. It is well known that for x close to x0 we can write

Gx0(x) =
1

ω2dg(x, x0)
+m(x0) + o(1).

Next, we will use Druet’s idea [16]. By using the cut-off function η, we can write

Gx0 as follows:

ω2Gx0(x) =
η(dg(x, x0))

dg(x, x0)
+ wh(x), (1.34)
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where wh ∈ C∞loc(M\{x0}). In M\Bδ(x0), we have

−∆gwh + hwh = ∆g

(
η

dg(x, x0)

)
− h η

dg(x, x0)
. (1.35)

And, in Bδ(x0), we write in normal coordinates

−∆gwh + hwh = −∂r(ln(det(g)))

2dg(x, x0)2
− h 1

dg(x, x0)
. (1.36)

In particular, we have that the right side of the above equation is in Ls(M) for all

1 < s < 3, so by standard elliptic theory, wh ∈ C0(M) ∩ H1(M) and moreover

wh(x0) = ω2m(x0) (for more details see Druet [16]).

As we have assumed that h ≤ 1
8
Rg (see (1.7)), there exists Gx0 the Green function

of −∆g + 1
8
Rg, and as above we can write

ω2Gx0(x) =
η(dg(x, x0))

dg(x, x0)
+ w(x). (1.37)

Now, note that

−∆g(w − wh) +
1

8
Rg(w − wh) =− ω2∆g(Gx0 −Gx0) + ω2

1

8
Rg(Gx0 −Gx0)

=

(
h− 1

8
Rg

)
ω2Gx0 ≤ 0.

Green’s Formula and the hypothesis h ≤ 1
8
Rg (but not equal) gives us

(w − wh)(y) =

∫
M

Gy(x)

(
h(x)− 1

8
Rg(x)

)
ω2Gx0(x)dvg < 0, (1.38)

so, w(y) < wh(y), for all y ∈M , in particular, as w(x0) = ω2m(x0) ≥ 0 it follows that

wh(x0) > 0 (here m(x0) is given by the expansion of Gx0 in a neighborhood of x0, and

the positive mass theorem garantee that m(x0) ≥ 0, see [44, 45].

For ε > 0 and x ∈M , we define the function

vε(x) = ε1/4(uε(x) + wh(x)),

where uε is the test-function defined as (1.29).

As we did in case n ≥ 4, we estimate Q(ξvε, ζvε). For this we will estimate∫
M

(|∇vε|2g + hv2
ε )dg and

∫
M
f(x)v6

εdvg. First, note that∫
M

(|∇vε|2g + hv2
ε )dg =

∫
M

[vε(−∆gvε) + hv2
ε ]dvg

= ε1/2
∫
M

[U2
ε η(−∆gη)− η〈∇η,∇U2

ε 〉g + hη2U2
ε ]dvg

+ ε1/2
∫
M
η2Uε(−∆gUε)dvg + ε1/2

∫
M

(−∆gwh + hwh)(wh + 2ηUε)dvg,

(1.39)
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where Uε(x) = 1
(ε+dg(x,x0)2)1/2

.

Note that we can write

U2
ε (x) =

1

dg(x, x0)2
− ε

dg(x, x0)2(ε+ dg(x, x0)2)
. (1.40)

With that we calculate:

ε1/2
∫
M

U2
ε η(−∆gη)dvg = ε1/2

∫
M

η(−∆gη)

dg(x, x0)2
dvg + o(ε1/2), (1.41)

ε1/2
∫
M

η〈∇η,∇U2
ε 〉gdvg = ε1/2

∫
M

η

〈
∇η,∇

(
1

dg(x, x0)2

)〉
g

dvg + o(ε1/2), (1.42)

ε1/2
∫
M

hη2U2
ε dvg = ε1/2

∫
M

h
η2

dg(x, x0)2
dvg + o(ε1/2). (1.43)

Now, as in normal coordinates the Laplacian of a radial function F can be written as

follows −∆gF = 1

rn−1
√

det(g)
∂r(r

n−1
√

det(g)∂rF ), we have

−∆gUε = −∆Uε − ∂r(ln
√

det(g))∂rUε, (1.44)

where −∆ is the Euclidean Laplacian. Since −∆Uε = 3εU5
ε , and using (1.40), we get

that∫
Bδ(x0)

η2Uε(−∆gUε)dvg =

∫
Bδ(0)

Uε(−∆Uε − ∂r(ln
√

det(g))∂rUε)
√

det(g)dx

= 3ε

∫
Bδ(0)

U6
ε dx+O(ε1/2) +

∫
Bδ(x0)

∂r(ln det(g))∂r(U
2
ε )

4
dvg

= 3ε−1/2ω2

∫ ∞
0

s2

(1 + s2)3
ds+

∫
Bδ(x0)

∂r(ln det(g))

2dg(x, x0)3
dvg +O(ε1/2).

So,∫
Bδ(x0)

η2Uε(−∆gUε)dvg =
3

2
ω2I

1/2
3 ε−1/2 +

∫
Bδ(x0)

∂r(ln det(g))

2dg(x, x0)3
dvg +O(ε1/2). (1.45)

Now, writing that

Uε(x) =
1

dg(x, x0)
− ε

dg(x, x0)(ε+ dg(x, x0)2)1/2[dg(x, x0) + (ε+ dg(x, x0)2)1/2]
, (1.46)

we have∫
M\Bδ(x0)

η2Uε(−∆gUε)dvg = −
∫
M\Bδ(x0)

η2

dg(x, x0)
∆g

(
1

dg(x, x0)

)
dvg +O(ε1/2).

(1.47)
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So, we get that

ε1/2
∫
M

η2Uε(−∆gUε)dvg =
3

2
ω2I

1/2
3 + ε1/2

∫
Bδ(x0)

∂r(ln det(g))

2dg(x, x0)3
dvg

−ε1/2
∫
M\Bδ(x0)

η2

dg(x, x0)
∆g

(
1

dg(x, x0)

)
dvg + o(ε1/2).

(1.48)

Finally, we calculate∫
M

(−∆gwh + hwh)(wh + 2ηUε)dvg =

∫
M

(−∆gwh + hwh)

(
wh +

2η

d(x, x0)

)
dvg

+

∫
M

(−∆gwh + hwh)(
wh +

2η

dg(x, x0)(ε+ dg(x, x0)2)1/2[dg(x, x0) + (ε+ dg(x, x0)2)1/2]

)
dvg,

first, by (1.34), we have∫
M

(−∆gwh + hwh)

(
wh +

η

d(x, x0)

)
dvg =

∫
M

(−∆gwh + hwh)ω2Gx0
dvg = ω2wh(x0). (1.49)

Second, we get from equations (1.35) and (1.36) that∫
M

(−∆gwh + hwh)

(
η

d(x, x0)

)
dvg

= −
∫
Bδ(x0)

(
∂r(ln(det(g)))

2dg(x, x0)2
+

h

dg(x, x0)

)(
1

d(x, x0)

)
dvg

+

∫
M\Bδ(x0)

(
∆g

(
η

dg(x, x0)

)
− hη

dg(x, x0)

)(
η

d(x, x0)

)
dvg,

so, we have∫
M

(−∆gwh + hwh)

(
η

d(x, x0)

)
dvg = −

∫
M

hη2

dg(x, x0)2
−
∫
Bδ(x0)

(
∂r(ln(det(g)))

2dg(x, x0)3

)
dvg

+

∫
M\Bδ(x0)

[
η2

dg(x, x0)
∆g

(
1

d(x, x0)

)
+

η

dg(x, x0)2
∆gη

]
dvg

+

∫
M\Bδ(x0)

η

〈
∇η,∇

(
1

dg(x, x0)2

)〉
g

dvg

(1.50)

Now, using the obtained in (1.41), (1.42), (1.43), (1.48) and (1.50) in the equation

(1.39), gives us the following estimate∫
M

(|∇gvε|2g + hv2
ε )dvg =

3

2
ω2I

1/2
3 + ω2wh(x0)ε1/2 + o(ε1/2). (1.51)

Now, we estimate
∫
M
f(x)v6

εdvg.∫
M

f(x)v6
εdvg = ε3/2

∫
M

f [u6
ε + 6u5

εwh + 15u4
εw

2
h + 20u3

εw
3
h + 15u2

εw
4
h + 6uεw

5
h + w6

h]dvg

= ε3/2
∫
M

f [u6
ε + 6u5

εwh + 15u4
εw

2
h]dvg + o(ε1/2).

(1.52)
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Using the expansion (1.28) in normal coordinate,∫
M

f(x)u6
εdvg =f(x0)

∫
Bδ(x0)

U6
ε dx+O(1)

∫
Bδ(x0)

U6
ε r

2dx+

∫
B2δ(x0)\Bδ(x0)

f(x)u6
εdvg

=
ω2

2
f(x0)ε−3/2I

1/2
3 +O(ε−1/2) +O(1),

so, we have ∫
M

f(x)u6
εdvg =

ω2

2
f(x0)ε−3/2I

1/2
3 +O(ε−1/2). (1.53)

Similarly, we get∫
M

6f(x)u5
εwhdvg = 3ω2f(x0)wh(x0)ε−1I

1/2
5/2 + o(ε−1/2). (1.54)

Also, we calculate∫
M

15f(x)u4
εw

2
hdvg = 15ω2f(x0)wh(x0)2ε−1/2I

1/2
2 + o(ε−1/2). (1.55)

From what was obtained in (1.53)-(1.55) and the fact that ω2I
1/2
5/2 = 2

∫
Rn U

5
1dx =

2
∫
Rn(−∆U1)dx = 2

3
ω2, we have that∫

M

f(x)v6
εdvg =

ω2

2
f(x0)I

1/2
3 + 2ω2wh(x0)f(x0)ε1/2 + o(ε1/2). (1.56)

Now, we can calculate Q(ξvε, ζvε) for ε small enough, by the equations (1.51) and

(1.56), ∫
M

(|∇vε|2g + hv2
ε )dg(∫

M
f(x)v6

εdvg
)1/3

=
3
2
ω2I

1/2
3 + ω2wh(x0)ε1/2 + o(ε1/2)(

ω2

2
f(x0)I

1/2
3 + 2ω2wh(x0)f(x0)ε1/2 + o(ε1/2)

)1/3

=
3
2
ω2I

1/2
3 + ω2wh(x0)ε1/2 + o(ε1/2)

f(x0)1/3
(
ω2

2
I

1/2
3

)1/3
(

1 + 4wh(x0)

3I
1/2
3

ε1/2 + o(ε1/2)

) ,

as I1/2
3 = 1

3
I

3/2
3 and

(
1
6
ω2I

3/2
3

)1/3

=
K2

3

2
ω2I

3/2
3 (see (1.30)), we get that∫

M
(|∇vε|2g + hv2

ε )dg(∫
M
f(x)v6

εdvg
)1/3

=
K−2

3

f(x0)1/3
− ω2wh(x0)ε1/2

ω2

2
I

3/2
3 + 2ω2wh(x0)ε1/2 + o(ε1/2)

.

As wh(x0) > 0, then

Q(ξvε, ζvε) <

[(
α

β

)β/6
+

(
β

α

)α/6]
K−2

3

f(x0)1/3
. (1.57)

Therefore, we obtain (1.27), when n = 3.
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Now, in order to prove (1.26), we define for any t > 0 the following functional:

Φ(t) =

 I (tξuε, tζuε) , when n ≥ 4

I (tξvε, tζvε) , when n = 3

=

 t2

2
Xuε − t2

∗

2∗
Yuε , when n ≥ 4

t2

2
Xvε − t2

∗

2∗
Yvε , when n = 3,

where Xu = (ξ2 +ζ2)
∫
M

[
|∇u|2g + (ξ2a+ 2ξζb+ ζ2c)u2

]
dvg and Yu = ξαζβ

∫
M
fu2∗dvg.

We want to find t0 > 0 such that Φ′(t0) = 0, that is, such that t0X − t2
∗−1

0 Y = 0.

Hence,

t0 =


(
Xuε

Yε

)(n−2)/4

, when n ≥ 4(
Xvε

Yvε

)1/4

, when n = 3.

Therefore, t0 is the only critical point of Φ and since Φ(t)→ −∞ as t→∞, then t0 is

a maximum point for Φ.

Note that, by the above calculations, we get

Φ(t0) =


1
n

(Q(ξuε(x), ζuε(x)))n/2 , when n ≥ 4

1
3

(Q(ξvε, ζvε))
3/2 , when n = 3

<
Sn/2∗

nf(x0)(n−2)/2
.

Choose t1 > t0 large such that Φ(t1) < 0 and write ũ = t1ξuε(x) and ṽ = t1ζuε(x)

when n ≥ 4 (and ũ = t1ξvε and ṽ = t1ζvε when n = 3). So,

0 < c = inf
γ∈Γ

sup
06t≤1

I(γ(t)) ≤ sup
06t≤1

I (tt1ξuε(x), tt1ζuε(x)) (we use vε if n = 3)

= sup
0<t≤1

Φ(tt1).

≤ Φ(t0),

which proves (1.26). This completes the proof.

We now have the tools for the proof of Theorem 1.1.1.

Proof of Theorem 1.1.1. By the General Minimax Principle [49, Theorem 2.8], there is

a sequence {(um, vm)} in H such that

I(um, vm)→ c and I ′(um, vm)→ 0. (1.58)
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Now note that

I(um, vm)− 1

2∗
I ′(um,vm) · (um, vm)

=
1

n

∫
M

[
|∇um|2g + |∇vm|2g + a(x)u2

m + 2b(x)umvm + c(x)v2
m

]
dvg.

Thus, by the coercivity hypothesis (1.6), we obtain that {(um, vm)} is bounded in H.

Hence, there exists (u0, v0) in H such that, up to a subsequence,

(um, vm) ⇀ (u0, v0) in H;

(um, vm)→ (u0, v0) in L2(M)× L2(M); (1.59)

(um(x), vm(x))→ (u0(x), v0(x)) a.e in M.

It is easy to see that f(x)|um|α−2um|vm|β is an uniformly bounded sequence in L
2∗

2∗−1 (M)

and converges pointwisely to f(x)|u0|α−2u0|v0|β, from Lemma 4.8 in [36], we have

f(x)|um|α−2um|vm|β ⇀ f(x)|u0|α−2u0|v0|β in L
2∗

2∗−1 (M). (1.60)

Similarly we obtain the same for the sequence f(x)|um|αvm|vm|β−2. As I ′(um, vm) ·

(ϕ, ψ) = om(1), for all (ϕ, ψ) ∈ H, by using (1.59), (1.60) and letting m → ∞, we

reach that I ′(u0, v0) = 0, that is, (u0, v0) is a weak solution of (1.1).

The next step is to prove that u0 6= 0 and v0 6= 0.

First, let us see that u0 = 0, if and only if, v0 = 0. Indeed, if u0 = 0, then

−∆gv0 + c(x)v0 = 0 in M . So by coercivity hypothesis (1.6), we have that v0 = 0.

If u0 = 0 and v0 = 0, we write τ = lim
m−→0

∫
M

(
|∇um|2g + |∇vm|2g

)
dvg. Since

I ′(um, vm) · (um, vm) = om(1), then we get

lim
m→∞

∫
M

f(x)|um|α|vm|βdvg = lim
m→∞

∫
M

(
|∇um|2g + |∇vm|2g

)
dvg = τ.

On the other hand, since I(um, vm) = c + om(1), then we get τ = nc.

Now, by Lemma 1.2.1, we know that there is a positive constant B0 such that(∫
M

f(x)|um|α|vm|βdvg
)2/2∗

≤ f(x0)(n−2)/n
[
S−1
∗
(
‖(∇um,∇vm)‖2

2

)
+B0‖(um, vm)‖2

2

]
.

Thus, passing to the limit in the inequality above and using (1.59), we get (nc)2/2∗ ≤

f(x0)(n−2)/nS−1
∗ nc. Hence,

c ≥ Sn/2∗
nf(x0)(n−2)/2

.
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But, this contradicts the estimate obtained for the level c in Lemma 1.3.1. Therefore,

u0 6= 0 and v0 6= 0. Thus, we conclude the proof of Theorem 1.1.1. �

Proof of Corollary 1.1.2. Consider the functional J : H → R defined by

J(u, v) =
1

2

∫
M

[
|∇u|2g + |∇v|2g + a(x)u2 + 2b(x)uv + c(x)v2

]
dvg

− 1

2∗

∫
M

f(x)(u+)α(v+)βdvg.

This functional satisfies the same properties of I. Using the same test functions to

estimate the minimax level and using the same steps as in the previous proof, one

obtains that there exists (u0, v0) ∈ H a nontrivial critical point of the functional J .

Now, we will prove that u0 and v0 are positive solutions. First, we denote by u+ =

max{u, 0} and u− = min{u, 0}. Then, since J ′(u0, v0) · (u−0 , v−0 ) = 0, we get

0 =

∫
M

[
|∇u−0 |2g + |∇v−0 |2g + a(x)(u−0 )2 + b(x)[u0v

−
0 + u−0 v0] + c(x)(v−0 )2

]
dvg

−
∫
M

f(x)
[
α(u+

0 )α−1(v+
0 )βu+

0 u
−
0 + β(u+)α(v+)β−1v+

0 v
−
0

]
dvg

=

∫
M

[
|∇u−0 |2g + |∇v−0 |2g + a(x)(u−0 )2 + b(x)[u0v

−
0 + u−0 v0] + c(x)(v−0 )2

]
dvg

=

∫
M

[
|∇u−0 |2g + |∇v−0 |2g + a(x)(u−0 )2 + 2b(x)u−0 v

−
0 + c(x)(v−0 )2

]
dvg

+

∫
M

b(x)[u+
0 v
−
0 + u−0 v

+
0 ]dvg.

As b ≤ 0 and u+
0 v
−
0 + u−0 v

+
0 ≤ 0, we deduce that∫

M

[
|∇u−0 |2g + |∇v−0 |2g + a(x)(u−0 )2 + 2b(x)u−0 v

−
0 + c(x)(v−0 )2

]
dvg ≤ 0,

and consequently by (1.6), we reach u−0 = 0 and v−0 = 0. Therefore, u0 ≥ 0 and v0 ≥ 0.

By elliptic regularity theory and maximum principle follows that u0 > 0 and v0 > 0.�

1.4 Proof of Theorems 1.1.6, 1.1.7 and 1.1.8

In this section, we will study the case where the combination h = α
2∗
a+ 2

√
αβ

2∗
b+

β
2∗
c is less than or equal to n−2

4(n−1)
Rg. We will begin by recalling some notations and

definitions. Considering the functional Eh : H → R given by

Eh(u, v) =

∫
M

(
|∇u|2g + |∇v|2g

)
dvg +

∫
M

(
au2 + 2buv + cv2

)
dvg.

31



and constraint set Λα,β
f :=

{
(u, v) ∈ H :

∫
M
f(x)|u|α|v|βdvg = 1

}
.

Note that Eh is bounded from below on Λα,β
f . Indeed, by the coercivity condition

(1.6) and Corollary 1.2.2, we have

Eh(u, v) ≥ C0‖(u, v)‖2 ≥ C

(∫
M

|u|α|v|βdvg
)2/2∗

≥ C

f(x0)2/2∗
,

for all (u, v) ∈ Λα,β
f . Thus, we can consider

S
(α,β)
f,h = inf

(u,v)∈Λα,βf

Eh(u, v). (1.61)

If there exists (u, v) ∈ Λα,β
f which achieves the infimum S

(α,β)
f,h , it turns out that

(u, v) will be a weak solution of the following system
−∆gu+ a(x)u+ b(x)v = S

(α,β)
f,h

2α

2∗
f(x)u|u|α−2|v|β in M,

−∆gv + b(x)u+ c(x)v = S
(α,β)
f,h

2β

2∗
f(x)v|v|β−2|u|α in M.

(1.62)

In order to achieve the existence result we need to recall some results due to

Escobar-Schoen [21], Aubin-Hebey [5] and Hebey-Vaugon [30] for Prescribe scalar cur-

vature problem, which prove that f is the scalar curvature of a conformal metric (see

also [4]).

Before, let us remember that, when maxM f > 0 it is known that λf (M, g) ≤
λ(Sn)

(maxM f)2/2
∗ , where λf (M, g) is defined in (1.12), and if λf (M, g) < λ(Sn)

(maxM f)2/2
∗ , then

there is ϕ ∈ C∞ with ϕ > 0,
∫
M
f(x)ϕ2∗dvg = 1, and such that

λf (M, g) =

∫
M

(
|∇ϕ|2g +

n− 2

4(n− 1)
Rgϕ

2

)
dvg,

that is, ϕ is a positive solution of the equation −∆gu + n−2
4(n−1)

Rgu = λf (M, g)fu2∗−1.

Therefore, ĝ = ϕ2∗−2g is a conformal metric to g, where f = Rĝ is the scalar curvature

of the metric ĝ, and moreover, λf (M, ĝ) = λf (M, g).

Theorem A 1 (Escobar-Schoen [21]) Let f be a C∞ function with maxM f > 0 on
a compact riemannian manifold (M, g) not conformal to the sphere with the standard
metric. Then if n = 3,

λf (M, g) <
λ(Sn)

(maxM f)2/2∗
,

and consequently f is the scalar curvature of a conformal metric. The same conclusion
holds for the locally conformally flat manifolds when n ≥ 4 if at a point x0 where f is
maximal, all its derivatives up to order n− 2 vanish.
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Theorem B 1 (Aubin-Hebey [5]) Assume that n ≥ 6 and (M, g) is not locally con-
formally flat. Let f be a smooth function with maxM f > 0. If at a point x0 where
f(x0) = maxM f is such that the Weyl tensor is nonvanishing (that is, |Wg(x0)| 6= 0)
and ∆gf(x0) = 0, then if n = 6,

λf (M, g) <
λ(Sn)

(maxM f)2/2∗
,

and consequently f is the scalar curvature of a conformal metric. When n > 6 the
same conclusion holds. If in addition

∣∣∆2
gf(x0)

∣∣ /f(x0) is small enough.

Theorem C 1 (Hebey-Vaugon [30]) Let f be a C∞ function satisfying maxM f >

0 and ∆gf(x0) = 0 at a point x0 where f is maximum. Then

λf (M, g) <
λ(Sn)

(maxM f)2/2∗
,

and consequently f is the scalar curvature of a conformal metric when n = 4 or 5,
unless M is conformal to the standard Sn. When n ≥ 6 we suppose that |Wg(x0)| = 0.
The same conclusion holds if ∆2

gf(x0) = 0, when n = 6 or n = 7, and when n = 8 if
in addition ∆3

gf(x0) = 0 or |∇Wg(x0)| 6= 0. When n > 8 the same conclusion holds
if |∇Wg(x0)| 6= 0 and ∆3

gf(x0) = 0 or when |∇Wg(x0)| = 0 if |∇2Wg(x0)| 6= 0 and
∆3
gf(x0) = ∆4

gf(x0) = 0, or when all derivatives of Wg vanish at x0 if ∆m
g f(x0) = 0

for all 1 ≤ m ≤ n
2
− 1.

The next result is the first step to prove Theorems 1.1.7 and 1.1.8.

Lemma 1.4.1 If λf (M, g) < λ(Sn)

f(x0)2/2
∗ , then S

(α,β)
f,h <

S∗
f(x0)2/2∗

, where S∗ is given in

(1.4).

Proof. Since λf (M, g) < λ(Sn)

f(x0)2/2
∗ , from theorems A, B and C, there exists ϕ ∈ C∞(M)

with ϕ > 0,
∫
M
f(x)ϕ2∗dvg = 1 and such that

λf (M, g) =

∫
M

(
|∇ϕ|2g +

n− 2

4(n− 1)
Rgϕ

2

)
dvg <

λ(Sn)

f(x0)2/2∗
. (1.63)

Now, consider the following pair of functions (w1, w2) ∈ Λα,β
f , where w1 = ξ

(
ξαζβ

)−1/2∗
ϕ

and w2 = ζ
(
ξαζβ

)−1/2∗
ϕ, with ξ

ζ
=
√

α
β
, thus

S
(α,β)
f,h ≤ Eh(w1, w2)

=
(ξ2 + ζ2)

∫
M
|∇ϕ|2gdvg +

∫
M

(ξ2a(x) + 2ξζb(x) + ζ2c(x))ϕ2dvg

(ξαζβ)2/2∗

=
(ξ2 + ζ2)

(ξαζβ)2/2∗

{∫
M

|∇ϕ|2gdvg +

∫
M

(
α

2∗
a(x) +

2
√
αβ

2∗
b(x) +

β

2∗
c(x)

)
ϕ2dvg

}
.
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As h = α
2∗
a+ 2

√
αβ

2∗
b+ β

2∗
c ≤ n−2

4(n−1)
Rg, it follows that

S
(α,β)
f,h ≤

[(
α

β

)β/2∗
+

(
β

α

)α/2∗]
λf (M, g). (1.64)

Consequently,

S
(α,β)
f,h <

[(
α

β

)β/2∗
+

(
β

α

)α/2∗]
λ(Sn)

f(x0)2/2∗
,

hence S(α,β)
f,h < S∗

f(x0)2/2
∗ as desired. Finishing the proof.

We will now prove the second auxiliary result of this section.

Lemma 1.4.2 If S(α,β)
f,h <

S∗
f(x0)2/2∗

, then there exists (u, v) in Λα,β
f such that Eh(u, v) =

S
(α,β)
f,h .

Proof. Let {(um, vm)} ⊂ Λα,β
f be a minimizing sequence for S(α,β)

f,h , that is,

Eh(um, vm) = ‖(|∇um|, |∇vm|)‖2
2+

∫
M

(au2
m+2bumvm+cv2

m)dvg = S
(α,β)
f,h +om(1), (1.65)

where om(1) → 0 as m → ∞. By the coercivity hypothesis (1.6), it follows that

{(um, vm)} is bounded in H. Thus, there exists (u, v) in H such that, up to a

subsequence, (um, vm) ⇀ (u, v) in H, (um, vm) → (u, v) in L2(M) × L2(M), and

(um(x), vm(x))→ (u(x), v(x)) a.e in M . From Lemma 1.2.1 and (1.65), we get

1 =

(∫
M

f(x)|um|α|vm|βdvg
)2/2∗

≤ f(x0)2/2∗S−1
∗ ‖(|∇um|, |∇vm|)‖2

2 + f(x0)2/2∗B0||(um, vm)||22

≤ f(x0)2/2∗S−1
∗ S

(α,β)
f,h + f(x0)2/2∗B0‖(um, vm)‖2

2

− f(x0)2/2∗S−1
∗

∫
M

(au2
m + 2bumvm + cv2

m)dvg + om(1),

for some B0 > 0. Letting m→∞, we obtain that

1 ≤ f(x0)2/2∗S−1
∗ S

(α,β)
f,h + f(x0)2/2∗B0‖(u, v)‖2

2− f(x0)2/2∗S−1
∗

∫
M

(au2 + 2buv+ cv2)dvg,

consequently, since S(α,β)
f,h < S∗

f(x0)2/2
∗ , we get that

0 < 1−f(x0)2/2∗S−1
∗ S

(α,β)
f,h ≤ f(x0)2/2∗B0‖(u, v)‖2

2−f(x0)2/2∗S−1
∗

∫
M

(au2+2buv+cv2)dvg,

thus, we have that u 6= 0 or v 6= 0.
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We claim that u 6= 0 and v 6= 0. Moreover, (u, v) ∈ Λα,β
f is a minimizing for

S
(α,β)
f,h . Indeed, rewriting (1.65), we have

Eh(u, v) + ‖(|∇(um − u)|, |∇(vm − v)|)‖2
2 = S

(α,β)
f,h + om(1). (1.66)

On the other hand, since 1 =
∫
M
f(x)|um|α|vm|βdvg, Lemma 1.2.3 gives us

1 =

(∫
M

f(x)|u|α|v|βdvg +

∫
M

f(x)|um − u|α|vm − v|βdvg + om(1)

)2/2∗

. (1.67)

Now, note that
∫
M
f(x)|u|α|v|βdvg > 0, otherwise, by (1.67) and Lemma 1.2.1, we

would have

1 ≤
(∫

M

f(x)|um − u|α|vm − v|βdvg
)2/2∗

+ om(1)

≤ f(x0)2/2∗S−1
∗ ‖(|∇g(um − u)|, |∇g(vm − v)|)‖2

2 + om(1),

hence,

S
(α,β)
f,h ≤ f(x0)2/2∗S−1

∗ S
(α,β)
f,h ‖(|∇g(um − u)|, |∇g(vm − v)|)‖2

2 + om(1).

But, using the inequality above in (1.66), we get

Eh(u, v) = S
(α,β)
f,h − ‖(|∇(um − u)|, |∇(vm − v)|)‖2

2 + om(1)

≤ (f(x0)2/2∗S−1
∗ S

(α,β)
f,h − 1)‖(|∇(um − u)|, |∇(vm − v)|)‖2

2 + om(1),

again as S(α,β)
f,h < S∗

f(x0)2/2
∗ , we reach that Eh(u, v) ≤ 0, and so u = v = 0, which is a

contradiction. Therefore,
∫
M
f(x)|u|α|v|βdvg > 0.

Now, returning to (1.67) we get

1 =

(∫
M

f(x)|u|α|v|βdvg +

∫
M

f(x)|um − u|α|vm − v|βdvg + om(1)

)2/2∗

≤
(∫

M

f(x)|u|α|v|βdvg
)2/2∗

+ f(x0)2/2∗
(∫

M

|um − u|α|vm − v|βdvg
)2/2∗

+ om(1)

≤
(∫

M

f(x)|u|α|v|βdvg
)2/2∗

+ f(x0)2/2∗S−1
∗ ‖(|∇(um − u)|, |∇(vm − v)|)‖2

2 + om(1),

as S(α,β)
f,h > 0, then

S
(α,β)
f,h ≤ S

(α,β)
f,h

(∫
M

f(x)|u|α|v|βdvg
)2/2∗

+ S
(α,β)
f,h f(x0)2/2∗S−1

∗ ‖(|∇(um − u)|, |∇(vm − v)|)‖2
2 + om(1).

(1.68)
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By using (1.66), it follows that

Eh(u, v) ≤ S
(α,β)
f,h

(∫
M

f(x)|u|α|v|βdvg
)2/2∗

+ (S
(α,β)
f,h f(x0)2/2∗S−1

∗ − 1)‖(|∇g(um − u)|, |∇g(vm − v)|)‖2
2 + om(1).

Since S(α,β)
f,h f(x0)2/2∗S−1

∗ − 1 < 0, we have

Eh(u, v) ≤ S
(α,β)
f,h

(∫
M

f(x)|u|α|v|βdvg
)2/2∗

.

The lower semicontinuity of Eh implies Eh(u, v) ≤ lim inf Eh(um, vm) = S
(α,β)
f,h , and

hence 0 < τ =
∫
M
f(x)|u|α|v|βdvg ≤ 1, now writing u0 = τ−1/2∗u and v0 = τ−1/2∗v, we

have

Eh(u0, v0) =
Eh(u, v)(∫

M
f(x)|u|α|v|βdvg

)2/2∗
≤ S

(α,β)
f,h ,

with (u0, v0) ∈ Λα,β
f . By definition of S(α,β)

f,h it follows that Eh(u0, v0) = S
(α,β)
f,h , so we

prove that Eh(u, v) = S
(α,β)
f,h τ 2/2∗ .

Finally, we can check that τ =
∫
M
f(x)|u|α|v|βdvg = 1, for this, we return to

(1.66) and (1.68). Then

1 ≤
(∫

M

f(x)|u|α|v|βdvg
)2/2∗

+ f(x0)2/2∗S−1
∗

[
S

(α,β)
f,h − Eh(u, v)

]
=

(∫
M

f(x)|u|α|v|βdvg
)2/2∗

+ f(x0)2/2∗S−1
∗ S

(α,β)
f,h

[
1−

(∫
M

f(x)|u|α|v|βdvg
)2/2∗

]
.

Hence,

0 ≤ −

[
1−

(∫
M

f(x)|u|α|v|βdvg
)2/2∗

]

+ f(x0)2/2∗S−1
∗ S

(α,β)
f,h

[
1−

(∫
M

f(x)|u|α|v|βdvg
)2/2∗

]

=
(
−1 + f(x0)2/2∗S−1

∗ S
(α,β)
f,h

)[
1−

(∫
M

f(x)|u|α|v|βdvg
)2/2∗

]

As f(x0)2/2∗S
(α,β)
f,h < S∗, then

∫
M
f(x)|u|α|v|βdvg = 1.

Consequenlty, we get that (u, v) ∈ Λα,β
f , which proves that (u, v) is a minimizer

for S(α,β)
f,h .

Now we can prove the main results of this section.
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Proof of Theorem 1.1.6. Since S(α,β)
f,h < S∗

f(x0)2/2
∗ , by Lemma 1.4.2 there exists (u0, v0) ∈

Λα,β
f such that Eh(u0, v0) = S

(α,β)
f,h . Denote by G(u, v) =

∫
M
f(x)|u|α|v|βdvg − 1, where

(u, v) ∈ H. Then, there is a Lagrange multiplier λ that satisfies

E ′h(u0, v0) · (ϕ, ψ)− λG′(u0, v0) · (ϕ, ψ) = 0, for all (ϕ, ψ) ∈ H. (1.69)

Taking ϕ = u0 and ψ = v0 above, we have that 2Eh(u0, v0) = 2∗λ, hence λ = 2
2∗
S

(α,β)
f,h >

0. Therefore, by (1.69), we have that (u0, v0) is a weak solution of the following system

 −∆gu+ au+ bv = S
(α,β)
f,h

2α
2∗
f(x)u|u|α−2|v|β in M,

−∆gv + bu+ cv = S
(α,β)
f,h

2β
2∗
f(x)v|v|β−2|u|α in M.

(1.70)

It is easy to see that the pair ((2S
(α,β)
f,h )1/(2∗−2)u0, (2S

(α,β)
f,h )1/(2∗−2)v0) is a weak solution

of system 1.1. This completes the proof. �

Proof of Theorems 1.1.7 and 1.1.8. From Theorem B and Theorem C together with

Lemma 1.4.1, it follows that S(α,β)
f,h < S∗

f(x0)2/2
∗ . Thus the proof follows similar to

Theorem 1.1.6. �

Let us introduce some notations before of the proof of Corollary 1.1.9. Let

Λα,β
f,+ :=

{
(u, v) ∈ H :

∫
M

f(x)(u+)α(v+)βdvg = 1

}
and S(α,β)

f,h,+ := inf
(u,v)∈Λα,βf,+

Eh(u, v).

Then, if b ≤ 0 inM , it is easy to see that Eh(|u|, |v|) ≤ Eh(u, v), so if (u, v) ∈ Λα,β
f

then (|u|, |v|) ∈ Λα,β
f,+, and therefore, we deduce that S(α,β)

f,h,+ ≤ S
(α,β)
f,h . Then, by Lemma

1.4.1, we have S(α,β)
f,h,+ < S∗

f(x0)2/2
∗ . Moreover, we claim that S(α,β)

f,h > 0, indeed,

Eh(u, v) ≥ C0||(u, v)||2H ≥ C

(∫
M

|u|α|v|βdvg
)2/2∗

≥ C

(∫
M

(u+)α(v+)βdvg

)2/2∗

≥ C

f(x0)2/2∗
,

for all (u, v) ∈ Λα,β
f,+.

Proof of Corollary 1.1.9. Let {(um, vm)} ⊂ Λα,β
f,+ be a minimizing sequence for S(α,β)

f,h,+.

Arguing similarly to Lemma 1.4.2, we obtain a pair (u, v) ∈ Λα,β
f,+ such that Eh(u, v) =

S
(α,β)
f,h,+, with u 6= 0 and v 6= 0, where um ⇀ u and vm ⇀ v inH1(M). Now, we claim that
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u ≥ 0 and v ≥ 0 in M . Indeed, if we consider G+(u, v) =
∫
M
f(x)(u+)α(v+)βdvg − 1,

there is a Lagrange multiplier λ such that

E ′h(u, v) · (ϕ, ψ)− λG′+(u, v) · (ϕ, ψ) = 0, for all (ϕ, ψ) ∈ H. (1.71)

Taking ϕ = u− and ψ = v− as test functions above, we have

2Eh(u
−, v−) + 2

∫
M

b(u+v− + u−v+)dvg = 0.

Since b ≤ 0, it follows that Eh(u−, v−) ≤ 0, hence u− = v− = 0. Thus, we con-

clude that u ≥ 0 and v ≥ 0. Considering ϕ = u and ψ = v as test functions in

(1.71), we get 2Eh(u, v) = 2∗λ > 0, and consequently λ = 2
2∗
S

(α,β)
f,A,+ > 0. Therefore,

((2S
(α,β)
f,h,+)1/(2∗−2)u, (2S

(α,β)
f,h,+)1/(2∗−2)v) is a weak positive solution of system (1.1), because

the elliptic regularity theory gives us u > 0 and v > 0 in M . �

Proof of Corollary 1.1.10. Here, we assume that b = 0, a = c = (n−2)
4(n−1)

Rg and f ≥ 0.

We claim that

S
(α,β)
f,h =

[(
α

β

)β/2∗
+

(
β

α

)α/2∗]
λf (M, g).

Indeed, from of the proof of Lemma 1.4.1 (see (1.64)), it is sufficient to prove that

S
(α,β)
f,h ≥

[(
α

β

)β/2∗
+

(
β

α

)α/2∗]
λf (M, g).

In order to achieve this goal, let {(um, vm)} ⊂ Λα,β
f be a minimizing sequence for S(α,β)

f,h ,

that is,∫
M

(
|∇gum|2g + |∇gvm|2g +

n− 2

4(n− 1)
Rg

(
u2
m + v2

m

))
dvg = S

(α,β)
f,h + om(1). (1.72)

Define wm = tmvm, where tm > 0 is chosen so that∫
M

f(x)|um|2
∗
dvg =

∫
M

f(x)|wm|2
∗
dvg.

By Young’s inequality, we get that

tβm =

∫
M

f(x)|um|α|wm|βdvg ≤
α

2∗

∫
M

f(x)|um|2
∗
dvg +

β

2∗

∫
M

f(x)|wm|2
∗
dvg

=

∫
M

f(x)|um|2
∗
dvg =

∫
M

f(x)|wm|2
∗
dvg.

(1.73)
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Using (1.73) in (1.72), we have

S
(α,β)
f,h + om(1) = t2β/2

∗

m

∫
M

(
|∇um|2g + |∇vm|2g

)
dvg +

∫
M

n−2
4(n−1)

Rg (u2
m + v2

m) dvg(∫
M
f(x)|um|α|wm|βdvg

)2/2∗

≥ t2β/2
∗

m

∫
M

(
|∇um|2g + n−2

4(n−1)
Rgu

2
m

)
dvg(∫

M
f(x)|um|2∗dvg

)2/2∗

+ t(2β/2
∗)−2

m

∫
M

(
|∇wm|2g + n−2

4(n−1)
Rgw

2
m

)
dvg(∫

M
f(x)|wm|2∗dvg

)2

2∗

≥ (t2β/2
∗

m + t(2β/2
∗)−2

m )λf (M, g).

On the other hand, it is easy to see that t2β/2∗ +t(2β/2
∗)−2 ≥

(√
α
β

)2β/2∗

+

(√
β
α

)2α/2∗

,

for all t > 0. Therefore,

S
(α,β)
f,h ≥

[(
α

β

)β/2∗
+

(
β

α

)α/2∗]
λf (M, g).

Thus, Corollary 1.1.10 follows by Lemma 1.4.2. �

1.5 Case Sn

Let (Sn, g0) be the n−sphere, where g0 is standard metric of Sn. Due to the

argument of Escobar and Schoen in [21] we can prove:

Lemma 1.5.1 Let Γ be a nontrivial finite group of isometries of Sn acting without a
fixed point on Sn. Write (M = Sn/Γ, g), where g is the metric induced by π : Sn −→
Sn/Γ covering map. Let a, b, c and f be functions inM satisfying the same assumptions
of Theorem 1.1.8. Then we have that

S
(α,β)

f,h
(Sn/Γ) <

S∗
f(x0)2/2∗

.

Proof. By hypotheses about Γ it is known that M = Sn/Γ is a compact Riemannian

manifold locally conformally flat, which is not conformally diffeomorphic to Sn. From

Theorem C, we have λf (M, g) < λ(Sn)/f(x0)2/2∗ , and consequently

S
(α,β)

f,h
(Sn/Γ) <

S∗
f(x0)2/2∗

as desired.
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Proof of Theorem 1.1.11. By Lemma 1.4.2 and Lemma 1.5.1, it follows that there exists

(u0, v0) ∈ H weak solution of system (1.1) for (M = Sn/Γ, g). Since a, b, c and f are

invariant under Γ (and recall that π∗g = g0 and ∆g0(u◦π) = (∆gu)◦π, for u ∈ C2(M)),

then writing u0 = u0 ◦ π and v0 = v0 ◦ π we have that (u0, v0) ∈ H1(Sn)×H1(Sn) is a

weak solution of the system
−∆g0u+ au+ bv =

α

2∗
f(x)u|u|α−2|v|β in Sn,

−∆g0v + bu+ cv =
β

2∗
f(x)v|v|β−2|u|α in Sn,

(1.74)

which ends the proof of the theorem. �

Proof of Corollary 1.1.13. As a consequence of the assumptions, from corollary 1.1.12

we immediately have that S(α,β)(Sn) = S∗. Let ϕ ∈ C∞(Sn) be a minimizer for λ(Sn),

we can to see that (ξϕ, ζϕ) is a minimizer for S(α,β)(Sn). Indeed, notice that

Q(ξϕ, ζϕ)(∫
Sn |ξϕ|α|ζϕ|βdvg0

)2/2∗
=

(ξ2 + ζ2)

(ξαζβ)2/2∗

(
‖∇g0ϕ‖2

2 + n(n−2)
4
‖ϕ‖2

2

)
‖ϕ‖2

2∗
= S∗. (1.75)

So, (ξϕ, ζϕ) is a solution of the system
−∆g0u+ n(n−2)

4
u = S(α,β)(Sn)

α

2∗
u|u|α−2|v|β in Sn,

−∆g0v + n(n−2)
4

v = S(α,β)(Sn)
β

2∗
v|v|β−2|u|α in Sn.

(1.76)

Hence the rescaling ((S(α,β)(Sn))1/(2∗−2)ξϕ, (S(α,β)(Sn))1/(2∗−2)ζϕ) is solution of system

(1.1). Therefore, we have infinite positive solutions for system (1.1), because for x0 ∈ Sn

fixed, and any ρ > 1, the functions

ϕρ,x0(x) = (ρ− cos r)
2−n
2 (1.77)

are minimizer for λ(Sn), with r = dg0(x, x0) (for more details see Theorem 5.1 in [28]).

On the other hand, if (u, v) is a minimizer for S(α,β)(Sn), with u, v ∈ C∞, u, v > 0

and
∫
Sn u

αvβdg0 = 1. Let σ : Sn\{PN} −→ Rn be the stereographic projection, where

PN is the north pole of Sn, since (σ−1)∗(g0) = U4/(n−2)ge, where U(y) =
(

2
1+|y|2

)(n−2)/2

and ge is the Euclidian metric. So, we have

S∗ =

∫
Sn

[|∇u|2g0 + |∇v|2g0 +
n(n− 2)

4
(u2 + v2)]dvg0

=

∫
Rn

[|∇[(u ◦ σ−1)U ]|2 + |∇[(v ◦ σ−1)U ]|2]dvge

(1.78)
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and ∫
Sn
uαvβdvg0 =

∫
Rn

[(u ◦ σ−1)U ]α[(v ◦ σ−1)U ]βdvge = 1. (1.79)

Consequently, (u, v) is a minimizer for S∗, where u = (u ◦ σ−1)U and v = (v ◦ σ−1)U ,

that is, 
−∆u = S∗

α

2∗
uα−1vβ in Rn,

−∆v = S∗
β

2∗
uαvβ−1 in Rn.

(1.80)

From Theorem 1.3 in [14], it follows that

u(y) = ξ1

(
ε0

ε2
0 + |y − y0|2

)(n−2)/2

and v(y) = ζ1

(
ε0

ε2
0 + |y − y0|2

)(n−2)/2

, (1.81)

where y0 ∈ Rn, ε0 > 0 and ξ1, ζ1 > 0 satisfying

ξ1n(n− 2) = S∗
α

2∗
ξα−1

1 ζβ1 ,

ζ1n(n− 2) = S∗
β

2∗
ξα1 ζ

β−1
1 ,

ξα1 ζ
β
1 =

[
n(n− 2)

λ(Sn)

]n
2

,

so, a simple calculation gives us

ξ2
1 =

(
α

β

)β/2∗ [
n(n− 2)

λ(Sn)

](n−2)/2

,

ζ2
1 =

(
β

α

)α/2∗ [
n(n− 2)

λ(Sn)

](n−2)/2

,

u =
ξ1

ζ1

v =

(
α

β

) 1
2

v.

Therefore, by definition of u and v we get that u = ξ1
ζ1
v. Then ξ−1

1 u is positive solution

(up to a rescaling) of the equation −∆g0w + n(n−2)
4

w = w2∗−1 in Sn. From Theorem

5.1 in [28] then up to a constant scale factor, u is of the following form, u(x) =

ξ1(ρ0 − cos r)
2−n
2 , so, v(x) = ζ1(ρ0 − cos r)

2−n
2 , where r = dg0(x, x0) and ρ0 > 1. This

complete the proof. �
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Chapter 2

On a Class of Hardy-Sobolev Elliptic
Systems with Critical Exponents

This chapter is dedicated to the study of a class of critical Hardy-Sobolev systems.

To this end, we establish a general existence theorem in which we employ minimization

under constraint, along with an optimal Hardy-Sobolev inequality and a Brézis-Lieb

type lemma with a singular weight. By estimating each term within the associated

energy functional, we derive sufficient conditions for applying the general existence

theorem. Here, our inspiration draws from [35, 42].

2.1 Introduction

Let (M, g) be a smooth closed Riemannian manifold of dimension n ≥ 3. We are

concerned with the existence of solutions of the following Hardy-Sobolev system:
−∆gu+ ã(x)

ρ(x)θ
u+ a(x)u+ b(x)v =

α

2?(s)
f(x)

dg(x,x0)s
u|u|α−2|v|β in M,

−∆gv + c̃(x)
ρ(x)γ

v + b(x)u+ c(x)v =
β

2?(s)
f(x)

dg(x,x0)s
v|v|β−2|u|α in M,

(2.1)

where ∆g is the Laplace-Beltrami operator, a, b, c, ã, c̃ ∈ C0,%(M), for some % ∈ (0, 1),

x0 ∈ M , s ∈ [0, 2) and θ, γ ∈ (0, 2), ρ is a nonnegative continuous function such that

ρ(x) ≈ dg(x, x0) for x near of x0, f ∈ C∞(M) with f(x0) = maxM f > 0 and α > 1,

β > 1 are real constants satisfying α + β = 2?(s), where 2?(s) = 2(n−s)
n−2

is the critical

Hardy-Sobolev exponent.



Next, we would like to mention some works that are strongly related to the system

we propose to study. We start with the Chapter 1 this thesis. The second is the paper

due to Jaber [35], which the author considers elliptic Hardy-Sobolev equation

−∆gu+ a(x)u =
|u|2?(s)−2u

dg(x, x0)s
in M,

he proves an optimal Hardy-Sobolev inequality in the context of Riemannian manifolds

and a existence result for this equation. Another paper that also motivated this study

was the work of Madani [42], who considered the equation (Yamabe problem with

singularities)

−∆gu+ a(x)u = R̃|u|2?(s)−2u in M,

where a ∈ Lq(M), with q > n
2
and R̃ ∈ R. The author proves an Hardy inequality

on compact manifolds and existence result, in particular, when a ≡ n−2
4(n−1)

Rg with

Rg = R/dg(·, P )% for P ∈M a singular point for Rg of order % < 2 and R ∈ C0(M). In

addition, we would like to mention some works on coupled systems involving singular

nonlinearities or singular potentials in the Euclidean domain, for example Huang and

Kang [33], Long and Yang [41] and Mohammed and Yasmina [6].

In the present chapter, our interest is to examine the influence or not of the

scalar curvature for the existence of solutions for the system (2.1) when we consider a

compact Riemannian manifold without boundary.

Again, we will work in space H = H1(M)×H1(M) endowed with the norm

‖(u, v)‖ =
(
‖u‖2

H1 + ‖v‖2
H1

)1/2
.

As it is know 2?(s) = 2(n−s)
n−2

is the critical exponet of the continuous embedding of

H1(M) in the weighted Lebesgue space Lqdg ,s(M) := Lq(M,dg(·, x0)−s) for 1 ≤ q ≤

2?(s), which is a compact embedding when 1 ≤ q < 2?(s). Moreover, for any ϑ ∈ (0, 2)

the embedding H1(M) ↪→ L2(M,ρ−ϑ) is compact (see for more details in [42, Theorem

1.3]). We equip Lqds,s(M) and L2(M,ρ−ϑ) with the norm

||u||q,s =

(∫
M

|u|q

dg(x, x0)s
dvg

) 1
q

and ||u||2,ρϑ =

(∫
M

u2

ρϑ(x)
dvg

) 1
2

.

In this context, we say that a pair of functions (u, v) ∈ H is a weak solution of
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(2.1), if for every (ϕ, ψ) ∈ H, it holds∫
M

(〈∇gu,∇gϕ〉+ 〈∇gv,∇gψ〉+ ã(x)
ρ(x)θ

uϕ+ c̃(x)
ρ(x)γ

vψ + auϕ+ b[uψ + vϕ] + cvψ)dvg

=

∫
M

α
2?(s)

f(x)
dg(x,x0)s

|u|α−2|v|βuϕdvg +

∫
M

β
2?(s)

f(x)
dg(x,x0)s

|v|β−2|u|αvψdvg.

Recall of the relation (1.3) obtained by Alves et al. [2, Section 4] when s = 0

from which borrowing the idea we obtain an general relation for s ∈ [0, 2) which is the

following:

Ks(α,β) =

[(
α

β

)β/2?(s)

+

(
β

α

)α/2?(s)
]
K(n, s)−1, (2.2)

where K(n, s) is the best Hardy-Sobolev constant defined by

K(n, s)−1 = inf
u∈H1(Rn)\{0}

∫
Rn |∇u|

2dx(∫
Rn
|u|2?(s)
|x|s dx

) 2
2?(s)

,

and Ks(α,β) is defined by

Ks(α,β) = inf
(u,v)∈[H1(Rn)]2\{0}

∫
Rn (|∇u|2 + |∇v|2) dx(∫

Rn
|u|α|v|β
|x|s dx

) 2
2?(s)

. (2.3)

When α + β = 2?(s).

Throughout this chapter, we make certain broad assumptions about the functions,

which will enable us to derive existence results for the system (2.1) using variational

methods. We assume that the functions a, b, c, ã, c̃, and ρ satisfy:

(H1) Coercivity condition, that is, there exists C0 > 0 such that∫
M

(
|∇gu|2 + |∇gv|2 + a(x)u2 + 2buv + c(x)v2 + ã(x)

ρ(x)θ
u2 + c̃(x)

ρ(x)γ
v2
)
dvg ≥ C1‖(u, v)‖2,

for all (u, v) ∈ H.

(H2) The function ρ satisfies:

(i)
ρ(x)

dg(x, x0)
= 1 +O(dg(x, x0)µ), ∀x ∈ Bδ(x0);

(ii) ρ(x) > 0, ∀x ∈M\Bδ(x0).

For some δ ∈ (0, ig) (here ig denotes the injectivity radius of (M, g)), where µ ∈ (0, 1).

Thus, our first result in this chapter can be stated as follows:
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Teorema 2.1.1 Let (M, g) be a closed Riemannian manifold of dimension n ≥ 3. Let
a, b, c, ã, c̃ and ρ be functions in M satisfying (H1) and (H2), with ã, c̃ ∈ C∞(M). Let
f be smooth function such that f(x0) = maxM f > 0. In addition if h := α

2?(s)
a +

2
√
αβ

2?(s)
b+ β

2?(s)
c, ã and c̃ satisfy:

(1) h(x0) < (n−2)(6−s)
12(2n−2−s)Rg(x0) + (n−2)(n−4)

4(2n−2−s)
∆gf(x0)
f(x0) and ã(x0) = c̃(x0) = 0, if n ≥ 4;

(2) when n = 3, h(x0) < 1
8Rg(x0) and h ≤ 1

8Rg in M, or h ≡ 1
8Rg and (M, g)

is not conformally equivalent to the standard sphere S3, and that ã ≡ c̃ ≡ 0.

(2.4)

Then, system (2.1) has a pair of nontrivial weak solutions.

The first consequence of Theorem 2.1.1 is the following result.

Corollary 2.1.2 Assuming the same assumptions of Theorem 2.1.1 with α
2?(s)

a+ β
2?(s)

c

instead of h. If in addition, we assume that b ≤ 0 in M . Then, system (2.1) has a pair
of non-negative nontrivial weak solutions.

Another consequence is when we assume the same hypotheses of Theorem 2.1.1

with ã ≡ c̃ ≡ 0, that is, we obtain that the following system:


−∆gu+ a(x)u+ b(x)v =

α

2?(s)
f(x)

dg(x,x0)s
u|u|α−2|v|β in M,

−∆gv + b(x)u+ c(x)v =
β

2?(s)
f(x)

dg(x,x0)s
v|v|β−2|u|α in M,

(2.5)

has a pair of nontrivial weak solutions. More precisely, we have the following result.

Corollary 2.1.3 Let (M, g) be a closed Riemannian manifold of dimension n ≥ 3.
We assume that ã ≡ c̃ ≡ 0. Let a, b, c and ρ be functions in M satisfying (H1)

and (H2). Let f be smooth function such that f(x0) = maxM f > 0. In addition
if h := α

2?(s)
a+ 2

√
αβ

2?(s)
b+ β

2?(s)
c satisfies:

(1) h(x0) < (n−2)(6−s)
12(2n−2−s)Rg(x0) + (n−2)(n−4)

4(2n−2−s)
∆gf(x0)

f(x0)
, if n ≥ 4;

(2) when n = 3, h(x0) < 1
8
Rg(x0) and h ≤ 1

8
Rg in M, or h ≡ 1

8
Rg and

(M, g) is not conformally equivalent to the standard sphere S3.

(2.6)

Then, system (2.1) has a pair of nontrivial weak solutions.

For our second theorem, we just assume that the functions ã and c̃ are Hölder

continuous, and that at least one of the three values ã(x0), c̃(x0) or αã(x0) + βc̃(x0)

is negative, such choice will depend on whether (θ − γ) is negative, positive or zero,
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respectively. Here, regarding the functions a, b and c, we only need to assume that

they satisfy together with ã and c̃ the coercivity hypothesis (H1).

Now, we can state our second theorem.

Teorema 2.1.4 Let (M, g) be a closed Riemannian manifold of dimension n ≥ 3. Let
a, b, c, ã, c̃ and ρ be functions in M satisfying (H1) and (H2), let f be smooth function
such that f(x0) = maxM f > 0. Furthermore, suppose we are in one of the following
cases:

(1)when n ≥ 4, and


ã(x0) < 0 if θ > γ,

αã(x0) + βc̃(x0) < 0 if θ = γ,

c̃(x0) < 0 if γ > θ,

(2.7)

(2)when n = 3, and


ã(x0) < 0 if θ > γ ≥ 1,

αã(x0) + βc̃(x0) < 0 if θ = γ ≥ 1,

c̃(x0) < 0 if γ > θ ≥ 1.

(2.8)

Then, system (2.1) has a pair of nontrivial weak solutions.

Corollary 2.1.5 With the same assumptions of Theorem 2.1.4. If we assume that the
function b ≤ 0 in M . Then, system (2.1) has a pair of non-negative nontrivial weak
solution.

Estimates of the terms in the functional associated with the system for an ap-

propriate test function are a sensitive aspect in the proof of the main theorems. These

estimates are essential to overcome the lack of compactness in these functionals caused

by the critical growth of nonlinearities. We achieved this goal by adopting some ideas

developed in [3, 16, 35]. In this context, we find additional challenges arising from the

coupling of system components, in addition to Hardy-type potentials.

The chapter is organized as follows. In Sect. 2.2 we present an optimal

Hardy-Sobolev type inequality, important to prove the main results. In Sect. 2.3 we

prove a general existence theorem for system (2.1). In Sect. 2.4 we prove an auxiliary

lemma and Theorem 2.1.1 and its consequences. In Sect. 2.5 we prove an auxiliary

lemma and Theorem 2.1.4.

2.2 Preliminary

For the purpose of this chapter, in this section, we present some important results.

First, as in [35] Jaber have established that the best constant for the Hardy-Sobolev
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inequality is K(n, s). Precisely, he proved that there is a positive constant B such that

(∫
M

|u|2?(s)

dg(x, x0)s
dvg

) 2
2?(s)

≤ K(n, s)‖∇u‖2
2 +B‖u‖2

2, (2.9)

for all u ∈ H1(M).

Initially, we present an inequality that will be used in the proof of the main

results.

Lemma 2.2.1 Let Ks(α,β) be the constant defined in (2.3) when α + β = 2?(s). Then,
there is a positive constant B0 such that(∫

M

|u|α|v|β

dg(x, x0)s
dvg

) 2
2?(s)

≤ (Ks(α,β))
−1‖(|∇u|, |∇v|)‖2

2 +B0‖(u, v)‖2
2 , (2.10)

for all (u, v) ∈ H. Moreover, (Ks(α,β))
−1 is the best constant such that the inequality

holds.

Proof. The proof is similar to Lemma 1.21 of Chapter 1.

An immediate consequence of this result is the following inequality.

Corollary 2.2.2 Let C = max{(Ks(α,β))
−1, B0}, then we have

(∫
M

|u|α|v|β

dg(x, x0)s
dvg

) 2
2?(s)

≤ C‖(u, v)‖2.

Another result that will be important later on is the following Brezis-Lieb type

lemma.

Lemma 2.2.3 Let um ⇀ u and vm ⇀ v in H1(M) and let ` ∈ L∞(M). Then we have∫
M

`(x)|um|α|vm|β

dg(x, x0)s
dvg =

∫
M

`(x)|u|α|v|β

dg(x, x0)s
dvg +

∫
M

`(x)|um − u|α|vm − v|β

dg(x, x0)s
dvg + om(1),

where om(1)→ 0 as m→∞.

Proof. The proof is done in Lemma 3.2.5 in Chapter 3.

2.3 A General Existence Theorem

In the present section we prove a general existence result, for which we assume

appropriate conditions.
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Initially, consider the functional Eh : H → R given by

Eh(u, v) =

∫
M

(
|∇gu|2 + |∇gv|2 + a(x)u2 + 2buv + c(x)v2 +

ã(x)

ρ(x)θ
u2 +

c̃(x)

ρ(x)γ
v2

)
dvg,

and constraint set Λα,β
s,f :=

{
(u, v) ∈ H :

∫
M

f(x)|u|α|v|β
dg(x,x0)s

dvg = 1
}
.

Note that Eh is clearly well defined. Furthermore, it is also bounded from below

on Λα,β
s . Indeed, by the coercivity condition (H1) and Corollary 2.2.2, we have

Eh(u, v) ≥ C0‖(u, v)‖2 ≥ C

(∫
M

|u|α|v|β

dg(x, x0)s
dvg

) 2
2?(s)

≥ C

f(x0)
2

2?(s)

> 0,

for all (u, v) ∈ Λα,β
s,f . Thus, we can consider

K
(α,β)
s,f (M) = inf

(u,v)∈Λα,βs,f

Eh(u, v) > 0. (2.11)

If there exists (u, v) ∈ Λα,β
s,f which achieves the infimum K

(α,β)
s,f (= K

(α,β)
s,f (M)), it

turns out that (u, v) will be a weak solution of the following system
−∆gu+ ã(x)

ρ(x)θ
u+ a(x)u+ b(x)v = K

(α,β)
s,f

2α
2?(s)

u|u|α−2|v|β

dg(x, x0)s
in M,

−∆gv + c̃(x)
ρ(x)γ

v + b(x)u+ c(x)v = K
(α,β)
s,f

2β
2?(s)

v|v|β−2|u|α

dg(x, x0)s
in M.

(2.12)

Next, we will prove a general existence result.

Proposition 2.3.1 If f(x0)
2

2?(s)K
(α,β)
s,f < Ks(α,β), then there exists (u, v) in Λα,β

s,f such
that Eh(u, v) = K

(α,β)
s,f .

Proof. Let {(um, vm)} ⊂ Λα,β
s,f be a minimizing sequence for K(α,β)

s,f , that is,

Eh(um, vm) = ‖(|∇um|, |∇vm|)‖2
2

+

∫
M

(
ã(x)

ρ(x)θ
u2
m +

c̃(x)

ρ(x)γ
v2
m + au2

m + 2bumvm + cv2
m

)
dvg

= K
(α,β)
s,f + om(1),

(2.13)

where om(1) → 0 as m → ∞. By the coercivity hypothesis (H1), it follows that

{(um, vm)} is bounded in H. Thus, there exists (u, v) in H such that, up to a

subsequence, (um, vm) ⇀ (u, v) in H, (um, vm) → (u, v) in L2(M) × L2(M), and
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(um(x), vm(x))→ (u(x), v(x)) a.e in M . From Lemma 2.2.1 and (2.13), we get

1 =

(∫
M

f(x)|um|α|vm|β

dg(x, x0)s
dvg

) 2
2?(s)

≤ f(x0)
2

2?(s)
[
(Ks(α,β))

−1‖(|∇um|, |∇vm|)‖2
2 +B0||(um, vm)||22

]
≤ f(x0)

2
2?(s) (Ks(α,β))

−1K
(α,β)
s,f + f(x0)

2
2?(s)B0‖(um, vm)‖2

2

− f(x0)
2

2?(s) (Ks(α,β))
−1

∫
M

(au2
m + 2bumvm + cv2

m)dvg

− f(x0)
2

2?(s) (Ks(α,β))
−1

∫
M

(
ã(x)

ρ(x)θ
u2
m +

c̃(x)

ρ(x)γ
v2
m

)
dvg + om(1).

Letting m→∞, we obtain that

1− f(x0)
2

2?(s)K
(α,β)
s,f

Ks
(α,β)

≤− f(x0)
2

2?(s) (Ks(α,β))
−1

∫
M

(au2 + 2buv + cv2)dvg

− f(x0)
2

2?(s) (Ks(α,β))
−1

∫
M

(
ã(x)
ρ(x)θ

u2 + c̃(x)
ρ(x)γ

v2
)
dvg + f(x0)

2
2?(s)B0‖(u, v)‖2

2.

Since f(x0)
2

2?(s)K
(α,β)
s,f < Ks(α,β), consequently, 0 < ‖(u, v)‖2

2 this implies that u 6= 0 or

v 6= 0.

We claim that u 6= 0 and v 6= 0. Moreover, (u, v) ∈ Λα,β
s,f is a minimizing for

K
(α,β)
s,f . Indeed, rewriting (2.13), we have

Eh(u, v) + ‖(|∇(um − u)|, |∇(vm − v)|)‖2
2 = K

(α,β)
s,f + om(1). (2.14)

On the other hand, since 1 =
∫
M

f(x)
dg(x,x0)s

|um|α|vm|βdvg, Lemma 2.2.3 gives us

1 =

(∫
M

f(x)|u|α|v|β

dg(x, x0)s
dvg +

∫
M

f(x)|um − u|α|vm − v|β

dg(x, x0)s
dvg + om(1)

) 2
2?(s)

. (2.15)

Now, note that
∫
M

f(x)
dg(x,x0)s

|u|α|v|βdvg > 0, otherwise, by (2.15) and Lemma 2.2.1, we

would have

1 ≤
(∫

M

f(x)

dg(x, x0)s
|um − u|α|vm − v|βdvg

) 2
2?(s)

+ om(1)

≤ f(x0)
2

2?(s) (Ks(α,β))
−1‖(|∇g(um − u)|, |∇g(vm − v)|)‖2

2 + om(1),

hence,

K
(α,β)
s,f ≤ f(x0)

2
2?(s) (Ks(α,β))

−1K
(α,β)
s,f ‖(|∇g(um − u)|, |∇g(vm − v)|)‖2

2 + om(1).
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But, using the inequality above in (2.14), we get

Eh(u, v) = K
(α,β)
s,f − ‖(|∇(um − u)|, |∇(vm − v)|)‖2

2 + om(1)

≤ (f(x0)
2

2?(s) (Ks(α,β))
−1K

(α,β)
s,f − 1)‖(|∇(um − u)|, |∇(vm − v)|)‖2

2 + om(1),

again as f(x0)
2

2?(s)K
(α,β)
s,f < Ks(α,β), we reach that Eh(u, v) ≤ 0, and so u = v = 0, which

is a contradiction. Therefore,
∫
M

f(x)
dg(x,x0)s

|u|α|v|βdvg > 0.

Now, returning to (2.15) we get

1 =

(∫
M

f(x)

dg(x, x0)s
|u|α|v|βdvg +

∫
M

f(x)

dg(x, x0)s
|um − u|α|vm − v|βdvg + om(1)

) 2
2?(s)

≤
(∫

M

f(x)|u|α|v|β

dg(x, x0)s
dvg

) 2
2?(s)

+ f(x0)
2

2?(s)

(∫
M

|um − u|α|vm − v|β

dg(x, x0)s
dvg

) 2
2?(s)

+ om(1)

≤
(∫

M

f(x)|u|α|v|β

dg(x, x0)s
dvg

) 2
2?(s)

+ f(x0)
2

2?(s) (Ks(α,β))
−1‖(|∇(um − u)|, |∇(vm − v)|)‖2

2 + om(1),

then we reach

K
(α,β)
s,f ≤ K

(α,β)
s,f

(∫
M

f(x)

dg(x, x0)s
|u|α|v|βdvg

) 2
2?(s)

+K
(α,β)
s,f f(x0)

2
2?(s) (Ks(α,β))

−1‖(|∇(um − u)|, |∇(vm − v)|)‖2
2 + om(1).

(2.16)

By (2.14), it follows that

Eh(u, v) ≤ K
(α,β)
s,f

(∫
M

f(x)

dg(x, x0)s
|u|α|v|βdvg

) 2
2?(s)

+ (K
(α,β)
s,f f(x0)

2
2?(s) (Ks(α,β))

−1 − 1)‖(|∇g(um − u)|, |∇g(vm − v)|)‖2
2 + om(1).

Since f(x0)
2

2?(s)K
(α,β)
s,f < Ks(α,β), then

Eh(u, v) ≤ K
(α,β)
s,f

(∫
M

f(x)

dg(x, x0)s
|u|α|v|βdvg

) 2
2?(s)

.

The lower semicontinuity of Eh gives us Eh(u, v) ≤ lim inf Eh(um, vm) = K
(α,β)
s,f , and

hence 0 <
∫
M

f(x)
dg(x,x0)s

|u|α|v|βdvg ≤ 1, now writing u0 =
(∫

M
f(x)

dg(x,x0)s
|u|α|v|βdvg

)− 1
2?(s)

u

and v0 =
(∫

M
f(x)

dg(x,x0)s
|u|α|v|βdvg

)− 1
2?(s)

v, we have

Eh(u0, v0) =
Eh(u, v)(∫

M
f(x)

dg(x,x0)s
|u|α|v|βdvg

) 2
2?(s)

≤ K
(α,β)
s,f ,
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where (u0, v0) ∈ Λα,β
s,f . By definition of K(α,β)

s,f it follows that Eh(u0, v0) = K
(α,β)
s,f , so we

prove that

Eh(u, v) = K
(α,β)
s,f

(∫
M

f(x)|u|α|v|β

dg(x, x0)s
dvg

) 2
2?(s)

.

Finally, we can check that (u, v) ∈ Λα,β
s,f , for this, we return to (2.14) and (2.16).

Then

1 ≤
(∫

M

f(x)|u|α|v|β

dg(x, x0)s
dvg

) 2
2?(s)

+ f(x0)
2

2?(s) (Ks(α,β))
−1
[
K

(α,β)
s,f − Eh(u, v)

]
=

(∫
M

f(x)|u|α|v|β

dg(x, x0)s
dvg

) 2
2?(s)

+ f(x0)
2

2?(s) (Ks(α,β))
−1K

(α,β)
s,f

[
1−

(∫
M

f(x)|u|α|v|β

dg(x, x0)s
dvg

) 2
2?(s)

]
.

Hence,

0 ≤
(
−1 + f(x0)

2
2?(s) (Ks(α,β))

−1K
(α,β)
s,f

)[
1−

(∫
M

f(x)|u|α|v|β

dg(x, x0)s
dvg

) 2
2?(s)

]
.

As f(x0)
2

2?(s) (Ks(α,β))
−1K

(α,β)
s,f < 1, then

∫
M

f(x)
dg(x,x0)s

|u|α|v|βdvg = 1. Consequently, we

get that (u, v) ∈ Λα,β
s,f , which proves that (u, v) is a minimizer for K(α,β)

s,f .

2.4 Proof of Theorem 2.1.1

In this section we will prove Theorems 2.1.1 and 2.1.4. First, we state an auxiliary

lemma where we will show that under the assumptions of these theorems we will have

f(x0)
2

2?(s)K
(α,β)
s,f < Ks(α,β).

For this, let δ ∈ (0, ig/2) small enough such that f > 0 in B2δ(x0) (geodesic

ball centered in x0 and with radius 2δ). We consider the following cut-off function

η ∈ C∞0 ([−2δ, 2δ]), with η = 1 in [−δ, δ], 0 ≤ η ≤ 1 in R, and we define the function

uε(x) = η(dg(x, x0))

(
ε1−

s
2

ε2−s + dg(x, x0)2−s

)n−2
2−s

. (2.17)

Remark 2.4.1 As is known the function Φ(y) = (1 + |y|2−s)−
n−2
2−s (see [39]), with

y ∈ Rn is an extremal for

K(n, s)−1 = inf
u∈H1(Rn)\{0}

∫
Rn |∇u|

2dx(∫
Rn
|u|2?(s)
|x|s dx

) 2
2?(s)

.
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Lemma 2.4.2 Under the assumptions of Theorem 2.1.1 one get that

f(x0)
2

2?(s)K
(α,β)
s,f < Ks(α,β).

Proof. In the proof of this estimate we use the ideas of [15] and [35]. According to

the estimates obtained in [35, Section 3] for n ≥ 4 and the test function uε we have

∫
M

|∇guε|2dvg =


∫
Rn
|∇Φ|2dy −

∫
Rn |y|

2|∇Φ|2dy
6n

Rg(x0)ε2 + o(ε2) if n ≥ 5,∫
R4

|∇Φ|2dy − ω3

6
Rg(x0)ε2 ln(ε−1) +O(ε2) if n = 4,

(2.18)

and for h ∈ C0(M)

∫
M

hu2
εdvg =


h(x0)ε2

∫
Rn
Φ2dy + o(ε2) if n ≥ 5,

h(x0)ω3ε
2 ln(ε−1) +O(ε2) if n = 4.

(2.19)

Next, we want to estimate
∫
M

ã
ρθ
u2
εdvg for n ≥ 4. First, we have∫

M

ã

ρθ
u2
εdvg =

∫
Bδ(x0)

ã

ρθ
u2
εdvg +

∫
M\Bδ(x0)

ã

ρθ
u2
εdvg

=

∫
Bδ(x0)

ã

ρθ
u2
εdvg +O(εn−2). (2.20)

Since ã is smooth and by hypothesis ã(x0) = 0 we can write for x ∈ Bδ(x0)

ã(x) = ∂iã(x0)xi +
1

2
∂ij ã(x0)xixj +O(r3). (2.21)

We can also write in normal coordinates the following expansion∫
Sn−1

√
det(g)dσ = ωn−1

(
1− Rg(x0)

6n
r2 +O(1)r4

)
, (2.22)

where
√

det(g) denote the determinant of the components of the metric g. So we get∫
Bδ(x0)

ã

ρθ
u2
εdvg =

∫
Bδ(0)

(ã ◦ expx0)(y)

(|y|+O(|y|1+µ))θ
((uε ◦ expx0)(y))2

√
det(g)dy

=

∫
Bδ(0)

(ã ◦ expx0)(y)

|y|θ (1 +O(|y|µ))
((uε ◦ expx0)(y))2

√
det(g)dy

=

∫
Bδ(0)

(∂iã(x0)yi + 1
2
∂ij ã(x0)yiyj +O(r3))

|y|θ (1 +O(|y|µ))
((uε ◦ expx0)(y))2

√
det(g)dy

noting that for each i = 1, . . . , n one has

∂iã(x0)

∫
Bδ(0)

yi((uε ◦ expx0)(y))2

|y|θ (1 +O(|y|µ))

√
det(g)dy = 0,
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so, we can rewrite∫
Bδ(x0)

ã

ρθ
u2
εdvg =

1

2
∂ij ã(x0)

∫
Bδ(0)

yiyj((uε ◦ expx0)(y))2

|y|θ (1 +O(|y|µ))

√
det(g)dy

+

∫
Bδ(0)

O(r3)((uε ◦ expx0)(y))2

|y|θ (1 +O(|y|µ))

√
det(g)dy,

again since∫
Bδ(0)

yiyj((uε ◦ expx0)(y))2

|y|θ (1 +O(|y|µ))

√
det(g)dy

=
ωn−1

n
δijεn−2

∫ δ

0

rn+1(1 +O(r2))

rθ (1 +O(rµ)) (ε2−s + |y|2−s)
2(n−2)
2−s

dr

so we have∫
Bδ(x0)

ã

ρθ
u2
εdvg =

1

2n
∆gã(x0)ωn−1ε

n−2

∫ δ

0

rn+1

rθ (ε2−s + r2−s)
2(n−2)
2−s

(1 +O(r2))dr

+

∫ δ

0

rn+1O(rµ)

rθ (1 +O(rµ)) (ε2−s + r2−s)
2(n−2)
2−s

(1 +O(r2))dr.

Now let us calculate the first integral on the right hand side in separate cases: for n ≥ 6

or n = 5 and θ > 1, n = 5 and θ = 1, n = 5 and θ < 1, and n = 4. First, for n ≥ 6 or

n = 5 and θ > 1 we have

εn−2

∫ δ

0

rn+1

rθ (ε2−s + r2−s)
2(n−2)
2−s

dr = ε4−θ
∫ δ

ε

0

tn+1−θ

(1 + t2−s)
2(n−2)
2−s

dt

= O

(
ε4−θ

∫ ∞
0

tn+1−θ

(1 + t2−s)
2(n−2)
2−s

dt

)
= O(ε4−θ).

In the case, n = 5 and θ < 1 we get

εn−2

∫ δ

0

rn+1

rθ (ε2−s + r2−s)
2(n−2)
2−s

dr = ε3
∫ δ

0

r6

rθ (ε2−s + r2−s)
2(n−2)
2−s

dr

= O

(
ε3
∫ δ

0

r−θdr

)
= O(ε3δ1−θ)

= O(ε3).
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Now, in the case, n = 5 and θ = 1, we reach (for ε small enough)

εn−2

∫ δ

0

rn+1

rθ (ε2−s + r2−s)
2(n−2)
2−s

dr = ε3
∫ δ

ε

0

t5

(1 + t2−s)
6

2−s
dt

= ε3
∫ δ

0

t5

(1 + t2−s)
6

2−s
dt+ ε3

∫ δ
ε

δ

t5

(1 + t2−s)
6

2−s
dt

= O(ε3) + ε3
∫ δ

ε

δ

1

t
dt+ ε3

∫ δ
ε

δ

(
t5

(1 + t2−s)
6

2−s
− 1

t

)
dt

= O(ε3) + ε3 ln(ε−1) + ε3
∫ δ

ε

δ

t5

1−
(
1 + 1

t2−s

) 6
2−s

(1 + t2−s)
6

2−s

 dt
= O(ε3 ln(ε−1)) + ε3O

(∫ δ
ε

δ

t5

t2−s (1 + t2−s)
6

2−s
dt

)

= O(ε3 ln(ε−1)) + ε3O

(∫ δ
ε

δ

t−3+sdt

)
= O(ε3 ln(ε−1)) + ε3O(ε2−s).

Finally, in the case n = 4 we have

εn−2

∫ δ

0

rn+1

rθ (ε2−s + r2−s)
2(n−2)
2−s

dr = ε2
∫ δ

0

r5−θ

(ε2−s + r2−s)
4

2−s
dr

= O

(
ε2
∫ δ

0

r1−θdr

)
= O(ε2).

Thus, for each case above and (2.20), when n ≥ 4 we get that

∫
M

ã

ρθ
u2
εdvg =



O(ε4−θ), if n ≥ 6,

O(ε4−θ), if n = 5 and θ > 1,

O(ε3 ln(ε−1)), if n = 5 and θ = 1,

O(ε3), if n = 5 and θ < 1,

O(ε2), if n = 4.

(2.23)

The estimate of
∫
M

c̃
ργ
u2
εdvg is completely analogous. So, we have

∫
M

c̃

ργ
u2
εdvg =



O(ε4−θ), if n ≥ 6,

O(ε4−θ), if n = 5 and γ > 1,

O(ε3 ln(ε−1)), if n = 5 and γ = 1,

O(ε3), if n = 5 and γ < 1,

O(ε2), if n = 4.

(2.24)
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Now, let us estimate
∫
M

f(x)
dg(x,x0)s

u
2?(s)
ε dvg. First, it is easy to see that∫

M\Bδ(x0)

f(x)

dg(x, x0)s
u2?(s)
ε dvg = O(εn−s). (2.25)

In coordinate normal we can write the following expansions

f(x)η2?(s)(r) = f(x0) +
1

2
∂ijf(x0)xixj +O(r3), (2.26)

With that,∫
Bδ(x0)

f(x)

dg(x, x0)s
u2?(s)
ε dvg = f(x0)

∫
Bδ(0)

εn−s

|y|s(ε2−s + |y|2−s)
2(n−s)
2−s

√
det(g)dy

+
1

2
∂ijf(x0)

∫
Bδ(0)

εn−syiyj

|y|s(ε2−s + |y|2−s)
2(n−s)
2−s

√
det(g)dy +O(ε3)

= f(x0)ωn−1

∫ δ

0

εn−srn−1

rs(ε2−s + r2−s)
2(n−s)
2−s

(
1− Rg(x0)

6n
r2 +O(1)r4

)
dr

+
∆f(x0)

2n
ωn−1

∫ δ

0

εn−srn−1

rs(ε2−s + r2−s)
2(n−s)
2−s

(
1 +O(1)r2

)
dr +O(ε3),

Taking the variable change t = r
ε
, we have

f(x0)ωn−1

∫ δ
ε

0

tn−1

ts(1 + t2−s)
2(n−s)
2−s

(
1− Rg(x0)

6n
(εt)2 +O(1)(εt)4

)
dt

= f(x0)

∫
Rn

|Φ|2?(s)

|y|s
dy − Rg(x0)

6n
f(x0)ε2

∫
Rn

|Φ|2?(s)

|y|s−2
dy +O(εn−s)

(2.27)

and also,

∆f(x0)

2n
ωn−1ε

2

∫ δ
ε

0

tn−1(1 +O(1)(εt)2)

ts(1 + t2−s)
2(n−s)
2−s

dt =
1

2
∆f(x0)ε2

∫
Rn

|Φ|2?(s)

|y|s−2
dy +O(εn+2−s). (2.28)

So, by (2.27) and (2.28) we reach∫
M

f(x)u
2?(s)
ε

dg(x, x0)s
dvg = f(x0)‖Φ‖2

?(s)

L
2?(s)s∗
dg,s

(Rn)
+ ε2

f(x0)

2n

(
∆f(x0)

f(x0)
− Rg(x0)

3

)∫
Rn

|Φ|2?(s)

|y|s−2
dy + o(ε2).

(2.29)

Next, let us calculate the quotient∫
M
|∇guε|2dvg +

∫
M

(
α

2?(s)
ã
ρθ
u2
ε + β

2?(s)
c̃
ργ
u2
ε

)
dvg +

∫
M
hu2

εdvg(∫
M

f(x)
dg(x,x0)s

u
2?(s)
ε dvg

) 2
2?(s)

,
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for n ≥ 5 we write the constants k1(n, s) =
∫
Rn |y|

2|∇Φ|2dy and k2(n, s) =
∫
Rn
|Φ|2?(s)
|y|s−2 dy,

so by (2.18), (2.19), (2.23), (2.24) and (2.29), we get that∫
M
|∇guε|2dvg +

∫
M

(
α

2?(s)
ã
ρθ
u2
ε + β

2?(s)
c̃
ργ
u2
ε

)
dvg +

∫
M
hu2

εdvg(∫
M

f(x)
dg(x,x0)s

u
2?(s)
ε dvg

) 2
2?(s)

=
‖∇Φ‖2

L2 − k1(n,s)
6n

Rg(x0)ε2 + h(x0)‖Φ2‖2
L2ε2 + o(ε2)

f(x0)
2

2?(s)

(
‖Φ‖2?(s)

L
2?(s)
dg,s

+ ε2
(

∆f(x0)
2nf(x0)

− Rg(x0)

6n

)
k2(n, s) + o(ε2)

) 2
2?(s)

=
K(n, s)−1

f(x0)
2

2?(s)

+

(Rg(x0)

6n
− ∆gf(x0)

2nf(x0)

)
2k2(n,s)‖∇Φ‖2

L2

2?(s)‖Φ‖2
?(s)

L
2?(s)
dg,s

− k1(n,s)
6n

Rg(x0) + h(x0)‖Φ2‖2
L2

 ε2 + o(ε2)

f(x0)
2

2?(s)‖Φ‖2

L
2?(s)
dg,s

1 + 2
2?(s)

(
∆f(x0)
2nf(x0)

− Rg(x0)

6n

)
C2(n,s)

‖Φ‖2
?(s)

L
2?(s)
dg,s

ε2 + o(ε2)


so, we reach that∫

M
|∇guε|2dvg +

∫
M

(
α

2?(s)
ã
ρθ
u2
ε + β

2?(s)
c̃
ργ
u2
ε

)
dvg +

∫
M
hu2

εdvg(∫
M

f(x)
dg(x,x0)s

u
2?(s)
ε dvg

) 2
2?(s)

=
K(n, s)−1

f(x0)
2

2?(s)

+
K(n, s)−1

f(x0)
2

2?(s)

(
Rg(x0)

6n
− ∆gf(x0)

2nf(x0)

)
2k2(n, s)

2?(s)‖Φ‖2?(s)

L
2?(s)
dg,s

ε2

− K(n, s)−1

f(x0)
2

2?(s)

k1(n, s)

6n‖∇Φ‖2
L2

Rg(x0)ε2 + h(x0)
‖Φ2‖2

L2(Rn)

‖∇Φ‖2
L2

ε2 + o(ε2).

Now, using that (see [35, Section 3])

k1(n, s)

‖Φ‖2
L2

=

∫
Rn |y|

2|∇Φ|2dy
‖Φ‖2

L2

=
n(n− 2)(n+ 2− s)

2(2n− 2− s)
,

k2(n, s)

‖Φ‖2
L2

=

∫
Rn |y|

2−s|Φ|2?(s)dy

‖Φ‖2
L2

=
n(n− 4)

2(n− 2)(2n− 2− s)
,

‖∇Φ‖2
L2

‖Φ‖2?(s)

L
2?(s)
dg,s

= (n− 2)(n− s),

56



then for n ≥ 5 we have∫
M
|∇guε|2dvg +

∫
M

(
α

2?(s)
ã
ρθ
u2
ε + β

2?(s)
c̃
ργ
u2
ε

)
dvg +

∫
M
hu2

εdvg(∫
M

f(x)
dg(x,x0)s

u
2?(s)
ε dvg

) 2
2?(s)

=
K(n, s)−1

f(x0)
2

2?(s)

[
1− (n− 2)(n− 4)

4(2n− 2− s)
∆gf(x0)

f(x0)

]
− K(n, s)−1

f(x0)
2

2?(s)

‖Φ‖2
L2

‖∇Φ‖2
L2

[
(n− 2)(6− s)
12(2n− 2− s)

Rg(x0)− h(x0)

]
ε2 + o(ε2).

Similarly for n = 4 we get∫
M
|∇guε|2dvg +

∫
M

(
α

2?(s)
ã
ρθ
u2
ε + β

2?(s)
c̃
ργ
u2
ε

)
dvg +

∫
M
hu2

εdvg(∫
M

f(x)
dg(x,x0)s

u
2?(s)
ε dvg

) 2
2?(s)

=
K(4, s)−1

f(x0)
2

2?(s)

+
ω3(6h(x0)−Rg(x0))

6f(x0)
2

2?(s)‖Φ‖2

L
2?(s)
dg,s

ε2 ln(ε−1) + o(ε2 ln(ε−1)).

As h(x0) < n(n−2)(6−s)
12(2n−2−s) Rg(x0) + (n−2)(n−4)

4(2n−2−s)
∆gf(x0)

f(x0)
for n ≥ 4, then for ε small enough, we

reach that∫
M
|∇guε|2dvg +

∫
M

(
α

2?(s)
ã
ρθ
u2
ε + β

2?(s)
c̃
ργ
u2
ε

)
dvg +

∫
M
hu2

εdvg(∫
M

f(x)
dg(x,x0)s

u
2?(s)
ε dvg

) 2
2?(s)

<
K(n, s)−1

f(x0)
2

2?(s)

.

Therefore, for ε small enough we have that

Eh(ξuε, ζuε)(∫
M

f(x)
dg(x,x0)s

|ξuε|α|ζuε|βdvg
) 2

2?(s)

=
(ξ2 + ζ2)

(ξαζβ)
2

2?(s)

∫
M
|∇guε|2dvg +

∫
M

(
α

2?(s)
ã
ρθ
u2
ε + β

2?(s)
c̃
ργ
u2
ε

)
dvg +

∫
M
hu2

εdvg(∫
M

f(x)
dg(x,x0)s

u
2?(s)
ε dvg

) 2
2?(s)

<
Ks(α,β)

f(x0)
2

2?(s)

,

so if τ :=
(∫

M
f(x)

dg(x,x0)s
|ξuε|α|ζuε|βdvg

)1/2?(s)

then (ξτ−1uε, ζτ
−1uε) ∈ Λ

(α,β)
s,f and

K
(α,β)
f,s ≤ Eh(ξτ

−1uε, ζτ
−1uε) =

Eh(ξuε, ζuε)(∫
M

f(x)
dg(x,x0)s

|ξuε|α|ζuε|βdvg
) 2

2?(s)

<
Ks(α,β)

f(x0)
2

2?(s)

.

From now on we will estimate the terms of the functional in the case which n = 3.

Since in this case ã ≡ c̃ ≡ 0 and a, b and c satisfy the hypothesis (H1) and (2.4) then
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−∆g + h is a coercive operator. Indeed, given any u ∈ H1(M), by (H1) for the pair

(
√
αu,
√
βu) we have∫

M

|∇gu|2dvg +

∫
M

[
α

2?(s)
a(x) +

2
√
αβ

2?(s)
b(x) +

β

2?(s)
c(x)

]
u2dvg ≥ C0‖u‖2

H1 .

As h = α
2?(s)

a + 2
√
αβ

2?(s)
b + β

2?(s)
c, it follows the claim. With that, there exist Gx0 :

M\{x0} → R the Green function this operator. So,

−∆gGx0 + hGx0 = δx0 ,

where δx0 is the Dirac mass at x0. It is well known that for x close to x0 we can write

Gx0(x) =
1

ω2dg(x, x0)
+m(x0) + o(1).

Next, we will use Druet’s idea [16]. By using the cut-off function η, we can write

Gx0 as follows:

ω2Gx0(x) =
η(dg(x, x0))

dg(x, x0)
+ wh(x), (2.30)

where wh ∈ C∞loc(M\{x0}). In M\Bδ(x0), we have

−∆gwh + hwh = ∆g

(
η

dg(x, x0)

)
− h η

dg(x, x0)
. (2.31)

And, in Bδ(x0), we write in normal coordinates

−∆gwh + hwh = −∂r(ln(det(g)))

2dg(x, x0)2
− h 1

dg(x, x0)
. (2.32)

In particular, we have that the right side of the above equation is in Lp(M) for all

1 < p < 3, so by standard elliptic theory, wh ∈ C0,θ(M) ∩ H2,p(M) ∩ C2,γ(M\{x0})

and moreover wh(x0) = ω2m(x0) (for more details see Druet [16, Section 2]). Since we

assume that or h ≤ 1
8
Rg and h(x0) < 1

8
Rg(x0) or h ≡ 1

8
Rg and (M, g) is not conformally

equivalent to the standard sphere Sn, then in any case we get that wh(x0) > 0 (for

more details see [43], the second case follows from the positive mass theorem).

In this case, we consider the test function

vε = uε + ε
1
2wh. (2.33)

Now, let’s estimate
∫
M

(|∇gvε|2 + hv2
ε )dvg and

∫
M

f(x)
dg(x,x0)s

v
2?(s)
ε dvg. First, from [35,

Section 4] we have∫
M

(|∇gvε|2 + hv2
ε )dvg =

∫
Rn
|∇Φ|2dy + εω2wh(x0) + o(ε). (2.34)
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So let us focus on estimating the other integral. As s ∈ (0, 2) then 6 − 2s > 2 and

therefore there is a positive constant C(s) such that for all y, z ∈ R we have

∣∣|y + z|6−2s − |y|6−2s − (6− 2s)yz|y|4−2s
∣∣ ≤ C(s)(|y|4−2sz2 + |z|6−2s).

With that, we can write∫
M

f(x)

dg(x, x0)s
v2?(s)
ε dvg =

∫
M

f(x)

dg(x, x0)s
(uε + ε

1
2wh)

6−2sdvg

=

∫
Bδ(x0)

f(x)

dg(x, x0)s
(uε + ε

1
2wh)

6−2sdvg +O(ε3−s)

=

∫
Bδ(x0)

f(x)[u6−2s
ε + (6− 2s)u5−2s

ε ε
1
2wh]

dg(x, x0)s
dvg

+ C̃(s)

∫
Bδ(x0)

f(x)[u4−2s
ε εw2

h + ε3−s|wh|6−2s]

dg(x, x0)s
dvg +O(ε3−s).

Let’s calculate:

•
∫
Bδ(x0)

f(x)u6−2s
ε

dg(x, x0)s
dvg = f(x0)

∫
R3

|Φ|6−2s

|y|s
dy + o(ε),

•
∫
Bδ(x0)

f(x)(6− 2s)u5−2s
ε ε

1
2wh

dg(x, x0)s
dvg = ε(6− 2s)f(x0)wh(x0)

∫
R3

|Φ|5−2s

|y|s
dy + o(ε),

•
∫
Bδ(x0)

f(x)[u4−2s
ε εw2

h + ε3−s|wh|6−2s]

dg(x, x0)s
dvg = O(1)

∫ δ

0

u4−2s
ε

dg(x, x0)s
dvg + o(ε) = o(ε).

Since −∆Φ = (3− s)Φ5−2s

|y|s in R3 then∫
R3

|Φ|5−2s

|y|s
dy = (3− s)−1

∫
R3

−∆Φdy = (3− s)−1 lim
r→∞

∫
∂Br(0)

∂νΦdσ = (3− s)−1ω2.

From the calculations above we reach that∫
M

f(x)

dg(x, x0)s
v2?(s)
ε dvg = f(x0)‖Φ‖2?(s)

L
2?(s)
dg,s

+ 2ω2f(x0)wh(x0)ε+ o(ε). (2.35)

Hence, by (2.34) and (2.35), we get

∫
M

(|∇gvε|2 + hv2
ε )dvg(∫

M
f(x)

dg(x,x0)s
v

2?(s)
ε

) 2
2?(s)

dvg

=
K(3, s)−1

f(x0)
2

2?(s)

1− 2ω2wh(x0)

‖Φ‖2?(s)

L
2?(s)
dg,s

ε+ o(ε)

 .
Since wh(x0) > 0. So for ε small enough (as in the case n ≥ 4) it follows that

K
(α,β)
f,s ≤ Eh(ξτ

−1
0 vε, ζτ

−1
0 vε) =

Eh(ξvε, ζvε)(∫
M

f(x)
dg(x,x0)s

|ξvε|α|ζvε|βdvg
) 2

2?(s)

<
Ks(α,β)

f(x0)
2

2?(s)
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where τ0 =
(∫

M
f(x)

dg(x,x0)s
v

2?(s)
ε

) 1
2?(s) , that is, (ξτ−1

0 vε, ζτ
−1
0 vε) ∈ Λ

(α,β)
s,f . Which completes

the proof of the lemma.

We now have the tools for the proof of Theorem 2.1.1.

Proof of Theorem 2.1.1. Since by assumed assumptions we have that f(x0)
2

2?(s)K
(α,β)
s,f <

Ks(α,β), then from Proposition 2.3.1 there exists (u0, v0) ∈ Λα,β
s,f such that Eh(u0, v0) =

K
(α,β)
s,f . Denote by G(u, v) =

∫
M

f(x)
dg(x,x0)s

|u|α|v|βdvg − 1, where (u, v) ∈ H. Then, there

is a Lagrange multiplier λ that satisfies

E ′h(u0, v0) · (ϕ, ψ)− λG′(u0, v0) · (ϕ, ψ) = 0, for all (ϕ, ψ) ∈ H. (2.36)

Taking ϕ = u0 and ψ = v0 above, then 2Eh(u0, v0) = 2?(s)λ, hence λ = 2
2?(s)

K
(α,β)
s,f > 0.

Therefore, by (2.36), we have that (u0, v0) is a weak solution of the system −∆gu+ ã(x)
ρ(x)θ

u+ au+ bv = K
(α,β)
s,f

2α
2?(s)

f(x)u|u|α−2|v|β in M,

−∆gv + c̃(x)
ρ(x)γ

v + bu+ cv = K
(α,β)
s,f

2β
2?(s)

f(x)v|v|β−2|u|α in M.
(2.37)

It is easy to see that the pair ((2K
(α,β)
s,f )1/(2?(s)−2)u0, (2K

(α,β)
s,f )1/(2?(s)−2)v0) is a pair of

weak solutions of system (2.1). This completes the proof of the theorem. �

To prove that from the hypotheses assumed in Corollary 2.1.2 we obtain a positive

solution of the system (2.1), let us consider the constrained set

Λα,β
s,f,+ :=

{
(u, v) ∈ H :

∫
M

f(x)

dg(x, x0)s
(u+)α(v+)βdvg = 1

}
and

K
(α,β)
f,h,+ := inf

(u,v)∈Λα,βs,f,+

Eh(u, v).

Note that, if b ≤ 0 in M , it is easy to see that Eh(|u|, |v|) ≤ Eh(u, v), and that

if (u, v) ∈ Λα,β
s,f then (|u|, |v|) ∈ Λα,β

s,f,+, therefore, we deduce that K(α,β)
f,h,+ ≤ K

(α,β)
s,f .

Then, by Lemma 2.4.2, we get that f(x0)
2

2?(s)K
(α,β)
f,h,+ < Ks(α,β). Moreover, we claim that

K
(α,β)
s,h,+ > 0, indeed,

Eh(u, v) ≥ C0||(u, v)||2H ≥
C

f(x0)
2

2?(s)

(∫
M

f(x)

dg(x, x0)s
(u+)α(v+)βdvg

) 2
2?(s)

≥ C

f(x0)
2

2?(s)

> 0,
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for all (u, v) ∈ Λα,β
s,f,+.

Proof of Corollary 2.1.2. Let {(um, vm)} ⊂ Λα,β
s,f,+ be a minimizing sequence for K(α,β)

f,h,+.

Argues as in Proposition 2.3.1, we obtain a pair (u, v) ∈ Λα,β
s,f,+ such that Eh(u, v) =

K
(α,β)
f,h,+, with u 6= 0 and v 6= 0, where um ⇀ u and vm ⇀ v inH1(M). Now, we claim that

u ≥ 0 and v ≥ 0 inM . Indeed, if we consider G+(u, v) =
∫
M

f(x)
dg(x,x0)s

(u+)α(v+)βdvg−1,

there is a Lagrange multiplier λ such that

E ′h(u, v) · (ϕ, ψ)− λG′+(u, v) · (ϕ, ψ) = 0, for all (ϕ, ψ) ∈ H. (2.38)

Taking ϕ = u− and ψ = v− as test functions above, we have

2Eh(u
−, v−) + 2

∫
M

b(u+v− + u−v+)dvg = 0.

Since b ≤ 0, it follows that Eh(u−, v−) ≤ 0, hence u− = v− = 0. Thus, we conclude

that u ≥ 0 and v ≥ 0. Considering ϕ = u and ψ = v as test functions in (2.38),

we get 2Eh(u, v) = 2?(s)λ > 0, and consequently λ = 2
2?(s)

K
(α,β)
f,A,+ > 0. Therefore,

((2K
(α,β)
f,h,+)1/(2?(s)−2)u, (2K

(α,β)
f,h,+)1/(2?(s)−2)v) is a pair of non-negative weak solutions of

system (2.1). �

2.5 Proof of Theorem 2.1.4

In the present section, we prove our second theorem. Here we assume only that ã

and c̃ are functions Hölder continuous. Consequently, the estimation of singular term

of functional Eh will be different, where we use the same test function of previous

section in the case n ≥ 4. Therefore, under the assumptions of Theorem 2.1.4 we will

prove in the following auxiliary lemma that f(x0)
2

2?(s)K
(α,β)
s,f < Ks(α,β).

Lemma 2.5.1 If we assume the same assumptions of Theorem 2.1.4. Then we have

f(x0)
2

2?(s)K
(α,β)
s,f < Ks(α,β).

Proof. Using the same test function (2.17), we have

K
(α,β)
s,f ≤ Eh(ξτ

−1uε, ζτ
−1uε) =

Eh(ξuε, ζuε)(∫
M

f(x)
dg(x,x0)s

|ξuε|α|ζuε|βdvg
) 2

2?(s)

= κ(α, β)

∫
M
|∇guε|2dvg +

∫
M

(
α

2?(s)
ã
ρθ
u2
ε + β

2?(s)
c̃
ργ
u2
ε

)
dvg +

∫
M
hu2

εdvg(∫
M

f(x)
dg(x,x0)s

u
2?(s)
ε dvg

) 2
2?(s)

,
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where κ(α, β) :=

[(
α
β

)β/2?(s)

+
(
β
α

)α/2?(s)
]
,
(
ξ
ζ

)2

= α
β
and τ :=

(∫
M

f(x)u
2?(s)
ε

dg(x,x0)s
dvg

)1/2?(s)

.

From [35, Section 3] we have that

∫
M
|∇guε|2dvg =



∫
Rn
|∇Φ|2dy −

∫
Rn |y|

2|∇Φ|2dy
6n

Rg(x0)ε2 + o(ε2), if n ≥ 5,∫
R4

|∇Φ|2dy − ω3

6
Rg(x0)ε2 ln(ε−1) +O(ε2), if n = 4,∫

R3

|∇Φ|2dy +O(ε), if n = 3,

(2.39)

and

∫
M
h(x)u2

εdvg =


h(x0)

∫
Rn
Φ2dyε2 + o(ε2) if n ≥ 5,

h(x0)ω3ε
2 ln(ε−1) +O(ε2) if n = 4.

O(ε), if n = 3.

(2.40)

As already calculated in Lemma 2.4.2 we have

∫
M

f(x)u
2?(s)
ε

dg(x, x0)s
dvg =


f(x0)‖Φ‖2?(s)

L
2?(s)
dg,s

(Rn)
+O(ε2), if n ≥ 4,

f(x0)‖Φ‖2?(s)

L
2?(s)
dg,s

(R3)
+O(ε), if n = 3.

(2.41)

Now let us estimate
∫
M

ã
ρθ
u2
εdvg. So, for n ≥ 4 we have that∫

M

ã

ρθ
u2
εdvg =

∫
Bδ(x0)

ã

ρθ
u2
εdvg +

∫
M\Bδ(x0)

ã

ρθ
u2
εdvg

=

∫
Bδ(x0)

ã

ρθ
u2
εdvg +O(εn−2).

As in normal coordinate we can write
√

det(g)(y) = (1 + O(|y|2)) and by hypothe-

sis ρ(expx0(y)) = |y| + O(|y|1+µ) in Bδ(0) (δ is small enough), since Ipq denotes the∫∞
0

tp

(1+t)q
dt, then we get∫

Bδ(x0)

ã

ρθ
u2
εdvg =

∫
Bδ(0)

(ã ◦ expx0)(y)

(|y|+O(|y|1+µ))θ
((uε ◦ expx0)(y))2

√
det(g)dy

=

∫
Bδ(0)

(ã ◦ expx0)(y)

|y|θ (1 +O(|y|µ))
((uε ◦ expx0)(y))2

√
det(g)dy

= ã(x0)

∫
Bδ(0)

((uε ◦ expx0)(y))2

|y|θ (1 +O(|y|µ))
dy +

∫
Bδ(0)

b̃(y)

|y|θ (1 +O(|y|µ))
((uε ◦ expx0)(y))2dy

= ã(x0)

∫
Bδ(0)

((uε ◦ expx0)(y))2

|y|θ
dy +

∫
Bδ(0)

[
b̃(y) +O(|y|µ)

]
|y|θ (1 +O(|y|µ))

((uε ◦ expx0)(y))2dy

= ã(x0)εn−2

∫
Bδ(0)

1

|y|θ
1

(ε2−s + |y|2−s)
2(n−2)
2−s

dy + o(ε2−θ)

=
ã(x0)ωn−1

2− s
I
n−2+s−θ

2−s
2(n−2)
2−s

ε2−θ + o(ε2−θ),
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where b̃(y) = [(ã ◦ expx0)(y)− ã(x0)](1 +O(|y|2)). So for n ≥ 4 we reach∫
M

ã

ρθ
u2
εdvg =

ã(x0)ωn−1

2− s
I
n−2+s−θ

2−s
2(n−2)
2−s

ε2−θ + o(ε2−θ). (2.42)

Similarly, also we have∫
M

c̃

ργ
u2
εdvg =

c̃(x0)ωn−1

2− s
I
n−2+s−γ

2−s
2(n−2)
2−s

ε2−γ + o(ε2−γ). (2.43)

In case n = 3. We get that

∫
M

ã

ρθ
u2
εdvg =


ã(x0)ω2

2− s
I

1−θ+s
2−s
2

2−s
ε2−θ + o(ε2−θ), if θ > 1

ã(x0)ω2ε ln(ε−1) +O(ε), if θ = 1

O(ε), if θ < 1.

(2.44)

Similarly,

∫
M

c̃

ργ
u2
εdvg =


c̃(x0)ω2

2− s
I

1−γ+s
2−s
2

2−s
ε2−γ + o(ε2−γ), if γ > 1

c̃(x0)ω2ε ln(ε−1) +O(ε), if γ = 1

O(ε), if γ < 1.

(2.45)

Hence, we can estimate the quotient∫
M
|∇guε|2dvg +

∫
M

(
α

2?(s)
ã
ρθ
u2
ε + β

2?(s)
c̃
ργ
u2
ε

)
dvg +

∫
M
hu2

εdvg(∫
M

f(x)
dg(x,x0)s

u
2?(s)
ε dvg

) 2
2?(s)

.

In fact, according to the above estimates, for n ≥ 4 we reach

∫
M
|∇guε|2dvg +

∫
M

(
α

2?(s)
ã
ρθ
u2
ε + β

2?(s)
c̃
ργ
u2
ε

)
dvg +

∫
M
hu2

εdvg(∫
M

f(x)
dg(x,x0)s

u
2?(s)
ε dvg

) 2
2?(s)

=
||∇Φ||22 + αã(x0)ωn−1

2?(s)(2−s) I
n−2+s−θ

2−s
2(n−2)
2−s

ε2−θ + o(ε2−θ) + βc̃(x0)ωn−1

2?(s)(2−s) I
n−2+s−γ

2−s
2(n−2)
2−s

ε2−γ + o(ε2−γ)

f(x0)
2

2?(s)‖Φ‖2

L
2?(s)
dg,s

(Rn)
(1 +O(ε2))

=
K(n, s)−1

f(x0)
2

2?(s)

+ αã(x0)C1(n, s, f, θ)ε2−θ + βc̃(x0)C2(n, s, f, γ)ε2−γ + o(ε2−θ) + o(ε2−γ),

where C1(n, s, f, θ) =
ωn−1f(x0)−

2
2?(s)

2?(s)(2− s)‖Φ‖2

L
2?(s)
dg,s

I
n−2+s−θ

2−s
2(n−2)
2−s

and C2(n, s, f, γ) =

63



ωn−1f(x0)−
2

2?(s)

2?(s)(2− s)‖Φ‖2

L
2?(s)
dg,s

I
n−2+s−γ

2−s
2(n−2)
2−s

are positive constants. So, for n ≥ 4 we get that

∫
M
|∇guε|2dvg +

∫
M

(
α

2?(s)
ã
ρθ
u2
ε + β

2?(s)
c̃
ργ
u2
ε

)
dvg +

∫
M
hu2

εdvg(∫
M

f(x)
dg(x,x0)s

u
2?(s)
ε dvg

) 2
2?(s)

=



K(n,s)−1

f(x0)
2

2?(s)
+ ã(x0)αC1(n, s, f, θ)ε2−θ + o(ε2−θ), if θ > γ,

K(n,s)−1

f(x0)
2

2?(s)
+ [αã(x0) + βc̃(x0)]C1(n, s, f, θ)ε2−θ + o(ε2−θ), if θ = γ,

K(n,s)−1

f(x0)
2

2?(s)
+ c̃(x0)βC2(n, s, f, γ)ε2−γ + o(ε2−γ), if θ < γ.

(2.46)

Since for n ≥ 4, ã(x0) < 0 if θ > γ, or αã(x0) + βc̃(x0) < 0 if θ = γ, or c̃(x0) < 0 if

γ > θ. Then for ε small enough we reach that f(x0)
2

2?(s)K
(α,β)
s,f < Ks(α,β), for n ≥ 4.

Now, when n = 3 we have∫
M
|∇guε|2dvg +

∫
M

(
α

2?(s)
ã
ρθ
u2
ε + β

2?(s)
c̃
ργ
u2
ε

)
dvg +

∫
M
hu2

εdvg(∫
M

f(x)
dg(x,x0)s

u
2?(s)
ε dvg

) 2
2?(s)

=



K(3,s)−1

f(x0)
2

2?(s)
+ ã(x0)αC1(s, f, θ)ε2−θ + o(ε2−θ), if θ > 1 and θ > γ,

K(3,s)−1

f(x0)
2

2?(s)
+ ã(x0) αω2

2?(s)
ε ln(ε−1) + o(ε ln(ε−1)), if θ = 1 > γ,

K(3,s)−1

f(x0)
2

2?(s)
+ c̃(x0)βC2(s, f, γ)ε2−γ + o(ε2−γ), if γ > 1 and γ > θ,

K(3,s)−1

f(x0)
2

2?(s)
+ c̃(x0) βω2

2?(s)
ε ln(ε−1) + o(ε ln(ε−1)), if γ = 1 > θ,

K(3,s)−1

f(x0)
2

2?(s)
+ [αã(x0) + βc̃(x0)]C1(s, f, θ)ε2−θ + o(ε2−θ), if θ = γ > 1,

K(3,s)−1

f(x0)
2

2?(s)
+
[
αã(x0)
2?(s)

+ βc̃(x0)
2?(s)

]
ω2ε ln(ε−1) + o(ε ln(ε−1)), if θ = γ = 1,

K(3,s)−1

f(x0)
2

2?(s)
+O(ε), if θ < 1 and γ < 1,

where C1(s, f, θ) = ω2f(x0)
− 2

2?(s)

2?(s)(2−s)‖Φ‖2
L
2?(s)
dg,s

I
1+s−θ
2−s
2

2−s
and C2(s, f, γ) = ω2f(x0)

− 2
2?(s)

2?(s)(2−s)‖Φ‖2
L
2?(s)
dg,s

I
1+s−γ
2−s
2

2−s
are

positive constants. As for n = 3, ã(x0) < 0 if θ > γ and θ ≥ 1, or αã(x0) + βc̃(x0) < 0

if θ = γ ≥ 1, or c̃(x0) < 0 if γ > θ and γ ≥ 1. This implies that when n = 3 and ε is

small enough we get f(x0)
2

2?(s)K
(α,β)
s,f < Ks(α,β).

Proof of Theorem 2.1.4. Arguing in the same way as it was done in the proof of Theo-

rem 2.1.1, we establish the existence of a pair of nontrivial solutions for system (2.1).

�
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Chapter 3

On a Class of Quasilinear Elliptic
Systems involving Critical Growth

In this chapter, inspired by ideas from Chen and Liu [11], Demengel and Hebey

[12], and Druet [15], we establish the existence of solutions for a class of generalized

coupled elliptic systems involving the p-Laplace-Beltrami operator. Here, we focus on

the case where p 6= 2, as we have already studied the case of p = 2 in Chapters 1 and 2.

The main tool used here is the Mountain Pass Theorem. We encounter an additional

difficulty due to the lack of the Hilbert space structure of H1,p(M). This is because if

um ⇀ u in H1,p(M), it does not necessarily hold that |∇gum|p−2∇gum ⇀ |∇gu|p−2∇gu

in H1,p(M).

3.1 Introduction

Let (M, g) be a smooth closed Riemannian manifold of dimension n ≥ 2. We are

concerned with the existence of solutions of the following Hardy-Sobolev system:
−∆p,gu+ a(x)|u|p−2u+ b(x)[(p− 1)|u|p−2 + |v|p−2]v =

α

p?(s)

f(x)u|u|α−2|v|β

dg(x, x0)s
,

−∆p,gv + b(x)[(p− 1)|v|p−2 + |u|p−2]u+ c(x)|v|p−2v =
β

p?(s)

f(x)v|v|β−2|u|α

dg(x, x0)s
,

(3.1)

where ∆p,g is the p-Laplace-Beltrami operator, p ∈ (1, n) with p 6= 2, a, b, c ∈ C0,%(M)

for some % ∈ (0, 1) with b ≡ 0 when 1 < p < 2, x0 ∈ M , s ∈ [0, p), f ∈ C∞(M) with



f(x0) = maxM f > 0 and α > 1, β > 1 are real constants satisfying α + β = p?(s),

where p?(s) = p(n−s)
(n−p) is the critical Hardy-Sobolev exponent.

Next, we will present some works that, along with the previous chapters, moti-

vated us to study the above problem. First is the paper by Druet [15], in which the

author considers a generalized elliptic Yamabe-type equation

−∆p,gu+ a(x)|u|p−2u = f(x)|u|p∗−2u in M,

the author proved some existence results for this equation on compact manifolds. An-

other paper that also motivated us, was the work of Chen and Liu in [11], who inves-

tigated the Hardy-Sobolev equation

−∆p,gu+ a(x)u = f(x)
|u|p?(s)−2u

dg(x, x0)s
in M

They proved a Hardy-Sobolev inequality on compact Riemannian manifolds and an

existence result for this equation. Two sufficient conditions (when p 6= 2) which both

of the above-mentioned works present ( see Druet [15] for s = 0), the following:

(i) 2 < p <
√
n and 0 < Rg(x0) +

3(n+ 2− 3p)

(3p− s)
∆f(x0)

f(x0)
;

(ii) 1 < p < min

{
2,
n+ 2

3

}
and a(x0) < 0.

Here in this chapter, in particular, we were able to improve the estimates made

by them in their results, and thus expand the interval for p 6= 2. More precisely, we

improved the conditions for:

(i)′ 2 < p ≤ n+ 2

3
;

(ii)′ 1 < p < 2 for all n ≥ 4, and 1 < p ≤
√
n when n = 3, 2;

because
√
n < n+2

3
, for all n ≥ 5, moreover, when n = 4, 3 or n = 2 we have that,

√
4 = 2 = 6

3
= 4+2

3
, 5

3
= 3+2

3
<
√

3 and 4
3

= 2+2
3
<
√

2, respectively.

Now, before presenting our main results, we need to introduce some notations

and definitions. Throughout this work, we will denote by H1,p(M) the Sobolev space

of all functions in Lp(M) with one derivative (in the weak sense) in Lp(M). We equip

H1,p(M) with the standard ‖ · ‖H1,p−norm, that is, ‖u‖pH1,p = ‖∇u‖pp + ‖u‖pp, where
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‖ · ‖q denotes the norm of the Lebesgue space Lq(M), whenever q ≥ 1. The norm of

Lq(M)× Lq(M) will be defined by ‖(u, v)‖q =
(
‖u‖qq + ‖v‖qq

)1/q
.

Here, we will work in the space Hp = H1,p(M)×H1,p(M) endowed with the norm

‖(u, v)‖ =
(
‖u‖pH1,p + ‖v‖pH1,p

)1/p
.

As is know p?(s) = p(n−s)
(n−p) is the critical exponent of the continuous embedding of

H1,p(M) in the weighted Lebesgue space Lqdg ,s(M) := Lq(M,dg(·, x0)−s) for 1 ≤ q ≤

p?(s), which is a compact embedding when 1 ≤ q < p?(s), see [11, Lemma 3.1]. We

equip Lqdg ,s(M) with the norm

‖u‖q,s =

(∫
M

|u|q

dg(x, x0)s
dvg

) 1
q

.

In this context, we say that a pair of functions (u, v) ∈ Hp is a weak solution of

(3.1), if for every (ϕ, ψ) ∈ Hp, it holds∫
M

(
〈|∇gu|p−2∇gu,∇gϕ〉+ 〈|∇gv|p−2∇gv,∇ψ〉+ a(x)|u|p−2uϕ+ c(x)|v|p−2vψ

+ b(x)[ (p− 1)|u|p−2 + |v|p−2]vϕ+ (p− 1)|v|p−2 + |u|p−2uψ ]) dvg (3.2)

=

∫
M

α

p?(s)

f(x)

dg(x, x0)s
|u|α−2|v|βuϕdvg +

∫
M

β

p?(s)

f(x)

dg(x, x0)s
|v|β−2|u|αvψdvg,

when 1 < p < 2, we assume b ≡ 0.

Recalling the relation (1.3) established by Alves et al. [2], which can be easily

obtained when p 6= 2 and s ≥ 0, it is as follows:

Kp,s(α,β) = κ(α, β)K(n, p, s), (3.3)

where κ(α, β) :=

[(
α
β

)β/p?(s)

+
(
β
α

)α/p?(s)
]
and K(n, p, s) is the best Hardy-Sobolev

constant defined by

K(n, p, s) = inf
u∈H1,p(Rn)\{0}

∫
Rn |∇u|

pdx(∫
Rn
|u|p?(s)
|x|s dx

) p
p?(s)

,

and Kp,s(α,β) is defined by

Kp,s(α,β) = inf
(u,v)∈[H1,p(Rn)]2\{0}

∫
Rn (|∇u|p + |∇v|p) dx(∫

Rn
|u|α|v|β
|x|s dx

) p
p?(s)

. (3.4)

67



Throughout this chapter we assume some very general hypotheses about the

functions a, b, c and f that will allow us to obtain some existence results for system

(3.1) through variational methods. We assume that the functions a, b and c are Hölder

continuous and f is a smooth function on M . In addition, these functions satisfy the

following coercivity condition, that is, there exists C0 > 0 such that∫
M

[
|∇gu|p + |∇gv|p + a(x)|u|p + b(x)uv(|u|p−2 + |v|p−2) + c(x)|v|p

]
dvg ≥ C0‖(u, v)‖p, (3.5)

for all (u, v) ∈ Hp, where b ≡ 0 when 1 < p < 2.

Our first result in this chapter can be stated as follows:

Teorema 3.1.1 Let (M, g) be a closed Riemannian manifold of dimension n ≥ 5,
p ∈ (2, n) and s ∈ [0, p). Let a, b and c be functions Hölder continuous in M satisfying
(3.5) and f smooth function on M such that f(x0) = maxM f > 0. If, in addition,
2 < p ≤ n+2

3
and

0 < Rg(x0) +
3(n+ 2− 3p)

(3p− s)
∆f(x0)

f(x0)
. (3.6)

Then, system (3.1) has a pair of nontrivial solution.

A consequence of Theorem 3.1.1 is the following result.

Corollary 3.1.2 Suppose the same assumptions of Theorem 3.1.1. If, in addition, we
assume that the function b ≤ 0 in M . Then, system (3.1) has a pair of non-negative
nontrivial solution.

For our next theorem, we consider b ≡ 0 and we will write h := α
p?(s)

a + β
p?(s)

c.

Thus, we can state the following result.

Teorema 3.1.3 Let (M, g) be a closed Riemannian manifold of dimension n ≥ 2,
p ∈ (1, 2) and s ∈ [0, p). Let a, b and c be functions Hölder continuous in M satisfying
(3.5) and f a smooth function such that f(x0) = maxM f > 0 . If, in addition, we
assume that h(x0) < 0. Then, system (3.1) has a pair of non-negative nontrivial
solution, when n ≥ 4, and the same conclusion holds when n = 2, 3, for p ≤

√
n.

The results will be proved using the Mountain Pass Theorem. A tricky part is to

estimate the minimax level to overcome the lack of compactness caused by the critical

growth of the nonlinearities. We achieved this goal by following some ideas developed

in [15, 11]. Here, we encounter additional difficulties due to the strong coupling of the

system and the involvement of the p-Laplace-Beltrami operator.
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The chapter is organized as follows. In Sect. 3.2 we prove a Hardy-Sobolev

type inequality, important to prove the main results. In Sect. 3.3 we prove a compact-

ness theorem for (PS) sequence. In Sect. 3.4 we estimate the minimax level. In Sect.

3.5 we prove the main theorems.

3.2 Preliminary results

In this section, we prove some auxiliary results Specifically, we establish a Hardy-

Sobolev type inequality where the best constant is (Kp,s(α,β))
−1, although it is generally

not the optimal constant (as we will discuss shortly). We also present a Brézis-Lieb

type lemma. For this purpose, we mention the work by Chen and Liu [11], where

the authors established that the best constant for the Hardy-Sobolev inequality is

K(n, p, s). However, this constant is generally not optimal. More precisely, for any

given ε > 0, there exists a positive constant Bε such that the inequality(∫
M

|u|p?(s)

dg(x, x0)s
dvg

) p
p?(s)

≤ [K(n, p, s) + ε]‖∇gu‖pp +Bε‖u‖pp, (3.7)

holds for all u ∈ H1,p(M). But in general the inequality above does not hold for ε = 0

when p 6= 2 (for more details, see [11, Theorems 1,6 and 1.7]).

Initially, we establish an inequality that will be used in the proof of the main

results.

Teorema 3.2.1 Let Kp,s(α,β) be the constant defined in (3.4) when α+β = p?(s). Then,
given any ε > 0 there is a positive constant Bε such that(∫

M

|u|α|v|β

dg(x, x0)s
dvg

) p
p?(s)

≤ [(Kp,s(α,β))
−1 + ε]‖(|∇gu|, |∇gv|)‖pp +Bε‖(u, v)‖pp , (3.8)

for all (u, v) ∈ Hp.

Proof. Given u, v ∈ H1,p(M), since α
p?(s)

+ β
p?(s)

= 1, by Hölder’s inequality,

∫
M

|u|α|v|β

dg(x, x0)s
dvg ≤

(∫
M

|u|p?(s)

dg(x, x0)s
dvg

)α/p?(s)(∫
M

|v|p?(s)

dg(x, x0)s
dvg

)β/p?(s)

,

that is, (∫
M

|u|α|v|β

dg(x, x0)s
dvg

) p
p?(s)

≤
(
‖u‖pp?(s),s

)α/p?(s) (
‖v‖pp?(s),s

)β/p?(s)

.
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On the other hand, by Young’s inequality,(
‖u‖pp?(s),s

)α/p?(s) (
‖v‖pp?(s),s

)β/p?(s)

≤ α

p?(s)
ε‖u‖pp?(s),s +

β

p?(s)
ε−α/β‖v‖pp?(s),s.

Choosing ε = κ(α, β)−1 p
?(s)
α

, by a simple calculation, we get

α

p?(s)
ε =

β

p?(s)
ε−α/β = κ(α, β)−1,

and consequently,(∫
M

|u|α|v|β

dg(x, x0)s
dvg

) p
p?(s)

≤ κ(α, β)−1
(
‖u‖pp?(s),s + ‖v‖pp?(s),s

)
. (3.9)

Using Hardy-Sobolev inequality (3.7) for arbitrary ε > 0 in (3.9), we can find B̃ε > 0

such that(∫
M

|u|α|v|β

dg(x, x0)s
dvg

) p
p?(s)

≤κ(α, β)−1[K(n, p, s) + εκ(α, β)]‖(|∇gu|, |∇gv|)‖pp

+ κ(α, β)−1B̃ε‖(u, v)||22.

Therefore, we get that(∫
M

|u|α|v|β

dg(x, x0)s
dvg

) p
p?(s)

≤ [(Kp,s(α,β))
−1 + ε]‖(|∇gu|, |∇gv|)‖pp +Bε‖(u, v)‖pp

for all (u, v) ∈ Hp, where Bε = κ(α, β)−1B̃ε.

An immediate consequence of this result is the following inequality.

Corollary 3.2.2 Let Cε = max{(Kp,s(α,β))
−1 + ε, Bε}, then taking ε = 1, we find C > 0

such that (∫
M

|u|α|v|β

dg(x, x0)s
dvg

) p
p?(s)

≤ C‖(u, v)‖p,

for all (u, v) ∈ Hp.

One question that arises is: is the constant (Kp,s(α,β))
−1 = κ(α, β)−1K(n, p, s) op-

timal? The answer is yes for the case p = 2, while for the case p 6= 2, the answer is

generally no, as will be proved in the following proposition.

Proposition 3.2.3 Let (M, g) be a smooth closed Riemannian manifold of dimension
n > 4, x0 ∈ M , 2 < p ≤ n+2

3
and s ∈ (0, p). If we assume that Rg(x0) > 0. Then the

following optimal inequality(∫
M

|u|α|v|β

dg(x, x0)s
dvg

) p
p?(s)

≤ (Kp,s(α,β))
−1‖(|∇gu|, |∇gv|)‖pp +B‖(u, v)‖pp , (3.10)

is not valid for all (u, v) ∈ Hp.
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Proof. Suppose by contradiction that (3.10) holds. Let ϕ ∈ H1,p(M)\{0} and write

u = ξϕ and v = ζϕ, where ξ, ζ ∈ R+ will be chosen later. Thus, by (3.10) it follows

that

(ξαζβ)
p

p?(s)

(∫
M

|ϕ|p?(s)

dg(x, x0)s
dvg

) p
p?(s)

≤ (ξp+ζp)
{

(Kp,s(α,β))
−1‖∇gϕ‖pp +B‖ϕ‖pp

}
. (3.11)

Note that choosing ξ, ζ such that
(
ξ
ζ

)p
= α

β
then ξp+ζp

(ξαζβ)
p

p?(s)
= κ(α, β) and so by (3.11),

we get that (∫
M

|ϕ|p?(s)

dg(x, x0)s
dvg

) p
p?(s)

≤ K(n, p, s)‖∇gϕ‖pp + κ(α, β)B‖ϕ‖pp . (3.12)

Thus, since ϕ is arbitrary we have a contradiction, because (3.12) is not valid.

Remark 3.2.4 In the case s = 0, based on the argument developed in the previous
prove, the optimal type inequality (3.10) is valid when the optimal inequality(∫

M

|ϕ|p?dvg
)p/p?

≤ K(n, p)‖∇gϕ‖pp + B̃‖ϕ‖pp, ∀ϕ ∈ H1,p(M)

is valid and it is not valid when above inequality is not valid. Details about the above
inequality can be read at [28, Chapter 4].

Another result that will be important later on is the following Brézis-Lieb type

lemma.

Lemma 3.2.5 Let um ⇀ u and vm ⇀ v in H1,p(M) and let ` ∈ L∞(M). Then we
have

(i)

∫
M

`(x)

dg(x, x0)s
[
|um|α|vm|β − |u|α|v|β − |um − u|α|vm − v|β

]
dvg = om(1);

(ii)

∫
M

`(x)umvm(|um|p−2 + |vm|p−2)dvg −
∫
M

`(x)uv(|u|p−2 + |v|p−2)dvg

=

∫
M

`(x)(um − u)(vm − v)(|um − u|p−2 + |vm − v|p−2)dvg + om(1), when p ∈ (2, n),

where om(1)→ 0 as m→∞.

Proof. In the proof of (i) we follow the idea of [10]. We start by writing the following∫
M

`(x)|um|α|vm|β

dg(x, x0)s
dvg −

∫
M

`(x)|um − u|α|vm − v|β

dg(x, x0)s
dvg

=

∫
M

`(x)

dg(x, x0)s
[
|um|α

(
|vm|β − |vm − v|β

)
+ |vm − v|β (|um|α − |um − u|α)

]
dvg

= −
∫
M

[
`(x)|um|α

dg(x, x0)s

∫ 1

0

d

dt
|vm − tv|βdt

]
dvg

−
∫
M

[
`(x)|vm − v|β

dg(x, x0)s

∫ 1

0

d

dt
|um − tu|αdt

]
dvg,
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so, we get that∫
M

`(x)|um|α|vm|β

dg(x, x0)s
dvg −

∫
M

`(x)|um − u|α|vm − v|β

dg(x, x0)s
dvg

= β

∫
M

[
|um|α

∫ 1

0

|vm − tv|β−2(vm − tv)dt

]
`(x)v

dg(x, x0)s
dvg

+ α

∫
M

[
|vm − v|β

∫ 1

0

|um − tu|α−2(um − tu)dt

]
`(x)u

dg(x, x0)s
dvg,

Next, to complete the proof of (i), we show the following limits

• lim
m→∞

β

∫
M

[
|um|α

∫ 1

0

|vm − tv|β−2(vm − tv)dt

]
`(x)v

dg(x, x0)s
dvg =

∫
M

`(x)|u|α|v|β

dg(x, x0)s
dvg;

• lim
m→∞

α

∫
M

[
|vm − v|β

∫ 1

0

|um − tu|α−2(um − tu)dt

]
`(x)u

dg(x, x0)s
dvg = 0.

For this purpose, since `(x)v, `(x)u ∈ Lp
?(s)
dg ,s

(M), then it is enough to show that wm ⇀ w

and w̃m ⇀ 0 in L
p?(s)
p?(s)−1

dg ,s
(M), where the functions are given by

wm(x) := |um(x)|α
∫ 1

0

|vm(x)− tv(x)|β−2(vm(x)− tv(x))dt,

w̃m(x) := |vm(x)− v(x)|β
∫ 1

0

|um(x)− tu(x)|α−2(um(x)− tu(x))dt,

w(x) := |u(x)|α
∫ 1

0

(1− t)β−1|v(x)|β−2v(x)dt = β−1|u(x)|α|v(x)|β−2v(x).

Let us to prove only that w̃m ⇀ 0, the other weak converge is to similar. Suppose

otherwise, then there exist φ ∈ Lp
?(s)
dg ,s

(M) and A > 0 such that (up to a subsequence)∣∣∣∣∫
M

w̃mφ

dg(x, x0)s
dvg

∣∣∣∣ > A ∀m, (3.13)

since um ⇀ u and vm ⇀ v in H1,p(M), then there exist subsequences such that

umk(x) → u(x) and vmk(x) → v(x) a.e in M , it is easy to see that this gives us

w̃mk(x)→ 0 a.e in M . Now, note that∫
M

|w̃mk |
p?(s)
p?(s)−1

dg(x, x0)s
dvg =

∫
M

(
|vmk − v|β

∣∣∣∣∫ 1

0

|umk − tu|α−2(umk − tu)dt

∣∣∣∣)
p?(s)
p?(s)−1 dvg

dg(x, x0)s

≤
∫
M

(
|vmk − v|β

∫ 1

0

|umk − tu|α−1dt

) p?(s)
p?(s)−1 dvg

dg(x, x0)s

=

∫
M

(
|vmk − v|β

∫ 1

0

|(1− t)umk + t(umk − u)|α−1dt

) p?(s)
p?(s)−1 dvg

dg(x, x0)s

≤
∫
M

[
|vmk − v|β

(∫ 1

0

|(1− t)umk + t(umk − u)|αdt
)α−1

α

] p?(s)
p?(s)−1

dvg
dg(x, x0)s

,
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where using Holder’s inequality for α−1
α

+ 1
α

= 1 and α > 1. So, by triangle inequality

we get that∫
M

|w̃mk |
p?(s)
p?(s)−1

dg(x, x0)s
dvg

≤
∫
M

{
|vmk − v|β

[
‖(1− t)umk‖Lα(0,1) + ‖t(umk − u)‖Lα(0,1)

]α−1
} p?(s)
p?(s)−1 dvg

dg(x, x0)s

=

(
1

α + 1

)α−1
α
∫
M

[
|vmk − v|β (|umk |+ |umk − u|)

α−1] p?(s)
p?(s)−1

dvg
dg(x, x0)s

,

again by Holder’s inequality for α−1
p?(s)−1

+ β
p?(s)

= 1, we reach that

∫
M

|w̃mk |
p?(s)
p?(s)−1

dg(x, x0)s
dvg


p?(s)−1
p?(s)

≤ C||vmk − v||
β
p?(s),s|||umk |+ |umk − u|||

α−1
p?(s),s,

hence, {w̃mk} is bounded in L
p?(s)
p?(s)−1

dg ,s
(M), because the right side above is bounded.

From [36, Lemma 4.8] follows that w̃mk ⇀ 0 in L
p?(s)
p?(s)−1

dg ,s
(M), which contradicts (3.13).

Therefore, w̃m ⇀ 0 in L
p?(s)
p?(s)−1

dg ,s
(M). The prove of wm ⇀ w is to similar.

For (ii), note that by Hölder’s inequality∣∣∣∣∫
M

`(x)(umvm|um|p−2 − uv|u|p−2)dvg

∣∣∣∣
=

∣∣∣∣∫
M

`(x)[vm(um|um|p−2 − u|u|p−2)− u|u|p−2(vm − v)]dvg

∣∣∣∣
≤ ||`||∞

∫
M

(|vm|
∣∣um|um|p−2 − u|u|p−2

∣∣+ |u|p−1|vm − v|)dvg

≤ ||`||∞
[
||vm||p

∥∥um|um|p−2 − u|u|p−2
∥∥

p
p−1

+ ||u||p−1
p ||vm − v||p

]
,

since um|um|p−2 → u|u|p−2 in L
p
p−1 (M) and vm → v in Lp(M), thus the right-hand side

of the above inequality converges to zero, hence∫
M

`(x)(umvm|um|p−2 − uv|u|p−2)dvg = om(1),

similarly we get∫
M

`(x)(umvm|um|p−2 − uv|u|p−2)dvg = om(1),∫
M

`(x)(um − u)(vm − v)(|um − u|p−2 + |vm − v|p−2)dvg = om(1).

This completes the proof of the lemma.
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3.3 A Compactness Theorem

In this section, let us to prove a compactness result for (PS)τ sequence at level τ ,

where the minimax level τ satisfies appropriate estimate with respect the best constant

Kp,s(α,β) defined in (3.4).

For this, we first consider the functional Eh : Hp → R given by

Eh(u, v) =
1

p

∫
M

(
|∇gu|p + |∇gv|p + a|u|p + buv(|u|p−2 + |v|p−2) + c|v|p

)
dvg

− 1

p?(s)

∫
M

f(x)|u|α|v|β

dg(x, x0)s
dvg,

(3.14)

while in the case 1 < p < 2 we consider the same functional with b ≡ 0.

It is easy to see that Eh is well defined and is of class C1(Hp,R) with

E ′h(u, v)(ϕ, ψ) =∫
M

{
〈|∇gu|p−2∇gu,∇gϕ〉+ 〈|∇gv|p−2∇gv,∇ψ〉+ a(x)|u|p−2uϕ+ c(x)|v|p−2vψ

+
b(x)

p

[
((p− 1)|u|p−2 + |v|p−2)vϕ+ ((p− 1)|v|p−2 + |u|p−2)uψ ]} dvg

−
∫
M

α

p?(s)

f(x)

dg(x, x0)s
|u|α−2|v|βuϕdvg +

∫
M

β

p?(s)

f(x)

dg(x, x0)s
|v|β−2|u|αvψdvg.

In this context, we say that a pair of functions (u, v) ∈ Hp is a weak solution of (3.1)

if only if is a critical point of Eh.

The following lemma is an immediate consequence of the coercivity hypothesis

(3.5).

Lemma 3.3.1 The functional Eh satisfies the geometry of Mountain Pass Theorem,
that is, there exists ρ > 0 and R > 0 such that

Eh(u, v) ≥ ρ whenever ||(u, v)|| = R,

and there exist (ũ, ṽ) ∈ Hp satisfying ||(ũ, ṽ)|| > R and Eh(ũ, ṽ) < 0.

Remark 3.3.2 Let (ũ, ṽ) be a pair satisfying ||(ũ, ṽ)|| > R and Eh(ũ, ṽ) < 0 given in
the previous lemma, then we consider the set

Γ := {γ ∈ C([0, 1], Hp) : γ(0) = 0 and γ(1) = (ũ, ṽ)},

and so we can define the minimax level

τ = inf
γ∈Γ

sup
t∈[0,1]

Eh(γ(t)) ≥ ρ > 0. (3.15)
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Lemma 3.3.3 If {(um, vm)} is a sequence in Hp such that

Eh(um, vm)→ τ and E ′h(um, vm)→ 0, (3.16)

as m→∞. Then {(um, vm)} is bounded in Hp.

Proof. It is enough to note that

Eh(um, vm)− 1

p?(s)
E ′h(um, um)(um, vm)

= p−s
p(n−s)

∫
M

(
|∇gum|p + |∇gvm|p + a|um|p + bumvm(|um|p−2 + |vm|p−2) + c|vm|p

)
dvg,

thus, by the coercivity hypothesis and (3.16) follows that

C1 + om(||(um, vm)||) ≥ C0||(um, vm)||p,

this implies that {(um, vm)} is bounded in Hp.

Remark 3.3.4 Let ` ∈ L∞(M), remember that if {um} is a bounded sequence in
H1,p(M) such that um and ∇gum converge almost everywhere in M to u and ∇gu

respectively. Then by Brézis-Lieb [7] one has that

(i)

∫
M

`(x)|um|pdvg −
∫
M

`(x)|u|pdvg =

∫
M

`(x)|um − u|pdvg + om(1);

(ii)

∫
M

|∇gum|pdvg −
∫
M

|∇gu|pdvg =

∫
M

|∇g(um − u)|pdvg + om(1).

Now we can to prove that a (PS)τ sequence admits a convergent subsequence

when the minimax level τ satisfies an appropriate estimate. More precisely:

Proposition 3.3.5 If {(um, vm)} is a sequence in Hp such that Eh(um, vm) → τ and
E ′h(um, vm)→ 0 as m→∞, with

τ <
p− s

p(n− s)
(Kp,s(α,β))

(p?(s)−p)
p?(s)

f(x0)
p

p?(s)−p
. (3.17)

Then {(um, vm)} has a strongly convergent subsequence. Moreover, if (u, v) is the limit
of this subsequence, then (u, v) is a critical point of Eh and Eh(u, v) = τ .

Proof. Firstly, by hypothesis (3.17) we can choose ε0 > 0 small enough such that

τ <
p− s

p(n− s)
[(Kp,s(α,β))

−1 + ε0]−
(p?(s)−p)
p?(s)

f(x0)
p

p?(s)−p
, (3.18)
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just choose ε0 <

[(
(p−s)
p(n−s)τ

−1f(x0)−
p

p?(s)−p

) p?(s)
p?(s)−p − (Kp,s(α,β))

−1

]
.

Now, Lemma 3.3.3 gives us that {(um, vm)} is bounded in Hp, so up to a subse-

quence for some (u, v) ∈ Hp we have

(um, vm) ⇀ (u, v) in Hp;

(um, vm)→ (u, v) in Lp(M)× Lp(M);

(um, vm)→ (u, v) in Lqdg ,s(M)× Lqdg ,s(M),∀q ∈ [p, p?(s));

(um(x), vm(x)) ⇀ (u(x), v(x)) a.e in M.

(3.19)

We claim that, the pair (u, v) is a critical point of functional Eh. Indeed, the

sequences {|∇gum|p−2∇gum} and {|∇gvm|p−2∇gvm} are bounded in L
p
p−1 (M), thus, we

can assume that

|∇gum|p−2∇gum ⇀ Σ1 and |∇gvm|p−2∇gvm ⇀ Σ2 in L
p
p−1 (M).

Now, since {f |um|α−2um|vm|β} and {|vm|β−2vm|um|α} are bounded in L
p?(s)
p?(s)−1

dg ,s
(M) and

converges almost everywhere in M to f |u|α−2u|v|β and f |v|β−2v|u|α respectively, then

f |um|α−2um|vm|β ⇀ f |u|α−2u|v|β and |vm|β−2vm|um|α ⇀ f |v|β−2v|u|α in L
p?(s)
p?(s)−1

dg ,s
(M).

As E ′h(um, vm)(ϕ, ψ)→ 0 for any (ϕ, ψ) ∈ Hp and since

E ′h(um, vm)(ϕ, ψ)

=

∫
M

{
〈|∇gum|p−2∇gum,∇gϕ〉+ 〈|∇gvm|p−2∇gvm,∇gψ〉+ a(x)|um|p−2umϕ

+ c(x)|vm|p−2vmψ + b(x)
p

((p− 1)|um|p−2 + |vm|p−2)vmϕ

+ b(x)
p

((p− 1)|vm|p−2 + |um|p−2)umψ
}
dvg

−
∫
M

α
p?(s)

f(x)
dg(x,x0)s

|um|α−2|vm|βumϕdvg +

∫
M

β
p?(s)

f(x)
dg(x,x0)s

|vm|β−2|um|αvmψdvg,

letting m→∞, by the weak convergences above and (3.18), we get that

0 =

∫
M

{
〈Σ1,∇gϕ〉+ 〈Σ2,∇gψ〉+ a(x)|u|p−2uϕ+ c(x)|v|p−2vψ

+
b(x)

p

[
((p− 1)|u|p−2 + |v|p−2)vϕ+ ((p− 1)|v|p−2 + |u|p−2)uψ ]} dvg

−
∫
M

α

p?(s)

f(x)

dg(x, x0)s
|u|α−2|v|βuϕdvg +

∫
M

β

p?(s)

f(x)

dg(x, x0)s
|v|β−2|u|αvψdvg.

(3.20)
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Now, we want to prove that Σ1 = |∇gu|p−2∇gu and Σ2 = |∇gv|p−2∇gv. To

achieve this purpose, we will adapt the ideas of [12] and [11].

Given δ > 0 arbitrary, according to Egoroff’s Theorem there exists Uδ ⊂M such

that vol(M\Uδ) < δ, and (um, vm) converge uniformly to (u, v) in Uδ. So for any ε > 0

there exists m0 large enough such that

|um(x)− u(x)| < ε and |vm(x)− v(x)| < ε, ∀x ∈ Uδ.

We define the function Tε : R→ R by

Tε(r) =

 r, if |r| ≤ ε

εsign(r), if |r| > ε.

From Lindqvist’s inequality [40, Section 4], there exists a positive constant C(p) de-

pending only of p such that, for all X, Y ∈ Rn, one has that

(|X|p−2X − |Y |p−2Y ) · (X − Y ) ≥

 C(p)|X − Y |p, if p ≥ 2,

C(p) |X−Y |2
(|X|+|Y |)2−p , if 1 < p < 2,

here X · Y denotes the standard scalar product in Rn. Thus, we get that

〈|∇gum|p−2∇gum − |∇gu|p−2∇gu,∇g(Tε ◦ (um − u))〉 ≥ 0,

〈|∇gvm|p−2∇gvm − |∇gv|p−2∇gv,∇g(Tε ◦ (vm − v))〉 ≥ 0,

a.e in M , since ∇g(Tε ◦ w) = T ′ε(w)∇gw and T ′ε ≥ 0. Now, for m ≥ m0 we have

T ′ε(um − u) = T ′ε(vm − v) = 1 for all x ∈ Up and so, we reach that∫
M

〈|∇gum|p−2∇gum − |∇gu|p−2∇gu,∇g(Tε ◦ (um − u))〉dvg

≥
∫
Uδ

〈|∇gum|p−2∇gum − |∇gu|p−2∇gu,∇g(um − u)〉dvg ≥ 0,∫
M

〈|∇gvm|p−2∇gvm − |∇gv|p−2∇gv,∇g(Tε ◦ (vm − v))〉dvg

≥
∫
Uδ

〈|∇gvm|p−2∇gvm − |∇gv|p−2∇gv,∇g(vm − v)〉dvg ≥ 0.

(3.21)

On the other hand, as Tε ◦ (um − u) and Tε ◦ (vm − v) goes to zero weakly in H1,p(M)

then ∫
M

〈|∇gu|p−2∇gu,∇g(Tε ◦ (um − u))〉dvg → 0,∫
M

〈|∇gv|p−2∇gv,∇g(Tε ◦ (vm − v))〉dvg → 0.

(3.22)
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As Tε ◦ (um − u), Tε ◦ (vm − v) ∈ H1,p(M), then we have∣∣∣∣∫
M

[
〈|∇gum|p−2∇gum,∇g(Tε ◦ (um − u))〉+ 〈|∇gvm|p−2∇gvm,∇g(Tε ◦ (vm − v))〉

]
dvg

∣∣∣∣
≤ |E ′h(um, vm)(Tε ◦ (um − u), Tε ◦ (vm − v))|

+

∣∣∣∣−∫
M

[
a(x)|um|p−2um(Tε ◦ (um − u)) + c(x)|vm|p−2vm(Tε ◦ (vm − v))

]
dvg

−
∫
M

b(x)

p
((p− 1)|um|p−2 + |vm|p−2)vm(Tε ◦ (um − u))dvg

−
∫
M

b(x)

p
((p− 1)|vm|p−2 + |um|p−2)um(Tε ◦ (vm − v))dvg

+

∫
M

α

p?(s)

f(x)

dg(x, x0)s
|um|α−2|vm|βum(Tε ◦ (um − u))dvg

+

∫
M

β

p?(s)

f(x)

dg(x, x0)s
|vm|β−2|um|αvm(Tε ◦ (vm − v))dvg

∣∣∣∣ ,
since |Tε ◦ (um − u)|, |Tε ◦ (vm − v)| ≤ ε and the fact that the sequences are bounded,

we reach that∣∣∣∣∫
M

[
〈|∇gum|p−2∇gum,∇g(Tε ◦ (um − u))〉+ 〈|∇gvm|p−2∇gvm,∇g(Tε ◦ (vm − v))〉

]
dvg

∣∣∣∣
≤ Cε+ om(||(Tε ◦ (um − u), Tε ◦ (vm − v))||),

now, by (3.21), (3.22) and inequality above, we get that

lim sup
m→∞

{∫
Uδ

〈|∇gum|p−2∇gum − |∇gu|p−2∇gu,∇g(um − u)〉dvg

+

∫
Uδ

〈|∇gvm|p−2∇gvm − |∇gv|p−2∇gv,∇g(vm − v)〉dvg
}
≤ Cε.

Since ε > 0 is arbitrary and each term above is nonnegative it follows that

〈|∇gum|p−2∇gum − |∇gu|p−2∇gu,∇g(um − u)〉 → 0 in L1(Uδ),

〈|∇gvm|p−2∇gvm − |∇gv|p−2∇gv,∇g(vm − v)〉 → 0 in L1(Uδ),

hence, up to a subsequence, these sequences converge almost everywhere in Uδ. The

Lindqvist’s inequality gives us that ∇gum → ∇gu (∇gvm → ∇gv) a.e in Uδ. This

happens for any δ > 0, then ∇gum → ∇gu (∇gvm → ∇gv) a.e in M . Clearly, this in

turn implies that

|∇gum|p−2∇gum → |∇gu|p−2∇gu and |∇gvm|p−2∇gvm → |∇gv|∇gv a.e in M.
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Since {|∇gum|p−2∇gum} and {|∇gvm|p−2∇gvm} are bounded in L
p
p−1 (M), from Lemma

4.8 in [36] it follows that

|∇gum|p−2∇gum ⇀ |∇gu|p−2∇gu in L
p
p−1 (M),

|∇gvm|p−2∇gvm ⇀ |∇gv|p−2∇gv in L
p
p−1 (M),

thus, Σ1 = |∇gu|p−2∇gu and Σ2 = |∇gv|p−2∇gv. This prove that (u, v) is a critical

point of Eh.

As consequence we get that

Eh(u, v) = p−s
p(n−s)

∫
M

(
|∇gu|p + |∇gv|p + a|u|p + buv(|u|p−2 + |v|p−2) + c|v|p

)
dvg ≥ 0.

Now, writing ũm = um−u and ṽm = vm−v, we want to prove that ‖(ũm, ṽm)‖ converge

to zero as m→∞. By Lemma 3.2.5 and Brézis-Lieb lemma (since ∇gum → ∇gu and

∇gvm → ∇gv a.e in M) we have

E ′h(ũm, ṽm)(ũm, ṽm)

=

∫
M

(
|∇gũm|p + |∇gṽm|p + a|ũm|p + bũmṽm(|ũm|p−2 + |ṽm|p−2) + c|ṽm|p

)
dvg

−
∫
M

f(x)|ũm|α|ṽm|β

dg(x, x0)s
dvg

=

∫
M

(|∇gum|p + |∇gvm|p)dvg −
∫
M

(|∇gu|p + |∇gv|p)dvg

+

∫
M

(a(x)|um|p + c(x)|vm|p)dvg −
∫
M

(a(x)|u|p + c(x)|v|p)dvg

+

∫
M

b(x)umvm(|um|p−2 + |vm|p−2)dvg −
∫
M

b(x)uv(|u|p−2 + |v|p−2)dvg

−
∫
M

f(x)|um|α|vm|β

dg(x, x0)s
dvg +

∫
M

f(x)|u|α|v|β

dg(x, x0)s
dvg + om(1)

= E ′h(um, vm)(um, vm)− E ′h(u, v)(u, v) + om(1)

= om(1).

Consequently, up to a subsequence, the above expression gives us

lim
m→∞

∫
M

(|∇gũm|p + |∇gṽm|p)dvg = lim
m→∞

∫
M

f(x)|ũm|α|ṽm|β

dg(x, x0)s
dvg =: τ0. (3.23)

On the other hand, with the same argument used above, we get that

Eh(ũm, ṽm) = Eh(um, vm)− Eh(u, v) + om(1).
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Since Eh(um, vm)→ τ as m→∞, then

lim
m→∞

{
1

p

∫
M

(|∇gũm|p + |∇gṽm|p)dvg −
1

p?(s)

∫
M

f(x)|ũm|α|ṽm|β

dg(x, x0)s
dvg

}
= τ − Eh(u, v),

hence,
(

1
p
− 1

p?(s)

)
τ0 = τ − Eh(u, v) ≤ τ , because Eh(u, v) ≥ 0.

We claim that τ0 = 0. Otherwise, if τ0 > 0 then by Lemma 3.2.1 for ε0 > 0 (such

that (3.18) holds) there exists Bε0 > 0 such that(∫
M

f(x)|ũm|α|ṽm|β

dg(x, x0)s
dvg

) p
p?(s)

≤ f(x0)
p

p?(s)

(∫
M

|ũm|α|ṽm|β

dg(x, x0)s
dvg

) p
p?(s)

≤ f(x0)
p

p?(s) [(Kp,s(α,β))
−1 + ε0]‖(|∇gũm|, |∇gṽm|)‖pp +Bε0‖(ũm, ṽm)‖pp,

thus, since limm→∞ ‖(ũm, ṽm)‖pp = 0 and by (3.23), passing to the limit in the inequality

above we have

f(x0)
p

p?(s) [(Kp,s(α,β))
−1 + ε0]−1 ≤ τ

1− p
p?(s)

0 ,

so,

f(x0)−
p

p?(s)−p [(Kp,s(α,β))
−1 + ε0]−

(p?(s)−p)
p?(s) ≤ τ0 ≤

(
pp?(s)

p?(s)− p

)
τ =

p(n− s)
p− s

τ.

However, this contradicts (3.18). Thus, we get that τ0 = 0, consequently one has

E(u, v) = τ and

lim
m→∞

∫
M

(|∇gũm|p + |∇gṽm|p)dvg = 0.

This finish the proof.

3.4 The Minimax Level

First, we state an auxiliary lemma where we will show that under the assumptions

of Theorems 3.1.1 and 3.1.3, there is a pair (ũ, ṽ) ∈ Hp such that ||(ũ, ṽ)|| > R,

Eh(ũ, ṽ) < 0 and

τ = inf
γ∈Γ

sup
t∈[0,1]

Eh(γ(t)) <
(p− s)
p(n− s)

(Kp,s(α,β))
(p?(s)−p)
p?(s)

f(x0)
p

p?(s)−p
.

To achieve this, let δ ∈ (0, ig/2) small enough such that f > 0 in B2δ(x0) (geodesic

ball centered in x0 and with radius 2δ). We consider the following cut-off function

η ∈ C∞0 ([−2δ, 2δ]), with η = 1 in [−δ, δ], 0 ≤ η ≤ 1 in R, and define the function

uε(x) = η(dg(x, x0))

(
ε

p−s
p(p−1)

ε
p−s
p−1 + dg(x, x0)

p−s
p−1

)n−p
p−s

. (3.24)
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Remark 3.4.1 As it is known the function Φp(y) = (1 + |y|
p−s
p−1 )−

n−p
p−s , with y ∈ Rn is

an extremal for

K(n, p, s)−1 = inf
u∈H1,p(Rn)\{0}

∫
Rn |∇u|

pdx(∫
Rn
|u|p?(s)
|x|s dx

) p
p?(s)

.

For this result we refer to [23].

Remark 3.4.2 Note that, as s ∈ [0, p), if p ≤ n+2
3

then p < n+2−s
2

, for all n ≥ 3.
While, if p ≤

√
n then p < n+2

3
, for all n ≥ 5, moreover,

√
4 = 2 = 6

3
= 4+2

3
, and√

3 > 5
3

= 3+2
3

and
√

2 > 4
3
(which correspond to the cases n = 4, n = 3 and n = 2

respectively).

Lemma 3.4.3 If the functions a, b and c satisfy the assumptions of Theorems 3.1.1
and 3.1.3. Then

τ <
(p− s)
p(n− s)

(Kp,s(α,β))
(p?(s)−p)
p?(s)

f(x0)
p

p?(s)−p
,

for some pair (ũ, ṽ) ∈ Hp with ||(ũ, ṽ)|| > R and Eh(ũ, ṽ) < 0 , where τ is defined in
(3.15).

Proof. Here we are inspired by ideas from [11, 15]. Since a, b, c ∈ C0,%(M), then

h ∈ C0,%(M). Using the test function uε, let us estimate
∫
M
hupεdvg. As δ > 0 is small

enough, we can write h(x)ηp = h(x0) + d(x, x0)%O(1), for all x ∈ Bδ(x0), thus∫
M

hupεdvg =

∫
Bδ(x0)

hupεdvg +

∫
M\Bδ(x0)

hupεdvg.

It is easy to see that
∫
M\Bδ(x0)

hupεdvg = O(ε
n−p
p−1 ). The first integral will be estimated

in three cases: p2 < n, p2 = n and p2 > n.

(i) p2 < n

∫
Bδ(x0)

hupεdvg =

∫
Bδ(0)

(h(x0) +O(1)r%)(1 +O(1)r2)

(
ε

p−s
p(p−1)

ε
p−s
p−1 + r

p−s
p−1

) (n−p)p
p−s

dy

= h(x0)ωn−1

∫ δ
ε

0

rn−1

(1 + r
p−s
p−1 )

(n−p)p
p−s

drεp +O(1)

∫ δ
ε

0

rn−1+%

(1 + r
p−s
p−1 )

(n−p)p
p−s

drεp+%

= h(x0)‖Φp‖ppεp − h(x0)ωn−1

∫ ∞
δ
ε

rn−1

(1 + r
p−s
p−1 )

(n−p)p
p−s

drεp +O(εp+%)

= h(x0)‖Φp‖ppεp + o(εp).
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(ii) p2 = n∫
Bδ(x0)

hupεdvg = h(x0)ωn−1

∫ δ
ε

0

rn−1

(1 + r
p−s
p−1 )

(n−p)p
p−s

drεp +O(εp+%).

Thus, we assume that ε is small enough, we can write∫ δ
ε

0

rn−1

(1 + r
p−s
p−1 )

(n−p)p
p−s

dr =

∫ δ

0

rn−1

(1 + r
p−s
p−1 )

(n−p)p
p−s

dr +

∫ δ
ε

δ

rn−1

(1 + r
p−s
p−1 )

(n−p)p
p−s

dr

= O(1) +

∫ δ
ε

δ

r−1dr +

∫ δ
ε

δ

rn−1

[
1

(1 + r
p−s
p−1 )

(n−p)p
p−s

− 1

rn

]
dr

= O(1) + ln(ε−1) +

∫ δ
ε

δ

rn−1

[
1− (1 + r

s−p
p−1 )

(n−p)p
p−s

(1 + r
p−s
p−1 )

(n−p)p
p−s

]
dr

= O(1) + ln(ε−1) +

∫ δ
ε

δ

rn−1

[
O(r−

p−s
p−1 )

(1 + r
p−s
p−1 )

(n−p)p
p−s

]
dr

= O(1) + ln(ε−1) +O(ε
p−s
p−1 ),

so, we get that ∫
Bδ(x0)

hupεdvg = h(x0)ωn−1ε
p ln(ε−1) + o(εp ln(ε−1)).

(iii) p2 > n

In this case it is easy to see that∫
Bδ(x0)

hupεdvg = O(ε
n−p
p−1 ).

Therefore, we have

∫
M

hupεdvg =


h(x0)‖Φp‖ppεp + o(εp) if p <

√
n,

h(x0)ωn−1ε
p ln(ε−1) + o(εp ln(ε−1)) if p =

√
n

O(ε
n−p
p−1 ) if p >

√
n.

(3.25)

Now, let us estimate
∫
M
|∇gu

p
ε |dvg. For that, using the normal coordinate we can

write the following expansion,

•
∫
Sn−1

√
det(g)dσ = ωn−1

(
1− Rg(x0)

6n
r2 +O(1)r3

)
,

moreover rewrite the gradient norm

•|∇gvε|p = ε
n−p
p−1

(
n− p
p− 1

)p
(ε

n−s
p−1 + r

p−s
p−1 )−

(n−s)p
p−s r

(1−s)p
p−1 ,

82



where vε(x) =

(
ε
p−s
p(p−1)

ε
p−s
p−1 +dg(x,x0)

p−s
p−1

)n−p
p−s

. Thus,∫
M

|∇guε|pdvg =

∫
Bδ(x0)

|∇gvε|pdvg +

∫
M\Bδ(x0)

|∇guε|pdvg.

It is easy to see that
∫
M\Bδ(x0)

|∇guε|pdvg = O(ε
n−p
p−1 ). Now, let us calculate the integral∫

Bδ(x0)
|∇guε|pdvg, by the expressions above, we get that∫
Bδ(x0)

|∇guε|pdvg

=

(
n− p
p− 1

)p
ωn−1

∫ δ
ε

0

r
(1−s)p
p−1

+n−1

(1 + r
p−s
p−1 )

(n−s)p
p−s

(
1− Rg(x0)

6n
(εr)2 +O((εr)3)

)
dr

= ‖∇Φp‖pp −
Rg(x0)

6n

(
n− p
p− 1

)p
ωn−1

∫ δ
ε

0

r
(1−s)p
p−1

+n+1

(1 + r
p−s
p−1 )

(n−s)p
p−s

drε2 +O(ε
n−p
p−1 ).

Next, let us estimate the second term in the cases p < n+2
3
, p = n+2

3
and p > n+2

3
.

(i)′ p < n+2
3∫ δ
ε

0

r
(1−s)p
p−1

+n+1

(1 + r
p−s
p−1 )

(n−s)p
p−s

dr =

∫ ∞
0

r
(1−s)p
p−1

+n+1

(1 + r
p−s
p−1 )

(n−s)p
p−s

dr +O(ε
n+2−3p
p−1 ).

(ii)′ p = n+2
3∫ δ

ε

0

r
(1−s)p
p−1

+n+1

(1 + r
p−s
p−1 )

(n−s)p
p−s

dr =

∫ δ

0

r
(1−s)p
p−1

+n+1

(1 + r
p−s
p−1 )

(n−s)p
p−s

dr +

∫ δ
ε

δ

r
(1−s)p
p−1

+n+1

(1 + r
p−s
p−1 )

(n−s)p
p−s

dr

= O(1) + ln(ε−1) +

∫ δ
ε

δ

[
r

(1−s)p
p−1

+n+1

(1 + r
p−s
p−1 )

(n−s)p
p−s

− 1

r

]
dr

= O(1) + ln(ε−1) +

∫ δ
ε

δ

r
(1−s)p
p−1

+n+1

[
O(r−

p−s
p−1 )

(1 + r
p−s
p−1 )

(n−s)p
p−s

]
dr

= O(1) + ln(ε−1) +O(ε
p−s
p−1 ).

(iii)′ p > n+2
3∫ δ

ε

0

r
(1−s)p
p−1

+n+1

(1 + r
p−s
p−1 )

(n−s)p
p−s

dr = O

(∫ δ
ε

0

r
(1−s)p
p−1

+n+1− (n−s)p
p−1 dr

)
= O(ε

n+2−3p
p−1 ).

So we get that

∫
M
|∇guε|pdvg =


‖∇Φp‖pp − Rg(x0)

6n C1(n, p, s)ε2 + o(ε2), if p < n+2
3 ,

‖∇Φp‖pp − Rg(x0)
6n ωn−1

(
n−p
p−1

)p
ε2 ln(ε−1) +O(ε2), if p = n+2

3 ,

‖∇Φp‖pp +O(ε
n−p
p−1 ), if p > n+2

3 ,

(3.26)
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where C1(n, p, s) =
∫
Rn |∇Φp|

p|y|2dy.

Finally, let us estimate
∫
M

f(x)u
p?(s)
ε

dg(x,x0)s
dvg. For that it is easy to see that

∫
M\Bδ(x0)

f(x)u
p?(s)
ε

dg(x, x0)s
dvg = O(ε

n−s
p−1 ).

In normal coordinate we can write the following expansion

f(x)ηp
?(s)(r) = f(x0) +

1

2
∂ijf(x0)xixj +O(r3). (3.27)

With that, we reach∫
Bδ(x0)

f(x)u
p?(s)
ε

dg(x, x0)s
dvg =f(x0)

∫
Bδ(0)

ε
n−s
p−1

|y|s(ε
p−s
p−1 + |y|

p−s
p−1 )

2(n−s)
2−s

√
det(g)dy

+
1

2
∂ijf(x0)

∫
Bδ(0)

ε
n−s
p−1 yiyj

|y|s(ε
p−s
p−1 + |y|

p−s
p−1 )

p(n−s)
p−s

√
det(g)dy +O(ε3)

=f(x0)ωn−1

∫ δ

0

ε
n−s
p−1 rn−1

rs(ε
p−s
p−1 + r

p−s
p−1 )

p(n−s)
p−s

(
1− Rg(x0)

6n
r2 +O(r3)

)
dr

+
∆f(x0)

2n
ωn−1

∫ δ

0

ε
n−s
p−1 rn+1

rs(ε
p−s
p−1 + r

p−s
p−1 )

p(n−s)
p−s

(
1 +O(r2)

)
dr +O(ε3).

Taking the variable change t = r
ε
, we have

f(x0)ωn−1

∫ δ
ε

0

tn−1

ts(1 + t
p−s
p−1 )

p(n−s)
p−s

dt = f(x0)

∫
Rn

|Φp|p
?(s)

|y|s
dy +O(ε

n−s
p−1 ). (3.28)

Now, note that:

(i)′′ p < n+2−s
2

ωn−1

∫ δ
ε

0

tn+1

ts(1 + t
p−s
p−1 )

p(n−s)
p−s

dt =

∫
Rn

|Φ|p?(s)

|y|s−2
dy +O(ε

n+2−s−2p
p−1 ).

(ii)′′ p = n+2−s
2∫ δ

ε

0

tn+1

ts(1 + t
p−s
p−1 )

p(n−s)
p−s

dt = O(1) + ln(ε−1) +O(ε
p−s
p−1 ).

(iii)′′ p > n+2−s
2 ∫ δ

ε

0

tn+1

ts(1 + t
p−s
p−1 )

p(n−s)
p−s

dt = O(ε
n+2−s−2p

p−1 ).

Thus, we reach that
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∫
M

f(x)u
p?(s)
ε

dg(x, x0)s
dvg

=


f(x0)‖Φ‖p

?(s)

L
p?(s)
dg,s

+ C2(n,p,s)
2nf(x0)

(
∆f(x0)
f(x0)

− Rg(x0)

3

)
ε2 +O(ε

n−s
p−1 ), if p < n+2−s

2
,

f(x0)‖Φ‖p
?(s)

L
p?(s)
dg,s

+
(

∆f(x0)
2n
− f(x0)Rg(x0)

6n

)
ε2 ln(ε−1) +O(ε2), if p = n+2−s

2
,

f(x0)‖Φ‖p
?(s)

L
p?(s)
dg,s

+O(ε
n−s
p−1 ), if p > n+2−s

2
,

(3.29)

where C2(n, p, s) :=
∫
Rn
|Φ|p?(s)
|y|s−2 dy.

Next, let us calculate the quotient∫
M
|∇guε|pdvg +

∫
M
hupεdvg(∫

M
f(x)u

p?(s)
ε

dg(x,x0)s
dvg

) p
p?(s)

.

Starting when n ≥ 4 and p ≤ n+2
3
.

First, for p <
√
n, by (3.25), (3.26) and (3.29) we can compute the following∫

M
|∇guε|pdvg +

∫
M
hupεdvg(∫

M
f(x)u

p?(s)
ε

dg(x,x0)s
dvg

) p
p?(s)

=
‖∇Φ‖pp −

C1(n,p,s)
6n

Rg(x0)ε2 + h(x0)‖Φp‖ppεp + o(εmin{p,2})

f(x0)
p

p?(s)

(
‖Φp‖p

?(s)

L
p?(s)
dg,s

+
(

∆f(x0)
2nf(x0)

− Rg(x0)

6n

)
C2(n, p, s)ε2 + o(ε2)

) p
p?(s)

=


K(n,p,s)−1

f(x0)
p

p?(s)

{
1 +

h(x0)‖Φp‖pp
‖∇Φ‖pp

εp + o(εp)
}
, if 1 < p < 2

K(n,p,s)−1

f(x0)
p

p?(s)

{
1− κp

[(
p?(s)C1(n,p,s)‖Φp‖p

?(s)
p?(s)

pC2(n,p,s)‖∇Φp‖pp
− 1

)
Rg(x0)

3
+ ∆f(x0)

f(x0)

]
ε2 + o(ε2)

}
, if p > 2,

where κp = κp(n, p, s) := pC2(n,p,s)

2np?(s)‖Φp‖p
?(s)
p?(s)

> 0 when p > 2.

From [11, section 5] we have that
C1(n,p,s)‖Φp‖p

?(s)
p?(s)

C2(n,p,s)‖∇Φp‖pp
= (n−p)(n+2−s)

(n−s)(n+2−3p)
for 0 < s < p

(the case s = 0 was calculated by Druet in [15, subsection 5.2]), therefore, for n ≥ 4

and p <
√
n we reach that∫

M
|∇guε|pdvg +

∫
M
hupεdvg(∫

M
f(x)u

p?(s)
ε

dg(x,x0)s
dvg

) p
p?(s)

=


K(n,p,s)−1

f(x0)
p

p?(s)

{
1 +

h(x0)‖Φp‖pp
‖∇Φ‖pp

εp + o(εp)
}
, if 1 < p < 2

K(n,p,s)−1

f(x0)
p

p?(s)

{
1− κp

[
(3p−s)

(n+2−3p)

Rg(x0)

3
+ ∆f(x0)

f(x0)

]
ε2 + o(ε2)

}
, if p > 2.

(3.30)
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In the case n ≥ 5 and
√
n ≤ p ≤ n+2

3
, in a similar way we get that∫

M
|∇guε|2dvg +

∫
M
hu2

εdvg(∫
M

f(x)
dg(x,x0)s

u
p?(s)
ε dvg

) p
p?(s)

=


K(n,p,s)−1

f(x0)
p

p?(s)

{
1− κp

[
(3p−s)

(n+2−3p)

Rg(x0)

3
+ ∆f(x0)

f(x0)

]
ε2 + o(ε2)

}
, if 2 < p < n+2

3
,

K(n,p,s)−1

f(x0)
p

p?(s)

{
1− Rg(x0)ωn−1pp

6n‖∇Φ‖pp
ε2 ln(ε−1) + o(ε2 ln(ε−1))

}
, if 2 < p = n+2

3
.

Now, when n = 3 (resp. n = 2).

(i)′′ p <
√

3 (resp.
√

2)∫
M
|∇guε|2dvg +

∫
M
hu2

εdvg(∫
M

f(x)
dg(x,x0)s

u
p?(s)
ε dvg

) p
p?(s)

=
K(n, p, s)−1

f(x0)
p

p?(s)

{
1 +

h(x0)‖Φp‖pp
‖∇Φ‖pp

εp + o(εp)

}
.

(ii)′′ p =
√

3 (resp.
√

2)∫
M
|∇guε|2dvg +

∫
M
hu2

εdvg(∫
M

f(x)
dg(x,x0)s

u
p?(s)
ε dvg

) p
p?(s)

=
K(n, p, s)−1

f(x0)
p

p?(s)

{
1 +

h(x0)ω2

‖∇Φ‖pp
εp ln(ε−1) + o(εp ln(ε−1))

}
.

Therefore, by the hypothesis of Theorems 3.1.1 and 3.1.3 in their respective cases,

and ε > 0 small enough in the above estimates we reach that∫
M
|∇guε|pdvg +

∫
M
hupεdvg(∫

M
f(x)u

p?(s)
ε

dg(x,x0)s
dvg

) p
p?(s)

<
K(n, p, s)−1

f(x0)
p

p?(s)

. (3.31)

Now, to complete the proof, let ξ, ζ be positive real number with
(
ξ
ζ

)p
= α

β
and

we define for any t ≥ 0 the following functional:

Φ(t) = Eh(tξuε, tζuε) =
tp

p
Xuε −

tp
?(s)

p?(s)
Yuε ,

where Xuε = (ξp+ζp)
∫
M
|∇guε|pdvg+

∫
M

(ξpa(x)+ξζ(ξp−2 +ζp−2)b(x)+ζpc(x))|uε|pdvg
and Yε = ξαζβ

∫
M

f(x)|uε|p
?(s)

dg(x,x0)s
dvg. We want to find t0 > 0 such that Φ′(t0) = 0, this

occurs when tp−1Xuε − tp
?(s)−1Yuε = 0. Hence,

t0 =

(
Xuε

Yuε

) 1
p?(s)−p

,

this implies that t0 is a critical point of Φ, more precisely, is a maximum point of Φ
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since Φ(t)→ −∞ as t→∞. Thus, we get that

Φ(t0) =

(
1

p
− 1

p?(s)

)(
Xuε

Y
p

p?(s)
uε

) p?(s)
p?(s)−p

=
p− s

p(n− s)

 (ξp + ζp)

(ξαζβ)
p

p?(s)

∫
M
|∇guε|pdvg +

∫
M
hupεdvg(∫

M
f(x)u

p?(s)
ε

dg(x,x0)s
dvg

) p
p?(s)


p?(s)
p?(s)−p

,

(3.32)

and by estimate (3.31), we reach

Φ(t0) <
p− s

p(n− s)
(Kp,s(α,β))

p?(s)
p?(s)−p

f(x0)
p

p?(s)−p
.

Now, choose t1 > t0 large such that Φ(t1) < 0 and ||(ũ, ṽ)|| > R with ũ = t1ξuε and

ṽ = t1ζuε. We have

0 < τ = inf
γ∈Γ

sup
t∈[0,1]

Eh(γ(t)) ≤ sup
t∈[0,1]

Eh(tũ, tṽ)

= sup
t∈[0,1]

Φ(tt1) < Φ(t0) <
p− s

p(n− s)
(Kp,s(α,β))

p?(s)
p?(s)−p

f(x0)
p

p?(s)−p
.

This completes the proof of the lemma.

3.5 Proof of Theorems 3.1.1 and 3.1.3

Proof of Theorems 3.1.1. Lemma 3.4.3 gives us that

0 < τ <
(p− s)
p(n− s)

(Kp,s(α,β))
(p?(s)−p)
p?(s)

f(x0)
p

p?(s)−p
,

and from Proposition 3.3.5 it follows that Eh satisfies the Palais-Smale condition at

the level τ . Thus, by the Mountain Pass Theorem [49, Theorem 2.10] we reach that τ

is a critical value of Eh, that is, there exists (u, v) in H such that

E ′h(u, v) ≡ 0 and Eh(u, v) = τ,

this implies that (u, v) is pair of nontrivial weak solutions of system (3.1). Which

completes the proof of Theorem 3.1.1. �
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To prove that from the hypotheses assumed in Corollary 3.1.2 we obtain a pair

of non-negative solution of system (3.1), let us consider the functional

Eh,+(u, v) =
1

p

∫
M

(
|∇gu|p + |∇gv|p + a|u|p + buv(|u|p−2 + |v|p−2) + c|v|p

)
dvg

− 1

p?(s)

∫
M

f(x)(u+)α(v+)β

dg(x, x0)s
dvg.

(3.33)

Proof of Corollary 3.1.2. It is easy to see that the functional Eh,+ satisfies the same

properties of Eh. Using the same test function we have that the Lemma 3.4.3 is

true for Eh,+, from Theorem 3.1.1 one has that there exists (u, v) ∈ Hp a nontrivial

critical point of Eh,+. Now, let us to prove that u and v are nonnegative. Since

E ′h,+(u, v)(u−, v−) = 0, i.e,

0 = E ′h,+(u, v)(u−, v−)

=

∫
M

{
|∇gu

−|p + |∇gv
−|p + a|u−|p + c|v−|p

}
+

∫
M

b(x)

p
[((p− 1)|u|p−2 + |v|p−2)vu− + ((p− 1)|v|p−2 + |u|p−2)uv−]dvg

−
∫
M

α

p?(s)

f(x)

dg(x, x0)s
(u+)α−1(v+)βu−dvg +

∫
M

β

p?(s)

f(x)

dg(x, x0)s
(v+)β−1(u+)αv−dvg.

=

∫
M

[
|∇gu

−|p + |∇gv
−|p + a(x)|u−|p + b(x)u−v−(|u−|p−2 + |v−|p−2) + c(x)|v−|p

]
dvg

+

∫
M

b(x)

p

[
((p− 1)|u−|p−2 + |v+|p−2)v+u− + ((p− 1)|v−|p−2 + |u+|p−2)u+v−

]
dvg

and as b ≤ 0, it follows that∫
M

[
|∇gu

−|p + |∇gv
−|p + a|u−|p + b(x)u−v−(|u−|p−2 + |v−|p−2) + c|v−|p

]
dvg ≤ 0,

by coercivity hypothesis one has that u− = 0 and v− = 0. Therefore, (u, v) is a pair of

non-negative weak solutions of system (3.1). This ends the proof. �

Proof of Theorem 3.1.3. In the case 1 < p < 2, where we assume b ≡ 0, the proof

follows a similar approach to that of Corollary 3.1.2. Thus, we establish the existence

of a pair (u, v) in Hp of non-negative nontrivial weak solutions of system (3.1). This

concludes the proof. �
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